
Simple Cache Partitioning for Networked
Workloads

Thomas Kim∗, Sol Boucher∗, Hyeontaek Lim∗,
David G. Andersen∗, and Michael Kaminsky†

October 2017
CMU-CS-17-125

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Carnegie Mellon University Computer Science Department
†Intel Labs

This research was funded in part by the Intel Science and Technology Center for Cloud Computing.

Keywords: cache partitioning, isolation, resource utilization, tail latency, multi-tenancy

Abstract

Modern datacenters often run a mix of latency-sensitive and throughput-oriented workloads, which
are consolidated onto the same physical machines to improve resource utilization. Performance
isolation under these conditions is an important component in satisfying service level objectives
(SLOs). This paper examines cache partitioning as a mechanism to meet latency targets. Cache
partitioning has been studied extensively in prior work; however, its effectiveness is not well un-
derstood for modern datacenter applications that enjoy recent improvements in low-latency net-
working, such as stack bypass and faster underlying technologies (e.g., DPDK, InfiniBand). These
applications have tight tail latency SLOs of tens to hundreds of microseconds. We find that cache
partitioning is effective in achieving performance isolation among diverse workload mixes for
such environments, without requiring complex configurations or online controllers. On our mod-
ern multi-core server using Intel Cache Allocation Technology, we show that cache partitioning
can protect the performance of latency-sensitive networked applications from local resource con-
tention. Our code is publicly available on Github.

1 Introduction
The efficiency of datacenter and cloud services hinges on achieving two partially-conflicting ob-
jectives: Maintaining high overall machine utilization while meeting per-service throughput and
latency SLOs. Aggressively consolidating services on to a smaller set of nodes is good for the
former and bad for the latter; providing independent hardware for each service suffers the opposite
tradeoff.

Recent literature highlights the importance of low-latency responses in complex distributed
systems, such as Google and Bing’s search indexers, or assembling complex, multi-component
views such as Facebook and Amazon’s user front pages [10]. These applications typically perform
tens to thousands of lookups for each user request, such that the overall user-visible response
time depends both on the slowest chain of dependent responses, as well as the 99.9th percentile
latency [19, 34, 25, 20].

In this paper, we demonstrate that cache partitioning is beneficial for workload consolidation
of throughput-oriented background processing jobs with latency-critical networked applications.
To be concrete, in this work we focus on “mite” workloads such as would be served by key-value
stores or lock servers, and on “contender” workloads such as training machine learning models,
advanced image re-compression, or big data analytics. For the cache partitioning itself, we use
Intel Cache Allocation Technology (CAT), available in recent processors [16].

The high speed of modern stack-bypassing networking technologies, such as 10/40/100 Gbps
Ethernet and InfiniBand, combined with a userland I/O stack, makes the cache-related effects of
sharing the CPU a major factor in a mite’s response time. As we show, cache contention can
increase the 99.9th percentile tail latency by a factor of 5, from 55 µs to 274 µs for a key-value
store serving requests at 5 Mops. The appropriate use of cache partitioning can nearly eliminate
this penalty while allowing contenders to consume all of the (otherwise) idle CPU.

Our results also show that cache partitioning provides strong and effective performance isola-
tion for diverse workload mixes in low-latency environments with strict SLOs. Unlike previous
work, we examine simple configurations that avoid online controllers or complex schedulers that
are less suited to very low latency environments. Finally, our results highlight two additional
insights: partitioning has diminishing—or even negative—returns that can harm tail latency and
throughput in certain cases, and cache partitioning can provide more effective isolation than just
reducing the number of cores available to contender processes.

2 Background and Related Work

2.1 Workload Consolidation
From early time-sharing systems to modern services based on virtual machines (e.g., VMware,
Amazon EC2, Google Compute Engine) and containers (e.g., Kubernetes), running many applica-
tions on a single physical host has been a key technique for improving resource utilization, and,
thereby, the cost-effectiveness of large-scale computing [3].

Current best practices for large-scale services specify service-level objectives, or SLOs, on the

1

response time, throughput, and uptime of running services. SLOs are critical for ensuring the
performance of large, complex systems composed of individual sub-services. In these settings,
there is no free lunch: Resource consolidation pits overall system efficiency (consolidating all
services onto a few highly-loaded physical hosts) against low latency and predictable performance
(physically isolating each service).

In this paper, we examine performance isolation techniques to permit the collocation of low-
latency tasks (“mites”) and high-throughput, batch processing tasks (“contenders”). Mites have
strict latency SLOs. In many common situations, the mite’s 99.9th percentile latency is of paramount
concern. For high fan-out services, such as searching within a sharded index or creating a user’s
Facebook home page, a single request by a user may involve communicating with hundreds or
thousands of nodes [30]. This fan-out means that the user request’s latency is determined by the
longest response time of any contacted node; with 100s or 1000s of requests, the per-node 99.9th
percentile response latency is the de facto lower bound on end-to-end latency.

Unlike mites, contenders behave elastically: they derive more utility the more throughput they
obtain. Typical approaches support mites by overprovisioning the resources promised to them, thus
achieving low overall utilization, because slight increases in load can rapidly degrade the mites’
99.9th percentile latency. This approach wastes resources: the contenders’ elasticity means that,
were a perfect isolation mechanism to exist, a scheduling system could “soak up” all spare capacity
in a cluster by packing contenders into the resources not used by mites.

We consider as contender applications CPU-intensive machine learning training using Google’s
TensorFlow system [33], background lossless re-compression of JPEG images using Dropbox’s
Lepton re-compressor [24], and I/O-intensive big data analytics using Apache Hadoop [1].

2.2 Modern Low-Latency Applications
Advances in networking have made it possible for latency-critical applications to handle requests
in tens of microseconds, a boon for high fan-out designs, high-performance computing, and com-
putational finance applications. These advances cross hardware (cost-effective and fast NICs and
networks with microsecond processing times, such as InfiniBand) and software (OS stack bypass
techniques, such as DPDK [11]). The consequence is very high throughput for small messages and
latency an order of magnitude smaller than what was typical only a few years ago. Such networks
have become common in modern Internet service datacenters.

Latency requirements in the microseconds make performance isolation more important and
challenging. Kernel context switches are too slow and often incompatible with the “spin and
wait for packets” approach used in low-latency stack-bypass frameworks. Even TLB and cache
flushes from a context switch may be sufficient to double end-to-end application latency. As a
consequence, lower-overhead isolation and sharing mechanisms are needed.

2.3 Software-Based Performance Isolation
Cache-aware software-based performance isolation has attempted to address the isolation chal-
lenge of shared caches via both scheduling and direct cache partitioning; however, the limitations
of both techniques have been significant enough to motivate a recent shift to hardware solutions.

2

Some prior work seeks to manage cache contention by changing the per-machine scheduling
policy. The cache-fair scheduling algorithm adjusts the time slice of each thread based on its
instructions per cycle (IPC) [12]. This approach, however, suffers context switching overhead
and shares resources at millisecond, not microsecond, granularity. The Elfen scheduler executes a
batch processing task on a simultaneous multithreading (SMT) core while no latency-critical task
is running on the same physical core [35], but its target SLO (100 ms of 99th percentile latency) is
3 orders of magnitude higher than ours.

