
Uncertainty Adaptation in Robot Perception
and Learning

Pengju Jin

CMU-CS-18-103

December 2017

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Kris Kitani, Co-Chair

Siddhartha Srinivasa, Co-Chair

Submitted in partial fulfillment of the requirements
for the Degree of Master of Science

Copyright c© 2017 Pengju Jin



Keywords: Robotics, Computer Vision, Reinforcement Learning



I would like to dedicate this thesis to my loving parents Dejiang Jin and Xiaoying Zhu.



iv



Abstract
Dealing with uncertainty is a fundamental challenge for building any practical

robot platform. In fact, the ability to adapt and react to uncertain scenarios is an
essential sign of an intelligent agent. Furthermore, uncertainty can arise from ev-
ery component of a robotic system. Inaccurate motion models, sensory noises, and
even human factors are all common sources of the unexpected. From an algorith-
mic perspective, handling uncertainty in robotics introduces a new layer of difficulty
because the algorithm not only needs to be accurate in a single scenario but also
need to adapt to the changes in uncertainties as the environment shifts. This thesis
presents methods for adapting to uncertainties in two tasks: object pose estimation
and assistive navigation.

For object pose estimation, we present a sensor fusion method that is highly
robust in estimating the pose of fiducial tags. The method leverages the different
structural and sensory advantages of RGB and Depth sensors to joint-optimize the
Perspective-N-Point problem and obtains the pose. The key insight being adaptively
bounding the optimization region by testing the pose solution uncertainty.

For assistive navigation, we wish to tackle the problem of using active signaling
to avoid pedestrians while it is minimally invasive to other people. We formulate the
problem as a bandit with expert advice problem with reinforcement learning poli-
cies as the experts. We present an online learning algorithm which can continuously
adapt to new and uncertain pedestrian types by using an online policy search tech-
nique and the Dirichlet Process.
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Chapter 1

Introduction

Uncertainty is a fundemental problem for any robots that intend to perform intellgently in the
real world. At its core, uncertainity captures the essence of our ever-changing world and its un-
derlying latent states. In practice, uncertainity arises from almost every part of the robotic system
such as noisy sensors, poor localization, and even inputs from surrounding human users. Many
of these challgnes have been well studied in different areas of robotics including manipulation,
mobile robots, aerial robots, and human-robot interactions.

From an algorithmitic point of view, the challenge of designing algorithms dealing with un-
certainity is that we cannot make strong assumptions about the uniformity of its inputs. With the
case of classical deterministic algorithm, there is a deterministic mapping from inputs to correct
outputs. The mapping can be arbitrarly complicated or difficult to compute but it remains static
over time. In other words, all the necessary information are provided as inputs to the algorithm.
The accuracy of the algorithm can be objectively measured by verifying against the groundtruth.
However, we have to relax this assumption for the inputs under uncertainity. In facts uncertain
inputs can have multiple correct answers based on some latent state of the world which can’t
be captured as part of the input. Furthermore, uncertain inputs are everywhere in robotics. For
instances, consectuive images taken from the same camera in a static scene are often not the
same due to randomness in lighting variations and the amount of photons captured by each pixel

Figure 1.1: Robot uncertainity
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Figure 1.2: Robot about to execute a manipulation task and rearrange the objects on the table.
Apriltags are used to find the poses of targeted objects in the scene but the robot ultimately fails
to gasp the rectangular prism because the orientation of its pose is wrong.

during the camera exposure. The same person might react differently to the same set of actions
depending on his or her mood. Therefore, uncertain inputs are often thought of as samples from a
probabilistic distribution and the quality of the algorithm is measured by repeating the algorithms
over many trials.

We will address two specific task common in robotic applications and show that by leverg-
ing the idea of adpative weighting, we can imporve the performance of these tasks even under
uncertainity.

1.1 Object Pose Estimation

The first task we will address is robust pose estimation for table top objects. This has been
a diffcult problem due to the size of the objects and precision requirements in large robotic
systems such as HERB as shown in Fig 1.2. In particular we will use fiducial markers. Detection
and identification using artificial landmarks, known as fiducial markers, has long been used in
augmented reality (AR) and computer vision (CV) applications. Over the last decade, there have
been numerous marker systems, such as ARTags [19] Apriltags [42], and Rune Tags [7], designed
to improve detection encoding precision. In contrast to AR systems, robots often operate in
suboptimal conditions where, for instance, camera resolution and illumination are constrained
and cause the data to be noisy. In order for fiducial-marker systems to be effective in these
settings, they must be robustness to scenery and sensory noises.

There are two qualities of fiducial-marker systems that are especially important to robotic
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applications: detection rate, the ability to find the tag in the image, and pose accuracy, the ac-
curacy of the estimated 6 DOF pose of the tag. Compared to markerless detection algorithms,
fiducial-marker methods are simpler. They yield great results in augmented reality tasks that re-
quire high detection speed. Furthermore, the fiducial tags are popular in the robotic community
due to their high detection rates and numerous encoding schemes. For example, Apriltags are
commonly used to test SLAM systems, or finding ground truth for objects in manipulation and
motion planning tasks.

However, obtaining highly accurate pose estimations using fiducial tags from noisy data re-
mains a challenge. This is important for robotic applications because small errors can cause large
system failures as the errors propagate and amplify through the system as shown in Figure 1.2.
Currently, the fiducial tag systems yield promising results under well conditioned or rendered en-
vironments, but this does not translate to ill-conditioned settings. For instance, when AprilTags,
a state of the art fiducial marker, are used with low resolution cameras or harsh lighting condi-
tions, the system often produces poses with tremendous rotational errors. We observe that the
AprilTag’s localization accuracy performs significantly worse when there is noise in the captured
image. This is a difficult problem because RGB sensors are often sensitive to lighting, and most
popular fiducial systems are not designed to take advantage of other sensors commonly available
on robots.

1.2 Assistive Navigation for Blinds
The second task we will address involves learning navigation strategies for the blind assistive
robot Cabot. Many assistive navigational robotic systems for guiding people with visual impair-
ments are introspective in that they only give navigational instructions to the user and often do
not consider the effect the robotic system can have on the environment to clear the path for the
user. Without the ability to change the environment, the robotic system must solve a challenging
dynamic planning problem where the system must predict the behavior of nearby pedestrians
and plan its path accordingly. Unfortunately, in some scenarios it may not be possible to plan a
path due to the complexity of the state space or physical constraints imposed by the environment.
While dynamic planning is certainly an important component of robotic navigation, we explore
the possibility of endowing the robotic system with the ability to manipulate its surroundings in
order to clear a path for the blind user.

While there are many possible modes of interaction with the environment, in this work we
propose the use of strategically planned audio signals broadcast from our robotic platform to
effectively alert pedestrians of potential collision. Modeling the effect of audio interactions is
a challenging task, as it is not always clear when and what audio signal should be broadcast to
cause pedestrian behavior to change. One of the key reasons for why the task is challenging is
that the reaction of nearby pedestrians is not consistent and can change over time based on the
situational context. That is, given the same audio signal, the behavior of nearby pedestrians can
change due to changes in the environment, changes in the configuration of pedestrians or changes
in the unobserved internal state of the pedestrian. This means that the effective state space of the
problem is indeed very large and that the distribution over the state space can change over time.

To deal with a dynamic state distribution, we propose to learn an effective strategy to trig-
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Figure 1.3: Cognitive Assistance Robot (CaBot): Our blind navigation robot leads a blind user
while detecting other pedestrians and making decision of using sound alert to change pedestrians’
walking direction.

ger audio signals to clear the path for the blind user by implementing a reinforcement learning
framework that continually updates it’s audio interaction policy to adapt to the changing nature
of the environment. In particular, we propose a adaptive contextual bandit algorithm, where the
number of arms (i.e., policies) change over time. The set of policies is repeatedly updated using
a Dirichlet Process mixture model to maintain a diverse set of high performing polices. The
performance of each policy is based on a reward function that measures collision avoidance and
social disturbance. Using our approach, we are able to continuously explore and learn new audio
interaction policies for changing situational context.

