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Abstract

Use of hands is the primary way we interact with the world around us.
Recent trends in virtual reality (VR) also reflect the importance of interaction
with hands. Mainstream virtual reality headsets such as Oculus Rift, HTC
Vive, and the Playstation VR all support and encourage the use of their hand
tracking controllers.

However, tracking hands is very challenging due to their small size and
various occlusions. For example, significant portions of the hand can get oc-
cluded when people are holding hands together or holding an object. For this
reason, makers of VR headsets let their users hold controllers that are more
reliably tracked than tracking hands directly.

Another problem of hand tracking is that it often adds latency to the sys-
tem. Furthermore, networked multiplayer interactions are even more chal-
lenging to deliver without users noticing delays due to the addition of network
delays.

In this thesis, we propose ways to overcome the current limitations of
hand use in VR by addressing these challenges. To address difficulty of hand
tracking, we present a way to estimate the entire hand pose given a few reli-
ably tracked points on the hand. We used a commonly available multi-touch
tablet to track the fingertip positions and estimated the entire hand pose from
the tracked fingertip positions using a quadratic encoding method. We show
that quadratic encoding method yields smooth motions for smooth changes
in the fingertip positions and show some demos of manipulation tasks using
the interface. We also present a way to handle changing number of fingertip
contacts and show that we can identify unknown fingertips.

To address the latency in hand tracking and multiplayer interactions, we
propose a method to augment hand pose prediction with eye tracking which
will be commonly available in the next generation of VR headsets. We will
first motivate our approach by presenting our observations of hand-eye coor-
dination. We show that gaze leads grasping actions by an average of 0.726s,



leaves the manipulation area as soon as the action is complete, fixates on the
tool tips when a tool is held, and sometimes inspects the object without the
hand directly interacting with the inspected area. All of the observations will
be used to determine how gaze should be used to predict hand pose during
different actions.

Then, we present a study on predicting grasp types to show that gaze is
effective in predicting hand interactions. We found interesting patterns of
gaze during bottle grasps before the hand reaches the bottle. We use neural
networks to show that these gaze patterns can be learned in order to improve
prediction accuracy.

Finally, we conclude with application of grasp type prediction in VR and a
user study which evaluates the usefulness and quality of hand pose generated
based on grasp type prediction. We found similar gaze patterns in VR as in the
real-life experiment. The user study shows potential for usefulness of grasp
type prediction in VR applications with rooms to improve in the future.
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Chapter 1

Introduction

Use of hands is the primary way we interact with the world around us. We use our hands
every day to pick up objects from the table or open various containers. We use our hands
to eat, to write, or to turn on the light switch. We can even accomplish more complex tasks
such as assembling furniture which requires the use of various tools and coordination
between both hands to hold the pieces together.

And perhaps the most fascinating part of our use of hands is that we pay little attention
to how we actually control our hands. Most of the time, we are thinking about what we
want to do with the target object after we acquire it, not how we want to bend our fingers
in what order to pick it up. Use of hands is just a natural way for us to interact with this
world.

On the other hand, the use of hands in personal computing devices such as desktop
computers or smartphones has been somewhat different due to the fact that we are inter-
acting with a 2D virtual world in a screen. Instead of freely using our hands to grasp 3D
objects directly like we would in reality, we rely on tools such as a mouse or a touchscreen.
These tools are excellent for interacting with a 2D environment, because they provide re-
liable and precise tracking of 2D movements on a surface.

However, with the advent of consumer level virtual reality (VR) technology, the time
has come for us to consider a suitable interface to interact with a 3D virtual world. Given
our observation of how natural it is for us to use our hands to interact with real-life 3D
objects, it is only logical that we let users interact with VR using their own hands.

Indeed, this is precisely what the industry is doing. Mainstream virtual reality headsets
such as Oculus Rift, HTC Vive, and the Playstation VR all support and encourage the use
of their hand tracking controllers (figure 1.1). The hand controllers enable users to grasp
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(a) Oculus Touch for Oculus Rift VR
system.

(b) Playstation Move controller for
Playstation VR.

Figure 1.1: Examples of VR hand tracking controllers.

various objects in sandbox games like Toybox, shoot guns in The London Heist, and cast
spells with gestures in The Unspoken. Nonetheless, there are still some challenges for use
of hands in VR.

The first challenge is that because it is difficult to track hands directly, hand controllers
have to be used instead of using our hands directly. And the problem with controllers
used in popular VR systems is that they do not provide us with all the freedoms of our
hand movement. As tools that are held in our hands, the controllers track gross position
and orientation of the hand and provide us with some buttons to trigger pre-programmed
actions. The current generation of VR systems take this approach, because the tiny size
of our hands relative to our body, combined with the numerous degrees of freedom in
our hands make hand tracking from outside very challenging. The problem is further
exacerbated by occlusions: either by hand parts blocking out itself or by objects that are
held within the hand. If we can overcome these challenges and allow users to utilize all
degrees of freedoms of our hand movement, new VR interaction modes will be possible
such as solving an intricate puzzle box in I Expect You to Die or adding spins to basketball
shoots in VR Sports Challenge.

Another critical challenge in use of hands in VR is the tracking delay. VR headsets
already adopt prediction for their head tracking in order to reduce the delay between mea-
surement of user’s actual head pose and rendering of virtual scenes from that head pose
(motion-to-photon delay). Without reducing the motion-to-photon delay, users are cer-
tain to experience motion sickness from the mismatch between perceived head pose from
proprioception and head pose from rendered perspective. However, a similar method for
reducing hand tracking delay is more challenging, because hand movements are less con-
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(a) Control and perception for personal
computers.

(b) Control and perception for current VR
systems.

(c) Control and perception for an ideal VR
system.

Figure 1.2: Control and perception for current and ideal systems.

strained than the head movements. Although delays in hand tracking will not likely cause
motion sickness, delays will cause difficulty during fast-paced activities that require fine
motor control such as a VR tennis game. Furthermore, when we are interacting with other
people over the network (which is likely a very essential use of VR due to its removal of
physical barriers), we will experience delays in other people’s actions. This will make it
difficult for people to collaborate or play against each other in activities that require the
use of hands.

Last but not least, all of the above problems need to be addressed in real-time, because
VR systems are interactive. Not only does this mean that our methods have to be com-
putationally efficient, this also means that we do not have the ability to fix our outputs
retrospectively.

We summarize the flow of control and perception for various systems in figure 1.2.
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For traditional personal computers, we have both indirect control through input devices
and indirect perception through a flat screen (figure 1.2a). Current VR systems make a
step forward by allowing users to perceive the virtual world in a direct and natural manner
through the use of VR headsets (figure 1.2b). Still, users of the current VR systems have
indirect control through the use of hand controllers. We propose a step towards the ide-
alized VR system where all control and perception are direct (figure 1.2c) by overcoming
the aforementioned challenges.

In order to overcome these challenges, we build upon some insights of hand motion
and propose a framework for estimating and predicting hand pose in real-time.

The first insight is that hand movement is usually coordinated, and although we have
many joints in the hand, due to the anatomy of muscles in the hand, many joint move-
ments are correlated. This insight lets us simplify the hand pose problem as a set of simple
quadratic functions which successfully estimate the entire hand pose by tracking the fin-
gertip positions. In section 4, we propose a method to estimate the 3D hand pose from 2D
fingertip positions given by a commonplace multi-touch tablet.

The second insight is that for many activities where hand-eye coordination is required,
the eye gaze leads hand movement by a significant amount of time. This observation
allows us to not only exploit the position of the gaze, but also the timing in order to
develop a new prediction model. In section 6, we propose a method to predict the hand
pose by tracking user’s hand and eye movements. Then, we apply our findings to a VR
experiment (chapter 7) and evaluate user experience in a user study (chapter 8).

This thesis presents a framework that addresses challenges in use of hands in VR. Our
contributions are a two-part framework which may be used independently of each other:

• The hand pose estimation framework shows that a simple model can significantly
ease the problem of hand tracking. As long as the fingertips are reliably tracked, we
can estimate the entire hand pose.

• The hand pose prediction framework shows that using gaze improves early grasp
type prediction accuracy, and this early prediction can be used to generate hand
pose.

We hope our framework sheds light on the nature of hand motion and show that other
signals such as gaze can be helpful in improving hand pose prediction.

4



Chapter 2

Contributions

2.1 Contributions of the Hand Pose Estimation Frame-
work

Our hand pose estimation framework can estimate the entire hand pose from fingertip
positions tracked by a multi-touch device in real-time. The contributions of our method
are:

• We give the first example of hand pose estimation from multi-touch input.

• We introduce the quadratic encoding technique for smooth hand pose estimation
from fingertip positions.

• We demonstrate that changing contacts can be handled gracefully by using the same
quadratic function for all contact conditions.

• We present an algorithm for estimating which fingers are responsible for which con-
tact on a multi-touch input device.

• We demonstrate that quadratic encoding can represent joint angle values success-
fully even for hand motion in manipulation tasks.

5



2.2 Contributions of the Hand Pose Prediction Frame-
work

Our hand pose prediction framework can predict grasp type early by tracking user’s current
hand pose and gaze. Then, it outputs an appropriate hand pose based on the predicted grasp
type. The contributions of our method are:

• We show that gaze information improves grasp type prediction, especially among
similar grasps at different locations.

• We show that gaze information improves grasp type prediction not only in real-life,
but also in virtual reality.

• We show that it is possible to generate hand pose based on the predicted grasp type.

• We show in a user study that users quickly adapt to the hand pose prediction frame-
work, and they are faster at grasping with the hand pose prediction framework.
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Chapter 3

Related Work

This work could not have existed without building upon the knowledge base of numerous
related works. In this section, we summarize a selection of related works by dividing
them up with regards to their relevance to hand pose estimation (section 3.1) or hand pose
prediction (section 3.2), then by grouping them into similar subtopics.

3.1 Hand Pose Estimation

Hand pose estimation is the problem of estimating the current pose of the hand given
some set of features related to the hand in the current time step. Here, we outline the
works related to our hand pose estimation approach.

3.1.1 Animating Hands

The difficulty of animating hands is a well recognized problem and there has been a great
deal of research directed towards this problem. Animation of hands has been approached
from the perspectives of modeling hand geometry [Gourret et al., 1989, Kry et al., 2002,
Albrecht et al., 2003, Huang et al., 2011, Garre et al., 2011], modeling hand anatomy and
muscle forces that drive hand motion [Albrecht et al., 2003, Tsang et al., 2005, Sueda
et al., 2008], modeling the process of grasping [Rijpkema and Girard, 1991, Pollard and
Zordan, 2005, Zhao et al., 2013], understanding the dynamics of contact and modeling
grasp contact forces [Kry and Pai, 2006, Kry et al., 2008, Bai and Liu, 2014], and creating
manipulation motions from task goals and constraints through optimization [Liu, 2008,
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2009, Mordatch et al., 2012, Kumar et al., 2014, Bai et al., 2016]. Although our work
does produce animated hands, the aim is different in that we are trying to estimate user’s
hand pose in real-time using a commonplace input device rather than producing a realistic
animation.

3.1.2 Hand Motion Capture

Diverse methods used for hand motion capture are well outlined in Sturman and Zeltzer
[Sturman and Zeltzer, 1994]. In this area, Majkowska et al. [Majkowska et al., 2006]
recognizes the difficulty of capturing full-body motion and hand movement at the same
time, and proposes a method for combining the two motion captures after the fact. Some
people choose to use specialized glove hardware to capture the hand motion as outlined
in Zimmerman et al. [Zimmerman et al., 1987]. Vision based approaches to hand motion
capture have been developed by a number of researchers with the primary goal of scene
or action understanding (e.g., [Oikonomidis et al., 2011a, Ballan et al., 2012]) or in the
context of robotics applications such as learning from imitation (e.g., [Romero et al., 2010,
Kjellstrom et al., 2008]). Wang and Popović [Wang and Popović, 2009] demonstrated
compelling results for hand tracking to the graphics community using a single camera
and a color glove. More recent works in the area adopt the use of depth cameras either
in combination with marker-based motion capture [Zhao et al., 2012] or in completely
markerless settings [Oikonomidis et al., 2011b, Wang et al., 2011, Keskin et al., 2012,
Zhao et al., 2013, Xu and Cheng, 2013, Tompson et al., 2014, Sharp et al., 2015, Sun
et al., 2015, Ge et al., 2016, Simon et al., 2017]. However, to our knowledge, there has
been no previous research to extract hand pose from multi-touch inputs, even though multi-
touch devices are widely available and inexpensive, as well as providing precise fingertip
positions and giving the user some sense of tactile feedback.

3.1.3 Estimation from Reduced Dimensional Input Data

Some researchers have also focused on estimation from reduced dimensional input data.
For example, Chai and Hodgins used a reduced set of markers to match motions in their
database captured with full set of markers [Chai and Hodgins, 2005]; Liu and his col-
leagues also explore estimating motions from a reduced marker set [Liu et al., 2006]; Yin
and Pai and Bränzel and his colleagues estimate full body motions from pressure-sensing
floor [Yin and Pai, 2003, Bränzel et al., 2013], and Slyper and Hodgins use five ac-
celerometers to match the acceleration information in the database [Slyper and Hodgins,
2008]. Some even suggest how to effectively choose the reduced marker set and estimate
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hand motions from these markers [Kang et al., 2012, Wheatland et al., 2013, Schröder
et al., 2015]. Many of thes approaches use techniques related to nearest neighbor or local
models. We show that in our case, nearest neighbor approaches are prone to generating
discontinuities in pose, whereas our quadratic encoding approach produces smooth results.

For hands in particular, El Koura and his colleagues estimate hand motions specifically
for guitar playing, using a motion capture database to capture sympathetic motions of the
fingers [ElKoura and Singh, 2003]. Hamer and colleagues [Hamer et al., 2011] estimate
hand motion from object motion by retrieving acceptable hand motions from a captured
database. Ye and colleagues [Ye and Liu, 2012] estimate plausible hand motion from
motion capture of the full body up to and including the wrist along with motion capture
of the manipulated object. Mulatto et al. perform an inverse kinematics approach based
on thumb and index finger positions measured by a haptic device, taking into account a
set of linear dependency between the joint angles that they call synergies [Mulatto et al.,
2013]. Hoyet and colleagues [Hoyet et al., 2012] provide evidence from human subjects
experiments for the perceptual validity of estimating hand motion from reduced marker
sets. Chang and her colleagues [Chang et al., 2007] explore minimal marker sets for grasp
discrimination.