Other systems instead focus on scheduling at the cluster level. In this category is Bubble-Up,
which predicts the performance penalty of executing applications in parallel by measuring how
much pressure a task creates on the memory subsystem and how sensitive it is to the pressure
generated by other tasks [28]. To achieve good resource utilization, this approach assumes the
availability of many tasks with diverse resource requirements.

Various software systems have addressed the shared cache problem more directly; this usually
involves page coloring, a mechanism for implementing cache partitioning purely in software. By
selectively allocating physical pages based on the common bits in their physical page number and
cache index (the pages’ “colors”), such programs can control which regions of a cache particular
tasks’ memory can map to [4, 36]. Unfortunately, this approach is incompatible with the 2 MiB
hugepages and 1 GiB superpages employed by modern memory-intensive applications: such pages
may not have any bits in common between the physical page number and cache index. Recent work
proposes special hardware support to overcome this limitation [9].

2.4 Hardware Cache Partitioning
Cache partitioning regulates the cache-level interference among application tasks [32]. The moti-
vation for this technique is that consolidation of multiple tasks on the same CPU causes contention
for shared resources, in particular shared cache, and this contention can have a significant effect
on the performance of tasks. Cache partitioning allows changing which portion of shared CPU
cache is available to individual tasks. A controller using cache partitioning can prevent tasks from
evicting other tasks’ data from the cache by assigning them disjoint cache partitions. Alternatively,
by assigning overlapping partitions, the controller can enable opportunistic cache sharing.

A common form of cache partitioning is way partitioning [6]. Modern CPUs use a set-
associative cache design to implement approximate LRU replacement. For example, Intel Xeon
E5-2683 v4 has 20-way set associative last-level cache (LLC), which allows 20 different cache
lines to share the same cache bucket. Way partitioning exploits this existing structure of the cache;
it treats cache ways as the unit of cache partitions, realizing cache partitioning by allocating subsets
of cache ways to processes.

Way partitioning is applicable to a wide range of applications. It does not require explicit
modifications to the application software because it only alters the hardware-level cache eviction
protocol; it is even possible to change a task’s partition dynamically [27, 38]. In contrast, software-
only techniques such as page coloring require precise control over how application memory is
allocated and accessed in the physical address space, and thus experience high overhead to change
partitioning frequently [36].

3

2.5 Intel Cache Allocation Technology
Previous conventional wisdom said that cache partitioning was complex and costly to imple-
ment [12], and most earlier studies of cache partitioning operated entirely in simulation [7, 21].
Some recent CPUs, however, implement hardware-based cache partitioning.

Intel Cache Allocation Technology (CAT) is the first commodity hardware implementation of
cache partitioning, and is available in certain recent Xeon CPUs [15]. CAT is implemented as way
partitioning [7], and is currently operate on the last-level cache (LLC). It works by limiting the
cache ways from which a thread is allowed to evict cache lines, but does not prevent reads from
hitting in ways outside the thread’s current allocation.

The CAT software interface is centered around the notion of Classes of Service (CoSes), nu-
meric identifiers used to group jobs that are assigned the same partition of cache. Each logical core
has a model-specific register (MSR) that the OS or VMM can use to assign a CoS to the process
currently running on that core. Each CoS has an associated Capacity Bitmask (CBM) that specifies
which cache ways the processes in that group can evict lines from. Like CoSes, CBMs are stored
in MSRs, but are CPU-wide instead of being local to each core. For instance, the CAT implemen-
tation on the Intel Xeon E5-2683 v4 supports 16 CoSes, each of which can be associated with an
arbitrary CBM. There are restrictions placed on these CBMs: they must specify a single logically
consecutive set of cache ways and must include at least one way.

CAT-enabled CPUs also provide Cache Monitoring Technology (CMT), which allows hard-
ware performance counter-style monitoring of other important LLC performance metrics. Simi-
larly to CAT, CMT exposes a software interface featuring per-core Resource Monitoring IDs (RMIDs),
which are analogous to CoSes. CMT presently comprises two subfeatures: LLC occupancy mea-
surement and Memory Bandwidth Monitoring (MBM). In this work, we make use of the latter
feature, which provides the real-time local (NUMA node managed by the current CPU) and total
memory bus bandwidth [17, Section 17.15.5.2].

2.6 Performance Isolation using CAT
Recent studies have begun to exploit CAT to achieve performance isolation. Prior work, how-
ever, makes it hard to reason about their effectiveness under modern low-latency workloads and
realistic background tasks. They often focus on local processing with no network I/O, relatively
high latency SLOs in milliseconds, and/or limit their studies to synthetic workloads, which are far
from high-speed networked workloads running on low-latency networks. Our work clarifies the
effectiveness and pitfalls of hardware cache partitioning for recent low-latency workloads.

Cache QoS describes various CAT configurations that demonstrate CAT’s wide applicabil-
ity [15]. Although it applies CAT to a networked application that uses DPDK, Cache QoS exam-
ines only the application throughput, but not latency.

Ginseng lets cloud applications bid for LLC space based on their valuation of cache space [13].
Its game-theoretic technique optimizes the benefits perceived by the applications instead of tradi-
tional resource utilization metrics such as IPC and LLC hit ratios.

Dirigent maintains low variance across the execution times of latency-sensitive tasks. By mon-
itoring execution time and LLC misses, Dirigent dynamically adjusts a task’s cache partitions and

4

applies conventional dynamic voltage and frequency scaling (DVFS) [38].
Heracles aims to guarantee QoS for latency-sensitive tasks while running best-effort tasks that

may consume a diverse set of resources including CPU cycles, cache space, memory bandwidth,
network I/O, and power [27]. It uses a CAT-enabled software scheduler that regulates the resource
consumption of the best-effort tasks. In particular, this work points out that allocating more cache
space to a latency-critical task, and by extension less to best-effort tasks, can be detrimental to
the latency-critical task’s performance. The best-effort task will incur more cache misses and thus
cause more memory bandwidth contention, driving up the tail latency of latency-sensitive tasks.
Our work explores this performance penalty in depth (Section 5).

Heracles and Dirigent are both online systems that use heavy-weight instrumentation to dy-
namically tune a variety of scheduling and resource allocation parameters. Our work shows that
using simple offline performance analysis and applying CAT in a static manner offers simple and
robust performance isolation. Furthermore, we examine how the mite and contender’s performance
react to different CAT configurations, which neither Heracles nor Dirigent explores in depth. We
are the first amongst these related projects to release our source code publicly.

3 Workload Consolidation with CAT for Low-Latency Networked
Mites

We use Intel CAT to achieve performance isolation for consolidated environments. We assign a
disjoint set of cache ways to mite and contender tasks, and evaluate the effectiveness of CAT to
answer three main questions:

• How much can CAT improve mite tail latency?

• How much does CAT limit contender throughput?

• How should CAT be applied to maximize its benefit?