While the main analysis is performed using simulated pedestrian data, we also evaluate the
real-world performance of our algorithm using a suitcase-shaped robot as our assistive navigation
system. The robot assumes the form of a suitcase because we envision that such a system will
be used in airports and travel scenarios. The suitcase is equipped with a Kinect 2 camera, small
computer and a speaker for audio interaction. The system is named the Cognitive Assistant Robot
or CaBot for short and is depicted in Figure 1.3.

We make two main contributions in this project: (1) We introduce a new algorithm that
has the ability to search and generate new expert policies by maintaining a distribution over a
large number of policies. Our algorithm is called Adaptive EXP4, and is an extension to the
well-known EXP4 algorithm. (2) We develop a technique for maintaining a potentially infinite
number of bandit arms (policies) by utilizing a Dirichlet Process Gaussian mixture model over
the space of policies. We show empirically that we are able to minimize the regret of the online
algorithm despite having an infinite number of policies.
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Chapter 2

Pose Estimation Background

Obtaining highly accurate pose estimation has been an important research area in robotics. Nu-
merous algorithms rely only on RGB or gray scale images. Solving the projection geometry
of some detected features and then minimize the reprojection error of the features in the image
space [23]. Similarly, methods such as Iterative Closest Point [8] were developed to solve the
pose estimation problem using range data by minimizing the Euclidean distance between the
model and the depth data. Recently, some approaches in the SLAM community propose to en-
hance the accuracy of traditional tracking algorithms by fusing RGB with depth data or inertial
data in various problems using extended Kalman filters [5, 21]. Compared to the single-sensor
approaches, algorithms utilizing RGBD data are more accurate and perform well in noisy sit-
uations where other approaches fail. However, such approaches are often costly in terms of
physical hardware as well as computation overhead. It is difficult to apply them in time sensitive
applications.

Fiducial markers solve pose estimation by exploiting easily detectable features in the RGB
space. There is an abundance of unique tag designs, most of them carry easily recognizable yet
precise binary patterns in the inner region to encode information. There are two types of common
tags: circular tags and square tags (see Figure 2.1).

Circular tags are created to encode the payload using small circular patterns arranged in vari-
ous shapes. Examples of circular tags include Intersense [38] and Rune tags [7]. The perspective
transformation of a circle is an ellipse, which can be used to directly compute the pose using
back projection methods. Localization of circular features is generally more accurate, and thus
generates better pose estimation at the cost of higher computation time [47]. However, small

(a) ARToolkit (b) ARTag (c) AprilTag (d) RUNE-Tag (e) Intersense

Figure 2.1: Different types of popular fiducial tags. ARToolkit, ARTags, and AprilTags are
square tags with black borders. RUNE-tags and Intersense use different circle features as land-
marks
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(a) Perspective 1 (b) Perspective 2

Figure 2.2: The ambiguity effect can be demonstrated with two rendered cubes in the perspective
view. The two cubes are rotated such that two faces are interlaced. The red square in 2.2a is a
simulated projection of a square tag. The red circular regions denote the region of potential
corner detection in a noisy scene. 2.2b is a sketch of the potential resulting 2D projection. The
pose can converge to either one of the two faces.

circular features become hard to detect when they are far away from the camera or prospectively
rotated, and thus their effective range is much smaller than that of square tags.

ARTags [19], ARToolkit [28], ArUco [20], AprilTag [42] and AprilTag 2 [53] are examples
of squared-based fiducial tags. The perspective projection of a square becomes a general quadri-
lateral. Given the scale of a single marker, the full 6-DOF pose can then be estimated using the
corners of the quadrilateral. However, since the tags are detected using rectangles and lines, the
accuracy of their corner point sub-pixel locations is limited. Among the square tags, ARToolkit
is one of the earliest detection systems, and it is mainly used for Augmented reality applications.
Built on top of ARToolkit, ARTags and Apriltag reduced the computation time by using a 2D
binary pattern as the payload. Both systems use the image gradient to compute the tag border
making it robust to lighting changes and partial occlusions. Relative to ARTags, Apriltags have
a lower false positive rate, as they use a lexicode-based system that is invariant to rotation. In
addition, Apriltags have higher detection rates at further distances and at more difficult viewing
angles. Recently AprilTag 2 improved upon the original Apriltag. It implements a new boundary
segmentation algorithm which further reduces the computing time for detection and increases
the detection rate. Compared to circular tags, the advantages of square tags are that they can be
located very efficiently and they have reliable decoding schemes. Therefore, lts they are more
suitable for robotic applications that require a robust system.

2.1 Pose Ambiguity
In square fiducial marker detection, the pose is computed using the four corners of the tag. Since
the tags are planar, it is easy to compute perspective point correspondences from the corners. This
can be formalized as a specific case of pose estimation from Perspective-N-Point and it has been
well studied in geometry-based Computer Vision literatures [26, 57]. There are numerous opti-
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mization methods such as the ones proposed in [16] and [25] to solve this problem. In particular,
Horaud et al. [27] show that there is a deterministic analytical solution to the Perspective-4-Point
(P4P) problem when the points are coplanar as they are on the tag. In practice, however, these
methods are very sensitive to noise in the scene. When ARTags, Apriltags and ARToolkit sys-
tems are used in scenarios shown in Figure 1.2, the poses of the tags are unstable even when the
scene is static. Since the minimal number of perspective points are used to estimate the pose, a
small variance in the corner detection process will yield estimations far from the true pose.

We will illustrate an ambiguity effect caused by noise by using two overlapping cubes, shown
in Figure 2.2. The overlapping face of the two cubes are interlaced but rotated by 120 degrees.
However, due to perspective projection, the squares appear to be on the same plane. With low
camera resolution, the overlapping squares become virtually indistinguishable. The red circular
regions are the detected corners under some sensory noise. Even though the reprojection error is
minimized in the 2D space using P4P optimization methods, the 3D pose can still be far off. The
result of the optimization can be characterized as a bimodal distribution and a function of the the
viewing angle and distance. Depending on the noise level in the scene, the optimization might
converge to either one of the local minima causing the pose estimation to be unreliable.

7



8



Chapter 3

Robust Fiducial Tag via Sensor Fusion

3.1 Approach

This section describes a method for accurately estimating poses for square fiducial tags in noisy
settings by fusing RGBD data. The process of detecting and decoding the tag is identical to
previous fiducial tag systems. After the tag corners are detected, they are treated as approximated
locations of the true corners. Using the corners, the method implicitly evaluates the depth data
and RGB data as two separate observations and fuse them to minimize the error in 2D and 3D
space.

There are three distinct components to this method. First, we find the plane in SO(3) con-
taining the tag using depth data and detected corners. Secondly, an approximate initial pose is
computed using the depth plane. Finally, the method refines the initial pose using the RGB data
by minimizing the reprojection error within a constrained space. Each component is described
in detail in the following subsections.

3.1.1 Depth Plane Fitting

The first step is to extract the plane which the tag is laying on. We assume that the RGBD sensor
is calibrated such that depth and RGB streams are registered to the same frame. The rectangular
patch of points in the depth image bounded by the approximated corner pixels y = [y1, y2, y3, y4]
contains the range information of all the points on the tag. Here we take advantage of the planar
characteristic of the tag. By fitting a plane over the range data, we can constrain the pose of the
tag to be on the plane.