3.1.4 Quadratic Encoding

Quadratic encoding has been used previously to encode energy values and center of mass
trajectories for different foot placements in humanoid robot walking [Kim et al., 2013].
However, to our knowledge there has been no attempt to encode joint angles in this manner
as we do in our work.

3.2 Hand Pose Prediction

Hand pose prediction is the problem of predicting the future pose of the hand given some
set of features related to the hand in the current timestep. Here, we outline the works
related to our hand pose prediction approach.

3.2.1 Biological Research on Gaze

Biological studies show that gaze fixations allows us to predict spatial goals and timing of
actions. For example, a study by Johansson et al. shows that subjects almost exclusively
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fixate on landmarks critical for object manipulation [Johansson et al., 2001]. Another
study by Hayhoe et al. suggests that location of fixation is highly dependent on the in-
tended task. They found subjects fixate the middle of the jar for grasping and the rim
for putting on the lid [Hayhoe et al., 2003]. This agrees with findings by Land that eye
movement strategies are very task-specific [Land, 2006]. The survey by Flanagan et al.
summarizes that gaze fixations not only predict the spatial goals of sequential actions, but
also the timing of the actions [Flanagan et al., 2006]. The timings seem to vary by task.
Studies found that gaze leads grasping actions by about 1s during a bar moving task [Jo-
hansson et al., 2001] and by about 0.56s during a tea making task [Land et al., 1999]. For
moving objects, Bulloch et al. found their subjects to fixate on the leading edge in the
direction of the target’s movement, but eventually converge their gaze towards the final
index finger contact point on the target [Bulloch et al., 2015]. These findings suggest that
gaze can give strong cues about our intended manipulation before we start performing
them. Our decision to include gaze as one of inputs to our prediction system was inspired
from these studies.

3.2.2 Gaze in Computer Animation

Biological research on importance of gaze has strongly influenced computer animation re-
search. It has been studied that gaze Earlier works have included gaze as a post-processing
step to increase realism in the animation [Yamane et al., 2004, Tsang et al., 2005]. Later
on, gaze has been used as a central part of coordinating character movements as biological
studies suggested. Yeo et al. were able to generate convincing animations for ball catching
tasks where the ball trajectory observed by the eyes guide the body movements [Yeo et al.,
2012]. Duchowski et al. go even further into modeling the gaze jitter present in natural
eye motions to make animated gaze more realistic [Duchowski et al., 2016]. Our work
differs in that we do not control the movement of eye or body to produce a convincing
animation, but predict in real-time what the human user will be doing in the near future
given the user’s gaze.

3.2.3 Prediction of Hand Motion Without Eye Tracking

There have been several studies on predicting hand motion without the use of eye tracking.
Fan et al. have studied forecasting future locations of human hands and objects [Fan
et al., 2017]. Pérez-D’Arpino and Shah use time series classification to predict targets
of human reaching motion with 70% prediction accuracy after observing 400ms of hand
trajectory [Pérez-D’Arpino and Shah, 2016]. Chan et al. were able to identify finger
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motion constraints and proposed a constraint-based motion prediction method for hand
motions [Chan et al., 2008]. Rather than predicting the full hand motion directly, we focus
on grasp type prediction and show eye gaze can improve grasp type prediction accuracy.

3.2.4 Classification and Prediction of Discrete Actions Without Eye
Tracking

Some have focused on classifying or predicting function of the hand, also without the use
of eye tracking. Rogez et al. have studied classifying grasp types from RGB-D images
without eye tracking [Rogez et al., 2015]. They were able to achieve 20% accuracy on un-
seen subjects and objects across 71 grasps collected from 8 subjects. Our combination of
hand images for grasp type prediction in chapter 6 was inspired by their work. Fermüller
et al. focuses on predicting manipulation actions such as drinking or pouring from a cup
before the hand reaches the objects [Fermüller et al., 2016]. They show that it is pos-
sible to predict the type of manipulation well before the hand reaches the object, albeit
with less certainty. Our work confirms their findings and further shows inclusion of gaze
information improves prediction accuracy.

3.2.5 Human Action Detection Using Gaze

Eye tracking has been used for detection of actions such as various steps of making sand-
wiches or moving an object to specified landmarks. Some used implicit gaze signals from
egocentric cameras [Ma et al., 2016, Matsuo et al., 2014, Bertasius et al., 2017] and oth-
ers used explicit gaze signals captured by a dedicated tracker [Fathi et al., 2012, Li et al.,
2015, Pinpin et al., 2016]. All of these works show that our actions are closely coupled
with our attention which can be inferred from our gaze.

3.2.6 Action Prediction in Human-Robot Interaction

In robotics, human motion prediction as a part of human-robot interaction exist in many
different works. Foka and Trahanias have modeled prediction of human walking destina-
tions to aid in autonomous robot navigation [Foka and Trahanias, 2010]. Broz et al. further
generalizes their approach to model more general notion of human intention and time-
dependent action. They use this human intention model to determine a human driver’s
intention in a Pittsburgh left turn simulator [Broz et al., 2013]. Jain et al. explore how a
human driver’s action among a group of possible actions can be anticipated using recurrent
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neural networks [Jain et al., 2015]. Other work utilizing user intent inference for teleoper-
ation also exist [Yu et al., 2005, Dragan and Srinivasa, 2013, Hauser, 2013]. Koppula and
Saxena anticipate human activities by considering object affordances [Koppula and Sax-
ena, 2016]. Our work tries to go beyond predicting the action classification and includes
predictions of the hand pose as well.

3.2.7 Gaze as an Interface

Because gaze is closely coupled with our intended actions, there have been many efforts
in using gaze as an interface for interacting with virtual environments. The study by Tan-
riverdi and Jacob shows that eye movement-based interaction was faster than pointing,
especially for distant objects [Tanriverdi and Jacob, 2000]. Pinpin et al. studied utilizing
gaze as an interface for controlling a future hybrid bionic system [Pinpin et al., 2008].
By detecting gaze fixations at obligatory landmark areas near object contact points, they
showed that they can predict the target contact points and trigger appropriate robot move-
ment commands. More recently, Pfeuffer et al. have studied using gaze in conjunction with
hand based gestures for interacting with virtual targets [Pfeuffer et al., 2017]. Because of
the usefulness of gaze, we believe eye tracking will be included in future generation virtual
reality headsets.

3.2.8 Gaze Prediction

Our method heavily relies on gaze data, but this data can be predicted from previous mo-
tion data without using a gaze tracker. Studies show that gaze can be predicted using
various cues in one’s actions [Ou et al., 2008, Li et al., 2013].

3.2.9 Estimation from Reduced Dimensional Input Data

Estimation of human motion from as outlined in section 3.1.3 has some relevance to hand
pose prediction in the sense that they give understandings of which features of the motion
are important. However, the fact that we are trying to predict future motions of the hand
distinguishes this work from theirs.
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3.2.10 Understanding Hand Grasps

Predicting hand motions cannot be done without understanding the motions first. Cai et al.
show that machines can learn to distinguish grasps based on their appearances [Cai et al.,
2015], and the performance is further improved when object attributes are considered [Cai
et al., 2016]. In a different context, we also show that machines can learn to distinguish
grasps, and this result is improved when gaze information is included.

3.2.11 Human Motion Generation

Various works have explored using probabilistic models trained on motion capture data
for generation of stylized human motion. Models such as bilinear spatiotemporal basis
models [Akhter et al., 2012], Hidden Markov Models [Brand and Hertzmann, 2000], linear
dynamical systems [Pavlovic et al., 2001], Gaussian process latent variable models [Wang
et al., 2008, Urtasun et al., 2008] and its multilinear variants [Hsu et al., 2005, Wang et al.,
2007], and dynamical models based on Restricted Boltzmann Machines [Taylor et al.,
2007, Sutskever et al., 2009, Taylor and Hinton, 2009, Taylor et al., 2010] have been used
to model full body human motions. These models were then used to either predict missing
motion data by filling them in or through extrapolation, or to improve performance in
human motion tracking through predictions. A more recent work by Fragkiadaki et al.
showed that recurrent autoencoder networks [Fragkiadaki et al., 2015] can outperform
many of the above mentioned methods and produces stable prediction results over long
periods of time. We also use recurrent neural networks which are good at learning complex
sequence of gaze patterns.

3.2.12 Learning Control Policies

Some groups have explored learning the underlying control policies rather than generating
the motions directly. Tan and colleagues have proposed a method to search for both the pa-
rameterization and the parameters of a policy and demonstrated the use in various bicycle
stunt animations [Tan et al., 2014]. Others sought to learn the control policies from exam-
ple motions by using random walks [Liu et al., 2016] or by using inverse optimal control
[Mainprice et al., 2015, 2016]. Our work generates hand pose from predicted grasp types
which consider the timing and history of the motion through the use of long short-term
memory units (LSTMs).
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Chapter 4

Hand Pose Estimation from Fingertip
Positions

In order to get us a step towards direct manipulation in VR, one of the biggest challenges
we must overcome is the difficulty of tracking hands. Because of the small size of hands
relative to our body along with their susceptibility to various occlusions, many VR systems
provide a set of hand controllers instead of directly tracking the hands. However, these
controllers do not provide with all the freedoms available in our natural hand movement.

One way to overcome the difficulty in tracking hands is to track a few reliably tracked
features of the hands and to estimate the entire hand pose from these features. In order to
make a step towards being able to use our hands directly in VR environments, we propose
a method to estimate the entire hand pose from fingertip positions which are easily tracked
using a multi-touch device.

We used a multi-touch device to track the fingertip positions, because they are widely
available and inexpensive, they deliver precise fingertip position information, and they
provide some feeling of touch to the user and support for the hand, features which may
be important for successful virtual manipulation. However, in order for our estimation
method to be practical, we must be able to estimate complete hand poses from fingertip
positions in real-time. Furthermore, the result should be simultaneously smooth, con-
trolled, precise, and natural.

We present a quadratic encoding approach that allows us to create smooth, natural
hand motion in real-time from multi-touch fingertip inputs. A quadratic function is used
to evaluate each joint angle in the hand model from the captured fingertip positions and
the contact status. Thus, we need N different quadratic functions to restore the posture of
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an N-dof hand model. A relationship between the fingertip state and the full hand configu-
ration is learned from a hand motion database captured using a conventional marker-based
system and encoded offline as quadratic functions for use in online pose estimation.

We do not explicitly assume a reduced dimensional configuration space which is often
used to improve processing speed but can limit the performance in representing diverse
hand postures. However, representing hand postures as quadratic functions of multi-touch
inputs reduces the dimensionality of the stored space of natural hand motions in a different
manner, as only coefficients of our quadratic functions need to be stored. We show that
our quadratic encoding approach can outperform PCA based inverse kinematics in both
quality of results and computation time. While our quadratic encoding approach produces
high quality results in real-time, PCA based inverse kinematics is considerably slower.

There are three main benefits to using quadratic encoding for online hand motion esti-
mation:

• Quadratic encoding produces smooth pose transitions by providing similar outputs
for similar inputs.

• Quadratic functions are trivial to compute, leading to fast estimations in real-time.

• Hand poses with different fingers contacting the multi-touch device can be handled
in a seamless manner, using the same encoding functions.

This section details our quadratic encoding approach, including how we handle chang-
ing finger contacts on a multi-touch surface. Our results show that quadratic encoding
is superior to linear encoding, cubic encoding, nearest neighbor, and PCA based inverse
kinematics. We demonstrate the ability to simulate a hand manipulating objects in a virtual
environment in real-time using a multi-touch device as input.

The contributions of our method are:

• We give the first example of hand pose estimation from multi-touch input.

• We introduce the quadratic encoding technique for smooth hand pose estimation
from fingertip positions.

• We demonstrate that (perhaps surprisingly) changing contacts can be handled grace-
fully by using the same quadratic function for all contact conditions.

• We present an algorithm for estimating which fingers are responsible for which con-
tact on a multi-touch input device.
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Figure 4.1: System flow. Quadratic encoding coefficients are computed offline from train-
ing data and used online for hand pose estimation from multi-touch input.

• We demonstrate that quadratic encoding can represent joint angle values success-
fully even for hand motion in manipulation tasks.

4.1 System Overview

An overview of our system is shown in figure 4.1. The problem we address here is esti-
mation of the user’s hand pose given the location of the user’s fingertips. Our system’s
input is a set of 2-dimensional fingertip positions from an iPad® 2. There may be any-
where from one to five fingertip positions representing one to five fingers in contact with
the multi-touch device. Notably, the fingers are not identified, so we do not know at this
stage which finger is making contact at which position. All fingertip positions are supplied
to a pose estimation step, which has access to (1) a set of quadratic coefficients which have
been computed offline and (2) a database of hand poses. The output of pose estimation
is hand position, hand orientation, and joint angles. The estimated hand pose is displayed
to the user to allow hand motion and object manipulation within a virtual environment in
real-time.

The process that supports hand pose estimation takes as input a synchronized training
database of hand poses and multi-touch data. This training data is preprocessed to label
the fingers in contact, and a quadratic function is learned from the labeled data for each
of the hand pose degrees of freedom. Data processing and computation of the quadratic
function coefficients are performed offline.

In the next sections, we first describe our quadratic encoding function, followed by a
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Figure 4.2: Each degree of freedom has its own quadratic encoding function.

discussion of offline training and online pose estimation.

4.2 Quadratic Encoding

Given a database of hand postures and contact information from a multi-touch device, we
aim to represent each degree-of-freedom of the hand as a quadratic function of the contact
variables. Specifically, let our input be vector u ∈ <15 as follows:

u = (p1, · · · , p5, s1, · · · , s5) (4.1)

where pi = (xi, yi) ∈ <2 denotes the position of the i-th fingertip on the multi-touch de-
vice, si denotes contact status whose value is 1 if the fingertip is in contact and 0 otherwise,
and the subscripts represent the indices of the fingertips, i.e., i = 1 (thumb), 2 (index), · · · ,
5 (little).

