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Abstract
Advancements in sequencing technology have brought a large increase in the

quantity of raw sequencing data. To cope with the ever growing sequence data sets,
efficient read mappers are developed to accurately reconstruct entire genomes from
fragments, by mapping fragments of the genome of an organism to a high quality
reference genome. For each fragment, a mapper tries to find a distinct correspond-
ing highly similar sequence in the reference, or multiple highly similar sequences if
applicable. Despite improvements of the mapping software, modern state-of-the-art
mappers struggle between speed and sensitivity: as a mapper increases sensitiv-
ity to tolerate more sequencer errors and genetic variations, it inevitably enlarges
the search space and spend more time comparing fragments against increasingly
dissimilar reference sequences. Comparisons over such false mappings are often
unnecessary and wasteful, as dissimilar reference sequences are not considered as
meaningful mappings. Furthermore, although only a small fraction of all DNA frag-
ments require high mapping sensitivity due to large number of embedded errors,
mappers have to raise sensitivity against all fragments, as the error profile of each
fragment is unknown to the mapper.

In this dissertation, we provide multiple algorithms and implementations that
aim to reduce the amount of unnecessary computation spent on false mappings while
achieving high sensitivity by 1) quickly and accurately filtering out false mappings
and 2) reducing the total number of false mappings without sacrificing sensitivity
through improved seeding mechanisms. Specifically, we designed SIMD-friendly
algorithms that quickly identify false mappings with high accuracy. We also ex-
tended a previously proposed approximate string matching algorithm to better suit
biological applications. Finally, we developed multiple methods that enhance the
popular seed-and-extend mapping strategy by increasing seed selectivity without re-
ducing mapping sensitivity. From our experiments, we showcase inefficiencies of
naı̈ve seeding mechanisms in state-of-the-art mappers. We show that our filters can
achieve high filtering accuracies while spending only a fraction of the computational
cost. We further show that our improved seed selection methods are highly effective
in reducing total number of false mappings. With these algorithms and methods,
we provide a set of tools available for future read mappers to be more precise when
mapping reads to the reference.
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Chapter 1

Introduction

Massively parallel sequencing, or so-called next-generation sequencing (NGS), technologies
have substantially changed the way biological research is performed since 2000 [14]. With these
new DNA sequencing platforms, we can now investigate human genome diversity between popu-
lations [1], find genomic variants that are likely to cause diseases [5, 6, 7, 8, 9, 10], and investigate
the genomes of the great ape species [11, 12, 72, 82, 85, 98] and even ancient hominids [33, 77]
to understand our own evolution. Despite all the revolutionary power these new sequencing plat-
forms offer, they also present difficult computational challenges due to 1) the massive amount
of data produced, 2) shorter read lengths, resulting in more mapping locations and 3) handling
sequencing errors as well as genetic variations between individuals.

With NGS platforms, such as the popular Illumina platform [62], the currently dominating
technology in the market [31], billions of raw short reads are generated at a fast speed. Each
short read represents a contiguous DNA fragment of length 100 base-pairs to 300 base-pairs (bp)
from the subject genome. The sequenced read might contain errors. The most common errors are
substitutions with an error rate of roughly 0.005-0.010 [86, 87], while there are also occasional
insertion and deletions. The error rate increases towards the end of the reads. Multiple methods
have been proposed to correct sequencer errors [36, 37, 52, 60].

For many bioinformatics analysis, after the short reads are sequenced, the first step is to
map the reads to the reference genome. The mapping process is computationally very expensive
since the reference genome is large (e.g., the human genome has roughly 3.2 gigabase-pairs).
The software that performs read mapping, called the mapper, has to search the entire reference
for millions to billions of short reads. To further complicate the matter, the mapper also needs
to tolerate sequencer errors, as well as genetic variations. Due to the fact that a mapper by
itself cannot distinguish genetic variations from sequencer errors (finding genetic variations is
a different problem often called “variation calling”), in this dissertation, we call both sequencer
errors and genetic variations together as errors. Because reads may contain errors, instead of
searching for perfect mappings, mappers perform expensive approximate searching for each read.
In addition, the ubiquitous common repeats and segmental duplications within the reference
genome [95] further increases the complexity of the task, since a short read from genomic repeats
may map to multiple locations in the reference.

Despite numerous improvements over time, modern state-of-the-art read mappers still fall
short from attaining both high speed and high sensitivity (defined as the ability to find all valid
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mappings of a given read, despite embedded errors).
To speed up processing large quantity of reads, modern state-of-the-art mappers employ

a strategy called seed-and-extend. Seed-and-extend mappers exploit the fact that individual
genomes within a species are highly similar due to genomic conservation. Together with the
low error rate of modern NGS sequencing technologies, mappers can assume that most reads
deviate very little from the reference sequence, if at all. This enables the mapper to focus only
on searching mappings where the read and the reference share high similarities (usually set to
less then 5% errors between the read and the reference).

Given a read, if there exists any mapping of high similarity (less than 5% errors), then be-
tween the read and the corresponding reference sequence, there must be a shared common sub-
sequence of at least L{p5% ¨ Lq base pairs, where L is the length of the read.

With above observation, from a read, seed-and-extend based mappers extract multiple sub-
sequences called seeds, which are subsequently used as keys to access the indexed reference
genome. Depending on the design principles, the mapper either iterates through all seed loca-
tions or only select a subset of all seed locations. For each selected seed location, the mapper
compares the read to the surrounding reference.

The major reason of using the seed-and-extend mapping strategy, compared to the naı̈ve
method of scanning through the entire reference, is that seeds drastically reduce the search space.
However, to successfully map a read, it requires at least one seed to be free of errors. Since a
mapper only fails to map a read when all seeds have errors, the maximum number of errors that
a mapper can guarantee to tolerate equals the number of non-overlapping seeds extracted from
the read minus one. While a mapper can also draft overlapping seeds (seeds that overlaps in
the read), it complicates the calculation of error tolerance. With overlapping seeds, the error
guarantee is often calculated using the q-gram theorem [97]. Attaining error tolerance guarantee
through the q-gram theorem with overlapping seeds typically involves drafting many more seeds
than using non-overlapping seeds, which further slows down the mapping process. Therefore, in
this dissertation, we focus on mapping strategies using non-overlapping seeds.

A major dilemma faced by modern mappers, which is also a recurring theme of this thesis, is
that mappers need to balance between having more seeds over achieving faster mapping speed.
On the one hand, having more seeds increases the error tolerance of a mapper (hence increases
the sensitivity of the mapper). On the other hand, using more seeds decreases the average seed
length which in turn decreases the selectivity of seeds. This is because as seeds get shorter, they
appear more frequently in the reference hence generate more comparisons while mapping a read,
albeit most comparisons are false which only yield vastly dissimilar mappings.

1.1 Overview of Seed-and-Extend Based Mappers
Given a reference genome, modern mappers first index it into a reference index database, which
can quickly find all occurrences in the reference of any query sequences, or returns NULL when
no occurrence is found. Depending on the demand, a reference can be indexed into a suffix
array, a suffix tree, a Burrows-Wheeler transformed suffix array, a simple hash table, or more
sophisticated hash tables. In general, suffix-array or suffix tree can handle queries of varying
sequence length while hash tables can only handle queries of fixed-length sequences.

2
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Figure 1.1: The flow chart of seed-and-extend based mappers.

Figure 1.1 shows the flow chart of a typical seed-and-extend based mapper during the map-
ping stage. The mapper follows six steps to map a read to the reference. In step 1, the mapper
extracts smaller subsequences from the read. Each subsequence has enough length to be used as
a key to access the reference index database. In step 2, several of these subsequences are selected
as seeds. Seeds are then fed to the reference index database as inputs. The database returns the
location lists for each seed. The location list stores all the occurrence locations of each seed in
the reference genome. In step 3, the mapper probes the location lists of each seed. For each
seed location, as step 4, the mapper retrieves the reference sequence flanking the seed location.
In step 5, the mapper coarsely compares the read and the reference around the seed location
and rejects the location if the read and the reference are obviously dissimilar. Otherwise, the
mapper proceeds to step 6, which aligns the read against the reference sequence using dynamic
programming algorithms [75, 92] and measures the edit distance [50], or by more sophisticated
metrics [40], between the read and the reference. If the similarity score between the read and
the reference exceeds a user-set threshold, then in step 7, the mapper designates the location as a
valid mapping. Valid mappings are stored in the output in SAM format, where information of po-
sitions and types of differences are described with the so-called Compact Idiosyncratic Gapped
Alignment Report string, or the CIGAR string (see example in [57]).

Among the above seven steps, we call step 2 and 3 together as the seeding stage while step 6
and 7 as the filter and verification stage. Both stages are critical in determining the speed and
sensitivity of a read mapper. In general, a mapper is faster when seeds provide fewer seed
locations, has a fast and accurate filter and a proficient dynamic programming implementation;
and is more sensitive if more non-overlapping seeds are drawn.

1.1.1 Case Studies

A detailed list of mappers, their categorizations and comparisons between them can be found in
the literature [18, 55, 78, 79]. Below we provide a few case studies of popular state-of-the-art
mappers, focusing on their seeding stage as well as filter and verification stage.
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BWA-MEM

BWA-MEM [51] extracts supermaximal exact matches (SMEMs) from reads as seeds. Formally,
maximal exact matches (MEMs) are substrings in the read that matches exactly to at least one
location in the reference, and cannot be extended in either direction, as any extension will result
in zero matching to the reference. A SMEM X not only carries all properties of a MEM, but also
there does not exist any superstring in the reference, Y, of X such that Y always flanks X in the
reference: there is at least at one occurrence of X where Y does not appear.

Since SMEM at times can be as long as more than half of the read itself, using SMEM
often leads to a reduced number of seeds hence reduced sensitivity. Therefore, as a remedy,
BWA-MEM sub-samples shorter seeds within a long SMEM to increase the seed count. When
BWA-MEM subsamples a long seed, it requires that the sub-sampled shorter seeds to appear
more frequently than the original SMEM itself. BWA-MEM iteratively sub-samples long seeds
until the lengths of the seeds are all below a user-defined threshold, which is 28 base-pairs by
default.

After gathering all seeds, BWA-MEM checks if there are locations shared by multiple seeds.
BWA-MEM prioritizes verifying locations that have more seeds supporting them. BWA-MEM
calls this method “seed chaining”. Finally BWA-MEM uses dynamic programming with an
affine-gap penalty score, which penalizes consecutive insertions following a linear equation:
score “ popen ` pl ´ 1q ¨ pextend, where l is the length of the insertion, popen and pextend are two
penalty scores.

A major drawback of BWA-MEM is that there is no guarantee of how many seeds will it draw
from a read. Hence, it does not provide any guarantee on error tolerance or searching depth on
secondary mappings. To make matters even worse, when it sub-samples shorter seeds, it picks
a randomized substring in the SMEM. Therefore, BWA-MEM sometimes generates inconsistent
mapping results between multiple executions of the same read.

Bowtie2

Bowtie2 [47] extracts a set of fixed number (3 by default), fixed length seeds at fixed positions
in each read. Its sort all seeds based on their frequency in the reference, which equals to the
lengths of their location lists. Afterwards, bowtie2 randomly extracts a seed location from all
seeds, with the probability of drafting from each seed being reversely proportional to the number
of remaining locations of the seed. It stops further searching when the mapping cannot be further
improved after repeated effort.

Similar to BWA-MEM, Bowtie2 provides no guarantee on its sensitivity. Even though it
extracts a fixed number of seeds, which is a small number by default, due to its terminate-if-
no-improvement methodology, as well as its probabilistic nature, it could terminate early on a
read without exhaustively searching through all seed locations. As a result, not only can bowtie2
generate inconsistent mapping results between multiple runs of the same input, from time to
time, it misses high-quality secondary mappings and sometimes even the best mapping, if the
best mapping includes many fewer errors than the total number of seeds.
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SNAP

SNAP [73] extracts all possible fixed-length seeds from a read, allowing overlapping between
seeds. SNAP discards seeds with excessive frequency, since highly likely such seeds belong to
genomic repeats. Afterwards it prioritizes seed locations based on the number of seeds support-
ing each seed location. While similar to the seed chaining mechanism of BWA-MEM, SNAP’s
seed location prioritization mechanism differs from BWA-MEM in the sense that SNAP also
prioritizes locations shared by overlapping seeds. When multiple overlapping seeds supporting
a single mapping location, it essentially equals to merging multiple overlapping seeds into a vir-
tual longer seed. Therefore, prioritizing seed locations shared by multiple overlapping seeds as
drawing a longer seed. At the same time, SNAP also prioritizes locations that are shared by seeds
that are distant in the read. Therefore SNAP balances between using virtual long seeds and seed
chaining.

Similar to BWA-MEM and bowtie, by default SNAP prioritizes searching for best mapping
over finding all mappings within a user-defined error threshold. As a result, SNAP is very fast
but is not as sensitive as fully sensitive mappers (described in the following subsection).

SNAP can also be set to map in fully sensitive mode, which turns SNAP into a fully sen-
sitive mapper. In fully sensitive mapping mode, the speed of SNAP is drastically reduced, as
SNAP wastes a lot of execution time on evaluating false mappings (formally defined in the next
subsection).

Fully Sensitive Mappers

While none of the above mappers provide sensitivity guarantees, there also exist a number of
mappers that do provide sensitivity guarantees, including: [4, 34, 48, 56, 58, 59, 61, 71, 84, 90,
91, 99, 100]. However, due to their sluggish speed [35, 83], in practice, they are less preferable
and mostly used as a last resort when faster, less sensitive mappers fail to produce satisfiable
results.

A key feature of fully sensitive mappers is to find all mappings within a user defined error
threshold, often quantified in edit distances. Even though most downstream analysis only fea-
tures the best mapping of each read, defined as the most similar mapping in the reference, finding
all mappings is crucial in estimating the confidence of the best mapping. If a read has multiple
high quality secondary mappings that rivals the best mapping, then the read is highly likely to
be part of a genomic repeat. As a result, the mapper should assign a low confidence score to
the best mapping as the read might originate else where. Alternatively, even if a read only has
a few high quality mappings, it is crucial to find them all as they provide extra information for
downstream analysis such as SNP (single nucleotide polymorphism) calling (which finds single
base pair genomic variations in a target genome) [89].

To enable finding all mappings within an edit-distance threshold e, fully sensitive mappers
rely on comprehensive seeding mechanisms as well as high accuracy verification implementa-
tions. Specifically, to tolerate e, errors, fully sensitive mappers first draw e ` 1 non-overlapping
seeds, such that with at most e errors, it is guaranteed at least one seed will be error free. Then
they thoroughly go through all seed locations and accurately calculate the edit distance between
the read and the reference at each seed location.
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As we will further elaborate in Chapter 4, comprehensively extracting seeds generates a large
number of false mappings, which are seed locations where the reference drastically differs from
the read. False mappings lead to high edit distances and are discarded from the mapping results.
Hence, computing edit distances for false mappings is a waste of computational resources and is
a major reason why fully sensitive mappers are slow.

In this thesis, we focus on computational methods to improve the speed of fully sensitive
mappers while keeping their sensitivity guarantees. Specifically, we aim at reducing the impact
of false mappings on the performance of fully sensitive mappers.

1.2 Existing Seeding Mechanisms
To better interpret why fully sensitive mappers generate a high number of false mappings, it is
crucial to understand how fully sensitive mappers select seeds from a read. Below we provide
an overview of existing seed selection mechanism, as well as four case studies of existing seed
selection mechanisms.

Existing seed selection optimizations can be classified into three categories: (1) extending
seed length, (2) avoiding frequent seeds, and (3) rebalancing frequencies among seeds. Opti-
mizations in the first category extend frequent seeds in order to reduce their frequencies. Op-
timizations in the second category sample seed positions in the read and reject positions that
generate frequent seeds. Optimizations in the third category rebalance frequencies among seeds
such that the average seed frequency at runtime is more consistent with the static average seed
frequency of the seed table.

We selectively pick four representative state-of-the-art seed selection mechanisms from the
above three categories for case studies. They are: Cheap K-mer Selection (CKS) in FastHASH [102],
Optimal Prefix Selection (OPS) in Hobbes [3], Adaptive Seed Filter (ASF) in the GEM map-
per [71] and spaced seeds in PatternHunter [67]. Among the four prior works, ASF represents
works from the first category; CKS and OPS represent works from the second category and
spaced seeds represents works from the third category.

The Adaptive Seed Filter (ASF) [71] seeks to reduce the frequency of seeds by extending
the lengths of the seeds. For a read, ASF starts the first seed at the very beginning of the read and
keeps extending the seed until the seed frequency is below a pre-determined threshold, t. For
each subsequent seed, ASF starts it from where the previous seed left off in the read, and repeats
the extension process until the last seed is found. In this way, ASF aims to guarantee that all
seeds have a frequency below t.

ASF has two major drawbacks. First, ASF assumes the least frequent set of seeds in a read
has similar frequencies; hence, it shares a common frequency threshold t. We observe that this is
not always true. The optimal set of seeds often have very different frequencies. This is because
some seeds do not provide much frequency reduction despite long extensions while other seeds
yield significant frequency reductions only at certain extension lengths (the frequency reduction
due to extension looks like a step function). By regulating all seeds with the same frequency
threshold, ASF inefficiently distributes base-pairs among seeds. Second, the fact that ASF sets
a fixed frequency threshold t for all reads often leads to under-utilization of base-pairs in reads.
Different reads usually have different optimal thresholds (the threshold that provides the least
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frequent set of seeds under ASF for the read). For reads that contain frequent seeds, optimal
thresholds are usually large (e.g., t ą 1000), while for reads without frequent seeds, optimal
thresholds are usually small (e.g., t ă 100). Unfortunately, ASF can apply only a single threshold
to all reads. If t is set to a large value to accommodate reads with frequent seeds, then for other
reads, ASF extracts only short seeds even if there are many unused base-pairs. Otherwise, if t is
set to a small value, then frequent seeds consume many base-pairs and reads with frequent seeds
have insufficient base-pairs to construct enough seeds to tolerate all errors.

Note that the method of selecting seeds consecutively starting at the beginning of a read does
not always produce infrequent seeds. Although most seeds that are longer than 20-bp are either
unique or non-existent in the reference, there are a few seeds that are still more frequent than
100 occurrences even at 40-bp (e.g., all “A”s). With a small t (t ď 50), ASF cannot guarantee
that there will be enough seeds from the read to meet the error tolerance guarantee. This is
because some seeds still have greater-than-t frequencies even with large seed lengths (such as
poly-A sequences). In such cases, forcing ASF to always draw seeds with frequencies below
t produces long seeds that occupy too many base pairs from the read, leaving insufficient base
pairs to construct other seeds.

Setting a static t for all reads further worsens the problem. Reads are drastically different.
Some reads do not include any frequent short patterns (e.g., 10-bp patterns) while other reads
have one to many highly frequent short patterns. Reads without frequent short patterns do not
produce frequent seeds in ASF, unless t is set to be very large (e.g., ě 10, 000) and as a result
the selected seeds are very short (e.g., ď 8-bp). Reads with many frequent short patterns have a
high possibility of producing longer seeds under medium-sized or small t’s (e.g., ď 100). For a
batch of reads, if the global t is set to a small number, reads with many frequent short patterns
will have a high chance of producing many long seeds that the read does not have enough length
to support. If t is set to a large number, reads without any frequent short patterns will produce
many short but still frequent seeds as ASF will stop extending a seed as soon as it is less frequent
than t, even though the read could have had longer and less frequent seeds.

Cheap K-mer Selection (CKS) [102] aims to reduce seed frequencies by selecting seeds
from a wider potential seed pool. For a fixed seed length k, CKS samples tL

k
u seed positions

consecutively in a read, with each position set apart from another by k-bp. Among the tL
k

u

positions, it selects x seed positions that yield the least frequent seeds (assuming the mapper
needs x seeds). In this way, it avoids using positions that generate frequent seeds.

CKS has low overhead. In total, CKS needs only tL
k

u lookups for seed frequencies followed
by a sorting of tL

k
u seed frequencies. Although fast, CKS can provide only limited seed frequency

reduction as it has a very limited pool to select seeds from. For instance, in a common mapping
setting where the read length L is 100-bp and seed length k is 12, the read can be divided into
at most t100

12
u “ 8 positions. With only 8 potential positions to select from, CKS is forced to

gradually select more frequent seeds under greater seed demands. To tolerate 5 errors in this
read, CKS has to select 6 seeds out of 8 potential seed positions. This implies that CKS will
select the 3rd most frequent seed out of 8 potential seeds. For human genome, 12-bp seeds on
average have a frequency over 172, and selecting the 3rd frequent position out of 8 potential
seeds renders a high possibility of selecting a frequent seed which has a higher frequency than
average.

Similar to CKS, Optimal Prefix Selection (OPS) [3] also uses fixed length seeds. However,
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it allows a greater freedom of choosing seed positions. Unlike CKS, which only select seeds
at positions that are multiples of the seed length k, OPS allows seeds to be selected from any
position in the read, as long as seeds do not overlap.

The basis of OPS is also a dynamic programming algorithm that implements a recurrence
function. OPS iteratively finds the optimal set of fixed-length seeds (seeds with minimum total
frequency) of all profixes of a read, starting from a single seed to the total number of required
seeds.

Compared to CKS, OPS is more complex and requires more seed frequency lookups. In
return, OPS finds less frequent seeds, especially under large seed numbers. However, with a
fixed seed length, OPS cannot find the optimal non-overlapping variable-length seeds.

Spaced seeds [67] aims to rebalance frequencies among patterns in the seed database [17].
Rebalancing seeds reduces the frequent seed phenomenon which, in turn, reduces the average
seed frequency in read mapping (in other words, it improves the sensitivity/selectivity ratio of
seeds in read mapping [27]). Spaced seeds rebalance seeds by using a hash function that is
guided by a user-defined bit-mask, which combines frequent and infrequent long seeds together
and merges them into a single spaced short seed. Different patterns that are hashed into the same
hash value are considered as a single “spaced seed”. By carefully designing the hashing function,
which extracts base-pairs only at selected positions from a longer (e.g., 18-bp) pattern, spaced
seeds can group frequent long patterns with infrequent long patterns and merge them into the
new and more balanced “spaced seeds”, which have smaller frequency variations. At runtime,
long raw seeds are selected consecutively in the reads, which are processed by the rebalancing
hash function later.

Many extensions of spaced seeds were proposed, including: vector seeds [13], indel seeds [68],
subset seeds [81], neighbor seeds [21, 22] or adaptive seeds [43]. A detailed list and description
can be found in this literature [76].

Spaced seeds has two disadvantages. First, the hash function cannot perfectly balance fre-
quencies among all “rebalanced seeds”. After rebalancing, there is still a large disparity in seed
frequency amongst seeds. Second, seed placement in spaced seeds is static, and does not ac-
commodate for high-frequency seeds. Therefore, positions that generate frequent seeds are not
avoided, and they still give rise to the frequent seeds phenomenon.

Table 1.1 summarizes the complexity and memory traffic of each seed selection optimization.

ASF CKS OPS Spaced seeds naı̈ve
Empirical average-case complexity Opxq Opxˆ logpL

k
qq Opxˆ Lq Opxq Opxq

Number of lookups Opxq OpL
k
q OpLq Opxq Opxq

Table 1.1: An average-case complexity and memory traffic comparison (measured by the num-
ber of seed-frequency lookups) of seed selection optimizations, including Adaptive Seed Filter
(ASF), Cheap K-mer Selection (CKS), Optimal Prefix Selection (OPS), spaced seeds and naı̈ve
(selecting fixed-length seeds consecutively).
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1.3 Existing Verification Implementations
The original method for verification fully relied on dynamic programming. These methods find
the optimal alignment between two sequences that maximizes the similarity score with regard to
specific sequence alignment penalty scoring schemes. The Needleman-Wuncsch algorithm [75]
solves the problem of global alignment while the Smith-Waterman algorithm [92] finds the op-
timal local alignment and the Gotoh algorithm [32] finds the optimal alignment with the affine
gap penalties. All three algorithms are often referred as Smith-Waterman-Gotoh algorithms. In
general, the time and space complexity of Smith-Waterman-Gotoh algorithms isOpm ¨nq, where
m and n are length of the two input sequences.

A later variant of the Smith-Waterman-Gotoh algorithms took advantage of the fact that read
mappers only care about mappings with few differences and uses a restriction of the dynamic
programming to a strip of width k around its diagonal in the dynamic programming matrix.
Then the space and memory complexity reduces to Opm ¨ kq. The resulting algorithms, are
called Striped-Smith-Waterman-Gotoh algorithms [28].

Many mechanisms have been proposed to further speed up the verification process. These
mechanisms can be divided into five main classes: (i) SIMD implementations of dynamic pro-
gramming (or simply DP) algorithms, (ii) bit-vector implementations of DP algorithms, and
(iii) locality-based filtering mechanisms. Notice that although mechanisms in both (i) and (ii)
are often just different implementations of the same basic dynamic programming algorithm, we
separate them into two categories because they employ different optimization strategies: while
mechanisms in (i) faithfully implement the DP algorithm in a SIMD fashion, mechanisms in (ii)
use a modified bit-parallel algorithm to calculate a bit representation of the DP matrix [74].

In the classical Smith-Waterman-Gotoh approach, to map a read of length l to a reference of
length l, a pl`1qˆ pl`1qmatrix is generated. Given the read and the reference strings S and T ,
element px, yq is defined as the dissimilarity score (assuming we are using Needleman-Wuncsch
algorithm) between string Sr1..xs and T r1..ys. In cases where x or y equals to 0, the value simply
measures the score of comparing against an empty string.

For popular penalty schemes such as edit-distance or affine-gapping panelties, the DP matrix
can be iteratively filled following a top-to-bottom, left-to-right manner. For example, for edit-
distance, the first row (0th row) and the first column (0th column) of the matrix are initialized to
the sequences 0, 1, 2, . . . , l and 0, 1, 2, . . . , l respectively. The value of each element is dependent
on its top neighbor, its left neighbor, its top-left neighbor, and the comparison of basepairs from
the read and the reference. This relationship is formally described by Equation 1.1:

mi,j “ min

$

’

’

’

’

&

’

’

’

’

%

mi´1,j ` 1,

mi,j´1 ` 1,
#

mi´1,j´1 read[i] “ reference[j]
mi´1,j´1 ` 1 otherwise

(1.1)

The complexity of the Smith-Waterman-Gotoh algorithm is Opl2q. However, in read map-
ping, computing the precise edit-distance between the read and the reference sequences would
be wasteful, as it is only necessary to determine if the two sequences differ by more than e errors.
Ukkonen’s algorithm [96], a Striped-Smith-Waterman-Gotoh algorithm, takes advantage of this
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fact and only determines if two sequences differ by more than the error threshold by calculating a
strip of 2e`1 diagonal lanes of the matrix, rather than the entire matrix as in the Smith-Waterman
approach. The time complexity of Ukkonen’s improved DP algorithm is Opp2e` 1q ˆ lq.

