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Abstract

Concurrent programming presents a challenge to students and experts
alike because of the complexity of multithreaded interactions and the diffi-
culty of reproducing and reasoning about bugs. Stateless model checking is
a testing approach which forces a program to interleave its threads in many
different ways, checking for bugs each time. This technique is powerful, in
principle capable of finding any nondeterministic bug in finite time, but suffers
from exponential explosion as program size increases. Checking an exponen-
tial number of thread interleavings is not a practical or predictable approach
for programmers to find concurrency bugs before their project deadlines.

In this thesis, I develop several new techniques to make stateless model
checking more practical for human use. I have built Landslide, a stateless
model checker specializing in undergraduate operating systems class projects.
Landslide extends the traditional model checking algorithm with a new frame-
work for automatically managing multiple state spaces according to their esti-
mated completion times, which I show quickly finds bugs should they exist and
also quickly verifies correctness otherwise. I evaluate Landslide’s suitability
for inexpert use by presenting the results of many semesters providing it to stu-
dents in 15-410, CMU’s Operating System Design and Implementation class,
and more recently, students in similar classes at the University of Chicago and
Penn State University. Finally, I extend Landslide with a new concurrency
model for hardware transactional memory, and evaluate several real-world
transactional benchmarks to show that stateless model checking can keep up
with the developing concurrency demands of real-world programs.
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Chapter 1

Introduction

Please hold on. This thesis will be depﬂrﬁnﬂ s/zart{y ﬁ)r the Landslide terminal,
bﬂﬂﬂﬂﬂe claim, jmmw{ transparfatlbn, and t/bketlhﬂ.

—Pittsbmjgh International Airport (parﬂphmsed)

Pick up any recent concurrency-related research paper, and chances are its very first
sentence will tell you that concurrency bugs are notoriously difficult to find, reproduce,
diagnose, and/or fix [AAA"15, AAJS14, BAD"10, BBC"10, BG16, Blum12a, Blum18d,
CGS13,CMM13,CWG'11, DL15, EA03, EMBO10, FF09, HH16, Hual5, KAJV07, KGW10,
LCB11, LLLG16, LTQZ06, MLR15, MQO07, MQB*08, NWT*07, OAA09, SBGH12, Sull17b,
YCWT09, YNPP12, YSR12]. How could a single programming technique be so trouble-
some as to inspire multiple decades of verification research? Allow me to begin this thesis
by answering this question in layperson’s terms, using two parables.

My favourite way to explain concurrency to a non-technical audience is by analogy
with unlocking car doors. In many models of cars, the door handle and locking mecha-
nism are intertwined in such a way that the door cannot unlock while its handle is being
pulled [TT18]. Most car users, then, have suffered the experience of trying to open the
passenger door at exactly the same moment as the driver turns the key in the lock: it fails
to unlock, and they must beseech the driver to turn the key again! If they had pulled the
handle any later, it would have opened as normal; any earlier, and it would have been as
though not having the key at all, but would at least have unlocked properly at the first
turn of the key later. One would reasonably expect to never have to turn the key more
than once, so this violation of expected behaviour is a bug, and its dependence on the
two travelers’ actions interleaving in a particular way makes it a concurrency bug. This
example involves only three events (pulling the handle, releasing the handle, and turning
the key), but what of a system with hundreds or thousands of times more? Unfortunately,
the number of possible interleavings grows exponentially with the number of events.

The Islamic historian Ibn Khallikan told perhaps the first cautionary tale of exponen-
tial explosion [Khal274, KdS1868]. Sissa Ibn Dahir, credited with the invention of chat-
uranga (the precursor to modern chess), was invited by King Shihram to request any
reward he desired. Sissa requested that a grain of wheat be placed on the first square of a
chessboard, two in the second, and so on, doubling the number of grains in each previous
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square until all 64 be filled. The king at first laughed, thinking it a pittance, realizing only
later that to fulfill this would require more than all the wheat in all the cities on Earth.
Modern programmers will recognize this sum as 2%4-1, the largest value representable by
an unsigned 64-bit integer, or approximately 18 billion billion. The number of interleav-
ings in a concurrent system grows at a similarly intractable rate (although not necessarily
exactly doubling each time), with the number of chessboard squares filled with grain cor-
responding to the number of events in a program’s execution. A concurrency bug, then, is
a single poisoned grain of wheat, which must be rooted out from the stock before feeding
the townspeople. And Sissa himself is the programmer, whose software is invariably large
enough to be far beyond the reach of any exhaustive verification strategy.

1.1 Motivation

To take advantage of multiple cores for performance, programmers must write software
to execute concurrently, i.e., using multiple threads to run several parts of a program’s
logic simultaneously. However, when threads access the same shared data, they may in-
terleave in unexpected ways which change the outcome of their execution, just as when
multiple travelers interact with car doors at the same time. When an unexpected inter-
leaving produces undesirable program behaviour, for example, by corrupting shared data
structures, or by leaving the door locked as in the car example, we call it a concurrency bug.
The specific interleaving required to expose such a bug arises at random during normal
execution, and often with very low probability. Most commonly, a programmer searches
for concurrency bugs in her code by running it many times (in parallel, in serial, or both),
hoping that eventually, she will chance upon such an interleaving should one exist. This
technique, known as stress testing, is unreliable, providing no guarantee of finding the
failing interleaving in any finite amount of time. It also provides no assurance of correct-
ness: when finished, there is no way of knowing how many distinct thread interleavings
were actually tested. Nevertheless, stress testing remains popular because of how easily a
programmer can use it: she simply wraps her program in a loop, sets it to run overnight,
and interrupts it if her patience runs out before it finds a bug.

Stateless model checking [God97] is an alternative way to test for concurrency bugs,
or to verify their absence, which provides more reliable coverage, reproducibility, and
verification than stress testing. A stateless model checker tests programs by forcing them
to execute a new unique thread interleaving on each iteration, capturing and controlling
the randomness in a finite state space of all possible interleavings. However, attempting
to exhaustively check the entirety of such state spaces is akin to Sissa’s reward: for even
moderately-sized programs, there may be more possible ways to interleave every thread’s
every instruction than particles in the universe. Accordingly, a programmer who wants her
test to make reasonable progress through the state space must choose a subset of ways that
her threads could interleave, focusing on fully testing that subset, while ignoring other
possibilities she doesn’t think she cares about. However, it is difficult to choose a subset of
thread interleavings that will produce a meaningful, yet feasible test. Until computers can
automatically navigate this trade-off in some intelligent way, programmers will continue
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to fall back to the random approach of stress testing.

Another problem stateless model checking suffers is that certain types of programs
cannot be tested without the programmer putting forth some manual instrumentation
effort. For example, operating system kernels implement their own sources of concurrency
and their own synchronization primitives, so a checker must be told how to identify and
control the execution of each thread. Many undergraduate computer science curricula
culminate in project-oriented systems classes [Eck18a, Eck18b, PRB09] in which students
implement these very types of programs, but are left to their own devices when it comes
time to root out bugs. Some expert concurrency research wizards may be willing to add
manual annotations to their code for the sake of verification, but requiring manual effort
is a serious downside for anyone with a looming deadline, and especially so for students
who are still learning basic concurrency principles in the first place.

Finally, in the struggle to meet ever-increasing performance demands, hardware and
software alike has grown more and more complicated features for fine-grained concur-
rency control. Recent stateless model checking research is already beginning to address
some such cases, allowing for new sources of nondeterminism beyond simply the abil-
ity to interleave threads arbitrarily. For example, relaxed memory consistency allows for
multicore systems to reorder accesses to main memory [AG96], which introduces store
buffer nondeterminism in addition to thread nondeterminism [ZKW15], and event-driven
programming models, useful especially in mobile applications to improve responsiveness
and reduce power consumption, allow for threads to reenter themselves via event han-
dlers [JMR"15]. Transactional memory, which allows the programmer to specify arbi-
trary atomic execution sequences, has been supported by software libraries for decades
[HM93], but only recently have processor manufacturers introduced hardware-backed
transactions [HKO™14], replete with new complexity, and no verification tool which can
accurately model the concurrency of programs that use them yet exists.

1.2 Contributions

This thesis will address each of the problems introduced above, establishing stateless
model checking as a modern verification technique that can meet realistic human needs.
My thesis statement is as follows:

Combining theoretically-founded automatic reduction techniques and user-
informed heuristic ones, stateless model checking can sufficiently mitigate
exponential explosion to be a practical testing technique for inexperienced
users and real-world programs alike.

The foundation of this work is Landslide, a stateless model checker I have built over the
last seven years, first debuting in my M.S. thesis [Blum12a], so named because it tests
the stability of Pebbles programs students write in 15-410 at CMU. Since then, I have
extended it with many features and algorithms, some which work behind the scenes and
others which rely on human feedback to be effective, in pursuit of this thesis statement.
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The first half of the statement will serve as the overarching theme of this work: that as
impossible a problem as perfect formal verification may be, one may still hope to achieve
meaningful test results using an algorithm that knows its own limits, and compensates
for them with heuristics informed by the user’s own human intuition. The second half of
the statement can be broken down into three parts: coping with exponential explosion,
helping students, and addressing modern concurrency models; which correspond to the
three major contributions of this thesis, as follows:

1. Data-race preemption points and Iterative Deepening (Chapter 4). I will present
Quicksand, a stateless model checking execution framework that manages multiple
simultaneous Landslide instances to automatically cope with exponential explosion.
Quicksand is powered by Iterative Deepening, a new algorithm for navigating the
trade-off in how many preemption points to test at once. Iterative Deepening in-
corporates state space estimation [SBG12] to decide on-the-fly whether each state
space is worth pursuing, and uses data race analysis [SI09, FF09] to find new pre-
emption point candidates based on a program’s dynamic behaviour. This chapter
will include a soundness proof, showing that testing only synchronization and data-
race preemption points still constitutes a full formal verification of the test, and a
large evaluation, comparing its performance to three prior-work approaches across
600+ unique tests. I will show that Quicksand outperforms prior work in terms of
both finding bugs quickly and verifying correctness when no bug exists.

2. Educational use (Chapter 5). For the past seven semesters, I have offered a fully-
automated version of Landslide to students in 15-410, CMU’s undergraduate Oper-
ating System Design and Implementation class, for use as a debugging aid during
the thread library project [Eck18a]. I have also extended Landslide to handle Pintos
kernel projects from other universities [PRB09]. In the two most recent semesters,
I collaborated with Operating Systems course staff at the University of Chicago,
which uses Pintos, and at The Pennsylvania State University, which recently adopted
CMU’s thread library project, to provide their students an opportunity to benefit
from Landslide as well. At all three universities I then collected statistics on the
numbers and types of bugs found, and surveyed students to understand the human
experience. This section will present the study’s results and prove that stateless
model checking is suitable for use in an educational setting.

3. Hardware transactional memory (HTM) (Chapter 6). I will introduce a new con-
currency model for stateless model checkers to emulate HTM’s execution semantics
in terms of existing concurrency primitives. This model is accompanied by a sound-
ness proof which allows checkers to avoid simulating conflict abort rollbacks, reduc-
ing the state space substantially, while preserving the formal verification guarantee.
I have implemented a new transactional testing mode in Landslide, with support for
the many different abort reasons HTM introduces, optional weak atomicity seman-
tics for simulating software TM instead, and a “retry set” reduction algorithm to
identify and prune new types of equivalences. The evaluation includes several real-
world HTM programs and benchmarks, and shows that Landslide can both find bugs
and verify correctness using the new model with reasonable performance.
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1.3 Meta

Dear reader, whether you have come to read this whole document, to pick and choose
whichever sections interest you, or just to skim the figures and footnotes looking for easter
eggs, it is truly an honor to have you here. Before we get underway, allow me to present
some notes on reading this thesis that may soften the blow of these 200+ pages.

Experience

I have tried to make this document accessible to readers of all programming experience
levels, although some of the research being theoretical and several layers of abstractions
deep, I cannot promise easy reading to all. Chapter 2, Background, provides what I hope
are friendly concrete examples to help the reader feel comfortable with each level of intu-
ition that upcoming algorithms will build upon. These should suffice for the experiments
and overall contributions, if not necessarily the details of each algorithm or soundness
proof. In particular, Chapter 5, Education, may be approached with no knowledge of
concurrency or model checking, taking it merely as a study of a magic new debugging
tool in the classroom setting. The more ambitious reader may proceed to the Landslide
chapter’s algorithm walkthroughs (83.4), which should equip them to understand every
detail herein. Readers who are here only to skim and skip around should at least be aware
of the glossary (§2.5) to help clarify any terminology confusion.

Vision

Color will be used in figures and graphs to add visual contrast and make the data easier
to navigate at a glance, but only in redundant ways also signaled by symbols. I have
made some effort to choose palettes friendly to color-blindness; should the reader find
contrasts too low anyway, whether being color-blind or reading a physical copy printed in
greyscale, they may be assured all important distinctions still render in monochrome. For
example, ovals and rectangles typically depict different threads, and { distinguishes state
space estimates from completed verifications. Should any vision-impaired reader require
fully-textual figure descriptions, I would be happy to provide them upon request.

Language

Pronoun use will vary between more specific and more ambiguous to convey additional
nuance. The singular “I” connotes my own research contributions, while the royal “we”
should be taken to include the reader, such as when surveying background material or
related work, to which the author and reader share more similar relationships. The imper-
sonal “the programmer” will be referred to as she/her to highlight her role as the intended
user, separate from the underlying research, as well as to challenge readers’ unconscious
bias about gender in computer science. Gender-neutral pronouns will be used to refer to
individual students who participated in the user studies, as well as on the author themself.
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Fonts

The body of this thesis is set in Bitstream Charter, the monospace font is Inconsolata, the
epigraph font is Alexa, the Japanese font is Heisei Mincho, and the Arabic font is Amiri.

Code

This document is, in a way, only half the work of the thesis, the other half being Land-
slide’s implementation. While some readers may prefer to be taught in prose and/or
mathematical notation how an algorithm works, others may find that disorienting and
wish to see things in a way a compiler would understand. The Landslide codebase is
open-source under the BSD license, available at https://github.com/bblum/landslide.
Chapter 3 provides more detail and serves as a guide to browsing the repository. Later
chapters will often make parenthetical references to specific files and/or functions therein
which implement a feature under discussion.

1.4 Organization

The rest of this dissertation is organized as follows.

* Background: Chapter 2 will present the requisite background material on concur-
rent programming, stateless model checking, and the various types of programs
targeted by Landslide, concluding with a glossary of terminology for the reader’s
convenient reference.

* Landslide: Chapter 3 explains the design and implementation of Landslide and all
the special features it’s been equipped with over the years. It is the foundation upon
which all three contributions above build.

* Quicksand: Chapter 4 introduces Quicksand, a wrapper framework for Landslide
which incorporates data race analysis at run-time to find new preemption points
and uses the new Iterative Deepening algorithm to more intelligently choose which
state spaces to test, corresponding to contribution 1 above.

* Education: Chapter 5 discusses my evaluation of Landslide in CMU’s and The Penn-
sylvania State University’s class environment using thread libraries based on the
Pebbles kernel, and in the University of Chicago’s OS class environment using the
Pintos kernel, corresponding to contribution 2 above.

* Transactions: Chapter 6 presents my extension of Landslide’s concurrency model
to handle transactional concurrency and the evaluation thereof, corresponding to
contribution 3 above.

* Related Work: Chapter 7 honors my neighbours and ancestors in research spirit.

* Future Work: Chapter 8 identifies stateless model checking’s remaining shortcom-
ings and how new research might address them.

* Conclusion: Chapter 9 offers some thoughts on the future of the field.
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Chapter 2

Background

We can't be ﬁee unti{ we learn to /auﬂh at ourselves. Once  you ook in1 the mirror and see

J'p:st how foo/ish we can be, /ﬂuﬂhter is mevitable. And ﬁom /aujhfer, comes wisdom.
—G'Kar, Bab_y/(m 5

This chapter introduces the necessary background material on concurrency (§2.1),
stateless model checking, (§2.2), data race analysis (§2.3), and the relevant undergradu-
ate operating systems classes (§2.4). It concludes with a glossary of terminology (§2.5)
that I hope the reader may find convenient as a quick reference while reading later chap-
ters as well.

2.1 Concurrency

This section presents an elementary introduction to concurrent programming. I have
taken care to make it accessible to readers with even only basic programming experience,
familiar with flow control, functions, memory, and objects at most, although I cannot
avoid the inherent difficulty of multiple layers of abstraction building upon one another.
For an explanation to be “elementary” means that it requires very little be known ahead
of time to approach it, not necessarily that it be easy [Fey64].

2.1.1 The basics

Modern software often turns to multithreading to improve performance. In a multithreaded
program, multiple execution units (or threads) execute the same or different sections of
code simultaneously. This can provide speedups up to a factor of the number of threads
running in parallel, but may also provide surprising execution results.

Simultaneity

This simultaneity of threads is achieved either by executing each one on a separate CPU,
or by interleaving them nondeterministically (as controlled by clock interrupts) on the
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same CPU. Because clock interrupts can occur at any instruction!, we consider single-
CPU multithreading to be simultaneous at the granularity of individual instructions. Like-
wise, when multiple CPUs access the same memory, hardware protocols generally ensure
that the events of a single instruction are executed atomically from the perspective of all
CPUs. Although there are some exceptions — unlocked memory-to-memory instructions,
unaligned writes [Lul4], and weak memory consistency models [AG96] — we model mul-
ticore concurrency the same way as above, deferring these exceptions beyond the scope
of this work. We refer to an execution trace depicting the global sequence of events as a
thread interleaving or schedule.

Shared state

When a programming language offers multithreaded parallelism but forbids access to any
shared state between threads [VWW96, KN18], the simultaneity of threads is largely irrel-
evant to the program’s behaviour. However, “thread-unsafe” languages such as C, C++,
Java, and so on remain popular, in which threads may access global or heap-allocated
variables and data structures with no enforced access discipline. The behaviour of such
programs is then subject to the manner in which these accesses interleave.

2.1.2 Identifying bugs

Even if a program’s behaviour is nondeterministic, that does not necessarily mean it has a
bug. After all, many programs use random number generation to intentionally generate
different outputs. We say a concurrency bug occurs when one or more of a program’s non-
deterministic behaviours is both unanticipated and undesired. Most often, a concurrency
novice who programs with shared state will consider the possible interleavings where
one thread’s access sequence occurs entirely before the other’s, but neglect to consider
intermediate outcomes in which the threads’ access sequences are interleaved.

Consider the program in Figure 2.1: Any output between 2 and 2000 is possible?, but
whether this constitutes a bug is a matter of perspective. Was the program written to count
to 2000, or was it written to compute a randomized distribution? In this thesis, we make
no attempt to reason about the “intent” of programs, so we further restrict concurrency bug
to denote a program behaviour which is mechanically identifiable, according to commonly-
accepted notions of which programs behaviours are always bad. Bug conditions include
assertion failures, memory access errors (i.e., segmentation fault or bus error), heap errors
(i.e., use-after-free or overflow), deadlocks, and infinite loops (which must be identified
heuristically [Tur37]).

1 With some exceptions in kernel-level programming, discussed later.
2 Fun exercise for the reader: Show why 2 is a possible output, but 1 is not!
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int x = 0;

void count() {
for(int i = 0; i < 1000; i++)
X++:

)

Thread 1 Thread 2
load tmp <- x;

3

void main() {
tid1 = thr_create(count);
tid2 = thr_create(count);
thr_join(tid1);
thr_join(tid2);
printf("%d\n", x);

load tmp <- x;
add tmp <- 1;
store x <- tmp;
add tmp <- 1;
store x <- tmp;

(a) Source listing for a multithreaded (b) Example interleaving of (a)’s compiled
program which might count to 2000.  assembly, in which two concurrent iterations
of the loop yield one net increment of x.

Figure 2.1: Example concurrent program in which simultaneous accesses to shared state
may interleave to produce unexpected results.

2.1.3 Concurrency primitives

To prevent unexpected interleavings such as the example in Figure 2.1(b), most con-
current programs use concurrency primitives to control which interleavings are possible.
Controlling nondeterminism is not typically provided by any features of programming
languages themselves; rather, it is achieved via special atomicity mechanisms provided
by the CPU and/or operating system — hence the term “primitive”. For example, x86
CPUs provide the xchg instruction, which performs both a read and subsequent write to
some shared memory, with no possibility for other logic to interleave in between. Us-
ing such atomic instructions as building blocks, concurrency libraries provide abstractions
for controlling nondeterminism in several commonly-desired ways. These include locks,
descheduling, condition variables, semaphores, reader-writer locks, and message-passing.

Each such abstraction provides certain semantics about which thread interleavings can
arise surrounding their use. When building a tool for testing concurrent programs, one
may include some computational understanding of the behaviour of any, or all, of these ab-
stractions. Annotating a certain abstraction’s semantics treats it as a trusted concurrency
primitive in its own right, and allows the testing tool to reduce the possible space of inter-
leavings (or the set of false positive data race candidates reported, et cetera; see §3.2.1)
at the cost of increasing the implementation and theoretical complexity of the analysis
(86.3.3). This thesis will consider locks, descheduling, and transaction begin/end as the
only concurrency primitives, and assume the others listed above are implemented using
those as building blocks (an exercise for the reader [Eck18a]).

Locks (or mutexes, short for “mutual exclusion locks”) are objects, shared by multiple
threads, which allow the programmer to mark certain critical sections of code that must
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typedef struct mutex {
volatile int held;

} mutex_t;

void mutex_lock(mutex_t *mp) {
while (xchg(mp->held, 1))

int x;
mutex_t m;
void count() {
for (int 1 = 0; 1 < 1000; i++) {
mutex_lock(&m);

} yield(-1); X+
lock ;
void mutex_unlock(mutex_t *mp) { ) mutex_unlock(&m);
mp->held = 0;
) 3
(a) A simple mutual exclusion lock built (b) The count function from Figure 2.1, ad-
using the xchg instruction. justed to use a mutex to ensure each incre-

ment of x is uninterruptible.

Figure 2.2: Using a locking primitive to protect accesses to shared state.

not interleave with each other. When one thread completes a call to mutex_lock(mp), all
invocations by other threads on the same mp will block (i.e., wait) until the corresponding
mutex_unlock(mp). Figure 2.2(a) shows how a yielding mutex (not the best implementa-
tion, but the simplest) may be implemented using xchg, and (b) shows how a mutex may
be used to fix the example from Figure 2.1.

2.1.4 Transactional memory

Critical sections of code must be protected from concurrent access, even when it’s not
known in advance whether the shared memory accesses between threads will actually
conflict on the same memory addresses. The concurrency primitives discussed above take
a pessimistic approach, imposing a uniform performance penalty (associated with the
primitives’ implementation logic) on all critical sections, whether or not a conflict is likely.
Some implementations may be optimized for “fast paths” in the absence of contention,
but must still access shared memory in which the primitive’s state resides.

Transactional memory [HM93] offers a more optimistic approach: critical sections
of code are marked as “transactions”, analogously to locking a mutex, and allowed to
speculatively execute with no protection. If a conflict between transactions is detected, the
program state is rolled back to the beginning of the transaction, and a backup code path
may optionally be taken. Consequently, no intermediate state of a transacting thread is
ever visible to other threads; all changes to memory within a transaction become globally
visible “all at once” (or not at all). This method optimizes for a common no-contention
case of little-to-no overhead, pushing extra both code and implementation complexity to
handling conflicts.

Transactional memory (TM) may be implemented either in hardware, using special
instructions and existing cache logic, or in software, via library calls and a log-based
commit approach. Software transactions (STM) [ATLM*06] can be used on any com-
modity processor, but must impose runtime overhead associated with logging. Hardware
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void count() {
for (int 1 = 0; i < 1000; i++) {
if ((status = _xbegin()) == _XBEGIN_STARTED) {
X++;
_xend();
} else {
mutex_lock(&m);

X++:

)

mutex_unlock(&m);

}

Figure 2.3: The example count routine from Figure 2.2, rewritten to use HTM. If the
transaction in the top branch aborts, whether from a memory conflict or random system
interrupt, execution will revert to the return of _xbegin, status will be assigned an error
code indicating the abort reason, and control will drop into the else branch. The pro-
grammer can then use explicit synchronization, such as a mutex, to resolve the conflict.

transactions (HTM) [Intel18] achieve better performance by reusing existing cache co-
herence logic to detect conflicts, but require explicit support from the CPU, which is not
yet widespread. Haswell [HKO ™ 14] is the first x86 architecture to support HTM, offering
three new instructions: xbegin, xend, and xabort, to begin, commit, and fail a transaction,
respectively. The example program in Figure 2.3 demonstrates how these primitives can
be used to synchronize a simple shared access without locking overhead in the common
case®, using GCC’s compiler intrinsics [GNU16].

Concerning possible execution patterns, the main difference between STM and HTM
is the circumstances under which a transaction may abort. A software-backed transaction
will abort if and only if a memory conflict occurs therein with another thread. HTM, how-
ever, is backed by the CPU’s cache, and is therefore subject to other circumstances such as
cache capacity or interrupt-triggered cache flushes which may force an abort even when
no memory conflict occurs. Chapter 6 will explore the consequences of this difference
further. This thesis will focus on HTM as my platform for testing transactional programs,
to highlight the importance of researching advanced testing techniques in anticipation of
upcoming hardware features.

2.2 Stateless model checking

Model checking [GW94, God97] is a testing technique for systematically exploring the
possible thread interleavings of a concurrent program. A model checker executes the pro-
gram repeatedly, each time according to a new thread interleaving, until all interleavings
have been tested or the CPU budget is exhausted. During each execution, it forces threads

3 The solution presented here is actually incomplete; stay tuned until Chapter 6 for the surprising twist!
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to execute serially, thereby confining the program’s nondeterminism to scheduler thread
switches. It then controls the scheduling decisions to guarantee a unique interleaving is
tested each iteration.

2.2.1 The state space

To understand what it means to exhaustively test all possible thread interleavings, one
must define the possible execution sequences as a finite state space. To visualize this, using
a single iteration of the x++; loop from Figure 2.1 as an example, with x++; expanded
into its three corresponding pseudo-assembly instructions, Figure 2.4 (a) shows all possible
execution interleavings between 2 threads.

Static versus dynamic analysis

Model checking is a dynamic program analysis, meaning that it observes the operations
and accesses performed by the program as its code is executed. In contrast, static pro-
gram analyses check certain properties at the source code level. Static analyses are ideal
for ensuring certain standards of code quality, which often correlates with correctness,
but cannot decide for certain whether a given program will fail during execution with-
out actually running the code [G31]. Static analyses face the challenge of false alarms
(or false positives): code patterns which look suspicious but are actually correct. A de-
bugging tool which reports too many false alarms will dissuade developers from using
it [EA03]. Dynamic analysis, our approach, identifies program behaviours that are def-
initely wrong, so each bug report is accompanied by concrete evidence of the violation.
Assertions, access violations, use-after-free of heap memory, and deadlock are examples
of commonly-checked failures, although a checker may also include arbitrary program-
specific predicates.

Preemption points

During execution, a model checker identifies a subset of the program’s operations as “in-
teresting”, i.e., where interrupting the current thread to run a different one is likely to
produce different behaviour. These so-called preemption points may be identified by any
combination of human intuition and machine analysis. Typical preemption points include
synchronization API boundaries (e.g., mutex_lock()) or accesses to shared variables. Con-
sidering that at each preemption point multiple threads exist as options to run next, the
set of possible ways to execute the program can be viewed as a tree. Figure 2.4(b) shows
a visualization of the corresponding tree from our example program, using each pseudo-
assembly instruction as a preemption point.

The number of preemption points in each execution defines the depth of this tree, and
the number of threads available to run defines the branching factor. Hence, in a program
with n preemption points and k threads available to run at each, the state space size is
O(n*). Nevertheless, to fully test all possible behaviours of a program, we must check the
executions corresponding to every branch of the tree. Addressing the scaling problem in

14



00

00

00

0
0
0
0
0
0

@ tmp2 <- x tmp2 <- x tmp2 <- x tmp2 <- x tmp2 <- x tmp2 <- x
Y A4 A4 Yy A4
@ tmp2 <- x tmp2 <- x tmp2 <- x tmp2++ tmp2++ tmp2++ @ @
v A 4 A 4 A\ 4 4 5 2
tmp2 <- x tmp2++ tmp2++ X <- tmp2 @ tmp2++ tmp2++
A4 A 4 A4 A4 A4 y
tmp2++ x <- tmp2 tmp2++ x <- tmp2 tmp2++ X <- tmp2
A4 y A4 Yy A 4 A 4
(a) Interleavings visualized individually, as a list.
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(b) Interleavings (same order as in (a)), with common prefixes
combined as “preemption points”, forming a tree.

Figure 2.4: Visualization of interleaving state space for the program in Figure 2.1.
Thread 1 is represented by purple ovals, thread 2 by yellow squares, and time flows from
top to bottom. As the two threads execute the same code, without loss of generality
thread 1 is fixed to run first — the full state space is twice the size, and the other half is
symmetric to the one shown.



this exponential relation is the central research problem for all model checkers, which this
thesis will address in Chapter 4.

Some model checkers, such as SPIN [Hol97], explicitly store the set of visited program
states as a means of identifying equivalent interleavings. From the perspective of such
tools, state spaces such as these wherein equivalent states may be reached by multiple
paths are represented as a directed acyclic graph (DAG) instead of as a tree. This approach
is called stateful model checking. This thesis focuses on stateless model checking (and
execution trees, not DAGs), which instead analyzes the sequence of execution events to
avoid a prohibitive memory footprint. Henceforth “stateless model checking” will often
be abbreviated simply as “model checking” for brevity. Also, the term “state space” was
originally coined to refer to the stateful approach’s emphasis on the DAG’s nodes (i.e.,
program states); while stateless checkers emphasize the tree’s branches (i.e., execution
sequences) instead, I will continue to use “state space” for consistency with prior work.

2.2.2 On the size of state spaces

At its essence, stateless model checking research is a perpetual struggle to become more
and more efficient in order to test and verify bigger and bigger programs. But whence this
efficiency? Techniques for coping with the exponential explosion fall into two categories:
reduction techniques, i.e., removing redundant interleavings from the state space when we
can prove they are equivalent to some interleaving already tested, and search heuristics,
i.e., prioritizing interleavings judged as more likely to contain bugs (should bugs exist) in
case we are unable to exhaustively test all interleavings after all.

Reduction techniques

Dynamic Partial Order Reduction [FGO5] (henceforth, DPOR) is the most popular algo-
rithm for mitigating the exponential explosion that arises as program size increases.

To define it abstractly, let independent transitions denote a pair of executions of two
threads, each from one preemption point to the next, in which there are no read/write
or write/write access pairs to the same memory between threads. DPOR reduces a state
space, originally exponentially-sized in the number of thread transitions, to an equivalent
one (i.e., testing which suffices to check all program behaviours that could arise in the
original state space) exponentially-sized in the number of dependent thread transitions.
More technically, it identifies equivalent execution sequences according to Mazurkiewicz
trace theory [Maz87], and tests at least one execution from each equivalence class.

For a friendlier, more concrete example, consider Figure 2.5, which highlights part of
an execution tree where the execution ordering of threads 1 and 2 are swapped, and each
interleaving has a respective subtree (i.e., possible interleavings given the fixed execution
prefix leading up to it). Any events executed before the thread 1/thread 2 sequence, any
other runnable threads besides these two, and what logic the program executes in those
subtrees are all presumably arbitrary. In these two highlighted branches, if the transitions
of threads 1 and 2 are independent, DPOR deduces that the subsequent program states
(indicated by the red arrow) are equivalent. Thence, only one of the two interleavings
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tmp2++

Figure 2.5: DPOR identifies independent transitions by different threads which can com-
mute without affecting program behaviour. Here, because each thread’s local operations
on tmp1/tmp2 are not shared memory conflicts, the states marked with the red arrow are
guaranteed identical. Hence, only one of the subtrees need be explored.

and its respective subtree needs to be executed in order to check all possible program
states. §3.4.2 explains how DPOR implements such a deduction in more detail.

Over the years, researchers have developed many enhancements to DPOR, such as
Optimal DPOR [AAJS14], parallelizable DPOR [SBGH12], SAT-directed model checking
[DL15], Maximal Causality Reduction [Hual5], and DPOR for relaxed memory architec-
tures [ZKW15].

Search heuristics

However, even though DPOR can prune an exponential number of redundant interleav-
ings, the state space size is still exponential in the number of dependent (conflicting) in-
terleavings. Developers will always want to test larger and larger programs, so no matter
the quality of our reduction algorithm, we must accept that some tests will be too large to
be fully tested in a reasonable time. Hence, recent model checking research has turned
to heuristic techniques for achieving further reduction, optimizing the search to try to
uncover bugs faster (should they exist) at the expense of possibly missing other bugs, or
missing the chance to complete a full verification.

Iterative Context Bounding [MQO7] is a popular such technique which heuristically
reorders the search to prioritize interleavings with fewer preemptions first. This heuristic
is based on the insight that most bugs require few preemptions to uncover, so interleav-
ings with a number of preemptions that exceeds a certain bound will be de-prioritized,
only tested until after all the fewer-preemption interleavings are completed. Preemption
sealing [BBC"10] is another heuristic strategy which restricts the scope of the search by
limiting the model checker to use only preemption points arising from certain functions
in the source code. This allows developers to vastly reduce state space size by identifying
which program modules are already trusted, although it requires some human intuition to
correctly mark those boundaries. Iterative Deepening, presented in Chapter 4, is another
such search heuristic.
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2.3 Data race analysis

Data race analysis [SBNT97] identifies pairs of unsynchronized memory accesses between
threads.

2.3.1 Definition

Two instructions are said to race if:
1. they both access the same memory address,

2. at least one is a write,
3. the threads do not hold the same lock,
4.

and no synchronization enforces an order on the thread transitions (the Happens-
Before relation [Lam78, OC03], described below).
In Figure 2.6, the pairs of lines marked with comments (Al and A2, B1 and B2) race.

int x = 0; bool y = false; mutex_t mx;

Thread 1 Thread 2
1 x++; // Al
2 mutex_lock(&mx);
3  mutex_unlock(&mx);
4 mutex_lock (&mx);
5 mutex_unlock(&mx);
6 x++; // A2
(a) True potential data race.
Thread 1 Thread 2
1 x++; // B1
2 mutex_lock(&mx);
3 y = true;
4  mutex_unlock(&mx);
5 mutex_lock (&mx);
6 bool tmp = y;
7 mutex_unlock(&mx);
8 if (tmp) x++; // B2

(b) No data race in any interleaving.

Figure 2.6: Data race analyses may be prone to either false negatives or false positives.
Applying Happens-Before to program (a) will miss the potential race possible between
A1/A2 in an alternate interleaving, while using Limited Happens-Before on (b) will pro-
duce a false alarm on B1/B2.
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A data race analysis may be either static (inspecting source code) [EA03] or dynamic
(tracking individual accesses arising at run-time) [SI09]. This paper focuses exclusively
on dynamic analysis, so although our example refers to numbered source lines for ease of
explanation, in practice we are actually classifying the individual memory access events
corresponding to those lines during execution. Actually, each x++ statement likely com-
piles to two separate load or store instructions, so each of those two instructions from
each of the two marked source lines pairwise will race (except for the two loads, which
are both reads).

2.3.2 Happens-Before

Condition 4 of the above definition expresses the notion that the access pair can be ex-
ecuted concurrently, regardless of whether the hardware actually carries out the opera-
tions in the same physical instant. Several approaches exist to formally representing this
condition.

* Most prior work focuses on Happens-Before [Lam78] as the order relation between
accesses. [SEST12] and [OCO03] identify a problem with this approach: it cannot
identify access pairs separated by an unrelated lock operation which could race in
an alternate interleaving, as shown in the example program in Figure 2.6(a). We
call such unreported access pairs false negatives.

* The Limited Happens-Before relation [OCO03] reports such potential races by con-
sidering only blocking operations like cond_wait to enforce the order. However,
consider the similar program in Figure 2.6(b), in which the access pair ceases to
exist in the alternate interleaving. Limited Happens-Before will report all potential
races, avoiding false negatives [SI0O9], but at the cost of necessarily reporting some
such false positives.

* In recent work, the Causally-Precedes relation [SES'12] extends Happens-Before to
additionally report a subset of potential races while soundly avoiding false positives.
It tracks conflicting accesses in intervening critical sections to determine whether
lock events are unrelated to a potential race. Causally-Precedes will identify the
potential race in Figure 2.6(a), as the two critical sections do not conflict, although
it can still miss true potential races in other cases.

Landslide implements both Happens-Before (henceforth referred to as Pure Happens-
Before for clarity) and Limited Happens-Before. Chapter 4 includes a comparison of the
two approaches for the purpose of finding new preemption points for model checking.

2.4 Education

This thesis will tackle Pebbles and Pintos, two different system architectures used in ed-
ucational operating systems courses. This section describes the projects which students
implement and which Landslide tests.
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2.4.1 Pebbles

The Pebbles kernel architecture is used at Carnegie Mellon University (CMU) in 15-410,
Operating System Design and Implementation [Eck18b, Eck18a]. In the course of a
semester, students work on five programming assignments; the first two are individual,
and the remaining three are the products of two-person teams. I will focus on the third
and fourth of these, the thread library and kernel, called “P2” and “P3” respectively (the
project numbers start at 0). The other three (a stack-crawling backtrace utility, a bare-
metal game with device drivers, and a small extension to the P3 kernel) are not of con-
cern in this thesis. The course’s prerequisite is 15-213, Introduction to Computer Systems
[BOO1, BO10]. Both P2 and P3 are built using the Pebbles system call specification, out-
lined in Table 2.1.

P2

The thread library project [Eck18a] has two main components: implementing concur-
rency primitives, and implementing thread lifecycle and management routines. Students
implement it on top of a reference Pebbles kernel implementation (named Pathos [SFJ09]),
which is distributed as an obfuscated binary to protect the subsequent challenges of P3.
The required concurrency primitives for P2 are as follows:

* Mutexes, with the interface mutex_lock(mp) and mutex_unlock(mp), whose func-
tionality is described earlier this chapter. Students may use any x86 atomic in-
struction(s) they desire, such as xchg, xadd, or cmpxchg, and/or the deschedule/
make_runnable system calls offered by the reference kernel.

* Condition variables, with the interface cond_wait(cvp, mp), cond_signal(cvp),
and cond_broadcast(cvp). cond_wait() blocks the invoking thread, “simultane-
ously” releasing a mutex which protects some associated state (atomically, with re-
spect to other calls under that mutex). cond_signal() and cond_broadcast() wake
one or all waiting threads. Students must use the deschedule and make_runnable
system calls to implement blocking (busy-waiting is forbidden), and typically in-
clude an internal mutex to protect the condition variable’s state as well. The pri-
mary challenge of this exercise is ensuring the aforementioned atomicity between
cond_wait’s unlock and deschedule, with respect to the rest of the interface.

* Semaphores, with the interface sem_wait(sp) and sem_signal(sp) (sometimes also
called P and V in other literature, from Dutch, originally passering and vrijgave
[EWD35], later often explained as proberen and verhogen). The semaphore can
be initialized to any integer value; if initialized to 1, it behaves like a mutex. Stu-
dents typically implement semaphores using mutexes and condition variables, not
using atomic instructions or system calls directly.

* Reader-writer locks (also called R/W-locks or rwlocks), with the interface rwlock_
lock(rwp, mode) and rwlock_unlock(rwp). mode may be either RWLOCK_READ or
RWLOCK_WRITE. Behaves as mutexes, but multiple readers may access the critical sec-
tion simultaneously. Students typically implement rwlocks using mutexes and con-
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| System call name | Summary

Lifecycle management

fork
thread_fork
exec

set_status
vanish

wait

task_vanish*

Duplicates the invoking task, including all memory regions.
Creates a new thread in the current task.

Replaces the program currently running in the invoking task with
a new one specified.

Records the exit status of the current task.

Terminates execution of the calling thread.

Blocks execution until another task terminates, and collects its exit
status.

Causes all threads of a task to vanish.

Thread management

gettid Returns the ID of the invoking thread.

yield Defers execution to a specified thread.

deschedule Blocks execution of the invoking thread.

make_runnable Wakes up another descheduled thread.

get_ticks Gets the number of timer ticks since bootup.

sleep Blocks a thread for a given number of ticks.

swexn Registers a user-space function as a software exception handler.
Memory management

new_pages Allocates a specified region of memory.

remove_pages

Deallocates same.

Console I/O

getchar*
readline

print
set_term_color
set_cursor_pos
get_cursor_pos

Reads one character from keyboard input.
Reads the next line from keyboard input.
Prints a given memory buffer to the console.
Sets the color for future console output.
Sets the console cursor location.

Retrieves the console cursor location.

Miscellaneous
1s Loads a given buffer with the names of files stored in the RAM disk
“file system.”
halt Ceases execution of the operating system.
misbehave* Selects among several thread-scheduling policies.

Table 2.1: The Pebbles specifcation defines 25 system calls. Students are not required to
implement ones marked with an asterisk (*), though the reference kernel provides them.
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dition variables, not using atomic instructions or system calls directly.
The interface to each also includes an associated _init() and _destory() function.
The thread lifecycle/management routines are as follows:
* thr_init(stack_size) initializes the thread library, setting a custom, fixed stack
size to be allocated to new threads.

* thr_create(child_func, child_arg) spawns a new thread to run the specified
function with the specified argument. There is a semantic gap between this function
and the thread_fork system call (which takes no parameters, makes no changes to
the user’s address space, and cannot meaningfully be invoked from C code) which
students must bridge. Returns an integer thread ID of the newly created thread.

* thr_exit(status) completes execution of the calling thread, recording an exit sta-
tus value. This function does not return to its callsite. The main challenge of this
function is to allow another thread to free the memory used for the exiting thread’s
stack, without risking any corruption as long as the exiting thread continues to run.

* thr_join(tid, statusp) blocks the calling thread until the thread with the speci-
fied thread ID exits, then returns, collecting its exit status.
Other than thr_init() (which is necessarily single-threaded), concurrency errors be-
tween any two (or all three) of these functions are very common in student submissions.
Finally, students also implement automatic stack growth using the swexn system call,
which is not relevant to this thesis.

P3

In P3, students implement a kernel which provides the same system calls shown in Ta-
ble 2.1, previously provided by the reference kernel. Pebbles adopts the Mach [ABB*86]
distinction between tasks, which are resource containers, and threads, each of which ex-
ecutes within a single task. This requires less implementation complexity than the more
featureful rfork model of Plan 9 [PPTT90], or the clone model of Linux.

Although the interfaces are not mandated as they were in P2, all Pebbles kernels must
necessarily contain the same abstract components. These include:

* Around-robin scheduler, including context switching, timer handling, and runqueue

management;

* Some approach to locking, often analogous to P2’s concurrency primitives (hence-
forth referred to as “kernel mutexes”), and some approach to blocking threads in-
definitely;

* A virtual memory implementation (page directories and tables, frame allocator, et
cetera);

* A program loader;
* Lifecycle management code for creation and destruction of threads and tasks;

* Other miscellany such as a suite of fault handlers to ensure no user program can
cause the kernel itself to crash.
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Because user programs can invoke any combination of system calls or fault handlers simul-
taneously, concurrency bugs can arise from the interaction of any subset of kernel com-
ponents with each other. The most common bugs students face arise from the interaction
of some component with itself (e.g., concurrent invocations of new_pages/remove_pages
in the same process), or from the interaction between an exiting thread and some other
thread trying to communicate with it (vanish versus, well, anything else, really). The
most difficult concurrency problem in P3 is that of coordinating a parent and a child task
that simultaneously exit: when a task completes, live children and exited zombies must be
handed off to the task’s parent or to the init process, when the task’s parent may itself be
exiting; meanwhile, threads in tasks that receive new children may need to be awakened
from wait. Careless solutions to this problem are prone to data races or deadlocks.

Secrecy

The 15-410 course staff is notoriously secretive about the nature of many concurrency
bugs students commonly encounter during P2 and P3. This is driven by a desire to cause
students to find, diagnose, and fix these bugs on their own during the projects, rather
than to be surprised by them afterwards during grading [Eck18f]. One such example
is the paraguay unit test distributed with P2 (§5.1.3), which targets a subtle condition-
variable bug. The test uses the misbehave system call to amplify the probability of a
particular thread interleaving, likely to expose the bug, which is otherwise very unlikely
to arise in normal execution. The reference kernel specification [Eck18b] does not define
the misbehave modes’ behaviours, as doing so would deprive students of the learning
experience of discovering the interleaving in question on their own. I will occasionally
use intentionally vague phrasing to preserve the mystery of these bugs.

Use at other universities

In the Spring 2018 semester, the Operating Systems class at Penn State University (hence-
forth CMPSC 473 and PSU, respectively) offered the P2 thread library project as part of
its curriculum. Students in this class implement P2 on a 6 week project timeline (com-
pared to 2 weeks at CMU), work alone rather than in pairs, skip the swexn automatic stack
growth portion, and rather than running their code with a reference Pebbles kernel binary
in a simulator, use the Pebwine emulation layer [Sull7a] to run Pebbles-compatible pro-
gram binaries in the Linux userspace. Otherwise, the project is identical to CMU 15-410’s
p2.

2.4.2 Pintos

The Pintos kernel architecture [PRB09] is used at several universities, including the Uni-
versity of Chicago, Berkeley, and Stanford. Its basecode implements a rudimentary ker-
nel, consisting of a context switcher, round-robin scheduler, locking primitives, and pro-
gram loader, upon which students add more features in several projects. Most relevant
to this thesis, the basecode provides the following functions/libraries, among others:
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* Semaphores (the basic concurrency primitive, implemented using direct scheduler
calls): sema_up(), sema_down(), sema_try_down();

* Locks (which wrap a 1-initialized semaphore), lock_acquire(), lock_release(),
lock_try_acquire();

* Condition variables (also implemented using scheduler calls): cond_wait(), cond_
signal(), cond_broadcast(), with the same semantics as Pebbles P2 condvars;

* Basic round-robin scheduling facilities: thread_block() (a kernel-level analogue to
Pebbles’s deschedule), thread_yield()

* Kernel thread lifecycle management, thread_create() and thread_exit(), includ-
ing stack space memory management;

* Interrupt and fault handlers;

* Apage allocator, palloc_get_page(), palloc_get_multiple(), palloc_free_page(),
and palloc_free_multiple().

Both Pebbles and Pintos basecodes offer a standard C library including malloc(), string-
formatting, printing, et cetera.

Although there is some variety in supplemental assignments, all Pintos courses include
three core projects building on the Pintos basecode:

* Threads: Students must implement an “alarm clock” (analogous to Pebbles’s sleep
system call), a priority scheduling algorithm, and a multi-level feedback queue
scheduler.

* Userprog: Provided with rudimentary virtual memory and ELF loader implementa-
tions, students must implement argument passing and several system calls associ-
ated with userspace programs, including exec, exit, wait, and file descriptor man-
agement.

* Filesys: Provided with a simple “flat” filesystem implementation, students must ex-
tend it with a buffer cache, extensible files, and subdirectories.

Some schools further offer a virtual memory project, extending the provided VM with
a frame table and supplemental page table and fault handler [Ous16, Gunl14], or sup-
plemental HTTP server and malloc() assignments [Jos16]. This thesis is not concerned
with these assignments. as they are are largely architectural/algorithmic projects rather
than concurrency-oriented ones. The main concurrency challenges in Pintos projects arise
from the threads and userprog assignments: implementing a correct alarm routine, ensur-
ing the priority scheduler remains safe in the presence of concurrent threads of the same
priority, and designing correct interactions between the wait and exit system calls.

2.5 Glossary

This section provides a convenient reference of terminology used throughout the thesis.
Use of italics within definitions will indicate terms also defined elsewhere in the list.
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. Actor. (Also “actor concurrency model”.) An independent execution component
of a concurrent system. In pthread-like multithreaded programs, each thread is an
actor. In distributed systems, each machine is an actor.

. API. Short for “application programming interface” (which nobody ever says). A set
of function signatures which comprise the interface to a body of code. For example,
the standard mutex API consists of mutex_init(), mutex_lock(), mutex_unlock(),
and optionally mutex_trylock() and mutex_destroy().

. Atomic. Said of a sequence of operations within a single thread, whose intermediate
state cannot be observed by or interfered with by certain conflicting operations from
another thread. Must always be qualified as “atomic with respect to X”, where X is the
set of possibly-conflicting operations to be protected against. Apart from hardware-
provided atomic assembly instructions (e.g., xchg), i.e., for any multi-instruction
sequence, setting X as “everything” can be surprisingly difficult to achieve safely in
practice; for example, disabling interrupts in kernel code does not prevent other
CPUs’ simultaneous execution.

. Atomicity violation. A term introduced by AVIO [LTQZO06] to refer to a particular
class of concurrency bug in which the programmer’s expectation of atomicity around
a certain sequence of operations is violated by another thread interleaving in be-
tween. This is distinct from language-level data races, which may result in bugs by
being reordered by the compiler or hardware (see relaxed memory); however, this
thesis checks programs at the executable level and assumes sequential consistency,
so all data races that still result in bugs (e.g., unprotected x++) must technically also
be atomicity violations. Also, this thesis is focused on identifying failures, leaving
root cause diagnosis to the user, so will simply avoid the term entirely.

. Benign. Said of a data race, or of nondeterministic behaviour in general, which does
not lead to a concurrency bug in any interleaving.

. Branch. Another term for interleaving, with an emphasis on the execution tree inter-
pretation of state spaces. May also refer to an entire subtree outside of the current
interleaving, characterized by the choice to run a certain thread at a certain past
preemption point, comprising all possible interleavings which may arise with that as
a prefix.

. Bug. See concurrency bug.

. Completeness. In logic, said of an inference system in which any proposition con-
sistent with the axioms can be proved. When speaking of state space reduction, could
mean opposite things depending on perspective: complete from an interleaving cov-
erage perspective would mean not skipping any buggy interleavings; complete from
a state space reduction perspective would mean not testing any two equivalent in-
terleavings without pruning one. I define soundness as the dual from the reduction
perspective (i.e., not pruning anything unsafe to prune), which is actually identical
to the coverage perspective definition of completeness. To avoid confusion, this the-
sis avoids this term altogether, using optimality to refer to the reduction perspective
definition instead.
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9.

10.
11.

12.

13.

14.

15.
16.

17.

18.

Concurrency bug. A program behaviour which manifests nondeterministically de-
pending on the thread scheduling pattern, which is not desired or intended by the
programmer. This thesis further assumes these to be identifiable by computable
predicates on the execution state, excluding some real bugs which may result in
data corruption that never actually leads to crashes or assertion failures under the
test case in question.

Conflict. See memory conflict.

Data race. An unsynchronized pair of memory accesses between two threads that
can, may, or did execute concurrently. Race for short (see also race condition). Dis-
tinguished further in this thesis as limited happens-before races and pure happens-
before races; see §2.3. Distinct from the more nebulously-defined concurrency bug,
in that they are identified precisely by analysis on execution traces of one (or all)
thread interleavings. This thesis considers any memory accesses not protected by a
known trusted mutex API to be potential races; this may include atomic instructions
such as xchg, which most all-data-races-are-bugs research does not include, but are
necessary for Iterative Deepening’s verification guarantee (84.3).

Deadlock. An execution state among a set of N threads, where each is blocked
waiting for an event that can be caused only by another thread in the set [Eck18e].
May arise either deterministically or concurrently; Landslide considers it a bug in
any case.

Deterministic bug. As concurrency bug, but manifesting in all (or at least most)
thread interleavings, making it easy for programmers to find and debug without
advanced tooling. This thesis will occasionally use “manifests on the 1st interleaving
Landslide tested” as an approximation, without necessarily checking for its presence
or absence in other branches.

Disjoint. Said of a pair or of two sets of memory accesses when there are no two
elements that share an address and also are not both reads.

DPOR. Dynamic partial order reduction.

Dynamic analysis. Program analysis technique which involves analyzing concrete
execution(s) of a program, either through tracing (via compiler-inserted instru-
mentation, simulation, or other means) or through post-hoc analysis of event logs.
Searches for concrete evidence of undesirable program behaviour, and is blind to
what the source code looks like (or even what language it be written in). Opposite
of static analysis.

Dynamic partial order reduction (DPOR). Exploration algorithm for stateless model
checkers which identifies alternate interleavings to explore likely to result in reorder-
ings of memory conflicts observed in the current branch. Runs iteratively upon com-
pletion of each branch, tagging one or more sibling branches for future exploration,
skipping over ones guaranteed to be independent. See §3.4.2.

Equivalent. Said of two interleavings where one can be transformed into the other
using permutations of only independent interleavings. Note the difference in “type
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19.

20.

21.

22.

23.

24.

25.

26.
27.

28.

signature” with independent, which applies to transitions instead.

Estimation. An algorithm whose input is the known structure of a partially-explored
state space and whose output is a guess at the ultimate size of the state space when
exploration finish. Output may be in units of either time or branches. See §3.4.3.

ETA. Short for estimation (or “state space estimate”), typically with nuance for units
of time rather than branches. From “estimated time of arrival”.

Execution tree. Representation of the state space by joining interleavings with com-
mon prefixes into a subtree with a branch at each point they diverge, forming a tree
overall. See §2.2.1; Figure 2.4.

False negative. Said of a tool’s failure to produce a bug report when a bug does exist
after all. In theory this may mean that the test case might have been insufficient to
expose the bug (which the programmer may discover later via manual inspection,
or when her code fails in production, or which may remain unnoticed), however,
for pragmatic, tool-oriented discussion, this thesis will use the term to mean bugs
observable under the given test case which the tool itself fails to find.

