
Mining Large Dynamic Graphs and Tensors

Kijung Shin

CMU-CS-19-101

February 2019

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christos Faloutsos, Chair

Tom M. Mitchell
Leman Akoglu

Philip S. Yu (University of Illinois at Chicago)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2019 Kijung Shin

This research was sponsored by the National Science Foundation under grant numbers CNS-1314632 and IIS-1408924,
the US Army Research Lab under grant number W911NF-09-2-0053, the Qatar National Research Fund under NRPR grant
number 7-1330-2-483, the Korea Foundation for Advanced Studies, and the Siebel Scholars Foundation. The views and
conclusions contained in this document are those of the author and should not be interpreted as representing the official
policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: data mining, graph mining, tensor mining, stream mining, graph stream, edge stream,
tensor stream, streaming algorithms, approximation algorithms, distributed algorithms, out-of-core al-
gorithms, external-memory algorithms, distributed streaming algorithms, MapReduce, Hadoop, trian-
gle counting, graph summarization, graph compression, tensor decomposition, tucker decomposition,
anomaly detection, fraud detection, k-cores, degeneracy, dense subtensor detection, behavior modeling,
network game, sharable good game, progressive stages, WRS, TRI-FLY, COCOS, THINKD, SWEG,
S-HOT, CORESCOPE, M-ZOOM, D-CUBE, DENSESTREAM, DENSEALERT, SGG, SGG-AC, SGG-
NASH, SWATT, SWATTFIT

To my family and Sol-Ah, for their love and support

iv

Abstract
Graphs are ubiquitous, representing a variety of information, ranging from who follows

whom on online social networks to who reviews what on e-commerce sites. Many of these
graphs are large (e.g., online social networks with over two billion active users) and dy-
namic (i.e., nodes and edges can be added and removed over time). Moreover, they are
with rich side information (e.g., e-commerce reviews with timestamps, ratings, and text)
and thus naturally modeled as tensors (i.e., multi-dimensional arrays).

Given large dynamic graphs and tensors, how can we analyze their structure? How can
we detect interesting anomalies? Lastly, how can we model behaviors of individuals in the
data? My thesis focuses on these closely related questions, all of which are fundamental to
understand massive evolving data on user behavior. That is, we develop scalable algorithms
for mining large dynamic graphs and tensors, with a focus on three tasks:
1. Structure Analysis: We build one-pass, sublinear-space algorithms that incrementally

estimate the triangle count, which is an important connectivity measure, in large dy-
namic graphs. In particular, our distributed algorithm yields up to 39× more accurate
estimates faster than a baseline. We also develop distributed and out-of-core algorithms
for succinctly but accurately summarizing the structure of large graphs and tensors.
They summarize over 25× larger data without quality loss than their best competitors.

2. Anomaly Detection: We develop near-linear time approximation algorithms for detect-
ing unusually dense subgraphs and subtensors, which signal notable anomalies such as
“edit wars” on Wikipedia and fake followers on Twitter. Especially, our tensor algo-
rithm is up to 114× faster without accuracy loss than the previously best heuristic. We
also extend it for distributed or dynamic data with the same approximation guarantee.

3. Behavior Modeling: We design game-theoretic models for purchases of individuals
in social networks and a fast algorithm for finding Nash equilibria of the models. In
addition, we develop a stage model for the progression of individuals and a distributed
optimization algorithm for fitting the model to behavior logs with trillions of records.
Using our tools, we measure social inefficiency regarding purchase of sharable goods
and discover progression patterns of LinkedIn users.

To achieve the highest performance and scalability, our algorithms for the above tasks em-
ploy mathematical techniques (e.g., approximation and sampling), use distributed comput-
ing frameworks (e.g., MAPREDUCE and MPI), and/or exploit pervasive patterns in real-
world data (e.g., power-law degree distribution). We successfully apply them to mas-
sive datasets, including 20 .6 billion social connections on LinkedIn, 1 .47 billion fol-
low relations on Twitter, 783 million hyperlinks between web pages, 483 million edits
on Wikipedia, and a synthetic tensor with 1 trillion non-zero entries.

vi

Acknowledgments
My first and biggest thanks go out to my advisor, Christos Faloutsos, for his advice and

support. He has been an ideal advisor in every respect. Without his inspiration, encourage-
ment, patience, care, and humor, my graduate study would not have been pleasurable and
productive as it has been.

I also would like to thank my other thesis committee members, Leman Akoglu, Tom
Mitchell, and Philip Yu, for their insightful questions and constructive feedback.

I was fortunate to be mentored by Amol Ghoting, Aastha Jain, Myunghwan Kim, Hema
Raghavan, and Mahdi Shafiei, during my two internships at LinkedIn. Two chapters of this
thesis are based on what I did during the internships.

I have had the opportunity to work with an amazing group of coauthors and collab-
orators, each of whom deserves my gratitude: Ashwin Bahulkar, Alex Beutel, Nitesh
Chawla, Tina Eliassi-Rad, Dhivya Eswaran, David Hachen, Mohammad Hammoud, Insu
Han, Bryan Hooi, Jinhong Jung, U Kang, Jisu Kim, Hemank Lamba, Jaeho Lee, Eui-
woong Lee, Shenghua Liu, Vaishnavh Nagarajan, Aastha Nigam, Jinoh Oh, Vagelis Pa-
palexakis, Jürgen Pfeffer, Ariel Procaccia, Lee Sael, Neil Shah, Naji Shajarisales, Jinwoo
Shin, Hyun-Ah Song, Boleslaw Szymanski, Minji Yoon, Hwanjo Yu, and Jiyuan Zhang. I
would especially like to thank U Kang for sparking my interest in research when I was an
undergraduate, and for mentoring me ever since.

I am grateful to all the members and visitors of the CMU DB group for being great
friends, coworkers, and mentors: Miguel Araùjo, Alex Beutel, Daniel Chino, Dhivya
Eswaran, Sebastian Gobel, Bryan Hooi, Rohan Kumar, Srijan Kumar, Hemank Lamba,
Shenghua Liu, Jinoh Oh, Vagelis Papalexakis, Namyong Park, Neil Shah, Hyun-Ah Song,
Tubasa Takahashi, and Minji Yoon. Although there are too many to list individually, I have
been fortunate to have wonderful friends from the CMU Korean community. I also would
like to thank Deborah Cavlovich, Ann Stetser, and Marilyn Walgora for their seamless
administrative support that has made my Ph.D. life run smoothly.

Last but not least, many thanks go out to my family and fiancèe, Sol-Ah Kim, for their
endless love and support.

viii

Contents

1 Introduction 1
1.1 Overall Impact . 1
1.2 Contributions . 2

1.2.1 Part I: Structure Analysis . 2
1.2.2 Part II: Anomaly Detection . 4
1.2.3 Part III: Behavior Modeling . 6

1.3 Thesis Organization . 8

2 Background 11
2.1 Graph-related Concepts and Notations . 11
2.2 Tensor-related Concepts and Notations . 12

I Structure Analysis 15

3 Counting Triangles in Graph Streams (0): Preliminaries 17
3.1 Motivation . 17
3.2 Related Work . 17
3.3 Concepts . 19

3.3.1 Reservoir Sampling . 19
3.3.2 Evaluation Metrics for Triangle Counting . 20

4 Counting Triangles in Graph Streams (1): Exploiting Temporal Patterns 21
4.1 Motivation . 21
4.2 Preliminaries and Problem Definition . 22

4.2.1 Notations and Concepts . 23
4.2.2 Problem Definition . 23

4.3 Observation: “Temporal Locality” . 24
4.4 Proposed Algorithm: WRS . 26

4.4.1 Overview . 26
4.4.2 Detailed Description . 26

4.5 Theoretical Analysis . 29
4.5.1 Accuracy Analysis . 29
4.5.2 Complexity Analysis . 31

4.6 Experiments . 32
4.6.1 Experimental Settings . 32
4.6.2 Q1. Illustration of Theorems . 33

ix

4.6.3 Q2. Accuracy . 33
4.6.4 Q3. Scalability . 33
4.6.5 Q4. Effects of Parameters on Accuracy . 34

4.7 Summary . 35

5 Counting Triangles in Graph Streams (2): Utilizing Multiple Machines 37
5.1 Motivation . 37
5.2 Preliminaries and Problem Definition . 39

5.2.1 Notations and Concepts . 39
5.2.2 Problem Definition . 40

5.3 Proposed Algorithms: TRI-FLY and COCOS . 40
5.3.1 Overview . 40
5.3.2 Baseline Algorithm: TRI-FLY . 41
5.3.3 Proposed Algorithm: COCOS . 43
5.3.4 Lazy Aggregation . 47
5.3.5 Multiple Sources, Masters and Aggregators 47

5.4 Theoretical Analysis . 47
5.4.1 Accuracy Analysis . 47
5.4.2 Complexity Analysis . 52

5.5 Experiments . 54
5.5.1 Experimental Settings . 54
5.5.2 Q1. Illustration of Our Theorems . 55
5.5.3 Q2. Speed and Accuracy . 56
5.5.4 Q3. Scalability . 58
5.5.5 Q4. Effects of Parameters on Accuracy . 58

5.6 Summary . 59
5.7 Appendix: Proof of Lemma 5.3 . 60

6 Counting Triangles in Graph Streams (3): Handling Deletions 63
6.1 Motivation . 63
6.2 Preliminaries and Problem Definition . 64

6.2.1 Notations and Concepts . 64
6.2.2 Problem Definition . 65

6.3 Proposed Algorithm: THINKD . 66
6.3.1 Overview . 66
6.3.2 Simple and Fast Version: THINKDFAST . 66
6.3.3 Accurate Version: THINKDACC . 68

6.4 Theoretical Analysis . 69
6.4.1 Accuracy Analysis . 69
6.4.2 Complexity Analysis . 72

6.5 Experiments . 73
6.5.1 Experimental Settings . 73
6.5.2 Q1. Illustration of Theorems . 74
6.5.3 Q2. Accuracy . 75
6.5.4 Q3. Speed . 75
6.5.5 Q4. Scalability . 75
6.5.6 Q5. Effects of Deletions on Accuracy . 78

x

6.6 Summary . 78
6.7 Appendix: Proofs . 79

6.7.1 Proof of Lemma 6.1 . 79
6.7.2 Proof of Lemma 6.2 . 80
6.7.3 Proof of Lemma 6.3 . 83

6.8 Appendix: Detailed Variance Analysis . 84

7 Summarizing Large Graphs 87
7.1 Motivation . 87
7.2 Preliminaries and Problem Definition . 89

7.2.1 Notations and Concepts . 90
7.2.2 Problem Definition . 91

7.3 Proposed Algorithm: SWEG . 91
7.3.1 Overview . 91
7.3.2 Detailed Description . 92
7.3.3 Parallelization in Shared Memory . 96
7.3.4 Distributed Processing with MAPREDUCE 97
7.3.5 Further Compression: SWEG+ . 98

7.4 Theoretical Analysis . 98
7.4.1 Time Complexity Analysis . 98
7.4.2 Memory Requirement Analysis . 99

7.5 Experiments . 99
7.5.1 Experimental Settings . 100
7.5.2 Q1. Lossless Summarization . 101
7.5.3 Q2. Lossy Summarization . 102
7.5.4 Q3. Scalability . 103
7.5.5 Q4. Effects of Parameters . 105
7.5.6 Q5. Further Compression . 106

7.6 Related Work . 107
7.7 Summary . 108
7.8 Appendix: Neighbor Queries on Summarized Graphs 108

8 Summarizing Large High-order Tensors 111
8.1 Motivation . 111
8.2 Preliminaries and Problem Definition . 114

8.2.1 Notations and Concepts . 114
8.2.2 Problem Definition . 118

8.3 Observation: “Materialization Bottleneck” . 118
8.3.1 Intermediate Data Explosion . 119
8.3.2 Scalable Tucker Decomposition . 119
8.3.3 Materialization Bottleneck . 121

8.4 Proposed Algorithm: S-HOT . 121
8.4.1 Overview . 121
8.4.2 Naive Version: S-HOTNAIVE . 122
8.4.3 Space-efficient Version: S-HOTSPACE . 123
8.4.4 Faster Version: S-HOTSCAN . 124
8.4.5 Fastest Version: S-HOTCACHE . 128

xi

8.5 Experiments . 129
8.5.1 Experimental Settings . 129
8.5.2 Q1: Scalability . 131
8.5.3 Q2: S-HOT at Work . 132
8.5.4 Q3: Effect of the Memory Budget on the Speed of S-HOTCACHE 132
8.5.5 Q4: Effect of the Skewness of Data on the Speed of S-HOTCACHE 133

8.6 Summary . 133

II Anomaly Detection 135

9 Finding Patterns and Anomalies in Dense Subgraphs 137
9.1 Motivation . 137
9.2 Preliminaries . 139

9.2.1 Concepts and Notations . 139
9.2.2 Algorithm for k-Cores and Degeneracy . 140
9.2.3 Real-world Graph Datasets . 141

9.3 P1: “Mirror Pattern” and Anomaly Detection . 142
9.3.1 Observation: Pattern in Real-world Graphs 142
9.3.2 Application: Anomaly Detection . 142
9.3.3 Proposed Algorithm: CORE-A . 145

9.4 P2: “Core-Triangle Pattern” and Degeneracy Estimation 148
9.4.1 Observation: Pattern in Real-world Graphs 148
9.4.2 Theoretical Analysis in the Kronecker and ER Models 148
9.4.3 Proposed Algorithm: CORE-D . 154

9.5 P3: “Structured Core Pattern” and Influential Spreader Identification 158
9.5.1 Observation: Pattern in Real-world Graphs 158
9.5.2 Application: Finding Influential Spreaders . 159
9.5.3 Proposed Algorithm: CORE-S . 160

9.6 Related Work . 161
9.7 Summary . 163
9.8 Appendix: Measuring Influence of Nodes by Simulating the SIR model 163

10 Detecting Dense Subtensors in Large Tensors (0): Preliminaries 165
10.1 Motivation . 165
10.2 Related Work . 165
10.3 Concepts . 167

10.3.1 Tensors Represented as Relations . 167
10.3.2 Density Measures . 168

10.4 Datasets . 170

11 Detecting Dense Subtensors in Large Tensors (1): In-memory Algorithm 173
11.1 Motivation . 173
11.2 Problem Definition . 175
11.3 Proposed Algorithm: M-ZOOM . 176

11.3.1 Overview . 176
11.3.2 Detailed Description . 176

xii

11.4 Theoretical Analysis . 179
11.4.1 Accuracy Analysis . 179
11.4.2 Complexity Analysis . 181

11.5 Experiments . 181
11.5.1 Experimental Settings . 182
11.5.2 Q1. Speed and Accuracy of M-ZOOM . 183
11.5.3 Q2. Scalability of M-ZOOM . 183
11.5.4 Q3. Diversity of Subtensors Found by M-ZOOM 183
11.5.5 Q4. Effectiveness of M-ZOOM in Real-world Datasets 186

11.6 Summary . 188

12 Detecting Dense Subtensors in Large Tensors (2): External-memory Algorithm 189
12.1 Motivation . 189
12.2 Problem Definition . 191
12.3 Proposed Algorithm: D-CUBE . 192

12.3.1 Overview . 192
12.3.2 Detailed Description . 193
12.3.3 MapReduce Implementation . 195

12.4 Theoretical Analysis . 196
12.4.1 Accuracy Analysis . 196
12.4.2 Complexity Analysis . 197

12.5 Experiments . 198
12.5.1 Experimental Settings . 198
12.5.2 Q1. Memory Efficiency . 200
12.5.3 Q2. Speed and Accuracy . 200
12.5.4 Q3. Scalability . 201
12.5.5 Q4. Effectiveness . 204
12.5.6 Q5. Effects of Parameter θ on Speed and Accuracy 207

12.6 Summary . 208

13 Detecting Dense Subtensors in Large Tensors (3): Incremental Algorithms 209
13.1 Motivation . 209
13.2 Preliminaries and Problem Definition . 211

13.2.1 Notations and Concepts . 211
13.2.2 Problem Definitions . 213

13.3 Proposed Algorithms: DENSESTREAM and DENSEALERT 214
13.3.1 Overview . 214
13.3.2 Baseline Algorithm: DENSESTATIC . 215
13.3.3 Proposed Algorithm (1): DENSESTREAM . 216
13.3.4 Proposed Algorithm (2): DENSEALERT . 220

13.4 Theoretical Analysis . 221
13.4.1 Accuracy Analysis . 221
13.4.2 Complexity Analysis . 222

13.5 Experiments . 224
13.5.1 Experimental Settings. 224
13.5.2 Q1. Speed . 225
13.5.3 Q2. Accuracy . 226

xiii

13.5.4 Q3. Scalability . 226
13.5.5 Q4. Effectiveness . 227

13.6 Summary . 229
13.7 Appendix: Proofs . 229

13.7.1 Proof of Lemma 13.3 . 231
13.7.2 Proof of Lemma 13.4 . 233

III Behavior Modeling 235

14 Modeling Purchases in Social Networks 237
14.1 Motivation . 237
14.2 Proposed Models: SGG and SGG-AC . 239

14.2.1 Notations and Model Description . 239
14.2.2 Definition and Existence of Equilibria . 240

14.3 Proposed Algorithm: SGG-NASH . 242
14.4 Theoretical Analysis . 242

14.4.1 Social Inefficiency Analysis . 242
14.4.2 Convergence Analysis . 247
14.4.3 Complexity Analysis . 248

14.5 Experiments . 249
14.5.1 Experimental Settings . 249
14.5.2 Q1. Inefficiency of NEs in SGGs . 251
14.5.3 Q2. Effect of the Access Cost on the Inefficiency of NEs 251
14.5.4 Q3. Socially Optimal Access Costs . 251
14.5.5 Q4. Effect of the Degree of Sharing (i.e., k) on the Inefficiency of NEs 251
14.5.6 Q5. Scalability of SGG-NASH . 251

14.6 Related Work . 251
14.7 Summary . 252

15 Modeling Progression of Users on Social Media 253
15.1 Motivation . 253
15.2 Proposed Model: SWATT . 255

15.2.1 Notations and Model Description . 256
15.2.2 Generative Process . 257

15.3 Proposed Algorithm: SWATTFIT . 258
15.3.1 Overview . 258
15.3.2 Detailed Description . 259
15.3.3 Extensions to External-memory, Multi-core, and Distributed Settings 261

15.4 Theoretical Analysis . 263
15.4.1 Time Complexity Analysis . 263
15.4.2 Memory Requirement Analysis . 263

15.5 Experiments . 264
15.5.1 Experimental Settings . 264
15.5.2 Q1. Effectiveness: Descriptive Results . 265
15.5.3 Q2. Applicability to Prediction Tasks . 267
15.5.4 Q3. Scalability . 268

xiv

15.5.5 Q4. Convergence . 270
15.5.6 Q5. Identifiability . 270

15.6 Related Work . 270
15.7 Summary . 271

IV Conclusions and Future Directions 273

16 Conclusions 275
16.1 Contributions . 275

16.1.1 Part I: Structure Analysis . 275
16.1.2 Part II: Anomaly Detection . 276
16.1.3 Part III: Behavior Modeling . 276

16.2 Overall Impact . 277

17 Vision and Future Directions 279

Bibliography 281

xv

xvi

List of Figures

1.1 Subtopics of the thesis . 1
1.2 Temporal locality and performance of COCOS (Summary of Chapters 4 & 5) 3
1.3 Compression by SWEG and scalability of S-HOT (Summary of Chapters 7 & 8) . . . 4
1.4 Effectiveness of CORE-A and performance of CORE-D (Summary of Chapter 9) . . . 5
1.5 Scalability and effectiveness of D-CUBE (Summary of Chapter 12) 6
1.6 Scalability and usefulness of SGG and SGG-NASH (Summary of Chapter 14) 7
1.7 Scalability and usefulness of SWATT and SWATTFIT (Summary of Chapter 15) 8

2.1 Illustration of tensors and slices . 12

4.1 Strengths of WRS . 22
4.2 Illustration of total intervals, closing intervals, and temporal locality. 24
4.3 Temporal locality in triangle formation . 25
4.4 Illustration of the sampling process in WRS . 26
4.5 Accuracy of WRS . 34
4.6 Effectiveness of WRS . 35
4.7 Effects of the parameter α on the accuracy of WRS 35

5.1 Strengths of COCOS . 38
5.2 Roles of machines and the flow of data in COCOS . 41
5.3 Illustrations of Type 1 and Type 2 triangle pairs . 50
5.4 Variance Drop in COCOS . 56
5.5 Computation and communication overhead in COCOS 56
5.6 Speed and accuracy of COCOS . 57
5.7 Scalability of COCOS . 58
5.8 Effects of the number of workers on the accuracy of COCOS 59
5.9 Effects of the storage budget b on the accuracy of COCOS 59
5.10 Effects of the tolerance θ on the accuracy of COCOS 60
5.11 Coloring of Type 1 and Type 2 triangle pairs where f(uvw) = f(uvx) 61

6.1 Strengths of THINKD . 64
6.2 Scalability and theoretical soundness of THINKD . 74
6.3 Accuracy of THINKD . 76
6.4 Speed of THINKD . 77
6.5 Effects of the ratio of deletions on the accuracy of THINKD 78

7.1 Strengths of SWEG . 88
7.2 Illustration of graph summarization . 90
7.3 Memory efficiency of SWEG . 99

xvii

7.4 Speed and effectiveness of SWEG . 101
7.5 Justification of our deisgn choices . 102
7.6 Effectiveness of the lossy version of SWEG . 104
7.7 Scalability of SWEG . 105
7.8 Effects of iterations on the compactness of outputs 106
7.9 Effects of error bounds on the compactness of outputs 106
7.10 Effectiveness of SWEG+ . 107

8.1 Strengths of S-HOT . 112
8.2 Illustration of the materialization bottleneck . 113
8.3 Power-law degree distributions in a real-world tensor 128
8.4 Speedups by S-HOTCACHE . 133

9.1 Three patterns discovered in real-world graphs and their applications 138
9.2 MIRROR PATTERN and anomalies . 143
9.3 Follower booster on Twitter . 144
9.4 Propeller-shaped subgraph on the web . 145
9.5 Complementarity and combinability of CORE-A . 147
9.6 CORE-TRIANGLE PATTERN in real-world graphs . 148
9.7 CORE-TRIANGLE PATTERN in the Kronecker model 153
9.8 CORE-TRIANGLE PATTERN in the ER model . 153
9.9 Speed and accuracy of CORE-D . 156
9.10 Memory efficiency of CORE-D . 157
9.11 STRUCTURED-CORE PATTERN . 159
9.12 Intuition behind CORE-S . 160
9.13 Speed and accuracy of CORE-S . 162

10.1 Pictorial description of Example 10.1 . 168

11.1 Strengths of M-ZOOM . 174
11.2 Illustration of M-ZOOM . 177
11.3 Speed and accuracy of M-ZOOM . 185
11.4 Scalability of M-ZOOM . 186
11.5 Diversity of the blocks detected by M-ZOOM . 187

12.1 Strengths of D-CUBE . 190
12.2 Memory efficiency of D-CUBE . 200
12.3 Speed and accuracy of D-CUBE: average . 201
12.4 Speed and accuracy of D-CUBE: details . 203
12.5 Data scalability of D-CUBE . 204
12.6 Machine scalability of D-CUBE . 204
12.7 Effects of the parameter θ on the speed and accuracy of D-CUBE 208

13.1 Strengths of DENSESTREAM and DENSEALERT . 210
13.2 Pictorial depiction of Example 13.1 . 213
13.3 Illustration of DENSEALERT . 220
13.4 Accuracy of DENSESTREAM . 226
13.5 Speed of DENSESTREAM . 227

xviii

13.6 Effectiveness of DENSEALERT for rating attack detection 228
13.7 Effectiveness of DENSEALERT on Korean Wikipedia 229

14.1 Effectiveness and scalability of our tools . 238
14.2 Example strategy profiles in an SGG . 241
14.3 Example strategy profiles in an SGG-AC . 241
14.4 Example of social inefficiency . 244

15.1 Effectiveness and scalability of our tools . 254
15.2 Plate notation for our behavior model SWATT . 257
15.3 Scalability of SWATTFIT . 268
15.4 Memory efficiency of SWATTFIT . 269
15.5 Convergence of SWATTFIT . 269
15.6 Accuracy of SWATTFIT . 270

xix

xx

List of Tables

1.1 Organization of the thesis . 9

2.1 Table of frequently-used symbols . 13

3.1 Comparison of triangle-counting algorithms . 18

4.1 Table of frequently-used symbols . 23
4.2 Summary of the graph streams used in our experiments 33

5.1 Table of frequently-used symbols . 39
5.2 Advantages of Case LUCKY . 46
5.3 Time and space complexities of COCOS . 52
5.4 Summary of the graph streams used in our experiments 55

6.1 Table of frequently-used symbols . 65
6.2 Summary of the graph streams used in our experiments 74

7.1 Table of frequently-used symbols . 89
7.2 Summary of the graphs used in our experiments . 100

8.1 Table of frequently-used symbols . 114
8.2 Space efficiency of S-HOT . 120
8.3 Effectiveness of S-HOT . 132

9.1 Table of frequently-used symbols . 140
9.2 Summary of the real-world graphs used in our experiments 141
9.3 Sample seed graphs for the Kronecker model . 153
9.4 Models of CORE-D . 155

10.1 Comparison of methods for detecting dense subgraphs or subtensors 166

11.1 Table of frequently-used symbols . 175
11.2 Summary of the real-world tensors used in our experiments 182
11.3 Effectiveness of M-ZOOM on English Wikipedia . 186
11.4 Effectiveness of M-ZOOM on Korean Wikipedia . 187
11.5 Effectiveness of M-ZOOM for network attack detection: examples 188
11.6 Effectiveness of M-ZOOM for network attack detection: comparison 188

12.1 Table of frequently-used symbols . 191
12.2 Summary of the real-world tensors used in our experiments 199

xxi

12.3 Effectiveness of D-CUBE for network intrusion detection 205
12.4 Effectiveness of D-CUBE for rating attack detection 206
12.5 Effectiveness of D-CUBE for spam review detection 206
12.6 Effectiveness of D-CUBE on English Wikipedia . 207
12.7 Dense subtensors detected by D-CUBE in real-world tensors 207

13.1 Table of frequently-used symbols . 212
13.2 Summary of the real-world tensors used in our experiments 225

14.1 Table of frequently-used symbols . 239
14.2 Utility in an SGG . 240
14.3 Utility in an SGG-AC . 240
14.4 Summary of our analysis of efficiency of equilibria 243
14.5 Summary of the graphs used in our experiments . 249
14.6 Social costs when k = 1 . 250
14.7 Social costs when k > 1 . 250

15.1 Table of frequently-used symbols . 256
15.2 Effectiveness of SWATT and SWATTFIT in the LinkedIn datasets 266
15.3 Discriminative paths for reaching the target in the LinkedIn datasets 267
15.4 Usefulness of SWATT and SWATTFIT for prediction tasks 267

xxii

Chapter 1

Introduction

Graphs are simple but powerful models to describe how everything is connected to everything else.
Thus, a wide range of information has been modeled as graphs: who follows whom on online social
networks, who reviews what on e-commerce sites, who searches what on search engines, to name just
a few. The low cost of storage, the rapid growth of Web applications, and the wide variety of available
data have made these graphs (a) large: for example, an online social network has over two billion active
users, (b) dynamic: that is, nodes and edges can be added and removed over time, and (c) with rich side
information: for example, e-commerce reviews contain timestamps, ratings, and text. However, since
most existing graph mining tools are for small static graphs without side information, the majority of
these large, dynamic, and rich graphs have remained poorly understood and utilized.

In this thesis, our focus is developing fast scalable algorithms for mining large dynamic graphs
and tensors. Tensors, or multi-dimensional arrays, are natural representations of graphs with side in-
formation. To maximize the performance and scalability of our algorithms, we employ mathematical
techniques (e.g., approximation and sampling), use distributed computing frameworks (e.g., MAPRE-
DUCE and MPI), and exploit common patterns in real-world data (e.g., power-law degree distribution).
As a result, we successfully apply our algorithms to billion-scale and even trillion-scale datasets, help-
ing understand and utilize the datasets. Specifically, our algorithms perform three tasks that are closely
related to each other (see Figure 1.1): structure analysis, anomaly detection, and behavior modeling.
Below, we provide an overview of the impact and contributions of our work on the tasks. Then, we
outline the organization of the thesis.

Structure
(Part I)

signal affect

Anomaly
(Part II)

Behavior
(Part III)signal

Figure 1.1: The subtopics of the thesis (i.e., structures, anoma-
lies, and behaviors) are closely related to each other. The struc-
ture of data (e.g., the structure of the underlying social network)
and the behavior of individuals in the data affect each other. More-
over, unusual (sub)structures and behaviors signal anomalies.

1.1 Overall Impact
This thesis has potential impact on a wide range of domains where large, dynamic, and rich information
are modeled as graphs or tensors: search engines (Chapters 7 and 9), social media (Chapters 9 and 15),
e-commerce (Chapter 12), computer security (Chapters 11, 12, and 13), public policy (Chapter 14), to
name a few. Below, we highlight the impact of our work on academia and industry.

1

Impact in Academia:
• Most of the algorithms produced throughout this thesis have been open-sourced and downloaded

over 350 times from 24 countries.
• Our work on patterns and anomalies in dense subgraphs [SERF18] was included in MIT’s course on

graph analytics (MIT 6.886), and two tutorials on k-cores at ICDM 2016 and ECML/PKDD 2017.

Impact in Industry:
• Our behavior model and learning algorithm for progression (SWATT and SWATTFIT [SSK+18])

were used at LinkedIn Inc. for analyzing user behavior.
• A patent application on our graph-summarization algorithm (SWEG [SGKR19]) was filed by LinkedIn

Inc. in September 2018.
• Our anomaly-detection algorithm (D-CUBE [SHKF18]) was used in production as a part of NAVER,

which is the dominant search engine in South Korea, to identify and filter spam sites.

Awards and Media Coverage:
• Our work on patterns and anomalies in dense subgraphs [SERF16] was selected as one among the

“Bests of ICDM 2016” and invited to the Knowledge and Information Systems journal [SERF18].
• Our work on purchase behavior modeling [SLEP17] was featured in New Scientist in May 2017

(available at https://www.newscientist.com/article/2132926).

1.2 Contributions
We provide a brief summary of our contributions on each task considered in this thesis.

1.2.1 Part I: Structure Analysis
A greater understanding of the structure of graphs and tensors can be achieved by computing structure-
related measures, and/or presenting the data in a concise and interpretable manner. In Part I, we address
two tasks closely related to structure analysis: (a) counting triangles in large dynamic graphs that are
modeled as graph streams, and (b) summarizing large graphs and tensors.

1.2.1.1 Counting Triangles in Graph Streams (Chapters 3-6)
“How can we rapidly and accurately keep track of the count of triangles in large dynamic graphs?”

The count of triangles (i.e., cliques of size three) is a key primitive in graph analysis. Many im-
portant structure-related measures, including the clustering coefficients [WF94], the transitivity ratio
[New03], and the triangle connectivity [BZ07], are based on the counts of global triangles (i.e., all
triangles in the graph) and local triangles (i.e., all triangles incident to each node). In addition to
structure analysis, the counts of global and local triangles have been used in numerous applications, in-
cluding link recommendation [TDM+11], anomaly detection [LJK18], and spam detection [BBCG10].
In Chapters 4-6, we develop fast and accurate approximate algorithms for keeping track of the counts
of global and local triangles in large dynamic graphs. Specifically, we model large dynamic graphs as
graph streams, which are a sequence of edges that (a) may not fit in the underlying storage and (b) can
be examined in only one pass, and we develop four streaming algorithms with distinct advantages:

2

https://www.newscientist.com/article/2132926

0K

50K

100K

150K

0K 150K 300K
Time Interval of Triangles

Fr
eq

ue
nc

y
Random

arrival order

Real arrival
order

(a) Temporal Locality

6.3X

30X

●●●10−4

10−3

10−2

104 105

Elapsed Time (millisec)

Es
tim

at
io

n
Er

ro
r

CoCoS

(b) Performance of COCOS

Figure 1.2: [Chapters 4-6]
(a) Temporal locality: Real-world dynamic
graphs have distinct temporal patterns.
(b) Performance of COCOS: It rapidly and
accurately estimates the count of triangles.

• Exploiting Patterns (Chapter 4): We develop WRS, which exploits temporal locality for accurate
triangle counting. Temporal locality (see Figure 1.2(a)) is a temporal pattern found in the formation
of triangles in real-world dynamic graphs. Given the same space budget, WRS is up to 1 .9× more
accurate than its best competitors.

• Utilizing Multiple Machines (Chapter 5): We develop TRI-FLY and COCOS, which are the first
distributed streaming algorithms for triangle counting. Given the same space budget, COCOS is
up to 39× more accurate than TRI-FLY, which significantly outperforms the best single-machine
algorithms (see Figure 1.2(b)).

• Handling Deletions (Chapter 6): We develop THINKD, which can handle fully dynamic graphs,
where edges are not only added but also deleted over time. Given the same space budget, THINKD
is up to 4 .3× more accurate than its best competitors.

We show theoretically and experimentally that all the above algorithms provide unbiased estimates and
scale to large-scale graphs with 100 billion edges.

Contributions:
• Accurate Algorithms: We develop four algorithms with distinct advantages (WRS [Shi17], TRI-

FLY [SHL+18], COCOS [SLO+19], THINKD [SKHF18]) for counting global and local triangles
in graph streams. All of them give unbiased estimates and scale to graphs with 100 billion edges.
Given the same space budget, they are up to 39× more accurate than their respective competitors.

• Useful Pattern in Real Data: We discover temporal locality in triangles of real graph streams. It can
be exploited for a variety of applications, and WRS [Shi17] exploits it for accurate triangle counting.

Impact:
• WRS [Shi17], TRI-FLY [SHL+18], and THINKD [SKHF18] have been open-sourced and down-

loaded 88 times from 13 countries.

1.2.1.2 Summarizing Large Graphs and Tensors (Chapters 7 and 8)
“How can we concisely describe web-scale graphs and tensors?”

Summarizing graphs and tensors (i.e., concisely representing them) is a direct way to make sense
of their structure. In Chapters 7 and 8, we develop an distributed algorithm and an external-memory
algorithm for summarizing web-scale graphs and tensors, respectively.

In Chapter 7, we formulate graph summarization as an optimization problem of finding the most
concise representation consisting of (a) a cluster-level graph and (b) edge corrections for restoring the
input graph from the cluster-level graph exactly or within error bounds. Then, we develop SWEG, a
distributed optimization algorithm for web-scale graph summarization. Implemented in the MAPRE-
DUCE framework, SWEG summarizes a 25× larger graph with over 20 billion edges than its best

3

0.0

0.5

1.0

1.5

2.0

2.5

(1)BV(2)BFS(3)BP(4)SWeG+
Methods#B

its
 P

er
 D

ire
ct

ed
 E

dg
e

BV BFS BP SWeG+

3.4X

(a) Compression by SWEG

●● ●● ● ●
●

●● ●● ● ●
●

●● ●● ● ●

●

100

101

102

103 104 105 106 107

Dimensionality

El
ap

se
d

Ti
m

e

 P
er

 It
er

at
io

n
(s

ec
)

M
ET
(2
)

S-HOT

S-HOT+

1000X

S-HOT++

(b) Scalability of S-HOT

Figure 1.3: [Chapters 7-8]
(a) Compression by SWEG: It provides con-
cise and lossless representations of graphs.
(b) Scalability of S-HOT: It provides 1000×
better scalability than its best competitor.

competitors, without quality loss. Moreover, combined with state-of-the-art compression methods,
SWEG losslessly compresses a billion-scale web graph with an unprecedented compression rate (see
Figure 1.3(a)).

In Chapter 8, we develop S-HOT, a fast external-memory algorithm for the Tucker decomposi-
tion [Tuc66], which is a widely-used tensor-summarization method. The Tucker decomposition has
been used in many applications, including web search [SZL+05], network forensics [STF06], social
network analysis [CTT06], and scientific data compression [ABK16]. By dramatically reducing the
space required for intermediate data, S-HOT summarizes a high-order tensor with 1000× larger di-
mensionality than the previous best algorithm for the Tucker decomposition, without quality loss (see
Figure 1.3(b)). Using S-HOT, we successfully identify groups of similar publication venues from the
Microsoft Academic Graph, modeled as a 4 -order tensor with 35 million non-zero entries.

Contributions:
• Scalable Algorithms: We develop a distributed algorithm (SWEG [SGKR19]) and an external-

memory algorithm (S-HOT [OSP+17]) for summarizing web-scale graphs and tensors, respectively.
They summarize 25 -1000× larger data without quality loss than their respective competitors.

• Effective Compression of Real Data: By employing SWEG, we losslessly compress a billion-scale
web graph with an unprecedented compression rate of 0 .7 bits per directed edge.

Impact:
• A patent application on SWEG [SGKR19] was filed by LinkedIn Inc. in September 2018.

1.2.2 Part II: Anomaly Detection
Various types of anomalies in the real world are signaled by surprising substructures, such as unusually
dense subgraphs and subtensors. In Part II, we address two tasks closely related to anomaly detection:
(a) finding patterns and anomalies in dense subgraphs of real-world graphs, and (b) detecting dense
subtensors in large dynamic tensors.

1.2.2.1 Finding Patterns and Anomalies in Dense Subgraphs (Chapter 9)
“What are patterns and anomalies in dense subgraphs of large real-world graphs?”

“How can we exploit the patterns and anomalies to design efficient algorithms?”

Finding patterns is a necessary step for identifying anomalies that deviate from the patterns. In
Chapter 9, we discover three empirical patterns in dense subgraphs (specifically, k-cores1) of various

1The k-core of a graph [Sei83] is its maximal subgraph where every node is adjacent to at least k nodes.

4

(a) Effectiveness of CORE-A

●●●0.0
0.5
1.0
1.5
2.0
2.5

0 10 20 30
Elapsed Time (sec)

Re
la

tiv
e

Er
ro

r

7.4X

13.5X

Core-D

(b) Performance of CORE-D

Figure 1.4: [Chapter 9]
(a) Effectiveness of CORE-A: It spots a ‘fol-
lower booster’ on Twitter.
(b) Performance of CORE-D: It rapidly and
accurately estimates degeneracy.

types of real-world graphs, including social networks, web graphs, internet topology graphs, and cita-
tion networks. Then, we develop three algorithms that exploit the above patterns for anomaly detection
and two other tasks:
• CORE-A: a near-linear time algorithm for identifying anomalies deviating from the patterns. Such

anomalies include ‘copy-and-paste’ bibliography, a propeller-shaped web graph, and a ‘follower-
boosting’ service in a billion-scale Twitter graph (See Figure 1.4(a)).

• CORE-D: a single-pass, sublinear-space algorithm for estimating degeneracy,2 a classic connectivity
measure. It is up to 7× faster than its best competitors with similar accuracy (See Figure 1.4(b)).

• CORE-S: a fast algorithm for identifying influential spreaders. It is up to 17× faster than its best
competitors with similar accuracy.

Contributions:
• Useful Patterns in Real Data: We discover three empirical patterns in dense subgraphs of real graphs.

They can be exploited for a variety of applications. Our algorithms (CORE-A, CORE-D, and CORE-
S) exploit them for anomaly detection, degeneracy estimation, and influential spreader detection.

• Anomalies in Real Data: Using CORE-A, we detect many notable anomalies, including a ‘follower
booster’ in a billion-scale Twitter graph. It has not been suspended or removed for over 9 years.

Impact:
• This work [SERF16] was selected as one among the “Bests of ICDM 2016” and invited to the

Knowledge and Information Systems journal [SSK+18].
• This work was included in MIT’s graduate course on graph analytics (MIT 6.886), an ICDM 2016

tutorial on core decomposition, and an ECML/PKDD 2017 tutorial on the same topic.
• The code used in this work has been open-sourced and downloaded 60 times from 14 countries.

1.2.2.2 Detecting Dense Subtensors in Large Tensors (Chapters 10-13)
“How can we rapidly and accurately detect unusually dense subtensors in large dynamic tensors?”

“Which types of anomalies and fraud do such dense subtensors signal?”

Many types of fraud, including network intrusion [MGF11], search engine manipulation [GKT05],
‘Like’ boosting on Facebook [BXG+13], and ‘Retweet’ boosting on Weibo [JBC+16], are signaled by
synchronized behavior, such as a set of accounts giving reviews with the same ratings and text to the
same set of products within a short time.

2The degeneracy of a graph is the highest value k such that the k-core exists in the graph

5

1000X

● ● ● ●
●

●

● ● ● ●
●

●

● ● ● ●
●

●

10−1

101

103

105

106 107 108 109 10101011

Number of Non−zeros

El
ap

se
d

Ti
m

e
(s

ec
)

Out of
Memory

D-Cube
(Hadoop)

Stop

(a) Scalability of D-CUBE (b) Effectiveness of D-CUBE

Figure 1.5: [Chapters 11-13]
(a) Scalability of D-CUBE: It provides 1000×
better scalability than in-memory algorithms.
(b) Effectiveness of D-CUBE: It spots spam
reviews on App Store.

In Chapters 11-13, we formulate identifying synchronized behavior as an optimization problem of
finding the densest subtensors in the input data modeled as a tensor. Then, we develop four approximate
algorithms with distinct advantages:
• In-memory Algorithm (Chapter 11): We develop M-ZOOM, a near-linear time algorithm for detect-

ing dense subtensors. It is up to 114× faster than the previous best algorithm with similar accuracy.
• External-memory Algorithm (Chapter 12): We develop D-CUBE, the first external-memory algo-

rithm for detecting dense subtensors in web-scale tensors. Our MAPREDUCE implementation of
D-CUBE scales to a 1000× larger tensor with 100 billion non-zero entries than in-memory algo-
rithms (see Figure 1.5(a)).

• Incremental Algorithms (Chapter 13): We develop DENSESTREAM and DENSEALERT, the first
incremental algorithms for detecting dense subtensors in dynamic tensors. Each update by them is
up to 10 6× faster than running batch algorithms from scratch.

We demonstrate that all the above algorithms guarantee an approximation ratio of 1/n for n-order
tensors, and they accurately identify many interesting anomalies, including ‘edit wars’ and bots on
Wikipedia, spam reviews on App Store (see Figure 1.5(b)), and various types of network attacks.

Contributions:
• Fast Algorithms: We develop four algorithms with distinct advantages (M-ZOOM [SHF18], D-

CUBE [SHKF18], DENSESTREAM, and DENSEALERT [SHKF17b]) for finding dense subtensors in
large dynamic tensors. They all achieve an approximation ratio of 1/n for n-order tensors. They
are up to 332× faster with 1000× better scalability than previous methods, without accuracy loss.

• Anomalies in Real Data: Using our algorithms, we detect many notable anomalies, including ‘edit
wars’ and bots on Wikipedia, spam reviews on App Store, and various types of network attacks.

Impact:
• D-CUBE [SHKF18] was used in production at NAVER Corp., which handled 74 .7% of web searches

in South Korea in 2017, to identify and filter spam sites.
• M-ZOOM [SHF18], D-CUBE [SHKF18], DENSESTREAM, and DENSEALERT [SHKF17b] have

been open-sourced and downloaded 217 times from 20 countries.

1.2.3 Part III: Behavior Modeling
In Part III, we address two tasks closely related to modeling the behaviors of individuals in graph and
tensor data: (a) modeling purchases in social networks, and (b) modeling progression of users on social
media. For the tasks, social networks are modeled as graphs, and behavior logs on social media are
modeled as tensors.

6

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

101

108107106

Number of Edges

El
ap

se
d

Ti
m

e
(s

ec
)

SGG-Nash
(sl
op
e=
1)

(a) Scalability of SGG-NASH

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1000

1500

2000

2500

0.0 0.5 1.0
Relative Rental Fee

So
cia

l C
os

t

Theoretically
optimal range

Simulation
results

(b) Usefulness of Our Tools

Figure 1.6: [Chapter 14]
(a) Scalability of SGG-NASH: It shows linear
scalability.
(b) Usefulness of Our Tools: Our analysis and
simulation suggest socially optimal rental fees.

1.2.3.1 Modeling Purchases in Social Networks (Chapter 14)
“Why should we charge our friends for borrowing our stuff?”

Social networks are known to play an important role in the everyday choices people make [Mar87,
Blu93, Ell93, Rog10]. In Chapter 14, we consider the purchase of sharable goods, which can be
shared with k-hop neighbors (i.e., the set of nodes within k hops from an owner) on a social network,
modeled as a graph. Examples of such goods are seldom-used ski gear and hiking equipments, which
are frequently borrowed by friends or friends of friends. To examine incentives to buy shareable goods,
we develop two game-theoretic models (SGG and SGG-AC) where each node (i.e., individual) decides
whether to buy a good or rent a good from an owner within k hops with or without a rental fee;
and we also develop a fast algorithm (SGG-NASH) for finding Nash equilibria of both games (see
Figure 1.6(a)). Through theoretical analysis and simulation using SGG-NASH and real-world social
networks, we show how rental fees affect the social inefficiency of Nash equilibria, and we suggest a
range of rental fees for minimizing the inefficiency (see Figure 1.6(b)).

Contributions:
• Game-theoretic Models and Fast Tool: We develop SGG and SGG-AC, game-theoretic models for

purchases of sharable goods on a social network; and we develop SGG-NASH, a fast algorithm for
finding Nash equilibria of both games.

• Social Inefficiency on Real Data: Through theoretical analysis and simulation, we show potential
social inefficiency on real-world social networks and suggest a socially optimal range of rental fees
for minimizing the inefficiency.

Impact:
• This work [SLEP17] was featured in New Scientist in May 2017. 3

1.2.3.2 Modeling Progression of Users on Social Media (Chapter 15)
“How do the behaviors of individuals on social media progress over time?”

The behaviors of users on websites (e.g., social media) change over time due to many reasons, such
as temporal trends [HM16], shift of personal interests [Liu15], and personal development [ML13].
Progressions of users on a website are common behavioral changes that many users go though as they
become accustomed to or engaged in the website. For website operators, it is important to understand
such progressions in order to provide more personalized experiences.

In Chapter 15, we develop a behavior model (SWATT) and an optimization algorithm (SWATTFIT)
for discovering and summarizing progressions of users. SWATT describes progressions as transitions

3https://www.newscientist.com/article/2132926

7

https://www.newscientist.com/article/2132926

● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

100

101

102

103

104

108 109 1010 1011 1012

Size of Data (# Records)

El
ap

se
d

Ti
m

e
 P

er
 It

er
at

io
n

(s
ec

)

SwattFit
(Hadoop)

(sl
op

e =
 1)

(a) Scalability of SWATTFIT

Profile

On-boarding

Poke

Grow

Explore

(b) Usefulness of our Tools

Figure 1.7: [Chapter 15]
(a) Scalability of SWATTFIT: It scales linearly
to trillion-scale data.
(b) Usefulness of Our Tools: They discover
meaningful progressions of LinkedIn users.

between stages, each of which is described by three probability distributions over (a) features used, (b)
frequencies of usage, and (c) next stages to move. SWATTFIT fits SWATT to behavior logs, modeled as
a tensor. SWATTFIT is a linear-time distributed algorithm, and its MAPREDUCE implementation scales
to trillion-scale behavior logs (see Figure 1.7(a)). We apply SWATT and SWATTFIT to behavior logs
from LinkedIn, a social media for businesses and professionals, and discover meaningful progressions
of its users (see Figure 1.7(b)).

Contributions:
• Comprehensive Model and Scalable Tool: We develop SWATT a comprehensive behavior model for

describing progressions in three aspects; and we develop SWATTFIT, a linear-time distributed algo-
rithm for fitting SWATT to behavior logs with trillions of records.

• Progressions in Real Data: Using SWATT and SWATTFIT, we discover meaningful progressive stages
that users of LinkedIn go through.

Impact:
• SWATT and SWATTFIT [SSK+18] were used at LinkedIn Inc. to analyze user behavior.

1.3 Thesis Organization
We now describe the organization of this thesis. In Chapter 2, we introduce basic concepts and notations
on graphs and tensors that are used throughout the thesis. The next three parts (i.e., Parts I, II, and III)
correspond to our work on structure analysis, anomaly detection, and behavior modeling, respectively.
See Table 1.1 for the main problems of each part in the form of questions. In Part I, we present our
work on triangle counting (Chapters 3-6), graph summarization (Chapter 7), and tensor summarization
(Chapter 8). In Part II, we present our work on patterns and anomalies in dense subgraphs (Chapter 9)
and dense-subtensor detection (Chapters 10-13). In Part III, we present our work on purchase behavior
modeling (Chapter 14) and progressive behavior modeling (Chapter 15). Finally, in Part IV, we provide
conclusions (Chapter 16) and discuss future research directions (Chapter 17).

8

Table 1.1: Organization of the thesis.

Part Research Problem Chapter

I: Structure
Analysis

• Counting Triangles in Graph Streams: How can we accurately count
3 - 6

the triangles in large dynamic graphs with fixed memory size?
• Summarizing Large Graphs and Tensors: How can we concisely

7 - 8
describe graphs and high-order tensors that are too large to fit in memory?

II: Anomaly
Detection

• Finding Patterns and Anomalies in Dense Subgraphs: What are patterns
9

and anomalies in dense subgraphs of large real-world graphs?
• Detecting Dense Subtensors in Large Tensors: How can we rapidly and

10 - 13
accurately detect anomalously dense subtensors in large dynamic tensors?

III: Behavior
Modeling

•Modeling Purchases in Social Networks: What are the incentives for
14

buying goods sharable with friends? What is the socially optimal rental fee?
•Modeling Progression of Users on Social Media: How do the behaviors

15
of individuals on social media evolve over time?

9

10

Chapter 2

Background

In this chapter, we introduce some key concepts and notations that are used throughout this thesis. The
notations are also listed in Table 2.1, which is at the end of this chapter.

2.1 Graph-related Concepts and Notations

Graph: A graph G = (V , E) is a pair of two sets V and E where every element of E is an unordered
pair of elements of V . Each element of V is called a node, and each element e = {u, v} of E is called
the edge between nodes u and v. A graph naturally represents a set of objects where some pairs of the
objects are related in certain ways. Examples are as follows:
• [Social network]

- The node set V is people.
- The edge set E is the pairs of friends.

• [E-commerce]
- The node set V is people and products.
- The edge set E is the pairs of a user and a product where the user bought the product.

• [Network security]
- The node set V is IPs.
- The edge set E is the pairs of IPs where connections were made between them.

Neighbor and Degree: We say a node u is a neighbor of a node v (or u is adjacent to v) when the edge
between u and v exists (i.e., {u, v} ∈ E). For each node v, we use Nv to indicate the set of neighbors
of v. The degree of a node v is defined as the number of neighbors of v.

Subgraph, Clique, and Triangle: We say a graph G ′ = (V ′, E ′) is a subgraph of a graph G = (V , E)
when V ′ ⊂ V and E ′ ⊂ E . We say a subset V ′ of V is a clique if every pair of nodes in V ′ is connected
by an edge in E . A clique of three nodes is called a triangle.

k-Core, Coreness, and Degeneracy: The k-core of a graph is the maximal subgraph where every node
has degree at least k within the subgraph. The coreness of a node is the largest k such that it belongs to
the k-core. The degeneracy of a graph is the largest k such that the k-core exists.

(Fully-Dynamic) Graph Stream: A graph stream is an ordered sequence of edges. A fully-dynamic
graph stream is an ordered sequence of changes, each of which is either an edge insertion or an edge
deletion. The edges in a graph stream and the changes in a fully-dynamic graph streams can be accessed
once in the given order unless they are explicitly stored in memory.

11

2.2 Tensor-related Concepts and Notations

Tensor: A tensor is a multi-dimensional array of entries. The order of a tensor is the number of
dimensions, also known as modes. Consider an N -order (or N -way) tensor X of size I1× ...× IN . We
denote each (i1, ..., iN)-th entry of X as xi1···iN where each n-th mode index in ranges from 1 to In. For
each n-th mode, we call In the dimensionality of the mode. Figures 2.1(a)-2.1(c) show illustrations of
tensors. Tensors have more expressive power than graphs, as the following examples show:
• [Social network]

- Consider a 3-order tensor X whose modes are people, people, and dates, respectively.
- An entry xi1i2i3 is 1 if the i1-th person and the i2-th person became friends on the i3-th date.

Otherwise, xi1i2i3 is 0.
• [E-commerce]

- Consider a 3-order tensor X whose modes are products, users, and dates, respectively.
- An entry xi1i2i3 is the number of the i1-th products bought by the i2-th user on the i3-th date.

• [Network security]
- Consider a 4-order tensor X whose modes are IPs, IPs, protocols, and dates, respectively.
- An entry xi1i2i3i4 is the number of connections made from the i1-th IP to the i2-th IP using

the i3-th protocol on the i4-th date.

Slice, (Weighted) Degree, and Slice Sum: The slices of an N -order tensor are the (N − 1)-order
tensors obtained by fixing an mode index. Among the slices, the n-mode slices are those obtained by
fixing the n-th mode index. We use q = (n, in) to indicate the n-mode slice formed by the entries
whose n-mode index is in. Figures 2.1(d)-2.1(f) show illustrations of the slices of a 3-order tensor.
We define the degree of a slice as the number of non-zero entries of the slice. We define the weighted
degree (or slice sum) of a slice as the sum of the entries of the slice.

Subtensor: We say an N -order tensor Y is a subtensor of an N -order tensor X when Y can be obtained
by removing some slices from X.

(a) 1-order tensor (i.e., vector) (b) 2-order tensor (i.e., matrix)

𝑖"
=
1,…

,𝐼"

𝑖(= 1,… , 𝐼(

(c) 3-order tensor X

(d) 1-mode slices of X (e) 2-mode slices of X (f) 3-mode slices of X

Figure 2.1: Illustration of tensors and slices.

12

Table 2.1: Table of frequently-used symbols.

Symbols Definitions

G = (V , E) a graph
V node set of G
E edge set of G

e = {u, v} edge between nodes u and v
Nv set of neighbors of node v in G

X a tensor of size I1 × ...× IN
N order of X
In dimensionality of the n-th mode of X

xi1···iN (i1, ..., iN)-th entry of X
q = (n, in) slice of X formed by the entries whose n-th mode index is in

13

14

Part I

Structure Analysis

15

Chapter 3

Counting Triangles in Graph Streams (0):
Preliminaries

In this preliminary chapter on triangle counting, we (a) provide motivation for triangle counting,
(b) review related work, and (c) introduce some concepts frequently used in the following chapters
on triangle counting.

3.1 Motivation
Counting the triangles (i.e., cliques of size three) in a graph is a classical problem with numerous
applications. For example, triangles in social networks have received much attention as an evidence
of homophily (i.e., people choose friends similar to themselves) [MSLC01] and transitivity (i.e., peo-
ple with common friends become friends) [WF94]. Thus, many structure-related concepts in social
network analysis, such as the transitivity ratio [New03], local clustering coefficients [WS98], triangle
connectivity [BZ07], trusses [Coh08], and social balance [WF94] are based on the counts of global
triangles (i.e., all triangles) and local triangles (i.e., all triangles incident to each node). Addition-
ally, global and local triangle counts have been used for link recommendation [TDM+11, ELM+15],
anomaly detection [LJK18], spam detection [BBCG10], community detection [BHLP11], dense sub-
graph mining [WZTT10], web analysis [EM02], degeneracy estimation [SERF18] (see Chapter 9), and
query optimization [BYKS02].

3.2 Related Work
We review previous work on triangle-counting algorithms, with a focus on streaming algorithms and
distributed algorithms. See Table 3.1 for a summary.

Single-machine Streaming Algorithms for Insertion-only Streams: (1) Global Triangle Counting.
Most streaming algorithms for triangle counting employ sampling for estimation with limited storage.
Tsourakakis et al. [TKMF09] proposed sampling each edge independently with equal probability p and
then estimating the count of global triangles (i.e., all triangles in a graph) from that in the sampled graph
using the fact that each triangle is sampled with probability p3. To increase the probability from p3 to p2,
Pagh and Tsourakakis [PT12] proposed the colorful sampling scheme where each node is colored with
a color chosen uniformly at random among 1/p colors and the edges whose endpoints have the same
color are stored. Kallaugher and Price [KP17] proposed sampling each node with equal probability

17

Table 3.1: Comparison of triangle-counting algorithms. Our proposed algorithms (i.e., WRS,
TRI-FLY, COCOS, and THINKD) provide distinct advantages.

T
R

IE
S

T
F

D
[S

E
R

U
17

]

E
S

D
[H

S1
7]

M
A

S
C

O
T

[L
JK

18
]

T
R

IE
S

T
IM

P
R

[S
E

R
U

17
]

O
th

er
s

(S
tr

ea
m

in
g)

[A
D

N
K

14
,A

D
W

R
17

,K
P1

7]
[J

SP
13

,P
T

T
W

13
,T

PT
13

]

PA
T

R
IC

[A
K

M
13

]

O
th

er
s

(D
is

tr
ib

ut
ed

)
[P

C
13

,P
SK

P1
4,

PM
K

16
]

[C
oh

09
,S

V
11

,P
SP

+
18

]

W
R

S
(C

ha
pt

er
4)

T
R

I-
F

LY
(C

ha
pt

er
5)

C
O

C
O

S
(C

ha
pt

er
5)

T
H

IN
K

D
(C

ha
pt

er
6)

Counting Global Triangles 3 3 3 3 3 3 3 3 3 3

Counting Local Triangles 3 3 3 3 3 3 3

Handling Large Graphs* 3 3 3 3 3 3 3 3

Handling Edge Insertions 3 3 3 3 3 3 3 3

Handling Edge Deletions 3 3 3

Utilizing Temporal Patterns 3

Utilizing Multiple Machines 3 3 3

* graphs that do not fit in memory

p and storing all edges between the sampled nodes and p of the edges between sampled nodes and
unsampled nodes. This requires less samples than the colorful sampling scheme for the same accuracy
guarantee [KP17]. Jha et al. [JSP13] and Pavan et al. [PTTW13] proposed sampling wedges (i.e.,
paths of length two) in addition to edges; and Ahmed et al. [ADNK14, ADWR17] proposed sampling
edges with different probabilities, depending on the counts of adjacent sampled edges and incident
triangles. Tangwongsan et al. [TPT13] proposed a shared-memory, parallel, cache-oblivious version of
[PTTW13].

Single-machine Streaming Algorithms for Insertion-only Streams: (2) Local Triangle Counting.
The colorful sampling scheme [PT12], described in the previous paragraph, was applied to estimate the
counts of local triangles (i.e., all triangles incident to each node) [KP13]. Lim and Kang [LJK18] pro-
posed MASCOT, which uses simple uniform edge sampling but updates its estimates whenever an edge
arrives even if it is not sampled. De Stefani et al. [SERU17] proposed TRIESTIMPR, which uses reservoir
sampling to maintain as many sample edges as storage allows. WRS [Shi17], presented in Chapter 4,
improved upon TRIESTIMPR in terms of accuracy under the assumption that edges are streamed in the
order that they are created. In addition, Becchetti et al. [BBCG10] explored semi-streaming algorithms
that require multiple passes over the stream. TRI-FLY [SHL+18] and COCOS [SLO+19], presented in
Chapter 5, adapt TRIESTIMPR for triangle counting within each machine. However, any single-machine
streaming algorithm including WRS [Shi17], can be used instead.

Single-machine Streaming Algorithms for Fully-dynamic Streams. The first algorithm for triangle
counting in fully dynamic graph streams with edge deletions was proposed by Kutzkov and Pagh
[KP14]. The algorithm estimates the count of global triangles by making a single pass over the input
stream. However, the algorithm is inapplicable to real-time applications since it expensively computes
an estimate once at the end of the stream instead of always maintaining an estimate. Moreover, in the
worst case, the algorithm requires more memory than what is needed to store the entire input graph,

18

as pointed out in [SERU17]. Han and Sethu [HS17] proposed ESD, which maintains and updates an
estimate of the global triangle count. However, its scalability is limited since it requires the entire in-
put graph to be stored in memory. De Stefani et al. [SERU17] proposed TRIESTFD, which maintains
and updates estimates of both global and local triangle counts, and it scales better than ESD by sam-
pling edges within a given memory budget and discarding the other edges. In Chapter 6, we present
THINKD [SKHF18], which improves upon TRIESTFD in terms of accuracy. While TRIESTFD simply
discards unsampled edges, THINKD utilizes unsampled edges to update estimates before discarding
them. Although the idea of using unsampled edges had been considered for insertion-only streams
[SERU17, Shi17, LJK18], applying the idea to fully dynamic graph streams had remained unexplored.

Distributed Batch Algorithms. Cohen [Coh09] proposed the first triangle-counting algorithm imple-
mented in the MAPREDUCE framework. The algorithm directly parallelizes a serial algorithm. Suri and
Sergei [SV11], Park et al. [PC13, PSKP14, PMK16, PSP+18], and Shaikh et al. [AKM13] proposed
dividing the input graph into overlapping subgraphs and assigning them to multiple machines, which
count the triangles in the assigned subgraphs in parallel, in MAPREDUCE [SV11, PC13, PSKP14,
PMK16] and distributed-memory [AKM13] settings. Recently, Ko and Kim [KH18] proposed an
external-memory distributed graph analytics system that supports triangle counting. These distributed
methods are for exact triangle counting in static graphs, all of whose edges are given at once. They are
inapplicable to graph streams, whose edges are received over time and may not fit in the underlying
storage.

Distributed Streaming Algorithms. Distributed streaming algorithms for triangle counting were first
discussed by Pavan et al. [PTT13] to handle multiple sources. The algorithms aim to reduce commu-
nication costs while giving the same estimation of a single-machine streaming algorithm [PTTW13].
Thus, using more machines, which are one per source, neither improves the speed nor the accuracy
of the estimation. In TRI-FLY [SHL+18] and COCOS [SLO+19], presented in Chapter 5, multiple
machines are used for rapid and accurate estimation. In TRI-FLY, every edge is broadcast to every
worker that independently runs TRIESTIMPR [SERU17]. The workers send their estimates to the aggre-
gators, which give the final estimates by averaging the received estimates. Although TRI-FLY gives
unbiased estimates whose variances decrease inversely proportional to the number of workers, it incurs
a highly redundant use of computational and storage resources. Specifically, in the worst case, each
edge is replicated and stored in every worker, and each triangle is counted by every worker. Due to this
redundancy, no matter how many workers are used, TRI-FLY cannot guarantee exact triangle counts if
the input stream does not fit in each machine. COCOS significantly improves upon TRI-FLY in terms
of speed and accuracy by minimizing the redundancy in storage and computation.

3.3 Concepts
We provide some concepts that are frequently used in the following chapters on triangle counting.

3.3.1 Reservoir Sampling
The reservoir sampling (RS) [Vit85] is an algorithm for choosing a sample of b items from a stream of
items whose size is unknown or growing. RS keeps the first b items. When the l(> b)-th item arrives,
RS either replaces a randomly-chosen old item with the new item with probability b/l or discards the
new item with probability 1− b/l. Lemma 3.1 is a special case of Lemma 4.1 in [SERU17].

19

Lemma 3.1: Uniformity of Reservoir Sampling

Let Sl be the set of (at most b) items kept by RS after processing the l-th item. Then, for any b ≥ 2,
l ≥ 2, and two items x 6= y that arrived so far,

P [x ∈ Sl ∩ y ∈ Sl] = min

(
1,
b(b− 1)

l(l − 1)

)
.

3.3.2 Evaluation Metrics for Triangle Counting
We introduce the metrics that we use to measure the accuracy of global and local triangle counting in
the later chapters. Let x be the count of the global triangles (i.e., all triangles) at the end of the input
stream and x̂ be an estimate of it. Likewise, let x[u] be the count of the local triangles of each node
u ∈ V (i.e., all triangles incident to u) at the end of the input stream and x̂[u] be an estimate of it. Then,
the metrics are defined as follows:
• Global Error (the lower the better):

|x− x̂|/(x+ 1).

• Local Error [LJK18] (the lower the better):

1

|V|
∑

u∈V

|x[u]− x̂[u]|
x[u] + 1

.

• RMSE (the lower the better): √
1

|V|
∑
u∈V

(x[u]− x̂[u])2.

• Rank Correlation (the higher the better):
Spearman’s rank correlation coefficient [Spe04] between {(u, x[u])}u∈V and {(u, x̂[u])}u∈V .

20

Chapter 4

Counting Triangles in Graph Streams (1):
Exploiting Temporal Patterns

Chapter based on work that appeared at ICDM 2017 [Shi17].

Given a graph stream, how can we estimate the count of triangles in it with fixed amount of
memory? If we cannot store all edges in the stream, which edges should we store to estimate the
triangle count accurately?

As discussed in the previous chapter, counting triangles (i.e., cliques of size three) is a fun-
damental graph problem with numerous applications in social network analysis, web mining,
anomaly detection, etc. Recently, much effort has been made to accurately estimate the count
of triangles in dynamic graphs, represented as graph streams, with limited space. However, exist-
ing streaming algorithms use sampling techniques without considering temporal dependencies in
edges, while we observe temporal locality in real-world dynamic graphs. That is, future edges are
more likely to form triangles with recent edges than with older edges.

In this chapter, we propose Waiting-Room Sampling (WRS), a single-pass streaming algo-
rithm for estimating the counts of global triangles (i.e., all triangles) and local triangles incident
to each node. WRS exploits the temporal locality by always storing the most recent edges, which
future edges are more likely to form triangles with, in the waiting room, while it uses reservoir
sampling for the remaining edges. We theoretically and empirically show that WRS is: (a) Fast
and ‘any time’: runs in linear time, always maintaining and updating estimates while new edges
arrive, (b) Accurate: yields up to 47% smaller estimation error than its best competitors, and (c)
Theoretically sound: gives unbiased estimates with small variances under the temporal locality.

4.1 Motivation
Dynamic graphs are naturally modeled as graph streams where new edges are streamed as they are
created. Given such a graph stream, how can we accurately estimate the count of triangles? Especially,
if we cannot store all the edges in memory, which edges should we store for accurate estimation?

As discussed in the previous chapter, many streaming algorithms have been developed for estimat-
ing the counts of global triangles (i.e., all triangles) and local triangles incident to each node in large
dynamic graphs. However, all the algorithms sample edges without considering temporal dependencies
in edges and thus cannot exploit temporal locality, i.e., the tendency that future edges are more likely
to form triangles with recent edges than with older edges. We observe this temporal locality commonly

21

986.5K

987K

987.5K

988K

346.6K 346.8K
Number of

Processed Elements

N
um

be
r o

f T
ria

ng
le

s
(C

on
fid

en
ce

 In
te

rv
al

)

WRS
True Count

TriestIMPR

MASCOT

(a) ‘Any time’ for dynamic
graphs with new edges

●

●
● ● ●

●

●
● ● ●

●

●
●

● ●better0.000

0.005

0.010

0.015

2−3 2−2 2−1

Ratio of Stored Edges

G
lo

ba
l E

rro
r

TriestIMPR

MASCOT

WRS

(b) Accurate

●

●

●

●

●

●

●

●

●

●

●

●

103

104

105

108 109 1010 1011

Number of Edges

El
ap

se
d

Ti
m

e
(s

ec
)

Linear
scalability

Actual
running time

(c) Scalable (Theorem 4.2)

2e−05

4e−05

6e−05

950K 1000K 1050K
Estimated Count

Pr
ob

ab
ilit

y
D

en
si

ty

WRS

TriestIMPRMAS
COT

True triangle count

(d) Unbiased with small
variance (Theorem 4.1)

Figure 4.1: Strengths of WRS. (a) ‘Any time’: WRS always maintains the estimates of the global
and local triangle counts while the input graph grows with new edges. (b) Accurate: WRS is more
accurate than its best competitors. (c) Scalable: WRS scales linearly with the number of edges in the
input stream. (d) Unbiased: WRS gives unbiased estimates (Theorem 4.1). See Section 4.6 for details.

in many realistic graph streams, where new edges are streamed as they are created. Then, how can we
exploit the temporal locality for accurately estimating the counts of global and local triangles?

In this second chapter on triangle counting, we propose WRS (Waiting-Room Sampling), a single-
pass streaming algorithm that always stores the most recent edges in the waiting room, while it uses
standard reservoir sampling (see Section 3.3.1) for the remaining edges. The waiting room increases
the probability that, when a new edge arrives, edges forming triangles with the new edge are in memory.
Reservoir sampling, on the other hand, enables WRS to yield unbiased estimates. We theoretically and
empirically show that WRS has the following strengths:
• Fast and ‘any time’: WRS runs in linear time in the number of edges, giving estimates of the

global and local triangle counts at any time, not only at the end of streams (Figure 4.1(c)).
• Accurate: WRS produces up to 47% smaller estimation error than its best competitors (Fig-

ure 4.1(b)).
• Theoretically sound: We prove the unbiasedness of the estimators provided by WRS and their

small variances under the temporal locality (Theorem 4.1, Lemma 4.2, and Figure 4.1(d)).
Reproducibility: The source code and datasets used in the chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/wrs/.

The rest of the chapter is organized as follows. In Section 4.2, we introduce some preliminary
concepts, notations, and a formal problem definition. In Section 4.3, we discuss temporal locality
in real-world dynamic graphs. In Section 4.4, we present WRS, our proposed algorithm for triangle
counting. In Section 4.5, we theoretically analyze the accuracy and complexity of WRS. After sharing
some experimental results in Section 4.6, we provide a summary of this chapter in Section 4.7.

4.2 Preliminaries and Problem Definition
In this section, we first introduce some notations and concepts used throughout this chapter. Then, we
define the problem of global and local triangle counting in a real-order graph stream.

22

http://www.cs.cmu.edu/~kijungs/codes/wrs/
http://www.cs.cmu.edu/~kijungs/codes/wrs/

Table 4.1: Table of frequently-used symbols.

Symbol Definition

Notations for Graph Streams (Section 4.2)

G(t) = (V(t), E (t)) graph G at time t
e(t) edge arriving at time t

{u, v} edge between nodes u and v
tuv arrival time of edge {u, v}

{u, v, w} triangle with nodes u, v, and w
t
(i)
uvw arrival time of the i-th edge in {u, v, w}
T (t) set of triangles in G(t)

T (t)[u] set of triangles with node u in G(t)

Notations for Our Algorithm (Section 4.4)

S given storage space
W waiting room
R reservoir
b maximum number of edges stored in S
α relative size of the waiting room (i.e., |W|/|S|)

Ĝ = (V̂ , Ê) graph composed of the edges in S
Nu set of neighbors of node u in Ĝ

4.2.1 Notations and Concepts
Symbols frequently used in the chapter are listed in Table 4.1. Consider an undirected graph G = (V , E)
with the set of nodes V and the set of edges E . We use the unordered pair {u, v} ∈ E to indicate the edge
between nodes u ∈ V and v ∈ V . The graph G = (V , E) grows over time; and we let e(t) be the edge
arriving at time t ∈ {1, 2, ...} and tuv be the arrival time of edge {u, v} (i.e., e(t) = {u, v} ⇔ tuv = t).
Then, we denote G at time t by G(t) = (V(t), E (t)), which consists of the nodes and edges arriving
at time t or earlier. Let the unordered triple {u, v, w} be the triangle (i.e., cliques of size three) with
edges {u, v}, {v, w}, and {w, u}. We use t(1)

uvw:=min{tuv, tvw, twu}, t(2)
uvw:=median{tuv, tvw, twu}, and

t
(3)
uvw:=max{tuv, tvw, twu} to indicate the arrival times of the first, second, and last edges, respectively,

in {u, v, w}. We denote the set of triangles in G(t) by T (t) and the set of triangles with node u by
T (t)[u] ⊂ T (t). We call T (t) global triangles and T (t)[u] local triangles of node u.

4.2.2 Problem Definition
In this chapter, we consider the problem of counting the global and local triangles in a graph stream
assuming the following realistic conditions:

C1 No Knowledge: No information about the input stream (e.g., the node count, the edge count,
etc) is available.

C2 Real-order: In the input stream, new edges arrive in the order by which they are created.

C3 Limited Storage Budget: We store at most b edges in the storage.

C4 Single Pass: Edges are processed one by one in their order of arrival. Past edges cannot be
accessed unless they are stored in the storage (within the budget stated in C3).

23

Edge Arrival Time

𝑡" 𝑡# 𝑡$ 𝑡% 𝑡&

𝑒()*)	

𝑒()-)	

𝑒().)	

Triangle (a):
strong temporal locality

Closing Interval of (a) Closing Interval of (b)

𝑒()/)	

𝑒()0)	

𝑒()1)	

Triangle (b):
weak temporal locality

Total Interval of (a) Total Interval of (b)

𝑡2

Figure 4.2: Illustration of total intervals, closing intervals, and temporal locality.

Based on these conditions, we define the problem of global and local triangle counting in a real-
order graph stream in Problem 4.1.

Problem 4.1: Global and Local Triangle Counting in a Real-order Graph Stream

1. Given: a real-order graph stream (e(1), e(2), ...) and a storage budget b,

2. Maintain: estimates of the global triangle count |T (t)| and the local triangle counts

{(u, |T (t)[u]|)}u∈V(t) for current t ∈ {1, 2, ...}
3. to Minimize: the estimation errors.

Instead of minimizing a specific measure of estimation error, we follow a general approach of
reducing both bias and variance, which is robust to many measures of estimation error.

4.3 Observation: “Temporal Locality”
In this section, we discuss temporal locality (i.e., the tendency that future edges are more likely to form
triangles with recent edges than with older edges) in real-world dynamic graphs modeled as real-order
graph streams. To show the temporal locality, we investigate the distributions of closing intervals and
total intervals, defined below. Figure 4.2 shows examples of closing and total intervals.

Definition 4.1: Closing Interval

The closing interval of a triangle is defined as the time interval between the arrivals of the second
edge and the last edge. That is,

closing interval({u, v, w}) := t(3)
uvw − t(2)

uvw.

24

Real Random
Closing Interval Distribution:

0K

250K

500K

750K

1000K

0K 150K300K
Closing Time Interval

F
re

qu
en

cy

(a) Arxiv

0K

2000K

4000K

6000K

0M 8M 16M
Closing Time Interval

F
re

qu
en

cy
(b) Patent

0K
100K
200K
300K
400K
500K

0K 100K200K
Closing Time Interval

F
re

qu
en

cy

(c) Email

0K

200K

400K

600K

0K 300K 600K
Closing Time Interval

F
re

qu
en

cy

(d) Facebook

0K

1000K

2000K

3000K

0M 3M 6M
Closing Time Interval

F
re

qu
en

cy

(e) Youtube

Total Interval Distribution:

0K

50K

100K

150K

0K 150K 300K
Total Time Interval

F
re

qu
en

cy

(f) Arxiv

0K

200K

400K

600K

0M 8M 16M
Total Time Interval

F
re

qu
en

cy

(g) Patent

0K

50K

100K

150K

0K 100K200K
Total Time Interval

F
re

qu
en

cy

(h) Email

0K

40K

80K

120K

0K 300K 600K
Total Time Interval

F
re

qu
en

cy

(i) Facebook

0K

200K

400K

600K

0M 3M 6M
Total Time Interval

F
re

qu
en

cy

(j) Youtube

Figure 4.3: Temporal locality in triangle formation. Closing and total intervals tend to be shorter
in real-order graph streams than in random-order ones. This observation implies that future edges are
more likely to form triangles with recent edges than with older edges.

Definition 4.2: Total Interval

The total interval of a triangle is defined as the time interval between the arrivals of the first edge
and the last edge. That is,

total interval({u, v, w}) := t(3)
uvw − t(1)

uvw.

Figure 4.3 shows the distributions of the closing and total intervals in real-order graph streams and
those in the graph streams obtained by randomly shuffling the orders of the edges in the corresponding
real-order streams. In every dataset, both intervals tend to be much shorter in the real-order stream than
in the random-order one. That is, future edges do not form triangles with all previous edges with equal
probability but they are more likely to form triangles with recent edges than with older edges.

Then, why does the temporal locality exist? It is related to transitivity [WF94], i.e., the tendency that
people with common friends become friends. When an edge {u, v} arrives, we can expect that edges
connecting u and other neighbors of v or connecting v and other neighbors of u will arrive soon. Such
future edges form triangles with the edge {u, v}. The temporal locality is also related to new nodes.
For example, in citation networks, when a new node arrives (i.e., a paper is published), many edges
incident to the node (i.e., citations of the paper), which are likely to form triangles with each other, are
created almost instantly. Likewise, in social media, new users tend to make many connections within a
short time by importing their friends from other social media or their address books.

25

...

𝑺: 𝒃 slots in memory 𝑾: 𝛂𝒃 slots in memory 𝑹: 𝟏 − 𝛂 𝒃 slots in memory

𝑾

𝑹Push
Pop

prob. 𝒑(𝒕)

Discard

Step 1
(store in order)

Step 2
(divide)

Step 3
(sample with the

waiting room)

Waiting Room
(First in First Out)

Standard Reservoir
(Random Replace)

... Waiting Room
(First in First Out)

Standard Reservoir (Random Replace)

prob. 𝟏 − 𝒑(𝒕)

Figure 4.4: Illustration of the sampling process in WRS. Once the given storage space is full (by
Step 1), the storage space is divided into the waiting room and the reservoir (by Step 2). In Step 3, the
latest αb edges are stored in the waiting room, while the remaining older edges are uniformly sampled
in the reservoir.

4.4 Proposed Algorithm: WRS
In this section, we propose WRS (Waiting-Room Sampling), a single-pass streaming algorithm that
exploits the temporal locality, presented in the previous section, for accurate global and local triangle
counting. We first discuss the intuition behind WRS and then describe the details of WRS.

4.4.1 Overview
To minimize the estimation error, WRS minimizes both the bias and variance of its estimates. Reducing
the variance is related to finding more triangles because, intuitively speaking, knowing more triangles
is helpful to accurately estimate their count, as formally analyzed in Section 4.5.1. Thus, the following
two goals should be considered when we decide which edges to store in the storage:
• Goal 1. Unbiased estimates of triangle counts should be computed from the stored edges.
• Goal 2. When each new edge arrives, it should form many triangles with the stored edges.

Uniform random sampling, such as reservoir sampling, achieves Goal 1 but fails to achieve Goal 2
ignoring the temporal locality, explained in Section 4.3. Storing the latest edges, while discarding the
older ones, can be helpful to achieve Goal 2, as suggested by the temporal locality. However, simply
discarding old edges makes unbiased estimation non-trivial.

To achieve both goals, WRS combines two policies. It divides the storage space into the waiting
room and the reservoir. The most recent edges are always stored in the waiting room, while the remain-
ing edges are uniformly sampled in the reservoir using standard reservoir sampling (see Section 3.3.1).
The waiting room makes achieving Goal 2 possible since it exploits the temporal locality by storing the
latest edges, which future edges are more likely to form triangles with. On the other hand, the reservoir
makes achieving Goal 1 possible, as explained in detail in the following sections.

4.4.2 Detailed Description
We first describe the sampling policy of WRS. Then, we explain how to estimate the triangle counts
from sampled edges. The pseudo code of WRS is given in Algorithm 4.1.

26

Algorithm 4.1 Waiting Room Sampling (WRS)

Input: (1) graph stream: (e(1), e(2), ...),
(2) storage budget: b,
(3) relative size of the waiting room: α

Output: (1) estimated global triangle count: c̄,
(2) estimated local triangle counts: c[u] for each node u

1: for each new edge e(t) = {u, v} do
2: for each node w in N̂u ∩ N̂v do
3: initialize c̄, c[u], c[v], and c[w] to 0 if they have not been set
4: increase c̄, c[u], c[v], and c[w] by 1/puvw

5: if t ≤ k then add e(t) to S . (Case 1)
6: else
7: if t = b+ 1 then . (Case 2)
8: divide S intoW andR as explained in Section 4.4.2.1
9: remove e(t−bα) fromW and add e(t) toW . (Case 3)

10: if a random number in Bernoulli(p(t)) is 1 then
11: replace an edge chosen at random uniformly inR with e(t−bα)

4.4.2.1 Sampling Policy (Lines 5-11 of Algorithm 4.1)

Let S be the given storage space, where at most b edges are stored. Let e(t) = {u, v} be the edge
arriving at time t ∈ {1, 2, ...}. The sampling method in WRS depends on t as follows (see 4.4 for a
pictorial description):
• (Case 1). If t ≤ k, then WRS adds e(t) to S, which is not full yet.
• (Case 2). If t = b+1, then since S is full, WRS divides S into the waiting roomW and the reservoir
R so that the latest bα edges (i.e., {e(k−bα+1), ..., e(k)}) are inW and the remaining b(1 − α) edges
(i.e., {e(1), ..., e(b(1−α))}) are in R. The constant α is the relative size of the waiting room. For
simplicity, we assume bα and b(1− α) are integers. Then, WRS goes to (Case 3).

• (Case 3). If t ≥ b+ 1, then WRS replaces e(t−bα), which is the oldest edge inW , with e(t) (i.e.,W
is a queue with the “first in first out” mechanism). Then, with probability p(t), where

p(t) := b(1− α)/(t− bα), (4.1)

WRS replaces an edge chosen at random uniformly in R with e(t−bα). Otherwise, WRS discards
e(t−bα). That is, standard reservoir sampling (see Section 3.3.1) is used in R, which ensures that
each edge in {e(1), ..., e(t−bα)} is stored inR with equal probability p(t).

In summary, when e(t) arrives (or after e(t−1) is processed), if t ≤ b+1, then each edge in {e(1), ..., e(t−1)}
is stored in S with probability 1. If t > b+1, then each edge in {e(t−bα), ..., e(t−1)} is stored in S (specif-
ically inW) with probability 1, while each edge in {e(1), ..., e(t−bα−1)} is stored in S (specifically inR)
with probability p(t−1).

4.4.2.2 Estimating Triangle Counts (Lines 2-4 of Algorithm 4.1)

Let Ĝ = (V̂ , Ê) be the sampled graph composed of the edges in S (W orR if S is divided), and let N̂u
be the set of neighbors of each node u ∈ V̂ in Ĝ. We use c̄ and c[u] to denote the estimates of the global

27

triangle count and the local triangle count of each node u, respectively, in the stream so far. That is, if
we let c̄(t) and c(t)[u] be c̄ and c[u] after processing e(t), they are the estimates of |T (t)| and |T (t)[u]|,
respectively.

When each edge e(t) = {u, v} arrives, WRS first finds the triangles composed of {u, v} and two
edges in Ĝ. The set of such triangles is {{u, v, w} : w ∈ N̂u ∩ N̂v}. For each triangle {u, v, w}, WRS
increases c̄, c[u], c[v], and c[w] by 1/puvw, where puvw is the probability that WRS discovers {u, v, w}.
Then, the expected increase of the counters by each triangle {u, v, w} becomes 1, which makes the
counters unbiased estimates, as formalized in Theorem 4.1 in the following section.

The only remaining task is to compute puvw, the probability that WRS discovers triangle {u, v, w}.
To this end, we divide the types of triangles depending on the arrival times of their edges, as in Defini-
tion 4.3. Recall that t(i)uvw indicates the arrival time of the edge arriving i-th among the edges forming
{u, v, w}.

Definition 4.3: Types of Triangles

Given the maximum number of samples b and the relative size of the waiting room α, the type of
each triangle {u, v, w}, denoted by typeuvw, is defined as:

typeuvw :=

1 if t(3)

uvw ≤ b+ 1

2 else if t(3)
uvw − t(1)

uvw ≤ bα

3 else if t(3)
uvw − t(2)

uvw ≤ bα

4 otherwise.

That is, a triangle has Type 1 if all its edges arrive early, Type 2 if its total interval is short, Type 3 if
its closing interval is short, and Type 4 otherwise. The probability that each triangle is discovered by
WRS (i.e., considered in line 2 of Algorithm 4.1) depends on its type, as formalized in Lemma 4.1.

Lemma 4.1: Triangle Discovering Probability

Given the maximum number of samples b and the relative size of the waiting room α, the proba-
bility puvw that WRS discovers each triangle {u, v, w} is

puvw =

1 if typeuvw ≤ 2
b(1−α)

t
(3)
uvw−1−bα

if typeuvw = 3
b(1−α)

t
(3)
uvw−1−bα

× b(1−α)−1

t
(3)
uvw−2−bα

if typeuvw = 4

(4.2)

Proof. Without loss of generality, we assume t(1)
uvw = tvw, t(2)

uvw = twu, and t(3)
uvw = tuv. That is, {v, w}

arrives earlier than {w, u}, and {w, u} arrives earlier than {u, v}.
If typeuvw = 1, {u, v} arrives at time b + 1 or earlier. When {u, v} arrives, {v, w} and {w, u} are

always stored in S . Thus, WRS discovers {u, v, w} with probability 1.
If typeuvw = 2, we have tuv − twu < tuv − tvw ≤ bα. When {u, v} arrives, {v, w} and {w, u} are

always stored inW . Thus, WRS discovers {u, v, w} with probability 1.

28

If typeuvw = 3, we have tuv − twu ≤ bα but tuv − tvw > bα. When {u, v} arrives, {w, u}
is always stored in W , while {v, w} cannot be in W but can be in R with probability p(tuv−1) (see
Eq. (4.1)). For WRS to discover {u, v, w}, {v, w} should be in R, thus the probability is p(tuv−1) =

b(1− α)/(tuv − 1− bα) = b(1− α)/(t
(3)
uvw − 1− bα).

If typeuvw = 4, we have tuv − tvw > tuv − twu > bα. Thus, when {u, v} arrives, {v, w} and {w, u}
cannot be inW . For WRS to discover {u, v, w}, both {v, w} and {w, u} should be in R when {u, v}
arrives. The probability of the event is

P[{v, w} ∈ R and {w, u} ∈ R] = P[{v, w} ∈ R]× P[{w, u} ∈ R|{v, w} ∈ R]

=
b(1− α)

tuv − 1− bα
× b(1− α)− 1

tuv − 2− bα
,

which is equal to the last case of Eq. (4.2). �

Notice that no additional space is required to store the arrival times of sampled edges. This is
because the type of each triangle {u, v, w} and its discovering probability puvw can be computed from
current time t and whether each edge is stored in W or R at time t, as explained in the proof of
Lemma 4.1.

4.5 Theoretical Analysis
We theoretically analyze the accuracy, time complexity, and space complexity of WRS.

4.5.1 Accuracy Analysis
We analyze the bias and variance of the estimates provided by WRS. To this end, we define xuvw as the
increase in c̄ by triangle {u, v, w}. By lines 2-4 of Algorithm 4.1, xuvw is 1/puvw with its discovering
probability puvw, and 0 with probability 1 − puvw. Based on this concept, the unbiasedness of the
estimates given by WRS is shown in Theorem 4.1.

Theorem 4.1: ‘Any time’ unbiasedness of WRS

If b(1−α) ≥ 2, WRS gives unbiased estimates of the global and local triangle counts at any time.
That is, if we let c̄(t) and c(t)[u] be c̄ and c[u] after processing e(t), respectively, the followings
hold:

E[c̄(t)] = |T (t)|, ∀t ∈ {1, 2, ...}, (4.3)

E[c(t)[u]] = |T (t)[u]|, ∀u ∈ V(t), ∀t ∈ {1, 2, ...}. (4.4)

Proof. From Eq. (4.2), if b(1 − α) ≥ 2, we have E[xuvw] = 1/puvw × puvw + 0 × (1 − puvw) = 1.
Combining this and c̄(t) =

∑
{u,v,w}∈T (t) xuvw gives

E[c̄(t)] = E

 ∑
{u,v,w}∈T (t)

xuvw

 =
∑

{u,v,w}∈T (t)

E[xuvw] = |T (t)|,

29

which proves Eq. (4.3) for every t ∈ {1, 2, ...}. Likewise, E[xuvw] = 1 and c(t)[u] =
∑
{u,v,w}∈T (t)[u] xuvw

imply

E[c(t)[u]] = E

 ∑
{u,v,w}∈T (t)[u]

xuvw

 =
∑

{u,v,w}∈T (t)[u]

E[xuvw] = |T (t)[u]|,

which proves Eq. (4.4) for every u ∈ V(t) and t ∈ {1, 2, ...}. �

In our variance analysis, to give a simple intuition, we focuses on

Ṽar[c̄(t)] =
∑

{u,v,w}∈T (t)
Var[xuvw], (4.5)

Ṽar[c(t)[u]] =
∑

{u,v,w}∈T (t)[u]
Var[xuvw], (4.6)

which are the variances when the dependencies in {xuvw}{u,v,w}∈T (t) are ignored. Specifically, we show
how the temporal locality, described in Section 4.3, is related to reducing Ṽar[c̄(t)] and Ṽar[c(t)[u]].

From Var[xuvw] = E[x2
uvw] − (E[xuvw])2, we have Var[xuvw] = (1/puvw) − 1. From Eq. (4.2), if

b(1− α) ≥ 2,

Var[xuvw] =

0 if typeuvw ≤ 2
t
(3)
uvw−1−bα
b(1−α)

− 1 if typeuvw = 3
t
(3)
uvw−1−bα
b(1−α)

× t
(3)
uvw−2−bα
b(1−α)−1

− 1 if typeuvw = 4.

(4.7)

Compared to TRIESTIMPR [SERU17], where Var[xuvw] = 0 if typeuvw = 1 and Var[xuvw] = t
(3)
uvw−1
b
×

t
(3)
uvw−2
b−1

− 1 otherwise, WRS reduces the variance regarding the triangles of Type 2 or 3, as formalized
in Lemma 4.2, while WRS increases the variance regarding the triangles of Type 4.

Lemma 4.2: Comparison of Variances

For each triangle {u, v, w}, Var[xuvw] is smaller in WRS than in TRIESTIMPR [SERU17], i.e.,

Var[xuvw] <
t
(3)
uvw − 1

b
× t

(3)
uvw − 2

b− 1
− 1 (4.8)

if any of the following conditions are satisfied:
• typeuvw = 2

• typeuvw = 3 and t(3)
uvw > 1 + α

1−αb

• typeuvw = 3 and α < 0.5.

Proof. From the definition of typeuvw, typeuvw ≥ 2 implies

t(3)
uvw > b+ 1. (4.9)

First, we show the case when typeuvw = 2. Eq. (4.7) and Eq. (4.9) give

t
(3)
uvw − 1

b
× t

(3)
uvw − 2

b− 1
− 1 > 0 = Var[xuvw].

30

Second, we show the case when typeuvw = 3 and t
(3)
uvw > 1 + α

1−αb. From t
(3)
uvw > 1 + α

1−αb,(
1 + b

t
(3)
uvw−1

)
α < 1 holds. This and Eq. (4.9) imply

(
1 + b

t
(3)
uvw−1

)(
1− b−1

t
(3)
uvw−2

)
α < 1 − b−1

t
(3)
uvw−2

.

Again, this and Eq. (4.9) give
(

1− b(b−1)

(t
(3)
uvw−1)(t

(3)
uvw−2)

)
α <

(
1 + b

t
(3)
uvw−1

− b−1

t
(3)
uvw−2

− b(b−1)

(t
(3)
uvw−1)(t

(3)
uvw−2)

)
α <

1− b−1

t
(3)
uvw−2

. This is equivalent to (b− 1)(t
(3)
uvw − 1− bα) < (t

(3)
uvw − 1)(t

(3)
uvw − 2)(1− α), which is again

equivalent to t
(3)
uvw−1−bα
b(1−α)

− 1 < t
(3)
uvw−1
b
× t

(3)
uvw−2
b−1

− 1. Combining this and Eq. (4.7) gives

Var[xuvw] =
t
(3)
uvw − 1− bα
b(1− α)

− 1 <
t
(3)
uvw − 1

b
× t

(3)
uvw − 2

b− 1
− 1.

Finally, the same conclusion holds when typeuvw = 3 and α < 0.5. Eq. (4.9) and α < 0.5 imply
t
(3)
uvw > 1 + α

1−αb. This and typeuvw = 3 give the second case, which is proven above.
Thus, Eq. (4.8) holds under any of the given conditions. �

Therefore, the superiority of WRS in terms of small Ṽar[c̄(t)] and Ṽar[c(t)[u]] depends on the distri-
bution of the types of triangles in the input graph stream. In the experiment section, we show that
the triangles of Type 2 or 3 are abundant enough in real-world dynamic graphs, as suggested by the
temporal locality, so that WRS is more accurate than TRIESTIMPR.

4.5.2 Complexity Analysis
We prove the time and space complexity of WRS. Especially, we show that WRS has the same time
and space complexity as the state-of-the-art algorithms [LJK18, SERU17], leading to the conclusion
that WRS yields higher accuracy than these methods without increasing time or space complexity. We
assume that sampled edges are stored in the adjacency list format in memory, as in our implementation
used for experiments. However, storing them sequentially, as in Figure 4.4, does not change the results
below.

The worst-case time complexity of WRS is linear in the memory budget and the number of edges
in the input stream, as formalized in Theorem 4.2.

Theorem 4.2: Worst-Case Time Complexity of WRS

Processing an incoming edge in Algorithm 4.1 takesO(b), and thus processing t edges in the input
stream takes O(bt).

Proof. The most expensive step of processing each incoming edge {u, v} in Algorithm 4.1 is to find
their common neighbors N̂u∩N̂v in line 2. Computing N̂u∩N̂v requires accessing |N̂u|+ |N̂v| = O(b)
edges. �

However, this analysis of the worst-case graph stream is too pessimistic for real-world graphs, since
|N̂u|+ |N̂v| is usually much smaller than k in real-world graphs.

Theorem 4.3 gives the space complexity of WRS. Note that, except the space for outputs (specifi-
cally, local triangle counts) WRS only requires O(b) additional space.

31

Theorem 4.3: Space Complexity of WRS

Let V(t) be the set of nodes in the graph consisting of the first t edges in the input stream. Pro-
cessing t edges in the input stream by Algorithm 4.1 requires O(b) space in case of global triangle
counting and O(b+ |V(t)|) space in case of local triangle counting.

Proof. Algorithm 4.1 uses O(b) space for sampling edges and O(|V(t)|) space for maintaining local
triangle counts, which need not be maintained in case of global triangle counting. �

4.6 Experiments
We review our experiments to answer the following questions:
• Q1. Illustration of Theorems: Does WRS give unbiased estimates with smaller variances than its

best competitors?
• Q2. Accuracy: How accurately does WRS estimate global and local triangle counts?
• Q3. Scalability: How does WRS scale with the number of edges in the input stream?
• Q4. Effects of Parameters on Accuracy: How does the relative size α of the waiting room affect

the accuracy of WRS? What is the optimal value of α?

4.6.1 Experimental Settings

Machine: We ran all experiments on a PC with a 3.60GHz Intel i7-4790 CPU and 32GB memory.

Datasets: Table 4.2 lists the graph streams used in our experiments, including the following real-order
graph streams:
• Arxiv [GGK03]: A citation network between papers in the ArXiv’s High Energy Physics. Each edge
{u, v} represents that paper u cited paper v. We used the submission time of u as the creation time
of {u, v}.

• Facebook [VMCG09]: A friendship network between users of Facebook. Each edge {u, v} repre-
sents that user v appeared in the friend list of user u. Edges whose creation time is unknown were
ignored.

• Email [KY04]: An email network from Enron Corporation. Each edge {u, v} represents that em-
ployee u sent to or received from person v (who may not be an employee) at least one email. We
used the creation time of the first email between u and v as the creation time of {u, v}.

• Youtube [Mis09]: A friend network between users of Youtube. Each edge {u, v} represents that
user u and user v became friends. Edges created before 12/10/2006 were ignored since their exact
creation times are unknown.

• Patent [HJT01]: A citation network between patents. Each edge {u, v} indicates that patent u cited
patent v. We used the time when u was granted as the creation time of {u, v}.

All self loops, duplicated edges, and directions of the edges were ignored in all the above graph streams.
In them, edges were streamed in the order by which they are created.

32

Table 4.2: Summary of the graph streams used in our experiments. B: billion, M: million, K:
thousand.

Name # Nodes # Edges Summary

Arxiv [GGK03] 30.5K 347K Citation network
Facebook [VMCG09] 61.1K 615K Friendship network
Email [KY04] 87.0K 297K Email network
Youtube [Mis09] 3.18M 7.51M Friendship network
Patent [HJT01] 3.77M 16.5M Citation network

Random (800GB) 1M 0.1B - 100B Synthetic graph

Implementations: We compared WRS to TRIESTIMPR [SERU17] and MASCOT [LJK18], which are
single-pass streaming algorithms estimating both global and local triangle counts within a limited stor-
age budget. We implemented all the methods in Java, and in all of them, we stored sampled edges in
the adjacency list format in main memory. In WRS, the relative size α of the waiting room was set to
0.1 unless otherwise stated (see Section 4.6.5 for the effect of α on the accuracy).

Evaluation measures: We measured the accuracies of the considered algorithms using global error,
local error, and rank correlation, all of which are defined in Section 3.3.2.

4.6.2 Q1. Illustration of Theorems
We ran experiments illustrating our analyses in Section 4.5. Figure 4.1(d) shows the distributions of
10, 000 estimates of the global triangle count in the ArXiv dataset obtained by each method. We set
b to the 10% of the number of edges in the dataset. The average of the estimates of WRS was close
to the true triangle count. Moreover, the estimates of WRS had smaller variances than those of the
competitors. These results are consistent with Theorem 4.1 and Lemma 4.2.

4.6.3 Q2. Accuracy
Figure 4.5 shows the accuracies of the considered methods in the real-world graph streams with dif-
ferent storage budgets b. Each evaluation metric was computed 1, 000 times for each method, and the
average was reported with an error bar indicating the estimated standard error. In all the datasets, WRS
was most accurate in global and local triangle counting, regardless of storage budgets. The accuracy
gain was especially high in the Arxiv and Patent datasets, which showed the strongest temporal locality.
In the Arxiv dataset, for example, WRS gave up to 47% smaller local error and 40% smaller global
error than the second best method.

WRS was more accurate since its estimates were based on more triangles. Due to its effective
sampling scheme, WRS discovered up to 2.9× more triangles than its competitors while processing
the same streams, as shown in Figure 4.6(a).