Several bit-vector algorithms [39, 74] that exploit bit-parallelism in DP algorithms have
been proposed. By making the observation that elements in the edit-distance matrix of DP al-
gorithms differ from their top and left neighbors by at most 1 (˘1), the edit-distance matrix can
be transformed into two series of bit-vectors. We choose Gene Myers’ bit-vector implementa-
tion [74] as a representative algorithm. In Gene Myers’ algorithm, bit-vectors record differences
between consecutive columns of the edit-distance matrix. Because each element can either be
`1, ´1, or 0 away from its left neighbor, two separate bit-vectors are used for each column:
one indicates rows where the elements are `1 away from their left neighbors while the other
indicates rows where the elements are ´1 from their left neighbors. Gene Myers further proves
that the differences between each pair of cells in two consecutive columns can be computed in
parallel. A minimum edit-distance score for each column is computed as part of this process.

Although the complexity of the algorithm is Opl2q, the runtime of Gene Myers’ algorithm is
much faster than basic DP algorithms. Each bit-vector is mapped to a few computer registers;
therefore, applying an operation to the register is equivalent to applying the same operation to
many elements in the edit-distance matrix. If each register has w bits, theoretically Gene Myers’
algorithm can provide a pw{|S|qˆ speedup over the basic Smith-Waterman DP algorithm, where
S is the cardinality of some set of symbols (S :“ |tA, C, T, Gu| “ 4 in DNA). Nonetheless, even
if the registers are wide enough to store an entire bit-vector (w ě l` 1), Gene Myers’ algorithm
still requires Oplq bit-wise operations to cascade the computation for l total bit-vectors.

Another approach to speed up the basic DP algorithm is to efficiently map the DP algorithm
to SIMD units [23, 26, 28, 38, 88, 93, 94, 105]. Many modern computers have SIMD units,
such as GPUs and vector units in CPUs. These vector units pack multiple data elements into a
single, wide register and apply the same instruction to all of the packed data elements simulta-
neously. SIMD implementations of DP algorithms, such as swps3, exploit the data parallelism
between elements in the edit-distance matrix. In swps3, elements in the edit-distance matrix
are mapped to SIMD registers in a striped manner. Data is placed such that within a single
register there are no dependencies bewteen elements. Also, elements within a register share de-
pendencies on other registers. Therefore, elements within a SIMD register are synchronized for
SIMD operations (either all of them are ready or none of them are ready). There exist also a
number of implementations for special computational infrastructure, namely for GPUs and Xeon
Phis [24, 44, 63, 64, 65, 66, 69].

Similar to bit-vector implementations of DP algorithms, SIMD implementations do not re-
duce the complexity of the algorithm, but speed up the process by exploiting parallelism within
the algorithm. Theoretically, a SIMD platform that packs p elements into a single register, can
provide up to pˆ speedup over basic Smith-Waterman implementation. In practice, however,
due to extra computation spent on data mapping and other auxiliary processing, the speedup of
SIMD implementations is generally smaller than p. For example, swps3 uses Intel SSE, which
packs 16 elements into a single register, while providing a maximum speedup of only 8ˆ.

It is not always necessary to calculate the edit-distance between two strings to verify a poten-
tial mapping. Incorrect mappings can also be filtered out with simple locality based searches.
Several works [3, 102] have shown that the potential mappings of a read can be verified by check-
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ing (searching) relative distances between its seeds (small subsequences of the read that are used
to generate potential mappings). We select Adjacency Filtering (AF) from FastHASH [102] as a
representative example. In AF, if a read can be divided into m non-overlapping seeds, then with
e allowed errors, at least m ´ e seeds should be located near the mapping site in the reference
for correct mapping. For example, a potential mapping location, loc, is valid for the ith seed of
the read if there exists a location within the expected range of rloc` i ¨ k ´ e, loc` i ¨ k ` es in
the location list of the seed (there is a range of ˘e because of possible insertions/deletions from
other seeds). A potential mapping location passes AF only if more than m ´ e seeds pass the
locality check.

Filters that are similar to AF work well only when e is very small (e.g., below 1{3rd of m).
When e gets larger, their accuracy decreases drastically. There are two reasons for this. First,
with a larger e, the range of expected locations (rloc` i ¨ k ´ e, loc` i ¨ k ` es) expands, which
causes more potential locations to pass locality checking. Second, the required minimum number
of seeds that exhibit locality around loc, m´ e, is largely reduced, since m is typically a smaller
number of 10 or less. As a result, filtering mechanisms exploiting locality among seeds are not
favorable for large e (e.g., e ě 3).

It is worth mentioning that although BWA-MEM’s seed chaining and SNAP’s prioritization
of seed locations shared with multiple seeds are not designed for mappers with error tolerance
guarantees, they employ the same key insight with seed-locality based filters.

1.4 Overview

1.4.1 Thesis Statement

Within this thesis, I investigate the following question: can we drastically reduce the unnecessary
computation spent on verifying false mappings, without giving up the error tolerance guarantee?
Is it possible to maintain the same error tolerance guarantee while encountering significantly
fewer false mappings? In sight of the above questions, my thesis statement can be summarized
as follows:

With novel computational techniques, we can significantly mitigate the amount of unneces-
sary computation spent on false mappings, without surrendering the error tolerance guarantee
or reducing the sensitivity of fully sensitive read mappers. Mitigating unnecessary computation
on false mappings is critical in improving the mapping speed of fully sensitive read mappers, as
false mappings consume a large amount of execution time while providing no contribution to the
mapping result.

1.4.2 Major Contributions

We propose four major computational techniques that are split into two categories: false map-
ping filters and improved seeding mechanisms. Among the two, false mapping filters focuses
on rejecting false mappings early without spending much computation while improved seeding
mechanisms aim at reducing overall seed locations without undermining mapping sensitivity.
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• Shifted Hamming Distance. Shifted Hamming Distance (SHD) is a SIMD-friendly filter
that accelerates the alignment verification procedure in read mapping, by quickly filtering
out error-abundant sequence pairs using bit-parallel and SIMD-parallel operations. SHD
only filters string pairs that contain more errors than a user-defined threshold, making it
fully comprehensive. It also maintains high accuracy with moderate error threshold (up to
5% of the string length) while achieving a 3-fold speedup over the best previous algorithm
(Gene Myers’s bit-vector algorithm). SHD is published in Bioinformatics [101].

• LEAP. LEAP is a verification algorithm that extends the well known Landau-Viskin algo-
rithm to support any monotonic-penalty scoring scheme. Most importantly, LEAP supports
affine gap penalties, which is a widely used penalty scheme for modern read mappers. We
show that LEAP is up to 7.4x faster than the state-of-the-art bit-vector edit-distance imple-
mentation. LEAP is published on bioRxiv [104].

• Optimal Seeds Solver. Optimal Seeds Solver (OSS) is a dynamic programming algorithm
that discovers the least frequently-occurring set of x seeds in an L-base-pair read inOpxˆ
Lq operations on average and in Opxˆ L2q operations in the worst case, while generating
a maximum of OpL2q seed frequency database lookups. We compare OSS against four
state-of-the-art seed selection schemes and observe that OSS provides a 3-fold reduction
in average seed frequency over the best previous seed selection optimizations. OSS is
published in Bioinformatics [103]

• Error Resilient Seeds. Error Resilient Seeds (ERS) is a new seeding concept that allows
seed-and-extend based mappers to achieve a higher error tolerance that often exceeds what
traditional seeds can offer, without incurring any extra computation. In other words, Error
resilient seeds can provide the same error tolerance with fewer seeds, hence reducing the
over all seed locations. We implemented Error Resilient Seeds and showed that it provided
1.17-fold reduction in average compared to OSS. The work of ERS is on-going and it is
yet to be published.

We show that each of our proposed computational techniques successfully reduces the impact
of false mappings on the performance of fully sensitive mappers. We show that SHD and LEAP
improve the speed of the verification process, specially for false mappings; and OSS and ERS
reduce the overall seed locations without compromising the error tolerance guarantee of a fully
sensitive mapper. Overall, this dissertation provides a foundation in developing future fully
sensitive mappers.
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Part I

False Mapping Filters

13





Chapter 2

Shifted Hamming Distance:
SIMD-Friendly Filter to Accelerate Read
Mapping

2.1 Background

As a mapper increases its mapping sensitivity in hope of recovering more reads from errors, it
inevitably decreases the seed length and reduce the selectivity of seeds. As a result, fully sensitive
mappers often include many seed locations that lead to drastically dissimilar false mappings.
Evaluating false mappings is wasteful as they are not reported as valid mappings of the read. In
fact, from our profiling, we found as much as 98% of all seed locations provide false mappings.

Figure 2.1: Edit-distance edit-distance distribution of all seed locations generated by mrFAST.
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In Figure 2.1, we computed the exact edit-distance between 100 basepair long reads (reads
are real data from the 1000 Genomes project) and their corresponding potential locations in
the Human reference genome as determined by a seed-and-extend based mapper with an error
tolerance up to 5% read length, mrFAST [4], measured by edit-distance e between the read and
the reference. For e “ 0, 1, . . . , 5, more than 98% of the potential locations did not meet the
error threshold. Moreover, over half of all potential locations contained more than 20 errors.
Seed-and-extend based mappers that do not filter these clearly invalid mappings waste much of
their time performing computationally expensive edit-distances calculations.

One popular measure to speed up the mapping process, is to deploy fast and accurate filters,
which detect and reject incorrect mappings using cheap heuristics. This can increase the speed
of seed-and-extend mappers (by speeding up the verification procedure) [102] while maintaining
their high accuracy and comprehensiveness. An ideal filter should be able to quickly verify
the correctness of a mapping, yet require much less computation than rigorous local alignment,
which precisely calculates the number of errors between the read and reference using dynamic
programming methods. More importantly, a filter should never falsely remove a correct mapping
from consideration, as this would reduce the comprehensiveness of the mapper.

Recent work has shown the potential of using single instruction multiple data (SIMD) vector
execution units including general-purpose GPUs and Intel SSE [41] to accelerate local alignment
techniques [28, 69, 94]. However, these publications only apply SIMD units to existing scalar
algorithms, which do not exploit the massive bit-parallelism provided by SIMD platforms.

In this chapter, we present Shifted Hamming Distance (SHD), a fast and accurate SIMD-
friendly bit-vector filter to accelerate the local alignment (verification) procedure in read map-
ping. The key idea of SHD is to avoid wasting computational resources on incorrect mappings
by verifying them with a cheap, SIMD-friendly filter before invoking canonical complex local
alignment methods. Our studies show that SHD quickly identifies the majority of the incorrect
mappings, especially ones that contain far more errors than allowed, while permitting only a
small fraction of incorrect mappings to pass SHD which are later filtered out by more sophisti-
cated and accurate filters or by local alignment techniques.

To evaluate SHD, we choose three representative implementations: swps3 [94], SeqAn [26],
and FastHASH [102], representing SIMD DP implementations, bit-parallel DP implementations
as well as seed locality based filters as we mentioned in Section 1.3. These mechanisms were
not designed as both SIMD and bit-parallel filters and are either fast or accurate (can filter out
most incorrect mappings) but not both. On the other hand, SHD leverages both bit-parallelism
and SIMD instructions to achieve high performance while preserving high accuracy.

2.2 Contributions
SHD provides the following contributions:
• We show that for seed-and-extend based mappers, most potential mappings contain far

more errors than what is typically allowed.
• We introduce a fast and accurate SIMD-friendly bit-vector filter, SHD, which approxi-

mately verifies a potential mapping with a small set of SIMD-friendly operations (Sec-
tion 2.3).
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• We prove that SHD never removes correct mappings from consideration; hence, SHD
never reduces the accuracy or the comprehensiveness of a mapper (Section 2.3).

• We provide an implementation of SHD with Intel SSE and compare it against three previ-
ously proposed filtering and local alignment implementations (Section 2.4), including an
SSE implementation of the Smith-Waterman algorithm, swps3 [94]; an implementation of
Gene Myers’s bit-vector algorithm, SeqAn [26]; and an implementation of our Adjacency
Filtering algorithm, FastHASH [102]. Our results on a wide variety of real read sets show
that SHD SSE is both fast and accurate. SHD SSE provides up to 3x speedup against
the best previous state-of-the-art edit-distance implementation [26] with a maximum false
positive rate of 7% (the rate of incorrect mappings passing SHD).

2.3 Methods
Overview: Our filtering algorithm, Shifted Hamming Distance (SHD), uses simple bit-parallel
operations (e.g. AND, XOR, etc.) which can be performed quickly and efficiently using the
SIMD architectures of modern CPUs. SHD relies on two key observations:

1. If two strings differ by e errors, then all non-erroneous characters of the strings can be
aligned in at most e shifts.

2. If two strings differ by e errors, then they share at most e`1 identical sections (Pigeonhole
Principle [102]).

Based on the above observations, SHD filters potential mappings in two steps:

1. Identify basepairs (bps) in the read and the reference that can be aligned by incrementally
shifting the read against the reference.

2. Remove short stretches of matches identified in step 1 (likely noise).

We call these two steps shifted Hamming mask-set (SHM) and speculative removal of short-
matches (SRS) respectively. In the remainder of this section, we describe these two steps, then
analyze SHD in terms of false negatives1 and false positives2.

2.3.1 Shifted Hamming Mask-Set (SHM)

Shifted Hamming mask-set (SHM) aligns basepairs in the read and the reference by horizontally
shifting the read against the reference. SHM is based on the key observation that if there are no
more than e errors between the read and the reference, then each non-erroneous basepair (bp)
in the reference can be matched to a basepair in the read within r´e,`es shifts from its position.
Thus, if there are more than e basepairs in the read that failed to find a match in the reference,
then there must be more than e errors between the read and the reference, hence the potential
mapping should be rejected.

1Defined as correct mappings that are falsely rejected by SHD. Later we show that the false negative rate of SHD
is zero.

2Defined as incorrect mappings that pass SHD.
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TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC
Read >> 1:

Reference:

0101101111101111110011111111111001100010011000

TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC

Reference:

0011111110111110101110000000000000000000000000

Read>>2:

Hamming mask 3:

Hamming mask 4:

0000000000000000000010000000000000000000000000

Final bit-vector:

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC
Read:

Reference:

0000000000000000011110111100001010100110111000

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC
Read << 1:

Reference:

1011011111011111110010010011101100101111111000

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC

Reference:

1111111011111011011111001100101000111111111000

Read << 2:

Hamming mask 0:

Hamming mask 1:

Hamming mask 2:

TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

CAT: Identical section 0: Bp matchC: Deletion 1: Bp mismatch

Figure 2.2: An example of applying SHM to a correct mapping with two deletions.

Based on this observation, SHM verifies a potential mapping in two steps. First, SHM sep-
arately identifies all basepair matches by calculating a set of 2e + 1 Hamming masks while
incrementally shifting the read against the reference (one Hamming mask per shift). Each
Hamming mask is a bit-vector of ‘0’s and ‘1’s representing the comparison of the read and the
reference, where a ‘0’ represents a bp match and a ‘1’ represents a bp mismatch (implemen-
tation details of computing Hamming masks using bit-parallel operations are provided in later
sections). Figure 2.2 illustrates the production of these Hamming masks for a correct mapping.
Once found, SHM merges all basepair matches together through multiple bit-wise AND oper-
ations.
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In SHM, to tolerate e errors, 2e ` 1 Hamming masks must be produced where: e Hamming
masks are calculated after incrementally shifting the read to the left by 1 to e bps; e Hamming
masks are calculated by incrementally shifting the read to the right by 1 to e bps; one additional
Hamming mask is calculated without any shifting. By incrementally shifting the read in SHM,
all basepairs between the read and the reference of a correct mapping (except the errors) are
brought into alignment with at least one matching bp of the read and identified in one or more of
the 2e` 1 masks, as shown in Figure 2.2.

The Hamming masks are merged together in 2e bit-wise AND operations. When ANDing
Hamming masks, a ‘0’ at any position will lead to a ‘0’ in the resulting bit-vector at the same
position. When aligned with a match, a bp produces a ‘0’ in the Hamming mask, which masks
out all ‘1’s in any other Hamming masks at the same position. Therefore, the final bit-vector
produced after all bit-wise AND operations are complete is guaranteed to contain ‘0’s for all
non-error basepairs; as a result, the number of ‘1’s that remain in the final bit-vector provides
a lower bound on the edit-distance between the read and the reference. Since correct potential
mappings must have e or fewer errors, SHM can safely filter mappings whose final bit-vector
contains more than e ‘1’s, without any risk of removing correct read mappings.

It is worth noting that we assumed the bit-wise hamming mask can be obtain by XORing a
byte-wise ASCII string pair. Such operation can be implemented by first converting the byte-
wise ASCII string into log2Σ (Σ is the total size of the alphabet) bit-wise vectors, where the ith
vector stores the ith bits of the original ASCII byte string. Assume we have two strings A and
B, while Ai is the ith bit-wise vector of string A and Bi is the ith bit-wise vector of string B,
then the hamming mask of A and B by ORing all hamming masks of Ai and Bi, for all i from 0
to log2Σ´ 1.

2.3.2 Speculative Removal of Short-Matches (SRS)
SHM ensures all correct read mappings are preserved; however, many incorrect mappings may
also pass the filter as false positives. For example, the read in Figure 2.3 is compared against
a drastically different reference using SHM with an error threshold of two (e “ 2). Despite
the presence of substantially more than two errors, the final bit-vector produced by SHM does
not contain any ‘1’s, as if there were no errors at all. In SHM, ‘0’s in the final bit-vector are
considered to be matches and ‘1’s are considered to be errors. In this example, most basepairs
in the reference find a match within two shifts of the read, so the read and the reference are
considered similar enough to pass the filter.

The false positive rate of SHM increases superlinearly as e increases. Consider a random read
and the reference pair, where each basepair in the read and reference are generated completely
randomly (having 1{4 probability of being either A, C, G or T). The probability that a bp in the
reference does not match any neighboring bp in the read during any of the 2e ` 1 Hamming
masks of SHM (hence rendering a ‘0’ at its position in the final bit-vector) is p3{4q2e`1, which
decreases exponentially as e increases. Therefore, when e is large, most basepairs in the reference
find matches in the read during SHM, even if the read and the reference differ by more than e
errors.

Some of the incorrect mappings that pass SHM can still be identified by checking if the
read and the reference share large sections of identical substrings. According to our second
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TTCCCAGCACAAGACACATTCTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT
Read:

Reference:

00000000000111111111 1111 11 111 111 111 11110

TTCCCAGCACAAGACACATTGTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT
Read << 1:

Reference:

01 1111111 11 1 111 1 1 100011111111111 110

TTCCCAGCACAAGACACATTGTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT

Reference:

11 1111 1 1 111111111 1 1111 1 1 111 111100

Read << 2:

Hamming mask 0:

Hamming mask 1:

Hamming mask 2:

TTCCCAGCACAAGACACATTGTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT
Read >> 1:

Reference:

001 111111000010001 11 110001 1 1 11100000

TTCCCAGCACAAGACACATTGTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT

Reference:

0011 1111 11111111 1111 11111 111111000111111

Read>>2:

Hamming mask 3:

Hamming mask 4:

0000000000000000000000000000000000000000000000

Final bit-vector:

: Spurious ✄0�

Figure 2.3: An example of an incorrect mapping that passes SHM.

observation, two strings that differ by e errors will share no more than e ` 1 identical sections.
These identical sections are simply the bp segments between errors. In fact, the goal of the entire
local alignment (edit-distance) computation is to identify these identical sections and the errors
between them. When basepairs of an identical section are aligned in SHM, all basepairs of this
identical section in the read simultaneously match all basepairs in the reference, which produces
a contiguous streak of ‘0’s in the Hamming mask (blue-highlighted region in Figure 2.2). Other
‘0’s in the Hamming masks (unhighlighted ‘0’s in the Hamming masks) that are not produced
by an identical section represent only individual bp matches, which are not part of the correct
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TTCCCAGCACAAGACACATTCTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT
Read:

Reference:

00000000000111111111 1111 11 111 111 111 11110

TTCCCAGCACAAGACACATTGTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT
Read << 1:

Reference:

01 1111111 11 1 111 1 1 100011111111111 110

TTCCCAGCACAAGACACATTGTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT

Reference:

11 1111 1 1 111111111 1 1111 1 1 111 111100

Read << 2:

Hamming mask 0 after SRS:

Hamming mask 1 after SRS:

Hamming mask 2 after SRS:

TTCCCAGCACAAGACACATTGTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT
Read >> 1:

Reference:

001 111111000010001 11 110001 1 1 11100000

TTCCCAGCACAAGACACATTGTGTTTTCTGTGCCGACCCAGGACAT

TTCCCAGCACAGACGCATAGCCTGGTCTTTGTCGTCCATTGACATT

Reference:

0011 1111 11111111 1111 11111 111111000111111

Read>>2:

Hamming mask 3 after SRS:

Hamming mask 4 after SRS:

0000000000000001000111111100000111111000100000

Final bit-vector:

: �✁✂✄☎✂☎ ✆1✝

Figure 2.4: The incorrect mapping from Figure 2.3 is filtered correctly by SRS.

alignment (the alignment produced by the local alignment computation) of the mapping. We call
these ‘0’s spurious, as they conceal mismatch errors and give the false impression that the read
and the reference have a small edit distance, even when they differ significantly.

We propose a heuristic, speculative removal of short-matches (SRS), which aims to remove
spurious ‘0’s. SRS uses one important observation: identical sections are typically long (ě 10
basepairs) while streaks of spurious ‘0’s are typically short (ă 3 basepairs). This insight is
confirmed empirically through experiments, but is also supported by theory. Given that for most
mappers e is in general less than 5% of the read length L, the average length of an identical
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TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC
Read >> 1:

Reference:

TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC

Reference:

Read>>2:

Hamming mask 3 after SRS:

Hamming mask 4 after SRS:

0000000000000000011110000000000000000000000000

Final bit-vector:

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC
Read:

Reference:

000000000000000001111 111100001 1 1 11 111000

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC
Read << 1:

Reference:

TCCATTGACATTCGTGACTCTCCTTCTCTCCCACCCCTTTGCCCCC

Reference:

Read << 2:

Hamming mask 0 after SRS:

Hamming mask 1 after SRS:

Hamming mask 2 after SRS:

TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

TCCATTGACATTCGTGAGCTGCTCCTTCTCTCCCACCCCTTTGCCC

CAT: Identical section C: Deletion

Counted as 2 errors by SRS

: �✁✂✄☎✂☎ ✆1✝

01 11 11111 111111 11111111111 110001 11000

001111111 11111 1 1110000000000000000000000000

1 11 11111 1111111 1 1 111 11 1 1111111000

1111111 11111 11 11111 11 1 1000111111111000

Figure 2.5: Correct short streaks of ‘0’s might also get overwritten by SRS.

section is greater than 16 basepairs for, say, L “ 80. (lsec ě L
0.05L`1

« 16). The probability that
a streak of n ‘0’s will be spurious (i.e., part of a random alignment between basepairs) is p1{4qn.
For streaks where n is greater than 3 basepairs, the probability of being spurious is below 1%.

Using this insight, we replace all streaks of ‘0’s in the Hamming masks that are shorter than
three digits with ‘1’s. We call the ‘1’s that replace the ‘0’s (i.e., amended from ‘0’s) as amended
‘1’s. Amended ‘1’s do not affect the final bit-vector of the SHM as they are “transparent” during
AND operations. The potential trade-offs and reasoning for choosing three as our threshold for
SRS is discussed in Section 2.1. Note, the incorrect mapping which passed SHM in Figure 2.3
is identified and correctly rejected using SRS in Figure 2.4.

Since SRS amends all short streaks of ‘0’s, even the ones produced by correct alignments of
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Algorithm 1: SHD
Inputs: Readr0s...Readrs´ 1s,Refr0s...Refrs´ 1s (bit-vectors of the Read and
Reference), e (error threshold)

Outputs: Pass (returns True if the string pair passes the SHD)
Functions: see Supplementary Materials
ComputeHammingMask: computes the Hamming mask
SRS amend: amends short streaks of ‘0’s into ‘1’s
SRS count: counts the number of errors in the final bit-vector
Pseudocode: HMask “ ComputeHammingMaskpRead,Refq;
Final BV “ SRS amendpHMaskq;
for i “ 1 to e do

// Left shift Read
for j “ 0 to s´ 1 do

ShiftedReadrjs “ Arjs ăă i;

HMask “ ComputeHammingMaskpShiftedRead,Refq;
SRS HMask “ SRS amendpHMaskq;
Final BV “ Final BV&SRS HMask;
// Right shift Read
for j “ 0 to s´ 1 do

ShiftedReadrjs “ Arjs ąą i;

HMask “ ComputeHammingMaskpShiftedRead,Refq;
SRS HMask “ SRS amendpHMaskq;
Final BV “ Final BV&SRS HMask;

errorNum “ SRS countpFinal BVq;
if errorNum ď e then

Pass “ True;

else
Pass “ False;

return Pass;

basepairs, it could cause correct read mappings to be mistakenly filtered, as shown in Figure 2.5.
To avoid this possibility, SRS counts the number of errors in the final bit-vector more conser-
vatively than SHM. Each streak of ‘1’s in the final bit-vector could be the outcome of multiple
streaks of amended ‘1’s. However, ‘0’s are changed only if they are two-or-fewer-bit ‘0’ streaks
and are surrounded by ‘1’s. In the worst case, multiple back-to-back short identical sections
that are separated by single errors can be mistakenly overwritten into a long streak of ‘1’s (e.g.,
1001001 Ñ 11111111). As a result, the number of errors covered by a streak of ‘1’s (e1) of
length l1 after SRS is e1 “ 1 ` rpl1 ` 1q{3s. The streak of four ‘1’s in the final bit-vector of
Figure 2.5 is now counted as only two errors rather than four and the correct mapping passes the
filter. Using this counting scheme, we ensure all correct mappings will pass through the filter,
while still identifying and removing read and reference pairs with errors up to 5% of the read
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length (results are provided in Section 2.4).
To achieve high efficiency, we implemented both SRS amend and SRS count using Intel

SSE instructions. Specifically, we used the packed shuffle operation, a SIMD parallel-table-
lookup instruction provided by the Intel SSE instruction set.

The SSE instruction packed shuffle (pshuff ) takes two vectors of integers A “ ra0 a1 a2 ...s
and B “ rb0 b1 b2 ...s and replaces integers in vector A with integers in vector B with the result
A “ rBra0s Bra1s Bra2s...s. Figure 2.6 gives an example of applying pshuff on a single bit-
vector. Notice that the values of the integers in vector A must not exceed the maximum size
of vector B, otherwise an incorrect result is returned. On Intel platforms, the maximum size of
an SSE vector is 16 (with single-byte integers). Therefore, on Intel platforms, the value of the
elements in either vectors must not exceed 16 (1111 in binary, four bits).