False positive. Said of a bug report which, upon subjective manual inspection by
the programmer, does not indicate a bug after all. In principle, Landslide’s bug-
detection predicates always indicate something truly wrong, so it cannot produce
false positive bug reports; in practice, however, infinite loop detection and deadlock
detection in the presence of ad-hoc synchronization are both heuristic (§3.4.6), so
may produce false positives after all, although I have never witnessed one to date.

Happens-before. Relation between two events executed by different threads in a
single execution trace which captures the notion of concurrent execution. Comes in
two flavours, pure happens-before and limited happens-before.

Heuristic. A testing strategy informed by empirical evidence rather than theoretically-
founded algorithms. For example, ICB is a heuristic way of prioritizing interleavings
with fewer preemptions, based on the observation that most concurrency bugs in
practice can be exposed with as few as 2-3 preemptions. For another example,
Landslide heuristically judges the program to be stuck in an infinite loop when it
has executed at least 4000 times longer than previously-observed “safe” executions,
based on the observation that no student has ever written correct thread library or
kernel code that can exhibit such extreme interleaving-dependent variance.

ICB. Short for “Iterative Context Bounding”. See §3.4.5.

Independent. Said of two transitions by different threads, when they share no
memory conflicts; i.e., they can have no effect on each other’s behaviour even if
reordered. Note the difference in “type signature” with equivalent, which applies to
interleavings instead.

Interleaving. A sequence of transitions of many threads representing the complete
or partial execution of a test case.
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Iterative Deepening. The heuristic search ordering strategy and framework for
incorporating data-race preemption points used by Quicksand. One of this thesis’s
major contributions. See §4.2.

Kernelspace. Opposite of userspace. Execution mode in which code has the abil-
ity to modify critical system state. In addition to having access to privileged CPU
instructions, kernelspace code is also responsible for implementing safe concurrent
scheduling, safe virtual memory protection and isolation guarantees, et cetera.

Landslide. Your friendly local stateless model checking implementation, written by
yours truly. The framework upon which all this thesis’s contributions are built. Doc-
umented in Chapter 3.

Landslide-friendly. Said of a test case that is well-suited for model checking, i.e.,
contains few or no loops which, under normal circumstances, would increase the
probability of a bug manifesting, but in principle do not make any new behaviours
possible that would be impossible without the loop.

Limited happens-before. Variant of happens-before that relates two events only
when a blocking/signalling synchronization affecting the second thread’s runnabil-
ity, such as cond_wait()/cond_signal() or thr_fork() occurs in between. In con-
trast with pure happens-before, indicates not just that the events were observed to
happen non-concurrently in the execution in question, but also that they could not
be reordered even in alternate interleavings.

Lock. A data structure used to ensure atomic access to shared state with respect to
other threads using the same lock. See §2.1.3.

Memory conflict. A pair of memory accesses between two threads, where at least
one is a write, meaning that executing them in a different order from the one ob-
served may produce different program behaviour. If both are writes, reordering
them may cause a different value to be globally visible in that location to subse-
quent parts of the program. If one is a read and one is a write, reordering them
may cause the read access to return a different value, possibly affecting that thread’s
subsequent logic.

misbehave. An optional system call offered by Pebbles kernels, especially the official
reference kernel, that changes the scheduler’s behaviour, according to a numeric
mode argument, to amplify the likelihood of specific illustrative low-probability
thread interleavings. Used in several P2 test cases, although exactly how thread
scheduling changes according to each specified mode is kept secret to preserve the
intended challenge of debugging (see §2.4.1).

mutex. Short for “mutual exclusion lock”. The name P2 and pthreads use for their
lock API.

Model checking. In general, refers to the whole research field of checking program
implementations against formal specifications in a theoretically rigorous way. In
this thesis, used as shorthand for stateless model checking.
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39.

40.
41.

42.

43.
44
45.

46.

47.

48.

49.

50.
S1.

S52.

Nondeterminism. Property of a program which can exhibit different behaviours
across multiple runs, despite no change in the input data.

Optimality. See completeness.

P2. Operating systems class project in which students must implement synchroniza-
tion primitives and thread lifecycle functions. API is very similar to that of pthreads.
Often used here to refer to the same thread library project at both CMU and PSU,
even though the latter did not call it by that name. See §2.4.1.

P3. Operating systems class project, occuring after P2, in which students implement
their own Pebbles kernel from the ground up.

Partial store order. See relaxed memory.
Pebbles. The educational kernel architecture used in 15-410 at CMU. See §2.4.1.

Pintos. The educational kernel architecture used in CMSC 23000 at the University
of Chicago, as well as several other universities. See §2.4.2.

pthreads. POSIX thread library for Linux programs. The modern pthreads model
traces its lineage back to DEC’s Systems Research Center threads [Bir89] and Mach’s
C threads [CD88], and is now specified by ISO/IEC/IEEE [IEEE09].

Preemption. The act of interrupting one thread’s execution to force a context switch
to another. Can be performed either deliberately by the model checker or randomly
by the scheduler as driven by system interrupts.

Preemption point. A single instance of a program state or code location where a
preemption point predicate returns true. This thesis will also use this as shorthand for
preemption point predicates, using the longer term only when the precise difference
is important.

Preemption point predicate. A test of an intermediate execution state returning
whether the model checker should inject preemptions to force another thread to in-
terleave. Often simply “is it the beginning of mutex_lock() or mutex_unlock()?”,
but may be extended to include the program counter values of known data races, or
to further restrict by predicates on the current stack trace. See §3.4.1. Often called
preemption point for short, with context hopefully making the distinction clear.

PSO. Partial store order. See relaxed memory.

Pure happens-before. Variant of happens-before that relates two events when any
synchronization operation introducing a memory barrier, which would prevent com-
piler or hardware access reorderings, occurs in between. In contrast with limited
happens-before, indicates that the events were observed to execute non-concurrently
in this execution, but could possibly be reordered to be concurrent in alternate in-
terleavings.

Quicksand. Testing framework which manages the execution of multiple Landslide
instances, each configured with a different set of preemption points, using the Iter-
ative Deepening algorithm. Also supports various other execution modes in which
only one Landslide instance is run at a time. See Chapter 4. In later chapters,
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“Landslide” will refer to the project as a whole, including Quicksand, while the
term “Quicksand” will be used only when specific reference to Iterative Deepening
is required.

53. Race condition. Another term for nondeterminism in general, which may also carry
more specific nuance depending on context. The term dates back (at least) to
1954, describing electrical signals’ nondeterministic order of arrival in circuit de-
sign [Huf54]. That paper further distinguished race conditions as either “critical”
or “non-critical”, corresponding to buggy or benign in our terminology. CMU 15-
410 teaches the term consistently with this definition, although may also refer to
the buggy subset only (i.e., concurrency bugs) for brevity. Recently, many systems
research papers have used the term to refer to data races in particular.* To avoid
confusion, this thesis will avoid the term entirely, using the above two more precise
terms instead.

54. Reduction. The act of making a state space smaller by finding multiple execution
sequences that can be proved equivalent, such that all but one may be skipped over.

55. Relaxed memory. Also known as weak memory. A family of multiprocessor exe-
cution semantics that allows reads and/or writes of shared memory to become vis-
ible to different CPUs in different sequences. Under total store order (TSO), which
x86 implements, one CPU’s writes may appear reordered after its subsequent loads,
from the perspective of another CPU. Under partial store order (PSO), either writes
and/or reads may appear reordered after other subsequent writes and/or reads. On
ARM’s implementation of PSO, all such combinations are possible. Safe concurrent
programming on such architectures requires careful use of acquire and/or release
memory barriers [Sull7b]. By contrast, sequential consistency (SC) permits no such
reorderings. For further discussion see §4.3, §6.4.4, and §7.5.

56. Schedule. Another term for interleaving with a more theoretical nuance.

57. Scheduler. The component of an operating system kernel responsible for tracking
the set of runnable threads, handling system interrupts, and allocating execution
time among them (in round-robin, priority-driven, or other manner). May also to
refer to the analogous component of Landslide which overrides the decision of the
kernel scheduler.

58. Sequential consistency. See relaxed memory.

59. Soundness. Said of a search algorithm which provides the property that if a bug
exists under the given test case, given arbitrary testing time, it will eventually be
found; in other words, admits no false negatives. When said of a reduction strategy as
applies to an existing search algorithm, means that any bugs found by the original
algorithm will still be found under the reduction, even if there were false negatives
(e.g., applying DPOR without using data-race preemption points). Used by analogy
with logic, in which said of an inference system, means contradiction cannot be

“In the author’s personal experience, many readers of their M.S. thesis [Blum12a] have misinterpreted
its title to believe that Landslide be only a data race detector, rather than a model checker.

30



60.

61.

62.

63.
64.
65.

66.

67.

68.

69.

derived from the axioms. See also completeness.

Stateless model checking. Concurrency testing dynamic analysis technique involv-
ing controlling a system’s nondeterminism to exhaustively check all possible thread
interleavings. See §2.2. Often “MC” for short in this thesis (to mean either “model
checking” or "model checker” depending on context). This name is potentially con-
fusing for tools which explore state spaces: the term “stateless” refers to the implicit
way they use DPOR to ensure sound checking of all possible program states, without
actually explicitly storing those states in memory. The second half of the name is
another historical accident, as most modern MCs do not check “models” in the sense
that programs be verified against external formal specifications, but rather the pro-
gram’s internal assertions serve as informal specifications, alongside the MC’s own
bug-detection predicates.

State space. The set of all possible behaviours of a program under any interleaving
of threads. As opposed to modern stateless model checkers, older MCs stored the set
of states explicitly, attempting to cover them by traversing as few edges (executing
as few transitions) as possible; hence the name. Modern MCs instead cover these
states implicitly by instead exhaustively executing all interleavings, using DPOR to
prune redundant equivalent ones which could only revisit old states. The slightly
misleading name is kept for consistency with prior work (sorry).

Static analysis. Class of program analysis techniques which process the source
code, usually at syntax-tree or LLVM IR level, looking for suspicious implementa-
tion patterns, rather than actually observing behaviours that arise during execution.
Opposite of dynamic analysis.

Systematic testing. Another name for stateless model checking.
TA. Teaching assistant.

Teaching assistant. A student who volunteers to help run a class, holding office
hours, grading projects, and so on, compensated either with course credit or pay
from the university. Probably has taken the class herself in the past.

Test case. A piece of code, separate from the code under test, to drive execution
of the code under test according to a certain pattern designed to expose interesting
behaviour. In the context of P2, the thread library is the code under test, and client
code thereof, such as paradise lost.c, is the test case.

Thread. Unit of concurrent execution in a typical modern program, concretely rep-
resented as a set of private CPU registers, including program counter. Probably has
its own stack as well, allocated by the userspace thread library. A program may
have as many parts of its code executing simultaneously as threads exist.

Transition. A sequence of execution steps by a single thread, bounded by the two
different program states at beginning and end. In this thesis, will be used exclusively
when the terminal program states are preemption points, and no intermediate state
is a preemption point as well.

Total store order. See relaxed memory.
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70.
71.

72.

73.

74.

TSO. Total store order. See relaxed memory.

Userspace. Opposite of kernelspace. Execution mode in which programs, such as
P2 or client code thereof, run with limited privileges, such as no access to the CPU’s
control registers, interrupt descriptor table, ability to perform device I/0, et cetera.
Assumed to run with the virtual memory protections standard in any modern kernel
(such as crashing when dereferencing a null pointer).

Vector clock. Data structure for time-keeping in distributed systems which uses
a list of epoch numbers to track when the execution of any given pair of actors
should be considered simultaneous/concurrent. Used in Landslide to implement
pure happens-before.

Verification. Formally certifying the correctness of a program under certain prop-
erties. In this thesis, will always be constrained by the set of behaviours the test case
is capable of exposing in the first place.

Weak memory. See relaxed memory.
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Chapter 3
Landslide

Somewhere is the promise af an uncharted trail, with 700 bmnchfnj fimbs and 700 ways to faf[
— ThouShaltNot, Cardinal Divections

Landslide is a model checker implemented as a plug-in module for x86 full-system
simulators. The program to be tested runs in a simulated environment, and Landslide
uses its access to the simulator’s internal state to inspect and manipulate the memory and
thread scheduling of the program as it executes. Figure 3.1 visualizes Landslide in relation
to its execution environment, showing how it communicates with each of its surrounding

and/or simulated programs.

P2 (thread library)

examines memory,
reads/writes

Pebbles (reference kernel)

Simulator (hardware emulation)

Landslide

manages multiple
executions

A

schedules
threads

injects timer
interrupts

Figure 3.1: Landslide’s execution environment when testing 15-410 student projects.
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Overview

From an implementation point of view, Landslide’s main “execution loop” is simply the
simulated CPU’s own fetch-decode-execute loop: each time it simulates an instruction
or memory access, it invokes Landslide through the simulator’s module interface. More
abstractly speaking, the general sequence of events during a Landslide test runs as follows.

1. Instrument the test program by inspecting its binary, learning the addresses of im-
portant functions, global variables, et cetera (§3.3.9). Further interpret test-specific
annotations as informed by configuration options (§3.1.3), test case annotations
(83.1.4), and kernel annotations (§3.2).

2. Execute the program under simulation.
(a) At each instruction:

i. Update the scheduler, a state machine which depicts the runnable and/or
blocked threads currently existing in the simulated program, as well as a
set of action flags to track what each thread is up to, such as waiting to
lock a mutex at a given memory address (§3.3.2).

ii. Record reads and writes to shared memory (§3.3.3).

iii. Check whether the current program state constitutes a bug, and if so, emit
a preemption trace (§3.1.5, §3.3.6) and halt Landslide’s execution. Bug-
detection predicates range from simply checking if the program tripped
an assert or accessed invalid memory, to checking the above-mentioned
memory accesses against the current heap allocation state for use-after-
frees (83.3.3), to querying the scheduler for deadlocks (§3.4.6), to check-
ing heuristically for infinite loops and livelock (§3.4.6).

iv. Check whether the current program state is a preemption point (§3.4.1).

v. Query the scheduler to detect when the test has completed successfully,
i.e., all threads have finished executing normally (§3.3.2).
(b) At each preemption point, identified as in 2(a)iv above:

i. Check the set of memory accesses since the previous preemption point,
recorded as in 2(a)ii above, for conflicts with other threads (§3.3.3), and
further for data races (83.4.4).

ii. Select which thread should run next (§3.3.5). Heuristically detecting yield-
blocked threads may inform this decision (§3.4.6).

iii. Checkpoint the execution state in case future executions should wish to
rewind and try a different thread from the one first chosen here (§3.3.1,
§3.3.5).

iv. Force the chosen thread to run by injecting timer interrupts (§3.3.2, §3.3.4).

Note that Landslide maintains the invariant that each transition between two
preemption points consist of instructions executed by exactly one thread; i.e.,
every thread switch must be punctuated by a preemption point.
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3. At the end of each execution, identified as in 2(a)v above:

(a) Analyze the set of memory conflicts, computed as in 2(b)i above, using Dy-
namic Partial Order Reduction (DPOR) to decide which preemption point to
backtrack to and which new thread to run (§3.4.2). This may be constrained
by Iterative Context Bounding (§3.4.5).

(b) Estimate the structure of the resulting state space to predict overall runtime
and total interleavings needed to test (§3.4.3).

(c) If DPOR selected an alternate interleaving to explore, backtrack the simulation
state to that preemption point (§3.3.5) force the new thread to run (§3.3.2,
§3.3.4), and repeat from step 2. Otherwise, halt Landslide’s execution, declar-
ing the explored state space free of bugs.

Implementation

As of this thesis’s writing, Landslide supports the use of two possible simulators:

* Simics [MCE"02], a proprietary simulator licensed commercially by Wind River,
used at CMU in 15-410 to run Pebbles thread libraries and kernels, and

* Bochs [Law96], an open-source (LGPL) simulator used at the University of Chicago,
Berkeley, Stanford, and other schools to run Pintos kernels.

The Bochs port of Landslide is likewise open-source under the BSD license and avail-
able at https://github.com/bblum/landslide. The HEAD commit at the time of writ-
ing is 5e4082a. In the event of a GitHub outage or the above link otherwise not work-
ing, a backup of the repository checked out at that commit may be found at https:
//www.cs.cmu.edu/~410/1landslide/landslide.tar.bz2. The Simics port uses Simics’s
proprietary API and is hence unlicensed and available upon request for educational use
only. Development on the Simics port is largely frozen, as the Bochs port implements all
the same features and more, and is also roughly 3x faster.

Disclaimer

This chapter will discuss Landslide’s outer and inner workings in all their gory detail. It is
intended for the aspiring developer or the ambitious user and hence unlike other chapters
is written in the style of documentation rather than as a report of research results. The
reader interested only in a theoretical introduction to model checking’s foundational algo-
rithms, with detailed and friendly examples to help establish intuitions the later chapters
may require, may skip to §3.4.

3.1 User interface

This section describes the features of Landslide the average student user should expect to
interact with. Separate user guides also exist, described in §5.1.1.
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3.1.1 Setup

Three setup scripts are provided, one for each supported kernel architecture: p2-setup. sh,
psu-setup.sh, and pintos-setup.sh. The user should supply the directory containing
her project implementation. The second of the three is largely the same as the first, with
CMU-specific project details replaced by PSU-specific ones. The latter of the three also
supports arguments specifying which of the Pintos projects to target. For example:

* ./p2-setup.sh /path/to/my/p2

* ./psu-setup.sh /path/to/my/thrlib
* ./pintos-setup.sh /path/to/my/threads (2nd argument defaults to “threads”)

* ./pintos-setup.sh /path/to/my/userprog userprog
These scripts accomplish the following setup tasks (among other trivialities):

* Copy the user’s code into pebsim/p2-basecode/ or pebsim/pintos/, which contain
a pre-annotated Pebbles reference kernel binary or pre-annotated Pintos basecode,
respectively.

* Build the code in its new location.

* Run the instrumentation script on the resulting binary to let Landslide know where
all the important functions are (see §3.3.9).

3.1.2 Running Landslide through Quicksand

The preferred method of invoking Landslide is through Quicksand, the Iterative Deepen-
ing wrapper program which has all of Chapter 4 to itself. This is done via the . /quicksand
script in the top-level directory, which:

* Checks if the user needs to run *-setup. sh again, in case her source code was more
recently updated than the existing annotated build (a common mistake),

* Passes its arguments through to id/landslide-id, the Quicksand binary, and

* (If during the student user study,) compresses the resulting log files, creates a snap-
shot tarball of them and the current version of the user’s code, and sends it to me
for nefarious research purposes (see §5.1.2).

Command-line argments

The following command line arguments are recommended for the common user.
* -p PROGRAM: the name of the test case to invoke

* -t TIME: wall-clock time limit, in seconds; or suffixed with one of ydhms for years,
days, hours, minutes, or seconds respectively (default 1h)

* -c CPUS: maximum number of Landslide instances to run in parallel (defaults to
half the number of system CPUs)

* -i INTERVAL: interval of time between printing progress reports (default 10s)
* -d TRACEDIR: directory for resulting bug traces (default current directory)
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-v: verbose mode (issues output for each executed interleaving by each instance of
landslide, makes progress reports more detailed, et cetera)

-1: leave Landslide log files from completed state spaces even when no bug was
found (deleted automatically by default)

-h: print help text and exit immediately
-s: include “secret” options when printing help text

The following “secret” arguments also exist, primarily for my own use in running ex-
periments or debugging.

-C: enable “control experiment” mode, i.e., run only 1 instance of Landslide, with
all (non-data-race) preemption points enabled in advance

-1: enable Iterative Context Bounding (requires -C, although future work may relax
this restriction); this generally causes bugs to be found faster should they exist, but
degrades completion time (§3.4.5)

-0: enable preempt-everywhere mode (§4.4.4, §4.4.5, requires -C)

-M: enable maximal state space mode, which prioritizes the maximal state space
to optimize for fast verification, abandoning all subset jobs even if they might find
bugs faster (§6.3, incompatible with -C). According to §4.3’s soundness proofs, this
is equivalent to -0 (and according to my experience, much faster as well).

-H: use Limited Happens-Before for data race analysis (§2.3.2) (default for Pebbles
kernelspace mode)

-V: use vector-clock-based Pure Happens-Before for data race analysis (§2.3.2) (de-
fault for P2/PSU userspace and Pintos modes)

-X: support transactional memory (Chapter 6)

-A: support multiple abort codes during transaction failure (§6.2); required for test-
ing programs which behave differently under different abort circumstances, but im-
pacts the state space size

-S: suppress retry aborts during transaction failure (§6.2)
-R: enable retry-set state space reduction for transactional tests (§6.2)

-P: support Pintos architecture (enabled automatically when pintos-setup.sh is
run)

-4: support Pebbles architecture (enabled automatically when either p2-setup.sh
or psu-setup.sh is run)

-e ETAFACTOR: configure heuristic state space ETA deferring factor (§4.2; described
in detail in id/option.c)

-E ETATHRESH: configure heuristic threshold of state space progress for judging ETA
stability (§4.2; described in detail in id/option.c)

Quicksand will automatically generate configuration files and invoke Landslide accord-
ing to the process described in the next section.
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3.1.3 Running Landslide directly

Rather than letting Quicksand juggle multiple instances of Landslide, the user may run
a single instance directly, optionally configuring the preemption points by hand. This is
recommended only for the enthusiastic user annotating her own kernel.

The script pebsim/landslide invokes Landslide thus. It should be run from within
the pebsim/ directory. When supplied no arguments, it reads configuration options from
pebsim/config.landslide (a bash script expected to define certain variables as described
in §3.3.9). The user may optionally specify a file containing additional config directives
as an argument.’ Such supported options are as follows.

Dynamic configuration options

First, the following options may be changed without triggering a recompile of Landslide.
They are implemented as bash functions defined in pebsim/build. sh.

* within_function FUNC - adds FUNC to an allowlist of functions required to appear
in the current stack trace before identifying a preemption point (see §3.4.1)

* without_function FUNC - as above, but a denylist instead of an allowlist

* within_user_function FUNC - as two above but finds the function in the userspace
test program rather than the kernel code.

* without_user_function FUNC - difference to two above same as stated one above.

* data_race ADDR TID LAST_CALL CURRENT_SYSCALL - specifies a data-race preemp-
tion point.

® ADDR shall be the code address (in hex) of the racing address, before the execu-
tion of which a preemption will be issued.

® TID indicates a thread ID required to be running for this data race. To specify
data-race preemption points across all threads at once, set FILTER_DRS_BY_TID=0
(see next section).

® LAST_CALL indicates a code address required to be the site of the last call
instruction executed (similar to specifying a stack trace, but using a full stack
trace here degrades performance too much), or O to not use this feature. From
personal experience I found this option rather useless and recommend always
supplying 0. For further discussion see §4.1.1.

® CURRENT_SYSCALL indicates the system call number if a user-space data race
comes from within a kernel system call which accesses user memory (Pebbles
only). Usually O (i.e., not in kernel code) but deschedule’s system call number
is common as well.

! Quicksand actually supplies two such files as arguments: one “static” config file and one "dynamic”
config file. The former contains options which require recompiling Landslide (e.g., whether or not to use ICB
is controlled by an #ifdef in Landslide’s code), while the latter contains options which Landslide interprets
at runtime (e.g., which preemption points to use). The static options do not change between Landslide
instances in a single Quicksand run, avoiding long Landslide start-up times.
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* input_pipe FILENAME - FIFO file used for receiving messages from Quicksand (e.g.
to suspend or resume execution). Requires id_magic option to be set (next section
below). The odds that a human user will find spiritual enlightenment through using
this option by hand are infinitesimal.

* output_pipe FILENAME - as above but for sending messages.

Static configuration options

Next, configuration options which affect an #ifdef in Landslide and will trigger a recom-
pile upon changing. Unless otherwise specified these are boolean flags (1 or 0) and the
example value shown indicates the default used if unspecified.

1. Search algorithm options

ICB=0 - enable Iterative Context Bounding (§3.4.5); corresponds to -I in §3.1.2.

PREEMPT_EVERYWHERE=0 - enable preempt-everywhere mode (§4.5); corresponds
to -0 in §3.1.2.

EXPLORE_BACKWARDS=0 - configure whether, at each newly encountered preemp-
tion point, to allow the current thread to run first then later upon backtracking
to preempt (0), or to issue preemptions first and then try continuing the cur-
rent thread later (1). O tends to produce shorter preemption traces while 1
tends to find bugs faster ([Blum12a, §8.7.1]). Not compatible with ICB.

2. Memory analysis options

PURE_HAPPENS_BEFORE=1 - select Pure Happens-Before (1) or Limited Happens-
Before (2) (§2.3.2); corresponds to -V/-H in §3.1.2.

FILTER_DRS_BY_TID=1 - configures whether to use the TID parameter of data_
race described above.

FILTER_DRS_BY_LAST_CALL=0 - configures whether to use the LAST_CALL param-
eter of data_race described above.

ALLOW_LOCK_HANDOFF=0 - configures lockset tracking to permit or disallow a
lock taken by one thread to be released by another thread.?
ALLOW_REENTRANT_MALLOC_FREE=0 - allow two threads to be inmalloc(), free(),
or so on simultaneously without declaring it a bug.®

TESTING_MUTEXES=0 - configure “mutex testing” mode (1), in which the data
race analysis will not consider a mutex’s implementation to be protected by
the mutex itself. In other words, the mutex’s internal memory accesses will be

flagged as data races, thereby enabling Landslide to verify the mutual exclusion
property. Normally (0), Landslide assumes mutual exclusion is provided in

2If enabled, accesses performed by the second thread before unlocking will not be considered protected
by that lock, as Landslide cannot infer what prior event abstractly represented the lock’s ownership chang-
ing, leading to spurious data race reports. This could be solved in future work with a new annotation.

3Used in Pintos, where those functions lock/unlock the heap mutex themselves rather than relying on a
wrapper function to do so before invoking them.
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order to efficiently find data races in the rest of the code. Quicksand will
automatically set this option for P2s when -t mutex_test is specified.

3. Interface options

* TEST_CASE=NAME - configure the name of the test program to run (mandatory;
no default)

* VERBOSE=0 - enable more verbose output

* BREAK_ON_BUG=0 - configure whether to exit the simulator or drop into a debug
prompt when a bug is found. Simics only and not compatible with Quicksand.

* DONT_EXPLORE=0 - if enabled, Landslide will not perform stateless model check-
ing but rather will execute the default thread interleaving then exit (useful for
manual inspection of preemption points).

* PRINT_DATA_RACES=0 - as it says on the tin (for stand-alone use; will message
them to Quicksand regardless).

* TABULAR_TRACE=1 - configure whether to emit bug reports to the console (0) or
to an HTML trace file (1)

3.1.4 Test cases

Landslide depends on human intuition to construct a test case that will produce both
meaningful in quality and manageable in quantity thread interleavings.

The user may supply custom test cases for Pebbles (under pebsim/p2-basecode) by
creating a file in 410user/progs and adding it to config.mk as usual, or for Pintos (under
pebsim/pintos/src/tests/threads) by creating a file and adding it to both tests.c and
Make.tests. Tests for the most common interactions during the P2 and Pintos projects
are of course already supplied, as described in §5.1.3 and §5.2.3.

Use of the tell_landslide() annotations (§3.2.2) is not necessary, although tell_
landslide_preempt() and tell_landslide_dump_stack() may optionally be used at the
user’s convenience. Additionally, the following “secret” annotations are occasionally used
in the pre-supplied test cases to accomplish several mysterious goals described hereupon.

Magic post-test assertions

Test cases may define global variables of the following names to instruct Landslide to
assert the following corresponding predicates at the end of each test execution, after all
threads exit. Each predicate will be checked iff its first listed variable name is defined; if
that variable is defined, all others associated must also be; any combination of the three
first-listed variables may be specified at the user’s option.

* magic_global_expected_result == magic_global_value

* magic_expected_sum == magic_thread_local_value_parent +
magic_thread_local_value_child

40



* magic_expected_sum_minus_result == magic_thread_local_value_parent +
magic_thread_local_value_child - magic_global_value
Because Landslide tests the ultimate value of these variables after all threads have com-
pleted execution, these could not be implemented as asserts in the test code itself without
requiring the student to implement thr_join() and thr_exit(), avoiding which is impor-
tant for tests to be student-accessible earlier in the project implementation timeline.

Misbehave

Many of the supplied P2 test cases invoke the misbehave system call with a mysterious
argument (usually BGND_BRWN >> FGND_CYAN) before the creation of any child threads.
The use of terminal color code constants is of course a red herring of obfuscation, as the
true nature of the Pathos reference kernel’s misbehave modes is a closely-guarded secret
among 15-410 course staff (§2.4.1). The mode in question causes the reference kernel
to prioritize scheduling the child thread over the parent whenever thread_fork is called,
and the target thread over the invoking thread whenever make_runnable is called, which
are necessary to allow Landslide to recognize a yield() preemption point and be able to
run the newly-runnable thread as soon as possible.

To illustrate, consider the following program in Figure 3.2, and suppose Landslide
is configured to preempt only on mutex API calls (such as in the first step of Iterative
Deepening (§4.2)). Because Landslide ignores all kernel-level synchronization short of
context switches when testing user-level code, if the kernel created the child thread and
returned from thread_fork (the system call underlying thr_create()) without yielding
first, the next preemption point will not occur until thr_join() waits for the child to exit.
Hence, DPOR will erroneously think everything before that thr_join() happens-before
(83.4.2) anything the child does, and will fail to identify the racing accesses on x.

void child(int *xp) {
*Xp++;

3

void parent() {

int x = 0;

int tid = thr_create(child, &x);

X+t
thr_join(tid, NULL);
assert(x == 2);

3

Figure 3.2: Example demonstrating the need for misbehave to force the kernel to yield
during thread_fork.

Though Iterative Deepening’s soundness (§4.3) guarantees all data races will eventu-
ally be detected starting from just synchronization preemption points, it assumes threads
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becoming runnable counts among those. In that sense, misbehave serves to restore the
last synchronization preemptions where they belong. If at this point the reader wonders
why Landslide doesn’t just identify the thread_create and make_runnable system calls in
the arbiter itself (§3.3.5) and skip this mysterious user-visible complexity, they would be
right to ask: I have left it this way for no better reason than to maintain consistency with
the upcoming chapters’ experimental environments, and intend on fixing it in a future
update.

Other misbehave modes may be used, but are likely to have no effect, since Land-
slide’s thread-scheduling algorithm will override any Pathos-internal scheduling priorities
that may arise therefrom. Hypothetically speaking, a reader with access to the top-secret
Pathos source code could find further misbehave documentation in its inc/misbehavior.h.

3.1.5 Bug reports

When Landslide finds a bug, it produces an execution trace of the particular interleaving
of threads that led to the bug. This takes the form of a two-dimensional table, with
a column for each thread, and each row representing the continuous execution of one
thread between two (not necessarily consecutive) preemption points. In each row, the cell
in the column corresponding to the executed thread will contain a stack trace, indicating
the code location of the preemption point at the end of that thread transition (i.e., each
stack trace indicates “this thread ran until it reached the indicated line of code”). The
bug reports are formatted in HTML, recommended to be viewed in a web browser. An
example is shown in Figure 3.3.

In addition to the preemption trace, the bug report provides some additional helpful
information: a stack trace of the current thread at the ultimate point when the bug was
executed (the same as the stack trace in the cell corresponding to that thread in the bot-
tom row of the table), a message indicating the nature of the bug encountered, statistics
about the size of the state space, and optionally additional information about the bug.*
§8.1 discusses how these bug reports might be further improved by adding more informa-
tion still, such as identifying data-race preemption points or listing memory conflicts that
occurred during each transition.

3.2 Kernel annotations

My M.S. thesis [Blum12a] investigated the annotation overhead required for a user to
instrument a Pebbles kernel for use with Landslide. On average, students who volunteered
for the study (conducted during P3) required 2 hours for this process. While many of
these students then went on to find and diagnose bugs, this was deemed an unacceptable
burden for an educational tool to impose on struggling students.

“*For certain types of bugs, not pictured here; for example, use-after-frees will report separate stack traces
indicating when the corresponding heap block was last allocated and freed. The intrepid source-diver may
find all such cases of extra bug details by searching for the macro FOUND_A_BUG_HTML_INFO in Landslide’s
code.
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A bug was found!

Current stack (TID 5):

0x01000290 inpanic (p2-basecode/user/libthread/panic.c:35)
0x01000071 incritical_section (p2-basecode/410user/progs/paradise_lost.c:42)

0x01000100 inconsumer (p2-basecode/410user/progs/paradise_lost.

54)

0x01000340 inthread_wrappenp2-basecode/user/libthread/thread.c:46)

USERSPACE PANIC: 410user/progs/paradise_lost.c:41: failed assertion 'num_in_section == 1 && "long is the way, and hard, that

out of hell leads up to light"'

Distinct interleavings tested: 51
Estimated state space size: 150.000000
Estimated state space coverage: 34.000000%

TID 4

TID 5

TID 6

0x01000915 inmutex_unlock(p2-
basecode/user/libthread/mutex.c:96)

0x01000a19 insem_signal (p2-
basecode/user/libthread/sem.c:73)

0x010001e0 inproducer (p2-
basecode/410user/progs/paradise_lost.c:71)
0x01000259 inmain (p2-
basecode/410user/progs/paradise_lost.c:87)
0x01000288 in_main (p2-basecode/410user/crt0.c:18)
0xdeadd00d in<unknown in userspace>

0x00105c41 in|context switch](kermel pathos.o:0)
0x010030d7 inyield (p2-
basecode/410user/progs/paradise_lost.c:87)

0x01000037 incritical_section (p2-
basecode/410user/progs/paradise_lost.c:39)

0x01000100 inconsumer (p2-
basecode/410user/progs/paradise_lost.c:54)

0x01000340 inthread_wrappernp2-

[basecode/user/libthread/thread.c:46)

0x00105c41 in[context switch|(kernel  pathos.o:0)
0x010030e5 indeschedule (p2-
basecode/410user/progs/paradise_lost.c:87)

0x01000e67 incond_wait(p2-
basecode/user/libthread/cond.c:79)

0x010009c¢1 insem_wait(pl-basccudc user/libthread/sem.c:54)
0x010000fb inconsumer (p2-
basecode/410user/progs/paradise_lost.c:54)

0x01000340 inthread_wrappernp2-

basecode/user/libthread/thread.c:46)

0x00105¢41 in[context switch](kernel pathos.o:0)
0x0100314c¢ invanish (p2-
basecode/410user/progs/paradise_lost.c:87)

0x01000259 inmain (p2-
basecode/410user/progs/paradise_lost.c:87)

0x01000288 in_main(pZ-basecode 410user/crt0.c:18)
0xdeadd00d in<unknown in userspace>

0x00105¢c41 in[context switch|(kernel
0x010030d7 inyield (p2-
basecode/410user/progs/paradise_lost.c:87)
0x01000037 inc:
basecode/410user/progs/paradise_lost.c:39)
0x01000100 inconsumer (p2-
basecode/410user/progs/paradise_lost.c:54)
0x01000340 inthread_wrappernp2-

basecode/user/libthread/thread.c:46)

pathos.o:0)

cal_section (p2-

0x01000290 inpanic (p2-basecode/user/libthread/panic.c:35)
0x01000071 incritical_section (p2-
basecode/410user/progs/paradise_lost.c:42)

0x01000100 inconsumer (p2-
basecode/410user/progs/paradise_lost.c:54)

0x01000340 inthread_wrappernp2-

basecode/user/libthread/thread.c:46)

Figure 3.3: Example preemption trace bug report.
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Hence, the educational experiments in this thesis focus on projects which students im-
plement on top of provided kernel basecode which Landslide already “understands”. Such
understanding is conferred via the annotations described in this section. For P2 and Pin-
tos students I supply these annotations behind the scenes, but a CMU 15-410 student who
wishes to use Landslide on her kernel project shall need to brave forth hereupon. An al-
ternate step-by-step guide is also available at https://www.cs.cmu.edu/~410/1landslide/
landslide-guide-kernel.pdf.

3.2.1 config.landslide annotations

The following annotations are specified in pebsim/config.landslide akin to the static
configuration options described in §3.1.3. These specify the names of kernel functions,
global variables, default values, and so on which are required to accurately track the
kernel’s scheduler state: CONTEXT_SWITCH, EXEC, FIRST_TID, IDLE_TID, INIT_TID, MEMSET,
PAGE_FAULT_WRAPPER, READLINE, SFREE, SHELL_TID, SPURIOUS_INTERRUPT_WRAPPER,
THREAD_KILLED_ARG_VAL, THREAD_KILLED_FUNC, TIMER_WRAPPER, VM_USER_COPY,
VM_USER_COPY_TAIL, YIELD.

Following are the less self-explanatory options. Those defined with an equals sign
between name and value are implemented as bash variables, which the annotation scripts
check after processing the configuration to emit a corresponding #define within Landslide
itself; those defined with no equals sign are implemented as bash functions, which the
annotation scripts define in advance of processing the configuration to do something more
complicated.

* PINTOS_KERNEL=0 - configure Landslide for Pebbles (0) or Pintos (1) kernel architec-

ture. Normally set automatically by the setup scripts.

* TESTING_USERSPACE=1 - configure Landslide whether to test (i.e., focus preemption
points, memory analysis, et cetera on) the userspace or kernelspace code.

* CURRENT_THREAD_LIVES_ON_RQ=0 - Landslide infers the list of runnable threads from
the tell_landslide_on_rq() and off_rq() annotations (described below). Some
kernels® remove the current thread from their runqueue, such that the abstract set of
all runnable threads is actually the runqueue plus the current thread rather than just
the runqueue. Other kernels® leave the current thread on the runqueue, removing
it only when it’s descheduling and should actually be considered blocked. Set this
option to 0 to support the former kernel type or 1 to support the latter.” Whether
or not a kernel requires this annotation could be auto-detected in future work.

* PREEMPT_ENABLE_FLAG=NAME - name of a global variable which the kernel uses to
toggle scheduler preemptability, for kernels which may disable preemption without
disabling interrupts. For kernels wherein preemptability is corresponds directly by
interrupts, leave this option unspecified.

>Most, actually.

%The author’s own student kernel from long ago.

This option replaces the deprecated kern_current_extra_runnable() annotation from student.c de-
scribed in [Blum12a, §6.2.3].
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* PREEMPT_ENABLE_VALUE=VAL - value of the above variable when preemption is en-
abled (usually 0; note that many kernels use a nesting depth counter where any
positive value corresponds to disabled).®

* PATHOS_SYSCALL_IRET_DISTANCE=VALUE - indicate how much stack space is used by
the reference kernel’s system call wrappers. Used for cross-kernel-to-userspace stack
traces; if unset, stack traces from kernel space will end at the system call boundary.

* PDE_PTE_POISON=VALUE - indicate a poison value used in the page tables to indicate
absent VM mappings to check for as well as checking the present bit (if unspecified,
will check present bit only)

* BUG_ON_THREADS_WEDGED=1 - set to O to disable deadlock detection but instead let
the kernel keep receiving system interrupts when all threads appear blocked.’

* TIMER_WRAPPER_DISPATCH=NAME - used to manually indicate a label before the end of
the timer interrupt assembly wrapper, in case the iret instruction couldn’t be found
automatically (see pebsim/definegen.sh).

* starting_threads TID STARTS_ON_RQ - specifies a system thread which already ex-
ists at the time tell_landslide_sched_init_done() (see below) is called; TID is the
thread’s ID and STARTS_ON_RQ is O or 1 to indicate whether or not it starts on the
system runqueue. Typical threads to use this for are init and idle.

* ignore_sym NAME SIZE - specifies a global variable NAME of a given SIZE in bytes
whose memory accesses should be ignored for the purposes of DPOR and data race
analysis. Typical symbols to use this for are the console or heap mutex.

* sched_func NAME - specifies a function whose memory accesses should all be ignored
for the purposes of DPOR and data race analysis. Typical functions to use this for
are the timer handler and context switcher.

* disk_io_func NAME - specifies a function which may block a thread waiting for disk
I/0 (or other external interrupt) rather than blocking on another thread. If any
threads are blocked in a disk I/0 function during an apparent deadlock, Landslide
will allow the kernel to idle until the simulator delivers the appropriate interrupt,
rather than declaring a bug.

* ignore_dr_function NAME USERSPACE - specifies a function whose memory access
should not be counted as data races (but still be considered memory conflicts for
DPOR). USERSPACE should be 0 or 1 to denote a kernel-space or user-space function
respectively.

* thrlib_function NAME - specifies a function whose memory accesses should be
ignored both by the data race analysis and by DPOR. This is recommended for
marking trusted-correct thread library code when testing multithreaded client code
thereof, in order to avoid unnecessarily checking, for example, all the different ways
thr_exit() and thr_join() could interleave. The user should be careful with this

8These two options replace the deprecated kern_ready_for_timer_interrupt() annotation from

student.c described in [Blum12a, §6.2.3].
°Once used in the bad old days; now recommended for debugging use only.
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option to also enable the proper thr_create() misbehave mode in her test case
(83.1.4).

TRUSTED_THR_JOIN=0 - if set to 1, forces Landslide to add a happens-before edge
(83.4.2) between the exiting of some thread N and the end of any subsequent
thr_join(N) call, even if that join would not ordinarily block. This is useful for
state space reduction when testing threaded client code; for example, in the inter-
leaving TID1: x++; thr_exit();, TID2: thr_join(1); print(x);, DPOR, not auto-
matically trusting join’s behaviour, will attempt to test the TID2, TID1 interleaving
to reorder the accesses on x, whereupon join will block, forcing these interleav-
ings to be equivalent. This option allows DPOR to skip checking that join behaves
properly and to prune the second interleaving by teaching it the expected blocking
semantics. Obviously, not for use when actually testing thr_join itself!

3.2.2 In-kernel code annotations

The following annotations are provided as C functions which a kernel author shall in-
clude in her source code and call at appropriate times. The functions’ actual implementa-
tions are empty; rather they serve as labels whose positions the annotation scripts extract
along with the other various annotations from the previous section. Some of these are
mandatory for Landslide to function properly, while others serve to improve or otherwise
manipulate the state space.

Mandatory annotations

tell_landslide_thread_switch(int new_tid) - to be called during context switch,
indicating the newly-running thread (must be called with interrupts and/or sched-
uler preemption disabled)

tell_landslide_sched_init_done() - to be called after scheduler initialization, in-
dicating the point after which Landslide should begin analysis. Any threads al-
ready initialized before this point (init, idle, et cetera) should be specified with
starting_threads (previous subsection).

tell_landslide_forking() - to be called whenever a new thread is created, “imme-
diately” before the next thread_switch() or on_rq() call for that new thread (i.e.,
this call sets a flag which the next instance of either of the latter will check to see if
the indicated thread is new). Most Pebbles kernels will call this twice; once in fork
and once in thread_fork.

tell_landslide_vanishing() - to be called whenever a thread ceases to exist, “im-
mediately” before the next thread_switch() or off_rq() call for the exiting thread
(works similarly to above).

tell_landslide_sleeping() - to be called whenever a thread is about to sleep()
waiting for timer interrupts, “immediately” before the next thread_switch() or
of f_rq() call for the sleeping thread (similar to the above). Landslide considers
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sleeping threads to be runnable as normal (they will just take more timer interrupts
to arrive at), so this call is necessary to distinguish from the case when a thread is
descheduled on a non-timer event.

* tell_landslide_thread_on_rq(int tid) - to be called when a thread is added to
the runqueue (must be called with interrupts and/or scheduler preemption dis-

abled).

* tell_landslide_thread_off_rq(int tid) - dual of the above. If CURRENT_THREAD_
LIVES_ON_RQ=0 (described above), this should be invoked (among other times) dur-
ing context switch with the TID of the thread about to start running. Alternatively,
even for a kernel which takes the current thread off its literal runqueue, the annota-
tor may use these two calls to indicate the “abstract runqueue” which includes the
current thread as well, and set CURRENT_THREAD_LIVES_ON_RQ=1.

Optional annotations

* tell_landslide_preempt() - specifies a preemption point. Subject to the constraints
of within_function/without_function; hence may be ignored if used with Quick-
sand.

* tell_landslide_dump_stack() - instructs Landslide to print a stack trace whenever
this point is reached (for debugging purposes).

Optional but strongly recommended annotations

The following annotations enable Landslide to track locksets [SBN*97] for data race anal-
ysis. If not provided, it will be as if Landslide assumes no guarantees about mutual exclu-
sion or happens-before, and hence will identify all memory conflicts as data races. (Note
that the corresponding instrumentation for P2s is achieved automatically, as the names
of the mutex interface are mandated by the project specification.)

* tell_landslide_mutex_locking(void *mutex_addr) - indicates the beginning of
the lock routine for whatever synchronization API Landslide should treat as the
primitive for data race detection. In Pintos this is the sema_*() function family; in
Pebbles they may be called anything.

* tell_landslide_mutex_blocking(int owner_tid) - called “immediately” before a
thread becomes blocked on the mutex. Definition of “immediately” similar to the
forking() and friends annotations above. owner_tid allows Landslide to efficiently
unblock/re-block threads when the mutex holder changes (rather than relying on
heuristic yield-loop detection); see kern_mutex_block_others() and deadlocked()
in schedule. c for implementation details.

* tell_landslide_mutex_locking_done(void *mutex_addr) - indicates the end of the
lock routine.

* tell_landslide_mutex_trylocking(void *mutex_addr) - indicates the beginning
of the trylock routine (if present).
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* tell_landslide_mutex_trylocking_done(void *mutex_addr, int succeeded) -in-
dicates when a thread is finished trylocking, even if it failed to get the lock (indicated
by succeeded).

* tell_landslide_mutex_unlocking(void *mutex_addr) - indicates the beginning of
the unlock routine.

* tell_landslide_mutex_unlocking_done() - indicates the end of the unlock routine.

3.3 Architecture

This section documents the organization of code within Landslide. Unless otherwise
specified, Landslide’s code lives in work/modules/landslide/ (Simics implementation) or
src/bochs-2.6.8/instrument/landslide/ (Bochs implementation) relative to the repos-
itory root.

Both simulators invoke Landslide once per instruction and once per memory read
or write. The entry point is the aptly-named landslide_entrypoint() in landslide.c,
which then dispatches to various other modules’ respective analyses, described as follows.

3.3.1 Execution tree

The execution tree is stored as a chain of preemption point nodes named struct nobe
defined in tree.h. Although the state space of possible interleavings is exponentially-
sized, Landslide does not actually need to store any nodes for execution sequences outside
the current variation (see §3.4.3 and §3.4.2 for why), so the total memory consumption is
only O(n) in the number of preemption points in a single program run (for the test cases
used in this thesis, typically 20-1000). Each nobe stores the following information:

* Basic statistics such as the current instruction pointer, thread ID, stack trace of cur-
rent thread at the moment of preemption, depth in the tree, parent node pointer,
et cetera;

* Snapshots of the current state of the scheduler (§3.3.2) and memory accesses and
heaps (§3.3.3);

* Simulator-dependent data needed to time travel and resume execution from this
checkpoint (§3.3.5);

* List of parent/ancestor nodes with memory conflicts and/or happens-before edges
to this one for DPOR (§3.4.2);

* Current estimated state space proportion and execution time for the subtree rooted
at this node (not necessarily fully explored yet) for estimation §3.4.3;

* Whether this point is an xbegin invocation and if so what xabort codes are possible
and/or already explored for this transaction (chapter 6).
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3.3.2 Scheduler

The Landslide scheduler, which lives in schedule.c, has two main duties: to maintain
an accurate representation of all the existing threads on the simulated system and track
which concurrency-relevant actions each is performing at any given time, and to orches-
trate the sequence of timer interrupts necessary to cause the simulated system to context
switch to any given thread at any given time. System-wide state is stored in a single struct
sched_state, including several queues to track threads in various states of runnability
(runnable queue, deschedule queue, and sleep queue), while per-thread state is stored in
struct agents (named after the terminology of [SBG10]) which live on said queues.

It has one main entrypoint, sched_update(), in which both the state machine is up-
dated and scheduling decisions are made. The interface also offers helper functions for
finding and manipulating agents, and sched_recover(), which prepares the scheduler to
force a new thread to run after a time travel (§3.3.5).

State machine

The first part of sched_update() is to update the state machine of thread actions and
runnability. Much of this functionality is found in sched_update_kern_state_machine()
and sched_update_user_state_machine(). The current intruction pointer is compared
against the known locations of the mutex API, system calls, runnable/descheduling tell_
landslide annotations, and so on, and locksets, action flags, and runqueue membership
are updated accordingly. Landslide also queries the scheduler state after it updates every
instruction, via test_update_state() (test.c), to check the existence and/or runnability
of all the system’s threads and determine whether or not the test case has completed
execution.

Interrupt injection

The second part of sched_update(), conditional on the arbiter identifying preemption
points (§3.3.5), manages timer interrupts to switch to a desired thread. Whenever a
preemption point is reached, the scheduler first creates a checkpoint in the execution tree
(83.3.1), asks the arbiter which thread to run next, and if that thread is different from the
current one, forces the kernel into its timer interrupt handler (§3.3.4).

Because the kernel is part of the system being tested, Landslide can’t necessarily always
switch directly to a specific thread, but rather must keep triggering context switches until
the desired thread is reached; any mechanism to tell the kernel which thread it wants
would necessarily involve modifying the code being testsed and hence possibly obscuring
bugs or introducing new ones.'°

The scheduler marks up to one thread as the “schedule target”, which when set makes
Landslide wait until that thread is reached before looking for more preemption points, so

0For userspace testing, where I supply a pre-annotated reference kernel, such an approach would be

more straightforward, but the kernel-testing repeated-context-switch approach infrastructure was already
in place and it was easier to reuse that than to add more code.
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the kernel may finish its context switches undisturbed. Whenever the schedule target is
set and the end of the context switcher is reached, if the schedule target is not the current
thread, the scheduler repeats this process until it is.!!

3.3.3 Memory analysis

memory . ¢ is responsible for all manner of memory access analysis. It tracks heap alloca-
tions, checks reads and writes in the heap region against same; tracks reads and writes
(in any region) from each thread and checks them against each other for DPOR (§3.4.2)
and data race analysis (§3.4.4). For userspace tests, it also tracks which virtual address
space (cr3) belongs to the test program via a state machine of the test lifecycle, which lets
it avoid false positive heap errors from other programs which have differently-addressed
heaps (check_user_address_space() and ignore_user_access().

Heap checking

mem_update() serves as the main entrypoint for tracking heap allocations. It’s called every
instruction to check for the boundaries of the malloc() library, and behaves in a similar
way to the scheduler state machine described above. Then, mem_check_shared_access()
checks (after some elaborate manoeuvres to figure out whether to use the kernel- or
userspace heap) whether, if in the heap region, the memory is contained in a currently-
allocated heap block, reporting a bug if not.

Memory conflicts

mem_check_shared_access() also records each such access in a per-thread-transition rb-
tree, which is saved and then cleared at each preemption point. This allows mem_shm_
intersect(), called at each preemption point once for each of its ancestors (n? total calls
per interleaving), to perform a set intersection to find any memory conflicts. Any such
conflicts which also fail a lockset and/or happens-before check (§3.4.4) are then reported
as data races. Regardless, all such conflicts are later used by DPOR (§3.4.2) to find de-
pendent transition pairs.

3.3.4 Machine state manipulation

The interface to inspect and manipulate the simulated machine state lives in x86. c.

Memory

read_memory() and write_memory() are both provided (with various wrapper macros in
x86.h). The former is used basically everywhere throughout Landslide to query the ma-

Note that this “loop” is not structured as an explicit loop in Landslide’s code, but rather as part of the
state machine which updates each time a new instruction is traced.
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chine state; the latter is used only by the interrupt manipulation below and by the sched-
uler to force Pintos to skip certain parts of its init sequence (83.3.8). Both rely on the
helper function mem_translate() for virtual address resolution, which at present supports
only the normal x86 32-bit addressing mode (no PAE, long mode, et cetera).

Interrupts

Several routines are provided for manipulating system interrupts. Note that the Land-
slide is called once per fetch-decode-execute loop of the CPU, after the CPU processes all
already-pending interrupts and decides which instruction to execute, but before actually
executing the instruction (true of both Bochs and Simics). I refer to this as the upcoming
instruction. Whether or not Landslide wants that instruction to execute before triggering
a thread switch is a matter of some concern in the following APIL.

* cause_timer_interrupt() triggers a pending timer interrupt, whose handler will
be entered as soon as the execution of the upcoming instruction is completed.

* cause_timer_interrupt_immediately() does as above, but forces the system to en-
ter the interrupt handler before the upcoming instruction is executed. That instruc-
tion will be executed upon return from the interrupt.

* avoid_timer_interrupt_immediately() suppresses a timer interrupt triggered by
the simulator from outside of Landslide’s control. It acknowledges the APIC and
forces the system to jump to the end of the interrupt handler.

* delay_instruction() forces the system to execute a no-op before the upcoming
instruction, effectively converting an invocation of cause_timer_interrupt() to
cause_timer_interrupt_immediately().

* cause_keypress() triggers a keyboard event corresponding to the specified charac-
ter. The interrupt will be taken after the upcoming instruction is executed (provided
no timer interrupt is simultaneously pending). Only a-z, -9, _, space, and newline
are supported (enough to name any Pebbles test case).

* interrupts_enabled() queries the CPU’s interrupt flag (eflags: IF).
* cause_transaction_failure() forces _xbegin() to return a specified abort code.

