
A Hybrid, Dynamic Logic for
Hybrid-Dynamic Information Flow

Brandon Bohrer André Platzer
December 2018

CMU-CS-18-105

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A version of this work [9] appears in the Proceedings of the 33rd Annual ACM/IEEE Sympo-
sium on Logic in Computer Science (LICS) 2018.

This material is based upon work supported by the National Science Foundation under NSF CAREER Award
CNS-1054246 and by the AFOSR under grant number FA9550-16-1-0288. The first author was supported by the
Department of Defense through the National Defense Science & Engineering Graduate Fellowship Program.

Keywords: dynamic logic, hybrid logic, hybrid systems, information flow, cyber-physical sys-
tems, formal verification, smart grid, refinement logic

Abstract

Information-flow security is important to the safety and privacy of cyber-physical systems (CPSs)
across many domains: information leakage can both violate user privacy and reveal vulnerabili-
ties to physical attacks. CPSs face the challenge that information can flow both in discrete cyber
channels and in continuous real-valued physical channels ranging from time to motion to (e.g.)
electrical currents. We call these hybrid-dynamic information flows (HDIFs) and introduce dHL,
the first logic for verifying HDIFs in hybrid-dynamical models of CPSs. Our logic extends differ-
ential dynamic logic (dL) for hybrid-dynamical systems with hybrid-logical features for explicit
program state representation, supporting relational reasoning used for information flow arguments.
By verifying HDIFs, we ensure security even under a strong attacker model wherein an attacker
can observe time and physical values continuously. We present a Hilbert-style proof calculus for
dHL, prove it sound, and compare the expressive power of dHL with dL. We develop a hybrid
system model based on the smart electrical grid FREEDM, with which we showcase dHL. We
prove that the naı̈ve model has a previously unknown information flow vulnerability, which we
verify is resolved in a revised model. This is the first information flow proof both for HDIFs and
for a hybrid-dynamical model in general.

1 Introduction
Cyber-physical systems (CPSs), which feature discrete computer control interacting with a contin-
uous physical environment, are ubiquitous. They include critical infrastructure such as electricity,
natural gas, and petroleum transportation grids, medical devices such as pacemakers and insulin
pumps, and transportation systems including aircraft, trains, and automobiles. Because these sys-
tems are critical, it is essential to ensure their safe, correct operation, and formal methods for safety
(e.g., collision-freedom) in CPS have had important successes [37, 16, 21].

There is less work on formal methods for CPS (information-flow) security, which is often as
critical as physical safety. We focus on nondeducibility [4] of information flow, which captures the
notion that an attacker cannot infer private information for certain in a system with non-observable
nondeterminism. We choose this focus because for many nondeterministic systems, nondeducibil-
ity is the strongest property one can hope to achieve. As consumer-facing infrastructure such
as electrical and telecommunication networks are increasingly computerized, the risk of leaking
confidential customer information increases. Beyond leaking customer information, it has been
suggested [3] that information flow leaks have the potential to aid attackers in identifying vulnera-
ble infrastructure targets. Computerized medical devices risk leaking medical records protected by
law (e.g., HIPAA), which can enable attacks that have life-threatening results, such as ventricular
fibrillation [20]. Information leakage concerns are also significant in the transportation domain,
e.g., position-spoofing attacks in aircraft have been proposed that could cause major disruptions to
air-traffic control [43].

The common feature is that information flows in both computer communication channels and
physical channels such as transmission lines, pipelines, the human body [41], and roadways. Be-
cause information flows through both computation and physics, CPSs demand a notion of flow
which accounts for both. While information flow in CPS has been explored [1, 3, 19, 49, 25], prior
works either model physics discretely or ignore physics altogether [3].

These abstractions constitute a significant model gap: Formal analyses of any model can only
be trusted to the extent that the model is faithful to reality and to the abilities of attackers. Event-
based models such as the prior model of the FREEDM grid [3], for example, assume attackers
cannot observe time or exact physical quantities. Our hybrid (i.e., mixed continuous and discrete)
dynamics narrow the gap greatly, modeling attackers that observe continuous time and real-valued
physical quantities. In doing so, our FREEDM model reveals a leak undetected by the prior model.

A discrete-time model would also leave a smaller gap than and and reveal more bugs than an
event model. A key advantage of hybrid models is they support continuous time, so we know for
sure that we have accounted for the timing abilities of all possible attackers, while a discrete-time
model would leave us uncertain whether the model is precise enough to reveal all practical attacks.

We investigate properties of hybrid-dynamic information flows (HDIFs), which combine dis-
crete and continuous flows. We provide an approach for verifying HDIF security by introducing the
logic dHL. The dHL logic features two forms of hybridness which should not be confused: it ex-
tends differential dynamic logic (dL) for reachability of hybrid-dynamical systems with first-order
hybrid logic [8], which provides first-class representation of program states. This combination of
hybrid dynamics with first-class program states enables us to verify HDIF security. In capturing
physical and temporal phenomena, hybrid dynamics also provide a flexible framework for model-

1

ing side-channels and verifying them with the same techniques as other cyber-physical channels.
The distinguishing feature of information flow (vs. safety and liveness properties) is that

it is not a trace property, but a 2-trace hyperproperty [13] (i.e., a property of pairs of program
traces). This poses a hurdle for program verification calculi: Hoare calculi (and typical dynamic
logics [44]), for example, cannot verify hyperproperties without significant source-level transfor-
mations such as self-composition [6]. These source transformations have been noted [46] to make
verification tasks needlessly difficult in practice by inflating their size. Relational calculi [7] reduce
verification complexity, but also generality.

Our novel use of hybrid logic not only reduces complexity but also maintains generality by al-
lowing first-class representation of program states, which makes both direct statements and proofs
of information-flow properties straightforward. In the process, we display a novel connection with
hybrid logic that extends beyond information flow to general hyperproperties. Beyond its aesthetic
appeal, this generality promises to enable verification of numerous related hyperproperties in one
common logic, without having to adapt the logic to: i) more notions of security such as non-
interference ii) more hyperproperties such as robustness [13]. We introduce a Hilbert-style proof
calculus for dHL and prove it sound, then derive high-level rules for bisimulation. We relate the
complexity of proofs in dHL vs. dL: a reduction is possible for a significant fragment of dHL, but
impractical: i) it has limitations when applied to the general case, interfering with advanced proof
techniques such as refinement [26] for modular verification, ii) the reduction causes quadratic for-
mula size blowup in the worst case, and iii) the reduction is surprisingly subtle, suggesting that a
proof by reduction to dL would be needlessly long and unintuitive.

As an example application, we give the first hybrid-dynamical model of a smart grid controller
with concrete dynamics for distributed energy generation/storage and load-balancing [2] based on
published descriptions of the FREEDM grid [22]. This contrasts with prior models [3], which
consider only the high-level structure of event-based interactions between components. Our model
shows the importance of dynamical-level modeling by revealing an information flow bug uncaught
by higher-level models. We then prove a revised model secure even in the presence of HDIFs.

Our model of FREEDM captures its essential hybrid dynamics and our proof demonstrates
important features of proofs in dHL: i) The well-understood principle of proof by bisimulation
translates naturally to dHL proofs, ii) dHL provides an effective mechanism to tease apart the
interactions between discrete transitions and continuous flow, enabling verification to scale to the
complex interactions found in CPSs, and iii) typical CPSs have sufficiently complex information
flows to warrant the deductive approach.

These traits are typical across different domains of CPS, showing that our approach holds
promise for verifying information flow of applications in various domains beyond smart grids.

Security of cyber-physical systems other than smart-grids has been investigated, though rarely
through the lens of formal logic. Water canal systems have been shown to be vulnerable to attacks
that steal water while avoiding detection [5]. Smart homes can leak private information about
activities of daily living, which can be HIPAA-protected, e.g. in assisted-living scenarios [45].
In (automotive) vehicular ad-hoc networks (VANETs), information leaks can compromise private
information such as travel history [40], which in turn enables crimes [14] such as vehicular theft
and abduction.

2

2 The Logic dHL
We present the complete syntax and semantics of the logic dHL, extending the dynamic logic dL
with explicit hybrid-logical representation of program states. Our calculus, as with modern imple-
mentations [18] and machine-checked correctness proofs [10] for dL, is based on uniform substi-
tution [12, §35][38]: symbols ranging over predicates, programs, etc. are explicitly represented in
the syntax. This improves the ease with which dHL can be implemented and its soundness proof
checked mechanically in future work.

The expressions of dHL consist of real-valued terms θ, world-valued terms w, programs α, and
formulas φ. We write Θ for an arbitrary term θ or w, and write e when an expression can be either
a term Θ or a formula φ, but not a program α.

Definition 1 (Real-valued terms of dHL).

θ ::= c | x | f(~θ) | F | θ + θ | θ · θ | @iθ

Here c ∈ Q is a literal and x is a real-valued program variable, said to be flexible because it can
be bound in quantifiers. Their rigid counterparts are nullary function symbols f(), g() that cannot
be bound. The meaning of a function symbol f(~θ) depends on an arbitrary number of real-valued
arguments. Functionals F are a generalization of functions whose meaning depends on all flexible
symbols. Functions and functionals are used to express axioms in Section 5. Terms in dHL add to
dL at-terms @wθ denoting the value of term θ in the state denoted by the world-valued term w.

Definition 2 (World-valued terms of dHL).

w ::= s | n

The language of world-valued terms w is simple, consisting only of world variables s, t and nom-
inals n,m, which differ only in that world variables are flexible while nominals are rigid.

Definition 3 (Programs of dHL).

α, β ::= ?(φ) | x := θ | x := ∗ | x′ = θ&ψ | α ∪ β | α; β | α∗ | a

The hybrid program constructs of dHL are simply those of dL. Hybrid programs combine
discrete programming constructs with differential equations to provide a program representation
of hybrid systems. The atomic dL programs are tests ?(φ) that abort execution if formula φ is
false, assignments x := θ and x := ∗ which update program variable x to the value of term θ
or a nondeterministic value, differential equation evolution x′ = θ&ψ, and object-level program
constants a which range over fixed, arbitrary programs. They should not be confused with the
similar-looking program metavariables α used in schemata and theorems. Differential equations
are the defining feature of dL; the effect of x′ = θ&ψ is to evolve the differential equation x′ = θ
nondeterministically for any duration, but only so long as the formula ψ is always true.

They are composed with nondeterministic choice α ∪ β that runs exactly one of α or β, se-
quential composition α; β, and nondeterministic iteration α∗ that runs α any finite number of times

3

sequentially. Traditional deterministic programming constructs can be derived from the nondeter-
ministic hybrid program constructs, e.g., if (φ){α} else {β} ≡ (?(φ);α) ∪ (?(¬φ); β).

As an introductory (toy) example of a hybrid system, consider the following simplistic model
of a diesel generator.

Example 1 (Hybrid System for a Diesel Generator).

αgen
def≡ ((p := 0 ∪ (p := ∗; ?(Fuel > 0 ∧ 0≤ p≤ pmax));

{Fuel ′ = −p, gr ′ = p&Fuel ≥ 0})∗

The controller features two branches (∪), which control the power output p: The first branch
says we can always choose to turn the generator off (p := 0) while the second branch lets us
choose any value (p := ∗) so long as there is fuel left (Fuel > 0) and the power level is within the
generator’s capability (0 ≤ p ≤ pmax). The plant is a system of differential equations where the
fuel decreases continuously in proportion to the power level Fuel ′ = −p and the total energy sent
to the grid (gr) increases continuously in proportion to power level (gr ′ = p) but never so long
that fuel would become negative (Fuel ≥ 0). The controller and plant are repeated in a loop an
arbitrary number of times.

Definition 4 (Formulas of dHL).

φ, ψ ::= φ ∧ ψ | ¬φ | ∃x :R φ | θ1 ≥ θ2 | 〈α〉φ
| ∃s :W φ | w | @wφ | ↓s φ | p(~Θ) | P

Formulas φ ∧ ψ,¬φ, ∃x :R φ, and θ1 ≥ θ2 are as in first-order logic. As in dL, the diamond
modality 〈α〉φ says there exists an execution of the (nondeterministic) program α where formula
φ holds in the ending state. Its dual, the box modality [α]φ, says all end states satisfy φ, and is
derived: [α]φ ≡ ¬〈α〉¬φ. These modalities are commonly used to express partial correctnesss
assertions (P → [α]Q) and total correctness assertions (P → 〈α〉Q) familiar from Hoare logic.
We give example safety and liveness properties of Ex. 1.

Example 2 (A Safety Property for the Generator). The formula

Fuel ≥ 0→ [αgen]Fuel ≥ 0

that the fuel level shall never go negative so long as it is initially nonnegative. Note the word
“safety” is used in a technical sense to mean any property of shape [α]Q, not only those that align
with an intuitive notion of making a system safe.

Example 3 (A Liveness Property for the Generator). The formula

Fuel > 0 ∧ pmax > 0→ 〈αgen〉Fuel = 0

says that assuming we start with fuel in the tank and nonzero maximum power, it is always possible
to empty the tank by running the generator long enough.

4

The above examples are formulas of the base logic dL. In dHL,we extend dL with the following
features from first-order hybrid logic. The quantifier ∃s :W φ says there exists a world (program
state) s in which φ holds (where φ can mention the world variable s). We will also use the universal
quantifier ∀s :W φ, which is a derived construct by the duality ∀s :W φ ≡ ¬∃s :W ¬φ. We
support nominal propositions w that hold in exactly the one state denoted by the world-valued
term w. These allow testing equality of the current state against w. Note the same syntax is used
regardless whether w appears as a term or formula; these usages are distinguished by syntactic
context. The hybrid satisfaction modality @wφ says that φ is true at the unique state named by
w. In addition to the typical existential and universal quantifiers, hybrid logic features the local
quantifier ↓s φ which binds the current state to the world variable s within the formula φ, whereas
the universal quantifier ∀s :W φ binds an arbitrary state to s. The local quantifier ↓s φ can be
derived as ↓s φ↔ ∃s :W (s∧ φ) or equivalently ∀s :W (s→ φ). We present this quantifier in its
entirety regardless, because it is important to information-flow applications and may be unfamiliar
to the reader. The connectives ↓s φ and @wφ can be understood computationally as well, as storing
or loading the current state to s or from w, respectively.

The predicate symbols p(~Θ) range over both real-valued terms θ and nominal expressions w,
and are used in axioms to stand for propositions. Beyond axioms, predicates will be used widely
in bisimulation arguments for information-flow: R(i, j) denotes a binary predicate over nominals.
Predicationals P simply stand for arbitrary formulas and are used in axioms in Section 5.

3 Information-Flow Example: FREEDM Grid
In this section, we set aside the toy example, Ex. 1, and introduce two variants of a smart grid
model based on NSF FREEDM [22], a microgrid which controls a local section of the power grid
and interacts with the surrounding macrogrid. Our model is the first hybrid-systems model of
FREEDM and follows the published algorithm [2], incorporating detailed dynamics not present in
prior models [3]. We show how information-flow security properties and their negations are stated
in dHL. We prove them in Secs. 8 and 9 once the proof calculus is introduced.

Smart grids like FREEDM use computer control to make electrical grids more robust, efficient,
and cost-effective in face of increasingly diverse power loads and supplies. Computer control
in grids makes joint cyber-physical security of this critical infrastructure essential. Not only can
information flow violations compromise private consumer information, but it has been suggested
they can aid attackers [3] in identifying targets for physical attacks.

3.1 Scenario
We look at an exchange (depicted in Fig. 1) that migrates power between two neighboring trans-
formers T1 and T2 connected to a macrogrid gr over a shared line. Variable names indicate units:
energy is uppercase, power (derivative of energy, e.g. B′i = bi) is lowercase, and migration rates
(derivative of power, e.g. b′i = bm i) end in m. Each transformer Ti carries power pi and is con-
nected to a renewable energy resource ri, to a household which demands power di, and to a energy
storage device Bi. The transformers are connected by a communication Link. While real instances

5

Battery

Demand

Transformer

Resource

Grid
r1

d1

B1

T1

p1

T2

p2

Link

r2

d2

B2

gr

Figure 1: FREEDM load balancing

of the FREEDM grid have many transformers, each migration involves exactly two transformers,
so the two-transformer case provides important insight for the general case.

Each transformer can be in one of three demand states: Low Demand, Normal Demand, or
High Demand. The algorithm [2] states:

• Net demand ni is the difference of gross power demand di and the sum of power draw pi
with generation ri.

• A transformer is in Low Demand if it has net demand ni < 0, High Demand if net demand
exceeds a provided threshold ni ≥ thresh > 0 or Normal otherwise.

• If any transformer i is Low (has excess power) while the other (written ī) is High, power
migrates at a provided constant rate m := maxm until at least one of them is Normal.

• Any excess power supply−ni > 0 not used in migration is accumulated as energy in battery
i subject to 0 ≤ Bi ≤ Bmax .

• Any excess demand ni > 0 not met by migration is drawn from the battery Bi with power bi
and migration rate bm i, or sold to the grid if the battery is full (Bi = Bmax).

• If Ti’s corresponding battery Bi is empty, it draws power gr (with migration rate gr ′ = grm)
from the macrogrid instead.

The grid is modeled in Fig. 2 as a hybrid program αF , which contains the controller (ctrl) and phys-
ical model (plant). The controller migrates power (migrate) and operates the battery (bat), which
has two implementations: a deterministic implementation batI of the above algorithm, which we
show to be insecure, and a nondeterministic version batS , which we show to be secure. We write
αI ≡ αF

batI
bat and αS ≡ αF

batS
bat to instantiate αF with the insecure or secure battery, respectively.

Our treatment of di and ri is general, assuming only that they are non-negative and can change
countably often. Time t′ = 1 is not used for control, but will factor into our proofs because it
is observed by attackers and we prove that, e.g., observing the ODE duration does not leak the
continuous variables pi, Bi, bi.

6

αF ≡ (ctrl; plant)∗ ctrl ≡ migrate; bat
migrate ≡

{
di := ∗; ?(di ≥ 0); ri := ∗; ?(ri ≥ 0); ni := di − (ri + pi);

if (ni ≥ thresh ∧ nī < 0) {m := (−1)i ·maxm}
else {m := 0}

}
plant ≡ {p′i = −1i ·m, B′i = bi, b

′
i = bmi, gr

′ = grm, t′ = 1 &Bi ≥ 0}

batI ≡
{
gr := 0; bmi := 0; grm := 0;

if ((ni ≤ 0 ∧ Bi < Bmax) ∨ (ni > 0 ∧Bi > 0)){
{ bi :=−ni; bmi := bmi + (−1i+1) ·m}

else { bi := 0; gr := gr + ni; grm := grm + (−1)i+1 ·m}
}

batS ≡
{
gr := 0; bmi := 0; grm := 0;(

?(Bi < Bmax) ∨ (ni > 0 ∧Bi > 0);

bi :=−ni; bmi := bmi + (−1)i+1 ·m
)

∪
(
bi := 0; gr := gr + ni; grm := grm + (−1)i+1 ·m

) }
Figure 2: FREEDM model with insecure and secure batteries

3.2 Defining Information Flow.
We give the general formulation:

Definition 5 (Nondeducibility Information-Flow Security). Let α be a program and let L be the
set of publicly observable expressions, e.g., L = {gr , t} for FREEDM with publicly-known time
t and macrogrid flow gr . At its simplest, binary relation R(i, j) says worlds i and j agree on all
public expressions L, and is defined by:

R(i, j) ≡

(∧
θ∈L

(@iθ = @jθ)

)
∧

(∧
φ∈L

(@iφ↔ @jφ)

)

In practice, R(i, j) often also states that i and j satisfy any problem-specific constraints, e.g. on
the range of system parameters. Now we define nondeducibility information flow:

∀i1, i2, o1 :W
(
@i1〈α〉o1 ∧R(i1, i2)→ @i2〈α〉↓o2 R(o1, o2)

)
Nondeducibility means an observer can never deduce anything about the input value @i1x of a

private variable x /∈ L from the final values of public expressions @o1(θ or φ), when the observer
does not directly observe how nondeterminism is resolved. This is the case when Def. 5 holds
because it says every input state i2 that agrees on public terms (R(i1, i2)) has at least one program
path @i2〈α〉o2 (where o2 is the final state of α, as bound by the quantifier ↓o2) that would explain the
final values of public expressions at o1. Because all inputs would have made the output possible,
it is impossible to deduce anything about the input state. As we will see in Section 9, the core
challenge in proving this property is identifying which program path explains any given final public

7

value: for a nondeterministic program α, only by carefully resolving nondeterminism will we find
a path that ensures secure flow.

In Section 8 we will also prove batI is nondeducibility insecure, by proving the negation of
nondeducibility security, i.e.:

∃i1, i2, o1 :W
(
@i1〈α〉o1 ∧R(i1, i2) ∧@i2 [αI]↓o2 ¬R(o1, o2)

)
4 Semantics
We return to developing dHL. Its semantic development begins with our semantic building blocks.
The building blocks are worlds ω, µ, ν, galaxies g, h, and interpretations I, J . Interpretations give
meaning to rigid symbols, whose meanings are fixed throughout a formula, such as functions,
predicates, nominal constants, and program constants. The flexible symbols, whose meaning can
change throughout a program or formula, are real-valued program variables x, y and world-valued
world variables s, t. The program variables receive their values from the active world ω while
world variables receive their values from the galaxy g, which contains an infinitude of worlds, one
for each world variable. We write ωrx for the state that updates ω’s value of program variable x to
r ∈ R and likewise gωs for updated galaxies.

Program and world variables are both drawn from a countable variable set V isomorphic to N.
The set of all worldsW is isomorphic to RV . The set of all galaxies G is isomorphic to

(
RV
)V .

We write I(f), I(p), etc. for the interpretation of a given symbol and I for the set of all inter-
pretations. The types of each component are as follows, where ℘(S) is the power set of S:

I(f) : (R ∪W)→ R
I(p) : ℘(R ∪W)

I(F) : G ×W → R
I(P) : G → ℘(W)

I(a) : G → ℘(W ×W)

That is, we present f and p as untyped and unary, as polyadic generalizations are straightforward.

Definition 6 (Real term semantics). Let ω ∈ W , g ∈ G, I ∈ I, then:

[[x]]Igω = ω(x) (1)
[[c]]Igω = c (2)

[[θ1 + θ2]]Igω = [[θ1]]Igω + [[θ2]]Igω (3)
[[θ1 · θ2]]Igω = [[θ1]]Igω · [[θ2]]Igω (4)

[[@wθ]]Igω = [[θ]]Igν where ν = [[w]]Igω (5)
[[f(θ)]]Igω = I(f)([[θ]]Igω) (6)

[[F]]Igω = I(F)(gω) (7)

Equations (1)–(4) describe polynomial terms as in dL. The new term construct of dHL is the
at-term @wθ, whose meaning is the meaning of real term θ at the state denoted by world term w.

8

The language of world terms is quite simple, containing only rigid nominals n and flexible
world variables s, deriving their meaning from the interpretation I or galaxy g, respectively. We
write [[w]]Igω for symmetry with real terms θ even though ω is unused.

Definition 7 (World term semantics). Let g ∈ G, I ∈ I, then:

[[n]]Igω = I(n)

[[s]]Igω = g(s)

Definition 8 (Program semantics). The program semantics are as in dL, but with the addition of
galaxies g. Let ω, ν ∈ W , g ∈ W , I ∈ I, then:

(ω, ω) ∈ [[?φ]]Ig iff ω ∈ [[φ]]Ig (8)
(ω, ν) ∈ [[x := θ]]Ig iff ν = ωrx for r = [[θ]]Igω (9)
(ω, ν) ∈ [[x := ∗]]Ig iff ν = ωrx for some r ∈ R (10)

(ω, ν) ∈ [[x′ = θ&ψ]]Ig iff (ω, ν) = (ϕ(0), ϕ(t)) and ϕ solves
x′ = θ on [0, t] and ϕ(s) ∈ [[ψ]]Ig for all s ∈ [0, t] (11)

(ω, ν) ∈ [[α ∪ β]]Ig iff (ω, ν) ∈ [[α]]Ig or (ω, ν) ∈ [[β]]Ig (12)
(ω, ν) ∈ [[α; β]]Ig iff (ω, ν) ∈ ([[α]]Ig) ◦ ([[β]]Ig) (13)

(ω, ν) ∈ [[α∗]]Ig iff (ω, ν) ∈ ([[α]]Ig)∗ (14)
(ω, ν) ∈ [[a]]Ig iff (ω, ν) ∈ I(a)(g) (15)

Galaxy g is untouched by execution. Equations (8)–(11) are the atomic hybrid programs. Dif-
ferential equations (11) evolve according to the solution of the ODE for any duration t ≥ 0, but
must stop while the formula ψ still holds. In (13), ◦ is composition. In (14), ([[α]]Ig)∗ is the
reflexive, transitive closure of [[α]]Ig. Program constants (15) receive their meaning from the inter-
pretation (and galaxy, since formulas inside programs can mention nominals).