Implementation of SRS amend

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0001 0010 0011 0100 0111 0110 0111 1000 1111 1110 1111 1100 1111 1110 1111
Reg B:

(Lookup table)

Reg A: 001101111 101 111111111001001111 101 111 11111111 10011111000011 10011001101111

: pshuff

001101111 101 111111111001001111 101 111 11111111 10011111000011 10011001101111
Reg A after 

pshuff :

Keys

Values

: Changed bits before and after pshuff11 111: Vector elements

(a)

(b)

Figure 2.6: An example of quickly correcting short streaks of ‘0’s using pshuff operations.

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0000 0001 0010 0011 0100 0111 0110 0111 1000 1111 1110 1111 1100 1111 1110 1111

0011 1111 1 1 111111111 1 1111 1 1 111 11111111 1 11111000011 1 11 11 11111

Lookup table:

Hamming mask:

After overwrite:

: �✁✂✄☎ ✆☎✄✝✞✟✆ ✂✠ ✡☛☞✆ : ✌✍✝✎✏✝✏ ✡✑☞✆11 111: Vector elements : pshuff

(a)

(b)

Figure 2.7: An example of the overall procedure of SRS, including four right shifts and pshuff s.

Algorithm 2 shows the pseudocode of SRS amend. We use packed shuffle to efficiently
replace all short streaks of ‘0’s with ‘1’s in parallel. According to SRS (Section 2.3.2), all streaks
of ‘0’s shorter than three (and are bounded by ‘1’s) are turned into streaks of ‘1’s. As a result,
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0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111

0 1 1 1 1 2 2 1 1 2 2 2 1 2 1 1

000000000000000100011111110000001111100010000011111111000000000010001000011110000

Lookup table:

Hamming mask:

: pshuff

0 0 0 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 0

No. of errors: 14

: hadd00111111: Vector elements

(a)

(b)

Figure 2.8: Conservatively counting errors with SHM.

bit streams such as 101, 1001 are replaced with 111 and 1111, respectively. Packed shuffle can
drastically speed up this replacement process by storing the pre-processed replacement patterns
in a lookup table and replacing target bit streams in parallel at runtime. Specifically, the lookup
table stores replacement bit streams for binary keys ranging from 0000 to 1111 (16 keys in total),
as shown in Figure 2.6 (a). Among all keys, for those that have ‘0’s in the middle of ‘1’s, such as
0101 or 1010, their values replace the middle ‘0’s with ‘1’s (0101 Ñ 0111 and 1010 Ñ 1110);
for all other keys, their values are simply the keys themselves (hence packed shuffle does not
change them). Figure 2.6 (a) presents the entire lookup table for SRS amend. Figure 2.6 (b)
presents an example of amending short streaks of ‘0’s using a single packed shuffle operation.

To successfully amend all short streaks of ‘0’s into ‘1’s, however, a single packed shuffle
operation is not enough. Short streaks of ‘0’s that span two neighboring keys in the lookup table
stay unchanged after the packed shuffle operation (e.g., 0010 0100 Ñ 0010 0100). To solve this
problem, we incrementally shift the bits in the vector to the right (as shown in Figure 2.7 (b))
which eventually brings the short streak of ‘0’s into one key (0010 0100 ąą 001 0010 0 ąą
00 1001 00 Ñ 00 1111 00). Figure 2.7 (b) illustrates SRS amend (Algorithm 2) amending all
short streaks of ‘0’s in a Hamming mask through four pshuff operations and shifts.

Note that to amend a short streak of ‘0’s using packed shuffle, the entire short streak of ‘0’s
and the bounding ‘1’s must fit into the space of a single key at once (e.g., 1001 but not 1000 1 ).
Since the packed shuffle operation on Intel platforms only supports a key length of four bits at
maximum, it cannot amend any short streak of ‘0’s longer than two. As a result, here we choose
an SRS threshold of three bps. A study of the effect of other SRS thresholds on the false positive
rate is provided in Section 2.1.

Implementation of SRS count

Similar to SRS amend, SRS count is implemented using packed shuffle as well. According to
SRS (Section 2.3.2), a streak of ‘1’s in the final bit-vector of SHM is always assumed to be
amended from back-to-back short streaks of ‘0’s. Therefore, the number of errors of a short
streak of ‘1’s must be counted as the minimum errors that this streak can cover.

Using packed shuffle, we can quickly provide a lower bound of the number of errors that
the final bit-vector contains. In this case, the lookup table of packed shuffle stores the minimum
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Algorithm 2: SRS amend
Inputs: HMask (Hamming mask), LTable (lookup table)
SIMD Registers: r1, r2 and r3

Outputs: SRS HMask (SRS amended Hamming mask)
r1 “ HMask;
r2 “ LTable;
r3 “ pshuff pr2q;
r1 “ r1 |r3;
for i “ 1 to 3 do

r3 “ r1ąą i;
r3 “ pshuff pr2q;
r3 “ r1ăă i;
r1 “ r1 | r3;

SRS HMask “ R1 ;
return SRS HMask;

number of errors that each key covers. For example, key 0100 clearly covers only a single error
hence, stores a “1” in the table while key 0110 clearly covers two errors hence, stores a “2” in
the table. However, for keys such as 1100 or 1111, it is unclear what bits are next to them hence
the minimum number of errors that they cover is hard to determine (e.g., in bit-stream [0000
1100] 1100 covers two errors, but in bit-stream [0001 1100] 1100 covers only one error). In
order to preserve correctness (such that we do not not over-estimate errors for any input) while
maintaining speed, a lower bound of errors is (always) assumed for such keys. A complete
lookup table for SRS count is provided in Figure 2.8 (a).

Algorithm 3: SRS count
Inputs: Final BV (the final bit-vector of the SHM), LTable (lookup Table)
SIMD Registers: r1 and r2

Outputs: errorNum (minimum number of errors in the bit-vector)
r1 “ Final BV;
r2 “ LTable;
r1 “ pshuff pr2q;
errorNum “ haddpr1q;
return errorNum;

Algorithm 3 provides the pseudocode of SRS count. As the pseudocode shows, we first
load the pre-processed lookup table into a SIMD register. Then, we count the minimum number
of errors of each key in the final bit-vector using packed shuffle. Finally, we sum up all minimum
numbers of errors of all keys using a horizontal add (hadd ). The final sum is a lower bound of
the minimum number of errors of the final bit-vector (and the potential mapping). Figure 2.8 (b)
visualizes the entire workflow of Algorithm 3. In this figure, a minimum of 14 errors is counted
from the final bit-vector, which indicates that the potential mapping must be erroneous hence
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must be rejected.
SRS can be implemented using SIMD-friendly operations. As we explain in Supplemen-

tary Materials, the ability to implement SRS with SIMD instructions is crucial for the high per-
formance of SHD, as it enables computing SRS in constant time with few instructions: both
overwriting of short streaks of ‘0’s and counting the number of errors of streaks of ‘1’s can be
computed in constant time using SIMD packed shuffle operations. See Section 1.3 in Supple-
mentary Materials for details.

Combined with SHM, SRS and SHM form the two-step filtering algorithm Shifted Ham-
ming Distance (SHD), which guarantees that correct read mappings are preserved, while quickly
removing incorrect mappings with simple bit-parallel operations.

Pseudocode

The pseudocode of SHD is shown in Algorithm 1. Overall, SHD computes 2e ` 1 Hamming
masks (ComputeHammingMask), with e of them computed with the read incrementally shifted
to the left; e of them computed with the read incrementally shifted to the right, and one computed
without any shifts. Each Hamming mask is then processed by SRS to amend short streaks of ‘0’s
into ‘1’s (SRS amend). Finally, all Hamming masks are merged together into a final bit-vector
through bit-wise AND operations and a lower bound of errors is computed from the final bit-
vector (SRS count). Details of implementations of ComputeHammingMask, SRS amend and
SRS count are discussed in Supplementary Materials.

False Negatives

SHD never filters out correct mappings; hence, it has a zero false negative rate. As we discussed
in Section 2.3.2, identical sections longer than three bps are recognized and preserved in the final
bit-vector by SHD. Identical sections shorter than three bps are amended into ‘1’s; however, SHD
counts ‘1’s in the final bit-vector conservatively, ensuring correct mappings are not filtered.
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Figure 2.9: A sweep of the false positive rate of SHD, against variant allowed error rate.
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False Positives

SHD does allow a small portion of incorrect mappings to pass the filter as false positives. This
is acceptable since SHD is only a filter. Incorrect mappings that pass SHD are discarded later
by more rigorous edit-distance calculations. Below, we describe two major sources of false
positives, both of which are related to the threshold of the SRS (the minimal length of a streak of
‘0’s that will not be amended by SRS).

First, long streaks of spurious ‘0’s are not identified by SRS. Although less likely, long streaks
of ‘0’s can still be spurious (i.e., identical substrings between the read and the reference that do
not belong to the correct alignment between the read and the reference). Long spurious streaks of
‘0’s in an incorrect mapping can mask out real errors (‘1’s in other Hamming masks) and produce
a mostly ‘0’ final bit-vector even though the read and the reference differ by more errors. We
can increase the SRS threshold beyond three bps, which amends longer streaks of ‘0’s, to reduce
such false positives.

Second, SRS may underestimate the number of errors while examining the final bit-vector.
SRS always assumes the worst case where any streak of ‘1’s in the final bit-vector is the result of
amending short streaks of spurious ‘0’s, despite the possibility it could be a sequence full of real
errors. When counting streaks of ‘1’s, SHD only assigns the minimal number of errors required
to produce the pattern (e.g., 1001111 Ñ 11111111 Ñ 1001001 3 errors counted when 5 errors
are present). By always assuming the worst case, SHD may underestimate the number of errors
in the final bit-vector and let incorrect mappings pass the filter. Although using a smaller SRS
threshold would help filter out such false positives, it would also let long streaks of spurious ‘0’s
pass the filter as we described in the previous paragraph. As a result, a carefully chosen SRS
threshold should consider both factors: it should neither be too small to omit long spurious ‘0’s
nor should it be too large to underestimate the number of errors. Figure 2.9a shows this dilemma,
as the false positive rate first drops and then slowly increases as SRS threshold increases. We
chose three as our SRS threshold because: 1, the false positive rate of SHD drops below 2%
(with the configuration of e “ 3) at three and remains steady afterwards and 2, with Intel SSE
platform we are only able to provide an efficient implementation of SHD with an SRS threshold
of no-more-than three (further elaborated in Supplementary Materials).

A sweep of the false positive rate of SHD against the variant allowed error rate (error thresh-
old divide by read length) is shown in Figure 2.9b. While the false positive rate of SHD increases
with larger allowed error rate, at 5% error rate (which is the upper limit of most available map-
pers [3, 4, 25, 47, 54, 59, 84, 100]), the false positive rate of SHD is only 7%, indicating a high
accuracy (ą 93%) of the filter.

2.4 Results

We implemented SHD in C, using Intel SSE. We compared SHD against three edit-distance cal-
culation/filtering implementations introduced in Section 1.3, they are: SeqAn [26], an implemen-
tation of Gene Myers’s bit-vector algorithm [74]; swps3 [94], a Smith-Waterman algorithm [92]
implementation; and FastHASH [102], an Adjacency-Filtering (AF) implementation. Both Se-
qAn and swps3 are also implemented with SSE and all implementations were configured to be

28



ERR240726 1 ERR240726 2 ERR240727 1 ERR240727 2 ERR240728 1

No. of Reads 4,031,354 4,031,354 4,082,203 4,082,203 3,894,290

Read Length 101 101 101 101 101

ERR240728 2 ERR240729 1 ERR240729 2 ERR240730 1 ERR240730 2

No. of Reads 4,389,429 4,013,341 4,013,341 4,082,472 4,082,472

Read Length 101 101 101 101 101

Table 2.1: Benchmark data, obtained from the 1000 Genomes Project Phase I [2]

single threaded.
We used a popular seed-and-extend mapper, mrFAST [4], to retrieve all potential mappings

(read-reference pairs) from ten real data sets from the 1000 Genome Project Phase I [2]. Table 2.1
lists the read length and read size of each set. Each read set is processed using multiple error
thresholds (i.e., e from 0 to 5 errors).

We benchmarked all four implementations using the same potential mappings (i.e., seed hits)
produced by mrFAST for a fair comparison of the four techniques. Figure 2.10 shows the execu-
tion time of the four techniques with different error thresholds across multiple read sets. Notice
that when the indel threshold is zero, SHD reduces to bit-parallel Hamming distance. A detailed
comparison against bit-parallel Hamming distance implementation is provided in Supplementary
Materials, Section 1.3.

Among the four implementations, SHD is on average 3ˆ faster than SeqAn and 24ˆ faster
than swps3. Although SHD is slightly slower than FastHASH (AF) when e is greater than two
(e.g., 2.5ˆ slower when e “ 5), SHD produces far fewer (on average, 0.25ˆ) false positives than
FastHASH (seen in Figure 2.11). Note, the speedup gained by SHD diminishes with greater e.
This is expected since the number of bit-parallel/SIMD operations of SHD increases for larger e.

Figure 2.11 illustrates the false positive rates of SHD and FastHASH (AF). SeqAn and swps3
both have a 0% false positive rate, compared to SHD which has a 3% false positive rate on
average. That being the case, SHD is only a heuristic to filter potential mappings while both
SeqAn and swps3 must compute the exact edit distances of the potential mappings.

As we discussed in Section 2.1, the false positive rate of SHD increases with larger e.
Nonetheless, the false positive rate of SHD at e “ 5 is only 7%, much smaller than the false
positive rate (50%) of FastHASH (AF) as Figure 2.11 shows.

With these results, a mapper can selectively combine multiple implementations together to
construct an efficient multi-layer filter/edit-distance calculator. For instance, a mapper can attach
SHD with FastHASH, in order to obtain both the fast-speed of FastHASH and the high accuracy
of SHD. A mapper can also combine SHD with SeqAn to obtain 100% accuracy without signif-
icantly sacrificing the speed of SHD. Of course, there are many possibilities to integrate SHD
into a other mappers, but a comprehensive study of this topic is beyond the scope of this work
and is part of our future work.
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Figure 2.10: The execution time of SHD, SeqAn, swps3 and FastHASH (AF) with different error
thresholds (e) across multiple read sets.
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Figure 2.11: The false positive rates of SHD and FastHASH (AF) with different error thresholds
(e) across multiple read sets.

2.5 Conclusion
Most potential mappings that must be verified by seed-and-extend based mappers are incorrect,
containing far more errors than what is typically allowed. Our proposed filtering algorithm, SHD,
can quickly identify most incorrect mappings (through our experiment, SHD can filter 86 billion
potential mappings within 40 minutes on a single thread while obtaining a false positive rate of
7% at maximum), while preserving all correct ones. Comparison against three other state-of-the-
art edit-distance calculation/filtering implementations revealed that our Intel SSE implementation
of SHD is 3ˆ faster than SeqAn [26], the previous best edit-distance calculation technique.
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Chapter 3

LEAP: A Generalization of the
Landau-Vishkin Algorithm with Custom
Gap Penalties

3.1 Background

While edit-distance provides a coarse measurement of similarities between the read and the ref-
erence, it is often considered too unrefined to be directly applied for biological analysis. Most
notably, it gives equal penalties to insertion, deletion and substitution of base-pair, no matter
where such errors occurs between the read and the reference.

Assigning equal penalties to insertions, deletions as well as substitutions alike is often con-
sidered inaccurate since insertions and deletions happen much less frequently in nature than
substitutions [19]. Furthermore, measuring similarity by edit distances suggests that consecutive
insertions or deletions (or simply indels), or indel of a single long continuous sequence, share
an equal penalty with multiple discrete short indels, as long as their total length equals the con-
tinuous long indel. This practice is also imprecise, as in nature having multiple indels in a short
span is much less likely than having a single but longer indel. In fact, a single mutational event
can create indels of different sizes; hence the likelihood between two individual indels does not
share much difference, especially when their lengths do not differ in magnitudes. Overall, a good
penalty score should differentiate penalties between indels and substitutions, as well as applying
less penalty to single larger indel than multiple smaller indels.

One mostly common used penalty scheme that satisfies above requirement is the affine-gap
penalty score. Given an indel of length w, affine-gap assigns a total penalty of gpwq “ popen `
w ¨ pextend to the indel, where popen is dubbed gap open penalty while pextend is the gap extension
penalty. The key idea of affine-gap penalty is that popen designates the penalty of having a
mutational event, while pextend guarantees that short indels are penalized less compared to long
indels, as long indels occur less frequently.

A major benefit of using edit distance, as opposed to affine-gap penalties, is that edit distance
algorithms have been thoroughly studied with many improvements. Most of the past improve-
ments focus on speeding up the canonical dynamic programming algorithm which fills an LˆL
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matrix (assuming the two strings are of equal length L), as covered in the previous section.
An alternative strategy to the canonical dynamic programming method, is to iteratively find

the longest matching substrings with an increasing number of edits. This concept was first pro-
posed by Landau and Vishkin ([46]) and is often called the Landau-Vishkin algorithm For sim-
plicity, we refer to the Landau-Vishkin algorithm as LV for the reminder of this chapter. One
limitation with LV is that it was only proposed for edit distance scoring schemes and it is not
proven to work for more general scoring schemes, including affine-gap penalties.

LV uses the fact that edit-distance is conserved along the diagonal for a sequence of matches,
so it can simply traverse along the diagonal to the position of the next error. The length of the
traversal is LCEpi, jq (longest common extension), which is the length of the longest prefix which
si..m and rj..n share.

LV uses a variant matrix for edit-distance computation: LVd,e stores the maximal row along
diagonal d with edit distance e, where d is calculated as j ´ i, where i is the row and j is column
in the edit-distance matrix. By conditioning on the last error, the recurrence for LV follows:

LVd,e “

max

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

LVd,e´1 ` 1` LCEpLVd,e´1 ` 2,LVd,e´1 ` d` 2q
l jh n

substitution

LVd´1,e´1 ` LCEpLVd´1,e´1 ` 1,LVd´1,e´1 ` d` 1q
l jh n

insertion

LVd`1,e´1 ` 1` LCEpLVd`1,e´1 ` 2,LVd`1,e´1 ` d` 2q
l jh n

deletion

3.2 Contributions
In this chapter, we present an extension to the LV algorithm. We show that the same principle
of Landau-Viskhin can be applied not only to global approximate string matching with edit dis-
tance penalty scores, but also to any banded global or semi-global approximate string matching
problems with non-negative scoring schemes. To achieve this, we first propose a generalization
of the approximate string matching problem called the Leaping Toad problem and show that
all banded global and semi-global approximate string matching problems with positive penalty
scores can be transformed into the Leaping Toad problem. Then we propose LEAP, a general
dynamic programming solution for the Leaping Toad problem based on the Landau-Vishkin al-
gorithm. Finally we provide a bit-vectorized de Bruijn sequence-based optimization over LEAP.
We show that LEAP is 7.4x faster than the state-of-the-art bit-vector edit-distance implemen-
tations and 32x faster than the state-of-the-art parallel affine gap penalty Needleman-Wunsch
implementations.

LEAP provides the following contributions:
• It proposes the Leaping Toad problem, a generalization of all banded global or semi-global

approximate string matching problems with positive penalty scores. It then shows the de-
tailed procedure of transforming approximate string matching problems with edit distance
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penalty scores and affine-gap penalty scores into the Leaping Toad problem.
• It provides a new algorithm, LEAP, an extension of the Landau-Vishkin’s algorithm, that

solves the general Leaping Toad problem.
• It provides a detailed proof of the optimality of LEAP. The proof confirms that LEAP

captures the minimum-score edit sequence between the two strings, under any positive
penalty scoring scheme.

• It provides a bit-vectorized, de Bruijn sequence-based optimization over LEAP, which uses
a perfect hash function that exploits properties of de Bruijn sequences to find the position
of the most significant ‘1’ in a bit-vector with simple bit-vector operations.

• It shows that bit-vectorized LEAP is 7.4x faster than the state-of-the-art edit-distance ap-
proximate string matching implementations and up to 32x faster than the state-of-the-art
affine-gap approximate string matching implementations.

3.3 Methods
Both the global and semi-global Banded Edit Distance Problem (BEDP) and Banded Affine Gap
Distance Problem (BAGDP) can be generalized as a restricted optimal path finding problem in
a directed acyclic graph. We call this the Leaping Toad problem (LTP). In this section, we first
propose the Leaping Toad problem, and we show how a general edit-distance problem can be
converted to an instance of LTP. Subsequently we propose an improved dynamic programming
algorithm LEAP as a solution, followed by a proof of its optimality. We discuss the backtracking
process of LEAP. In addition, we provide a de Bruijn sequence-based bit-vector optimization
over LEAP. Finally, we discuss specific optimizations to the algorithm for affine-gap penalties.

Figure 3.1: A swimming pool setup with LEAP of the banded edit distance problem.

3.3.1 The Leaping Toad Problem
The Leaping Toad Problem (or simply LTP) can be summarized as a traversal problem in a
special directed acyclic graph, where a toad travels in the weighted graph and the goal is to find a
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path that connects the origin and the destination vertices while minimizing the sum of edge costs
along the path.

The directed acyclic graph of LTP is described as follows:
• There is a convex swimming pool that encircles vertices taken from a 2-dimensional vertex

grid, where vertices are aligned in rows and columns. Vertices in the swimming pool are
then organized into disjoint lanes which are rows in the vertex grid. Inside a lane, each
vertex is connected to the next vertex on its right by a directional edge, with itself being
the source and the vertex on the right being the destination. We call these edges as forward
edges. Forward edges only exist among vertices inside the swimming pool and do not exist
for vertices outside of the swimming pool.

• A vertex may also have edges pointing to vertices in other lanes. We call these edges leap
edges. In LTP, for a vertex and a separate lane, there can be at most one leap edge pointing
to at most one vertex in that lane. In other words, there can not be multiple edges pointing
to the same lane from the same vertex. We also require all the vertices in the same lane
share the same types of leap edges: the same directions and lengths. When visualized, leap
edges between two lanes are an array of parallel arrows. Notice that some leap edges might
have their source and/or destination vertices staying out of the swimming pool and we call
these edges out edges. Outside of the swimming pool enclosure, out edges continue to
exist, connecting vertices between different lanes.

• Over any edge, there is a non-negative integer weight. Leap edges sharing the same origin
and destination lanes have the same, positive weight. Forward edges have zero or positive
weights. We call forward edges with positive weights as hurdles. Traveling across a hurdle
is called hurdle crossing. Hurdles may have different costs.

In the swimming pool, we appoint a number of lanes as origin lanes and a number of lanes
as destination lanes. The set of origin lanes and destination lanes may overlap. The general goal
of the LTP is to find a path in the directed graph, with minimum sum of edge weights, that starts
at the first vertex (the leftmost vertex in the swimming pool of the lane) of an origin lane and
either travels to the last vertex of a destination lane or travels out of the swimming pool
while exiting onto a destination lane.

For simplicity, we call edge weights as energy costs; we call traveling along the leaping edge
as leaps. Also for the simplicity of developing a solution, we require all the leaping edges to
never point backwards to vertices in previous columns on the left. A relaxation of this restriction
is discussed in the Discussion section.

Figure 3.1 shows an example setup of the swimming pool as well as the optimal path to cross
the pool (in red). In this setup, as the figure shows, the toad starts at the first vertex in the middle
lane on the left side of the pool and the goal is to travel to the last vertex of the middle lane on
the right side of the pool. In a lane, black crosses are placed on the hurdle edges.

In this particular setup, the toad can only leap to neighboring lanes, as the arrow shows. The
leaping edges are set differently depending on whether the lane is 1) the middle lane, 2) above
the middle lane or 3) below the middle lane. If it is in the middle lane, leaping edges are tilted
by 45 degrees pointing to the vertex in the next column as they point to neighboring lanes. For
other lanes, leap edges are vertical when they point towards the center lane and are tilted by 45
degrees when they point away from the center lane. Here we also set the energy cost of hurdles
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as well as leaps as 1. The red line depicts an optimal path for the toad to travel across the pool.
Notice that there can be multiple optimal paths with the same total energy cost (shown as dashed
red lines).

There are many alternative setups to LTP. For an alternative setup, a number of settings could
be changed:

1. The energy cost of overcoming different hurdles can be different.

2. There can be leap edges pointing to more lanes.

3. The energy cost of leaps can be random and lane specific.
Figure 3.2 shows an alternative setup.

Figure 3.2: An alternative swimming pool setup with LEAP using custom penalties.

3.3.2 Conversion of Approximate String Matching to the Leaping Toad
problem

Both the banded edit distance and the banded affine gap string matching problems can be con-
verted to an instance of LTP. To convert both problems into LTP, we first convert both string
matching problems into an optimal path finding problem in a directed graph. Then we show that
the optimal path problem in the converted directed graph is indeed an instance of LTP.

The Banded Edit Distance Problem (BEDP) can be easily converted into an optimal path
finding problem in a directed graph. For simplicity, we assume BLDP takes a pair of equal-length
strings, such as strings r, s of length L. For the pL`1qˆpL`1q edit-distance matrixD, we assign
each element Di,j of the matrix a unique vertex vi,j . Using the edit-distance recurrence function,
a directional edge is drawn from vertex vi,j to vi1,j1 if and only if vi,j ‰ vi1,j1 and i1 ´ i ď 1 and
j1 ´ j ď 1 (an edge to the right, bottom and bottom-right element). On each edge pvi,j, vi1,j1q,
we place an integer weight w, where w “ 0 if i1 “ i ` 1, j1 “ j ` 1, and si “ rj , or w “ 1
otherwise. An example of the directed graph representation of the edit distance problem is shown
in Figure 3.3. The objective function of BLDP becomes an optimal path finding problem where
we want to find a path with minimum total edge weight within the edit-distance threshold e from
v0,0 to vL,L.

For BLDP, the equivalent swimming pool directed graph setup is shown in the example in
Figure 3.1. We call this the Edit Distance Leaping Toad setup. In general, given a pN ` 1q ˆ
pN ` 1q LDP matrix and a maximum edit-distance threshold e, we formulate the equivalent Edit
Distance Leaping Toad setup as the following:
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Figure 3.3: The directed graph representation of the dynamic programming method of the banded
edit distance problem.

The swimming pool has 2e` 1 lanes. The lane l contains L´ |l| vertices, specifically the set
of vertices vi,j such that i ´ j “ l. As Figure 3.1 shows, the right-end of all lanes are aligned
while the left-end of the lanes forms a wedge shape. Each lane in the swimming pool corresponds
to a diagonal in the edit-distance matrix by construction: the center lane represents the central
diagonal and the kth lane above or below the center lane represents the kth diagonal above or
below the central diagonal.

After mapping vertices and edges accordingly, we can observe that a hurdle is placed in the
lane l between the kth and the k ` 1st vertex if the corresponding edge in the BLDP graph has
nonzero weight. Also for each lane in the pool, there are leap edges pointing to neighboring
lanes. For the center lane (l “ 0), leap edges are always tilted by 45 degrees. When they are
on any other lane, leap edges are vertical when they are pointing towards the center lane and are
tilted by 45 degrees when they are pointing away from the center lane. All hurdles and leaps cost
1 unit of energy.

After converting BLDP to the Edit Distance Leaping Toad setup, the goal becomes:

1. Determine if the toad can swim from the first vertex of the center lane to the last of the
center lane while spending at most E energy.