The raw range data retrieved from the depth sensors are generally noisy. The borders and
dark regions of the tag produce unreliable range data and artifacts due to a weakness of our depth
sensor (time of flight sensor from Kinect V2). Therefore, we first filter the data by removing
points too far from the median before fitting the plane. Nevertheless, the remaining points could
have a large variance depending on the lighting condition and the magnitude of the in-plane
rotation. The accuracy of the plane fit and initial pose estimation is directly affected by the noise
level of data. We will characterize the uncertainty of the plane fit and adjust the weight of the
depth pose estimation accordingly during the fusing stage.

9



Figure 3.1: The pose of the Apriltag visualized in RViz computed using the original library VS
our RGBD fused method.

In implementation, we used a Bayesian plane fitting algorithm described in [44] which com-
putes the Hessian Normal parameters [n̂, d] of a plane for noisy range data through optimizing

min
n̂,d

N∑
j=1

(pj(n̂ · m̂j)− d)2

(n̂ · m̂j)2σ2{p̄j}

where n̂ is the local normal to the planar surface of the depth point and m̂j is the measurement
direction for the sensor for point pj . The algorithm in the paper assumes a radial Gaussian noise
in the range data pj with the standard deviation modeled by a function in the form

σ{p̄j} =
kd2

‖n̂ · m̂j‖

The coefficient k > 0 is an estimated value obtained from sensor calibration. In our implemen-
tation, we obtained k by using the Kinect V2 model obtained from [40].

An important result we used from [44] is the covariance matrix for the plane-parameters.
The covariance is obtained by taking the Moore-Penrose generalized inverse of Hessian matrix
computed from the Lagrangian. It characterizes the uncertainty of the plane fit and implicitly
measures the relative accuracy of the depth data.

3.1.2 Initial Pose Estimation
The 6 DOF pose of the tag can be described as the transformation [R, t] aligning the tag frame’s
coordinate system and the sensory frame’s coordinate system of the robot. The depth plane
D[n̂, d] alone is insufficient to determine the transformation as it only defines 3 DOF. Since the
depth plane was computed based on the approximate center of the tag, we can use the center of
the tag and center of the plane as a pair point correspondence. However, there are still infinite
number of valid poses rotating about the normal n̂. One solution is to constrain the pose by
using a corner as an extra point correspondence to solve for the optimal rotation. In practice, the
accuracy of this method largely depends on the depth accuracy of the chosen corner point.
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An alternative is to use all 4 detected corners as 4 pairs of point correspondences for the opti-
mization. We projected the detected corners ontoD[n̂, d] to get the coordinates p = [p1, p2, p3, p4]
in the robot sensory frame. The corner coordinates q = [q1, q2, q3, q4] in the tag frame can be
easily calculated since the tag is a square plane. We define the center of the tag as the origin,
and the coordinates are simply the location of the corners on a Cartesian plane. Given these two
sets of 3D point correspondences, the pose can be computed as a rigid body transformation es-
timation. Solving for the optimal transformation [R, t] requires minimizing a least squares error
objective function given by:

[R, t] = argminR ∈ SO(3), t ∈ R3

n∑
i=1

wi|Rqi + t− pi‖2

There are numerous approaches to solve Eq. ?? described in [18]. Since we have very few
correspondences and they are assumed to be correct, it can be computed efficiently using SVD:

p̄ =
1

N

N∑
i=1

pi pci = pi − p̄

q̄ =
1

N

N∑
i=1

qi qci = qi − q̄

p>c qc = UΣV >

R = V U>

t = q̄ −Rp̄

Here, R and t are the corresponding rotation and translation components of the the transforma-
tion. The above approach minimizes the least square error of the transformation and it is robust
to small errors in the correspondences. The resulting pose obtained from the range data, although
not accurate, provides a good approximation for the true pose.

3.1.3 Pose Refinement
Lastly, the pose is refined by minimizing the reprojection error in Eq.?? using the initial pose
estimated from the previous step. The camera is assumed to be calibrated and the camera pro-
jection model K is known. Here, R∗ and t∗ are the optimal pose in the constrained optimization
function

[R∗, t∗] = argminR∗,t∗
n∑
i

‖(K[R∗|t∗])pi − yi‖2

R∗ = R(∆R)

t∗ = t +R(∆t)

subject to:

∆R < ΓR, ∆t < Γt
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Figure 3.2: An abstract visualization of the optimization constraints. The blue curve is the initial
pose estimation obtained from the depth plane. The red curves are the ambiguous poses from
the RGB image. We constrained the region of optimization based on how well we fit the depth
plane.

Intuitively, the optimal pose is the one with minimal reprojection error in the RGB space and
aligned with the plane in the depth space. Therefore, the goal of the optimization is to find
the local minimum closest to the initial estimation within allowable region Γ as illustrated with
Figure 3.2. The key challenge is to determine the constrained region ΓR and Γt such that it
include a locally optimal pose and exclude the ambiguous pose. In most cases where the depth
plane yields a good fit, this region should be small because the optimal pose is close to the
initial estimate. When the depth sensor is noisy, the Γ increases since the initial estimate might
be far off. Thus, the constrained region Γ is defined by the uncertainty in the initial estimate
and it is characterized by the covariance of the plane parameters. In implementation, we used
a trust-region optimization algorithm to bound the constraints. The scaling parameters for the
covariance is empirically tested to obtain the best results for our robot.

The strength of this method is that it harness the benefits of RGB and depth information
without explicitly assuming their relative accuracy. One advantage of RGBD sensors is that the
camera and the depth sensor often work optimally with different constraints. In the example of
Kinect, the RGB camera is sensitive to lighting and works poorly in scenes with low illumination.
However, the time of flight depth sensor is unaffected by such a problem. On the hand, the time of
flight sensor yields poor range results on surface edges, but the RGB camera works exceptionally
well with edges where there is a high color contrast.

3.2 Experimental Results
The key problem we are trying to resolve is the localization accuracy of Apriltags in noisy sit-
uations. Therefore, we want to test the resilience of our algorithm and show that it can obtain
reasonable pose estimations under high level of noise. Figure 3.1 demonstrates an example vi-
sualization of the result. We also compare our method against ar track alvar, a popular ARTag
detection package that incorporated depth information. Finally, we briefly tested the runtime of
the algorithm to show that it remains capable of real time detection.

In our experiments, we measured the rotational and translation accuracy of the detection
algorithms with respect to three different independent variables: viewing angles, distances, and
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(a) RGB image at 60◦ (b) Rotation errors across 1000 trials

Figure 3.3: An example of the experimental setup in 3.3a. Groundtruth is computed from a large
chessboard where the relative transformation to the tag is known. Each data collection, shown in
3.3b, is ran through 1000 trials and pose errors are measured. Since a 7 cm tag only occupies 15
pixels, the system has a signficant failure rate even at 65 cm.

lighting conditions. We placed a standard camera calibration chessboard and a 7 cm Apriltag
on a solid planar board. The Apriltag has a fixed distance from the chessboard. This is used to
compute the ground-truth pose for the tag. By using a large chessboard, we can detect the corners
to a sub-pixel accuracy and compute accurate ground-truth poses unsusceptible to lighting and
sensory noises.

Since our algorithm aims to solve the pose ambiguity problem, we evaluated all the results
based on an adaptive threshold separating the bimodal distribution. This is a reasonable evalua-
tion criteria because easily detectable ambiguous poses are often close to the true pose, making
the average of absolute errors small even though the poses might be wrong most of the time.

3.2.1 Viewing Angle
Due to the perspective ambiguity effect, the localization accuracy of the Apriltags is heavily
affected by the viewing angle of the tag. To characterize the effect, we placed the testing board
with a tag in front of the robot as shown in 3.3a. The testing board is 0.65 meters away from the
sensor and rotated it at a increment of 5 degrees from 0 degrees to 60. The angles are measured
from the axis parallel to the sensor. This is about the range which the tag can be detected reliably
given the camera resolution and the distance. At each angle, we captured the RGB image, depth
image, and detection outputs from the Apriltag library.