Note that kern_ready_for_timer_interrupt() should generally be invoked separately
from interrupts_enabled() if needed; while interrupts_enabled() must be true before
invoking cause_timer_interrupt(), if the kernel is not ready the interrupt may not be
received for a long time. Also, cause_timer_interrupt_immediately() must not be used
while the kernel is not ready.

3.3.5 State space traversal

Traversal of the state space is implemented in three parts: first, identifying preemption
points when first encountered and selecting which thread to run for its first execution,
in arbiter.c, second, selecting which preemption point to backtrack to after completing
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an execution and which thread to “have switched to” 2 instead, in explore.c, and third,

rewinding the machine state to implement said backtracking, in timetravel.c (Bochs
version) and timetravel-simics.c (Simics version).

Arbiter

The arbiter (named after the corresponding component of dBug [SBG10]) is responsible
for checking which code locations during execution should be identified as preemption
points (arbiter_interested()), and thereupon for choosing whether to keep running the
current thread or to preempt and switch to a new one (arbiter_choose()). Its behaviour
in the former case is configured by the options listed in §3.1.3, and in the latter case by
the options listed in §3.1.3. For example, EXPLORE_BACKWARDS is interpreted here; if set,
it will cause Landslide to always preempt and switch threads the first time it encounters
each new preemption point.!?

Explorer

Landslide invokes the explorer at the end of each execution of the test case, which analyzes
the current branch of the interleaving state space tree to figure out which alternate branch
to try executing next. Its contents are largely algorithmic rather than architectural and
hence further described in §3.4.2 and §3.4.5.

Time travel

After the explorer picks a past point of the program to preempt, Landslide collaborates
with the simulator to revert the machine state to that point before switching to the de-
sired thread. The Simics version is merely a bunch of wrapper glue code around the
set-bookmark and skip-to backtracking commands. Bochs however does not support
backtracking, so I instead use fork() to get Linux to copy the Bochs process and thus the
simulation state for me.

The big issue to note here is that, while the simulation state should be completely
reverted, parts of Landslide’s state (e.g., scheduler runqueues, thread action flags) should
likewise be reverted to mirror the change in program state, while others (tagged ancestor
branches from DPOR, state space estimates) should be preserved from branch to branch.
In Simics, I simply copy every data structure of the former case (copy_sched() and friends
in save.c), leaving those of the latter undisturbed across backtracks.'*

12willan on-having switched to [Ada80]

13 Another secret option, CHOOSE_RANDOMLY, also exists here to randomize whether to “explore backwards”
(choosing independently at each preemption point, resulting in an overall unpredictable exploration order).
It’s not exposed to config.landslide but rather the user must edit it in arbiter.c directly, whereupon the
probability may also be adjusted via numerator and denominator.

14Simics actually wants to save/restore all its modules’ internal state on its own, offering an attribute
set/get API for modules to expose such state (used for other purposes in simics_glue.c), but doing deep
copies of data structures this way would be more trouble than it’s worth.
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In Bochs, fork() automatically copies everything, so the reverse holds: all data of
the latter case must whenever updated be propagaged to all fork()ed children processes
explicitly. I worried while implementing this that I might miss a case, or that future
updates to the code could easily forget this step, resulting undoubtedly in state corruption
bugs which to diagnose would be a thesis in their own right, so I enlisted help from
my compiler via the oft-ridiculed const. Every preemption point node in the execution
tree (tree.h), each of whose state is kept generally read-only, and all modifications must
go through modify_pp() (timetravel.h) using a modification callback, which internally
casts away the const, performs the requested modification, and also messages all relevant
child processes to perform the same (timetravel_set() in timetravel.c). The const is
absolutely, inviolably, not to be casted away, at the sacred cost of what little type safety
C offers.!> Thence the typechecker enforces that all exploration-related state is properly
propagated while scheduler state is automatically reverted.

3.3.6 Bug-finding output

The infrastructure for producing the diagnostic output to help users understand their bugs
can be classified in three parts: the symbol table glue, the excessively clever stack tracer,
and the preemption table generator.

Symbol table

The symbol table logic lives in symtable. c and is pretty much a lot of glue code. In the Sim-
ics version, Landslide relies on the deflsym Simics object created by the 15-410 python
scripts, and queries its attributes using Simics API calls. In the Bochs version, function
names and line numbers are handled separately: Bochs is patched with a new API func-
tion named bx_dbg_symbolic_address_landslide()'® which provides function names
and hexadecimal offsets; while for line numbers, pebsim/build.sh (and pebsim/pintos/
build. sh for Pintos) generates a header file 1ine_numbers.h using objdump and addr2line,
which the aforementioned hex offset then serves as an index into.

Stack traces

The stack tracer is implemented in stack.c using the standard approach of following
the base pointer chain (not supporting code compiled with -fomit-frame-pointer by do-
ing anything clever like understanding how much stack frame each function allocates),
and printing symbol table information for the pushed return addresses at the top of each
frame. However, it also offers several special-case features which even some students have
sometimes noticed as being more clever than Simics’s stack tracer. I document those fea-
tures here. As a common point of implementation among them, Landslide traces the stack

150f course this would be followed by a footnote describing the one place where I cast it away anyway,

mem_check_shared_access() in memory.c; why it’s ok is documented in an XXX comment in the code.
16Does the same thing as the existing bx_dbg_symbolic_address(), but with a better type signature.
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pointer esp in addition to the base pointer ebp; not only updating it whenever dereferenc-
ing the base pointer, but also when decoding simple assembly routines, finding “hidden”
stack frames without base pointers, identifying system call wrappers, and so on. The
corresponding code lives in stack_trace() in stack.c.

* If a function is preempted at its beginning or end such that its corresponding base
pointer is missing from the base pointer chain, Landslide will find its “hidden” frame
and include it in the stack trace in the following cases.!”

w If the last pushed return address is at offset O into the body of its containing
function, Landslide will find the next pushed return address at esp+0.

» If as above but the function is the page fault handler, at esp+4.

w If the return address is at offset 1 and the previous instruction was push ebp,
Landslide will find the next pushed return address at esp+4.

» If the return address is a multiple of 4 offset and all previous instructions are
of the form mov m32,r32, Landslide will find the next pushed return address
at esp+0. (This is common in student hand-written assembly functions.)

If the instruction at a pushed return address is a pop or popa, Landslide will search
for the next non-pop(a) instruction, and if it’s ret or iret, treat the function as a
system call wrapper (which tend not to preserve the base pointer chain) and find
the next return address above where all those registers were pushed.

If a return address was pushed during a fault or interrupt (determined by checking
for the iret opcode or the page fault wrapper special case mentioned above), Land-
slide will read the iret block to determine whether a stack switched happened and
if so what esp used to be.

* If a return address’s offset into its containing function is 0, and the last instruction
in the preceding function (binary-wise) is a call, Landslide will recognize it as a
noreturn tail-call, and print the correct function name.'®

Landslide runs the tortoise/rabbit algorithm to detect cyclic ebp chains and termi-
nate after the first time around.

Two other Pebbles-specifc special cases described in §3.3.7.

Also implemented in stack. c is the backend of the within_function/without_function
configuration command, which searches a given stack trace for the presence of a function
return address within a specified range.

17Note that in such cases, most other debuggers’ stack tracers will be missing not the name of the inter-
rupted function, but the name of the function which called that function, because it’s the former’s stack
frame which should enable the debugger to find the pushed return address for the latter.

18Normally Landslide reports function/line number information for the return address as-is, which indi-
cates the next line of code after the relevant call rather than the call itself.
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Preemption traces

The preemption traces, described and exemplified in §3.1.5, are generated by found_a_
bug.c, in cooperation with save.c. Whenever save.c creates a preemption point, it cap-
tures a stack trace of the current thread at the point it was interrupted, and saves it in the
preemption point tree. found_a_bug.c then traverses the current branch of the tree, po-
tentially producing both console output and HTML output (controlled by the HTML_PRINTF
macro family). It should be invoked by the FOUND_A_BUG macro defined in found_a_bug. h,
or by FOUND_A_BUG_HTML_INFO, which also allows the caller to specify a callback to print
extra details (such as use-after-free stack traces) in the bug report.

3.3.7 Pebbles-specific features

This section lists special cases of instrumentation specific to the Pebbles kernel.

mem_check_shared_access() (memory.c) will assert that kernel memory is direct-
mapped.

use_after_free() (memory.c) will ignore use-after-free reads originating from ker-
nel code during the swexn system call (an extremely common and neither harmful
nor technically interesting bug among student implementations).

cause_test() (test.c) will issue keyboard input to type the test case name and
press enter when the initialization sequence completes and the shell is blocked on
readline.

kern_mutex_block_others() (schedule.c) will handle the special “blocked on via
mutex” state changes whenever a mutex is acquired or released, for kernels which
use the tell_landslide_kern_mutex_blocking() annotation.

sched_update_kern_state_machine() (schedule.c) will handle the reference ker-
nel’s invocation of sched_unblock() within cond_signal() as a signal event for
happens-before analysis.

cause_timer_interrupt_immediately() (x86.c) will read the esp0 value out of the
TSS to support user-to-kernel mode switches in timer interrupts injected during
userspace execution.

splice_pre_vanish_trace() (stack.c) will, when a vanishing thread has already
unmapped all of its user memory, splice in a saved “pre-vanish” stack trace (saved
previously in sched_update_kern_state_machine()) so that the user can see the
userspace execution sequence preceding the vanish invocation.

stack_trace() (stack.c) will, when ebp crosses from kernel- to userspace across a
system call boundary (a reference kernel feature to allow Simics stack traces to cross
same), use PATHOS_SYSCALL_IRET_DISTANCE (§3.2.1) to track esp’s value across the
stack switch.
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3.3.8 Pintos-specific features

This section lists special cases of instrumentation specific to the Pintos kernel.

arbiter_interested() (arbiter.c) will automatically insert preemption points on
intr_disable() and intr_enable() calls (immediately before and after the inter-
rupt state is changed, respectively) (as long as they aren’t part of the mutex imple-
mentation, which has preemption points of its own).

lockset_remove() (lockset.c) will warn instead of panic if a lock is unlocked
twice, to allow for double sema_up() in cases where the lock is actually a multi-use
semaphore rather than a mutex.

build.sh will edit the bootfd. img binary to implant the name of the test case to be
run in the kernel’s boot command.

sched_check_pintos_init_sequence() (schedule.c) will force the kernel to skip
the timer_calibrate() and timer_msleep() routines used in I/O initialization.

keep_schedule_inflight() (schedule.c) will detect when an attempted thread
switch is impossible because the timer handler’s try-lock will fail, and will abort
the interleaving early as if it never existed (which it shouldn’t).

sched_update_kern_state_machine() (schedule.c) will:
w track invocations of timer_sleep() and list_insert_ordered() to infer when
a thread is sleeping rather than blocked automatically, rather than relying on
the tell_landslide_sleeping() annotation.

» allow sema_up() to reenter itself, which may happen when an IDE interrupt is
taken when interrupts are re-enabled at the end of said function.

# handle interrupt disabling/enabling as an abstract global lock for the purposes
of happens-before analysis.

sched_update() (schedule.c) will handle “lock handoff” of the abstract disable-
interrupts lock during a context switch for happens-before analysis.

memory . c (various functions) will handle page allocations from the palloc() family
of functions in a separate memory heap, allowing the usual allocator malloc() to
allocate and free from palloc()ed memory, and checking both allocation heaps
when checking for use-after-frees.

kern_address_in_heap() (kernel_specifics.c) will ignore DMA accesses to the
VGA console, which appear to be in Pintos’s heap region.

test_update_state() (test.c) will use the boundaries of run_test () to denote the
test lifecycle.

3.3.9 Handy scripts

The options specified in §3.1.3 are handled by a family of distasteful shell scripts that live
in pebsim/.
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* landslide is the outermost script invoked by Quicksand (or by a §3.1.3 aficionado).
It exports several key environment variables used by the other scripts, ensures the
instrumentation is up-to-date, and launches the simulator.

* getfunc.shdefines several functions commonly used by build. sh and definegen.sh
to extract function or global variable addresses from the program binary.

* symbols.sh defines the names of kernel functions that can be instrumented auto-
matically without a corresponding manual annotation (e.g., malloc() and friends,
the names of the tell_landslide family, various library helpers such as panic()).

* build.sh ensures the build of Landslide is up-to-date, and processes any dynamic
configuration options which don’t require updating the build (§3.1.3) It verifies
all required tell_landslide annotations are present, verifies all required config.
landslide options, processes the dynamic config options, checks whether or not
definegen.sh needs to be run again (via hashes stored in student_specifics.h of
the program binary and static config options), and does so if necessary.

* definegen.sh produces the content of student_specifics.h. It repeatedly invokes
the helpers defined in getfunc.sh to find the addresses of both functions specified
in the config options and functions whose names are known in advance.”

* p2-basecode/import-p2.sh and pintos/import-pintos.sh are invoked by their re-
spective setup scripts to copy the student implementation into their respective di-
rectories. §5.1.2 and 85.2.2 describe their office in more detail.

The final output of these scripts is an auto-generated header, student_specifics.h,
containing a bunch of #defines of the addresses of important functions in the compiled
binary, specific features enabled or disabled by the static config options (§3.1.3), and
so on. The files kernel_specifics.c, user_specifics.c, and student.c provide several
interface functions for interpreting the current program state with respect to these values.

3.4 Algorithms

This section describes Landslide’s model-checking algorithms from a theoretical perspec-
tive. The more complex ones are accompanied by concrete examples to hopefully help the
reader build a solid intuition, which upcoming chapters will require in their soundness
proofs.

3.4.1 Preemption point identification

When should Landslide sunder the universe into alternate realities, in which each a differ-
ent thread executes immediately following the current instruction? This singular question
determines to what extent the state space of possible interleavings explodes exponentially.

19You might think it should invoke objdump but once and keep the output in a shell variable, but I tried
that and it was mysteriously slower, so I gave up without ever figuring out why.
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While other parts of the great work decide which lock API calls to consider, or which mem-
ory accesses constitute a data race, interpreting those combinations of preemption point
predicates to decide if the current program state constitutes a single preemption point
warrants discussion.

Preemption point identification is implemented largely in pp. c. At startup, pps_init()
and load_dynamic_pps() process the statically-configured preemption points (§3.1.3)
and dynamically-configured preemption points (§3.1.3), respectively. Each of these con-
figurations may contain any number of within_function, without_function, and data_
race commands.

Stack trace inclusion/exclusion

check_withins() implements the allow/denylist behaviour for the former two of those
commands (in a similar manner to prior work’s Preemption Sealing [BBC"10]). It invokes
the stack tracer (8§3.3.6) for a list of which functions are on the call stack (hence the
importance of the stack tracer’s complex logic to not miss any frames even when interrupts
or system calls are involved). Then, to determine if the current program state should be
considered a valid preemption point, or whether it should be rejected, it compares each
within or without_function directive in the following sequence-dependent manner:

* If no within_function commands are given, operate in “denylist” mode: the pre-
emption point is by default valid as long as no without_function calls reject it.
Otherwise, operate in “allowlist” mode: the preemption point is by default rejected
unless at least one within_function directive matches.

* Subject to the above, find the sequentially-last *_function directive (static preemp-
tion point commands considered before dynamic ones) which matches any function
in the stack trace. If within, accept the preemption point; if without, reject it.

The same comparison is done for within_user_function and without_user_function.

Data race predicates

The data_race command specifies an instruction pointer value to identify as a data-race
preemption point. It can optionally be qualified by a thread ID, most recent system call
number, et cetera, as described in §3.1.3, and is queried through suspected_data_race().
In preempt-everywhere mode, Landslide instead marks all shared memory accesses as
long as they are not part of either the mutex implementation or the running thread’s stack
frame. The data_race command is ignored and suspected_data_race() instead checks
whether the instruction pointer is associated with any such shared memory access.

Preemption point predicates

arbiter_interested() in arbiter.c then checks various annotations and hard-coded pre-
emption point predicates to decide whether the current program state constitutes a pre-
emption point. The following predicates are constrained by check_withins():
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* suspected_data_race()
* User or kernel mutex_lock() or mutex_unlock() call

* Custom preemption point requested by the user with tell_landslide_preempt()
(relic of [Blum12a], largely obsoleted by data-race preemption points (§4.2.3))

The following predicates ignore any within_function settings (mandatory preemp-
tion points needed, for example, to maintain the one-thread-per-transition invariant):

* Voluntary reschedule, e.g. explicit yield()

* hlt instruction (kernel waiting for interrupt)

* User thread becomes yield- or xchg-blocked (§3.4.6)

* _xbegin() or _xend(), if testing transactional memory (Chapter 6)

Whenever arbiter_interested() returns true, Landslide creates a new struct nobe

in the execution tree (§3.3.1), creates a checkpoint (§3.3.5), and queries arbiter_choose()
to decide which thread to run next (83.3.5).

Example

Consider the following examples to illustrate the behaviour of the stack trace directives.
1. mutex_lock(), in malloc(), in thr_create(), in main()
2. mutex_lock(), in cond_wait(), in thr_join(), in main()
and the following within/without_user_function combinations:
* within_user_function mutex_lock, without_user_function malloc
Rejects stack trace 1 (last matching directive is to exclude malloc()), accepts stack
trace 2 (last matching directive is to include mutex_lock()).
* within_user_function thr_join
No withouts present, so behaves as an allowlist, rejecting stack trace 1 (not in
thr_join()), accepting stack trace 2 (in thr_join()).
* without_user_function cond_wait
No withins present, so behaves as a denylist, accepting stack trace 1 (not in cond_
wait()), rejecting stack trace 2 (in cond_wait()).
* without_user_function main, within_user_function mutex_lock
Accepts both (last matching directive is to accept mutex_lock(), regardless of main()).

3.4.2 Dynamic Partial Order Reduction

Landslide implements Dynamic Partial Order Reduction (DPOR) [FGO5] to identify con-
current yet independent thread transitions whose permutations can safely be pruned from
the state space while still testing all possible program behaviours.

The DPOR implementation consists of 3 parts: computing happens-before, comput-
ing memory conflicts, and tagging alternate branches to explore to drive the state space
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exploration. The former two are computed as each preemption point is reached, for the
associated thread transition pairwise with all other preceding thread transitions. The lat-
ter is computed at the end of each full interleaving executed, using the results of the two
former, and constitutes the bulk of the algorithm.

In this section t; will denote a transition between two program states during execution,
with each state being a preemption point as identified in §3.4.1, and T(t;) will denote the
thread which was scheduled (switched to) to produce that transition. A visual example
will be given at the end to help reinforce the intuition behind the formalism.

Happens-before

The happens-before relation expresses when two thread transitions can potentially be
reordered, or in other words, are logically concurrent (despite the serialized nature of the
simulated execution). This relation is expressed in the following definitions paraphrased
from [FGO5].

* Enabled: A transition t; is enabled in a state s when a state s’ exists such that s LN
s’ exists. In systems research terms, the scheduler at state s considers T(t;) to be
runnable.

* Dependent: Two transitions t; and t; are dependent if

. . t
1. t; is enabled in s and s =+ s/, and
2. ty is enabled in s but not enabled in s’, or vice versa.

In systems terms, either T(t;) = T(t;), or the execution of t; at s causes T(t,) to
change state from blocked to runnable or vice versa.?’ Landslide computes this
relation in enabled_by() in save.c.

* Happens-Before: The happens-before relation for a transition sequence S = t; . . . t,
is the smallest relation —s on 1...n such that

1. ifi <jand S; and S; are dependent then i —5 j, and
2. —g is transitively closed.

Landslide computes this relation in compute_happens_before() in save.c.

The happens-before relation is a partial order expressing the scheduling constraints of a
given interleaving. All pairs of interleavings not included are subject to reordering, and
hence candidates for new interleavings to test.

Note that DPOR’s notion of happens-before differs from the traditional distributed sys-
tems definition [Lam?78] as used in Pure Happens-Before §2.3.2; rather, it coincides with
condition 3 of Limited Happens-Before (in fact, Landslide’s Limited HB implementation
simply reuses the same result computed for DPOR’s purpose).

20The original paper’s definition includes a second criterion that, from s, a state s’ exists such that both
s 22 ¢ and s 2% §/. This captures the memory independence relation, but computationally requires
direct comparison of program states. Stateless model checkers compute memory conflicts separately from

happens-before, to find and prune such identical states implicitly, as described in the next two subsections.
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Memory conflicts

The memory conflict relation expresses when two transitions are dependent, or in other
words, when their behaviour could potentially vary depending which executes first.

Upon execution of each t; € S, Landslide saves the current set of all memory accesses
since the previous preemption point (call this M(t;)), compares it to all M(t;) with i < j and
i /s j, and then begins recording subsequent memory accesses in a new empty set for
tiy1. (shimsham_shm() in save.c). These M(t) sets are mappings from memory addresses
to instruction pointer value, read-or-write boolean, lockset or vector clock, and various
other metadata (struct mem_lockset in memory.h).

The set intersection is implemented in mem_shm_intersect() in memory.c. It checks
for read/write and write/write pairs to the same address with an O(max(m,n)) scan of
both access sets (pre-sorted). If any address a exists with a € M(t;) and a € M(t;) and
M(t;)(a) = write V M(tj)(a) = write then t; and ¢t; are said to conflict, which I will denote
ti «~g t.

Whenever a conflict is identified, Landslide also invokes the data race analysis (§3.4.4).
It checks for free()/access conflicts as well as access pairs, effectively treating dealloca-
tion of a heap block as a “poisoning” write to its entire contents, which is considered to
conflict with accesses to any address therein on the grounds that reordering may expose
a use-after-free.

State space exploration

The core of the DPOR algorithm is implemented in explore() in explore.c.

Definition. Given a transition sequence (execution, interleaving, preemption trace)
S = t;...t,, the DPOR algorithm identifies any number of alternate interleavings that
must be tested. Each such interleaving I will denote in this section as I;; = (t1 ... t;i_1, Tj),
where t; ...t;_; is the common execution prefix shared between S and the new interleav-
ing, and T; is the thread ID to be scheduled after t; 1, Tj # T(t;). *! Landslide’s implemen-
tation represents S as a list of struct nobes, defined in tree.h, each one representing a
preemption point, or intermediate state between two transitions.

Identifying new interleavings. To find which alternate interleavings need to be
tested, DPOR compares pairwise each pair of transitions ¢; and t;, i < j, in the current
interleaving S. If t; — t; then they cannot be reordered, and if t; ¥ t; then reordering
them will produce a state already encountered in this interleaving; hence, DPOR marks
new interleavings only when t; /45 t; and t; «~s tj (is_evil_ancestor()).

For each such pair, let s denote the state (preemption point) before t;. Then:

* If T(t;) is runnable at s, return Iy = (t; ...t;_1,Tj) (tag_good_sibling()).

211 describe T; as a thread ID here, rather than as a thread transition, because the nature of the transition
(its memory accesses, the subsequent state, et cetera) is unknown until actually executed.

22To aid intuition, consider the two extremes: if all transitions are related by happens-before, the program
is not concurrent and no alternate interleavings are possible; if all transitions are memory-independent, the
program exhibits full data isolation between threads and all schedules are observably equivalent.
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* Otherwise, there must be some third thread runnable at s;?* then, return all I =
(t1...ti_1, Tx) such that Ty # T(t;) and Ty is runnable at s (tag_all_siblings()).

To summarize, DPOR identifies I;;s which will (eventually) reorder each conflicting,
concurrent transition pair in S to reach a (possibly) new program state not exposed in the
current interleaving. Prior work [God96, FGO5, AAJS14] refers to the set of these Ijs, for
a given i, as the persistent set at the preemption point after t; ;.

Tracking already-visited interleavings. Let U(I;;) denote the sub-state-space (or sub-
tree) beginning at the next preemption point reached after executing T; after t; ... t;_; in
other words, the set of all sequences S’ =ty ...t;_1,u;, ... uy with T(u;) = T;. Landslide or-
ders its search depth-first, so for any such U outside the current interleaving, either all or
none of its S’s will have been tested already. Therefore, to avoid repeating interleavings,
Landslide need only store at each struct nobe a list of threads such that their correspond-
ing subtree U is fully explored, and can omit any non-constant-size information about the
contents of that U (struct nobe_child). Hence the memory cost of Landslide’s DPOR im-
plementation is O(nk), k being the maximum runnable threads at any preemption point
(which in turn is always single digits for model checking tests).

Choosing which new interleaving to test next. Among all interleavings chosen by
DPOR not already marked as explored, Landslide chooses the one with the longest ex-
ecution prefix matching the current S, to maintain the depth-first search invariant. (In
the case of a tie, differing only by which thread to run, it chooses arbitrarily.) All other
new interleavings are marked to explore later, and automatically included in the result
of any future iterations of DPOR until they are tested. Because the one with the longest
execution prefix was chosen to test next, all others must share their execution prefixes
with it, preserving the O(nk) memory bound described above.

Termination. When DPOR returns no new I;;s not already marked in the set of visited
subtrees, the exploration is complete.

Example

Although a superhuman reader may quickly reach intuitive understanding of complex
algorithms from dense prose and mathematical notation alone, mortal readers may prefer
the following example of using DPOR on the program from Figure 2.1, whose original state
space is shown in Figure 2.4. In this program both threads are always enabled, imposing
no scheduling constraints, so memory conflicts alone will drive exploration. First, let us
consider a single iteration of DPOR, applied after executing the first branch. The result is
shown in Figure 3.4.

In this interleaving, DPOR identifies 3 memory conflicts, two read/write and one
write/write, among the threads’ 4 accesses to x. For each such pair, it “marks” an al-
ternate interleaving, which shall begin by preempting the thread of the first half of the
conflict just before its execution thereof. The ultimate goal is to execute an interleaving

BAFSOC T(t;) is the only runnable thread ats, then either T(t;)’s execution at s enabled T(t;), or it enabled

an intermediate transition (whether by T(t;) or a third thread) which in turn enabled T(t;). In either case t;
is transitively dependent with t;, contradicting t; /s t;.
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A 4
X <- tmp2

Figure 3.4: Result of a single iteration of DPOR.

which reorders the conflict, which may expose new behaviour. These marked interleav-
ings form a work-queue which defines the exploration. DPOR consumes from this set in
depth-first order (note the reversed order of %1 and % 3) to avoid storing in memory any
representation of exponentially-sized subtrees outside of the current branch. Note also
that in %3, the reordered tmp2 <- x is not directly part of the memory conflict which
marked it, but it must be executed first to reach the conflicting x <- tmp?2.

Now, let us run multiple iterations of DPOR to advance through the first half of the
full state space shown in Figure 2.4(b). Figure 3.5 shows the outcome (with the new %2
appearing in %1’s subtree, to be explored before % 3).

After marking %1 and %3 from Figure 3.4’s interleaving, now labeled A, DPOR ad-
vances to interleaving B, preferring to schedule the second thread before switching back
to the first to ensure the memory access is properly reordered. From there, it identifies a
new memory conflict, marks %2, and advances to C, where it finds no memory conflicts
that would mark anything not already marked and/or explored (memory conflicts that
were already reordered in old branches are not highlighted with arrows). From C, %3
alone remains in the work-queue, so DPOR advances to the second (symmetric) half of
the state space, skipping (thereby pruning) branches D through J.

To see why branches D through J need not be tested, consider that each thread’s
tmpN++ is a thread-local event, participating in no memory conflicts, and hence any two
interleavings differing only by reordering tmpN++s must be equivalent. The dashed blue
arrows denote such equivalences; note the two disjoint equivalence classes {B,E,G,I} and
{C,D,F,H,J}, distinguished by the order of the two final x <- tmpNs. Note also that al-
though B and C also have the same outcome (x==1), this depends on the values written to
memory rather than addresses (and would change if one thread’s tmpN++ were a tmpN+=2,
for example), which DPOR does not consider. Recent work [Hual5] has extended DPOR
to find such value-based equivalences, although is beyond this explanation’s scope.
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A 4
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A B C D E F G H I J
O_)D Executed thread interleaving * Alternate interleaving marked for exploration
K\J Write/write memory conflict Pruned (never executed) interleaving
/\” Write/read memory conflict Equivalent interleavings (up to reordering of tmpN++)

Figure 3.5: Result of 3 DPOR iterations, pruning 7 redundant branches.

Finally, let us consider the final result after DPOR runs out of remaining unexplored
marked branches, shown in Figure 3.6.

Ultimately, the second half of the state space is pruned symmetrically. In general, the
number of ways to interleave two threads executing N and M events each is given by
("M);24 in this case, the original state space’s size was (*}°) = 20. DPOR’s reduction is
characterized by replacing N and M with the number of conflicting events only; in this

case, ignoring all tmpN++ reorderings and testing only (*}?) = 6 branches.

Sleep set reduction

In the presence of non-conflicting transitions as well as conflicting ones, DPOR’s approach
as described so far can still end up testing equivalent interleavings. As the presence of
more equivalence arrows in Figure 3.6 hints, its reduced subset state space still contains
redundancy, arising from the fact that one pair of those four events is two reads, and
hence not actually in conflict. Visual inspection shows that %4, while locally justified in
trying to reorder tmp1 <- x before x <- tmp2, effectively serves only to reorder it with
tmp2 <- xrelative to the first symmetric subtree (3% 1). In other words, even though DPOR
marked each new branch with the intent only to reorder conflicting accesses, %1 and %4
contained interleavings equivalent up to independent reorderings anyway. Figure 3.7
summarizes the relevant interleavings to highlight one such equivalence.

24Generalizing to K threads, and simplifying to N events each, this formula becomes ’,11'—,]‘,('
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(start)

tmpl <- x tmp2 <- x
tmp1++ tmp2 <- x tmpl <- x
1
x <- tmpl tmp2 <- x
| tmp2 <- x | tmp2++ X <- tmp1 X <- tmp2
2
tmp2++ x <- tmp2 x <- tmp1
\ 4
x <- tmp2 x <- tmp1 X <- tmp2
A B C

Pruned subtrees (equivalent up to reordering of tmpN++ )

Equivalent interleavings (up to reordering of tmpN <- x )

Figure 3.6: DPOR’s termination state, having reduced 20 interleavings to 6.

Tqi: tmpl <- x (read) To: tmp2 <- x (read) To: tmp2 <- x (read)
Ty: tmp2 <- x (read) To: x <= tmp2 (write) T1: tmpl <- x (read)
Ti: x <= tmp1 (write) Ti: tmp1 <= x (read) Ti: x <= tmp1 (write)
To: x <- tmp2 (write) Ti: x <= tmp1 (write) To: x <- tmp2 (write)
(a) Original branch (C). (b) Goal branch (K). (¢) Redundant branch (L).

Figure 3.7: Motivating example for the sleep sets optimization. Three of Figure 3.6’s
interleavings are highlighted, with the always-independent tmpN++s omitted for brevity.

Intuitively speaking, when DPOR entered the %3 subtree, it did not “remember” which
memory conflict it wanted to reorder T; around (i.e., that x <- tmp2 should come before
tmp1 <- x). Upon witnessing the conflict in the new (intended) order, it then tried to re-
order it again, producing interleavings regrettably equivalent to ones already tested (all
told, only tmp2 <- x and tmp2++ having been reordered around tmp1 <- x). To “remem-
ber” the original purpose of testing subtree %3, which was already fulfilled by testing K,
DPOR can check just before tagging a new subtree (here, %4) among all preceding tran-
sitions independent with the conflicting one (here, tmp2 <- x and tmp2++ independent
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with tmp1 <- x) for an already-explored interleaving beginning with the target thread. If
such exists, the new subtree is guaranteed to be equivalent to one already checked, and
can safely be skipped.

Landslide implements this check in equiv_already_explored(), which checks (in this
case after executing K), that if the first event to be reordered (here, tmp1 <- x) has already
been tested in an equivalent reordering around any number of preceding events (here,
tmp2 <- x and tmp2++), then the newly marked subtree is safe to prune. Note that this
does not require storing any full subtrees outside of the current branch; only the subtree’s
root node need be saved to prove that an equivalent interleaving beginning with T; therein
was already checked, preserving DPOR’s O(n) memory footprint.

This corresponds to the sleep sets optimization described by prior work [God96, FGOS5,
AAJS14], so named because it effectively puts T; “to sleep” until after the true conflicting
access of x <- tmp2. Landslide’s implementation differs from prior work, which explicitly
tracks sets of reordered threads and expected conflicting accesses, by instead identifying
where the reduction should occur during subsequent DPOR iterations. This approach also
relies on the search ordering strategy (arbiter_choose()) to prefer scheduling the thread
previously chosen for reordering by DPOR, to ensure the conflicting access happens before
the preempted thread gets a chance to run again. Further optimizations such as source sets
and wakeup trees, which prior work has shown achieve optimality (i.e., executing exactly
one interleaving per equivalence class) [AAJS14] are not yet implemented. To the best
of my knowledge, they provide further reduction only in cases of 3 or more threads; I
suspect (without proof) that sleep-set DPOR is optimal for 2 threads.

Chapter 4’s experiments and Chapter 5’s user studies were conducted before this opti-
mization was implemented. Note that its absence has no bearing on DPOR’s soundness,
only its efficiency, and that Landslide showed good bug-finding performance even without
it. Chapter 6’s experiments include this optimization, because its presence was required
to fairly compare the other reduction strategies presented therein.

3.4.3 State space estimation

For both the user’s convenience and for Quicksand’s prioritization algorithm (§4.2), Land-
slide attempts to guess how big partially-explored state spaces will ultimately end up
being upon completion. Because the backtracking implementation uses checkpointing
rather than replaying similar interleavings’ shared execution prefixes from the beginning
§3.3.5, the total number of interleavings (i.e., leaf nodes in the execution tree) must be
estimated separately from the total runtime (i.e., sum of all edge weights in the tree).

As a concrete example, consider the state space of Figure 3.6, and suppose each tran-
sition to the next preemption point takes 1 second to execute. While the first branch
executes in 6 seconds, the second branch, sharing the first transition as a common prefix,
takes 4 seconds, and the one after that only 2; the state space being ultimately completed
in 24 seconds. Even with perfect hindsight, naively multiplying the total interleavings
(6) by the total execution time per branch (6) would double-count common prefixes and
grossly overestimate (36) the total runtime.
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Hence, Landslide uses two differently suitable algorithms for each of size and runtime
estimation: the Weighted Backtrack Estimator (WBE) and the Recursive Estimator (RE),
respectively, first introduced in [KSTWO06] and later adapted to DPOR by [SBG12]. In
principle, both calculate the current progress as a proportion of the expected total by
counting how many branches DPOR has marked for future exploration (§3.4.2) and as-
suming the sizes of their resulting subtrees are predicted by the known sizes of similar
already-explored subtrees. In practice, the calculation strategy differs between the two
approaches, which can occasionally result in drastically differing outputs (§6.3.3).

Implementation-wise, Landslide reports size estimates as both the percentage and as
a total number of branches, and time estimates as an ETA. Quicksand’s -v option (§3.1.2)
will cause it to print them each time a new interleaving is tested; for example:

[JOB 1] progress: 66101/94825 brs (69.708252%), ETA 13m 37s (elapsed 46m 10s)
Both estimates are computed simultaneously in _estimate() in estimate.c (which, I
might add, is well-commented in case the following prose is insufficient). §8.3 will discuss
their limitations and some opportunities for future improvement.

Size (Weighted Backtrack) estimation

The WBE, used to estimate total number of interleavings, computes the proportion of
the total size that the already-explored branches are expected to comprise, using DPOR’s
workqueue to anticipate how many unexplored marked branches remain. This serves as
a progress bar [Mye85] that represents the estimated percentage towards completion,
approaching 100% (not necessarily monotonically) as exploration continues.

Summarizing prior work’s formal definition [SBG12], the proportion at a terminal
node v,,%°, preceded by an execution sequence (v; ...V, 1), is computed as:?°

n—1

. 1
t V) = :
proportion(vy ....va) g |marked children(v;)|

where marked children(v;) is the number of enabled thread transitions at v; which have
either already been explored or been marked by DPOR. Then, the total estimate is given
as the sum over all branches b = (v ...v,) explored so far:?”

1
> _pep Proportion(b)

It is easy to see how these might fit into DPOR’s incremental search procedure: at the
end of each branch compute its proportion and add it in to a global estimate value. How-
ever, DPOR may tag new branches to explore that would affect past branches’ proportions,

estimate =

25Prior work [KSTW06, SBG12] refers to this instead as probability, i.e., the probability that the node will
appear in a branch chosen uniformly at random from the completed tree. I find “proportion” to be more
illuminating on how the algorithm works.

26 simplified from [SBG12]: the missing F(v;) is 0, using the empty fit strategy.

27 Simplified from [SBG12]: t(b), the time for each branch, is 1, because we are counting them.
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requiring them to be recomputed, which would require storing the entire exponentially-
sized tree in memory. Instead, Landslide also stores per-subtree estimates at intermediate
v;nodes, 1 < i < n, along the current branch. Whenever DPOR marks a new kth branch at
some v; its estimate is multiplied by (k — 1) /k to retroactively adjust all past branches’ pro-
portions contributing to that estimate. The change is also propagated to its sub-subtrees,
whose estimates must also incorporate the new marked children value. This allows Land-
slide to update the global estimate after each branch in O(n) time and memory, without
recomputing past branch proportions individually.

Runtime (Recursive) estimation

The RE, used to estimate total execution time, computes at each node the expected time
to execute all subtrees rooted at children of that node, assuming unvisited subtrees’ times
will be an average of their visited siblings. This estimate at the root node, minus the
current time elapsed so far, serves as a guess at how long until completion. Let usecs(v;)
denote the time elapsed during execution of the transition v;_; — v;. Then a node’s
estimate is given by:

estimate(v;) = usecs(v;) + estimate(V;)

|marked children(v;)| Z
lexplored children(v;)]

vj€explored children(v;)

Like the WBE, whenever DPOR tags a new kth child at some v, its estimate is multiplied
by k/(k — 1) (note the reciprocal of before) to retroactively re-weight previously explored
subtrees’ estimates. Unlike the WBE, this change does not need to be propagated to
descendant subtrees’ estimates. This estimate also takes O(n) time and memory.

Example

To illustrate how the two estimators can under-estimate the total tree size and/or diverge
from each other, consider the state space from Figure 3.6, of size 6. Suppose for RE that
each transition takes 1 second to execute.

1. After branch A, two tags exist, %1 and %3. Under WBE, the subtree estimate at
tmp1++will first be 1/2 (half its children being fully explored), and the root estimate
will be 1/4, half that, which is propagated back down to tmp1++, becoming also 1/4.
Dividing the current progress (1) by that yields 4 total branches, an underestimate.

Under RE, the estimate at tmp1++ will be 9 seconds (incorrectly assuming % 1’s sub-
tree will be 1 branch), and the root estimate will be 20 seconds, an underestimate.

2. After branch B, %2 is now marked. Under WBE, the subtree estimate at tmp2++ is
1/2, which at tmp1++ is then divided by its marked children and added to its estimate,
yielding 3/4. Note that it has “forgotten” that only branch A, alone, contributed to
its original 1/2, rather than two branches as in this subtree. The root and tmp1++’s
subtree estimates are updated (and propagated down) to 3/8. Dividing the current
progress (2) by that yields 5.33 branches, an underestimate.
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Under RE, the estimate at tmp2++ is 5 seconds, the estimate at tmp1++ is updated to
11 seconds, and the root estimate to 24 seconds, accurate.

3. After branch C, nothing new was marked. The subtree estimate at tmp2++ is 1 (hav-
ing been completely explored) and the root estimate is 1/2. Dividing the current
progress (3) by that yields 6, accurate.

Under RE, no estimates change from after B.

4. After branch K, %4 now exists. tmp2++’s subtree estimate is at first 1/2, then the
root estimate and it get updated to 3/4. Dividing into the current progress (4),
5.33, an underestimate.

Under RE, the estimate at tmp2++ is 9 seconds, and the root estimate is 22 seconds,
an underestimate.

5. After branch L, %5 joins the party. tmp2++’s estimate is updated to 3/4, and the
root estimate ultimately becomes 7/8. Dividing into the current progress (5), 5.7,
an underestimate.

Under RE, the estimate at tmp2++ is 11 seconds, and the root estimate is 24 seconds,
accurate.

6. After branch M, both estimators have perfect information and converge to accuracy.

To illustrate how the estimators can over-estimate the total tree size, consider the
same state space, except with the %4 subtree also pruned by DPOR’s sleep sets extension
(83.4.2); i.e., only branches A, B, C, and K remain, with an 18 second execution time.
Both estimators’ behaviour is identical through branch C, only now WBE’s prediction hap-
pens to be accurate at A (although for the wrong reasons), but overestimates at B and
C, while RE’s predictions are all overestimates. As before, both reach perfect accuracy
upon completion, now occurring at K. Intuitively speaking, the estimators underpredict
when DPOR keeps finding new branches to tag as it makes progress, and overpredict
when sleep set reduction achieves extra pruning on right subtrees. Not shown in this ex-
ample, interleaving-dependent control flow can, of course, beget unexpected state space
structure in essentially arbitrary other ways.

3.4.4 Data race analysis

Whenever a memory conflict is identified for DPOR as described above, the access pair’s
corresponding locksets and/or happens-before edges are checked to determine if it’s also
a data race. Note the distinction: DPOR memory conflicts indicate that two thread tran-
sitions, if reordered, could produce different behaviour, even if all accesses therein are
adequately synchronized; while a data race indicates furthermore that the two threads
can be interleaved precisely at the moment of one or both accesses, supposing that a new
preemption point were introduced to split one or both transitions in half.

The core of the comparison is in check_locksets() in memory.c. It checks each DPOR
memory conflict’s locksets, for limited happens-before, and happens-before edges, for
pure happens-before (§2.3.2).
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Limited Happens-Before

Conditions #1, #2, and #4 defined in §2.3.2, provided the Limited Happens-Before def-
inition for #4, coincide with DPOR’s version of happens-before described in the previous
section. Hence all that remains to be checked is #3, the set of locks held by each thread
at the time of access.

Routines for recording lockset changes and computing set intersection are found in
lockset.c. Apart from standard data structure manipulation, one algorithmic point of
note is that locks are distinguished by types in addition to address. This allows (e.g.)
mutexes stored as part of the implementation of semaphores to protect a different set of
accesses than are protected by the semaphore they implement.

Pure Happens-Before

In Pure Happens-Before, condition #4 is replaced with the traditional distributed systems
notion of Happens-Before [Lam?78]. Landslide implements this via the vector clocks ap-
proach described by FasTTrAck [FF09]. I refer the reader interested in the vector clock
algorithm itself to the FASTTRACK paper, limiting discussion here to Landslide’s corre-
sponding implementation of each inference rule.

I use the DyiT+ rules [PS03] (as presented in [FF09]) for reads and writes rather than
the FAsTTRAcK ones, even though they more often incur O(n) runtime in the size of the
vector clocks: because Landslide tests should be limited to few threads in order to manage
the state space size, n is always in the single digits, so I optimize for code simplicity.

1. Reads and writes (memory.c)
* DJIT+ READ/WRITE SAME EPOCH - vc_eq() case of add_lockset_to_shm()
* DJIT+ READ/WRITE - vc_happens_before() case of check_locksets()
2. Synchronization (schedule.c)
* FT ACQUIRE
® kern_mutex_{,try}locking_done() cases of kern_update_state_machine()
® user_mutex_{,try}lock_exiting() casesof user_update_state_machine()
® cli case of kern_update_state_machine() (Pintos only)
® cli/sti lock handoff case in sched_update() (Pebbles only)
* FT RELEASE
® kern_mutex_unlocking() case of kern_update_state_machine()
® user_mutex_unlock_entering() case of user_update_state_machine()
® sti case of kern_update_state_machine() (Pintos only)
® cli/sti lock handoff case in sched_update() (Pebbles only)
* FT FORK - agent_fork()

* FT JoIN - sched_unblock() case of kern_update_state_machine() (Pebbles
only; Pintos case is handled by above cli/sti cases in context switch)
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3.4.5 Iterative Context Bounding

Iterative Context Bounding [MQO7] is a state space exploration strategy that prioritizes
interleavings with fewer total preemptions first. Let P(S) denote the number of preemp-
tions in an execution sequence S. Then, to summarize in pseudocode a naive exploration
of some state space U as:

Algorithm 1: Straightforward exploration ordering.
1 foreach S € U do

2 \ Execute(S)
3 end

ICB’s approach could likewise be summarized as follows:

Algorithm 2: ICB exploration ordering.
1 for B € [0..maxp(U)| do

2 foreach S € U,P(S) < B do

3 | Execute(S)

4 end

5 end

Implementation

First of all, note that Algorithm 2 is structured in a way that repeats interleavings with
fewer than n preemptions that have already been checked in previous iterations of the
outer loop. This is because the number of preemptions in each branch is not known in ad-
vance; rather, the state space must always be explored in an overall depth-first approach,
at best skipping too-preemptful interleavings as they are encountered. As simple as it
would be to state “foreach S € sortp(U)” in pseudocode, implementing such an ordering
would be much less straightforward. 28

Therefore, Landslide’s ICB implementation combines with DPOR when tagging new
branches to explore at the end of each branch: just as DPOR skips alternate interleavings
that are memory-independent, ICB further filters interleavings requiring more preemp-
tions than the current bound out of the to-explore set. The macro ICB_BLOCKED, defined
in schedule.h, decides if a given thread would require a preemption beyond the cur-
rent bound to switch to.? The DPOR implementation then checks, for some I;; it wants

28The pseudocode algorithms found in many conference papers often fail to be straightforward to trans-
late into usable implementations [Blum17, Figure 5].

29Since “voluntary” context switches (e.g. arising from yield()) are often necessary for correct execution,
ICB_BLOCKED does not count such switches towards the preemption count. Therefore, within a certain
preemption bound B, interleavings with more than B context switches may still be tested.
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to mark for exploration, whether ICB_BLOCKED(T;) at the state after t;, and skips it if so
(tag_good_sibling()/tag_all_siblings()).

Then, the entire state space is repeated with increasing bound until no such are fil-
tered. This core ICB loop appears in time_travel() in landslide.c. Although not ex-
plicitly structured as a C-style loop in the code, it resets Landslide’s progress through the
state space, allowing exploration to continue until it finally observes all interleavings to
have fewer preemptions than the bound.

Complexity

If the search is terminated early after reaching a predetermined fixed bound for B, ICB
in principle reduces the state space from exponentially-sized®® in both K, the number of
threads, and N, the number of events, to still exponential in K (typically small) but only
polynomial in N (typically large). Under a preemption bound of B, there are only B + K
opportunities for context switching®!, so the corresponding state space size is at most
(M) (B + K)!. All N-related factors therein are bounded above by N°.

Prior work often recommends 2 for such a cutoff [MQO07, TDB14, WR15], although
84.5’s larger dataset suggests 3 would be considerably more thorough. On the other hand,
any finite such bound can provide only a heuristic verification guarantee. Preserving the
full formal verification, i.e., continuing iteration until B = maxp(U) not only remains expo-
nential in N, but also introduces a factor of maxp(U) repeated work. Landslide takes this
approach for now (rather than stopping at any finite cutoff). Future work could memoize
already-tested interleavings so that each iteration of B could test only those schedules
with exactly B preemptions, restoring the original B-independent (but still exponential)
complexity.

Bounded Partial-Order Reduction

Prior work [CMM13] has shown that when combined with DPOR to prune equivalent
interleavings, DPOR’s reduction might not be sound with respect to the subset of U under
P < n. That work introduced Bounded Partial Order Reduction (BPOR), a compatibility
extension to DPOR for ICB to address this problem.

To summarize, when DPOR identifies some interleaving I;; to test, it may not be possi-
ble to execute T(t;) after t; without exceeding the current preemption bound. However,
there may exist another interleaving Ji; within the bound which runs T(t;) before ¢t;. If a
DPOR implementation naively configured with ICB simply skipped I on account of the pre-
emption bound, J may not get marked for exploration from any other iteration and/or pair
of conflicting transitions. Even though restricting the state space to a certain maximum
preemption bound is already unsound in terms of losing full interleaving coverage, fail-
ing to test even J would be a failure of DPOR itself to soundly prune the already-reduced

30Combinatorial, to be precise; see §3.4.2.

31This K appears from the “mandatory” context switches at thread exit; more of which could also be
introduced from blocking synchronization.
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state space defined by that bound. Hence the need for BPOR, to ensure that if such an
alternative J to I exists within the bound, it gets marked for exploration immediately.

To implement BPOR, whenever ICB_BLOCKED causes DPOR to skip an interleaving,
Landslide searches all transitions t; € S such that t; <s t; and T(tx) = T(t;) and ~{3t; € S
such that t; <5 t; <s t; and T(t;) = T;} (stop_bpor_backtracking()). All Iy;s which can be
tested within the preemption bound are marked instead of I;; (tag_reachable_aunts()).
The reader interested in further algorithm details and the corresponding soundness proof
is referred to [CMM13].

3.4.6 Heuristic loop, synchronization, and deadlock detection

Despite the ease of automatically instrumenting a fixed concurrency API such as P2’s, the
variety of student implementations inevitably results in many behaviours outside Land-
slide’s model. This section documents the heuristics Landslide uses to approximate a
program’s formal behaviour in such situations.

Infinite loop detection

All modern presentations of stateless model checking assume finite program length. Even
though all test cases used in this thesis’s experiments are hand-written to ensure run-
time which is not just finite but also short (on account of exponential state space sizes),
bugs may still cause a program to get stuck in an infinite loop unexpectedly. Detecting
such loops in general is of course uncomputable [Tur37], but Landslide has the benefit of
knowledge from past iterations to inform its sense of how long the program “should” run.

Landslide checks for two distinct categories of potentially-infinite loops, visualized
in Figure 3.8. Firstly, it keeps a running average of how many preemption points deep
each completed interleaving has been in the past. Whenever a new preemption point is
reached, Landslide checks if its depth is greater than the heuristic constant factor of 20
(PROGRESS_DEPTH_FACTOR) times the previous average. If the depth exceeds that cutoff,
it reports an infinite loop bug. Whether this represents a livelock or just a mundane
sequential logic bug is for the user to decide. However, as different interleavings do often
execute different program logic and vary in length accordingly, Landslide waits to test 10
interleavings (PROGRESS_CONFIDENT_BRANCHES) before applying this heuristic; in the case
of fewer, it scales the depth factor by a heuristic exponential factor of 1.1 to represent its
lower confidence (PROGRESS_BRANCH_UNCERTAINTY_EXPONENT). In the special case of the
first branch ever tested, Landslide will abort after a fixed preemption point depth limit of
4000 (TOO_DEEP_@TH_BRANCH) — a program with such N would probably have an impossibly
large state space anyway.

Secondly, a program may get stuck in a loop where no preemption points are encoun-
tered each new iteration. For example, race-induced data corruption may cause a list to
end up circularly linked, leading a search or append operation to fail to terminate. Land-
slide also maintains a running average of instructions per transition, and each instruction,
compares if more instructions have elapsed since the last preemption point than a constant
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(a) Infinite loop around preemption points. (b) Stuck between preemption points.

Figure 3.8: Detecting infinite loops heuristically by comparison to past interleavings.

times that average. Because transitions may themselves vary greatly in number of instruc-
tions as each represents completely different program logic, this heuristic is much more
lenient than the preemption-point-counting one, using a multiplicative factor of 4000
(PROGRESS_TRIGGER_FACTOR). If such a loop is encountered within the P2 synchroniza-
tion primitives, which should generally be free of O(n) operations, Landslide uses a more
aggressive cutoff of 2000 (PROGRESS_AGGRESSIVE_TRIGGER_FACTOR). Also, as transitions
between data-race preemption points may have as few as 1 instruction each, Landslide
caps the average from below at a minimum of 1000 (PROGRESS_MIN_TRIGGER_AVERAGE) to
keep the average relatively stable.
These checks are both implemented in check_infinite_loop() in landslide.c.

Yield-loop detection

One very common student implementation pattern in P2s and kernels is to open-code
synchronization between threads using a loop that spins around a condition that the loop
itself cannot fulfill, waiting for another thread to allow it to proceed, rather than using the
established synchronization API.>? If Landslide failed to recognize that the thread was in
principle blocked, just as if it had called deschedule or cond_wait(), this would result in
an infinitely deep branch as it keeps trying to schedule the waiting thread, blocking all of
its attempted context switches to the thread that could make progress. These loops need
not necessarily yield each iteration: they may spin blindly, assuming progress is being
made on another CPU, which is not possible under Landslide as it serializes execution.
Landslide detects such ad-hoc yield-loop blocking by keeping a counter for each thread
to track how many yields it has invoked since the last interesting activity. “Interest-

32Even when the student doesn’t open-code any such synchronization and always uses deschedule or
primitives built thereupon, mutex_test (8§5.1.3) often relies on this functionality, as data-race preemption
points within mutex_lock() would otherwise disrupt Landslide’s ability to recognize blocking on a con-
tended lock.
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ing” here is defined heuristically as any other known P2 API call, with the exception of
mutex_lock() and mutex_unlock().?®> Whenever this counter reaches the heuristic cutoff
of 10 (TOO_MANY_YIELDS), Landslide declares the thread blocked, and treats it just as if
it had invoked deschedule() for purposes of DPOR (check_user_yield_activity() in
user_sync.c). In cases where yield itself is not involved, Landslide also counts the num-
ber of atomic instructions (xchg, xadd, cmpxchg, et cetera), and marks the thread blocked if
it exceeds 100 such (TOO_MANY_XCHGS_TIGHT_LOOP).3* When such a loop contains neither
yield nor atomics, Landslide falls back on the standard infinite loop detector and reports
a bug directly, as described above. Future work could extend this to include more mod-
ern ways of establishing memory safety such as acquire/release barriers and hardware
transactions.