4.6.4 Q3. Scalability
We measured how the running time of WRS scales with the number of edges in the input stream. To
measure the scalability independently of the speed of the input stream, we measured the time taken by
WRS to process all the edges ignoring the time taken to wait for the arrivals of edges. Figure 4.1(c)

33

WRS (Proposed) TriestIMPR MASCOT

Local Error (the lower the better):

better
0.3

0.6

0.9

2-3 2-2 2-1

Ratio of Stored Edges

Lo
ca

l E
rr

or

(a) Arxiv

better
0.2

0.4

0.6

2-3 2-2 2-1

Ratio of Stored Edges
Lo

ca
l E

rr
or

(b) Patent

better

0.1

0.2

2-3 2-2 2-1

Ratio of Stored Edges

Lo
ca

l E
rr

or

(c) Email

better
0.25

0.50

0.75

2-3 2-2 2-1

Ratio of Stored Edges

Lo
ca

l E
rr

or

(d) Facebook

better0.05

0.10

0.15

0.20

2-3 2-2 2-1

Ratio of Stored Edges

Lo
ca

l E
rr

or

(e) Youtube

Rank Correlation (the higher the better):

better

0.7

0.8

0.9

1.0

2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
rle

at
io

n

(f) Arxiv

better

0.4

0.6

0.8

1.0

2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
rle

at
io

n

(g) Patent

better

0.5

0.6

0.7

0.8

0.9

1.0

2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
rle

at
io

n

(h) Email

better

0.7

0.8

0.9

1.0

2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
rle

at
io

n

(i) Facebook

better

0.4

0.6

0.8

1.0

2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
rle

at
io

n

(j) Youtube

Global Error (the lower the better):

better0.000

0.005

0.010

0.015

2-3 2-2 2-1

Ratio of Stored Edges

G
lo

ba
l E

rr
or

(k) Arxiv

better0.000

0.001

0.002

0.003

0.004

2-3 2-2 2-1

Ratio of Stored Edges

G
lo

ba
l E

rr
or

(l) Patent

better0.000

0.005

0.010

0.015

0.020

2-3 2-2 2-1

Ratio of Stored Edges

G
lo

ba
l E

rr
or

(m) Email

better0.000

0.004

0.008

0.012

2-3 2-2 2-1

Ratio of Stored Edges

G
lo

ba
l E

rr
or

(n) Facebook

better0.000

0.005

0.010

0.015

2-3 2-2 2-1

Ratio of Stored Edges

G
lo

ba
l E

rr
or

(o) Youtube

Figure 4.5: WRS is accurate. In all the datasets, WRS is most accurate in global and local triangle
counting regardless of storage budget b. The relative size of waiting room (i.e., α) is fixed to 0.1.

shows the results in the Random datasets, which were created by the Erdös-Rényi model. The running
time of WRS scaled linearly with the number of edges. That is, the time taken by WRS to process each
edge was almost constant regardless of the number of edges arriving so far. Despite its linear scalability,
WRS was slower than its competitors since it discovered and processed more triangles, as shown in
Figure 4.6. However, it took only about a microsecond for WRS to process an edge, which means that
WRS can handle dynamic graphs where about one million new edges are created per second.

4.6.5 Q4. Effects of Parameters on Accuracy
We measured how the accuracy of WRS changes depending on α, the relative size of the waiting room.
Figure 4.7 shows the results with different storage budgets. Here, we used global error as the accuracy
metric, and the average values over 1, 000 runs are reported. In all the datasets and regardless of storage
budgets, using proper amount of memory space for the waiting room gave better accuracy than using no
space for the waiting room (α = 0) and using half the space for the waiting room (α = 0.5). Although
proper α values depended on datasets and storage budgets, the accuracy was maximized when α was
about 0.1 in most of the cases.

34

WRS (Proposed) TriestIMPR MASCOT

103

105

107

You
tu

be

Em
ail

ArX
iv

Fac
eb

.

Pat
en

t
N

um
be

r
of

 D

is
co

ve
re

d
T

ria
ng

le
s

(a) Number of Discovered Triangles

102

102.5

103

103.5

You
tu

be

Em
ail

ArX
iv

Fac
eb

.

Pat
en

t

E
la

ps
ed

 T
im

e
P

er
 E

dg
e

(n
an

os
ec

on
ds

)

(b) Running Time

Figure 4.6: The sampling scheme of WRS is effective. b is 10% of the number of the edges in each
dataset and α is 0.1. (a) WRS discovers up to 2.9× more triangles than the second best method, in the
same streams. (b) The running times and the numbers of discovered triangles show similar trends.

Memory Budget (b / #edges): 0.1 0.2 0.3

0.004

0.006

0.008

0.0 0.2 0.4
Relative Size of W

G
lo

ba
l E

rr
or

(a) Arxiv

0.001

0.002

0.003

0.0 0.2 0.4
Relative Size of W

G
lo

ba
l E

rr
or

(b) Patent

0.006

0.008

0.010

0.012

0.014

0.0 0.2 0.4
Relative Size of W

G
lo

ba
l E

rr
or

(c) Email

0.002

0.004

0.006

0.008

0.0 0.2 0.4
Relative Size of W

G
lo

ba
l E

rr
or

(d) Facebook

0.006

0.010

0.014

0.018

0.0 0.2 0.4
Relative Size of W

G
lo

ba
l E

rr
or

(e) Youtube

Figure 4.7: Effects of α on the accuracy of WRS. Using about 10% of memory space for the waiting
room (α = 0.1) gives higher accuracy than using no space for the waiting room (α = 0) or using half
the space for the waiting room (α = 0.5).

4.7 Summary
In this chapter, we propose WRS, a single-pass streaming algorithm for global and local triangle count-
ing. WRS divides available memory space into the waiting room, where the latest edges are stored,
and the reservoir, where the remaining edges are uniformly sampled. By doing so, WRS exploits the
temporal locality in real-world dynamic graphs while giving unbiased estimates. We show that WRS
has the following advantages:
• Fast and ‘any time’: WRS scales linearly with the number of edges in the input graph stream, and

it gives estimates at any time while the input stream grows (Figure 4.1(a)).
• Accurate: Estimation error in WRS is up to 47% smaller than those in its best competitors (Fig-

ures 4.1(b) and 4.5).
• Theoretically sound: WRS gives unbiased estimates with small variances under the temporal lo-

cality (Theorem 4.1, Lemma 4.2 and Figure 4.1(c)).
Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/wrs/.

35

http://www.cs.cmu.edu/~kijungs/codes/wrs/
http://www.cs.cmu.edu/~kijungs/codes/wrs/

36

Chapter 5

Counting Triangles in Graph Streams (2):
Utilizing Multiple Machines

Chapter based on work that appeared at PAKDD 2018 [SHL+18] and its extension [SLO+19].

Given a graph stream, how can we estimate the number of triangles in it using multiple machines
with limited storage? Specifically, how should edges be processed and sampled across the ma-
chines for rapid and accurate estimation?

As discussed in the previous chapters, the count of triangles (i.e., cliques of size three) has
proven useful in numerous applications, including anomaly detection, community detection, and
link recommendation. For triangle counting in large and dynamic graphs, recent work has focused
largely on streaming algorithms and distributed algorithms but little on their combinations for “the
best of both worlds”.

In this chapter, we propose COCOS, a fast and accurate distributed streaming algorithm for
estimating the counts of global triangles (i.e., all triangles) and local triangles incident to each
node. Making one pass over the input stream, COCOS carefully processes and stores the edges
across multiple machines so that the redundant use of computational and storage resources is
minimized. Compared to baselines, COCOS is (a) Accurate: giving up to 39× smaller estimation
error, (b) Fast: up to 10.4× faster, scaling linearly with the size of the input stream, and (c)
Theoretically sound: yielding unbiased estimates with variances dropping faster as the number of
machines is scaled up.

5.1 Motivation
Given a graph stream, how can we utilize multiple machines for rapidly and accurately estimating the
count of triangles in it? How should we process and sample the edges across the machines to minimize
the redundant use of computational and storage resources?

As discussed in Chapter 3, for triangle counting in real-world graphs, many of which are large and
evolving with new edges, recent work has focused largely on streaming algorithms [KP13, LJK18,
SERU17, PTT13, ADNK14, ADWR17, PTTW13, Shi17, SHL+18, KP17, PT12]. Given a graph
stream, which is a sequence of edges that may not fit in the underlying storage, these algorithms esti-
mate the count of triangles while making a single pass over the stream. Especially, these algorithms
maintain and gradually update their estimates as each edge is received rather than operating on the
entire graph. Thus, they are appropriate for dynamic graphs, whose edges are received over time.

37

6.3X

30X

●●●10−4

10−3

10−2

104 105

Elapsed Time (millisec)

G
lo

ba
l E

rro
r

CoCoSOPT

CoCoSSIMPLE

Tri-Fly

(a) Fast and accurate

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

104

105

109 1010 1011

Number of Edges

El
ap

se
d

Ti
m

e
(s

ec
)

CoCoSOPT

CoCoSSIMPLE

Linear (slope=1)

(b) Scalable

1e−04

2e−04

3e−04

13.35M 13.39M 13.43M
Estimated Count

Pr
ob

ab
ilit

y
D

en
si

ty

CoCoSOPT

CoCoSSIMPLE

Tri-Fly

True triangle count ●

●

●

●

●

●

●

1010

1011

1012

1013

1014

100 101 102

Number of Workers

Va
ria

nc
e

40X
Tri-Fly
(~𝑂 𝑛%&)

CoCoSOPT

(~𝑂 𝑛%&.))

CoCoSSIMPLE

(c) Unbaised with small variance (Theorems 5.2 and 5.4)

Figure 5.1: Strengths of COCOS. (a) Fast and accurate: COCOS is faster and more accurate than
its best competitors. (b) Scalable: The running time of COCOS is linear in the number of edges in the
input stream. (c-d) Unbiased with small variance: COCOS gives unbiased estimates with variances
dropping rapidly as we use more machines (Theorems 5.2 and 5.4). See Section 5.5 for details.

Another popular approach is to extend triangle counting algorithms to distributed settings, including
distributed-memory [AKM13] and MAPREDUCE [Coh09, SV11, PC13, PSKP14, PMK16, PSP+18]
settings. These distributed algorithms utilize computational and storage resources of multiple machines
for speed and scalability. However, unlike streaming algorithms, they require all edges to be given at
once. Thus, they are not applicable to dynamic graphs, whose edges are received over time, or graphs
that are too large to fit in the underlying storage.

Can we have the best of both worlds? In other words, can we utilize multiple machines for rapid and
accurate triangle counting in a graph stream? A promising approach is TRI-FLY (see Section 5.3.2),
where edges are broadcast to every machine that independently runs a state-of-the-art streaming algo-
rithm called TRIESTIMPR [SERU17]. The final estimates are the averages of the estimates provided by
all the machines. Although TRI-FLY successfully reduces estimation error inversely proportional to the
number of machines, TRI-FLY incurs a redundant use of computational and storage resources.

In this third chapter on triangle counting, we propose COCOS (Conditional Counting and Sampling),
a fast and accurate distributed streaming algorithm that estimates the counts of global and local trian-
gles. COCOS gives the advantages of both streaming and distributed algorithms, significantly outper-
forming TRI-FLY, as shown in Figure 5.1. COCOS minimizes the redundant use of computational
and storage resources by carefully processing and sampling edges across distributed machines so that
each edge is stored in at most two machines and each triangle is counted by at most one machine. We
theoretically and empirically demonstrate that COCOS has the following advantages:
• Accurate: COCOS yields up to 30× and 39× smaller estimation errors for global and local triangle

counts, respectively, than baselines with similar speeds (Figure 5.1(a)).
• Fast: COCOS scales linearly with the number of edges in the input stream (Figure 5.1(b)), and it is

up to 10 .4× faster than baselines while giving more accurate estimates (Figure 5.1(a)).
• Theoretically Sound: COCOS gives unbiased estimates with variances dropping rapidly as the num-

ber of machines is scaled up (Theorems 5.2 and 5.4; and Figure 5.1(c)).
Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/trifly/.

The rest of this chapter is organized as follows. In Section 5.2, we we introduce some preliminary
concepts, notations, and a formal problem definition. In Section 5.3, we present our proposed algo-
rithm, namely COCOS, and a baseline algorithm, namely TRI-FLY. In Section 5.4, we theoretically

38

http://www.cs.cmu.edu/~kijungs/codes/trifly/
http://www.cs.cmu.edu/~kijungs/codes/trifly/

Table 5.1: Table of frequently-used symbols.

Symbol Definition

Notations for Graph Streams (Section 5.2)

(e(1), e(2), ...) input graph stream
e(t) edge that arrives at time t ∈ {1, 2, ...}

{u, v} edge between nodes u and v
tuv arrival time of edge {u, v}

{u, v, w} triangle composed of nodes u, v, and w
G(t) = (V(t), E (t)) graph at time t

T (t) set of global triangles in G(t)

T (t)[u] set of local triangles associated with node u in G(t)

Notations for Algorithms (Section 5.3)

k number of workers
b maximum number of edges stored in each worker
c̄ estimate of the global triangle count

c[u] estimate of the local triangle count of node u
f : V → {1, ..., k} function assigning nodes to workers

li load of the i-th worker
θ tolerance for load difference

Notations for Analysis (Section 5.4)

p(t) number of Type 1 triangle pairs in G(t)

q(t) number of Type 2 triangle pairs in G(t)

analyze the accuracy and complexity of them. After sharing some experimental results in Section 5.5,
we provide a summary of this chapter in Section 5.6.

5.2 Preliminaries and Problem Definition
In this section, we first introduce some notations and concepts used throughout this chapter. Then, we
define the problem of distributed global and local triangle counting in a graph stream.

5.2.1 Notations and Concepts

We list the frequently-used symbols in Table 5.1. Consider a graph stream (e(1), e(2), ...), where e(t)

denotes the undirected edge that arrives at time t ∈ {1, 2, ...}. Then, let G(t) = (V(t), E (t)) be the graph
composed of the nodes and edges arriving at time t or earlier. We use the unordered pair {u, v} ∈ E (t)

to indicate the edge between two distinct nodes u, v ∈ V(t). We denote the arrival time of each edge
{u, v} by tuv. We use the unordered triple {u, v, w} to indicate the triangle (i.e., three nodes every pair
of which is connected by an edge) composed of three distinct nodes u, v, w ∈ V(t). We let T (t) be the
set of global triangles in G(t) (i.e., all triangles in G(t)), and for each node u ∈ V(t), let T (t)[u] ⊂ T (t)

be the set of local triangles of u in G(t) (i.e., all triangles associated with u).

39

5.2.2 Problem Definition
In this chapter, we consider Problem 5.1, where we use a general approach of simultaneously reducing
bias and variance, instead of minimizing a specific measure of estimation error, to reduce different
measures of estimation error robustly.

Problem 5.1: Distributed Global and Local Triangle Counting in a Graph Stream

• Given:
a graph stream (e(1), e(2), ...),

k distributed storages in each of which up to b (≥ 2) edges can be stored
• Maintain: estimates of the global triangle count |T (t)| and the local triangle counts

{(u, |T (t)[u]|)}u∈V(t) for current time t ∈ {1, 2, ...},
• to Minimize: the estimation errors
• Subject to: the following realistic conditions:

C1 Knowledge free: No prior knowledge of the input graph stream (e.g., the counts of nodes
and edges) is available.

C2 Shared nothing environment: Data stored in the storage of a machine is not accessible by
the other machines.

C3 One pass: Edges are accessed one by one in their arrival order. Past edges are not accessible
by a machine unless they are stored in the given storage of the machine.

5.3 Proposed Algorithms: TRI-FLY and COCOS
In this section, we present two distributed streaming algorithms for Problem 5.1. First, we provide
an overview with the common structure and notations in Section 5.3.1. Then, we present a baseline
algorithm TRI-FLY and our proposed algorithm COCOS (Conditional Counting and Sampling) in Sec-
tions 5.3.2 and 5.3.3, respectively. After that, we discuss lazy aggregation in Section 5.3.4. Lastly, we
discuss extensions of the algorithms with multiple sources, masters, and aggregators in Section 5.3.5

5.3.1 Overview
Figure 5.2 describes the roles of machines and the flow of data in the algorithms described in the
following subsections. For simplicity, we assume one source, one master and one aggregator although
extending the algorithms with multiple of them is trivial, as discussed in Section 5.3.5. Edges are
streamed from the source to the master, which unicasts or broadcasts the edges to the workers. Each
worker counts the global and local triangles from the received edges using its local storage, and it sends
the counts to the aggregator. Since we assume a shared-nothing environment in Problem 5.1, each
worker cannot access data stored in the other worrkers. The counts are aggregated in the aggregator,
which gives the final estimates of the global and local triangle counts.

Before describing the algorithms, we define the notations used in them. We use k to denote the
number of workers and use b to denote the storage budget per worker (i.e., the maximum number of

40

master aggregator
(destination)

source

edges

…

worker 1

worker 2

worker k

Figure 5.2: Roles of machines and the flow of data in TRI-FLY and COCOS. Extensions of them
with multiple sources, masters, and aggregators are discussed in Section 5.3.5.

edges that we store in each worker). For each i ∈ {1, ..., k}, we let Ei be the edges currently stored
in the i-th worker and let Gi = (Vi, Ei) be the graph composed of the edges in Ei. For each node
u ∈ Vi, Ni[u] denotes the neighboring nodes of u in Gi. Since its storage is limited, each worker uses
sampling to decide which edges to store. We use li to denote the number of edges that the i-th worker
has considered for sampling so far. Lastly, c̄ indicates the estimate of the global triangle count, and for
each node u, c[u] indicates the estimate of the local triangle count of u.

5.3.2 Baseline Algorithm: TRI-FLY

We present TRI-FLY, a baseline algorithm for Problem 5.1. The pseudo code of TRI-FLY is given in
Algorithm 5.1. We first describe the master, the workers, and the aggregator in TRI-FLY. Then, we
discuss its advantages and disadvantages.

Master (lines 1-2): The master simply broadcasts every edge from the source to every worker.

Workers (lines 3-17): Each worker independently estimates the global and local triangle counts using
TRIESTIMPR, a state-of-the-art streaming algorithm based on reservoir sampling. Note that the workers
use different random seeds and thus give different results. Each worker i ∈ {1, ..., k} starts with an
empty storage (i.e., Ei = ∅) (line 3 of Algorithm 5.1). Whenever it receives an edge {u, v} (line 4) from
the master, the worker first counts the triangles with {u, v} in its local storage by calling the procedure
COUNT (line 5), Then, the worker calls procedure SAMPLE (line 6) to store {u, v} in its local storage
with non-zero probability. We describe the procedures SAMPLE and COUNT below.

In the procedure SAMPLE (lines 14-17), each worker i ∈ {1, ..., k} first increases li, the number of
edges considered for sampling, by one since the new edge {u, v} is being considered. If its local storage
is not full (i.e., |Ei| < b), the worker stores {u, v} by adding {u, v} to Ei (line 15). If the local storage is
full (i.e., |Ei| = b), the worker stores {u, v}with probability b/li by replacing an edge chosen at random
uniformly in Ei with {u, v} (lines 16-17). This is the standard reservoir sampling, which guarantees
that each of the li edges is sampled and included in Ei with the equal probability min(1, b/li).

In the procedure COUNT (lines 8-12), each worker i ∈ {1, ..., k} finds the common neighbors of
nodes u and v in graph Gi, a graph consisting of the edges Ei in its local storage (line 9). Each common
neighborw indicates the existence of triangle {u, v, w}. Thus, for each common neighborw, the worker
increases the global triangle count, and the local triangle counts of nodes u, v, and w by sending the
increases to the aggregator (lines 10 and 12). The amount of increase in the counts is 1/(pi[uvw]) for

41

Algorithm 5.1 TRI-FLY: Baseline Algorithm (not recommended)

Input: (1) input graph stream: (e(1), e(2), ...)
(2) storage budget in each worker: b (≥ 2)

Output: (1) estimated global triangle count: c̄
(2) estimated local triangle counts: c[u] for each node u

Master:
1: for each edge {u, v} from the source do
2: broadcast {u, v} to every worker

Worker (each worker with index i):
3: Ei ← ∅; li ← 0
4: for each edge {u, v} from the master do
5: COUNT({u, v})
6: SAMPLE({u, v})
7: procedure COUNT({u, v}):
8: sum← 0
9: for each node w ∈ Ni[u] ∩Ni[v] do

10: send (w, 1/(pi[uvw])) to the aggregator
11: sum← sum+ 1/(pi[uvw]) . see Eq. (5.1) for pi[uvw]

12: send (∗, sum), (u, sum) and (v, sum) to the aggregator . ‘∗’ indicates the global triangle
count

13: procedure SAMPLE({u, v}):
14: li ← li + 1.
15: if |Ei| < b then Ei ← Ei ∪ {{u, v}}
16: else if a random number in Bernoulli(b/li) is 1
17: replace an edge chosen at random uniformly in Ei with {u, v}
Aggregator:

18: c̄← 0
19: initialize an empty map c with default value 0
20: for each pair (u, δ) from the workers do
21: if u = ∗ then c̄← c̄+ δ/k
22: else c[u]← c[u] + δ/k

42

each triangle {u, v, w}, where

pi[uvw] := min

(
1,
b(b− 1)

li(li − 1)

)
(5.1)

is the probability that triangle {u, v, w} is discovered by worker i. In other words, pi[uvw] is the
probability that both {v, w} and {w, u} are in Ei when {u, v} arrives at worker i.1 Increasing counts
by 1/(pi[uvw]) guarantees that the expected amount of the increase sent from each worker is exactly
1(= pi[uvw]× 1/(pi[uvw]) + (1− pi[uvw])× 0) for each triangle, enabling TRI-FLY to give unbiased
estimates. See Theorem 5.1 in Section 5.4.1 for a detailed proof.

Aggregator (lines 18-22): The aggregator maintains and updates the estimate c̄ of the global triangle
count and the estimate c[u] of the local triangle count of each node u. Specifically, it increases the
estimates by 1/k of what it receives, averaging the increases sent from the workers (lines 21 and 22).

Advantages and Disadvantages of TRI-FLY: Our theoretical and empirical analyses in the following
sections show the advantages of TRI-FLY. Specifically, TRI-FLY gives unbiased estimates, and the
variances of the estimates decrease inversely proportional to the number of workers (see Theorems 5.1
and 5.3 in Section 5.4.1). Moreover, TRI-FLY gives the same results as TRIESTIMPR [SERU17], a state-
of-the-art streaming algorithm, when a single worker is used.

However, TRI-FLY incurs a redundant use of computational and storage resources. Specifically,
each edge can be replicated and stored in up to k workers, and each triangle can be counted repeatedly
by up to k workers. Due to its redundant use of storage, no matter how many workers are used, TRI-FLY

cannot guarantee exact triangle counts if the number of edges so far (i.e., t) is greater than b+ 1.

5.3.3 Proposed Algorithm: COCOS
To address the drawbacks of TRI-FLY, we propose COCOS, an improved algorithm for Problem 5.1.
The pseudo code of COCOS is given in Algorithm 5.2. We first describe the master, the workers, and
the aggregator in COCOS. Then, we prove its properties. Lastly, we discuss adaptive node mapping.

5.3.3.1 Algorithm Description

Master (lines 1-3): The master requires a function f that maps each node to a worker. We assume
that f is given and discuss it later in Section 5.3.3.3. The master sends each edge {u, v} to the workers
depending on f(u) and f(v) as follows:
• Case LUCKY (line 2): If nodes u and v are assigned to the same worker by f (i.e., f(u) = f(v)),

then the master sends {u, v} only to the worker (i.e., the f(u)-th worker).
• Case UNLUCKY (line 3): Otherwise (i.e., if f(u) 6= f(v)), the master sends {u, v} to every worker.

Workers (lines 4-8): The workers start with an empty storage (line 4). Whenever they receive an
edge {u, v} from the master (line 5), they count the triangles with {u, v} in its local storage by calling
the procedure COUNT (line 6), as in TRI-FLY. However, the procedure SAMPLE is called selectively
depending on f(u) and f(v) as follows:

1 For {v, w} to be in Ei, {v, w} should be one among b edges sampled from li edges, i.e., p[{v, w} ∈ Ei] = min(1, b/li).
For {w, u} to be in Ei, given {v, w} is in Ei, {w, u} should be one among b − 1 edges sampled from li − 1 edges, i.e.,
p[{w, u} ∈ Ei|{v, w} ∈ Ei] = min(1, (b− 1)/(li − 1)). Eq. (5.1) follows from pi[uvw] = p[{w, u} ∈ Ei, {v, w} ∈ Ei] =
p[{v, w} ∈ Ei]× p[{w, u} ∈ Ei|{v, w} ∈ Ei].

43

Algorithm 5.2 COCOS: Proposed Algorithm

Input: (1) input graph stream: (e(1), e(2), ...)
(2) storage budget in each worker: b (≥ 2)

Output: (1) estimated global triangle count: c̄
(2) estimated local triangle counts: c[u] for each node u

Master:
1: for each edge {u, v} from the source do
2: if f(u) = f(v) then send {u, v} to worker f(u) . Case LUCKY

3: elsesend {u, v} to every worker . Case UNLUCKY

Worker (each worker with index i):
4: Ei ← ∅; li ← 0
5: for each edge {u, v} from the master do
6: COUNT({u, v}) . see Algorithm 5.1 for COUNT()
7: if f(u) = i or f(v) = i then . Case ASSIGNED

8: SAMPLE({u, v}) . see Algorithm 5.1 for SAMPLE()

Aggregator:
9: c̄← 0

10: initialize an empty map c with default value 0
11: for each pair (u, δ) from the workers do
12: if u = ∗ then c̄← c̄+ δ
13: else c[u]← c[u] + δ

• Case ASSIGNED (line 7): If f(u) = i or f(v) = i, the i-th worker considers storing {u, v} in its
local storage by calling SAMPLE.

• Case UNASSIGNED: Otherwise (i.e., if f(u) 6= i 6= f(v)), the i-th worker simply discards {u, v}
without considering storing it.

Aggregator (lines 9-13): The aggregator applies each received update to the corresponding estimate.

5.3.3.2 Basic Properties
The properties of COCOS that we use for the theoretical analysis in Section 5.4 are stated in Lemma 5.1.

Lemma 5.1:

Algorithm 5.2 has the following properties:
P1 Limited redundancy in storage: Each edge is stored in at most two workers.

P2 No redundancy in computation: Each triangle is counted by at most one worker.

P3 No definitely missing triangles: Each triangle is counted with non-zero probability.

Proof. First, we prove P1. Each edge {u, v} can be stored in a worker only when case ASSIGNED

happens. Since case ASSIGNED happens in at most two workers (i.e., the f(u)-th worker and the f(v)-

44

Algorithm 5.3 Master in COCOSOPT

Input: (1) input graph stream: (e(1), e(2), ...)
(2) tolerance for load difference: θ (≥ 0) .

Output: edges sent to workers
1: li ← 0, ∀i ∈ {1, ..., k}
2: for each edge {u, v} from the source do
3: i∗ ← argmini∈{1,...,k} li
4: if u and v have not been assigned to a worker by f then
5: f(u)← i∗; f(v)← i∗

6: else if u has not been assigned to a worker by f then
7: if lf(v) ≤ (1 + θ)li∗ then f(u)← f(v) else f(u)← i∗

8: else if v has not been assigned to a worker by f then
9: if lf(u) ≤ (1 + θ)li∗ then f(v)← f(u) else f(v)← i∗

10: if f(u) = f(v) then . Case LUCKY

11: send {u, v} to worker f(u)
12: lf(u) ← lf(u) + 1
13: else . Case UNLUCKY

14: send {u, v} to every worker
15: lf(u) ← lf(u) + 1; lf(v) ← lf(v) + 1

th worker), {u, v} can be stored in at most two workers. Then, we prove P2 and P3 by showing that,
for each triangle, there exists exactly one worker that counts it with non-zero probability. Consider a
triangle {u, v, w} and assume {u, v} is the last edge (i.e., tvw < tuv and twu < tuv) without loss of
generality. If f(u) = f(v) (case LUCKY), all the workers except the f(u)(= f(v))-th worker cannot
count {u, v, w} since {u, v} is sent only to the f(u)-th worker. Since the f(u)(= f(v))-th worker
stores {v, w} and {w, u} with non-zero probability (case ASSIGNED happens for both edges), it counts
{u, v, w} with non-zero probability. If f(u) 6= f(v) (case UNLUCKY), although {u, v} is sent to every
worker, all the workers except the f(w)-th worker cannot count {u, v, w} since they cannot store both
{v, w} and {w, u} (case UNASSIGNED happens for at least one of the edges). Since the f(w)-th worker
stores {v, w} and {w, u} with non-zero probability (case ASSIGNED happens for both edges), it counts
{u, v, w} with non-zero probability. Therefore, in both cases, there exists exactly one worker that
counts {u, v, w} with non-zero probability, satisfying P2 and P3. �

P1 is desirable for accuracy. Less redundancy in storage enables us to store more unique edges,
which we can estimate triangle counts more accurately from. P2 is desirable for speed. P3 enables
COCOS to give unbiased estimates of triangle counts, as we explain in Section 5.4. P3 is what we
should not compromise while reducing the redundancy in storage and computation. For example,
further reducing redundancy in storage by storing each edge in at most one worker compromises P3
unless k equals 1.

5.3.3.3 Adaptive Node Mapping Function
So far we have assumed that the function f , which assigns each node to a worker, is given. We discuss
how to design f and propose COCOSOPT, which is COCOS with our proposed function as f .

Design Goals: We say an edge {u, v} is assigned to the i-th worker if f(u) = i or f(v) = i and
thus {u, v} can possibly be stored in the i-th worker. In Algorithm 5.2, the load li of each i-th worker

45

Table 5.2: Advantages of Case LUCKY. Case LUCKY saves storage, communication, and computa-
tion costs, compared to case UNLUCKY.

Cases LUCKY UNLUCKY

storage (edge is stored in at most)
1 worker

2 workers
communication (edge is sent to) k workers
computation (COUNT() is called in) k workers

denotes the number of edges assigned to the worker. Then, two goals that a desirable f function should
meet are as follows:

G1 Storage: The redundant use of storage (i.e., the number of edges stored in multiple workers)
should be minimized.

G2 Load Balancing: A similar number of edges should be assigned to every worker, i.e., li ≈ lj ,
∀i, j ∈ {1, ..., k}.

However, achieving both goals is non-trivial because the goals compete with each other. For example, if
we assign every node to the same worker, then the first goal is achieved since every edge is stored only
in the machine. However, this maximizes load imbalance, conflicting with the second goal. Moreover,
f should be decided without additional passes or any prior knowledge of the input stream, due to our
conditions in Problem 5.1.

COCOSOPT with Adaptive f . We propose COCOSOPT, where the master, described in Algorithm 5.3,
adaptively decides the function f based on current loads of the workers so that the redundancy of
storage is minimized within a specified level of load difference.

Recall that, in COCOS, case LUCKY is preferred over case UNLUCKY for reducing the redundancy
in storage. This is because each edge {u, v} is stored in at most one worker in case LUCKY (i.e.,
f(u) = f(v)), while it is stored in at most two workers in case UNLUCKY (i.e., f(u) 6= f(v)). Let the
i∗-th worker be the worker with least assigned edges so far (line 3). If an edge {u, v} with two new
nodes u and v arrives, the master assigns both nodes to the i∗-th worker (lines 4-5) for pursuing case
LUCKY and balancing loads. If an edge {u, v}with one new node u (without loss of generality) arrives,
the master assigns u to the f(v)-th worker, for case LUCKY to happen, as long as the load of the f(v)-th
worker is not higher than (1 + θ) times of the load of the i∗-th worker. Otherwise, load balancing is
prioritized, and u is assigned to the i∗-th worker (lines 6-9). Once f(u) and f(v) are determined, each
edge {u, v} is sent to the worker(s) depending on f(u) and f(v) as in Algorithm 5.2, and the load of
the corresponding worker(s) is updated (lines 10-15). Note that f(u) and f(v) are never changed once
they are determined, Since the assignments by f are only in the master, along each edge to each worker,
one bit indicating whether the edge is assigned to the worker or not should be sent to be used in line 7
of Algorithm 5.2.

Advantages of COCOSOPT : By co-optimizing storage and load balancing, COCOSOPT stores more
uniques edges and thus produces more accurate estimates than COCOSSIMPLE, which is COCOS using
the simple modulo function as f . Although our explanation so far has focused on storage and load
balancing, COCOSOPT also improves upon COCOSSIMPLE in terms of speed by increasing the chance
of case LUCKY, which saves not only storage but also communication and computation costs, as sum-
marized in Table 5.2.

46

5.3.4 Lazy Aggregation
In the procedure COUNT of Algorithm 5.1, which is commonly used by TRI-FLY and COCOS, each
worker sends the update of the local triangle count of node w to the aggregator whenever it discovers
each triangle {u, v, w} (line 10). Likewise, each worker sends the updates of the global triangle count
and the local triangle counts of nodes u and v to the aggregator whenever it processes each edge {u, v}
(line 12). In cases where this eager aggregation is not needed, we reduce the amount of communication
by employing lazy aggregation. Specifically, counts aggregated locally in each worker are sent to and
aggregated in the aggregator (and removed from the workers) when they are queried.

5.3.5 Multiple Sources, Masters and Aggregators
Although our experiments in Section 5.5.3 show that the performance bottlenecks of proposed algo-
rithms are workers rather than the master, multiple masters can be considered for handling multiple
sources or for fault tolerance. Consider the case when edges are streamed from one or more sources to
multiple masters without duplication. By simply using the same non-adaptive node mapping function
f 2 (e.g., the modulo function) in every master, we can run masters independently without affecting the
accuracy of TRI-FLY or COCOS. This is because, in such cases, masters do not have any state and thus
have nothing to share with each other.

Multiple aggregators are required when outputs (i.e., 1 global triangle count and |V(t)| local triangle
counts) do not fit one machine or aggregation is a performance bottleneck. In TRI-FLY and COCOS,
workers send key-value pairs, whose key is either ‘∗’ or a node id, to the aggregator (line 12 of Al-
gorithm 5.1). The computation and storage required for aggregation are distributed across multiple
aggregators if workers use the same hash function (that maps each key to an aggregator) to decide
where to send each key-value pair.

5.4 Theoretical Analysis
We theoretically analyze the accuracy, time complexity, and space complexity of COCOS and TRI-FLY.

5.4.1 Accuracy Analysis
We analyze the biases and variances of the estimates given by COCOS and TRI-FLY. The biases and
variances determine the estimation error of the algorithms. We first prove that both COCOS and TRI-
FLY give estimates with no bias. Then, we analyze the variances of the estimates to give an intuition
why COCOS is more accurate than TRI-FLY.

5.4.1.1 Bias Analysis
We prove the unbiasedness of TRI-FLY and COCOS. That is, we show that TRI-FLY and COCOS give
estimates whose expected values are equal to the true triangle counts. For proofs, consider G(t) =
(V(t), E (t)), which is the graph consisting of the edges arriving at time t or earlier. We define c̄(t) as
c̄ in the aggregator after edge e(t) is processed. Then, c̄(t) is an estimate of |T (t)|, the count of global

2A node mapping function f is non-adaptive if its mapping does not depend on any states. Algorithm 5.3 is adaptive
since its mapping depends on the loads of workers.

47

triangles in G(t). Likewise, for each node u ∈ V(t), we define c(t)[u] as c[u] in the aggregator after e(t)

is processed. Then, each c(t)[u] is an estimate of |T (t)[u]|, the count of local triangles of u in G(t).

Theorem 5.1: Unbiasedness of TRI-FLY

At any time, the expected values of the estimates given by TRI-FLY are equal to the true global
and local triangle counts. That is, in Algorithm 5.1,

E[c̄(t)] = |T (t)|, ∀t ∈ {1, 2, ...}.
E[c(t)[u]] = |T (t)[u]|, ∀u ∈ V(t), ∀t ∈ {1, 2, ...}.

Proof. The unbiasedness of TRI-FLY follows from that of TRIESTIMPR [SERU17], which each worker
in TRI-FLY runs independently. Let c̄(t)

i be the global triangle count sent from each worker i by time t.
By line 21 of Algorithm 5.1, c̄(t) =

∑k
i=1 c̄

(t)
i /k. From E[c̄

(t)
i] = |T (t)| (Theorem 4.12 of [SERU17]),

E[c̄(t)] =
∑k

i=1
E[c̄

(t)
i]/k = |T (t)|.

Likewise, for each node u ∈ V(t), let c(t)
i [u] be the local triangle count of u sent from each worker i by

time t. By line 22 of Algorithm 5.1, c(t)[u] =
∑k

i=1 c
(t)
i [u]/k. From E[c

(t)
i [u]] = |T (t)[u]| (Theorem 4.12

of [SERU17]),

E[c(t)[u]] =
∑k

i=1
E[c

(t)
i [u]]/k = |T (t)[u]|.

�

Theorem 5.2: Unbiasedness of COCOS

At any time, the expected values of the estimates given by COCOS are equal to the true global and
local triangle counts. That is, in Algorithm 5.2,

E[c̄(t)] = |T (t)|, ∀t ∈ {1, 2, ...}.
E[c(t)[u]] = |T (t)[u]|, ∀u ∈ V(t), ∀t ∈ {1, 2, ...}.

Proof. Consider a triangle {u, v, w} ∈ T (t) and assume without loss of generality that tvw < twu <
tuv ≤ t. By Lemma 5.1, there is exactly one worker that can count {u, v, w}. Let f(uvw) ∈ {1, ..., k}
denote the worker. Let di[uvw] be the contribution of {u, v, w} to each of c̄(t), c(t)[u], c(t)[v], and c(t)[w]

by each i-th worker. Then, di[uvw] = 0 if i 6= f(uvw). If we let E (tuv)
f(uvw) be the set of edges stored

in the f(uvw)-th worker when {u, v} arrives, then by lines 10-12 of Algorithm 5.1 and lines 12-13 of
Algorithm 5.2,

df(uvw)[uvw] =

{
1/(pf(uvw)[uvw]) if {v, w}, {w, u} ∈ E (tuv)

f(uvw)

0 otherwise.

48

By definition, pf(uvw)[uvw] is the probability that both {v, w} and {w, u} are in E (tuv)
f(uvw). Therefore,

E[df(uvw)[uvw]] = 1. By linearity of expectation, the following equations hold:

E[c̄(t)] = E
[k∑
i=1

∑
{u,v,w}∈T (t)

di[uvw]

]
=

k∑
i=1

∑
{u,v,w}∈T (t)

E[di[uvw]]

=
∑

{u,v,w}∈T (t)

E[df(uvw)[uvw]] =
∑

{u,v,w}∈T (t)

1 = |T (t)|, ∀t ∈ {1, 2, ...}.

E[c(t)[u]] = E
[k∑
i=1

∑
{u,v,w}∈T (t)[u]

di[uvw]

]
=

k∑
i=1

∑
{u,v,w}∈T (t)[u]

E[di[uvw]]

=
∑

{u,v,w}∈T (t)[u]

E[df(uvw)[uvw]] =
∑

{u,v,w}∈T (t)[u]

1 = |T (t)[u]|, ∀t ∈ {1, 2, ...},∀u ∈ V(t).

Hence, the estimates given by Algorithm 5.2 are unbiased. �

5.4.1.2 Variance Analysis

Having shown that the estimate c̄(t) is an unbiased estimate of the global triangle count |T (t)|, we
analyze its variance in TRI-FLY and COCOS to give an intuition why the variance is smaller in COCOS
than in TRI-FLY. The variance of each c(t)[u] can be analyzed in the same manner considering only the
local triangles with node u. We first define the two types of triangle pairs illustrated in Figure 5.3.

Definition 5.1: Type 1 Triangle Pair

A Type 1 triangle pair is two different triangles {u, v, w} and {u, v, x} sharing an edge {u, v}
satisfying twu = max(tuv, tvw, twu) and txu = max(tuv, tvx, txu).

Definition 5.2: Type 2 Triangle Pair

A Type 2 triangle pair is two different triangles {u, v, w} and {u, v, x} sharing an edge {u, v}
satisfying tvw = max(tuv, tvw, twu) and txu = max(tuv, tvx, txu).

Let p(t) and q(t) be the numbers of Type 1 pairs and Type 2 pairs, respectively, in G(t), which is the
graph composed of the edges arriving at time t or earlier. Then, we define z(t) as

z(t) := max

(
0, |T (t)|

(
(t− 1)(t− 2)

b(b− 1)
− 1

)
+
(
p(t) + q(t)

) t− 1− b
b

)
,

Our analysis in this section is largely based on Lemma 5.2, where z(t) upper bounds the variance of the
estimate c̄(t) in TRIESTIMPR, which is equivalent to TRI-FLY and COCOS with a single worker. Notice
that z(t) decreases as the storage budget (i.e., b) increases, while z(t) increases as the numbers of edges
(i.e., t), triangles (i.e., |T (t)|), and Type 1 or 2 triangle pairs (i.e., p(t) and q(t)) increase.

49

	𝑢

	𝑣

	𝑥	𝑤

	𝑢

	𝑣

	𝑥	𝑤
: last edge to

arrive in each triangle

Type 1 pair: Type 2 pair:

Figure 5.3: Illustrations of Type 1 and Type 2 triangle pairs.

Lemma 5.2: Variance of TRIESTIMPR [SERU17]

Assume that a single worker is used (i.e., k = 1) in Algorithm 5.1 or Algorithm 5.2. At any time
t, the variance of the estimate c̄(t) of the global triangle count |T (t)| is upper bounded by z(t). That
is,

V ar[c̄(t)] ≤ z(t), ∀t ∈ {1, 2, ...}.

The upper bound of the variance of the estimate c̄(t) in TRI-FLY decreases inversely proportional to
the number of workers, as formalized in Theorem 5.3. This follows from the fact that c̄(t) in TRI-FLY

is the simple average of k estimates obtained by running TRIESTIMPR independently in k workers.

Theorem 5.3: Variance of TRI-FLY

In Algorithm 5.1, the upper bound of the variance of the estimate c̄(t), given in Lemma 5.2, de-
creases inversely proportional to the number of workers k. That is,

V ar[c̄(t)] ≤ z(t)/k, ∀t ∈ {1, 2, ...}. (5.2)

Proof. Let c̄(t)
i be the global triangle count sent from each worker i by time t. Then, by line 21 of

Algorithm 5.1, c̄(t) =
∑k

i=1 c̄
(t)
i /k. Since c̄(t)

i of each worker i ∈ {1, ..., k} is independent from that of
the other workers,

V ar[c̄(t)] =
∑k

i=1
V ar[c̄

(t)
i /k] =

∑k

i=1
V ar[c̄

(t)
i]/k2 ≤ k · z(t)/k2 = z(t)/k,

where the inequality follows from Theorem 4.13 in [SERU17], which states that V ar[c̄(t)
i] ≤ z(t) for

each worker i ∈ {1, ..., k}. �

The variance of the estimate c̄(t) in COCOS depends on how the triangles in T (t) are distributed
across workers. By Lemma 5.1, there is exactly one worker that can count each triangle. Thus, for each
i ∈ {1, ..., k}, let T (t)

i ⊂ T (t) be the set of triangles that can be counted by the i-th worker. Likewise,
let p(t)

i and q(t)
i be the numbers of Type 1 pairs and Type 2 pairs, respectively, among the triangles in

T (t)
i . Then, for each i-th worker, we define z(t)

i as

z
(t)
i := max

(
0, |T (t)

i |
((l

(t)
i − 1)(l

(t)
i − 2)

b(b− 1)
− 1
)

+
(
p

(t)
i + q

(t)
i

) l(t)i − 1− b
b

)
,

50

where l(t)i is the load li of each i-th worker when e(t) arrives. This term is used to upper bound the
variance of c̄(t) in Theorem 5.4. According to the theorem, each worker’s contribution to the variance
decreases as the storage budget b increases, while the contribution increases as more edges, triangles,
and Type 1 or 2 triangle pairs (whose discovering probabilities are positively correlated) are assigned
to the worker, which matches our intuition.

Theorem 5.4: Variance of COCOS

At any time t, the variance of the estimate c̄(t) of the global triangle count |T (t)| in Algorithm 5.2
is upper bounded by the sum of z(t)

i in each i-th worker. That is

V ar[c̄(t)] ≤
∑k

i=1
z

(t)
i , ∀t ∈ {1, 2, ...} (5.3)

Sketch of Proof. Let c̄(t)
i be the global triangle count sent from each i-th worker to the corresponding

aggregator by time t. Then, by line 12, c̄(t) =
∑k

i=1 c̄
(t)
i . Since c̄(t)

i of each i-th worker is independent
from that of the other workers,

V ar[c̄(t)] =
∑k

i=1
V ar[c̄

(t)
i]. (5.4)

Then, Theorem 4.13 in [SERU17] is generalized for each c̄(t)
i to V ar[c̄(t)

i] ≤ z
(t)
i . This generalization

and Eq. (5.4) imply Eq. (5.3). �

We compare the variance of c̄(t) in COCOS (i.e., Eq. (5.3)) to that in TRI-FLY Eq. (5.2) when a uni-
form random function is used as f . Lemma 5.3 states how rapidly each random variable in Eq. (5.3) de-
creases depending on the number of workers (i.e., k). Note that Ef [q(t)

i] decreases faster than O(q(t)/k)
since more workers result in more Type 2 triangle pairs not assigned to any worker.3

Lemma 5.3

Assume f : V → {1, ..., k} is a random function where P[f(u) = i] = 1/k for each node u ∈ V
and each i-th worker. Let p(t) and q(t) be the counts of Type 1 and Type 2 triangle pairs in G(t).
Then, the following equations hold for any time t ∈ {1, 2, ...}:

Ef [|T (t)
i |] = O

(
|T (t)|
k

)
, Ef [l(t)i] = O

(
t

k

)
,

Ef [p(t)
i] = O

(
p(t)

k

)
, Ef [q(t)

i] = O

(
q(t)

k2

)
.

Proof. See Section 5.7. �

3A Type 2 triangle pair is not assigned to any worker if the two triangles are assigned to different workers.

51

Table 5.3: Time and space complexities of processing first t edges in the input stream. S :=
min(t, bk) ≤ L := min(tk, bk).

Time Complexity
Methods Master Workers (Total) Aggregator

COCOS (both)
O(tk)*

O(tS) O(min(tS, |T (t)|))*
TRI-FLY O(tL) O(min(tL, |T (t)| · k))*

Space Complexity
Methods Master Workers (Total) Aggregator

COCOSSIMPLE O(k) O(S)
O(|V(t)|)*COCOSOPT O(|V(t)|+ k)) O(S)

TRI-FLY O(k) O(L)

*can be distributed across multiple masters or aggregators (see Section 5.3.5)

If we assume that there is not much positive correlation between random variables, then for each
z

(t)
i in Eq. (5.3),

Ef [z(t)
i] ≈ Ef [|T (t)

i |]
((Ef [l(t)i]− 1)(Ef [l(t)i]− 2)

b(b− 1)
− 1
)

+
(
Ef [p(t)

i] + Ef [q(t)
i]
)Ef [l(t)i]− 1− b

b
= O

(
|T (t)|t2

k3b2
+
p(t)t

k2b
+
q(t)t

k3b

)
.

Then, by Theorem 5.4, the expected variance of c̄(t) is

Ef [V ar[c̄(t)]] ≈ O

(
|T (t)|t2

k2b2
+
p(t)t

kb
+
q(t)t

k2b

)
, (5.5)

On the other hand, by Theorem 5.3, the variance of the estimate in TRI-FLY is

V ar[c̄(t)] = O

(
|T (t)|t2

kb2
+
p(t)t

kb
+
q(t)t

kb

)
. (5.6)

Notice how rapidly the variances in COCOS (Eq. (5.5)) and TRI-FLY (Eq. (5.6)) decrease depending
on the number of workers (i.e., k). In Eq. (5.5), only the second term is O(1/k) while the other terms
are O(1/k2). In Eq. (5.6), however, all the terms are O(1/k). This analysis gives an intuition why
we can expect smaller variance of c̄(t) in COCOS than in TRI-FLY, especially when many workers are
used. See Section 5.5.2 for empirical comparison of the variances.

5.4.2 Complexity Analysis
We discuss the time and space complexities of TRI-FLY, COCOSSIMPLE (COCOS with the simple mod-
ulo function as f) and COCOSOPT (COCOS with Algorithm 5.3 as f). We assume that sampled edges
are stored in the adjacency list format in memory, as in our implementation used for our experiments.

52

5.4.2.1 Time Complexity Analysis
The time complexities of the considered algorithms for processing t edges in the input stream are
summarized in Table 5.3. The master commonly takes O(t · k) since, in the worst case, every edge is
broadcast.

The workers in TRI-FLY take O(t · min(tk, bk)) in total, while the workers in COCOS take only
O(t ·min(t, bk)) in total, as shown in Theorems 5.5 and 5.6, which are based on Lemma 5.4.

Lemma 5.4

Let l(s)i be the load li of the i-th worker when e(s) arrives. If the i-th worker receives e(s), then
it takes O(min(l

(s)
i , b)) to process e(s) (i.e., to run lines 5-6 of Algorithm 5.1 and lines 6-8 of

Algorithm 5.2).

Proof. The most expensive step of processing e(s) = {u, v} in both Algorithms 5.1 and 5.2 is to find
the common neighbors of nodes u and v (line 9 of Algorithm 5.1). Computing Ni[u] ∩ Ni[v] requires
accessing |Ni[u]| + |Ni[v]| = O(|E (s)

i |) = O(min(l
(s)
i , b)) edges, where E (s)

i is the set of edges stored
in the i-th worker when e(s) arrives. �

Theorem 5.5: Time Complexity of Workers in TRI-FLY

In Algorithm 5.1, the total time complexity of the workers for processing the first t edges in the
input stream is O(t ·min(tk, bk)).

Proof. From Lemma 5.4, processing an edge e(s) by the workers takes O(
∑k

i=1 min(l
(s)
i , b)) in total.

Thus, processing the first t edges takes O
(∑t

s=1

∑k
i=1 min(l

(s)
i , b)

)
. Since l(s)i = s − 1 in Algo-

rithm 5.1,∑t

s=1

∑k

i=1
min(l

(s)
i , b) =

∑t

s=1

∑k

i=1
min(s−1, b) =

∑t

s=1
min((s−1)k, bk) ≤ t ·min(tk, bk).

Hence, the workers take O(t ·min(tk, bk)) in total to process the first t edges in the input stream. �

Theorem 5.6: Time Complexity of Workers in COCOS

In Algorithm 5.2, the total time complexity of the workers for processing the first t edges in the
input stream is O(t ·min(t, bk)).

Proof. From Lemma 5.4, processing an edge e(s) by the workers takes O(
∑k

i=1 min(l
(s)
i , b)) in total.

Thus, processing the first t edges takes O
(∑t

s=1

∑k
i=1 min(l

(s)
i , b)

)
. Since each edge is assigned to at

most two workers (i.e., P1 in Lemma 5.1),
∑k

i=1 l
(s)
i ≤ 2(s− 1) holds, and it implies∑t

s=1

∑k

i=1
min(l

(s)
i , b) ≤

∑t

s=1
min(

∑k

i=1
l
(s)
i ,
∑k

i=1
b)) ≤

∑t

s=1
min(2(s−1), bk)) ≤ t·min(2t, bk).

53

Hence, the workers take O(t ·min(t, bk)) in total to process the first t edges in the input stream. �

The aggregator takes O(|T (t)| · k) in TRI-FLY since, in the worst case, each triangle is counted
by every worker and thus the increases in counts by each triangle are sent to the aggregator k times.
In COCOSSIMPLE and COCOSOPT, however, the aggregator takes O(min(|T (t)|, t · min(t, bk))). Since
the aggregator takes O(1) for each update that it receives, its time complexity is proportional to the
number of triangles counted by the workers. The number of counted triangles is O(t · min(t, bk))
by Theorem 5.6, and it is O(|T (t)|) since each triangle is counted by at most one worker (i.e., P2
in Lemma 5.1). However, the computational cost of the aggregator can be easily distributed across
multiple aggregators, as discussed in Section 5.3.5.

Notice that, with a fixed storage budget b, the time complexities of COCOSSIMPLE and COCOSOPT

are linear in the number of edges in the input stream, as also shown empirically in Section 5.5.4.

5.4.2.2 Space Complexity Analysis
The space complexities of the considered algorithms for processing t edges in the input stream are
summarized in Table 5.3. In TRI-FLY and COCOSSIMPLE, the master requires O(k) space to maintain
the addresses of all the workers. In COCOSOPT, the master requires additional O(k + |V(t)|) space to
store the loads of the workers and the mapping between the nodes and the workers (i.e., function f)
while processing the first t edges in the input stream.

In all the algorithms, the workers require O(
∑k

i=1 min(l
(t+1)
i , b)) space in total, to store sampled

edges, where l(t)i is the load li of the i-th worker when e(t) arrives. In TRI-FLY, since l(t+1)
i = t, the

space complexity of the workers isO(min(tk, bk)) in total. In COCOSSIMPLE ad COCOSOPT, since each
edge is stored in at most two workers (i.e., P1 in Lemma 5.1),

∑k
i=1 l

(t+1)
i ≤ 2t holds, and it implies∑k

i=1
min(l

(t+1)
i , b) ≤ min(

∑k

i=1
l
(t+1)
i ,

∑k

i=1
b) ≤ min(2t, bk).

Hence, the total space complexity of the workers is O(min(t, bk)).
In all the algorithms, the aggregator maintains one estimate of the global triangle count andO(|V(t)|)

estimates of the local triangle counts. However, this requirement can be easily distributed across mul-
tiple aggregators, as discussed in Section 5.3.5.

5.5 Experiments
We review our experiments for answering the following questions:
• Q1. Illustration of Theorems: Does COCOS give unbiased estimates? How do their variances

scale with the number of workers?
• Q2. Speed and Accuracy: Is COCOS faster and more accurate than baselines?
• Q3. Scalability: Does COCOS scale linearly with the number of edges in the input stream?
• Q4. Effects of Parameters: How do the number of workers, storage budget, and parameter θ affect

the accuracy of COCOS?

5.5.1 Experimental Settings

Machines: All experiments were conducted on a cluster of 40 machines with 3.47GHz Intel Xeon
X5690 CPUs and 32GB RAM.

54

Table 5.4: Summary of the graph streams used in our experiments. B: billion, M: million, K:
thousand.

Name # Nodes # Edges Summary

Arxiv [GGK03] 34.5K 421K Citation network
Facebook [VMCG09] 63.7K 817K Friendship network
Google [LLDM09] 875K 4.32M Web graph
BerkStan [LLDM09] 685K 6.65M Web graph
Youtube [MMG+07] 3.22M 9.38M Friendship network
Flickr [MMG+07] 2.30M 22.8M Friendship network
LiveJournal [MMG+07] 4.00M 34.7M Friendship network
Friendster [YL15] 65.6M 1.81B Friendship network

Random (800GB) 1M 0.1B-100B Synthetic graph

Datasets: We used the graphs listed in Table 5.4. We ignored all self loops, parallel edges, and direc-
tions of edges. We simulated graph streams by streaming the edges of the corresponding graph in a
random order from the disk of the machine hosting the master.

Implementations: We implemented the following algorithms, which are the state-of-the-art algorithms
for estimating both global and local triangle counts, commonly in C++ and MPICH 3.1:
• COCOSSIMPLE (Section 5.3.3): proposed distributed streaming algorithms using the modulo func-

tion as the node mapping function f .
• COCOSOPT (Section 5.3.3.3): proposed distributed streaming algorithms using Algorithm 5.3 as

the node mapping function f .
• TRI-FLY (Section 5.3.2): baseline distributed streaming algorithm.
• MASCOT [LJK18] and TRIESTIMPR [SERU17]: state-of-the-art single-machine streaming algo-

rithms.
For the distributed algorithms, we used one master and one aggregator hosted by the same machine.
Workers were hosted by different machines (unless their number was greater than that of machines).
They used a part of the main memory of hosting machines as their local storage. In every algo-
rithm, sampled edges were stored in the adjacency list format, and lazy aggregation, explained in
Section 5.3.4, was used so that all estimates were aggregated once at the end of the input stream. We
fixed θ in COCOSOPT to 0.2, which gave the best accuracy (see Section 5.5.5).

Evaluation Metrics: We measured the accuracy of the considered algorithms using global error, local
error, RMSE, and rank correlation, all of which are defined in Section 3.3.2.

5.5.2 Q1. Illustration of Our Theorems

COCOS gave unbiased estimates with small variances. Figure 5.1(c) in Section 5.1 illustrates The-
orems 5.1 and 5.2, the unbiasedness of TRI-FLY and COCOS. We obtained 10, 000 estimates of the
global triangle count in the Google dataset using each distributed algorithm. We used 30 workers,
and set b so that each worker stored up to 5% of the edges. As expected from Theorems 5.1 and 5.2,
TRI-FLY, COCOSOPT, and COCOSSIMPLE gave estimates whose averages were close to the true triangle

55

CoCoSOPT CoCoSSIMPLE Tri-Fly TriestIMPR MASCOT

●

●

●

●

●

●

●

107

108

109

1010

1011

100 101 102

Number of Workers

Va
ria

nc
e

23X

(a) Arxiv Dataset

●

●

●

●

●

●

●

108

109

1010

1011

1012

100 101 102

Number of Workers

Va
ria

nc
e

22X

(b) Facebook Dataset

●

●

●

●

●

●

●

1010

1011

1012

1013

1014

100 101 102

Number of Workers

Va
ria

nc
e

40X

(c) Google Dataset

Figure 5.4: The variance of estimates drops faster in COCOSOPT and COCOSSIMPLE than in
TRI-FLY, as we use more workers.

1.7X

1.4X

0

10

20

CoCoS
(Opt)

CoCoS
(Simple)

Tri−Fly

E
la

ps
ed

 T
im

e
(s

ec
)

(a) Youtube Dataset

1.5X

1.4X

0

25

50

75

100

CoCoS
(Opt)

CoCoS
(Simple)

Tri−Fly

E
la

ps
ed

 T
im

e
(s

ec
)

(b) LiveJournal Dataset

Compute
(worker)
Compute
(master &
aggregator)
Communicate

Figure 5.5: COCOSOPT reduces both computation and communication overhead, compared to
COCOSSIMPLE and TRI-FLY. COCOSOPT is also more accurate than the others, as seen in Figure 5.6.

count. The variance was the smallest in COCOSOPT, and the variance in COCOSSIMPLE was smaller
than that in TRI-FLY.

The variance in COCOS dropped fast with the number of workers. Figure 5.4 illustrates Theorems
5.3 and 5.4, the variances of the estimates of the global triangle count in TRI-FLY and COCOS. As
we scaled up the number of workers, the variance decreased faster in COCOSOPT and COCOSSIMPLE

(≈ k−1.7) than in TRI-FLY (≈ k−1), as expected in Eq. (5.5) and Eq. (5.6) in Section 5.4.1.2. In each
setting, b was set to 1, 000, and the variance was estimated from 1, 000 trials.

5.5.3 Q2. Speed and Accuracy

We measured the speed and accuracy of the considered algorithms with different storage budgets.4 We
used 30 workers for each distributed streaming algorithm. To compare their speeds independently of the
speed of the input stream, we measured the time taken by each algorithm to process edges, ignoring the
time taken to wait for the arrival of edges in the input stream. In Figure 5.6, we report the evaluation
metrics and elapsed times averaged over 10 trials in the Friendster dataset and over 100 trials in the
other large datasets.

4b = 5% of the number of edges in each dataset in COCOSSIMPLE and COCOSOPT. b = {2%,5%, 20%} in TRI-
FLY. b = {5%, 40%} in TRIESTIMPR and MASCOT. See Section 5.5.5 for the effects of b values on the accuracies of the
algorithms.

56

CoCoSOPT (proposed) CoCoSSIMPLE (proposed) Tri-Fly TriestIMPR MASCOT

Global Error (the lower the better):

6.3X

30X

10-4

10-3

10-2

104 105

Elapsed Time (millisec)

G
lo

ba
l E

rr
or

(a) Youtube

5X

10X

10-4

10-3

10-2

104 105

Elapsed Time (millisec)

G
lo

ba
l E

rr
or

(b) BerkStan

10.4X

11X

10-4

10-3

105 106

Elapsed Time (millisec)

G
lo

ba
l E

rr
or

(c) Flickr

5.3X

11X

10-4

10-3

10-2

105 106

Elapsed Time (millisec)

G
lo

ba
l E

rr
or

(d) LiveJournal

8.8X

15X

10-5

10-4

10-3

107 108

Elapsed Time (millisec)

G
lo

ba
l E

rr
or

(e) Friendster

Local Error (the lower the better):

6.3X

39X

10-2

10-1

104 105

Elapsed Time (millisec)

Lo
ca

l E
rr

or

(f) Youtube

5X

15X

10-1

100

104 105

Elapsed Time (millisec)

Lo
ca

l E
rr

or

(g) BerkStan

10.4X
12X

10-2

10-1

100

105 106

Elapsed Time (millisec)

Lo
ca

l E
rr

or

(h) Flickr

5.3X

14X

10-2

10-1

100

105 106

Elapsed Time (millisec)

Lo
ca

l E
rr

or
(i) LiveJournal

8.8X

12X

10-1

100

107 108

Elapsed Time (millisec)

Lo
ca

l E
rr

or

(j) Friendster

RMSE (the lower the better):

6.3X

31X

100

101

102

104 105

Elapsed Time (millisec)

R
M

S
E

(k) Youtube

5X

11X

101

102

103

104 105

Elapsed Time (millisec)

R
M

S
E

(l) BerkStan

10.4X

10X

102

103

105 106

Elapsed Time (millisec)

R
M

S
E

(m) Flickr

5.3X

12X

101

102

103

105 106

Elapsed Time (millisec)

R
M

S
E

(n) LiveJournal

8.8X

11X

101

102

103

107 108

Elapsed Time (millisec)
R

M
S

E

(o) Friendster

Rank Correlation (the higher the better):

6.3X
2.2X

0.25

0.50

0.75

1.00

104 105

Elapsed Time (millisec)

R
an

k
C

or
re

la
tio

n

(p) Youtube

5X1.2X

0.4

0.6

0.8

1.0

1.2

104 105

Elapsed Time (millisec)

R
an

k
C

or
re

la
tio

n

(q) BerkStan

10.4X

1.6X

0.50

0.75

1.00

105 106

Elapsed Time (millisec)

R
an

k
C

or
re

la
tio

n

(r) Flickr

5.3X1.3X

0.50

0.75

1.00

105 106

Elapsed Time (millisec)

R
an

k
C

or
re

la
tio

n

(s) LiveJournal

8.8X1.2X

0.6

0.8

1.0

1.2

107 108

Elapsed Time (millisec)

R
an

k
C

or
re

la
tio

n

(t) Friendster

Figure 5.6: COCOS is fast and accurate. COCOSOPT (with θ fixed to 0.2) is up to 39×more accurate
than the baselines with similar speeds, and it is up to 10.4× faster than the baselines while offering
higher accuracy. Error bars show sample standard errors.

57

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

104

105

109 1010 1011

Number of Edges

El
ap

se
d

Ti
m

e
(s

ec
)

CoCoSOPT

CoCoSSIMPLE

Linear (slope=1)

(a) Random Dataset

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1000

2000

3000

0.5B 1B 1.5B
Number of Edges

El
ap

se
d

Ti
m

e
(s

ec
)

Linear (slope=1)

CoCoSOPT

CoCoSSIMPLE

(b) Friendster Dataset

Figure 5.7: COCOSOPT and COCOSSIMPLE scale to terabyate-scale streams linearly with the size
of the input stream.

COCOS gave the best trade-off between speed and accuracy. Specifically, COCOS was up to 10 .4×
faster than the baselines while giving more accurate estimates. Moreover, COCOS was up to 30× and
39× more accurate than the baselines with similar speeds in terms of global error and local error,
respectively. Between the proposed algorithms, COCOSOPT was up to 1.4× faster and 4.9× more
accurate than COCOSSIMPLE.

COCOSOPT reduced computation and communication overhead. Figure 5.5 shows elapsed times
for (a) computation in the master and aggregator, (b) computation in the slowest worker, and (c) com-
munication between machines in COCOSOPT, COCOSSIMPLE, and TRI-FLY. The storage budget b was
set to 5% of the number of edges in each dataset. COCOSOPT reduced computation and communication
costs, compared to COCOSSIMPLE and TRI-FLY, as we expect in Section 5.3.3.3. Recall that COCOSOPT

was also more accurate than COCOSSIMPLE and TRI-FLY.

5.5.4 Q3. Scalability
We measured how the running times of COCOSOPT and COCOSSIMPLE scale with the number of edges
in the input stream. We used 30 workers with b fixed to 107, and we measured their running times
independently of the speed of the input stream, as in Section 5.5.3.

COCOS scaled linearly and handled terabyte-scale graphs. Figure 5.7(a) shows the results in Erdős-
Rényi random graph streams with 1 million nodes and different numbers of edges, and Figure 5.7(b)
shows the results in graph streams with realistic structures created by sampling different numbers of
edges from the Friendster dataset. Note that the largest stream has 100 billion edges, which are 800GB.
COCOSOPT and COCOSSIMPLE scaled linearly with the size of the input stream, as we expect in Sec-
tion 5.4.2.1.

5.5.5 Q4. Effects of Parameters on Accuracy
We explored the effects of the parameters on the accuracies of the considered algorithms. As a default
setting, we used 30 workers for the distributed streaming algorithms and set b to 2% of the number
of edges for each dataset and θ to 0.2. When the effect of a parameter was analyzed, the others were
fixed to their default values. We reported results with global error as the evaluation metric but obtained
consistent results with the other metrics. We measured it 1, 000 times in each setting and reported the
average. In Figures 5.8-5.10, the error bars denote sample standard errors.

58

CoCoSOPT CoCoSSIMPLE Tri-Fly TriestIMPR MASCOT

●
●

●
●

●
●

●

●

●

10−2

10−3

10−4

10−5

10−6

100 101 102 103

Number of Workers

G
lo

ba
l E

rro
r

better

(a) Arxiv Dataset

●
●

●
●

●
●

●

●

●●

10−2

10−3

10−4

10−5

10−6

10−7

100 101 102 103

Number of Workers

G
lo

ba
l E

rro
r

better

(b) Facebook Dataset

●
●

●
●

●
●

●

●●

10−2

10−3

10−4

10−5

10−6

100 101 102 103

Number of Workers

G
lo

ba
l E

rro
r

better

(c) Google Dataset

Figure 5.8: Estimation error decreases faster in COCOS than in TRI-FLY, as we use more workers.

CoCoSOPT CoCoSSIMPLE Tri-Fly TriestIMPR MASCOT

●●●●●
●

●

●

●

14X
10−4

10−2

100 101 102

% of Edges Per Worker

G
lo

ba
l E

rro
r

(a) Arxiv Dataset

●●●●●
●

●

●●

15X

10−4

10−2

100 101 102

% of Edges Per Worker

G
lo

ba
l E

rro
r

(b) Facebook Dataset

●●●●●
●

●

●●

15X
10−5

10−3

100 101 102

% of Edges Per Worker

G
lo

ba
l E

rro
r

(c) Google Dataset

Figure 5.9: Estimation error decreases faster in COCOS than in the baselines, as we increase
storage budget b. For exact estimation, COCOS requires 14× smaller b than the others.

As the workers were added, the estimation error dropped faster in COCOS than in the baselines.
As seen in Figure 5.8, the estimation errors of COCOSOPT and COCOSSIMPLE became zero with about
100 workers. However, that of TRI-FLY dropped slowly with expectation that it never becomes zero
with a finite number of workers (see Theorem 5.3).

As storage budget increased, the estimation error dropped faster in COCOS than in the baselines.
As seen in Figure 5.9, the estimation errors of COCOSOPT and COCOSSIMPLE became 0 when each
worker could store about 7% of the edges in each dataset. However, the estimation errors of the base-
lines became zero only when each worker could store all the edges in each dataset.

COCOSOPT was most accurate when θ was around 0.2, as seen in Figure 5.10. The estimation error,
however, was not very sensitive to the value of θ as long as θ was at least 0.2.

5.6 Summary
We propose COCOS, a fast and accurate distributed streaming algorithm for the counts of global and
local triangles. By minimizing the redundant use of distributed computational and storage resources
(P1-P3 in Lemma 5.1), COCOS offers the following advantages:
• Accurate: COCOS is up to 39× more accurate than its similarly fast competitors (Figure 5.6). It

gives exact estimates within 14× smaller storage budgets than its competitors (Figure 5.9).

59

●

●

● ● ●

●2.5E−3

2.6E−3

2.7E−3

0.0 0.5 1.0 1.5 2.0
Values of θ

G
lo

ba
l E

rro
r

(a) Arxiv Dataset

●

●

●
● ● ●1.8E−3

1.9E−3

2.0E−3

0.0 0.5 1.0 1.5 2.0
Values of θ

G
lo

ba
l E

rro
r

(b) Facebook Dataset

●

●

●

● ● ●

9.0E−4

1.0E−3

1.1E−3

0.0 0.5 1.0 1.5 2.0
Values of θ

G
lo

ba
l E

rro
r

(c) Google Dataset

Figure 5.10: Estimation error in COCOSOPT is smallest when θ is around 0.2, while the error is not
very sensitive to θ.

• Fast: COCOS is up to 10 .4× faster than its competitors while giving more accurate estimates
(Figure 5.6). COCOS scales linearly with the size of the input stream (Figure 5.7).

• Theoretically Sound: COCOS gives unbiased estimates (Theorem 5.2). Their variances drop faster
than its competitors’ as the number of machines is scaled up (Theorem 5.4 and Figure 5.4).

Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/trifly/.

5.7 Appendix: Proof of Lemma 5.3

Proof. For each triangle {u, v, w} ∈ T (t) with tvw < twu < tuv ≤ t, let f(uvw) ∈ {1, ..., k} be the
worker that can possibly count {u, v, w}. That is, f(uvw) = f(w) if f(u) 6= f(v), and f(uvw) =
f(u) = f(v) otherwise.

For the first claim, note that for each triangle {u, v, w}, each worker has the equal probability to be
f(uvw). Therefore,

E[|T (t)
i |] =

|T (t)|
k

= O(
|T (t)|
k

).

For the second claim, for each edge {u, v}, the probability that it is assigned to each i-th worker is
equal to the probability that f(u) = i or f(v) = i, which is 1−

(
1− 1

k

)2
= 2k−1

k2
. Therefore,

E[l
(t)
i] =

(2k − 1)t

k2
= O

(
t

k

)
.

For the third claim, consider a Type 1 triangle pair {u, v, w} and {u, v, x}. By considering f :
V → {1, ..., k} as a coloring of nodes V with k colors, Figure 5.11(a) represents all the nine ways
where f(uvw) = f(uvx). Note that f(uvw) = f(uvx) is colored red in all of them. Fix a worker
i ∈ {1, ..., k}. Then,

P [f(uvw) = f(uvx) = i] =
1

k4
+

6

k3
(1− 1

k
) +

2

k2
(1− 1

k
)(1− 2

k
)

+
1

k
(1− 1

k
)(1− 2

k
)(1− 3

k
),

60

http://www.cs.cmu.edu/~kijungs/codes/trifly/
http://www.cs.cmu.edu/~kijungs/codes/trifly/

	 𝒖

	 𝒗

	 𝒙	 𝒘

(a) Type 1 Pair

	 𝒖

	 𝒗

	 𝒙	 𝒘

(b) Type 2 Pair

Figure 5.11: Coloring of (a) Type 1 and (b) Type 2 triangle pairs where f(uvw) = f(uvx). Nodes
assigned to worker f(uvw) (= f(uvx)) by f are colored red. Nodes with different colors are assigned
to different workers by f .

where each term from left to right in the right hand side corresponds to the 1st case, 2nd-6th cases,
7th-8th cases, and 9th case, respectively, in Figure 5.11(a). Therefore,

E[p
(t)
i] = P [f(uvw) = f(uvx) = i]p(t) =

k3 − 4k2 + 10k − 6

k4
p(t) = O

(
p(t)

k

)
.

For the fourth claim, consider a Type 2 triangle pair {u, v, w} and {u, v, x}. By considering f :
V → {1, ..., k} as a coloring of nodes V with k colors, Figure 5.11(b) represents all the nine ways
where f(uvw) = f(uvx). Note that f(uvw) = f(uvx) is colored red in all of them. Fix a worker
i ∈ {1, ..., k}. Then,

P [f(uvw) = f(uvx) = i] =
1

k4
+

1

k3
(1− 1

k
) +

1

k2
(1− 1

k
)(1− 2

k
),

where each term from left to right in the right hand side corresponds to the 1st case, 2nd-6th cases, and
7th-9th cases, respectively, in Figure 5.11(b). Therefore,

E[q
(t)
i] = P [f(uvw) = f(uvx) = i]q(t) =

3k2 − 4k + 2

k4
q(t) = O

(
q(t)

k2

)
.

�

61

62

Chapter 6

Counting Triangles in Graph Streams (3):
Handling Deletions

Chapter based on work that appeared at ECML/PKDD 2018 [SKHF18] and its extension [SKHF19].

Given a fully dynamic graph where edges are added and removed over time, how can we estimate
the count of triangles in it? If we can store only a subset of the edges, how can we obtain unbiased
estimates with small variances?

As discussed in the previous chapters, counting triangles (i.e., cliques of size three) in a graph
is a classical problem with applications in a vast range of research areas, including social network
analysis, data mining, and databases. Recently, streaming algorithms for triangle counting have
been extensively studied since they can naturally be used for large dynamic graphs. However,
existing algorithms cannot handle edge deletions or suffer from low accuracy.

Can we handle edge deletions while achieving high accuracy? In this chapter, we propose
THINKD, which accurately estimates the counts of global triangles (i.e., all triangles) and local
triangles associated with each node in a fully dynamic graph stream with edge additions and dele-
tions. Compared to its best competitors, THINKD is (a) Accurate: up to 4.3× more accurate
within the same memory budget, (b) Fast: up to 2.2× faster for the same accuracy requirements,
and (c) Theoretically sound: always maintaining unbiased estimates with small variances.

6.1 Motivation
Given a fully dynamic graph stream with edge additions and deletions, how can we accurately estimate
the count of triangles in it with fixed memory size?

There has been great interest in graph stream algorithms, which gradually update their outputs as
each edge insertion or deletion is received rather than operating on the entire graph at once. However,
as discussed in Chapter 3, existing streaming algorithms for triangle counting focus on insertion-only
streams [JSP13, PTTW13, TPT13, ADWR17, Shi17, LJK18, SHL+18] or greatly sacrifice accuracy to
support edge deletions [KP14, SERU17, HS17].

In this last chapter on triangle counting, we propose THINKD (Think before you Discard), an
accurate streaming algorithm for triangle counting in a fully dynamic graph stream with both edge
additions and deletions. THINKD maintains and updates estimates of the counts of global triangles
(i.e., all triangles) and local triangles incident to each node. THINKD is named after the fact that, upon
receiving each edge addition or deletion, THINKD uses it to improve its estimates even if the edge is

63

2512K

2514K

2516K

852900 853100
Number of

Processed Elements

N
um

be
r o

f T
ria

ng
le

s
(C

on
fid

en
ce

 In
te

rv
al

)

ThinkDACC

True count
ThinkDFAST

TriestFD

(a) ‘Any time’ for
fully-dynamic graphs

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

2.5X2−8

2−7

2−6

2−5

2−4 2−3 2−2 2−1 20

Ratio of Stored Edges

G
lo

ba
l E

rro
r

TriestFD

ThinkDACC

ThinkDFAST

ESD

(b) Accurate

●

●

●

●

●

●

●

●

●

●

●

●

102

103

104

105

108 109 1010 1011

Number of Elements

El
ap

se
d

Ti
m

e
(s

ec
) ThinkDACC

ThinkDFAST

Linear (slope=1)

(c) Scalable (Theorem 6.4)

1e−05

2e−05

3e−05

1.7M 1.8M 1.9M
Estimated Count

Pr
ob

ab
ilit

y
D

en
si

ty

TriestFD

ThinkD
(ACC)

ThinkD
(FAST)

True triangle count

(d) Unbiased with small
variance (Theorem 6.1)

Figure 6.1: Strengths of THINKD. (a) ‘Any time’: THINKD always maintains the estimates of the
global and local triangle counts while the input fully-dynamic graph evolves with edges insertions and
deletions. (b) Accurate: THINKD is significantly more accurate than its best competitors. (c) Scalable:
THINKD scales linearly with the number of elements in the input stream (Theorem 6.4). (d) Unbiased:
THINKD gives unbiased estimates (Theorem 6.1). See Section 6.5 for details.

about to be discarded without being stored. This allows THINKD to achieve higher accuracy than if it
were to only use edges in memory for estimation. As a result, THINKD has the following strengths:
• Accurate: THINKD gives up to 4× and 4 .3× smaller estimation errors for global and local triangle

counts, respectively, than its best competitors within the same memory budget (Figure 6.1(b)).
• Fast: THINKD scales linearly with the size of the input stream (Figure 6.1(c), Corollary 6.1, and

Theorem 6.4). THINKD is also up to 2 .2× faster than its best competitors with similar accuracies.
• Theoretically Sound: We prove the formulas for the bias and variance of the estimates given by

THINKD (Theorems 6.1 and 6.2). In particular, we show that THINKD always maintains unbiased
estimates with small variances (Figures 6.1(a) and 6.1(d)).
Reproducibility: The source code and datasets used in this chapter are available at http://

www.cs.cmu.edu/˜kijungs/thinkd/.
The rest of this chapter is organized as follows. In Section 6.2, we introduce some preliminary

concepts, notations, and a formal problem definition. In Section 6.3, we present THINKD, our proposed
algorithm for triangle counting. In Section 6.4, we theoretically analyze the accuracy and complexity
of THINKD. After sharing some experimental results in Section 6.5, we provide a summary of this
chapter in Section 6.6.

6.2 Preliminaries and Problem Definition
In this section, we first introduce some notations and concepts used throughout this chapter. Then, we
define the problem of global and local triangle counting in a fully dynamic graph stream.

6.2.1 Notations and Concepts
Table 6.1 lists the symbols frequently used in the chapter. Consider an undirected graph G = (V , E)
with nodes V and edges E . Each edge {u, v} ∈ E connects two distinct nodes u 6= v ∈ V . We say a
subset {u, v, w} ⊂ V of size 3 is a triangle if every pair of distinct nodes u, v, and w is connected by

64

http://www.cs.cmu.edu/~kijungs/thinkd/
http://www.cs.cmu.edu/~kijungs/thinkd/

Table 6.1: Table of frequently-used symbols.

Symbol Definition

Notations for Fully Dynamic Graph Streams (Section 6.2)

e(t) = ({u, v}, δ) change in the input graph G at time t
G(t) = (V(t), E (t)) graph G at time t

{u, v} edge between nodes u and v
{u, v, w} triangle with nodes u, v, and w

T (t) set of global triangles in G(t)

T (t)[u] set of local triangles of node u in G(t)

Notations for Algorithms (Sections 6.3)

S set of sampled edges
N̂u set of neighbors of node u in S
c̄ estimate of the count of global triangles

c[u] estimate of the count of local triangles of node u
r sampling probability in THINKDFAST

b maximum number of sampled edges in THINKDACC

Notations for Analysis (Sections 6.4)

A(t) set of added triangles at time t
D(t) set of deleted triangles at time t

an edge in E . We denote the set of global triangles (i.e., all triangles) in G by T and the set of local
triangles of each node u ∈ V (i.e., all triangles containing u) by T [u] ⊂ T .

Assume the graph G evolves from the empty graph. We consider the fully dynamic graph stream
representing the sequence of changes in G, and denote the stream by (e(1), e(2), ...). For each t ∈
{1, 2, ...}, the pair e(t) = ({u, v}, δ) of an edge {u, v} and a sign δ ∈ {+,−} denotes the change in
G at time t. Specifically, ({u, v},+) indicates the addition of a new edge {u, v} /∈ E , and ({u, v},−)
indicates the deletion of an existing edge {u, v} ∈ E . We use G(t) = (V(t), E (t)) to indicate G at time t.
That is,

E (0) = ∅ and E (t) =

{
E (t−1) ∪ {{u, v}}, if e(t) = ({u, v},+),

E (t−1) \ {{u, v}}, if e(t) = ({u, v},−).

Lastly, we let T (t) denote the set of global triangles in G(t) and T (t)[u] ⊂ T (t) denote the set of local
triangles of each node u ∈ V(t) in G(t).

6.2.2 Problem Definition
In this chapter, we address the problem of estimating the counts of global and local triangles in a fully
dynamic graph stream. We assume the standard data stream model where the elements in the input
stream, which may not fit in memory, can be accessed once in the given order unless they are explicitly
stored in memory.

65

Problem 6.1: Global and Local Triangle Counting in a Fully Dynamic Graph Stream

1. Given: a fully dynamic graph stream (e(1), e(2), ...)

(i.e., sequence of edge additions and deletions in graph G)

2. Maintain: estimates of the global triangle count |T (t)| and the local triangle counts

{(u, |T (t)[u]|)}u∈V(t) for current t ∈ {1, 2, ...}
3. to Minimize: the estimation errors.

We follow a general approach of reducing the biases and variances of estimates simultaneously
rather than minimizing a specific measure of estimation error.

6.3 Proposed Algorithm: THINKD
In this section, we propose THINKD (Think before you Discard), a fast and accurate algorithm for
estimating the counts of global and local triangles in a fully dynamic graph stream. We first provide an
overview and then describe two versions of THINKD with distinct advantages in detail.

6.3.1 Overview
For estimation with limited memory, THINKD samples edges and maintains those sampled edges, while
discarding the other edges. The main idea of THINKD is to fully utilize unsampled edges before they
are discarded. Specifically, whenever each element in the input stream arrives, THINKD first updates
its estimates using the element. After that, if the element is an addition of an edge, THINKD decides
whether to sample the edge or not.

In the following subsections, we present two versions of THINKD: THINKDFAST and THINKDACC.
To this end, we use c̄ to denote the maintained estimate of the count of global triangles. Likewise, for
each node u, we use c[u] to denote the maintained estimate of the count of local triangles of node u. In
addition, we let S be the set of currently sampled edges, and for each node u, we let N̂u be the set of
neighbors of u in the graph composed of the edges in S .

6.3.2 Simple and Fast Version: THINKDFAST

THINKDFAST, which is a simple and fast version of THINKD, is described in Algorithm 6.1. THINKDFAST

initially has no sampled edges (line 1). Whenever each element ({u, v}, δ) of the input stream arrives
(line 2), THINKDFAST first updates its estimates by calling the procedure UPDATE (line 3). Then, if the
element is an addition (i.e., δ = +), THINKDFAST samples the edge {u, v} with a given sampling prob-
ability r (line 11) by calling the procedure INSERT (line 4). If the element is a deletion (i.e., δ = −),
THINKDFAST removes the edge {u, v} from the existing samples (line 13) by calling the procedure
DELETE (line 5).

In the procedure UPDATE, THINKDFAST finds the triangles connected by the arrived edge {u, v}
and two edges from the existing samples S (line 7). To this end, THINKD uses the fact that each
common neighbor w of the nodes u and v in the graph composed of the sampled edges in S indicates
the existence of such a triangle {u, v, w}. In the case of additions (i.e., δ = +), since such triangles are
new triangles added to the input stream, THINKDFAST increases the estimates of the global count and
the corresponding local counts (line 8). In the case of deletions (i.e., δ = −), since such triangles are

66

Algorithm 6.1 THINKDFAST: Simple and Fast Version of THINKD

Input: (1) fully dynamic graph stream: (e(1), e(2), ...),
(2) sampling probability: r

Output: (1) estimated global triangle count: c̄,
(2) estimated local triangle counts: c[u] for each node u

1: S ← ∅
2: for each element e(t) = ({u, v}, δ) in the input stream do
3: UPDATE({u, v}, δ)
4: if δ = + then INSERT({u, v})
5: else if δ = − then DELETE({u, v})
6: procedure UPDATE({u, v}, δ)
7: for each common neighbor w ∈ N̂u ∩ N̂v do
8: if δ = + then increase c̄, c[u], c[v], and c[w] by 1/r2

9: else if δ = − then decrease c̄, c[u], c[v], and c[w] by 1/r2

10: procedure INSERT({u, v})
11: if a random number in Bernoulli(r) is 1 then S ← S ∪ {{u, v}}
12: procedure DELETE({u, v})
13: if {u, v} ∈ S then S ← S \ {{u, v}}

those removed from the input stream, THINKDFAST decreases the estimates of the global count and the
corresponding local counts (line 9). Notice that the amount of change per triangle is 1/r2, which is the
reciprocal of the probability that each added or deleted triangle is discovered by THINKDFAST. Note that
each such triangle {u, v, w} is discovered if and only if {v, w} and {w, u} are in S, whose probability
is r2, as formalized in Lemma 6.1. This makes the expected amount of changes in the corresponding
estimates for each such triangle be exactly one and thus makes THINKDFAST give unbiased estimates,
as explained in detail in Section 6.4.1.

Lemma 6.1: Discovery Probability of Triangles in THINKDFAST

In THINKDFAST, any two distinct edges in graph G(t) = (V(t), E (t)) are sampled with probability
r2. That is, if we let S(t) be S in Algorithm 6.1 after the t-th element e(t) is processed, then

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)] = r2, ∀t ≥ 1, ∀{u, v} 6= {w, x} ∈ E (t). (6.1)

Proof. Eq. (6.1) holds since each edge is sampled independently with probability r. See Section 6.7.1
for a formal proof. �

Advantages and disadvantages of THINKDFAST : Due to its simplicity, THINKDFAST is faster than
its competitors, as shown empirically in Section 6.5.4. However, it is less accurate than THINKDACC,
described in the following subsection, since it may discard edges even when memory is not full, leading
to avoidable loss of information.

67

Algorithm 6.2 THINKDACC: Accurate Version of THINKD

Input: (1) fully dynamic graph stream: (e(1), e(2), ...),
(2) memory budget: b (≥ 2)

Output: (1) estimated global triangle count: c̄,
(2) estimated local triangle counts: c[u] for each node u

1: S ← ∅
2: |E| ← 0, nb ← 0, ng ← 0
3: for each element e(t) = ({u, v}, δ) in the input stream do
4: UPDATE({u, v}, δ)
5: if δ = + then INSERT({u, v})
6: else if δ = − then DELETE({u, v})
7: procedure UPDATE({u, v}, δ)
8: for each common neighbor w ∈ N̂u ∩ N̂v do
9: if δ = + then increase c̄, c[u], c[v], and c[w] by 1/p(|E|, nb, ng)

10: else if δ = − then decrease c̄, c[u], c[v], and c[w] by 1/p(|E|, nb, ng)
11: procedure INSERT({u,v})
12: |E| ← |E|+ 1
13: if nb + ng = 0 then
14: if |S| < b then
15: S ← S ∪ {{u, v}}
16: else if a random number in Bernoulli(b/|E|) is 1 then
17: replace an edge chosen at random uniformly in S with {u, v}
18: else if a random number in Bernoulli(nb/(nb + ng)) is 1 then
19: S ← S ∪ {{u, v}}, nb ← nb − 1

else ng ← ng − 1

20: procedure DELETE({u,v})
21: |E| ← |E| − 1
22: if {u, v} ∈ S then S ← S \ {{u, v}}, nb ← nb + 1
23: else ng ← ng + 1

6.3.3 Accurate Version: THINKDACC

THINKDACC, which is an accurate version of THINKD, is described in Algorithm 6.2. Different from
THINKDFAST, which may discard edges even when memory is not full, THINKDACC maintains as many
samples as possible within a given memory budget b (≥ 2) to minimize information loss.

To this end, THINKDACC uses a sampling method called Random Pairing (RP) [GLH08]. Given a
fully dynamic stream with deletions, and a memory budget b, RP maintains at most b samples while
satisfying the uniformity of the samples. Specifically, if we let E be the set of edges remaining (without
being deleted) in the input stream so far and S ⊂ E be the set of samples being maintained by RP, then
the following equations hold:

|S| ≤ k and Pr[S = A] = Pr[S = B], ∀A 6= B ⊂ E s.t. |A| = |B|.

Updating the set S of samples using RP is described in lines 11-23. Whenever a deletion of an
edge arrives, RP increases nb or ng depending on whether the edge is in S or not (lines 22 and 23).
Roughly speaking, nb and ng denote the number of deletions that need to be “compensated” by additions

68

(lines 18-19). If there is no deletion to compensate, RP processes each addition of an edge as in
Reservoir Sampling [Vit85]. That is, if memory is not full (i.e., |S| < b), RP adds the new edge to
S (lines 14 and 15), while otherwise, RP replaces an edge chosen at random uniformly in S with the
new edge with a certain probability (lines 16-17). We refer to [GLH08] for the intuition behind the
compensation and the details of RP; and we focus on how to use RP for triangle counting in the rest of
this section.

Updating the estimates in THINKDACC is the same as that in THINKDFAST except for the amount
of change per triangle (lines 9 and 10), which is the reciprocal of the probability that each added or
deleted triangle is discovered. When each element e(t) = ({u, v}, δ) arrives, each added or deleted
triangle {u, v, w} is discovered if and only if {v, w} and {w, u} are in S. As shown in Lemma 6.2, if
we let y = min(b, |E|+ nb + ng), then the probability of such an event is

p(|E|, nb, ng) :=
y

|E|+ nb + ng
× y − 1

|E|+ nb + ng − 1
. (6.2)

Lemma 6.2: Discovery Probability of Triangles in THINKDACC

In THINKDACC, any two distinct edges in graph G(t) = (V(t), E (t)) are sampled with probability
as in Eq. (6.2). That is, if we let p(t) and S(t) be the values of Eq. (6.2) and S, respectively, in
Algorithm 6.2 after the t-th element e(t) is processed, then

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)] = p(t), ∀t ≥ 1, ∀{u, v} 6= {w, x} ∈ E (t). (6.3)

Proof. See Section 6.7.2 for a proof. �

Advantages and disadvantages of THINKDACC: Within the same memory budget, THINKDACC is
slower than THINKDFAST since THINKDACC maintains and processes more samples on average. How-
ever, THINKDACC is more accurate than THINKDFAST by utilizing more samples. These are shown
empirically in Sections 6.5.3 and 6.5.4.

Reducing estimation errors by sacrificing unbiasedness: The estimates (i.e., c̄ and c[u] for each node
u) in Algorithms 6.1 and 6.2 can have negative values. Since true triangle counts are always non-
negative, lower bounding the estimates by zero always reduces the estimation errors. However, the
estimates become biased, and Theorem 6.1 in the following section does not hold anymore.

6.4 Theoretical Analysis
We theoretically analyze the accuracy, time complexity, and space complexity of THINKDFAST and
THINKDACC.

6.4.1 Accuracy Analysis
We prove that THINKDFAST and THINKDACC maintain unbiased estimates with the expected values
equal to the true global and local triangle counts. Then, we analyze the variances of the estimates

69

that THINKDFAST maintains. To this end, for each variable (e.g., c̄) in Algorithms 6.1 and 6.2, we use
superscript (t) (e.g., c̄(t)) to denote the value of the variable after the t-th element e(t) is processed.

We first define added triangles and deleted triangles in Definitions 6.1 and 6.2. Note that triangles
composed of the same nodes can be added multiple times (and thus can be removed multiple times)
only if deleted edges are added again.

Definition 6.1: Added Triangles

Let A(t) be the set of triangles that have been added to graph G at time t or earlier. Formally,

A(t) := {({u, v, w}, s) : 1 ≤ s ≤ t and {u, v, w} /∈ T (s−1) and {u, v, w} ∈ T (s)},

where addition time s is for distinguishing triangles composed of the same nodes but added at
different times.

Definition 6.2: Deleted Triangles

Let D(t) be the set of triangles that have been removed from graph G at time t or earlier. Formally,

D(t) := {({u, v, w}, s) : 1 ≤ s ≤ t and {u, v, w} ∈ T (s−1) and {u, v, w} /∈ T (s)},

where deletion time s is for distinguishing triangles composed of the same nodes but deleted at
different times.

Similarly, for each node u ∈ V(t), we use A(t)[u] ⊂ A(t) and D(t)[u] ⊂ D(t) to denote the added
and deleted triangles with node u, respectively. Lemma 6.3 formalizes the relationship between these
concepts and the number of triangles.

Lemma 6.3: Count of Triangles in the Current Graph

The count of triangles in the current graph equals to the count of added triangles subtracted by the
count of deleted triangles. Formally,

|T (t)| = |A(t)| − |D(t)|, ∀t ∈ {1, 2, ...}, (6.4)

|T (t)[u]| = |A(t)[u]| − |D(t)[u]|, ∀t ∈ {1, 2, ...}, ∀u ∈ V(t). (6.5)

Proof. Eq. (6.4) and Eq. (6.5) follow from Definitions 6.1 and 6.2. See Section 6.7.3 for a formal
proof. �

Based on these concepts, we prove that THINKDFAST and THINKDACC maintain unbiased estimates
in Theorem 6.1. For the unbiasedness of the estimate c̄ of the global count, we show that the expected
amount of change in c̄ for each added triangle is +1, while that for each deleted triangle is−1. Then, by
Lemma 6.3, the expected value of c̄ equals to the true global count. Likewise, we show the unbiasedness

70

of the estimate of the local triangle count of each node by considering only the added and deleted
triangles incident to the node.

Theorem 6.1: ‘Any Time’ Unbiasedness of THINKD

THINKD gives unbiased estimates at any time. Formally, in Algorithms 6.1 and 6.2,

E[c̄(t)] = |T (t)|, ∀t ∈ {1, 2, ...}, (6.6)

E[c(t)[u]] = |T (t)[u]|, ∀t ∈ {1, 2, ...}, ∀u ∈ V(t). (6.7)

Proof. Consider a triangle ({u, v, w}, s) ∈ A(t), and let e(s) = ({u, v},+) without loss of generality.
The amount α(s)

uvw of change in each of c̄, c[u], c[v], and c[w] due to the discovery of ({u, v, w}, s) in
line 8 of Algorithm 6.1 or Algorithm 6.2 is

α(s)
uvw =

1/r2 if{w, u} ∈ S(s−1) and {v, w} ∈ S(s−1) in Algorithm 6.1
1/p(s−1) if{w, u} ∈ S(s−1) and {v, w} ∈ S(s−1) in Algorithm 6.2
0 otherwise.

Then, from Eq. (6.1) and Eq. (6.3), the following equation holds:

α(s)
uvw =

{
1

Pr[{w,u}∈S(s−1)∩{v,w}∈S(s−1)]
if{w, u} ∈ S(s−1) and {v, w} ∈ S(s−1)

0 otherwise.

Hence,
E[α(s)

uvw] = 1. (6.8)

Consider a triangle ({u, v, w}, s) ∈ D(t), and let e(s) = ({u, v},−) without loss of generality. The
amount β(s)

uvw of change in each of c̄, c[u], c[v], and c[w] due to the discovery of ({u, v, w}, s) in line 9
of Algorithm 6.1 or Algorithm 6.2 is

β(s)
uvw =

−1/r2 if{w, u} ∈ S(s−1) and {v, w} ∈ S(s−1) in Algorithm 6.1
−1/p(s−1) if{w, u} ∈ S(s−1) and {v, w} ∈ S(s−1) in Algorithm 6.2
0 otherwise.

Then, from Eq. (6.1) and Eq. (6.3), the following equation holds:

β(s)
uvw =

{
−1

Pr[{w,u}∈S(s−1)∩{v,w}∈S(s−1)]
if{w, u} ∈ S(s−1) and {v, w} ∈ S(s−1)

0 otherwise.

Hence,
E[β(s)

uvw] = −1. (6.9)

By definition, the following holds:

c̄(t) =
∑

({u,v,w},s)∈A(t)

α(s)
uvw +

∑
({u,v,w},s)∈D(t)

β(s)
uvw.

71

By linearity of expectation, Eq. (6.8), Eq. (6.9), and Lemma 6.3, the following holds:

E[c̄(t)] =
∑

({u,v,w},s)∈A(t)

E[α(s)
uvw] +

∑
({u,v,w},s)∈D(t)

E[β(s)
uvw]

=
∑

({u,v,w},s)∈A(t)

1 +
∑

({u,v,w},s)∈D(t)

(−1) = |A(t)| − |D(t)| = |T (t)|.

Likewise, for each node u ∈ V(t), the following holds:

c(t)[u] =
∑

({u,v,w},s)∈A(t)[u]

α(s)
uvw +

∑
({u,v,w},s)∈D(t)[u]

β(s)
uvw.

By linearity of expectation, Eq. (6.8), Eq. (6.9), and Lemma 6.3, the following holds:

E[c(t)[u]] =
∑

({u,v,w},s)∈A(t)[u]

E[α(s)
uvw] +

∑
({u,v,w},s)∈D(t)[u]

E[β(s)
uvw]

=
∑

({u,v,w},s)∈A(t)[u]

1 +
∑

({u,v,w},s)∈D(t)[u]

(−1) = |A(t)[u]| − |D(t)[u]| = |T (t)[u]|.

�

In Section 6.8, we prove the formulas for the variances of estimates given by THINKDFAST. Theo-
rem 6.2 is implied by the formulas.

Theorem 6.2: Variance of THINKDFAST

Given an input graph stream, the variances of estimates maintained by THINKDFAST with the
sampling probability r is proportional to 1/r2. Formally, in Algorithm 6.1,

V ar[c̄(t)] = O(1/r2), ∀t ∈ {1, 2, ...}, and V ar[c(t)[u]] = O(1/r2), ∀t ∈ {1, 2, ...}, ∀u ∈ V(t).

Proof. See Theorem 6.5 in Section 6.8. �

6.4.2 Complexity Analysis
We analyze the time and space complexities of THINKDFAST and THINKDACC. To this end, we let
V̄(t) :=

⋃t
s=1 V(s) be the set of nodes that appear in the t-th or earlier elements in the input stream.

Space Complexity: While processing the first t elements in the input graph stream, THINKDFAST and
THINKDACC maintain one estimate for the global triangle count and at most |V̄(t)| estimates for the
local triangle counts. In addition, THINKDFAST maintains |E (t)| ·r edges on average, while THINKDACC

maintains up to b edges. Thus, the average space complexities of THINKDFAST and THINKDACC are
O(|E (t)| · r + |V̄(t)|) and O(b + |V̄(t)|), respectively. The complexities become O(|E (t)| · r) and O(b)
when only the global triangle count needs to be estimated.

Time Complexity: We prove the average time complexity of THINKDFAST in Theorem 6.3, which im-
plies Corollary 6.1, and the worst-case time complexity of THINKDACC in Theorem 6.4. Corollary 6.1

72

and Theorem 6.4 state that, given a fixed memory budget b, THINKDFAST and THINKDACC scale linearly
with the number of elements in the input stream.

Theorem 6.3: Time Complexity of THINKDFAST

Algorithm 6.1 takes O(t+ t2r) on average to process the first t elements in the input stream.

Proof. In Algorithm 6.1, the most expensive step in processing each element e(s) = ({u, v}, δ) is to
intersect N̂u and N̂v (line 8), which takes O(1 + E[|N̂u| + |N̂v|]) = O(1 + E[|S|]) = O(1 + sr) on
average. Hence, processing the first t elements takes

∑t
s=1 O(1 + sr) = O(t+ t2r) on average. �

Corollary 6.1: Time Complexity of THINKDFAST with Fixed Memory b

If r = O(b/t) for a constant b (≥ 1), then Algorithm 6.1 takes O(tb) on average to process the
first t elements in the input stream.

Theorem 6.4: Time Complexity of THINKDACC

Algorithm 6.2 takes O(tb) to process the first t elements in the input stream.