For each captured data bundle, we introduced 3 levels of Gaussian noise of σ = 0.2, σ = 0.5,
σ = 1 to the RGB image and computed the resulting tag pose. This is repeated for 1000 trails
for each data bundle per noise level and the errors are computed for each trial.

The empirical result in Figure 3.3b show a very clear bimodal distribution, as we expected,
for the detected poses for a given data bundle over 1000 trials. In Figure 3.4, we threshold all the
poses based on their rotational errors and plotted the percentage of unacceptable poses at each
viewing angle. The proposed RGBD fused algorithm vastly outperforms the original algorithm
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Figure 3.4: Viewing Angle vs Error Percentage (0.1 = 10%) under different simulated noise
level. The new RGBD based algorithm can resist noise in the RGB image and it vastly outper-
forms the original algorithm.

as it has better localization accuracy at all viewing angles and noise levels.

3.2.2 Distance

The relationship between the distance and localization accuracy is much more apparent. As
the tag moves further away from the sensor, the number of pixels on the tag decreases. The
perspective ambiguity effect becomes more apparent when there is only a small patch of pixels
on the tag. We show the results of both RGB and RGBD methods in Figure 3.5. During the
experiment, it is difficult to keep the viewing angle precisely consistent at each trail. Therefore,
the pose error percentage using RGB is not increasing smoothly as they are in the simulation
results.

We see a clear increase in error percentage in the proposed method when the tag is far away
from the camera. This is contributed both by a smaller tag patch size in the depth image and an
increase in noise with the Kinect sensor at a further distance. In these cases, the variance of the
depth plane estimation becomes very wide and the algorithm is unable to converge to the correct
pose. Nevertheless, our method shows a significant gain in accuracy at every distance.

3.2.3 Lighting

From our past observations, poor lighting condition is the most significant contributing factor to
noise and it results in low localization accuracy. The Kinect V2 sensor used in our experiments
dynamically adjust the exposure time under low lighting conditions. When pictures are taken
below or near the adjustable range of the sensor, they contain very noticeable noise as shown in
Figure 3.6.
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Figure 3.5: Distance vs Error Percentage (0.1 = 10%). Data are captured at a 10 cm increment
from 65 cm to 185 cm.

We also tested the algorithm under harsh lighting conditions in a real world setting. The
data were captured under 4 different lighting conditions: 20 lux (dark), 43 lux (dim), and 90 lux
(normal), 243 lux (bright). We recorded a static scene over 5 seconds and randomly sampled
100 frames to run the test. In Figure ??, we demonstrate the particular result collected where the
board is 0.65 m away and angled at 40 degrees. Other data captures reflect similar results. The
localization accuracy significantly improves with better illumination. At the lowest illumination,
nearly 25% of the poses were unacceptable. By using depth sensor which is unaffected by poor
source radiance, there are only 3% of unacceptable poses.

3.2.4 Benchmark Against ar track alvar

ar track alvar is a ROS wrapper package for Alvar [41], an open source AR tag tracking library.
The package is capable of pose estimation for robots similar to Apriltags. In particular, it imple-
ments a module where depth sensor is integrated to improve the pose estimation. The package
uses the detected corner points to extract a patch of point clouds containing the tag then compute
its centroid. The pose is then computed by aligning the centroid with the center of the tag.

We implemented a similar module for the Apriltag and compared the pose accuracy between
our proposed method and the module using all the collected data. The results are shown in Figure
??. The two algorithms performed similarly in rotation error, but the proposed method was on
average 2 cm better with the position component. The spread of error is also much smaller for
the position component indicating that our proposed method is more consistent.
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(a) Dark (b) Dim (c) Normal (d) Light

Figure 3.6: Apriltags captured by Kinect V2 under different levels of illumination. The RGB
sensor dynamically adjust the exposure time to compensate for low lighting. In 3.6a, the image
is captured outside of Kinect’s adjustable range and the pixels are underexposed. In 3.6b, the
long exposure time introduced noticeable noise to the image.
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(a) Rotation Error (b) Translation Error

3.2.5 Computation Time
With our current implementation in Python, the additional computation time for the sensor fusing
process is 11 ms. Therefore the entire detection pipeline can process a 960 x 540 image within
35 ms. All tag detectors and the fusing process were running in a single-threaded mode of an
Intel core. Since our sensory updates at roughly 35Hz, the entire pipeline can process the tags
and estimate the pose in near real time.

3.3 Conclusion
In this paper, we did a in depth analysis of the localization problem with Apriltags. We proposed
a novel algorithm of using RGBD sensors to accurately compute the pose of Apriltags robust
to noise. It is particularly suitable for robotic applications which require precise poses such as
manipulation, SLAM, and others. Furthermore, this technique can be easily generalized to other
types of planar fiducial tags. Our implementation is fully open sourced and will be available at:
https://github.com/personalrobotics/
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Chapter 4

Assistive Blind Navigation Background

Navigation Assistance Recent advancement in micro electronics have enabled the development
of assistive technologies for the visually impaired to a new level. There is a abundance of systems
designed for helping blind navigation through audio feedback [35]. Some rely on GPS for global
localization to help with outdoor navigation [4, 46]. Others utilize phone-based technology along
with Bluetooth Low Energy beacons or RFID [1, 14] to help blind individuals navigate through
indoor scenes. These systems have reliable localization and provide step by step navigation
instructions to their users. While these systems are small and easily portable, they often are not
intelligent enough to account for dynamically changing environments. Larger robotic systems
have also been proposed in [32, 55]. The advantages of larger robotic systems are that they
are often equipped with better sensors and are able to make more intelligent decisions based on
their surroundings. In our work, we use a similar platform where we embed a semi autonomous
navigation system inside a suitcase.
Pedestrian Avoidance One particular problem we are tackling in our work with is pedestrian
avoidance. As we observed with passive navigation devices in [1], inattentive pedestrians are
difficult dynamic obstacles. Being able to avoid them would drastically improve the user expe-
rience, making users more comfortable with the device. This is a common problem in mobile
robots. For instance much work has been focusing on building accurate models to predict the
pedestrian trajectories in a dynamic setting. Activity forecasting has been studied using semantic
scene understanding combined with optimal control theory [29]. Inverse reinforcement learn-
ing has proven useful in predicting the trajectories of pedestrians as well [58]. Similarly, active
learning approaches to learn pedestrian reward functions and human internal state has proven
successful [17, 48]. Building on this work the concept of social LSTMs has been developed,
designed to model pedestrian behavior [2]. More recently, concepts from game theory has been
used to predict human interactions [36]. In most mobile robot applications [3, 24, 56], prediction
models are applied within the planning loop in order to yield to the pedestrians. While this is
reasonable in applications such as autonomous cars since the robot has a dedicated operation
space, this is not always appropriate with assistive robots which are intended to operate in the
same area as the pedestrians. In our work, we wish to learn a set of appropriate actions that allow
the pedestrian to move away from the robot instead of yielding all the time.
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Policy Learning We will frame our task in the Reinforcement Learning framework where we
are going to directly learn a control policy from a set of input observations about the pedestri-
ans. This has been a popular approach in the robotics and AI community. Specifically, Deep
Neural Networks (DNN) has been utilized to learn and approximate the optimal control policy
directly from sensory inputs and rewards. Recently, policy learning has been shown to be faster
and more scalable to high dimensions [15, 33, 34] than value-based methods. Model-free policy
learning methods are particularly fitting for robotic controls because it is often difficult to cap-
ture an accurate model and robot states are very high dimensional. Most of the work done in this
field [45, 49, 54] are variations of computing the policy gradient. In this work, we present an
alternative methods of policy learning based on sampling and statistical inference. In these ap-
proaches, inference techniques such as Expectation Maximization have been adapted to perform
model-free policy search as well [30, 31, 52]. This approach is more suitable for our problem
because it allows the system to continuously sample and learn new policies online as our users
interact with the world.