In order to detect when a thread should be unblocked from its yield loop, Landslide
simply leverages DPOR’s existing computation of memory conflicts: whatever condition
the blocked thread was waiting for will show up in the conflicts between it and whichever
thread fulfills it.>> Hence, every memory conflict detected during DPOR is also checked
against any currently yield-loop-blocked threads, unblocking them in the case of a match
(check_unblock_yield_loop() in user_sync.c). If that memory access is not sufficient
to let the blocked thread start making progress again, it will simply trigger the yield-
blocking heuristic again. In theory, this could result in a livelock between two threads,
each in principle blocked in a yield loop, but where the conditions of the loop happen
to conflict with each other, causing the threads to keep waking each other up; however,
I have never observed this in practice, as the conditions checked by such blocking loops
are usually read-only. Future work could heuristically address this by deprioritizing such
threads, as measured by the number of times they’ve yield-blocked, so that a third thread
which could actually make progress may run if it exists.

False-positive deadlock avoidance

In cases where the yield-loop heuristic described above produces false positives, i.e., block-
ing a thread which could make progress on its own after all, Landslide must avoid report-
ing a deadlock bug if no other thread ends up waking it up through memory conflicts.
After all other threads quiesce, which ordinarily would trigger deadlock detection, Land-
slide checks the system for any yield-looping threads that were blocked heuristically.®® If
any exist, it forces them awake and allows them to proceed; if they are truly blocked in

33Landslide must recognize yield-blocking loops that contain mutex operations to allow for open-coded
reimplementations of cond_wait(), which for example the paraguay test uses intentionally, because it is
testing the correctness of the student’s cond_wait().

341f preemption points exist in between, instead only 20 such (TOO_MANY_XCHGS_WITH_PPS), to avoid stress-
ing DPOR’s O(n) independence computation.

35A yield-blocking loop may depend on another thread’s execution with no memory conflicts at all simply
by checking the return value to observe whether the yield was successful. In principle, Landslide should
check for such loops whenever the yielded-to thread’s runnability changes; at present, this is not imple-
mented, and instead leans on the false positive deadlock detector to wake the blocking thread up.

36This includes threads blocked on specific mutexes using the blocked_on_addr field, which is set when
yield is invoked within mutex_lock() without waiting for 10 loops.
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principle, they will merely trip the yield-loop limit and go back to sleep again, whereupon
Landslide will issue a deadlock bug report after all.

Two other forms of heuristic blocking exist in Landslide which are also subject to
this retry procedure. Firstly, when an interleaving has already exhausted the number
of preemptions allowed under ICB’s current bound, other threads which are runnable
but which require preemptions to switch to are considered “ICB-blocked”. When yield-
looping mixes with ICB-blocking, the yielding thread will require a preemption for the
other thread to fulfill its blocking condition. In such a case, simply spending all 128
deadlock-avoidance retries on the yield-looping thread will not solve anything, so the ICB-
blocked thread must be forced awake with higher priority, disregarding the preemption
bound, to allow the system to progress. Secondly, in programs which use HTM, threads
blocked by retry sets (§6.2.5) must be forced awake with priority before yield-blocked
threads, along similar reasoning.

Landslide will retry this process up to a heuristic limit of 128 times (DEADLOCK_FP_MAX_
ATTEMPTS before issuing a deadlock bug report. The overhead of this check is quadratic
time in the number of retries permitted (as DPOR is quadratic in the overall branch depth),
although this is negligible compared to the exponential size of state spaces overall. If the
heuristic limit is too small, very “loopy” programs (which invoke xchg or yield therein)
could falsely exhaust this limit while not being truly deadlocked, so a good limit should
be well higher than the total number of concurrency events expected for any Landslide-
friendly test. The cost of a high limit manifests in the length of preemption traces when
deadlock is declared, which will display a proportional number of meaningless preemption
points, although future work could easily truncate them retrospectively. This check is
implemented in try_avoid_fp_deadlock() in arbiter.c.

3.5 Summary

This chapter has presented Landslide, a stateless model checker for Pebbles and Pintos
kernels and Pebbles userspace thread libraries. For the most part, Landslide’s contribution
to the world of concurrency testing is as a feat of engineering which combines many
existing techniques from prior work in a single implementation. These include:
* Uses Dynamic Partial Order Reduction (DPOR) [FGO5] to prune equivalent inter-
leavings while exploring the state space (§3.4.2).

* Uses its simulator’s memory tracing integration [MCE"02, Law96] to power data
race analysis [PS03, FF09] (§3.4.4), as well as DPOR.

* Supports Preemption Sealing [BBC"10] to configure the set of active preemption
points and hence keep state space sizes manageable (§3.4.1).

* Extends DPOR with Recursive and Weighted Backtrack Estimation [SBG12] to pre-
dict overall ultimate state space size and completion time (§3.4.3).

* Extends DPOR (at the user’s option) with Iterative Context Bounding [MQO7] to
heuristically uncover bugs faster should they exist, at the expense of overall comple-
tion time (§3.4.5).
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However, over the years Landslide has also grown some convenience, accessibility, and
or optimization features that could be considered contributions in their own right.

Extends Preemption Sealing for finer-grained control over whether individual func-
tions and/or global variables should be considered for, or excluded from, DPOR
and/or data race analysis (§3.2.1; thrlib_function and ignore_dr_function, re-
spectively). This allows a test case author to precisely target the exact subset of code
she is interested in testing, avoiding unnecessary state space inflation from trusted
code.

Adds a mutex testing mode to configure whether the data race analysis should con-
sider locks’ internal accesses (§3.1.3; TESTING_MUTEXES). This allows the user to
verify that her lock implementation correctly provides mutual exclusion (upcoming
in §5.1.3; mutex_test), before relying on them as trusted code in subsequent tests.

Implements the sleep set extension to DPOR [God96, FG05, AAJS14], which identi-
fies and skips further equivalences based on which memory accesses DPOR intended
to reorder, in a way that is slightly less optimal compared to prior work, but much
simpler to implement and requires less state at runtime (§3.4.2).

Heuristically identifies infinite loops and livelocks by leveraging knowledge of how
long the test program should be expected to run obtained during previous execu-
tions, uniquely suited to stateless model checking (83.4.6).

Provides automatic code instrumentation facilities, beyond just the simple task of
identifying important function boundaries, that attempt to understand a wide va-
riety of even the most unusual student implementations (§3.3.7, §3.3.8). This in-
cludes an advanced heuristic for detecting ad-hoc synchronization loops that Land-
slide should treat as blocking, even if it does not trigger the automatically-inserted
blocking annotations (§3.4.6), and a further heuristic to ensure that any inaccuracy
on the part of the first heuristic does not result in false-positive bug reports (§3.4.6).

The following three chapters, Chapters 4, 5 and 6, will each build upon Landslide to
present the thesis’s main research contributions.
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Chapter 4
Quicksand

There are awﬂ:/, sad things in this world. But there are a lot of things worth protecting, too.
— Kaname Madoka, Puella ngi Madoka *Maﬂ/m

There is a fundamental disconnect between existing stateless model checkers and hu-
man users when it comes to testing concurrent code meaningfully within a fixed CPU
budget. Existing tools test systems according to a fixed preemption strategy, leading
to runtime dependent entirely on the complexity of the test program, which may range
from minutes to tens of thousands of years. Meanwhile, users approach testing with a
finite amount of patience, usually not varying from one test cycle to another as their code
changes and evolves: students frantically testing last-minute changes facing a project
deadline will likely wait no longer than an hour for test results, while a company preparing
its product for production deployment may spend upwards of weeks on rigorous stability
testing. Regardless of the use case, a stateless model checker committing in advance to
test whichever single state space arises from its fixed strategy is certain to either under- or
over-shoot its user’s needs. A model checker which preempts the system too often will fail
to complete the test in time, and one which preempts infrequently enough to complete
with time to spare will leave the user wondering if it overlooked any bugs.

This chapter presents Quicksand, an execution framework for model checking to man-
age this trade-off at run-time. Given a fixed CPU budget, representing the user’s patience
for testing, Quicksand dynamically alters its preemption strategy based on data race analy-
sis ([SI09, FF09], §3.4.4) and optimizes the size of state spaces on the fly, guided by state
space estimation ([SBG12], §3.4.3), to best match that budget. I will discuss the trade-off
inherent in number of preemption points used (§4.1), introduce Iterative Deepening, the
algorithm that Quicksand uses to automatically navigate that trade-off (§4.2), prove its
soundness relative to the more expensive full verification approach (§4.3), and present a
large evaluation of Quicksand against several state-of-the-art approaches in which Quick-
sand performs best on both bug-finding and verification (§4.5).

The main contributions of this chapter were published in the 2016 ACM SIGPLAN Inter-
national Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions (OOPSLA "16) as Stateless Model Checking with Data-Race Preemption Points [BG16].
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4.1 Motivation

When configuring a model checker’s preemption strategy, or indeed, choosing a model
checker to begin with, the resulting state space is parameterized by the set of preemption
points. In the first example of Figure 2.4 I constructed the state space by expanding both
threads’ x++ operations into three pseudo-assembly instructions, then designating every
instruction as a possible preemption point, yielding (3?;3) = 20 total interleavings. Later,
§3.4.2 showed that DPOR prunes 16 of those as equivalent, although the reduced state
space size is still combinatorial in the number of conflicting events, rather than the total
number. For larger tests, committing in advance to test all possible interleavings quickly
becomes impractical. Accordingly, many existing model checkers opt for preempting on

only a subset of execution events, such as synchronization API boundaries.

4.1.1 Preemption points

Consider the new example program in Figure 4.1(a), in which one thread protects its ac-
cesses to count with a mutex, while the other protects its accesses with atomic increment
instructions. Assuming count is only ever incremented, never decremented, the asser-
tion in Thread 2 expects both of its preceding increments to be visible, no matter how
many other threads come incrementing count simultaneously. However, this assumes
any other accesses to count use the same protection mechanism, i.e., atomic_xadd(), but
since Thread 1 uses a mutex (which Thread 2 never touches), the threads can interleave
to cause the assert to fail, as shown in Figure 4.1(b). Figure 4.2 shows the resulting state
space supposing the model checker preempts only on synchronization APIs.! However,
Figure 4.1(b)’s interleaving involves preempting Thread 1 between its load and store of
count, which is not a known synchronization call, but rather a data race. Hence, none of
the interleavings in Figure 4.2’s state space will expose the failure; a data-race preemption
point is required to find this bug.

How should a model checker know to instrument this particular data race for preemp-
tion in order to find the assertion failure lurking underneath? Committing in advance to
preempt on every instruction is certain to include this data race, but invites massive state
space explosion. Even as DPOR helps to skip equivalent interleavings of non-conflicting
transitions, DPOR itself is O(n?) in the number of preemption points in a single execution,
which is not compatible with such an approach. Accordingly, stateless model checkers
must find more efficient ways to be able to uncover bugs such as these. In related work,
Portend [KZC12] proposed to combine data race analysis with preemption-driven artificial
scheduling, although it obtains its data race candidates from a stand-alone, single-pass
analysis. In order to identify every data race that could possibly arise under the given test
case, a model checker must check many different interleavings to begin with, perform the

!Most modern C/C+ + programs invoke atomic memory instructions by using compiler intrinsics, which
could themselves be instrumented as a known synchronization API. However, not all programs are guaran-
teed to use well-understood interfaces; in fact, in the 15-410 class projects to be tested in the upcoming
evaluation (§4.5.1), students are encouraged to roll their own atomics to get more experience writing x86
assembly. For the sake of this example, I leave atomic_xadd() uninstrumented.
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Initially int count = 0; mutex_t m;

Thread 1 Thread 2
11 mutex_lock(&m); 21 atomic_xadd(&count, 1);
12 count++; 22 yield();
13 mutex_unlock(&m); 23 atomic_xadd(&count, 1);
14 assert(count >= 1); 24 assert(count >= 2);

(a) Example program with synchronization API calls highlighted.

Thread 1 Thread 2 Value of count
11 mutex_lock(&m); 0
12a int tmp = count; 0
21 atomic_xadd(&count, 1); 1
22 yield(); 1
23 atomic_xadd(&count, 1); 2
12b count = tmp + 1; 1
13  mutex_unlock(&m); 1
14  assert(count >= 1); 1
24 assert(count >= 2); 1

(b) Buggy interleaving of (a) in which the single increment of Thread 1 overwrites
both those of Thread 2. Note the data-race preemption at 12a-12b.

Figure 4.1: Example bug requiring data-race preemption points to expose. Because the
two threads use different modes of synchronization to protect their respective accesses to
count, preempting on synchronization calls alone is insufficient to expose the bug. Rather,
Thread 1 must be preempted between its non-atomic load and store of count.

Portend approach for every data race it finds, which may in turn uncover more data races
(hidden in flow control paths reachable only through interleavings of the first race, per-
haps), and then continue model checking those multiple races together in a bidirectional
feedback loop between the two algorithms. Upcoming, §4.2 will show how I achieve this
in Quicksand, and §4.3 will justify the technique’s formal verification power. In the evalu-
ation, §4.5.2 and §4.5.3 will show that Quicksand strikes a healthy balance between fast
bug-finding and full verification, and §4.5.4 will justify the need for such a feedback loop
by showing that many data races require model checking to reliably detect.

4.1.2 Terminology

For the rest of this chapter, I will use the following terminology as shorthand for the
concepts explained above.
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mutex_lock()

mutex_unlock()

yield() 21,22

23,24

Figure 4.2: State space of Figure 4.1 with synchronization preemption points only. Note
that none of these interleavings preempt Thread 1 at the necessary place (between 12a
and 12b) to trigger Thread 2’s assertion failure.

* Single-state-space model checking refers to the state-of-the-art model checking
strategy, i.e., approaching each test with preemption points fixed in advance.

* Maximal state space refers to the set of thread interleavings possible by preempting
on all currently-known preemption points, whether synchronization or data-race,
i.e., the singular state space tested by single-state-space model checking.

* Minimal state space indicates the opposite: those thread interleavings requiring
no more than Landslide’s mandatory preemptions on voluntary context switches.

* Data-race bug will refer to a concrete failure, such as Figure 4.1’s assertion failure
above, whereas

* Data race refers to the racing access pair itself (§3.4.4).

* Data race candidate shall refer specifically to potentially-racing accesses identified
by Limited Happens-Before, when disambiguation with data races is necessary.

* Data-race preemption point denotes a custom model checker configuration, issued
after finding a data race, requesting it to preempt each involved thread just before
its racing memory access (§4.2.3).

* Benign data races are those that, when reordered in an alternate interleaving, do
not lead to a data-race bug, while

* False positives are data race candidates that, upon trying to reorder them, turn out
not to exist in the alternate interleaving at all, such as in Figure 2.6(b).

* Nondeterministic data race will refer to data races that cannot be exposed on the
first thread interleaving, but require model checking to expose to begin with.

82



4.2 Iterative Deepening

To address the problem of choosing meaningful preemption points, I have developed
an algorithm called Iterative Deepening, implemented in a wrapper program specific to
Landslide called Quicksand. Named after the analogous technique in chess artificial in-
telligence [Kor85], Iterative Deepening is a search strategy for exponentially-sized state
spaces, in general, which makes progressively deeper searches of the state space until the
CPU budget is exhausted. In this context, the depth roughly corresponds to the subset
of preemption points used. Hence, Quicksand schedules multiple Landslide instances in
parallel to test many different subsets of the available preemption points,

For the remainder of the chapter, I will use Iterative Deepening to refer to the algorithm
in the abstract, which could in principle apply to any stateless model checking domain,
and Quicksand to refer to the specific implementation, which relies on data race analysis
and specific heuristics to optimize its testing approach for kernels and thread libraries. I
will also henceforth refer to each unique set of preemption points as a job.

Iterative Deepening is a wrapper algorithm around stateless model checking. A model
checker is still used to test each state space, and other reduction techniques such as DPOR
(83.4.2) are still applicable in each. Moreover, because Iterative Deepening treats the
set of preemption points as mutable, it can add new preemption points reactively based
on any runtime analysis. This chapter will focus on run-time data race analysis [SI09,
FF09] as the mechanism for finding new preemption candidates. The next section (§4.3)
will prove that in fact, in addition to statically-known synchronization preemption points,
this suffices to provide at least as strong verification guarantees as any other possible
preemption point set.

4.2.1 Changing state spaces

To introduce the Iterative Deepening algorithm, I will first show a simple approach for
handling new preemption points in the absence of any CPU budget restriction.

Given unlimited testing time, switching to the new maximal state space whenever
adding a new preemption point would be the quickest way to reach full verification. The
maximal state space is guaranteed to subsume all execution sequences reachable in any
subset state space, so considering any incomplete subset of the known preemption points
would be redundant work. Algorithm 3 demonstrates this naive approach. It is seeded
with the set of all statically-known synchronization API preemption points, and invoked
whenever a new data race candidate is found. The upcoming proofs in §4.3, being con-
cerned with the verification guarantee provided when the search may complete within
the CPU budget, are based on this simple version of Iterative Deepening. The user may
also wish to configure her testing tool to prefer this approach, at her discretion, such as
when she believes all bugs have been fixed and wants a verification as fast as possible;
§4.4.4 discusses this execution mode further.

However, in many tests of even modestly-sized programs, full verification is not feasi-
ble, and focusing on the maximal state space alone is likely to be fruitless. Hence, Iterative
Deepening also allows for prioritizing subset jobs based on number of preemption points,
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Algorithm 3: Naive Iterative Deepening method
Input: j, the currently-running job
Input: A, the set of all known preemption points
if 9p € A.p & PPSet(j) then
return NewJob(A) // New maximal state space; switch to it

else

| returnj// j is still maximal
end

a b W N =

ETA, and whether data race candidates are included among their preemption points. It re-
lies on state-space estimation [SBG12] to predict which jobs are likely to complete within
a reasonable time, before actually testing a large fraction of interleavings for each. The
overall goal is to decide automatically when to defer testing a state space, so an inexpert
user can provide only her total CPU budget as a test parameter, and to enable complet-
ing appropriately-sized jobs within that budget. Quicksand seeks to maximize completed
state spaces, as each one serves as a guarantee that all possible interleavings therein were
tested; §4.6.4 discusses some limitations of this approach. The next three subsections will
show how to schedule these smaller jobs based on their preemption points and ETAs.

4.2.2 Initial preemption points

Iterative Deepening must be seeded with a set of initial state spaces, which can be any
number of subsets of the statically-available preemption points that prior work model
checkers would use. The upcoming soundness proof relies on the maximal state space
being included among these for verification’s sake, but to optimize for finding bugs faster,
implementations may wish to simultaneously to try testing subsets thereof.

For testing user-space code, Quicksand begins with the four possible combinations of
preemption points from Figure 4.2: {yield}, {yield, lock}, {yield, unlock}, and {yield, lock,
unlock}, By extension, these also induce preemptions on any other primitives which use in-
ternal locks, such as condition variables or semaphores. Preempting on voluntary switches
such as yield is always necessary to maintain Landslide’s invariant that only one thread
runs between consecutive preemption points, so the yield preemption point is always
implicitly enabled. For kernel-level testing, interrupt-disabling is analogous to locking,
so preemptions must also be introduced just before a disable-interrupt opcode (on x86,
cli) and just after interrupts are re-enabled (on x86, sti). During data race analysis,
cli and sti are treated as a single global lock (note that cl1i’d memory accesses can still
race with others that have interrupts on).? Quicksand is configured to begin with {yield},
{yield, lock}, {yield,unlock}, {yield, cli}, {yield, sti}, and {yield, lock, unlock,cli,sti}. As a
heuristic, it doesn’t test every intermediate subset such as {lock, sti}, which would result

2Some kernels disable preemption without disabling interrupts, which can be communicated to the

model checker using manual annotations, and must be treated similarly. This also assumes uni-processor
scheduling; for SMP kernels, replace cli/sti with spinlocks.
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in 2? jobs, although this could potentially be improved in future work (§4.6.3).

4.2.3 Data-race preemption points

As discussed in §4.1.1, data races may beget new interleavings not reachable by preempt-
ing on synchronization API boundaries alone. Because each data race indicates an ac-
cess pair that can interleave at instruction granularity, different program behaviour may
arise if the threads are preempted just before the racing instructions, some of which the
programmer may not have even expected, i.e., be bugs, and it is logical to apply model
checking to find or verify the absence of such bugs.

With Iterative Deepening, this is a simple matter of creating a new state space with an
additional preemption point enabled on the racing instructions by each thread, as shown
in Algorithm 4. These data-race preemption points form the foundation of Quicksand’s
contribution. Note that even though a data race may involve two different instructions,
a and S, Quicksand’s strategy is to add new state spaces with only one new racing in-
struction at a time. Rather than adding a single large state space, configured to preempt
on both involved instructions, i.e., AB = PPSet(jo) U « U f3, it prefers to add multiple
smaller jobs which have a higher chance of completing in time, i.e., A = PPSet(jy) U «
and B = PPSet(jo) U 5. If A and B are bug-free, they will in turn add AB later during their
own execution. The condition on line 1 ensures that we avoid duplicating any state spaces
with multiple data-race preemption points; for example, AB is reachable by multiple paths
through its different subsets A and B, but should of course be tested only once.

Algorithm 4: Adding new jobs with data-race preemption points.
Input: j,, the currently-running job
Input: 7, the set of all existing (or completed) jobs
Input: «, an instruction reported by the model checker as part of a data race
if Vj € J, PPSet(jo) U o € PPSet(j) then
| AddNewJob(PPSet(jo) U «, HeuristicPriority(c))
end
if Vj € J, PPSet(j) # {yield, o} then
| AddNewJob({yield, '}, HeuristicPriority(a))
end

A A WD =

Furthermore, Iterative Deepening allows not always strictly increasing the number of
preemption points whenever a new data race is identified. For each instruction involved
in a data race, Quicksand adds two new jobs: a “small” job to preempt on that instruction
only (line 5), and a “big” job to preempt on that instruction as well as each preemption
point used by the reporting job (line 2). Hence, each pair of racing accesses will spawn
four new jobs. Figure 4.3 depicts the resulting overall workflow in Quicksand, includ-
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Figure 4.3: Quicksand incorporates data races as new preemption points at run-time by
managing the exploration of multiple state spaces, communicating with each Landslide
instance to receive ETAs, data races, and bug reports. When a data race is reported,
a new preemption point is added for each involved memory access, and new jobs are
added for later testing, corresponding to different combinations thereof with the existing
preemption points.

ing the four such jobs resulting from one data race report.2* The rationale of spawning
multiple jobs is that one cannot know in advance which will be most fruitful: while the
big job risks not completing in time, the small job risks missing the data race entirely if
the original preemption points were required to expose it. In practice, I have observed
many bugs found quickly by these small jobs, and many other bugs missed by the small
jobs found eventually by the big jobs. This phenomenon motivates Iterative Deepening to
prioritize jobs at run-time.

The new state spaces may expose a failure, in which case Iterative Deepening must
stop and report a data-race bug, or complete successfully, indicating a benign (i.e., false-

3As an optimization, though the big jobs should be expected to uncover more data races and in turn
produce even bigger jobs still, small jobs should be forbidden from “reproducing”, as their purpose is only
fast heuristic bug-finding rather than exhaustive coverage; see handle_data_race() in messaging.c.

“For visual simplicity, fake state spaces are shown here to convey only relative size differences, but not
the internal asymmetric structure inherent to interleavings of multiple threads (compare to Figure 4.2).
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positive) data race. They may also uncover a new data race candidate entirely in some
alternate interleaving, in which case we may iteratively advance to a superset state space
which will preempt at both racing access pairs. Being constrained by a CPU budget,
Iterative Deepening may time out before completing a data race’s associated state space, in
which case the data race remains neither confirmed nor refuted. In such cases, Quicksand
elects to impose some burden on the user by reporting it as a potential false positive
and recommend that she investigate it by hand to judge for herself whether it be a bug.
§4.6.4 will discuss future opportunities for improving debugging output in cases of such
partial verification. However, experience shows that this interactivity pays off: in the
next chapter’s educational user study (§5.3), one student reported during the survey that
they used this recommendation, combined with their own intuition, to find a bug that
Quicksand was not able to find alone (§5.3.3).

4.2.4 Choosing the best job

With a limited CPU budget, many larger tests are likely to be fail to complete in time, and
smaller tests are likely to be more fruitful at finding bugs quickly. A model checker’s state
space estimation (§3.4.3) can provide a hint to select between these jobs. How to handle
jobs whose ETAs are too high for the given CPU budget is the heart of Iterative Deepening,
and is listed formally in Algorithm 5.°

Its main feature is understanding that if PPSet(j;) C PPSet(j»), and j; is suspended,
then j,’s state space is guaranteed to be strictly larger, so j, will take at least as long.
Hence, as long as j; is suspended on account of being too big, j, should not be tested
either, unless j; is later resumed and its ETA improves over time after further execution.
Similarly, whenever a job finds a bug, all pending superset jobs may safely be cancelled,
as they are guaranteed to contain the same program behaviour, and likely to simply find
the same bug again. Implementation-wise, Quicksand receives an updated estimate from
each Landslide instance whenever it finishes executing a new interleaving, and separates
them accordingly into a set of suspended jobs, i.e., partially-explored state spaces with high
ETAs, and a set of pending jobs, i.e., untested ones with unknown ETAs. When Landslide
reports an ETA too high for some job, it is compared with other pending and suspended
jobs to find another one more likely to complete in time.®

Iterative Deepening also accounts for the inherent inaccuracy of ETA estimates. Line 1
heuristically scales up the time remaining to avoid suspending jobs too aggressively in
case their ETAs are actually overestimated. Lines 12-15 account for the possibility that
among two suspended jobs, PPSet(j;) C PPSet(j,) but ETA(j;) > ETA(j2). This may seem
surprising, but can often arise because estimates tend to get more accurate over time,
and j; perhaps ran much longer, on account of being overall smaller, before becoming

> Though its worst-case performance is O(|P| x |S|), in practice the non-constant portion beyond line 4
runs very infrequently and is negligible compared to the exponentially-sized state spaces themselves.

®Note that when Quicksand is configured to use multiple CPUs, simultaneously-running jobs are not
considered among the set of possible jbos to switch to, so if there are fewer total jobs with ETA lower than
the time budget than the allowed parallelism factor, some CPUs may end up speculatively running large
jobs in hopes that the ETA turns out to be an overestimate.
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Algorithm 5: Suspending exploration of a job in favor of a potentially smaller one.
Input: j,, the currently-running job
Input: P, the list of pending jobs, sorted by decreasing heuristic priority
Input: S, the list of already-suspended jobs, sorted by increasing ETA
Input: T, the remaining time in the CPU budget
if ETA(jo) < HeuristicETAFactor x T then
\ return j, // Common case: job is expected to finish.

end
foreach job j, € P do

// Don’t run a pending job if a subset of it is already suspended; its ETA would

be at least as bad.
if Vjs € S, PPSet(js) ¢ PPSet(jp) then
| return jp

end
nd
10 foreach job js € S do
1 | if PPSet(jo) ¢ PPSet(js) N ETA(jo) > ETA(js) then
12 // If a subset of js is also suspended, don’t run the larger one first.
13 if Vjso € S, PPSet(js2) ¢ PPSet(js) then
14 | return jg
15 end
16 end
17 end
18 return jo // ETA(jo) was bad, but no other j was better.

ga H» W N =

o o N O
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suspended. In such scenarios, the algorithm heuristically assumes the smaller job’s ETA is
more accurate, in order to avoid repeatedly resuming larger jobs briefly only to find that
their ETAs keep getting worse and worse.”

4.2.5 Heuristics

As predicting the ETAs of state spaces of unknown size and using that plus size of a set
of preemption points as a proxy for how likely a job is to find bugs or complete is a fun-
damentally messy process, it is appropriate to equip the algorithm with some heuristics
informed by experience. Algorithm 5 allows the option to heuristically scale a job’s ETA
when comparing it to the overall time budget, which can compensate for any inaccuracy
by the estimator. Quicksand uses a scaling factor defaulting to 2, chosen based on experi-
ments from prior work [SBG12]. It also includes a heuristic to never suspend jobs before
they pass a certain threshold of interleavings tested, with a default of 32, informed by
my personal experience that ETAs require around that much progress into the state space

’In order to avoid thrashing in Quicksand.
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before they stabilize (at least relative to each other on similar state spaces, not necessarily
relative to the ultimate true size).®

Landslide classifies data race candidates as both-order or single-order, as defined in
prior work [KZC12], based on whether it observed the racing instructions ordered in
both possible sequences or only one in the original state space, respectively. Single-order
candidates are more likely to be false positives (§2.3), although preempting during the
access itself is necessary to say for sure. Hence, Quicskand add preemption points for
both types of candidates, and heuristically prioritizes jobs with both-order data races
over those with only single-order data races. The HeuristicPriority(«) call in Algorithm 4
corresponds to this strategy. For single-order races, Quicksand does not initially add a
preemption point for the later access at all: if preempting on the first access is capable
of reordering the race, it will be updated to both-order in the new state space, and the
second preemption point will be added then. §8.3 will discuss opportunities for future
work to expand these heuristics with more nuanced search strategies still.

4.2.6 Reallocation false positives

Finally, I identified a particular class of false positive data race candidates under the Lim-
ited Happens-Before analysis (§2.3) in which the associated memory was recycled by
re-allocation between the two accesses, and claim that it is safe to completely disregard
them when considering where to add new preemption points. Figure 4.4 shows a common
code pattern and interleaving which can expose such behaviour. If the malloc() on line 4
returns the same address passed to free() on line 2, then lines 1 and 7 will be flagged
as a potential data race. I term this a reallocation false-positive data race candidiate. To
the human eye, this is obviously a false positive: reordering lines 4-7 before lines 1-2
will cause malloc() to return a different region of allocated memory, in turn causing x
and y to no longer collide. In studying a similar pattern, the Eraser tool from prior work
[SBNT97] found that Thread 2’s logic usually corresponds to an initialization pattern, but
for generality I have added an arbitrary publish action to the example on line 6.

As long as the allocation heap is properly synchronized, a Pure Happens-Before analy-
sis should identify a happens-before edge between line 2’s free() and line 4’s malloc(),
and report no race. However, the upcoming evaluation will show that Limited Happens-
Before retains some advantages over Pure (§4.5.2), so it is useful to automatically sup-
press data race candidates that are certain to end up being false positives when reordered.
Such collisions could instead be avoided with a hacked allocator which never recycles
memory, but that could unacceptably impact performance in malloc()-heavy tests.

The ability to disregard reallocation false positives is unique to Iterative Deepening.
When limited to a single test execution, suppressing any data race candidate matching
this pattern is unsound. Consider the more unusual program in Figure 4.5, in which the
memory is recycled the same way, but the racing access’s address is not tied to malloc()’s
return value. Here, reordering lines 6-7 before line 3 will allow x and x2 to race. Discard-

8These two heuristics are configurable with the -e and -E command-line options, respectively, as dis-
cussed in §3.1.2.
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struct x { int foo; int baz; } *x;
struct y { int bar; } *y;

Thread 1 Thread 2
1 x->foo = ...;
2 free(x);
3 // x's memory reallocated
4 y = malloc(sizeof =*y);
5 // ...initialize...
6 publish(y);
7 y=>bar = ...;

Figure 4.4: Reallocation false positive pattern arising from malloc() returning the same
memory that was just free()d.

Thread 1 Thread 2

publish(x);

x->foo = ...;

free(x);
x2 = get_published_x();
// x's memory recycled
y = malloc(sizeof *y);
x2->foo = ...;

NOUTh WN -

Figure 4.5: Reallocation-pattern data race that hides a true bug. If a single-pass Limited
Happens-Before analysis discarded all data race candidates with intervening reallocations,
it would miss the bug in this adversarial program.

ing the data race report as a false positive after checking just this one execution would
overlook such a bug, but Iterative Deepening is guaranteed to explore the alternate inter-
leaving, in which the true data race will show up without free() and malloc() interpos-
ing, so it is safe to suppress at first, as I will prove in §4.3.2. Moreover, in the context of
Iterative Deepening, being able to discard certain data race candidates allows Quicksand
to skip exploring some entire state spaces, and hence run fewer Landslides overall; this
is analogous to DPOR’s ability to skip equivalent interleavings within a single Landslide
instance. Upcoming in the evaluation, §4.5.3’s Table 4.4 will show how many redundant
state spaces Quicksand is able to prune with this technique.

4.3 Soundness
Adding new data-race preemption points in a feedback loop can uncover bugs not pre-
viously reachable by preempting on synchronization APIs alone, as some prior model

checkers do [SBG10], but how does it compare to the other extreme end of the trade-

90



off, that is, committing in advance to preempt on every single shared memory access
[Hol97, YCGKO08]? It turns out, assuming sufficient CPU budget, Iterative Deepening can
in principle expose every possible program behaviour that even that latter approach can
find, providing an equally strong verification guarantee. This section presents a proof of
this claim (§4.3.1), as well as a supplementary proof (§4.3.2) of the soundness of pruning
reallocation false positives discussed previously (§4.2.6).

I present these proofs as they appeared in the OOPSLA paper [BG16]: written as
sketches in informal prose, to optimize for rapidly conveying an intuition for why it works
rather than to justify every internal step within the proof structure.” A more rigorous treat-
ment is available in the tech report which accompanied the conference paper [Blum16].

Assumptions. The proofs are built on a DPOR definition which assumes sequentially-
consistent memory hardware. All algorithms involved are assumed to operate on a ma-
chine model of a single globally-consistent execution trace, which fundamentally cannot
account for memory reordering nondeterminism. For existing work on combining DPOR
with relaxed memory, I refer the reader to [ZKW15]. They also assume the Limited
Happens-Before definition for the data race analysis. I leave the case for Pure Happens-
Before to future work, although if I may appeal to intuition, it requires only to show that
for any data race candidate Limited Happens-Before reports in a given execution, that
Pure Happens-Before does not, either it will be a false positive, or the latter will find it
in an alternate execution within the same state space, or the latter will find a different
data race that ultimately leads to a bigger state space in which the first one may be found,
much like a generalization of §4.3.2.

4.3.1 Convergence to total verification

The proof of Iterative Deepening’s soundness is in two parts. In the first part, I prove that
for any possible interleaving one could execute with preemptions anywhere, an equivalent
interleaving must exist using only data-race and synchronization preemption points. In
the second, I prove that starting from synchronization preemption points only, Iterative
Deepening must eventually reach a state space containing such an interleaving, no matter
how many data races are involved.

Equivalence

Given a preemption point p, let next(p) denote the next transition after p executed by the
thread which ran immediately before p, let instr(p) denote the first instruction of next(p),
and let others(p) denote the transitions by other threads between p and next(p).

Lemma 1 (Equivalence of non-data-race preemption points). For any thread interleaving
possible by preempting on any instruction, there exists an equivalent interleaving which uses
only data-race and synchronization API preemption points.

?Also because this thesis is long enough already.
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Proof. Let p be the first preemption point in the given interleaving such that instr(p) is
not a data race with others(p) nor is a synchronization API boundary. Because instr(p) is
not a synchronization boundary, no lock can be held during others(p) that was also held
by the first thread across p. Hence, because instr(p) is not a data race, it cannot be a
shared memory conflict with others(p) at all. Let i be the first instruction among next(p)
which is such a conflict, or a synchronization boundary. If i is a shared memory conflict,
it must be a data race, for the same reasoning as above. Modify the input interleaving
by reordering instr(p) until i, not including i, to before others(p). By the soundness of
DPOR (83.4.2; [FGO5]), this is equivalent to the input interleaving. In other words, p has
been transformed into p’ such that next(p’) = i, which is a data race or synchronization
boundary. All other preemption points in the input trace can be inductively converted in
the same manner. O

Saturation

For Iterative Deepening to “eventually” reach a certain state space, all data-race preemp-
tion points involved must be reachable during the test.

Definition 1 (Reachability). A data race candidate, and its associated preemption point(s),
are reachable if it will be identified by a model checker configured to preempt only on already-
reachable preemption points.

Initially, the statically-available synchronization API preemption points (8§4.2.2) are
reachable. Reachability of data-race preemption points is transitive.

Lemma 2 (Saturation of data races). Given any interleaving comprising only data-race and
synchronization API preemption points, all involved preemption points are reachable.

Proof. Induct on the preemption points according to the order of their preemptions dur-
ing an execution sequence. Given that the interleaving prefix preceding some point p is
reachable, the proof goal is that either p be reachable, or a new data race among others(p),
not previously reachable, be newly reachable. The latter condition suffices because in a
finitely-sized codebase, there must be finitely many unique racing instruction pairs.

First, p must be “coalesced” away, as well as any other not-yet-reachable points in
others(p). Consider the alternate interleaving in which the first thread executes past p
until the first already-reachable point, then the other threads among others(p) execute
the same way. This interleaving’s preemption points are all reachable, so a state space S
containing it will be tested.

If p is a not-yet-reachable data-race preemption point, it must be possible for some
other thread to execute a data-racing instruction with instr(p). If this conflict was observed
in the state space containing our coalesced interleaving, p is reached. Otherwise, appeal
to the soundness property of DPOR: If a program behaviour is possible by interleaving
threads at the boundaries of the given transitions, it will be tested in the containing state
space. By contrapositive, to expose this behaviour, one or more preemptions must occur
in the middle of some transition, rather than at the boundaries.
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Let us now see by contradiction that there cannot be multiple data-race preemption
points which must all be enabled before either data race can be identified; i.e., a circular
dependency. Assume there does not exist a single transition t; € S which alone can be
split into {¢}, ]} by a point g, such that another thread’s concurrent transition t, conflicts
with t]. By the soundness of DPOR, because all t,s are independent with t{, S = S Uq.
Replacing S with SUq in the above assumption shows that no pair of new gs would expose
new program behaviour, and inductively, no set of gs of any size, which contradicts the
previous paragraph. Hence, a single new not-yet-reachable data race is reachable in S.
Hence p will be reached. ]

Convergence

I name the overall soundness property “convergence” in reference to the way it must
eventually arrive, after potentially many iterated state spaces, at full verification strength.

Theorem 1 (Convergence). If a bug can be exposed by any thread interleaving possible by
preempting on all instructions during a specific test, Iterative Deepening will eventually test
an equivalent interleaving which exposes the same bug.

Proof. For any possible interleaving, Lemma 1 provides an equivalent one with only data-
race and synchronization preemption points, and Lemma 2 proves all involved preemp-
tion points are reachable. Hence, Iterative Deepening will eventually test a state space
containing the equivalent buggy interleaving. O

And thus Iterative Deepening is sound.

4.3.2 Suppressing reallocation false positives

Next I prove that §4.2.6’s optimization of discarding reallocation false positives is sound
under Iterative Deepening.

Theorem 2 (Soundness of eliminating reallocation data race candidates). If a reallocation
candidate is not a false positive, DPOR will reorder threads such that either the accesses
can race without fitting the reallocation pattern, or a use-after-free bug will be reported
immediately.

Proof. Any such program must contain an access a; by one thread T1, followed by a
free() and a malloc() possibly by either thread, followed by an access a, by the other
thread T2, not depending on the result of the middle malloc. Without loss of generality, fix
T1 to perform the free() and T2 the subsequent malloc(), as shown in Figure 4.5. The
other cases are similar, although note that if T2 performs the free(), and the malloc()
is reordered before it, T2’s final access will be a use-after-free immediately. Let us also
assume the only way for the program to get pointers to heap memory is through malloc();
hence, there must also be some “publish” action p by T1 which communicates the address
to T2. Because this is a true potential data race, p must occur before a;, as a, cannot be
reordered before p.
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The proof goal is that a preemption point be identified during T1 between p and a;.
The publish action must involve some thread communication, whether through a shared
data structure or message-passing API. If locking or message-passing is used, the set of
static synchronization preemption points (§4.2.2) suffices to provide one. Otherwise, p
(and the corresponding read by T2) will be a potential data race, although that may itself
be another reallocation candidate. In this case, apply induction on the chain of pointers,
if any, leading to the shared address containing p: in the base case, p is communicated
via global data or message-passing, and in the inductive step, DPOR will reorder threads
sufficiently to identify a preemption point on p. Note that this induction may result in
several possible intermediate preemption points, each requiring a new state space to be
tested, of course, Theorem 1 guarantees this under Iterative Deepening. Hence there will
be a preemption point between p and a; no matter the mode of communication.

With this preemption point, DPOR will reorder a, before a;, while not changing a,’s lo-
cation. As T2’s malloc() now occurs before T1’s free(), it will allocate different memory.
Hence a; and a, can race without appearing to fall under the reallocation pattern. Il

This spells QED so we are done [Var07]. Note that this proof does not rely on the
existence of preemption points on the internal lock of malloc() or free(), which is an
ideal candidate to ignore via without_function (§3.4.1) to reduce state space size. Future
work may generalize this proof structure to not rely on specific knowledge of malloc()’s
and free()’s behaviour, but instead to require only any intervening synchronization event,
thereby extending the overall soundness proof to accomodate Pure Happens-Before as
well as Limited Happens-Before. The experiments in future chapters of this thesis will
assume that this holds.

4.4 Implementation

Quicksand is an independent program that wraps the execution of several stateless model
checker instances. It is expected that Landslide be this checker, but any other tool which
implements the same messaging interface would be compatible as well. The implemen-
tation is roughly 3000 lines of C. All source files mentioned in this section live in the id/
subdirectory of the Landslide repository, with the exception of the Landslide extensions
(listed last). As Chapter 3 was in some sense a developer’s guide to Landslide, this section
will serve similarly for Quicksand.

4.4.1 User interface

The available command-line options for configuring its CPU-time budget, exploration
modes, and so on are listed in §3.1.2. Additionally, Quicksand periodically issues a
progress report at fixed intervals to inform the user on the completion, bug-finding, and/or
estimated progress of each job. Figure 4.6 shows an example. I highlight a few notable
features of the jobs therein to serve as a concrete example that may cement the reader’s
intuition of §4.2’s more abstract algorithm descriptions:
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== PROGRESS REPORT ====
total time elapsed: 2m 52s
[JOB 0] COMPLETE (4 interleavings tested; 7s elapsed)

PPs: { }
[JOB 1] Running (21.932870%; ETA 8m 14s)

PPs: { 'mutex_lock' }
[JOB 2] BUG FOUND: landslide-trace-1544661430.29.html (51 interleavings tested)

PPs: { 'mutex_unlock' }
[JOB 3] Running (9.852431%; ETA 24m 32s)

PPs: { 'mutex_lock' 'mutex_unlock' }
[JOB 4] COMPLETE (6 interleavings tested; 9s elapsed)

PPs: { 'data race @ 0x102917"' }
[JOB 5] Running (3.710938%; ETA 1h 2m 14s)

PPs: { 'mutex_lock' 'mutex_unlock' 'data race @ 0x102917"' }
[JOB 6] COMPLETE (4 interleavings tested; 8s elapsed)

PPs: { 'data race @ 0x1000ecf' }
[JOB 7] Running (6.119792%; ETA 33m 14s)

PPs: { 'mutex_lock' 'mutex_unlock' 'data race @ 0x1000ecf' }
[JOB 11] Running (3.670247%; ETA 50m 16s)

PPs: { 'mutex_lock' 'mutex_unlock' 'data race @ 0x102917' 'data race @ 0x100Qecf' }
[JOB 8] Deferred... (33.340567%; ETA 2h 6m 3s)

PPs: { 'mutex_unlock' 'data race @ 0x102917' }
[JOB 9] Deferred... (34.466226%; ETA 2h 35m 37s)

PPs: { 'mutex_unlock' 'data race @ 0x1000ecf' }
[JOB 10] Deferred... (11.113790%; ETA 4h 20m 31s)

PPs: { 'mutex_lock' 'data race @ 0x102917' }

Figure 4.6: Example Quicksand progress report showing the various possible job states.

* Jobs 0, 1, 2, and 3 are the initially-seeded state spaces (§4.2.2).

* Job 2 reports a bug found, and shows the filename of the HTML preemption trace
(83.1.5, Figure 3.3) which the user should examine to diagnose it.!°

* Jobs 4 and 6 are the “small” jobs added to test the two data races in isolation; 5
and 7 are the corresponding “large” jobs (§4.2.3).

* Job 11 is the maximal state space, containing all synchronization preemption points
and both currently-known data races.

* The intermediate jobs 8, 9, and 10 have been suspended for having ETAs at least
twice as large as the provided CPU budget (1 hour), according to the ETA scaling
factor heuristic (84.2.5).

* Note that job 11’s ETA is currently lower than 8’s, 9’s, and 10’s, despite being a
strict superset of each. This corresponds to the ETA inversion situation discussed in
84.2.4: Quicksand simply hasn’t made as much progress into job 11 (compare their
percentage estimates rather than ETAs) for its ETA to be accurate enough yet.

107 actually cheated by copy/pasting this job alone from a different run of Quicksand; the other jobs come
from a test with the bug already fixed, in order that exploration progress far enough to defer some jobs for
the sake of example. In a real execution, the superset jobs 3, 5, 7, 8, 9, and 11 would be cancelled.
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Future work could extend these progress reports to be more interactive, allowing the user
to reprioritize state spaces at her whim or to disable certain data-race preemption points
after checking them by hand, as discussed in §8.1.

Besides the progress reports, Quicksand also prints a notice for each new data race
that Landslide detects, like so, corresponding to the above progress report, for example:

Found a racy access at 0x00102917 in deschedule <unknown>

Found a racy access at 0x01000ecf in cond_signal (cond.c:101)
If using Limited Happens-Before instead of Pure, it prints “potentially-racy access” instead.
This is implemented in pp_new() in pp.c. If the CPU budget runs out and Quicksand must
stop exploring prematurely (or the user’s patience runs out and she interrupts it with
ctrl-C), it prints a final report of all data races it was not able to finish classifying as
either buggy or benign, and urges the user to finish checking them with visual inspection
(print_live_data_race_pps() in pp.c). It is this feature which one respondent in the
student user survey (85.3.3) credited for finding an extra bug.

If the verbose option (-v) is supplied, Quicksand will also print one line per interleav-
ing tested by all its Landslide instances, showing the number of branches tested so far,
the estimated percent progress, and the ETA, as shown earlier in §3.4.3. This produces a
lot more output, and can make progress reports hard to read as they scroll off the screen
quickly, but the author personally finds this mode less disorienting than ten seconds of
pure silence between each progress report. Of course, future work could improve this with
a GUIL or at least a split-screen console view. It will also cause the progress reports to
report more detailed information, such as which preemption points are nondeterministic
data races (§4.1.1) and number of reallocation false positives suppressed (§4.2.6).

4.4.2 Model checker interface

The interface with the model checker has two parts. First, when starting each job, Quick-
sand creates a configuration file declaring which preemption points to use, plus other
test-case-specific options such as which preemption points to suppress (§3.4.1), especially
those arising from the malloc() lock (§4.3.2), which functions DPOR and data race analy-
sis should treat as trusted code (§3.2.1), whether to enable mutex-testing mode (§3.1.3),
transactional memory (§6.2), and so on. This is done by run_job() in job.c.

Then, a dedicated Quicksand thread (start_job() in job.c) communicates with its
corresponding model checker process via message-passing over a FIFO pipe (talk_to_
child() in messaging.c). Landslide messages after testing each interleaving to report
updated progress and ETAs as well as whenever a new data race candidate or bug is found.
Quicksand in turn replies whether to resume/suspend (due to too high ETA) or quit (due
to timeout) (handle_should_continue() in messaging.c). It suspends jobs simply by
making Landslide wait on a message-passing reply. Should Quicksand later re-schedule
a suspended job, it sends a message to continue, resuming Landslide right where it left
off; otherwise, it wakes it up only after time runs out, causing it to exit immediately. The
message-passing format is defined at the top of messaging.c, and a matching definition
appears in Landslide’s source file of the same name.
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4.4.3 Architecture

Quicksand’s overall architecture is a thread pool of workers, one for each CPU it was
configured to use with -c (§3.1.2). These threads do not correspond directly to each
active instance of Landslide, as some may be deferred; rather, each worker thread links up
temporarily to a job thread, whose duties the previous paragraph describes, and process
them as the overall work-queue of state spaces to be tested demands. Following is a brief
description of each of Quicksand’s major modules.

* Job management (job.c): Contains the lifecycle code for job threads, generation
of Landslide configuration files, and Linux process management code to launch child
Landslide instances (run_job()).

* Messaging (messaging.c): Manages communication with child Landslides (talk_
to_child(), implementing certain aspects of Iterative Deepening, creating new jobs
in response to data race reports (handle_data_race()) and deferring too-big jobs
in reponse to ETA updates (handle_estimate()).

* Preemption point registry (pp.c): Tracks the set of known synchronization primi-
tives (initialized by main) and data races (pp_new()), including set comparison rou-
tines (pp_subset()) and computing a job’s priority based on the types of included
preemption points (unexplored_priority()).

* Workqueue (work.c): Implements the per-CPU worker threads, including the check
for whether to switch priority from one job to another (Algorithm 5, should_work_
block() and get_job()), as well as managing the shared workqueue of jobs over-
all (workqueue_thread()). Also implements the fixed-interval progress reporting
(progress_report_thread()).

* Bugs (bug.c): Tracks a list of found bugs for main to repeat at program exit, and
implements the check for superset state spaces to be cancelled if a subset already
found a bug (bug_already_found()).

* Options (option.c): Processes command-line options, checking for legality of var-
ious combinations of exploration modes. New options may be added with the con-
venient macros DEF_CMDLINE_FLAG() and DEF_CMDLINE_OPTION().

* Main (main.c): Initializes the default state spaces, waits for worker threads to ter-
minate after either completion or time-out, and issues a final list of bug reports,
data race reports, or congratulations as appropriate.

Finally, because in very large tests, the number of suspended Landslide instances may
grow without abatement, Quicksand checks every progress report interval whether the
memory footprint of these inactive Landslides pose a threat to the system’s total memory.
Implemented in cant_swap() [ED09] in work.c, it checks if the system’s memory usage
exceeds a fixed percentage of its total (RAM_USAGE_DANGERZONE, default 90), and if so,
abandons a fixed percentage of suspended Landslides (KILL_DEFERRED_JOBS, default 50).
Generally, the currently-running Landslide instances should never threaten to hit swap,
as there can only be as many of those as CPUs, but this also accounts for memory used by
other processes, so this is not guaranteed to avoid swapping on a heavily-stressed system
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(such as running multiple Quicksands at once). Naturally, if Quicksand ever needs to
invoke this protocol, any hope at a total verification is compromised.

4.4.4 Exploration modes

In addition to Iterative Deepening, which Quicksand defaults to if no options are given
to specify otherwise, Quicksand also supports several alternate exploration strategies, as
follows.

* Single state space, basic DPOR (-C): Runs a single instance of Landslide configured
to preempt on all statically-known synchronization preemption points. Corresponds
to dBug’s approach [SBG10]. Never adds any new preemption points based on data
race reports.

* Single state space, ICB (-I): Runs a single instance of Landslide with preemption
points as above, but running Iterative Context Bounding with BPOR (§3.4.5) instead
of plain DPOR. Corresponds to CHESS’s approach [MQB*08]. Requires either -C or
-M (see below).

* Single state space, preempt-everywhere (-0): Runs a single instance of Landslide
as above, but preempting on every shared memory access, not just synchronization.
Corresponds to the approach of SPIN [Hol97] and Inspect [YCGKO8]; CHESS sup-
ports this mode as well with optional compiler instrumentation. Requires -C; may
optionally be combined with -I.

* Maximal state space mode (-M): Runs the naive version of Iterative Deepening
shown in Algorithm 3, i.e., immediately abandons any state space whenever a su-
perset of it exists. This results in always testing the maximal state space only, with
no inherent parallelism, and optimizes for the fastest verification when the user has
reason to believe no bugs will exist. No prior work implements this approach. Note
that this mode was implemented after [BG16]’s publication, and I will feature it in
the evaluation of transactional memory (§6.3) rather than in this chapter.

Quicksand restricts ICB to be usable only in modes when it runs only one Landslide at
a time. ICB is itself a heuristic search ordering strategy to uncover bugs faster, so while
technically easy to run Iterative Deepening with all jobs thereunder running ICB, that
would suffer both approaches’ repeated work compounded. §8.3 discusses integrating
the two approaches to hopefully reap the benefits of both. However, maximal state space
mode does support ICB, as it focuses on verification only, but if the result is a time-out,
the user may find an ICB-style preemption-bounded partial verification useful.

4.4.5 Landslide extensions

I have added several features to Landslide specifically for use under Quicksand. Source
files mentioned in this subsection live under the usual Landslide source directory.

The other end of the messaging protocol (84.4.2) is implemented in messaging.c.
When Quicksand suspends Landslide, it detects how much time it spent asleep, and cor-
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rects for that amount during its next ETA computation (fudge_time() in estimate.c).
Landslide’s data race analysis also includes a heuristic to avoid reporting “too suspicious”
data race candidates which it believes arise from the initialization pattern [SBN*97]: if
a conflicting access pair is single-order (§4.2.5) and also arose during a known synchro-
nization API's init() or destroy() function, Landslide will not message it to Quicksand,
at least not until it is reclassified as both-order.

To recognize the reallocation pattern discussed in §4.2.6 during data race analysis,
Landslide includes a generation counter in its heap allocation tracking (§3.3.3). Each heap
allocation is given a unique ID, and when evaluating whether two heap accesses can race,
the IDs of their containing blocks must match (was_freed_remalloced() in memory.c), in
addition to the other requirements of Happens-Before. If the generations do not match,
Landslide sets the free_re_malloc flag in the messaging protocol to Quicksand. If the
race is later observed in a reordering which avoids the reallocation pattern (such as in
Figure 4.5), Landslide will report it as normal, and Quicksand will promote it to a normal
preemption point in the registry (pp_new() in pp.c, “for realsies” case). Also included
in this message is a flag to indicate whether a data race was found nondeterministically
(i.e., not on the first interleaving), such as described in §4.1.1.

