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Abstract
Cells need to be able to sustain themselves, divide, and adapt to new stimuli.

Proteins are key agents in regulating these processes. In all cases, the cell behavior
is regulated by signaling pathways and proteins called transcription factors which
regulate what and how much of a protein should be manufactured. Anytime a new
stimulus arises, it can activate multiple signaling pathways by interacting with pro-
teins on the cell surface (if it is an external stimulus) or proteins within the cell (if it
is a virus for example). Disruption in signaling pathways can lead to a myriad of dis-
eases including cancer. Knowledge of which signaling pathways play a role in which
condition, is thus key to comprehending how cells develop, react to environmental
stimulus, and are able to carry out their normal functions.

Recently, there has also been considerable excitement over the role epigenetics –
modification of the DNA structure that doesn’t involve changing the sequence may
play. This has been buoyed by the tremendous amount of epigenetic data that is
starting to be generated. Epigenetics has been heavily implicated in transcriptional
regulation. How epigenetic changes are regulated and how they affect transcriptional
regulation are still open questions however.

In this thesis we present a suite of computational techniques that are focused on
modeling the dynamic regulation of biological processes. These methods address the
various aspects of the problem mentioned above focusing on the reconstruction of
dynamic signaling and regulatory networks. In many cases, the amount of biological
data available for a specific condition can be very small compared to the number of
variables. We present an algorithm which uses multi-task learning to learn signaling
networks from many related conditions. There are also very few tools that attempt to
take temporal dynamics into account when inferring signaling networks. The thesis
presents a new algorithm that utilizes and extends Integer Programming methods for
inferring such dynamic regulation. Finally, we present a new strategy to integrate
epigenetic data with other temporal datasets using deep neural networks. We use
this new method to reconstruct dynamic disease progression networks in Idiopathic
Pulmonary Fibrosis (IPF).
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Chapter 1

Introduction

1.1 Background and motivation

Transcription is the process by which RNA molecules are creating based on the information
stored in the DNA. A DNA molecule is divided into genes, both coding (those subsequently
converted into proteins) and non-coding, microRNAs, tRNAs, and many other elements. The
processs of transcribing a gene is called gene expression. The process of gene expression is
highly complex. To start with, one or more proteins called transcription factors (TFs) bind to so
called enhancer sequences which help regulate gene expression. These TFs recruit a series of TFs
called general transcription factors (GTFs). The GTFs recruit an enzyme called RNA polymerase
II and induce it to bind to the gene promoter (upstream of the actual gene sequence) forming the
pre-initiation complex (PIC). After that transcription commences. Just transcribed RNA (termed
pre-mRNA) is then processed and converted to messenger RNA (mRNA). These mRNAs are
read by ribosomal proteins and converted into proteins which then perform various functions
in the cell including regulation of transcription, cell signaling, responding to stimuli, inducing
transcriptional patterns to generate more proteins to defend against pathogens, etc. Knowledge of
what signaling proteins and TFs are involved in the response to any pathogen is vitally important
in understanding how to disrupt the pathways that pathogen might be using to hijack the cellular
machinery and self-propagate (for example by targeting proteins aiding viral reproduction or
cancer propagation via drugs).

Many previous attempts to detect genes that play a functional role in a phenotype (such as
the propagation of a viral infection) rely on gene expression knockdowns or knockouts. There
remain several problems with such an approach. While a gene knockdown or knockout may
have little effect on a phenotype (such as cell division) under normal conditions, it could have
very different effects under chemical or environmental stress conditions [117]. In addition, even
gene knockdown studies meant to test gene relevance to phenotype under similar or even vir-
tually identical conditions can drastically differ in their results. For example, three well known
knockdown studies for detecting genes related to HIV-1 had a pairwise overlap of < 7% in the
genes they detected [46]. Various explanations are suggested, including experimental noise, dif-
ferences in timing of sampling and differences in filtering criteria used to selected hits. In fact,
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the authors of one of the screens performed a duplicate screen to estimate experimental variance
and found that only 50% of the top 300 hits would be obtained under identical experimental
conditions [46, 118]. Such results suggest that to experimentally estimate functional relevance,
one would have to do genome-wide knockdowns or knockouts anytime the experimental condi-
tions even slightly change requiring a staggering amount of experimental effort. Compounding
the problem are changes like epigenetic modifications which could drastically change the results
from one cell type to another or from one condtion to another.

Even if one had the resources to be able to do that, a more troubling problem is that so-
phisticated backup mechanisms exist in regulatory networks that can obscure the true role of
transcription factors (TFs). One would expect the expression of genes directly bound by a TF
to be affected by the knockdown of that TF. In [120], 269 TFs in yeast were knocked down one
at a time. The differentially expressed genes so obtained were compared to the protein-DNA
binding data from [111]. Surprisingly, they found that only 3% of bound genes were affected
by the knockdown. A large part of the explanation is the existence of redundant TFs which can
obscure the role the TFs in general may play [92]. Another way to put it is that TFs (and perhaps
signaling proteins in general) can act in concert. If we had the ability to perform knockdowns of
every combination of genes, then we would be able to solve this problem but that would quickly
lead to combinatorial explosion and is thus infeasible.

A third problem which so far has received less attention in literature is when do signaling
pathways and TFs get triggered in terms of timing relative to each other. For example, if we
have a time series gene expression dataset, then we want to understand the different signaling
pathways and TFs that trigger differential gene expression at the different time points. This is
tough to detect experimentally. Gene knockdowns via siRNA or shRNA usually require upto
48-72 hours to result in a substantial knockdown of the gene expression in a majority of the
cells [73, 255]. Thus any signaling events happening on a timescale smaller than that are not
possible to differential between temporally. However the temporal annotation can turn out to
be relevant biologically. For example, the Src kinase LCK is involved in HIV-1 viral assembly.
We know that the viral assembly phase of HIV-1 occurs starting about 16 hours after the cell is
infected with the virus. Thus, if we are able to detect LCK as being relevant at that time point,
we could subject LCK to more rigorous testing to see if there is a link between the late phase
activities of HIV-1 infection and LCK (as we show later, our temporal annotation algorithm is
indeed able to detect LCK as a late phase signaling protein). While there has been work on
inferring which TFs are active at which time points [34, 78], there has been no work, as far as
we are aware, on temporal annotation of signaling pathways.

Given that experimental techniques are not sufficient, we need to turn to computational meth-
ods to aid us. High throughput data measuring various aspects of several biological systems
is rapidly accumulating. These include RNA-Seq studies [184], profiling of microRNAs [270],
ChIP-Seq, epigenetics studies [90], information about protein interactions within a cell [206] and
information on interactions between host proteins and pathogen / environmental factors [189].
Such datasets provide extensive information about the sets of genes that are activated, their regu-
lation and their interactions both within a cell and between cellular proteins and the environment
or pathogen. However, integrating these datasets to reconstruct a unified view of the networks
and pathways that are activated in order to identify potential interventions that may lead to a
desired response remains a major challenge.
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1.2 Thesis goals

In this thesis, we propose to address three aspects of the above problem :-

1. Using multitask learning to reduce overfitting. The number of samples available for a
particular condition is usually very limited in comparison to the number of possible biolog-
ical variables when reconstructing signaling and regulatory networks. We use multi-task
learning to alleviate this problem. We develop the tool, Multi-Task Signaling and Dynamic
Regulatory Events Miner (MT-SDREM), which uses multi-task learning to reconstruct re-
sponse pathways and temporal regulatory networks.

2. Constructing temporal pathways which explain the differential gene expression. While
several methods have been proposed to reconstruct signaling networks, there has been no
work, as far as we are aware, that tells you when particular signaling pathways were ac-
tivated – i.e. gives a temporal annotation to the signaling proteins of the reconstructed
networks. We develop an Integer Programming formulation to solve this problem.

3. Incorporating DNA methylation data into signaling and regulatory network infer-
ence. There is a large body of literature on how to infer signaling and regulatory networks
for a given condition. However an important aspect that all of the above methods do not
consider is the role DNA methylation plays in regulating gene expression. Given our fo-
cus on trying to infer signaling pathways and active TFs for various conditions, we try
and model how DNA methylation can affect TF-DNA interactions and thus affect gene
regulation.

1.3 Diseases studied in this thesis

While this thesis presents general methods that can be globally applied, to illustrate their useful-
ness, we applied them to analyze the following diseases.

1.3.1 Influenza (Flu) infection

Influenza, commonly known as ”the flu”, is an infectious disease caused by an influenza virus.
The most common symptoms of flu are fever, runny nose, sore throat, coughing, headache,
muscle pains, and feeling tired. The flu virus has several subtypes, the most common of which is
Influenza A. That itself has multiple subtypes. H1N1 is the most common and the one that most
people usually get. The prognosis for it is usually 1-3 weeks. H3N2 is another common strain
of flu and kills about 36,000 people in the United States each year. H5N1, also known as avian
or bird flu, is one of the deadliest strains of flu. It kills tens of millions of birds worldwide every
year [160]. While so far, H5N1 has rarely infected humans, when it does do so, it can be very
deadly.
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1.3.2 Human immunodeficiency virus (HIV) infection

HIV is a lentivirus that causes HIV infection and over time, acquired immunodeficiency syn-
drome (AIDS) [280]. HIV attacks the immune system infecting vital cells like helper T cells
(CD4+ cells), macrophages, and dendritic cells. Following infection, it is typical not not notice
any symptoms. This period can go for a long time, sometimes upto several years. As the in-
fection progresses, it interferes more and more with the immune system. This stage is what is
referred to as AIDS.

HIV is spread primarily by unprotected sex, contaminated blood transfusions, hypodermic
needles, and from mother to child during pregnancy, delivery, or breastfeeding [221]. In 2016,
about 37 million people were living with HIV and it caused 1 million deaths [4].

Without treatment the average survival time after infection is 9-11 years [266]. With treat-
ment, life expectancy can be 10-40 years [274].

1.3.3 Idiopathic pulmonary fibrosis (IPF)

Idiopathic Pulmonary Disease (IPF) is the most common of the interstitial lung diseases and the
most severe with median survival ranging from 3-5 years [102]. It is described as a chronic,
progressive fibrosing interstitial pneumonia of unknown etiology that occurs more commonly in
older male subjects with smoking being the major risk factor. IPF belongs to a large group of
more than 200 lung diseases known as interstitial lung diseases charaterized by involvement of
the lung interstitium [261]. IPF is estimated to occur in 14.0 and 42.7 per 100,000 persons in the
United States [213] depending on how IPF is being defined. It is more common in men than in
women and usually diagnosed in people over the age of 50 [214]. The median survival time can
be between 2 to 5 years after diagnosis [214]. The 5-year survival for IPF ranges between 20
and 40% [135] – a mortality rate that is higher than diseases like colon cancer, bladder cancer,
myeloma, etc [135].

1.4 High-throughput data used in this thesis

Many high-throughput experimental methods have been developed to study various aspects of
transcriptional regulation either directly or indirectly. As we discuss in the next section, a key
challenge is how to integrate them in order to reconstruct a complete model of cellular activity
under various conditions. Here we provide short descriptions of data used.

1.4.1 RNA sequencing

RNA-Seq is a recently developed approach to transcriptome profiling that uses deep-sequencing
technologies to reveal the presence and quantity of RNA in a biological sample at a given moment
in time. All our gene expression data comes from RNA-seq. See Figure 1.1 for an overview of
how a typical RNA-seq experiment is conducted. In [60], a detailed review of the RNA-seq
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pipeline and a survey of best practices for RNA-seq data analysis is provided. This data is used
throughout the thesis, in particular in Chapters §2, §3, and §4.

1.4.2 Chip-Chip and Chip-Seq
Chromatin immunoprecipitation (ChIP) followed by microarray (ChIP-chip) [44] or sequencing
(ChIP-seq) [198] has been developed to study genome-wide TF binding in vivo. The in vivo
protein-DNA interactions are first cross linked by formaldehyde, and then these cross linked
chromatin is sheared into fragments. The TF of interest is immunoprecipitated with specific an-
tibody, and then the cross linking is reversed to release the bound DNA fragments. The location
of these DNA fragments bound by the TF is then determined by either hybridization to specific
microarray containing promoter regions from the genome (ChIPchip), or by direct sequencing
and aligning to the reference genome computationally (ChIP-seq) [301]. In the end we obtain hy-
bridization intensities (in case of ChIPchip) and tag densities (in case of ChIPseq) for the whole
geneome. Peak calling software can be run to identify true binding sites. Chip-Seq can also be
used to detect mehthylation patterns and histone marks by using the appropriate antibodies. An
overview of the experimental method is given in Figure 1.2.

We process Chip-Seq data from ENCODE [89] for 348 transcription factors to get our human
TF-DNA interaction network as in [230] comprising of 59K TF-DNA interactions. This data is
also used throughout the thesis.

1.4.3 Epigenetic modifications
Epigenetic modifications, such as DNA methylation and histone modification, alter DNA acces-
sibility and chromatin structure, thereby regulating patterns of gene expression. These processes
are crucial to normal development and differentiation of distinct cell lineages in the adult organ-
ism. They can be modified by exogenous influences, and, as such, can contribute to or be the
result of environmental alterations of phenotype or pathophenotype. Importantly, epigenetic pro-
gramming has a crucial role in the regulation of pluripotency genes, which become inactivated
during differentiation

DNA methylation is the covalent attachment of a methyl group to the C5 position of cyto-
sine residues in CpG dinucleotide sequences (referred to as CpG throughout this review) [31].
Recent findings suggest that in undifferentiated stem cells, cytosines, other than those in CpG,
can be methylated, as well [164], and that methylation of non-CpG cytosines is crucial for gene
regulation in embryonic stem cells in particular. CpG methylation is, however, an important
mechanism to ensure the repression of transcription of repeat elements and transposons, and also
plays a crucial role in imprinting and X-chromosome inactivation [219]. Transcriptional gene
silencing by CpG methylation also restricts the expression of some tissue-specific genes during
development and differentiation by repressing them in non-expressing cells.

Histones are highly alkaline proteins found in eukaryotic cell nuclei that package and order
the DNA into structural units called nucleosomes [190, 293]. They are the chief protein compo-
nents of chromatin, acting as spools around which DNA winds, and playing a role in gene regula-
tion. Without histones, the unwound DNA in chromosomes would be very long (a length to width
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Figure 1.1: Graphic showing a typical RNA-seq experiment. Briefly, long RNAs are first converted into a
library of cDNA fragments through either RNA fragmentation or DNA fragmentation. Sequencing adaptors (blue) are
subsequently added to each cDNA fragment and a short sequence is obtained from each cDNA using high-throughput
sequencing technology. The resulting sequence reads are aligned with the reference genome or transcriptome , and
classified as three types: exonic reads, junction reads and poly(A) end-reads. These three types are used to generate a
base-resolution expression profile for each gene, as illustrated at the bottom (TopHat and Cufflinks are a popular tool
combination to do this [260]). The reads are typically converted to RPKM/FPKM/TPM units which are a measure of
the number of transcripts in the cell. Figure is taken from [278]
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Figure 1.2: An overview of a typical Chip-chip or Chip-seq experiment. It shows cells to examine being taken
from a culture or tissue sample. Proteins attached to DNA are then cross linked to the DNA (usually formaldehyde is
used). Then the chromatin is sheared and the protein of interest precipitated out using antibodies. The cross links are
reversed, the DNA extracted and then sequenced using a microarray or next generation sequencing. The sequenced
DNA is mapped to a reference genome to figure out the genome sites to which the antigen protein binds. Image has
been taken from [301]
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ratio of more than 10 million to 1 in human DNA). Histones can be post-translationally modified
to restructure chromatin in many ways, including phosphorylation, ubiquitination, acetylation,
and methylation [145, 175].

Other epigenetic modifications include (but are not limited to), chromatin structure which
can vary from celltype to celltype and is measured via a technology called chromatin conforma-
tion capture [70]; methylation of messenger RNAs [69]; Prions which are infectious forms of
proteins [207]; etc.

Measuring DNA methylation

We make extensive use of DNA methylation data in Chapter §4. Here we describe two popular
protocols to measure DNA methylation levels.

Reduced Representation Bisulphite Sequencing (RRBS) Reduced representation bisulfite
sequencing (RRBS) is an efficient and high-throughput technique used to analyze the genome-
wide methylation profiles on a single nucleotide level. This technique combines restriction en-
zymes and bisulfite sequencing in order to enrich for the areas of the genome that have a high
CpG content. Due to the high cost and depth of sequencing needed to analyze methylation sta-
tus in the entire genome, Meissner et al. developed this technique in 2005 [179] in order to
reduce the amount of nucleotides needed to be sequenced to 1% of the genome. The fragments
that comprise the reduced genome still include the majority of promoters, as well as regions
such as repeated sequences that are difficult to profile using conventional bisulfite sequencing
approaches [6, 104]. This data is used in Chapter §4.

Whole Genome Bisulphite Sequencing (WGBS) Whole Genome Bisulphite Sequencing is
another technology used to determine the DNA methylation status of single cytosines. DNA is
treated with the chemical sodium bisulfite. This compound converts unmethylated cytosines to
uracils. The cytosines that have not been converted into uracil are the methylated ones. Then the
resulting treated DNA is sequenced. Unmethylated cytosines appear as thymines. Comparison
with the sequence of the untreated DNA tells you which cytosines are methylated. This data is
used in Chapter §4.

1.4.4 Chromosome conformation capture

The human DNA, if arranged in a perfectly straight line would stretch out to 3 meters [199]. As
the typical cell is on teh order of micrometers, DNA needs to be folded into a complex 3D shape
to be able to fit inside the cell. This folding pattern is called the chromatin structure and it has a
huge influence in cell biology and gene expression [9, 243].

Chromosome conformation capture is a set of molecular biology techniques used to try and
detect the chromatin structure. They consist of the following :-

• 3C (one-vs-one) :- 3C tries to detect the interactions between just a single pair of genomic
loci. This technique has the highest resolution out of all often reaching resolutions of 1-8
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kilobases (kb) on average (i.e. it is able to detect 1-8kb sized genome segments which
interact with each other) [244].

• 4C (one-vs-all) :- As the description implies, 4C tries to capture interactions between one
locus vs all other genomic loci. It typically reaches resolutions of 3-4 kb [99]

• 5C (many-vs-many) :- This version detects interactions between all restriction fragments
within a given region, with this region’s size typically no greater than a megabase [70, 108].
However it suffers from low coverage.

• Hi-C (all-vs-all) :- Hi-C uses high-throughput sequencing to find the nucleotide sequence
of fragments are interacting with each other [108, 162]. All possible pairwise interactions
between different genomic loci are tested. However the resolution for this variant is poor
with it being as low as 40kb.

This data is used in Chapter §4.

1.4.5 Protein-protein interactions
Several experimental techniques of varying levels of accuracy exist to detect protein-protein
interactions including Yeast-2-hybrid, Immunoprecipitation, Co-crystallization, etc. [202] gives
a nice overview of the various experimental techniques to detect protein-protein interactions. For
our human protein-protein interaction network, we used the BIOGRID [245] and HPRD [206]
databases which collate interactions for the above such experimental sources. An interaction
could have been detect in multiple independent experiments. This data is used in Chapters §2,
and §3. We processed the interactions as follows to obtain a weight set of edges between the
proteins.

Edge score

As mentioned above, the protein interaction network is collected from BioGRID and HPRD. The
PPI (protein-protein interaction) and PTM (Post-translational modification) scores are calculated
based on experimental methodology and number of independent detections as in [93]. More
specifically, for an edge eij between proteins i, j, the score is

P(eij = 1− Πk∈Iij(1− c(k))

where Iij is the set of all distinct instances of i, j interacting in the PPI or PTM data based on
experiment type (yeast 2-hybrid, coimmunoprecipitation, etc.) and c(k) is the confidence in the
class of experiments to which k belongs. The values for c(k) for the BioGRID interactions are
taken from [93]. HPRD included the more generic types of interaction evidence ’in vivo’ and ’in
vitro’, both of which were given a confidence of 0.6.

Protein signaling pathway score

The score of each a pathway p is defined as Πe∈EpP(e) where Ep is the set of edges in pathway
p and P(e) is computed as specified above. It can be interpreted as the probability of the existing
of each pathway assuming that the edge existence probabilies(P(e)) are independent.
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1.4.6 Virus-Host interactions
These are interactions between viral proteins and host cell proteins (that the virus has invaded).
These interactions are detected using the same techniques as general protein-protein interactions.
We obtained interactions between viral proteins and host cellular proteins from HPRD as well as
VirHostNet [189].

This data is used in Chapters §2, and §3.

1.4.7 RNAi screens
RNAi is an endogenous cellular process by which messenger RNAs are targeted for degradation
by double-stranded (ds) RNA of identical sequence, leading to gene silencing. These can be
small interfering RNA (siRNA) or small hairpin RNA (shRNA). Initially used to knock down
the function of individual genes of interest, the technology was harnessed in several organisms
on a global scale with the production of RNAi libraries to silence most of the genes in their
genomes, allowing genome-wide loss-of-function screening [38]. For example, They are often
used to check whether a gene is causally related to a phenotype of interest (e.g. viral load) but
knocking down the gene and then measuring the phenotype. We use genome-wide RNAi screen
for HIV and Flu (H1N1 and H5N1) as a means to validate our predictions. An overview of the
RNAi process is in Figure 1.3.

This data is used in Chapters §2, and §3.

1.4.8 Gene ontology
Gene ontology (GO) attempts to annotate genes with their biological context – specifically which
cellular components they are usually present in, what molecular functions they perform, and what
biological processes they are involved in [20]. Checking for enrichment of GO categories among
a group of genes is a useful and quick way to get an idea of the biological meaning of one’s
results. We use this technique as another method of validating our findings.

This data is used throughout the thesis.

1.5 Computational techniques used in this thesis
Below we give a very brief overview of a number of the main computational techniques we have
used in this thesis.

1.5.1 Multi-task learning
Multi-task learning is an approach to machine learning that learns a group of related problems
together, using a partly shared representation. This allows one to effectively increase the amount
of data available per parameter and reduce overfitting. This is especially important when re-
constructing biological response networks from high-throughput data because the number of
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Figure 1.3: Overview of RNAi screening approaches used in different organisms. Long double-stranded (ds)
RNAs are introduced into a cell or and are intracellularly diced into small-interfering RNAs (siRNAs). This leads
to highly efficient knockdown because many different siRNAs are generated from each dsRNA. Introduction of siR-
NAs into human (or vertebrate) cells requires transfection. RNAi screens in human cells usually require multiple
independent siRNAs, either in individual wells or delivered as pools. Other methods for human cells include viral
transduction of hairpin expression constructs or endoribonuclease-derived siRNAs (esiRNAs), essentially pool of ex-
tracellular diced long dsRNAs. RISC, RNA-induced silencing complex; T7, bacteriophage T7 promoter. Image taken
from [38]
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parameters to fit is very large relative to the number of samples. In addition, extensive data
from a well-characterized condition may be able to compensate for sparse data in a similar,
less-understood condition. Multi-task learning has been applied to many problems in the biolog-
ical domain including classification [281], genome-wide association studies [136, 137], protein
structure [126], and pairwise protein-protein interaction prediction [147, 208].

As a primer on the general multitask framework, we discuss a common formulation of the
multitask learning problem.

The objective function commonly used for multi-task learning combines two related goals:
First, similar to standard machine learning applications (for example, classification) it tries to
minimize the loss (i.e. error) for each task while at the same time regularizing the parameters
used by each task to avoid overfitting. Second, it further regularizes the parameters across tasks
so that the final parameters are similar. A typical objective function is the following [80]

argmin
w1,...,wC

[{ C∑
i=1

L(yi, f(wT
i xi)) + λ1 · ||wi||p

}
+

{
λ2 ·

C∑
i=1

C∑
j=i+1

||wi − wj||p
}]

where C is the number of tasks, L is the loss function, f is a function of the dot product of the
task-specific weight vector and the data for the task, and p is the Lp norm for the regularization.
The left, red part, T1 is the task-specific part of the objective function while the right, blue part,
T2 is the regularization across tasks.

1.5.2 Integer programming
Integer programming is a mathematical optimization technique in which one has a linear objec-
tive function to minimize or maximize, a set of linear inequality constraints, and a subset of the
variables are restricted to only integer values.