Unlike prior work using CAT-based performance isolation such as Heracles [27], Dirigent [38],
Cache QoS [15], and Ginseng [13], we strive to (1) examine the effectiveness of CAT on full net-
worked services, instead of using local simulations or benchmarks, to better reflect datacenter
services; (2) target modern low-latency applications achieving low tail latencies of 100–200 mi-
croseconds; and (3) investigate detailed performance implications of workload consolidation by
measuring 99.9th percentile latency. Previous tail latency studies [19, 34, 25, 20] show that the
99.9th percentile latency is a better indicator of large-scale clustered service performance than
metrics such as 95th and 99th percentile latencies.

Our experiments use one of three mites: a lock server, an in-memory object store, or an echo
server. We implement the first two using MICA, a low-latency networked key-value store [26],
varying the number of key-value items based on which system we are modeling. We implement
the echo server using gRPC [14].

Our contenders model machine learning, data compression, and distributed computation appli-
cations using TensorFlow [33], Lepton [24], and Hadoop [1]. TensorFlow is a heavy-weight task

5

Server machine

 CoS CoS

Client machine

Client DPDK Mite

L3 Cache ways

Contender
ContenderContender

NIC

DPDK

NIC
10 GbE

10 GbE

Figure 1: Testbed setup: The server machine runs both MICA (a key-value store) server and
contender processes. The client machine sends and receives key-value messages over the network.
10 GbE links directly connect two machines.

that has large working set of tens of GB, while Lepton is a streaming task that processes a few MB
of data at a time. TensorFlow uses multithreading for parallel processing on multiple CPU cores.
For Lepton, we launch multiple instances of single-threaded Lepton processes that are pinned to
different cores. Hadoop runs I/O-intensive big data analytics. For our experiments, we use word
count as the workload. Hadoop also uses multithreading for parallel processing on multiple CPU
cores, but it does not fully use of all CPU cores as TensorFlow does, so multiple multi-threaded
instances are launched similarly to Lepton. All three are throughput-oriented background tasks
without strict SLOs in our consolidation scenario; nevertheless, achieving high throughput is still
important for improving the overall resource utilization.

The key results of our evaluation are both a demonstration of the overall effectiveness of CAT
on representative workloads (Section 4) and a sensitivity analysis to determine empirically how
robust, or not, CAT parameters are to mite and contender performance (Section 5).

3.1 Testbed Overview
Figure 1 depicts our experimental infrastructure. Each experiment consists of a client machine that
issues requests over the network to a server machine tasked with responding to them. The client
machine runs only a client process, and the server machine runs both a server process (the mite
process) and numerous contender processes that compete for resources.

MICA. Each data point in our results represents a fresh run in which all MICA server instances
and all contenders are spawned with the given experiment’s parameters. A run consists of an initial
60 s warmup period followed by a ≈60 s period during which the benchmarking infrastructure
collects data. This 60 s period corresponds to roughly 300 million requests at the throughputs seen

6

in most of our trials. The mite server’s throughput and latency are measured on the client machine
(i.e., they are end-to-end numbers).

gRPC. Each data point for echo server experiments also represents a fresh run in which all server,
client, and contender instances are spawned. However, each run does not include any warmup
period, and gathering data lasts for ≈330 s. Unlike MICA, the echo server does not need to warm
up, as it performs no additional processing when serving requests. The reason why the echo server
experiments last longer is because the throughput of the echo server is much lower than MICA,
so we must run longer experiments to gather enough samples. Similar to MICA, the mite server’s
throughput and latency are measured on the client machine.

3.2 Client-Side Measurement Setup
Our client is an open-loop workload generator: it makes new requests at a constant rate without
waiting for responses to arrive. For the MICA client, we implement an upper bound of 1024 on the
total number of outstanding requests, corresponding to the size of the server and client’s receive
buffer size on NIC (total 512 packets) because sending more requests would only cause the server
and client to drop additional request packets without doing useful work. For the gRPC-based echo
server, we rely on the TCP buffers to limit the total number of outstanding requests. This open-loop
system better models datacenter services accessed by a large number of clients than do closed-loop
systems [31, 37, 22].

For MICA experiments, MICA client itself is responsible for the latency measurements. For
each new key-value request, it obtains the current timestamp using the RDTSC x86 instruction
and stores it in a local descriptor associated with the request. When the client receives a response
for the request from the server, it calculates the latency as the elapsed time between the stored
timestamp and the current RDTSC value.

For echo server experiments, the client is also responsible for the latency measurements. For
each RPC, it sends the current timestamp in the same way as the MICA client. The echo server
echoes back the same timestamp, and the client calculates the latency as the elapsed time between
the echoed timestamp and the current RDTSC value.

3.3 Server-Side Measurement Setup
To help understand the end-to-end latencies recorded at the client, we instrument the server-side
processes to measure several underlying performance metrics, including execution time, memory
bandwidth, and cache misses.

Execution time. When measuring the performance of the mite, we are primarily concerned with
its tail response latencies, but for the contenders, we are more interested in overall throughput. As
such, we use the UNIX time utility to capture the jobs’ execution times, then divide a measure of
work done by the resulting duration.

7

server client

CPU

Codename Broadwell Haswell
Model Xeon E5-2683 v4 Xeon E5-2697 v3
Clock speed 2.1 GHz 2.6 GHz
Turbo Boost Disabled Enabled
Cores 16 14

Cache

L3 (LLC) 40 MiB 35 MiB
L3 set-associativity 20-way 20-way
L2d 256 KiB 256 KiB
L2i 256 KiB 256 KiB
L1d 32 KiB 32 KiB
L1i 32 KiB 32 KiB

Mem

Size 128 GiB 64 GiB
Frequency DDR4-2400 DDR4-2133
Channels 4 4
Rank 2 2

NIC
Model Intel X520-T2 Intel X520-T2
Speed 10 GbE 10 GbE
Ports 2 2

Table 1: Hardware specifications of our test machines. Note that this only displays the resources
available on socket 0/NUMA node 0.

Cache misses. We use common x86 hardware performance counters [17, Section 19.1] to report
cache statistics. For example, we calculate the number of misses per kilo-instruction (MPKI) by
dividing the number of LLC misses by the number of instructions and multiplying it by 1000.

Memory bandwidth. Our bandwidth measurements are collected using Memory Bandwidth
Monitoring, a feature of CMT. Because we run all processes on socket 0 and exclusively use
NUMA node 0, we use the “Local External Bandwidth” counter, which includes all traffic be-
tween LLC and the main memory on the NUMA node managed by the measuring CPU [17, Sec-
tion 17.15.5.2]. We allow perf to configure the RMID to sample bandwidth from all cache ways.

3.4 Details
Hardware configuration. We list our machine specs in Table 1. Note that, although both ma-
chines have two physical CPUs, we only use CPU 0 and NUMA node 0 on each. To permit
comparison between the baseline results and those recorded under system contention, the server
machine has Turbo Boost disabled via a BIOS option and uses the Linux performance CPU
governor.

Both machines’ L3 caches are inclusive, meaning that no cache line can be present in L1 or

8

L2 unless it corresponds to a cache line in L3. All involved caches approximate an LRU eviction
policy.

