
Thesis:
Algorithms for Fair Division

David Kurokawa

CMU-CS-17-122

July 26, 2017

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Ariel D. Procaccia (Chair)

Manuel Blum
Zico Kolter

Tuomas Sandholm
Ioannis Caragiannis (University of Patras)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2017 David Kurokawa

This research was sponsored by the National Science Foundation under grant numbers CCF-1215883, IIS-1350598,
and CCF-1525932, Microsoft, and the Natural Sciences and Engineering Research Council of Canada Fellowship.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: algorithmic game theory, fair division, mechanism design, cake cutting, indivis-
ible goods, maximin share.

Abstract
This thesis covers various aspects of fair division: allocating goods/items among

interested parties while maintaining axiomatic or quantitative properties. The diffi-
culty arises from the heterogeneous valuations of the agents. That is, agents do not
necessarily agree on the value of a set of goods. We consider four settings in depth.

First, we dissect the problem of allocating k equal rewards to the best k of n
agents when our only information comes from the agents evaluating each other. We
give an an algorithm to accurately do so while disincentivizing agents from strate-
gically lying to benefit themselves (a property called impartiality). We further show
our accuracy is best possible under our metric.

Second, we expand the previous setting to when we wish to rank the agents
instead of merely producing the top k of them. Here too, we give algorithms to ac-
curately perform this task while maintaining impartiality. We expand on the connec-
tion to the first setting by extrapolating the generalization further and demonstrating
several impossibility results.

Third, we consider the setting of cake cutting: allocating a single divisible good.
We examine the classic problem of envy-free cake cutting when the agents have re-
stricted valuations — specifically, they have piecewise uniform/constant/linear den-
sities. We show that the restriction is no restriction at all, but when parametrizing
the complexity of the densities, yields a significant reduction in difficulty. We further
examine the cake cutting setting when agents are strategic and demonstrate the exis-
tence of standard equilibrium concepts in the space (despite infinite action spaces).

Finally, we expand upon the concept of the maximin share guarantee (a property
seen in the study of indivisible goods). We give several results on the existence of
the property and approximations to it in various settings.

Contents

1 Introduction 1

2 Impartial Peer Review 5
2.1 Introduction . 5

2.1.1 Our Approach . 6
2.1.2 Our Results . 7
2.1.3 Related Work . 7

2.2 The Model . 8
2.3 The Credible Subset Mechanism . 10
2.4 Impossibility Results . 12
2.5 Discussion . 17

3 Impartial Peer Ranking 19
3.1 Introduction . 19

3.1.1 Model and Results . 20
3.1.2 Related Work . 20

3.2 Notation and Definitions . 21
3.3 k-partite, Forward (i.e. Standard) Error, and Backward Error 22
3.4 Committee and Mixed Error . 27
3.5 Committee in the “Top k” Setting . 30
3.6 Discussion . 32
3.7 Proof k-partite (Algorithm 3) is Well-defined 33

4 Cake Cutting with Piecewise Valuations 35
4.1 Introduction . 35

4.1.1 Model and Results . 36
4.1.2 Related work . 37

4.2 Preliminaries . 37
4.3 General vs. Piecewise Uniform Valuations . 38
4.4 Bounded Algorithm for Piecewise Linear Valuations 39
4.5 Pareto Optimality and Strategyproofness . 44
4.6 Discussion . 47

i

5 Cake Cutting Equilibria 49
5.1 Introduction . 49

5.1.1 Model and Results . 50
5.1.2 Related Work . 51

5.2 The Model . 51
5.2.1 Generalized Cut and Choose Protocols 52
5.2.2 The Game . 54

5.3 Existence of Equilibria . 55
5.3.1 Approximate SPNE . 55
5.3.2 Informed Tie-Breaking . 56

5.4 Fair Equilibria . 57
5.5 Proof of Theorem 5.3.1 . 59
5.6 Proof of Theorem 5.3.2 . 62
5.7 Proof of Theorem 5.4.1 . 67

6 Existence of Maximin Share Allocations and Their Extensions 71
6.1 Introduction . 71

6.1.1 Model, Conceptual Contribution, and Technical Results 72
6.1.2 Practical Applications of Our Results 74
6.1.3 Related Work . 74
6.1.4 Open Problems . 76

6.2 Nonexistence of Exact MMS Allocations . 76
6.2.1 Proof of Theorem 6.2.1 for n = 3 . 77
6.2.2 Proof of Theorem 6.2.1 for n = 4 . 78
6.2.3 Proof of Theorem 6.2.1 for n ≥ 4 . 79

6.3 Existence and Computation of Approximate MMS Allocations 83
6.3.1 Proof of Theorem 6.3.1: Existence . 85
6.3.2 Proof of Theorem 6.3.1: Polynomial Time 98

6.4 Random Valuations . 98
6.4.1 Proof of Lemma 6.4.2 . 100
6.4.2 Proof of Lemma 6.4.3 . 102

6.5 A Small Number of Goods Guarantees the Existence of an MMS Allocation . . . 108
6.6 MMS Guarantees on Subsets of N . 110

Bibliography 115

ii

Chapter 1

Introduction

Division of goods among interested parties is no new task. Splitting a scrumptious dessert among
friends or dividing up a family estate among heirs are just two such examples. At its heart, the
core problem is to take some set of goods and to allocate them among a set of agents in a
way that is desirable or fair. Unfortunately, due to the competing and heterogeneous nature of
said agents, it is difficult to define a metric of desirability or fairness. Therefore, often ad hoc
and fairly subjective approaches such as negotiation are employed to reach a consensus. These
methods fall short in two critical ways: they cannot be automated and are heavily qualitative in
their success. Owing to the need for simplicity and automation, drafting is a common approach
when the goods are discrete. That is, agents take turns choosing goods they will keep until all
goods are taken. Unfortunately, as we will see in Chapter 6, this is often far from ideal by various
metrics.

A key reason we are concerned with automation and quantification of fairness is we are
involved in an effort to bring these ideas to the real world by building a fair division website
called Spliddit [50], available at www.spliddit.org. Quoting from the website:

“Spliddit is a not-for-profit academic endeavor. Its mission is twofold:
• To provide easy access to carefully designed fair division methods, thereby

making the world a bit fairer.
• To communicate to the public the beauty and value of theoretical research in

computer science, mathematics, and economics, from an unusual perspective.”

Since its launch in November 2014, Spliddit has attracted more than 100,000 users (as of July 9,
2017), and has received significant press coverage.

The strive for fairness itself is self-explanatory from the perspective of an external party (i.e.
one not eligible for receiving any goods) but is further motivated by the fact that in reality, agents
do not act entirely out of self-interest but may act charitably in the spirit of fairness — see for
instance, [47] or arguably, humanity in general. Such behavior could of course be described by
more advanced agent utility functions, but accurately modelling such functions is neither easy
nor even well-defined due to the fluid, vacillating, and contradictory nature of agents in reality.
Therefore, often the field abstracts this generosity component of utilities into the external party
performing the allocation of the goods.

As with many areas, research in the area can be broken down by the setting or the flavor

1

of the results. Settings in the area include concrete applications such as taxi fare division (i.e.
how to divide taxi/Uber/Lyft fare among individuals going to different destinations) and rent
splitting (i.e. how to divide rent among roommates in asymmetric situations) to more theoretical
and fundamental settings such as the indivisible good setting (which we describe in more depth
below). In this thesis we will largely focus on the following four fair division settings.

1. (Chapter 2) n agents rank each other to determine who is in the top k < n.
This work largely stemmed from a real-world motivating example of the problem: the
NSF began a test program of having grant applicants review each others’ applications to
determine who were given grants.
The main question here is how to allocate the top k positions in a way that is both accurate
and impartial: no agent has incentive to misreport his ranking of others. We give an
algorithm that accomplishes this and demonstrate that there exists no impartial algorithm
that is more accurate under our metric.
This work is based off our results in [60].

2. (Chapter 3) n agents rank each other to determine a complete ranking of the agents.
This is a generalization of the previous setting and it too comes from a real-world moti-
vating example. When hiring freelancers for a project it is often difficult or infeasible for
the employer to comb through the candidates and assess their competence for the work. A
suggested approach was therefore to have the agents rank themselves so that the employer
can best focus their efforts.
Similar to the previous setting we wish to produce a complete ranking of the agents that
is accurate while maintaining impartiality. In this case, we measure our accuracy by its
proximity to replicating various social ranking functions (such as Borda and Kemeny). We
give multiple incomparable algorithms that are indeed accurate and impartial and establish
impossibility results for stronger notions of impartiality.
This work is based off our results in [57].

3. (Chapters 4 and 5) n agents divide up a divisible good (one that can be cut, sliced, and
diced) — known as cake cutting.
This is arguably the oldest of fair division problems. Here we are interested in a single
good1 that can be split apart arbitrarily — and therefore is often represented/imagined as
a cake. The difficulty arises due to the assumption that the agents have heterogeneous
valuations (i.e. they do not necessarily agree on the value of subsets of the cake).
In Chapter 4 we restrict our attention to when all agents have valuation functions for the
cake under special classes (specifically, piecewise uniform/constant/linear value densities)
and present two slightly paradoxical results. The first which says this restriction is no
restriction at all in terms of a well-studied problem in the field (the complexity of producing
envy-free allocations), while the second says this restriction, when coupled with a more
flexible complexity model, greatly simplifies the problem. Chapter 5 explores the aspect
of cake cutting from a game theoretic viewpoint where agents will lie/game a system to
maximize their utility. We show that the standard notion of equilibrium in such settings

1Multiple such goods can be considered as one all-encompassing good.

2

(the subgame perfect Nash equilibrum) exist and give analysis of their properties.
This work is based off our results in [59] and [23].

4. (Chapter 6) n agents divide up m discrete/indivisible goods (ones that cannot be cut, sliced,
and diced).
This is perhaps the most fundamental of fair division problems and has wide applications
ranging from divorce settlements to acquiring fresh talent in professional sport leagues. It
is also a generalization of the previous setting as that is a limiting case of this.
In Chapter 6 we dissect the fairness concept known as the maximin share guarantee. We
prove that it may not exist for general valuations, but conversely demonstrate that a 2/3
approximation is guaranteed to exist and can be found in polynomial time. We further
show that under a natural randomized model we can expect to have such guarantees with
high probability.
This work is based off our results in [63] and [62].

Regarding flavors of results, applications of fair division ideas to real world settings is a
burgeoning area with developments in settings such as course scheduling in universities among
students (see [27], [80]), and the aforementioned rent splitting among roommates (see [48], [5]).
Contributions in Chapters 2 and 3, and our work in [61] are of this flavor. Purely theoretical
advancements examining existence or complexity issues of fairness concepts is another direction
often seen in the literature. Such results include those revolving around the production of envy-
free allocations in bounded time in the cake-cutting setting (see [9], [20], [92]) as well as the
complexity of producing an approximation to a well-known equilibrium concept known as com-
petitive equilibrium (see [79]). Chapters 4, 5, 6, and our work in [30] make such contributions
to the area. An arguably underrepresented flavor of work is that of examining strategic agents
in fair division settings — largely due to it being an ocean of simple impossibility results. Our
work in Chapters 2, 3, and 5 however break this trend and give positive results for their settings.

3

4

Chapter 2

Impartial Peer Review

2.1 Introduction

The Sensors and Sensing Systems (SSS) program of the National Science Foundation (NSF)
recently experimented with a drastically different peer review method. Traditionally, grant pro-
posals submitted to a specific program are evaluated by a panel of reviewers. Potential conflicts
of interest play a crucial role in composing the panel; most importantly, principal investigators
(PIs) whose proposals are being evaluated by the panel cannot serve on the panel. In stark con-
trast, the new peer review method — originally designed by Merrifield and Saari [71] for the
review of proposals for telescope time — requires the PIs themselves to review each other’s
proposals! A “dear colleague letter” [53] explains the potential merits of the new process:

“This pilot is an attempt to find an alternative proposal review process that can
preserve the ability of investigators to submit multiple proposals at more than one
opportunity per year while encouraging high quality and collaborative research,
placing the burden of proposal review onto the reviewer community in proportion to
the burden each individual imposes on the system, simplifying the internal NSF re-
view process, ameliorating concerns of conflict-of-interest, maintaining high quality
in the review process, and substantially reducing proposal review costs.”

Under the Saari-Merrifield mechanism, each PI must review m proposals submitted by other
PIs; in the NSF pilot, m = 7. The PI then ranks the m proposals according to their quality. These
reviews are aggregated using the Borda count voting rule, so each PI awards m − i points to the
proposal she ranks in position i. A proposal’s overall rating is the average over the points awarded
by the m PIs who reviewed it. Additionally, a PI’s own proposal receives a small bonus based on
the similarity between the PI’s submitted ranking and the aggregate ranking of the proposals she
reviewed; this is meant to encourage PIs to make an effort to produce accurate reviews.

The NSF pilot sparked a lively debate amongst mechanism design and social choice re-
searchers in the blogosphere [87, 98, 72]. While most researchers seem to agree that the NSF
should be commended for trying out an ambitious peer review method, serious concerns have
been raised regarding the pilot mechanism itself. Perhaps most strikingly, while the NSF an-
nouncement [53] states that the “theoretical basis for the proposed review process lies in an area
of mathematics referred to as mechanism design”, the pilot mechanism provides no theoretical

5

guarantees. In particular, the mechanism is susceptible to strategic manipulation: PIs will of-
ten be able to advance their own proposals by giving low scores to competitive proposals (even
though they may forfeit some of the small bonus for similarity to others’ reviews). Furthermore,
while most researchers who sit on NSF panels are well-respected, the pilot mechanism cannot
control the quality (or morality) of PIs who submit proposals (and review proposals)— leaving
open the very real possibility of game-theoretic mayhem.

In this chapter, we alleviate these concerns by proposing a peer review mechanism which
is not susceptible to such manipulations. Each PI who submits a proposal or paper will review
some other PIs’ proposals or papers. Our mechanism is impartial: reviewers will not be able to
affect the chances of their own proposals being selected. Our research challenge is therefore to
design provably impartial peer review mechanisms that provide formal quality guarantees.

We believe that solutions to this problem truly matter. The NSF plays a huge role in enabling
scientific research in the United States, and its consideration of alternative peer review methods
may transform how scientific funding is allocated in the US. The need to build sound founda-
tions for these methods therefore provides a unique opportunity for computational game theory
research, and AI research more broadly.

2.1.1 Our Approach

In our setting there are n PIs, each associated with a proposal. Each PI i has a hypothetical
(honest) evaluation of the quality of the proposal j, which is the rating i would give j if she were
asked to review that proposal (and could not affect her own chances of selection). The (honest)
score of a proposal is the average (honest) rating given to it by other PIs. As NSF program
directors, if our budget is sufficient to fund k proposals, we would ideally want to select a set
of k proposals with maximum honest score.1 There are two obstacles we must overcome: we
cannot possibly ask each PI to review all other proposals, and the reviews may be dishonest.

To address the first problem, we consider only mechanisms which request m reviews per
PI (much like the NSF pilot). We define an (m, k)-selection mechanism as follows. First, the
mechanism asks each PI to review m proposals, in a way that each proposal is reviewed by
exactly m PIs; for every such pair (i, j), PI i’s evaluation for proposal j is revealed. Based
on these elicited reviews, the mechanism selects k vertices. The most natural (m, k)-selection
mechanism is an abstract version of the NSF pilot mechanism, which we fondly refer to as the
Vanilla mechanism; it chooses m reviews per PI uniformly at random (subject to the constraint
that each proposal is reviewed by m PIs), and then selects the k vertices with highest average
rating, based only on the sampled reviews.

Returning to the second problem — dishonest reviewing — we will consider only mecha-
nisms where reviewers cannot affect their chances of being selected by misreporting their re-
views. A selection mechanism is impartial if the probability of proposal i being selected is
independent of the ratings given by PI i. The motivation for our work stems from the observation
that the Vanilla mechanism is not impartial: we seek mechanisms that are.

1 We distill the strategic aspects of the NSF reviewing setting and abstract away some other practical aspects,
such as the fact that PIs may submit multiple proposals to the same program. However, our model and results easily
extend.

6

How should we evaluate the impartial mechanisms we design? Without any assumptions,
competing with an omniscient mechanism that maximizes underlying scores is clearly impos-
sible.2 We therefore use the Vanilla mechanism as our performance benchmark. Competing
with Vanilla is nontrivial, because we give it the “unfair” advantage of assuming that reviews
are honest, even though it is not impartial. Specifically, we say that an impartial mechanism
α-approximates Vanilla if, in the worst case over reviews, the ratio between the expected score
(based on the largely unseen set of all possible reviews) of the set of proposals selected by the
impartial mechanism, and the expected score of the set of proposals selected by Vanilla, is at
least α.

The choice of Vanilla as a benchmark has two main advantages. First, since the Vanilla
Mechanism is an abstraction of the NSF pilot mechanism, our choice of benchmark allows us to
quantify how much the NSF must sacrifice to achieve impartiality — and our results show that
this sacrifice is negligible. Moreover, innovations that are closest to the current accepted practice
are the most likely to be adopted.