2. If it can, then find the path that costs the minimum amount of energy. While there is
slightly different from the goal of LTP, which allows traveling out of the swimming pool
and allows terminating on the center lane but outside of the swimming pool, we will show
later that for BLDP with small edit distance budget E, the result path of LTP is either the
same with BLDP, or can be easily transformed into the path of BLDP. For now, we the goal
of LTP is equivalent to the goal of BLDP.

The equivalence between the two directional graphs of LTP and BLDP can be visualized in
Figure 3.4. For the vertex at the kth column of the lth lane above (or below) the center lane in
the swimming pool, we assign its equivalent vertex in the edit distance direction as the vertex of
element Ex,y in the edit-distance matrix E, where x “ k´ l and y “ k (or x “ k and y “ k´ l).
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For example, the red, yellow, and blue vertices highlighted in both figures are equivalent between
the two graphs, as well as their inbound and outbound edges. It’s worth noting that vertices in the
same column in the swimming pool forms a mirrored “L” shape in the BLDP graph (highlighted
as purple lines in both graphs in the figure), with the vertex of the center lane on the corner. Also,
no leap edges point backwards. All leap edges point either to vertices in the same column or in
the next column.

For semi-global alignment, the objective function of BLDP changes from finding an optimal
path from the top-left element of the matrix to the bottom-right element of the matrix (global
alignment), to finding an optimal path from any element of the first column of the matrix to
any element of the last column of the matrix (semi-global alignment), we simply need to
reflect the same changes in LTP. Therefore for semi-global alignment, the objective function in
the Leaping Toad setup changes to finding an optimal path from the first vertex of bottom half
lanes to the destination of top half lanes with minimum energy cost.

Figure 3.4: Illustration of the equivalence between the directed graph in Figure 3.3 and the
Leaping Toad setup in Figure 3.1.

For Banded Affine Gap Distance Problem (BAGDP), or in general for any banded custom-
gap-penalty string-matching problem (with a maximum insertion or deletion threshold k, a max-
imum energy budget E and positive gap penalties for different gap lengths), as now the toad
can take an arbitrary length insertion or deletion (within the insertion limit k) and each insertion
length has its own penalty score, we modify the swimming pool setup as each lane can have leap
edges pointing to up to k lanes above and below the lane. Leap edges having the same origin but
different destinations will have different energy costs. Figure 3.2 shows the leaping toad setup
for a global BAGDP with a specific affine gap penalty scheme, where mismatches are penalized
with +2, gap openings are penalized with +3 and gap extensions are penalized with +1.

3.3.3 LEAP: The General Solution of the Leaping Toad Problem
Similar to approximate string matching problems, the Leaping Toad Problem can be solved
through dynamic programming. Since we restrict the toad from ever going backward, the toad
can only reach a vertex from another vertex that is from the same or previous column. Therefore,
for each new column, we can find the optimal paths leading to its vertices, as well as the mini-
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mum traveling energy, by reusing the optimal path results from previous columns: for each new
vertex, we find all prior-vertices that can reach to the target vertex in one step, then pick the prior-
vertex that requires the least amount of combined energy of both reaching to the prior-vertex and
the intermediate move. We repeat this process until either we have reached a destination vertex,
or no vertices in a column is still within the energy budget.

A major drawback of the above naı̈ve dynamic programming solution of the Leaping Toad
Problem, as with the naı̈ve dynamic programming solution of the edit-distance problem, is that
for each new vertex, we have to compare all of its previous-step vertices, then pick the vertex
with the minimum overall energy cost. Similarly in backtrack, as we move one step backward at
a time, we have to once again resolve the previous-step vertex for each and every vertex along
the optimal path.

Inspired by the Landau-Vishkin algorithm for the edit-distance problem, we propose an im-
provement over the naı̈ve solution of the Leaping Toad problem. We only consider switching
lanes at vertices that are right before a hurdle. When there is no hurdle, we always let the toad
swim forward; therefore avoid frequently checking possibilities of leaping from other lanes. We
name this algorithm LEAP.

LEAP is developed upon a key observation that among all possible optimal paths with mini-
mum energy costs, there must exist at least one optimal path that the toad either never leaps or
only leaps right before a hurdle or only leaps through out edges.
Theorem 1. Among all optimal paths of the Leaping Toad problem, there must exist one path in
which the toad either never switches lanes or only switches right before hurdles.

Before proving the theorem, we first define some terminology: we refer to a path from the
origin vertex to the destination vertex simply as a path. The path may or may not have any lane
switches. Whenever there is a lane switch, we call it a leap. Between two leaps, the toad only
goes forward and we call such straight segments of the path as segments. We further categorize
segments into two groups: segments that end with the destination vertex or a hurdle as complete
segments and segments that do not end with such conditions as incomplete segments. We call
the operation that extends the incomplete segment until it either reaches a destination vertex or
a hurdle as completing the segment. Equipped with this terminology, we are now ready to prove
the stepping-stone lemma of Theorem 1:
Lemma 1. For a path with an incomplete segment S, there must exist an alternative path that
shares the same moving sequence before S, while completing S into Sc and have at most the
same cost.

Proof. To prove the lemma, we need to find an alternative path that supports the claim. Assume
in the original path, after S, the path continues with a series of leaps and segments, denoted as a
moving sequence, [L1, S1, L2, L3, S2, . . . ], where Si is the ith segment after S while Lj is the jth
leap after S. Note that between two leaps there can be either zero or one segment, while between
two segments there has to be at least a single leap.

Assuming that Sc is d vertices longer than S (|Sc| “ |S| ` d), we propose an alternative path
that shares the same segments and leaps before S, followed by Sc, and then continues with the
same sequence of leaps [L1, . . . , Lt], while skipping all the segments from S1 to Sk´1, where
řk´1
i“1 |Si| ă d ď

řk
i“1 |Si|, and Lt is right before Sk in the original moving sequence.
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If d ă
řk
i“1 |Si|, which suggests that after taking [L1, . . . , Lt], the alternative path merges

with the original path somewhere in Sk, then we also add the latter half of Sk after the merge
point. The alternative path is then completed with the same moving sequence after Sk.

If original path does not have enough segments after S to match the length of d, then the
alternative path simply takes the remaining leaps while skipping all the remaining segments. In
this special case, the toad will take the out edges and leap out of the pool to finish the leaping
sequence.

Compared to the original path, the alternative path is guaranteed to have at most the original
energy cost. This is because:

1. The energy cost before S in the original path and before Sc in the alternative path are
identical as they take identical moving sequences.

2. The energy costs of the two paths after the merge point (if they do merge) are also identical,
as the two paths also take identical moving sequences.

3. The energy cost of the leaping sequence after Sc and before the merge point of the al-
ternative path is at most the energy cost of the moving sequence after S and before the
merge point in the original path. This is because the original path takes the same leaping
sequence [L1,. . . ,Lt] (according to the settings of the LEAP problem, the energy cost of
a leap only depends on the source and destination lanes but is irrelevant to the horizontal
position of the toad. Hence, same leaping sequences have the same leaping energy costs,
even if the horizontal positions of the leaps are different) but the other segments skipped
by the alternative path may contain hurdles and hence cost extra.

4. The energy costs of S and Sc are identical since Sc is only a completion of S, and by
construction the extension is free of hurdles so it costs zero energy.

Figure 3.5 depicts an example of converting a segment S in the original path (red) into Sc
with an alternative path (blue) using the above procedure. Compared to the red path, the blue
path consumes less energy as the red path contains segments with hurdles which are skipped by
the blue path.

Figure 3.5: An example of Lemma 1.
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With Lemma 1, we are now ready to proof Theorem 1. We prove through contradiction:

Proof. Assume there exist no optimal paths that either never leap or only have complete seg-
ments. Then for any optimal path, it must take at least one leap and have at least one incomplete
segment.

We arbitrarily pick an optimal path ρ1 and find the first incomplete segment S1 in the path.
Following the procedure in Lemma 1, we can find an alternative path ρ2 without the incomplete
segment S1 with the same energy cost (ρ2 cannot have a smaller energy cost; otherwise ρ1 is
not optimal). ρ2 is also an optimal path, so by assumption, it must contain another incomplete
segment S2. We subsequently repeat the procedure.

The above process can only iterate a finite number of times since the procedure in Lemma 1
does not introduce any new segments, as completing S into Sc maintains that segment, and the
procedure skips the segment sequence [S1,. . . ,Sk´1] and may either shorten or skip Sk, depending
on the position of the merge point. Hence each iteration removes a incomplete segment. Given
that there are finite number of incomplete segments, there can only be finite number of iterations.
The final product after all iterations is a path with no incomplete segments with the same energy
cost as ρ1. However, according to our assumption, such path does not exist. Hence, this leads to
a contradiction, which proves Theorem 1.

With Theorem 1, we now transform the general Leaping Toad problem of finding an optimal
path with minimum cost to a sub-problem that finds an optimal path which only contains complete
segments. As we have proven in Theorem 1, the resulting optimal path of the sub-problem must
also be an optimal path of the general Leaping Toad problem.

LEAP solves the above sub-problem through an optimized dynamic programming method
that can be viewed as an extension of the Landau-Vishkin algorithm. LEAP can be summarized
into four steps:

1. LEAP iterates through all intermediate energy costs from 0 to E and for each energy cost,
LEAP iterates through all lanes.

2. For an intermediate energy cost e and a lane l, LEAP finds the furthest vertex v in l that is
reachable at precisely the energy cost e from either a leap or a hurdle-crossing.

3. LEAP extends the segment at v (if permitted) until the segment hits a hurdle.

4. LEAP repeats step 2) and 3) until either a lane has reached to the destination vertex or
all intermediate energy levels have been exhausted. The path that leads to the destination
vertex is reported as the final path.

To summarize, LEAP uses a core recurrence function shown below:

startrlsres “ min
@l1Planes

endrl1sre´ P pl1, lqs ` F pl1, lq

endrlsres “ startrlsres ` VtHpl,startrlsresq

In above equations, P pl1, lq returns the penalty of leaping from lane l1 to l; F pl1, lq re-
turns the number of columns the toad moves forward when it leaps from lane l1 to l, and
VtHpl,start columnq (abbreviated for Vertices to Hurdle) returns the number of vertices
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until next hurdle from start column in lane l. When l “ l1, P pl, l1q is simply the energy cost
of the next hurdle and F pl, l1q “ 1.

The detailed pseudo-code of LEAP is shown in Algorithm 4.
Theorem 2. The final path returned by LEAP is indeed an optimal path of the sub-problem.

We validate the correctness of Theorem 2 using two arguments. First, all segments in the
final path of LEAP are guaranteed to be complete, because in step 3, LEAP always extends a
segment until it reaches a hurdle. Second, for any energy cost e and any lane l, the last vertex
extended in step 3 (if any) marks the furthest vertex that the toad can reach to in l using precisely
e energy. Combining both arguments, we can conclude that if LEAP can find a path that reaches
to the destination vertex with energy cost e ă E while the toad cannot reach the destination with
energy cost e1 ă e, then the energy cost of the optimal path of the Leaping Toad sub-problem
must be e (otherwise, according to the second argument, for a smaller energy, the toad would
have already reached the destination) and the final path returned by LEAP must be an optimal
path.

Proof. The first argument is obvious. The second argument can be proven through induction:
Base case: When e = 0, since any leap or hurdle-crossing would consume a non-zero amount

of energy, the furthest vertex the toad can reach in a lane with zero energy cost would be the last
vertex in the lane before hitting a hurdle. Therefore, the second argument holds true for the base
case.

Induction step: Assume for all intermediate energy costs e1 ă e, and for all lanes, the second
argument holds true. That is, for any lane l1, the last vertex endrl1sre1s reached by step 3 in LEAP
marks the furthest vertex the toad can reach in l1 while consuming precisely e1 amount of energy.

Now, because both hurdle crossings and leaps cost positive amount of energy, to get to a
vertex with e ‰ 0 energy cost in lane l, the toad has to either leap from a vertex in another lane
or cross a hurdle in the same lane from a vertex in which the the total energy cost to get to that
vertex is less than e . Since LEAP has already calculated the furthest vertices of all lanes for all
energy levels e1 ă e (based on our assumption), we can conclude that step 2 of LEAP will find
the furthest vertex in l such that it is reachable from either a leap or a hurdle-crossing at precisely
e energy cost.

Finally the only remaining method for the toad to get to a vertex while costing e energy, is
to swim straight, without running into a hurdle, from a previous e-energy vertex. This vertex is
also captured by LEAP in step 3. Therefore, the argument is correct for the induction step.

Conclusion: After step 3, LEAP always reflects the furthest vertex the toad can reach in the
target lane l under the target energy cost e.

3.3.4 Backtracking in LEAP
The pseudo-code of the backtracking method of LEAP is shown in Algorithm 5.

A remaining issue with LEAP, or LTP in general, is that it allows the toad to leap out of the
swimming pool (recall the LTP and BLDP equivalent-goal assumption we made in Section 3.2).
According to the LTP problem definition, as long as the toad reaches to a destination lane, even
if the destination vertex is outside of the pool, the path is still acceptable. Translated back to
approximate string matching problems, this sometimes leads to awkward results, since insert-
ing or deleting letters (counterparts of leaps in the approximate string matching notion) beyond
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Algorithm 4: LEAP
Input: E, destination lanes, origin lanes
Output: pass; final lane; final energy;
Initialization: endrlsres = startrlsres = ´MAX INT, @pl, eq;
final energy = MAX INT
Functions:
VtHpl, posq: computes the number of vertices until the next hurdle from column from pos
in lane l.

Pseudocode:
// Initialization
for l in r´k...` ks do

if l in origin lanes then
startrlsr0s = origin lanesrls;
length = VtHpl,start[l][0]q;
endrlsr0s = startrlsr0s + length;

// Iterate through all energy levels
for e “ 1 to E do

// Finds the furthest starting position
// after a leap or a hurdle-crossing
for l in r´k...` ks do

for l1 in r´k...` ks do
e1 “ e´ P pl1, lq;
if e1 ě 0 ^ endrl1sre1s then

candidate start = endrl1sre1s ` F pl1, lq;
if candidate start ¿ startrlsres then

startrlsres = candidate start;

// Find how long the toad can travel
// without running into a hurdle
length = VtHpl,start[l][e]q;
endrlsres = startrlsres + length;
if endrlsres ě destination lanesrls then

if e ă final energy then
final lane = l;
final energy = e;

pass = final energy ă E;

the end of the string is undefined. For instance, assume we are computing the global alignment
between strings “AAAAAC” and “AAAAAG” with a simple scoring scheme: mismatches are pe-
nalized with +5, single letter gap is penalized with +4, double letter gap is penalized with +2
(this gap penalty might not make sense for DNA alignment, as here single letter gap is more
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costly than double letter gap). For this particular string pair, the correct edit sequence would be,
M-3I-2D-2, which translates to, “3 matches, inserting 2 letters, then deleting 2 letters”. The
minimum edit cost would be +4. When subjected to LEAP, this string pair will instead generate
an edit sequence of M-4I-2D-2. We have M-4 simply because LEAP does not consider taking
a leap before running into a hurdle, which in approximate string matching notion, is the C-G
mismatch. Although the energy cost of the LEAP path is still +4, the edit sequence clearly does
not make sense since one cannot delete two letters after 4 matches when there is only a single
letter C left.

Algorithm 5: Backtrack
Input: final lane; final energy; origin lanes
Output: path; path count
Pseudocode:
// Initialization
l “ final lane;
e “ final energy;
pathr0s.start“startrlsres;
pathr0s.end“endrlsres;
path count“ 1;
// Stop when reached origin
while startrlsres ‰ origin lanesrls do

pathrpath counts.start“startrlsres;
pathrpath counts.end“endrlsres;
for l1 in r´k, . . . ,`ks do

e1 “ e´ P pl1, lq;
if endrl1sre1s ` F pl1, lq ““ startrlsres then

l “ l1;
e “ e1;
break;

path count``;

We can easily correct backtracking sequences from the out-of-bound LEAP backtrack se-
quences. Our work assumes that forward edges without hurdles always cost 0 energy. This
corresponds to matches in approximate string matching and alignment. Hence, we can remove
matches from the out-of-bound LEAP backtrack sequence until the length matches the intended
length. This transformation maintains the total energy cost. For the above example, the intended
sequence length is 7. So we have to simply remove one match, and we can remove the last M and
transform M-4I-2D-2 to M-3I-2D-2, which is an optimal edit sequence.

3.3.5 De Bruijn Sequence Optimization
While LEAP can drastically reduce the number of comparisons in the dynamic programming
solution of the Leaping Toad problem, step 3 of LEAP still involves a costly loop that searches
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for the next hurdle.
By encoding the hurdle information as bit-vectors, we can significantly improve the perfor-

mance of step 3 using de Bruijn sequences and bit-vector operations. The detailed technique is
described in [49]. Here we provide a brief summary of the technique.

First, we encode the sequence of all forward edges (edges that go straight) of a lane as a
bit-vector, where ‘0’ denotes an edge that does not have a hurdle in between the two connected
vertices while ‘1’ denotes an edge that does. For example, the middle lane in Figure 3.1 can be
represented as ‘0001111110’.

Counting the number of edges before the next hurdle after the ith vertex is equivalent to
counting the number of 0’s from the ith bit until we hit a 1. After shifting the bit-vector i bits to
the left, the problem then becomes finding the position of the most significant 1 in the resulting
bit-vector, which is equivalent to counting the number of trailing 0’s of the reverse bit-vector.

First proposed in the paper of [49], counting the number of trailing 0’s in a bit-vector can be
carried out through a hash-table lookup with a perfect hash function. Assume the machine word
has a length of 2n bits. The least significant 1 of a vector b can be singled out by bANDed with its
two’s complement number b̄ (computed through NOTpbq`1). For example for a machine of word
size of 23 “ 8 bits, the least significant 1 of a vector b “ 01001000 can be singled out by b AND b̄
which is bLSB “ 01001000 AND p10110111` 1q “ 01001000 AND 10111000 “ 00001000 (LSB
stands for least significant bit). Then the number of trailing 0’s can be computed by multiplying
bLSB with a pre-computed de Bruijn sequence dBseq of 2n bits (in our example, n “ 3 and
subsequently dBseq “ 00011101). Because bLSB must be power of two, bLSB ˆ dBseq essentially
translates to shifting bLSB to the left m times, where m is the number of trailing zeros. By taking
the most significant n bits of the product (carried out through shifting the product to the right
2n ´ n bits), we have then produced a unique number, a key, between [0, . . . ,2n ´ 1]. Finally,
we can use the key to query a pre-computed lookup table of 2n entries, which returns the pre-
computed number of trailing 0’s in bLSB. The example lookup table for dBseq “ 00011101 is
provided below in Table 3.1.

000 0
001 1
010 6
011 2
100 7
101 5
110 4
011 3

Table 3.1: The de Bruijn sequence LSB lookup table for 8 bit words.

The pseudo code of finding the next hurdle is shown in Algorithm 6.

3.3.6 LEAP Variant for Affine Gap Penalty
Similar to the Needleman-Wunsch, LEAP can also be modified to more efficiently support affine
gap penalties using separate insertion I and deletion D matrices. Instead of tracking leaps from
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Algorithm 6: Vertices To Hurdle
Input: l; start pos
Output: V num
Internal Variable: bit vec: hurdle encoded binary bit-vectors; dBseq: de Bruijn sequence
of 2n bits

Functions: reverse bitspbitvecq: reversing the bit-vector sequence
lookuppkeyq: lookup the precomputed de Bruijn sequence table
Pseudocode:
// Initialization
shift bit vec = bit vecrls ! start pos;
rev bit vec = reverse bitspshift bit vecq;
b LSB = rev bit vec ^p prev bit vecq ` 1q;
key = (b LSB ˆdBseqq " 2n ´ n;
V num = lookuppkeyq

all possible lanes, with affine gap penalty we maintain an I and a D matrix separately for each
lane to track the furthest column the toad can reach to from a leap, under different energy costs.
Specifically, Irlsres and Drlsres stores the furthest column that the toad can arrive to, from an
upward or downward leap, respectively, while consuming precisely e energy.

With I and D arrays, we modify the core recurrence function as follows:

Irlsres “ max

"

Irlsre´ gap ext costs ` F pl ´ 1, lq
endrlsre´ gap open costs ` F pl ´ 1, lq

Drlsres “ max

"

Drlsre´ gap ext costs ` F pl ` 1, lq
endrlsre´ gap open costs ` F pl ` 1, lq

startrlsres “ max

$

&

%

Irlsres
Drlsres
endrlsre´ mismatch costs ` 1

endrlsres “ startrlsres ` VtHpl,startrlsresq

where F pl ´ 1, lq “ 0 if lane l is above the center lane and F pl ´ 1, lq “ 1 otherwise, and
F pl ` 1, lq “ 0 if lane l is below the center lane and F pl ´ 1, lq “ 1 otherwise.

3.4 Results
We implemented LEAP for both banded edit distance and banded affine gap penalties. For each
scoring scheme, we compare LEAP against three state-of-the-art approximate string matching
implementations, including: an in-house vanilla Landau-Vishkin implementation (LV); an imple-
mentation of Gene Myer’s bit-vector algorithm from SeqAn (SeqAn) ([26]) and finally a SIMD
implementation of banded global Needleman-Wunsch algorithm (NW-SIMD) ([23]). Addition-
ally, in order to benchmark the benefit of the de Brujin sequence-based bit-vector optimization,
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we implemented two versions of LEAP: one with (LEAP-BV) and one without (LEAP), the
bit-vector optimization.

To benchmark the performance of the above implementations, we augmented a popular
aligner, bowtie2, to dump all read and reference pairs into a separate file as ASCII string pairs,
during the mapping procedure. For comprehensiveness, we gathered reads from six read files
from the 1000 Genomes Project ([1]), ERR240726 1, ERR240726 2, ERR240727 1, ERR240727 2,
ERR240728 1, ERR240728 1. Each read file is mapped against the human reference genome
version 37 with bowtie2 under default settings. All reads in the above read files are 100-bp long.
For banded edit distance, we benchmarked all six implementations with different edit-distance
thresholds E ranging from 1 to 5. For banded affine gap penalties, we set the matching score as
0; the mismatch penalty as +2; gap open penalty as +3 and gap extend penalty as +1. We set the
total affine gap penalty threshold to be 3ˆ E.

Finally, we conducted two separate tests. In the first test, shown in Table 3.2, we bench-
marked all read and reference pairs from bowtie2 on all 6 implementations. In the second test,
shown in Table 3.3, we only selected read-reference pairs that have at most five edits. While the
first test evaluates the performance of different implementations under a realistic mapper envi-
ronment, the second test evaluates how fast can each implementation find the optimal alignment
in a highly similar string pair.

From both tables, we can observe that LEAP-BV is the fastest in both edit distance setup and
affine gap setup. For edit distance, compared to SeqAn, LEAP-BV achieves up to 7.4x speedup
under E “ 1 and 1.6x speedup under E “ 5. For affine gap, compared to NW-SIMD, LEAP-
BV achieves even greater performance, with up to 32x speedup under E “ 1 and 2.3x speedup
under E “ 5. Notice that even though both vanilla LV and SeqAn are reasonably fast under
edit distance settings, neither support affine gap penalties due to their tight coupling with edit
distance scores.

Furthermore, we observe that the performance of LV and LEAP are very similar. This is
expected since under edit distance scores, LEAP reduces to LV. We also observe that the per-
formance of both LEAP and LEAP-BV decreases with increasing E. This is also expected,
since under a greater E, LEAP checks more lanes and iterates through more energy levels. We
also notice that both LV and LEAP run slightly slower in Table 3.3 than Table 3.2. This is be-
cause Table 3.3 benchmarks highly similar string pairs, many of which contain long segments
of identical substrings. As a result, for both LV and LEAP, the loop searching for the next hur-
dle runs longer. However, since LEAP-BV computes the length of the identical subustrings in
bit-vectorized fashion, the speed of LEAP-BV between the two tables remains consistent.

Last but not the least, compared to LEAP, LEAP-BV provides on average 39% improvement.
Overall, LEAP performs best under small edit-distance thresholds, while its performance

quickly decreases as the edit-distance threshold increases. Nonetheless, from our experiments,
LEAP-BV is still faster than other implementations even under moderate edit-distances.

3.5 Discussion
While we required the toad to never move backwards while it leaps in the original definition of
the Leaping Toad Problem, this requirement is not a necessity for LEAP. Both Theorem 1 and
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e LEAP-BV LEAP LV NW-SIMD SeqAn
Edit Distance 1 0.84 1.28 1.25 38.81 6.21

2 1.48 2.07 2.03 38.91 6.66
3 2.39 3.14 3.11 38.61 6.28
4 3.35 4.50 4.45 38.38 6.59
5 4.60 6.01 6.04 38.46 6.88

Affine Gap 1 1.18 1.72 N/A 38.75 N/A
2 3.10 4.01 N/A 38.15 N/A
3 6.39 7.77 N/A 38.64 N/A
4 10.91 13.31 N/A 38.66 N/A
5 16.91 20.74 N/A 38.51 N/A

Table 3.2: Runtime for a suite of Approximate String Matching algorithms normalized to seconds
per 10 million read/reference pairs from bowtie2.

e LEAP-BV LEAP LV NW-SIMD SeqAn
Edit Distance 1 0.84 1.31 1.33 38.55 5.81

2 1.54 2.15 2.14 38.77 6.19
3 2.36 3.31 3.42 38.84 6.52
4 3.39 4.66 4.73 38.08 6.93
5 4.55 6.22 6.21 38.63 7.73

Affine Gap 1 1.20 1.78 N/A 38.46 N/A
2 3.09 4.11 N/A 38.75 N/A
3 6.35 7.92 N/A 38.75 N/A
4 10.96 13.46 N/A 38.86 N/A
5 16.91 21.13 N/A 38.42 N/A

Table 3.3: Runtime for a suite of Approximate String Matching algorithms normalized to seconds
per 10 million highly similar read/reference pairs.
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Theorem 2 hold true even if the toad is allowed to move backward as it leaps. The key premise in
proving both theorems is that all leaps and hurdles cost positive amounts of energy while moving
forward without running into a hurdle costs zero energy.

However, when the toad is allowed to move backward during a leap, the naı̈ve column-by-
column dynamic programming method stops working, since a toad could leap from a “future
column” that has not yet been calculated. LEAP, on the other hand, remains intact and functional
under such conditions. This makes LEAP a broader solution for a more general Leaping Toad
problem compared to the naı̈ve dynamic programming method.

A major limitation of LEAP, in spite of its advantages, is that it cannot handle both nega-
tive energy bonuses and positive penalty schemes. In terms of approximate string matching, this
translates to not supporting negative scores for matches along with positive penalties for mis-
matches and gaps (or vice versa). It only supports positive penalties for mismatches and gaps
with no penalty/bonus for matches. As a result, LEAP cannot handle local alignment.

Nonetheless, LEAP shows great potential to be composed with NGS mappers where seed-
and-extend methods are often used and strings are often compared with global or semi-global
alignment.