Two Cat 6 Ethernet cables link the two machines, patched at each end into a dual-port Intel 10
GbE NIC connected to socket 0 via PCIe 2.0 x8. For the MICA experiments, one of these ports is
managed by DPDK [11]’s userland driver which carries MICA messages, while the other port uses
the Linux TCP stack to carry SSH control traffic needed by our experiment driver. For the echo
server experiments, we used the second port, which uses the Linux TCP stack, for all traffic.

Software. The server runs Linux kernel 4.7.0 patched with the Intel Resource Director Technol-
ogy patchset to enable process-granularity CAT control [18]. The client, which does not need or
use CAT, runs Linux 3.16.0 from Ubuntu 14.04.4. Both systems use DPDK 16.07. With the excep-
tion of memory bandwidth figures, all hardware performance counter measurements were obtained
using perf stat built from the Linux 4.7.0 sources. Bandwidth numbers were collected using a
separate perf stat process configured to use the intel cqm/local bytes/ counter pro-
vided by the CMT/MBM support included in the aforementioned Linux patchset. The contender
software versions used are TensorFlow 0.10.0rc0, Lepton 1.2.1, and Hadoop 2.7.3.

4 Overall Effectiveness of CAT
The primary metric we evaluate is the mite’s 99.9th percentile end-to-end tail latency. Ideal per-
formance isolation would preserve this tail latency regardless of contenders running on the same
system. We vary the load on the mite server by changing the request rate of the mite client, and
measure the response rate, which we denote as mite throughput. We run each experiment 3 times
and plot the median of measured tail latencies, along with that run’s throughput, LLC miss rate,
and memory bandwidth usage.

As shown in Figure 2, we examine three different combinations of consolidation and CAT to
investigate how contenders and CAT alter the tail latency of the mite:

• NoContention: Only the mite runs. We do not apply CAT, so its process may use all of the
LLC. This configuration models an unconsolidated node.

• Contention-NoCAT: Both the mite and contender tasks run. This configuration does not use
CAT, so the mite and the contenders share the cache and can evict each other’s cache lines.
This configuration examines a consolidation scenario without CAT.

• Contention-CAT: The mite and contenders run, and we assign a disjoint set of cache ways
to them. This represents a CAT-enabled consolidation scenario.

In the CAT data series, the rscctrl sysfs filesystem is used to apply one Capacity Bitmask
(CBM) to the mite and a non-intersecting one to the group of contender threads, such that the
masks together account for the entire LLC. We assign the mite low ranges of cache ways starting
at bit 0 of the CBM, and the contender the rest. For example, if the mite is allocated 2 cache ways,
its CBM is 0x3 (cache ways 0 and 1) and the CBM of the contenders is 0xffffc (cache ways 2
through 19, inclusive).

9

DPDK Mite

L3 Cache ways

(a) NoContention.

DPDK Mite

L3 Cache ways

Contender
ContenderContender

(b) Contention-NoCAT.

 CoS CoS

DPDK Mite

L3 Cache ways

Contender
ContenderContender

(c) Contention-CAT.

Figure 2: Combinations of consolidation and CAT.

4.1 Workloads
Mites. We consider three mites: a lock server, an object store, and echo server. The lock server
and object store are implemented using MICA, and the echo server is implemented using gRPC.

We consider two representative workloads to drive MICA. Both workloads follow YCSB
Workload A [8] for their request type ratio and key popularity distribution. The client sends an
even split of read and write requests at constant throughput. Request keys follow a Zipf distri-
bution with skew of 0.99. Production key-value store clusters also show a skewed key popularity
distribution [2].

10

3
.9

9
9

4
.1

0
0

4
.2

0
0

4
.3

0
0

4
.4

0
0

4
.5

0
0

4
.6

0
0

4
.7

0
0

4
.8

0
0

4
.9

0
0

5
.0

0
0

5
.0

5
0

5
.1

0
0

5
.1

2
7

5
.1

8
1

5
.2

4
0

Mite Throughput (Mops)

0

100

200

300

400

500

600

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

(a) MICA-big with TensorFlow.

4
.4

5
0

4
.5

5
0

4
.6

5
0

4
.7

5
0

4
.8

5
0

4
.9

5
0

5
.0

5
0

5
.1

5
0

5
.2

5
0

5
.3

5
0

5
.4

5
0

5
.5

0
0

5
.5

4
8

5
.5

9
4

5
.6

3
7

Mite Throughput (Mops)

0

100

200

300

400

500

600

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

(b) MICA-small with TensorFlow.

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

0
.0

0
7

0
.0

0
8

Mite Throughput (Mops)

0

1000

2000

3000

4000

5000

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

(c) Echo server with TensorFlow.

3
.9

9
9

4
.1

0
0

4
.2

0
0

4
.3

0
0

4
.4

0
0

4
.5

0
0

4
.6

0
0

4
.7

0
0

4
.8

0
0

4
.9

0
0

5
.0

0
0

5
.0

5
0

5
.1

0
0

5
.1

5
0

5
.1

9
3

5
.2

4
0

5
.2

7
3

Mite Throughput (Mops)

0

100

200

300

400

500

600

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-CAT
Contention-NoCAT
NoContention

(d) MICA-big with Lepton.

4
.4

5
0

4
.5

5
0

4
.6

5
0

4
.7

5
0

4
.8

5
0

4
.9

5
0

5
.0

5
0

5
.1

5
0

5
.2

5
0

5
.3

5
0

5
.4

5
0

5
.5

0
0

5
.5

5
0

5
.5

7
7

5
.6

0
6

5
.6

3
7

Mite Throughput (Mops)

0

100

200

300

400

500

600

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

(e) MICA-small with Lepton.

0
.0

1
0

0
.0

2
0

0
.0

2
2

0
.0

2
4

0
.0

2
6

0
.0

2
8

0
.0

3
0

0
.0

4
0

Mite throughput limit (Mops)

0

1000

2000

3000

4000

5000

6000

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

NoContention
Contention-NoCAT
Contention-CAT

(f) Echo server with Lepton.

3
.6

3
.7

3
.8

3
.9

4
.0

4
.1

4
.2

4
.3

4
.4

4
.5

4
.6

Mite Throughput (Mops)

0

100

200

300

400

500

600

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

(g) MICA-big with Hadoop.

4
.3

5
0

4
.4

5
0

4
.5

5
0

4
.6

5
0

4
.7

5
0

4
.8

5
0

4
.9

5
0

5
.0

0
0

5
.0

5
0

5
.1

5
0

5
.2

5
0

5
.3

5
0

5
.4

5
0

5
.5

0
0

5
.5

5
0

5
.5

8
8

5
.6

1
9

Mite Throughput (Mops)

0

100

200

300

400

500

600

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

(h) MICA-small with Hadoop.
0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

0
.0

0
7

0
.0

0
8

Mite Throughput (Mops)

0

1000

2000

3000

4000

5000

6000

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

(i) Echo server with Hadoop.

Figure 3: Mite 99.9th percentile tail latencies.

11

• MICA-big models a memcached node [29]. It serves a large number of in-memory key-
value items over the network. Because its working set is too large to fit in the CPU cache,
processing requests typically requires accessing the main memory. We use 44.2M objects,
which occupy 2.31 GiB of memory. Consequently, 95% of requests hit 1 GiB of hot data
(see Appendix A for the hot set size calculation).

