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Abstract

A key challenge in reinforcement learning is how an agent can efficiently
gather useful information about its environment to make the right decisions,
i.e., how can the agent be sample efficient. This thesis proposes using a new
technique called directed exploration to construct new sample efficient algo-
rithms for both theory and practice. Directed exploration involves repeat-
edly committing to reach specific goals within a certain time frame. This
is in contrast to dithering which relies on random exploration or optimism-
based approaches that implicitly explore the state space. Using directed ex-
ploration can yield provably efficient sample complexity in a variety of set-
tings of practical interest: when solving multiple tasks either concurrently or
sequentially, algorithms can explore distinguishing state–action pairs to clus-
ter similar tasks together and share samples to speed up learning; in large,
factored MDPs, repeatedly trying to visit lesser known state–action pairs can
reveal whether the current dynamics model is faulty and which features are
unnecessary. Finally, directed exploration can also improve sample efficiency
in practice for the deep reinforcement learning by being more strategic than
dithering-based approaches and more robust than reward-bonus based ap-
proaches.
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Chapter 1

Introduction

1.1 Motivation

One key aspect of an intelligent agent is the ability to explore and learn new things. As
babies, we crawl and interact with all kinds of unknown objects in order to learn about the
world. As children we retain that curiosity and try to conduct all kinds of experiments to
figure out how the world works. Exploration is an essential component for filling in the
gaps in our knowledge, as well as for discovering new and interesting things.

Even after growing up, we continue to explore the unknown. Suppose you want to
eat dinner at a restaurant, but there are many restaurants that have recently opened that
you have not tried before. So you do some research and look at online reviews as well as
their menus to construct a subjective evaluation of which restaurants look promising. Then
you may decide to try out the most promising restaurant, or maybe randomly pick one of
the top 3 most promising restaurants. This is an example of performing exploration in a
more informed fashion based on prior knowledge and personal taste. This more informed
exploration is key to exploring efficiently. If there were 20 restaurants that you have not
tried before, and you decided to try them out randomly, it could take more than 10 tries
before you find a good restaurant. However, looking up reviews and menus and judging
according to your own tastes can greatly increase the chance of finding a good restaurant
in just 2 or 3 tries. Using more informed exploration can greatly speed up exploration to
target the most promising areas.

This thesis proposes a new technique called directed exploration that, at a high-level,
mimics this informed exploration process. In particular, directed exploration consists of
first using an informed measure to evaluate and priortize the unknown, and then directly
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tries them out according to that measure. Now we will go into more details about how this
works.

Figure 1.1: Reinforcement learning loop. The agent take an action in the environment,
which then transitions to a new state and gives as feedback a reward value.

To train intelligent, autonomous agents, we use the reinforcement learning framework
(Figure 1.1). In reinforcement learning, a branch of machine learning, an agent interacts
with an environment and the only feedback is through a real-valued (possibly sparse) re-
ward. At every timestep, the algorithm takes an action in the environment, observes how
the environment state changes, and gets a reward. Each step can be considered as gather-
ing one new sample data point. The algorithm then tries to change its actions to maximize
its cumulative reward. This processes reflects many real world problems where it is dif-
ficult to specify the right answer ahead of time, but easy to identify when some goal has
been achieved. Robotic domains fall under this specification, for example, trying to get a
robot to walk on two legs; it can be very hard to specify how to precisely move the joints
to ensure a stable walk on real world uneven terrain, but we can give a positive reward
to the robot as long as it has not fallen. Many domains involving humans also fall under
this category, for example, trying new restaurants, a tutoring program that tries to teach
students fractions, conversation bots, and much more.

A key challenge in reinforcement learning is how to be sample efficient. An agent
would like to use the smallest number of samples (steps) it needs in order to learn the
optimal policy, i.e., the optimal actions to take in each environment state. Due to the se-
quential nature of reinforcement learning, the agent has to try to explore the environment
and take actions that could lead the agent to learn more about the dynamics of the environ-
ment rather than always trying actions with the highest rewards. Efficient exploration is a
crucial aspect of any sample efficient algorithm.

Recently, there have been many exciting advances in practical reinforcement learning
through the use of deep reinforcement learning. From achieving superhuman performance
in video games [Mnih et al., 2013], to learning how to move in robotics domains [Schul-
man et al., 2015], deep reinforcement learning has been achieving many successes in many
domains. However in order to continue to make reinforcement learning practical, sample
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efficiency becomes quite important for many problems. These early algorithms suffer from
high sample complexity, e.g. it can take up to 13 million steps to learn how to play the
Atari game Pong, which translates to over 60 hours of game time [Schaul et al., 2015b]. A
human player, on the other hand, may take less than one hour to learn how to play.

Collecting samples can be very costly when testing real robots, running health care
trials, or in general scenarios where interaction with the real world and people is required.
Even when data is relatively easy to collect, like in video games, using algorithms like
DQN without sophisticated exploration strategies in the Atari game Montezumas Revenge
can results in no learning whatsoever [Mnih et al., 2013]. Being able to efficiently explore
and collect the most useful samples becomes incredibly important in making algorithms
more sample efficient.

Figure 1.2: Simple Chain Domain. The agent is free to move left and right across the
chain, but moving up or down teleports the agent back to the starting state S. The left side
of the chain can be quite long. Rewards at left and right ends of the chain are 5 and 1
respectively, and are initially unknown. All other states give zero reward.

Early success in deep reinforcement learning relied on using a simple exploration tech-
nique known as dithering. Dithering consists of adding randomness to actions; in the dis-
crete action setting, dithering can be taking a random action with a certain probability, i.e.,
e-greedy [Mnih et al., 2013]; in the continuous action setting, dithering could be adding
Gaussian noise to actions [Schulman et al., 2015, 2017]. However because of its simplic-
ity, dithering can be extremely inefficient in many domains. A simple counter-example is
shown in Figure 1.2, which is a simple chain domain. In this chain domain, the agent is
free to move left and right across the states of the chain, but moving up or down teleports
the agent back to the starting state. There is a large but unknown reward of 5 at the left end
of the chain, and a smaller reward of 1 at the right end. There is no reward anywhere else.
Through dithering, an agent would be able to easily discover the reward of 1 at the right
end, but unfortunately it would take an exponential number of steps to be able to reach
the unknown reward at the left end. This is because through taking random actions, the
agent must avoid taking the up or down actions that teleport back to the center and try to
continuously go left. This means that at the very least, there is a 0.5 of taking either up
and down and teleporting back, and thus the probability of avoiding this outcome will be
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at most 0.5N where N is the length number of states in the chain to the left. Thus, the
probability of succesfully reaching the left end is exponentially small i.e., it will take an
exponential number of steps to reach the left end with high probability.

One interesting extension of dithering is to inject noise to the paramters of your model
rather than directly in the action space. This has been show to have some mixed results,
resulting in improvements in some domains [Fortunato et al., 2017].

Figure 1.3: An example of a posterior distribution over the unknown left end reward which
consists of four possible values of 0, 1, 2, or 3.

A more sophisticated exploration strategy that has been implemented is Thompson
(posterior) sampling [Osband et al., 2013]. This technique involves maintaining a poste-
rior over the unknown parameters of the environment, and then repeatedly sampling one
potential set of parameters and acting according to the specified environment for some
period of time. This technique has been shown to have polynomial Bayesian sample com-
plexity bound in the simple tabular setting where the states and actions are finite and
discrete [Osband et al., 2013]. The chain example here falls under the tabular setting. A
sample complexity bound is a bound on the number of steps that an agent makes a mistake
and takes an action that does not lead to near-optimal performance. If such a bound is
polynomial, then it can be considered to be a good bound and the agent can be considered
to be sample efficient. A regret bound, which is an alternative bound to the sample com-
plexity bound that is concerned with the rate of improvement of the agent, has also been
shown [Agrawal and Jia, 2017].

With thompson sampling, we can get much more efficient exploration in the case of the
simple chain domain. Suppose we have a posterior distribution that either assigns a value
of 0, 1, 2, or 3 to the left end reward (Figure 1.3). Then as long as we sample the model
where the left end reward is higher than 1, then we would end up trying to reach the left end
and finding out that the true reward is 5. It no longer takes an exponential number of steps
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to explore the left end and thus this is much more efficient. While Thompson sampling has
shown promising empirical results in the tabular and other simple settings [Chapelle and
Li, 2011, Osband and Van Roy, 2017], scaling it up to more practical, high-dimensional
domains has yielded mixed results[Osband et al., 2016, 2018]. This is because in high-
dimensional domains, the posterior distribution must now be approximated, and it is a
challenge to approximate it accurately and sample from it efficiently.

Figure 1.4: Two examples of an augmented reward for the left end state. In the left case,
the agumented reward is 1.1, and in the right case, the augmented reward is slightly lower
at 0.9. Reward bonus approaches are very sensitive to this slight difference in magnitude,
which can lead to neglecting to explore the left end entirely if it believes that the average
reward is less than 1.

Currently, the most successful exploration strategy in practice has been through the
use of reward bonuses, by adding a bonus to the reward function to encourage the agent
to visit less visited states. This approach originated in small settings under the idea of
Optimism in the Face of Uncertainty (OFU). This idea is about constructing confidence
intervals around the unknown environment parameters, and then acting according to the
most optimistic instantiation of those parameters i.e., the instantiation that would give the
most reward. A simple implementation of this idea is to add a bonus to the estimated
reward function, where the bonus is correlated with the size of the confidence intervals. A
larger confidence interval means that there is more uncertainty, so a larger bonus is given
to encourage the agent to explore that area and collect samples to learn more and shrink
the uncertainty. This idea has results in many sample effcient algorithms with polynomial
sample complexity bounds in the tabular setting Brafman and Tennenholtz [2003], Strehl
and Littman [2008].

However when scaling up to more practical domains, computing a bonus or even track-
ing parameter uncertainty often becomes computationally infeasible. Many different tech-
niques have been tried to compute an approximate and practical bonus, from keeping ap-
proximate visitation counts [Tang et al., 2017], to prediction loss of a dynamics model
[Burda et al., 2018], or even the prediction gain of an approximate state density model
[Ostrovski et al., 2017]. The main drawback is that reward bonuses are approximate, non-
stationary and change as the agent explores, which may hinder exploration. For example,

5



consider the chain domain where we use an approximate reward bonus that sometimes
assigns a bonus of 1.1 and other times a bonus of 0.9 to the left end (Figure 1.4). Even
though 1.1 and 0.9 are close in magnitude to each other and close to the right end reward
of 1, if more often than not, the reward bonus is 0.9, then the algorithm will end up think-
ing that the left end reward is on average less than 1. This means the algorithm has no
incentive to go to the left, and completely misses out on exploring the left end.

1.2 Directed Exploration

This thesis builds on using the same kind of uncertainty that the reward bonus approach
uses and proposes using a new technique called directed exploration and makes the fol-
lowing contributions:

1. We construct new provably sample efficient algorithms that rely on directed explo-
ration to tackle several settings of practical interest that have not had sample efficient
bounds before, specifically the concurrent task setting, the sequential task setting,
and feature selection in factored settings

2. We also construct a new, practical algorithm based on directed exploration to use
with function approximation that can be more sample efficient and robust than the
reward bonus approach in some settings

The focus of this thesis is not on computing this bonus, but rather on an alternate method of
utilizing this bonus, different from augmenting the reward function, and thereby sidestep-
ping the issue of non-stationarity altogether. We rely on prediction loss of a dynamics
model [Burda et al., 2018] to comptue an approximate bonus.

Directed exploration, more precisely, consists of the following:

1. Given a source of uncertainty, sample goal states with the highest uncertainty

2. Learn and use a goal-conditioned policy π(s, g) to try to reach the sampled goal
within a time limit

3. Repeat from step 1

Directed exploration is more explicit about trying to reach goal states as opposed to the
reward bonus approach in which we rely implicitly on the augmented reward function
to visit promising states. Note that the goal-conditioned policy π(s, g) is independent of
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the measure of the uncertainty, and is thus completely stationary and does not need to
be learned again when the uncertainty changes. In the case of the chain domain with
the stochastic reward bonus (Figure 1.4), due to the fact that the magitude of the left end
reward is close to the reward of the right end, directed exploration would end up picking
the left end as a goal just as often as the right end, and thus end up trying to explore both
ends reasonably often.

However directed exploration is only one part of a reinforcement learning algorithm,
which is to explore. We combine directed exploration with other components in order
to yield algorithms with provably efficient sample complexity in a variety of settings of
practical interest, and also improve sample efficiency in practice for reinforcement learning
with function approximation compared with the reward bonus approach by being more
strategic and robust.

1.3 Basic Background

In this section is a basic specification of reinforcement learning. More detailed background
is in each chapter.

A basic formulation of the reinforcement learning process is represented by a Markov
decision process (MDP). An MDP is a tuple 〈S,A, T,R, γ〉 where S is a set of states of
the environment, A is a set of actions, T is a transition model where T (s′|s, a) is the prob-
ability of the environment transitioning to state s′ given current state s, and the algorithm
taking action a. R(s, a) ∈ [0, 1] is the expected reward received in state s upon taking
action a, and γ is an (optional) discount factor. A policy π is a mapping from states to
actions. The value V π(s) of a policy π is the expected sum of discounted rewards obtained
by following π starting in state s: V π(s) =

∑∞
t=1 γ

t−1rt. The optimal policy π∗ for an
MDP is the one with the highest value function, denoted V ∗(s). In reinforcement learn-
ing, the transition and reward models are typically unknown. A reinforcement learning
algorithm for solving MDPs would take actions to gather samples of (s, a, s′) tuples, and
use them to maximize its expected value.

To theoretically analyze RL algorithms, we use the Probably Approximately Correct
(PAC) RL framework [Kearns and Singh, 2002b, Brafman and Tennenholtz, 2002, Strehl
et al., 2006]. An RL algorithm is considered to be PAC if the number of steps t in which

V (st) + ε < V ∗(st) (1.1)

is bounded by a polynomial function of the problems’ parameters, with high probability.
In other words, the number of sub-ε-optimal steps, i.e. mistakes, is at most polynomial.
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1.4 Overview

Here we provide a brief outline of each chapter. A more detailed introduction is present in
each chapter.

In chapter 2, we consider the situation in which a decision maker may make decisions
across many separate reinforcement learning tasks in parallel, which we denote as Con-
current RL. An example of this could be many students concurrently attending an online
class, and we would like to personalize the course materials for each student. We introduce
two new concurrent RL algorithms that rely on directed exploration and prove polynomial
sample complexity bounds i.e. that they are PAC. We prove that under some mild condi-
tions, both when the agent is known to be acting in many copies of the same MDP, and
when they are not the same but are taken from a finite set, we can gain linear improve-
ments in the sample complexity over not sharing information, with the main idea behind
the algorithm using directed exploration to find states where we can distinguish between
different types and cluster the same types together quickly. Our experiments confirm this
result and show preliminary empirical benefits.

In chapter 3, we consider the case where an agent will be performing a series of rein-
forcement learning tasks with a continuous state space and a discrete action space. This
serial set of tasks comes up in many applications, including robotics, consumer market-
ing, and healthcare. We introduce a new algorithm (Continuous State Online Multitask
RL with Identification a.k.a COMRLI) for online multi-task learning across a series of
continuous-state, discrete-action RL tasks with the same state and action spaces that are
drawn from a finite set. We prove that this algorithm is PAC and that its sample complexity
is much smaller due to being able to reuse past data to solve future tasks. The key point
of our algoritm is in how we continually refine a set of possible distinguishing states, and
rely on directed exploration to gather more data from those states until we narrow down
to exactly the states that can help us identify the type of the new task and reuse previous
task experience. Again, our exploration involves trying to directly visit a special subset of
states that is useful for distinguishing tasks. We also provide encouraging, preliminary em-
pirical performance on a standard domain where our algorithm exceeds a state-of-the-art
continuous-state multitask RL algorithm.

In chapter 4, we consider how to improve sample complexity through feature selection.
In many machine learning and AI control problems, choosing which features to represent
the state of the domain is critical. Using a set of carefully hand-designed features can
greatly enhance performance, but this process can be expensive, requiring domain experts
to select the features, and may easily miss relevant features resulting in sub-optimal per-
formance. We present a new reinforcement learning algorithm and prove that its sample
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complexity scales with the complexity of only the relevant features needed to learn the
optimal policy, and not on all features; then there would be no need to hand-design fea-
tures and instead this algorithm would automatically find the best subset of features, even
though which features are necessary is unknown. Our key insight is to use directed explo-
ration and leverage negative information from failing to reach goals to identify when our
estimated model of the MDP must be wrong, and to be able to identify at least one aspect
of the model that is wrong. This idea allows us to make progress, eventually eliminating
features for which we have poor models when computing our optimal policy. We are not
aware of prior work that uses negative information during reinforcement learning, and we
believe that this insight may have practical benefits for new algorithmic developments in
future work.

Finally, in chapter 5, we bring the idea of directed exploration to more practical set-
tings, specifically to the deep RL setting. One of the major challenges in deep RL has been
the difficulty of doing efficient exploration[Mnih et al., 2013]. Currently, uncertainty-
based methods have been shown to be the most effective and most promising to tackle
hard exploation domains [Houthooft et al., 2016, Ostrovski et al., 2017, Tang et al., 2017,
Burda et al., 2018]. These uncertainty-based methods use a reward bonus approach, where
they compute a measure of uncertainty and transform that into a bonus that is then added
into the reward function. Unfortunately, as previously mentioned, this reward bonus ap-
proach is non-stationary which can lead to slow convergence of function approximators
as well as being very sensitive to the relative magnitudes of the reward bonuses (Figure
1.4). We introduce a practical form of deep RL with directed exploration that repeatedly
tries to visit promising goal states with high uncertainty. We show in our experiments that
directed exploration is more robust to noisy and inaccurate uncertainty measures, and is
more efficient at exploration than the reward bonus approach.

We conclude this thesis with a discussion on possible future directions for directed
exploration.
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Chapter 2

Sample Efficient Concurrent MDPs

This work was done jointly with Emma Brunskill and accepted at AAAI 2015 [Guo and
Brunskill, 2015a].

2.1 Introduction

In many real-world situations a decision maker may make decisions across many separate
reinforcement learning tasks in parallel, yet there has been very little work on concurrent
RL. Building on the efficient exploration RL literature, we introduce two new concurrent
RL algorithms and bound their sample complexity. We show that under some mild con-
ditions, both when the agent is known to be acting in many copies of the same MDP, and
when they are not the same but are taken from a finite set, we can gain linear improve-
ments in the sample complexity over not sharing information, with the main idea behind
the algorithm being directed exploration. This is quite exciting as a linear speedup is the
most one might hope to gain. Our preliminary experiments confirm this result and show
empirical benefits.

There has been a number of papers (e.g. [Evgeniou and Pontil, 2004, Xue et al., 2007])
on supervised concurrent learning (referred to as multi-task learning). In this context,
multiple supervised learning tasks, such as classification, are run in parallel, and informa-
tion from each is used to speed learning. When the tasks themselves involve sequential
decision making, like reinforcement learning, prior work has focused on sharing informa-
tion serially across consecutive related tasks, such as in transfer learning (e.g. [Taylor and
Stone, 2009, Lazaric and Restelli, 2011]) or online learning across a set of tasks [Brun-
skill and Li, 2013a]. Note that multi-agent literature considers multiple agents acting in
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a single environment, whereas we consider the different problem of one agent / decision
maker simultaneously acting in multiple environments. The critical distinction here is that
the actions and rewards taken in one task do not directly impact the actions and rewards
taken in any other task (unlike multi-agent settings) but information about the outcomes
of these actions may provide useful information to other tasks, if the tasks are related.

One important exception is recent work by Silver et al. (2013) on concurrent rein-
forcement learning when interacting with a set of customers in parallel. This work nicely
demonstrates the substantial benefit to be had by leveraging information across related
tasks while acting jointly in these tasks, using a simulator built from hundreds of thou-
sands of customer records. However, this paper focused on an algorithmic and empirical
contribution, and did not provide any formal analysis of the potential benefits of concurrent
RL in terms of speeding up learning.

We draw upon literature on Probably Approximately Correct (PAC) RL [Kearns and
Singh, 2002b, Brafman and Tennenholtz, 2002, Kakade, 2003], and bound the sample
complexity of our approaches, which is the number of steps on which the agent may make
a sub-optimal decision, with high probability. Interestingly, when all tasks are identical,
we prove that simply by applying an existing state-of-the-art single task PAC RL algo-
rithm, MBIE [Strehl and Littman, 2008], we can obtain, under mild conditions, a linear
improvement in the sample complexity, compared to learning in each task with no shared
information. We next consider a much more generic situation, in which the presented tasks
are sampled from a finite, but unknown number of discrete state–action MDPs, and the
identity of each task is unknown. Such scenarios can arise for many applications in which
an agent is interacting with a group of people in parallel: for example, Lewis [Lewis, 2005]
found that when constructing customer pricing policies for news delivery, customers were
best modeled as being one of two (latent) types, each with distinct MDP parameters. We
present a new algorithm for this setting that uses directed exploration to try and cluster the
MDPs into the latent types, and prove that under fairly general conditions, that if any two
distinct MDPs differ in their model parameters by a minimum gap for at least one state–
action pair, and the MDPs have finite diameter, that we can also obtain essentially a linear
improvement in the sample complexity bounds across identical tasks. Our approach incurs
no dominant overhead in sample complexity by having to perform a clustering amongst
tasks, implying that if all tasks are distinct, the resulting (theoretical) performance will
be equivalent to as if we performed single task PAC RL in each task separately. These
results provide an interesting counterpart to the sequential transfer work of Brunskill and
Li [Brunskill and Li, 2013a] which demonstrated a reduction in sample complexity was
possible if an agent performed a series of tasks drawn from a finite set of MDPs; however,
in contrast to that work that could only gain a benefit after completing many tasks, clus-
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tering them, and using that knowledge for learning in later tasks, we demonstrate that we
can effectively cluster tasks and leverage this clustering during the reinforcement learning
of those tasks to improve performance. We also provide small simulation experiments that
support our theoretical results and demonstrate the advantage of carefully sharing infor-
mation during concurrent reinforcement learning.

2.2 Background

We rely on Probably Approximately Correct (PAC) RL methods [Kearns and Singh, 2002b,
Brafman and Tennenholtz, 2002, Strehl et al., 2006] to guarantee the number of steps
on which the agent will make a less than ε-optimal decision, the sample complexity, is
bounded by a polynomial function of the problems’ parameters, with high probability.
Sample complexity can be viewed as a measure of the learning speed of an algorithm,
since it bounds the number of possible mistakes the algorithm will make. We will simi-
larly use sample complexity to formally bound the potential speedup in learning gained by
sharing experience across tasks.