Contextual Bandits and Online Learning A fundamental assumption in standard reinforcement
learning approach is that the underlying Markov Decision Process (MDP) remains constant over
time. However, this is rarely the case in assistant robotics where the robots are often designed to
be used in varying scenes. Therefore, we will also formulate the task as an online learning prob-
lem since our system must continuously learn appropriate policies as part of life-long learning
process. In particular, we will leverage ideas from contextual bandits problems under adversar-
ial settings. The primary bandit algorithm for this case is EXP4, a no-regret algorithm proven
to perform well under adversarial circumstances [6]. Various follow-up algorithms that modify
EXP4 have been developed that work to improve the regret bounds for EXP4 [9, 37, 39, 51]. We
will present a new variation of the EXP4 algorithm and combine it to policy search, similar to
[11, 12] to continuously adapt for better policies.

20



Chapter 5

Adaptive EXP4

5.1 Approach
The goal of this work is to develop an algorithmic framework that allows an assistive navigational
robot to naturally signal intent to pass, to a wide range of pedestrians along a navigational path,
in order to avoid possible collisions. We model the interaction of the assistive navigational robot
(agent) with nearby pedestrians (environment) as a Markov Decision Process (MDP) to learn the
best policy for signalling intent. Formally, we would like to learn a policy π(a|s) which map an
observation s, i.e., observation of nearby pedestrian from on-board sensors, to a distribution over
a set of actions a ∈ A = {a1, a2, . . . aM}, i.e., a library of warning sounds, such that total reward
obtained by following the policy is maximized. To deal with changes in pedestrian behavior over
time, we take an online learning approach that dynamically adjusts the weights over a large set of
policies such that the most successful policies have the greatest weight. In the following section
we describe our MDP formulation and our proposed online learning algorithm called Adaptive
EXP4.

5.1.1 Robot-Pedestrian Interaction Model
In our MDP, the state space S consists of a set of observations of visible pedestrians and obstacles
in the field of view of the assistive navigation system, where each state is defined as

s = [p1, v1, θ1, . . . , pL, vL, θL, o1, . . . oN ].

For each pedestrian l, pl is a triplet encoding the 3D position, vl is a triplet encoding the 3D
velocity, and double θl is a double encoding the 2D bearing. In our implementation, we set
L = 4 using the four closest pedestrians to the assistive navigation system. We also encode N
closest 3D obstacle points in front of the robot, which results in a vector of 3 × N points. Our
action space consists of

A = {a1, · · · , aN},

where N is the total number of audio signals, including the no sound action, that the assistive
navigation system can broadcast. In our experiments N = 2, where we either broadcast the
sound or not, but this can be generalized to a longer list of audio signal types.
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The reward function r(s, a) is composed of two components: r(s, a) = rca(s, a) + rsd(s, a).
The first component rca is the collision avoidance term, which is zero when no pedestrians are
within some collision radius (e.g., 1.5 meters) and a very large negative value otherwise. The
second component is the social disruption term rsd which is zero when the sound is turned off
and a small negative value when the sound is turned on. The collision avoidance reward term
encourages the robot to alarm pedestrians who are too close to the system and the second social
disruption reward term penalizes the robot for being overly disruptive.

Algorithm 1 Adaptive EXP4
1: Π is the set of all expert policies
2: function ADAPTIVE EXP4(Π = {π1, . . . })
3: N = |Π|
4: w = {wi = 1} for i = 1 . . . N
5: for t = 1, ..., T do
6: st ← observeStates()
7: W ←

∑N
i=1 wi

8: Pw ← {pj(t) = wj/W}
9: πti ∼ Multinomial(Π;Pw)

10: explore ∼ Bernoulli(ε)
11: if explore then
12: πi

′t ∼ PolicySampler(Π,w)
13: end if
14: lt ← getLoss()
15: if explore then
16: Π,w← PolicyUpdate(πi

′t, lt,Π,w)
17: else
18: wt+1

i ← wt
ie
−ηtlt

19: end if
20: end for
21: end function

5.1.2 Adaptive EXP4
Since the reactive behavior of neighboring pedestrians can vary greatly over time, the robot-
pedestrian interaction policy needs to able to quickly adapt to such changes. To address the
dynamic nature of pedestrian behavior, we incrementally learn a large set of robot-pedestrian
interaction policies to cover a wide range of pedestrian behavior. To this end, we develop an
online algorithm which is able to select the most appropriate policy by maintaining and adapting
weights over all polices. In particular, we formulate the temporal adaptation problem using the
framework of a contextual bandit algorithm.

In contrast to classical bandit problems, we do not assume that the set of ‘arms’ (policies)
is static but instead attempt to learn many new policies over time. In the classical case, each
bandit produces some reward from an underlying reward distribution. In the adversarial case, the
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reward distribution changes over time. At each time step, the agent receives a set of contextual
information about all arms and it is allowed to choose one arm and claim a reward. The goal
is to maximize the reward over a time horizon T . EXP4 is a standard algorithm for solving the
contextual adversarial bandit problem through the usage of expert advice. The algorithm uses
a set of pre-trained experts to map the contextual information to an arm selection. With each
interaction, a set of weights is maintained for the experts and constantly adjusted depending on
the result of the trial. The algorithm has been shown to be no-regret with respect to the best pre-
trained expert when the number of arms is known. In our scenario, the number of arms grows
over time and we develop an algorithm called Adaptive EXP4 (A-EXP4) to select the best arm.
A-EXP4 is outlined in Algorithm 1.

Similar to EXP4, A-EXP4 maintains a set of expert policies Π and a vector of weights w
over each policy. In our setting, the policies are represented using linear policy approximator:
π(s, a; θ) = eθ

>φ(s,a) where θ is a vector of learned policy parameters and φ(s, a) is a vector
of state features. At each iteration, a policy π is sampled from the multinomial distribution
according to the normalized weights. Instead of exclusively applying the policy π as in the
classical contextual bandit algorithm, another policy, an exploration policy π′, is sampled with
a small probability ε. This probability ε is set manually and determines the amount of explo-
ration the algorithm performs. The agent then applies the resulting policy and observes its loss.
The loss function we use in our experiments is simply the one step reward described above.
Specifically, after taking an action based on the current policy π, we observe the reward by mea-
suring the distance of the closest pedestrians using our vision pipeline. We compute the loss by
l = −r / |Min Reward| where |Min Reward| is the magnitude of the smallest possible
reward (highest penalty). If the selected policy is an exploration policy, it is passed to an online
policy update algorithm described in Algorithm 3. Otherwise, the weights are updated according
to the received loss using the traditional exponential gradient update. The policy sampling and
learning process will be described in detail below.

Algorithm 2 Policy Sampler
1: function POLICYSAMPLER(Π,w)
2: G← GenerateGMM(Π,w)
3: π′ti ← randomSampling(G)
4: Return π′ti
5: end function

5.1.3 Policy Sampler: Sampling Exploration Policies
To continually learn new policies, we sample new exploration policies by calling PolicySampler
(algorithm 2 in step 12 of algorithm 1). The role of PolicySampler is to first estimate the
distribution over the policy parameters space Θ induced by the current set of policies Π using
a Gaussian Mixture Model, and then the GMM is used to sample a new policy. The number of
Gaussians in the mixture model is equivalent to |Π|. The Gaussian mixture distribution induced
by a set of two and three policies are visualized in Figure 5.1. The variance of each Gaussian
mixture is set using the weight vector w. For each mixture component i, σi = Lwi) where L is
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Figure 5.1: Demonstration of an sampled expert policy encoded in GMM. The mixture model is
spanned over the parameter space of the policy approximation function. Each component of the
GMM represents a single expert policy. In the top figure, there are two discovered expert policies.
This representation naturally encodes an policy exploration strategy. As the environment changes
over time, we will sample policies according to the GMM and the expert policy weights. With
enough samples, we add the new locally optimal policy π3 to the model as shown on the bottom
figure.
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a tunable scalar. A high L value encourages more exploration and in our experiments the value
is set to 1.5. In this way, we are able to sample new exploration policies which are close to the
highest reward yielding policies.