Second, modulo its lack of impartiality, Vanilla is intuitively the “right” mechanism: it se-
lects those nodes with the highest sampled scores. Furthermore, in an average-case model where
each proposal has an intrinsic quality, and reviews are drawn from a well-behaved distribution
whose expectation is the true quality of a proposal, Vanillawill pinpoint the best proposals given
a sufficiently large m. Even when we assume reviews are worst-case, we can obtain an excellent
approximation of Vanilla via an impartial mechanism, and that guarantee immediately extends
to the average case model.

2.1.2 Our Results
In Section 2.3 we present an impartial (m, k)-selection mechanism, Credible Subset, which (usu-
ally) selects k proposals at random from a slightly larger pool (of size k+m) of eligible proposals.
We prove that Credible Subset gives an approximation ratio of k

k+m to Vanilla. We think of m,
the number of reviews per PI, as being a small constant, and we would like to think of k, the
number of proposals to be selected, as significantly larger. In particular, when m = o(k), the
approximation ratio goes to 1 as k goes to infinity (in an ideal world, where growth in funding
outpaces growth in the quantity of work for reviewers, see Section 2.5).

In Section 2.4, we show that Credible Subset is the optimal impartial mechanism, in the
sense that its approximation ratio of k

k+m is asymptotically tight (when k = m2 is a constant and
the number of PIs n grows).

2.1.3 Related Work
Our paper is closely related to the work of Alon et al. [2]. In parallel with Holzman and
Moulin [56], Alon et al. introduced the notion of impartial selection mechanisms (using the
term “strategyproofness” for impartiality). Their model can be interpreted as a special case of
our model, where m = n − 1 (i.e., each PI reviews all other proposals) and all the ratings are in
{0,1}. The main result of Alon et al. is the design of an impartial mechanism that approximates

2Indeed, even Vanilla with truthful reviews will be unable to do so!

7

the score of the optimal subset of k vertices to a factor that goes to 1 as k grows. When m = n−1
and all ratings are in {0,1}, this is equivalent to approximating Vanilla: Vanilla can see all ratings
and will select the optimal subset. But when m � n − 1 we cannot reason about scores directly,
as Alon et al. do. In fact, in this regime, which is typical for a peer review setting, our results are
incomparable to theirs: our mechanisms use far less information, but the performance of these
mechanisms is (necessarily) measured against a weaker benchmark.

Other papers on impartial mechanisms include the ones by de Clippel et al. [33], Holzman
and Moulin [56], Fischer and Klimm [45], Berga and Gjorgjiev [13], Tamura and Ohseto [96],
and Mackenzie [66].

Merrifield and Saari [71] are not the first researchers to suggest improvements to the peer
review process, although most other papers focus on conference reviewing [78, 51, 39, 89]. For
example, in a AAAI’11 paper, Roos et al. [89] propose a method for calibrating the ratings of
potentially biased reviewers via a maximum likelihood estimation (MLE) approach.

2.2 The Model
Let N = {1,2, . . . ,n} be the set of proposals and also the set of strategizing reviewers. Each
reviewer i has an estimate of the quality of every other proposal j , i — the score i would give
j if i honestly reviewed j. We represent this setting as a weighted, complete, directed graph
G = (N,E,wG) where E = {(i, j) | i, j ∈ N, i , j}, and wG (i, j) ∈ R+ is the quality of j
according to i’s evaluation. We call G the underlying graph.

Let m be the number of proposals that each PI can review, which must equal to the number
of reviews each proposal receives (we assume each PI submits one proposal). In our model, m
is the number of outgoing edges from each vertex and the number of incoming edges to each
vertex. Slightly abusing terminology, we say that a directed graph is m-regular if it satisfies
these properties.

A peer review process is governed by an (m, k)-selection mechanism, which works in two
stages:

1. The mechanism selects (possibly randomly) a directed m-regular graph Gm = (N,E(Gm)),
called the sampled graph. We assume this graph is drawn prior to the next step: that the
sampling is done all at once independent of the edge weights.

2. Given the underlying graph G, the weight wG (i, j) is revealed for each edge (i, j) ∈ E(Gm).
The mechanism then maps these elicited ratings to a subset of selected vertices of size at
most k.

Step 1 corresponds to the mechanism assigning m proposals to each PI. Based on the reviews
wG (i, j) for (i, j) ∈ E(Gm), in Step 2, the mechanism selects a subset of at most k proposals that
will receive funding.

Let us reinterpret the NSF pilot mechanism [53] in this framework, abstracting away details
such as the use of Borda count and the bonus component for accurate reviews. To this end, let
Gm denote the uniform distribution over m-regular graphs. Given a weighted m-regular graph
Gm, let

topk (Gm) ∈ arg max
Y⊆N : |Y |=k

∑
i∈Y

∑
j:(j,i)∈E(Gm)

wG (j, i),

8

breaking ties lexicographically (i.e., the k nodes with the largest sum of incoming edge weights
in the graph). Now, the Vanilla mechanism, denotedMv, is defined as follows:

Vanilla (G,m, k)
Draw Gm ∼ Gm.
Return topk (Gm).

Algorithm 1: Vanilla

Intuitively, the mechanism assigns proposals to PIs for review based on the graph Gm, and
then returns the k highest-rated reviews based on the sampled reviews (for convenience we look
at the sum of ratings, which is equivalent to the average).

For a mechanism M and an underlying graph G, let M (G) be a random variable, which
takes the value X ⊆ N with the same probability thatM outputs X when the underlying graph
is G. Then we can use P [i ∈ M(G)] to denote the probability that M selects i ∈ N when the
underlying graph is G. We say that M is impartial if for any i ∈ N and any two underlying
graphs G and G′ that differ only in the weights on the outgoing edges of i, P [i ∈ M(G)] =

P [i ∈ M(G′)].
Unfortunately, Vanilla is clearly not impartial. To see this, let k = 1, m = 1, and define the

weights of G and G′ as follows:

wG (i, j) =

n + 1 i = 1
1 j = 1, i , 1
0 otherwise

and

wG′ (i, j) =

0 i = 1
1 j = 1, i , 1
0 otherwise

.

Then P [1 ∈ Mv (G)] = 0, whereas P [1 ∈ Mv (G′)] = 1 (using lexicographic tie-breaking, 1
would be selected even if only 0-weight edges are sampled).

One of our main aims for this chapter is to design (m, k)-selection mechanisms that are si-
multaneously impartial (unlike Vanilla), yet similarly practical in terms of the number of reviews
per proposal and similar in the quality of the output. We measure the quality of a mechanism by
the expected score of the vertices it selects. Formally, let sc(i,G) =

∑
(j,i)∈E wG (j, i) be the score

of vertex i in G, and let sc(X,G) =
∑

i∈X sc(i,G) be the score of a set of vertices X ⊆ N in G.
We can now define

sc(M,G) = EX∼M (G)[sc(X,G)].

This is our optimization objective.
Note that for some underlying graphs G, Vanilla itself may do poorly in terms of sc(M,G).

As an extreme example, let k = 1, m = 1, and define the weights of the underlying graph G as

9

follows:

wG (i, j) =

1000 i = 1 and j = 2
1/n j = 1
0 otherwise.

It is very likely that the edge (1,2) will not be sampled by Vanilla, and therefore the mechanism
will likely select vertex 1, the only one with non-zero score. However, sc(1,G) = n−1

n < 1,
whereas sc(2,G) = 1000. This is not a shortcoming of Vanilla specifically — it is clear that
such examples can be constructed for any (m, k)-selection mechanism when m is much smaller
than n.

Nevertheless, we can use Vanilla as a benchmark. We wish to design impartial mechanisms
whose quality guarantee is quite close to that of Vanilla pointwise (assuming all reviews given to
Vanilla were truthful). We say that an (m, k)-selection mechanismM α-approximates Vanilla,
for α = α(m,n, k) ≤ 1, if for every underlying graph G,

sc(M,G)
sc(Mv,G)

≥ α.

2.3 The Credible Subset Mechanism
In this section we present and analyze an (m, k)-selection mechanism, the Credible Subset mech-
anism. The mechanism relies on two ideas:

1. Every vertex that has the potential to be among the top k by changing its outgoing edges
must have a chance to be selected. Such vertices are called credible. There are not too
many of them, and they include the actual top k.

2. A credible vertex can potentially affect the number of credible vertices (by giving a low
score to another credible vertex), and therefore the probability of selecting a credible vertex
must be independent of the number of credible vertices.

The Credible Subset mechanism, denotedMcs, formally works as follows.

Credible Subset (G,m, k)
Draw Gm ∼ Gm.
P ← {i < topk (Gm) | if i reported ∀ j : w(i, j) = 0, i would be in topk (Gm)}
S ← topk (Gm) ∪ P.
With probability |S |

k+m return a random k-subset of S, and with probability 1 − |S |
k+m return ∅.

Algorithm 2: Credible Subset

Let us verify that Credible Subset is well-defined, in the sense that |S |
k+m ≤ 1. Recall that for

the purpose of computing topk (Gm), ties are broken lexicographically. This implies that, for a
given i < topk (Gm), the only way for i to enter P would be to reduce weights on outgoing edges
to some of the top k vertices. It can reduce its outgoing weights to at most m vertices; thus, any
vertex that makes it into the top k after reducing weights must have been in the top k + m to
begin with, where k + m is defined with respect to the tie-breaking order. We conclude that there

10

cannot be more than m vertices that can enter topk (Gm) by reducing their outgoing weights. That
is, |P | ≤ m, and hence

|S | = |topk (Gm) | + |P | ≤ k + m.

Theorem 2.3.1. Credible Subset is an impartial (m, k)-selection mechanism which approxi-
mates Vanilla to a factor of k

k+m .

Proof. We first establish impartiality. The mechanism is clearly impartial with respect to vertices
i ∈ N \ S: for any G and G′ that differ only in the weights of outgoing edges from i,

P
[
i ∈ Mcs (G) | i < S

]
= 0 = P

[
i ∈ Mcs (G′) | i < S

]
.

The mechanism is also impartial for i ∈ S. Indeed, some k-subset of S is selected with probability
|S |

k+m . Given that some k-subset of S is selected, the probability that i ∈ S is selected is k
|S | . Thus,

P
[
i ∈ Mcs (G)

]
=
| S |

k + m
·

k
| S |

=
k

k + m
. (2.1)

In other words, for two graphs G and G′ as above,

P
[
i ∈ Mcs (G) | i ∈ S

]
=

k
k + m

= P
[
i ∈ Mcs (G′) | i ∈ S

]
,

and we conclude that for all i ∈ N ,

P
[
i ∈ Mcs (G)

]
= P

[
i ∈ Mcs (G′)

]
.

Next we establish the approximation guarantees of Credible Subset. Notice that Credible
Subset samples from Gm, just as Vanilla does. In addition, for a fixed sampled graph Gm ∼ Gm,
Vanilla outputs topk (Gm). Thus, for every underlying graph G, the approximation ratio given
by Credible Subset is

sc(Mcs ,G)
sc(Mv ,G)

=

∑
Gm P [Gm] ·

∑
i∈N P [i ∈ Mcs (G) | Gm] · sc(i,G)∑

Gm P [Gm] ·
∑

i∈N P [i ∈ Mv (G) | Gm] · sc(i,G)

≥

∑
Gm P [Gm] ·

∑
i∈N I[i ∈ topk (Gm)] · k

k+m · sc(i,G)∑
Gm P [Gm] ·

∑
i∈N I[i ∈ topk (Gm)] · sc(i,G)

=
k

k + m
,

where the second transition follows from Equation (2.1), and I[E] is an indicator variable that
takes that value 1 if the event E is true and 0 if E is false. �

We remark that the mechanism may return subsets of size smaller than k — empty subsets,
in fact! Choosing empty subsets is not necessary: the same approximation guarantee can be
achieved by defining a finer distribution over subsets preserving that each vertex in S is selected
with probability k

k+m (this is the insight that drives the proof of Theorem 2.3.1). We focus on
the simpler formulation of the mechanism for ease of exposition, and further discuss this point
in Section 2.5.

11

2.4 Impossibility Results

In Section 2.3 we proved that Credible Subset approximates Vanilla to a factor of k
k+m . When

m = o(k), this is 1− o(1). But when both k and m are constants, this ratio is bounded away from
1 even when n → ∞. It is natural to wonder, though, if an impartial (m, k)-selection mechanism
can approximate Vanilla to a factor of 1 − o(1) when k and m are constants and n grows. After
all, in this regime the performance of Vanilla will be very poor in the worst case (as Gm gives
an extremely incomplete picture of G), so Vanilla becomes easier to approximate. We answer
this question in the negative: we show below that the k

k+m ratio is essentially the best possible for
impartial (m, k)-selection mechanisms.

Let us start with an informal discussion of a simple upper bound of k
k+1 that only assumes

that k ≤ m (that is, it gives a constant upper bound for k = O(1) even if m grows). Let G be an
underlying graph such that

wG (i, j) =

ε j = 1
0 otherwise

Vanilla will certainly select vertex 1. Consider an impartial (m, k)-selection mechanismM, and
let P [1 ∈ M(G)] = p. Since 1 is the only vertex with nonzero score, the approximation ratio of
M on G is p.

Next, consider the underlying graph G′ with weights:

wG′ (i, j) =

ε j = 1
1 i = 1
0 otherwise

For ε � 1
n−1 , Vanilla will certainly select k vertices with score 1, so sc(Mv,G′) = k. By

impartiality, P [1 ∈ M(G′)] = p, hence

sc(M,G′) ≤ (1 − p)k + p(k − 1 + (n − 1)ε).

Since ε is arbitrarily small, the approximation ratio is upper-bounded in the limit by

α = min
{

p, (1 − p) +
p(k − 1)

k

}
.

Maximizing α over all p ∈ [0,1] gives p = k
k+1 as an upper bound on the approximation ratio.

Let us now turn to our more intricate upper bound.
Theorem 2.4.1. Let c ∈ (0,1/4), k = m2, and m ≤ nc. Then any impartial mechanism at best(

k
k+m + ε (n)

)
-approximates Vanilla, for ε (n) = o(1).

We require the following straightforward probabilistic lemma.
Lemma 2.4.2. Let c ∈ (0,1/4). Suppose nc distinct elements are drawn from a universe of size
n uniformly at random and independently. Suppose this experiment is repeated nc times, and let
the selected set in round t be denoted Nt . Then, with high probability, Nt ∩ Nt ′ = ∅, for all t , t′.

12

Proof.

P
[
∃i, j ∈ {1, . . . ,nc}, i , j, Ni ∩ N j , ∅

]
≤

(
nc

2

)
· P [N1 ∩ N2 , ∅]

≤

(
nc

2

)
·

n2c

n − nc

≤
2n4c

n
n→∞
−−−−→ 0

�

Proof of Theorem 2.4.1. Let M be an impartial mechanism. Consider a set X ⊂ N of size m.
We will build up a matching µ between X and N \ X , such that the probabilityM samples the
edge (µ(i), i) is small (roughly m/n) for all i. This will imply thatM will have to select i with
similar probability on two graphs which differ only in the weight of the edge (µ(i), i).

We will now select vertices and relabel them, adding them to X as we progress. Select an
arbitrary vertex and label it 1. Let µ(1) = argmin jP

[
M samples (j,1)

]
(the vertex with the

smallest probability of (j,1) being sampled byM). Let q1 = P
[
M samples (µ(1),1)

]
; note that

q1 ≤
m

n−1 by a simple averaging argument. Then, for each i ∈ {2, . . . ,m}, select another arbitrary
vertex and label it i such that i < {1, . . . , i − 1} ∪ {µ(1), . . . , µ(i − 1)}, and let

µ(i) = argmin j<{1,...,i}∪{µ(1),...,µ(i−1)}P
[
M samples (j, i)

]
,

be the vertex such that (µ(i), i) has the smallest probability of being sampled byM which is not
already part of the matching, and

qi = P
[
M samples (µ(i), i)

]
be that probability. Note that qi ≤

m
n−2(i−1)−1 , else the expected number of edges incident to i

would be larger than m.
Now, we construct an underlying graph G that is defined using the following weights:

wG (i, j) =

1 i ∈ X, j < X
ε � 1

m i < X, j ∈ X
0 otherwise

For each i ∈ X , let the graph G′i on n vertices be as follows:

wG′i (j, j′) =

M � 1 j = µ(i), j′ = i
1 j ∈ X, j , i, j′ < X
ε � 1

m j < X, j′ ∈ X, (j, j′) , (µ(i), i)
0 otherwise

13

i

2

6

5

4

3

X

X̄Graph G

i

2

6

5

4

3

X

X̄Graph G′i

i

2

6

5

4

3

X

X̄Graph G′′i

Figure 2.1: Example of the graphs G,G′i,G
′′
i where i = 1, µ(i) = 4, X = {i,2}. Solid lines

represent edges of weight 1, dashed lines edges of weight ε , and thick lines edges of weight M .
Edges not present have weight 0. G and G′′i differ only on the weight of edge (4, i); G′′i and G′i
differ only on the weight of outgoing edges from i.