An integer program in canonical form is expressed as

max cTx

subject to Ax≤ b

x≥ 0

This is in general an NP-hard problem [285] and thus unlikely to have an efficient solution
in all cases. However, over the past decades, there has be a tremendous amount of progress
in making this problem tractable for many practical cases. A typical strategy involves using a
branch and bound algorithm in combination with sophisticated branching heuristics and solving
linear programs to upper bound the optimal solution in case of a maximization problem (or lower
bound for minimization problem) [285]. This is what is known as a complete algorithm – as in
such an algorithm will eventually find the optimal solution and provide a proof of its optimality.
However, often times, we do not need to find the absolute optimal solution. The advantage of
settling for a solution that is close to the optimal (but not actually so) is that we can apply much
faster algorithms that scale much better, for example simulated annealing, tabu search, large
neighborhood search, etc. [157]. As we shall see later in this chapter, due to the size of our
problem, we are forced to resort to the latter techniques.
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Figure 1.4: Example neural network. Image taken from [5]

1.5.3 One-hot encoding

One-hot encoding transforms categorial features into unit vectors which work better with classi-
fication and regression algorithms. Thus if the set of categories is C and the size of C is N , then
each element in C is assigned a number from 1 toN . The one hot encoding for a feature x then is
a vector with a 1 at the position k where k is the number assigned to the category represented by
x, and 0s at all other positions. In particular, for the purpose of this thesis, the one-hot encoding
of a DNA base is a vector of size 4 with position 1 in the vector having value 1 if the base is A,
position 2 if the base is C, position 3 for base G, and position 4 for base T with all other positions
having value 0.

1.5.4 Neural networks

An (artificial) neural network is a network of simple elements called neurons, which receive in-
put, change their internal state (activation) according to that input, and produce output depending
on the input and activation. The network forms by connecting the output of certain neurons to the
input of other neurons forming a directed, weighted graph. The weights as well as the functions
that compute the activation can be modified by a process called learning which is governed by
a learning rule. Typically the neurons are organized in layers with the output of one layer being
fed as input to the next layer as shown in Figure 1.4.

The heart of a neural network is the neuron. An example neuron is shown in Figure 1.5. It
is essentially a function that elementwise multiplies its associated weights (which are the param-
eters to be learned during training) with the inputs, sums the resulting vector and then passes it
through an activation function which is typically non-linear. The figure shows the sigmoid ac-
tivation function though rectified linear units, exponential linear units, etc. are more commonly
used activation functions these days.
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Figure 1.5: An example neuron. The plot on the right shows a sigmoid activation function.

Types of neural networks

As mentioned previously, then neurons in a neural network are typically organized into layers.
There exist a wide variety of connectivity patterns between layers however, some of which are
described below.

• Dense layers
The most common type of layers, every neuron is connected to every input node.

• Convolutional layers
In convolutional layers, each neuron is connected to only a small subset of contiguous
input nodes (for example, adjacent pixels in an image). The next neuron adjacent to the
previous one is then connected to a subset of input nodes that is contiguous as before
but also overlaps with the set of input nodes for the previous neuron. An example of
a convolutional layer is given in Figure 1.6. The set of input nodes is called the kernel
or receptive field. The reason to prefer convolutional layers over dense ones is that they
massively reduce the number of parameters that need to be learned from m · n where m
is the number of input nodes and n the number of neurons in the layer to just the number
of nodes in the receptive field. They have been very successfully used in computer vision
and other areas.

• Pooling layers
Used for reducing the dimensionality, they are similar to convolutional layers with the
key difference that the receptive fields of adjacent neurons do not overlap. Thus adjacent
neurons do not share any inputs. An example of a pooling layer is given in Figure 1.6.

• Recurrent neural networks
Described above are neural networks which work on fixed size input. However if the input
is not fixed size or if you want to generate time series predictions from your network, then
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Figure 1.6: Example convolutional and pooling layers.

Figure 1.7: Example recurrent neural network.

a recurrent neural network is appropriate. Essentially in recurrent neural networks, the
connections between layers from a directed cycle. So the output of a layer is fed back
into the input. An example of a recurrent neural network is given in Figure 1.7. The most
common recurrent neural network in vogue right now is LSTM (long short-term memory).
There is also a variant of it called Bi-LSTM which has been successfully used for image
analysis and natural language processing.

Training neural networks

Neural networks are usually trained using the backpropagation algorithm [114] which is es-
sentially gradient descent. In particular, these days they are trained using stochastic gradient
descent [37] which uses only a small number of training examples to estimate the gradient
greatly speeding up training. A large amount of effort has also been devoted to proper initializa-
tion of the parameters and the step size one should use for gradient descent yielding significant
speedups [96, 139, 296]. The advent of GPUs to train neural networks in particular has yielded
10-20x speedups in terms of training time [146, 194]. In this thesis, we use the nVidia 1080i
GPU to train and test our neural networks.
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1.6 Prior approaches to reconstructing regulatory and signal-
ing networks

The relative ease of high-throughput data collection enables profiling a system of interest in
many ways with complementary assays, at different times, and under various perturbations to
compare and contrast the outcomes. The resulting computational challenge is to develop analysis
strategies that maximally leverage these related experiments to improve our ability to reconstruct
biologically accurate models.

Even when applied to study the same condition, different types of high-throughput data (e.g.,
functional genetic screens and gene expression) often times implicate largely disjoint groups of
genes or proteins because each experiment highlights different facets of the biological processes
and networks involved [290]. Consequently, there has been extensive research to develop tech-
niques for integrating one or more types of condition-specific high-throughput data with general
purpose physical interaction networks, such as protein-protein interactions (PPIs), to reconstruct
signaling and regulatory networks.

Below we give brief surveys of such methods that have been used to reconstruct static and
dynamic signaling and regulatory networks.

1.6.1 Methods to reconstruct static networks

There has been a huge amount of work in trying to reconstruct static regulatory networks. We
provide a very brief overview of these here since our main focus in this thesis is on the mod-
eling of time series based networks. In Gardner et al. [86], they use linear models (without
assuming any prior knowledge of the network structure) to study the SOS response system in
E. coli. In Tyson et al. [265] and Rao et al. [216], they go further and develop non-linear ki-
netic and stochastic models to understand the behavior of regulatory networks. Pe’er et al. [201]
use Bayesian networks to infer a variety of metabolic, signaling, and regulatory pathways for S.
cervesiae. Bayesian networks are also used by Friedman et al. in [83]. Shmulevich et al. [238]
use a boolean network approach. Bonneau et al. [35] use a biophysical based model although
their model can be applied to both static and time course data. ResponseNet [153] uses a linear
programming model to connect differentially expressed genes with potential source genes that
may be regulating them. Tuncbag et al. [264] extend that model to a multitask setting where sev-
eral different conditions are modeled simulataneously. Finally, in SDREM [95], they reconstruct
static signaling pathways that could be regulating gene expression (even though the transcrip-
tional regulatory network is dynamic).

1.6.2 Methods to reconstruct time series networks

Static networks however, do not provide temporal information making it hard to determine
the various stages associated with the system being studied (for example, waves of expression
changes [50]) or the optimal time to apply an intervention. Consider the HIV-1 infection. While
the development of highly active antiretroviral therapy has made it possible to delay the pro-
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gression of HIV infection, the persistence of the virus, rapid development of resistance and
inability to completely eliminate the virus still pose major challenges for effective HIV-1 man-
agement [239]. HIV-1 infects a host cell by a sequential process involving several temporal
events. These start with binding of the viral envelope protein to the host cell receptor followed
by reverse transcription and integration of proviral DNA (early infection stage). Next, viral pro-
teins are produced facilitating viral replication (intermediate stage). Finally, new viruses are re-
leased (late stage). While several studies have experimentally quantified the large scale changes
and host-pathogen interactions for HIV-1 infection [223], to date no models exist to fully link
these high throughput temporal datasets with the underlying dynamic networks that lead to the
observed responses.

A small number of methods have been proposed for reconstructing dynamic interaction net-
works from high throughput data. These methods utilize the (relatively small number of) time
series datasets to determine temporal information for the (mostly) static interaction datasets either
directly (by projecting the time series data on the known interaction networks [68]) or indirectly
(by looking at targets of transcription factors (TFs) and associating temporal information for the
interactions based on these targets [78, 230]. Since gene expression is the primary source of time
series data these methods use, they have primarily focused on the reconstruction of regulatory
networks [23]. Signaling networks proved to be more challenging since much of the activity in
these networks is post transcriptional [82] and often faster than regulatory networks which made
it hard to use time series gene expression data to obtain temporal information about the activity
of these networks.

Several other methods have been developed and evaluated for reconstructing regulatory net-
works using gene expression data [112, 171, 173, 257]. These methods utilize expression levels
to determine regulatory interactions based on various statistical techniques including correla-
tion, mutual information, regression etc. Particularly interesting is Kolar et al. [142], in which
they use markov random fields to estimate time-varying networks. While such methods can be
successfully applied in some cases, they are less appropriate for modeling immune response dy-
namics since they cannot model post-transcriptional events (including the effects of virus-host
and protein-protein interactions) which, as we show, play a major role in such responses.

To address these issues, two new methods have been proposed recently to jointly recon-
struct dynamic signaling and regulatory networks by integrating static and time series data.
SDREM [93] relies on a method for orienting protein interaction networks which are then com-
bined with TFs and the networks they regulate using a separate input-output hidden markov
model (IOHMM). While SDREM has been successfully applied to study yeast and human re-
sponse networks [91, 94, 127] it does not provide temporal information about the pathways it
finds. In SDREM, all pathways from source proteins (protein interacting with the environment
/ pathogen) to TFs are assumed to be activated concurrently which does not explain expression
waves and response phases. Further, SDREM does not optimize a single target function but rather
two, separate, functions for different models (one for the IOHMM and the other for the combi-
natorial orientation algorithm) making it hard to determine optimal parameters for the networks.
TimeXnet [200] is another method for reconstructing such networks. It uses linear programming
to formulate a max-flow problem imposing a constraint that the flow through expressed genes has
to be greater than 0 so that they are accounted for in the networks identified. TimeXnet has been
applied to study immune response in mice. However, TimeXnet does not directly consider the
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(often post-transcriptionally activated) source of the resulting response which may lead to miss-
ing important pathways. In addition, TimeXnet does not explain why some genes are activated
early while others are only activated at a later stage.

1.6.3 Network models applied to disease
There are several instances of literature of network models being successfully applied to disease.
Zhai et al. [299] applied the WGCNA algorithm [154] to flu data to construct network modules
from gene co-expression analysis and uncovered several relevant gene networks (Figure 1.8).
Schulz et al. [230] applied the DREM model [78] to study lung development in mice and idio-
pathic pulmonary fibrosis (IPF). They found several miRNAs involved in the regulation of IPF
that they validated using proliferation assays. Novershtern et al. [192] applied a Bayesian model
termed Physical Module Networks to study the response of primary human epithelial cells to
the H1N1 flu virus and found several relevant pathways. Yosef et al. [291] used novel computa-
tional methods to study Th17 cell differentiation and identified novel drug targets for controlling
it. In Alvarez et al. [13], they use a network-based inference algorithm for protein activity to
characterize somatic mutations in cancer. Fu et al. [84] identify a microRNA-mRNA regulatory
network in colorectal cancer using bioinformatics analysis. Brichta et al. [41] were able to use
ARACNe [173] to identify key factors that determine neuronal survival or death in degenera-
tive disorders. Finally, in Hajingabo et al. [106], they use network models to identify functional
effects of genetic alterations. A more comprehensive review can be found in [77].

1.7 Structure of the thesis
In Chapter §2, we look at the multitask aspect of the problem mentioned in point (1) and present
our algorithm MT-SDREM. We also discuss an ongoing project to apply MT-SDREM to time
series gene expression data from Arabidopsis Thaliana. In Chapter §3, we present TimePath
which can be used to temporally annotate signaling pathways. We also discuss plans to apply
the algorithm to the Arabidopsis data as well as expression data from IPF lung disease samples.
Finally in Chapter §4, we discuss our attempts at incorporating DNA methylation data into our
models and we finally conclude in Chapter §5.
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Figure 1.8: TF networks within the WGCNA modules over the course of influenza illness.. (A-D) Groups, or
modules, of co-regulated DEGs were identified by WGCNA. Representative Gene Ontology (GO) categories for each
module were identified by functional enrichment analysis and shown in Table 6. Module expression patterns across
different time points were represented by violin plots of log2 fold-change in gene expression relative to baseline.
(E-H) Pscan was used to scan the promoter regions of all genes in each module and identify the over-represented
transcription factor binding sites (TFBS). The predicted transcription factors, which marked in red and their target
genes (z-score ¿ 2) were connected by edges in the networks. Image taken from [299].
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Chapter 2

MT-SDREM

MT-SDREM extends the Signaling and Dynamic Regulatory Events Miner (SDREM) which has
so far only been applied to reconstruct response networks for a single condition at a time [94].
Like its single-condition predecessor [94], MT-SDREM iterates between finding pathways that
connect the upstream proteins that directly interact with an external stimulus (called source pro-
teins) and the downstream transcription factors (TFs) that regulate the response and learning
dynamic regulatory networks activated by these TFs. The learning process involves the simul-
taneous reconstruction of several such networks. While a different network is learned for each
condition, the joint learning framework allows sharing and/or constraining parameters across the
different networks which helps overcome the overfitting problem that is often an issue when
reconstructing biological networks.

MT-SDREM [127] uses multi-task learning to reconstruct response pathways and temporal
regulatory networks. It is equipped to capitalize on the many dimensions in complex systems
biology datasets by integrating different types of experimental data in each condition, explain-
ing the time-dependent elements of a response (as observed in gene expression data), and con-
straining the inferred networks to be similar for related conditions or perturbations. Like its
single-condition predecessor [94], MT-SDREM iterates between finding pathways that connect
the upstream proteins that directly interact with an external stimulus (called source proteins)
and the downstream transcription factors (TFs) that regulate the response and learning dynamic
regulatory networks activated by these TFs. The learning process involves the simultaneous re-
construction of several such networks. While a different network is learned for each condition,
the joint learning framework allows sharing and/or constraining parameters across the different
networks which helps overcome the overfitting problem that is often an issue when reconstruct-
ing biological networks.

We demonstrate how MT-SDREM can be used to gain insights into a clinically-relevant prob-
lem: characterizing the human response to viral infection. In particular, we explore the differ-
ences between mild, seasonal strains of the influenza A virus, which are typically H1N1 or
H3N2 strains [88], and lethal, pandemic strains such as the H1N1 1918 Spanish flu and highly
pathogenic avian H5N1 strains.

As MT-SDREM builds on SDREM which builds on DREM, in the next couple of sections,
we briefly describe both methods.
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2.1 DREM

DREM uses protein-DNA binding interactions and time series gene expression data to recon-
struct dynamic regulatory networks by identifying bifurcation events, places in the time series
where a set of genes that were previously co-expressed diverges. DREM annotates these split
events with TFs that are predicted to regulate genes in the outgoing upward and/or downward
paths allowing us to associate temporal information (the timing of the splits) with the static
protein-DNA interaction data. An input-output hidden Markov model (IOHMM) [26], which
unlike traditional HMMs also includes additional observed (in our case static) input data that
can influence transition probabilities, is the underlying probabilistic graphical model. In DREM,
protein-DNA interactions serve as the static input data that influence transitions between hidden
states. An L1-regularized logistic regression classifier is trained at all expression profile bifurca-
tions to assign transition probabilities to genes based on the set of TFs that bind them. DREM
searches the state space of possible splits in gene expression profiles to predict a compact set of
diverging regulatory paths and the TFs that control them. It was successfully applied to recon-
struct networks in a large number of species including yeast [78], Escherichia coli [79], fly [222],
and human [103].

2.2 SDREM

SDREM is an iterative procedure that combines regulatory and signaling network reconstruction
to model response pathways. For the regulatory part, SDREM uses time series gene expression
data with protein-DNA interaction data to identify bifurcation events in a time series (places
where the expression of previously co-expressed set of genes diverges – see Figure 2.2), and the
transcription factors (TFs) controlling these split events. While some TFs are transcriptionally
activated, others are only activated post-translationally via signaling networks. To explain these
TFs, the second part of SDREM links sources (host proteins that directly interact with the virus
/ treatment) to the TFs determined to regulate the regulatory network. This part of SDREM uses
protein-protein interaction (PPI) and protein modification data to infer such pathways – while
imposing the constraint that the direction of PPI in the inferred pathways is consistent. These
two parts (regulatory and signaling reconstruction) iterate a fixed number of times until the final
network is obtained. See [94] for complete details.

2.3 MT-SDREM

MT-SDREM simultaneously investigates and infers regulatory networks and signaling pathways
for several biologically related conditions. The relation could be for example, in terms of overlap
in terms of biological processes governing the conditions, or similarities in gene expression pro-
files, or similarity in phenotypes, or a combination of all those. For this, it uses both condition-
specific gene expression and interaction data and general interaction data. We first discuss the
input data that the method utilizes and then present the modeling and learning frameworks.
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2.3.1 Input Data
We use C to denote the set of conditions that are jointly modeled by MT-SDREM. Below we list
the datasets used by MT-SDREM.

1. Condition-specific: Time series gene expression data for each of the conditions that are
modeled by MT-SDREM.

2. Condition-specific: Sources Sc - the set of sources or host proteins which are known ex-
perimentally to interact with the pathogen / treatment applied when studying condition
c.

3. Condition-specific (optional): Screen hits A list of proteins for each condition whose re-
moval is known to phenotypically impact the response of the cells in that condition.

4. General and / or condition-specific: TF-gene binding data: A list of potential TF-gene
interactions with an optional probabilistic prior / likelihood for the interaction. If data is
available for the specific condition / cell type being studied these can be used, otherwise
general data can be used as well. We denote by πt,g the interaction prior for TF t binding
with gene g.

5. General: Protein interaction network: A list of protein-protein interactions which may be
directed or undirected. The method can also use information regarding the confidence in
each interaction. We denote such confidence in edge e by πe and by E the set of all edges.

2.3.2 Application of multi-task learning to the inference of signaling and
regulatory networks

One way to infer networks for each condition would be to run SDREM individually on the
expression data for different infections to infer regulatory and signaling cascades for each of
these conditions. However, several shared attributes can be jointly learned for these conditions
and given the scarcity of data compared to the number of variables (very few time points for each
expression experiment with thousands of genes in each model) such an approach can improve
the accuracy of the reconstructed networks for each condition. Specifically, the direction of
(the originally undirected) PPIs is likely to be similar for all conditions since several pathways
are likely used by multiple conditions. Similarly, TFs that are active in response to one virus are
more likely to be active in response to other viruses as well. MT-SDREM defines an optimization
function that captures these expected similarities while still allowing for a condition-specific
response component.

2.3.3 Multi-task objective for MT-SDREM
Recall that in the introduction, we called T1 the task-specific of a multitask objection function,
and T2, the part of the objective that enforces regularization across tasks. In MT-SDREM, the
loss minimizing part, T1, is achieved by the regulatory network learning procedure which learns
parameters for a IOHMM that uses a logistic regression classifier to compute transition prob-
abilities. The logistic regression classifier is regularized using Lasso to reduce the number of

23



active TFs inferred for each split. Thus in terms of the multi-task objective, yi corresponds to
the prediction regarding a gene trajectory at any split and xi is the TF-gene binding information.
wi is the set of logistic regression weights learned for each split. Note that the TF-gene binding
information xi is not specific to each split but is the same for the entire times series.

In addition to expression data, we use signaling network information to infer TFs that are
reachable from the infection sources. Such TFs are more likely to explain how the infecting
agents affects gene expression and so their weights are increased in our framework. To find
such TFs we need to orient the undirected edges and determine a weight for the paths leading
to these TFs from sources. These two procedures (edge orientation and TF re-weighting) are
shared across tasks and both affect the TF priors used by the logistic regression function. Thus
for MT-SDREM, the objective function is:

argmin
w1,...,wC

{
L(yi, f(φ(wi,B

i)T(xi))) + λ1 · ||wi||p
}
− ρ(B1, ..., BC)

whereB is the weight matrix learned for TFs for all tasks in the signaling network andBi are
the weights determined for task i. ρ is the similarity function used to constrain parameters across
tasks which is described below (hence the negative sign in front of it as we are minimizing the
objective but we want to maximize the similarity).

An important difference between the standard multi-task learning framework and our method
is that while we regularize the within task parameters (wi’s), the between task parameters (Bi’s)
are not explicitly regularized. The reason is that the Bis are already constrained by the input
protein interaction network and so are inherently bounded.

Given Bi, the above equation can be optimized by fitting parameters to the IOHMM and
logistic regression function as was previously done in [93].

2.3.4 Between task regularization
Next we discuss how we use the signaling network to determine the values for B, the TF weights
used to reconstruct the regulatory networks. While the main goal of the regulatory network
reconstruction method is to explain the temporal gene expression trajectories using the dynamic
activation of TFs, the main objective when reconstructing the signaling network is to explain
how these TFs are activated by the infecting viruses. For this, we attempt to link sources (protein
interacting with the virus) and targets (TFs controlling virus-specific expression response) using
paths in the network. The orientation is determined by specifying edge directionality to optimize
the following equation:

max
∑
t∈T

∑
p∈Pt

I(p) · hp · st

where T is the list of TFs predicted to regulate the time series for a specific condition, Pt is
the set of paths that start from a source of this condition and end in TF t, hp is the weight of the
path which is defined as the multiplication of the probabilities of the edges in the path, and st is
the score of the TF t obtained from the regulatory network reconstruction. I(p) is an indicator
function indicating whether path p is satisfied or not (a path is satisfied if all the edges in the
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path are oriented in a direction that links the source to the target) and thus optimizing the above
equations requires the assignment of directionality to the PPI edges (see [91, 94] for details).
Note that a Breadth First Search or a Depth First Search are not enough to solve this since we
assume PPI edges may be undirected. Thus, certain paths can contradict each other in terms
of the specific edge direction making this a non trivial optimization problem (in fact, it is NP
complete – see [93] for details and algorithm for solving this problem).

If we have multiple conditions we can simply run this function independently for each of
them leading to the following set of optimization problems:

max
∑
t∈Tc

∑
p∈P c

t

I(p) · hp · stc ∀c ∈ C

Here c goes over each of the conditions and the function is optimized independently for
that condition. However, such independent optimization may lead to contradictory directionality
assignments. In addition, it does not utilize shared properties between the conditions. Instead,
we would like to -

1. Constrain the model to use shared parameters – thus the direction of the edges in the
signaling networks is constrained to be the same in all models.

2. Favor pathways which end in TFs that are used in more than one condition.

To achieve the first goal above we attempt to maximize the objectives for each condition
using a shared, directed, network. For this we modify the search procedure by assigning edge
direction to maximize the sum of the objectives across all networks.

The second requirement is more involved since it requires us to change node scores based
on TF usage across the conditions. To obtain more shared TFs we add an additional term to the
objective function. We introduce a new, global, parameter, α which is used to increase the weight
assigned to shared TFs.

2.4 Ranking proteins in reconstructed networks
Following the multi-task learning procedure we arrive at directed, weighted networks for each of
the conditions being studied. To further select the key proteins from each of these networks we
rank the proteins based on the ”path flow” going through a node. The path flow f through a node
n is defined as follows –

f(n) =
∑
p∈P

I(p) · hp

where P is the set of paths containing node n.
To combine the rankings from each condition into a single ranking, we compute the total flow

through all the nodes
Fi =

∑
n∈N

fi(n)

whereN is the set of genes and i is the condition and then we computed the % flow f̂i(n) = fi(n)
Fi

through a node. To get the combined score for a gene across conditions, we sum up the condition-
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specific % flows to get s(n) =
∑C

i=1 f̂i(n) where C is the number of conditions. Then we rank
the genes in descending order of the final score s(n).

2.5 Optimizing the MT-SDREM objective
Using α we maximize the following objective:

ρ(B1, ..., BK) ∝
∑
c∈C

∑
t∈Tc

∑
p∈P c

t

nαt · I(p) · hp · stc

Here nt is the number of conditions the TF t is predicted to regulate, where Tc is the list of TFs
predicted to regulate the time series for condition c, P c

t is the set of paths that start from a source
of condition c and end in TF t, hp is the weight of the path which is defined as the multiplication
of the probabilities of the edges in the path, stc is the score of the TF t for condition c, and I(p)
is an indicator function indicating whether path p is satisfied or not (a path is satisfied if all the
edges in the path are oriented in a direction that links the source to the target).

For α ≥ 1 the objective above would prefer selecting joint TFs to equally explanatory TFs
that are not shared. Thus α represents a trade-off between fitting individual networks (specifi-
cally, α = 1 means that we are back to our condition independent network learning) and learning
a single joint network (very high values of α will lead to the selection of the same TFs for all
networks). Note that the nαt factor implements the ρ function (for regularizing between tasks).
The procedure to select an appropriate value for α is described later.

We use a greedy algorithm to optimize the objective. We randomly select a direction for
every edge that has conflicting direction, i.e. it is present in opposite directions in two different
pathways. We then do a local search to arrive at a local minimum. We flip the directions of the
conflicting edges, always choosing the flip that increases our objective by the highest amount
until we cannot find any flip that would still improve the objective. This approach is similar to
SDREM’s approach which has been shown to work well, both on real and on simulated data [93].

After we optimize the above objective, we obtain a single oriented network for each condi-
tion. We then use that network to obtain new priors for TFs for DREM. First we compute the
weights for the TF for each condition using the equation

wct =
∑
p∈P c

t

I(p) · hp · st

where t is the TF and P c
t is the set of selected paths for condition c that end in TF t. To

normalize these scores, we further run the above orientation procedure L number of times, each
time with an additional set of randomly selected TFs which are not predicted to regulate any of
the conditions. We use the random score to adjust the score for the predicted TF [93].

