
Framework Design for Improving
Computational Efficiency and Programming

Productivity for Distributed Machine Learning

Jin Kyu Kim

CMU-CS-18-127
December 2018

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Garth A. Gibson (Co-Chair)

Eric P. Xing (Co-Chair)
Phillip Gibbons

Joseph E. Gonzalez (University of California Berkeley)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2018 Jin Kyu Kim

This research was sponsored by the National Science Foundation under grant number CCF-1629559, the
Defense Advanced Research Projects Agency under grant number FA8702-15-D-0002, Samsung, and Intel
ISTC-CC. The views and conclusions contained in this document are those of the author and should not be
interpreted as representing the official policies, either expressed or implied, of any sponsoring institution,
the U.S. government or any other entity.

Keywords: Distributed Systems, Large-Scale Machine Learning, Programming Frame-
work, Computer Science

Dedicated to my family and friends.

iv

Abstract

Machine learning (ML) methods are used to analyze data in a wide range
of areas, such as finance, e-commerce, medicine, science, and engineering,
and the size of machine learning problems has grown very rapidly in terms of
data size and model size in the era of big data. This trend drives industry and
academic communities toward distributed machine learning that scales out
ML training in a distributed system for completion in a reasonable amount of
time. There are two challenges in implementing distributed machine learn-
ing: computational efficiency and programming productivity. The traditional
data-parallel approach often leads to suboptimal training performance in dis-
tributed ML due to data dependencies among model parameter updates and
nonuniform convergence rates of model parameters. From the perspective of
an ML programmer, distributed ML programming requires substantial devel-
opment overhead even with high-level frameworks because they require an
ML programmer to switch to a different mental model for programming from
a familiar sequential programming model.

The goal of my thesis is to improve the computational efficiency and pro-
gramming productivity of distributed machine learning. In an efficiency study,
I explore model update scheduling schemes that consider data dependencies
and nonuniform convergence speeds of model parameters to maximize con-
vergence per iteration and present a runtime system STRADS that efficiently
execute model update scheduled ML applications in a distributed system. In
a productivity study, I present familiar sequential-like programming API that
simplifies conversion of a sequential ML program into a distributed program
without requiring an ML programmer to switch to a different mental model
for programming and implement a new runtime system STRADS-Automatic
Parallelization(AP) that efficiently executes ML applications written in our
API in a distributed system.

vi

Acknowledgments

First and foremost, I would like to express my sincere gratitude to my advisors, Garth
Gibson and Eric Xing, for their guidance and support throughout my entire PhD study at
CMU. I want to especially thank them for showing unwaivering trust in me and letting me
pursue diverse interests in my research. Garth Gibson and Eric Xing have been model re-
searchers and leaders as well as great academic mentors. They have motivated me to excel
in every aspect of my research journey. I also want to thank my thesis committee members
Phillip Gibbons and Joseph Gonzalez for their insightful feedback and comments. I would
also like to express deep gratitude to BigLearning meeting members: Garth Gibson, Eric
Xing, Phillip Gibbons, Greg Ganger, Abutalib Aghayev, James Cipar, Henggang Cui, Wei
Dai, Aaron Harlap, Qirong Ho,Kevin Hsieh, Seunghak Lee, Aurick Qiao, Jinliang Wei,
Hao Zhang, and Xun Zheng. Since 2013 we have met every week and discussed various
topics regarding system for machine research. These meetings were extremely valuable
for conducting my PhD research, and many ideas in my thesis research were inspired by
these people. I also want to thank the members of Parallel Data Lab and the companies of
Parallel Data Lab Consortium (including Alibaba Group, Amazon, Datrium, Dell/EMC,
Facebook, Google, Hewlett-Packard, Hitachi., IBM Research, Intel, Micron, Microsoft
Research, MongoDB, NetApp, Oracle, Salesforce, Samsung, Seagate, Two Sigma, Veri-
tas, Western Digital) for their interest, insights, feedback, and support. I would also like
to thank my friends and colleagues: Logan Brooks, Avinava Dubey, Bin Fan, Partik Fe-
gade, Kiryong Ha, Zhiting Hu, U Kang, Kunhee Kim, Soonho Kong, Alankar Kotwal,
Hyeontaek Lim, Shane Moon, Willie Neiswanger, Swapnil Patil, Wolfgang Richter, Ki-
jeong Shin, Julian Shun, Jiri Simsa, Yuanhao Wei, and Pengtao Xie. It was a great pleasure
to discuss various research topics and random subjects with these great friends. Finally, I
would like to thank my parents as well as my wife and daughter, Hanna and Rachel, for
their endless love and support.

vii

viii

Contents

1 Introduction 1

1.1 Scope of work . 3

1.1.1 Training in machine learning . 3

1.1.2 Development of distributed machine learning programs 5

1.2 Thesis Statement . 8

2 Background 13

2.1 Consistency models in distributed machine learning 15

2.1.1 BSP Model . 15

2.1.2 Fully asynchronous model . 16

2.1.3 Bounded staleness model . 17

2.2 System supports for distributed machine learning 18

2.2.1 MPI . 18

2.2.2 MapReduce/Spark . 18

2.2.3 GraphLab . 20

2.2.4 Parameter servers . 20

2.2.5 Dataflow framework . 22

3 Computational Efficiency of Parallel ML 25

3.1 Efficiency challenges of parallel machine learning 26

3.1.1 Data-Parallel . 26

ix

3.1.2 Model-Parallel . 27

3.1.3 Example I: Lasso . 29

3.1.4 Example II: LDA topic modeling 32

3.1.5 Example III: SGDMF . 36

3.2 Scheduled Model Parallel . 37

3.2.1 Variations of model-parallel . 38

3.2.2 Practical strategies for model partitioning and scheduling 39

3.2.3 Programming scheduled model parallel 40

3.3 STRADS runtime design . 41

3.3.1 SchMP instruction layer . 42

3.3.2 STRADS service layer . 42

3.3.3 STRADS service implementation layer (SchMP Engine) 43

4 Static-SchMP & STRADS-Static Engine 45

4.1 Static-SchMP . 46

4.1.1 Program property for static-scheduling 46

4.1.2 STRADS static-scheduling . 47

4.1.3 Static-scheduling example with LDA topic modeling 48

4.2 STRADS-Static Engine . 49

4.2.1 System design challenges . 49

4.2.2 STRADS static-engine implementation 50

4.3 Evaluation . 52

4.3.1 Cluster setup and datasets . 53

4.3.2 Performance metrics: . 53

4.3.3 Machine learning programs and baselines: 54

4.3.4 Performance evaluations . 55

4.3.5 Evaluations of static engine optimizations 56

4.3.6 Comparison against other frameworks 58

x

5 Dynamic-SchMP & STRADS-Dynamic Engine 61

5.1 Dynamic-SchMP . 61

5.1.1 Dynamic-SchMP . 62

5.1.2 Dynamic-SchMP example with Lasso 63

5.2 STRADS-Dynamic Engine . 65

5.2.1 System design challenges . 65

5.2.2 STRADS Dynamic-Engine implementation 66

5.3 Evaluation . 68

5.3.1 Performance evaluations . 69

5.3.2 Evaluation of dynamic engine optimizations 71

5.3.3 Comparison against other frameworks 72

6 Productivity of Developing Distributed ML 73

6.1 Case Study . 74

6.1.1 SGDMF algorithm for recommendation system 74

6.1.2 Sequential SGDMF . 75

6.1.3 Shared-Memory SGDMF using OpenMP 75

6.1.4 Distributed SGDMF using Spark-Scala 76

6.1.5 Distributed SGDMF using STRADS-AP 78

6.1.6 Performance cost . 79

6.1.7 Other high-level frameworks . 80

6.2 Overview of STRADS-AP . 81

7 STRADS-AP API & Runtime System Implementation 85

7.1 STRADS-AP API . 85

7.1.1 Program structure of targeted machine learning applications . . . 86

7.1.2 Distributed Data Structures (DDSs) 87

7.1.3 STRADS-AP operators . 87

7.2 STRADS-AP runtime system . 90

xi

7.2.1 Driver program execution model 91

7.2.2 Reconnaissance execution . 92

7.2.3 Distributed Data Structures . 93

7.2.4 Concurrency control . 94

7.2.5 STRADS-AP preprocessor . 95

7.3 STRADS-AP evaluation . 96

7.3.1 Productivity and performance evaluations 97

7.3.2 User Study . 101

8 Conclusion and Future Work 105
8.1 Conclusion . 105

8.2 Future work . 106

Bibliography 109

xii

List of Figures

1.1 A contemporary data processing flow: Machine learning programs have emerged
as a primary method for decision support. 4

1.2 Block diagram of machine learning programs. 6

1.3 Development process of machine learning programs. The tasks in step 1 and 2 are
typically conducted by machine learning researchers. Step 1 and 2 require high-
level mathematical and statistical skills as well as domain knowledge. For quick
development and verification, in step 3, they typically implement an algorithm of
step 2 in sequential program and conduct verification with decent sized input data
on a single machine. In step 4, the sequential program is reimplemented to be
a distributed program for handling large data problems. Step 4 usually involves
system engineers with distributed programming knowledge. Finally, in step 5,
machine learning solutions are used by domain experts in various application do-
mains. This thesis aims to improve the programming productivity of distributed
machine learning programming in step 4 and improve training efficiency of dis-
tributed machine learning programs. 7

2.1 Diagram of BSP machine learning . 15

2.2 Diagram of parameter server architecture 21

3.1 Model-Parallel ML: Model parameters are partitioned over machines in a cluster
by a model partitioning function S — which could be implemented using vari-
ous strategies to improve training performance, and a machine gets an exclusive
access to its assigned model parameter partition. 28

3.2 Random Model-Parallel Lasso: Objective value (the lower the better) versus pro-
cessed data samples, with 32 to 256 workers performing concurrent updates. Un-
der naive (random) model-parallel, higher degree of parallelism results in worse
progress. 30

xiii

3.3 Uneven Parameter Convergence: The number of converged parameters at each it-
eration, with different regularization parameters λ. Red bar shows the percentage
of converged parameters at iteration 5. 31

3.4 Effects of Prioritization with Lasso: Objective value (lower the better) versus pro-
cessed data samples, with prioritization enabled/disabled on 32 and 256 nodes. In
both experiments, prioritization based on convergence status of model parameters
improve performance significantly. 32

3.5 Input data and model parameter access pattern of Gibbs sampling algorithm in LDA 33

3.6 LDA topic modeling on BSP simulation: reports convergence per update. Note
that larger degree of parallelism leads to less progress per update due to model
dependency. 35

3.7 LDA topic modeling on asynchronous parameter server: reports convergence per
processed data (= progress per update). Note that larger degree of parallelism
leads to less progress per update due to model dependency. 35

3.8 Parallel SGDMF in BSP with Netflix data, rank size=1000 : Objective value
(lower the better) versus iteration. Parallel SGDMF makes it hard to use optimal
initial step size=1.0e-3 that sequential execution allows. Progress per iteration
of parallel SGDMF with initial step size(2.2e-4) is lower that that of sequential
execution, and parallel SGDMF’s convergence curves are unstable. 36

3.9 STRADS Architecture: To create a SchMP program, the user codes the SchMP
Instructions, similar to MapReduce. The Services are system components that
execute SchMP Instructions over a cluster. We provide two Implementations of
the Services: a Static Engine and a Dynamic Engine, specialized for high perfor-
mance on static-schedule and dynamic-schedule SchMP programs respectively.
The user chooses which engine (s)he would like to use. 41

4.1 Overall Architecutre of Static Engine: training data is partitioned over worker
nodes, and shared parameters are stored in Parameter Manager (a distributed key
value store). The key range of store is partitioned over worker nodes. Shared
parameters are circulated along the ring of worker nodes. The scheduler sends
messages that trigger iteration and put synchronization barrier. 51

4.2 Worker node architecture of Static engine: runs the parameter manager thread,
job pool manager that creates and dispatches jobs to update threads. 52

xiv

4.3 Static SchMP: OvD. (a-b) SchMP-LDA vs YahooLDA on two data sets; (c-d)
SchMP-MF vs BSP-MF on two data sets; (e) parallel BSP-MF is unstable if we
use an ideal sequential step size; m denotes number of machines. 55

4.4 Static SchMP: convergence times. (a-b) SchMP-LDA vs YahooLDA; (c-d) SchMP-
MF with varying number of machines m. 56

4.5 Static Engine: synchronization cost optimization. (a) macro synchronization im-
proves DvT by 1.3 times; (b) it improves convergence speed by 1.3 times; (c)
This synchronization strategy does not hurt OvD. 57

4.6 Static Engine: Job pool load balancing. (a) Biased word frequency distribution
in NYTimes data set; (b) by dispatching the 300 heaviest words first, conver-
gence speed improves by 30 percent to reach objective value -1.02e+9; (c) this
dispatching strategy does not hurt OvD. 57

5.1 Workflow of Two-Phase Scheduling in Dynamic-SchMP: Dynamic scheduler keeps
track of priority information of individual model parameter updates. Priority of a
model parameter update represent convergence distance of parameter values as-
soricated with the parameter update, and we approximate convergence distance
by sum of delta of parameter values. Phase-I selects a set of model parameter
update L based on the priority distribution. Phase-II builds model dependency
graph for model parameters in L and checks on dependency structure. If a pair
of parameters are found to have too strong dependency (larger than a threshold),
one of them are set aside for next round. After dependency check, L is reduced
to Lsafe that degree of dependency on all possible pairs is less than a threahold. 62

5.2 Dynamic Engine pipelining: (a) Non-pipelined execution: network latency dom-
inates; (b) Pipelining overlaps networking and computation. 66

5.3 Reordering updates to mitigate side effect of pipelining: The dynamic engine re-
orders a schedule plan S in ascending order on updates’ priorities and split S into
three sub plans Si,0, Si,1, Si,2. Red subplan is a group of highest priority updates,
yello subplan is the opposite, and curves represent the availability of computation
results at souce side for the computation at the destination side. When pipeline
depth s is smaller than 3, the split and reordering optimization ensures the results
of the red subplan Si,0 is always available before starting the next red subplan
Si+1,0. 67

xv

5.4 Dynamic SchMP: OvD. (a) SchMP-Lasso vs Shotgun-Lasso [12] on one machine
(64 cores); (b) SchMP-Lasso vs Shotgun-Lasso on 8 machines; (c) SchMP-Lasso
with & w/o dynamic partitioning on 4 machines; (d) SchMP-SLR vs Shotgun-
SLR on 8 machines. m denotes number of machines. 69

5.5 Dynamic SchMP: convergence time. Subfigures (a-d) correspond to Figure 5.4. . 70

5.6 Dynamic Engine: iteration pipelining. (a) DvT improves 2.5× at pipeline depth
3, however (b) OvD decreases with increasing pipeline depth. Overall, (c) con-
vergence time improves 2× at pipeline depth 3. (d) Another view of (a)-(c): we
report DvT, OvD and time to converge to objective value 0.0003. 72

6.1 Sequential SGDMF: iterates over a vector of ratings, A. For a rating A[k], which
has rating score s for j-th product by i-th customer, it calculates gradients ∆W

and ∆H for Wi and Hj , respectively and adds them to Wi and Hj , respectively.
Note that the latest values of Wi and Hj are immediately visible for processing
A[k + 1]. 75

6.2 Shared-Memory SGDMF: parallelizes update routine (loop body) using OpenMP
primitives. To avoid race conditions on the shared parameters W and H , it places
mutexes — HLock and WHlock — inside the loop and ensures serializability,
which means its progress per iteration is comparable to that of sequential code. . 76

6.3 Spark-SGDMF: implements DSGD algorithm in [30]. It creates three RDDs,
A,W,H for ratings, user matrix, and product matrix. A and W are joined onto
AW based on user id. One iteration is divided into P subiterations. Each subiter-
ation, it creates a temporary RDD AWH where a partition of AW get exclusive
access to a partition ofH using join operation, runs parameter update, and divides
AWH into AW ′ and H ′ for next subiteration. Each subiteration, a AW partition
is merged into a different H partition where partition is determined by exclusive
range of product id. 77

6.4 STRADS-AP SGDMF: implements distributed SGDMF by replacing vector with
dvector and the inner for loop with AsyncFor – STRADS-AP’s parallel loop oper-
ator that parallelizes loop bodies in isolated execution and ensures serializability.
Note the similarity between STRADS-AP code and sequential code in Figure 6.1. 79

6.5 Time for 60 iterations with Netflix dataset[38], rank = 1000. STRADS-AP out-
performs Spark by more than an order of magnitude (e) and continues to scale
up to 256 cores, while Spark stops scaling at 64 cores. Hand-tuned MPI code is
faster than STRADS-AP by 22% on 256 cores at the cost of a significantly longer
programming and debugging effort. 80

xvi

6.6 STRADS-AP workflow: (a) a machine learning programmer implements an ML
algorithm in a sequential code; (b) Derives STRADS-AP parallel code with through
mechanical changes; (c) STRADS-AP preprocessor adds more annotation to ad-
dress language-specific constraints, and the source code is compiled by a native
compiler; (d) The STRADS-AP runtime runs the binary in parallel on a cluster . 82

7.1 Machine learning applications targeted by STRADS are divided into two parts:
(a) a pretraining part that creates data structures to store input data, model param-
eters, and hyper parameters; and (b) a training part with a nested loop structure
that repeats a set of model parameter updates and a stopping condition check
operation . 86

7.2 Reimplementing Google’s Word2vec model using STRADS-AP API. 91

7.3 Driver program execution model: A driver program is a user-written straightline
code that consists of sequential statements, data processing statement, and loop
statements; Master node runs a driver program and launches STRADS-AP paral-
lel operators over worker nodes; Scheduler nodes(s) generates dependency graph
and make scheduling plans for worker nodes; A worker node run a set of worker
threads that execute a slice of workload of a parallel operator and a DDS server
thread. 92

7.4 Time for 10 iterations for Word2Vec on 1 Billion word dataset[15] with vector
size = 100, window = 5, negative sample count = 10. 98

7.5 Left figure shows the time for a single iteration. We run TensorFlow implemen-
tation with a minibatch sizes of 500 and 1,000. STRADS and MPI implementa-
tions do not use vectorization, therefore, we run them with a minibatch size of
1. Serial and OpenMP implementations (omitted from the graph) also run with a
minibatch size of 1, and take 3,380 and 467 seconds to complete, res pectively.
Right figure shows the prediction accuracy as the training progresses. While each
implementation runs for 60 iterations, the graph shows only the time until all of
them converge to a stable value. 100

xvii

xviii

List of Tables

2.1 Definitions of terminologies. Note that synchronous execution and asynchronous
execution in this chapter carry different meanings from what they mean in system
literature. 14

3.1 SchMP Instructions: To create a SchMP program, the user implements these In-
structions. The available inputs are optional — e.g. schedule() does not
necessarily have to read A,D (such as in static partitioning). 42

4.1 Data sets used in the evaluation. 53

4.2 Static SchMP: DvT for topic modeling (million tokens processed per second). . 54

5.1 Experiment data sets . 68

5.2 Dynamic SchMP: DvT of SchMP-Lasso and SchMP-LR, measured as data sam-
ples (millions) operated on per second, for synthetic data sets with different col-
umn sparsity. 70

6.1 Summary of features of frameworks used in distributed ML programming. For
efficiency comparison, see evaluation section7.3 81

7.1 Comparison of DDSs with Spark RDDs and C++ STL containers(sequential data
structures . 87

7.2 A subset of STRADS-AP API—data processing operators for DDS transforma-
tion in pretraining, and loop operators for ML optimization in tra ining. 88

7.3 Datasets used in our benchmarks. 96

xix

7.4 ML programs used for benchmarking. Serial and OpenMP are single core and
multi-core applications on a shared-memory machine, respectively, while the rest
are distributed parallel applications. MPI applications use OpenMP for shared-
memory parallelism within the nodes. 97

7.5 The top table reports similarity test accuracy [27], and analogy test accuracy [60]
for distributed Word2Vec implementations on 1 Billion word dataset, after 10
iterations. The bottom table shows respective values for the serial and OpenMP
implementations. 98

7.6 Line counts of model implementations using different frameworks. Unless speci-
fied next to the lines counts, the language is C++. TensorFlow implementation of
Word2vec has 282 lines in Python and 364 lines in C++. 99

7.7 The breakdown of times (in hours) of five students that converted the serial imple-
mentation of TransE [11] graph embedding algorithm to a distributed STRADS-
AP implementation. We split the conversion task into five subtasks: [T1] un-
derstand the algorithm, [T2] understand the reference serial code, [T3] review
STRADS-AP API guide, [T4] review the provided serial MLR code and the corre-
sponding STRADS-AP code, [T5] convert the serial implementation to STRADS-
AP implementation. 103

xx

Chapter 1

Introduction

This dissertation aims to improve the efficiency of distributed machine learning compu-
tation and the productivity of programming distributed machine learning programs.
More specifically, efficiency denotes the ratio of the training speed gain to the number of
processors where the training speed gain refers to the ratio of the training time of a se-
quential machine learning program to the training time 1 of a distributed machine learning
program. The (distributed) training time can be viewed as the product of two factors: the
count of iterations that a (distributed) program needs until it achieves a desired quality
of solution; and the average time per iteration of the (distributed) program. Productivity
denotes the development time for a programmer to convert a sequential program2 into a
distributed program that runs in a cluster.

In an efficiency study, first of all, we present that the loss of statistical accuracy in
distributed machine learning using a traditional data-parallel approach has large negative
impacts on the computational efficiency in many applications. In other words, the loss
of statistical accuracy in the distributed program increases the number of iteration needed
until the distributed program achieves the same convergence or prediction accuracy of
the corresponding sequential program, which negatively affects performance gains and
computational efficiency of the distributed program. To address this problem, we present
machine learning task scheduling, SchMP3 and, to show the feasibility of SchMP in a
cluster, implement a new runtime system, STRADS4 that efficiently executes SchMP ma-

1In this dissertation, training time is used interchangeably with time to solution(latency) in [24].
2We assume that distributed machine learning code starts from sequential code — which is considered

as a normal practice in traditional machine learning development.
3SchMP stands for Scheduled Model-Parallel
4STRADS stands for STRucture-Aware Dynamic/Static scheduler

1

chine learning applications in a cluster. SchMP avoids data conflicts in parallel execution
and allows a distributed machine learning program to achieve high statistical accuracy
close to that of a sequential program. However, SchMP might incur system overheads,
such as scheduling latency, frequent synchronization or increased communication, that
might lead to suboptimal iteration throughput in a cluster. To execute SchMP machine
learning applications efficiently in a cluster, the STRADS runtime system implements a
few critical system optimizations that can be applied to a wide range of machine learning
applications: (1) pipelined scheduling that makes trade-offs between statistical accuracy
and system throughput; (2) static scheduling that removes runtime scheduling latency for
applications whose scheduling plan is known prior to runtime; and (3) parameter pri-
oritization that gives more execution chances to the less converged model parameters,
which greatly reduces the waste of CPU cycles that would be consumed to update fully
(or nearly) converged model parameters without making any contribution to convergence
otherwise. The results of performance benchmarking a few popular applications, such
as latent dirichlet allocation (LDA)[8], stochastic gradient descent matrix factorization
(SGDMF)[44], sparse regression (lasso)[82], and logistic regression[7], show that the
application of SchMP achieves ideal progress per iteration (close to that of a sequential
program), and the STRADS runtime system achieves comparable iteration throughput to
data-parallel alternatives. As a result, the combination of SchMP and the STRADS run-
time system improves the training speed by up to an order of magnitude compared to
alternative distributed data-parallel approach.

While STRADS improves efficiency significantly, it does not improve productivity sat-
isfactorily because it leaves the burden of writing machine learning task scheduling code
and managing the mechanics of distributed programming (i.e. data partitioning, fault-
tolerance) in the hands of machine learning programmers. The mismatch of machine
learning skill and distributed programming skill strongly motivates us to conduct a devel-
opment productivity study.

In the development productivity study that follows, we aim to simplify distributed
machine learning programming to allow a machine learning-savvy researcher without ex-
tensive distributed programming knowledge to convert a sequential machine learning pro-
gram into a distributed program almost mechanically, without significant programming
burden. Toward this goal, first, we investigate the cost of using a high-level framework for
distributed machine learning. Our investigation reveals that some high-level frameworks
require a different mental model for programming, and switching to a different mental
model for programming from a simple sequential programming model lowers develop-
ment productivity significantly. To address this challenge, we present a new framework
STRADS-AP with a familiar sequential API that does not require a machine learning

2

programmer to switch to different mental model for programming for distributed ma-
chine learning programming. The new API consists of two components: (1) a set of
distributed data structures (DDSs) that provides a similar interface of C++ STL contain-
ers while hiding details of partitioning data in a cluster, which allows a programmer to
reuse data structures of a sequential program;and (2) two parallel loop operators, SyncFor
and ASyncFor that automatically parallelize machine learning computations while hiding
details of concurrency control and parameter aggregation, which allows a programmer to
reuse the parameter update code, which is a core part of ML program, of a sequential pro-
gram. To evaluate the potential benefit of our new API, we design and implement a new
distributed runtime system, STRADS-Automatic Parallelization (STRADS-AP) that is
responsible for data partitioning of DDSs, parallelization of computations, generation of
machine learning task schedule plan (for SchMP applications), parameter aggregation (for
data-parallel applications), fault-tolerance, and DDS prefetching/caching for performance
improvement. A productivity evaluation of STRADS-AP demonstrates that STRADS-AP
allows a programmer to reuse most of data structures and core computation routines of a
sequential program when developing a distributed program and reduces development time
significantly. A performance evaluation shows that STRADS-AP applications, including
stochastic gradient descent matrix factorization (SGDMF), multi-class logistic regression
(MLR), word embedding (Word2vec), and knowledge graph embedding (TransE), achieve
comparable performance to hand-tuned distributed implementations programmed manu-
ally or on an machine learning specialized high-level framework such as TensorFlow.

1.1 Scope of work

This section defines the scope of work in this dissertation – clarifying the specific tasks
in modern data analytics pipelines, the specific stages of machine learning application
development processes, and the specific groups of people our work targets.

1.1.1 Training in machine learning

In this dissertation, we review a canonical pipeline of modern data analytics with a focus
on the model training stage that this dissertation targets.

Over the last two decades, Internet and storage media technologies have improved
extremely fast, leading to massive collections of data. Data analytic techniques in the
fields of machine learning have also improved at a breaknek speed. These improvements

3

Various External
Data Sources

Operational
Databases

ETL

Central Repository
(Data Warehouse)

Metadata

Rawdata
Summarydata

OLAP

Visualization

ML

SERVES

Feature
Engineering

Model
Training Prediction

*ML: Machine Learning

Distributed Machine Learning Pipeline

Spark/Hadoop
Parameter Server
MPI

Figure 1.1: A contemporary data processing flow: Machine learning programs have emerged as a
primary method for decision support.

have enabled quantum leaps in the quality of a wide range of useful technologies, from
speech recognition to autonomous driving. Because of these advances, machine learning
has emerged as a primary tool to analyze and explore big datasets.

A common data processing flow in a data warehouse begins with an ETL (Extract,
Transform, Load) stage, which extracts data from various sources, then transform the data
into the proper format or structure for query and data analysis. Then, it loads the trans-
formed data into a central repository (a data warehouse). The data in a data warehouse is
used by traditional data warehouse applications, such as OLAP(Online Analytical Process-
ing) and visualization tools, and more recently machine learning applications. Tradition-
ally, database tools have been used to perform the ETL process, while relational databases
have been used to maintain the data in a data warehouse. More recently, distributed data
processing frameworks, such as Hadoop and Spark, were developed to perform ETL on
big datasets faster. NoSQL databases, such as BigTable [14], HBase and DynamoDB,
were developed to maintain data in a data warehouse.

The machine learning pipeline consists of three stages: feature engineering, model
training, and prediction. Feature engineering improves training data by extracting at-
tributes of raw input data relevant to machine learning algorithms. Model training is an
iterative process to search for the parameter values of a specific model class that best rep-
resent the training data. Training usually starts with randomly initialized parameter values
and stops when a stopping condition is satisfied (i.e. when sufficiently good parameter val-
ues are obtained). Finally, in the prediction stage, the obtained parameter values are used
to identify the labels of newly-arriving data instances that are not present in the training
data or to explain hidden distribution(s) of the input data.

Of these three stages in the machine learning pipeline, the first part of this dissertation

4

focuses on model training particularly in a distributed environment. Due to the large
volume of training data, model parameters and associated computation, the training stage
usually serves as a bottleneck for the entire pipeline. The exponential growth of training
datasets and model parameters prevents the timely completion of training on a single ma-
chine that has limited computation power. Such a training constraint drives the machine
learning research community and industry toward distributed parallel training. However,
distributed training has an efficiency issue — distributed computing resources are typically
less well utilized for training a machine learning model. Naive ways of parallelizing the
training tasks tend to increase iteration count until convergence (= make less progress per
iteration), which leads to poor training performance in a distributed system. Our efficiency
study is dedicated to improving the efficiency of distributed parallel training.

1.1.2 Development of distributed machine learning programs

In this section, we review the machine learning program development process and the
people who are involved in the process with a focus on the distributed machine learning
development stage that this dissertation mainly targets.

Before discussing the development process, we present a vertical and logical dissection
of a typical machine learning program to help a general audience understand the machine
learning program development process. At the highest level, in Figure 1.2, a problem of
interest is defined as fitting data to a statistical model (i.e. classification problem fitted to
a linear model, perhaps by a logistic regression or support vector machine). This typically
reduces to an optimization problem with a set of unknown model parameters (i.e. coeffi-
cients in a linear model) and objective (or likelihood) function (i.e. logistic loss function
for logistic regression or hinge loss function for support vector machine). We can solve
these optimization problems using various algorithms that iteratively search for the best
values for the unknown model parameters to maximize or minimize the value of an objec-
tive function. Note that there are almost always multiple algorithms available for solving
a machine learning optimization problem5. An algorithm for solving a machine learn-
ing optimization problem specifies a set of steps in a search for better parameter values
based on current parameter values and repeats the search steps until the algorithm obtains
a desirable quality of parameter values. The conversion of search steps to a computer

5For solving classification problem in the form of a logistic regression function, the machine learning
community has developed many algorithms, such as BBR (cyclic coordinate descent)[31], CDN (coordinate
descent with one-dimensional newton step)[37], SCD (stochastic coordinate descent)[76], CGD-GD (coor-
dinate gradient descent)[84], TRON (Trust Region Newton Method)[50], IPM (Interior Point Method)[43],
BMRM (Bundle Method for regularized Risk Minimization)[79], OWL-QN (Orthant-Wise Limited-memory
Quasi-Newton)[3], and Lassplore[52], to name but a few.

5

Machine Learning Model
(i.e. classification, regression, CNN, RNN, …)

GD SGD MCMC
Sampling

Coordinate
Descent

variational
inference

Single Machine

Sequential Codes
Matlab

/R Python Java C++

Parallel Codes

MPI Hadoop Spark PS Tensor
Flow

……..

Cluster

Machine Learning
Model

Algorithms

Implementation

Hardware/
Infrastructure

Figure 1.2: Block diagram of machine learning programs.

program is distinct task in model training when expressed as a single threaded sequential
program. This conversion process is usually a straightforward task thanks to the various
well-established programming environments available for statistical programming, such
as MATLAB, R, Python, Java, C/C++, Julia, and Scala.