Overall, LEAP provides three major benefits:

• LEAP reduces the frequency of calling the recurrence function, from OpE ˆ Nq times to
OpE2q times (for the edit-distance case).

• LEAP incorporates a de Brujin sequence-based hash-table optimization, which further
speeds up the computation of the Leaping Toad problem.

• LEAP enables greater parallelization in solving global and semi-global alignment prob-
lems.

Unlike traditional Needleman-Wunsch and Smith-Waterman parallel implementations, which
focus on exploiting parallelism between elements on the same anti-diagonal line in the dynamic
programming matrix, LEAP enables a more efficient parallelization approach. As we have dis-
cussed in the de Bruijn sequence optimization subsection, LEAP employs hurdle-encoded bit-
vectors to calculate the position of the next hurdle. In the realm of Approximate String Matching,
the bit-vector of each lane is simply the letter-wise XOR between the two strings after shifts. For
the center lane, the bit-vector is indeed the letter-wise XOR between the pattern and the refer-
ence string; while for the ith lane above (or below) the center lane is the same letter-wise XOR
but after shifting the pattern (or the reference) to the right i times. Given that we can further
encode each letter with log2pσq bits, the entire operation of preparing all bit-vectors can be done
in pEˆLˆlog2pσq

w
q XORs, where w is the length of the machine word in bits. Under the parallel

random-access machine model (PRAM), all the XORs can be calculated in parallel for lanes un-
der the same energy budget e. Lanes with different energy budgets however share dependency.
Nonetheless, since the outer loop only iterates up to E times, (compared to the parallel Smith-
Waterman or Needleman-Wunsch, whose outer loop is often iterated L times) LEAP still can
provide a greater parallel speedup under the PRAM model.
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3.6 Conclusion
Approximate string matching is an important and widely studied problem, and its use in critical
components for a large number of applications has created a need to develop faster, efficient, and
highly parallelizable solutions.

In this work, we analyzed existing approximate matching algorithms such as the Smith-
Waterman and Needleman-Wunsch algorithms. We reviewed the Landau-Vishkin algorithm,
an fast method for calculating edit distance. We then proposed the Leaping Toad problem, a
generalization of the approximate string matching problem, as well as LEAP, a generalization of
the Landau-Vishkin algorithm that solves the Leaping Toad problem under a broader selection
of scoring schemes. We provided a detailed proof that LEAP solves the Leaping Toad problem.

We compared LEAP against 3 state-of-the-art approximate string matching implementations.
We showed that when using a bit-vectorized de Bruijn sequence-based optimization, LEAP
achieved a 7.4x speedup over the state-of-the-art bit-vector edit distance implementation and
was up to 32x faster than the state-of-the-art affine-gap-penalty parallel Needleman Wunsch Im-
plementation.
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Part II

Improved Seeding Mechanisms
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Chapter 4

Optimal Seed Solver: Optimizing Seed
Selection

4.1 Background

As stated in Chapter 1, reducing total seed frequency is the key in improving mapper perfor-
mance. Therefore, to build a fast yet error tolerant mapper with high mapping coverage, reads
need to be divided into multiple, infrequently occurring seeds. In this way, a mapper can find all
correct mappings of the read (mappings with small edit-distances) while minimizing the number
of edit-distance calculations that need to be performed. To achieve this goal, we have to over-
come two major challenges: (1) seeds are short, in general, and therefore frequent in the genome;
and (2) the frequencies of different seeds vary significantly. We discuss each challenge in detail.

Assume a read has a length of L base-pairs (bp) and x% of it is erroneous (e.g., L “ 80 and
x% “ 5% implies that there are 4 edits). To tolerate x% ¨ L errors in the read, we need to select
x% ¨L` 1 seeds, which renders a seed to be L˜ px% ¨L` 1q-base-pair long on average. Given
that the desired error rates for many mainstream mappers have been as large as 0.05, the average
seed length of a hash-table based mapper is typically not greater than 16-bp [3, 4, 71, 84, 100].

Seeds have two important properties: (1) the frequency of a seed is monotonically non-
increasing with larger seed length and (2) frequencies of different seeds typically differ (some-
times significantly) [43]. Figure 4.1 shows the static distribution of frequencies of 10-bp to 15-bp
fixed-length seeds from the human reference genome (GRCh37). This figure shows that the av-
erage seed frequency decreases with the increase in the seed length. With longer seeds, there are
more patterns to index the reference genome. Thus each pattern, on average, is less frequent.

From Figure 4.1, we can also observe that the frequencies of seeds are not evenly distributed:
for seeds with lengths between 10-bp to 15-bp, many seeds have frequencies below 100. As
the figure shows, a high number of unique seeds, often over 103, correspond to seed frequencies
below 100. However, there are also a few seeds which have frequencies greater than 100K (note
that such unique seeds are very few, usually 1 per each frequency). This explains why most
plots in Figure 4.1 follow a bimodal distribution; except for 10-bp seeds and perhaps 11-bp
seeds, where the frequency of seeds peaks at around 100. Although ultra-frequent seeds (seeds
that appear more frequently than 104 times) are few among all seeds, they are ubiquitous in the
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Figure 4.1: Frequency distribution of unique seeds in fixed-length seed (k-mers at varying ‘k’s)
databases of human reference genome.

genome. As a result, for a randomly selected read, there is a high chance that the read contains
one or more of such frequent seeds. This effect is best illustrated in Figure 4.2, which presents
the frequencies of consecutively selected seeds, when we map over 4 million randomly selected
101-bp reads from the 1000 Genomes Project [1] to the human reference genome.

Unlike Figure 4.1, in which the average frequency of 15-bp seeds is 5.25, the average fre-
quencies of selected seeds in Figure 4.2 are all greater than 2.7K. Furthermore, from Figure 4.2,
we can observe that the ultra-frequent seeds are selected far more often than some of the less
frequent seeds, as the selected seed count increases with seed frequencies higher than 104 (as
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Figure 4.2: Frequency distribution of selected seeds at runtime by consecutively selecting 15-bp
seeds from reads while mapping 4,031,354 101-bp reads from read set ERR240726.

opposed to Figure 4.1, where seed frequencies over 104 usually have seed counts below 10).
This observation suggests that the ultra-frequent seeds are numerous in reads, especially con-
sidering how few ultra-frequent seed patterns there are in total in the seed database.1 We call
this phenomenon the frequent seed phenomenon. The frequent seed phenomenon is explained in
previous works [43]. To summarize, highly frequent seed patterns are ubiquitous in the genome,
therefore they appear more often in randomly sampled reads, such as reads sampled from shotgun
sequencing.

1And the plots in Figure 4.2 no longer follow a bimodal distribution as in Figure 4.1.
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Figure 4.3 through Figure 4.7 show seed frequency distributions of fixed-length seeds from
10-bp to 14-bp. From these figures, we make three observations: (1) longer selected seeds have
smaller average frequencies, (2) in all figures, seed selections frequency increases again after 104

and (3) for all seed lengths, compared to Figure 4.1, the average frequencies of selected seeds
from mapping a real read set are much larger than the average frequencies of unique seeds in the
seed database.

As shown in all five figures above, after the seed frequency of 104, the number of selected
seeds increases with greater seed frequencies, which implies that frequent seeds are often selected
from reads, regardless of the seed length.

Figure 4.3: Frequency distribution of 10-bp seeds at runtime by selecting seed consecutively
under different number of required seeds.

The key takeaway from Figure 4.1 to Figure 4.7 is that although longer seeds on average
are less frequent than shorter seeds, some seeds are still much more frequent than others and
such more frequent seeds are very prevalent in real reads. Therefore, with a naı̈ve seed selection
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Figure 4.4: Frequency distribution of 11-bp seeds at runtime by selecting seed consecutively
under different number of required seeds.

mechanism (e.g., selecting seeds consecutively from a read), a mapper selects many frequent
seeds, which increases the number of calls to the computationally expensive verification process
during read mapping.

To reduce the total frequency of selected seeds, we need an intelligent seed selection mech-
anism to avoid using frequent patterns as seeds. More importantly, as there is a limited number
of base-pairs in a read, we need to carefully choose the length of each seed. Extension of an
infrequent seed does not necessarily provide much reduction in the total frequency of all seeds,
but it will “consume” base-pairs that could have been used to extend other more frequent seeds.
Besides determining individual seed lengths, we should also intelligently select the position of
each seed. If multiple seeds are selected from a small region of the read, as they are closely
packed together, seeds are forced to keep short lengths, which could potentially increase their
seed frequency. Thus, seed selection must be done carefully to minimize total frequency of seed
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Figure 4.5: Frequency distribution of 12-bp seeds at runtime by selecting seed consecutively
under different number of required seeds.

occurrence.

Selecting the optimal set of non-overlapping seeds (i.e. the least frequent set of seeds) from
a read is difficult primarily because the associated search space (all valid choices of seeds) is
large and it grows exponentially as the number of seeds increases. A seed can be selected at any
position in the read with any length, as long as it does not overlap with other seeds.

Based on the above observations, our goal in this work is to develop an algorithm that can
calculate both the length and the placement of each seed in the read such that the total frequency
of all seeds is minimized. We call such a set of seeds the optimal seeds of the read as they produce
the minimum number of potential mappings to be verified while maintaining the sensitivity of
the mapper. We call the sum of frequencies of the optimal seeds the optimal frequency of the
read.
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Figure 4.6: Frequency distribution of 13-bp seeds at runtime by selecting seed consecutively
under different number of required seeds.

4.2 Contributions

This work makes the following contributions:

• It examines the frequency distribution of seeds in the seed database and provides how often
seeds of different frequencies are selected using a naı̈ve seed selection scheme. We confirm
the discovery of prior works [43] that frequencies are not evenly distributed among seeds
and frequent seeds are selected more often under a naı̈ve seed selection scheme. We further
show that this phenomenon persists even when using longer seeds.

• It provides an implementation of an optimal seed finding algorithm, Optimal Seed Solver,
which uses dynamic programming to efficiently find the least-frequent non-overlapping
seeds of a given read. We prove that this algorithm always provides the least frequently-

61



Figure 4.7: Frequency distribution of 14-bp seeds at runtime by selecting seed consecutively
under different number of required seeds.

occurring set of seeds in a read.
• It provides a comparison of the Optimal Seed Solver and existing seed selection optimiza-

tions, including Adaptive Seed Filter in the GEM mapper [71], Cheap K-mer Selection in
FastHASH [102], Optimal Prefix Selection in the Hobbes mapper [3] and spaced seeds in
PatternHunter [67]. We compare the complexity, memory traffic, and average frequency
of selected seeds of Optimal Seed Solver with the above four state-of-the-art seed selec-
tion mechanisms. We show that the Optimal Seed Solver provides the least frequent set of
seeds among all existing seed selection optimizations at reasonable complexity and mem-
ory traffic.
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4.3 Methods
The biggest challenge in deriving the optimal seeds of a read is the large search space. If we
allow a seed to be selected from an arbitrary location in the read with an arbitrary length, then
from a read of length L, there can be L¨pL`1q

2
possibilities to extract a single seed. When there are

multiple seeds, the search space grows exponentially since the position and length of each newly
selected seed depend on the positions and lengths of all previously selected seeds. For x seeds,
there can be as many as OpL2¨x

x!
q seed selection schemes.

Below, we propose Optimal Seed Solver (OSS), a dynamic programming algorithm that
finds the optimal set of x seeds of a read in Opx ¨ Lq operations on average and in Opx ¨ L2q

operations in the worst case.
Although in theory a seed can have any length, in OSS, we assume the length of a seed is

bounded by a range [Smin, Smax]. This bound is based on our observation that, in practice, neither
very short seeds nor very long seeds are commonly selected as optimal seeds. Ultra-short seeds
(ă 8-bp) are too frequent. Most seeds shorter than 8-bp have frequencies over 1000. Ultra-long
seeds “consume” too many base-pairs from the read, which shorten the lengths of other seeds
and increase their frequencies which leads to a higher total seed frequency. Furthermore, long
seeds (e.g., 40-bp) are mostly either unique or non-existent in the reference genome.2 Extending
a unique or non-existent seed longer provides little benefit while “consuming” extra base-pairs
from the read.

Bounding seed lengths reduces the search space of optimal seeds. However, it is not essential
to OSS. OSS can still work without seed length limitations (to lift the limitations, one can simply
set Smin “ 1 and Smax “ L), at the cost of extra computation.

We describe our Optimal Seed Solver algorithm in three sections. First, we introduce the
core algorithm of OSS (Section 4.3.1). Then we improve the algorithm with four optimizations
(Section 4.3.2), optimal divider cascading, early divider termination, divider sprinting, and opti-
mal solution forwarding. Finally, we explain the overall algorithm and provide the pseudo-code
(Section 4.3.3).

4.3.1 The Core Algorithm

A naı̈ve brute-force solution to find the optimal seeds of a read would systematically iterate
through all possible combinations of seeds. We start by selecting the first seed, by instantiating
all possible positions and lengths of the seed. On top of each position and length of the first seed,
we instantiate all possible positions and lengths of the second seed that is sampled after (to the
right-hand side of) the first seed. We repeat this process for the rest of the seeds until we have
sampled all seeds. For each combination of seeds, we calculate the total seed frequency and find
the minimum total seed frequency among all combinations.

The key problem in the brute-force solution above is that it examines many obviously-
suboptimal combinations. For example, in Figure 4.8, there are two 2-seed combinations, SA
and SB, extracted from the same read, R. Both combinations end at the same position, p, in R.
We call SA and SB seed subsets of the partial read Rr1..ps. In this case, Among SA and SB, SB

2Note that a seed with 0 frequency is still useful in read mapping as it confirms there exist at least one error in it.
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has a higher total seed frequency than SA. For any number of seeds that is greater than 2, we
know that in the final optimal solution of R, seeds before position p will not be exactly like SB,
since any seeds that are appended after SB (e.g., S 1B in Figure 4.8) can also be appended after SA
(e.g., S 1A in Figure 4.8) and produce a smaller total seed frequency. In other words, compared to
SB, only SA has the potential to be part of the optimal solution and worth appending more seeds
after. In general, among two combinations that have equal numbers of seeds and end at the same
position in the read, only the combination with the smaller total seed frequency has the potential
of becoming part of a bigger optimal solution (with more seeds). Therefore, for a partial read
and all combinations of subsets of seeds in this partial read, only the optimal subset of this partial
read (with regard to different numbers of seeds) might be relevant to the optimal solution of the
entire read. Any suboptimal subset of seeds of this partial read (with regard to different numbers
of seeds) is guaranteed to not lead to the optimal solution and should be pruned.
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Figure 4.8: Example showing optimal seeds in a substring must be optimal seeds of the substring.

The above observation suggests that by summarizing the optimal solutions of partial reads
under a smaller number of seeds, we can prune the search space of the optimal solution. Specif-
ically, given m (with m ă x) seeds and a substring U , only the optimal m seeds of U could be
part of the optimal solution of the entire read. Any other suboptimal combinations of m seeds of
U should be pruned.

Storing the optimal solutions of partial reads under a smaller number of seeds also helps
speed up the computation of larger numbers of seeds. Assuming we have already calculated and
stored the optimal frequency of m seeds of all substrings of R, to calculate the optimal pm` 1q-
seed solution of a substrings, we can 1) iterate through a series of divisions of this substring;
2) calculate the seed frequency of each division using pre-calculated results and 3) find out the
division that provides the minimum seed frequency. In each division, we divide the substring into
two parts: We extract m seeds from the first part and 1 seed from the second part. The minimum
total seed frequency of this division (or simply the optimal frequency of the division) is simply
the sum of the optimal m-seed frequency of the first part and the optimal 1-seed frequency of
the second part. As we already have both the optimal m-seed frequency of the first part and
the 1-seed frequency of the second part pre-calculated and stored, the optimal frequency of this
division can be computed with one addition and two lookups.
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The optimal pm ` 1q-seed solution of this substring is simply the division that yields the
minimum total frequency. Given that each seed requires at least Smin base-pairs, for a substring
of length L1, there are in total L1 ´ pm ` 1q ¨ Smin possible divisions to be examined. This
relationship can be summarized as a recurrence function in Equation 4.1, in which OptpU,mq
denotes the optimal m-seed frequency of substring U and u denotes the length of U .

OptpU,m` 1q “ min
i
rOptpU r1 : i´ 1s,mq ` OptpU ri : us, 1qs (4.1)

We can apply the same strategy to the entire read: to obtain the optimal x`1 seeds from read
R, we first examine all possible 2-part divisions of the read, which divide the read into a prefix
and a suffix. For each division, we extract x seeds from the prefix, and 1 seed from the suffix.
The optimal px` 1q-seed solution of the read is simply the division that provides the lowest total
seed frequency. As we have discussed above, for a division to be optimal, its x-seed prefix and
1-seed suffix must also be optimal (this provides the minimum total seed frequency). By the
same logic, to obtain the optimal x-seed solution of a prefix, we can further divide the prefix into
an optimal px´1q-seed prefix and an optimal 1-seed substring (which is no longer a suffix of the
read). We can keep applying this prefix-division process until we have reached 1-seed prefixes.
In other words, by progressively calculating the optimal solutions of all prefixes from 1 to x
seeds, we can find the optimal px` 1q-seed solution of the read.

OSS implements the above strategy using a dynamic programming algorithm: to calculate
the optimal px ` 1q-seed solution of a read, R, OSS computes and stores optimal solutions of
prefixes with fewer seeds through x iterations. In each iteration, OSS computes optimal solutions
of prefixes with regard to a specific number of seeds. In themth iteration (m ď x), OSS computes
the optimal m-seed solutions of all prefixes of R, by re-using optimal solutions computed from
the previous pm´1qth iteration. For each prefix, OSS performs a series of divisions and finds the
division that provides the minimum total frequency ofm seeds. For each division, OSS computes
the optimal m-seed frequency by summing up the optimal pm ´ 1q-seed frequency of the first
part and the 1-seed frequency of the second part. Both frequencies can be obtained from previous
iterations. Overall, OSS starts from one seed and iterates to x seeds. Finally, OSS computes the
optimal px ` 1q-seed solution of R by finding the optimal division of R and reuses results from
the xth iteration.

4.3.2 Further Optimizations
With the proposed dynamic programming algorithm, OSS can find the optimal px ` 1q seeds
of a L-bp read in Opx ¨ L2q operations: In each iteration, OSS examines OpLq prefixes (to be
exact, L´ px` 1q ¨ Smin prefixes) and for each prefix OSS inspects OpLq divisions (to be exact,
L1 ´ i ¨ Smin divisions of an L1-bp prefix for the ith iteration). In total, there are OpL2q divisions
to be verified in an iteration.

We observe that it is not necessary to always exhaustively search every divider position in
a prefix to find the optimal divider. For most reads, the optimal divider in each prefix can only
appear at a few positions.

With the above observation, we propose four optimizations: optimal divider cascading, early
divider termination, divider sprinting and optimal solution forwarding. We verify the effective-
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ness of above optimizations by checking if OSS evaluates fewer divider positions. We designate
the empirically-derived average number of divider positions evaluated by OSS per read as the
average complexity of OSS. With all four optimizations, we empirically reduce the average com-
plexity of processing a read to OpL ¨ eq. Below we describe the four optimizations in detail.

Optimal divider cascading.

Until this point, our assumption is that optimal solutions of prefixes within an iteration are inde-
pendent from each other: the optimal division (the division that provides the optimal frequency)
of one prefix is independent from the optimal division of another prefix, thus they must be derived
independently.
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Figure 4.9: Example of optimal divider cascading.

We observe that this assumption is not necessarily true as there exists a relationship between
two prefixes of different lengths in the same iteration (under the same number of seeds): the first
optimal divider (the optimal divider that is the closest towards the beginning of the read, if there
exist multiple optimal divisions with the same total frequency) of the shorter prefix must be at
the same or a closer position towards the beginning of the read, compared to the first optimal
divider of the longer prefix. We call this phenomenon the optimal divider cascading, and it is
depicted in Figure 4.9.

The optimal divider cascading phenomenon can be explained with two lemmas:
Lemma 2. For any two prefixes from the same iteration in OSS, one prefix must include the other.
Among the two prefixes, the minimum seed frequency of the outer prefix must not be greater than
the minimum seed frequency of the inner prefix.

The proof of Lemma 2 is provided below:

Proof. Since both are prefixes of the same read, one must include another, as shown in Figure 4.9.
We prove the second part of the lemma by contradiction. Assume the outer prefix has a

greater optimal frequency (total seed frequency of the optimal seeds) than the inner prefix. Be-
cause the inner prefix is included by the outer prefix, the optimal seeds of the inner prefix are also
valid seeds for the outer prefix. Yet, the total frequency of this particular set of seeds is smaller
than the optimal frequency of the outer prefix, which leads to a contradiction.
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Lemma 3. When extending two seeds of different lengths that end at the same position in the
read by equal numbers of base-pairs, as one seed includes the other as shown in Figure 4.10, the
frequency reduction (∆f ) of extending the outer seed (S2 Ñ S 12) must not be greater than the
frequency reduction of extending the inner seed (S1 Ñ S 11).
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Figure 4.10: Illustration of Lemma 3 in OSS.

Lemma 3 can be proven with the monotonic non-increasing property of seed frequency with
regard to a greater seed length. For example, in Figure 4.11, there are two seeds taken from the
same read, S1 and S2, with S1 including S2 and both end at the same position in the read. Now,
we simultaneously extend both S1 and S2 longer in the read (by taking more base-pairs) by 3-bp,
into S 11 and S 12 respectively. With ∆f denoting the change of seed frequencies before and after
extension, we can claim that ∆fS1 ď ∆fS2 .
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Figure 4.11: Extension of seeds S1 and S2.

To prove this inequality, it is essential to understand how is ∆f calculated. As Figure 4.11
also shows, among the two seeds S1 and S2, S1 can be considered as a “left-extension” of S2.
Therefore, S1 can be represented as S1 “ E1 ` S2, where E1 denotes the left extension of S1

and the “`” sign denotes a concatenation of strings. Similarly, S 11 can be represented as a “right-
extension” of S1, which can be also written as S 11 “ E1 ` S2 ` E2, where E2 is the right m-bp
extension of S1. By the same token, we also have S 12 “ S2`E2. If freqpSq denotes the frequency
of a seed S, then ∆fS1 “ freqpS1q ´ freqpS 11q “ freqpE1 ` S2q ´ freqpE1 ` S2 ` E2q.

Below, we provide the proof of Lemma 3:

Proof. If set E2 denotes all DNA sequences that are equal in length with E2 but excludes E2

itself, which can be written as E2 “ ts | ps P DNA sequenceq ^ p|s| “ |E2|q ^ ps ‰ E2qu, then
the reduced frequency of S1 and S2 can also be written as:

∆fS1 “
ÿ

sPE2

freqpE1 ` S2 ` sq
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∆fS2 “
ÿ

sPE2

freqpS2 ` sq

The right hand sides of both equations denote the sum of frequencies of all seeds that share the
same beginning sequence E1 ` S2 (or just S2) other than the sequence E1 ` S2 ` E2 itself (or
S2`E2 for S 12), which is indeed freqpE1`S2q´freqpE1`S2`E2q (or freqpS2q´freqpS2`

E2q for S2).
From both equations, we can see that both ∆fS1 and ∆fS2 iterates through the same set of

strings, E2. For each string i in set E2, we have freqpE1`S2`iq ď freqpS2`iq, as the extended
longer seed can only be less or equally frequent as the original and shorter seed. Therefore, we
have ∆fS1 ď ∆fS2 .

From Lemma 3, we can deduce Corollary 1:
Corollary 1. When extending two substrings of different lengths that end at the same position in
the read by equal number of seeds, as one substring includes the other, the frequency reduction
of the optimal seed (the optimal single seed) of extending the longer substring, is strictly not
greater than the frequency reduction of the optimal seed of extending the shorter substring.

We prove Corollary 1 by cases:

Proof. Considering the four substrings from Figure 4.11, S1, S2, S 11 and S 12. Among the four
substrings, we have the following system of equations that describe these substring relationships:

S1 “ E1 ` S2;
S 11 “ E1 ` S2 ` E2;
S 12 “ S2 ` E2

There are three possible cases of where the optimal seed is selected in S 11: (1) from the region
of S2 ` E2, (2) from the region E1 ` S2 and the optimal seed overlaps with E1 and (3) from the
region of E1 ` S2 ` E2 and the seed overlaps with both E1 and E2. Below we prove that the
Corollary is correct in each case.

Case 1: The optimal seed is selected exclusively from S2 ` E2.
This suggests that the optimal seed in S 11 is also the optimal seed in S 12. Based on Lemma 2,

we know the optimal frequency of S1 is not greater than S2.
Combining the two deductions above, we can conclude that extending S2 to S 12 provides a

frequency reduction of the optimal seed that is greater than or equal to extending S1 to S 11.
Case 2: The optimal seed is selected from the region E1 ` S2 and it overlaps with E1.
Since the optimal seed does not overlap with E2, the optimal seed in both S1 and S 11 must be

the same. Therefore extending S1 to S 11 provides 0 frequency reduction of the optimal seed. As
Lemma 2 suggests, the optimal seed frequency of S2 must not be greater than the optimal seed
frequency of S 12. As the result, the Corollary holds in this case.

Case 3: The optimal seed is selected across E1 ` S2 ` E2 and it overlaps with both E1 and
E2.

Assuming that the optimal seed, s11, in S 11 starts at position p1 and ends at position p2. Now
assume a seed, s1, which starts at p1 but ends where S1 ends, as shown in Figure 4.12. Also
assume a seed, s12, which starts at where S 12 starts and ends at p2. From Lemma 3, we know
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that the reduction of seed frequency of extending s1 to s11 is no greater than the seed frequency
reduction of extending S2 to s12. We also know that the optimal seed frequency of S1 is no greater
than the seed frequency of s1 and the optimal seed frequency of S 12 is no greater than the seed
frequency of s12. As a result, the frequency reduction of the optimal seed by extending S1 to S 11,
is strictly no greater than the frequency reduction of the optimal seed by extending S2 to S 12.
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Figure 4.12: Assumed alternative optimal seeds.

Using Lemma 2, Lemma 3 and Corollary 1, we are ready to prove that the optimal divider
cascading phenomenon is always true.
Theorem 1. For two prefixes from the same iteration in OSS, as one prefix includes the other, the
first optimal divider of the outer prefix must not be at the same or a prior position than the first
optimal divider of the inner prefix.

We can prove Theorem 1 by contradiction.

Proof. Assume T1 and T2 are two prefixes from the same iteration in “Optimal Seed Solver”,
with T1 including T2. Also assume T1’s first optimal divider, D1, is closer to the beginning of the
read than T2’s first optimal divider, D2, as shown in Figure 4.13 (D1 ă D2).
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Figure 4.13: Example of early divider termination.