2.6 Detailed description of the algorithm
We constructed a probability for each protein-protein interaction (ppi) using the formula 1 −
Πn
i=1(1 − pi) where pi is our confidence that the ith experimental evidence for the ppi is a true
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positive. The network so constructed has in the HGNC symbol naming scheme, 228,159 edges
and 16,671 proteins with maximum degree 9,368 and average degree 27.372.

1. First, we pre-process the data. Let S = ∪c∈CSc where Sc is the set of sources for condition
c. We exhaustively search for all simple (non-cylic) paths from all sources in S to all TFs
in our protein interaction network. The weight of a path is defined as the multiplication
of the probabilities of the edges in the path (actual calculation done by summation in log
space). We select and keep the top k paths by weight. Denote this set of paths P and let
the weight of path p be hp.

2. We run DREM (Dynamic Regulatory Events Miner) on the time series data for every con-
dition individually with default prior πtg = 0.5 for all TF-gene interactions. DREM is
based on an input output Hidden Markov model and annotates the various time points of
the time series with TFs that are supposed to be regulating the genes at those time points.

3. We extract a list of TFs from the results output by DREM and assign them a score in the
same manner as done in SDREM. Let Tc be the set of TFs for condition c and let stc be
the score of TF t in condition c. Let nt be the number of conditions TF t is present in. Let
T = ∪cTc and Tall be the set of all possible TFs.
In addition, the score for a TF is increased by multiplication with the nαt factor discussed in
the previous section. As mentioned before, this factor is how we implement the ρ function
of the objective.

4. We create the TF sets T i = T ∪Tr where T ir is a randomly selected set of TFs from Tall\T
such that |Tr| = |T |. We create L such sets. In addition we also create the set TL+1

r = ∅
and thus TL+1 = T .

5. For every TF t ∈ T i, 1 ≤ i ≤ L + 1, we then compute fti =
∑

c

∑
p hp · stc where the

path p ends in TF t and p has edges that are of the same orientation as those reached in
optimization problem i.

6. We then create a list M consisting of all the fti so computed and sort that list according to
the fti.

7. Then for a TF t ∈ T , if ft,L+1 is in the 80th percentile of list M , we increase its prior via
the formula πnewtg = (πtg + 1)/2 for all genes g. In addition, if ft,L+1 is greater than the
node threshold parameter, the prior is also increased similarly.
If neither of the two conditions hold, we decrease the prior via the formula πnewtg =
max(0.01, πtg/2)

8. We run steps 2-7 for 10 iterations which is the default number of iterations of SDREM.

2.7 Learning parameters for the multi-task objective

For handling parameters for the SDREM component, we refer the reader to [93]. We use the
default provided parameters for SDREM inside of MT-SDREM. MT-SDREM adds the α param-
eter to the set of parameters. α encodes our prior on how much the given conditions are related.
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One way to choose α is to perform cross validation on say the number of RNAi hits one obtains
in the top k ranked genes. Another, which is what we use here, is to look for an α which is in a
stable region – i.e. perturbing it would not change the results in terms of the TFs that we extract.
We found that α = 6 achieves such stability and we thus use that for all our experiments. Later
on in this chapter, we also explore using a pairwise similarity parameter between each pair of
tasks.

2.8 Constructing the joint signaling network
To construct the joint signaling network in Figure 1 of the main text, we took the top 200 source,
intermediate, and target (TFs predicted to regulated the condition’s gene expression) proteins
from each of the 3 conditions. We then looked at the set of paths from a source protein to an
intermediate protein to a target protein and computing the condition-specific path flow for each
protein (see Materials and Methods for details on how to compute it given a set of paths). We
also computed the path flow for each edge between the selected proteins. Edge path flow was
computed in a similar manner to node path flow by summing path scores for all paths containing
that edge. We then only selected nodes which had a flow of at least 1000 and edges which had a
flow of at least 200.

2.9 Results on Influenza data
MT-SDREM simultaneously infers signaling and dynamic regulatory networks for multiple re-
lated conditions. It extends the SDREM tool [91, 94] which discovers signaling pathways by
orienting edges in protein interaction networks. To demonstrate the performance of such multi-
task network learning we looked at data from 3 different flu viruses: H1N1, H3N2, and H5N1.

For each of these viruses we obtained time series gene expression measurements of cells
infected with the virus. For H1N1 the data is from [233] and contains 10 time points. For
H5N1, we obtained data from [158] with 5 time points, and the H3N2 data from [124] had 6
time points. In addition, for each of these viruses we obtained a set of sources (host proteins
interacting with the virus proteins) from mass spec experiments. Data for H1N1 is from [189]
and literature [233, 251] and contains 200 human proteins that were experimentally determined
to interact with H1N1 proteins. Data for H3N2 is from [189] and consists of 153 host proteins
and source data for H5N1 is from [189] and literature [54, 123, 165, 235, 251, 276] and consists
of 41 sources.

2.9.1 MT-SDREM reconstructed networks

Joint signaling network

Figure 2.1 presents the joint signaling network learned for the three conditions (Methods). The
top layer (nodes colored in red) are sources for at least one of the conditions. The bottom layer
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(nodes colored green) are TFs identified in at least one of the conditions, and the middle layer
(blue nodes) are signaling proteins linking the sources and TFs in the networks. We colored
each node with multiple colors depending on the condition for which it was identified as a top
network protein (Methods). The lightest shade for each color represent nodes from the H1N1
reconstructed network, the darkest is from the H5N1 network and the middle shade is for the
H3N2 network.

While sources (red shades) are provided as inputs, all other nodes were automatically identi-
fied by MT-SDREM. Several of the proteins identified in multiple networks, both as intermediate
and as TFs are well known immune response regulators. For example, we identify a pathway
from UBE2I (a source for both H1N1 and H3N2) to SUMO1 (signaling protein identified for
all strains). SUMO activates E1 and transfers it to conjugating enzyme E2. Then UBE2I in-
teracts with and transfers SUMO to a target viral protein. Indeed, it has been recently shown
that SUMO interacts with the key flu protein, NS1, via UBE2I [288]. In addition, TRAF6, part
of the TRAF (TNF receptor associated factor) family of proteins, is identified as an important
protein for H5N1. Pro-inflammatory cytokines including TNF-α are known to be hyper-induced
in H5N1 infected macrophages [49].

We also identify several TFs as common amongst the 3 conditions. SMAD4 is present in
all 3 conditions. The SMAD family of TFs is part of the TGFβ pathway which is responsible
for regulating macrophage activation and proliferation of T cells [168]. STAT1 and JUN, both
key immune response regulators, are also identified in all 3 conditions. We also identify NR3C1
which produces the GR protein that is known to inhibit T and B cells as well as suppressing
phagocyte function [51] (this could be a viral strategy to reduce the effects of immune response).
Interestingly, we identify the AKT1 gene in all 3 conditions, part of the PI3K/AKT pathway,
which has recently been shown to be activated by the influenza A virus’s NS1 protein [75].
We also identify the PPARG TF which has been linked to immune response by regulation of
immune and inflammation related genes [250]. Other TFs belonging to the AP-1 TF complex
are also identified for various conditions – ATF2 for H1N1 and H5N1, and FOSL2 for H1N1 and
H3N2. NFKB1 and RELA, both part of the NF-κB complex are identified for H1N1 and H5N1
respectively.

Regulatory networks

In addition to the signaling parts of the networks, MT-SDREM also reconstructs dynamic reg-
ulatory networks for each of the different flu strains. We show the regulatory network inferred
for H1N1 in Figure 2.2. For space reasons not all TFs presented in Figure 2.1 are shown for the
model in Figure 2.2, though all TFs that are associated with H1N1 are used by the model. Full
list of TF assignments to paths in the regulatory networks is available on the Supporting Web-
site [1]. Corresponding networks for H3N2 and H5N1 are in Figures 2.3 and 2.4. Several of the
TFs identified as controlling the first splits in both the H1N1 and H3N2 networks belong to the
IRF family of TFs, known to regulate interferons, which play an important role in viral immune
response [168]. TFs belonging to the FOS, ATF, and JUN families appear in both the H1N1 and
H5N1 networks. These TFs are part of the AP-1 TF complex (which is known to regulate gene
expression in response to a variety of stimuli including cytokines, and viral infections [116]). We
also identify the SMAD family of TFs to play a part in all 3 networks. The STAT family of TFs
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Figure 2.1: Joint signaling network inferred by MT-SDREM for the three flu viruses. Top: Sources. Middle:
Signaling (intermediate) proteins. Bottom: TFs. Nodes are colored according to the role the protein is determined to
play in the pathway (red - source, blue - signaling, green -TF). Each node is also denoted with the set of strains it was
predicted for (color shades). For example, JUN is a TF predicted for all three strains whereas TCF12 is identified as a
source for H1N1 and H3N2 but not for H5N1.

is found to play a role in all 3 conditions. This family of TFs is part of the JAK-STAT signaling
pathway. This is a class of pathways responsible for activating transcription in response to extra-
cellular signals from messengers such as interferons, interleukins, growth factors, etc. [7, 272].

In addition to analyzing the TFs identified we performed an enrichment analysis using the
Gene Ontology (GO) terms associated with each path in the reconstructed regulatory networks.
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All p-values that we give below are after correcting for multiple hypothesis testing.

In the H1N1 regulatory network, the gene cluster corresponding to the path labeled A is pre-
dicted to be regulated by STAT1, part of the JAK-STAT signaling pathway, IRF1 and IRF2. This
path is enriched for ’defense response to virus’, ’immune response’, ’type I interferon signaling
pathway’, and ’cytokine-mediated signaling’ categories (p-value of <0.001 for both). We also
find enrichment for similar categories in paths labeled B, C of the H1N1 network and the paths
labeled D-H of the H3N2 network (Figure S1). In addition, we also find enrichment for ’toll-like
receptor signaling pathway’ in path F, and ’T cell activation’ and ’lymphocyte activation’ in path
H (p-value of < 0.001). Path D is also predicted to be regulated by several members of the IRF
family.

We find enrichment for the more general categories of ’defense response’ and ’immune re-
sponse’ in the path labeled I of the H5N1 network (Figure S2, p-value of < 0.001). Notably, in
all 3 conditions, the genes in the relevant paths are being upregulated indicating a response to all
three pathogens that has shared features.

The complete list of GO categories for all the labeled paths can be found on the Supporting
Website [1].

Strain specific proteins

In addition to looking for common response, we used MT-SDREM to identify strain-specific
factors and proteins. These represent potential targets for individual strains and may explain why
some are more virulent than others. Table 2.1 presents the set of unique proteins identified for
each strain (defined as those appearing in the top 100 proteins set for that strain, but not in the
top 100 of the other two). While many of the proteins on the list are not well characterized in the
three conditions making it hard to validate the results, some are known and the results agree with
very recent experimental data. For example, IRF7 which was only identified by MT-SDREM for
H3N2 was recently tested for H5N1 and shown to be significantly lower in H5N1 response when
compared to less virulent strains [271]. Similarly, as mentioned above, the regulatory networks
for H1N1 and H3N2 contain several IRFs as key regulators while the networks reconstructed for
H5N1 does not pointing to a potential target for improving prognosis from this infection.

Several proteins that are only predicted for H5N1 response are known to have important
roles in H5N1 infection. Knockdown of DDX39B, also known as UAP56, decreased H5N1
viral titre nearly 10 fold in infected cells [22]. MAPK8 (JNK) was strongly induced in H5N1
(and H3N2) infection, but not H1N1 infection [88]. NUP98 recruits the H5N1 protein NS2
to the nucleoli, and disrupting this interaction impedes viral propagation [54]. Mice with wild
type MX1 were protected against infection by a highly lethal H5N1 strain relative to mice with
defective MX1 [263]. H5N1-derived NS1 stimulates the ERK pathway, increasing cell viability
and promoting infection [180]. Through interactions with viral NS1 and another host factor,
IVNS1ABP (NS1-BP) can counteract this NS1-induced ERK phosphorylation [180].
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Figure 2.2: H1N1 Regulatory network. Each path represents a set of genes with a similar expression profile. Split
nodes are colored green and are annotated with the TFs that are predicted to regulate genes in the paths going out of
the split at the time point associated with the split. The blue TFs are up-regulated at that split time point while the red
TFs are down-regulated. The black TFs are not differentially expressed at the split point. Note that several of the TFs
included in this latter group are likely post-transcripitionally regulated.
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Figure 2.3: The H3N2 regulatory network is presented. The paths represent the different gene sets which are
coexpressed. The TF lists are the TFs predicted to regulate the path that they are connected to.

2.10 Comparison of MT-SDREM with prior work

To test the advantages of multi-task learning we compared MT-SDREM with previous methods
that can be used to analyze expression and interaction data. Since we are not aware of prior
methods that utilize multi-task learning in biological network reconstruction we first looked at
the differences between applying MT-SDREM and applying SDREM separately to each of the
three flu datasets. We have also compared MT-SDREM’s results to a baseline joint ranking
of differentially expressed (DE) genes from different experiments in a single analysis. This
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Figure 2.4: The H5N1 regulatory network is presented. The paths represent the different gene sets which are
coexpressed. The TF lists are the TFs predicted to regulate the path that they are connected to.

approach is similar to several previous studies that perform follow up analysis using such joint
sets [11].

Since the ’ground truth’ (complete underlying networks for each condition) is obviously un-
known, we used three different types of complementary information for these comparisons. First,
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we examined the set of TFs identified by each of these methods and determined their relevance
to the condition being studied. Next, we used the Gene Ontology (GO) to test the differences
in the identified functional categories between the different analysis methods. Expression ex-
periments and RNA interference (RNAi) screens have revealed a multitude of host pathways
and processes that are involved in viral host response including MAPK signaling, apoptosis,
trafficking, mRNA export, splicing, and proteolysis [39, 144, 233]. A statistical meta-analysis
implicates nearly 3000 host genes [110] in these pathways. Although many processes as a whole
are relevant to influenza response, not all genes participating in those processes necessarily are
important. Therefore we focused our TF and GO evaluation on immune processes, which were
shown to compose a critical component of the host response that kills infected cells, protects
uninfected cells, combats viral components, and promotes inflammation [253].

Finally, we used a set of RNAi experiments that were performed for H1N1 and H5N1 to test
the ability of these different methods to identify key disease related proteins. In these experiments
proteins are knocked down one at a time and the impact on viral load is measured. A protein
affecting viral load is likely participating in the host response and so methods that can identify
such proteins more accurately are in better agreement with the observed response. The RNAi data
for H1N1 was obtained from [36, 39, 132, 144, 233] resulting in a total of 980 screen hits, 925 of
which were present in our initial interaction network (which contained 16671 genes, Methods).
32 screen hits for H5N1 were obtained from [36], all of which are present in our interaction
network.

2.10.1 Comparison of identified TFs

In Table 2.2 we present the overall and pairwise overlap of the inferred TFs for the 3 condi-
tions (extracted by same mechanism as in SDREM [91, 94]) for MT-SDREM and compare it
to when SDREM is run independently on the 3 conditions (I-SDREM). Note that the pairwise
intersections shown are in addition to the overall intersection between all of the 3 conditions.

The shared TFs identified by MT-SDREM among all 3 conditions that are missed by I-
SDREM include several that are known to be immune response related. In particular, CEBPA is
known to be responsible for regulating a large variety of cell functions including immune and in-
flammatory response [204]. MT-SDREM also identifies SMAD4 in all three conditions. SMAD
family proteins are part of the TGFβ pathway as mentioned above. MT-SDREM also identifies
RB1 which has been implicated in viral immune response [182], JUN which is part of the AP-1
TF complex, and PPARG an important TF regulating immune response mentioned above. In
contrast, I-SDREM does not identify any TF in the intersection that MT-SDREM does not.

In addition, we also find several immune response related TFs in the pairwise overlaps for
MT-SDREM that we do not see for I-SDREM. For the overlap between H1N1 and H3N2, MT-
SDREM identifies IRF1/3/5 which are known to regulate interferons and thus important for im-
mune response. For the overlap between H1N1 and H5N1, MT-SDREM finds the the STAT3
gene which is part of the JAK-STAT signaling pathway and ATF2, part of the AP-1 TF complex.

For the pairwise intersection of H1N2 and H3N2, I-SDREM identifies NR3C1 as a TF while
MT-SDREM only selects it as an intermediate (signaling) protein. It also identifies another
member of the SMAD family (SMAD3 whereas MT-SDREM identifies SMAD4). For H3N2
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and H5N1 it identifies AHR whose activation inhibits inflammation [161] and RELA in the
intersection of H1N1 and H5N1, which as part of the NF-κB complex.

We also compared MT-SDREM to the popular TF prediction tool oPossum [151]. Our pri-
mary goal when comparing MT-SDREM with oPossum is to highlight the fact that using network
information in the multi-task learning framework is useful. The input to oPossum is a list of genes
identified by the experiment(s) and using this list it attempts to find overrepresented TF-binding
sites. To select a common gene list from all three experiments we ranked the genes for each
condition according to their differential expression and then merged the 3 rankings using the
Kemeny-Young method [292]. Similar to the number of genes used by MT-SDREM we used the
top 3000 in the joint ranking as input to oPossum. In Table 2.3 we present the comparison. Note
that since we used oPossum as the tool for the comparison of MT-SDREM with other methods
for integrating data from several conditions, the results shown for Table 2.3 are different from
the intersection results of Table 2.2. Here, for the MT-SDREM rankings we used the sum of %
path flow going through each gene across the 3 networks to rank TFs (Methods). The oPossum
TFs are ranked according to their Z-score.

While oPossum is able to identify a few relevant TFs, for most of the TFs identified by oPos-
sum, we could not find significant roles in immune response regulation for them. In contrast,
several of the shared MT-SDREM TFs that are not identified by oPossum are known to play ma-
jor roles in immune response as discussed above. These include STAT1/3, JUN/ATF2, CEBPA/B
which regulate a large number of immune response genes, RB1 which has been implicated in vi-
ral immune response networks [182], PPARG, and SMAD. MT-SDREM also uniquely identifies
IRF1 which plays a major role in viral immune response by regulating interferons. oPossum
was able to identify only two relevant TFs that were not found by MT-SDREM. These are ZEB1
which regulates the IL2 interleukin, part of the immune response system and AHR, part of the
ANTR-AHR complex.

We also tried to compare MT-SDREM with the Inferelator method [34] but following email
discussions with the authors of that method determined that such comparison is not feasible
since Inferelator requires expression data for a large number of conditions while we only had
time series response for three types of infections.

2.10.2 RNAi screen hits

Using the screen hit data for H1N1 and H5N1 we compared the performance of MT-SDREM,
I-SDREM and Endeavour [8, 259]. Endeavour is a gene prioritization algorithm which uses a
set of seed genes (the sources) to rank genes based on several types of evidence including gene
expression, interaction networks derived from various sources, text mining, sequence similarity,
and functional annotations. It combines the individual rankings to create a global ranking for all
genes. For the MT-SDREM and I-SDREM results we ranked proteins based on the total number
of paths weighted by their score going through them. For Endeavour, we configured it to use only
BioGRID and HPRD as data sources as those are the only sources we use to construct our PPI
network. The expression data is not used by Endeavour. We gave the source proteins as the seed
genes to Endeavour. We further compared these three methods with a baseline method that is
condition-independent: ranking nodes by their weighted degree in the PPI network. The results
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are presented in Figure 2.5. For H1N1, the top 100 genes in the Endeavour ranking include only
20 screen hits (p-value is 4.9E-7). For I-SDREM the number increases to 35 (p-value 2.0E-19)
whereas MT-SDREM obtains the highest number of protein in the overlap 39 (p-value 1.7E-23).
The baseline comparison where we rank by degree has an overlap of 30 genes (p-value 9.4E-15).
For H5N1, the top 100 genes for Endeavour and for ranking by degree include only 5 screen
hits (p-value 1.2E-6) whereas both I-SDREM and MT-SDREM have an overlap of 9 screen hits
(p-value 1.7E-13).
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Figure 2.5: Screen hits overlap for top 100 ranked genes for both H1N1 and H5N1. 925 H1N1 and 32 H5N1
screen hit proteins were present in our network.

2.10.3 GO enrichment comparisons
To compare the GO enrichment of shared genes / proteins we examined the top 500 genes in the
combined MT-SDREM network (ranked using the same sum of % of path flow going through
genes across the 3 networks as we did for the oPossum comparison) with the top 500 genes from
the combined ranking of the differentially expressed (DE) genes from each condition (combined
using the Kemeny-Young method as explained before). We used FuncAssociate [28, 29] to
compute standard GO enrichment for the genes. We found 3 categories, only 2 of which were
immune response related for which the p-value for DE genes was ≤ 0.001 but which were not
present in the MT-SDREM list or if present, their p-value was < 0.01. The categories are listed
in Table 2.4. However, for the vice versa comparison, we found a large number of categories
for which the MT-SDREM p-value was ≤ 0.001 but which were either not enriched for in the
DE genes list (most common outcome) or if present, their p-value was ≤ 0.01. A subset of the
immune response related categories are listed in Table 2.5. Note that we find significant enrich-
ment for a very varied set of immune response processes including T cell activation, cytokine
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production, activation of immune response, etc. as well as categories related to viral genome ex-
pression and positive regulation of viral process. The DE genes list is only enriched for negative
regulation of viral process and viral genome replication.

2.11 Learning task-relatedness parameters
So far we have only had a single task relatedness parameter α for each pair of tasks. One in-
teresting avenue to explore would be different α parameters for each pair of tasks. As we had
3 tasks (the 3 flu viruses), the parameters we had to set were α12, α23, α13. We computed the
overlap of differentially expressed genes between the differentially expressed genes for each
pair of the 3 strains of flu. The overlap was 862/11569 = 0.074 genes for H1N1 and H3N2,
458/11463 = 0.04 for H3N2 and H5N1, and 645/12549 = 0.051 for H1N1 and H5N1. As
α = 6 worked well for us in past experiments, we normalized the overlap fraction values such
that the maximum value (in this case 0.074 was 6) and used those as our α values. Thus we got
α12 = 6, α23 = 3.2, α13 = 4.1. Rerunning MT-SDREM with these parameters, we looked at the
enrichment of RNAi screen hits for H1N1 and H5N1 in the top 100 proteins in our new ranking.
We found 39 of the RNAi screen hits for H1N1 and 9 for H5N1. This is in contrast to 40 for
H1N1 and 9 for H5N1 when using a single α value of 6 for all three conditions.

While we did not improve on our existing results, the above evaluation does suggest that
using overlap of differentially expressed genes as a measure of relatedness between the different
tasks may be a good way to select the α parameters.

2.12 Conclusion
In this chapter we presented a novel method to jointly reconstruct the signaling and regulatory
networks of multiple related conditions in a multitask fashion. We gave extensive anecdotal
and statistical evidence that our method could recover known biology of 3 different types of
flu viruses – H1N1, H3N2, and H5N1. We also gave statistical evidence based on enrichment
of RNAi screen hits as well as GO analysis that our method outperformed existing methods
like oPossum, Endeavour. Importantly we also showed that doing a joint reconstruction of the
networks of the three viruses improved the network quality compared to doing it individually.
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H1N1 H3N2 H5N1

CREB1 PCNA CASP8

PARP1 COPS5 ERBB3

XRCC6 IRF7 COMMD1

POLR2A SMAD1 PSMA7

CEBPD ETS1 SPI1

TRIM28 SP3 NUP98

ATM SMARCB1 HNRNPF

ACTB TP63 KPNA6

XRCC5 SFPQ EIF4G1

HSF1 BCR PCBP1

EEF1A1 SMURF2 DDX39B

ATF4 TRIM27 STAU1

KHDRBS1 ANXA1 IPO5

HNRNPA1 DCTN1 PABPN1

HSP90AB1 CHAF1A TLR3

DDB1 DVL3 HSPA4

POU2F1 KAT2B GTF3C3

CRKL DDX3X MX1

CRK RPS3A GLUL

RPL5 RABGEF1 CCND1

RUVBL2 AIMP2 NQO2

RPL11 SP4 CDKN1B

CDC42 HNRNPH1 TLR8

MCM7 PSMD8 MAPK8

DDX17 MAGEA11 NOMO2

VIM MLH1 CDKN1A

EWSR1 GSK3B SIRT1

RPS7 NCOR1 RUNX2

RBM14 FOS

PIN1 IVNS1ABP

NMI SNAPC4

ERBB2

NCOA3

TRAF6

TP73

CASP3

PRKDC

CDK1

Table 2.1: Strain-specific protein list.
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Table 2.2: TF comparison for I-SDREM and MT-SDREM

H1N1 & H3N2 & H5N1 H1N1 & H3N2 H3N2 & H5N1 H1N1 & H5N1

I MT I MT I MT I MT
AR AR IRF1 IRF1 AHR� EP300 ATF2†

BRCA1 BRCA1 IRF3 IRF3 JUN RELA� HIF1A†
ESR1 ESR1 FOSL2 FOSL2 PPARG TP53 STAT3†
STAT1 STAT1 CEPBA IRF5† RB1

CEBPA† NR3C1� TFAP2A† SMAD4

EP300† SMAD3� SOX9

JUN†
PPARG†

RB1†
SMAD4†
SOX9†
TP53†

TFs predicted to regulate two or all three response networks. Each set of conditions is divided to two

columns with the first column containing TFs at the intersection of the SDREM output for the conditions

and the second the MT-SDREM results for these conditions. TFs identified by MT-SDREM but not

SDREM have a † next to them and vice versa have a � next to them. Note that TFs listed for the pairwise

overlap are in addition to the ones listed for the overall overlap. Thus JUN in the I-SDREM column of

H3N2 & H5N1 is not highlighted since it was identified by MT-SDREM for all three conditions.
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Table 2.3: TF comparison for oPossum and MT-SDREM

oPossum MT-SDREM

MZF1 1-4 EP300

SP1 TP53

ZNF354C BRCA1

MZF1 5-13 JUN?