Preempt-everywhere mode (§4.4.4) imposes a heavy burden on Landslide on account
of the sheer number of preemption points involved. First of all, because there are separate
tracing entrypoints for memory accesses and instructions (instrument.c), it cannot sim-
ply invoke the checkpointing routine (§3.3.5) immediately. Also, we must still exclude
thread-local and kernel (if testing userspace) or user (if testing kernelspace) accesses.
Rather, the memory analysis (§3.3.3) invokes maybe_preempt_here() in pp.c for every
access it would ordinary record for DPOR. If the access is outside of the current stack
frame, and not part of the mutexes (unless TESTING_MUTEXES), this sets a scheduler ac-
tion flag preempt_for_shm_here which makes preemption point identification treat it the
same as a data race (8§3.4.1). check_withins() is also modified to never switch to al-
lowlist mode. Finally, Landslide increases its heuristic constant for infinite loop detection
(83.4.6) on the first interleaving from 4000 to 2%°, to account for the increased orders of
magnitude in preemptible events.

4.5 Evaluation

In Quicksand, Iterative Deepening and data race analysis are intimately connected: the
former relies on the later to supply it with new preemption points, thereby refining its
search for new concurrent behaviours, while the latter relies on the former to thoroughly
check all possible interleavings around its reported memory accesses and classify them as
buggy or benign. Despite this synergy, which is necessary for total verification soundness
(84.3), each of these two techniques is a contribution in its own right when it comes
to bug-finding performance. Hence, this evaluation will measure not only the combined
approach’s full verification power, but also the bug-finding performance of each technique
separately, as compared to state-of-the-art single-state-space ICB and DPOR. I pose the
following evaluation questions.
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1. Does integrating data-race preemption points improve the accuracy of model check-
ing?
(a) Do data-race preemption points expose new bugs that couldn’t be found with
synchronization ones alone?

(b) Do data-race preemption points expose the same bugs the preempt-everywhere
approach could find, faster?

(c) Does Quicksand provide more full verifications more quickly than the preempt-
everywhere approach?

(d) How does the choice between Pure and Limited Happens-Before affect bug-
finding and verification performance?

2. Does testing alternate interleavings with model checking improve the accuracy of
data race analysis?

(a) Does Quicksand avoid false positives compared to single-execution Limited
Happens-Before?

(b) Does Quicksand find data-race bugs that single-execution Pure Happens-Before
or Limited Happens-Before alone would miss?

4.5.1 Experimental setup

The test suite consists of 79 P2 student thread libraries (§2.4.1), submitted in 15-410
during the Spring 2014, Fall 2014, and Spring 2015 semesters,'! and 78 Pintos student
kernels (82.4.2), submitted in Berkeley’s CS162 and U. Chicago’s CMSC 23000 during
Spring 2015. The P2s in this dataset average 1807 lines of C and x86 assembly code, and
the Pintoses average 718 lines (by diff to the provided basecode), for a total of 198,772
lines of code tested for this evaluation.

I chose P2s and Pintoses for this test suite because of the relative ease of generating
hundreds of unique state spaces, varied in size and correctness, and with a diverse set of
bug types.!? While many prior work stateless model checking papers [MQO7, AAJS14,
Hual5, KLSV17] publish studies of single-digit or low-double-digit numbers of bugs found
in “real-world” programs, sometimes reported to and confirmed by the upstream devel-
opers, to motivate stateless model checking to be used in production settings, I believe
this approach to be too anecdotal for comparing several model checking strategies against
each other, and opt for this approach instead for better statistical significance.'?

The 2014 semesters were before Chapter 5’s user study experiments, and for Spring 2015 (the first
semester thereof), students who used Landslide during the project were excluded from this dataset.

12In addition to concurrency bugs, many of the codebases exhibited deterministic bugs (i.e., encountered
on the first interleaving tested), which I fixed by hand before running these tests to ensure that every bug
in this study required meaningful work by the model checker.

13Not to mention — as I couldn’t say in a conference paper, but can say now — that extending Landslide to
support native Linux programs, complete with filesystem and network nondeterminism, would have been
an engineering burden beyond my ability to do alone and still graduate on time.
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Test cases

I tested P2s with six multithreaded programs: mutex_test, for locking algorithm correct-
ness, thr_exit_join, a test of thread lifecycle, broadcast_test and paraguay for con-
dition variables, paradise_lost for semaphores, and rwlock_downgrade_read_test for
R/W locks. These are the same tests I distributed Landslide with in Chapter 5; §5.1.3
describes them in further detail. For mutex_test, paradise_lost, and paraguay, I used
the without_function command to exclude thr_create(), thr_exit(), and thr_join()
preemption points, and for mutex_test I enabled TESTING_MUTEXES (§3.1.3). I tested Pin-
toses with three programs from the class’s provided test suite: priority-sema, a test of
the kernel scheduling algorithm, alarm-simultaneous, for the timer sleep routine, and
wait-test, for process lifecycle system calls. These are a subset of those used in Chap-
ter 5; see §5.2.3. Some of the Pintoses were partially implemented, so each test could
only be run on a subset of the 78 submissions; see the “Number tested” column in Ta-
ble 4.1. For all tests, I also excluded preemption points on malloc()’s internal lock using
without_function. In total, the evaluation comprises 629 unique tests (i.e., pairs of a test
program and a Pintos or P2), at least 181 of which will be seen to expose bugs.

Model checker configuration

To evaluate the benefits of data-race preemption points and Iterative Deepening sepa-
rately, I ran the test suite under Quicksand in three different experimental configurations,
each of which was given a 1-hour budget and 10 CPUs for each test.

* QS-Limited-HB: Quicksand with Landslide configured to use Limited Happens-Before
for its data race analysis (-H),

* QS-Pure-HB: Quicksand using Pure Happens-Before instead (-V), and

* QS-Sync-Only: Quicksand with initial preemption points only, as described in §4.2.2,
but never adding new ones from reported data races.

I represented the MC State of the Art'* with three configurations of stand-alone Land-

slide on the same test suite, corresponding to the search strategies discussed in §4.4.4
and §4.4.5.

* SSS-MC-DPOR: Single state space mode (-C) using the maximal preemption point
set from §4.2.2, explored with DPOR (§3.4.2),

* SSS-MC-ICB: With preemption points as above, but instead using ICB [MQO07] with
BPOR [CMM13] to find bugs faster (-I, §3.4.5), and

* SSS-MC-Shared-Mem: Using ICB+BPOR, configured to preempt on any shared
memory access (-0) (decided at runtime, excluding threads’ accesses to their own
stacks), which in principle includes all possible data races.

Prior work has shown how to parallelize DPOR of a single state space across multiple
processors [SBGH12], but it remains an open research problem how to extend the algo-
rithm to ICB. Hence, I optimistically gave all control experiments a linear speedup of 10

14The author’s DJ name.
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hours per test with 1 CPU; i.e., assuming it could parallelize with 100% efficiency. To
match this, Quicksand reports both the CPU time and wall-clock time spent during its
execution. Comparing CPU time leads to a more fair comparison, although Quicksand’s
inherent parallelism, which only a wall-clock time comparison would show, is also a con-
venient benefit unto itself. All tests ran on 12-core 3.2 GHz Xeon W3670 machines with
12GB of RAM.

4.5.2 Bug-finding

Figure 4.7 plots the bug-finding performance of Quicksand’s three experimental trials
against the three control approaches in a cumulative distribution of total bugs found
against elapsed CPU time. The farthest-right point on each series indicates in how many
total test cases that trial found a bug after the 10 CPU-hour timeout. Figure 4.8 shows
the same experiments, measured by wall-clock time until each bug was found instead.
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Figure 4.7: Quicksand’s bug-finding performance measured in CPU time. Quicksand finds
125% as many bugs with data-race preemption points at the 10-hour mark, compared to
the best prior work approach. Quicksand’s startup overhead is exaggerated, as the control
experiments are not parallelized.
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Figure 4.8: Quicksand’s bug-finding performance measured in wall-clock time. Quicksand
is parallelized tenfold; the vertical line indicates its 1 hour limit.

Performance comparison

Compared to SSS-MC-ICB (the fastest among the control experiments), Quicksand finds
more bugs within any fixed CPU budget greater than 200 seconds. In other words, draw
a vertical line at x = N for any N > 200 to represent timing out each test after y seconds
elapsed, and Quicksand’s bug total will exceed that of ICB. SSS-MC-Shared-Mem initially
suffers a substantial performance penalty from the sheer number of preemption points
it must analyze, but ultimately outstrips SSS-MC-ICB, which fundamentally cannot find
data-race bugs, after 135 CPU-minutes with its 100th bug found, ultimately finishing the
10 CPU-hours as the best prior work approach in the long term. Compared to SSS-MC-
Shared-Mem, Quicksand’s Limited HB version finishes with 125% as many bugs in total.

Regarding Quicksand’s tenfold parallelism, before the break-even point at 200 sec-
onds, it lags behind SSS-MC-ICB due to the additional start-up overhead of testing many
state spaces at once even though the easy bugs may be found extremely quickly in any
of them. However, converting ICB’s early CPU-time advantage into faster wall-clock per-
formance remains an open research problem [SBGH12]. Figure 4.8 gives Quicksand full
credit for its inherent parallelism, which ICB cannot yet practically match: with a proces-
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sor allocation of 10 CPUs, it outperforms all prior work approaches for any fixed budget
of wall-clock time (i.e., comparing across a vertical line at x = N for any N).

The QS-Sync-Only experiment tests whether Iterative Deepening would be effective
even for model checking domains without data races, such as distributed systems [KAJV07,
YCW*09, LHJ" 14, SBGH11, CGS13] and programming languages whose type systems
statically reject concurrent mutable shared state [VWW96, HPJW92, KN18]. When
Quicksand ignores all data race candidates, its results are competitive with SSS-MC-
DPOR, although SSS-MC-ICB outperforms it slightly. This is unsurprising: the seed sub-
sets of preemption points that QS-Sync-Only is limited to (§4.2.2) are much less flexi-
ble than ICB’s preemption strategy. This result suggests that in future work, Quicksand
should consider using ICB in parallel with its default configuration when it finds no data
race candidates to test. I discuss this possibility further in §8.3.

On the other hand, comparing QS-Limited-HB to SSS-MC-Shared-Mem shows that It-
erative Deepening thoroughly outperforms ICB when shared-memory preemptions come
into play. Statically configuring a preemption point for every shared memory access in
advance produces orders of magnitude more points than waiting for an access to be iden-
tified as part of a data race at runtime. In principle, DPOR and ICB+BPOR should suf-
fice to identify and prune any equivalent thread interleavings arising from extraneous
preemption points on non-conflicting accesses. However, in practice, the sheer number
of accesses during each new execution (often thousands) added significant performance
overhead to DPOR’s O(n?) memory independence computation (§3.4.2), as well as the
O(n) overhead of checkpointing the execution state at each preemption point (§3.3.5).
Iterative Deepening avoids this overhead by waiting until runtime to identify fewer, more
relevant preemption points dynamically, and is hence more suitable for model checking
when data races are involved.

Types of bugs

Table 4.1 provides more detail on each of the bugs shown in Figure 4.7, broken down
by test case. The left half shows the number found by each experimental approach, with
the totals of each column corresponding to the values at x = 10 hours in Figure 4.7.
In mutex_test, which checks the lock implementation for correctly providing mutual ex-
clusion (rather than trusting its correctness, as all other tests do), SSS-MC-ICB and SSS-
MC-DPOR found dramatically fewer bugs (just 1). Prior work has proposed abstraction
reduction [Sim13], in which verifying correctness properties of synchronization primitives
allows subsequently trusting them in other tests which use them to mitigate state space
explosion; §6.3.3 will explore this technique further. By contrast, QS-Limited-HB found
10 mutex bugs, and SSS-MC-Shared-Mem found 12. In the scope of this chapter, this
serves as strong evidence that new low-level synchronization code must be verified with
data-race preemption points, whether combined with Iterative Deepening or ICB.

To ensure that the corpus of P2 and Pintos bugs gives an unbiased comparison between
Quicksand and ICB, I also counted the preemption bounds at which ICB found each of
its bugs, i.e., the minimum number of involuntary thread switches each bug required
to expose. Table 4.2 shows the distribution of these bounds, which is consistent with
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Num. || Quicksand | Single-state-space MC
Test | tested | LHB | PHB | ICB | DPOR | ShMem
broadcast_test 79 8 8 5 6 7
thr_exit_join 79 23 20 13 13 14
mutex_test 79 10 9 1 1 12
paradise_lost 79 17 16 12 11 12
paraguay 79 10 8 5 5 11
rwlock_downgrade 79 27 26 25 23 28
priority-sema 59 7 7 1 1 8
alarm-simultaneous 44 21 12 16 5 29
wait-simple 52 30 26 24 23 1
Total | 629 153 | 132 | 102 88 122

Table 4.1: Summary of bugs found by each test program. QS-LHB and QS-PHB are Quick-
sand; ICB/DPOR/ShMem are the controls (§4.5.1).

Bound || SSS-MC-ICB | SSS-MC-Shared-Mem | Prior work ICB [MQO07]
0 2 1 3
1 82 86 7
2 16 32 5
3 2 3 1
44 0 0 0
Total 102 122 16

Table 4.2: Distribution of preemption bounds among bugs found by ICB control experi-
ments. Bound 0 means the bug was found by switching threads only on yield calls.

the results of [MQO7, Table 2], reproduced in the rightmost column (obtained under a
different test suite, of course, of only 5 programs). This shows no bias towards bugs that
would be harder for ICB to find. In fact, this evaluation’s preemption bound distribution
is more heavily biased towards fewer preemptions, suggesting that if anything, my test
suite is even friendlier still to ICB than that of prior work.

4.5.3 Verification

The previous section showed that Quicksand’s suite of bug-finding heuristics, built around
Iterative Deepening, outperform the best single-state-space approaches, even after cor-
recting for its inherent parallelism. This section will hold Quicksand to its promise to
uphold the other side of the trade-off as well: that it reach full verification on correct
tests reasonably quickly.

Full verification

Figure 4.9 plots the cumulative distribution of total verifications provided by each ap-
proach, in the same style of graph as Figure 4.7 and Figure 4.8. For 167 of the 629
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Figure 4.9: Verification performance comparison between Quicksand and single-state-
space approaches. Among the latter, only SSS-MC-Shared-Mem is theoretically capable
of verifying any test with data races; the others’ series include only tests with no data
races whatsoever, in which case synchronization preemption points alone suffice for a full

verification.

tests, QS-Pure-HB was able to reach and complete the maximal state space with no bugs
found, hence providing the total verification guarantee justified by the proofs in §4.3.
QS-Limited-HB completed a verification for 153 of 629 tests, slightly slower on account
of Limited Happens-Before’s higher false positive rate. The next best approach for verifi-
cations was SSS-MC-Shared-Mem, which completed its search in only 39 cases.
Ultimately, using Limited Happens-Before for finding data race candidates allowed
Quicksand to find more bugs, while Pure Happens-Before allowed for reaching full verifi-
cation faster. I attribute this trade-off to the fact that Limited Happens-Before need not
wait to test many alternate thread interleavings before finding a data race candidate to
begin with; rather, it can add new jobs to start testing potential races immediately.'> On
the other hand, Limited Happens-Before can get overwhelmed by too many false positives,

15Upcoming, Table 4.4 will corroborate this conclusion: the difference is most dramatic in alarm-
simultaneous, the test where Quicksand struggled most to finish even small subset jobs.
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needing to refute such candidates by testing new state spaces for each one, while Pure
Happens-Before can refute false positives en passant by testing alternate interleavings in
its original state spaces. This suggests that model checkers which incorporate data race
analysis should implement both modes and offer the user to choose based on their desired
and/or expected testing outcome.

The only testing modes which are theoretically capable of verifying any test with
data races were QS-Pure-HB, QS-Limited-HB, and SSS-MC-Shared-Mem (i.e., preempt-
everywhere mode). When QS-Sync-Only, SSS-MC-DPOR, and SSS-MC-ICB complete their
respective maximal state spaces (i.e., all synchronization preemption points), that consti-
tutes a full verification only in the case where no data races were identified at all, meaning
Iterative Deepening would search no deeper than that anyway. Therefore, in Figure 4.9,
the data series for these latter three configurations represent only completed tests with no
data races. Even though SSS-MC-Shared-Mem tends to hang out in the same neighbour-
hood as them, note that SSS-MC-Shared-Mem is still steadily increasing in verifications
provided at the 10-hour cutoff (let alone the Quicksand ones), while the other three seem
to reach a plateau of around 20-30 tests relatively soon.

A single-state-space model checker could rely on the user to properly synchronize
all reported data races, in accordance with the philosophy that even non-failing races
should count as bugs [Boell, Boel2], ultimately improving the number of tests it can
verify with no data races. However, RacerX [EA03] showed that overwhelming the user
with warnings about non-failing behaviours jeopardizes their patience for the tool, which
motivates Quicksand to follow in the footsteps of Portend [KZC12] instead.

Overall, including data-race preemption points increases verification capacity by 4.25x.
Assuming sequentially-consistent hardware, QS-Pure-HB classified many true data races
as benign, while the SSS-MC-ICB approach could at best report such races to the user.
This graph’s results show that code written in a natural environment by inexpert users (stu-
dents) generally does not obey the sort of strict coding discipline necessary for a model
checker to make simplifying assumptions such as “no data races”, justifying this chapter’s
claim that data-race preemption points are essential to model checking.

Partial verification

When a model checking job times out, the user would more likely prefer a summary of
what parts of the test were verified rather than to write off all the CPU time spent as
wasted. To this end, Quicksand reports which subsets of preemption points resulted in
state spaces that did complete in time, in hopes that the user can supplement such a
result with her own intuition by inspecting the code corresponding to the preemption
points not tested (especially data races). From prior work, Preemption Sealing [BBC"10]
has argued the value of similar compositional testing when full verification is intractable,
deferring to the user’s expertise to judge the value of each subset of preemption points
verified. Table 4.3 shows Quicksand’s partial verification results on timed-out tests.

On 229 tests, SSS-MC-ICB timed out after 10 hours with no bugs found. Among these
tests, QS-Limited-HB found bugs in 37. The other 192 represent cases where neither
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Num. Mutual | Avg. tested

Test | tested || timeouts | subset SSes
broadcast_test 79 7 112.3
thr_exit_join 79 12 69.7

mutex_test 79 0 -
paradise_lost 79 50 77.4
paraguay 79 45 59.6
rwlock_downgrade 79 44 86.3
priority-sema 59 2 13.0
alarm-simultaneous 44 17 7.8

wait-simple 52 15 33.8
Total | 629 192 65.8

Table 4.3: Summary of partial verification results on timed-out tests. “Mutual timeouts”
counts how often both QS-Limited-HB and SSS-MC-ICB (the best bug-finding approach
from each group) timed out. Among those, “Average tested subset SSes” counts how many
partial verifications QS-Limited-HB provided on average for each test.

Quicksand nor ICB were able to provide a conclusive result either way.'® For these 192, I
show the number of state spaces Quicksand was able to complete in the “Average tested
subset SSes” column. These completions guarantee that, if the test program could expose
a bug, it would depend on a data race not discovered yet, or be reachable only under a
superset combination of preemption points not yet reached.

4.5.4 Data race analysis

Beyond finding new bugs and completing full verifications with data-race preemption
points, I evaluated Quicksand’s performance for classifying data race candidates in two
ways: its ability to check nondeterministic data races not reachable under a single-pass
analysis (§4.1.1) and its ability to suppress reallocation false positives (§4.2.6). Table 4.4
presents the results for this section.

Nondeterministic data races

Some memory accesses may be hidden in a control flow path that requires a nondeter-
ministic preemption to be executed (§4.1.1). In such cases, a single-pass dynamic data
race detector might not achieve the coverage necessary to identify a racing access pair
as a candidate at all, let alone check the resulting behaviour with such as Landslide. I
instrumented Landslide to report these to Quicksand and counted how many such led to
Quicksand finding new bugs when used as preemption points. Such bugs could be consid-
ered false negatives of the single-pass approach. The left half of Table 4.4 breaks down the

16Thesis note: SSS-MC-Shared-Mem was added subsequently to this analysis’s publication in [BG16],

at which time SSS-MC-ICB was the best-performing approach among control experiments. Nevertheless,
mutual timeouts among all six testing approaches constituted roughly one third of the test suite.
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Data-race bugs Verifications
Num. || Limited HB | Pure HB Pure HB Realloc.
Test | tested || All | N.D. | All | N.D. | DR PPs | Benign | Untested FPs
broadcast_test 79 2 1 2 1 655 97 150 52
thr_exit_join 79 11 4 7 3 566 68 249 338
mutex_test 79 9 1 8 1 911 127 44 7
paradise_lost 79 7 3 6 2 783 2 414 166
paraguay 79 6 1 3 2 936 9 510 180
rwlock_downgrade 79 4 1 3 0 543 1 310 156
priority-sema 59 6 4 6 6 65 51 3 0
alarm-simultaneous 44 17 1 7 6 35 0 29 35
wait-simple 52 7 2 2 0 71 1 28 31
Total | 629 69 15 44 | 21 4565 356 1737 965

Table 4.4: Data race statistics among Quicksand experiments. “Data-race bugs” counts,
among Quicksand’s bugs, how many required data-race preemption points to expose;
among those, the “N.D.” (“nondeterministic”) columns show how many candidates re-
quired model checking to identify in the first place (§4.5.4). “Total DR PPs” counts how
many unique data-racing instructions QS-Pure-HB identified among tests where it found
no bugs. Among those, “Benign” counts how many were refuted as non-failing, while
“Untested” counts how many could not be checked in the time limit. Finally, “Realloc.
FPs” counts how many reallocation false positives QS-Limited-HB suppressed.

types of bugs found in each test case, showing both the total number of data-race bugs
and the number among those that required such nondeterministic data races to expose.
To ensure a fair comparison, I disabled Quicksand’s reallocation false positive suppression
(84.2.6, itself evaluated in the next section) for this experiment. This prevents Landslide
from suppressing an observed reallocation data race candidate on the first interleaving,
which would falsely classify it as nondeterministic, even though a single-pass would not
(indeed, should not) suppress such candidates.

Figure 4.10 visualizes the difference between single-pass and model-checking-enabled
data race analysis. The first and third series represent the bugs found using preemption
points from single-pass data race candidates only, i.e., the state-of-the-art approach used
by RaceFuzzer [Sen08] and Portend [KZC12]. The second and fourth series show all data-
race bugs Quicksand found, which includes the former type as well as new bugs involving
nondeterministic races. QS-Limited-HB found a nice 69 data-race bugs in total, 15 of
which required nondeterministic data-race preemption points to expose. QS-Pure-HB is
even more dependent thereupon, requiring them in 21 cases among its 44 total data-race
bugs. Moreover, although the frequency of these nondeterministic races varies across the
different test cases (for example, almost all in broadcast_test were nondeterministic;
almost none in mutex_test), they are still at least present in all tests, meaning it is not
just an issue of writing “better” test cases to avoid them.

Note that I do not compare how much testing time is required before identifying the
data races involved in each bug. While single-pass data races are all found after a single
test execution, Quicksand may potentially take up to all 10 CPU-hours before identifying
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Figure 4.10: Some bugs require nondeterministic data-race preemption points to expose.
Incorporating these data races, which are not observed under single-pass analysis, as new
preemption points allowed Quicksand to find 128% (Limited Happens-Before) to 191%
(Pure Happens-Before) as many data-race bugs compared to using single-pass candidates
alone.

a nondeterministic data race. However, prior work data race tools [SI09, FF09], being
not integrated with a model checker, are not intended to discover new candidates under
subsequent runs. Running a single-pass data race tool repeatedly for 10 CPU-hours could
potentially uncover some nondeterministic candidates, but stress testing’s comparative
problem with achieving reliable coverage is already well-understood [MQO07, CBM10],
so I hope the reader will consider this experiment enough evidence for model checking
already. Likewise, replay-based tools such as RaceFuzzer [Sen08] and Portend [KZC12]
depend upon the data race detector to provide an execution trace leading to each candi-
date. This result suggests that such tools could benefit from a similar feedback loop as
is used in Iterative Deepening, for example, to discover new transitively-reachable data
races while testing initial ones, even if full verification not necessarily be their goal.

Reallocation false positive suppression

In §4.3.2 I showed the soundness of suppressing data race reports between two heap ac-
cesses when the surrounding memory was re-allocated in between. Table 4.4’s “Realloc
FPs” column shows the total number of such data race candidates for each test program,
totaling 965 across all tests. Among these, only 64 were observed to avoid the realloca-
tion in an alternate interleaving, thereupon being promoted to real data-race preemption
points. §4.3.2’s proof guarantees the safety of pruning all state spaces resulting from
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the 901 others. Among the 64 true data races, none exposed a new bug when used as a
preemption point. This suggests that for other data race tools, suppressing reallocation
candidates may be a productive heuristic, even if unsound without Iterative Deepening.
However, Quicksand was able to correctly identify the 64 violations of that heuristic,
among 26 distinct tests, and fall back to classifying them with DPOR.

4.6 Discussion

This section will list the current limitations of Quicksand and Iterative Deepening and
discuss opportunities for future improvement.

4.6.1 Experimental bias

The evaluation design (§4.5.1) contains two major shortcomings that, to my surprise,
no conference reviewer, audience member, or colleague ever called me out on. Firstly,
the single-state-space preempt-everywhere strategy was conducted only with ICB enabled
(SSS-MC-ShMem). This resulted in reasonable bug-finding performance, ultimately reach-
ing 80% as many bugs found as Quicksand’s best (QS-Limited-HB) in Figure 4.7. How-
ever, ICB tends to repeat work across multiple preemption bound iterations, as evidenced
between SSS-MC-ICB and SSS-MC-DPOR in Figure 4.9. Correspondingly, a version of
SSS-MC-ShMem configured to use traditional DPOR without ICB would effectively begin
with a preemption bound of infinity and perhaps be more competitive with Quicksand on
verifications. Of course, this would trade off against its bug-finding performance, but an
expert user could compensate by deciding between the two modes depending whether
she thinks the test is more likely to be buggy or correct. Granting such user involvement,
Quicksand’s maximal state space mode (§4.4.4) would correspondingly verify more tests
than QS-Pure-HB, especially if it were given 10 wall-clock hours on 1 CPU rather than 1
on 10. Future work could also improve both Quicksand’s and ICB’s ability to identify and
skip redundant work across their respective iterations, as discussed below.

Secondly, and more fundamentally, representing state-of-the-art approaches by reim-
plementing them in one’s own tool is fraught. The comparison between Iterative Deep-
ening and ICB in §4.5.2 and 84.5.3 could possibly have been conflated by Landslide’s
implementation of ICB and/or DPOR being slower on account of the simulated execution
environment (§3.3). A more rigorously scientific comparison would extend a prior work
model checker, such as CHESS [MQB*08], to support dynamically-configured data-race
preemption points, and evaluate Quicksand with it versus its own ICB implementation as
well, to isolate any such conflating factors. Concurrently with these results’ publication in
OOPSLA [BG16], more advanced state space reduction algorithms were proposed, such
as MCR [Hual5] and RCMC [KLSV17] (§7.1). It is not immediately obvious that these
techniques’ benefits would be orthogonal with Iterative Deepening; in other words, the
benefit of Quicksand with a MCR- or RCMC-enabled model checker might be reduced
compared to the benefit shown in §4.5.2 and §4.5.3. Future model checkers’ evaluations
should strive to fairly represent these and other latest algorithms in their comparisons.
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4.6.2 Avoiding redundant work

When Quicksand extends a small state space with more preemption points, the new state
space is guaranteed to test a superset of interleavings compared to the old one. Because
Quicksand prioritizes completing small state spaces before their descendants, the superset
state spaces we run later will repeat each branch of their already-completed subsets, and
any interleaving which does not preempt threads on any of the new preemption points will
be repeated work. This may make Quicksand slower than the single-state-space approach
to find certain bugs, for example, if both mutex_lock() and mutex_unlock() preemption
points together expose a bug, but not either alone. Predicting whether an upcoming
interleaving has already been tested is not straightforward, but future implementations
of Iterative Deepening and/or ICB could incorporate cross-job memoization to prune some
or all such repeated work.

Similarly, when pursuing total verification, if the state space resulting from preempt-
ing on every instruction (or equivalently, the maximal state space, thanks to §4.3) could
be completed in time, a model checker which immediately jumped to that state space,
abandoning all smaller subsets would certainly achieve verification faster. Quicksand’s
maximal state space mode (-M, see §4.4.4) can strike a middle ground between Iterative
Deepening and single-state-space preempt-everywhere,!” but future implementations of
Iterative Deepening could prioritize the maximal state space more flexibly still. For ex-
ample, pinning its job to one of the available processors regardless of the status of any
smaller jobs would avoid getting too flooded with smaller jobs to even begin the max-
imal job before time runs out. When full verification is infeasible, completing even an
intermediate-sized job would allow immediately pruning all subset jobs thereof, perhaps
using a form of binary search (on the preemption point set size) to find an appropriately-
sized intermediate job.

4.6.3 Preemption point subsets

Quicksand was able to partially guarantee safety for some preemption points in 93% of
tests with too-large maximal state spaces (§4.5.3). However, in 6 cases, no more than the
minimal state space could be verified, and in 18 others, no state spaces were completed
at all. Larger state spaces often result from finer-grained locking, which can indicate a
more intricate concurrent algorithm or an unnecessarily complicated design (or both).
Such programs may require even more rigorous verification than a program with a single
global lock, making them important to consider for future work. While Quicksand uses
within_function (84.4.2) statically to restrict where preemption points could arise in
advance of the test, future Iterative Deepening implementations could use this mechanism
to dynamically subset preemption points further, making partial verification of larger tests
possible, potentially even involving the user with interface options to enable and disable
preemption points of her choosing at run-time. §8.3 discusses this possibility further.

17Thesis note: -M mode was implemented after the conference paper’s publication [BG16], and will be
evaluated alongside transactional memory later in §6.3.
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Static data race analysis

In §4.5.2, I evaluated the state-of-the-art approach’s ability to find data-race-induced fail-
ures by configuring a static predicate to preempt on any non-stack memory access (-0, see
§4.4.4). This introduced hundreds of new preemption points on each new test execution,
with a prohibitive performance impact. While this performance could be improved by re-
laxing the preemption strategy, instead using a static or single-pass analysis to find data
race candidates in advance [KZC12], that would sacrifice soundness of the verification
guarantee, as I showed in §4.5.4. However, Quicksand itself could employ static data race
analysis such as RacerX [EA03], or single-pass dynamic analysis such as ThreadSanitizer
[SI09] in future work. Any data race candidates identified in advance could heuristically
be included in Quicksand’s initial seed preemption point sets (§4.2.2), enabling it to focus
on the most suspicious races immediately, rather than waiting for them to be identified
after potentially many iterations of model checking.

4.6.4 Partial verification

When full verification is not computationally feasible, some jobs with data-race preemp-
tion points will inevitably time out, and Quicksand cannot guarantee those races are false
positives or benign, even though no bug was found. In the “Untested DR PPs” column
of Table 4.4, I show how many such candidates Quicksand (with Pure Happens-Before)
could not verify in each test, ultimately totaling 38% of all data races in tests which
timed out. In prior work, Portend introduced the k-witness harmless metric [KZC12] for
heuristically classifying the likelihood that each data race lead to a failure or be benign.
Quicksand could incorporate this metric to guide the user’s attention to the unverified
data races most likely to be worth her time. In §4.5.3 I presented partial verification
results measured in tens or hundreds of subset state spaces completed on average per
test case. However, attempting to maximize the raw number of completed state spaces
is not necessarily the most user-friendly way to present partial verifications. For starters,
those numbers included small state spaces which were subsets of other state spaces also
completed; the user need not examine both subset and superset separately to understand
what was tested. Future work should at least perform basic set comparisons to present
only the non-redundant state spaces completed when time runs out. For a further re-
search challenge, user studies could help to determine the most effective interface for
presenting these partial results from a software development perspective, which I discuss
further in §8.1.

Quicksand is not the first concurrency tester to provide a partial verification guarantee
when it times out on too-large tests. Probabilistic Concurrency Testing (PCT) [BKMN10]
proposes to use random exploration of the state space and quantify the probability that a
bug may remain in some untested interleaving after a time-out, eschewing DPOR’s depth-
first search model to instead sample broad cross-sections of large state spaces. However,
it proposes no alternate reduction strategy, making full verification impractical, and fur-
thermore is opaque to the user about which parts of her code were actually tested. Mean-
while, ICB proposes to inform the user of the maximum number of preemptions used to
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test any individual interleaving, under the assurance that most bugs are likely to be found
with fewer preemptions (Table 4.2). Iterative Deepening allows the expert user to restrict
a test’s scope via the within_function command to only the modules of a codebase she
wishes to test. These guarantees could each be useful to developers in different scenarios,
and future work could combine the three approaches to provide all benefits at once, for
example, using ETAs to heuristically decide when to switch between DPOR, ICB, and/or
PCT in large state spaces, as discussed further in §8.3.

4.7 Summary

In order to supplant conventional stress testing, which, despite its inability to reliably
expose, reproduce, or verify absent bugs in any finite amount of testing time, remains a
popular choice for concurrency programmers of all skill levels, stateless model checking
must meet users’ needs regarding realistic testing budgets. This chapter has presented
Quicksand, which automatically navigates the trade-off between fast bug-finding and for-
mal verification depending on the size of the test. My contributions have been as follows.

* Iterative Deepening (§4.2), an algorithm for model checkers to simultaneously test
multiple state spaces, incorporating new preemption points identified with dynamic
analysis on the fly.

* A proof of convergence (§4.3.1), showing that for any verification obtained under
even the most extreme preemption strategy, Iterative Deepening with data race
analysis provides an equivalently strong one, with far fewer preemption points nec-
essary.

* A technique for suppressing certain false positive data race candidates under Lim-
ited Happens-Before (§3.4.4) by identifying intervening malloc() and free() calls
(84.2.6), and a corresponding soundness proof when this technique is used under
Iterative Deepening (§4.3.2).

* Quicksand (§4.4), an Iterative Deepening implementation which incorporates sev-
eral heuristics for prioritizing which state spaces are most likely to uncover bugs
or, should no bugs exist therein, which ones are most likely to complete within a
user-specified fixed CPU budget, as informed by state space estimation (§3.4.3).

* A 629-test evaluation of Quicksand against several prior state-of-the-art model check-
ing approaches implemented in Landslide (§4.5), which showed that Quicksand
provides both faster bug-finding (§4.5.2) and more full verifications (84.5.3), de-
livering “the best of both worlds” as promised, and also demonstrated the need
for a bidirectional feedback loop between model checking and data race analysis
(84.5.4).

The next chapter will tell of my experience and results deploying Landslide in an
educational setting, equipped with Quicksand to allow even inexperienced student users
to benefit from stateless model checking with little to no manual configuration burden.
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Chapter 5

Education

Knau//'nﬂ the students m[g/ﬂf one daﬂ ﬁ)( their concurrency buﬂs... it ﬁ//s you with determination.
— Undertale (pamphrﬂsez/}

Concurrency is taught in as many different ways as there are systems programming
classes at universities which teach the subject. Yet one thing they all have in common is
presenting the concurrency bug as some elusive menace, against which humanity’s best
weapon is mere random stress testing. This chapter will prove stateless model checking’s
mettle as a better alternative in the educational theatre.

While the previous chapter demonstrated Landslide’s bug-finding power compared to
prior MC techniques in a controlled environment, whether it offers pedagogical merit in
the hands of students and/or TAs is a separate question. And while I showed in my M.S.
thesis [Blum12a] that students could annotate P3 Pebbles kernels and thence use Land-
slide to debug them, the annotations alone required 2 hours of effort on average per user,
meaning the only students who could benefit were the ones already succeeding enough to
have such free time. Since then, I have extended Landslide with a fully-automatic instru-
mentation process for Pebbles thread libraries (P2s) (§5.1.2) and Pintos kernels (§5.2.2)
to improve its accessibility.

I have run several user studies in the Operating Systems classes at Carnegie Mellon
University (CMU), University of Chicago (U. Chicago), and The Pennsylvania State Uni-
versity (PSU), wherein students get to use Landslide to find and diagnose their own bugs
during the semester. At CMU, I analyzed logs and code snapshots taken as students used
Landslide during P2 (§5.3.1), as well as the grades ultimately assigned after students
who either did or didn’t use Landslide submitted their projects (§5.3.2). At CMU and
PSU, I surveyed students on their experience after submitting their Landslide-debugged
P2s (85.3.3). At U. Chicago, I collaborated with a TA to check submitted Pintos kernels,
then they returned any resulting bug reports to students (§5.3.1) and likewise surveyed
them on the quality of the diagnostic output (85.3.3).
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5.1 Pebbles

This section presents the user studies done in CMU’s 15-410 in semesters Fall 2015 to
Spring 2018, taught by David A. Eckhardt, and in PSU’s CMPSC 473 in Spring 2018,
taught by Timothy Zhu. In both cases the instructors assisted to introduce me during the
guest lecture and to distribute the recruiting emails; TAs were not involved. The in-house
user study has CMU IRB approval under study number STUDY2016 00000425, and the
external user study under STUDY2017_00000429.

5.1.1 Recruiting

From the Spring 2015 semester through Spring 2018, I have given a guest lecture in 15-
410 to recruit students to participate in the user study. The 50-minute lecture is given
1 week into the 2.5-week-long P2 project, approximately when the students should be
getting child threads running in thr_create() and experiencing concurrency bugs for
the first time. It introduces the research subject abstractly using an example “Paradise
Lost” bug from a previous lecture [Eck18d], explains how Landslide works concretely,
shows a short demo of effortlessly using Landslide to find the example bug, and provides
the necessary IRB legalese about the risks and benefits of participation. The most recent
lecture slides are available on the course website at https://www.cs.cmu.edu/~410-s18/
lectures/L14_Landslide.pdf, and all semesters’ editions at https://github.com/bblum/
talks/tree/master/landslide-lecture.

The PSU version of the lecture was given in Spring 2018, and is available at https:
//www.cs.cmu.edu/~410/1landslide/psu-lecture.pdf, as well as under the github link
above. Being a 70-minute lecture slot rather than 50, I extended the demo to both find
and (attempt to) verify a fix for two bugs: one a simple data race and the other the more
complicated Paradise Lost bug as above. After finding each bug, I demonstrated using
Landslide on a fixed version of the code to show how it proves the test case correct by com-
pleting all state spaces, or (in the case of Paradise Lost) suffers an exponentially-exploding
state space. This extended demo seemed to help students more clearly understand Land-
slide’s intended workflow, at the cost of about 10-15 extra minutes of lecture time (of
course, this is an anecdotal opinion, not a scientific conclusion).

At both schools students then signed up using a Google form I emailed them, which
upon completion linked them to the Landslide user guide, which is available online at
https://www.cs.cmu.edu/~410/1landslide/landslide-guide-p2.pdf (CMU version) and
at https://www.cs.cmu.edu/~410/landslide/landslide-guide-psu.pdf (PSU version)
and at https://github.com/bblum/talks/tree/master/irb (both versions).

During the last week of P2 at CMU, I held several “Landslide clinic” sessions (basically
office hours, but given a different name to remind students to limit themselves to questions
a normal TA couldn’t answer), where students could receive in-person technical and/or
moral support. Collecting study information during these sessions was not included in
the IRB protocol. In the PSU study, I had returned to Pittsburgh shortly after giving the
lecture, so technical support for PSU students was limited to email correspondence.
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5.1.2 Automatic instrumentation

As described in §3.1.1, all setup from the user’s point of view is handled through the
p2-setup. sh script.! It, its helper scripts (§3.3.9), and the landslide script itself contain
several checks to prevent studence from accidentally misusing Landslide in ways that
could produce mysterious crashes, false bug reports, and so on (the need for each check,
as the reader might imagine, discovered through bitter experience). These include:
* p2-setup.sh checks if the directory argument correctly points at the top-level P2
basecode directory rather than any subdirectories such as user/libthread/.

* check-need-p2-setup-again.sh checks if any source files in the original P2 source
directory (the argument supplied to p2-setup.sh) have been updated, in case the
student hoped to fix some bug and verify their fix but forgot to re-run the setup
script.

* landslide checks the supplied test name matches one of the endorsed Landslide-
friendly tests (students love trying to run Landslide with racer, largetest, or even
the string OPTIONS).

* landslide checks if any other instance of itself is simultaneously running in the
same directory, and if so, refuses to do so and advises the student to git clone the
repository afresh for simultaneous use.?

Landslide also includes several P2-specific instrumentations and features to cope with
various student irregularities:

* Quicksand emits different combinations of within_function/without_function di-
rectives for Landslide depending on the name of the test. For example, for paradise_
lost, designed to test student semaphore code, Landslide will not preempt in a func-
tion named critical_section(), which the test case uses to protect an internal
counter used to detect the bug; and it will not preempt in any of the thr_*() thread
library API functions for tests intended to target just the concurrency primitives. In
future work this could be improved as annotations to be placed inside the test case
code itself.

* Landslide finds ad-hoc synchronization patterns, such aswhile (!flag) yield() or
while (xchg(...)) continue, which students often open-code rather than using
the prescribed synchronization API, and treats them as synchronization points as
described in §3.4.6.

* Landslide finds “too suspicious” spinwait-loops in mutex implementations which are
neither yield- nor xchg-loops (as described above), which would ordinarily be classi-
fied as infinite loop bugs, and reports them with a suggestive message (undesirable_
loop_html() in landslide.c) referring the student to the appropriate lecture mate-
rial [Eck18c].

* The landslide wrapper script logs the time and command-line options of invocation

IPSU’s version is called psu-setup. sh; in this section p2-setup. sh refers to both unless otherwise noted.
2This is ironically implemented with a non-atomic lock file and should really be using flock instead.
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and captures a snapshot of the student code and results of the test and saves them
to AFS (CMU’s network file system) [HKM™"88] after each run.

5.1.3 Test cases

Landslide ships with several “approved” test cases, i.e., programs copied from, derived
from, or at least vaguely resembling the tests distributed with P2, which I curated to pro-
duce concurrent behaviour suitable for stateless model checking. Some tests are crafted to
target specific bugs which, from personal experience as a TA, are common in many student
submissions; others are crafted to exercise generally concurrency-heavy code paths and
uncover any number of unforeseen problems. Many use some of the features/annotations
described in §3.1.4.
The following tests were released to CMU students:

* broadcast_test: Tests the cond_broadcast() signalling path with a single waiter.

* mutex_test: Tests student mutexes under 2 threads with 2 iterations (the second
iteration serves to expose problems with mutex_unlock() as well as mutex_lock()).
This test uses the TESTING_MUTEXES described in §3.1.3 to enable data-race preemp-
tion points within the mutex implementation.

* paradise_lost: Written for the sake of the Landslide lecture demo (§5.1.1). Tests
for the Paradise Lost bug by attempting to break mutual exclusion.

* paraguay: Copied directly from the P2 test suite; tests for proper handling of seem-
ingly “spurious” wakeups in cond_wait(). Written by Michael J. Sullivan.

* rwlock_downgrade_read_test: Copied directly from the P2 test suite; tests R/W
locks for mutually-exclusive and deadlock-free rwlock_downgrade(), which should
atomically convert a lock held in exclusive write mode to shared read mode. Written
by me (during my time as a TA).

* thr_exit_join: Copied directly from the P2 test suite; tests for a variety of problems
between thr_exit() and thr_join(), but especially for memory issues pertaining
to stack deallocation.

The following tests were released to PSU students, in addition to the ones above:

* atomic_compare_swap: Tests the cmpxchg assembly function for being properly atomic.
Uses the magic_x* global variables described below, and invokes vanish() directly,
to avoid requiring the student to implement thr_join()/thr_exit() before being
able to run this test.

* atomic_exchange: As above for xchg.
* atomic_fetch_add: As above for xadd.
* atomic_fetch_sub: As above for xadd.

* broadcast_two_waiters: As broadcast_test, but uses two waiting threads to en-
sure both get signalled.
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The tests can all be viewed at https: //github.com/bblum/landslide/tree/master/pebsim/
p2-basecode/landslide-friendly-tests.

5.1.4 Survey

Starting in Fall 2017, I sought to gauge the students’ personal opinions on their experience
with Landslide, in addition to simply counting from the automatic snapshots how many
bugs were found. Shortly after the P2 submission deadline, I asked participants to answer
several survey questions, reproduced below.

1. How many bugs did Landslide help you find in your code? (Please indicate a num-
ber.)

2. How many of the bugs you found with Landslide do you believe you fixed before
submitting your project? (You may answer “all”, “none”, or a number.)

3. How many of the bugs you found with Landslide did you verify you had fixed by
running Landslide again to make sure the bug was gone? (You may answer “all”,
“none”, or a number.)

4. In addition to the bugs Landslide found, did it report anything that you believe was
NOT a bug? For example, Landslide printed an execution trace that was actually
impossible, or Landlside reported a bug about some behaviour that was actually
allowed by the P2 specification. (If so, please describe.)

5. I found Landslide’s debugging output easy to understand. (Multiple choice from
strongly disagree to strongly agree.)

6. It’s easier to diagnose the root cause of a bug with Landslide than with a stress test
(e.g. juggle). (Multiple choice from strongly disagree to strongly agree; plus “Not
sure” and “Easier for some bugs but harder for others”)

7. 1 felt the time I saved by having Landslide to help debug was worth the time it
took me to learn how to use Landslide. (Multiple choice from strongly disagree to
strongly agree.)

8. Ifeel that by using Landslide I learned to understand concurrency better. (Multiple
choice from strongly disagree to strongly agree.)

9. Suppose after you submitted your project, we gave you 100 CPU-hours on the cloud
provider of your choice to test it. Then we extended the project deadline by a day for
you to use the results to fix bugs and get partial credit. How would you divide that
CPU time between the staff-provided stress tests and Landslide? (Multiple choice:
0/10/.../100 CPU-hours on Landslide, 100/90/.../0 CPU-hours on stress tests.)

10. If I found out next semester that a friend of mine (or a student in my degree pro-
gram) were taking OS, I would recommend that they should probably invest some
time during the project to learn Landslide and try to find bugs with it. (Multiple
choice from strongly disagree to strongly agree.)

11. Regarding the previous question, why or why not?
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The following questions were served only on the CMU version of the survey.
12. Did you answer this survey together with your partner, or on your own while they
were busy? (If you both have time for it, please try to submit one survey together.)
(Multiple choice: together or alone)

13. Your andrew ID

14. Your partner’s andrew ID (if any)

The following questions were served only on the PSU version of the survey.
15. Any feedback on how Landslide’s user interface could be improved / made easier to
use or understand? (setup process, messages printed while running, or the execu-
tion trace / stack traces emitted after a bug is found?)

16. Your PSU username

5.2 Pintos

This section presents the user study done in U. Chicago’s CMSC 23000 class in the Fall
2017 semester, taught by Haryadi Gunawi. Kevin Zhao, the TA, assisted to run Landslide
on student submissions and to distribute recruiting materials and testing results. The
study has CMU IRB approval under study number STUDY2017_00000429.

5.2.1 Recruiting

For this study students were recruited remotely via email. After each of the threads and
userprog project deadlines (§2.4.2), CMSC 23000 staff sent students an email inviting
them to volunteer to receive Landslide’s bug reports, disclaiming that it did not represent
part of the official grading process but could help improve their future submissions.

5.2.2 Automatic instrumentation

As described in §3.1.1, all setup from the user’s point of view is handled through the
pintos-setup.sh script. It and its helper pebsim/pintos/import-pintos.sh perform most
of the same sanity checks as listed in §5.1.2, then applies the patch annotate-pintos.patch
(plus several more hacks in the script itself) to insert the tell_landslide() annotations
(83.2.2) into the student’s kernel code. The following tricks were developed after trial-
and-error on student submissions from the same semester, and serve to make sure the
annotations apply consistently to (almost) all variations of commonly-submitted code.

* Finds the declaration of ready_list, the scheduler runqueue declared by the basec-
ode, and detects if the student has replaced the default definition with a different
name and/or data structure. If so, emits macros to configure is_runqueue() to
handle certain common alternate approaches (part of the patch described below).
Either way, defines a function get_rq_addr() to return the address of the list.
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* Changes the basecode’s definition of TIME_SLICE from 4 to 1 (units of timer ticks)
so Landslide’s timer injection will properly drive the context switcher.

* Inserts tell_landslide_forking() into thread.c (using sed rather than the patch,
described below, because it must go in a function which students have to implement,
which is likely to disturb the context and make a patch fail).

* Adds the new priority-donate-multiple test.

* Applies the annotate-pintos.patch patch to the imported student implementation,
which:

# Addstell_landslide_thread_on_rq() and tell_landslide_thread_off_rq()
annotationsto list_insert() and list_remove() respectively (in 1ib/kernel/
list.c, which the students don’t modify), which check whether the argument
list is the scheduler runqueue using a helper function is_runqueue, which in
turn uses get_rq_addr() and READY_LIST_LENGTH described above.

® Modifies the existing priority-sema and alarm-simultaneous tests to be more
Landslide-friendly.

® Insertsthe tell_landslide_sched_init_done(), tell_landslide_vanishing(),
and tell_landslide_thread_switch() annotations in the appropriate places
(which the students generally do not modify).

* Detects if the student has renamed the elem field of the TCB struct, and if so renames
its use in is_runqueue() (described above) correspondingly.

* Detects if the student has renamed the cur (currently running thread) variable in
the context switcher, and if so renames it back.

5.2.3 Test cases

Like the P2 tests, the Pintos test cases are either hand-picked from the provided unit tests,
with an eye for which will produce interesting concurrent behaviour, or created using a
TA’s intuition for the most likely student bugs. The following tests are approved to be
Landslide-friendly:

* priority-sema: Modified to be Landslide-friendly from the basecode, for threads.
Creates two child threads to wait on a semaphore and signals them. Replaces
threads with different priorities (originally chosen to produce deterministic output
which the test checked for) with threads of the same priority.

* alarm-simultaneous: Modified to be Landslide-friendly from the basecode, also for
threads. Creates two child threads which each invoke timer_sleep() for a different
amount of time. Number of (threads,iterations) reduced from (3,5) to (2,1).

* wait-simple: Unmodified from the basecode’s version, for userprog. Userspace pro-
cess execs a child process, which immediately exits, and waits on it.

* wait-twice: Unmodified from the basecode’s version, for userprog. Slightly more
complicated version of wait-simple, intended to expose failure-path bugs if the
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former finds no easier ones.

* priority-donate-multiple: Written by Kevin Zhao, TA at U. Chicago, for threads.

Tests for a priority donation race during lock_release() in which a thread holding
a lock can accidentally keep a contending thread’s donated priority after finishing
releasing it.

The (unpatched versions of) the first four tests are available at https://github.com/
bblum/pintos (a fork of the main Pintos basecode repository). The fifth test is available
in the Landslide repository at pebsim/pintos/priority-donate-multiple.c.

5.2.4 Survey

Similar to the survey for Pebbles projects §5.1.4, I surveyed the Pintos user study partici-
pants for their opinions. Because of the different nature of the user study, of course, the
questions here focus more on the debugging experience than on using Landslide directly.

1.

10.

How many Landslide bug reports did you receive from course staff? (Please indicate
a number.)

. Among those bug reports, how many were you able to diagnose and recognize the

root cause in your code? (You may answer “all”, “none”, or a number.)

. Among those bug reports, how many described a behaviour that you believe was

NOT a bug? For example, Landslide printed an execution trace that was actually
impossible, or Landslide reported a bug about some behaviour that was actually
allowed by the Pintos specification. (You may answer “all”, “none”, or a number.)

About how much time did you spend interpreting Landslide’s debugging output?
(Please indicate a number of minutes, or a range if uncertain, e.g. “30-60 minutes”.)

. I found Landslide’s debugging output easy to understand. (Multiple choice from

strongly disagree to strongly agree.)

It’s easier to diagnose the root cause of a bug with Landslide than with a stress test
(for example exec-multiple). (Multiple choice from strongly disagree to strongly
agree; plus “Not sure” and “Easier for some bugs but harder for others”)

I feel that by interpreting Landslide’s debugging output I learned to understand
concurrency better. (Multiple choice from strongly disagree to strongly agree.)

. These kinds of concurrency bugs are important to fix, even though they don’t count

against my grade. (Multiple choice from strongly disagree to strongly agree.)

Suppose after you submitted your pintos, we gave you 100 CPU-hours on the cloud
provider of your choice to test it. Then we extended the project deadline by a day for
you to use the results to fix bugs and get partial credit. How would you divide that
CPU time between the staff-provided stress tests and Landslide? (Multiple choice:
0/10/.../100 CPU-hours on Landslide, 100/90/.../0 CPU-hours on stress tests.)

If course staff were to allow students to resubmit updated code after reviewing
Landslide bug reports to receive partial credit for each bug that had been fixed, it
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would be worth my time to try that (even if I could be spending that time working
on the next project instead). (Multiple choice from strongly disagree to strongly
agree.)

11. If a friend of mine took OS next semester, I would recommend that they should sign

up to receive Landslide bug reports during projects in the future. (Multiple choice
from strongly disagree to strongly agree.)