Suppose we apply both divisions D1 and D2 to both prefixes T1 and T2, which renders four
divisions: T1-D1, T1-D2, T2-D1 and T2-D2, as Figure 4.13 shows. We can prove that T2-D2

is a strictly less frequent solution than T2-D1. Since D2 is the first optimal divider of T2 and
D1 ă D2, the minimum frequency of dividing T2 at D1 must be greater than dividing T2 at D2.
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Let freqpT,Dq denotes the optimal frequency of dividing prefix T at position D, then based on
our assumptions and Lemma 3, we have the following relationships:

freqpT1, D1q ď freqpT1, D2q

freqpT2, D2q ă freqpT2, D1q

freqpT1, D1q ě freqpT2, D1q

freqpT1, D2q ě freqpT2, D2q

Based on Corollary 1, we know that the frequency reduction of extending T2-D1 to T1-D1 is
strictly not greater than the frequency reduction of extending T2-D2 to T1-D2. From Figure 4.13,
we can observe that only the second parts of both T2-D1 and T2-D2 are extended into T1-D1 and
T1-D2 respectively. Between T2-D1 and T2-D2, we can see that D1 produces a longer second
part than D2. Based on the Corollary 1, the frequency reduction of extending T2-D2 to T1-D2 is
no less than the frequency reduction of extending T2-D1 to T1-D1. Given that freqpT2, D2q ă

freqpT2, D1q from above, we prove that freqpT1, D2q ă freqpT1, D1q, which contradicts our
assumption that freqpT1, D2q ě freqpT2, D2q. Therefore, the first optimal divider of T1 must
not be at a prior position than the first optimal divider of T2.

Based on the optimal divider cascading phenomenon, we know that for two prefixes in the
same iteration, the first optimal divider of the shorter prefix must be no further than the first
optimal divider of the longer prefix. With this relationship, we can reduce the search space of
optimal dividers in each prefix by processing prefixes within an iteration from the longest to the
shortest.

In each iteration, we start with the longest prefix of the read, which is the read itself. We
examine all divisions of the read and find the first optimal divider of it. Then, we move to the
next prefix of the length |L´1|. In this prefix, we only need to check dividers that are at the same
or a prior position than the first optimal divider of the read. After processing the length |L ´ 1|
prefix, we move to the length |L ´ 2| prefix, whose search space is further reduced to positions
that are at the same or a closer position to the beginning of the read than the first optimal divider
of the length |L´ 1| prefix. This procedure is repeated until the shortest prefix in this iteration is
processed.

Early divider termination.

With optimal divider cascading, we are able to reduce the search space of the first optimal divider
of a prefix and exclude positions that come after the first optimal divider of the previous, 1-bp
longer prefix (recall that with optimal divider cascading OSS starts with the longest prefix and
gradually moves to shorter prefixes). However, the search space is still large since any divider
prior to the first optimal divider of the previous prefix could be the optimal divider. To further
reduce the search space of dividers in a prefix, we propose the second optimization – early divider
termination.

The goal of early divider termination is to reduce the number of dividers we examine for each
prefix. The key idea of early divider termination is to find the early divider termination position
in the target prefix, as we are moving the divider backward one base-pair at a time, where all
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dividers that are prior to the termination position are guaranteed to be suboptimal and can be
excluded from the search space.

The key observation that early divider termination builds on is simple: The optimal frequency
of a substring monotonically non-increases as the substring extends longer in the read.

Based on optimal divider cascading, we start at the position of the first optimal divider in
the previous prefix. Then, we gradually move the divider towards the beginning (or simply
move backward) and check the total seed frequency of the division after each move. During this
process, the first part of the division gradually shrinks while the second part gradually grows,
as we show in Figure 4.14. According to Lemma 2, the optimal frequency of the first part
must be monotonically non-decreasing while the optimal frequency of the second part must be
monotonically non-increasing.

P1❃ P2❃ div❃ T❃T1❃ T2❃

Figure 4.14: Example of combining early divider termination with optimal divider cascading.

For each position of the divider, let FREQP2
denote the frequency of the second part (P2,

in yellow) and ∆FREQP1
denote the change of frequency of the first part (P1, in blue) between

current and the next move (the two moves are only 1 bp apart). Early divider termination suggests
that the divider should stop moving backward, whenever |∆FREQP1

| ą |FREQP2
|. All dividers

that are prior to this position are guaranteed to have greater total seed frequencies. We call this
stopping position the termination position, the division at this position – the termination division,
denoted as T , and the above inequality that determines the termination position, the termination
inequality (|∆FREQT1 | ą |FREQT2 |). We name the first and the second part of T as T1 and T2,
respectively.

For any divider D that comes prior to the termination position, compared to the termination
division, its first part is shorter than the first part of the termination division (|D1| ă |T1|) and
its second part is longer (|D2| ą |T2|). Hence, the optimal frequency of its first part is greater
(FREQD1

ě FREQT1) and the optimal frequency of its second part is smaller (FREQD2
ď FREQT2).

Let |∆FREQD1´T1 | denote the increase of the optimal frequency of the first part between current
division D and the termination division T and |∆FREQD2´T2 | denote the decrease of the sec-
ond part. Based on Lemma 2, we have |∆FREQD1´T1 | ě |∆FREQT1 |. Since the frequency of a
seed can be no smaller than 0, we also have |FREQT2 | ě |∆FREQD2´T2 |. Combining these two
inequalities with the termination inequality (|∆FREQT1 | ą |FREQT2 |), we have |∆FREQD1´T1 | ą

|∆FREQD2´T2 |. This suggests that compared to the termination division, the frequency increase
of the first part must be greater than the frequency reduction of the second part. Hence, the
overall optimal frequency of such a division must be greater than the optimal frequency of the
termination division. Therefore, a division prior to termination position cannot be optimal.
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Using early divider termination, we can further reduce the search space of dividers within a
prefix and exclude all positions that are prior to the termination position. Since the second part of
the prefix hosts only one seed and frequencies of most seeds decrease to 1 after extending it to a
length of over 20-bp, we observe that the termination position of a prefix is reached fairly quickly,
only after a few moves. With both optimal divider cascading and early divider termination, from
our experiments, we observe that we only need to verify 5.4 divisions on average (this data
is obtained from mapping ERR240726 to human genome v37, under the error threshold of 5)
for each prefix. To conclude, with both optimizations, we observe that in our experiments the
empirical average complexity of our Optimal Seed Solver is reduced to Opx ¨ Lq 3.

Divider sprinting.

According to optimal divider cascading and early divider termination, for each prefix, after in-
heriting the starting divider from the previous prefix, we gradually move the divider towards the
beginning of the prefix, one base-pair at a time, until early divider termination is triggered. In
each move, we check the optimal frequency of the two parts in the current division as well as
the frequency increase of the first part compared to the previous division. We stop moving the
divider when the frequency increase of the first part is greater than the optimal frequency of the
second part.

We observe that it is unnecessary to always move the divider a single base-pair at a time
and check for frequencies after each move. In the early divider termination method, the move
terminates only when the frequency increase of the first part is greater than the optimal seed
frequency in the second part. This suggests that when the frequency of the first part remains
unchanged between moves, which produces no increase in frequency, we do not need to check
the frequency of the second part as it will not trigger early termination. When multiple dividers
in a region share the same first-part frequency, we only need to verify the last divider of this
region and skip all the other dividers in the middle (an example is provided in the subsection
below). The last divider always provides the least total seed frequency among all dividers in this
region since it has the longest second part compared to other dividers (longer substring always
provides less or equally frequent seeds) while keeping its first-part frequency the same. We call
this method divider sprinting.

Optimal solution forwarding.

With optimal divider cascading, early divider termination and divider sprinting, we observe that
the average number of divisions per prefix reduces from 5.4 (plain OSS with no optimizations)
to 3.7. Nevertheless, for each prefix, we still need to examine at least two divisions (one for the
inherited optimal division of the previous prefix and at least one more for early divider termina-
tion). We observe that some prefixes can also inherit the optimal solution of the previous prefix
without verifying any divisions, as they share the same optimal divider with the previous prefix.
Within an iteration, we recognize that there exist many prefixes that share the same second-part
frequency with the previous prefix when divided by the previous prefix’s optimal divider. We

3In the worst case, where the frequency of the second part is high and the frequency reduction is mild, the
complexity can still reach OpL2q, as the divider cannot terminate early.
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conclude that such prefixes must also share the same optimal divider as well as the same
optimal seed frequency with the previous prefix. We call this optimal solution forwarding.

From our experiment, we observe that many prefixes within the same iteration share the
same optimal divider with the previous prefixes (please look at the example in the next section).
Among them, most also share the same 2nd-part frequency. For such prefixes, we propose the
theorem below:
Theorem 2. A prefix that shares the same 2nd-part frequency with the previous prefix while being
divided by the previous prefix’s first optimal divider must have the same first optimal divider as
well as the same optimal total seed frequency.

Proof. We prove the above theorem by contradiction. Assume there exists another optimal di-
vider, divnew, which is prior to the inherited optimal divider from the previous prefix, divprev.
Also assume divnew provides a solution that has either smaller or equal total seed frequency.
Since the previous prefix is 1-bp longer than the current prefix, divnew could also be applied to
the previous prefix, which generates a first part that is the same as the current prefix’s first part,
and a second part that is 1-bp longer than the current prefix’s second part (both under divnew).
Given that a substring always provides less or equally frequent optimal seed(s) than any of its in-
cluded shorter substrings (the proof of this fact is similar to Lemma 2), we know that the second
part of the previous prefix provides less or equally frequent optimal seed than the second part
of the current prefix. This suggest that, under divnew, the previous prefix generates a total seed
frequency that is smaller than or equal to the optimal total seed frequency provided by divprev.
As the result, divprev must not be the first optimal divider of the previous prefix, which leads to
a contradiction.

With optimal solution forwarding, for each incoming prefix, after inheriting the optimal di-
vider from the previous prefix, we first test if the second-part frequency of the new prefix equals
the second-part frequency of the previous prefix. If they are equal, then we can assert that the
optimal divider of the previous prefix must also be the optimal divider of the new prefix and
move on to the next read, without examining any divisions.

With optimal solution forwarding, we observe that the average number of division verifica-
tions per prefix reduces further to 0.95 from 5.4 (this data is obtained from mapping ERR240726
to human genome v37, under the error threshold of 5), providing a 5.68x potential speedup over
OSS without any optimizations.

4.3.3 The Full Algorithm
Algorithms 7 and 8 show the full algorithm of the Optimal Seed Solver. Before calculating
the optimal x-seed frequency of the read, R, we assume that we already have the optimal 1-
seed frequency of any substring of R and it can be retrieved in an Op1q-time lookup via the
optimalFreqpsubstringq function. This assumption is valid only if seeds are stored in a large
hash table. For seeds that are pre-processed by the Burrows-Wheeler transformation, OSS re-
quires Opsq total steps in FM-indexing to obtain the frequency of the seed, where s is the length
of the seed. In total, it requiresOpe ¨L2q total steps to index all possible seeds in the read, which

73



potentially could generate Ope ¨ L2q memory accesses and Ope ¨ L2q cache misses in the worst
case. Although the final number of cache misses is typically much smaller, due to the fact that
the FM-index pointers of a substring is often in close proximities of the FM-index pointers of its
enveloping superstring so that they often share the same cacheline (details of Burrows-Wheeler
transformation and FM-indexing can be found in the literature [29]), they still significantly de-
crease the performance of OSS as each cache miss takes a long time to process.

In practice, it is unrealistic to maintain a hash table that stores all seeds of varying lengths.
Therefore OSS has to use Burrows-Wheeler transformed suffix array which significantly slows
down OSS due to generating large number of cache misses. Nonetheless, OSS is still signif-
icantly faster than finding optimal seeds by scanning through all possible seed permutations
which allows us to compare different greedy seed selection mechanisms against optimal seeds at
large scale.

Despite being much faster than exhaustive search, OSS is still very slow due to frequent
cache misses. As a result, we do not intend to use OSS in a real mapper. Instead, OSS serves as
a golden standard as the lowest total seed frequency achievable by a Pigeonhole-principle based
seed selection method. By reducing the complexity of finding optimal seeds, OSS enables us
to measure the slack in total seed frequency between existing Pigeonhole-principle based seed
selection mechanisms and the optimal set of seeds on a large scale.

Let firstOptDividerpprefixq be the function to calculate the first optimal divider of a prefix.
Then the optimal set of seeds can be calculated by filling a 2-D array, opt data, of size px´1q¨L.
In this array, each element stores two data: an optimal seed frequency and a first optimal divider.
The element at ith row and jth column stores the optimal i-seed solution of the prefix Rr1...js,
which includes the optimal i-seed frequency of the prefix and the first optimal divider of the
prefix, which divides the prefix into an i´ 1-seed prefix and an 1-seed substring.

Algorithm 7 provides the pseudo-code of optimalSeedSolver, which contains the core al-
gorithm of OSS and the optimal divider cascading optimization; and Algorithm 8 provides the
pseudo-code of firstOptDivider, which contains the early divider termination, the divider
sprinting and the optimal solution forwarding optimizations.

To retrieve the starting and ending positions of each optimal seed, we can backtrack the 2-D
array and backward induce the optimal dividers between optimal seeds. We start with the final
optimal divider of the entire read, which divides the read into a px´ 1q-seed prefix and a suffix.
Among them, the suffix makes the last (right most) optimal seed of the read. Then we examine
the px´ 1q-seed prefix from the previous step and retrieve its optimal divider, which divides the
prefix into an px´2q-seed prefix and a substring. Among the two, the substring makes the second
last optimal seed of the read. This process is repeated until we have retrieved all x optimal seeds
of the read.

4.3.4 Example

This section presents an example of OSS in action. In this example, we are mapping a 100-bp
read to the human reference genome under the error threshold of 3, as shown in Figure 4.15.
Based on the pigeonhole principle, to tolerate 3 errors, we need a total of 4 seeds. According
to the pseudo-code described in the Methods Section, there will be 3 iterations of finding partial
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Algorithm 7: optimalSeedSolver
Input: the read, R
Output: the optimal x-seed frequency of R, opt freq and the first x-seed optimal divider
of R, opt div

Global data structure: the 2-D data array opt datar sr s
Functions:
firstOptDivider : computes the first optimal divider of the prefix
optimalFreq : retrieves the optimal 1-seed frequency of a substring
Pseudocode:
// The first iteration: 1-seed solutions
for l “ L to Smin do

prefix “ Rr1 ...l s;
opt datar1 srl s.freq “ optimalFreqpprefixq;

// (From 2 to x-1 seeds)
for iter “ 2 to x´ 1 do

prev div “ L´ Smin ` 1;
for l “ L to iter ¨ Smin do

prefix “ Rr1...l s;
// Find the optimal divider
div “ firstOptDividerpprefix, iter , prev divq;
// Get frequencies of the 2 parts
1st part “ Rr1...div ´ 1s;
2nd part “ Rrdiv ...Ls;
1st freq “ opt datariter ´ 1srdiv ´ 1s.freq;
2nd freq “ optimalFreqp2nd partq;
opt datariter srl s.div “ div;
opt datariter srl s.freq “ 1st freq` 2nd freq;
// Optimal seed cascading,
prev div “ div;

prev div “ L´ Smin ` 1;
// Find the optimal divider of the read
opt div “ firstOptDividerpR,L´ Smin ` 1 q;
1st part “ Rr1...opt div ´ 1s;
2nd part “ Rropt div ...Ls;
1st freq “ opt datarx ´ 1sropt div ´ 1s.freq;
2nd freq “ optimalFreqp2nd partq;
opt freq “ 1st freq` 2nd freq;
return opt freq, opt div;

optimal solutions in all prefixes of the read (1 seed, 2 seeds and 3 seeds respectively), followed
by a final optimal divider search of 4 seeds in the entire read.
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Algorithm 8: firstOptDivider
Input: the prefix; the iteration count, iter ; the previous prefix divider, prev div
Output: the first optimal divider of the prefix, opt div
Global data structure: the 2-D data array opt datar sr s, the optimal 2nd-part frequency
of the previous prefix, opt 2nd freq

Functions:
optimalFreq : retrieves the optimal 1-seed frequency of a substring
Pseudocode:
// optimal solution forwarding
2nd part “ prefixrprev div ...end s;
2nd freq “ optimalFreqp2nd partq;
if opt 2nd freq “ 2nd freq then

return prev div ;

first div “ prev div;
min freq “ MAX INT;
prev 1st freq “ MAX INT;
prev 2nd freq “ MAX INT;
// Move divider backward until termination
for div “ prev div to piter ´ 1q ¨ Smin do

1st part “ prefixr1...div ´ 1s;
2nd part “ prefixrdiv ...end s;
1st freq “ opt datariter srdiv ´ 1s.freq;
// The 1st-part-freq of the next move
next 1st freq “ opt datariter srdiv ´ 2s.freq;
// divider sprinting
if next 1st freq “ 1st freq then

continue;

2nd freq “ optimalFreqp2nd partq;
// early divider termination,
if p1st freq´ prev 1st freqq ą prev 2nd freq then

break ;

freq “ 1st freq` 2nd freq;
// update the optimal divider
if pfreq ď min freq then

min freq “ freq;
first div “ div;
opt 2nd freq “ 2nd freq;

prev 1st freq “ 1st freq;
prev 2nd freq “ 2nd freq;

return first div;
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Figure 4.15: An example of applying OSS to a 100-bp read in its second iteration.

In the first iteration, OSS searches for optimal 1-seed solution of all prefixes. Since the
frequency of a seed monotonically decreases with longer seed lengths, for a prefix, the least
frequent seed in it would be itself. In the second iteration, OSS searches for optimal 2-seed
solutions for all prefixes. In this iteration, OSS starts with the longest prefix and gradually
progresses to shorter prefixes 4.

Figure 4.15 shows how to derive the 2-seed optimal divider of a prefix. First, OSS inherits
the optimal divider (marked in red) from the previous prefix (in gray), based on optimal divider
cascading. Then, OSS divides the current prefix using the same divider and checks if its second
part (in pink) has the same frequency as the second part of the previous prefix’s division. In this
example, the second part of the previous prefix has an optimal frequency of 11 while the second
part of the current prefix has an optimal frequency of 19. Based on optimal solution forwarding,
the two second parts from the two prefixes are not equal, therefore we cannot forward the optimal
solution from the previous prefix. Next, OSS starts moving the divider towards the beginning
of the prefix and queries the optimal 1-seed frequencies of the two parts (numbers with green
and pink backgrounds, respectively) as well as the frequency differences of the first part (green
background with numbers highlighted in red) between two moves. When the frequency increase
of the first part is greater than the optimal frequency of the second part, according to early divider
termination, OSS stops moving the divider and selects the divider with the minimum total seed
frequency and goes to the next prefix. In this example, the least frequent division is the first
division, with the total seed frequency of 30. Hence, opt datar2sr59s is filled with 30. For
the next prefix, after inheriting the optimal divider from the current prefix, we observe that the
optimal frequency of its second part (in brown) is equal to the optimal frequency of the second
part of the current prefix. In this case, OSS forwards the optimal divider of the current prefix as
the optimal divider of the next prefix; it inherits the optimal frequency and moves on the next
prefix.

This process is repeated until all prefixes are processed in the second iteration. Figure 4.15
shows the opt datar2srs array after the second iteration is finished. In this array, all prefixes that

4In our implementation, we do not start with the entire read but only start with the prefix that ends at L ´ px ´
iq ¨ Smin, where x is the total number of required seeds and i is the current iteration. Any longer prefixes will not
contribute to the final result. In this example, we have Smin “ 10.
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inherit the optimal solution from the previous prefix are marked with a blue background.
The third iteration is similar to the second iteration, except that the first part of the division

now provides two seeds. This information is provided by opt datar2srs. Figure 4.16 shows an
example prefix in the third iteration.

Figure 4.16: An example of applying OSS to a 100-bp read in its third iteration.

Finally, OSS searches for the optimal divider of the entire read: the divider that divides the
read into a 3-seed prefix and a 1-seed suffix that produces the least total seed frequency. This
process is the same as searching for optimal prefix dividers in previous iterations, which starts
from the rightmost position and gradually moves towards the beginning of the read. This process
is also obliged by early divider termination.

Figure 4.17 shows the process of the final optimal divider search. This figure also showcases
divider sprinting. In Figure 4.17, we can see that from opt datar2sr90s to opt datar2sr86s, the
optimal frequency is always 36; from opt datar2sr85s to opt datar2sr74s, the optimal frequency
is always 42; from opt datar2sr73s to opt datar2sr66s, the optimal divider is always 43. This
suggests that OSS only needs to evaluate the dividers at the beginning and end of each interval
(90, 86, 85, 74, 73, 66 and 65) while skipping computations within the intervals. For the read
provided in the example, the least total seed frequency is 47.

Figure 4.17: An example of divider sprinting.

4.3.5 Backtracking in Optimal Seed Solver
The pseudo-code of the backtracking process is provided in Algorithm 9. The key idea behind
the backtracking algorithm is simple: the element of the ith row and the jth column of opt data
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stores the optimal divider, div, of the substring Rr1...js. This div suggests that by optimally
selecting i ´ 1 seeds from Rr1...div ´ 1s and one seed from Rrdiv...js, we can obtain the least
frequent i seeds from Rr1...js. From div we can learn that substring Rrdiv...js provides the ith

optimal seeds. Similarly, by repeating this process for the element of opt datari ´ 1srdiv ´ 1s,
we can learn the position and length of the pi-1qth optimal seeds. We can repeat this process until
we have learnt all optimal dividers of the read.

Algorithm 9: Backtracking
Input: the final optimal divider of the read, opt div
Output: an array of optimal dividers of the read, div array
Global data structure: the 2-D data array opt datar sr s
Pseudocode:
// Push in the last divider
div array.pushpopt divq;
prev div “ opt div;
for iter “ x´ 1 to 2 do

div “ opt datariter srprev div ´ 1 s.div;
div array.pushpopt divq;
prev div “ div;

return div array;

4.4 Results
The primary contribution of this work is a dynamic programming algorithm that derives the
optimal non-overlapping seeds of a read in Opx ¨ Lq operations on average. To our knowledge,
this is the first work that finds the optimal seeds and the optimal frequency of a read.

The most related prior works are optimizations to the seed selection mechanism that reduce
the sum of seed frequencies of a read using greedy algorithms.

We first quickly distinguish OSS from other methods [45, 47, 51] which solve similar yet
unrelated problems. These previous works either determine the number and length of erroneous
seeds such that the total number of branches in bwt-backtracking is minimized for each seed [45]
or simply select seeds and their locations through probabilistic methods without providing er-
ror tolerance guarantees (e.g., bowtie2 [47] and BWA-MEM [51]). By contrast, OSS finds the
number and lengths of non-overlapping seeds such that the total frequency of all seeds is mini-
mized. These prior mechanisms are not designed for seed-and-extend based mappers that rely on
non-overlapping seeds following the pigeonhole principle. In this work, we only compare seed
selection mechanisms that follow the pigeonhole principle.

In the remainder of this section, we qualitatively and quantitatively compare the Optimal Seed
Solver (OSS) to four state-of-the-art works first introduced in chapter 1.2. They are: Cheap K-
mer Selection (CKS) in FastHASH [102], Optimal Prefix Selection (OPS) in Hobbes [3], Adaptive
Seed Filter (ASF) in the GEM mapper [71] and spaced seeds in PatternHunter [67]. Among the
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four prior works, ASF represents works from the first category; CKS and OPS represent works
from the second category and spaced seeds represents works from the third category.

Among the four implementations, OPS bears the most resemblance to OSS. The basis of OPS
is also a dynamic programming algorithm that implements a simpler recurrence function. The
major difference between OPS and OSS is that OPS does not need to derive the optimal length
of each seed, as the seed length is fixed to k-bp. This reduces the search space of optimal fixed-
length seeds to a single dimension, i.e., only seed placement. The worst case/average complexity
of OPS is OpL ¨ xq.

We compare the average case complexity, memory traffic and effectiveness of OSS against
ASF, CKS, OPS and spaced seeds as well as the naı̈ve mechanism, which selects fixed seeds
consecutively. Memory traffic is measured by the number of required seed frequency lookups
to map a single read. The effectiveness of a seed selection scheme is measured by the average
seed frequency of mapping 4,031,354 101-bp reads from a read set, ERR240726 from the 1000
Genomes Project, under different numbers of seeds.

Table 4.1 summarizes the average-case complexity and memory traffic of each seed selection
optimization. From the table, we can observe that OSS requires the most seed frequency lookups
(OpL2q) with the worst average-case complexity, (Opx ¨ Lq), which is the same as that of OPS.

We do not measure the execution time of each mechanism because different seed selection
optimizations are combined with different seed database implementations. CKS, OPS and spaced
seeds use hash tables for short, fixed-length seeds while ASF and OSS employ slower but more
memory-efficient BWT and FM-index for longer, variable-length seeds. However, this combina-
tion is inter-changeable. CKS and OPS can also work well with BWT and FM-index and ASF,
OSS can also be combined with a large hash-table, given sufficient memory space. Besides,
different existing implementations have their unique, implementation-specific seed database op-
timizations, which introduces more variations to the execution time. Due to these reasons, we
only compare the complexity and memory traffic of each seed selection scheme, without mea-
suring their runtime performance.

We benchmark each seed optimization scheme with multiple configurations. We bench-
mark ASF with multiple frequency thresholds, 5, 10, 100, 500 and 1000. If a read fails to
provide enough seeds in ASF, due to having many long seeds under small thresholds, the read
will be processed again in CKS with a fixed seed length of 12-bp. We benchmark CKS, OPS
and the naı̈ve seed selection mechanism under three fixed seed lengths, 12, 13 and 14. We
benchmark spaced seeds with the default bit-mask provided in the PatternHunter paper [67],
“110100110010101111”, which hashes 18-bp long seeds into 11-bp long signatures.

All seed selection mechanisms are benchmarked using an in-house seed database, which
supports varying seed lengths between Smin “ 10 and Smax “ 30.

OSS ASF CKS OPS Spaced seeds naı̈ve
Complexity Opx ¨ Lq Opxq Opx ¨ logL

k
q Opx ¨ Lq Opxq Opxq

Number of lookups Opx ¨ Lq Opxq OpL
k
q OpLq Opxq Opxq

Table 4.1: An average-case complexity and memory traffic comparison of OSS with other seed-
ing mechanisms.
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Nonetheless, OSS is the most effective seed selection scheme, as Figure 4.18 shows. Among
all seed selection optimizations, OSS provides the largest frequency reduction of seeds on av-
erage, achieving a 3x larger frequency reduction compared to the second-best seed selection
scheme, OPS.

As shown in Figure 4.18, the average seed frequencies of OSS, CKS and OPS increase with
larger seed numbers. This is expected, as there is less flexibility in seed placement with more
seeds in a read. For OSS, more seeds also means shorter average seed length, which also con-
tributes to greater average seed frequencies. For ASF, average seed frequencies remain similar
for three or fewer seeds. When there are more than three seeds, the average seed frequencies
increase with more seeds. This is because up to three seeds, all reads have enough base-pairs to
accommodate all seeds, since the maximum seed length is Smax “ 30. However, once beyond
three seeds, reads start to fail in ASF (due to having insufficient base-pairs to accommodate all
seeds) and the failed reads are passed to CKS instead. Therefore, the seed frequency increase
after three seeds is mainly due to the increase in CKS. For t “ 10 with six seeds, we observe
from our experiment that 66.4% of total reads fail in ASF and are processed in CKS instead.