NFYA ESR1

ZEB1? AR

MIZF RB1?

ROAZ SMAD4?

GABPA STAT1?

TEAD1 CEBPA?

TLX1-NFIC PPARG?

SPIB STAT3?

Hand1-Tcfe2a SMAD3?

ARNT-AHR? HIF1A

ELF5 RELA?

MYC-MAX MYC

TP53 ATF2?

ELK1 CEBPB?

REL? SOX9

AR IRF1?
oPossum and MT-SDREM comparison. Immune response related TFs have a ? next to them.

oPossum TFs are ranked according to their Z-score. MT-SDREM TFs are ranked according to

the path flow measure as described in the text
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Table 2.4: GO categories enriched in DE genes that are not enriched as significantly in MT-SDREM GO
comparison between the joint DE gene list and the joint MT-SDREM for the top 500 genes. The enrichment was
performed using the FuncAssociate tool [28]. Only categories with DE genes adjusted p-value of ≤ 0.001 and MT-
SDREM genes p-value of ≥ 0.01 are presented. If a p-value for MT-SDREM is NA, that means that that category was
not enriched for in the MT-SDREM list. All immune response related categories are presented.

GO Category DE p-value
≤

MT-SDREM
p-value

GO Category Description

GO:0045071 0.001 NA negative regulation of viral genome
replication

GO:0048525 0.001 0.019 negative regulation of viral process

Table 2.5: GO categories enriched in MT-SDREM that are not enriched as significantly in Differentially
Expressed (DE) genes GO comparison between the Differentially Expressed gene list and MT-SDREM gene list for
top 500 genes. The enrichment was performed using the FuncAssociate tool [28]. Only categories with MT-SDREM
adjusted p-value of ≤ 0.001 and DE genes p-value of ≥ 0.01 are presented. If a p-value for DE genes is NA, that
means that that category was not enriched for in the DE genes list. Only select immune response related categories
are presented.

GO Category MT-SDREM
p-value ≤

DE genes p-
value

GO Category Description

GO:0002218 0.001 NA activation of innate immune re-
sponse

GO:0002684 0.001 NA positive regulation of immune sys-
tem process

GO:0002429 0.001 NA immune response-activating cell
surface receptor signaling pathway

GO:0046328 0.001 NA regulation of JNK cascade

GO:0001816 0.001 NA cytokine production

GO:0001959 0.001 NA regulation of cytokine-mediated
signaling pathway

GO:0042113 0.001 NA B cell activation

GO:0042110 0.001 NA T cell activation

GO:0043923 0.001 NA positive regulation by host of viral
transcription

GO:0019080 0.001 NA viral genome expression

GO:0048524 0.001 NA positive regulation of viral process

GO:0007259 0.001 NA JAK-STAT cascade

GO:0002573 0.001 NA myeloid leukocyte differentiation
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Chapter 3

TimePath

While MT-SDREM is very good at inferring signaling networks, it does not provide temporal
information about the pathways it finds. In MT-SDREM, all pathways from source proteins
(protein interacting with the environment / pathogen) to TFs are assumed to be activated con-
currently which does not explain expression waves and response phases. Further, it does not
optimize a single target function but rather two, separate, functions for different models (one for
the IOHMM and the other for the combinatorial orientation algorithm) making it hard to deter-
mine optimal parameters for the networks. TimeXnet [200] is another method for reconstructing
such networks. It uses linear programming to formulate a max-flow problem imposing a con-
straint that the flow through expressed genes has to be greater than 0 so that they are accounted
for in the networks identified. TimeXnet has been applied to study immune response in mice.
However, TimeXnet does not directly consider the (often post-transcriptionally activated) source
of the resulting response which may lead to missing important pathways. In addition, TimeXnet
does not explain why some genes are activated early while others are only activated at a later
stage.

Here we present TimePath, a new method for reconstructing fully dynamic signaling and reg-
ulatory networks. TimePath uses a single Integer Programming (IP) based optimization function
to jointly construct the networks. Before delving further into the details of our method, we give
a brief overview of Integer programming.

3.1 Methods
We initially select a large set of pathways that are rooted in source proteins and end in differentiall
expressed (DE) genes. This allows us to include sources that are only post-transcriptionally and
/ or post-translationally activated. Pathways for later DE genes are required to contain DE genes
or miRNAs from earlier phases to explain their delayed response. Next, we use the IP to select a
small subset of pathways that, together, explain the full set of DE genes. These selected pathways
are analyzed to determine phase specific proteins and miRNAs and select those that are key to
the response observed.

We applied TimePath to reconstruct dynamic models for HIV-1 immune response. As we
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show, the method accurately reconstructed the response networks identifying several known and
novel pathways. We have performed experiments based on novel predictions made by TimePath
several of which validated the ability of TimePath to determine a specific time for targeting a
protein in order to reduce viral loads.

3.1.1 Cell culture, HIV infection, and Reagents

Sup-T1 cell lines were obtained through the NIH AIDS Research and Reference Reagent Pro-
gram, Division of AIDS, NIAID, NIH (A Sup-T1 from Dr. James Hoxie [242] and were main-
tained in RPMI containing 10% FBS, 1% l-glutamine and 1% penicillinstreptomycin (GIBCO).
HIV-wt-EGFP reporter virus was obtained by transfecting HEK293 T cells (2 × 106 per plate)
with 10 µg of HIV-1 vpr(+)/EGFP proviral construct by Polyjet following manufacturers pro-
tocol. Forty-eight hours post transfection, the supernatants were collected, filtered through a
0.4-µm filter to remove cellular debris, and centrifuged at 22,000 rpm for 1 h. The virus pellets
were resuspended in PBS and stored in aliquots at 80 C for subsequent assays. Multiplicity of
infection (MOI) for virus was calculated by TZM blue assay using the HIV-1 reporter cell line
cMAGI (AIDS Research and Reference Reagent Program [RRRP], National Institutes of Health
[NIH]). The Sup-T1 cells were infected at a MOI of 0.3 either in the presence or absence of spe-
cific inhibitor at indicated time points. Forty hours post infection, the cells were washed and fixed
with 1% paraformaldehyde and the samples were analyzed using Fortessa (BD Biosciences) with
10,000 gated events acquired for each sample, and the results were analyzed using FlowJo soft-
ware (Tree Star, Inc., OR). The infected cells were detected by the expression of reporter virus
EGFP. Azidothymidine (AZT) obtained from Sigma-Aldrich was used as positive control. IKK2
inhibitor V, Dasatinib, and Dinaciclib were obtained from CalBiochem. SP600125 and WP 1066
were obtained from Abcam Biochemicals and Enzo, respectively. SNS-032, Regorafenib, Carfil-
zomib, and Veliparib, Olaparib were obtained from selleckchem.com. SAHA and 5-Azacytidine
were obtained from Sigma-Aldrich. The viability of cells was estimated by Trypan blue staining.
We conducted the experiments 3 times with duplicate wells for each experiment.

3.1.2 Data description

The overall goal of TimePath is to determine the dynamics of both the signaling and the regula-
tory events that take place as part of a cellular response process. For this, TimePath integrates
time series gene expression data, static protein interaction data (both within and across species)
and protein-DNA interaction data. We constructed a weighted, partially directed, protein inter-
action network using several databases including BIOGRID [245], HPRD [206] and have also
used Post-translational Modification Annotations from the HPRD. Protein-DNA interactions are
based on data from [230]. Sources (host proteins that interact with the HIV-1 proteins) were
obtained from VirHostNet [189]. Time series gene expression and miRNA expression data fol-
lowing HIV-1 infection in Sup-T1 was obtained from [181]. Differentially expressed genes were
computed using DESeq [16] and ranked using the p-value generated by the package for the dif-
ferential expession with smallest p-value first.
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3.1.3 Candidate pathways

To reconstruct the dynamic set of signaling pathways that are activated we first divide the time
series gene expression data into K phases. Initial response is likely driven by host proteins that
interact directly with virus proteins. However, later changes in expression data (for example,
expression changes that only occur 10 hours after infection) are likely driven by genes or TFs
that have been activated as part of an earlier expression response. In general we assume that
expression changes in phase i can be partially explained by activation / repression of a gene(s) in
phase i − 1. To guarantee that our reconstructed pathways satisfy this we impose the constraint
that any pathway that explains differential gene expression for a gene in phase i > 1 has to
include at least one gene that was differentially expressed (DE) in phase i− 1.

Based on these assumptions we initially select a subset of pathways that can be used to
explain the DE genes as follows:

1. We divide the time series into k phases each consisting of T/k time points where T is the
total number of points. We use k = 3 for this paper.

2. We extract the top N1 DE genes for each phase (we use N1 = 200).

3. We then search for the highest scoring N2 acyclic paths from the source proteins (host pro-
teins interacting with the virus of drug) to the targets (DE genes) for each phase (we use
N2 = 10 million here). We use the edge weights to compute a score for each path (Intro-
duction). We also guarantee that the following constraints are satisfied for each pathway:-

(a) The last edge in the path has to be a protein-dna interaction (i.e. we need a TF to
activate / repress the gene) [289].

(b) A path to a phase i > 1 target has to contain a node that is a target for phase i− 1.

In general, searching for the top N2 acyclic paths in a graph is a #P-complete problem which
is not considered to be solvable efficiently [19]. We thus use a heuristic to compute the set of
paths.

3.1.4 Integer program to select subset of pathways

Given a set of top paths for each target, our next goal is to combine them to identify the actual
pathways that are activated as part of the response. Consider 2 targets g1 and g2 in phase k
that are known to be bound by the same TF A. If we believe that A explains the activation
of g1 in that phase it increases our belief that A is also the TF activating g2. More generally,
our goal is to select a subset of these pathways that, together, would minimize the number of
intermediate signaling and regulatory proteins that are used across all pathways while at the
same time maximize the number of targets that can be explained.

To accomplish this we define a new Integer Programming (IP) problem which includes 3 sets
of binary variables (bv)

1. bv for a path to indicate whether it is selected or not

2. bv for a target to indicate whether there is at least one path ending at it

3. bv for protein to determine whether it is part of a path selected.
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Using these variables we maximize the following objective

max
∑
p∈P

w(p) · bPp + λ1

K∑
k=1

∑
g∈Tk

fg − λ2
∑
g∈G

bGg (3.1)

with the constraints

∀p ∈ P, ∀g ∈ p, bGg ≥ bPp (3.2)

∀p ∈ P,
∑
g∈P

bGg ≤ |p| − 1 + bPp (3.3)

∀g ∈ G,∀p ∈ P (:, g), fg ≥ bPp (3.4)

∀g ∈ G,
∑

p∈P (:,g)

bPp ≥ fg (3.5)

where
• K is the number of phases.
• Tk is the targets for phase k.
• P is the set of all paths
• G is the set of all genes
• P (:, g) is the set of paths ending at gene g.
• w(p) is the weight of path p. The score of each a pathway p is defined as Πe∈EpP(e) where
Ep is the set of edges in pathway p and P(e) is the edge score.

• bPp is whether path p is selected or not.
• fg is whether gene g has even one selected path ending at it.
• bGg is whether gene g is selected.
• λ1−2 are the weights for balancing the minimization requirements in terms of intermediate

nodes and the maximization requirements in terms of the number of targets. They are the
parameters that decide in the end, how large of a network in terms of number of genes and
edges will be chosen.

Note that setting bGg = 0 for a specific gene immediately implies that bPp for a path containing
that gene is 0 and similarly that fg is 0 for that gene and so these variables are not independent
as the constraints above imply. We set bPp = 1 if and only if all the genes in the path are selected
as enforced by constraints 1-2. fg is 1 if and only if there is at least one path with bPp = 1 ending
at the gene g as enforced by constraint 3.

Since this is a problem with linear constraints, a linear objective and since the bg variables
are binary, this is an IP and not an Linear Program (LP). The IP we are dealing with however
is too large for standard IP solvers and we thus solve it using a greedy approach followed by
a tabu search heuristic to escape local minimum. Briefly, we start with all the nodes selected.
Then at each step, we search for a node whose addition or removal from network would increase
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the objective the most (this is accomplished by flipping the bn variable for that gene). Paths that
contain a gene that is not in the current network are removed (i.e. their corresponding bp variable
is 0). Once we find such a node, we add or remove it and keep going until we can find no node
whose addition or removal will improve the objective. We randomly select nodes if there are ties
between them. Thus the results can differ from one run to another – however the actual genes
selected by the network change little according to our experimental results.

3.1.5 Detailed path search algorithm description

Algorithm 1 search-paths(n, q, S, T1, . . . , Tk, E)

1: P ← {}
2: Q← S with priority 0

3: while |P | < n do
4: p← pop(Q) where p has the lowest priority

5: end-gene← end(p)

6: end-gene-nbrs← {(t, score(e)) : e = (s, t) ∈ E∧end-gene = s}
7: if end-gene∈ Ti then
8: if i = 0 or ∃g ∈ p \ {end-gene}, g ∈ Tj, j < i then
9: P ← P ∪ {p}

10: end if
11: end if
12: for (g, sc) ∈end-gene-nbrs do
13: insert [p g] into Q with priority priority(p) + (−log(sc))

14: if |Q| > q then
15: remove highest priority element from Q

16: end if
17: end for
18: end while
19: return P

The algorithm takes as input the following arguments –
• n which is the final number of paths to output. In our case n = 10 million.
• q which is the maximum number of elements the breadth first queue is allowed to hold.
• S which is the set of sources.
• T1, . . . , Tk which is the set of targets for phase 1 upto the phase k, the total number of

phases.
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• Q which is the set of edges.
In line 1, we initialize the set of paths P to an empty set and fill the priority queue Q with

the sources all with the same priority 0. P contains the set of final paths we have selected and Q
contains the candidate paths.

Then until we have filled the set of paths P with the target number of paths n, we do the
following. In line 4, we pop off the path p with the lowest priority (and thus the highest scoring
path) from Q. In line 5, we extract the current last gene end-gene in p and in line 6, we extract
the set of neighbor genes of end-gene using the set of edges E. Then if the end-gene is a
target, that means we already have a path from a source to a target and we may be able to add
path p to the final set of paths P . However we still have to ensure the constraint that any pathway
to a target in phase i has to have a protein that was a target in phase i − 1 unless i = 0. This
condition is checked for in line 8 and if satisfied, we add p to P .

In line 12, then we iterate over all the neighbor genes of end-gene. We extend path p with
the every neighbor gene g in line 13. The score of the new path is the score of p and the negative
logarithm of the edge score between end-gene and g. Then if the queue exceeds the maximum
size allowed, the highest priority element (and thus the lowest scoring path) is removed in line
15.

Finally we return the final set of paths in line 19.

3.1.6 Detailed IP algorithm description
Given the set of top paths for each target, our next goal is to combine them to identify the actual
pathways that are activated as part of the response. Consider 2 targets g1 and g2 in phase k
that are known to be bound by the same TF A. If we believe that A explains the activation
of g1 in that phase it increases our belief that A is also the TF activating g2. More generally,
our goal is to select a subset of these pathways that, together, would minimize the number of
intermediate signaling and regulatory proteins that are used across all pathways while at the
same time maximize the number of targets that can be explained.

Specifically, we try to balance three different criteria –

1. Maximize the total path weight of the selected paths (i.e. select the pathways we are most
confident in).

2. Maximize the number of targets – i.e. the number of targets with at least one selected path
ending at them.

3. Minimize the number of selected nodes in the network. A node is selected if there is at
least one selected path that has uses node.

To accomplish this we define a new Integer Programming (IP) problem which includes 3 sets
of binary variables (bv)

1. bv for a path to indicate whether it is selected or not

2. bv for a target to indicate whether there is at least one path ending at it

3. bv for protein to determine whether it is part of a path selected.

Using these variables we maximize objective 3.6 :-
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max
∑
p∈P

w(p) · bPp + λ1

K∑
k=1

∑
g∈Tk

fg − λ2
∑
g∈G

bGg (3.6)

with the constraints

∀p ∈ P, ∀g ∈ p, bGg ≥ bPp (3.7)

∀p ∈ P,
∑
g∈P

bGg ≤ |p| − 1 + bPp (3.8)

∀g ∈ G,∀p ∈ P (:, g), fg ≥ bPp (3.9)

∀g ∈ G,
∑

p∈P (:,g)

bPp ≥ fg (3.10)

where
• K is the number of phases.
• Tk is the targets for phase k.
• P is the set of all paths
• G is the set of all genes
• P (:, g) is the set of paths ending at gene g.
• w(p) is the weight of path p.
• bPp is whether path p is selected or not.
• fg is whether gene g has even one selected path ending at it.
• bGg is whether gene g is selected.
• λ1−2 are the weights for balancing the minimization requirements in terms of intermediate

nodes and the maximization requirements in terms of the number of targets. each part of
the objective and are the parameters that decide in the end, how large of a network in terms
of number of genes and edges will be chosen.

Since standard solver cannot be used due to the scale of this problem, we solve this IP using
a greedy approach. We run a local search to converge to a local minimum and then augment this
with the tabu search heuristic to escape the local minimum. In the end we return the best solution
found.

The algorithm is described in detail in Figures 2– 6.
We augment the local search described above with a metaheuristic called tabu search [97] to

escape out of local minima. Briefly, we maintain a list called the tabu list of the past L solutions
and ensure that the current solution is not the same as any of the previous L solutions. This helps
us escape local minima in the following way – suppose we are at a local minimum with bG1 being
the binary vector of whether a gene is turned on or off. We then flip a random gene to escape the
local minimum and arrive at the solution bG2 . Now the solution bG1 is part of the tabu list which
prevents us from using it in future rollbacks allowing us to escape the current minimum.
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Algorithm 2 filter-paths(bP ,bG, P,w, λ1, λ2, τ, L,N )

1: l← []

2: bP ← [0]|P |

3: bG ← [0]|G|

4: δ ← compute-initial-delta

5: O ← compute-initial-objective

6: i← 1

7: while max(δ) > τ ∨ i ≤ N do
8: i← i+ 1

9: g ← arg maxi δis.t.f(g, bG) /∈ l
10: O ← O + δi

11: T ← compute-target-genes-table(Pg)

12: add-target-penalty(δ, fG, f , T,−λ2)
13: if bGg = 1 then
14: bGg ← 0

15: δg ← δg − 2λ1

16: update-delta-on-deactivation(δ, g)

17: for p ∈ Pg do
18: bPp ← 0

19: end for
20: else
21: bGg ← 1

22: δg ← δg + 2λ1

23: update-delta-on-activation(δ, g)

24: end if
25: add-target-penalty(δ, fG, f , T, λ2)

26: if |l| = L then
27: remove first element of l

28: end if
29: append current bG to l

30: end while
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Algorithm 3 compute-target-genes-table(Pg)

1: T ← {}
2: for p ∈ Pg do
3: t← target(p)

4: if t /∈ T then
5: T ← T ∪ {t : {}}
6: end if
7: for g′ ∈ p do
8: T [t]← T [t] ∪ {g′}
9: end for

10: end for
11: return T

Algorithm 4 add-target-penalty(δ, g, fG, f , T, λ2)
1: for t ∈ T do
2: for g′ ∈ T [t] do
3: if ft ≥ 1 then
4: if ft + ∆f gt < 1 then
5: δg ← δg − λ2
6: end if
7: else
8: if ft + ∆f gt ≥ 1 then
9: δg ← δg + λ2

10: end if
11: end if
12: end for
13: end for
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Algorithm 5 update-delta-on-activation(δ, g, fG, f )
1: for p ∈ Pg do
2: r ← |p| −

∑
g′∈p b

G
g′

3: t← target(p)

4: if r = 0 then
5: for g′ ∈ p do
6: δg′ ← δg′ − wp
7: ∆f g

′

t ← ∆f g
′

t − wp
8: ft ← ft + wp

9: end for
10: ∆f gt ← ∆f gt − wp
11: else if r = 1 then
12: δg ← δg + wp

13: ∆f gt ← ∆f gt + wp

14: end if
15: end for

Algorithm 6 update-delta-on-deactivation(δ, g, fG, f )
1: for p ∈ Pg do
2: r ← |p| −

∑
g′∈p b

G
g′

3: g′′ ← the only other inactive gene if r = 2

4: t← target(p)

5: if r = 1 then
6: for g′ ∈ p do
7: δg′ ← δg′ − wp
8: ∆f g

′

t ← ∆f g
′

t + wp

9: ft ← ft − wp
10: end for
11: ∆f gt ← ∆f gt + wp

12: else if r = 2 then
13: δg′′ ← δg′′ − wp
14: f g

′′

t ← f g
′′

t − wp
15: end if
16: end for
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Algorithm 2 is the main procedure. We first initialize the binary variable vectors bP and bG.
We also initialize a δ vector whose value is the change in the objective that would result if we
turned a particular gene on or off. The vector f is the expected number of paths going to a target
t (i.e. the sum of the path scores of all active paths ending in target t). The vector ∆fG is the
change in fT that would be caused by flipping a gene.

In the main loop starting at line 5, we first get the gene g that would cause the biggest increase
in the objective. We then compute all the target gene pairs T that are present in the paths that
contain gene g. We then update the δ vector in lines 13 and 20 and fix the target penalty in lines
9 and 22. We iterate until convergence.

Run time and scalability

For our experiments, the search for paths from the source proteins to the possible Tfs, takes 104s.
The search from those paths to the differentially expressed target genes takes 146s. The previous
two procedures should scale linearly with the number of source + targets (assuming the number
of paths per source and target is kept the same). We already have 235 sources and 600 targets
and as the number of sources rarely exceed 300, and the number of targets (DE genes) is unlikely
to exceed 2000, the algorithm should not take more than 4-5 times longer in the worst cases.

The IP filtering algorithm takes 115 s. It scales linearly with the number of starting genes ×
number of iterations (typically about 1000 iterations). In our experiment, we started with 1374
genes. As the number of genes in the genome is 20000 which is 15 times larger, we do not
expect the algorithm to take more than 1725s in the worst case assuming the number of iterations
remain the same.

3.1.7 Ranking genes
After solving the IP we obtain a subset of the pathways that, combined, explain the observed
expression response over time. While we attempt to minimize the number of proteins in these
networks, we still end up with hundreds of proteins in the set of selected pathways. To identify
key proteins for follow up analysis, we rank genes for each phase based on the ”path flow” going
through them. The path flow f through a node n for phase i is defined as follows –

f(n) =
∑
p∈P

I(p) · w(p)

where P is the set of paths ending at a target in phase i and containing node n. I(p) is 1 when
the path p is selected and 0 otherwise. We further refine the phase specific genes for later phases
to remove those already identified by earlier phases.

3.1.8 Selecting phase-specific genes
To further identify phase specific genes we use the following procedures. For phase 1 we selected
the top K genes. Then for each phase i > 1, we select the top K genes such that the gene was
not in the top K for any previous phase j < i, and the minimum fold change in rank from any
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previous phase to phase i was atleast δ. In other words we trying to find nodes / proteins that are
first used in that phase. We used the value of K = 50, δ = 2 for this thesis.

3.2 Results

3.2.1 TimePath analysis of HIV data

We used TimePath to examine cell response to HIV infection. Time series expression data for
HIV-1 was obtained from Mohammadi et al [181] which profiled genes using SAGEseq every
2 hours for 24 hours after transfection with HIV-1 in Sup-T1 cell line. Expression data was
Normalized using DESeq [16]. In addition to HIV expression data we obtained interaction data
for HIV-1 proteins and host (human) proteins from VirHostNet [189]. Of the 235 proteins in
VirHostNet, 231 are present in our protein-protein interaction (ppi) network and were used as
potential sources.

As metnioned before, TimePath also uses general protein-protein interactions from BIOGRID [245]
and HPRD [206], Post-translational Modification Annotations from HPRD and Protein-DNA in-
teraction data [230] (Methods).