Proof. In Algorithm 6.2, the most expensive step in processing each element e(s) = ({u, v}, δ) is to
intersect N̂u and N̂v (line 8), which takes O(1 + |N̂u| + |N̂v|) = O(b). Thus, processing the first t
elements takes O(tb). �

6.5 Experiments
In this section, we review our experiments for answering the following questions:
• Q1. Illustration of Theorems: Does THINKD give unbiased estimates?
• Q2. Accuracy: Is THINKD more accurate than its best competitors?
• Q3. Speed: Is THINKD faster than its best competitors?
• Q4. Scalability Does THINKD scale linearly with the size of the input stream?
• Q5. Effects of Deletions: Is THINKD consistently accurate regardless of the ratio of deleted edges?

6.5.1 Experimental Settings

Machines: We used a PC with a 3.60GHz Intel i7-4790 CPU and 32GB RAM unless otherwise stated.

Datasets: We created fully dynamic graph streams with deletions using the real-world graphs listed
in Table 6.2 as follows: (a) create the additions of the edges in the input graph and shuffle them, (b)

73

Table 6.2: Summary of the graph streams used in our experiments. B: billion, M: million, K:
thousand.

Name #Nodes #Edges Type

Friendster [YL15] 65.6M 1.81B Friendship network
Orkut [MMG+07] 3.07M 117M Friendship network
Flickr [MMG+07] 2.30M 22.8M Friendship network
Patent [HJT01] 3.77M 16.5M Citation network
Youtube [MMG+07] 3.22M 9.38M Friendship network
BerkStan [LLDM09] 685K 6.65M Web graph
Facebook [VMCG09] 63.7K 817K Friendship network
Epinion [MA05] 132K 711K Trust network

Random (800GB) 1M 0.1B-100B Synthetic graph

5.0e−06

1.0e−05

1.5e−05

2.4M 2.6M
Estimated Count

Pr
ob

ab
ilit

y
D

en
si

ty

TriestFD

ThinkD
(ACC) ThinkD

(FAST)

True triangle count

(a) Distribution of estimates
at the end

2512K

2514K

2516K

852900 853100
Number of

Processed Elements

N
um

be
r o

f T
ria

ng
le

s
(C

on
fid

en
ce

 In
te

rv
al

)

ThinkDACC

True count
ThinkDFAST

TriestFD

(b) 95% confidence intervals
over time

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

27

28

29

210

228 229 230

Number of Elements

El
ap

se
d

Ti
m

e
(s

ec
) ThinkDACC

ThinkDFAST

Linear (slope=1)

(c) Scalability (Friendster)

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

24

25

26

27

224 225 226

Number of Elements

El
ap

se
d

Ti
m

e
(s

ec
) ThinkDACC

ThinkDFAST

Linear (slope=1)

(d) Scalability (Orkut)

Figure 6.2: THINKD is provably accurate and scalable. (a) THINKD gives unbiased estimates. (b)
THINKD maintains more accurate estimates with smaller confidence intervals than its best competitor.
(c-d) THINKD scales linearly with the size of the input stream.

choose α% of the edges and create the deletions of them, (c) locate each deletion in a random position
after the corresponding addition. We set α to 20% unless otherwise stated (see Section 6.5.6 for its
effect on accuracy). The created streams were streamed from the disk.

Implementations: We implemented THINKDFAST (Section 6.3.2), THINKDACC (Section 6.3.3), TRIESTFD

[SERU17], TRIESTIMPR [SERU17], ESD [HS17], and MASCOT [LJK18] commonly in Java. In all of
them, sampled edges are stored in the adjacency list format, and as described in the last paragraph of
Section 6.3.3, estimates are lower bounded by zero.

Evaluation Metrics: We measured the accuracy of the considered algorithms using global error, local
error, and rank correlation, all of which are defined in Section 3.3.2.

6.5.2 Q1. Illustration of Theorems

THINKD gives unbiased estimates (Theorem 6.1). We compared 10, 000 estimates of the global tri-
angle count obtained by THINKDFAST, THINKDACC, and TRIESTFD, whose parameters were set so that
on average 10% of the edges are stored at the end of each graph stream. Figures 6.1(d) (in Section 6.1)

74

and 6.2(a) show the distributions of the estimates at the end of the Facebook and Epinion datasets,
respectively. The means of the estimates were close to the true triangle count, consistently with The-
orem 6.1 (i.e., unbiasedness of THINKD). Moreover, THINKDACC and THINKDFAST gave estimates
with smaller variances than TRIESTFD. Figures 6.1(a) (in Section 6.1) and 6.2(b) show how the 95%
confidence intervals, estimated from 10, 000 trials, changed over time in the Facebook and Epinion
datasets, respectively. THINKDFAST and THINKDACC maintained more accurate estimates with smaller
confidence intervals than TRIESTFD. Between THINKDFAST and THINKDACC, THINKDACC was more
accurate.

6.5.3 Q2. Accuracy

THINKD is more accurate than its competitors. We compared the accuracies of four algorithms that
support edge deletions. As we changed the ratio of stored edges at the end of each input stream from
5% to 40%, we measured the accuracies of THINKDFAST, THINKDACC, and TRIESTFD. ESD always
stores the entire input stream in memory, and we set its parameter to 1.0 to maximize its accuracy. Each
evaluation metric was averaged over 100 trials in the Friendster and Orkut datasets and 1, 000 trials in
the others.1 As seen in Figure 6.3, THINKDFAST and THINKDACC consistently gave the best trade-off
between space and accuracy. Specifically, within the same memory budget, THINKDACC was up to 4×
and 4 .3× more accurate than TRIESTFD in terms of global error and RMSE, respectively. Between our
algorithms, THINKDACC consistently outperformed THINKDFAST in terms of accuracy.

6.5.4 Q3. Speed

THINKD is faster than its competitors. We compared the speeds and accuracies of four algorithms
that support edge deletions. The detailed settings were the same as those in Section 6.5.3 except that
we measured the performance of ESD as we changed its parameter from 0.2 to 1.0. To measure the
speeds of the algorithms independently of the speed of the input stream, we ignored time taken to
wait for the arrival of elements. As seen in Figure 6.4, THINKDFAST and THINKDACC consistently
gave the best trade-off between speed and accuracy. Specifically, for the same global error and RMSE,
THINKDFAST was up to 2 .2× faster than TRIESTFD. Between our algorithms, THINKDFAST consistently
outperformed THINKDACC in terms of speed.

6.5.5 Q4. Scalability

THINKD scales linearly (Corollary 6.1 and Theorem 6.4). We measured the elapsed times taken by
THINKDFAST and THINKDACC to process all elements in graph streams with different numbers of ele-
ments. To measure their speeds independently of the speed of the input stream, we ignored time taken
to wait for the arrival of elements. In both algorithms, we set b and r so that on average 107 edges are
stored at the end of each input stream. Figure 6.1(c) in Section 6.1 shows the results in the Random
datasets, which were created by the Erdös-Rényi model. Both THINKDFAST and THINKDACC scaled
linearly with the number of elements, as expected in Corollary 6.1 and Theorem 6.4. Notice that the
largest dataset is 800GB with 100 billion elements. As seen in Figures 6.2(c)-(d), we obtained simi-
lar trends in graph streams with realistic structures created by sampling different numbers of elements
from the Friendster and Orkut datasets.

1We used a workstation with 2.67GHz Intel Xeon E7-8837 CPUs and 1TB memory for the Friendster dataset.

75

ThinkDACC (Proposed) ThinkDFAST (Proposed) TriestFD ESD

G
lo

ba
lE

rr
or

(t
he

lo
w

er
th

e
be

tte
r) 3.1X

2.3X
2-14

2-13

2-12

2-11

2-10

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

G
lo

ba
l E

rr
or 3X

2.5X
2-12

2-11

2-10

2-9

2-8

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

G
lo

ba
l E

rr
or 4X

2.2X2-10

2-9

2-8

2-7

2-6

2-5

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

G
lo

ba
l E

rr
or 1.9X

2.5X2-8

2-7

2-6

2-5

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

G
lo

ba
l E

rr
or

(a) Friendster (b) Orkut (c) Patent (d) BerkStan

2X

2.4X
2-11

2-10

2-9

2-8

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

G
lo

ba
l E

rr
or 2.3X

2.5X2-8

2-7

2-6

2-5

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

G
lo

ba
l E

rr
or 3.7X

1.9X
2-9

2-8

2-7

2-6

2-5

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

G
lo

ba
l E

rr
or 2.8X

2.5X2-8

2-7

2-6

2-5

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

G
lo

ba
l E

rr
or

R
M

SE
(t

he
lo

w
er

th
e

be
tte

r)

(e) Flickr (f) Youtube (g) Facebook (h) Epinion

ESDX
2.3X

3.5X

25

26

27

28

29

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

R
M

S
E

ESDX
2.4X

3X

26

27

28

29

210

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

R
M

S
E

ESDX
2.2X

4.3X

22

23

24

25

26

27

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

R
M

S
E

ESDX
2.5X

2X

28

29

210

211

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

R
M

S
E

(i) Friendster (j) Orkut (k) Patent (l) BerkStan

ESDX
2.4X

2.1X

28

29

210

211

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

R
M

S
E

ESDX
2.5X

2.5X

24

25

26

27

28

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

R
M

S
E

ESDX

1.6X

3.5X

26

27

28

29

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

R
M

S
E

ESDX
2.4X

2.8X

26

27

28

29

2-4 2-3 2-2 2-1 20

Ratio of Stored Edges

R
M

S
E

R
an

k
C

or
re

la
tio

n
(t

he
hi

gh
er

th
e

be
tte

r) (m) Flickr (n) Youtube (o) Facebook (p) Epinion

ESDX
3.1X

2-2

2-1

20

2-5 2-4 2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX
2.5X2-1

20

2-5 2-4 2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX
5.7X

2-4

2-3

2-2

2-1

20

2-5 2-4 2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX
3X

2-2

2-1

20

2-5 2-4 2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

(q) Friendster (r) Orkut (s) Patent (t) BerkStan

ESDX
2X

2-2

2-1

20

2-5 2-4 2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX
3.9X

2-3

2-2

2-1

20

2-5 2-4 2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX
3.3X

2-2

2-1

20

2-5 2-4 2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

ESDX
2.5X

2-2

2-1

20

2-5 2-4 2-3 2-2 2-1

Ratio of Stored Edges

R
an

k
C

or
re

la
tio

n

(u) Flickr (v) Youtube (w) Facebook (x) Epinion

Figure 6.3: THINKD is accurate. THINKD provides the best trade-off between space and accuracy. In
particular, THINKDACC is up to 4 .3× more accurate than TRIESTFD within the same memory budget.
Error bars denote ±1 standard error. ESD is inapplicable to local triangle counting.

76

ThinkDACC (Proposed) ThinkDFAST (Proposed) TriestFD ESD

G
lo

ba
lE

rr
or

(t
he

lo
w

er
th

e
be

tte
r)

2.2X

2.9X

2-14

2-13

2-12

2-11

2-10

212 213 214

Elapsed Time (sec)

G
lo

ba
l E

rr
or

2.1X

2X
2-9

2-10

2-11

2-12

26 27 28 29

Elapsed Time (sec)

G
lo

ba
l E

rr
or

1.9X

3.1X

2-11
2-10
2-9
2-8
2-7
2-6
2-5

23 24 25

Elapsed Time (sec)

G
lo

ba
l E

rr
or

1.9X

1.5X
2-6

2-7

2-8

2-9

22 23 24

Elapsed Time (sec)

G
lo

ba
l E

rr
or

(a) Friendster (b) Orkut (c) Patent (d) BerkStan

2.2X

1.4X

2-11

2-10

2-9

2-8

24 25 26 27

Elapsed Time (sec)

G
lo

ba
l E

rr
or

1.9X

1.9X

2-9

2-8

2-7

2-6

2-5

22 23 24

Elapsed Time (sec)

G
lo

ba
l E

rr
or

1.9X

2.5X

2-9

2-8

2-7

2-6

2-5

2-1.5 2-1 2-0.5 20 20.5

Elapsed Time (sec)

G
lo

ba
l E

rr
or

2X

1.8X

2-9

2-8

2-7

2-6

2-5

2-2 2-1.5 2-1 2-0.5 20 20.5

Elapsed Time (sec)

G
lo

ba
l E

rr
or

R
M

SE
(t

he
lo

w
er

th
e

be
tte

r)

(e) Flickr (f) Youtube (g) Facebook (h) Epinion

X

2.2X

2.8X ESD

25

26

27

28

29

212 213 214

Elapsed Time (sec)

R
M

S
E

X

2.1X

2.3X ESD

26

27

28

29

210

26 27 28

Elapsed Time (sec)

R
M

S
E

X

1.9X

3.4X ESD

21
22
23
24
25
26
27

23 24

Elapsed Time (sec)

R
M

S
E

X

1.9X

1.5X ESD

27

28

29

210

211

22 23 24

Elapsed Time (sec)

R
M

S
E

(i) Friendster (j) Orkut (k) Patent (l) BerkStan

X

2.2X

1.6X ESD

28

29

210

211

24 25 26 27

Elapsed Time (sec)

R
M

S
E

X

1.9X

2X ESD

24

25

26

27

28

22 23 24

Elapsed Time (sec)

R
M

S
E

X

1.9X

2.8X ESD

25

26

27

28

29

2-1.5 2-1 2-0.5 20 20.5

Elapsed Time (sec)

R
M

S
E

X

2X

2.2X ESD

25

26

27

28

29

2-2 2-1.5 2-1 2-0.5 20 20.5

Elapsed Time (sec)

R
M

S
E

R
an

k
C

or
re

la
tio

n
(t

he
hi

gh
er

th
e

be
tte

r) (m) Flickr (n) Youtube (o) Facebook (p) Epinion

2.5X
ESDX

2.2X

2-2

2-1

20

212 213 214

Elapsed Time (sec)

R
an

k
C

or
re

la
tio

n

2.2X

ESDX

2.1X

2-1

20

26 27 28

Elapsed Time (sec)

R
an

k
C

or
re

la
tio

n

3.8X
ESDX

1.9X

2-4

2-3

2-2

2-1

20

23 24

Elapsed Time (sec)

R
an

k
C

or
re

la
tio

n

2.4X
ESDX

1.9X

2-2

2-1

20

22 23

Elapsed Time (sec)

R
an

k
C

or
re

la
tio

n

(q) Friendster (r) Orkut (s) Patent (t) BerkStan

1.7X
ESDX

2.2X

2-2

2-1

20

24 25 26 27

Elapsed Time (sec)

R
an

k
C

or
re

la
tio

n

2.8X
ESDX

1.9X

2-3

2-2

2-1

20

22 23 24

Elapsed Time (sec)

R
an

k
C

or
re

la
tio

n

2.7X
ESDX

1.9X

2-2

2-1

20

2-1.5 2-1 2-0.5 20 20.5

Elapsed Time (sec)

R
an

k
C

or
re

la
tio

n

2.1X
ESDX

2X

2-2

2-1

20

2-2 2-1.5 2-1 2-0.5 20 20.5

Elapsed Time (sec)

R
an

k
C

or
re

la
tio

n

(u) Flickr (v) Youtube (w) Facebook (x) Epinion

Figure 6.4: THINKD is fast. THINKD provides the best trade-off between speed and accuracy. In
particular, THINKDFAST is up to 2 .2× faster than TRIESTFD when they are similarly accurate. Error
bars denote ±1 standard error. ESD is inapplicable to local triangle counting.

77

ThinkDACC (Proposed) ThinkDFAST (Proposed) TriestFD TriesteIMPR MASCOT

2.6X

2.2X

ESDX

26

27

28

29

0.0 0.2 0.4
Ratio of Deleted Edges

R
M

S
E

2.2X

2.1X

ESDX

27

28

29

210

0.0 0.2 0.4
Ratio of Deleted Edges

R
M

S
E

3.4X

2.5X

ESDX

23

24

25

26

0.0 0.2 0.4
Ratio of Deleted Edges

R
M

S
E

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1.8X

2X

ESDX

28

29

210

211

0.0 0.2 0.4
Ratio of Deleted Edges

R
M

SE

(a) Friendster (b) Orkut (c) Patent (d) BerkStan

1.9X

2X

ESDX
29

210

211

0.0 0.2 0.4
Ratio of Deleted Edges

R
M

S
E

2X

2.2X

ESDX

25

26

27

0.0 0.2 0.4
Ratio of Deleted Edges

R
M

S
E

2.6X

2.1X

ESDX

26

27

28

29

0.0 0.2 0.4
Ratio of Deleted Edges

R
M

S
E

2.1X

2.1X

ESDX

26

27

28

29

0.0 0.2 0.4
Ratio of Deleted Edges

R
M

S
E

(e) Flickr (f) Youtube (g) Facebook (h) Epinion

Figure 6.5: THINKD is consistently accurate regardless of the ratio of deleted edges. Error bars
denote ±1 standard error. TRIESTIMPR and MASCOT are inapplicable when there are deletions. ESD is
inapplicable to local triangle counting.

6.5.6 Q5. Effects of Deletions on Accuracy

THINKD is consistently accurate. We measured how the ratio of deleted edges (i.e., α in Section 6.5.1)
in input graph streams affects the accuracies of the considered algorithms. In every algorithm, we set
the ratio of stored edges at the end of each input stream to 10%. As seen in Figure 6.5, all algorithms
that support edge deletions became more accurate as input graphs became smaller with more deletions.
THINKDFAST and THINKDACC were similarly accurate with MASCOT and TRIESTIMPR, respectively, in
the streams without deletions. In the streams with deletions, which MASCOT and TRIESTIMPR cannot
handle, THINKDFAST and THINKDACC were 1 .8 − 3 .4× more accurate than TRIESTFD regardless of
the ratio of deleted edges.

6.6 Summary
We propose THINKD, which estimates the counts of global and local triangles in a fully dynamic graph
stream with edge additions and deletions. We theoretically and empirically show that THINKD has the
following advantages:
• Accurate: THINKD is up to 4 .3× more accurate than its best competitors within the same memory

budget (Figure 6.3).
• Fast: THINKD is up to 2 .2× faster than its best competitors with similar accuracies (Figure 6.4). It

processes terabyte-scale streams with linear scalability (Figure 6.2, Corollary 6.1, and Theorem 6.4).
• Theoretically Sound: THINKD maintains unbiased estimates (Theorem 6.1) with small variances

(Theorem 6.2) at any time while the input graph evolves.
Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/thinkd/.

78

http://www.cs.cmu.edu/~kijungs/thinkd/
http://www.cs.cmu.edu/~kijungs/thinkd/

6.7 Appendix: Proofs

For each variable (e.g., c̄) in Algorithms 6.1 and 6.2, we use superscript (t) (e.g., c̄(t)) to denote the
value of the variable after the t-th element e(t) is processed. For any time t ∈ {1, 2, ...}, let X(t) be
the random number in Bernoulli(r) drawn in line 11 of Algorithm 6.1 while the t-th element e(t) is
processed, and for each edge {u, v}, let l(t)uv be the last time that {u, v} is added to or removed from G
at time t or earlier. That is,

l(t)uv := max({1 ≤ s ≤ t : e(s) = ({u, v},+) or e(s) = ({u, v},−)}). (6.10)

Lemma 6.4

In Algorithm 6.1, for each time t ∈ {1, 2, ...} and any edge {u, v} ∈ E (t), {u, v} ∈ S(t) if and only
if X(l

(t)
uv) = 1. That is,

{u, v} ∈ S(t) ⇐⇒ X(l
(t)
uv) = 1, ∀t ∈ {1, 2, ...}, ∀{u, v} ∈ E (t) (6.11)

Proof. Note that {u, v} ∈ E (t) implies that e(l
(t)
uv) = ({u, v},+), i.e. the edge {u, v} is added at time

l
(t)
uv . Then {u, v} /∈ E (l

(t)
uv−1), and since S(s) ⊂ E (s) for all s ∈ {1, 2, ...}, {u, v} /∈ S(l

(t)
uv−1) as well.

Therefore,
{u, v} ∈ S(l

(t)
uv) ⇐⇒ X(l

(t)
uv) = 1. (6.12)

Also, from Eq. (6.10), e(s) 6= ({u, v}, δ) if l(t)uv < s ≤ t, and hence {u, v} is not added after time l(t)uv in
Algorithm 1. Hence for all s ∈ [l

(t)
uv , t],

{u, v} ∈ S(s) ⇐⇒ {u, v} ∈ S(l
(t)
uv). (6.13)

Combining Eq. (6.12) and Eq. (6.13) with s = t gives Eq. (6.11). �

6.7.1 Proof of Lemma 6.1
Proof. Applying Lemma 6.4 to the edges {u, v} and {w, x} gives

{u, v} ∈ S(t) ⇐⇒ X(l
(t)
uv) = 1 and {w, x} ∈ S(t) ⇐⇒ X(l

(t)
wx) = 1. (6.14)

Then, sinceX(s)’s are independentBernoulli(r) and l(t)uv 6= l
(t)
wx, applying Eq. (6.14) with independence

of X(l
(t)
uv) and X(l

(t)
wx) gives

Pr
[
{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)

]
= Pr

[
X(l

(t)
uv) = 1 ∩X(l

(t)
wx) = 1

]
= Pr

[
X(l

(t)
uv) = 1

]
Pr
[
X(l

(t)
wx) = 1

]
= r2.

�

79

6.7.2 Proof of Lemma 6.2

As in Section 6.3.3, for each time t ∈ {1, 2, ...}, let E (t) be the set of edges remaining (without being
deleted) in the input graph stream and S(t) ⊂ E (t) be the set of samples maintained by Algorithm 6.2
after the t-th element is processed. Also let y(t) = min(b, |E (t)|+ n

(t)
b + n

(t)
g).

Lemma 6.5: Properties in Random Pairing [GLH08]

In Algorithm 6.2, the expected value and variance of the size of the samples are as follows:

E[|S(t)|] =
|E (t)| · y(t)

|E (t)|+ n
(t)
b + n

(t)
g

, ∀t ∈ {1, 2, ...}. (6.15)

V ar[|S(t)|] =
(n

(t)
b + n

(t)
g) · y(t) · (|E (t)|+ n

(t)
b + n

(t)
g − y(t)) · |E (t)|

(|E (t)|+ n
(t)
b + n

(t)
g)2 · (|E (t)|+ n

(t)
b + n

(t)
g − 1)

,∀t ∈ {1, 2, ...}. (6.16)

At each fixed time, all equal-sized subsets of the remaining elements in the input graph stream
have the same probability to be the set of samples maintained in Algorithm 6.2. Formally,

Pr[S(t) = A] = Pr[S(t) = B], ∀t ∈ {1, 2, ...}, ∀A 6= B ⊂ E (t) s.t. |A| = |B|. (6.17)

Lemma 6.6: Uniformity in Random Pairing

At each fixed time, all equal-sized subsets of the remaining elements in the input graph stream
have the same probability to be a subset of the samples maintained in Algorithm 6.2. Formally,

Pr[A ⊂ S(t)] = Pr[B ⊂ S(t)], ∀t ∈ {1, 2, ...}, ∀A 6= B ⊂ E (t) s.t. |A| = |B|. (6.18)

Proof. Let eAi be the family of size-i subsets of E (t) including A, and let eBi be the family of size-i
subsets of E (t) including B. Then, Eq. (6.18) is obtained as follows:

Pr[A ⊂ S(t)] =
∑
i

∑
C∈eAi

Pr[C = S(t)]

=
∑
i

∑
C∈eBi

Pr[C = S(t)] = Pr[B ⊂ S(t)],

where the second equality is from Eq. (6.17) and |eAi | = |eBi |. �

80

Lemma 6.7: Sampling Probability of Each Edge

The probability that each edge is sampled in Algorithm 6.2 is as follows:

Pr[{u, v} ∈ S(t)] =
y(t)

|E (t)|+ n
(t)
b + n

(t)
g

, ∀t ∈ {1, 2, ...}, ∀{u, v} ∈ E (t). (6.19)

Proof. Let 1({u, v} ∈ S(t)) be a random variable which is 1 if {u, v} ∈ S(t) and 0 otherwise. By
definition,

|S(t)| =
∑

{u,v}∈E(t)
1({u, v} ∈ S(t)). (6.20)

Then, by linearity of expectation and Eq. (6.20),

E[|S(t)|] =
∑

{u,v}∈E(t)
E[1({u, v} ∈ S(t))] =

∑
{u,v}∈E(t)

Pr[{u, v} ∈ S(t)]. (6.21)

Then, Eq. (6.19) is obtained as follows:

Pr[{u, v} ∈ S(t)] =
1

|E (t)|
∑

{w,x}∈E(t)
Pr[{w, x} ∈ S(t)]

=
E[|S(t)|]
|E (t)|

=
y(t)

|E (t)|+ n
(t)
b + n

(t)
g

,

where the first, second, and last equalities are from Eq. (6.18), Eq. (6.21), and Eq. (6.15), respectively.
�

Proof of Lemma 6.2:

Proof. Let 1({u, v} ∈ S(t)) be a random variable which is 1 if {u, v} ∈ S(t) and 0 otherwise. For calcu-
lating Pr[{u, v} ∈ S(t)∩{w, x} ∈ S(t)], we expand the covariance sum

∑
{u,v}6={w,x}Cov(1({u, v} ∈ S(t)),

1({w, x} ∈ S(t))) in two ways and compare them.
First, we use the expansion of the variance of S(t). From Eq. (6.20),

V ar[|S(t)|] =
∑

{u,v}∈E(t)
V ar[1({u, v} ∈ S(t))]

+
∑

{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t))),

and hence the covariance sum can be expanded as∑
{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t))) = V ar[|S(t)|]−
∑

{u,v}∈E(t)
V ar[1({u, v} ∈ S(t))].

(6.22)
For the second term of Eq. (6.22), V ar[x] = E[x2]− (E[x])2 implies

V ar[1({u, v} ∈ S(t))] = Pr[{u, v} ∈ S(t)]− Pr[{u, v} ∈ S(t)]2. (6.23)

81

Hence applying Eq. (6.19) and Eq. (6.23) to Eq. (6.22) gives the covariance sum as∑
{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t)))

= V ar[|S(t)|]−
∑

{u,v}∈E(t)
V ar[1({u, v} ∈ S(t))]

= V ar[|S(t)|]−
∑

{u,v}∈E(t)

(
Pr[{u, v} ∈ S(t)]− Pr[{u, v} ∈ S(t)]2

)
= V ar[|S(t)|]− |E (t)| · y

(t) · (|E (t)|+ n
(t)
b + n

(t)
g − y(t))

(|E (t)|+ n
(t)
b + n

(t)
g)2

. (6.24)

Second, we directly expand the covariance sum. Expanding the covariance sum with Cov(x, y) =
E[xy]− E[x] · E[y] and applying Eq. (6.19) give∑

{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t)))

=
∑

{u,v}6={w,x}

(
Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]− Pr[{u, v} ∈ S(t)] · Pr[{w, x} ∈ S(t)]

)

=
∑

{u,v}6={w,x}

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]−

(
y(t)

|E (t)|+ n
(t)
b + n

(t)
g

)2

=
∑

{u,v}6={w,x}

(
Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]

)
− y(t) · y(t) · |E (t)| · (|E (t)| − 1)

(|E (t)|+ n
(t)
b + n

(t)
g)2

. (6.25)

Now, the probability sum
∑
{u,v}6={w,x} Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)] can be obtained by

comparing two expansions Eq. (6.24) and Eq. (6.25) of the covariance sum and applying Eq. (6.16) as∑
{u,v}6={w,x}

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]

=
∑

{u,v}6={w,x}

Cov(1({u, v} ∈ S(t)),1({w, x} ∈ S(t))) +
y(t) · y(t) · |E (t)| · (|E (t)| − 1)

(|E (t)|+ n
(t)
b + n

(t)
g)2

= V ar[|S(t)|]− |E (t)| · y
(t) · (|E (t)|+ n

(t)
b + n

(t)
g − y(t))

(|E (t)|+ n
(t)
b + n

(t)
g)2

+
y(t) · y(t) · |E (t)| · (|E (t)| − 1)

(|E (t)|+ n
(t)
b + n

(t)
g)2

=
y(t) · (y(t) − 1) · |E (t)| · (|E (t)| − 1)

(|E (t)|+ n
(t)
b + n

(t)
g) · (|E (t)|+ n

(t)
b + n

(t)
g − 1)

. (6.26)

82

Then, Eq. (6.3) is obtained by Eq. (6.26) as follows:

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]

=
1

|E (t)| · (|E (t)| − 1)

 ∑
{u,v}6={w,x}

Pr[{u, v} ∈ S(t) ∩ {w, x} ∈ S(t)]

=

1

|E (t)| · (|E (t)| − 1)
· y(t) · (y(t) − 1) · |E (t)| · (|E (t)| − 1)

(|E (t)|+ n
(t)
b + n

(t)
g) · (|E (t)|+ n

(t)
b + n

(t)
g − 1)

=
y(t)

|E (t)|+ n
(t)
b + n

(t)
g

· y(t) − 1

|E (t)|+ n
(t)
b + n

(t)
g − 1

= p(t),

where the first equality is from Eq. (6.18). �

6.7.3 Proof of Lemma 6.3

Proof. When t = 1, then T (1) = A(1) = D(1) = ∅ holds, and hence Eq. (6.4) trivially holds. Hence we
assume that t ∈ {2, 3, ...} from now on. First, we show that for each time s ∈ {2, 3, ...},

|T (s)| − |T (s−1)| = |A(s)\A(s−1)| − |D(s)\D(s−1)|. (6.27)

To show this, we show the following relations,

|A(s)\A(s−1)| = |T (s)\T (s−1)|, (6.28)

|D(s)\D(s−1)| = |T (s−1)\T (s)|. (6.29)

For Eq. (6.28), note that

A(s)\A(s−1) =
{

({u, v, w}, s) : {u, v, w} /∈ T (s−1) and {u, v, w} ∈ T (s)
}

and
T (s)\T (s−1) =

{
{u, v, w} : {u, v, w} /∈ T (s−1) and {u, v, w} ∈ T (s)

}
hold, and hence Eq. (6.28) holds. Similarly,

D(s)\D(s−1) =
{

({u, v, w}, s) : {u, v, w} ∈ T (s−1) and {u, v, w} /∈ T (s)
}

and
T (s−1)\T (s) =

{
{u, v, w} : {u, v, w} ∈ T (s−1) and {u, v, w} /∈ T (s)

}
hold, and hence Eq. (6.29) holds. Then, Eq. (6.28) and Eq. (6.29) imply

|A(s)\A(s−1)|+ |T (s−1)| = |T (s)\T (s−1)|+ |T (s−1)| = |T (s−1) ∪ T (s)|
= |T (s−1)\T (s)|+ |T (s)| = |D(s)\D(s−1)|+ |T (s)|,

and hence Eq. (6.27) holds. Then, summing up Eq. (6.27) from s = 2 to t yields

|T (t)| − |T (1)| =
t∑

s=2

|A(s)\A(s−1)| −
t∑

s=2

|D(s)\D(s−1)|. (6.30)

83

Then,
{
A(s)\A(s−1)

}t
s=2

being disjoint over s implies

t∑
s=2

|A(s)\A(s−1)| =

∣∣∣∣∣
t⋃

s=2

(A(s)\A(s−1))

∣∣∣∣∣ = |A(t)\A(1)|, (6.31)

and similarly,
t∑

s=2

|D(s)\D(s−1)| = |D(t)\D(1)|. (6.32)

holds. Then, applying Eq. (6.31), Eq. (6.32), and T (1) = A(1) = D(1) = ∅ to Eq. (6.30) yields that for
all t ∈ {2, 3, ...},

|T (t)| = |A(t)| − |D(t)|,

which completes the proof of Eq. (6.4).
For Eq. (6.5), replacing T (s) by T (s)[u], A(s) by A(s)[u], and D(s) by D(s)[u] and repeating above

give a proof. �

6.8 Appendix: Detailed Variance Analysis

As in Section. 6.7, let l(t)uv be the last time that edge {u, v} is added to or removed from G at time t or
earlier. And for each added or deleted triangle ({u, v, w}, s) ∈ A(t) ∪D(t), we use 1({u,v,w},s) to denote
the time when its first edge has arrived and 2({u,v,w},s) to denote the time when its second edge has
arrived. Formally,

1({u,v,w},s) := min(l(s)uv , l
(s)
vw, l

(s)
wu), 2({u,v,w},s) := median(l(s)uv , l

(s)
vw, l

(s)
wu).

Then, we define the type of each triangle pair in Definition 6.3.

Definition 6.3: Types of Triangle Pairs

The type of each ordered pair of two distinct triangles τ 6= ω ∈ A(t) ∪ D(t) is defined as follows:

Type(τ,ω) =

1, if τ ∈ A(t) and ω ∈ A(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 1,

2, if τ ∈ D(t) and ω ∈ D(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 1,

3, if τ ∈ A(t) and ω ∈ D(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 1,

4, if τ ∈ D(t) and ω ∈ A(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 1,

5, if τ ∈ A(t) and ω ∈ A(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 2,

6, if τ ∈ D(t) and ω ∈ D(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 2,

7, if τ ∈ A(t) and ω ∈ D(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 2,

8, if τ ∈ D(t) and ω ∈ A(t) and |{1τ ,2τ} ∩ {1ω,2ω}| = 2,

9, otherwise (i.e., |{1τ ,2τ} ∩ {1ω,2ω}| = 0).

(6.33)

84

Theorem 6.5: Variance of THINKDFAST

Let n(t)
i be the number of Type-i triangle pairs in A(t) ∪ D(t). Likewise, Let n(t)

i [u] be the number
of Type-i triangle pairs in A(t)[u] ∪ D(t)[u]. Then,

V ar[c̄(t)] = (|A(t)|+ |D(t)|) · 1− r2

r2
+ (n

(t)
1 + n

(t)
2 − n

(t)
3 − n

(t)
4) · 1− r

r

+ (n
(t)
5 + n

(t)
6 − n

(t)
7 − n

(t)
8) · 1− r2

r2
, ∀t ∈ {1, 2, ...}. (6.34)

Likewise,

V ar[c(t)[u]] = (|A(t)[u]|+ |D(t)[u]|) · 1− r2

r2

+ (n
(t)
1 [u] + n

(t)
2 [u]− n(t)

3 [u]− n(t)
4 [u]) · 1− r

r

+ (n
(t)
5 [u] + n

(t)
6 [u]− n(t)

7 [u]− n(t)
8 [u]) · 1− r2

r2
, ∀t ∈ {1, 2, ...}, ∀u ∈ V(t).

(6.35)

Proof. As in Section 6.7, for each time t ∈ {1, 2, ...}, let X(t) be the random number in Bernoulli(r)
drawn in line 11 of Algorithm 6.1 while the t-th element e(t) is processed. Then, from Lemma 6.4,

{u, v} ∈ S(t) ⇐⇒ X(l
(t)
uv) = 1. (6.36)

Now, for each τ = ({u, v, w}, s) ∈ A(t) ∪ D(t), let γτ be the amount of change in each of c̄, c[u], c[v],
and c[w] due to the discovery of τ in line 8 or line 9 of Algorithm 6.1. Let δτ = +1 when τ ∈ A(t),
i.e. when the last edge is added, and let δτ = −1 when τ ∈ D(t), i.e. when the last edge is deleted.
Let {u, v} be the edge added or deleted at time s without loss of generality. Then, γτ = δτ

r2
if both

{w, u}, {v, w} ∈ S(s) and 0 otherwise. Hence, combined with Eq. (6.36),

γτ =
δτ
r2
X(1τ)X(2τ). (6.37)

Then from the definitions of γτ , c̄(t) =
∑

τ∈A(t)∪D(t) γτ , and its variance is

V ar[c̄(t)] =
∑

τ∈A(t)∪D(t)

V ar[γτ] +
∑

τ 6=ω∈A(t)∪D(t)

Cov[γτ , γω]. (6.38)

For the variance term in Eq. (6.38), note first that applying that X(1τ) and X(2τ) are independent
Bernoulli(r) to Eq. (6.37) gives E[γτ] as

E[γτ] = E
[
δτ
r2
X(1τ)X(2τ)

]
=
δτ
r2
E
[
X(1τ)

]
E
[
X(2τ)

]
= δτ . (6.39)

Then, further applying δ2
τ = 1 and (X(s))2 = X(s) to Eq. (6.37) and again applying that X(1τ) and

X(2τ) are independent Bernoulli(r) give V ar[γτ] as

V ar[γτ] = E[γ2
τ]− (E[γτ])

2 = E
[
δ2
τ

r4
X(1τ)X(2τ)

]
− δ2

τ =
1

r4
E
[
X(1τ)

]
E
[
X(2τ)

]
− 1 =

1− r2

r2
.

85

Hence the variance term in Eq. (6.38) is computed as∑
τ∈A(t)∪D(t)

V ar[γτ] =
∑

τ∈A(t)∪D(t)

1− r2

r2
= (|A(t)|+ |D(t)|) · 1− r2

r2
. (6.40)

For the covariance term in Eq. (6.38), applying Eq. (6.37) and Eq. (6.39) and using the fact that all
the X(s)’s are independent and identically distributed as Bernoulli(r) and (X(s))2 = X(s) yield the
Cov[γτ , γω] as

Cov[γτ , γω] = E[γτγω]− E[γτ]E[γω] = E
[
δτδω
r4

X(1τ)X(2τ)X(1ω)X(2ω)

]
− δτδω

= δτδω

 1

r4
E

 ∏
i∈{1γ ,2γ}∪{1ω ,2ω}

X(i)

− 1

= δτδω

 1

r4

∏
i∈{1γ ,2γ}∪{1ω ,2ω}

E
[
X(i)

]
− 1

 = δτδω

(
r|{1γ ,2γ}∪{1ω ,2ω}|

r4
− 1

)
.

Then δτδω = 1 if τ, ω ∈ A(t) or τ, ω ∈ D(t), and δτδω = −1 if τ ∈ A(t), ω ∈ D(t) or τ ∈ D(t), ω ∈ A(t).
Hence Cov[γτ , γω] can be calculated as

Cov[γτ , γω] =

1−r
r
, if Type(τ,ω) = 1 or 2,

−1−r
r
, if Type(τ,ω) = 3 or 4,

1−r2
r2
, if Type(τ,ω) = 5 or 6,

−1−r2
r2
, if Type(τ,ω) = 7 or 8,

0, if Type(τ,ω) = 9.

Hence the covariance term in Eq. (6.38) is computed as∑
τ 6=ω∈A(t)∪D(t)

Cov[γτ , γω] = (n
(t)
1 +n

(t)
2 −n

(t)
3 −n

(t)
4) · 1− r

r
+(n

(t)
5 +n

(t)
6 −n

(t)
7 −n

(t)
8) · 1− r

2

r2
. (6.41)

Hence applying Eq. (6.40) and Eq. (6.41) to Eq. (6.38) gives

V ar[c̄(t)] =
∑

τ∈A(t)∪D(t)

V ar[γτ] +
∑

τ 6=ω∈A(t)∪D(t)

Cov[γτ , γω]

= (|A(t)|+ |D(t)|) · 1− r
2

r2
+ (n

(t)
1 + n

(t)
2 − n

(t)
3 − n

(t)
4) · 1− r

r
+ (n

(t)
5 + n

(t)
6 − n

(t)
7 − n

(t)
8) · 1− r

2

r2
,

which completes the proof of Eq. (6.34).
For Eq. (6.35), replacing c̄(t) by c(t)[u], A(t) by A(t)[u], and D(s) by D(s)[u] and repeating above

give a proof. �

86

Chapter 7

Summarizing Large Graphs

Chapter based on work that will appear at WWW 2019 [SGKR19].

Given a terabyte-scale or larger graph distributed across multiple machines, how can we sum-
marize it, with much fewer nodes and edges, so that we can restore the original graph exactly or
within error bounds?

As large-scale graphs are ubiquitous, ranging from web graphs to online social networks, com-
pactly representing graphs becomes important to efficiently store and process them. Given a graph,
graph summarization aims to find its compact representation consisting of (a) a summary graph
where the nodes are disjoint sets of nodes in the input graph, and each edge indicates the edges be-
tween all pairs of nodes in the two sets; and (b) edge corrections for restoring the input graph from
the summary graph exactly or within error bounds. Although graph summarization is a widely-
used graph-compression technique readily combinable with other techniques, existing algorithms
for graph summarization are not satisfactory in terms of speed or compactness of outputs. More
importantly, they assume that the input graph is small enough to fit in main memory.

We propose SWEG, a fast parallel algorithm for summarizing graphs with compact represen-
tations. SWEG is designed for not only shared-memory but also MAPREDUCE settings to sum-
marize graphs that are too large to fit in main memory. We demonstrate that SWEG is (a) Fast:
SWEG is up to 5400× faster than its competitors that give similarly compact representations, (b)
Scalable: SWEG scales to graphs with tens of billions of edges, and (c) Compact: combined with
state-of-the-art graph-compression techniques, SWEG achieves up to 3.4× better compression
than them.

7.1 Motivation
Large-scale graphs are everywhere. Graphs are natural representations of the web, social networks,
collaboration networks, internet topologies, citation networks, to name just a few. The rapid growth
of the web and its applications has led to large-scale graphs of unprecedented size, such as 3.5 billion
web pages connected by 129 billion hyperlinks [MVLB14], online social networks with 300 billion
connections [DKK+16], and 1.15 billion query-URL pairs [LGF09].

Consequently, representing graphs in a storage-efficient manner has become important. In addition
to the reduction of hardware costs, compact representation may allow large-scale graphs to fit in main
memory of one machine, eliminating expensive I/O over the network or to disk. Moreover, it can lead
to performance gains by allowing large fractions of the graphs to reside in cache [BC08, SDB15].

87

●

●
●●●

●

●
●●●

●

●
●
●●

5400X
0.65

0.70

0.75

0.80

0.85

101 102 103 104 105

Elapsed Time (sec)R
el

at
ive

 S
ize

 o
f O

ut
pu

ts
Competitors

SWeG
(Proposed)

(a) Fast (lossless
summarization)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

25

26

27

28

29

210

228 230 232 234

Size of the Input Graph

El
ap

se
d

Ti
m

e
 P

er
 It

er
at

io
n

(s
ec

)

SWeG
(Proposed)

Linear
Scalability
(slope=1)

(b) Scalable (lossless
summarization)

13X
●

●

●

●

●

●

●

24.3X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

Pr
ec

is
io

n
@

 1
00 SWeG

(Proposed)

Competitors

(c) Accurate (lossy
summarization)

0.0

0.5

1.0

1.5

2.0

2.5

(1)BV(2)BFS(3)BP(4)SWeG+
Methods#B

its
 P

er
 D

ire
ct

ed
 E

dg
e

BV BFS BP SWeG+

3.4X

(d) Compact (lossless
compression)

Figure 7.1: Strengths of SWEG. (a) Fast: SWEG is faster with more compact representations than
state-of-the-art lossless-summarization methods. (b) Scalable: SWEG scales linearly with the size of
the input graph, successfully scaling to graphs with over 20 billions edges. (c) Accurate: The lossy
version of SWEG yields more compact and accurate representations than other lossy-summarization
methods. (d) Compact: Combining SWEG and an advanced compression technique yields up to 3.4×
more compact representations than using the technique alone. See Section 7.5 for details.

To compactly represent graphs, a variety of graph-compression techniques have been developed,
including relabeling nodes [BV04, AD09, DKK+16, CKL+09], employing integer-sequence encoding
schemes (e.g., reference, gap, and interval encodings) [BV04], and encoding common structures (e.g.,
cliques, bipartite-cores, and stars) with fewer bits [KKVF14, BC08, RZ18]. The techniques are either
lossless and lossy depending on whether the input graph can be reconstructed exactly from their outputs.

Graph summarization [NRS08] is a widely-used graph-compression technique. It aims to find a
compact representation of a given graph G consisting of a summary graph and edge corrections (i.e.,
edges to be inserted, and edges to be deleted). The summary graph G is a graph where the nodes are
disjoint sets of nodes in G and each edge indicates the edges between all pairs of nodes in the two
sets. The edge corrections are for restoring G from G exactly (in cases of lossless summarization) or
within given error bounds (in cases of lossy summarization). The outputs can be considered as three
graphs: (a) the summary graph, (b) the graph consisting of the edges to be inserted, and (c) the graph
consisting of the edges to be deleted. While we use the term “graph summarization” as defined above
in this chapter, it also has been used for a wider range of problems, as discussed in Section 7.6.

As a graph-compression technique, graph summarization has the following desirable properties: (a)
Combinable with other compression techniques: since graph summarization produces three graphs,
as explained in the previous paragraph, each of them can be further compressed by any other graph
compression technique, (b) Adjustable: the trade-off between compression rates and information loss
can be adjusted by given error bounds, and (c) Queryable: neighbor queries (i.e., returning the neigh-
boring nodes of a given node) can be processed efficiently on the outputs of graph summarization, as
discussed in Section 7.8.

However, existing algorithms for graph summarization are not satisfactory in terms of speed [NRS08,
SPH+18] or compactness of output representations [KNL15]. These serial algorithms [NRS08, KNL15,
SPH+18] either have high computational complexity or significantly sacrifice compactness of out-
puts for lower complexity. More significantly, they assume that the input graph is small enough to
fit in main memory. The largest graph used in the previous studies has just about 10 million edges
[NRS08, KNL15, SPH+18]. As large-scale graphs often do not fit in main memory, improving the
scalability of graph summarization remains an important challenge.

88

To address this challenge, we propose SWEG (Summarizing Web-Scale Graphs), a fast parallel
algorithm for summarizing large-scale graphs with compact representations. SWEG is designed for
both shared-memory and MAPREDUCE settings. In a nutshell, SWEG repeatedly divides a given graph
into small subgraphs and processes the subgraphs in parallel without having to load the entire graph
in main memory. SWEG also adjusts, in each iteration, how aggressively it merges nodes within
subgraphs, and this turns out to be crucial for obtaining compact representations.

Extensive experiments with thirteen real-world graphs show that SWEG significantly outperforms
existing graph-summarization methods and enhances the best compression techniques, as shown in
Figure 7.1. Specifically, SWEG provides the following advantages:
• Fast: SWEG is up to 5 , 400× faster than its competitors that give similarly compact representations

(Figure 7.1(a)).
• Scalable: SWEG scales to graphs with tens of billions of edges, showing near-linear data and

machine scalability (Figure 7.1(b)).
• Compact: Combined with advanced compression methods, SWEG yields up to 3 .4× better com-

pression than them, and it represents a web graph using about 0 .7 bits per directed edge (Fig-
ure 7.1(d)).
The rest of this chapter is organized as follows. In Section 7.2, we introduce some preliminary con-

cepts, notations, and a formal problem definition. In Section 7.3, we present SWEG, our proposed al-
gorithm for graph summarization. In Section 7.4, we analyze the time and space complexity of SWEG.
In Section 7.5, we share some experimental results. After discussing related work in Section 7.6, we
provide a summary of this chapter in Section 7.7.

7.2 Preliminaries and Problem Definition
In this section, we first introduce some notations and concepts used throughout this chapter. Then, we
define the problem of large-scale graph summarization.

Table 7.1: Table of frequently-used symbols.

Symbol Definition

G = (V , E) input graph with nodes V and edges E
Nv set of neighbors of node v in G

C =< C+, C− > edge corrections (i.e., edges insertions and deletions)
C+ set of edges to be inserted
C− set of edges to be deleted

G = (S,P) summary graph with supernodes S and superedges P
P∗ non-loop superedges in P

Ĝ = (V , Ê) graph restored from G and C
N̂v set of neighbors of node v in Ĝ

ε error bound
T number of iterations

θ(t) merging threshold in the t-th iteration

89

𝑎

𝑏

𝑐
𝑑

𝑒

𝑓

𝑔

Input graph 𝐺
𝐴 = {𝑎, 𝑏}

𝐵 = {𝑐, 𝑑, 𝑒}

𝐶 = {𝑓, 𝑔}

−	 𝑎, 𝑑 ,−	 𝑐, 𝑒 , +{𝑑, 𝑔}

Summary graph �̅�

Corrections 𝐶

𝐴 = {𝑎, 𝑏}

𝐵 = {𝑐, 𝑑, 𝑒}

𝐶 = {𝑓, 𝑔}

Summary graph �̅�

Corrections 𝐶 = ∅

𝑎

𝑏

𝑐
𝑑

𝑒

𝑓

𝑔

Restored graph: 𝐺5

Restoration

Lossless
summarization

Lossy summarization (𝜃 = 0.5)

Restoration

Figure 7.2: Illustration of graph summarization. The lossless summarization of the input graph
(upper left) yields a summary graph and corrections (upper right) from which the input graph is restored
exactly. The lossy summarization of the input graph (upper left) yields a summary graph and corrections
(lower left). The restored graph (lower right) satisfies Eq. (7.2). Note that the outputs of lossless and
lossy graph summarization have fewer edges than the input graph.

7.2.1 Notations and Concepts
See Table 7.1 for frequently-used symbols and Figure 7.2 for an illustration of concepts. Consider
a simple undirected graph G = (V , E) with nodes V and edges E . We denote each node in V by
a lowercase (e.g., v) and each edge in E by an unordered pair (e.g., {u, v}). We denote the set of
neighbors of a node v ∈ V in G by Nv ⊂ V .

A summary graph of G = (V , E), denoted by G = (S,P), is a graph whose nodes are a partition
of V (i.e., disjoint subsets of V whose union is V). That is, each node v ∈ V belongs to exactly one
node in S. We call nodes and edges in G supernodes and superedges; and we denote each supernode
by an uppercase (i.e., A). Summary graphs may have self-loops, and we use P∗ ⊂ P to denote the set
of non-loop superedges. See Figure 7.2 for example summary graphs.

Given a summary graph G = (S,P) and corrections C =< C+, C− >, where C+ denotes the set of
edges to be inserted and C− denotes the set of edges to be deleted, a graph Ĝ = (V , Ê), which we call a
restored graph, is recreated by the following steps:

1. For each superedge {A,B} ∈ P , all pairs of distinct nodes in A and B (i.e.,. {{u, v} : u ∈
A, v ∈ B, u 6= v}) are added to Ê ,

2. Each edge in C+ is added to Ê ,

3. Each edge in C− is removed from Ê .
See Figure 7.2 for example restored graphs. We denote the set of neighbors of a node v ∈ V in Ĝ by
N̂v ⊂ V . Given G and C, neighbor queries (i.e., returning N̂v for a given node v ∈ V) can be processed
efficiently without restoring entire Ĝ, as described in Section 7.8.

90

7.2.2 Problem Definition
The large-scale graph summarization problem, which we address in this chapter, is defined in Prob-
lem 7.1.

Problem 7.1: Large-scale Graph Summarization

1. Given:
• a large-scale graph G = (V , E), which may or may not fit in main memory
• an error bound ε (≥ 0)

2. Find: a summary graph G = (S,P) and corrections C =< C+, C− >
3. to Minimize:

|P∗|+ |C+|+ |C−| (7.1)

4. Subject to: the restored graph Ĝ = (V , Ê) satisfies

|Nv − N̂v|+ |N̂v −Nv| ≤ ε|Nv|, ∀v ∈ V . (7.2)

The objective (Eq. (7.1)), which we aim to minimize, measures the size of the output representation by
the count of non-loop (super) edges. We exclude the self-loops in P from the objective since they can
be encoded concisely using 1 bit per supernode regardless of their count. The constraints (Eq. (7.2))
[NRS08] states that the neighbors Nv of each node v ∈ V in the input graph and the node’s neighbors
N̂v in the restored graph Ĝ should be similar enough so that the size of their symmetric difference (i.e.,
(Nv ∪ N̂v) − (N̂v ∩ Nv)) is at most a certain proportion of the size of the node’s neighbors Nv in the
input graph. The proportion is given as a parameter ε, which we call an error bound. The error bound
ε controls the trade-off between compression rates and the amount of information loss. If ε = 0, then
Nv = N̂v holds for every node v ∈ V and thus the restored graph Ĝ equals to the input graph G. Thus,
we call Problem 7.1 large-scale lossless graph summarization problem if ε = 0 and large-scale lossy
graph summarization problem if ε > 0. See Figure 7.2 for the lossless and lossy summarization of a
toy graph.

7.3 Proposed Algorithm: SWEG
We present our proposed algorithm, SWEG (Summarizing Web-Scale Graphs). SWEG provides ap-
proximate solutions to the lossless and lossy graph summarization problems (i.e., Problems 7.1). In
Section 7.3.1, we provide an overview of SWEG. In Section 7.3.2, we describe each step of SWEG
in detail. In Sections 7.3.3 and 7.3.4, we discuss parallelizing SWEG in shared-memory and MAPRE-
DUCE settings. In Section 7.3.5, we present SWEG+, an algorithm for further compression.

7.3.1 Overview
We give an overview of SWEG. SWEG, described in Algorithm 7.1, requires an input graph G =
(V , E), the number of iterations T , and an error bound ε, as in Problem 7.1. SWEG first initializes the
set S of supernodes so that (a) each supernode consists of a node in V and (b) every node in V belongs
to one supernode (line 1). Then, SWEG updates S by repeating the following steps T times (line 2):

91

Algorithm 7.1 Overview of SWEG

Input: input graph G = (V , E), number of iterations T , error bound ε
Output: summary graph G = (S,P), corrections C

1: initialize supernodes S to {{v} : v ∈ V}
2: for t = 1...T do
3: divide S into disjoint groups . Algorithm 7.2
4: merge some supernodes within each group . Algorithm 7.3
5: encode edges E into superedges P and corrections C . Algorithm 7.4
6: if ε > 0 then drop some (super) edges from P and C . Algorithm 7.5
7: return G = (S,P) and C

• Dividing step (line 3, Section 7.3.2.1): divides S into disjoint groups, each of which is composed of
supernodes with similar connectivity. Different groups are obtained in each iteration.

• Merging step (line 4, Section 7.3.2.2): merges some supernodes within each group in a greedy
manner.

Dividing S into small groups makes SWEG faster and more memory efficient by allowing it to process
different groups in parallel without having to load entire G in memory (see Sections 7.3.3 and 7.3.4).
After updating S , SWEG performs the following steps:
• Encoding step (line 5, Section 7.3.2.3): encodes the edges E into superedges P and corrections C so

that the count of non-loop (super) edges (i.e., Eq. (7.1)) is minimized given supernodes S .
• Dropping step (line 6, Section 7.3.2.4): makes P and C more compact by dropping some (super)

edges from them within the error bounds (i.e., Eq. (7.2)) in cases of lossy summarization.
Lastly, SWEG returns the summary graph G = (S,P) and the corrections C as its outputs (line 7).

7.3.2 Detailed Description
We describe each step of SWEG in detail. For simplicity, in this subsection, we assume that SWEG
is executed serially and the input graph is small enough to fit in main memory of one machine. Paral-
lelization and distributed processing are discussed in later subsections.

7.3.2.1 Dividing Step (Algorithm 7.2)
The dividing step aims to divide the supernodes S into disjoint groups of supernodes with similar
connectivity. To this end, we adapt a shingle-based method [BGMZ97] since it is efficiently parallelized
in shared-memory and MAPREDUCE settings (see Sections 7.3.3 and 7.3.4), while any node clustering
methods, such as node-embedding [WCW+17], spectral [PSS+10], and cut-based [KK98] methods,
can be used instead. Specifically, we extend the shingle of nodes, for which it is known that two nodes
have the same shingle with probability equal to the jaccard similarity of their neighbor sets [BCFM00],
to supernodes. We define the shingle F (A) of each supernode A ∈ S as the smallest shingle of the
nodes in A. Then, two supernodes A 6= B ∈ S are more likely to have the same shingle if the
nodes in A and those in B have similar connectivity. Formally, given a random bijective hash function
h : V → {1, ...|V|},

F (A) := minv∈A(f(v)),

92

Algorithm 7.2 Dividing Step of SWEG

Input: input graph G = (V , E), current supernodes S
Output: disjoint groups of supernodes: {S(1), ...S(k)}

1: generate a random bijective hash function h : V → {1, ...|V|}
2: for each supernode A ∈ S do
3: for each node v ∈ A do
4: f(v)← min({h(u) : u ∈ Nv or u = v}) . shingle of node v
5: F (A)← min({f(v) : v ∈ A}) . shingle of supernode A
6: divide the supernodes in S into {S(1), ...S(k)} by their F (·) value
7: return {S(1), ...S(k)}

where f(v) := minu∈Nv or u=v h(u) is the shingle of node v ∈ V , and Nv is the set of neighbors of node
v ∈ V in the input graph G. SWEG generates such a hash function h by shuffling the order of the
nodes in V and mapping each i-th node to i (line 1 of Algorithm 7.2) and computes the shingle of every
supernode in S (lines 2-5). Lastly, SWEG divides the supernodes S into disjoint groups {S(1), ...S(k)}
by their shingles and returns the groups (lines 6-7). In cases where large groups exist, Algorithm 7.2
can be applied recursively to each of the large groups with a new hash function h.

7.3.2.2 Merging Step (Algorithm 7.3)
To describe this step, we first define several concepts. We define the cost of a supernode A ∈ S given
supernodes S, denoted by Cost(A,S), as the amount of increase in Eq. (7.1) (i.e., the count of non-
loop (super) edges in outputs) due to the edges adjacent to any node in A (see the encoding step in
Section 7.3.2.3). Then, we define the saving due to the merger between supernodes A 6= B ∈ S given
supernodes S as

Saving(A,B,S) := 1− Cost(A ∪B, (S − {A,B}) ∪ {A ∪B})
Cost(A,S) + Cost(B,S)

, (7.3)

where Cost(A,S) + Cost(B,S) is the cost of A and B before their merger, and Cost(A ∪ B, (S −
{A,B}) ∪ {A ∪ B}) is their cost after their merger. That is, Saving(A,B,S) is the ratio of the cost
reduction due to the merger and the cost before the merger. Lastly, we define the supernode jaccard
similarity between supernodes A 6= B ∈ S as

SuperJaccard(A,B) :=

∑
v∈NA∪NB min(w(A, v), w(B, v))∑
v∈NA∪NB max(w(A, v), w(B, v))

, (7.4)

where NA :=
⋃
v∈ANv is the set of nodes adjacent to any node in supernode A ∈ S, and w(A, v) :=

|{u ∈ A : {u, v} ∈ E}| is the number of nodes in supernode A ∈ S adjacent to node v ∈ V .
SuperJaccard(A,B) measures the similarity of A and B in terms of their connectivity. Notice that it is
1 if A and B have the same connectivity (i.e., w(A, v) = w(B, v) for every v ∈ NA ∪NB) and it is 0 if
their nodes have no common neighbors (i.e., NA ∩NB = ∅).

Given disjoint groups of supernodes {S(1), ...S(k)}, the merging step merges some pairs of supern-
odes within each group S(i) in a greedy manner, as described in Algorithm 7.3. Notice that, in line 5,
SWEG uses SuperJaccard(A,B) instead of Saving(A,B,S), which is a more straightforward choice,
to find a candidate pair of supernodes A 6= B ∈ S(i). This is because (a) SuperJaccard(A,B) is

93

Algorithm 7.3 Merging Step of SWEG

Input: input graph G = (V , E), current supernodes S ,
current iteration t, disjoint groups of supernodes {S(1), ...S(k)}

Output: updated supernodes S
1: for each group S(i) ∈ {S(1), ...S(k)} do
2: Q ← S(i)

3: while |Q| > 1 do
4: pick and remove a random supernode A from Q
5: B ← arg maxC∈Q SuperJaccard(A,C) . Eq. (7.4)
6: if Saving(A,B,S) ≥ θ(t) then . Eq. (7.3) and Eq. (7.5)
7: S ← (S − {A,B}) ∪ {A ∪B} . merge A and B
8: S(i) ← (S(i) − {A,B}) ∪ {A ∪B}
9: Q ← (Q− {B}) ∪ {A ∪B} . replace B with A ∪B

10: return S

Algorithm 7.4 Encoding Step of SWEG

Input: input graph G = (V , E), set of supernodes S
Output: summary graph G = (S,P), corrections C =< C+, C− >

1: P ← ∅; C+ ← ∅; C− ← ∅;
2: for each supernode A ∈ S do
3: for each supernode B (6= A) where EAB 6= ∅ do . Eq. (7.6)
4: if EAB ≤ |A|·|B|

2
then C+ ∪ EAB

5: else P ← P ∪ {{A,B}}; C− ← C− ∪ (πAB − EAB) . Eq. (7.7)
6: if EAA ≤ |A|·(|A|−1)

4
then C+ ← C+ ∪ EAA . Eq. (7.8)

7: else P ← P ∪ {{A,A}}; C− ← C− ∪ (πAA − EAA) . Eq. (7.9)
8: return G = (S,P) and C =< C+, C− >

cheaper to compute than Saving(A,B,S) and (b) intuitively, Saving(A,B,S) tends to be high when
A and B have similar connectivity. Computing SuperJaccard(A,C) instead of Saving(A,C,S) for
every supernode C ∈ Q in line 5 leads to a significant improvement in speed with small loss in the
compactness of outputs, as shown empirically in Section 7.5.2. In line 6, the merging threshold θ(t) is
set as in Eq. (7.5) so that SWEG gradually shifts from exploration (of supernodes in the other groups)
to exploitation (of supernodes in the same group).

θ(t) :=

{
(1 + t)−1 if t < T,

0 if t = T.
(7.5)

This decreasing threshold is crucial for obtaining compact output representations, as shown empirically
in Section 7.5.2.

7.3.2.3 Encoding Step (Algorithm 7.4)
Given the supernodes S from the previous steps, the encoding step encodes the edges E of the input
graph into superedges P and corrections C =< C+, C− >. We first describe how to encode edges that
connect different supernodes (lines 3-5 of Algorithm 7.4). For each supernode pair A 6= B ∈ S, we let

94

Algorithm 7.5 Dropping Step of SWEG (Optional)

Input: input graph G = (V , E), error bound ε
summary graph G = (S,P), corrections C =< C+, C− >

Output: updated summary graph G = (S,P),
updated corrections C =< C+, C− >

1: cv ← ε · |Nv| for each node v ∈ V . change limits of nodes
2: for each edge {u, v} ∈ C+ do
3: if cu ≥ 1 and cv ≥ 1 then
4: C+ ← C+ − {{u, v}}; cu ← cu − 1; cv ← cv − 1

5: for each edge {u, v} ∈ C− do
6: if cu ≥ 1 and cv ≥ 1 then
7: C− ← C− − {{u, v}}; cu ← cu − 1; cv ← cv − 1

8: for each superedge {A,B} ∈ P in the increasing order of |A| · |B| do
9: if A 6= B and (∀v ∈ A, cv ≥ |B|) and (∀v ∈ B, cv ≥ |A|) then

10: P ← P − {{A,B}};
11: for each v ∈ A do cv ← cv − |B|
12: for each v ∈ B do cv ← cv − |A|
13: return G = (S,P) and C =< C+, C− >

EAB ⊂ E be the set of edges connecting A and B, and πAB be the set of all pairs of nodes in A and B.
That is,

EAB := {{u, v} ⊂ V : u ∈ A, v ∈ B, {u, v} ∈ E}, (7.6)
πAB := {{u, v} ⊂ V : u ∈ A, v ∈ B}. (7.7)

Recall how a graph is restored from P and C in Section 7.2. Then, the two options to encode the edges
in EAB are as follows:

(a) without superedges: merge EAB into C+,

(b) with a superedge: add {A,B} to P; merge (πAB − EAB) into C−.
Since (a) and (b) increase our objective (i.e., Eq. (7.1)) by |EAB| and (1 + |πAB| − |EAB|), respectively,
SWEG chooses (a) if |EAB| ≤ |πAB|/2 = |A| · |B|/2 (line 4). Otherwise, it chooses (b) (line 5).

SWEG encodes edges within each supernode in a similar manner (lines 6-7). For each supernode
A ∈ S, we let EAA ⊂ E be the set of edges between nodes within A, and πAA be the set of all pairs of
distinct nodes within A. That is,

EAA := {{u, v} ⊂ V : u 6= v ∈ A, {u, v} ∈ E}, (7.8)
πAA := {{u, v} ⊂ V : u 6= v ∈ A}. (7.9)

Then, the two options to encode the edges in EAA are as follows:
(c) without superloops: merge EAA into C+,

(d) with a superloop: add {A,A} to P; merge (πAA − EAA) into C−.
Since (c) and (d) increase our objective (i.e., Eq. (7.1)) by |EAA| and (|πAA| − |EAA|), respectively,
SWEG chooses (c) if |EAA| ≤ |πAA|/2 = |A| · (|A| − 1)/4 (line 6). Otherwise, it chooses (d) (line 7).

95

7.3.2.4 Dropping Step (Algorithm 7.5)
The dropping step is an optional step for lossy summarization (i.e., when ε > 0). This step is skipped
if lossless summarization is needed (i.e., when ε = 0). Given the summary graph G = (S,P) and
corrections C =< C+, C− > from the previous step, the dropping step drops some (super) edges from
P and C to make the output representation more compact (i.e., to further reduce our objective Eq. (7.1))
without changing more than ε of the neighbors of each node (i.e., within the error bounds given in
Eq. (7.2)). SWEG first initializes the change limit cv of each node v ∈ V to ε · |Nv|, which is the right-
hand side of Eq. (7.2) (line 1 of Algorithm 7.5). Then, within the change limit of each node, SWEG
drops some adjacent edges from C+, C−, and P , as described in lines 2-4, lines 5-7, and lines 8-12,
respectively. Notice that, when a superedge {A,B} is dropped, the total decrement in the change limits
is proportional to |A| · |B|, which is used to sort the superedges in line 8. Lastly, SWEG returns the
updated summary graph G = (S,P) and corrections C =< C+, C− >, which satisfy the error bounds
given in Eq. (7.2), as shown in Theorem 7.1 (line 13).

Theorem 7.1: Error Bounds

Given an input graph G = (V , E), a summary graph G = (S,P), and corrections C =< C+, C− >
satisfying that the restored graph Ĝ is equal to G, Algorithm 7.5 returns G and C that satisfy
Eq. (7.2).

Proof. From Ĝ = G, N̂v = Nv holds for every node v ∈ V at the beginning of the algorithm. Thus,
after the change limit cv of each node v ∈ V is initialized to ε · |Nv| in line 1, Eq. (7.10) holds.

cv ≤ ε · |Nv| − |N̂v −Nv| − |Nv − N̂v|,∀v ∈ V . (7.10)

Recall how Ĝ is constructed from G and C in Section 7.2. Eq. (7.10) still holds after C+ is processed
in lines 2-4 since dropping an edge from C+ decreases cv by 1, increases |Nv − N̂v| by at most 1, and
keeps |N̂v − Nv| the same for each adjacent node v ∈ V . Likewise, Eq. (7.10) still holds after C− is
processed in lines 5-7 since dropping an edge in C− decreases cv by 1, increases |N̂v −Nv| by at most
1, and keeps |Nv − N̂v| the same for each adjacent node v ∈ V . Similarly, we can show that Eq. (7.10)
still holds after P is processed in lines 8-12. Eq. (7.11) is enforced by lines 3, 6, and 9.

cv ≥ 0,∀v ∈ V . (7.11)

Eq. (7.10) and Eq. (7.11) imply Eq. (7.2). �

7.3.3 Parallelization in Shared Memory
We describe how each step of SWEG (Algorithm 7.1) is parallelized in shared-memory environments.
In the dividing step (Algorithm 7.2), the supernodes in line 2 are processed independently in parallel.
In the merging step (Algorithm 7.3), the groups of supernodes in line 1 are processed in parallel. In
lines 6 and 7, the accesses and updates of S are synchronized. In the encoding step (Algorithm 7.4),
the supernodes in line 2 are processed independently in parallel. Specifically, each thread has its own
copies of P , C+, and C−; and the copies are merged once, after all supernodes are processed. Lastly,
in the dropping step (line 7.5), parallel merge sort [Lea00] is used when sorting P in line 8. Although
the other parts of the dropping step are executed serially, they take a negligible portion of the total

96

execution time because they are executed only once, while the dividing and merging steps are repeated
multiple times.

7.3.4 Distributed Processing with MAPREDUCE

We describe how each step of SWEG is implemented in the MAPREDUCE framework for large-scale
graphs not fitting in main memory. We assume that the input graph G is stored in a file in a distributed
file system where each record describes the nodes in a supernode and the neighbors of the nodes in G.
Specifically, the record R(A) for a supernode A ∈ S is in the following format:

R(A) := (id of A, |A|, (u, |Nu|, (
|Nu|︷ ︸︸ ︷

v, ..., w)), ..., (x, |Nx|, (
|Nx|︷ ︸︸ ︷

y, ..., z))︸ ︷︷ ︸
|A|

), (7.12)

where (u, |Nu|, (v, ..., w)) describes the degree and the neighbors of node u ∈ A.

Dividing and Merging Steps: First, each iteration of the dividing and merging steps (Algorithms 7.2
and 7.3) is performed by the following MAPREDUCE job:
• Map-1: The hash function h is broadcast to the mappers. Each mapper repeats taking a record R(A),

computing F (A) (lines 3-5 of Algorithm 7.2), and emitting < F (A), R(A) >.
• Reduce-1: The supernodes S are broadcast to the reducers. Each reducer repeats taking {R(A)|A ∈
S(i)} for a group S(i), updating S(i) (lines 2-9 of Algorithm 7.3), and emitting R(A) for each su-
pernode A in the updated S(i). In the end, each reducer writes the updates in S to the distributed file
system.

Note that updates in S are not shared among the reducers during the reduce stage. However, in our
experiments, the effect of this lazy synchronization on the compactness of output representations was
negligible regardless of the number of reducers.

Encoding Step: Next, the following map-only job performs the encoding step (Algorithm 7.4):
• Map-2: The supernodes S are broadcast to the mappers. Each mapper repeats taking a record R(A),

encoding the edges adjacent to any node in A (lines 3-7 of Algorithm 7.4), and emitting the new
(super) edges in P , C+, and C−. Different output paths are used for P , C+, and C−.

Dropping Step: Lastly, for the dropping step (Algorithm 7.5), Map-3 initializes the change limit of
each node (line 1); and Map-4 and Reduce-4 sort the superedges in P (line 9).
• Map-3: Each mapper repeats taking a record R(A) and emitting < v, ε · |Nv| > for each node v ∈ A.
• Map-4: The input file, which is an output of Reduce-2, lists the superedges in P . Each mapper

repeats taking a superedge {A,B} and emitting < (|A| · |B|, {A,B}), ∅ >.
• Reduce-4: A single reducer repeats taking a superedge {A,B} ∈ P and emitting it. The superedges

are sorted in the shuffle stage.

The other parts of the dropping step are processed serially. Specifically, after loading the nodes’ change
limits (the output of Map-3) in memory, our implementation repeats reading a (super) edge in C+ (an
output of Map-2), C− (an output of Map-2), and P (the output of Reduce-4) and writing the (super)
edge to the output file if it is not dropped. Note that entire C+, C−, or P is not loaded in memory at
once. These serial parts take a small portion of the total execution time because they are executed only
once, while the dividing and merging steps are repeated multiple times.

97

7.3.5 Further Compression: SWEG+

We propose SWEG+, an algorithm for further compression. The outputs of SWEG (i.e., G = (S,P)
and C =< C+, C− >) can be represented as three graphs: G = (S,P), G+ = (V , C+), and G− =
(V , C−). Thus, as described in Algorithm 7.6, SWEG+ further compresses each of the graphs using a
given graph-compression algorithm ALG. If ALG relabels nodes, to keep the labels of V in G+ and G−
the same, the labels of V obtained when compressing G+ are also used for G−, which is usually much
smaller than G+.

Any graph-compression method, such as [DKK+16, BV04, AD09, CKL+09, BC08, RZ18], can be
used as ALG depending on the objectives of compression. In Section 7.5.6, we empirically show that
for many graph-compression methods, SWEG+ gives significantly more compact representations than
directly compressing the input graph using the methods.

Algorithm 7.6 SWEG+: Algorithm for Further Compression

Input: input graph G = (V , E), number of iterations T , error bound ε
graph-compression method ALG

Output: compressed G = (S,P), G+ = (V , C+), and G− = (V , C−)
1: run SWEG to get G = (S,P) and C =< C+, C− > . Algorithm 7.1
2: run ALG on each of G = (S,P), G+ = (V , C+), and G− = (V , C−)
3: return the compressed G, G+, and G−

7.4 Theoretical Analysis
We analyze the time complexity and memory requirements of SWEG. To this end, we let EA :=
{{u, v} ∈ E : u ∈ A} be the set of edges adjacent to any node in supernode A ∈ S and E (i) :=⋃
A∈S(i) EA be the set of edges adjacent to any node in any supernode in group S(i). We also let k be

the number of groups of supernodes from the dividing step. Since the groups are disjoint,∑k

i=1
|E (i)| ≤

∑
A∈S
|EA| ≤ 2|E|. (7.13)

Since the encoding step (Algorithm 7.4) yields outputs with no more (super) edges than (P ← ∅, C+ ←
E , C− ← ∅),

|C+|+ |C−|+ |P| ≤ |E|. (7.14)

Lastly, we assume that |V| ≤ |E|, for simplicity.

7.4.1 Time Complexity Analysis
The dividing step (Algorithm 7.2) takes O(|E|) because its computational bottleneck is to compute the
shingles of all supernodes (lines 2-5), which requires accessing every edge in E twice. The merging step
(Algorithm 7.3) takes O(

∑k
i=1 |S(i)| |E (i)|), because when each group S(i) is processed (lines 2-9), the

number of iterations is |S(i)| − 1 and each iteration takes O(|E (i)|). The encoding step (Algorithm 7.4)
takes O(

∑k
A∈S |EA|) = O(|E|) because to process each supernode A (lines 3-7) takes O(|EAA| +∑

B(6=A):EAB 6=∅ |EAB|) = O(|EA|). This follows from |πAB| < 2 · |EAB| and |πAA| < 2 · |EAA| in lines 5
and 7, which are due to the conditions in lines 4 and 6. Lastly, the dropping step (Algorithm 7.5) takes

98

O(|E|+ |C+|+ |C−|+ |P|) = O(|E|) (see Eq. (7.14)). Note that P (lines 8) can be sorted inO(|P|+ |E|)
using any linear-time integer sorting algorithm (e.g., counting sort) since |A| · |B| ∈ {1, ..., 2|E|} for
every {A,B} ∈ P due to the conditions in lines 4 and 6 of Algorithm 7.4. Thus, all the steps except
for the merging step take O(|E|). The merging step, whose time complexity is O(

∑k
i=1 |S(i)||E (i)|),

also takes O(|E|) if S is divided finely in the dividing step so that the size of each group is less than
a constant (see Eq. (7.13)). In such cases, the overall time complexity of SWEG (Algorithm 7.1) is
O(T · |E|) since the dividing and merging steps are repeated T times. This linear scalability is shown
experimentally in Section 7.5.4.

7.4.2 Memory Requirement Analysis

The space required for storing S, {S(1), ...,S(k)}, {h(v) : v ∈ V}, and {cv : v ∈ V} is O(|V|),
and the space required for storing G, G, and C is O(|E|) (see Eq. (7.14)). Thus, in shared-memory
settings, where all of them are stored in memory, the memory requirements of SWEG (Algorithm 7.1)
are O(|V| + |E|) = O(|E|). In MAPREDUCE settings, as described in Section 7.3.4, each mapper or
reducer requires O(|V|) memory, which is used to store S, {h(v) : v ∈ V}, or {cv : v ∈ V}, in all the
stages except for Reduce-1. In Reduce-1, in addition to O(|V|) memory for S, each reducer requires
O(max1≤i≤k |E (i)|) memory where {R(A) : A ∈ S(i)} for each group S(i) is loaded at once. Thus, the
memory requirements are O(|V| + max1≤i≤k |E (i)|) per reducer. In real-world graphs, max1≤i≤k |E (i)|
is much smaller than |E|, as shown experimentally in Figure 7.3.

6X 4X 10X
108X 284X 42X

33X 56X 1209X 294X
139X

27X

105

107

109

CA PR EM DB AM YO SK WS PA LJ HO WL
Datasets

N
um

be
r o

f E
dg

es

Largest Subgraph
(that needs to be loaded in main memory)
Input Graph

Figure 7.3: SWEG is memory efficient. Subgraphs that SWEG loads in memory at once are signifi-
cantly smaller than input graphs. See Section 7.5.1 for the detailed experimental settings.

7.5 Experiments
We review our experiments for answering the following questions:
• Q1. Lossless Summarization: Does the lossless version of SWEG yield more compact represen-

tations faster than its competitors?
• Q2. Lossy Summarization: Does the lossy version SWEG yield more compact and accurate rep-

resentations than baselines?
• Q3. Scalability: Does SWEG scale linearly with the size of the input graph? Does SWEG scale up

and scale out?
• Q4. Effects of Parameters: How do the number of iterations T and the error bound ε affect the

compactness of outputs?

99

Table 7.2: Summary of the graphs used in our experiments. B: billion, M: million, K: thousand.

Name # Nodes # Edges Summary

Caida (CA) [LKF07] 26.5K 53.4K Internet graph
Protein (PR) [JTGV+05] 6, 229 146K Protein interaction graph
Email (EM) [KY04] 36.7K 184K Email network
DBLP (DB) [YL15] 317K 1.05M Collaboration network
Amazon (AM) [LAH07] 403K 2.44M Co-purchase network
Youtube (YO) [MMG+07] 1.13M 2.99M Social network
Skitter (SK) [LKF07] 1.70M 11.1M Internet graph
Web-Small (WS) [BV04] 863K 16.1M Web graph
Patent (PA) [HJT01] 3.77M 16.5M Citation network
LiveJournal (LJ) [YL15] 4.00M 34.7M Social network
Hollywood (HO) [BV04] 1.99M 114M Collaboration network
Web-Large (WL) [BV04] 39.5M 783M Web graph
LinkedIn (LI) > 600M > 20B Social

• Q5. Further Compression: How much does SWEG+ improve the compression rates of combined
compression methods?

7.5.1 Experimental Settings

Machines: We ran single instance experiments on a machine with 2.10GHz Intel Xeon E6-2620 CPUs
(with 6 cores) and 64GB memory. We ran MapReduce experiments on a private Hadoop cluster.

Datasets: We used 13 real-world graphs summarized in Table 7.2. We ignored the direction of edges in
all the datasets. All the datasets are publicly available except for the LinkedIn dataset, which we used
only for scalability tests.

Implementations: We implemented all the considered algorithms in Java 1.8. We implemented the
shared-memory version of SWEG using standard Java multithreading, and we set the number of threads
to 8 unless otherwise stated. We implemented the MAPREDUCE version of SWEG using Hadoop 2.6.1,
and we set the numbers of mappers and reducers to 40 unless otherwise stated. In both implementations,
we ran the dividing step recursively so that each group had at most 500 supernodes, as described in
Section 7.3.2.1.

Evaluation Metric: To measure the compactness of the outputs of summarization (i.e., G = (S,P)
and C =< C+, C− >) of a given graph G = (V , E), we used relative size of outputs, defined as

(|P∗|+ |C+|+ |C−|)
|E|

, (7.15)

where the numerator is our objective function (i.e., Eq. (7.1)) and the denominator is a constant for a
given input graph.

100

SWeG (Proposed) SAGS Randomized Greedy

3500X
0.40

0.45

0.50

0.55

0.60

0.65

10-1 100 101 102 103 104

Elapsed Time (sec)

R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(a) Caida

370X
0.1

0.2

0.3

10-1 100 101 102 103 104

Elapsed Time (sec)

R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts
(b) Protein

2370X0.60

0.65

0.70

0.75

0.80

0.85

10-1100101102103104105

Elapsed Time (sec)

R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(c) Email

650X

0.5

0.6

0.7

100 101 102 103 104

Elapsed Time (sec)

R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(d) DBLP

●

●
●●●

●

●
●●●

●

●
●●●

610X
0.55

0.60

0.65

0.70

0.75

0.80

101 102 103 104

Elapsed Time (sec)R
el

at
ive

 S
ize

 o
f O

ut
pu

ts

o.o.t.

(e) Amazon

●

●
●●●

●

●
●●●

●

●
●
●●

5400X
0.65

0.70

0.75

0.80

0.85

101 102 103 104 105

Elapsed Time (sec)R
el

at
ive

 S
ize

 o
f O

ut
pu

ts

o.o.t.

(f) Youtube

●
●
●●●

●
●
●●●

●
●
●●●

4490X
0.5

0.6

0.7

101 102 103 104 105 106

Elapsed Time (sec)R
el

at
ive

 S
ize

 o
f O

ut
pu

ts

o.o.t.

(g) Skitter

●
●
●●●

●
●
●●●

●
●
●●●

3150X
0.20

0.25

0.30

0.35

101 102 103 104 105

Elapsed Time (sec)R
el

at
ive

 S
ize

 o
f O

ut
pu

ts

o.o.t.

(h) Web-Small

●

●
● ● ●

●

●
● ● ●

●

●
● ● ●

0.75

0.80

0.85

0.90

102 103

Elapsed Time (sec)R
el

at
ive

 S
ize

 o
f O

ut
pu

ts

o.o.t.

(i) Patent

●

●
● ● ●

●

●
●

● ●

●

●

●
● ●0.70

0.75

0.80

0.85

102 103

Elapsed Time (sec)R
el

at
ive

 S
ize

 o
f O

ut
pu

ts

o.o.t.

(j) LiveJournal

●

●
●
●●

●

●
●

● ●

●

●

●
● ●

0.550

0.575

0.600

0.625

102 103 104

Elapsed Time (sec)R
el

at
ive

 S
ize

 o
f O

ut
pu

ts

o.o.t.

(k) Hollywood

●●● ● ●
●●● ● ●
●●● ● ●

0.10

0.15

0.20

103 104 105

Elapsed Time (sec)R
el

at
ive

 S
ize

 o
f O

ut
pu

ts

o.o.t.

(l) Web-Large

Figure 7.4: SWEG (lossless and shared-memory) significantly outperforms existing lossless sum-
marization methods. o.o.t.: out of time (> 48 hours). Specifically, SWEG was up to 5 , 400× faster
than the others that give similarly compact outputs.

7.5.2 Q1. Lossless Summarization
We compared lossless graph-summarization methods in terms of speed and compactness of represen-
tations. To this end, we measured the elapsed time and the relative size of the outputs (i.e., Eq. (7.15))
of the following methods:

(a) SWEG (Proposed): the shared-memory and lossless version of SWEG with ε = 0 and T =
{5, 10, 20, 40, 80}.

(b) SAGS [KNL15]: SAGS with five different parameter settings. 1

(c) RANDOMIZED [NRS08].

(d) GREEDY [NRS08].
1{h = 28, b = 7, OverlapRatio = 0.3}, {h = 28, b = 7, OverlapRatio = 0.1}, {h = 28, b = 7, OverlapRatio =

0.2}, {h = 30, b = 10, OverlapRatio = 0.3}, and {h = 30, b = 15, OverlapRatio = 0.3}.

101

2.7X0.45

0.50

0.55

0.60

100 101 102

Elapsed Time (sec)

R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(a) DBLP

3.5X

0.200

0.225

0.250

0.275

101 102 103 104

Elapsed Time (sec)

R
el

at
iv

e
S

iz
e

of
 O

ut
pu

ts

(b) Web-Small

SWeG
(Proposed)
SWEG-J
SWeG-G
SWeG-T
SWeG-P

Figure 7.5: SWEG (lossless and shared-memory) significantly outperforms its variants. This
justifies our design choices.

(e) SWEG-P: a variant of (a) without parallelization with T = 20.

(f) SWEG-G: a variant of (a) that does not group the supernodes with T = 20.

(g) SWEG-J: a variant of (a) that chooses supernodes to merge based on the exact savings instead of
jaccard similarity with T = 20.

(h) SWEG-T: a variant of (a) where the merging thresohld θ(t) = 0 and T = 20.
Among them, (b)-(e) are serial methods and the others are parallel methods. We slightly modified
(b)-(d) so that they aim to minimize the same objective (i.e., Eq. (7.1)) of SWEG.

SWEG provided the best trade-off between speed and compactness of outputs. As seen in Figure 7.4,
SWEG significantly outperformed SAGS, RANDOMIZED, and GREEDY on all the datasets. For exam-
ple, on the Youtube dataset, SWEG was 5,400× faster with 2% smaller outputs than RANDOMIZED

and 18% faster with 10% smaller outputs than SAGS. GREEDY did not terminate within a reasonable
time period (≥ 48 hours) on the dataset. As seen in Figure 7.5, SWEG (with T = 20) also outper-
formed its variants. Although we only reported the results on the DBLP and Web-Small datasets, we
obtained consistent results on all other datasets. These results justify our design choices in Section 7.3.

7.5.3 Q2. Lossy Summarization
We compared the following lossy graph-summarization methods in terms of the compactness and ac-
curacy of output representations:

(a) SWEG (Proposed): the shared-memory and lossy version of SWEG with T = 80 and ε =
{0, 0.18, 0.36, 0.54, 0.72, 0.9}.

(b) BAZI [BAZK18]: BAZI with s = log2 |S|, w = 50, and k = {0.1 · |V|, 0.28 · |V|, 0.46 · |V|, 0.64 ·
|V|, 0.82 · |V|, |V|}.

(c) BOUNDED: a baseline that performs only the dropping step of SWEG, i.e., SWEG with T = 0
and ε = {0.18, 0.36, 0.54, 0.72, 0.9}.

(d) RANDOM: a baseline that randomly drops ε = {0.18, 0.36, 0.54, 0.72, 0.9} of the edges from the
input graph.

We measured the relative size of outputs (e.g., Eq. (7.15)) to evaluate the compactness of outputs. Then,
to evaluate the accuracy of outputs, we measured how accurately the outputs preserve the relevances
between nodes as follows:

102

S1. randomly choose 100, 000 seed nodes in the input graph.

S2. compute the true relevances between each seed node and the other nodes in the input graph.

S3. compute the approximate relevances between each seed node and the other nodes in the graph
restored from the outputs.

S4. measure how accurate the approximate relevances from S3 are.

In S2 and S3, we used one of the following relevance scores:
• Random Walk with Restart (RWR) [TFP06]: each node’s RWR score with respect to a seed node

is defined as the stationary probability that a random surfer is at the node. The random surfer
either moves to a neighboring node of the current node (with probability 0.8) or restarts at the
seed node (with probability 0.2).

• Number of Common Neighbors (NCN): each node’s NCN score with respect to a seed node is
defined as the number of common neighbors of the node and the seed node.

In S4, we computed one of the following accuracy measures for every seed node and averaged them.
• Precision@100: Precision@100 is defined as the fraction of the 100 most relevant nodes in terms

of the true relevances among those in terms of the approximate relevances.
• NDCG@100 [JK02]: Let r(i) be the true relevance of the i-th most relevant node in terms of the

approximate relevances. Then,

NDCG@100 :=
1

Z

∑100

i=1

2r(i)

log2(1 + i)
,

where Z is a constant normalizing NDCG@100 to be within [0, 1].

SWEG yielded the most compact and accurate representations. As seen in Figure 7.6, SWEG sig-
nificantly outperformed the other methods on all the considered datasets. For example, on the Web-
Small dataset, SWEG gave a 24.3× more compact and similarly accurate representation than the
other methods. BAZI tended to yield representations with most (super) edges since it aims to reduce
the number of supernodes instead of minimizing the number of (super) edges (see Section 7.6).

7.5.4 Q3. Scalability
We evaluated the scalability of the shared-memory and MAPREDUCE implementations of SWEG.
Specifically, we measured how rapidly their running times change depending on the size of the input
graph, the number of threads, and the number of machines (i.e., the numbers of mappers and reducers
in the MAPREDUCE framework). In the shared-memory setting, we used graphs with different sizes
obtained by sampling different numbers of nodes from the Web-Large dataset. In the MAPREDUCE

setting, we used graphs obtained in the same manner using the LinkedIn dataset. When measuring
the data scalability, we fixed the number of threads to 8 and the number of machines to 40. When
measuring the machine and multi-core scalability, we fixed the size of the input graph.

SWEG scaled linearly with the size of the input graph, as seen in Figures 7.7(a) and 7.7(b). The
lossless summarization by SWEG as well as the additional dropping step for lossy summarization
(with ε = 0.1) scaled near linearly with the number of edges in the input graph in both settings. Note
that the largest graph used had more than 20 billion edges.

SWEG achieved significant speedup in the shared-memory and MAPREDUCE settings. As seen in
Figure 7.7(c), the speedup, defined as T1/TN where TN is the running time of SWEG with N threads,

103

SWeG (Proposed) BAZI Bounded Random
16X

23.5X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(a) Protein (NCN,
Precision)

1.7X

2.2X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(b) Email (NCN,
Precision)

2.3X

3.3X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(c) DBLP (NCN,
Precision)

2.4X

3.3X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(d) Skitter (NCN,
Precision)

13X

24.3X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(e) Web-Small (NCN,
Precision)

16X

23.5X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(f) Protein (NCN,
NDCG)

1.7X

2.2X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(g) Email (NCN,
NDCG)

2.3X

3.3X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(h) DBLP (NCN,
NDCG)

2.4X

3.3X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(i) Skitter (NCN,
NDCG)

7.2X

14X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(j) Web-Small (NCN,
NDCG)

15.7X

14.1X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(k) Protein (RWR,
Precision)

1.6X

1.9X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(l) Email (RWR,
Precision)

2.3X

2X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(m) DBLP (RWR,
Precision)

2.4X

3.3X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(n) Skitter (RWR,
Precision)

7X

12.8X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

P
re

ci
si

on
 @

 1
00

(o) Web-Small (RWR,
Precision)

16X

15X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(p) Protein (RWR,
NDCG)

1.7X

2.2X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(q) Email (RWR,
NDCG)

2.3X

2X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(r) DBLP (RWR,
NDCG)

2.4X

3.3X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(s) Skitter (RWR,
NDCG)

7.2X

7.7X
0.0
0.2
0.4
0.6
0.8
1.0

0.0 0.2 0.4 0.6 0.8 1.0
Relative Size of Outputs

N
D

C
G

 @
 1

00

(t) Web-Small (RWR,
NDCG)

Figure 7.6: SWEG (lossy) significantly outperforms baseline methods for lossy graph summariza-
tion. Specifically, SWEG yielded up to 24 .3× more compact and similarly accurate representations
than the other methods.

104

SWeG (Lossless) SWeG (Lossy, Dropping Step Only) Linear Scalability

25

26

27

28

29

210

228 230 232 234

Number of Edges

E
la

ps
ed

 T
im

e
 P

er
 It

er
at

io
n

(s
ec

)

27

29

211

213

228 230 232 234

Number of Edges

E
la

ps
ed

 T
im

e
(s

ec
)

(a) Data Scalability (MAPREDUCE)

23

24

25

26

27

28

225 227 229

Number of Edges

E
la

ps
ed

 T
im

e
 P

er
 It

er
at

io
n

(s
ec

)

2-1

21

23

25

225 227 229

Number of Edges

E
la

ps
ed

 T
im

e
(s

ec
)

(b) Data Scalability (Shared Memory)

0

2

4

6

8

0 2 4 6 8
Number of Threads

S
pe

ed
 U

p

(c) Multi-Core Scalability (Shared Memory)

0

10

20

30

40

0 10 20 30 40
Number of Machines

S
pe

ed
 U

p

(d) Machine Scalability (MAPREDUCE)

Figure 7.7: SWEG is scalable in both the MAPREDUCE and shared-memory settings. (a-b) SWEG
scaled linearly with the size of the input graph. (c-d) SWEG achieved significant speedups as more
machines and cores were used. Note that the largest graph used had more than 20 billion edges.

increased near linearly with the number of threads. Specifically, SWEG provided a speedup of 3.3×
with 4 threads and 5.7× with 8 threads in the shared-memory setting. As seen in Figure 7.7(a), the
speedup of SWEG, defined as T1/TN where TN is the running time of SWEG with N machines, in-
creased near linearly with the number of machines. Specifically, SWEG provided a speedup of 8.3×
with 10 machines and 26.4× with 40 machines in the MAPREDUCE setting.

7.5.5 Q4. Effects of Parameters
We measured how the number of iterations T and the error bound ε in SWEG affect the compactness
of its output representations using the relative size of outputs (i.e., Eq. (7.15)). For measuring the effect
of T , we fixed ε to 0 and changed T from 1 to 80. For measuring the effect of ε, we fixed T to 80 and
changed ε from 0 to 0.5.

The larger the number of iterations the more compact the output representations. As seen in Fig-
ure 7.8, the size of outputs decreased over iterations and eventually plateaued.

The larger the error bound, the more compact the output representations. As seen in Figure 7.9,
the size of outputs decreased near linearly as the error bound increased.

The relative size of outputs was small in web graphs and protein-interaction graphs, where nodes
tend to have similar connectivity [CLDG03, KRR+00].

105

●
●●● ● ● ● ● ● ●
●
●●●●●● ● ● ●
●
●●●●●● ● ● ●

0.2

0.4

0.6

0.8

0 20 40 60 80
Number of IterationsR

el
at

ive
 S

ize
 o

f O
ut

pu
ts

CA
SK
AM

PR

EM
LJ

●
●●● ● ● ● ● ● ●

●
●●●●●● ● ● ●
●
●●●●●● ● ● ●

0.2

0.4

0.6

0.8

0 20 40 60 80
Number of IterationsR

el
at

ive
 S

ize
 o

f O
ut

pu
ts

WS

DB
HO

WL

YO
PA

Figure 7.8: Effects of iterations on the compactness of outputs. As the number of iterations in
SWEG (lossless) increases, the output representations become compact.

● ● ● ● ● ●

● ● ● ● ● ●
● ● ● ● ● ●

0.2

0.4

0.6

0.0 0.1 0.2 0.3 0.4 0.5
Error BoundsR

el
at

ive
 S

ize
 o

f O
ut

pu
ts

WS
DB
HO

WL

YO
PA

●
● ● ● ● ●

● ● ● ● ● ●

●
● ● ● ● ●

0.2

0.4

0.6

0.0 0.1 0.2 0.3 0.4 0.5
Error BoundsR

el
at

ive
 S

ize
 o

f O
ut

pu
ts

CA
SK

AM

PR

EM
LJ

Figure 7.9: Effects of error bounds on the compactness of outputs. As the error bound in SWEG
(lossy) increases, the output representations become compact.

7.5.6 Q5. Further Compression
We measured how much SWEG+ improves the compression rates of the following advanced graph-
compression methods:

(a) BP [DKK+16]: reordering nodes as suggested in [DKK+16] with 20 iterations and using the
webgraph framework [BV04].

(b) SHINGLE [CKL+09]: reordering nodes as suggested in [CKL+09] and using the webgraph
framework [BV04].

(c) BFS [AD09]: BFS with the default parameter setting in its open-sourced implementation.2

(d) VNMINER [BC08]: VNMINER with 80 iterations.
For the webgraph framework in (a) and (b), we used the default parameter setting (i.e., r = 3, W = 7,
Lmin = 7, and ζ3). We measured the compression rates using the objective function of each compres-
sion algorithm. That is, we used the number of bits per directed edge3 for (a)-(c) and the relative size
of outputs (i.e., Eq. (7.15)) for (d).

SWEG+ achieved further compression. As seen in Figure 7.1(d) in Section 7.1 and Figure 7.10, the
lossless version of SWEG+ (T = 80 and ε = 0) yielded up to 3.4× more compact representations
than all the input compression algorithms on all the datasets. Especially, SWEG+ with BFS as ALG
represented the Web-Large dataset using less than 0.7 bits per directed edge. In terms of the number
of bits, SWEG+ yielded the most compact representations when BFS or BP was used as ALG.

2 https://github.com/drovandi/GraphCompressionByBFS.
3We regarded undirected graphs as symmetric directed graphs.

106

https://github.com/drovandi/GraphCompressionByBFS.

53%56%39%

24%
29%

13%28%26%43%48%16%
29%

0.0

0.2

0.4

0.6

0.8

PR WL WS HO SK LJ EM AM DB CA PA YO
DatasetsR

el
at

ive
 S

ize
 o

f O
ut

pu
ts SWeG+ (ALG = VNMiner)

VNMiner

(a) SWEG+ (lossless) vs. VNMiner

58%
70%

66%
48%

22%44%23%
42%26%28%

17%28%

0

5

10

15

PR WL WS CA HO DB EM SK YO AM LJ PA
Datasets#

B
its

 P
er

 D
ire

ct
ed

 E
dg

e SWeG + (ALG = BFS)
BFS

(b) SWEG+ (lossless) vs. BFS

49%46%
46%

21%
15%32% 8% 24%21%

10%21%
14%

0

5

10

15

PR WL WS HO EM CA AM DB SK LJ YO PA
Datasets#

B
its

 P
er

 D
ire

ct
ed

 E
dg

e SWeG+ (ALG = BP)
BP

(c) SWEG+ (lossless) vs. BP

52%47%
50%

17%
38%21%19%

37%12%
21% 6%

15%

0

5

10

15

20

PR WL WS HO CA EM SK DB AM YO LJ PA
Datasets#

B
its

 P
er

 D
ire

ct
ed

 E
dg

e SWeG+ (ALG = Shingle)
Shingle

(d) SWEG+ (lossless) vs. Shingle

Figure 7.10: SWEG+ (lossless) significantly improves the compression rates of state-of-the-art
graph-compression algorithms.

7.6 Related Work
While this chapter addresses Problem 7.1, the term “graph summarization” has been used for a wider
range of problems related to concisely describing static plain graphs [DS13, KKVF14, NRS08, TZHH11,
RGSB17], static attributed graphs [CLF+09, FWW13, KNL14, SWL+18, THP08], and dynamic graphs
[AZBP17, LSK08, QLJ+14, SKZ+15]. We refer the reader to an excellent survey [LSDK18] for a re-
view on these problems. In this section, we focus on previous work closely related to Problem 7.1.

Lossless graph summarization. GREEDY [NRS08] repeatedly finds and merges a pair of supernodes
so that savings in space are maximized given the other supernodes. If there is no pair whose merger
leads to non-negative savings, then GREEDY creates a summary graph and corrections so that the num-
ber of (super) edges is minimized given the current supernodes S. GREEDY is computationally and
memory expensive because it maintains and updates savings for O(|V|2) pairs of supernodes. Without
maintaining any precomputed savings, RANDOMIZED [NRS08], whose time complexity isO(|V| · |E|),
randomly chooses a supernode first and then chooses another node to be merged so that savings in space
are maximized given the other supernodes. SAGS [KNL15] chooses supernodes to be merged using
locality sensitive hashing without computing savings in space, which are expensive to compute. We
empirically show in Section 7.5.2 that all these serial algorithms are not satisfactory in terms of speed
or compactness of outputs. They either have high computational complexity or significantly sacrifice
compactness of outputs for lower complexity. More importantly, they cannot handle large-scale graphs
that do not fit in main memory.