Algorithm 3 Incremental Policy Update
1: function POLICYUPDATE(θ, l,Π,w)
2: r ← exp(−l)
3: Add policy-reward pair: D = D ∪ (θ, r)

4: Update policy: θ∗ = θ∗ +
∑|D|

d=1 rd(θd−θ
∗)∑|D|

d=1 rd

5: if |D| > M then
6: Add policy: Π = Π ∪ π(θ∗i )
7: Π,w← DirichletProcessMixture(Π,w)
8: D = {∅}
9: end if

10: Return Π,w
11: end function

5.1.4 Policy Update: Incremental Learning from Exploration Policies
In order to continually learn new policies, we implement an incremental version of the PoWER
algorithm [30] which can be used to search for new locally optimal policies using kernel density
estimate over a set of sampled parameter-reward pairs S. As shown by Kober et al. in [30], the
original PoWER algorithm relies on the idea that a way to safely learn new policies is to look at
the convex combination of the sampled policies using importance sampling. In its simplest form,
a new policy can be estimated using the following update:

θ∗ = θ∗ +

∑|D|
d=1 rd[θd − θ∗]∑|D|

d=1 r(θd)
(5.1)

where θd and rd represents the parameters and reward of a sampled policy πd, D is the set of
sampled policy-reward pairs and θ∗ is the parameters of a mean policy.

As described in Algorithm 3, in our online implementation of PoWER PolicyUpdate,
each newly sampled exploration policy π′ and it’s resulting reward is added to a buffer of recent
policiesD. The current buffered policy π(θ∗) is updated according equation 5.1. Once the buffer
reaches a specified size M , we add the current buffered policy π(θ∗) into the set of all policies Π
and clear the buffer. In this way, our incremental policy learning algorithm is able to constantly
add new policies to the master set of policies Π.

As new policies are added to Π, it is possible that Π will contain policies which are very
similar. To address this issue, we estimate a Dirichlet Process mixture model that describes
the current set of policies Π. In this way, we are able to effectively reshuffle the policies and
indirectly bound the size of Π using the Dirichlet process concentration parameter α0, similar to
[11].
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In the Bayesian Dirichlet Process (DP) mixture model, we use DP as a prior for the mix-
ture model distribution. Specifically, we add a probability distribution Fθ to the model, whose
parameters θ are drawn from the DP with a base prior distribution G0:

G ∼ DP (α,G0)

θi ∼ G

xi ∼ Fθi

The result is an infinite model which can be generated as the limit of a finite process. When a set
of n points {y1, y2, . . . , yn} are given and assumed to be distributed according to a DPMM, the
posterior probability of any given point yi belongs to a cluster Xi can be described as:

P (Xi = x|X−i, yi, θ∗) =
c−i(x)

N − 1 + α
F (yi, θ

∗
x)

P (Xi 6= xj|X−i, yi, θ∗) =
α

N − 1 + α

∫
F (yi, θ

∗
x)dG0(θ

∗)

where x is current existing clusters, X−i are the previous assignment, and θ∗ being the parameter
vector associated with the particular cluster.

Estimating the exact posterior of the DPMM requires computing complex integrals over the
infinite DP. In practice, many works have been done to speed up the process by using approx-
imation inference algorithms such as Gibbs sampling [22], variational inference [10] and other
methods. In our algorithm, we set F to be a Gaussian distribution and the resulting model is an
Infinite Gaussian Mixture Model (IGMM). We the efficient algorithm implemented in [50] so the
inference step can be done quickly online.

In our approach, we desire to use DPMM to cluster similar and redundant policy parameters
into a single component to preserve the diversity of Π. Furthermore, we would like to eliminate
policies with low weights (low returns) to discourage the algorithm from sampling low perfor-
mance policies. To this end we augment the posterior probability of the DPMM in the following
way:

P (Ci = c|C−i, yi, θ∗) = ri
N−i,c

N − 1 + α
F (yi, θ

∗
c )

P (Ci 6= cj|C−i, yi, θ∗) = ri
α

N − 1 + α

∫
F (yi, θ

∗
c )dG0(θ

∗)

. This ensures that the probability of each cluster is down scaled by the weights of the expert
policies belonging to that cluster. In practice, this is able to limit the number of expert com-
ponents because most expert policies will have low weights after sufficient iterations of online
evaluation.

5.2 Experiments
We will present two sets of experimental results captured in simulation and on our Cognitive
Assistance Robot (CaBot) respectively. For our main experiment in the simulation, we will com-
pare the performances of our A-EXP4 algorithm versus the standard EXP4 algorithm (baseline).
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Figure 5.2: Modified PedSim simulation. The pedestrians are represented as blue particles. The
robot agent is in red and it toggles a sound force barrier to force the pedestrians to move away.

We demonstrate that our adaptive algorithm has superior performances and empirically low re-
gret. Particularly, we show that by reshuffling expert policies with DPMM, we can significantly
reduce performance variance and lower the regret. Finally, we will show the overall effect of our
approach on incoming pedestrians by running the system on a real robot. We illustrate a shift in
pedestrian trajectories distribution around the robot as the result of the warning sound strategy
generated by our online learner.

5.2.1 Simulation Environment

We will first describe our custom pedestrian simulation environment. We have constructed a
simulation based on the open sourced PedSim package [13], a flexible, light-weight pedestrian
simulation engine. In PedSim, the pedestrians are simulated as particles and their movements are
computed based on social forces (e.g. the distance from obstacles, other pedestrians). In order to
make the simulation more suitable for our problem setup, we extended the base Tagent class
with two new classes: RobotAgent, Pedestrian. The RobotAgent class overwrites the
social force model and always follow its trajectory without yielding. In addition, the robot agent
is able to toggle on a semi-circular obstacle in front of itself as an action, as shown in Figure
5.2. The semi-circular obstacle is a simplified simulation of sound waves. Functionally, we
use the obstacle to force incoming pedestrians to yield to the robot just as a warning sound
would. On the other hand, Pedestrian class extends the social force dynamic models with
additional attributes such as velocity, avoidance radius, awareness radius, and awareness level.
All the attributes are encoded as a floating point value between (0, 1) and they influence how
the pedestrians behave around the robot. For example, a high level of awareness makes the
pedestrian more likely to move away from the robot when it is far away. In contrast, a low level
of awareness makes the pedestrian much more likely to collide with other pedestrians and the
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(a) Average accumulated reward of each algorithm over a 40,000 steps
testing the AEXP4 algorithm without using DPMM to reshuffle the ex-
perts.

(b) Average regret of the AEXP4 algorithm on a stochastic scene where
pedestrian types are randomly generated. The average regret is slowly
decreasing over time.

Figure 5.3: Adaptive EXP4 without DPMM
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(a) Average accumulated loss of each algorithm over a 40,000 steps testing
the AEXP4 algorithm along with DP to reshuffle and bound the expert set.

(b) Average regret of the AEXP4 algorithm on a stochastic scene where
pedestrian types are randomly generated. The average regret is decreasing
very fast initially and slowly approaches zero over time.

Figure 5.4: Full Adaptive EXP4
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(a) Baseline distribution where the robot deploys a
default policy and never alarms the pedestrians.

(b) Result distribution of the robot deploy our learn-
ing algorithm on the alarm system.

Figure 5.5: Top-down view heatmaps of the pedestrian trajectory distribution. The robot moves
on the right side of the hall near a wall with incoming traffic on the left. A sampled trajectory is
overlayed over the heatmap for clarity. (An important note: the heatmap is cone shaped due to
Kinect’s field of view and thus the captured trajectories on the outside are shorter than those in
the center.)

robot. We use these attributes to simulate variations in pedestrian behavior.