Our work builds on MBIE, a single-task PAC RL algorithm [Strehl and Littman, 2008].
In MBIE the agent uses its experience to construct confidence intervals over its estimated
transition and reward parameters. It computes a policy by performing repeated Bellman
backups which are optimistic with respect to its confidence intervals, thereby constructing
an optimistic MDP model, an optimistic estimate of the value function, and an optimistic
policy. This policy will drive the agent towards little experienced state–action pairs or
state–action pairs with high reward. We chose to build on MBIE due to its good sample
complexity bounds and very good empirical performance.

We think it will be similarly possible to create concurrent algorithms and analysis
building on other single-agent RL algorithms with strong performance guarantees, such
as recent work by Lattimore, Hutter and Sunehag [Lattimore et al., 2013], but leave this
direction for future work.

2.3 Concurrent RL in Identical Environments

We first consider a decision maker (a.k.a agent) performing concurrent RL across a set of
K MDP tasks. The model parameters of the MDP are unknown, but the agent does know
that all K tasks are the same MDP. At time step t, each MDP k is in a particular state stk.
The decision maker then specifies an action for each MDP a1, . . . , aK . The next state of
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(a) Skinny/filled thick/empty
thick arrows yield reward
0.03/0.02/1 with prob 1/1/0.02.

(b) Average reward per MDP per time step
for CMBIE, when running in 1, 5, or 10
copies of the same MDP. A sliding window
average of 100 steps is used for readability.

(c) Total cumulative reward per MDP after
10000 time steps versus number of MDPs.

(d) The number of total mistakes made after
10000 time steps versus number of MDPs.

Figure 2.1: CMBIE Experiments
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each MDP then is generated given the stochastic dynamics model T (s′|s, a) for the MDP
and all the MDPs synchronously transition to their next state. This means the actual state
(and reward) in each task at each time step will typically differ. 1. In addition there is no
interaction between the tasks: imagine an agent coordinating the repair of many identical-
make cars. Then the state of repair in one car does not impact the state of repair of another
car.

We are interested in formally analyzing how sharing all information can impact learn-
ing speed. At best one might hope to gain a speedup in learning that scales exactly linearly
with the number of MDPs K. Unfortunately such a speedup is not possible in all circum-
stances, due to the possibility of redundant exploration. For example, consider a small
MDP where all the MDPs start in the same initial state. One action transitions to a part of
the state space with low rewards, and another action to a part with high rewards. It takes
a small number of tries of the bad action to learn that it is bad. However in the concur-
rent setting, if there are many many MDPs, then the bad action will be tried much more
than necessary because the rest of the states have not yet been explored. This potential
redundant exploration is inherently due to the concurrent, synchronous, online nature of
the problem, since the decision maker must assign an action to each MDP at each time
step, and can’t wait to see the outcomes of some decisions before assigning other actions
to other MDPs.

Interestingly, we now show that a trivial extension of the MBIE algorithm is sufficient
to achieve a linear improvement in the sample complexity for a very wide range of K,
with no complicated mechanism needed to coordinate the exploration across the MDPs.
Our concurrent MBIE (CMBIE) algorithm uses the MBIE algorithm in its original form
except we share the experience from all K agents. Directed exploration is not necessary
for this particular setting.

We now give a high-probability bound on the total sample complexity across all K
MDPs. As at each time step the algorithm selects K actions, our sample complexity is a
bound on the total number of non-ε-optimal actions selected (not just the number of steps).

Theorem 1. Given ε and δ, and K agents acting in identical copies of the same MDP,
Concurrent MBIE (CMBIE) will select an ε-optimal action for all K agents on all but at
most

Õ

(
1

ε(1− γ)2

[
S2A

ε2(1− γ)4
+ SA(K − 1)

])
(2.1)

actions, with probability at least 1− δ, where Õ neglects multiplicative log factors.
1We suspect it will be feasible to extend to asynchronous situations but for clarity we focus on syn-

chronous execution and leave asynchronous actions for future work.
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Theorem 1 shows that there is only a dependence on the number of agents K in the
lower order terms of the bound. We now compare this to the alternative where the agents
share no information. Using the MBIE bound for a single MDP [Strehl and Littman,
2008], Õ

(
S2A

ε3(1−γ)6

)
, no-sharing MBIE yields a sample complexity of Õ

(
S2AK
ε3(1−γ)6

)
. Tak-

ing the ratio of this with our CMBIE sample complexity bound yields potential improve-

ment factor of Õ
(

SK 1
ε2(1−γ)4[
S

ε2(1−γ)4
+K

]
)

. We now consider how this scales as a function of K. If

K ≤ S
ε2(1−γ)4 , the speedup is approximately K. This suggests that until K becomes very

large, we can ignore the lower order terms and gain a linear improvement in the sample
complexity as more agents are added. If K � S

ε2(1−γ)4 , then unfortunately we cannot
get much speedup, but this is ultimately unavoidable we always must make at least K
mistakes.

Nevertheless, this is quite encouraging, as it implies that by performing concurrent RL
across a set of identical MDPs, we expect to get a linear speedup in the sample complexity
as a function of the number of concurrent MDP copies/agents compared to not sharing
information. Furthermore, the larger the MDP, the higher the threshold is for K for us to
obtain a linear speedup.

Proof. Before we proceed we need to define a few variants of the world MDP M =
〈S,A, T,R, γ〉 that the agent is acting in. Let Q∗ denote the optimal state-action values of
M . We define a state action pair to be known if it has been experienced (across all MDPs)
m times. Let MKt be a known state–action MDP which is identical to the optimistic MDP
Mt on all unknown state–action pairs, and identical to the true MDPM ’s model parameter
values for all known state–action pairs Kt. Finally let M̂Kt be the empirical known-state
action MDP which is the same as MKt except the transition and reward models for the
known state–action pairs are set to be the maximum likelihood value given the observed
counts. LetQt/Vt be the optimal (state) action values for the empirical known state–action
MDP M̂Kt , πt be the optimal policy for M̂Kt and V πt

MKt
be the value of policy πt in MDP

MKt .

We use Strehl, Li and Littman 2006’s generic PAC-MDP theorem to analyze the sample
complexity of our approach: as discussed previously [Brunskill and Li, 2013a] while this
proof was originally developed for single-task RL, it works with no major modifications
for multi-task RL. This theorem requires that our approach satisfies three conditions. If
we set

m = Θ

(
S

ε2 (1− γ)4 log

(
kSA

δ1

))
then the first two conditions (optimism and accuracy) hold directly from MBIE, due to

16



the construction of the set of known states and related MDPs Mt and MKt . The key
contribution is to bound the learning complexity, and thereby satisfy the third condition
of Proposition 1 in [Strehl et al., 2006] and show that this yields the resulting sample
complexity bound.

First define T = 1
1−γ log

(
4

ε(1−γ)

)
. Then for all policies π and states s, finite hori-

zon expected reward over T steps is ε/4-close to the expected infinite horizon reward (as
previously proved in Kearns and Singh 2002b):

|V π
MKt

(s, T )− V π
MKt
| ≤ ε

4
, (2.2)

Let the escape event Ai be the event that in task i we encounter an unknown state–action
(unknown in world i) during the next T steps. Also define V AtM (st, T ) as the expected
reward we will obtain in task i over the next T steps when following our concurrent MBIE
algorithm. Then

V AtM (st, T ) ≥ V πt
MKt

(st, T )− Pr (Ai) / (1− γ) (2.3)

holds in each task i since following our CMBIE algorithm yields the same policy as fol-
lowing πt in MKt as long as Ai doesn’t occur. Following a similar derivation as in Strehl
and Littman 2008 we can prove that for each task i

V AtM (st) ≥ V ∗M(st)− Pr (Ai) /(1− γ)− 3ε/4. (2.4)

If Pr (Ai) ≤ ε (1− γ) /4, then V AtM is ε-close to the optimal value (obtained by combining
the above expression with the optimism and accuracy conditions), indicating that we will
follow an ε-optimal policy in task i with high probability. We now bound the number of
time steps on which Pr (Ai) > ε (1− γ) /4.

The number of times an unknown state–action pair can be visited, across all tasks, is
at most m + K − 1. This situation occurs when in one task we visit a state–action pair
m− 1 times and then in all K tasks we happen to visit the same state and choose the same
action (since it will not yet be known). Therefore the total number of escape events is at
most SA(m+K−1). Given the lower bounds on the probability ofAi, with probability at
least 1− δ2, after 8

ε(1−γ)
(SA(m+K−1) + log 1

δ2
) trials all SA(m+K−1) escape events

will have occurred (see Lemma 56 in [Li, 2009a]). As each T -step episode potentially
contributes T mistakes, that yields at most 8T

ε(1−γ)

(
SA(m+K − 1) + log 1

δ2

)
actions on

which the decision maker may make a non-ε-optimal decision. This translates into a bound
of

Õ

(
1

ε(1− γ)2

(
S2A

ε2(1− γ)4
+ SA(K − 1)

))
(2.5)
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when dropping log terms and substituting in the expressions for m and T . To show high
probability, we simply use a union bound for the error probabilities and set δ1 + δ2 = δ,
but they disappear with the log terms.

2.4 CMBIE Experiments

Prior work by Silver et al. 2013 has already nicely demonstrated the potential empirical
benefits of concurrent reinforcement learning for a large customer marketing simulation.
Our primary contribution is a theoretical analysis of the potential benefits of concurrent RL
for efficient RL. However, sample complexity bounds are known to be quite conservative.
We now illustrate that the benefits suggested by our theoretical results can also lead to
empirical improvements in a small simulation domain.

We use a 3x3 gridworld (Figure 2.1(a)). The agent moves in the 4 cardinal directions
deterministically. Hitting a wall results in no change, except moving down in the bottom-
right state will transition to the top-left start state. The arrows display different reward
dynamics for those actions. The optimal path to take is along the thick arrows, which will
give expected reward of 0.02 per step.

Silver et al. obtained encouraging empirical rewards by using an ε-greedy style ap-
proach for concurrent RL in identical continuous-state environments, but we found that
MBIE performed much better than ε-greedy for our discrete state–action MDP, so we fo-
cused on MBIE.

Each run was for 10000 time steps and all experiments were averaged over 100 runs.
As is standard, we treat the size of the confidence sets over the reward and transition
parameter estimates (given the experience so far) as tunable parameters. We tuned the
confidence interval parameters to maximize the cumulative reward for acting in a single
task, and then used the same settings for all concurrent RL scenarios. We set m = ∞,
which essentially corresponds to always continuing to improve and refine the parameter
estimates (fixing them after a certain number of experiences is important for the theoretical
results but empirically it is often best to use all available experience).

Figure 2.1(b) shows that CMBIE achieves a significant increase in how fast it learns
the best policy. Figure 2.1(c) also shows a significant gain in total rewards as more sharing
is introduced. A more direct measure of sample complexity is to evaluate the number of
mistakes (when the agent does not follow an ε-optimal policy) made as the agent acts.
CMBIE incurs a very small cost from 1-10 agents, significantly better than if there is
no sharing of information (Figure 2.1(d)), as indicated by the dotted line. These results
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provide preliminary empirical support that concurrent sample efficient RL demonstrates
the performance suggested by our theoretical results, and also results in higher rewards in
practice.

2.5 Concurrent RL in Different Environments

Up to this point we have assumed that the agent is interacting with K MDPs, and it knows
that all of them are identical. We now consider a more general situation where the K
MDPs are drawn from a set of N distinct MDPs (with the same state–action space), and
the agent does not know in advance how many distinct MDPs there are, nor does it know
the identity of each MDP (in other words, it does not know in advance how to partition
K into clusters where all MDPs in the same cluster have identical parameters). As an
example, consider a computer game being played in parallel by many users. We may
cluster the users as being 1 of N different types of how they may overcome the challenges
in the game.

2.5.1 Algorithm

We propose a two-phase algorithm (ClusterCMBIE) to tackle this setting:

1. Run PAC-EXPLORE (Algorithm 1) in each MDP.

2. Cluster the MDPs into groups of identical MDPs.

3. Run CMBIE for each cluster.

For the first phase, we introduce a new algorithm, PAC-EXPLORE. The sole goal of
PAC-EXPLORE is to explore the state–action pairs in each MDP sufficiently well so that
the MDPs can be accurately clustered together with other MDPs that have identical model
parameters. It does not try to act optimally, and is similar to executing the explore policy in
E3 [Kearns and Singh, 2002b], though we use confidence intervals to compute the policy
which works better in practice. Specifically, PAC-EXPLORE takes input parameters me

and T , and will visit all state–action pairs in an MDP at least me times. PAC-EXPLORE
achieves this through directed exploration. It divides the state–action space into those
pairs which have been visited at least me times (the known pairs) and those that have
not. It constructs a MDP M̂K in which for known pairs, the reward is 0 and the transition
probabilities are the estimated confidence sets (as in MBIE), and for the unknown pairs
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the reward is 1 and the transitions are deterministic self loops. This effectively treats the
subset of unknown pairs as the goal states. It then constructs an optimistic (with respect
to the confidence sets) T -step policy for M̂K which will try to reach the unknown pairs.
This T -step policy is repeated until an unknown pair is visited, then which the least tried
action is taken (balanced wandering), which is then repeated until a known pair is visited,
at which point a new optimistic T -step policy is computed and this procedure repeats. The
use of episodes was motivated by our theoretical analysis, and has the additional empirical
benefit of reducing the computational burden of continuous replanning. Furthermore, the
use of directed exploration as opposed to relying on prior algorithms such as MBIE or
E3 is significant, as prior algorithms cannot guarantee that everything is explored within
a polynomial number of steps; prior algorithms focus on achieving near-optimality, which
may end up not visiting some states at all.

Once phase 1 finishes, we compute confidence intervals over the estimated MDP model
parameters for all state–action pairs for all MDPs. For any two MDPs, we place the two in
the same cluster if and only if their confidence intervals overlap for all state–action pairs.
The clustering algorithm proceeds by comparing the first MDP with all the other MDPs,
pooling together the ones that don’t differ from the first MDP. This creates the first cluster.
This procedure is then repeated until all MDPs are clustered (which may create a cluster
of cardinality one). This results in at most (N2 ) ≤ N2 checks.

We now show our approach can yield a substantially lower sample complexity com-
pared to not leveraging shared experience.

2.5.2 Assumptions

Our analysis relies on two quite mild assumptions:

1. Any two distinct MDPs must differ in their model parameters for at least one state–
action pair by a gap Γ (e.g. the L1 distance between the vector of their parameters
for this state–action pair must be at least Γ).

2. All MDPs must have a finite diameter [Jaksch et al., 2010a] (denoted by D).

This is a very flexible setup, and we believe our gap condition is quite weak. If the
dynamics between the distinct MDPs had no definite gap, we would incur little loss from
treating them as the same MDP. However, in order for our algorithm to provide a benefit
over a no sharing approach, Γ must be larger than the ε(1 − γ) accuracy in the model
parameter estimates that is typically required in single task PAC approaches (e.g. Strehl,
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Li and Littman [Strehl et al., 2006]). Intuitively this means that it is possible to accurately
cluster the MDPs before we have sufficient experience to uncover an ε-optimal policy for
a MDP. This assumption, while mild in nature, is significant and the key to being able to
make any improvements at all. In general, it takes O(1/Γ2) amount of data to detect a gap
of size Γ. This means that without this assumption, the gap could possibility be something
like 2ε(1− γ). Since we want to be ε-optimal and not 2ε-optimal, we would have to try to
detect this gap to cluster, in which case we would needO(1/(ε(1−γ))2) data, which means
we would already be spending the sample complexity of learning an ε-optimal policy.
Then we would not be able to get any speedup in sample complexity from clustering.
Furthermore, if there is no assumption, then we do not know what the gap is in advance.
Then it becomes necessary to expect the worse and thus always spend the samples to try
to detect the small gap just in case, even if the true gap is quite large. Unfortunately the
PAC framework makes it necessary to consider the worst case gap scenario, which means
if we try to change the algorithm to dynamically cluster according to available data, we
would still end up with the same PAC bound. But, some interesting future work could be
to consider the regret framework which may allow for the possibility of more smoothly
and dynamically changing up the clusters as we get more data.

Our second assumption of a finite diameter is to ensure we can explore the MDP with-
out getting stuck in a subset of the state–action space. The diameter of an MDP is the
expected number of steps to go between any two states under some policy. With this di-
ameter assumption and the usage of directed exploration, we are able to guarantee that all
states can be explored within a polynomial number of steps.

2.5.3 Theory

We first present a few supporting lemma, before providing a bound on how long phase 1
will take using our PAC-EXPLORE algorithm. We then use this to provide a bound on the
resulting sample complexity. For the lemmas, let M be an MDP. Let M̂ be a generalized,
approximate MDP with the same state–action space and reward function as M but whose
transition functions are confidence sets, and each action also includes picking a particular
transition function for the state at the current timestep.

Lemma 1. Generalized Undiscounted Simulation Lemma

Suppose the transition confidence sets of M̂ are ε-approximations to M (i.e. any pos-
sible transition function is within ε in L1 distance). Then for all T -step policies π, states
s, and times t < T we have that |Vπ,t,M̂(s) − Vπ,t,M(s)| < εT 2 where Vπ,t,M(s) is the
expected undiscounted cumulative reward from time t to T when following π in M .
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Proof. Let ST−1 = (st, st+1, . . . , sT−1) be a T − t length sequence of states from time t to
T − 1. Let Sτ be a prefix up to time τ . Let Pr(Sτ ) and P̂r(Sτ ) be the probability of these
state sequences in M and M̂ under policy π respectively. Let R(Sτ ) be the cumulative
expected reward of that subsequence. Then

|Vπ,t,M̂(s)− Vπ,t,M(s)|

= |
∑
ST−1

(Pr(ST−1)− P̂r(ST−1))R(ST−1)| (2.6)

≤
∑
ST−1

|Pr(ST−1)− P̂r(ST−1)|(T − t) (2.7)

since the reward is bounded between 0 and 1. The sum is over all sequences that start with
st = s.

We now show that the probabilities are bounded∑
ST−1

|Pr(ST−1)− P̂r(ST−1)| ≤ εT (2.8)

Let P (s′|Sτ ) and P̂ (s′|Sτ ) denote the next state probabilities given the current sequence of
states and the action chosen by policy π. (So for M̂ , since this is after picking the action,
the transition function has also been picked). The ε-approximation condition implies that
P (s′|Sτ ) and P̂ (s′|Sτ ) have L1 distance at most ε. For any τ < T − 1 it follows that∑

Sτ+1

|Pr(Sτ+1)− P̂r(Sτ+1)| (2.9)

=
∑
Sτ ,s′

|Pr(Sτ )P (s′|Sτ )− P̂r(Sτ )P̂ (s′|Sτ )| (2.10)

≤
∑
Sτ ,s′

|Pr(Sτ )P (s′|Sτ )− P̂r(Sτ )P (s′|Sτ )|+

|P̂r(Sτ )P (s′|Sτ )− P̂r(Sτ )P̂ (s′|Sτ )| (2.11)

=
∑
Sτ

|Pr(Sτ )− P̂r(Sτ )|
∑
s′

P (s′|Sτ )+∑
Sτ

P̂r(Sτ )
∑
s′

|P (s′|Sτ )− P̂ (s′|Sτ )| (2.12)

≤
∑
Sτ

|Pr(Sτ )− P̂r(Sτ )|+ ε (2.13)
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and recursing on this gives the final result. This lemma and proof was based on Lemma
8.5.4 from Sham’s thesis.

Lemma 2. Optimistic Undiscounted Values

Let PT (s, a) be the confidence set of transition probabilities for state–action (s, a)

in M̂ , and assume they contain the true transition probabilities of M . Then performing
undiscounted value iteration with the update rule

Qt,T,M̂(s, a) = R(s, a) + max
T ′∈PT

(∑
s′

T ′(s′|s, a)Vt+1,T,M̂

)
results in an optimistic q–value function i.e. Qt,T,M̂(s, a) ≥ Q∗t,T,M(s, a) for all state–
actions (s, a) and time steps t ≤ T .

Proof.

QOPT
T,T,M̂

(s, a) = R(s, a) = Q∗T,T,M(s, a) (2.14)

for the very last step of the episode since they have the same rewards. Then for t < T

QOPT
t,T,M̂

(s, a)

= R(s, a) + max
TOPT∈PT

(∑
s′

TOPT (s′|s, a)V OPT
t+1,T,M̂

)
(2.15)

≥ R(s, a) +

(∑
s′

T (s′|s, a)V OPT
t+1,T,M̂

)
where T is the true transitions (2.16)

≥ R(s, a) +

(∑
s′

T (s′|s, a)V ∗t+1,T,M

)
by induction (2.17)

= Q∗t,T,M(s, a) (2.18)

So we can use this value iteration step to compute an optimistic T -step policy, by picking

argmaxa(Q
OPT
t,T,M(s, a))

at time t for state s.

Theorem 2. PAC-EXPLORE will visit all state–action pairs at least me times in no more
than Õ (SADme) steps, with probability at least 1− δ, where me = Ω̃ (SD2).
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Proof. Consider the very start of a new episode. Let K be the set of state–action pairs
that have been visited at least me = Ω(S log(S/δ)/α2)) times, the known pairs, where
α will later be specified such that me = Ω̃(SD2). Then the confidence intervals around
the model parameter estimates will be small enough such that they are α-approximations
(in L1 distance) to the true parameter values (by Lemma 8.5.5 in Kakade 2003). Let MK

be the same as M̂K except the transition model for all known state–action pairs are set to
their true parameter values. Since the diameter is at most D, that means in the true MDP
M , there exists a policy π that takes at most expected D steps to reach an unknown state
(escape). By Markov’s inequality, we know there is a probability of at least (c− 1)/c that
π will escape within cD steps and obtain a reward of dD in (c + d)D steps in MK . Then
the expected value of this policy in a T = (c+d)D length episode is at least (c−1)dD

c
. Now

we can compute an optimistic T -step policy π̂ in M̂K . Then π̂’s expected value in M̂K is
also at least (c−1)dD

c
(Lemma 2). Applying Lemma 1, π̂’s expected value in MK , which

can be expressed as
∑T

t=1 Pr(escapes at t)(T − t), is at least (c−1)dD
c
−α((c+d)D)2. Then

the probability of escaping at any step in this episode, pe is at least

pe =
T∑
t=1

Pr(escapes at t) ≥
T∑
t=1

Pr(escapes at t)
(T − t)
T

≥ (c− 1)dD

cT
− α((c+ d)D)2

T

=
(c− 1)d

c(c+ d)
− α((c+ d)D).

Setting α as Θ(1/D) results in a function of c and d. For example, picking c = 2, d =
1, α = 1/(36D) results in pe = 1/12, a constant.