Then the n-th degree-of-freedom of the hand can be expressed as a quadratic function
of u as follows:

qn(u) =
∑
i≤j

aijnuiuj +
∑
i

binui + dn (4.2)

where aijn(i ≤ j), bin and dn are the coefficients that must be determined. A total of
N quadratic functions are needed to estimate the full configuration of an N-degree-of-
freedom hand model (figure 4.2). Because the u vector is 15-dimensional, we must solve
for 120 + 15 + 1 = 136 coefficients per degree-of-freedom.

For our implementation, we chose the fingertip position (xi, yi) to be given in inches
from the top left corner of the screen, and it is set as (−1,−1) if the finger is not in contact
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(si = 0). We chose to work in physical dimensions for better portability across different
multi-touch devices. The value of (−1,−1) was chosen to give some separation in the
15-dimensional input space when the fingers are not in contact. We experimented with
numbers of higher magnitude, but found that (−1,−1) achieved the best results. The
multi-touch device orientation is fixed and users are assumed to be sitting directly in front
of the device.

Our use of quadratic encoding is divided into two phases: offline training phase and on-
line pose estimation phase. During the offline training phase, we compute the coefficients
of quadratic functions using a hand pose database. During the online pose estimation
phase, we estimate the hand pose based on the given fingertip positions. Details within
these phases are given below.

4.2.1 Offline Training

Given a training set of contact inputs u corresponding to hand postures qn(u), we solve
for coefficients aijn, bin, and dn using an off the shelf least squares solver. Specifically, in
our experiments we use MATLAB’s lsqcurvefit with max iteration of 1000, and maximum
number of function evaluations of 10000 ∗ numberOfVariables. In our examples, we solve
for a total of 136 coefficients for each of 48 degrees-of-freedom, which were computed
from a training set of 7,083 input hand postures containing a wide variety of finger contact
combinations. Details of our training and test datasets are given in Section 4.4.

4.2.2 Online Pose Estimation

Pose estimation at runtime consists of four separate parts. First, we preprocess the data for
translation invariance, so that we may make more effective use of our existing database.
Second, we label the fingers in contact so that a correctly formed input vector u can be
created for computing the values of the quadratic functions in equation 4.2. Third, we use
the resulting input vector u to compute qn(u) in equation 4.2 for each degree-of-freedom
of the hand to estimate the hand pose. Fourth, if desired, we pass the estimated hand pose
through a physics simulator. These four steps are detailed below.

(1) Enforce Translational Invariance. In order to remove the input redundancy (i.e.,
the same hand pose can appear anywhere over the multi-touch device), all fingertip loca-
tions on the multi-touch device are measured relative to the leftmost finger contact point
(instead of the multi-touch device origin). Once the hand pose is estimated by evaluating
the encoding functions using the relative positions, the global location of the hand wrist is
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restored using the offset. Introducing this translational invariance to the encoding function
not only improves the encoding performance but also greatly reduces the data sample size
required to train the encoding functions.

(2) Label the fingers in contact. To label the fingers in contact with the multi-touch
device, we use the straightforward mechanism of generate and test. To estimate which
finger is responsible for which observed contact point, we check all possible combinations
of the finger indices, estimate hand pose using our quadratic encoding for each combi-
nation, and then choose the estimated pose having a minimum Euclidean distance from
the nearest pose in our hand pose database. To maintain a consistent user experience, this
identification process is performed only when an unseen finger is introduced into contact,
and the selected finger indices are kept in use until the next such change occurs.

(3) Estimate the Hand Pose. To create a hand pose using quadratic encoding at run-
time, we evaluate the quadratic function in equation 4.2 for each degree of freedom of the
hand model using the coefficients aijn, bin, and dn that have been computed offline.

(4) Apply a Physics Simulation. If physics is enabled (e.g., for object manipulation),
we set the estimated pose as the desired hand pose for a physics simulation running in the
background. In our implementation, we used Bullet for the physics engine in an out-of-
the-box settings except for setting the maximum impulse values to 100N · s. In Bullet,
velocities are corrected using impulses, and the maximum impulse value determines how
aggressively the simulator will attempt to reach the target posture. Bullet handles all col-
lision detection and response. We simply set the desired hand pose from our computed
estimation at each time step.

4.3 Comparison Methods

In order to evaluate our system, we implemented a few other methods of hand pose esti-
mation. In this section, we give a brief overview and details about our implementation of
each of these methods.

4.3.1 Nearest Neighbor

A nearest neighbor method was implemented as a naı̈ve base case test. A KD-tree datas-
tructure was created from a set of vectors of fingertip positions recorded from the multi-
touch device during training. Each vector p = (p1, · · · , p5) where pi = (xi, yi) ∈ <2,
denotes the position of the i-th fingertip on the multi-touch device as in Section 4.2. We
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chose a value of (−10000,−10000) for pi if the finger is not in contact for our nearest
neighbor implementation, so that close matches would be found only when the finger la-
beling was identical. Each p in the training database is associated with a pose q which
corresponds to ground truth joint angles.

At run-time, we follow the same procedures for translational invariance and fingertip
labeling as in the quadratic encoding method. For every multi-touch input, we identify
the nearest neighbor based on Euclidean distance in the space of multi-touch fingertip
positions (vector p). From all possible finger labeling, we select the one having the shortest
distance between the corresponding vector p and that of its nearest neighbor.

4.3.2 Other Encoding Methods

Linear and cubic encoding methods were also implemented to test against quadratic en-
coding. They follow the same procedure as the quadratic method except their joint angles
are defined as

qn(u) =
∑
i

ainui + dn (4.3)

for linear encoding and

qn(u) =
∑
i≤j≤k

aijknuiujuk +
∑
i≤j

bijnuiuj +
∑
i

cinui + dn (4.4)

for cubic encoding.

4.3.3 Principal Component Based Inverse Kinematics (PCB IK)

Inverse kinematics (IK) techniques have been explored for generating natural motion from
sparse input, especially when end effector positions are known, as in our application.
We compare our results vs. the principal component based inverse kinematics (PCB IK)
method from [Mulatto et al., 2013], which was designed specifically for estimating hand
poses. The main assumption behind this method is that there is a set of linear dependencies
between joint variables of the hand. In particular, the pose of the hand is represented by

qa(t) = Sz(t) + qm (4.5)
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where qa(t) is the vector of joint angles at time t, S is the synergy matrix of principal
components, z(t) is the vector of synergy variables at time t, and qm is the mean pose of
training data. Using qa(t) from above and qv(t) which represents the translation in the root
joint, we can compute the fingertip positions by direct kinematics:

xa(t) = K
([
qa(t)
qv(t)

])
= K

([
Sz(t) + qm

qv(t)

]) (4.6)

Our goal is to find ẑ(t) ≈
[
z(t)
qv(t)

]
that approximates z(t) and qv(t) at time t. Since

we know the fingertip positions, we can use inverse kinematics to iteratively update ẑ(t)
towards a pose that achieves the desired fingertip positions.

At time t, we perform k such iterations. Starting with ẑ(0) = ~0, we update ẑ(k) as:

ẑ(k + 1) = ẑ(k) + Csσ(k) (4.7)

where Cs is a user-defined compliance matrix and σ(k) is defined as follows:

σ(k) = Ĵ(ẑ(k))TF (k) (4.8)

where

Ĵ(ẑ) =
[
Ja(qa, qv)S Jv(qa, qv)

]
(4.9)

F (k) = xh(t)− xa(t) (4.10)

Ja and Jv are Jacobian matrices corresponding to the hand pose and root joint translation
respectively. xh(t) is the target fingertip positions at time t. For further details, we direct
the reader to [Mulatto et al., 2013].

However, unlike the original work, fingertip labels are unknown. Therefore, we per-
form an exhaustive search over possible fingertip labellings similar to that of the quadratic
encoding method except we use a different metric for determining the best labels. We
found that Euclidean distance between fingertips yielded better results than Euclidean dis-
tance between pose vectors q for identifying a nearest neighbor that would return a plau-
sible finger labeling, and so we use Euclidean distance between fingertips as our metric
for determining finger labels. Upon some investigation, we observe that the IK technique
does not estimate poses from the database especially faithfully, and so using the original

22



Figure 4.3: Estimation error of PCB IK method across number of iterations
(top: translational error, bottom: joint angle error).

data – i.e., the fingertip positions – to find near matches in the database is more reliable
than using the pose that the technique estimates.

The number of principal components that can be accommodated depends on the num-
ber of fingers in contact: more fingers in contact corresponds to a greater number of con-
straints that can be used to guide the PCB IK process. Each recorded fingertip position
provides us with three constraints, because we use the (x, y) position from the multi-touch
device and we can constrain the fingertip’s z value to device height while fingertip is in
contact with the device. As a result, we are able to use (number of fingers in contact)∗3−3
principal components for computing joint angles (three constraints are subtracted because
PCB IK also solves for root translations.)

With our training data, we found that for 5 fingers in contact, the available 12 principal
components capture 97% variance. For 4 fingers in contact, the available 9 components
yield 94%. For 3 fingers in contact, the available 6 components yield 87%. For 2 fingers
in contact, the available 3 principal components yield 68%. We used a diagonal Cs matrix
with values of 0.1 on the first three diagonal and 25.0 on the rest. This is because we
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Figure 4.4: Motion capture session.

use meters and radians for our translation and joint angles in our application. We tested
convergence of the algorithm vs. number of iterations and found 100 iterations to be
sufficient for good convergence (figure 4.3). PCB IK is run for 100 iterations in all of our
experiments.

4.4 Results

For our results, we train all models using a set of hand motions captured by using a conven-
tional marker-based motion capture system and a multi-touch device at the same time. We
used a conventional marker-based system from Vicon to capture the full 3D hand motions.
A total of 23 retro-reflective markers were placed on the hand, and the marker positions in
3D space are captured using 10 cameras set at a close proximity to the hand. At the same
time, a multi-touch device (iPad® 2) is used to obtain the fingertip contact positions. We
used an open source software, TUIO [TUI], for transmitting the captured touch data from
the touch device to the main computing machine. The motion capture setup is pictured in
figure 4.4.

Since there was no synchronized clock between the two systems, we synchronized the
data using the following method. First, we took the motion capture data and set a threshold
on the finger height to estimate when the finger was in contact with the multi-touch device.
Then, based on the number of contact points from the multi-touch device data, we found
the time offset that minimized the difference in 1 ms resolution. Once the optimal time
offset was found, the multi-touch contact points were matched to the closest finger in
the motion capture data and labeled accordingly. The entire synchronization process was
automated on the computer.

The hand model (figure 4.5) used in our experiments has 42 degrees of freedom in
the hand and 6 degrees of freedom at the root joint for a total of 48 degrees of freedom.
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Figure 4.5: Our hand model contains 14 ball joints shown as black circles and 6 degrees
freedom in the root joint for a total of 48 degrees of freedom.

This model is something of an arbitrary choice which was made to match the output we
obtained directly from our Vicon system. It is a redundant representation, as actual hand
motions likely exhibit many fewer degrees-of-freedom. We did not attempt to reduce the
number of degrees-of-freedom because our method performed well from the raw Vicon
data. However, our encoding technique should work equally well using a reduced rep-
resentation that better matches actual human hand kinematics, or a reduced dimensional
representation created using PCA, as long as the number of degrees-of-freedom used are
sufficient to represent the user’s actual hand motions.

For our training set, the subject was asked to perform moving, grasping, pinching,
and rotating motions with various combinations of fingers. In particular, we captured
sequences for 5 fingers, 2 different combinations of 4 fingers, 3 different combinations
of 3 fingers, and 4 different combinations of 2 fingers. These finger combinations were
chosen with the goal of representing a complete set of finger combinations that would be
commonly used, feel natural, and involve more than one finger. The training database
consists of 41 short trials of the above actions and finger combinations for a total of 7,083
postures.

The data pairs are used to train the encoding functions with least squares, as discussed
in Section 4.2. Total time for offline processing was approximately 5 minutes.

A separate database was captured on a different day, in a different motion capture
session, to be used in ground truth evaluation. Users were allowed to perform free-form
gestures on the multi-touch device as if they were interacting with a virtual clay blob.
There were some frames from this motion that used a single finger or a finger combination
that was not in the training dataset. We removed these finger combinations for a resulting
ground truth dataset containing a broad variety of motions and finger combinations in
2,538 total frames.
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Distance (cm) Angle (degrees)
Mean SEM Mean SEM

Linear 2.6419 0.0240 8.6017 0.0336
Quadratic 2.3664 0.0429 8.3840 0.0373
Cubic 4.0373 0.0922 12.3728 0.0702
NN 2.7463 0.0236 8.4193 0.0382
PCB IK 2.9907 0.0331 7.1985 0.0271

(a) Ground Truth Finger Labels Given
Distance (cm) Angle (degrees)
Mean SEM Mean SEM

Linear 3.9837 0.0510 9.0774 0.0362
Quadratic 2.5520 0.0479 8.5656 0.0368
Cubic 3.1652 0.0415 9.9411 0.0424
NN 4.5403 0.0576 10.1003 0.0449
PCB IK 4.1488 0.0440 11.7594 0.0455

(b) Finger Labels Not Given

Table 4.1: Wrist position errors and overall joint angle errors in different methods. SEM
stands for standard error of the mean.