5.2.2 Simulation Results
To reiterate, the goal of our algorithm is to adapt to variations in pedestrian’s reactive behavior.
Ideally, our online learner can perform as well on a new pedestrian type in the long run as
applying an optimal policy learned offline where the optimal policy is trained with the new
pedestrian type beforehand. Therefore, the performance of our algorithm is measured with the
notion of regret as it is commonly used in online learning literatures. Formally, regret is define
as:

Rt =
t∑
i=0

lt(at; θt)−θ∗
t∑
i=0

l(at; θ
∗).

In other words, regret is the difference of accumulated loss between the performance of the online
algorithm (e.g. A-EXP4) and the hindsight optimal model (e.g. a policy trained with the new
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pedestrian type) over time.
For the simulation experiments, we trained two expert policies {π1, π2} with two different

sets of pedestrians attributes separately offline. Specifically, π1 is trained with pedestrians who
are slow and have a high value for awareness level. π2 is trained with pedestrians who are fast
and have a medium value for awareness level. Both policies are trained using an offline policy
gradient algorithm.

During testing, we stochastically generate a new pedestrian behavior type from the start by
randomly sampling values for each pedestrian attribute (e.g. pedestrians with medium speed and
low values for awareness). To analyze our online algorithm, we trained an optimal policy π∗ on
the new pedestrian type using the same offline policy gradient algorithm to convergence. For
the baseline, we will evaluate against the standard EXP4 algorithm which maintains the expert
policies statically. Each experiment is repeated 50 trails and the overall average accumulated
reward and regret are recorded.

Performance Against EXP4

As shown by our plot in Figure 5.4, our full Adaptive EXP4 algorithm significantly outperforms
the standard EXP4 algorithm in average accumulated reward over the span of 40,000 iterations.
During the first 5000 iterations of the experiments, our algorithm performs nearly identically
to the standard EXP4 algorithm. This is expected because the two algorithms behave similarly
during early iterations as they both evaluate the existing expert policies and shift the weights
to the better performing one. However, as more exploration policies are sampled over time,
AEXP4’s performance improves as new policies are inserted into the expert set. In fact, our
online learner was able to generate policies competitive with the optimal policy after 10,000
iterations. As the result, average regret of AEXP4 decreases steadily and approaches zero. In
contrast, the standard EXP4 algorithm maintains a large average regret because neither pre-
trained expert policies were effective against the new pedestrian type.

Performance Without Policy Reshuffling

In addition to comparing AEXP4 with the baseline EXP4 algorithm, we want to demonstrate the
importance of using DPMM to reshuffle the expert policies. As illustrated by the Figure 5.3,
while the average performance of AEXP4 without policy reshuffling is still marginally better
than the standard EXP4 in the long run, the performance variance is significantly higher than the
full AEXP4 algorithm.

Without reshuffling the expert policies, the set of expert policies becomes unbounded. This
hampers the performance because poorly performing policies will never be removed from the
set. Therefore, as the expert policies accumulate, it become increasingly more difficult to sample
better ones. We observe that the performance of this AEXP4 algorithm largely depends on the
quality of first few sampled policies. By clustering similar policies and removing ones with low
weights, we can ensure that the algorithm only samples near policies with high expected reward.
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5.2.3 Experiment with CaBot
Platform

We built and implemented the online learning algorithm onto our blind navigation assistant robot
CaBot. CaBot is a suitcase robot designed to help blind individuals navigate through crowded
scenes such as airports. CaBot is equipped with a Microsfot Kinect sensor for as its primary
sensor. We use the Kinect to extract various scene information including obstacles positions,
poses, and velocity of incoming pedestrians. Moreover, we utilized the skeleton tracker and
combine it with a standard Kalman filter to estimate the full pedestrian trajectory information.
The output of our computer vision pipeline are aggregated into a state vector as described in the
Approach section above.

Pedestrian Trajectory

To demonstrate the overall effect of our approach on the incoming pedestrians with respect to
the navigation task, we tested the CaBot on a simple, straight forward route through a long
hallway. For the baseline, the CaBot passively navigates through defined route without any
audio warnings. The experiment is then repeated with our adaptive learning system enabled. We
initialized our learner with a trivial default policy (0 for all policy parameter values) which never
plays any warning sounds. We then allowed the learner to iterate over 150 pedestrian trajectories.

In each experiment, all 150 trajectories of the surrounding pedestrians are recorded. The
result is illustrated as a heatmap in Figure 5.5. In the baseline trial 5.5a, a large percentage of
the incoming pedestrians persisted on their route and walk closely by the robot without trying to
actively avoid it. Although the robot rarely directly collides with anyone during our experiment,
it must stayed on course accurately leaving a low margin for controller and user error. In contrast,
in our experimental trial 5.5b, we observed that our learner was able to generate policies based on
pedestrian distance and velocity. As the result, fast moving pedestrians avoided the robot much
earlier and actively stay away from its course.

5.3 Conclusion
In this project, we presented a method for dealing with pedestrian behavior variations in blind
navigation robots using a novel online learning algorithm. This method relies on maintaining and
adjusting weights over a set of expert policies. Furthermore, we dynamically search new policies
online and group them into the expert set using a Bayesian mixture model. Our experimental
results shows that it has better performance than using a static set of expert policies. We believe
that our proposed method can be utilized to other transfer learning or lifelong learning tasks.

In the future, we would like to expand the state and reward spaces to include feedback from
the blind user which is being guided by CaBot. This way, CaBot’s behavior can be modified
in accordance to the user preferences as well, and not just social acceptability of surrounding
pedestrians. In terms of algorithmic future directions, we would like to study the role of the
proposed algorithm in adaptive to other types of policies (Neural Networks). However, there are
still many limitations to the algorithm hindering it from generalizing to more complex control
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policies. First, the PolicyUpdate algorithm has a high variance. In the algorithm, we obtain
a rough reward estimate of the exploration policies used in PolicyUpdate from a single roll
out. While this was compensated by sampling more exploration policies in our experiments, it
would become more unreliable with complex policies. Secondly, additional policy parameters
significantly expand the search space and thus require more iterations to sample exploration
policies. As the result, it will become increasingly more difficult to both sample and generate
good optimal policies in high dimensional policy parameter space. One interesting area for
improvement would be exploring Thompson sampling [43] or other statistical sampling methods
to improve the policy search efficiency in higher dimensions.
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estimation methods for real-time applications. In Scandinavian Conference on Image Anal-
ysis, pages 706–715. Springer, 2009. 2

[24] Shunsuke Hamasaki, Yusuke Tamura, Atsushi Yamashita, and Hajime Asama. Prediction
of human’s movement for collision avoidance of mobile robot. In Robotics and Biomimetics
(ROBIO), 2011 IEEE International Conference on, pages 1633–1638. IEEE, 2011. 4

[25] Bert M Haralick, Chung-Nan Lee, Karsten Ottenberg, and Michael Nölle. Review and
analysis of solutions of the three point perspective pose estimation problem. International
journal of computer vision, 13(3):331–356, 1994. 2.1

[26] Richard Hartley and Andrew Zisserman. Multiple view geometry in computer vision. Cam-

36

http://pedsim.silmaril.org/
http://pedsim.silmaril.org/


bridge university press, 2003. 2.1

[27] Radu Horaud, Bernard Conio, Olivier Leboulleux, and Bernard Lacolle. An analytic solu-
tion for the perspective 4-point problem. Computer Vision, Graphics, and Image Process-
ing, 47(1):33–44, 1989. 2.1

[28] Hirokazu Kato. Artoolkit: library for vision-based augmented reality. IEICE, PRMU, 6:
79–86, 2002. 2