To identify pathways for specific response phases we divided the time series expression into
3 phases (every 8 hours) and extracted 200 targets (DE genes) for each phase (Methods). We
next used the static interaction data to identify a large number of potential pathways connecting
sources and targets constraining potential pathways for later targets to contain a gene that is DE
at an earlier phase. A subset of these pathways that, together, explain the observed response
to HIV infection are then selected by the IP method. Pathways retained by the IP for this data
included a total of 607 genes of which 319 are targets. We next ranked proteins in these pathways
based on their importance to each phase (Methods).

3.2.2 Pathways and proteins identified for HIV response

The resulting dynamic network is presented in Figure 3.1.

3.2.3 Relation of the phase genes to HIV

During the initial phase following HIV-1 infection, which corresponds to early events starting
from virus entry to integration (0-8 hours), the reconstructed network is enriched for transcrip-
tion factors associated with DNA modification and cell cycle regulation. Transcription fac-
tors YY1 and MYC, which have repressive effect on HIV-1 LTR transcription are repressed
in this early phase of infection, whereas other transcription factors such as EP300, NFKB1,
STAT1, MAPK1, and TBP which are enhancers of HIV-1 LTR activity are increased. Genes
such as TP53, RELA, and NR3C1 which could potentially upregulate HIV-1 LTR transcrip-
tion are repressed. Genes associated with DNA modification (acetylation) HDAC1, HDAC2,
KAT2B;(methylation) DNMT1, and cell cycle regulators - CTNNB1, CSNK2A1, CDK2, E2F1
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0"8$hours 8"16$hours 16"24$hours

Figure 3.1: Dynamic signaling and regulatory network for HIV-1 immune response. The red nodes are the
host proteins that interact with the HIV-1 proteins (selected sources). Blue nodes are intermediate signaling proteins
and green nodes are the TFs that are predicted to directly up/down-regulate the differential expression of target genes
(targets not shown in figure, but the average levels of the regulated targets for each TF is presented by the yellow nodes
while the size of each of the yellow nodes indicates how many genes belong to the cluster represented by the node).
The figure displays the top predicted nodes for each of the three phases and also demonstrates is directly linked to the
sources via the signaling proteins and DE genes in earlier phases. Diamond shaped nodes were identified as supported
RNAi screen hits (text) and rectangular nodes are targets for the phase they are in. Nodes with bold blue border
represent proteins we experimentally tested. Note that some intermediate proteins may also be TFs. The functional
role in the network figure is based on the location of the protein in the selected paths based on the IP.
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are also modulated in this early stage of infection. These changes observed in the genes re-
lated to DNA modification enzymes and the genes that regulate cell cycle support the ability of
HIV-1 to infect non-dividing cells and indicate that very early in the infection process the virus
dysregulates the cellular machinery to favor its transcription.

While many of the genes listed above have been known to play a role in HIV expression
response, less was known about genes assigned by TimePath to later phases in the process. We
have thus focused on the later two stages (8-24h) and have characterized the roles of top network
genes in these two phases on virus replication and immune response (Table 3.1).

During Phase two of HIV infection (8-16 hours), when there is sequential synthesis of early,
intermediate and late viral transcripts and proteins, we observe a significant decrease in the ex-
pression of genes that have a critical role in antigen presentation and host defense regulation.
Adapter proteins, such as AP1 and AP2, that are essential for sorting of MHC molecules, and
CD28 costimulatory molecules involved in T cell-DC interaction showed reduced expression.
There is a significant 500-1000 fold decrease in the expression of these proteins in the infected
T cell line. Furthermore, expression of CD4 transcripts is also reduced. This reduction in CD4
expression along with the reduced expression of PTPN7 could have adverse affect on signal
transduction in T helper cells and on the induction of immune response. Since CD4 is also the
primary receptor of HIV, the decreased expression of CD4 transcripts could also potentially con-
tribute to super infection interference. It is also interesting to note that Actin, which is essential
for trafficking of incoming virions is also downregulated, suggesting that HIV also modulates
additional host cellular proteins to prevent reinfection of the infected target cells. During this
phase, CALM3 and NDRG1 that can promote apoptosis are reduced which may help the sur-
vival of infected cells. Additional changes observed in ATM, IRF1, PIN1, SIRT1, NBN, KPNB1,
SMARCB1 and XRCC5 could have a role in suppression of virus replication and could be re-
lated to host defense response. XRCC5 encoded Ku80 protein could be a of part of the host
defense, as Ku80 are involved in double strand DNA repair mechanism that is caused by HIV
during integration of proviral DNA during infection cycle. There is a decreased expression of
KPNB1 and SMARC1, which is required for efficient integration of HIV-1, while the expression
of NBN, which has a key role in post integration repair is increased. HIV-1 viral proteins Env,
Rev, Tat, Vif, Vpr and Integrase interact with Ataxia-telangiectasia mutated (ATM) kinase in di-
verse role to promote virus replication and DNA repair pathways. Decrease in ATM can reduce
virus replication and also decrease the survival of infected cells as a consequence of impaired
genome stability.

Changes observed in genes such as AP1B1, AP2B1, CALM3, CCND3, CD4, ACTB, NDRG1
and others listed in Table 3.1, can be explained by changes in regulatory genes modulated in
phase 1. Surprisingly, out of 16 such genes that are differentially regulated in phase 2 changes
in 8 genes facilitate virus replication, while 1 gene SMARCB1 may suppress virus production
and the role of the five other genes (SKI, DBP, NCOR2, STUB1, PRRC2A) are not well studied
in the context of HIV infection. Differential regulation of STAT5B can either inhibit immune
response or contribute to suppress HIV-1 LTR activity.

A number of the changes observed in genes in Phase 3 could have an regulatory effect on
HIV-1 replication, similar to that is observed in phase 2. For instance, increase in expression of
GTF2H1 helps in elongation of RNA transcripts and aid in Tat and Vpr dependent enhancement
of HIV LTR activity. Similarly, increase in TAF1 is also associated with increased transcriptional
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activity of HIV-1 LTR. GNB2L1 is found in Staufen-RNP complexes along with other viral
proteins such as Env, Gag, Tat and Nef and is considered to be involved in phosphorylation
of Nef. Decreased expression of GNB2L1 can result in reduced sequestration of viral proteins
in Staufen that might help to optimize Nef phosphorylation at the late stage of virus infection.
DDIT3 is known to increase HIV transcription but also induce apoptosis, decrease in DDIT3
expression at later stage of virus infection may contribute to resistance to apoptosis in infected
cells. Other genes that are differentially regulated in phase 3 independent of changes in earlier
phase may be activated as part of the host defense response. For example, PAK1 is activated by
HIV-1 viral protein Nef and is shown to have a role in HIV pathogenesis and decrease in PAK1
expression can minimize HIV-1 induced pathogenesis. Also a reduction in RAD23A, which is
essential for virus replication also adversely affect virus production, though protective effect of
reduced RAD23A in Vpr-mediated apoptosis cannot be ruled out.

Overall the results indicate that the virus upon entry (during the initial phase) either immedi-
ately or in a delayed manner exploits the signaling pathways and intracellular protein interactions
to facilitate its replication and/or evade the innate immune defense. This occurs prior to the in-
duction of cellular host cellular immune mechanism that seems to be progressively enriched at
later stages though to a limited extent.

We also performed a literature search to assess if and how the genes we uncovered for each
phase were related to HIV. The results are presented in Tables 3.2– 3.4.

Gene Fold change (log2) Phase Predicted outcome

Overall impact
of expression
change on virus
replication

AP1B1 -9.04

2 (8 - 16 hours)

Inhibiton of antigen
presentation; dysreg-
ulation of immune
response

+

AP2B1 -8.20 Dysregulation of sur-
face expression of im-
mune molecules

+

CALM3 -10.89 Prevent apoptosis of in-
fected cells

+

CCND3 -10.99 cell cycle arrest; re-
duced transactivation of
HIV-1 LTR

+/-

CD4 -10.71 prevent superinfection;
dysregulation of im-
mune response; altered
signal transduction;
membrane targeting of
Env

+
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NDRG1 -8.08 inhibit p53 mediated
caspase activation and
induction of apoptosis

+

SKI -7.51 Not known
SMARCB1 -7.54 reduced HIV integra-

tion; reduce gag pro-
cessing and release

-

DBP -9.08 Not known
STAT5B -6.91 inhibit or activate

HIV-1 LTR based on
STAT5B isoform; im-
pair immune response

+/-

ACTB -12.05 reduced HIV move-
ment , prevent superin-
fection

+

NCOR2 -7.66
PTPN7 -10.02 impair T cell signal

transduction
+

STUB1 -8.46
CDC34 -9.05 Cell cycle arrest +

PRRC2A -10.35
GNB2L1 -7.99

3 (16 - 24 hours)

inhibits virus incorpo-
ration in staufen; Opti-
mizes nef function

+

GTF2H1 1.93 increased elongation of
viral transcripts, trans-
activation of HIV-1
LTR

+

PSMA4 2.58 Multiple role , protea-
somal subunit

+/-

SGTA -5.37 suppress Vpu mediated
Gag release

-

TAF1 1.37 Transactivation of HIV-
1 LTR

+

TPM1 1.20
UBB -2.97 Multiple role +/-
VAV1 -3.75 Inhibition of T cell

transduction
+

DDIT3 -2.59 inhibition of HIV trans-
activation; inhibition of
apoptosis

+/-

Table 3.1: Analysis of predicted most likely genes playing a role in viral replication. Note that these are subset
of genes predicted as being important for the respective phases
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Table 3.2: Phase 1 proteins and their relation to HIV

Protein Name Relation to HIV
EP300 Acetylation of the HIV-1 Tat protein by p300 is important for its transcriptional activity [196]

TP53 HIV-1 viral infectivity factor interacts with TP53 to induce G2 cell cycle arrest and positively
regulate viral replication [125]

HDAC1 NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcrip-
tional initiation [282]

RELA NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcrip-
tional initiation [282] and also regulates HIV-transcription

HDAC2 NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcrip-
tional initiation [282]

CEBPB Regulated HIV-1 gene expression through CDK9 association [169]

CTNNB1 Plays a role in HIV transcription repression in multiple cell types including astrocytes via the
beta-catenin/Wnt pathway [188]

NFKBIA NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcrip-
tional initiation [282] and also regulates HIV-transcription

NFKB1 NF-κB p50 promotes HIV latency through HDAC recruitment and repression of transcrip-
tional initiation [282] and also regulates HIV-transcription

DAXX Daxx interacts with HIV-1 integrase and inhibits lentiviral gene expression [122]

YY1 Human transcription factor YY1 represses human immunodeficiency virus type 1 transcrip-
tion and virion production [174]

SMAD3 MH2 domain of Smad3 reduces HIV-1 Tat-induction of cytokine secretion [76]

E2F1 Downregulates HIV transcriptional activity [150]

NR3C1 The HIV-1 virion-associated protein vpr is a coactivator of the human glucocorticoid recep-
tor [140]

MYC Expression of the c-myc proto-oncogene is essential for HIV-1 infection in activated T
cells [249], HIV-1 Tat transactivation requires c-Myc [40], c-Myc and Sp1 contribute to
proviral latency by recruiting histone deacetylase 1 to the human immunodeficiency virus
type 1 promoter [129]

STAT1 HIV-1 Nef activates STAT1 in human monocytes/macrophages through the release of soluble
factors [81], STAT1 signaling modulates HIV-1induced inflammatory responses and leuko-
cyte transmigration across the blood-brain barrier [52]

RAF1 Raf-1 activates HIV-1 LTR expression [43]

CDK2 CDK2 involved in HIV-1 transcription [14, 15]

SKP2 Ubiquitylation of Cdk9 by Skp2 facilitates optimal Tat transactivation [24]

SRF While not directly related to HIV, it is associated with a variety of early response genes like
FOS and JUN [48] which are targets (differentiall expressed genes) in the later phases of the
HIV time series

MAPK1 Expression of Nef (HIV-1 protein) in podocytes induced significant MAPK1,2 phosphoryla-
tion [113]
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KAT2B Tat (HIV-1 protein) stimulates HIV-1 transcription and its activity is dependent on PCAF
(alias of KAT2B) [185]

PARP1 Poly (ADP-ribose) polymerase-1 (PARP1) is required for efficient HIV-1 integration [105]

CDKN1B The CDKN family has been suggested to inhibit HIV-1 transcription [276]

YBX1 Interaction of YB-1 with human immunodeficiency virus type 1 Tat and TAR RNA modulates
viral promoter activity [18]

CCNA2 Phosphorylation of SAMHD1 by Cyclin A2/CDK1 Regulates Its Restriction Activity toward
HIV-1 [62]

TBP HIV-1 Tat stimulates transcription complex assembly through recruitment of TBP in the ab-
sence of TAFs [215]

MAX Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex
with Myc [32] and thus may be relevant to Myc’s role in HIV-1 Tat’s activation/repression as
documented in the entry for Myc

CSNK2A1 Biochemical characterization of HIV-1 Rev as a potent activator of casein kinase II in
vitro [195]

PIK3R1 Interaction between Nef and phosphatidylinositol-3-kinase leads to activation of p21-
activated kinase and increased production of HIV [163]

DHX9 RNA helicase A (DHX9) modulates translation of HIV-1 and infectivity of progeny viri-
ons [33]

Table 3.3: Phase 2 proteins and their relation to HIV

Protein Name Relation to HIV
JUN HIV-Tat protein activates c-Jun N-terminal kinase and activator protein-1 [149]. In addition,

AP-1 formed by JUN/FOS has binding sites on HIV LTR and can regulate viral transcription

CD4 Receptor for the HIV virus; In later stages, teh viral proteins Nef, Vpr, Env dysregulate
(reduce) surface expression of CD4 to prevent superinfection (new infection of the same
cell) [66]

ACTB Actin is known to interact with the viral protein Gag

ATM Suppression of HIV-1 infection by a small molecule inhibitor of the ATM kinase [155]

SIRT1 SIRT1 regulates HIV transcription via Tat deacetylation [197]

RANBP2 HIV integration targeting: a pathway involving Transportin-3 and the nuclear pore protein
RanBP2 [193]

PRKDC HIV-1 Tat depression PRKDC expression [248]

PIN1 Concerted action of cellular JNK and Pin1 restricts HIV-1 genome integration to activated
CD4+ T lymphocytes [170]. Also interacts with anti-HIV factor APOBEC3 to reduce its an-
tiviral activity, hence it has replication promoting effect in the presence of A3 proteins [279].

NCOR2 SNP in NCOR2 associated with HIV-1 transmission [56]

NBN Evidence that it is involved in HIV-1 post integration repair [242]

XRCC5 Ku80 (protein from XRCC5) depletion associated with delay in HIV-1 viral replication [128]

KPNB1 Evidence that it is required for viral integration [143]
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Table 3.4: Phase 3 proteins and their relation to HIV

Protein Name Relation to HIV

FOS AP-1 formed by JUN/FOS has
binding sites on HIV LTR and can
regulate viral transcription

PSMA4 Proteasome inhibition interferes
with relase and maturation of
HIV [229]

SGTA Binds to Vpu and Gag and its over-
expression can reduce efficiency of
HIV-1 particle release [72]

GNB2L1 (RACK1) Rack1 Binds HIV-1 Nef and Can
Act as a Nef–Protein Kinase C
Adaptor [85]

VAV1 Human immunodeficiency virus
type 1 Nef recruits the guanine
exchange factor Vav1 via an un-
expected interface into plasma
membrane microdomains for asso-
ciation with p21-activated kinase 2
activity [218]

USF2 USF/c-Myc enhances the promoter
activity of CXCR4, a coreceptor for
HIV-1 entry [183]

EGR1 HIV-1 Tat inhibits NGF-Induced
Egr-1 transcriptional activity and
consequent p35 expression in neu-
ral cells [67]

CKS1B Inhibition of human immunodefi-
ciency virus type 1 transcription by
chemical cyclin-dependent kinase
inhibitors [275]

MXI1 Suggested to inhibit Myc func-
tion [298] which is implicated in
HIV-1 infection as stated in the en-
try for Myc in Table 3.2

HMGA1 High-mobility-group protein I can
modulate binding of transcription
factors to the U5 region of the hu-
man immunodeficiency virus type 1
proviral promoter [115]

PAK1 A PAK related kinase is activated
by HIV Nef protein [224]

RAD23A Homolog binds to Vpr and helps in
Vpr dependent replication of HIV-
1 in non-proliferating cells and pri-
mary macrophages.

LCK The Src kinase Lck facilitates as-
sembly of HIV-1 at the plasma
membrane [247], Physical and
functional interaction of Nef with
Lck HIV-1 Nef-induced T-cell sig-
naling defects [59]

GADD45A ATR and GADD45α mediate HIV-
1 Vpr-induced apoptosis [17]
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Table 3.5: Overlap between RNAi screen hits and top 100 genes for the different dynamic network reconstruction
methods and between edge list from Reactome (1265 edges in network) and the edges extracted by the different
methods. Comparison with a baseline ranking of the differentially expression (DE) genes is also presented.

Method Overlap
with screen
hits

p-value Overlap
with Re-
actome
edges

p-value

TimePath 23 1.7× 10−17 101/3203 7.9× 10−44

SDREM 21 3.2× 10−16 74/3203 3.9× 10−24

TimeXnet 16 4.9× 10−10 54/2585 3.9× 10−16

DE ranking 5 0.23 NA NA

3.2.4 Statistical validation of the reconstructed network and comparison
with other methods

To more globally assess the ability of TimePath to accurately identify pathways and proteins, and
to compare its performance with prior methods that were developed to reconstruct dynamic sig-
naling and regulatory networks we used several complementary datasets to test the reconstructed
pathways.

While several methods have been proposed for reconstructing biological networks [121], rela-
tively few are focused on analyzing dynamic response networks. These include SDREM [91, 93],
which combines a HMM method for modeling dynamic regulatory networks with a combina-
torial algorithm for signaling network reconstruction and TimeXnet [200] which uses a linear
programming (LP) formulation to find important genes. Note that neither of these methods uses
miRNA expression data and so we constrained our comparison to TimePath models that do not
utilize such data.

In addition to comparing TimePath with prior methods that construct both signaling and
regulatory networks, we have also compared the top ranked genes from TimePath to the top DE
genes in the dataset since several methods for analyzing gene expression data still focus on such
DE genes [217].

RNAi screen hits

First, we looked at RNAi screen experiments which test the impact of gene knockdown on HIV
viral load. Three such experiments were conducted though a meta-analysis of the results deter-
mined that only 3 proteins were detected by all studies [46]. We have filtered the combined list
to select a subset of the hits that are supported by at least two lines of evidence resulting in 389
supported hits, 364 of which were present in our initial network.

The results are in Table 3.5. We find that the pathways obtained by TimePath are significantly
enriched for screen hits (p-value of 1.7 × 10−17). This significant overlap also holds separately
for each the subset of proteins identified for the three phases. We next compared these results
to results from the other two network reconstruction methods and to the top DE genes. For this
comparison we ranked the genes using path flow for TimePath and SDREM (Methods) and used

62



Table 3.6: Overlap with HIV screen hits at various stages of the algorithm. ”Pre-algorithm” is the initial overlap
for all genes in the network. ”Unexpressed genes filtered” is when we remove all genes from our interaction network
that are unexpressed. ”After pathway search” is that stage that uses all genes included in the initial top scoring set of
pathways. ”After IP” is the final stage after the IP (and thus the whole algorithm) has run. As can be seen, the IP step
seems to further improve the resulting set of genes indicating that the selection process indeed identifies HIV response
pathways.

Stage Overlap Overlap %

Pre-algorithm 364/16671 2.1

Unexpressed genes filtered 246/6604 3.7

After pathway search 144/1374 10.4

After IP 85/607 14.0

the TimeXnet output ranking for that method. The RNAi overlap is presented in Tables 3.5. As
can be seen, rankings for all network reconstruction methods greatly outperforms the DE genes
rankings highlighting the importance of post-transcriptional and post-translational events in the
response process. Further, both TimePath and SDREM significantly outperform TimeXnet in
this analysis with almost a quarter of the top ranked genes supported by screen hits.

Analysis using GO and Reactome

To further analyze the pathways identified by TimePath we looked at the agreement between
them and two complementary databases: The Gene Ontology (GO) and the set of HIV curated
pathways in Reactome. GO analysis was performed on the top 100 genes (nodes) identified
based on the path flow metric (Methods) using FuncAssociate [28] while Reactome analysis
was performed using the set of pathway edges. The results indicate that the pathways obtained
by TimePath agree very well with known pathways involved in HIV response. The full list
of enriched GO categories (corrected p-value ≤ 0.001) is presented on the Supporting Web-
site [3] and includes ”toll-like receptor signaling pathway”, an important component of innate
immune response [168], ”positive regulation of defense response”, ”innate immune response-
activating signal transduction”, etc. We also find that TimePath achieves a higher number and a
higher percentage of significantly enriched immune related categories compared to SDREM and
TimeXnet 3.7 using the FuncAssociate [28] tool. We compared the % of significantly enriched
GO categories that were immune response related. TimePath again has a both a slightly higher
number and a higher percentage of significantly enriched immune related categories compared
to SDREM and TimeXnet (Table 3.7).

Results for Reactome are presented in Table 3.5. As can be seen, we achieve a significant
overlap between edges in the selected pathways and those present in the HIV Reactome path-
ways. Comparison with the other methods clearly demonstrates the advantages of TimePath
which is able to identify a much larger number of correct interactions than the other two network
reconstruction methods. Note that Reactome comparison is not available for the DE gene list
since it does not contain interactions.
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Table 3.7: GO comparison. We give the % of immune-related categories as well as the absolute number of immune
related categories and total categories enriched for in parenthesis. The p-value cutoff for all categories was 0.05.
The GO enrichment was performed on the top 100 genes as ranked by path flow (Methods) using the FuncAssociate
tool [28].

Method % of immune-related categories p-value

TimePath 11.16 (72/645) 2.074× 10−5

SDREM 8.04 (71/883) 0.077

TimeXnet 10.44 (66/632) 3.18× 10−4

Table 3.8: Validation for the time constraint

Method Overlap p-value

TimePath 101/3203 7.9× 10−44

TimePath without time constraint 37/3203 3.6× 10−5

We have also analyzed the usefulness of the various stages of TimePath. As can be seen in
Table 3.6, each step in the TimePath method further improves the overlap with the screen hits.
Initially, only 3.7% of the expressed genes are screen hits. The initial pathway extraction step
increases the overlap to 10% while the overlap following IP increases to 14%.

Finally, we investigated the impact of the constraint imposed on later paths in our network
to include a DE gene from an earlier phase. As we show in Table 3.8, we obtain almost 3
times as many edges in the overlap compared to the network without the time constraint with
correspondingly better p-value.

3.2.5 Experimental results

To experimentally test the temporal predictions of TimePath we selected top ranking phase pro-
teins for which we could obtain commercial inhibitors and examined the impact of blocking
these proteins at various time points in the response (Figure 3.2). Note that the RNAi knock-
down screens discussed above were performed on a different cell type (Hela/TZM-bl and 293T)
and so, while they are useful for statistical validation, they may not completely reflect pathways
activated in Sup-T1 cells. More importantly, these screens do not provide information about the
dynamics of the response while our experiments are aimed at testing not just the predictions re-
garding top ranked proteins but also their phase specific assignment. We performed experiments
in which we varied the time of applying the inhibitors w.r.t the infection time. For each of the
proteins tested, inhibitors were applied 2 hours prior to infection (phase 1), 4 hours (phase 2) and
14 hours (phase 3) post infection. amount of infection was determined at 40 hours post infection
for all experiments. We concurrently measured cell viability to test the toxicity of the inhibitor.

The results are presented in Figure 3.2. As can be seen, for 5 of the inhibitors we tested (tar-
geting 11 of the 22 proteins tested) we observed a significant impact on viral load as predicted
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Figure 3.2: Experimental validations. Relative infection after treatment with inhibitors. Significant changes in
infection are highlighted with a *. The inhibitor names are given on the X axis and the target proteins of the inhibitors
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by TimePath. Note that the screen results indicate that less than 1.5% of all proteins lead to
decreased viral load, and so such a high validation rate is a strong indication for the accuracy of
TimePath. Importantly, several of the time specific predictions were validated in these experi-
ments. We expected that inhibiting proteins that are ranked at the top for all phases or for phase
3, at any time, would lead to reduction in viral load since even early inhibition prevents them
from being activated at a later stage. We indeed see this effect for the STAT inhibition (ranked
in the top 30 for all phases) and for PSMA4 (ranked at the top only for phase 3). In contrast, for
proteins ranked high in phase 1 and lower at the next phases we expected to see a much greater
impact for the early treatment vs. later ones since their impact may have already been exerted
by the time of the later treatments. This is exactly what we see for two of these proteins. For
both NFKB1 (ranked 14 in the first phase but dropping to 50 in the 2nd) and for Raf1 (dropping
from 28 to 66) we see significant response when treated early but a much lower impact on viral
load when treated at later stages strongly supporting TimePath’s predictions. Published studies
suggest that NF-kB has a major role in HIV-1 transcription due to it is binding sites in HIV-1
LTR and TAR-RNA [152, 252, 254, 283, 284]. Results from our analyses predicted a role for
NF-kB during the early phase (phase 1) and blocking this TF inhibited virus replication only
in pretreatment (2 hours) and did not affect virus replication when treated at the later stages
and this effect is independent of cellular toxicity. Similarly, another protein Raf1, predicted as
early phase response to HIV-1 also exhibited similar phase dependent inhibition. Though Raf1
is known to interact with HIV-1 Nef and perturb T cell signaling and activation pathway [119],
the mechanisms by which Raf1 exerts its effects is unclear. It is possible to predict that blocking
Raf1 might have an effect on the function of HIV-1 early protein Nef, thus altering T cell signal-
ing and virus infection. Another phase 1 protein, CDK2 (dropping from 29 to 59) also showed
strong impact when treated at the early time point but unlike the other phase 1 predictions, later
treatments continued to have a significant impact on viral loads. CDK is known to play a role in
HIV-1 transcription by the viral transactivator, Tat [64], thus there is a direct correlation predicted
by TimePath. However, blocking CDK using inhibitors blocked both at the early and late phase
suggest that these inhibitors might have direct and indirect effect on virus replication.