4.4.1 Performance Comparison

Table 4.1 gives results comparing all techniques on the ground truth motion dataset. Two
experimental setups were tested. The first experiment was designed to test the raw per-
formance of each estimation technique when the input vector u (equation 4.1) does not
contain errors, i.e., when the finger labeling exactly corresponds to the true contact pattern
on the multi-touch device. Table 4.1a shows results from this experiment. Each row in the
table is a different estimation technique described above. The “Distance” columns give
the mean and standard error of the mean for Euclidean distance between the true wrist
position as measured from the motion capture data and the wrist position as estimated by
each algorithm. The “Angle” columns give the mean and standard error of the mean of
the joint angle differences between ground truth and estimation, averaged over all joint
angles in the hand model. For example, we see that for our quadratic encoding method,
translational error was 2.37cm on average, and angular error was 8.38 degrees on average,
whereas for the PCB IK approach, the corresponding errors are 2.99cm and 7.20 degrees.
In this situation where finger labels are perfect, the performance of quadratic encoding and
PCB IK are similar, with quadratic encoding performing better in estimating translations
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Accuracy (%)
2 Fingers 3 Fingers 4 Fingers 5 Fingers

Linear 52.66 34.04 64.35 66.87
Quadratic 55.66 70.72 79.36 99.88
Cubic 56.24 52.38 86.49 99.33
NN 11.78 21.34 46.74 99.55
PCB IK 51.85 51.50 48.15 62.88

Table 4.2: Finger labeling accuracy in different methods per number of fingers.

and PCB IK performing better at estimating joint angles.

The second experiment shows errors when finger labels are computed using the tech-
niques outlined in Sections 4.2 and 4.3. Specifically, all encoding techniques estimate all
possible finger labeling patterns and choose the estimated hand pose that is closest to its
nearest neighbor in the training database. The PCB IK and NN techniques simply choose
the result with nearest neighbor in the space of the input vector. Table 4.1b shows results
from this experiment. Here we see that quadratic encoding performs better than all other
approaches, and it performs substantially better than PCB IK at estimating the ground truth
pose.

To investigate performance further, we examine the accuracy of each algorithm in pro-
ducing a correct finger labeling. The same ground truth motion capture dataset is used,
and finger labelings are computed every frame. Table 4.2 shows these results. Here we
again see that quadratic encoding has the overall best performance, although cubic is able
to identify 4-finger labelings better than any of the alternatives for this dataset. For 3-
finger motions in particular, quadratic encoding performs at the 70% level, whereas cubic
and IK are both close to 50%. Even though the system sometimes gives incorrect finger
labels, we found users were able to recover easily from wrong poses by lifting their hand
and trying again, and in some cases, users were agnostic to which fingers were chosen
because it did not make a difference for the intended task. This was especially true for the
case of two fingers, where most combinations of fingers produce a similar result for object
manipulation.

Estimation error is not the only metric of interest. We are also interested in the smooth-
ness of the resulting motion. Figure 4.6 shows an example of the estimated wrist z rotation
(yaw) over a section of ground truth motion. Wrist yaw is important because it is the most
visible axis of wrist orientation for our subjects, and its smoothness and accuracy affect the
naturalness of appearance of the entire hand. From this plot, we can see that linear encod-
ing is often far from the ground truth, by as much as 60 degrees in this example. A linear
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(a) Comparison across encoding methods.

(b) Comparison across other methods.

Figure 4.6: z rotation of wrist over time across different methods.
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(a) Ground truth. (b) Nearest neighbor. (c) PCB IK.

(d) Linear encoding. (e) Quadratic encoding. (f) Cubic encoding.

Figure 4.7: Estimation results across different methods from the same input.

function does not appear to be sufficient to represent the collection of poses in the train-
ing dataset. Cubic encoding performs reasonably well in this example, but it occasionally
shows large divergences, such as the one at 0.8 seconds. Such divergences are also seen
in the accompanying video. These divergences suggest that cubic encoding may be over-
fitting to the training dataset. When inputs diverge from those seen in the training data,
cubic encoding may perform poorly. The nearest neighbor approach is also often far from
the ground truth, indicating that this example may be somewhat outside the range covered
by the training dataset. In addition, it can give non-smooth results, as shown especially in
the range of 0.7 to 0.9 seconds. Inverse kinematics does not match the ground truth well at
times (e.g., around the 0.6 second mark). In addition, it is quite noisy, with solutions show-
ing some oscillatory variation of 5 to 10 degrees from frame to frame. Quadratic encoding
does a much better job of staying near the ground truth. It is also substantially smoother
than the other estimation methods. We believe the smoothness is a direct result of using
a continuously smooth quadratic function for encoding. As long as sudden input changes
do not occur, the quadratic function guarantees a continuously smooth output value.

Figure 4.7 shows some side by side comparisons of the various approaches, indicating
some of the failure modes that are observed. The nearest neighbor method (figure 4.7b)
has trouble matching the fingertips to the target location, because the given pose is not
in the training database. Inverse kinematics method (figure 4.7c) on the other hand, tries
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to fit the target position excessively and produces an unnatural pose. Note that the pose
generated by the IK method does not always reach the user’s contact points because we use
a limited number of principal components. Across the encoding methods on the bottom
row of figure 4.7, we can see that quadratic encoding (figure 4.7e) generalizes best over
the training data and handles unseen data well.

More comparison examples can be found in the accompanying video. Please note the
ground truth comparisons in the demo video show the results from computing finger labels
for every frame to best give a sense of the raw performance of different algorithms. For
this reason, the comparison results show large numbers of discontinuities for some of the
methods. In the rest of the demos, the finger labels were kept until contact change, as
outlined in our work.

4.4.2 Manipulation Demos

We tested our real-time system for ability to allow users to manipulate objects in a virtual
environment. Subjects were given the tasks of moving a virtual box to a goal position,
rotating a virtual wrench and sliding it to a goal position, and sliding a virtual box around.
The accompanying demo video shows the results of these tasks and figure 4.8 shows some
captures of these tasks. All of these tasks were successfully performed without any special
instructions or training of the subjects.

We also tested users with more challenging tasks where keyboard commands allowed
users to translate the hand in all three dimensions. Subjects were given the tasks of moving
the wrench to a target position on top of a box and rotating it, and stacking three boxes on
top of each other. The accompanying demo video also shows the results of these tasks and
figure 4.9 shows screenshots of the video.

Note that no manipulation motions or transitions between different contacts were in-
cluded in the training data. Instead, the training data consisted of short, isolated “scrub-
bing” type motions with fixed finger contacts. We suspect that a training set more specific
to the task would give even better results.

4.5 Discussion

We have introduced a quadratic encoding technique for estimating hand pose from fin-
gertip positions obtained from multi-touch devices in real-time. We have shown that this
technique offers smooth, natural results with changing contacts and performs well even
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(a) Rotating wrench with thumb and middle finger.

(b) Rotating wrench with thumb and pinky.

(c) Sliding box with four fingers.

(d) Moving box to target.

Figure 4.8: Various manipulation tasks using only multi-touch device.

(a) Moving wrench to target.

(b) Stacking boxes.

Figure 4.9: Various manipulation tasks using multi-touch device and keyboard.
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though finger identities are not available from the input data. In this section, we further
discuss why use quadratic encoding and cover limitations and future opportunities of this
research.

4.5.1 Why Quadratic Encoding?

Why should quadratic encoding perform better than competing approaches? In its simplest
form, the quadratic encoding method can be thought as a kind of approximation for the
inverse transform, or inverse kinematics of the hand when in contact with the multi-touch
device. The inverse kinematics function, which takes the end-effector position as input
and returns the joint angles as output, is highly nonlinear. Even for a very simple two-
link manipulator, the inverse kinematics solution involves a nonlinear arctangent function
which is difficult to linearize. Our intuition is that the nonlinearity is important. However,
the range of natural human finger motions is quite limited. Thus, a very simple nonlin-
ear function – the quadratic function which we pose here – can approximate the inverse
transform very well within the range of hand motions accommodated by our input device.
More complex inputs may require more complex functions in order to represent the data
well.

We can also ask why introduce quadratic encoding when we already have IK tech-
niques that are widely used, are comparatively easy to implement, and have proven to be
quite reliable in other circumstances. We have two answers to this question. First, a basic
IK was actually the first approach which implemented, following the approach described
in [Toh et al., 2012]. We subsequently implemented principal component based IK as
described in [Mulatto et al., 2013] with the hope of obtaining more pleasing results. In
both cases, we found that it was difficult to control the hand to move in the way we would
expect, as the IK approach favored certain directions in pose space, which did not always
match what the user was trying to do. Too much movement in any one direction would
produce awkward and unnatural looking poses. In addition, it proved difficult to produce
IK results that were both smooth and did not diverge from natural looking poses. We con-
clude that it is much better to use a learned transformation directly from inputs to outputs
and demonstrate that the simple quadratic function that we propose here performs very
well, as shown in the results and the accompanying video.

We further note that quadratic encoding dramatically outperformed the IK approach in
terms of finger labeling. Use of a multi-touch device presents the interesting challenge of
having precise fingertip positions but no idea of which finger is responsible for which con-
tact. Quadratic encoding is capable of estimating natural hand poses so well that it can use
the estimated pose to identify likely finger labels, producing a more seamless experience
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Computation Time (ms)
Linear 0.0021
Quadratic 0.0021
Cubic 0.0519
NN 0.0446
PCB IK (100 Iterations) 66.1898

Table 4.3: Computation time per pose across different methods.

for the user, whereas the IK approach fails in this regard, as shown in Tables 4.1b and 4.2.

In addition, quadratic encoding is extremely fast for real-time operation. With the IK
technique that we tested, we were always pushing the boundaries of real-time performance,
and when we were faced with the problem of resolving finger labels in addition, obtaining
responsive estimations became very challenging. Table 4.3 shows timings for the various
techniques discussed in our work. The table shows per pose computation time across
different methods, which means that the actual computation time per frame can be many
times higher if labeling is unknown. The computation times were computed on a machine
with Intel® i7-2600 Quadcore CPU @ 3.40GHz.

There are other well known methods of regression such as radial-basis functions [Rose
et al., 1998] and Gaussian process regression [Ikemoto et al., 2009] that would be inter-
esting to compare against our approach. However, these alternative techniques can have
difficulties with smoothness because of their ability to model more complex functions. We
have seen that using a single low order encoding function, as we do with quadratic encod-
ing, results in smooth and consistent results over the entire input space, even for situations
when abrupt changes in the input occur such as lifting or putting down of the fingers on
the multi-touch device. We believe that this smoothness and consistency gives quadratic
encoding an advantage, especially for virtual manipulation tasks where smooth consistent
behavior is critical. Fully testing this hypothesis, however, is left to future research.

4.5.2 Limitations and Future Work

There are several limitations of our system. First, the system is limited to estimating hand
poses where at least two fingers are placed on the multi-touch surface. In addition, the
multi-touch device does not identify non-fingertip contacts (e.g., contacts by knuckles),
and this limits the types of hand poses that can be estimated by our system. However, we
believe that our method can be generalized easily to a broader range of hand pose captures,
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given a mechanism for localizing and identifying important landmarks on the hand such
as the fingertips and knuckles. Using one or more depth cameras would be a promising
approach to extending our system. Incorporating new multi-touch technologies, such as
sensing fingers with no touch [Sony Mobile, Inc.] and distinguishing between different
parts of the finger on a multi-touch device [Qeexo Inc.], would also increase the capability
of our system in the future. In general, our estimation approach is complementary to tra-
ditional motion capture. Theoretically, we can take as input whatever inputs are available
and reliable and learn simple estimations from those inputs, which can be computed very
quickly at runtime.

A second limitation is that we can only handle cases with more than one finger, because
for a one finger case, there is too much ambiguity as to which finger it can be. We may be
able to overcome this limitation by using more information on the contacts such as contact
surface area in the future. Incorporating other system for finger contact identification (e.g.,
using a color based sensing similar to [Wang and Popović, 2009]) may further improve the
overall estimation performance of our quadratic encoding technique.

Finally, we do not enforce environment contact for the physical simulation for fingers
that are in contact with the multi-touch device – we are working from raw data only. This
is to show the actual performance of the encoding method. It could easily be fixed in an
actual manipulation application with some inverse kinematics.

Although our training data only includes short, isolated “scrubbing” type motions with
fixed finger contacts, we demonstrate various manipulation tasks. We believe that with the
use of a more task dependent training data, users will be able to perform manipulation tasks
with more ease and better accuracy. One may even keep a set of various task dependent
training datasets and swap them out on a need basis according to the given task.

In the future, we hope to see how our method can coexist and actually boost per-
formance of specialized hardware for hand pose tracking such as Leap Motion ([Lea])
or 3Gear Systems ([3Ge]). Our method of hand pose estimation is a form of regression
which takes lower dimensional data and maps to the full dimension. It can supplement
vision based devices to help in cases where there are occlusions to parts of the hand. Due
to its simplicity, it can also be used in combination with other algorithms in a decision
forest type of setting without adding much overhead.

There is also a new trend towards immersive virtual environments. With new exciting
display technology such as Oculus Rift, it is only natural that users would want to see a real
hand in the virtual environment even for tasks that require only simple gestures. With the
help of precise fingertip positions provided by a multi-touch device, our work can provide
an intuitive real time feedback in immersive virtual environments.
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In summary, we find that human motions can be encoded with simple quadratic encod-
ing functions that are trivial to evaluate and produce smooth pose transitions. Quadratic
encoding may be useful in approaches beyond estimating hand pose, including full body
pose estimation when constraints can be reliably obtained either through observation or
user input.
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Chapter 5

Observations of Hand-Eye Coordination

(a) Laboratory view. (b) Egocentric view.

Figure 5.1: Toy truck assembly task.

Before we delve into hand pose prediction, we would like to present our motivations
for using gaze to enhance hand pose prediction. To observe behaviors of gaze, we have
captured a toy truck assembly task (figure 5.1). The eye movement during these activities
were captured using an SMI Eye Tracking Glasses. Using this data set, we made many in-
teresting observations that agree with previous literature from section 3.2.1 that gaze leads
hand movements [Johansson et al., 2001], and it often gives cue for position and timing of
the action [Flanagan et al., 2006]. In this section, we will summarize our observations of
hand-eye coordination and discuss how each observation can help us to predict hand pose.