Lossy graph summarization. APXMDL [NRS08] reduces the problem of choosing edges to be dropped
from outputs of GREEDY to a maximum b-matching problem and uses Gabows algorithm [Gab83],

107

whose time complexity is O(min(|E|2 log |V|, |E| · |V|2)). Due to this high computational complexity,
APXMDL does not scale even to moderately-sized graphs. For the same problem, the dropping step
of SWEG takes O(|E|) (see Section 7.4.1). In [NRS08], combining GREEDY and APXMDL into a
single step was also discussed. Several algorithms [BAZK18, LT10, RGSB17, LTH+14], including a
distributed one [LTH+14], have been developed for a problem that is similar but not identical to Prob-
lem 7.1. They aim to find a summary graph with a given number of supernodes so that the difference
between the original and restored graphs is minimized without edge corrections. The way of restoring
a graph is different from that in Problem 7.1. Since these algorithms aim to reduce the number of
supernodes, instead of (super) edges, they are not effective for Problem 7.1 (see Section 7.5.3).

Combination with other compression techniques. In addition to graph summarization, numerous graph-
compression techniques have been developed, including relabeling nodes [BV04, AD09, DKK+16,
CKL+09], utilizing encoding schemes for integer sequences (e.g., reference, gap, and interval encod-
ings) [BV04], and encoding common structures (e.g., cliques, bipartite-cores, and stars) with fewer bits
[KKVF14, BC08, RZ18]. See [BH18] for a comprehensive survey on these techniques. As described
in Sections 7.3.5 and 7.5.6, SWEG is readily combinable with any compression technique for static
plain graphs. In [SPH+18], tightly combining two specific summarization and compression algorithms
[NRS08, WOS06] into a single process was presented.

7.7 Summary
We propose SWEG, a fast parallel algorithm for lossless and lossy summarization of large-scale graphs,
which may not fit in main memory. We present efficient implementations of SWEG in shared-memory
and MAPREDUCE environments. We also propose SWEG+ where SWEG and other graph-compression
methods are combined to achieve better compression than individual methods. We theoretically and
empirically show the following strengths of SWEG:
• Fast: SWEG provides similarly compact representations up to 5 , 400× faster than existing sum-

marization methods (Figure 7.4).
• Scalable: SWEG scales near linearly with the number of edges in the input graph, successfully

scaling to graphs with over 20 billion edges. SWEG also scales up and scales out (Figure 7.7).
• Compact: SWEG+ achieves up to 3 .4× better compression than individual state-of-the-art com-

pression methods that are combined with SWEG (Figures 7.1(d) and 7.10).

7.8 Appendix: Neighbor Queries on Summarized Graphs

Algorithm 7.7 describes how to process neighbor queries (i.e., returning the neighbors N̂v of a given
node v ∈ V) efficiently on a summary graph G = (S,P) and corrections C =< C+, C− > without
restoring entire Ĝ. Let N−v be the neighbors of node v ∈ V in C−. If there is no redundant edge4 in
C+ and we use a hash table for N̂v and adjacency lists for C+, C−, and P , then the running time of
Algorithm 7.7 is proportional to Eq. (7.16)

|N̂v|+ 2|N−v |. (7.16)

4As in the outputs of SWEG, if {A,B} ∈ P , u ∈ A, and v ∈ B, then {u, v} /∈ C+.

108

Algorithm 7.7 Neighbor Query Processing on G and C
Input: summary graph G = (S,P), corrections C =< C+, C− >,

query node v ∈ V
Output: the set N̂v of v’s neighbors in the restored graph Ĝ

1: N̂v ← ∅; Sv ← the supernode in S where v ∈ Sv
2: if Sv has a self-loop in G then N̂v ← N̂v ∪ (Sv − {v})
3: for each neighbor A (6= Sv) of Sv in G do N̂v ← N̂v ∪ A
4: N̂v ← (N̂v ∪N+

v)−N−v B N+
v : v’s neighbors in C+

5: return N̂v B N−v : v’s neighbors in C−

In every dataset listed in Table 7.2 in Section 7.5, when SWEG (T = 80) was used, |C−| was at
most 6% of the number of edges in the input graph, regardless of the error bound ε. Thus, since
|N̂v| ≤ (1 + ε) · |Nv| from Eq. (7.2), Eq. (7.16) was at most (1.12 + ε) · |Nv| on average.

109

110

Chapter 8

Summarizing Large High-order Tensors

Chapter based on work that appeared at WSDM 2017 [OSP+17] and its extension [ZOS+19].

How can we summarize large-scale multi-aspect data using Tucker decomposition on an off-the-
shelf workstation with a limited amount of memory?

Tucker decomposition has been used widely for summarizing and analyzing multi-aspect data,
which are naturally modeled as tensors. However, existing algorithms for Tucker decomposition
have limited scalability, failing to decompose high-order (i.e., 4 or higher order) tensors, since they
explicitly materialize intermediate data, whose size grows exponentially with the order.

To address this problem, which we call Materialization Bottleneck, we propose S-HOT, a scal-
able algorithm for high-order Tucker decomposition. S-HOT minimizes materialized intermediate
data by using an on-the-fly computation, and it is optimized for disk-resident tensors not fitting in
memory. We theoretically analyze the amount of memory and the number of data scans required
by S-HOT. Moreover, we empirically show that S-HOT handles tensors with higher order, dimen-
sionality, and rank than baselines. For example, S-HOT successfully decomposes a tensor from
the Microsoft Academic Graph on an off-the-shelf workstation, while all baselines fail. Especially,
in terms of dimensionality, S-HOT decomposes 1000× larger tensors than baselines.

8.1 Motivation
Tensor decomposition is a widely-used technique for summarization and analysis of multi-aspect data.
Multi-aspect data, which are naturally modeled as high-order tensors, frequently appear in many appli-
cations [CZL+11, KBK05, MGF11, MJE12, RST10], including the following examples:
• Social media: 4-way tensor (sender, recipient, keyword, timestamp)
• Web search: 4-way tensor (user, keyword, location, timestamp)
• Internet security: 4-way tensor (source IP, destination IP, destination port, timestamp)
• Product reviews: 5-way tensor (user, product, keyword, rating, timestamp)

To summarize and analyze such multi-aspect data, several tensor decomposition methods have been
proposed, and we refer interested readers to an excellent survey [KB09]. Tensor decompositions
have provided meaningful results in various domains [AÇKY05, KB09, KBK05, LNSS16, CZL+11,
FSSS09, KBK05, MJE12, RST10]. Especially, Tucker decomposition [Tuc66] has been successfully
applied in many applications, including web search [SZL+05], network forensics [STF06], social net-
work analysis [CTT06], and scientific data compression [ABK16].

111

100

101

102

3 4 5 6
Order

El
ap

se
d

Ti
m

e

 P
er

 It
er

at
io

n
(s

ec
) Out of

Memory

Baseline
Naive

BaselineOpt

S-HOTSPACE

S-HOTSCAN

S-HOTCACHE

1.5X

> 50X

(a) Scalability w.r.t. order

100

101

102

103 104 105 106 107

Dimensionality

El
ap

se
d

Ti
m

e

 P
er

 It
er

at
io

n
(s

ec
)

Baseline
Naive

BaselineOpt

S-HOTSCAN

S-HOTSPACE

S-HOTCACHE

Out of Memory

>1000X

6X

(b) Scalability w.r.t. dimensionality

100

101

102

4 8 12 16
Rank

El
ap

se
d

Ti
m

e

 P
er

 It
er

at
io

n
(s

ec
)

BaselineOpt

S-HOTSCAN

S-HOTSPACE

S-HOTCACHE

Out of Memory

Baseline
Naive

>2.6X

7X

(c) Scalability w.r.t. rank

10-1

100

101

102

104 105 106 107

Number of Non-zeros

El
ap

se
d

Ti
m

e

 P
er

 It
er

at
io

n
(s

ec
)

Baseline
Naive

BaselineOpt

S-H
OTS

CAN

S-HOTCACHE

S-HOTSPACE
4X

(d) Scalability w.r.t. non-zeros

Figure 8.1: S-HOT is scalable. Every version of S-HOT successfully summarizes tensors with
high order, dimensionality, and rank, while the baseline algorithms fail running out of memory, as
those three factors increase. Especially, every version of S-HOT handles a tensor with 1000× higher
dimensionality. We use two baselines: (1) BaselineNaive: naive algorithm for Tucker decomposition,
and (2) BaselineOpt: the state-of-the-art memory-efficient algorithm for Tucker decomposition. Note
that all the methods have the same convergence properties (Observation 8.1). See Section 8.5 for
details.

Developing a scalable Tucker-decomposition algorithm has been a challenge due to a huge amount
of intermediate data generated during the computation. Briefly speaking, Alternating Least Square
(ALS), the most widely-used Tucker-decomposition algorithm, repeats two steps: 1) computing an
intermediate tensor, denoted by Y, and 2) computing the SVD of the matricized Y (see Section 8.2
or [KB09] for details). Previous studies [KS08, JPF+16] pointed out that a huge amount of intermediate
data are generated during the first step, and they proposed algorithms for reducing the intermediate data
by carefully ordering computation.

However, existing algorithms still have limited scalability and easily run out of memory, particularly
when dealing with high-order (i.e., 4 or higher order) tensors. This is because existing algorithms
explicitly materialize Y, which is usually thinner but much denser than the input tensor, despite the fact
that the amount of space required for storing Y grows rapidly with respect to the order, dimensionality,
and rank of the input tensor. For example, as illustrated in Figure 8.2, the space required for Y, is
about 400 Giga Bytes for a 5-way tensor with 10 million dimensionality when the rank of Tucker
decomposition is set to 10. We call this problem Materialization Bottleneck (or M-Bottleneck in short).
Due to M-Bottleneck, existing algorithms are not suitable for decomposing tensors with high order,

112

…

…

……

I

I
I

I…

I

…

…

… ……

I

J

J

J

J

…

…

… ……

J

J
J

J

J

J

I

5-order Input Tensor (Sparse)
Non-Zeros = 100 millions

I = 10 millions J = 10

Intermediate Tensor (Dense)
Non-Zeros = 100 billions

Outputs (Dense)
Non-Zeros ≈ 500 millions

Figure 8.2: Illustration of the materialization bottleneck (or M-Bottleneck in short). For a high-
order sparse input tensor, the amount of space required for the intermediate tensor can be much larger
than that for the input tensor and the outputs. As in the figure, the intermediate tensor is usually thinner
but much denser than the input tensor. In such a case, materializing intermediate data becomes the
scalability bottleneck of existing Tucker-decomposition algorithms.

dimensionality, and/or rank. As seen in Figure 8.1, even state-of-the-art algorithms easily run out of
memory as these factors increase.

To avoid M-Bottleneck, in this chapter, we propose S-HOT, a scalable Tucker-decomposition al-
gorithm. S-HOT is designed for decomposing high-order tensors on an off-the-shelf workstation. Our
key idea is to compute Y on the fly, without materialization, by combining both steps in ALS without
changing its results. Specifically, we utilize the reverse communication interface of a recent scalable
eigensolver called Implicitly Restart Arnoldi Method (IRAM) [LSY98], which enables SVD com-
putation without materializing Y. Moreover, S-HOT performs Tucker decomposition by streaming
non-zero tensor entries from the disk, which enables it to handle disk-resident tensors that are too large
to fit in memory. We offer the following versions of S-HOT with distinct advantages:
• S-HOTSPACE: the most space-efficient version not requiring additional copies the input tensor.
• S-HOTSCAN: a faster version requiring multiple copies of the input tensor.
• S-HOTCACHE: the fastest version requiring multiple copies of the input tensor and a buffer in main

memory.
Our experimental results demonstrate that S-HOT outperforms baseline algorithms by providing

significantly better scalability, as shown in Figure 8.1. Specifically, all versions of S-HOT successfully
decompose a 6-way tensor, while baselines fail to decompose even a 4-way tensor or a 5-way tensor due
to their high memory requirements. The difference is more significant in terms of dimensionality. As
seen in Figure 8.1(b), S-HOT decomposes a tensor with 1000× larger dimensionality than baselines.

Our contributions in this chapter are summarized as follows.
• Bottleneck Resolution: We identify M-Bottleneck (Figure 8.2), which limits the scalability of ex-

isting Tucker-decomposition algorithms, and we avoid it by using an on-the-fly computation.i
• Scalable Algorithm Design: We propose S-HOT, a scalable Tucker-decomposition algorithm care-

fully designed for high-order tensors too large to fit in memory. Compared to baseline methods,
S-HOT scales up to 1000× larger tensors (Figure 8.1) with identical convergence properties (Ob-
servation 8.1).

113

Table 8.1: Table of frequently-used symbols.

Symbol Definition

X N -order input tensor ∈ RI1×···×IN

N order of X (i.e., number of modes in X)
In dimensionality of the n-th mode of X

X(i1, ..., iN) (= xi1···iN) (i1, ..., iN)-th entry of X
nnz(X) number of non-zero entries in X

Ω(X) set of the indices of all non-zero entries in X

Ω
(n)
i (X) subset of Ω(X) where the n-th mode index is i

X(n) mode-n unfolding of X

G N -order core tensor ∈ RJ1×···×JN

Jn number of component (rank) for the n-th mode
{A} set of all the factor matrices of X
A(n) mode-n factor matrix (∈ RIn×Jn) of X
ā

(n)
i i-th row-vector of A(n)

a
(n)
j j-th column-vector of A(n)

◦ outer product
×̄n mode-n vector product
×n mode-n matrix product

• Theoretical Analysis: We provide theoretical analyses on the amount of memory space and the
number of data scans that S-HOT requires.

Reproducibility: The source code and datasets used in this chapter are available at http://dm.
postech.ac.kr/shot.

The rest of the chapter is organized as follows. In Section 8.2, we introduce some preliminary
concepts, notations, and a formal problem definition. In Section 8.3, we review related work and
discuss M-Bottleneck, which limits the scalability of existing methods. In Section 8.4, we propose
S-HOT, a scalable algorithm for high-order Tucker decomposition. After sharing some experimental
results in Section 8.5, we provide a summary of this chapter in Section 8.6.

8.2 Preliminaries and Problem Definition
In this section, we first introduce some notations and concepts used throughout this chapter. Then, we
define the problem of scalable high-order Tucker decomposition.

8.2.1 Notations and Concepts
We give the preliminaries on tensors, basic tensor operations, Tucker decomposition, and Implicitly
Restarted ARNOLDI Method. Table 8.1 lists some symbols frequently used in this chapter.

114

http://dm.postech.ac.kr/shot
http://dm.postech.ac.kr/shot

8.2.1.1 Tensors
A tensor is a multi-order array which generalizes a vector (an one-order tensor) and a matrix (a two-
order tensor) to higher orders. Let X ∈ RI1×···×IN be the input tensor, whose order is denoted by N .
Like rows and columns in a matrix, X has N modes, whose lengths, also called dimensionality, are
denoted by I1, . . . , IN ∈ N, respectively. We use nnz(X) to indicate the number of non-zero entries in
X. We denote general N -order tensors by boldface Euler script letters e.g., by X, while matrices and
vectors are denoted by boldface capitals, e.g., A, and boldface lowercases, e.g., a, respectively. We
use the MATLAB-like notations to indicate the entries of tensors. For example, X(i1, ..., iN) (or xi1···iN
in short) indicates the (i1, ..., iN)-th entry of X. Similar notations are used for matrices and vectors.
A(i, :) and A(:, j) (or āi and aj in short) indicate the ith row and the jth column of A. The i-th entry
of a vector a is denoted by a(i) (or ai in short).

Definition 8.1: Fiber

A mode-n fiber is an 1-order section of a tensor, obtained by fixing all indices except the n-th
index.

For example, in a 3-order tensor X, there are 3 types of fibers, X(:, j, k) (mode-1), X(i, :, k) (mode-2),
and X(i, j, :) (mode-3) depending on fixed indices.

Definition 8.2: Slice

A slice is a 2-order section of a tensor, obtained by fixing all indices but two.

For example, in a 3-order tensor X, there are 3 types of slices, X(i, :, :), X(:, j, :), and X(:, :, k).

8.2.1.2 Basic Tensor Operations
We review basic tensor operations, which are the building blocks of Tucker decomposition, explained
in the following section.

Definition 8.3: Tensor Unfolding/Matricization

Unfolding, also known as matricization, is the process of re-ordering the entries of an N -order
tensor into a matrix. The mode-n matricization of a tensor X ∈ RI1×···×IN is a matrix X(n) ∈
RIn×(

∏
q 6=n Iq) whose columns are the mode-n fibers.

For example, the mode-1 unfolding of a 3-order tensor X ∈ RI1×I2×I3 is denoted by X(1) ∈ RI1×(I2I3).
Note that, there are multiple ways to unfold a tensor in terms of the order that the entries of each slice
are stacked. For example, the followings are two different ways of mode-1 unfolding

X(1)(i, j + (k − 1)I2) := X(i, j, k) and X(1)(i, k + (j − 1)I3) := X(i, j, k).

However, specific orders do not have an impact on our algorithm as long as an order is used consistently.

115

Definition 8.4: N -order Outer Product

The N -order outer product of vectors v1 ∈ RI1 , v2 ∈ RI2 , . . . , vN ∈ RIN is denoted by v1 ◦ v2 ◦
· · · ◦ vN and is an N -order tensor in RI1×I2×···×IN , where

[v1 ◦ v2 ◦ · · · ◦ vN](i1, ..., iN) := v1(i1)v2(i2) . . .vN(iN).

For example, the 3-order outer product of vectors a ∈ RI , b ∈ RJ , c ∈ RK is a 3-order tensor of
RI×J×K where each (i, j, k)-th entry is defined as

[a ◦ b ◦ c](i, j, k) = a(i)b(j)c(k).

For brevity, we use the following shorthand notations for outer product:

◦(i1,...,iN){A} := ā
(1)
i1
◦ · · · ◦ ā

(N)
iN
, and

◦−n(i1,...,iN){A} := ā
(1)
i1
◦ · · · ◦ ā

(n−1)
in−1

◦ [1] ◦ ā
(n+1)
in+1

◦ · · · ◦ ā
(N)
iN
.

Definition 8.5: mode-n Vector Product

The mode-n vector product of a tensor X ∈ RI1×···×IN and a vector v ∈ RIn is denoted by X×̄nv,
and is an (N -1)-order tensor in RI1×...In−1 ×In+1×···×IN , where

[X×̄nv](i1, . . . , in−1, in+1, . . . , iN) :=
In∑
in=1

X(i1, ..., iN)v(in).

Definition 8.6: mode-n Matrix Product

The mode-n matrix product of a tensor X ∈ RI1×···×IN and a matrix U ∈ RJn×In is denoted by
X×nU, and is an N -order tensor in RI1×...In−1×Jn×In+1×···×IN , where

[X×nU](i1, . . . , in−1, jn, in+1, . . . , iN) :=
In∑
in=1

X(i1, ..., iN)U(jn, in).

We adopt the shorthand notations in [KS08] for all-mode matrix product and matrix product in every
mode but one:

X× {U} := X×1U
(1) . . .×NU(N), and

X×−n{U} := X×1U
(1) . . .×n−1U

(n−1) ×n+1U
(n+1) . . .×Nu(N).

116

Algorithm 8.1 Tucker-ALS: a conventional Tucker-decomposition algorithm

Input: (1) X: an N -order tensor of RI1×···×IN ,
(2) J1, . . . , JN : rank for each mode,
(3) T : number of iterations.

Output: (1) {A}: a set of factor matrices {A(1), . . . ,A(N)} where A(n) ∈ RIn×Jn ,
(2) G: an N -order core tensor of RJ1×···×JN .

1: initialize all A(n)

2: for t← 1..T do
3: for n← 1..N do
4: Y(n) ← [X×−n {AT}](n)

5: A(n) ← top-Jn left singular vectors of Y(n)

6: G← Y(N)×NA(N)T

7: return G, {A}

8.2.1.3 Tucker decomposition
Tucker decomposition [Tuc66], which is also calledN -mode PCA, decomposes a tensor into a core ten-
sor and N factor matrices so that the original tensor is approximated best. Specifically, X ∈ RI1×···×IN

is approximated by
X ≈ G× {A},

where G ∈ RJ1×···×JN , Jn denotes the rank of the mode-n, and {A} is the set of factor matrices
A(1), . . . ,A(N), each of which is in RIn×Jn . Using mode-nmatrix products andN -order outer products,
Tucker is presented as follows:

X ≈ G×1 A(1) ×2 A(2) · · · ×N A(N) =

J1∑
j1=1

J2∑
j2=1

· · ·
JN∑
jN=1

G(j1, ..., jN)(a
(1)
j1
◦ a

(2)
j2
· · · ◦ a

(N)
jN

). (8.1)

Solving Tucker decomposition is to find the G and {A} that approximate X best. It is worth noting
that the solution of Tucker is not unique. The most widely used way to solve Tucker is Tucker-ALS
(or Higher Order Orthogonal Iteration (HOOI)), which assumes that all column vectors in A(n) are
orthonormal and solves Tucker by Alternating Least Squares (ALS). In addition, [KS08] found that G
can be uniquely computed by X×{AT} once {A} is determined, and simplified the objective function
as follows (see [KS08] for details):

max
{A}
||X× {AT}||. (8.2)

The conventional Tucker-ALS is presented in Algorithm 8.1.

8.2.1.4 Implicitly Restarted Arnoldi Method (IRAM)
Computing the Eigendecomposition of large matrices is important because it is an important foundation
of various dimensionality reduction and low-rank approximation techniques. Vector iteration (or power
method) is one of the fundamental algorithms for solving large-scale Eigenproblem [Saa11]. Briefly
speaking, for a given matrix U ∈ Rn×m, Vector iteration finds the leading eigenvector corresponding to
the largest eigenvalue by repeating the following updating rule from a randomly initialized v(0) ∈ Rm.

v(k+1) =
Uv(k)

||Uv(k)||
.

117

It is known that, as k increases, v(k+1) converges to the leading eigenvector [Saa11].
ARNOLDI, which is a subspace iteration method, extends Vector iteration to find k leading eigen-

vectors simultaneously. Specifically, it finds the k eigenvectors from a subspace called Krylov space,
which is spanned by {v,Uv, . . . , Ujv}, where j ≥ k − 1. Implicitly Restarted ARNOLDI Method
(IRAM) is one of the most advanced techniques for ARNOLDI [Saa11]. Briefly speaking, IRAM
only keeps k orthonormal vectors which are a basis of the Krylov space, and updates the basis until it
converges, then computes the k leading eigenvectors from the basis. One virtue of IRAM is reverse
communication interface, which enables users to compute Eigendecomposition by viewing ARNOLDI

as a black box. Specifically, the leading k eigenvectors of a square matrix U are obtained as follows:

S1. User initializes an instance of IRAM.

S2. IRAM returns v(j) (initially v(0)).

S3. User computes v′ ← Uv(j), and gives v′ to IRAM.

S4. After an internal process, IRAM returns new vector v(j+1).

S5. Repeat steps S3 and S4 until the internal variables in IRAM converges.

S6. IRAM computes eigenvalues and eigenvectors from its internal variables, and returns them.

For details of IRAM and reverse communication interface, we refer interested readers to [LSY98,
Saa11].

8.2.2 Problem Definition
As discussed in Section 8.3.3, the scalability bottleneck of the state-of-the-art algorithms for high-order
Tucker decomposition, defined in Section 8.2.1.3, is the explosive increase in memory requirements. In
this chapter, we aim to perform high-order Tucker decomposition while keeping memory requirements
manageable, as described in Problem 8.1.

Problem 8.1: Scalable High-order Tucker Decomposition

1. Given:
• a large-scale high-order tensor X ∈ RI1×···×IN , which may or may not fit in main memory
• ranks J1, . . . , JN

2. Perform: Tucker decomposition (see Section 8.2.1.3)

3. with: low memory requirements.

8.3 Observation: “Materialization Bottleneck”
We describe the major challenges in scaling Tucker decomposition in Section 8.3.1. Then, in Sec-
tion 8.3.2, we briefly survey the literature on scalable Tucker decomposition to see how these chal-
lenges have been addressed. However, we notice that existing methods still commonly suffer from
M-Bottleneck, which is described in Section 8.3.3.

118

8.3.1 Intermediate Data Explosion
The most important challenge in scaling Tucker decomposition is the intermediate data explosion prob-
lem which was first identified in [KS08] (Definition 8.7). It states that a naive implementation of
Algorithm 8.1, especially the computation of [X ×−n {AT}](n), can produce huge intermediate data
that do not fit in memory or even on a disk. We shall refer to this naive method as BaselineNaive.

Definition 8.7: Intermediate Data Explosion in BaselineNaive [KS08]

Let nnz(X) be the number of non-zero entries in X. In Algorithm 8.1, naively computing X×−n
{AT} requires O(nnz(X) ·

∏
p 6=n Jp) space for intermediate data.

For example, if we assume a 5-order tensor with nnz(X) = 100 millions and Jn = 10 for all n,
nnz(X)

∏
p 6=n Jp = 1 trillions. Thus, if single-precision floating-point numbers are used, computing

X ×−n {AT} requires about 4TB space, which exceeds the capacity of a typical hard disk as well as
RAM.

8.3.2 Scalable Tucker Decomposition
In this section, we introduce recent Tucker decomposition methods that alleviate the intermediate data
explosion.

Memory Efficient Tucker (MET) [KS08]: MET carefully orders the computation of X×−n {AT} in
Algorithm 8.1 so that space required for intermediate data is reduced. Let Y = X×−n{AT}. Instead of
computing entire Y at a time, MET computes a part of it at a time. Depending on the unit computed at
a time, MET has various versions, and MET(2) is the most space-efficient one. In MET(2), each fiber
(Definition 8.1) of X is computed at a time. The specific equation when X is 3-order is as follows:

Y(:, j2, j3)←

I1︷ ︸︸ ︷
X×̄2a

(2)
j2
×̄3a

(3)
j3
. (8.3)

The amount of intermediate data produced during the computation of a fiber in Y by Eq. (8.3) is only
O(I1). This amount is the same for general N -order tensors. MET(2) is one of the most space-
optimized tensor decomposition methods, and we shall refer to MET(2) as BaselineOpt from now
on.

Hadoop Tensor Method (HATEN2) [JPF+16]: HATEN2, in the same spirit as MET, carefully orders
the computation of X×−n {AT} in Algorithm 8.1 on MAPREDUCE so that the amount of intermediate
data and the number of MAPREDUCE jobs are reduced. Specifically, HATEN2 first computes X ×p
(A(p))T for each p 6= n, then combines the results to obtain X×−n {AT}. However, HATEN2 requires
O(N ·nnz(X) ·

∑
p 6=n Jp) disk space for intermediate data, which is much larger than O(In) space that

BaselineOpt requires.

Other Work Related to Scalable Tucker Decomposition: Several algorithms were proposed for the
case when the input tensor X is dense so that it cannot fit in memory. Specifically, [Tso10] uses
random sampling of non-zero entries to sparsify X, and [ABK16] distributes the entries of X across
multiple machines. However, in this chapter, we assume that X is a large but sparse tensor, which is

119

Table 8.2: The S-HOT family is space efficient. The S-HOT family requires orders of magnitude
less space than state-of-the-art methods. As an example, we assume a tensor whereN = 5, In = I = 10
millions for every mode n, and nnz(X) = 100 millions. We also assume that Jn = J = 10 for every
mode n, and B = 40MB, where B is the memory budget for caching in S-HOTCACHE. The space
required by IRAM is included in the space for output data. Note that all the methods have the same
convergence properties (see Observation 8.1 in Section 8.4).

Methods Locations
Input Data Output Data Intermediate Data
(in Theory) (in Theory) (in Theory)

BaselineNaive Memory O(N · nnz(X)) O(NIJ + JN) O(JN−1 · nnz(X))

BaselineOpt [KS08] Memory O(N · nnz(X)) O(NIJ + JN) O(IJN−1)

HATEN2 [JPF+16]
Memory - - O(JN−1 + max. degree*)

Disk O(N · nnz(X)) O(NIJ + JN) O(IJN−1 +NJ · nnz(X)2)

S-HOTSPACE
Memory - O(NIJ + JN) O(I + JN−1)

Disk O(N · nnz(X)) - -

S-HOTSCAN
Memory - O(NIJ + JN) O(JN−1)

Disk O(N2 · nnz(X)) - -

S-HOTCACHE
Memory - O(NIJ + JN) O(B + JN−1)

Disk O(N2 · nnz(X)) - -
* the degree of a mode-n index is the number of non-zero entries with the index (see Definition 8.8
for a formal definition of degree).

Methods Locations
Input Data Output Data Intermediate Data

(in Example) (in Example) (in Example)

BaselineNaive Memory ∼ 2GB ∼ 2GB ∼ 4TB

BaselineOpt [KS08] Memory ∼ 2GB ∼ 2GB ∼ 400GB

HATEN2 [JPF+16]
Memory - - & 40KB

Disk ∼ 2GB ∼ 2GB ∼ 500GB

S-HOTSPACE
Memory - ∼ 2GB ∼ 40MB

Disk ∼ 2GB - -

S-HOTSCAN
Memory - ∼ 2GB ∼ 40KB

Disk ∼ 10GB - -

S-HOTCACHE
Memory - ∼ 2GB ∼ 40MB

Disk ∼ 10GB - -

120

more common in real-world applications. Moreover, our method stores X in disk, and thus its memory
requirement does not depend on the number of non-zero entries of X (i.e., nnz(X)).

Our work is also related to recent variations of Tucker decomposition that are specifically tailored
for high-order tensor analysis, such as hierarchical Tucker decomposition [Gra10, PCVS15]. However,
such models require additional knowledge that may be application dependent. Note that our method is
a scalable algorithm for the original Tucker decomposition with no modification. We leave exploration
of such variations for future work.

8.3.3 Materialization Bottleneck
Although BaselineOpt and HATEN2 successfully reduce the space required for intermediate data pro-
duced while Y(n) ← [X×−n {AT}](n) is computed, they have an important limitation. Both algorithms
materialize Y(n), but its size O(In

∏
p 6=n Jp) is usually huge, mainly due to In, and more seriously, it

grows rapidly as N , In or {Jn}Nn=1 increases. For example, as illustrated in Figure 8.2 in Section 8.1, if
we assume a 5-order tensor with In = 10 millions and Jp = 10 for every p 6= n, then In

∏
p 6=n Jp = 100

billions. Thus, if single-precision floating-point numbers are used, materializing Y(n) in a dense ma-
trix format requires about 400GB space, which exceeds the capacity of typical RAM. Note that simply
storing Y(n) in a sparse matrix format does not solve the problem since Y(n) is usually dense.

Considering this fact and the results in Section 8.3.2, we summarize the amount of intermediate
data required during the whole process of tucker decomposition in each algorithm in Table 8.2. Our
proposed S-HOT algorithms, which are discussed in detail in the following section, require several
orders of magnitude less space for intermediate data.

8.4 Proposed Algorithm: S-HOT
In this section, we propose a set of algorithms, which we call the S-HOT family, for scalable high-order
Tucker decomposition. We first provide an overview of the S-HOT family. Then, we discuss the naive
version of S-HOT. Next, we present three different versions of S-HOT with distinct advantages.

8.4.1 Overview
The S-HOT family, which we develop in the following subsections, avoids M-Bottleneck caused by
the materialization of Y. They enable high-order Tucker decomposition to be performed even in an
off-the-shelf workstation.

Throughout this section, we focus on memory-efficient computation of the following two steps
(lines 4 and 5 of Algorithm 8.1):

Y(n) ← [X×−n{AT}](n) (∈ RIn×(
∏
p6=n Jp))

A(n) ← top-Jn left singular vectors of Y(n).

Our key idea is to tightly integrate the above two steps, and compute the singular vectors through IRAM
directly from X without materializing the entire Y at once. We also use the fact that top-Jn left singular
vectors of Y(n) are equivalent to the top-Jn eigenvectors of Y(n)Y(n)

T ∈ RIn×In . Specifically, if we
use reverse communication interface of IRAM, the above two steps are computed by simply updating
v′ repeatedly as follows:

v′ ← Y(n)Y(n)
Tv, (8.4)

121

where we do not need to materialize Y(n) (and thus we can avoid M-Bottleneck) if we are able to
update v′ directly from the X. Note that, using IRAM does not change the result of the above two
steps. Thus, final results of Tucker decomposition are also not changed, while space requirements are
reduced drastically.

The remaining problem is how to update v′ directly from X, which is stored in disk, without materi-
alizing Y(n). To address this problem, we first examine a naive method extending BaselineOpt and then
eventually propose S-HOTSPACE, S-HOTSCAN, and S-HOTCACHE, which are three versions of S-HOT
with distinct advantages.

Note that all our ideas described in this section do not change the outputs of BaselineNaive and
BaselineOpt. Thus, all versions of S-HOT have the same convergence properties of BaselineNaive and
BaselineOpt, as described in Observation 8.1.

Observation 8.1: Convergence Property of S-HOT

When all initial conditions are identical, S-HOTSPACE, S-HOTSCAN, and S-HOTCACHE give the
same result of BaselineNaive and BaselineOpt after the same number of iterations.

8.4.2 Naive Version: S-HOTNAIVE

How can we avoid M-Bottleneck? In other words, how can we compute Eq. (8.4) without materializing
the entire Y? We describe S-HOTNAIVE, which computes Y fiber by fiber, for computing Eq. (8.4).
Thus, S-HOTNAIVE computes v′ progressively on the basis of each column vector of Y(n), which
corresponds to a fiber in Y, as follows:

v′ ← Y(n)Y(n)
Tv =

∑
j

yj
(
yj

Tv
)
, (8.5)

where yj ∈ RIn is a column vector of Y(n).
This equation can be reformulated by X and {AT}. For ease of explanation, let X be a 3-order

tensor. For each column vector yj , there exists a fiber Y(:, j2, j3) corresponding to yj . By plugging
Eq. (8.3) into Eq. (8.5), we obtain

v′ ←
∑
j

yj
(
yj

Tv
)

=
∑

(j2,j3)

Y(:, j2, j3)
(
Y(:, j2, j3)Tv

)
=
∑

(j2,j3)

(
X×̄2a

(2)
j2
×̄3a

(3)
j3

)((
X×̄2a

(2)
j2
×̄3a

(3)
j3

)T
v

)
.

As clarified in Eq. (8.3), X×̄2a
(2)
j2
×̄3a

(3)
j3

is computed withinO(I1) space, which is significantly smaller
than space required for Y(n).

However, S-HOTNAIVE is impractical because the number of scans of X increases explosively, as
Lemma 8.1 and Lemma 8.2 state.

Lemma 8.1: Scan Cost of Computing a Fiber

Computing a fiber on the fly requires a complete scan of X.

122

Proof. Computing a fiber consists of multiple mode-n vector products. Each mode-n vector product is
considered as a weighted sum of (N − 1)-order section of X as follows:

X×̄nv =
In∑
in=1

X(:, . . . , :︸ ︷︷ ︸
n−1

, in, :, . . . , :︸ ︷︷ ︸
N−n

)v(in). (8.6)

Thus, a complete scan of X is required to compute a fiber. �

Lemma 8.2: Minimum Scan Cost of S-HOTNAIVE

LetB be the memory budget, i.e., the number of floating-point numbers that can be stored in mem-
ory at once. Then, S-HOTNAIVE requires at least In

B

∏
p 6=n Jp scans of X for computing Eq. (8.5).

Proof. Since we compute yj
(
yj

Tv
)
, yj should be stored in memory requiring In space, until the

computation of yj
Tv finishes. Thus, we can compute at most B

In
fibers at the same time within one scan

of X. Therefore, S-HOTNAIVE requires at least In
B

∏
p6=n Jp scans of X to compute Eq. (8.5). �

8.4.3 Space-efficient Version: S-HOTSPACE

How can we avoid the explosion in the number of scans of the input tensor required in S-HOTNAIVE?
We propose S-HOTSPACE, which computes Eq. (8.4) within two scans of X. S-HOTSPACE progressively
computes v′ from each row vector of Y(n). Specifically, v′ is computed by:

1 ≤ ∀i ≤ In, v′(i)← ȳiY(n)
Tv = ȳi

In∑
j=1

v(j)ȳTj (8.7)

where ȳi is the ith row vector of Y(n), which corresponds to an (N − 1)-order segment of Y where the
mode-n index is fixed to i. When entire Y does not fit in memory, Eq. (8.7) should be computed in the
following two steps:

s←
In∑
i=1

v(i)ȳTi (8.8)

1 ≤ ∀i ≤ In, v′(i)← ȳis. (8.9)

This is since we cannot store all ȳi in memory until the computation of
∑In

i=1 v(i)ȳTi finishes. Al-
gorithm 8.2 gives a formal description of S-HOTSPACE, and Lemma 8.3 states the number of scans
required in the algorithm

Lemma 8.3: Scan Cost of S-HOTSPACE

S-HOTSPACE requires two scans of X for computing Eq. (8.4).

123

Proof. Each ȳi can be computed as follows.

ȳi ← [X×−n{AT}](n)(i, :) =
∑

p∈Ω
(n)
i (X)

X(p)×−n{AT} =
∑

p∈Ω
(n)
i (X)

X(p)
[
◦−np {A}

]
(n)
,

where p is a tuple (i1, ..., iN) whose mode-n index is fixed to i; X(p) is an entry specified by p. Based
on each ȳi, Eq. (8.8) can be computed progressively as follows:

s←
In∑
i=1

v(i)ȳTi =
In∑
i=1

v(i)
∑

p∈Ω
(n)
i (X)

X(p)
[
◦−np {A}

]
(n)

=
∑

p∈Ω(X)

v(in)X(p)
[
◦−np {A}

]
(n)
.

Thus, computing Eq. (8.8) requires only one scan of X. Similarly, Eq. (8.9) also can be computed
within one scan of X. Therefore, Eq. (8.7), which consists of Eq. (8.8) and Eq. (8.9), can be computed
within two scans of X. �

In Lemma 8.4, we prove the amount of space required by S-HOTSCAN for intermediate data.

Lemma 8.4: Space Complexity in S-HOTSPACE

The update step of S-HOTSPACE (lines 12-18 of Algorithm 8.2) requires

O

(
max

1≤n≤N
(In +

N∏
p=1

Jp/Jn)

)

memory space for intermediate data.

Proof. S-HOTSPACE maintains v, v′, and s in its update step. When each factor matrix A(n) is updated,
v and v′ are In by 1 vectors, and s is a

∏N
p=1 Jp/Jn by 1 vector. Thus, O(In +

∏N
p=1 Jp/Jn) space is

required in the update step for each factor matrix A(n). Since the factor matrices are update one by one,
O(max1≤n≤N(In +

∏N
p=1 Jp/Jn)) space is required at a time. �

8.4.4 Faster Version: S-HOTSCAN

How can we further reduce the number of required scans of the input tensor? We propose S-HOTSCAN,
which halves the number of scans of X at the expense of requiring multiple (disk-resident) copies of X
sorted by different mode indices. In effect, S-HOTSCAN trades off disk space for speed.

Our key idea for the further optimization is to compute Jn right leading singular vectors of Y(n),
which are eigenvectors of YT

(n)Y(n), and use the result to compute the left singular vectors. Let Y(n) =

UΣVT be the SVD of Y(n). Then,

Y(n)VΣ−1 = UΣVTVΣ−1 = U. (8.10)

Thus, left singular vectors are obtained from right singular vectors.
S-HOTSCAN computes top-Jn right singular vectors of Y(n) by updating the vector w ∈ R

∏
p6=n Jp

as follows:

w′ ← YT
(n)Y(n)w =

In∑
i=1

(ȳTi w)ȳi. (8.11)

124

Algorithm 8.2 S-HOTSPACE and S-HOTSCAN

Input: (1) X: an N -order tensor of RI1×···×IN ,
(2) J1, . . . , JN : rank for each mode,
(3) T : number of iterations.

Output: (1) {A}: a set of factor matrices {A(1), . . . ,A(N)} where A(n) ∈ RIn×Jn ,
(2) G: an N -order core tensor of RJ1×···×JN .

1: initialize {A}
2: for t← 1..T do
3: for n← 1..N do
4: v← IRAM Init(In, Jn)
5: repeat
6: v′ ← SHOT Space Update(X, n, v) or SHOT Scan Update(X, n, v)
7: v← IRAM DoIter(v′)
8: until IRAM IsConverged()
9: A(n) ← GetSingularVector()

10: G← X× {AT}
11: return G, {A}
12: procedure SHOT SPACE UPDATE(X, n, v) . Update in S-HOTSPACE

13: s← 0; v′ ← 0
14: for each (i1, ..., iN) ∈ Ω(X) do
15: s← s + v(in)X(i1, ..., iN)

[
◦−n(i1,...,iN){A}

]
(n)

16: for each (i1, ..., iN) ∈ Ω(X) do
17: v′(in)← v′(in) + sTX(i1, ..., iN)

[
◦−n(i1,...,iN){A}

]
(n)

18: return v′

19: procedure SHOT SCAN UPDATE(X, n, v) . Update in S-HOTSCAN

20: w′ ← 0
21: for i← 1...In do
22: yi ←

∑
(i1,...,iN)∈Ω

(n)
i (X)

X(i1, ..., iN)
[
◦−n(i1,...,iN){A}

]
(n)

23: w′ ← w′ + (yi
Tw)yi

24: deallocate yi

25: return w′

125

The virtue of S-HOTSCAN is that it requires only one scan of X for calculating Eq. (8.11), as
Lemma 8.6 states.

Lemma 8.5: Scan Cost for Computing ȳi

ȳi can be computed by scanning only the entries of X whose mode-n index is i.

Proof. Proven by Eq. (8.10). �

Lemma 8.6: Scan Cost of S-HOTSCAN

S-HOTSCAN computes Eq. (8.11) within one scan of X when X is sorted by the mode-n index.

Proof. By Lemma 8.5, only a section of tensor whose mode-n index is i is required for computing ȳi.
If X is sorted by the nth mode index, we can sequentially compute each yi on the fly. Moreover, once
ȳi is computed, we can immediately compute (ȳTi w)ȳi. After that, we do not need ȳi anymore, and
can discard it. Thus, Eq. (8.11) can be computed on the fly within only a single scan of X. �

We satisfy the sort constraint for all modes by simply keeping N copies of X sorted by each mode
index.

A formal description for S-HOTSCAN is in Algorithm 8.2. It is assumed that w is initialized by
passing (

∏
p 6=n Jp, Jn) instead of (In, Jn) at line 4. Although one additional scan of X is required for

computing left singular vectors from the obtained right singular vectors (Eq. (8.10)), S-HOTSCAN still
requires fewer scans of X than S-HOTSPACE since it saves one scan during w′ computation, which is
repeated more frequently.

In Lemma 8.7, we prove the amount of space required by S-HOTSCAN for intermediate data.

Lemma 8.7: Space Complexity of S-HOTSCAN

The update step of S-HOTSCAN (lines 19-25 of Algorithm 8.2) requires

O

(
max

1≤n≤N
(
N∏
p=1

Jp/Jn)

)

memory space for intermediate data.

Proof. In its update step for each factor matrix A(n), S-HOTSCAN maintains w, w′, and yi at a time.
All of them are

∏N
p=1 Jp/Jn by 1 vectors. Thus, O(

∏N
p=1 Jp/Jn) space is required in the update step for

each factor matrix A(n). Since the factor matrices are updated one by one,O(max1≤n≤N(
∏N

p=1 Jp/Jn))
space is required at a time. �

126

Algorithm 8.3 S-HOTCACHE: the fastest version of S-HOT

Input: (1) X: an N -order tensor of RI1×···×IN , (2) J1, . . . , JN : rank for each mode,
(3) T : number of iterations, (4) B (or, equivalently, k1, ..., kN): memory budget for caching.

Output: (1) {A}: a set of factor matrices {A(1), . . . ,A(N)} where A(n) ∈ RIn×Jn ,
(2) G: an N -order core tensor of RJ1×···×JN .

1: initialize {A}
2: for t← 1..T do
3: for n← 1..N do
4: v← IRAM Init(In, Jn)
5: Map← Cache(X, n, kn)
6: repeat
7: v′ ← Update(X, n, v, Map)
8: v← IRAM DoIter(v′)
9: until IRAM IsConverged()

10: A(n) ← GetSingularVector()
11: G← X× {AT}
12: return G, {A}
13: procedure CACHE(X, n, kn)
14: Top← top-kn highest-degree mode-n indices
15: Map← an empty map
16: for each i ∈Top do
17: Map.put

(
i,
∑

(i1,...,iN)∈Ω
(n)
i (X)

xi1···iN
[
◦−np {A}

]
(n)

)
18: return Map

19: procedure UPDATE(X, n, v, Map)
20: w′ ← 0
21: for i← 1...In do
22: if i ∈ Map.keys() then yi ← Map.get(i)

23: else yi ←
∑

(i1,...,iN)∈Ω
(n)
i (X)

X(i1, ..., iN)
[
◦−n(i1,...,iN){A}

]
(n)

24: w′ ← w′ + (yi
Tw)yi

25: deallocate yi

26: return w′

127

101

103

105

107

101 103

DegreeC
ou

nt
 o

f M
od

e
In

di
ce

s

(a) Degree distribution in
the author mode

101

103

101 103 105

DegreeC
ou

nt
 o

f M
od

e
In

di
ce

s

(b) Degree distribution in
the keyword mode

0

25

50

75

100

0 25 50 75 100
% of Chaced Rows

C
um

ul
at

ive
 %

 o
f

 N
on
−z

er
o

En
tri

es

> 50%

10%

(c) % of non-zero entries
required for computing cahced

rows in the author mode

0

25

50

75

100

0 25 50 75 100
% of Chaced Rows

C
um

ul
at

ive
 %

 o
f

 N
on
−z

er
o

En
tri

es

> 75%

10%

(d) % of non-zero entries
required for computing cahced

rows in the keyword mode

Figure 8.3: Power-law degree distributions in a real-world tensor (see Section 8.5.1 for a description
of the tensor). (a) and (b) show the skewed degree distributions in the author and keyword modes, which
are exploited by S-HOTCACHE for speedup. (c) and (d) show that S-HOTCACHE can avoid accessing
many (e.g., 50-75%) non-zero entries by caching a small percentage (e.g., 10%) of rows.

8.4.5 Fastest Version: S-HOTCACHE

How can we make good use of remaining memory when memory is underutilized by S-HOTSCAN,
which requires little space for intermediate data? We propose S-HOTCACHE, which improves the speed
of S-HOTSCAN by caching a part of intermediate data (i.e., some rows of Y(n)) in memory instead of
computing all of them on-the-fly. Especially, within a given memory budget, S-HOTCACHE carefully
decides the rows of Y(n) to be cached so that the speed gain is maximized. A formal description of
S-HOTCACHE is given in Algorithm 8.3.

Given a memory budget B for caching, let kn be the maximum number of rows of Y(n) that can be
cached within B. When updating each factor matrix A(n), S-HOTCACHE caches the kn rows that are
most expensive to compute. Such rows can be found by comparing the degrees of the mode-n indices
(see Definition 8.8 for the definition of degree), as described in lines 13-18.

Definition 8.8: Degree of Mode Indices

The degree of each mode-n index i is defined as |Ω(n)
i (X)|, i.e., the number of non-zero entries

whose mode-n index is i.

This is because computing each row yi of Y(n) takes time proportional the degree of mode-n index i
(i.e., |Ω(n)

i (X)|), as shown in Eq. (8.10). The remaining steps for updating A(n) are the same as those
of S-HOTSCAN except for that the cached rows are used, as described in lines 19-26.

This careful choice of the rows of Y(n) to be cached is crucial to speed up the algorithm. This
is because, in real-world tensors, the degree of mode indices often follows a power-law distribution
[CSN09], and thus there exist indices with extremely high degree (see Figures 8.3(a) and 8.3(b) for
examples). By caching the rows of Y(n) corresponding to such high-degree indices, S-HOTCACHE

avoids accessing many non-zero entries (see Figures 8.3(c) and 8.3(d) for examples) and thus saves
considerable computation time, as shown empirically in Section 8.5.5.

We prove the scan cost of S-HOTCACHE in Lemma 8.8 and the space complexity of S-HOTCACHE

In Lemma 8.9.

128

Lemma 8.8: Scan Cost of S-HOTCACHE

S-HOTCACHE computes Eq. (8.11) within one scan of X when X is sorted by the mode-n index.

Proof. Given cached rows, S-HOTCACHE computes Eq. (8.11) in the same way as does S-HOTSCAN

only except for that S-HOTCACHE uses the cached rows. Thus, S-HOTCACHE and S-HOTSCAN require
the same number of scans of X, which is one, as shown in Lemma 8.6. We do not need an additional
scan of X for the caching step if it is done while Eq. (8.11) is first computed. �

Lemma 8.9: Space Complexity of S-HOTCACHE

The update step of S-HOTCACHE (lines 19-26 of Algorithm 8.3) requires

O

(
B + max

1≤n≤N
(
N∏
p=1

Jp/Jn)

)

memory space for intermediate data.

Proof. In addition to those maintained in S-HOTSCAN, which require O
(

max
1≤n≤N

(
∏N

p=1 Jp/Jn)
)

space

at a time (see Lemma 8.7), S-HOTCACHE maintains the cached rows, whose size is within the budget
B. Thus, O(B + max1≤n≤N(

∏N
p=1 Jp/Jn)) space is required at a time. �

8.5 Experiments
In this section, we review our experiments for answering the following questions:
• Q1. Scalability: How scalable is S-HOT compared to its state-of-the-art competitors with respect

to the dimensionality, the rank, the order, and the number of non-zero entries?
• Q2. S-HOT at Work: Can S-HOT decompose real-world tensors that are both large-scale and

high-order?
• Q3. Effect of Memory Budget How does the memory budget affect the speed of S-HOTCACHE?
• Q4. Effect of Data Skewness How does the degree distribution of the input tensor affect the speed

of S-HOTCACHE?

8.5.1 Experimental Settings

Machine: We conducted all experiments on a machine with Intel Core i7 4700@3.4GHz (4 cores),
32GB RAM, and Ubuntu 14.04 trusty.

Datasets: We used both of synthetic and real-world tensors. We generated synthetic tensors where the
degree of their mode indices follows a Zipf distribution, which is common in real-world data [Pow98,

129

AH02]. Specifically, we created tensors where the mode indices of the non-zero entries follow the
following probability density function:

p(x) =
x−α∑∞
k=1

1
kx

,

where α is a parameter determining the skewness of the distribution. We set the value of each entry to
1. However, this does not mean that S-HOT is limited to binary tensors or that our implementation is
optimized for binary tensors. We chose binary tensors for simplicity. Generating realistic values, while
we control each factor, is not a trivial task. As default parameter values, we used N = 4, M = 105,
In = 103 for every n, Jn = 8 for every n, and α = 1.5. These default values were chosen to effectively
compare the scalability of competitors. All experiments using synthetic datasets were repeated nine
times (three times for each of three randomly generated tensors), and reported values are the average
of the multiple trials.

We also used a real-world tensor obtained from the Microsoft Academic Graph dataset [SSS+15]
(a snapshot on Feb 5, 2016). The dataset contains 42 million papers; 1,283 conferences and 23,404
journals; 115 million authors; and 53,834 keywords used to annotate the topics of the papers. We
modeled the dataset as a 4-order tensor whose modes are authors, venues, years, and keywords. The
papers with missing attributes were ignored, and the final tensor was of size 9, 380, 418 × 18, 894 ×
2, 016× 37, 000.

Implementations: Throughout all experiments, we used two baseline methods and three versions of
our proposed method:
• BaselineNaive (Algorithm 8.1): a naive method computing X×−n{A} in a straight-forward way,
• BaselineOpt [KS08]: the state-of-the-art memory-efficient Tucker-decomposition algorithm which

computes Y fiber by fiber,
• S-HOTSPACE (Algorithm 8.2): the most space-efficient version of S-HOT,
• S-HOTSCAN (Algorithm 8.2): a faster version of S-HOT,
• S-HOTCACHE (Algorithm 8.3): the fastest version of S-HOT with a buffer in main memory. We set

the size of the buffer so that it caches up to 30 rows of Y(n) for each n-th mode unless otherwise
stated. The size of the buffer never exceeded 200KB unless otherwise stated.

For BaselineOpt and BaselineNaive, we used the implementation in Tensor Toolbox 2.6 [BK07a], im-
plemented in MATLAB. We excluded HATEN2 because HATEN2 is designed for Hadoop, and thus
it takes too much time in a single machine. For example, in order to decompose a synthetic tensor
with default parameters, HATEN2 took 10, 700 seconds for an iteration. It was almost 100× slower
than S-HOTSCAN. Every version of S-HOT was implemented in C++ with OpenMP library and AVX
instruction set.We used ARPACK [LSY98], which provides IRAM supporting reverse communication
interface. It is worth noting that ARPACK is an underlying package for a built-in function called eigs(),
which is provided in many popular numerical computing environments including SCIPY, GNU OC-
TAVE, and MATLAB. Therefore, S-HOT is numerically stable and has the similar reconstruction error
with eigs() function in the above mentioned numerical computing environments. For fairness, we must
note that, a fully optimized C++ implementation could potentially be faster than that of MATLAB al-
though that is unlikely, since MATLAB is extremely well optimized for matrix operations. But in any
case, our main contribution still holds: regardless of programming languages, S-HOT scales to much
larger settings, thanks to our proposed on-the-fly computation (Eqs. (8.7) and (8.11)).

130

8.5.2 Q1: Scalability
We compared the scalability of the competing methods with respect to various factors: (1) the order, (2)
the dimensionality, (3) the number of non-zero entries, and (4) the rank. Specifically, we measured the
wall-clock time of a single iteration of each algorithm on synthetic tensors. Note that all the methods
have the same convergence properties, as described in Observation 8.1 in Section 8.4.

Scalability w.r.t. the order: We investigated the scalability of the considered methods with respect
to the order by controlling the order of the input tensor from 3 to 6 while fixing the other factors
to their default values. As shown in Figure 8.1(a), S-HOT outperformed baselines. BaselineNaive
failed to decompose the 4-order tensor because it suffers from the intermediate explosion problem.
BaselineOpt, which avoids the problem, was more memory-efficient than BaselineNaive. However, it
failed to decompose a tensor whose order is higher than 4 due to M-Bottleneck. On the contrary, every
version of S-HOT successfully decomposed even the 6-order tensor. Especially, S-HOTCACHE is up to
50× faster than S-HOTSPACE and S-HOTSCAN.

Scalability w.r.t. the dimensionality: We investigated the scalability of the considered methods with
respect to the dimensionality. Specifically, we increased the dimensionality In of every n from 103

to 107. That is, since the default order was 4, we increased the tensor from 103 × 103 × 103 × 103 to
107×107×107×107. As shown in Figure 8.1(b), S-HOT was several orders of magnitude scalable than
the baselines. Specifically, BaselineNaive failed to decompose any 4-order tensor, and thus it does not
appear in the plot. BaselineOpt failed to decompose tensors with dimensionality larger than 104 since
the space for storing Y increases rapidly with respect to the size of dimensionality (M-Bottleneck). On
the contrary, every version of S-HOT successfully decomposed the largest tensor of size 107 × 107 ×
107 × 107. Moreover, the running times of S-HOTSCAN and S-HOTCACHE were almost constant since
they solve the transposed problem, whose size is independent of the dimensionality. Between them,
S-HOTCACHE is up to 6× faster than S-HOTSCAN. On the other hand, the running time of S-HOTSPACE

depends on dimensionality, and it increased as the dimensionality became greater than 106. For smaller
dimensionalities, however, the effect of dimensionality on its running time was negligible because the
outer products (i.e., lines 15 and 17 of Algorithm 8.2) are the major bottleneck.

Scalability w.r.t. the rank: We investigated the scalability of the considered methods with respect to
the rank. To show the difference between the competitors clearly, we set the dimensionality of the input
tensor to 20, 000 in this experiment. However, the overall trends do not depend on the parameter values.
As shown in Figure 8.1(c), the S-HOT had better scalability than baselines. Specifically, BaselineNaive
failed to decompose any tensor and does not appear in this plot. BaselineOpt failed to decompose the
tensors with rank larger than 6. On the contrary, every version of S-HOT successfully decomposed
the tensors with larger ranks. Among them, S-HOTCACHE was up to 7× faster than S-HOTSCAN and
S-HOTSPACE. S-HOTSCAN was faster than S-HOTSPACE but the difference between them decreased as
the rank increased. This was because, as the rank increased, the outer products (i.e., lines 15 and 17 of
Algorithm 8.2) became the major bottleneck, commonly in S-HOTSPACE and S-HOTSCAN.

Scalability w.r.t. the number of non-zero entries: We investigated the scalability of the considered
methods with respect to the number of non-zero entries. We increased the number of non-zero entries
in the input tensor from 104 to 107. As shown in Figure 8.1(d), every version of S-HOT scaled near
linearly with respect to the number of non-zero entries. This was because the S-HOT family scans
most non-zero entries (especially, S-HOTSPACE and S-HOTSCAN scan all the non-zero entries), and
processing each non-zero entry takes almost the same time. Among the different versions of S-HOT,
S-HOTCACHE was 4× faster than S-HOTSCAN and S-HOTSPACE. With respect to the number of non-

131

Table 8.3: S-HOT at work. We applied S-HOT to the Microsoft Academic Graph dataset and
obtained clusters of venues. Sample clusters are given in the table below.

CS-related International Conference on Networking, Wired/Wireless Internet Communica-
tions, Database and Expert Systems Applications, Data Mining and Knowledge
Discovery, IEEE Transactions on Robotics, . . .

Nanotech. Nature Nanotechnology, PLOS ONE, Journal of Experimental Nanoscience, Jour-
nal of Nanoscience and Nanotechnology, Journal of Semiconductors, Trends in
Biotechnology, . . .

Clinical European Journal of Cancer, PLOS Biology, Clinical and Applied Thrombosis-
Hemostasis, Journal of Infection Prevention, RBMC Clinical Pharmacology, Re-
gional Anesthesia and Pain . . .

zero entries, BaselineOpt showed better scalability than S-HOT since it explicitly materializes Y. Once
Y is materialized, since its size does not depend on the number of non-zero entries, the remaining tasks
of BaselineOpt are not affected by the number of non-zero entries.

8.5.3 Q2: S-HOT at Work
We showed the scalability of S-HOT again a real-world tensor of size 9, 380, 418× 18, 894× 2, 016×
37, 000 from the Microsoft Academic Graph dataset (see Section 8.5.1). We note that, since this ten-
sor is high-order and large-scale, both baseline algorithms failed to handle it running out of memory.
However, every version of S-HOT successfully decomposed the tensor.

To better interpret the result of Tucker decomposition, we ran k-means clustering [AV07] where
we treated each factor matrix as the low-rank embedding of the entities in the corresponding mode, as
suggested in [KS08]. Specifically, for Tucker decomposition, we set the rank of each mode to 8 and
run 30 iterations. For k-means clustering, we set the number of clusters to 400 and run 100 iterations.

Table 8.3 shows sample clusters in the venue mode. The first cluster contained many venues related
to Computer Science. The second one contained many nano-technology-related venues such as Nautre
Nanotechnology and Journal of Experimental Nanoscience. The third one had many venues related to
Medical Science and Diseases. This result indicates that Tucker decomposition (by the S-HOT family)
discovers meaningful concepts and groups entities related to each other. However, there is a vast array
of methods for multi-aspect data analysis, and we leave a comparative study as to which one performs
the best for future work.

8.5.4 Q3: Effect of the Memory Budget on the Speed of S-HOTCACHE

We measured the effect of memory budget B on the speed of S-HOTCACHE using synthetic and real-
world tensors. We used three 4-order tensors with dimensionality 20, 000 for each mode. All the tensors
had 106 non-zero entries, while they had different degree distributions characterized by the skewness α
of the Zipf distribution. We also used the Microsoft Academic Graph dataset described in Section 8.5.3.

Figure 8.4 shows the result with the synthetic tensors where we set the rank of each mode to 6.
S-HOTCACHE tended to be faster as we use more memory for caching. However, the speed-up slowed
down because S-HOTCACHE prioritizes rows to be cached by the degree of the corresponding mode
indices, as described in Section 8.4.5. As the memory budget increased, S-HOTCACHE cached rows

132

1

2

3

4

100 101 102 103 104

Caching Size (KB)

Sp
ee

d
U

p

𝛼
=
2.5

𝛼
=
1.5

𝛼
=
1.8

> 2000X

> 3.5X all rows
are cached

(a) Speed-up in synthetic tensors

1.0

1.5

2.0

2.5

102 103 104 105 106 107

Caching Size (KB)

Sp
ee

d
U

p

all rows
are

cached

> 2000X

> 2X

(b) Speed-up in a real-world tensor

Figure 8.4: S-HOTCACHE speeds up computation on both synthetic and real-world tensors. In
the synthetic tensors, S-HOTCACHE achieves over 3 .5× speed-up by caching less than 0.05% of rows
within the 10KB memory budget. In the real-world tensor, S-HOTCACHE achieves over 2× speed-up
by caching less than 0.05% of the rows within the 5MB memory budget.

corresponding to mode indices with smaller degree, which saved less computation. Notice that, with
only the 10KB memory budget, S-HOTCACHE became over 3.5× faster than S-HOTSCAN, which does
not use caching.

As shown in Figure 8.4(b), we obtained the same trend with the real-world tensor described in
Section 8.5.1. Notice that, with only the 4MB memory budget, S-HOTCACHE became over 2× faster
than S-HOTSCAN, which does not use caching. S-HOTSCAN saved much computation by caching a
small number of rows due to the power-law degree distributions, shown in Figure 8.3.

8.5.5 Q4: Effect of the Skewness of Data on the Speed of S-HOTCACHE

We measured the effect of the skewness of degree distribution on the speed of S-HOTCACHE. To this
end, we used three 4-order tensors with different degree distributions characterized by the skewness α
of the Zipf distribution. All of them had 106 non-zero entries, and their dimensionality for each mode
was 20, 000.

Figure 8.4(a) shows how rapidly the speed-up of S-HOTCACHE increased depending on the skewness
α. The speed-up of S-HOTCACHE tended to increase faster in tensors with larger α. For example, with
the 2KB memory budget, S-HOTCACHE achieved over 2.5× speed-up in the tensor with α = 2.5, while
it achieved less than 1.5× speed up in the tensor with α = 1.5. This was because, with larger α, more
non-zero entries were concentrated in few mode indices. For every realistic degree distribution with
α > 1, S-HOTCACHE achieved over 3.5× speed-up with the 10KB memory budget.

8.6 Summary
In this chapter, we propose S-HOT, a scalable algorithm for high-order Tucker decomposition. S-
HOT solves M-Bottleneck, which existing algorithms suffer from, by using an on-the-fly computation.
We provide three versions of S-HOT: S-HOTSPACE, S-HOTSCAN, and S-HOTCACHE, which provide an
interesting trade-off between time and space. We theoretically and empirically show that all versions
of S-HOT have better scalability than baselines. In summary, our contributions are as follows:

133

• Bottleneck Resolution: We identify M-Bottleneck (Figure 8.2), the scalability bottleneck of ex-
isting Tucker-decomposition algorithms and avoid it by a novel approach based on an on-the-fly
computation.

• Scalable Algorithm Design: We propose S-HOT, a Tucker-decomposition algorithm that is care-
fully optimized for large-scale high-order tensors. S-HOT successfully decomposes 1000× larger
tensors than baselines algorithms (Figure 8.1) with identical convergence properties (Observation 8.1).

• Theoretical Analysis: We prove the amount of memory space and the number of data scans that
the different versions of S-HOT require (Table 8.2 and Lemmas 8.3-8.9).

Reproducibility: The source code and datasets used in this chapter are available at http://dm.
postech.ac.kr/shot.

134

http://dm.postech.ac.kr/shot
http://dm.postech.ac.kr/shot

Part II

Anomaly Detection

135

Chapter 9

Finding Patterns and Anomalies in Dense
Subgraphs

Chapter based on work that appeared at ICDM 2016 [SERF16] and the KAIS journal [SERF18].

How do the k-core structures of real-world graphs look like? What are the common patterns and
the anomalies? How can we exploit them for applications?

A k-core is the maximal subgraph in which all nodes have degree at least k. This concept
has been applied to such diverse areas as hierarchical structure analysis, graph visualization, and
graph clustering. Here, we explore pervasive patterns related to k-cores and emerging in graphs
from diverse domains.

Our discoveries are: (1) MIRROR PATTERN: coreness (i.e., maximum k such that each node
belongs to the k-core) is strongly correlated to degree. (2) CORE-TRIANGLE PATTERN: degen-
eracy (i.e., maximum k such that the k-core exists) obeys a 3-to-1 power law with respect to the
count of triangles. (3) STRUCTURED-CORE PATTERN: degeneracy-cores are not cliques but have
non-trivial structures such as core-periphery and communities.

Our algorithmic contributions show the usefulness of these patterns. (1) CORE-A, which mea-
sures the deviation from MIRROR PATTERN, successfully spots anomalies in real-world graphs, (2)
CORE-D, a single-pass streaming algorithm based on CORE-TRIANGLE PATTERN, accurately es-
timates degeneracy up to 12× faster than its competitor. (3) CORE-S, inspired by STRUCTURED-
CORE PATTERN, identifies influential spreaders up to 17× faster than its competitors with com-
parable accuracy.

9.1 Motivation
Given an undirected graph G, the k-core is the maximal subgraph of G in which every node is adjacent
to at least k nodes [BZ03]. This concept has been used extensively in diverse applications, including
hierarchical structure analysis [AhBV08], graph visualization [AHDBV06], protein function predic-
tion [WA05], and graph clustering [GMTV14]. An equally useful and closely related concept is the
degeneracy of G, that is, the maximum k such that the k-core exists in G. For example, a clique of 5
nodes itself is a 4-core and thus has degeneracy 4; a ring of 10 nodes has degeneracy 2; a star of 100
nodes has degeneracy 1. The simplest algorithm to compute k-cores is the so-called “shaving” method:
repeatedly deleting nodes with degree less than k until no such node is left.

Despite the huge interest in k-cores and their applications, it is not known whether k-cores or degen-
eracy follow any patterns in real graphs. Our motivating questions are: (1) what are common patterns

137

(a) P1: MIRROR PATTERN A1:
Anomaly Detection

● ●●

●
●

●

●●

●

●

●
●

●

●

●

101

102

103

105 107 109 1011

Number of Triangles

D
eg

en
er

ac
y

Real-world
data
Empirical
relation
Theoretical
relation

tan ! = 1/3!

(b) P2: CORE-TRIANGLE PATTERN

●●●●●●ide
al

7.1X0

1

2

3

0 100 200 300
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r

Overall
Triangle
Basic

Core-D
(Proposed):

𝛼=8
LogPass:

6
4 2

2X

(c) A2: CORE-D Algorithm (d) P3: STRUCTURED-CORE PATTERN

Figure 9.1: Three patterns (P1-P3) discovered in real-world graphs, and their applications (A1-
A3). (a) P1: Coreness and degree are strongly correlated. A1: Anomalies deviate from this pattern. (b)
P2: Degeneracy and the number of triangles in graphs obey a 3-to-1 power law, which is theoretically
supported. (c) A2: Our CORE-D algorithm (with OVERALL MODEL) estimates the degeneracy in a
graph stream 7× faster and 2× more accurately than its competitor. (d) P3: As seen in the sparsity
pattern of the adjacency matrix of a degeneracy-core, degeneracy-cores have structure, such as core-
periphery and communities, which can be exploited for identifying influential spreaders (A3).

regarding k-cores or degeneracy occurring across graphs in diverse domains? (2) are there anomalies
deviating from these patterns? (3) how can these patterns and anomalies be used for algorithm design?

To answer these questions, we present three empirical patterns that govern k-cores or degeneracy
across a wide variety of real-world graphs, including social networks, web graphs, internet topologies,
and citation networks. We also show the practical uses of these patterns.

Our first MIRROR PATTERN states that the coreness of a node (i.e., the maximum k such that the
node belongs to the k-core) is strongly correlated to its degree, as seen in Figure 9.1(a). We also observe
that anomalies (e.g., the CEO in Figure 9.1(a) and accounts using a ‘follower booster’ in Twitter) tend
to deviate from this pattern. This observation leads to CORE-A, our anomaly detection method based
on the degree of deviation from MIRROR PATTERN. We show that CORE-A is complementary to recent
densest-subgraph based anomaly detection methods [HSS+17, SHF18], and their combination has the
best of the two approaches.

Our second discovery, CORE-TRIANGLE PATTERN, states that, in real-world graphs, the degener-
acy and the triangle-count obey a power-law with slope 1/3, as seen in Figure 9.1(b). This relation is
theoretically analyzed in very realistic Kronecker graphs [LCKF05], and also utilized in CORE-D, our

138

single-pass streaming algorithm for estimating degeneracy. CORE-D is up to 12× faster than a recent
multi-pass algorithm [FCT14], while providing comparable accuracy (see Figure 9.1(c)).

Our last discovery, STRUCTURED-CORE PATTERN, states that degeneracy-cores in real-world graphs
are not cliques but have non-trivial structures (core-periphery, communities, etc.), as seen in Fig-
ure 9.1(d). We also show that nodes central within degeneracy-cores are particularly good spreaders up
to 2.6× more influential than the average nodes in degeneracy-cores, which are already known as good
spreaders [KGH+10]. Those spreaders are spotted by CORE-S, our influential spreader identification
method, which is up to 17× faster than its top competitors [KGH+10, RMV15, MSHM12] with similar
accuracy.

Our contributions in this chapter are as follows:
• Patterns: We discover three empirical patterns that hold across several real-world graphs from

diverse domains.
• Anomalies: We detect interesting anomalies (e.g., accounts using a ‘follower-boosting’ service in

Twitter) from nodes deviating from the patterns.
• Algorithms: The patterns are practically used in our algorithms for detecting anomalies (CORE-A),

estimating degeneracy (CORE-D), and identifying influential spreaders (CORE-S). Our experiments
show that our algorithms either complement or outperform state-of-the-art algorithms.

Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/kcore/.

The rest of this chapter is organized as follows. In Section 9.2, we give some preliminaries useful
in the remaining sections. In Section 9.3, we present MIRROR PATTERN and its application to anomaly
detection. In Section 9.4, we present CORE-TRIANGLE PATTERN and CORE-D, a streaming algo-
rithm for estimating degeneracy. In Section 9.5, we present STRUCTURED-CORE PATTERN and its
application to influential-spreader detection. After reviewing related work in Section 9.6, we provide a
summary of this chapter in Section 9.7.

9.2 Preliminaries
In this section, we first provide the definitions of k-cores and related concepts. Then, we discuss some
algorithms for computing k-cores and degeneracy. Lastly, we describe the real-world graphs used in
the following sections.

9.2.1 Concepts and Notations
Let G = (V , E) be an undirected unweighted graph. We define n = |V| and m = |E|. We denote the
neighbors of a node v ∈ V by Nv = {u ∈ V : {u, v} ∈ E} and its degree by dv = |Nv|. Likewise, for
a subgraph G ′ = (V ′, E ′) of G, we use Nv(G ′) = {u ∈ V ′ : {u, v} ∈ E ′} and dv(G ′) = |Nv(G ′)|.

The k-core or the core of order k [BZ03] is the maximal subgraph G ′ = (V ′, E ′) where ∀v ∈ V ′,
dv(G ′) ≥ k. Notice that, for each k, there exists at most one k-core, and it is not necessarily a connected
subgraph. Cores are nested, i.e., the k1-core is a subgraph of the k2-core if k1 ≥ k2. The coreness or
core number of a node v [BZ03], denoted by cv, is the order of the highest-order core that v belongs to.
By definition, coreness is upper bounded by degree, i.e., cv ≤ dv. The degeneracy of a graph G, defined
as kmax = maxv∈V cv, is the maximum coreness. The kmax-core is also called the degeneracy-core.
We define the density of a subgraph as the ratio between the number of existing edges and the largest

139

http://www.cs.cmu.edu/~kijungs/codes/kcore/
http://www.cs.cmu.edu/~kijungs/codes/kcore/

Table 9.1: Table of frequently-used symbols.

Symbol Definition

G = (V , E) undirected and unweighted graph
A adjacency matrix of G
n number of nodes in G
m number of edges in G

kmax degeneracy of G
nmax number of nodes in the degeneracy-core
mmax number of edges in the degeneracy-core
Dmax density of the degeneracy-core
davg average degree of G
cv coreness of node v
dv degree of node v
r Pearson correlation coefficient
ρ Spearman’s rank correlation coefficient

dmp(v) node v’s degree of deviation from MIRROR PATTERN

DSM densest-subgraph based anomaly detection methods
a − score(G ′) anomaly score of subgraph G ′

#∆ number of triangles in G
λi i-th largest eigenvalue of A
iv in-core centrality of node v
β infection rate in the SIR Model

possible number of edges. If we let nmax and mmax be the numbers of the nodes and edges in the
degeneracy-core, then the density of the degeneracy-core is Dmax = mmax/

(
nmax

2

)
.

Additionally, we denote the number of triangles in a graph G by #∆. The eigenvalues of the
adjacency matrix A of G are denoted by (λ1, ..., λn) where λi ≥ λj if i < j. Table 9.1 lists the symbols
frequently used in the chapter.

9.2.2 Algorithm for k-Cores and Degeneracy
The k-core remains if we remove nodes with degree less than k and edges incident to them recursively
from G until no node has degree less than k. The (k + 1)-core can be computed in the same way
from the k-core since the (k + 1)-core is a subgraph of the k-core. Likewise, by computing k-cores
sequentially from k = 1 to k = kmax, we divide all nodes according to their coreness. This process,
called core decomposition, runs in O(n+m) [BZ03] if a graph fits in memory.

However, if a graph does not fit in memory, the computational cost grows. For example, in a graph
stream, a recent method LOGPASS [FCT14] requires O(logα/2(n)) passes of the entire graph for α-
approximation of the degeneracy, for any real number α larger than 2. It requires O(n) memory space,
independent of α. In Section 9.4.3, however, we propose a single-pass algorithm for estimating degen-
eracy with similar memory requirements. Other algorithms for k-cores in large graphs are discussed in
Section 9.6.

140

Table 9.2: Summary of the real-world graphs used in the chapter.

Name n m #∆ kmax nmax Dmax Summary

Hamsterster [Kun13] 1.86K 12.6K 16.8K 20 130 0.24

Social networks

Email [KY04] 36.7K 184K 727K 43 275 0.26
Catster [Kun13] 150K 5.45M 185M 419 1.28K 0.48

Youtube [MMG+07] 1.13M 2.99M 3.06M 51 845 0.10
Flickr [MMG+07] 1.72M 15.6M 548M 568 1.75K 0.49
Orkut [MMG+07] 3.07M 117M 628M 253 15.7K 0.03

LiveJournal [MMG+07] 4.00M 34.7M 178M 360 377 0.99
Twitter [KLPM10] 41.7M 1.20B 34.8B 2.49K 3.19K 0.90
Friendster [YL15] 65.6M 1.81B 4.17B 304 24.5K 0.02

Stanford [LLDM09] 282K 1.99M 11.3M 71 387 0.29
Web Graphs

NotreDame [AJB99] 326K 1.09M 8.91M 155 1.37K 0.12

Caida [LKF07] 26.5K 53.4K 36.3K 22 64 0.53
Internet topologies

Skitter [LKF07] 1.70M 11.1M 28.8M 111 222 0.68

Arxiv [GGK03] 27.8K 352K 1.48M 37 52 0.86
Citation networks

Patent [HJT01] 3.77M 16.5M 7.52M 64 106 0.73

9.2.3 Real-world Graph Datasets
We describe the datasets used in the following sections. Since the objective of this chapter is to find per-
vasive patterns emerging across graphs in diverse domains, our datasets include social networks, web
graphs, internet topologies, and citation networks. The direction of edges is ignored in all the datasets
because k-cores are defined only in undirected graphs. The datasets are summarized in Table 9.2 with
the details below.

Social Networks. The Hamsterster dataset [Kun13] is a friendship network between users of hamster-
ster.com, an online community for hamster owners. The Catster dataset [Kun13] is a friendship network
between users of catster.com, an online community for cat owners. The Youtube dataset [MMG+07] is a
friendship network between users of Youtube, a video-sharing web site. The Flickr dataset [MMG+07]
is a social network between users of Flickr, a photo sharing site. The Orkut dataset [MMG+07] is a
social network between users of Orkut, a social networking site. The LiveJournal dataset [MMG+07]
is a friendship network between users of Live Journal, an online blogging community. The Friendster
dataset [YL15] is a friendship network between users of Friendster, a former social networking site.
The Twitter dataset [KLPM10] is a subscription network between users in Twitter, a microblogging
service. The Email dataset [KY04] is an email network between employees of Enron Corporation, an
energy, commodities, and services company. This dataset also includes emails between the employees
and people outside the company.

Web Graphs. The NotreDame dataset [AJB99] and the Stanford dataset [LLDM09] are hyperlink net-
works between web pages from University of Notre Dame and Stanford University, respectively.

Internet Topologies. The Caida dataset [LKF07] is an internet topology graph obtained from Route-
Views Border Gateway Protocol routing tables. The Skitter dataset [LKF07] is an internet topology
graph obtained from traceroute data collected by Skitter, which is Caida’s probing tool.

141

Citation Networks. The Patent dataset [HJT01] is a citation network between patents registered with
the United States Patent and Trademark Office. The Arxiv dataset [GGK03] is a citation network
between papers submitted to arXiv High Energy Physics Theory Section.

9.3 P1: “Mirror Pattern” and Anomaly Detection
In this section, we discuss MIRROR PATTERN and its use for anomaly detection.

9.3.1 Observation: Pattern in Real-world Graphs
What are the key factors determining the coreness of the nodes in real-world graphs? We find out that
a strong positive correlation exists between coreness and degree, which is an upper bound of coreness.
Specifically, as seen in Figure 9.2, Spearman’s rank correlation coefficient ρ 1 is significantly higher
than 0 (no correlation) in all the considered graphs and close to 1 (perfect positive correlation) in many
of them. This empirical pattern is described in Observation 9.1.

Observation 9.1: MIRROR PATTERN

In real-world graphs, coreness has a strong positive correlation with degree.

9.3.2 Application: Anomaly Detection
MIRROR PATTERN implies that nodes with high coreness have tendency to have high degree and vice
versa. However, the degree-coreness plots in Figure 9.2 highlight some nodes deviating from the pat-
tern, i.e., nodes ranked first in terms of degree but relatively lower in terms of coreness, and vice versa.
In this section, we take a close look at these nodes and show that they indicate two different types of
anomalies: ‘loner-stars’ (i.e., nodes mostly connected to ‘loners’) or ‘lockstep behavior’ (i.e., a group
of similarly behaving nodes).

9.3.2.1 Second Email Account of the CEO (Loner-Star)
In the Email dataset, the node marked in Figure 9.2(d) has the highest degree 1,383 but relatively low
coreness 12, deviating from MIRROR PATTERN. This node corresponds to the second email account of
the former CEO of the company. This account was used only to receive emails, and not a single email
was sent from this account. The former CEO used the other email account when sending emails. The
99.6% of the sources of the received emails are outside the company, while only 0.4% are inside. Since
email accounts outside the company mostly have small coreness in the dataset (they are ‘loners’), this
anomalous email account has small coreness despite its high degree.

1Spearman’s rank correlation coefficient ρ [Spe04] is the standard (Pearson) correlation coefficient r of the ranks. Here,
ρ is equivalent to r between the ranks of nodes in terms of degree and their ranks in terms of coreness. Using ρ is known to
be robust to outlying values than simply using r. We ignored isolated nodes when computing ρ.

142

(a) Catster (ρ = 0.95) (b) Orkut (ρ = 0.91)

(c) Skitter (ρ = 0.99) (d) Email (ρ = 0.99)

(e) Twitter (ρ = 0.95) (f) Patent (ρ = 0.56)

(g) LiveJournal (ρ = 0.93) (h) NotreDame (ρ = 0.99)

Figure 9.2: Our MIRROR PATTERN is pervasive in real-world graphs; exceptions signal anoma-
lies. ρ ∈ [−1, 1] indicates Spearman’s rank correlation coefficient; and colors are for heatmap of point
density. Degree and coreness have strong positive correlation; exceptions (in red circles) are “strange”:
the node ranked first in terms of degree but relatively lower in terms of coreness corresponds to an
email account of the company’s CEO in (d); nodes ranked first in terms of coreness but relatively lower
in terms of degree indicate accounts involved in a ‘follower-boosting’ service in (e), ‘copy-and-paste’
bibliography in (f), an isolated near-clique in (g), and a propeller-shaped subgraph in (h).

143

Figure 9.3: Nodes deviating from MIRROR PATTERN are involved in a ‘Follower booster’ on
Twitter. 78% of the nodes in the degeneracy-core were following the above Twitter account when the
data were crawled. The account still exists without being suspended.

9.3.2.2 ‘Follower-Boosting’ Service on Twitter (Lockstep Behavior)
In Twitter, the nodes with the highest coreness, marked in Figure 9.2(e), have relatively low degrees,
deviating from MIRROR PATTERN. We find out that at least 78% of the nodes with the highest coreness
were directly involved in a ‘Follower-Boosting’ service (i.e., following ‘@TwitterFollower’ in Fig-
ure 9.3) when the Twitter dataset was crawled. Since the accounts involved in the service are densely
connected with each other (Dmax = 0.90), to boost the number of followers, they have the high-
est coreness despite their relatively low degrees. Surprisingly, this misbehavior has been undetected
by Twitter, and ‘@TwitterFollower’ account has not been suspended or removed since the data was
crawled in 2009.

9.3.2.3 ‘Copy-and-Paste’ Bibliography (Lockstep Behavior)
As on Twitter, the nodes with the highest coreness in the Patent dataset have relatively low degrees,
deviating from MIRROR PATTERN (see Figure 9.2(f)). We find out that 88% of these nodes are patents
owned by the same pharmaceutical company, and bibliography in previous patents of the company has
been reused repeatedly in a ‘copy-and-paste’ manner in later patents of the company. This results in
a dense subgraph in the citation network, and the patents in the subgraph have the highest coreness
despite their relatively low degrees.

9.3.2.4 Isolated Near-Clique in Live Journal (Lockstep Behavior)
Nodes with the highest coreness but relatively low degrees are also found in the LiveJournal dataset, as
marked in Figure 9.2(g). Although we could not identify actual accounts corresponding to these 377
nodes, their abnormality was supported by the following facts: (1) the nodes form a near-clique with
density 99.7%, unlikely to occur naturally, (2) the group formed by the nodes is isolated as judged from
the fact that 88% of the neighbors of the nodes are also in the group, while only 12% are outside, and
(3) the nodes have suspicious uniformity. Specifically, 127 nodes (one third of the considered nodes)
have degrees between 387 and 391.

144

(a) Degeneracy-core of the NotreDame
web graph

clique(152)

clique(151)

clique(151)

clique(151)

clique(151)

clique(151)

clique(151)

clique(151)

clique(151)

*clique(𝑛): a clique of 𝑛 vertices

(b) The structure of the degeneracy-core of the
NotreDame web graph

Figure 9.4: Nodes deviating from MIRROR PATTERN form a propeller-shaped subgraph in the
NotreDame dataset. The degeneracy-core of the NotreDame dataset is composed by a set of cliques
of the same size connected in a symmetric way. This subgraph is unlikely to occur naturally.

9.3.2.5 Propeller-Shaped Subgraph in Web (Lockstep Behavior)
As marked in Figure 9.2(h), in the NotreDame dataset, the nodes with the highest coreness have rela-
tively low degree, deviating from MIRROR PATTERN. The structure of the degeneracy-core, the sub-
graph formed by these nodes, is shown in Figure 9.4. The degeneracy-core consists of 9 cliques of
almost the same size (8 cliques of 151 nodes and a clique of 152 nodes). Moreover, the way these
cliques are connected is surprisingly symmetric. That is, the cliques are divided into 3 groups where
the cliques in each group are connected to the same two nodes, and every clique is also connected to the
center node. Although the actual web pages corresponding to the nodes composing this subgraph are
unknown, this subgraph is unlikely to occur naturally. This subgraph seems to be artificially constructed
for special purposes.

9.3.3 Proposed Algorithm: CORE-A
Inspired by the observations in the previous section, we propose CORE-A, an anomaly detection
method based on the deviation from MIRROR PATTERN. We show that CORE-A is complementary
to densest-subgraph based anomaly detection, and their combination has the best of the two methods.

145

9.3.3.1 Algorithm Description
In the previous section, we show that nodes deviating from MIRROR PATTERN are worth noticing, as
they indicate the two types of anomalies: ‘loner-stars’ (e.g. the CEO in Figure 9.2(d)) and ‘lockstep
behavior’ (e.g., an isolated near-clique in Figure 9.2(g)). What scoring function gives a high score, to
both types of anomalies? Deviation from MIRROR PATTERN (dmp) in Definition 9.1 gives an answer.
CORE-A, our proposed anomaly detection method, ranks nodes in decreasing order of dmp. The main
idea behind our proposed dmp measure, is to use the rank of each node, and since we expect power-
laws, the log of the rank. Specifically, we use rankd(v), the fractional rank2 of node v in decreasing
degree order, and similarly, rankc(v), in decreasing coreness order (in case of the same coreness, in
decreasing degree order).

Definition 9.1: Deviation from MIRROR PATTERN

A node v’s degree of deviation from MIRROR PATTERN in graph G is defined as

dmp(v) := | log(rankd(v))− log(rankc(v))|.

CORE-A has time complexity O(n + m) since the dmp scores of all nodes can be computed in O(n)
using ‘counting sort’ once we compute core decomposition in O(n+m) [BZ03].

9.3.3.2 Complementarity of CORE-A
Anomaly detection in graphs (especially in social networks) has been extensively researched (see Sec-
tion 9.6), and many of them detect dense subgraphs since anomalies tend to form dense subgraphs,
as we also show in Section 9.3.2. Especially, recent methods, including M-ZOOM (Chapter 11) and
FRAUDAR [HSS+17], are based on densest subgraphs (i.e., subgraphs with maximum average degree).
We show that CORE-A and these densest-subgraph based methods (DSM) are complementary as they
are good at detecting different-size dense subgraphs.

To demonstrate that CORE-A and DSM (specifically, running M-ZOOM on the adjacency matrix)
are complementary, we compare their performances when different-size subgraphs are injected into
social networks. We randomly choose k nodes and inject

(
k
2

)
edges between them into each network.

Then, we compare how precisely and exhaustively each method detects the k chosen nodes using Area
Under the Precision-Recall Curve (AUCPR) [DG06].

As seen in Figure 9.5, DSM cannot detect small dense subgraphs accurately, while it detects large
ones with near-perfect accuracy. In contrast, CORE-A is more accurate for smaller subgraphs that
cannot be detected by DSM. This is explained by the fact that the k chosen nodes have degree and
coreness at least k − 1. If k ≈ cmax but k � dmax, the nodes tend to have high dmp scores since they
have small rankc but are likely to have large rankd. However, if k ≈ dmax, the nodes have low dmp
scores since they have small rankd as well as small rankc.

9.3.3.3 Combination with DSM
We can have the best of CORE-A and DSM by combining them. Specifically, we propose to define the
anomaly score (a-score) of a subgraph G ′ = (V ′, E ′) in a graph G based on dmp scores in G as well as

2The fractional rank of an item is one plus the number of items greater than it plus half the number of items equal to it.

146

Core%A'+'DSM'(Proposed)* ********Core%A (Proposed)* *******DSM

● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●

2.8X

Smaller Larger
0.0
0.2
0.4
0.6
0.8
1.0

50K 100K 150K
of Injected EdgesAc

cu
ra

cy
 (A

U
C

PR
)

(a) Orkut

● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●

2.8X

Smaller Larger0.0
0.2
0.4
0.6
0.8
1.0

200K 400K 600K
of Injected EdgesAc

cu
ra

cy
 (A

U
C

PR
)

(b) Flickr

● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●

3.3X

Smaller Larger
0.0
0.2
0.4
0.6
0.8
1.0

2K 4K 6K
of Injected EdgesAc

cu
ra

cy
 (A

U
C

PR
)

(c) Youtube

● ● ● ● ●● ● ● ● ●● ● ● ● ●

2.6X

Smaller Larger0.0
0.2
0.4
0.6
0.8
1.0

100K 200K 300K 400K
of Injected EdgesAc

cu
ra

cy
 (A

U
C

PR
)

(d) Catster

● ● ● ● ●● ● ● ● ●● ● ● ● ●

2.4X

Smaller Larger0.0
0.2
0.4
0.6
0.8
1.0

2K 3K 4K
of Injected EdgesAc

cu
ra

cy
 (A

U
C

PR
)

(e) Email

● ● ● ● ● ●● ● ● ● ● ●● ● ● ● ● ●

3X

Smaller Larger0.0
0.2
0.4
0.6
0.8
1.0

0.2K 0.5K 0.8K
of Injected EdgesAc

cu
ra

cy
 (A

U
C

PR
)

(f) Hamsterster

Figure 9.5: CORE-A is complementary to DSM; their combination has the best of the two. In so-
cial networks, our CORE-A method accurately detects small injected subgraphs that cannot be detected
accurately by DSM. The combination of CORE-A and DSM successfully detects both small and large
injected subgraphs. The combination detects up to 3 .3× smaller injected subgraphs than DSM with
near-perfect accuracy.

the average degree as follows:

a-score(G ′) =
|E ′|
|V ′|

+ w
∑

v∈V ′
dmp(v)

|V ′|
(9.1)

where w > 0 is a parameter for balancing the two factors: |E
′|
|V ′| and

∑
v∈V ′

dmp(v)
|V ′| . We set w to the ratio

of the maximum values of the factors in the given graph G = (V , E). The maximum value of |E
′|
|V ′| is

close (within a factor of 2) to |E
∗|
|V∗| , where G∗ = (V∗, E∗) is the densest subgraph detected by DSM; and

the maximum value of
∑

v∈V ′
dmp(v)
|V ′| is maxv∈V dmp(v). We set w to their ratio, i.e.,

w =
|E∗|
|V∗|
× 1

maxv∈V dmp(v)
. (9.2)

Once we set w, we use [SHF18] to identify the subgraph maximizing a-score (Eq (9.1)). We classify
the nodes in the subgraph into anomalies. This entire process takes O(m log n), as DSM does [SHF18,
HSS+17].

Figure 9.5 illustrates the success of our proposal to combine the scores (Eq. (9.1)): our combination
successfully detects both small and large dense subgraphs injected into social networks, outperforming
both its component methods (i.e., CORE-A and DSM), Especially, the combination detects up to 3 .3×
smaller dense subgraphs than DSM, with near-perfect accuracy.

147

● ●●

●
●

●

●●

●

101

102

103

105 107 109 1011

Number of Triangles
D

eg
en

er
ac

y

tan ! = 1/3!

Social Network

Web Graph
Citation Network
Internet Topology

Figure 9.6: CORE-TRIANGLE PATTERN: triangle count and degeneracy obey a 3-to-1 power law.
Each point corresponds to a graph dataset in Table 9.2. The count of triangles has a strong correlation
(r = 0.94) with degeneracy in log scale. Moreover, the slope is very close to the theoretical slope 1/3
(dashed line).

9.4 P2: “Core-Triangle Pattern” and Degeneracy Estimation
In this section, we present CORE-TRIANGLE PATTERN (C-T PATTERN) in real-world graphs and pro-
vide mathematical analysis of the pattern. Then, we propose an one-pass streaming algorithm for
estimating degeneracy, based on the pattern.

9.4.1 Observation: Pattern in Real-world Graphs
What are the major factors determining degeneracy, the maximum coreness, in real-world graphs? We
investigate the relation between degeneracy and various graph measures in real-world graphs. As seen
in Figure 9.6, the number of triangles has a particularly strong correlation (r = 0.94) with degeneracy
in log scale, compared to the node-count (r = 0.75) and the edge-count (r = 0.83), which have a
weaker correlation with degeneracy. Moreover, the slope is 0.32, which is very close to 1/3. This leads
to Observation 9.2.

Observation 9.2: CORE-TRIANGLE PATTERN or C-T PATTERN

In real-world graphs, the triangle count and the degeneracy obey a 3-to-1 power law. That is,

kmax ∝ (#∆)
1
3 .

9.4.2 Theoretical Analysis in the Kronecker and ER Models
Why do real-world graphs obey C-T PATTERN? Here we show that C-T PATTERN holds in the so-
called the Kronecker model (Definition 9.2), which is considered as a very realistic graph model obey-
ing common patterns in real-world graphs [LCKF05].

148

Definition 9.2: Kronecker Graph [LCKF05]

Let Gq be the q-th power Kronecker graph of a seed graph G1. If we denote the adjacency matrix
of Gq by Aq, then Aq is defined as:

Aq = Aq−1 ⊗ A1 = A1 ⊗ A1 ⊗ ...⊗ A1,︸ ︷︷ ︸
q times

where ⊗ denotes Kronecker Product.

C-T PATTERN in the model is defined formally in Definition 9.3, where we ignore constant factors
for ease of analysis.

Definition 9.3: C-T PATTERN in the Kronecker model

A Kronecker model with seed graph G1 follows C-T PATTERN if Eq. (9.3) holds in {Gq}q≥1,
graphs generated by the model.

kmax = Θ(#∆
1
3) or equivalently #∆ = Θ(k3

max). (9.3)

To prove C-T PATTERN in the Kronecker model, we use Lemmas 9.1 and 9.2, which give upper
and lower bounds of degeneracy.

Lemma 9.1: Lower Bound of Degeneracy [Erd63]

The half of the average degree lower bounds the degeneracy. That is, if we let davg be the average
degree, then kmax ≥ davg/2.

Lemma 9.2: Upper Bound of Degeneracy

The largest eigenvalue upper bounds the degeneracy. That is, if we let λ1 be the largest eigenvalue
of the adjacency matrix, then kmax ≤ λ1.

Proof. Let H be the degeneracy-core (i.e., kmax-core) of G and dmin(H) be its minimum degree. By
the definition of the k-core and the degeneracy, dmin(H) = kmax(G). Since the largest eigenvalue is
lower bounded by minimum degree [BH11], kmax(G) = dmin(H) ≤ λ1(H). The largest eigenvalue of
a graph is also lower bounded by that of its induced subgraph [BH11]. Since the degeneracy-core is an
induced subgraph due to its maximality, kmax(G) ≤ λ1(H) ≤ λ1(G) = λ1. �

Lemma 9.3 states that the graph measures used for upper and lower bounding degeneracy in Lem-
mas 9.1 and 9.2 increase exponentially with q, the power of Kronecker products, in the Kronecker
model.

149

Lemma 9.3: Graph Measures Increasing Exponentially in Kronecker Graphs

The average degree, the degeneracy, and the largest eigenvalue increase exponentially with q in
{Gq}q≥1, graphs generated by the Kronecker model. Specifically,

davg(Gq) = (davg(G1))q, ∀q ≥ 1. (9.4)
kmax(Gq) ≥ (kmax(G1))q, ∀q ≥ 1. (9.5)
λ1(Gq) = (λ1(G1))q, ∀q ≥ 1. (9.6)

Proof. Let n(G) be the number of nodes and nz(G) be the number of non-zero entries in the adjacency
matrix.

We first show Eq. (9.4). From davg(G) = nz(G)/n(G), n(Gq) = (n(G1))q, and nz(Gq) = (nz(G1))q,
we have

davg(Gq) =
nz(Gq)
n(Gq)

=
(nz(G1))q

(n(G1))q
=

(
nz(G1)

n(G1)

)q
= (davg(G1))q,∀q ≥ 1.

We prove Eq. (9.5) by induction. For seed graph G1, kmax(G1) ≥ (kmax(G1))1. Assume kmax(Gi) ≥
(kmax(G1))i. Each node in Gi+1 can be represented as an ordered pair (vi, v1) where vi is a node of Gi
and v1 is a node of G1. Two nodes, (vi, v1) and (v′i, v

′
1), in Gi+1 are adjacent if and only if vi and v′i

are adjacent in Gi and v1 and v′1 are adjacent in G1 [LCKF05]. Let G ′i(V ′i, E ′i) be the degeneracy-core of
Gi(Vi, Ei) where V ′i = {vi ∈ Vi : c=(vi)kmax(Gi)}. Then, each node (vi, v1) in S = {(vi, v1) ∈ Vi+1 :
vi ∈ V ′i, v1 ∈ V ′1} are adjacent to dvi(G ′i) × dv1(G ′1)(≥ kmax(Gi) × kmax(G1)) nodes in S. Therefore,
kmax(Gi+1) ≥ kmax(Gi)× kmax(G1) ≥ kmax(G1)(i+1). By induction, kmax(Gq) ≥ (kmax(G1))q, ∀q ≥ 1.

Finally, to show Eq. (9.6), let λ(G) = (λ1, ..., λn) be the eigenvalues of the adjacency matrix of
G, and λ1(G) be the largest eigenvalue. Then, λ(Gq) = sort(λ(Gq−1) ⊗ λ(G1)) [VL00]. As λ1(Gq) =
λ1(Gq−1)× λ1(G1), λ1(Gq) = (λ1(G1))q, ∀q ≥ 1 holds. �

Lemmas 9.4 and 9.5 state how rapidly degeneracy and triangle count increase in the Kronecker
model. Both of them increase exponentially with q, the power of Kronecker products, and the base
numbers depend on seed graphs. For Lemma 9.5, we have to deal with self-loops in Kronecker graphs
which happen naturally. We add one to the degree for each self-loop and define a triangle in Kronecker
graphs as an unordered node triplet, which can contain multiple instances of the same node, where
every instance is connected to the others either by self-loops or other edges. For example, (v1, v1, v2) is
a triangle in Kronecker graphs if v1 has a self-loop and v1 and v2 are adjacent. Note that Lemma 9.5 and
Theorem 9.1 hold equally, with the original definitions of degree and a triangle, in Kronecker graphs
without self-loops.

Lemma 9.4: Degeneracy in the Kronecker model

Degeneracy in {Gq}q≥1 increases exponentially with q. Let davg be the average degree and λ1 be
the largest eigenvalue of the adjacency matrix. Then,

kmax(Gq) = Ω(max{(davg(G1))q, (kmax(G1))q}). (9.7)
kmax(Gq) = O((λ1(G1))q). (9.8)

150

Proof. Lemma 9.4 is immediate from Lemmas 9.1, 9.2, and 9.3. �

Lemma 9.5: Triangles in the Kronecker model

The number of triangles in {Gq}q≥1 increases exponentially with q. That is, if we let λ(G1) =
(λ1, ..., λn) be the eigenvalues of the adjacency matrix of the seed graph G1, then

#∆(Gq) = Θ

((
n∑
i=1

λ3
i

)q)
. (9.9)

Proof. Let λ(Gi) = (λ1(Gi), ..., λni(Gi)) be the eigenvalues of the adjacency matrix of Gi. The num-
ber of walks of length 3 in Gi that begin and end on the same node is

∑ni

j=1(λj(Gi))3 [Tso08] and

linearly related to the number of triangles, i.e., #∆(Gi) = Θ(
∑ni

j=1(λj(Gi))3). For seed graph G1,∑n
j=1(λj(G1))3 = (

∑n
j=1(λj(G1))3)1. Assume

∑ni

j=1(λj(Gi))3 = (
∑n

j=1(λj(G1))3)i. As λ(Gi+1) =
sort(λ(Gi)⊗ λ(G1)) [VL00],

n(i+1)∑
j=1

(λj(Gi+1))3 =
ni∑
r=1

n∑
s=1

(λr(Gi))3(λs(G1))3

=

 ni∑
r=1

(λr(Gi))3

(n∑
s=1

(λs(G1))3

)
=

(
n∑
s=1

(λs(G1))3

)(i+1)

.