Every T -step episode has at least probability pe of escaping. There are at most SAme

number of escapes before everything is visited me times, so we can bound how many
episodes there are until everything is known with high probability. We use Lemma 56
from [Li, 2009a] to yield O

(
1
pe

(SAme + ln(1/δ))
)

= Õ(SAme) for the number of

episodes. The total timesteps is Õ (SADme).
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Algorithm 1 PAC-EXPLORE
Input: S,A,R, T,me,
while some (s, a) hasn’t been visited at least me times do

Let s be the current state
if all a have been tried me times then

This is the start of a new T -step episode
Construct M̂K

Compute an optimistic T -step policy π̂ for M̂K

Follow π̂ for T steps or until reach an unknown s–a
else

execute a that has been tried the least
end if

end while

We now bound the sample complexity of ClusterCMBIE.

Theorem 3. ConsiderN different MDPs, each withKN copies, for a total ofNKN MDPs.
Given ε and δ, ClusterCMBIE will select an ε-optimal action for all K = NKN agents on
all but at most

Õ

(
SAmeNKN

(
D − 1

ε(1− γ)2

)
+

SAN

ε(1− γ)2

(
S

ε2(1− γ)4
+ (KN − 1)

))
(2.19)

actions, with probability at least 1− δ.

Proof. For phase 1, the idea is to setme just large enough so that we can use the confidence
intervals to cluster reliably. By our condition, there is at least one state–action pair with a
significant gap Γ for any two distinct MDPs, so we just need confidence intervals that are
half that size. Using the reward dynamics as an example, an application of Hoeffding’s
inequality gives 1−δ′ confidence intervals whenme = Ω

(
1

Γ2 log
(

1
δ′

))
of that size. Similar

confidence intervals can be derived for transition dynamics. Using a union bound over all
state–action pairs, we can detect, with high probability, when they are different, and when
they are the same. Another union bound over theO(N2) checks ensures in high probability
that we cluster correctly.

Therefore clustering requires me = Θ̃(1/Γ2). However recall that PAC-EXPLORE
requires me = Ω̃ (SD2) and so we set me as max

(
Θ̃(1/Γ2), Θ̃(SD2)

)
. Then the total
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sample complexity is the sample complexity of PAC-EXPLORE plus the sample complex-
ity of CMBIE.

Õ (SADmeNKN) +

Õ

(
SAN

ε(1− γ)2

(
S

ε2(1− γ)4
+ (KN − 1)−meKN

))
(2.20)

The−meKN term arises above because the samples that are obtained with PAC-EXPLORE
are used immediately in CMBIE to contribute to the total samples needed, so CMBIE
needs less samples in the second phase. Combining these terms and rearranging yields the
bound.

We now examine the potential improvement in the sample complexity of clustering
CMBIE over standalone agents.

From the CMBIE analysis, we already know if KN ≤ S
ε2(1−γ)4 then we can get a linear

speedup for each cluster, resulting in a linear speedup overall if we increase the number
of MDPs of each type. The new tradeoff is the overhead in PAC-EXPLORE, specifically
in the term SAmeNKN

(
D − 1

ε(1−γ)2

)
, which looks to be a strange tradeoff, but actually

what is being compared is the length of an episode. For PAC-EXPLORE, each episode is
Θ(D) steps, whereas for CMBIE, the analysis uses Θ(1/(1 − γ)) as the episode/horizon
length. The additional 1/(ε(1 − γ)) comes from the probability of escape for CMBIE,
whereas the probability of escape for PAC-EXPLORE is constant. This difference is from
the different analyses as CMBIE does not assume anything about the diameter, thus CM-
BIE is more general than PAC-EXPLORE. We believe analysing CMBIE with a diameter
assumption is possible but not obvious. Strictly from the bounds perspective, if D is much
smaller than 1

ε(1−γ)2 , then there will not be any overhead. The lack of overhead makes
sense as all of the samples in the first exploratory phase are used in the second phase by
CMBIE.

However, more significantly, there’s an implicit assumption that KNme ≤ m (m is
the total number of samples needed for each state–action pair to achieve near-optimality)
in the bound. Otherwise if, for example, me = m, then all the mistakes are made in the
PAC-EXPLORE phase with no sharing, so there is no speedup at all. This is where Γ
and D matters. Γ must be larger than the ε(1 − γ) accuracy, as mentioned before, and
D must also not be too large, in order to keep KNme ≤ m. If KNme ≤ m holds, then
after the clustering, all the samples are shared at once. Therefore in many situations we
expect the nice outcome that the initial exploration performed for clustering will perform
no redundant exploration, and the resulting sample complexity will essentially be the same
as CMBIE, where we know in advance which MDPs are identical.
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2.6 Clustering CMBIE Experiments

(a) Average reward per MDP per time step
for clustering CMBIE, when running in 1,
5, or 10 copies of each MDP type. A slid-
ing window average of 100 steps is used for
readability.

(b) Total cumulative reward per MDP after
10000 time steps versus number of MDPs.

(c) The number of total mistakes made after
10000 time steps versus number of MDPs.

Figure 2.2: ClusterCMBIE Experiments

We now perform a simple simulation to examine the performance of our ClusterCM-
BIE algorithm. We assume there are 4 underlying MDPs: the same grid world domain
as in our prior experiments, and rotated and reflected versions. This leads to at least one
skinny arrow action being distinct between any two different MDPs, and it means very
little exploration is required.
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The experiments mirrored the CMBIE experiment parameters where applicable, in-
cluding using the same parameters for CMBIE (which were optimized for single task
MBIE), and fixed for all runs. The PAC-EXPLORE algorithm was optimized withme = 1
and T = 4, and fixed for all runs. With these parameters, the first phase of exploration is
quick.

Figure 2.2(a) shows that ClusterCMBIE still achieves a significant increase in how fast
it learns the best policy. Figure 2.2(b) also still shows a significant gain in total rewards as
more sharing is introduced. In terms of mistakes, again there is a significant improvement
with regards to no clustering/sharding, with only a very small overhead in mistakes as the
number of MDPs goes up (Figure 2.2(c)). We also saw similar results when we used just
2 distinct, underlying MDPs. These results mirror the results for plain CMBIE when it is
known all MDPs are identical, owing to how quickly the exploration phase is. All together
these results provide preliminary empirical support for our theoretical results, and their
performance in practice.

2.7 Follow-Up Work

Since this work has been published, there has been interesting follow-up work that have
extended this work to the continuous state case [Pazis and Parr, 2016]. There has also been
work that has shown that more coordination between the agents can improve performance
in practice [Dimakopoulou and Van Roy, 2018, Dimakopoulou et al., 2018]. Theoretically,
we hypothesize that it may be possible that adding coordination may improve and decrease
the dependence on the number of agents in the lower order terms, leading to better practical
performance.
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Chapter 3

Sample Efficient Transfer Learning in a
Finite Set of Continuous MDPs

This work was done jointly with Yao Liu and Emma Brunskill and accepted at AAMAS
2016 [Liu et al., 2016].

3.1 Introduction

While the previous chapter was about many concurrent tasks being done at the same time,
this chapter instead tackles the setting when there is a series of tasks one after another.
We consider how an agent can leverage prior experience from performing reinforcement
learning in order to learn faster in future tasks. We introduce the first, to our knowledge,
probably approximately correct (PAC) RL algorithm COMRLI for sequential multi-task
learning across a series of continuous-state, discrete-action RL tasks. We assume tasks
are sampled from a finite number of clusters of Markov decision processes, and provide a
bound on the number of steps on which the algorithm makes a suboptimal decision that is
substantially smaller on later tasks. We also provide preliminary evidence to suggest our
approach may be useful in practice, by showing encouraging simulation performance in a
standard domain where it compares favorably to a state-of-the-art algorithm.

A key feature of an intelligent, autonomous agent is to be able to learn from past expe-
rience to improve future performance. In many applications, including robotics, consumer
marketing, and healthcare, such an agent will be performing a series of reinforcement
learning (RL) tasks modeled as Markov Decision Processes (MDPs) with a continuous
state space and a discrete action space. In this chapter, we are interested in formally quan-
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tifying the amount of experience needed for the agent to learn to make good decisions
while learning from past experience in a series of such tasks.

Our work falls into the broader class of transfer, lifelong and multi-task sequential de-
cision making. There has been significant interest in this area for the past two decades,
and novel algorithms have been introduced with promising empirical performance. Trans-
fer learning has typically focused on leveraging experience from a single source task to
improve performance on a single target task. Lifelong learning typically refers to doing a
series of tasks and improving performance on later tasks. Multi-task learning often refers
to having experience from a set of distinct tasks, and using that experience to improve
performance on a new target task. This can be done in either a batch setting, or an online
setting where the new target task is added to the set of source tasks to accelerate perfor-
mance on later tasks. This final setting is the one we consider in this chapter. Note that the
topic of curriculum learning, where an agent may choose the order in which to complete
tasks, is a very interesting question that is outside the scope of our current work: here we
assume that the stochastic environment selects the next task to provide to an agent.

Encouraging recent work has shown substantially improved empirical performance on
online multi-task continuous state RL [Ammar et al., 2014, Bou-Ammar et al., 2015].
However, there has been very little theoretical analysis of this setup. Exceptions include
work by Lazaric et al. [Lazaric and Restelli, 2011] that shows a bound on the estimated
value function used by transferring samples from prior tasks, but they consider the batch
setting (where one has a set of samples from a target task) and do not handle online explo-
ration/exploitation. Very recent work by Eaton et al. [Ammar et al., 2015] uses a policy
search method and provides regret bounds, but the regret bounds are with respect to the
best policy in their policy class with additional structural assumptions, rather than the true
optimal policy. To our knowledge there has been no work on bounding the amount of
experience needed to make good decisions in later continuous-state RL tasks by leverag-
ing prior experience in tasks with the same state and action space, but different dynamics
and/or reward models.

Here, we help to fill this gap by introducing a PAC RL algorithm (Continuous-State
Online Multitask RL with Identification a.k.a COMRLI) for online multi-task learning
across a series of continuous-state, discrete-action RL tasks with the same state and ac-
tion spaces. We assume that each task is drawn from a stationary distribution over C
MDP clusters: though for simplicity most of our analysis will assume that there is a sin-
gle MDP within each cluster, our results also extend to when each cluster consists of
MDPs with very similar transition and reward models. We prove that the number of steps
on which the agent may take a non ε-optimal action, known as the sample complexity,
will be substantially smaller in later tasks, scaling as a function of C rather than the size
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(covering number) of the state-action space. Our work builds on recent advances in PAC
discrete-state online multi-task RL algorithms [Brunskill and Li, 2013b], single task PAC
continuous-state reinforcement learning [Pazis and Parr, 2013], and directed exploration.
We also provide encouraging, preliminary empirical performance on a standard domain
where our algorithm exceeds a state-of-the-art continuous-state multitask RL algorithm.

Our algorithm proceeds in two stages. In the first stage, our approach learns a good
estimate of the optimal Q-function of every given task (in our setting, after a bounded num-
ber of tasks, all C tasks will have been encountered with high probability). In the second
stage, we leverage this prior information to speed learning in new tasks by using a novel
method that includes directed exploration to quickly identify the new task. Intuitively we
leverage a mixing assumption on the underlying MDPs to enable us to eliminate possible
MDPs by checking that we can reach different states in a bounded number of steps with
high probability. This identification process, paired with assuming that tasks are sampled
from a stationary (not adversarial) distribution, enables our overall sample complexity to
scale as a function of the number of tasks rather than the size of the state-action space.

3.2 Setting

In our continuous multi-task RL setting, we assume tasks are drawn sequentially and iid
over a finite set C of C tasks (we will mention in section 4 how this can be relaxed to C
clusters of tasks). Each task is a Markov Decision Process (MDP). We assume all tasks
have the same state-action space S × A, discount factor γ, and task length H; but, the
parameters (T,R, b0) can differ. The overall objective of the algorithm is to maximize the
value function V (s) for all tasks.

While we acknowledge that our assumptions are not suitable for all situations, we
believe our setting captures a general set of important domains such as user modeling
where different groups of users may have similar behavior (see examples from [Liu and
Koedinger] or [Nikolaidis et al., 2015]).

We prove a high probability, polynomial bound on the sample complexity of our al-
gorithm (PAC bound). The sample complexity is the total number of steps on which the
expected value of algorithm is less than ε-optimal i.e. formally, the number of steps t
where V (st) ≤ V ∗(st)− ε for all tasks.

3.3 Algorithm
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Algorithm 2 Continuous State Online Multitask RL with Identification (COMRLI)
Require: T1, C̄, LQ, ε,Γ, H

for t = 1, 2, . . . T1 do
Receive an unknown MDP Mt ∈M
Run algorithm 3 on Mt with (Γ, D)-known.
For all remaining steps until H steps, execute C-PACE algorithm on Mt

Store all samples as a set SampleMt

end for
Cluster all tasks into Ĉ ≤ C̄ groups and combine their sample sets.
for t = T1 + 1, . . . T do

Receive unknown MDP Mt ∈M
Run algorithm 4 on Mt

if Mt is identified then
Combine samples from Mt to the group

end if
end for

We divide the sequence of tasks into two phases. In phase 1, in each task, we try
to explore the whole state space efficiently to learn a good estimate of the optimal Q-
function of every task over the entire state space. At the end of phase 1, we cluster the
tasks according to the estimated Q-functions. Since tasks are sampled iid from C possible
tasks, we can set the length of phase 1 (see Lemma 4) so that, with high probability, all C
types are encountered. In phase 2, at the beginning of each task we try to identify which
of the C task clusters it belongs to. After identifying it, we run the single task C-PACE
algorithm using the all the previous samples collected from all the tasks within that cluster.
Phase 2 is used for all subsequent tasks. We will shortly prove that this approach allows
us to improve the sample complexity without incurring negative transfer in terms of our
theoretical bounds.

3.4 Assumptions and definitions

Before we illustrate details of our algorithm, we need to introduce some assumptions:

1. There exists a distance metric d[·, ·] (e.g. Euclidean in our experiments) in which the
optimal Q-function QMi

(s, a) is Lipschitz continuous over (s, a), for any Mi in C.

2. Tasks are sampled from a finite set of C distinct MDPs, and C̄ is a known upper
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bound on C.

3. The optimal Q function for each of the C MDPs must differ in at least one state-
action pair, e.g. for any two MDPs Mi and Mj , there must exist at least one (s, a)
pair such that ||Qi(s, a)−Qj(s, a)||2 ≥ Γ > 0.

4. There is a finite diameter D(ε): any (s, a) pair’s neighborhood (radius at most ε) is
reachable from any other (s, a) pair in at most an expected D(ε) steps.

The first assumption is a smoothness property over the Q-functions for any MDP. Intu-
itively, this ensures that close-by state-action pairs can only differ by a bounded amount
in their Q-values. This is essential for near optimal learning to be efficient: if any two
arbitrarily close state-action pairs can differ an arbitrary amount in their value, then it is
necessary to visit all state–action pairs in the space to learn a near-optimal policy; this is
an impossible task to do in finite time because the state space is infinite and continuous.
Note that the Q-funtion is also Lipschitz continuous over the action space if we use proper
a metric (e.g. our experiments). This assumption also implies that one could approximate
such an MDP using a finite set of states and actions, because near-by states can only dif-
fer a finite amount in their resulting state–action values. This assumption was used and
resulted in the tabular representation of the Q-function by a prior paper that introduced a
PAC RL algorithm for single task continuous-state MDPs[Pazis and Parr, 2013].

The second assumption describes our multi-task setting. For simplicity, we assume that
there are C distinct MDP clusters with only one MDP in each cluster i.e. only C distinct
MDPs, and that each task is one of the MDPs. It is straightforward to relax the assumption
to the case where each cluster is made up of MDPs with similar dynamics. If we have C
clusters of MDPs, where all MDPs in the same cluster have highly similar transition and
reward models, then, our results can be extended; our results immediately apply following
5 if MDPs in the i-th cluster (of C clusters), satisfy the following property: for any two
MDP M1, M2 in cluster i, for any (s, a) pair,

|rM1(s, a)− rM2(s, a)| < ε(1−γ)
16∫

S |TM1(s′|s, a)− TM2(s′|s, a)|ds′ < ε(1−γ)2

16

The third assumption says that we require tasks that are from distinct MDPs to differ
in their optimal Q-values in at least one state–action pair. This is quite mild: if two tasks
do not differ in their optimal Q-values in any state–action pair, then they have identical
Q-values and optimal policies, and are likely to have the same model parameters.

The fourth assumption is perhaps the strongest, and represents a restriction on the
mixing property of the MDPs considered. A similar assumption has been employed in
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discrete state–action spaces[Auer et al., 2009, Brunskill and Li, 2013b, Guo and Brunskill,
2015a]. Intuitively, it ensures that it is possible to go between two regions of state–action
space under some policy in a bounded number of steps. This assumption, coupled with
directed exploration, is needed for our algorithm to perform identification of the current
task during phase 2. Fortunately there do exist a number of domains which have bounded
diameter. For example, many interesting RL domains are episodic. In episodic settings,
the diameter can be no more than twice the episode length for any two states that are
reachable within one episode from the starting distribution. Also note that in an episodic
domain, only the states that are reachable within one episode from the starting state are
relevant to the optimal policy and value function.

Our algorithm also depends on the Q-gap between distinct optimal Q-functions.

Definition 1. The Q-gap, Γ, is a positive constant that satisfies that for any two MDP
clusters1 Mi, Mj ∈M, there exist some state–action pair (s, a) such that

|Q∗Mi
(s, a)−Q∗Mj

(s, a) | ≥ Γ

.

Note that according to the third assumption, the Q-gap must always be greater than 0.
We do assume our algorithm has an estimate of a lower bound on Γ. In many real world
domains, we don’t know Γ in advance; in this case the lower bound can be set to ε/2,
since if the Q-functions between two tasks are closer than ε/2, the ε-optimal policy for
one is still an ε-optimal policy for the other and the two tasks would be most likely almost
identical anyway. However in most cases, Γ would be much larger than ε.

Some more definitions used in algorithm are clarified here:

Definition 2. A state-action is known if it has k visited neighbors, which means

LQd[(s, a) , (si, ai)] ≤
ε(1− γ)

8

, where k = O( 1
ε2(1−γ)2 ) according to theorem 3.16 in [Pazis and Parr, 2013]. This kind

of knownness is called as ε-known. The knownness in phase 1, (Γ, D)-known, is different
and will be discussed later.

Definition 3. For an MDP M = < S,A, T,R, γ,H, b0 >, let K be the set of known state-
action pairs. The known MDP MK = < K ∪ sauk, T, R, γ,H, b0 > is defined as follows.

1Note that different MDP clusters have distinct Q-functions, given our assumption 3 and lemma 5.
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sauk is an additional s-a pair to denote all the unknown s-a pairs. For state-action pairs
in K, r (s, a) = 0, and for the sauk state-action, r(s, a) = 1. All the unknown state-action
pairs are merged into sauk and it is an absorbing state-action pair. Transitions to unknown
pairs in M are redirected to sauk, and transitions within K are identical to those defined
in the original MDP M .

Definition 4. For a Q-function QMi
, we use πMi

to denote the greedy policy introduced by
QMi

.

Algorithm 3 Phase 1: Continuous PAC Explore
Require: Te, LQ,Γ

Set the neighborhood radius to min{Γ/4,1/24}
LQ

while some (s, a) is unknown (see Def.7) do
This is a start of new Te-step episode.
Find a Te-step undiscounted optimistic Q-function Q0,Te by:
Initialize: QTe,Te (s, a) = 0
for t = Te − 1, . . . , 0 do

if (s, a) is known then
Find k-NN of (s, a): (sj, aj, rj, s

′
j)
k
j=1

Qt,Te = 1
k

k∑
j=1

(
rj + max

a
Qt+1,Te

(
s
′
j, a
)

+ LQdij

)
else
Qt,Te = (Te − t)

end if
end for
Take greedy policy of Q0,Te (s, a) for next Te steps.
if (s, a) is unknown then

Add (s, a, r, s′) to the sample set
end if

end while

3.5 Phase 1

In the first phase, we efficiently explore each task to get a good estimate of their optimal
Q-functions. We only need the estimated Q-functions to be (Γ, D) known, which means
O(Γ) (the precise value is set later in the theory section) within the true Q-function, in
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order to correctly cluster the tasks. Note that Γ may be much bigger than ε so phase 1 may
not yet give us an ε-optimal policy for the tasks. We extend the PAC-EXPLORE algorithm
[Guo and Brunskill, 2015a] to continuous spaces while maintaining the same guarantees,
and use it to explore (see Algorithm 3). To achieve efficient exploration, we construct
a new MDP called known MDP (see definition 3). Then we find a Te-step undiscounted
optimisticQ-function on this MDP through value iteration, where the notationQt,Te means
the Te-step optimistic function in the tth step. The policy introduced by this Q-function
will direct exploration towards the less explored (unknown) state-action pairs. After the
Q-function is (Γ, D) known, we then execute C-PACE for remaining steps of the task. The
k nearest neighbors are defined by the distance used in the Lipschitz property. Note that
the number of tasks in Phase 1 is defined in advance, in order to ensure all underlying C
tasks are experienced with high probability.

3.6 Clustering and Informative State–action Pairs

At the end of each task in phase 1, we solve the fixed-point equations (equation (1) in
[Pazis and Parr, 2013]) in C-PACE to estimate the optimal Q-function of that task given
the data gathered. Our analysis in the next section shows that the distance between the
estimated Q-functions and the true optimal Q-functions for each task is no more than Γ

4
.

This allows our algorithm to cluster together all tasks whose true optimal Q-function differ
by no more than a fixed threshold (defined below). After the clustering completes, all the
samples within a cluster are merged to form a single sample set. The algorithm then runs
the fixed-point method from C-PACE to estimate the optimal Q-function for each cluster.
Note that depending on the amount of experience in the cluster, this estimated function
may or may not be ε-optimal yet.

Once the algorithm computes an estimated optimal Q-function for each cluster, these
functions are used to compute a set of informative state–action pairs.

Definition 5. Given a set of Q-functions, a state-action (s, a) is informative if there exist
at least two distinct Q-functions, Qi and Qj , such that |Qi(s, a)−Qj(s, a)| ≥ 7Γ

8
.

These informative pairs are the state–action pairs where Q-functions significantly dif-
fer, and so distinguish between distinct Q-functions. We will make heavy use of these
pairs to identify which cluster new tasks will belong to in phase 2.

3.7 Phase 2
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After clustering all the tasks from phase 1, we end up with Ĉ clusters, each of which
consist of a (merged) sample set and an estimated optimal Q-function. In this phase, we
try to identify which cluster each new task belongs to, and once we do we can use that
cluster’s sample set to jumpstart learning – we may even immediately get a near-optimal
policy if we have enough data in the cluster’s sample set.

Identifying the current task requires some care since we only know that the current task
has an optimal Q-function that matches one of the Ĉ clusters. Of course, if we compute
an approximate Q-function in the current task of sufficient accuracy, that is enough to
identify which cluster it belongs to; however by the time we have enough data to achieve
that accuracy in computing the Q-function, we will only get a little benefit to leveraging
prior samples. This will only reduce the exploration needed to being a function of Γ instead
of ε, but it will not impact the dependence on the size of the state–action space covering
number.