Definition 9 (Formula semantics).

ω ∈ [[φ ∧ ψ]]Ig iff ω ∈ [[φ]]Ig and ω ∈ [[ψ]]Ig (16)
ω ∈ [[¬φ]]Ig iff ω /∈[[φ]]Ig (17)

ω ∈ [[∃x :R φ]]Ig iff ωrx ∈ [[φ]]Ig for some r ∈ R (18)
ω ∈ [[θ1 ≥ θ2]]Ig iff [[θ1]]Igω ≥ [[θ2]]Igω (19)
ω ∈ [[〈α〉φ]]Ig iff ν ∈ [[φ]]Ig for some ν s.t. (ω, ν)∈[[α]]Ig (20)

ω ∈ [[∃s :W φ]]Ig iff ω ∈ [[φ]]Igνs for some ν ∈ W (21)
ω ∈ [[@wφ]]Ig iff ν ∈ [[φ]]Ig for ν = [[w]]Ig (22)
ω ∈ [[↓s φ]]Ig iff ω ∈ [[φ]]Igωs (23)
ω ∈ [[w]]Ig iff [[w]]Igω = ω (24)

ω ∈ [[p(Θ)]]Ig iff [[Θ]]Igω ∈ I(p) (25)
ω ∈ [[P]]Ig iff ω ∈ I(P)(g) (26)

9

Equations (16)–(19) are a standard definition of first-order logic connectives, wherein we write
[[θi]]Igω : R for the denotation of real-valued term θi (Def. 6). Equation (20) defines the diamond
modality 〈α〉φ: we employ a Kripke semantics where possible worlds are program states (Def. 8).
Equations (21)–(24) define the hybrid-logical operators, where [[w]]Ig : W (Def. 7) is the denota-
tion of a world term. Equations (25)–(26) say predicates and predicationals derive their mean-
ing from the interpretation I , with the difference that predicates depend only on their arguments
while predicationals depend on all flexible symbols. We say formula φ is valid when the relation
ω ∈[[φ]]Ig holds for all states ω, galaxies g, and interpretations I .

5 Proof Calculus
We present a sound proof calculus for dHL, which is used for deductive verification. The calculus
is given in Hilbert style, i.e., axioms are used wherever possible, with a minimal number of proof
rules. Axioms are instantiated with a uniform substitution [38][12, §35] rule: from the validity of
φ we can conclude validity of σ(φ) where substitution σ specifies concrete replacements for some
or all rigid symbols in a formula φ:

US
φ

σ(φ)

The side-conditions determining which substitutions σ are sound are non-trivial, and make up
much of the soundness proof in Section 6, with the benefit that soundness arguments and imple-
mentation for individual axioms are greatly simplified.

5.1 Program Axioms
The axioms for programs in diamond modalities in Fig. 3 are as in dL [34]. Axioms for box
modalities [α]φ can be derived by duality (axiom 〈·〉, Fig. 3). With the exception of the loop
axioms, these axioms can be read off directly from the semantics of hybrid programs. The axiom
〈′〉 replaces a differential equation with a global solution, represented here by the expression1 y(t).
Loops can be finitely unfolded with the axiom 〈∗〉. More often, we reason by induction using
axiom I or its derived rules.

5.2 Modal Axioms and Hilbert Rules
Generic modal axioms and Hilbert rules are as in dL [34] and are listed in Fig. 3. The axiom 〈·〉
relates the diamond and box modalities, and is used to derive axioms for box modalities [α]φ. As
is typical for Hilbert calculus, axioms are combined with rules G, US, and MP. Axiom V says
nullary predicates p() are preserved under program execution because they depend on no program
variables.

1The presentation of this axiom is simplified for clarity. In reality, differential equation solving is implemented
with the combination of several axioms [38].

10

〈;〉 〈a; b〉P ↔ 〈a〉〈b〉P

〈∪〉 〈a ∪ b〉P ↔ (〈a〉P ∨ 〈b〉P)

〈?〉 〈?P 〉Q↔ (P ∧Q)

〈:=〉 〈x := f()〉p(x)↔ p(f())

〈:∗〉 〈x := ∗〉p(x)↔ ∃x :R p(x)

〈′〉 〈x′ = F & q(x)〉p(x)↔ ∃t≥0(p(y(t)) ∧ ∀0≤s≤t q(y(s)))

〈∗〉 〈a∗〉P ↔ (P ∨ 〈a〉〈a∗〉P)

I [a∗]P ↔ (P ∧ [a∗] (P → [a]P))

G
P

[a]P

US
φ

σ(φ)

M
P → Q

〈a〉P → 〈a〉Q

MP
P → Q P

Q

〈·〉 〈a〉P ↔ ¬[a]¬P

V p()→ [a]p()

K [a](P → Q)→ [a]P → [a]Q

@id @nn

∃W ∃s :W s

G@

P

@nP

∀I@

q(t)

∀s :W q(s)
(t fresh)

@I (n ∧ P)→ @nP

@@ @n@mP ↔ @mP

@↔ @nm→ (p(n)↔ p(m))

∀E@ (∀s :W p(s))→ p(n)

〈n〉 ([a]↓s p(s) ∧ 〈a〉n)→ p(n)

↓ ↓s p(s)↔ ∃s :W (s ∧ p(s))

K@ @n(P → Q)→ (@nP → @nQ)

@hom @np(F1, . . . Fm)↔ p(@nF1, . . . ,@nFm)

BW 〈α〉∃s :W P ↔ ∃s :W 〈α〉P (s /∈ FV(α))

Figure 3: dL axioms and rules, hybrid rules and axioms

11

5.3 Hybrid rules and axioms
Our hybrid modality and quantifier axioms come from first-order hybrid logic [8] and Combinatory
Dynamic Logic [31] and are listed in Fig. 3. Axiom @id says nominal constant formulas n are
satisfied at the state named by n. Axiom ∃W introduces a name for the current state. Rule G@ and
axiom K@ are the Gödel generalization rule and Kripke axiom for the @ modality. Axioms ∀I@

and ∀E@ are Skolemization and elimination for universal world quantifiers. Axiom @I introduces
an @nφ modality when n is the current state. Axiom @@ collapses nested @ modalities to the
inner modality. Axiom @↔ replaces equal states in context. Axiom 〈n〉 introduces an @ modality
for any state n reachable by a program a. Axiom ↓ reduces the local quantifier to its definition
in terms of the existential operator. Homomorphism axiom family @hom completely captures the
meaning of at-terms. Barcan axiom schema BW swaps a quantifier ∃s :W with a program α where
s does not appear free (s is never bound in any program). To make schematic program α into a
constant a and make BW a concrete axiom, it would suffice to prohibit nominals inside programs.

6 Theory
We now develop the theory of dHL, showing that the proof calculus is sound and comparing the
expressiveness of dHL with other logics. Complete definitions and proofs are in App. A.

6.1 Soundness
We show soundness of dHL by extending the soundness proof for the uniform substitution calculus
for dL [38]. Uniform substitution allows for a modular soundness proof: the soundness proof is
separated into proving that a finite list of dHL axioms are valid and that uniform substitution and
the remaining Hilbert rules preserve validity. We prove that all valid dL formulas are valid dHL
formulas, and thus dL axioms are also sound in dHL automatically.

6.1.1 Substitution

The US rule in dHL is analogous to that in dL:

US
φ

σ(φ)

In dL, the US rule is sound when the substitution σ does not introduce free references to bound
variables. Such substitutions are called admissible, a condition which can be checked syntactically.

We generalize: in dHL, admissible substitutions do not introduce free references to any bound
flexible symbol, world variables included. Admissibility conditions are checked recursively by the
substitution algorithm (Fig. 5). We give the new cases and their admissibility conditions here. The
free-variable function FV(e) recursively computes which flexible symbols might influence e. The
novel cases of FV(e) are given in Fig. 4; the full algorithm is given in App. A. The admissibility
checks also use a notion of U-admissibility:

12

Case Equals

FV(f(w)) = FV(w)

FV(∃s :W φ, ∀s :W φ) = FV(φ) \ {s}
FV(↓s φ) = (FV(φ) ∪ V|R) \ {s}

FV(@sφ) = FV(@sθ) = FV(φ or θ)|W ∪ {s}
FV(@sφ) = FV(@sθ) = FV(φ or θ)|W

FV(s) = V|R ∪ {s}
FV(n) = V|R

Figure 4: Free variable function (new cases)

Case Replacement Admissible when

σ(@wθ) = @σ(w)σ(θ) σ is V-admissible for θ
σ(@wφ) = @σ(w)σ(φ) σ is V-admissible for φ

σ(∀s :W φ) = ∀s :W σ(φ) σ is {s}-admissible for φ
σ(∃s :W φ) = ∃s :W σ(φ) σ is {s}-admissible for φ

σ(↓s φ) = ↓s σ(φ) σ is {s}-admissible for φ
σ(n) = n, if n /∈ σ
σ(n) = σn, if n ∈ σ
σ(s) = s

Figure 5: Uniform substitution algorithm (new cases)

Definition 10 (U -admissibility). We say a substitution σ is U -admissible for an expression e with
a flexible symbol set U iff

⋃
sym∈σ|Σ(e)

FV(σsym) ∩ U = ∅ where σ|Σ(e) is the restriction of σ that

replaces only symbols occurring in e and where sym is an arbitrary rigid.

6.1.2 Examples

The admissibility conditions in Fig. 5 are instantiations of the principle that substitution should not
introduce new free references under a binder. Yet, it can be surprisingly subtle both why these
conditions are necessary for soundness and why the resulting calculus is sufficiently complete. To
see why they are necessary for soundness, consider for example the instance of axiom @hom for

σC
def≡ {FC 7→ x, p(·) 7→ x = ·}, a substitution which clashes and which, if it were permitted,

13

would result in an invalid formula:

@n(x = x)↔ x = @nx

where the LHS is a tautology and the RHS is false almost everywhere. The fundamental problem
is that the modality @n modifies the meaning of x: on the left it refers to @nx while on the right
it refers to x in the present state. In short, the meaning of σp is non-uniform, so substitution
with σ would be unsound. The admissibility check for @w prohibits such substitutions, ensuring
uniformity and thus soundness of rule US.

It is equally subtle why rule US allows axiom @hom to be instantiated at all, because the @n

modality binds the entire state. The key is that predicate argument · does not contribute to the sub-

stitution’s free variables. For example, substitution σA
def≡ {F1 7→ x2, p(·) 7→ · ≥ 0} is admissible

because i) F1 already depends on all variables, so σA(F1) introduces no free variables and ii) the
argument · is rigid, so σA(p) introduces no free variables. Intuitively, σA should be admissible for
formula p(F1) because the argument F1 is a functional that can depend on all variables, yet σC
clashes since σC(p) does not defer to the argument (written ·), causing @hom to incorrectly use
simply x on both sides.

We proceed to the soundness theorem, following the same structure as previous work [38]. We
begin with lemmas on the correctness of free variable and signature computations, where the sig-
nature Σ(e) is the analog of FV(e) for rigid symbols. The coincidence lemmas say that expressions
depend only on their signature and free variables. We extend coincidence for terms and formulas
with new cases for hybrid-logical constructs:

Lemma 1 (Coincidence).

1. If ω = ω̃ on FV(θ), g = h on FV(θ), and I = J on Σ(θ), then [[θ]]Igω = [[θ]]Jhω̃.

2. If ω = ω̃ on FV(φ), g = h on FV(φ), and I = J on Σ(φ), then ω ∈ [[φ]]Ig iff ω̃ ∈ [[φ]]Jh.

3. If ω = ω̃, g = h on V ⊇ FV(α), I = J on Σ(α), and (ω, ν)∈[[α]]Ig, then exists ν̃ s.t.
(ω̃, ν̃)∈[[α]]Ih and ν = ν̃ on V .

Axioms of dL need not be reproved because dHL contains dL:

Proposition 2 (dHL contains dL). If φ is a dL formula, then validity in dL semantics and validity
in dHL semantics coincide for φ.

Theorem 3 (dHL soundness). All dHL rules are sound and all axioms valid, thus all provable dHL
formulas are valid.

Proof Sketch (App. D). Soundness of US is proven inductively, appealing to Lemma 1. The dL
axioms are valid in dL [38] and (by Proposition 2) dHL, and by US so are their instances, even
instances containing hybrid connectives. Validity of the new dHL axioms is by direct proof.

14

6.2 Reducibility
We compare the expressive power of dHL to that of dL in order to determine when and in what
sense dHL is necessary or especially beneficial compared to dL. The comparison is surprisingly
subtle, and finds that while dHL is reducible to dL, its specialized hybrid-logical rules make direct
proof in dHL preferable for practical purposes. The core idea is to emulate each world variable
from dHL with a finite number of program variables in dL, resulting in an equivalent, finite dL for-
mula. This approach is subtle mainly since dHL states contain infinitely many program variables:

1. The size of worlds is not a cosmetic decision, but rather affects validity of some formulas.
Consider the formula:

φ ≡ 〈x := ∗〉s

This is valid iff V ≡ {x}, i.e. iff reaching all values of x suffices to reach all states. We con-
sider this behavior too surprising, and eliminate it by requiring infinite states. The formula
is then invalid because program x := ∗ cannot, e.g., transition between any ω and ν where
ω(r) 6= ν(r) for r 6= x.

2. Program constants and predicationals depend on every variable, in order to capture the notion
that programs and formulas can use arbitrary variable names. Since there are infinitely many
variables, they have infinitely many dependencies.

We show that for formulas without program constants and predicationals (called concrete for-
mulas), infinite worlds are not an obstacle, while for formulas with program constants or predi-
cationals (called abstract formulas), they are. Concrete formulas are reducible: even though each
state contains infinitely many variables, it suffices to employ a single fresh variable r (consider
example above). To make this claim formal, we introduce a notion of finite domains for states,
galaxies and interpretations.

Definition 11 (Finite-domain states). State ω has finite domain S ⊆ V if S is finite and ω(x) = 0
for all x /∈ S. Galaxies and interpretations are analogous. A formula φ is finite-domain valid for
domain S if ω ∈ [[φ]]Ig for all ω, I, g with finite domain S.

We outline the proof here, with full proofs in App. B. The proof proceeds by showing that
in both dHL and dL, validity and finite-domain agree for concrete formulas, then showing that
our reduction preserves finite-domain validity. Thus our reduction preserves validity for concrete
formulas. The converse also holds because dL is a fragment of dHL (Proposition 2).

Lemma 4 (Finitization). Let φ be any concrete dHL formula. Then let r /∈ FV(φ)∪BV(φ) (where
BV(φ) is everything bound in φ). Then φ is valid iff φ is finite-domain valid with domain {r} ∪
(FV(φ)∪BV(φ)).

Lemma 5 (Finite-domain reducibility). There exists a computable reduction T (φ) such every dHL
formula φ is finite-domain valid iff the dL formula T (φ) is finite-domain valid.

Proof Sketch (App. B). We present the translation T (φ). In this translation we write ~x for the vector
of all variables x1, . . . , xn in the domain S, and e~θ~x for the vectorial substitution of all θi for the

15

corresponding xi in e. For each of the finitely-many world terms w in φ, let ~xw be a vector of |S|
fresh symbols implementing @w~x. When convenient, we implicitly assume S ⊃ FV(φ) ∪ BV(φ).

T (@wθ) = T (θ)~x
w

~x (27)
T (@wφ) = [~x := ~xw]T (φ) (28)
T (w) = (~x = ~xw) (29)

T (∀s :W φ) = ∀~xs :R T (φ) (30)
T (∃s :W φ) = ∃~xs :R T (φ) (31)

T (↓s φ) = [~xs := ~x]T (φ) (32)
T (⊗(e1, . . . , e2)) = ⊗(T (e1), . . . , T (en)) (33)

In Equation (33), the notation ⊗(e1, . . . , en) stands for any of the other dL connectives. In
Equation (29), vector equality ~x = ~y stands for conjunction

∧
i xi = yi. The result is by induction.

Lemma 6 (De-finitization). A concrete dL formula φ is valid iff it is finite-domain valid over do-
main FV(φ) ∪ BV(φ).
Theorem 7 (Concrete reducibility). Concrete dHL (i.e., with no rigid symbols) reduces to concrete
dL. That is, for all concrete dHL formulas, the concrete dL formula T (φ) is valid iff φ is.
Proposition 8 (Complexity of T). |T (φ)| ∈ Θ(|φ|2) for concrete φ.

Proof Sketch (App. B). To prove the upper bound, note the function T (φ) expands φ by at most a
factor of |S|. By Lemma 4, |S| ∈ O(|φ|) suffices for finitely-valid φ. To prove the lower bound,
simply observe there exist formulas where the number of program and world variables are both
linear in the size. We give a concrete example:

φn ≡ ∃s1 :W · · · ∃sn :W (@s1x1 > 0 ∧ · · · ∧@snxn > 0)

Now observe that applying T with S = {r} ∪ FV(φn) ∪ BV(φn) results in |T (φn)| ∈ Ω(n2).

We note these theorems do not entail (infinite) validity reduction for abstract dHL formulas.
Theorem 5 does however preserve finite validity even in the presence of abstract formulas. In
summary, reduction fails iff abstract constants are allowed to introduce arbitrary new variables.
Corollary 9 (Relative semi-decidability). Concrete dHL is semi-decidable relative to properties of
differential equations.

Proof. By relative semi-decidability [34] of dL and Theorem 7.

We reflect on the practical implications of the reducibility results. The reduction requires a
finite variable domain, but the natural domain for abstract formulas is infinite. This means ver-
ification by reduction is especially ill-suited for proofs using advanced proof techniques like re-
finement [26] which rely on abstract formulas. Most dHL axioms are also abstract, and so cannot
be translated to concrete dL axioms! Even on concrete formulas, the reduction exhibits quadratic
blowup and obscures the more convenient proof techniques available in dHL. Thus, direct proof in
dHL is strongly preferable to dL reduction for practical purposes.

16

@ind
@i1o1 → p(o1) @m1〈α〉o1 ∧ p(m1)→ p(o1)

@i1〈α∗〉o1 → p(o1)

BS∗
@i1〈α〉o1 ∧R(i1, i2)→ @i2〈α〉↓o2 R(o1, o2)

@i1〈α∗〉o1 ∧R(i1, i2)→ @i2〈α∗〉↓o2 R(o1, o2)

BS′
@i1〈ASGN〉o1 ∧R(i1, i2)→ @i2 [ASGN]↓o2 R(o1, o2)

@i1〈ODE〉o1 ∧R(i1, i2)→ @i2〈ODE〉↓o2 R(o1, o2)

BS;

@i1〈α〉m1 ∧Ri(i1, i2)→ @i2〈α〉↓m2 Rm(m1,m2)
@m1〈α〉o1 ∧Rm(m1,m2)→ @m2〈α〉↓o2 Ro(o1, o2)

@i1〈α; β〉o1 ∧Ri(i1, i2)→ @i2〈α; β〉↓o2 Ro(o1, o2)

BS∪

@i1〈α〉o1 ∧Ri(i1, i2)→ @i2〈α〉↓o2 Ro(o1, o2)
@i1〈β〉o1 ∧Ri(i1, i2)→ @i2〈β〉↓o2 Ro(o1, o2)

@i1〈α ∪ β〉o1 ∧Ri(i1, i2)→ @i2〈α ∪ β〉↓o2 Ro(o1, o2)

Figure 6: Bisimulation: Derived rules (mi fresh)

7 Derived Rules for Bisimulation
The proof calculus of Section 5 provides a hybrid-logical core for hyperproperty verification. We
connect nondeducibility to this core by deriving a library of rules for information-flow proofs
which, being derived, lie outside the core calculus. Our derived rules show that bisimulation,
the core proof technique for information flow, derives from nominals in hybrid logic. Because
information flow arguments specifically equate values from initial and ending states, we also derive
rules for equalities over at-terms. In Section 8 and Section 9, we apply our library to our smart grid
example and see it raises the level of abstraction. Derivations are given in the App. D.

7.1 Bisimulation Rules
In Fig. 6, R refers to a relation over world expressions, i.e., R(i1, i2) means that worlds i1 and i2
are related in R, and m1,m2 refer to any middle states. The rules proceed by destructing a trace
on the left; any nondeterminism is resolved identically on the right. Rule @ind is an auxiliary rule
for loop induction with nominals, derived from loop induction axiom I. It is in turn used to derive
Rule BS∗, which says any relation R is a bisimulation for loop α∗ any time it is (in every state)
a bisimulation for α. Rule BS; is Hoare-style composition reasoning raised to the bisimulation
level: we can reason about α; β by establishing a relation Rm that holds in the intermediate state.
Rule BS∪ says a nondeterministic choice maintains a bisimulation if each branch does. In rule BS′,
ODE is a differential equation of form {x′ = θ, t′ = 1 &ψ} (any model can be trivially extended
to this form by adding a fresh variable t) and ASGN ≡ (t := @o1t;x := y(t−@i1t)) simplifies
ODEs to assignments implementing their solutions, plugging in the same duration @o1t− @i1t as
in the trace @i1〈ODE〉o1.

17

NTV @i〈α〉j → @iθ = @jθ (FV(θ) ∩ BV(α) = ∅)

NT:= @i〈x := F 〉j → @iF = @jx

NT;
@i〈α〉m→ @iF = @mH @m〈β〉j → @mH = @jG

@i〈α; β〉j → @iF = @jG

NT∪
@i〈α〉j → @iF = @jG @i〈β〉j → @iF = @jG

@i〈α ∪ β〉j → @iF = @jG

NT′ @i〈x′ = F, t′ = 1 &ψ〉j → @iy((@jt)− t) = @jx

NT∗
@s〈α〉t→ @sF = @tF

@i〈α∗〉j → @iF = @jF

Figure 7: At-terms: Derived rules (n,m, s, t fresh)

7.2 At-Terms
Fig. 7 derives rules for at-term equalities. Vacuity rule NTV says a term θ is unchanged if its
variables never appear bound in α. The remaining rules are derived from the program axioms and
capture the effect of each program on a term. In rule NT′, y(t) is a global solution to x′ = f(x).

8 FREEDM: Proving Vulnerability Existence
We now prove that the naı̈ve deterministic controller batI based on the published algorithm for
FREEDM [2] is insecure: our quantitative dynamical model reveals a bug obscured by the finite
event-based abstraction in previous models [3]. Information leaks because when gr > 0 is true we
can infer Bi = Bmax for some i, meaning we have leaked the information that some battery is at
capacity. In principle, this could be useful to an attacker, because high charge is associated with
vulnerability to (explosive) thermal runaways [15]!

To prove that a system is nondeducibility-insecure, we prove the negation of nondeducibility
security, i.e., we prove:

Proposition 10 (batI is insecure). Let αI be the insecure version of the grid αF and then let
R(i, j) ≡ (@it = @jt ∧ @igr = @jgr). Then the following formula is valid according to dHL
semantics: ∃i1, i2, o1 :W

(
R(i1, i2) ∧@i1〈αI〉o1 ∧@i2 [αI]↓o2 ¬R(o1, o2)

)
.

Proof Sketch (App. F). We begin by constructing the states i1, i2, o1. First, let i be an arbitrary
state. Then let i1 be the unique state such that @i〈Bi :=Bmax; t := 0; gr := 0〉i1 and i2 the unique
state such that @i〈Bi := 1

2
Bmax; t := 0; gr := 0〉i2. Let o1 be any state such that @i1〈αI〉o1 and such

that @o1(t = 0 ∧ gr > 0). We know such a state exists by running αI for exactly one iteration,
setting ri = max(0,−pi) and di = 1 + max(0, pi) which always results in Ni = 1. Thus after
evolving the differential equation for time 0 we arrive at gr > 0. By induction we show that all
traces of αI maintain the invariant J ≡ (t≥0 ∧ (t=0 → gr ≤ 0 ∧ Bi = 1

2
Bmax)), which can be

18

proven by mechanically applying program axioms, then checking first-order real arithmetic at the
leaves. The result follows from @o1(t = 0 ∧ gr > 0) ∧ @o2J → ¬R(o1, o2), which itself follows
from a simpler arithmetic argument: @o1gr 6= @o2gr .

9 FREEDM: Ensuring and Proving Security
We learned that batI leaks Bi = Bmax, ultimately because it is too deterministic: If gr > 0 we
learn for a fact some Bi = Bmax. The simplest solution, as taken in batS of Fig. 2, is to add the
nondeterministic option to use the macrogrid even when a battery has capacity. The macrogrid is
then always an option, so an attacker who observes gr > 0 cannot infer Bi = Bmax for certain.