By induction,
∑nq

j=1(λj(Gq))3 = (
∑n

j=1(λj(G1))3)q, ∀q ≥ 1. Hence, #∆(Gq) = Θ(
∑nq

j=1(λj(Gq))3) =

Θ((
∑n

j=1(λj(G1))3)q), ∀q ≥ 1. �

Based on the speed of increase of degeneracy and triangle count given in Lemmas 9.4 and 9.5, The-
orem 9.1 states a sufficient and a necessary condition for C-T PATTERN to hold in the Kronecker model.
Note that

∑n
i=1 λ

3
i=λ

3
1 in Eq. (9.10) and

∑n
i=1 λ

3
i≤λ3

1 in Eq. (9.11) can hold since the eigenvalues can
be negative.

151

Theorem 9.1: C-T PATTERN in the Kronecker model

In a Kronecker model with a seed graph G,
1. A sufficient condition for C-T PATTERN to hold is, in the seed graph G,

max(d3
avg, k

3
max) =

n∑
i=1

λ3
i = λ3

1. (9.10)

2. A seed graph satisfying the sufficient condition exists.

3. A necessary condition for C-T PATTERN to hold is, in the seed graph G,

max(d3
avg, k

3
max) ≤

n∑
i=1

λ3
i ≤ λ3

1. (9.11)

Proof. Assume that the sufficient condition holds, and c = max(d3
avg, k

3
max) =

∑n
i=1 λ

3
i = λ3

1. Then,
(kmax(Gq))3 = Θ(cq) by Lemma 9.4, and #∆(Gq) = Θ(cq) by Lemma 9.5. Therefore, #∆(Gq) =
Θ((kmax(Gq))3), and C-T PATTERN holds. The Mediator seed graph in Table 9.3 satisfies this sufficient
condition.

Assume that the necessary condition is not met. By Lemmas 9.4 and 9.5, (kmax(Gq))3 increases
faster than #∆(Gq) if

∑n
i=1 λ

3
i < max(d3

avg, k
3
max). Instead, #∆(Gq) increases faster than (kmax(Gq))3

if λ3
1 <

∑n
i=1 λ

3
i . Hence, #∆(Gq) 6= Θ((kmax(Gq))3), and C-T PATTERN does not hold. �

Many realistic seed graphs satisfy the necessary condition for C-T PATTERN, as listed in Table 9.3.
Especially, Mediator satisfies also the sufficient condition. Even seed graphs that do not satisfy the
sufficient condition empirically follow C-T PATTERN, as seen in Figure 9.7. The slope of the regression
line between the number of triangles and degeneracy is close to 1/3 in log scale with all the seed graphs
considered.

In addition to the Kronecker model, C-T PATTERN is proved also in Erdős-Rényi (ER) Model,
another mathematically tractable graph generation model where each of possible

(
n
2

)
edges occurs

independently with probability p, as formalized in Theorem 9.2. Figure 9.8 shows C-T PATTERN in
ER random graphs generated with different p values. The slopes of the regression lines are close to 1/3
in log scale, regardless of p values.

Theorem 9.2: C-T PATTERN in the ER model

Graphs generated by the ER model with probability p follow C-T PATTERN in terms of expected
values if p = Ω(log n/n). That is,

E[#∆] = Θ(E[kmax]
3).

152

Table 9.3: Sample seed graphs for the Kronecker model. All graphs satisfy the necessary condition
for C-T PATTERN, and Mediator satisfies also the sufficient condition. When computing kmax and davg,
we add one to the degree for each self-loop if self-loops exist.

Core-Periphery Mediator Triangle Star

Shape

k3
max 1 8 8 1
d3
avg 3.38 8 18.96 5.36∑n
i=1 λ

3
i 4 8 20 10

λ3
1 4.24 8 20.39 12.21

●
●

●
●●●●●●●

●
●

●
●●●●●●●

●

●

●

●●●●●●●

101

102

103

103 104 105 106 107107 108 1091010

Number of Triangles

D
eg

en
er

ac
y Core-Periphery

(slope = 0.32)
Mediator
(slope = 0.33)
Triangle
(slope = 0.32)
Star
(slope = 0.34)

tan ! = 1/3!

Figure 9.7: CORE-TRIANGLE PATTERN in the Kronecker model. Points represent graphs generated
by the Kronecker model with different seed graphs. The slopes between the triangle count and the
degeneracy are close to 1/3 (dashed line) in log scale regardless of seed graphs.

●

●

●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●

101

102

103

103 104 105 106 107107 108 1091010

Number of Triangles

D
eg

en
er

ac
y p = 1

(slope = 0.33)
p = 0.5
(slope = 0.34)
p = 0.2
(slope = 0.35)tan ! = 1/3!

Figure 9.8: CORE-TRIANGLE PATTERN in the ER model. Points represent graphs generated by the
ER model with different p values. The slopes between the triangle count and the degeneracy are close
to 1/3 (dashed line) in log scale regardless of p.

153

Proof. From p = Ω(log n/n), there exists c > 0 such that p ≥ c log n/n. Let ε = max(2, 12/c) (> 1).
Then,

P[∃v ∈ V s.t. d>(v)(1 + ε)(n− 1)p]

≤ nP[d>(v)(1 + ε)(n− 1)p] (Boole’s inequality)
≤ n exp{−(n− 1)pε/3} (Chernoff bound)
≤ n exp{−c log(n)(n− 1)ε/3n} (p ≥ c log(n)/n)

≤ n exp{−4 log(n)(n− 1)/n} (ε ≥ 12/c)

≤ n exp{−2 log n} = n−1.

Let q = P[∃v ∈ V s.t. d>(v)(1 + ε)(n− 1)p]. Then,

E[kmax] ≤ E[dmax] ≤ (1− q)(1 + ε)(n− 1)p+ q(n− 1)

≤ (1 + ε)(n− 1)p+ (n− 1)/n = O(np)

Hence, E[kmax] = O(np). As E[kmax] ≥ E[davg/2] = Ω(np) by Lemma 9.1, E[kmax] = Θ(np) holds.
On the other hand, the expected number of triangles is the sum of probabilities that each three nodes

form a traingle:

E[#∆] =
n(n− 1)(n− 2)

6
p3.

Therefore, E[#∆] = Θ(n3p3) = Θ(E[kmax]
3) holds. �

9.4.3 Proposed Algorithm: CORE-D
Based on C-T PATTERN, we propose CORE-D, a single-pass streaming algorithm for estimating de-
generacy. We empirically show that CORE-D gives a better trade-off between speed and accuracy than
a state-of-the-art method.

9.4.3.1 Algorithm Description
Computing degeneracy in a graph stream not fitting in memory remains as a challenge. As explained in
Section 9.2.2, a recent approximate method, namely LOGPASS, needs O(logα/2(n)) passes of a graph
stream for α-approximation of its degeneracy, for any real number α greater than 2, with O(n) memory
requirements (regardless of α). However, multiple passes of graph streams are time-consuming and not
even possible in many real-world settings.

In contrast, the number of triangles can be estimated accurately even in a single pass, as we show
in Chapters 4-6. Simply sampling each edge with probability p in a graph stream and estimating the
number of triangles in the whole graph from that in the sampled graph [TKMF09] also can be thought
as a single-pass streaming algorithm if the sampled graph fits in memory and needs not be streamed
again. This sampling method, which our CORE-D method uses, estimates triangle-count accurately
even with less than n sampled edges.

CORE-TRIANGLE PATTERN (Observation 9.2), a high correlation between degeneracy and the
number of triangles, enables using the accurately estimated triangle-count for estimating degeneracy.
Specifically, we consider the following models, whose coefficients are denoted by w, relating the num-
ber of triangles and degeneracy:

• BASIC MODEL (Baseline): ˆlog(kmax) = w0,0 + w0,1 log(n) + w0,2 log(m)

154

Table 9.4: Models of CORE-D. *: p value≤ 0.05, ****: p value≤ 0.0001. OVERALL MODEL fits the
data best (i.e., has the highest adjusted R2), and only the log of triangle-count is statistically significant
with p value < 0.001.

Model Variable Coefficient
Estimate Std.Err. p-value

Basic
(R2

adj = 0.72)

1 -0.03 0.43 0.94
log(n) -0.35 0.28 0.24
log(m) 0.62 0.24 0.02 *

Triangle 1 -0.20 0.23 0.40
(R2

adj = 0.89) log(#∆) 0.32 0.03 1.3e-07 ****

1 0.03 0.20 0.88
Overall log(n) 0.18 0.15 0.26

(R2
adj = 0.95) log(m) -0.50 0.20 0.03 *

log(#∆) 0.59 0.09 3.3e-05 ****

Algorithm 9.1 CORE-D with TRIANGLE MODEL

Input: (1) graph stream: G, (2) sampling probability: p, (3) coefficients in triangle model: (w1,0, w1,1)

Output: Estimated degeneracy: k̂max
1: GSample = ∅
2: for each edge e in G do
3: add e to GSample with probability p
4: #∆Sample ← InMemoryTriangleCounting(GSample) [Sch07]
5: #̂∆← #∆Sample ∗ (1/p)3

6: k̂max ← exp(w1,0 + w1,1 log(#̂∆))

7: return k̂max

• TRIANGLE MODEL: ˆlog(kmax) = w1,0 + w1,1 log(#∆)

• OVERALL MODEL: ˆlog(kmax) = w2,0 + w2,1 log(n) + w2,2 log(m) + w2,3 log(#∆)

Table 9.4 summarizes the estimates of the coefficients obtained by linear regression on the real-
world graphs listed in Table 9.2. The OVERALL MODEL has the highest adjusted R-squared (0.95)
among all possible linear models, and the log triangle-count is statistically significant with p-value <
0.001, proving the effectiveness of using triangle-count for estimating degeneracy.

Given a new graph stream, we estimate the node-count, the edge-count, and the triangle-count in
the graph in a single pass. Then, by plugging these statistics into one of the models, whose coefficients
are given as input parameters, we obtain an estimate of degeneracy. Algorithm 9.1 describes the details
of CORE-D with TRIANGLE MODEL. For estimating the triangle-count, CORE-D requires O(mp)
memory space on average to store sampled edges. The memory requirement becomes O(n) if we set
sampling probability p to O(n/m).

We also need n andm for BASIC MODEL and OVERALL MODEL. We obtainm by simply counting
edges in the graph stream. In many real-world settings, n is available or is easily computed from the
difference between maximum and minimum node ids. Otherwise, we obtain n by counting distinct
node ids with O(n) space. Even when n and m are needed, CORE-D still requires only one pass

155

Overall Triangle BasicCore%D (Proposed):

! = 8LogPass: ! = 6 ! = 4 ! = 2

●●●●●
●ide
al

10.5X0
1
2
3
4

0 4000 8000
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r

(a) Friendster

●●●●●●ide
al

7.1X0

1

2

3

0 100 200 300
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r
(b) Orkut

●●●●●●ide
al

6.2X0

1

2

3

0 10 20 30 40
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r

(c) Flickr

●●●●●●ide
al

7X0
1
2
3
4

0 2 4 6 8
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r

(d) YouTube

●●●●●●ide
al

4.3X0
1
2
3
4
5

0 2 4 6 8
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r

(e) Catster

●●●●●
●ide
al

7.4X0.0
0.5
1.0
1.5
2.0
2.5

0 10 20 30
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r
(f) Skitter

●●●●●

●ide
al

8X0

1

2

3

0 2000 4000
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r

(g) Twitter*

●●●●●

●ide
al

9.5X0.0

0.4

0.8

0 50 100 150
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r

(h) LiveJournal*

●●●●●
●ide
al

12.2X0.0

0.5

1.0

1.5

0 20 40 60 80
Wall−Clock Time (sec)

R
el

at
ive

 E
rro

r

(i) Patent*
* Graphs whose degeneracies are known to be affected by anomalies (see Section 9.3.2)

Figure 9.9: CORE-D achieves both speed and accuracy. Points in each plot represent the perfor-
mances of different methods with different parameters. For randomized algorithms, error bars show
± one standard deviation over ten runs. Lower-left region indicates better performance. Our proposed
CORE-D algorithm provided a better trade-off between speed and accuracy than LOGPASS. Specifi-
cally, CORE-D (with OVERALL MODEL) was up to 12× faster than LOGPASS (α = 2), while still
providing comparable accuracy. Among the models of CORE-D, OVERALL MODEL yielded the best
performance in most datasets.

156

100

102

104

106

(1)
 Cats

ter

(2)
 Yo

utu
be

(3)
 Flick

r

(4)
 Skitt

er

(5)
 Pate

nt

(6)
 Li

veJ
.

(7)
 O

rku
t

(8)
 Tw

itte
r

(9)
 Frie

nd
Ster

Datasets

M
em

or
y

Us
ag

e
(K

B) Core-D (Basic) Core-D (Triangle)
Core-D (Overall) LogPass

Figure 9.10: CORE-D is comparable with LOGPASS in terms of memory requirements. CORE-D
with OVERALL MODEL or TRIANGLE MODEL has similar memory requirements to LOGPASS, and
CORE-D with BASIC MODEL has the smallest memory requirements.

because both edge sampling (lines 2-3 of Algorithm 9.1) and computing n and m can be conducted at
the same time within one pass.

9.4.3.2 Experiments

Experimental Settings. We compare the speed, accuracy, and memory efficiency of CORE-D and
LOGPASS. We used a desktop with a 3.6GHz cpu and 16GB memory space, and graphs (see Table 9.2)
were streamed from disk whose speed is 192MB/sec for sequential read. We assumed that n is known
or is computed easily from node ids in all methods. We set sampling probability p to n/(5m). With
this value of p, CORE-D estimated degeneracy reliably and accurately, while using similar amount of
memory space to LOGPASS. For the coefficients of the models (e.g., w1,0 and w1,1 in Algorithm 9.1),
we used the values estimated from the real-world graphs listed in Table 9.2. Specifically, we used
log(n), log(m) and log(#∆) in all the datasets except the one being tested as training data, and learned
the coefficients using linear regression. A graph being tested was excluded from training data for fairly
evaluating accuracy in a new (unseen) graph. To measure the accuracy of the considered algorithms,
we used relative error defined as:

relative error(kmax, k̂max) := |kmax − k̂max|/kmax.

For randomized algorithms, we reported the average over ten runs.

Speed and Accuracy. As seen in Figure 9.9, CORE-D gave a significantly better trade-off between
accuracy and speed than LOGPASS. Specifically, CORE-D (with OVERALL MODEL) was up to 12×
faster than LOGPASS (α = 2) with similar accuracy. Mote that CORE-D with OVERALL MODEL was
more accurate than LOGPASS in all the datasets except the ones whose degeneracies are known to be
affected by anomalies (see Section 9.3.2). Among the models of CORE-D, OVERALL MODEL consis-
tently yielded the best performance in all the datasets. BASIC MODEL, solely based on the numbers
of nodes and edges, showed the lowest accuracy especially in the Friendster and Patent datasets. This
supports the effectiveness of using the number of triangles for estimating degeneracy.

157

Memory Efficiency. We experimentally compare the memory requirements of CORE-D and LOG-
PASS, whose memory requirement does not depend on α. The memory requirement of CORE-D with
OVERALL MODEL or TRIANGLE MODEL was similar to that of LOGPASS, as seen in Figure 9.10.
Specifically, CORE-D with OVERALL MODEL or TRIANGLE MODEL required 63-124% of the mem-
ory space required by LOGPASS. CORE-D with BASIC MODEL, which does not have to sample edges
for estimating the triangle count, required the least memory space.

9.5 P3: “Structured Core Pattern” and Influential Spreader Iden-
tification

In this section, we describe STRUCTURED-CORE PATTERN and discuss its application to influential
spreader identification.

9.5.1 Observation: Pattern in Real-world Graphs
How do the degeneracy-cores in real-world graphs look like? Are they cliques? Our observation
shows that degeneracy-cores in real-world graphs are not cliques but have structural patterns such as
core-periphery [BE00] (i.e., have a cohesive core and a loosely connected periphery) and communities
[New06] (i.e., consist of groups of nodes with dense connections internally and sparser connections
between groups). This leads to Observation 9.3, which is supported by the following facts:
• As shown in Table 9.2, degeneracy-cores have density much less than one in all the datasets (e.g.,

0.02 in the Friendster dataset and 0.03 in the Orkut dataset) except the LiveJournal and Twitter
datasets, whose degeneracy-cores include anomalies (see Section 9.3.2).

• In all the datasets, degeneracy-cores have significantly higher core-periphery score 3 (e.g., 0.54 in
the Skitter dataset and 0.49 in the Stanford dataset) than cliques, as shown in Figure 9.11(a).

• Figure 9.11(a) also indicates that many datasets have significantly higher modularity 4 than cliques
(e.g., 0.85 in the NotreDame dataset and 0.47 in the Orkut dataset).

• The sparsity patterns of the adjacency matrices of degeneracy-cores reveal structural patterns such
as core-periphery and communities. Figures 9.11(b)-9.11(d) show the sparsity patterns of some real-
world degeneracy-cores, where nodes are reordered as proposed in [HSP+16]. In Figure 9.11(b),
nodes in the degeneracy-core are clearly divided into the core and the periphery. In Figure 9.11(c),
nodes are divided into five communities. In Figure 9.11(d), nodes are clearly divided into the core
and the periphery, and the nodes in the core are again divided into three communities.

Observation 9.3: STRUCTURED-CORE PATTERN

In real-world graphs, degeneracy-cores have structural patterns such as core-periphery and com-
munities.

3Strength of core-periphery structure. The correlation between the adjacency matrix of the measured graph and that of
a graph with perfect core-periphery structure. See [BE00] for details.

4Strength of community structure. The fraction of the edges within communities minus such fraction expected in a
randomly connected graph. See [New06] for details.

158

●
●

●

●
●

●

0.0

0.5

1.0

0.0 0.5 1.0
Modularity

C
or

e−
Pe

rip
he

ry
 S

co
re

Social Network

Web Graph
Citation Network
Internet Topology
Clique (Synthetic)

Email
Clique (synthetic)

Hamster
Caida

×

Clear ≥2 Communities

Cl
ea

r C
or

e
an

d
Pe

rip
he

ry

(a) Structural Property of Real-world Graphs

(b) Core-Periphery
(Hamsterster)

(c) Communities (Email) (d) Core-Periphery with
Communities (Caida)

Figure 9.11: Degeneracy-cores of real-world graphs are not cliques but have structural pat-
terns, such as core-periphery and communities. (a) Core-periphery score (∈ [0, 1]) and modularity
(∈[−0.5, 1]) measure the strength of core-periphery and community structure, resp., in graphs. (b), (c),
and (d) show the sparsity patterns of the adjacency matrices of degeneracy-cores. Ci denotes the i-th
community.

9.5.2 Application: Finding Influential Spreaders
The problem of identifying influential spreaders in social networks has gained considerable attention
due to its wide applications, including information spreading, viral marketing, and epidemic disease
control (see Section 9.6 for related work). For the problem of finding individual spreaders (instead of
a set of spreaders, which is another well-studied problem, called the influence maximization problem
[KKT03]), it is shown in [KGH+10] that the ability of nodes to spread information to the large portion
of a network is more closely related to their coreness rather than other centrality measures such as
degree and betweenness centrality. This implies that the nodes in the degeneracy-core tend to be good
spreaders,

Our STRUCTURED-CORE PATTERN reveals that even nodes belonging to the degeneracy-core can
be further divided into those in core and those in periphery; or those connecting communities and those
inside a community. We observe that this position of a node within the degeneracy-core is highly related
to its ability to spread information not just in the degeneracy-core but in the entire graph. Specifically,
we find out a strong correlation between influence (see Section 9.8 for the measurement method) and
in-core centrality, which we define in Definition 9.4, as shown in Figure 9.12.

159

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

● ●

●

●

●
●

●
●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●

●

● ●

●

●
● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

● ●

●
●

●●
●

●
●

●

●
●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

● ●

●

●
●

●

●

●
●

●●

●
●

●

●

●

● ●

●

●

●

● ●
●

●

●

●

●

●
●

●
●●

●

●

● ●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●

●●
●

●

●

●

●
●

●

●
● ●

●

● ●
●

●
●

●
●

●

●

●

●

●
●

●●●
●

●
● ●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●●

●50
100
150
200

0.2 0.4 0.6 0.8 1.0
Centrality in the

 Degeneracy−Core
In

flu
en

ce
 in

 th
e

 E
nt

ire
 G

ra
ph

(a) Email (r = 0.84)

●
●●

●

●

●

●
●

●

●

●

●
●●

●●
●

●

●
●

●●

●

●
●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●
●

●● ●

●●

●

●

●
●

●●

●

●●
●●●

●

●
●

●

●●

●
●

●
●

●

●
●
●
●

●

●

● ●

●

● ●
●
●

●

●● ●●

● ●

● ●
●

●

●
●
●

●

●
●
●
● ●

●
●

●

●

●
●

●●
●

●
●

●
●

●
●

●

●

●●●
●

●

●●●

●

●

●●●

●
●

●●

●
●

●
●

●

●

●●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

●

●
●

●

●
●

●
●●

●

●

●●

●

●

●

●

●
●

● ●

●
●●

●
● ●

●● ●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●●●

●

●●
●

●

●
●

●
●

●●●●●●
●●●

●
●
●

●

●

●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●●
●

●
●●

●

●
10K

20K

0.1 0.2 0.3 0.4
Centrality in the

 Degeneracy−Core

In
flu

en
ce

 in
 th

e
 E

nt
ire

 G
ra

ph

(b) Orkut (r = 0.92)

Figure 9.12: Nodes central in degeneracy-cores are influential in entire graphs. 300 nodes ran-
domly picked in the degeneracy-core of each graph are plotted. r denotes the Pearson correlation coef-
ficient. Influence is measured using the SIR model simulation (see Section 9.8), and in-core centrality
(Definition 9.4) is used for measuring centrality.

Definition 9.4: In-Core Centrality

Let G ′ = (V ′, E ′) be the degeneracy-core of graph G, Then, for each node v in V ′, v’s in-core
centrality in G is defined as

iv := v’s eigenvector centrality in G ′.

Among many centrality measures, eigenvector centrality (i.e., entries of the eigenvector corresponding
to the largest real eigenvalue) is used since it is computationally efficient and is known to be effective
in identifying influential spreaders [MSHM12].

This observation is used to further refine influential spreaders in the degeneracy-core in the follow-
ing section.

9.5.3 Proposed Algorithm: CORE-S
Inspired by STRUCTURED-CORE PATTERN, we propose CORE-S, a top-k influential-spreader identi-
fication algorithm based on in-core centrality. We show that CORE-S gives a better trade-off between
speed and accuracy than its top competitors.

9.5.3.1 Algorithm Description
As outlined in Algorithm 9.2, CORE-S first runs core decomposition and extracts the degeneracy-core
G ′ = (V ′, E ′). Then, the in-core centralities of the nodes in V ′ are computed using power iteration. As
the last step, CORE-S returns the top-k nodes with the highest in-core centralities. The time complexity
of CORE-S is O(n + m + Tmmax + nmax log k), where (n + m) is for core decomposition, Tmmax

is for power iteration, and nmax log k is for top-k selection. T denotes the number of iterations in the
power iteration.

160

Algorithm 9.2 CORE-S for top-k spreaders
Input: (1) graph: G, (2) number of spreaders: k (≤ nmax)
Output: k influential spreaders

1: run the core decomposition of G
2: extract the degeneracy-core G ′ = (V ′, E ′) from G
3: compute the in-core centrality of the nodes in V ′ by power iteration in G ′
4: return top-k nodes with the highest in-core centralities

9.5.3.2 Experiments

Experimental Settings. The experimental settings were the same with those in Section 9.4.3.2. We
compared the average influence of ten nodes chosen by CORE-S with that of the nodes chosen by the
following methods:
• K-CORE [KGH+10]: all nodes with the highest coreness.
• K-TRUSS [RMV15]: all nodes with the highest trussness (defined in Section 9.2.1).
• Eigenvector Centrality (EC) [MSHM12]: top-ten nodes with the highest eigenvector centralities in

the entire graph.
The influence of each node was measured using SIR simulation (see Section 9.8 for details). We also
compared the time taken for choosing influential nodes in each method.

Speed and Accuracy. As seen in Figure 9.13, CORE-S provided the best trade-off between speed and
accuracy in social networks. Specifically, the average influence of the nodes chosen by CORE-S was
up to 2 .6× higher than that of all the nodes in the degeneracy-core (K-CORE). However, additional
time taken in CORE-S for further refining nodes in degeneracy-cores was at most 12% of the time
taken for the core decomposition of entire graphs in all the considered social networks except the
smallest Hamsterster dataset. CORE-S was up to 17× faster than EC, which computes the eigenvector
centrality in entire graphs (instead of only in degeneracy-cores). However, the average influence of the
nodes chosen by CORE-S was comparable (95-104%) with that of the nodes chosen by EC.

9.6 Related Work
Related work forms the following groups: applications of k-core analysis, algorithms for k-core anal-
ysis, dense subgraphs, graph-based anomaly detection, and influential spreader identification.

Applications of k-core Analysis. The concept of a k-core [Sei83] has been applied to hierarchical
structure analysis [AHDBV06], graph visualization [AHDBV06], densest subgraph detection [Cha00]
(a special case of DSM in Section 9.3.3.2), important protein identification [WA05], influential spreader
detection [KGH+10], and graph clustering [GMTV14]. Degeneracy also has been used as a graph-
sparsity measure in many domains such as AI [Fre82] and Bioinformatics [BH03].

Algorithms for k-core Analysis. Core decomposition can be computed in O(n + m) by repeatedly
removing nodes with the smallest degree [BZ03]. [SGJS+13] proposed an incremental algorithm,
while [CKCÖ11] proposed an external memory algorithm, which requires O(kmax) scans of graphs.
For degeneracy, [FCT14] proposed a streaming algorithm requiring O(logα/2(n)) passes of a graph

161

Core%S (Proposed)* *******K,Core********K,Truss********Eigenvector*Centrality*(EC)

●●●●● 12X
● ideal

2.
6X

5K
10K
15K
20K
25K

101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(a) Orkut (β = 0.002)

●●●●●
4X

● ideal

1.
9X

500

750

1000

1250

1500

100 101 102 103

Wall−Clock Time (sec)

In
flu

en
ce

(b) Flickr (β = 0.001)

●●●●● 16X
● ideal

1.
2X

6K

7K

8K

10−1 100 101 102

Wall−Clock Time (sec)

In
flu

en
ce

(c) Catster (β = 0.002)

●●●●● 17X
● ideal

1.
7X

4K

6K

8K

100 101

Wall−Clock Time (sec)

In
flu

en
ce

(d) Youtube (β = 0.01)

●●●●●
4X

● ideal

1.
9X

100

150

200

250

10−2 10−1

Wall−Clock Time (sec)

In
flu

en
ce

(e) Email (β = 0.01)

●●●●●

2X
● ideal

1.
4X

60

80

100

120

10−3 10−2

Wall−Clock Time (sec)

In
flu

en
ce

(f) Hamsterster (β = 0.03)

Figure 9.13: CORE-S achieves both speed and accuracy. β denotes the infection rate in the SIR
model. Points in each plot represent the performances of different methods. Upper-left region indicates
better performance. CORE-S provided the best trade-off between speed and accuracy. Specifically,
it found up to 2 .6× more influential nodes than K-CORE with similar speed. Compared with EC,
CORE-S was up to 17× faster, while still finding nodes with comparable (95-104%) influence.

and n memory space for α(> 2)-approximation. Our CORE-D, however, requires only one pass of a
graph and n memory space for accurately estimating degeneracy.

Dense Subgraphs. In addition to k-cores, many notions of dense subgraphs have been proposed. The
most strict one is a maximal clique [BK73] (i.e, a complete subgraph not included in any other complete
subgraphs). Since the definition of a clique is too rigid for many purposes, many relaxed forms have
been proposed including n-cliques [Luc50], k-plexes [SF78], n-clans [Mok79], n-clubs [Mok79], and
quasi-cliques [ARS02]. However, the computation of these dense subgraphs is NP-hard, while finding
k-cores (i.e., core decomposition) runs in O(n + m) [BZ03]. The notion of a k-core also has been
generalized [Coh08, SSPC15].

Graph-based Anomaly Detection. There have been diverse approaches (belief propagation [PCWF07],
egonet features [AMF10], spectral methods [PSS+10], etc.) for anomaly detection in graphs (see
[ATK15] for a survey). Recent methods largely focus on dense subgraphs [HSS+17, SBGF14, BXG+13,
ZZY+17] or more generally dense subtensors [SHF18, SHKF18, SHKF17b, JBC+16], which anoma-
lies tend to form (see Chapters 10-13). Especially, many of them are based on densest subgraphs (i.e.,
subgraphs with maximum average degree). We show that our CORE-A, which detects smaller dense
subgraphs consisting of low-degree nodes, are complementary to these densest-subgraph based meth-
ods, and the combination of both approaches has the best of both approaches.

Influential Spreader Identification. The problem of identifying influential spreader is sub-categorized
into (1) finding a group of spreaders, which is called the influence maximization problem [KKT03],

162

and (2) finding individual influential spreaders. For the second problem, on which we focus, nodes with
high coreness [KGH+10], truss number [RMV15], and eigenvector centrality [MSHM12] are known
as good spreaders. Our CORE-S combines these measures so that only the advantages of each measure
(i.e., low computational cost of coreness and high accuracy of eigenvector centrality) are taken.

9.7 Summary
In this chapter, we discover three empirical patterns in real-world graphs related to k-cores, and utilize
them for several applications. Specifically, our contributions are summarized as follows:
• MIRROR PATTERN and CORE-A: We observe a strong correlation between the coreness and

the degree of nodes. CORE-A, which measures the deviation from this trend, successfully detects
anomalies in real-world graphs and complements a state-of-the-art anomaly detection method.

• CORE-TRIANGLE PATTERN and CORE-D: We discover a 3-to-1 power law between degeneracy
and triangle count. Our CORE-D method uses this pattern for accurately estimating degeneracy in
only one pass of a graph stream and up to 12× faster than a recent multi-pass method.

• STRUCTURED-CORE PATTERN and CORE-S: We observe that degeneracy-cores have non-trivial
structures (core-periphery, communities, etc). CORE-S, which finds nodes central within degeneracy-
cores, identifies influential spreaders up to 17× faster than methods with similar accuracy.

Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/kcore/.

9.8 Appendix: Measuring Influence of Nodes by Simulating the
SIR model

To evaluate influence as a spreader, we simulate spreading processes using the SIR model [KGH+10],
a widely-used epidemic model. Initially, a vertex chosen as the seed is in the infectious state (I-state),
while the others are in the susceptible state (S-state). Each vertex in the I-state infects each of its
neighbors in the S-state with probability β (infection rate) and then enters the recovered state (R-state).
This is repeated until no vertex is in the I-state. The influence of a seed, the initially infected vertex,
can be quantified by the number of vertices infected at any time during the process. To reduce random
effects, we repeat the whole process 100 times, and use the average number of infected vertices as the
measure of influence. β is set close to the epidemic threshold λ−1

1 , as in previous work [RMV15].

163

http://www.cs.cmu.edu/~kijungs/codes/kcore/
http://www.cs.cmu.edu/~kijungs/codes/kcore/

164

Chapter 10

Detecting Dense Subtensors in Large Tensors
(0): Preliminaries

In this preliminary chapter on dense-subtensor detection, we (a) provide motivation for dense-
subtensor detection, (b) review related work, and (c) introduce some concepts and datasets that are
frequently used in the following chapters on dense-subtensor detection.

10.1 Motivation
Imagine that you manage a social review site (e.g., Yelp) and have the records of which accounts wrote
reviews for which restaurants. How do you detect suspicious lockstep behavior: for example, a set of
accounts which give fake reviews to the same set of restaurants? What about the case where additional
information is present, such as the timestamp of each review, and the keywords in each review?

Such problems of detecting suspicious lockstep behavior have been extensively studied from the
perspective of dense-subgraph detection, as in Chapter 9. Intuitively, in the above example, highly
synchronized behavior induces dense subgraphs in the bipartite review graph of accounts and restau-
rants. Indeed, methods which detect dense subgraphs have been successfully used to spot fraud in
settings ranging from social networks [BXG+13, JCB+14a, JCB+14b, HSS+17, SERF18], auctions
[PCWF07], search engines [GKT05], and the web [SERF18].

Additional information helps identify suspicious lockstep behavior more accurately. In the above
example, the fact that reviews forming a dense subgraph were also written at about the same time, with
the same keywords and rating scores, makes the reviews even more suspicious. A natural and effective
way to incorporate such extra information is to model data as a tensor (e.g., a 5-order tensor whose
modes are users, restaurants, timestamps, rating scores, and keywords) and find dense subtensors in it.
In the following chapters, we show that unusually dense subtensors in real-world tensors indicate many
interesting anomalies, including various types of network attacks, spam reviews, and bot activities.

10.2 Related Work
We review previous work on dense-subgraph detection, dense-subtensor detection, and tensor decom-
position. See Table 10.1 for a comparison of some algorithms for detecting dense subgraphs or subten-
sors.

165

Table 10.1: Comparison of methods for detecting dense subgraphs or subtensors. Our proposed al-
gorithms (i.e., M-ZOOM, D-CUBE, DENSESTREAM, and DENSEALERT) provide distinct advantages.

F
R

A
U

D
A

R
[H

SS
+

17
]

D
en

se
st

Su
bg

ra
ph

[K
S0

9]

G
re

ed
yO

Q
C

[T
B

G
+

13
]

L
oc

al
O

Q
C

[T
B

G
+

13
]

C
R

O
S

S
S

P
O

T
[J

B
C
+

16
]

M
A

F
[M

G
F1

1]

C
P

D
[K

B
09

]

M
-Z

O
O

M
(C

ha
pt

er
11

)

D
-C

U
B

E
(C

ha
pt

er
12

)

D
E

N
SE

ST
R

E
A

M
(C

ha
pt

er
13

)

D
E

N
SE

A
L

E
R

T
(C

ha
pt

er
13

)

Graph Data 3 3 3 3 3 3 3 3 3 3 3
Tensor Data 3 3 3 3 3 3 3

Out-of-core Computation 3
Distributed Computation 3
Incremental Computation 3 3

Sublinear Space Requirements 3
Approximation Guarantee 3 3 3 3 3 3 3
Flexibility in Density Measures 3 3 3 3 3 3
Multiple Subtensor Detection 3 3 3 3 3 3

Dense Subgraph Detection: (1) Theory. The densest subgraph problem, the problem of finding the
subgraph that maximizes average degree, has been extensively studied in theory (see [LRJA10] for a
survey). The two major directions are max-flow based exact algorithms [Gol84, KS09] and greedy al-
gorithms [Cha00, KS09] giving a 1/2-approximation guarantee. The latter direction has been extended
to streaming settings [ELS15, MTVV15, BHNT15] as well as distributed settings [BKV12, BGM14].
Variants allow for size restrictions [AC09], providing a 1/3-approximation to the densest subgraph for
the lower bound case. Variants also allow for multiple dense-subgraph detection [BBC+15, GGT16]
or more general density measures, such as edge surplus [TBG+13]. A related line of research deals
with dense submatrices in binary matrices where the definition of density is designed for the purpose
of frequent itemset mining [SM04] or formal concept mining [CBRB08, IKPZ13].

Dense Subgraph Detection: (2) Application to Anomaly Detection. Dense-subgraph detection has
received much attention also in the data mining community, with a focus on its application to anomaly
detection. Spectral approaches [PSS+10, JCB+14b, SBGF14] make use of eigendecomposition or
SVD of adjacency matrices for dense-subgraph detection. Such approaches have been used to spot
anomalous pattens in patent graphs [PSS+10], lockstep followers in social networks [JCB+14b], and
stealthy or small-scale attacks in social networks [SBGF14]. Other approaches include NETPROB

[PCWF07], which uses belief propagation to detect fraud-accomplice bipartite cores in auction net-
works, and COPYCATCH [BXG+13], which uses one-class clustering and sub-space clustering to iden-
tify ‘Like’ boosting on Facebook. In addition, ODDBALL [AMF10] spots near-cliques in a graph of
posts in blogs based on egonet features. FRAUDAR [HSS+17] and CORE-A ([SERF18]), which gen-
eralize a greedy algorithm for the densest subgraph problem [KS09] so that the suspiciousness of each
node and edge can be incorporated, spot follower-boosting services on Twitter (see Chapter 9).

166

Dense Subtensor Detection. Extending dense-subgraph detection to multi-aspect data (i.e., tensors)
[JBC+16, SHF18] incorporates additional aspects (i.e., dimensions), such as time, to identify dense
regions of interest with greater accuracy and specificity. CROSSSPOT [JBC+16], which starts from
a seed subtensor and adjusts it in a greedy way until it reaches a local optimum, shows high ac-
curacy in practice but does not provide any theoretical guarantees on its running time and accu-
racy. M-ZOOM [SHF18], presented in Chapter 11, starts from the entire tensor and only shrinks it
by removing slices one by one in a greedy way. M-ZOOM improves upon CROSSSPOT in terms
of speed and approximation guarantees. D-CUBE [SHKF18], presented in Chapter 12, extends M-
ZOOM to disk-resident or distributed tensors while providing the same accuracy guarantee of M-ZOOM.
DENSESTREAM and DENSEALERT [SHKF17b], presented in Chapter 13, extend M-ZOOM to dy-
namic tensors, which evolve over time, while providing the same accuracy guarantee of M-ZOOM.
Once dense subtensors are detected, for further analyses of detected dense subtensors, ZOORANK

[LHS+17] prioritizes the entities forming the dense subtensors based on their contributions to the sub-
tensors. Dense-subtensor detection has been found useful for detecting ‘retweet boosting’ on social
media [JBC+16]; network attacks [MGF11, SHKF17b, SHF18, SHKF18]; spam reviews and rat-
ing attacks on review sites [SHKF17b, SHKF18]; and ‘edit wars’ and bot activities on Wikipedia
[SHKF17b, SHF18, SHKF18].

Tensor Decomposition. Spectral methods for dense subgraphs are naturally extended to tensors, and
tensor decomposition methods, such as HOSVD and CP Decomposition [KB09], can be used for dense-
subtensor detection [MGF11]. Scalable algorithms for tensor decomposition also have been developed,
including external-memory algorithms [OSP+17, SSK17], distributed algorithms [KPHF12, SSK17,
JPF+16], incremental algorithms [STF06, ZVB+16, GPP18], and approximate algorithms based on
sampling [PFS12] and count-min sketch [WTSA15]. However, dense-subtensor detection based on ten-
sor decomposition has serious limitations: it usually detects subtensors with significantly lower density
than search-based methods (as shown experimentally in the following chapters), provides no flexibility
with regard to the choice of density metrics, and does not provide any approximation guarantee.

10.3 Concepts
We introduce some concepts frequently used in the following chapters.

10.3.1 Tensors Represented as Relations
We use [x] = {1, 2, · · · , x} for brevity. Let R(A1, · · · , AN , X) be a relation with N dimension at-
tributes, denoted by A1, · · · , AN , and a nonnegative measure attribute, denoted by X (see Exam-
ple 10.1 for a running example). For each tuple t ∈ R and for each n ∈ [N], t[An] and t[X] in-
dicate the values of An and X , resp., in t. For each n ∈ [N], we use Rn := {t[An] : t ∈ R}
to denote the set of distinct values of An in R. The relation R is naturally represented as an N -
way tensor of size |R1| × · · · × |RN |. The value of each entry in the tensor is t[X], if the corre-
sponding tuple t exists, and 0 otherwise. Let Bn be a subset of Rn. Then, a subtensor B in R is
defined as B(A1, ..., AN , X) := {t ∈ R : ∀n ∈ [N], t[An] ∈ Bn}, the set of tuples where each
attribute An has a value in Bn. The relation B is a ‘subtensor’ because it forms a subtensor of size
|B1| × · · · × |BN | in the tensor representation of R, as in Figure 10.1(b). We also define the mass of
R as MR = mass(R) :=

∑
t∈R t[X] (i.e., the sum of the values of attribute X in R), the size of R as

SR = size(R) :=
∑N

n=1 |Rn|, and the volume of R as VR = volume(R) :=
∏N

n=1 |Rn|. We denote

167

User Item Date Count
Alice I Mar-11 3
Alice J Mar-11 4
Bob I Mar-11 5
Bob J Mar-11 7
Carol K Mar-12 1… … … …

(a) Relation R

ItemI J K

Alice

Bob

Carol

U
se
r

Mar-12
Mar-11

1 0 3

0

1

3 4 0

5 7 0

1 0 1

(b) Tensor Representation of R

Figure 10.1: Pictorial description of Example 10.1. (a) Relation R (Purchase), where the colored
tuples compose a subtensor B. (b) Tensor representation of R, where the colored entries compose B.

the set of tuples of B whose attribute An = a by B(a, n) := {t ∈ B : t[An] = a} and its mass, called
the attribute-value mass of a in An, by MB(a,n) :=

∑
t∈B(a,n) t[X].

Example 10.1: Purchase History

Let R = Purchase(user, item, date, count) depicted in Figure 10.1(a). Each tuple (u, i, d, c) in
R indicates that user u purchased c units of item i on date d. The first three attributes A1 = user,
A2 = item, and A3 = date are dimension attributes, and the other one X = count is the
measure attribute. Let B1 = {‘Alice’, ‘Bob’}, B2 = {‘I’,‘J’}, and B3 = {Mar-11}. Then,
B is the set of tuples regarding the purchases by ‘Alice’ or ‘Bob’ on ‘I’ or ‘J’ on Mar-11, and
its mass MB = 19, which is the total units sold by such purchases. Likewise, MB(user, ‘Alice’) =
mass(B(user, ‘Alice’)) = 7, which is the total units of ‘I’ or ‘J’ purchased exactly by ‘Alice’ on
Mar-11. In the tensor representation, B composes a subtensor in R, as depicted in Figure 10.1(b).

10.3.2 Density Measures

Definition of Density Measures. In the following two chapters, we consider four specific density mea-
sures although our algorithms are not restricted to them. Below, we slightly abuse notations to empha-
size that the density measures are the functions of MB, {|Bn|}Nn=1, MR, and {|Rn|}Nn=1, where B is a
subtensor of a relation R.

Arithmetic average mass (Definition 10.1) and geometric average mass (Definition 10.2) are multi-
dimensional extensions of average degree measures, which have been widely used for dense-subgraph
detection. The merits of each average degree measure are discussed in [Cha00, KV99], and extensive
research based on them is discussed in Section 10.2.

168

Definition 10.1: Arithmetic Average Mass [Cha00]

The arithmetic average mass of a subtensor B of a relation R is defined as

ρari(B,R) :=
MB

SB/N
,

or equivalently,

ρari(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1) :=
MB

1
N

∑N
n=1 |Bn|

.

Definition 10.2: Geometric Average Mass [Cha00]

The geometric average mass of a subtensor B of a relation R is defined as

ρgeo(B,R) :=
MB

(VB)
1
N

,

or equivalently,

ρgeo(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1) :=
MB

(
∏N

n=1 |Bn|)
1
N

.

Another density measure is entry surplus (Definition 10.3), defined as the observed mass of B

subtracted by α times the mass expected under the assumption that the value of each entry (in the tensor
representation) in R is i.i.d. Entry surplus is a multi-dimensional extension of edge surplus, defined
in graphs [TBG+13]. Subtensors with high entry surplus are configurable by adjusting α. With high
α values, relatively small compact subtensors have higher entry surplus than large sparse subtensors,
while the opposite happens with small α values [SHF18, SHKF18].

Definition 10.3: Entry Surplus [TBG+13]

The entry surplus of a subtensor B of a relation R is defined as

ρes(α)(B,R) := MB − α ·MR · (VB/VR),

or equivalently,

ρes(α)(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1) := MB − α ·MR ·
N∏
n=1

|Bn|
|Rn|

,

where α is a constant.

169

The other density measure is suspiciousness (Definition 10.4), defined as the negative log likelihood
that a subtensor with the same volume of B has mass MB under the assumption that the value of each
entry (in the tensor representation) of R is i.i.d. from a Poisson Distribution.

Definition 10.4: Suspiciousness [JBC+16]

The suspiciousness of a subtensor B of a relation R is defined as

ρsusp(B,R) := VR ·DKL

(
MB

VB

∣∣∣∣∣∣∣∣MR

VR

)
= MB ·

(
log

MB

MR

− 1

)
+MR ·

VB
VR
−MB · log

VB
VR
,

where DKL is the Kullback-Leibler divergence, or equivalently,

ρsusp(MB,{|Bn|}Nn=1,MR, {|Rn|}Nn=1)

:= MB ·
(

log
MB

MR

− 1

)
+MR ·

N∏
n=1

|Bn|
|Rn|

−MB · log

(
N∏
n=1

|Bn|
|Rn|

)
.

Our methods, discussed in the following two chapters, however, are not restricted to the four mea-
sures mentioned above. Our methods, which search for dense subtensors, allow for any density measure
ρ that satisfies Axiom 10.1, which any reasonable density measure should satisfy.

Axiom 10.1: Density Axiom

If two subtensors of a relation have the same cardinality for every dimension attribute, the subten-
sor with higher or equal mass is at least as dense as the other one. Formally,

|Bn| = |B′n|,∀n ∈ [N] and MB ≥MB′ ⇒ ρ(B,R) ≥ ρ(B′,R).

Maximization of Density Measures. Finding the densest subtensors that maximize the above mea-
sures is computationally expensive. Even when we restrict our attention to the simplest case where we
aim to find a single densest submatrix maximizing arithmetic average mass (i.e., ρari) from a binary
matrix takes O(S6

R) time [Gol84].

10.4 Datasets
The real-world tensors used in the following chapters are categorized into four groups: (a) Rating
data (AppStore, Yelp, Android, Netflix, and YahooM.), (b) Wikipedia revision histories (KoWiki and
EnWiki), (c) ‘Like’ histories (StackO.), (d) Temporal social networks (Youtube and SMS), and (e) TCP
dumps (Darpa and AirForce).

170

Rating data. Rating data are relations with schema (user, item, timestamp, score, #ratings). Each tuple
(u,i,t,s,r) indicates that user u gave item i score s, r times, at timestamp t. In the AppStore dataset
[ACF13], the timestamps are in dates, and the items are entertaining software from App Store, an online
software market. In the Yelp dataset 1, the timestamps are in dates, and the items are businesses listed
on Yelp, a review site. In the Android dataset [MPL15], the timestamps are hours, and the items are
Android apps on Amazon, an online store. In the Netflix dataset [BL+07], the timestamps are in dates,
and the items are movies listed on Netflix, a movie rental and streaming service. In the YahooM. dataset
[DKKW12], the timestamps are in hours, and the items are musical items listed on Yahoo! Music, a
provider of various music services.

Wikipedia revision histories. Wikipedia revision histories are relations with schema (user, page, time-
stamp, #revisions). Each tuple (u,p,t,r) indicates that user u revised page p, r times, at timestamp t (in
hour) in Wikipedia, a crowd-sourcing online encyclopedia. In the KoWiki dataset, the pages are from
Korean Wikipedia. In the EnWiki dataset, the pages are from English Wikipedia.

‘Like’ histories. ‘Like’ histories are relations with schema (user, posting, timestamp, #revisions). Each
tuple (u,p,t,1) indicates that user u marked posting p as ‘favorite’, at timestamp t (in hour). In the
StackO. dataset, the postings are from Stack Overflow, a question-and-answer site on topics in computer
programming.

Temporal social networks. Temporal social networks are relations with schema (source, destination,
timestamp, #interactions). Each tuple (s,d,t,i) indicates that user s interacts with user d, i times, at
timestamp t. In the Youtube dataset [MMG+07], the timestamps are in hours, and the interactions
are becoming friends on Youtube, a video-sharing website. In the SMS dataset, the timestamps are in
hours, and the interactions are sending text messages.

TCP Dumps. The Darpa dataset [LFG+00], collected by the Cyber Systems and Technology Group
in 1998, is a relation with schema (source IP, destination IP, timestamp, #connections). Each tuple
(s,d,t,c) indicates that c connections were made from IP s to IP d at timestamp t (in minutes). The
AirForce dataset, used for KDD Cup 1999 2, is a relation with schema (protocol, service, src bytes,
dst bytes, flag, host count, srv count, #connections) with the following attributes:
• protocol: type of protocol (tcp, udp, etc.).
• service: service on destination (http, telnet, etc.).
• src bytes: bytes sent from source to destination.
• dst bytes: bytes sent from destination to source.
• flag: normal or error status.
• host count: number of connections made to the same host in the past two seconds.
• srv count: number of connections made to the same service in the past two seconds.
• #connections: number of connections with the given dimension attribute values.

1https://www.yelp.com/dataset_challenge
2http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

171

https://www.yelp.com/dataset_challenge
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

172

Chapter 11

Detecting Dense Subtensors in Large Tensors
(1): In-memory Algorithm

Chapter based on work that appeared at ECML/PKDD 2016 [SHF16] and the TKDD journal [SHF18].

Given multi-aspect data (e.g., restaurant reviews with side information) modeled as a tensor, how
can we detect dense subtensors in it? Can we spot them in near-linear time but with approximation
guarantees?

As discussed in the previous chapter, extensive previous work has shown that unusually dense
subtensors in a wide range of real-world tensors tend to indicate anomalous or fraudulent behavior,
such as lockstep behavior in social networks. However, available algorithms for detecting dense
subtensors are not satisfactory in terms of speed, accuracy, and theoretical guarantees.

In this chapter, we propose M-ZOOM, a fast and accurate algorithm for dense-subtensor detec-
tion. M-ZOOM provides the following advantages: (1) Fast: scales near-linearly with all aspects
of the input tensor and are up to 114× faster than state-of-the-art methods with similar accuracy,
(2) Provably accurate: provides a guarantee on the lowest density of the subtensors it finds, (3)
Effective: successfully detected edit wars and bot activities on Wikipedia, and spotted network
attacks from a TCP dump with near-perfect accuracy (AUC=0.98).

11.1 Motivation
Given reviews on Amazon, how can we detect a group of fraudulent users who review the same set
of products with the exact same ratings within a short period of time? Can we spot them in time near
linear in the number of reviews, with accuracy guarantees?

As discussed in the previous chapter, modeling data as a tensor and detecting unusually dense
subtensors in it has proven an effective way to identify synchronized behavior, which anomalies tend
to exhibit. However, neither existing algorithms for dense-subtensor detection nor simple extensions
of algorithms for dense-subgraph detection are satisfactory in terms of speed, accuracy, and theoretical
guarantees.

In this second chapter on dense-subtensor detection, we propose M-ZOOM (Multidimensional
Zoom), which is a fast, accurate, and theoretically sound algorithm for detecting dense subtensors.
M-ZOOM starts from the input tensor and greedily removes the slices. Then, it returns the densest
subtensor among those encountered, as an output, and removes the subtensor from the input tensor.
M-ZOOM repeats these two steps for detecting multiple distinct dense tensors. Despite its simplicity,
M-ZOOM has the following advantages over the previous best algorithms:

173

Ideal

54X

24X

100

101

102

103

101 102 103 104

Elapsed Time (sec)

D
en

si
ty

 (A
cc

ur
ac

y)
M-Zoom
CrossSpot (CPD)
CrossSpot (random)
CPD

|||| || |||||||| |||| |||| ||||

|||||||| || |||||||||||| ||| ||||| ||| |||||

| || |||| | ||||| | |||| ||| |||| | ||| || | |||| ||| || || |||| || ||| | ||||||
|| || |||| | || ||||| ||||| ||| |||| || ||||| ||| || ||| || ||| |||| |||| ||||| ||| |||

||| | ||||| ||| ||| || | ||| ||||| ||| || ||||| || ||| |||| |||| || || |||
|| ||| ||| ||| | || ||| || |||| | || | | |||| | ||| || || || |||| | || ||| ||| | ||| || || ||| || || || || | ||| ||| || || ||| ||| || ||| ||| || ||||||| || ||| | |||| ||||| ||||||| || ||| ||| || ||| ||| | |||| || ||| ||| ||| || || || | || | ||| || || | ||| | || || |||| || | || | ||| | ||| ||

||||| |||| || |||| | ||| || ||| || || ||| || ||| | || || ||| ||||| || ||| | || | || |||| |||| ||| ||| ||| |
|||| ||| | |||| |||||||| || |||||| ||||||| |||| || ||| ||

|| |||| || || | | ||| ||||| ||| || || || || || ||| ||| ||| ||||| ||| || ||| |||| ||| || || ||| |||| || |||
| ||| | || |||| |||| ||| |||||| || |||| || ||| || | | ||| |||||| |||| || |||| || | |||

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time (Hour)

W
ik

ip
ed

ia
 P

ag
es

(a) Fast and Accurate (c) Effective: Edit Wars on Korean Wikipedia

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

Tr
ue

 P
os

iti
ve

 R
at

e

M-Zoom
CrossSpot
MAF
CPD

Ideal
Users Pages

HBC AIV helperbot3 DeltaQuad/UAA/Time
HBC AIV helperbot5 DeltaQuad/UAA/Wait
HBC AIV helperbot7 Open proxy detection

DeltaQuadBot WikiProject Spam/LinkReports
COIBot COIBot/LinkReports

West.andrew.g West.andrew.g/Dead Links
RonaldB Cyda/List of current proposed deletion
Cydebot Cyda/List of requests for unblock

(b) Effective: Network Intrusion Detection (d) Effective: Bot Activities in English Wikipedia
(ROC Curve)

Figure 11.1: Strengths of M-ZOOM. (a) M-ZOOM was up to 54× faster with denser subtensors
than the previous best algorithms with similar accuracy. (b) M-ZOOM identified network attacks with
near-perfect accuracy (AUC= 0.98). (c) M-ZOOM spotted edit wars, during which many users (distin-
guished by colors) edited the same set of pages hundreds of times within several hours. (d) M-ZOOM

spotted bots, and pages edited hundreds of thousands of times by the bots.

• Fast: M-ZOOM is up to 114× faster than its best competitors with similar accuracy (Figure 11.1(a))
thanks to its near-linear scalability with all aspects of the input tensor (Figure 11.4).

• Provably accurate: M-ZOOM provides a guarantee on the lowest density of subtensors it finds
(Theorem 11.1). In addition, it shows high accuracy similar to its best competitors, in real-world
datasets (Figure 11.1(a)).

• Effective: M-ZOOM successfully spotted edit wars and bot activities on Wikipedia, and detected
network attacks with near-perfect accuracy (AUC=0.98) from a TCP dump (Figures 11.1(b-d)).

Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/mzoom/.

The rest of this chapter is organized as follows. In Section 11.2, we give a formal problem defini-
tion. In Section 11.3, we present M-ZOOM, our proposed algorithm for dense-subtensor detection. In
Section 11.4, we theoretically analyze the accuracy and complexity of M-ZOOM. After sharing some
experimental results in Section 11.5, we provide a summary of this chapter in Section 11.6.

174

http://www.cs.cmu.edu/~kijungs/codes/mzoom/
http://www.cs.cmu.edu/~kijungs/codes/mzoom/

Table 11.1: Table of frequently-used symbols.

Symbol Definition

Notations for Tensors Represented as Relations (Defined in Section 10.3.1)

R(A1, A2, ..., AN , X) a relation with N dimension attributes and a measure attribute
N number of dimension attributes in a relation
An n-th dimension attribute in R

X measure attribute in R

t[An] (or t[X]) value of attribute An (or X) in tuple t
B a subtensor in R

Rn (or Bn) set of distinct values of An in R (or B)
R(a, n) set of tuples with attribute An = a in R

MR (or mass(R)) mass of R
SR (or size(R)) size of R

VR (or volume(R)) volume of R

Notations for Density Measures (Defined in Section 10.3.2)

ρ(B,R) density of a subtensor B in R in terms of a density measure ρ
ρari(B,R) arithmetic average mass of a subtensor B in R

Other Notations

k number of subtensors we aim to find
[x] {1, 2..., x}

11.2 Problem Definition
Throughout this chapter, we represent tensors as relations, and we use the notations and the density
measures defined in Section 10.3. As a reminder, Table 11.1 lists some frequently-used symbols. Using
the notations, we formally define the problem of detecting the k densest subtensors in a tensor in
Problem 11.1.

Problem 11.1: Detecting the Top-k Densest Subtensors

1. Given: a relation (i.e., tensor) R, the number of subtensors k, and a density measure ρ,

2. Find: k distinct subtensors of R,

3. to Maximize: the densities in terms of ρ.

As discussed in Section 10.3.2, solving Problem 11.1 exactly is computationally infeasible for large
datasets. Thus, in this chapter, we focus on designing an approximate algorithm that (a) has near-linear
scalability with all aspects of R, (b) provides accuracy guarantees at least for some density measures,
and (c) produces meaningful results in real-world tensors.

175

Algorithm 11.1 Outline of M-ZOOM

Input: (1) R: input relation (i.e., input tensor),
(2) k: number of subtensors,
(3) ρ: density measure.

Output: k dense subtensors
1: Rori ← copy(R)
2: results← ∅
3: for i← 1..k do
4: B← find single subtensor(R, ρ) . see Algorithm 11.2
5: R← R−B

6: Bori ← {t ∈ Rori : ∀n ∈ [N], t[An] ∈ Bn}
7: results← results ∪ {Bori}
8: return results

11.3 Proposed Algorithm: M-ZOOM

In this section, we propose M-ZOOM (Multidimensional Zoom), a fast and accurate algorithm for
finding dense subtensors. We first present an overview of M-ZOOM in Section 11.3.1 and then describe
its details in Section 11.3.2.

11.3.1 Overview
The outline of M-ZOOM is given in Algorithm 11.1. M-ZOOM first copies the given relation R and
assigns it to Rori (line 1). Then, M-ZOOM finds k dense subtensors one by one from R (line 4). After
finding each subtensor from R, M-ZOOM removes the tuples in the subtensor from R so that the same
subtensor is not found repeatedly (line 5). Due to these changes in R, a subtensor found in R is not
necessarily a subtensor of the original relation Rori. Thus, instead of returning the subtensors found
in R, M-ZOOM returns the subtensors of Rori consisting of the same attribute values with the found
subtensors (lines 6-7). This also enables M-ZOOM to find overlapped subtensors, i.e., a tuple can be
included in two or more subtensors that M-ZOOM finds.

11.3.2 Detailed Description
We present details of M-ZOOM with a focus on single dense-subtensor detection and efficient imple-
mentation.

11.3.2.1 Single Dense-subtensor Detection
Algorithm 11.2 and Figure 11.2 describe how M-ZOOM finds a single dense subtensor from the given
relation R. The subtensor B is initialized to R (lines 1-2). From B, M-ZOOM removes attribute
values one by one in a greedy way until no attribute value is left (line 4). Specifically, M-ZOOM

finds a dimension n− ∈ [N] and a value a− ∈ Bn which are n ∈ [N] and a ∈ Bn maximizing
ρ(B−B(a, n),R) (i.e., density when all tuples with An = a are removed from B) (line 6). Then, the
attribute value a− and the tuples with An− = a− are removed from Bn− and B, respectively (lines 7-
8). Before removing each attribute value, M-ZOOM adds the current B to the snapshot list (line 5).

176

Algorithm 11.2 find single subtensor in M-ZOOM

Input: (1) R: relation (i.e., tensor) and (2) ρ: density measure:
Output: a dense subtensor

1: B← copy(R)
2: Bn ← copy(Rn), ∀n ∈ [N]
3: snapshots← ∅
4: while ∃n ∈ [N] s.t. Bn 6= ∅ do
5: snapshots← snapshots ∪ {B}
6: (n−, a−)← n ∈ [N] and a ∈ Bn maximizing ρ(B−B(a, n),R) . see Algorithm 11.3
7: B← B−B(a−, n−)
8: Bn− ← Bn− − {a−}
9: return B ∈ snapshots with maximum ρ(B,R)

1 0 3

0

1

3 4 0

5 7 0

1 0 1

(a) 1st iteration
(ρari(B,R) = 3.25)

1 0 3

0

1

3 4 0

5 7 0

1 0 1

(b) 2nd iteration
(ρari(B,R) = 3.29)

1 0 3

0

1

3 4 0

5 7 0

1 0 1

(c) 3rd iteration
(ρari(B,R) = 3.33)

1 0 3

0

1

3 4 0

5 7 0

1 0 1

(d) 4th iteration
(ρari(B,R) = 3.8)

1 0 3

0

1

3 4 0

5 7 0

1 0 1

(e) 5th iteration
(ρari(B,R) = 3)

1 0 3

0

1

3 4 0

5 7 0

1 0 1

(f) 6th iteration
(ρari(B,R) = 2.33)

1 0 3

0

1

3 4 0

5 7 0

1 0 1

(g) 7-9th iterations
(ρari(B,R) = 0)

3 4

5 7

(h) Output of
Algorithm 11.2

Figure 11.2: Illustration of Algorithm 11.2 with the tensor R in Example 10.1. All the invisible
entries of R are zeros. We assume ρ = ρari. The colored region in each of (a)-(g) shows the subtensor
B added to snapshots in each iteration. Note that in each iteration, an attribute value (i.e., a slice in
the tensor presentation) is removed from B so that ρari(B,R) is maximized. (h) shows the output of
Algorithm 11.2, the subtensor with maximum ρari(B,R) among those in snapshots.

177

The last step of finding a subtensor is to return the subtensor densest among those in the snapshot list
(line 9).

11.3.2.2 Efficient Implementation of M-ZOOM

We discuss efficient implementation of M-ZOOM focusing on greedy attribute-value selection and
densest-subtensor selection.

Algorithm 11.3 Greedy Selection Using Min-Heaps in M-ZOOM

Input: (1) B: current subtensor,
(2) ρ: density measure,
(3) {Hmin

n }Nn=1: min-heaps
Output: a dimension and an attribute value to be removed

1: for each dimension n ∈ [N] do
2: a−n ← attribute value with minimum key in Hmin

n . key= MB(a,n)

3: n− ← n ∈ [N] maximizing ρ(B−B(a−n , n),R)
4: a− ← a−n−
5: delete a− from Hmin

n−

6: for each tuple t ∈ B(a−, n−) do
7: for each dimension n ∈ [N]− {n−} do
8: decrease the key of t[An] in Hmin

n by t[X] . key= MB(t[An],n)

9: return (n−, a−)

Attribute-Value Selection Using Min-Heaps. Finding a dimension n ∈ [N] and a value a ∈ Bn that
maximize ρ(B−B(a, n),R) (line 6 of Algorithm 11.2) can be computationally expensive if all possible
attribute values (i.e., {(n, a) : n ∈ [N], a ∈ Bn}) should be considered. However, due to Axiom 10.1,
which is assumed to be satisfied by considered density measures, the number of candidates is reduced
to N if MB(a,n) is known for each dimension n ∈ [N] and each attribute value a ∈ Bn. Lemma 11.1
formalizes this.

Lemma 11.1

If we remove a value of attribute An from Bn, removing a ∈ Bn with minimum MB(a,n) results
in the highest density. Formally, for each n ∈ [N],

MB(a′,n) ≤MB(a,n),∀a ∈ Bn ⇒ ρ(B−B(a′, n),R) ≥ ρ(B−B(a, n),R),∀a ∈ Bn.

Proof. Let B′ = B −B(a′, n) and B′′ = B −B(a, n). Then, |B′n| = |B′′n|,∀n ∈ [N]. In addition,
MB′ ≥ MB′′ since MB′ = MB − MB(a′,n) ≥ MB − MB(a,n) = MB′′ . Hence, by Axiom 10.1,
ρ(B−B(a′, n),R) ≥ ρ(B−B(a, n),R). �

By Lemma 11.1, if we let a−n be a ∈ Bn with minimum MB(a,n), we only have to consider the
dimension and value pairs in {(n, a−n) : n ∈ [N]} instead of {(n, a) : n ∈ [N], a ∈ Bn} to find

178

the attribute value maximizing density when it is removed. To exploit this, our implementation of M-
ZOOM maintains a min-heap for each attribute An where the key of each value a ∈ Bn is MB(a,n).
This key is updated, which takes O(1) time if Fibonacci Heaps are used as min-heaps, whenever the
tuples with the corresponding attribute value are removed. Algorithm 11.3 describes in detail how to
find the attribute value to be removed based on these min-heaps, and how to update keys in them. Since
Algorithm 11.3 considers all promising dimension and value pairs (i.e., {(n, a−n)}Nn=1), it guarantees to
find the value that maximizes density when it is removed.

Densest-Subtensor Selection Using Attribute-Value Ordering. As explained in Section 11.3.2.1, M-
ZOOM returns the subtensor with maximum density among the snapshots of B (line 9 of Algorithm 11.2).
Explicitly maintaining the list of snapshots, whose length is at most SR, requires O(N |R|SR) compu-
tation and space for copying them. Even maintaining only the current best (i.e., the one with the highest
density so far) leads to high computational cost if the current best keeps changing. Instead, our imple-
mentation maintains the order by which attribute values are removed as well as the iteration where the
density was maximized, which requires only O(SR) space. From these and the original relation R, our
implementation restores the snapshot with maximum density in O(N |R|+ SR) time and returns it.

11.4 Theoretical Analysis
In this section, we first prove an approximation guarantee of M-ZOOM. Then, we analyze the time
complexity and memory requirements of M-ZOOM.

11.4.1 Accuracy Analysis
We show lower bounds on the densities of the subtensors found by M-ZOOM under the assumption
that ρari (Definition 10.1) is used as the density measure. Specifically, we show that Algorithm 11.2 is
guaranteed to find a subtensor with density at least 1/N of the density of the densest subtensor in the
given relation (Theorem 11.1). This means that each n-th subtensor returned by Algorithm 11.1 has
density at least 1/N of the density of the densest subtensor in R−

⋃n−1
i=1 (i-th subtensor).

Let B(r) be the relation B at the beginning of the r-th iteration of Algorithm 11.2 with ρari as the
density measure, and n(r) and a(r) be n− and a− in the same iteration. That is, in the r-th iteration,
value a(r) ∈ B

(r)

n(r) is removed from attribute An(r) .

Lemma 11.2

n(r) ∈ [N] and a(r) ∈ B(r)
n are n ∈ [N] and a ∈ B(r)

n minimizing mass(B(r)(a, n)).

179

Proof. By line 6 of Algorithm 11.2, ρari(B(r)−B(r)(a(r), n(r)),R) ≥ ρari(B
(r)−B(r)(a, n),R) holds

for every n ∈ [N] and a ∈ B(r)
n . From this, we have

mass(B(r)(a(r), n(r))) = mass(B(r))−mass(B(r) −B(r)(a(r), n(r)))

= mass(B(r))− ρari(B(r) −B(r)(a(r), n(r)),R)
size(B(r))− 1

N

≤ mass(B(r))− ρari(B(r) −B(r)(a, n),R)
size(B(r))− 1

N

= mass(B(r))−mass(B(r) −B(r)(a, n)) = mass(B(r)(a, n)).

�

Lemma 11.3

If a subtensor B′ satisfying MB′(a,n) ≥ c for every n ∈ [N] and every a ∈ B′n exists in R, there
exists r satisfying MB(r)(a,n) ≥ c for every n ∈ [N] and a ∈ B(r)

n .

Proof. Let r be the first iteration in Algorithm 11.2 where a(r) ∈ B′n(r) . Then, since B(r) ⊃ B′,
mass(B(r)(a(r), n(r))) ≥ mass(B′(a(r), n(r))) ≥ c holds. By Lemma 11.2, mass(B(r)(a, n)) ≥
mass(B(r)(a(r), n(r))) ≥ c holds for every n ∈ [N] and a ∈ B(r)

n . �

Theorem 11.1: 1/N -Approximation Guarantee for Problem 11.1

Given a relation R, let B∗ be the subtensor B ⊂ R with maximum ρari(B,R). Let B′ be the
subtensor obtained by Algorithm 11.2. Then,

ρari(B
′,R) ≥ ρari(B

∗,R)

N

Proof. From the maximality of B∗, MB∗(a,n) ≥ MB∗/SB∗ holds for every n ∈ [N] and a ∈ B(r)
n .

Otherwise, a contradiction would result since, for n ∈ [N] and a ∈ B(r)
n where MB∗(a,n) < MB∗/SB∗ ,

the following inequality holds:

ρari(B
∗ −B∗(a, n),R) =

MB∗ −MB∗(a,n)

(SB∗ − 1)/N
>
MB∗ −MB∗/SB∗

(SB∗ − 1)/N
= ρari(B

∗,R).

Consider B(r) where MB(r)(a,n) ≥ MB∗/SB∗ holds for every n ∈ [N] and a ∈ B(r)
n . Such B(r) exists

by Lemma 11.3. Then, MB(r) ≥ (SB(r)/N) (MB∗/SB∗) = (SB(r)/N)(ρari(B
∗,R)/N) holds. Hence,

ρari(B
′,R) ≥ ρari(B

(r),R) = MB(r)/(SB(r)/N) ≥ ρari(B
∗,R)/N holds. �

180

11.4.2 Complexity Analysis
The time and space complexities of M-ZOOM depend on the density measure used. We assume that
one of the density measures in Section 10.3.2, which satisfy Axiom 10.1, is used.

Theorem 11.2: Time Complexity of M-ZOOM

Let L = maxn∈[N] |Rn|. Then, if N = O(logL), the time complexity of Algorithm 11.1 is
O(kN |R| logL).

Proof. In Algorithm 11.3, lines 1-4 take O(N) time for all the considered density measures (i.e., ρari,
ρgeo, ρsusp, and ρes(α)) if we maintain and update aggregated values (e.g., MB, SB, and VB) instead
of computing ρ(B − B(a−n , n),R) from scratch every time. In addition, line 5 takes O(log |Rn− |)
time and line 8 takes O(1) time if we use Fibonacci heaps. Algorithm 11.2, whose computational
bottleneck is line 6, has time complexity O(N |R|+N

∑N
n=1 |Rn|+

∑N
n=1 |Rn| log |Rn|) since lines 1-

4 of Algorithm 11.3 are executed SR =
∑N

n=1 |Rn| times, line 5 is executed |Rn−| times for each n− ∈
[N], and line 8 is executed N |R| times. Algorithm 11.1, whose computational bottleneck is line 4, has
time complexity O(kN |R|+kN

∑N
n=1 |Rn|+k

∑N
n=1 |Rn| log |Rn|) since Algorithm 11.2 is executed

k times. From L = maxn∈[N] |Rn|, the time complexity of Algorithm 11.1 becomesO(kN(|R|+NL+
L logL)). Since N = O(logL) (by assumption) and L ≤ |R| (by definition), |R| + NL + L logL =
O(|R| logL). Thus, the time complexity of Algorithm 11.1 is O(kN |R| logL). �

As stated in Theorem 11.2, M-ZOOM scales linearly or sub-linearly with all aspects of relation R

as well as k, the number of subtensors we aim to find. This result is also experimentally supported in
Section 11.5.3.

Theorem 11.3: Memory Requirements of M-ZOOM

The amount of memory space required in Algorithm 11.1 is O(N |R|).

Proof. In Algorithm 11.1, only B, which requires O(N |R|) space, needs to be loaded into memory
at once. The others (i.e., Rori, R, Bori, and results) can be read and written sequentially to disk.
In Algorithm 11.2, which is called by Algorithm 11.1, B, the min-heaps, and the order by which
attribute values are removed need to be loaded into memory at once (see Section 11.3.2.2). They require
O(N |R|), O(

∑N
n=1 |Rn|), and O(

∑N
n=1 |Rn|) space, respectively. Since |Rn| ≤ |R|, ∀n ∈ [N], the

sum is O(N |R|+
∑N

n=1 |Rn|) = O(N |R|). Hence, the memory requirement is O(N |R|) in total. �

11.5 Experiments
We review our experiments for answering the following questions:
• Q1. Speed and Accuracy: How fast and accurately does M-ZOOM detect dense subtensors from

real-world tensors?
• Q2. Scalability: Does M-ZOOM scale linearly with all aspects of data?

181

Table 11.2: Summary of the real-world tensors used in our experiments. M: Million, K: Thousand.
The underlined attributes are composite primary keys.

Name Volume #Tuples

Rating data (user, item, timestamp, rating, #reviews)

Yelp 552K × 77.1K × 3.80K × 5 2.23M
Android [MPL15] 1.32M × 61.3K × 1.28K × 5 2.64M
Netflix [BL+07] 480K × 17.8K × 2.18K × 5 99.1M
YahooM. [DKKW12] 1.00M × 625K × 84.4K × 101 253M

Wikipedia revision histories (user, page, timestamp, #revisions)

KoWiki 470K × 1.18M × 101K 11.0M
EnWiki 44.1M × 38.5M × 129K 483M

‘Like’ histories (user, posting, timestamp, 1)

StackO. [Kun13] 545K × 96.7K × 1.15K 1.30M

Social networks (user, user, timestamp, #interactions)

Youtube [MMG+07] 3.22M × 3.22M × 203 18.7M
SMS 1.25M × 7.00M × 4.39K 103M

TCP dumps (protocol, service, src bytes, · · · , #connections)

AirForce 3 × 70 × 11 × 7.20K × 21.5K × 512 × 512 648K

• Q3. Diversity of Subtensors: Does M-ZOOM detect many distinct dense subtensors from real-
world tensors?

• Q4. Effectiveness: Which anomalies or fraud does M-ZOOM spot from real-world tensors?

11.5.1 Experimental Settings

Machines: All experiments were conducted on a machine with 2.67 GHz Intel Xeon E7-8837 CPUs
and 1TB RAM.

Datasets: We used the real-world tensor datasets listed in Table 11.2. See Section 10.4 for a description
of the datasets.

Implementations and Parameter Settings: We compared M-ZOOM with CROSSSPOT [JBC+16], CP
Decomposition (CPD) [KB09]1, and MultiAspectForensics (MAF) [MGF11]. Methods only applica-
ble to graphs [HSS+17, PSS+10, SERF18] were excluded from comparison. M-ZOOM and CROSSSPOT2

were implemented in Java, while Tensor Toolbox [BK07a], which gives the state-of-the-art implemen-
tations of tensor decomposition, was used for CPD and MAF. Although CROSSSPOT was originally
designed to maximize ρsusp, it can be extended to other density measures. These variants were used

1 Let A(1) ∈ R|R1|×k, A(2) ∈ R|R2|×k, ..., A(N) ∈ R|RN |×k be the factor matrices obtained by the rank-k CP
Decomposition [KB09] of R. For each i ∈ [k], we form a subtensor with every attribute value an whose corresponding
element in the i-th column of A(n) is at least 1/

√
|Rn|.

2We referred the open-sourced implementation at http://github.com/mjiang89/CrossSpot.

182

http://github.com/mjiang89/CrossSpot

depending on the density measure compared in each experiment. In addition, we used CPD as the
seed-subtensor selection method of CROSSSPOT, which outperformed HOSVD used in [JBC+16] in
terms of both speed and accuracy.

Density Measures: We used the four density measured defined in Section 10.3.2: arithmetic average
mass (ρari), geometric average mass (ρgeo), suspiciousness (ρsusp), and entry surplus (i.e., ρes(α)). The
parameter α in ρes(α) was set to 1 unless otherwise stated.

11.5.2 Q1. Speed and Accuracy of M-ZOOM

M-ZOOM provides the best trade-off between speed and accuracy. We compared the speed of the
considered methods and the densities of the subtensors found by the methods in real-world datasets.
Specifically, we measured time taken to find three subtensors and the maximum density among the three
subtensors. As seen in 11.3, M-ZOOM clearly provided the best trade-off between speed and accuracy
in in most of the other datasets, regardless of density measures. For example, when ρari was used as
the density measure, M-ZOOM was 114× faster than CROSSSPOT, while detecting subtensors with
similar densities. Compared with CPD, M-ZOOM detected 2 times denser subtensors 2 .8× faster.
Although the results are not included in Figure 11.3, MAF found several orders of magnitude sparser
subtensors than the other methods, with speed similar to that of CPD.

11.5.3 Q2. Scalability of M-ZOOM

M-ZOOM scales (sub-)linearly with every aspect of the input tensor. We measured the scalability
of M-ZOOM with regard to the number of tuples, the number of attributes, the cardinalities of at-
tributes, and the number of subtensors we aim to find. We started with finding one subtensor in a
randomly generated 10 millions tuples with three attributes each of whose cardinality is 100 thousands.
Then, we measured the running times by changing one factor at a time while fixing the others. As seen
in Figure 11.4, M-ZOOM scaled linearly with the number of tuples, the number of attributes, and the
number of subtensors we aim to find. Moreover, M-ZOOM scaled sub-linearly with the cardinalities
of attributes, as shown mathematically in Theorem 11.2. Although ρsusp was used for the results in
Figure 11.4, similar trends were obtained regardless of density measures.

11.5.4 Q3. Diversity of Subtensors Found by M-ZOOM

M-ZOOM successfully detects many distinct dense subtensors. We compared the diversity of dense
subtensors found by each method. The ability to detect many distinct dense subtensors is important
since distinct subtensors may indicate different anomalies or fraud. We define the diversity as the
average dissimilarity between the pairs of subtensors, and the dissimilarity of each pair is defined as

dissimilarity(B,B′) = 1−
∑N

n=1 |Bn ∩B′n|∑N
n=1 |Bn ∪B′n|

.

The average diversity among the three subtensors found by each method is compared in Figure 11.5.
In all the datasets, M-ZOOM and CPD successfully detected distinct dense subtensors regardless of the
density measures used. CROSSSPOT, however, found the same subtensor repeatedly or subtensors with
slight difference, even when it used different seed-subtensor selection methods.

183

M-Zoom CrossSpot (CPD Seed) CrossSpot (Random Seed) CPD
Ideal

114X

2X

102

103

104

102 103 104 105

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(a) YahooM. (ρari)

Ideal

101X

2X

103

104

105

102 103 104 105

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(b) YahooM. (ρgeo)

Ideal

65X

3X

108

109

102 103 104 105

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(c) YahooM. (ρsusp)

Ideal

51X
6X

107

108

109

102 103 104 105

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(d) YahooM. (ρes(α))

Ideal

12X

5X

102

103

104

102 103 104

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(e) SMS (ρari)

Ideal

5X

3X

103

104

102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(f) SMS (ρgeo)

Ideal

3X
46X

106

107

108

109

102 103 104

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(g) SMS (ρsusp)

Ideal

19X

261X

105

106

107

108

109

102 103 104

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(h) SMS (ρes(α))

Ideal

35X

4X

102

103

104

102 103 104

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(i) Netflix (ρari)

Ideal

34X
2X

104

105

102 103 104

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(j) Netflix (ρgeo)

Ideal

26X

2X

107

108

109

102 103 104

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(k) Netflix (ρsusp)

Ideal

39X

261X

105

106

107

108

102 103 104 105

Elapsed Time (sec)
D

en
si

ty
 (

A
cc

ur
ac

y)
(l) Netflix (ρes(α))

Ideal

12X

13X

100

101

102

100 101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(m) Android (ρari)

Ideal

2X

4X

102

103

104

100 101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(n) Android (ρgeo)

Ideal

2X

88X

104

105

106

107

100 101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(o) Android (ρsusp)

Ideal

21X

607X

103

104

105

106

107

100 101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(p) Android (ρes(α))

Ideal

24X

3X

101

102

103

100 101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(q) Yelp (ρari)

Ideal

33X

2X

102

103

100 101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(r) Yelp (ρgeo)

Ideal

28X

2X

105

106

107

100 101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(s) Yelp (ρsusp)

Ideal

26X

6X

105

106

107

100 101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(t) Yelp (ρes(α))

(Continues on the next page)

184

(Continues from the previous page)
M-Zoom CrossSpot (CPD Seed) CrossSpot (Random Seed) CPD

Ideal

4X

48X

101

102

103

104

102 103 104 105

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(u) EnWiki (ρari)

Ideal

4X
103

104

105

103 104

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(v) EnWiki (ρgeo)

Ideal

3X

63X

107

108

109

103 104 105

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(w) EnWiki (ρsusp)

Ideal

4X
467X

105

106

107

108

109

103 104 105

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(x) EnWiki (ρes(α))

Ideal

54X

24X

100

101

102

103

101 102 103 104

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(y) KoWiki (ρari)

Ideal

5X

7X

101

102

103

101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(z) KoWiki (ρgeo)

Ideal

14X
16X

106

107

108

101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(aa) KoWiki (ρsusp)

Ideal

19X

39X

105

106

107

108

101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(ab) KoWiki (ρes(α))

Ideal

14X
106

107

10-1 100 101 102

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(ac) Darpa (ρari)

Ideal

10X
106

107

10-1 100 101 102

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(ad) Darpa (ρgeo)

Ideal

3X
107

108

109

100 101 102

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(ae) Darpa (ρsusp)

Ideal

50X

2X

106

107

10-1 100 101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(af) Darpa (ρes(α))

Ideal

10X
6X

101

102

103

101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(ag) Youtube (ρari)

Ideal

2X
102

103

104

101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(ah) Youtube (ρgeo)

Ideal

8X

2X

107

108

101 102 103

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(ai) Youtube (ρsusp)

Ideal

11X

7X

106

107

108

101 102 103 104

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(aj) Youtube (ρes(α))

Ideal

8X

11X

100

101

102

100 101 102

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(ak) StackO. (ρari)

Ideal

3X

5X

100

101

102

100 101 102

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(al) StackO. (ρgeo)

Ideal

11X

12X

104

105

106

107

100 101 102

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(am) StackO. (ρsusp)

Ideal

15X

467X

102

103

104

105

106

100 101 102

Elapsed Time (sec)

D
en

si
ty

 (
A

cc
ur

ac
y)

(an) StackO. (ρes(α))

Figure 11.3: Only M-ZOOM achieves both speed and accuracy. In each plot, points represent
the speed of different methods and the highest density of the three subtensors found by the methods.
Upper-left region indicates better performance. M-ZOOM gives the best trade-off between speed and
density regardless of used density measures. Specifically, they are up to 114× faster than CROSSSPOT

with similarly dense subtensors.
185

●

●

●

●

●

●

●

●

●

●

●

●

101

102

103

106 107 108 109

Number of Tuples

El
ap

se
d

Ti
m

e
(s

ec
) Linear

(slope=1)

M-Zoom

(a) Scalability w.r.t |R|
(# non-zeros in the input

tensor)

●

●

●

●

●

●

●

●

●

●

●

●

101.5

101.7

100.3 100.5 100.7

Number of Attributes

El
ap

se
d

Ti
m

e
(s

ec
) Linear

(slope=1)

M-Zoom

(b) Scalability w.r.t N
(order of the input tensor)

● ●

●

●

● ●

●

●

● ●

●

●

101

102

103

104

104 105 106 107

Cardinality

El
ap

se
d

Ti
m

e
(s

ec
) Linear

(slope=1)

M-Zoom

(c) Scalability w.r.t |Rn|
(dimensionality of the input

tensor)

●

●

●

●

●

●

●

●

●

●

●

●

101

101.5

102

100 100.5 101

Number of Subtensors

El
ap

se
d

Ti
m

e
(s

ec
) Linear

(slope=1)

M-Zoom

(d) Scalability w.r.t k
(# subtensors we aim to find)

Figure 11.4: M-ZOOM is scalable. M-ZOOM scales linearly or sub-linearly with the number of tuples,
the number of attributes, the cardinalities of attributes, and the number of subtensors we aim to find.

Table 11.3: M-ZOOM detects bot activities on English Wikipeida. The table lists the three subtensors
detected by M-ZOOM in the EnWiki dataset.

Order Volume Mass Density (ρgeo) Anomaly Type

1 1×1,585×6,733 1.93M 8,772 Bot activities
2 8×12×67.9K 2.43M 13.0K Bot activities
3 1×1×90 17.6K 3,933 Bot activities

11.5.5 Q4. Effectiveness of M-ZOOM in Real-world Datasets
We demonstrate the effectiveness of M-ZOOM for anomaly and fraud detection by analyzing dense
subtensors detected by them in real-world datasets.

M-ZOOM spots bot activities on English Wikipeida. Table 11.4 lists the three dense subtensors found
by M-ZOOM in the EnWiki dataset. All the subtensors detected by M-ZOOM indicate the activities of
bots, which changed the same pages hundreds of thousands of times. Figure 11.1(d) lists the bots and
the pages changed by the bots corresponding to the second subtensor found by M-ZOOM.

M-ZOOM spots edit wars on Korean Wikipeida. Table 11.4 lists the three dense subtensors found
by M-ZOOM in the KoWiki dataset. As seen in Figure 11.1(c), which visualizes the third subtensor
found by M-ZOOM, all the subtensors detected by M-ZOOM indicate edit wars. That is, users with
conflicting opinions revised the same set of pages hundreds of times within several hours.

M-ZOOM spots network intrusions. Table 11.5 lists the five dense subtensors found by M-ZOOM in
the AirForce dataset. Based on the provided ground-truth labels, most of the connections composing
the subtensors were attacks. This indicates that malicious connections form dense subtensors due
to the similarity in their behaviors. Based on this observation, we could accurately separate normal
connections and attacks based on the densities of the subtensors they belong (i.e., the denser the densest
subtensor including a connection is, the more suspicious the connection is). Especially, we got the
highest AUC (Area Under the Curve) 0.98 with M-ZOOM, as shown in Table 11.6 and the ROC curve
in Figure 11.1(b). This is since M-ZOOM detects many different dense subtensors accurately, as shown
in the previous experiments. For each method, we used the best density measure that led to the highest
AUC, which is listed in Table 11.6.

186

M-Zoom CPD CrossSpot (CPD seed) CrossSpot (Random seed)

0.0

0.2

0.4

0.6

0.8

1.0

StackO. Youtube SMS KoWiki EnWiki Yelp Android Netflix YahooM. AirForce

D
iv
er
si
ty

(a) Arithmetic Average Mass (ρari)

0.0

0.2

0.4

0.6

0.8

1.0

StackO. Youtube SMS KoWiki EnWiki Yelp Android Netflix YahooM. AirForce

D
iv
er
si
ty

(b) Geometric Average Mass (ρgeo)

0.0

0.2

0.4

0.6

0.8

1.0

StackO. Youtube SMS KoWiki EnWiki Yelp Android Netflix YahooM. AirForce

D
iv
er
si
ty

(c) Suspiciousness (ρsusp)

0.0

0.2

0.4

0.6

0.8

1.0

StackO. Youtube SMS KoWiki EnWiki Yelp Android Netflix YahooM. AirForce

D
iv
er
si
ty

(d) Entry Surplus (ρes(α))

Figure 11.5: M-ZOOM detects many distinct dense subtensors. The dense subtensors found by
M-ZOOM and CPD have high diversity, while the dense subtensors found by CROSSSPOT tend to be
almost the same, regardless of the density measures used.

Table 11.4: M-ZOOM detects edit wars on Korean Wikipeida. The table lists the three subtensors
detected by M-ZOOM in the KoWiki dataset.

Order Volume Mass Density (ρari) Anomaly Type

1 2×2×2 546 273.0 Edit war
2 2×2×3 574 246.0 Edit war
3 11×10×16 2305 186.9 Edit war

187

Table 11.5: M-ZOOM identifies network attacks with near-perfect accuracy. The five dense sub-
tensors found by M-ZOOM in the AirForce dataset are composed mostly by network attacks.

Order Volume Density (ρgeo) # Connections # Attacks Attack Type (Ratio)

1 2 2.05M 2.26M 2.26M (100%) Smurf
2 1 263K 263K 263K (100%) Smurf
3 8.15K 263K 952K 952K (99.9%) Neptune
4 1.05M 153K 1.11M 1.06M (95.2%) Neptune
5 287K 134K 807K 807K (99.9%) Neptune

Table 11.6: M-ZOOM identifies network attacks more accurately than its competitors.

Method Density Measure Area Under ROC Curve (AUC)

CPD [KB09] ρsusp 0.85
MAF [MGF11] ρsusp 0.91

CrossSpot (CPD Seed) [JBC+16] ρsusp 0.92
CrossSpot (Random Seed) [JBC+16] ρgeo 0.93

M-ZOOM [Proposed] ρgeo 0.98

11.6 Summary
In this chapter, we propose M-ZOOM, which a fast, accurate, and theoretically sound algorithm for
dense-subtensor detection. It provides the following advantages over the previous best algorithms:
• Fast: M-ZOOM is up to 114× faster than its competitors with similar accuracy (Figure 11.3) due to

its near-linear scalability with all input factors (Figure 11.4).
• Provably accurate: M-ZOOM guarantees an approximation bound of the subtensors it finds (The-

orems 11.1). In addition, it shows high accuracy in real-world tensors (Figure 11.3).
• Effective: M-ZOOM detected network attacks from a TCP dump with near-perfect accuracy (AUC=0.98).

It also successfully detected edit wars and bot activities on Wikipedia (Tables 11.3-11.6).

Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/mzoom/.

188

http://www.cs.cmu.edu/~kijungs/codes/mzoom/
http://www.cs.cmu.edu/~kijungs/codes/mzoom/

Chapter 12

Detecting Dense Subtensors in Large Tensors
(2): External-memory Algorithm

Chapter based on work that appeared at WSDM 2017 [SHKF17a] and its extension [SHKF18].

Given a tensor too large to fit in main memory or even on a disk, how can we detect dense subten-
sors in it? Can we spot them without sacrificing speed and accuracy of in-memory algorithms?

Continued from the previous chapter, we discuss dense-tensor detection, which has proven
useful for identifying various types of anomalies, including ‘retweet boosting’, network intrusions,
and bot accounts. For rapid and accurate detection of dense tensors, various approaches, including
tensor decomposition and greedy search, have been developed. However, the existing approaches
suffer from low accuracy, or they assume that input tensors are small enough to fit in main memory,
which is unrealistic in many real-world applications such as social media and the web.

To overcome these limitations, we propose D-CUBE, an external-memory algorithm for dense-
subtensor detection. D-CUBE also runs in a distributed manner across multiple machines. Com-
pared to state-of-the-art algorithms, D-CUBE is (1) Memory Efficient: requires up to 1,600× less
memory and handles 1,000× larger data (2.6TB), (2) Fast: up to 7× faster due to its near-linear
scalability, (3) Provably Accurate: gives a guarantee on the densities of the detected subtensors,
and (4) Effective: spotted network attacks from TCP dumps and synchronized behavior in rating
data most accurately.

12.1 Motivation
Given the entire revision histories of all Wikipedia articles, which probably do not fit in main memory
or even on a disk, how can we identify suspicious accounts (e.g., bots) and events (e.g., edit wars and
vandalism)? How can we utilize the MAPREDUCE framework for rapid identification?

As discussed in the previous chapters, search-based and decomposition-based methods have been
developed for dense-subtensor detection, which has proven useful for many anomaly or fraud detection
tasks. Search-based methods [JBC+16, SHF18] outperform decomposition-based methods, such as
HOSVD and CP Decomposition [MGF11], in terms of accuracy and flexibility with regard to the choice
of density metrics. M-ZOOM [SHF18], the latest search method presented in Chapter 11, also provides
a guarantee on the densities of the subtensors it finds, while decomposition-based methods do not.

However, the existing search-based methods [JBC+16, SHF18] for dense-subtensor detection as-
sume that the input tensor is small enough to fit in memory. Moreover, they are not directly applicable
to tensors stored in disk since using them for such tensors incurs too many disk I/Os due to their

189

100X

1000X

12X

10-1

101

103

105

106 107 108 109 1010 1011

Number of Tuples

E
la

ps
ed

 T
im

e
(s

ec
)

D-Cube
(Hadoop)

D-Cube (Serial)
M-Zoom

CrossSpot

CPD

STOP

(a) Fast and Scalable

2X

Ideal

47X
106

107

108

109

102 103 104 105

Memory Req. (MB)

A
cc

ur
ac

y
(D

en
si

ty
)

D-Cube

M-Zoom

CrossSpot

CPD

(b) Accurate and Memory-Efficient (c) Effective: Spam reviews

Figure 12.1: Strengths of D-CUBE. The red stop sign denotes ‘out of memory’. (a) Fast & Scalable:
D-CUBE was 12× faster and successfully handled 1,000× larger data (2.6TB) than in-memory al-
gorithms. (b) Efficient & Accurate: D-CUBE required 47× less memory and found denser subtensors
than its best competitors from an English Wikipedia revision history. (c) Effective: D-CUBE accurately
spotted spam reviews on App Store. See Section 12.5 for details.

highly iterative nature. However, real-world applications, such as social media, e-commerce sites,
and the World Wide Web, often involve disk-resident tensors with terabytes or even petabytes, which
in-memory algorithms cannot handle. This leaves a growing gap that needs to be filled.

In this third chapter on dense-subtensor detection, we propose D-CUBE, a dense-subtensor detec-
tion algorithm for disk-resident tensors. D-CUBE works under the W-Stream model [Ruh03], where
data are only sequentially read and written during computation. As seen in Table 10.1, only D-CUBE

supports out-of-core and distributed computation, which allows it to process data too large to fit in main
memory. D-CUBE is optimized for this setting by carefully minimizing the amount of disk I/O and the
number of steps requiring disk accesses, without losing accuracy guarantees it provides. Moreover, we
present a distributed version of D-CUBE using the MAPREDUCE framework [DG08], specifically its
open source implementation HADOOP.1 The main strengths of D-CUBE are as follows:
• Memory Efficient: D-CUBE requires up to 1,600× less memory and successfully handles 1,000×

larger data (2.6TB) than in-memory algorithms (Figure 12.1).
• Fast: D-CUBE detects dense subtensors up to 7× faster in real-world tensors and 12× faster in

synthetic tensors than its best competitors due to its near-linear scalability with all aspects of tensors
(Figure 12.1(a)).

• Provably Accurate: D-CUBE provides a guarantee on the densities of the subtensors it finds (The-
orem 12.1), and it shows similar or higher accuracy than its best competitors on real-world tensors
(Figure 12.1(b)).

• Effective: D-CUBE successfully spotted many interesting anomalies, including network attacks in
TCP dumps and spam reviews in rating data (Figure 12.1(c)).

Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/dcube.

The rest of this chapter is organized as follows. In Section 12.2, we give a formal problem definition.
In Section 12.3, we present D-CUBE, an external-memory algorithm for dense-subtensor detection. In
Section 12.4, we theoretically analyze the accuracy and complexity of D-CUBE. After sharing some
experimental results in Section 12.5, we provide a summary of this chapter in Section 12.6.

1http://hadoop.apache.org/

190

http://www.cs.cmu.edu/~kijungs/codes/dcube
http://www.cs.cmu.edu/~kijungs/codes/dcube
http://hadoop.apache.org/

Table 12.1: Table of frequently-used symbols.

Symbol Definition

Notations for Tensors Represented as Relations (Defined in Section 10.3.1)

R(A1, · · · , AN , X) relation representing an N -way tensor
N number of the dimension attributes in R

An n-th dimension attribute in R

X measure attribute in R

t[An] (or t[X]) value of attribute An (or X) in tuple t in R

B a subtensor in R

Rn (or Bn) set of distinct values of An in R (or B)
MR (or MB) mass of R (or B)

B(a, n) set of tuples with attribute An = a in B

MB(a,n) attribute-value mass of a in An

Notations for Density Measures (Defined in Section 10.3.2)

ρ(B,R) density of a subtensor B in R in terms of a density measure ρ
ρari(B,R) arithmetic average mass of a subtensor B in R

Other Notations

k number of subtensors we aim to find
θ mass-threshold parameter in D-CUBE

[x] {1, 2, · · · , x}

12.2 Problem Definition
Throughout this chapter, we represent tensors as relations, and we use the notations and the density
measures defined in Section 10.3. As a reminder, Table 12.1 lists some frequently-used symbols. Using
the notations, we formally define the problem of detecting the k densest subtensors in a large-scale
tensor in Problem 12.1.

Problem 12.1: Detecting the Top-k Densest Subtensors in a Large-scale Tensor

1. Given:
• a large-scale relation (i.e., tensor) R not fitting in memory,
• the number of subtensors k,
• a density measure ρ,

2. Find: k distinct subtensors of R,

3. to Maximize: the densities in terms of ρ.

As discussed in Section 10.3.2, even when the input tensor fits in main memory, solving Problem 12.1
exactly is computationally infeasible for large datasets Thus, our focus in this chapter is to design
an approximate algorithm with (a) near-linear scalability with all aspects of R, which does not fit in

191

memory, (b) an approximation guarantee at least for some density measures, and (c) meaningful results
on real-world data.

12.3 Proposed Algorithm: D-CUBE

In this section, we propose D-CUBE, a disk-based dense-subtensor detection method. We present an
overview of D-CUBE in Section 12.3.1 and describe its details in Section 12.3.2. Then, we present
our MAPREDUCE implementation of D-CUBE in Section 12.3.3. Throughout these subsections, we
assume that the entries of tensors (i.e., the tuples of relations) are stored on disk and read/written only
in a sequential way. However, all other data (e.g., distinct attribute-value sets and the mass of each
attribute value) are assumed to be stored in memory.

12.3.1 Overview
D-CUBE is a search method that starts with the given relation and removes attribute values (and the
tuples with the attribute values) sequentially so that a dense subtensor is left. Contrary to previous
approaches, D-CUBE removes multiple attribute values (and the tuples with the attribute values) at a
time to reduce the number of iterations and also disk I/Os. In addition to this advantage, D-CUBE

carefully chooses attribute values to remove to give the same accuracy guarantee as if attribute values
were removed one by one, and shows similar or even higher accuracy empirically.

Algorithm 12.1 D-CUBE: Disk-based Dense-subtensor Detection
Input: (1) R: input relation (i.e., input tensor), (2) k: number of subtensors,

(3) ρ: density measure, (4) θ(≥ 1): threshold.
Output: k dense subtensors

1: Rori ← copy(R)
2: compute {Rn}Nn=1

3: results← ∅ . list of dense subtensors
4: for i← 1..k do
5: MR ←

∑
t∈R t[X]

6: {Bn}Nn=1 ← find one(R, {Rn}Nn=1,MR, ρ(,)θ) . see Algorithm 12.2
7: R← {t ∈ R : ∃n ∈ [N], t[An] /∈ Bn} . R← R−B

8: Bori ← {t ∈ Rori : ∀n ∈ [N], t[An] ∈ Bn}
9: results← results ∪ {Bori}

10: return results

Algorithm 12.1 describes the overall structure of D-CUBE. It first copies and assigns the given
relation R to Rori (line 1); and computes the sets of distinct attribute values composing R (line 2).
Then, it finds k dense subtensors one by one from R (line 6) using its mass as a parameter (line 5).
The detailed procedure for detecting a single dense subtensor from R is explained in Section 12.3.2.1.
After each subtensor B is found, the tuples included in B are removed from R (line 7) to prevent
the same subtensor from being found again. Due to this change in R, subtensors found from R are
not necessarily the subtensors of the original relation Rori. Thus, instead of B, the subtensor in Rori

formed by the same attribute values forming B is added to the list of k dense subtensors (lines 8-9).
Notice that, due to this step, D-CUBE can detect overlapping dense subtensors. That is, a tuple can be
included in multiple dense subtensors.