Instead, we will rely on informative pairs for identification. For each task in phase
2, we start with a set of Ĉ candidate clusters that the new task potentially belongs to.
Then we can use their associated Q-functions to compute the set of informative pairs I;
we will need at most one informative pair for every pair of distinct clusters. We then use
directed exploration to repeatedly try to visit informative state-action pairs and compute an
estimate of its Q-value for the current task. Each informative pair distinguishes between
two clusters’ Q-functions. Then we will compare the estimate to the two optimal Q-
functions to determine which cluster should be eliminated as a candidate. Then we move
onto another informative pair to eventually eliminate another candidate. This process is
repeated until there is only one candidate left. More details follow.

Given an informative set of pairs, we define an informative MDP for the current task:

Definition 6. For an MDP M = < S ×A, T,R, γ >, let I be the set of informative state-
action pairs. The MDP Minform = < S × A \ I ∪ sainform, T, R, γ > is defined in a
similar way as known MDP in definition 3, replacing the unknown state-action pairs with
informative pairs.

To start, we need to quickly reach an informative pair. The main issue with trying to
visit informative pairs quickly is that the identity of the new task is unknown. If we knew
the identity, then we could create an Minform based on the associated cluster, and execute
the resulting policy. Because of our diameter assumption, this policy will quickly reach
the target informative pair. But since we actually don’t know the identity of the new task,
we need to do something else. What we do is try to use the Minform of every candidate
cluster. If we fail to reach the target informative pairs, we just move on and try to use
Minform of the next candidate cluster. Since we know that one of candidate cluster is the
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true cluster, we will eventually use itsMinform, and successfully reach the target pair. This
will require trying to use the Minform of each candidate cluster at most once. With this
process, first we can create Minform for each candidate with all the informative pairs I to
try to reach any informative pair. After that, we can create Minform for each candidate
with a single target informative pair to try to return to that particular informative pair.

Next, we need to use the informative pair to try to eliminate candidates. Note that an
informative (s,a) pair is only guaranteed to be informative for a particular pair of candi-
dates (the pair may actually be informative for more than two candidates, but for simplicity
we only consider two). After we reach an informative state-action pair, for example where
QMi

and QMj
is sufficiently different, we run Ti trajectories of πMi

and πMj
from here

(using the previous process to return to the informative pair after each trajectory) for an
estimate of this task’s Q-value at this pair. This is to test which one of these two Q-
functions is different with the current new task’s Q-function. Since QMi

and QMj
are

sufficiently different, we know at least one of them will differ with the current new task’s
Q-value. If the estimate of the Q-value of the current task is not close to the Q-value com-
puted from its candidate, this candidate will be eliminated. If both policies being tested
have estimates that are close enough to what they are supposed to be, we will eliminate
the candidate with the smaller computed Q-value. Once we eliminate one or both of these
candidates, we pick another informative pair belonging to two other candidates to test.
Every informative pair leads to eliminating at least one candidate, so we will eventually
result in only one candidate left i.e. a successful identification.

After a successful identification it may immediately result in an ε-optimal policy if
there are enough samples from the cluster; otherwise the data of the current task is col-
lected and merged with the cluster’s data. Later on, after encountering tasks from the same
cluster over and over again there will eventually be enough data for an ε-optimal policy.
Thereafter, every new task will get an ε-optimal policy immediately after identification.
Since identification does not depend on the covering number of the state-action space, the
sample complexity of new tasks will then also no longer depend on the size (covering
number) of the state-action space. This is the source of the sample efficiency.

3.8 Motivation for Using Q-functions

In prior work [Brunskill and Li, 2013b], the difference between model parameters (the
transition and reward dynamics) is used to distinguish between different tasks and to iden-
tify a new task. However complications arise if we try the same approach here due to a
continuous state space. The transition function becomes a probability density and is hard
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to represent. We can parameterize it, but that restricts the structure of the transition func-
tion. Alternatively, we can use a nonparametric method such as Gaussian Processes (GPs)
like in [Grande et al., 2014], however that introduces extra computational complexities,
as opposed to using a simple table to maintain a Q-function. Also, using a GP results in
slower learning for single tasks than using the Q-function based method C-PACE [Grande
et al., 2014]. Our approach of using Q-functions is simpler since the representation is
just a table, and this same representation is also used for the policy. The only smoothness
assumption is on the Q-function, and not on the model parameters.

Using Q-functions rather than model parameters to cluster also opens a new opportu-
nity. Without assuming that different MDPs have different Q-functions, it may be possible
that different MDPs end up having the same Q-function and can be clustered together.
However we would no longer be able to identify new tasks quickly. Our identification re-
lies on quickly reaching informative states. Computing these policies to reach informative
states requires that the dynamics of the new task resemble the dynamics of the cluster it
belongs to. If we allowed different MDPs with the same Q-function to be clustered to-
gether, we would no longer be able to guarantee that we can reach an informative state
quickly.

3.9 Theoretical guarantees

To start the analysis of the sample complexity, we need some additional assumptions and
definitions.

1. Each task has at least pmin > 0 probability to be drawn in phase 1, and phase 1 has
at least ln C̄

pminδ
tasks.

2. The covering number NSA(LQ, ε) is the size of the largest minimal covering set Sc
of the state-action space, which means that for any (s, a) there exist k points in Sc,
such that for any one of the k points (si, ai): LQd [(s, a) , (si, ai)] ≤ ε(1− γ)

3. Given an input δ, all tasks in phase 1 and 2 should be executed for more than Hmin

steps, where:

Hmin = O

(
max

{
D2 ln

(
NSA(LQ,Γ)

δ

)
,

Q2
max

Γ2(1− γ)2
ln

(
T1NSA(LQ,Γ)

δ

)}
NSA(LQ,Γ)D

)
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The first assumption makes sure we will encounter all distinct tasks in phase 1, and is a
common assumption in previous work [Brunskill and Li, 2013b]. The second assumption
is to ensure we can sufficiently explore to create good enough estimates of theQ-functions
in phase 1. The main PAC bound for our algorithm is described in the theorem below.

Theorem 4. For any ε and δ, if we run Algorithm 2 for T sequential tasks, each for H ≥
Hmin steps, where Hmin meets the requirement in the third assumption above. Then the
algorithm will select an ε-optimal policy on all but at most

O
(
T1 max {Hmin,min {ζs, H}}+ C̄ζs

+ (T − T1) Q2
maxC̄
Γ2 ln C̄

δ

(
C̄D ln C̄

δ
+ logγ Γ

))
steps, with probability 1−δ. ζs is the sample complexity of a single task C-PACE algorithm,
which is at most O

(
Q2
max

ε2(1−γ)2 ln
(

1
ε(1−γ)

)
ln
(
NSA(LQ,ε)

δ

)
NSA(LQ, ε)

)
.

Note that the sample complexity after the first phase no longer depends on the sample
complexity of a single task ζ , and only depends on how fast it is to identify. If Γ is much
larger than ε, then this is a significant decrease in sample complexity for the second phase.

T1 is the number of tasks in phase 1. Before going into the proofs, we are going
to examine the improvement in sample complexity of our algorithm over a single-task
algorithm.

First, consider the sample complexity of phase 1, which is the first term of the bound.
We want to compare Hmin and ζs. If Hmin is less than or equal to ζs, then the single-task
complexity ζs dominates and we do no worse than the single task case. In most cases,
T1 < NSA(LQ,Γ), so Hmin can be simplified to

O

(
max

{
D2,

Q2
max

Γ2(1− γ)2

}
ln

(
NSA(LQ,Γ)

δ

)
DNSA(LQ,Γ)

)
Note that theNSA(LQ, ε) term for C-PACE can be much larger than theNSA(LQ,Γ) term

for Hmin due to Γ being larger than ε. If D is at most O
(

1

ε
2
3

)
and D

Γ2 is at most O
(

1
ε2

)
,

then the sample complexity of phase 1 is no more than C-PACE.

Now we compare the total sample complexity of our algorithm with a single-task al-
gorithm. Even in the worst case, the total sample complexity of our algorithm is about

Õ

((
C̄ + T1D

)
ζs + (T − T1)

C̄2DQ2
max

Γ2

)
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Since in most cases C̄ << NSA and C̄ + T1D is constant as T increases, assuming again
that D

Γ2 is at most O
(

1
ε2

)
we can get a notable improvement over single task algorithms

whose sample complexity is linear with respect to NSA.

Now we start to prove the theorem. We firstly divide the suboptimal steps of our
algorithm into 3 parts, and bound each part. The first part consists of steps in phase
1; the second part consists of steps in phase 2 before identification succeeds; and the
third part consists of suboptimal steps after identification succeeds. Besides analyzing the
sample complexity, we also need to prove the accuracy of clustering and the correctness
of identification. Before that, we introduce some supporting lemmas.

3.10 Lemmas

Proposition 1. (lemma 4.5 in [Kakade et al., 2003]) There are at most kNSA(LQ,Γ)
number of visits to unknown state-action pairs in Algorithm 3, where a known state-action
pair means it has k visited neighbors within a distance of Γ(1−γ)

8LQ
.

Proposition 2. In algorithm 3, denoting exact Bellman operator byB and the upper bound
of Q-value by Qmax, if

4Q2
max

ε2
ln

(
4NSA(LQ,Γ)

δ

)
≤ k ≤ 4NSA(LQ,Γ)

δ

and the radius of the neighborhood is no more than Γ
2LQ

, then w.p. 1− δ/2, for all known
(s, a) (Known is defined in proposition 1), we have for any t < Te:

|Qt,Te (s, a)−BQt+1,Te (s, a)| ≤ Γ

where Te is the finite horizon length in algorithm 3.

Proof. By proposition 1, there should be at most kNSA(LQ,Γ) unknown samples in algo-

rithm 3. By lemma 3.13 in [Pazis and Parr, 2013], we have that if Q2
max

Γ2 ln
(

4NSA(LQ,Γ)

δ

)
≤

k ≤ 4NSA(LQ,Γ)

δ
, then w.p. 1− δ/2 for any known (s, a) and t,

−Γ/2 ≤ B̂Qt,Te (s, a)−BQt,Te (s, a) ≤ Γ/2

We also have
0 ≤ B̃Qt,Te (s, a)− B̂Qt,Te (s, a) ≤ Γ/2
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and Qt,Te = B̃Qt+1,Te by definition. Then combining them together we get

−Γ ≤ Qt,Te (s, a)−BQt+1,Te (s, a) ≤ Γ

Proposition 3. Assume R ∈ [0, 1]. Suppose in Algorithm 3,

|Qt,Te (s, a)−BQt+1,Te (s, a)| ≤ Γ

, π is a Te-step greedy policy introduced by Qt,Te , and Qπ
t,Te

is the Q value of this policy.
Then ∀ known (s, a) (Known is defined in proposition 1), t¡T,

∣∣Q∗t,Te (s, a)−Qπ
t,Te

(s, a)
∣∣ ≤

2 (Te − t) Γ, and ∣∣V ∗t,Te (s) ≤ V π
t,Te (s)

∣∣ ≤ 2 (Te − t) Γ

Proof. Firstly we need to clarify some notations: B is the exact Bellman operator. B̂ is
the approximate Bellman operator which is defined in [Pazis and Parr, 2013]:

B̂Q(s, a) =
1

k

k∑
i=1

(
ri + γV (s

′

i)
)

where (si, ai, ri, s
′
i) ranges over the k nearest neighbor tuples. B̃ denotes the approximate

Bellman operator defined by the right side of equation 1 in [Pazis and Parr, 2013]:

B̃Q(s, a) =
1

k

k∑
i=1

(
ri + γV (s

′

i) + LQdi

)
where LQ is the Lipschitz constant and di is the distance between (s, a) and (si, ai). Then,
we will prove ∣∣Q∗t,Te (s, a)−Qt,Te (s, a)

∣∣ ≤ (Te − t) Γ

for all 0 ≤ t ≤ Te by induction. For t = Te, Q
∗
t,Te

(s, a) = Qt,Te (s, a) = 0. Then
assuming the inequality holds for t+1, we want to prove the result also holds for t:∣∣Q∗t,Te −Qt,Te

∣∣ ≤ ∣∣BQ∗t+1,Te −BQt+1,Te

∣∣
+ |BQt+1,Te −Qt,Te|

≤

∣∣∣∣∣∑
s′

P (s′|s, a)
(
maxa′Q

∗
t+1,Te(s

′, a′)

−maxa′Qt+1,Te(s
′, a′))|+ Γ

≤ (Te − t− 1) Γ + Γ

= (Te − t) Γ
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The first step follows from triangle inequality and the fact Q∗t,Te = BQ∗t+1,Te
. The sec-

ond line follows from the assumption in the proposition. The third line follows from the
assumption of induction hypothesis. Now we have∣∣Q∗t,Te (s, a)−Qt,Te (s, a)

∣∣ ≤ (Te − t) Γ

Then we will bound the difference between Qπ
t,Te

and Qt,Te in a similar way. Here we
define a new Bellman operator Bπ:

BπQt,Te(s, a) = R(s, a) +
∑
s′∈S

P (s′|s, a)Qt+1,Te(s
′, π(s′))

From the definition, we know Qπ
t,Te

= BπQπ
t+1,Te

. Since π is the greedy policy over Q, we
haveBQ = BπQ. Replace theB operator above withBπ, then following similar inequali-
ties we have

∣∣Qπ
t,Te

(s, a)−Qt,Te (s, a)
∣∣ ≤ 2 (Te − t) Γ. Then by triangle inequality we get

the result. After we have the bound on Q, the the bound on V immediately follows.

Before we introduce the following lemmas, we need to introduce a new concept of
knownness, (Γ, D)-known.

Definition 7. A state-action pair is (Γ, D)-known when it has at least

max

{
D2 ln

(
NSA(LQ,Γ)

δ

)
,

Q2
max

Γ2(1− γ)2
ln

(
T1NSA(LQ,Γ)

δ

)}
visited neighbors within a distance of Γ(1−γ)

8LQ
.

Lemma 3. After no more than O
((
kNSA(LQ,Γ) + ln 1

δ

)
D
)

steps of Algorithm 3, every
state-action pair will have at least k visited neighbors, with probability of 1 − δ, where
k ≥ kmin = O

(
D2 ln

(
NSA(LQ,Γ)

δ

))
, k ≤ kmax = O

(
NSA(LQ,Γ)

δ

)
.

Proof. For convenience, we denote a visit to an unknown state-action pair in algorithm
3 as an escape. By the diameter assumption and Markov’s inequality, we have that there
exists a policy π that will escape within 2D steps with a probability of at least 1/2. So
such a policy would get a reward of D in T = 3D steps in MK . So the optimal policy will
get at least D reward if we set Te = 3D steps, which means V ∗0,Te (s) ≥ D. By applying
proposition 3, we get w.p. 1 − δ/2, V π

0,Te
(s) is at least D − 2TeΓ, which could also be

expressed as
Te∑
t=1

Pr (escape at t) (Te − t)
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So with probability of 1− δ/2 we get the probability of escape in T steps, pe, could be at
least a constant such as 1

4
by using a Γ smaller than 1/24:

pe =
Te∑
t=1

Pr (escape at t) ≥
Te∑
t=1

Pr (escape at t)
Te − t
Te

≥ D

Te
− 2Γ =

1

3
− 2Γ ≥ 1

4

Every Te-step episode has at least probability pe of escaping. Since there are at most
kNSA(LQ,Γ) number of escapes before everything is known, we can bound how many
episodes there are until everything is known with high probability (1− δ/2). Lemma 56
from [Li, 2009b] yields O

(
kNSA(LQ,Γ) + ln 1

δ

)
for the number of episodes. Then the

total number of time-steps required is O
((
kNSA(LQ,Γ) + ln 1

δ

)
D
)
. The lower bound

of pe holds with probability 1 − δ/2, so the whole theorem holds by a union bound with
probability 1−δ. Note that theQmax in the constraint of k is no more that T = O (D).

Lemma 4. (lemma 1 in [Brunskill and Li, 2013b]) If T1 ≥
ln C̄

δ

pmin
then w.p. 1−δ, all distinct

MDPs will be encountered in phase 1.

Lemma 5. If M1 and M2 are 2 MDPs s.t. for any (s,a),

|rM1(s, a)− rM2(s, a)| < ε(1−γ)
2∫

S |TM1(s′|s, a)− TM2(s′|s, a)|ds′ < ε(1−γ)2

2

then the optimal Q-functions for M1 and M2, QM1 and QM2 , satisfy that for any (s,a) pair

|QM1(s, a)−QM2(s, a)| < ε

Proof. Let B1 and B2 denote the Bellman operators of M1 and M2, and Q0 denotes an ar-
bitrary function over S ×A. To show the result, it is sufficient to prove that |Bi

1Q0(s, a)−
Bi

2Q0(s, a)| ≤
∑i

j=0 γ
jε(1 − γ), and then take the limit as i → ∞. We prove this by

induction. The base case is trivial since Q0(s, a) = Q0(s, a). Assuming the statement
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holds for i, we consider the case of i+1:

|Bi+1
1 Q0(s, a)−Bi+1

2 Q0(s, a)|
≤ |rM1(s, a)− rM2(s, a)|

+ γ

∣∣∣∣∫
S
TM1(s′|s, a)maxa′B

i
1Q0(s, a)ds′

−
∫
S
TM2(s′|s, a)maxa′B

i
2Q0(s, a)ds′

∣∣∣∣
≤ |rM1(s, a)− rM2(s, a)|

+ γ

∣∣∣∣∫
S
(TM1(s′|s, a)− TM2(s′|s, a))maxa′B

i
1Q0(s, a)ds′

+

∫
S
TM2(s′|s, a)maxa′B

i
1Q0(s, a)ds′

−
∫
S
TM2(s′|s, a)maxa′B

i
2Q0(s, a)ds′

∣∣∣∣
≤ ε(1− γ)

2
+ γ

∣∣∣∣Qmax

∫
S
|TM1(s′|s, a)− TM2(s′|s, a)|ds′

∣∣∣∣
+ γ

∣∣∣∣∫
S
TM2(s′|s, a)|maxa′Bi

1Q0(s, a)−maxa′Bi
2Q0(s, a)|ds′

∣∣∣∣
≤ ε(1− γ)

2
+ γ

1

1− γ
× ε(1− γ)2

2
+ γ

i∑
j=0

γjε(1− γ)

≤ ε(1− γ) + γ
i∑

j=0

γjε(1− γ)

=
i+1∑
j=0

γjε(1− γ)

The first inequality follows from the definition of Bellman operator. The second inequality
follows by adding and subtracting the same thing. The third inequality follows by the
triangle inequality. The fourth inequality follows from the condition of the lemma and the
inductive assumption.

This lemma allows us to relax the assumption of C distinct tasks to C fuzzy clusters. It
shows if the tasks within a cluster are similar enough, the Q functions would be viewed as
the same, in the sense of ε-accuracy.
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Lemma 6. If all tasks in phase 1 are run for at least Hmin steps, with probability 1 − δ,
the following holds:

1. For all tasks, any state-action pair is (Γ, D)-known.

2. Tasks in phase 1 will be clustered correctly w.h.p..

3. For any cluster, the max-norm distance between the approximate Q-function and the
true optimal Q-function for any task in this cluster is at most 5Γ

16
.

Proof. The first statement could be proved immediately by lemma 3.

Before we prove the second statement, we firstly clarify how to cluster tasks at the end
of phase 1. For each task, we find a fixed-point solution QMi

of Q = B̃Q, where B̃ is
defined in C-PACE. Then we check all the state-action pairs in a covering set and put two
tasks that have Γ

2
-close value on all the pairs into one cluster.

We are going to prove that after clustering like this, different tasks would be clustered
into different groups and the same tasks would be put into the same group. We will first
prove there must exist an 3Γ

4
difference between Q∗ of different tasks on the covering set,

and the Q∗ of tasks within one underlying cluster is Γ
4

close. Then we prove the fixed
solution QMi

is a Γ
16

-close approximation of Q∗. These will prove that the distance of
approximate Q-functions from a same underlying cluster should be at most 3Γ

8
= Γ

4
+2∗ Γ

16
.

Thus a threshold of Γ
2

would ensure the correctness of clustering.

By the assumption of a Q-gap Γ and the Lipschitz smoothness, we could say for any
two distinct tasks i, j, there exists at least a state-action pair such that the optimal Q-
function is different in its neighborhood. By the definition of a covering set, there must
exists one point in the covering set in such a neighborhood. Therefore for such a point, the
optimal Q function has a gap of at least 3Γ

4
.

Note that when we define the underlying MDP cluster, we guarantee that their param-
eters are within a distance of ε(1−γ)2

16
, and Γ is at least ε

2
. Thus by lemma 5, the max-norm

distance of optimal Q functions within one true underlying cluster are at most Γ
4
.

Then we prove that
∣∣QMi

(s, a)−Q∗Mi

∣∣ ≤ Γ
16

for all (s, a) in the covering set and Mi

in the T1 tasks. We have at least k = 162Q2
max

Γ2(1−γ)2 ln
(NSAT1

δ

)
neighbors for any point in the

covering set Sc. Note the size of the covering set is O(NSA(LQ,Γ)) and we certainly have
T1 tasks. By Lemma 3.14 in [Pazis and Parr, 2013], the fixed point solution Q satisfies that

|QMi
−BQMi

| ≤ Γ

16(1− γ)
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for anyMi. Then using Proposition 4.1 in [Williams and Baird, 1993], we have |Q∗ −Q| ≤
Γ
16

for all the T1 tasks.

Now we have already proved the third statement: The distance of approximate Q func-
tions of any MDP with its optimal Q function is at most Γ

16
, and the distance between

optimal Q of MDPs within a cluster is Γ
4
. So the distance between approximate Q-function

with the optimal Q-functions for any MDP in the same cluster is Γ
4

+ Γ
16
≤ 5Γ

16
.

Lemma 7. Assume every state-action pair is (Γ, D)-known. Then given any start state and
desired state-action pair, it is possible to visit the desired state-action pair’s neighborhood
in no more than Õ(D) steps with high probability.

Proof. Firstly, we construct an MDP Minform such that the desired state-action pairs have
unit reward and all others have 0 reward. The desired pair is a self-loop and other transition
probabilities are inherited from the true MDP dynamics. We know which point is desired,
so we can modify the original samples to become samples in the new MDP Minform. Be-
cause now every pair is (Γ, D)-known, so we have O(D2) samples in every state-action’s
neighborhood in this Minform. Following a similar analysis of lemma 3, we could find
a policy whose probability of reaching the desired region within 3D steps is at least 1

4
.

Then after 3D log 3
4
δ steps the policy could reach the desired region with probability of

1− δ.

Lemma 8. When we face an unknown task in phase 2, we could reach any desired state-
action pair within O(C̄D ln C̄

δ
) steps with probability 1− δ

C̄
.