We present our observations of gaze behavior during different actions. We break up
actions into grasping actions, manipulation actions, tool use actions, and inspection ac-
tions. We define grasping action as an action in which a hand moves towards the object in
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order to grasp the object into possession. Manipulation actions consist of the hand mov-
ing in order to to achieve a higher level goal than just grasping an object into possession.
Examples of manipulation actions include spreading peanut butter on a piece of bread or
tightening a screw to hold toy truck parts together. Tool use actions area actions in which
a tool held by the hand interacts with other objects. Tool use actions are usually part of
a manipulation action. Finally, inspection actions are actions in which hands orient the
object to inspect task completion.

5.1 Gaze During Grasping Actions

The first observation is that the gaze leads the grasp by an average of 0.726s during grasp-
ing actions. The timing we observed is consistent with findings in previous literature
[Johansson et al., 2001, Hayhoe et al., 2003]. Our average was obtained by measuring
timings of all instances of grasping actions during the toy truck assembly task. The mea-
surements were obtained by noting the time difference between the moment gaze focuses
on the target object and the moment the hand touches the target object. Detailed timings of
individual grasping actions are shown in figure 5.2 and table 5.1 lists the objects grasped
during these actions. Some objects were grasped multiple times during the sequence.

Objects
Bolts
Drill Body
Nuts
Phillips Screwdriver Bit
Truck Base
Truck Cab
Truck Chassis
Truck Crane Base
Truck Crane Beam (Left, Right)
Truck Crane Beam Extension
Truck Crane Body
Truck Seat
Wheels

Table 5.1: List of objects grasped during our analysis of grasping actions.

This observation that the gaze leads the grasp is the key foundation in our approach of
using the gaze to predict hand pose. We claim that because gaze gives out strong cues of
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Figure 5.2: Delay between gaze and grasp in the toy assembly task.
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the user’s intention before the hand even touches the object, gaze can improve hand pose
prediction performance.

5.2 Gaze During Manipulation Actions

The second observation is that gaze leaves for the next target object immediately after a
manipulation action is finished. Figure 5.3 shows the start and end times for object manip-
ulation and gaze fixation during eight different manipulation actions that happen during
the same one minute segment of toy truck assembly. It can be seen that end times for gaze
fixation and object manipulation lines up. The gaze does not necessarily precede object
manipulation because of our definition of manipulation action. The target objects are usu-
ally already in possession of the hand when the manipulation action starts. Descriptions
of the manipulation actions can be found in table 5.2.

Figure 5.3: Manipulation time and fixation duration.

This observation gives us the insight that when the position of gaze changes, it signals
the end of the current manipulation action and that a new intent should be predicted. We
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Task Description
Task 1 Place truck seat on top of the truck chassis.
Task 2 Fit the Phillips screwdriver bit on the drill body.
Task 3 Screw a bolt to fix truck seat on the truck chassis.
Task 4 Fit truck cab around the truck chassis.
Task 5 Fit truck base on top of the truck chassis.
Task 6 Screw a bolt to fix upper left corner of the truck base.
Task 7 Screw a bolt to fix right side of the truck base.
Task 8 Screw a bolt to fix lower left corner of the truck base.
Task 9 Fit truck crane base on truck base.
Task 10 Fit truck crane body on top of truck crane base.

Task 11
Screw a bolt to fix both truck crane base and truck crane body to
the truck base.

Task 12 Insert right truck crane beam into right axle of truck crane body.
Task 13 Fasten right truck crane beam using a nut.
Task 14 Insert left truck crane beam into left axle of truck crane body.
Task 15 Push left truck crane beam in more.
Task 16 Fasten left truck crane beam using a nut.
Task 17 Situate truck crane beam extension between the two beams.
Task 18 Put a bolt through the two beams and truck crane beam extension.
Task 19 Fasten truck crane beam extension using a nut.
Task 20 Attach truck crane to truck crane beam extension.
Task 21 Put a bolt through truck crane beam extension and truck crane.
Task 22 Fasten truck crane using a nut.
Task 23 Attach front left wheel.
Task 24 Fasten wheel using a nut.
Task 25 Attach rear left wheel.
Task 26 Fasten wheel using a nut.
Task 27 Attach rear right wheel.
Task 28 Fasten wheel using a nut.
Task 29 Attach front right wheel.
Task 30 Fasten wheel using a nut.

Table 5.2: List of manipulation actions.
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(a) Gaze during tool use. (b) Gaze without tool use.

Figure 5.4: Gaze behavior with and without tool use.

believe we can use these timings to switch to predictions of new actions when gaze position
shifts after a manipulation action.

5.3 Gaze During Tool Use Actions

The third observation is that when a tool is held, the tool effectively becomes an extension
of the hand. Gaze tends to fixate on the point of interaction, and we observed that gaze
fixates on the tool tip when a tool is held. Figure 5.4 shows the difference of gaze fixation
points depending on the presence of a tool in the hand. Figure 5.4a shows that the tip of
the drill is fixated on while a screw is being fastened. On the other hand, when a bare hand
is picking up a screw, the fingertip is fixated upon (figure 5.4b). This observation of gaze
behavior means that when predicting the hand pose, we must also account for if the user
is holding a tool in his hand.

5.4 Gaze During Inspection Actions

The last observation is that during inspection actions, the connection between gaze and
hands are less apparent. Rather than directly acting at the point of fixation as in previous
actions, hands stay in the peripheral vision and orient the object around while the eyes
inspect completion of the task. Figure 5.5 shows some instance of the inspection action.
In figure 5.5a, the eyes are inspecting whether the truck cab has been fit properly around
the grill. In figure 5.5b, the eyes are inspecting the seam between the truck base and truck
cab while the hands align the truck base over the groove behind the truck cab.

This observation signals us to look more closely towards the higher level intention
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(a) Inspection while aligning
the truck cab around the grill.

(b) Inspection while fitting
the truck base over the
groove behind the truck cab.

Figure 5.5: Gaze behavior during inspection actions.

during inspection actions rather than using the gaze position as a target point for hand
movement. This poses some challenge in predicting hand pose during these actions. How-
ever, occurrences of inspection actions were very rare in our data sets.

5.5 Discussion

We have confirmed findings from biological studies outlined in section 3.2.1 that gaze
leads hand movements, and it often gives cue for position and timing of the action. In our
analysis of a toy truck assembly task, we found that gaze leads the hand by an average of
0.726s during grasping actions, and duration of gaze closely aligns with object manipu-
lation time during manipulation actions. Furthermore, we have observed that when tools
are held, these tools effectively become an extension of the hand and shifts the fixation of
the gaze towards the tool tip. However, gaze behavior during inspection actions were not
directly related to hand movements, and care should be taken when relating gaze behavior
to hand movement in this context.

Overall, our observations suggest we should be able to use gaze to predict grasps, be-
cause hand movements are led by gaze during grasping actions. The observations that are
most relevant for predicting grasps are that gaze leads grasps, and gaze fixation duration
corresponds with the manipulation duration. The fact that these behaviors were prominent
in an everyday task suggests that we should observe similar behaviors in our experiments.
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Chapter 6

Augmenting Grasp Type Prediction with
Gaze

Another important problem we must solve in order to advance towards direct manipulation
in virtual reality is hand pose prediction. Predicting hand pose is an important problem in
virtual reality where there is an inherent lag between pose tracking and rendering. This lag
is further exacerbated when multiple users are trying to interact over a network connection.
Suppose two people start to reach for an object simultaneously in a virtual environment.
The delay in action delivery could cause each person to think that they have the object,
because respective local systems will not be able to receive the other person’s action until
much later. In order to prevent awkward multiplayer interactions due to disagreement
between simulation states of participating users, we must be able to predict hand pose and
render them before the hand tracking data arrives.

It is well known that hand-eye coordination is important for object manipulation, but
using this relationship to improve the accuracy of hand pose estimation is a relatively
unexplored topic. We show that we can leverage eye tracking to improve hand tracking
performance, and even predict future motions of the hand.

Eye tracking will be ubiquitous in the next generation of VR headsets, because of
its numerous benefits to VR. It can help allocate rendering resources in the focused area
with foveated rendering, allow for a more accurate stereoscopic rendering, help target
objects using gaze, and add realism to social interactions. Major VR companies are already
investing heavily into eye tracking for VR and being able to predict hand movement using
gaze will only add to the benefits of eye tracking.

In this section, we will present our work on grasp type prediction done in a real-life
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(a) Object 1 (b) Object 2 (c) Object 3 (d) Object 4

Figure 6.1: Objects used in the experiment.

setting. Our work differs from previous works in that we use eye tracking information to
improve grasp prediction. Our work also differs in that we focus on early prediction of
grasp type before the hand reaches the target object. We show that both grasp type and
grasp location prediction can be improved by utilizing gaze information. Although we
only predict discrete grasp types here, we show the potential to further improve on hand
pose prediction by demonstrating that eye tracking contains valuable information related
to future hand movement.

6.1 Grasp Type Prediction

To start building towards our hand pose prediction framework, we designed a grasp type
prediction experiment that shows gaze is helpful in predicting hand movement. The goal
of the experiment was to simplify many aspects of the hand pose prediction problem in
order to focus on a discrete grasp type prediction problem in a controlled environment.

6.2 Experimental Setup

The experiment consisted of five subjects grasping four different types of bottles (figure
6.1) using five different grasps (figure 6.2). The objects were chosen such that they repre-
sent commonplace bottles with different shapes and sizes. The grasps were chosen such
that they represent interactions with various parts of the bottles. Some grasps such as
grasps 1 & 2 and grasps 4 & 5 were chosen to see the effects of gaze behavior when
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(a) Grasp 1: body normal
grasp.

(b) Grasp 2: body backhand
grasp.

(c) Grasp 3: neck normal
grasp.

(d) Grasp 4: top precision
grasp.

(e) Grasp 5: top wrapping
grasp.

Figure 6.2: Grasps used in the experiment.
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Figure 6.3: Home positions for grasp type prediction experiment.

grasping a similar region of the bottles.

During the capture session, each subject was asked to wear the SMI Eye Tracking
Glasses. The Eye Tracking Glasses were calibrated using a 3-point calibration method.
Then, each subject was asked to perform the five types of grasps in a random order. They
were instructed to pick up the bottle briefly and put it back down at the same position to
ensure a firm grasp. Also, they were required to rest their hands and gaze at their respective
home positions before the start of each grasp (figure 6.3). The randomization of order and
home position requirement allow us to obtain data that is independent of previous grasps.
This set of five grasps was repeated repeated five times for the same object, for a total of
25 grasps.

We obtained a total of 58308 frames. The detailed breakdown of number of frames
obtained per grasp is shown in table 6.1. Because non-grasps occur between every grasp,
we have about 5 times more frames of non-grasps than any of the grasps.

6.3 Problem Setup

The problem we are solving in this experiment is an early prediction problem. Given the
data from SMI Eye Tracking Glasses at each time step, we predict the grasp type from
one of the 6 possible classes: one of the five grasps or idle. Because we predict the grasp
type at each time step, many of the predictions are performed before the hand reaches the
object. We focus on these early prediction results in our study.

The SMI Eye Tracking Glasses give us an egocentric video and gaze positions as pixel
coordinates in the video frame. The video is captured at 24 fps and gaze position is tracked
at 60 Hz. We manually labelled the begin and end times of each grasp and used this as
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Subject Object Grasp 1 Grasp 2 Grasp 3 Grasp 4 Grasp 5 Non-Grasp Total

Subject 1

Object 1 232 234 271 259 275 1581 2852
Object 2 243 242 270 276 343 1243 2617
Object 3 253 276 304 206 392 1465 2896
Object 4 234 233 263 234 274 1371 2609

Subject 2

Object 1 293 297 293 292 312 1361 2848
Object 2 319 343 338 318 337 1423 3078
Object 3 297 308 301 292 303 1388 2889
Object 4 283 297 290 267 276 1377 2790

Subject 3

Object 1 290 315 303 309 329 1583 3129
Object 2 329 372 381 350 384 1692 3508
Object 3 298 314 319 321 324 1609 3185
Object 4 285 293 294 333 302 1416 2923

Subject 4

Object 1 198 233 216 225 228 1193 2293
Object 2 214 235 254 231 258 1133 2325
Object 3 235 179 231 258 259 1295 2457
Object 4 1287 227 255 245 268 273 2555

Subject 5

Object 1 344 367 339 359 360 1434 3203
Object 2 360 422 391 401 398 1686 3658
Object 3 364 383 380 372 437 1478 3414
Object 4 332 369 349 394 374 1261 3079

Total 5630 5967 6032 5965 6438 28276 58308

Table 6.1: Number of frames obtained for each grasp.
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ground truth. The begin time was defined as the moment when the hand starts to move for
the bottle. The end time was defined as the moment when the hand is completely out of
contact after finishing the grasp.

6.4 How is Gaze Related to Grasps?

To answer the question “how is gaze related to grasps?”, we made some observations of
gaze behavior during the given tasks. Figures 6.4 to 6.8 shows the average gaze region
across all grasps in the data set, grouped by each grasp type. The average gaze is shown
in green in each of these images. We obtained these images by normalizing each grasp
instance across time into 48 time steps and averaging all the images at each time step.

The most interesting parts are in the first row for all of the grasps before the hand
reaches the bottle. We can see that for body normal grasp (figure 6.4), the gaze is focused
on the center area of the bottle before the hand reaches the bottle whereas for body back-
hand grasp (figure 6.5), the gaze is focused on the left side of the bottle. This difference in
gaze location shows that even when grasping similar area, gaze location can be different if
the contact location is different. For the neck normal grasp (figure 6.6), the gaze is focused
on the neck area before the hand reaches there as expected. For the top precision grasp
(figure 6.7) and top wrapping grasp (figure 6.8), gaze is focused on the area above the neck
towards the bottle cap. However, no obvious difference in gaze location exists between the
last two grasps. This suggests that even if the grasps are different, if the contact area is
similar, gaze alone cannot distinguish different grasps.