192

Based on our assumption that the sets of distinct attribute values (i.e., {Rn}Nn=1 and {Bn}Nn=1) are
stored in memory and can be randomly accessed, all the steps in Algorithm 12.1 can be performed by
sequentially reading and writing tuples in relations (i.e., tensor entries) in disk without loading all the
tuples in memory at once. For example, the filtering steps in lines 7-8 can be performed by sequentially
reading each tuple from disk and writing the tuple to disk only if it satisfies the given condition.

Note that this overall structure of D-CUBE is similar to that of M-ZOOM (Chapter 11) except that
tuples are stored on disk. However, the methods differ significantly in the way each dense subtensor is
found from R, which is explained in the following subsection.

Algorithm 12.2 find one in D-CUBE

Input: (1) R: input relation (i.e., input tensor), (2) {Rn}Nn=1: attribute-value sets,
(3) MR: mass, (4) ρ: density measure, (5) θ(≥ 1): threshold.

Output: attribute values forming a dense subtensor
1: B← copy(R), MB ←MR . initialize the subtensor B
2: Bn ← copy(Rn), ∀n ∈ [N]
3: ρ̃← ρ(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1) . ρ̃: max ρ so far
4: r, r̃ ← 1 . r: current order of attribute values, r̃: r with ρ̃
5: while ∃n ∈ [N],Bn 6= ∅ . until all values are removed do
6: compute {{MB(a,n)}a∈Bn}Nn=1

7: i← select dimension() . see Algorithms 12.3 and 12.4
8: Di ← {a ∈ Bi : MB(a,i) ≤ θMB

|Bi|} . Di: set to be removed
9: sort Di in an increasing order of MB(a,i)

10: for each value a ∈ Di do
11: Bi ← Bi − {a}, MB ←MB −MB(a,i)

12: ρ′ ← ρ(MB, {|Bn|}Nn=1,MR, {|Rn|}Nn=1) . ρ′ : ρ when a is removed
13: order(a, i)← r, r ← r + 1
14: if ρ′ > ρ̃ then
15: ρ̃← ρ′, r̃ ← r . update max ρ so far
16: B← {t ∈ B : t[Ai] /∈ Di} . remove tuples
17: B̃n ← {a ∈ Rn : order(a, n) ≥ r̃}, ∀n ∈ [N] . reconstruct
18: return {B̃n}Nn=1

12.3.2 Detailed Description
We present details of D-CUBE with a focus on single-subtensor detection, dimension selection, and
efficient implementation.

12.3.2.1 Single Dense-subtensor Detection (Algorithm 12.2)
Algorithm 12.2 describes how D-CUBE detects each dense subtensor from the given relation R. It first
initializes a subtensor B to R (lines 1-2) then repeatedly removes attribute values and the tuples of B
with those attribute values until all values are removed (line 5).

Specifically, in each iteration, D-CUBE first chooses a dimension attribute Ai that attribute values
are removed from (line 7), Then, it computes Di, the set of attribute values whose masses are less than
θ(≥ 1) times the average (line 8). We explain how the dimension attribute is chosen, in Section 12.3.2.2

193

and analyze the effects of θ on the accuracy and the time complexity, in Section 12.4.2. The tuples
whose attribute values of Ai are in Di are removed from B at once within a single scan of B (line 16).
However, deleting a subset of Di may achieve higher value of the metric ρ. Hence, D-CUBE computes
the changes in the density of B (line 11) as if the attribute values in Di were removed one by one, in an
increasing order of their masses. This allows D-CUBE to optimize ρ as if we removed attributes one by
one, while still benefiting from the computational speedup of removing multiple attributes in each scan.
Note that these changes in ρ can be computed exactly without actually removing the tuples from B or
even accessing the tuples in B since its mass (i.e., MB) and the number of distinct attribute values (i.e.,
{|Bn|}Nn=1) are maintained up-to-date (lines 11-12). This is because removing an attribute value from
a dimension attribute does not affect the masses of the other values of the same attribute. The orders
that attribute values are removed and when the density of B is maximized are maintained (lines 13-15)
so that the subtensor B maximizing the density can be restored and returned (lines 17-18), as the result
of Algorithm 12.2.

Note that, in each iteration (lines 5-16) of Algorithm 12.2, the tuples of B, which are stored on disk,
need to be scanned only twice, once in line 6 and once in line 16. Moreover, both steps can be performed
by simply sequentially reading and/or writing tuples in B without loading all the tuples in memory at
once. For example, to compute attribute-value masses in line 6, D-CUBE increases MB(t[An],n) by t[X]
for each dimension attribute An after reading each tuple t in B sequentially from disk.

Algorithm 12.3 select dimension by cardinality

Input: {Bn}Nn=1: attribute-value sets
Output: a dimension in [N]

1: return n ∈ [N] with maximum |Bn|

Algorithm 12.4 select dimension by density

Input: (1) {Bn}Nn=1 and {Rn}Nn=1 attribute-value sets,
(2) {{MB(a,n)}a∈Bn}Nn=1: attribute-value masses,
(3) MB and MR: masses, (4) ρ: density measure, and (5) θ(≥ 1): threshold

Output: a dimension in [N]
1: ρ̃← −∞, ĩ← 1 . ρ̃: max ρ so far, ĩ: dimension with ρ̃
2: for each dimension i ∈ [N] do
3: if Bi 6= ∅ then
4: Di ← {a ∈ Bi : MB(a,i) ≤ θMB

|Bi|} . Di : set to be removed
5: M ′

B ←MB −
∑

a∈DiMB(a,i)

6: B′i ← Bi −Di

7: ρ′ ← ρ(M ′
B, {|Bn|}n6=i ∪ {|B′i|},MR, {|Rn|}Nn=1) . ρ′ : ρ when Di are removed

8: if ρ′ > ρ̃ then
9: ρ̃← ρ′, ĩ← i . update max ρ so far

10: return ĩ

12.3.2.2 Dimension Selection (Algorithms 12.3 and 12.4)
We discuss two policies for choosing a dimension attribute that attribute values are removed from. They
are used in line 7 of Algorithm 12.2 offering different advantages.

194

Maximum cardinality policy (Algorithm 12.3): The dimension attribute with the largest cardinality
is chosen, as described in Algorithm 12.3. This simple policy, however, provides an accuracy guarantee
(see Theorem 12.1 in Section 12.4.1).

Maximum density policy (Algorithm 12.4): The density of B when attribute values are removed
from each dimension attribute is computed. Then, the dimension attribute leading to the highest density
is chosen. Note that the tuples in B, stored on disk, do not need to be accessed for this computation,
as described in Algorithm 12.4. Although this policy does not provide the accuracy guarantee given
by the maximum cardinality policy, this policy works well with various density measures and tends to
spot denser subtensors than the maximum cardinality policy in our experiments with real-world data.

12.3.2.3 Efficient Implementation
We present the optimization techniques used for the efficient implementation of D-CUBE.

Combining disk-accessing steps. The amount of disk I/O can be reduced by combining multiple steps
involving disk accesses. In Algorithm 12.1, updating R (line 7) in an iteration can be combined with
computing the mass of R (line 5) in the next iteration. That is, if we aggregate the values of the tuples
of R while they are written for the update, we do not need to scan R again for computing its mass in the
next iteration. Likewise, in Algorithm 12.2, updating B (line 16) in an iteration can be combined with
computing attribute-value masses (line 6) in the next iteration. This optimization reduces the amount
of disk I/O in D-CUBE about 30%.

Caching tensor entries in memory. Although we assume that tuples are stored on disk, storing them
in memory up to the memory capacity speeds up D-CUBE up to 3 times in our experiments (see Sec-
tion 12.5.4). We cache the tuples in B, which are more frequently accessed than those in R or Rori, in
memory with the highest priority.

12.3.3 MapReduce Implementation
We present our MAPREDUCE implementation of D-CUBE, assuming that tuples in relations are stored
in a distributed file system. Specifically, we describe four MAPREDUCE algorithms that cover the steps
of D-CUBE accessing tuples.

(1) Filtering tuples. In lines 7-8 of Algorithm 12.1 and line 16 of Algorithm 12.2, D-CUBE filters
the tuples satisfying the given conditions. These steps are done by the following map-only algorithm,
where we broadcast the data used in each condition (e.g., {Bn}Nn=1 in line 7 of Algorithm 12.1) to
mappers using the distributed cache functionality.
• Map-stage: Take a tuple t (i.e., 〈t[A1], ..., t[AN], t[X]〉) and emit t if t satisfies the given condition.

Otherwise, the tuple is ignored.

(2) Computing attribute-value masses. Line 6 of Algorithm 12.2 is performed by the following algo-
rithm, where we reduce the amount of shuffled data by combining the intermediate results within each
mapper.
• Map-stage: Take a tuple t (i.e., 〈t[A1], ..., t[AN], t[X]〉) and emitN key/value pairs {〈(n, t[An]), t[X]〉}Nn=1.
• Combine-stage/Reduce-stage: Take 〈(n, a), values〉 and emit 〈(n, a), sum(values)〉.

Each tuple 〈(n, a), value〉 of the final output indicates that MB(a,n) =value.

195

(3) Computing mass. Line 5 of Algorithm 12.1 can be performed by the following algorithm, where
we reduce the amount of shuffled data by combining the intermediate results within each mapper.
• Map-stage: Take a tuple t (i.e., 〈t[A1], ..., t[AN], t[X]〉) and emit 〈0, t[X]〉.
• Combine-stage/Reduce-stage: Take 〈0, values〉 and emit 〈0, sum(values)〉.

The value of the final tuple corresponds to MR.

(4) Computing attribute-value sets. Line 2 of Algorithm 12.1 can be performed by the following
algorithm, where we reduce the amount of shuffled data by combining the intermediate results within
each mapper.
• Map-stage: Take a tuple t (i.e., 〈t[A1], ..., t[AN], t[X]〉) and emitN key/value pairs {〈(n, t[An]), 0〉}Nn=1.
• Combine-stage/Reduce-stage: Take 〈(n, a), values〉 and emit 〈(n, a), 0〉.

Each tuple 〈(n, a), 0〉 of the final output indicates that a is a member of Rn.

12.4 Theoretical Analysis
In this section, we first prove an approximation guarantee of D-CUBE. Then, we analyze the time and
space complexities of D-CUBE.

12.4.1 Accuracy Analysis
We show that D-CUBE gives the same accuracy guarantee with in-memory algorithms [SHF18], if
we set θ to 1, although accesses to tuples (stored on disk) are restricted in D-CUBE to reduce disk
I/Os. Specifically, Theorem 12.1 states that the subtensor found by Algorithm 12.2 with the maximum
cardinality policy has density at least 1

θN
of the optimum when ρari is used as the density measure.

Theorem 12.1: θN -Approximation Guarantee

Let B∗ be the subtensor B maximizing ρari(B,R) in the given relation R. Let B̃ be the subtensor
returned by Algorithm 12.2 with ρari and the maximum cardinality policy. Then,

ρari(B̃,R) ≥ 1

θN
ρari(B

∗,R).

Proof. First, the maximal subtensor B∗ satisfies that, for any i ∈ [N] and for any attribute value
a ∈ B∗i , its attribute-value mass MB∗(a,i) is at least 1

N
ρari(B

∗,R). This is since the maximality of
ρari(B

∗,R) implies ρari(B∗ − B∗(a, i),R) ≤ ρari(B
∗,R), and plugging in Definition 10.1 to ρari

gives MB∗−MB∗(a,i)
1
N

((
∑N
n=1 |B

∗
n|)−1)

= ρari(B
∗ −B∗(a, i),R) ≤ ρari(B

∗,R) = MB∗
1
N

∑N
n=1 |B

∗
n|

, which reduces to

MB∗(a,i) ≥
1

N
ρari(B

∗,R). (12.1)

Consider the earliest iteration (lines 5-16) in Algorithm 12.2 where an attribute value a of B∗ is included
in Di. Let B′ be B in the beginning of the iteration. Our goal is to prove ρari(B̃,R) ≥ 1

θN
ρari(B

∗,R),

which we will show as ρari(B̃,R) ≥ ρari(B
′,R) ≥ MB′(a,i)

θ
≥ MB∗(a,i)

θ
≥ 1

θN
ρari(B

∗,R).

196

First, ρari(B̃,R) ≥ ρari(B
′,R) is from the maximality of ρari(B̃,R) among the densities of

the subtensors generated in the iterations (lines 13-15 in Algorithm 12.2). Second, applying |B′i| ≥
1
N

∑N
n=1 |B

′
n| from the maximum cardinality policy (Algorithm 12.3) to Definition 10.1 of ρari gives

ρari(B
′,R) =

MB′
1
N

∑N
n=1 |B

′
n|
≥ MB′
|B′i|

. And a ∈ Di gives θMB′
|B′i|
≥ MB′(a,i). So combining these gives

ρari(B
′,R) ≥ MB′(a,i)

θ
. Third,

MB′(a,i)
θ
≥ MB∗(a,i)

θ
is from B′ ⊃ B∗. Fourth, MB∗(a,i)

θ
≥ 1

θN
ρari(B

∗,R)

is from Eq. (12.1). Hence, ρari(B̃,R) ≥ 1
θN
ρari(B

∗,R) holds. �

12.4.2 Complexity Analysis
Theorem 12.2 states the worst-case time complexity, which equals to the worst-case I/O complexity, of
D-CUBE.

Lemma 12.1: Maximum Number of Iterations in Algorithm 12.2

Let L = maxn∈[N] |Rn|. Then, the number of iterations (lines 5-16) in Algorithm 12.2 is at most
N min(logθ L,L).

Proof. In each iteration (lines 5-16) of Algorithm 12.2, among the values of the chosen dimension
attribute Ai, attribute values whose masses are at most θMB

|Bi| , where θ ≥ 1, are removed. The set of
such attribute values is denoted by Di. We will show that, if |Bi| > 0, then

|Bi\Di| < |Bi|/θ. (12.2)

Note that, when |Bi\Di| = 0, Eq. (12.2) trivially holds. When |Bi\Di| > 0, MB can be factorized and
lower bounded as

MB =
∑

a∈Bi\Di
MB(a,i) +

∑
a∈Di

MB(a,i) ≥
∑

a∈Bi\Di
MB(a,i) > |Bi\Di| · θ

MB

|Bi|
,

where the last strict inequality is from the definition of Di and that |Bi\Di| > 0. This strict inequality
impliesMB > 0, and thus dividing both sides by θMB

|Bi| gives Eq. (12.2). Now, Eq. (12.2) implies that the
number of remaining values of the chosen attribute after each iteration is less than 1/θ of that before the
iteration. Hence each attribute can be chosen at most logθ L times before all of its values are removed.
Thus, the maximum number of iterations is at most N logθ L. Also, by Eq. (12.2), at least one attribute
value is removed per iteration. Hence, the maximum number of iterations is at most the number of
attribute values, which is upper bounded by NL. Hence the number of iterations is upper bounded by
N max(logθ L,L). �

Theorem 12.2: Worst-case Time Complexity

Let L = maxn∈[N] |Rn|. If θ = O
(
e(

N|R|
L

)
)

, which is a weaker condition than θ = O(1), the

worst-case time complexity of Algorithm 12.1 is O(kN2|R|min(logθ L,L)).

197

Proof. From Lemma 12.1, the number of iterations (lines 5-16) in Algorithm 12.2 isO(N min(logθ L,L)).
Executing lines 6 and 16O(N min(logθ L,L)) times takesO(N2|R|min(logθ L,L)) time, which dom-
inates the time complexity of the other parts. For example, repeatedly executing line 9 takesO(NL log2 L)
time, and by our assumption, it is dominated by O(N2|R|min(logθ L,L)). Thus, the worst-case time
complexity of Algorithm 12.2 isO(N2|R|min(logθ L,L)), and that of Algorithm 12.1, which executes
Algorithm 12.2, k times, is O(kN2|R|min(logθ L,L)). �

However, this worst-case time complexity, which allows the worst distributions of the measure
attribute values of tuples, is too pessimistic. In Section 12.5.4, we experimentally show that D-CUBE

scales linearly with k, N , and R; and sub-linearly with L even when θ is its smallest value 1.
Theorem 12.3 states the memory requirement of D-CUBE. Since the tuples do not need to be stored

in memory all at once in D-CUBE, its memory requirement does not depend on the number of tuples
(i.e., |R|).

Theorem 12.3: Memory Requirements

The amount of memory space required in Algorithm 12.1 is O(
∑N

n=1 |Rn|).

Proof. In Algorithm 12.1, {{MB(a,n)}a∈Bn}Nn=1, {Rn}Nn=1, and {Bn}Nn=1 need to be loaded into mem-
ory at once. Each has at most

∑N
n=1 |Rn| values. Thus, the memory requirement isO(

∑N
n=1 |Rn|). �

12.5 Experiments
We designed and conducted experiments to answer the following questions:
• Q1. Memory Efficiency: How much memory space does D-CUBE require for analyzing real-world

tensors? How large tensors can D-CUBE handle?
• Q2. Speed and Accuaracy: Does D-CUBE spot dense subtensors faster and more accurately than

its best competitors?
• Q3. Scalability: Does D-CUBE scale linearly with all aspects of data? Does D-CUBE scale out?
• Q4. Effectiveness: Which anomalies and fraud does D-CUBE detect in real-world tensors?
• Q5. Effect of Parameters: How does the mass threshold θ affect the performance of D-CUBE?

12.5.1 Experimental Settings

Machines: We ran all serial algorithms on a machine with 2.67GHz Intel Xeon E7-8837 CPUs and
1TB memory. We ran MAPREDUCE algorithms on a 40-node Hadoop cluster, where each node has an
Intel Xeon E3-1230 3.3GHz CPU and 32GB memory.

Datasets: Table 12.2 lists the real-world tensors used in our experiments. See Section 10.4 for a de-
scription of the datasets. We used synthetic tensors for scalability tests. Each tensor was created by
generating a random binary tensor and injecting ten random dense subtensors, whose volumes are 10N

and densities (in terms of ρari) are between 10× and 100× of that of the entire tensor.

198

Table 12.2: Summary of the real-world tensors used in our experiments. M: Million, K: Thousand.
The underlined attributes are composite primary keys.

Name Volume #Tuples

Rating data (user, item, timestamp, rating, #reviews)

AppStore [ACF13] 967K × 15.1K × 1.38K × 5 1.13M
Yelp 552K × 77.1K × 3.80K × 5 2.23M
Android [MPL15] 1.32M × 61.3K × 1.28K × 5 2.64M
Netflix [BL+07] 480K × 17.8K × 2.18K × 5 99.1M
YahooM. [DKKW12] 1.00M × 625K × 84.4K × 101 253M

Wiki revision histories (user, page, timestamp, #revisions)

KoWiki 470K × 1.18M × 101K 11.0M
EnWiki 44.1M × 38.5M × 129K 483M

Social networks (user, user, timestamp, #interactions)

Youtube [MMG+07] 3.22M × 3.22M × 203 18.7M
SMS 1.25M × 7.00M × 4.39K 103M

TCP dumps (src IP, dst IP, timestamp, #connections)

Darpa [LFG+00] 9.48K × 23.4K × 46.6K 522K

TCP dumps (protocol, service, src bytes, · · · , #connections)

AirForce 3 × 70 × 11 × 7.20K × 21.5K × 512 × 512 648K

Implementations and Parameter Settings: We implemented the following dense-subtensor detection
methods for our experiments:
• D-CUBE (Proposed): We implemented D-CUBE in Java with Hadoop 1.2.1. We set the mass-

threshold parameter θ to 1 and used the maximum density policy for dimension selection, unless
otherwise stated.

• M-ZOOM (Chapter 11): We implemented M-ZOOM in Java.
• CROSSSPOT [JBC+16]: We implemented CROSSSPOT in Java2. Although CROSSSPOT was orig-

inally designed to maximize ρsusp, we used its variants that directly maximize the density metric
compared in each experiment. We used CPD as the seed selection method of CROSSSPOT as in the
previous chapter.

• CPD (CP Decomposition): Let {A(n)}Nn=1 be the factor matrices obtained by CP Decomposition
[KB09]. The i-th dense subtensor is composed by every attribute value an whose corresponding
element in the i-th column of A(n) is greater than or equal to 1/

√
|Rn|. We used Tensor Tool-

box [BK07a] for CP Decomposition.
• MAF [MGF11]: We used Tensor Toolbox [BK07a] for CP Decomposition, which MAF is largely

based on.
2An open-sourced python implementation is available at https://github.com/mjiang89/CrossSpot

199

https://github.com/mjiang89/CrossSpot

D-Cube CPD M-Zoom CrossSpot

100

101

102

103

104

105

YahooM. Netflix Android Yelp AppStore SMS Youtube EnWiki KoWiki AirForce DARPA

M
em

or
y

 R

eq
ui

re
m

en
ts

 (M
B)

30X

1,638X
1,389X

17X
72X 19X

23X 47X

47X
99X

13X

Figure 12.2: D-CUBE is memory efficient. D-CUBE requires up to 1,600× less memory than its
competitors.

Density Measures: We used the four density measured defined in Section 10.3.2: arithmetic average
mass (ρari), geometric average mass (ρgeo), suspiciousness (ρsusp), and entry surplus (i.e., ρes(α)). The
parameter α in ρes(α) was set to 1 unless otherwise stated.

12.5.2 Q1. Memory Efficiency

D-CUBE is memory efficient. We compared the amount of memory required by different methods for
handling the real-world datasets. As seen in Figure 12.2, D-CUBE, which does not require tuples to
be stored in memory, needed up to 1,600× less memory than the second best method, which stores
tuples in memory. Due to its memory efficiency, D-CUBE successfully handled 1,000× larger data
than its competitors within a memory budget. We ran methods on 3-way synthetic tensors with dif-
ferent numbers of tuples (i.e., |R|), with a memory budget of 16GB per machine. In every tensor, the
cardinality of each dimension attribute was 1/1000 of the number of tuples, i.e., |Rn| = |R|/1000,
∀n ∈ [N]. Figure 12.1(a) in Section 12.1 shows the result. The HADOOP implementation of D-CUBE

successfully spotted dense subtensors in a tensor with 1011 tuples (2.6TB), and the serial version of
D-CUBE successfully spotted dense subtensors in a tensor with 1010 tuples (240GB), which was the
largest tensor that can be stored on a disk. However, all other methods ran out of memory even on a
tensor with 109 tuples (21GB).

12.5.3 Q2. Speed and Accuracy

D-CUBE provides the best trade-off between speed and accuracy. We compared how rapidly and
accurately D-CUBE (the serial version) and its competitors detect dense subtensors in the real-world
datasets. We measured the wall-clock time (average over three runs) taken for detecting three subten-
sors by each method, and we measured the maximum density of the three subtensors found by each
method using different density measures in Section 10.3.2. For this experiment, we did not limit the
memory budget so that every method can handle every dataset. D-CUBE also utilized extra memory
space by caching tuples in memory, as explained in Section 12.3.2.3. Figure 12.3 shows the results av-
eraged over all datasets3, and Figure 12.4 shows the results in each dataset. D-CUBE provided the best

3We computed the relative running time and relative accuracy of each method (compared to the running time and
accuracy of D-CUBE with the maximum density policy) in each dataset. Then, we averaged them over all datasets.

200

D-Cube (maximum density) D-Cube (maximum cardinality) M-Zoom CrossSpot CPD
● Ideal

3.2X

●●●

0.0

0.5

1.0

100 101 102

Relative Running Time

R
el

at
ive

 A
cc

ur
ac

y

(a) ρsusp

● Ideal

3.4X

●●●

0.0

0.5

1.0

100 101 102

Relative Running Time

R
el

at
ive

 A
cc

ur
ac

y
(b) ρari

● Ideal

3.6X

●●●

0.0

0.5

1.0

100 101 102

Relative Running Time

R
el

at
ive

 A
cc

ur
ac

y

(c) ρgeo

● Ideal

3.8X

●●●

0.0

0.5

1.0

100 101 102

Relative Running Time

R
el

at
ive

 A
cc

ur
ac

y

(d) ρes(α)

Figure 12.3: D-CUBE achieves both speed and accuracy (on average). In each plot, points represent
the speed and accuracy of different methods averaged over all real-world tensors. Upper-left region
indicates better performance. D-CUBE is about 3.6× faster than the second best method M-ZOOM.
Moreover, D-CUBE with the maximum density consistently shows high accuracy regardless of density
measures, while the other methods do not.

trade-off between speed and accuracy. Specifically, D-CUBE was up to 7× faster (on average 3.6×
faster) than the second fastest method M-ZOOM. Moreover, D-CUBE (with the maximum density
policy) consistently spotted high-density subtensors, while the accuracies of the other methods varied
on density measures. Specifically, on average, D-CUBE (with the maximum density policy) showed
the highest accuracy with all the density measures except ρari, which M-ZOOM and D-CUBE (with the
maximum cardinality policy) were more accurate with. Although MAF does not appear in Figures 12.3
and 12.4, it consistently provided sparser subtensors than CPD with similar speed.

12.5.4 Q3. Scalability

D-CUBE scales (sub-)linearly with every input factor (i.e., the number of tuples, the number of di-
mension attributes, and the cardinality of dimension attributes, and the number of subtensors that we
aim to find). To measure the scalability with each factor, we started with finding a dense subtensor in
a synthetic tensor with 108 tuples and 3 dimension attributes each of whose cardinality is 105. Then,
we measured the running time as we changed one factor at a time while fixing the other factors. The
threshold parameter θ was fixed to 1. As seen in Figure 12.5, D-CUBE scaled linearly with every factor
and sub-linearly with the cardinality of attributes even when θ was set to its minimum value 1. This
supports our claim in Section 12.4.2 that the worst-case time complexity of D-CUBE (Theorem 12.2)
is too pessimistic. This linear scalability of D-CUBE held both with enough memory budget (blue
solid lines in Figure 12.5) to store all tuples and with minimum memory budget (red dashed lines in
Figure 12.5) to barely meet the requirements although D-CUBE was up to 3× faster in the former case.

D-CUBE scales out. We also evaluated the machine scalability of the MAPREDUCE implementation of
D-CUBE. We measured its running time taken for finding a dense subtensor in a synthetic tensor with
1010 tuples and 3 dimension attributes each of whose cardinality is 107, as we increased the number
of machines running in parallel from 1 to 40. Figure 12.6 shows the changes in the running time and
the speed-up, which is defined as T1/TM where TM is the running time with M machines. The speed-
up increased near linearly when a small number of machines were used, while it flattened as more
machines were added due to the overhead in the distributed system.

201

D-Cube (maximum density) D-Cube (maximum cardinality) M-Zoom CrossSpot CPD
Ideal

5X
106

107

108

109

101 102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(a) SMS (ρsusp)

Ideal

4X
102

103

104

101 102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(b) SMS (ρari)

Ideal

4X
102

103

104

101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(c) SMS (ρgeo)

Ideal

5X
105

106

107

108

109

101 102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(d) SMS (ρes(α))

Ideal

4X
106

107

108

100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(e) Youtube (ρsusp)

Ideal

5X
101

102

103

100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(f) Youtube (ρari)

Ideal

5X
102

103

104

100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(g) Youtube (ρgeo)

Ideal

5X
105

106

107

108

100 101 102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(h) Youtube (ρes(α))

Ideal

4X
106

107

108

109

102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(i) EnWiki (ρsusp)

Ideal

3X
101

102

103

104

102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(j) EnWiki (ρari)

Ideal

3X
103

104

105

102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(k) EnWiki (ρgeo)

Ideal

5X
105

106

107

108

109

102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(l) EnWiki (ρes(α))

Ideal

3X
105

106

107

108

100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(m) KoWiki (ρsusp)

Ideal

4X
100

101

102

103

100 101 102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(n) KoWiki (ρari)

Ideal

4X
101

102

103

100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(o) KoWiki (ρgeo)

Ideal

5X
105

106

107

108

100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(p) KoWiki (ρes(α))

Ideal

2X
106

107

108

10-1 100 101

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(q) Darpa (ρsusp)

Ideal

2X
103

104

105

10-1 100 101

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(r) Darpa (ρari)

Ideal

2X
103

104

105

106

10-1 100 101

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(s) Darpa (ρgeo)

Ideal

2X
105

106

107

10-1 100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(t) Darpa (ρes(α))

Ideal

2X
107

108

109

10-1 100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(u) AirForce (ρsusp)

Ideal

2X
105

106

107

10-1 100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(v) AirForce (ρari)

Ideal

2X
105

106

107

10-1 100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(w) AirForce (ρgeo)

Ideal

2X
105

106

107

10-1 100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(x) AirForce (ρes(α))
(continues on the next page)

202

(continues from the previous page)
D-Cube (maximum density) D-Cube (maximum cardinality) M-Zoom CrossSpot CPD

Ideal

3X
104

105

106

107

10-1 100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(y) AppStore (ρsusp)

Ideal

4X
100

101

102

10-1 100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(z) AppStore (ρari)

Ideal

3X
102

103

104

10-1 100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(aa) AppStore (ρgeo)

Ideal

3X
103

104

105

106

107

10-1 100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ab) AppStore (ρes(α))

Ideal

3X
105

106

107

10-1 100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ac) Yelp (ρsusp)

Ideal

3X
101

102

103

10-1 100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ad) Yelp (ρari)

Ideal

3X
102

103

10-1 100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ae) Yelp (ρgeo)

Ideal

4X
104

105

106

107

10-1 100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(af) Yelp (ρes(α))

Ideal

4X
104

105

106

107

100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ag) Android (ρsusp)

Ideal

3X
100

101

102

100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ah) Android (ρari)

Ideal

4X
102

103

104

100 101 102

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ai) Android (ρgeo)

Ideal

4X
103

104

105

106

107

10-1 100 101 102 103

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(aj) Android (ρes(α))

Ideal

4X
107

108

109

101 102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ak) Netflix (ρsusp)

Ideal

4X
102

103

104

101 102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(al) Netflix (ρari)

Ideal

4X
104

105

101 102 103 104

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(am) Netflix (ρgeo)

Ideal

4X
105

106

107

108

101 102 103 104 105

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(an) Netflix (ρes(α))

Ideal

2X
108

109

101 102 103 104 105

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ao) YahooM. (ρsusp)

Ideal

3X
102

103

104

101 102 103 104 105

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ap) YahooM. (ρari)

Ideal

3X
103

104

105

101 102 103 104 105

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(aq) YahooM. (ρgeo)

Ideal

3X
107

108

109

101 102 103 104 105

Elapsed Time (sec)

A
cc

ur
ac

y
(D

en
si

ty
)

(ar) YahooM. (ρes(α))

Figure 12.4: D-CUBE achieves both speed and accuracy (in most datasets). In each plot, points
represent the speed and accuracy of different methods. Upper-left region indicates better performance.
D-CUBE is up to 7× faster than the second fast method M-ZOOM. Moreover, D-CUBE with the
maximum density policy is the only method that is consistently accurate regardless of density measures.

203

D-Cube (enough memory) D-Cube (minimum memory) Linear Increase (slope = 1)

●

●

●

●

●

●

●

●

●

●

●

●

100

101

102

103

106 107 108 109

Number of Tuples

El
ap

se
d

Ti
m

e
(s

ec
)

(a) Scalability w.r.t |R|
(# non-zeros in the input

tensor)

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

100.9

101.2

101.5

101.8

100.2 100.4 100.6 100.8

Number of Attributes

El
ap

se
d

Ti
m

e
(s

ec
)

(b) Scalability w.r.t N
(order of the input tensor)

●
●

●

●

●
●

●

●

●
●

●

●

101

102

103

104

104 105 106 107

Cardinality

El
ap

se
d

Ti
m

e
(s

ec
)

(c) Scalability w.r.t |Rn|
(dimensionality of the input

tensor)

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

101

101.5

102

102.5

100 100.5 101

Number of Subtensors

El
ap

se
d

Ti
m

e
(s

ec
)

(d) Scalability w.r.t k
(# subtensors we aim to find)

Figure 12.5: D-CUBE is scalable. D-CUBE scales linearly or sub-linearly with the number of tuples,
the number of attributes, the cardinalities of attributes, and the number of subtensors we aim to find.

0K

2K

4K

6K

8K

0 10 20 30 40
Number of Machines

El
ap

se
d

Ti
m

e
(s

ec
)

(a) Elapsed Time

0

5

10

15

20

25

0 10 20 30 40
Number of Machines

Sp
ee

d
U

p

(b) Speed Up

Figure 12.6: D-CUBE scales out. The MAPREDUCE implementation of D-CUBE is speeded up 8×
with 10 machines, and 20× with 40 machines.

12.5.5 Q4. Effectiveness
We demonstrate the effectiveness of D-CUBE in four applications using real-world tensors.

D-CUBE detects network attacks accurately from TCP dumps. We considered two TCP dumps that
are modeled differently. The Darpa dataset is a 3-way tensor where the dimension attributes are source
IPs, destination IPs, and timestamps in minutes; and the measure attribute is the number of connections.
The AirForce dataset, which does not include IP information, is a 7-way tensor where the measure at-
tribute is the same but the dimension attributes are the features of the connections, including protocols
and services. Both datasets include labels indicating whether each connection is malicious or not.

Figure 12.1(c) in Section 12.1 lists the five densest subtensors (in terms of ρgeo) found by D-CUBE

in each dataset. Notice that the dense subtensors are mostly composed of various types of network
attacks. Based on this observation, we classified each connection as malicious or benign based on the
density of the densest subtensor containing the connection (i.e., the denser the subtensor including a
connection is, the more suspicious the connection is). This led to high accuracy as seen in Table 12.3,
which reports the accuracy when each method (with the density measure giving the highest accuracy)
was used for dense-subtensor detection. In both datasets, D-CUBE resulted in the highest accuracy.

D-CUBE spots synchronized behavior accurately in rating data. We assumed an attack scenario where
fraudsters in a review site, who aim to boost (or lower) the ratings of the set of items, create multiple

204

Table 12.3: D-CUBE spots network attacks fastest and most accurately from TCP dumps, as sum-
marized in the first table. The top-5 subtensors detected by D-CUBE in each of the datasets are de-
scribed in the second table.

Datasets AirForce Darpa

Elapsed Accuracy Elapsed Accuracy
Time (sec) (AUC) Time (sec) (AUC)

CPD [KB09] 413.2 0.854 105.0 0.926
MAF [MGF11] 486.6 0.912 102.4 0.514

CROSSSPOT [JBC+16] 575.5 0.924 132.2 0.923
M-ZOOM (Chapter 11) 27.7 0.975 22.7 0.923

D-CUBE 15.6 0.987 9.1 0.930

Dataset Order Volume Mass Attack Ratio Attack Type

AirForce

1 1 1.93M 100% Smurf
2 8 2.53M 100% Smurf
3 6,160 897K 100% Neptune
4 63.5K 1.02M 94.7% Neptune
5 930K 1.00M 94.7% Neptune

Darpa

1 738 1.52M 100% Neptune
2 522 614K 100% Neptune
3 402 113K 100% Smurf
4 1 10.8K 100% Satan
5 156K 560K 30.4% SNMP

user accounts and give the same score to the items within a short period of time. This lockstep behavior
forms a dense subtensor with volume (# fake accounts × # target items × 1 × 1) in the rating dataset,
whose dimension attributes are users, items, timestamps, and rating scores.

We injected 10 such random dense subtensors whose volumes varied from 15×15×1×1 to 60×60×1
×1 in the Yelp and Android datasets. We compared the number of the injected subtensors detected by
each dense-subtensor detection method. We considered each injected subtensor as overlooked by a
method, if the subtensor did not belong to any of the top-10 dense subtensors spotted by the method
or it was hidden in a natural dense subtensor at least 10 times larger than the injected subtensor. We
repeated this experiment 10 times, and the averaged results are summarized in Table 12.4. For each
method, we report the results with the density measure giving the highest accuracy. In both datasets,
D-CUBE detected a largest number of the injected subtensors. Especially, in the Android dataset,
D-CUBE detected 9 out of the 10 injected subtensors, while the second best method detected only 7
injected subtensors on average.

D-CUBE successfully spots spam reviews in the AppStore dataset. The dataset contains reviews from
App Store, an online software marketplace. We modeled the dataset as a 4-way tensor whose dimen-
sion attributes are users, software, ratings, and timestamps in dates, and we applied D-CUBE (with
ρ = ρari) to the dataset. Table 12.7 shows the statistics of the top-3 dense subtensors. Although
ground-truth labels were not available, as the examples in Table 12.5 show, all the reviews composing

205

Table 12.4: D-CUBE detects synchronized behavior fastest and most accurately in rating datasets.

Datasets Android Yelp

Elapsed Recall @ Elapsed Recall @
Time (sec) Top-10 Time (sec) Top-10

CPD [KB09] 59.9 0.54 47.5 0.52
MAF [MGF11] 95.0 0.54 49.4 0.52

CROSSSPOT [JBC+16] 71.3 0.54 56.7 0.52
M-ZOOM (Chapter 11) 28.4 0.70 17.7 0.30

D-CUBE 7.0 0.90 4.9 0.60

Table 12.5: D-CUBE successfully detects spam reviews in the AppStore dataset.

Subtensor 1 (100% spam) Subtensor 2 (100% spam)

User Review Date User Review Date

Ti* type in *** and you will get ... Mar-4 Sk* invite code***, referral— ... Apr-18
Fo* type in for the bonus code: ... Mar-4 fu* use my code for bonus ... Apr-18
dj* typed in the code: *** ... Mar-4 Ta* enter the code *** for ... Apr-18
Di* enter this code to start with ... Mar-4 Ap* bonus code *** for points ... Apr-18
Fe* enter code: *** to win even ... Mar-4 De* bonus code: ***, be one ... Apr-18

Subtensor 3 (at least 48% spam)

User Review Date

Mr* entered this code and got ... Nov-23
Max* enter the bonus code: *** ... Nov-23
Je* enter *** when it asks... Nov-23

Man* just enter *** for a boost ... Nov-23
Ty* enter *** ro receive a ... Nov-23

206

Table 12.6: D-CUBE successfully spots bot activities in the EnWiki dataset.

Subtensor # Users in each subtensor (100% bots)

1 WP 1.0 bot
2 AAlertBot
3 AlexNewArtBot, VeblenBot, InceptionBot
4 WP 1.0 bot
5 Cydebot, VeblenBot

Table 12.7: Summary of the three dense subtensors that D-CUBE detects in real-world datasets.

Dataset Order Volume Mass ρari Type

AppStore
1 120 308 44.0 Spam reviews
2 612 435 31.6 Spam reviews
3 231,240 771 20.3 Spam reviews

KoWiki
1 8 546 273.0 Edit war
2 80 1,011 233.3 Edit war
3 270 1,126 168.9 Edit war

EnWiki
1 9.98M 1.71M 7,931 Bot activities
2 541K 343K 4,211 Bot activities
3 23.5M 973K 3,395 Bot activities

the first and second dense subtensors were obvious spam reviews. In addition, at least 48% of the
reviews composing the third dense subtensor were obvious spam reviews.

D-CUBE detects various types of anomalies in Wikipedia revision histories. We modeled the datasets
as 3-way tensors whose dimension attributes are users, pages, and timestamps in hours. Table 12.7 gives
the statistics of the top-3 dense subtensors detected by D-CUBE (with ρ = ρari and the maximum cardi-
nality policy) in the KoWiki dataset and by D-CUBE (with ρ = ρgeo and the maximum density policy)
in the EnWiki dataset. All three subtensors detected in the KoWiki dataset indicated edit wars. For ex-
ample, the second subtensor corresponded to an edit war where 4 users changed 4 pages, 1,011 times,
within 5 hours. On the other hand, all three subtensors detected in the Enwiki dataset indicated bot
activities. For example, the third subtensor corresponded to 3 bots which edited 1,067 pages 973,747
times. The users composing the top-5 dense subtensors in the EnWiki dataset are listed in Table 12.6.
Notice that all of them are bots.

12.5.6 Q5. Effects of Parameter θ on Speed and Accuracy

The parameter θ controls the trade-off between speed and accuracy. We investigated the effects of
the mass-threshold parameter θ on the speed and accuracy of D-CUBE in the real-world datasets. We
used the serial version of D-CUBE with a memory budget of 16GB, and we measured its relative accu-
racy and speed as in Section 12.5.3. Figure 12.7 shows the results averaged over all datasets. Different
θ values provided a trade-off between speed and accuracy. Specifically, increasing θ tended to make
D-CUBE faster but less accurate. This tendency is consistent with our theoretical analyses (Theo-

207

θ = 1 θ = 1.5 θ = 2 θ = 3 θ = 5
● Ideal

●●●

0.8

0.9

1.0

1.1

0.7 0.8 0.9 1.0
Relative Running Time

R
el

at
ive

 A
cc

ur
ac

y

(a) ρsusp

● Ideal

●●●

0.8

0.9

1.0

1.1

0.7 0.8 0.9 1.0
Relative Running Time

R
el

at
ive

 A
cc

ur
ac

y
(b) ρari

● Ideal

●●●

0.8

0.9

1.0

1.1

0.7 0.8 0.9 1.0
Relative Running Time

R
el

at
ive

 A
cc

ur
ac

y

(c) ρgeo

● Ideal

●●●

0.8

0.9

1.0

1.1

0.7 0.8 0.9 1.0
Relative Running Time

R
el

at
ive

 A
cc

ur
ac

y

(d) ρes(α)

Figure 12.7: The mass-threshold parameter θ controls the trade-off between the speed and ac-
curacy of D-CUBE. We report the accuracy and speed averaged over all real-world datasets. As θ
increases, D-CUBE tends to be faster but less accurate.

rems 12.1-12.2 in Section 12.4.2). The sensitivity of the accuracy to θ depended on the used density
measures. Specifically, the sensitivity was lower with ρes(α) than with the other density measures.

12.6 Summary
We propose D-CUBE, a disk-based dense-subtensor detection method, to deal with disk-resident ten-
sors too large to fit in main memory. D-CUBE is optimized to minimize disk I/Os while providing a
guarantee on the quality of the subtensors it finds. Moreover, we propose a distributed version of D-
CUBE running on MAPREDUCE for terabyte-scale or larger data distributed across multiple machines.
In summary, D-CUBE achieves the following advantages over its state-of-the-art competitors:
• Memory Efficient: D-CUBE handles 1,000× larger data (2.6TB) by reducing memory usage up to

1,600× compared to in-memory algorithms (Figures 12.1(a) and 12.2).
• Fast: Even when data fit in memory, D-CUBE is up to 7× faster than its competitors (Figures 12.3

and 12.4) with near-linear scalability (Figures 12.5 and 12.6).
• Provably Accurate: D-CUBE is one of the methods giving the best approximation guarantee (The-

orem 12.1) and the densest subtensors in practice (Figures 12.3 and 12.4).
• Effective: D-CUBE was most accurate in two applications: detecting network attacks from TCP

dumps and lockstep behavior in rating data (Tables 12.3-12.7).
Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/dcube.

208

http://www.cs.cmu.edu/~kijungs/codes/dcube
http://www.cs.cmu.edu/~kijungs/codes/dcube

Chapter 13

Detecting Dense Subtensors in Large Tensors
(3): Incremental Algorithms

Chapter based on work that appeared at KDD 2017 [SHKF17b].

Consider a stream of retweet events on social media - how can we spot fraudulent lock-step be-
havior in such multi-aspect data evolving over time? Can we detect it in real time, with accuracy
guarantees?

In the previous two chapters, we propose rapid and accurate algorithms for detecting dense sub-
tensors, which signal anomalies and fraud in many domains, including social media, e-commerce,
and network security. However, the algorithms assume that input tensors are static, while many
real-world tensors, including those from the aforementioned domains, evolve over time.

In this chapter, we propose (a) DENSESTREAM, an incremental algorithm that maintains and
updates a dense subtensor in a tensor stream (i.e., a sequence of changes in a tensor), and (b)
DENSEALERT, an incremental algorithm that spots the sudden appearance of dense subtensors.
Our algorithms are: (1) Fast and ‘any time’: updates by our algorithms are up to a million times
faster than the fastest batch algorithms, (2) Provably accurate: our algorithms guarantee a lower
bound on the density of the subtensor they maintain, and (3) Effective: DENSEALERT successfully
spots anomalies, including those overlooked by existing algorithms, in many real-world tensors.

13.1 Motivation
Given a stream of changes in a tensor that evolves over time, how can we detect the sudden appearances
of dense subtensors? Can we detect them incrementally, without having to rescan all tensor entries?

An important application of this problem is intrusion detection systems in networks, where attack-
ers make a large number of connections to target machines to block their availability or to look for
vulnerabilities [LFG+00]. Consider a stream of connections where we represent each connection from
a source IP address to a destination IP address as an entry in a 3-way tensor (source IP, destination IP,
timestamp). Sudden appearances of dense subtensors in the tensor often indicate network attacks. For
example, in Figure 13.1(c), all the top 15 densest subtensors concentrated in a short period of time,
which are detected by our DENSEALERT algorithm, actually come from network attacks.

Another application is detecting fake rating attacks in review sites, such as Amazon and Yelp.
Ratings can be modeled as entries in a 4-way tensor (user, item, timestamp, rating). Injection attacks
maliciously manipulate the ratings of a set of items by adding a large number of similar ratings for the

209

3X

Ideal

1800X

101

10-4 10-2 100 102

Time for detection (sec)

D
en

si
ty

 (A
cc

ur
ac

y)

Dense
Stream

M-Zoom

CrossSpot

CPD

(a) Fast and Accurate

● ● ●
●

●
● ● ●

10−5

10−4

10−3

104 105 106

Number of nonzeros

U
pd

at
e

tim
e

(s
ec

)

Update time
(decrement)

Linear: O(n)

Sublinear: O(n%)

Update time
(increment)

(b) Scalable

Top 15

Neptune Smurf
Satan Saint

(c) Effective

Figure 13.1: Strengths of DENSESTREAM and DENSEALERT. (a) Fast and accurate: DENSES-
TREAM, our incremental algorithm, detects dense subtensors significantly faster than batch algorithms
without losing accuracy. (b) Scalable: The time taken for each update in DENSESTREAM grows sub-
linearly with the size of data. (c) Effective: DENSEALERT, which detects suddenly emerging dense
subtensors, identifies network attacks from a TCP Dump with high accuracy (AUC=0.924). Especially,
all the 15 densest subtensors revealed by DENSEALERT indicate actual network attacks of various
types. See Section 13.5 for details.

items, creating dense subtensors in the tensor. To guard against such fraud, an alert system detecting
suddenly appearing dense subtensors in real time, as they arrive, is desirable.

As discussed in the previous chapters, several algorithms for dense-subtensor detection have been
proposed for detecting network attacks [MGF11, SHF18, SHKF18], retweet boosting [JBC+16], rating
attacks [SHKF18], and bots [SHF18] as well as for genetics applications [SHK+10]. However, these
existing algorithms assume a static tensor rather than a stream of events (i.e., changes in a tensor) over
time. In addition, our experiments in Section 13.5 show that they are limited in their ability to detect
dense subtensors small but highly concentrated in a short period of time.

In this last chapter on dense-subtensor detection, we propose DENSESTREAM, an incremental al-
gorithm for dense-subtensor detection. It detects dense subtensors in real time as events arrive, and
is hence more useful in many practical settings, including those mentioned above. DENSESTREAM

is also used as a building block of DENSEALERT, an incremental algorithm for detecting the sudden
emergence of dense subtensors. DENSEALERT takes into account the tendency for lock-step behavior,
such as network attacks and rating manipulation attacks, to appear within short, continuous intervals of
time, which is an important signal for spotting lockstep behavior.

In a nutshell, as the entries of a tensor change, our algorithms work by maintaining a small subset
of subtensors that always includes a dense subtensor with a theoretical guarantee on its density. By
focusing on this subset, our algorithms detect a dense subtensor in a time-evolving tensor up to a
million times faster than the fastest batch algorithms, while providing the same theoretical guarantee
on the density of the detected subtensor.

In summary, the main advantages of our algorithms are as follows:
• Fast and ‘any time’: incremental updates by our algorithms are up to a million times faster than

the fastest batch algorithms (Figure 13.1(a)).
• Provably accurate: our algorithms maintain a subtensor with a theoretical guarantee on its den-

sity, and in practice, its density is similar to that of subtensors found by the best batch algorithms
(Figure 13.1(a)).

210

• Effective: DENSEALERT successfully detects bot activities and network intrusions (Figure 13.1(c))
in real-world tensors. It also spots small-scale rating manipulation attacks, overlooked by existing
algorithms.

Reproducibility: The source code and datasets used in this chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/alert.

The rest of this chapter is organized as follows. In Section 13.2, we introduce some preliminary con-
cepts, notations, and formal problem definitions. In Section 13.3, we present our proposed algorithms,
namely DENSESTREAM and DENSEALERT. In Section 13.4, we theoretically analyze the accuracy
and complexity of the algorithms. After sharing some experimental results in Section 13.5, we provide
a summary of this chapter in Section 13.6.

13.2 Preliminaries and Problem Definition
In this section, we introduce notations and concepts used in the chapter. Then, we give formal problem
definitions. For the ease of presentation, we use a set of notations different from those used in the
previous two chapters.

13.2.1 Notations and Concepts
Symbols frequently used in the chapter are listed in Table 13.1, and a toy example is in Example 13.1.
We use [y] = {1, 2..., y} for brevity.

Notations for Tensors: Tensors are multi-dimensional arrays that generalize vectors (1-way tensors)
and matrices (2-way tensors) to higher orders. Consider an N -way tensor X of size I1 × ...× IN with
non-negative entries. Each (i1, ..., iN)-th entry of X is denoted by xi1···iN . Equivalently, each n-mode
index of xi1···iN is in. We use X(n,in) to denote the n-mode slice (i.e. (N − 1)-way tensor) obtained by
fixing n-mode index to in. Then, Q = {(n, in) : n ∈ [N], in ∈ [In]} indicates all the slice indices. We
denote a member of Q by q.

For example, if N = 2, X is a matrix of size I1 × I2. Then, X(1,i1) is the i1-th row of X, and X(2,i2)

is the i2-th column of X. In this setting, Q is the set of all row and column indices.

Notations for Subtensors: Let S be a subset of Q. X(S) denotes the subtensor composed of the slices
with indices in S, i.e., X(S) is the subtensor left after removing all the slices with indices not in S.

For example, if X is a matrix (i.e., N = 2) and S = {(1, 1), (1, 2), (2, 2), (2, 3)}, X(S) is the
submatrix of X composed of the first and second rows and the second and third columns.

Notations for Orderings: Consider an ordering of the slice indices in Q. A function π : [|Q|] → Q
denotes such an ordering where, for each j ∈ [|Q|], π(j) is the slice index in the jth position. That is,
each slice index q ∈ Q is in the π−1(q)-th position in π. Let Qπ,q = {r ∈ Q : π−1(r) ≥ π−1(q)} be
the slice indices located after or equal to q in π. Then, X(Qπ,q) is the subtensor of X composed of the
slices with their indices in Qπ,q.

Notations for Slice Sum: We denote the sum of the entries of X included in subtensor X(S) by
sum(X(S)). Similarly, we define the slice sum of q ∈ Q in subtensor X(S), denoted by d(X(S), q),
as the sum of the entries of X that are included in both X(S) and the slice with index q ∈ Q. For an
ordering π and a slice index q ∈ Q, we use dπ(q) = d(X(Qπ,q), q) for brevity, and define the cumula-
tive maximum slice sum of q as cπ(q) = max{dπ(r) : r ∈ Q, π−1(r) ≤ π−1(q)}, i.e., maximum dπ(·)
among the slice indices located before or equal to q in π.

211

http://www.cs.cmu.edu/~kijungs/codes/alert
http://www.cs.cmu.edu/~kijungs/codes/alert

Table 13.1: Table of frequently-used symbols.

Symbol Definition

X an input tensor
N order of X

xi1···iN entry of X with index (i1, ..., iN)
nnz(X) number of non-zero entries in X

Q set of the slice indices of X
q a member of Q

X(S) subtensor composed of the slices in S ⊂ Q

π : [|Q|]→ Q an ordering of slice indices in Q
Qπ,q slice indices located after or equal to q in π

sum(X(S)) sum of the entries included in X(S)
d(X(S), q) slice sum of q in X(S)

dπ(q) slice sum of q in X(Qπ,q)
cπ(q) cumulative max. slice sum of q in X(Qπ,q)

((i1, ..., iN), δ,+) increment of xi1···iN by δ
((i1, ..., iN), δ,−) decrement of xi1···iN by δ

ρ(X(S)) density of a subtensor X(S)
ρopt density of the densest subtensor in X

∆T time window in DENSEALERT

[y] {1, 2..., y}

Notations for Tensor Streams: A tensor stream is a sequence of changes in X. Let ((i1, ..., iN), δ,+)
be an increment of entry xi1···iN by δ > 0 and ((i1, ..., iN), δ,−) be a decrement of entry xi1···iN by
δ > 0.

Density Measure: Definition 13.1 gives the density measure used in this chapter. That is, the density of
a subtensor is defined as the sum of its entries divided by the number of slices composing it. Note that
given an input tensor X, maximizing the density is equivalent to maximizing arithmetic average mass
(see Section 10.3.2), which proved effective for anomaly and fraud detection in the previous chapters.
We let ρopt be the density of a densest subtensor in X.

Definition 13.1: Density of a Subtensor

Consider a subtensor X(S) of a tensor X. The density of X(S), which is denoted by ρ(X(S)), is
defined as

ρ(X(S)) =
sum(X(S))

|S|
.

212

Mode 2: Page (2,1) (2,2) (2,3)
P1 P2 P3

(1,1) Alice

(1,2) Bob

(1,3) Carol

Mode 1: User

Mode 3: Date

May-30 (3,2)
May-29 (3,1)

1 0 3

0

1

4 5 0

7 3 0

1 0 2

Figure 13.2: Pictorial depiction of Example 13.1. The colored region indicates the subtensor X(S).

Example 13.1: Wikipedia Revision History

Consider the 3-way tensor in Figure 13.2. In the tensor, each entry xijk indicates that user i revised
page j on date k, xijk times. The set of the slice indices is Q = {(1, 1), (1, 2), (1, 3), (2, 1), (2, 2),
(2, 3), (3, 1), (3, 2)}. Consider its subset S = {(1, 1), (1, 2), (2, 1), (2, 2), (3, 1)}. Then, X(S) is
the subtensor composed of the slices with their indices in S, as seen in Figure 13.2. In this setting,
sum(X(S)) = 4 + 5 + 7 + 3 = 19, and d(X(S), (2, 2)) = 5 + 3 = 8. Let π be an ordering of
Q where π(1) = (1, 3), π(2) = (2, 3), π(3) = (3, 2), π(4) = (2, 2), π(5) = (1, 1), π(6) = (1, 2),
π(7) = (2, 1), and π(8) = (3, 1). Then, Qπ,(2,2) = S, and dπ((2, 2)) = d(X(Qπ,(2,2)), (2, 2)) =
d(X(S), (2, 2)) = 8.

13.2.2 Problem Definitions
We give the formal definitions of the problems studied in this chapter. The first problem (Problem 13.1)
is to maintain the densest subtensor in a tensor that keeps changing.

Problem 13.1: Detecting the Densest Subtensor in a Tensor Stream

1. Given: a sequence of changes in a tensor X with slice indices Q (i.e., a tensor stream)

2. Maintain: a subtensor X(S) where S ⊂ Q,

3. to Maximize: its density ρ(X(S)).

As discussed in Section 10.3.2, identifying the exact densest subtensor is computationally expensive
even for a static tensor. Thus, we focus on designing an approximation algorithm that maintains a
dense subtensor with a provable approximation bound, significantly faster than repeatedly finding a
dense subtensor from scratch.

The second problem (Problem 13.2) is to detect suddenly emerging dense subtensors in a tensor
stream. For a tensor X whose values increase over time, let X∆T be the tensor where the value of each
entry is the increment in the corresponding entry of X in the last ∆T time units. Our aim is to spot
dense subtensors appearing in X∆T , which also keeps changing.

213

Problem 13.2: Detecting Sudden Dense Subtensors in a Tensor Stream

1. Given:
- a sequence of increments in a tensor X with slice indices Q (i.e., a tensor stream)

- a time window ∆T ,

2. Maintain: a subtensor X∆T (S) where S ⊂ Q,

3. to Maximize: its density ρ(X∆T (S)).

13.3 Proposed Algorithms: DENSESTREAM and DENSEALERT

In this section, we propose DENSESTREAM, which is an incremental algorithm for dense-subtensor
detection in a tensor stream, and DENSEALERT, which detects suddenly emerging dense subtensors.
Specifically, we first provide an overview of the algorithms in Section 13.3.1. Then, we present DENS-
ESTATIC, a baseline algorithm for dense-subtensor detection in a static tensor, in Section 13.3.2. After
that, we present DENSESTREAM and DENSEALERT in Sections 13.3.3 and 13.3.4, respectively.

13.3.1 Overview
The main idea behind all algorithms discussed in the following subsections is to compute (from scratch
or incrementally) a D-ordering to drastically reduce the search space while providing a guarantee on
the accuracy. As defined in Definition 13.2, a D-ordering is an ordering of slice indices obtained by
choosing a slice index with minimum slice sum repeatedly (as in D-ORDERING() of Algorithm 13.1).
With a D-ordering π, the search space of 2|Q| possible subtensors can be reduced to {X(Qπ,q) : q ∈ Q}.
In this space of size |Q|, however, there always exists a subtensor whose density is at least 1/(order of
the input tensor) of maximum density, as formalized in Lemmas 13.1 and 13.2.

Definition 13.2: D-ordering

An ordering π is a D-ordering of Q in X if ∀q ∈ Q, d(X(Qπ,q), q) = minr∈Qπ,q d(X(Qπ,q), r).

Lemma 13.1:

Let X(S∗) be a subtensor with the maximum density, i.e., ρ(X(S∗)) = ρopt. Then for any q ∈ S∗,

d(X(S∗), q) ≥ ρ(X(S∗)). (13.1)

214

Proof. The maximality of the density of X(S∗) implies ρ(X(S∗\{q})) ≤ ρ(X(S∗)), and plugging in
Definition 2.2 to ρ gives

sum(X(S∗))− d(X(S∗), q)

|S∗| − 1
=
sum(X(S∗\{q}))
|S∗| − 1

= ρ(X(S∗\{q})) ≤ ρ(X(S∗)) =
sum(X(S∗))

|S∗|
,

which reduces to Eq. (13.1). �

Lemma 13.2: Existence of a Dense Subtensor

Given a D-ordering π in an N -way tensor X, there exists q ∈ Q such that ρ(X(Qπ,q)) ≥ ρopt/N .

Proof. Let X(S∗) be satisfying ρ(X(S∗)) = ρopt, and let q∗ ∈ S∗ be satisfying that ∀q ∈ S∗, π−1(q∗) ≤
π−1(q). Our goal is to show ρ(X(Qπ,q∗)) ≥ 1

N
ρ(X(S∗)), which we show as

Nρ(X(Qπ,q∗)) ≥ d(X(Qπ,q∗), q
∗) ≥ d(X(S∗), q∗) ≥ ρ(X(S∗)).

To show Nρ(X(Qπ,q∗)) ≥ d(X(Qπ,q∗), q
∗), note Nρ(X(Qπ,q∗)) =

sum(X(Qπ,q∗))N

|Qπ,q∗| , and since X is

an N -way tensor, each entry is included in N slices. Hence∑
q∈Qπ,q∗

d(X(Qπ,q∗), q) = sum(X(Qπ,q∗))N. (13.2)

Since π is a D-ordering, ∀q ∈ Qπ,q∗ , d(X(Qπ,q∗), q) ≥ d(X(Qπ,q∗), q
∗) holds. Combining this and Eq.

(13.2) gives

Nρ(X(Qπ,q∗)) =
sum(X(Qπ,q∗))N

|Qπ,q∗|
=

∑
q∈Qπ,q∗ d(X(Qπ,q∗), q)

|Qπ,q∗ |
≥ d(X(Qπ,q∗), q

∗).

Second, d(X(Qπ,q∗), q
∗) ≥ d(X(S∗), q∗) is from that S∗ ⊂ Qπ,q∗ . Third, d(X(S∗), q∗) ≥ ρ(X(S∗)) is

from Lemma 13.1. From these, ρ(X(Qπ,q∗)) ≥ 1
N
ρ(X(S∗)) holds. �

13.3.2 Baseline Algorithm: DENSESTATIC

We present DENSESTATIC, an algorithm for detecting a dense subtensor in a static tensor. Although
it eventually finds the same subtensor as M-ZOOM (Chapter 11), DENSESTATIC also computes extra
information, including a D-ordering (Definition 13.2), required for updating the subtensor in the fol-
lowing sections. As described in Algorithm 13.1, DENSESTATIC has two parts: (a) D-ordering: find a
D-ordering π and compute dπ(·) and cπ(·); and (b) Find-Slices: find slices forming a dense subtensor
from the result of (a). DENSESTATIC detects a subtensor X(Smax) of density at least 1/(order of the
input tensor) of maximum density, as formalized in Theorem 13.1 in Section 13.4.1.

215

Algorithm 13.1 DENSESTATIC: Dense-subtensor detection in a static tensor
Input: a tensor X with slice indices Q
Output: a dense subtensor X(Smax)

1: compute π(·), dπ(·), cπ(·) by D-ORDERING()
2: Smax ← FIND-SLICES()
3: return X(Smax)

4: procedure D-ORDERING(): . to find a D-ordering π(·) and compute dπ(·) and cπ(·)
5: S ← Q; cmax ← 0 . cmax: max. dπ(·) so far
6: for j ← 1...|Q| do
7: q ← arg minr∈S d(X(S), r) . q has min. slice sum
8: π(j)← q . S = Qπ,q

9: dπ(q)← d(X(S), q) . dπ(q) = d(X(Qπ,q), q)
10: cπ(q)← max(cmax, dπ(q)); cmax ← cπ(q)
11: S ← S/{q}
12: procedure FIND-SLICES(): . to find slices forming a dense subtensor from π(·), dπ(·), and cπ(·)
13: S ← ∅; m← 0; . m: sum(X(S))
14: ρmax ← −∞; qmax ← 0 . ρmax: max. density so far
15: for j ← |Q|..1 do
16: q ← π(j); S ← S ∪ {q} . S = Qπ,q

17: m← m+ dπ(q) . m = sum(X(Qπ,q))
18: if m/|S| > ρmax then . m/|S| = ρ(X(Qπ,q))
19: ρmax ← m/|S|; qmax ← q

20: return Qπ,qmax . qmax = arg maxq∈Q ρ(X(Qπ,q))

13.3.3 Proposed Algorithm (1): DENSESTREAM

How can we update the subtensor found in Algorithm 13.1 under changes in the input tensor, rapidly,
only when necessary, with the same approximation bound? For this purpose, we propose DENSES-
TREAM, which updates the subtensor while satisfying Property 13.1. We explain the responses of
DENSESTREAM to increments of entry values (Section 13.3.3.1), decrements of entry values (Sec-
tion 13.3.3.2), and changes of the size of the input tensor (Section 13.3.3.3).

Property 13.1: Invariants in DENSESTREAM

For an N -way tensor X that keeps changing, the ordering π of the slice indices and the dense
subtensor ρ(X(Smax)) maintained by DENSESTREAM satisfy the following two conditions:
• π is a D-ordering of Q in X

• ρ(X(Smax)) ≥ ρopt/N .

13.3.3.1 Increment of Entry Values.
Assume that the maintained dense subtensor X(Smax) and ordering π (with dπ(·) and cπ(·)) satisfy
Property 13.1 in the current tensor X (such π, dπ(·), cπ(·), and X(Smax) can be initialized by Al-

216

Algorithm 13.2 DENSESTREAM in the case of increment
Input: (1) current tensor: X with slice indices Q

(2) current dense subtensor: X(Smax) with Property 13.1
(3) current D-ordering: π(·) (also dπ(·) and cπ(·))
(4) a change in X: ((i1, ..., iN), δ,+)

Output: updated dense subtensor X(Smax)
1: xi1···iN ← xi1···iN + δ
2: compute jL and jH by Eq. (13.3) and Eq. (13.4) . [FIND-REGION]
3: compute R by Eq. (13.5) . [REORDER]
4: S ← {q ∈ Q : π−1(q) ≥ jL}; RS ← R ∩ S
5: cmax ← 0 . cmax: max. dπ(·) so far
6: if jL > 1 then cmax ← cπ(π(jL − 1))
7: for j ← jL...jH do
8: q ← arg minr∈RS d(X(S), r) . q has min. slice sum
9: π(j)← q . by Lemma 13.3, S = Qπ,q, RS = R ∩Qπ,q

10: dπ(q)← d(X(S), q) . dπ(q) = d(X(Qπ,q), q)
11: cπ(q)← max(cmax, dπ(q)); cmax ← cπ(q)
12: S ← S/{q}; RS ← RS/{q}
13: if cmax ≥ ρ(X(Smax)) then . [UPDATE-SUBTENSOR]
14: S ′ ←FIND-SLICES() in Algorithm 13.1 . time complexity: O(|Q|)
15: if Smax 6= S ′ then X(Smax)← X(S ′)

16: return X(Smax)

gorithm 13.1 if we start from scratch). Algorithm 13.2 describes the response of DENSESTREAM to
((i1, ..., iN), δ,+), an increment of entry xi1···iN by δ > 0, for satisfying Property 13.1. Algorithm 13.2
has three steps:(a) Find-Region: find a region of the D-ordering π that needs to be reordered, (b) Re-
order: reorder the region obtained in (a), and (c) Update-Subtensor: use π to rapidly update X(Smax)
only when necessary. Each step is explained below.

(a) Find-Region (Line 2): The goal of this step is to find the region [jL, jH] ⊂ [1, |Q|] of the domain
of the D-ordering π that needs to be reordered in order for π to remain as a D-ordering after the
change ((i1, ..., iN), δ,+). Let C = {(n, in) : n ∈ [N]} be the indices of the slices composing the
changed entry xi1···iN and let qf = arg minq∈C π

−1(q) be the one located first in π among C. Then, let
M = {q ∈ Q : π−1(q) > π−1(qf), dπ(q) ≥ dπ(qf) + δ} be the slice indices that are located after qf in
π among Q and having dπ(·) at least dπ(qf) + δ. Then, jL and jH are set as follows:

jL =π−1(qf), (13.3)

jH =

{
minq∈M π−1(q)− 1 if M 6= ∅,
|Q| (i.e., the last index) otherwise.

(13.4)

Later in this section, we prove that slice indices whose locations do not belong to [jL, jH] need not
be reordered by showing that there always exists a D-ordering π′ in the updated X where π′(j) = π(j)
for every j /∈ [jL, jH].

(b) Reorder (Lines 3-12): The goal of this step is to reorder the slice indices located in the region
[jL, jH] so that π remains as a D-ordering in X after the change ((i1, ..., iN), δ,+). Let X′ be the

217

updated X and π′ be the updated π to distinguish them with X and π before the update. We get π′ from
π by reordering the slice indices in

R = {q ∈ Q : π−1(q) ∈ [jL, jH]} (13.5)

so that the following condition is met for every j ∈ [jL, jH] and the corresponding q = π′(j):

d(X′(Qπ′,q), q) = minr∈R∩Qπ′,q d(X′(Qπ′,q), r). (13.6)

This guarantees that π′ is a D-ordering in X′, as shown in Lemma 13.3.

Lemma 13.3:

Let π be a D-ordering in X, and let X′ be X after a change ((i1, ..., iN), δ,+). For R (Eq. (13.5))
defined on jL and jH (Eq. (13.3) and Eq. (13.4)), let π′ be an ordering of slice indices Q where
∀j /∈ [jL, jH], π′(j) = π(j) and ∀j ∈ [jL, jH], Eq. (13.6) holds. Then, π′ is a D-ordering in X′.

Proof. See Section 13.7.1. �

(c) Update-Subtensor (Lines 13-15): In this step, we update the maintained dense subtensor X(Smax)
when two conditions are met. We first check cmax ≥ ρ(X(Smax)), which takes O(1) time if we
maintain ρ(X(Smax)), since cmax < ρ(X(Smax)) entails that the updated entry xi1···iN is not in the
densest subtensor (see the proof of Theorem 13.2 for details). We then check if there are changes in
Smax, obtained by FIND-SLICES(). This takes only O(|Q|) time, as shown in Theorem 13.5. Even if
both conditions are met, updating X(Smax) is simply to construct X(Smax) from given Smax instead
of finding X(Smax) from scratch. This conditional update reduces computation but still preserves
Property 13.1, as formalized in Theorem 13.2 in Section 13.4.1.

13.3.3.2 Decrement of Entry Values.
As in the previous section, assume that a tensor X, a D-ordering π (also dπ(·) and cπ(·)), and a dense
subtensor X(Smax) satisfying Property 13.1 are maintained. (such π, dπ(·), cπ(·), and X(Smax) can be
initialized by Algorithm 13.1 if we start from scratch). Algorithm 13.3 describes the response of DENS-
ESTREAM to ((i1, ..., iN), δ,−), a decrement of entry xi1···iN by δ > 0, for satisfying Property 13.1. Al-
gorithm 13.3 has the same structure of Algorithm 13.2, while they are different in the reordered region
of π and the conditions for updating the dense subtensor. The differences are explained below.

For a change ((i1, ..., iN), δ,−), we find the region [jL, jH] of the domain of π that may need to
be reordered. Let C = {(n, in) : n ∈ [N]} be the indices of the slices composing the changed entry
xi1···iN , and let qf = arg minq∈C π

−1(q) be the one located first in π among C. Then, let Mmin =
{q ∈ Q : dπ(q) > cπ(qf) − δ} and Mmax = {q ∈ Q : π−1(q) > π−1(qf), dπ(q) ≥ cπ(qf)}. Note
that Mmin 6= ∅ since, by the definition of cπ(·), there exists q ∈ Q where π−1(q) ≤ π−1(qf) and
dπ(q) = cπ(qf). Then, jL and jH are:

jL = minq∈Mmin
π−1(q), (13.7)

jH =

{
minq∈Mmax π

−1(q)− 1 if Mmax 6= ∅,
|Q| (i.e., the last index) otherwise.

(13.8)

218

Algorithm 13.3 DENSESTREAM in the case of decrement
Input: (1) current tensor: X with slice indices Q

(2) current dense subtensor: X(Smax) with Property 13.1
(3) current D-ordering: π(·) (also cπ(·) and dπ(·))
(4) a change in X: ((i1, ..., iN), δ,−)

Output: updated dense subtensorX(Smax)
1: xi1···iN ← xi1···iN − δ
2: compute jL and jH by Eq. (13.7) and (13.8) . [FIND-REGION]
3: Lines 3-12 of Algorithm 13.2 . [REORDER]
4: if xi1···iN is in X(Smax) then . [UPDATE-SUBTENSOR]
5: S ′ ←FIND-SLICES() in Algorithm 13.1 . time complexity: O(|Q|)
6: if Smax 6= S ′ then X(Smax)← X(S ′)

7: return X(Smax)

As in the increment case, we update π, to remain it as a D-ordering, by reordering the slice indices
located in [jL, jH] of π. Let X′ be the updated X and π′ be the updated π to distinguish them with X

and π before the update. Only the slice indices in R = {q ∈ Q : π−1(q) ∈ [jL, jH]} are reordered in π
so that Eq. (13.6) is met for every j ∈ [jL, jH]. This guarantees that π′ is a D-ordering, as formalized
in Lemma 13.4.

Lemma 13.4:

Let π be a D-ordering in X, and let X′ be X after a change ((i1, ..., iN), δ,−). For R (Eq. (13.5))
defined on jL and jH (Eq. (13.7) and Eq. (13.8)), let π′ be an ordering of slice indices Q where
∀j /∈ [jL, jH], π′(j) = π(j) and ∀j ∈ [jL, jH], Eq. (13.6) holds. Then, π′ is a D-ordering in X′.

Proof. See Section 13.7.2. �

The last step of Algorithm 13.3 is to conditionally and rapidly update the maintained dense sub-
tensor X(Smax) using π. The subtensor X(Smax) is updated if entry xi1···iN belongs to X(Smax) (i.e.,
if ρ(X(Smax)) decreases by the change ((i1, ..., iN), δ,−)) and there are changes in Smax, obtained by
FIND-SLICES(). Checking these conditions takes only O(|Q|) time, as in the increment case. Even if
X(Smax) is updated, it is just constructing X(Smax) from given Smax, instead of finding X(Smax) from
scratch.

Algorithm 13.3 preserves Property 13.1, as formalized in Theorem 13.3 in Section 13.4.1.

13.3.3.3 Increase or Decrease of Size.
DENSESTREAM also supports the increase and decrease of the size of the input tensor. The increase of
the size of X corresponds to the addition of new slices to X. For example, if the length of the nth mode
of X increases from In to In + 1, the index q = (n, In + 1) of the new slice is added to Q and the first
position of π. We also set dπ(q) and cπ(q) to 0. Then, if there exist non-zero entries in the new slice,
they are handled one by one by Algorithm 13.2. Likewise, when size decreases, we first handle the

219

Users

DenseAlert (𝚫𝑻)

Return

Insert
(Future)

Delete
(Past)

𝚫𝑻

Suddenly Emerging
Dense Subtensors

Maintain
(Present)

Ti
m

e

###

Figure 13.3: Illustration of DENSEALERT running on a Wikipedia revision history (Example 13.1).
DENSEALERT (yellow box in the figure) spots dense subtensors formed within ∆T time units.

removed non-zero entries one by one by Algorithm 13.3. Then, we remove the indices of the removed
slices from Q and π.

13.3.4 Proposed Algorithm (2): DENSEALERT

Based on DENSESTREAM, we propose DENSEALERT, an incremental algorithm for detecting suddenly
emerging dense subtensors. For a stream of increments in the input tensor X, DENSEALERT maintains
X∆T , a tensor where the value of each entry is the increment of the value of the corresponding entry
in X in last ∆T time units (see Problem 13.2 in Section 13.2.2), as described in Figure 13.3 and
Algorithm 13.4, To maintain X∆T and a dense subtensor in it, DENSEALERT applies increments by
DENSESTREAM (line 4), and undoes the increments after ∆T time units also by DENSESTREAM

(lines 5 and 7). The accuracy of DENSEALERT is implied from the accuracy of DENSESTREAM, as
formalized in Theorem 13.4 in Section 13.4.1.

Algorithm 13.4 DENSEALERT for sudden dense subtensors
Input: (1) sequence of increments in X

(2) time window: ∆T
Output: suddenly emerging dense subtensors

1: run Algorithm 13.1 with a zero tensor
2: wait until the next change happens at time T
3: if the change is ((i1, ..., iN), δ,+) then
4: run DENSESTREAM (Algorithm 13.2)
5: schedule ((i1, ..., iN), δ,−) at time T + ∆T
6: else if the change is ((i1, ..., iN), δ,−) then
7: run DENSESTREAM (Algorithm 13.3)
8: report the current dense subtensor
9: goto Line 2

220

13.4 Theoretical Analysis
We theoretically analyze the accuracies, time complexities, and space complexities of the algorithms
discussed in the previous section.

13.4.1 Accuracy Analysis
We prove that DENSESTATIC, DENSESTREAM, and DENSEALERT guarantee an approximation ratio
of 1/N for the N -way input tensor in Theorems 13.1-13.4.

Theorem 13.1: Accuracy Guarantee of DENSESTATIC

The subtensor returned by Algorithm 13.1 has density at least ρopt/N .

Proof. By Lemma 13.2, there exists a subtensor with density at least ρopt/N among {X(Qπ,q) : q ∈ Q}.
The subtensor with the highest density in the set is returned by Algorithm 13.1. �

Lemma 13.5:

Consider a D-ordering π in X. For every entry xi1···iN with index (i1, ..., iN) belonging to the
densest subtensor, ∀n ∈ [N], cπ((n, in)) ≥ ρopt holds.

Proof. Let X(S∗) be a subtensor with the maximum density, i.e., ρ(X(S∗)) = ρopt. Let q∗ ∈ S∗ be
satisfying that ∀q ∈ S∗, π−1(q∗) ≤ π−1(q). For any entry xi1···iN in X(S∗) with index (i1, ..., iN) and
any q ∈ {(n, in) : n ∈ [N]}, our goal is to show cπ(q) ≥ ρ(X(S∗)), which we show as cπ(q) ≥
dπ(q∗) ≥ d(X(S∗), q∗) ≥ ρ(X(S∗)).

First, cπ(q) ≥ dπ(q∗) is from the definition of cπ(q) and π−1(q∗) ≤ π−1(q). Second, from S∗ ⊂
Qπ,q∗ , dπ(q∗) = d(X(Qπ,q∗), q

∗) ≥ d(X(S∗), q∗) holds. Third, d(X(S∗), q∗) ≥ ρ(X(S∗)) is from
Lemma 13.1. From these, cπ(q) ≥ ρ(X(S∗)) holds. �

Theorem 13.2: Accuracy Guarantee of DENSESTREAM (the Case of Increment)

Algorithm 13.2 preserves Property 13.1, and thus ρ(X(Smax)) ≥ ρopt/N holds after Algorithm 13.2
terminates.

Proof. We assume that Property 13.1 holds and prove that it still holds after Algorithm 13.2 is executed.
First, the ordering π remains to be a D-ordering in X by Lemma 13.3. Second, we show ρ(X(Smax)) ≥
ρopt/N . If the condition in line 13 of Algorithm 13.2 is met, X(Smax) is set to the subtensor with
the maximum density in {X(Qπ,q) : q ∈ Q} by FIND-SLICES(). By Lemma 13.2, ρ(X(Smax)) ≥
ρopt/N . If the condition in line 13 is not met, for the changed entry xi1···iN with index (i1, ..., iN), by

221

the definition of jL, there exists n ∈ [N] such that π(jL) = (n, in). Since jL ≤ jH , cπ((n, in)) =
cπ(π(jL)) ≤ cπ(π(jH)) = cmax < ρ(X(Smax)) ≤ ρopt. Then, by Lemma 13.5, xi1···iN does not
belong to the densest subtensor, which thus remains the same after the change ((i1, ..., iN), δ,+). Since
ρ(X(Smax)) never decreases, ρ(X(Smax)) ≥ ρopt/N still holds by Property 13.1, which we assume.
Property 13.1 is preserved because its two conditions are met. �

Theorem 13.3: Accuracy Guarantee of DENSESTREAM (the Case of Decrement)

Algorithm 13.3 preserves Property 13.1. Thus, ρ(X(Smax)) ≥ ρopt/N holds after Algorithm 13.3
terminates.

Proof. We assume that Property 13.1 holds and prove that it still holds after Algorithm 13.3 is executed.
First, the ordering π remains to be a D-ordering in X by Lemma 13.4. Second, we show ρ(X(Smax)) ≥
ρopt/N . If the condition in line 4 of Algorithm 13.3 is met, X(Smax) is set to the subtensor with
the maximum density in {X(Qπ,q) : q ∈ Q} by FIND-SLICES(). By Lemma 13.2, ρ(X(Smax)) ≥
ρopt/N . If the condition is not met, ρ(X(Smax)) remains the same, while ρopt never increases. Hence,
ρ(X(Smax)) ≥ ρopt/N still holds by Property 13.1, which we assume. Since its two conditions are met,
Property 13.1 is preserved. �

Theorem 13.4: Accuracy Guarantee of DENSEALERT

Let ∆ρopt be the density of the densest subtensor in the N -way tensor X∆T . The subtensor main-
tained by Algorithm 13.4 has density at least ∆ρopt/N .

Proof. By Theorems 13.2 and 13.3, DENSEALERT, which uses DENSESTREAM for updates, maintains
a subtensor with density at least 1/N of the density of the densest subtensor. �

13.4.2 Complexity Analysis
We prove the time and space complexities of DENSESTATIC, DENSESTREAM, and DENSEALERT.

13.4.2.1 Time Complexity Analysis
The time complexity of DENSESTATIC, described in Algorithm 13.1, is linear with nnz(X), the number
of the non-zero entries in X, as formalized in Theorem 13.5. Especially, finding Smax takes onlyO(|Q|)
time given π(·), dπ(·), and cπ(·), as shown in Lemma 13.6.

222

Lemma 13.6:

Let Smax be the set of slice indices returned by FIND-SLICES() in Algorithm 13.1. Let X(q) be the
set of the non-zero entries in the slice with index q in X. The time complexity of FIND-SLICES()
in Algorithm 13.1 isO(|Q|) and that of constructing X(Smax) from Smax isO(N |

⋃
q∈Smax X(q)|).

Proof. Assume that, for each slice, the list of the non-zero entries in the slice is stored. In FIND-
SLICES(), we iterate over the slices in Q, and each iteration takes O(1) time. Thus, this results in
O(|Q|) time. After finding Smax, in order to construct X(Smax), we have to process each non-zero
entry included in any slice in Smax. The number of such entries is |

⋃
q∈Smax X(q)|. Since processing

each entry takes O(N) time, constructing X(Smax) takes O(N |
⋃
q∈Smax X(q)|) time. �

Theorem 13.5: Time Complexity of DENSESTATIC

The time complexity of Algorithm 13.1 is O(|Q| log |Q|+N · nnz(X)).

Proof. Assume that, for each slice, the list of the non-zero entries in the slice is stored. We first show
that the time complexity of D-ORDERING() in Algorithm 13.1 isO(|Q| log |Q|+N ·nnz(X)|). Assume
we use a Fibonacci heap to find slices with minimum slice sum (line 7). Computing the slice sum of
every slice takes O(N · nnz(X)) time, and constructing a Fibonacci heap where each value is a slice
index in Q and the corresponding key is the slice sum of the slice takes O(|Q|) time. Popping the
index of a slice with minimum slice sum, which takes O(log |Q|) time, happens |Q| times, and thus
this results in O(|Q| log |Q|) time. Whenever a slice index is popped, we have to update the slice sums
of its dependent slices (two slices are dependent if they have common non-zero entries). Updating
the slice sum of each dependent slice, which takes O(1) time in a Fibonacci heap, happens at most
O(N · nnz(X)) times, and thus this results in O(N · nnz(X)) time. Thus, D-ORDERING() takes
O(|Q| log |Q|+N · nnz(X)) time in total.

By Lemma 13.6, the time complexity of FIND-SLICES() isO(|Q|), and that of constructing X(Smax)
from Smax is O(N |

⋃
q∈Smax X(q)|).

Since the time complexity of D-ORDERING() dominates that of the remaining parts, the time com-
plexity of Algorithm 13.1 is O(|Q| log |Q|+N · nnz(X)). �

Theorem 13.6 gives the time complexity of DENSESTREAM. In the worst case (i.e., R = Q), this
becomes O(|Q| log |Q| + N · nnz(X)), which is the time complexity of DENSESTATIC. In practice,
however, R is much smaller than Q, and updating X(Smax) happens rarely. Thus, in our experiments,
s.caled sub-linearly with nnz(X) (see Section 13.5.4).

Theorem 13.6: Time Complexity of DENSESTREAM

Let X(q) be the set of the non-zero entries in the slice with index q in X. The time complexity of
Algorithms 13.2 and 13.3 is O(|R| log |R|+ |Q|+N |

⋃
q∈RX(q)|+N |

⋃
q∈Smax X(q)|).

223

Proof. Assume that, for each slice, the list of the non-zero entries in the slice is stored, and let qf =
π(jL). Computing jL, jH , and R takes O(|R|) time. Assume we use a Fibonacci heap to find slices
with minimum slice sum (line 8 of Algorithm 13.2). Computing the slice sum of every slice in R in
X(Qπ,qf) takes O(N |

⋃
q∈RX(q)|) time. Then, constructing a Fibonacci heap where each value is a

slice index in R and the corresponding key is the slice sum of the slice in X(Qπ,qf) takes O(|R|) time.
Popping the index of a slice with minimum slice sum, which takes O(log |R|) time, happens |R| times,
and thus this results in O(|R| log |R|) time. Whenever a slice index is popped we have to update the
slice sums of its dependent slices inR (two slices are dependent if they have common non-zero entries).
Updating the slice sum of each dependent slice, which takes O(1) time in a Fibonacci heap, happens at
most O(N |

⋃
q∈RX(q)|) times, and thus this results in O(N |

⋃
q∈RX(q)|) time. On the other hand, by

Lemma 13.6, FIND-SLICES() and constructing X(Smax) from Smax take O(|Q| + N |
⋃
q∈Smax X(q)|)

time. Hence, the time complexity of Algorithms 13.2 and 13.3 is the sum of all the times taken, which
is O(|R| log |R|+ |Q|+N |

⋃
q∈RX(q)|+N |

⋃
q∈Smax X(q)|). �

The time complexity of DENSEALERT is obtained Theorem 13.6 by simply replacing X with X∆T .

13.4.2.2 Space Complexity Analysis
DENSESTATIC (Algorithm 13.1) and DENSESTREAM (Algorithms 13.2 and 13.3) requires O(N ·
nnz(X)) space for the input and output tensors; and O(|Q|) space for π, dπ(·), and cπ(·). From
|Q| ≤ N · nnz(X), their space complexity is O(N · nnz(X)). DENSEALERT needs to store only
X∆T (i.e., the changes in the last ∆T units) in memory at a time while discarding older changes.
Thus, the space complexity of DENSEALERT, which essentially runs DENSESTREAM on X∆T , is
O(N · nnz(X∆T)).

13.5 Experiments
We design experiments to answer the following questions:
• Q1. Speed: How fast are updates in DENSESTREAM compared to batch algorithms?
• Q2. Accuracy: How accurately does DENSESTREAM maintain a dense subtensor?
• Q3. Scalability: How does the running time of DENSESTREAM increase as input tensors grow?
• Q4. Effectiveness: Which anomalies or fraudsters does DENSEALERT spot in real-world tensors?

13.5.1 Experimental Settings.

Machine: We ran all experiments on a machine with 2.67GHz Intel Xeon E7-8837 CPUs and 1TB
memory (up to 85GB was used by our algorithms).

Datasets: Table 13.2 lists the real-world tensors used in our experiments. See Section 10.4 for a de-
scription of the datasets.

Implementations: We implemented dense-subtensor detection algorithms for comparison. Specifi-
cally, we implemented our algorithms, M-ZOOM (Chapter 11), and CROSSSPOT [JBC+16] in Java,

224

Table 13.2: Summary of the real-world tensors used in our experiments. M: Million, K: Thousand.
The underlined attributes are composite primary keys.

Name Size |Q| nnz(X)

Ratings: users × items × timestamps × ratings→ #reviews

Yelp 552K × 77.1K × 3.80K × 5 633K 2.23M
Android [MPL15] 1.32M × 61.3K × 1.28K × 5 1.39M 2.64M
YahooM. [DKKW12] 1.00M × 625K × 84.4K × 101 1.71M 253M

Wikipedia edit history: users × pages × timestamps→ #edits

KoWiki [SHF18] 470K × 1.18M × 101K 1.80M 11.0M
EnWiki [SHF18] 44.1M × 38.5M × 129K 82.8M 483M

Social networks: users × users × timestamps→ #interactions

Youtube [MMG+07] 3.22M × 3.22M × 203 6.45M 18.7M
SMS 1.25M × 7.00M × 4.39K 8.26M 103M

TCP dumps: IPs × IPs × timestamps→ #connections

Darpa [LFG+00] 9.48K × 23.4K × 46.6K 79.5K 522K

while we used Tensor Toolbox [BK07a] for CP decomposition (CPD)1 and MAF [MGF11]. In all the
implementations, a sparse tensor format was used so that the space usage is proportional to the number
of non-zero entries. As in the previous chapters, we used a variant of CROSSSPOT which maximizes the
density measure defined in Definition 13.1 and uses CPD for seed selection. For each batch algorithm,
we reported the densest one after finding three dense subtensors.

13.5.2 Q1. Speed

Updates by DENSESTREAM are significantly faster than running batch algorithms from scratch.
For each tensor stream, we averaged the update times for processing the last 10,000 changes corre-
sponding to increments (blue bars in Figure 13.5). Likewise, we averaged the update times for undoing
the first 10,000 increments, i.e., decreasing the values of the oldest entries (red bars in Figure 13.5).
Then, we compared them to the time taken for running batch algorithms on the final tensor that each
tensor stream results in. As seen in Figure 13.5, updates in DENSESTREAM were up to a million times
faster than the fastest batch algorithm. The speed-up was particularly high in sparse tensors having
a widespread slice sum distribution (thus having a small reordered region R), as we can expect from
Theorem 13.6.

On the other hand, the update time in DENSEALERT, which uses DENSESTREAM as a sub-procedure,
was similar to that in DENSESTREAM when the time interval ∆T =∞, and was less with smaller ∆T .
This is since the average number of non-zero entries maintained is proportional to ∆T .

1 Let A(1) ∈ RI1×k, A(2) ∈ RI2×k, ..., A(N) ∈ RIN×k be the factor matrices obtained by the rank-k CP Decomposition
of X. For each j ∈ [k], we form a subtensor with every slice with index (n, in) where the (in, j)-th entry of A(n) is at least
1/
√
In.

225

DenseStream M-Zoom CrossSpot CPD MAF

100

200

300

0 5e+6 1e+7
Number of nonzeros

A
cc

ur
ac

y
(d

en
si

ty
)

(a) SMS (part)

0

40

80

0 1e+7
Number of nonzeros

A
cc

ur
ac

y
(d

en
si

ty
)

(b) Youtube

0

40

80

0 5e+6 1e+7
Number of nonzeros

A
cc

ur
ac

y
(d

en
si

ty
)

(c) EnWiki (part)

0

50

100

0 5e+6 1e+7
Number of nonzeros

A
cc

ur
ac

y
(d

en
si

ty
)

(d) KoWiki

0

50

100

150

0 5e+6 1e+7
Number of nonzeros

A
cc

ur
ac

y
(d

en
si

ty
)

(e) YahooM. (part)

0

5

10

15

0 1e+6 2e+6
Number of nonzeros

A
cc

ur
ac

y
(d

en
si

ty
)

(f) Android

0

10

20

0 1e+6 2e+6
Number of nonzeros

A
cc

ur
ac

y
(d

en
si

ty
)

(g) Yelp

0

2e+3

4e+3

6e+3

1e+5 3e+5 5e+5
Number of nonzeros

A
cc

ur
ac

y
(d

en
si

ty
)

(h) Darpa

Figure 13.4: DENSESTREAM is ‘any-time’ and accurate. While tensors grow, DENSESTREAM

maintains and instantly updates a dense subtensor, whereas batch algorithms update dense subtensors
only once in a time interval. Subtensors maintained by DENSESTREAM have density (red lines) similar
to the density (points) of the subtensors found by the best batch algorithms.

13.5.3 Q2. Accuracy

DENSESTREAM is as accurate as the best batch algorithms. We tracked the density of the dense
subtensor maintained by DENSESTREAM while each tensor grows,2 and compared it to the densities
of the dense subtensors found by batch algorithms. As seen in Figure 13.4, the subtensors that DENS-
ESTREAM maintained had density (red lines) similar to the density (points) of the subtensors found
by the best batch algorithms. Moreover, DENSESTREAM is ‘any time’; that is, as seen in Figure 13.4,
DENSESTREAM updates the dense subtensor instantly, while the batch algorithms cannot update their
dense subtensors until the next batch processes end.

The accuracy and speed (measured in Section 13.5.2) of the algorithms in the Yelp dataset are
shown in Figure 13.1(a) in Section 13.1. DENSESTREAM significantly reduces the time gap between
the emergence and the detection of a dense subtensor, without losing accuracy.

Note that from the accuracy of DENSESTREAM, the accuracy of DENSEALERT, which uses DENS-
ESTREAM as a sub-procedure, is also obtained.

13.5.4 Q3. Scalability

Each update by DENSESTREAM takes time sub-linear in the number of non-zeros. We measured
how rapidly the update time of DENSESTREAM increases as the input tensor grows. For this ex-
periment, we used a 105 × 105 × 105 random tensor stream that has a realistic power-law slice sum

2We obtained similar results when the values of entries decrease.

226

M-Zoom CPD MAF CrossSpot
DenseStream (decrement) DenseStream (increment)

100

102

104

106

108

1010

YahooM. EnWiki SMS Youtube KoWiki Yelp Android TCP

El
ap

se
d

Ti
m

e
(m

ic
ro

se
cc

on
ds

)

1,
30
0,
00
0X

4,
30
0X

88
0X

1,
60
0X

64
0X

2,
10
0X

65
0X

21
,0
00
X

Figure 13.5: DENSESTREAM rapidly updates dense subtensors. An update by DENSESTREAM was
up to a million times faster than the fastest batch algorithm.

distribution in each mode. As seen in Figure 13.1(b) in Section 13.1, update times, for both types of
changes, scaled sub-linearly with the number of nonzero entries. Note that DENSEALERT, which uses
DENSESTREAM as a sub-procedure, has the same scalability.

13.5.5 Q4. Effectiveness
In this section, we show the effectiveness of DENSEALERT in practice. We focus on DENSEALERT,
which spots suddenly emerging dense subtensors overlooked by existing methods, rather than DENS-
ESTREAM, which is much faster but eventually finds a similar subtensor with previous algorithms,
especially M-ZOOM (Chapter 11).

13.5.5.1 Small-scale Attack Detection in Rating Data.

DENSEALERT reveals small-scale attacks in rating data most accurately. For rating datasets, where
ground-truth labels are unavailable, we assumed an attack scenario where fraudsters in a rating site,
such as Yelp, utilize multiple user accounts and give the same rating to the same set of items (or
businesses) in a short period of time. The goal of the fraudsters is to boost (or lower) the ratings
of the items rapidly. This lockstep behavior results in a dense subtensor of size #fake accounts ×
#target items × 1 × 1 in rating datasets whose modes are users, items, timestamps, and ratings.
Here, we assumed that fraudsters are not blatant but careful enough to adjust their behavior so that only
small-scale dense subtensors are formed.

We injected 10 such small random dense subtensors of sizes from 3×3×1×1 to 12×12×1×1 in the
Yelp and YahooM. datasets, and compared how many of them are detected by each anomaly-detection
algorithm. As seen in Figure 13.6(a), DENSEALERT (with ∆T=1 time unit in each dataset) clearly
revealed the injected subtensors. Specifically, 9 and 7 among the top 10 densest subtensors spotted
by DENSEALERT indeed indicate the injected attacks in the Yelp and YahooM. datasets, respectively.
However, the injected subtensors were not revealed when we simply investigated the number of ratings
in each time unit. Moreover, as summarized in Figure 13.6(b), none of the injected subtensors was

227

Top 10

Top 10 Injected Attacks
Threshold for Top 10

(a) DENSEALERT in Yelp (left) and YahooM. (right)

Recall @ Top-10 Recall @ Top-10
in Yelp in YahooM.

DENSEALERT 0.9 0.7

Others [HSS+17, JBC+16, SHF18, SHKF18] 0.0 0.0

(b) Comparison with other anomaly detection algorithms

Figure 13.6: DENSEALERT accurately detects small-scale short-period attacks injected in review
datasets. However, these attacks are overlooked by existing methods.

detected3 by existing algorithms, including M-ZOOM [SHF18] (Chapter 11) and D-CUBE [SHKF18]
(Chapter 12). They failed since they either ignore time information [HSS+17] or only find dense
subtensors in the entire tensor [JBC+16, MGF11, SHF18, SHKF18] without using a time window.

13.5.5.2 Network Intrusion Detection.

DENSEALERT spots various types of network attacks from TCP dumps. Figure 13.1(c) shows the
changes of the density of the maintained dense subtensor when we applied DENSEALERT to the Darpa
dataset with the time window ∆T = 1 minute. We found out that the sudden emergence of dense
subtensors (i.e., sudden increase in the density) indicates network attacks of various types. Especially,
according to the ground-truth labels, all top 15 densest subtensors correspond to actual network attacks.
Classifying each connection as an attack or a normal connection based on the density of the densest
subtensor including the connection (i.e., the denser subtensor including a connection is, the more suspi-
cious the connection is) led to high accuracy with AUC (Area Under the Curve) 0.924. This was better
than MAF (0.514) and comparable with CPD (0.926), CROSSSPOT (0.923), and M-ZOOM (0.921).
The result is still noteworthy since DENSEALERT requires only changes in the input tensor within ∆T
time units at a time, while the others require the entire tensor at once.

3we consider that an injected subtensor is not detected by an algorithm if the subtensor is not included in the
top 10 densest subtensors found by the algorithm or it is hidden in a dense subtensor of size at least 10 times
larger than the injected subtensor.

228

ToePeubot Dvtbot
Territory

Regional Prejudice

Idol

Presidential election

Religion

Disease

Politician
Dictator

Local election TV show

Auto-classification bot

Anime

Baseball
History

zEdit War Bot Vandalism
Bursty edit (informative) Bursty edit (useless)

Figure 13.7: DENSEALERT successfully spots anomalies on Korean Wikipedia. The sudden ap-
pearances of dense subtensors signal actual anomalies of various types including edit wars, bot activ-
ities, and vandalism. The densest subtensor indicates an edit war where three users edited two pages
about regional prejudice 900 times within a day.

13.5.5.3 Anomaly Detection on Wikipedia.

DENSEALERT detects notable anomalies on Wikipedia. The sudden appearances of dense subten-
sors also signal anomalies in Wikipedia edit histories. Figure 13.7 depicts the changes of the density of
the dense subtensor maintained by DENSEALERT in the KoWiki dataset with the time window ∆T = 24
hours. We investigated the detected dense subtensors and found out that most of them corresponded to
actual anomalies including edit wars, bot activities, and vandalism. For example, the densest subtensor,
composed by three users and two pages, indicated an edit war where three users edited two pages about
regional prejudice 900 times within a day.

13.6 Summary
In this chapter, we propose DENSESTREAM, an incremental algorithm for detecting a dense subtensor
in a tensor stream, and DENSEALERT, an incremental algorithm for spotting the sudden appearances
of dense subtensors. They have the following advantages:
• Fast and ‘any time’: our algorithms maintain and update a dense subtensor in a tensor stream,

which is up to a million times faster than batch algorithms (Figure 13.5).
• Provably accurate: The densities of subtensors maintained by our algorithms have provable lower

bounds (Theorems 13.2, 13.3, 13.4) and are high in practice (Figure 13.4).
• Effective: DENSEALERT successfully detects anomalies, including small-scale attacks, which ex-

isting algorithms overlook, in real-world tensors (Figures 13.6 and 13.7).
Reproducibility: The source code and datasets used in the chapter are available at http://www.
cs.cmu.edu/˜kijungs/codes/alert.

13.7 Appendix: Proofs
In this section, we give proofs of Lemmas 13.3 and 13.4. The proofs are based on Lemma 13.7.

229

http://www.cs.cmu.edu/~kijungs/codes/alert
http://www.cs.cmu.edu/~kijungs/codes/alert

Lemma 13.7

Let X be anN -way tensor, and let X′ be the updated X after the change of either ((i1, ..., iN), δ,+)
or ((i1, ..., iN), δ,−). Let π be a D-ordering of Q, and let qf := arg minq∈C π

−1(q) where C =
{(n, in) : 1 ≤ ∀n ≤ N}. For c ∈ R>0, let M(c) be the set of slice indices that are located after qf
in π and having dπ(·) at least c, i.e.