While there has been recent interest in parallelizing ML algorithms, most of the pub-
lished model training algorithms are described in the form of a sequential algorithm, and
most experiments implement and test sequential programs. This tendency to use sequential
codes is not surprising. A sequential code is easy to reason about, requires less cognitive
effort, and machine learning researchers are usually more concerned with the correctness
and statistical convergence guarantee of an algorithm than its runtime performance. When
the input data and its training computation are too big for a sequential program to complete
a model training in a timely manner, it is then important to reimplement the sequential pro-
gram as a distributed parallel program6 to utilize the computation resources of a cluster.
Then, the distributed program is deployed in a cluster and becomes available for data en-
gineers and domain experts who solves domain-specific problems. Figure 1.3 summarizes
the development process of machine learning applications from modeling to deployment
in a cluster.

Machine learning is a relatively new and collaborative field that requires people with
different knowledge and skill sets to be successful. We categorize people involved in the
machine learning program development process into four groups:

6Distributed machine learning often involves both distributed programming across machines and paral-
lel(and concurrent) programming within a shared-memory machine.

6

Express a ML model in
an optimization problem form

Derive algorithm to solve
the optimization problem

Sequential
Programming

Distributed
Programming

Step1: Model Selection Step2: Algorithm Selection Step3: Prototyping Step4: Performance
improving

Deploy dist. one
in a cloud

Step5: Deployment

Figure 1.3: Development process of machine learning programs. The tasks in step 1 and 2 are
typically conducted by machine learning researchers. Step 1 and 2 require high-level mathematical
and statistical skills as well as domain knowledge. For quick development and verification, in step
3, they typically implement an algorithm of step 2 in sequential program and conduct verification
with decent sized input data on a single machine. In step 4, the sequential program is reimple-
mented to be a distributed program for handling large data problems. Step 4 usually involves
system engineers with distributed programming knowledge. Finally, in step 5, machine learning
solutions are used by domain experts in various application domains. This thesis aims to improve
the programming productivity of distributed machine learning programming in step 4 and improve
training efficiency of distributed machine learning programs.

• Machine learning researchers are machine learning-savvy people who have exper-
tise in statistics and mathematics that is essential for theoretical development tasks,
such as inventing a new model, deriving a new algorithm, modifying an existing
model to satisfy problem specific needs, and modifying an existing algorithm to
improve prediction accuracy or satisfy application specific needs.

• Domain experts are people who have knowledge and skills in a particular field (i.e
natural language processing, vision, health care, finance, warehouse management,
supply chain management, manufacturing management, and so forth). These people
are users of machine learning solutions and are often consulted in the modeling step.
Traditionally, many application communities have developed their own methodolo-
gies over a long time, but recently machine learning technologies have been widely
accepted and replaced traditional domain-specific methodologies across many ap-
plication domains.

• System engineers for machine learning are people who have expertise in dis-
tributed parallel programming and knowledge about distributed machine learning.
The distributed machine learning development often requires more skills than tra-
ditional distributed program development does. Unlike traditional computer pro-
grams, machine learning programs have unique properties, such as error-tolerance
and uneven convergence, and a careful design that can exploit these properties is
often critical to deliver efficient distributed programs.

• Data engineers are people who collect data, integrate data from multiple sources,

7

clean up data, and make data available for machine learning applications.

As problem sizes grow rapidly, and application needs change quickly, fast develop-
ment and deployment of distributed machine learning applications becomes important.
However, parallel/concurrent programming is hard to reason about and introduces a large
class of bugs — race conditions, atomicity violations, and deadlocks — that do not exist
in a sequential code. And efficient distributed programming introduces even more com-
plexities such as handling data partitioning, load-balancing, fault-tolerance, and network
communication. Furthermore, ML-savvy people are interested more in sequential code
than in distributed code. Therefore, the development of distributed machine learning pro-
gram usually requires collaboration of machine learning researchers and system engineers.
This collaboration often does not proceed smoothly because communication among peo-
ple with different backgrounds is not easy and often takes longer than expected, which
slows down distributed machine learning development.

Our development productivity study is dedicated to proposing a new high-level frame-
work that allows machine learning researchers to convert a sequential machine learning
program almost mechanically into a distributed program without much help from system
engineers and reduces time to delivery of distributed program — better development pro-
ductivity for distributed machine learning.

1.2 Thesis Statement

My thesis statement is:

Using the ability to make trade-offs between statistical accuracy and system through-
put in theoretical machine learning scheduling and its practice in a distributed environ-
ment allows the training speed of model parallel applications to be improved by an order
of magnitude; moreover, a familiar sequential-like programming API with a new runtime
can simplify distributed programming for a wide range of machine learning applications
while delivering performance comparable to hand-tuned distributed programs.

To support this thesis statement, we conducted five studies in this dissertation. Re-
garding efficiency, we investigated challenges in parallel ML with two popular ML appli-
cations and proposed the SchMP (Schedule Model Parallel) approach for making faster
convergence per update compared to data-parallel. To show the validity of SchMP in a
distributed system, we implemented a runtime system STRADS to execute SchMP appli-
cations efficiently in a distributed system. The STRADS runtime consists of two different

8

execution engines:(1) a STRADS-Static engine that executes a static scheduling plan; and
(2) a STRADS-Dynamic engine that schedules model parameters dynamically. Our evalu-
ation with four popular applications shows (1) that our SchMP applications requires many
fewer iterations than data-parallel for achieving the same quality of outputs and (2) system
optimizations in the STRADS runtime system achieve high iteration throughput compara-
ble to data-parallel implementations.

Regarding development productivity, we investigate the cost of using high-level frame-
works for distributed machine learning and present STRADS-AP programming API that
consists of distributed data structures (DDS) and loop operators that allow a machine learn-
ing programmer to convert a sequential program into a distributed program by adding
few mechanical changes To show the effectiveness of our new API, we implement a new
runtime system, STRADS-AP, that executes STRADS-AP applications efficiently in a
distributed system. Our productivity evaluation results show that the STRADS-AP API
allows a machine learning programmer to convert a sequential machine learning program
into a distributed machine learning program almost mechanically, and our performance
evaluation results demonstrate that the runtime system, with a few critical system op-
timization techniques, achieves performance comparable to hand-tuned distributed pro-
grams and machine learning specialized framework programs.

The rest of the dissertation is organized as follows.

• Chapter 2 reviews how distributed machine learning has been evolving for last two
decades and presents our contributions. The advances of distributed machine learn-
ing have been led by progress from two different fields: (1) parallel machine learning
that has proposed various ways for gradient/parameter aggregation schemes friendly
to distributed execution while also providing a theoretical proof of safety for the new
schemes; (2) systems for machine learning that use new programming models that
hide the details of distributed programming from a machine learning programmer
while also implementing system optimizations that improve training performance
by exploiting unique properties of machine learning computations. We present a
story intertwining these two fields and summarize our contributions.

• In Chapter 3, we investigate efficiency challenges in parallel machine learning with
two popular ML applications: Lasso[81] and LDA topic modeling[8]. To address
the efficiency challenges, we define and explore model parameter update scheduling
approach (SchMP) and present an overview of STRADS runtime system that exe-
cutes SchMP machine learning applications efficiently in a cluster. Our investiga-
tion reveals that common data-parallel implementations of these applications suffer

9

from serious performance issues, such as low performance gain and poor scalabil-
ity, because they do not address two challenges: model-dependency and uneven
convergence. To address these challenges, we propose scheduled model-parallel
(SchMP), which schedules model parameter updates in a way that bounds the degree
of dependency among concurrent model parameter updates to a threshold and pri-
oritizes model parameter updates according to contribution to convergence. In this
section, we explores various scheduling strategies and present two practical schedul-
ing schemes, according to the dependency structures of targeted machine learning
algorithms, by combining a subset of these strategies. To deploy SchMP machine
learning applications in a cluster, we implement the STRADS runtime system that
currently supports aforementioned two practical scheduling schemes. This chap-
ter covers core parts of the STRADS runtime shared by these two schemes. The
scheduling schemes and their implementations (Staticengine and Dynamicengine)
are presented in the next two chapters.

• In Chapter 4, we present Static-Scheduling for machine learning algorithms, in
which a serializable parameter update schedule7, can be found prior to run time.
Here, we address two questions: (1) What conditions of ML programs should be
satisfied in an update schedule? and (2) What system optimizations should be sup-
ported to efficiently execute static-scheduled ML applications? On the machine
learning side, we identified conditions for static-scheduling and presented a generic
static-scheduling algorithm. On the system side, we presented a high-throughput
STRADS-Static engine that implements two system optimizations: a ring overlay
network and a strategy to address the load balancing problems.

• In Chapter 5, we present Dynamic-Scheduling for machine learning algorithms that
have an error-tolerant dependency structure8 and an uneven convergence rate9. This
work is divided into two parts. On the machine learning side, we present a two-
phase scheduling algorithm that improves statistical progress by respecting the de-
pendency structure among parameter updates and considers the uneven convergence
rate of model parameters. To maximize training speed, the dynamic scheduler inten-

7Serializable parameter update schedule ensures serializability for parallel execution and achieves statis-
tical progress per iteration comparable to that of sequential execution, which we consider ideal.

8An error-tolerant dependency structure is a unique property of ML computation; an ML algorithm can
absorb a certain degree of numerically bounded errors from concurrently executing dependent operations
(i.e. operations having read-write or write-write dependencies on the same memory) and finally achieve
convergence. However, concurrently executing dependent operations tends to increase the amount of com-
putation required to reach convergence.

9An uneven convergence rate is a property of ML computation; different model parameters may take
different number of updates to converge.

10

tionally ignores minor dependencies among parameter updates, which reduces sta-
tistical progress per update, but increases update throughput. The logic behind this
strategy is that the performance gains from increased update throughput are larger
than the loss from reduced progress per update. On the system side, we present
a STRADS-Dynamic engine that implements a distributed scheduler and pipelines
update operations to improve update throughput. The pipelining allows the (t+ 1)-
th iteration10 to start before the current iteration (t) is completed so that network
latency of the (t + 1)-th iteration can be overlapped with computation of the (t)-th
iteration. The pipelining technique improves update throughput and is expected to
reduce training time as a result. However, there may be pairs of very tightly coupled,
high-priority parameters11 across (t) and (t+1) iterations, and pipelining these itera-
tions might lower statistical progress per update so much that the performance gains
from increased update throughput are less than the performance loss from reduced
statistical progress per update. STRADS-Dynamic engine addresses this problem
by changing the order of parameter updates to ensure that the update results of high-
priority parameters are always available to the other high-priority parameters in the
following iterations in order that the negative effects of pipelining are minimized.

• In Chapter 6, we present development productivity case study that investigates the
development cost of using existing high-level frameworks for developing distributed
machine learning. Our case study implements SGDMF on Spark[94] — one of
most popular high-level frameworks for data analytics — and reveals that a high-
level framework requires a machine learning programmer to switch to a different
programming model from the sequential programming model, and that this switch
to different programming model slows down the process of converting a sequential
program into a distributed program. Under the different programming model that
the framework of choice imposes, a machine learning programmer is required to
redesign data structures and computation routine of a sequential machine learning
program to fit into the programming model of the framework, and this redesign pro-
cess costs a machine learning programmer significant efforts and time. Furthermore,
the peculiarities of high-level frameworks often lead to suboptimal performance.

• In Chapter 7, we present a new framework, STRADS-AP, that consists of a familiar,
sequential-like API and a new runtime system. STRADS-AP API consists of DDSs

10An iteration is a group of independent update operations.
11A high-priority parameter is a parameter that will have substantial change in its value and make signif-

icant contributions to convergence if it is updated. Pipelining two tightly coupled, high-priority parameters
Pi and Pj over (t) and (t + 1) iterations may introduce substantial errors to updating Pj because the new
value of Pi is not visible to Pj , and these errors lower statistical progress.

11

and two parallel operators. A DDS is a fine-grained mutable, distributed, in-memory
container that enables reuse of data structures from a sequential program. Currently,
STRADS-AP supports dvector, dmap, and dmultimap. STRADS-AP parallel loop
operators (Sync/ASync For) automatically parallelize machine learning computa-
tion in synchronous mode (data-parallel) or asynchronous mode (serializable asyn-
chronous) while hiding details of aggregating shared parameters in Sync For and
details of managing concurrency control in Async For.

We implemented STRADS-AP runtime system in about 15,000 lines of C++. To
achieve automatic parallelization of loop operators, we design reconnaissance exe-
cution (RE) that executes a single read-only iteration to record read/write accesses
to data and parameters stored in DDSs and thereby detect data dependencies among
parameter update operations. STRADS-AP runtime uses this R/W access infor-
mation to generate a parallel execution plan and improve performance of prefetch-
ing/caching DDS data elements from remote nodes. The full list of technically in-
teresting parts in STRADS-AP runtime system design includes reconnaissance ex-
ecution that detect data dependency, DDS library that implements prefetching, sep-
arate execution engines for Synch For and Asynch For operators, and STRADS-
AP preprocessor that address the lack of reflection capability of C++. For per-
formance benchmark, we implement four applications: recommendatation system
(SGDMF)[44], word embedding (Word2vec)[61, 34], Multiclass Logistic Regres-
sion (MLR)[7], and knowledge graph embedding (TransE)[11], on STRADS-AP
and other baseline frameworks. The evaluation results show that STRADS-AP
achieve performance comparable to other baseline frameworks and hand-tuned im-
plementations while simplifying distributed machine learning programming signifi-
cantly.

• Finally, in Chapter 8, we present conclusion and future work.

12

Chapter 2

Background

In this chapter, we review distributed machine learning with a focus on consistency models
and system supports for distributed machine learning. Most machine learning algorithms
and their theoretical analysis assume sequential execution, which means that model up-
date at step (t) is always available for the following update at step (t+ 1). This sequential
execution assumption has imposed serious challenges on parallelizing machine learning
workloads in a cluster and limited distributed machine learning to BSP (Bulk Synchronous
Parallel) model for a long time1. Distributed machine learning with BSP2 ensures repro-
duction of sequential execution output, which makes the safety proof of parallel execution
trivial, but BSP execution incurs high overheads because of two factors: (1) network com-
munication latency is 102 ∼ 103 times longer than main memory access latency, which
makes synchronization expensive; (2) synchronization once per iteration introduces stale-
ness in parameter values when asynchronous-friendly algorithms3 are parallelized in BSP
model. The strict synchronization in BSP makes it hard to achieve high scalability in a
commodity cluster. To address these problems, the system and machine learning com-
munities have presented relaxed consistency models for distributed machine learning –
lock-free asynchronous, fully asynchronous, cyclic delay, bounded staleness – and have
provided safety proofs for some of them. Their basic idea is to allow trade off between
synchronization overheads and staleness of parameter values. Because the choice of con-
sistency model affects system design and training performance, we will review details of

1Here, we limit machine learning algorithms to synchronous algorithm. Asynchronous algorithm with
BSP will be discussed later.

2Distributed machine learning with BSP is a data-parallel machine learning with strict consistency.
3Asynchronous-friendly algorithms are algorithms designed for asynchronous mode. These algorithms

tend to make much better convergence per iteration in asynchronous computation mode than in synchronous
computation mode. See Table 2.1 for definitions of asynchronous and synchronous computation modes

13

Term Description
worker a processing unit (a thread or process)
iteration one pass over all input data while updating corresponding model parame-

ters. Superscript represents iteration count
minibatch a partition of input data
clock a logical clock that measures progress of a worker in terms of iteration or

minibatch, locally or globally
subepoch one pass over a minibatch while updating corresponding model parameters.

Superscript represents subepoch count
synchronous
execution mode

executes model parameter updates based on the parameter values from the
previous iteration. At iteration(t), synchronous computation calculates
gradients ∆t

all for all model parameters based on model parameter values
P (t−1) from iteration(t−1), and then adds ∆t

all to P (t−1) to obtain P (t).
Note that there is no change to the state of model parameters while calcu-
lating ∆t

all.
asynchronous
execution mode

An iteration consists of many fine-grained updates on model parameters. In
an iteration, each update operation makes changes to the model parameter
state, and the latest state of the model parameters is immediately available
for executing the following update operation.

Table 2.1: Definitions of terminologies. Note that synchronous execution and asynchronous exe-
cution in this chapter carry different meanings from what they mean in system literature.

three consistency models commonly used for distributed machine learning in Section 2.1.

The task of developing a distributed machine learning program is divided into two
parts: (1) application programming to write application-specific optimization routines;
(2) distributed system programming to write system routines that handles essential re-
quirements of distributed computing, such as consistency management, data partitioning,
computation parallelization, load-balancing, fault-tolerance, and network communication.
The distributed programming part is often too much burden on machine learning pro-
grammers4, and is difficult to do correctly and efficiently. Furthermore, implementing the
system routines repeatedly for each application is a big waste of programming efforts. To
address this distributed system programming overhead, the system community has devel-
oped various distributed programming frameworks – MPI[28, 65, 62], MapReduce[26],
Pregel[55], GraphLab[54, 53], PowerGraph[32], Parameter Server[68, 19, 20, 48, 21, 88],
FlumeJava[13], Spark[94], TensorFlow[1], Caffe[40], MXNet[16], and PyTorch[69], to
name but a few. These frameworks provide different levels of programming abstractions,
and many of them are specialized for distributed machine learning; that is, a framework
is harnessed with distributed machine learning specific consistency models for achieving

4We assume that most machine learning programmers do not have distributed programming experience.

14

D0
W0

D1
W1

W2

Δ0

D2

Δ1

Δ2

D0

D1

Δ0

D2

Δ1

Δ2

time t

Iteration(t-1) Iteration(t)

Aggregate(Δ0 Δ1 Δ2)Aggregate(Δ0 Δ1 Δ2)….
D0

D1

Δ0

D2

Δ1

Δ2

Iteration(0)

Aggregate(Δ0 Δ1 Δ2)

Synchronization
Phase

Parallel
Execution
Phase

Figure 2.1: Diagram of BSP machine learning

high training performance and/or provides a programming API that simplifies distributed
machine learning programming.

In the rest of this chapter, we present how distributed machine learning consistency
models and system framework design have evolved in last two decades. For the general
audience, Table 2.1 provides definitions of a few terminologies commonly used in this
chapter.

2.1 Consistency models in distributed machine learning

In this section, we review three popular consistency models (BSP, fully asynchronous,
bounded staleness) in distributed machine learning, which have huge effects on training
performance and system design. The training time of a distributed machine learning pro-
gram is the product of the iteration count until convergence and the average time per itera-
tion, and the consistency model critically affects both factors. The key differences between
different consistency models are whether to allow use of stale parameter values for running
updates and how to manage staleness of model parameters if staleness is allowed.

2.1.1 BSP Model

Developed originally for parallel simulations, BSP models physical processes that happen
concurrently based on global input and then combine changes for the next global time step.

15

The BSP model guarantees that all updates made between iteration(0) and iteration(t−1)

are available for running iteration(t) in all workers. Figure 2.1 depicts iterations from
iteration(0) to iteration(t) in BSP machine learning. All workers start iteration(t) with
a globally consistent parameter state from iteration(t−1); that is, all workers see all up-
dates made before iteration(t). One iteration of BSP machine learning is divided into
two phases, computation and synchronization. During the computation phase, a worker
sweeps through an input data partition and calculates updates (i.e. gradients) indepen-
dently without making changes to the parameter state – updates in current iteration are not
available in current iteration, but become available for the next iteration after synchroniza-
tion. When all workers complete a computation phase, they aggregate local updates and
make a globally consistent model parameter state for iteration(t+1). For gradient descent
algorithm that runs synchronous computation, distributed machine learning in BSP model
gives output equivalent to that of a sequential execution, but it cannot for machine learning
algorithms that run asynchronous computation.

Because of its simplicity and deterministic execution, BSP model has been widely used
for distributed machine learning for a long time and is well supported by many data pro-
cessing frameworks, such as MPI [28], MapReduce [26], and Spark [92, 77, 93]. We will
discuss these frameworks in Section 2.2. However, it suffers from a few critical challenges
in a large cluster [17]. The network communication in synchronization phase is not over-
lapped with computation phase, and the straggler problem in a large cluster increases the
synchronization overhead because workers can start synchronization phase only when all
participating workers complete a computation phase and become ready for synchroniza-
tion. Furthermore, in asynchronous algorithms, synchronization per iteration introduces
substantial staleness in parameter values which lowers progress per iteration.

2.1.2 Fully asynchronous model

In a fully asynchronous consistency model, all workers runs independently without coor-
dination, and shared parameter synchronization is performed asynchronously5 – no global
lock step. Updates on a worker are propagated to other workers with delay, and there is no
threshold on the delay. In a fully asynchronous model, update computation is overlapped
with communication for synchronization, and workers proceed without being blocked by
stragglers. This leads to high iteration throughput. However, the unbounded delay on
update propagation (i.e. unbounded staleness) causes several problems: (1) unbounded
staleness often increases iteration count until convergence substantially, which results in
poor training performance; (2) it makes theoretical analysis hard; (3) innocuous changes

5Parameter synchronization is performed as a background task without blocking update computation.

16

in system configurations (i.e. the number of workers, network speed, CPU clocks) and
varying system workloads (i.e. network congestion or fluctuation of workloads on shared
cluster) affect delays on propagation updates and make it hard to predict training per-
formance – unstable training performance. Fully asynchronous model is implemented in
YahooLDA[2] and Hogwild[71].

Efficient implementation of this consistency model could be too much burden on ma-
chine learning programmers because it requires understanding of distributed systems and
non-trivial engineering efforts. To address this problem, system community has introduced
the parameter server architecture that hides details of parameter consistency model from
machine learning programmers. Parameter server will be discussed in Section 2.2.4.

2.1.3 Bounded staleness model

In bounded staleness model [80, 36] the staleness of shared model parameters is bounded.
It guarantees that all updates made until subepoch(t−s) are available at subepoch(t) where
s is a user-configurable staleness threshold. All workers report their progress in terms of
clocks6, and the clock distance between the fastest worker and the slowest worker should
be lower than a threshold – the staleness threshold s; that is,Clockfastest−Clockslowest < s
is guaranteed. The staleness threshold plays the role of a knob that can be used to trade
off subepoch throughput for subepoch count until convergence; that is, small s reduces
staleness (i.e higher progress per subepoch) but causes more parameter synchronization
overheads (i.e. less subepoch throughput) while large s reduces parameter synchroniza-
tion overheads (i.e. higher subepoch throughput) but increases staleness (i.e. less progress
per subepoch). Tuning staleness threshold that makes good trade-offs leads to high train-
ing performance. Furthermore, bounded staleness makes training performance more sta-
ble and predictable. Theoretical analysis with bounded staleness machine learning is
algorithm-specific. Ho [36]7 and Li [49] present theoretical analysis for stochastic gra-
dient descent and proximal gradient descent with bounded staleness respectively.

Many parameter server works[48, 19, 20] support bounded staleness model by default.
We will discuss them in Section 2.2.4.

6A worker increments clock count every subepoch.
7I participated in design and evaluation of the bounded staleness parameter server project [36] at the early

stage of my doctoral research. This experience led to many ideas in this dissertation.

17

2.2 System supports for distributed machine learning

For simplicity and efficiency of distributed programming, the system community has
worked on distributed programming frameworks for a long time. Early works target gen-
eral programs and tend to provide low-level abstractions while more recent works tar-
get more domain-specific applications, such as data processing applications and machine
learning applications, with high-level abstractions. In this section, we overview how these
programming frameworks have been evolved and how they support the aforementioned
distributed machine learning consistency models, with several monumental works (MPI,
MapReduce, Spark, parameter servers, GraphLab, TensorFlow).

2.2.1 MPI

MPI (Message Passing Interface)[28] is a standard of communication functions that sim-
plifies implementing various communication/computation patterns commonly found in
high performance computing. MPICH [62] and OpenMPI [65] are available as open-
sourced implementations. MPI standard is one of the most popular distributed program-
ming standards in the supercomputing community and is also commonly used for dis-
tributed machine learning. BSP machine learning applications can be implemented easily
using MPI because BSP was invented for supercomputing simulation, which is also it-
erative update-based (but often not convergent). Specifically, a user can implement BSP
machine learning easily using broadcast, reduce, allreduce, and barrier functions in MPI.
However, MPI is limited to being a communication abstraction. It lacks distributed shared
memory abstraction for input data and model parameters and requires programmers to
deal with details of distributed programming, such as data partitioning, parallelization of
workloads, fault-tolerance, and load-balancing. Furthermore, it requires programmers to
be aware of distributed processing entities and does not provide an illusion of sequential
programming.

2.2.2 MapReduce/Spark

MapReduce: Dean [26] presented MapReduce that simplifies distributed programming
mainly for data processing applications. In MapReduce, a user writes a program by spec-
ifying two functions, Map and Reduce. The map function takes a user-defined function
(MapUDF) and a sequence of key/value pairs as input, applies MapUDF to all elements
of the sequence, and generates a set of intermediate key/value pairs. Given a user-defined

18

binary function and the set of intermediate key/value pairs, Reduce function 8 merges all
intermediate key/value pairs associated with the same intermediate key. Once a program
is written using map and reduce functions, the MapReduce runtime system automatically
parallelizes the program in a cluster. It is responsible for data partitioning, automatic par-
allelization, load-balancing, and fault-tolerance. MapReduce provides distributed shared
data abstraction by input and output files in a distributed file system.

MapReduce programming model fits well into BSP model; that is, computation phase
and synchronization phase in BSP can be implemented easily by Map and Reduce respec-
tively. Compared to MPI, MapReduce simplifies distributed machine learning program-
ming significantly. It gives an illusion of sequential programming. The aforementioned
details of distributed programming are hidden from a programmer, and deterministic exe-
cution simplifies debugging. Chu [78] and Mahout project [5] use Hadoop [4], an open-
sourced MapReduce implementation, for implementing various machine learning algo-
rithms. However, one well-known disadvantage of using MapReduce for running iterative
machine learning workloads is that it incurs disk I/O overhead for reading a whole training
data set in every iteration.

Spark: inherits the functional style programming model from MapReduce but improves
runtime performance significantly for iterative workloads. Spark provides RDDs (Re-
silient Distributed Datasets) – an immutable distributed memory abstraction that supports
in-memory computation – to store a large data set in a cluster and a rich set of functions
that operate on RDDs in a cluster. Spark RDDs can persist in main memory across mul-
tiple operations so that Spark saves disk I/O and improves performance significantly for
iterative workloads. In Spark, a user writes an application as a driver program, and the
Spark runtime system automatically parallelizes the driver program. The Spark runtime
system is responsible for distributed programming details mentioned above. Particularly,
for RDD fault-tolerance, the Spark runtime system keeps track of each RDD’s lineage (or
provenance) information, which records input RDD(s) and operators to generate the target
RDD chunk. On a machine failure, RDD lineage information allows for recomputing only
the lost chunks – a fine-grained fault recovery.

Driver programming, integration with the Scala interpreter and deterministic execu-
tion simplify distributed machine learning programming, and caching an RDD in main
memory over multiple iterations allows Spark to achieve 10 ∼ 102 times faster training
than Hadoop. The Spark community has developed MLlib [57] – a collection of Spark
machine learning applications – and optimization method library that users can compose
to solve their optimization problems. Again, the BSP consistency model can be easily
implemented using Spark.

8User defined function for Reduce should be commutative and associative.

19

These functional style programming frameworks simplify distributed machine learning
programming significantly. However, in MapReduce/Spark, it is hard to support flexible
distributed machine learning consistency models mentioned in section 2.1.2, 2.1.3 because
of their constrained distributed data abstractions (i.e. immutable input file in MapReduce,
immutable RDD in Spark) and deterministic execution.

2.2.3 GraphLab

Gonzalez et al. [32, 53, 54] presented GraphLab, in which data is encoded as a input
graph and computation routines as operations on the input graph. A computation routine
is associated with a vertex, and data (input data and model parameters) is associated with
edges and vertexes. Computational dependencies are also encoded in the input graph, in
which an edge ei,j represents computational dependency between two vertexes Vi, Vj . A
user writes an application program as a vertex program which is executed for each vertex,
and the GraphLab runtime system automatically parallelizes these executions in a cluster
– concurrently executes the vertex program on multiple vertexes in a cluster. The run-
time system supports both synchronous computation and asynchronous computation. In
asynchronous execution, locking protocols can ensure serializability and provides three
different consistency models, full consistency (the strongest consistency), edge consis-
tency, and vertex consistency (the most relaxed consistency), to meet different consistency
requirements of different applications and achieve best parallel performance.

The GraphLab abstraction is powerful and simplifies distributed programming for
many graph mining and graphical model-based machine learning applications, but con-
verting a sequential algorithm (program) into a vertex program often requires significant
cognitive effort. And use of a predefined consistency model based on graph structure and
a serializability guarantee make it hard to make flexible trade-offs between parallelism
and consistency, which leads to poor performance when a machine learning problem has
a dense dependency structure.

2.2.4 Parameter servers

The parameter server architecture was proposed to scale out data-parallel machine learning
by exploiting trade-offs between staleness and network communication overhead. For
parameter sharing, it provides an ML-specialized distributed shared memory abstraction
that supports aforementioned staleness-based consistency models.

In 2010, Russel [68] proposed the parameter server architecture in Figure 2.2 and pro-

20

D0
W0

D1
W1

D2
W2

Δ0

Δ1

Δ2
…
..

Paramlatest

Paramlatest

Paramlatest

Pa
ra
m
et
er
s

Parameter Server-0

Parameter Server-n

Figure 2.2: Diagram of parameter server architecture

gramming model, but it did not include machine learning optimizations such as relaxed
consistency management. In 2012, Amr [2] presented fully asynchronous parameter server
for implementing YahooLDA – a large scale LDA solution. In YahooLDA, each worker
computes LDA model updates with its own data partition independently. Parameter syn-
chronization is performed by a background client thread in each worker. The client thread
synchronizes local parameter updates with global parameter state in parameter servers in
background without blocking the progress of the workers. This achieves high iteration
throughput, but staleness (inconsistency) of parameter values in each worker is arbitrary
and unbounded. This unbounded staleness causes several problems as mentioned in Sec-
tion 2.1.2.

To address these problems, Ho et al. [36, 19] proposed SSP (Stale Synchronous Par-
allel) parameter server that implements bounded staleness consistency in 2013. Li [48]
presented Parameter Server, a specific framework named the same as the general tech-
nique, that supports all three consistency models and DHT (Distributed Hash Table)-based
fault-tolerance in 2014.

Cui [20] presented the IterStore parameter server that prefetches necessary parameter
values into workers from remote parameter servers based on parameter access profiling.
Because the same memory access pattern is repeated over many iteration in machine learn-
ing, IterStore runs profiling once before it starts ML computations and reuses the profiling
information for the following iterations; that is, profiling overhead is amortized over many
iterations.

21

Wei [88] presented a managed communication parameter server that prioritizes more
important parameter updates when selecting parameter updates to communicate and max-
imizes update communication without overusing network bandwidth. It reduces staleness
(inconsistency) of shared parameters and improves convergence per iteration without low-
ering update throughput, which improves training performance.

The parameter server programming model simplifies data-parallel machine learning
significantly by relieving a programmer of writing codes to manage consistency model.
However, it does not give an illusion of sequential programming and leaves many details
of distributed programming, such as data partitioning, task parallelization, load balancing,
in the programmer’s hands.