For CKS and OPS, the average seed frequency decreases with increasing seed length when
the number of seeds is small (e.g., ă 4). When the number of seeds is large (e.g., 6), it is not
obvious if greater seed lengths provide smaller average seed frequencies. In fact, for 6 seeds, the
average seed frequency of OPS rises slightly when we increase the seed length from 13-bp to
14-bp. This is because, for small numbers of seeds, the read has plenty of space to arrange and
accommodate the slightly longer seeds. Therefore, in this case, longer seeds reduce the average
seed frequency. However, for large numbers of seeds, even a small increase in seed length will
significantly decrease the flexibility in seed arrangement. In this case, the frequency reduction of
longer seeds is surpassed by the frequency increase of reduced flexibility in seed arrangement.
Moreover, the benefit of having longer seeds diminishes with greater seed lengths. Many seeds
are already infrequent at 12-bp. Extending the infrequent seeds longer does not introduce much
reduction in the total seed frequency. This result corroborates the urge of enabling flexibility in
both individual seed length and seed placement.

Overall, OSS provides the least frequent seeds on average, achieving a 3x larger frequency
reduction than the second best seed selection scheme, OPS.

As discussed earlier, OSS uses Burrows-Wheeler transformation as the underlying data struc-
ture for seeds, which generates a large number of cache misses in practice. We benchmarked the
execution time of OSS that uses a Burrows-Wheeler Transformed suffix array from the SDSL
library [30] as the underlying data structure for seeds against OPS that uses an in-house single-
level hash table. We observed that on average OSS is 21.3x times slower than OPS.

4.5 Conclusion
In this work, we confirmed the frequent seed phenomenon discovered in previous works [43],
which suggests that in a naı̈ve seed selection scheme, mappers tend to select frequent seeds
from reads, even when using long seeds. To solve this problem, we proposed the Optimal Seed
Solver (OSS), a dynamic-programming algorithm that finds the optimal set of seeds that has the
minimum total frequency. We introduced four optimizations to OSS: optimal divider cascading,
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Figure 4.18: Average seed frequency comparison of Optimal Seed Solver (OSS) with other seed
selection mechanisms.
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early divider termination, divider sprinting, and optimal solution forwarding. Using all four
optimizations, we reduced the empirical average-case complexity of OSS to Opx ¨ Lq, where x
is the total number of seeds and L is the length of the read; and achieved a Opx ¨ L2q worst-
case complexity. We compared OSS to four prior studies, Adaptive Seed Filter, Cheap K-mer
Selection, Optimal Prefix Selection and spaced seeds and showed that OSS provided a 3-fold seed
frequency reduction over the best previous seed selection scheme, Optimal Prefix Selection. We
conclude that OSS is an efficient algorithm to find the best set of seeds in large scale, although
in practice OSS has limited performance due to generating large quantity of cache misses.
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Chapter 5

Error Resilient Seeds: Fast and
Comprehensive Read Mapping with Fewer
Seeds

5.1 Background

As discussed in Chapter 1, using longer seeds as well as fewer seeds improves the speed of a
mapper since the number of seed locations to verify is reduced. The major drawback of using
longer, fewer seeds, however, is that it reduces the sensitivity of the mapper, since longer seeds
consume more base pairs while there is only a limited number of base pairs in a read.

The key problem that prevents ubiquitously using long seeds (even with OSS, a mapper has
to balance long seeds with short seeds), is that each seed can tolerate only a single error. This
means a seed either has no error or has one or more errors. Hence, to guarantee tolerating e errors
a mapper to draw e ` 1 non-overlapping seeds, as in the worst case if all seeds are erroneous,
there will be at least e ` 1 errors in the read. To further increase the sensitivity, a mapper has to
draw more non-overlapping seeds, reducing average seed length.

If each seed can sustain more than a single error, in the sense that a seed guarantees that
there must be multiple errors in it when the seed is not error-free, then the total error tolerance of
mapping a read can exceed the total number of non-overlapping seeds extracted from this read.
For instance, if we have N seeds from a read, and for each seed we know that either it is error-
free or it contains at least x number of errors (x ą 1). Then if all seeds contain errors then there
must be N ¨ x ą N errors in the read.

When a seed is erroneous, then the true mapping of the read must be excluded from the
locations of the erroneous seed. For a seed s, we call the minimum number of errors that a seed
must have when the read is mapped to any true location beyond the seed locations of s, as the
error resilience of s.

Currently, naı̈ve seeds used in modern mappers only have an error resilience of one. If a read
is mapped to a location loc which does not belong to seed s, the only knowledge available is that
s must not match 100% to the reference at loc. There is no telling how many errors must there
be in s when the read is mapped to loc.
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In this chapter, we present a new seeding concept, called error resilient seeds (ERS). Error
resilient seeds attaches each seed with an extra error resilience attribute which indicates the
least number of errors residing in the seed if the read is mapped to any place outside of its seed
locations.
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X in Chr 15

Y in Chr Y

Figure 5.1: An example of using error resilient seeds in read mapping.

With error resilience seeds, mappers can easily achieve high sensitivity with just a few long
seeds. The total error tolerance of mapping a read equals to the sum of error resilience of all
seeds. If there exists a mapping at loc that is not included by any seed, based on the definition of
error resilience of seeds, there must be at least

ÿ

siPseeds

Epsiq

errors in the read at loc, where Epsiq denotes the error resilience of seed si. Figure 5.1 shows an
example of achieving higher error tolerance through error resilient seeds, in lieu of naı̈ve seeds.

This is the first effort to introduce the concept of error resilient seeds, which removes the tight
decoupling of error tolerance guarantees and number of non-overlapping seeds. The key method
of generating error resilient seeds is to pre-compute an error resilience database, which stores the
error resilience information for all seeds. At runtime, a mapper simply extracts long seeds from
a read in the form of MEMs (maximum exact matches) and queries the error resilience database.
The total error tolerance of mapping a read simply equals to the sum of error resilience of all
seeds.

Since seed error resilience is defined as the minimum number of errors in the seed when
the read is optimally aligned to the reference at any location other than its own seed locations,
thus the error resilience of a seed is simply the edit distance to its most similar sequence in the
reference. Any other sequence in the reference is guaranteed to carry an equal amount or even
more errors than the most similar sequence to the seed. The edit distance between the seed and
its most similar sequence hence marks the error resilience of the seed.

However, due to the nature of strings, any sequence is one edit away from its left or right
immediate substrings, which are substrings that have the left most or right most letter removed.
Similarly, any sequence is one edit away from its left or right immediate superstrings and two
edits away from any immediate overlapping strings (immediate overlapping string S 1 of seed S is
a string whose prefix is a suffix of S or vice versa). Given a string S, Figure 5.2 shows examples
of immediate substrings, immediate superstrings and immediate overlapping strings of S.

While immediate substrings and superstrings do contain edits, they do not necessarily meet
the criteria to produce a meaningful error resilience of the seed. Often the seed locations of
S 1, a substring (or superstring or overlapping string) of seed S, overlaps completely with seed
locations of S. In such cases, the distance dpS, S 1q is not the error resilience of S. There does
not exist a seed location locS1 of S 1 that does not overlap with any seed location in tlocSu of S.
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GATCACCAAGACGTGTCACGAGTCATACGCC

GATCACCAAGACGTGTCACGAGTCATACGC

ATCACCAAGACGTGTCACGAGTCATACGCC

AGATCACCAAGACGTGTCACGAGTCATACGCC

GATCACCAAGACGTGTCACGAGTCATACGCCA

AGATCACCAAGACGTGTCACGAGTCATACGCC

ATCACCAAGACGTGTCACGAGTCATACGCCA

Immediate Substring

Immediate Superstring

Immediate Overlapping String

Seed

Figure 5.2: Examples of immediate substrings, immediate superstrings and immediate overlap-
ping strings.

Given a seed S, we call sequences without locations exclusive to itself and not overlapping with
any locations of S as trivial neighbors of S. Trivial neighbors do not contribute to computing
the error resilience of a seed. We call sequences other than trivial neighbors as non-trivial
neighbors. We provide a formal definition of trivial neighbors in Section 5.3.2.

The computational problem that we propose to solve, therefore, is the following:
Problem: For all sequences S in the reference, find the edit distance between S and its most

similar non-trivial neighbor.

5.2 Contribution
ERS provides the following contributions:

• We introduce a novel seeding methodology, error resilient seeds, which enables using long
seeds while maintaining high error tolerance in read mapping.

• We provide an algorithm to compute the minimum edit-distances to a seed’s most similar
non-trivial neighbor in the reference.

• We propose a greedy seed selection mechanism that provides error tolerance guarantees
using ERS.

• We compare the greedy seed selection mechanism using ERS to OSS and show that it is
1.17x more efficient than the best existing seeding algorithm.

5.3 Methods
Figure 5.3 showcases a non-trivial neighbor, Y, of seed X with minimum edit distance. Y has
a total of two edits compared to X, as shown in the figure. This suggests that besides reference
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Figure 5.3: An example of a non-trivial neighbor to a seed.

sequences in close proximities of seed locations of X, any other sequence in the reference must
have an edit distance of at least two, when compared to X.

Therefore, to construct the error resilience database for a reference genome, one can search
for the minimum edit distance among all non-trivial neighbors for all seeds. While finding the
most similar non-trivial neighbor provides a tight error resilience lower bound; in practice, overly
excessive error resilience is not always necessary. Since mappers are only required to find all
mapping within a small error threshold (usually within 5% of the read length), a lower bound of
seed error resilience up to the mapper’s error threshold is sufficient to meet the error tolerance
requirement. In fact, any lower bound of error resilience above one provides a net gain to read
mapping. An error resilience of one only reduces an error resilient seed to an naı̈ve seed which
are widely used in current mappers. In other words, error resilient seeds never negatively impact
read mapping.

Hence, given any seed in the reference, our goal is to 1) determine whether there exists a
non-trivial neighbor Nnon trivial of seed S whose edit distance to S is below the read mapping
error threshold D; and 2) if there exist such neighbors, find the minimum edit distance dmin ă D
between S and its non-trivial neighbors.

With above principle in mind, we construct the error resilience database in a two-step fash-
ion: First, we construct a neighbor database, which stores all neighbors of all seeds within the
edit distance threshold D. Then we find the non-trivial neighbors of each seed and obtain the
minimum edit distance to each seed’s non-trivial neighbors, if there exist any.

5.3.1 Construction of Neighbor Database

We find all neighbors of a sequence in a reference by first building a suffix trie of the reference
and then traversing the suffix trie in a breadth-first fashion. Specifically, given P , which is the
maximum length of error resilient seeds to profile, we travel the suffix trie up to depth of P . Each
time when we visit a node v, we find all neighbors of v whose edit distance from v is below D.
If there exist a total of M pairs of sequences in the reference with up to length P `D, where the
edit distance between the two sequences is smaller than D, then our algorithm can find all such
neighbor pairs in time linear to M .

Let T “ pV,Eq be a suffix trie of depth P on alphabet Σ. Let r P V be the root of T . For any
vertex v P V , we denote by spvq be the string concatenating the letters on all edges following the
unique path from r to v. For simplicity, we denote the edit distance between the sequences spuq
and spvq of two nodes u and v as dpu, vq. We aim to solve the following problem.
Problem 1 (Neighbors in Suffix Trie). Given a suffix trie T “ pV,Eq and an integer D, to
compute all pairs of vertices u, v P V such that dpu, vq ď D.

For any v P V , we denote by ppuq be the parent vertex of v. We denote by σpu, vq the letter
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on edge pu, vq P E. We first prove the following lemmas.
Lemma 4. Let u, v P V . We have dpu, vq ď D only if dpppuq, ppvqq ď D.

Proof. Provided in Landau & Vishkin’s paper [46].

Lemma 4 states that we only need to examine these pairs of vertices whose parents is within
a distance of at most D. This gives a way to avoid all-against-all pairwise comparison.
Lemma 5. Let u, v P V . We have

dpu, vq “ min

$

&

%

dpppuq, ppvqq ` δ
dpppuq, vq ` 1
dpu, ppvqq ` 1

where δ “ 1 if σpppuq, uq ‰ σpppvq, vq and δ “ 0 if σpppuq, uq “ σpppvq, vq.

Proof. First proved in Smith-Waterman paper [92].

Lemma 5 states that the distance between two vertices can be computed from the distances
related with their parents. This gives us a way to avoid computing the edit distance from scratch.

Based on the above the lemmas, we design an algorithm for Problem 1 that has a time com-
plexity that is linear to the number of unique sequence pairs whose edit distance is smaller than
D. We first assign each vertex in V an integral rank from t1, 2, ¨ ¨ ¨ , |V |u following a top-down,
left-to-right order. Specifically, the root r of T has rank of 1, and then the second level of T (i.e.,
children of r) have ranks of 2, 3, ¨ ¨ ¨ , from the leftmost child to the rightmost child, and so on. In
this ordering, higher level nodes always rank higher than lower level nodes. Among nodes of the
same level, children of a higher ranking node rank higher than children of a lower ranking node.
A breadth-first-search traversing T will assign such rank for all vertices.

For any v P V , we define Xv :“ tu P V | dpu, vq ď Du as the set of vertices that are within
a distance of at most D to v, including v itself, and define Yv :“ tdpu, vq | u P Xvu as the
accompanying set that stores the corresponding distance for each vertex in Xv. Our algorithm
will compute and maintain Xv and Yv for each vertex v P V from low ranks to high ranks. We
use two arrays to store Xv and Yv for each vertex v P V , respectively. Without loss of generality,
we also use Xv and Yv to represent the corresponding arrays in our algorithm.

Our algorithm for Problem 1 is given in Algorithm ??. The overall framework of this algo-
rithm is for each vertex v P V from low rank to high rank to compute Xv1 and Yv1 for each child
v1 of v (from line 4 to line 17), as shown in Figure 5.4. This algorithm keeps the following three
invariants:

1. For any vertex v P V , array Xv are always sorted according to their ranks, i.e., vertices
that are added to Xv are always in ascending order w.r.t. their ranks.

2. Right before processing vertex v (i.e., before line 4 of Algorithm ??), we have that Xv and
Yv are already completely computed and sorted w.r.t. their ranks.

3. Right after processing vertex v (i.e., after line 17 of Algorithm ??), we have that Xv1 and
Yv1 are completely computed and sorted w.r.t. their ranks for each child v1 of v.
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Algorithm ??: Linear Time Algorithm for Problem 1
Input: Suffix trie T “ pV,Eq and integer D
Output: Xv and Yv for each v P V

1. Assign ranks for all vertices using breadth-first search on T
2. Initialze Xr and Yr for root r P V .
3. FOR each vertex v P V in ascending order:
4. Initialize pointer kv “ 0 for arrays Xv and Yv.
5. Initialize arrays Xv1 and Yv1 for each child v1 of v as empty arrays.
6. Initialize pointer kv1 “ ´1 for arrays Xv1 and Yv1 for each child v1 of v.
7. FOR k “ 0Ñ |Xv|:
8. LET u :“ Xvrks.
9. FOR each child u1 of u:

10. FOR each child v1 of v:
11. LET δ “ 1 if σpu, u1q ‰ σpv, v1q and δ “ 0 if σpu, u1q “ σpv, v1q. Compute

d1 “ Yvrks ` δ, i.e., d1 “ dpv, uq ` δ.
12. Increase kv until Xvrkvs ě u1. IF we have Xvrkvs “ u1, i.e., u1 P Xv,

THEN compute d2 “ Yvrkvs ` 1, i.e., d2 “ dpv, u1q ` 1; otherwise set
d2 “ 8.

13. Increase kv1 until Xv1rkv1s ě u. IF we have Xv1rkv1s “ u, i.e., u P Xv1 ,
THEN compute d3 “ Yv1rkv1s ` 1, i.e., d3 “ dpv1, uq ` 1; otherwise set
d3 “ 8.

14. Compute dpv1, u1q “ mintd1, d2, d3u. IF dpv1, u1q ď D, THEN add u1 to the
end of Xv1 and add dpu1, v1q to the end of Yv1 .

15. END FOR
16. END FOR
17. END FOR
18. END FOR

v

v′

u

u′

Xv,Yv

Xv′ ,Yv′

k

kv′

kv

Figure 5.4: Illustration of processing a single vertex v (i.e., line 4 to line 17 of Algorithm ??).

In the following we give necessary explanation about Algorithm ?? and verify that the above
three invariants hold through the whole algorithm. The initialization step of our algorithm (line
2) is to compute Xr and Yr for root r. This is to add all vertices in the first D levels of T to Xr

from low to high ranks, and the distance for each such vertex is simply the level number subtract
1 (we assume that r locates at level 1). Notice that root r is also in Xr with dpr, rq “ 0. Clearly,
the first and the second invariant hold for root r.

For the current vertex v P V , lines 4–17 of Algorithm ?? compute Xv1 and Yv1 for any child
v1 of v. Line 4 and Line 6 initialize the pointers that will be used to fetch the existing edit
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distances dpv, u1q and dpv1, uq stored in Yv and Yv1 , which are necessary to compute dpv1, u1q
according to Lemma 5. Specifically, kv tracks the position of u1 in array Xv (i.e., the index of
u1 in array Xv), and kv1 tracks the position of u in array Xv1 , for each child v1 of v. Line 11
computes d1 :“ dpv, uq` δ, in which dpv, uq is fetched from Yv indexed by k. Line 12 computes
d2 :“ dpv, u1q ` 1, in which dpv, u1q is fetched from Yv indexed by kv. Line 13 computes
d3 :“ dpv1, uq ` 1, in which dpv1, uq is fetched from Yv1 indexed by kv1 . Line 14 computes
dpv1, u1q :“ mintd1, d2, d3u, and add u1 to Xv1 and add dpv1, u1q to Yv1 if we have dpv1, u1q ď D.

We now show that Algorithm ?? keeps the first invariant, i.e., for each child v1 of v, the
vertices that are added to Xv1 (and the corresponding distances that are added to Yv1) are sorted
according to their ranks. This is because, according to the second invariant, vertices in Xv (i.e.,
u examined in Algorithm ??) are sorted w.r.t. their ranks. Also, if the rank of vertex u1 is larger
than that of vertex u2, then we have that the rank of any child of u1 is larger than that of u2. These
imply that u1 examined in Algorithm ?? will be in ascending order w.r.t. their ranks. Following
the fact that Algorithm ?? keeps the first invariant, we know that it suffices to increase kv and kv1
in order to locate u1 and u in Xv and Xv1 , respectively.

We now show that Algorithm ?? also keeps the third invariant. According to Lemma 4, for
each child v1 of v, each vertex u1 P Xv1 must satisfy that u1 is a child of u such that u P Xv.
Algorithm ?? examines all such possibility of u1. Therefore, Xv1 and Yv1 will be completely
computed and sorted for each child v1 of v after line 17. Following the fact that Algorithm ??
keeps the third invariant, we also have that Algorithm ?? keeps the second invariant, as we
process vertex v in ascending order (line 3).

Let M :“ tpu, vq | dpu, vq ď Du. Combining the above facts, we summarize the following
theorem.
Theorem 3. Algorithm ?? correctly computes Xv and Yv for each v P V in Op|Σ|2 ¨Mq time.

Proof. The correctness of Algorithm ?? directly follows from the fact that Algorithm ?? keeps
the third invariant. We now analyze the running time of Algorithm ??. We first show that for each
v P V , lines 4-17 computes Xv1 and Yv1 for each child v1 of v in Op|Xv| ¨ |Σ|

2`
ř

v1:ppv1q“v |Xv1 |q

time. According to the above fact that pointers of kv and kv1 can only move forward, we have
that the operations of increasing these pointers within lines 12-13 cost |Xv| `

ř

v1:ppv1q“v |Xv1 | in
total. Other than increasing pointers, operations in lines 11–14 cost constant time. Hence, lines
7–17 cost |Xv| ¨ |Σ|

2, as the number of children of each vertex is bounded by |Σ|. The overall
running time of Algorithm ?? is thus bounded by

ř

vPV Op|Xv| ¨ |Σ|
2 `

ř

v1:ppv1q“v |Xv1 |q “

Op|Σ|2 ¨Mq.

5.3.2 Computing Error Resilience From the Neighbor Database

A neighbor u of seed v is a trivial neighbor if everywhere spuq appears in the reference, spvq also
appears in close proximity. However, unless u “ v, otherwise there will be small gaps between
each pair of occurrences of spuq and spvq in the references. We formally define triviality of
neighbors as follows: Suppose u and v are nodes in the suffix tree and locu is a seed location
of spuq while locv is a seed location of spvq. Further assume that set tlocuu contains all seed
locations of spuq and tlocvu contains all seed locations of spvq. We say locu Ż tlocvu, if and
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only if Elocv P tlocvu such that |locu ´ locv| ď dpu, vq. Otherwise, locu Ź tlocvu. A sequence
spuq is a non-trivial of spvq, if and only if Dlocu P tlocuu such that locu Ż tlocvu.

After obtaining all neighbors of all nodes, We aim to solve the following problem.
Problem 2 (Finding Minimum Distance to Non-Trivial Neighbors). Given all neighbors Xv of
node v, find dminpu, vq among vertices u P Xv where spuq is a non-trivial neighbor of spvq.

To solve problem 2, we first prove the following lemmas.
Lemma 6. If spuq is a superstring of spvq, then spuq is a trivial neighbor of spvq.

Proof. Lemma 6 is trivial. Since spvq is a substring of spuq, we have @locu P tlocuu, Dlocv within
rlocu ´ dpu, vq, locu ` dpu, vqs.

Lemma 7. If spuq is a substring of spvq and spuq is a non-trivial neighbor of spvq, then Dw, such
that spwq does not overlap spvq, spwq ‰ spvq, |spwq| “ |spvq| while dpw, vq ď dpu, vq.

..ACCCAGATCACCAAGACGTGTCACGA..

CCCAGATCACCAAGACGTGTCACG

GCCCAGATCACCAAGACGTGTCACGA
||||||||||||||||||||||||||

||||||||||||||||||||||||

ACCCAGATCACCAAGACGTGTCACGA
||||||||||||||||||||||||||

s(u)

s(v)

s(u) at locu

s(w)

| Mismatch | Insertion

Figure 5.5: Illustration of Lemma 7.

Proof. Since spuq is a non-trivial neighbor of spvq, Dlocu P tlocuu but locu R tlocvu. Because
spuq is a substring of spvq, dpu, vq “ |spvq| ´ |spuq|.

Align spvq against spuq at locu and extract the reference sequence spwq that flanks spuq at
locu with |spwq| “ |spvq| while keeping the alignment between spuq and spvq, so that spwq is not
an overlapping string of spvq, as shown in Figure 5.5. Since locu Ż tlocvu, spwq ‰ spvq, as well
as spvq and spwq share the common string spuq, we have dpw, vq ď dpu, vq.

Lemma 8. If spuq is an overlapping string of spvq and spuq is a non-trivial neighbor of spvq,
then Dw such that dpw, vq ă dpu, vq.

Proof. Assume spwq “ MEMu,v marks the max-length common suffix-prefix string shared
between spuq and spvq, shown in Figure 5.6. Then spwq must be a substring of spvq while
dpw, vq ă dpu, vq (one only needs a few deletions to convert spvq into spwq, while it requires
additional insertions to further convert spwq into spuq).

Because spuq is a non-trivial neighbor of spvq, Dlocu P tlocuu while locu Ż tlocvu. Since
spwq is a substring of spuq, therefore spwq must also be a non-trivial neighbor of spvq.
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s(u)

s(v)

s(w)

| Deletion | Insertion

Figure 5.6: Illustration of Lemma 8.

Given that spwq is a non-trivial neighbor of spvq, according to Lemma 7, there must exist a
non-trivial neighbor sptq of spvq such that dpt, vq ď dpw, vq ă dpu, vq.

Lemma 6 7 and 8 state that there must exist node w such that spwq is not a superstring,
substring or overlapping string of spvq, while dpu, vq is the minimum edit distance of v to its
non-trivial neighbors. Hence, the error resilience of a seed equals to the minimum edit-distance
to its neighbors that exclude the seed’s own substrings, superstrings and overlapping strings.

v

v′

u

u′

Xv,Yv,Zv

Xv′ ,Yv′ ,Zv′

k

kv′

kv

Figure 5.7: Illustration of adding Zv :“ tFlagpu, vq | u P Xvu to each node.

To keep track of substring, superstring and overlapping string relationships among seeds in
the reference, we associate each node in the suffix trie a new vector Zv :“ tFlagpu, vq | u P Xvu,
where Flagpu, vq stores whether spuq is a substring, a superstring or an overlapping string of
spvq. The updated workflow is illustrated in Figure 5.7.

The generation of Flagpu, vq can be piggybacked on top of the computation of dpu, vq. There
are a total of nine flag categories:

1. spuq is a prefix of spvq.

2. spuq is a suffix of spvq.

3. spvq is a prefix of spuq.

4. spvq is a suffix of spuq.

5. A prefix of spuq is a suffix of spvq.

6. A suffix of spuq is a prefix of spvq.

7. spuq is neither a prefix nor a suffix but a substring of spvq.

8. spvq is neither a prefix nor a suffix but a substring of spuq.
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9. The rest.

In above definitions, we require the prefix or suffix of a string to be strictly a substring. In
other words, suffix A of string B suggests that A ‰ B.

A seed spuqmay be a neighbor of multiple categories to another seed spvq. For simplicity, we
create the following rules: we initialize spvq with tags of categories 1, 2, 3 and 4 to itself for any
node v in T (This is only a temporary compromize for the convenience of explanation. Although
according to our definition, a node is not a prefix nor suffix to itself, we still tag each node to
itself so that we can detect self-neighbors, which are obviously trivial neighbors. However, it
does not mean a node is a prefix or suffix to itself). The empty string (the root node r of the
suffix trie) is a prefix to any string. Any string is a suffix to the empty string. Finally, the empty
string is not an overlapping string or a substring of any string.

Flagpu, vq of node u to v can be computed in constant time if the flags of each node to their
parent nodes are known. For example, in Figure 5.7, spu1q is a prefix of spv1q, only if a) u1 “ v1 or
b) u1 is a prefix of v (u1 belongs to category 1 of v). Similarly, spu1q is a suffix of spv1q, only if a)
u1 “ v1 or b) spuq is a suffix of spvq (u belongs to category 2 of v) and σpppuq, uq “ σpppvq, vq.
Category 3 and 4 follow suit, with u and v swapped role. Category 5 holds true for spu1q to spv1q
only if a) the same category also holds for spu1q to spvq or b) spuq is a suffix of spv1q while u ‰ v1

and u ‰ r. The same description can also be applied to category 6 with u and v swapped role.
The relationship of spu1q to spv1q belongs to Category 7 only if a) the same category also marks
spu1q to spvq or b) spu1q is a suffix of spvq while u1 ‰ v and u ‰ r. Similarly, category 8 can be
described just as category 7, just with the role of u and v swapped. Finally if spu1q to spv1q does
not fit in to any category between 1 to 8, then it is tagged as a neighbor of category 9.