• MICA-small models a distributed lock server node [5]. The total number of locks in such
a system is small, but they must be replicated throughout a cluster for high throughput and
fault tolerance. Without contenders vying for space, the working set of MICA-small fits in
LLC. The total number of items for the lock server is 65.0k, which corresponds to 3.47 MiB
of memory and 2 MiB of hot data.

• Echo server is implemented using gRPC. The mite process receives an RPC containing a
timestamp, and echoes this timestamp back to the client. Although there is no additional
processing on the server, gRPC involves the kernel network stack and thus incurs large over-
heads which do not exist in systems like MICA that use user-level networking.

The mite process is pinned to physical core 0 on the server machine using taskset, and the
contending processes are collectively pinned to the remaining 15 physical cores of that socket.

Contenders. To account for the large differences in throughput between MICA and gRPC, we
configure the contenders to ensure enough time to collect a sufficiently large number of samples.
The two parameters that we change are the number of iterations and the dataset size, depending
on the mite. In experiments using TensorFlow as a contender, we train a neural network on the
MNIST handwriting dataset [23] and express throughput in epochs per second. For mites MICA-
big and MICA-small, we train for one epoch (a single pass through all of the training data); for
the gRPC-based echo server we train for five epochs. When using Lepton as the contender, we
compress/decompress the test images found in its repository; throughput for Lepton is the average
number of images compressed per second. For the MICA-based mites, we run 3 passes over the
image set, and for the echo server we run 15. Finally, the Hadoop contender experiments run
MapReduce wordcount on a corpus of randomly generated text. The experiments using MICA as
the mite run wordcount on 400 MB of text; the experiments using the echo server as the mite run
wordcount on 1.8 GB of text.

4.2 Mite Tail Latency and Throughput
Figure 3 plots the tail latency versus throughput curve for the mite. For Contention-CAT, we
allocate a sufficient number of cache ways to hold the mite’s working set without excessive over-
allocation (as we will discuss in Section 5.1). In the experiments using CAT and MICA, we assign
4 cache ways to the mite and the remaining 16 cache ways to the contender. In the experiments
using CAT and the echo server, we assign 7 cache ways to the mite and the remaining 13 cache
ways to the contender. Note that the x-axis begins at 3.6–4 Mops (MICA-big), 4.35–4.45 Mops
(MICA-small), or 0.001–0.01 Mops (echo server) to focus on throughputs where the tail latencies
of the different consolidation approaches start to differ.

12

3
.9

9
9

4
.1

0
0

4
.2

0
0

4
.3

0
0

4
.4

0
0

4
.5

0
0

4
.6

0
0

4
.7

0
0

4
.8

0
0

4
.9

0
0

5
.0

0
0

5
.0

5
0

5
.1

0
0

5
.1

2
7

5
.1

8
1

5
.2

4
0

Mite Throughput (Mops)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

LL
C

 m
is

se
s

p
e
r

ki
lo

-i
n
st

ru
ct

io
n

Contention-NoCAT
Contention-CAT
NoContention

(a) MICA-big with TensorFlow.

4
.4

5
0

4
.5

5
0

4
.6

5
0

4
.7

5
0

4
.8

5
0

4
.9

5
0

5
.0

5
0

5
.1

5
0

5
.2

5
0

5
.3

5
0

5
.4

5
0

5
.5

0
0

5
.5

4
8

5
.5

9
4

5
.6

3
7

Mite Throughput (Mops)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

LL
C

 m
is

se
s

p
e
r

ki
lo

-i
n
st

ru
ct

io
n

Contention-NoCAT
Contention-CAT
NoContention

(b) MICA-small with TensorFlow.

0
.0

0
1

0
.0

0
2

0
.0

0
3

0
.0

0
4

0
.0

0
5

0
.0

0
6

0
.0

0
7

0
.0

0
8

Mite Throughput (Mops)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

LL
C

 m
is

se
s

p
e
r

ki
lo

-i
n
st

ru
ct

io
n

Contention-CAT
Contention-NoCAT
NoContention

(c) Echo server with TensorFlow.

Figure 4: LLC misses per kilo-instruction (MPKI).

13

MICA-big & TensorFlow. Figure 3a compares MICA-big mite performance with and without
TensorFlow-based contenders. We make two observations:

First, contention-NoCAT suffers high tail latency because of the cache contention between
MICA-big and TensorFlow. For example, MICA’s tail latency is 274 µs at 5 Mops, which is 5×
higher than without contenders at the same load.

Second, contention-CAT successfully reduces the performance interference; however, it does
not eliminate the cache contention completely for two reasons: (a) MICA-big’s large working set
requires some requests to access memory (“large mite working set”); and (b) TensorFlow consumes
large memory bandwidth (“expensive memory access due to contenders”). We investigate these
factors in detail in Section 5.2.

MICA-small & TensorFlow. Figure 3b uses MICA-small as the mite, and runs TensorFlow as
a contender. Since MICA-small has a small working set (i.e., the above “large mite working set”
concern is absent), Contention-CAT provides low tail latency even though TensorFlow is making
memory accesses more expensive by consuming memory bandwidth. However, because the con-
tender is a heavy-weight task and can evict the mite’s data from the cache, Contention-NoCAT
suffers high tail latency.

Echo server & TensorFlow. Figure 3c uses the echo server as the mite and TensorFlow as the
contender. gRPC uses the kernel TCP stack as opposed to DPDK. Thus, the echo server’s tail
latencies are an order of magnitude higher than MICA’s, such that the performance loss from
cache misses is much less significant than it is with MICA. Nevertheless, CAT shows some limited
benefit to the echo server’s tail latency when using TensorFlow as a contender.

Lepton. Figures 3d–3f use Lepton as a contender. Lepton is more arithmetic-intensive than
memory- or cache-intensive; its working set fits in a few megabytes. As expected, Lepton con-
tenders have less impact on the mite than TensorFlow does. The tail latency of the contended
cases, with and without CAT, is very close to that of the uncontended case. (The core question
for which we chose Lepton is to understand whether CAT will reduce the contender’s throughput,
discussed later.)

MICA & Hadoop. Figures 3g and 3h use Hadoop as a contender with MICA-big and MICA-
small as the mite. Hadoop is disk I/O-intensive, but it is less CPU- and memory-intensive than
TensorFlow. The results show that CAT is less effective in shielding the mites from contender-
based interference. Hadoop’s I/O path consumes additional non-memory resources, such as kernel
CPU time to process the disk I/O. CAT is unable to protect MICA-big against this type of resource
contention at high throughputs. For MICA-small, CAT provides some benefit because the working
set fits in cache and thus the potential for Hadoop to affect tail latency is reduced.

Echo server & Hadoop. Figure 3i uses the echo server as the mite and Hadoop as the contender.
The echo server’s relatively heavy-weight gRPC packet processing path competes with the also
heavy-weight Hadoop for resources, which affects the mite’s tail latency. Here too, given the

14

absolute latency numbers (ms) and the nature of the contention, CAT is ill-suited and unable to
provide the necessary performance isolation.