2.2.5 Dataflow framework

TensorFlow: In TensorFlow[1], a programmer puts all data and model parameters in ten-
sors and specifies machine learning model using numerical operators and tensors, which
builds a dataflow graph where a vertex represents a computation operation, and an edge
represents flow of tensors. The programmer specifies computing devices for computation
statically. Once a program is written in this dataflow programming model, the TensorFlow
runtime system automatically differentiates the specified model – auto-differentiation9 –
and updates model parameter tensors – auto-gradient updates. At runtime, TensorFlow
schedules computation in a way to maximize parallelism based on the dataflow graph.
Each operator is implemented to utilize vector instructions provided by modern computing
devices (CPU or GPU) or tensor (matrix) instructions supported by Volta tensor core [56]
to accelerate computation. Compared to previous frameworks, TensorFlow simplifies ma-
chine learning programming more because it allows a machine learning programmer to
skip deriving an update algorithm from the model and writing the code for the derived
update algorithm for the cases where the automatic method is appropriate. For neural
network models that are composed of well-established operators and use gradient descent-
based optimization algorithms, TensorFlow gives enormous benefits; data flow program-
ming model improves programming productivity significantly; and well-tuned standard
operators using modern CPU/GPU features achieves high training performance.

However, TensorFlow has few critical limitations when we use it for general machine
learning programs. First, TensorFlow’s productivity benefit from auto-differentiation and
auto-gradient updates is not available for machine learning researchers who want to modify
machine learning optimization algorithms. Searching for a more efficient update algorithm

9For appropriate problems, auto-differentiation is a huge benefit for programmers

22

(that is, deriving more efficient update algorithm) for a given machine learning model is
one of the major research directions in the machine learning research community. With
TensorFlow, these people would not benefit from TensorFlow’s auto-differentiation/gradient
updates, but would need to develop new kernel operators to implement and test their new
algorithms. Unfortunately, programming TensorFlow kernel operators requires substan-
tial engineering efforts, so much so that most system engineers are reluctant to attempt it.
Second, TensorFlow’s high-performance benefits might not be available for many sparse
or asynchronous machine learning problems. TensorFlow utilizes vectorized instructions
with assumption that computation is dense and runs in synchronous computation mode.
However, many ML problems, such as recommendation and sparse algorithms, have sparse
computation, and make higher convergence per iteration in asynchronous computation
mode than in synchronous computation mode. In such problems, TensorFlow system
throughput suffers.

Tensor Comprehensions: Tensor Comprehensions (TC) [86] is a domain specific lan-
guage that aims to (1) facilitate programming a custom operator or a new layer and (2)
achieve further performance optimizations across operators for deep learning models (i.e.
convolutional and recurrent networks) on top of existing deep learning frameworks such
as Caffe2, PyTorch and TensorFlow. TC allows an ML programmer to express a custom
operator or a new layer (computation on multi-dimensional arrays) using an elegant nota-
tion that uses the Einstein notation (a.k.a Einstein summation convention). TC’s notation
allows element-wise accesses, and the user-defined custom operator written in TC can be
invoked like the operators that the underlying framework provides by default. At runtime,
a polyhedral JIT (Just-In-Time) compiler lowers TC code into Halide-IR (Intermediate
Representation)[70], then to polyhedral-IR. Then, polyhedral transformation and mapping
to GPU are performed by the polyhedral JIT compiler, and CUDA kernel code is finally
generated, which demonstrates the suitability of polyhedral framework for the deep neural
network domain. For reducing the polyhedral JIT compilation overhead and achieving
higher performance, TC provides a compilation cache and an autotuner. For a given TC
code, the compilation cache stores generated CUDA kernel code with information of in-
put data (i.e. size and shape), environment (i.e. information about GPU architecture), and
optimization options. The autotuner starts with candidate configurations that are from sim-
ilar TC code snippets and tunes configurations such as tile, block, grid sizes, admissible
schedules, shared or private memory usage using a genetic algorithm.

TC simplifies programming a custom operator and a new layer that do not fit high
performance library calls, and the automatically generated CUDA kernel code achieves
comparable performance to hand-crafted code that uses high-performance libraries calls.
TC saves significant engineering cost for appropriate deep learning problems. However,

23

it still has performance limitations like TensorFlow as we mentioned above when targeted
machine learning applications require sparse asynchronous computation.

24

Chapter 3

Computational Efficiency of Parallel
ML

In this chapter, we investigate two efficiency challenges of parallel machine learning with
three popular applications and show their impacts on computational efficiency. To address
these challenges and achieve high computational efficiency in distributed machine learn-
ing, we present the SchMP (Scheduled Model Parallel) programming approach. SchMP
has multiple model update scheduling strategies. We also present the STRADS runtime
system that executes SchMP machine learning applications efficiently in a cluster. In sum-
mary, this chapter

• Explores two efficiency challenges in parallelizing machine learning – model de-
pendency and uneven convergence – and investigates their impacts on computation
efficiency in three well-established ML applications, l1-regularized sparse regres-
sion (Lasso), topic modeling (LDA), stochastic gradient descent matrix factorization
(SGDMF).

• Presents SchMP with multiple possible scheduling strategies.

• Presents the core of the STRADS runtime system that is shared across multiple
SchMP scheduling implementations.

Mathematical notation: For elegant and concise description, we use mathematical nota-
tion throughout this chapter together with verbal description. As a baseline, we describe
a generic iterative-convergent machine learning algorithm using mathematical notation in
equation (3.1).

25

A(t) = F (A(t−1),∆(D,A(t−1))), (3.1)

where index t refers to the current iteration, A refers to the model parameters, ∆() is the
model update function, and F is a summation function on A(t−1) and ∆().

We will use this baseline expression in explaining challenges of parallel machine learn-
ing and extend it incrementally to describe various SchMP scheduling strategies.

3.1 Efficiency challenges of parallel machine learning

In this section, first, we review two parallel machine learning approaches – data-parallel
and model-parallel – and explain their challenges and discuss potential to improve com-
putational efficiency of distributed machine learning.

3.1.1 Data-Parallel

Data-parallel is a common approach that allows for parallelizing machine learning com-
putation over input data. Data-parallel machine learning partitions input training data D
into P partitions D1 ... DP and assigns data partitions to P workers W1 ... WP in a cluster.
At runtime, a worker Wp applies the update function ∆ to a data partition Dp, makes par-
tial updates, then synchronizes partial updates to aggregate them. Data-parallel machine
learning can be expressed as

A(t) = F (A(t−1),
∑P

p=1 ∆(A(t−1), Dp)) (3.2)

In the data-parallel approach, we assume that outputs of update function ∆ are aggre-
gated via simple summation (i.e. aggregation operation is associative and commutative),
which is common in stochastic gradient based algorithms. This additive property allows
outputs of multiple updates associated with the same parameter to be aggregated in each
worker before synchronization over network – like MapReduce allows combiners to run
local reductions between Map and Reduce functions to reduce data transfer. This additive
property of updates is a foundation that allows relaxed consistency models and parameter
server architectures to improve data-parallel machine learning performance.

To improve training performance by trade-offs between communication cost and stale-
ness, we add relaxed consistency models (i.e. fully asynchronous, bounded staleness etc.),

26

which allow for staleness on shared parameters, to data-parallel machine learning. This
can be expressed as

A(t) = F (A(t−j),
∑P

p=1 ∆(A(t−j), Dp)) (3.3)

where j ≤ s and s is staleness threshold.

The theoretical assumption regarding correctness of data-parallel approach with staleness
is that the data samples – random variables in statistics parlance – are independent and
identically distributed (i.i.d.) and enable a simple aggregation of sub-updates. Although
each machine suffers from staleness of model-parameters, which leads to inaccurate up-
date results (i.e. inaccurate gradient calculation), machine learning algorithms can con-
verge as long as staleness is not arbitrarily large, thanks to the error-tolerance of the ma-
chine learning algorithm. Theoretical correctness guarantees are found in [71, 45, 97].
The logic behind the correctness proof is that the potential errors from stale model param-
eters by sub-updates offset each other, or are small enough to be tolerated when aggregated
thanks to the nature of optimization algorithm making small updates in each iteration.

In data-parallel machine learning with the relaxed consistency models, training per-
formance is determined by trade-offs between communication cost for synchronizations
and staleness. Though relaxed consistency models and parameter servers improve data-
parallel training performance by making a balance between staleness and communica-
tion cost, data-parallel machine learning still has residual staleness on shared parameters,
which lowers progress per iteration. As a result, data-parallel machine learning tends to
take longer iterations to achieve convergence than ideal serial implementations.

3.1.2 Model-Parallel

In contrast to the data-parallel approach, the model-parallel approach partitions model pa-
rameters over workers and lets each worker update a set of model parameters based on the
whole data or a partition of data, as shown in Figure 3.1. If necessary, model repartitioning
is conducted at runtime. 1 Model-parallel machine learning extends equation (3.1) to the
following form:

A(t) = F (A(t−1) +
∑P

p=1 ∆p(D,A
(t−1), Sp(D,A

(t−1)))), (3.4)

1Some communication for model repartitioning is necessary, but it can be much less frequent than that
in data parallel model.

27

D

W0

D

W1

D

W2

Model
part

itio
ning f

uncti
on

S

Figure 3.1: Model-Parallel ML: Model parameters are partitioned over machines in a cluster by a
model partitioning function S — which could be implemented using various strategies to improve
training performance, and a machine gets an exclusive access to its assigned model parameter
partition.

where ∆p() is the model update function executed at parallel worker Wp. The “sched-
ule” Sp() outputs a subset of parameters in A (and a subset of update operations that are
associated with the subset of parameters), which tells the p-th parallel worker which pa-
rameter updates it should execute sequentially (i.e. workers may not further parallelize
within Sp()). In naive model-parallelism, the scheduling output of S is determined by data
partitioning or random model-partitioning. Since the data D is immutable, we leave it out
from the equation for clarity:

A(t) = F (A(t−1),
∑P

p=1 ∆p(A
(t−1), Sp(A

(t−1)))). (3.5)

Unlike the data-parallel approach, in which the data-partitioning scheme determines
model parameter update partitioning implicitly, model-parallel has potential to improve
training performance further by making intelligent model parameter update partitioning
decisions in function S which eliminates or further reduce staleness. To achieve this, the
update partitioning function should consider computational dependencies among model
parameter updates and be able to make schedule plans that do not run conflicting update
operations concurrently. Since the dependencies among model parameter updates are de-
termined by update operation’s read/write accesses to model parameters only2, we refer to

2Input data does not affect dependencies among updates because input data is read only in most machine

28

this challenge as model-dependency challenge.

A flexible update partitioning in the model-parallel approach allows us to exploit an-
other important property of machine learning – uneven convergence of model parameters.
In many machine learning algorithms, some model parameters require far more iterations
than others for convergence. Thus, these few parameters bottleneck the entire machine
learning training, which we refer to as an uneven convergence challenge. If model pa-
rameter update partitioning function S identifies these slowly converging model parame-
ters at runtime and grants more updates to them, it could improve the progress per iteration
further.

In the rest of this chapter, we will see the impacts of these two challenges on training
performance in three distributed machine learning applications (Lasso, LDA, SGDMF), in
which model parameter update partitioning is done at random or determined implicitly by
a data partitioning scheme. Then, we will extend the model-parallel approach to support
intelligent scheduling, SchMP, which handles these challenges appropriately to achieve
progress per iteration close to or better than that of ideal sequential execution.

3.1.3 Example I: Lasso

Sequential Lasso: Lasso is a `1-regularized least-squares regression that is used to iden-
tify a small set of important features from high-dimensional data. Lasso is an optimization
problem:

minimize
β

1

2

n∑
i=1

(yi − hβ(xi))
2 + λ‖β‖1 (3.6)

where `1-regularizer ‖β‖1 =
∑d

j=1 |βj| and λ is a preset user parameter that controls the
number of zero entries in β. X is an n-by-m design matrix where rows represent samples
and columns represent characteristics, and y is an n-by-1 observation vector where a row
represents a label for a sample of X . β is an m-by-1 coefficient vector.

During the training phase, we learn the β vector for a given X, Y by solving equation
3.6. The update rule in Lasso is:

β
(t)
j ← S(xTj y −

∑
k 6=j

xTj xkβ
(t−1)
k , λ), (3.7)

where S(·, λ) is a soft-thresholding operator [29].

learning algorithms.

29

Algorithm 1 Parallel Lasso
while Until converge do

Chooses random subset of β weights in {1, 2, 3, .., n}
In parallel on processors p = 1..P

Take assigned coefficient j
βj = ∆p(j, β,X, Y, λ)

end while
Function ∆p(j, β,X, Y, λ)
βj =← S(xTj y −

∑
k 6=j x

T
j xkβk, λ)

 0.0015

 0.002

 0.0025

 0.003

 0.0035

 0.004

 0 1x106 2x106 3x106 4x106 5x106

ob
je

ct
iv

e
fu

nc
tio

n
V

al
ue

 (
sm

al
le

r
is

 b
et

te
r)

data samples processed (normalized)

Lasso Alzheimer Disease data lambda 0.0001

degree of parallelism 32
64

128
256

Figure 3.2: Random Model-Parallel Lasso: Objective value (the lower the better) versus processed
data samples, with 32 to 256 workers performing concurrent updates. Under naive (random) model-
parallel, higher degree of parallelism results in worse progress.

Lasso is an inherently serial algorithm, since the update operation of updating βk takes
all βi where i = 1, .., n and i 6= k in equation(3.7).

Parallel Lasso: Lasso can be parallelized by updating multiple coefficients in paral-
lel [12], which might cause inaccuracy in parameter updates but will still converge when
dependencies among selected coefficients are not arbitrarily large due to the error toler-
ance property of machine learning. We implement a distributed parallel Lasso illustrated
in Algorithm 1 that updates a set of randomly selected model parameters in each iteration.

Model dependency challenge in parallel Lasso: In practice, the random selection of
model parameters3 does not always fill the set S (a set of model parameter to update in

3In Lasso, a parameter update operation updates exactly one model parameter so that the selection of

30

λ:0.0001 λ:0.001 λ:0.01

84.72% 95.32% 98.23%

1000000

100000

10000

1000

100

5 20 40 60 80 100 5 20 40 60 80 100 5 20 40 60 80 100

#
 o

f
co

n
ve

rg
e

d
 p

ar
am

et
er

s

Iterations

Figure 3.3: Uneven Parameter Convergence: The number of converged parameters at each it-
eration, with different regularization parameters λ. Red bar shows the percentage of converged
parameters at iteration 5.

parallel per iteration) with independent model parameters, particularly when the design
matrix X is dense4. Updating dependent model parameters introduces errors (inaccuracy)
to the update results, which lowers statistical progress per iteration and takes more itera-
tions to converge. In some cases, it can cause the algorithm to diverge.

Figure 3.2 shows progress per data processed (= progress per update) of parallel lasso
with an Alzheimer’s Disease (AD) data set [95]. The Y axis represents optimization error
(smaller equals better progress) and the X axis represents the amount of data points pro-
cessed (approximately equal to the amount of computation cycles consumed). Figure 3.2
shows that increasing the degree of parallelism diminishes the gain (progress) per com-
putation. Note that, in order to get the objective value of 0.001, the experiment with 256
degrees of parallelism requires about 3 times the computation of the experiment with 32
degrees of parallelism.

Uneven convergence rate challenge in Lasso: In Lasso and other regression applications,
a column corresponds to a model parameter. In the optimization algorithm perspective,
such popular columns are model parameters with dependency on a large number of other
model parameters. These require more iterations to achieve convergence because they are
frequently influenced by other dependent model parameters. On the other hand, unpopular
model parameters that take the major portion of model parameters require fewer iterations
to converge. Figure 3.3 shows histograms of the number of iterations to convergence for
approximately a half million parameters in Lasso with the AD data set using three differ-

update parameters here means the selection of update operations corresponding to those model parameters.
4In more details, the dependency between two model parameters βi, βj in Lasso can be defined as Pear-

son correlation of two columns X[:, i], X[:, j] of input X matrix corresponding to βi, βj . Therefore, the
random parameter selction would fill the set S with more dependent model parameters when design matrix
is dense.

31

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 20000 40000

O
bj

ec
tiv

e
V

al
ue

 (
S

m
al

le
r

is
 b

et
te

r)

Data Processed (1K)

Effects of Prioritization with Lasso

Prioritization node=32
No Prioritization node=32

 0.0005

 0.001

 0.0015

 0.002

 0.0025

 0.003

 0 20000 40000

O
bj

ec
tiv

e
V

al
ue

 (
S

m
al

le
r

is
 b

et
te

r)

Data Processed (1K)

Effects of Prioritization with Lasso

Prioritization node=256
No Prioritization node=256

Figure 3.4: Effects of Prioritization with Lasso: Objective value (lower the better) versus pro-
cessed data samples, with prioritization enabled/disabled on 32 and 256 nodes. In both experi-
ments, prioritization based on convergence status of model parameters improve performance sig-
nificantly.

ent regularization parameter (λ) values. It shows that about 85 percent, 95 percent, and
98 percent of parameters require less than five iterations to converge respectively with λ
values of 0.0001, 0.001, 0.01. Because updating parameters that are already converged or
very close to the converged value does not contribute much to the overall progress, adapt-
ing computational power to the convergence rate of parameters is essential to improving
progress per update.

Figure 3.4 shows expected improvement on progress per iteration when the uneven
convergence is appropriately considered duing model parameter selection — which gives
more update chances to unconverged parameters and skips updating fully converged pa-
rameters.

3.1.4 Example II: LDA topic modeling

Sequential LDA: LDA is a hierarchical Bayesian model that considers each document as
a mixture of K topics, where each topic is defined as a multinomial distribution over the
vocabulary. The main goal of LDA is to infer the underlying topics from a given set of
documents d. Statistically, this is equivalent to inferring the posterior distribution, which
can be efficiently approximated by the Gibbs sampling algorithm. Figure 3.5a shows a
sequential implementation of Gibbs sampling LDA with three data structures: document-
topic table denoted as U , word-topic table denoted as V , and document collection denoted
as D. U is an N-by-K array where N is the number

32

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

v	

U

V

D	

K	

K	

Do
c-‐
0	

Do
c-‐
1	

<0
,	 a
pp

le
,	 k
0>
,	 <
0,
	 so

cc
er
,	 k
2>
,	 <
0,
	 p
ea
r,	
k0
>	
…
	

 	

to
ke
n	
t	 =

	 <
do

c-‐
id
,	 w

or
d-‐
id
,	 a
ss
ig
ne
d	
to
pi
c>
	

<1
,	 s
oc
ce
r,	
k3
>,
	 <
1,
	 n
ew

s,
	 k
7>
	 …
.	 <
1,
	 a
pp

le
,	 k
1>
	 	

 	

Do
c-‐
0	

Do
c-‐
1	

ap
pl
e	

pe
ar
	

d	
Gi
bb

s	 S
am

pl
in
g(
to
ke
n)
	

eg
.	 t
ok
en
=<
0,
ap

pl
e,
k0
>	

(a
)S

er
ia

lL
D

A

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

v	
U
0	

V

D 0
	

K
K	

Do
c-‐
0	

<0
,	 a
pp

le
,	 k
0>
,	 <
0,
	 so

cc
er
,	 k
2>
	 …
.	 <
0,
	 p
ea
r,	
k0
>	
	

	

Do
c-‐
1	

ap
pl
e	

pe
ar
	

d 0
	 Gi

bb
s	 S

am
pl
in
g(
to
ke
n)
	

eg
.	 t
ok
en
=<
0,
ap

pl
e,
k0
>	

	 	 	 	 	 	 	 	
	 	 	 	 	 	 	 	

U
1	

D 1
	

K

Do
c-‐
1	

<1
,	 s
oc
ce
r,	
k3
>,
	 <
1,
	 n
ew

s,
	 k
7>
	 …
.	 <
1,
	 a
pp

le
,	 k
1>
	 	

	

Do
c-‐
1	

d 1
	 Gi

bb
s	 S

am
pl
in
g(
to
ke
n)
	

eg
.	 t
ok
en
=<
1,
ap

pl
e,
k1
>	

M
ac
hi
ne

	 0
	

M
ac
hi
ne

	 1
	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 VK	
ap

pl
e	

pe
ar
	

v	

	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 VK	

v	

Sy
nc
hr
on

iz
a0

on
	 B
ar
rie

r	
at
	 it
er
a0

on
	 t	

Gl
ob

al
ly
	 c
on

sis
te
nt
	 	

sn
ap
sh
ot
	 fo

r	 t
+1
	 	

ite
ra
4o

n	

(b
)P

ar
al

le
lL

D
A

Fi
gu

re
3.

5:
In

pu
td

at
a

an
d

m
od

el
pa

ra
m

et
er

ac
ce

ss
pa

tte
rn

of
G

ib
bs

sa
m

pl
in

g
al

go
ri

th
m

in
L

D
A

33

of documents, and K is the number of topics. V is a v-by-K array where v is the size of
the vocabulary (=dictionary size). D is a collection of documents, in which each docu-
ment contains tokens and tokens’ topic assignments. For simplicity, we omit the 1-by-K
topic summary vector. The unit of atomic update operation is a token. For each token
topic indicator zij (document i, j-th word position) with observed word dij (this is word
id, an integer representing some word, like “soccer” or “apple”), the update operation
makes a temporary probability vector with length K, based on information in the row
V [dij][] and the column U [i][]. From this probability vector, a new topic assignment
“newtopic” is sampled, and the old topic assignment is recorded: oldtopic=zij . We then
update zij = newtopic, and manipulate the doc-topic and word-topic tables to reflect
this change: decrement both V [dij][oldtopic] and U [i][oldtopic] by one and increment
U [i][newtopic] and V [dij][newtopic] by one.

Gibbs sampling for LDA is inherently a serial algorithm because of the dependency
on other tokens — when we sample a new value for zij , we change U, V , which in turn
affects other zij .

Parallel LDA: We can parallelize LDA over the document collection, while ignoring the
dependency among tokens. Figure 3.5b shows parallel LDA with two machines in BSP
(Bulk Synchronous Parallel) style. A machine p is assigned a partition Dp of the docu-
ment collection, and keeps a partial document topic table Up corresponding to Dp (since
Up is only ever accessed by machine p). That is, these two data structures Dp, Up will be
dedicated to each worker. On the other hand, the word topic table V need to be shared
across workers since all workers access the table to make the probability vector for sam-
pling. In our parallel LDA illustrated in the figure 3.5b, each machine keeps a local copy
of the whole word topic table V . While processing a batch (iteration), each worker repeats
sampling with its own local word topic table V and updates its own local copy without
communication with other workers. At the end of an iteration, all workers synchronize on
the word topic table, meaning that the deltas of each worker’s word topic table are aggre-
gated to make one globally consistent view of the word topic table. The new word topic
table V is copied to all workers before the next iteration starts.

Model dependency challenge in LDA: The parallel LDA in Figure 3.5b inevitably intro-
duces parallel errors since workers sample using the inaccurate (stale) word topic table V ,
which does not reflect other workers’ changes during a batch. If batch size is fixed, the
degree of inaccuracy increases as the number of workers increases. The use of a smaller
batch size helps reduce inaccuracy of the word topic table V . However, it is not possible to
shrink the batch size to an arbitrarily small number, due to the synchronization and com-
munication cost in a distributed environment. The larger degree of parallelism increases
the amount of work done per second but increases the amount of inaccuracy on the word

34

-1.1e+10

-1.05e+10

-1e+10

-9.5e+09

-9e+09

-8.5e+09

-8e+09

-7.5e+09

-7e+09

-6.5e+09

 0 500 1000 1500 2000 2500 3000

Lo
g-

Li
ke

lih
oo

d

Total amount of update (Normalized)

PUBMED fixed batch = 500K doc, K100 Alph0.1Beta0.1

Worker 2
Worker 4
Worker 8

Worker 16
Worker 32
Worker 64

Worker 128
Worker 256

(a) Pubmed data with Topic K = 100

-1.45e+09
-1.4e+09

-1.35e+09
-1.3e+09

-1.25e+09
-1.2e+09

-1.15e+09
-1.1e+09

-1.05e+09
-1e+09

-9.5e+08
-9e+08

 0 500 1000 1500 2000 2500 3000

Lo
g-

Li
ke

lih
oo

d

Total amount of update (Normalized)

NYT fixed batch = 20K doc, K100 Alph0.1Beta0.1

Worker 2
Worker 4
Worker 8

Worker 16
Worker 32
Worker 64

Worker 128
Worker 256

(b) NYT data with Topic K = 100

Figure 3.6: LDA topic modeling on BSP simulation: reports convergence per update. Note that
larger degree of parallelism leads to less progress per update due to model dependency.

-1.6x109

-1.5x109

-1.4x109

-1.3x109

-1.2x109

-1.1x109

 0 100 200 300 400 500 600 700 800 900 1000

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(H
ig

he
r

is
 b

et
te

r)

Number of processed tokens (100M)

LDA on Asynchronous Parameter Server (topic K=1000)

Sequential(Ideal)
Async PS 25 nodes(400 threads)
Async PS 50 nodes(800 threads)

(a) NYT Data with Topic K=1000

-1x1010
-9.5x109

-9x109
-8.5x109

-8x109
-7.5x109

-7x109
-6.5x109

-6x109

 0 500 1000 1500 2000 2500 3000 3500

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e

(h
ig

he
r

is
 b

et
te

r)

data samples processed (100M)

LDA on Asynchronous Parameter Server (topic K=1000)

Sequential(Ideal)
Async. PS 25 nodes(400 threads)
Async. PS 50 nodes(800 threads)

(b) PubMed Data with Topic K=1000

Figure 3.7: LDA topic modeling on asynchronous parameter server: reports convergence per
processed data (= progress per update). Note that larger degree of parallelism leads to less progress
per update due to model dependency.

topic table V , which diminishes progress (gains) per iteration. Figure 3.6 shows progress
per normalized amount of work completed. The experiments are conducted with two dif-
ferent data sets, NYTimes and PubMed. In both experiments, synchronization happens
when all workers complete updates for about 10 percent of all tokens. The results show
that progress per computation diminishes as the degree of parallelism increases, aggravat-
ing the staleness on the word topic table V in worker machines.

In addition to data-parallel LDA with fixed interval synchronization, we conduct a fully
asynchronous parameter server LDA experiments using open sourced implementation by
Yahoo and present results in Figure 3.7. Compared to sequential executions (ideal), asyn-
chronous parameter server LDA runs 9 times more iterations on 800 workers with NYT
data set and 4 time more iterations on 800 workers with PubMed data set until reaching
the same convergence points of sequential executions.

35

 0

 1x109

 2x109

 3x109

 4x109

 5x109

 6x109

 0 10 20 30 40 50 60 70 80 90 100

All Parallel-MF wt 32-256 threads failed wt step=1.0e-3

ob
je

ct
iv

e
fu

nc
tio

n
va

lu
e(

sm
al

le
r

is
 b

et
te

r)

data samples processed (normalized)

Parallel SGDMF, initstep= 1e-3, 2.2e-4, Netflix

thread=32 wt step= 2.2e-4
thread=64 wt step=2.2e-4

thread=128 wt step=2.2e-4
thread=256 wt step=2.2e-4
thread=1 with step= 2.2e-4

Ideal (single thread) wt ideal step(=1.0e-3)

Figure 3.8: Parallel SGDMF in BSP with Netflix data, rank size=1000 : Objective value (lower the
better) versus iteration. Parallel SGDMF makes it hard to use optimal initial step size=1.0e-3 that
sequential execution allows. Progress per iteration of parallel SGDMF with initial step size(2.2e-4)
is lower that that of sequential execution, and parallel SGDMF’s convergence curves are unstable.

3.1.5 Example III: SGDMF

Sequential SGDMF:Matrix factorization learns user’s preferences over all products from
an incomplete rating dataset represented as a sparse matrix A ∈ RM×N where M and N
are the number of users and products, respectively. It factorizes the incomplete matrix A
into two low-rank W ∈ RM×K and H ∈ RN×K matrices such that W ·HT approximates
A. Stochastic gradient descent algorithm for MF (SGDMF) in Algorithm 7 iterates over
the ratings in the matrix A. For each rating ri,j , it calculates gradients ∆W [i], ∆H[j] and
adds the gradients to W [i], H[j], respectively.

SGDMF is a sequential algorithm since result of processing rating rt are immediately
available for processing the following rating rating rt+1.

Parallel SGDMF: We implement parallel SGDMF in a similar way of parallel LDA in
Figure 3.5. Parallel SGDMF partitions input rating data A into Ap and user matrix W
into Wp across P machines, as we did on document collection D and document topic
table U in parallel LDA in Figure 3.5. And H parameter table is copied on each worker.

36

While processing a batch (iteration), a machine Mp processes ratings of a partition of Ap
independently while reading/writing to Wp and its own local copy of H . At the end of
batch, all workers synchronize local copies of H to make a globally consistent state of H
for the next batch processing.

Model dependency challenge in SGDMF: Unlike previous examples, the training per-
formance of SGDMF is sensitive to initial step size(=initial learning rate); that is it’s im-
portant to find proper initial step size. Empirically, larger step size leads to better progress
per iteration in SGDMF, but use of too large initial step size causes divergence or makes
poor performance. In our experiments, we first find the best initial step size in sequen-
tial execution — 1.0e-3 — and runs parallel SGDMF with the same step size. However,
all parallel SGDMF experiments diverge. Then, we shrink the initial step size to 2.2e-4,
which is the best initial step size for parallel SGDMF. Compared to the experiment with
best initial step size=1.0e-3, the experiment with initial step size=2.2e-4 achieves lower
progress per iteration, which means that model dependency makes it hard to use optimal
step size that sequential execution allows. With initial step size=2.2e-4, parallel execu-
tions on 32 to 256 threads takes longer iterations than sequential execution while showing
unstable convergence curve as shown in Figure 3.8.

3.2 Scheduled Model Parallel

In this section, we present a programming approach, SchMP (Scheduled Model-Parallel)
that address model dependency and uneven convergence challenges by controlling the way
of partitioning model parameter updates and adapting computation frequency per model
parameter to its convergence progress. We explore various form of model-parallel and
present four scheduling strategies for SchMP.

Usually, convergence per update of sequential execution is ideal because sequential
execution does not cause numeric errors. Therefore, we often use the serial algorithms’
convergence rate per update as an ideal baseline. We have two goals with SchMP. First,
we aim to improve convergence per update of parallel ML to be close to that of sequential
ML by scheduling model-dependency. Second, we try to further improve the convergence
rate by prioritizing model parameters based on the convergence state of individual model
parameters. Relating back to the general model-parallel equation (3.5), SchMP harnesses
scheduling function S with model dependency checking and model parameter prioritiza-
tion. Sometimes, it is neither practical nor possible to find a “perfect” parallel execution
scheme for a machine learning algorithm, which means that some dependencies will be
violated, leading to incorrect update operations. But, unlike classical computer science

37

algorithms where incorrect operations always lead to failure, iterative-convergent ML pro-
grams (also known as “fixed-point iteration” algorithms) can be thought of as having a
buffer to absorb inaccurate updates or other errors: they will not fail as long as the buffer
is not overrun. Even so, there is a strong incentive to minimize errors; the more depen-
dencies the system finds and avoids, the more progress the ML algorithm will make each
iteration. Unfortunately, finding those dependencies may incur non-trivial computational
costs, leading to reduced iteration throughput. Because an ML program’s convergence
speed is essentially progress per iteration multiplied by iteration throughput, it is impor-
tant to balance these two considerations.