Notice that G′i differs from G in two ways: it has one high-weight edge to i, and the outgoing
edges from i have weight 0 rather than weight 1. For an illustration, see Figure 2.1.

We begin by showing that

sc(Mv,G) ≥ |X |k (1 − o(1)). (2.2)

To prove (2.2), denote the set of vertices adjacent to a set Y in the sampled graph Gm byNGm (Y).
Notice that the vertices j ∈ NGm (X) have strictly higher sampled ratings than all other vertices
in Gm. Moreover, |NGm (X) | ≤ k, so Vanilla will select all j ∈ NGm (X). Thus,

sc(Mv ,G) =
∑
j

P
[
j ∈ topk (Gm)

]
sc(j,G)

≥
∑
j<X

P
[
j ∈ topk (Gm)

]
sc(j,G)

≥
∑
j<X

P
[
j ∈ NGm (X)

]
sc(j,G)

≥ |X |
∑
j<X

P
[
j ∈ NGm (X)

]
= |X | · E [|NGm (X) |]

≥ |X |(k (1 − o(1))),

where the final transition follows from Lemma 2.4.2 and the assumption that c ∈ (0,1/4) and
m ≤ nc.

Next, we claim that
sc(Mv,G′i) ≥ M. (2.3)

Let Gm denote the sampled graph. Then, notice that there is a trivial upper bound on the size of
|NGm (X \ {i}) |:

|NGm (X \ {i}) | ≤ m(|X | − 1) = k − m. (2.4)

14

Therefore,

sc(Mv ,G′i) =
∑
j

P
[
j ∈ topk (Gm)

]
sc(j,G′i)

≥ M · P
[
i ∈ topk (Gm)

]
≥ M · P

[
X ⊂ topk (Gm)

]
= M · P [|NGm (X \ {i}) | ≤ k − m] = M.

The fourth transition follows from the observation that the only vertices with nonzero sampled
ratings are in X ∪ NGm (X \ {i}) (which implies Vanilla will select all of them, if there are not
more than k), and the final equality comes from from (2.4).

Now, we revisit the impartial mechanismM. We show the probability i is selected byM in
G cannot be too different from the probability i is selected byM in G′i. Let pi = P [i ∈ M(G)].
Consider the “intermediate” graph G′′i such that

wG′′i (j, j′) =

M � 1 j = µ(i), j′ = i
1 j ∈ X, j′ < X
ε � 1

m j < X, j′ ∈ X, (j, j′) , (µ(i), i)
0 otherwise

That is, G′′i is the graph G with the added heavy-weight edge to i, or the graph G′i with the
outgoing edges from i set to 1.

Let Gm be the graph sampled byM. If (µ(i), i) < E(Gm),M cannot distinguish between G
and G′′i , and thus must select i with the same probability in those cases. Then, by impartiality,
M must select i with equal (unconditional) probability in G′i,G

′′
i , since they differ only in the

outgoing edges from i.
In more detail, let us denote pi = P [i ∈ M(G)]. We have

pi = P
[
i ∈ M(G) | (µ(i), i) ∈ E(Gm)

]
P

[
(µ(i), i) ∈ E(Gm)

]
+

P
[
i ∈ M(G) | (µ(i), i) < E(Gm)

]
P

[
(µ(i), i) < E(Gm)

]
=P

[
i ∈ M(G) | (µ(i), i) ∈ E(Gm)

]
P

[
(µ(i), i) ∈ E(Gm)

]
+

P
[
i ∈ M(G) | (µ(i), i) < E(Gm)

]
(1 − P

[
(µ(i), i) ∈ E(Gm)

]
).

Then, we explicitly write pi in terms of qi:

pi =P
[
i ∈ M(G) | (µ(i), i) ∈ E(Gm)

]
qi

+ P
[
i ∈ M(G) | (µ(i), i) < E(Gm)

]
(1 − qi) .

Therefore,

P
[
i ∈ M(G′′i) | (µ(i), i) < E(Gm)

]

= P
[
i ∈ M(G) | (µ(i), i) < E(Gm)

]
=

pi − qiP
[
i ∈ M(G) | (µ(i), i) ∈ E(Gm)

]
(1 − qi)

≤
pi

(1 − qi)
.

15

We can use this inequality to derive an upper bound on the probability that i ∈ M(G′′i):

P
[
i ∈ M(G′′i)

]
= (1 − qi)P

[
i ∈ M(G′′i) |(µ(i), i) < E(Gm)

]

+ qiP
[
i ∈ M(G′′i) |(µ(i), i) ∈ E(Gm)

]

≤ (1 − qi)
pi

1 − qi
+ qi = pi + qi .

Then, by impartiality, P
[
i ∈ M(G′i)

]
= P

[
i ∈ M(G′′i)

]
≤ pi + qi. It follows that

sc(M,G′i)
sc(Mv ,G′i)

≤
(pi + qi)(M + (k − 1)(|X | − 1)) + (1 − pi − qi)k (|X | − 1)

M

= pi + qi +
((pi + qi)(k − 1) + (1 − pi − qi)k)(|X | − 1)

M

≤ pi + qi +
((pi + qi)k + (1 − pi − qi)k)(|X | − 1)

M

= pi + qi +
k (|X | − 1)

M

(2.5)

where the first inequality comes from a simple calculation of scores, Equation (2.3), and the
bound pi + qi ≥ P

[
i ∈ M(G′i)

]
.

On the other hand, let p =
∑

i∈X pi
m . Then

sc(M,G)
sc(Mv ,G)

≤
(k −

∑
i∈X pi) |X | + ε (n − |X |)

∑
i∈X pi

(1 − o(1)) |X |k

=
(k −

∑
i∈X pi)m + ε (n − m)

∑
i∈X pi

(1 − o(1))mk

=
(k − pm)m + ε (n − m) pm

(1 − o(1))mk

=

(
1 − pm

k

)
+ ε (n − m) p

k

(1 − o(1))
≤

(
1 − pm

k

)
+ εn p

k

(1 − o(1))
.

(2.6)

Now, some pi ≤ p, by a simple averaging argument; consider that i. In the construction of µ
above, we showed the upper bound qi ≤

m
n−2(i−1)−1 on the probability that (µ(i), i) is sampled by

M. Notice that the approximation ratio forM is at most

α ≤ min

pi + qi +
k (|X | − 1)

M
,

(
1 − pm

k

)
+ εn p

k

(1 − o(1))

≤ min

p + qi +
k (|X | − 1)

M
,

(
1 − pm

k

)
+ εn p

k

(1 − o(1))

,

by (2.5) and (2.6). Since ε is arbitrarily small, M is arbitrarily large, and qi = o(1), α ≤
min

{
p,

(
1 − pm

k

)}
+ o(1). We derive an upper bound on the minimum by equalizing the two

expressions and solving for p, which yields p = k
k+m . It follows that α ≤ k

k+m + o(1). �

16

We remark that Alon et al. [2] prove an upper bound of k2+k−1
k2+k for their setting, which is the

special case of ours in the regime m = n − 1. They do this by creating a graph where all edges
have weight 0 except for a cycle of length k + 1 of edges of weight 1. One of the vertices in this
cycle — call it i — is selected with probability at most k/(k + 1). The upper bound is obtained
by reducing the weight on i’s outgoing edge to 0. In this new graph, i is still selected with
probability at most k

k+1 by impartiality, so the mechanism’s score is at most k
k+1 k + 1

k+1 (k − 1),
whereas the optimal solution (which is equivalent to Vanilla in this regime) achieves score k. It
is interesting to note that this argument does not extend to the case of m � n, because Vanilla
is unlikely to see the cycle of valuable edges.

2.5 Discussion
From a practical point of view, with NSF reviewing in mind, Theorem 2.3.1, and Credible Subset
itself, are quite compelling. To implement the insights behind Theorem 2.3.1, one should slightly
expand the set of eligible winners to include all “credible” proposals (associated with PIs who
can manipulate their way into the top k), and randomly choose k among them. This seems
justifiable, because it is difficult to distinguish between proposals at the very top.

Our formulation of Credible Subset selects empty subsets with small probability to achieve
impartiality. As noted above, we can replace this with a distribution over nonempty subsets.
Moreover, in practice, this aspect of the mechanism can perhaps be ignored: PIs would be able
to ever-so-slightly increase the probability of their own proposals being accepted by decreasing
the number of credible vertices, but the incentives for manipulation under this almost impartial
version of Credible Subset would be weak compared to Vanilla.

One of the ways in which the mechanism of Merrifield and Saari [71] differs from our setting
is that reviewers are restricted to ranking the proposals. Since Borda count is used to aggregate
the rankings, this is equivalent to limiting the reviewers to handing out the ratings m − 1,m −
2, . . . ,0 (exactly one of each) — even though their true ratings may be different. Our ideas readily
extend to this setting.

Finally, while we have focused on NSF reviewing in the introduction (and, indeed, this is the
real-world setting that motivated us), our results can certainly be applied to conference review-
ing. For example, in large conferences such as AAAI and IJCAI, the PC includes hundreds of
people — a large fraction of the researchers who actually submit papers to the conference. These
conferences are a great fit with our model and results, because: (i) Vanilla is, essentially, the
mechanism that is typically used (modulo choosing the m-regular graph in a way that matches
reviewers with suitable papers), and (ii) k (the number of papers selected for presentation and
publication) is much larger than m (the number of reviews per PC member) — in IJCAI’13,
the values were k = 413 and m < 10, making the Credible Subset Mechanism (or a variation
thereof) eminently practical.

17

18

Chapter 3

Impartial Peer Ranking

3.1 Introduction

While online outsourcing continues to grow rapidly — with individuals and businesses looking
for 24-hour productivity and access to specialized skills — employers are faced with two core
challenges during the hiring process. First, online labor markets (OLMs) today require clients
to evaluate applications from expert crowdworkers to make hiring decisions. However, assess-
ing workers’ applications accurately requires domain expertise; this prevents clients from hiring
workers in areas where they lack expertise. Second, even if clients do possess some domain
expertise that they can leverage to hire workers, they can still struggle with significant search
friction. On online expert outsourcing platforms like Upwork, it takes employers three days to
screen, interview, and hire candidates. We therefore focus on this early roadblock in OLMs: the
ability to hire crowdworkers.

Our approach is to crowdsource aspects of the hiring process itself. That is, we suggest to
have the job candidates evaluate each other and produce a ranking of said candidates that the
employer can then review in a more efficient manner. As they should have the necessary domain
expertise to make informed decisions and the work would be split among many agents, our
aforementioned two core challenges should be largely assuaged. Of course, a main concern is
that candidates then have incentive to strategize their responses so that they themselves appear
higher in the computed ranking. Thus, as in Chapter 2, we will require impartiality of any
amalgamation approach of the peer rankings.

The need for computing a consensus ranking of agents from (incomplete) rankings given by
the agents themselves is certainly not limited to our motivating example of outsourcing labor
markets. For instance, a similar setting is readily seen in massive open online courses (MOOCs).
The sheer size of the student body can often make any non-automated grading intractable. Peer
grading is therefore a common route to alleviate such onerous work on the instructors and has
been extensively studied (e.g. see [83], [95]). Indeed, any setting where a myriad of agents
must be ranked can benefit from our approaches — for example, essay competitions and job
promotions. At a smaller scale, even authorship ordering on publications follow the paradigm —
though with such few agents our results are not practical in this domain.

19

3.1.1 Model and Results
Suppose we have a social ranking function f that takes in several (possibly incomplete) rankings
of n agents and produces a consensus output ranking. In our setting we wish to have the input
rankings be given by the n agents themselves and produce an output ranking that is in some
sense, an approximation to what f would produce on the full rankings. Importantly, we wish to
do so while maintaining that no agent has any incentive to misreport his ranking. More precisely,
no agent should have the ability to affect the probability distribution of his own rank.

Throughout this chapter we will focus on the case f ∈ C2 where C2 (as in the style of [46]) is
the set of social ranking functions that need only the pairwise comparison matrix. That is, they
need only know the fraction of input rankings that rate i before j for all i and j. We will often
call such f , pairwise ranking functions. This class includes common social ranking functions
such as Borda and Kemeny. Given an f ∈ C2, we then give algorithms that are both impartial
and accurate.

In Section 3.3, we introduce the k-partite algorithm, which, in a nutshell, randomly partitions
the agents into subsets, builds a probability distribution over the positions of members of one
subset based on the opinions of members of other subsets, and then generates a distribution over
rankings that is consistent with these distributions over positions. We prove that k-partite is
impartial, and, when used in conjunction with any pairwise rule, it provides small backward
error with respect to that rule: With high probability, k-partite places each agent in the same
position that the given pairwise rule f ∈ C2 would have placed him had the input rankings been
slightly perturbed.

In Section 3.4, we present that Committee algorithm. It randomly chooses a subset of agents,
who serve as the eponymous committee. Each committee member is positioned based on the
opinions of other committee members, and then all other agents are ordered by the committee.
The key idea is that, to avoid conflicts and achieve impartiality, each committee member has slots
that are reserved for him, and he is inserted into the reserved slot that most closely matches the
aggregate opinion of other committee members. We prove that Committee provides mixed error
guarantees with respect to any given pairwise rule. That is, with high probability, Committee
places each agent in a position that is close to where the given pairwise rule would have placed
him had the input rankings been slightly perturbed. Taking on some forward error — a mismatch
between the positions — allows for improved backward error compared to k-partite.

In Section 3.5, we apply the Committee algorithm (after some slight modifications) to the
setting that is the special case explored in Chapter 2 — where we wish to find only the top
k agents instead of producing a complete ranking. We explore its efficacy on an experimental
framework given by [8] and find that this approach outperforms all algorithms in [8] under some
parameter choices of k and m (the number of agents each agent reviews).

3.1.2 Related Work
Amalgamating rankings of several agents into one is well studied in voting theory (see [97]
for a survey). We are not concerned with the primary facet of this setting in that we are not
interested in what input rankings should produce which consensus ranking. Instead, we take such
a social ranking function for granted and instead focus on how to approximate its behavior while

20

maintaining that the agents have no incentive to misreport their true rankings — i.e. maintaining
impartiality.

As briefly alluded to before, our setting can be readily seen as a generalization of the setting
in Chapter 2 where we wished to instead produce only the “top k” of the n agents (where k < n).
That is, from a ranking of the n individuals, we can certainly truncate the top k of them.

The problem is also heavily intertwined with credit division — dividing up a divisible reward
(such as money) among agents who rank each others’ contributions. There, the continuous nature
due to the divisibility of the reward allows for simple, deterministic approaches (see [33]). Yet,
due to the rigidity and discreteness of rankings, we are not admitted such elegance in our setting.
Indeed, several papers such as [66] and [13] have demonstrated the difficulty of our problem
by demonstrating several impossibility results. We partially circumvent this by smoothing the
discreteness via randomization.

3.2 Notation and Definitions

Let us begin with some notation.

1. n: the number of agents (assumed to be ≥ 2).

2. [k] for any k ∈ Z>0: the set {1, . . . , k} (hence [n] denotes the set of all agents).

3. Σ: the set of all permutations of [n].

4. Σn: the set of all agent preference profiles.

5. σ(i) for σ ∈ Σ: the ith agent in the ranking σ.

6. σ−1(i) for σ ∈ Σ: the rank of agent i in the ranking σ.

7. Ω: the set of all pairwise comparison matrices.

8. C2: the set of deterministic1 ranking functions that need only the pairwise comparison
matrix. We refer to such functions as pairwise ranking functions.

9. ‖.‖∞: the L∞ Frobenius style norm on a matrix. That is: ‖X ‖∞ := maxi,j |Xi,j |.

As a slight abuse of notation, when we refer to the function A we mean either of the following.
• A : Σn → Ω: the function that takes in a preference profile and returns the pairwise

comparison matrix.
• A : Σn × 2[n] → Ω: the function that takes in a preference profile and set of agents and

returns the pairwise comparison matrix when considering only the input rankings of the
given set of agents. This is equivalent to the previous representation when the set of agents
is [n].

Similarly, when we refer to a deterministic ranking function f we mean any of the following.
• f : Σn → Σ: a function that takes in a preference profile and returns a ranking.
• f : Σn×2[n] → Σ: a function that takes in a preference profile and set of agents and returns

a ranking using only the input rankings of the given set of agents. This is equivalent to the

1Strictly speaking we do not require this determinism, but we assume it as it greatly reduces the opaqueness of
the proofs.

21

previous representation when the set of agents is [n].
• (If f ∈ C2) f : Ω → Σ: a function that takes in a pairwise comparison matrix and returns

a ranking.
Randomized ranking functions are defined similarly (with their range as distributions over Σ).

Our main focus of interest will be ranking functions that achieve impartiality:
Definition 3.2.1. A (possibly randomized) ranking function f is impartial to agent i if he cannot
affect the distribution of his own ranking. That is, if for all preference profiles (σ1, . . . ,σn) ∈ Σn

there exists no σ̃i such that x , x̃ where

x ∈ [0,1]n and x j is the probability i is ranked j in f (σ1, . . . ,σi−1,σi,σi+1, . . . ,σn), and
x̃ ∈ [0,1]n and x̃ j is the probability i is ranked j in f (σ1, . . . ,σi−1, σ̃i,σi+1, . . . ,σn).

f is said to be impartial if it is impartial for all agents.
Our definition of impartiality may appear to be rather stringent as one may find the following

notion more appropriate.
Definition 3.2.2. A (possibly randomized) ranking function f is score-impartial to agent i if he
cannot affect the expectation of his value. That is, if for all preference profiles (σ1, . . . ,σn) ∈ Σn

and v ∈ Rn, there exists no σ̃i such that E [x · v] , E [x̃ · v] (where x and x̃ are defined as in
Definition 3.2.1).