PSMA41 is part of the proteasomal complex and so inhibiting this protein with Carfilzomib
not only blocks the proteasomal pathway, but could also alter additional cellular processes such
as sumoylation, ubiquitination and Cul1 activity. These results are further supported by the
early time points predictions that identified SUMO1, UBE2I and CUL1 in Phase 1. Sumoy-
lation of HIV-1 integrase is essential for efficient viral replication [295] and cullin ligases are
recruited by HIV-1 viral proteins to overcome host viral restriction factors, HIV-1 Vif degrades
APOBEC proteins [98] and HIV-1 Vpr induces degradation of UNG and SMUG uracil-DNA
glycosylases [228]. Also HIV-1 Vpr is known to interact with damaged DNA binding protein
1 (DDB1) to induce G2/M arrest which contributes to efficient viral replication [107]. Indeed,
many of the factors predicted for the early stage response (Phase 1: 0-8 hours) are related to
DNA modification and chromatin remodeling (HDAC1, HDAC2, DNMT1, KAT2B) and cell
cycle (CTNNB1, CSNK2A1, CDK2, E2F1). Also there is an enrichment of transcription fac-
tors (P53, RELA, NFKB1, NR3C1, Stat1, MYC, RAF1, TBP, YY1), which have binding sites
on HIV-1 LTR. These factors may have a role in integration of proviral DNA and regulation of
HIV-1 transcription.
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3.3 Application to HIV related dementia
In collaboration with a group at the University of Pittsburgh, we applied TimePath to HIV data
from patients with HIV and increasingly severe forms of dementia [269].

HIV-1 associated neurocognitive disorder (HAND) is one of the major co-morbidities of
HIV-1 infection. HAND includes a spectrum of clinical manifestations associated with cognitive
and behavioral impairments, based on increasing severity is classified as asymptomatic neu-
rocognitive disorder (ANI), mild neurocognitive disorder (MND) and HIV-associated dementia
(HAD) [101]. These clinical manifestations are the consequence of progressive loss of neurocog-
nitive function [225]. Nearly half of the HIV-1 infected population is known to have some degree
of HAND [58, 191] and understanding how HIV-1 contributes to neuronal dysfunction remains
a priority.

3.3.1 Methods

Study Population

Frozen PBMCs were obtained from participants of the Multicenter AIDS Cohort Study (MACS),
as per the protocol [25, 71]. The study population comprised of HIV-1 seronegative controls
(N=36), well-characterized HIV-1 seropositive individuals who did not have any clinical neu-
rocognitive symptoms on standard clinical neurological testing (N=16) and those who were
identified as MND (N=8) or HAD (N=16), based on well-established clinical evaluation. All
the subjects were men of unknown ethnicity.

mRNA profiling and data analysis

Total RNA was isolated from PBMCs using the MirVANA kit (Applied Biosystems), as sug-
gested by the manufacturer and was profiled with HT-12 V4 array bead chips (Illumina, San
Diego, CA, USA) as described previously [71, 268]. Genome Studio was used to analyze the
data and identify the differentially regulated gene transcripts. Rank invariant method and no
background subtraction was included to normalize the data. Additionally, the missing samples
were excluded. A detection cut-off of p ¡0.01 was used. For calculating differential expression,
the Illumina custom model was included along with multiple testing corrections using Benjamini
and Hochberg False Discovery Rate. q¡0.05 was considered as the cut-off to identify significantly
regulated gene transcripts.

3.3.2 Results
We next explored the contribution of HIV-1 viral proteins using TimePath analysis. Results
(Figure 3.3) identified CCND3, CDK4, CCND1, ESR1 and RB1 as the top 5 regulators of the
transcriptome changes observed in MND (Table 3.9). It can also be noted that HIV-1 Env is
ranked higher than the other viral proteins at rank 26, with Gag-pol at 33 and Rev at 37. Simi-
larly analyses of the HAD stage, with the restriction to include the cellular networks associated
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Figure 3.3: Network recovered by TimePath for HIV-related dementia. The red nodes represent the HIV-1
proteins (sources). Blue nodes are intermediate signaling proteins and green nodes are the TFs that are predicted
to directly up/down-regulate the differential expression of target genes (targets not shown in figure, but the average
levels of the regulated targets for each TF is presented by the yellow nodes while the size of each of the yellow nodes
indicates how many genes belong to the cluster represented by the node). The figure displays the top predicted proteins
for each of the three stages and also demonstrated is the relation to the HIV-1 proteins via the signaling proteins and
differentially expressed genes in earlier phases. Note that some intermediate proteins may also be TFs.
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Figure 3.4: Magnified view of section of the network recovered by TimePath. Blue nodes are intermediate sig-
naling proteins and green nodes are the TFs that are predicted to directly up/down-regulate the differential expression
of target genes (targets not shown in figure, but the average levels of the regulated targets for each TF is presented by
the yellow nodes while the size of each of the yellow nodes indicates how many genes belong to the cluster represented
by the node)
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with HIV-1 seropositive group and MND, shows that the viral proteins are ranked relatively high
(between ranks 2039), suggesting that the viral proteins and/or virus infection may play a major
role in progression of disease from MND and HAD. Other proteins that ranked high include the
host protein CD4, which is the main receptor of HIV-1 virus along with transcription factors
including TP53, EP300, RELA, RB1, and ESR1, which are known to regulate virus replication,
further strengthening the association of virus replication/infection with HAD (Figure 3.4). Addi-
tionally specific HIV-1 viral proteins were identified to regulate pathways: TRAFCD40RNF31,
CREBBPSREBF1MYH9, CEBPB/SUMO1HSF1HSPH1 (Table 3.10), which have been previ-
ously identified to regulate monocyte/macrophage chemotaxis, inflammation and regulation of
intracellular signaling, these were identified during HAD. Interestingly, other significant path-
ways (Table 3.10) regulated by HIV-1 viral proteins, especially those regulating NRGN and
CIRBP were identified in patients who did not have HAND symptoms while the rest of the
other significant pathways were enriched in HAD (Table 3.10), suggesting that some of the early
molecular events associated with neurological pathogenesis caused due to HIV-1 viral proteins
are observed in PBMC in the absence of any HAND symptoms. The HIV-1 proteins regulating
these pathways in HAD were due to Nef, Vpu and Env, while the changes in NRGN and CIRBP
in HIV seropositive subjects with no HAND can be attributed to Tat, Vpr, Vpu, Vif, Nef and
Gag-Pol.

NO HAND MND HAD
Vif 4 109 20
Gag 6 110 23
Nef 12 111 26
Tat 13 68 27
Gag-pol 10 33 28
Vpu 9 102 29
Vpr 11 113 32
Rev 14 37 34
Env 15 26 39
CD4 NP NP 1
UBC 1 6 2
EP300 5 10 3
TP53 2 7 4
RELA 16 41 5
RB1 34 5 6
ESR1 21 4 7
HDAC1 36 24 8
HIF1A 3 19 9
CTNNB1 19 22 10
PCNA 18 30 11
MDM2 8 28 12
BRCA1 20 13 13
CEBPB 50 17 14

70



CREBBP 7 77 15
CCND1 59 3 16
JUN 27 15 17
SUMO1 17 47 18
CHUK 26 NP 22
CDKN1A 37 12 24
NFKBIA 22 53 25
HDAC2 71 NP 30
MTA1 87 NP 31
NR3C1 88 36 33
SMAD3 91 38 35
KAT2B 102 18 36
MYOD1 115 14 37
NFKB1 33 81 38
BTRC 23 NP 40
PPARG 103 29 42
TSG101 25 86 43
AKT1 NP NP 44
EGFR 39 95 45
VHL 24 NP 47
HSF1 148 43 49
IKBKG 31 NP 50
NCOR2 129 48 51
BRCA2 46 NP 55
SRC 35 NP 56
UBE2D2 28 NP 57
NOTCH1 138 NP 59
MYC 43 23 60
MDM4 32 89 61
TCEB1 29 NP 62
TCEB2 30 NP 63
ATF2 45 55 64
CDK2 54 16 68
E2F1 57 11 69
RANGAP1 40 NP 71
CBL 42 NP 72
TRAF2 41 72 73
RUNX1 139 66 74
NCOA3 124 52 78
CREB1 38 NP 81
PIAS1 177 88 83
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IRF3 NP NP 86
VCP 49 NP 88
ELK1 152 46 90
RANBP2 47 NP 92
RUNX2 153 67 95
PAK1 172 50 98
USP7 NP NP 101
ABL1 175 32 104
SRF 168 79 106
RAC1 192 71 107
NCOA1 76 21 109
STAT6 77 20 110
NR1I2 183 87 116
FN1 48 45 124
NCK1 119 51 126
ATF1 NP NP 128
SKP2 98 25 143
CDK4 189 2 144
CDKN2A 109 39 154
CDK6 108 40 155
CDKN1B 132 9 157
BACH1 44 63 190
CCND3 191 1 191
CDC5L 198 74 197
MAPK3 194 27 199
YWHAG NP 8 NP
PTGES3 NP 31 NP
RPS2 NP 44 NP
YWHAZ NP 54 NP
SUMO3 NP 57 NP
SMARCA5 NP 59 NP
ERGIC3 NP 60 NP
APEX1 NP 65 NP
SUMF2 NP 90 NP
TARS NP 98 NP
EIF3L NP 108 NP
EIF3D NP 114 NP
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Table 3.9: Rank of HIV-1 viral proteins and host proteins in cellular networks associated with different stages
of HAND. Each phase consisted of one time point starting with the HIV positive subjects without HAND. Top 200 DE
genes were extracted for each phase relative to the previous phase. These were the DE genes were included as targets
in TimePath. All the HIV-1 viral proteins and cellular proteins were included as sources in the analyses. Ranking
corresponds to their relative role in the changes observed in transcriptome for each phase. Higher the rank (lower the
value) denotes greater role in the transcriptome regulation.

Pathway Viral proteins Comment
CREBBP → CREB1 →
CIRBP

Tat,Gag-pol,Vif,Vpr,Vpu Associated with Huntingtons
Disease,and disorders of
basal ganglia

TBP→ RXRA→ NRGN Tat Associated with
Alzheimers,Huntingtons
Disease,and disorders of
basal ganglia

AR→NCOR1→ PPARA→
NRGN

Tat,Nef,Vpu,Gag-
pol,Vif,Vpr

Associated with
Alzheimers,Huntingtons
Disease,and disorders of
basal ganglia

TRAF→ CD40→ RNF31 Nef,Vpu,Env Regulate NFKB pathway in
macrophages

CREBBP → RELA →
SEC24A

Nef,Vpu,Env Associated with Huntingtons
Disease,and disorders of
basal ganglia

CREBBP → SREBF1 →
MYH9

Nef,Vpu,Env Role in chemotaxis of mono-
cytes

MYC→MAX→ BRD2 Nef,Vpu,Env Associated with Neuromus-
cular disease

RB1→ E2F1→ IFNAR1 Nef,Vpu,Env Role in regulation of Inflam-
mation,virus infection

EP300 → YY1/CEBPB →
PREPL

Nef,Vpu,Env Associated with central
nervous system cancers,and
Huntingtons Disease

SMAD2 → SMAD4 →
NDUFS8

Nef,Vpu,Env Associated with Leukoen-
cephalopathy

EP300→ ELK1→NDUFS3 Nef,Vpu,Env Associated with Leukoen-
cephalopathy,Huntingtons
Disease and disorders of
basal ganglia

CEBPB/SUMO1→HSF1→
HSPH1

Nef,Vpu,Env Role in macrophage differen-
tiation

EP300 → NFATC1 →
S1PR1

Nef,Vpu,Env Associated with disorders of
basal ganglia
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Table 3.10: List of pathways identified by TimePath analysis that are associated with HAND pathogenesis.

3.4 Conclusion
In this chapter, we presented an integer programming based method to jointly reconstruct the
signaling and regulatory network for time series gene expression data. We applied our method to
expression data obtained from blood cells when infected with the HIV-1 virus. We showed that
we outperformed existing methods (specifically TimeXnet [200] and SDREM [93]) in terms of
enrichment of RNAi screen hits and enrichment of protein-protein interactions present in ’gold
standard’ Reactome pathways pertaining to HIV. Furthermore, we introduced a novel constraint
in the reconstruction of our network and provided statistical evidence that it greatly improved
the quality of the reconstructed network. We also performed followup experiments to verify the
temporal predictions of our reconstructed network. Finally we applied our method to HIV-related
dementia and showed that it was able to recover a lot of known biology as well as generate ideas
for future exploration.

Effect of sampling rate on TimePath For the HIV-1 infection model in this chapter, the sam-
pling rate for measuring gene expression was every 2 hours for 24 hours. This was carefully
chosen so as to not miss out on any important biological events [181]. This raises the question
however, as to how the predictions of the algorithm might change if the sampling rate changes.
In particular, a lower sampling rate could cause the method to miss some regulatory events.
However there are a couple of mitigating factors :-

1. Even if a differential gene expression event at a particular time point is missed because that
time point is not sampled, differential expression changes can take 30 minutes–2 hours and
last for several hours. So one could still be able to observe differential gene expression for
that gene at a later time point.

2. The largest amount of differential expression usually occurs during the early part of the
time series. Thus sampling densely around that time and less densely at later time points
is a strategy that can be used if there are not enough resources to do a dense sampling
throughout the time period being looked at (and indeed, several experiments do follow this
design).

Furthermore, we want to note that missing regulatory events due to undersampling is a prob-
lem that would affect any method that tries to do inference on time series gene expression data
and not just ours. In addition, see Kleyman et al. [141] for a more detailed discussion of how
sampling rates can affect downstream analysis.
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Chapter 4

Incorporating epigenetic data for network
inference and application to Idiopathic
Pulmonary Fibrosis

As explored in this thesis, there is a large body of literature on how to infer signaling and regu-
latory networks for a given condition. However an important aspect that all of the above meth-
ods do not consider is the role epigenetic modifications play in regulating gene expression. As
described in the introduction, epigenetic modifications are changes to the DNA structure or as-
sociated chromatin proteins but not involve changes to the DNA sequence itself. An illustrative
figure is given in Figure 4.1. They can take two forms – DNA methylation or histone protein
modifications. They can be caused by DNA damage, change in the environment, etc. They are
key players in the differentiation of a stem cell into different cell types and misregulation of epi-
genetics has been implicated in a wide variety of diseases like cancer [236], Alzheimer’s [57],
etc. A comprehensive review is available in [74].

The primary means via which epigenetic modifications cause phenotypic change is by alter-
ing gene expression by various mechanisms [205]. Enhancers are genomic elements 50 − 1500
bp long, situated anywhere from 1 bp to 1Mbp from the transcription start site (TSS) of a gene
that can regulate the expression of that gene [131, 237]. DNA methylation of enhancer regions
can impede the binding of transcription factors to that region. Methylated DNA can also be
bound by methyl-CpG-binding domain (MBD) proteins which can recruit chromatic remodeling
proteins to change the chromatin structure to make it much more compact (and thus hard for TFs
to bind to). The role of intra-genic methylation is less understood but is suspected to be impor-
tant for the regulation of transcript elongation, expression of intragenic coding and non-coding
transcripts, alternative splicing, and enhancer activation [148, 176]. Histone modifications can
similarly cause changes to chromatin structure which can increase or decrease the ability of an
enhancer to be bound or a gene to be expressed. In fact, histone modifications have also been
shown to be predictive of active and poised enhancers1 [277, 297]. For example, the histone

1Active enhancers are those aiding in ongoing transcription, Poised enhancers are those that are not but are just
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EPIGENETIC MECHANISMS
are affected by these factors and processes: 

Development •  (in utero, childhood)
Environmental chemicals• 
Drugs/Pharmaceuticals• 

Aging• 
Diet• 

CHROMOSOME

CHROMATIN

DNA

HISTONE TAIL

HISTONE TAIL

DNA accessible, gene active

DNA inaccessible, gene inactive
Histones are proteins around which 
DNA can wind for compaction and 
gene regulation.

HISTONE

GENE

EPIGENETIC
FACTOR

METHYL GROUP

DNA methylation
Methyl group (an epigenetic factor found 
in some dietary sources) can tag DNA 
and activate or repress genes. 

Histone modification
The binding of epigenetic factors to histone “tails” 
alters the extent to which DNA is wrapped around 
histones and the availability of genes in the DNA 
to be activated. 

HEALTH ENDPOINTS
Cancer• 
Autoimmune disease• 
Mental disorders• 
Diabetes• 

Figure 4.1: Illustration of various epigenetic modifications. Epigenetic mechanisms are affected by several factors
and processes including development in utero and in childhood, environmental chemicals, drugs and pharmaceuticals,
aging, and diet. DNA methylation is what occurs when methyl groups, an epigenetic factor found in some dietary
sources, can tag DNA and activate or repress genes. Histones are proteins around which DNA can wind for compaction
and gene regulation. Histone modification occurs when the binding of epigenetic factors to histone ”tails”; alters the
extent to which DNA is wrapped around histones and the availability of genes in the DNA to be activated. All of these
factors and processes can have an effect on people’s health and influence their health possibly resulting in cancer,
autoimmune disease, mental disorders, or diabetes among other illnesses. Image taken from [2]
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modification H3K27ac has been shown to be associated with active enhancers [47, 61].
Recently, there has started to be an increasing interest in the role epigenetics plays in cell

biology. A large amount of epigenetic data is now regularly generated, thanks to next gen-
eration sequencing methods. And the number of ways in which epigenetic modifications can
affect transcription are numerous [130, 241] For example, some TFs like CREB bind less well
to methylated DNA. There also exist transcriptional repressors like MeCP1 and MeCP2 that rec-
ognize methylated DNA and bind to it thus inhibiting transcription [133]. Thus it would be of
great interest to have models that are able to incorporate epigenetic information when inferring
signaling and regulatory networks.

4.1 Prior work

There have been some attempts to examine the influence of epigenetics on gene expression.
Li et al. [159] use epigenetic and other genome features to predict differential gene expression
between lung cancer and control patients. Yu et al. [294] use a bayesian network model to try and
infer causal links between epigenetic modifications within ±1kb of the TSS. Cheng et al. [55]
develop support vector machine and support vector regression models to quantify the effect of
epigenetic modifications on gene expression. They bin the DNA region ±4kb of the TSS into
100 bp sized bins and feed the aggregate chromatin features in each bin as features for the SVM
and SVR. Other methods have tried to integrate epigenetic priors into gene regulatory network
inference [53, 300]. Both of the latter methods use the correlation between epigenetic profiles of
genes as a prior when inferring gene regulatory networks. In Gong et al. [100], they develop a
two-stage model. First, for a given cell line, they infer a gene sequence specific score of it being
bound by any TFs using position-weight matrices (PWM), histone modifications and expression
of nearby genes as features and experimental binding data for 17 TFs for that cell line as the
training data. They then use that score as a prior to whether a TF binding location is actually
bound when inferring regulatory networks (they use a dynamic bayesian network for the second
part). However this approach is not applicable when no such TF binding data is available for a
cell line. It is also not applicable for epigenetic changes that are specific to a condition rather than
a cell line. In Singh et al. [240], they use a deep neural network to predict gene expression using
histone modification information from segments of the genome close to the gene as features.
However this approach does not take into account DNA methylation.

There have also been attempts at using sequence and epigenetic features to predict binding
of transcription factors (TFs) to DNA. In [12, 134, 210, 302], deep learning methods are used to
predict TF binding, and histone modifications as a function of the DNA sequence. DeepBind [12]
takes in raw sequence data to try and predict the ChipSeq, SELEX, and CHIP/CLIP profiles. It
shows excellent correlation with experimental data (∼ 0.8). DeepSea [302] was designed to
predict effects of changing the nucleotide sequence (down to the single nucleotide level) on both
TF binding and on the epigenetic code. Both have code available online and should be a good
platform to build off of.

one step away from being active
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There have also been attempts to incorporate epigenetic information for predicting TF bind-
ing. In [167], they found several histone modifications that were predictive of TF binding even
excluding sequence information. FactorNet [211] is a deep learning model that uses the DNA
sequence and DNAse-seq signal as input to try and predict TF binding. Recently, the ENCODE-
DREAM challenge also took place with the task being TF binding prediction as a function of
sequence and DNAse-seq (https://www.synapse.org/ENCODE). However as using DNAse-seq
to improve binding prediction, seemed like a well explored direction, we thought it more fruitful
to focus on other types of epigenetic data like histone marks or DNA methylation.

There are several problems however with trying to use histone marks. You need an antibody
for each type of histone mark. The resolution of the histone modification is on the order of
several hundred base pairs – whereas methylation can be on a single nucleotide level. Thus, we
focused on DNA methylation as the epigenetic modification of interest.

4.2 Initial attempts at incorporating methylation

4.2.1 Data used

All experiments in this section were conducted using the ENCODE database consisting of bind-
ing information for 180 TFs (measured via Chip-Seq) across 90 celltypes (methylation measured
via RRBS – restricted reduced bisulphite-sequencing) though not all TFs had binding informa-
tion for all celltypes.

We preprocessed the above data in the following way. We first segmented the entire human
genome into 200 bp non-overlapping segments. We then considered a TF bound to a segment
(for a particular celltype) if some Chip-Seq peak for that TF-celltype pair overlapped half or
more of that segment.

4.2.2 Trying to improve binding prediction

Baseline models

For each TF and (200 bp) segment in the genome, we computed the pearson correlation between
the binding and the methylation levels across all the celltypes for which we had binding infor-
mation for that TF. We then took the average of this correlation across all the segments of the
genome. We compared this average correlation with the average correlation we obtained if we
shuffled the methylation levels across the different methylated sites for a celltype. For several
TFs (ex CTCF), we found a significant improvement in the correlation for the original vs the
shuffled version (Table 4.1).

This seemed to indicate that methylation could be predictive of TF binding. An important
point to note is that the correlation was computed for the same genome segments. Thus this
experiment tried to measure the correlation between binding and methylation after accounting
for the confounding factor of genome sequence. However we then trained a logistic regression
classifier (again for each TF) with 2 features – the (binary) binding indicator for the segment of
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the genome in question from an arbitrarily selected celltype and the methylation level for that
segment for the celltype whose binding we were trying to predict. However this did not yield
any improvement over using no methylation at all or over shuffling the methylation across the
genome 4.1.

Neural network models

One possible reason that methylation was not yielding a better predictor was that the hypothesis
space that we were using (logistic regression with only 2 features) was too small. Given the
success of neural networks in predicting binding from sequence (and DNAse-Seq), we turned to
them to see if we could improve binding prediction by adding in methylation features.

Briefly, neural networks are a biologically inspired machine learning model. They are typi-
cally organized in layers. Each layer takes as input a vector, multiplies it with a weight matrix to
obtain another vector and then applies a non-linear function (like sigmoid or hyperbolic tangent
or rectified linear function) to this vector to obtain the output vector. The first layer of the neu-
ral network accepts the input features as its input vector. The weight matrix can be sometimes
constrained to enforce a sparsity pattern or by enforcing that subsets of elements in the weight
matrix be the same. This is done to reduce the number of parameters the neural network may
have to learn [156]. The reader is referred to the Introduction for a more detailed introduction to
neural networks.

We first took the DanQ network [210] (Figure 4.4) that tries to predict binding from just
sequence data as it had the state of the art results at the time. The first layers of the DanQ model
are designed to scan sequences for motif sites through convolution filtering. The convolution
step of the DanQ model contains one convolution layer and one max pooling layer to learn
motifs. The max pooling layer is followed by a Bi-LSTM layer. The rationale for including
a recurrent layer after the max pooling layer is that motifs can follow a regulatory grammar
governed by physical constraints that dictate the in vivo spatial arrangements and frequencies
of combinations of motifs, a feature associated with tissue-specific functional elements such as
enhancers [209, 212]. Following the Bi-LSTM layer, the last two layers of the DanQ model are
a dense layer of rectified linear units and a multi-task sigmoid output.