Below, we explore this idea by explicitly discussing some variations within model-
parallel in order to expose possible ways by which model-parallel can be made more effi-
cient.

3.2.1 Variations of model-parallel

We restrict our attention to model-parallel programs that partition M model parameter
updates across P workers in an approximately load-balanced manner; highly unbalanced
partitions are inefficient and undesirable. Here, we introduce variations on model-parallel,
which differ on their partitioning quality. Concretely, partitioning involves constructing a
size-M2 dependency graph, with weighted edges eij that measure the dependency between
two parameter updates Update(i) and Update(j). This measure of dependency differs from
algorithm to algorithm. For example, in Lasso regression, eij is the correlation between
the i-th and j-th data dimensions. The total violation of a partitioning equals the sum of
the edges’ weights that cross between the P partitions, which we wish to minimize.

Ideal Model-Parallel: Theoretically, there exists an “ideal” load-balanced parallelization
over P workers that gives the highest possible progress per iteration. This is indicated by
an ideal (but not necessarily computable) schedule Sidealp () that replaces the generic Sp()
in equation (3.5).

There are two points to note: (1) even this “ideal” model parallelization can still violate
model dependencies and incur errors when compared to sequential execution because of
residual cross-worker coupling, and (2) computing Sidealp () is generally expensive because
graph-partitioning is NP-hard. Ideal model parallel achieves the highest progress per iter-
ation amongst load-balanced model-parallel programs, but may incur a large one-time, or
even every-iteration, partitioning cost, which can greatly reduce iteration throughput.

Random Model-Parallel: At the other extreme is random model parallelization, in which
a schedule Srandp () simply chooses one parameter update at random for each worker p [12].

38

As the number of workers P increases, the expected number of violated dependencies will
also increase, leading to poor progress per iteration (or even algorithm failures). However,
there is practically no scheduling cost to iteration throughput.

Approximate Model-Parallel: As a middle ground between ideal and random model
parallelization, we may approximate Sidealp () via a cheap-to-compute schedule Sapproxp ().
A number of strategies exist: one may partition small subsets of parameter updates at
a time (instead of the M2-size full dependency graph), apply approximate partitioning
algorithms [75] such as METIS [41] (to avoid NP-hard partitioning costs), or use strategies
that are unique to a particular machine learning program’s structure.

3.2.2 Practical strategies for model partitioning and scheduling

Among three aforementioned variations of model parallel, we focus on the approximate
model-parallel and present four practical scheduling strategies, static partitioning, dynamic
partitioning, stale model-parallel, and prioritization.

Static Partitioning: A fixed, static schedule Sfixp () hard-codes the partitioning for every
iteration beforehand. Progress per iteration varies depending on how well Sfixp () matches
the machine learning program’s dependencies. Like random model-parallel, this has little
cost to iteration throughput.

Dynamic Partitioning: Dynamic partitioning Sdynp () tries to select independent parameter
updates by performing pair-wise dependency tests between a small number L of parameter
updates (which can be chosen differently at different iterations, based on some priority pol-
icy as discussed later). The idea is to only do L2 computational work per iteration, which
is far less thanM2 (whereM is the total number of parameter updates), based on a priority
policy that selects the L parameters that matter most to the program’s convergence. Dy-
namic partitioning can achieve high progress per iteration, similar to ideal model-parallel,
but may suffer from poor iteration throughput on a distributed system: because only a
small number of parameters are updated each iteration, the time spent computing ∆p()
at P workers may not be able to amortize network latencies and the cost of computing
Sdynp ().

Stale Input to Updating and Scheduling: This is not a different type of model-parallel,
but a complementary technique that can be applied to any model-parallel strategy. Stale
input allows the next iteration(s) to start before the current one finishes, ensuring that
computation is always fully utilized. However, this introduces staleness into the model-

39

parallel execution:

A(t) = F (A(t−1),
∑P

p=1 ∆p(A
(t−s), Sp(A

(t−s)))). (3.8)

Note how the model parameters A(t−s) being used for ∆p(), Sp() come from the iteration
(t− s), where s is the degree of staleness. Because machine learning algorithms are error-
tolerant, they can still converge under stale model images (up to a practical limit) [36, 23].
Therefore, stale input sacrifices some progress per iteration to increase iteration through-
put, making it a good way to raise the throughput of dynamic partitioning.

Prioritization: Like stale input, prioritization is complementary to model-parallel strate-
gies. The idea is to modify Sp() to prefer parameters that, when updated, will yield
the most convergence progress [53], while avoiding parameters that are already con-
verged [48]. This is effective because many ML algorithms exhibit uneven parameter
convergence rate. Since computing a parameter’s potential progress can be expensive,
we may employ cheap-but-effective approximations or heuristics to estimate the potential
progress (as shown later in Chapter 5). Prioritization can thus greatly improve progress
per iteration, at a small cost to iteration throughput.

In Chapter 4, 5, we will present two practical SchMP scheduling implementation based
on combinations of these strategies.

3.2.3 Programming scheduled model parallel

Model-parallelism accommodates a wide range of partitioning and prioritization strate-
gies (i.e., the schedule Sp()), from simple random selection to complex, dependency-
calculating functions that can be more expensive than the updates ∆p(). In existing ML
program implementations, the schedule is often written as part of the update logic, ranging
from simple for-loops that sweep over all parameters one at a time, to sophisticated sys-
tems such as GraphLab [54, 53], which “activates” a parameter whenever one of its neigh-
boring parameters changes. We contrast this with scheduled model parallel(SchMP), in
which the schedule Sp() computation is explicitly separated from the update ∆p() compu-
tation. The rationale behind SchMP is that the schedule can be a distinct object for sys-
tematic investigation, separate from the updates, and that a model-parallel ML program
can be improved by simply changing Sp() without altering ∆p().

40

SchMP	Instruc-on	

STRADS	Service	

Service		
Implementa-on	

User defined routines:
Schedule(), Update(), Aggregate()

Scheduler
Job

Executor
Parameter
Manager

Static Engine Dynamic Engine

Figure 3.9: STRADS Architecture: To create a SchMP program, the user codes the SchMP In-
structions, similar to MapReduce. The Services are system components that execute SchMP In-
structions over a cluster. We provide two Implementations of the Services: a Static Engine and
a Dynamic Engine, specialized for high performance on static-schedule and dynamic-schedule
SchMP programs respectively. The user chooses which engine (s)he would like to use.

3.3 STRADS runtime design

In order to run SchMP machine learning applications efficiently in a cluster, we implement
a new framework, STRADS [42] that conceptually consists of SchMP Instruction layer,
common service layer and service implementation layer (SchMP engine layer). The ser-
vice implementation layer currently supports two runtime execution engines, STRADS-
Static and STRADS-Dynamic that exploit Stale Input to Updating and Scheduling and
Prioritization. In this section, we cover common layer of STRADS runtime system, and
the details of Static and Dynamic engines will be covered in Chapter 4, 5.

We present details of each layer:

• SchMP Instruction Layer is a set of programming primitives that are used to imple-
ment SchMP ML programs, including Schedule(), Update() and Aggregate().
To create a SchMP program, the user programs ML application in the from of these
primitives.

• Service Layer is a set of system entities in a distributed system including Scheduler,
Job Executor, ParamterManager (distributed key value store) and communication
substrate for transferring control data and bulk user data. This layer executes SchMP
instructions over cluster.

• Service Implementation Layer(Engine Layer) is to implement different SchMP

41

SchMP Function Purpose Available Inputs Output
schedule() Select parameters A to update model A, data D P parameter jobs {Sp}
update() Model parallel update equation one parameter job Sp, one intermediate

local data Dp, parameters A result Rp

aggregate() Collect Rp and update model A P intermediate results {Rp}, new model state
model A A

(t+1)
p

Table 3.1: SchMP Instructions: To create a SchMP program, the user implements these Instruc-
tions. The available inputs are optional — e.g. schedule() does not necessarily have to read
A,D (such as in static partitioning).

program (scheduling) patterns using SchMP services, optimizing data flow topol-
ogy, providing special optimizations for high performance. Current STRADS im-
plementation provides two common service implementations, static and dynamic
engines. The user choose which engine (s)he would like to use.

3.3.1 SchMP instruction layer

Table 3.1 shows the three SchMP Instructions, which are abstract functions that a user im-
plements in order to create a SchMP program. All SchMP programs are iterative, where
each iteration begins with schedule(), followed by parallel instances of update(),
and ending with aggregate(); Algorithm 2 shows the general form of a SchMP pro-
gram.

3.3.2 STRADS service layer

STRADS executes SchMP Instructions across a cluster via three Services: the Scheduler,
Job Executors, and the Parameter Manager. The Scheduler is responsible for com-
puting schedule() and passing the output jobs {Sp} on; most SchMP programs only
require one machine to run the Scheduler, others may benefit from parallelization and
pipelining over multiple machines. The Scheduler can keep local program state between
iterations (e.g. counter variables or cached computations).

The P jobs {Sp} are distributed to P Job Executors, which start worker processes to
run update(). On non-distributed file systems, the Job Executors must place worker
processes exactly on machines with the data. Global access to model variables A is pro-
vided by the Parameter Manager, so the Job Executors do not need to consider model
placement. Like the Scheduler, the Job Executors may keep local program state between

42

Algorithm 2 Generic SchMP ML program template
A: model parameters
Dp: local data stored at worker p
P : number of workers
Function schedule(A,D):

Generate P parameter subsets [S1, . . . ,SP]
Return [S1, . . . ,SP]

Function update(p,Sp, Dp, A): // In parallel over p = 1..P
For each parameter a in Sp:
Rp[a] = updateParam(a,Dp)

Return Rp
Function aggregate([R1, . . . , RP], A):

Combine intermediate results [R1, . . . , RP]
Apply intermediate results to A

iterations.

Once the worker processes finish update() and generate their intermediate results
Rp, the aggregator process on scheduler (1) performs aggregate() on {Rp}, and (2)
commit model updates and thus reach the next state A(t+1)

p . Control is then passed back to
the Scheduler for the next iteration (t + 1). Finally, the Parameter Manager supports the
Scheduler and Job Executors by providing global access to model parameters A.

3.3.3 STRADS service implementation layer (SchMP Engine)

In Chapter 4, 5, we propose two scheduling schemes, static-scheduling and dynamic-
scheduling – based on aforementioned Static Partitioning and Dynamic Partitioning, Stale
Input to Updating Scheduling, and Prioritization strategies – and implement two execution
engines, Static and Dynamic, using STRADS service corresponding to these two schedul-
ing schemes.

43

44

Chapter 4

Static-SchMP & STRADS-Static Engine

In this chapter, we explore a static scheduling scheme (Static-SchMP) for machine learning
applications, in which a perfect schedule plan1 can be made prior to runtime. First, we
present our static scheduling algorithm with machine learning applications’ property that
allows our static scheduling scheme. Then, we summarize system challenges in executing
Static-SchMP programs in a cluster and present STRADS-Static engine that addresses the
challenges. In summary, this chapter:

• Explores a machine learning program property that allows our static scheduling
scheme.

• Presents our static scheduling algorithm that makes a perfect scheduling plan for a
machine learning algorithm that satisfies the property above.

• Identifies four system design challenges and present STRADS-Static engine that
addresses the challenges.

• Quantifies the benefits of Static-SchMP and STRADS-Static engine using three dif-
ferent metrics. Our evaluation shows that Static-SchMP LDA topic modeling on the
static engine increases training speed by six times compared to YahooLDA, which
is a carefully designed distributed LDA on a fully asynchronous parameter server.

Because the scheduling plan is fixed prior to runtime, Static-SchMP schedule functions
tend to be computationally light. However, our Static-SchMP requires machine learning

1A perfect schedule plan is a distributed execution plan that ensures serializability and achieves progress
per iteration comparable to that of sequential execution — which is ideal in terms of progress per iteration.

45

algorithms to satisfy a property in shared parameter access pattern. Here, we present this
property and depict a general static scheduling algorithm that can be applied to the machine
learning algorithms that have this property — Static-SchMP compatible algorithm.

If a targeting machine learning algorithm does not have this property, the dynamic
scheduling in Chapter 5 can serve them. Or, one might use a dynamic schedule on a Static-
SchMP compatible algorithm and outperform the equivalent of static scheduling. The costs
of this tactic are computational overhead of dynamic scheduling and the programming ef-
forts required in order to implement a relatively more complicated scheduling algorithm
than static scheduling. Because these dynamic and static scheduling schemes have differ-
ent system needs, we separately provide two distinct but complete implementations of their
scheduling engines (STRADS-Static and STRADS-Dynamic Engines). In this chapter, we
focus on the Static-SchMP and STRADS-Static engine that achieves high system through-
put of Static-SchMP machine learning applications in a cluster. The Dynamic-SchMP and
its engine implementation will be covered in Chapter 5.

4.1 Static-SchMP

In this section, we present a property that our static scheduling scheme requires a targeted
application to satisfy, and present our static scheduling algorithm with two examples.

4.1.1 Program property for static-scheduling

Static scheduling follows Static Partitioning strategy in Section 3.2.2, but not all of ma-
chine learning algorithms can be efficiently scheduled through static scheduling. There-
fore, in our static scheduling, we limit our static scheduling to a group of machine learning
applications that satisfies a property — the parameter update function2 accesses k param-
eter entries from k different parameter sets.

To help machine learning programmers check whether their targeting machine learn-
ing applications are eligible for our static scheduling scheme, we provide a guidance as
follows. First, we categorize machine learning algorithms into two types according to the
signature of their update function: (1) variadic algorithms, where the update function
reads/writes a variadic number of shared parameters and (2) non-variadic algorithms,
where the update function reads/writes a fixed number k of shared parameters. We fur-
ther categorize non-variadic machine learning algorithms into two cases according to the

2This is a scheduling unit.

46

Algorithm 3 static scheduling where k = 1
M : the number of worker nodes
S[]: an array of shared parameter shards where length = M
while Until Convergence do

for (i = 0; i < M ; i++){
worker[0] = access permission to S[(i+ 0)%M]
worker[1] = access permission to S[(i+ 1)%M]
...
worker[M − 2] = access permission to S[(i+M − 2)%M]
worker[M − 1] = access permission to S[(i+M − 1)%M]

}
end while

Algorithm 4 static scheduling for k > 1

M : the number of worker nodes
S0[], S1[], .., Sk−1[]: shard arrays of k different sets of shared parameters
while Until Convergence do

for(i0 = 0; i0 < M ; i0++){
for(i1 = 0; i1 < M ; i1++){

for(ik−1 = 0; ik−1 < M ; ik−1++){
worker[0] = access to S0[(i0 + 0)%M],S1[(i1 + 0)%M],..,Sk−1[(ik−1 + 0)%M]
worker[1] = access to S0[(i0 + 1)%M],S1[(i1 + 1)%M],..,Sk−1[(ik−1 + 1)%M]
...
worker[M − 1] = access to S0[(i0 +M − 1)%M],S1[(i1 +M − 1)%M],..,Sk−1[(ik−1 +M −

1)%M]
}
}
}

end while

dependency graph structure: (1) k-partite algorithm in which a single update operation
accesses k different parameters from k different sets of shared parameters; and (2) non-k
partite algorithm, in which there is no such constraint as k-partite algorithm has. Static-
SchMP targets k-partite algorithms while variadic algorithms and non-variadic/non-k par-
tite algorithms can be supported by dynamic scheduling.

4.1.2 STRADS static-scheduling

For simplicity of explanation, we present STRADS static scheduling algorithm in two
forms depending on k value. Algorithm 3 is for k = 1 case, and Algorithm 4 is for k > 1.

Static Scheduling for machine learning Algorithms with k = 1: Algorithm 3 is the static
scheduling algorithm for the case of k = 1, where each update accesses a single shared
parameter and may access other data objects that are stored locally on a worker node.
The shared parameters are partitioned into M disjoint shards, where M is the number of

47

Algorithm 5 Static-SchMP for LDA Topic Modeling
U, V : doc-topic table, word-topic table (model params)
N,M : number of docs, vocabulary size
{z}p, {w}p: topic indicators and token words stored at worker p
c: persistent counter in schedule() Function schedule():

For p = 1..P : // “word-rotation” schedule
x = (p− 1 + c) mod P
Sp = (xM/P, (x+ 1)M/P) // p’s word range

c = c+ 1
Return [S1, . . . ,SP] Function update(p,Sp, {U}p, V, {w}p, {z}p):
[lower,upper] = Sp // Only touch wij in range
For each token zij in {z}p:

If wij ∈ range(lower,upper):
old = zij
new = SparseLDAsample(Ui, V, wij , zij)
Record old, new values of zij in Rp

Return Rp Function aggregate([R1, . . . , RP], U, V):
Update U, V with changes in [R1, . . . , RP]

worker nodes. One iteration is divided into M subiterations. At each subiteration i where
i = 0, 1, ..,M − 1, a worker node Wm obtains execlusive access to the (i + m)%M -th
shard. It then executes a subset of update operations that require access to the (i+m)%M -
th partition. After M subiterations, worker nodes complete all update operations once,
which is equal to the workload of one iteration.

Static Scheduling for machine learning Algorithm with k > 1: In k-partite algorithms,
shared parameters consist of k different independent sets S0, S1, ..Sk−1. An update oper-
ation accesses k shared parameters, each of which comes from k different sets. From the
machine learning perspective, the sets of different parameters represent different types of
objects. In Algorithm 4, each parameter set is partitioned into M disjoint shards, and one
iteration is divided into Mk subiterations. Algorithm 4 runs k nested loops to perform
scheduling. Every M subiteration, the loop statement at level k−1 (= the innermost loop)
completes one full pass and increments the loop index at level k − 2. After Mk subiter-
ations, the algorithm complete one full pass of the loop at level-0 (=the outermost loop),
which is equal to the amount of work of one iteration.

4.1.3 Static-scheduling example with LDA topic modeling

We apply Static-SchMP to LDA topic modeling algorithm in Section 3.1.4. For simplicity,
we will not show the details of update() and aggregate(). Instead, we focus on how
schedule() controls which tokens’ topic assignments zij are being updated by which

48

workers. For LDA algorithm, see Section 3.1.4 and Figure 3.5(a). Algorithm 5 shows
SchMP schedule for LDA. The algorithm assumes that input data (a document set) is
randomly partitioned over workers, and document-topic table U is partitioned according to
the document partitioning. A row id of document-topic table U corresponds to a document
id in the document set so that partitioning the document-topic table to be aligned with the
partitioning of the document set can be done trivially by using the same hash function
of document set partitioning. Once U is partitioned to be aligned with the document set
partitioning, shards of U are locally accessed during running updates, and update function
accesses a single row of V table to process a token, which allows Static-SchMP with k =
1. Word-topic table V is partitioned into P shards, V0, V1, .., Vp−1 over P workers initially,
and the scheduling algorithm rotates the word-topic table partitions along the workers so
that only a single worker can access a shard Vp at a time. On arrival of a shard Vp, a worker
updates topic assignment zi,j for word tokens di,j that are associated with Vp. For running
an iteration, the scheduling algorithm rotates V partitions P times so that every word di,j
in each worker is processed exactly once.

One might ask why schedule() is useful, because a common strategy is to have
workers sweep over all their zij every iteration [2]. However, as we exhibited in Sec-
tion 3.1.4, this common strategy causes concurrent access to the same rows in V and
staleness problem — running updates with stale parameter values causes computational
inaccuracy and makes less progress per iteration than Statich-SchMP application and se-
quential application.

4.2 STRADS-Static Engine

In this section, we summarize four system design challenges in running Static-SchMP
applications in a cluster and present our solutions to address them.

4.2.1 System design challenges

In this section, we depict a common communication pattern found in Static-SchMP, which
we can exploit to improve system throughput, and present three other system challenges.

Ring communication pattern: Static-SchMP in Algorithms 3 and 4 rotates shared pa-
rameter shards along a ring of worker nodes. For example, Algorithm 3 starts with M
parameter shards, each of which is assigned to a worker. In each subiteration, it shifts a
mapping of a worker and a parameter partition in one click in the clock-wise direction of

49

the ring.

Synchronization challenge: Because static scheduling scheme shifts the mapping of
worker nodes and parameter partitions by one click every subiteration, frequent synchro-
nizations bottleneck iteration throughput. For instance, in the case of K = 1, one iteration
goes through M synchronizations where M is the number of workers. In the general
k-partite algorithm, the scheme goes through M,M2, ...,MK synchronizations per one
iteration. Such frequent synchronizations make the straggler problem and load balancing
problem even worse. Therefore, reducing the number of synchronizations per iteration is
critical to improving iteration throughput of Static-SchMP applications.

A worker node design challenge: Because synchronization overhead tends to be propor-
tional to the number of worker nodes, it is desirable to make a worker node per a physical
node that has multiple cores (usually 4 ∼ 64 cores), instead of making a worker node per
a core. However, a worker node design with many cores is more likely to suffer from high
lock contention and high cache miss ratio — which results in poor update throughput per
core. We will address this problem by grouping update operations according to a shared
model parameter and sequentially executing a group of update operations (= a job) on a
dedicated thread.

Load balancing challenge: To be executed efficiently within a worker node, a group of
update operations that touch a shared model parameter should be dedicated to a thread and
executed sequentially. However, that grouping technology might cause a load balancing
problem among threads within a worker node. In machine learning problems, workload
distribution per model parameter is often uneven. For example, the word token distribution
in LDA is highly skewed, meaning that few update groups associated with few frequent
words takes much longer than others associated. Therefore, certain threads with particu-
larly heavy jobs will cause load-balancing problem. We will address this problem using a
heavy-job prioritization technique, which prioritizes heavy update groups when selecting
an update group to execute or pass to a neighbor in the ring.

4.2.2 STRADS static-engine implementation

Figure 4.1 shows the overall architecture of STRADS-Static engine. The input training
data is partitioned over worker nodes, and shared parameters are stored in Parameter Man-
ager (a distributed KV store) and circulated along a ring overlay network.

50

part of KV space

D0

worker1

D1

D2

part of KV space

part of KV space

schedulerworker0

worker2

parameters

T0 T1

T2

data partition Shared parameters
in KV store

Figure 4.1: Overall Architecutre of Static Engine: training data is partitioned over worker nodes,
and shared parameters are stored in Parameter Manager (a distributed key value store). The key
range of store is partitioned over worker nodes. Shared parameters are circulated along the ring of
worker nodes. The scheduler sends messages that trigger iteration and put synchronization barrier.

Ring overlay-network for addressing synchronization overhead

To improve iteration throughput, we exploit the ring-based data movement pattern of
Static-SchMP. We implement a ring overlay network on worker nodes and let worker nodes
rotate parameters along the ring network at fine granularity. When running the innermost
loop, the static engine lets workers send completed parameters to the next machine im-
mediately, instead of waiting for an entire partition to be completed. Therefore, the static
engine performs one global synchronization when all the parameters at level k − 1 com-
plete one rotation (= the innermost loop completes one full pass). Therefore, the count
of synchronizations at level k − 1 is reduced from M to 1, where M is the number of
worker nodes. For the example of Static-SchMP application with k = 1, the synchroniza-
tion count per iteration is reduced from M to 1 where M is the number of worker nodes.
In Static-SchMP applications with k=2, the synchronization count is reduced from M2 to
M .

Job Pool for multi-threading worker node

A worker node runs three types of threads as shown in Figure 4.2: a parameter manager
thread that circulates shared parameter shards continuously along the ring of worker nodes;
a job pool manager that coalesces associated updates into a job and manage job pool; and

51

In-Port

Out-Port

Jo
b

Po
ol

M
an

ag
er

Pa
ra

m
et

er
 M

an
ag

er

Ready Pool

Done Pool

Update
Thread

Update
Thread

Update
Thread

Update
Thread

Update
Thread

Figure 4.2: Worker node architecture of Static engine: runs the parameter manager thread, job
pool manager that creates and dispatches jobs to update threads.

update thread that executes updates of a job sequentially. The job pool manager maintains
two pools, a ready pool and a done pool. Upon receiving a shared parameter pi from a ring
neighbor, the job pool manager creates a job Ji with update operations that are associated
with the parameter pi, and puts Ji in the ready pool. At runtime, update threads poll and
pull available jobs from the ready pool. On obtaining Ji, an update thread sequentially
executes all update operation of Ji. Then, the completed job Ji is put into the done pool
and finally p′i is passed onto the next ring neighbor by the parameter manager.

Prioritization in job dispatching

Due to the skewed workload distribution of machine learning, a job for a popular object
(i.e. tokens associated with a popular word in LDA or ratings associated with a popular
product in SGDMF) could be far heavier than others, and thus take much longer time to
process. If jobs in the ready and done pools are served in FIFO (First In, First Out), these
heavy jobs will aggravate load-balancing problem, meaning that few threads with these
jobs could bottleneck iterations. To mitigate this problem, the Job pool manager/Parameter
Manager prioritizes heavy jobs when placing a new job on the ready pool and pulling done
jobs from the done pool. For Read/Done pools with prioritization, we implement priority
queues.

4.3 Evaluation

We compare SchMP programs implemented on STRADS against existing parallel execu-
tion schemes — either a well-known publicly-available implementation, or if unavailable,

52

ML app Data set Workload Feature Raw size
LDA NYTimes 99.5M tokens 300K documents, 100K words 1K topics 0.5 GB
LDA PubMed 737M tokens 8.2M documents, 141K words, 1K topics 4.5GB
LDA ClueWeb 10B tokens 50M webpages, 2M words, 1K topics 80 GB
MF Netflix 100M ratings 480K users, 17K movies (rank=40) 2.2 GB
MF x256 Netflix 25B ratings 7.6M users, 272K movies (rank=40) 563 GB

Table 4.1: Data sets used in the evaluation.

our own implementation — as well as sequential execution. We intend to show that SchMP
implementations executed by STRADS have significantly improved progress per iteration
over other parallel execution schemes; in some cases, they come fairly close to “ideal”
sequential execution. At the same time, the STRADS system can sustain high iteration
throughput (i.e. model parameters and data points processed per second) that is compet-
itive with existing systems. Together, the high progress per iteration and high iteration
throughput lead to faster machine learning program completion times (i.e. fewer seconds
to convergence).

4.3.1 Cluster setup and datasets

Unless otherwise stated, we used 100 nodes, each with 4 quad-core processors (16 phys-
ical cores) and 32GB memory. This configuration is similar to Amazon EC2 c4.4xlarge
instances (16 physical cores, 30GB memory). The nodes are connected by 1Gbps Ethernet
as well as a 20Gbps Infiniband IP over an IB interface. Most experiments were conducted
via the 1Gbps Ethernet; those that were conducted over IB are noted. We use several real
and synthetic datasets (see Table 4.1 for details).

4.3.2 Performance metrics:

We compare machine learning implementations using three metrics: (1) objective function
value versus total data samples operated upon3, abbreviated OvD; (2) total data samples
operated upon versus time (seconds), abbreviated DvT; and (3) objective function value
versus time (seconds), referred to as convergence time. The goal is to achieve the best
objective value in the least time (i.e. fast convergence).

3Machine learning algorithms operate upon the same data point many times. The total data samples
operated upon exceeds N , the number of data samples.

53

Data set(size) #machines YahooLDA SchMP-LDA
NYT(0.5GB) 25 38 43
NYT(0.5GB) 50 79 62

PubMed(4.5GB) 25 38 60
PubMed(4.5GB) 50 74 110
ClueWeb(80GB) 25 39.7 58.3
ClueWeb(80GB) 50 78 114
ClueWeb(80GB) 100 151 204

Table 4.2: Static SchMP: DvT for topic modeling (million tokens processed per second).

OvD is a uniform way to measure machine learning progress per iteration across dif-
ferent machine learning implementations, as long as they use identical parameter update
equations. This is always the case, unless otherwise stated. Similarly, DvT measures ma-
chine learning iteration throughput across comparable implementations. Note that high
OvD and DvT imply good (i.e. small) machine learning convergence time. Measuring
OvD or DvT alone (as is sometimes done) is insufficient to show that an algorithm con-
verges quickly.

4.3.3 Machine learning programs and baselines:

We evaluate the performance of LDA (a.k.a. topic model) and MF (a.k.a collaborative
filtering). STRADS uses Algorithm 5 (SchMP-LDA) for LDA, and a scheduled version
of the Stochastic Gradient Descent (SGD) algorithm for MF (SchMP-MF). For baselines,
we used YahooLDA, and BSP-MF – our own implementation of the classic BSP SGD
for MF. Both are data-parallel algorithms, meaning that they do not use SchMP schemes.
These baselines were chosen to analyze how SchMP affects OvD, DvT, and convergence
time. Later we will compare convergence time benchmarks against the GraphLab system,
which does use model parallelism.

To ensure a fair comparison, YahooLDA was modified to (1) dump the model state
at regular intervals for later objective (log-likelihood) computation4 and (2) keep all local
program state in memory, rather than streaming it off a disk. All LDA experiments were
performed on the 20Gbps Infiniband network, such that bandwidth was not a bottleneck for
the parameter server used by YahooLDA. Note that in LDA OvD and DvT measurements,
we consider each word token as one data sample.

4With overhead less than 1% of total running time.

54

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

 0 200 400 600 800

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

data processed (100M)
co

nv
er

ge

SchMP-LDA,m=25
SchMP-LDA,m=50

YahooLDA,m=25
YahooLDA,m=50

(a) LDA: NYT

-10

-9.5

-9

-8.5

-8

-7.5

-7

-6.5

-6

 0 1000 2000 3000

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

data processed (100M)

SchMP-LDA,m=25
SchMP-LDA,m=50

YahooLDA,m=25
YahooLDA,m=50

(b) LDA: PubMed

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 10000 20000 30000

ob
je

ct
iv

e
va

lu
e

(x
 1

011
)

data processed (100M)

SchMP-LDA,m=25
SchMP-LDA,m=50

SchMP-LDA,m=100
YahooLDA,m=25
YahooLDA,m=50

YahooLDA,m=100

(c) LDA: ClueWeb

 1

 1.5

 2

 2.5

 3

 0 200 400

ob
je

ct
iv

e
va

lu
e

(x
 1

08)

data processed (10M)

BSP-MF,m=25 failed
BSP-MF,m=65 failed

co
nv

er
ge

Serial-MF,m=1
SchMP-MF,m=25
SchMP-MF,m=65

(d) MF: Netflix

 0.5

 1

 1.5

 2

 2.5

 0 400 800 1200

ob
je

ct
iv

e
va

lu
e

(x
 1

011
)

data processed (1B)

SchMP-MF,m=25
SchMP-MF,m=50

SchMP-MF,m=100

(e) MF: x256 Net.

 0

 1

 2

 3

 4

 5

 6

 300 600 900

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

data processed (10M)

m>32,step=1.0e-3 failed

m=32,step=2.2e-4
m=64,step=2.2e-4

m=128,step=2.2e-4
m=256,step=2.2e-4

m=1,step=1.0e-3

(f) BSP-MF: Net.
Figure 4.3: Static SchMP: OvD. (a-b) SchMP-LDA vs YahooLDA on two data sets; (c-d) SchMP-
MF vs BSP-MF on two data sets; (e) parallel BSP-MF is unstable if we use an ideal sequential step
size; m denotes number of machines.