However, as the next observation demonstrates, this seemingly weaker notion of impartiality
is equivalent to ours.
Observation 3.2.3. If f is a score-impartial ranking function for agent i ∈ [n], then it is also
impartial for agent i.

Proof. Assume for purposes of contradiction that f is not impartial in that we have x , x̃ where
x and x̃ are defined as in Definition 3.2.1. Now let j = arg mink {k | xk , x̃k }. Then if

vk =

1 if k ≤ j
0 otherwise

we do not have the assumed score-impartiality — a contradiction. �

Intuitively, this tells us that if we are unaware of an agent’s value for each rank, then to ensure
score-impartiality for an agent we must enforce regular impartiality as per Definition 3.2.1. In
fact a slight alteration to the proof can show the stronger result that even if we knew an agent’s
value for each rank up to an arbitrarily small (but nonzero) amount of noise, we would still
require regular impartiality to achieve score-impartiality.

3.3 k-partite, Forward (i.e. Standard) Error, and Backward
Error

Given that our goal is to approximate ranking functions in C2, our measure of error is critical
to the statement of the formal problem. A perhaps standard definition of forward (i.e. standard)
error follows.

22

Definition 3.3.1. Let f ∈ C2. A ranking function g (not necessarily ∈ C2) is said to have
(∆prob,∆ f orward) forward error w.r.t. f if for every preference profile σ ∈ Σn and i ∈ [n] we have

��� f (σ)−1(i) − g(σ)−1(i)���
n

< ∆ f orward

with probability ≥ 1 − ∆prob.
Intuitively, a low amount of forward error implies that every agent i is placed near his correct

rank (as determined by f) with high probability. Unfortunately, as the next theorem states,
impartial ranking functions cannot approximate this class of ranking functions well under this
error measure (let alone the popular Borda rule).
Theorem 3.3.2. For all n ≥ 2, there exists no impartial ranking function g that gives a (1/2,1/3)
forward error to the Borda function f (which is in C2).

Proof. For n = 2 a direct analysis (which we omit) gives the result. Let us therefore consider
only the case n ≥ 3 and assume such a g exists.

Suppose we have the preference profileσ where i , 2 gives the ranking i−1, . . . ,n,1, . . . , i−2.
Note that if agent 2 continued this trend and gave the ranking 1, . . . ,n then all agents have the
same Borda score.

Now let us consider agent 2 in more depth and the probability vector p ∈ [0,1]n where
pi denotes the probability agent 2 will be in position i when g determines the ranking. By
impartiality we know that p does not depend on 2’s ranking. As p is a probability vector, we
must have one of the following.

1. The first bn/2c entries of p sum to ≤ 1/2.
In this case, if agent 2 has the ranking 2,1,3,4,5, . . . ,n in σ, then it is not too difficult to
see that f (σ)−1(2) = 1.

2. The last bn/2c entries of p sum to ≤ 1/2.
In this case, if agent 2 has the ranking 1,3,2,4,5, . . . ,n in σ, then it is not too difficult to
see that f (σ)−1(2) = n.

In either case, we find that with probability ≥ 1/2, g will place 2 in a position at least bn/2c
places from f ’s placement. That is, with probability ≥ 1/2 we have ��� f (σ)−1(2) − g(σ)−1(2)��� ≥
bn/2c ≥ n/3 — giving at best a forward error of (1/2,1/3). �

With this impossibility in hand, we set our sights on an alternate error measure in the style of
a standard backwards error (à la numerical stability analysis).
Definition 3.3.3. Let f ∈ C2. A ranking function g (not necessarily ∈ C2) is said to have
(∆prob,∆backward) backward error w.r.t. f if for every preference profile σ ∈ Σn and i ∈ [n] there
exists a matrix Ã ∈ Ω s.t.

1. A(σ) − Ã∞ < ∆backward

2. f (Ã)−1(i) = g(σ)−1(i)
with probability ≥ 1 − ∆prob.

23

Intuitively, a low amount of backward error implies that every agent i is placed in a rank that
had the agents altered their preference profile slightly, i would be in the correct rank with high
probability.

Now consider Algorithm 3: k-partite. As it appears somewhat opaque, it is best to under-
stand its ideas when we assume that all the Xi are the same size (i.e. k divides n and |Xi | = n/k)
and so also, that the γi = k. Slight but convoluted adjustments are made when this is not the case
which for purposes of intuition can be safely ignored.

The crux of the algorithm is the construction of the doubly stochastic Z matrix which in turn
is the sum of Z (i) matrices (a weighted sum when k does not divide n). Intuitively, the (a,b)
entry of these matrices indicate the probability that a should be placed in position b overall.
First, agents are randomly split into k groups of nearly equal size X1, . . . ,Xk and then each
such group separately ranks all n agents producing rankings τi. The Z (i) matrix represents Xi’s
contribution to Z . Specifically, each agent not in Xi is placed in his exact position dictated by τi
with probability 1/k and in all positions that the agents in Xi themselves were assigned to in τi
with probability 1/(n(k − 1)). This info is encoded as the only non-zero entries in Z (i) — each
column then sums to 1/k and each row representing an agent in Xi is zero, and all other rows
sum to 1/(k − 1). Z is then computed as the sum of these Z (i) matrices. Owing to its doubly
stochastic nature (see Observations 3.7.1 and 3.7.2 for a proof of this property) allows us to use
the Birkhoff-von Neumann theorem to sample from this distribution and remain faithful to the
probabilities.

1: Let f ∈ C2 and σ ∈ Σn be given as input
2: Randomly split all n agents into k groups X1, . . . ,Xk where |Xi | ∈ {bn/kc , dn/ke}
3: for i = 1, . . . , k do
4: τi ← f (σ,Xi)
5: γi ← n/ |Xi |

6: Let Z (i) ∈ Rn×n where

Z (i)
a,b ←

1
γi

if a < Xi and τi (b) = a
1

n(γi−1) if a < Xi and τi (b) ∈ Xi

0 otherwise

7: end for
8: Z ←

∑
i∈[k]

n/|Xi |−1
k−1 Z (i) (a doubly stochastic matrix — see Observations 3.7.1 and 3.7.2)

9: Use Birkhoff-von Neumann to sample a ranking σ s.t. a is ranked b with probability Za,b
10: return σ

Algorithm 3: k-partite

We will see that this algorithm is not only impartial, but also admits limited amounts of
backward error. To see this, we will first need the following lemmas.
Lemma 3.3.4. If k agents X = {x1, . . . , xk } are sampled without replacement from the [n] with
preference profile σ ∈ Σn, then with probability < n2 exp

(
− kε2

2

)
we have ‖A(σ) − A(σ,X)‖∞ ≥

24

ε . That is

P [‖A(σ) − A(σ,X)‖∞ ≥ ε] < n2 exp
(
−

kε2

2

)
.

Proof.

P [‖A(σ) − A(σ,X)‖∞ ≥ ε] ≤
∑
i< j

P
[���A(σ)i,j − A(σ,X)i,j

��� ≥ ε
]

≤
∑
i< j

2 exp
(
−

kε2

2

)
(by Hoeffding’s inequality)

= 2
(
n
2

)
exp

(
−

kε2

2

)
< n2 exp

(
−

kε2

2

)
.

�

Lemma 3.3.5. For every f ∈ C2, σ ∈ Σn, and ε > 0, k-partite gives at most

(
1 −

(
k − 2
k − 1

) (
1 − n2k exp

(
−
bn/kc ε2

2

))
, ε

)
backward error to f .

Proof. Observe that

P [∃i ∈ [k] s.t. ‖A(σ) − A(σ,Xi)‖∞ ≥ ε] ≤
k∑

i=1

P [A(σ) − A(σ,Xi) ≥ ε]

≤

k∑
i=1

n2 exp
(
−
|Xi | ε

2

2

)
(by Lemma 3.3.4)

≤

k∑
i=1

n2 exp
(
−
bn/kc ε2

2

)
= n2k exp

(
−
bn/kc ε2

2

)
.

Further observe that for any agent a he is placed directly where one of the Xi places him with

25

probability
k∑

i=1 s.t. a<Xi

n/|Xi | − 1
k − 1

1
γi

=

k∑
i=1 s.t. a<Xi

n/|Xi | − 1
k − 1

1
n/|Xi |

= 1 −
1

n(k − 1)

k∑
i=1 s.t. a<Xi

|Xi |

≥ 1 −
1

n(k − 1)

k∑
i=1

|Xi |

= 1 −
1

n(k − 1)
n

=
k − 2
k − 1

.

Therefore we can deduce that k-partite gives at most
(
1 −

(
k−2
k−1

) (
1 − n2k exp

(
−
bn/kcε2

2

))
, ε

)
backward error as stated. �

We are now ready for the main result of k-partite.

Theorem 3.3.6. For every f ∈ C2 and σ ∈ Σn, k-partite is impartial and if k =

⌊(
n

ln n

)1/3
⌋

then
gives at most

(4/k,4/k) ∈ *
,
O *

,

(
ln n
n

)1/3
+
-
,O *

,

(
ln n
n

)1/3
+
-

+
-

backward error to f .

Proof. That the algorithm is impartial is clear from the inability of any agent i affecting the ith

row of the Z matrix. Let us therefore turn our attention to the error bound.
From Lemma 3.3.5 it suffices to show that if we have ε = 4/k we get that

1 −
(

k − 2
k − 1

) (
1 − n2k exp

(
−
bn/kc ε2

2

))
≤

4
k
.

Observe that

n2k exp
(
−
bn/kc ε2

2

)
≤ n2k exp

(
−

(n/k − 1)ε2

2

)
= n2k exp

(
−

(n/k − 1)(4/k)2

2

)
= n2k exp

(
8
k2

)
exp

(
−

8n
k3

)
≤ n2

(
n1/3

)
exp

(
8
22

)
exp

(
−

8n
n

ln n

)
= e2n−17/3

≤ n−2.

26

Thus we see that

1 −
(

k − 2
k − 1

) (
1 − n2k exp

(
−
bn/kc ε2

2

))
=

1
k − 1

+

(
k − 2
k − 1

) (
n2k exp

(
−
bn/kc ε2

2

))
≤

1
k − 1

+ (1)
(
n−2

)
≤ 2/k + 2/k
= 4/k .

�

A natural question is why we insist on what appears to be such a convoluted algorithm instead
of a more natural approach such as in Algorithm 4: Naive-bipartite. We will revisit this question
in further detail in Section 3.4 after introducing the pertinent concepts.

1: Let f ∈ C2 and σ ∈ Σn be given as input
2: Randomly split the n agents into two sets X and Y where |X | =

⌈
n
2

⌉
and |Y | =

⌊
n
2

⌋

3: τ1 ← f (σ,X) restricted to the agents only in Y
4: τ2 ← f (σ,Y) restricted to the agents only in X
5: σ interlaces τ1 and τ2. That is:

σ(i) ←

τ1 ((i + 1)/2) if i is odd
τ2 (i/2) if i is even

6: return σ

Algorithm 4: Naive-bipartite

3.4 Committee and Mixed Error
k-partite demonstrated that there exist impartial mechanisms that accurately imitate any f ∈ C2.

Specifically, we saw that k-partite admits a backward error of
(
O

((
ln n
n

)1/3
)
,O

((
ln n
n

)1/3
))

.
Observe however that the algorithm/error is somewhat hamstrung by the fact that an agent must
be (with high probability) ranked in exactly a location that a small perturbation of the input
rankings would give. Consequently, in this section we introduce an orthogonal axis of error and
allow for an agent to be close, instead of exactly at such a location. Consider the following error
measure.
Definition 3.4.1. Let f ∈ C2. A ranking function g (not necessarily ∈ C2) is said to have
(∆prob,∆backward ,∆ f orward) mixed error w.r.t. f if with probability at least 1 − ∆prob, we have
that for every preference profile σ ∈ Σn and i ∈ [n] there exists a matrix Ã ∈ Ω s.t.

27

1. A(σ) − Ã∞ < ∆backward

2. | f (Ã)−1(i)−g(σ)−1(i) |
n < ∆ f orward

This is in some sense a union of the forward and backward error concepts seen in Section
3.3 and is a standard error concept often seen in scientific computing and numerical stability
analysis.

Now consider Algorithm 5: Committee. Intuitively, this algorithm is given a committee of
agents X = {x1, . . . , xk } who determine the entire ranking. First, for each committee member xi,
we determine their rank using only the rankings given by the remaining k−1 members. However,
as directly placing each committee member in this fashion may cause collisions (i.e. multiple
members may be assigned the same rank) we restrict placement of xi to only the positions i, i +

k, i + 2k, Specifically, we assign xi to the closest such position to the rank given to xi by
the other committee members. There are then k of the n ranks assigned. Second, the committee
ranks all of the n agents, and the non-committee members are placed in the order ranked by the
committee in the remaining n − k slots.

1: Let f ∈ C2, σ ∈ Σn, and X = {x1, . . . , xk } ⊆ [n] be given as input
2: for i = 1, . . . , k do
3: c ← arg min j∈{i,i+k,...} | j − f (σ,X \ {xi}) | (break ties arbitrarily)
4: σ(c) ← xi
5: end for
6: τ ← f (σ,X)
7: j ← 1
8: for i = 1, . . . ,n do
9: if τ(i) < X then

10: while σ(j) is occupied do
11: j ← j + 1
12: end while
13: σ(j) ← τ(i)
14: end if
15: end for
16: return σ

Algorithm 5: Committee

Any statements on the accuracy of the algorithm clearly rely heavily on the make-up of the
committee. However, when the committee X is decided completely at random, the algorithm
then satisfies the following guarantee.

Lemma 3.4.2. For every f ∈ C2, σ ∈ Σn, and ε > 0, Committee with a randomly chosen

committee X = {x1, . . . , xk } gives at most
(
n2 (|X | + 1) exp

(
−

(|X |−1)ε2

2

)
, ε , |X |+1

n

)
mixed error to

f .

28

Proof. First observe that,

P [∃i ∈ [k] s.t. ‖A(σ) − A (σ,X \ {xi})‖∞ ≥ ε] ≤
k∑

i=1

P [‖A(σ) − A (σ,X \ {xi})‖∞ ≥ ε]

≤

k∑
i=1

n2 exp
(
−

(k − 1) ε2

2

)
= n2k exp

(
−

(k − 1) ε2

2

)
and

P [‖A(σ) − A (σ,X)‖∞ ≥ ε] ≤ n2 exp
(
−

kε2

2

)
≤ n2 exp

(
−

(k − 1) ε2

2

)
.

Thus

P [‖A(σ) − A (σ,X)‖∞ ≥ ε or ∃i ∈ [k] s.t. ‖A(σ) − A (σ,X \ {xi})‖∞ ≥ ε]

≤ n2(k + 1) exp
(
−

(k − 1) ε2

2

)
.

We can therefore conclude that with probability at least 1 − n2(k + 1) exp
(
−

(k−1)ε2

2

)
, that the

instantiations of A(σ,X), A (σ,X \ {x1}) , . . . , A (σ,X \ {xk }), and g(σ) where g is Committee,
leads us to the following.

• For each agent i ∈ X , if Ã = A (σ,X \ {xi}) then A(σ) − Ã∞ < ε . Moreover, as i is
placed within k − 1 positions of where g(σ) locates him, we have

��� f (Ã)−1(i) − g(σ)−1(i)��� < k ⇒
��� f (Ã)−1(i) − g(σ)−1(i)���

n
<

k
n
<

k + 1
n

.

• For each agent i < X , if Ã = A(σ,X) then A(σ) − Ã∞ < ε . Moreover, as i is placed
within k positions of where g(σ) locates him, we have

��� f (Ã)−1(i) − g(σ)−1(i)��� < k + 1⇒
��� f (Ã)−1(i) − g(σ)−1(i)���

n
<

k + 1
n

.

Together, these two cases complete the proof (substituting in |X | = k).

�

From here, we can see the following.

29

Theorem 3.4.3. For every f ∈ C2, σ ∈ Σn, and ε > 0, Committee with a randomly chosen
committee X of size |X | = 1 + 2

ε2 ln
(

n3

ε

)
is impartial and gives at most (ε, ε, (|X | + 1) /n) mixed

error to f .

Proof. The algorithm’s impartiality is clear and Lemma 3.4.2 tells us that Committee with a ran-

domly chosen X gives us at most
(
n2 (|X | + 1) exp

(
−

(|X |−1)ε2

2

)
, ε , |X |+1

n

)
mixed error to f . In

particular, as we can safely assume |X | < n (as otherwise the theorem is vacuously true due to the

forward error being ≥ 1) we have that we get a mixed error of at most
(
n3 exp

(
−

(|X |−1)ε2

2

)
, ε , |X |+1

n

)
.