We now prove batS nondeducibility secure, i.e., an attacker observing only gr and t deduces
nothing else. We instantiate Def. 5 to arrive at the theorem statement:
Proposition 11 (Nondeducibility for FREEDM). First, we define the relationR(i, j) by the equiva-
lence R(i, j) ≡ (@it = @jt ∧@igr = @jgr ∧ pre(i) ∧ pre(j)) and define the predicate pre(i) by
pre(i)≡@i(maxm > 0 ∧Bmax> 0 ∧ thresh > 0). Then formula

∀i1, i2, o1 :W
(
@i1〈αS〉o1 ∧R(i1, i2)→ @i2〈αS〉↓o2 R(o1, o2)

)
is valid, where αS is the secure version of the grid αF .

Proof Sketch (App. E). Recall from Section 3.2 that the heart of the proof is choosing a trace
@i2〈αS〉o2 which shows the public outputs @o1gr and @o1t of trace

@i2〈αS〉o2

are possible from all related input states i2. We apply loop rule BS∗ with R(i, j) defined by
R(i, j) ≡ @it = @jt ∧ @igr = @jgr ∧ pre(i) ∧ pre(j). The key proof observation is that
for the final values of gr to agree, it suffices that the values agree for both gr and grm at the start
of the ODE. We perform this reasoning formally using the composition rule BS; with RP defined
as RP (i, j) ≡ R(i, j) ∧ @igr = @jgr ∧@igrm = @jgrm ∧ @it = @jt. This gives two proof
obligations: one for the control and one for the physics. We split into four cases for the controller
using Lemma 12, according to whether each transformer chooses to migrate.
Lemma 12 (Controller cases). The following dHL formula is valid, where ctrl is as in Fig. 2:

@i1〈ctrl〉m1 → @m1

(
(gr = 0 ∧ grm = 0) ∨ (gr = n1 ∧ grm = m)

∨(grm = n2 ∧ grm = −m) ∨ (gr = n1 + n2 ∧ grm = 0)
)

The second case is representative, the rest are in App. E.
Case @m1(gr = n1 ∧ grm = m) : By inspection, it suffices to set n1 = @m1n1 and to set

n2 = 0,m = 0. If @m1n1 − @i2p1 ≥ 0 then we set r1 = −@m1n1 − @i2p1 and d1 = 0 else
we set r1 = 0 and d1 = @i2p1 + @m1n1. By algebra, in each case @m2n1 = @m1n1. Then for
i = 2 if @i2p2 ≥ 0 then set r2 = −@i2p2 and d2 = 0 else set r2 = 0, d2 = @i2p2. By algebra,
@m2n2 = 0. Executing the load balancer, we get m = 0 because n2 = 0 (thus T2 is Normal).
Each case takes the second branch of the battery controller, getting gr = n1 + n2 = n1 and
grm = m · −12 +m · −11 = 0 = m as desired. This completes the proof of Proposition 11.

19

We have shown how to use dHL to find and resolve hybrid-dynamic information flow (HDIF)
vulnerabilities in CPSs. We reflect on how verified safety of a model can contribute to the safety
of real-world implementations as well.

Our first model was insecure because a deterministic branch in the battery controller leaked
information. This was fixed by introducing a nondeterministic branch; this fact that determinism
can make a model less secure is colloquially known as the “refinement paradox”. Implementations
can approximate this added nondeterminism, e.g., with randomized branching. The exact extent of
security in the implementation would depend on the probability with which each branch is taken.
Our models taught us that the battery controller needs such measures, but the load balancing con-
troller, in contrast, is secure even with deterministic control. This knowledge is helpful in practice
because measures like randomization typically reduce operational suitability of a controller, so ver-
ifying that a deterministic controller is secure enables using the efficient deterministic controller
with confidence.

In comparison with many other formal security models, our approach is especially well-suited
to verifying security in the presence of side-channels. Many would-be side-channels for cyber
systems (time, electrical flow, etc.) are primary channels in CPS and, as shown in our models, are
modeled naturally as hybrid systems. Once these channels are modeled in our hybrid system, they
can be verified with the same techniques as any other HDIF!

10 Derivable Extensions
It is question of natural theoretical interest: which logical features are fundamentally new, and
which can be derived from each other? When we formalize the theory of a logic in a theorem
prover (as we have done for the base logic dL [10]) , this becomes a question of practical interest
as well: if we derive as many features as possible, this allows us to minimize the complexity of the
core language and thus minimize formalization effort. It turns out that dynamic logic and hybrid
logic are a potent combination; we discuss here some of the features that can be derived from the
core provided by dHL.

10.1 Differential Refinement Logic
The refinement formula Γ ` α ≤ β says that under the assumption that all formulas in the con-
text (list) Γ are true, α refines β, i.e. α only reaches a (non-strict) subset of states reachable by
β. Refinements have been developed for hybrid systems in the logic dRL [26], a variant of dL.
Refinements are useful, for example, because they can reduce the amount of user effort required
for a proof. This is especially true when (as is common in practice) we wish to develop a series
of progressively more complex models, in which case dRL helps modularly decompose the proof
effort.

There is no obvious reduction from dRL to dL in the presence of program constants, for the
same reason as dHL: Refinements describe entire (infinite) program states, which are not easily
reduced to finite dL formulas. In contrast, their definition in dHL is straightforward:

Γ ` (α ≤ β) ≡ (∧Γ → ∀s :W (〈α〉s→ 〈β〉s)) (34)

20

As is typical for refinement logics, program equivalence is definable from refinement:

Γ ` (α = β) ≡ (Γ ` α ≤ β) ∧ (Γ ` β ≤ α) (35)

Just as refinement reasoning helps with modular verification of realistic models, equivalence reason
enables contextual reasoning for programs, which typically enables simpler proofs.

Because dRL is derivable from dHL, we can conclude that it is safe to omit dRL from the core
logic. As was the case with the rules of Sec. 7, we could derive the dRL refinement rules from dHL
to provide a new proof of soundness for dRL.

10.2 Universal and Existential Modalities
Other commonly-used modalities in modal logic include the universal and exisitential modalities,
which we write *�φ and *♦φ, and which say the formula φ is true in all or some states, respectively.
These are easily defined in dHL:

*�φ ≡ ∀s :W @sφ and *♦φ ≡ ∃s :W @sφ (36)

It is perhaps not surprising that they can be so defined, but these modalities may be of interest
for implementation reasons. The dL calculus as implemented in KeYmaera X [18, 38] deals not
only in valid formulas, but primarily in locally-sound (axiomatic) proof rules (i.e., a proof shows
that validity of one formula is derivable from validity of others). The universal modality allows
internalizing the local soundness of an axiomatic proof rule as the validity of a formula. This is
not only useful as a conceptual bridge, but would also enable broader application of substitution
reasoning [38], because the substitution rules available in dL can by applied to individual formulas
but not (soundly) to most proof rules. Applications of such substitutions may include modular
proof techniques similar to those pursued in the development of dRL [26].

Frame Classes. The universal operator can also be used to define further extensions to dHL.
There are many propositional logics that differ in which Kripke frames are allowed in interpre-
tations of modal operators, i.e., what axioms the modalities must obey. As hybrid programs can
express many behaviors, the only common modal axioms that hold for all modalities [α]φ are those
of the modal system K:

K [α](A→ B)→ [α]A→ [α]B

G
A

[α]A

However, one can imagine wanting to freely mix traditional modalities from various propositional
dynamic logics with the dynamic-logical reasoning of dHL. The universal modality makes it easy
to introduce (by axiomatization) new program constants that implement a desired traditonal modal-
ity. For example, we could add the System K4 box modality by introducing a program constant
named K4 and assuming it obeys the transitivity axioms [K4]φ→ [K4][K4]φ of System K4 (for all

21

instances φ of axiom K4 used in the proof). We axiomatize K4 in a proof of an arbitrary theorem
ψ by instead proving the formula:

*�([K4]φ→ [K4][K4]φ)→ ψ

This accomplishes is a reduction from validity in dHL +K4 to validity in dHL. As with other
applications of the universal modality, we could express this theorem as soundness of an axiomatic
proof rule [18] in KeYmaera X, but can not write it as a (conceptually simpler) single formula
without a universal modality.

11 Related Work

11.1 Dynamic Logics and Hybrid Logics.
The logic dHL is a hybrid version of the dynamic logic dL, adding the ability to verify hyperprop-
erties in addition to safety and liveness properties. The KeYmaera [39] and KeYmaera X [18] have
been successfully applied in numerous safety case studies [27, 23, 24]. The logic dLh [33] was pro-
posed as an extension of dL with propositional hybrid connectives, but lacks world quantifiers and
at-terms, which are essential for information flow. Dynamic logic and first-order hybrid logic have
been combined in Combinatory PDL [30], which extends Propositional Dynamic Logic (PDL)
with additional set-theoretic program combinators, but has neither at-terms nor assignments, let
alone differential equations as dHL does. Hybrid logic has been used in preference logics [47], re-
active systems logics [28], and distributed systems logics [32] and type systems [48] as well. While
many CPSs are distributed systems, distributed systems reasoning alone does not suffice to verify
hybrid discrete and continuous dynamics. The logic QdL [35] allows verification of distributed
hybrid dynamics, but is not a hybrid logic, and faces the same challenges with hyperproperties as
dL does. First-order hybrid logic [8] (without dynamic-logical or continuous features) and its proof
theory [11] have been studied in detail. The latter includes a treatment of non-rigid designators
which are equivalent to at-terms of variables @wx, i.e., our at-terms are a natural generalization of
non-rigid designators.

11.2 Static Information Flow Security.
Logics and type systems for information-flow security have been widely studied for discrete pro-
grams. Sebelfeld and Myers [42] provide a survey of language-based security approaches. Ap-
proaches can be broadly categorized into automatic vs. interactive (or manual) approaches. Au-
tomation increases the potential user base, typically at the cost of greatly reduced completeness.
When the proof is done automatically, the simplicity of the proof is of little concern, and self-
composition [6] can be used to reduce information-flow proofs to a safety property suitable for
Hoare and dynamic logics.

In interactive use, self-composition has been noted [46] to make proofs awkward by reducing
locality: bisimulation techniques consider the local effect of each statement α on two traces, but

22

self-composition may move the original statement α far from its copy. For humans, a usable cal-
culus as provided by dHL is far more important. As our smart grid example demonstrates, typical
HDIFs rely on fine-grained interactions between discrete and continuous dynamics within system
loops. This suggests that automated approaches would struggle and that our approach, which is
amenable to interactive proof, is merited. An approach analogous to proof by reduction from dHL
to dL has been implemented for the dynamic logic JAVADL in the theorem prover KeY (which
supports both automatic and interactive proof, but not nominals). To avoid the awkwardness of
the reduction approach, calculi meant for interactive use [7, 29] typically build in special-purpose
relations for information flow. The disadvantage of such calculi is that baking in these relations
prevents generalizing to other hyperproperties.

We strike a middle ground with dHL: The proof techniques we would expect of a dedicated
calculus are easily implemented as derived rules, yet we maintain the generality to express arbi-
trary safety and liveness properties and hyperproperties as well. Our development hints that the
relationship between hybrid logic and hyperproperties is general and deserves further exploration.

While we present the first HDIF result for a CPS, information flow has been verified for discrete
models of several different CPSs via model-checking; e.g., Akella [3] has verified process algebra
models of FREEDM and Wang [49] has verified a Petri-net model of a pipeline network. The
absence of continuous dynamics amounts to a significant model gap between these models and
reality. HDIFs greatly narrow the model gap: for example, our HDIF analysis of our FREEDM
model revealed a vulnerability that was not visible in the discrete model of Akella [3]. This all
goes to say there are ample options for future work for CPS security through the logical lens.

12 Conclusion and Future Work
We introduced dHL, a hybrid logic for verifying information-flow security properties of hybrid dy-
namical systems in order to ensure the security of critical cyber-physical systems (CPS). In contrast
with previous approaches, it allows verifying cyber-physical hybrid-dynamic information flows
(HDIFs), communicating information through both discrete computation and physical dynamics,
so security is ensured even when attackers observe continuously-changing values in continuous
time. It achieves this by combining dL, a logic for hybrid dynamical systems, with hybrid-logical
features enabling explicit reference to program states. This provides a novel way to verify informa-
tion flow: information flow properties are hyperproperties, which are expressed naturally in hybrid
logic via its ability to refer freely to states from multiple traces simultaneously. The foundation
of hybrid logic allows verification (and falsification) of security in a common system at no added
complexity, and we expect the same system can support additional notions of information flow
such as non-interference, as well as arbitrary hyperproperties. We introduced a calculus for dHL,
proved it sound, and derived high-level bisimulation rules for information flow proofs. Our use
of uniform substitution provides modularity: we can instantiate all existing dL axioms with dHL
formulas and need not individually reprove that each axiom is a valid formula of dHL. Uniform
substitution also provides a clear path for extending the dL theorem-prover KeYmaera X [18] and
soundness formalization [10] with dHL.

We showed that dHL is capable of verifying the presence or absence of information-flow vul-

23

nerabilities in realistic hybrid models. As an example, we debugged and then verified a hybrid
model of the FREEDM [22] smart grid controller based on the published algorithm [2] with load-
balancing and distributed energy generation and storage, all important features for practical grids.
Moreover, the proof demonstrates both i) the close correspondence between dHL information-flow
proofs and natural-language proofs and ii) the non-trivial proof arguments that quickly arise when
mixing cyber and physical dynamics.

The main places where dHL proofs require more effort than an informal proof were in intro-
ducing names for intermediate states and observing the effect of a program on an individual term.
Much as the Bellerophon language has helped automate low-level steps in plain dL proofs [17], we
hope to provide a proof language in an eventual KeYmaera X implementation of dHL to allow us
to automate the majority of these low-level steps, making proofs efficiently match to human intu-
ition. Our information-flow arguments depend closely on the exact semantics of the program and
do not follow from, e.g., simple syntactic checks on variable dependencies, meaning the expressive
power provided by dHL’s deductive calculus is essential for verifying realistic CPS information
flow problems. A major novelty in both the logic dHL and our model of FREEDM is the presence
of HDIFs that mix discrete cyber and continuous physical flows. These cyber-physical flows arise
naturally in many other critical applications, such as oil and natural gas networks, canals, smart
homes, medical devices, and vehicles, which deserve future exploration.

Lastly, we wish to explore potentional uses of our refinement and universal modalities [26] in
modular hybrid systems modeling and verification.

Acknowledgements. We thank Hannah Gommerstadt, Yong Kiam Tan and Stefan Mitsch for
feedback and discussions on the conference version of this paper, and thank the LICS referees for
their detailed comments on the conference version.

This material is based upon work supported by the National Science Foundation under NSF
CAREER Award CNS-1054246 and by the AFOSR under grant number FA9550-16-1-0288. The
first author was supported by the Department of Defense through the National Defense Science &
Engineering Graduate Fellowship Program.

References
[1] Ravi Akella and Bruce M. McMillin. Information flow analysis of energy management in a

smart grid. In Erwin Schoitsch, editor, Computer Safety, Reliability, and Security, volume
6351 of LNCS, pages 263–276. Springer, 2010.

[2] Ravi Akella, Fanjun Meng, Derek Ditch, Bruce McMillin, and Mariesa Crow. Distributed
power balancing for the FREEDM system. In SmartGridComm. IEEE, 2010.

[3] Ravi Akella, Han Tang, and Bruce M. McMillin. Analysis of information flow security in
cyber-physical systems. IJCIP, 3(4):157–173, 2010.

[4] P. G. Allen. A comparison of non-interference and non-deducibility using CSP. In CSFW,
pages 43–54. IEEE, 1991.

24

[5] Saurabh Amin, Xavier Litrico, Shankar Sastry, and Alexandre M. Bayen. Stealthy deception
attacks on water SCADA systems. In Karl Henrik Johansson and Wang Yi, editors, Pro-
ceedings of the 13th ACM International Conference on Hybrid Systems: Computation and
Control, HSCC 2010, Stockholm, Sweden, April 12-15, 2010, pages 161–170. ACM, 2010.

[6] Gilles Barthe, Pedro R. D’Argenio, and Tamara Rezk. Secure information flow by self-
composition. Mathematical Structures in Computer Science, 21(6):1207–1252, 2011.

[7] Nick Benton. Simple relational correctness proofs for static analyses and program transfor-
mations. In Neil D. Jones and Xavier Leroy, editors, POPL 2004. ACM, 2004.

[8] Patrick Blackburn and Jerry Seligman. Hybrid languages. Journal of Logic, Language and
Information, 4(3):251–272, 1995.

[9] Brandon Bohrer and André Platzer. A hybrid, dynamic logic for hybrid-dynamic information
flow. In Anuj Dawar and Erich Grädel, editors, Proceedings of the 33rd Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS 2018, Oxford, UK, July 09-12, 2018, pages
115–124. ACM, 2018.

[10] Brandon Bohrer, Vincent Rahli, Ivana Vukotic, Marcus Völp, and André Platzer. Formally
verified differential dynamic logic. In Yves Bertot and Viktor Vafeiadis, editors, CPP 2017.
ACM, 2017.

[11] Torben Braüner. Hybrid logic and its proof-theory. Applied Logic Series, 37, 2011.

[12] Alonzo Church. Introduction to Mathematical Logic. Princeton University Press, 1956.

[13] Michael R. Clarkson and Fred B. Schneider. Hyperproperties. Journal of Computer Security,
18(6):1157–1210, 2010.

[14] Florian Dötzer. Privacy issues in vehicular ad hoc networks. In International Workshop on
Privacy Enhancing Technologies, pages 197–209. Springer, 2005.

[15] Xuning Feng, Minggao Ouyang, Xiang Liu, Languang Lu, Yong Xia, and Xiangming He.
Thermal runaway mechanism of lithium ion battery for electric vehicles: A review. Energy
Storage Materials, 10:246–267, 2018.

[16] Goran Frehse, Colas Le Guernic, Alexandre Donzé, Scott Cotton, Rajarshi Ray, Olivier
Lebeltel, Rodolfo Ripado, Antoine Girard, Thao Dang, and Oded Maler. SpaceEx: Scal-
able verification of hybrid systems. In Ganesh Gopalakrishnan and Shaz Qadeer, editors,
CAV 2011, volume 6806 of LNCS. Springer, 2011.

[17] Nathan Fulton, Stefan Mitsch, Brandon Bohrer, and André Platzer. Bellerophon: Tactical
theorem proving for hybrid systems. In Mauricio Ayala-Rincón and César A. Muñoz, editors,
ITP, volume 10499 of LNCS, pages 207–224. Springer, 2017.

25

[18] Nathan Fulton, Stefan Mitsch, Jan-David Quesel, Marcus Völp, and André Platzer. KeY-
maera X: An axiomatic tactical theorem prover for hybrid systems. In Amy Felty and Aart
Middeldorp, editors, CADE, volume 9195 of LNCS. Springer, 2015.

[19] Thoshitha T. Gamage, Bruce M. McMillin, and Thomas P. Roth. Enforcing information flow
security properties in cyber-physical systems: A generalized framework based on compensa-
tion. In COMPSAC Workshops 2010. IEEE, 2010.

[20] Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford, Shane S. Clark, Benessa
Defend, Will Morgan, Kevin Fu, Tadayoshi Kohno, and William H. Maisel. Pacemakers and
implantable cardiac defibrillators: Software radio attacks and zero-power defenses. In S&P
2008. IEEE, 2008.

[21] Thomas A. Henzinger. The theory of hybrid automata. In LICS 1996. IEEE, 1996.

[22] A. Q. Huang. Renewable energy system research and education at the NSF FREEDM systems
center. In Power & Energy Society General Meeting, 2009. IEEE, July 2009.

[23] Jean-Baptiste Jeannin, Khalil Ghorbal, Yanni Kouskoulas, Ryan Gardner, Aurora Schmidt,
Erik Zawadzki, and André Platzer. Formal verification of ACAS X, an industrial airborne
collision avoidance system. In Alain Girault and Nan Guan, editors, EMSOFT, pages 127–
136. IEEE, 2015.

[24] Yanni Kouskoulas, David W. Renshaw, André Platzer, and Peter Kazanzides. Certifying the
safe design of a virtual fixture control algorithm for a surgical robot. In Calin Belta and
Franjo Ivancic, editors, HSCC, pages 263–272. ACM, 2013.

[25] Ruggero Lanotte, Massimo Merro, Riccardo Muradore, and Luca Viganò. A formal approach
to cyber-physical attacks. In CSF 2017. IEEE, 2017.

[26] Sarah M. Loos and André Platzer. Differential refinement logic. In Natarajan Shankar, editor,
LICS. ACM, 2016.

[27] Sarah M. Loos, André Platzer, and Ligia Nistor. Adaptive cruise control: Hybrid, distributed,
and now formally verified. In Michael Butler and Wolfram Schulte, editors, FM, volume
6664 of LNCS, pages 42–56. Springer, 2011.

[28] Alexandre Madeira, Luı́s Soares Barbosa, Rolf Hennicker, and Manuel A. Martins. Dynamic
logic with binders and its application to the development of reactive systems. In Augusto
Sampaio and Farn Wang, editors, Theoretical Aspects of Computing - ICTAC 2016 - 13th
International Colloquium, Taipei, Taiwan, ROC, October 24-31, 2016, Proceedings, volume
9965 of LNCS, pages 422–440, 2016.

[29] Aleksandar Nanevski, Anindya Banerjee, and Deepak Garg. Verification of information flow
and access control policies with dependent types. In S&P. IEEE, 2011.

26

[30] Solomon Passay and Tinko Tinchev. An essay in combinatory dynamic logic. Inf. Comput.,
93(2):263–332, 1991.

[31] Solomon Passy and Tinko Tinchev. Quantifiers in combinatory PDL: completeness, definabil-
ity, incompleteness. In Lothar Budach, editor, FCT 1985, volume 2751 of LNCS. Springer,
1985.

[32] Dirk Pattinson and Bernhard Reus. A complete temporal and spatial logic for distributed
systems. In Bernhard Gramlich, editor, FroCoS 2005. Springer, 2005.

[33] André Platzer. Towards a hybrid dynamic logic for hybrid dynamic systems. In Patrick
Blackburn, Thomas Bolander, Torben Braüner, Valeria de Paiva, and Jørgen Villadsen, edi-
tors, International Workshop on Hybrid Logic, volume 174 of ENTCS, 2007.

[34] André Platzer. Differential dynamic logic for hybrid systems. J. Autom. Reas., 41(2):143–
189, 2008.

[35] André Platzer. A complete axiomatization of quantified differential dynamic logic for dis-
tributed hybrid systems. Log. Meth. Comput. Sci., 8(4):1–44, 2012. Special issue for selected
papers from CSL’10.

[36] André Platzer. Differential game logic. ACM Trans. Comput. Log., 17(1):1:1–1:51, 2015.

[37] André Platzer. Logic & proofs for cyber-physical systems. In Nicola Olivetti and Ashish
Tiwari, editors, IJCAR, volume 9706 of LNCS, pages 15–21. Springer, 2016.

[38] André Platzer. A complete uniform substitution calculus for differential dynamic logic. J.
Autom. Reas., 59(2):219–265, 2017.

[39] André Platzer and Jan-David Quesel. KeYmaera: A hybrid theorem prover for hybrid sys-
tems. In Alessandro Armando, Peter Baumgartner, and Gilles Dowek, editors, IJCAR, volume
5195 of LNCS, pages 171–178. Springer, 2008.

[40] Maxim Raya and Jean-Pierre Hubaux. The security of vehicular ad hoc networks. In Vijay
Atluri, Peng Ning, and Wenliang Du, editors, Proceedings of the 3rd ACM Workshop on
Security of ad hoc and Sensor Networks, SASN 2005, Alexandria, VA, USA, November 7,
2005, pages 11–21. ACM, 2005.

[41] Masoud Rostami, Ari Juels, and Farinaz Koushanfar. Heart-to-heart (H2H): authentication
for implanted medical devices. In Ahmad-Reza Sadeghi, Virgil D. Gligor, and Moti Yung,
editors, CCS 2013. ACM, 2013.

[42] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow security. IEEE
Journal on Selected Areas in Communications, 21(1):5–19, 2003.

[43] Krishna Sampigethaya, Radha Poovendran, Sudhakar Shetty, Terry Davis, and Chuck Roy-
alty. Future E-enabled aircraft communications and security: The next 20 years and beyond.
Proceedings of the IEEE, 99(11):2040–2055, 2011.

27

[44] Christoph Scheben and Peter H. Schmitt. Verification of information flow properties of
Java programs without approximations. In Bernhard Beckert, Ferruccio Damiani, and Dilian
Gurov, editors, FoVeOOS, volume 7421 of LNCS. Springer, 2011.