4.3.4 Performance evaluations

Static SchMP has high OvD: For LDA, YahooLDA’s OvD decreases substantially from
25 to 100 machines, whereas SchMP-LDA maintains the same OvD (Figures 4.3a, 4.3c).
For MF, Figure 4.3f shows that BSP-MF is sensitive to step size5; if BSP-MF employs the
ideal step size determined for serial execution, it does not properly converge on ≥ 32 ma-
chines. In contrast, SchMP-MF can safely use the ideal serial step size (Figures 4.3d,4.3e)
and approaches the same OvD as serial execution within 20 iterations.

STRADS Static Engine has high DvT: For LDA, Table 4.2 shows that SchMP-LDA en-
joys higher DvT than YahooLDA. We speculate that YahooLDA’s lower DvT is primarily
due to lock contention on shared data structures between application and parameter server

5A required tuning parameter for SGDMF implementations; higher step sizes lead to faster convergence,
but step sizes that are too large can cause algorithm divergence/failure.

55

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

 0 400 800 1200

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

time (seconds)

SMP-LDA,m=25
SMP-LDA,m=50

YahooLDA,m=25
YahooLDA,m=50

(a) LDA: NYT

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

-1.1

-1.05

 0 400 800 1200

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

time (seconds)

SchMP-LDA,m=25
SchMP-LDA,m=50

YahooLDA,m=25
YahooLDA,m=50

(b) LDA: PubMed

-1.8

-1.7

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 8000 16000 24000

ob
je

ct
iv

e
va

lu
e

(x
 1

011
)

time (seconds)

SchMP-LDA,m=25
SchMP-LDA,m=50

SchMP-LDA,m=100
YahooLDA,m=25
YahooLDA,m=50

YahooLDA,m=100

(c) LDA: ClueWeb

 1

 1.5

 2

 2.5

 3

 0 30 60 90 120

ob
je

ct
iv

e
va

lu
e

(x
 1

08)

time (seconds)

SchMP MF,m=25
SchMP MF,m=65

(d) MF: Netfilx

 0.5

 1

 1.5

 2

 6000 12000 18000 24000

ob
je

ct
iv

e
va

lu
e

(x
 1

011
)

time (seconds)

SchMP-MF,m=25
SchMP-MF,m=50

SchMP-MF,m=100

(e) MF: x256 Net.

Figure 4.4: Static SchMP: convergence times. (a-b) SchMP-LDA vs YahooLDA; (c-d) SchMP-
MF with varying number of machines m.

threads (which the STRADS Static Engine tries to avoid).

Static SchMP on STRADS has low convergence times: Thanks to high OvD and DvT,
SchMP-LDA’s convergence times are not only lower than YahooLDA, but also scale bet-
ter with increasing machine count (Figures 4.4b, 4.4c). SchMP-MF also exhibits good
scalability (Figure 4.4d, 4.4e).

4.3.5 Evaluations of static engine optimizations

The STRADS Static Engine achieves high DvT (i.e iteration throughput) via two system
optimizations: (1) reducing synchronization costs via the ring topology; (2) using a job
pool to perform load balancing across workers.

Reducing synchronization costs: Static SchMP programs (including SchMP-LDA and
SchMP-MF) do not require all parameters to be synchronized across all machines, and this
motivates the use of a ring topology. For example, consider SchMP-LDA Algorithm 5: the

56

 0

 20

 40

 60

 80

 100

 0 30 60 90

da
ta

 p
ro

ce
ss

ed
 (

x
10

6)

time (seconds)

Macro Sync
Micro Sync

(a) DvT

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

 30 60 90

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

time (seconds)

Macro Sync
Micro Sync

(b) Time

-1.6

-1.55

-1.5

-1.45

-1.4

-1.35

-1.3

-1.25

-1.2

-1.15

 0 300 600 900

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

data processed (1M)

Macro Sync
Micro Sync

(c) OvD
Figure 4.5: Static Engine: synchronization cost optimization. (a) macro synchronization improves
DvT by 1.3 times; (b) it improves convergence speed by 1.3 times; (c) This synchronization strategy
does not hurt OvD.

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 30000 60000 90000

w
or

d
fr

eq
ue

nc
y

(x
 1

03)

rank

Word Frequency

(a) NYTimes

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 40 80 120

ob
je

ct
iv

e
va

lu
e

(x
 1

09)

time (seconds)

load-balance enabled
load-balance disabled

(b) Time

-1.6

-1.5

-1.4

-1.3

-1.2

-1.1

-1

 0 200 400
ob

je
ct

iv
e

va
lu

e
(x

 1
09)

data processed (10M)

load-balance enabled
load-balance disabled

(c) OvD
Figure 4.6: Static Engine: Job pool load balancing. (a) Biased word frequency distribution in
NYTimes data set; (b) by dispatching the 300 heaviest words first, convergence speed improves by
30 percent to reach objective value -1.02e+9; (c) this dispatching strategy does not hurt OvD.

word-rotation schedule() directly suggests that a worker can pass parameters to their
ring neighbor, rather than broadcasting to all machines; this applies to SchMP-MF as well.

STRADS’s Static Engine implements this parameter-passing strategy via a ring topol-
ogy, and only performs a global synchronization barrier after all parameters have com-
pleted one rotation (i.e. P iterations) — we refer to this as “Macro Synchronization”. This
has two effects: (1) network traffic becomes less bursty, and (2) communication is effec-
tively overlapped with computation; as a result, DvT is improved by 30% compared to a
naive implementation that invokes a synchronization barrier every iteration (“Micro Syn-
chronization”, Figure 4.5a). This strategy does not negatively affect OvD (Figure 4.5c),
and hence time to convergence improves by about 30% (Figure 4.5b).

Job pool load balancing: As mentioned in sec:static-system-challenge, uneven work-

57

loads are common in Static SchMP programs: Figure 4.6a shows that the word distribu-
tion in LDA is highly skewed, meaning that some SchMP-LDA update() jobs will be
much longer than others. Hence, STRADS dispatches the heaviest jobs first to the update
threads. This improves convergence times by 30% on SchMP-LDA (Figure 4.6b), without
affecting OvD.

4.3.6 Comparison against other frameworks

GraphLab: We compare SchMP-MF with GraphLab’s SGD MF implementation, on a
different set of 8 machines — each with 64 cores, 128GB memory. On Netflix , GL-
SGDMF converged to objective value 1.8e+8 in 300 seconds, and SchMP-MF converged
to 9.0e+7 in 302 seconds (i.e. better objective value in the same time). In terms of DvT,
SchMP-MF touches 11.3m data samples per second, while GL-MF touches 4.5m data
samples per second.

Comparison against single-core LDA: We compare SchMP-LDA with a single-core
LDA implementation (Single-LDA)6 on PubMed. Single-LDA converges in 24.6 hours
while SchMP-LDA takes 17.5 minutes and 11.5 minutes on 25 machines (400 cores) and
50 machines (800 cores) respectively. Both Single-LDA and SchMP-LDA show similar
OvD results. In DvT, Single-LDA processes 830K tokens per second while SchMP-LDA
processes 70M tokens on 25 machines (175K tokens per core), and 107M tokens on 50 ma-
chines (133K tokens per core). The locking contention on a shared data structure within a
machine accounts for the reduced per-core efficiency of SchMP versus Single-LDA. Even
so, the distributed approach of SchMP achieves substantial speed-up gains (84 times on 25
machines, 128 times on 50 machines) over Single-LDA. We leave further machine-level
optimizations, such as relaxed consistency on shared data structures within a machine, as
future work.

Bösen: We compare SchMP-LDA against an implementation of LDA on a recent pa-
rameter server, Bösen[88], which prioritizes model parameter communication across the
network, based on each parameter’s contribution to algorithm convergence. Thus, Bösen
improves convergence rate (OvD) over YahooLDA while achieving similar token process-
ing throughput (DvT). On the NYT data with 16 machines7, SchMP-LDA and Bösen are
7 and 3 times faster, respectively, than YahooLDA, and SchMP-LDA is about 2.3 times

6For fair comparison, Single-LDA implements the same sampling algorithm and the same data structure
of SchMP-LDA, and is lock-free. We use C++11 STL library for implementing the sampling algorithm
routine from scratch without third-party library.

7For fair comparison, we set the stopping log-likelihood value to -1.0248e+09 for all experiments: Bösen,
YahooLDA, SchMP-LDA with 16 machines.

58

faster than Bösen. The SchMP-LDA improvement comes from the static model-parallel
schedule() in Algorithm 5 (that avoids violating model dependencies in LDA), which
the Bösen data-parallel LDA implementation does not have.

59

60

Chapter 5

Dynamic-SchMP & STRADS-Dynamic
Engine

In this chapter, we explore a dynamic scheduling scheme (Dynamic-SchMP). First, we
present dynamic scheduling algorithm that improves the statistical progress of machine
learning algorithms by taking dependency structure and uneven convergence of model pa-
rameters into account. Then, we discuss system design challenges in running a Dynamic-
SchMP program in a cluster and present STRADS Dynamic-Engine to address them. This
chapter:

• Presents a generic two-phase scheduling algorithm that considers model dependency
and dynamically changing convergence status of model parameters.

• Identifies two system challenges and presents STRADS Dynamic-Engine imple-
mentation that addresses the challenges.

• Quantifies the benefits of dynamic scheduling (Dynamic-SchMP) and STRADS
Dynamic-Engine using three different metrics. Our evaluation shows that Lasso (l1-
regularized regression) and logistic regression applications with Dynamic-SchMP
on STRADS Dynamic-Engine improve training speed by an order of magnitude.

5.1 Dynamic-SchMP

This section introduces the dynamic scheduling scheme (Dynamic-SchMP) that consid-
ers a machine learning application’s dynamically changing states (i.e. convergence dis-

61

X1 X2 X4 X7 X80.11

0.01

0.003

0.15

0.0001

0.001

0.07

0.0003

0

Priority of parameter updates L: a set of high-priority
parameter updates

| Δxi |

D
en

si
ty

Δx1

Δx2

Δx3

Δx4

Δx5

Δx6

Δx7

Δx8

Δx9

Phase II: Check dependency on L

Phase I:
Sampling based on
priority distribution

New priority info. for Lsafe

Lsafe

X1

X4

X2

X7X8

…
.

Figure 5.1: Workflow of Two-Phase Scheduling in Dynamic-SchMP: Dynamic scheduler keeps
track of priority information of individual model parameter updates. Priority of a model parameter
update represent convergence distance of parameter values assoricated with the parameter update,
and we approximate convergence distance by sum of delta of parameter values. Phase-I selects a set
of model parameter update L based on the priority distribution. Phase-II builds model dependency
graph for model parameters in L and checks on dependency structure. If a pair of parameters are
found to have too strong dependency (larger than a threshold), one of them are set aside for next
round. After dependency check, L is reduced to Lsafe that degree of dependency on all possible
pairs is less than a threahold.

tance of model parameters and runtime changes on model dependency structure), which
Static-SchMP in Chapter 4 cannot capture, and generates scheduling plans at run time
with affordable computation cost. To achieve such a scheduler, we combines two SchMP
strategies in Sec 3.2.1, Dynamic Partitioning and Prioritization, and present a two-phase
dynamic scheduling algorithm (Dynamic-SchMP). Note that dynamic scheduling is a gen-
eral scheduling scheme that can support machine learning algorithms with variadic update
function as well as Static-SchMP compatible algorithms with non-variadic update function
we discussed in Chapter 4

5.1.1 Dynamic-SchMP

Dynamic-SchMP scheduler consists of two phases. Figure 5.1 depicts its workflow. The
scheduler keeps track of priority information of individual parameter updates. Priority of a

62

parameter update represents sum of convergence distances of model parameters associated
with the parameter update in statistical parlance. The convergence distance of a model
parameter at current time t is the difference between its value at current t and and its
expected converged value at t + n. Because accurate estimation of convergence distance
could be expensive or even impossible, in our study, we approximate it by measuring the
delta of a model parameter per an update. The logic behind this is that the delta of model
parameter value is getting smaller when the value of βi is being closer to its converged
value.

In Phase-I, the scheduler samples a subset of model parameter updates L based on
updates’ priorities where |L| << the total parameter update count C. In Phase-II, the
scheduler builds a dependency graph GL for L, where ei,j in GL represents degree of de-
pendency1 between two parameter updates i, j in L, and eliminates a edge that has larger
dependency value than a user-defined threshold, by removing one of vertices of such edge.
During this filtering process, the scheduler reserves victim updates for next round. Then,
Lsafe, in which dependency of any pairs of update in Lsafe is less than the user defined
threshold, is dispatched over a cluster for parallel execution. At the completion of execu-
tion of Lsafe, the scheduler updates priorities of the parameter updates in Lsafe based on
the delta on parameter values that are associated with the parameter updates in Lsafe.

5.1.2 Dynamic-SchMP example with Lasso

In this section, we apply Dynamic-SchMP to coordinate descent based lasso algorithm.
Coordinate descent optimization method is the most common method for implementing
Lasso (and a large number of its variations) but is known to be hard to parallelize using
data-parallel approach unlike gradient descent method because coordinate descent method
in many applications is often very sensitive to numerical inaccuracy and likely to make
slow progress per iteration or fail to converge when being parallelized in data-parallel
approach. We parallelize coordinate descent Lasso successfully using Dynamic-SchMP.

Lasso, or the `1-regularized least-squares regression, is used to identify a small set of
important features from high-dimensional data. It is an optimization problem:

minβ
1
2

∑n
i=1 (yi − xiβ)

2
+ λ‖β‖1 (5.1)

where ‖β‖1 =
∑d

a=1 |βa| is a sparsity-inducing `1-regularizer, and λ is a tuning parameter
that controls the sparsity level of β. X is an N -by-M design matrix (xi represents the i-th

1Defining a function that measure degree of dependency between two parameter updates is application
specific but can be done easily by looking at machine learning algorithm.

63

Algorithm 6 SchMP Dynamic, Prioritized Lasso
X,y: input data
{X}p, {y}p: rows/samples of X,y stored at worker p
β: model parameters (regression coefficients)
λ: `1 regularization penalty
τ : G edges whose weight is below τ are ignored
Function schedule(β,X):

Pick L > P params in β with probability ∝ (∆βa)
2

Build dependency graph G over L chosen params:
edge weight of (βa, βb) = correlation(xa,xb)

[βG1 , . . . , βGK] = findIndepNodeSet(G, τ)
For p = 1..P :

Sp = [βG1 , . . . , βGK]
Return [S1, . . . ,SP]

Function update(p,Sp, {X}p, {y}p, β):
For each param βa in Sp, each row i in {X}p:
Rp[a] += xiay

i −
∑

b6=a x
i
ax

i
bβb

Return Rp
Function aggregate([R1, . . . , RP],S1, β):

For each parameter βa in S1:
temp =

∑P
p=1Rp[a]

βa = S(temp, λ)

row, xa represents the a-th column), y is an N -by-1 observation vector, and β is the M -
by-1 coefficient vector (the model parameters). The Coordinate Descent (CD) algorithm is
used to solve Eq. (5.1), and thus learn β from the inputs X,y; the CD update rule for βa is:

β
(t)
a ← S(x>a y −

∑
b 6=a x

>
a xbβ

(t−1)
b , λ), (5.2)

where S(·, λ) is a soft-thresholding operator [29].

Algorithm 6 shows SchMP Lasso that is scheduled the two-phase Dynamic-SchMP in
Figure 5.1. In SchMP Lasso, a worker node stores a subset of design matrix X (which is
common practice in parallel ML). However, the Lasso update Eq. (5.2) uses a feature/column-
wise access pattern. Therefore, every worker p = 1..P operates on the same scheduled
set of L parameters, but using their respective data partitions {X}p, {y}p. Note that
update() and aggregate() are a straightforward implementation of Eq. (5.2).

schedule() picks (i.e. prioritizes) L parameters2 in β with probability proportional
to their squared difference from the latest update (their “delta”). Parameters with larger

2In Lasso, an update operation corresponds to a model parameter so that we let a parameter βi denote
the parameter update on βi.

64

delta are more likely to be non-converged. Next, it builds a dependency graph over these
L parameters, with edge weights equal to the correlation3 between data columns xa,xb.
Finally, it eliminates all edges in G above a threshold τ > 0 by removing a node per an
eliminated edge. After the filtering process, all remaining nodes βGk do not have edges
above a threshold and are thus safe to update in parallel.

Why is such a sophisticated schedule() necessary? See parallel Lasso with random
parameter selection in Section 3.1. Figure 3.2 shows its progress, on the Alzheimer’s
Disease (AD) data [95]. The total compute to reach a fixed objective value goes up with
more concurrent updates — i.e. progress per unit computation is decreasing, and the
algorithm has poor scalability. Another reason is uneven parameter convergence. Figure
3.3 shows how many iterations different parameters took to converge on the AD dataset;
> 85% of parameters converged in < 5 iterations, suggesting that the prioritization in
Algorithm 6 should be very effective.

Default schedule() functions: The squared delta-based parameter prioritization and
dynamic dependency checking in SchMP Lasso’s schedule() (Algorithm 6) generalize
to other regression problems — for example, we also implement sparse logistic regression
using the same schedule(). STRADS allows ML programmers to re-use Algorithm 6’s
schedule() via a library function scheduleDynRegr().

5.2 STRADS-Dynamic Engine

To achieve high update throughput of Dynamic-SchMP machine learning programs, we
identify two system design challenges and present STRADS-Dynamic engine with three
optimization solutions that trade “progress per update” from scheduling for update through-
put. The logic behind this trade is to maximize progress per unit time by balancing update
throughput and progress per update.

5.2.1 System design challenges

This section presents two major system design challenges in running Dynamic-SchMP
applications in a cluster.

Scheduling Throughput: Update throughput of Dynamic-SchMP application ismin(Sthroughput, Uthroughput)
where Sthroughput is scheduling throughput by dynamic scheduler, and Uthroughput is itera-
tion throughput by JobExecutors. In some machine learning problems, iteration might be

3On large data, it suffices to estimate the correlation with a data subsample.

65

Master	
Scheduler	

Scheduler-‐1	

Scheduler-‐2	

Jo
b	
Ex
ec
ut
or
s	

scheduling	 aggrega9on	 job	 execu9on	

{Tt}	 {Rt}	 {Tt+1}	 {Rt+1}	 {Tt+2}	 {Rt+2}	

{Tt+1}	

{Tt+2}	

{Tt+3}	

(a) Non-pipelined

Master	
Scheduler	

Scheduler-‐1	

Scheduler-‐3	

Jo
b	
Ex
ec
ut
or
s	

{Rt}	

Scheduler-‐2	

{Tt}	 {Tt+1}	 {Tt+2}	 {Tt+3}	 {Tt+4}	 {Tt+5}	

{Rt+1}	 {Rt+2}	 {Rt+3}	 {Rt+4}	 {Rt+5}	

scheduling	 aggrega:on	 job	 execu:on	

(b) Pipelined

Figure 5.2: Dynamic Engine pipelining: (a) Non-pipelined execution: network latency dominates;
(b) Pipelining overlaps networking and computation.

short, hence parameter update throughput by JobExecutors is often larger than scheduling
throughput of a single scheduler instance, in which JobExecutors have idle time waiting
for schedule. Even worse, the parameter update throughput could be proportional to the
number of JobExecutors, the scheduler design should be able to scale up with Uthroughput.

Communication Latency: To dispatch scheduling plans and monitor dynamically chang-
ing priorities of parameter updates, Dynamic-SchMP incurs communication overheads
between the scheduler and JobExecutors. In some machine learning programs, the latency
of parameter update might be insufficient to amortize this communication latency, which
bottlenecks update iteration throughput in the end.

5.2.2 STRADS Dynamic-Engine implementation

To address aforementioned challenges, we present distributed scheduler, in which schedul-
ing throughput is scalable with the number of scheduler instances, and pipelining opti-
mization, which overlaps newtork communication and computations of scheduling and
parameter update.

Distributed Scheduler: To achieve scalable scheduling throughput, we implement a dis-
tributed scheduler that runs scheduling over multiple scheduler instances as shown in Fig-
ure 5.2a, 5.2b. In a distributed scheduler, model parameter updates are partitioned into
S disjoint subsets where S is the number of scheduler instances and a scheduler instance
runs independently on a subset of model parameter updates. Through this distributed
design, Dynamic-SchMP scheduler with S instances easily increases scheduling through-

66

Schedule set Si Schedule set Si+1

Si,0 Si,1 Si,2 Si+1,0 Si+1,1 Si+1,2

Figure 5.3: Reordering updates to mitigate side effect of pipelining: The dynamic engine re-
orders a schedule plan S in ascending order on updates’ priorities and split S into three sub plans
Si,0, Si,1, Si,2. Red subplan is a group of highest priority updates, yello subplan is the opposite,
and curves represent the availability of computation results at souce side for the computation at
the destination side. When pipeline depth s is smaller than 3, the split and reordering optimization
ensures the results of the red subplan Si,0 is always available before starting the next red subplan
Si+1,0.

put by S times. In order to manage dispatch ordering and the feedback of updated pa-
rameter information, the dynamic engine has a coordinator node that pulls scheduling
sets from S scheduler instances in a round robin manner and is responsible for running
aggregate() function and pipelining tasks of schedule generation and update execu-
tion.

Pipelining: To address the aforementioned network communication latency challenge,
Dynamic-Engine implements pipelining that overlaps network communication and com-
putations of parameter update and scheduling; the dynamic engine will start additional iter-
ations before waiting for completion of current iteration. The pipeline depth s (the number
of in-flight iterations) can be set by the user. At iteration t, the dynamic engine starts the
iterations t+ 1, t+ 2, .., t+ s before the current iteration t is completed. Figure 5.2a, 5.2b
compare non-pipelined execution and pipelined execution. Although pipelining improves
iteration throughput and overall converence speed, it may lower progress per iteration (up-
date) due to (1) iteration t will not see the results from iteration t − 1 to iteration t − s,
where s is the pipeline depth; and (2) there might be dependencies between pipelined iter-
ations because scheduling plans for iterations t, t−1, .., t−s came from s different subsets
of update operations that are generated by S independent scheduler instances. This does
not lead to machine learning program failure because ML algorithms can tolerate some
error and still converge — albeit more slowly. Pipelining is basically execution with stale
parameters, A(t) = F (A(t−s), {∆p(A

(t−s), Sp(A
(t−s)))}Pp=1) where s is the pipeline depth.

Reordering updates: In this section, we present one more optimization technique that
minimizes negative impacts of pipelining — certain loss on progress per iteration — by
reordering parameter updates. The loss of statistical progress from pipelining is due to

67

ML app Name Workload Feature Input size (Disk)
Lasso AlzheimerDisease (AD) 235M nonzero 463 sample, 0.5M feature 6.4 GB
Lasso LassoSynthetic 2B nonzero 50K sample, 100M feature 45 GB

Logistic LogisticSynthetic 1B nonzero 5K sample, 10M feature 29 GB

Table 5.1: Experiment data sets

two factors:(1) the strength of dependencies among in-flight updates in the pipeline and
(2) the magnitude of parameter changes by in-flight update operation in the pipeline. Here,
we try to reduce the second factor, which is staleness associated with parameters that are
modified by in-flight updates. First, for schedule set Si with k update operations, the
coordinator — the master scheduler in charge of pulling scheduling plans from scheduler
instances and manages pipelining — reorders the update operations of Si in ascending
order of priority and splits Si into n subsets, Si,0, Si,1, .., Si,n−1. Then, the coordinator
runs pipelining with subsets. This reordered subset pipelining could improve progress
per iteration if the pipeline depth s is set to be smaller than n. Figure 5.3 illustrate an
example where n is set to 3, and pipeline depth s is set to 2. When Si+1,0, which is the
most important updates of Si+1, is being executed, the results of Si,0, which is the most
important update of Si, is available without staleness. In other words, task reordering
ensures that the most important update operations in the following schedule set Si+1,0 can
always see the results of Si,0 when the pipeline depth s is less than n. Therefore, nemeric
inaccuracy from pipelining can be mitigated.

5.3 Evaluation

Cluster setup and datasets: Unless otherwise stated, we used 8 nodes, each with 16
physical cores and 128GB memory. The nodes are connected by 1Gbps Ethernet. We use
one real dataset and two synthetic datasets — see Table 5.1 for details.

Performance metrics: We compare ML implementations using three metrics: (1) objec-
tive function value versus total data samples operated upon, abbreviated OvD; (2) total
data samples operated upon versus time (seconds), abbreviated DvT; and (3) objective
function value versus time (seconds), referred to as convergence time. The goal is to
achieve the best objective value in the least time — i.e. fast convergence.

Machine learning programs and baselines: We evaluate `1-regularized linear regression
(Lasso) and `1-regularized Logistic regression (sparse LR, or SLR). STRADS uses Algo-
rithm 6 (SchMP-Lasso) for the former, and we solve the latter using a minor modification

68

to SchMP-Lasso4 (called SchMP-SLR). To the best of our knowledge, there are no open-
source distributed Lasso/SLR baselines that use coordinate descent, so we implement the
Shotgun Lasso/SLR algorithm [12] (Shotgun-Lasso, Shotgun-SLR), which uses random
model-parallel scheduling5

 0.001

 0.002

 0.003

 0 1000 2000 3000 4000ob
je

ct
iv

e
va

lu
e

data processed (100M)

Shotgun-Lasso
SchMP-Lasso

(a) Lasso with AD data

 0.004

 0.008

 0.012

 0.016

 0 200 400ob
je

ct
iv

e
va

lu
e

data processed (100M)

Shotgun-Lasso,m=8
SchMP-Lasso,m=8

(b) Lasso with Synthetic data

 0.001

 0.002

 0.003

 0 60 120 180ob
je

ct
iv

e
va

lu
e

data processed (100M)

Priority+Dynamic
Priority Only

(c) AD data

 0.45

 0.55

 0.65

 0 600 1200 1800ob
je

ct
iv

e
va

lu
e

data processed (100M)

Shotgun-SLR,m=8
SchMP-SLR,m=8

(d) SLR with Synthetic data

Figure 5.4: Dynamic SchMP: OvD. (a) SchMP-Lasso vs Shotgun-Lasso [12] on one machine (64
cores); (b) SchMP-Lasso vs Shotgun-Lasso on 8 machines; (c) SchMP-Lasso with & w/o dynamic
partitioning on 4 machines; (d) SchMP-SLR vs Shotgun-SLR on 8 machines. m denotes number
of machines.

5.3.1 Performance evaluations

Dynamic SchMP has high OvD: Dynamic SchMP achieves high OvD in both single-
machine (Figure 5.4a) and distributed 8-machine (Figure 5.4b) configurations. Here, we
compare SchMP-Lasso against random model-parallel Lasso (Shotgun-Lasso) [12]. In ei-
ther case, Dynamic SchMP decreases the data samples required for convergence by an or-

4Lasso and SLR are solved via the coordinate descent algorithm, hence SchMP-Lasso and SchMP-SLR
only differ slightly in their update equations. We use coordinate descent rather than gradient descent because
it has no step size tuning and more stable convergence [74, 72].

5Using coordinate descent baselines is essential to properly evaluate the DvT and OvD impact of SchMP-
Lasso/SLR; other algorithms like stochastic gradient descent are only comparable in terms of convergence
time.

69

Application

nonzeros per
column 1K 10K 20K

SchMP-Lasso 16 × 4 cores 125 212 202
SchMP-Lasso 16 × 8 cores 162 306 344

SchMP-LR 16 × 4 cores 75 98 103
SchMP-LR 16 × 8 cores 106 183 193

Table 5.2: Dynamic SchMP: DvT of SchMP-Lasso and SchMP-LR, measured as data samples
(millions) operated on per second, for synthetic data sets with different column sparsity.

der of magnitude. Similar observations hold for distributed SchMP-SLR versus Shotgun-
SLR (Figure 5.4d).

 0.001

 0.002

 0.003

 0 400 800 1200 1600ob
je

ct
iv

e
va

lu
e

time (seconds)

Shotgun-Lasso
SchMP-Lasso

(a) Lasso with AD data

 0.004

 0.008

 0.012

 0.016

 0 2000 4000 6000 8000ob
je

ct
iv

e
va

lu
e

time (seconds)

Shotgun-Lasso,m=8
SchMP-Lasso,m=8

(b) Lasso with Synthetic data

 0.001

 0.002

 0.003

 0.004

 60 120 180 240 300ob
je

ct
iv

e
va

lu
e

time (seconds)

Priority+Dynamic
Priority Only

(c) AD data

 0.45

 0.55

 0.65

 0 3000 6000 9000ob
je

ct
iv

e
va

lu
e

time (seconds)

Shotgun-SLR,m=8
SchMP-SLR,m=8

(d) SLR with Synthetic data

Figure 5.5: Dynamic SchMP: convergence time. Subfigures (a-d) correspond to Figure 5.4.

STRADS Dynamic Engine DvT analysis: Table 5.2 shows how the STRADS Dynamic
Engine’s DvT scales with increasing machines. We observe that DvT is limited by dataset
density — if there are more nonzeros per feature column, we observe better DvT scala-
bility with more machines. This is because the Lasso and SLR problems’ model-parallel
dependency structure limits the maximum degree of parallelization (number of parameters
that can be correctly updated each iteration). Thus, Dynamic Engine scalability does not
come from updating more parameters in parallel (which may be mathematically impossi-
ble), but from processing more data per feature column.

70

Dynamic SchMP on STRADS has low convergence times: Overall, both SchMP-Lasso
and SchMP-SLR enjoy better convergence times than their Shotgun counterparts. The
worst-case scenario is a single machine using a dataset (AD) with few nonzeros per feature
column (Figure 5.5a). When compared with Figure 5.4a, SchMP DvT is much lower
than Shotgun (Shotgun-Lasso converges faster initially), but ultimately SchMP-Lasso still
converges 5 times faster. In the distributed setting (Figure 5.5b Lasso, Figure 5.5d SLR),
the DvT penalty relative to Shotgun is much smaller and the curves resemble the OvD
analysis (SchMP exhibits more than an order of magnitude speedup).

The evaluation of dynamic-schedule SchMP algorithms on the STRADS-Dynamic en-
gine shows significantly improved OvD compared to random model-parallel scheduling.
We also show that (1) in the single machine setting, Dynamic SchMP comes at a cost to
DvT, but overall convergence speed is still superior to random model-parallel and (2) in
the distributed setting, this DvT penalty mostly disappears.

5.3.2 Evaluation of dynamic engine optimizations

The STRADS Dynamic Engine improves DvT (data throughput) via iteration pipelining,
while improving OvD via dynamic partitioning and prioritization in schedule().

Impact of dynamic partitioning and prioritization: Figures 5.4c (OvD) and 5.5c (OvT)
show that the convergence speedup from Dynamic SchMP comes mostly from prioriti-
zation — we see that dependency checking approximately doubles SchMP-Lasso’s OvD
over prioritization alone, implying that the rest of the order-of-magnitude speedup over
Shotgun-Lasso comes from prioritization. Additional evidence is provided by Figure 3.3;
under prioritization most parameters converge within just 5 iterations.

Pipelining improves DvT at a small cost to OvD: The STRADS Dynamic Engine can
pipeline iterations to improve DvT (iteration throughput), at some cost to OvD. Figure 5.6c
shows that SchMP-Lasso (on 8 machines) converges most quickly at a pipeline depth of 3,
and Figure 5.6d provides a more detailed breakdown, including the time take to reach the
same objective value (0.0003). We make two observations: (1) DvT improvement saturates
at pipeline depth 3; (2) OvD, expressed as the number of data samples to convergence, gets
proportionally worse as pipeline depth increases. Hence, the sweet spot for convergence
time is pipeline depth 3, which halves convergence time compared to no pipelining (i.e.
pipeline depth 1).