The task is to predict the binding for any arbitrary 200 bp genome segment. DanQ takes as
input the one-hot encoded version of the 200 bp DNA sequence (see introduction for a description
of one-hot encoding) as well as flanking sequences on both sides of length 400 bp. This gives an
input matrix of size 4×1000. We then take a 1000 element vector per strand where each element
indicates the methylation level for that base for a celltype. We then concatenate these two vectors
to the input matrix. The rest of the network is suitably extended to incorporate the larger input
matrix. Unfortunately the more complex model also failed to extract any predictive value from
the methylation data (as an example, the accuracy on CTCF for neural networks was 0.84 for
both scenarios and the accuracy for MAX was 0.65 for both as well). We also tried variants of
this model including concatenating the methylation vectors with layers much closer to the output,
incorporating a much larger genome context for methylation (up to 25000 bp compared to 1000
bp for the actual sequence), and trying to regress the chip-seq profile directly instead of just trying
to do a binary classification of whether a TF is binding or not, but the results did not change. In
addition to this, we also tested different parameter values for the model. Specifically, we tested
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different numbers of convolutional layers (between 1 and 3), different number of convolution
filters (between 10 and 30), and different convolution filter sizes (between 13 and 26) but they
yielded no further improvements to the model.

TF Avg. r2 of
meth/binding

Avg accuracy
of logistic re-
gression

Avg. r2

of shuffled
meth/binding

Avg accuracy
of logistic re-
gression with
shuffled meth

ATF3 -0.0477 0.7734 0.0388 0.7687
BCL3 -0.1737 0.9101 -0.0127 0.9143

BHLHE40 (NB100-1800) -0.2416 0.5720 0.0362 0.5931
CEBPB (SC-150) -0.2659 0.6686 0.0499 0.6996

CHD1 (A301-218A) -0.1923 0.8550 -0.0255 0.8476
CHD2 (AB68301) -0.1450 0.6739 0.1806 0.6597

C-JUN -0.3137 0.5749 0.1577 0.5934
C-MYC -0.0948 0.9261 0.0333 0.9267

COREST (SC-30189) -0.0374 0.5574 0.2556 0.5710
CTCF (SC-15914) -0.0906 0.5622 0.0064 0.5670
CTCF (SC-5916) -0.1418 0.6335 -0.0307 0.6422

CTCF -0.0626 0.9073 -0.0161 0.9082
E2F4 -0.0664 0.7830 0.0747 0.7673

EGR-1 -0.2176 0.7306 -0.0032 0.7307
ELF1 (SC-631) -0.2909 0.6708 -0.0861 0.6695
ELK1 (1277-1) -0.1711 0.6191 -0.0226 0.6240

ETS1 0.0971 0.8212 0.1074 0.8227
EZH2 (39875) -0.2218 0.8380 -0.0366 0.8327

GABP -0.0407 0.6822 -0.0361 0.6852
GTF2F1 (AB28179) -0.1587 0.7524 0.2032 0.7404
HDAC2 (SC-6296) -0.0876 0.8144 -0.0167 0.8163

JUND -0.1450 0.7292 0.0502 0.7269
MAFK (AB50322) -0.1533 0.6738 0.1110 0.6614

MAX -0.1249 0.8255 0.0953 0.8265
MAZ (AB85725) -0.2330 0.6689 0.0379 0.6425
MXI1 (AF4185) -0.1226 0.6682 -0.0390 0.6745

NF-YA 0.1362 0.8076 0.4722 0.7870
NF-YB -0.3515 0.5642 -0.3253 0.5670
NRF1 -0.2087 0.7760 -0.0379 0.7820
NRSF -0.0882 0.6927 -0.0442 0.6827
P300 -0.1708 0.7691 0.0175 0.7729

POL2-4H8 -0.1077 0.8572 0.0312 0.8547
POL2(PHOSPHOS2) -0.1520 0.6782 0.1171 0.6677

POL2 -0.0942 0.8478 0.0112 0.8484
PU.1 -0.0445 0.6306 0.0182 0.6225
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RAD21 -0.1276 0.7603 -0.0267 0.7581
RFX5 (200-401-194) -0.0421 0.5978 0.1316 0.5970

SIN3AK-20 -0.0157 0.6445 -0.0429 0.5793
SIX5 0.0183 0.7469 0.0739 0.7504

SMC3 (AB9263) -0.1951 0.5085 0.1679 0.5161
SP1 -0.2443 0.7410 0.0169 0.7442

SP2 (SC-643) -0.2642 0.6944 0.0037 0.7205
SRF -0.2243 0.7439 0.0134 0.7553

STAT1 0.0471 0.9204 0.3728 0.9284
TAF1 -0.0760 0.7104 0.0065 0.7254
TBP -0.1687 0.6481 0.0086 0.6803

TEAD4 (SC-101184) -0.2637 0.7362 0.0519 0.7328
TR4 0.0684 0.5248 -0.0788 0.5167

USF-1 -0.1695 0.6997 -0.0164 0.6977
USF2 -0.2152 0.6975 0.0414 0.6723

YY1 (SC-281) -0.0822 0.6680 -0.0170 0.6757
YY1 -0.0593 0.7947 -0.0808 0.7848

ZBTB33 -0.0473 0.8683 0.1157 0.8635
ZNF143 (16618-1-AP) -0.2264 0.7493 -0.1372 0.7517

Table 4.1: Results for correlation and logistic regression analysis of methylation and TF binding. The first
column is the average correlation across all possible binding sites between the the binary variable of whether the TF
binds to that site and the methylation level for that celltype. The second column is the logistic regression accuracy
when using the binding indicator for one pre-selected celltype and the methylation level as features. The third and
fourth columns are similar except with the methylation value shuffled across the entire genome

Hi-C analysis

During the course of our experiments, we had used Hi-C data to connect distal enhancer regions
of the genome with the genes they could potentially regulate. We used Hi-C data published by
Schmitt et al. [227] which was collected and integrated for over 21 primary human tissues and
cell types. Fit-Hi-C [21] was used to identify significant chromatin interactions. The resolution of
the data was 40kb. We then defned enhancer regions for a gene G as those (40kb) segments of the
genome that interacted with segments containing the transcription start site (TSS) of gene G. We
only considered interactions that were statistically significant (p-value < 0.05) after correction
for multiple hypothesis testing.

We found that the methylation in the enhancer regions for a gene showed good correlation
with the expression of the gene. On average, the correlation for a gene’s expression with methy-
lation in the enhancer region was 0.15. If we shuffled the methylation values across the entire
genome, the correlation with drop down to 0.003 and if we randomized it within only each chro-
mosome, the correlation was 0.135 which was still lower than what we got without shuffling –
indicating that there was some enhancer’s methylation specific signal for gene expression. As far
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as we know, this is the first time anyone has looked at the correlation of methylation in distal en-
hancer regions and gene expression. Given this, we hypothesized that for a given segment of the
genome, using the expression of genes it could potentially regulate may be useful for predicting
binding.

While we indeed found the expression of the enhancer associated genes to be predictive,
doing dimensionality reduction on the expression matrix (with each row of the matrix being for
a different celltype) and taking the first 8 components as features was equally predictive. This
result indicated that there was not any value that the enhancer gene’s expression in particular had
in predicting TF binding and thus knowledge of the enhancers (via Hi-C data) was not useful for
this task.

4.3 Incorporating methylation via application to idiopathic
pulmonary fibrosis

While we could not find any predictive value for binding itself as a function of the methylation
data in the ENCODE database, we nevertheless wondered if we could test the effect methylation
had on gene regulation via more indirect means. To that end, we turned to the lung disease
idiopathic pulmonary fibrosis (IPF) for which we had detailed expression and methylation data.

In the next section we will first describe how we applied DREM (described earlier in the
thesis) to infer regulatory models for IPF (without taking methylation into account). After that
we will perform a direct comparison of the regulatory models inferred with and without the
effects of methylation incorporated.

4.3.1 Using DREM to model IPF

Idiopathic Pulmonary Disease (IPF) is the most common of the interstitial lung diseases and the
most severe with median survival ranging from 3-5 years [102]. It is described as a chronic,
progressive fibrosing interstitial pneumonia of unknown etiology that occurs more commonly
in older male subjects with smoking being the major risk factor. Diagnosis requires a multi-
disciplinary consensus scoring including radiological and histologic patterns of usual interstitial
pneumonia (UIP). IPF was initially considered a chronic inflammatory disease due to the corre-
lation of inflammatory infiltrates and the fibrosis present within these lungs [63, 226] and treated
with steroids. More recently, IPF has become thought of as being a disease of repetitive injury of
the alveolar epithelial cells with aberrant wound healing resulting in fibrosis. This shift has been
further supported by accumulating evidence that steroids have a detrimental effect on the patient
and that recently developed antifibrotic drugs have good efficacy [138, 220].

Due to the complexity of the diagnosis, that symptoms may occur 1-2 years before diagnosis,
and that patients often present with advanced fibrotic disease, the pathological progression of IPF
from its early stage has not been well studied. IPF presents with a heterogeneous distribution of
the fibrotic lesions, where more advanced scarring and honeycombing generally occurs in the
basal and subpleural regions of the lobule and with increasingly normal tissues presenting to-
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wards the centre of the lobule and the apex of the lung. Due to the progressive nature of IPF, the
distribution of pathological remodelling has been described as having a temporal heterogeneity
leading from chronic, to acute, then to normal tissues ranging from the peripheral regions to-
wards the centre of the lobule, respectively [286]. As such, while obtaining lung tissue samples
from patients with early stage IPF may be difficult, the regional heterogeneity characteristic of
this disease may provide clues towards elucidating key mechanisms in disease progression. As
lung transplantation remains the main treatment option for these patients, use of explanted lungs
combined with methodical sampling and detailed characterization of the sampled tissue would
allow for IPF tissue with varying degrees of pathological remodelling to be compared. In this
study, we applied this methodology to determine the changes that occur during the progression
of IPF from mildly affected to severely remodelled areas. As the development of fibrotic tissues
is a balance of accumulation of extracellular matrix and the proteases that degrade these proteins,
we sought to initially examine the changes in the expression of these genes across the different
IPF stages. We also sought to determine changes that are specific to the early/mild stages of IPF
to provide information on the processes that may initiate the disease process.

Methods

Patient Data and Sampling Patients with IPF undergoing lung transplantation for their dis-
ease at UZ Hospital in Leuven, Belgium were selected. Donor lungs that were not suitable for
transplantation due to a number of factors, including trauma or tumours in non-lung organs, were
collected to be used as controls. All lungs were collected following local hospital ethical com-
mittee approval (ML6385). In total 10 IPF lungs and 6 donor lungs were collected for this study.
See Table 1 for patient demographics and lung function information.

Following explantation, lungs were inflated and held at 20 cm H2O pressure inflation while
frozen over liquid nitrogen vapour according to previously established protocols [177]. The
frozen lung was then imaged using a high resolution CT scanner and subsequently cut for sam-
pling. The lungs were then cut into 2 cm thick slices along the transverse plane with a 1.4 cm
diameter coring drill used to systematically sample the slice. Of samples collected, 2 cores were
randomly selected from each of upper, mid, and lower lung regions for a total of 6 samples per
lung and 96 samples in total.

Imaging and Histology MicroCT scans were done on frozen lung samples using a Bruker
Skyscan 1172 (Bruker, Belgium) with cooling stage according to previously established proto-
cols (Verleden 2016). Briefly microCT scans were set at 40kV, 240mA, and 0.5 rotation step at
-30C. Temperature was maintained throughout the scan by having sample placed within a Sty-
rofoam cylinder with dry ice on top. Scans were reconstructed using NRecon software (Bruker,
Belgium) and images analysed using CTAn software (Bruker, Belgium).

An ROI was placed on intact portions of the sample to exclude regions that were damaged
from sampling. A threshold was manually set to segment tissue from air and the software was
used to measure tissue % and surface area/ volume (surface density, SD) from each core. Termi-
nal bronchioles (TB) were identified and manually counted within each core then divided by the
ROI volume to determine terminal bronchiole density (TB/mL).
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A portion of each core was vacuum embedded in 50:50 O.C.T. (Sakura) and PBS (REF:
Daisuke) then sectioned using a cryotome for histology. and to collect samples for gene expres-
sion. A haematoxylin and eosin (H&E) stain was used for Ashcroft scoring (ref) of the extent of
fibrosis within the sample. Sections were also stained with picrosirius red for total collagen, and
antibodies were used to detect Collagen I, Collagen III, and Elastin. Surface density was found
to have greater correlation with Ashcroft scores and was used for subsequent analyses.

RNA-sequencing and data analysis RNA was extracted using miRNeasy micro kit from each
core. cDNA libraries were prepared from 20 ng of total RNA using Ion Ampli-Seq-transcriptome
human gene expression kit and sequenced using Ion Torrent (ThermoFisher).

For sequencing analysis, we used a two-stage mapping strategy to map the raw reads to the
human genome (UCSC hg19). Cufflinks was used to calculate the Fragments per Kilobase of
transcript per Million mapped reads (FPKM) values as the estimated gene expression levels.
The 25,276 genes were filtered to remove low and non-expressing genes with expression below
0.01 FPKM in more than 90% of samples resulting in 21,837 genes remaining. Samples were
subsequently divided into three tertiles based on surface density with high SD group representing
mild fibrosis (IPF1), middle SD group for moderate fibrosis (IPF2), and low SD group for severe
fibrosis (IPF3) to examine differential gene expression in each region. Two linear mixed-effects
models were used to identify gene expression profiles with extent of fibrosis in each of these
tertiles:

Geneij = β0 + αSLICE + αj + εij (4.1)
Geneij = β0 +DISEASEij + αSLICE + αj + εij (4.2)

where i = 1, . . . , 6, j = 1, . . . , 16.
Geneij is the FPKM expression value for sample i in patient j for a single gene. SLICE is

a random effect controlling for the location the sample was collected and for differences in lung
size between control and IPF lungs. αj represents the random effect for each subject with β0
representing the intercept and εij being the random error. Model 4.2 includes the fixed effects of
DISEASE; an ANOVA was used to compare the two models to determine differentially expressed
genes with a p-value < 0.05 considered significant following use of false discovery rate (FDR)
correction. All statistical analyses were conducted using R statistical software (v.3.3.1) and the
lme4 package.

Genes and regulators used We only used genes which were considered to be differentially
expressed per the analysis in the previous section. In addtion, we only considered as potential
regulators, TFs which were differentially expressed with p-value < 0.05 and microRNAs that
were differentially expressed with p-value < 0.1.

For the TF-gene network, we used the human TF-DNA interaction network we described in
the Introduction. The miRNA-gene network was obtained from the TargetScan database [10].
Later in the chapter, we will describe how we incorporated methylation into the computation of
the TF-gene network.
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4.3.2 Results for DREM modeling of IPF
The clusters of genes (pathways) identified by the model are presented in Figure 4.2 and the
associated regulators of those clusters are in Table 4.2. Note that while pathways A, B, and
M merge from the same split node (IPF 1), M in fact consists of mainly downregulated genes
whereas A, B consist of mainly upregulated genes. We also present in Figure 4.3, the Sankey
diagram showing the various gene clusters and subclusters within those clusters enriched for
different biological processes.

DREM identified distinct pathways that differed in their regulation and temporal pattern (Fig-
ure 4.2). The pathway associated with IPF 1 node (labeled as 1 in the figure) was involved in
extracellular matrix organization. This is particularly interesting as IPF involves extensive ac-
cumulation of extracellular matrix [258]. Indeed this pathway also shows enrichment for genes
associated with the IPF disease (Table 4.4). The one associated with IPF 2 node was associated
with cell adhesion, the one with IPF 3 with cation channel activity, and the one with IPF 4 with
GTPase mediated signal transduction (Table 4.4).

Genes known to be associated with fibrosis were increased across all stages of disease. Im-
pressively, among genes known to be characteristic of IPF, COL1A1 (collagen), MMP14 (matrix
metalloproteinase 14), CTSK (cathepsin K), ITGB6 (integrin subunit beta 6) were maximally
induced in minimal disease with no further increase, whereas others such as MMP7 and MUC5B
(mucin 5b) were induced in minimal disease and continued increase to late stage disease. Blood
vessel formation and defense response against microbial infections were decreased at all stages
of IPF but innate immune pathways where increased in early stage and adaptive immune re-
sponse at mid- to late-stage IPF, potentially reflecting specific roles. Among known IPF regu-
lators MIR-29C, MIR-30 and TFs HMGA2, LEF1 and GLI1 regulated early disease; whereas,
LET-7, MIR-199 and TFs SMAD3, STAT3 and POU2AF1 regulated later phases (Table 4.2).
Preliminary analysis suggested that POU2AF1 KO mice are relatively protected from bleomcyin
induced fibrosis.

In normal tissue, alveolar type I and type II cells make up the parenchyma and endothelial
cells make up the capillary bed. In the early stages of IPF, one starts losing type II alveolar cells
leading to parenchymal tissue collapse and the development of bronchiolized honeycomb tissues
and fibrosis. This results in an increased number of fibroblasts, bronchial epithelium (honey-
combing), and loss of alveolar epithelium and endothelium. This can be seen in pathways G
and H whose regulators are enriched for cation channel activity and cation transmembrane trans-
porter activity respectively (cation channels are a major component of epithelium [231]). Thus
this pathway likely represents the formation of honeycomb tissues. The loss of alveolar tissue
leads to multiple downstream effects. While there is uncertainty as to what those downstream
effects are, the most accepted ones are mesenchymal cell proliferation and excess extracellular
matrix (ECM) accumulation [256]. This can be seen in pathways A, B, and D which are enriched
for regulators governing extraceullar matrix organization.

As mentioned before, we observed loss of blood vessels in our data. Indeed, Pathway L is
enriched for blood vessel development regulation matching that observation. IPF also involves
the infiltration of inflammatory cells, in particular B/T cells [172]. You can see that in pathways
M, C, D, and E which are enriched for innate immune cells, and lymphocytes.
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node IPF 1

NR6A1 MIR-29C

node IPF 2

ERG GFI1B PKNOX1

TFE3

LEF1 KCNH6 EFNA2

SMAD3 KLF12 IRF8

RARB RARG HNF4A

ESR1 HOXB8 HOXB7

PBX3 RUNX2 PGR

TP63

node IPF 3

MIR-30D MIR-30A MIR-30B

MIR-30E MIR-455 MIR-338

MIR-218 MIR-26B MIR-26A

MIR-377 MIR-34C MIR-34A

MIR-127 MIR-376A MIR-376C

MIR-874 MIR-187 MIR-506

node IPF 4

MIR-200A MIR-181A MIR-181C

MIR-135A MIR-7G MIR-7D

MIR-205 MIR-543 MIR-299

MIR-144 MIR-219-1 MIR-181B+MIR-181D

MIR-199B MIR-199A+MIR-199B MIR-199A

MIR-27B MIR-21 LET-7I

MIR-LET-7A MIR-155

node A

NFE2 LET-7G LET-7D

LET-7A PKNOX1

LET-7I

node B

MIR-29C NR6A1
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POU2AF1

node C

STAT3 STAT2

node D

MEF2A ZNF219 FOXD1

FOXF1 MIR-130A PPARA

ATF6 FOXD3 HNF1B

POU2AF1 HMGA2 OTX1

MIR-183 FOXC1 NKX6-1

FOXA1 ESR2 EFNA2

node E

STAT3 STAT5B GFI1B

MIR-29C TFE3 CUX1

MIR-126 MIR-141

E2F3 TFDP1 MITF

MIR-182 TFAP2C BHLHE41

DEC1 MIR-382 MIR-376A

MIR-376C STAT2 LEF1

node F

PPARA SP3 SRY

ESR2 STAT2 TCF3

E2F3 ESR1

node G

MIR-30D MIR-30A MIR-30B

MIR-30E LET-7G LET-7D

LET-7A MIR-181A MIR-181B+MIR-181D

MIR-411 MIR-185 MIR-376A

MIR-376C MIR-382 LET-7I

MIR-132

node H

LET-7G LET-7D LET-7A

MIR-495 MIR-34C MIR-34A
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LET-7I

node I

MIR-203 MIR-181A MIR-181B+MIR-181D

MIR-181C

MIR-299 MIR-543 MIR-187

MIR-506 MIR-154 MIR-323A

MIR-99A MIR-219-1

node J

GATA6 GATA1 MIR-135A

CEBPB SRY MIR-218

FOXD1 MIR-29C

PLAU TFAP2A BHLHE41

DEC1 FOXC1 MIR-495

node K

MIR-208A MIR-335

MIR-377 MIR-96 MIR-378D

MIR-125B MIR-127 MIR-183

node L

CEBPB NR6A1 TAL1

MIR-203

node M

STAT3 STAT2 MIR-185

Table 4.2: Regulators inferred by DREM for the different split nodes in the model If the regulator is in red, that
means its expression is downregulated. If it is in blue, its expression is upregulated.

Molecular function
IPF 1 node

glycosaminoglycan binding heparin binding
sulfur compound binding extracellular matrix structural constituent
fibronectin binding

IPF 2 node
IPF 3 node
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cation channel activity gated channel activity
substrate-specific transporter activity metal ion transmembrane transporter activity
ion transmembrane transporter activity

IPF 4 node
GTPase binding small GTPase binding
enzyme binding sodium channel regulator activity
Ras GTPase binding

Biological process
IPF 1 node

extracellular matrix organization extracellular structure organization
cell adhesion biological adhesion
multicellular organismal catabolic process

IPF 2 node
cell adhesion biological adhesion
locomotion regulation of cell differentiation
cell-cell adhesion

IPF 3 node
behavior startle response
neuromuscular process ion transport
potassium ion transport

IPF 4 node
organelle localization vesicle-mediated transport
dendrite morphogenesis small GTPase mediated signal transduction
regulation of cellular component biogenesis

Cellular Component
IPF 1 node

extracellular space extracellular matrix
proteinaceous extracellular matrix extracellular matrix component
collagen trimer

IPF 2 node
proteinaceous extracellular matrix extracellular matrix
basement membrane extracellular matrix component
lysosomal lumen

IPF 3 node
NMDA selective glutamate receptor complex neuron part
ion channel complex chromosomal region
transmembrane transporter complex

IPF 4 node
endosome bicellular tight junction
apical junction complex occluding junction
Golgi apparatus

Human phenotype
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IPF 1 node
Cigarette-paper scars Molluscoid pseudotumors
Osteoarthritis Hyperextensibility of the knee
Premature birth following premature rupture
of fetal membranes

IPF 2 node
IPF 3 node
IPF 4 node

Disease
IPF 1 node

Degenerative polyarthritis Pulmonary Fibrosis
Idiopathic Pulmonary Fibrosis Hamman-Rich syndrome
Adenocarcinoma

IPF 2 node
Pancreatic carcinoma Mammary Neoplasms
Liver Cirrhosis, Experimental Malignant neoplasm of pancreas
Malignant tumor of colon

IPF 3 node
Mental Retardation Intellectual Disability
Seizures Schizophrenia
Dull intelligence

IPF 4 node
Small for gestational age (disorder) Low Birth Weights

Table 4.3: Gene enrichment categories for each split Only the up to the top 5 categories were displayed.

IPF 1 node
Genes down-regulated in the luminal B subtype of breast cancer
Invasiveness signature resulting from cancer cell/microenvironment interaction
Genes up-regulated in invasive ductal carcinoma (IDC) relative to ductal carcinoma in situ
(DCIS, non-invasive)
Genes up-regulated in papillary thyroid carcinoma (PTC) compared to normal tissue
IPF 2 node
Human Breast genes
Human Embryonic StemCell genes
Genes up-regulated in uterus upon knockout of BMP2
Genes forming the macrophage-enriched metabolic network (MEMN) claimed to have a
causal relationship with the metabolic syndrome traits
Human Sarcoma genes
IPF 3 node
Human Mesenchymal Stem Cells
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The ’Cervical Cancer Proliferation Cluster’ (CCPC): genes whose expression in cervical car-
cinoma positively correlates with that of the HPV E6 and E7 oncogenes; they are also differ-
entially expressed according to disease outcome
Genes up-regulated in B lymphocytes: control versus stimulated by anti-IgM for 12h
Genes up-regulated during later stage of differentiation of Oli-Neu cells (oligodendroglial
precursor) in response to PD174265
Human Sarcoma genes
IPF 4 node
Genes down-regulated in erythroid progenitor cells from fetal livers of E13.5 embryos with
KLF1 knockout compared to those from the wild type embryos
Genes down-regulated in ME-A cells (breast cancer) undergoing apoptosis in response to
doxorubicin
Genes down-regulated in fibroblasts expressing mutant forms of ERCC3 after UV irradiation
Human immune genes
Mouse lung genes

Table 4.4: Coexpressed genes.