[45] Vijay Srinivasan, John A. Stankovic, and Kamin Whitehouse. Protecting your daily in-home
activity information from a wireless snooping attack. In Hee Yong Youn and We-Duke Cho,
editors, UbiComp 2008: Ubiquitous Computing, 10th International Conference, UbiComp
2008, Seoul, Korea, September 21-24, 2008, Proceedings, volume 344 of ACM International
Conference Proceeding Series, pages 202–211. ACM, 2008.

[46] Tachio Terauchi and Alexander Aiken. Secure information flow as a safety problem. In Chris
Hankin and Igor Siveroni, editors, SAS, volume 3672 of LNCS. Springer, 2005.

[47] Johan van Benthem and Fenrong Liu. Dynamic logic of preference upgrade. Journal of
Applied Non-Classical Logics, 17(2):157–182, 2007.

[48] Tom Murphy VII, Karl Crary, Robert Harper, and Frank Pfenning. A symmetric modal
lambda calculus for distributed computing. In 19th IEEE Symposium on Logic in Computer
Science (LICS 2004), 14-17 July 2004, Turku, Finland, Proceedings, pages 286–295. IEEE,
2004.

[49] Jingming Wang and Huiqun Yu. Analysis of the composition of non-deducibility in cyber-
physical systems. Applied Mathematics & Information Sciences, 8(6):3137–3143, 2014.

28

A Uniform Substitution Algorithm
We give the complete presentation of the uniform substitution algorithm, i.e.

• The FV(e) function computing flexible symbols which can influence expression e

• The BV(α) function computing flexibles which can change during program α (unchanged
from prior work)

• The MBV(α) function computing flexibles which are necessarily bound on all execution
paths of α

• The signature Σ(e) of rigid symbols in expression e.

• The substitution algorithm σ(e) proper.

Here U|R and U|W denote the restriction of set U to only program variables or world variables,
respectively. Equations (37-48) are as in previous work [38]. In Equation 48, MBV(α) is the set of
variables that are bound on all executions of α. Equation 49 says quantifiers remove the quantified
world variable from the free variable set because references to s in φ refer to the value bound by
the quantifier. Equations 51 and 52 say the only free variables are the world variables of θ or φ
(and s in the world variable case). It may be surprising that the free program variables of φ and θ
make no appearance. The reason is this: program variable references x within @wφ or @wθ refer
to @sx, which is encapsulated by the single dependency on s 2 , or to @nx which is rigid due to
the rigidity of n and thus incurs no dependencies on a flexible symbol such as x.

BV(?φ) = {}
BV(x := θ) = {x}
BV(x := ∗) = {x}

BV(x′ = θ&ψ) = {x, x′}
BV(α ∪ β) = BV(α) ∪ BV(β)

BV(α; β) = BV(α) ∪ BV(β)

BV(α∗) = BV(α)

BV(a) = V|W ∪ V|R
MBV(α ∪ β) = MBV(α) ∩MBV(β)

MBV(α; β) = MBV(α) ∪MBV(β)

MBV(a) = MBV(α∗) = {}
MBV(α) = BV(α)

2One might be tempted to increase the precision of admissibility by distinguishing, e.g. dependency on @sx from
@sy. This would have no benefit because all binders of states bind them in their entirety, in which case introducing
free reference to any @sx violates admissibility. We thus lose nothing by using the simpler dependency on s.

29

FV(c) = {} (37)
FV(x) = {x} (38)

FV(θ1 + θ2) = FV(θ1) ∪ FV(θ2) (39)
FV(θ1 · θ2) = FV(θ1) ∪ FV(θ2) (40)

FV(f(θ)) = FV(θ) (41)
FV(f(w)) = FV(w) (42)

FV(F) = V |R ∪ V |W (43)

FV(φ ∧ ψ) = FV(φ) ∪ FV(ψ) (44)
FV(¬φ) = FV(φ) (45)

FV(∃x :R φ) = FV(φ)\ {x} (46)
FV(θ1 ≥ θ2) = FV(θ1) ∪ FV(θ2) (47)

FV(〈α〉φ) = FV(α) ∪ (FV(φ)\ MBV(α)) (48)

FV(∃s :W φ, ∀s :W φ) = FV(φ) \ {s} (49)
FV(↓s φ) = (FV(φ) ∪ V|R) \ {s} (50)

FV(@sφ) = FV(@sθ) = FV(φ or θ)|W ∪ {s} (51)

FV(@sφ) = FV(@sθ) = FV(φ or θ)|W (52)

FV(s) = V|R ∪ {s} (53)
FV(n) = V|R (54)

FV(?φ) = FV(φ) (55)
FV(x := θ) = FV(θ) (56)
FV(x := ∗) = {} (57)

FV(x′ = θ&ψ) = FV(θ) ∪ FV(H) (58)
FV(α ∪ β) = FV(α) ∪ FV(β) (59)

FV(α; β) = FV(α) ∪ (FV(β)\MBV(α)) (60)
FV(α∗) = FV(α) (61)

FV(a) = V|R ∪ V|W (62)

Figure 8: Free variable computation

30

Σ(@nφ) = Σ(@nθ) = Σ(φ or θ) ∪ {n}
Σ(@sφ) = Σ(@sθ) = Σ(φ or θ)

Σ(∃x :W φ) = Σ(∀x :W φ) = Σ(↓x φ) = Σ(φ)

Σ(sym ∈ f, F, p, P) = {sym}
Σ(⊗(e1, . . . , en)) = Σ(e1) ∪ · · · ∪ Σ(en)

Figure 9: Signature computation (sym is an arbitrary rigid)

Analogously to FV(e), the signature Σ(e) indicates all rigid symbols which influence the mean-
ing of e. Note that since rigid symbols, by definition, are not bound by the @wθ modality, they are
always counted in the signature:

Admissibility conditions are checked recursively during the substitution algorithm proper (Fig-
ure 10). These checks use an auxilliary notion called U−admissiblity:

Definition 12 (U -admissibility). We say a substitution σ is U -admissible for an expression e with
a flexible symbol set U iff

⋃
sym∈σ|Σ(e)

FV(σsym) ∩ U = ∅ where σ|Σ(e) is the restriction of σ that

replaces only symbols occurring in e.

This makes the admissibility conditions as expressed in the main paper precise. Note also in
Figure 10 that the symbol · is a reserved function (or nominal) symbol standing for the argument.

B Reducibility Proofs
We begin with the inclusion of dL into dHL. This is intuitivitely obvious because dL is a fragment
of dHL, but the technical details are finicky. The main finicky detail is that states and interpretations
in dHL are larger than in dL. We write ωh = ωd ∪ S to say that dHL state ωh is an extension of the
dL state ωd, where the set S contains all the additional mappings of ωh. Likewise we say Id v Ih
when Ih is an extension of Id. The v relation is not quite the subset relation but closely related.
We write D(ωh) for the dL part of a state and H(ωh) for the hybrid part. It holds when:

• Ih(a) = {(ωh, νh) | (D(ωh), D(ων)) ∈ Id(a) ∧H(ωh) = H(νh)}

• Ih(f) = Ih(f)(r) = Id(f)(r)

• Ih(F) = ∀(ωh = ωd ∪ S)Ih(f)(ωh) = Id(f)(ωd)

• Ih(p) = Ih(p)(r) = Id(p)(r)

• Ih(P) = ∀(ωh = ωd ∪ S)Ih(P)(ωh) = Id(P)(ωd)

31

Case Replacement Admissible when:

σ(c) = c (63)

σ(x) = x (64)

σ(θ1 + θ2) = σ(θ1) + σ(θ2) (65)

σ(θ1 · θ2) = σ(θ1) · σ(θ2) (66)

σ(f(θ)) = {· 7→ σ(θ)}(σf), f ∈ σ, else f(σ(θ)) (67)

σ(f(w)) = {· 7→ σ(w)}(σf), f ∈ σ, else f(σ(w)) (68)

σ(F) = σF, F ∈ σ (69)

σ(F) = F, F /∈ σ (70)

σ(a) = σa, a ∈ σ, else a (71)

σ(x := θ) = x := σ(θ) (72)

σ(x := ∗) = x := ∗ (73)

σ(?(φ)) =?(σ(φ)) (74)

σ({x′ = θ&ψ}) = {x′ = σ(θ) &σ(ψ)} σ {x, x′}-admiss. for θ, ψ (75)

σ(α;β) = σ(α);σ(β) σ BV(σ(α))-admiss. for β (76)

σ(α ∪ β) = σ(α) ∪ σ(β) (77)

σ(α∗) = σ(α)∗ σ BV(σ(α))-admiss. for α (78)

σ(θ1 ≥ θ2) = σ(θ1) ≥ σ(θ2) (79)

σ(p(θ)) = {· 7→ σ(θ)}(σp), p ∈ σ,else p(σ(θ)) (80)

σ(p(w)) = {· 7→ σ(w)}(σp), p ∈ σ,else p(σ(w)) (81)

σ(P) = (σP), P ∈ σ, else P (82)

σ(¬φ) = ¬σ(φ) (83)

σ(φ ∧ ψ) = σ(φ) ∧ σ(ψ) (84)

σ(∃x :R φ) = ∃x :R σ(φ) σ {x}-admiss. for φ (85)

σ(〈α〉φ) = 〈σ(α)〉σ(φ) σ BV(σ(α))-admiss. for φ (86)

σ(@wφ) = @σ(w)σ(φ) σ V-admiss. for φ (87)

σ(@wθ) = @σ(w)σ(θ) σ V-admiss. for θ (88)

σ(∀s :W φ) = ∀s :W σ(φ) σ {s}-admiss. for φ (89)

σ(∃s :W φ) = ∃s :W σ(φ) σ {s}-admiss. for φ (90)

σ(↓s φ) = ↓s σ(φ) σ {s}-admiss. for φ (91)

σ(n) = n, if n /∈ σ, else σn (92)

σ(s) = s (93)

Figure 10: Uniform Substitution Algorithm

32

We now establish a series of lemmas leading up to the reduction

Lemma 13 (Surjectivity). For all ωh, Ih exist ωd, S, Id such that ωh = ωd ∪ S and Id v Ih

Proof. By straightforward construction, let ωd = D(ωh), S = (ωh \ ωd), Id = D(Ih).

Lemma 14 (Term inclusion). For all ωh = ωd ∪ S and Id v Ih and all θ, [[θ]]ωdId = [[θ]]ωhIh.

Proof. By induction on the term θ.

• Case c ∈ Q : [[c]]ωdId = c = [[c]]ωhIh.

• Case x ∈ V : [[x]]ωdId = ωd(x) = ωh(x) = [[x]]ωhIh because ωd ⊆ ωh.

• Case θ1 +θ2 : [[θ1 + θ2]]ωdId = [[θ1]]ωdId+[[θ2]]ωdId = [[θ1]]ωhIh+[[θ2]]ωhIh = [[θ1 + θ2]]ωhIh
by IH.

• Case θ1 · θ2 : [[θ1 · θ2]]ωdId = [[θ1]]ωdId · [[θ2]]ωdId = [[θ1]]ωhIh · [[θ2]]ωhIh = [[θ1 · θ2]]ωhIh by
IH.

• Case f(θ) : [[f(θ)]]ωdId = Id(f)([[θ]]ωdId) = Ih(f)([[θ]]ωdId) = Ih(f)([[θ]]ωhIh) = [[f(θ)]]ωhIh
by IH and by Id v Ih.

• Case F : [[F]]ωdId = Id(F)(ωd) = Ih(F)(ωh) = [[F]]ωhIh by Id v Ih.

Lemma 15 (Program inclusion). For all ωd, νd, S, Id, Ih if (ωd, νd)∈[[α]]Id and Id v Ih then (ωh, νh)∈[[α]]Ih
for ωh = ωd ∪ S and νh = νd ∪ S.

Proof. By induction on α, in simultaneous induction with Lemma 16.

• Case x := θ : (ωd, νd)∈[[x := θ]]Id implies νd = ωd
[[θ]]νdId
x equals ωd

[[θ]]ωhIh
x by Lemma 14. By

semantics, (ωh, ωh
[[θ]]ωhIh
x) ∈ [[x := θ]]Ih, then note by assumptions and set arithmetic, have

νh = ωh
[[θ]]ωhIh
x , completing the case.

• Case x := ∗ : (ωd, νd)∈[[x := ∗]]Id implies νd = ωd
r
x for some r ∈ R. By semantics,

(ωh, ωh
r
x)∈[[x := ∗]]Ih then note by assumptions and set arithmetic have νh = ωh

r
x, complet-

ing the case.

• Case ?(φ) : (ωd, νd)∈[[?φ]]Ig implies ωd = νd and ωd ∈[[φ]]Id. By assumptions then ωh = νh.
By Lemma 16 have ωh ∈[[φ]]Ih, completing the case.

• Case x′ = θ&ψ : (ωd, νd)∈[[x′ = θ&ψ]]Id implies ωd = ϕd(0), νd = ϕd(t), t ≥ 0 and for
all s ∈ [0, t]Id ∈[[H]]ϕd(s) where ϕd solves the ODE x′ = θ on interval [0, t]. Now construct
a new solution ϕh(r)(x) = ϕd(r)(x) for program variables x and ϕh(r)(s) = ωh(s) =
νh(s). Then ϕh must also be a solution because ϕd is a solution and an ODE can only
bind program variables anyway. We still have t ≥ 0 and by Lemma 16 we also have ∀s ∈
[0, t]Id ∈[[H]]ϕd(s), which suffices to show (ωh, νh)∈[[x′ = θ&ψ]]Ih because ϕh(0) = ωh
and ϕh(t) = νh by construction of ϕh and the assumptions on ωh, νh.

33

• Case α ∪ β : (ωd, νd)∈[[α ∪ β]]Id implies (ωd, νd)∈[[α]]Id and (ωd, νd)∈[[β]]Id so by IH
(ωh, νh)∈[[α]]Ih and (ωh, νh)∈[[β]]Ih so (ωh, νh)∈[[α ∪ β]]Ih.

• Case α; β : (ωd, νd)∈[[α; β]]Id implies there exists µd such that (ωd, µd)∈[[α]]Id and (µd, νd)∈[[β]]Id.
Let µh = µd∪S. Then we can apply the IHs getting (ωh, µh)∈[[α]]Ih and (µh, νh)∈[[β]]Ih so
(ωh, νh)∈[[α; β]]Ih.

• Case α∗ : (ωd, νd)∈[[α∗]]Id implies (ωd, νd) ∈ ([[α]]Id)
∗ implies (ωd, νd) ∈ ([[α]]Id)

k for
some k ∈ N, where ([[α]]Id)

0 = {(ω, ω) | ω ∈ W} and ([[α]]Id)
k+1 = {(ω, ν) | (ω, µ) ∈

[[α]]Id and (µ, ν) ∈ ([[α]]Id)
k for some µ}. Proceed by induction on k. In the case k = 0 then

νd = ωd and νh = ωh and (ωh, νh)∈[[α∗]]Ih. In the case k + 1 by have (1) (ωd, µd)∈[[α]]Id
and (2) (µd, νd)∈[[α∗]]Ih. From (2) by inner IH, (µh, νh)∈[[α∗]]Ih where µh = µd ∪ S. From
(1) by outer IH have (ωh, µh)∈[[α]]Ih, thus (ωh, νh)∈[[α∗]]Ih.

• Case a : (ωd, νd)∈[[a]]Id implies (ωd, νd) ∈ Id(a) so (ωh, νh) ∈ Ih(a) by Id v Ih so
(ωh, νh)∈[[a]]Ih.

Lemma 16 (Formula Inclusion). If ωd ⊆ ωh and Id v Ih then for all φ ∈ dL have Id ∈[[φ]]ωd iff
Ih ∈[[φ]]ωd.

Proof. By induction on φ, in mutual induction with Lemma 15.

• Case θ1 ∼ θ2 : Id ∈[[θ1 ∼ θ2]]ωd iff [[θ1]]ωdId ∼ [[θ2]]ωdId iff (by Lemma 14) [[θ1]]ωhIh ∼
[[θ2]]ωhIh iff [[θ1 ∼ θ2]]ωdId.

• Case φ∧ψ : Id ∈[[φ ∧ ψ]]ωd iff Id ∈[[φ]]ωd and Id ∈[[ψ]]ωd iff (by IH) Ih ∈[[φ]]ωh and Ih ∈[[ψ]]ωh
iff Ih ∈[[φ ∧ ψ]]ωh.

• Case ¬φ : Ih ∈[[¬φ]]ωh iff not Ih ∈[[φ]]ωh iff (by IH) not Ih ∈[[φ]]ωh iff Ih ∈[[¬φ]]ωh.

• Case ∃x :R φ : Id ∈[[∃x :R φ]]ωd iff exists r ∈ R such that Id ∈[[φ]]ωd
r
x iff (by IH) Ih ∈[[φ]]ωh

r
x

(since ωdrx ∪ S = (ωd ∪ S)rx) iff Ih ∈[[∃x :R φ]]ωh.

• Case 〈α〉φ : Id ∈[[〈α〉φ]]ωd iff exists νd s.t. (1) (ωd, νd)∈[[α]]Id and (2) Id ∈[[φ]]ωd iff (1)
(ωh, νh)∈[[α]]Ih and (2) Ih ∈[[φ]]νh by IH 1 and 2 respectively iff Ih ∈[[〈α〉φ]]ωh.

• Case p(θ) : Id ∈[[p(θ)]]ωd iff Id(f)([[θ]]ωdId) iff Id(f)([[θ]]ωhIh) (by Lemma 14) iff (by Id v
Ih) ωh ∈[[f(θ)]]Ih.

• Case P : Id ∈[[P]]ωd iff Id(P)(ωd) iff (by Id v Ih and ωd ⊆ ωh) Ih(P)(ωh) iff Ih ∈[[P]]ωh.

Having completed the lemmas we can complete the main proof of reducibility:
Theorem 17 (dHL contains dL). For all φ ∈ dL, φ is valid in dL iff φ is valid in dHL

Proof. To show φ is valid in dHL, fix an interpretation Ih and state ωh and show Ih ∈[[φ]]ωh. By
Lemma 13, exist Id and ωd, S such that Id v Ih and Ih = Id ∪ S. By validity of φ in dL, have
Id ∈[[φ]]ωd. Then by Lemma 16, Ih ∈[[φ]]ωh.

34

C Concrete Reducibility
There are two intuitions behind the concrete reduction:

1. World variables can be simulated with program variables, with nominal constants likewise
simulated by constant functions.

2. Such a simulation can be done finitely despite the infinity of states because (a) dL constructs
see only explicitly-mentioned variables and (b) while hybrid constructs see the unmentioned
variables, they see no difference between finitely or infinitely-many unmentioned variables.

Point 2 is shown formally by showing that in both dL and dHL, validity for concrete formulas
agrees with finite-domain validity where states, galaxies and interpretations are non-zero on only
finitely many variables. Then point 1 is shown by induction because the translation preserves
finite-domain validity.

In what follows we fix arbitrary bijections to R Pω, Pg from RN and
(
RN
)N respectively. We

also let r always refer some canonical variable that is fresh in the translated formula φ. Furthermore
V(φ) = FV(φ) ∪ BV(φ) refers to all variables mentioned in φ. As in Appendix A we use S|R for
the restriction of flexible symbol set S to just program variables and S|W for the restriction to just
world variables.

Definition 13 (Finite-domain world). A world ω is finite-domain with domain V(φ)|Riff {x | ω(x) 6=
0} is finite.

Definition 14 (Finite-domain galaxy). A galaxy g is finite-domain with domain V(φ)|W iff {s | g(s) 6=
ω0} is finite, where ω0 is {(x, 0) | x ∈ V}.
Definition 15 (Finite-domain interpretation). An interpretation I is finite-domain (with domain S)
iff (1) for all n, I(n) has domain S|R and (2) For all p, f, w1, w2 if w1 and w2 agree on S|R then
I(p)(w1) = I(p)(w2) and I(f)(w1) = I(f)(w2).

Definition 16 (Finite validity). A formula φ is finitely-valid iff for all finite-domain I, g, ω, Ig ∈[[φ]]ω

We define a bijection (ω̃) between dHL worlds and finite-domain dHL worlds. We write the
inverse direction of the bijection with inverse notation ω˜.

World translation in dHL:

(ω̃) = {(x, ω(x)) | x ∈ V(φ)|R} ∪ {(x, 0) | x /∈ V(φ)|R}
∪ {(r, Pω(ν))} for ν = {(x, ω(x)) | x /∈ V(φ)|R}

The fact that (ω̃) is a bijection follows directly from Pω being a bijection.
The bijection (g̃) for galaxies is a simple extension:
Galaxy translation in dHL:

(g̃) = {(s, (g̃(s))) | s ∈ V(φ)|W} (94)

The bijection (Ĩ) for interpretations proceeds by cases on rigid symbols. We write the inverse
direction of the bijection with inverse notation I˜. The rigid symbols that can appear in a concrete
formula are nominals n and untyped predicates p and untyped functions f .

35

Definition 17 (Interpretation translation in dHL).

(Ĩ)(f)(x) = I(f)(x)

(Ĩ)(p)(x) = I(p)(x)

(Ĩ)(n) = (Ĩ(n))

(Ĩ)(p)(w) = I(p)(w˜)

(Ĩ)(f)(w) = I(f)(w˜)

We next define translation from finite dHL to finite dL
World+galaxy finitization

(ω×g) = ω ∪ {(xn, g(n)(x)) | x ∈ S|R, n ∈ S|W}

Interpretation finitization

(Ĩ)(f)(x) = I(f)(x)

(Ĩ)(p)(x) = I(p)(x)

(Ĩ)(f)(w) = I(f)(xn | x ∈ S|R)

(Ĩ)(p)(w) = I(p)(xn | x ∈ S|R)

(Ĩ)(xn()) = (Ĩ(n))(x)

(Ĩ)(p)(w) = I(p)(w˜)

(Ĩ)(f)(w) = I(f)(w˜)

The corresponding definitions in dL are simpler because there are no nominals:
World translation in dL

(ω̃) = {(x, ω(x)) | x ∈ V(φ)} ∪ {(x, 0) | x /∈ V(φ)} (95)

Definition 18 (Interpretation translation in dL).

(Ĩ)(f)(x) = I(f)(x)

(Ĩ)(p)(x) = I(p)(x)

(Ĩ)(n) = (Ĩ(n))

(Ĩ)(p)(w) = I(p)(w˜)

(Ĩ)(f)(w) = I(f)(w˜)

Having defined the key concepts, we can state the lemmas that contain all the work of the proof:

Lemma 18 (Concrete dHL Finitization - World terms). (˜[[w]]ωIg) = [[w]](ω̃)(Ĩ)(g̃).

Proof. By cases on w.

36

• Case n: Then (˜[[n]]ωIg) = (Ĩ(n)) = (Ĩ)(n) = [[n]](ω̃)(Ĩ)(g̃).

• Case s: Then (˜[[s]]ωIg) = (g̃(s)) = (g̃)(s) = [[s]](ω̃)(Ĩ)(g̃).

Lemma 19 (Concrete dHL Finitization - Real terms). [[θ]]ωIg = [[θ]](ω̃)(Ĩ)(g̃).

Proof. By induction on θ.

• Case c : [[c]]ωIg = c = [[c]](ω̃)(Ĩ)(g̃)

• Case x : [[x]]ωIg = ω(x) = (ω̃)(x) = [[x]](ω̃)(Ĩ)(g̃) by fact x ∈ V(x) and def of (ω̃).

• Case θ1 + θ2 : [[θ1 + θ2]]ωIg = [[θ1]]ωIg + [[θ2]]ωIg = [[θ1]](ω̃)(Ĩ)(g̃) + [[θ2]](ω̃)(Ĩ)(g̃) =

[[θ1 + θ2]](ω̃)(Ĩ)(g̃)

• Case Have θ1 · θ2 : [[θ1 · θ2]]ωIg = [[θ1]]ωIg · [[θ2]]ωIg = [[θ1]](ω̃)(Ĩ)(g̃) · [[θ2]](ω̃)(Ĩ)(g̃) =

[[θ1 · θ2]](ω̃)(Ĩ)(g̃)

• Case f(θ) : [[f(θ)]]ωIg = I(f)([[θ]]ωIg) = (Ĩ)(f)([[θ]]ωIg) = (Ĩ)(f)([[θ]](ω̃)(Ĩ)(g̃)) =

[[f((̃))]](ω̃)(Ĩ)(g̃) by definition of translation for f(x : R).

• Case f(w) : [[f(w)]]ωIg = I(f)([[w]]ωIg) and

[[f(w)]](ω̃)(Ĩ)(g̃) =

(Ĩ)(f)([[f(w)]](Ĩ)(g̃)) =

(Ĩ)(f)((˜[[f(w)]]ωIg)) =

I(f)((˜[[f(w)]]ωIg)

˜
) =

I(f)([[f(w)]]ωIg)

by IH and Lemma 18 so both sides are equal.