71

 0

 300

 600

 900

 1200

 0 20 40 60

da
ta

 p
ro

ce
ss

ed
(1

0M
)

time (seconds)

(a) DvT

 0

 0.001

 0.002

 0.003

 0.004

 0 800 1600 2400

ob
je

ct
iv

e
va

lu
e

data processed (10M)

 Pipeline Depth 1
 Pipeline Depth 2
 Pipeline Depth 3
 Pipeline Depth 4

(b) OvD

 0.001

 0.002

 0.003

 0.004

 0 60 120 180

ob
je

ct
iv

e
va

lu
e

time (seconds)

 Pipeline Depth 1
 Pipeline Depth 2
 Pipeline Depth 3
 Pipeline Depth 4

(c) Time

0!

60!

120!

180!
time (seconds)!

0!

80!

160!

240!

data processed
(100M)!

0!

50!

100!

150!

200!

throughput !
(1M/s) !

1 2 3 4! 1 2 3 4! 1 2 3 4!

(d) Metrics at objective 3e-4

Figure 5.6: Dynamic Engine: iteration pipelining. (a) DvT improves 2.5× at pipeline depth 3,
however (b) OvD decreases with increasing pipeline depth. Overall, (c) convergence time improves
2× at pipeline depth 3. (d) Another view of (a)-(c): we report DvT, OvD and time to converge to
objective value 0.0003.

5.3.3 Comparison against other frameworks

We compare SchMP-Lasso/SLR with Spark MLlib (Spark-Lasso, Spark-SLR), which uses
the SGD algorithm. In this experiment, we used 8 nodes with 64 cores and 128GB mem-
ory each. On the AD dataset (which has complex gene-gene correlations), Spark-Lasso
reached objective value 0.0168 after 1 hour, whereas SchMP-Lasso achieved a lower ob-
jective (0.0003) in 3 minutes. On the LogisticSynthetic dataset (which was constructed
to have few correlations), Spark-SLR converged to objective 0.452 in 899 seconds, while
SchMP-SLR achieved a similar result.6 This confirms that SchMP is more effective in the
presence of more complex model dependencies.

6In the SchMP-Lasso/LR experiments, we did not include the overhead of checkpointing. We found that
it is negligible (< 1% of total execution time) and dominated by update computation time.

72

Chapter 6

Productivity of Developing Distributed
ML

In this chapter, we present a case study that investigates the development cost of using
high-level frameworks for developing distributed machine learning. Our case study shows
that a different mental model for programming that a high-level framework requires a
machine learning programmer to switch to from a familiar sequential programming model
causes serious development overhead, and peculiarities of a high-level framework deliver
suboptimal training performance. After the user study, we present an overview of our
new approach STRADS-AP that allows a machine learning programmer to stay with a
sequential programming model and simplifies distributed machine learning programming
significantly while delivering performance comparable to hand-tuned distributed machine
learning applications. In summary, this chapter:

• Conducts a case study that converts a sequential SGDMF code into distributed codes
on Spark and STRADS-AP and compare development costs and runtime perfor-
mance.

• Identifies two challenges that high-level frameworks impose for developing dis-
tributed machine learning.

• Presents an overview of STRADS-AP approach.

73

Algorithm 7 Pseudo code for SGDMF
1: A: a set of ratings. Each rating contains (i:user id, j:product id, r: rating)
2: W :M ×K matrix; initialize W randomly
3: H:N ×K matrix; initialize H randomly
4: for each rating r in A
5: err = r.r - W [r.i]H[r.j]
6: ∆ W = γ·(err*H[r.j] -λ ·W [r.i])
7: ∆ H = γ·(err*W [r.i] -λ· H[r.j])
8: W[r.i] += ∆ W
9: H[r.j] += ∆ H

6.1 Case Study

In the case study, we demonstrate that converting a sequential ML code into a high-level
framework code requires large programming efforts and leads to poor performance that is
an order of magnitude slower than STRADS-AP implementation, or a hand-tuned imple-
mentation.

As a concrete example, we choose Spark as the framework, and SGDMF (Stochastic
Gradient Descent Matrix Factorization) as the algorithm — a popular recommendation
system algorithm. As a baseline, first, we implement a sequential SGDMF in C++ by
referring to the algorithm description in Algorithm 7. Then, we convert the sequential
code into three different parallel codes — shared-memory OpenMP, Spark and STRADS-
AP — and compare their performance.

6.1.1 SGDMF algorithm for recommendation system

This section summarizes matrix factorization (MF) model and stochastic gradient algo-
rithm for optimizing matrix factorization model. Matrix factorization learns user’s prefer-
ences over all productss from an incomplete rating dataset represented as a sparse matrix
A ∈ RM×N where M and N are the number of users and products, respectively. It fac-
torizes the incomplete matrix A into two low-rank W ∈ RM×K and H ∈ RN×K matrices
such that W · HT approximates A. Algorithm 7 iterates over the ratings in the matrix A.
For each rating ri,j , it calculates gradients ∆W [i], ∆H[j] and adds the gradients to W [i],
H[j], respectively. The computed parameter values for the rating ri,j are immediately
visible when computing the next rating, which is an example of asynchronous computa-
tion. Algorithm 7 represents a common way machine learning researchers present their

74

struct rating{
int i,j; // i: user id, j: product id
float s; // s: rating score

};
typedef rating T1;
typedef array<float, K> T2;
vector<T1> A = LoadRatings(Datafile_Path);
vector<T2> W(M);
vector<T2> H(N);
RandomInit(W);
RandomInit(H);
float gamma(.01f), lambda(.1f);
for(int iter=0; iter<maxiter; iter++){

for(int k=0; k<A.size(); k++){
const T1 &r = A[k];
T2 err = r - W[r.i]*H[r.j];
T2 Wd = gamma*(err*W[r.i]-lambda*H[r.j]);
T2 Hd = gamma*(err*H[r.j]-lambda*W[r.i]);
W[r.i] += Wd;
H[r.j] += Hd;

}
}

Figure 6.1: Sequential SGDMF: iterates over a vector of ratings, A. For a rating A[k], which has
rating score s for j-th product by i-th customer, it calculates gradients ∆W and ∆H for Wi and
Hj , respectively and adds them to Wi and Hj , respectively. Note that the latest values of Wi and
Hj are immediately visible for processing A[k + 1].

algorithm works in publication.

6.1.2 Sequential SGDMF

Sequential implementation of Algorithm 7 is a direct translation of the pseudocode as
shown in Figure 6.1. We consider this sequential SGDMF as a baseline.

6.1.3 Shared-Memory SGDMF using OpenMP

As a intermediate step before moving on distributed SGDMF, we convert the sequential
code in Figure 6.1 into a shared memory code using OpenMP[22]. We make two mod-
ifications to the sequential code as shown in Figure 6.2: annotate the inner loop with
parallel-for pragma(line 17) ; and places mutexes(lines 20, 21, 27, 28) . OpenMP paral-
lelizes the inner loop over loop indices using fork-join model where threads run the loop
body with different loop indices and join at the completion of the loop. Use of mutexes

75

struct rate{
int i, j;
float s;

};
typedef rate T1;
typedef array<float, K> T2;
vector<T1> A = LoadRatings(Datafile_Path);
vector<T2> W(M);
RandomInit(W);
vector<T2> H(N);
RandomInit(H);
float gamma(.01f);
float lambda(.1f);
vector<mutex> WLock(M); // M: max user id
vector<mutex> HLock(N); // N: max product id
for(auto i(0);i<maxiter;i++){

#pragma omp parallel for
for(int k=0; k<A.size(); k++){

const T1 &r = A[k];
WLock(r.i).lock() // locks to avoid data race
HLock(r.j).lock() // on shared W,H matrices
T2 err = r - W[r.i]*H[r.j];
T2 Wd = gamma*(err*W[r.i]-lambda*H[r.j];
T2 Hd = gamma*(err*H[r.j]-lambda*W[r.i];
W[r.i] += Wd;
H[r.j] += Hd;
HLock(r.j).unlock()
WLock(r.i).unlock()
// Note that locks are released in reverse
// ordering of obtaining to avoid deadlock

}
}

Figure 6.2: Shared-Memory SGDMF: parallelizes update routine (loop body) using OpenMP
primitives. To avoid race conditions on the shared parameters W and H , it places mutexes —
HLock and WHlock — inside the loop and ensures serializability, which means its progress per
iteration is comparable to that of sequential code.

inside the loop prevents data races on W and H submatrices and ensures serializability1,
which means its progress per iteration is comparable to that of sequential code.

6.1.4 Distributed SGDMF using Spark-Scala

We convert the sequential code into distributed Spark program. This conversion process
requires significant programming effort as detailed below

1Serializability of a parallel execution means that the parallel execution has equivalent sequential execu-
tion.

76

1 val P = K // number of executors
2 val ratings = sc.textFile(rfile, P).map(parser)
3 val blks=sc.parallelize(0 until P, P).persist()
4 val W = blks.map(a->Create_WpSubmatrix(a))
5 var H = blks.map(a->Create_HpSubmatrix(a))
6 var AW = ratings.join(W,P)
7 var AWH = AW.join(H,P).mapPartitions(a->ComputeFunc(a,0))
8 float gamma(.01f), lambda(.1f);
9 for(auto i(0);i<maxiter;i++){

10 for(auto sub(0);sub<P;sub++){ // subiteration
11 val idx = i*P + sub;
12 if(idx > 0){
13 AWH = AW(idx).join(H,P).
14 mapPartitions(a->ComputeFunc(a,subepoch))
15 }
16 AW = AWH(idx).mapPartitions(x->separateAW_Func(x))
17 H = AWH.map(x->separateH_and_Shift_Func(x))
18 }
19 }
20 def ComputeFunc(it:Iterator to AWH){
21 val tmp = ArrayBuffer[type of AWH]
22 for(e <- it){
23 val Ap = e.Ap
24 val Wp = e.Wp
25 val Hp = e.Hp
26 for(auto r: Ap){
27 if(r.2 not belong to Hp)
28 continue //skip if not in Hp product indices
29 val err = r.3 - Wp[r.1]*Hp[r.2]

30 val Wd = gamma*(err*Wp[r.1]-lambda*Hp[r.2]

31 val Hd = gamma*(err*Hp[r.2]-lambda*Wp[r.1]
32 Wp[r.i] += Wd
33 Hp[r.j] += Hd
34 } // end of for(auto r ..
35 tmp += Tuple2(e.key, ((Ap, Wp), Hp));
36 } // end of for(e ..
37 val ret = tmp.toArray
38 ret.iterator
39 } // end of def update_Func

Figure 6.3: Spark-SGDMF: implements DSGD algorithm in [30]. It creates three RDDs,A,W,H
for ratings, user matrix, and product matrix. A and W are joined onto AW based on user id. One
iteration is divided into P subiterations. Each subiteration, it creates a temporary RDD AWH
where a partition of AW get exclusive access to a partition of H using join operation, runs param-
eter update, and divides AWH into AW ′ and H ′ for next subiteration. Each subiteration, a AW
partition is merged into a different H partition where partition is determined by exclusive range of
product id.

77

Concurrency Control: Spark lacks concurrency control primitives. Since the inner loop
of SGDMF leads to data dependencies when parallelized, we need to implement a schedul-
ing plan for correct execution. Reasoning about concurrency control is application-specific
and often requires a major design effort. For implementing a distributed SGDMF without
concurrency issues, we implemented distributed stochastic gradient descent matrix factor-
ization (DSGDMF) algorithm that was designed for implementing SGDMF on MapRe-
duce system by Gemulla [30]. The scheduling code is at (lines 9-20), and the training
code is at (lines 21 - 40) in Figure 6.3.

Molding SGDMF to Spark API: Even after obtaining a concurrency scheduling algo-
rithm, implementing SGDMF in Spark requires substantial programming effort for the
following reasons.

First, Spark operators such as map, operate on a single RDD object, while the inner
loop body (= an update operation) in Figure 6.1(lines 14 – 21) accesses multiple objects:
the input data A, and the parameter matrices W and H . To parallelize the inner loop with
map we need to merge A, W , and H into a single RDD, requiring multiple join operations
involving costly data shuffling.

Second, merging via join operator requires changes to data structures. Since the join
operator works only on the RDD[Key,Value] type, we have to replace the vectorsA,W,H ,
in 6.1, with RDD[K,V] where V might be also key-value pair type.

Finally, data movement for concurrency control requires extra join and map operations.
At the end of its every subiteration, DSGDMF moves H partitions among nodes, which
requires two extra operations for every subiteration: (1) a map operation that separates H
from the merged RDD and modifies the key field of H , (2) a join operation that remerges
H and AW into AWH for the next subiteration, as shown in Figure 6.3 (lines 9-20.)

In summary, engineering the Spark implementation of SGDMF algorithm involves a
large amount of incidental complexity that stems from the limitations of Spark API and its
data abstractions. In addition to the loss in productivity, there is also a loss in efficiency.
We will discuss this efficiency issue in Section 6.1.6.

6.1.5 Distributed SGDMF using STRADS-AP

Finally, we convert the sequential code into STRADS-AP code. This conversion is
done almost mechanically by (1) replacing serial data structures with STRADS-AP’s dis-
tributed data structures, and (2) replacing the inner loop with STRADS-AP’s AsyncFor
loop operator, as shown in Figure 6.4.

78

struct rate{int i;
int j;
float r

};
typedef rate T1;
typedef array<float, K> T2;
dvector<T1> &A = ReadFromFile(Datafile_Path, parser);
dvector<T2> &W = MakeDVector(M, RandomInit);
dvector<T2> &H = MakeDVector(N, RandomInit);
float gamma(.01f), lambda(.1f);
for(int i=0;i<maxiter;i++){

AsyncFor(0, A.size()-1, [gamma, lambda, &A,&W,&H](int k){
const T1 rate &r = A[k];
T2 err = r - W[r.i]*H[r.j];
T2 Wd = gamma*(err*W[r.i]-lambda*H[r.j];
T2 Hd = gamma*(err*H[r.j]-lambda*W[r.i];
W[r.i] += Wd;
H[r.j] += Hd;

});
}

Figure 6.4: STRADS-AP SGDMF: implements distributed SGDMF by replacing vector with
dvector and the inner for loop with AsyncFor – STRADS-AP’s parallel loop operator that paral-
lelizes loop bodies in isolated execution and ensures serializability. Note the similarity between
STRADS-AP code and sequential code in Figure 6.1.

Unlike OpenMP and Spark codes, STRADS-AP code has no code for concurrency
control (i.e. lock management in OpenMP or DSGDMF scheduling code in Spark). The
runtime is responsible for addressing data conflicts on W and H matrices while executing
loop body in a distributed setting, relieving users from writing error-prone locking code.
With a little effort, STRADS-AP achieves efficient distributed parallelism, in addition to
shared-memory parallelism. Note the similarity between the sequential code in Figure 6.1
and STRADS-AP code in Figure 6.4.

6.1.6 Performance cost

For performance comparison with hand-tuned distributed machine learning, we implement
DSGDMF in [30] using MPI [28], which is more efficient at the cost of more programming
efforts. MPI-SGDMF circulates the shared parameter H using point-to-point communica-
tion.

In our experiment, all distributed SGDMF implementations achieves proper concur-
rency control, making similar statistical progress per iteration. Therefore, our performance
comparison focuses only on elapsed time for running 60 iterations, after which all imple-
mentations converge. We run experiments with Netflix dataset using up to 256 cores on

79

 0

 500

 1000

 1500

 2000

1 16 32 64 128 256

T
im

e
(s

)

Number of Cores

Serial OpenMP STRADS-AP MPI Spark

 5000

 10000

 15000

 20000

 25000

Figure 6.5: Time for 60 iterations with Netflix dataset[38], rank = 1000. STRADS-AP outper-
forms Spark by more than an order of magnitude (e) and continues to scale up to 256 cores, while
Spark stops scaling at 64 cores. Hand-tuned MPI code is faster than STRADS-AP by 22% on 256
cores at the cost of a significantly longer programming and debugging effort.

16 machines that are connected via 40Gbps Ethernet.

As Figure 6.5 shows, the Spark is about 68× slower than MPI on 256 cores. In the
same setting, STRADS-AP is slower than MPI by only 22%, whereas it is over 50× faster
than Spark. The suboptimal performance of Spark implementation is due to aforemen-
tioned factors (Section 6.1.4 — invocation of expensive join operation every subiteration).
STRADS-AP is 38.8 and 4.6 times faster than sequential and OpenMP, respectively.

6.1.7 Other high-level frameworks

Our findings of incidental complexity and suboptimal performance are not limited to the
example of Spark and SGDMF. For example, PowerGraph provides concurrency control
mechanisms, but vertex centric programming model requires users to redesign data struc-
tures to fit to a graph representation and express computations using GAS (Gather, Apply,
Scatter) routines. TensorFlow provides super high-level programming model taking loss
function and automates gradient update process but requires users to provide a data-flow
graph that explicitly encodes data dependencies. Parameter Servers [25, 48, 19, 20, 88,
2, 21] abstract away the details of parameter communication through the key-value store
interface but many other details of distributed parallel programming, such as data parti-
tioning, parallelization of tasks, and the application-level concurrency control is left to the
user.

80

Requires Changing Application-Level Hides Details of Fault Tolerance
Programming Model Concurrency Control Distributed Programming

STRADS-AP No Yes Yes Yes(Checkpoint)
GraphLab Yes (vertex-centric) Yes Yes Yes(Checkpoint)
Spark Yes (map/reduce/...) No Yes Yes(RDD)
TensorFlow Yes (data-flow) No Yes Yes(Checkpoint)
Parameter Server Yes (key-value) No Partly (parameter comm) Yes(Replication)
MPI Yes (message-passing) No Partly (communication) No

Table 6.1: Summary of features of frameworks used in distributed ML programming. For efficiency
comparison, see evaluation section7.3

As Table 6.1 shows, STRADS-AP is the only framework that allows users to take
their sequential code and automatically parallelize it to run on a cluster without sacrificing
productivity or efficiency. STRADS-AP owes this flexibility to its familiar API and data
structures that we will present in Chapter 7.

6.2 Overview of STRADS-AP

This section presents an overview of STRADS-AP framework. We believe that the com-
plexity surrounding distributed ML programming as well as the inefficiency in execution
are incidental and not inherent. That is, many sequential ML codes can be automati-
cally parallelized to make near optimal use of cluster resources. To prove our point, we
present STRADS-AP, a novel distributed ML framework that provides an API requiring
minimally-invasive, mechanical changes to a sequential ML program code, and a runtime
that automatically parallelizes the code on an arbitrary-sized cluster while delivering the
performance of hand-tuned distributed ML programs.

STRADS-AP’s API liberates machine learning programmers from the challenge of
molding a sequential ML code to the framework’s programming model. To achieve this,
STRADS-AP API offers Distributed Data Structures (DDSs), a set of familiar containers,
such as vector and map, allowing fine-grained read/write access to arbitrary elements, and
two familiar loop operators. During runtime, these loop operators parallelize the loop
bodies over a cluster following two popular ML parallelization strategies: asynchronous
parallel execution, and synchronous parallel execution, with strong or relaxed consistency.

81

st
l::

ve
ct

or
<T

1>
 D

; /
/

in
pu

t d
at

a
st

l::
m

ap
<T

2>
 P

, Q
; /

/
m

od
el

 p
ar

am
et

er

flo
at

 a
lp

ha
(0

.1
);

//
 h

yp
er

 p
ar

am
et

er
s

fo
r(

i=
0;

 i<
m

ax
_i

te
r;

 i+
+)

{
fo

r(
j=

0;
 j<

N
; j

++
){

-o
pt

im
iz

at
io

n
ro

ut
in

e
-r

ea
d

i,j
, a

lp
ha

, e
le

m
en

ts
 o

f D
-r

ea
d/

w
rit

e
el

em
en

ts
 o

f P
,Q

} al

ph
a

*=
 0

.9
9;

}

st
ra

ds
ap

::d
ve

ct
or

<T
1>

 D
;

st
ra

ds
ap

::d
m

ap
<T

2>
 P

,Q
;

flo
at

 a
lp

ha
(0

.1
);

fo
r(

i=
0;

 i<
N

; i
++

){
st

ra
ds

ap
::p

ar
al

le
l_

fo
r(N

, [
i,

al
ph

a,
 &

D,
 &

P,
&

Q
](i

nt
j){

-o
pt

im
iz

at
io

n
ro

ut
in

e
-r

ea
d

i,j
, a

lp
ha

, e
le

m
en

ts
 o

f D
-r

ea
d/

w
rit

e
el

em
en

ts
 o

f P
,Q

},

st
ra

ds
ap

::C
on

sis
te

nc
yM

od
el

);
al

ph
a

*=
 0

.9
9;

}

Ad
d

fe
w

 a
nn

ot
at

io
ns

ST
RA

DS
-A

P
co

m
pi

le
-ti

m
e

to
ol

Au
gm

en
te

d
w

ith

la
ng

ua
ge

 s
pe

ci
fic

an

no
ta

tio
ns

Bi
na

ry
 c

od
e

N
at

iv
e

co
m

pi
le

r(
i.e

. c
la

ng
)

(d
) T

he
 S

TR
AD

S-
AP

 ru
nt

im
e

(a
) S

eq
ue

nt
ia

l c
od

e
(b

) S
TR

AD
S-

AP
 c

od
e

(c
) S

TR
AD

S-
AP

 c
om

pi
le

-t
im

e
to

ol

Fi
gu

re
6.

6:
ST

R
A

D
S-

A
P

w
or

kfl
ow

:
(a

)a
m

ac
hi

ne
le

ar
ni

ng
pr

og
ra

m
m

er
im

pl
em

en
ts

an
M

L
al

go
ri

th
m

in
a

se
qu

en
tia

lc
od

e;
(b

)
D

er
iv

es
ST

R
A

D
S-

A
P

pa
ra

lle
lc

od
e

w
ith

th
ro

ug
h

m
ec

ha
ni

ca
lc

ha
ng

es
;(

c)
ST

R
A

D
S-

A
P

pr
ep

ro
ce

ss
or

ad
ds

m
or

e
an

no
ta

tio
n

to
ad

dr
es

s
la

ng
ua

ge
-s

pe
ci

fic
co

ns
tr

ai
nt

s,
an

d
th

e
so

ur
ce

co
de

is
co

m
pi

le
d

by
a

na
tiv

e
co

m
pi

le
r;

(d
)T

he
ST

R
A

D
S-

A
P

ru
nt

im
e

ru
ns

th
e

bi
na

ry
in

pa
ra

lle
lo

n
a

cl
us

te
r

82

STRADS-AP’s workflow shown in Figure 6.6, starts with a machine learning program-
mer making mechanical changes to sequential code (Figure 6.6(a, b).) The code is then
preprocessed by STRADS-AP’s preprocessor and complied into a binary code by a C++
compiler (Figure 6.6(c).) Next, STRADS-AP’s runtime executes the binary on nodes of a
cluster while hiding the details of distributed programming (Figure 6.6(d).) The runtime
system is responsible for (1) transparently partitioning DDSs that store training data and
model parameters, (2) parallelizing slices of ML computations across a cluster, (3) fault-
tolerance, and (4) enforcing strong consistency on shared data if required, or synchronizing
partial outputs with relaxed consistency.

We implement STRADS-AP as a C++ library in about 16,000 lines of code.2 We
evaluate the performance on a moderate-sized cluster with four widely-used ML applica-
tions, using real data sets. To evaluate the increase in user productivity, we ask a group
of students to convert a serial machine learning application to a distributed program using
STRADS-AP, and we report our findings.

2Reported by CLOC tool, skipping blanks and comments.

83

84

Chapter 7

STRADS-AP API & Runtime System
Implementation

In this chapter, we present a new framework STRADS-AP for simplifying distributed ma-
chine learning development. We benchmark STRADS-AP with three popular machine
learning applications and conduct two user studies to evaluate potential productivity ben-
efits of users. In summary. this chapter:

• Introduces STRADS-AP API in Section 7.1.

• Presents the STRADS-AP runtime system in Section 7.2.

• Evaluates training performance with three well-established machine learning appli-
cations (Word2vec, multi-class logistic regression, and SGDMF) in Section 7.3.1.

• Evaluates development productivity with a group of users in Section 7.3.2

7.1 STRADS-AP API

In this section, we present STRADS-AP API. We do not claim that STRADS-AP can auto-
matically parallelize arbitrary machine learning programs. Instead, we restrict STRADS-
AP to a group of machine learning programs with a specific structural pattern. First, we
discuss this common structure of machine learning programs that STRADS-APtargets and
present STRADS-APAPI that is not new but very similiar to sequential programming API
while allowing a programmer to convert a sequential machine learning program — which
has the common program structure — into a distributed program almost mechanically.

85

Create and initialize data structures D for input data
Create and initialize data structures P for model parameters
// .. run transformations on input data or parameter if necessary
Create and initialize hyper parameters V to control training

(a) Pretraining part

for(i=0; i<max_iter; i++){ // outer loop
for(j=0; j<N; j++){ // inner loop

// Computations for optimization happens here
Read a part of input data D
Read hyper parameters V and loop indexes i,j
Read/writes to a part of model paraemters P

}
change hyper parameters
if(stop condition is true)

break;
}

(b) Training part

Figure 7.1: Machine learning applications targeted by STRADS are divided into two parts: (a)
a pretraining part that creates data structures to store input data, model parameters, and hyper
parameters; and (b) a training part with a nested loop structure that repeats a set of model parameter
updates and a stopping condition check operation

7.1.1 Program structure of targeted machine learning applications

STRADS-AP targets machine learning applications with a common structural pattern con-
sisting of two parts: (1) pretraining part that initializes the model and input data struc-
tures, and performs coarse-grained transformations; (2) training part that iteratively opti-
mizes the objective function using nested loop(s) where inner loop(s) perform optimization
computations—a pattern widely found in many ML algorithms.

To implement a STRADS-AP program, a user writes a simple driver program follow-
ing the structure in Figure 7.1. In a driver program, a user declares hyper-parameters and
invokes STRADS-AP data processing operators to create and transform DDSs in prepro-
cessing part in Figure7.1(a), and then invokes STRADS-AP loop operators for optimiza-
tion in training part in Figure 7.1(b). We describe each of these in the following sections.

86

Features DDS RDD C++ STL Containers
Mutability Mutable Immutable Mutable

Distribution Yes Yes No
Reads Coarse or fine-grained Coarse or fine-grained Coarse or fine-grained
Writes Fine-grained Coarse-grain Fine-grained

Consistency Automatic via Parallel For Trivial (immutable) Up to app
Fault Recovery Checkpoint Lineage Up to app

Size Master-run code or Through map/filter No constraint
Change through map/filter
Work Automatic based on data locality Automatic based on N/A

Placement or app task scheduling data locality

Table 7.1: Comparison of DDSs with Spark RDDs and C++ STL containers(sequential data struc-
tures

7.1.2 Distributed Data Structures (DDSs)

DDS[T] is a mutable in-memory container that partitions a collection of elements of type T
over a cluster and provides a global address space abstraction with fine-grained read/write
access and uniform access model independent of whether the accessed element is stored
in a local memory or in the memory of a remote node. STRADS-AP offers three different
types of distributed containers, dvector, dmap, and dmultimap, with a similar interface to
their C++ STL counter parts.

These DDSs allow all threads running on all nodes to read and write arbitrary ele-
ments while unaware of details such as data partitioning and data placement. Support for
distributed and fine-grained read/write access1 gives STRADS-AP an important advantage
over other frameworks. It allows reuse of data structures and routines from a sequential
program by just changing the declaration of the data type. To better understand advan-
tages of DDS, we compare DDS with RDD and STL sequential constainer in Table7.1.
We describe the inner workings of DDSs in Section 7.2.3.

7.1.3 STRADS-AP operators

The two parts of machine learning programs, pretraining and training (7.1), have different
workload characteristics. Pretraining is data-intensive, non-iterative, and embarrassingly-
parallel, whereas training is compute-intensive and iterative, and the inner loop(s) may
have data dependencies. STRADS-AP provides two sets of operators that allow natural
expression of both types of computation.

1All DDSs support operator[] for fine-grained read/write access.

87

Ty
pe

D
es

cr
ip

tio
n

D
is

tr
ib

ut
ed

D
at

a
dv

ec
to

r[
T

]
A

di
st

ri
bu

te
d

ve
ct

or
of

ty
pe

T
el

em
en

ts
St

ru
ct

ur
es

(D
D

Ss
)

dm
ap

[K
,V

]
A

di
st

ri
bu

te
d

m
ap

of
[K

,V
]e

le
m

en
tp

ai
rs

of
ty

pe
K

an
d

V
dm

ul
tim

ap
[K

,V
]

A
di

st
ri

bu
te

d
m

ul
tim

ap
of

[K
,V

]e
le

m
en

tp
ai

rs
of

ty
pe

K
an

d
V

D
D

S[
T

]&
R

ea
dF

ro
m

Fi
le

(s
tr

in
g

fil
en

am
e,

F
pa

rs
er

)
R

ea
ds

lin
es

fr
om

fil
en

am
e

an
d

ap
pl

ie
s

pa
rs

er
fu

nc
tio

n
to

ea
ch

lin
e

D
at

a
Pr

oc
es

si
ng

D
D

S[
T

2]
&

M
ap

(D
D

S[
T

1]
&

D
,F

U
D

F)
A

pp
lie

s
U

D
F

to
el

em
en

ts
of

D
to

ge
ne

ra
te

D
D

S[
T

2]
.

O
pe

ra
to

rs
T

2&
R

ed
uc

e(
D

D
S[

T
1]

&
D

,F
U

D
F)

R
ed

uc
es

el
em

en
ts

of
D

us
in

g
U

D
F

in
to

a
re

tu
rn

va
lu

e
of

ty
pe

T
2.

vo
id

Tr
an

sf
or

m
(D

D
S[

T
]&

D
,F

U
D

F)
A

pp
lie

s
U

D
F

to
el

em
en

ts
of

D
m

od
if

yi
ng

th
em

in
-p

la
ce

.

L
oo

p
O

pe
ra

to
rs

A
sy

nc
Fo

r(
in

t6
4

S,
in

t6
4

E
,F

U
D

F)
Pa

ra
lle

liz
es

U
D

F
cl

os
ur

e
ov

er
in

di
ce

s
[S

,E
]i

n
is

ol
at

ed
m

an
ne

r.
Sy

nc
Fo

r(
D

D
S[

T
]&

D
,i

nt
M

,F
U

D
F,

Sy
nc

S,
bo

ol
R

E
)

Pa
ra

lle
liz

es
U

D
F

cl
os

ur
e

ov
er

m
in

ib
at

ch
es

of
D

ea
ch

of
si

ze
M

us
in

g
sy

nc
hr

on
iz

at
io

n
op

tio
n

S
in

da
ta

-p
ar

al
le

lm
an

ne
r.

R
E

pa
ra

m
et

er
in

di
ca

te
s

w
he

th
er

to
pe

rf
or

m
R

ec
on

na
is

sa
nc

e
E

xe
cu

tio
n

(7
.2

)

Ta
bl

e
7.

2:
A

su
bs

et
of

ST
R

A
D

S-
A

P
A

PI
—

da
ta

pr
oc

es
si

ng
op

er
at

or
s

fo
rD

D
S

tr
an

sf
or

m
at

io
n

in
pr

et
ra

in
in

g,
an

d
lo

op
op

er
at

or
s

fo
rM

L
op

tim
iz

at
io

n
in

tr
a

in
in

g.