4.3 Mite Cache Misses
We briefly describe the effect of CAT on the mite’s cache misses for the consolidation scenar-
ios. We perform a more detailed analysis on the relationship between the number of cache ways
assigned to the mite and its cache misses in Section 5.1.

Figure 4a shows the LLC misses per kilo-instruction (MPKI) of MICA-big when consolidated
with TensorFlow. LLC misses are higher in Contention-NoCAT than in Contention-CAT, causing
more memory accesses. Their relative MPKIs differ by 9.07% when the throughput is 5 Mops.
This difference in MPKIs is large enough to cause large tail latency differences because the 99.9th
percentile tail latency is determined by the latency of 1 request out of 1000. Additionally, slow
requests can cause temporary periods of lower throughput, causing requests to build up in the
queue, which in turn increases the tail latency.

Figure 4b depicts the MPKI of MICA-small. With CAT, the miss ratio is close to 0, approaching
the non-consolidation scenario. The low miss ratio shows that we achieve almost perfect isolation
for the consolidation of MICA-small and TensorFlow.

Figure 4c plots the MPKI of the echo server. The echo server’s overall miss rate is weakly
correlated with its tail latency shown in Figure 3c. CAT reduces the 99.9th percentile tail latency
of the echo server, but it often increases the overall miss rate of the echo server. This result suggests
that the cache miss rate of the mite alone is insufficient to estimate how effectively CAT improves
the tail latency of the mite. That is, reducing the mite’s cache misses is not necessarily beneficial
for the mite performance; this observation is consistent with the result of cache overallocation as
we discuss in Section 5.2.

We omit the cache miss results for the mite with Lepton and Hadoop because they show similar
results.

4.4 Contender Throughput
Regardless of mite throughput, using CAT has little effect on contender throughput when properly
configured (4 ways for MICA and 7 ways for the echo server). The contender throughput difference
between CAT and NoCAT for Hadoop when running alongside MICA-big was at most about 2.7%.
In all other cases, the contender throughput difference between CAT and NoCAT was less than
0.5%.

Section 5 discusses counterexamples where misusing CAT can both reduce contender through-
put and harm the mite’s tail latency.

4.5 Summary
CAT provides performance isolation for various consolidation scenarios. Its effectiveness depends
on (1) the intensity of memory access by contenders and (2) the working set of the mite. If the
contender creates a low load on memory bandwidth (e.g., Lepton), both consolidation with and

15

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

#ways allocated exclusively to the mite

0

100

200

300

400

500

600
M

it
e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

#ways allocated exclusively to the mite

0

1

2

3

4

5

LL
C

 m
is

se
s

p
e
r

ki
lo

-i
n
st

ru
ct

io
n

Contention-NoCAT
Contention-CAT
NoContention

(a) Tail latency and LLC misses of MICA-big.
1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

#ways allocated exclusively to the mite

0.000

0.005

0.010

0.015

0.020

0.025

0.030

C
o
n
te

n
d
e
r

th
ro

u
g
h
p
u
t

(e
p
o
ch

s/
s)

Contention-NoCAT
Contention-CAT

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

#ways allocated exclusively to the mite

0

10

20

30

40

50

60

70

LL
C

 m
is

se
s

p
e
r

ki
lo

-i
n
st

ru
ct

io
n

Contention-CAT
Contention-NoCAT
NoContention

(b) Throughput and LLC misses of TensorFlow.

Figure 5: Performance of MICA-big and TensorFlow under consolidation when varying cache
ways.

without CAT rarely increase the mite’s tail latency. However, if the contender accesses memory
intensively (e.g., TensorFlow, Hadoop), leveraging CAT substantially improves the mite’s tail la-
tency. CAT is most effective when the mite has small working set that fits in the cache, providing
nearly perfect performance isolation. If MICA’s working set is larger than the cache, consolida-
tion with CAT provides only partial performance isolation for the mite, but it still allows much
lower tail latency than without CAT. With CAT, the contender sustains high throughput in these
experiments where the mite uses 4 or 7 cache ways.

5 In-Depth Performance Analysis
This section analyzes how CAT affects the performance of the mite and the contender using various
CAT configurations. Because of space constraints, we focus on the TensorFlow contender, which
causes more performance interference on the mite’s tail latency than Lepton (see Section 4.2), and
exhibits memory bandwidth behavior that makes it prone to CAT misconfiguration which is not
present in experiments using Hadoop as the mite (Section 5.2). Unless specified, we set the request
throughput of the mite in this section to 5 Mops, which provides high throughput at low latency
(i.e., it is before the knee of the latency-throughput curve). We chose 5 Mops to avoid exaggerating
the benefit of CAT while still exploring workload space that shows the potential benefits of CAT.

16

5.1 How Many Cache Ways?
Figure 5 plots the performance (tail latency or throughput) and LLC misses of MICA-big and
TensorFlow versus the number of cache ways allocated to the mite (MICA-big) process.

MICA-big’s latency is at its lowest when it has 3–8 cache ways (Figure 5a, top). In this range,
the reduction in TensorFlow throughput (Figure 5b, top) is less than 1% despite a 42.6% improve-
ment in tail latency for MICA-big over the no contention baseline.

The two ends of the graph, however, have worse performance than not using any cache-based
performance isolation at all. Unsurprisingly, with only one cache way, MICA-big’s tail latency is
at its worst because a single cache way is unable to hold the process’s working set.

At the other end of the graph, when MICA-big has most of the cache and TensorFlow is limited
to just one way, TensorFlow’s throughput drops by 13.3%. This drop in contender throughput,
however, does not improve MICA-big’s tail latency, which is still over 500 µs, indicating that this
point in the tradeoff space is suboptimal for both MICA-big and TensorFlow. We explore this issue
in the next subsection.

We chose 4 cache ways for CAT in the experiments using MICA in Section 4 based on the
above observation. Using 8 cache ways provides negligible mite tail latency reduction compared
to 3 cache ways, and preferring cache way allocations at the lower end of this range minimizes the
impact on the contender. Since static cache allocations based on offline measurement may run the
risk of misrepresenting the online workload, we add a slack at the bottom of this range, leading us
to use 4 cache ways.

Through the same process, we came to the conclusion that 7 cache ways was sufficient for the
echo server. We performed a similar experiment using the echo server as a mite. In this case, the
tail latency had significantly more variance, and there were two key differences from the MICA
case: (1) The echo server did not experience the increase in tail latency when contender was starved
for cache space. We believe that this is because the echo server makes fewer memory accesses to
serve requests than MICA does and thus is less susceptible to the increased memory bandwidth use
by the contender (see Section 5.2). (2) The echo server benefited from having more cache ways,
up to 6 or 7, compared to MICA. As a result, we used 7 cache ways in the experiments using the
echo server in Section 4.

5.2 More Cache Isn’t Necessarily Beneficial
Intuitively, giving additional cache ways to the mite should progressively reduce its tail latency
until it becomes equal to the NoContention latency. Figure 5a shows, however, that tail latency
gets worse when the mite has exclusive access to almost all of the cache. This degradation is not
the result of imperfect LLC isolation: MICA-big’s LLC miss rate decreases monotonically as it is
allocated more cache ways (Figure 5a, bottom).