Setting ε = n3 exp
(
−

(|X |−1)ε2

2

)
and solving for |X | then gives the result. �

In particular, this theorem allows for an incomparable error to Theorem 3.3.6. That is, we can
reduce the backwards error so long as we are willing to take on some forward error. For example,
setting |X | appropriately gives at most

(
n−2/5,n−2/5,2/n + (34/5)n−1/5 ln n

)
mixed error.

In addition to Committee’s mixed error guarantees, the algorithm is especially useful in
the important case of when we know of a small group of agents who together have an accu-
rate/representative view of the rankings. Such a scenario often arises for instance when there is
a committee of agents whose opinion is of relatively large importance such as in, for example,
conference review processes. Any theoretical guarantees however, would have to incorporate the
knowledge of the committee’s accuracy.

With our definition of mixed error in hand, let us briefly revisit the question of the seemingly
extraneous complexity of k-partite. That is, why we do not consider an algorithm such as
Algorithm 4: Naive-bipartite. We demonstrate that this algorithm does not admit tolerable mixed
error in general.

Consider f ∈ C2 that is defined as:
• Let X =

{
i > 1|at least one person ranks i before 1

}
• Return the ranking starting with the agents of X ordered lexicographically, followed by

the agents of [n] \ ({1} ∪ X) ordered lexicographically, and agent 1 inserted into the bn/3c
position overall (shifting appropriately).

Now consider the preference profile where i reports the ranking i,1,2, . . . , i − 1, i + 1, . . . ,n
(and 1 reports 1, . . . ,n). Then Naive-bipartite will always return a ranking where agent 1 is
placed first or second — as he will always top his set. Clearly this does not give any tolerable
mixed error (it does not even admit a mixed error of (1/2,1,1/4)).

3.5 Committee in the “Top k” Setting
In this section we hark back to the setting of Chapter 2: instead of impartially computing an entire
ranking of the agents, we wish to only select the top k of them where each agent only evaluates
m other agents. Since the publication of our work, [8] has introduced both a new impartial
algorithm which they call ExactDollarPartition (EDP), and an alternative (empirical) metric of
success. Specifically, though our positive results of Chapter 2 are the best possible under our
metric, [8] rightfully argues the approach is lacking in some respects: problems arise when m is
large and our guarantees are in the worst case — leaving much to be desired for more practical

30

scenarios. They therefore give many reasonable randomly produced settings to highlight this
problem and demonstrate the EDP algorithm can quite appealingly handle these cases.

Here we add to this by showing that a modification to our Committee algorithm for this “top
k” problem, Algorithm 6: Top-k-committee, is quite promising under some of [8]’s experimental
settings. Intuitively, the algorithm first randomly chooses a committee X = {x1, . . . , xk } and
xi is deemed to be in the top k if X \ {xi} believes this to be true. We then go through the
remaining agents one at a time and deem whether they should be in the top k by the opinion
of agents in X . In either case once this decision is made, they are added to X so that they can
assist in categorizing the remaining agents — consequently, the committee grows throughout the
algorithm. To further maximize accuracy, the agent on the “chopping block” is chosen to be one
whom we are fairly confident on in terms of their membership to the top k. Specifically, we
choose the agent ranked highest or lowest by those in X .

1: Let f ∈ C2 and σ ∈ Σn be given as input
2: Randomly select k agents from [n] — call X = {x1, . . . , xk }

3: A← ∅ (the set of agents in the top k)
4: B ← ∅ (the set of agents not in the top k)
5: for i = 1, . . . , k do
6: if f (σ,X \ {xi})−1 (xi) ≤ k then
7: A← A ∪ {xi}

8: else
9: B ← B ∪ {xi}

10: end if
11: end for
12: while |A| < k do
13: if k − |A| > n − k − |B | then
14: i ← arg min j∈[n]\X f (σ,X)−1(j)
15: A← A ∪ {i}
16: else
17: i ← arg max j∈[n]\X f (σ,X)−1(j)
18: B ← B ∪ {i}
19: end if
20: X ← X ∪ {i}
21: end while
22: return A

Algorithm 6: Top-k-committee

Our experimental results are encapsulated in Figure 3.1. We ran the experiments given in [8]
for n = 120 and various values of m, k, and φ. That is, for each setting of these three variables, we
ran 100 trials where agents’ true rankings were determined by a Mallows model with dispersion
parameter φ and each agent randomly reviewed m other agents giving Borda scores to each. The
true top k agents are those occupying the first k ranks when we amalgamate all agents’ complete
rankings via the Borda rule. The accuracy of an algorithm is then measured by the percentage of
the true top k it was able to select. See [8] for a thorough breakdown of the experimental setup.

31

Figure 3.1: m (the number of agents each reviews) versus k (the number of agents to be selected)
for various values of φ (the dispersion parameter for Mallows model to construct the examples).

As we can see in the figures, Top-k-committee does better when m is large and when k is
small. In both cases this is due to the fact that the algorithm has essentially a completely different
source of error than EDP. That is, Top-k-committee’s struggles are due to it not using the rankings
of the agents not in the committee, while in contrast, EDP’s is mainly due to a rounding error
of a randomization (which is especially prominent when k is small). Use of one over the other
therefore is not categorical and requires an analysis of the exact setting.

3.6 Discussion

Our setting of producing a consensus ranking from rankings produced by the ranked themselves
is certainly applicable to real-world situations such as previously described in crowd-sourcing
websites. We therefore are (at the time of writing) in the process of applying our theoretical ideas
in experiments where job applicants on one such crowd-sourcing website do indeed evaluate each
other. For the sake of practicality, an important concern of our approaches is the tolerability of
our error in these experiments — especially when n is not too large. This error is somewhat

32

abated by a critical implication of impartiality: we can assume that the rankings procured from
each agent will be an accurate representation of their beliefs. This is not the case if we were to
run some non-impartial algorithm such as simply computing the Borda ranking. Therefore, if we
were to run Borda we would almost certainly accrue error due to agents strategizing and reporting
untruthful rankings. The use of our impartial algorithms thus induces a trade-off between the
approximation error and removing the error caused by strategic agents. This trade-off is one of
our primary investigations in our experiments.

From a theoretical standpoint, previous impossibility results, as well as our own on the for-
ward error, necessitate the introduction of different metrics of approximation. We therefore view
our (randomized) backward and mixed error definitions as a key contribution of this work. How-
ever, a glaring open question is the tightness of our error results. That is, can we do much better
than k-partite and Committee. Furthermore, extending these error ideas to ranking functions
outside of the C2 class and providing accurate algorithms is a logical next step to investigate.

3.7 Proof k-partite (Algorithm 3) is Well-defined

In this section, which we view as an appendix, we prove that the Z matrix given in k-partite
is indeed doubly stochastic (and therefore the algorithm is well-defined) via the following two
observations.
Observation 3.7.1. In the algorithm k-partite, the rows of the Z matrix sum to 1.

Proof. Let us first consider the row sums of the Z (i).
Clearly the ath row sums to 0 if a ∈ Xi. Otherwise for a < Xi, we find that it sums to

1
γi

+ |Xi |
1

n(γi − 1)
=

1
γi

+
1

γi (γi − 1)
=

1
γi − 1

.

We therefore find that the ath row of Z sums to∑
i∈[k]

(
n/ |Xi | − 1

k − 1

) (
sum of ath of Z (i)

)
=

∑
i∈[k],a<Xi

n/ |Xi | − 1
k − 1

1
γi − 1

=
∑

i∈[k],a<Xi

γi − 1
k − 1

1
γi − 1

=
∑

i∈[k],a<Xi

1
k − 1

= 1.

�

Observation 3.7.2. In the algorithm k-partite, the columns of the Z matrix sum to 1.

Proof. Let us first consider the column sums of the Z (i).

33

If τi (b) < Xi we have that the column has only one non-zero entry with a value of 1/γi =

|Xi |/n. Otherwise, if τi (b) ∈ Xi, we find that it sums to

(n − |Xi |)
1

n(γi − 1)
= (γi |Xi | − |Xi |)

1
γi |Xi | (γi − 1)

=
1
γi

=
|Xi |

n
.

Therefore all columns sum to |Xi |/n.
We therefore find that the bth column of Z sums to∑

i∈[k]

(
n/ |Xi | − 1

k − 1

) (
sum of bth column of Z (i)

)
=

∑
i∈[k]

n/ |Xi | − 1
k − 1

|Xi |

n

=
1

k − 1

∑
i∈[k]

(
1 −
|Xi |

n

)

=
1

k − 1
*.
,
k −

∑
i∈[k]

|Xi |

n
+/
-

=
1

k − 1
(k − 1)

= 1.

�

34

Chapter 4

Cake Cutting with Piecewise Valuations

4.1 Introduction

More than six decades ago, Steinhaus [91] posed the problem of envy-free (EF) cake cutting:
when multiple agents have heterogeneous valuations over a divisible cake, how can we divide
the cake between the agents so that each agent (weakly) prefers its piece to every other piece?
For two agents, the trivial solution is given by the cut and choose protocol: one agent divides the
cake into two pieces that it values equally, and the other agent chooses its preferred piece.

In 1960, Selfridge and Conway independently proposed an elegant EF cake cutting algorithm
for the case of three agents (see, e.g., [20]). The general case continued to tantalize researchers
for decades. In a 1988 episode of his PBS show, Sol Garfunkel, the famous mathematical ed-
ucator, proclaimed it to be one of the greatest problems of 20th Century mathematics. Finally,
in 1995—half a century after the problem was posed—Brams and Taylor [20] published an EF
cake cutting algorithm for any number of agents.

Our story would end here (somewhat prematurely), if not for a disturbing property of the
Brams-Taylor algorithm: although it is guaranteed to terminate in finite time, the number of
operations carried out by the protocol can be arbitrarily large, depending on the preferences of
the agents. In other words, for every t there are preferences such that the algorithm performs at
least t operations. This is a major flaw, especially from the computer scientist’s—or parent’s, for
that matter— point of view; if you start cutting a cake during your child’s third birthday party,
you would like to finish before he turns eighty!

The problem of designing a bounded EF cake cutting algorithm (where the number of op-
erations depends only on the number of agents) remained an open problem until the 2016 work
of Aziz and Mackenzie [9] where they gave such an algorithm (albeit requiring an extraordinary

number of operations — on the order of nnnn
nn

). In this chapter we go over a result preceding
that of [9] but is still of some interest due to the unwieldy complexity of [9]. The difficulty in the
EF cake cutting problem seems to stem from the complexity of agents’ preferences, which are
generally represented by arbitrary continuous density functions. We therefore ask the following
question:

Assuming that agents’ preferences are restricted, can we design bounded (or even
computationally efficient) EF cake cutting algorithms?

35

4.1.1 Model and Results

Agents’ preferences are represented by valuation functions, which assign values to given pieces
of cake. We consider several classes of structured, concisely representable valuations that were
originally proposed by Chen et al. [32], and further studied in several recent papers [31, 34, 12,
18]. An agent with a piecewise uniform valuation function is interested in a subset of the cake,
and simply wants to receive as much of that subset as possible. As an intuitive example where
piecewise uniform valuations may arise, suppose that the cake represents access time to a shared
backup server; an agent may be able to use as much time as it can get, but only when its computer
is idle. Agents with piecewise constant valuations are interested in several contiguous pieces of
cake, so that each piece is valued uniformly (one crumb is as good as another) but crumbs from
different pieces are valued differently. This class is more general than the class of piecewise
uniform valuations; in fact, piecewise constant valuations can approximate general valuations
to an arbitrary precision. Piecewise linear valuations are even more general, and in a sense are
almost fully expressive.

To discuss bounded cake cutting algorithms, we also need to define which operations the
algorithm is allowed to perform. Here we draw on the well-studied Robertson-Webb model [88,
28, 43, 100, 85], which allows two types of operations: cut, which returns a piece of cake with
a given value for a given agent, and eval, which queries an agent on its value for a given piece.
This model is essentially beyond reproach as it is sufficient to simulate all famous discrete cake
cutting algorithms.

A natural starting point for our study is the design of EF cake cutting algorithms for the most
restricted of the three classes, piecewise uniform valuations. Strikingly though, our first result
is that the a bounded EF algorithm for piecewise uniform valuations doubles as a bounded EF
algorithm for general valuations requiring the same number of operations. In other words, EF
cake cutting under piecewise uniform valuations is already as hard as the general case!

Nevertheless, the three classes of valuation functions have a distinct advantage over general
valuations in that they can be parameterized by the number of “pieces” in the word “piecewise”.
For example, in our backup server setting, this parameter k would represent the number of time
intervals in which the agent’s computer is idle. Can we design EF algorithms that are tractably
bounded by a function of the number of agents n and the number of pieces k? Our answer,
which we view as our main result, is the most positive one could hope for: even for piecewise
linear valuations, we design an EF cake cutting algorithm whose number of queries (in the
Robertson-Webb model) is bounded by a polynomial function in n and k. We feel that this
strong result alleviates the tension around the apparent nonexistence of polynomial time EF cake
cutting algorithms for unrestricted valuations, and paints a compelling picture of what makes the
problem difficult.

Encouraged by this result, we next ask whether we can strengthen it even further by designing
EF algorithms that satisfy additional desirable properties and run in time that is bounded by a
function of n and k. It turns out that the answer is negative when the additional property is
strategyproofness, in the sense that an agent can never gain from manipulating the algorithm.
Moreover, we find that there are no finite cake cutting algorithms that satisfy Pareto-optimality—
a well-known criterion of economic efficiency—even if one does not ask for EF.

36

4.1.2 Related work

Several papers support our premise that EF cake cutting is extremely difficult. Stromquist [92]
showed that there are no bounded algorithms, albeit under the strong assumption that the algo-
rithm must allocate contiguous pieces of cake; his result was strengthened by Deng et al. [37],
but they made the same assumption. Procaccia [85] proved an unconditional but rather weak
lower bound of Ω(n2) in the Robertson-Webb model.

Tractable cake cutting algorithms do exist when the number of agents is very small: the
solutions for the cases of two and three agents have long been known. The previously mentioned
path-breaking work of Aziz and Mackenzie [9] have demonstrated that the problem is bounded,

but the operational complexity is wildly intractable (on the order of nnnn
nn

).
We obtain a strong positive result by restricting the agents’ valuations. Alternatively, one

can relax the target property itself, by requiring only approximate EF, so that envy is bounded
by a given ε . This goal is implicit in the work of Su [94], and explicit in a paper of Lipton et
al. [65], who design an ε-EF algorithm whose number of queries (in the Robertson-Webb model)
is polynomial in n and 1/ε .

4.2 Preliminaries

First, some notation.
• [0,1]: The cake is modelled as this real interval.
• N = {1, . . . ,n}: The set of agents (of which there are n).
• ∀k ∈ Z>0 : [k] = {1, . . . , k}
• vali (X): The value agent i has for a piece of cake X ⊆ [0,1]. Often for an interval

[x, y] ⊆ [0,1] we will abuse notation slightly by writing vali (x, y) instead of vali ([x, y]).
• vi: The value density function for agent i whose derivative is undefined or discontinuous

at only a finite number of points. That is, for every interval [x, y] ⊆ [0,1], vali (x, y) =∫ y

x vi (z)dz. Note that this implies that agent valuations are additive and non-atomic (i.e.
vali (x, x) = 0).

We assume that agent valuations are normalized so that vali (0,1) = 1. This assumption
is without loss of generality as the properties we consider (envy-freeness, Pareto-optimality,
strategyproofness) are invariant to scaling the valuation functions by a constant factor.

Following Chen et al. [32], we consider three restricted classes of valuations. We say that an
agent has a piecewise constant valuation when its value density function is piecewise constant,
that is, [0,1] can be partitioned into a finite number of subintervals such that the function is
constant on each interval. We define piecewise linear valuations similarly. Piecewise uniform
valuations are a special case of piecewise constant where on each subinterval the density is
either some fixed constant c > 0, or zero. Piecewise uniform valuations are less expressive
than piecewise constant valuations, which are less expressive than piecewise linear valuations.
The reader is encouraged to verify that these formal definitions are consistent with their intuitive
interpretations above.

37

An allocation (X1, . . . ,Xn) assigns a piece of cake Xi (that is itself composed of a finite
number of subintervals of the cake [0,1]) to each agent i such that no two pieces overlap.1 An
allocation is envy-free (EF) if vali (Xi) ≥ vali

(
X j

)
for all i, j ∈ N . That is, each agent weakly

prefers his own piece to the piece given to any other agent.
In the rest of the chapter, we assume that we are operating in the standard Robertson-Webb

query model. That is, the algorithm can only ask agents two types of queries:
1. Eval query of the form eval(i, x, y): asks agent i ∈ N for its value for the interval [x, y] —

that is, eval(i, x, y) = vali (x, y).

2. Cut query of the form cut(i, x,w): asks agent i ∈ N the minimum (leftmost) point y ∈ [0,1]
such that vali (x, y) = w or claims impossibility if no such y exists.