• Case @wθ : [[@wθ]]ωIg = [[θ]]([[w]]Ig)Ig = [[θ]]([̃[w]]Ig)(Ĩ)(g̃) = [[θ]]([[w]](Ĩ)(g̃))(Ĩ)(g̃) =

[[@wθ]](ω̃)(Ĩ)(g̃) by IH and Lemma 18.

Lemma 20 (Concrete dHL Finitization - Formulas and Programs). A concrete dHL formula is valid
iff it is finitely valid. Specifically, Ig ∈[[φ]]ω iff (Ĩ)(g̃)∈[[φ]](ω̃). By simultaneous induction we also
show finitization for programs: (ω, ν)∈[[α]]Ig iff ((ω̃), (ν̃))∈[[α]](Ĩ)(g̃).

Proof. • Case Have θ1 ≥ θ2 : Ig ∈[[θ1 ≥ θ2]]ω iff [[θ1]]ωIg ≥ [[θ2]]ωIg iff [[θ1]](ω̃)(Ĩ)(g̃) ≥
[[θ2]](ω̃)(Ĩ)(g̃) iff (Ĩ)g ∈[[θ1 ≥ θ2]](ω̃).

37

• Case φ∧ψ : Ig ∈[[φ ∧ ψ]]ω iff Ig ∈[[φ]]ω and Ig ∈[[ψ]]ω iff (Ĩ)(g̃)∈[[φ]](ω̃) and (Ĩ)(g̃)∈[[ψ]](ω̃)

iff (Ĩ)(g̃)∈[[φ ∧ ψ]](ω̃).

• Case ¬φ : Ig ∈[[¬φ]]ω iff not Ig ∈[[φ]]ω iff not (Ĩ)(g̃)∈[[φ]](ω̃) iff (Ĩ)(g̃)∈[[¬φ]](ω̃).

• Case ∃x :R φ : Ig ∈[[∃x :R φ]]ω iff exists r ∈ R s.t. Ig ∈[[φ]]ωrx iff exists r ∈ R s.t.
(Ĩ)(g̃)∈[[φ]](ω̃)rx iff exists r ∈ R s.t. (Ĩ)(g̃)∈[[φ]](ω̃rx) (for x ∈ V(φ))iff (Ĩ)(g̃)∈[[∃x :R φ]](ω̃).

• Case p(θ) : Ig ∈[[p(θ)]]ω iff I(p)([[θ]]ωIg) iff I(p)([[θ]](ω̃)(Ĩ)(g̃)) iff (Ĩ)(p)([[θ]](ω̃)(Ĩ)(g̃)) iff
(Ĩ)(g̃)∈[[p(θ)]](ω̃).

• Case p(w) : Ig ∈[[p(w)]]ω iff I(p)([[w]]Igω) iff I(p)([[w]]Igω) and (Ĩ)(g̃)∈[[p(w)]](ω̃) iff

(Ĩ)(p)([[w]](Ĩ)(g̃)(ω̃)) iff I(p)([[w]](Ĩ)(g̃)(ω̃)

˜
) iff I(p)((˜[[w]]Igω)

˜
) iff I(p)([[w]]Igω) so both

sides are equal.

• Case 〈α〉φ : Ig ∈[[〈α〉φ]]ω iff there exists ν s.t. (ω, ν)∈[[α]]Ig and Ig ∈[[φ]]ν iff there exists
ν s.t. ((ω̃), (ν̃))∈[[α]](Ĩ)(g̃) and (Ĩ)(g̃)∈[[φ]](ν̃) iff there exists (ν̃) s.t. ((ω̃), (ν̃))∈[[α]](Ĩ)(g̃)

and (Ĩ)(g̃)∈[[φ]](ν̃) iff there (Ĩ)(g̃)∈[[〈α〉φ]](ω̃)

• Case @wφ : in this case Ig ∈[[@wφ]]ω iff Ig ∈[[φ]]I([[w]]Igω) iff (Ĩ)(g̃)∈[[φ]](˜[[w]]Igω) iff
(Ĩ)(g̃)∈[[φ]][[w]](Ĩ)(g̃)(ω̃) iff we have (Ĩ)(g̃)∈[[@wφ]](ω̃)

• Case ∃s :W φ : Ig ∈[[∃s :W φ]]ω iff exists ν ∈ W s.t. Igνs ∈[[φ]]ω iff exists ν ∈ W s.t.
(Ĩ)(g̃νs)∈[[φ]](ω̃) iff exists ν ∈ W s.t. (Ĩ)(g̃)(ν̃)

s ∈[[φ]](ω̃) iff exists ν ∈ W s.t. (Ĩ)(g̃)νs ∈[[φ]](ω̃)

iff (Ĩ)(g̃)∈[[∃s :W φ]](ω̃)

• Case ↓s φ : Have Ig ∈[[↓s φ]]ω iff Igωs ∈[[φ]]ω iff (Ĩ)(g̃ωs)∈[[φ]](ω̃) iff (Ĩ)(g̃)(ω̃)
s ∈[[φ]](ω̃) iff

(Ĩ)(g̃)∈[[↓s φ]](ω̃).

• Case w : Ig ∈[[w]]ω iff ω = [[w]]Ig iff (ω̃) = [[w]](Ĩ)(g̃) iff (Ĩ)(g̃)∈[[w]](ω̃).

• Case x := θ : (ω, ν)∈[[x := θ]]Ig iff ν = ω
[[θ]]ωIg
x iff (ñu) = (ω̃)[[θ]](ω̃)(Ĩ)(g̃)

x (by x ∈ V(α)) iff
((ω̃), (ν̃))∈[[x := θ]](Ĩ)(g̃)

• Case x := ∗ : (ω, ν)∈[[x := ∗]]Ig iff exists r ∈ R s.t. ν = ωrx iff exists r ∈ R s.t. (ν̃) = (ω̃)rx
(by x ∈ V(α)) iff ((ω̃), (ν̃))∈[[x := ∗]](Ĩ)(g̃).

• Case ?(φ) : (ω, ν)∈[[?(φ)]]Ig iff Ig ∈[[φ]]ω and ν = ω iff (Ĩ)(g̃)∈[[φ]](ω̃) and (ν̃) = (ω̃) (by
bijectivity) iff we have that ((ω̃), (ν̃))∈[[?(φ)]](Ĩ)(g̃)

• Case {x′ = θ&ψ} : (ω, ν)∈[[{x′ = θ&ψ}]]Ig iff exists t≥0 and ϕ such that ϕ solves x′ = θ
on [0, t] with Ig ∈[[ψ]]ϕ(s) for all s ∈ [0, t] iff exists t≥0 and (ϕ̃) such that (ϕ̃) solves x′ = θ

on [0, t] with (Ĩ)(g̃)∈[[ψ]]ϕ(s) for all s ∈ [0, t] by constructing (ϕ̃) as per state translation
and because x ∈ V(α).

38

• Case α∪ β : (ω, ν)∈[[α ∪ β]]Ig iff (ω, ν)∈[[α]]Ig or (ω, ν)∈[[β]]Ig iff ((ω̃), (ν̃))∈[[α]](Ĩ)(g̃)

or ((ω̃), (ν̃))∈[[(β̃)]](Ĩ)(g̃) iff we have ((ω̃), (ν̃))∈[[α ∪ β]](Ĩ)(g̃).

• Case α; β : (ω, ν)∈[[α; β]]Ig iff exists µ ∈ W s.t. (ω, µ)∈[[α]]Ig and (µ, ν)∈[[β]]Ig iff
exists µ ∈ W s.t. ((ω̃), (µ̃))∈[[α]](Ĩ)(g̃) and ((µ̃), (ν̃))∈[[β]](Ĩ)(g̃) iff exists µ ∈ W s.t.
((ω̃), µ)∈[[α]](Ĩ)(g̃) and (µ, (ν̃))∈[[β]](Ĩ)(g̃) by bijectivity iff ((ω̃), (ν̃))∈[[α; β]](Ĩ)(g̃)

• Case α∗ : (ω, ν)∈[[α∗]]Ig iff exists k ∈ N s.t. (ω, ν) ∈ ([[α]]Ig)k exists k ∈ N s.t.

((ω̃), (ν̃)) ∈
(

[[α]](Ĩ)(g̃)
)k

(by obvious induction on k) ((ω̃), (ν̃))∈[[α∗]](Ĩ)(g̃).

Lemma 21 (Finite Translatability). A dHL formula φ is finitely-valid iff its translation (φ̃) is
finitely-valid. Specifically, for I, g, ω, ν with finite domain S we have:

• [[θ]]ωIg = [[θ̃]]Ĩ(ω×g)

• ω ∈[[φ]]Ig iff (ω×g)∈[[φ̃]]Ĩ

• (ω, ν)∈[[α]]Ig iff ((ω×g), (ν×g))∈[[α̃]]Ĩ

Proof. • Case c : [[c]]ωIg = c = c̃ = [[c̃]](ω×g)Ĩ

• Case x : [[x]]ωIg = ω(x) = ω(x̃) = (ω×g)(x̃) = [[x̃]](ω×g)Ĩ .

• Case θ1 + θ2 : [[θ1 + θ2]]ωIg = [[θ1]]ωIg + [[θ2]]ωIg = [[θ̃1]]Ĩ(ω×g) + [[θ̃2]](ω×g)Ĩ =

[[θ̃1 + θ2]](ω×g)Ĩ

• Case θ1 · θ2 : Have [[θ1 · θ2]]ωIg = [[θ1]]ωIg · [[θ2]]ωIg = [[θ̃1]]Ĩ(ω×g) · [[θ̃2]](ω×g)Ĩ =

[[θ̃1 · θ2]](ω×g)Ĩ

• Case f(θ) : [[f(θ)]]ωIg = I(f)([[θ]]ωIg) = I(f)([[θ̃(ω×g)Ĩ]])=

Ĩ(f)([[θ̃(ω×g)Ĩ]])=[[f(θ)]]ωIg

• Case f(n) : [[f(n)]]ωIg = I(f)(I(n)) = Ĩ(f)(I(n)1, . . . , I(n)k) = [[f̃(n)]](ω×g)Ĩ

• Case f(s) : In this case [[f(s)]]ωIg = I(f)(g(s)) = Ĩ(s)((ω×g)(n1), . . . , (ω×g)(nk)) =

[[f̃(s)]](ω×g)Ĩ

• Case @nθ : [[@nθ]]ωIg = [[θ]]I(n)Ig = [[θ]](I(n)×g)Ĩ = [[θ]]ν
I(n)i
xi Ĩ for all ν by coincidence

because x1, . . . , xk ⊇ FV(θ) = [[θ]]ω
I(n)i
xi Ĩ = [[θ]]ω

Ĩ(ni)
xi Ĩ = [[θnixi]]ωIg = [[θ̃]](ω×g)Ĩ

• Case θ1 ≥ θ2 : ω ∈[[θ1 ≥ θ2]]Ig iff [[θ1]]ωIg ≥ [[θ2]]ωIg iff [[θ̃1]](ω×g)Ĩ ≥ [[θ̃2]](ω×g)Ĩ iff
(ω×g)∈[[θ1 ≥ θ2]]Ĩ

39

• Case φ ∧ ψ : ω ∈[[φ ∧ ψ]]Ig iff ω ∈[[φ]]Ig and ω ∈[[ψ]]Ig iff (ω×g)∈[[φ̃]]Ĩ and (ω×g)∈[[ψ̃]]Ĩ

iff (ω×g)∈[[φ̃ ∧ ψ]]Ĩ .

• Case ¬φ : ω ∈[[¬φ]]Ig iff not ω ∈[[φ]]Ig iff not (ω×g)∈[[φ]]Ĩ iff (ω×g)∈[[¬φ]]Ĩ .

• Case ∃x :R φ : ω ∈[[∃x :R φ]]Ig iff ωrx ∈[[φ]]Ig for some r iff (ωrx×g)∈[[φ̃]]Ĩ for some r iff
(ω×g)

r
x ∈[[φ̃]]Ĩ for some r iff (ω×g)∈[[∃̃x :R φ]]Ĩ

• Case p(θ) : ω ∈[[p(θ)]]Ig iff I(p)([[θ]]ωIg) iff I(p)([[θ̃]](ω×g)Ĩ) iff (ω×g)∈[[p̃(θ)]]Ĩ

• Case 〈α〉φ : ω ∈[[〈α〉φ]]Ig iff exists ν ∈ W s.t. (ω, ν)∈[[α]]Ig and ω ∈[[φ]]Ig iff exists ν ∈ W
s.t. ((ω×g), (ν×g))∈[[α̃]]Ĩ and (ω×g)∈[[φ̃]]Ĩ

• Case p(n) : ω ∈[[p(n)]]Ig iff I(p)(I(n)) iff Ĩ(p)(I(n1, . . . , nk)) iff Ĩ(p)(Ĩ(n1, . . . , nk)) iff
(ω×g)∈[[p(n)]]Ĩ

• Case p(s) : In this case we have ω ∈[[p(s)]]Ig iff I(p)(g(s)) iff Ĩ(p)(g(s)1, . . . , g(s)k) iff
Ĩ(p)((ω×)(s1), . . . , (ω×g)(sn)) iff (ω×g)∈[[p̃(s)]]Ĩ

• Case @nφ : ω ∈[[@nφ]]Ig iff I(n)∈[[φ]]Ig iff (I(n)×g)∈[[φ̃]]Ĩ iff (ω×g)
I(n)i
xi
∈[[φ̃]]Ĩ by coin-

cidence lemma iff (ω×g)
Ĩ(ni)
xi
∈[[φ̃]]Ĩ iff (ω×g)∈[[[xi := ni]φ̃]]Ĩ iff (ω×g)∈[[@̃nφ]]Ĩ

• Case @sφ : ω ∈[[@sφ]]Ig iff g(s)∈[[φ]]Ig iff (g(s)×g)∈[[φ̃]]Ĩ iff (ω×g)
g(s)i
xi
∈[[φ̃]]Ĩ by coinci-

dence lemma iff (ω×g)
(g(s)×g)(si)
xi

∈[[φ̃]]Ĩ iff (ω×g)∈[[[xi := si]φ̃]]Ĩ iff (ω×g)∈[[@̃sφ]]Ĩ

• Case ∃s :W φ : Here ω ∈[[∃s :W φ]]Ig iff exists ν ∈ W s.t. ω ∈[[φ]]Igνs iff exists ν ∈
W s.t. (ω×gνs)∈[[φ̃]]Ĩ iff exists r1, . . . , rk s.t. (ω×g)

ri
xi
∈[[φ̃]]Ĩ iff (ω×g)∈[[∃xi :R φ̃]]Ĩ iff

(ω×g)∈[[˜∃s :W φ]]Ĩ

• Case ↓s φ : Here ω ∈[[↓s φ]]Ig iff ω ∈[[φ]]Igωs iff (ω×gωs)∈[[φ̃]]Ĩ iff (ω×g)
ω(xi)
si
∈[[φ̃]]Ĩ iff

(ω×g)∈[[[si := xi]φ̃]]Ĩ iff (ω×g)∈[[↓̃s φ]]Ĩ .

• Case n : ω ∈[[n]]Ig iff ω = I(n) iff
∧
xi

(ω(xi) = I(n)i) iff
∧
xi

(
(ω×g)(xi) = Ĩ(ni)

)
iff

∈[[
∧
xi

(xi = ni)]](ω×g)Ĩ iff (ω×g)∈[[ñ]]Ĩ

• Case s : ω ∈[[s]]Ig iff ω = g(s) iff
∧
xi

(ω(xi) = g(s)i) iff
∧
xi

((ω×g)(xi) = (ω×g)(si)) iff

(ω×g)∈[[
∧
xi

(xi = si)]]Ĩ iff (ω×g)∈[[s̃]]Ĩ

• Case x := θ : Here (ω, ν)∈[[x := θ]]Ig iff ν = ω
[[θ]]ωIg
x iff ν = ω

[[θ]](ω×g)Ĩ
x iff (ν×g) =

(ω×g)
[[θ]](ω×g)Ĩ
x iff ((ω×g), (ν×g))∈[[x := θ]]Ĩ

40

• Case x := ∗ : (ω, ν)∈[[x := ∗]]Ig iff ν = ωrx, some r ∈ R iff (ν×g) = (ω×g)
r
x, some r ∈ R

iff ((ω×g), (ν×g))∈[[x := ∗]]Ĩ .

• Case ?(φ) : (ω, ν)∈[[?(φ)]]Ig iff ω = ν and ω ∈[[φ]]Ig iff ω = ν and (ω×g)∈[[φ̃]]Ĩ iff ω̃ = ν̃

and (ω×g)∈[[φ̃]]Ĩ iff ((ω×g), (ν×g))∈[[?̃(φ)]]Ĩ .

• Case {x′ = θ&ψ} : (ω, ν)∈[[{x′ = θ&ψ}]]Ig iff exists t≥0 and ϕ solves x′ = θ on
[0, t] with ϕ(0) = ω, ϕ(t) = ν, and ϕ(s)∈[[ψ]]Ig for all s ∈ [0, t]. iff exists t≥0 and
ϕ̃ solves x′ = θ̃ on [0, t] with ϕ̃(0) = (ω×g), ϕ̃(t) = (ν×g), and ϕ̃(s)∈[[ψ̃]]Ĩ for all
s ∈ [0, t]. Construct the solution ϕ̃ by applying the ω̃ translation. Then [[θ]]ϕ(t)Ig and
[[θ̃]]ϕ̃(t)Ĩ are identical as functions of time thus ϕ solves x′ = θ iff ϕ̃ solves x′ = θ̃. iff

((ω×g), (ν×g))∈[[˜{x′ = θ&ψ}]]Ĩ

• Case α∪β : (ω, ν)∈[[α ∪ β]]Ig iff (ω, ν)∈[[α]]Ig or (ω, ν)∈[[β]]Ig iff ((ω×g), (ν×g))∈[[α̃]]Ĩ

or ((ω×g), (ν×g))∈[[β̃]]Ĩ iff ((ω×g), (ν×g))∈[[α̃ ∪ β]]Ĩ .

• Case α; β : (ω, ν)∈[[α; β]]Ig iff (ω, µ)∈[[α]]Ig and (µ, ν)∈[[β]]Ig for some ν ∈ W iff
((ω×g), (µ×g))∈[[α̃]]Ĩ and ((µ×g), (ν×g))∈[[β̃]]Ĩ for some ν ∈ W iff (ω̃g, ν̃g)∈[[α̃; β]]Ĩ .

• Case α∗ : Here (ω, ν)∈[[α∗]]Ig iff (ω, ν)∈[[αk]]Ig, for some k ∈ N iff (inducting on k)
((ω×g), (ν×g))∈[[(α̃)k]]Ĩ iff ((ω×g), ν̃g)∈[[α̃∗]]Ĩ .

Lemma 22 (Concrete dL Finitization). A concrete dL formula is valid iff it is finitely valid. Specif-
ically, I ∈[[φ]]ω iff (Ĩ)∈[[φ]](ω̃).

Proof. Trivially by coincidence: every concrete dL formula has finitely-many free variables, so
every state agrees with some finite state on its domain, and thus satisfies φ iff the corresponding
finite state does.

Theorem 23 (dHL reduces to dL). There exists a computable reduction φ̃ such that for all concrete
φ ∈ dHL, φ is valid dHL, iff φ̃ is valid in dHL.

Proof. Fix φ ∈ dHL. By Lemma 20, φ is valid in dHL iff it is finitely-valid. Then φ is finitely valid
iff φ̃ is finitely valid in dL by Lemma 21. Then φ̃ is finitely-valid in dL iff it is valid by Lemma 22,
so φ is valid iff φ̃ is valid.

41

D Soundness Proofs
We begin with extending the soundness proofs of uniform substitution. When proofs build on prior
work [38] we present only the new cases. We show a series of coincidence lemmas.

Lemma 24 (Coincidence for Terms). If ω∪ g = ω̃∪h on FV(θ) and I = J on Σ(θ) then [[θ]]ωIg =
[[θ]]ω̃Jh.

Proof. Induction on θ.

• Case @sθ Have FV(@sθ) = {s} ∪ {t | t ∈ FV(θ)}. Then have [[@sθ]]ωIg = [[θ]]g(s)Ig =
[[θ]]h(s)Jh by IH since ω(s) = ω̃(s) on FV(θ) from assumption equal on {t | t ∈ FV(θ)}.

• Case @nθ Have FV(@nθ) = {t | t ∈ FV(θ)} and Σ(@nθ) = {n} ∪ Σ(θ). Then have
[[@nθ]]ωIg = [[θ]]I(n)Ig = [[θ]]J(n)Jh by IH since I(n) = J(n) on FV(θ) from assump-
tion equal on {t | t ∈ FV(θ)} and agree on all program variables since I(n) = J(n) by
assumption.

The remaining cases are as in prior work.

Lemma 25 (Coincidence for Formulas). If ω = ω̃ on FV(φ) and I = J on Σ(φ) then Ig ∈[[φ]]ω iff
J ∈[[φ]]ω̃.

Proof. Induction on φ (and simultaneous induction on α for coincidence for programs), but we
show only the new cases.

• Case s ω ∈[[s]]Ig iff g(s) = ω iff (because V and s in FV(s)) h(s) = ω̃ iff ω̃ ∈[[s]]Jh.

• Case n ω ∈[[n]]Ig iff I(n) = ω iff (because V in FV(n) and n ∈ Σ(n)) J(n) = ω̃ iff
ω̃ ∈[[n]]Jh.

• Case @sφ ω ∈[[@sφ]]Ig iff g(s)∈[[φ]]Ig iff (because {t | t ∈ FV(φ)} in free vars and s in free
vars) iff h(s)∈[[φ]]Jh iff ω̃ ∈[[@sφ]]Jh.

• Case @nφ ω ∈[[@nφ]]Ig iff I(n)∈[[φ]]Ig iff (because {t | t ∈ FV(φ)} in free vars and n in
signature) iff J(n)∈[[φ]]Jh iff ω̃ ∈[[@nφ]]Jh.

• Case ∀s :W φ ω ∈[[∀s :W φ]]Ig iff for all worlds ν, ω ∈[[φ]]Igνs iff (since the free variables
are FV(φ) \ {s}) for all world ν have ω̃ ∈[[φ]]Jhνs iff ω̃ ∈[[∀s :W φ]]Jh.

• Case ∃s :W φ ω ∈[[∃s :W φ]]Ig iff for some world ν, ω ∈[[φ]]Igνs iff (since free vars are
FV(φ) \ {s}) for some world ν have ω̃ ∈[[φ]]Jhνs iff ω̃ ∈[[∃s :W φ]]Jh.

• Case ↓s φ ω ∈[[↓s φ]]Ig iff ω ∈[[φ]]Igωs iff (since free vars are {x ∈ V} ∪ FV(φ) \ {s}) have
ω̃ ∈[[φ]]Jhω̃s iff ω̃ ∈[[↓s φ]]Jh.

42

Lemma 26 (Coincidence for adjoints). Adjoint interpretations σ∗ωI update the interpretation I to
reflect the effect of a substitution σ: the meaning of every symbol substituted by σ is updated to
the meaning of its replacement in state ω. Adjoints are analogous to prior work [38].

The notion of U-admissibility used here is as in Appendix A and as in prior work [38]:

Definition 19 (U -admissibility). We say a substitution σ is U -admissible for an expression e with a
flexible symbol set U iff

⋃
sym∈σ|Σ(e)

FV(σsym) where σ|Σ(e) is the restriction of σ that replaces only

symbols occurring in e and where sym is an arbitrary rigid.

If ω = ν on FV(σ), then σ∗ωI = σ∗νI . If σ is U-admissible for e and ω = ν on UC then
[[e]]σ∗ωI = [[e]]σ∗νI .

Proof. From prior work [38].

Lemma 27 (Term Substitution). [[σ(θ)]]ωIg = [[θ]]ωσ∗ωI .

Proof. By induction on θ. We include just the new cases.

• Case @nθ, n ∈ σ: [[σ(@nθ)]]ωIg = [[@σnσ(θ)]]ωIg = [[σ(θ)]]([[σn]]ωIg)Ig. Then let
ν = [[σn]]ωIg, then [[σ(θ)]]νIg = [[θ]]νσ∗νI by IH, then by Lemma 26 and admissibility
assumption, [[θ]]νσ∗νI = [[θ]]νσ∗ωI = [[@nφ]]ωσ∗ωI since ν = [[n]]ωσ∗IgI by definition of ad-
joints.