We observe that memory bandwidth contention is a major contributor to the reduction in con-
tender throughput. Figure 5b shows that as TensorFlow is restricted to fewer cache ways, it expe-
riences more frequent LLC misses. These misses are caused by a combination of lower total cache
capacity and lower cache associativity. The additional misses translate directly into new memory
accesses to retrieve the data previously fulfilled by cache.

17

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

1
7

1
8

1
9

#ways allocated exclusively to the mite

0

5000

10000

15000

20000

25000

30000

S
y
st

e
m

-w
id

e
 m

e
m

o
ry

 b
a
n
d
w

id
th

 u
sa

g
e
 (

M
B

/s
)

Contention-CAT
Contention-NoCAT
NoContention

Figure 6: System-wide memory bandwidth use when running MICA-big and TensorFlow, varying
cache allocation.

Figure 6 measures this effect more directly by plotting system-wide memory bandwidth con-
sumed during these experiments. Recall that MICA-big’s working set size is larger than LLC.
Thus, although MICA-big experiences fewer cache misses under generous allocations, some ac-
cesses will still go to memory. When that happens, those access must compete with TensorFlow
for memory bandwidth on the shared bus and are thus more expensive, resulting in a higher tail
latency for MICA-big.

Note that memory bandwidth contention is most significant when the mite has a working set
too large for LLC and the contender is memory access intensive. In our experiment, we do not
observe this tail latency degradation when using MICA-small or the Lepton contender provided
the mite has a sufficiently large cache allocation.

5.3 Limiting Contender Core Count
As an alternative technique for performance isolation, contenders may use a small number of cores
to limit their performance interference with the mite.

Figure 7 depicts the tail latency of MICA-big when varying the number of cores dedicated to
TensorFlow. The results show that reducing the contender core count without CAT (Contention-
NoCAT) can indeed provide performance isolation. However, when using more than 50% of the
cores, CAT-enabled consolidation (Contention-CAT), on average, allows the contender to use two
to three additional cores and still meet the same mite latency SLO as Contention-CAT. Depending
on the SLO, this improves the per-node contender throughput by 14% to 20%.

5.4 Varying Working Set
Unlike previous sections where we focus on two representative dataset sizes that model the lock
server and object store, here we vary the working set of the key-value store to understand its effect

18

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

Cores running contender

0

100

200

300

400

500

600

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

1 2 3 4 5 6 7 8 9

1
0

1
1

1
2

1
3

1
4

1
5

1
6

Cores running contender

0.000

0.005

0.010

0.015

0.020

0.025

0.030

C
o
n
te

n
d
e
r

th
ro

u
g
h
p
u
t

(e
p
o
ch

s/
s)

ContenderOnly
Contention-CAT
Contention-NoCAT

Figure 7: Tail latency of MICA-big and machine learning throughput when varying the number of
cores used by TensorFlow.

on performance isolation. Because it takes a long time for the remote client to populate the key-
value store using a skewed key distribution, we locally prepopulate the server with a full key-value
dataset before the usual warmup period for these experiments.

Figure 8 shows that using CAT can also provide performance isolation benefits over naive
consolidation when mites have large working set sizes. Even with only 4 cache ways (8 MiB), we
get 45% lower tail latency compared to Contention-NoCAT for 10 GiB working set.

6 Conclusion
Workload consolidation in datacenters enables high resource utilization and cost-effectiveness.
However, this high resource utilization is traditionally accompanied by performance interference
between throughput-oriented tasks (“contenders”) and low-latency networked applications (“mites”).
This problem is exacerbated by recent advancements in underlying networking technology, result-

19

2
0

4
8

4
0

9
6

6
1

4
4

8
1

9
2

1
0

2
4

0

Working set size (MB)

0

100

200

300

400

500

600

M
it

e
 9

9
.9

%
-i

le
 t

a
il

la
te

n
cy

 (
u
s)

Contention-NoCAT
Contention-CAT
NoContention

Figure 8: Tail latency of the key-value store with TensorFlow for varied working set.

ing in tight tail latency SLOs of tens to hundreds of microseconds. This creates a situation where
latency-critical datacenter applications are increasingly sensitive and intolerant to local interfer-
ence, making effective performance isolation critical to making workload consolidation possi-
ble. We evaluate the effectiveness of statically configured hardware-assisted cache partitioning
provided by Intel Cache Allocation Technology (CAT) in addressing this performance isolation
problem. We show that these static configurations can be effective even across mite and con-
tender workloads with different properties, reducing the necessity of complex online controllers
or schedulers. The code we used in our evaluation is available at https://github.com/
efficient/catbench, and the data files which can be used to replicate our results are avail-
able at https://github.com/efficient/catbench/releases.

Acknowledgments
We would like to thank Brandon Bohrer for his early contributions to the project.

References
[1] Apache Hadoop. http://hadoop.apache.org/, 2017.

[2] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike Paleczny. Workload
analysis of a large-scale key-value store. In Proceedings of the SIGMETRICS’12, June 2012.

[3] Luiz André Barroso and Urs Hölzle. The Datacenter as a Computer: An Introduction to the
Design of Warehouse-Scale Machines. Morgan & Claypool, 2009.

20

https://github.com/efficient/catbench
https://github.com/efficient/catbench
https://github.com/efficient/catbench/releases
http://hadoop.apache.org/

[4] Edouard Bugnion, Jennifer M. Anderson, Todd C. Mowry, Mendel Rosenblum, and Mon-
ica S. Lam. Compiler-directed page coloring for multiprocessors. In Proceedings of the
Seventh International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 1996.

[5] Michael Burrows. The Chubby lock service for loosely-coupled distributed systems. In Proc.
7th USENIX OSDI, Seattle, WA, November 2006.

[6] Derek Chiou, Prabhat Jain, Srinivas Devadas, and Larry Rudolph. Dynamic cache partition-
ing via columnization. In Proceedings of Design Automation Conference (DAC), 2000.

[7] Henry Cook, Miquel Moreto, Sarah Bird, Khanh Dao, David A. Patterson, and Krste
Asanovic. A hardware evaluation of cache partitioning to improve utilization and energy-
efficiency while preserving responsiveness. In Proceedings of the 40th Annual International
Symposium on Computer Architecture (ISCA), 2013.

[8] Brian Cooper, Adam Silberstein, Erwin Tam, Raghu Ramakrishnan, and Russell Sears.
Benchmarking cloud serving systems with YCSB. In Proc. 1st ACM Symposium on Cloud
Computing (SOCC), Indianapolis, IN, June 2010.

[9] Zehan Cui, Licheng Chen, Yungang Bao, and Mingyu Chen. A swap-based cache set index
scheme to leverage both superpage and page coloring optimizations. In Proceedings of the
51st Annual Design Automation Conference (DAC), 2014.

[10] Jeffrey Dean and Luiz André Barroso. The tail at scale. Communications of the ACM,
56(2):74–80, February 2013.

[11] Data Plane Development Kit (DPDK). http://dpdk.org/, 2017.