M(c) := {q ∈ Q : π−1(q) > π−1(qf) ∧ dπ(q) ≥ c}. (13.9)

And let jL, jH ∈ [|Q|] be satisfying

jH =

{
minq∈M(c) π

−1(q)− 1 if M(c) 6= ∅,
|Q| otherwise,

(13.10)

and jL ≤ jH . Let R = {q ∈ Q : π−1(q) ∈ [jL, jH]}. Let π′ be an ordering of slice indices Q in X′

where ∀j /∈ [jL, jH], π′(j) = π(j) and ∀j ∈ [jL, jH],

d(X′(Qπ′,π′(j)), π
′(j)) = min

r∈R∩Qπ′,π′(j)
d(X′(Qπ′,π′(j)), r). (13.11)

Then,
(i) For all q ∈ Q with π−1(q) /∈ [jL, jH],

Qπ,q = Qπ′,q. (13.12)

(ii) For all q ∈ Q with π−1(q) > jH ,

X(Qπ,q) = X′(Qπ′,q). (13.13)

(iii) For all q ∈ Q with jL ≤ π−1(q) ≤ jH ,

d(X′(Qπ′,q), q) = min
r∈R∩Qπ′,q

d(X′(Qπ′,q), r). (13.14)

(iv) For all q ∈ Q with jL ≤ π−1(q) ≤ jH ,

min
r∈Qπ′,q−R

d(X′(Qπ′,q), r) ≥ c. (13.15)

(v) For all q ∈ Q with jL ≤ π−1(q) ≤ jH , let r := arg minq′∈Qπ′,q π
−1(q′) be the slice index

located earliest in π among Qπ′,q. Then the following inequalities hold:

d(X′(Qπ′,q), q) ≤ d(X′(Qπ′,q), r), (13.16)
d(X(Qπ′,q), r) ≤ dπ(r). (13.17)

(vi) For all q ∈ Q with π−1(q) > jH ,

d(X′(Qπ′,q), q) = min
r∈Qπ′,q

d(X′(Qπ′,q), r). (13.18)

230

Proof.

Proof of (i): If π−1(q) /∈ [jL, jH], then either π−1(q) < jL or π−1(q) > jH . Consider π−1(q) < jL first.
Since π and π′ coincide on [1, jL), π′−1(q) = π−1(q) < jL holds, so π and π′ coincide on [1, π−1(q))
as well. This implies that

Qπ,q = Q \ {r ∈ Q : π−1(r) < π−1(q)} = Q \ {r ∈ Q : π′−1(r) < π′−1(q)} = Qπ′,q.

Now consider π−1(q) > jH case. Since π and π′ coincide on (jH , |Q|], π′−1(q) = π−1(q) > jH holds,
so π and π′ coincide on [π−1(q), |Q|] as well. This implies that

Qπ,q = {r ∈ Q : π−1(r) ≥ π−1(q)} = {r ∈ Q : π′−1(r) ≥ π′−1(q)} = Qπ′,q.

Hence for either cases, Eq. (13.12) holds.

Proof of (ii): Since π−1(q) > jH , Lemma 13.7(i) implies Qπ,q = Qπ′,q; and since π−1(q) > jH ≥
π−1(qf) = minq′∈C π

−1(q′), the changed entry xi1···iN with index (i1, ..., iN) is not contained in X(Qπ,q).
These together imply Eq. (13.13).

Proof of (iii): Note that π and π′ coinciding on [|Q|]\[jL, jH] implies that jL ≤ π′−1(q) ≤ jH as well.
Hence this with the condition of π′ in Eq. (13.11) implies Eq. (13.14).

Proof of (iv): If M(c) = ∅, then Qπ′,q\R = ∅, so there is nothing to show. When M(c) 6= ∅ so that
Qπ′,q\R 6= ∅, fix any r ∈ Qπ′,q\R, and let qh := π(jH + 1). We show Eq. (13.15) as

d(X′(Qπ′,q), r) ≥ d(X′(Qπ′,qh), r) ≥ dπ(qh) ≥ c.

First, π and π′ coinciding on [|Q|]\[jL, jH] implies that π′−1(q) ≤ jH < jH + 1 = π′−1(qh), so
Qπ′,q ⊃ Qπ′,qh . And π′−1(r) = π−1(r) ≥ jH + 1 = π−1(qh) = π′−1(qh) implies r ∈ Qπ′,qh ,
which implies d(X′(Qπ′,q), r) ≥ d(X′(Qπ′,qh), r). Also, since π−1(qh) > jH , Lemma 13.7(ii) im-
plies X(Qπ,qh) = X′(Qπ′,qh), and hence d(X′(Qπ′,qh), r) ≥ d(X(Qπ,qh), r). Also, π being a D-ordering
implies d(X(Qπ,qh), r) ≥ d(X(Qπ,qh), qh) = dπ(qh). Also, M(c) 6= ∅ and jH + 1 = minq∈M(c) π

−1(q)
in Eq. (13.10) implies qh ∈M(c), and definition of M(c) in Eq. (13.9) implies that dπ(qh) ≥ c. These
together imply Eq. (13.15).

Proof of (v): Note that π and π′ coinciding on [|Q|] \ [jL, jH] with π−1(q) ∈ [jL, jH] implies that
π−1(r) ∈ [jL, jH], i.e. r ∈ R. Then Eq. (13.16) is from the condition of π′ in Eq. (13.11) and that
r ∈ R ∩Qπ′,q. Also, r = arg minq′∈Qπ′,q π

−1(q′) implies Qπ′,q ⊂ Qπ,r, which implies Eq. (13.17).

Proof of (vi): We show Eq. (13.18) as

d(X′(Qπ′,q), q) = d(X(Qπ,q), q) = min
r∈Qπ,q

d(X(Qπ,q), r) = min
r∈Qπ,q

d(X′(Qπ′,q), r).

First, from Lemma 13.7(ii), d(X′(Qπ′,q), q) = d(X(Qπ,q), q) holds. Next, since π is a D-ordering,
d(X(Qπ,q), q) = minr∈Qπ,q d(X(Qπ,q), r) holds. Lastly, from Lemma 13.7(ii), minr∈Qπ,q d(X(Qπ,q), r)
= minr∈Qπ,q d(X′(Qπ′,q), r) holds. These together imply Eq. (13.18). �

13.7.1 Proof of Lemma 13.3

In the following proof, we use qf := arg minr∈C π
−1(r) = π(jL) where C = {(n, in) : 1 ≤ ∀n ≤ N},

M := {q ∈ Q : π−1(q) > π−1(qf) ∧ dπ(q) ≥ dπ(qf) + δ}, and R := {q ∈ Q : π−1(q) ∈ [jL, jH]}.
Note that X, X′, π, qf , jL, jH , R, π′ satisfies the conditions in Lemma 13.7 with M = M(dπ(qf) + δ),
and hence Lemma 13.7 is applicable.

231

Proof. From Definition 13.2 of D-ordering, we need to show that for all q ∈ Q,

d(X′(Qπ′,q), q) = min
r∈Qπ′,q

d(X′(Qπ′,q), r). (13.19)

We divide into 3 cases depending on the location of q with respect to π:

• Case (i): π−1(q) < jL,
• Case (ii): jL ≤ π−1(q) ≤ jH ,
• Case (iii): π−1(q) > jH .

Proof of Case (i): For the case of π−1(q) < jL, we show Eq. (13.19) as

d(X′(Qπ′,q), q) = d(X(Qπ,q), q) = min
r∈Qπ,q

d(X(Qπ,q), r) ≤ min
r∈Qπ′,q

d(X′(Qπ′,q), r).

At first, π−1(q) < jL and Lemma 13.7 (i) imply

Qπ′,q = Qπ,q. (13.20)

Also, from π−1(q) < jL = minq′∈C π
−1(q′) where C = {(n, in) : 1 ≤ ∀n ≤ N}, the changed entry

xi1···iN is not in the slice with index q. From this and Eq. (13.20), d(X′(Qπ′,q), q) = d(X(Qπ,q), q)
holds. Next, from π being a D-ordering, we have d(X(Qπ,q), q) = minr∈Qπ,q d(X(Qπ,q), r) holds.
Lastly, from Eq. (13.20) and that the slice sums of the slices in Q either increase or remain the same
under ((i1, ..., iN), δ,+), minr∈Qπ,q d(X(Qπ,q), r) ≤ minr∈Qπ′,q d(X′(Qπ′,q), r) holds. From these,
d(X′(Qπ′,q), q) = minr∈Qπ′,q d(X′(Qπ′,q), r) holds for π−1(q) < jL.

Proof of Case (ii): For the case of jL ≤ π−1(q) ≤ jH , we show Eq. (13.19) by

d(X′(Qπ′,q), q) = min
r∈Qπ′,q∩R

d(X′(Qπ′,q), r), and min
r∈Qπ′,q−R

d(X′(Qπ′,q), r) ≥ dπ(qf)+δ ≥ d(X′(Qπ′,q), q).

At first, Lemma 13.7(iii) implies d(X′(Qπ′,q), q) = minr∈Qπ′,q∩R d(X′(Qπ′,q), r). Also, since M =

M(dπ(qf)+δ), Lemma 13.7(iv) implies minr∈Qπ′,q−R d(X′(Qπ′,q), r) ≥ dπ(qf)+δ. For d(X′(Qπ′,q), q)

≤ dπ(qf) + δ, let r := arg minq′∈Qπ′,q π
−1(q′) be the slice with the index earliest in π among Qπ′,q,

and we show d(X′(Qπ′,q), q) ≤ d(X′(Qπ′,q), r) ≤ dπ(qf) + δ. d(X′(Qπ′,q), q) ≤ d(X′(Qπ′,q), r) is
from Eq. (13.16) in Lemma 13.7(v). For d(X′(Qπ′,q), r) ≤ dπ(qf) + δ, we divide into cases where
r = qf or r 6= qf . When r = qf , note that slice sums can increase at most δ under ((i1, ..., iN), δ,+), so
d(X′(Qπ′,q), qf) ≤ d(X(Qπ′,q), qf)+δ holds; and Eq. (13.17) in Lemma 13.7(v) implies d(X(Qπ′,q), qf)
+δ ≤ dπ(qf) + δ. Hence these implies d(X′(Qπ′,q), r) ≤ dπ(qf) + δ for r = qf . When r 6= qf = π(jL),
π and π′ coinciding on [1, jL) implies that qf /∈ Qπ′,q, which implies that xi1···iN is not in X(Qπ′,q).
Hence X(Qπ′,q) = X′(Qπ′,q), and this implies d(X′(Qπ′,q), r) = d(X(Qπ′,q), r). Then Eq. (13.17)
in Lemma 13.7(v) implies d(X(Qπ′,q), r) ≤ dπ(r). Then π and π′ coinciding on [|Q|]\[jL, jH],
π−1(q) ≤ jH , and r 6= π(jL) imply that jL < π−1(r) ≤ π−1(q) ≤ jH , and Eq. (13.2) implies
that r /∈M . Hence dπ(r) < dπ(qf) + δ holds, and these imply d(X′(Qπ′,q), r) ≤ dπ(qf) + δ for r 6= qf .
Hence d(X′(Qπ′,q), r) ≤ dπ(qf) + δ holds for any r. This with d(X′(Qπ′,q), q) ≤ d(X′(Qπ′,q), r)
implies that for jL ≤ π−1(q) ≤ jH we have

d(X′(Qπ′,q), q) ≤ dπ(qf) + δ. (13.21)

Then Lemma 13.7(iii)-(iv), and Eq. (13.21) imply that d(X′(Qπ′,q), q) = minr∈Qπ′,q d(X′(Qπ′,q), r)

holds for jL ≤ π−1(q) ≤ jH .

Proof of Case (iii): For the case of π−1(q) > jH , Lemma 13.7(vi) implies Eq. (13.19). �

232

13.7.2 Proof of Lemma 13.4

In the following proof, we use qf := arg minr∈C π
−1(r) where C = {(n, in) : 1 ≤ ∀n ≤ N},

Mmin := {q ∈ Q : dπ(q) > cπ(q) − δ}, Mmax := {q ∈ Q : π−1(q) > π−1(qf) ∧ dπ(q) ≥ cπ(qf)},
and R := {q ∈ Q : π−1(q) ∈ [jL, jH]}. Note that X, X′, π, qf , jL, jH , R, π′ satisfies the conditions in
Lemma 13.7 with Mmax = M(cπ(qf)), and hence Lemma 13.7 is applicable.

Proof. From Definition 13.2 of D-ordering, we need to show that for all q ∈ Q,

d(X′(Qπ′,q), q) = min
r∈Qπ′,q

d(X′(Qπ′,q), r). (13.22)

We divide into 3 cases depending on the location of q with respect to π:

• Case (i): (i) π−1(q) < jL,
• Case (ii): jL ≤ π−1(q) ≤ jH ,
• Case (iii): π−1(q) > jH .

Proof of Case (i): For the case of π−1(q) < jL, we show as

d(X′(Qπ′,q), r) ≥ dπ(q) = d(X′(Qπ′,q), q).

At first, π−1(q) < jL and Lemma 13.7 (i) imply

Qπ′,q = Qπ,q. (13.23)

Also, jL ≤ π−1(qf) = minq′∈C π
−1(q′) where C = {(n, in) : 1 ≤ ∀n ≤ N}, so the changed entry

xi1···iN is not in the slice with index q. This and Eq. (13.23) imply that dπ(q) = d(X(Qπ,q), q) =
d(X′(Qπ′,q), q) holds. For showing d(X′(Qπ′,q), r) ≥ dπ(q), we divide into cases when r ∈ C and
r ∈ Qπ′,q − C. For r ∈ C case, let x ∈ Q be satisfying π−1(x) ≤ π−1(qf) and dπ(x) = cπ(qf),
whose existence is from the definition of cπ(·). We show by d(X′(Qπ′,q), r) + δ ≥ d(X(Qπ,q), r) ≥
d(X(Qπ,x), r) ≥ dπ(x) = cπ(qf) ≥ dπ(q) + δ. From Eq. (13.23), since slice sums decrease at most δ
under ((i1, ..., iN), δ,−), d(X′(Qπ′,q), r)+δ ≥ d(X(Qπ,q), r) holds. Also, dπ(x) = cπ(qf) > cπ(qf)−δ
implies that x ∈ Mmin from definition of Mmin, hence π−1(x) ≥ jL = minq∈Mmin

π−1(q). Then
π−1(q) < jL ≤ π−1(x) implies Qπ,x ⊂ Qπ,q and π−1(x) ≤ π−1(qf) ≤ π−1(r) implies r ∈ Qπ,x. Hence
r ∈ Qπ,x ⊂ Qπ,q, which implies d(X(Qπ,q), r) ≥ d(X(Qπ,x), r). Also, d(X(Qπ,x), r) ≥ dπ(x) is from
π being a D-ordering. Also, dπ(x) = cπ(qf) is from definition of x. Lastly, definition of jL in Eq. (13.7)
and π−1(q) < jL implies q /∈ Mmin, hence cπ(qf) ≥ dπ(q) + δ holds. From these, d(X′(Qπ′,q), r) ≥
dπ(q) holds for r ∈ C case. For r ∈ Qπ′,q − C case, we show as d(X′(Qπ′,q), r) = d(X(Qπ,q), r) ≥
d(X(Qπ,q), q). Since r is not in C and from Eq. (13.23), d(X′(Qπ′,q), r) = d(X(Qπ,q), r) holds. Then
from π being a D-ordering, d(X(Qπ,q), r) ≥ dπ(q) holds for r ∈ Qπ′,q − C case. Hence for either
case, d(X′(Qπ′,q), r) ≥ dπ(q) holds. This with dπ(q) = d(X′(Qπ′,q), q) implies d(X′(Qπ′,q), q) =
minr∈Qπ,q d(X′(Qπ′,q), r) for π−1(q) < jL.

Proof of Case (ii): For the case of jL ≤ π−1(q) ≤ jH , we show Eq. (13.22) by

d(X′(Qπ′,q), q) = min
r∈Qπ′,q∩R

d(X′(Qπ′,q), r), and min
r∈Qπ′,q−R

d(X′(Qπ′,q), r) ≥ cπ(qf) ≥ d(X′(Qπ′,q), q).

At first, Lemma 13.7 (iii) implies d(X′(Qπ′,q), q) = minr∈Qπ′,q∩R d(X′(Qπ′,q), r). Also, since Mmax =

M(cπ(qf)), Lemma 13.7(iv) implies minr∈Qπ′,q−R d(X′(Qπ′,q), r) ≥ cπ(qf). For d(X′(Qπ′,q), q) ≤
cπ(qf), let r := arg minq′∈Qπ′,q π

−1(q′) be the slice index earliest in π among Qπ′,q. We show

d(X′(Qπ′,q), q) ≤ d(X′(Qπ′,q), r) ≤ d(X(Qπ′,q), r) ≤ dπ(r) ≤ cπ(qf).

233

d(X′(Qπ′,q), q) ≤ d(X′(Qπ′,q), r) is from Eq. (13.16) in Lemma 13.7(v). And slice sums either
decrease or remain the same under ((i1, ..., iN), δ,−), so d(X′(Qπ′,q), r) ≤ d(X(Qπ′,q), r) holds.
And Eq. (13.17) in Lemma 13.7(v) implies d(X(Qπ′,q), r) ≤ dπ(r). Then π and π′ coinciding on
[|Q|]\[jL, jH], π−1(r) ≤ π−1(q) ≤ jH holds. Then Eq. (13.8) implies that r /∈ Mmax. Hence
π−1(r) ≤ π−1(qf) or dπ(r) < cπ(qf) holds. For π−1(r) ≤ π−1(qf) case, definition of cπ(·) implies that
dπ(r) ≤ cπ(r) ≤ cπ(qf), hence in any case dπ(r) ≤ cπ(qf) holds. Hence for jL ≤ π−1(q) ≤ jH we
have

d(X′(Qπ′,q), q) ≤ cπ(qf). (13.24)

Then Lemma 13.7(iii)-(iv), and Eq. (13.24) imply that d(X′(Qπ′,q), q) = minr∈Qπ,q d(X′(Qπ′,q), r)
holds for jL ≤ π−1(q) ≤ jH .

Proof of Case (iii): For the case of π−1(q) > jH , Lemma 13.7(vi) implies Eq. (13.19). �

234

Part III

Behavior Modeling

235

Chapter 14

Modeling Purchases in Social Networks

Chapter based on work that appeared at IJCAI 2017 [SLEP17].

Can it be beneficial to society to charge our friends for borrowing our stuff? If so, how much
should we charge to maximize the social benefit?

We consider goods that can be shared with k-hop neighbors (i.e., the set of nodes within k
hops from an owner) on a social network (i.e., a graph representing social relationships among
individuals). We examine incentives to buy such a good by devising game-theoretic models where
each node decides whether to buy the good or free ride and a fast algorithm for finding Nash
equilibria of the games. First, we find that social inefficiency, specifically excessive purchase of
the good, occurs in Nash equilibria. Second, the social inefficiency decreases as k increases and
thus a good can be shared with more nodes. Third, and most importantly, the social inefficiency
can also be significantly reduced by charging free riders an access cost and paying it to owners,
leading to the conclusion that organizations and system designers should impose such a cost. These
findings are supported by our theoretical analysis in terms of the price of anarchy and the price of
stability; and by simulations based on synthetic and real social networks with up to hundreds of
millions of edges.

14.1 Motivation
Social networks are known to play an important role in the everyday choices people make. In particular,
a significant body of work studies the network effect, in which there are payoffs from aligning one’s
decision with those of others [Mar87, Blu93, Ell93, Rog10]. For example, direct payoffs arise when
friends or collaborators use compatible technologies instead of incompatible ones, that is, the game
rewards coordination.

Our work considers the purchase of shareable goods, which, in a sense, gives rise to a certain type
of anti-coordination game. Indeed, buying such a good yields a benefit only when no friend buys the
good, since otherwise free riding is possible. An example that would be familiar to most parents is
seldom-used baby gear, such as portable cribs, which are frequently borrowed by friends or friends of
friends; similar examples include ski gear and hiking equipment. Expensive lab equipment provides
a more pertinent example: Confocal laser scanning microscopes, or polymerase chain reaction (PCR)
machines, are typically bought by one investigator and used by collaborators. In the realm of AI,
one can imagine a multi-agent system populated by heterogeneous software agents that interact and
share special computational resources, e.g., a high-end graphics processing unit (GPU) for particularly
demanding image processing tasks.

237

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1000

1500

2000

2500

0.0 0.5 1.0
Relative Access Cost

So
ci

al
 C

os
t

Theoretically
optimal range

Simulation
results

(a) Effect of Access Cost

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

100

101

108107106

Number of Edges

El
ap

se
d

Ti
m

e
(s

ec
)

SGG-Nash

(sl
op
e=
1)

(b) Scalability of SGG-NASH

Figure 14.1: Effectiveness and scalability of our tools. (a) Effectiveness: using our game-theoretic
models (SGG and SGG-AC) and algorithm (SGG-NASH), we analyze the effects of access costs on
social cost (formally defined in Section 14.4) and suggest appropriate access costs to minimize the cost.
(b) Scalability: SGG-NASH, our algorithm for finding Nash equilibria, scales linearly with the size of
the input social network. In both figures, we assume goods that can be shared with direct friends. See
Section 14.5 for details

To examine incentives to buy shareable goods, we devise game-theoretic models where each node
on a network decides whether to buy a good that is shareable with k-hop neighbors (i.e., nodes within
k hops from an owner), or free ride. Specifically, the good in question is non-excludable and non-
rivalrous in that no k-hop neighbor can be excluded from use, and use by a neighbor does not reduce
availability to others. Note that the goods in the examples given above are (essentially) non-rivalrous,
as any single person (or agent) requires the good only from time to time.

We find that social inefficiency, specifically excessive purchase of the good, occurs in Nash equi-
libria (NEs). Moreover, the social inefficiency decreases as k increases and thus a good is shared with
more people. Finally, charging free riders an access cost and paying it to owners also significantly
reduces the social inefficiency. We support these findings both theoretically and experimentally (see
Figure 14.1(a)).

Our contributions in this chapter are threefold:
• Game-theoretic Models and Equilibrium Analysis: We develop two game-theoretic models (SGG

and SGG-AC), and we provide worst-case analysis of the social inefficiency of NEs of both games,
in terms of the price of anarchy and the price of stability.

• Algorithm and Simulations on Real Social Networks: We develop SGG-NASH, a fast algorithm
for finding NEs of both games (see Figure 14.1(b)). In our simulations using SGG-NASH, we
measure the social inefficiency of NEs on real social networks, and the effects of access costs on the
inefficiency.

• Mechanism Design: We analyze the effects of access costs on the social inefficiency of NEs and
suggest an appropriate cost for minimizing the inefficiency.
The rest of the chapter is organized as follows. In Section 14.2, we introduce SGG and SGG-

AC, our game-theoretic models. In Section 14.3, we present SGG-NASH, our proposed algorithm
for finding Nash equilibria of the games. In Section 14.4, we theoretically analyze the equilibria of
our models and the convergence and complexity of SGG-NASH. In Section 14.5, we share some
experimental results. After discussing related work in Section 14.6, we provide a summary of this
chapter in Section 14.7.

238

Table 14.1: Table of frequently-used symbols.

Symbol Definition

G = (V , E) social network
V = {1, 2, ..., n} set of players (i.e., nodes in G)

n = |V| number of players
m = |E| number of edges in G
N (k)
i set of nodes within k-hops from i including i itself

k maximum possible number of hops between
the owner of a good and a renter of it

p price of a good
b benefit of a good
a access cost of a good

Si strategy set of each player i ∈ V
si ∈ Si strategy of player i ∈ V

s−i strategies taken by all players but i ∈ V
s = (s1, ..., sn) = (si, s−i) strategy profile

ui(s) utility of player i ∈ V under strategy profile s
T set of strategy profiles where all players access a good

Fi followers of player i ∈ V (see Section 14.2.1.2 for a definition)
ξ follower threshold (see Section 14.2.1.2 for a definition)

14.2 Proposed Models: SGG and SGG-AC
In this section, we propose two game-theoretic models of the purchase of shareable goods on a network.
Then, we define their equilibria with a proof of their existence.

14.2.1 Notations and Model Description
We formally define our game-theoretic models, namely SGG and SGG-AC. Table 14.1 lists some
symbols frequently used in this chapter.

14.2.1.1 Shareable Goods Game (SGG)
Consider an undirected network G = (V , E) where V = {1, 2, ..., n}. The players of the game are nodes
in G. Each node decides whether to buy a good or not. The strategy of node i is denoted by si ∈ Si,
where Si = {0, 1} denotes the strategy set of node i. If node i buys the good then si = 1, and otherwise
si = 0 (only pure strategies are considered). Given any strategy profile s = (s1, s2, ..., sn), we use s−i
to denote the strategies taken by all nodes but i. Then, s is also denoted by (si, s−i). The price of a
good is p (> 0), which is identical for all nodes. A node gets benefit b (> p) by having access to a good
and 0 otherwise. Each node i can access a good if it buys the good itself or has at least one node who
buys the good within k (≥ 1) hops. We assume that having access to multiple goods does not increase
the benefit of a node and that being accessed by multiple nodes does not decrease the benefit derived
from a good (non-rivalry).

239

Table 14.2: Utility in an SGG.

state conditions utility (i.e., ui)

buy si = 1 b− p (> 0)
free ride si = 0,

∑
j∈N (k)

i
sj ≥ 1 b (> 0)

no access si = 0,
∑

j∈N (k)
i
sj = 0 0

Table 14.3: Utility in an SGG-AC.

state conditions utility (i.e., ui)

buy si = i b− p+ a|Fi|(> 0)
rent si = j(6= i), sj = j b− a(> 0)

no access si = j(6= i), sj 6= j 0

In this setting, the utility ui(s) of node i under strategy profile s depends on the strategies of its
k-hop neighbors N (k)

i (i.e., the set of nodes within k-hops from i including i itself), as given in Table
14.2. Note that each node gets the highest utility b when it free rides and the second highest utility
b − p when it buys the good. Each node gets the lowest utility 0 when neither the node nor its k-
hop neighbors buy the good. SGG extends the best-shot game [Hir83], which is equivalent to SGG
if k = 1, by considering not only direct but k-hop neighbors. SGG-AC, discussed in the following
subsection, further extends SGG by considering access costs.

14.2.1.2 Shareable Goods Game with Access Costs (SGG-AC)
In this subsection, we extend the game defined in the previous section to a game we call the shareable
goods game with access costs (SGG-AC), where each free rider has to pay an access cost. We focus
on the differences from an SGG.

The strategy set of each node i is Si = N (k)
i , its k-hop neighbors including i itself. If node i buys

a good then si = i, and if node i does not buy a good but wants to access a good bought by node
j 6= i then si = j. If si = j for j 6= i, and node j actually buys a good (i.e., sj = j) then node
i derives benefit from the good at the expense of paying an access cost of a (< p) to node j. The
followers of node i, the set of nodes who want to access the good bought by node i, are denoted by
Fi = {j ∈ N (k)

i \{i} : sj = i}. Then, the utility ui(s) of node i under strategy profile s in an SGG-AC
is given in Table 14.3. Define the follower threshold ξ = dp/ae − 1; for ease of exposition we assume
that p/a is not an integer. If node i has at least ξ followers (i.e., |Fi| ≥ ξ), it has the highest utility when
it buys a good (i.e., si = i). Otherwise, renting a good is preferred. Each node has the lowest utility
when it is not accessing any good.

14.2.2 Definition and Existence of Equilibria
We define equilibria in the games described in the previous subsections. To this end, we use the ubiq-
uitous concept of Nash equilibrium (NE) as our solution concept.

240

Buy Not Buy

1 2

3

4 5
6

(a) Not NE

1 2

3

4 5
6

(b) NE (cost = 4p)

1 2

3

4 5
6

(c) NE (cost = p)

Figure 14.2: Example strategy profiles in an SGG when k = 1. (a) is not an NE since each of node
3 and node 6 would be better off not buying. Between the NEs, (c) leads to a lower social cost than (b).

Buy Not Buy Access

1 2

3

4 5
6

(a) Not NE

1 2

3

4 5
6

(b) NE (cost = 2p)

1 2

3

4 5
6

(c) NE (cost = p)

Figure 14.3: Example strategy profiles in an SGG-AC when k = 1 and ξ = 2. Arrows indicate
who accesses whose products. (a) is not an NE since node 6 is better off not buying. Between the NEs,
(c) leads to a lower social cost than (b).

Definition 14.1: Nash Equilibrium

A strategy profile s = (si, s−i) is a Nash equilibrium (NE) if no node can increase its utility by
changing its strategy given the strategies of the other nodes, i.e.,

∀i ∈ V , ∀s′i ∈ Si, ui((si, s−i)) ≥ ui((s
′
i, s−i)).

Figures 14.2 and 14.3 give examples of NEs in an SGG and an SGG-AC, respectively, with explana-
tions. Note that a strategy profile is an NE in an SGG if and only if the set of owners is a k-independent
dominating set [KN97], i.e., any two owners have distance at least k + 1 and every node has distance
at most k to some owner. Theorem 14.1 states that an NE always exists in both games.

Theorem 14.1: Existence of Nash Equilibria

An NE exists in any SGG and SGG-AC.

Proof. Given G = (V , E), k and ξ, the following procedure gives an NE s for any SGG and s′ for any
SGG-AC. Choose an arbitrary node i in the graph, let i buy a good (si = 1, s′i = i), and for each node
j within k hops from i, let j follow i (sj = 0, s′j = i). Delete i and all nodes within k hops from i, and

241

repeat until there is no node left in G. At the end, every node either buys a good or accesses its k-hop
neighbor’s.

Each node that accesses its k-hop neighbor’s good cannot increase its utility by buying a good since
the utility of accessing its k-hop neighbor’s is greater than that of buying (and no one follows). Each
node i that buys a good also cannot increase its utility by following another node because the procedure
ensures that there is no node that buys a good and is within distance k from i. Therefore, s and s′ are
NEs for the given SGG and SGG-AC, respectively. �

14.3 Proposed Algorithm: SGG-NASH

In this section, we propose SGG-NASH, a fast algorithm for finding NEs in SGGs and SGG-ACs.
SGG-NASH, described in Algorithm 14.1, adapts best-response dynamics [Mat92]. A strategy of
node i is a best response if it maximizes the utility of i given the others’ strategies. In best-response
dynamics, nodes iteratively deviate to a best response, until an NE is reached. SGG-NASH runs best-
response dynamics starting from a strategy profile where no node buys a good. The convergence, time
complexity, and space complexity of SGG-NASH are analyzed in Section 14.4.

Algorithm 14.1 SGG-NASH: a fast algorithm for searching NEs in SGGs and SGG-ACs

Input: (1) social network: G = (V , E), (2) benefit: b, (3) price: p, and (4) access cost: a
Output: a strategy profile s corresponding to an NE

1: for each node i ∈ V do
2: if a = 0 then si ← 0 . in case of an SGG
3: else si ← a random strategy in N (k)

i \{i} . in case of an SGG-AC
4: shuffle nodes in a random order
5: while strategy profile s is not an NE do
6: for each node i ∈ V in the sorted order do
7: umax ← maxx∈Si ui((x, s−i))
8: if ui((si, s−i)) < umax then
9: Bi ← {x ∈ Si : ui((x, s−i)) = umax}

10: si ← a randomly chosen strategy in Bi
11: return s = (s1, ..., sn)

14.4 Theoretical Analysis

In this section, we first analyze the efficiency of the equilibria in terms of price of anarchy (PoA)
and price of stability (PoS). Then, we analyze the convergence properties, time complexity, and space
complexity of SGG-NASH.

14.4.1 Social Inefficiency Analysis
We now turn to the analysis of NEs in our games. It is important to note that a node that does not access
any good can increase its utility by buying a good, without decreasing the utilities of the others in both
of our games (see Tables 14.2 and 14.3). Thus, if we let T be the set of strategy profiles where every

242

Table 14.4: Summary of our analysis of efficiency of equilibria.

in SGGs in SGG-ACs

k = 1
PoA

Θ(n)
Θ(n)

PoS Θ(ξ) (= 1 if ξ ≤ 2)

k > 1
PoA

Θ(n/k)
Θ(max(n/k, n/ξ))

PoS Θ(ξ/k) (= 1 if ξ ≤ 2bk/2c+ 1)

node accesses a good and thus gets benefit b 1, then all NEs belong to T . Due to the same reason, every
socially optimal strategy profile (i.e., strategy profile s maximizing social welfare

∑
i∈V ui(s)) belongs

to T . Therefore, to define PoA and PoS, we only need to consider the strategy profiles in T . Since all
strategy profiles in T have the same sum of benefits, we can compare them simply by their social cost,
which is proportional to the number of nodes buying a good (see Definition 14.2). Importantly, access
costs in SGG-AC cancel out (they are paid by some players to others) and do not affect the social cost.

Definition 14.2: Social Cost

Given a graph G = (V , E), the social cost of a strategy profile s = (s1, ..., sn) ∈ T is the sum of
prices paid by the nodes, i.e.,

cost(s) =

{
p · |{i ∈ V : si = 1}| in SGGs
p · |{i ∈ V : si = i}| in SGG-ACs.

The price of anarchy (PoA) is defined as the social cost of the worst NE divided by minimum
social cost (see Definition 14.3) and the price of stability (PoS) is defined as the social cost of the best
NE divided by minimum social cost (see Definition 14.4). Large PoA and PoS indicate that NEs are
socially inefficient.

Definition 14.3: Price of Anarchy

Given a graph G = (V , E) with n nodes, the price of anarchy (PoA) is defined as

PoA =
maxs∈T : s is an NE cost(s)

mins∈T cost(s)
.

1In SGG, s ∈ T ⇔ ∀i ∈ V,
∑
j∈N (k)

i
sj ≥ 1. In SGG-AC, s ∈ T ⇔ ∀i ∈ V , (si = i or (si = j and sj = j)).

243

Buy Not Buy Access

… … n
2
− 1

n
2
− 1

(a) Best NE in SGG

… … n
2
− 1

n
2
− 1

(b) Best NE in SGG-AC

Figure 14.4: An example of social inefficiency in an SGG. Assume k = 1. Arrows indicate who
accesses whose products. In this example graph, the best NE in an SGG is (a), whose social cost is
np/2. In an SGG-AC (with ξ ≤ n/2 − 1), however, the best NE is (b), whose social cost is 2p, equal
to the minimum social cost.

Definition 14.4: Price of Stability

Given a graph G = (V , E) with n nodes, the price of stability (PoS) is defined as

PoS =
mins∈T : s is an NE cost(s)

mins∈T cost(s)
.

In Table 14.4, we summarize the results of our worst-case efficiency analysis. That is, we analyze
the two measures in the worst case over all graphs. As stated in Theorem 14.2, both the PoA and PoS
in SGGs are Θ(n/k) in the worst case. That is, not only worst NEs but also best NEs can be severely
inefficient, with social cost as high as n/k times the optimum. Figure 14.4(a) shows an example of such
inefficiency for k = 1, where even the best NEs in the SGG have social cost np/2, while the minimum
social cost, in Figure 14.4(b), is 2p.

Theorem 14.2: PoA and PoS in SGG

PoA and PoS in SGGs are both Θ(n/k) in the worst case.

Proof. For the upper bound on PoA, fix an arbitrary NE s ∈ T . Let k′ = bk/2c, and for each node
i ∈ V that buys a good, consider N (k′)

i , the set of nodes within distance k′ from i (called a ball around
i). Since each pair of nodes that buy a good are at distance at least k + 1 from each other, these balls
are pairwise disjoint.

Call a ball N (k′)
i big if it has at least k′ nodes, and small otherwise. If a ball N (k′)

i is small, i is
in a connected component with less than k′ nodes, and there is no other node that buys a good in that
component. Let c be the number of connected components in G; there are at most n/k′ big balls and
c small balls. The number of nodes that buy a good is equal to the number of balls, which is at most
n/k′ + c.

Since the optimal social cost is at least cp, the ratio between the social cost of s and the optimum is
at most (n/k′ + c)p/(cp) ≤ n/k′ + 1 = O(n/k).

For the lower bound on PoS, given integers k,m ≥ 1, consider a tree G = (V , E) where there are
two center nodes 1 and 2, and 2m simple paths with k nodes. For m of them (called left arms), one

244

of two endpoints is connected to 1. For the other m of them (called right arms), one of two endpoints
is connected to 2. Finally, 1 and 2 are connected. Figure 14.4 shows such a graph with k = 1 and
m = n/2− 1. It is easy to see that the optimal social cost is at most 2p, since if 1 and 2 buy a good, all
nodes can access at least one good.

We claim that any NE has social cost at least mp. Fix an NE s. In s, either 1 or 2 does not buy a
good, since they can access each other’s goods. Without loss of generality, suppose that 1 does not buy
a good. Consider a left arm, specifically the endpoint of the arm not connected to 1. The only nodes
within distance k from this endpoint are 1 and the nodes in the same arm. Since 1 does not buy a good,
there must be a node in the same arm who buys a good. This argument holds for each left arm, so at
least m nodes buy a good, establishing the claim.

Since the optimal social cost is at most 2p and any NE has social cost at least mp, PoS ≥
mp/(2p) = Ω(n/k). Since PoS ≤ PoA, the theorem holds. �

Intuitively speaking, the main reason for the inefficiency of NEs in SGGs is that high-degree nodes
(i.e., nodes with many k-hop neighbors) are less likely to buy goods even when many neighbors can
benefit from goods bought by high-degree nodes. Indeed, high-degree nodes are more likely to have a
neighbor buying a good, and thus choose to free ride.

To incentivize high-degree nodes to buy goods, we can force their neighbors who access the good
to pay an access fee to the node — as we do in SGG-ACs. In Figure 14.4(b), for example, the two
high-degree nodes in the center still buy goods, even when they can free ride, since they receive access
fees from ξ or more followers, minimizing social cost.

This improvement through access costs is formalized and generalized in Theorem 14.3, where we
show that the worst-case PoS in SGG-ACs is Θ(ξ/k), which is significantly smaller than Θ(n/k) in
SGGs. In particular, if ξ ≤ max(2bk/2c+ 1, 2), then the PoS in SGG-ACs is 1, i.e., the social cost in
the best equilibria is always optimal even in the worst case. Among ξ values satisfying the condition,
the largest one (i.e., ξ = max(2bk/2c + 1, 2)) is preferred to minimize the PoA, which is inversely
proportional to ξ, as shown by Theorem 14.4.

Theorem 14.3: PoS in SGG-AC

PoS in SGG-ACs is Θ(ξ/k) in the worst case. In particular, it is 1 (i.e., there are guaranteed to
be socially optimal equilibria) if ξ ≤ max(2bk/2c+ 1, 2).

Proof. For the upper bound, given G = (V , E), k, and ξ, letA∗ ⊆ V be a smallest set of the nodes such
that for each node i ∈ V , there is a node j ∈ A∗ such that i and j are within distance k from each other
(i.e., |A∗| · p is the optimal social cost). Consider a strategy profile s where each node in A∗ buys a
good, and all other nodes access a good of a node in A∗ such that for each i ∈ A∗, the set of nodes that
access i’s good induces a connected subgraph. Call a node an owner if it buys a good. An owner i is
called a rich owner if |Fi| ≥ ξ, and a poor owner otherwise. That is, an owner i is a rich owner if and
only if ui(s) is at least the utility of renting a good. Note that s ∈ T is not an NE if and only if there is
a poor owner who can access a good of another owner.

From s, we show how to construct an NE whose social cost is at most Θ(ξ/k) · |A∗| · p. If there is
a poor owner i who can follow another owner j, let i follow j. For each node who previously followed
i, if it can follow another owner, let it follow that owner. Call a node underprivileged if it previously
followed i but cannot follow any other owner. Scan the list of underprivileged nodes sequentially. When
` is considered, let ` be an owner (call it a new owner) and be followed by all still underprivileged nodes

245

who can follow ` (and remove them from the underprivileged nodes list). At the end of this loop no
node is left underprivileged. Repeat until no poor owner i can follow another owner j.

One of the invariants of this procedure is that any new owner ` can never access a good of any other
owner — ` became a new owner since it could not access a good of any other owner, and, subsequently,
any node i ∈ N (k)

` cannot become a new owner, as it can follow `, i.e., ` ∈ N (k)
i . Therefore, this

procedure always terminates, after having at most |A∗| owners follow other owners. The final strategy
after termination is an NE since there is no underprivileged node and no poor owner who can follow
another owner.

To bound the number of new owners, note that when an owner i ∈ A∗ deviated to follow another
owner j, among i’s previous followers including i (call them Ci), at most max(1, b ξ

bk/2c+1
c) new owners

can be created. This is because |Ci| ≤ ξ (since i was a poor owner) and if we let k′ = bk/2c, and
consider the ball N (k′)

` around each new owner `, |N (k′)
` ∩ Ci| ≥ min(k′ + 1, |Ci|) and all balls are

pairwise disjoint (all new owners are at distance at least k + 1 from each other). The deviation of i
creates at most max(1, b ξ

k′+1
c) new owners. Therefore, the number of owners in the final NE is at most

|A∗| ·max(1, b ξ
k′+1
c) = O(ξ

k
· |A∗|). If ξ ≤ 2k′+ 1, max(1, b ξ

k′+1
c) = 1 so the resulting NE is a social

optimum. The same conclusion holds when ξ ≤ 2 since one deviation creates at most one new owner.
For the lower bound of Ω(ξ/k), for any integers k, ξ such that m = ξ−1

k
is an integer, build the same

tree as in the proof of Theorem 14.2. As before, the optimal social cost is 2p, and the social cost at NEs
is at least mp. To see why the latter claim holds, note that (as before) 1 and 2 cannot simultaneously be
owners because the total number of nodes other than 1 and 2 is 2(ξ − 1), so that at least one of 1 and 2
must be a poor owner. Using the same argument as before, the number of owners is at least m = ξ−1

k
,

and PoS ≥ ξ−1
2k

= Ω(ξ
k
). �

Theorem 14.4: PoA in SGG-AC

PoA in SGG-ACs is Θ(max (n/k, n/ξ)) in the worst case.

Proof. For the upper bound, fix an arbitrary NE s ∈ T . Let O be the set of nodes who buy a good in
s, and call them owners. For each owner i ∈ O, we call i a rich owner if |Fi| ≥ ξ, i.e., ui(s) is at least
the utility of renting a good. Otherwise, call i a poor owner. The number of rich owners is at most
n/(ξ + 1).

Note that any two poor owners are at distiance at least k + 1 from each other, since otherwise they
prefer to access the other’s good. Let k′ = bk/2c, and for each poor owner i ∈ V , consider N (k′)

i , the
set of nodes within distance k′ from i (called a ball around i). Since each pair of poor owners are at
distance at least k + 1 from each other, these balls are pairwise disjoint.

Call a ball N (k′)
i big if it has at least k′ nodes, and small otherwise. If a ball N (k′)

i is small, i is in a
connected component with less than k′ nodes, and there is no other owner in that component. Let c be
the number of connected components in G. Since there are at most n/k′ big balls and c small balls, the
number of poor owners is equal to the number of balls, which is at most n/k′ + c. The total number of
owners is at most n/k′ + n/(ξ + 1) + c.

Since the optimal social cost is at least cp, the gap between the optimal social cost and the social
cost of s is (n/k′+n/(ξ+1)+c)p

cp
= O(n/k + n/ξ) = O(max(n/k, n/ξ)).

246

For the lower bound of Ω(n/k), for any integers k,m, ξ ≥ 1, consider a tree G = (V , E) where
there is a center node 1, and m simple paths with k nodes. For m of them (called arms), one of two
endpoints is connected to 1. It is easy to see that the optimal social cost is at most p, since if 1 buys a
good, all nodes can access it. But if we consider a strategy profile where the endpoint not connected to
1 buys a good for each arm and each node follows the endpoint of its own arm (1 follows an arbitrary
one), it is an NE of social cost m. Therefore, the gap is m = Ω(n/k).

For the lower bound of Ω(n/ξ), for any integers k,m, ξ ≥ 1, let G = (V , E) be the complete graph
on m(ξ + 1) vertices. Obviously the optimal social cost is p, but if m nodes buy a good and have ξ
followers each, it becomes an NE with social cost mp. The gap is Ω(n/ξ). Combining the two lower
bounds, the theorem is proved. �

Note that PoA in SGG-AC has the same order as PoA in SGG if ξ = Ω(k).

14.4.2 Convergence Analysis
For any SGG and SGG-AC, SGG-NASH, described in Section 14.3, always converges to an NE within
a constant number of iterations, as formalized in Theorem 14.5.

Theorem 14.5: Convergence of SGG-NASH

For any SGG and SGG-AC, Algorithm 14.1 converges to an NE after at most three while loops
in lines 5–10.

Proof. Assume first that the game is an SGG-AC. Given a strategy profile s, call a node underprivi-
leged if it is not accessing a good (it may have neighbors buying a good), and call a node an owner if it
buys a good. There are four types of possible deviations a node can use to improve its utility.

• Case 1. An underprivileged node buys a good since it has no k-hop neighbor buying a good.
• Case 2. An underprivileged node rents a good (free rides in SGG) since it has a k-hop neighbor

buying a good but has at most ξ − 1 followers.
• Case 3. A non-owner buys a good, even though it has a k-hop neighbor buying a good, because it

has at least ξ followers (who were underprivileged).
• Case 4. An owner changes its action to renting (free riding in SGG) since it has a k-hop neighbor

buying a good but has at most ξ − 1 followers.

In SGGs, only Cases 1 and 4 are possible, ignoring the conditions on the number of followers for Case
4. We now prove that after at most 3 iterations of the while loop, s is an NE.

Claim 14.1

After the first iteration, Case 3 cannot happen.

Proof. Assume for contradiction that Case 3 happened for a node i after the first iteration. Right before
this, i did not own a good, so either i never owned a good, or it owned a good (via Case 1 or 3) and
rented a good (free rode in SGG) later (via Case 4). Note that a node cannot get any more followers
while it does not own a good. If i never owned a good, it means all its followers followed it from the

247

beginning, so i should have bought a good in the first iteration, leading to contradiction. If i once owned
a good but decided to rent a good (free ride in SGG) later via Case 4, the number of its followers at the
moment of the decision was at most ξ − 1, and it could not have gained additional followers since then
— again leading to a contradiction. �

Claim 14.2

After the second iteration, Case 4 cannot happen.

Proof. Assume for contradiction that Case 4 happened for a node i after the second iteration, which
means that i gave up its good and decided to rent a good (free ride in SGG). Note Case 1 does not apply
to i’s k-hop neighbors when i owned the item, and by Claim 14.1, even Case 3 does not apply after the
first iteration. This implies after the first iteration, no new owner appeared among i’s k-hop neighbors,
and the number of i’s followers only increased. Thus, either Case 4 should have applied to i earlier, or
i should not have bought the good (Case 3 did not apply), leading to a contradiction. �

Claim 14.3

After the third iteration, Case 1 and Case 2 cannot happen.

Proof. If a node is underprivileged after the third iteration, Case 4 must have happened in the third
iteration or later, contradicting Claim 14.2. �

Combining all the claims, s converges to an NE after at most three while loops. �

14.4.3 Complexity Analysis
We analyze the time and space complexities of SGG-NASH, described in Algorithm 14.1.

Time Complexity Analysis. The time complexity of SGG-NASH is formalized in Theorem 14.6. If
we consider a good sharable only with direct neighbors (i.e., k = 1), the time complexity becomes
linear in the number of nodes and edges, as formalized in Corollary 14.1.

Theorem 14.6: Time Complexity of SGG-NASH

For each node i ∈ V , let d(k)
i :=

∑
j∈N (k−1)

i
|N (1)

j |. Then, the time complexity of Algorithm 14.1

is O(
∑n

i=1 d
(k)
i).

Sketch of Proof. Initializing the strategies (lines 1–3 of Algorithm 14.1) takesO(
∑n

i=1 d
(k)
i) time. Shuf-

fling the order of nodes 4 takes O(n) time. Each iteration of the for loop (lines 6–10) takes O(d
(k)
i)

time. Thus, each iteration of the while loop (lines 5–10) takes O(
∑n

i=1 d
(k)
i) time. By Theorem 14.5,

248

Table 14.5: Summary of the networks used in our experiments. M: million, K: thousand.

Name #Nodes #Edges Type

Star 100 99 Star graph
Chain 100 99 Chain graph
Random 50 127 Erdős-Rényi random graph with prob. 0.1

KarateClub [Zac77] 34 78 Friendship network
Hamsterster 1, 858 12.5K Friendship network
Advogato [MST09] 5, 155 51.1K Trust network
Orkut [MMG+07] 3.07M 117M Friendship network

the while loop converges within a constant number of iterations. Thus, the time complexity of Algo-
rithm 14.1 is O(n+

∑n
i=1 d

(k)
i) = O(

∑n
i=1 d

(k)
i). �

Corollary 14.1: Time Complexity of SGG-NASH for Goods Sharable with Direct Neighbors

Let n andm be the numbers of nodes and edges, respectively, in the input social network. If k = 1,
the time complexity of Algorithm 14.1 is O(

∑n
i=1 d

(1)
i) = O(

∑n
i=1 |N

(1)
i |) = O(n+m).

Space Complexity Analysis. The space complexity of SGG-NASH is linear in the number of nodes
and edges. That is, if we let n andm be the numbers of nodes and edges, respectively, in the input social
network, SGG-NASH requires O(n+m) space. This is because SGG-NASH requires O(m) space for
maintaining the input graph, and O(n) space for maintaining the current strategy of the nodes.

14.5 Experiments
We review our experiments for answering the following questions:
• Q1. Inefficiency of NEs in SGGs: How socially inefficient are NEs on synthetic and real social

networks without access costs?
• Q2. Effect of the Access Cost: How do access costs affect the social inefficiency of NEs?
• Q3. Socially Optimal Access Costs: What is the optimal range of access costs for minimizing the

social inefficiency of NEs?
• Q4. Effect of the Degree of Sharing (i.e., k): How do k values in our models affect the social

inefficiency of NEs?
• Q5. Scalability of SGG-NASH: How does the running time of SGG-NASH scale to the size of the

input social network?

14.5.1 Experimental Settings

Machine: We ran all experiments on a PC with a 3.60GHz Intel i7-4790 CPU and 32GB memory.

249

Table 14.6: Social costs when k = 1. Social costs of social optima, NEs in SGGs, and NEs in SGG-
ACs with different access costs are compared. For NEs, we report the average social cost of 1, 000 NEs
returned by SGG-NASH. We set the price p, which is simply a scale factor, to 1. The numbers in the
parentheses indicate the standard deviations.

Social Cost

Dataset Optimum NEs NEs in SGG-ACs

Cost in SGGs ξ = 1 ξ = 2 ξ = 5 ξ = 10 ξ = 20

Star 1 97.6 (9.50) 1.69 (10.9) 3.06 (12.6) 5.92 (21.4) 10.2 (28.6) 20.5 (39.1)
Chain 34 43.5 (1.37) 45.5 (1.65) 43.5 (1.36) 43.5 (1.38) 43.5 (1.35) 43.5 (1.38)

Random 11 17.0 (1.92) 18.9 (1.46) 15.9 (1.70) 17.1 (1.91) 17.1 (1.90) 17.1 (1.90)

KarateClub 4 17.0 (3.31) 10.2 (1.73) 8.46 (3.14) 14.3 (4.80) 17.0 (3.36) 17.1 (3.26)
Hamsterster 241 970 (23.6) 526 (12.4) 426 (16.3) 581 (36.8) 827 (49.8) 956 (32.1)
Advogato 806 2643 (27.1) 1468 (22.5) 1196 (30.7) 1475 (56.2) 1887 (82.6) 2199 (101)

Table 14.7: Social costs when k > 1. Social costs of social optima, NEs in SGGs, and NEs in SGG-
ACs are compared. We set ξ to 6 on KarateClub and 4 on the others. We set the price p, which is simply
a scale factor, to 1. For NEs, we report the average social cost of 1, 000 NEs returned by SGG-NASH.

Dataset Outcomes
Social Cost

k = 2 k = 3 k = 4

KarateClub
Optimum Cost 2 1 1
NEs in SGGs 3.23 1.76 1.28

NEs in SGG-ACs 3.23 1.75 1.26

Hamsterster
Optimum Cost 65 32 28
NEs in SGGs 188 90.7 46.3

NEs in SGG-ACs 128 65.0 41.7

Advogato
Optimum Cost 156 69 58
NEs in SGGs 670 283 102

NEs in SGG-ACs 377 129 86.5

Datasets: The synthetic and real social networks used in our experiments are listed in Table 14.5. The
Orkut dataset was used only to test the scalability of SGG-NASH.

Calculation of Social Costs: We estimated the social cost of the NEs on each network by (a) finding
1, 000 NEs using SGG-NASH, which we implemented in Java 1.7, and then (b) averaging their social
costs. We exactly calculated the optimal social cost on each network by (a) formulating the problem
of calculating the optimal social cost as an integer program and then (b) solving it using intlinprog in
MATLAB R2015a.2

2The problem of calculating the optimal social cost is NP-hard, since it is equivalent to the minimum k-dominating set
problem, which is known to be NP-hard [HL91]. Fortunately, we could easily formulate the problem as an integer program,
and solve it using intlinprog in MATLAB.

250

14.5.2 Q1. Inefficiency of NEs in SGGs
As seen in Table 14.6, the largest inefficiency (i.e., social cost in NEs / the optimal cost) 97.6 was
obtained on the star graph. This is because the efficient NE, where only the center node buys a good, is
unlikely to be realized, as the center node loses the incentive to buy a good as soon as any of the others
does. Thus, the inefficient NE, where all nodes except the center node buy a good, is realized with high
probability. On the chain graph and the random graph, however, the inefficiency was only 1.28 and
1.55, respectively, since high-degree nodes, which are main source of inefficiency, do not exist. On real
networks, where high-degree nodes exist (albeit not as extreme as the star graph), the inefficiency was
between 3.28 and 4.25.

14.5.3 Q2. Effect of the Access Cost on the Inefficiency of NEs
As seen in Table 14.6, the inefficiency significantly decreased in SGG-ACs with an appropriate access
cost, compared to SGGs. In particular, on the star graph, the inefficiency decreased by 93%. This
is because the inefficient NE, where all nodes except the center node buy the good, is unlikely to be
realized, as the center node can still buy a good even when it has neighbors buying goods. For similar
reasons, the inefficiency on real networks also decreased by 50%− 56%. Since the inefficiency on the
chain and random graphs was already low in SGGs, the improvement was smaller.

14.5.4 Q3. Socially Optimal Access Costs
As seen in Table 14.6, inefficiency was lowest at ξ = 2 (p/3 < a < p/2), consistent with our suggestion
of ξ = max(2bk/2c+ 1, 2) in Section 14.4. The inefficiency tended to increase as ξ increased.

14.5.5 Q4. Effect of the Degree of Sharing (i.e., k) on the Inefficiency of NEs
Social costs on real networks when k > 1 are shown in Table 14.7, where we set ξ to 6 on KarateClub
and 4 on the others. In both SGGs and SGG-ACs, inefficiency in NEs decreased as k increases,
which is consistent with Theorems 14.2, 14.3, and 14.4. Although the inefficiency was still smaller in
SGG-ACs than in SGGs, the gap decreased as k increases.

14.5.6 Q5. Scalability of SGG-NASH

We measured the running times of SGG-NASH on social networks of different sizes that were obtained
by sampling different numbers of edges from the Orkut dataset. We assumed that goods can be shared
only with direct neighbors, and thus we fixed k to 1. As seen in Figure 14.1(b) in Section 14.1, SGG-
NASH scaled linearly with the number of edges in the input social network. This result is consistent
with Corollary 14.1 in Section 14.4.3.

14.6 Related Work
We first review previous work directly related to network games with shareable goods. See the work of
Galeotti et al. [GGJ+10], and the chapter by Jackson and Zenou [JZ15], for an introduction to network
games in general.

251

Bramoullé and Kranton [BK07b] and Bramoullé et al. [BKD14] study a network game where
the strategy of each node is its contribution to a public good, and its utility is a function of its own
contribution and that of its direct neighbors.

Ballester et al. [BCAZ06] consider a similar game where, however, the utility of each node is
a concave function of its effort and a linear function of its neighbors’. With these conditions, the
game has a unique NE where the effort of each node is proportional to its Bonacich centrality score.
Elliott and Golub [EG13] study an extended game in directed, weighted graphs where an edge (i, j)
indicates the marginal benefit that node i can provide to node j. Allouch [All15] develops a model
where consumptions of both private goods and public goods are taken into account.

In our models (of Section 14.2), each node simply decides whether to buy a good or access its
neighbors’, rather than the amount of effort. Instead, we extend the previous models, especially the
best-shot game [Hir83], in that (a) access costs can be imposed on free riders and (b) nodes can benefit
not only from direct neighbors but also k-hop neighbors. In contrast to previous work, we analyze PoA
and PoS, and provide empirical results on real social networks.

Our work is also related to the huge body of literature on the price of anarchy. The concept it-
self is due to Koutsoupias and Papadimitriou [KP99], and the price of stability was introduced a few
years later by Anshelevich et al. [ADK+08]. These concepts underlie much work at the intersection
of game theory and AI, e.g., in computational social choice [BCMP13], security games [LV15], and
routing [VFH15].

To the best of our knowledge, the price-of-anarchy paper that is most closely related to ours is the
one by Kun et al. [KPR13]. They give bounds on the price of anarchy of an anti-coordination game
played on a graph, albeit a fundamentally different one: each player chooses a color, and the utility
of a player is the number of neighbors with different colors. In their work, k-hop neighbors are not
considered, and access costs are incompatible with the model. It is also worth mentioning that our use
of access costs to reduce the inefficiency of equilibria is conceptually related to work on taxation in
congestion games [CKK06].

14.7 Summary
In this chapter, we propose game-theoretic models, namly SGG and SGG-AC, for capturing incentives
to buy a good sharable with k-hop neighbors on a social network. With our models, we find that social
inefficiency, specifically overproduction of goods, can occur in Nash Equilibria (NEs). However, we
also show that this inefficiency can be reduced significantly by sharing goods with more players (i.e.,
increasing k) or imposing access costs to free riders. We provide efficiency analysis of NEs (in terms
of PoA and PoS) and simulations on real-world social networks to support our findings. For the
simulations, we develop SGG-NASH, a fast algorithm for finding NEs of both models.

In our view, the most actionable conclusion from our work is that in the type of scenarios under
consideration (shareable goods on a network), access costs should be imposed when possible. This
would be hard to do at a societal level for things like ski equipment and portable cribs. However, it
certainly seems feasible at the level of an organization. For example, a university could mandate access
costs for expensive lab equipment bought by individual researchers, as this would actually decrease the
amount of grant money that is invested in buying equipment. For the designer of a multi-agent system,
imposing access costs is trivial, and, similarly, might lead (would lead, if one trusts our analysis) to
significant benefits.

252

Chapter 15

Modeling Progression of Users on Social
Media

Chapter based on work that appeared at WWW 2018 [SSK+18].

How do the behaviors of users in a web service, such as social media, evolve over time? To reach
a certain engagement level, what are the common stages that many users go through? How can
we represent the stage that each individual user lies in?

To answer these questions, we propose SWATT, a behavior model for the progressions of users’
behaviors from a given starting point – such as a new subscription or first experience of certain
features – to a particular target stage such as a predefined engagement level of interest. Under
our model, transitions over stages represent progression of users where each stage in our model
is characterized by probability distributions over types of actions, frequencies of actions, and next
stages to move. Each user performs actions and moves to a next stage following the probability
distributions characterizing the current stage.

We also develop SWATTFIT, a fast and memory-efficient algorithm for fitting our model to
large-scale behavioral logs, which are modeled as a tensor with three modes: users, types of
actions, and timestamps. Our algorithm scales linearly with the size of data, and especially, its
distributed version implemented in the MAPREDUCE framework successfully handles petabyte-
scale data with one trillion actions.

Lastly, we show the effectiveness of SWATT and SWATTFIT by applying them to real-world
data from LinkedIn. We discover meaningful stages that LinkedIn users go through leading to
predefined target goals. In addition, our trained models are shown to be useful for downstream
tasks such as prediction of future actions.

15.1 Motivation
The behaviors of users of web-sites and apps change over time for various reasons including temporal
trends [HM16] and shift of personal interests [Liu15]. When these behavioral changes are aligned with
a certain direction, we observe the progression of user behavior. For example, in RateBeer, a beer
review site, new users have similar tastes, but they start reviewing different types of beers as users
gain experience and develop their own preferences [ML13, YML+14]. Another example is Wikipedia,
where users utilize different navigation strategies throughout the information seeking process in order
to reach the target information [WL12].

253

In-Memory

Out-of-Core

Distributed

(a) Scalability of SWATTFIT

Profile

On-boarding

Poke

Grow

Explore

(b) Progression on LinkedIn

Figure 15.1: Scalability and effectiveness of our tools. (a) Scalability: every version of SWATTFIT,
our proposed optimization algorithm, scales linearly with the size of the input log data. Especially, the
distributed version implemented in the MAPREDUCE framework scales to log data with one trillion
records. (b) Effectiveness: Using SWATT and SWATTFIT, we discover meaningful stages that LinkedIn
users go through. See Section 15.5.2 for a detailed description of the stages.

Understanding such progressions is of paramount importance to providing more personalized ex-
periences, which can lead to greater engagement and potentially increasing revenue. To revisit the
RateBeer example, the site may want to advertise beers to users based on their current tastes or recom-
mend new flavors of beers considering the next stages in the progression of the users’ tastes.

While general understanding of those progression patterns is important, businesses are often inter-
ested in behavior progressions only from one state to another state due to strategic or organizational
interests. For instance, a company may want to strategically focus on helping onboarding users to reach
a certain level of engagement, or it may need to study users who eventually bring revenue. In another
example, at LinkedIn, a professional online social network providing services including news feeds and
job pages, a product manager for news feeds needs to study the progressions of users who eventually
become engaged with the news feed. Another product manager for job pages may be interested in nav-
igational patterns of users who are looking for jobs. Hence, insights about progressions of users with
respect to a specific target state are very helpful for establishing practical strategies.

To summarize and better understand such progressions toward a target state, we need to identify
common stages that many users go through while interacting with a web service. For thorough sum-
marization, these stages should capture changes in three different aspects that we describe below.

The first aspect is the change in the types of actions performed or features frequently used by
users. For example, in an online social network service like LinkedIn, new users focus on making
connections, while more established users with enough connections spend more time on consuming
content or interacting with their connections. Changes in the types of actions performed by a user will
then be considered as transitions between these stages.

Another aspect to consider is how often users visit, perform an action, or use a feature in a web
service. Users who visit a web service every day and those who visit it once a year may not be in
the same stage even though they perform similar actions or use similar features. This distinction is
particularly important because service providers typically distinguish users by their level of activity
and often aim to promote user activity and engagement.

The last aspect is the direction of changes toward a given target state. New users who are getting
familiar with the web service and more established users who are becoming less active may be in

254

different stages independent of how similar the other aspects of their behavior are. That is, stages
should describe not only current behavior but also transitions to future stages.

In this chapter, we propose SWATT (Stages with actions, time gaps, and transitions), a behavior
model with stages characterizing all the aforementioned aspects of changes, while most existing models
target only one of these aspects (e.g., only types of actions [ML13, YML+14]). Specifically, each
stage in our model is characterized by a probability distribution over types of actions, a probability
distribution over frequencies of actions, and transition probabilities of moving to another stage as the
next stage. Progressions of users’ behaviors can then be defined as transitions between these stages.
That is, each user performs actions and moves to the next stage following the probability distributions
describing the current stage.

Our algorithmic contribution is SWATTFIT, a fast and memory-efficient algorithm for training the
parameters (i.e., probability distributions) of our model. It aims to find the parameters that best describe
given behavior logs, modeled as a tensor with three modes: users, types of actions, and timestamps.
Our algorithm scales linearly with the number of records (i.e., number of non-zero entries in the input
tensor) and handles extremely large datasets that do not fit in main memory. Especially, its distributed
version, implemented in the MAPREDUCE framework [DG08], successfully handles a petabyte-scale
dataset with one trillion records, as shown in Figure 15.1(a).

We apply our model to real-world data from LinkedIn, discovering meaningful stages that LinkedIn
users go through for specific target states (See Figure 15.1(b) for an example). For example, our model
accurately captures the on-boarding stages that LinkedIn provides to new users. We also show that
stage information inferred by our model is useful for downstream tasks including prediction of future
actions. While the empirical evaluations of our model focus on the progressions on an online social
network (i.e., LinkedIn), our model can be applied to any dataset with a series of actions by different
users over time.

In summary, our main contributions are as follows:
• Comprehensive behavior model: we propose SWATT, a probabilistic behavior model that describes

progressions of users’ behaviors in three different aspects (Figure 15.2).
• Scalable optimization algorithm: we propose SWATTFIT, a fast and memory-efficient algorithm

that fits the parameters of our model to trillion-scale behavior logs (Figure 15.1).
• Experiments with real-world data: we show the effectiveness of SWATT and SWATTFIT by ap-

plying them to real-world data from LinkedIn (Tables 15.2 and 15.4)
The rest of this chapter is organized as follows. In Section 15.2, we introduce SWATT, our pro-

posed behavior model. In Section 15.3, we present SWATTFIT, our proposed algorithm for learning
the parameters of SWATT. In Section 15.4, we theoretically analyze the time and space complexity
of SWATTFIT. In Section 15.5, we share some experimental results. After reviewing related work in
Section 15.6, we provide a summary of this chapter in Section 15.7.

15.2 Proposed Model: SWATT

In this section, we describe SWATT (Stages with actions, time gaps, and transitions), our behavior
model for capturing progressive changes in users’ behaviors. The symbols used to describe our model
are listed in Table 15.1.

255

Table 15.1: Table of frequently-used symbols.

Symbol Definition

U set of all users
A set of all types of actions
D set of all binned time gaps

S = {s1, ..., sk} set of all stages

nu number of actions done by user u ∈ U
gu ∈ {0, 1} whether user u ∈ U reaches the target stage

after doing nu actions

au,j ∈ A type of the j-th action done by user u ∈ U
tu,j timestamp of action au,j

δu,j ∈ D binned time gap between tu,j and tu,j−1

āu sequence of actions performed by user u ∈ U
δ̄u sequence of time gaps in āu

S−k set of all stages excluding the target stage sk
zu,j ∈ S−k stage of user u at tu,j

z̄u sequence of stages assigned to the actions in āu

θsi , φsi , ψsi probability distributions of actions, time-gaps, and transitions in stage si ∈ S−k
λθ, λφ, λψ hyperparameters regarding the prior distributions of θsi , φsi , ψsi

ξ hyperparameter for the initialization step

15.2.1 Notations and Model Description
Consider a set of users doing a sequence of actions. Let U be the set of users and A be the set of types
of actions that can be done by the users. We bin the time gap between each two consecutive actions and
use D to indicate the set of potential gap sizes.

Let S = {s1, s2, ..., sk} be the set of k stages that the users may go through between the starting
stage s1 and the target stage sk. Two stages s1 and sk are treated as special cases. That is, we have
predefined conditions that determine whether each user has reached them (e.g., users reach the starting
stage s1 if they join LinkedIn and reach the target stage sk as soon as they reach a certain number of
connections).

We assume the monotonicity of the stages in S to model progression ‘towards’ the goal stage sk.
That is, for any i and j satisfying 1 ≤ i < j ≤ k, users can transit from stage si to stage sj but not in
the opposite direction. This constraint, however, does not enforce that all users follow the same path
towards the goal stage. Under our model, users are allowed to skip any intermediate stages.

Let S−k = {s1, ..., sk−1} be the set of non-target stages. Each non-target stage si ∈ S−k is char-
acterized by probability distributions over types of actions, time gaps, and transitions from the stage,
which are defined as follows:
• θsi ∈ R|A| : probability distribution over types of actions performed by users in stage si.
• φsi ∈ R|D|: probability distribution over time gaps between two consecutive actions performed by

users in stage si.
• ψsi ∈ Rk−i+1: transition probability distribution over next stages moving from stage si before

performing each action.

256

	𝜓#$
|𝑆'(|

	𝜆*

|𝑈|

	𝑧-,/ 	𝑧-,0 	𝑧-,12

	𝑎-,/ 	𝑎-,0 	𝛿-,0

…

	𝑎-,12 	𝛿-,12

	𝑔-

	𝜃#$
|𝑆'(|

	𝜆8 	𝜙#$ |𝑆'(|
	𝜆:

	𝑧-,;

Figure 15.2: Plate notation [Bun94] for our behavior model SWATT. Observed variables are colored
grey, and unobserved variables are colored white. The type of each action (i.e., each au,j) and the time-
gap between each two consecutive actions (i.e., each δu,j) depend on the current stage (i.e., each zu,j)
and the probability distributions characterizing each stage (i.e., each θsi and φsi). Transitions between
stages depend on the transition probability distribution in each stage (i.e., each ψsi). The starting stage
(each zu,0) and whether the target stage is reached by each user (i.e., each gu) are observable.

We assume a symmetric Dirichlet prior [Bal06] over θsi , φsi , and ψsi:

θsi ∼ Dirichlet(1 + λθ), φsi ∼ Dirichlet(1 + λφ), and ψsi ∼ Dirichlet(1 + λψ),

where λθ, λφ, and λψ are hyperparameters.
We only consider actions performed after reaching the starting stage and before reaching the target

stage (in cases where a user reaches it). For each user u ∈ U , let nu be the number of such actions by
u, and let gu ∈ {0, 1} indicate whether u reaches the target stage after performing the nu actions. Then,
we use au,j ∈ A to denote the type of the j-th action of u and use tu,j to denote the time when that
action is performed. In addition, δu,j ∈ D indicates the binned time gap between tu,j and tu,j−1; and
zu,j indicates the stage of u at tu,j . For simplicity, we use āu = (au,1, ..., au,nu), δ̄u = (δu,2, ..., δu,nu),
and z̄u = (zu,1, ..., zu,nu) to denote the sequences of actions, time-gaps, and assigned stages for user u.

15.2.2 Generative Process
The generative process of our SWATT model is described in Figure 15.2. For user u ∈ U who is in stage
zu,j−1 after doing her j-th action, she

1. moves to stage zu,j (which can be the same as zu,j−1), where

zu,j ∼ Multinomial(ψzu,j−1
)

2. performs an action au,j after a time gap δu,j , where

au,j ∼ Multinomial(θzu,j), and δu,j ∼ Multinomial(φzu,j).

In the beginning, each user u ∈ U moves from the starting stage s1 (i.e., zu,0 = s1), and the time-gap
for her first action is ignored since there can be no previous action. Each user repeats this process until
she reaches the target stage.

257

As seen in Figure 15.2, the following are observable from log data: (a) whether each user had
reached the target stage before the log data were collected (i.e., {gu}u∈U), (b) the number of actions
performed by each user between the starting stage (inclusive) and the target stage (exclusive) before
the log data were collected (i.e., {nu}u∈U), (c) the type of each action (i.e., {āu}u∈U), and (d) the time
gap between each two consecutive actions (i.e., {δ̄u}u∈U).

15.3 Proposed Algorithm: SWATTFIT

In this section, we propose SWATTFIT, a scalable algorithm for training the parameters of SWATT.
We first provide an overview of SWATTFIT with its objective function in Section 15.3.1. Then, we
describe the details of SWATTFIT in Section 15.3.2. Lastly, we extend SWATTFIT to external-memory,
multi-core, and distributed settings in Section 15.3.3.

15.3.1 Overview
We first introduce the objective function that SWATTFIT aims to optimize, and then we present an
outline of SWATTFIT.

15.3.1.1 Objective function
Given behavior logs, which are a tensor with three modes (users, types of actions, and timestamps),
we consider the sequences of actions {āu}u∈U , the sequences of time-gaps {δ̄u}u∈U and whether users
reach the target stage {gu}u∈U . SWATTFIT, described in detail in the following subsections, aims
to find the most probable sequences of stages {z̄u}u∈U as well as probability distributions of actions
{θsi}si∈S−k , time-gaps {φsi}si∈S−k , and transitions {ψsi}si∈S−k . Maximizing the posterior probability
of the parameters of our model given the observed states, written as

p({θsi}si∈S−k , {φsi}si∈S−k , {ψsi}si∈S−k , {z̄u}u∈U |{āu}u∈U , {δ̄u}u∈U , {gu}u∈U , λθ, λφ, λψ), (15.1)

is equivalent to maximizing the following objective function f :

f({z̄u}u∈U , {θsi}si∈S−k , {φsi}si∈S−k , {ψsi}si∈S−k)

:=
∏
u∈U

fu(z̄u, {θsi}si∈S−k , {φsi}si∈S−k , {ψsi}si∈S−k)×
∏

si∈S−k

(p(θsi |λθ)× p(φsi |λφ)× p(ψsi |λψ)) ,

(15.2)

where

fu(z̄u, {θsi}si∈S−k , {φsi}si∈S−k , {ψsi}si∈S−k)
:= p(āu|{θsi}si∈S−k , z̄u)× p(δ̄u|{φsi}si∈S−k , z̄u)× p(z̄u|{ψsi}si∈S−k)× p(gu|{ψsi}si∈S−k , z̄u)

=

(
nu∏
j=1

p(au,j|zu,j, θzu,j)

)
×

(
nu∏
j=2

p(δu,j|zu,j, φzu,j)

)
×

(
nu∏
j=1

p(zu,j|zu,j−1, ψzu,j−1
)

)
× p(gu|zu,Nu , ψzu,Nu).

(15.3)

Notice that our objective function is non-convex and may have multiple local optima.

258

15.3.1.2 Outline of SWATTFIT

We present an outline of SWATTFIT, an iterative refinement algorithm for optimizing our objective
function f (i.e., Eq. (15.2)). Different from general optimization algorithms for any graphical model
(e.g., EM [DLR77]), SWATTFIT fully utilizes the dependency structure of our model for fast, memory-
efficient, and parallel computation. SWATTFIT consists of the following three steps:
• Initialization step (Section 15.3.2.3): We initialize the probability distributions θsi , φsi , and ψsi in

every stage si ∈ S−k.
• Assignment step (Section 15.3.2.1): Given the current probability distributions θsi , φsi , and ψsi in

every stage si ∈ S−k, we update the stage assignments z̄u of every user u ∈ U so that our objective
function f is maximized.

• Update step (Section 15.3.2.2): Given the current stage assignments z̄u of every user u ∈ U , we
update the probability distributions θsi , φsi , and ψsi in every stage si ∈ S−k so that our objective
function f is maximized.

The initialization step is performed once initially. Then, the assignment and update steps are repeated
until our optimization function f converges. Each assignment step and each update step are guaranteed
to improve the objective function. Therefore, SWATTFIT is guaranteed to find a local optima.

15.3.2 Detailed Description
We describe each step of SWATTFIT in detail. For ease of explanation, we first present the assignment
and update steps then present the initialization step.

15.3.2.1 Assignment Step
In this step, we maximize the objective function f by updating the stage assignments {z̄u}u∈U , while
fixing the probability distributions {θsi}si∈S−k , {φsi}si∈S−k , and {ψsi}si∈S−k to their current values.
Once the probability distributions are fixed, the stage assignment z̄u of each user u ∈ U can be opti-
mized independently by maximizing fu (i.e., Eq. (15.3)).

For each user u ∈ U , we use dynamic programming [Sni10] to update z̄u, as described in detail
in Algorithm 15.1. In the algorithm, fu,j(si) denotes the maximum posterior probability of the j-th or
later actions and time gaps for user u given that zu,j = si. That is, fu,j(si) is defined as follows:

fu,j(si) :=

max
{zu,l}l>j

(
p({au,l}l≥j|{θsi}si∈S−k , {zu,l}l>j, zu,j = si)× p({δu,l}l≥max(j,2)|{θsi}si∈S−k , {zu,l}l>j, zu,j = si)

× p(gu|{ψsi}si∈S−k , {zu,l}l>j, zu,j = si)× p({zu,l}l>j|{ψsi}si∈S−k , zu,j = si)
)
. (15.4)

We observe that fu,j(si) is computed easily from {fu,j+1(si)}si∈S−k (lines 9-13). Our algorithm exploits
this observation by computing {fu,j(si)}si∈S−k in the decreasing order of j from nu to 1 (lines 2-14).
Note that the stage assignments maximizing each fu,j(si) is stored in hu,j(si) (line 14). Specifically,
hu,j(si) = sl means that the stage assignments maximizing fu,j(si) are zu,j+1 = sl and those maximiz-
ing fu,j+1(sl).

Once we have computed {fu,1(si)}si∈S−k , which indicates the maximum posterior probabilities
of everything except the initial transition, we can easily maximize fu by finding zu,1 maximizing
ψs1(zu,1) · fu,1(zu,1) (line 15). The stage assignments {z̄u}u∈U maximizing fu can be obtained from
{{hu,j(si)}si∈S−k}1≤j≤nu by following the path backward starting from zu,1 (lines 16-17).

259

Algorithm 15.1 Assignment Step of SWATTFIT

Input: (1)log data: {āu}u∈U ,{δ̄u}u∈U ,{gu}u∈U
(2) probability distributions: {θsi}si∈S−k , {φsi}si∈S−k , {ψsi}si∈S−k

Output: stage assignments: {z̄u}u∈U
1: for each user u ∈ U do
2: for each stage si ∈ S−k do
3: if gu = 0 then
4: fu,nu(si)← θsi(au,nu) · φsi(δu,nu) · (1− ψsi(sk))
5: else
6: fu,nu(si)← θsi(au,nu) · φsi(δu,nu) · ψsi(sk)
7: for j = nu − 1, ..., 1 do
8: for each stage si ∈ S−k do
9: sl ← arg maxsm:i≤m<k (ψsi(sm) · fu,j+1(sm))

10: if j = 1 then
11: fu,j(si)← θsi(au,j) · ψsi(sl) · fu,j+1(sl)
12: else
13: fu,j(si)← θsi(au,j) · φsi(δu,j) · ψsi(sl) · fu,j+1(sl)

14: hu,j(si)← sl

15: zu,1 ← arg maxsi∈S−k (ψs1(si) · fu,1(si))
16: for j = 2, ..., nu do
17: zu,j ← hu,j−1(zu,j−1)

18: return {z̄u}u∈U

15.3.2.2 Update Step
In this step, we maximize f by updating the probability distributions {θsi}si∈S−k , {φsi}si∈S−k , and
{ψsi}si∈S−k , while fixing the stage assignments {z̄u}u∈U to their current values. To this end, we decom-
pose our objective function based on the probability distribution that each term depends on as follows:

f =
∏

si∈S−k
(fθ(θsi)× fφ(φsi)× fψ(ψsi)) ,

where

fθ(θsi) = p(θsi |λθ)×
∏
u∈U

∏
j:zu,j=si

p(au,j|zu,j, θzu,j), (15.5)

fφ(φsi) = p(φsi |λφ)×
∏
u∈U

∏
j≥2:zu,j=si

p(δu,j|zu,j, φzu,j), (15.6)

fψ(ψsi) = p(ψsi |λψ)×
∏
u∈U

(
p(gu|zu,Nu , ψzu,Nu)×

∏
j:zu,j−1=si

p(zu,j|zu,j−1, ψzu,j−1
)
)
. (15.7)

Then, we update each probability distribution independently so that the terms depending on it are
maximized. Notice that this update has an analytical solution.

Specifically, for each stage si ∈ S−k, we update the action type distribution θsi so that fθ(θsi) (i.e.,
Eq. (15.5)) is maximized. For each type of action a, the probability θsi(a) is updated as follows:

θsi(a)← λθ + cA(si, a)

|A|λθ +
∑

a′∈A cA(si, a′)
, (15.8)

260

where cA(si, a) :=
∑

u∈U |{1 ≤ j ≤ nu : au,j = a ∧ zu,j = si}|.
Likewise, for each stage si ∈ S−k, we update the time gap distribution φsi so that fφ(φsi) (i.e.,

Eq. (15.6)) is maximized. For each time gap δ ∈ D, the probability φsi(δ) is updated as follows:

φsi(δ)←
λφ + cD(si, δ)

|D|λφ +
∑

δ′∈D cD(si, δ′)
, (15.9)

where cD(si, δ) :=
∑

u∈U |{2 ≤ j ≤ nu : δu,j = δ ∧ zu,j = si}|.
Lastly, for each stage si ∈ S−k, we update the transition probability ψsi so that fψ(ψsi) (i.e.,

Eq. (15.7)) is maximized. We update the transition probability ψsi(sk) from si to the target stage sk as
follows:

ψsi(sk)←
λψ + cg(si)

(k − i+ 1)λψ + cS(si)
, (15.10)

where cg(si) :=
∑

u∈U 1(zu,Nu = si ∧ gu = 1) and cS(si) :=
∑

u∈U |{0 ≤ j ≤ nu : zu,j = si}|. Then,
for each non-target stages si, sl ∈ S−k where i ≤ l, we update the probability ψsi(sl) of the transition
from si to sl as follows:

ψsi(sl)← (1− ψsi(sk))×
λψ + cS(si, sl)

(k − i)λψ +
∑k−1

m=i cS(si, sm)
, (15.11)

where cS(si, sl) :=
∑

u∈U |{1 ≤ j ≤ nu : zu,j−1 = si ∧ zu,j = sl}|.

15.3.2.3 Initialization Step
Since our objective function f (i.e., Eq. (15.2)) is non-convex, the solution found by SWATTFIT and
its speed of convergence (i.e., the number of iterations required for convergence) depend on initial
parameter values. In this section, we present an initialization method that works well in practice, as we
experimentally show in Section 15.5.5 and Section 15.5.6.

First, we choose a subset of users and decide their stage variables in a simple way. Specifically, let
U ′ be the set of users that has performed at least ξ (≥ k − 1) actions, where ξ is a hyperparameter. For
each user u ∈ U ′, we divide her nu stage variables into (k − 1) continuous segments of equal length.
Then, we assign stage si to the variables in each i-th segment.1 In this process, the users with a small
number of actions (i.e., U − U ′) are ignored since they are less likely to have gone through all (k − 1)
stages.

Once the stage variables of U ′ are set, the action-type probability distributions {θsi}si∈S−k and
the time-gap probability distributions {φsi}si∈S−k are initialized by Eq. (15.8) and Eq. (15.9) with
U ′ instead of U . We initialize transition probability distributions {ψsi}si∈S−k so that the transition
probability decreases exponentially with the distance from the current stage.2

15.3.3 Extensions to External-memory, Multi-core, and Distributed Settings
We extend SWATTFIT, described in the previous subsection, to the external-memory, multi-core, and
distributed settings without affecting its outputs. We focus on extending the assignment and update
steps. The ideas are also applicable to the initialization step due to its similarity to the other steps.

1i.e., for each 1 ≤ j ≤ nu, zu,j is set to stage si satisfying nu(i−1)
(k−1) < j ≤ nui

(k−1) .
2i.e., for each stage si, ψsi(sl)← 2−(l−i)∑k

m=i 2
−(m−i) .

261

15.3.3.1 External-memory Settings

SWATTFIT does not require loading the entire input data (i.e., {āu}u∈U , {δ̄u}u∈U , {gu}u∈U , and {z̄u}u∈U)
in main memory at once. Instead, it can run by loading the data for each user into main memory, while
storing the data for the other users in external memory (e.g., disk). This is particularly useful when the
entire input data is too large to fit in main memory.

We assume that the input data are stored in external memory sorted by user ids (by any external
sorting algorithm). We sequentially read input data until we load all data for a user into main memory.
Then, we assign the user’s stages (lines 2-17 of Algorithm 15.1). Based on these stages, we add the
user’s contributions3 to the counts (e.g., cA(si, a) and cS(si, sl)) in Eq. (15.8)-Eq. (15.11) for every ac-
tion type, time gap, and stage. Then, we free the memory space allocated for the current user and move
to the next user by continuing reading the input data. After processing the last user, we compute the
numerators and denominators of Eq. (15.8)-Eq. (15.11) for every action type, time gap, and stage, sim-
ply by adding constants to the sums of the users’ contributions. We update the probability distributions
by the equations and move to the next iteration.

In Section 15.5.4, we experimentally show that this out-of-core processing using external memory
significantly reduces the main memory requirements with a slight compromise in speed.

15.3.3.2 Multi-core Settings
SWATTFIT is easily parallelized in multi-core settings. In the assignment step, the stage assignment
for one user (lines 2-17 of Algorithm 15.1) does not depend on that for the other users. Thus, stage
assignments for different users can be run in parallel using multiple threads. Likewise, in the update
step, the contributions3 of one user to the counts (e.g., cA(si, a) and cS(si, sl)) in Eq. (15.8)-Eq. (15.11)
do not depend on those of the other users. Thus, computing the contributions of different users also can
be run in parallel using multiple threads.

In Section 15.5.4, we experimentally show that speed-up by this parallelization is near linear to the
number of threads. Notice that this parallel processing performs the same computation as the serial
processing and thus has no effect on the outputs of SWATTFIT.

15.3.3.3 Distributed Settings
We combine the extensions in the previous sections for distributed settings. We assume that the input
data are distributed across machines so that (a) all data for the same user are stored in one machine and
(b) the data in each machine are sorted by user id. In MAPREDUCE [DG08], for example, this can be
done by simply shuffling the data by user ids. Each machine sums up the contributions3 of the assigned
users to the counts (e.g., cA(si, a) and cS(si, sl)) in Eqs. (15.8)-(15.11) by sequentially reading the
assigned input data, as in Section 15.3.3.1. Then, the contributions are gathered and summed up in one
machine, which then updates all probability distributions by Eqs. (15.8)-(15.11) and broadcasts them
to all other machines so that they can be used in the next iteration.

In Section 15.5.4, we experimentally show that the MAPREDUCE implementation of SWATTFIT

successfully handles petabyte-scale data with one trillion actions.

3e.g., the contribution of user u to cA(si, a) is |{1 ≤ j ≤ nu : au,j = a ∧ zu,j = si}| and that to cD(si, δ) is
|{2 ≤ j ≤ nu : δu,j = δ ∧ zu,j = si}|.

262

15.4 Theoretical Analysis
In this section, we analyze the time complexity and memory requirement of our optimization algorithm
SWATTFIT.

15.4.1 Time Complexity Analysis
As formalized in Theorem 15.1, the time complexity of SWATTFIT is linear in the number of records
(i.e., the total number of actions of all users).

Theorem 15.1: Time Complexity

Let N =
∑

u∈U nu be the total number of actions and T be the number of iterations. If N =
Ω(|A|/k + |D|/k), then the time complexity of our optimization algorithm is O(TNk2).

Sketch of Proof. The time complexity of the assignment step (i.e., Algorithm 15.1) is O(Nk2) because
line 9, which takes O(k) time, is executed O(

∑
u∈U nuk) = O(Nk) times.

The time complexity of the update step is O(N + |A|k + |D|k + k2). For each of {(u, j) : u ∈
U , 0 ≤ j ≤ nu}, whose size is N , we need to increase a constant number of counts (e.g., cA(si, a)
and cS(si, sl)) in Eq. (15.8)-Eq. (15.11). Updating the probability distributions from the counts by
Eq. (15.8)-Eq. (15.11) takes O(|A|k + |D|k + k2) time.

Thus, one iteration (i.e., running the assignment and update steps once) takesO(Nk2+|A|k+|D|k+
k2) time, which is O(Nk2) by our assumption. Hence, the total time complexity is O(TNk2). �

15.4.2 Memory Requirement Analysis
As formalized in Theorem 15.2, the memory requirement of SWATTFIT is linear in the maximum
number of actions among all users. Note that it is sub-linear in the number of records (i.e., the total
number of actions of all users).

Theorem 15.2: Memory Requirement

If maxu∈U nu = Ω(|A| +|D|+ k), then the memory requirement of our optimization algorithm is
O(kmaxu∈U nu).

Sketch of Proof. As explained in Section 15.3.3.1, we need to load the input data for each user u
(i.e., āu, δ̄u, and gu), whose sizes are O(nu), into main memory at a time. To assign the nu stage
variables for u (by lines 2-17 of Algorithm 15.1), we need O(knu) memory space for maintaining
{{fu,j(si)}si∈S−k}1≤j≤nu , {{hu,j(si)}si∈S−k}1≤j≤nu , and the assigned stage variables z̄u. We also need
O(|A|k + |D|k + k2) memory space for maintaining the probability distributions (i.e., {θsi}si∈S−k ,
{φsi}si∈S−k , {ψsi}si∈S−k) and the counts (e.g., cA(si, a) and cS(si, sl)) in Eq. (15.8)-Eq. (15.11). There-
fore, the total memory requirement is O(maxu∈U(knu) + |A|k+ |D|k+ k2), which is O(kmaxu∈U nu)
by our assumption. �

263

15.5 Experiments
We review our experiments for answering the following questions:
• Q1. Effectiveness: Do SWATT and SWATTFIT discover meaningful progression stages in real-world

data?
• Q2. Applicability: Are our trained models useful for downstream tasks such as prediction of future

actions?
• Q3. Scalability: Does SWATTFIT scale linearly with the size of the input data? Can SWATTFIT

handle a dataset with trillions of records?
• Q4. Convergence: How rapidly does SWATTFIT converge?
• Q5. Identifiability: How accurately does SWATTFIT estimate ground-truth parameters?

15.5.1 Experimental Settings

Datasets: We used a dataset provided by LinkedIn. The dataset is the log of the actions performed
before mid June of 2017 by a subset of LinkedIn members who joined LinkedIn after mid April of
2017. The dataset has 22 types of actions including the followings:
• visit: visit LinkedIn.com.
• profile-edit: edit one’s profile.
• profile-view: view another member’s profile.
• invite-abook: invite a non-member to LinkedIn on a page that lists some emails imported from one’s

address book.
• conn-abook: send a connection request to a member on a page that lists some members imported

from one’s address book.
• conn-ins: send a connection request to a member on a page that lists some members in the same

institution.
• conn-rec: send a connection request to a member on a page that lists some members recommended

by LinkedIn.
• conn-search: send a connection request to a member on a page that shows the results of one’s search.
• conn-profile: send a connection request to a member on the member’s profile page.
• conn-other: send a connection request to a member by means other than those explained above.
• conn-accept: accept a connection request that one received.
• job-view: view a job posting.
• message: send a message to a member.

The time gaps between each consecutive actions performed by the same user are binned into second
(within few seconds), minute, hour, day, week, month, and over-a-month (over a month).

Starting and Target Stages: We used the following two settings:
• CONNECTED: The starting stage is defined as joining LinkedIn, and the target stage is defined as

reaching 30 connections. The number of actions between the stages is about 500 millions.

264

• ENGAGED: The starting stage is defined as having 30 or more connections, and the target stage is
defined as visiting LinkedIn 4 days in a week for 5 (not necessarily consecutive) weeks. The number
of actions between the stages is about 150 millions.

Implementations: We implemented SWATTFIT in Java 1.7 and Hadoop 2.6.1. We used SMILE v1.3
(https://haifengl.github.io/smile/) for logistic regression [McC84] and k-means++ [AV07].

15.5.2 Q1. Effectiveness: Descriptive Results
We present results demonstrating intuitive patterns extracted by SWATT for both settings of ‘CONNECTED’
and ‘ENGAGED’. As shown in Table 15.2, SWATT4 extracted the following reasonable latent stages for
the CONNECTED setting:
• profile (stage 1): The first learned stage shows the behaviors of creating new profiles right after new

members join the service.
• on-boarding (stages 2-4): The next three stages describe the optional on-boarding process provided

to new members. During the process, LinkedIn provides new members with a list of other members
to connect to and non-members to invite. New members can rapidly (notice that the most probable
time gap is second) send connection requests and invitations.

• poke (stage 5): Members start poking other services and typically enjoying viewing other members’
profiles.

• grow (stage 6): Members grow their networks by searching for other members and using connection
recommendation services.

• explore (stage 7): In addition to growing their networks, members start consuming content. They
visit LinkedIn for browsing content (notice that visit is the most probable action). They also start
seeing job postings. Bursts of actions are reduced.

Notice that not every member goes through every stage. For example, many members in the profile
stage skip the optional on-boarding process and jump directly to the poke or explore stage.

For the ENGAGED setting, the grow and explore stages (i.e., the last two stages extracted for the
connected setting) were subdivided into multiple stages by SWATT5 as follows:
• active-grow (stages 1-4): In the first four stages, members actively grow their networks by different

means including connecting from profiles (ag-1), connecting from search (ag-2), importing address
books (ag-3), and others (ag-4).

• passive-grow and explore (stages 5-7): In the stage pg-1, members passively grow their networks by
relying on connection recommendation services. The next stage, pg-2, captures the transition to the
explore stage.
Once stages and progression of each user is learned, we can answer simple queries like “what is

the stage that most members skip?” or perform post-processing to gain more detailed insights. For
example, we can analyze the most discriminative sequence of stages for a particular cohort to achieve a
given target. Here, we use a cohort as the members who pass through the explore stage (s7). To extract
such paths, for a set of stages S ′ ⊆ S = {s2, · · · , s6}, we define the discriminative score as:

P (reach target | pass through s7 and all of S ′)

P (reach target | pass through s7 but not all of S ′)
·

4with k = 8, λθ = λφ = λψ = 0.1, and ξ = 30.
5with k = 8, λθ = λφ = λψ = 0.1, and ξ = 50.

265

https://haifengl.github.io/smile/

Ta
bl

e
15

.2
:

L
at

en
ts

ta
ge

se
xt

ra
ct

ed
by

SW
A

T
T

an
d

SW
A

T
T

F
IT

fr
om

th
e

L
in

ke
dI

n
da

ta
se

t.
T

he
fir

st
ta

bl
e

pr
es

en
ts

th
e

st
ag

es
af

te
rj

oi
ni

ng
th

e
se

rv
ic

e
an

d
be

fo
re

re
ac

hi
ng

30
co

nn
ec

tio
ns

.M
em

be
rs

(a
)c

re
at

e
th

ei
rp

ro
fil

es
,(

b)
go

th
ro

ug
h

on
-b

oa
rd

in
g

pr
oc

es
se

s,
(c

)p
ok

e
th

e
se

rv
ic

e,
(d

)
gr

ow
th

ei
r

ne
tw

or
ks

,a
nd

fin
al

ly
(e

)
ex

pl
or

e
th

e
se

rv
ic

e.
T

he
se

co
nd

ta
bl

e
pr

es
en

ts
th

e
st

ag
es

af
te

r
re

ac
hi

ng
30

co
nn

ec
tio

ns
an

d
be

fo
re

be
in

g
en

ga
ge

d.
M

em
be

rs
(a

)
ac

tiv
el

y
gr

ow
th

ei
r

ne
tw

or
ks

by
va

ri
ou

s
m

ea
ns

,(
b)

pa
ss

iv
el

y
gr

ow
th

ei
r

ne
tw

or
ks

re
ly

in
g

on
re

co
m

m
en

da
tio

n
se

rv
ic

es
,a

nd
fin

al
ly

(c
)

ex
pl

or
e

th
e

se
rv

ic
e.

Fo
r

ea
ch

st
ag

e,
w

e
lis

tt
he

th
re

e
m

os
tp

ro
ba

bl
e

ty
pe

s
of

ac
tio

ns
,t

im
e

ga
ps

,a
nd

tr
an

si
tio

ns
,w

ith
th

ei
r

pr
ob

ab
ili

tie
s

(∗
∗∗
∗:

80
%

-1
00

%
,
∗
∗
∗:

60
%

-8
0%

,
∗∗

:
30

%
-6

0%
,
∗:

10
%

-3
0%

).
Se

e
Se

ct
io

n
15

.5
.1

fo
r

de
sc

ri
pt

io
ns

of
th

e
ty

pe
s

of
ac

tio
ns

,a
nd

se
e

Se
ct

io
n

15
.5

.2
fo

re
xp

la
na

tio
n

of
th

e
st

ag
es

.

St
ag

es
pr

ofi
le

(s
1
)

on
-b

oa
rd

in
g

po
ke

(s
5
)

gr
ow

(s
6
)

ex
pl

or
e

(s
7
)

ob
-1

(s
2
)

ob
-2

(s
3
)

ob
-3

(s
4
)

A
ct

io
ns

(θ
s i

)

pr
ofi

le
-e

di
t(
∗∗

)
co

nn
-i

ns
(∗
∗
∗)

in
vi

te
-a

bo
ok

(∗
∗∗
∗)

co
nn

-a
bo

ok
(∗
∗∗
∗)

pr
ofi

le
-v

ie
w

(∗
∗)

co
nn

-r
ec

(∗
∗
∗)

vi
si

t(
∗
∗
∗)

vi
si

t(
∗∗

)
co

nn
-o

th
er

(∗
)

co
nn

-a
bo

ok
(∗

)
co

nn
-i

ns
(∗

)
vi

si
t(
∗)

co
nn

-s
ea

rc
h

(∗
)

jo
b-

vi
ew

(∗
)

co
nn

-a
cc

ep
t

in
vi

te
-a

bo
ok

co
nn

-i
ns

in
vi

te
-a

bo
ok

pr
ofi

le
-e

di
t

pr
ofi

le
-v

ie
w

pr
ofi

le
-v

ie
w

(∗
)

Ti
m

e-
ga

ps
(φ
s i

)

ho
ur

(∗
∗)

se
co

nd
(∗
∗∗
∗)

se
co

nd
(∗
∗∗
∗)

se
co

nd
(∗
∗∗
∗)

m
in

ut
e

(∗
∗)

m
in

ut
e

(∗
∗
∗)

ho
ur

(∗
∗)

m
in

ut
e

(∗
∗)

m
in

ut
e

m
in

ut
e

ho
ur

ho
ur

(∗
)

se
co

nd
(∗

)
m

in
ut

e
(∗

)
se

co
nd

(∗
)

ho
ur

m
in

ut
e

se
co

nd
ho

ur
da

y
(∗

)

Tr
an

si
tio

ns
(ψ

s i
)

pr
ofi

le
(∗
∗∗
∗)

ob
-1

(∗
∗∗
∗)

ob
-2

(∗
∗∗
∗)

ob
-3

(∗
∗∗
∗)

po
ke

(∗
∗∗
∗)

gr
ow

(∗
∗∗
∗)

ex
pl

or
e

(∗
∗∗
∗)

ex
pl

or
e

ex
pl

or
e

ob
-3

po
ke

ex
pl

or
e

ex
pl

or
e

ta
rg

et
po

ke
po

ke
ex

pl
or

e
ex

pl
or

e
gr

ow
ta

rg
et

St
ag

es
ac

tiv
e-

gr
ow

pa
ss

iv
e-

gr
ow

ex
pl

or
e

(s
7
)

ag
-1

(s
1
)

ag
-2

(s
2
)

ag
-3

(s
3
)

ag
-4

(s
4
)

pg
-1

(s
5
)

pg
-2

(s
6
)

A
ct

io
ns

(θ
s i

)

pr
ofi

le
-v

ie
w

(∗
∗)

co
nn

-s
ea

rc
h

(∗
∗)

in
vi

te
-a

bo
ok

(∗
∗)

co
nn

-o
th

er
(∗

)
co

nn
-r

ec
(∗
∗∗
∗)

co
nn

-r
ec

(∗
∗)

vi
si

t(
∗∗

)
vi

si
t(
∗)

co
nn

-r
ec

(∗
)

co
nn

-a
bo

ok
(∗
∗)

co
nn

-r
ec

(∗
)

pr
ofi

le
-v

ie
w

pr
ofi

le
-v

ie
w

(∗
)

pr
ofi

le
-v

ie
w

(∗
)

co
nn

-p
ro

fil
e

m
es

sa
ge

(∗
)

co
nn

-r
ec

co
nn

-a
bo

ok
(∗

)
vi

si
t

vi
si

t(
∗)

jo
b-

vi
ew

Ti
m

e-
ga

ps
(φ
s i

)

m
in

ut
e

(∗
∗
∗)

m
in

ut
e

(∗
∗
∗)

se
co

nd
(∗
∗∗
∗)

se
co

nd
(∗
∗)

se
co

nd
(∗
∗
∗)

m
in

ut
e

(∗
∗
∗)

m
in

ut
e

(∗
∗)

ho
ur

(∗
)

se
co

nd
(∗

)
m

in
ut

e
m

in
ut

e
(∗
∗)

m
in

ut
e

(∗
)

ho
ur

(∗
)

ho
ur

(∗
∗)

se
co

nd
(∗

)
ho

ur
ho

ur
ho

ur
se

co
nd

(∗
)

da
y

(∗
)

Tr
an

si
tio

ns
(ψ

s i
)

ag
-1

(∗
∗∗
∗)

ag
-2

(∗
∗∗
∗)

ag
-3

(∗
∗∗
∗)

ag
-4

(∗
∗∗
∗)

pg
-1

(∗
∗∗
∗)

pg
-2

(∗
∗∗
∗)

ex
pl

or
e

(∗
∗∗
∗)

ex
pl

or
e

ex
pl

or
e

ex
pl

or
e

ex
pl

or
e

pg
-2

ex
pl

or
e

ta
rg

et
pg

-2
pg

-2
ag

-4
pg

-2

266

Table 15.3: Top-3 discriminative paths for those who pass through the explore stage.