Proof. First, consider the case where we know the diameter D. The unknown task must be
one of the C̄ tasks from phase 1. Our algorithm tries to run each policy in 3D ln C̄

δ
steps

to the desired state-action pair using the samples from one of the C̄ tasks, thus lemma 8
holds with probability 1 − C̄

δ
. By trying all policies from the C̄ tasks, we will encounter

the one policy that corresponds to the same task and reach the desired region with high
probability.

If we don’t know the diameter, we could use the doubling trick to find an upper bound
on D without an increase in the sample complexity. First we try the whole process with
D̃ = 1. If we fail, we double the D̃ and begin a new trial. When D̃ is bigger than the true
value of D, the rest of the analysis is the same as when we know the true diameter.

Lemma 9. If Ti in algorithm 4 is at least O
(
Q2
max

Γ2 ln C̄
δ

)
and n is at least O(logγ Γ), we

could compute an approximate Q value of policy π over current task M ′: Q̂πi
M ′(s, a) = Ri

such that for any (s, a),
∣∣∣Q̂πi

M ′(s, a)−Qπi
M ′(s, a)

∣∣∣ ≤ Γ
16

with probability 1− δ
C̄

.
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Proof. By setting n to at least logγ
Γ(1−γ)

32
we have that for each episode t,

‖Rit −
∞∑
l=0

γlrl‖ ≤
Γ

32

. Note that the expectation of
∑∞

l=0 γ
lrl is Qπi

M ′(s, a). We bound the error as follows:

P

(∣∣∣Q̂πi
M ′(s, a)−Qπi

M ′(s, a)
∣∣∣ ≥ Γ

16

)
= P

(∣∣∣∣∣ 1

Ti

Ti∑
t=1

Rit−Qπi
M ′(s, a)

∣∣∣∣∣ ≥ Γ

16

)

≤ P

(∣∣∣∣∣ 1

Ti

Ti∑
t=1

(
∞∑
l=0

γlrl

)
−Qπi

M ′(s, a)

∣∣∣∣∣ ≥ Γ

32

)

≤ 2exp

{
− 2TiΓ

2

322Q2
max

}
The first step follows from the definition of Q̂πi

Mi
(s, a). The second step follows from the

fact ‖Rit−
∑∞

l=0 γ
lrl‖ ≤ Γ

32
. The third step follows from the Hoeffding inequality. Setting

the probability above to δ
C̄

and solving for Ti, we have that

Ti = O

(
Q2
max

Γ2
ln
C̄

δ

)
is sufficient to guarantee our desired result.

Lemma 10. If both model Mi and Mj haven’t been eliminated by
∣∣Rg −QMg(s, a)

∣∣ ≥ Γ
8

in algorithm 4, then the true model would have a greater Rg with high probability.

Proof. Without loss of generality, we assume Mi is in the same underlying cluster with
current task M ′. Then:∣∣∣Q̂πi

Mi
(s, a)−Q∗M ′(s, a)

∣∣∣
≤

∣∣∣Q̂πi
Mi

(s, a)−Qπi
Mi

(s, a)
∣∣∣+
∣∣Qπi

Mi
(s, a)−QMi

(s, a)
∣∣

+ |QMi
(s, a)−Q∗M ′(s, a)|

≤ Γ

16
+

Γ

16
+

5Γ

16

=
7Γ

16
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The first step follows from triangle inequality. In the second step, the first replacement
follows from Lemma 9, the second replacement follows from proposition 4.1 in [Williams
and Baird, 1993], and the third replacement follows from Lemma 6. Because Mj also
hasn’t been eliminated:∣∣Qπj

M ′(s, a)−QMj
(s, a)

∣∣
≤

∣∣∣Qπj
M ′(s, a)− Q̂πj

M ′(s, a)
∣∣∣+
∣∣∣Q̂πj

M ′(s, a)−QMj
(s, a)

∣∣∣
≤ Γ

16
+

Γ

8

=
3Γ

16

The first inequality is from the triangle inequality. The second inequality follows from
Lemma 9 (for the first erm) and the elimination condition at line 16 in Algorithm 4 (for the
second term). We know there is a gap in the Q-function between Mi and Mj because (s,a)
is an informative state-action pair:

∣∣QMi
(s, a)−QMj

(s, a)
∣∣ ≥ 7Γ

8
. Then QMj

(s, a) must
be smaller than QMi

(s, a). Otherwise it implies that Qπj
Mi

(s, a) is larger than Q∗M ′(s, a).
However that is impossible because Q∗M ′ is the optimal policy’s Q value. Therefore,

Q̂πi
M ′(s, a)− Q̂πj

M ′(s, a)

= (Q̂πi
M ′(s, a)−QMi

(s, a)) + (QMj
(s, a)− Q̂πj

M ′(s, a))

+ (QMi
(s, a)−QMj

(s, a))

≥ −Γ

8
− Γ

8
+

7Γ

8

≥ 5Γ

8

The first inequality’s first two terms follows from the elimination condition at line 16 in
Algorithm 4. The third term follows because (s, a) is an informative pair and the fact that
we just showed that QMi

(s, a) > QMj
(s, a), so QMi

(s, a) − QMj
(s, a) ≥ 7Γ

8
. Now we

have shown that the approximate Q value of the true model’s policy must be larger than the
other. Thus when we eliminate a candidate with the smaller Q-value, we will not eliminate
the true candidate of the current task.

Lemma 11. After O
(
Q2
max

Γ2 C̄ ln C̄
δ

(
C̄D ln C̄

δ
+ logγ Γ

))
steps in phase 2, we could cor-

rectly identify the new task w.p. 1− δ.

Proof. From Lemma 9, O
(
Q2
max

Γ2 C̄ ln C̄
δ

logγ Γ
)

total steps (across multiple trajectories) is

sufficient to closely estimateQπi
M ′(s, a) for each i ∈ C with probability at least 1− δ

2C̄
. Then
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by Lemma 10, we eliminate at least one candidate model per one informative state-action
pair. However, each possible trajectory must start at the same informative state–action
pair.

From Lemma 8 O(C̄D) steps are sufficient to return to a desired informative state–
action pair with high probability. Therefore the total number of steps required to identify
the current task is bounded by

O

(
Q2
max

Γ2
C̄ ln

C̄

δ

(
D ln

C̄

δ
+ logγ Γ

))
where we have applied the union bound to ensure the final bound holds with probability at
least is 1− δ.

3.11 Proof of Main Theorem

Proof. Recall that we divide the sample complexity into 3 parts. We will show the bound
of each part to prove the whole sample complexity.

The first part consists of the steps in phase 1. Hmin is the lower bound of steps we
need to run algorithm 3 in phase 1. After we finish the exploration, we can run C-PACE
for remaining steps of the episode (H −Hmin). Note that the unknown state-action pairs
of algorithm 3 is actually a subset of the unknown state-action pairs in ε-known C-PACE
(since Γ ≥ ε so more states are unknown under the threshold of ε-known). So we could
view algorithm 3 as part of the initial exploration done in C-PACE. The total sample com-
plexity in phase 1 would be no more than max {Hmin,min(ζs, H)}.

The second part consists of the identification during phase 2. Following from lemma
11 we need

O

(
(T − T1)

Q2
maxC̄

Γ2
ln
C̄

δ

(
C̄D ln

C̄

δ
+ logγ Γ

))
samples in T − T1 tasks in phase 2.

The third part is after the identification in phase 2. If the cluster has gathered enough
samples we will get an ε-optimal policy immediately. If not, we still need to gather more.
But since the samples are gathered across all the tasks in one cluster and the number of
clusters is at most C̄, this only yields an additional sample complexity of C̄ζs. Note that
to run the C-PACE algorithm, we set all εs, εT , εd, εK in C-PACE to ε(1−γ)

8
so that we could

get an ε-optimal policy.
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3.12 Experiments

Though our primary contribution is to prove online multi-task RL enables a lower sample
complexity in later continuous-state tasks, we also tested its empirical performance on a
popular simulated domain, the spring mass damper system.

This domain is characterized by 3 parameters: the spring constant k, the damping
constant d and the mass m. The ranges are: k ∈ [1, 10] d ∈ [0.01, 0.2] m ∈ [0.5, 5], which
are mirrored from [Ammar et al., 2014]. The state is parameterized by the position and
velocity of the mass, and the action is a horizontal force on the mass. Due to the complexity
of performing a maximization over a continuous set of actions, we considered a discrete
action set of {−10,−1,−0.1, 0, 0.1, 1, 10}. 2 The transition dynamics are characterized
by an ODE system and simulated by the Euler method in our experiment.

The goal is to control the mass starting at (1, 0) to stay in state (0, 0), and the reward
is the negative l2-norm distance between current state and the goal.

We performed simulation rounds, where each round consists of 50 tasks. Tasks are
generated by randomly sampling from three distinct spring-mass MDPs (k,d,m). Each
task consists of 100 episodes with each episode having 150 steps: these settings were
informed by recent work[Ammar et al., 2014]. We repeat this process for 40 rounds to
assess average performance across a series of tasks.

We compare against 3 other baselines. The first is single-task C-PACE: the PAC RL
algorithm C-PACE is run for each task independently, yielding no information sharing
across tasks. In the second baseline, C-PACE (mixture of all MDPs), is executed across all
tasks without distinguishing them. This is a naive form of transfer that treats all tasks as
identical. Finally, our third baseline is the state-of-the-art online policy gradient method
for multi-task RL, PG-ELLA[Ammar et al., 2014]. PG-ELLA learns a shared basis set
across different tasks. Unlike our work, PG-ELLA assumes as input the true identification
of each task. PG-ELLA runs 5000 episodes rather than 100 for each task. That’s because
they need more samples to update policy parameters.

The considered algorithms all have input parameters. For C-PACE (and the parts of our
algorithm that use C-PACE), we let k = 1 since this domain is deterministic. The Lipschitz
constant is set to 0.1, and Qmax is set to zero. For our algorithm, we set the number of
tasks in phase 1 to 15 according to Lemma 4 with uniform task sampling and δ = 0.02.
The Q-gap Γ is set to 2. The number of trajectories we run in phase 2 to approximate the

2For computational efficiency and to focus on the key impact of transferring knowledge from multiple
tasks, we chose this discrete action space. Alternatively we could use the Lipschitz constant to define a
discretization.
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Q value, Ti, is set to 1 because the domain is deterministic. For PG-ELLA, the learning
rate is selected automatically in their code.

Figure 3.1: Averaged reward per task. The bar is standard deviation over 40 rounds.

Figure 3.1 shows the average reward for each of the 50 tasks for the 4 algorithms. As
expected, our approach performs comparably to single task C-PACE in phase 1, with a
slight loss in performance because we try to fully explore the state–action space. How-
ever our algorithm significantly improves in phase 2, successfully accelerating learning by
identifying tasks quickly. In phase 2, the gap between our method and single-task C-PACE
implies the superiority of transferring samples from previous tasks, which also confirms
the analysis of sample complexity in an empirical way. For single task C-PACE could not
collect enough samples to converge in just one task, its standard deviation is quite big as,
as it was shown in the figure. Our algorithm is also better than the C-PACE algorithm that
treats all tasks the same, which shows the benefit of learning a separate optimal policy per
distinct task instead of a single policy for all tasks.

During phase 2 our algorithm exceeds the performance of PG-ELLA. Note that PG-
ELLA uses the first several tasks to learn a shared basis, which we show in the figure, but is
omitted in the graphs of their paper. We consider this quite encouraging, since PG-ELLA
is provided the identity of each task, compared to our approach which does not have that
information. Of course, our algorithm is operating in a domain in which tasks have Q
functions that are quite well separated, as the Q-gap assumption.

These preliminary results suggest that our approach can perform well in standard
benchmark simulation, with a significant advantage over single task algorithms and naive

52



transfer, and equivalent or slightly improved performance over a state-of-the-art method,
PG-ELLA. As our approach has rigorous guarantees on sample complexity, which PG-
ELLA lacks, these empirical results are quite encouraging.
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Algorithm 4 Phase 2: Continuous Identify
Require: Γ, ε, C̄,H, Ti, n

Initialize version space: C ← {1, . . . , C̄}
while h < H do

for c ∈ C do
Use algorithm 3 with samples from Mc to find a informative pair (s, a) s.t.∣∣∣QπiMi

(s, a)−QπjMj
(s, a)

∣∣∣ ≥ 7Γ
8

if informative pair (s, a) is reached then
Break the loop.

end if
end for
for g = {i, j} do

for t = 1 . . . Ti (Monte Carlo estimate) do
Run the greedy policy of QMg , πg, for n steps
Rgt ← r(s, a) +

∑n
l=1 γ

lrl, h← h+ n

D̃ ← 1
while Haven’t returned to (s, a) do

for c ∈ C do
UseMc to create an informative MDP, and try to go back to (s, a) within 12D̃ ln C̄

δ
steps.
if get back to (s, a) then

Break the loop.
end if

end for
D̃ ← 2D̃

end while
end for
Rg ← 1

Ti

∑Ti
t=1Rgt

if
∣∣Rg −QMg(s, a)

∣∣ ≥ Γ
8 then

C ← C\{g}
end if

end for
if Both i,j haven’t been eliminated then

Eliminate the model k with a smaller Rg.
end if
if Only one group left then

Combine the sample sets and run C-PACE
end if

end while
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Chapter 4

Sample Efficient Feature Selection for
Factored Markov Decision Processes

This work was done jointly with Emma Brunskill [Guo and Brunskill, 2018].

4.1 Introduction

Previous chapters have looked at the struture of how many tasks are tackled in the real
world, whether it be concurrently or sequentially. This chapter takes a closer look at how
a single task is better represented and how we can be more sample efficient by optimizing
the representation itself.

In reinforcement learning, state is often represented by feature vectors. Prior sample
complexity bounds scale with the complete set of features and their complexity. However,
not all features may be necessary for learning a good policy. Therefore it is of significant
interest to understand if the sample complexity can scale with the complexity of necessary
features instead of all features. We answer this in the affirmative for at least one impor-
tant case of interest: factored Markov Decision Processes. We show that is possible to
eliminate unnecessary features by using directed exploration and leveraging the negative
information from failing to reach desired states. Under mild assumptions, this is sufficient
to show there exists an RL algorithm whose sample complexity scales with the cardinal-
ity of the parent sets of the necessary features, rather than the parent sets of all features.
This yields an exponential improvement in sample complexity bounds when the maximum
cardinality of the parent sets of the necessary features is smaller than for all features.
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In many machine learning and AI control problems, choosing which features to repre-
sent the state of the domain is critical. Since the best representation is typically unknown,
it is appealing to start with raw sensory input (like the pixels in a video game snapshot)
or all possible features that might be relevant. Recent work in deep reinforcement learn-
ing [Mnih et al., 2013] has shown that it is possible to obtain great performance in some
domains by using such representations; however the resulting methods typically require
an enormous amount of training examples. Although in some simulated environments
this is not a critical limitation, in many high stakes domains (such as customer marketing,
healthcare, education, and robotics) sample efficiency is very important. While in some
cases deep learning methods may be sample efficient, very little is known formally about
where and when that would occur. Indeed in prior theoretical analysis, the samples needed
typically scales exponentially with the cardinality of the parent sets of the features [Strehl
et al., 2007, Diuk et al., 2009, Chakraborty and Stone, 2011]. Hence, in many such RL
settings, good performance relies on using a small set of carefully hand-designed features.
This process can be expensive, requiring domain experts to select the features, and may
easily miss relevant features resulting in sub-optimal performance. Ideally, a reinforce-
ment learning algorithm would have its sample complexity depend only on the relevant
features needed to learn the optimal policy, and not on all features; then there would be no
need to hand-design features and instead this algorithm would automatically find the best
subset of features. This effort can be viewed as part of a recent interest in democratizing
artificial intelligence: the importance of making it easier for domain experts (rather than
machine learning experts) to leverage machine learning and AI for scientific discovery and
other progress.

In this chapter we present theory that takes a step towards this goal, showing it is pos-
sible for an online RL algorithm, in the factored Markov Decision Processes setting, to
efficiently achieve near-optimal average performance with sample complexity that only
depends on the complexity of the necessary features, even though which features are nec-
essary is unknown.

Factored Markov Decision Processes (FMDPs) use feature vectors to represent states,
enabling a compact encoding of real world domains. The sample complexity (the number
of steps on which the algorithm may make non-near-optimal decisions) of RL algorithms
for tabular MDPs scales at least linearly with the size of the state space [Strehl et al.,
2009], which is exponential in the number of features if applied to FMDPs. Fortunately in
an FMDP, the dynamics of each feature can depend on a small parent set of other features,
so the sample complexity scales exponentially only with the size of the largest parent set
(known as the in-degree) [Kearns and Koller, 1999].

However, there exist many domains where some features’ dynamics may be both com-
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plex to model, and irrelevant to the reward and (any) value function for the domain. For
example, when making tea, modeling the sky beyond the window may involve weather
predictions, or knowledge of the date and time, but the value function of any policy for
making tea may only rely on a sensor for water temperature. Video games often dedicate
many pixels in order to show a complete scene, but most of the time only a small subset
of the objects actually influence the value of chosen policies, and their dynamics may be
much simpler than some other distracting elements. In such domains, the set of features
necessary to learn the optimal value function may have a much smaller parent set com-
pared to all descriptive environment features. If we could know these features in advance,
it may be possible to substantially speed reinforcement learning.

We prove that it is possible to do Probably Approximately Correct RL where the sam-
ple complexity scales as an exponential function of only the in-degree (number of parents)
of the (initially unknown) necessary features. Our result is an exponential improvement
over prior FMDL PAC RL algorithms [Chakraborty and Stone, 2011] that do no feature
selection, if the in-degree of the necessary features is smaller than the in-degree of the full
feature set. We prove this result by presenting an algorithm that achieves this bound with
no knowledge of which nor how many features are necessary, nor any knowledge of the
structure of the underlying Dynamics Bayesian network of the factored MDP.

Initially this may seem an impossible problem: without knowledge of which features
are needed or even how many they are, nor a bound on how complex the dynamics models
are (e.g. in terms of a bound on the number of possible parents), how can we hope to learn
a near optimal policy in a number of samples that scales with this necessary but unknown
set of features? Fortunately under some mild assumptions, we can show a positive result.

Our key insight is to leverage negative information to identify when our estimated
model of the MDP must be wrong, and to be able to identify at least one aspect of the
model that is wrong. This idea allows us to make progress, eventually eliminating features
for which we have poor models when computing our optimal policy. We are not aware of
prior work that uses negative information during reinforcement learning, and we believe
that this insight may have practical benefits for new algorithmic developments in future
work.

More precisely, a key part of our algorithm is to use directed exploration: the algorithm
repeatedly tries to visit specific states. Prior work [Guo and Brunskill, 2015a, Liu et al.,
2016] has shown that directed exploration can yield PAC RL algorithms that are competi-
tive with or in some cases improve upon prior PAC results. In this work we take a different
stance: under the mild assumption that the domain has a finite diameter (which has also
been assumed in multiple other theoretical RL approaches [Jaksch et al., 2010b, Bartlett
and Tewari, 2009]), failure to reach a state implies that we must have a poor dynamics
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model of at least one feature. In order to identify at least one feature that is not adequately
modeled, we make another mild assumption, which we call the Superset Assumption. It
ensures we can detect if adding additional true parents yields a better model for a particu-
lar feature, even if we do not consider the full set of that feature’s true parents. While it is
possible to construct pathological models or single algorithm runs which could fail these
assumptions, we believe that in almost all practical cases of interest both will be satisfied.

Directed exploration combined with these assumptions allows us to fully utilize rele-
vant information in a sample efficient way for learning dynamics and eliminating unneces-
sary features. Our approach builds on work for RL in factored MDPs that does not require
knowledge of the in-degree of an FMDP [Chakraborty and Stone, 2011] but goes signif-
icantly beyond this to tackle the feature selection problem during online learning. Our
key contribution is to show the significant improvement in sample complexity that can be
obtained even if the necessary features are unknown: our algorithm can be viewed as a
tool in support of this analysis, and is not designed to be practical. We hope that some of
our insights, in particular the idea of leveraging negative information, may have potential
benefit for the future design of empirically-oriented algorithms.

4.2 Setting

A finite FMDP is defined by a tuple (S,A, P,R), where S is a finite set of states, A is a
finite set of actions, P is the transition distribution and R is the reward distribution. Each
state s is a feature vector (x1, x2, . . . , xn) where xi ∈ Domi and |Domi| = d [Kearns and
Koller, 1999]. The transition distribution factors over the state space i.e. P (st+1|st, at) =∏

i P (xi,t+1|st, at) =
∏

i Pi(xi,t+1|Pari(st), at). Each Pi is the transition probability for
feature xi, dependent on its parent set of features Pari. The notation Pari(st) denotes
filtering the feature vector st to only the features present in the set Pari. The reward
is defined as R(s, a) =

∑|R|
j Rj(s, a), where each Rj is an individual reward function.

Like transitions, each reward function Rj is also dependent on a parent set of features
Parj . P (Rj|Parj(s), a) is also a discrete distribution with a domain of size d just like a
feature. Since features and rewards both utilize the same discrete representation, the same
approach can be used to learn feature transition dynamics and rewards.

The in-degree of a factored MDP is the size of the largest parent set over all fea-
tures/rewards i.e. maxi |Pari|. Let F ′ denote the set of all features. Given a factored
MDP, assume there exists a set of necessary features F , such that the parents of features in
F are in F , and the parents of the rewards are also in F . This implies that a factored MDP
defined only over the set F has an identical value function to the value function in the orig-
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inal factored MDP for any policy, where the original FMDP’s value function is constant
over the unnecessary features (Lemma 12). As in some prior work, we also assume the
FMDP has a finite diameter D [Auer and Ortner, 2007]. A diameter D means that for any
two states s1, s2, the expected number of steps to go from s1 to s2 is at most D.

In this setting, the problem is to interact with a factored MDP where the transition
and reward dynamics are unknown (i.e. parent sets are unknown), the in-degree is un-
known, and the necessary features are unknown, and execute a policy whose performance
is ε-close to the best possible policy. Interaction proceeds in steps, where in each step
an algorithm takes an action, and observes the (stochastic) next state and reward. We
measure performance of a policy π using the average reward notion, where Uπ(s) =
limT→∞ U

π(s, T ) = limT→∞
1
T
E(
∑T

t=1 rt|s1 = s, π) [Kearns and Singh, 2002a]. Like
prior factored MDP work, we also assume Uπ(s) is independent of s and can be denoted
as just Uπ [Chakraborty and Stone, 2011]. Since we are working with finite samples,
we assume the ε-return mixing time Tε is given, same as in prior work [Chakraborty and
Stone, 2011]. Tε is such that for any policy π and T ′ ≥ Tε, |Uπ − Uπ(T ′)| ≤ ε i.e. Tε is
long enough to see ε-optimal average reward.