88

Data processing operators

As Table 7.2 shows, STRADS-AP provides operators for loading, storing, and creating
DDSs. In addition, since MapReduce [26, 94] is an expressive API for embarrassingly-
parallel computations, STRADS-AP provides Map, Reduce,Transform and Join operators.
While these operators are a great fit for data processing that is typical in the pretraining
part of an ML application, STRADS-AP puts no constraints on using them for expressing
training computations.

Unlike previous implementations of these operators that generate many small tasks
each of which process a chunk of data [26, 94, 13], we adopt a coarse-grained task ap-
proach to avoid the scheduling overhead [83]. STRADS-AP’s runtime creates one process
per machine taking into account data-placement, where each process launches as many
threads as there are cores on the machine.

Loop operators for training

STRADS-AP provides loop operators shown in 7.2 to replace the inner loop(s) in the
training part of machine learning programs in Figure 7.1. The loop operators take a user-
defined closure as the loop body. The closure is C++ lambda expression that captures
the specified DDSs and variables in the scope, and implements the loop body by reading
from and writing to arbitrary elements of the captured DDSs. This allows to mechanically
change the loop body of a sequential machine learning program to STRADS-AP code that
is automatically parallelized.

STRADS-AP supports three models of parallelizing machine learning computations:
(1) serializable asynchronous [53], (2) synchronous (BSP [85]), and (3) lock-free asyn-
chronous (Hogwild![71]) within a node and synchronous across nodes (which we call
Hybrid).

Currently, STRADS-AP offers two loop operators to support these models. A user can
choose AsyncFor loop operator for serializable asynchronous model. For the remaining
models a user can choose SyncFor operator and specify the desired model as an argument
to the loop operator, as shown in 7.2. Other than choosing the appropriate loop operator, a
user does not have to write any code for concurrency-control—STRADS-AP runtime will
enforce the chosen model as described next.

AsyncFor parallelizes the loop over loop indices and ensures isolated execution of the
loop bodies even if loop bodies have shared data. In other words, it ensures serializability:
the output of the parallel execution matches the ordering of some sequential execution.

89

AsyncFor takes three arguments: the start index S, the end index S + N , and a C++
lambda expression F . It executesN+1 lambda instances, F (S), F (S+1), . . . , F (S+N)
concurrently. At runtime, STRADS-AP partitions the index range S . . . S + N into P
chunks of size C, and schedules up to P nodes to concurrently execute F with different
indices. A node schedules multiple threads to run C lambda instances allowing arbitrary
reads and writes to DDSs.

If the lambda expression modifies a DDS, then data conflicts will happen. Although
ML algorithms are error-tolerant [36], some algorithms, like Coordinate Descent Lasso[81,
46], LDA[8, 91], and SGDMF[44, 30], converge slowly in the presence of numerical errors
due to data conflicts. Following previous work [42], STRADS-AP runtime improves sta-
tistical progress by avoiding data conflicts using data conflict-free scheduling for lambda
executions. Figure 6.4 shows an example use of AsyncFor operator for implementing
SGDMF.

SyncFor parallelizes the loop over the input data. It splits input data into P chunks, where
each chunk is processed by P nodes in parallel. Each node processes its data chunk,
updating a local replica of model parameters.

SyncFor takes five arguments: the input data of type DDS[T], the size of a mini-
batch M , a C++ lambda expression F , a synchronization option (BSP or Hybrid), and a
flag indicating whether it should perform Reconnaissance Execution (Section 7.2.2). The
runtime partitions the input data chunk of a node into L mini-batches of size M (typically
L is much larger than the number of threads per node), and then schedules multiple threads
to process mini-batches concurrently. A thread executes the lambda expression with a
local copy of captured variables, and allows reads and writes only to the local copy while
running F . At the end of processing a mini-batch, a separate per-node thread synchronizes
the local copy of only those DDSs captured by reference across the nodes and synchronizes
local threads, according to the sync option. Figure 7.2 shows an example use of SyncFor
that reimplements Google’s Word2vec model [34].

By default, SyncFor performs averaging aggregation of model parameters. Users can
override this behavior by registering an application-specific aggregation function to a DDS
through RegisterAggregationFunc() method.

7.2 STRADS-AP runtime system

In this section, we present core details of STRADS-APruntime system implementation:
(1) the driver program execution; (2) Reconnaissance Execution; (3) DDS; (4) concurrency

90

typedef vector<word> T1;
typedef vector<array<float, vec_size>> T2;
dvector<T1> &inputD = ReadFromFile<T1>(path, parser);
dvector<T2> &Syn0 = MakeVector<T2>(vocsize, initrow1);
dvector<T2> &Syn1 = MakeVector<T2>(vocsize, initrow1);
float alpha = 0.025;
int W = 5, N = 10;
vector<int> &dtable = InitUnigramtable();
expTable &e = MakeExpTable();
for (int i = 0; i < maxiter; i++){

SyncFor(inputD, mini-batchsize,[W, N, alpha, e, dtable, &Syn0, &Syn1](const vector<T1> &m){
for (auto &sentence: m){
//for each window in setence, pick up W words
// for each word in the window
// run N negative sampling using dist. table
// r/w to N rows of Syn0 and Syn1 tables

}
}, Hybrid, false);

}

Figure 7.2: Reimplementing Google’s Word2vec model using STRADS-AP API.

Control; (5) preprocessor; and (6) STRADS-AP debugging facility.

7.2.1 Driver program execution model

The execution model of STRADS-AP follows the driver program model[94, 26]. In
STRADS-AP, a programmer writes a visually straightline code for a sequential ML al-
gorithm using STRADS-AP APIs as a driver program. In the driver program, machine
learning programmers declare DDSs to store large input data and model paraemters and
write ML computation code in the form of parallel loop operators. The statements in the
driver program are classified into three categories: sequential statements, data processing
statements, and loop statements. The runtime maintains a state machine with one state per
category to keep track of the type of code to execute. A driver node starts the driver pro-
gram in sequential state, and keeps sequential execution locally until the first invocation of
a STRADS-AP operator. On STRADS-AP operator invocation, the state machine switches
to the corresponding state and the runtime parallelizes the operator over multiple nodes.
At the completion of the STRADS-AP operator, the runtime switches back to sequential
state and continues running the driver program locally. The STRADS-AP runtime system
consists of three types of nodes, and their roles are described in Figure 7.3.

The key challenges of STRADS-AP runtime design are: (1) full automation of concur-
rency control when parallelizing loop operators, and (2) reducing the latency of accessing
DDS elements located on remote nodes. To address these challenges, STRADS-AP im-
plements Reconnaissance Execution (RE).

91

Master

Worker
0

DS Part0

Dist. DS
server0

Worker
2

DS Part2

Dist. DS
server2

Worker
1

DS Part1

Dist. DS
server1

driver program

Scheduler

dependency Graph

tasks

result
schedule

Worker(s)

Scheduler(s)

Master

Figure 7.3: Driver program execution model: A driver program is a user-written straightline code
that consists of sequential statements, data processing statement, and loop statements; Master node
runs a driver program and launches STRADS-AP parallel operators over worker nodes; Scheduler
nodes(s) generates dependency graph and make scheduling plans for worker nodes; A worker node
run a set of worker threads that execute a slice of workload of a parallel operator and a DDS server
thread.

7.2.2 Reconnaissance execution

The runtime system keeps the count of invocations of all loop operators in the driver pro-
gram. On the first invocation of the loop operator, the runtime starts Reconnaissance
Execution (RE)—a virtual execution of the loop operator. RE is a read-only execution
that performs all reads to DDSs, and discovers read/write sets for individual loop bodies.
A read/write access record of a loop body is a tuple of a DDS identifier, and a list of
read/write element indices.

The runtime uses a read/write set for two purposes: (1) performing dependency anal-
ysis and generating data conflict-free scheduling plan for concurrent execution of loop
bodies in AsyncFor operator, and (2) prefetching and caching of DDS elements on remote
nodes for low-latency access during the real execution.

For the SyncFor operator, when the parameter access is sparse (that is, a small portion
of parameters are accessed when processing a mini-batch), the runtime reduces amount of
data transferred by referring to access records of RE. However, in applications with dense
parameter access, (that is, most parameters are accessed when processing a mini-batch),
RE does not help to improve the performance. Therefore, SyncFor operator’s boolean RE
parameter (7.2) allows users to skip RE and prefetch/cache all elements of DDSs captured
by the corresponding lambda expression.

To reduce RE overhead, STRADS-AP runs it once per parallel loop operator in the

92

driver program, and reuses read/write set for subsequent iterations. This optimization
is based on two assumptions about ML workloads: (1) iterativeness—a loop operator is
repeated many times until convergence, and (2) static control flow—read/write sets of loop
bodies do not change over different iterations. That is, the control flow of the inner loop
does not depend on model parameter values. Both assumptions are routinely accepted in
ML algorithms [8, 91, 6, 2, 47, 44, 38, 90, 96, 67, 81, 12, 89, 29, 87, 51].

7.2.3 Distributed Data Structures

On the surface, a DDS is a C++ class template that provides index- or key-based uni-
form access operator. Under the hood, the elements of a DDS are stored on a distributed
in-memory key-value store as key-value pairs. The key is uniquely composed of the
table id plus the element index for dvector, and the table id plus the element key for
dmap/dmultimap. Each node in a cluster runs a server of the distributed key-value store
containing the elements of a DDS partitioned by the key hash. The implementation of
DDS class template reduces the element access latency by prefetching and caching remote
elements based on the access records generated by RE (Section 7.2.2).

The DDSs achieve fault-tolerance through checkpointing. At the completion of a
STRADS-AP operator that runs on DDSs, the runtime makes snapshots of the DDSs that
are modified or created by the operator. The checkpoint I/O time overhead is negligible be-
cause ML programs are compute-intensive, and the input data DDSs are not checkpointed
(except once at creation), as they are read-only.

The traditional approach to checkpointing is to dump the whole program state onto
storage during the checkpoint, and load the state from the last successful checkpoint during
the recovery. Since an ML program may have an arbitrary number of non-DDS variables
(like hyper-parameters), the traditional approach would require users to write boilerplate
code for saving and restoring the state of these variables, reducing productivity and in-
creasing opportunities for introducing bugs. Therefore, STRADS-AP takes a different
approach to checkpointing that obviates the need for such boilerplate code.

Upon a node failure, STRADS-AP restarts the application program in fast re-execution
mode. In this mode, when the runtime encounters a parallel operator op executing iteration
i, it first checks to see whether a checkpoint for opi exists. If yes, the runtime skips the
execution of opi and loads the DDS state from the checkpoint. Otherwise, it continues nor-
mal execution. Hence, the state of non-DDS variables are quickly and correctly restored
without forcing the users to write extra code.

93

7.2.4 Concurrency control

STRADS-AP implements two concurrency control engines: (1) serializable engine for
the AsyncFor operator, and (2) data-parallel engine for the SyncFor operator. Both en-
gines use read/write set from Reconnaissance Execution (Section 7.2.2) for prefetching
remote DDS elements, while serializable engine also uses it for making data conflict-free
execution plans.

Serializable Engine for AsyncFor: In the serializable engine, a task is defined as the
loop body with a unique loop index value i, which ranges from S to E, where S and E
are AsyncFor arguments (Table 7.2). Serializable engine implements a scheduler module
that takes the read/write set from RE, analyzes data dependencies, generates a dependency
graph, and makes parallel execution plan that avoids data conflicts. To increase paral-
lelism, serializable engine may change the execution order of tasks assuming that any
serial reordering of loop body executions is acceptable. This assumption is also routinely
accepted in ML computations [53, 66, 42].

The scheduler divides loop bodies intoN task groups, whereN is much larger than the
number of nodes in a cluster, using an algorithm that combines the ideas of static schedul-
ing from STRADS [42] and connected component-based scheduling from Cyclades [66].
The algorithm allows dependencies within a task group but ensures no dependency across
task groups. At runtime, the scheduler places task groups on nodes, where each node keeps
a pool of task groups.

To balance the load, serializable engine runs a greedy algorithm that sorts task groups
in descending order of size, and assigns task groups to a node whose load is the smallest
so far. Once task group placements are finalized, the runtime system starts the execution
of the loop operator.

The execution begins by each node initializing DDSs to prefetch necessary elements
from the key-value store into per-node DDS cache. Then each node creates a user-specified
number of threads, and dispatches task groups from the task pool to the threads. All threads
on a node access the per-node DDS cache without locking, since each thread executes a
task group sequentially, and the scheduling algorithm guarantees that there will be no data
conflicts across the task groups. In the case of an excessively large task group, we split
it among threads and use locking to avoid data races, which leads to non-deterministic
execution.

To reduce the scheduling overhead, serializable engine caches the scheduling plan and
reuses it over multiple iterations based on the aforementioned assumptions (Section 7.2.2).
Hence, the overhead of RE and computing a scheduling plan is amortized over multiple

94

iterations.

Data-Parallel Engine for SyncFor: In data-parallel engine, a task is defined as the
loop body with a mini-batch of D with size M , where D and M are SyncFor arguments
(7.2). Hence, a single SyncFor call generates multiple tasks with different mini-batches.
The engine places the tasks on nodes that hold the associated mini-batches, where nodes
form a pool of assigned tasks.

Similar to serializable engine, the execution begins by each node initializing DDSs to
prefetch necessary elements from the key-value store into per-node DDS cache, based on
read/write set from RE, and continues by creating a user-specified number of threads.

Unlike serializable engine, the threads contain a per-thread cache, and are not allowed
to access the per-node cache, since in this case there is no guarantee of data conflict-
free access. When a node dispatches a task from the task pool to a thread, it copies the
parameter values from the per-node cache to the per-thread cache.

Upon task completion, a thread returns the delta between the computed parameter
values and the starting parameter values. The node dispatches a new task to the thread,
accumulates deltas from all threads, and synchronizes per-node cache with the key-value
store by sending the aggregate delta and pulling fresh parameter values.

The SyncFor operator allows users to choose among BSP and Hybrid (Section 7.1.3)
models of parallelizing ML computations. The BSP [85] model is well-known, and our
implementation follows previous work. Hybrid, on the other hand, is a lesser-known
model [39]. It allows lock-free asynchronous update of parameters among threads within
a node (Hogwild! [71]), but synchronizes across machines at fixed intervals. In the Hybrid
model, a node creates a single DDS cache that is accessed by all threads without taking
locks. When all of the threads complete a single task, which denotes a subiteration, the
node synchronizes the DDS cache with the key-value store.

7.2.5 STRADS-AP preprocessor

While there exist mature serialization libraries for C++, none of them support serializing
lambda function objects. The lack of reflection capability in C++, and the fact that lambda
functions are implemented as anonymous function objects [58], makes serializing lambda
challenging. We overcome this challenge by implementing a preprocessor that analyzes
the source code using Clang AST Matcher library [18], identifies the types of STRADS-
AP operator arguments, and generates RPC stub code and a uniquely-named function
object for lambda expressions that are passed to STRADS-AP operators.

95

Dataset Workload Feature Application Purpose
Netflix 100M ratings 489K users, 17K movies SGDMF Recommendations

rank=1000, data size=2.2GB
1Billion 1 billion words Vocabulary size 308K, Word2Vec Word Embeddings

vector size=100, data size=4.5GB
ImageNet 285K images 1K classes, 21,504 features, MLR Multi-Class

24% sparsity, data size=21GB Classification
FreeBase-15K 483K facts 14,951 entites, 1,345 relations, TransE Graph Embeddings

vector size=100, data size=36MB

Table 7.3: Datasets used in our benchmarks.

The preprocessor also analyzes the source code to see if it declares DDSs of user-
defined types. While DDSs of built-in types are automatically serialized using Boost Seri-
alization library [9], for user-defined types the library requires adding a boilerplate code,
which is automatically added by the preprocessor.

7.3 STRADS-AP evaluation

In this section, we evaluate STRADS-AP based on training performance and development
productivity using a set of well known applications, such as SGDMF, word embedding[59,
60, 35], multi-class classification[7], and knowledge graph embedding[10, 87, 51, 11, 63,
64] as summarized in Figure 7.4. To further evaulate benefits of STRADS-AP, we conduct
two user studies with a group of students that implement word embedding and knowledge
graph embedding applications using STRADS-AP.

The main takeaway from our evaluation is that STRADS-AP improves the productivity
significantly at the cost of reasonably small training speed. Our performance evaluation
results show that STRADS-AP applications report smaller line counts than baseline dis-
tributed ones while outperforming a popular data-parallel framework (Spark) with a non-
familiar programming model, achieving performance comparable to an ML-specialized
framework (TensorFlow), and achieving 70 ∼ 90 percent of hand-tuned distributed ones
(MPI-based applications). Our user study results presents that a programmer can easily
convert the baseline sequential programs into STRADS-AP programs within few hours
(less than 2 hours for both applications).

96

Application Serial OpenMP MPI STRADS-AP TF Spark
SGDMF X X X X X

MLR X X X X X
Word2vec X X X X X

TransE X X

Table 7.4: ML programs used for benchmarking. Serial and OpenMP are single core and multi-
core applications on a shared-memory machine, respectively, while the rest are distributed parallel
applications. MPI applications use OpenMP for shared-memory parallelism within the nodes.

7.3.1 Productivity and performance evaluations

We evaluate STRADS-AP on (1) application performance, and (2) programmer produc-
tivity, using the following real world ML applications: SGDMF, Multinomial Logistic
Regression (MLR)[7], Word2vec[60], and TransE [11], summarized in Table 7.4.

For performance evaluation, as a baseline we implement these applications as (1) a
sequential C++ application, (2) a single-node shared-memory parallel C++ application
using OpenMP, and (3) a distributed- and shared-memory parallel C++ application us-
ing OpenMP and MPI. We then compare the iteration throughput (time per epoch), and
the statistical accuracy of Spark, TensorFlow (TF), and STRADS-AP implementations of
these applications to those of baselines’, while running them on datasets shown in Table
7.3. For productivity evaluation, we conduct two user studies on a group of students with
Word2vec and TransE applications. As a measure of productivity, we count the lines of
code produced, and measure the time it took students to convert a serial implementation
of the algorithm into STRADS-AP implementation. All experiments were run on a clus-
ter with 16 machines each with 64 GiB of memory and 16-core Intel Xeon E5520 CPUs,
running Ubuntu 16.04 Linux distribution, connected with 40 Gbps Ethernet network.

Word2vec

Word2vec is a Natural Language Processing (NLP) model developed by Google that com-
putes vector representations of words, called “word embeddings”. These representations
can be used for various NLP tasks, such as discovering semantic similarity. Word2vec can
be implemented using two architectures: continuous bag-of-words (CBOW) or continuous
skip-gram, the latter of which produces more accurate results for large datasets [34].

We implement the skip-gram architecture in STRADS-AP based on Google’s open
source multithreaded implementation [34] written in C. We make two changes to Google’s
implementation: (1) modify it to keep all the input data in memory to avoid I/O during

97

 0

 1000

 2000

 3000

 4000

 5000

 6000

1 16 128 256

Max:

22,160s

Max:

115,100s

T
im

e
(s

)

Number of Cores
Serial OpenMP STRADS-AP MPI

Figure 7.4: Time for 10 iterations for Word2Vec on 1 Billion word dataset[15] with vector size =
100, window = 5, negative sample count = 10.

training, and (2) replace POSIX threads with OpenMP. After our changes, we observe 6%
increase in performance on 16 cores. We then run our improved implementation using
a single thread for the serial baseline, and using 16 threads on 16 cores for the shared-
memory parallel baseline.

Google recently released a highly-optimized multithreaded Word2vec [33] implemen-
tation on TensorFlow with two custom kernel operators written in C++. As of now, Google
has not yet released a distributed version of Word2vec on TensorFlow. Therefore, we ex-
tend Google’s implementation to run in a data-parallel distributed setting. To this end, we
modify the kernel operators to work on partitions of input data, and synchronize parame-
ters among nodes using MPI.

Cores Similarity Analogy
STRADS-AP MPI TF STRADS-AP MPI TF

128 0.601 0.601 0.602 0.566 0.564 0.568
256 0.603 0.597 0.601 0.562 0.557 0.561

Serial 0.610 0.570
OpenMP 0.608 0.571

Table 7.5: The top table reports similarity test accuracy [27], and analogy test accuracy [60] for
distributed Word2Vec implementations on 1 Billion word dataset, after 10 iterations. The bottom
table shows respective values for the serial and OpenMP implementations.

Performance evaluation of Word2vec: Figure 7.4 shows the execution time of Word2vec
for 10 iterations with 1 billion data set. On 256 cores (16 machines), MPI performs better
than TensorFlow and STRADS-AP by 9.4% and 10.1%, respectively. The performance
gap stems from the serialization overhead in TensorFlow and STRADS-AP. MPI imple-

98

Implementation Word2vec MLR SGDMF
Serial 468 235 271

OpenMP 474 252 277
MPI 559 313 409

STRADS-AP 404 245 279
TensorFlow 646 (*) 155 (Python) N/A

Spark N/A N/A 249 (Scala)

Table 7.6: Line counts of model implementations using different frameworks. Unless specified next
to the lines counts, the language is C++. TensorFlow implementation of Word2vec has 282 lines in
Python and 364 lines in C++.

mentation stores parameters in arrays of built-in types, and uses in-place MPI Allreduce
call to operate on the values directly. STRADS-AP outperforms serial and OpenMP im-
plementation by 45× and 8.7×, respectively.

Table 7.5 shows the similarity test accuracy [27] and the analogy test [60] accuracy,
after running 10 iterations. Using the accuracy of the serial algorithm as the baseline, we
see that parallel implementations report slightly lower accuracy (within 1.1%) than the
baseline due to the use of stale parameter values.

Productivity evaluation of Word2vec: Table 7.6 shows the line counts of Word2vec
implementations in the first column. STRADS-AP implementation has 15% less lines
than the serial implementation, which stems mainly from the coding style and the use of
STRADS-AP’s built-in text-parsing library. If we focus the comparison on the core of
the program—the training routine—both implementations have around 100 lines, since
STRADS-AP implementation takes the serial code and makes a few simple changes to it.

TensorFlow implementation, however, has three times more lines in the training rou-
tine. The increase is due to (1) splitting the training into two kernel operators to fit the
dataflow model, (2) converting tensors into C++ Eigen library matrices and back, and (3)
lock management.

While TensorFlow enables users to write simple models easily, it requires a lot more
effort and knowledge, which most data scientists lack, to produce high-performance dis-
tributed model implementations with custom kernel operators. On the other hand, STRADS-
AP allows ordinary users to easily obtain performance on par with the code that was opti-
mized by Google, by making trivial changes to a serial implementation.

99

 0
 20
 40
 60
 80

 100
 120
 140

64 128

T
im

e
(s

)

Number of Cores

STRADS-AP
MPI

TF(minibatch=0.5K)
TF(minibatch=1K)

 0.75

 1

 0 1000 2000 3000 4000P
re

d
ic

ti
o
n
 A

cc
u
ra

cy

Time (s)

Figure 7.5: Left figure shows the time for a single iteration. We run TensorFlow implementation
with a minibatch sizes of 500 and 1,000. STRADS and MPI implementations do not use vector-
ization, therefore, we run them with a minibatch size of 1. Serial and OpenMP implementations
(omitted from the graph) also run with a minibatch size of 1, and take 3,380 and 467 seconds
to complete, res pectively. Right figure shows the prediction accuracy as the training progresses.
While each implementation runs for 60 iterations, the graph shows only the time until all of them
converge to a stable value.

Multinomial Logistic Regression(MLR)

Multinomial Logistic Regression (MLR) [7] is a method for identifying the class of a
new observation based on the training data consisting of observations and corresponding
classes.

We implement a serial, OpenMP, MPI, TensorFlow, and STRADS-AP versions of
MLR. Our distributed TensorFlow implementation uses parameter servers, and is based
on the MNIST code in the TensorFlow repository. Similar to other implementations in
our benchmark, our TensorFlow implementation preloads the dataset into memory before
starting the training, and uses Gradient Descent optimizer.

Performance evaluation of MLR: Figure 7.5 shows the single iteration time on the
25% of ImageNet [73] dataset on the left, and the accuracy after 60 iterations on the right.
TensorFlow makes heavy use of vectorization, which explains the 30% decrease in runtime
when increasing the minibatch size from 500 to 1,000, and almost twice shorter runtime
than MPI and STRADS implementations, which do not use vectorization.

On the other hand, as the right graph in Figure 7.5 shows, TensorFlow suffers in terms
of accuracy. Unlike MPI and STRADS implementations that achieve 99.5% accuracy after
about 2,800 seconds, the accuracy of TensorFlow remains under 98.4% even after 4,000
seconds. The difference in accuracy is due to STRADS and MPI implementations running

100

with a minibatch size of 1, given that they do not use vectorization. A single iteration of
TensorFlow with a minibatch size of 1 (for which it was not optimized) took about 6 hours,
which we omitted from the graph. With vectorization support, STRADS can achieve on
par performance with TensorFlow.

Productivity evaluation of MLR: Table 7.6 shows the line counts of MLR implemen-
tations in the second column. TensorFlow implementation has 38% and 50% fewer lines
than STRADS-AP and MPI implementations, respectively, because while the latter im-
plement large chunks of code to compute gradients and apply them to parameters, Ten-
sorFlow hides all of these under library function calls. On the other hand, most of the
TensorFlow implementation consists of code for partitioning the data, setting up the clus-
ter and parameter server variables.

Stochastic Gradient Matrix Factorization (SGDMF)

We already covered the implementation details in Section 6.1.6 and performance eval-
uation of solving Matrix Factorization algorithm using SGD optimization (SGDMF) in
Figure 6.5. Therefore, we continue with the productivity evaluation.

Productivity evaluation of SGDMF: Table 7.6 shows line counts of SGDMF imple-
mentations in the third column. SGDMF implementation in Scala, even after including the
line count for Gemulla’s Strata scheduling algorithm (6.1.4), has about 15% fewer lines
than STRADS-AP implementation. This is not surprising, given that functional languages
like Scala tend to have more expressive power than imperative languages like C++. How-
ever, the difficulty of implementing the Strata scheduling algorithm is not captured well
in the line count. Figuring out how to implement this algorithm using the limited Spark
primitives, and tuning the performance so that the lineage graph would not consume all the
memory on the cluster took us about a week, whereas deriving STRADS-AP implemen-
tation from the pseudocode took us about an hour. The line count of MPI is higher than
serial code due to distributed SGDMF scheduling algorithm and manual data partitioning.

7.3.2 User Study

To further evaluate the productivity gains of using STRADS-AP, we conducted two more
user studies.

User Study I: In the first study, as a capstone project we assigned a graduate student to
implement a distributed version of Word2vec using STRADS-AP and MPI, after studying
Google’s C implementation [34]. The student had C and C++ programming experience,

101

and had just finished an introductory ML course. After studying the reference source code,
the student spent about an hour studying STRADS-AP API and experimenting with it. It
then took him about two hours to deliver a working distributed Word2vec implemented
with STRADS-AP API. On the other hand, it took the student two days to deliver a dis-
tributed Word2vec implemented with MPI. The MPI implementation was able to match
STRADS-AP implementation in terms of accuracy and performance after two weeks of
performance optimizations.

User Study II: In the second study, we conducted an experiment similar to a pro-
gramming exam, with five graduate students. We provided the students with a two-page
STRADS-AP API documentation, an example serial MLR code, and the corresponding
STRADS-AP code. We then gave the students a serial C++ program written by an ex-
ternal NLP research group that implemented TransE [11] knowledge graph embedding
algorithm, and asked them to produce a distributed version of the same program using
STRADS-AP.

Table 7.7 shows the breakdown of times each student spent at different phases of the
experiment, including the students’ backgrounds, and the primary challenges they faced.
While most students lacked proficiency in C++, they still managed to complete conver-
sion in a reasonable time. Student 5, who was the most proficient in C++, finished the
experiment in 1.5 hours, while Student 1 took 2.4 hours, most of which he spent in the last
subtask debugging syntax errors, after breezing through the previous subtasks. The feed-
back from the participants indicated that (1) converting serial code into STRADS-AP code
was straightforward because data structures, the control flow, and optimization functions
in the serial program were reusable with a few changes, and (2) the lack of C++ familiarity
was the main challenge. The list of reported mistakes included C++ syntax errors, forget-
ting to resize local C++ STL vectors before populating them, and an attempt to create a
nested DDS, which STRADS-AP does not currently support. We evaluated the students’
implementations by running them on FreeBase-15K[11] dataset for 1000 iterations with
vector size of 50. The students’ implementations were about 22× faster than the serial
implementation on 128 cores, averaging at 45.3% accuracy, compared 46.1% accuracy of
the serial implementation.

102

Su
bj

ec
t

M
aj

or
(M

ai
n

PL
)

C
++

Sk
ill

[T
1]

[T
2]

[T
3]

[T
4]

[T
5]

To
ta

l
C

ha
lle

ng
es

St
ud

en
t1

D
at

a
M

in
in

g
(P

yt
ho

n)
L

ow
0.

25
0.

1
0.

25
0.

1
1.

7
2.

4
L

ac
k

of
C

/C
++

ex
pe

ri
en

ce
St

ud
en

t2
D

at
a

M
in

in
g

(J
av

a)
L

ow
0.

3
0.

2
0.

1
0.

2
1.

4
2.

2
L

ac
k

of
C

/C
++

ex
pe

ri
en

ce
St

ud
en

t3
M

ac
hi

ne
L

ea
rn

in
g

(P
yt

ho
n)

L
ow

0.
3

0.
5

0.
5

0.
5

1
2.

8
L

ac
k

of
C

/C
++

ex
pe

ri
en

ce
St

ud
en

t4
C

om
pi

le
rs

(J
av

a)
H

ig
h

0.
3

0.
3

0.
2

0.
1

1.
0

1.
9

L
ac

k
of

M
L

pr
og

ra
m

m
in

g
fa

m
ili

ar
ity

St
ud

en
t5

Sy
st

em
s

(C
++

)
H

ig
h

0.
25

0.
25

0.
5

0.
25

0.
25

1.
5

N
/A

Ta
bl

e
7.

7:
T

he
br

ea
kd

ow
n

of
tim

es
(i

n
ho

ur
s)

of
fiv

e
st

ud
en

ts
th

at
co

nv
er

te
d

th
e

se
ri

al
im

pl
em

en
ta

tio
n

of
Tr

an
sE

[1
1]

gr
ap

h
em

be
dd

in
g

al
go

ri
th

m
to

a
di

st
ri

bu
te

d
ST

R
A

D
S-

A
P

im
pl

em
en

ta
tio

n.
W

e
sp

lit
th

e
co

nv
er

si
on

ta
sk

in
to

fiv
e

su
bt

as
ks

:
[T

1]
un

de
rs

ta
nd

th
e

al
go

ri
th

m
,

[T
2]

un
de

rs
ta

nd
th

e
re

fe
re

nc
e

se
ri

al
co

de
,

[T
3]

re
vi

ew
ST

R
A

D
S-

A
P

A
PI

gu
id

e,
[T

4]
re

vi
ew

th
e

pr
ov

id
ed

se
ri

al
M

L
R

co
de

an
d

th
e

co
rr

es
po

nd
in

g
ST

R
A

D
S-

A
P

co
de

,[
T

5]
co

nv
er

tt
he

se
ri

al
im

pl
em

en
ta

tio
n

to
ST

R
A

D
S-

A
P

im
pl

em
en

ta
tio

n.

