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Abstract

Use of hands is the primary way we interact with the world around us.
Recent trends in virtual reality (VR) also reflect the importance of interaction
with hands. Mainstream virtual reality headsets such as Oculus Rift, HTC
Vive, and the Playstation VR all support and encourage the use of their hand
tracking controllers.

However, tracking hands is very challenging due to their small size and
various occlusions. For example, significant portions of the hand can get oc-
cluded when people are holding hands together or holding an object. For this
reason, makers of VR headsets let their users hold controllers that are more
reliably tracked than tracking hands directly.

Another problem of hand tracking is that it often adds latency to the sys-
tem. Furthermore, networked multiplayer interactions are even more chal-
lenging to deliver without users noticing delays due to the addition of network
delays.

In this thesis, we propose ways to overcome the current limitations of
hand use in VR by addressing these challenges. To address difficulty of hand
tracking, we present a way to estimate the entire hand pose given a few reli-
ably tracked points on the hand. We used a commonly available multi-touch
tablet to track the fingertip positions and estimated the entire hand pose from
the tracked fingertip positions using a quadratic encoding method. We show
that quadratic encoding method yields smooth motions for smooth changes
in the fingertip positions and show some demos of manipulation tasks using
the interface. We also present a way to handle changing number of fingertip
contacts and show that we can identify unknown fingertips.

To address the latency in hand tracking and multiplayer interactions, we
propose a method to augment hand pose prediction with eye tracking which
will be commonly available in the next generation of VR headsets. We will
first motivate our approach by presenting our observations of hand-eye coor-
dination. We show that gaze leads grasping actions by an average of 0.726s,



leaves the manipulation area as soon as the action is complete, fixates on the
tool tips when a tool is held, and sometimes inspects the object without the
hand directly interacting with the inspected area. All of the observations will
be used to determine how gaze should be used to predict hand pose during
different actions.

Then, we present a study on predicting grasp types to show that gaze is
effective in predicting hand interactions. We found interesting patterns of
gaze during bottle grasps before the hand reaches the bottle. We use neural
networks to show that these gaze patterns can be learned in order to improve
prediction accuracy.

Finally, we conclude with application of grasp type prediction in VR and a
user study which evaluates the usefulness and quality of hand pose generated
based on grasp type prediction. We found similar gaze patterns in VR as in the
real-life experiment. The user study shows potential for usefulness of grasp
type prediction in VR applications with rooms to improve in the future.
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Chapter 1

Introduction

Use of hands is the primary way we interact with the world around us. We use our hands
every day to pick up objects from the table or open various containers. We use our hands
to eat, to write, or to turn on the light switch. We can even accomplish more complex tasks
such as assembling furniture which requires the use of various tools and coordination
between both hands to hold the pieces together.

And perhaps the most fascinating part of our use of hands is that we pay little attention
to how we actually control our hands. Most of the time, we are thinking about what we
want to do with the target object after we acquire it, not how we want to bend our �ngers
in what order to pick it up. Use of hands is just a natural way for us to interact with this
world.

On the other hand, the use of hands in personal computing devices such as desktop
computers or smartphones has been somewhat different due to the fact that we are inter-
acting with a 2D virtual world in a screen. Instead of freely using our hands to grasp 3D
objects directly like we would in reality, we rely on tools such as a mouse or a touchscreen.
These tools are excellent for interacting with a 2D environment, because they provide re-
liable and precise tracking of 2D movements on a surface.

However, with the advent of consumer level virtual reality (VR) technology, the time
has come for us to consider a suitable interface to interact with a 3D virtual world. Given
our observation of how natural it is for us to use our hands to interact with real-life 3D
objects, it is only logical that we let users interact with VR using their own hands.

Indeed, this is precisely what the industry is doing. Mainstream virtual reality headsets
such as Oculus Rift, HTC Vive, and the Playstation VR all support and encourage the use
of their hand tracking controllers (�gure 1.1). The hand controllers enable users to grasp

1
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