12. Regarding the previous question, why or why not?
13. Your name.
14. Your project partner’s name (if applicable)

5.3 Evaluation

I pose the following evaluation questions.

1. How many bugs, and of what severities, does Landslide help students find and fix
before submitting their code?

2. Does Landslide use result in higher quality submissions, whether directly for P2, or
for subsequent projects as well?

3. Do students feel the experience is worthwhile, as compared to stress testing?
4. How well does Landslide apply to operating systems projects outside of CMU?

The data set comprises Landslide’s automatically-generated usage snapshots from CMU
students from semesters Spring 2015 to Spring 2018 inclusive, CMU’s official project
grades from same, CMU students’ survey responses and submitted project code from Fall
2017 and Spring 2018, PSU students’ survey responses and submitted project code from
Spring 2018, and U. Chicago students’ survey responses from Fall 2017. Table 5.1 shows
the student participation rate across semesters for the thread library study.®

5.3.1 Bug-finding

Firstly, I sought to prove Landslide does as advertised: finds concurrency bugs of severity,
subtlety, and difficulty consistent with the lessons an advanced operating systems class
should hope to teach its students, and provides diagnostic output that helps students
understand and solve them.

At CMU, I configured Landslide to save a usage snapshot every time a student ran
Landslide, including command-line options issued, the current version of their project
code, a log of Landslide’s output, and the preemption traces for any bugs found. These I
analyzed by hand to determine how many distinct bugs were reported (inspecting their

3 Participation at CMU was determined by receiving any automatic usage snapshots; participation at
PSU was determined, for lack of snapshots, by sign-up form submissions, which might over-count slightly.

123



Used Landslide?
Semester yes no Total
CMU S’15 8 18 26
CMU F’15 22 8 30
CMU S’16 18 16 34
CMU F’16 12 6 18
CMU S’17 19 13 32
CMU F’17 14 S 19
CMU S’18 10 8 18
U. Chicago F’'17 4 17 21
PSU S’18 38 98 136
CMU total 103 74 177
Non-CMU total 42 115 157
Total 145 189 327

Table 5.1: Participation rates across semesters, among students who submitted thread
libraries (CMU, PSU) or kernels (U. Chicago).

code if necessary, as multiple traces may refer to the same bug), how many were deter-
ministic (i.e., reported on the very first interleaving tested, with no need for artificial
preemptions), how many were concurrency bugs, whether any were false positives, and
whether the student was able to fix them thereafter (determined if a subsequent snap-
shot showed them re-running the test and verifying the bug’s absence; an approximate
measure at best, but far easier to implement than checking all the bugs by hand).

At U. Chicago, course staff ran Landslide on student submissions behind-the-scenes
after each project deadline had passed, and returned its preemption traces to the study
volunteers. I collaborated with the course staff to filter out false positives before distribut-
ing them to the students. On account of the small sample size (4 volunteering groups),
we decided on this approach, rather than to study how students would cope with false
positives themselves, to optimize for student happiness over scientific rigor.

As PSU’s version of the study was planned on relatively short notice, and without
immediate access to a shared, yet confidential, academic file system (such as CMU’s AFS),
I was unable to examine its students’ objective usage data or bug reports for this section.
Results from PSU are presented instead in §5.3.3.

CMU

In the recruiting lectures for every semester after the first, I included tallies of Landslide’s
bug-finding achievements to date as an extra advertisement to entice students to partic-
ipate. These included each of the measures I counted by hand as described above, as
well as aggregate totals of how many groups participated, how many groups found bugs,
how many found at least one concurrency bug, and how many were able to fix and sub-
sequently verify any or all thereof. Among the concurrency bugs, a wide variety of types
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$°’15 | P15 | §’16 | F’16 | S’17 | F’'17 | S’18 || Total

Participating groups 8 22 18 12 19 14 10 103

Groups w/any bugs found 5 21 12 7 14 10 6 75
Groups w/any bugs fixed 4 18 9 6 9 7 5 58
Groups wyall (#0) bugs fixed 2 11 3 3 7 5 4 35
Known false positives 1 2 6 5 3 1 0 18
Deteterministic bugs found (<) 5 20 18 18 30 15 9 115
Concurrency bugs found 5 56 19 15 13 9 5 122

Total bugs found 10 76 37 33 43 24 14 | 237
Deteterministic bugs fixed (>/<) 3 19 9 15 22 12 7 87
Concurrency bugs fixed (>) 1 38 11 10 12 4 4 80
Total bugs fixed 4 57 20 25 34 16 11 167

Table 5.2: Landslide’s bug-finding performance across all semesters of the CMU 15-410
study. < marks possible overcounts on account of unidentified false positives; > marks
possible undercounts on account of students not necessarily re-running to verify bugfixes.

were found: deadlocks, use-after-frees, segfaults, infinite loops, assertion failure, and
unit test failure. Table 5.2 shows these statistics for each semester. Note that the tallies
of bugs fixed may be undercounting because some students may have truly fixed them
but skipped the verification step thereafter.

This table also shows the number of false positives, as self-reported by Landslide as de-
scribed in §5.1.2. Please note that this approach is limited by Landslide’s ability to classify
them as “suspicious”, even if not definitely bugs. These represent technical obstacles that
either prevented Landslide from being able to analyze the synchronization in play (e.g.,
recursive mutex_lock() invocations) or were deemed too pedagogically important to al-
low the student to proceed without fixing (e.g., busy spin-wait synchronization loops).*
Other false positives arising from bugs in Landslide itself required more individual effort
to confirm; to classify these I relied on students to help report them during the Landslide
clinics and survey, and I report on them in §5.3.3. Nevertheless, apart from the spin-wait
synchronization loops (which can arise nondeterministically due to lock contention, but
which Landslide already self-identifies), I am aware of no cases of false positive nondeter-
ministic bugs; all unexpected false positives encountered to date were output on the first
interleaving tested. Though unscientific, this provides some assurance that Table 5.2’s
count of concurrency bugs is accurate, even if the deterministic tally may overcount.

Overall, Landslide helped students find and fix a lot of bugs. Among the 103 partici-
pating groups across all semesters, roughly three-quarters received bug reports, slightly
more than half were able to verify their fix for at least one, and one-third overall were
able to fix and verify all such bugs. Even avoiding the deterministic bug series for their
possible overcounting, it’s fair to conclude that Landslide caused at least two-thirds of all
concurrency bugs it found to get fixed before project handin. Although lacking a control

4 Landslide was also configured to issue a “bug report” if MAGIC_BREAK, a Simics debugging trap, was

ever invoked, with specific instructions to remove it; I consider these closer in spirit to compilation errors
than bug reports and so did not count them even among false positives.
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experiment to make a more scientific comparison of these tallies, I tentatively conclude
the students were well rewarded for their time. The questions of whether it was a better
use of time than conventional stress testing, or whether the bug-finding resulted in sub-
missions that course staff also, independently, judged better than before, are beyond the
scope of just tallying bug reports and will instead be addressed in the upcoming sections.

University of Chicago

Among the four groups volunteering to receive Landslide bug reports, Landslide found
seven distinct bugs across the two projects tested, which I confirmed by manual inspection
of the students’ code. three among these were deterministic; four were concurrency bugs.

1. priority-donate-multiple found two deterministic bugs and one concurrency bug
in threads projects. It found the targeted priority-leak bug described in §5.2.3
in one group, and exposed a NULL pointer dereference in another when attempt-
ing to donate priority to an already-exited thread. The latter bug was observed
deterministically. A third group neglected to implement priority donation during
lock_release() at all, which was found deterministically.

2. wait-simple found one deterministic bug and three concurrency bugs in userprog
projects. It found a deadlock in two groups’ implementations, wherein process_
wait()’s synchronization assumed it would always be called before process_exit().
In both cases the former’s cond_wait () call would block forever if reordered after the
latter. This test also found several use-after-frees for one of those two groups, whose
process_exit() didn’t guard against a parent process exiting and deallocating its
memory first; this root cause manifested in heap errors in three separate locations.
Lastly, the heap checking alone found a deterministic use-after-free in a third group’s
process_execute().

In cases where Landslide emitted multiple preemption traces for the same bug, whether
manifested the same way through different combinations of preemption points or with dif-
ferent stack traces entirely arising from the same underlying cause, course staff sent them
all to the student, including a disclaimer along the lines of “some of these may indicate
the same bug”. The other 3 tests, priority-sema, alarm-simultaneous, and wait-twice,
found no bugs among the 4 groups (wait-twice being run only on the group that passed
wait-simple). One of the 4 groups had no bugs found among any of the 5 tests.

Finally, one false positive was found while testing wait-simple. Landslide mistakenly
reported that free() had reentered malloc() due to a technical discrepancy between
when Pebbles and Pintos kernels take and release their heap allocation lock with regard
to the rest of the malloc() API. This typically indicates a heap corruption bug, but in this
case, malloc() was preempted after it released the heap lock, which was perfectly safe.
After discarding the bug report and suppressing this false positive, Landslide moved on to
find the true deterministic use-after-free described above.

Overall, I consider all of the 7 bugs to be “severe”: they are all either correctness
violations (priority mis-donation) or stability issues (crash, deadlock, or data corruption).
In the upcoming survey section, although only one of these groups did the survey, they
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enthusiastically reported having found the bug reports very helpful (§5.3.3). Despite
the small sample size, I consider this a positive result that Landslide can be a useful
concurrency programming aid even at universities with different class projects than CMU’s
15-410. As for 1 false positive among 8 total reports, it is difficult to decide what rate of
mistakes is acceptable when the user’s patience is at stake [EA03], but the upcoming
survey results (85.3.3) suggest that students are generally at least willing to ask for help
and make progress when technical support is available.

5.3.2 Student submission quality

I evaluated Landslide’s impact on student submission quality in two ways. First, I analyzed
CMU 15-410 students’ overall project grades between Landslide users and non-users to
see if Landslide might have helped them submit overall better implementations. Second, I
studied several individual concurrency bugs that I thought Landslide was likely to detect,
all already well-known by 15-410 course staff, to see if using Landslide correlated with
submitting projects absent those bugs.

Impact on grades

Figure 5.1 shows the distribution of project grades in CMU 15-410 between Fall 2013 and
Spring 2018, grouped by whether or not students used Landslide during P2. The control
group is further distinguished by whether Landslide was offered and the student declined,
or whether the study had not yet begun that semester. Intuition suggests students in the
former (“declined”) group would be more likely to be struggling too much to have free
time to volunteer in the first place, so any comparison between them and Landslide users
is vulnerable to selection bias. The latter control group, in which students did not have
a choice, mitigates such bias, although itself may be vulnerable to other confounding
factors such as grading criteria varying across semesters. In addition to P2, I also show
the subsequent P3 (kernel project) grades, likewise broken down by who used Landslide
previously during P2.°> Should Landslide use be correlated with higher grades on the
later, more difficult concurrency project, one explanation could be that Landslide helped
students internalize new concurrency programming and/or debugging skills that would
help them write better kernels even without Landslide’s aid.

Results. Overall, Landslide users did indeed receive slightly better grades overall on
their P2 submissions than non-users from the same semesters, although comparing to
the second control group lessens that difference somewhat. The difference is also less
pronounced in both comparisons among P3 grades (unsurprisingly, as learning lasting
lessons about concurrency should be harder than fixing bugs case-by-case), although the
experimental group still maintains a tiny lead.

Statistical significance. Figure 5.2 presents more detailed statistics from these six dis-
tributions. To assess whether the differences are significant, I use the k-sample discrete

>The P3 distributions are slightly smaller than those from P2, as some students dropped the class in
between. Some new project groups also tend to appear during P3 as students either solo or find new
partners, but as these cannot be meaningfully classified as Landslide users or non-users, I omit them here.
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Figure 5.1: Distribution of project grades among Landslide users and non-users. Study
participants (S’15 to S’18) are the experimental group; non-participants (S’15 to S’18)
and students from semesters predating the study (F’13-F14) are the control groups. Com-
pare Landslide users to non-users for within-semester differences, or users to pre-study

(b) Visualized as an EDF.

students to mitigate selection bias.
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Population Distribution Significance
project group N || min | mean | max | stddev || p vs users cutoff
users | 103 42 | 74.8 95 10.3 - -
P2 non-users | 74 38| 709 96 12.5 0.036 0.05
pre-study | 86 43 | 73.7 93 9.7 0.671 0.05
users | 98 65| 83.6 95 6.2 -
P3 non-users | 63 45 | 80.7 93 8.2 0.034 0.05
pre-study | 79 60 | 81.6 95 7.6 0.145 0.05

Figure 5.2: Detailed statistics from student grade distributions.

Anderson-Darling test [AD52, SS87] provided by the R statistical programming environ-
ment [R18, SZ18], comparing each control group to its respective Landslide users group.
Anderson-Darling uses a weighted sum-of-squares distance metric to compare two empiri-
cal distribution functions (EDFs), testing if their samples are likely to arise from the same
underlying, though unspecified, distribution.® I deem the difference in grade distribu-
tions significant when p < 0.05,” although as in all p-value calculations, this rejects only
the null hypothesis, not alternative hypotheses, such as “more skilled students were more
likely to sign up to begin with”. Ultimately, only the same-semester comparisons, which
do not address that alternative hypothesis, were significant, while the cross-semester com-
parisons, which attempted to do so, failed to confidently reject even the null hypothesis.
However, the difference being smaller in P3 than in P2 suggests, albeit informally, that
the larger impact in P2 is not attributable only to selection bias, or else a similar difference
should have been observed in the P3 distributions. Another possible explanation could
simply be that the P3 grading critera result in less grade variance overall, but this pattern
is at least consistent with the “Landslide helps students submit better P2s” hypothesis.

Common bugs

Based on the results from §5.3.1, I selected 4 bugs to study in depth to ascertain whether
Landslide played an instrumental difference in helping the students ultimately submit
respectively correct implementations. To avoid bias of picking too obscure and/or trivial
bugs that Landslide alone might find but even course staff would not expect students to
solve, I chose only bugs which had substantial penalties in the grading rubric (guided,
as well, by my own intuition as a former TA). While checking for a given bug’s presence
by manual inspection, I blinded myself to whether each group had been a Landslide user
or not. After unblinding, I then re-classified students who used Landslide in general, but
whose usage snapshots showed they did not run the test case in question, as non-users.
Table 5.3 presents the results.

6 I choose Anderson-Darling over the simpler Kolmogorov-Smirnov, which computes only the maximum
instantaneous distance between EDFs, for its better sensitivity both to repeated deviations and to tail dif-
ferences [FB13].

’I choose not to correct for multiplicity among these four comparsons as I do in the next section because
each tests a different hypothesis.
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Landslide users Non-users Significance
Bug name | #correct #buggy | #correct #buggy | A%correct p cutoff
Exit UAF 11 10 0 16 +52.4% | 0.00061 0.0125
Mutex 17 1 19 0 —05.6% 0.49 0.0125
Paraguay 20 1 14 2 +07.7% 0.57 0.0125
Downgrade 10 3 19 4 —05.7% 0.69 0.0125
Total 58 15 52 22 +09.2% 0.26 0.05

Table 5.3: Correlation of student Landslide use with solving certain bugs in their final
submission during Fall 2017 and Spring 2018 semesters. Note that the totals in the bottom
row double-count students, which makes sense only if you believe the incidences of each
bug in a given submission are independent.

Each of the four bugs studied is described in detail as follows.

1. Thread exit/join. After a thread finishes exiting, the memory allocated for its
stack must be reclaimed for other uses. A common student pitfall is to allow a
thr_join()ing thread to free said stack space while thr_exit() is still executing
userspace C code (which typically accesses the stack), or even for thr_exit() to
free it itself. In the former case, threads must interleave specifically to exhibit a use-
after-free; in the latter case, the use-after-free will be deterministic (i.e., present in
all interleavings). Other than Landslide, however, the students have no Valgrind-
like heap debugging tool which would report a bug immediately upon any illegal
heap access. This means that a subsequent thr_create() invocation would need
to race to recycle the memory for a new thread stack and conflict with the old
exiting thread before any problem could be detected. The Landslide-friendly test
thr_exit_join is most likely to expose this bug. Whether each student’s submitted
P2 solved or suffered from this bug was determined by me personally inspecting
their code.

2. Mutex. The Landslide-friendly mutex_test checks for the possibility of two con-
tending threads accessing a mutex-protected critical section simultaneously. It in-
cludes one thread repeating once the lock, unlock cycle (i.e., one contender calls
critical_section() twice) so as to check for unlock/lock races as well as lock/lock
interactions, and, as mentioned previously (§5.1.3), checks for data-race access
pairs inside the mutex implementation itself. As students have free rein to design
their mutex internals, this test probes the general class of mutex bugs in which any
number of things can go wrong, depending on the implementation, leading to mu-
tual exclusion (or otherwise assertion) failure. Whether each student’s submitted
P2 solved or suffered from such bugs was determined by checking their grade files
for any mutex-related penalties (assessed by the TAs), then me double-checking
their implementations by hand to confirm.

Further investigating the one group who submitted a buggy mutex, I found that
while they had run mutex_test in Landslide (and even found and fixed a separate
deterministic bug already), Landslide found no bug in what was presumably a cor-

130



rect implementation, then they updated their code, introducing the bug, without
testing it again thereafter.

3. Paraguay. Named after Ivan Jager, the Paraguayan 15-410 TA from 2004-2006 who
originally discovered it, this refers to a condition-variable bug in which a thread
which sequentially sleeps on two different condition variables can spuriously wake
up early from the second cond_wait(). The precise reasoning why many naive stu-
dent implementations are susceptible to this bug, as well as the 3 major ways of
fixing it, are one of 15-410 staff’s closely-guarded secrets (§2.4.1). Suffice it to
say that the paraguay test invokes a custom Pathos misbehave mode which biases
thread scheduling towards the interleaving required to exhibit the bug (Landslide,
of course, replaces this misbehaviour with model checking). Hence, despite being a
subtle concurrency bug, the official course test suite is likely to expose it, so compar-
ing how many Landslide users and non-users submitted this bug in particular would
speak more to the impact of Landslide’s preemption traces in helping to diagnose a
bug that a “stress” test could already find. paraguay is itself the Landslide-friendly
test for its eponymous bug. Whether each student’s submitted P2 solved or suffered
from this bug was determined by me personally inspecting their code.

4. R/W-lock downgrade. In addition to the standard R/W-lock interface, P2 requires
students to implement rwlock_downgrade(): called with the lock held in write
mode, the caller adopts the reader role instead, allowing other waiting reader threads
to proceed simultaneously, all while allowing no waiting writers to access in be-
tween. The Landslide-friendly test rwlock_downgrade_read_test checks that read-
ers are allowed simultaneous access after a downgrade with no possibility for dead-
lock. Rather than one specific bug, this refers to any of several failures that can arise
during a downgrade. Whether each student’s submitted P2 solved or suffered from
these bugs was determined by checking their grade files for any downgrade-related
penalties (which were assessed by the TAs as a result of their manual inspection,
rather than mine).

Statistical significance. The p values in Table 5.3 are calculated in R [R18] using
Fisher’s exact test [Fis22], treating each row as an independent 2x2 contingency table.
I divide 0.05, the standard significance cutoff, by the number of bugs to conservatively
account for multiplicity [Mun11] (not that it matters with these p values).

The latter three bugs’ occurences are thoroughly uncorrelated with Landslide use, the
thr_exit() bug standing alone with extremely high significance: not a single student
who did not use Landslide these semesters submitted a correct implementation. This
difference is easily explainable: the class-provided unit tests already do a good enough job
catching the other three bugs that students are able to find and fix them before submission
regardless of what testing tool they used. (The high correct-to-buggy ratio corroborates
this.) Nevertheless, that does not mean Landslide is pointless for these bugs; it may well
have helped the students reproduce them more reliably and/or diagnose them faster. This
is merely a null result for submission quality, not necessarily a negative one, and the next
section will attempt to evaluate such quality-of-life improvements instead.

On the other hand, because the thr_exit() bug typically manifests as a use-after-
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free, the official tests must stress the thread library until the memory in question gets
re-allocated in just the right interleaving pattern to cause corruption that leads to a vis-
ible crash. Landslide, meanwhile, detects this error immediately upon access (§3.3.3),
with no need for complex corruption conditions. Among the 11 Landslide users who sub-
mitted correct thr_exit()s in this regard, it is difficult to say whether the heap checking
alone, together with unit or stress tests, would have been sufficient, or whether heap
checking and model checking were both necessary in concert to help them. To isolate the
impact of model checking, I simulated the students having access to a stand-alone heap
checker by checking only the first thread interleaving with Landslide (similarly to §4.5.4)
and assuming the students would find and fix any such “deterministic” use-after-free bugs
before the deadline. Re-classifying these into the “correct” group, the 11-10-0-16 distri-
bution becomes 11-10-3-13, with a new p value of 0.048: still positively correlated, but
no longer significant under the multiplicity-corrected cutoff.

5.3.3 Survey responses

Analyzing only the raw technical data of how users interacted with Landslide can paint
only part of the picture. For one, offering students better testing and debugging tools
may not necessarily find strictly more bugs or help students submit more correct imple-
mentations than with stress testing; it may instead find the same bugs faster, affording
the students more free time apart from the project, a quality-of-life improvement normally
invisible to graders. For another, Landslide’s automatic snapshots, being captured at the
time of issuing each preemption trace, necessarily miss the student’s subsequent experi-
ence interpreting them. The surveys listed in sections §5.1.4 and §5.2.4 serve to probe
these more qualitative aspects of the Landslide experience.

Response data

The response distributions for each of the surveys’ multiple choice questions are shown
in Figure 5.3. In total, 28 students (or pairs thereof) answered the survey: 12 pairs
from CMU, 15 individuals from PSU, and 1 pair from U. Chicago. The first four ques-
tions/graphs focus on concrete debugging results, and the latter six on the students’ sub-
jective opinions. Note that two of the questions (3 and 7 from §5.1.4) were not asked on
U. Chicago’s version of the survey, so their corresponding graphs show only CMU and PSU
response data. Likewise, U. Chicago’s questions 4, 8, and 10 (see §5.2.4), which were not
asked on CMU’s and PSU’s surveys, having only one respondent, are not pictured; the
answers thereto were “15-20 minutes”, “Agree”, and “Agree”, respectively. Also, this re-
spondent’s answer of 6 on the “How many bugs” question appears to indicate the total
number of preemption trace files course staff sent them; upon further investigation, the
6 traces seem to represent 2 distinct bugs among them (§5.3.1).

The survey responses were very positive: students reported being able both to di-
agnose and to verify as fixed the vast majority of Landslide’s reported bugs, compared
Landslide favourably to stress testing, and found the experience worthwhile and worth
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recommending. Regarding the 100 CPU-hours question in particular, students could ap-
proach answering it in several different ways: do the three students who answered 20/80
think stress testing is four times as good as Landslide at finding bugs, or that stress test-
ing requires four times as long to reach the same point of diminishing returns? On the
other extreme, one student said they would spend all 100 CPU-hours on Landslide, which
probably speaks more to their enthusiasm than to a careful attempt to maximize expected
number of bugs found (even the author themself recognizes stress testing’s advantages
for certain types of bugs, such as resource exhaustion; see §8.2). Nevertheless, the re-
sponses’ overall bias to spending at least half the CPU time on Landslide shows clearly
that the students found the experience worthwhile.

Three questions with open-form answers bear further discussion: what kind of false
positives Landslide reported, reasons they found it worth recommending to a friend, and
suggestions for improving the interface (PSU only®).

False positives

Even though 71% of students reported receiving no false positive bug reports, the nature
of Landslide’s bug-detection algorithms is such that it should ideally never report any
correct behaviour as wrong, so I consider those 29% that did report such the most nega-
tive result among the survey responses. They described their false positives, and I either
make excuses or own up, as appropriate, as follows. Reports from CMU students (Simics
version):

1. Landslide complained of a nonexistent MAGIC_BREAK (a Simics debugging function),
despite the student’s code never invoking it. This arose because of technical con-
fusion between the test program’s and the shell’s address spaces, and was subse-
quently fixed in commit 3f24d67 (Simics repository only).

2. Landslide reported “some weird errors” and/or mysteriously crashed when multiple
instances were run from the same directory. (Multiple students suffering this failure
mode contacted me for support, though only one reported it on the survey; in some
cases, I recall said weird errors manifesting as false positive invalid heap access re-
ports.) Simultaneous Landslides can clobber certain auto-generated header and/or
temporary files, scrambling its instrumentation and leading to chaotic behaviour. I
introduced a guard against this in commit 977e8fb (Simics repository) and e49b5df
(Bochs repository).

3. One student reported “Data races which I believe they are not”. Looking at their
usage snapshots to corroborate this, these appear to be true, yet benign, data races
(in several cases corresponding to mutex_test’s verification of the mutex’s internal
memory accesses (see §5.1.3)); i.e., expected behaviour rather than false positive
bug reports. Student confusion about these could be alleviated by improving Land-
slide’s user interface messages when printing data race information.

4. One student complained of a bug report that, while truly a bug, showed wrong

81 thought to ask this question too late for CMU’s surveys.
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filenames and line numbers in stack traces, and (quite naturally) suggested that
accurate stack traces would make debugging easier. Checking against their usage
snapshots, this seems to be an issue with Simics’s symtable’s handling of assembly
functions. The Bochs version handles these correctly.

Reports from PSU students (Bochs version):

5. Landslide kept crashing for one student while running paraguay. This is likely due to
exceeding Linux’s process limit and/or exhausting the class’s official VM’s memory,
which can arise when many data race candidates cause Quicksand to spawn many
Landslide jobs, and (as on paraguay) each with very large state spaces that must
defer. I had been working on mitigating this problem just before beginning the
PSU study; properly addressing it would involve improving Quicksand’s memory-
exhaustion detection code and/or making Quicksand at all aware of the process
limit to begin with. (Note that this is not strictly a false positive bug report, just a
Landslide crash.)

6. Students who initialized child threads with a base pointer value of oxffffffff ob-
served Landslide crashes, as it attempted to stack trace through that address and
access memory that wrapped around the address space. (Several students contacted
me about this via email, and I issued a prompt fix; one student later reported it on
the survey.) Commits 0573e34 (Bochs repository) and 654f459 (Simics repository)
fixed this bug. (As above, not actually a false positive bug report.)

7. Landslide issued false invalid heap access reports to one student who had been
using new_pages to allocate thread stacks “very close” to the malloc() heap. They
reported this during the study and I fixed it promptly for them in commit 4a26da7
(Bochs repository only), then reminded me of it again in the survey.

8. Finally, one student reported simply, “Race condition”. Without the same usage
snapshots to consult as I'd have for a CMU student, or more self-reported detail, I
regrettably can offer no comment.

Overall, most of the issues reported as answers to the “false positive” survey question
were merely Landslide crashes or user interface confusion. Those few truly erroneous
bug reports (items 1, 2, and 7), while certainly guilty of burdening students with worry
over whether the problem is their own code or in Landslide itself, are at least not too
discouraging for two reasons. Firstly, in all cases the students were able to recognize the
false positive quickly enough to ask for help, and I was able to deploy a fix and let them
proceed before the project came due. Secondly, each such problem, now having been
fixed, will befall no future student again — not to assert Landslide is completely bug-free
now, but at least that it grows more and more stable with each passing semester.

Reasons worthwhile

After asking “Would you recommend a friend taking OS next semester to use Landslide?”,
I asked the students for open-form reasons why or why not. As the former question’s an-
swers were exclusively positive (only 1 student even answering “no opinion”), this ques-
tion’s answers turned out to be mostly praise. Three students declined to answer this
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question; I reproduce the rest here, paraphrasing for clarity and brevity, denoting my
own clarifications and commentary with [square brackets].” Answers from CMU:

1.
2.

Easy to use and found nontrivial bugs.

Useful to find some bugs, but other types of bugs (such as memory corruption) were
impossible to find with Landslide.

Helped verify our atomic primitives were correct.

4. Would recommend, but takes too much time [unclear, but seems to be referring to

v ® N

10.

execution time rather than setup/usage].

Tests are automated and can be left running for a long time. However, faced uptime
issues with CMU’s Linux servers (which reboot every night); wished for a more
reliable execution environment.

It’s pretty helpful.
Seems more reliable than stress tests.
Found a bug not found by stress tests.

Finds concurrency bugs with little effort that may be undiscovered otherwise. [This
respondent also provided some interface feedback here, since I didn’t ask CMU stu-
dents a separate question for such; see next section.]

Easy to learn and a simple way to test our P2.

Answers from PSU:

11.

12.
13.
14.

15.
16.
17.
18.
19.
20.
21.

22.

Although didn’t find any concurrency bugs for me, gives me more confidence about
my code.

Helpful, just didn’t have a lot of time to use it.
Does not make concurrency debugging easy, but definitely makes it easier.

Helpful to find bugs you weren’t previously aware of. Makes more sense to use an
expressly designed tool rather than [unit/stress] tests which may or may not find
bugs.

Helpful and easy to use.

Saves time overall, can run long tests overnight.

Helps to find concurrency bugs and their root causes better than stress tests.

It finds the concurrency bugs you need to fix for full credit.

Helpful for finding some uncommon bugs I hadn’t found or wasn’t looking for.
Found bugs I kept overlooking, which may have taken many hours to find otherwise.

Helpful for the difficult step from code being “finished” [scare-quotes theirs; pre-
sumably meaning “feature-complete”] to getting rid of all concurrency bugs.

Easy to use, setup taking no more than 5-10 minutes, and allowing being run

°Note that most students used the term “race condition” rather than “concurrency bug”, as taught in
CMU and PSU lecture material; I replaced these while paraphrasing in accordance with §2.5.

136



23.

24.

overnight.

Very efficient at concurrency testing. Stress test crash reports do not necessarily
point to the root cause, due to memory corruption for example; plus bugs may not
show up every time due to nondeterminism.

Helped find a bug I wouldn’t have found otherwise. Did not show an interleaving
directly [i.e., did not issue a bug report], but reported a data race that turned out
to be a concurrency bug upon inspection.

Answer from U. Chicago:

25.

Found several subtle, legitimate bugs we wouldn’t have easily caught otherwise, but
made sense once revealed. Fixing them took little time but allowed us to proceed
confidently on the next project. Often wished for Landslide to have been available
to use during the next project as well.

Overall, students most commonly praised Landslide’s ease of use, its ability to find bugs
that elude stress testing, and the confidence instilled from verifying bugs had been fixed.

Interface suggestions

Lastly, I asked the PSU students for any feedback they might have on making Landslide’s
interface easier to use or understand.

1.

6.
7.
8.

Requested for preemption traces to be more clear about the meaning of each stack
trace in each table cell, and complained of inaccurate line numbers [likely referring
to how the current behaviour indicates the line of code after a function call, corre-
sponding to the call instruction’s pushed return address, rather than the function
call itself]. [This answer from CMU; see above.]

Including a manual or tutorial would be helpful [presumably beyond the user guide’s
instructions, such as recapping the procedure shown in the lecture demo which
wasn’t written down anywhere].

Don’t print warnings about line length exceeding 80 characters [inconsistency be-
tween 15-410 and CMPSC 473 compilation options].

“It takes too long. But I guess that’s impossible to fix.” [Well, it’s an open research
problem to fix!]

. Preemption traces should explicitly indicate where in the interleaving the bug oc-

curred. [Root cause identification is its own research area, but more detail is cer-
tainly possible.]

Improve explanation of data races [in the user guide, perhaps].
Happy with it as-is [reported by three students].
[Seven non-respondents. ]

Though I did not ask this question on the CMU survey, my experience handling student
questions in person suggests CMU students (as well as Professor Eckhardt) also mostly
wish for better explanations of data races and more detail and clarity in the preemption
traces. Though I present the formal definition of data races in the lecture (§5.1.1) and
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refer back to it in Landslide’s documentation and output, showing a concrete example in
future iterations of the user guide would go a long way to illustrate the abstract concepts.
The preemption traces could be improved by making it clearer that the stack trace in each
cell of the table represents executing the thread in question from wherever it previously
left off (or its inception) all the way until it reaches that stack trace, then preempting
it to run another thread. They could also easily report more diagnostic information; for
example, showing the sets of memory conflicts between each thread, annotating the type
of each preemption point (yield, mutex, or data race), and/or indicating the adversarial
memory access for each data-race preemption point.

Other universities

Comparing the survey response distributions between CMU versus PSU and U. Chicago
(Figure 5.3), CMU students tended to verify their bugfixes more often by re-running Land-
slide and found the preemption traces easier to understand, while PSU and U. Chicago
students generally compared Landslide more favourably to stress testing (CMU students
comparatively preferred the more nuanced answer that it depends on the type of bug), and
reported more often that it helped them understand concurrency better. Considering the
higher demand CMU’s 15-410 makes for prerequisite concurrency experience compared
to PSU’s relative tempering of P2’s difficulty to make it more accessible (§2.4.1), these
trends seem to correlate with the different levels of preparation each course’s students
had, showing that students of various skill levels can each benefit from the experience in
different ways.

5.4 Discussion

This section will discuss the study’s limitations and offer some perspective for the future.

5.4.1 Bias

As long as an educational user study is run on a volunteer basis, one cannot completely
avoid selection bias: those with enough free time to participate are more likely to be
the most capable students already, who are least in need of the extra debugging help.
This was especially evident in the annotation-required P3 study from 2012 [Blum12a], in
which only 5 groups volunteered (15% of the 34 total who submitted P3 that semester),
among which 2 had enough after just the annotation phase and did not continue to do
any in-depth testing. In contrast, since switching to the automatically-annotatable P2,
the participation rate rose to 58% (Table 5.1) among all P2-submitting groups. Reaching
over half the class could already be seen as a major step in mitigating said selection bias.

The survey may also be susceptible to several sources of bias beyond participation
itself. I suspected students might feel inclined to be overly polite in their answers (whether
consciously or subconsciously). I attempted to counteract this by concluding my survey
link emails with, Please try to answer honestly rather than flatteringly—if any part of the

138



experience was bad for you, I want to hear about it to make Landslide better in the future! It’s
also possible that survey respondents were more likely to be those who enjoyed Landslide
the most, meaning I might not hear as much negative feedback as I should.

I took no special measures to compensate for bias in gender, race, or being non-
natively English-speaking during recruitment or the survey. Surveying students to mea-
sure any differences in these demographics between study participants and the overall
class population would have required mandatory survey participation, and in turn, a more
rigorous IRB approval process. According only to my memory of students who attended
the Landslide clinics (§5.1.1), the racial diversity was roughly representative of the class
at large, and the proportion of women I perceived was in fact somewhat higher than the
overall gender ratio. More scientific analysis of such statistics was deemed beyond the
study’s scope for now.

5.4.2 Retrospect

Aside from just trying to draw firm conclusions from the opinions of students who are
just learning concurrency to begin with, student feedback in turn guided the constant
development of Landslide, and the experimental design itself, as the semesters went by:.
In this section I will fantasize about how I might have run more perfect experiments
granted the impossible wish of knowing then what I know now.

Pebbles

The survey was introduced into the study only in time for two semesters’ worth of student
responses, after several iterations of collecting only usage and bug report snapshots. Apart
from the obvious improvement of having been surveying students from the beginning, the
following questions could have improved the survey.

1. Didyou have any technical difficulties with Landslide that I had to intervene on, whether
in person or over email? (Some students reported this in the “false positives” ques-
tion, although fewer than I helped overall, so others must have not mentioned it.)
Comparing answers to this question across subsequent semesters would give a sense
of how much Landslide’s stability was improving over time and whether it was ma-
ture enough for unsupervised use in the future.

2. How well do you feel you understood the research challenges explained in the lecture?
and, How well do you feel a user should need to understand same in order to benefit
from Landslide’s bug reports? (Answers on a scale from “Not at all; Landslide is a
magic black box to me” to “I'm ready to work on research in this field myself”.)
These questions would help fine-tune the lecture material and user guide to maxi-
mize student comfort, and potentially also corroborate the claim that Landslide is
accessible even to novice users.

3. What additional debugging information would you want displayed on the preemption
traces? Knowing now that interpreting preemption traces was a sticking point for
many users, I would hope to identify the most wished-for features to know what to
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prioritize improving. This could also assess students’ understanding of what kinds
of information would or would not be reasonable for Landslide to record and report.

4. For each bug Landslide found in your code, how trivial or severe do you feel it was?
This would help get a sense of how the students regarded Landslide on a spectrum
between annoying style checker and life-saver, and potentially suggest options to
make Landslide suppress certain types of bug reports. For example, it currently
reports spin-wait loops in mutex_lock() as bugs with a special message referring
students to relevant lecture slides, but it’s possible refusing to test any code beyond
until that bug was fixed might have made Landslide less useful overall.

5. In addition to finding bugs, did you manage to fully verify your code under any tests
by letting Landslide complete all state spaces before reaching the specified time out?
This would measure how thoroughly students understood the underlying research
technique, and serve as a follow-up to the “how many bug fixes verified” question
(where students often stopped Landslide midway through after a little while).

Some students (around O to 2 per semester if memory serves) emailed me during
P3 to ask if they could test their kernels with Landslide just like their thread libraries. I
answered each by explaining that it would take more effort on their part, and then, if they
were still interested, guided them through the annotations on a case-by-case basis. This
process was not included in the IRB-approved study protocol, so I collected no results from
them. If I had planned in advance, I could have supported this “bonus stage” officially,
and further surveyed the brave volunteers about how P3 Landslide could be made more
generally accessible.

Finally, to evaluate whether the experience of using Landslide left the students with
any lasting lessons learned, a follow-up survey could have been given one or two years
later. Such a survey would ask, for example, Have you encountered any debugging problems
since finishing OS that made you wish for a tool like Landslide? and Do you feel the way you
think about testing, debugging, and program correctness has been influenced in any way by
using Landslide? to evaluate its lasting impact on their understanding of concurrency.

Pintos

While part of the point of this experimental design was to evaluate Landslide as a grading
tool in the hands of TAs, I would be remiss not to mention that I also feared the automatic
annotation process would not be as robust as the P2 version. Indeed, while helping Kevin
get oriented with using Landslide, I implemented several fixes/improvements to the setup
scripts as I found student kernels that failed to automatically annotate (for example, those
with ready_list changed to an array, as described in §5.2.2). Had I given Landslide
directly to students that semester, the students themselves would have had to email me
for tech support.

I attribute the comparatively low participation rate of Pintos students to two major fac-
tors: one, not incentivizing the students to directly improve their grades (instead offering
only the vague promise of a “learning experience” debugging their code after handin), and
two, not traveling to the university to introduce the research topic in an in-person lecture
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(leaving the students potentially confused about what advantage, if any, was offered over
stress testing). Hypothetically, I could have achieved greater user study participation ei-
ther by giving a lecture remotely via videoconference, by offering extra credit to students,
or by offering an autograder-like interface for students to receive bug reports before their
deadlines instead of after (either way requiring a more rigorous IRB review process).

5.4.3 Future educational use

Now being done collecting student usage data to publish as research results, and no longer
bound by the IRB’s requirement that Landslide be isolated from the grading process lest
it be seen as coercion to participate, Professor Eckhardt and I have discussed options
to deploy it as an official part of 15-410’s curriculum. This section has already clearly
shown students are capable of debugging with it on their own time, and I believe it well-
automated enough to supplement Fritz (the existing stress testing infrastructure) in the
class’s grading process as well. TAs could also, at their option, use Landslide by hand
to confirm any bugs encountered during manual inspection and/or write new Landslide-
friendly tests to expose bugs not yet targeted by the 6 tests offered here.

Over the study’s seven semesters, I believe the stability of Landslide’s instrumentation
process has improved enough to require little to no ongoing technical support anymore,
although Landslide-specific office hours may still prove helpful. I am willing to continue
giving the guest lecture as long as proximity and curriculum allow, although I also hope
the documentation herein be enough to pass the mantle like any other piece of the course
infrastructure. Future problems to address include grading bias (i.e., students submit-
ting blindly-hacked code that just barely passes Landslide, even if not necessarily correct,
thereby gaming the autograder), and improving usability to reach even the most strug-
gling students (i.e., that last 42% who submitted P2s without participating in the study).

Regarding non-research use in Pintos classes, Landslide can now handle a consider-
ably wider variety of student implementation quirks on account of the fixes from this
time (85.2.2). In its original shape (before the F’17 semester, having only enough in-
strumentation necessary for the Pintoses used in §4.5’s experiments), Landslide was al-
ready able to automatically instrument 18 out of the 21 threads project submissions at
U. Chicago. I was able to quickly deploy a fix to make the annotation scripts handle the
other 3 cases, although such technical support is not something any TA would be able to
do. In its current shape I would recommend it for TA use grading, but not necessarily
directly to students without someone familiar with the codebase on immediate hand for
tech support. However, I also believe Landslide’s success in these user studies, provided
me present to handle technical issues, serves as testament for stateless model checking
in general in the educational theatre. While Pintos’s kernel-level environment presents a
unique challenge for concurrency testing, other, more readily automatic model checkers
for user-space programs, such as dBug [SBG10] or CHESS [MQB*08], could easily be
used on other thread-library-like programming projects at any university.
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5.5 Summary

This chapter has introduced Landslide as an educational tool in the undergraduate operat-
ing systems classes at CMU, U. Chicago, and PSU. I have made the following contributions:

* A lecture, polished over seven semesters, for introducing stateless model checking
as a concurrency testing approach in high-level undergraduate classes (with many
slides admittedly specific to Landslide) (§5.1.1).

* A system for automatically instrumenting student thread library (CMU, PSU) and
kernel (U. Chicago) project implementations to be compatible with stateless model
checking (§85.1.2, §5.2.2).

* An experimental procedure for evaluating debugging and verification tools as student-
accessible teaching aids, including a survey for measuring the more intangible hu-
man experience (§5.1.4, §5.2.4).

* A large evaluation spanning nine semesters of operating systems classes (§5.3.1),
two of which were held at other universities besides CMU, in which 145 students
used Landslide, a majority of which found bugs (§5.3.1), and a vast majority of
which expressed via the survey that they had a good experience (§5.3.3).

* A thorough statistical analysis of Landslide’s effect on student submission quality
(85.3.2), evaluating both impact on ultimate project grades and student tendency
to submit any of four well-known case study bugs. Ultimately, while positive trends
were observed, this study concluded that a statistically-significant conclusion could
not be drawn while simultaneously compensating for several obvious sources of
possible bias. Nevertheless, this level of statistical rigor is not yet widespread in
computer science research, so I would hope this study may set a precedent that
help mature the field.

* Concrete action taken to establish Landslide as a permanent fixture of 15-410’s grad-
ing process at CMU, student-oriented user guides should the course staff wish it to
remain available as a debugging tool, as well as general recommendations for any
Pintos-based OS class at other universities to use it for grading as well (§5.4.3).

Human subjects research is inherently messy. Each individual approaches to evaluat-
ing Landslide’s educational value was accompanied by some drawback which prevented
it from being perfectly objective science, but many of them presented tentatively positive
results nonetheless, and relatively very little negative feedback such as false positives.
Landslide helped many students find and fix many bugs (§5.3.1), but making a direct
comparison to stress testing, the prior state of the art, is not straightforward. Immediate
improvement in students’ project grades was observed (§5.3.2), although statistical signif-
icance was lost when attempting to account for selection bias; and impact on grades alone
is a very narrow measure of pedagogical value anyway. Landslide’s debugging power was
also found to be statistically significant for the thr_exit_join bug in particular. Students
responded overwhelmingly positively in the survey (§5.3.3), although it is easy to imagine
students being equally happy with a “debugging tool” that just tells them all the answers.
Nevertheless, I believe each of these partial results taken together paint an overall picture
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of success: students fixed their own bugs and were happy about it, students were able
to ask for help rather than be deterred by inevitable technical difficulties, and students
provided intelligent feedback suggesting they truly understood the debugging process.
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Chapter 6

Transactions

One can on/y build a sand castle where the sand is wet.
But where the sand is wet, the tide comes.
Yet we still build sand castles.

— Yuri, Doki Doki Literature Club

Transactional memory (TM) [HM93] is a concurrency primitive by which program-
mers may attempt an arbitrary sequence of shared memory accesses, which will either be
entirely committed (i.e., made visible to other processors/threads) atomically, such that
no intermediate state modification is ever visible, or, in the case of a conflict which would
prevent such, entirely discarded with an error code returned to allow the programmer to
invoke a synchronized backup path. Transactional memory specifications typically have
three API functions, abstractly speaking:

* begin begins a transaction, staging any subsequent shared memory accesses in some
temporary thread-/processor-local storage, and checking for conflicts with the ac-
cesses of any other threads or CPUs. When the transaction is started, begin returns
a success code. If the transaction is unsuccessful, as described below, begin instead
returns an error code indicating the programmer should fall back to some other,
possibly slower, synchronization method.

* end ends a transaction, attempting to commit all staged accesses to the shared mem-
ory atomically with respect to reads or writes from other concurrently-executing
code. If any of those accesses conflict (i.e., read/write or write/write) with any
other access to the same memory since the transaction started, they are instead dis-
carded and execution state reverts to the begin point with an error code as described
above.

* abort explicitly aborts a transaction, regardless of any memory conflicts, discarding
changes and reverting execution as described above. Some implementations allow
an arbitrary abort code to be specified which will appear as begin’s error code.
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Implementations

Software TM implementations (STM) typically function as a library, tracking staged mem-
ory accesses in local memory, and aborting whenever a conflict is detected between two
transactions’ tracked accesses [ATLM ™06, SATH"06, DGK09]. Hardware TM implemen-
tations (HTM) use processor-level hardware support, which stages changes in per-CPU
cache lines, and may abort for STM’s reason above [Intel18], or additionally whenever a
conflict is detected between one transaction’s traced access and any other memory access,
or whenever a conflict occurs on the same cache line, not necessarily the same address,
or in case of any system interrupt or cache overflow. Intel’s commercial implementation
of HTM has a rocky history of hardware bugs [Hac14, Intel17], attesting to the feature’s
complexity and the need for formal verification on both sides of its APL

Terminology

The world of transactional memory is home to several more confusing acronyms similar to
“HTM”. Transactional Synchronization Extensions (TSX) refers to Intel’s implementation
of HTM on Haswell and more recent microarchitectures [HKO"14]. Restricted Trans-
actional Memory (RTM) refers to the xbegin, xend, and xabort subset of TSX instruc-
tions, which of course correspond to begin, end, and abort listed above, as well as xtest,
an instruction which returns whether or not the CPU is executing transactionally. GCC
and Clang expose these as C/C+ + intrinsics named _xbegin(), _xend(), _xabort(), and
_xtest() [GNU16]. Hardware Lock Elision (HLE) refers to the xacquire and xrelease
subset of TSX instructions, which extend the traditional interface to offer a slightly higher-
level way to access the CPU feature, optimized for simplicity for locking-like synchroniza-
tion patterns [RGO1, Intel13]. In this thesis I focus on RTM, the more general (i.e., expres-
sive (i.e., bug-prone)) interface, and among all these acronyms restrict myself to “HTM”
(when referring to transactional memory as a concurrency primitive in the abstract) and
“TSX” (when referring to Intel’s implementation and/or GCC’s intrinsics interface). The
non-pedantic reader may treat these as interchangeable.

Transactional atomicity comes in two flavours, strong and weak atomicity [MBLO6].
HTM implementations use the processor’s cache coherence protocol to detect conflicts,
and hence any conflicting memory access from another CPU will cause an abort, regard-
less of whether that access was itself transactional. Hence, HTM transactions are strongly
atomic, i.e., appear indivisible to all other code. STM implementations rely on the pro-
grammer to use its interface to access any shared memory she intends to protect with
its transactions, which cannot detect conflicts with non-transactional accesses that bypass
it. Hence, STM transactions are weakly atomic, i.e., its transactions will abort only from
conflicts with other transactions, while other code may interleave with them freely. The
manner in which non-transactional code may interleave with STM transactions further
depends on whether the STM uses eager versioning, wherein transactional updates are
immediately visible to non-transactional code, or lazy versioning, wherein such updates
are visible only after commit [SMAT 07, §2]. Unless explicitly noted as weak atomicity,
this chapter assumes strong atomicity, and “STM semantics” refers to a strongly-atomic
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HTM program emulating STM with retry loops (see §6.2.2). Treatment of weak atomicity
in 86.1.4 and §6.2.4 assumes eager versioning.

Motivation

For the most part, existing stateless model checkers model interrupt-driven thread switch-
ing as the only source of nondeterminism in a program’s execution. In other words, as-
suming a fixed test input,! the only way multiple behaviours can arise is by scheduling
different threads at each preemption point. Only recently have checkers emerged that
extend this model by incorporating other nondeterminism sources: store-buffer reorder-
ing arising from relaxed memory models [ND13, ZKW15, KL.SV17] and event-driven ap-
plication programming models [JMR*15, BRV15], both of which are especially relevant
in mobile programming. Under TM, begin’s return value is also nondeterministic, and
moreover may depend on execution events from the future in a parallel universe (i.e.,
subsequent memory conflicts detected and reverted), and no model checker yet exists
which can model this. In this chapter I will develop a concurrency model to incorporate
abort nondeterminism (§6.1), including two equivalence proofs to help cope with the
consequent state space explosion (§6.1.2 and §6.1.3), extend the proofs to account for
weak atomicity (§6.1.4), extend Landslide to support testing TM programs under a vari-
ety of execution semantics (§6.2), and demonstrate its practicality both by finding new
bugs (§6.3.2) and by verifying correctness (§6.3.3) in a variety of microbenchmarks and
real-world HTM programs.

The following sections will make heavy reference to the example TSX program from
Figure 2.3 (§2.1.4) while defining the new concurrency model, so I reproduce it here in
Figure 6.1 for the reader’s convenience.

1 if ((status = _xbegin()) == _XBEGIN_STARTED) {
2 X++;

3 _xend();

4 3} else {

5 mutex_lock(&m);
6 X++;

7

8

mutex_unlock(&m);

}

Figure 6.1: Example TSX program.

6.1 Concurrency model

While up to now Landslide’s tested programs’ concurrency has been limited to timer-
driven thread scheduling, HTM presents a fundamentally new dimension of nondetermin-

1Symbolic execution [King76], a neighbouring research area, addresses input nondeterminism; see §7.5.
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ism, namely the hardware’s ability to revert execution sequences and the delayed visibility
of changes to other threads. In order to efficiently test HTM programs in Landslide, in this
section I develop a simpler concurrency model and offer a proof of equivalence to HTM
execution semantics. I make two major simplifications: simulating transaction aborts as
immediate failure injections, and treating transaction atomicity as a global mutex during
data race analysis; and provide corresponding equivalence proofs.

Notation. Let ] = TN;@QL,, TN,QL,, ...TN,QL,, with N; a thread ID and L; a code line
number, denote the execution sequence of a program as it runs according to the specified
thread interleaving. This serialization of concurrent execution is told from the perspective
of all CPUs at once and hence assumes sequential consistency. For discussion of relaxed
memory models refer to §6.4.4.

6.1.1 Example

Consider again the program in Figure 6.1. Note that the C-style x++ operations, when
compiled into assembly, become multiple memory accesses which can be interleaved with
other threads, as shown below in Figure 6.2.

1 if ((status = _xbegin()) == _XBEGIN_STARTED) {
2a temp <- x;

2b temp <- temp + 1;
2c X <- temp;

3 _xend();

4 3} else {

5 mutex_lock(&m);
6a temp <- Xx;

6b temp <- temp + 1;
6c X <- temp;

7 mutex_unlock(&m);
8 3

Figure 6.2: Figure 6.1 with non-atomic operations shown as pseudo-assembly.

If these instructions from the x++ in the transaction are preempted, with another
thread’s access to x interleaved in between, the transaction will abort. So, a hypothet-
ical interleaving such as shown in Figure 6.3, or equivalently written sequentially as:

T1@1,T1@2q, T1@2b, T2G1, T2@2, T2@3, T1@2c, T1@3
or, henceforth further simplified for clarity:
T1@1 — 2b, T2G1 — 3, T1G2c — 3
is not possible; rather, T1 will fall into the backup path:

T1G1 — 2b, T2G1 — 3, T1G4 — 7
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Thread 1 Thread 2
status = _xbegin()

temp <- X;

temp <- temp + 1;

status = _xbegin()
x++;

_xend();
x <- temp;

_xend();

Figure 6.3: Impossible hypothetical interleaving within transactions of Figure 6.2. The
effects of T1@2a—2b are never globally visible, as its transaction must abort, and moreover
T1@2¢ — 3 will not execute at all.

However, the x++ operation from the failure path (correspondingly 6a, 6b, 6¢) can be
thusly separated with conflicting accesses interleaved in between, since the mutex only
protects the failure path against other failure paths, but not against the transaction itself.
So (assuming x is intended to be a precise counter rather than a sloppy one), the following
interleaving exposes a bug:?

T1@1 — 2b, T2Q1 — 3, T1@4 — 6b, T3G1 — 3, T1Q6¢ — 7

Prior work [DAS16] proposed the idiom shown in Figure 6.4 to exclude this family of
interleavings, which shows that correctly synchronizing even the simplest transactions
may be surprisingly difficult or complex.

6.1.2 Modeling transaction failure

In the previous section’s examples, the way [ stated interleavings such as T1@1—2¢, T2@1—
3,T1@4 — 73 glossed over how such a sequence of operations would be carried out under
HTM. For example, T1’s write during 2c is not actually visible to T2, although it would be
under a thread-scheduling-only concurrency model.