Another thing to note is that for all grasps, the gaze pattern diverges and focused area
gets progressively fainter towards the end of the sequence. We noticed there are variances
in the time it takes for each subject to lift and put the bottle back down. Subject 2 who
preferred to spend more time holding the bottle up fixated on the grasp location while the
bottle was held. The other subjects who were quicker at performing the lifting action did
not or only briefly fixated on the grasp. The divergence in gaze pattern after initial contact
with the bottle implies that history of gaze information should be important. Identifying
fixations at key locations in the beginning of the grasp and keeping a memory of that state
should help identify grasps across different individuals.
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Figure 6.4: Average gaze for grasp 1 (body normal grasp).
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Figure 6.5: Average gaze for grasp 2 (body backhand grasp).
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Figure 6.6: Average gaze for grasp 3 (neck normal grasp).
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Figure 6.7: Average gaze for grasp 4 (top precision grasp).
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Figure 6.8: Average gaze for grasp 5 (top wrapping grasp).

55



(a) Hand image
neural network only
uses hand image as
input.

(b) Gaze neural
network only uses
gaze position as
input.

(c) Combined network uses
both hand image and gaze
position as inputs.

Figure 6.9: Inputs and Outputs of the three neural networks we designed.

6.5 Methods

Given our observations of gaze behavior, we concluded that people tend to look at regions
not points and the timing of gaze before the hand is somewhat variable. However, there is
definitely a pattern of gaze behavior albeit with some variances. Therefore, we decided to
use neural networks which are good at learning complex patterns in data and can handle
time dependence when long short-term memory (LSTM) units are used.

We designed three neural networks in order to compare the effectiveness of hand and
gaze as separate inputs, then combine them to see if we can get a increased performance
compared to using hand and gaze as separate inputs. Figure 6.9 shows the inputs and
outputs of the three different networks. All networks output the likelihood of each grasp
type, and we take the grasp type with the highest likelihood as the final prediction. The
time step is measured in frames where the frames are 41.67 ms apart (24 fps). We will
now describe each network in more detail.

6.5.1 Hand Image Neural Network

We call the first network ‘hand image neural network.’ This network takes in two versions
of the image as inputs: the full image and a cropped image around the hand. The output of
the hand image neural network is the likelihood of each grasp class. A detailed diagram of
the components in this network is shown in figure 6.10. We employ a pre-trained VGG-
19 convolutional neural network which is originally an object detection network. Object
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2 x 224 x 224 x 3

VGG-19 Dense

4096 4096

6
DenseDense

Input Images (x2) 

PredictionFeature Vectors (x2) 

2 x 4096
Concatenate

8192

Figure 6.10: Hand image neural network. The numbers denote the dimensions of the
vectors going through each layer.

detection problem is the problem of correctly identify and draw bounding boxes around
objects. The VGG-19 network corresponds to configuration E in the work by Simonyan
and Zisserman [Simonyan and Zisserman, 2014] and it was trained with millions of im-
ages from ImageNet. We chose to adopt a pre-trained object detection network, because
in order to distinguish between numerous objects, it has to know about detecting various
shape features. Here, we repurchase the VGG-19 network as a feature extractor to dis-
tinguish between various hand shapes. The technique of taking an existing network and
repurposing it is called transfer learning, and it is quite common in the machine learning
community. The decision to use multiple versions of the input image was inspired by the
approach in Rogez et al. [Rogez et al., 2015], but we empirically determined that the full
image and cropped image combination yields the best results. Rather than using support
vector machines (SVMs) as in Rogez et al., we use neural networks to learn from the
features output by VGG-19 which we have also found to yield better results.

(a) Original frame. (b) Mean-subtracted
frame (input 1).

(c) Mean-subtracted and
cropped frame (input 2).

Figure 6.11: Input image processing for hand image neural network.
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Figure 6.12: Gaze neural network. The numbers denote the dimensions of the vectors
going through each layer.

In order to obtain the inputs to the hand image neural network, we first re-size the
images to 224 by 224 pixels in order to match the pre-trained network dimensions. Then,
we subtract mean RGB value of (123.68, 116.779, 103.939) from each pixel of segmented
hand images to zero-center the pixel values. The mean RGB value is obtained from the
VGG network. The cropped image was obtained by first segmenting the hand using the
hand segmentation tool by Li and Kitani [Li and Kitani, 2013], then cropping the image
around the centroid of the hand segmentation. Sample input images are shown in figure
6.11. These input images are processed through a pre-trained VGG-19 network which is
used as a feature extractor.

The last three layers are fully connected layers which learn the mapping between vari-
ous features outputted by the VGG-19 network to the likelihood of the hand belonging to
a grasp type.

Due to memory constraints, we ran the training with the weights in VGG-19 fixed.
We used stochastic gradient descent optimizer with learning rate of 1e−4, decay of 1e−6
and Nesterov momentum of 0.9. The training was run for 40 epochs with a batch size of
32. Class weighting of 0.2 for non-grasps and 1 for all grasps was used to work out the
imbalance of sample size across different classes.

6.5.2 Gaze Neural Network

The second network is the ‘gaze neural network.’ This network takes in a sequence of
relative gaze positions with respect to the object and outputs the likelihood of each grasp
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Figure 6.13: Relative gaze position with respect to the upper left corner of detected object
bounding box is used to generalize better to different bottles.

class. A diagram of this network is shown in figure 6.12. We employ a sequence of
previous relative gaze positions, because we observed the gaze fixation location across
different subjects only agree at the beginning of the grasp (section 6.4). Having a history
of recent gaze positions would help out with the prediction by being able to identify if the
subject had looked at one of the key regions that signal a specific type of grasp. We used
a sequence length of 50, because we found most grasps span around 50 frames. In order
to process and learn to remember important information in the gaze position sequence, we
use a long short-term memory (LSTM) layer in the gaze neural network. A relative gaze
position with respect to the object is used in order to generalize better to different bottle
locations in the scene (figure 6.13). We detect the bottles in the scene using an object
detector network called YOLOv2 [Redmon and Farhadi, 2016], and use the upper left
corner of the bounding box as the origin. We found the object bounding box to easily miss
parts of the bottle especially while the hand is grasping the bottle, but the upper left corner
of the bounding box was relatively stable even when parts of the bottle was occluded.
The gaze network was trained with the same settings as the grasp network except with a
learning rate of 1e−2.

6.5.3 Combined Neural Network

The third network is the ‘combined neural network.’ This neural network combines the
first two networks by concatenating the vectors going into the last three dense layers of
hand image neural network and the gaze neural network. Since the layers after the con-
catenation have the same architecture as the layers after the flatten layer of hand image
neural network, this effectively means that the combined network is same as a network
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Figure 6.14: Combined neural network. The numbers denote the dimensions of the vectors
going through each layer.
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where the processed gaze features added to the hand image neural network. Same settings
were used as hand image neural network except with a learning rate of 1e−3.

6.6 Results

We performed a leave-one-out cross validation across all four objects (table 6.2) and all
five subjects (table 6.3) using the neural networks that were described in section 6.5. We
evaluated the prediction error on a per frame basis. Because non-grasps had the most
number of frames and all networks were better at telling grasps from non-grasps than dis-
tinguishing between the grasps, evaluating prediction error across all labels do not reflect
how accurately the networks can tell the grasps apart. Therefore, we present two met-
rics: error which represents the prediction error across all frames, and grasp error which
represents the prediction error only within the frames that were labeled as a grasp.

In both cross validations, all of the networks perform better than the random chance
error which is 0.83. Furthermore, we can see that adding gaze information to the hand
image inputs improves the prediction results with the exception of subject 5 in table 6.3.
For subject 5, we observed the subject’s tendency to fixate on the neck of the bottle during
body grasps which would have reduced the effectiveness of added gaze information in the
combined neural network.

Overall, we can see improvements in the combined network for the overall mean er-
ror rates, which includes performance improvement for distinguishing non-grasps from
grasps, as well as for grasp error rate, which shows prediction among different grasps. We
found the resulting improvement in the combined neural network over the hand image neu-
ral network to be statistically significant with t-test’s p-value being less than 0.001. This
value was obtained by comparing the distribution of predicted likelihood corresponding to
the ground truth grasp types at each frame.

Figure 6.15 shows the normalized confusion matrices for the hand image and combined
neural networks. We can see that grasp 1 has the most improvement in prediction results
with the added gaze information. This makes sense because grasp 1 was often confused
as grasp 3 without using gaze information. Grasps 1 and 3 are the same normal grasps at
body and neck respectively, which would be hard to distinguish from only the hand shape.
We also see reduced confusion with non-grasps across all grasps.

To observe in more detail how gaze helps improve the prediction quality, we made area
plots of predicted likelihood over time during grasp 1. The plots in figure 6.16 was created
by normalizing all instances of grasp 1 in our prediction results into 50 time steps which
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Hand Image
Neural Network

Gaze Neural
Network

Combined Neural
Network

Object 1
Error 0.131 0.304 0.098
Grasp Error 0.225 0.471 0.187

Object 2
Error 0.170 0.336 0.129
Grasp Error 0.166 0.571 0.164

Object 3
Error 0.182 0.304 0.165
Grasp Error 0.335 0.523 0.309

Object 4
Error 0.161 0.324 0.136
Grasp Error 0.289 0.566 0.245

Mean
Error 0.161 0.317 0.132
Grasp Error 0.254 0.533 0.226

Table 6.2: Prediction error in leave-one-object-out cross validation (best results in bold).

Hand Image
Neural Network

Gaze Neural
Network

Combined Neural
Network

Subject 1
Error 0.139 0.382 0.108
Grasp Error 0.247 0.551 0.189

Subject 2
Error 0.116 0.326 0.092
Grasp Error 0.179 0.544 0.161

Subject 3
Error 0.205 0.329 0.160
Grasp Error 0.382 0.610 0.293

Subject 4
Error 0.199 0.378 0.165
Grasp Error 0.293 0.659 0.287

Subject 5
Error 0.184 0.424 0.191
Grasp Error 0.308 0.683 0.335

Mean
Error 0.168 0.368 0.143
Grasp Error 0.282 0.609 0.253

Table 6.3: Prediction error in leave-one-subject-out cross validation (best results in bold).
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(a) Normalized confusion matrix for hand
image neural network.

(b) Normalized confusion matrix for
combined neural network.

Figure 6.15: Normalized confusion matrices for the hand image and combined neural
networks. 0 denotes non-grasp and other numbers correspond to grasp types.

is roughly equal to 50 frames since most grasps are around 50 frames long. Figure 6.16a
shows that the hand image neural network takes some time to reduce the likelihood of a
non-grasp after the grasp had begun. It also predicts the likelihood of grasp 3 to be some-
what high at all phases of the grasp, confirming that it is indeed hard to distinguish grasp
1 from 3 using only the hand shape. The predictions of gaze neural network (figure 6.16b)
shows different qualities. The gaze neural network is able to rule out the possibility of
non-grasp almost instantly after the grasp has begun. However, it suffers from confusion
between grasp 1 and 2. This makes sense because grasps 1 and 2 are both located at the
body of the bottle, so their gaze patterns will be located in similar areas. The combined
neural network is where the good qualities of both inputs work together to improve the
overall quality of prediction. Figure 6.16c shows that by adding the gaze information, the
combined neural network is able to rule out the possibility of non-grasp quicker than the
hand image neural network. It also shows that likelihood of predicting grasp 3 has been
reduced with the help of gaze inputs. But the combined network does not suffer from the
confusion between grasp 1 and 2 when using the gaze inputs, because hand image inputs
are available to help distinguish between those grasps. Therefore, the overall likelihood of
predicting grasp 1 correctly is improved throughout.
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(a) Area plot of predicted likelihood for hand image neural network
during grasp 1.

(b) Area plot of predicted likelihood for gaze neural network during
grasp 1.

Figure 6.16: Area plot of predicted likelihood across neural networks during grasp 1.
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(c) Area plot of predicted likelihood for combined neural network
during grasp 1.

Figure 6.16 (Continued): Area plot of predicted likelihood across neural networks during
grasp 1.
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Figure 6.17: Prediction accuracy during grasps across neural networks.

Figure 6.18: Prediction accuracy before touching point across neural networks.
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We also looked into the details of how the prediction quality changes over time during
all of the grasps. Similar to the previous plots, all grasps in our prediction results were
normalized into 50 time steps. The prediction results over time is shown in figure 6.17.
We can see that gaze has better accuracy at the beginning of the grasp. Addition of gaze
information helps grasp prediction across all phases of the grasp. The dip in the prediction
accuracy for the hand image and combined neural networks from time steps 22 through 41
were found to be due to the hand going out of field of view while the bottle is being lifted.

Figure 6.18 shows the prediction accuracy timeline before touching point without time
normalization. The plot spans a length of 625 ms which was the length of shortest duration
from grasp begin to touching point. This plot gives a sense of when our early prediction
starts to become fairly accurate. In this experiment, we observed that the prediction accu-
racy passes 0.7 around 375 ms before the touching point for the combined network versus
around 292 ms before for the hand image network. The prediction accuracy passes 0.9
around 208 ms before the touching point for the combined network versus around 125 ms
before for the hand image network.
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6.7 Stick Grasping Experiment

6.7.1 Experimental Setup

Figure 6.19: Object used in the stick grasping experiment. Asymmetry in tape marking
was used for object tracking.

In this experiment, we asked the same five subjects from the controlled grasping exper-
iment to grasp a stick (figure 6.19) at one of the five marked locations in a random order
and predicted the locations using the same neural networks. The subjects were asked not
to vary their grasps, as the goal of this experiment was to test the effectiveness of gaze for
distinguishing grasp locations when similar grasps were used. As in the controlled grasp-
ing experiment, the subjects were asked to briefly lift the stick, put it back down at the
marked home position, and reset their hand and gaze to their respective home positions.
Ground truth labels were manually labeled.