• Case @nθ, n /∈ σ: [[σ(@nθ)]]ωIg = [[@nσ(θ)]]ωIg = [[σ(θ)]]I(n)Ig. Then let ν = I(n), then
[[σ(θ)]]νIg = [[θ]]νσ∗νI by IH, then by Lemma 26 and admissibility assumption, [[θ]]νσ∗νI =

[[θ]]νσ∗ωI = [[@nφ]]ωσ∗ωI since ν = ω
σ∗IgI(n)

state by definition of adjoints.

• Case @sθ: [[σ(@sθ)]]ωIg = [[@sσ(θ)]]ωIg = [[σ(θ)]]g(s)Ig. Then let ν = ω(s), then
[[σ(θ)]]νIg = [[θ]]νσ∗νI by IH, then by Lemma 26 and admissibility assumption, [[θ]]νσ∗νI =
[[θ]]νσ∗ωI = [[@sφ]]ωσ∗ωI .

Lemma 28 (Formula Substitution). ω ∈[[σ(φ)]]Ig iff ω ∈[[φ]]σ∗ωgIg.

Proof. By induction on φ with simultaneous induction on programs α. We present only the new
cases.

• Case @nφ, n ∈ σ : ω ∈[[σ(@nφ)]]Ig iff [[σn]]Igω ∈[[σ(φ)]]Ig. Let ν = [[σn]]Igω then
have ν ∈[[σ(φ)]]Ig iff ν ∈[[φ]]σ∗νgIg iff (by IH) ν ∈[[φ]]σ∗ωgIg iff (by admissibility assumption)(
[[n]]σ∗ωgIgω

)
∈[[φ]]Ig (since ν = [[n]]σ∗ωgIgω by IH again) iff ω ∈[[@nφ]]Ig as desired.

• Case @nφ, n /∈ σ : ω ∈[[σ(@nφ)]]Ig iff ω ∈[[@nσ(φ)]]Ig iff I(n)∈[[σ(φ)]]Ig iff Let ν =
I(n) then have ν ∈[[σ(φ)]]Ig iff ν ∈[[φ]]σ∗νgIg iff (by IH) ν ∈[[φ]]σ∗ωgIg iff (by admissibility
assumption) σ∗ωgI(n)∈[[φ]]Ig (since ν = σ∗ωgI(n) by adj def) iff ω ∈[[@nφ]]Ig as desired.

43

• Case @sφ : ω ∈[[σ(@sφ)]]Ig iff ω ∈[[@sσ(φ)]]Ig iff g(s)∈[[σ(φ)]]Ig iff Let ν = g(s) then
have ν ∈[[σ(φ)]]Ig iff ν ∈[[φ]]σ∗νgIg iff (by IH) ν ∈[[φ]]σ∗ωgIg iff (by admissibility assumption)
g(s)∈[[φ]]Ig (since ν = g(s)) iff ω ∈[[@sφ]]Ig as desired.

• Case n, n ∈ σ : ω ∈[[σ(n)]]Ig iff ω ∈[[σn]]Ig iff ω ∈[[n]]σ∗ωgIg (by adj def).

• Case n, n /∈ σ : ω ∈[[σ(n)]]Ig iff ω ∈[[n]]Ig iff ω ∈[[n]]σ∗ωgIg (by adj def).

• Case s : ω ∈[[σ(s)]]Ig iff ω ∈[[s]]Ig iff ω = g(s) iff ω ∈[[s]]σ∗ωgIg (by adj def).

• Case ∀s :W φ : ω ∈[[σ(∀s :W φ)]]Ig iff ω ∈[[∀s :W σ(φ)]]Ig iff ω ∈[[σ(φ)]]Igνs for all worlds
ν iff (by IH) ω ∈[[φ]]σ∗ωgνs Ig for all worlds ν iff (by admissibility) ωνs ∈[[φ]]σ∗ωgIg for all worlds
ν iff ω ∈[[∀s :W φ]]σ∗ωgIg.

• Case ∃s :W φ : ω ∈[[σ(∃s :W φ)]]Ig iff ω ∈[[∃s :W σ(φ)]]Ig iff ω ∈[[σ(φ)]]Igνs for some
world ν iff (by IH) ω ∈[[φ]]σ∗ωgνs Ig for some world ν iff (by admissibility) ω ∈[[φ]]σ∗ωgIg for
some world ν iff ω ∈[[∃s :W φ]]σ∗ωgIg.

• Case ↓s φ : ω ∈[[σ(↓s φ)]]Ig iff ω ∈[[↓s σ(φ)]]Ig iff ω ∈[[σ(φ)]]Igωs iff (by IH) ω ∈[[φ]]σ∗ωgωs Ig
ω
s

iff (by admissibility) ω ∈[[φ]]σ∗ωgIg
ω
s iff ω ∈[[↓s φ]]σ∗ωgIg.

Soundness of the uniform substitution rule follows immediately by transferring over the same
proof from dL [38]. Next, note by Theorem 17 we get validity of all dL axioms for free, so it
suffices to show soundness for the new axioms of dHL.

Theorem 29 (Hybrid Axiom Soundness). The hybrid axioms are valid.

Proof. We show the axioms are sound one at a time.

• Axiom K@ @c(P → Q) → @cP → @cQ is valid. Fix I and ω, g. Let µ = I(c). Assume
ω ∈[[@c(P → Q)]]Ig, then (a) ν ∈[[P → Q]]Ig. Assume ω ∈[[@cP]]Ig, then (b) ν ∈[[P]]Ig. By
(a), (b) and modus ponens, (c) ν ∈[[Q]]Ig so ω ∈[[@cQ]]Ig.

• Axiom @id is valid. Fix I and ω, g. ω ∈[[@a@bP]]Ig iff I(a)∈[[@bP]]Ig iff I(b)∈[[P]]Ig iff
ω ∈[[@bP]]Ig.

• Axiom @I a ∧ P → @aP is valid. Fix I and ω, g. Assume ω ∈[[a ∧ P]]Ig so (a) I(a) = ω
and (b)ω ∈ I(P). Then I(a) = ω by (a) then I(a)∈[[P]]Ig by (b) and ω ∈[[@aP]]Ig.

• Axiom @↔ @ac→ (p(a)↔ p(c)) is valid. Fix interpretation I, state ω, and galaxy g.
Assume (a) ω ∈[[@ac]]Ig, thus I(a) = I(c) so (b) I(a) = I(c) Then ω = I(p)(I(a)) iff
ω = I(p)(I(b)) so ω ∈[[(p(a)↔ p(c))]]Ig.

• Axiom 〈n〉 [a]↓s p(s) ∧ 〈a〉c→ p(c) is valid. Fix I and ω, g. Assume (a) ω ∈[[[a]↓s p(s)]]Ig
and (b) ω ∈[[〈a〉c]]Ig. By (a), for all world ν if (ω, ν) ∈ I(a) then ν ∈ I(p). By (b), there
exists world µ where (ω, ν) ∈ I(a) and (c) µ = I(c). Instantiating (a), have µg ∈ I(p)
Combined with (c), have ω ∈[[p(c)]]Ig and thus ω ∈[[@cP]]Ig.

44

• Axiom ∀E@ ∀s :W p(s) → p(n) Fix I and ω, g. Assume (a) for all world ν, ω ∈[[p(s)]]Igνs
so (b) I(p)(ν). Pick ν = I(n) then have I(p)(I(n)) and ω ∈[[p(n)]]Ig.

• Rule ∀I@

q(y)

∀x :W q(x)
is sound for fresh y. Fix I and ω. Assuming for all choices of y

have (a) I(q)(µ(y)) for all states µ. By (a) have (b) ω ∈[[q(s)]]Igµs for all µ. By (b) have
ω ∈[[∀s :W q(s)]]Ig.

• Axiom ↓ (i.e. formula ↓s p(s) ≡ ∃s :W p(s)) is valid. Fix I and ω. Then ω ∈[[↓s p(s)]]Ig iff
ω ∈[[p(s)]]Igωs iff I(p)(ω) iff exists ν s.t. ν = ω and I(p)(ν) iff ω ∈[[∃s :W s ∧ p(s)]]Ig.

• Axiom ∃W ∃s :W s. Fix I and ω. Suffices to show exists world ν such that ω = ν. Pick
ν = ω(state) by reflexivity.

• Axiom schema BW 〈α〉∃s :W P ↔ ∃s :W 〈α〉P is valid. Fix I , g, and ω.

ω ∈[[〈α〉∃s :W P]]Ig

≡ν ∈[[∃s :W P]]Ig, for some(ω, ν)∈[[α]]Ig

≡ν ∈[[P]]Igµs , for some (ω, ν)∈[[α]]Ig, µ ∈ W
≡ν ∈[[P]]Igµs , for some µ ∈ W , (ω, ν)∈[[α]]Ig

≡∗ν ∈[[P]]Igµs , for some µ ∈ W , (ω, ν)∈[[α]]Igµs
≡ν ∈[[〈α〉P]]Igµs , for some µ ∈ W
≡ω ∈[[∃s :W 〈α〉P]]Ig

Where the starred step holds by the coincidence lemma due to the assumption s /∈ FV(α).

• Axiom G@

φ

@iφ
is sound. Fix I ,g, ω. Assume for all ν ∈ W , all h ∈ G, have ν ∈[[φ]]h. Then

instantiate ν = g(i), h = g and have g(i)∈[[φ]]Ig and thus ω ∈[[@ig]]Ig. Since this held for
all g and ω and I the conclusion is valid, i.e. the rule is sound.

45

Th
eo

re
m

30
(A

t-
Te

rm
so

un
dn

es
s)

.
T

he
at

-t
er

m
ax

io
m

s
ar

e
va

lid
.

P
ro

of
.

W
e

be
gi

n
w

ith
th

e
no

n-
de

riv
ed

ax
io

m
@

ho
m

.
Le

m
m

a
31

.
Fo

rm
ul

a
@
ip

(F
1
,.
..
F
n
)
↔

p(
@
iF

1
,.
..
,@

iF
n
)

is
va

lid
.

P
ro

of
.

Se
m

an
tic

pr
oo

f.
Fi

x
k
∈

N
,

in
te

rp
re

ta
tio

n
I

an
d

st
at

e
ω

.
T

he
n

th
e

si
de

s
ha

ve
th

e
sa

m
e

se
m

an
tic

s:

ω
∈[

[p
(@

iF
1
,.
..
,@

iF
k
)]]
I
g

≡
I
(p

)(
[[@

iF
1
]]I
g
ω
,.
..
,[
[@

iF
k
]]I
g
ω

)

≡
I
(p

)(
[[F

1
]]I
g
I
(i

),
..
.,

[[F
k
]]I
g
I
(i

))

≡
I
(i

)
∈[

[p
(F

1
,.
..
,F

k
)]]
I
g

≡
ω
∈[

[@
ip

(F
1
,.
..
,F

k
)]]
I
g

C
om

bi
ni

ng
ax

io
m

@
ho

m
w

ith
ex

is
tin

g
ax

io
m

s
an

d
se

qu
en

t
ru

le
s

(w
hi

ch
ar

e
de

riv
ab

le
fr

om
ty

pi
ca

lh
ilb

er
ta

xi
om

s)
,w

e
de

riv
e

th
e

re
m

ai
ni

ng
ax

io
m

s.

•
A

xi
om

N
T

:=
is

va
lid

:

P
ro

of
.

*
id

@
i〈
x

:=
F
〉j
`

@
i〈
x

:=
F
〉j

*
re

fl
f

()
=
f

()
[:

=
]

[x
:=
f

()
]f

()
=
x

*
id
〈x

:=
f

()
〉j
`
〈x

:=
f

()
〉j

〈n
〉

i,
〈x

:=
f

()
〉j
`

@
j
f

()
=
x

@
ho

m
i,
〈x

:=
f

()
〉j
`
f

()
=

@
j
x

U
S

i,
〈x

:=
F
〉j
`
F

=
@
j
x

→
R

i
`
〈x

:=
F
〉j
→
F

=
@
j
x

@
I
`

@
i(
〈x

:=
F
〉j
→
F

=
@
j
x

)
hi

de
@
i〈
x

:=
F
〉j
`

@
i(
〈x

:=
F
〉j
→
F

=
@
j
x

)
K

@
@
i〈
x

:=
F
〉j
`

@
i(
F

=
@
j
x

)
@

ho
m

@
i〈
x

:=
F
〉j
`

@
iF

=
@
j
x

→
R

@
i〈
x

:=
F
〉j
→

@
iF

=
@
j
x

46

•
A

xi
om

N
T

;
is

va
lid

:

P
ro

of
.

@
i
〈α
〉m
`

@
i
F

=
@
m
H

@
m
〈β
〉j
`

@
m
H

=
@
j
G

*
R

@
i
F

=
@
m
H
,@

m
H

=
@
j
G
`

@
i
F

=
@
j
G

cu
t

@
i
〈α
〉m
,@

m
〈β
〉j
`

@
i
F

=
@
j
G

M
,V

,@
I

@
i
〈α
〉m
∧
〈β
〉j
`

@
i
F

=
@
j
G

∃L
∃m

:W
@
i
〈α
〉m
∧
〈β
〉j
`

@
i
F

=
@
j
G

∃W
,B

W
,M

@
i
〈α
〉〈
β
〉j
`

@
i
F

=
@
j
G

〈;
〉

@
i
〈α

;β
〉j
`

@
i
F

=
@
j
G

•
A

xi
om

N
T
∪

is
va

lid
:

P
ro

of
.

@
i〈α
〉j
`

@
iF

=
@
j
G

@
i〈β
〉j
`

@
iF

=
@
j
G

∨
@
i〈α
〉j
∨

@
i〈β
〉j
`

@
iF

=
@
j
G

∨@
L

@
i〈α
〉j
∨
〈β
〉j
`

@
iF

=
@
j
G

〈∪
〉

@
i〈α
∪
β
〉j
`

@
iF

=
@
j
G

•
A

xi
om

N
T
′
is

va
lid

:

P
ro

of
.

*
id

@
i
〈x
′

=
f

(x
)
&
q
(x

)〉
j
`

@
i
〈x
′

=
f

(x
)
&
q
(x

)〉
j

@
i
t≥

0
∧

(∀
0
≤
s≤
tq

(y
(s

))
)
`

@
i
f

(x
)

=
g
(y

(t
))

@
I

i,
t≥

0
,(
∀0
≤
s≤
tq

(y
(s

))
)
`
f

(x
)

=
g
(y

(t
))

hi
de

i,
t≥

0
,@

j
x

=
y
(t

),
(∀

0
≤
s≤
tq

(y
(s

))
)
`
f

(x
)

=
g
(@

j
x

)
U

S
i,
t≥

0
,@

j
x

=
y
(t

),
(∀

0
≤
s≤
tq

(y
(s

))
)
`
f

(x
)

=
@
j
g
(x

)
N

T
:=

i,
t≥

0
,[
x

:=
y
(t

)]
j,

(∀
0
≤
s≤
tq

(y
(s

))
)
`
f

(x
)

=
@
j
g
(x

)
∃L

,∧
L

i,
∃t
≥

0
[x

:=
y
(t

)]
j
∧

(∀
0
≤
s≤
tq

(y
(s

))
)
`
f

(x
)

=
@
j
g
(x

)
〈′
〉

i,
〈x
′

=
f

(x
)
&
q
(x

)〉
j
`
f

(x
)

=
@
j
g
(x

)
@

I
@
i
〈x
′

=
f

(x
)
&
q
(x

)〉
j
`
f

(x
)

=
@
j
g
(x

)
K

@
@
i
〈x
′

=
f

(x
)
&
q
(x

)〉
j
`

@
i
(f

(x
)

=
@
j
g
(x

))
@

ho
m

@
i
〈x
′

=
f

(x
)
&
q
(x

)〉
j
`

@
i
f

(x
)

=
@
j
g
(x

)
→

R
@
i
〈x
′

=
f

(x
)
&
q
(x

)〉
j
→

@
i
f

(x
)

=
@
j
g
(x

)

47

•
A

xi
om

N
T
∗

is
va

lid
:

P
ro

of
.

R
ec

al
li

n
th

is
pr

oo
f

R
ul

e
FP

is
th

e
fix

po
in

tr
ul

e
fo

r
lo

op
s,

in
te

rd
er

iv
ab

le
fr

om
lo

op
in

du
ct

io
n

I.

*
id

j
`

@
j
F

=
@
j
F

@
ho

m
j
`

@
j
(F

=
@
j
F

)
@

I
j
`
F

=
@
j
F

@
s
〈α
〉t
`

@
s
F

=
@
t
F

∀I
∀s
,t

:W
@
s
〈α
〉t
`

@
s
F

=
@
t
F

@
k
〈α
〉`
`

@
k
F

=
@
`
F

*
R

@
k
F

=
@
`
F
,@

`
F

=
@
j
F
`

@
k
F

=
@
j
F

∃W
@
k
F

=
@
`
F
,@

`
(F

=
@
j
F

)
`

@
k
(F

=
@
j
F

)
cu

t
k
,@

k
〈α
〉`
,@

`
(F

=
@
j
F

)
`

@
k
(F

=
@
j
F

)
G

,∃
W

,B
W

,∃
L

k
,@

k
〈α
〉(
F

=
@
j
F

)
`

@
k
(F

=
@
j
F

)
@

I,∃
W

,∃
L

〈α
〉(
F

=
@
j
F

)
`
F

=
@
j
F

(j
∨
〈α
〉(
F

=
@
j
F

))
`
F

=
@
j
F

FP
〈α
∗
〉j
`
F

=
@
j
F

G
@

,@
ho

m
@
i
〈α
∗
〉j
`

(@
i
F

)
=

(@
j
F

)

•
A

xi
om

N
T

V
is

va
lid

: P
ro

of
.

*
re

fl
k
,@

k
〈α
〉j
`
F

=
F

@
I
k
,@

k
〈α
〉j
`

@
k
(F

=
F

)
@

ho
m

k
,@

k
〈α
〉j
`
F

=
@
k
F

V
k
,@

k
〈α
〉j
`

[α
](
F

=
@
k
F

)
@

I
k
,@

k
〈α
〉j
`

[α
](
F

=
@
k
F

)
∀E

@
,∃
W

@
i〈α
〉j
`

[α
](
F

=
@
iF

)
〈n
〉

@
i〈α
〉j
`

@
j
(F

=
@
iF

)
@

ho
m

,→
R

@
i〈α
〉j
→

@
iF

=
@
j
F

48

Th
eo

re
m

32
(B

is
im

ul
at

io
n

So
un

dn
es

s)
.

T
he

bi
si

m
ul

at
io

n
(d

er
iv

ed
)r

ul
es

ar
e

so
un

d.

P
ro

of
.

•
T

he
au

xi
lli

ar
y

lo
op

el
im

in
at

io
n

ru
le

@
in

d
is

de
riv

ed
:

@
i 1
o 1
→

p(
o 1

)
@
m

1
〈α
〉o

1
∧
p(
m

1
)
→

p(
o 1

)

@
i 1
〈α
∗ 〉
o 1
→

p(
o 1

)

P
ro

of
.

D
1

@
i 1
s
→

p(
s)

pr
op

@
i 1

(s
∧
p(
s)

)
∀I

@
@
i 1
∃s

:W
(s
∧
p(
s)

)
↓

@
i 1
↓s
p(
s)

D
2

(s
∧
p(
s)
∧
〈α
〉t

)
→

p(
t)

M
,p

ro
p
s
∧
p(
s)
∧
〈α
〉(
t
∧
¬p

(t
))
→
⊥

〈·〉
s
∧
p(
s)
→

[α
](
t
→

p(
t)

)
sk

ol
em

s
∧
p(
s)
→
∀t

:W
[α

](
t
→

p(
t)

)
B

W
s
∧
p(
s)
→

[α
]∀
t
:W

(t
→

p(
t)

)
pr

op
s
∧
p(
s)
→

[α
]∃
t
:W

(t
∧
p(
t)

)
↓

s
∧
p(
s)
→

[α
]↓
t
p(
t)

∀I
@
↓s
p(
s)
→

[α
]↓
t
p(
t)

I
@
i 1

[α
∗]
↓s
p(
s)

〈n
〉

@
i 1
〈α
∗ 〉
o 1
→

p(
o 1

)

•
L

oo
p

bi
si

m
ul

at
io

n
ru

le
B

S∗
is

de
riv

ed
:

@
i 1
〈α
〉o

1
∧
R

(i
1
,i

2
)
→

@
i 2
〈α
〉↓
o 2
R

(o
1
,o

2
)

@
i 1
〈α
∗ 〉
o 1
∧
R

(i
1
,i

2
)
→

@
i 2
〈α
∗ 〉
↓o

2
R

(o
1
,o

2
)

P
ro

of
.

B
el

ow
,D

is
th

e
op

en
go

al
.

*
id

@
i 1
o
1
,R

(i
1
,i

2
)
→
R

(i
1
,i

2
)

@
↔

@
i 1
o
1
,R

(i
1
,i

2
)
→
R

(o
1
,i

2
)

∃W
,↓

@
i 1
o
1
,R

(i
1
,i

2
)
→

@
i 2
R

(o
1
,i

2
)

↓
@
i 1
o
1
,R

(i
1
,i

2
)
→

@
i 2
↓o

2
R

(o
1
,o

2
)

@
↔

@
i 1
o
1
,R

(i
1
,i

2
)
→

@
i 2
↓o

2
R

(o
1
,o

2
)

〈∗
〉

@
i 1
o
1
,R

(i
1
,i

2
)
→

@
i 2
〈α
∗
〉↓
o
2
R

(o
1
,o

2
)

D
@
m

1
〈α
〉o

1
∧
R

(m
1
,m

2
)
→

@
m

2
〈α
〉↓
o
2
R

(o
1
,o

2
)

hi
de

@
m

1
〈α
〉o

1
∧

@
i 2
〈α
∗
〉m

2
∧
R

(m
1
,m

2
)
→

@
m

2
〈α
〉↓
o
2
R

(o
1
,o

2
)

@
I,

M
@
m

1
〈α
〉o

1
∧

@
i 2
〈α
∗
〉m

2
∧
R

(m
1
,m

2
)
→

@
i 2
〈α
∗
〉〈
α
〉↓
o
2
R

(o
1
,o

2
)

〈∗
〉

@
m

1
〈α
〉o

1
∧

@
i 2
〈α
∗
〉m

2
∧
R

(m
1
,m

2
)
→

@
i 2
〈α
∗
〉↓
o
2
R

(o
1
,o

2
)

∃W
,↓

@
m

1
〈α
〉o

1
∧

@
i 2
〈α
∗
〉↓
m

2
R

(m
1
,m

2
)
→

@
i 2
〈α
∗
〉↓
o
2
R

(o
1
,o

2
)

@
in

d
@
i 1
〈α
∗
〉o

1
,R

(i
1
,i

2
)
`

@
i 2
〈α
∗
〉↓
o
2
R

(o
1
,o

2
)

49

•
Se

qu
en

tia
lc

om
po

si
tio

n
bi

si
m

ul
at

io
n

ru
le

B
S;

is
de

riv
ed

:

@
i 1
〈α
〉m

1
∧
R
i(
i 1
,i

2
)
→

@
i 2
〈α
〉↓
m

2
R
m

(m
1
,m

2
)

@
m

1
〈α
〉o

1
∧
R
m

(m
1
,m

2
)
→

@
m

2
〈α
〉↓
o 2
R
o
(m

1
,m

2
)

@
i 1
〈α

;β
〉o

1
∧
R
i(
i 1
,i

2
)
→

@
i 2
〈α

;β
〉↓
o 2
R
o
(o

1
,o

2
)

P
ro

of
.

L
et

Γ
≡

@
i 1
〈α
〉m

1
,@

m
1
〈β
〉o

1
,R

(i
1
,i

2
)

*
id

Γ
,@

i 2
〈α
〉↓
m

2
R

(m
1
,m

2
),

@
m

2
〈β
〉↓
o 2
R

(o
1
,o

2
)
`

@
m

2
〈β
〉↓
o 2
R

(o
1
,o

2
)

@
I,M

Γ
,@

i 2
〈α
〉↓
m

2
R

(m
1
,m

2
),

@
m

2
〈β
〉↓
o 2
R

(o
1
,o

2
)
`

@
i 2
〈α

;β
〉↓
o 2
R

(o
1
,o

2
)

cu
t,D
∈

Γ
,@

i 2
〈α
〉↓
m

2
R

(m
1
,m

2
)
`

@
i 2
〈α

;β
〉↓
o 2
R

(o
1
,o

2
)

cu
t,D
∞

@
i 1
〈α
〉m

1
,@

m
1
〈β
〉o

1
,R

(i
1
,i

2
)
`

@
i 2
〈α

;β
〉↓
o 2
R

(o
1
,o

2
)

B
W

,@
I,@

@
,∃

L
@
i 1
〈α
〉∃
m

1
:W

(m
1
∧
〈β
〉o

1
),
R

(i
1
,i

2
)
`

@
i 2
〈α
〉〈
β
〉↓
o 2
R

(o
1
,o

2
)

∃W
,M

@
i 1
〈α
〉〈
β
〉o

1
,R

(i
1
,i

2
)
`

@
i 2
〈α
〉〈
β
〉↓
o 2
R

(o
1
,o

2
)

〈;〉
@
i 1
〈α

;β
〉o

1
,R

(i
1
,i

2
)
`

@
i 2
〈α

;β
〉↓
o 2
R

(o
1
,o

2
)

•
C

ho
ic

e
co

m
po

si
tio

n
bi

si
m

ul
at

io
n

ru
le

B
S∪

is
de

riv
ed

:

@
i 1
〈α
〉o

1
∧
R
i(
i 1
,i

2
)
→

@
i 2
〈α
〉↓
o 2
R
o
(o

1
,o

2
)

@
i 1
〈β
〉o

1
∧
R
i(
i 1
,i

2
)
→

@
i 2
〈β
〉↓
o 2
R
o
(o

1
,o

2
)

@
i 1
〈α
∪
β
〉o

1
∧
R
i(
i 1
,i

2
)
→

@
i 2
〈α
∪
β
〉↓
o 2
R
o
(o

1
,o

2
)

P
ro

of
.