For example, consider the cut and choose protocol; it can be simulated using two queries in
the Roberston-Webb model. First, a cut(1,0,1/2) query gives a point w such that the interval
[0,w] is worth 1/2 to agent 1, and hence the value of the complement [w,1] is also 1/2. Next, an
eval(2,0,w) query gives the value of agent 2 for [0,w]. If this value is at least 1/2, we allocate
[0,w] to agent 2 and [w,1] to agent 1, and if it smaller than 1/2, we switch the allocated pieces.

4.3 General vs. Piecewise Uniform Valuations
Although confining agent valuations to piecewise uniform valuations may seem overly restrictive
as a first step, our first result shows that this is not the case. In fact, EF cake cutting for piecewise
uniform valuations is just as hard as EF cake cutting for general valuations, in that an algorithm
for the former doubles as an algorithm for the latter.
Theorem 4.3.1. LetA be an algorithm that computes an EF allocation for n arbitrary piecewise
uniform valuations in less than f (n) queries. Then A can compute EF allocations in less than
f (n) queries for general valuation functions.

Proof. Let val1, . . . ,valn be general valuation functions for the agents. Run A on these valua-
tions. There are two cases to consider.

Case 1: A terminates in f (n) queries or less, and outputs an allocation (X1, . . . ,Xn).
We claim that (X1, . . . ,Xn) is EF with respect to val1, . . . ,valn. To prove this, we construct
piecewise uniform valuations Ui based on the queries and responses when A runs on the vali.
The high-level idea is to construct Ui which are equivalent to the vali in the sense that A would
treat them identically, and then prove envy-freeness of (X1, . . . ,Xn) for vali using the envy-
freeness of (X1, . . . ,Xn) for Ui.

Let Wi be the set of all endpoints for all queries and responses associated with agent i when
A runs on valuations vali. That is, if we were to construct Wi iteratively with each query to
agent i, then a query and response b = cut(i,a,w) or w = eval(i,a,b) would add both a and b to
Wi.

Similarly, denote by Y the set of all endpoints for the contiguous intervals in the allocation
produced by A. That is, wherever the interval [0,1] is cut to construct a part of the final alloca-
tion, we place the cut point in Y .

1Technically we allow overlap at a finite number of points since valuations are non-atomic.

38

Finally, let Zi = Wi ∪ Y ∪ {0,1} denote an ordered set (using the natural ordering on the
reals) and zi,j denote the jth smallest element of Zi. We are now ready to define the value density
function ui (which pins down the valuation function Ui):

ui (x) =

Mi if ∃ j s.t. x ∈
[
zi,j+1 −

vali (zi, j ,zi, j+1)
Mi

, zi,j+1

]

0 otherwise,

where Mi = max j

(
vali (zi, j ,zi, j+1)

zi, j+1−zi, j

)
.

For a given interval
[
zi,j , zi,j+1

]
, Ui satisfies two crucial properties:

1. Ui (zi,j , zi,j+1) = vali
(
zi,j , zi,j+1

)
.

2. If Ui (zi,j , zi,j+1) > 0 then there exists ε > 0 such that for all x ∈
[
zi,j+1 − ε, zi,j+1

]
, Ui (x) =

Mi.

In turn, these two properties imply that:

1. A will ask the same queries and terminate with the same allocation when run on Ui instead
of vali.

2. Ui (Xi) = vali (Xi), where Xi is the piece given to agent i in the allocation returned by A.

To see this, note that the first property ensures all eval query responses are the same for
both vali and Ui. The two properties together similarly ensure all cut query responses are also
unaffected; in particular, the second property guarantees that cutting slightly to the left of zi,j+1
would give strictly smaller value, hence the leftmost cut point with the same value is still zi,j+1.
Finally, since Y is included in Zi, the first property implies that Ui (Xi) = vali (Xi) for the
allocation returned by A.

Case 2: A terminates in f (n) or more queries.
Consider the queries asked and responses given afterA has asked f (n)−1 queries. Now consider
Ui as defined in case 1, except with Zi = Wi ∪ {0,1} (we drop the set of points Y since we do
not know the allocation thatA will return). Ui satisfies the property thatA will behave the same
with respect to Ui and vali. However, this means that A will take at least f (n) queries when
operating on Ui, and this contradicts the assumption that A finds an EF allocation in less than
f (n) steps for any piecewise uniform valuations. �

4.4 Bounded Algorithm for Piecewise Linear Valuations

We have shown that restricting agents’ valuations to piecewise uniform valuations does not make
the problem of finding EF allocations any easier. However, these results rely crucially on the
allowance of any number of discontinuities in the value density functions. In the piecewise
uniform case, the discontinuities are the points where the density function jumps to a constant
c or drops to 0. For piecewise linear valuations, we refer to the endpoints of the subintervals
on which the density is linear (hence these are discontinuities of the derivative of the density

39

function rather than of the density function itself.) We use the term break points of the value
density function.

In this section, we consider what happens when we bound the total number of break points
across agents’ value density functions. Even when the agent valuations are piecewise linear, and
assuming that there are at most k break points across all agents’ valuations, we design a cake
cutting algorithm that finds an EF allocation with at most O(n6k ln k) queries in the Robertson-
Webb model. Before presenting this algorithm we introduce a few definitions and subroutines.
Definition 4.4.1. A separating interval of [a,b] is an interval [α, β] ⊆ [a,b] such that:

1. For all i ∈ N we have vali (α, β) ≤ 1
nvali (a,b).

2. There exists an agent p such that valp (α, β) = 1
nvalp (a,b).

We refer to p as the champion of the separating interval.
Given an interval [a,b], we construct a finite cover of separating intervals. That is, we find a

finite set C = {[αi,j , βi,j]} (j indexes the separating intervals with champion i) such that [αi,j , βi,j]
is a separating interval of [a,b] with champion i, and for every x ∈ [a,b], there exists an i and j
such that x ∈ [αi,j , βi,j]. Algorithm 7 produces exactly this.

Cover(a, b)
C ← ∅
α ← a
while true do

Let β ≤ b be the minimal value such that [α, β] is worth exactly vali (a,b) /n to some
agent i.
if no such β exists then

break
end if
C ← C ∪ [α, β]
α ← β

end while
Let α∗ be the largest value such that [α∗,b] is worth exactly vali (a,b) (n − 1)/n to some
agent i.
return C ∪ [α∗,b]

Algorithm 7: Cover [a,b] by separating intervals

Note that line 4 can be simulated with cut(i,α,vali (a,b) /n) queries, and line 11 can be
simulated with cut(i,0,vali (a,b) (n − 1)/n) queries.2 vali (a,b) can be of course obtained via
an eval(i,a,b) query.

In each iteration of the loop, we add a separating interval since we know that [α, β] has value
exactly vali (a,b) /n to some agent i, and we choose the smallest possible β. All other agents
j have value at most val j (a,b) /n. What remains to be shown is that all points are in some
separating interval. We move from left to right in the loop without skipping over any points, so

2Obtaining the largest α∗ may require a cut from right to left, but this can be avoided by tweaking line 11 to a
more opaque form.

40

the only possible missing points would be in the case where no viable β exists. However, in this
case, [α,b] has value less than vali (a,b) /n for all agents i. Line 11 ensures that we cover [α,b]
since [α∗,b] has value at least vali (a,b) /n for some agent i and therefore α∗ < α.
Definition 4.4.2. The sandwich allocation of [a,b] with respect to separating interval [α, β] with
champion p, is the allocation where p receives [α, β] and the remaining agents each receive
some X j for j ∈ [n − 1], where X j is defined as the union of four intervals:
• [a + (j − 1)γ,a + jγ]
• [α − jγ,α − (j − 1)γ]
• [β + (j − 1)δ, β + jδ]
• [b − jδ,b − (j − 1)δ]

where γ = α−a
2(n−1) and δ =

b−β
2(n−1) .

In words, the sandwich allocation divides [a,α] to 2(n − 1) subintervals of equal length, and
adds subintervals j and n− j + 1 (enumerating from left to right) to X j . A similar process is done
for [β,b]. See Figure 4.1 for an illustration.

a α β b
separating interval

Figure 4.1: A sandwich allocation for agents 1 (the champion), 2, and 3, with dotted, solid, and
dashed densities, respectively. The value of agent 1 for the separating interval is val1 (a,b) /3.
Agent 2 receives the first and fourth quarters of [a,α] and [β,b]; note that its value for this
allocation (the gray area) is val2 ([a,α] ∪ [β,b]) /2.

We require the following well-known property of piecewise linear valuations [32, 18].
Lemma 4.4.3. Suppose that an agent has linear value density on interval [c,d], and that [c,d]
is divided into 2k equal pieces. Let X j for j ∈ [k] denote the piece formed by combining the jth

piece from the left (moving right) and the jth piece from the right (moving left). That is, X1 is the
left-most and right-most piece, X2 is the second from the left combined with the second from the
right, etc. Then the agent is indifferent between the X j .

We can now show that if there are no break points outside of the separating interval, then the
sandwich allocation is EF (see Figure 4.1).
Lemma 4.4.4. Let [α, β] be a separating interval of [a,b]. Furthermore, suppose that there are
no break points in the agents’ piecewise linear value density functions on (a,α) and (β,b). Then
the sandwich allocation of [a,b] with separating interval [α, β] is EF.

Proof. By assumption there are no break points in (a,α) and (β,b), so each agents’ density
function is linear on these intervals. Let p denote the champion of the separating interval. Lemma
4.4.3 tells us that the agents are indifferent among the pieces given to agents in N \ {p}. Agent
i ∈ N \ {p} therefore receives value exactly (vali (a,b) − vali (α, β))/(n − 1) ≥ vali (α, β)
since vali (α, β) ≤ vali (a,b) /n (by the definition of sandwich allocation).

41

We can now argue that the sandwich allocation is EF. An agent in N \ {p} does not envy
another agent in the same set since the agent is indifferent among the pieces given to agents in
N \ {p}. These agents also do not envy agent p since they receive value at least vali (α, β) from
their pieces. It remains to show that agent p does not envy any other agent. Agent p receives
value vali (a,b) /n from its piece. Since agent p is indifferent among the pieces in N \ {p}, it
receives value (vali (a,b) − vali (a,b) /n)/(n − 1) = vali (a,b) /n for these pieces. Agent p is
therefore indifferent among all the pieces in the sandwich allocation. �

We are now ready to give our algorithm that computes an EF allocation for agents with
piecewise linear valuations and at most k total break points. At a high-level, our algorithm
constructs a cover of separating intervals. For each separating interval in the cover, we attempt to
construct an EF allocation. If any of these attempts are successful, we are done. Otherwise, we
split [a,b] at every endpoint of an interval in the cover and recurse on these smaller subintervals.
Critically, our allocation is chosen so that if we do indeed require a split, then we will separate
at least two break points.

EF-Allocate()
1: return EF-Allocate(0, 1)

EF-Allocate(a, b)
1: C ← Cover(a, b)
2: For each [α, β] ∈ C, check if the sandwich allocation of [a,b] for separating interval [α, β]

is EF (for all agents). If it is then return the sandwich allocation.
3: Otherwise let Z be all endpoints of separating intervals in C. Sort Z from smallest to largest,

giving points {z1, . . . , zm}. Recursively call EF-Allocate on intervals formed by consecu-
tive points in Z (i.e., EF-Allocate(zi, zi+1)). Return the allocation formed by joining the
allocations returned by each of these recursive calls.

Algorithm 8: EF procedure for piecewise linear valuations

Theorem 4.4.5. Algorithm 8: EF-Allocate will terminate, produce an EF allocation and require
at most O(n6k ln k) queries.

Proof. As the algorithm can only return by producing an EF allocation or recursing, it will
produce an EF allocation if it terminates. Moreover, each iteration of the algorithm will issue a
nonzero number of queries (in order to construct a cover and sandwich allocations). Therefore,
if we show the number of queries is O(n6k ln k), we will have also shown the algorithm will
terminate and produce an EF allocation.

Lemma 4.4.4 tells us that for a separating interval [α, β], the sandwich allocation is EF if
there are no break points in (a,α) and (β,b), or in other words, all break points are included in
[α, β]3. If Algorithm 8 does not find an EF allocation in line 2, then no separating interval in the
cover contains all break points. Therefore, recursing on intervals formed by consecutive points
in Z (the ordered set of endpoints of separating intervals in C) will separate at least two break

3Technically, a break point can appear at a or b but in this case the break point is inconsequential to the valuations
on [a,b] and so we ignore it.

42

points. If there are at most k break points in [a,b], there can be at most k − 1 break points in any
of the intervals recursed on. The base case of this recursion is the case where k ≤ 1. If k = 1,
then the sandwich allocation for the separating interval containing the break point will be EF. If
k = 0, then the sandwich allocation of any separating interval will be EF.

Now let us consider the number of queries our algorithm uses. It is not difficult to see that
computing the cover will take at most n3+n < 2n3 queries and produce a set of at most cardinality
n2 + 1 < 2n2. Moreover, checking if a sandwich allocation is EF will require at most 4(n −
1)n queries. This is because the sandwich allocation splits [a,α] and [β,b] each into 2(n − 1)
intervals, so there are 4(n − 1) intervals to ask the agents to evaluate (as there is no need to
evaluate [α, β]). The maximum number of queries T (n, k) can therefore be implicitly given by:

T (n, k) ≤ 2n3 + 2n2(4(n − 1)n) +

2n2∑
j=1

T (n, k j)

< 8n4 +

2n2∑
j=1

T (n, k j),

where due to the property that we split break points, k j < k for all j, and due to the property
that a break point can appear in the interior of only one of the recursively allocated intervals,∑2n2

j=1 k j ≤ k 4. We now show by induction on k that:

T (n, k) ≤

8n4 if k ≤ 1
24n6k ln k otherwise

As a base case, it is clear the statement holds for k ≤ 1. We now assume this statement holds
true for k, and inductively establish it for k + 1.

T (n, k + 1) < 8n4 +

2n2∑
j=1

T (n, k j)

≤ 8n4 +
∑

j s.t .k j≤1

8n4 +
∑

j s.t.1<k j<k

24n6k j ln k j

≤ 8n4 + 16n6 +
∑

j s.t .1<k j<k

24n6k j ln k

< 24n6 + 24n6 ln k
∑

j s.t .1<k j<k

k j

≤ 24n6 + 24n6k ln k

= 24n6(1 + k ln k)

≤ 24n6(k + 1) ln(k + 1),

where the last inequality uses the fact that 1 + k ln k ≤ (k + 1) ln(k + 1) for k ≥ 1. This is easy to
see for k ≥ 2 since 1, ln(k) ≤ ln(k +1), and we can manually verify the case of k = 1. Therefore,

4Again, we ignore ignore any inconsequential break points that are at the endpoint of an interval.

43

the number of queries made by Algorithm 8 is O(n6k ln k). Since the number of queries is
bounded, we know that Algorithm 8 terminates (and therefore returns an EF allocation). �

4.5 Pareto Optimality and Strategyproofness
Theorem 4.4.5 is encouraging, and it seems natural to ask whether one can do better: can we
design tractable (in n and the number of break points k) algorithms that achieve allocations
that are EF and satisfy additional desirable properties? Unfortunately, for the two prominent
properties that we consider in this section, the answer is negative.

The property of Pareto optimality is a standard notion of economic efficiency; an allocation
X1, . . . ,Xn is Pareto optimal if there is no other allocation X ′1, . . . ,X

′
n such that vali

(
X ′i

)
≥

vali (Xi) for all i ∈ N , and there exists j ∈ N such that vali
(
X ′i

)
> vali (Xi). It turns out that

the Robertson-Webb model does not permit algorithms that produce Pareto optimal allocations
— even if other properties such as envy-freeness are not required!
Theorem 4.5.1. There is no (finite) Pareto optimal cake cutting algorithm for piecewise constant
valuations.

Proof. Suppose A is a cake cutting algorithm and let all n agents answer queries to A in a way
that is consistent with uniform value density functions (that is, vi (x) = 1 for all x ∈ [0,1]). Now
take any interval [a,b] of non-trivial length that is given to a single agent and does not contain
any endpoint of any query. Call the owner of this piece agent p. Change p’s value density to be:

vp(x) =

2 if x ∈
[
a + b−a

4 , a+b
2

]

0 if x ∈
(

a+b
2 ,b − b−a

4

]

1 otherwise

Running A on these new valuations (with p changing to vp and all other agents unchanged)
produces the same allocation as running A on agents with uniform value density functions as
the answers to the eval and cut queries remain unaffected. However, the allocation produced by
A is clearly not Pareto optimal as assigning

[
a+b

2 ,b − b−a
4

]
to some other agent would raise the

receiver’s utility without affecting p. �

Taking a game-theoretic point of view [32], we would like to design cake cutting algorithms
that are strategyproof, in the sense that agents can never benefit from answering the algorithm’s
queries untruthfully, regardless of what other agents do. In other words, truthfully answering the
algorithm’s queries must be a (weakly) dominant strategy.