6.7.2 Stick Grasping Experiment Results

Because we only had one stick for this experiment, we performed a 5-way cross-validation
across each of the subjects. The error metrics are reported in table 6.4. In this experiment,
gaze neural network’s prediction accuracy compares closely with that of hand image neural
network, because we are only predicting the location of the grasp and not varying the hand
shape. Overall best accuracy is achieved by the combined neural network. We found
the resulting improvement in the combined neural network over the hand image neural
network to be statistically significant with t-test’s p-value being less than 0.001. This
value was obtained by comparing the distribution of predicted likelihood corresponding to
the ground truth grasp types at each frame.
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Hand Image Neural
Network

Gaze Neural
Network

Combined Neural
Network

Subject 1
Error 0.167 0.240 0.179
Grasp Error 0.303 0.323 0.191

Subject 2
Error 0.188 0.311 0.152
Grasp Error 0.240 0.449 0.230

Subject 3
Error 0.279 0.167 0.251
Grasp Error 0.375 0.257 0.231

Subject 4
Error 0.188 0.187 0.142
Grasp Error 0.240 0.145 0.220

Subject 5
Error 0.244 0.307 0.173
Grasp Error 0.363 0.402 0.269

Mean
Error 0.213 0.240 0.179
Grasp Error 0.304 0.323 0.228

Table 6.4: Prediction error across different networks for stick grasping experiment (best
results in bold).

6.8 Experiment With Tasks That Require Grasping

6.8.1 Experimental Setup

During this experiment, subjects were asked to perform various tasks with no restrictions
on their choice of grasp type or location. Each task involved interactions with multiple bot-
tles in the scene. A different set of five naı̈ve subjects were recruited for this experiment.
There were 20 different tasks and the total trial time per subject was around 12 minutes for
a total of 90,029 frames (roughly 62 minutes). Examples of tasks includes rotating bottles
in place, rolling bottles on table, standing bottles upside down, and stacking bottles. The
full list of tasks is provided below.

• Pick up to observe bottles.

• Rotate bottles in place.

• Swap bottle locations.

• Roll bottles on table.

• Stand bottles upside down.

• Stack bottles on top of each other.

• Stack bottles upside down on top of each other.

69



• Sort bottles from shortest to tallest.

• Sort bottles from tallest to shortest.

• Stand bottles upside down with labels facing away.

• Roll one bottle on the table and immediately roll another so that they collide.

• Shake bottles.

• Lean every other bottle on the one to the left of it.

• Lean every other bottle on the one to the right of it.

• Lay all bottles flat on the table.

• Move every other bottle closer.

• Pretend to pour out the contents of each bottle.

• Count the number of grooves on the bottom of each bottle.

• Read labels to determine which name has the most letters.

• Read labels to determine which drink has the most calories.

Two more bottles were added to the experiment in addition to the four shown in fig-
ure 6.1. All six bottles were present in the scene simultaneously, and all tasks involve
interacting with each bottle at least once. Because the motions were more fluid, grasps
were defined as beginning when the hand starts reaching for the object after it had com-
pletely moved away from the previous one. Grasps were defined as ending when the hand
establishes a firm grasp on the target object. The labeling of ground truth was done manu-
ally.

6.8.2 Experiment With Tasks That Require Grasping Results

Grasps were divided manually into grasp types based on hand shape and location on the
bottle. After we labeled unique grasps, we were surprised to find 39 different grasps given
that they were still interacting with only bottles. Out of the 39 grasps, we filtered out
uncommon grasps with less than 75 frames across the entire training set and were left with
23 grasps (figure 6.20).

Next, we tried to predict between the 23 common grasps without success. After exam-
ining our results and confusion matrices, we found that many of the grasps were similar
grasps at different locations or bottle orientations. We ran a spectral co-clustering [Dhillon,
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Grasp 1 Grasp 2 Grasp 3 Grasp 4 Grasp 5 Grasp 6

Grasp 7 Grasp 8 Grasp 9 Grasp 10 Grasp 11 Grasp 12

Grasp 13 Grasp 14 Grasp 15 Grasp 16 Grasp 17 Grasp 18

Grasp 19 Grasp 20 Grasp 21 Grasp 22 Grasp 23 Grasp 24

Grasp 25 Grasp 26 Grasp 27 Grasp 28 Grasp 29 Grasp 30

Grasp 31 Grasp 32 Grasp 33 Grasp 34 Grasp 35 Grasp 36

Grasp 37 Grasp 38 Grasp 39

Figure 6.20: Grasps found in the general experiment. The ones highlighted in blue are the
grasps we kept after pruning out the outliers.
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(a) Body grasps.

(b) Top grasps.

(c) Lying grasps.

(d) Backhand grasps.

Figure 6.21: Grasp groups found by spectral co-clustering.
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2001] on our confusion matrices to group the 23 common grasps into four different groups
shown in figure 6.21.

We tested the prediction results using the four different groups and a non-grasp clas-
sification for a total of 5 possible classifications. We used the same neural networks as
in section 6.5, but with a gaze position sequence length of 13 in order to better match the
shorter duration of grasps, and learning rate of 1e−4 for combined neural network.

Hand Image Neural
Network

Gaze Neural
Network

Combined Neural
Network

Subject 1
Error 0.249 0.559 0.226
Grasp Error 0.515 0.632 0.567

Subject 2
Error 0.199 0.521 0.217
Grasp Error 0.393 0.659 0.365

Subject 3
Error 0.204 0.522 0.209
Grasp Error 0.529 0.705 0.495

Subject 4
Error 0.207 0.551 0.202
Grasp Error 0.532 0.661 0.626

Subject 5
Error 0.162 0.521 0.170
Grasp Error 0.565 0.625 0.562

Mean
Error 0.204 0.535 0.205
Grasp Error 0.507 0.656 0.523

Table 6.5: Prediction error across different networks for general experiment (best results
in bold).

Table 6.5 shows prediction results across the four grasp groups using the modified neu-
ral network. Even though all networks perform better than random chance error which is
0.8, there were no improvements for this experiment when gaze information was added.
When we performed a qualitative gaze analysis on the four grasp groups (similar to fig-
ures 6.4 to 6.8), we found no distinct gaze patterns which explains why gaze is not im-
proving prediction results (figure 6.22). We attribute the lack of distinct gaze pattern to
the subjects being more focused on the tasks than their grasps. Depending on the task,
subjects’ gaze was fixated on key task-related locations such as the contact point between
two bottles (figures 6.23a and 6.23b). We believe this behavior is related to the inspection
actions found in chapter 5. For some other tasks such as shaking the bottle where main-
taining a firm grasp on the bottle is crucial, we did find that subjects fixate on the grasp
location (figure 6.23c). It seems that during certain tasks, observing the completion of
task takes priority over maintaining a firm grasp on the object which can also be checked
through peripheral vision, proprioception, and tactile feedback.
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(a) Average gaze
for body grasps.

(b) Average gaze
for top grasps.

(c) Average gaze
for lying grasps.

(d) Average gaze
for backhand
grasps.

Figure 6.22: Average gaze during tasks that require grasping.

(a) Subject fixates in
between the two bottles
while stacking them.

(b) Subject fixates in
between the two bottles
while leaning one on another.

(c) Subject fixates on the
grasp location while shaking
the bottle.

Figure 6.23: Gaze behavior during tasks that require grasping.
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6.9 Discussion

Across the three experiments, we have observed cases in where gaze improves prediction
of grasp types, gaze improves prediction of grasp locations, and gaze has no effect in
improving prediction results. Our neural network structure assumes that gaze position
with respect to the target object has a direct relation to the grasp type or location to be
used. This assumption held for the first two experiments where subjects were asked to do
simple tasks such as grasping a bottle using a certain grasp or grasping a stick at a certain
location. On the other hand, we observed in the third experiment that gaze is not directly
related to grasps during tasks that are more complex such as stacking a bottle on top of
another. During these tasks, inspecting the result of the manipulation took priority over
fixating at the grasp targets. However, gaze still holds valuable information about people’s
intentions and should not be dismissed. For these more complex tasks, we believe gaze
should be used to extract contextual information rather than being fed in directly to predict
grasps. Then, the contextual information should be used to predict grasps that are relevant
to that context.

Our work shows that adding gaze not only improves grasp type prediction results as in
Rogez et al. [Rogez et al., 2015], but also retains the property that prediction is able to be
made before the hand reaches the object as in Fermüller et al. [Fermüller et al., 2016].

Our results are already promising for predicting grasps in a controlled environment, but
become even better when we think about how we would actually use them, for example, in
virtual reality applications. Eye tracking brings numerous benefits to VR such as foveated
rendering, object selection using gaze, and virtual social interactions. Because of these
benefits, eye tracking is an obvious integration into future VR headsets. Companies such
as FOVE, Inc. are already manufacturing VR headsets with eye tracking. There is even a
study showing it is possible to integrate eye tracking into Google Cardboard [Greenwald
et al., 2016].

One of the main applications of our method for virtual reality would be the prediction
of hand motions. By predicting user’s hand motions and rendering them before we can get
actual data, we would be able to reduce delays in tracking and networked interactions, and
even improve hand tracking by ruling out unlikely poses ahead of time. For hand motion
prediction, the most uncertainty lies in predicting when a grasp will begin, and predicting
what kind of grasps will occur while the hand is still reaching for the object. Figure 6.24
shows the predicted likelihood of a grasp across different neural networks. We can see
here that gaze neural network has a very precise transition in the grasp likelihood when
grasp actually begins. By contrast, the hand image neural network is relatively unsure
about when a grasp will begin until a few frames after the grasp has begun. The combined
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network inherits the benefits of using gaze information and performs similarly well for
predicting when grasps will begin. We similarly observed in figure 6.16 that the combined
network yields the good qualities of both inputs. By the time the hand reaches the touching
point, hand information is able to distinguish grasp 1 from 2, and gaze information is able
to distinguish grasp 3 from 1.

Figure 6.24: Predicted likelihood of a grasp across different networks.

6.10 Limitations and Future Work

In our work, we have successfully demonstrated the significance of gaze information when
predicting grasp types in a controlled experiment. We further demonstrated that gaze is
especially useful for distinguishing between grasp locations when using the same grasps
in our stick grasping experiment. However, we found that further work is needed to uti-
lize our findings in a more general setting. In particular, we observed that gaze behavior
resembles inspection actions during certain tasks. During these tasks, gaze often points
towards key locations of the task which may be decoupled from the grasp location. This
makes it hard to predict grasp type directly from gaze. In these cases, we will need to find
ways to exploit the contextual information available in gaze, then predict grasps that are
relevant in this context.
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Overall, we are excited to present the possibilities of improving hand motion prediction
using eye tracking which will be readily available in future generation of virtual reality
headsets. We hope our initial findings spark interest to further explore the hand motion
cues available from eye tracking.
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Chapter 7

Grasp Type Prediction in Virtual
Reality

Following our success in grasp type prediction experiments in a laboratory setting (chap-
ter 6), we have implemented a similar experiment in virtual reality (VR) to show the help-
fulness of gaze information in a setup more relevant to real applications.

In the VR experiment, FOVE head mounted display ([Hom]) was used to display the
virtual environment and to track the user’s eye movements. In order to track the user’s
hand, a Leap Motion ([Lea]) was attached to the FOVE headset. To minimize interference
between infrared lights between Leap Motion and FOVE’s positional tracking system, the
Leap Motion was mounted underneath the FOVE headset (figure 7.2). Leap Motion SDK’s
rigged hand was used (figure 7.1).

Figure 7.1: Hand model in virtual reality experiment.
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Figure 7.2: Leap Motion was attached underneath the FOVE headset.

Figure 7.3: Home positions for grasp type prediction in virtual reality experiment.

7.1 Experimental Setup

The experimental setup was kept similar to the experiment in section 6.2. As in the pre-
vious experiment, there were designated home positions for the object, gaze, and hand
(figure 7.3). The subjects were required to rest their right hand and gaze at their respective
home positions before the start of each grasp. Then, they were asked to perform a random
grasp out of the five predefined grasps in figure 6.2. This set of five grasps was repeated
five times for the same object, for a total of 25 grasps. There were five different objects in
the experiment (figure 7.4).

One difference from the real-life experiment was that the subjects were instructed to
pick up the bottle briefly and let go in midair without worrying about resetting the bottle in
the original position. It was possible to reset the bottle programmatically in virtual reality

80



(a) Object 1 (b) Object 2 (c) Object 3

(d) Object 4 (e) Object 5

Figure 7.4: Objects used in the VR experiment.

so that subjects can focus more on the grasping behavior.

A total of 15 subjects were recruited for the VR experiment. After manual inspection,
some of the grasps were removed according to the rejection criteria below.

• Subject took more than two tries to grasp the object.

• Hand tracking was unstable and yielded an orientation jump larger than 45 degrees.

• Subject made a mistake and performed the wrong grasp.

• Bottle starting location was glitched and not reset correctly.

Total data size after removing invalid grasps was 319,985 frames captured at 30 fps.
Breakdown of number of frames obtained for each grasp is shown in table 7.1. An example
of a subject performing a body normal grasp is shown in figure 7.5.
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Figure 7.5: Sample of body normal grasp being performed by a subject.

Grasp 1 Grasp 2 Grasp 3 Grasp 4 Grasp 5 Non-Grasp Total
29258 27318 30411 33067 31107 168824 319985

Table 7.1: Number of frames obtained for each grasp in the VR experiment.

7.2 Methods

We used neural networks to predict the grasp type as in section 6.5. However, in the VR
setup, we are able to obtain the hand pose directly from Leap Motion. Therefore, we
used the positions of various locations in the hand directly rather than using a hand image
input which indirectly provides the same information. This hand position vector of size 24
includes wrist position, palm position, palm position offset by a unit vector in the direction
the palm is facing, and fingertip positions of all five fingers. The gaze input was obtained
in a similar manner to section 6.5, except it was obtained as a 3D position rather than 2D.

The reduced dimension of the hand feature also allowed us to utilize long short-term
memory (LSTM) units for the entire input. A diagram for the overall neural network is
shown in figure 7.6.
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Figure 7.6: VR prediction neural network. The numbers denote the dimensions of the
vectors going through each layer.
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7.3 Results

Qualitatively, we observed a similar behavior as in section 6.4. For each different grasp,
most subjects fixated on the target location of the grasp before the hand reached the object.
Figure 7.7 shows the subjects’ fixation on characteristic locations one third of the way into
the grasp. Across all the bottles, we can observe that the subjects fixate on the target
location of the grasp (body for body grasps, neck for neck normal grasp, and top for
top grasps), and these locations vary over the different bottle shapes. One particularly
interesting pattern was for figure 7.7m. Because this object has an elongated neck, the
subject’s gaze pattern for neck normal grasp (grasp 3) was spread all over the neck.