[12] Alexandra Fedorova, Margo Seltzer, and Michael D. Smith. Improving performance isolation
on chip multiprocessors via an operating system scheduler. In Proceedings of the 16th Inter-
national Conference on Parallel Architecture and Compilation Techniques (PACT), 2007.

[13] Liran Funaro, Orna Agmon Ben-Yehuda, and Assaf Schuster. Ginseng: Market-driven LLC
allocation. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), June 2016.

[14] gRPC, a high performance, open-source universal RPC framework. http://www.grpc.
io/, 2017.

[15] Andrew Herdrich, Edwin Verplanke, Priya Autee, Ramesh Illikkal, Chris Gianos, Ronak
Singhal, and Ravi Iyer. Cache QoS: From concept to reality in the Intel Xeon processor
E5-2600 v3 product family. In Proc. HPCA, 2016.

[16] Cache allocation technology improves real-time performance. https:
//www-ssl.intel.com/content/www/us/en/communications/
cache-allocation-technology-white-paper.html, 2015.

21

http://dpdk.org/
http://www.grpc.io/
http://www.grpc.io/
https://www-ssl.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
https://www-ssl.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html
https://www-ssl.intel.com/content/www/us/en/communications/cache-allocation-technology-white-paper.html

[17] Intel 64 and IA-32 architectures developer’s manual: Vol. 3A. http://www.intel.
com/content/www/us/en/architecture-and-technology/, 2011.

[18] Intel resource director technology patch. https://patchwork.kernel.org/
patch/9226287/, 2016.

[19] Virajith Jalaparti, Peter Bodik, Srikanth Kandula, Ishai Menache, Mikhail Rybalkin, and
Chenyu Yan. Speeding up distributed request-response workflows. In Proceedings of the
ACM SIGCOMM 2013 Conference on SIGCOMM, 2013.

[20] Myeongjae Jeon, Yuxiong He, Hwanju Kim, Sameh Elnikety, Scott Rixner, and Alan L. Cox.
TPC: Target-driven parallelism combining prediction and correction to reduce tail latency in
interactive services. In Proceedings of the Twenty-First International Conference on Archi-
tectural Support for Programming Languages and Operating Systems (ASPLOS), 2016.

[21] Harshad Kasture and Daniel Sanchez. Ubik: Efficient cache sharing with strict QoS for
latency-critical workloads. In Proceedings of the 19th International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), 2014.

[22] Harshad Kasture and Daniel Sanchez. TailBench: A benchmark suite and evaluation method-
ology for latency-critical applications. In Proceedings of the IEEE International Symposium
on Workload Characterization (IISWC), September 2016.

[23] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document
recognition. Proceedings of the IEEE, 86(11):2278–2324, November 1998.

[24] Lepton. https://github.com/dropbox/lepton, 2017.

[25] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. Tales of the tail:
Hardware, OS, and application-level sources of tail latency. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC), 2014.

[26] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kaminsky. MICA: A holistic
approach to fast in-memory key-value storage. In Proc. 11th USENIX NSDI, Seattle, WA,
April 2014.

[27] David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ranganathan, and Christos
Kozyrakis. Improving resource efficiency at scale with Heracles. ACM Transactions on
Computer Systems (TOCS), 34(2), May 2016.

[28] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron, and Mary Lou Soffa. Bubble-Up:
Increasing utilization in modern warehouse scale computers via sensible co-locations. In
Proceedings of the 44th Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO), 2011.

[29] Memcached: A distributed memory object caching system. http://memcached.org/,
2011.

22

http://www.intel.com/content/www/us/en/architecture-and-technology/
http://www.intel.com/content/www/us/en/architecture-and-technology/
https://patchwork.kernel.org/patch/9226287/
https://patchwork.kernel.org/patch/9226287/
https://github.com/dropbox/lepton
http://memcached.org/

[30] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc Kwiatkowski, Herman Lee, Harry C. Li,
Ryan McElroy, Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony Tung, and
Venkateshwaran Venkataramani. Scaling Memcache at Facebook. In Proc. 10th USENIX
NSDI, Lombard, IL, April 2013.

[31] Bianca Schroeder, Adam Wierman, and Mor Harchol-Balter. Open versus closed: A caution-
ary tale. In Proc. 3rd Symposium on Networked Systems Design and Implementation (NSDI),
San Jose, CA, May 2006.

[32] G. E. Suh, L. Rudolph, and S. Devadas. Dynamic partitioning of shared cache memory.
Journal of Supercomputing, 28(1), April 2004.

[33] TensorFlow. https://www.tensorflow.org/, 2017.

[34] Yunjing Xu, Zachary Musgrave, Brian Noble, and Michael Bailey. Bobtail: Avoiding long
tails in the cloud. In Proceedings of the 10th USENIX Conference on Networked Systems
Design and Implementation (NSDI), 2013.

[35] Xi Yang, Stephen M. Blackburn, and Kathryn S. McKinley. Elfen scheduling: Fine-grain
principled borrowing from latency-critical workloads using simultaneous multithreading. In
2016 USENIX Annual Technical Conference (USENIX ATC 16), June 2016.

[36] Xiao Zhang, Sandhya Dwarkadas, and Kai Shen. Towards practical page coloring-based mul-
ticore cache management. In Proceedings of the 4th ACM European Conference on Computer
Systems (EuroSys), 2009.

[37] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. Treadmill: Attributing the
source of tail latency through precise load testing and statistical inference. In ISCA, 2016.

[38] Haishan Zhu and Mattan Erez. Dirigent: Enforcing QoS for latency-critical tasks on shared
multicore systems. In Proceedings of the Twenty-First International Conference on Architec-
tural Support for Programming Languages and Operating Systems (ASPLOS), 2016.

23

https://www.tensorflow.org/

A Hot Set Size
For a Zipf distribution with skew of 0.99, its CDF is a ratio of generalized harmonic numbers:

F (k) =

∑k
i=1

1
i0.99∑N

i=1
1

i0.99

(1)

This equation converts between the total working set size and the hot set size by fixing the ratio
of hot-set requests to cold-set requests. F (k) is ratio of requests that land at keys at or above rank
k. N is the total number of keys in the system, which is effectively the total working set size of the
mite (ignoring constant overhead). k is the hot set size.

24

	1 Introduction
	2 Background and Related Work
	2.1 Workload Consolidation
	2.2 Modern Low-Latency Applications
	2.3 Software-Based Performance Isolation
	2.4 Hardware Cache Partitioning
	2.5 Intel Cache Allocation Technology
	2.6 Performance Isolation using CAT

	3 Workload Consolidation with CAT for Low-Latency Networked Mites
	3.1 Testbed Overview
	3.2 Client-Side Measurement Setup
	3.3 Server-Side Measurement Setup
	3.4 Details

	4 Overall Effectiveness of CAT
	4.1 Workloads
	4.2 Mite Tail Latency and Throughput
	4.3 Mite Cache Misses
	4.4 Contender Throughput
	4.5 Summary

	5 In-Depth Performance Analysis
	5.1 How Many Cache Ways?
	5.2 More Cache Isn't Necessarily Beneficial
	5.3 Limiting Contender Core Count
	5.4 Varying Working Set

	6 Conclusion
	A Hot Set Size