Intel’s official TSX documentation [Intel18] summarizes its interface and behaviour
in prose. Recent work has used proof assistants to formalize some of the execution se-
mantics of x86 in general [SSNT09] and of transactions in particular (at both hardware-
and language-level) [CSW18]. However, state-of-the-art advances in model checking al-
gorithms still state their theorems and proofs in prose [CMM13, AAJS14, ZKW15, DL15,
Hual5, BG16, KLSV17], so this section’s proofs will regrettably do likewise, leaving the
rigor of mechanization to future work. The reader may at least rest assured that the proofs
herein rely on transactional semantics that have themselves been formally verified.

To summarize HTM’s execution semantics:

2Note also that this bug requires either at least 3 threads or at least 2 iterations between 2 threads to
expose; this highlights MC’s dependence on its test cases to produce meaningful state spaces in the first

place.
3For a clearer example to follow, I have reordered T1’s write to x before T2’s part, compared to before.
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bool prevent_transactions = false;

while (prevent_transactions) continue;

if ((status = _xbegin()) == _XBEGIN_STARTED) {
if (prevent_transactions)

_xabort();

Xt+;
_xend();

} else {
mutex_lock(&m);
prevent_transactions = true;
Xt+t;

prevent_transactions = false;
mutex_unlock(&m);

NIEPOVONITUD~WNREO

}

Figure 6.4: More correct version of the program in Figure 6.1, with additional synchro-
nization to protect the failure path from the transactional path. The optional line O serves
to prevent a cascade of failure paths for the sake of performance by allowing threads to
wait until transacting is safe again.

1. Any modifications to shared state (such as 2c¢) by a transacting thread are not visible
to any other during the transaction (such as 2c in this example, despite T2 executing
afterwards).

2. All local and global state changes during a transaction (such as T1’s lines 1 — 2¢ in
this example) are discarded when returning an abort code from xbegin (jumping
to line 4, in this example).

While use of HTM in production requires the performance advantage of temporarily
staging such accesses in local CPU cache, model checking such programs need be con-
cerned only with the program’s observable behaviours. I claim that MCing the simpler
interleaving T1Q1,T2Q1 — 3, T1@Q4 — 7 is an equivalent verification to MCing the one
above; in fact, this interleaving suffices to check all observable behaviours of all interleav-
ings of all subsets of T2@1 — 3 with all subsets of T1@2a — 2c, whether they share a
memory conflict or not. Stated formally, let:

* TiQa be an HTM begin operation,

* TiQp, ... TiQg, be the transaction body (with (3, the HTM end call),
* TiQ¢, ... TiQ¢,, be the failure path, and

* TiQuw;, ... TiCQw; be the subsequent code executed unconditionally.

Note that arbitrary code may not be structured to distinguish these as nicely as in the
examples; e.g., more code may exist in the success branch after _xend(); such would be
considered part of w here.

Then, without loss of generality (for any number of other threads Tj/Tk, WLOG pre-
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sented here as two threads, and for any number of thread switches away from Ti during
the transaction, WLOG presented here as one switch):

Lemma 3 (Equivalence of Aborts). For any interleaving prefix

TiQa, TiQB; ... TiQS5,
TjQy, ... TjQ~;,
TkQk; ... TkQgy,
Ti@ﬁb+1

withb <n, j#1, k # 1, et cetera, either:

1. TiQe, TjQryy ... TjQy;, Tk@Qry ... TkQry, TiQg, . .. (conflicting case), or

2. TiQa, TiQf, ... TiQJy ... TiQF,, TjQy; ... TjQy;, TkQk; . . . TkQry (independent case)
exists and is observationally equivalent.

Proof. Case on whether the operations by Tj and/or Tk have any memory conflicts (read/
write or write/write) with TiQ/3, ... TiQg,. If so, then the hardware will abort Ti’s trans-
action, discarding the effects of TiQ/; ... TiQf, and jumping to TiQ¢,, satisfying case
1. Otherwise, by DPOR’s definition of transition dependence ([FGO05]; see also §3.4.2),
TiQpf,, ... TiQj, is independent with the transitions of Tj and Tk, may be successfully
executed until transaction commit, and reordering them produces an equivalent interleav-
ing, satisfying case 2. O

The claim’s second part follows naturally.

Theorem 3 (Atomicity of Transactions). For any state space S of a transactionally-concurrent
program, an equivalent state space exists in which all transactions are either executed atom-
ically or aborted immediately.

Proof. For every I € S with TiQa, TiQpg, ... TiQg,, Tj@ .. . Tka. . . TiQs, , € I, apply
Lemma 3 to obtain an equivalent interleaving I’ satisfying the theorem condition. The
resulting S’ can then be MCed without ever simulating HTM rollbacks. O

6.1.3 Memory access analysis

Next comes the issue of memory accesses within transactions with regard to data race
analysis (§2.3). Theorem 3 provides that the body of all transactions may be executed
atomically within the MC environment. While they may interleave between other non-
transactional sequences, no other operations (whether transactional or not) will interrupt
them. I claim this level of atomicity is equivalent to that provided by a global lock, and
hence abstracting it as such in Landslide’s data race analysis is sound.

Let TiQy, TjQr be a pair of memory accesses to the same address, at least one a write,
in some transactional execution I normalized under Lemma 3. Then let lockify,, (Tk@L)
denote a function over instructions in I, which replaces Tk@L with Tk@lock(m) if L is a
successful HTM begin, with a no-op if L is a transaction abort, or with Tk@unlock(m ) if L is
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an HTM end, or no replacement otherwise. Finally, let I' = dm.lockify,,(I), the execution
with the boundaries of all successful transactions replaced by an abstract global lock m.
Lemma 3 guarantees mutual exclusion of m.

Theorem 4 (Transactions are a Global Lock). TiQy, TjQv is a data race in I iff it is a data
race inI'.

Proof. 1prove one case for each of the two variant definitons of data races that Landslide
supports (§3.4.4). For each, I state below what it means to race in an execution with
synchronizing HTM instructions.

* Limited Happens-Before. To race in I they must be reorderable at instruction gran-

ularity, at least one with a thread switch immediately before or after [SI09, OCO3].

® [=1TI:If TiQu, TjQv race in I, then they cannot both be in successful transac-

tions, or else placing Ti@ within the boundaries of Tj@.’s transaction would

cause the latter to abort, invalidating Tj@v, or vice versa. Hence they will not

both hold m in I'. Otherwise their lock-sets and DPOR dependence relation
remain unchanged.

w I' = [ If TiQyu, TjQr race in I', both corresponding threads cannot hold m;
WLOG let Ti not hold m during Ti@y. Then in I, TiQy is not in a transac-
tion. With the remainder of their lock-sets still disjoint, and still not DPOR-
dependent, Tjv (or its containing transaction) can then be reordered directly
before or after TiCQy.

* Pure Happens-Before. WLOG fix TiC; < Tj@r € I. Then to race in I there must
be no pair of synchronizing instructions TiCe (a release edge) and Tj@y (an acquire
edge) such that

TiQu < TiQe < TjQy < TjQv € I

to update the vector clock epoch between TiC;, and Tj@r [PS03, FF09].

 I=1TI: If TiQy, TjQv race in I, then they cannot both be in successful transac-
tions, or else Lemma 3 normalization would provide the corresponding HTM
end and begin for Ti@e and Tj@y respectively. Hence there will be no un-
lock/lock pair on m in I’ to satisfy the above sequence.

w I' = I: If TiQu, TjQr race in I, then they cannot both hold m, or else lockify,,
would provide the corresponding unlock and lock for Ti@e and Tj@y respec-
tively. Hence there will be no HTM end/begin pair in I to satisfy the above
sequence.

Hence, data race analysis is sound when transaction boundaries are replaced by an ab-
stract global lock. Il

6.1.4 Weak atomicity

Prior work has highlighted the difference between strong and weak atomicity of transac-
tions [MBL06, SMAT*07]. Thus far we have assumed transactions will abort from any
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intervening memory conflict, whether or not that access is itself transactional. This corre-
sponds to strong atomicity, the execution semantics provided by TSX. However, weakly-
atomic STM systems do not abort transactions when a non-transactional access conflicts,
and condition #1 of the execution semantics from §6.1.2 does not hold. To model weak
atomicity, Lemma 3 must be extended with a third possibility:

Lemma 4 (Weak Equivalence of Aborts). For any interleaving prefix such as defined in
Lemma 3, either one of the original two conditions hold, or:
3. All events in TjQry, ... TjQy;, TkQr, ... TkQr are non-transactional, and the original
interleaving itself is a legal execution.

Proof. As before, except first case on whether any intervening operations by Tj/Tk are
transactional.* If so, either the original case #1 or #2 applies. If not, Ti may ultimately
proceed with Ti@/,,; (its preempted next transactional instruction) without aborting,
and the new case #3 applies instead. O

Theorem 3 must be weakened correspondingly, yielding Theorem 5.

Theorem 5 (Weak Atomicity of Transactions). For any state space S of a transactionally-
concurrent program, an equivalent state space exists in which all transactions are either
executed atomically with respect to other transactions only, or aborted immediately.

Proof. As before. O

This proof assumes that all operations Ti@/ are in fact executed transactionally. In
STM systems, the user must annotate all shared memory accesses she wishes to be pro-
tected, so an incorrectly-annotated program could mix transactional and non-transactional
operations in Ti. To emulate the interactions thereof with other threads would require
fully simulating failure rollback after all, which I must leave to future work. I believe
this assumption to be justified for the sake of any future weakly-atomic HTM systems, in
which the user would not have the mixed blessing of such fine-grained annotations.

Conveniently, Theorem 5 still guarantees transaction-transaction atomicity, so mutual
exclusion of m is preserved in §6.1.3’s formulation of I' = Im.lockify,,(I), and Theorem 4
applies unmodified. §6.2.4 discusses the implementation consequences of this weakening.

6.2 Implementation

Support for TSX programs in Landslide is implemented in five parts, broadly speaking:
the user interface, plus one internal part corresponding to each proof above, plus a bonus
optimization for pruning equivalent interleavings under the new concurrency model.

4If Tj or Tk already have a transaction active, their begin must have occurred before TiQq, and the
theorem can apply starting from the earlier begin with the thread IDs swapped.
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6.2.1 User interface

Landslide provides its own “implementation” of the TSX interface, which matches GCC’s
interface exactly, located in landslide-friendly-tests/inc/htm.h under the subdirec-
tory pebsim/p2-basecode/. The interface is implemented in landslide-friendly-tests/
libhtm/htm.c, perhaps surprisingly, as totally empty functions; Landslide hooks these
functions’ addresses during instrumentation and inserts preemption points, failure injec-
tions, et cetera as necessary whenever the execution encounters them.

Transactional test programs should be ported to the Pebbles userspace if not already,
then any use of compiler HTM intrinsics replaced with Landslide’s interface.” They should
then be put in either 410user/progs/ or user/progs/ and the 410TESTS or STUDENTTESTS
line (respectively) of config-incomplete.mk be edited to add the test name, before run-
ning p2-setup.sh (§3.1.1) on a (hopefully) correct P2 as usual. Several example HTM
tests are provided as landslide-friendly-tests/htmx.c.

Finally, Quicksand supports the following command-line options to enable various sets
of HTM features within Landslide.

* -X (for “tsX” or “Xbegin”) enables the basic features: preemption points on each
xbegin() and _xend() call, failure injection on each of the former (always returning
_XABORT_RETRY as the failure code) (§6.1.2, §6.2.2), and treatment of transactional
regions during data race analysis (§6.2.3).

* -A (for “xAbort codes”) enables multiple xabort failure codes (§6.2.2). Requires -X.

* -S (for “Stm” or “Suppress retries”) disables the _XABORT_RETRY failure reason, caus-
ing Landslide to emulate the semantics of STM rather than HTM. Requires -X -A.

* -R (for “Retry sets”) enables state space reduction based on independences between
individual xbegin results (§6.2.5). Requires -X and not -A.

* -W (for “Weak atomicity”) enables weak atomicity, allowing non-transactional code
to interleave within transactions, corresponding to §6.1.4. Requires -S.

6.2.2 Failure injection

Each preemption point (struct nobe as defined in tree.h) includes three new fields. The
boolean h->xbegin is set if the preemption point occurred at an _xbegin() call. Then if
set (as the tag of an option type), the twin lists of integers h->xabort_codes_ever and
h->xabort_codes_todo store possible error codes this _xbegin() call should be tested to
possibly return. The former list stores all such error codes, whether already tested or yet
to be tested, while the latter serves as a workqueue that indicates only those not already
tested yet (serving an analogous purpose as the all_explored flag for thread scheduling).
The state space estimators (§3.4.3) check the length of these lists, in addition to DPOR’s
tagged threads, when computing the number of marked children.

>Attempts to execute a real TSX instruction under Landslide, instead of using the custom interface, will
be reported as “invalid opcode” bugs, as neither of its supported simulation platforms support the feature.
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Adding possible abort codes

Up to four abort codes are considered depending on §6.2.1’s testing options. All abort
codes are simultaneously added to both lists, unless already present on xabort_codes_ever,
in which case not added to xabort_codes_todo to avoid duplicate work.

* _XABORT_RETRY: When a xbegin preemption point is created (save_setjmp()), if -S
is not set, both xabort_codes lists are initialized to contain this code. This repre-
sents the possibility for a hardware transaction to fail for reasons outside of the
programmer’s control, such as system interrupts or cache eviction. If -S is set they
are initialized to empty, representing either STM’s policy of failing only when a true
memory conflict arises, or a TSX user wrapping all her _xbegin()s in a retry loop
such as in [Blum18a].

* _XABORT_CONFLICT: Whenever DPOR detects a memory conflict between two tran-
sitions (shimsham_shm()), if -A is set, if the later-executed transition is a trans-
actional success path, it adds this code to both lists of the immediately preced-
ing preemption point. Note that a transaction should suffer a conflict abort only
when executed after a conflicting memory access to avoid circular causality (see
landslide-friendly-tests/htm_causality.c for rationale). Should the transac-
tion happen to be executed first, DPOR will first try to reorder it as normal, and
then abort it as described if the conflict persists.

* _XABORT_EXPLICIT: Whenever the program invokes _xabort() (sched_update_user_
state_machine()), if -A is set, this code is added to both lists, bitwise-ored with the
user-supplied argument code as specified in [GNU16], and execution of the trans-
actional path immediately stops.

* _XABORT_CAPACITY: Whenever the program invokes a system call during a transac-
tion, if -A is set, this code is added to both lists, and execution of the transactional
path immediately stops. So called because doing so would trigger a mode switch,
which the specification allows to abort for any reason.® See below for discussion of
other cache capacity concerns.

Limitations. Landslide does not yet check for false sharing, i.e. read/write or write/
write access pairs to different memory addresses that share a cache line. On real hard-
ware, these would produce _XABORT_CONFLICT failures, but to find such access pairs would
require extending mem_shm_intersect()’s set intersection algorithm to consider a cer-
tain degree of (N-byte-aligned) fuzziness when comparing addresses, as well as adding
a command-line option to configure said N, the cache-line size to simulate. For now,
Landslide (wrongly) lumps false sharing in among the “spurious” _XABORT_RETRY failure
reasons. On HTM, even if the user wraps all such spurious failure reasons in a retry loop,
false sharing (i.e., disjoint memory accesses that share a cache line) should still produce a

®As far as I know, the reason for syscall aborts is both hardware- and kernel-dependent, and in fact
nondeterministic; on my Haswell Core i7 running Linux 4.19, I observed a majority of _XABORT_CONFLICTs, a
scant few _XABORT_CAPACITYs, and surprisingly many with no reason specified whatever; however, not once
did a transaction succeed with even a single gettid() call [Blum18c]. For simplicity of both implementation
and client programs, Landslide always distinguishes system call aborts with _XABORT_CAPACITY.
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non-retryable abort, begetting a discrepancy with STM, which aborts only when the mem-
ory addresses match exactly. Accordingly, the -S option described above provides STM
semantics as currently implemented. Future work could extend Landslide with an option
to configure false sharing conflicts to remain faithful to HTM semantics and still abort even
under -S. Likewise, Landslide does not check for a transaction’s memory footprint exceed-
ing the CPU’s cache capacity, which on real hardware would trigger a _XABORT_CAPACITY
abort. Landslide’s memory tracking could simulate this check as well, perhaps with a
configurable cache size, but would likely be theoretically uninteresting (all programs in
the upcoming evaluation have trivial memory usage), and so is left unimplemented for
now. Finally, _XABORT_NESTED, the last abort code specified by [GNU16], depends on
currently-unsupported xbegin nesting, which I discuss further in §6.4.3.

Injecting abort codes

When traversing the state space (§3.3.5), in addition to performing DPOR to select non-
independent thread interleavings (§3.4.2), the abort codes under each xbegin preemp-
tion point are also considered “marked” paths which must be tested. Hence explore(),
by way of any_tagged_child(), will pop off the xabort_codes_todo queue when it’s
time to explore that preemption point in the usual depth-first manner.” The optional
abort code is then passed through arbiter_append_choice()/arbiter_pop_choice() to
cause_transaction_failure(), which edits the simulation state (%eip and %eax) to force
_xbegin() to return the provided code.

6.2.3 Data race analysis

When a thread returns _XBEGIN_STARTED from _xbegin() (analogous tomutex_trylock()),
Landslide’s scheduler sets the user_txn action flag for that thread (§3.3.2), and if using
Pure Happens-Before, applies FT ACQUIRE (§3.4.4) using a dummy lock address to rep-
resent the abstract global lock. When a thread reaches _xend(), the flag is cleared, and
under Pure Happens-Before, FT RELEASE is applied. Then when check_locksets() com-
pares an access pair, under Limited Happens-Before, it is considered a data race only if
at least one thread’s user_txn was not set in addition to the usual conditions; under Pure
Happens-Before, the vector clocks are simply checked as usual.

6.2.4 Weak atomicity

If the user supplies the -W option (§6.2.1), Landslide will emulate STM’s weak atomicity
semantics (86.1.4). Concretely, it achieves this by reporting both halves of data races
that occur between transactional and non-transactional code (§3.4.4) (previously, only
the latter half would be reported), allowing preemption points to be identified during
transactions (§3.4.1), and allowing system calls during transactions to proceed rather

’The search order prioritizes abort codes before scheduling other threads at such preemption points,
which is just an implementation detail, not theoretically necessary.
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than forcing a CAPACITY abort (as programmers may now need to nest other synchroniza-
tion within transactions to protect against non-transactional code). Landslide requires the
other STM options (-A -S) also to be enabled to emulate weak atomicity, partly because
I know of no existing HTM system which implements it, but mostly to keep the implemen-
tation simple. As one might expect, it inflates state spaces considerably, and moreover,
every single HTM benchmark in the upcoming evaluation, implemented to rely on strong
atomicity, exhibits bugs under weak atomicity. Commit 68401fc implements this mode.

6.2.5 Retry independence

Finally, I identified a specific pattern of transactional code where existing state-space re-
duction algorithms will fail to identify and prune equivalent thread interleavings. Fig-
ure 6.5 shows a minimal example program which exhibits this problem. In this program,
each thread’s transactional path conflicts with the other thread’s abort path, while the
two transactional paths (disjoint memory accesses) and the two abort paths (reads only)
are independent with each other.

Initially int foo = 0, bar = 0;

Thread 1 Thread 2
if (_xbegin() == STARTED) { if (_xbegin() == STARTED) {
foo++; bar++;
_xend(); _xend();
} else { } else {
assert(foo + bar < 2); assert(foo + bar < 2);
} }

Figure 6.5: Motivating example for retry independence reduction.

Ordinarily, in the state space subset which schedules thread 1 before thread 2, there
would be 4 combinations of each thread succeeding or aborting their respective transac-
tions; among those, at least one would show a memory conflict, causing DPOR to explore
into the other half of the state space which schedules thread 2 first, where the same 4
combinations of transaction reuslts would be tested in the other order, even though 2
are redundant under schedule reordering. Consequently, naively testing both success
and retry aborts in both threads regardless of reordering will unnecessarily execute both
equivalent interleavings from each such pair; to identify such equivalences, DPOR must
somehow remember which combination of xbegin results led to the memory conflict in
the first place.

While Figure 6.5’s example may seem contrived (what program’s transactions would
just give up and do no work if aborted?), it is easy to imagine a larger transactional
data structure, two insertions into which might operate on disjoint nodes or array in-
dices, allowing simultaneous transactions to usually succeed, while the more uncommon
abort paths might take the opportunity to assert a full consistency check of all elements,
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ultimately resulting in a similar conflict pattern. Also, the evaluation will later show
(86.3.3) that even programs with fully conflicting success/abort paths may still exhibit
some equivalent thread interleavings of this pattern after their failure paths are split apart
into smaller transitions by data-race preemption points.

To address this, I extended Landslide with retry set reduction (commit 86657c7), an ex-
perimental feature named after prior work’s analogous sleep sets ([God96, FGO5, AAJS14],
§3.4.2). Whenever DPOR tags a new branch for exploration (§3.4.2), if either or both
sides of a memory conflict were part of a transaction, it records a retry set, i.e., the pair
of xbegin results executed by the conflicting threads, to accompany that branch. Like
the xabort_codes lists, the state space estimators (§3.4.3) check the number of retry sets
when counting the number of marked children. Later, when traversing the new branch,
Landslide remembers those threads’ expected xbegin results and refuses to test any oth-
ers (unless DPOR separately found them, too, to conflict), thereby skipping over (i.e.,
pruning) reorderings of any other xbegin results that would be independent. Like sleep
sets, it also considers the preempted thread “retry-set blocked” (like sleep-set blocking
[AAJS14]), and refuses to run it until the conflicting thread runs its transaction first, un-
less such would result in deadlock.® Upcoming in the evaluation, Figure 6.8 will visualize
the reduction achieved in two test cases.

6.3 Evaluation

While prior work has focused on verifying transactional memory implementations them-
selves [DGLMO09, GK08, GHS08, OST08], Landslide is to the best of my knowledge the
first model checker to support transactional client code. Accordingly, there is no baseline
against which to compare its performance. Likewise, since Landslide’s HTM emulation
relies on the equivalences proved in §6.1, I did not actually implement an HTM-style
speculative-execution-and-rollback simulation mode. On this count, at least, I hope the
reader finds it self-evident that the equivalence proofs provide exponential state space
reduction compared to actually testing (and thereafter aborting) every combination of
instructions within transactions. Beyond those, this chapter’s evaluation will take a rela-
tively green-field and exploratory approach. I pose the following evaluation questions.

1. How quickly does Landslide find bugs in incorrect transactional programs?
2. Does Landslide find any previously-unknown bugs in real-world transactional code?’

3. How does Iterative Deepening’s (§4.2) performance compare to Maximal State Space
mode (§3.1.2)?1°

8 Before the search ordering update to Landslide’s normal sleep sets implementation (§3.4.2), I observed
false-positive retry-set-blocked deadlocks fairly often; after the update, it took until 981773 interleavings
(>9 hours) into htm2(3,2) to find one and confirm the need to still explicitly avoid them by abandoning the
retry set in such cases. Commit 02b70c8 implements this fix.

°The savvy reader will realize that whether or not the author poses this evaluation question to begin
with spoils its answer.

10Not necessarily related to HTM, but the latter was implemented well after Chapter 4’s conference paper
was published, so this was the most convenient test suite to evaluate it on.
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4. How well does Landslide’s verification scale with increasing thread/iteration count
for correct transactional programs?

5. What further reduction can be achieved beyond the baseline provided by the global-
lock/failure-injection equivalences?

6.3.1 Experimental setup

The evaluation suite comprises several unit tests hand-written by yours truly, microbench-
marks and transactional data structures from [DAS16], a transactional spinlock from
[Seil3], and various combinations thereof, as follows.

1. Unit tests and microbenchmarks

htm1: The bug from Figures 2.3 and 6.1.
htm2: The fixed version as in Figure 6.4.

counter: Microbenchmark version of htm2 which replaces the complex locking
failure path with an atomic xadd, from [DAS16].

swap: Microbenchmark that swaps values in an array, from [DAS16].
swapbug: swap modified to introduce circular locking in the failure path.

fig63: Generalized version of Figure 6.5, contrived to induce as much reduc-
tion as possible from the retry sets optimization.

2. Data structure tests

avl_insert: AVL tree concurrent insertion test [DAS16].
avl_fixed: avl_insert with the AVL bug fixed (spoilers!!).
map_basic: Separate-chaining hashmap concurrent insertion test [DAS16].

map_basicer: map_basic configured with a larger initial map size to skip the
resizing step.

avl_mutex: avl_fixed with transactional sections simplified by abstraction
into a mutex.

map_mutex: map_basic simplified likewise.

map_basicer_mutex: map_basicer simplified likewise.

3. Lock abstraction tests

lock(): Checks that multiple threads using a transactional lock cannot access
the critical section simultaneously.

lock_fast(): Checks that a transactional lock’s fast path will not suffer conflict
aborts if its client threads’ critical sections are independent.

These are each parameterized over the implementations spinlock (from [Seil3]),
spin_fixed (spoilers!!), and mutex (replaces the spinlock with a Landslide-annotated
P2 mutex to reduce state space size).

The notation testname(K,N) denotes a test configuration of K threads, each running
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N iterations of the test logic. All tests were run on an 8-core 2.7GHz Core i7 with 32 GB
RAM. Reported CPU times include time spent on all state spaces Quicksand saw fit to run,
not just the maximal or the buggy state space; for verification tests (run with -M), this still
includes abandoned smaller jobs that were run to saturate the set of data-race preemption
points (Chapter 4). To minimize variance in CPU-time measurements, I ensured the test
machine was not loaded beyond normal web browser use, and ran only one instance of
Landslide at a time; for further discussion of variance see [Blum18a]. The number of
interleavings in each state space is, of course, deterministic and do not vary across runs.

I investigated the popular transactional benchmark suite STAMP [MCKOO08] to include
in this test suite, but found that all transactional code therein was written without failure
paths, so would likely not contribute any theoretical depth to the evaluation. STAMP uses
the OpenTM interface [BMT"07], which allows the programmer to specify transactional
code regions to be implemented atomically, however the underlying architecture may re-
quire (whether HTM or STM; presumably with retry loops on HTM). On one hand, this
lends credence to my upcoming conclusion that HTM programs should be written at a
higher abstraction level than calling _xbegin() directly; on the other, OpenTM'’s require-
ment of virtualized transaction semantics (i.e., being unconstrained by memory footprint,
able to make system calls, and able to nest arbitrarily) is more suited to STM and glosses
over many pitfalls of HTM programming.

Finally, the keen-eyed reader will notice the state space sizes reported here differ
from those reported in [Blum18a]. All experiments have been re-run on account of three
updates to Landslide’s exploration algorithm implemented since then: the sleep sets op-
timization for DPOR (8§3.4.2, commits 0447666 and 588687c¢), the thrlib_function and
TRUSTED_THR_JOIN directives to mark internal thread library logic as trusted (§3.2.1, com-
mits 64a02e4 and a50d4ea), and fixing a soundness bug in which Landslide could ne-
glect to inject transaction failures immediately after a thread switch (commit dcae85b).
On account of the former two updates, some state spaces may be smaller than before;
on account of the third, some may be larger. These updates do not discredit the bug-
finding results (a bug is a bug), but the previously-published verification results should
be considered outdated.

6.3.2 Bug-finding

Table 6.1 presents the bug-finding results. I configured Landslide to run Quicksand’s
Iterative Deepening algorithm on 8 cores, shown left, as well as to prioritize the maximal
state space, shown right, each with a time limit of 1 hour. Tests htm1, swapbug, and
avl_insert were run with landslide -X (i.e., retry aborts enabled and different abort
codes not distinguished); lock_fast was run with landslide -X -A -S (i.e., suppressing
retry aborts, due to the spinlock’s use of a retry loop confirmed with manual inspection).

Finding bugs quickly

As the test parameters increase, the multiplicative factor in bug-finding speed (2-4x, eye-
balling) is generally smaller than that of the total number of interleavings (10-1000x). In
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Quicksand mode Maximal state space mode (-M)
buggy test K,N cpu(s) | wall(s) | int’s || cpu(s) | wall (s) | int’s | SS size (est.)
htm1 2,1 32.73 8.02 5 *9.24 *6.49 5 12
(assertion) 2,2 50.72 9.22 9 *9.93 *7.03 9 102
2,3 88.35 14.63 17 *10.03 *7.12 17 819
2,4 108.31 17.44 33 *11.24 *8.29 33 6553
3,1 60.63 11.63 5 *9.63 *6.70 5 76
3,2 78.69 13.17 9 *9.43 *6.37 9 3686
3,3 70.50 13.05 17 *10.43 *6.96 17 176947
3,4 70.69 12.96 33 *11.74 *8.71 33 8493465
4,1 51.83 9.85 5 *9.56 *6.63 5 460
4,2 44.83 8.94 9 *9.83 *6.84 9 132710
swapbug 2,1 *26.25 *6.42 *6 47.80 13.43 33 73
(deadlock) 2,2 *18.08 *4.98 *10 51.37 16.78 85 860
2,3 *20.93 *5.57 *18 57.87 23.99 217 9120
2,4 *38.92 *8.61 *34 82.95 48.31 537 91239
3,1 *38.59 *8.50 *32 88.28 72.41 | 1016 3543
3,2 || *1572.83 | *199.98 *262 - >1h - 1683509
avl_insert 2,2 2494.77 315.46 *29 *95.53 *30.56 79 158505
(segfault+) 2,3 308.10 *43.95 *33 || *249.42 144.33 835 13664203
2,4 || *2979.29 | *390.34 | *1457 - >1h - 61882736
3,1 *87.10 *14.81 *14 94.08 23.60 24 207575
3,2 *3672.84 | *475.03 *145 - >1h - 1635075071
lock_fast 2,1 18.33 5.19 2 *3.12 *3.12 2 4
(perf) 9,9 22.43 6.24 2 471 | *4.71 2 inf

Table 6.1: Landslide’s bug-finding performance on various test configurations. Iterative
Deepening (84.2), optimized for fast bug-finding, is compared against Maximal State
Space mode (§3.1.2), optimized for fast verification. For each, I list the CPU time and
wall-clock time elapsed, plus the number of interleavings tested in the ultimately buggy
state space until the bug was found. * marks the winning measurements between each
series. Lastly, state space estimation (§3.4.3) confers a sense of the exponential explosion.

other words, should transactional bugs exist, Landslide is likely to find them reasonably
quickly despite prohibitive exponential explosion in total state space size. This corrobo-
rates the results from Chapter 4, extending its good news to the world of HTM.

Finding new bugs

In addition to the bugs I intentionally wrote in htm1 and swapbug, Landslide also found
two bugs in the “real-world” transactional algorithms I tested.

* Atomicity violation. avl_insert with any parameters higher than (2,1) exposed
a previously-unknown bug in the transactional AVL tree. Figure 6.6 shows the root
cause, essentially the htm1 bug in disguise. This manifested alternately as a segfault
(for test parameters (2,2) and (3,1)) and as a consistency-check assertion failure
(for test parameters (2,3)). The presence of while (_retry) continue makes the
necessary preemption window extremely small (between it and _xbegin()), making
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while (_retry) continue;

if (_xbegin() == SUCCESS) {
tie(_root,inserted) = _insert(_root,n);
_xend();

} else {
pthread_mutex_lock(&_tree_lock);
_retry = true;
tie(_root,inserted) = _insert(_root,n);
_retry = false;
pthread_mutex_unlock(&_tree_lock);

}

Figure 6.6: Unmodified code from htmavl.hpp showing the previously-unknown segfault
bug Landslide found in avl_insert. The transaction path fails to check _retry, leading
to data races and corruption just as in htm1.

the bug extremely unlikely to manifest under stress testing, but Landslide is blind
to such matters of chance.

As a matter of full disclosure, I noted that the loop does not affect the test’s possible
behaviours, only its likely ones, and so removed it to make the test more Landslide-
friendly. To dispel any doubt about bias or test hacking, I confirmed that Landslide
still finds the bug with the spin loop unmodified, on (3,1) in the same 53 interleav-
ings, although it suffers resource exhaustion on parameters of (2,2) or greater.

* Spurious spinlock abort. lock_fast discovered a spurious transactional-path write
conflict in the spinlock HTM-lock implementation.!! This “performance bug” causes
the lock to suffer slow-path spin-locking even in cases where the user’s thread tran-
sitions are completely independent (for example, locking the root of an AVL tree,
then traversing in different directions to make disjoint modifications). The test case
detects this with _xtest(). Figure 6.7 shows the root cause: the isfree() routine
(corresponding to the AVLs _retry) used an atomic compare-and-swap that would
always write to memory even without modifying it. I corrected this in spin_fixed
by replacing it with a normal read (being used only in the transactional path, no
barriers are required to protect it). A cursory search on Github found one user of
this code, a transactional LevelDB implementation [Chil4], whose author had also
noticed and corrected this problem in the same way.

As another matter of full disclosure, I noticed this bug through manual inspec-
tion while adapting the spinlock’s client code to be Landslide-friendly, then wrote
lock_fast specifically to target this behaviour, so unlike avl_insert, it does not
count as Landslide finding a previously-unknown bug. However, I feel in retrospect
that how and when an HTM-backed concurrency abstraction will fall into its slow

H1ock_fast’s unusual (9,9) parameter shows that this state space size is constant: DPOR will always
either deem all thread transitions independent and end exploration immediately, or the test’s assertion will
trip as soon as the first conflict is found.
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bool hle_spinlock_isfree(spinlock_t *lock) {
// XXX: should be "return lock->v == 0;"
return __sync_bool_compare_and_swap(&lock->v, 0, 0);

3
void rtm_spinlock_acquire(spinlock_t *lock) {
if ((tm_status = _xbegin()) == _XBEGIN_STARTED) {
if (hle_spinlock_isfree(lock)) return;
_xabort(0xff);
} else {
// ... retrying &c abbreviated for brevity ...
hle_spinlock_acquire(lock);
}
3

void rtm_spinlock_release(spinlock_t *lock){
if (hle_spinlock_isfree(lock)) {
_xend();
} else {
hle_spinlock_release(lock);
}
}

Figure 6.7: Code from spinlock-rtm.c, modified only to remove unrelated logic for
brevity, showing the performance bug Landslide found in lock_fast(spinlock). The
isfree() routine uses an atomic read-and-write operation where just a read would suf-
fice, which leads to superfluous memory conflicts in the transactional path (seen at both
of its callsites below).

path is a reasonable performance property for a user to want to verify, so I consider
Landslide confirming the bug (and later verifying its absence, in §6.3.3) a positive
result anyway.

Note that in the AVL tree bug, the code’s author was the very same person who pro-
posed the protocol in Figure 6.4, yet still got it wrong once, having to write it out by
hand throughout both data structures. This motivates the need for model checking such
programs, no matter how much of a concurrency expert the author may be. It also sug-
gests HTM primitives should be encapsulated behind higher-level abstractions, such as
lock elision [Intel13] or a simple spinlock [Seil3], which can be verified in isolation with
smaller state spaces then trusted in turn when checking their client programs [Sim13].
§6.3.3 explores this further.

Regarding the spinlock bug, as HTM is fundamentally a performance-minded concur-
rency extension, the user may also care about more probabilistic properties of her code,
such as requiring a transaction abort rate below a certain threshhold owing to the nature
of its workload. Landslide cannot in general test for performance degradation bugs, be-
cause all interleavings are equal in Landslide’s eyes, and probability is no object. However,
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lock_fast illustrates that model checking can still check some interesting performance
properties as long as the element of probability can be removed. Future work may attempt
to verify a wider range of performance properties, but with a hybrid approach between
model checking and what other technique is not yet known.

Performance

Quicksand’s ability to find bugs in fewer distinct interleavings (i.e., overall smaller state
spaces) does not necessarily correlate with better performance in terms of CPU time.
Comparing Table 6.1’s trends to the break-even point in Quicksand’s evaluation (§4.5),
most of these tests are too small for its approach to pay off, with swapbug and avl_insert
as its notable wins. While plenty more wins were observed in §4.5, this suggests future
MCs could prioritize state spaces using not just size estimation but a hybrid approach
also conisdering state space maximality and preemption bounds [MQO7] to soften the
trade-off both for smaller tests and for verification.

6.3.3 Verification

For the test cases with no bugs found, I sought to provide Landslide’s verification guar-
antee (84.3) for up to as many threads and test iterations as possible under a reasonable
time limit. The results, obtained using the same -X -M configuration options as in the
previous section, are shown in Table 6.2 in the “Baseline DPOR” column. For test config-
urations which could not be verified within 10 wall-clock hours, I report their estimated
state space size and runtime measured after that timeout instead, ftypeset thusly.

Interpreting the verification guarantee

Landslide was able to verify most of these tests for a fair range of thread and iteration
counts, often reaching up to 2 threads with 3-4 iterations each, 3 with 2 each, or 4 with
1. In the case of htm2, for example, verifying up to (K, N) represents a guarantee that,
even repeating Figure 6.4’s atomicity protocol N times in any scheduling sequence or
combination of transaction aborts, it is impossible for K threads to violate the intended
atomicity property (i.e., get 2 threads in the critical section simultaneously).

It is difficult to discern from prior work a concrete standard for what values of (K,N)
constitute a “good” degree of verification. One recent paper [ZKW15], which likewise
extended DPOR with a new dimension of concurrency (weak memory orderings), re-
ported verifying programs with up to 10 concurrent events, presumably shared memory
accesses. Another [AAJS14] reported test cases with as many as 19 threads, although
with what must be very little synchronization or memory conflicts, as even their base-
line DPOR checked only 4096 interleavings on that test. Table 6.3 confers a sense of
the complexity of this evaluation’s test suite, with the final column showing the approx-
imate maximum number of preemption points reached among Landslide’s verifications
(i.e., (txn + sync + race) x K x N for the highest K x N completed).
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Baseline DPOR Retry sets (-R) STM (-A -S)
cpu (s) SS size cpu (s) SS size cpu (s) SS size
test K,N (or test.) (or fest.) (or fest.) (or test.) (or test.) (or test.)
htm2 2,1 18.26 22 17.99 15 3.25 4
2,2 63.61 1446 26.40 334 28.04 286
2,3 3429.04 86536 196.18 6366 997.91 24740
2,4 129d 8h | 12710056 4771.17 123140 t5d 1h | 11792330
3,1 43.24 774 24.02 224 22.79 140
3,2 11y 299d | 14510472 1294d 5h | 18185793 t10d 16h | 12322150
4,1 9225.52 212146 376.70 11973 2158.93 44995
counter 2,1 6.92 10 6.81 8 3.28 4
2,2 13.27 190 10.59 102 8.73 48
2,3 155.09 3970 67.82 1558 40.08 904
2,4 3664.66 86950 1150.34 25398 805.85 19128
3,1 11.26 120 9.30 64 8.26 40
3,2 2572.13 60606 2363.41 44862 639.62 14304
41 129.25 3006 64.91 1296 40.78 848
swap 2,1 65.72 99 66.05 59 3.40 4
2,2 18124.06 277824 1030.23 19542 703.82 11600
3,1 3820.64 60912 608.48 10706 89.69 1014
fig63 2,1 7.12 10 6.92 6 3.40 1
2,2 9.24 108 8.61 76 3.46 1
2,3 54.68 1934 31.76 977 3.39 1
2,4 1054.80 36600 417.99 14512 3.58 1
3,1 11.15 148 7.76 22 3.53 1
3,2 717.53 21642 217.30 6467 3.52 1
4,1 111.83 3064 11.32 130 3.49 1
avl_insert 2,1 672.68 15125 307.94 6287 136.60 2774
avl_fixed 2,1 739.60 20459 332.32 9675 122.40 2774
2,2 158880y | 14.62x107 151191y | 13.33x107 136393y | 13.51x107
3,1 || t5y292d | 12.87x10° || 1735y 212d | 13.35x10% | 197y 100d | 11.70x10°
map_basic 2,1 1950.48 30719 867.68 13237 367.91 5446
2,2 || tiy176d | 17.55x107 t11y 94d | 19.57x107 | t13d11h | 1565334
3,1 16y 133d | 11.85x10° 18y 282d | 17.90x10°8 t4y 156d | 18.88x10°8
map_basicer 2,1 28.40 150 26.55 94 14.88 9
2,2 711h 17m 1727759 16455.24 283756 1285.06 21684
3,1 126h 15m 11451708 21153.64 366030 705.04 12707

Table 6.2: Transactional tests verified (or not) by Landslide. Run with -M -X, plus any
additional reduction options listed. “Baseline DPOR” always tests every abort path, with-
out distinguishing among failure reasons (i.e., injecting only _XABORT_RETRY). “Retry sets”
skips equivalent success path and/or retry abort reorderings (§6.2.5); “STM” suppresses
retry aborts and dynamically detects when to inject conflict aborts and so on (§6.2.2).
State space estimates measured after a timeout of 10 hours (and include those 10 hours
in the predicted total).
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test #txn | #sync | #race | max events verified
htm2 1 2 4 42
counter 1 0 1 16
swap 1 4 8 52
fig63 1 0 K-1 18
avl_insert 1 2 7 20
avl_fixed 1 2 9 24
map_basic 1 4 13 36
map_basicer 1 2 5 32
lock(spinlock) 1 2 4 28
lock(spin_fixed) 1 2 4 28
lock(mutex) 1 2 2 40

Table 6.3: Number of concurrency events per iteration of each test case. Note that no test
used any synchronization besides mutexes (the P2 thread API was annotated as trusted
(83.2.1) and so does not contribute to state space size). Also note that “#race” means the
number of unique accesses identified as racy, rather than racing pairs (the other half of a
pair might well be within a transaction, which cannot be preempted within).

In the case of htm2, it is easy to look at the program with human intuition and judge
that, because the protocol’s only state is stored in a single boolean, with no unbounded-
capacity data structures or contention-dependent exponential backoff loops, it would be
unimaginable that adding a 5th thread to the system could make any difference in correct-
ness where 4 threads could not, or that a 4th repetition between 2 threads could make a
difference where 3 could not, and ultimately that it must safely generalize to all (K, N).
Generalizing the verification is not so straightforward for more complicated algorithms,
which may involve complex conflict patterns such as tree rebalancing or map resizing.
Other formal verification approaches aside, the user must ultimately be content with the
probabilistic assurance that as verified K and N increase, the likelihood that a bug exists
which requires more threads or iterations to expose grows ever lower (for example, none
of the bugs in §6.3.2 required any higher parameters than (2,2) to expose).

Nevertheless, pushing K and N higher is obviously desirable, even if it means applying
reductions that require human intuition to trust their soundness. Moreover, much as ver-
ifying htm2’s soundness is a positive result, the attempts at larger data structures quickly
suffered exponential explosion for even small thread/iteration counts, in one case failing
to verify whether or not a previously-found bug had actually been fixed. In the following
subsections I explore three possible mitigation approaches.

Retry set reduction

Firstly, the middle column of Table 6.2 shows the impact of Landslide’s experimental retry
set reduction (§6.2.5). Despite its conservative implementation, it provides roughly 2-6x
reduction in most tests, with up to 17x in extreme cases. The biggest win is apparent in
fig63, the test contrived to induce as much reduction as possible using transactional paths
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fig63: {Abort only, Success only }

counter: {Success+Abort, Success only }

xbegin K
xbegin

fig63: {Success only, (no txn)}

counter: {Success+Abort, (no txn)}

~ S A 3
¢ Memory conflict \ ) Pruned by retry sets on fig63 only 4‘ Equivalent interleavings on fig63 only

-&'::‘;:S- Memory conflict on counter only m Pruned by retry sets on fig63 & counter \ Equivalent interleavings on figé3 & counter

Figure 6.8: Visualization of retry set state space reduction. On both counter(2,1) and
fig63(2,1), baseline DPOR tests all 10 interleavings pictured, with the middle 2 arising
from the data-race preemption point within the abort path. With the reduction enabled,
after the 4th and 6th branches (i.e., when preempting to reorder threads), Landslide
activates the retry set indicated at the top of the next upcoming subtree, allowing it to
identify and skip 2 redundant branches in counter and 4 in fig63.

that conflict only with aborts and not with each other, and vice versa. In fig63(2,1), cor-
responding to Figure 6.5, retry-set-enabled DPOR correctly prunes down to the optimal 6
interleavings, while the baseline treats it identically to the fully-conflicting counter(2,1).
Figure 6.8 depicts the difference between the state spaces explored by the two approaches.

Perhaps surprisingly, retry sets also provide reduction even when transactional suc-
cess and abort paths are fully conflicting, (i.e., all tests besides fig63). With just syn-
chronization preemption points (including _xbegin() and _xend()), both the baseline
and retry sets would explore exactly all 8 permutations of success and abort between two
threads. However, in the presence of data-race preemption points, even for example on
counter(2,1) (whose abort path is just 1 xadd operation), and whose optimal state space
size should be 8 regardless of data-race preemption points), baseline DPOR tests reorder-
ings of one thread’s transaction both with the other’s failure path, and with the other’s
data race therein.'? Retry sets on the other hand identify and skip that equivalence (tech-

12 Not pictured in Figure 6.8 is the symmetric subtree of branches 5-6 in the right half of the state
space, which would occur after branch 10, reordering the blue thread before the pink’s data race. Such
would be equivalent to branches 2 and 4, and is pruned by the normal sleep set algorithm (83.4.2,
equiv_already_explored()) even in baseline DPOR, with no need for retry sets.
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nically speaking, retry set DPOR reorders with the data race first during depth-first search,
then skips generating a retry set for reordering the full abort path).

STM (abort code) reduction

Secondly, the state spaces could be reduced simply by restricting the concurrency model
to only a subset of nondeterministic xbegin outcomes possible under HTM. Concretely
speaking, the -X -A -S combination of Landslide options suppresses retry aborts (§6.2.2),
which must be checked at every transactional preemption point, replacing them with ex-
plicit and conflict aborts, which Landslide injects only after identifying memory conflicts
through DPOR or encountering an xabort, respectively, ultimately simulating the seman-
tics of STM rather than HTM. This can allow for state space reduction when transactions
happen to be non-conflicting, but more impactfully, conflict aborts can occur only after
the other thread’s conflicting access, so between a pair of transactions only the success,
success and success, abort sequences need be tested; abort, success and abort, abort may
(in fact, must) be skipped. The final column in Table 6.2 shows the result of STM seman-
tics verification, which always results in at least 2x reduction compared to the baseline,
although retry sets can make up some of the lost ground in some cases.

Abstraction reduction

Visual inspection of the AVL tree and separate-chaining map implementations [DAS16],
after correcting the former’s atomicity bug (Figure 6.6), reveals that every use of HTM
followed exactly the same pattern: running identical data structure logic in both the trans-
actional and abort paths, as though HTM were merely a mutual exclusion lock with fancy
performance characteristics. Prior work [Sim13] proposed abstraction reduction, in which
the user identifies program components that can be separated by a well-understood API,
then tests each one against the API individually, effectively turning multiplicative state
space size factors into additive ones.

In this case, I split the lock-like HTM use and the mutually-exclusive data structure
code into separate tests, lock, which checks that the use of HTM guarantees mutual exclu-
sion, and avl_mutex/map_mutex, which replace the open-coded HTM use with an already-
trusted P2 mutex. lock_fast, a bonus test, checks the transactional lock’s performance
by asserting that its internal logic won’t trigger conflict aborts even when the client’s
accesses are independent. Figure 6.9 shows their core logic. Finally, I parameterized
them over how the lock was implemented: a real-world spinlock implementation from
[Seil3], spin_fixed, the same with the performance bug from §6.3.2 fixed, and mutex,
using Landslide-annotated P2 mutexes (as the AVL and map implementations do).

Table 6.4 shows the new resulting levels of verification Landslide reached before the
same 10-hour timeout. Provided that one trusts the lock tests correctly check the desired
properties, and that open-coding hadn’t introduced any new bugs (such as Figure 6.6’s),
the benefit is clear: the data structure tests’ state spaces become much more tractable,
their state space growth now defined only by internal conflicts from tree rebalancing,
map resizing, and so on. In total, summing the testing times of lock(mutex)(K,N) and

168



static int num_in_section = 0;

for (int i = 0; i < NITERS; i++) {
rtm_spinlock_acquire(&lock);
num_in_section++;
if (!_xtest())

thr_yield(-1);

assert(num_in_section == 1);
num_in_section--;
rtm_spinlock_release(&lock);

(a) lock(), tests mutual exclusion.

for (int i

= 0; i < NITERS; i++) {
rtm_spinlock_acquire(&lock);

assert(_xtest());
rtm_spinlock_release(&lock);

Figure 6.9: Abstraction reduction test cases.

(b) lock_fast(), tests for no spurious aborts.

STM (-A -S) Non-transactional
cpu (s) SS size cpu (s) SS size
test K,N (or test.) | (or test.) test K,N (or 1ETA) (or fest.)
lock 2,1 3.41 4 avl_mutex 2,1 3.48 7
(spinlock) 2,2 198.77 1702 2,2 6.25 85
3,1 35.28 246 2,3 24.69 561
lock 2,1 3.55 4 2,4 217.98 4984
(spin_fixed) 2,2 105.57 998 2,5 3417.86 76787
2,3 133h 13m 1321553 3,1 8.26 129
3,1 28.27 186 3,2 1403.46 30653
3,2 || 113y 281d | 11443676 3,3 || f11d22h | 123136172
4,1 116h 26m 1432628 4,1 199.96 4488
lock 2,1 3.44 4 4,2 141d Oh | 166520074
(mutex) 2,2 16.83 180 map_mutex 2,1 39.81 83
2,3 405.21 9372 2,2 126h 21m 11085126
2,4 24999.68 489480 3,1 || t173d 17h | 112572187
3,1 15.00 132 map_basicer 2,1 14.34 9
3,2 126h 42m | 11223955 _mutex 2,2 147.27 2953
4,1 665.89 15064 2,3 12946.21 244691
lock_fast 2,1 3.25 1 2,4 t2d 17h 11130184
(spin_fixed) 9,9 4.61 1 3,1 637.81 12707
lock_fast 2,1 3.19 1 3,2 1102d 13h | 113220616
(mutex) 9,9 4.62 1 4,1 t33h 33m 11778661

(a) Verifying HTM locks alone.

Table 6.4: Continuation of Table 6.2, demonstrating abstraction reduction on the
avl_fixed and map_basic tests by verifying HTM mutex implementations separately.

(b) Verifying the lock’s client code.

Tested with STM semantics, as both lock implementations include a retry loop.
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avl_mutex(K,N) produces the same verification as avl_fixed(K, N) far more cheaply. Fur-
thermore, lock’s verification can be reused, whereas avl_fixed and map_basic effectively
duplicated the mutex verification between them.

Note two curiosities: firstly, the impact that fixing Figure 6.7’s performance bug (chang-
ing a read+write to a read only) had on even the correctness tests: lock(spin_fixed)’s
state spaces were reduced by nearly half compared to lock(spinlock), on account of
DPOR no longer needing to reorder the (now) read-read access pairs. Secondly, spinlock
and spin_fixed take longer to test per interleaving than mutex (roughly 6 interleavings
per second for the former, 20 for the latter), because while mutex abstracts away threads
needing to wait their turn for the critical section behind an API Landslide understands, the
spinlock’s wait loop is open-coded, and Landslide must fall back on its costlier heuristic
synchronization detection (§3.4.6). In this way (and also, of course, because mutex’s state
spaces are smaller overall), mutex can be seen in turn as a further abstraction reduction
of spinlock.

6.4 Discussion

This section will review the evaluation’s results in a broader context, list the current limi-
tations of Landslide’s implementation, and discuss open problems for future work.

6.4.1 Retry set optimality

For all the reduction retry sets demonstrated in Table 6.2, some inefficiencies remain in
its strategy. For example, it is not clear how to prune soundly when three or more threads
must be reorderd around one transactional preemption point, or when a second pair of
partially-independent transactions interleaves while an existing retry set is already ac-
tive. Accordingly, I implemented the optimization as conservatively as possible in these
cases, “saturating” the retry sets to fall back to no pruning (update_pp_abort_set() and
update_pp_abandon_abort_set(), respectively).

Likewise, the cases of htm2(2,3), (2,4), and (4,1), in which retry sets achieved better
reduction than STM mode, suggest that the latter does not necessarily subsume the for-
mer, and that combining the two could in theory achieve further reduction still, However,
xbegin results other than _XABORT_RETRY may depend on the execution logic (explicit
aborts may be conditional on some change by a conflicting thread, and conflict aborts
cannot occur before their conflicting transaction to begin with'®), so it remains an open
problem to soundly prune either success paths or retry aborts while other abort codes are
in play, and preserve the reduction achieved with the baseline configuration.

While motivated by straightforward analogy to the known-sound sleep sets, the in-
tersection of retry sets with Landslide’s other exploration features may cause unforeseen
problems. For now, its use is prohibited in conjunction with other state-space-affecting

13See landslide-friendly-tests/htm_causality.c; that was a fun realization to have already halfway
into implementing retry sets the wrong way at first.
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features such as ICB (83.4.5) as well as multiple abort codes. I personally believe retry set
reduction to be sound under these restrictions, having carefully scrutinized its behaviour
while constructing Figure 6.5 and from inspecting state spaces arising from larger test
parameters as well; nevertheless, this falls well short of formal proof, which I must leave
to future work.