103

104

Chapter 8

Conclusion and Future Work

8.1 Conclusion

In this dissertation, we made arguments regarding computational efficiency and program-
ming productivity of distributed machine learning.

First, we argued that the performance of data-parallel machine learning is limited by
fundamental trade-offs between system throughput and statistical progress per iteration.
Though relaxed consistency models and parameter servers can improve training perfor-
mance through the trade-offs, data-parallel machine learning still has residual staleness,
which lowers progress per iteration resulting in lower efficiency.

To improve efficiency further, we proposed the model parameter update scheduling
approach SchMP that (1) avoids data conflicts while running concurrent updates, which
improves progress per iteration by eliminating staleness or reducing it further, and (2) pri-
oritizes important parameter updates, which makes more progress per update by avoiding
updates on already converged parameters. For different computational dependency struc-
tures, we presented two different parameter update scheduling schemes (Static/Dynamic
SchMP). In STRADS system, we implement system optimizations, such as distributed
scheduler for high scheduling throughput, pipelining for overlapping computation and
communication, and ring overlay network for reducing synchronization overhead.

In our evaluations, we show that STRADS-Static/Dynamic engines achieve system
throughput as high as data-parallel machine learning applications while preserving the
benefits of parameter update scheduling – achieving progress per iteration close to or better
than that of ideal sequential execution.

105

Second, we argued that we can simplify distributed machine learning programming
with familiar sequential programming model without introducing a new programming
model. Though high-level frameworks like MapReduce/GraphLab/Spark simplify dis-
tributed programming by hiding essential requirements of distributed computing from a
machine learning programmer, these frameworks require a machine learning program-
mer to give up familiar sequential programming model and to switch to a different men-
tal model for programming – functional programming model in MapReduce/Spark and
vertex-centric programming model in GraphLab – which lowers development productiv-
ity.

To simplify distributed machine learning programming, we proposed a sequential-like
interface, STRADS-AP API, which allows a machine learning programmer to convert se-
quential machine learning code into distributed code by making few mechanical changes.
The API consists of DDSs (i.e. distributed STL containers) and two loop operators (i.e.
AsyncFor and SyncFor) that allow a machine learning programmer to reuse data structures
and computation routines from a sequential program with minimal changes. To show the
feasibility of STRADS-AP API, we present the STRADS-AP runtime system that im-
plements Reconnaissance Execution for profiling dependencies of updates and parameter
access patterns, DDS containers with prefetching/caching capabilities, two concurrency
control engines for running Async and Sync loop operators with strong or relaxed consis-
tency models.

In our performance evaluations, we show that STRADS-AP machine learning applica-
tions achieve training performance comparable to that of hand-tuned distributed applica-
tions and counterparts on a ML specialized framework. In our productivity evaluations, we
show that STRADS-AP API keeps line counts of applications close to those of sequential
counterparts, which are less that those of hand-tuned distributed codes. Through two user
studies, we show that converting a sequential machine learning program into a distributed
program using STRADS-AP API is straightforward and can be done easily in less than
three hours, which was much shorter than development time of hand-tuned distributed
programming using MPI.

8.2 Future work

While this dissertation improves efficiency and productivity of general machine learning1,
there are several directions that could improve efficiency and productivity further for gen-
eral machine learning.

1They are machine learning algorithms except neural network algorithms.

106

Higher Productivity: These days super high-level frameworks, such as TensorFlow and
PyTorch, for neural network computing simplify machine learning programming signifi-
cantly by supporting auto-differentiation and auto-gradient updates. We believe that these
techniques can be applied to a general machine learning framework like STRADS-AP. The
challenge is that general machine learning algorithms use a wider variety of numerical op-
erators as compared to neural network algorithms which use a limited well-established
set of operators. To address this problem, it’s essential to build a library of operators for
general machine learning – which would cover the broader range of operators than neu-
ral network library and require aggregated efforts from the machine learning and system
communities.

Higher performance: As neural network computing gets popular, more clusters are har-
nessing GPUs. Most high-level machine frameworks except neural network frameworks
do not support GPUs (or vector instructions of modern CPUs). Utilization of these ad-
vanced hardware features is left to a machine learning programmer, and these features
are usually ignored for general machine learning programming. We think that it’s essen-
tial to support these features for improving general machine learning performance. When
building the aforementioned operator library, these advanced hardware features should be
utilized.

107

108

Bibliography

[1] Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey
Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, Manju-
nath Kudlur, Josh Levenberg, Rajat Monga, Sherry Moore, Derek G. Murray, Benoit
Steiner, Paul Tucker, Vijay Vasudevan, Pete Warden, Martin Wicke, Yuan Yu, and
Xiaoqiang Zheng. TensorFlow: A system for large-scale machine learning. In 12th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 16),
pages 265–283, 2016. 2, 2.2.5

[2] Amr Ahmed, Moahmed Aly, Joseph Gonzalez, Shravan Narayanamurthy, and
Alexander J Smola. Scalable Inference in Latent Variable Models. In WSDM, 2012.
2.1.2, 2.2.4, 4.1.3, 6.1.7, 7.2.2

[3] Galen Andrew and Jianfeng Gao. Scalable training of l1-regularized log-linear mod-
els. In Proceedings of the 24th International Conference on Machine Learning,
ICML ’07, pages 33–40, New York, NY, USA, 2007. ACM. 5

[4] Apache Hadoop, http://hadoop.apache.org. 2.2.2

[5] Apache Mahout, http://mahout.apache.org. 2.2.2

[6] Arthur Asuncion, Max Welling, Padhraic Smyth, and Yee Whye Teh. On Smoothing
and Inference for Topic Models. In Proceedings of the Twenty-Fifth Conference on
Uncertainty in Artificial Intelligence, UAI ’09, pages 27–34, Arlington, Virginia,
United States, 2009. AUAI Press. 7.2.2

[7] Christopher M. Bishop. Pattern Recognition and Machine Learning (Information
Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
1, 1.2, 7.3, 7.3.1, 7.3.1

[8] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent Dirichlet Allocation.
Journal of Machine Learning Research, 3:993–1022, 2003. 1, 1.2, 7.1.3, 7.2.2

109

[9] Boost. Boost C++ Library - Serialization. 7.2.5

[10] Antoine Bordes, Xavier Glorot, Jason Weston, and Yoshua Bengio. A semantic
matching energy function for learning with multi-relational data. Mach. Learn.,
94(2):233–259, February 2014. 7.3

[11] Antoine Bordes, Nicolas Usunier, Alberto Garcia-Durán, Jason Weston, and Ok-
sana Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In
Proceedings of the 26th International Conference on Neural Information Processing
Systems - Volume 2, NIPS’13, pages 2787–2795, USA, 2013. Curran Associates Inc.
(document), 1.2, 7.3, 7.3.1, 7.3.2, 7.7

[12] Joseph K. Bradley, Aapo Kyrola, Danny Bickson, and Carlos Guestrin. Parallel Coor-
dinate Descent for L1-Regularized Loss Minimization. In ICML, 2011. (document),
3.1.3, 3.2.1, 5.3, 5.4, 5.3.1, 7.2.2

[13] Craig Chambers, Ashish Raniwala, Frances Perry, Stephen Adams, Robert Henry,
Robert Bradshaw, and Nathan. FlumeJava: Easy, Efficient Data-Parallel Pipelines. In
ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 363–375, 2 Penn Plaza, Suite 701 New York, NY 10121-0701, 2010.
2, 7.1.3

[14] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,
Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable:
A distributed storage system for structured data. In Proceedings of the 7th USENIX
Symposium on Operating Systems Design and Implementation - Volume 7, OSDI ’06,
pages 15–15, Berkeley, CA, USA, 2006. USENIX Association. 1.1.1

[15] Ciprian Chelba, Tomas Mikolov, Mike Schuster, Qi Ge, Thorsten Brants, Phillipp
Koehn, and Tony Robinson. One billion word benchmark for measuring progress in
statistical language modeling. Technical report, Google, 2013. (document), 7.4

[16] Tianqi Chen, Mu Li, Yutian Li, Min Lin, Naiyan Wang, Minjie Wang, Tianjun Xiao,
Bing Xu, Chiyuan Zhang, and Zheng Zhang. Mxnet: A flexible and efficient machine
learning library for heterogeneous distributed systems. CoRR, abs/1512.01274, 2015.
2

[17] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R. Ganger, Garth
Gibson, Kimberly Keeton, and Eric P. Xing. Solving the straggler problem with
bounded staleness. In HotOS. USENIX Association, 2013. 2.1.1

110

[18] Clang. AST Matcher,http://clang.llvm.org/docs/LibASTMatchersReference.html.
7.2.5

[19] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu
Kumar, Jinliang Wei, Wei Dai, Gregory R. Ganger, Phillip B. Gibbons, Garth A.
Gibson, and Eric P. Xing. Exploiting Bounded Staleness to Speed Up Big Data
Analytics. In 2014 USENIX Annual Technical Conference (USENIX ATC 14), pages
37–48, Philadelphia, PA, June 2014. USENIX Association. 2, 2.1.3, 2.2.4, 6.1.7

[20] Henggang Cui, Alexey Tumanov, Jinliang Wei, Lianghong Xu, Wei Dai, Jesse Haber-
Kucharsky, Qirong Ho, Gregory R. Ganger, Phillip B. Gibbons, Garth A. Gibson, and
Eric P. Xing. Exploiting Iterative-ness for Parallel ML Computations. In Proceedings
of the ACM Symposium on Cloud Computing, SOCC ’14, pages 5:1–5:14, New York,
NY, USA, 2014. ACM. 2, 2.1.3, 2.2.4, 6.1.7

[21] Henggang Cui, Hao Zhang, Gregory R. Ganger, Phillip B. Gibbons, and Eric P. Xing.
GeePS: Scalable Deep Learning on Distributed GPUs with a GPU-specialized Pa-
rameter Server. In Proceedings of the Eleventh European Conference on Computer
Systems, EuroSys ’16, pages 4:1–4:16, New York, NY, USA, 2016. ACM. 2, 6.1.7

[22] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry-Standard API for
Shared-Memory Programming. IEEE Comput. Sci. Eng., 5(1):46–55, January 1998.
6.1.3

[23] Wei Dai, Abhimanu Kumar, Jinliang Wei, Qirong Ho, Garth A. Gibson, and Eric P.
Xing. High-performance distributed ML at scale through parameter server consis-
tency models. In AAAI, 2015. 3.2.2

[24] Jeff Dean, David A. Patterson, and Cliff Young. A new golden age in computer
architecture: Empowering the machine-learning revolution. IEEE Micro, 38(2):21–
29, 2018. 1

[25] Jeffrey Dean, Greg S. Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V.
Le, Mark Z. Mao, Marc’Aurelio Ranzato, Andrew Senior, Paul Tucker, Ke Yang,
and Andrew Y. Ng. Large scale distributed deep networks. In Proceedings of the
25th International Conference on Neural Information Processing Systems - Volume
1, NIPS’12, pages 1223–1231, USA, 2012. Curran Associates Inc. 6.1.7

[26] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified Data Processing on
Large Clusters. Communications of the ACM, 51(1):107–113, 2008. 2, 2.1.1, 2.2.2,
7.1.3, 7.2.1

111

[27] Lev Finkelstein, Evgeniy Gabrilovich, Yossi Matias, Ehud Rivlin, Zach Solan, Gadi
Wolfman, and Eytan Ruppin. Placing Search in Context: The Concept Revisited. In
Proceedings of the 10th international conference on World Wide Web, pages 406–
414. ACM, 2001. (document), 7.5, 7.3.1

[28] Message P Forum. MPI: A Message-Passing Interface Standard. Technical report,
Knoxville, TN, USA, 1994. 2, 2.1.1, 2.2.1, 6.1.6

[29] J. Friedman, T. Hastie, H. Hofling, and R. Tibshirani. Pathwise Coordinate Opti-
mization. Annals of Applied Statistics, 1(2):302–332, 2007. 3.1.3, 5.1.2, 7.2.2

[30] Rainer Gemulla, Erik Nijkamp, Peter J Haas, and Yannis Sismanis. Large-Scale
Matrix Factorization with Distributed Stochastic Gradient Descent. In KDD, 2011.
(document), 6.3, 6.1.4, 6.1.6, 7.1.3

[31] Alexander Genkin, David D. Lewis, and David Madigan. Large-scale bayesian lo-
gistic regression for text categorization. Technometrics, 49(3):291–304, 2007. 5

[32] Joseph E Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Carlos Guestrin.
PowerGraph: Distributed Graph-Parallel Computation on Natural Graphs. In OSDI,
volume 12, page 2, 2012. 2, 2.2.3

[33] Google. TensorFLow Optimized Word2vec. 7.3.1

[34] Google. word2vec, https://code.google.com/archive/p/word2vec/. 1.2, 7.1.3, 7.3.1,
7.3.2

[35] Saurabh Gupta and Vineet Khare. Blazingtext: Scaling and accelerating word2vec
using multiple gpus. In Proceedings of the Machine Learning on HPC Environments,
MLHPC’17, pages 6:1–6:5, New York, NY, USA, 2017. ACM. 7.3

[36] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.
Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. More Effective
Distributed ML via a Stale Synchronous Parallel Parameter Server. In NIPS, 2013.
2.1.3, 7, 2.2.4, 3.2.2, 7.1.3

[37] Chih-Wei Hsu and Chih-Jen Lin. A comparison of methods for multiclass support
vector machines. Trans. Neur. Netw., 13(2):415–425, March 2002. 5

[38] James Bennett and Stan Lanning and Netflix Netflix. The Netflix Prize. In In KDD
Cup and Workshop in conjunction with KDD, 2007. (document), 6.5, 7.2.2

112

[39] Shihao Ji, Nadathur Satish, Sheng Li, and Pradeep Dubey. Parallelizing Word2Vec
in Multi-Core and Many-Core Architectures. CoRR, abs/1611.06172, 2016. 7.2.4

[40] Yangqing Jia, Evan Shelhamer, Jeff Donahue, Sergey Karayev, Jonathan Long, Ross
Girshick, Sergio Guadarrama, and Trevor Darrell. Caffe: Convolutional architecture
for fast feature embedding. In Proceedings of the 22Nd ACM International Confer-
ence on Multimedia, MM ’14, pages 675–678, New York, NY, USA, 2014. ACM.
2

[41] George Karypis and Vipin Kumar. Metis-unstructured graph partitioning and sparse
matrix ordering system, version 2.0. 1995. 3.2.1

[42] Jin Kyu Kim, Qirong Ho, Seunghak Lee, Xun Zheng, Wei Dai, Garth A. Gibson, and
Eric P. Xing. STRADS: A Distributed Framework for Scheduled Model Parallel Ma-
chine Learning. In Proceedings of the Eleventh European Conference on Computer
Systems, EuroSys ’16, pages 5:1–5:16, New York, NY, USA, 2016. ACM. 3.3, 7.1.3,
7.2.4

[43] Kwangmoo Koh, Seung-Jean Kim, and Stephen Boyd. An interior-point method for
large-scale l1-regularized logistic regression. J. Mach. Learn. Res., 8:1519–1555,
December 2007. 5

[44] Yehuda Koren, Robert Bell, and Chris Volinsky. Matrix Factorization Techniques for
Recommender Systems. Computer, (8):30–37, 2009. 1, 1.2, 7.1.3, 7.2.2

[45] John Langford, Er J. Smola, and Martin Zinkevich. Slow learners are fast. In In
NIPS, pages 2331–2339, 2009. 3.1.1

[46] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth Gibson, and Eric P. Xing.
On model parallelism and scheduling strategies for distributed machine learning. In
NIPS. 2014. 7.1.3

[47] Aaron Q. Li, Amr Ahmed, Sujith Ravi, and Alexander J. Smola. Reducing the Sam-
pling Complexity of Topic Models. In Proceedings of the 20th ACM SIGKDD In-
ternational Conference on Knowledge Discovery and Data Mining, KDD ’14, pages
891–900, New York, NY, USA, 2014. ACM. 7.2.2

[48] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling Distributed
Machine Learning with the Parameter Server. In OSDI, 2014. 2, 2.1.3, 2.2.4, 3.2.2,
6.1.7

113

[49] Mu Li, David G Andersen, Alexander J Smola, and Kai Yu. Communication ef-
ficient distributed machine learning with the parameter server. In Z. Ghahramani,
M. Welling, C. Cortes, N. D. Lawrence, and K. Q. Weinberger, editors, Advances
in Neural Information Processing Systems 27, pages 19–27. Curran Associates, Inc.,
2014. 2.1.3

[50] Chih-Jen Lin and Jorge J. Moré. Newton’s method for large bound-constrained opti-
mization problems. SIAM J. on Optimization, 9(4):1100–1127, April 1999. 5

[51] Yankai Lin, Zhiyuan Liu, Maosong Sun, Yang Liu, and Xuan Zhu. Learning entity
and relation embeddings for knowledge graph completion. In Proceedings of the
Twenty-Ninth AAAI Conference on Artificial Intelligence, AAAI’15, pages 2181–
2187. AAAI Press, 2015. 7.2.2, 7.3

[52] Jun Liu, Jianhui Chen, and Jieping Ye. Large-scale sparse logistic regression. In Pro-
ceedings of the 15th ACM SIGKDD International Conference on Knowledge Discov-
ery and Data Mining, KDD ’09, pages 547–556, New York, NY, USA, 2009. ACM.
5

[53] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo Kyrola, and
Joseph M. Hellerstein. Distributed GraphLab: A Framework for Machine Learning
and Data Mining in the Cloud. Proc. VLDB Endow., 5(8):716–727, 2012. 2, 2.2.3,
3.2.2, 3.2.3, 7.1.3, 7.2.4

[54] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin, and
Joseph M. Hellerstein. Graphlab: A new parallel framework for machine learning.
In Conference on Uncertainty in Artificial Intelligence (UAI), Catalina Island, Cali-
fornia, July 2010. 2, 2.2.3, 3.2.3

[55] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan Horn,
Naty Leiser, and Grzegorz Czajkowski. Pregel: A System for Large-scale Graph
Processing. In Proceedings of the 2010 ACM SIGMOD International Conference on
Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010.
ACM. 2

[56] Stefano Markidis, Steven Wei Der Chien, Erwin Laure, Ivy Bo Peng, and Jeffrey S.
Vetter. NVIDIA tensor core programmability, performance & precision. CoRR,
abs/1803.04014, 2018. 2.2.5

[57] Xiangrui Meng, Joseph Bradley, Burak Yavuz, Evan Sparks, Shivaram Venkatara-
man, Davies Liu, Jeremy Freeman, DB Tsai, Manish Amde, Sean Owen, Doris Xin,

114

Reynold Xin, Michael J. Franklin, Reza Zadeh, Matei Zaharia, and Ameet Talwalkar.
Mllib: Machine learning in apache spark. J. Mach. Learn. Res., 17(1):1235–1241,
January 2016. 2.2.2

[58] Microsoft Developer Network. Lambda Expressions in C++, 2015. 7.2.5

[59] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of
word representations in vector space. CoRR, abs/1301.3781, 2013. 7.3

[60] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Corrado, and Jeffrey Dean. Dis-
tributed Representations of Words and Phrases and Their Compositionality. In Pro-
ceedings of the 26th International Conference on Neural Information Processing Sys-
tems - Volume 2, NIPS’13, pages 3111–3119, USA, 2013. Curran Associates Inc.
(document), 7.3, 7.3.1, 7.5, 7.3.1

[61] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Dis-
tributed representations of words and phrases and their compositionality. In Advances
in neural information processing systems, pages 3111–3119, 2013. 1.2

[62] MPICH2. http://www.mcs.anl.gov/mpi/mpich2. 2, 2.2.1

[63] Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings
of knowledge graphs. In Proceedings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, pages 1955–1961. AAAI Press, 2016. 7.3

[64] Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. A three-way model for
collective learning on multi-relational data. In Proceedings of the 28th International
Conference on International Conference on Machine Learning, ICML’11, pages
809–816, USA, 2011. Omnipress. 7.3

[65] OpenMPI. https://www.open-mpi.org/. 2, 2.2.1

[66] Xinghao Pan, Maximilian Lam, Stephen Tu, Dimitris Papailiopoulos, Ce Zhang,
Michael I Jordan, Kannan Ramchandran, and Christopher Ré. Cyclades: Conflict-
free Asynchronous Machine Learning. In D. D. Lee, M. Sugiyama, U. V. Luxburg,
I. Guyon, and R. Garnett, editors, Advances in Neural Information Processing Sys-
tems 29, pages 2568–2576. Curran Associates, Inc., 2016. 7.2.4

[67] István Pilászy, Dávid Zibriczky, and Domonkos Tikk. Fast ALS-based Matrix Fac-
torization for Explicit and Implicit Feedback Datasets. In Proceedings of the Fourth
ACM Conference on Recommender Systems, RecSys ’10, pages 71–78, New York,
NY, USA, 2010. ACM. 7.2.2

115

[68] Russell Power and Jinyang Li. Piccolo: Building fast, distributed programs with
partitioned tables. In OSDI, 2010. 2, 2.2.4

[69] PyTorch. https://pytorch.org/. 2

[70] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo Du-
rand, and Saman Amarasinghe. Halide: A language and compiler for optimizing
parallelism, locality, and recomputation in image processing pipelines. In Proceed-
ings of the 34th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’13, pages 519–530, New York, NY, USA, 2013. ACM. 2.2.5

[71] Benjamin Recht, Christopher Re, Stephen Wright, and Feng Niu. Hogwild!: A Lock-
Free Approach to Parallelizing Stochastic Gradient Descent. In NIPS, 2011. 2.1.2,
3.1.1, 7.1.3, 7.2.4

[72] Peter Richtárik and Martin Takáč. Parallel coordinate descent methods for big data
optimization. arXiv preprint arXiv:1212.0873, 2012. 4

[73] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma,
Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C.
Berg, and Li Fei-Fei. Imagenet large scale visual recognition challenge. Int. J.
Comput. Vision, 115(3):211–252, December 2015. 7.3.1

[74] Chad Scherrer, Mahantesh Halappanavar, Ambuj Tewari, and David Haglin. Scaling
up parallel coordinate descent algorithms. In ICML, 2012. 4

[75] Chad Scherrer, Ambuj Tewari, Mahantesh Halappanavar, and David Haglin. Feature
clustering for accelerating parallel coordinate descent. In NIPS. 2012. 3.2.1

[76] Shai Shalev-Shwartz and Ambuj Tewari. Stochastic methods for `1 regularized loss
minimization. In Léon Bottou and Michael Littman, editors, Proceedings of the
26th International Conference on Machine Learning, pages 929–936, Montreal, June
2009. Omnipress. 5

[77] Spark. Apache spark 2.3.1. 2.1.1

[78] Cheng tao Chu, Sang K. Kim, Yi an Lin, Yuanyuan Yu, Gary Bradski, Kunle
Olukotun, and Andrew Y. Ng. Map-reduce for machine learning on multicore. In
B. Schölkopf, J. C. Platt, and T. Hoffman, editors, Advances in Neural Information
Processing Systems 19, pages 281–288. MIT Press, 2007. 2.2.2

116

[79] Choon Hui Teo, S. V. N. Vishwanathan, Alexander J. Smola, and Quoc V. Le. Bundle
methods for regularized risk minimization. Journal of Machine Learning Research,
11:311–365, 2010. 5

[80] Doug Terry. Replicated data consistency explained through baseball. Commun. ACM,
56(12):82–89, December 2013. 2.1.3

[81] R. Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the
Royal Statistical Society. Series B (Methodological), 58(1):267–288, 1996. 1.2,
7.1.3, 7.2.2

[82] R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight. Sparsity and smooth-
ness via the fused lasso. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(1):91–108, 2005. 1

[83] Ehsan Totoni, Subramanya R. Dulloor, and Amitabha Roy. A Case Against Tiny
Tasks in Iterative Analytics. In Proceedings of the 16th Workshop on Hot Topics in
Operating Systems, HotOS ’17, pages 144–149, New York, NY, USA, 2017. ACM.
7.1.3

[84] Paul Tseng and Sangwoon Yun. A coordinate gradient descent method for nons-
mooth separable minimization. Math. Program., 117(1-2):387–423, 2009. 5

[85] Leslie G. Valiant. A bridging model for parallel computation. Commun. ACM,
33(8):103–111, August 1990. 7.1.3, 7.2.4

[86] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal,
Zachary DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert
Cohen. Tensor comprehensions: Framework-agnostic high-performance machine
learning abstractions. CoRR, abs/1802.04730, 2018. 2.2.5

[87] Zhen Wang, Jianwen Zhang, Jianlin Feng, and Zheng Chen. Knowledge graph em-
bedding by translating on hyperplanes. In Proceedings of the Twenty-Eighth AAAI
Conference on Artificial Intelligence, AAAI’14, pages 1112–1119. AAAI Press,
2014. 7.2.2, 7.3

[88] Jinliang Wei, Wei Dai, Aurick Qiao, Qirong Ho, Henggang Cui, Gregory R. Ganger,
Phillip B. Gibbons, Garth A. Gibson, and Eric P. Xing. Managed Communication
and Consistency for Fast Data-parallel Iterative Analytics. In Proceedings of the
Sixth ACM Symposium on Cloud Computing, SoCC ’15, pages 381–394, New York,
NY, USA, 2015. ACM. 2, 2.2.4, 4.3.6, 6.1.7

117

[89] T.T. Wu and K. Lange. Coordinate Descent Algorithms for Lasso Penalized Regres-
sion. The Annals of Applied Statistics, 2(1):224–244, 2008. 7.2.2

[90] Hsiang-Fu Yu, Cho-Jui Hsieh, Si Si, and Inderjit S Dhillon. Scalable Coordinate
Descent Approaches to Parallel Matrix Factorization for Recommender Systems. In
ICDM, 2012. 7.2.2

[91] Jinhui Yuan, Fei Gao, Qirong Ho, Wei Dai, Jinliang Wei, Xun Zheng, Eric P. Xing,
Tie-Yan Liu, and Wei-Ying Ma. LightLDA: Big Topic Models on Modest Compute
Clusters. In WWW, 2015. 7.1.3, 7.2.2

[92] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma, Mur-
phy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient dis-
tributed datasets: a fault-tolerant abstraction for in-memory cluster computing. In
NSDI, 2012. 2.1.1

[93] Matei Zaharia, Mosharaf Chowdhury, Michael J. Franklin, Scott Shenker, and Ion
Stoica. Spark: Cluster computing with working sets. In Proceedings of the 2Nd
USENIX Conference on Hot Topics in Cloud Computing, HotCloud’10, pages 10–
10, Berkeley, CA, USA, 2010. USENIX Association. 2.1.1

[94] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion
Stoica. Discretized Streams: Fault-tolerant Streaming Computation at Scale. In Pro-
ceedings of the Twenty-Fourth ACM Symposium on Operating Systems Principles,
SOSP ’13, pages 423–438, New York, NY, USA, 2013. ACM. 1.2, 2, 7.1.3, 7.2.1

[95] Bin Zhang, Chris Gaiteri, Liviu-Gabriel Bodea, Zhi Wang, Joshua McElwee,
Alexei A Podtelezhnikov, Chunsheng Zhang, Tao Xie, Linh Tran, Radu Dobrin,
et al. Integrated systems approach identifies genetic nodes and networks in late-onset
Alzheimer’s disease. Cell, 153(3):707–720, 2013. 3.1.3, 5.1.2

[96] Yunhong Zhou, Dennis Wilkinson, Robert Schreiber, and Rong Pan. Large-scale
parallel Collaborative Filtering for the Netflix Prize. In Algorithmic Aspects in Infor-
mation and Management, pages 337–348. Springer, 2008. 7.2.2

[97] Martin Zinkevich, Markus Weimer, Lihong Li, and Alex J Smola. Parallelized
stochastic gradient descent. In NIPS, 2010. 3.1.1

118

	1 Introduction
	1.1 Scope of work
	1.1.1 Training in machine learning
	1.1.2 Development of distributed machine learning programs

	1.2 Thesis Statement

	2 Background
	2.1 Consistency models in distributed machine learning
	2.1.1 BSP Model
	2.1.2 Fully asynchronous model
	2.1.3 Bounded staleness model

	2.2 System supports for distributed machine learning
	2.2.1 MPI
	2.2.2 MapReduce/Spark
	2.2.3 GraphLab
	2.2.4 Parameter servers
	2.2.5 Dataflow framework

	3 Computational Efficiency of Parallel ML
	3.1 Efficiency challenges of parallel machine learning
	3.1.1 Data-Parallel
	3.1.2 Model-Parallel
	3.1.3 Example I: Lasso
	3.1.4 Example II: LDA topic modeling
	3.1.5 Example III: SGDMF

	3.2 Scheduled Model Parallel
	3.2.1 Variations of model-parallel
	3.2.2 Practical strategies for model partitioning and scheduling
	3.2.3 Programming scheduled model parallel

	3.3 STRADS runtime design
	3.3.1 SchMP instruction layer
	3.3.2 STRADS service layer
	3.3.3 STRADS service implementation layer (SchMP Engine)

	4 Static-SchMP & STRADS-Static Engine
	4.1 Static-SchMP
	4.1.1 Program property for static-scheduling
	4.1.2 STRADS static-scheduling
	4.1.3 Static-scheduling example with LDA topic modeling

	4.2 STRADS-Static Engine
	4.2.1 System design challenges
	4.2.2 STRADS static-engine implementation

	4.3 Evaluation
	4.3.1 Cluster setup and datasets
	4.3.2 Performance metrics:
	4.3.3 Machine learning programs and baselines:
	4.3.4 Performance evaluations
	4.3.5 Evaluations of static engine optimizations
	4.3.6 Comparison against other frameworks

	5 Dynamic-SchMP & STRADS-Dynamic Engine
	5.1 Dynamic-SchMP
	5.1.1 Dynamic-SchMP
	5.1.2 Dynamic-SchMP example with Lasso

	5.2 STRADS-Dynamic Engine
	5.2.1 System design challenges
	5.2.2 STRADS Dynamic-Engine implementation

	5.3 Evaluation
	5.3.1 Performance evaluations
	5.3.2 Evaluation of dynamic engine optimizations
	5.3.3 Comparison against other frameworks

	6 Productivity of Developing Distributed ML
	6.1 Case Study
	6.1.1 SGDMF algorithm for recommendation system
	6.1.2 Sequential SGDMF
	6.1.3 Shared-Memory SGDMF using OpenMP
	6.1.4 Distributed SGDMF using Spark-Scala
	6.1.5 Distributed SGDMF using STRADS-AP
	6.1.6 Performance cost
	6.1.7 Other high-level frameworks

	6.2 Overview of STRADS-AP

	7 STRADS-AP API & Runtime System Implementation
	7.1 STRADS-AP API
	7.1.1 Program structure of targeted machine learning applications
	7.1.2 Distributed Data Structures (DDSs)
	7.1.3 STRADS-AP operators

	7.2 STRADS-AP runtime system
	7.2.1 Driver program execution model
	7.2.2 Reconnaissance execution
	7.2.3 Distributed Data Structures
	7.2.4 Concurrency control
	7.2.5 STRADS-AP preprocessor

	7.3 STRADS-AP evaluation
	7.3.1 Productivity and performance evaluations
	7.3.2 User Study

	8 Conclusion and Future Work
	8.1 Conclusion
	8.2 Future work

	Bibliography