4.3 Related Work

Prior work on factored MDP RL with formal theoretical bounds include Met-RMax [Diuk
et al., 2009] and LSE-RMax [Chakraborty and Stone, 2011]; however, such work does
not perform feature selection. More recent work has significantly reduced the sample
complexity of learning factored MDPs [Hallak et al., 2015], but requires strong structural
assumptions and only apply to the batch setting, which does not account for the trade-off
between exploration and exploitation.

Prior work for feature selection for factored MDPs performs it as a post-processing
step after solving it and uses the learned features for transfer learning [Kroon and White-
son, 2009]. In contrast, our algorithm learns the necessary features while doing online
reinforcement learning, and is more sample efficient as there is no need to fully learn the
dynamics for all features. We also provide a formal theoretical analysis which is the first,
to our knowledge, for this setting. Other prior work focus more on practical algorithms
without formal guarantees such as using multinomial regression with LASSO [Nguyen
et al., 2013].

There also exists work for feature selection for value function estimation but under the
assumption of a linear value function [Painter-Wakefield and Parr, 2012, Geramifard et al.,
2011].
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In the bandit setting, there has been work that formally shows how sample complexity
can be reduced assuming the reward is a sparse linear function [Abbasi-Yadkori et al.,
2012], where the sample complexity becomes smaller with more sparsity.

Feature selection can also be viewed as a form of model selection, where each model
is a particular selection of features. Prior work has theoretical bounds for model selection
such as the OAMS algorithm [Ortner et al., 2014]; however those bounds depend on the
square root of the number of models. For factored MDPs the number of models grows
doubly exponential with the number of features.

More generally for MDPs without a feature vector representation, the concept of fea-
ture selection translates to state abstraction – ignoring features is equivalent to clustering
all the states that match on the necessary features. An example is the U-Tree algorithm
[McCallum, 1996]. While many state abstraction algorithms perform well empirically,
they lack formal guarantees.

4.4 Main Challenge of Feature Selection with Strategic
Exploration

If we know the in-degree of the necessary features, or if we know which features are
necessary, then we can simply use prior PAC algorithms for factored MDPs [Diuk et al.,
2009, Strehl et al., 2007, Chakraborty and Stone, 2011]. However, because we do not know
the in-degree nor which features are necessary, we run into issues when trying to explore
and estimate the transition and reward dynamics. since we want our sample complexity to
scale with the in-degree of just the necessary features, we cannot afford to gather enough
data to also learn the dynamics of the unnecessary features. This means our estimates for
the unnecessary feature dynamics will most likely be incorrect and stay incorrect. But
if our dynamics model is incorrect, we may fail to explore properly, as we do not know
which features are necessary or unnecessary so we cannot focus on simply exploring the
necessary features. Therefore, our key insight is to take advantage of the failure to explore.
We use directed exploration combined with the diameter assumption to try to explore by
repeatedly targeting various target states. Then we can explicitly detect when we fail
to explore by failing to reach the target within an expected number of steps. If we fail
to explore, this implies our dynamics model is incorrect. However just knowing that it
is incorrect is not enough, we also need to find out exactly which feature’s estimated
dynamics our model is predicting incorrectly, in order make progress in improving our
model. For this we make a new assumption called the Superset Assumption, which we
describe in more detail later in section 4.5.2 as well as formally define it in Assumption 2.
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Now we go into more detail on why exploration can fail. First we go into some intuition
about how to estimate the transition (and reward) dynamics. Suppose we know that the size
of the parent set for feature xi isK, but not which features are in it. We can consider trying
out all potential parent sets of size K, and estimate the transition (and reward) conditioned
on all those parent sets. Then as we get more data, we can compare different parent sets
P and Q by comparing estimates of P (xi|P ) and P (xi|Q) to estimates P (xi|P ∪Q). The
idea is that if P is the true parent set for xi, then further conditioning on any other parents
Q should not change the probability (P (xi|P ) = P (xi|P ∪ Q)); if there is a significant
difference, then P would be incorrect and we can eliminate it as a potential parent set.
By checking this for all potential parent sets P and Q, we will be able to eliminate many
incorrect parent sets, leaving only the true parent set as well as any other parent sets that
just happens to give the same estimated probability as the true parent set. Regardless, we
are left with an accurate estimate of the true transition (and reward) probability.

Next, we will go into detail about the issues with feature selection and exploration
through a more concrete example. Consider a factored MDP with three binary features
(x1, x2, x3). The parent set for x1 is {x1}, for x2 is also {x2}, and for x3 is {x1, x2, x3}.
Thus the in-degree of all features is 3. Suppose features x1 and x2 are necessary, and
x3 is unnecessary, then the in-degree of the necessary features is 1. During learning,
we will be gathering data and estimating the dynamics. For example, for x1, we would
estimate P (x′1 = 1|x1), P (x′1 = 1|x2), and P (x′1 = 1|x3), which correspond to the 3
possible parent sets (there are actually 6 probabilities to estimate, 2 for each parent set
where the parent feature can take on a value of either 0 or 1). Additionally, we would
also estimate P (x′1 = 1|x1, x2), P (x′1 = 1|x2, x3), and P (x′1 = 1|x3, x1) in order to
conduct the pairwise comparison of different potential parent sets to eliminate incorrect
parent sets. We would then estimate similarly for features x2 and x3. Note that our goal is
a PAC algorithm whose sample complexity only scales with the in-degree of the necessary
features, which in this case is 1. This means our algorithm cannot afford to consider parent
sets of size 3 (the in-degree of all features), because that would require too many samples;
we would need samples from all possible instantiations of the values of the parent set of
size 3, which would be 23 in this case and exponential in the parent set size in general.
Thus we would be unable to find the true parent set for the unnecessary feature x3.

Being unable to find the true parent set for x3 can cause exploration to fail to gather the
samples that one would need for accurate estimates of the dynamics. Because all of the
parent sets considered for x3 are wrong, all of our estimates for the dynamics of x3 could
also be incorrect, leaving us with an incorrect dynamics model. Not being able to learn
the dynamics for x3 can mean that we fail to efficiently explore and gather samples for
estimating P (x′1 = 1|x3), which would slow progress on finding the correct parent set for
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x1. For example, this may happen if the model is incorrect on how to transition from x3 =
0 to x3 = 1, and thus we are unable to efficiently gather samples from states where x3 = 1.
This would leave us using more than expected number of steps of exploration to estimate
P (x′1 = 1|x3 = 1). In general these effects may cascade and hinder the learning of the
dynamics for necessary features, and resulting in high sample complexity. This is why
we make the Superset Assumption. Briefly, this assumption constrains pathological cases
where all of the data we get from visiting states where our dynamics model is incorrect is
completely useless until we have collected past our limit on our sample complexity. We
expect that in most cases, this data is actually very useful in quickly detecting which of
our potential parent sets is giving us the wrong estimate and eliminating those incorrect
parent sets.

4.5 Algorithm

In this section, we present the existence of an algorithm that can learn a factored MDP with
sample complexity that scales exponentially with the in-degree of the necessary features
and not with the in-degree of all features. Note that we do not present this as a practical
algorithm, but more of an existence proof that it is possible to achieve the desired sample
bounds.

4.5.1 Overview

Algorithm 5 shows the high-level structure of our approach. F ′ is the set of all features.
m,H,M are parameters that will be defined later in the theory section. Algorithm 5 pro-
ceeds by fixing a possible in-degree K, starting with K = 1 up to the total number of
features. For each K, the algorithm assumes that the in-degree of the necessary features
is K, and proceeds accordingly. Incrementally increasing K is a simple approach to han-
dle the case of not knowing the true in-degree [Chakraborty and Stone, 2011]. Algorithm
1 achieves near-optimal performance on average as soon as K is at least as large as the
true in-degree of the necessary features, and continues to be near-optimal on average for
all larger K. Thus our algorithm achieves near-optimal performance on average after a
number of samples exponential in the true in-degree of only the necessary features.

For each considered in-degree K, Algorithm 1 executes the LearnAndSelect (Algo-
rithm 6) subprocedure. Directed exploration and feature selection is done in LearnAnd-
Select. When LearnAndSelect finishes, it returns a subset of features F , and the learned
model T̂ for those features. Then Algorithm 1 computes the optimal policy for that fea-
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ture subset, and executes it for M steps. Our algorithm never explicitly discovers the true
in-degree, and therefore LearnAndSelect is executed considered K. Our bound will be
over the average performance over all steps for every K. Once K is at least as large as
the in-degree of the necessary features, then LearnAndSelect will return a superset of the
necessary features as well as correctly learned dynamics for the necessary features (with
high probability), and we exploit enough steps such that the average error per step is near-
optimal. We now discuss LearnAndSelect in more detail.

Algorithm 5
1: Input: m, H , M
2: for K = 1 to |F ′| do
3: F, T̂=LearnAndSelect(K,m,H)
4: Compute π∗ for F, T̂
5: Execute π∗ for M steps
6: end for

Algorithm 6 LearnAndSelect
1: Input: K, m, H
2: Initialize F to all features
3: G← all possible feature-value vectors of size 2K
4: while Exists a element g of G not visited m times do
5: ∀s Rtmp(s) = 0, Rtmp(g) = 1
6: Compute optimistic policy πo using Rtmp

7: stuck=True
8: for t = 1 to H do
9: Execute πo

10: If a feature-value vector that has not yet been visited m times is visited, set
stuck=False and break out of loop

11: end for
12: if stuck then
13: Run Superset Test to eliminate incorrect parent sets
14: Eliminate f from F if all possible parent sets for it are eliminated
15: Remove feature-value vectors from G whose features are no longer in F
16: end if
17: end while
18: Return remaining F
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4.5.2 LearnAndSelect

The purpose of LearnAndSelect (Algorithm 6) is twofold. One, it explores to gather sam-
ples for learning an accurate model. Two, under the diameter assumption and Superset
Assumption, using directed exploration, it detects features whose dynamics cannot be ac-
curately modeled using a parent set of sizeK and eliminates them. This results in a learned
model over a subset of features.

Directed Exploration

To achieve both goals, Algorithm 6 performs directed exploration: it computes a policy to
try to reach a target feature-value vector of size 2K (line 4–17)1. A feature-value vector is
a particular instantiation of values for a set of features. We illustrate Algorithm 6 through a
concrete example. Consider a factored MDP with 3 binary features (x1, x2, x3). Suppose
K = 1. Then all feature-value vectors of size 2 for (x1, x3) are simply (x1 = 0, x3 =
0), (x1 = 0, x3 = 1), (x1 = 1, x3 = 0), (x1 = 1, x3 = 1). Then Algorithm 6 proceeds
by first forming the set G of all possible feature-value vectors for all subsets of 2 features:
(x1, x2), (x1, x3), (x2, x3). The next step is to randomly select a feature-value vector from
G as a target. Let g = (x1 = 0, x2 = 1) be the first target. To reach (x1 = 0, x2 = 1),
Algorithm 6 uses a reward function where for any state that matches g, the reward is 1 i.e.
states (0, 1, 0), (0, 1, 1) (line 6). The reward for all other states is 0. Then an optimistic
policy πo is computed and followed for up to H steps to try to visit states that match the
target feature-value vector (line 8–11).

Throughout LearnAndSelect, we are accumulating samples (s, a, s′, r) which we use
to learn a model. We use the samples to estimate probabilities P (xi|P, a), P (xi|Q, a),
and P (xi|P ∪ Q, a) where P,Q are potential parent sets for feature xi, and use these
estimates to narrow down which parent sets could be correct. We start with all parent sets
being possible, and eliminate incorrect parent sets as more samples are accumulated. In
particular, we use the Adaptive k-Meteorologists Algorithm [Diuk et al., 2009].

The optimistic policy (line 6) is then computed by picking a parent set out of the
remaining possible parent sets for every feature such that results in the largest optimal
value.

1The choice of 2K will become clear in the theoretical analysis
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Selecting Features

If directed exploration is always successful and ends up visiting all state-action pairs at
least m times, and K is at least as large as the in-degree of necessary features, then Lear-
nAndSelect will have enough samples to learn a near-optimal model for the necessary
features. However, since the true in-degree is unknown, K could be incorrect, and di-
rected exploration could fail to visit everything. This negative information will be used
to eventually eliminate features whose dynamics cannot be accurately represented with
parent sets of size K.

The diameter assumption guarantees that all states are reachable in expected D steps
under at least one policy. If our learned model is correct, then the optimistic policy πo
would be one such policy, and we can visit the target g in H > O(D2) steps with high
probability (the precise value of H is specified in the theory section). If πo fails, then
we can conclude that our learned model indeed has an error. Specifically, one of the
parent sets that was used to compute πo is incorrect. Furthermore, because the policy πo
is optimistic, we will keep visiting state–action pairs where that parent set is incorrect.
However, because we do not know which parent set is incorrect, we now rely on our
Superset Assumption to figure it out.

Superset Assumption

In order to pinpoint which parent set was incorrect, we use the following observation.
Suppose in our dynamics model we use the parent set P for some feature and it is incorrect.
Suppose the parent setQ is the true parent set. Then we can easily detect that P is incorrect
by gathering m samples of the dynamics for the parent set P ∪ Q and compare. The
challenge is that we do not know Q in advance, nor do we know the size |Q|. We would
need to try out all possible Q, which can take an exponential number of steps, where the
exponent is |Q|. Thus if |Q| is larger than the in-degree of the necessary features, we
can no longer ensure sample complexity that is solely exponential in the in-degree of the
necessary features.

Now consider the parent set P ∪ Q′ where Q′ ⊆ Q. In practice, we expect that by
adding some of the true parents Q′ into P , we may detect a difference in their predictions
without adding all of Q. Of course a pathological case is still possible where no matter
what proper subset Q′ ⊆ Q we add to P , the prediction stays the same, and it is only when
we try adding the whole Q where we can finally see a difference. However this seems
unlikely in practice. Thus we make our Superset Assumption which states that there exists
a Q′ where |Q′| ≤ 2K and we can see a difference in the prediction of the dynamics. Note
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that we make no further assumptions on Q′.

Superset Test

We perform the Superset Test (line 13) to figure out which parent sets are incorrect and
eliminate them. For every feature f in F , the Superset Test will compare the predictions of
its parent set in the current model to the predictions of all supersets of size 2K, using the
samples gathered in the H steps. The Superset Assumption guarantees that the Superset
Test will always find at least one incorrect parent set to eliminate.

As an example, suppose we have explored for some time and our current target is now
g = (x2 = 1, x3 = 1). Suppose we get stuck. Then after H steps, we would detect that
we got stuck and then perform the Superset Test. Suppose we first look at feature x2 and
the possible parents remaining are x2 and x3 i.e. x1 has been eliminated. The Superset
Test will test the predictions of each parent set with all of their possible supersets. For the
parent set (x2 = 0), the supersets of size 2 are (x2 = 0, x3 = 0) and (x2 = 0, x3 = 1). Let
P̂ (x2 = 0|x2 = 0) be the estimated transition for x2 with parent set (x2 = 0). Let P̂ (x2 =
0|x2 = 0, x3 = 0) be the estimated transition for x2 with the parent set (x2 = 0, x3 = 0).
The Superset Test will check whether |P̂ (x2 = 0|x2 = 0, x3 = 0)− P̂ (x2 = 0|x2 = 0)| is
above some threshold. If it is, then it would mean that x2 is not a parent of x2 and so both
parent sets (x2 = 0) and (x2 = 1) would be eliminated. The Superset Test then continues
with the other possible parents and their supersets, and then will check the other features
in the same way. If all possible parent sets for a feature xi has been eliminated, then xi
itself is eliminated (line 14).

Each time Algorithm 6 targets a feature-value vector for exploration, either some target
that has not yet been visited m times will get visited, or the Superset Test will eliminate
a potential parent set for a feature. Thus eventually the algorithm will terminate. Once
Algorithm 6 terminates, we are left with the remaining features F for which we have
visited all targets at least m times. If K is at least as large as the in-degree of necessary
features, then F will be a superset of the necessary features, and by visiting all targets m
times the learned model T̂ of the necessary features will be accurate. There may be some
unnecessary features in F as well, but as long as the model of the necessary features are
accurate, it is sufficient to calculate a near-optimal policy.
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4.6 Theoretical Analysis

This section presents the supporting lemmas and main theorem for the performance of
Algorithm 5. In the first section (Section 4.6.1), we present the assumptions we make.

4.6.1 Assumptions

Assumption 1. (Diameter Assumption) Let s, s′ be any two states. Let Dπ(s, s′) be the
random variable for the number of steps it takes policy π to start at s and reach s′ the first
time. Let D(s, s′) = minπ E(Dπ(s, s′)). A diameter D means that D ≥ maxs,s′ D(s, s′).
It is an upper bound on the expected number of steps it takes to go between any two states.
We assume D is known.

Assumption 2. (Superset Assumption) Let π be a policy computed from assuming a par-
ticular parent set for every feature, where some of the parent sets are incorrect. Suppose
π visits a state–action pair for which the predicted dynamics of an incorrect parent set are
2ε off from the true dynamics in O(D2) steps, with probability 1 − δ. This would be the
case if we get stuck (line 13) in Algorithm 6.

Let that feature with an incorrect parent set be xi. Let W of size K be the wrong
parent set (of features) for feature fi. Let U be the true parent set (of features). Consider
supersets of W of size 2K. There are up to

(
n
K

)
≤ O(nK) different superset sets of size

2K. Each superset has d2K instantiations of values. By the pigeonhole principle, after
d2Km steps, at least one instantiation of every possible superset has been visited at least
m times, since we gather data for all supersets at every step.

The assumption we make is that after O(d2Km) steps, there exists some superset W ′

out of all possible supersets of size 2K such that one of its instantiations has been visited
at least m times and for that instantiation, |P (xi|W ′, a)− P (xi|W,a)|1 ≥ O(ε) for some
action a.

4.6.2 Discussion of Assumption 2

The challenge with creating a Superset-like assumption comes from the intricate depen-
dence on the policy. When the parent set for a feature is incorrect, the MLE estimate
according to that incorrect parent set is completely determined by the state distribution
induced by the policy. Because of this, it is extremely difficult to make a Superset-like as-
sumption that only depends on the factored MDP. There can exist adversarial policies for

67



which it is near impossible to detect that a parent set is incorrect without a massive amount
of data. Thus our assumption attempts to use a favorable policy where we are repeatedly
visiting informative states where the incorrect parent set has an incorrect transition model.

Comparison to G–SCOPE

For the G–SCOPE algorithm [Hallak et al., 2015], 3 assumptions are made: Strong Parent
Superiority, Non-Parent Conditional Weakness, and Conditional Diminishing returns. Our
Superset Assumption is similar to Strong Parent Superiority, and we do not make the other
2 assumptions. Because G–SCOPE is an offline algorithm, a suitable behavior policy
as well as suitable domain dynamics are needed to satisfy these 3 assumptions. For our
algorithm, the Superset Assumption is similarly dependent on the policy and dynamics, but
the dependence on the policy is weaker because we have control over the policy; we are
using a policy in which we know we are visiting state–action pairs for which our dynamics
has incorrect predictions, gathering samples from those pairs, and so we expect in practice
that this exploration policy is sufficient to satisfy the Superset Assumption.

Satisfying the Superset Assumption

Here, we give some intuition for how it can be satisfied for simple settings.

The Stock Trading domain used in many prior PAC-FMDP algorithms [Strehl et al.,
2007] satisfies the Superset Assumption. In the Stock Trading domain, the state is spec-
ified by a set of sectors, each sector having a number of stocks. Stocks are binary fea-
tures indicating whether they are rising or falling. Sectors are binary variables indicating
whether they have been bought or not. The probability of a stock rising is P (rising) =
0.1 + 0.8 × (fraction of stocks rising in same sector). The dynamics of the stocks are not
affected by actions. Thus in this domain, no matter what the policy is, it will be possible
to reach any stock state. Suppose there are 3 sectors and 3 stocks per sector. Suppose we
mistakenly assume the in-degree is 1, whereas the true in-degree is 3. Then we will only
be able to try parent sets with one stock, and end up aliasing multiple states. There is a
significant difference in P (rising) when the number of rising stocks is off by one; that
difference is exactly 0.8/3. Consider a parent set where the stock is currently not rising.
The prediction of this parent would be the average of the predictions from 4 aliased states
(the state of the other 2 stocks in the sector, which could have 0, 1, or 2 stocks rising).
Comparing this to a superset of size 2, where both stocks are current not rising; in this
case there are 2 aliased states, which is just whether the 3rd stock is rising or not. The
probability of rising predicted by the superset of size 2 will be a fixed quantity lower than
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what is predicted by the parent set of size 1. If the requested accuracy of near-optimality,
ε is small, then we will be able to detect this difference, no matter the policy, and thus rely
on the superset assumption to pinpoint that this parent set is incorrect. Generalizing to
more stocks and sectors with higher in-degree (the in-degree is the number of stocks per
sector), the superset test will consider parent sets of k stocks as well as supersets of 2k
stocks. There is a large difference in P (rising) between k stocks and 2k stocks, with the
additional k stocks all being in the rising state, and we will be able to detect that difference.

The Taxi domain [Dietterich, 2000, Hallak et al., 2015] also satisfies the Superset As-
sumption under many policies. Consider a uniform random exploration policy. Then all
25 locations in the 5x5 grid world would be visited with reasonable probability (there is
no location that is particularly hard to get to). Movement actions have in-degree 2, so
comparing a parent set of size 1 to supersets of size 2 will definitely work, since the true
parent set is also size 2. The pick up and drop off actions have in-degree 3; they depend on
both the row and column of the location of the taxi, as well as another feature representing
the location of the passenger. With an incorrect parent set of size 1, we would be aliasing
states for which the pickup/dropoff actions are both successful and not. However if we
consider supersets of size 2, then there are feature-values where pickup/dropoff always
fail. Thus we can detect the difference between sometimes being successful and always
failing, and learn that the parent set of size 1 is incorrect.

4.6.3 Small Lemmas

In this section, we present some small lemmas that will be used later on.

Lemma 12. (Necessary Feature Lemma) For any policy π

Qπ(s, a, T ) = Qπ(z, a, T ) (4.1)

where z is the state s restricted to only the necessary features from F i.e. Q-functions only
depend on the necessary features. Furthermore, the transition dynamics of the unneces-
sary features have no effect on Q-functions. This means that as long as the dynamics for
the necessary features are learned accurately, dynamics for unnecessary features may be
arbitrary.