In contrast to Pareto optimality, strategyproofness alone can be achieved easily, e.g., by al-
ways allocating the entire cake to a fixed agent. However, if we additionally ask for an algorithm
that is EF and bounded (in n and k), we obtain an impossibility result even for piecewise constant
valuations.
Theorem 4.5.2. For any function f : N × N → N and any number of agents n ≥ 2, there exists
no strategyproof and EF cake cutting algorithm on piecewise constant valuations that requires
at most f (n, k) queries for every number of break points k.

44

Proof. Suppose for sake of contradiction A is such an algorithm. Now let ε ∈
(
0,3−(n+1) f (n,2n)

)
and define the piecewise uniform valuations U and V as follows. Let [us,ut] be an interval of
length ε/(2n − 3) and [vs,vt] ([us,ut] with vt − vs = ε/(2n − 2).

U (x) =

1
1−ε/(2n−3) , x < [us,ut]
0, x ∈ [us,ut]

V (x) =

1
1−ε/(2n−2) , x < [vs,vt]
0, x ∈ [vs,vt]

Now we consider A given the following n + 1 settings:

• All agents have valuations U
• Agent 1 is uniform, agent 2 has valuation V , all other agents have valuation U
• Agent 2 is uniform, agent 3 has valuation V , all other agents have valuation U
...

• Agent n is uniform, agent 1 has valuation V , all other agents have valuation U

However, as we have not defined these valuation functions precisely, we have some freedom in
answering the queries given by A. Specifically, we will answer the queries as to maximize the
size of the interval the break points of U (and therefore V) are in. Intuitively, with any single
query we can answer such that the interval we know the break points are located in is reduced by
at most a factor of 3.

Rigorously, let I = [Ile f t , Iright] denote the minimally sized interval we know all break points
reside in. Initially, I = [0,1]. Now consider the evaluation query eval(i,a,b) for some i and
a < b. If |I

⋂
[a,b]| < 1

3 |I | then assume there are no break points in [a,b] for any agent, and
instead they are in the largest contiguous interval of I \ [a,b] (which has length at least 1

3 |I |).
Otherwise, assume all break points are in I

⋂
[a,b]. In this way, no evaluation query can reduce

I by more than a factor of 3. Similarly, consider a cut query b = cut(i,a,w). For sake of
simplicity, assume that a ≥ Ile f t , since otherwise we can assume we are considering the query
cut(i, Ile f t ,w − eval(i,a, Ile f t)). That is, w is replaced with w − eval(i,a, Ile f t) and a with Ile f t .
There are then three cases to consider:

• Case 1: a is on or past the one third mark of I in terms of length (i.e. a ≥ Ile f t + 1
3 |I |).

Then assume all break points are to the left of a, and so all break points are in [Ile f t ,a].
• Case 2: a is left of the one third mark, and w < 1

3eval(i, Ile f t , Iright).
Then answer the cut query as if no break points exist in [Ile f t ,a], but assume all break
points are in fact in [b, Iright].

• Case 3: a is left of the one third mark, and w ≥ 1
3eval(i, Ile f t , Iright).

Then assume all break points are inside [a,a + 1
3 |I |].

In any case, we are left with again a reduction of I by at most a factor of 3.
As there are at most (n+1) f (n,2n) queries asked, the condition ε ∈

(
0,3−(n+1) f (n,2n)

)
ensures

we can answer all queries in a consistent manner such that after all n + 1 runs ofA, we still have
an interval of size at least ε in length to place all break points. Call this the ε-interval.

45

We claim that for each of the n + 1 settings, A must allocate all of the ε-interval to a single
agent — ignoring zero-measure subsets given to other agents. Note that this “single agent” is not
necessarily the same agent for different settings. Intuitively, this is due to the fact that A does
not identify any properties of any agent valuations in the interval, except for each agent’s total
value of the interval. Rigorously, outside the ε-interval, we may assume U and V are constant,
and it is simple to see that by suitably setting U and V we can assign all of the value inside the
ε-interval to any agent who receives a non-zero-measure subset of said interval. Therefore, two
agents cannot both have non-zero-measure subsets of the ε-interval as we can suitably set U and
V such that one of the concerning agents is envious of another.

Now let p be the agent who is given all of this interval in the setting with all valuations U,
and let q be the agent given this interval when agent p is uniform, agent p + 1 (i.e. agent 1 if
p = n) is V , and all other agents are U . We claim p = q.

There are two cases we must consider. Suppose instead q ≡ p+1(mod n). q has valuation V ,
and by envy-freeness, must receive a piece of length at least

(
1 − ε

2n−2

)
/n + ε

2n−2 . The first term
is 1/n of the cake that has non-zero value to q, and the second is the length of [vs,vt] — which is
worthless to q. Also by envy-freeness, p receives a piece of length 1/n and the other n−2 agents
receives pieces of length at least

(
1 − ε

2n−3

)
/n. Thus, the total length of cake distributed must be

at least:

1 − ε
2n−2

n
+

ε

2n − 2
+

1
n

+ (n − 2)
1 − ε

2n−3

n
= 1 +

ε

2n(2n − 3)
> 1

which is clearly impossible. Similarly, if q . p + 1 (mod n) and q , p, then the total length of
cake distributed also must be > 1. Thus p = q as claimed.

Now consider the following settings given to A:

1. All agents have valuations U
2. p has uniform valuation, all other agents have valuation U
3. p has uniform valuation, r ≡ p + 1(mod n) has valuation V , all other agents have valuation

U

Since p receives the ε-interval in setting 1, p must get a piece of length at least L = (1 −
ε

2n−3)/n + ε
2n−3 due to envy-freeness. p must therefore get a piece of length at least L in setting 2,

as otherwise p would be strictly better off by misrepresenting his true valuations as U (forming
setting 1). This allows us to bound the amount that r can receive in setting 2. We can bound this
amount by subtracting the lengths that p must receive in addition to the lengths that agents other
than r and p must receive due to envy-freeness:

1 −
(

1 − ε
2n−3

n
+

ε

2n − 3

)
− (n − 2)

1 − ε
2n−3

n

=
1 − ε

2n−3

n

46

Therefore, r receives a piece of length at most
(
1 − ε

2n−3

)
/n in setting 2. Finally, consider what

occurs if r misrepresents his valuation as V in setting 2 to form setting 3. Since we have shown
that p must still get all of the ε-interval, r receives a piece of length at least

(
1 − ε

2n−2

)
/n. As

this piece does not include the ε-interval, it is advantageous for r in setting 2 to falsely report a
valuation of V — forming setting 3. This contradicts the strategyproofness assumption of A.
�

We can obtain analogs of Theorems 4.5.1 and 4.5.2 for piecewise uniform valuations, at
the expense of slightly weakening the algorithm’s computational power: for Pareto optimality
we require the algorithm to be bounded rather than simply finite, and for strategyproofness and
envy-freeness we also require the number of contiguous intervals in the algorithm’s allocation to
be bounded.

4.6 Discussion

One of the nice features of piecewise uniform, constant, and linear valuations is that they can
be concisely represented. For example, a piecewise linear value density function is of the form
f (x) = a j · x + b j on each subinterval I j , so we simply need to know a j and b j for all j ≤ k + 1,
where k is the number of break points (including 0 and 1) of the density function. Given the full,
explicit representations it is easy to compute an EF allocation in polynomial time in the size of
the representation. Several recent papers [32, 34, 12] leverage this insight by making a powerful
assumption: the inputs to the cake cutting algorithm are the agents’ full valuation functions.

In contrast, our algorithmic model is based on the Robertson-Webb model. Conceptually,
this model captures what we normally think of as cake cutting protocols. The Robertson-Webb
model is harder than the full revelation model: any polynomial time algorithm in the former
model gives a polynomial time algorithm in the latter model, but the converse is not true. To
illustrate this difference, observe that when full piecewise constant valuations are reported, it
is straightforward to achieve a Pareto optimal allocation (via a linear program that maximizes
social welfare), whereas in the Robertson-Webb model Pareto optimality cannot be achieved
(Theorem 4.5.1). In addition, in the full revelation model it is impossible to reason about general
valuations—which have an infinite representation—hence in that model there is no analog of our
Theorem 4.3.1.

In fact, the main open question of Chen et al. [32] is whether their protocol can be simulated in
the Robertson-Webb model. Their main result is a strategyproof and EF algorithm for piecewise
uniform valuations that are fully reported to the algorithm. Our results essentially give a negative
answer to this question, with one caveat: they also assume that the algorithm may throw away
pieces of cake.5

The most enigmatic question still remains open: is there a polynomially bounded (in n) EF
cake cutting algorithm (i.e., one that can be simulated in the Robertson-Webb model) for general
valuations? Our Theorem 4.3.1 may be the key to unlocking this mystery: whether one aims

5Counterintuitively, it is known that fair cake cutting algorithms can perform better when allowed to throw away
pieces [5].

47

to prove a possibility or an impossibility result, one can focus on piecewise uniform valuations,
which are exactly as hard as the general case.

48

Chapter 5

Cake Cutting Equilibria

5.1 Introduction

In this chapter we return again to the cake cutting setting: The misleadingly childish metaphor
for the challenging and important task of fairly dividing a heterogeneous divisible good between
multiple agents. In particular, there is a significant amount of AI work on cake cutting [85, 31,
34, 18, 12, 7, 59, 26, 25, 32, 10, 24, 64], which is tightly intertwined with emerging real-world
applications of fair division more broadly [50, 61]. Here however, we will expound upon an
aspect of the problem that is arguably underappreciated: the game theoretic underpinnings.

Recall (perhaps) the simplest cake cutting protocol of cut and choose as described in Chapter
4. The first agent cuts the cake into two pieces that it values equally; the second agent then
chooses the piece that it prefers, leaving the first agent with the remaining piece. It is easy to
see that this protocol yields a proportional and envy-free allocation (in fact these two notions
coincide when there are only two agents). However, taking the game-theoretic point of view, it
is immediately apparent that the agents can often do better by disobeying the protocol when they
know each other’s valuations. For example, in the cut and choose protocol, assume that the first
agent only desires a specific small piece of cake, whereas the second agent uniformly values the
cake. The first agent can obtain its entire desired piece, instead of just half of it, by carving that
piece out.

So how would strategic agents behave when faced with the cut and choose protocol? A
standard way of answering this question employs the notion of Nash equilibrium: each agent
would use a strategy that is a best response to the other agent’s strategy. To set up a Nash
equilibrium, suppose that the first agent cuts two pieces that the second agent values equally;
the second agent selects its more preferred piece, and the one less preferred by the first agent
in case of a tie. Clearly, the second agent cannot gain from deviating, as it is selecting a piece
that is at least as preferred as the other. As for the first agent, if it makes its preferred piece even
bigger, the second agent would choose that piece, making the first agent worse off. Interestingly
enough, in this equilibrium the tables are turned; now it is the second agent who is getting
exactly half of its value for the whole cake, while the first agent generally gets more. Crucially,
the equilibrium outcome is also proportional and envy-free. In other words, even though the
agents are strategizing rather than following the protocol, the outcome in equilibrium has the

49

same fairness properties as the “honest” outcome!
With this motivating example in mind, we would like to make general statements regarding

the equilibria of cake cutting protocols. We wish to identify a general family of cake cutting
protocols — which captures the classic cake cutting protocols — so that each protocol in the
family is guaranteed to possess (approximate) equilibria. Moreover, we wish to argue that these
equilibrium outcomes are fair. Ultimately, our goal is to be able to reason about the fairness
of cake divisions that are obtained as outcomes when agents are presented with a standard cake
cutting protocol and behave strategically.

5.1.1 Model and Results

To set the stage for a result that encompasses classic cake cutting protocols, we introduce (in
Section 5.2) the class of generalized cut and choose (GCC) protocols. A GCC protocol is repre-
sented by a tree, where each node is associated with the action of an agent. There are two types
of nodes: a cut node, which instructs the agent to make a cut between two existing cuts; and
a choose node, which offers the agent a choice between a collection of pieces that are induced
by existing cuts. Moreover, we assume that the progression from a node to one of its children
depends only on the relative positions of the cuts (in a sense to be explained formally below).
We argue that classic protocols — such as Dubins-Spanier [40], Selfridge-Conway (see [88]),
Even-Paz [44], as well as the original cut and choose protocol — are all GCC protocols. We
view the definition of the class of GCC protocols as one of our main contributions.

In Section 5.3, we observe that GCC protocols may not have exact Nash equilibria (NE). We
then explore two ways of circumventing this issue, which give rise to our two main results.

1. We prove that every GCC protocol has at least one ε-NE for every ε > 0, in which agents
cannot gain more than ε by deviating, and ε can be chosen to be arbitrarily small. In fact,
we establish this result for a stronger equilibrium notion, (approximate) subgame perfect
Nash equilibrium (SPNE), which is, intuitively, a strategy profile where the strategies are
in NE even if the game starts from an arbitrary point.

2. We slightly augment the class of GCC protocols by giving them the ability to make in-
formed tie-breaking decisions that depend on the entire history of play, in cases where
multiple cuts are made at the exact same point. While, for some valuation functions of
the agents, a GCC protocol may not possess any exact SPNE, we prove that it is always
possible to modify the protocol’s tie-breaking scheme to obtain SPNE.

In Section 5.4, we observe that for any proportional protocol, the outcome in any ε-equilibrium
must be an ε-proportional division. We conclude that under the classic cake cutting protocols
listed above — which are all proportional — strategic behavior preserves the proportionality of
the outcome, either approximately, or exactly under informed tie-breaking.

One may wonder, though, whether an analogous result is true with respect to envy-freeness.
We give a negative answer, by constructing an envy-inducing SPNE under the Selfridge-Conway
protocol, a well-known envy-free protocol for three agents. However, we are able to design a
curious GCC protocol in which every NE outcome is a contiguous envy-free allocation and vice
versa, that is, the set of NE outcomes coincides with the set of contiguous envy-free allocations.
It remains open whether a similar result can be obtained for SPNE instead of NE.

50

5.1.2 Related Work

The notion of GCC protocols is inspired by the Robertson-Webb [88] model of cake cutting
— the concrete complexity model that specifies how a cake cutting protocol may interact with
the agents (which formed the basis of our questions in Chapter 4). Their model underpins a
significant body of work in theoretical computer science and AI, which focuses on the complexity
of achieving different fairness or efficiency notions in cake cutting [42, 43, 100, 36, 7, 85, 59].
In Section 5.2, we briefly review the Roberston-Webb model and explain why it is inappropriate
for reasoning about equilibria.

In the context of the strategic aspects of cake cutting, Nicolò and Yu [77] were the first to
suggest equilibrium analysis for cake cutting protocols. Focusing exclusively on the case of two
agents, they design a specific cake cutting protocol whose unique SPNE outcome is envy-free.
And while the original cut and choose protocol also provides this guarantee, it is not “procedural
envy free” because the cutter would like to exchange roles with the chooser; the two-agent pro-
tocol of Nicoló and Yu aims to solve this difficulty. Brânzei and Miltersen [25] also investigate
equilibria in cake cutting, but in contrast to our work they focus on one cake cutting protocol —
the Dubins-Spanier protocol — and restrict the space of possible strategies to threshold strate-
gies. Under this assumption, they characterize NE outcomes, and in particular they show that
in NE the allocation is envy-free. Brânzei and Miltersen also prove the existence of ε-equilibria
that are ε-envy-free; again, this result relies on their strong restriction of the strategy space, and
applies to one specific protocol.

Several papers by computer scientists [32, 74, 69] take a mechanism design approach to
cake cutting; their goal is to design cake cutting protocols that are strategyproof, in the sense
that agents can never benefit from manipulating the protocol. This turns out to be an almost
impossible task [101, 24]; positive results are obtained by either making extremely strong as-
sumptions (agents’ valuations are highly structured), or by employing randomization and sig-
nificantly weakening the desired properties. In contrast, our main results, given in Section 5.3,
deal with strategic outcomes under a large class of cake cutting protocols, and aim to capture
well-known protocols; our result of Section 5.4 is a positive result that achieves fairness “only”
in equilibrium, but without imposing any restrictions on the agents’ valuations.

5.2 The Model

Let us start with some notation and definitions (much of which will be a refresher from Chapter
4 so we do not belabour the points).
• [0,1]: The cake is modelled as this real interval.
• N = {1, . . . ,n}: The set of agents (of which there are n).
• vali (X): The value agent i has for a piece of cake X ⊆ [0,1]. Often for an interval

[x, y] ⊆ [0,1] we will abuse notation slightly by writing vali (x, y) instead of vali ([x, y]).
We assume WLOG that vali (0,1) = 1.

• vi: The value density function for agent i whose derivative is undefined or discontinuous
at only a finite number of points. That is, for every interval [x, y] ⊆ [0,1], vali (x, y) =

51

∫ y

x vi (z)dz. Note that this implies that agent valuations are additive and non-atomic (i.e.
vali (x, x) = 0).

A piece of cake is a finite union of disjoint intervals. We are interested in allocations of
disjoint pieces of cake X1, . . . ,Xn, where Xi is the piece that is allocated to agent i ∈ N . A piece
is contiguous if it consists of a single interval.

We study two fairness notions. An allocation X is proportional if for all i ∈ N , vali (Xi) ≥
1/n; and envy-free if for all i, j ∈ N , vali (Xi) ≥ vali

(
X j

)
. Note that envy-freeness implies

proportionality.