Target setting Top-3 paths (discriminative score)

CONNECTED

grow (11.3)
poke→ grow (11.2)
poke (8.7)

ENGAGED

ag-3→ ag-4→ pg-1→ pg-2 (1.73)
ag-2→ ag-3→ ag-4→ pg-1→ pg-2 (1.71)
ag-3→ ag-4→ pg-1→ pg-2 (1.61)

Table 15.4: Usefulness of our trained model for prediction tasks. Prediction solely based on our
model (i.e., SWATT), which is unsupervised, showed similar accuracy to logistic regression (i.e., LR),
which is supervised. Combining our model and logistic regression (i.e., SWATT + LR) was most
accurate for all the tasks. See Section 15.5.3 for details.

Settings
Prediction Target Action Time-gap Target-stage Reachability

Measure Accuracy F1 Accuracy F1 Accuracy F1

CONNECTED

RANDOM 0.045 0.062 0.142 0.176 0.499 0.506
FREQUENT 0.273 0.117 0.348 0.180 0.615 0.469

LR 0.610 0.567 0.551 0.543 0.730 0.710
SWATT (Proposed) 0.597 0.508 0.577 0.537 N/A

K-MEANS + LR 0.610 0.591 0.580 0.543 0.747 0.733
SWATT + LR (Proposed) 0.684 0.675 0.646 0.633 0.756 0.751

ENGAGED

RANDOM 0.044 0.064 0.144 0.181 0.499 0.504
FREQUENT 0.273 0.117 0.348 0.180 0.615 0.469

LR 0.511 0.441 0.554 0.433 0.725 0.718
SWATT (Proposed) 0.482 0.443 0.564 0.494 N/A

K-MEANS + LR 0.511 0.478 0.565 0.489 0.734 0.728
SWATT + LR (Proposed) 0.548 0.523 0.586 0.536 0.734 0.731

We find the top 3 discriminative sequences of stages for a given target and present the results in
Table 15.3. Interestingly, they are very different depending on targets. In the CONNECTED setting,
passing through either the grow or poke stage is important, while progressing step by step is more
crucial for the ENGAGED setting. The CONNECTED setting results are intuitive because exploring
other content does not necessarily help reaching the target stage without continuous engagement with
networking components. On the other hand, the results from the ENGAGED setting imply that exposure
to various networking channels is helpful for longer engagement.

15.5.3 Q2. Applicability to Prediction Tasks
To show that SWATT is useful for downstream tasks, we use SWATT to predict (a) the type of each user’s
next action, (b) the time gap between the current and next actions of each user, and (c) whether each
user reaches the target stage within 100 actions. For each task, we compare the following approaches:
• RANDOM: use a randomly chosen label.
• FREQUENT: use the label most frequent in the training set.

267

●
●

●
●

●
●

●

●

●
●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

0

2

4

6

8

0 2 4 6 8
Number of Threads

Sp
ee

d
U

p

(a) Multi-Core Setting

0

10

20

30

40

0 10 20 30 40
Number of Machines

Sp
ee

d
U

p

(b) Distributed Setting

Connected

Engaged

Synthetic

Figure 15.3: Near-linear speed-ups of SWATTFIT. Its speed increased near linearly with the number
of threads in the multi-core setting and with the number of machines in the distributed setting.

• LR: use logistic regression [McC84]
• SWATT: use the label most probable (according to SWATT) in the current stage of each user.
• SWATT + LR: divide users depending on their current stages (inferred by SWATT) and use logistic

regression separately for each stage based on the actions in the stage.
• K-MEANS + LR: divide users using k-means++ [AV07] and use logistic regression separately for

each cluster.
For logistic regression and k-means++, we used (|A| + |D|) features corresponding to the frequencies
of the action types and time gaps for each user. For action-type and time-gap predictions, we used
relative frequencies rather than absolute ones, which led to higher accuracy. We trained our model and
logistic regression using randomly chosen half of the users in each dataset and tested using the others.
For evaluation, we used the proportion of correct predictions (Accuracy) and a weighted sum 6 of F1
scores (F1).

As shown in Table 15.4, for all the tasks, prediction purely based on our model (SWATT), which is
unsupervised, shows similar accuracy to logistic regression (LR), which is supervised. More impor-
tantly, their combination (SWATT + LR) was more accurate than combining k-means++ and logistic
regression (K-MEANS + LR) as well as the individual methods (SWATT and LR) for all the tasks.

15.5.4 Q3. Scalability
We show the scalability of SWATTFIT, described in Section 15.3. We consider the following imple-
mentations:
• IN-MEMORY (MULTI-CORE): in-memory implementation where all data are loaded into memory.

It can run in a parallel way in multi-core environments (see Section 15.3.3.2).
• OUT-OF-CORE: out-of-core implementation using disk as the external memory (see Section 15.3.3.1).
• DISTRIBUTED: MAPREDUCE [DG08] implementation on Hadoop 2.6.1 (see Section 15.3.3.3).

First, we show that all implementations scale linearly with the number of records in the input data.
To this end, we used synthetic datasets with different numbers of users while fixing |A| = |D| = k = 10
and nu = 1000 for every user u. As seen in Figure 15.1 in Section 15.1, the per-iteration running times
of all implementations increased linearly with the total number of actions. Especially, ‘DISTRIBUTED’

6each weight is the proportion to the number of the corresponding label in the test set.

268

103

105

107

Connected Engaged

M
em

or
y

R
eq

. (
KB

)

1,472X

162X

(a) Main memory requirements

0

20

40

60

Connected Engaged

R
un

ni
ng

 T
im

e
(s

ec
)

1.
4X

1.
5X

(b) Running time

In-Memory

Out-of-Core

Figure 15.4: Memory efficiency of our out-of-core implementation of SWATTFIT in the real-world
datasets. Out-of-core processing using external memory reduced the amount of required main memory
space by up to 1, 472× at the expense of a slight decrease in speed.

●

●
●●

●●●●●●●●●●●●●●●●●
●●●●●●●●●

−2.0

−1.6

−1.2

0 10 20 30
Number of Iterations

Lo
g

of
 O

bj
. (

X1
0−

9)

(a) Convergence (CONNECTED)

●

●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●

−0.5

−0.4

−0.3

0 10 20 30
Number of Iterations

Lo
g

of
 O

bj
. (

X1
0−

9)

(b) Convergence (ENGAGED)

5

10

15

20

Stages:

Figure 15.5: Fast convergence of SWATTFIT. It converged within 20 iterations in the real-world
datasets.

processed a dataset with one trillion actions with per-iteration time less than 2 hours. We obtained
similar results when we increased the number of actions per user, while fixing the number of users.
These results are consistent with our theoretical analysis in Section 15.4.

Second, we show the near-linear speed-ups of our parallel and distributed implementations. To
this end, we measured the speed-up 7 of ‘MULTI-CORE’ with different numbers of threads and that
of ‘DISTRIBUTED’ with different number of machines. For ‘MULTI-CORE’, we used the LinkedIn
datasets with k = 10, and for ‘DISTRIBUTED’, we used a larger synthetic dataset where |A| = |D| =
k = 10, |U| = 10 millions, and nu = 1000 for every user u. As seen in Figure 15.3, both implementa-
tions showed near-linear speed-ups.

Lastly, we show significant reductions in main memory requirements by out-of-core processing
using external memory. To this end, we compared the amount of main memory space required by
‘IN-MEMORY’ and ‘OUT-OF-CORE’ for processing the LinkedIn datasets with k = 10. As seen in
Figure 15.4, ‘OUT-OF-CORE’ required up to 1, 472× less main memory space than ‘IN-MEMORY’.
However, the increase in the running time was at most 50%.

7relative speed compared to when a single thread (or a single machine) is used.

269

●

●

●
●

●

●

●
●

●

●

●
●

0.94

0.96

0.98

1.00

5 10 15 20
Number of Stages

C
os

in
e

Si
m

ila
rit

y

(a) Cosine similarity of probability
distributions

●

●

●

●

●

●

●

●

●

●

●

●
0.85

0.90

0.95

1.00

5 10 15 20
Number of Stages

Ac
cu

ra
cy

(b) Accuarcy of stage assignments

10

20

30

40

Action Types
(= # Time-gap Bins)

Figure 15.6: Accuracy of SWATTFIT. The parameters trained by SWATTFIT were reasonably close
to ground-truth parameters.

15.5.5 Q4. Convergence
We show that SWATTFIT converges within a small number of iterations. Figure 15.5 shows the value
of our objective function (i.e., Eq. (15.2)) in each iteration ofSWATTFIT in the LinkedIn datasets. The
number of iterations required for convergence increased with the number of stages (i.e., k). However,
even with 20 stages, SWATTFIT converged within 20 iterations.

15.5.6 Q5. Identifiability
We show that SWATTFIT learns parameters reasonably close to ground-truth parameters. We first cre-
ated synthetic datasets by (a) choosing random probability distributions (i.e., {θsi}si∈S−k , {φsi}si∈S−k ,
{ψsi}si∈S−k) 8 and (b) generating action sequences of 100, 000 users by following the generative process
of SWATT (see Section 15.2.2). Then, we compared the probability distributions learned by SWATTFIT

with the ground-truth distributions in terms of cosine similarity [Sin01]. We also compared the learned
stage assignments with the ground-truth assignments in terms of accuracy (i.e., the proportion of cor-
rect assignments). Figure 15.6 shows the results averaged over 1, 000 trials for each setting. As the
number of stages (i.e., k) to be learned increased, similarity between trained and ground-truth parame-
ters decreased. However, the increase in the number of action types (i.e., |A|) and time gap bins (i.e.,
|D|) increased the similarity by making different stages more likely to have distinct probability distri-
butions. In every setting, the learned parameters were reasonably close to the true values. Specifically,
the cosine similarity was higher than 0.93 and the accuracy was higher than 0.82 in every setting. These
results were not sensitive to the values of the hyperparameters.

15.6 Related Work
Modeling user behavior has been extensively studied to tackle various kinds of tasks. One line of work
aims to predict events in the future by learning the hidden patterns from historical behavior. At a mi-
croscopic level, for predicting each event, many models and algorithms have been proposed, including

8we used λθ = λφ = λψ = 0.1. We ignored probability distributions if there exists a short-lived stage (i.e., the
probability of self-transition is less than 80%) or an isolated stage (i.e., the probability that a user reaches the stage is less
than 10%).

270

frequency-based pattern mining [LTW08, BFH+12], mechanistic model approaches [BKT16], marked
temporal point processes [MA17, DDT+16], generative models using latent cluster variables [MSF+12,
FRAF16], and LSTM-based approaches [LJT+17, ZLL+17]. In terms of modeling approaches, our
work is closest to the generative latent variable models. However, our model is designed to infer more
interpretable, coarse-grained patterns of event sequences. Such macroscopic progressions are not di-
rectly extracted through the use of microscopic event models.

On the other hand, another line of literature presents methods for capturing more macroscopic
views of user behaviors through clustering event sequences. Those methods can typically visualize the
overall view of user behavior from a certain aspect – such as navigation patterns on websites [DFA+15],
diagram of user activity transitions [BRCA09], clusters of user types [WZT+16], and topics of event
streams [DFA+15, MVGR17]. Our work is related to this line of work in the sense that it provides
high-level insights. However, our model presents multi-dimensional insights on each individual user’s
change, clusters of user actions, and transitions between these clusters.

Some recent work has focused on such multi-dimensional insights by grouping events and repre-
senting each entity’s progression over coarse event groups. This approach is thus able to account for
relationships between groups of events [SYS+13], regime shifts in event streams [MS16], and evolution
of users [ML13].

In particular, modeling the progression of users over the latent stages has been proposed to dis-
tinguish different patterns of progression including development of various diseases [YML+14]. Our
work is closely related to this chapter in the sense that both assume latent stages that given event se-
quences progress through as well as each observed event in the sequences depends on the current latent
stage. However, while the previous work differently models the step-by-step progression through each
latent class, our work does not address different classes but model different patterns of progression us-
ing transition probabilities between stages. Furthermore, our model defines starting moments and goal
stages to clearly illustrate the multiple paths in a particular progression region of interest, whereas the
previous work does not contain a component triggering the start or the goal.

15.7 Summary
In this chapter, we propose SWATT, a behavior model where progressions of users’ behaviors from a
starting state to a goal state are modeled as transitions over latent stages. The latent stages capture the
progressions in three aspects: types of actions, frequencies of actions, and directions of changes.

To fit SWATT to web-scale behavior logs, modeled as a tensor, we propose SWATTFIT, a fast and
memory-efficient optimization algorithm. We also extend SWATTFIT to multi-core, external-memory,
and distributed settings. We theoretically and empirically demonstrate that SWATTFIT scales linearly
with the size of the input data. Especially, the distributed version of SWATTFIT, implemented in the
MAPREDUCE framework, successfully handles a petabyte-scale dataset with one trillion actions.

We demonstrate the effectiveness of SWATT and SWATTFIT using datasets from LinkedIn. They,
however, can be applied to any dataset with a series of actions by different users over time. Using
SWATT and SWATTFIT, we discover meaningful stages summarizing the progressions of LinkedIn
users towards certain target states. We also show that stage information inferred by SWATT is useful
for downstream tasks including prediction of next actions.

271

272

Part IV

Conclusions and Future Directions

273

Chapter 16

Conclusions

This thesis focuses on mining large dynamic graphs and tensors, which naturally represent a wealth of
information in the real world. Specifically, throughout this thesis, we develop scalable algorithms and
tools for three closely related tasks: structure analysis, anomaly detection, and behavior modeling. Our
algorithms and tools achieve the highest performance and scalability by (a) employing mathematical
techniques, including approximation and sampling, (b) using distributed computing frameworks, and/or
(c) exploiting pervasive patterns in real-world data. Thereby, they are successfully applied to a variety
of datasets with billions or even trillions of records. Below, we summarize the contributions and impact
of our work.

16.1 Contributions

16.1.1 Part I: Structure Analysis
In Part I, we address two tasks related to structure analysis: (a) computing the count of triangles, which
many structure-related measures are based on, in large dynamic graphs, and (b) summarizing (i.e.,
concisely representing) large graphs and tensors.
• Counting Triangles in Graph Streams: We develop four unbiased, one-pass, sublinear-space al-

gorithms for estimating the count of triangles in large dynamic graphs modeled as graph streams.
They provide distinct advantages as described below.

- Exploiting Temporal Patterns (Chapter 4): We discover temporal locality in triangles of real-
world graph streams. Then, we develop WRS, which exploits the temporal locality for accurate
triangle counting in graph streams. Given the same space budget, WRS is up to 1 .9× more
accurate than its best competitors.

- Utilizing Multiple Machines (Chapter 5): We develop TRI-FLY and COCOS, the first dis-
tributed algorithms for triangle counting in graph streams. Given the same space budget, CO-
COS is up to 39× more accurate than TRI-FLY, which significantly outperforms the best single-
machine algorithms.

- Handling Deletions (Chapter 6): We develop THINKD, an accurate algorithm for triangle count-
ing in fully-dynamic graph streams, where edges can be both added and deleted over time. Given
the same space budget, it is up to 4 .3× more accurate than its best competitors.

• Summarizing Large Graphs and Tensors: We develop distributed and out-of-core algorithms for
summarizing large graphs and tensors, respectively, as described below.

275

- Summarizing Large Graphs (Chapter 7): We develop SWEG, a distributed algorithm for graph
summarization. It summarizes a 25× larger graph with over 20 billion edges than its best com-
petitors, without quality loss. By employing SWEG, we losslessly compress a billion-scale web
graph with an unprecedented compression rate.

- Summarizing Large High-order Tensors (Chapter 8): We develop S-HOT, an external-memory
algorithm for high-order Tucker decomposition. It summarizes a tensor with 1000× larger dimen-
sionality without quality loss than its best competitors. Using S-HOT, we analyze a large-scale
high-order tensor from Microsoft Academic Graph, which cannot be analyzed by the previously
best Tucker-decomposition algorithms.

16.1.2 Part II: Anomaly Detection
In Part II, we develop fast approximate algorithms for detecting unusually dense subgraphs and subten-
sors, which signal interesting anomalies, in large graphs and tensors.
• Finding Patterns and Anomalies in Dense Subgraphs (Chapter 9): We discover three empirical

patterns in dense subgraphs of real-world graphs. Then, we design three algorithms that exploit the
patterns for anomaly detection, degeneracy estimation, and influence spreader identification in large
graphs. Especially, our anomaly-detection algorithm, namely CORE-A, identifies many interesting
anomalies, including a ‘follower booster’ on Twitter, and ‘copy-and-paste’ bibliography.

• Detecting Dense Subtensors in Large Tensors: We develop four algorithms for detecting the dens-
est subtensors, which we show signal many notable anomalies, including ‘edit wars’ on Wikipedia,
spam reviews on App Store, and various types of network attacks. They achieve an approximation
ratio of 1/n for n-order tensors, and they provide distinct advantages, as described below.

- In-memory Algorithm (Chapter 11): We develop M-ZOOM, a near-linear time algorithm for
detecting dense subtensors. It is up to 114× faster than its best competitors with similar accuracy.

- External-memory Algorithm (Chapter 12): We develop D-CUBE, the first external-memory
algorithm for detecting dense subtensors. Our MAPREDUCE implementation of D-CUBE scales
to a 1000× larger tensor with 100 billion non-zero entries than in-memory algorithms.

- Incremental Algorithms (Chapter 13): We develop DENSESTREAM and DENSEALERT, the
first incremental algorithms for detecting dense subtensors. Each update by them is up to 10 6×
faster than running batch algorithms from scratch.

16.1.3 Part III: Behavior Modeling
In Part III, we focus on developing behavior models of individuals in graph and tensor data.
• Modeling Purchases in Social Networks (Chapter 14): We develop SGG and SGG, game-

theoretic models for purchases of sharable goods on a social network, modeled as a graph. Then, we
develop SGG-NASH, a fast algorithm for finding Nash equilibria of both games. We also suggest
a socially optimal range of rental fees for minimizing the social inefficiency of the Nash Equlibria,
based on our theoretical analysis and simulation results.

• Modeling Progression of Users on Social Media (Chapter 15): We develop SWATT, a compre-
hensive behavior model for progressions of individuals on social media. Then, we develop SWAT-
TFIT, a linear-time distributed algorithm for fitting SWATT to behavior logs, modeled as a tensor.
Our MAPREDUCE implementation of SWATTFIT successfully scales to one trillion records. Using
SWATT and SWATTFIT, We discover meaningful patterns in the progression of the users in LinkedIn.

276

16.2 Overall Impact
In addition to the contributions above, our work has broad impact on a wide range of domains where
large, dynamic, and rich information are modeled as graphs or tensors. Especially, thorough exper-
iments using real-world datasets, we show that our work has direct applications in search engines
(Chapters 7 and 9), online social networks (Chapters 9 and 15), computer security (Chapters 11, 12,
and 13), e-commerce (Chapter 12), and public policy (Chapter 14). Our work also has been used in the
following settings:

Impact in Academia:
• We have open-sourced most of the algorithms developed throughout this thesis. They have been

downloaded over 350 times from 24 countries.
• Our work on patterns and anomalies in dense subgraphs [SERF18] was included in MIT’s graduate

course on graph analytics (MIT 6.886). It was also featured in an ICDM 2016 tutorial on core
decomposition, and an ECML/PKDD 2017 tutorial on the same topic.

Impact in Industry:
• Our tools for modeling progression of individuals on social media (SWATT and SWATTFIT [SSK+18])

were used at LinkedIn Inc. for user behavior analysis.
• Our graph-summarization algorithm (SWEG [SGKR19]) was filed for a patent by LinkedIn Inc. in

September 2018.
• Our anomaly-detection algorithm (D-CUBE [SHKF18]) was used in production at NAVER Corp.,

which handled 74 .7% of web searches in South Korea in 2017, to identify and filter spam sites.

Awards and Media Coverage:
• Our work on patterns and anomalies in dense subgraphs [SERF16] was selected as one among the

“Bests of ICDM 2016” and invited to the Knowledge and Information Systems journal [SERF18].
• Our work on modeling purchases in social networks [SLEP17] was featured in New Scientist in May

2017 (available at https://www.newscientist.com/article/2132926).

277

https://www.newscientist.com/article/2132926

278

Chapter 17

Vision and Future Directions
Throughout this thesis, we develop scalable algorithms and tools for mining large dynamic graphs and
tensors, with a focus on structure analysis, anomaly detection, and behavior modeling. Below, we
outline several research directions that extend our work towards our ultimate vision, which is to fully
understand and utilize large, dynamic and rich data in the real world.

Distributed Processing of Graph Streams
While graph-stream algorithms are suitable for real-time processing of dynamic graphs, most of them
are assumed to run on a single machine. On the other hand, most distributed graph algorithms are
designed for batch processing of static graphs. Our work on triangle counting in Chapter 5 shows that
“the best of both worlds” can be achieved by distributed graph-stream algorithms. A natural next step
is to extend our idea of distributed graph-stream algorithms to diverse graph mining tasks, such as com-
munity detection [GN02], motif analysis [WF94], and graph summarization [NRS08]. Another future
step is to develop programming models and systems for efficient distributed graph-stream processing.

Detecting Adversarial Fraudsters
Most graph or tensor based fraud-detection methods, including ours discussed in Chapters 9-13, are
based on the behavioral patterns of fraudsters. In practice, however, intelligent fraudsters can adjust
their behaviors in response to the advance of fraud-detection algorithms. A first step for deterring such
fraudsters is to model their utility functions. Then, natural next steps are (a) to evaluate fraud-detection
methods in terms of how costly it is to avoid being detected by the methods, and (b) to develop fraud-
detection methods that are costly to avoid.

Modeling Co-evolution of Beliefs, Behaviors, and Social Networks
How do individuals’ behaviors (e.g., drinking behaviors) and beliefs (e.g., beliefs on legalizing mar-
ijuana) affect the evolution of social networks, and vice versa? To answer this question, we recently
developed models for explaining and predicting the co-evolution of beliefs, behaviors, and social net-
works [NSB+18]. These simple models based on linear regression, however, showed limited ability
to explain and predict the co-evolution. A next step is to explore more sophisticated models, such as
game-theoretic models. Then, these advanced models can be employed to counteract negative social
phenomena such as disagreement and polarization.

279

280

Bibliography

[ABK16] Woody Austin, Grey Ballard, and Tamara G Kolda. Parallel tensor compression for large-
scale scientific data. In 2016 IEEE International Parallel and Distributed Processing
Symposium, pages 912–922. IEEE, 2016. 1.2.1.2, 8.1, 8.3.2

[AC09] Reid Andersen and Kumar Chellapilla. Finding dense subgraphs with size bounds. In
International Workshop on Algorithms and Models for the Web-Graph, pages 25–37.
Springer, 2009. 10.2

[ACF13] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion fraud detection in online
reviews by network effects. Seventh International AAAI Conference on Weblogs and
Social Media, 13:2–11, 2013. 10.4, 12.2

[AÇKY05] Evrim Acar, Seyit A Çamtepe, Mukkai S Krishnamoorthy, and Bülent Yener. Modeling
and multiway analysis of chatroom tensors. In International Conference on Intelligence
and Security Informatics, pages 256–268. Springer, 2005. 8.1

[AD09] Alberto Apostolico and Guido Drovandi. Graph compression by bfs. Algorithms,
2(3):1031–1044, 2009. 7.1, 7.3.5, (c), 7.6

[ADK+08] Elliot Anshelevich, Anirban Dasgupta, Jon Kleinberg, Eva Tardos, Tom Wexler, and Tim
Roughgarden. The price of stability for network design with fair cost allocation. SIAM
Journal on Computing, 38(4):1602–1623, 2008. 14.6

[ADNK14] Nesreen K Ahmed, Nick Duffield, Jennifer Neville, and Ramana Kompella. Graph
sample and hold: A framework for big-graph analytics. In Proceedings of the 20th
ACM SIGKDD international conference on Knowledge discovery and data mining, pages
1446–1455. ACM, 2014. 3.1, 3.2, 5.1

[ADWR17] Nesreen K. Ahmed, Nick Duffield, Theodore L. Willke, and Ryan A. Rossi. On sampling
from massive graph streams. Proceedings of the VLDB Endowment, 10(11):1430–1441,
2017. 3.1, 3.2, 5.1, 6.1

[AH02] Lada A Adamic and Bernardo A Huberman. Zipf’s law and the internet. Glottometrics,
3(1):143–150, 2002. 8.5.1

[AhBV08] Jose Ignacio Alvarez-hamelin, Alain Barrat, and Alessandro Vespignani. k-core decom-
position of internet graphs: hierarchies, self-similarity and measurement biases. In Net-
works and Heterogeneous Media. Citeseer, 2008. 9.1

[AHDBV06] J Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro Vespignani.
Large scale networks fingerprinting and visualization using the k-core decomposition. In
Advances in neural information processing systems, pages 41–50, 2006. 9.1, 9.6

[AJB99] Réka Albert, Hawoong Jeong, and Albert-László Barabási. Internet: Diameter of the
world-wide web. nature, 401(6749):130, 1999. 9.2, 9.2.3

281

[AKM13] Shaikh Arifuzzaman, Maleq Khan, and Madhav Marathe. Patric: A parallel algorithm for
counting triangles in massive networks. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Management, pages 529–538. ACM, 2013. 3.1,
3.2, 5.1

[All15] Nizar Allouch. On the private provision of public goods on networks. Journal of Eco-
nomic Theory, 157:527–552, 2015. 14.6

[AMF10] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. Oddball: spotting anomalies in
weighted graphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining,
pages 410–421. Springer, 2010. 9.6, 10.2

[ARS02] James Abello, Mauricio GC Resende, and Sandra Sudarsky. Massive quasi-clique detec-
tion. In Latin American symposium on theoretical informatics, pages 598–612. Springer,
2002. 9.6

[ATK15] Leman Akoglu, Hanghang Tong, and Danai Koutra. Graph based anomaly detection and
description: a survey. Data Mining and Knowledge Discovery, 29(3):626–688, 2015. 9.6

[AV07] David Arthur and Sergei Vassilvitskii. k-means++: The advantages of careful seeding.
In Proceedings of the eighteenth annual ACM-SIAM symposium on Discrete algorithms,
pages 1027–1035. Society for Industrial and Applied Mathematics, 2007. 8.5.3, 15.5.1,
15.5.3

[AZBP17] Bijaya Adhikari, Yao Zhang, Aditya Bharadwaj, and B Aditya Prakash. Condensing
temporal networks using propagation. In Proceedings of the 2017 SIAM International
Conference on Data Mining, pages 417–425. SIAM, 2017. 7.6

[Bal06] Narayanaswamy Balakrishnan. Continuous multivariate distributions. Wiley Online
Library, 2006. 15.2.1

[BAZK18] Maham Anwar Beg, Muhammad Ahmad, Arif Zaman, and Imdadullah Khan. Scal-
able approximation algorithm for graph summarization. In Pacific-Asia Conference on
Knowledge Discovery and Data Mining, pages 502–514. Springer, 2018. (b), 7.6

[BBC+15] Oana Denisa Balalau, Francesco Bonchi, TH Chan, Francesco Gullo, and Mauro Sozio.
Finding subgraphs with maximum total density and limited overlap. In Proceedings of
the Eighth ACM International Conference on Web Search and Data Mining, pages 379–
388. ACM, 2015. 10.2

[BBCG10] Luca Becchetti, Paolo Boldi, Carlos Castillo, and Aristides Gionis. Efficient algorithms
for large-scale local triangle counting. ACM Transactions on Knowledge Discovery from
Data, 4(3):13, 2010. 1.2.1.1, 3.1, 3.2

[BC08] Gregory Buehrer and Kumar Chellapilla. A scalable pattern mining approach to web
graph compression with communities. In Proceedings of the 2008 International Con-
ference on Web Search and Data Mining, pages 95–106. ACM, 2008. 7.1, 7.3.5, (d),
7.6

[BCAZ06] Coralio Ballester, Antoni Calvó-Armengol, and Yves Zenou. Who’s who in networks.
wanted: The key player. Econometrica, 74(5):1403–1417, 2006. 14.6

[BCFM00] Andrei Z Broder, Moses Charikar, Alan M Frieze, and Michael Mitzenmacher. Min-wise
independent permutations. Journal of Computer and System Sciences, 60(3):630–659,
2000. 7.3.2.1

282

[BCMP13] Simina Brânzei, Ioannis Caragiannis, Jamie Morgenstern, and Ariel D Procaccia. How
bad is selfish voting? In Proceedings of the Twenty-Seventh AAAI Conference on Artifi-
cial Intelligence, pages 138–144. AAAI Press, 2013. 14.6

[BE00] Stephen P Borgatti and Martin G Everett. Models of core/periphery structures. Social
networks, 21(4):375–395, 2000. 9.5.1, 3

[BFH+12] Iyad Batal, Dmitriy Fradkin, James Harrison, Fabian Moerchen, and Milos Hauskrecht.
Mining recent temporal patterns for event detection in multivariate time series data. In
Proceedings of the 18th ACM SIGKDD international conference on Knowledge discov-
ery and data mining, pages 280–288. ACM, 2012. 15.6

[BGM14] Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual graph
algorithms for mapreduce. In International Workshop on Algorithms and Models for the
Web-Graph, pages 59–78. Springer, 2014. 10.2

[BGMZ97] Andrei Z Broder, Steven C Glassman, Mark S Manasse, and Geoffrey Zweig. Syntactic
clustering of the web. Computer Networks and ISDN Systems, 29(8):1157–1166, 1997.
7.3.2.1

[BH03] Gary D Bader and Christopher WV Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC bioinformatics, 4(1):2, 2003. 9.6

[BH11] Andries E Brouwer and Willem H Haemers. Spectra of graphs. Springer Science &
Business Media, 2011. 9.4.2

[BH18] Maciej Besta and Torsten Hoefler. Survey and taxonomy of lossless graph compression
and space-efficient graph representations. arXiv preprint arXiv:1806.01799, 2018. 7.6

[BHLP11] Jonathan W Berry, Bruce Hendrickson, Randall A LaViolette, and Cynthia A Phillips.
Tolerating the community detection resolution limit with edge weighting. Physical Re-
view E, 83(5):056119, 2011. 3.1

[BHNT15] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalampos
Tsourakakis. Space-and time-efficient algorithm for maintaining dense subgraphs on
one-pass dynamic streams. In Proceedings of the forty-seventh annual ACM symposium
on Theory of computing, pages 173–182. ACM, 2015. 10.2

[BK73] Coen Bron and Joep Kerbosch. Algorithm 457: finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577, 1973. 9.6

[BK07a] Brett W Bader and Tamara G Kolda. Efficient matlab computations with sparse and
factored tensors. SIAM Journal on Scientific Computing, 30(1):205–231, 2007. 8.5.1,
11.5.1, 12.5.1, 13.5.1

[BK07b] Yann Bramoullé and Rachel Kranton. Public goods in networks. Journal of Economic
Theory, 135(1):478–494, 2007. 14.6

[BKD14] Yann Bramoullé, Rachel Kranton, and Martin D’amours. Strategic interaction and net-
works. American Economic Review, 104(3):898–930, 2014. 14.6

[BKT16] Austin R Benson, Ravi Kumar, and Andrew Tomkins. Modeling user consumption se-
quences. In Proceedings of the 25th International Conference on World Wide Web, pages
519–529. International World Wide Web Conferences Steering Committee, 2016. 15.6

[BKV12] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in streaming
and mapreduce. Proceedings of the VLDB Endowment, 5(5):454–465, 2012. 10.2

283

[BL+07] James Bennett, Stan Lanning, et al. The netflix prize. In Proceedings of KDD cup and
workshop, volume 2007, page 35. New York, NY, USA, 2007. 10.4, 11.2, 12.2

[Blu93] Lawrence E Blume. The statistical mechanics of strategic interaction. Games and eco-
nomic behavior, 5(3):387–424, 1993. 1.2.3.1, 14.1

[BRCA09] Fabrı́cio Benevenuto, Tiago Rodrigues, Meeyoung Cha, and Virgı́lio Almeida. Charac-
terizing user behavior in online social networks. In Proceedings of the 9th ACM SIG-
COMM Conference on Internet Measurement, pages 49–62. ACM, 2009. 15.6

[Bun94] Wray L Buntine. Operations for learning with graphical models. Journal of Artificial
Intelligence Research, pages 159–225, 1994. 15.2

[BV04] Paolo Boldi and Sebastiano Vigna. The webgraph framework i: compression techniques.
In Proceedings of the 13th international conference on World Wide Web, pages 595–602.
ACM, 2004. 7.1, 7.3.5, 7.2, (a), (b), 7.6

[BXG+13] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Christos
Faloutsos. Copycatch: stopping group attacks by spotting lockstep behavior in social
networks. In Proceedings of the 22nd international conference on World Wide Web,
pages 119–130. ACM, 2013. 1.2.2.2, 9.6, 10.1, 10.2

[BYKS02] Ziv Bar-Yossef, Ravi Kumar, and D Sivakumar. Reductions in streaming algorithms, with
an application to counting triangles in graphs. In Proceedings of the thirteenth annual
ACM-SIAM symposium on Discrete algorithms, pages 623–632. Society for Industrial
and Applied Mathematics, 2002. 3.1

[BZ03] Vladimir Batagelj and Matjaz Zaversnik. An o (m) algorithm for cores decomposition of
networks. arXiv preprint cs/0310049, 2003. 9.1, 9.2.1, 9.2.2, 9.3.3.1, 9.6

[BZ07] Vladimir Batagelj and Matjaž Zaveršnik. Short cycle connectivity. Discrete Mathemat-
ics, 307(3-5):310–318, 2007. 1.2.1.1, 3.1

[CBRB08] Loı̈c Cerf, Jérémy Besson, Céline Robardet, and Jean-François Boulicaut. Data-peeler:
Constraint-based closed pattern mining in n-ary relations. In proceedings of the 2008
SIAM International conference on Data Mining, pages 37–48. SIAM, 2008. 10.2

[Cha00] Moses Charikar. Greedy approximation algorithms for finding dense components in
a graph. In International Workshop on Approximation Algorithms for Combinatorial
Optimization, pages 84–95. Springer, 2000. 9.6, 10.2, 10.3.2, 10.1, 10.2

[CKCÖ11] James Cheng, Yiping Ke, Shumo Chu, and M Tamer Özsu. Efficient core decomposition
in massive networks. In IEEE 27th International Conference on Data Engineering, pages
51–62. IEEE, 2011. 9.6

[CKK06] Ioannis Caragiannis, Christos Kaklamanis, and Panagiotis Kanellopoulos. Taxes for lin-
ear atomic congestion games. In European Symposium on Algorithms, pages 184–195.
Springer, 2006. 14.6

[CKL+09] Flavio Chierichetti, Ravi Kumar, Silvio Lattanzi, Michael Mitzenmacher, Alessandro
Panconesi, and Prabhakar Raghavan. On compressing social networks. In Proceedings
of the 15th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 219–228. ACM, 2009. 7.1, 7.3.5, (b), 7.6

[CLDG03] Fan Chung, Linyuan Lu, T Gregory Dewey, and David J Galas. Duplication models for
biological networks. Journal of computational biology, 10(5):677–687, 2003. 7.5.5

284

[CLF+09] Chen Chen, Cindy X Lin, Matt Fredrikson, Mihai Christodorescu, Xifeng Yan, and Ji-
awei Han. Mining graph patterns efficiently via randomized summaries. Proceedings of
the VLDB Endowment, 2(1):742–753, 2009. 7.6

[Coh08] Jonathan Cohen. Trusses: Cohesive subgraphs for social network analysis. National
Security Agency Technical Report, 16, 2008. 3.1, 9.6

[Coh09] Jonathan Cohen. Graph twiddling in a mapreduce world. Computing in Science &
Engineering, 11(4):29–41, 2009. 3.1, 3.2, 5.1

[CSN09] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. Power-law distributions
in empirical data. SIAM review, 51(4):661–703, 2009. 8.4.5

[CTT06] Yun Chi, Belle L Tseng, and Junichi Tatemura. Eigen-trend: trend analysis in the blo-
gosphere based on singular value decompositions. In Proceedings of the 15th ACM in-
ternational conference on Information and knowledge management, pages 68–77. ACM,
2006. 1.2.1.2, 8.1

[CZL+11] Yuanzhe Cai, Miao Zhang, Dijun Luo, Chris Ding, and Sharma Chakravarthy. Low-order
tensor decompositions for social tagging recommendation. In Proceedings of the fourth
ACM international conference on Web search and data mining, pages 695–704. ACM,
2011. 8.1

[DDT+16] Nan Du, Hanjun Dai, Rakshit Trivedi, Utkarsh Upadhyay, Manuel Gomez-Rodriguez,
and Le Song. Recurrent marked temporal point processes: Embedding event history to
vector. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pages 1555–1564. ACM, 2016. 15.6

[DFA+15] Nan Du, Mehrdad Farajtabar, Amr Ahmed, Alexander J Smola, and Le Song. Dirichlet-
hawkes processes with applications to clustering continuous-time document streams. In
Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, pages 219–228. ACM, 2015. 15.6

[DG06] Jesse Davis and Mark Goadrich. The relationship between precision-recall and roc
curves. In Proceedings of the 23rd international conference on Machine learning, pages
233–240. ACM, 2006. 9.3.3.2

[DG08] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: simplified data processing on large
clusters. Communications of the ACM, 51(1):107–113, 2008. 12.1, 15.1, 15.3.3.3, 15.5.4

[DKK+16] Laxman Dhulipala, Igor Kabiljo, Brian Karrer, Giuseppe Ottaviano, Sergey Pupyrev, and
Alon Shalita. Compressing graphs and indexes with recursive graph bisection. In Pro-
ceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining, pages 1535–1544. ACM, 2016. 7.1, 7.3.5, (a), 7.6

[DKKW12] Gideon Dror, Noam Koenigstein, Yehuda Koren, and Markus Weimer. The yahoo! music
dataset and kdd-cup’11. In KDD Cup, 2012. 10.4, 11.2, 12.2, 13.2

[DLR77] Arthur P Dempster, Nan M Laird, and Donald B Rubin. Maximum likelihood from
incomplete data via the em algorithm. Journal of the Royal Statistical Society. Series B
(methodological), pages 1–38, 1977. 15.3.1.2

[DS13] Cody Dunne and Ben Shneiderman. Motif simplification: improving network visualiza-
tion readability with fan, connector, and clique glyphs. In Proceedings of the SIGCHI
Conference on Human Factors in Computing Systems, pages 3247–3256. ACM, 2013.
7.6

285

[EG13] Matthew Elliott and Benjamin Golub. A network approach to public goods. In Proceed-
ings of the fourteenth ACM conference on Electronic commerce, pages 377–378. ACM,
2013. 14.6

[Ell93] Glenn Ellison. Learning, local interaction, and coordination. Econometrica: Journal of
the Econometric Society, pages 1047–1071, 1993. 1.2.3.1, 14.1

[ELM+15] Alessandro Epasto, Silvio Lattanzi, Vahab Mirrokni, Ismail Oner Sebe, Ahmed Taei, and
Sunita Verma. Ego-net community mining applied to friend suggestion. Proceedings of
the VLDB Endowment, 9(4):324–335, 2015. 3.1

[ELS15] Alessandro Epasto, Silvio Lattanzi, and Mauro Sozio. Efficient densest subgraph com-
putation in evolving graphs. In Proceedings of the 24th International Conference on
World Wide Web, pages 300–310. International World Wide Web Conferences Steering
Committee, 2015. 10.2

[EM02] Jean-Pierre Eckmann and Elisha Moses. Curvature of co-links uncovers hidden the-
matic layers in the world wide web. Proceedings of the national academy of sciences,
99(9):5825–5829, 2002. 3.1

[Erd63] P Erdös. On the structure of linear graphs. Israel Journal of Mathematics, 1(3):156–160,
1963. 9.1

[FCT14] Martin Farach-Colton and Meng-Tsung Tsai. Computing the degeneracy of large graphs.
In Latin American Symposium on Theoretical Informatics, volume 8392, pages 250–260,
2014. 9.1, 9.2.2, 9.6

[FRAF16] Flavio Figueiredo, Bruno Ribeiro, Jussara M Almeida, and Christos Faloutsos.
Tribeflow: Mining & predicting user trajectories. In Proceedings of the 25th interna-
tional conference on world wide web, pages 695–706. International World Wide Web
Conferences Steering Committee, 2016. 15.6

[Fre82] Eugene C Freuder. A sufficient condition for backtrack-free search. Journal of the ACM,
29(1):24–32, 1982. 9.6

[FSSS09] Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab. Triplerank: Ranking
semantic web data by tensor decomposition. In International semantic web conference,
pages 213–228. Springer, 2009. 8.1

[FWW13] Wenfei Fan, Xin Wang, and Yinghui Wu. Diversified top-k graph pattern matching.
Proceedings of the VLDB Endowment, 6(13):1510–1521, 2013. 7.6

[Gab83] Harold N Gabow. An efficient reduction technique for degree-constrained subgraph and
bidirected network flow problems. In Proceedings of the fifteenth annual ACM sympo-
sium on Theory of computing, pages 448–456. ACM, 1983. 7.6

[GGJ+10] Andrea Galeotti, Sanjeev Goyal, Matthew O Jackson, Fernando Vega-Redondo, and
Leeat Yariv. Network games. The review of economic studies, 77(1):218–244, 2010.
14.6

[GGK03] Johannes Gehrke, Paul Ginsparg, and Jon Kleinberg. Overview of the 2003 kdd cup.
ACM SIGKDD Explorations Newsletter, 5(2):149–151, 2003. 4.6.1, 4.2, 5.4, 9.2, 9.2.3

[GGT16] Esther Galbrun, Aristides Gionis, and Nikolaj Tatti. Top-k overlapping densest sub-
graphs. Data Mining and Knowledge Discovery, 30(5):1134–1165, 2016. 10.2

286

[GKT05] David Gibson, Ravi Kumar, and Andrew Tomkins. Discovering large dense subgraphs in
massive graphs. In Proceedings of the 31st international conference on Very large data
bases, pages 721–732. VLDB Endowment, 2005. 1.2.2.2, 10.1

[GLH08] Rainer Gemulla, Wolfgang Lehner, and Peter J Haas. Maintaining bounded-size sample
synopses of evolving datasets. The VLDB Journal, 17(2):173–201, 2008. 6.3.3, 6.5

[GMTV14] Christos Giatsidis, Fragkiskos D Malliaros, Dimitrios M Thilikos, and Michalis Vazir-
giannis. Corecluster: A degeneracy based graph clustering framework. In AAAI, vol-
ume 14, pages 44–50, 2014. 9.1, 9.6

[GN02] Michelle Girvan and Mark EJ Newman. Community structure in social and biological
networks. Proceedings of the national academy of sciences, 99(12):7821–7826, 2002.
17

[Gol84] Andrew V Goldberg. Finding a maximum density subgraph. Technical Report, 1984.
10.2, 10.3.2

[GPP18] Ekta Gujral, Ravdeep Pasricha, and Evangelos E Papalexakis. Sambaten: Sampling-
based batch incremental tensor decomposition. In Proceedings of the 2018 SIAM Inter-
national Conference on Data Mining, pages 387–395. SIAM, 2018. 10.2

[Gra10] Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM Journal on
Matrix Analysis and Applications, 31(4):2029–2054, 2010. 8.3.2

[Hir83] Jack Hirshleifer. From weakest-link to best-shot: The voluntary provision of public
goods. Public choice, 41(3):371–386, 1983. 14.2.1.1, 14.6

[HJT01] Bronwyn H Hall, Adam B Jaffe, and Manuel Trajtenberg. The nber patent citation data
file: Lessons, insights and methodological tools. Technical report, National Bureau of
Economic Research, 2001. 4.6.1, 4.2, 6.2, 7.2, 9.2, 9.2.3

[HL91] Stephen T. Hedetniemi and Renu C. Laskar. Topics on Domination. Elsevier, 1991. 2

[HM16] Ruining He and Julian McAuley. Ups and downs: Modeling the visual evolution of fash-
ion trends with one-class collaborative filtering. In Proceedings of the 25th international
conference on World Wide Web, pages 507–517. ACM, 2016. 1.2.3.2, 15.1

[HS17] Guyue Han and Harish Sethu. Edge sample and discard: A new algorithm for counting
triangles in large dynamic graphs. In IEEE/ACM International Conference on Advances
in Social Networks Analysis and Mining, pages 44–49. ACM, 2017. 3.1, 3.2, 6.1, 6.5.1

[HSP+16] Bryan Hooi, Hyun Ah Song, Evangelos Papalexakis, Rakesh Agrawal, and Christos
Faloutsos. Matrices, compression, learning curves: formulation, and the groupnteach al-
gorithms. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
376–387. Springer, 2016. 9.5.1

[HSS+17] Bryan Hooi, Kijung Shin, Hyun Ah Song, Alex Beutel, Neil Shah, and Christos Falout-
sos. Graph-based fraud detection in the face of camouflage. ACM Transactions on
Knowledge Discovery from Data, 11(4):44, 2017. 9.1, 9.3.3.2, 9.3.3.3, 9.6, 10.1, 10.1,
10.2, 11.5.1, 13.6(b), 13.5.5.1

[IKPZ13] Dmitry I Ignatov, Sergei O Kuznetsov, Jonas Poelmans, and Leonid E Zhukov. Can
triconcepts become triclusters? International Journal of General Systems, 42(6):572–
593, 2013. 10.2

287

[JBC+16] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos Falout-
sos. Spotting suspicious behaviors in multimodal data: A general metric and algo-
rithms. IEEE Transactions on Knowledge and Data Engineering, 28(8):2187–2200,
2016. 1.2.2.2, 9.6, 10.1, 10.2, 10.4, 11.5.1, 11.6, 12.1, 12.5.1, 12.3, 12.4, 13.1, 13.5.1,
13.6(b), 13.5.5.1

[JCB+14a] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Catchsync:
catching synchronized behavior in large directed graphs. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 941–
950. ACM, 2014. 10.1

[JCB+14b] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Inferring
strange behavior from connectivity pattern in social networks. In Pacific-Asia Conference
on Knowledge Discovery and Data Mining, pages 126–138. Springer, 2014. 10.1, 10.2

[JK02] Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir tech-
niques. ACM Transactions on Information Systems, 20(4):422–446, 2002. 7.5.3

[JPF+16] Inah Jeon, Evangelos E Papalexakis, Christos Faloutsos, Lee Sael, and U Kang. Mining
billion-scale tensors: algorithms and discoveries. The VLDB Journal, 25(4):519–544,
2016. 8.1, 8.3.2, 8.2, 10.2

[JSP13] Madhav Jha, Comandur Seshadhri, and Ali Pinar. A space efficient streaming algo-
rithm for triangle counting using the birthday paradox. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 589–
597. ACM, 2013. 3.1, 3.2, 6.1

[JTGV+05] G Joshi-Tope, Marc Gillespie, Imre Vastrik, Peter D’Eustachio, Esther Schmidt, Bernard
de Bono, Bijay Jassal, GR Gopinath, GR Wu, Lisa Matthews, et al. Reactome: a knowl-
edgebase of biological pathways. Nucleic acids research, 33(suppl 1):D428–D432,
2005. 7.2

[JZ15] Matthew O Jackson and Yves Zenou. Games on networks. In Handbook of game theory
with economic applications, volume 4, pages 95–163. Elsevier, 2015. 14.6

[KB09] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM
review, 51(3):455–500, 2009. 8.1, 10.1, 10.2, 11.5.1, 1, 11.6, 12.5.1, 12.3, 12.4

[KBK05] Tamara G Kolda, Brett W Bader, and Joseph P Kenny. Higher-order web link analysis
using multilinear algebra. In Data Mining, Fifth IEEE International Conference on,
pages 8–pp. IEEE, 2005. 8.1

[KGH+10] Maksim Kitsak, Lazaros K Gallos, Shlomo Havlin, Fredrik Liljeros, Lev Muchnik, H Eu-
gene Stanley, and Hernán A Makse. Identification of influential spreaders in complex
networks. Nature Physics, 6(11):888–893, 2010. 9.1, 9.5.2, 9.5.3.2, 9.6, 9.8

[KH18] Seongyun Ko and Wook-Shin Han. Turbograph++: A scalable and fast graph analytics
system. In Proceedings of the 2018 International Conference on Management of Data,
pages 395–410. ACM, 2018. 3.2

[KK98] George Karypis and Vipin Kumar. A fast and high quality multilevel scheme for parti-
tioning irregular graphs. SIAM Journal on scientific Computing, 20(1):359–392, 1998.
7.3.2.1

[KKT03] David Kempe, Jon Kleinberg, and Éva Tardos. Maximizing the spread of influence
through a social network. In Proceedings of the ninth ACM SIGKDD international con-

288

ference on Knowledge discovery and data mining, pages 137–146. ACM, 2003. 9.5.2,
9.6

[KKVF14] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. Vog: Summarizing and
understanding large graphs. In Proceedings of the 2014 SIAM International Conference
on Data Mining, pages 91–99. SIAM, 2014. 7.1, 7.6

[KLPM10] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a social
network or a news media? In Proceedings of the 19th international conference on World
wide web, pages 591–600. AcM, 2010. 9.2, 9.2.3

[KN97] Bernd Kreuter and Till Nierhoff. Greedily approximating the r-independent set and k-
center problems on random instances. In International Workshop on Randomization and
Approximation Techniques in Computer Science, pages 43–53. Springer, 1997. 14.2.2

[KNL14] Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo Lee. Set-based unified approach for
attributed graph summarization. In 2014 IEEE Fourth International Conference on Big
Data and Cloud Computing, pages 378–385. IEEE, 2014. 7.6

[KNL15] Kifayat Ullah Khan, Waqas Nawaz, and Young-Koo Lee. Set-based approximate ap-
proach for lossless graph summarization. Computing, 97(12):1185–1207, 2015. 7.1, (b),
7.6

[KP99] Elias Koutsoupias and Christos Papadimitriou. Worst-case equilibria. In Proceedings of
the 16th annual conference on Theoretical aspects of computer science, pages 404–413.
Springer, 1999. 14.6

[KP13] Konstantin Kutzkov and Rasmus Pagh. On the streaming complexity of computing local
clustering coefficients. In Proceedings of the sixth ACM international conference on Web
search and data mining, pages 677–686. ACM, 2013. 3.2, 5.1

[KP14] Konstantin Kutzkov and Rasmus Pagh. Triangle counting in dynamic graph streams. In
Scandinavian Workshop on Algorithm Theory, pages 306–318. Springer, 2014. 3.2, 6.1

[KP17] John Kallaugher and Eric Price. A hybrid sampling scheme for triangle counting. In Pro-
ceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1778–1797. Society for Industrial and Applied Mathematics, 2017. 3.2, 3.1, 5.1

[KPHF12] U Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos. Gigatensor:
scaling tensor analysis up by 100 times-algorithms and discoveries. In Proceedings of the
18th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 316–324. ACM, 2012. 10.2

[KPR13] Jeremy Kun, Brian Powers, and Lev Reyzin. Anti-coordination games and stable graph
colorings. In International Symposium on Algorithmic Game Theory, pages 122–133.
Springer, 2013. 14.6

[KRR+00] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, D Sivakumar, Andrew Tomkins,
and Eli Upfal. Stochastic models for the web graph. In Foundations of Computer Science,
2000. Proceedings. 41st Annual Symposium on, pages 57–65. IEEE, 2000. 7.5.5

[KS08] Tamara G Kolda and Jimeng Sun. Scalable tensor decompositions for multi-aspect data
mining. In IEEE Eighth International Conference on Data Mining, pages 363–372.
IEEE, 2008. 8.1, 8.2.1.2, 8.2.1.3, 8.3.1, 8.7, 8.3.2, 8.2, 8.5.1, 8.5.3

289

[KS09] Samir Khuller and Barna Saha. On finding dense subgraphs. In Proceedings of the 36th
International Colloquium on Automata, Languages and Programming, pages 597–608.
Springer-Verlag, 2009. 10.1, 10.2

[Kun13] Jérôme Kunegis. Konect: the koblenz network collection. In Proceedings of the 22nd
International Conference on World Wide Web, pages 1343–1350. ACM, 2013. 9.2, 9.2.3,
11.2

[KV99] Ravi Kannan and V Vinay. Analyzing the structure of large graphs. Rheinische Friedrich-
Wilhelms-Universität Bonn Bonn, 1999. 10.3.2

[KY04] Bryan Klimt and Yiming Yang. Introducing the enron corpus. In Proceedings of the
conference on Collaboration, Electronic messaging, Anti-Abuse and Spam, 2004. 4.6.1,
4.2, 7.2, 9.2, 9.2.3

[LAH07] Jure Leskovec, Lada A Adamic, and Bernardo A Huberman. The dynamics of viral
marketing. ACM Transactions on the Web, 1(1):5, 2007. 7.2

[LCKF05] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Faloutsos. Realistic,
mathematically tractable graph generation and evolution, using kronecker multiplication.
In European Conference on Principles of Data Mining and Knowledge Discovery, pages
133–145. Springer, 2005. 9.1, 9.4.2, 9.2, 9.4.2

[Lea00] Douglas Lea. Concurrent programming in Java: design principles and patterns.
Addison-Wesley Professional, 2000. 7.3.3

[LFG+00] Richard P Lippmann, David J Fried, Isaac Graf, Joshua W Haines, Kristopher R Kendall,
David McClung, Dan Weber, Seth E Webster, Dan Wyschogrod, Robert K Cunningham,
et al. Evaluating intrusion detection systems: The 1998 darpa off-line intrusion detection
evaluation. In DARPA Information Survivability Conference and Exposition, volume 2,
pages 12–26. IEEE, 2000. 10.4, 12.2, 13.1, 13.2

[LGF09] Chao Liu, Fan Guo, and Christos Faloutsos. Bbm: bayesian browsing model from
petabyte-scale data. In Proceedings of the 15th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 537–546. ACM, 2009. 7.1

[LHS+17] Hemank Lamba, Bryan Hooi, Kijung Shin, Christos Faloutsos, and Jürgen Pfeffer.
zoorank: Ranking suspicious entities in time-evolving tensors. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases, pages 68–84.
Springer, 2017. 10.2

[Liu15] Xin Liu. Modeling users’ dynamic preference for personalized recommendation. In
Twenty-Fourth International Joint Conference on Artificial Intelligence, pages 1785–
1791, 2015. 1.2.3.2, 15.1

[LJK18] Yongsub Lim, Minsoo Jung, and U Kang. Memory-efficient and accurate sampling for
counting local triangles in graph streams: from simple to multigraphs. ACM Transactions
on Knowledge Discovery from Data, 12(1):4, 2018. 1.2.1.1, 3.1, 3.1, 3.2, 3.3.2, 4.5.2,
4.6.1, 5.1, 5.5.1, 6.1, 6.5.1

[LJT+17] Liangyue Li, How Jing, Hanghang Tong, Jaewon Yang, Qi He, and Bee-Chung Chen.
Nemo: Next career move prediction with contextual embedding. In Proceedings of the
26th International Conference on World Wide Web Companion, pages 505–513. Interna-
tional World Wide Web Conferences Steering Committee, 2017. 15.6

290

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution: Densification
and shrinking diameters. ACM Transactions on Knowledge Discovery from Data, 1(1):2,
2007. 7.2, 9.2, 9.2.3

[LLDM09] Jure Leskovec, Kevin J Lang, Anirban Dasgupta, and Michael W Mahoney. Community
structure in large networks: Natural cluster sizes and the absence of large well-defined
clusters. Internet Mathematics, 6(1):29–123, 2009. 5.4, 6.2, 9.2, 9.2.3

[LNSS16] Hemank Lamba, Vaishnavh Nagarajan, Kijung Shin, and Naji Shajarisales. Incorpo-
rating side information in tensor completion. In Proceedings of the 25th International
Conference Companion on World Wide Web, pages 65–66. International World Wide
Web Conferences Steering Committee, 2016. 8.1

[LRJA10] Victor E Lee, Ning Ruan, Ruoming Jin, and Charu Aggarwal. A survey of algorithms
for dense subgraph discovery. In Managing and Mining Graph Data, pages 303–336.
Springer, 2010. 10.2

[LSDK18] Yike Liu, Tara Safavi, Abhilash Dighe, and Danai Koutra. Graph summarization methods
and applications: A survey. ACM Computing Surveys, 51(3):62, 2018. 7.6

[LSK08] Yu-Ru Lin, Hari Sundaram, and Aisling Kelliher. Summarization of social activity over
time: people, actions and concepts in dynamic networks. In Proceedings of the 17th
ACM conference on Information and knowledge management, pages 1379–1380. ACM,
2008. 7.6

[LSY98] Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution
of large-scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM,
1998. 8.1, 8.2.1.4, 8.5.1

[LT10] Kristen LeFevre and Evimaria Terzi. Grass: Graph structure summarization. In Pro-
ceedings of the 2010 SIAM International Conference on Data Mining, pages 454–465.
SIAM, 2010. 7.6

[LTH+14] Xingjie Liu, Yuanyuan Tian, Qi He, Wang-Chien Lee, and John McPherson. Distributed
graph summarization. In Proceedings of the 23rd ACM International Conference on
Conference on Information and Knowledge Management, pages 799–808. ACM, 2014.
7.6

[LTW08] Srivatsan Laxman, Vikram Tankasali, and Ryen W White. Stream prediction using a
generative model based on frequent episodes in event sequences. In Proceedings of the
14th ACM SIGKDD international conference on Knowledge discovery and data mining,
pages 453–461. ACM, 2008. 15.6

[Luc50] R Duncan Luce. Connectivity and generalized cliques in sociometric group structure.
Psychometrika, 15(2):169–190, 1950. 9.6

[LV15] Jian Lou and Yevgeniy Vorobeychik. Equilibrium analysis of multi-defender security
games. In Twenty-Fourth International Joint Conference on Artificial Intelligence, pages
596–602, 2015. 14.6

[MA05] P Massa and P Avesani. Controversial users demand local trust metrics: an experimental
study on epinions. com community. In 20th Conference of American Association for
Artificial Intelligence. ACM, 2005. 6.2

[MA17] Emaad Manzoor and Leman Akoglu. Rush!: Targeted time-limited coupons via pur-
chase forecasts. In Proceedings of the 23rd ACM SIGKDD International Conference on

291

Knowledge Discovery and Data Mining, pages 1923–1931. ACM, 2017. 15.6

[Mar87] M Lynne Markus. Toward a critical mass theory of interactive media: Universal access,
interdependence and diffusion. Communication research, 14(5):491–511, 1987. 1.2.3.1,
14.1

[Mat92] Akihiko Matsui. Best response dynamics and socially stable strategies. Journal of Eco-
nomic Theory, 57(2):343–362, 1992. 14.3

[McC84] Peter McCullagh. Generalized linear models. European Journal of Operational Re-
search, 16(3):285–292, 1984. 15.5.1, 15.5.3

[MGF11] Koji Maruhashi, Fan Guo, and Christos Faloutsos. Multiaspectforensics: Pattern mining
on large-scale heterogeneous networks with tensor analysis. In IEEE/ACM International
Conference on Advances in Social Networks Analysis and Mining, pages 203–210. IEEE,
2011. 1.2.2.2, 8.1, 10.1, 10.2, 11.5.1, 11.6, 12.1, 12.5.1, 12.3, 12.4, 13.1, 13.5.1, 13.5.5.1

[Mis09] Alan Mislove. Online Social Networks: Measurement, Analysis, and Applications to
Distributed Information Systems. PhD thesis, Rice University, 2009. 4.6.1, 4.2

[MJE12] Samaneh Moghaddam, Mohsen Jamali, and Martin Ester. Etf: extended tensor factoriza-
tion model for personalizing prediction of review helpfulness. In Proceedings of the fifth
ACM international conference on Web search and data mining, pages 163–172. ACM,
2012. 8.1

[ML13] Julian John McAuley and Jure Leskovec. From amateurs to connoisseurs: modeling the
evolution of user expertise through online reviews. In Proceedings of the 22nd interna-
tional conference on World Wide Web, pages 897–908. ACM, 2013. 1.2.3.2, 15.1, 15.1,
15.6

[MMG+07] Alan Mislove, Massimiliano Marcon, Krishna P Gummadi, Peter Druschel, and Bobby
Bhattacharjee. Measurement and analysis of online social networks. In Proceedings
of the 7th ACM SIGCOMM conference on Internet measurement, pages 29–42. ACM,
2007. 5.4, 6.2, 7.2, 9.2, 9.2.3, 10.4, 11.2, 12.2, 13.2, 14.5

[Mok79] Robert J Mokken. Cliques, clubs and clans. Quality and quantity, 13(2):161–173, 1979.
9.6

[MPL15] Julian McAuley, Rahul Pandey, and Jure Leskovec. Inferring networks of substitutable
and complementary products. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 785–794. ACM, 2015.
10.4, 11.2, 12.2, 13.2

[MS16] Yasuko Matsubara and Yasushi Sakurai. Regime shifts in streams: Real-time forecasting
of co-evolving time sequences. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 1045–1054. ACM, 2016.
15.6

[MSF+12] Yasuko Matsubara, Yasushi Sakurai, Christos Faloutsos, Tomoharu Iwata, and Masatoshi
Yoshikawa. Fast mining and forecasting of complex time-stamped events. In Proceedings
of the 18th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 271–279. ACM, 2012. 15.6

[MSHM12] Brian Macdonald, Paulo Shakarian, Nicholas Howard, and Geoffrey Moores. Spreaders
in the network sir model: An empirical study. arXiv preprint arXiv:1208.4269, 2012.
9.1, 9.5.2, 9.5.3.2, 9.6

292

[MSLC01] Miller McPherson, Lynn Smith-Lovin, and James M Cook. Birds of a feather: Ho-
mophily in social networks. Annual review of sociology, 27(1):415–444, 2001. 3.1

[MST09] Paolo Massa, Martino Salvetti, and Danilo Tomasoni. Bowling alone and trust decline
in social network sites. In Eighth IEEE International Conference on Dependable, Auto-
nomic and Secure Computing, pages 658–663. IEEE, 2009. 14.5

[MTVV15] Andrew McGregor, David Tench, Sofya Vorotnikova, and Hoa T Vu. Densest subgraph
in dynamic graph streams. In International Symposium on Mathematical Foundations of
Computer Science, pages 472–482. Springer, 2015. 10.2

[MVGR17] Charalampos Mavroforakis, Isabel Valera, and Manuel Gomez-Rodriguez. Modeling
the dynamics of learning activity on the web. In Proceedings of the 26th International
Conference on World Wide Web, pages 1421–1430. International World Wide Web Con-
ferences Steering Committee, 2017. 15.6

[MVLB14] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. Graph structure
in the web—revisited: a trick of the heavy tail. In Proceedings of the 23rd international
conference on World Wide Web, pages 427–432. ACM, 2014. 7.1

[New03] Mark EJ Newman. The structure and function of complex networks. SIAM review,
45(2):167–256, 2003. 1.2.1.1, 3.1

[New06] Mark EJ Newman. Modularity and community structure in networks. Proceedings of the
national academy of sciences, 103(23):8577–8582, 2006. 9.5.1, 4

[NRS08] Saket Navlakha, Rajeev Rastogi, and Nisheeth Shrivastava. Graph summarization with
bounded error. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 419–432. ACM, 2008. 7.1, 7.2.2, (c), (d), 7.6, 17

[NSB+18] Aastha Nigam, Kijung Shin, Ashwin Bahulkar, Bryan Hooi, David Hachen, Boleslaw
Szymanski, Christos Faloutsos, and Nitesh Chawla. One-m: Modeling the co-evolution
of opinions and network connections. In Joint European Conference on Machine Learn-
ing and Knowledge Discovery in Databases, pages 122–140. Springer, 2018. 17

[OSP+17] Jinoh Oh, Kijung Shin, Evangelos E Papalexakis, Christos Faloutsos, and Hwanjo Yu.
S-hot: Scalable high-order tucker decomposition. In Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pages 761–770. ACM, 2017.
1.2.1.2, 8, 10.2

[PC13] Ha-Myung Park and Chin-Wan Chung. An efficient mapreduce algorithm for counting
triangles in a very large graph. In Proceedings of the 22nd ACM international conference
on Information & Knowledge Management, pages 539–548. ACM, 2013. 3.1, 3.2, 5.1

[PCVS15] Ioakeim Perros, Robert Chen, Richard Vuduc, and Jimeng Sun. Sparse hierarchical
tucker factorization and its application to healthcare. In 2015 IEEE International Con-
ference on Data Mining, pages 943–948. IEEE, 2015. 8.3.2

[PCWF07] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Netprobe: a
fast and scalable system for fraud detection in online auction networks. In Proceedings
of the 16th international conference on World Wide Web, pages 201–210. ACM, 2007.
9.6, 10.1, 10.2

[PFS12] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos. Parcube:
Sparse parallelizable tensor decompositions. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, pages 521–536. Springer, 2012. 10.2

293

[PMK16] Ha-Myung Park, Sung-Hyon Myaeng, and U Kang. Pte: enumerating trillion triangles on
distributed systems. In Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1115–1124. ACM, 2016. 3.1, 3.2, 5.1

[Pow98] David MW Powers. Applications and explanations of zipf’s law. In Proceedings of the
joint conferences on new methods in language processing and computational natural
language learning, pages 151–160. Association for Computational Linguistics, 1998.
8.5.1

[PSKP14] Ha-Myung Park, Francesco Silvestri, U Kang, and Rasmus Pagh. Mapreduce triangle
enumeration with guarantees. In Proceedings of the 23rd ACM International Conference
on Conference on Information and Knowledge Management, pages 1739–1748. ACM,
2014. 3.1, 3.2, 5.1

[PSP+18] Ha-Myung Park, Francesco Silvestri, Rasmus Pagh, Chin-Wan Chung, Sung-Hyon
Myaeng, and U Kang. Enumerating trillion subgraphs on distributed systems. ACM
Transactions on Knowledge Discovery from Data, 12(6):71, 2018. 3.1, 3.2, 5.1

[PSS+10] B Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, and Christos
Faloutsos. Eigenspokes: Surprising patterns and scalable community chipping in large
graphs. In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages
435–448. Springer, 2010. 7.3.2.1, 9.6, 10.2, 11.5.1

[PT12] Rasmus Pagh and Charalampos E Tsourakakis. Colorful triangle counting and a mapre-
duce implementation. Information Processing Letters, 112(7):277–281, 2012. 3.2, 5.1

[PTT13] Aduri Pavan, Kanat Tangwongan, and Srikanta Tirthapura. Parallel and distributed trian-
gle counting on graph streams. Technical report, IBM, 2013. 3.2, 5.1

[PTTW13] Aduri Pavan, Kanat Tangwongsan, Srikanta Tirthapura, and Kun-Lung Wu. Counting
and sampling triangles from a graph stream. Proceedings of the VLDB Endowment,
6(14):1870–1881, 2013. 3.1, 3.2, 5.1, 6.1

[QLJ+14] Qiang Qu, Siyuan Liu, Christian S Jensen, Feida Zhu, and Christos Faloutsos.
Interestingness-driven diffusion process summarization in dynamic networks. In Joint
European Conference on Machine Learning and Knowledge Discovery in Databases,
pages 597–613. Springer, 2014. 7.6

[RGSB17] Matteo Riondato, David Garcı́a-Soriano, and Francesco Bonchi. Graph summarization
with quality guarantees. Data mining and knowledge discovery, 31(2):314–349, 2017.
7.6

[RMV15] Maria-Evgenia G Rossi, Fragkiskos D Malliaros, and Michalis Vazirgiannis. Spread it
good, spread it fast: Identification of influential nodes in social networks. In Proceedings
of the 24th International Conference on World Wide Web, pages 101–102. ACM, 2015.
9.1, 9.5.3.2, 9.6, 9.8

[Rog10] Everett M Rogers. Diffusion of innovations. Simon and Schuster, 2010. 1.2.3.1, 14.1

[RST10] Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization for
personalized tag recommendation. In Proceedings of the third ACM international con-
ference on Web search and data mining, pages 81–90. ACM, 2010. 8.1

[Ruh03] Jan Matthias Ruhl. Efficient algorithms for new computational models. PhD thesis,
Massachusetts Institute of Technology, 2003. 12.1

294

[RZ18] Ryan A Rossi and Rong Zhou. Graphzip: a clique-based sparse graph compression
method. Journal of Big Data, 5(1):10, 2018. 7.1, 7.3.5, 7.6

[Saa11] Yousef Saad. Numerical methods for large eigenvalue problems: revised edition, vol-
ume 66. Siam, 2011. 8.2.1.4

[SBGF14] Neil Shah, Alex Beutel, Brian Gallagher, and Christos Faloutsos. Spotting suspicious
link behavior with fbox: An adversarial perspective. In IEEE 14th International Confer-
ence on Data Mining, pages 959–964. IEEE, 2014. 9.6, 10.2

[Sch07] Thomas Schank. Algorithmic aspects of triangle-based network analysis. PhD thesis,
PhD Thesis, Universitt Karlsruhe (TH), 2007. 4

[SDB15] Julian Shun, Laxman Dhulipala, and Guy E Blelloch. Smaller and faster: Parallel pro-
cessing of compressed graphs with ligra+. In Data Compression Conference (DCC),
2015, pages 403–412. IEEE, 2015. 7.1

[Sei83] Stephen B Seidman. Network structure and minimum degree. Social networks, 5(3):269–
287, 1983. 1, 9.6

[SERF16] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Corescope: Graph mining using
k-core analysispatterns, anomalies and algorithms. In IEEE 16th International Confer-
ence on Data Mining, pages 469–478. IEEE, 2016. 1.1, 1.2.2.1, 9, 16.2

[SERF18] Kijung Shin, Tina Eliassi-Rad, and Christos Faloutsos. Patterns and anomalies in k-cores
of real-world graphs with applications. Knowledge and Information Systems, 54(3):677–
710, 2018. 1.1, 3.1, 9, 10.1, 10.2, 11.5.1, 16.2

[SERU17] Lorenzo De Stefani, Alessandro Epasto, Matteo Riondato, and Eli Upfal. Trièst: count-
ing local and global triangles in fully dynamic streams with fixed memory size. ACM
Transactions on Knowledge Discovery from Data, 11(4):43, 2017. 3.1, 3.2, 3.3.1, 4.5.1,
4.2, 4.5.2, 4.6.1, 5.1, 5.3.2, 5.4.1.1, 5.2, 5.4.1.2, 5.4.1.2, 5.5.1, 6.1, 6.5.1

[SF78] Stephen B Seidman and Brian L Foster. A graph-theoretic generalization of the clique
concept. Journal of Mathematical sociology, 6(1):139–154, 1978. 9.6

[SGJS+13] Ahmet Erdem Sarı́yüce, Buğra Gedik, Gabriela Jacques-Silva, Kun-Lung Wu, and
Ümit V Çatalyürek. Streaming algorithms for k-core decomposition. Proceedings of
the VLDB Endowment, 6(6):433–444, 2013. 9.6

[SGKR19] Kijung Shin, Amol Ghoting, Myunghwan Kim, and Hema Raghavan. Sweg: Lossless
and lossy summarization of web-scale graphs. In Proceedings of the 28th International
Conference on World Wide Web. ACM, 2019. 1.1, 1.2.1.2, 7, 16.2

[SHF16] Kijung Shin, Bryan Hooi, and Christos Faloutsos. M-zoom: Fast dense-block detection
in tensors with quality guarantees. In Joint European Conference on Machine Learning
and Knowledge Discovery in Databases, pages 264–280. Springer, 2016. 11

[SHF18] Kijung Shin, Bryan Hooi, and Christos Faloutsos. Fast, accurate and flexible algorithms
for dense subtensor mining. ACM Transactions on Knowledge Discovery from Data,
12(3):28:1–28:30, 2018. 1.2.2.2, 9.1, 9.3.3.3, 9.6, 10.2, 10.3.2, 11, 12.1, 12.4.1, 13.1,
13.2, 13.6(b), 13.5.5.1

[Shi17] Kijung Shin. Wrs: Waiting room sampling for accurate triangle counting in real graph
streams. In IEEE 17th International Conference on Data Mining, pages 1087–1092.
IEEE, 2017. 1.2.1.1, 3.2, 4, 5.1, 6.1

295

[SHK+10] Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning Zhang. Dense
subgraphs with restrictions and applications to gene annotation graphs. In Annual Inter-
national Conference on Research in Computational Molecular Biology, pages 456–472.
Springer, 2010. 13.1

[SHKF17a] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. D-cube: Dense-block detec-
tion in terabyte-scale tensors. In Proceedings of the Tenth ACM International Conference
on Web Search and Data Mining, pages 681–689. ACM, 2017. 12

[SHKF17b] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. Densealert: Incremental
dense-subtensor detection in tensor streams. In Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, pages 1057–1066,
2017. 1.2.2.2, 9.6, 10.2, 13

[SHKF18] Kijung Shin, Bryan Hooi, Jisu Kim, and Christos Faloutsos. Out-of-core and distributed
algorithms for dense subtensor mining. arXiv preprint arXiv:1802.01065, 2018. 1.1,
1.2.2.2, 9.6, 10.2, 10.3.2, 12, 13.1, 13.6(b), 13.5.5.1, 16.2

[SHL+18] Kijung Shin, Mohammad Hammoud, Euiwoong Lee, Jinoh Oh, and Christos Falout-
sos. Tri-fly: Distributed estimation of global and local triangle counts in graph streams.
In Pacific-Asia Conference on Knowledge Discovery and Data Mining, pages 651–663.
Springer, 2018. 1.2.1.1, 3.2, 5, 5.1, 6.1

[Sin01] Amit Singhal. Modern information retrieval: A brief overview. IEEE Data Engineering
Bulletin, 24(4):35–43, 2001. 15.5.6

[SKHF18] Kijung Shin, Jisu Kim, Bryan Hooi, and Christos Faloutsos. Think before you discard:
Accurate triangle counting in graph streams with deletions. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases, pages 141–157.
Springer, 2018. 1.2.1.1, 3.2, 6

[SKHF19] Kijung Shin, Jisu Kim, Bryan Hooi, and Christos Faloutsos. Fast, accurate and provable
triangle counting in fully dynamic graph streams. Manuscript submitted for publication,
2019. 6

[SKZ+15] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos. Time-
crunch: Interpretable dynamic graph summarization. In Proceedings of the 21th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1055–1064. ACM, 2015. 7.6

[SLEP17] Kijung Shin, Euiwoong Lee, Dhivya Eswaran, and Ariel D. Procaccia. Why you should
charge your friends for borrowing your stuff. In Twenty-Sixth International Joint Con-
ference on Artificial Intelligence, pages 395–401, 2017. 1.1, 1.2.3.1, 14, 16.2

[SLO+19] Kijung Shin, Euiwoong Lee, Jinoh Oh, Mohammad Hammoud, and Christos Faloutsos.
Cocos: Fast and accurate distributed triangle counting in graph streams. In Manuscript
submitted for publication, 2019. 1.2.1.1, 3.2, 5

[SM04] Jouni K Seppänen and Heikki Mannila. Dense itemsets. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 683–
688. ACM, 2004. 10.2

[Sni10] Moshe Sniedovich. Dynamic programming: foundations and principles. CRC press,
2010. 15.3.2.1

296

[Spe04] Charles Spearman. The proof and measurement of association between two things. The
American journal of psychology, 15(1):72–101, 1904. 3.3.2, 1

[SPH+18] Hojin Seo, Kisung Park, Yongkoo Han, Hyunwook Kim, Muhammad Umair, Kifayat Ul-
lah Khan, and Young-Koo Lee. An effective graph summarization and compression tech-
nique for a large-scaled graph. The Journal of Supercomputing, pages 1–15, 2018. 7.1,
7.6

[SSK17] Kijung Shin, Lee Sael, and U Kang. Fully scalable methods for distributed tensor factor-
ization. IEEE Transactions on Knowledge and Data Engineering, 29(1):100–113, 2017.
10.2

[SSK+18] Kijung Shin, Mahdi Shafiei, Myunghwan Kim, Aastha Jain, and Hema Raghavan. Dis-
covering progression stages in trillion-scale behavior logs. In Proceedings of the 27th In-
ternational Conference on World Wide Web, pages 1765–1774. ACM, 2018. 1.1, 1.2.2.1,
1.2.3.2, 15, 16.2

[SSPC15] Ahmet Erdem Sariyuce, C Seshadhri, Ali Pinar, and Umit V Catalyurek. Finding the
hierarchy of dense subgraphs using nucleus decompositions. In Proceedings of the 24th
International Conference on World Wide Web, pages 927–937. International World Wide
Web Conferences Steering Committee, 2015. 9.6

[SSS+15] Arnab Sinha, Zhihong Shen, Yang Song, Hao Ma, Darrin Eide, Bo-june Paul Hsu, and
Kuansan Wang. An overview of microsoft academic service (mas) and applications. In
Proceedings of the 24th international conference on world wide web, pages 243–246.
ACM, 2015. 8.5.1

[STF06] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs: dynamic
tensor analysis. In Proceedings of the 12th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 374–383. ACM, 2006. 1.2.1.2, 8.1, 10.2

[SV11] Siddharth Suri and Sergei Vassilvitskii. Counting triangles and the curse of the last
reducer. In Proceedings of the 20th international conference on World Wide Web, pages
607–614. ACM, 2011. 3.1, 3.2, 5.1

[SWL+18] Qi Song, Yinghui Wu, Peng Lin, Luna Xin Dong, and Hui Sun. Mining summaries
for knowledge graph search. IEEE Transactions on Knowledge & Data Engineering,
30(10):1887–1900, 2018. 7.6

[SYS+13] Dafna Shahaf, Jaewon Yang, Caroline Suen, Jeff Jacobs, Heidi Wang, and Jure Leskovec.
Information cartography: creating zoomable, large-scale maps of information. In Pro-
ceedings of the 19th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 1097–1105. ACM, 2013. 15.6

[SZL+05] Jian-Tao Sun, Hua-Jun Zeng, Huan Liu, Yuchang Lu, and Zheng Chen. Cubesvd: a
novel approach to personalized web search. In Proceedings of the 14th international
conference on World Wide Web, pages 382–390. ACM, 2005. 1.2.1.2, 8.1

[TBG+13] Charalampos Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo, and
Maria Tsiarli. Denser than the densest subgraph: extracting optimal quasi-cliques with
quality guarantees. In Proceedings of the 19th ACM SIGKDD international conference
on Knowledge discovery and data mining, pages 104–112. ACM, 2013. 10.1, 10.2,
10.3.2, 10.3

297

[TDM+11] Charalampos E Tsourakakis, Petros Drineas, Eirinaios Michelakis, Ioannis Koutis, and
Christos Faloutsos. Spectral counting of triangles via element-wise sparsification and
triangle-based link recommendation. Social Network Analysis and Mining, 1(2):75–81,
2011. 1.2.1.1, 3.1

[TFP06] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Fast random walk with restart and
its applications. In Sixth IEEE International Conference on Data Mining, pages 613–622.
IEEE, 2006. 7.5.3

[THP08] Yuanyuan Tian, Richard A Hankins, and Jignesh M Patel. Efficient aggregation for graph
summarization. In Proceedings of the 2008 ACM SIGMOD international conference on
Management of data, pages 567–580. ACM, 2008. 7.6

[TKMF09] Charalampos E Tsourakakis, U Kang, Gary L Miller, and Christos Faloutsos. Doulion:
counting triangles in massive graphs with a coin. In Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 837–
846. ACM, 2009. 3.2, 9.4.3.1

[TPT13] Kanat Tangwongsan, Aduri Pavan, and Srikanta Tirthapura. Parallel triangle counting in
massive streaming graphs. In Proceedings of the 22nd ACM international conference on
Information & Knowledge Management, pages 781–786. ACM, 2013. 3.1, 3.2, 6.1

[Tso08] Charalampos E Tsourakakis. Fast counting of triangles in large real networks without
counting: Algorithms and laws. In Eighth IEEE International Conference on Data Min-
ing, pages 608–617. IEEE, 2008. 9.4.2

[Tso10] Charalampos E Tsourakakis. Mach: Fast randomized tensor decompositions. In Pro-
ceedings of the 2010 SIAM International Conference on Data Mining, pages 689–700.
SIAM, 2010. 8.3.2

[Tuc66] Ledyard R Tucker. Some mathematical notes on three-mode factor analysis. Psychome-
trika, 31(3):279–311, 1966. 1.2.1.2, 8.1, 8.2.1.3

[TZHH11] Hannu Toivonen, Fang Zhou, Aleksi Hartikainen, and Atte Hinkka. Compression of
weighted graphs. In Proceedings of the 17th ACM SIGKDD international conference on
Knowledge discovery and data mining, pages 965–973. ACM, 2011. 7.6

[VFH15] Shoshana Vasserman, Michal Feldman, and Avinatan Hassidim. Implementing the wis-
dom of waze. In Twenty-Fourth International Joint Conference on Artificial Intelligence,
pages 660–666, 2015. 14.6

[Vit85] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software, 11(1):37–57, 1985. 3.3.1, 6.3.3

[VL00] Charles F Van Loan. The ubiquitous kronecker product. Journal of computational and
applied mathematics, 123(1):85–100, 2000. 9.4.2, 9.4.2

[VMCG09] Bimal Viswanath, Alan Mislove, Meeyoung Cha, and Krishna P Gummadi. On the
evolution of user interaction in facebook. In Proceedings of the 2nd ACM workshop on
Online social networks, pages 37–42. ACM, 2009. 4.6.1, 4.2, 5.4, 6.2

[WA05] Stefan Wuchty and Eivind Almaas. Peeling the yeast protein network. Proteomics,
5(2):444–449, 2005. 9.1, 9.6

[WCW+17] Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community
preserving network embedding. In Proceedings of the Thirty-First AAAI Conference on

298

Artificial Intelligence, pages 203–209, 2017. 7.3.2.1

[WF94] Stanley Wasserman and Katherine Faust. Social network analysis: Methods and appli-
cations, volume 8. Cambridge university press, 1994. 1.2.1.1, 3.1, 4.3, 17

[WL12] Robert West and Jure Leskovec. Human wayfinding in information networks. In Pro-
ceedings of the 21st international conference on World Wide Web, pages 619–628. ACM,
2012. 15.1

[WOS06] Kesheng Wu, Ekow J Otoo, and Arie Shoshani. Optimizing bitmap indices with efficient
compression. ACM Transactions on Database Systems, 31(1):1–38, 2006. 7.6

[WS98] Duncan J Watts and Steven H Strogatz. Collective dynamics of small-worldnetworks.
nature, 393(6684):440–442, 1998. 3.1

[WTSA15] Yining Wang, Hsiao-Yu Tung, Alexander J Smola, and Anima Anandkumar. Fast and
guaranteed tensor decomposition via sketching. In Advances in Neural Information Pro-
cessing Systems, pages 991–999, 2015. 10.2

[WZT+16] Gang Wang, Xinyi Zhang, Shiliang Tang, Haitao Zheng, and Ben Y Zhao. Unsuper-
vised clickstream clustering for user behavior analysis. In Proceedings of the 2016 CHI
Conference on Human Factors in Computing Systems, pages 225–236. ACM, 2016. 15.6

[WZTT10] Nan Wang, Jingbo Zhang, Kian-Lee Tan, and Anthony KH Tung. On triangulation-based
dense neighborhood graph discovery. Proceedings of the VLDB Endowment, 4(2):58–68,
2010. 3.1

[YL15] Jaewon Yang and Jure Leskovec. Defining and evaluating network communities based
on ground-truth. Knowledge and Information Systems, 42(1):181–213, 2015. 5.4, 6.2,
7.2, 9.2, 9.2.3

[YML+14] Jaewon Yang, Julian McAuley, Jure Leskovec, Paea LePendu, and Nigam Shah. Find-
ing progression stages in time-evolving event sequences. In Proceedings of the 23rd
international conference on World wide web, pages 783–794. ACM, 2014. 15.1, 15.1,
15.6

[Zac77] Wayne W Zachary. An information flow model for conflict and fission in small groups.
Journal of anthropological research, 33(4):452–473, 1977. 14.5

[ZLL+17] Yu Zhu, Hao Li, Yikang Liao, Beidou Wang, Ziyu Guan, Haifeng Liu, and Deng Cai.
What to do next: Modeling user behaviors by time-lstm. In Twenty-Sixth International
Joint Conference on Artificial Intelligence, pages 3602–3608, 2017. 15.6

[ZOS+19] Jiyuan Zhang, Jinoh Oh, Kijung Shin, Evangelos E Papalexakis, Christos Faloutsos, and
Hwanjo Yu. Fast and memory-efficient algorithms for high-order tucker decomposition.
Manuscript submitted for publication, 2019. 8

[ZVB+16] Shuo Zhou, Nguyen Xuan Vinh, James Bailey, Yunzhe Jia, and Ian Davidson. Accelerat-
ing online cp decompositions for higher order tensors. In Proceedings of the 22nd ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages
1375–1384. ACM, 2016. 10.2

[ZZY+17] Si Zhang, Dawei Zhou, Mehmet Yigit Yildirim, Scott Alcorn, Jingrui He, Hasan
Davulcu, and Hanghang Tong. Hidden: hierarchical dense subgraph detection with ap-
plication to financial fraud detection. In Proceedings of the 2017 SIAM International
Conference on Data Mining, pages 570–578. SIAM, 2017. 9.6

299

	1 Introduction
	1.1 Overall Impact
	1.2 Contributions
	1.2.1 Part I: Structure Analysis
	1.2.2 Part II: Anomaly Detection
	1.2.3 Part III: Behavior Modeling

	1.3 Thesis Organization

	2 Background
	2.1 Graph-related Concepts and Notations
	2.2 Tensor-related Concepts and Notations

	I Structure Analysis
	3 Counting Triangles in Graph Streams (0): Preliminaries
	3.1 Motivation
	3.2 Related Work
	3.3 Concepts
	3.3.1 Reservoir Sampling
	3.3.2 Evaluation Metrics for Triangle Counting

	4 Counting Triangles in Graph Streams (1): Exploiting Temporal Patterns
	4.1 Motivation
	4.2 Preliminaries and Problem Definition
	4.2.1 Notations and Concepts
	4.2.2 Problem Definition

	4.3 Observation: ``Temporal Locality''
	4.4 Proposed Algorithm: WRS
	4.4.1 Overview
	4.4.2 Detailed Description

	4.5 Theoretical Analysis
	4.5.1 Accuracy Analysis
	4.5.2 Complexity Analysis

	4.6 Experiments
	4.6.1 Experimental Settings
	4.6.2 Q1. Illustration of Theorems
	4.6.3 Q2. Accuracy
	4.6.4 Q3. Scalability
	4.6.5 Q4. Effects of Parameters on Accuracy

	4.7 Summary

	5 Counting Triangles in Graph Streams (2): Utilizing Multiple Machines
	5.1 Motivation
	5.2 Preliminaries and Problem Definition
	5.2.1 Notations and Concepts
	5.2.2 Problem Definition

	5.3 Proposed Algorithms: Tri-Fly and CoCoS
	5.3.1 Overview
	5.3.2 Baseline Algorithm: Tri-Fly
	5.3.3 Proposed Algorithm: CoCoS
	5.3.4 Lazy Aggregation
	5.3.5 Multiple Sources, Masters and Aggregators

	5.4 Theoretical Analysis
	5.4.1 Accuracy Analysis
	5.4.2 Complexity Analysis

	5.5 Experiments
	5.5.1 Experimental Settings
	5.5.2 Q1. Illustration of Our Theorems
	5.5.3 Q2. Speed and Accuracy
	5.5.4 Q3. Scalability
	5.5.5 Q4. Effects of Parameters on Accuracy

	5.6 Summary
	5.7 Appendix: Proof of Lemma 5.3

	6 Counting Triangles in Graph Streams (3): Handling Deletions
	6.1 Motivation
	6.2 Preliminaries and Problem Definition
	6.2.1 Notations and Concepts
	6.2.2 Problem Definition

	6.3 Proposed Algorithm: ThinkD
	6.3.1 Overview
	6.3.2 Simple and Fast Version: ThinkDFAST
	6.3.3 Accurate Version: ThinkDACC

	6.4 Theoretical Analysis
	6.4.1 Accuracy Analysis
	6.4.2 Complexity Analysis

	6.5 Experiments
	6.5.1 Experimental Settings
	6.5.2 Q1. Illustration of Theorems
	6.5.3 Q2. Accuracy
	6.5.4 Q3. Speed
	6.5.5 Q4. Scalability
	6.5.6 Q5. Effects of Deletions on Accuracy

	6.6 Summary
	6.7 Appendix: Proofs
	6.7.1 Proof of Lemma 6.1
	6.7.2 Proof of Lemma 6.2
	6.7.3 Proof of Lemma 6.3

	6.8 Appendix: Detailed Variance Analysis

	7 Summarizing Large Graphs
	7.1 Motivation
	7.2 Preliminaries and Problem Definition
	7.2.1 Notations and Concepts
	7.2.2 Problem Definition

	7.3 Proposed Algorithm: SWeG
	7.3.1 Overview
	7.3.2 Detailed Description
	7.3.3 Parallelization in Shared Memory
	7.3.4 Distributed Processing with MapReduce
	7.3.5 Further Compression: SWeG+

	7.4 Theoretical Analysis
	7.4.1 Time Complexity Analysis
	7.4.2 Memory Requirement Analysis

	7.5 Experiments
	7.5.1 Experimental Settings
	7.5.2 Q1. Lossless Summarization
	7.5.3 Q2. Lossy Summarization
	7.5.4 Q3. Scalability
	7.5.5 Q4. Effects of Parameters
	7.5.6 Q5. Further Compression

	7.6 Related Work
	7.7 Summary
	7.8 Appendix: Neighbor Queries on Summarized Graphs

	8 Summarizing Large High-order Tensors
	8.1 Motivation
	8.2 Preliminaries and Problem Definition
	8.2.1 Notations and Concepts
	8.2.2 Problem Definition

	8.3 Observation: ``Materialization Bottleneck''
	8.3.1 Intermediate Data Explosion
	8.3.2 Scalable Tucker Decomposition
	8.3.3 Materialization Bottleneck

	8.4 Proposed Algorithm: S-HOT
	8.4.1 Overview
	8.4.2 Naive Version: S-HOTNAIVE
	8.4.3 Space-efficient Version: S-HOTSPACE
	8.4.4 Faster Version: S-HOTSCAN
	8.4.5 Fastest Version: S-HOTCACHE

	8.5 Experiments
	8.5.1 Experimental Settings
	8.5.2 Q1: Scalability
	8.5.3 Q2: S-HOT at Work
	8.5.4 Q3: Effect of the Memory Budget on the Speed of S-HOTCACHE
	8.5.5 Q4: Effect of the Skewness of Data on the Speed of S-HOTCACHE

	8.6 Summary

	II Anomaly Detection
	9 Finding Patterns and Anomalies in Dense Subgraphs
	9.1 Motivation
	9.2 Preliminaries
	9.2.1 Concepts and Notations
	9.2.2 Algorithm for k-Cores and Degeneracy
	9.2.3 Real-world Graph Datasets

	9.3 P1: ``Mirror Pattern'' and Anomaly Detection
	9.3.1 Observation: Pattern in Real-world Graphs
	9.3.2 Application: Anomaly Detection
	9.3.3 Proposed Algorithm: Core-A

	9.4 P2: ``Core-Triangle Pattern'' and Degeneracy Estimation
	9.4.1 Observation: Pattern in Real-world Graphs
	9.4.2 Theoretical Analysis in the Kronecker and ER Models
	9.4.3 Proposed Algorithm: Core-D

	9.5 P3: ``Structured Core Pattern'' and Influential Spreader Identification
	9.5.1 Observation: Pattern in Real-world Graphs
	9.5.2 Application: Finding Influential Spreaders
	9.5.3 Proposed Algorithm: Core-S

	9.6 Related Work
	9.7 Summary
	9.8 Appendix: Measuring Influence of Nodes by Simulating the SIR model

	10 Detecting Dense Subtensors in Large Tensors (0): Preliminaries
	10.1 Motivation
	10.2 Related Work
	10.3 Concepts
	10.3.1 Tensors Represented as Relations
	10.3.2 Density Measures

	10.4 Datasets

	11 Detecting Dense Subtensors in Large Tensors (1): In-memory Algorithm
	11.1 Motivation
	11.2 Problem Definition
	11.3 Proposed Algorithm: M-Zoom
	11.3.1 Overview
	11.3.2 Detailed Description

	11.4 Theoretical Analysis
	11.4.1 Accuracy Analysis
	11.4.2 Complexity Analysis

	11.5 Experiments
	11.5.1 Experimental Settings
	11.5.2 Q1. Speed and Accuracy of M-Zoom
	11.5.3 Q2. Scalability of M-Zoom
	11.5.4 Q3. Diversity of Subtensors Found by M-Zoom
	11.5.5 Q4. Effectiveness of M-Zoom in Real-world Datasets

	11.6 Summary

	12 Detecting Dense Subtensors in Large Tensors (2): External-memory Algorithm
	12.1 Motivation
	12.2 Problem Definition
	12.3 Proposed Algorithm: D-Cube
	12.3.1 Overview
	12.3.2 Detailed Description
	12.3.3 MapReduce Implementation

	12.4 Theoretical Analysis
	12.4.1 Accuracy Analysis
	12.4.2 Complexity Analysis

	12.5 Experiments
	12.5.1 Experimental Settings
	12.5.2 Q1. Memory Efficiency
	12.5.3 Q2. Speed and Accuracy
	12.5.4 Q3. Scalability
	12.5.5 Q4. Effectiveness
	12.5.6 Q5. Effects of Parameter on Speed and Accuracy

	12.6 Summary

	13 Detecting Dense Subtensors in Large Tensors (3): Incremental Algorithms
	13.1 Motivation
	13.2 Preliminaries and Problem Definition
	13.2.1 Notations and Concepts
	13.2.2 Problem Definitions

	13.3 Proposed Algorithms: DenseStream and DenseAlert
	13.3.1 Overview
	13.3.2 Baseline Algorithm: DenseStatic
	13.3.3 Proposed Algorithm (1): DenseStream
	13.3.4 Proposed Algorithm (2): DenseAlert

	13.4 Theoretical Analysis
	13.4.1 Accuracy Analysis
	13.4.2 Complexity Analysis

	13.5 Experiments
	13.5.1 Experimental Settings.
	13.5.2 Q1. Speed
	13.5.3 Q2. Accuracy
	13.5.4 Q3. Scalability
	13.5.5 Q4. Effectiveness

	13.6 Summary
	13.7 Appendix: Proofs
	13.7.1 Proof of Lemma 13.3
	13.7.2 Proof of Lemma 13.4

	III Behavior Modeling
	14 Modeling Purchases in Social Networks
	14.1 Motivation
	14.2 Proposed Models: SGG and SGG-AC
	14.2.1 Notations and Model Description
	14.2.2 Definition and Existence of Equilibria

	14.3 Proposed Algorithm: SGG-Nash
	14.4 Theoretical Analysis
	14.4.1 Social Inefficiency Analysis
	14.4.2 Convergence Analysis
	14.4.3 Complexity Analysis

	14.5 Experiments
	14.5.1 Experimental Settings
	14.5.2 Q1. Inefficiency of NEs in SGGs
	14.5.3 Q2. Effect of the Access Cost on the Inefficiency of NEs
	14.5.4 Q3. Socially Optimal Access Costs
	14.5.5 Q4. Effect of the Degree of Sharing (i.e., k) on the Inefficiency of NEs
	14.5.6 Q5. Scalability of SGG-Nash

	14.6 Related Work
	14.7 Summary

	15 Modeling Progression of Users on Social Media
	15.1 Motivation
	15.2 Proposed Model: Swatt
	15.2.1 Notations and Model Description
	15.2.2 Generative Process

	15.3 Proposed Algorithm: SwattFit
	15.3.1 Overview
	15.3.2 Detailed Description
	15.3.3 Extensions to External-memory, Multi-core, and Distributed Settings

	15.4 Theoretical Analysis
	15.4.1 Time Complexity Analysis
	15.4.2 Memory Requirement Analysis

	15.5 Experiments
	15.5.1 Experimental Settings
	15.5.2 Q1. Effectiveness: Descriptive Results
	15.5.3 Q2. Applicability to Prediction Tasks
	15.5.4 Q3. Scalability
	15.5.5 Q4. Convergence
	15.5.6 Q5. Identifiability

	15.6 Related Work
	15.7 Summary

	IV Conclusions and Future Directions
	16 Conclusions
	16.1 Contributions
	16.1.1 Part I: Structure Analysis
	16.1.2 Part II: Anomaly Detection
	16.1.3 Part III: Behavior Modeling

	16.2 Overall Impact

	17 Vision and Future Directions
	Bibliography