Proof. Let π be given. Let s = (z, y) be the state decomposed into necessary features z
and unnecessary features y. Initialize Q(·, ·, 0) to 0. We will perform induction. The base
case for Q(·, ·, 0) is trivially true since it is a constant.
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By induction

Q(s, a, T + 1) (4.2)

= R(s, a) +
∑
s′

P (s′|s, a) max
a′

Q(s′, a′, T ) (4.3)

=
∑
i

Ri,a(s) (4.4)

+
∑
s′

∏
i

Pi,a(s
′|Pari,a(s)) max

a′
Q(s′, a′, T ) (4.5)

=
∑
i

Ri,a(z) (4.6)

+
∑
s′

∏
i

Pi,a(s
′|Pari,a(s)) max

a′
Q(z′, a′, T ) (4.7)

=
∑
i

Ri,a(z) (4.8)

+ (
∑
z′

∏
i∈z′

Pi,a(s
′|Pari,a(s)) max

a′
Q(z′, a′, T ) (4.9)

·
∑
y′

∏
i∈y′

Pi,a(s
′|Pari,a(s))) (4.10)

=
∑
i

Ri,a(z) (4.11)

+
∑
z′

∏
i∈z′

Pi,a(s
′|Pari,a(s)) max

a′
Q(z′, a′, T ) (4.12)

= Q(z′, a′, T ) (4.13)

Note that the dynamics of the unnecessary features make no difference.

Lemma 13. (Simulation Lemma) [Kearns and Koller, 1999] Let M be a factored MDP
over n state variables with l entries in conditional probability table of the transition
model. Let M ′ be an approximation to M where all the CPTs differ by at most α =
O((ε/T 2lRmax)2). Then for any policy π, |Uπ

M(T )− Uπ
M ′(T )| ≤ ε.

Lemma 14. (Explore or Exploit Lemma) Fix a policy π. Let M and MK be MDPs such
that M and MK agree on some states, but differ in dynamics and rewards for other states.
Then |Uπ

MK
(T ) − Uπ

M(T )| ≤ TRmaxP (escape) where P (escape) is the probability of
visiting a state in which the two models differ.
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Proof. Let τ1 denote trajectories that stay within states where the two models agree and τ2

denote trajectories where there are escapes to other states. Then

|Uπ
MK

(T )− Uπ
M(T )| (4.14)

=
1

T
|
∑

τ,|τ |=T

PM(τ)R(τ)−
∑

τ,|τ |=T

PMK
(τ)R(τ)| (4.15)

≤ 1

T
|
∑
τ1

PM(τ1)R(τ1)−
∑
τ1

PMK
(τ1)R(τ1)| (4.16)

+
1

T
|
∑
τ2

PM(τ2)R(τ2)−
∑
τ2

PMK
(τ2)R(τ2)| (4.17)

≤ 1

T
|
∑
τ2

PM(τ2)R(τ2)−
∑
τ2

PMK
(τ2)R(τ2)| (4.18)

≤ 1

T

∑
τ2

|PM(τ2)R(τ2)− PMK
(τ2)R(τ2)| (4.19)

≤ 1

T
TRmax

∑
τ2

|PM(τ2)− PMK
(τ2)| (4.20)

= RmaxP (escape) (4.21)

Because non-escapes result in exactly the same trajectories with the same dynamics, so
the probability of escaping to the other states is the same in both M and MK .

Corollary 1. Suppose π1 is the optimal policy for Mk and π2 is the optimal policy for M .
Suppose U∗MK

(T ) ≥ U∗M(T ) i.e. MK is optimistic. Then Uπ1
MK
≥ Uπ2

M −TRmaxP (escape).

Proof.

Uπ1
M ≥ Uπ1

MK
−RmaxP (escape) (4.22)

≥ Uπ2
M −RmaxP (escape) (4.23)

4.6.4 LearnAndSelect

We now prove several results about the LearnAndSelect (Algorithm 6) subprocedure.

First, note that throughout the whole subprocedure, we are accumulating samples
(s, a, s′, r) which we use to learn a dynamics model. There exists multiple algorithms
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which can take samples and learn a dynamics model for a factored MDP, and in general
they use the samples to estimate probabilities P (xi|P, a), P (xi|Q, a), and P (xi|P ∪Q, a)
where P,Q are potential parent sets for feature xi, and use these estimates to narrow
down which parent sets could be correct. In particular, one can use the Adaptive k-
Meteorologists Algorithm [Diuk et al., 2009].

The optimistic policy (line 6) is then computed by picking a parent set out of the
remaining possible parent sets for every feature such that results in largest optimal value.

Determining m

In this section we determine a sufficient value for m, the number of samples that Lear-
nAndSelect tries to obtain from all feature-value targets of size 2K.

Lemma 15. Let F be a subset of features with in-degree K. Suppose we have

m = O

(
|A|K d

ε21
log(d|F |/δ1)

)
samples from every feature-value target of size 2K of F . Then we can construct a dynamics
model for F with an L1 accuracy of ε1 with probability 1− δ1.

Proof. The Adaptive k-Meteorologists Algorithm [Diuk et al., 2009] is a sample efficient
online learning algorithm for learning the dynamics of a factored MDP. Given any (nonsta-
tionary) exploration policy and a known in-degree, it will learn a near-optimal dynamics
model making only a finite number of sub-optimal mistakes (prediction accuracy), with
high probability.

By Hoeffdings, we needO( d
ε21

log(d/δ1)) samples to learn each set of values of a parent
set to an L1 accuracy of ε1 (we apply Hoeffdings d times, learning the probability of each
outcome with Hoeffdings) with probability 1− δ1. Since there are |A| actions, the number
of samples we need is

O

(
|A| d

ε21
log(d/δ1)

)
(4.24)

By Adaptive k-Meteorologist, we need O
(

1
ε21

log k
δ1

)
samples from P (xi|P ∪ Q, a),

i.e. the pair of parent sets P,Q, in order to eliminate whichever P or Q is more incorrect
(k is the number of possible feature-value vectors of parents). Therefore if we have that
many visits for all possible pairs P ∪ Q, i.e. all feature-value pairs of size 2K, then all
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incorrect parent sets will be eliminated, and we are left with parent sets whose predictions
are all ε1 accurate (and we can just pick one arbitrarily).

There are (|F |K ) possible parent sets in total. Each parent set has dK possible value
instantiations, thus k = O

(
(d|F |)K

)
. Then a sufficient value for m is

m = O

(
|A|K d

ε21
log(d|F |/δ1)

)
where we do a union bound for the error probability with δ1 = 1

δ(|D|K )
and bound (|F |K ) ≤

O(|F |K).

4.6.5 Directed Exploration

In this section, we present several results on the directed exploration of LearnAndSelect.

Lemma 16. (Exploration Episode Lemma) The following holds w.p. 1 − δ1. At the end
of each iteration of the while loop (line 4 – line 17) in the LearnAndSelect algorithm
(Algorithm 6), one of two things will happen: either the target g or another feature-value
vector that has not been visited m times will be visited, or some potential parent set will
be eliminated as a possible parent for some feature.

Proof. The idea behind the directed exploration is the Explore or Exploit lemma (Lemma
14) and the diameter assumption. The diameter assumption allows the algorithm to poten-
tially reach g with high probability. The Explore or Exploit lemma allows the algorithm to
either reach g or end up gathering new data, or fail. If it fails, then we take advantage of
the Superset assumption to eliminate an incorrect parent set.

First, we compute how large H needs to be in order for a good policy to reach g with
high probability. By the diameter assumption, there exists a policy expected to reach g
within D steps, thereby obtaining a reward of 1 from the artificially defined reward func-
tion Rtmp. By the Markov Inequality, the probability of reaching the goal within 2D steps
is at least 1

2
. Thus the optimal average value within 2D steps is at least 1

4D
. If we used an

ε2-optimal policy, it would have an expected value of at least 1
4D
− ε2. Let τ be trajectories

of length 2D. Then 1
4D
− ε2 = 1

2D

∑
τ Pr(escape)Pr(τ |escape)TotalReward(τ). The

probability that the ε2-optimal policy reached the goal (escapes) can be lower bounded
by the worst case scenario: every escape trajectory has every step giving a reward. That
means the probability of reaching the goal (escape) is at least 1

4D
− ε2. Then probability
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of failing to reach the goal is at most 1 − 1+2Dε2
4D

. Then by repeating this 2D-step trial N
times, the error probability is upper bounded by

(
1− 1+2Dε2

4D

)N . Then that means if we
want to have a failure probability of δ1, we would need to repeat this 2D-step sub-episode

log(δ1)

log(1− 1+2Dε2
4D

)
times. We can simplify the denominator log(1− 1+2Dε2

4D
) by the upper bound

log(1 − 1
4D

). Note that the log function is concave, so we can upper bound it with its
first order approximation around log(1) i.e. by O(− 1

D
). Simplifying the whole fraction

becomes O(D log(1/δ1)). Thus we end up with

O(D2 log(1/δ1)) (4.25)

as the number of steps we need before reaching the goal with high probability. Thus this
is a lower bound for H and we also know in this case the while loop will terminate early
after these many steps.

Now we consider the case when our optimistic policy is bad i.e. the probability of
escaping is at least ε2. Then either we get lucky and visit some other feature-value target
that has not yet been visited m times, or we get stuck. If we get stuck, then we need the
data in these H steps for the Superset test (line 13).

For the Superset test, we apply the Superset assumption (Assumption 2). We know that
we got stuck so the data that we have is where the escape probability is high, thus meeting
the superset assumption requirements of visiting distinguishing states (states where our
model is incorrect).

Now we count how much data we need from getting stuck to perform the Superset Test.
We need to gather new data for the prediction of supersets of size 2K. By Assumption 2
we will need O(d2Km) steps. However since we only have an escape probability of ε2, we
need to add repeats to escape with high probability, just like we did earlier.

This means we need an additional factor of O(Rmax

ε2
log(1/δ1)). So we need

H > O

(
d2KmRmax

ε2
log(1/δ1)

)
. Combining this with earlier means a sufficient H is

H = O

(
D2d2KmRmax

ε2
log(1/δ1)

)
(4.26)

By Lemma 15, we have an ε1-accurate dynamics model, so together with the Simula-
tion Lemma (Lemma 13) that means ε1 = O

(
ε22

max(D,Tε)4R2
maxn

2|A|2d2K

)
where n is the total
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number of features. So the updated value for m in terms of ε2 is

m = O

(
KdR4

maxn
4|A|5d4K max(D,Tε)

8

ε42
log(dnmax(D,Tε)Rmax|A|/δ2)

)
(4.27)

Lemma 17. (LearnAndSelect Lemma) The following holds w.p. 1− δ1. After LearnAndS-
elect (Algorithm 6) is finished, all targets g will either have been visited m times, or one of
its features will have been eliminated. If K ≥ J where J is the in-degree of the necessary
features, all necessary features will remain in F . This will take

O

(
D2K(dn)3Km2Rmax

ε2
log(dn/δ1)

)
steps.

Proof. Now we will count how many steps LearnAndSelect (Algorithm 6) will take. From
Lemma 16, every while loop iteration (line 4 – line 17) contributes to one of two cases:
visiting a feature-value vector that has not yet been visited m times, or the Superset Test.

Since there are at mostO((dn)K) superset tests (each test eliminates at least one parent
set), and we know how much data each superset test requires (equation 4.26), we combine
those to get a total of

O((dn)KH) (4.28)

= O

(
D2(dn)2K+1mRmax

ε2
log(1/δ1)

)
(4.29)

steps towards superset tests.

Our targets are subsets of features and values of size 2K, thus there are O((dn)3K)
targets. Each target needs to be visitedm times, thusO((dn)3KmH) total steps are needed.
Then the number of steps this all takes is

O((dn)KH + (dn)3KmH) (4.30)

= O

(
D2K(dn)3Km2Rmax

ε2
log(dn/δ1)

)
(4.31)

where this includes a union bound over all O((dn)3K) targets and O((dn)K)

Thus eventually the while loop will have visited all possible targets from the remaining
set of features F . If K ≥ J , where J is the in-degree of the necessary features, then the
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necessary features must remain in F because they will never be eliminated through the
superset test, since K ≥ J .

4.6.6 Main Theorem

In this section, we give the main theorem and its proof.

Theorem 5. Given ε, δ. Let Tε,D = max(D,Tε). Let J be the in-degree of the necessary
features. Let n be the total number of features. Then the following is true of Algorithm 5
with probability 1− δ

1. The total number of steps taken up to K = J is

O

(
J2D2(dn)11J+10|A|10R10

maxT
16
ε,D

ε10
log2(dnTε,DRmax|A|/δ)

)

2. For all K ≥ J i.e. at least as large as the in-degree of the necessary features, the
average per-step reward is ε-optimal i.e. |U − U∗| ≤ ε

Proof. From Lemma 17, LearnAndSelect will takeO
(
D2K(dn)3Km2Rmax

ε2
log(dn/δ1)

)
steps.

Once K ≥ J , the necessary features will remain in the returned F , and by Lemma 15, the
returned dynamics of the necessary features will be ε1 accurate. Due to the value of m
(eqn 4.27), the optimal policy computed from the learned dynamics will be ε2-optimal,
since we can ignore the dynamics of any unnecessary features in F by Lemma 12.

Thus after LearnAndSelect, Algorithm 5 will execute an ε2-optimal policy forM steps.
Counting all of the steps of LearnAndSelect as mistakes and setting asB, the average error
per-step for any single K ≥ J is

RmaxB + ε2M

B +M
(4.32)

So to bound this by ε, we need ε2 < ε, so we’ll use ε2 = ε/2. Also we need to make M
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large enough. Then

2RmaxB + εM

2B + 2M
≤ ε (4.33)

⇐⇒ 2B(
Rmax

ε
− 1) ≤M (4.34)

⇐= M ≥ 2BRmax

ε
(4.35)

⇐= M = O

(
BRmax

ε

)
(4.36)

whereB = O
(
D2K(dn)3Km2Rmax

ε2
log(dn/δ1)

)
. So for eachK, Algorithm 5 runs forM+B

steps, which is

O

(
D2K(dn)3Km2R2

max

ε2
log(dn/δ1)

)
(4.37)

Then we count all K < J as mistakes, which is

O

(
J2D2(dn)3Km2R2

max

ε2
log(dn/δ1)

)
(4.38)

Finally plugging in m (equation 4.27) results in the final sample complexity of

O

(
J2D2(dn)11J+10|A|10R10

maxT
16
ε,D

ε10
log2(dnTε,DRmax|A|/δ)

)
(4.39)

where we use a union bound to bound the error for each K with δ1 = δ/n.
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Chapter 5

Directed Exploration in RL with
Function Approximation

This work was done jointly with Emma Brunskill and is in-submission.

5.1 Introduction

Up until this point, this thesis has focused on theoretically analyzing various settings that
relate to how reinforcement learning is represented in practice. The algorithms proposed
have used directed exploration as an effective tool to obtain sample efficient bounds. But
theory is only part of the solution. In this chapter, we investigate how directed exploration
can be used to improve sample efficiency in practice.

Neural networks have been shown to be an effective function approximator for large,
complex functions in many domains. In order to scale up reinforcement learning, function
approximators are a key component, and recent work combining RL with deep learning
has shown promising results; algorithms such as DQN, PPO, A3C have been shown to
work in domains such as Atari games, and robot locomotion and manipulation [Mnih
et al., 2013, Schulman et al., 2017, Mnih et al., 2016]. However, most approaches only use
simple exploration strategies that add some simple randomness to the actions. DQN uses
e-greedy, whereas PPO and A3C follow the policy gradient with policies that add some
random noise to the actions. The lack of more sophisticated exploration has hindered
progress in more complex domains with sparse rewards.

Recently, there has been work towards more sophisticated exploration strategies in
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deep RL. Noisy networks add e-greedy exploration in the parameter space rather than
the action space have been shown to be better [Fortunato et al., 2017]. Bootstrapping
and ensembles have been used to approximate posterior sampling for better exploration
[Osband et al., 2016]. Currently, uncertainty-based methods have been shown to be the
most effective and most promising to tackle hard exploation domains [Houthooft et al.,
2016, Ostrovski et al., 2017, Tang et al., 2017, Burda et al., 2018]. These uncertainty-based
methods use a reward bonus approach, where they compute a measure of uncertainty and
transform that into a bonus that is then added into the reward function.

Unfortunately this reward bonus approach has some drawbacks. We focus on the
model-free case where we either approximate a value function or a policy since the state
of the art approaches in deep RL are either model-free or a hybrid combination of model-
based and model-free; regardless, there exists a model-free component that must take in
the augmented reward function. The main drawback is that reward bonuses may take
many, many updates before they propagate and change agent behavior. This is due to two
main factors: 1) the function approximation itself needs many updates before converging;
2) the reward bonuses are non-stationary and change as the agent explores, meaning the
function approximator needs to update and converge to a new set of values every time the
uncertainties change. This makes it necessary to ensure that uncertainties do not change
too quickly, in order to give enough time for the function approximation to catch up and
propagate the older changes before needing to catch up to the newer changes. If the reward
bonuses change too quickly, or are too noisy, then it becomes possible for the function ap-
proximator to prematurely stop propagation of older changes and start trying to match the
newer changes, resulting in missed exploration opportunies or even converging to a sub-
optimal mixture of old and new uncertainties. Non-stationarity has already been a difficult
problem for RL in learning a Q-value function, which the DQN algorithm is able to tackle
by slowing down the propagation of changes through the use of a target network [Mnih
et al., 2013]. These two factors together result in slow adaptation of reward bonuses and
lead to less efficient exploration.

As we have seen in past chapeters, directed exploration is an alternative approach for
using uncertainty for exploration, and is able to avoid the issue of non-stationarity alto-
gether. Note that in most prior chapters we focused on the tabular setting, where planning
given a goal (selected via directed exploration) was straightforward. Now with function
approximation, computing a policy to reach a desired goal is non-trivial. To do this, we
learn a goal-conditioned policy π(s, g) that would enable us to try to reach any goal states
we specify [Schaul et al., 2015a, Andrychowicz et al., 2017]. We would then repeatedly
pick states that have high uncertainty and set them as goals and use the goal-conditioned
policy π(s, g) to reach them. This results in an algorithm that is completely stationary,
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because the goal-conditioned policy is independent of the uncertainty. Also, because we
can pick and commit to reaching goal states, we are much more robust to the case where
uncertainty estimates are changing and noisy, which can negatively impact and slow down
reward bonus approaches. We show in our experiments that directed exploration is more
robust to noisy and inaccurate uncertainty measures, and is more efficient at exploration
than the reward bonus approach.

This idea of directed exploration is closely related to the hierarchical reinforcement
learning literature. It can be considered a particular instantiation of goal generation from
higher level policies, and then trying to reach those goals through lower level policies.
Prior work has focused on uniformly random or expert guided goal generation for learning
sub task and task structure, but we look into uncertainty-based goal generation explicitly
for better exploration [Held et al., 2018, Nachum et al., 2018]. We also do not require
learning a hierarchical policy, allowing our method to be more easily adapted to existing
algorithms.

5.2 Background

We now outline several basic components that we will build on to construct a practical
directed exploration algorithm with function approximation.

5.2.1 DQN

Deep Q-Networks (DQN) is a deep reinforcement learning algorithm that has been shown
to successfully achieve superhuman performance in variety of domains, including multiple
Atari games [Mnih et al., 2013], and is suited to use with discrete action domains. It is a
variation of Q-learning and is able to make use of off-policy data, i.e. data that came from
following a different policy than the current greedy policy associated with the learned
Q-network. This is important as when we are doing directed exploration, we will be
following different policies to try to reach different goal states, which will be different
from the current best policy.

5.2.2 DDPG

Deep deterministic policy gradient (DDPG) is an off-policy, deep reinforcement learning
algorithm to use with continuous state and action spaces based on policy gradient [Lillicrap
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et al., 2015].

5.2.3 UVFA

Universal value function approximators (UVFA) extends the idea of a value function to
a goal conditioned value function V (s, g) that represents the value when trying to reach
the goal g starting from state s [Schaul et al., 2015a]. Given such a value function, we
can then navigate to any goal g, in particular we can use this to facilitate directed ex-
ploration by picking goals g that are useful for exploration. DQN can be naturally ex-
tended to implement UVFA by adding the goal g as an additional input to learn the goal-
conditioned Q-value function Q(s, a, g), and DDPG can be naturally extended to learn
the goal-conditioned policy π(s, g). To unify both approaches, since we can extract out a
policy from the Q-value function, we now will refer to both DQN and DDPG being able
to learn a goal-conditioned policy π(s, g).

5.2.4 HER

Hindsight experience replay (HER) is a technique that can speed up the learning of an
UVFA by making use of trajectories that fail to reach the goal [Andrychowicz et al., 2017].
Given a trajectory that tried and failed to reach g, instead we can pretend that we were
actually trying to reach s′, where s′ is a state that we actually visited during the trajectory.
HER turns a negative example for a goal g into data for a positive example for a reached
goal s′.

5.3 Directed Exploration

5.3.1 Directed Exploration Outline

The general steps behind directed exploration is outlined in Algorithm 7. The main
idea is to repeatedly try to visit the states with the largest uncertainty according to some
uncertainty measure U , and then take one step of random action as exploration. We then
rely on an off-policy RL algorithm to learn from these directed exploration trajectories.
This algorithm is a slight modification of the directed exploration that is done in chapters
2-4. Tt is specificically only considering single states as possible goals rather than sets
of states since keeping track of sets of states quickly becomes computationally infeasible.
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Algorithm 7 Generic Directed Exploration RL
1: Input: A,U, π(s, g)
2: A is an off-policy RL algorithm
3: U is a method to compute uncertainty for a state
4: for Episode i = 1 to∞ do
5: while episode not ended do
6: Pick g with largest uncertainty according to U
7: Visit g using goal-conditioned policy π(s, g)
8: Take a random action
9: end while

10: Update A
11: end for

Figure 5.1: The different components of directed exploration with function approximation.

It also includes a step of random exploration, because the uncertainty measure may be
noisy and inaccurate, so having a bit of randomness prevents directed exploration from
being stuck visiting the exact same states over and over again. While this outline can be
implemented exactly in the tabular setting, there are several additional considerations that
must be made when we move to the function approximation setting.