@
i 1
〈α
〉o

1
∧
R
i
(i

1
,i

2
)
→

@
i 2
〈α
〉↓
o
2
R
o
(o

1
,o

2
)

〈∪
〉

@
i 1
〈α
〉o

1
∧
R
i
(i

1
,i

2
)
→

@
i 2
〈α
∪
β
〉↓
o
2
R
o
(o

1
,o

2
)

@
i 1
〈β
〉o

1
∧
R
i
(i

1
,i

2
)
→

@
i 2
〈β
〉↓
o
2
R
o
(o

1
,o

2
)

〈∪
〉

@
i 1
〈β
〉o

1
∧
R
i
(i

1
,i

2
)
→

@
i 2
〈α
∪
β
〉↓
o
2
R
o
(o

1
,o

2
)

∨
L

(@
i 1
〈α
〉o

1
∨

@
i 1
〈β
〉o

1
)
∧
R
i
(i

1
,i

2
)
→

@
i 2
〈α
∪
β
〉↓
o
2
R
o
(o

1
,o

2
)

〈∪
〉

@
i 1
〈α
∪
β
〉o

1
∧
R
i
(i

1
,i

2
)
→

@
i 2
〈α
∪
β
〉↓
o
2
R
o
(o

1
,o

2
)

50

E
Fu

ll
pr

oo
fo

fs
ec

ur
e

sm
ar

tg
ri

d
m

od
el

A
dd

iti
on

al
N

ot
at

io
ns

W
e

us
e

so
m

e
ad

di
tio

na
lc

on
ce

pt
s

an
d

no
ta

tio
ns

in
th

e
pr

oo
fa

pp
en

di
ce

s,
in

or
de

rt
o

m
ak

e
pr

oo
fs

si
m

pl
er

.
W

hi
le

th
e

pr
es

en
ta

tio
n

gi
ve

n
in

th
e

bo
dy

of
th

e
pa

pe
ri

s
H

ilb
er

t-
st

yl
e,

th
is

is
ea

si
ly

ex
te

nd
ed

to
a

se
qu

en
t-

st
yl

e
ca

lc
ul

us
by

ad
di

ng
st

an
da

rd
pr

op
os

iti
on

al
se

qu
en

tc
al

cu
lu

s
ru

le
s

an
d

co
nt

ex
tu

al
eq

ui
va

le
nc

e
ru

le
s

w
hi

ch
ca

rr
y

ov
er

di
re

ct
ly

fr
om

th
e

ba
se

un
if

or
m

su
bs

tit
ut

io
n

ca
lc

ul
us

fo
r

dL
[3

8]
.

W
e

w
ri

te
se

qu
en

ts
Γ
`

∆
w

he
re

Γ
(t

he
an

te
ce

de
nt

)
an

d
∆

(t
he

su
cc

ed
en

t)
ar

e
bo

th
lis

ts
of

fo
rm

ul
as

,a
nd

th
eh

se
qu

en
tΓ
`

∆
is

tr
ue

in
ex

ac
tly

th
e

sa
m

e
st

at
es

as
th

e
fo

rm
ul

a

(∧ φ
∈

Γ
φ

) →
(∨ ψ
∈

∆

∆

) .

W
e

m
ar

k
st

ep
s

th
at

cl
os

e
a

pr
oo

f
br

an
ch

w
ith

an
as

te
ri

sk
(*

).
W

he
n

a
de

riv
at

io
n

is
to

o
la

rg
e

to
fit

in
its

en
tir

et
y,

w
e

in
tr

od
uc

e
va

ri
ab

le
s

st
an

di
ng

fo
r

un
fin

is
he

d
br

an
ch

es
of

th
e

de
riv

at
io

n
w

hi
ch

ar
e

th
en

pr
ov

ed
se

pa
ra

te
ly

.T
he

se
va

ri
ab

le
s

ty
pi

ca
lly

st
ar

tw
ith
D

fo
rd

er
iv

at
io

n.
W

e
us

e
tu

pl
e

no
ta

tio
n

fo
rc

on
ci

se
ne

ss
,e

.g
.@

i
(x
,y

)
=

@
j
(x
,y

)
is

sh
or

th
an

d
fo

r@
i
x

=
@
j
x
∧

@
i
y

=
@
j
y

.L
ik

ew
is

e,
x
,y

:=
θ x
,θ
y

is
sh

or
th

an
d

fo
rt

he
pr

og
ra

m
x

:=
θ x

;y
:=
θ y

.F
or

lo
ng

se
qu

en
ce

s
of

as
si

gn
m

en
ts

,w
e

el
id

e
ir

re
le

va
nt

as
si

gn
m

en
ts

w
ith

do
ts

(.
..

).
W

e
al

so
w

ri
te

tr
an

si
tiv

e
eq

ua
lit

ie
s
x

=
y

=
z

w
ith

th
e

ty
pi

ca
lm

ea
ni

ng
x

=
y
∧
y

=
z

.
A

s
in

th
e

m
ai

n
pa

pe
rw

e
us

e
eθ x

fo
rt

he
su

bs
tit

ut
io

n
of
θ

fo
rx

in
e.

W
e

w
ill

al
so

so
m

et
im

es
co

ns
tr

uc
tn

am
ed

su
bs

tit
ut

io
ns
σ

an
d

su
bs

tit
ut

e
w

ith
th

e
no

ta
tio

n
σ

(e
)

w
he

n
co

nv
en

ie
nt

,a
s

in
th

e
un

if
or

m
su

bs
tit

ut
io

n
al

go
ri

th
m

.
L

as
tly

,w
e

us
e

st
ra

ig
ht

fo
rw

ar
d

de
riv

ed
co

ns
tr

uc
ts

fo
rc

la
ri

ty
,s

pe
ci

fic
al

ly
tr

ut
h
>

an
d

fa
ls

eh
oo

d
⊥

w
hi

ch
ar

e
tr

iv
ia

lly
de

riv
ed

as
0
<

1
an

d
0
<

0
,r

es
pe

ct
iv

el
y.

D
er

iv
ed

R
ul

es
In

th
is

pr
oo

fw
e

w
ill

us
e

a
fe

w
de

riv
ed

ru
le

s
w

hi
ch

w
er

e
ig

no
re

d
in

th
e

m
ai

n
te

xt
fo

rc
la

ri
ty

of
pr

es
en

ta
tio

n.

M
[·]

P
→
Q

[a
]P
→

[a
]Q

FP
(P
∨
〈a
〉Q

)
→
Q

〈a
∗
〉P
→
Q

R
ul

e
M

[·]
de

riv
es

tr
iv

ia
lly

fr
om

K
,G

,a
nd

M
P

an
d

is
th

e
bo

x
an

al
og

of
M

.R
ul

e
FP

ha
s

be
en

sh
ow

n
in

te
r-

de
riv

ab
le

w
ith

lo
op

in
du

ct
io

n
ax

io
m

Ii
n

pr
io

rw
or

k
[3

6]
.

P
ro

of
.

In
th

is
pr

oo
fw

e
de

co
m

po
se

th
e

m
od

el
in

to
pi

ec
es

,l
et

tin
g
α
N

st
an

d
fo

rt
he

no
nd

et
er

m
in

is
tic

as
si

gn
m

en
ts

d
i

:=
∗;

?
(d
i
≥

0
);

r i
:=
∗;

?
(r
i
≥

0
);

n
i

:=
d
i
−

(r
i

+
p
i
);

α
L

st
an

d
fo

rt
he

lo
ad

ba
la

nc
er

i
f

(n
i
≥

th
re
sh
∧
N
ī
<

0
)

m
:=
M
·(
−

1
)i

e
l
s
e m

:=
0

α
B

st
an

d
fo

rt
he

ba
tte

ry
co

nt
ro

lle
r

g
r

:=
0
;
bm

i
:=

0
;
g
m

:=
0
;

(?
(B
i
<
B
m
a
x
)
∨

(n
i
>

0
∧
B
i
>

0
);

b i
:=
−
n
i
;
bm

i
:=
bm

i
+
m
·(
−

1
)i

+
1
)

∪
(b i:

=
0
;
g
r

:=
g
r

+
n
i
;
g
m

:=
g
m

+
m
·(
−

1
)i

+
1
)

51

α
P

st
an

d
fo

rt
he

di
ff

er
en

tia
le

qu
at

io
n:

{p
′ i

=
m
·−

1
i
,B
′ i

=
b i
,b
′ i

=
bm

i
,g
r
′

=
g
m
,t
′

=
1

&
B
i
≥

0
}

an
d

co
m

bi
ne

le
tte

rs
in

su
bs

cr
ip

ts
to

de
no

te
,c

om
po

si
tio

ns
,e

.g
.
α
N
L
B
P
≡

(α
N

;α
L

;α
B

;α
P

).
H

er
e

w
e

de
fin

e
th

e
re

la
tio

ns
R

(i
,j

)
≡

@
i
t

=
@
j
t
∧

@
i
g
r

=
@
i
J
∧
th
re
sh
≥

0
an

d
R
m

(i
,j

)
≡
R

(i
,j

)
∧

@
i
g
m

=
@
j
g
m
∧
m
>

0
∧
B
m
a
x
>

0
.T

he
m

ai
n

pr
oo

f,
w

he
re
D
c

st
an

ds
fo

rt
he

co
nt

ro
lle

rc
or

re
ct

ne
ss

le
m

m
a:

D
c

le
m

m
a
R

(i
1
,
i 2

),
@

i
1
〈α

N
L
B
〉o

1
`

@
i
2
〈α

N
L
B
〉↓
o
2
R

(o
1
,
o
2
)

*
R

,R
m

R
m

(m
1
,
m

2
),

@
m

1
〈α

P
〉o

1
`

@
m

2
[t

:=
@

o
1
t;
g
r
,
.
.
.
:=
g
r

+
g
m

(t
−

@
m

1
t)

]@
o
1
t

=
@

o
1
t
∧
g
r

=
@

m
1
g
r

+
g
m

(@
o
1
t
−

@
m

1
t)

N
T
′

R
m

(m
1
,
m

2
),

@
m

1
〈α

P
〉o

1
`

@
m

2
[t

:=
@

o
1
t;
g
r
,
.
.
.
:=
g
r

+
g
m

(t
−

@
m

1
t)

](
(@

o
1
t

=
@

o
1
t)
∧

(g
r

=
@

o
1
g
r
))

[:
=

]
R

m
(m

1
,
m

2
),

@
m

1
〈α

P
〉o

1
`

@
m

2
[t

:=
@

o
1
t;
g
r
,
.
.
.
:=
g
r

+
g
m

(t
−

@
m

1
t)

](
t

=
@

o
1
t
∧
g
r

=
@

o
1
g
r
)

@
ho

m
,↓

R
m

(m
1
,
m

2
),

@
m

1
〈α

P
〉o

1
`

@
m

2
[t

:=
@

o
1
t;
g
r
,
.
.
.
:=
g
r

+
g
m

(t
−

@
m

1
t)

]↓
o
2
R

(o
1
,
o
2
)

B
S′

R
m

(m
1
,
m

2
),

@
m

1
〈α

P
〉o

1
`

@
m

2
〈α

P
〉↓
o
2
R

(o
1
,
o
2
)

B
S;

R
(i

1
,
i 2

),
@

i
1
〈α

N
L
B

P
〉o

1
`

@
i
2
〈α

N
L
B

P
〉↓
o
2
R

(o
1
,
o
2
)

B
S∗

R
(i

1
,
i 2

),
@

i
1
〈α
∗ N

L
B

P
〉o

1
`

@
i
2
〈α
∗ N

L
B

P
〉↓
o
2
R

(o
1
,
o
2
)

N
ex

tw
e

pr
ov

e
th

e
le

m
m

a
D
c

fo
rc

on
tr

ol
le

rs
af

et
y,

w
hi

ch
its

el
fu

se
s

a
le

m
m

a
D
i

fo
rc

on
tr

ol
le

ri
nv

er
si

on
.T

he
le

m
m

a
ap

pl
ic

at
io

n
im

m
ed

ia
te

ly
sp

lit
s

us
in

to
fo

ur
br

an
ch

es
b 1

to
b 4

b1
:(

ab
br

ev
Γ
L
B
≡
R

(i
1
,i

2
),

@
i 1
〈α
L
B
〉m

1
,@

m
1
(g
r

=
0
∧
g
m

=
0
))

*
R

R
(i

1
,
i 2

),
@

i
1
〈α

N
〉n

1
,
@

m
1

(g
r

=
0
∧
g
m

=
0
)
`

(@
i
2

m
a
x
(0
,
p
1
)
−

(p
1

+
m

a
x
(0
,
−
p
1
))

=
m

a
x
(0
,
p
2
)
−

(p
2

+
m

a
x
(0
,
−
p
2
))

=
0

〈:
=
〉

R
(i

1
,
i 2

),
@

i
1
〈α

N
〉n

1
,
@

m
1

(g
r

=
0
∧
g
m

=
0
)
`

@
i
2
〈n

i
:=

m
a
x
(0
,
p
i
)
−

(p
i

+
m

a
x
(0
,
−
p
i
))
〉n

1
=
n

2
=

0
〈:

=
∗〉

,N
T

V
R

(i
1
,
i 2

),
@

i
1
〈α

N
〉n

1
,
@

m
1

(g
r

=
0
∧
g
m

=
0
)
`

@
i
2
〈α

N
〉↓
n

2
(n

1
=
n

2
=

0
∧
R

(n
1
,
n

2
))

D
lb

1

Γ
L
B
,
@

n
2

(n
1

=
n

2
=

0
)
`

@
n

2
〈α

L
B
〉↓
m

2
R

(m
1
,
m

2
)

B
S;

R
(i

1
,
i 2

),
@

i
1
〈α

N
L
B
〉m

1
,
@

m
1

(g
r

=
0
∧
g
m

=
0
)
`

@
i
2
〈α

N
〉〈
α
L
B
〉↓
m

2
R

(m
1
,
m

2
)

〈;
〉

R
(i

1
,
i 2

),
@

i
1
〈α

N
L
B
〉m

1
,
@

m
1

(g
r

=
0
∧
g
m

=
0
)
`

@
i
2
〈α

N
L
B
〉↓
m

2
R

(m
1
,
m

2
)

D
lb

1
:B

el
ow

w
e

ab
br

ev
ia

te
Γ
≡
R

(n
1
,n

2
),

@
n

1
〈α
L
B
〉m

1
,@

m
1
(g
r

=
0
∧
g
m

=
0
),

@
n

2
n

1
=
n

2
=

0
:

*
R

Γ
`

@
n

2
¬

((
n

1
≥

th
re
sh
∧
n

2
<

0
)
∨

(n
2
≥

th
re
sh
∧
n

1
<

0
))

〈∪
〉,〈

?
〉

Γ
`

@
n

2
〈α
L
〉〈
α
B
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)

*
N

T
V

Γ
`

@
n

1
t

=
@
m

1
t

R
,a

ss
um

pt
io

n
R

(n
1
,n

2
)

Γ
`

@
n

2
t

=
@
m

1
t

R
,a

ss
um

pt
io

n
Γ
`

@
n

2
(0
,0
,t

)
=

@
m

1
(g
r,
g
m
,t

)
〈:

=
〉

Γ
`

@
n

2
〈b
i
,b
m
i
,g
r,
g
m

:=
0
,0
,0
,0
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)
〈∪
〉,〈

;〉
Γ
`

@
n

2
〈α
B

0 m
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)
〈:

=
〉

Γ
`

@
n

2
〈m

:=
0
〉〈
α
B
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)

Γ
`

@
n

2
〈α
L
〉〈
α
B
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)
〈;
〉

Γ
`

@
n

2
〈α
L
B
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)
@

ho
m

,↓
Γ
`

@
n

2
〈α
L
B
〉↓
m

2
R

(m
1
,m

2
)

b2
B

el
ow

w
e

ab
br

ev
ia

te
Γ
≡
R

(i
1
,i

2
),

@
i 1
〈α
N
〉n

1
,@

m
1
(g
r

=
n

1
∧
g
m

=
m

)
Γ

2
≡
R

(n
1
,n

2
),

@
n

1
〈α
L
B
〉m

1
,@

m
1
(g
r

=
n

1
∧
g
m

=
m

),
@
n

2
n

1
=

@
n

1
n

1
∧
n

2
=

0

52

*
R

Γ
`

(@
i
2

(m
a
x
(0
,
@

i
2
p
1

+
@

m
2
n

1
)
−

(p
1

+
m

a
x
(0
,
−

@
i
2
p
1
−

@
m

2
n

1
))

=
@

m
2
n

1
)
∧

(m
a
x
(0
,
p
2
)
−

(p
2

+
m

a
x
(0
,
−
p
2
))

=
0
)

〈:
=
〉

Γ
`

@
i
2
〈n

1
,
n

2
:=

m
a
x
(0
,
@

i
2
p
1

+
@

m
2
n

1
)
−

(p
1

+
m

a
x
(0
,
−

@
i
2
p
1
−

@
m

2
n

1
))
,
m

a
x
(0
,
p
2
)
−

(p
2

+
m

a
x
(0
,
−
p
2
))
〉(
n

1
=

@
n

1
n

1
)
∧

(n
2

=
0
)

〈:
=
∗〉

,N
T

V
Γ
`

@
i
2
〈α

N
〉↓
n

2
@

n
2

(n
1

=
@

n
1
n

1
∧
n

2
=

0
)
∧
R

(n
1
,
n

2
)

D
lb

2

Γ
2
`

@
n

2
〈α

L
B
〉↓
m

2
R

(m
1
,
m

2
)

B
S;

R
(i

1
,
i 2

),
@

i
1
〈α

N
L
B
〉m

1
,
@

m
1

(g
r

=
n

1
∧
g
m

=
m

)
`

@
i
2
〈α

N
〉〈
α
L
B
〉↓
m

2
R

(m
1
,
m

2
)

〈;
〉

R
(i

1
,
i 2

),
@

i
1
〈α

N
L
B
〉o

1
,
(g
r

=
n

1
∧
g
m

=
m

)
`

@
i
2
〈α

N
L
B
〉↓
o
2
R

(o
1
,
o
2
)

D
lb

2
B

el
ow

w
e

ab
br

ev
ia

te
Γ
≡
R

(n
1
,n

2
),

@
n

1
〈α
L
B
〉m

1
,@

m
1
(g
r

=
n

1
∧
g
m

=
m

),
@
n

2
n

1
=
n

2
=

0
:

*
R

Γ
`

@
n

2
¬

((
n

1
≥

th
re
sh
∧
n

2
<

0
)
∨

(n
2
≥

th
re
sh
∧
n

1
<

0
))

〈∪
〉,〈

?
〉

Γ
`

@
n

2
〈α
L
〉〈
α
B
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)

*
N

T
V

Γ
`

(@
n

1
t)

=
(@

m
1
t)

R
,a

ss
um

pt
io

n
R

(n
1
,n

2
)

Γ
`

@
n

2
(t

=
@
m

1
t)

R
,a

ss
um

pt
io

n
Γ
`

@
n

2
(n

1
+
n

2
,m
·(
−

1
)

+
m
·(
−

1
)2
,t

)
=

@
m

1
(g
r,
g
m
,t

)
〈:

=
〉

Γ
`

@
n

2
〈.
..
,g
r,
g
m

:=
..
.,
n

1
+
n

2
,m
·(
−

1
)

+
m
·(
−

1
)2
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)
〈∪
〉,〈

;〉
Γ
`

@
n

2
〈α
B

0 m
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)
〈:

=
〉

Γ
`

@
n

2
〈m

:=
0
〉〈
α
B
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)

Γ
`

@
n

2
〈α
L
〉〈
α
B
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)
〈;
〉

Γ
`

@
n

2
〈α
L
B
〉(
g
r,
g
m
,t

)
=

@
m

1
(g
r,
g
m
,t

)
@

ho
m

,↓
Γ
`

@
n

2
〈α
L
B
〉↓
m

2
R

(m
1
,m

2
)

b3
T

hi
s

ca
se

is
sy

m
m

et
ri

c
w

ith
b2

.W
e

in
cl

ud
e

it
in

fu
ll

fo
rt

he
sa

ke
of

co
m

pl
et

en
es

s.
B

el
ow

w
e

ab
br

ev
ia

te
Γ
≡
R

(i
1
,i

2
),

@
i 1
〈α
N
〉n

1
,@

m
1
(g
r

=
n

2
∧
g
m

=
−
m

)
Γ

2
≡
R

(n
1
,n

2
),

@
n

1
〈α
L
B
〉m

1
,@

m
1
(g
r

=
n

2
∧
g
m

=
−
m

),
@
n

2
(n

2
=

@
n

1
n

2
∧
n

1
=

0
)

*
R

Γ
`

(@
i
2

m
a
x
(0
,
(@

i
2
p
2

+
@

m
2
n

2
)
−

(p
2

+
m

a
x
(0
,
−

@
i
2
p
2
−

@
m

2
n

2
))

=
(@

m
2
n

2
))
∧

(m
a
x
(0
,
p
1
)
−

(p
1

+
m

a
x
(0
,
−
p
1
))

=
0
))

〈:
=
〉

Γ
`

@
i
2
〈n

1
,
n

2
:=

m
a
x
(0
,
p
1
)
−

(p
1

+
m

a
x
(0
,
−
p
1
))
,
m

a
x
(0
,
@

i
2
p
2

+
@

m
2
n

2
)
−

(p
2

+
m

a
x
(0
,
−

@
i
2
p
2
−

@
m

2
n

2
))
〉n

2
=

@
n

1
n

2
∧
n

1
=

0
〈:

=
∗〉

,N
T

V
Γ
`

@
i
2
〈α

N
〉↓
n

2
@

n
2
n

1
=

@
n

1
n

1
∧
n

2
=

0
∧
R

(n
1
,
n

2
)

D
lb

3

Γ
2
`

@
n

2
〈α

L
B
〉↓
m

2
R

(m
1
,
m

2
)

B
S;

R
(i

1
,
i 2

),
@

i
1
〈α

N
L
B
〉m

1
,
@

m
1

(g
r

=
n

2
∧
g
m

=
−
m

)
`

@
i
2
〈α

N
〉〈
α
L
B
〉↓
m

2
R

(m
1
,
m

2
)

〈;
〉

R
(i

1
,
i 2

),
@

i
1
〈α

N
L
B
〉o

1
,
(g
r

=
n

2
∧
g
m

=
−
m

)
`

@
i
2
〈α

N
L
B
〉↓
o
2
R

(o
1
,
o
2
)

D
lb

3
B

el
ow

w
e

ab
br

ev
ia

te
Γ
≡
R

(n
1
,n

2
),

@
n

1
〈α
L
B
〉m

1
,@

m
1
(g
r

=
n

2
∧
g
m

=
−
m

),
@
n

2
(n

2
=

@
n

1
n

2
∧
n

1
=

0
):

*
R

Γ
`

@
n

2
¬

((
n

1
≥

th
re
sh
∧
n

2
<

0
)
∨

(n
2
≥

th
re
sh
∧
n

1
<

0
))

〈∪
〉,
〈?
〉

Γ
`

@
n

2
〈α

L
〉〈
α
B
〉(
g
r
,
g
m
,
t)

=
(@

m
1
g
r
,
g
m
,
t)

*
N

T
V

Γ
`

(@
n

1
t)

=
(@

m
1
t)

R
,a

ss
um

pt
io

n
R

(n
1
,
n

2
)

Γ
`

@
n

2
(t

=
@

m
1
t)

R
,a

ss
um

pt
io

n
Γ
`

@
n

2
(n

1
+
n

2
,
m
·(
−

1
)