4.3.3 Incorporating DNA methylation into the model
Our general approach for this task was to train the DanQ [210] neural network model on EN-
CODE data and generate celltype independent predictions (using just the DNA sequence as input)
to generate the TF-DNA interaction networks. As the transcription factors in ENCODE differed
substantially from the ones used in the previous section and several of them were complexes
making it unclear how to filter for differential expression, we decided to not do any filtering on
the TFs. The set of microRNAs that were considered as potential regulators as well as the set of
genes remained the same as before.

Methylation data analysis

The methylation data was collected using Illumina’s Infinium EPIC array [203] which is a whole
genome bisulphite sequencing (WGBS) technology. GenomeStudio’s Methylation module [30]
was used to analyze the data and detect the level of methylation.

TF-gene network construction

We used the DanQ [210] network that tries to predict the binding for each TF-celltype combi-
nation for a candidate 200 bp genome sequence. The only change we made was that instead of
predicting the binding scoe for each TF-celltype combination, we predicited the same binding
score for a TF for all celltypes. The architecture is shown in Figure 4.4. As described before,
it took as input, the one hot encoded version of the DNA sequence. It then applied a convolu-
tional layer with 300 filters and receptive field of size 26. Each filter is activated by a subset
of sequences of size 26 and thus represents a different ”motif”. We then applied a max pooling
layer of size 13 thus downsampling the output of the convolutional layer by 13. We then applied
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Figure 4.2: Visualization of the pathways identified by the DREM model for IPF.
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Figure 4.3: Sankey diagram for the DREM IPF model. This is a Sankey diagram. Sankey diagrams are a specific
type of flow diagram, in which the width of the arrows is shown proportionally to the flow quantity. In this illustration,
the width is proportional to the number of genes associated with the flow. A visualization with the paths labeled (A
through M) is shown in Figure 4.2. On the right hand side, the biological processes associated with each flow are
shown.
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a Bi-LSTM layer for the same rationale as the original DanQ network – i.e. motifs can follow a
regulatory grammar governed by physical constraints that dictate the in vivo spatial arrangements
and frequencies of combinations of motifs, a feature associated with tissue-specific functional el-
ements such as enhancers [209, 212]. Finally we applied a dense layer with output size 925 and
then a sigmoid layer to predict the binding scores (between 0 and 1) for each TF. The sigmoid
layer was of size 180 (same as the number of TFs) which differed from the sigmoid layer size
of the DanQ network (909) as we were trying to predict the scores for each TF regardless of
celltype rather than each TF-celltype combination.

The network parameters were initialized using the Glorot initialization scheme [96]. Apart
from the sigmoid layer at the very end, all of the other activation functions were rectified linear
units [186]. The step size scheme used was Adam [139].

We used this network to generate binding predictions (for 200 bp non-overlapping segments)
for the promoter section of all genes in the genome (where the promoter region was defined
as ±10 KB of the transcription start site (TSS) of the gene. The prediction scores were then
summed for every TF-gene pair across the promoter sequence as follows :-∑

w∈W NNt(gw)∑
t∈T
∑

w∈W NNt(gw)
∀t ∈ T

where W is the set of non-overlapping 200bp genome windows that cover the promoter
region, NNt is the binding score the neural network outputs for TF t, T is the set of all TFs, and
gw is the genome sequence associated with the window w.

To incorporate methylation information, we assumed that methylation was in general, in-
hibitory with respect to binding [178, 187], and thus for each segment for which we predicted
the binding score, we set the score to 0 if the methylation level for that segment was above a
certain threshold.

We then took the two TF-gene networks we so generated and ran the regulatory network
inference component of our method (DREM) to generate models for both networks.

Results

The results are presented in Figures 4.5 and 4.6. The results with methylation incorporated are in
Model A and the ones without are in Model B. In Table 4.5, for each split at the first time phase,
we generated the unique list of regulators that each model predicted as regulating the expression
of genes at that split (by unique we mean that we present the list of regulators that only Model A
predicts for a split and similarly for Model B).

As shown in the table, Model A is able to capture a large number of B/T-cell regulators
that Model B is not, including BCL11A, PRDM1, and others. It is also able to infer immune
response regulators like IRF3. Of particular note are the regulators TAF1 and HDAC2 which
regulate PEDF (SERPINF1) induced signaling. This is an inhibitor of angiogenesis and matches
the decline of blood vessel genes in our data. It also finds the miRNA MIR-21 which is known to
mediate the fibrogenic activation of pulmonary fibroblasts and lung fibrosis [166]. There is also
considerable evidence that the activation TGF-beta pathway is related to pulmonary fibrosis [42].
Model A detects ZNF217 which is known to be a suppressor of the TGF-beta pathway.
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Figure 4.4: Neural network used by DanQ and in our models. Neural network for predicting TF binding based
on sequence. It shows the one hot encoding of the DNA sequence following by a convolution layer, then a max pooling
layer, a recurrent bi-lstm layer, a dense layer, and finally an output layer. Image taken from [210]
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Figure 4.5: DREM regulatory network model when methylation is incorporated.

Figure 4.6: DREM regulatory network model without methylation.
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Regulator Function
IPF 1 node

Model A
HSA-MIR-20A-5P+HSA-MIR-20B-5P DNA damage response

HSA-MIR-423-5P vascular
HNF4A (SC-8987) mesoderm development

BCL11A Bcell formation
HSA-MIR-21-5P autophagy

ERRA estrogen receptor related
SUZ12 senescence

TFIIIC-110 invovled in functional RNA transcription
HSA-MIR-181A-5P DNA damage response HSC differentiation

HSA-MIR-181B-5P+HSA-MIR-181D DNA damage response
HSA-MIR-181C-5P cell differentiation

HSA-MIR-378D NA
Model B

EGFP-FOS TGFbeta pathway signaling
MAFK (AB50322) binds FOS platelets and fibrosarcoma

MAFF (M8194) cellular stress response
MAFK (SC-477) binds FOS platelets and fibrosarcoma
TAL1 (SC-12984) hemopoietic differentiation

ZNF274 (M01) transcription repressor
EGFP-JUNB TGFbeta pathway signaling

ZNF274 transcription repressor
P300 hypoxia related histone modifier

C-JUN TGFbeta pathway signaling
BDP1 transcription

ZNF217 cell proliferation
IPF 2 node

Model A
MAFK (AB50322) binds FOS platelets and fibrosarcoma

RAD21 DNA damage response
PRDM1 (9115) mature B cell beta IFN promoter

ZNF217 cell proliferation
EGFP-FOS TGFbeta pathway signaling

TAF1 PEDF induced signalling
HDAC2 (A300-705A) PEDF induced signalling

IRF3 interferon regulatory
HSA-MIR-96-5P cancer
FOSL1 (SC-183) cell proliferation differentiation
HSA-MIR-183-5P cancer

TCF7L2 maintain epithelial stem cell
SUZ12 senescence
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TBP transcription
Model B

IKZF1 (IKN) (UCLA) lymphocyte development
MTA3 (SC-81325) maintain epithelial architecture

BATF senescence DNA damage response CD8 Tcell
BCL11A Bcell formation

FOXM1 (SC-502) cell proliferation DNA damage reponse
ATF2 (SC-81188) DNA damage response

EBF1 (SC-137065) lipid metabolism B-cell
RUNX3 (SC-101553) TGFbeta induced CDKN1A

IRF4 (SC-6059) BATF function MHC1 regulator
WHIP DNA damage response

POU2F2 Ig regulator
P300 hypoxia related histone modifier

TCF12 general transcription factor including B/T cells
ELF1 (SC-631) lymphoid function

IPF 3 node
Model A

HSF1 negative reglator DNA damage repair
ZZZ3 chromatin organization

HSA-MIR-455-5P NA
MAFK (SC-477) binds FOS platelets and fibrosarcoma
FOXM1 (SC-502) cell proliferation DNA damage reponse

TEAD4 (SC-101184) Hippo signalling
Model B

EZH2 (39875) senescence
JARID1A (AB26049) histone demethylase AR reponse gene

HSA-MIR-338-3P Parkinson disease
HSA-MIR-506-3P NA
HSA-MIR-218-5P NA

TFIIIC-110 involved in functional RNA transcription
IPF 4 node

Model A
MXI1 (AF4185) HSC differentiation
MAZ (AB85725) Regulates inflammation-induced expression of

serum amyloid A proteins
C-FOS TGFbeta pathway signaling

TBLR1 (AB24550) proteasome
PML (SC-71910) senescence DNA damage response antiviral

BHLHE40 chondrocyte differentiation
C-MYC activate growth related genes

Model B
CEBPD (SC-636) works with C-MYC
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UBTF (SAB1404509) transcription
NRF1 mitochondrial function

GTF2F1 (AB28179) PEDF induced signalling
INI1 PEDF induced signalling Regulate chromatin

SREBP1 sterol biosynthesis
SIX5 organogenesis

Table 4.5: Unique regulators for each split.

4.4 Conclusion
In this chapter we tried to incorporate DNA methylation data in the reconstruction of regulatory
networks. Our initial attempts involved using DNA methylation to improve prediction of TF
binding using both simple models like logistic regression as well as more sophisticated, neural
network based models. Unfortunately we were unable to get any signal out of DNA methylation
that improved TF binding prediction. In the course of our experiments, we noticed that methy-
lation of distal enhancer regions associated with a gene was correlated with the expression of
that gene. We wondered if that meant that the gene’s expression could improve the TF binding
prediction for its enhancer regions better than the first few components of the PCA transformed
expression data but unfortunately that was not the case.

Finally we applied our regulatory network inference model to idiopathic pulmonary fibrosis
(IPF) which yielded several novel and interesting predictions. We also incorporated methylation
into the protein-DNA interaction network which yielded a model notably different from the one
that did not incorporate methylation and recovered several interesting regulators that the method
that ignored methylation did not yield.

An interesting direction to go into would be to examine single cell data for IPF. This would
enable us to have a much deeper understanding of what part of the enrichment we observe above
is due to an increased population of fibroblasts or loss of epithelium and what part is due to
regulatory changes in the other cells. It would also help develop a better understanding of extra-
cellular signaling.
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Chapter 5

Conclusion

A cell is a highly sophisticated piece of biological machinery with a staggeringly complex pro-
gram running it. This complexity can in turn lead to very large variability in cell behavior –
even between situations where you would expect no difference. Sophisticated mathematical
models thus become essential to taming this vast complexity and making reliable and accurate
predictons. The large amount of biological data being generated today presents us with a unique
opportunity to use computational techniques to generate such mathematical models.

5.1 Summary of contributions
In this thesis, we have attempted to deal with some aspects of a significant component of cell
biology – namely which signaling pathways and transcription factors (TFs) are active for and
related to a particular condition. We have talked about why it is so hard for experimental methods
to be able give us a complete picture of what is happening and how computational techniques
may aid us in completing that picture.

In particular, we have presented our solutions to three problems (1) learning from limited
data by using data from related conditions using multi-task learning (MT-SDREM) (2) Temporal
annotation of signaling pathways and TFs (TimePath) (3) incorporated DNA methylation into
our models in order to better infer the signaling and regulatory networks and validated the ap-
proach via application to idiopathic pulmonary fibrosis and comparing the model that ignores
methylation versus one that does not.

5.1.1 MT-SDREM
We developed MT-SDREM a multi-task learning framework that simultaneously reconstructs
signaling and dynamic regulatory networks across related conditions. Given the small number
of condition-specific samples that are often available (i.e. time series expression data and host-
pathogen interaction data) sharing parameters across related conditions allows the reconstruction
of more accurate networks while still retaining the ability to explain condition-specific signaling
and regulation.
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We applied MT-SDREM to reconstruct networks for 3 related influenza A virus infections –
H1N1, H3N2, and H5N1. The resulting signaling and regulatory networks were able to identify
several known and novel regulators of immune and viral response. Many of these were shared be-
tween all condition including PPARG, FOS, ATF, and JUN. Similarly, we identify key signaling
proteins, some shared by all conditions while others are unique to one or two of the conditions.
Specifically, we identified the signaling protein SUMO1 as part of pathway from UBE2I for all
3 conditions. This agrees with recent findings that UBE2I interacts with SUMO1 to degrade
influenza A’s virus, NS1 which is present in all three strains [109]. We also identified the AKT1
gene, part of the PI3K/AKT pathway that is activated by NS1 in all conditions.

MT-SDREM is the first method to jointly reconstruct such dynamic networks. Comparing
MT-SDREM with methods that have been suggested to integrate gene expression data or with
methods reconstruct such networks independently for each condition highlighted the advantages
of multi-task network learning. MT-SDREM outperformed previous methods in identifying a set
of TFs controlling immune response, a set of functionally relevant proteins and a set of proteins
whose knockdown affects viral loads.

5.1.2 TimePath

Since most of the high throughput data used to reconstruct cellular response networks is static,
current models based on these data are often unable to provide specific temporal hypotheses
regarding the effects of perturbations and drugs on cellular responses. Here we formulated a
new Integer Programming (IP) optimization function to connect observed temporal responses
(from gene expression data) with the underlying sources, to further identify the pathways and
transcription factors that activate them. We then use the pathways and their predicted time to
reconstruct the full response network leading to insights regarding the propagation of cellular
responses, key proteins controlling the responses and testable hypothesis regarding the effects of
perturbing proteins at various time points following infection.

Applying TimePath to model HIV response networks led to the identification of known and
novel proteins and miRNAs for the HIV response pathways. The reconstructed network explains
the roles of several HIV screen hits, the function of TFs and miRNA controlling expression levels
and is enriched for functional categories related to immune and viral responses.

The pathways identified can be divided to those induced by the virus to promote survival/replication
and those induced by the host to curtail virus infection and promote cellular survival. Our tem-
poral regulatory model indicates that these can also be divided based on their dynamics.

Follow up experiments using inhibitors confirmed the prediction of TimePath, where 11 of
the 22 predicted proteins (that were evaluated in the experiment) were identified to have a role in
HIV infection. NFKB and related genes are exclusively essential for virus infection in the initial
phase as predicted by TimePath, similarly, RAF1 was also confirmed to have an important role in
the initial phase. As predicted by TimePath, these genes may either be required for virus infection
during the initial phase, or the changes triggered by these genes in the initial phase can temporally
affect downstream events that are essential for virus infection. It is also noted that CDKs, STATs
and proteasomal machinery are essential during all phases of HIV infection, and TimePath had
predicted a role for these genes starting with phase 1 (CDKs) and/or a combination of phases -
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phase 1 and phase 2 (STATs) or phase 3 (proteasomal machinery and related processes). Though
TimePath identifies the role for these genes or processes in specific phase, it suggests that the
event occurs at the identified phase; however, it does not rule out that the events are continuing
over time and have a role in later stages too.

Unlike other methods that attempt to link treatments to disease stages (for example, in cancer
which uses pathological analysis to determine tumor grades) TimePath is fully based on the
molecular data, thus could be applied to much shorter time scales. This approach enables the
programme to obtain a more fine resolution of the disease stage, which cannot be observed by
other methods. With higher resolution, it may be possible to use TimePath to tailor appropriate
treatment options to treat infected individuals.

5.1.3 Application to IPF and incorporating DNA methylation data

We applied the DREM algorithm to construct a disease progression model for idiopathic pul-
monary fibrosis (IPF). We analyzed the results and presented evidence that the model recovers
existing biology and found potential new targets like POU2AF1 to explore.

Finally, we wanted to test the usefulness of epigenetic data in the reconstruction of regulatory
networks. In particular, we wanted to use DNA methylation to improve the transcription factor
(TF)-DNA interaction network that we used as input to our signaling and regulatory network in-
ference models. We presented several different ideas on how to use DNA methylation data to try
and get better TF-DNA binding predictions. While we were not been able to directly get better
TF-DNA binding predictions using ENCODE data, we attempted to assess the performance by
looking directly at the regulatory networks generated for idiopathic pulmonary fibrosis (IPF). We
tried two models – one that ignored methylation, and the other that assumed methylation inihib-
ited binding and obtained some evidence that the model that incorporates methylation uncovered
some biological aspects of the disease that the model that ignored methylation did not.

5.2 Future directions

In this section, we talk about possible future directions to extend our work.

5.2.1 Extensions to MT-SDREM

More granular sharing of parameters

While we have built a multitasking model to jointly model the signaling networks for different but
related conditions (Chapter §2), the joint modeling of the regulatory network is still global (via
sharing of prior scores for the transcription factors (TFs) predicting to play a role in different
conditions) i.e. across all time points. An interesting extension would be to allow for more
granular sharing of TF priors such that splits representing the same or similar time would be
more likely to share TFs compared to other splits.

103



Learning priors on regulatory program

In the model presented thus far, MT-SDREM is typically used to model only a small set of
related tasks. It could be very useful however, to learn the prior joint probability on the activity
of transcription factors. As an example, if we have learnt the prior that that TFs A and B are often
active together, then if we infer that A is likely to be active for a particular condition, we could
increase the prior probability that B is active in that condition as well. This would effectively
allow us to do transfer learning across a large number of conditions, related or unrelated.

To incorporate this into DREM (the regulatory network inference component of MT-SDREM),
we would want to have a function P that outputs the probability of any input TF activity vector.
This would form part of the DREM objective, penalizing any TF activity vectors that deviate
from the joint prior. It is important to note that we would need to know the normalization con-
stant for P in order to set the magnitude of the penalty correctly.

Learning how related the tasks are

At the moment, we have a parameter in our model (α, see Chapter §2) which regulates how
correlated the TF priors between the different tasks end up being. However one could imagine
various schemes to learn this automatically. One possibility could be to compute the set of
differentially expressed (DE) genes for the different conditions and then set the parameter as
function of how many DE genes are common between the different conditions.

5.2.2 Extensions to TimePath

Multitask extension

For TimePath, we have tried to model only one task at a time. Extending it to a multitask setting
(as we extended SDREM to MT-SDREM) would be useful. The simplest extension would be to
share priors for the activity of different proteins in the different conditions.

Incorporating post-translational modifications

Post-translational modifications (PTMs) of proteins are the modification of proteins after they are
translated. They usually occur on amino acid side chains or at the protein’s C or N termini [273].
Protein phosphorylation, which involves the addition of a phosphoryl group to the protein is a
common post-translational modification. Other common PTMs are glycosylation, lipidation, etc.

PTMs can cause structural changes to the protein structure and are often necessary to activate
signaling pathways. For example, the enzyme GSK-3 is phosphorylated by AKT as part of the
insulin signaling pathway [267]. Histone acetylation/deacylation is very important in regulating
transcription [87].

Currently, TimePath has no mechanism to incorporate data on PTMs. As mentioned above,
however, post-translational modification of a protein can be often responsible for the activation
of that protein in a signaling pathway. Thus a simple way to incorporate PTM data might be
to look at proteins that are differentially phosphorylated between two different time points, and
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increase the prior probability of those proteins being active between those two time points in
proportion to the how strong the signal for differential phosphorylation is.

5.2.3 Using histone modifications to predict TF binding
Recently there has been work on applying deep learning to histone modification data. Singh et
al. [240] use neural networks to try and predict gene expression as a function of histone modi-
fications. DeepBind [12] and others [302] try and predict histone modifications as a function of
sequence. Benveniste et al. [27] use TF binding to try and predict histone modifications.

In this thesis, we only looked at the possibility of using DNA methylation to improve upon
predictions of TF binding. While less widely applicable (as discussed in Chapter §4), it would
nevertheless be interesting to see whether histone modification data can be used to predict TF
binding. A simple model might be to append histone modification features to the sequence
features, suitably extend existing networks, and see if one obtains any improvement. Histone
state can change rapidly in response to change in a cell’s condition so being able to predict TF
binding as a function of that, apart from being interesting from a scientific perspective, could
also give a lot of insight as to the active TFs for a particular condition.

5.2.4 Single cell extensions
Most microarray and RNA-Seq studies to date have focused on profiling large populations of
cells. While such approaches have led to many important results, they tend to overlook the het-
erogeneity of the population being profiled [246]. This may be problematic in cases where the
population contains a mixture of different cell types with different regulatory programs (for ex-
ample, in cancer samples [65] or when studying immune response [232] and development [262]).
In such cases, expression experiments that profile populations along the differentiation trajecto-
ries may not be able to identify the specific regulatory networks that lead to the desired cellular
fate.

Recently, new technologies based on RNA-Seq experiments have been developed to profile
global gene expression in single cells. By profiling different cells in the population the con-
tribution of different cell types to changes in tissue level expression can be analyzed allowing
researchers to address several of the problems mentioned above. However, the single cell based
approaches have also raised new computational challenges leading to new methods for the anal-
ysis of such data. These include issues related to sample quality, issues related to normalization
of single cell data (which is more challenging, especially for lowly expressed genes [234, 287]),
and the development of clustering methods to identify the different components within a specific
mixture/time point [45].

Thus a potential future direction would be to develop methods to be able to construct a ’time
series’ from single cell expression data and then perform network reconstruction based on that
time series. In particular, it would be useful to be able to jointly model the regulatory network
reconstruction for single cell data one one and and single cell clustering (where cells are grouped
together for each time point and linked up to other groups at adjacent time points). One possible
route to accomplish this might be to first cluster the single cells into different clusters, then try
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and infer regulatory networks. We then iterate between the two steps, allowing cells to switch
into a different cluster if the regulatory program for that cluster represents the cell better until we
reach a fixed point.

5.2.5 Joint learning of network and interactions
So far we have looked at either inferring the regulatory and signaling network while assum-
ing a fixed TF-gene interaction network or learning the interaction network while ignoring the
regulatory and signaling network. An interesting direction would be to jointly learn the signal-
ing/regulatory networks as well as the TF-gene interaction network. The simplest way to do
a joint learning would be to use the neural network model described previously (or some other
model) to predict TF-DNA interaction, aggregate the predictions across the promoter/enhancer of
a gene, and thus get the TF-gene interaction prediction. These predictions could then be fed into
DREM with the TF-gene interactions being variables through which we backpropagate the error
instead of them being fixed. The neural network would be pre-trained on TF-DNA interaction
data derived from Chip-Seq and fine tuned in the course of this procedure. As such it would be
the reverse of the standard paradigm where supervised fine tuning follows unsupervised training.

The biggest challenge with such a model would be computational. The logistic classifier
has to be retrained for every maximization step in the Baum-Welch algorithm which would also
entail fine tuning the neural network for every such iteration. One way to resolve this might be
to parallelize the training. One task that could be easily parallelized would be the prediction of
TF-DNA interactions for the promoter/enhancer sections of each gene/TF combination (and the
backpropagation of errors through them).
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[228] Bärbel Schröfelbauer, Qin Yu, Samantha G Zeitlin, and Nathaniel R Landau. Human
immunodeficiency virus type 1 vpr induces the degradation of the ung and smug uracil-
dna glycosylases. Journal of virology, 79(17):10978–10987, 2005. 3.2.5

[229] Ulrich Schubert, David E Ott, Elena N Chertova, Reinhold Welker, Uwe Tessmer,
Michael F Princiotta, Jack R Bennink, Hans-Georg Kräusslich, and Jonathan W Yewdell.
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Deutsches Ärzteblatt International, 107(28-29):507, 2010. 1.3.2

[275] Dai Wang, Cynthia de la Fuente, Longwen Deng, Lai Wang, Irene Zilberman, Carolyn
Eadie, Marlene Healey, Dana Stein, Thomas Denny, Lawrence E Harrison, et al. Inhibi-
tion of human immunodeficiency virus type 1 transcription by chemical cyclin-dependent
kinase inhibitors. Journal of virology, 75(16):7266–7279, 2001. 3.4

[276] Pui Wang, Wenjun Song, Bobo Wing-Yee Mok, Pengxi Zhao, Kun Qin, Alexander Lai,
Gavin JD Smith, Jinxia Zhang, Tianwei Lin, Yi Guan, et al. Nuclear factor 90 negatively
regulates influenza virus replication by interacting with viral nucleoprotein. Journal of
virology, 83(16):7850–7861, 2009. 2.9, 3.2

[277] Zhibin Wang, Chongzhi Zang, Jeffrey A Rosenfeld, Dustin E Schones, Artem Barski,
Suresh Cuddapah, Kairong Cui, Tae-Young Roh, Weiqun Peng, Michael Q Zhang, et al.
Combinatorial patterns of histone acetylations and methylations in the human genome.
Nature genetics, 40(7):897–903, 2008. 4

[278] Zhong Wang, Mark Gerstein, and Michael Snyder. Rna-seq: a revolutionary tool for
transcriptomics. Nature Reviews Genetics, 10(1):57–63, 2009. 1.1

[279] Koichi Watashi, Mohammad Khan, Venkat RK Yedavalli, Man Lung Yeung, Klaus
Strebel, and Kuan-Teh Jeang. Human immunodeficiency virus type 1 replication and
regulation of apobec3g by peptidyl prolyl isomerase pin1. Journal of virology, 82(20):
9928–9936, 2008. 3.3

[280] Robin A Weiss. How does hiv cause aids? SCIENCE-NEW YORK THEN WASHINGTON-
, 260:1273–1273, 1993. 1.3.2

[281] Christian Widmer, Jose Leiva, Yasemin Altun, and Gunnar Rätsch. Leveraging se-
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