5.3.2 Directed Exploration with Function Approximation

Algorithm 8 outlines how to do use directed exploration in the function approximation
setting. Figure 5.1 shows the different components that make up the algorithm.
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Algorithm 8 Directed Exploration RL with Function Approximation
1: Input: D,K,N,E,A, U
2: A,E are off-policy RL algorithms
3: A is used to learn from the real reward
4: E is used to learn the UVFA/goal-conditioned policy π(s, g)
5: U is a method to compute uncertainty for a state
6: G← FIFO buffer of goal states with capacity N
7: for Episode i = 1 to∞ do
8: With probability 0.5, act greedily w.r.t. to current optimal policy
9: Otherwise, do directed exploration:

10: while episode not ended do
11: Sample goal state g from top K uncertain goal states in G
12: Try to reach g for D steps
13: If we reach or D steps are up, then do one step of random action
14: end while
15: Store episode experience into common replay buffer
16: Sample minibatch B from common replay buffer
17: Compute uncertainty for each state in B using U and add to G
18: Update A with B
19: Update E with B using HER
20: Update U with B
21: end for

Learning a Goal-conditioned Policy

The first challenge is to get a goal-conditioned policy π(s, g) to use for reaching goal
states. We use an off-policy RL algorithmE to learn a UVFA/goal-conditioned policy (the
green node in Figure 5.1) through the use of hindsight experience replay (HER), which is
simultaenously being trained along with the existing off-policy RL algorithmA (the yellow
node in Figure 5.1). Unfortunately, since we are now learning an approximation of π(s, g),
this means that we may fail to reach our target goal state g, and so we introduce a timestep
limit D. We only follow π(s, g) for up to D steps, after which we take one random action
step. E is trained from the same common replay buffer as the existing algorithm A. In our
experiments, we set D to be half or a quarter of the maximum episode length.
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Tracking Uncertainty and Goal States

The next challenge is in picking the states with the largest uncertainty. We use a FIFO
buffer which stores the states to be used as goal states, as well as their associated uncer-
tainties (orange node in Figure 5.1). This buffer is also updated from minibatches sampled
from the common replay buffer, where we use U to compute their uncertainties. For com-
putational efficiency, we do not recompute the uncertainty for any states after they have
been added to the buffer. This means that for older states, their associated uncertainty
values will be stale; however this is not that detrimental since the consequence will be that
there may be a slight delay to wait for older, more uncertain states to be pushed out of
the buffer before newer, less uncertain states are picked. The staleness can be controlled
by changing the maximum capacity of the buffer, N , though it is also important to keep
the buffer large enough so that the uncertain states get many opportunities to be picked as
goals. Due to function approximation, we may need to visit the same goal states over and
over again to accumulate enough data to train, which is actually in line with keeping stale
uncertainty values.

When picking goals from the goal buffer, we will sample uniformly at random from
the topK most uncertain goal states. For simple domains where the uncertainty is accurate
and not noisy, it is usually sufficient to useK = 1 or something very small, and thus always
try to reach the most uncertain goal state. However for more complicated domains or
much more noisy and inaccurate uncertainty estimates, setting K larger such as K = 100
results in much more robust behavior. Sampling uniformly from the top K rather than
with probability proportional to their uncertainties allows the algorithm to explore a wider
variety of goal states in case some of the uncertainty estimates are very inaccurate.

Computing Uncertainty

The uncertainty measure U (grey node in Figure 5.1) can be something simple, such as
count-based bonuses in the tabular setting, or something complex like density models or
bayesian models [Houthooft et al., 2016, Ostrovski et al., 2017]. In our experiments, we
use a simple, learned, uncertainty measure, as we intend to show how directed exploration
can take advantage and be more robust to uncertainty and reward bonus-based approaches.
We train a network to predict the next state from the current state and action, and then use
the prediction loss as the uncertainty. This is also trained from the same minibatches from
the common replay buffer.
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On-Policy Mixing

For each episode, we flip a coin to decide whether we will do directed exploration or just
execute the current greedy policy from A. The reason we mix in on-policy execution in
addition to the off-policy directed exploration samples is because function approximators
work much better with on-policy data. Mixing in on-policy data allows for the function ap-
proximators to update values for states along the current greedy path and move it towards
the optimal policy. The ratio of on-policy vs. directed exploration is a hyperparameter;
however we found that 0.5 is a reasonable value to use in general and did not attempt
further optimization.

5.4 Robustness Example

Here, we describe a simple example in which directed exploration is much more robust to
the uncertainty estimate than reward bonus approaches. Suppose there are two states s1, s2

whose uncertainty estimates are close, but s1 is always more uncertain than s2. Then,
a reward bonus approach would converge to an exploration policy that always explores
s1 and ignores s2. However, with directed exploration, since both s1 and s2 have high
uncertainty, they would both be sampled as goal states. Thus directed exploration would
end up visiting both of these states.

If the uncertainty estimate is accurate, then it would not be a problem for reward bonus
to focus solely on s1, because eventually after visiting s1, its uncertainty estimate would
go down and drop below the uncertainty of s2. Then reward bonus would try to visit s2.
However if the uncertainty estimate is not accurate, then it is possible that reward bonus
would completely miss out on exploring s2, whereas directed exploration is robust to these
small relative differences and will end up exploring both.

5.5 Tabular Experiment

We first examine the tabular setting where we can compute everything exactly, so we can
implement Algorithm 7 directly. All algorithms are implemented exactly using a table of
values and we run value iteration till convergence at every step and so there is no approxi-
mation error.

Here we use a small toy gridworld to illustrate the benefit of committing to reaching
states instead of relying on e-greedy. This can come up in settings where a small mistake
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Figure 5.2: Comparison on gridworld with teleportation. Q-Learning with e-greedy and
reward bonus (Q) takes much longer to converge than directed exploration (DE) or MBIE.
These results are averaged over 100 runs, and show the evaluation performance when we
run the greedy policy.

can be very costly, such as a teleport back to the beginning. The gridworld is a chain of 40
states, where the goal state is at the left end and the initial state is in the middle. Taking
actions up or down always teleports you back to the middle, thus taking a random action
in the process of reaching the goal can immediately send you back and lose all progress.

We compare 3 algorithms, MBIE [Strehl and Littman, 2008], Q-learning+bonus (Q),
and directed exploration (DE) (Figure 5.2). MBIE is a near-optimal model-based algo-
rithm in the tabular setting, and is our best-case baseline after tuning confidence intervals.
We use exact count-based reward bonuses as our uncertainty measure. Q-learning+bonus
simulates Q-learning with infinite replay and count-based reward bonuses (the same bonuses
used for MBIE), where we do not have access to a model and thus cannot learn anything
about (s, a) pairs that have never been visited. In such a case, e-greedy exploration is
necessary in order to discover new (s, a) pairs not visited yet.

Figure 5.2 shows, unsurprisingly, that MBIE is the most efficient. Q-learning+bonus
(Q) takes a long time to become consistent because there are many runs in which a ran-
dom exploratory action results in a teleport back to the beginning. Thus trying to reach the
goal state at the end of the chain becomes very inefficient. On the other hand, for directed
exploration (DE), we only take a random exploratory action once we reach a desired goal
state, meaning there is no chance to deviate and fail to reach the goal state due to ran-
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Figure 5.3: MountainCar Environment [Brockman et al., 2016]

domness. This commitment to reaching goal states is another aspect in which directed
exploration can be more efficient than reward bonus approaches.

5.6 Function Approximation Experiment in a Small Do-
main

We now move into the function approximation setting by using DQN in the standard
Mountain Car domain with discrete actions [Brockman et al., 2016]. We use the dou-
ble DQN algorithm as the off-policy RL algorithm [Van Hasselt et al., 2016, Dhariwal
et al., 2017] to learn the UVFA with HER, and as the second, regular DQN. To compute
the uncertainty of a state, we use the loss from a simple L2 regression task for predicting
the next state from the current state and action.

We compare 4 algorithms: DQN, DQN+bonus, DQN+directed with sampling uni-
formly random goals, and DQN+directed picking the most uncertain goals. For DQN and
DQN+bonus, as well as the second regular DQNs present in the directed exploration al-
gorithms, we use e-greedy exploration with a fixed ε = 0.1. This is because even though
DQN+bonus uses a reward bonus, it cannot assign reward bonuses to states that it has never
seen before (bonuses are augmented to minibatches sampled from the replay buffer), and
thus must still rely on some form of randomness to discover new states. Directed explo-
ration does not need randomness when trying to reach goal states; instead it takes a step
of random action after reaching a goal or reaching the timelimit D.
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Figure 5.4: Episode Reward on Mountain Car. Result is over 10 runs, and show the
evaluation performance when we run the greedy policy.

From Figure 5.4, we see that directed exploration using uncertainty (red) is the fastest
at learning. Directed exploration with random goals (green) comes in second. Regular
DQN (blue) and DQN with reward bonus (orange) seem to tie and perform the worst.
These results indicate that directed exploration by itself, even just using random goals and
not using uncertainty, is already better at finding the sparse reward. But the best results
come from using the uncertainty to drive directed exploration towards the most uncertain
states. This shows that the uncertainty, based on prediction loss, is in fact informative and
useful for exploration. Reward bonus does not seem to be able to take advantage of this
uncertainty at all.

To gather more insight, Figures 5.5 shows how much of the state space (after discretiza-
tion) has been visited at least once. We see a much clearer difference in terms of how the
algorithms are exploring. Both versions of directed exploration are much more efficient
at covering the state space, whereas reward bonus seems to not be able to explore more
than regular DQN. But the uncertainty is clearly important, as directed exploration using
uncertainty to pick goals is significantly faster at exploration than when picking goals ran-
domly. These results directly correlate with the actual performance of these algorithms in
Figure 5.4.

The uncertainty based on prediction loss that we use is a very simple and natural ap-
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Figure 5.5: Percent of visited on Mountain Car over a discretized 10x10 grid. Result is
over 10 runs.

proach that has been explored in prior works [Burda et al., 2018]. It is not a sophisticated,
state-of-the-art measure of uncertainty, and thus is more noisy and less accurate. The
reward bonus approach struggles and is not able to explore using this uncertainty. How-
ever, directed exploration is much more robust and is still able to take advantage of such a
measure of uncertainty to explore extremely efficiently.

5.6.1 Experimental Details

Hyperparameters used for DQN were two hidden layers of size 64 with RELU activations.
We used the Adam optimizer with a learning rate of 0.0001, target network is updated
every 1000 steps. Prioritized replay is used with α = 0.4, and β = 1.0. We used double
DQN with a huber loss function. For the UVFA, we had a separate DQN with the same
architecture, except we used a learning rate of 0.001 and the target is updated every 30
steps, and we used uniform replay. We found that the UVFA network could sustain a high
learning rate and therefore converge much faster, unlike the regular DQN network which
sometimes diverged with higher learning rates. For e-greedy, we used a fixed ε = 0.1.

For reward bonus, we found that normalizing the uncertainty using running exponential
averages of minimum and maximums, and then scaling by the reciprocal of the square root
of the number of timesteps helps stablize performance.

For directed exploration, we set K = 1, meaning we always pick the most uncertain
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Figure 5.6: FetchPush Domain, image from [Plappert et al., 2018].

state from the goal buffer. We set the maxmimum length of a directed exploration attempt,
D = 50, which is a quarter of the maximum episode length. The goal buffer has a capacity
of 10000.

5.7 Function Approximation Experiment in a Large Do-
main

We implemented directed exploration in the FetchPush domain [Andrychowicz et al.,
2017, Plappert et al., 2018] (Figure 5.6). This domain consists of a robotic arm in the
middle of a table. The objective is to push the box to a desired goal position (3 dimen-
sional) on the table. The initial position of the box is random. In the original formulation,
the goal position is known and also randomized every episode, which is done in order to
perform multi-goal learning. We have modified the domain to a fixed but unknown goal
position to turn it into an ordinary MDP environment. For directed exploration, we also
use object positions as goal states to be consistent with the domain. We rely on DDPG
as the off-policy RL algorithm since actions are continuous Plappert et al. [2018]. The
uncertainty we use is the mean squared loss from predicting the next object position from
the current state and action.

Figure 5.7 compares the performance of regular DDPG (blue), DDPG with reward
bonus (orange), DDPG with directed exploration but samples uniformly random goals
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Figure 5.7: Percentage of success of reaching the true goal on FetchPush when comparing
regular DDPG, DDPG and reward bonus, and DDPG with directed exploration both with
picking random goals and top 100 most uncertain goals. Results are over 5 runs.

from the goal buffer (green), and DDPG with directed exploration but samples the top 100
most uncertain goals from the goal buffer (red). The performance is measured by evaluat-
ing the learned policy on 10 new episodes and calculating the percentage that successfully
reach the true fixed goal [Andrychowicz et al., 2017].

We see from Figure 5.7 that directed exploration with sampling from the top 100 most
uncertain goals (red) is able to learn the fastest compared to the others. Notably, it is
more efficient than directed exploration with sampling random goals from the goal buffer
(green). This indicates that the uncertainty we are using is actually meaningful, and driving
exploration towards uncertain goals is more efficient than random goals. The reward bonus
approach using the same uncertainty (orange) is still better than regular DDPG (blue),
further confirming that the uncertainty is informative for exploration, but is not as efficient
as directed exploration. Furthermore, for the reward bonus approach, we had to normalize
the bonus by keeping a running minimum and maximum, and rescale it to decay as the
reciprical of the number of timesteps in order to obtain the current performance; using
the raw mean squared prediction loss simply results in identical performance to regular
DDPG. On the other hand, for directed exploration, we used the raw losses and stored
them in the goal buffer to use for sampling. These results show that directed exploration
is able to much better take advantage and extract out meaningful information from the
uncertainty estimate, making it much more robust than the reward bonus approach.

To develop more insight, we have also tracked how many different object positions
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Figure 5.8: Percentage of visitation of possible discretized goal states on FetchPush when
comparing regular DDPG, DDPG and reward bonus, and DDPG with directed exploration
both with picking random goals and top 100 most uncertain goals. Results are over 5 runs.

have been explored in Figure 5.8. We discretized the possible object positions and tracked
what percentage of total positions have been visited at least once. The results show that
directed exploration using the uncertainty (red) is able to explore more than directed ex-
ploration with random goals (green), which confirms the effectiveness of using unertainty
to guide exploration. The reward bonus approach (orange) initially falls short of directed
exploration with uncertainty, before slightly overtaking it in the middle, but eventually still
falls short. This is because once the reward bonus approach has found the sparse reward,
then it will gradually stop exploration and start exploitation. It seems that even though in
the middle, reward bonus is able to match and slightly exceed the amount of exploration
that directed exploration is able to achieve, it is slower to start, and thus slower at first
encountering the sparse reward. It would seem that the non-stationary reward bonuses
slow down convergence to the optimal policy, whereas directed exploration avoids non-
stationarity and is able to converge faster.

5.7.1 Experimental Details

We use the DDPG and HER implementations from Plappert et al. [2018], along with the
same hyperparameters. Due to technical limitations, we did not run 19 parallel threads,
but only 1. For directed exploration, we use two DDPG agents; one is goal-conditioned
and is trained using HER; the second is regular unconditioned DDPG. The performance is
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evaluated solely using the second regular DDPG.

For predicting the next object position from the current state and action, we use a neural
network that takes as input the current state and action, passes it through 2 hidden layers
of with 256 units each and RELU activations, and a final linear output layer that predicts
the next object position (3 dimensional). This is trained using Adam with a learning rate
of 0.001 and a batch size of 256, in tandem with DDPG.

For reward bonus, we keep a running exponential average of the minimum and max-
imum uncertainty from this mean squared loss, and rescale the raw loss to be between 0
and 1, before dividing it by the square root of the number of minibatch updates so far to
better emulate a count-based bonus. This turns out to be much more effective than using
the raw mean squared loss directly.

For directed exploration, the goal buffer has capacity 50000. We setK = 100, meaning
we sample uniformly from the top 100 most uncertain states in the goal buffer. We set the
maxmimum length of a directed exploration attempt, D, to be 25, half of the episode
length. When we use the goal-conditioned DDPG, we use the greedy policy and disable
any action noise.

5.8 Discussion of Results

The tabular setting showed how committing to reaching goal states with high uncertainty
was much more efficient than the combination of e-greedy and reward bonus. However,
if e-greedy could be avoided, like using a model-based method such as MBIE, then it is
possible to achieve more efficient exploration. But in the function approximation case,
learning a good dynamics model is a big challenge, and the current most successful meth-
ods actually combine model-based and model-free, resulting in still using some form of
randomization in the actions [Nagabandi et al., 2018]. Thus, commitment in directed ex-
ploration may still result in increased efficiency for exploration. However, commitment
only has the largest impact if small mistakes are extremely costly, and this is not always
the case for many domains. If small mistakes are not that bad, then commitment wil not
result in a drastic increase in efficiency for exploration.

The function approximation experiments showed how directed exploration is more ef-
ficient at exploration, but more importantly, can take advantage of a simple uncertainty
measure to explore even better. Before we discuss the uncertainty, we will first discuss
directed exploration itself. The results on Mountain Car when sampling goal states at ran-
dom do show that directed exploration itself is already faster at exploration. However the
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results on FetchPush show that sampling random goal states is not as good at exploration
as reward bonus. This difference highlights one of the biggest challenges for directed
exploration: learning the goal-conditioned policy π(s, g). In Mountain Car, due to the
simplicity of the domain, we are able to learn π(s, g) very efficiently, and thus directed ex-
ploration is able to start exploring efficiently very early on. On FetchPush, it takes much
longer (Figure 5.8), and so directed exploration with random goals is not able to explore
a lot until later on in training. We hypothesize that if we are able to train a π(s, g) faster,
whether using a different architecture or improving the training process, then directed ex-
ploration may become much more efficient at exploration. This also highlights one of the
limitations of directed exploration, in that if we are using a model-based algorithm like in
the tabular setting, then there might not be a strict benefit over the reward bonus approach
because the augmented reward function is being updated and changes are always fully
propagated; the only potential benefit for directed exploration would be its robustness to
the uncertainty measure due to committing to goals.

We will now discuss directed exploration with uncertainty. For both Mountain Car
and FetchPush, using the uncertainty to sample goals greatly increased the efficiency of
exploration over just using random goals. This indicates that the uncertainty we used is in
fact informative about what parts of the state space we need to explore, even though our
uncertainty is simply the prediction loss from predicting the dynamics. However when
we compare performance to reward bonus, we see that in Mountain Car, reward bonus
is not able to take advantage of the uncertainty at all. In FetchPush, the reward bonus
is able to take some advantage of the uncertainty and improve performance, but not as
much as directed exploration. Even though in FetchPush, the goal-conditioned policy
π(s, g) is being learned quite slowly, it seems that trying to reach those goal states with
high uncertainty makes a significant difference to exploration efficiency. These results
show that directed exploration is robust to the uncertainty measure and can better take
advantage to explore more than reward bonus. Reward bonus seems to be much slower to
update and propagate the uncertainty.

There is an additional computation cost for directed exploration since we need to main-
tain two off-policy RL algorithms. But there could be ways to reduce the cost, such as po-
tentially sharing parts of the network between the two algorithms. Alternatively, the two
algorithms can easily be updated in parallel, taking advantage of multithreading to speed
up computation.
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5.9 Related Work

Recently, Uber introduced the Go-Explore algorithm [Ecoffet et al., 2019], which has
achieved incredible results on two hard exploration Atari games: Montezuma’s Revenge
and Pitfall. One of the key components of their algorithm is to use directed exploration to
revisit states that looked promising for further exploration. However their approach differs
from ours as they are not learning a general goal-conditioned policy to figure out how to
reach states, but they are replaying past trajectories due to being in a deterministic envi-
ronment. Our approach is general and fully support stochastic environments. Furthermore
their algorithm also has many other components put together and it is not clear the effect
of directed exploration itself.

Directed exploration can be considered a particular instantiation of goal generation
from higher level policies in hierarchical reinforcement learning. Prior work has focused
on uniformly random or expert guided goal generation for learning sub task and task struc-
ture, but we look into uncertainty-based goal generation explicitly for better exploration
[Held et al., 2018, Nachum et al., 2018]. Another difference is that our directed explo-
ration component is completely separated from the existing off-policy algorithm, and it
only contributes samples to the common replay buffer. This allows our component to be
more modular, and more easily added to existing off-policy algorithms.
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Chapter 6

Conclusion

6.1 Overview

This thesis has shown how directed exploration can be a useful exploration approach that
can lead to new algorithms that are provably sample efficient in various settings of practical
interest, and a useful practical tool that can lead to new practical algorithms with function
approximation that are sometimes more efficient and robust than using the reward bonus
approach.

In chapter 2, we have the first formal analysis of RL in concurrent tasks. Our theoretical
results indicate that with sharing samples from copies of the same MDP we can achieve a
linear speedup in the sample complexity of learning, and our simulation results show that
such speedups can also be realized empirically. We can also achieve a speedup under the
relaxation that there are a finite number of different types of MDPs with mild separability
and diameter assumptions, where we can use directed exploration to find distinguishing
states and cluster identical MDPs together, even without knowing the number of distinct
MDPs nor which are identical.

In chapter 3, we have introduced the COMRLI algorithm, which to our knowledge the
first PAC RL algorithm for learning across a series of tasks drawn from a set of continuous-
state, discrete action Markov decision processes. Its bound on the sample complexity
can be significantly smaller in later tasks, and is independent of the covering number
for the state–action space. This shows that transferring knowledge in continuous-state
RL can provably reduce the amount of experience needed to make good decisions. We
also provided preliminary but encouraging evidence that our approach may be helpful in
practice, showing good performance in one benchmark domain against a state-of-the-art
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policy gradient method for multi-task RL.

In chapter 4, we presented the first algorithm for performing feature selection while
solving factored MDPs whose sample complexity scales exponentially with the in-degree
of the necessary features, potentially an exponential improvement over scaling with the
in-degree of all features.

In chapter 5, we presented a general directed exploration algorithm for RL with func-
tion approximation, and showed how it can be sometimes more efficient at exploration
and faster at learning than using a reward bonus when using the approximate uncertainty
measure of next-state prediction loss. This is due to directed exploration committing to
reach states, and being more robust to noisy and inaccurate uncertainty estimates.

6.2 Future Work

The proposed algorithms in chapters 2-4 rely on various assumptions that could potentially
be further relaxed and lead to more general algorithms. In the concurrent MDP setting,
the algorithm depends on the assumption of a definite and large gap in the transition and
reward dynamics between different types of MDPs is quite important, but also a limitation
of the algorithm. Perhaps there may be some method to avoid making such an assump-
tion, though most likely it would require using an alternative framework such as the regret
framework instead of PAC since PAC is binary when it comes to classify a timestep as
a mistake or near-optimal. In the factored MDP setting with feature selection, the algo-
rithm relies on the superset assumption to guarantee progress in eliminating unnecessary
features. Again, while the superset assumption is not too strong, perhaps with a different
analysis or framework, it may be possible to relax such an assumption even more.

In addition to the 3 settings in chapters 2-4, there may be many other settings in which
some form of directed exploration can help derive a novel sample efficient algorithm. Di-
rected exploration can allow us to choose which states are visited, potentially simplifying
theoretical analyses to focus on just those states of interest.

Furthermore, the idea from feature selection of leveraging negative information through
the failure to reach expected reachable goals has much more potential. It might be helpful
for practical algorithms to help diagnose an error in its model model class, an error in an
assumption, or perhaps that its model does not have the capacity to accurately represent
the environment.

Also, in practice, directed exploration has a lot of potential for more efficient explo-
ration. The work in chapter 5 can still be greatly expanded and generalized. While it is
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not clear that all settings may benefit from directed exploration, there may be some larger
and more complex domains, perhaps even partially observable domains where directed ex-
ploration can greatly improve exploration and performance. However, the challenge will
be how to efficiently learn a goal-conditioned policy, which is itself also an interesting
direction to pursue. A challenge that comes up in the partially observable setting is how
to define goal states, since the underlying states are no longer observable; it then becomes
important to be able to learn a suitable state representation as well.

This thesis has shown how directed exploration is a useful exploration technique that
can lead to sample efficient bounds and better practical performance, with much potential
for future expansions.
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