As shown above, Flagpu1, v1q can be easily computed in constant time as long as flags be-
tween nodes and their parents are known. This invariant, requiring prior results of nodes with
regard to each other’s parents, is the same in computing dpu1, v1q. As a result, by piggybacking
the computation Flagspu1, v1q along computing dpu1, v1q, we do not increase the complexity of
the algorithm.

Finally, the error resilience of seed spvq of node v is the minimum edit distance to its neigh-
bors in Xv who belong to category 9. The result can be computed through a simple linear
synchronized scan across Xv, Yv and Zv. The total time complexity of constructing the entire
error resilience database hence is Op|Σ|2 ¨Mq time.

5.3.3 Applying Error Resilient Seeds to Read Mapping

We propose a greedy seed selection method for read mapping, which simply consecutively ex-
tracts MEMs from a read as seeds. After the termination of each MEM, we heuristically skip the
next two base pairs in an effort to dodge potential errors (a MEM terminates prematurely only
when it has bumped into an error). After drawing each seed, we obtain its error resilience from
the error resilience database. After extracting all seeds, we sort them based on their frequency
and gradually pick seeds starting from the least frequent seed. With each selected seed, we sum
its error resilience to the overall error tolerance of all seeds. We stop extracting seeds once the
selected seeds have enough error tolerance to meet the requirement.

Figure 5.8 shows an example of extracting error resilient seeds from a read. In this example,

94



AGGGCCCACTACCGAGAGCTCGCAGCCCAGATCACCAAGACGTGTCACGAGTCATACGCC

Frequency: 2
Error resilience: 3

First MEM

Read

Frequency: 3
Error resilience: 2

Second MEM

Hypothetical errors—Skip!

AGGGCCCACTACCGAGAGCTCGCAGCCCAGATCACCAAGACGTGTCACGAGTCATACGCCRead

Frequency: 6 Frequency: 5 Frequency: 3 Frequency: 4

Error Resilient Seeds

OSS with Naïve Seeds

Figure 5.8: An example of drawing error resilient seeds from a read.

we require a total error tolerance of 3. As shown in the figure, the first seed has an error resilience
of 2 and the second seed has an error resilience of 3. Notice that after the first seed, we skip the
next two base pairs as there is a high probability that they might contain errors. Among the two
seeds, the first seed has a lesser frequency. Therefore it is selected first. Since the first seed
only provides an error resilience of 2, which is below our error resilience requirement of 3, we
proceed to select the second seed. Combined, they provide a total error tolerance of 5, which
meets our error tolerance requirement, hence seed selection terminates.

Compared to OSS, which selects naı̈ve seeds, also shown in Figure 5.8, the new greedy seed
selection algorithm selects fewer but longer seeds while achieving an even higher error tolerance
guarantee. In the case of OSS, to satisfy the requirement of tolerating 3 errors, at least 4 seeds
are selected. As a result, compared to selecting error resilient seeds, OSS with naı̈ve seeds lead
to a) selecting more seeds and b) selecting shorter and more frequency seeds.

When seeds do not produce enough error resilience to satisfy the error tolerance requirement,
we revert to using the optimal seed solver with canonical naı̈ve seeds. While the above naı̈ve
seeding mechanism might not fully utilize the potential of error resilient seeds, we observe that
in practice, it rarely fails to meet the error tolerance requirement.

The error reslience database can be maintained in a two-dimensional table ofOpN`P q rows,
where N ` P is the number of unique sequences at level P . Each row represents a node in the
suffix trie at depth P . In the entry of node v at depth P , it stores the error resilience of a selection
of Q seeds, spuq, where u are nodes in the suffix trie at Q selective depths along the path to node
v. For each selected u, the error resilience entry stores the error resilience of spuq in log2D bits.
Overall, with a number of Q selected depths, the entire error resilience database can be stored in
OpN ¨Q ¨ log2Dq bits.

5.4 Results
We compare our greedy seed selection method using error resilient seeds against our previously
proposed, state-of-the-art seed selection mechanism, OSS using naı̈ve seeds. We tested both seed
selection mechanisms on a 22-million, 100-bp E. coli read set from EMBL-EBI, ERX008638-1.
To use error resilient seeds, we built an error resilience database for the E. coli reference genome.
We scanned through the entire reference genome and gathered all seeds of lengths up to 60 base
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pairs (we stop at length 60 because most seeds at length 60 have maximum error resilience of 4).
For each seed, we searched for the minimum distance to its closes non-trivial neighbor within an
edit distance of 4. If a seed has no neighbors in 4 edits, we designate the error resilience of such
seed as 4, which is a lower bound of its true error resilience.

We measure the effectiveness of both seed selection mechanisms by counting the average
total frequency of selected seeds under error tolerance requirements from 0 to 4.
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Figure 5.9: Comparison of the total seed frequency per read between ERS and OSS.

Figure 5.9 shows the average total seed frequency comparison between the greedy seed se-
lection mechanism with ERS and OSS with naı̈ve seeds. As shown in the figure, OSS performs
slightly better under small error tolerance requirements and quickly exceeds ERS as error tol-
erance requirement increases. OSS out-performs ERS under small error tolerance requirements
because the naı̈ve ERS seed selector always start with the first MEM and picks seeds consecu-
tively while OSS is more flexible as it scans through all MEMs and picks the less frequent ones.
When the error requirement is large, however, the flexibility of OSS reduces as it is under the
stress to distribute a limited amount of base pairs among more seeds. As a result, OSS start to
select increasingly shorter seeds. ERS, on the other hand, prevails with long seeds as long seeds
provide high error resilience. When the error tolerance requirement is 4, ERS provides a total of
1.17x reduction in average seed frequency.

While the total seed frequency reduction of ERS might not be significant on E. coli, ERS is
still computationally more efficient. To obtain the optimal set of naı̈ve seeds through OSS, we
need to obtain the frequency of all possible seeds. That requires L2 accesses to the seed database.
Assuming the seed database is organized as a suffix tree or a Burrows-Wheeler transformed
suffix array, each access to the seed database requires many accesses to the main memory. Since
each memory access takes hundreds of CPU cycles to complete, in practice, OSS has a high
operational cost. ERS on the contrary, is a greedy seed selection algorithm and only greedily
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extracts consecutive MEMs from a read. Therefore, ERS is much more light-weight in practice
than OSS. We benchmarked both OSS and ERS using the Burrows-Wheeler transformed suffix
array from the SDSL library and observe that ERS on average is 12.4x faster than OSS.
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Figure 5.10: Comparison of the average number of seeds required to satisfy the error tolerance
requirement in ERS and OSS.

A major reason that OSS achieves comparable results with ERS on E. coli is because of the
small reference size of E. coli. Figure 5.10 displays the average number of seeds needed to
meet the error tolerance requirement in ERS and OSS, respectively. Comparing Figure 5.9 and
Figure 5.10, one can observe that in OSS the average total seed frequency is sometimes smaller
than the number of required seeds. This suggests OSS can deliberately select seeds with errors
in them, which may have zero frequencies. ERS, on the contrary, cannot select seeds that do
not appear in the reference. Hence with ERS, the average seed frequency is always greater than
or equal to the number of seeds selected. However, with larger and more complex reference
genomes, seeds only have zero frequencies when they have sufficient length. Therefore it is
harder for OSS to select erroneous seeds without consuming many base pairs. Therefore, we
expect with larger and more complex reference genomes, the benefit of ERS over OSS to be
more profound.

5.5 Discussion
Error Resilient Seeds has two major limitations. First, Error resilient seeds does not work well
in regions that have genomic repeats. Due to evolution, mobile elements, which are the majority
of genomic repeats, tend to differ slightly with each other. This suggests that many sequences
in regions of genomic repeats have highly similar non-trivial neighbors. As a result, seeds from
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genomic repeats are inclined to have low error resilience. Even worse, due to their repetitive
nature, seeds from genomic repeats often also have high frequency. Hence, error resilient seeds
provide little improvement over mapping reads from repeats. A potential remedy of this chal-
lenge would be simply remove genomic repeats from the reference and keep them in a separate
repeat database. The repeat database keeps a single representative instance for each repeat. Dur-
ing mapping, if a seed of a read appears in the repeat database, then we first attempt to map the
read separately to the repeat database. If a mapping is found in the repeat database, then we
brand the read as part of a repeat and store it separately for later analysis. Otherwise, we proceed
to mapping the read to the repeat-masked reference genome using error resilient seeds.

While being a challenge for mapping, sharing highly similar non-trivial neighbors also marks
a unique trait for genomic repeats. As a result, this enables us to use error resilient seeds to be
used to identify new genomic repeats whose instances might not have high frequencies indi-
vidually, but there are many slightly different instances and collectively they constitute large
frequencies.

Second, constructing the neighbor database has a high computational cost. While most long
sequences do not have many non-trivial neighbors, when seeds are short, 9 base pairs for ex-
ample, each seed has many neighbors. This is because, at low depths, the suffix trie is almost
full, where every sequence permutation exists in the suffix trie. For low depth nodes in the suffix
trie, the number of its neighbors basically equals to the number of unique permutations of the
sequence after applying up to D edits. Because the suffix trie is almost full, each permutation
after editing is almost guaranteed to occur in the suffix trie.
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Figure 5.11: The average number of neighbors for each node at variate depths of the suffix trie.

Figure 5.11 shows the average number of neighbors for each node at variate depths in the
suffix trie of E. coli with D “ 4. From the figure we can observe that the average number of
neighbors per node peaks at around depth 9. Figure 5.12 shows the occupancy rate of nodes
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Figure 5.12: The occupancy rate of the suffix trie at variate depths.

0 10 20 30 40 50 60
Suffix trie depth

102

103

104

105

106

107

108

109

1010

To
ta

l n
um

be
r o

f n
ei

gh
bo

rs

Total Number of Neighbors for All Nodes in Suffix Trie at Variate Depths

Figure 5.13: The total number of neighbors for all nodes at variate depths of the suffix trie.

at variate depths in the suffix trie. The occupancy rate at depth p is defined as the number of
nodes at the depth divide by 4p, which is the maximum number of nodes possible at depth p. As
shown in the figure, up until depth 9, the suffix trie almost have a full occupancy (the occupancy
rate of depth 9 is 97%) and it quickly drops as the depths increases. For E. coli, after depth
14, the number of nodes in the suffix trie at a depth stabilizes at 4.57 million, which is almost
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the reference length of E. coli. Figure 5.13 shows the total number of neighbors for all nodes
at variate depths. As shown in Figure 5.13, the total number of neighbors of all nodes peaks
between depth 11 and 12 at around 31 billion, and quickly decreases until stabilizing at around
115 million.

It takes around 20 hours to generate the neighbor database with D “ 4 and P “ 60 for E.
coli on a server of 40 cores and 80 threads. With larger organisms (e.g. human) and larger D.
The profiling time will increase significantly. To summarize, even though the time complexity of
constructing the neighbor database is Op|Σ|2 ¨Mq, building the neighbor database can still be a
computationally expensive process simply due to the large magnitude of M .

Fortunately, the neighbor database only needs to be constructed once for each reference.
Further because the computations of neighbors for nodes within the same depth of the suffix
trie are independent, the process of building the neighbor database for larger organisms can be
deployed on scale-out cloud architectures (such as spark) to maximize parallelism.

5.6 Conclusion
In this work, we reveal the key limitation of using long seeds in read mapping: seeds are not
error resilient. To solve this problem, we proposed a new concept, error resilient seeds, which
enables each seed to tolerate more than one error. As a result, even with long seeds, mappers
may achieve high error tolerance. We proved that the error resilience of a seed is equivalent to
the minimum edit distance among its non-trivial neighbors. We also proposed an algorithm that
finds all neighbors within a small edit distance radius for all seeds in linear time. Finally, we
introduced a seed selection mechanism using error resilient seeds and show that it out performs
current state-of-the-art seed selection mechanism using naı̈ve seeds.
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Chapter 6

Conclusion and Future Work

6.1 Conclusion

The observations and computational techniques included in this dissertation help us obtain a
deeper understanding of computational challenges in mapping NGS reads and pave the way to
further improve the performance of NGS read mappers. Especially, we provide solutions to
reduce the impact of the vast amount of false mappings generated by mappers with high error
tolerance.

In part one, we displayed that by drawing more and shorter seeds from reads, in an effort
to provide a greater error tolerance guarantee, as well as to support a wider scope in search-
ing for secondary mappings, fully-sensitive read mappers examine a vast and rapidly increasing
number of false mappings. We further show that the majority of such false mappings exhibit
little similarity between the read and the reference. To alleviate the problem, we developed a
SIMD-friendly bit-vectorized filter, shifted hamming distance (SHD), that quickly rejects false
mappings. SHD examines if there exist multiple identical substrings between the read and the
reference that can be stitched together to cover the entire read. We further optimized our im-
plementation to take advantage of modern computer architectures and drastically improved the
speed of our algorithm. We compared our implementation against state-of-the-art vectorized ver-
ification implementations and showed that SHD achieved significant speedups with great filtering
accuracy.

Besides quickly filtering out obviously false mappings, we also extended a previously pro-
posed, efficient dynamic programming algorithm, the Landau-Vishkin algorithm. While fast, the
Landau-Vishkin algorithm has limited adoptions by modern mappers due to its inflexibility to
support penalty scoring schemes besides edit distance. Most importantly, it has not been shown
to support affine gap penalties. In our work, LEAP, we proposed the leaping toad problem, which
is a generalization of the approximate string matching problem with non-negative penalty scor-
ing schemes. We show that approximate string matching is a sub-problem of the leaping toad
problem and the Landau-Vishkin algorithm can be applied to solve the leaping toad problem.
Thus, we indirectly prove that the Landau-Vishkin algorithm can be extended to support affine
gap penalty scoring schemes. We also provided an efficient implementation of the Landau-Viskin
algorithm with the optimization of finding the leading bit of ‘1’ in a binary sequence using a bit-
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vectorized de Bruijn sequence technique. We showed that our implementation is significantly
faster than state-of-the-art vectorized verification implementations.

In part two, we illustrated that reference locations are unevenly distributed among seeds.
We showed that while extending a seed longer reduces the frequency of the seed, the frequency
reduction is drastically divergent across different seeds at different lengths. We further showed
that always drawing seeds of equal lengths is inefficient as infrequent seeds could have yielded
base pairs to extend the length of frequent seeds and decrement the overall seed frequency. We
introduced the concept of optimal seeds which are set of non-overlapping seeds with variate seed
lengths that as a whole have the smallest overall seed frequency. To overcome the vast search
space of all possible seed combinations in a read, we proposed optimal seeds solver, an efficient
dynamic programming algorithm that finds the optimal seeds in a read in linear complexity, under
the assumption that seed frequencies can be obtained in constant time. We compared optimal
seeds solver against state-of-the-art seeding mechanisms and showed that optimal seeds solver
drastically reduces the total seed frequencies in seed-and-extend read mappers, while attaining
high error tolerance.

To further reduce seed frequencies, we observed that read mappers do not always need to
follow the pigeonhole principle and draw e ` 1 non-overlapping seeds to tolerate e errors. We
recognized that a mapper can achieve the same level of error tolerance with fewer seeds as long
as some seeds require multiple errors to become faulty. Based on this observation, we proposed
error resilient seeds, a novel concept which enables each seed to tolerate more than one error.
We derived that the error resilience of a seed equals the smallest edit-distance to its nearest
non-trivial neighbor. To efficiently construct the error resilience database, we developed a novel
algorithm that finds all neighbors of all seeds within a small edit distance radius in linear time.
We further augmented the algorithm to piggyback the computation of triviality of its neighbors
without increasing the computational complexity. We proposed a greedy seeding mechanism
with error resilient seeds and showed that under equal seed tolerance requirement, error resilient
seeds out-perform optimal seeds solver. We concluded the chapter by discussing limitations as
well as further potentials of error resilient seeds.

6.2 Discussion
It has been over ten years since the advent of the first NGS platform. Since then, there has
been numeral advances in sequencing technology. One of the most influential improvements to
NGS platforms is the invention of paired-end sequencing technology. Paired-end sequencing
technology generates reads in pairs which are the two ends of a longer DNA fragment. The
lengths of such DNA fragments are usually between 500 to 1000 base pairs. With paired-end
sequencing technology, we can now accurately map many reads from short genomic repeats,
which were previously impossible to map with high precision. Since short genomic repeats are
usually on the scale of a hundred base pairs and long DNA fragments of paired-end sequencing
technology usually have more than 500 base pairs, it is unlikely that both ends of the DNA
fragment are included in a single short genomic repeat. The non-repetitive end of the read pair
then can serve as a guide to help with the mapping of the repetitive end.

Paired-end sequencing technology also helps improve the mapping efficiency of normal reads
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(reads not enveloped by genetic repeats). As the two ends must not be separated by more than
a few thousands of base pairs, a candidate mapping position must gain support of seeds from of
both reads. As a result, a mapper can map the easier-to-map end first and use the mapping result
as a guide to locate the mapping position of the harder-to-map end. When both ends are hard
to map, a mapper can resort to proximity filters (including variants used in SNAP and BWA-
MEM alike), which usually have better performance than in mapping single-end reads (potential
mappings must gain support from at least one seed from each read, which is a much tighter
requirement than in mapping single-end reads).

Both LEAP and ERS can be applied to improve mapping of paired-end reads. LEAP im-
proves the speed of the approximate-string-match process, which is essential for both paired-end
sequencing technology and single-end sequencing technology; while ERS allows a mapper to
confidently use longer, less frequent yet error resilient seeds, which further reduces the workload
of proximity filters in mapping paired-end reads.

With paired-end sequencing technology, however, we still cannot accurately map read pairs
from longer genomic repeats such as Long Interspersed Nucleotide Elements (LINE) or tandem
repeats. To solve this problem, third generation sequencing technologies are developed which
aim to generate longer (on the scale of multiple thousands to tens of thousands of base pairs)
reads. Currently, third generation sequencing technology can be grouped into two separate cate-
gories: 1) generating continuous long reads with high error rates, such as Nanopore sequencing
technology [20] and 2) outputting many short reads that originate from a single long DNA frag-
ment (also called linked-reads technology), such as 10X sequencing technology [106].

Both LEAP and ERS can be easily applied to linked-reads technology as they serve simi-
lar purposes in linked-reads technology as they do in paired-end sequencing technology. ERS
could also potentially be applied to improve mapping of highly erroneous long reads, as a single
highly error resilient seed from the read might contain enough information to pin-point high qual-
ity mapping candidates. However, generating error resilient database with large error-resilient
thresholds is challenging due to the super-linear growth of neighbor counts per node in the suf-
fix trie as the error resilient threshold increases. Therefore, the potential of applying ERS in
mapping erroneous long reads needs to be further investigated.

Overall, computational techniques proposed in this dissertation is built around the seed-and-
extend mapping methodology, which works best with reads that have low error rates. Among the
four techniques, LEAP and ERS are more technologically independent and has the most potential
to be applied to future sequencing technologies, especially to linked-reads technologies.

6.3 Future Work
There are four potential directions to further extend the studies in this dissertation. First, while
the computational techniques included in this dissertation each provides compelling results, it
is unknown if they share any synergy with each other and can be combined together into a sin-
gle read mapper. Specifically, it is important to study and understand how to tailor customized
mapping strategies for each read to achieve optimal performance. Second, it is worth explor-
ing the potential of applying error resilient seeds to pseudoalignment. Currently, mappers that
employ pseudoalignment use systematic sampling methods to detect spread-out error-free seeds
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in a long read [42, 53]. Most of the sampling mechanisms exploit MinHash sketches[16] to
achieve a steady sampling coverage across the entire reference genome to improve sampling effi-
ciency [15, 70, 80]. Error resilient seeds adds a new dimension to devising the sampling method.
As seeds with higher error resilience are less likely to be affected by errors, a potential seed
sampling mechanism that is more inclined to sample seeds with greater error resilience may in-
crease the likelihood of selecting seeds that are truly error free. A potential option is to replace
the hash function with ERS, which samples seeds based on error resiliency and consistently
sample highly resilient seeds. Seeds with high error resiliency is more likely to be error-free,
while capturing more error-free seeds increases the confidence of finding correct mappings with
pseudoalignment. Third, it is worthwhile to investigate how to optimally divide a read into error
resilient seeds. If a read is divided correctly, a mapper may obtain not only long, infrequent
seeds, but also highly error resilient seeds as well. However this also complicates the seed se-
lection process, as extending and/or reducing the length of a seed impacts both the frequency
as well as the error resilience of the seed. Finally, it is intriguing to examine if the essence of
error resilient seeds, namely finding similar non-trivial sequences in the reference, can be applied
to other problems, such as RNA quantification with pseudoalignment, identifying homologous
genome snippets across organisms, or finding motifs in genomes.
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[26] Andreas Döring, David Weese, Tobias Rausch, and Knut Reinert. Seqan an efficient,
generic c++ library for sequence analysis. BMC Bioinformatics, 9:11, 2008. doi: 10.1186/
1471-2105-9-11. URL http://dx.doi.org/10.1186/1471-2105-9-11. 1.3,
2.1, 2.2, 2.4, 2.5, 3.4

[27] Lavinia Egidi and Giovanni Manzini. Multiple seeds sensitivity using a single seed with
threshold. Journal of Bioinformatics and Computational Biology, 13(04):1550011, 2015.
doi: 10.1142/S0219720015500110. URL http://www.worldscientific.com/
doi/abs/10.1142/S0219720015500110. PMID: 25747382. 1.2

[28] Michael Farrar. Striped Smith-Waterman speeds database searches six times over other
SIMD implementations. Bioinformatics, 23:156–161, 2007. 1.3, 1.3, 2.1

[29] P. Ferragina and G. Manzini. Opportunistic data structures with applications. In Pro-
ceedings of the 41st Annual Symposium on Foundations of Computer Science, FOCS ’00,
pages 390–, Washington, DC, USA, 2000. IEEE Computer Society. ISBN 0-7695-0850-2.
URL http://dl.acm.org/citation.cfm?id=795666.796543. 4.3.3

[30] Simon Gog, Timo Beller, Alistair Moffat, and Matthias Petri. From theory to practice:
Plug and play with succinct data structures. In 13th International Symposium on Experi-
mental Algorithms, (SEA 2014), pages 326–337, 2014. 4.4

[31] Sara Goodwin, John D. McPherson, and W. Richard McCombie. Coming of age: Ten
years of next-generation sequencing technologies. Nature Reviews Genetics, 17(6):333–
351, 6 2016. ISSN 1471-0056. doi: 10.1038/nrg.2016.49. 1

[32] Osamu Gotoh. An improved algorithm for matching biological sequences. Journal
of Molecular Biology, 162(3):705 – 708, 1982. ISSN 0022-2836. doi: https://doi.
org/10.1016/0022-2836(82)90398-9. URL http://www.sciencedirect.com/
science/article/pii/0022283682903989. 1.3

[33] Richard E Green, Johannes Krause, Adrian W Briggs, Tomislav Maricic, Udo Stenzel,
Martin Kircher, Nick Patterson, Heng Li, Weiwei Zhai, Markus Hsi-Yang Fritz, Nancy F
Hansen, Eric Y Durand, Anna-Sapfo Malaspinas, Jeffrey D Jensen, Tomas Marques-
Bonet, Can Alkan, Kay Prfer, Matthias Meyer, Hernn A Burbano, Jeffrey M Good, Rigo
Schultz, Ayinuer Aximu-Petri, Anne Butthof, Barbara Hber, Barbara Hffner, Madlen
Siegemund, Antje Weihmann, Chad Nusbaum, Eric S Lander, Carsten Russ, et al. A
draft sequence of the Neandertal genome. Science, 328:710–722, 2010. 1

107

http://dx.doi.org/10.1186/s12859-016-0930-z
http://doi.acm.org/10.1145/2858656
http://doi.acm.org/10.1145/2858656
http://dx.doi.org/10.1186/1471-2105-9-11
http://www.worldscientific.com/doi/abs/10.1142/S0219720015500110
http://www.worldscientific.com/doi/abs/10.1142/S0219720015500110
http://dl.acm.org/citation.cfm?id=795666.796543
http://www.sciencedirect.com/science/article/pii/0022283682903989
http://www.sciencedirect.com/science/article/pii/0022283682903989


[34] Faraz Hach, Fereydoun Hormozdiari, Can Alkan, Farhad Hormozdiari, Inanc Birol,
Evan E Eichler, and S. Cenk Sahinalp. mrsFAST: a cache-oblivious algorithm for short-
read mapping. Nat Methods, 7:576–577, 2010. 1.1.1
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[70] Guillaume Marçais, David Pellow, Daniel Bork, Yaron Orenstein, Ron Shamir, and
Carl Kingsford. Improving the performance of minimizers and winnowing schemes.
Bioinformatics, 33(14):i110–i117, 2017. doi: 10.1093/bioinformatics/btx235. URL

110

+ http://dx.doi.org/10.1093/bioinformatics/btu513
http://dx.doi.org/10.1002/cpe.3371
https://doi.org/10.1186/1471-2105-14-117
+ http://dx.doi.org/10.1093/bioinformatics/btl263


+http://dx.doi.org/10.1093/bioinformatics/btx235. 6.3

[71] Santiago Marco-Sola, Michael Sammeth, Roderic Guig, and Paolo Ribeca. The gem map-
per: fast, accurate and versatile alignment by filtration. Nat Methods, 9(12):1185–1188,
2012. doi: 10.1038/nmeth.2221. URL http://dx.doi.org/10.1038/nmeth.
2221. 1.1.1, 1.2, 4.1, 4.2, 4.4

[72] Tomas Marques-Bonet, Jeffrey M Kidd, Mario Ventura, Tina A Graves, Ze Cheng,
LaDeana W Hillier, Zhaoshi Jiang, Carl Baker, Ray Malfavon-Borja, Lucinda A Ful-
ton, Can Alkan, Gozde Aksay, Santhosh Girirajan, Priscillia Siswara, Lin Chen,
Maria Francesca Cardone, Arcadi Navarro, Elaine R Mardis, Richard K Wilson, and
Evan E Eichler. A burst of segmental duplications in the genome of the African great
ape ancestor. Nature, 457:877–881, 2009. 1

[73] Zaharia Matei, Bolosky William J., Curtis Kristal, Fox Armando, Patterson David,
Shenker Scott, Stoica Ion, Karp Richard M., and Sittler Taylor. Faster and more accu-
rate sequence alignment with snap. eprint arXiv, 2011. 1.1.1

[74] Gene Myers. A fast bit-vector algorithm for approximate string matching based on dy-
namic programming. J. ACM, 46(3):395–415, 1999. ISSN 0004-5411. doi: 10.1145/
316542.316550. URL http://doi.acm.org/10.1145/316542.316550. 1.3,
1.3, 2.4

[75] Saul B. Needleman and Christian D. Wunsch. A general method applicable to the search
for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology,
48:443–453, 1970. 1.1, 1.3
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