6.4.2 STM reduction soundness

In §6.3.3 I showed that state spaces could be reduced even further than with retry sets
by assuming an HTM interface which abstracts away _XABORT_RETRY behind a loop. How-
ever, suppressing retry aborts is not guaranteed to faithfully test all possible behaviours
observable under HTM. As an example, note in Table 6.2 how STM semantics reduced
fig63’s state space on all (K,N) configurations to 1. Because its transactional paths are
all mutually independent, DPOR identifies no need either to inject conflict aborts or to re-
order threads. However, this skips the slow-path consistency assertion completely. If the
programmer had intended it to run “every so often” at the whim of the timer interrupt,
applying this reduction would be unsound. Also note the state space size of 4 for many
(2,1) test configurations, corresponding exactly to the aforementioned success, success
and success, abort sequences (times two ways to interleave the two threads). Because
of the scheduling dependency for conflict aborts, Landslide cannot recognize the failure
path’s data races without a third freely-reorderable iteration; STM mode must be run with
K x N > 3 to meaningfully test conflicts between failure and success paths at all. A user
wishing to distinguish conflict aborts, retry aborts, and so on during testing without gloss-
ing over any of HTM’s peculiarities could supply the -X -A options without -S; however,
this will inevitably result in state spaces at least as large as the baseline.

On the other hand, some programs may clearly annotate their intention for abort paths
to be executed only in case of actual memory conflicts. swap, avl_insert, and map_basic
abstract their _xbegin() calls behind an interface which can be implemented either with
or without retry loops, while lock(spinlock) and lock(mutex) implement the retry loop
directly. In these cases, the user can assure herself of STM reduction’s soundness by
visual inspection. In fact, Landslide’s current implementation gets stuck in infinitely deep
interleavings whenever it encounters a retry loop (bypassing even its heuristic infinite
loop detection), so for now the user must inspect the test case to determine which testing
mode to use. Future work could automatically identify a program’s retry loops and give up
on _XABORT_RETRY by switching to STM mode on-the-fly, much like Landslide’s heuristic
synchronization detection does for yield loops (§3.4.6).

6.4.3 Nested transactions

Whenever _xbegin() is called with a transaction already active, or _xend() while not,
Landslide’s current implementation immediately stops and reports a bug. However, just
as concurrent programs often hold multiple locks simultaneously, one may wish to conduct
multiple transactional routines simultaneously, especially as they may be abstracted across
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different code modules as a project grows in scale. Recent work [CHM16, DJR17] has
developed both implementations and formal semantics for executing nested transactions,
so future work should extend the verification concurrency model to permit such programs.
For now, the best Landslide can offer is to check the transactional components and their
client code separately against their APIs with abstraction reduction (§6.3.3), then check
the rest of the program with (for example) traditional mutexes that can nest safely.

6.4.4 Relaxed memory orderings

§6.1’s formalization of thread interleavings does not account for read/write reorderings
possible on relaxed consistency architectures [AG96]. In fact, even after [DAS16]’s pro-
posed fix to the atomicity protocol in Figure 6.4, it is still incorrect on Total Store Order
(TSO) architectures such as x86, let alone on weaker memory models. Despite stores
being totally-ordered, x86 may still reorder stores after subsequent loads [Sull7b]. Ac-
cordingly, an execution of lines 8,9a, 9b,9c may be locally visible to another thread as
9a, 8,9b, 9¢, and hence an apparent interleaving of

T1@1,T2@1 — 5,T1@7, T1@9q, T3@1 — 5, T1@8, T1@9 — B

is possible (reordered accesses underlined for emphasis). An acquire barrier is needed
between lines 8 and 9 to solve this problem on TSO [Blum18b] (on x86, either mfence
or xchg/xadd). Recent work [CSW18] also demonstrated unsoundness in a similar lock
elision implementation on ARMv8 (PSO), in which the transactional path reads the lock’s
internal state directly rather than using a separate flag. In Figure 6.4, a release barrier
before line A is also necessary under PSO.

Because Landslide’s concurrency model includes only instruction-level thread nonde-
terminism, not per-CPU memory buffer reorderings, its current HTM implementation can-
not find this bug. In fact, it erroneously verifies the corresponding test htm2(3,1) in 40
CPU-seconds, with 774 interleavings in total, none of which include the above-listed se-
quence. Recent work has extended DPOR to support TSO and PSO memory nondetermin-
ism [ZKW15], as well as proposed formal execution semantics for HTM on these archi-
tectures [DJR17, CSW18]; if both of these advances were incorporated into Landslide’s
concurrency model, it could find or verify the absence of such bugs. Visual inspection of
the transactional AVL tree and hashmap [DAS16] found no barriers used in this imple-
mentation pattern; I would urge any reader interested in using those to add them in by
hand first. The test case lock(mutex) (landslide-friendly-tests/htm_mutex.c in the
repository) provides an example of how to use compiler intrinsics to emit the necessary
barriers.

6.5 Summary
This chapter has extended the concurrency model of stateless model checking to support

transactional memory, and proposed several new reduction strategies for coping with the
concomitant state space explosion. I have made the following contributions:
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* An approach for model checkers to emulate strongly-atomic HTM by treating trans-
actions as globally-uninterruptible atomic sections and injecting failure without sim-
ulating rollback (§6.1.2) and applying conventional data race analysis with all trans-
actions treated as a global lock (§6.1.3), plus an extension to also emulate weakly-
atomic STM systems by relaxing the above atomicity to apply to other transactions
only (86.1.4), each section with a corresponding soundness proof of equivalence to
existing systems’ semantics.

* Animplementation of both forms of transactional memory in Landslide, with further
options to configure the variety of abort codes injected (§6.2).

* A suite of transactional benchmark programs, designed to produce interesting state
spaces of varying size, bugginess, and reducibility (§6.3.1). This test suite is more
appropriate for evaluating model checkers than prior work, which to date has fo-
cused on testing the raw performance of TM backend implementations, with little
focus on the interactions of abort paths.

* Two previously-unknown bugs found in transactional programs from prior work
(86.3.2).

* Retry set reduction, a new state space reduction algorithm (§6.2.5) which the evalua-
tion shows identifies and skips equivalent interleavings compared to standard DPOR,
even when transactional and abort paths are fully mutually conflicting (§6.3.3).

* Demonstration of two further heuristic reduction strategies on HTM programs, abort
code reduction (§6.3.3) and abstraction reduction (§6.3.3) which rely on human
intuition to ensure their soundness to tackle even larger state spaces still.

* Verifications of Figure 6.4’s atomicity protocol and the lock(mutex) transactional
lock up to 2 threads, 4 iterations and 4 threads, 1 iteration for each (§6.3.3).

As concurrent systems grow in complexity to meet modern performance demands,
they grow ever more fraught with opportunity for subtle bugs, and the programmer like-
wise faces ever more difficulty in verifying her programs. Following in the footsteps of
related work for relaxed memory concurrency, this chapter has enabled stateless model
checking to address yet another new technique, and concludes this thesis’s contributions
to the field. The upcoming chapters will offer a tour of related research problems, solved
and unsolved, practical and philosophical, past and future.
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Chapter 7
Related Work

It is important to draw wisdom ﬁam many d/ﬁ‘éren t p/aces.
If you take it ﬁam on{y one /J/ﬂce, it becomes r{'gt’d and stale.

—Iroh, Avatar: The Last Airbender

This field is built of the contributions of many a brilliant mind trying to carve out a
presentable space in an overall impossible problem, each making their own tradeoffs along
the way. While previous chapters cited prior work as necessary in background discussions,
algorithm descriptions, and so on, this chapter aims to comprehensively tour the field,
orienting the reader’s understanding of Landslide in the space of said tradeoffs.

7.1 Stateless model checking

Equal partners in concurrency testing are the practical and the theoretical: tool imple-
mentations that target specific problem domains and algorithmic advances to make ever-
larger state spaces computationally feasible. The following two subsections discuss the
most closely related prior work accordingly.

7.1.1 Tools

Stateless model checking dates back to Verisoft [God97], the 1997 tool which first at-
tempted to exhaustively explore the possible ways to interleave threads. Since then, re-
searchers have built many tools along the same lines to test many kinds of programs. One
of the best-known MCs is Microsoft Research’s CHESS [MQB*08], a checker for userspace
C++ programs which preempts on synchronization APIs by default, supporting compiler
instrumentation to preempt on memory accesses as well, and which pioneered the ICB
search strategy discussed below.

Many checkers exist which target programs written for various different types of
concurrent execution and/or programming environments. MaceMC [KAJV07], MoDist
[YCW™09], SAMC [LHJ"14], ETA [SBGH11], and Concuerror [CGS13], focus on dis-
tributed systems, where concurrent events are limited to message-passing and may span
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across multiple machines. R4 [JMR"15] and EventRacer [BRV15] check event-driven con-
current programs typical in mobile applications. Like Landslide, SimTester [YSR12] is a
Simics [MCE"02]-based tool for kernel-level code, although it focuses on interrupt nonde-
terminism for testing device drivers, and is limited to injecting at most one interrupt per
test run (as if under ICB with a bound of 1). dBug [SBG10], another CMU original simi-
lar to CHESS, tests natively-executing programs using a dynamic library preload to insert
preemption points at pthread and MPI interface boundaries. Inspect [YCGKO08] uses a
static alias analysis to instrument and preempt all memory accesses to potentially-shared
data at compile time, in addition to common synchronization APIs. RacePRO [IVT"11]
targets multi-process programs using system calls such as the filesystem API as preemp-
tion points to find bugs which can corrupt persistent system resources. SPIN [Hol97]
tests algorithms defined in the PROMELA domain-specific language, instruments every
memory access, uses explicit state tracking rather than the stateless approach (§2.2), and
specializes in verifying synchronization primitives such as RCU [MWO07]. TLC [YML99]
checks formal models of concurrent program behaviour written in the specification lan-
guage TLA+ [LamO02], and is arguably one of the only true concurrency model checkers
as it checks specifications separate from the programs themselves rather than attempting
to exhaustively exercise every thread interleaving directly (see §2.5). Déja Fu [WR15]
is a model checker for the Haskell language, whose strong type system guarantees that
thread communication be confined to trusted, type-safe APIs. It instruments these inter-
faces (STM among them) to check for deadlocks or nondeterministic behaviour in general,
which either may arise despite the static no-data-race guarantee.

The problem of relaxed memory nondeterminism alone has inspired the creation of
several new tools in the past few years. Relacy [Vyul1], a header-only C+ + model check-
ing library for synchronization primitives, was the first to broach this field, although it
requires custom annotations for non-atomic memory accesses and does not fully model
all memory reorderingss. CDSChecker [ND13] extends DPOR with a reads-from relation
to capture most of the C++11 memory model’s new behaviours. Nidhugg [AAAT15] is a
checker for TSO and PSO which instruments LLVM abstract assembly, although does not
yet support the C++11 memory model. rinspect [ZKW15] offers further heuristic state
space reduction using buffer bounding (described below). RCMC [KLSV17] models a “re-
paired” version of the C++11 memory model known as RC11 [LVK"17], and professes
to achieve the best state space reduction to date. These tools each use various heuristics
to account for spin-wait loops, ranging from delay bounding [CMM13] to a rigid rewrite
rule, and provide only limited support so far for read-modify-write atomics (at best, sup-
porting them by introducing some redundant exploration). No relaxed-memory MC has
yet proposed a satisfactory model for the “thin-air” problem [Sull7b], which can cause
state space cycles in a way not yet well-understood and remains future work. They also
identify all data races (under the C++ definition rather than §4.3’s; see §2.3.2) as bugs
immediately, rather than checking them for benign or buggy outcomes. All the tools in
this paragraph are notably open-source — an encouraging recent trend in the field.

If I might indulge by listing Landslide in its own related work section [Blum18d], I
would distinguish it by its ability to find shared memory preemption points via dynamic
tracing, rather than relying on user annotations or imprecise compiler instrumentation.
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Compared to all other tools I know of, it implements a wider range of exponential explo-
sion coping techniques, some theoretical and some heuristic, some inherited and some
novel, to help the user receive meaningful results as promptly as possible. Its choice of
a familiar pthread-like synchronization API makes it suitable for inexpert users, and its
recent extension to HTM adds support for more modern concurrency patterns as well.

7.1.2 Algorithms

To date a number of techniques have been proposed to mitigate exponential explosion,
the Sisyphean rock of stateless MC. The notion that some interleavings could lead to indis-
tinguishable program states and be therefore redundant, known as partial order reduction
(POR), was first proposed in [GW94] and explored in detail in [God96]. Dynamic POR
(DPOR) was later developed in [FGO5], proposing to track communication events between
threads on-the-fly (i.e., dynamically) rather than to rely on imprecise static alias analyses,
and is now considered the baseline for all subsequent state space reduction approaches
in stateless MC. That paper includes the sleep sets extension, which Landslide includes in
its implementation. It is a sound reduction algorithm, meaning it will never fail to test a
possible program behavior, despite skipping many execution sequences. §3.4.2 provides
a detailed walk-through of how DPOR works, as many of this thesis’s contributions build
directly upon it. DPOR has since been extended in several ways to achieve further reduc-
tion and to incorporate new concurrency models. Distributed DPOR [SBGH12] allows
the exploration to be parallelized, with a minimum of overhead from redundant inter-
leavings that would ordinarily be pruned in sequential DPOR. Optimal DPOR [AAJS14]
extends sleep sets into the more expressive wakeup trees, which provably tests exactly
one interleaving from each equivalence class, i.e., the optimal possible reduction, at least
under the memory independence definition of equivalence. Extending the equivalence
relation itself to capture not just memory address conflicts but also the values read and
written, SATCheck [DL15] and Maximal Causality Reduction (MCR) [Hual5] use an SMT
solver [DMBO08] to identify additional pruning opportunities. Implementing paralleliza-
tion, wakeup trees, or SMT-driven exploration in Landslide is left to future work.

Several other recent advances extend DPOR to new concurrency models, beyond the
shared-memory-threading model outlined in §3.4.2. TransDPOR [TKL"12] provides ad-
ditional domain-specific reduction for message-passing actor programs by exploiting the
fact that the dependency relation is transitive in the absence of shared state. The R*
algorithm [JMR*15], used by the R4 checker mentioned above, extends DPOR to event-
driven programs by separating the notion of enabled events from that of multiple threads.
TaxDC [LLLG16], a taxonomy study of distributed systems concurrency bugs, showed that
for completeness distributed model checkers must incorporate many forms of nondeter-
minism, including message reordering, timeouts, network disconnections, and crashes
and reboots, in addition to local threads. DPOR for TSO and PSO [ZKW15] extends the
concurrency model using shadow threads, which interleave with traditional threads to rep-
resent store buffer nondeterminism, which can expose bugs not even possible in the strong
consistency model such as discussed in §6.4.4. It also introduced a heuristic buffer bound-
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ing technique, analogous to ICB, to mitigate the corresponding increase in state space size.
The same year, Nidhugg [AAA*15] proposed a DPOR extension to account for TSO and
PSO using chronological traces. MCR was recently extended to support relaxed memory
models likewise [HH16]. Just this year, RCMC [KLSV17] proposed to replace the inter-
leaving model entirely with execution graphs, which precisely model the executions legal
under the RC11 memory model, offering further reduction still. Somewhat analogously
for HTM, this work’s Chapter 6 extended DPOR’s concurrency model to include failure
injection, and proposed three reduction strategies, one sound and two heuristic, to keep
state spaces manageable.

Of course, no matter how powerful a sound reduction, there will always be programs
too large to test. To provide even partial results for state spaces that exceed the testing
budget (whether as predicted by automatic estimation [SBG12] or by a human’s wild
guess), various heuristic strategies have been proposed. Preemption Sealing [BBC™10]
allows programmers to manually exclude preemption points arising from trusted source
code modules; Landslide implements this as the without_function command (§3.4.1).
Iterative Context Bounding (ICB) [MQO7] (§3.4.5) orders the search space by increas-
ing number of preemptions in each branch, which is empirically more likely to expose
bugs sooner should they exist; BPOR [CMM13] extends DPOR to preserve soundness
thereunder. Landslide implements ICB and BPOR for Chapter 4’s control experiments,
although does not yet incorporate it into this thesis’s own contributions (as discussed in
Chapter 8). Chapter 4’s Quicksand algorithm is, effectively, another such heuristic search
strategy, focusing on preemption point subsets rather than context switch bounding.
Maple [YNPP12] proposed a heuristic metric for measuring the amount of “concurrency
coverage”, analogous to line-by-line coverage for sequential programs, and prioritizes test-
ing interleavings which increase the coverage metric, although it makes several limiting
assumptions such as preemption locality and independence of values read/written. DeMe-
ter [GWZ"11] adapted abstraction reduction to distributed systems verification under the
name Dynamic Interface Reduction, while dBug [Sim13] applied abstraction reduction
to synchronization primitives, and I showed how it could be applied similarly to transac-
tional memory in §6.3.3. Each of these approaches is compatible (and indeed, throughout
this thesis used often in concert) with the sound reduction analyses listed above.

7.2 Data race analysis

Data race analysis, originating with the lockset-only analysis of Eraser [SBN"97], has
since grown into a mature field in its own right, which Landslide more borrows as build-
ing blocks for its own methods rather than contributing new techniques to. Data race de-
tectors are largely distinguished by their particular flavour of the Happens-Before (HB)
relation, as discussed in §2.3.2. Djit+ [PS03] and FastTrack [FF09] are among those
which soundly avoid false positives using “Pure” HB, tracking Lamport-style vector clocks
[Lam78] for each lock and each thread to compute a global partial order on shared state
accesses, and flag any access pair not related thereby. FastTrack optimizes Djit+’s analysis
rules to remove O(K) runtime factors (i.e., linear in the number of threads) from several
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common read and write tracing events; however, because K is relatively small in model
checking’s use cases, Landslide uses the Djit+ rules for the sake of implementation simplic-
ity. Meanwhile, the “hybrid” approach which combines DPOR-style happens-before with
locksets [OCO03], used in tools such as ThreadSanitizer [SI09], compute a more relaxed
partial order to find more potential races in a single pass at the cost of false positives. I
called this “Limited” HB on account of how it excludes only those access pairs separated
by blocking synchronization, not those separated by just locks or barriers, as compared
to Pure HB. Landslide’s Limited HB implementation piggy-backs on DPOR’s computed
happens-before relation, supplemented with straightforward lock-sets and heuristic treat-
ment of lock hand-off (often common in kernels).

Since these foundational algorithms, many more recent works have contributed to
make data race analysis more precise, more performant, and/or more domain-specific.
The Causally-Precedes relation [SES*12] is a refinement of Limited HB which avoids the
most common cases of false positives, including §4.3.2’s reallocation false positives. It
could strike a middle ground in the bug-finding/verification tradeoff between Pure and
Limited HB (84.5) that would be a welcome enhancement in Quicksand. IFRit [EDLC*12]
improves the performance of Pure HB using an interference analysis, which could allow
future work to avoid tracing every memory access in a simulator such as Bochs [Law96]
or Simics [MCE™02]. DroidRacer [MKM14] and CAFA [HYN'14] find data races in An-
droid applications, using domain-specific heuristics (orthogonal to Quicksand’s method)
to reduce false positives. DataCollider [EMBO10] finds data races in kernel code by using
hardware breakpoints and random sampling to achieve high performance.

Although many MCs listed in the previous section are content to report any data races
as outright bugs, RacerX [EA03] showed that tools must be careful not to overwhelm users
with benign warnings they don’t care about fixing. This has motivated replay analysis to
classify data race candidates by their impact on program behaviour by extending single-
pass data race analysis to many thread interleavings. It was first introduced in [NWT07],
which compares the program states immediately after the access pair for differences, pre-
ferring still to err on the side of false positives (as different program states might not
necessarily lead to a failure). RaceFuzzer [Sen08] avoids false positives by requiring an
actual failure be exhibited, as Quicksand does, although it uses random schedule fuzzing
rather than model checking for its concurrency coverage. Portend [KZC12] is closest in
spirit to Quicksand: it tests alternate executions based on single-pass data race candidates
to classify them in a taxonomy of likely severity, including non-failing races which never-
theless cause nondeterministic output in addition to obvious failures. However, it does not
test alternate interleavings in advance of knowing any specific data races, which §4.5.4
showed is necessary to find certain bugs. Quicksand builds on Portend’s approach by intro-
ducing a feedback loop between the data race analysis and model checking, which results
in a stronger verification property when the test can be fully completed (§4.3). Portend
also uses symbolic execution to test input nondeterminism as well as schedule nondeter-
minism, while Quicksand remains at the mercy of manual test case design. Future work
could incorporate Portend’s taxonomy to better help the user understand any non-failing
data races when the test is too large to complete, as well as its symbolic execution to help
user-provided tests achieve better coverage automatically.
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7.3 Concurrency in education

The operating systems curriculum at CMU has used the Pebbles project infrastructure and
assigned the thread library [Eck18a] and kernel [Eck18b] projects in something recogniz-
ably close to their modern forms since the Fall 2003 semester. I chose Pebbles to target
with Landslide because it is closest to home, naturally. To indulge my bias as a former
member of 15-410 course staff, I also believe that Pebbles’s open-ended, design-oriented
project structure is best suited to train students to design robust concurrent code and de-
bug it efficiently, as it forces them to consider interactions between many different parts of
their design simultaneously. However, the difficulty of its concurrency problems (mostly
having to do with thread lifecycle) leaves little time left in the semester to cover more
modern topics such as multicore scheduling let alone transactions or relaxed memory (all
relegated to lecture material not reinforced by the assignments).

Pintos [PRB09] has recently emerged as the most popular educational kernel (by count
of top CS schools in the United States who use it); it trades off the prevalence of its concur-
rency challenges to cover various OS topics more broadly, especially advanced scheduling
algorithms and filesystems. Pintos is the stand-alone evolution of its predecessor, Na-
chos [CPA93], which originally ran as a UNIX process with simulated device drivers. Its
popularity motivated me to extend Landslide to support it as an additional kernel archi-
tecture (an unfortunately arduous task) to prove Landslide’s mettle beyond CMU’s walls.
Xv6 [CFYT06], from MIT, is another major educational kernel, which is also UNIX-like
and runs in QEMU, and a natural target for model checking in future work. Recently,
Columbia introduced a new Android-focused OS course [AN12], which perhaps highlights
the importance of related work on model-checking event-driven applications [JMR'15].

To my knowledge, this is the first study of model checking in an educational setting, al-
though teaching concurrency is not itself an unstudied problem. [LBMO09] surveyed how
students think about testing and debugging during a concurrent programming project,
finding that unguided, students often approach testing haphazardly, not understanding
the goal of good concurrency coverage, and also had difficulty understanding single fail-
ing executions. In fact, the study explicitly recommended tool support for testing many
interleavings automatically (model checking) and for execution traces to communicate
sequences of important events (preemption traces), which I dare say I have achieved in
this thesis. A more recent study [AM17] examined in detail the students’ thought process
during the diagnosis and fixing phases, although its participants were drawn from novice-
level programming classes, and the experiment was set up with more elementary bugs like
syntax and logic errors correspondingly. Nevertheless, the authors recommended teach-
ing debugging skills explicitly via systematic exposure to different kinds of bugs, which
suggests future work for even advanced operating systems curricula to offer a “warm
up” Landslide assignment (for example, the atomic_x tests from §5.1.3) that could ulti-
mately lead to a higher solve rate on Landslide’s bug reports during P2 (8§5.3.1). The
Deadlock Empire [HP16] is an educational introduction to concurrent programming and
debugging, presented as an online puzzle-hunt of sorts, backed up by a fantasy-themed
narrative. Each puzzle requires the user to manually step through the execution of mul-
tiple threads to find buggy interleavings. Though itself lacking in scientific analysis of its
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educational power, it demonstrates the kind of user-friendly features and overall approach
that many students expressed desire for in their survey responses (§5.3.3). Future work
could extend Landslide’s preemption traces to include similar interactivity.

Willgrind [Nac17] is a tool recently developed at Virginia Tech that targets a fork-join
parallelism project and checks for memory errors (using the Valgrind [NSO07] framework)
as well as deadlocks, assertion failures, and data races, similarly to Landslide, although
unlike Landslide, its thread interleaving coverage is as yet limited to stress testing. Its
GUI-based debugging output is perhaps more friendly than Landslide’s HTML preemp-
tion traces, and its user survey found that students appreciated detailed debugging info
especially for deadlocks (future work for Landslide), but also that students had little pa-
tience for even a 5-minute stress test when no assurance against false negatives could be
provided. This suggests motivating students with Landslide’s verification guarantee, al-
though it is tricky to avoid accientally encouraging them to limit possible interleavings by
just using one global lock for everything, which is counter to 15-410’s educational goals.

7.4 Transactional memory

Transactional memory (TM), first introduced in 1993 [HM93], has received renewed at-
tention in recent years since the launch of Intel’s Haswell architecture [HKO"14], which
supports hardware transactions (HTM) using new x86 instructions. Since then, many
studies have evaluated the increased performance it offers over traditional locking and/or
STM [DLMNO09, YHLR13, DAS16]. HTM’s performance comes at an increased cost in com-
plexity to the programmer, who must avoid system calls or transaction nesting, respect
the CPU cache capacity, and consider retry loops for spurious failure. SI-TM [LCF*14]
introduces techniques for reducing HTM’s abort rates for performance’s sake, but with-
out eliminating them altogether, any full verification must still consider them possible
anywhere. For programmers who wish to avoid such concerns, the simpler STM program-
ming model remains relevant. One recent work [CHM16] enhances STM transactions to
nest with HTM ones, while another [GHS09] adds support for relaxed memory models.
Meanwhile, two recent papers [CSW18, DJR17] have proposed formal models of HTM’s
execution semantics under relaxed memory likewise. Such extensions come with the chal-
lenge of even more complicated behavioural semantics for MCs to accurately model and
verify in future work.

Testing approaches for transactional programs are sparsely represented in the litera-
ture so far. Although several related works [GK08, GHS08, DGLMO09] are building up to
formal proofs of the correctness of underlying TM implementations, Landslide is the first
I know of to verify client programs thereof. McRT STM [SATH'06], an STM implemen-
tation built by Intel, was checked using SPIN [Hol97], verifying up to 2 threads running
1 transaction each with up to 3 memory accesses [OST08]. This kind of verification,
analogous to §5.1.3’s mutex_test, is an important stepping stone for trusting the results
Landslide will provide. STAMP [MCKOO8] is a benchmark suite transactional programs,
implemented using the OpenTM interface [BMT07], used by many papers in the field
to evaluate the performance of both STM and HTM implementations alike. As discussed
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in §6.3.1, it focuses more on performance than on interesting concurrency properties.
Even so, the more recent Stampede suite [NP17] argues that STAMP’s benchmarks were
constructed under a programming model poorly-suited to fully take advantage of HTM’s
performance, and that scalable HTM programs must minimize incidental conflicts and
handle aborts more flexibly than with blind retry loops. The programming complexity
needed to achieve these goals calls, of course, for correspondingly advanced verification
approaches such as Landslide. Finally, TxRace [ZLJ16] tests non-transactional programs
for data races by inserting HTM calls via compiler instrumentation, relying on conflict
aborts to point out access pairs that would be unsafe in the original program. This ci-
tation arguably belongs in §7.2 as well; I include it here to highlight the importance of
Landslide’s ability to distinguish different abort reasons (§6.2.2).

The paper which originally defined weak and strong atomicity [MBL06] also warns
of several false equivalence pitfalls when converting conventionally-locking code to use
transactions, although these pitfalls depend on multiple existing locks used locally and
disjointly, so this does not invalidate the equivalence proved in §6.1.3. Rather, Landslide
could be used to ensure that freshly-converted transactional code avoids the warned-of
pitfalls. Learning from Mistakes [LPSZ08], a survey of the characteristics of many types
of concurrency bugs, found that TM could potentially fix some, but not all, of the stud-
ied bugs, while in other cases it must be combined with other concurrency primitives to
be fully correct. A subsequent paper [VTSL12] found a majority of bugs to be easily fix-
able with hand-written transactions, while others remained out of scope due to blocking
cond_wait() operations and the like; more recently, the tool BugTM [CWLS18] aims to
deploy such repairs in production code fully automatically. However, these studies all op-
timize for empirical correctness at best, as well as maintaining good performance, which
motivates the use of tools like Landslide to ensure these rewrites are actually correct,
rather than merely shrinking the necessary preemption window required to expose them.

7.5 Other concurrency verification approaches

Naturally, many avenues of research towards writing correct programs have been explored
apart from just executing them a bunch of times to check all the interleavings. Though not
as directly related as the works referenced above, this section explores such approaches,
ranging from expressing safety guarantees in a language’s type system to checking, prov-
ing, and/or enforcing execution properties post-hoc.

Programming language design

While C’s extremely rudimentary type system allows the compiler to statically check
programs for properties such as not accidentally dereferencing raw integer values as if
they were pointers, more advanced programming languages may make guarantees about
concurrent execution. Language-level concurrency abstractions were first introduced by
the Communicating Sequential Processes (CSP) model [Hoa78], which defines a concur-
rent program as a set of isolated processes allowed to communicate only via blocking
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input/output commands. Erlang [VWW96], an early concurrent functional language, in-
troduced the actor model for concurrency based on the CSP model, in which threads like-
wise share no state and must communicate only by message-passing. While this statically
guarantees the absence of data races, programs may still execute nondeterministically, so
concurrency bugs, especially deadlocks, are not ruled out. Concuerror [CGS13], discussed
above, is a MC tool for Erlang programs. Haskell [HPJW*92] offers a more sophisticated
interface to concurrency: threads may reference the same objects and even update shared
references using monads that encapsulate mutation, but at the (garbage-collected) exe-
cution level all data is immutable once created, which preserves type soundness and data-
race freedom. The aforementioned Déja Fu [WR15] checks concurrent Haskell programs.
Rust’s type system supports more explicit memory management, in-place mutation, and
mutable references to appear familiar and approachable to those already versed in C+ +.
It proposes a borrow-check analysis to ensure memory and type safety despite mutable ref-
erences [KN18, §4.2,810.3], and a trait system to ensure no shared state between threads
by default [KN18, §10.2,816.4]. Its concurrency libraries then offer interfaces which relax
this restriction, allowing threads even to simultaneously reference shared mutable state,
using the type system to enforce sound locking discipline across such accesses, again pre-
serving type soundness and data-race freedom [KN18, §16.2].' I know of no existing
model checker for Rust as of yet. The Relaxed Memory Calculus [Sull7b] proposes to
extend C+ + with annotations for weak memory atomics, which allows for static formal
analysis of memory access reorderings. Although not ruling out data races, this approach
is an important step towards compilers which can statically reason about program ex-
ecution under more advanced concurrency models. Finally, LVish [KTTHN14] features
a type system that enforces deterministic behaviour by construction, using shared state
called I'Vars which allow writes only in ways that update order is not observable. This ren-
ders thread interleavings entirely irrelevant, obviating any need for runtime verification,
but at the cost of a more restrictive programming model.

Deterministic multithreading

Coming at nondeterminsm from the opposite angle as model checking, which aims to
push the frontier of testing coverage to expand as many interleavings as possible, is deter-
ministic multithreading, which reduces the number of interleavings possible to begin with
enough that said frontier can reach it more easily. Unlike LVish, described above, these
systems provide deterministic execution even for the familiar, C-like, shared-state mul-
tithreading programming model. Kendo [OAA09] and CoreDet [BAD"10] were among
the first systems to implement this, but were limited in which sources of nondetermin-
ism they could control and suffered high performance overhead. DThreads [LCB11] then
extended the scope of determinization to include data races, while Peregrine [CWG'11]
improved performance by using record-and-replay to compute a set of possible safe sched-
ules. Parrot [CSL"13] later integrated with the aforementioned dBug [SBG10] to offer
a partially-determinizing runtime scheduler that offered near-baseline performance by

I'The author themself contributed the original design for this latter feature [Blum12b].
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allowing the programmer to manually annotate speed-critical nondeterministic sections
and then check the resulting state spaces using dBug’s model checking as normal. Most
recently, Sofritas [DELD18] proposed the Ordering-Free Region execution model which
restricts nondeterminism to only order-enforcing operations such as blocking, and auto-
matically suggests refinement annotations to the programmer when that would be too
aggressive for the intended behaviour. These determinizing runtimes serve a different
purpose than MC: they seek to preserve the stability of existing code already running in
production, whether or not concurrency bugs may exist, while this thesis aims to eradicate
as many such bugs as possible beforehand. As Parrot demonstrated, the two approaches
are compatible in cases where either extreme be infeasible.

Symbolic execution

Analogous to stateless MC, which tests many possible thread execution paths under sched-
ule nondeterminism, another popular testing approach is symbolic execution [King76],
which tests many possible flow control paths under input nondeterminism. Symbolic ex-
ecutors abstract a program’s variables and use constraint solvers such as Z3 [DMBO08] to
work backwards and synthesize combinations of test inputs which can lead to a failure.
KLEE [CDEO08], one well-known and open-source implementation, offers over 90% code
coverage on average across many tests, often outdoing that achieved by programmers’
own hand-written tests. Later, Contessa [KGW10] extended symbolic execution to in-
clude concurrency nondeterminism as well, by using a DPOR-like analysis on individual
execution traces then including reordering possibilities in its SMT constraints. This simul-
taneously exercises both input and schedule nondeterminism, but does not provide the
same verification guarantees as repeated DPOR iterations with explicit scheduling. Ex-
ploring both kinds of state space at once thoroughly enough to provide strong verification
is undoubtedly subject to further state space explosion, and remains future work. Sym-
biosis [MLR15] starts from the known root cause of an existing failure and uses symbolic
execution to synthesize a schedule to reproduce it, then further searches for a non-failing
schedule and compares them to produce a minimum sequence of events necessary for the
failure. This approach skips the initial verification step entirely, but greatly reduces the
diagnosis effort required of the user, which was a common complaint about Landslide’s
preemption traces.

Formal verification

seL4 [KEH'09] is a microkernel fully designed and specified in Haskell and translated
into C. Its proofs guarantee not only standard security properties such as process isola-
tion and bounded interrupt latency, but also that the C code faithfully implements the
specification. It addresses concurrency by enabling system interrupts only at carefully-
chosen code points, and proving bounded runtime besides to ensure good preemptibility.
This degree of verification must however come at a cost: sel.4’s authors reported over 2
person-years of development effort, with the majority spent on the Haskell specification.
Verve [YH10] is another fully-verified kernel which uses type safety, rather than virtual
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memory isolation, to provide strong stability and isolation guarantees. It uses a small core
written in typed assembly language (TAL) [MWCG99] to provide runtime services such
as stack management, interrupt handling, and garbage collection. The remaining higher-
level kernel services are written in C# and compiled to TAL. Unlike sel.4, whose proofs
relied on human-driven interactive theorem proving, Verve’s verification comes from au-
tomated type- and invariant-checking, relying on pre/postcondition and loop invariant
annotations for its TAL core only, thereby imposing much less burden on its programmers.
seL.4’s microkernel nature allows it to run untrusted code, such as drivers, in the safety of
virtual memory isolation, while Verve’s type safety restricts what programs can be run at
all. Both approaches accept the limitation of non-parallel, uniprocessor execution. Cer-
tiKOS [GSC'16] extends sel4’s approach to include full concurrency and fine-grained
locking in the scope of verification, using a proof in the Coq proof assistant [inria89] that
also took 2 person-years to complete. Its safety properties hold under all possible inter-
leavings, and include data-race freedom as well as standard sequential properties such as
no null dereference and no buffer or integer overflow, although it stops short of reason-
ing about relaxed memory orderings or the TLB cache. Many programmers would find a
verification cost measured in person-years far too prohibitive, while others might argue
that for safety-critical kernel code you can’t afford not to verify so thoroughly.

More recently, Hyperkernel [NSZ"17] extended the xv6 educational kernel [CFY"06]
to allow for partial, case-by-case verification of system call behaviour using state-machine
specification in Python checked by an SMT solver. To limit verification complexity, it as-
sumes not only uniprocessor execution but also that interrupts be perpetually disabled,
taking concurrency entirely out of the equation to allow for greater extensibility and lessen
the programmer’s verification burden. CSPEC [CK18] is another recent system for for-
mally specifying and verifying concurrent systems using Coq, which is then extracted
into an executable version in Haskell. Its type system incorporates the notion of reorder-
ing independence, much akin to DPOR, although the complexity overhead is very high:
a locked counter on TSO weak memory requires 10 abstraction layers to formally spec-
ify, requiring among other things reasoning about the lock’s previous owner as well as
the current one. Heroic as such end-to-end formal verification projects are, this thesis
finds that trading off thoroughness for accessibility is also acceptable if it means helping
more users overall. Stateless model checking offers a middle ground for users to achieve
slightly less formal, but still theoretically-founded, verification guarantees even for unsafe
programming languages. Lastly, CompCertTSO [SVZN*13] extends the CompCert ver-
ified compiler [Ler09] to capture x86’s relaxed memory semantics, guaranteeing that a
program written in the ClightTSO subset of C is translated accurately to assembly with the
same behaviour. Like CertiKOS, its implementation is verified in Coq. Although Landslide
checks programs directly at the executable level, blind to the source code the program-
mer personally wrote, extending that pipeline with a certifying compiler would improve
the overall verification, ensuring that Landslide was actually checking the behaviour the
programmer intended.
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Chapter 8

Future Work

Yourney beﬁmz destination.”

Some may callita s/m/J/e p/atitude, butitis fﬂr more. A 1 journey will have
pain and failure. It is not only the steps forward that we must accept. It
is the stumbles. The trials. The knaw/eo{ge that we will fat’/

/f we sfop, lf we accept the person we are when we ﬁa//, t/iejrmrmfy ends.
70 love the 2 journey is to accept no such end.

— Dalinar Kholin, ()athbriqqer

Each of the previous three chapters concluded by discussing specific limitations, listing
concrete and immediate ways to address them with existing techniques (§4.6, §5.4, §6.4).
Meanwhile, this chapter takes a broader interpretation of “future work”, namely, how
might future Landslides solve research problems I didn’t even pose to begin with.

8.1 User-friendliness

In the user study survey (§5.3.3), students most often complained that interpreting Land-
slide’s preemption traces to diagnose and understand their bugs was too difficult. While
the understanding step of course requires human intuition, there is certainly room to im-
prove the diagnosis step beyond just showing the user one static HTML table. Related
works such as Symbiosis [MLR15] can find a minimal difference between the failing trace
and a non-failing one, which would allow the user to effortlessly pinpoint which preemp-
tions are closest to the true root cause. Further, using ICB [MQO7] to show the user a
minimum set of preemptions necessary to expose the bug could help her narrow down
possible diagnoses more quickly. Finally, the preemption trace itself could be interactive,
allowing the user to click and drag to reorder thread transitions and see how the inter-
leaving would change, or to click and drag preemption points across the source code to
figure out how much need to be atomic.

State space size management remains an issue, as ever. While Quicksand’s professed
selling point is that the user need input only a CPU budget, at the same time, pruning
uninteresting branches out of the overall state space would allow Quicksand to achieve
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more meaningful results in that same budget. Theoretical advances in state space reduc-
tion come out every year (§7.1.2), but the user’s human intuition can also contribute if
properly encouraged. For the P2 tests (§5.1.3), I configured Quicksand by hand to issue
appropriate without_function commands to Landslide (§3.4.1), and even more still for
the HTM tests (§6.3.1), but a user writing her own tests would have to configure DPOR
by hand. A more mature version would coach the user to decide which functions focus
the test on, using state space estimation to give an idea of expected testing time, and
listing the variables/locations of DPOR’s memory conflicts to help her identify more can-
didate functions to potentially ignore. Finally, Landslide could integrate with a version
control system to do incremental testing, automatically analyzing the functions touched
by each patch, and heuristically prioritizing preemption points therein to quickly check
small updates on top of an already-verified codebase.

8.2 Verification

In its current form, Landslide is limited to testing only those behaviours that the test case
it’s hooked up to can generate. The most obvious limitation of this is resource exhaus-
tion scenarios: stateless model checking simply cannot handle tests long-running enough
to exhaust system memory (succumbing to exponential explosion long before), so can-
not exercise any flow control that involves malloc() failing, for example. This specific
issue could be solved using by-hand annotations to block all preemption points until just
before exhaustion, or by extending Landslide to inject allocation failures at malloc() call-
sites (akin to _xbegin()). However, these require the user to realize in advance that she
should worry about allocation-failure bugs, and to configure Landslide specifically to tar-
get them. In general, a mature testing tool should not require the user to know in advance
where her bugs might be before being able to conduct an effective test. In future work, a
stateless model checking framework could collaborate with its user to semi-automatically
design better tests. Concurrency coverage metrics such as proposed by Maple [YNPP12]
could be extended to capture possible behaviours under any test input, not just within
the fixed state space under one given test, and symbolic execution frameworks such as
Contessa [KGW10] could search for possible inputs to suggest changes which might ex-
pose them. In cases where not-yet-covered conditional branches require certain function
return values, such as malloc() failing, the tool could offer to add failure injection with
the user’s approval, or at least prompt her to write a new test with that as a subgoal.

In the case study of submitted P2 bugs (§5.3.2), I noticed several submissions of a
common pattern in which Landslide overlooked the thr_exit() use-after-free bug: they
all manually recycled the exited thread’s stack using an internal free-list, rather than
calling free() or remove_pages, so Landslide’s heap-checker failed to see anything out
of the ordinary about the subsequent writes to it. Explicit annotations about the custom
free-list’s invariants could make Landslide treat it like free() and catch the errant write,
but that begs the question of knowing about the bug in advance. Catching this bug would
require extending the test case to thr_fork() a new thread to reuse the old stack and
suffer data corruption from the stray write. In this case, the user might happen to find this
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just by increasing the number of threads/iterations, which is just good testing practice,
but in general, automatically inferring such data structure invariants to suggest better
assertions remains an open problem. Future work might combine Landslide’s ability to
prove correctness for finite K, N parameters with a formal induction proof that generalizes
the result, finding a minimum number of threads necessary to expose all behaviours (at
least three in this example), although I know of no related work which addresses the
second half of this problem. Likewise, §6.3.3’s abstraction reduction requires the user to
believe that lock(spinlock) and friends correctly express the mutual exclusion property
in informal code!. Future work could further check such tests against external formal
specifications to make the abstraction reduction more trustworthy.

As important as Quicksand’s convergence theorem (§4.3), the HTM equivalence proofs
(86.1), and other soundness results from prior work are, they fall short of fully end-to-end
formal verification in terms of trusting the output of stateless model checkers in practice.
In addition to the issue of test cases, there is also currently no guarantee that Landslide’s
concrete implementation matches the theoretical properties. My personal faith in Land-
slide’s implementation comes from years of empirical observation: inspecting small state
spaces (such as Figure 6.8) by hand to check that preemption points show up in the right
places and that DPOR prunes the expected equivalences; as well as checking that the re-
lationships between larger state spaces satisfy expected invariants, such as when testing
two sets of preemption points, one a subset of the other, or testing the same but one with
an additional reduction applied, the one’s resulting state space must be smaller than the
other’s. Nevertheless, discrepancies may still lurk undiscovered: the failure injection bug
described in §6.3.1 took until implementing retry set reduction to discover, well after pub-
lishing the first experimental results in [Blum18a]. As the concurrency model becomes
more complex, more opportunities arise for the implementation to deviate from what the
soundness theorem actually proves. Kernels like sel.4 [KEH"09] and CertiKOS [GSC'16]
and concurrency-aware compilers like CompCertTSO [SVZN'13], all formally verified
against external specifications, provide important pioneering steps in this direction.?

8.3 Heuristics

In my experience, the WBE algorithm (used in Landslide for estimating number of in-
terleavings) consistently underestimates, being often seen to count (nearly) monotoni-
cally up toward the true value as exploration progresses, while the RE algorithm (used
in Landslide for estimating total execution time) can be unstable and erratic, bouncing
wildly among orders of magnitude even in the space of ten or fewer adjacent interleav-
ings. These flaws are especially visible in the avl_fixed transactional verification results
(Table 6.2). Both estimation algorithms use the known structure of the tree as a model for

'In Figure 6.9(a), the if (!_xtest()) thr_yield(-1); part required expert knowledge of HTM seman-
tics to write correctly: an unconditional yield there would cause the transaction to abort every time, verify-
ing mutual exclusion in the failure path only.

20f course, being verified themselves, these projects have no need for a verified Landslide, but checking
unverified (e.g., student) code with such would still be an improvement.
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the unknown (see §3.4.3), but make no use of domain-specific knowledge such as which
threads were chosen to run at each preemption point. For example, consider the root of
the left subtree in Figure 2.4, thread 1’s tmp1++. At that moment thread 1 has 1 more
instruction left to execute, while thread 2 has 3. If thread 1’s last instruction is chosen to
run next, there can only be one way to run thread 2’s 3 steps thereafter ((330) = 1); if
thread 2’s first instruction is chosen to run next, there will be 3 ways to interleave thread
1’s last among thread 2’s remaining 2 ((Zfl) = 3). In general, the largest child subtree
at any preemption point will be the one resulting from running the thread with the most
transitions left, or more formally, fixing N+ M = C, (") is maximized when N ~ M.
WBE and RE could both be relatively easily extended to incorporate this observation, using
knowledge from branches already tested to guess (still heuristically) appropriate values
for N and M. Predicting more advanced aspects of state space structure, such as subtrees
pruned by sleep set reduction (§3.4.2; %4 in Figure 3.6), would likely require analyzing
DPOR’s memory conflicts as well.

There is much room to expand Landslide’s use of heuristics to balance verification with
fast bug-finding. Landslide’s maximal state space mode (§6.3.3) currently requires the
user to decide in advance whether she thinks a full verification is possible within the time
limit, and supply -M if so, sacrificing some bug-finding power up front (or just running
the test twice). Quicksand could make this decision automatically, always dedicating one
of its available CPUs to the maximal state space while the rest run Iterative Deepening as
normal. Currently, Landslide explores each state space sequentially, but if extended with
Distributed DPOR [SBGH12], Quicksand could also dynamically allocate more or fewer
CPUs to the maximal state space according to its ETA. Likewise, Quicksand could incorpo-
rate ICB [MQO7] to get the best of both worlds: when testing smaller data-race jobs, start
them in ICB mode to begin with, and when the ETAs of larger jobs (including the maximal
one) grow too large, downgrade them to ICB to try to at least get a partial verification for
that preemption point set rather than discarding it entirely. ICB could also be extended
to include HTM failure injections as part of its model, counting them either as part of
the overall preemption bound or under a separate abort bound. State space estimation
under ICB currently counts only DPOR’s tagged branches that don’t get skipped under the
preemption bound, estimating that bound’s state space size and resetting whenever the
bound increases; it could also be extended to be ICB-aware, counting branches skipped
due to the bound separately and computing two estimates at once, which would in turn
allow Quicksand to make more informed decisions about when to use ICB.

Machine learning has become popular recently as a magic cure-all for many program-
ming problems, but is also notorious for amplifying any biases in its training set (or in
the minds of its developers) in unpredictable ways that have been shown to harm peo-
ple of color [Spel7, BG18], women [Leal8, Das18], and transgender people [Key18].
In the domain of concurrency testing, such bias would be unlikely to result in interper-
sonal discrimination, but it would translate to finding only types of bugs already seen
in the training data, abandoning any novel bug patterns to further obscurity. Granted,
Iterative Deepening and ICB also deprioritize “deeper” bugs, as measured by number of
unique or total preemptions, respectively, but when a bug is not found these strategies
also enable the user to understand the nature of the partial verification. Machine learning
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would be more appropriate for improving state space estimation, whose output is already
a black-box oracle from the user’s perspective, and where the worst case of being wrong
is that Quicksand prioritize its jobs suboptimally. In-progress estimates fluctuate depend-
ing on many factors, such as interleaving-dependent flow control, and I suspect deeper
patterns may exist among multiple different state spaces, for example, from the same test
program with different K, N parameters. For any future researchers who wish to study
such patterns, I have made the estimation logs from the HTM experiments (§6.3) freely
available at https://github.com/bblum/thesis-htm-1logs. Nevertheless, I firmly believe
that using machine learning as a bug-finding heuristic without compensating extremely
carefully for its inherent biases would run counter to this thesis’s central tenets of trans-
parency and user agency. Any overall search heuristic must be designed to support the
human user first and foremost, that she may readily understand partial verification results
and participate effectively in the test case refinement strategies discussed upchapter.
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Chapter 9

Conclusion

”/f_you area ﬂod, Zeus, as the stories claim, then w/tﬂ did [you create evolution? Why did (you make
a world that can on{y Jrow throuﬂh crue/éy and pam?”

For a moment—surely this meant death was near—she thought she heard him answer: "My child,
I was shaped by the gods that came before me, as you were shaped by me. The choice | had was
between creation and oblivion, //ﬁz and death. And I chose //fe, because any /lﬁz is better than no
//ﬁz, because as /onﬂ as there is /lﬁz, there is hope—/f not ﬁzr us, then for some generation to come. ”
"Then how are you a ﬂod, /f you can oﬁ[er so little?” she wh/lspered, ﬁze/inﬂ death creep closer.

"l am a god because | take upon myself the burden of creation,” the statue replied.

"Then we are all gods,” Alexandra said, and pushed the button.

—The Talos Princ:]j/e

Concurrency testing is, in a way, a microcosm for research in general: an exponen-
tially large problem that invariably thwarts they whoever try to solve it “perfectly”; it
bears fruit only to one who can find their own human-oriented meaning in partial re-
sults and compromises. I speak of course literally on one side of this analogy, figuratively
on the other. This thesis has demonstrated such meaning for stateless model checking,
choosing perhaps one of the most challenging demographics of programmers in need of
concurrency testing, the undergraduate operating systems student, as its target audience,
ultimately helping 73% of participating students to find bugs in their code, 56% to fix any
such bugs, and 34% to fix all such bugs, before their project deadlines. Along the way, I
justified Landslide’s applicability to problems beyond CMU’s walls as well by showing pos-
itive results at other universities, and by addressing a new concurrency model developed
by the hardware industry in just the last decade. As I write this I am also collaborating
with 15-410 staff to integrate Landslide as an official part of the course grading infrastruc-
ture, so in some sense the naive wish to make an “automatic TA” that drew my attention
to grad school to begin with has also been fulfilled.

Let us revisit the first half of the thesis statement, which in §1.2 I mentioned would
serve as the work’s overarching theme: that by combining theoretically-founded automatic
reduction techniques and user-informed heuristic ones, stateless model checking can meet
human testing needs. How have each of the major contributions of this work embodied
this theme? Let me also briefly address: What lasting lessons have we learned from each,
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which any future research building hereupon would be wise to heed?

* In Chapter 4, the soundness of data-race-driven Iterative Deepening combined with
Quicksand’s reliance on state space estimation effectively balanced formal verifica-
tion with heuristic bug-finding speed better than any prior work. Even as modern
programming languages such as Rust [KN18] threaten to obsolete the data-race
preemption point proof by statically forbidding data races to begin with, Iterative
Deepening’s general approach remains relevant alongside ICB [MQO7], each pro-
viding a different tradeoff between bug-finding and completion time, and future
model checkers should offer a mixture of different kinds of partial verification re-
sults depending on the user’s wishes.

* In Chapter 5, Landslide’s behind-the-scenes yield-loop blocking algorithm allowed
it to automatically instrument all student implementations with no false positives
(what false positives did exist were minor unrelated Landslide bugs, all fixed quickly
whenever reported), and exposing partial results such as data race reports was
shown to sometimes help students reach deeper understanding. Although high-
level undergraduate operating systems courses represent a very small fraction of all
programmers in higher education, let alone all those in the world, Landslide’s ad-
ventures in 15-410 argue that computer science classes should more intentionally
teach principled debugging techniques and tools rather than let students struggle
to reach correctness independently. Also, any future debugging tool should heed
my students’ survey feedback and take friendly user interface design more seriously
than I did with Landslide.

* In Chapter 6, the equivalence of HTM’s interface to failure injection and global locks
allowed Landslide to avoid both performance overhead and state space explosion
when simulating aborts, and heuristic use of abort code reduction and abstraction
reduction allowed verifying algorithms and data structures up to thread/iteration
counts previously infeasible. Emulating complex execution semantics with simpler,
already-understood primitives, and the retry set reduction, both allowing substan-
tial yet sound state space reduction, are the obvious take-aways for any future model
checker wishing to tackle HTM. I expect the latter should easily apply to other op-
portunities for failure-injection beyond transactions as well, such as memory alloca-
tion, filesystems, and distributed systems. More in general, the verification section
demonstrated the value of compartmentalizing one’s verification efforts, checking
modules separately against a common, well-understood interface to reach yet fur-
ther up the exponential cliff.

For as long as people have written science fiction books, we have fantasized about
robots that can make any complex intuitive decision a human can in addition to the su-
perhuman arithmetic ability that comes standard with silicon. Recent trends in machine
learning have pursued this aesthetic, using statistics and pattern recognition to provide
convincing output even on never-before-seen inputs, but few such systems are designed
to also alert the user when their output confidence is low. As tempting as it is to fantasize
an oracle capable of telling for certain whether your program is free of concurrency bugs,
that would be a disservice to both user and machine: the human skill that artificial intel-
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ligence should really try to emulate is knowing its limits and asking for help when it gets
confused. Here I have demonstrated that stateless model checking can realistically fulfill
this ideal, and I envision a future of concurrency verification where human and program
may cooperate to debug and verify more complex software than ever before.

It’'s become fashionable among my peers lately, whenever a new exploit is announced
in the news, to declare that security is doomed, that computers were a mistake, that
we should all retire and become llama farmers, and so on. There is no doubt that we
are burdened with massive technical debt from the mistakes made during computer sci-
ence’s infancy. Nevertheless, safety-oriented programming languages and type systems
are growing ever more popular, and meanwhile formal verification techniques to check
existing code, written in the old unsafe ways, grow ever more powerful. Landslide’s abil-
ity to reach impressionable student minds is my little contribution in this long battle. I
have hope that we may one day live in peace with our silicon creations, understanding
and respecting their limitations just as they complement ours.
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