We performed a leave-one-subject-out cross validation for five of the subjects recruited
in the experiment to verify that gaze information still lowers prediction error in VR envi-
ronment. The prediction error is reported in table 7.2. It is interesting to note that subjects
2, 3, and 4 had lowest grasp error with hand position neural network, but lowest over-
all error with combined neural network. This implies that for these particular subjects,
combined neural network was better at detecting when a grasp was not happening than at
detecting which grasp was actually happening. However, combined neural network has
the best overall performance across all five subjects. We found the resulting improvement
in the combined neural network over the hand position neural network to be statistically
significant with t-test’s p-value being less than 0.001. This value was obtained by compar-
ing the distribution of predicted likelihood corresponding to the ground truth grasp types
at each frame.

7.4 Discussion

For the VR experiment, it was more important to provide feedback to the user that they
have successfully grasped the object than in the real-life experiment, because they do not
receive a tactile feedback. Users rely more heavily on their visual feedback to observe the
task completion. Therefore, we have decided to make the bottle fade away upon the com-
pletion of a grasp. Also, unlike in the real-life experiment where someone must physically
reset the objects to their original position, in the VR experiment, it was possible to reset
the objects programmatically so that the users can focus more on the grasping tasks.

One particular challenge in our setup was that the Leap Motion device does not provide
perfect hand tracking, especially when there were self-occlusions among the fingers and
the palm. Besides surprising our users when this happened, the tracking errors meant that
some grasps had to be manually filtered out according to the rejection criteria outlined in
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(a) Grasp 1 (b) Grasp 2 (c) Grasp 3 (d) Grasp 4 (e) Grasp 5

(f) Grasp 1 (g) Grasp 2 (h) Grasp 3 (i) Grasp 4 (j) Grasp 5

(k) Grasp 1 (l) Grasp 2 (m) Grasp 3 (n) Grasp 4 (o) Grasp 5

(p) Grasp 1 (q) Grasp 2 (r) Grasp 3 (s) Grasp 4 (t) Grasp 5

(u) Grasp 1 (v) Grasp 2 (w) Grasp 3 (x) Grasp 4 (y) Grasp 5

Figure 7.7: Average gaze for virtual reality experiment.
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Hand Position
Neural Network

Gaze Neural
Network

Combined Neural
Network

Subject 1
Error 0.310 0.430 0.235
Grasp Error 0.493 0.691 0.328

Subject 2
Error 0.309 0.425 0.308
Grasp Error 0.468 0.644 0.483

Subject 3
Error 0.271 0.404 0.251
Grasp Error 0.431 0.632 0.502

Subject 4
Error 0.345 0.389 0.248
Grasp Error 0.344 0.670 0.374

Subject 5
Error 0.333 0.416 0.285
Grasp Error 0.605 0.724 0.513

Mean
Error 0.314 0.413 0.266
Grasp Error 0.468 0.672 0.440

Table 7.2: Prediction error in leave-one-subject-out cross validation (best results in bold).

section 7.1. We saw many instances where users took two or more tries to successfully
grasp the object in VR. In the real-life experiment, subjects were always able to grasp the
bottle in their first try.

Albeit with these difficulties, we found no significant deviation of gaze behavior in VR
from the real-life experiment. Our results confirm that gaze is still helpful for improving
grasp type prediction accuracy in VR.
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Chapter 8

Grasp Type Prediction User Experience
Study in Virtual Reality

In the virtual reality grasp type prediction experiment, we noticed many users having trou-
ble grasping bottles in the desired manner due to instability in hand tracking and physics
simulation. As a proof of concept to see if we can remedy the situation using our predic-
tion results, we conducted a user study to compare and contrast bottle grasping behavior
with and without grasp assistance based on prediction.

8.1 Experimental Setup

Scene layout was kept the same as in chapter 7. However, we conducted two versions of
the grasping study per subject: one with grasp assistance based on prediction (blue set)
and one without (red set). In the blue set, subject’s hand tracking was replaced with pre-
animated hand motion based on the predicted grasp type in order to mitigate the effect
of unstable hand tracking. The order in which a subject experiences grasp assistance and
order of objects within a version was randomized in order to study the learning effect of
how much faster the subjects learn to successfully grasp the objects. After completing
each version of experiment, the subjects were asked to fill out a survey which asks them
about their perception of that version. The questionnaire is shown in figure 8.1. A total of
ten users participated in the study.

In order to keep the focus of the study on the effects of being able to use clean pre-
animated hand poses based on accurate predictions, we have simplified the possible grasp
types to three grasps that were able to be distinguished clearly. We used body normal
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grasp (grasp 1), body backhand grasp (grasp 2), and top precision grasp (grasp 4) in the
user study.

8.2 Results

The red set was the vanilla system that had the same setup as the one in chapter 7. It
had occasional tracking error from the Leap Motion device when hand parts were self-
occluded. When users noticed the tracking error, they adapted to the system by adjusting
their hand pose slightly or by trying again. The blue set featured grasp assistance based
on grasp type prediction. Because the blue set used pre-animated grasps, the users had to
adapt to these animated grasps that were indirectly driven by their actions. Also, some-
times the prediction was incorrect, in which case, the users had to adapt to the system by
adjusting their hand pose slightly or by trying again.

In order to compare how quickly users adapted to both systems, we have measured the
time it takes for users to complete the grasp using each of the system. The order in which
the sets and the five objects within each set were presented to the users were randomized.
The plots of average grasp times over trials are shown in figure 8.2. We observed learning
effects in both sets with the blue sets mean grasp time decreasing more rapidly. Subjects
start out taking longer than the overall mean grasping time in the beginning, but eventually
are able to adapt to both systems and achieve complete grasps faster than the overall mean.
The overall mean grasp time was 98.58 frames for the red set and 84.81 frames for the blue
set (at 30 fps). This is equivalent to a difference of 459 ms.

We also report the aggregated survey results in table 8.1. The aggregate results show
that users preferred the vanilla system, although they were able to grasp faster with pre-
diction.

Figure 8.3 shows area plot of predicted likelihood for different grasps during the user
study over a normalized average grasp time of 91.69 frames where the touching point is
at 91.69 frames. We can see that for all of the grasps, the prediction likelihood increases
before the hand reaches the bottle and converges into the desired grasp. Out of the three
grasps, grasp 2 had the lowest likelihood levels.

The overall prediction accuracy at the touching point was 0.876. Breakdown of predic-
tion accuracy per subject is shown in figure 8.4. Among the five subjects that had higher
prediction accuracy, the mean accuracy was 0.949. An analysis of normalized confusion
matrix of subjects with low prediction accuracy (figure 8.5a) illustrates that these subjects
had trouble getting the system to register body backhand grasp (grasp 2) and top precision
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Number: _________________            Date: _____________________  

VR Grasping Study – Post‐study questionnaire 

Regarding your experience for the blue set: 

1. How would you evaluate the ease of successfully grasping the object with the correct grasp? 
 

Very Difficult        Very Easy 

1  2  3  4  5 

 
2. How would you evaluate the timing of your physical movement vs. visualization in VR?  

 

Very Decoupled        Very 
Synchronized 

1  2  3  4  5 

 
3. How would you evaluate the quality of the resulting motion? 

a. Wrist position 
 

Very Unnatural        Very Natural 

1  2  3  4  5 

 
b. Hand shape 

 

Very Unnatural        Very Natural 

1  2  3  4  5 

 
c. Fingertip contact positions 

 

Very Unnatural        Very Natural 

1  2  3  4  5 

 
4. How would you evaluate your adaptation to the system?  

 

Requires Lots of 
Adaptation 

      Requires No 
Adaptation 

1  2  3  4  5 

 
5. Other comments 

________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________ 
 

 

 

 

 

Figure 8.1: Questionnaire provided to the subjects of virtual reality user study experiment.
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Number: _________________            Date: _____________________  

Regarding your experience for the red set: 

6. How would you evaluate the ease of successfully grasping the object with the correct grasp? 
 

Very Difficult        Very Easy 

1  2  3  4  5 

 
7. How would you evaluate the timing of your physical movement vs. visualization in VR?  

 

Very Decoupled        Very 
Synchronized 

1  2  3  4  5 

 
8. How would you evaluate the quality of the resulting motion? 

a. Wrist position 
 

Very Unnatural        Very Natural 

1  2  3  4  5 

 
b. Hand shape 

 

Very Unnatural        Very Natural 

1  2  3  4  5 

 
c. Fingertip contact positions 

 

Very Unnatural        Very Natural 

1  2  3  4  5 

 
9. How would you evaluate your adaptation to the system?  

 

Requires Lots of 
Adaptation 

      Requires No 
Adaptation 

1  2  3  4  5 

 
10. Other comments 

________________________________________________________________________________
________________________________________________________________________________
________________________________________________________________________________ 
 

 

Figure 8.1 (Continued): Questionnaire provided to the subjects of virtual reality user study
experiment.
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(a) Grasp time over trials for red set.

(b) Grasp time over trials for blue set.

Figure 8.2: Grasp times for the two versions of experiment.
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(a) Area plot of predicted likelihood during grasp 1.

(b) Area plot of predicted likelihood during grasp 2.

Figure 8.3: Area plot of predicted likelihood in the user study.
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(c) Area plot of predicted likelihood during grasp 4.

Figure 8.3 (Continued): Area plot of predicted likelihood in the user study.

Figure 8.4: User study prediction accuracy per subject.
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(a) Normalized confusion matrix for subjects
with low prediction accuracy.

(b) Normalized confusion matrix for subjects
with high prediction accuracy.

Figure 8.5: Normalized confusion matrices for the user study. Label numbers correspond
to grasp types.

grasp (grasp 4). On the other hand, the subjects with high prediction accuracy did not
have much trouble performing these grasps (figure 8.5b). In both cases, most of the wrong
predictions were predicted as body normal grasp (grasp 1).

8.3 Discussion

In this user study, we showed a proof of concept for potential uses of grasp type prediction.
We found that users were able to adapt to the prediction based grasping system over time,
and achieved a lower mean grasp time compared to the system which directly uses hand
tracking.

However, there are areas to be improved in the future. Although users were able to
adapt to the prediction system, they rated it lower than the vanilla system. This seems to
be because the prediction system did not always yield the correct prediction. The overall
prediction accuracy was 0.876, which could be improved in the future.

Also, pre-animated versions of grasps sometimes diverged from user’s actions. In the
future, if an online pose generation method such as work by Zhao et al. [Zhao et al., 2013]
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Set Ease of
success-
fully
grasping

Timing of
physical
movement
vs. visual-
ization in
VR

Quality of
wrist
position

Quality of
hand
shape

Quality of
fingertip
contact
positions

Ease of
adaptation
to the
system

Red 3.8 4.5 3.9 3.7 3.9 4.2
Blue 3.3 3.4 3.3 3.4 3.2 3.7

Table 8.1: User study survey results (better results are in bold).

is adopted, we would be able to generate clean motions that closely matches the timing of
user’s actions with a prior on the predicted grasp type.
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Chapter 9

Conclusion

We have detailed two frameworks that address various challenges of hand tracking and take
us closer towards being able to use our hands directly to interact with virtual objects. The
hand pose estimation framework showed that quadratic encoding model can significantly
ease the problem of hand tracking by being able to estimate the whole hand pose when
fingertips are reliably tracked. The hand pose prediction framework showed that use of
eye tracking improves grasp type prediction which can then be used to generate hand
pose.

Along the way, we shed light on some important properties of hand motion. First,
chapter 4 showed hand motion is nonlinear, but because the range of natural human fin-
ger motions is quite limited, an extremely simple nonlinear function such as a quadratic
function can approximate the inverse transformation from the fingertip positions to the
joint angles. This nature of reduced dimensionality of hand motion space is the same
principle that guided various works in section 3.1.3, but our work showed that depending
on the desired motion space and precision, an extremely simple and fast model such as a
quadratic function can be viable. Next, chapter 5 confirmed findings in previous biological
studies that gaze leads hand movements, and it often gives cue for position and timing of
the action. We also observed that tools held effectively become an extension of the hand
and shifts the fixation of the gaze toward the tool tip. However, gaze behavior during in-
spection actions were not directly related to hand movements, and these actions should be
treated differently when inferring hand motion from gaze data. Then, in chapters 6 and 7,
we successfully augmented gaze information to improve grasp type prediction accuracy
in both real-life and virtual reality (VR) settings. We were able to show that for the five
different grasp types we experimented with, gaze patterns aggregated over multiple sub-
jects converge to target locations of the grasp. This gaze pattern was shown to improve
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grasp type prediction results in early stages of grasp where hand information alone was
too ambiguous to distinguish. Finally, we concluded with a user study in chapter 8 which
show potential for using grasp type prediction in VR applications.

We hope our findings contribute a step towards a future of immersive virtual envi-
ronments where users not only perceive the virtual environment directly through a head-
mounted display, but also convey their intent directly using full hand movement (fig-
ure 1.2).
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Chapter 10

Future Work

There are many potential extensions to our work that and some of our thoughts are pre-
sented here. For example, it could be possible to combine the proposed method for esti-
mating hand pose with the method for prediction. By tracking and predicting only parts
of the hand that are reliably tracked and estimating the entire hand after prediction has
been performed, prediction can be performed in a lower dimensional space. This not only
reduces computation, but also enables prediction when not all of the hand can be tracked.

Another extension of our work could be to expand the space of hand manipulation
actions beyond 5 discrete grasps. In section 6.8, we found 39 different grasps used for in-
teracting with bottles. This shows that the space of hand poses is really a continuous space
which may be possible to constrain based on the gaze. We can use generative methods
such as conditional variational autoencoders [Walker et al., 2016, Fragkiadaki et al., 2017]
to learn to predict in the continuous domain.

Even though we have some methods for estimating and predicting hand motion, we
still need a good physics engine to simulate predictable behavior for virtual interactions.
Predictable behavior is important, because users expect to see small changes in initial
condition yield predictable changes in the output [Chung and Pollard, 2016]. In the future,
it would be interesting to see how well predictability of a physics engine affects virtual
interactions with hands.
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