[29] Kris M Kitani, Brian D Ziebart, James Andrew Bagnell, and Martial Hebert. Activity
forecasting. In European Conference on Computer Vision, pages 201–214. Springer, 2012.
4

[30] Jens Kober and Jan R Peters. Policy search for motor primitives in robotics. In Advances
in neural information processing systems, pages 849–856, 2009. 4, 5.1.4

[31] Jens Kober, J Andrew Bagnell, and Jan Peters. Reinforcement learning in robotics: A
survey. The International Journal of Robotics Research, 32(11):1238–1274, 2013. 4

[32] Aditi Kulkarni, Allan Wang, Lynn Urbina, Aaron Steinfeld, and Bernardine Dias. Robotic
assistance in indoor navigation for people who are blind. In The Eleventh ACM/IEEE
International Conference on Human Robot Interaction, pages 461–462. IEEE Press, 2016.
4

[33] Sergey Levine, Chelsea Finn, Trevor Darrell, and Pieter Abbeel. End-to-end training of
deep visuomotor policies. The Journal of Machine Learning Research, 17(1):1334–1373,
2016. 4

[34] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yu-
val Tassa, David Silver, and Daan Wierstra. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971, 2015. 4

[35] Jack M Loomis, Reginald G Golledge, and Roberta L Klatzky. Navigation system for the
blind: Auditory display modes and guidance. Presence, 7(2):193–203, 1998. 4

[36] Wei-Chiu Ma, De-An Huang, Namhoon Lee, and Kris M Kitani. Forecasting interactive
dynamics of pedestrians with fictitious play. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pages 774–782, 2017. 4

[37] H Brendan McMahan and Matthew J Streeter. Tighter bounds for multi-armed bandits with
expert advice. In COLT, 2009. 4

[38] Leonid Naimark and Eric Foxlin. Circular data matrix fiducial system and robust image
processing for a wearable vision-inertial self-tracker. In Mixed and Augmented Reality,
2002. ISMAR 2002. Proceedings. International Symposium on, pages 27–36. IEEE, 2002.
2

[39] Gergely Neu. Explore no more: Improved high-probability regret bounds for non-stochastic
bandits. In Advances in Neural Information Processing Systems, pages 3168–3176, 2015.
4

[40] Chuong V Nguyen, Shahram Izadi, and David Lovell. Modeling kinect sensor noise for im-
proved 3d reconstruction and tracking. In 3D Imaging, Modeling, Processing, Visualization
and Transmission (3DIMPVT), 2012 Second International Conference on, pages 524–530.

37



IEEE, 2012. 3.1.1

[41] Scott Niekum. Ar track alvar ros package. URL http://wiki.ros.org/ar_
track_alvar. 3.2.4

[42] Edwin Olson. Apriltag: A robust and flexible visual fiducial system. In Robotics and Au-
tomation (ICRA), 2011 IEEE International Conference on, pages 3400–3407. IEEE, 2011.
1.1, 2

[43] Ian Osband and Benjamin Van Roy. Bootstrapped thompson sampling and deep explo-
ration. arXiv preprint arXiv:1507.00300, 2015. 5.3

[44] Kaustubh Pathak, Narunas Vaskevicius, and Andreas Birk. Uncertainty analysis for op-
timum plane extraction from noisy 3d range-sensor point-clouds. Intelligent Service
Robotics, 3(1):37–48, 2010. 3.1.1

[45] Jan Peters and Stefan Schaal. Policy gradient methods for robotics. In Intelligent Robots
and Systems, 2006 IEEE/RSJ International Conference on, pages 2219–2225. IEEE, 2006.
4

[46] Lisa Ran, Sumi Helal, and Steve Moore. Drishti: an integrated indoor/outdoor blind nav-
igation system and service. In Pervasive Computing and Communications, 2004. PerCom
2004. Proceedings of the Second IEEE Annual Conference on, pages 23–30. IEEE, 2004. 4

[47] Andrew C Rice, Robert K Harle, and Alastair R Beresford. Analysing fundamental prop-
erties of marker-based vision system designs. Pervasive and Mobile Computing, 2(4):453–
471, 2006. 2

[48] Dorsa Sadigh, S Shankar Sastry, Sanjit A Seshia, and Anca Dragan. Information gathering
actions over human internal state. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 66–73. IEEE, 2016. 4

[49] Frank Sehnke, Christian Osendorfer, Thomas Rückstieß, Alex Graves, Jan Peters, and
Jürgen Schmidhuber. Parameter-exploring policy gradients. Neural Networks, 23(4):551–
559, 2010. 4

[50] Daniel Steinberg. An unsupervised approach to modelling visual data. 2013. 5.1.4

[51] Vasilis Syrgkanis, Akshay Krishnamurthy, and Robert Schapire. Efficient algorithms for
adversarial contextual learning. In International Conference on Machine Learning, pages
2159–2168, 2016. 4

[52] Nikos Vlassis, Marc Toussaint, Georgios Kontes, and Savas Piperidis. Learning model-free
robot control by a monte carlo em algorithm. Autonomous Robots, 27(2):123–130, 2009. 4

[53] John Wang and Edwin Olson. Apriltag 2: Efficient and robust fiducial detection. In In-
telligent Robots and Systems (IROS), 2016 IEEE/RSJ International Conference on, pages
4193–4198. IEEE, 2016. 2

[54] Ronald J Williams. Simple statistical gradient-following algorithms for connectionist rein-
forcement learning. Machine learning, 8(3-4):229–256, 1992. 4

[55] Cang Ye, Soonhac Hong, and Xiangfei Qian. A co-robotic cane for blind navigation. In Sys-
tems, Man and Cybernetics (SMC), 2014 IEEE International Conference on, pages 1082–

38

http://wiki.ros.org/ar_track_alvar
http://wiki.ros.org/ar_track_alvar


1087. IEEE, 2014. 4

[56] Lingqi Zeng and Gary M Bone. Mobile robot collision avoidance in human environments.
International Journal of Advanced Robotic Systems, 10(1):41, 2013. 4

[57] Cai-Xia Zhang and Zhan-Yi Hu. A general sufficient condition of four positive solutions of
the p3p problem. Journal of Computer Science and Technology, 20(6):836–842, 2005. 2.1

[58] Brian D Ziebart, Nathan Ratliff, Garratt Gallagher, Christoph Mertz, Kevin Peterson, J An-
drew Bagnell, Martial Hebert, Anind K Dey, and Siddhartha Srinivasa. Planning-based
prediction for pedestrians. In Intelligent Robots and Systems, 2009. IROS 2009. IEEE/RSJ
International Conference on, pages 3931–3936. IEEE, 2009. 4

39


	1 Introduction
	1.1 Object Pose Estimation
	1.2 Assistive Navigation for Blinds

	2 Pose Estimation Background
	2.1 Pose Ambiguity

	3 Robust Fiducial Tag via Sensor Fusion
	3.1 Approach
	3.1.1 Depth Plane Fitting
	3.1.2 Initial Pose Estimation
	3.1.3 Pose Refinement

	3.2 Experimental Results
	3.2.1 Viewing Angle
	3.2.2 Distance
	3.2.3 Lighting
	3.2.4 Benchmark Against ar_track_alvar
	3.2.5 Computation Time

	3.3 Conclusion

	4 Assistive Blind Navigation Background
	5 Adaptive EXP4
	5.1 Approach
	5.1.1 Robot-Pedestrian Interaction Model
	5.1.2 Adaptive EXP4
	5.1.3 Policy Sampler: Sampling Exploration Policies
	5.1.4 Policy Update: Incremental Learning from Exploration Policies

	5.2 Experiments
	5.2.1 Simulation Environment
	5.2.2 Simulation Results
	5.2.3 Experiment with CaBot

	5.3 Conclusion

	Bibliography