+
m
·(
−

1
)2
,
t)

=
@

m
1

(g
r
,
g
m
,
t)

〈:
=
〉

Γ
`

@
n

2
〈.
.
.
,
g
r
,
g
m

:=
.
.
.
,
n

1
+
n

2
,
m
·(
−

1
)

+
m
·(
−

1
)2
〉(
g
r
,
g
m
,
t)

=
@

m
1

(g
r
,
g
m
,
t)

〈∪
〉,
〈;
〉

Γ
`

@
n

2
〈α

B
0 m
〉(
g
r
,
g
m
,
t)

=
@

m
1

(g
r
,
g
m
,
t)

〈:
=
〉

Γ
`

@
n

2
〈m

:=
0
〉〈
α
B
〉(
g
r
,
g
m
,
t)

=
@

m
1

(g
r
,
g
m
,
t)

Γ
`

@
n

2
〈α

L
〉〈
α
B
〉(
g
r
,
g
m
,
t)

=
@

m
1

(g
r
,
g
m
,
t)

〈;
〉

Γ
`

@
n

2
〈α

L
B
〉(
g
r
,
g
m
,
t)

=
@

m
1

(g
r
,
g
m
,
t)

@
ho

m
,↓

Γ
`

@
n

2
〈α

L
B
〉↓
m

2
R

(m
1
,
m

2
)

53

b4
Fi

rs
td

efi
ne
θ 1

=
m

a
x
(0
,@

i 2
p

1
+

@
m

2
n

1
)
−

(p
1

+
m

a
x
(0
,−

@
i 2
p

1
−

@
m

2
n

1
))

an
d
θ 2

=
m

a
x
(0
,@

i 2
p

2
+

@
m

2
n

2
)
−

(p
2

+
m

a
x
(0
,−

@
i 2
p

2
−

@
m

2
n

2
))

*
R

Γ
`)

@
i 2
θ 1

=
@
m

2
n

1
∧
θ 2

=
@
m

2
n

2
〈:=
〉

Γ
`

@
i 2
〈n

1
,n

2
:=
θ 1
,θ

2
〉n

2
=

@
n

1
n

2
∧
n

1
=

@
n

1
n

1
〈:=
∗〉

,N
T

V
Γ
`

@
i 2
〈α

N
〉↓
n

2
@
n

2
n

1
=

@
n

1
n

1
∧
n

2
=

@
n

1
n

2
∧
R

(n
1
,n

2
)

D
lb

4

Γ
2
`

@
n

2
〈α

L
B
〉↓
m

2
R

(m
1
,m

2
)

B
S;

R
(i

1
,i

2
),

@
i 1
〈α

N
L
B
〉m

1
,@

m
1
(g
r

=
n

1
+
n

2
∧
g
m

=
0)
`

@
i 2
〈α

N
〉〈
α
L
B
〉↓
m

2
R

(m
1
,m

2
)

〈;〉
R

(i
1
,i

2
),

@
i 1
〈α

N
L
B
〉o

1
,(
g
r

=
n

1
+
n

2
∧
g
m

=
0)
`

@
i 2
〈α

N
L
B
〉↓
o 2
R

(o
1
,o

2
)

D
lb

4

*
N

T
V

Γ
`

@
n

2
〈α
L
〉↓
l 2

(R
(m

1
,m

2
)
∧

(@
l 2
n
i
)

=
(@

n
2
n
i
))

*
N

T
V

Γ
`

@
l 1
t

=
@
m

1
t

R
,a

ss
um

pt
io

n
R

(l
1
,l

2
)

Γ
`

@
l 2
t

=
@
m

1
t

R
,a

ss
um

pt
io

n
Γ
`

@
l 2
n

1
+
n

2
,m
·(
−

1
)

+
m
·(
−

1
)2
,t

=
@
m

1
g
r,
g
m
,t

〈:
=
〉

Γ
`

@
l 2
〈.
..
,g
r,
g
m

:=
..
.,
n

1
+
n

2
,m
·(
−

1
)

+
m
·(
−

1
)2
〉g
r,
g
m
,t

=
@
m

1
g
r,
g
m
,t

〈∪
〉,〈

;〉
Γ
`

@
l 2
〈α
B
〉g
r,
g
m
,t

=
@
m

1
g
r,
g
m
,t

@
ho

m
,↓

Γ
`

@
l 2
〈α
L
B
〉↓
m

2
R

(m
1
,m

2
)

B
S;

Γ
`

@
n

2
〈α
L
B
〉↓
m

2
R

(m
1
,m

2
)

T
he

co
nt

ro
lle

ri
nv

er
si

on
le

m
m

a:
H

er
e

w
e

ab
br

ev
ia

te

φ
1
≡

(g
r

=
0
∧
g
m

=
0
)

φ
2
≡

(g
r

=
n

1
∧
g
m

=
m

)

φ
3
≡

(g
r

=
n

2
∧
g
m

=
−
m

)

φ
4
≡

(g
r

=
n

1
+
n

2
∧
g
m

=
0
)

fo
rf

or
m

ul
as

an
d

γ
=
g
r

:=
0
;
bm

i
:=

0
;
g
m

:=
0

β
1
a
≡

?
(B

1
<
B
m
a
x
)
∨

(n
1
>

0
∧
B

1
>

0
);
b 1

:=
−
n

1
;
bm

1
:=
bm

1
+
m
·(
−

1
)2

β
1
b
≡
b 1

:=
0
;
g
r

:=
g
r

+
n

1
;
g
m

:=
g
m

+
m
·(
−

1
)2

β
2
a
≡

?
(B

2
<
B
m
a
x
)
∨

(n
2
>

0
∧
B

2
>

0
);
b 2

:=
−
n

2
;
bm

2
:=
bm

2
+
m
·(
−

1
)3

β
2
b
≡
b 2

:=
0
;
g
r

:=
g
r

+
n

2
;
g
m

:=
g
m

+
m
·(
−

1
)3

T
he

n
th

e
le

m
m

a
is

:@
i 1
〈α
N
L
B
〉m

1
→

@
m

1
(φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

H
er

e
b 1
,.
..
,b

4
ar

e
br

an
ch

es
,p

ro
ve

d
af

te
rt

he
m

ai
n

le
m

m
a.

54

b 1
b 2

b 2
b 3

〈∪
〉,
∧

R
[γ

][
β

1
a
∪
β

1
b
][
β

2
a
∪
β

2
b
](
φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

〈;
〉

[α
B

](
φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

G
@

@
l 1

[α
B

](
φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

〈n
〉

@
l 1
〈α
B
〉m

1
→

@
m

1
(φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

〈;
〉,∃
W

,@
I

@
i 1
〈α
N
L
B
〉m

1
→

@
m

1
(φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

W
e

al
so

de
fin

e
σ

=
{g
r
7→

0
,b
m
i
7→

0
,g
m
7→

0
}

b 1

*
R

0
=

0
∧

0
=

0
by

de
fn

σ
(φ

1
)

〈∪
〉,
〈:

=
〉,
〈;
〉

[β
1
a
][
β

2
a
]σ

(φ
1
)

M
[·]

[β
1
a
][
β

2
a
]σ

(φ
1
∨
φ

2
∨
φ

3
∨
φ

4
)

〈:
=
〉

[γ
][
β

1
a
][
β

2
a
](
φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

b 2
D

efi
ne
α
≡
g
r

:=
0
;
bm

i
:=

0
;
g
m

:=
0

th
en

*
R

(0
+
n

2
=
n

2
∧
m
·(
−

1
)3

=
−
m

)
〈;
〉,
〈:

=
〉,
〈?
〉

[α
][
?
(B

1
<
B
m
a
x
)
∨

(n
1
>

0
∧
B

1
>

0
);
b 1

:=
−
n

1
;
bm

1
:=
bm

1
+
m
·(
−

1
)2

](
g
r

+
n

2
=
n

2
∧
m
·(
−

1
)3

=
−
m

)
〈;
〉,
〈:

=
〉

[α
][
?
(B

1
<
B
m
a
x
)
∨

(n
1
>

0
∧
B

1
>

0
);
b 1

:=
−
n

1
;
bm

1
:=
bm

1
+
m
·(
−

1
)2

][
b 2

:=
0
;
g
r

:=
g
r

+
n

2
;
g
m

:=
m
·(
−

1
)3

](
g
r

=
n

2
∧
g
m

=
−
m

)
by

de
fn

[γ
][
β

1
a
][
β

2
b
]φ

3
M

[·]
[γ

][
β

1
a
][
β

2
b
](
φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

b 3
D

efi
ne
α
≡
g
r

:=
0
;
bm

i
:=

0
;
g
m

:=
0

th
en

*
R

(0
+
n

1
=
n

1
∧
m
·(
−

1
)2

=
m

)
〈;
〉,
〈:

=
〉

[α
](
g
r

+
n

1
=
n

1
∧
m
·(
−

1
)2

=
m

)
〈;
〉,
〈:

=
〉

[α
][
b 1

:=
0
;
g
r

:=
g
r

+
n

1
;
g
m

:=
g
m

+
m
·(
−

1
)2

](
g
r

=
n

1
∧
m
·(
−

1
)2

=
m

)
〈;
〉,
〈:

=
〉

[α
][
b 1

:=
0
;
g
r

:=
g
r

+
n

1
;
g
m

:=
g
m

+
m
·(
−

1
)2

](
g
r

=
n

1
∧
g
m

=
m

)
〈?
〉,
〈;
〉,
〈:

=
〉

[α
][
b 1

:=
0
;
g
r

:=
g
r

+
n

1
;
g
m

:=
g
m

+
m
·(
−

1
)2

][
?
(B

2
<
B
m
a
x
)
∨

(n
2
>

0
∧
B

2
>

0
);
b 2

:=
−
n

2
;
bm

2
:=
bm

2
+
m
·(
−

1
)3

](
g
r

=
n

1
∧
g
m

=
m

)
by

de
fn

[γ
][
β

1
b
][
β

2
a
]φ

2
M

[·]
[γ

][
β

1
b
][
β

2
a
](
φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

b 4
D

efi
ne
α
≡
g
r

:=
0
;
bm

i
:=

0
;
g
m

:=
0

th
en

55

*
R

(0
+
n

1
+
n

2
=
n

1
+
n

2
∧

0
+
m
·(
−

1
)2

+
m
·(
−

1
)3

=
0
)

〈;
〉,
〈:

=
〉

[α
](
g
r

+
n

1
+
n

2
=
n

1
+
n

2
∧
g
m

+
m
·(
−

1
)2

+
m
·(
−

1
)3

=
0
)

〈;
〉,
〈:

=
〉

[α
][
b 1

:=
0
;
g
r

:=
g
r

+
n

1
;
g
m

:=
g
m

+
m
·(
−

1
)2

](
g
r

+
n

2
=
n

1
+
n

2
∧
g
m

+
m
·(
−

1
)3

=
0
)

〈;
〉,
〈:

=
〉

[α
][
b 1

:=
0
;
g
r

:=
g
r

+
n

1
;
g
m

:=
g
m

+
m
·(
−

1
)2

][
b 2

:=
0
;
g
r

:=
g
r

+
n

2
;
g
m

:=
g
m

+
m
·(
−

1
)3

](
g
r

=
n

1
+
n

2
∧
g
m

=
0
)

by
de

fn
[γ

][
β

1
b
][
β

2
b
]φ

4
M

[·]
[γ

][
β

1
b
][
β

2
b
](
φ

1
∨
φ

2
∨
φ

3
∨
φ

4
)

F
Fu

ll
pr

oo
fo

fi
ns

ec
ur

e
sm

ar
tg

ri
d

m
od

el
Se

e
no

te
at

th
e

st
ar

to
fA

pp
en

di
x

E
on

ex
tr

a
no

ta
tio

ns
us

ed
in

th
e

ap
pe

nd
ic

es
.

Le
m

m
a

33
.

Fo
rm

ul
a
∃i

1
:W

@
i
〈B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

1
is

va
lid

.

P
ro

of
.

*
R
>

〈;
〉,〈

:=
〉
〈B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
〉>

G
@

@
i
〈B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
〉>

∃W
,M

@
i
〈B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
〉∃
i 1

:W
i 1

B
W
∃i

1
:W

@
i
〈B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

1

Le
m

m
a

34
.

Fo
rm

ul
a

@
i
〈B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

1
→

@
i 1
B
i

=
B
m
a
x
∧
t

=
0
∧
g
r

=
0

is
va

lid
.

P
ro

of
.

*
R
`
B
m
a
x

=
B
m
a
x
∧

0
=

0
∧

0
=

0
[:
=

],
[;

]
`

[B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
](
B
i

=
B
m
a
x
∧
t

=
0
∧
g
r

=
0
)

G
@
`

@
i
[B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
](
B
i

=
B
m
a
x
∧
t

=
0
∧
g
r

=
0
)

〈n
〉

@
i
〈B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

1
`

@
i 1

(B
i

=
B
m
a
x
∧
t

=
0
∧
g
r

=
0
)

→
R

@
i
〈B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

1
→

@
i 1

(B
i

=
B
m
a
x
∧
t

=
0
∧
g
r

=
0
)

Le
m

m
a

35
.

Fo
rm

ul
a
∃i

2
:W

@
i
〈B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

2
is

va
lid

.

P
ro

of
.

*
R
>

〈;
〉,〈

:=
〉
〈B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
〉>

G
@

@
i
〈B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
〉>

∃W
,M

@
i
〈B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
〉∃
i 1

:W
i 1

B
W
∃i

1
:W

@
i
〈B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

1

56

Le
m

m
a

36
.

Fo
rm

ul
a

@
i
〈B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

2
→

@
i 2
B
i

=
1 2
B
m
a
x
∧
t

=
0
∧
g
r

=
0

is
va

lid
.

P
ro

of
.

*
R
`

1 2
B
m
a
x

=
1 2
B
m
a
x
∧

0
=

0
∧

0
=

0
[:
=

],
[;

]
`

[B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
](
B
i

=
1 2
B
m
a
x
∧
t

=
0
∧
g
r

=
0
)

G
@
`

@
i
[B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
](
B
i

=
1 2
B
m
a
x
∧
t

=
0
∧
g
r

=
0
)

〈n
〉

@
i
〈B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

2
`

@
i 2

(B
i

=
1 2
B
m
a
x
∧
t

=
0
∧
g
r

=
0
)

→
R

@
i
〈B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

2
→

@
i 2

(B
i

=
1 2
B
m
a
x
∧
t

=
0
∧
g
r

=
0
)

Le
m

m
a

37
.

Fo
rm

ul
a

@
i 1

(B
i

=
B
m
a
x
∧
g
r

=
0
∧
t

=
0
)
→
∃o

2
:W

((
@
i 2
〈α
F
〉o

2
)
∧

@
o
2
(t

=
0
∧
g
r
>

0
))

is
va

lid
.

P
ro

of
.

E
ve

ry
w

he
re

in
th

is
pr

oo
f,

@
i 1

(B
i

=
B
m
a
x
∧
g
r

=
0
∧
t

=
0
)

is
im

pl
ic

itl
y

in
th

e
co

nt
ex

t.
D

efi
ne

al
so
φ
Q
E
≡
¬

((
n
i
≤

0
∧
B
i
<
B
m
a
x
)
∨

(n
i
>

0
∧
B
i
>

0
))

.

*
R

(@
i
2
¬

(n
i
≥

th
re
sh
∧
N

ī
<

0
))

1 n
i

*
R

φ
Q

E

*
R

,a
ss

um
p
R

@
i
2

(t
=

0
∧

0
+

1
+

1
>

0
)

〈:
=
〉

@
i
2
〈g
r

:=
0

+
1

+
1
;
g
m

:=
0

+
0
((
−

1
)2

+
(−

1
)3

)〉
(t

=
0
∧
g
r
>

0
)

su
bs

t
@

i
2
〈(
g
r

:=
0

+
n

1
+
n

2
;
g
m

:=
0

+
m

(−
1
2

+
−

1
3
))

1
,0

n
i
,m
〉(
t

=
0
∧
g
r
>

0
)

〈:
=
〉

@
i
2
〈(
b
i

:=
0
;
g
r

:=
0

+
n

1
+
n

2
;
g
m

:=
0

+
m

(−
1
2

+
−

1
3
))

1
,0

n
i
,m
〉(
t

=
0
∧
g
r
>

0
)

〈:
=
〉

@
i
2
〈(
g
m

:=
0
;
b
i

:=
0
;
g
r

:=
0

+
n

1
+
n

2
;
g
m

:=
g
m

+
m

(−
1
2

+
−

1
3
))

1
,0

n
i
,m
〉(
t

=
0
∧
g
r
>

0
)

〈:
=
〉

@
i
2
〈(
g
r

:=
0
;
b
m

i
:=

0
;
g
m

:=
0
;
b
i

:=
0
;
g
r

:=
g
r

+
n

1
+
n

2
;
g
m

:=
g
m

+
m

(−
1
2

+
−

1
3
))

1
,0

n
i
,m
〉(
t

=
0
∧
g
r
>

0
)

〈i
f
〉2

,〈
;〉

,C
E

@
i
2
〈(
α
B

)1
,0

n
i
,m
〉(
t

=
0
∧
g
r
>

0
)

〈′
〉

@
i
2
〈(
α
B

)1
,0

n
i
,m
〉〈

(α
P

)1
,0

n
i
,m
〉(
t

=
0
∧
g
r
>

0
)

〈;
〉

@
i
2
〈(
α
B

P
)1

,0
n
i
,m
〉(
t

=
0
∧
g
r
>

0
)

〈:
=
〉

@
i
2
〈m

:=
0
〉〈

(α
B

P
)1 n

i
〉(
t

=
0
∧
g
r
>

0
)

〈;
〉,
〈i
f
〉2

@
i
2
〈(
α
L
B

P
)1 n

i
〉(
t

=
0
∧
g
r
>

0
)

〈:
=
〉

@
i
2
〈n

i
:=

1
〉〈
α
L
B

P
〉(
t

=
0
∧
g
r
>

0
)

R
,C

E
@

i
2
〈n

i
:=

m
a
x
(0
,
p
i
)

+
1
−

(p
i

+
m

a
x
(0
,
−
p
i
))
〉〈
α
L
B

P
〉(
t

=
0
∧
g
r
>

0
)

〈:
=
∗〉

,〈
?
〉,

R
@

i
2
〈d

i
:=
∗〉
〈?
d
i
≥

0
〉〈
r
i

:=
∗〉
〈?
r
i
≥

0
〉〈
n
i

:=
··
·〉
〈α

L
B

P
〉(
t

=
0
∧
g
r
>

0
)

〈:
=
〉

@
i
2
〈α

N
L
B

P
〉(
t

=
0
∧
g
r
>

0
)

〈∗
〉

@
i
2
〈α

F
〉(
t

=
0
∧
g
r
>

0
)

∃
W

,M
@

i
2
〈α

F
〉∃
o
2

:
W

(o
2
∧

@
o
2

(t
=

0
∧
g
r
>

0
))

B
W

∃
o
2
@

i
2
〈α

F
〉(
o
2
∧

@
o
2

(t
=

0
∧
g
r
>

0
))

@
I
∃
o
2
(@

i
2
〈α

F
〉o

2
)
∧

@
o
2

(t
=

0
∧
g
r
>

0
)

Le
m

m
a

38
.

Fo
rm

ul
a

@
i 2

[α
F

](
t
≥

0
∧

(t
=

0
→

(g
r

=
0
∧
B

1
=
B

2
=
B
m
a
x
))

)
is

va
lid

.

57

P
ro

of
.

D
efi

ne
J
≡
t
≥

0
∧

(t
=

0
→

(g
r

=
0
∧
B

1
=
B

2
=
B
m
a
x
))

D
efi

ne
co
n
d
≡

(n
i
≤

0
∧
B
i
<
B
m
a
x
)
∨

(n
i
>

0
∧
B
i
>

0
).

D
efi

ne
br

an
ch

es
γ

1
≡
b i

:=
−
n
i
;
bm

i
:=

bm
i

+
m
·(
−

1
)i

+
1

an
d
γ

2
≡
{
b i

:=
0
;
g
r

:=
g
r

+
n
i
;
g
m

:=
g
m

+
m
·(
−

1
)i

+
1
}.

*
R

@
i 2
J

*
V

J
a
`

[α
N
L

]J

*
R

J
,¬
co
n
d
`
⊥

hi
de

J
,¬
co
n
d
`
··
·

*
R

J
`
t′
≥

0
→

(t
+
t′
≥

0
∧

(t
+
t′

=
0
→
y
G

(t
′ ,

0
)

=
0
∧
B
i

=
1 2
B
m
a
x
))

∀R
J
`
∀t
′ ≥

0
:R

(t
+
t′
≥

0
∧

(t
+
t′

=
0
→
y
G

(t
′ ,

0
)

=
0
∧
B
i

=
1 2
B
m
a
x
))

[:
=

]
J
`

[g
r

:=
0
]∀
t′
≥

0
:R

(t
+
t′
≥

0
∧

(t
+
t′

=
0
→
y
G

(t
′ ,
g
r
)

=
0
∧
B
i

=
1 2
B
m
a
x
))

[′
]

J
`

[g
r

:=
0
][
α
P
n
i
,0

b
i
,g
m

]J
[:
=

]
J
`

[g
r

:=
0
;b
m
i

:=
0
;g
m

:=
0
;γ

1
;α
P

]J
[i
f

]
J
`

[α
B

][
α
P

]J
[;

]
J
`

[α
B
P

]J
M

[·]
J
`

[α
N
L
B
P

]J
I

@
i 2

[α
F

]J

Th
eo

re
m

39
(I

ns
ec

ur
ity

).
Fo

rm
ul

a
∃i

1
,i

2
,o

1
:W

R
(i

1
,i

2
)
∧

@
i 1
〈α
F
〉o

1
∧

@
i 2

[α
f

]↓
o
2
¬
R

(o
1
,o

2
)

is
va

lid
.

P
ro

of
.

W
e

ab
br

ev
ia

te
:

φ
1
≡

@
i
〈B
i

:=
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

1

φ
2
≡

@
i
〈B
i

:=
1 2
B
m
a
x
;t

:=
0
;g
r

:=
0
〉i

2

φ
o
≡

@
i 2
〈α
F
〉o

2
∧

@
o
2
t

=
0
∧
g
r
>

0

p
1
(i

1
)
≡

@
i 1
B
i

=
B
m
a
x
∧
t

=
0
∧
g
r

=
0

p
2
(i

2
)
≡

@
i 2
B
i

=
1 2
B
m
a
x
∧
t

=
0
∧
g
r

=
0

*
R

p
1
(i

1
),
p

2
(i

2
)
→
R

(i
1
,i

2
)

*
id

@
i 1
〈α
F
〉o

1

*
R

,↓
↓o

2
¬
R

(o
1
,o

2
)
`
J

*
L

38
@
i 2

[α
f

]J

@
i 2

[α
f

]↓
o
2
¬
R

(o
1
,o

2
)

φ
1
,φ

2
,φ
o
,p

1
(i

1
),
p

2
(i

2
),
i
→
R

(i
1
,i

2
)
∧

@
i 1
〈α
F
〉o

1
∧

@
i 2

[α
f

]↓
o
2
¬
R

(o
1
,o

2
)

∃R
φ

1
,φ

2
,φ
o
,p

1
(i

1
),
p

2
(i

2
),
i
→
∃i

1
,i

2
,o

1
:W

(R
(i

1
,i

2
)
∧

@
i 1
〈α
F
〉o

1
∧

@
i 2

[α
f

]↓
o
2
¬
R

(o
1
,o

2
))

L
34

,L
36
∃L

φ
1
,φ

2
,φ
o
,i
→
∃i

1
,i

2
,o

1
:W

(R
(i

1
,i

2
)
∧

@
i 1
〈α
F
〉o

1
∧

@
i 2

[α
f

]↓
o
2
¬
R

(o
1
,o

2
))

L
37

,∃
L

φ
1
,φ

2
,i
→
∃i

1
,i

2
,o

1
:W

(R
(i

1
,i

2
)
∧

@
i 1
〈α
F
〉o

1
∧

@
i 2

[α
f

]↓
o
2
¬
R

(o
1
,o

2
))

L
33

,L
35

,∃
L

i
→
∃i

1
,i

2
,o

1
:W

(R
(i

1
,i

2
)
∧

@
i 1
〈α
F
〉o

1
∧

@
i 2

[α
f

]↓
o
2
¬
R

(o
1
,o

2
))

∃W
,∃

L
∃i

1
,i

2
,o

1
:W

(R
(i

1
,i

2
)
∧

@
i 1
〈α
F
〉o

1
∧

@
i 2

[α
f

]↓
o
2
¬
R

(o
1
,o

2
))

58