5.2.1 Generalized Cut and Choose Protocols
Recall from Chapter 4 the standard communication model in cake cutting proposed by Robertson
and Webb [88] which restricted interaction between a protocol and the agents to two types of
queries:

1. Eval query of the form eval(i, x, y): asks agent i ∈ N for its value for the interval [x, y] —
that is, eval(i, x, y) = vali (x, y).

2. Cut query of the form cut(i, x,w): asks agent i ∈ N the minimum (leftmost) point y ∈ [0,1]
such that vali (x, y) = w or claims impossibility if no such y exists.

Note however, the communication model does not give much information about the actual im-
plementation of the protocol and what allocations it produces. For example, the protocol could
allocate pieces depending on whether a particular cut was made at a specific point (see Algorithm
10).

For this reason, we define a generic class of protocols that are implementable with natural
operations, which capture all bounded1 and discrete cake cutting algorithms, such as cut and
choose, Dubins-Spanier, Even-Paz, Successive-Pairs, and Selfridge-Conway (see, e.g., [84]). At
a high level, the standard protocols are implemented using a sequence of natural instructions,
each of which is either a Cut operation, in which some agent is asked to make a cut in a specified
region of the cake; or a Choose operation, in which some agent is asked to take a piece from a set
of already demarcated pieces indicated by the protocol. In addition, every node in the decision
tree of the protocol is based exclusively on the execution history and absolute ordering of the cut
points, which can be verified with any of the following operators: <,≤,=,≥,>.

More formally, a generalized cut and choose (GCC) protocol is implemented exclusively
with the following types of instructions:
• Cut: The syntax is “i Cuts in S”, where S = {[x1, y1], . . . , [xm, ym]} is a set of contiguous

pieces (intervals), such that the endpoints of every piece [x j , y j] are 0,1, or cuts made in
the previous steps of the protocol. Agent i can make a cut at any point z ∈ [x j , y j], for
some j ∈ {1, . . . ,m}.

• Choose: The syntax is “i Chooses from S”, where S = {[x1, y1], . . . , [xm, ym]} is a set of
contiguous pieces, such that the endpoints of every piece [x j , y j] ∈ S are 0, 1, or cuts made
in the previous steps of the protocol. Agent i can choose any single piece [x j , y j] from S
to keep.

1In the sense that the number of operations is upper-bounded by a function that takes the number of agents n as
input.

52

• If-Else Statements: The conditions depend on the result of choose queries and the absolute
order of all the cut points made in the previous steps.

A GCC protocol uniquely identifies every contiguous piece by the symbolic names of all
the cut points contained in it. For example, Algorithm 9 is a GCC protocol. Algorithm 10 is
not a GCC protocol, because it verifies that the point where agent 1 made a cut is exactly 1/3,
whereas a GCC protocol can only verify the ordering of the cut points relative to each other and
the endpoints of the cake. Note that, unlike in the communication model of Robertson and Web
[88], GCC protocols cannot obtain and use information about the valuations of the agents — the
allocation is only decided by the agents’ Choose operations.

1: agent 1 Cuts in {[0,1]} // @x
2: agent 1 Cuts in {[0,1]} // @y

3: agent 1 Cuts in {[0,1]} // @z
4: if (x < y < z) then
5: agent 1 Chooses from {[x, y], [y, z]}
6: end if

Algorithm 9: A GCC protocol. The notation “// @x” assigns the symbolic name x to the cut
point made by agent 1.

1: agent 1 Cuts in {[0,1]} // @x
2: if

(
x = 1

3

)
then

3: agent 1 Chooses from {[0, x], [x,1]}
4: end if

Algorithm 10: A non-GCC protocol.

As an illustrative example, we now discuss why the discrete version of Dubins-Spanier be-
longs to the class of GCC protocols — but first we must describe the original protocol. Dubins-
Spanier is a proportional (but not envy-free) protocol for n agents, which operates in n rounds.
In round 0, each agent makes a mark x1

i such that the piece of cake to the left of the mark is
worth 1/n, i.e., vali

(
0, x1

i

)
= 1/n. Let i∗ be the agent that made the leftmost mark; the protocol

allocates the interval [0, x1
i∗] to agent i∗; the allocated interval and satisfied agent are removed. In

round t, the same procedure is repeated with the remaining n − t agents and the remaining cake.
When there is only one agent left, it receives the remaining cake. To see why the protocol is
proportional, first note that in round t the remaining cake is worth at least 1− t/n to each remain-
ing agent, due to the additivity of the valuation functions and the fact that the pieces allocated in
previous rounds are worth at most 1/n to these agents. The agent that made the leftmost mark
receives a piece that it values at 1/n. In round n − 1, the last agent is left with a piece of cake
worth at least 1 − (n − 1)/n = 1/n.

The protocol admits a GCC implementation as follows. For the first round, each agent i is
required to make a cut in {[0,1]} at some point denoted by x1

i . The agent i∗ with the leftmost
cut x1

i∗ can be determined using If-Else statements whose conditions only depend on the ordering
of the cut points x1

1, . . . , x
1
n. Then, agent i∗ is asked to choose “any” piece in the singleton

53

set {[0, x1
i∗]}. The subsequent rounds are similar: at the end of every round the agent that was

allocated a piece is removed, and the protocol iterates on the remaining agents and remaining
cake. Note that agents are not constrained to follow the protocol, i.e., they can make their marks
(in response to cut instructions) wherever they want; nevertheless, an agent can guarantee a piece
of value at least 1/n by following the Dubins-Spanier protocol, regardless of what other agents
do.

While GCC protocols are quite general, a few well-known cake cutting protocols are beyond
their reach. For example, the Brams-Taylor [20] protocol is an envy-free protocol for n agents,
and although its individual operations are captured by the GCC formalism, the number of opera-
tions is not bounded as a function of n (i.e., it may depend on the valuation functions themselves).
Its representation as a GCC protocol would therefore be infinitely long. In addition, some cake
cutting protocols use moving knives (see, e.g., [22]); for example, they can keep track of how an
agent’s value for a piece changes as the piece smoothly grows larger. These protocols are not
discrete, and, in fact, cannot be implemented even in the Robertson-Webb model.

5.2.2 The Game

We study GCC protocols when the agents behave strategically. Specifically, we consider a GCC
protocol, coupled with the valuation functions of the agents, as an extensive-form game of perfect
information (see, e.g., [90]). In such a game, agents execute the Cut and Choose instructions
strategically. Each agent is fully aware of the valuation functions of the other agents and aims to
optimize its overall utility for the chosen pieces, given the strategies of other agents.

While the perfect information model may seem restrictive, we note that the same assump-
tion is also made in previous work on equilibria in cake cutting [77, 25]. More importantly, it
underpins foundational papers in a variety of areas of microeconomic theory, such as the semi-
nal analysis of the Generalized Second Price (GSP) auction by Edelman et al. [41]. A common
justification for the complete information setting, which is becoming increasingly compelling as
access to big data becomes pervasive, is that agents can obtain a significant amount of informa-
tion about each other from historical data.

In more detail, the game can be represented by a tree (called a game tree) with Cut and
Choose nodes:
• In a Cut node defined by “i cuts in S”, where S = {[x1, y1], . . . , [xm, ym]}, the strategy space

of agent i is the set S of points where agent i can make a cut at this step — i.e. ∪z∈S z.
• In a Choose node defined by “i chooses from S”, where S = {[x1, y1], . . . , [xm, ym]}, the

strategy space is the set {1, . . . ,m}, i.e., the indices of the pieces that can be chosen by the
agent from the set S.

The strategy of an agent defines an action for each node of the game tree where it executes
a Cut or a Choose operation. If an agent deviates, the game can follow a completely different
branch of the tree, but the outcome will still be well-defined.

The strategies of the agents are in Nash equilibrium (NE) if no agent can improve its utility by
unilaterally deviating from its current strategy, i.e., by cutting at a different set of points and/or by
choosing different pieces. A subgame perfect Nash equilibrium (SPNE) is a stronger equilibrium
notion, which means that the strategies are in NE in every subtree of the game tree. In other

54

words, even if the game started from an arbitrary node of the game tree, the strategies would still
be in NE. An ε-NE (resp., ε-SPNE) is a relaxed solution concept where an agent cannot gain
more than ε by deviating (resp., by deviating in any subtree).

5.3 Existence of Equilibria
It is well-known that finite extensive-form games of perfect information can be solved using
backward induction: starting from the leaves and progressing towards the root, at each node the
relevant agent chooses an action that maximizes its utility, given the actions that were computed
for the node’s children. The induced strategies form an SPNE. Unfortunately, although we con-
sider finite GCC protocols, we also need to deal with Cut nodes where the action space is infinite,
hence naïve backward induction does not apply.

In fact, it turns out that not every GCC protocol admits an exact NE — not to mention
SPNE. For example, consider Algorithm 9, and assume that the value density function of agent
1 is strictly positive. Assume there exists a NE where agent 1 cuts at x∗, y∗, z∗, respectively,
and chooses the piece [x∗, y∗]. If x∗ > 0, then the agent can improve its utility by making the
first cut at x′ = 0 and choosing the piece [x′, y∗], since val1 (x′, y∗) > val1 (x∗, y∗). Thus,
x∗ = 0. Moreover, it cannot be the case that y∗ = z∗, since the agent only receives an allocation
if y∗ < z∗. Then, by making the second cut at any y′ ∈ (y∗, z∗), agent 1 can obtain the value
val1 (0, y′) > val1 (0, y∗). It follows that there is no exact NE where the agent chooses the first
piece. Similarly, it can be shown that there is no exact NE where the agent chooses the second
piece, [y∗, z∗]. This illustrates why backward induction does not apply: the maximum value at
some Cut nodes may not be well defined.

5.3.1 Approximate SPNE
One possible way to circumvent the foregoing example is by saying that agent 1 should be happy
to make the cut y very close to z. For instance, if the agent’s value is uniformly distributed over
the case, cutting at x = 0, y = 1 − ε, z = 1 would allow the agent to choose the piece [x, y] with
value 1 − ε ; and this is true for any ε .

More generally, we have the following theorem.
Theorem 5.3.1. For any n-agent GCC protocol P with a bounded number of steps, any n valu-
ation functions val1, . . . ,valn, and any ε > 0, the game induced by P and val1, . . . ,valn has
an ε-SPNE.

The proof of Theorem 5.3.1 is relegated to Section 5.5. In a nutshell, the high-level idea
of our proof relies on discretizing the cake — such that every cell in the resulting grid has a
very small value for each agent — and computing the optimal outcome on the discretized cake
using backward induction. At every cut step of the protocol, the grid is refined by adding a point
between every two consecutive points of the grid from the previous cut step. This ensures that
any ordering of the cut points that can be enforced by playing on the continuous cake can also
be enforced on the discretized instance. Therefore, for the purpose of computing an approximate
SPNE, it is sufficient to work with the discretization. We then show that the backward induction
outcome from the discrete game gives an ε-SPNE on the continuous cake.

55

5.3.2 Informed Tie-Breaking
Another approach for circumventing the example given at the beginning of the section is to
change the tie-breaking rule of Algorithm 9, by letting agent 1 choose even if y = z (in which
case agent 1 would cut in x = 0, y = 1, z = 1, and get the entire cake). Tie-breaking matters:
Even the Dubins-Spanier protocol fails to guarantee SPNE existence due to a curious tie-breaking
issue [25].

To accommodate more powerful tie-breaking rules, we slightly augment GCC protocols, by
extending their ability to compare cuts in case of a tie. Specifically, we can assume without
loss of generality that the If-Else statements of a GCC protocol are specified only with weak
inequalities (as an equality can be specified with two inequalities and a strong inequality via an
equality and weak inequality), which involve only pairs of cuts. We consider informed GCC
protocols, which are capable of using If-Else statements of the form “if [x < y or (x = y and
history of events ∈ H)] then”. That is, when cuts are made in the same location and cause a
tie in an If-Else, the protocol can invoke the power to check the entire history of events that
have occurred so far. We can recover the x < y and x ≤ y comparisons of “uninformed” GCC
protocols by settingH to be empty or all possible histories, respectively. Importantly, the history
can include where cuts were made exactly, and not simply where in relation to each other.

We say that an informed GCC protocol P′ is equivalent up to tie-breaking to a GCC pro-
tocol P if they are identical, except that some inequalities in the If-Else statements of P are
replaced with informed inequalities in the corresponding If-Else statements of P′. That is, the
two protocols are possibly different only in cases where two cuts are made at the exact same
point.

For example, in Algorithm 9, the statement “if x < y < z then” can be specified as “if
x < y then if y < z then”. We can obtain an informed GCC protocol that is equivalent up to
tie-breaking by replacing this statement with “if x < y then if y ≤ z then” (here we are not
actually using augmented tie-breaking). In this case, the modified protocol may feel significantly
different from the original — but this is an artifact of the extreme simplicity of Algorithm 9.
Common cake cutting protocols are more complex, and changing the tie-breaking rule preserves
the essence of the protocol.

We are now ready to present our second main result.
Theorem 5.3.2. For any n-agent GCC protocol P with a bounded number of steps and any n
valuation functions val1, . . . ,valn, there exists an informed GCC protocol P′ that is equivalent
to P up to tie-breaking, such that the game induced by P′ and val1, . . . ,valn has an SPNE.

Intuitively, we can view P′ as being “undecided” whenever two cuts are made at the same
point, that is, x = y: it can adopt either the x < y branch or the x > y branch — there exists
an appropriate decision. The theorem tells us that for any given valuation functions, we can set
these tie-breaking points in a way that guarantees the existence of an SPNE. In this sense, the tie-
breaking of the protocol is informed by the given valuation functions. Indeed, this interpretation
is plausible as we are dealing with a game of perfect information.

The proof of Theorem 5.3.2 is somewhat long, and has been relegated to Section 5.6. This
proof is completely different from the proof of Theorem 5.3.1; in particular, it relies on real
analysis instead of backward induction on a discretized space. The crux of the proof is the de-
velopment of an auxiliary notion of mediated games (not to be confused with Monderer and

56

Tennenholtz’s mediated equilibrium [73]) that may be of independent interest. We show that
mediated games always have an SPNE. The actions of the mediator in this SPNE are then rein-
terpreted as a tie-breaking rule under an informed GCC protocol. In the context of the proof it is
worth noting that some papers prove the existence of SPNE in games with infinite action spaces
(see, e.g., [52, 54]), but our game does not satisfy the assumptions required therein.

5.4 Fair Equilibria

The existence of equilibria (Theorems 5.3.1 and 5.3.2) gives us a tool for predicting the strategic
outcomes of cake cutting protocols. In particular, classic protocols provide fairness guarantees
when agents act honestly; but do they provide any fairness guarantees in equilibrium?

We first make a simple yet crucial observation. In a proportional protocol, every agent is
guaranteed a value of at least 1/n regardless of what the others are doing. Therefore, in every
NE (if any) of the protocol, the agent still receives a piece worth at least 1/n; otherwise it can
deviate to the strategy that guarantees it a utility of 1/n and do better. Similarly, an ε-NE must
be ε-proportional, i.e., each agent must receive a piece worth at least 1/n − ε . Hence, classic
protocols such as Dubins-Spanier, Even-Paz, and Selfridge-Conway guarantee (approximately)
proportional outcomes in any (approximate) NE (and of course this observation carries over to
the stronger notion of SPNE).

One may wonder, though, whether the analogous statement for envy-freeness holds; the an-
swer is negative. We demonstrate this via the Selfridge-Conway protocol — a 3-agent envy-free
protocol, which is given in its truthful, non-GCC form as Algorithm 11. To see why the protocol
is envy free, note that the division of three pieces in steps 4, 5, and 6 is trivially envy free. For
the division of the trimmings in step 9, agent i is not envious because it chooses first, and agent
j is not envious because it was the one that cut the pieces (presumably, equally according to its
value). In contrast, agent 1 may prefer the piece of trimmings that agent i received in step 9,
but overall agent 1 cannot envy i, because at best i was able to “reconstruct” one of the three
original pieces that was trimmed at step 2, which agent 1 values as much as the untrimmed piece
it received in step 6.

1: Agent 1 cuts the cake into three equal parts in the agent’s value.
2: Agent 2 trims the most valuable of the three pieces such that there is a tie with the two most

valuable pieces.
3: Set aside the trimmings.
4: Agent 3 chooses one of the three pieces to keep.
5: Agent 2 chooses one of the remaining two pieces to keep — with the stipulation that if the

trimmed piece is not taken by agent 3, agent 2 must take it.
6: Agent 1 takes the remaining piece.
7: Denote by i ∈ {2,3} the agent which received the trimmed piece, and j = {2,3} \ {i}.
8: Agent j now cuts the trimmings into three equal parts in the agent’s value.
9: Agents i, 1, and j choose one of the three pieces to keep in that order.

Algorithm 11: Selfridge-Conway: an envy-free protocol for three agents.

57

We construct an example by specifying the valuation functions of the agents and their strate-
gies, and arguing that the strategies are in SPNE. The example will have the property that the
first two agents receive utilities of 1 (i.e. the maximum value). Therefore, we can safely assume
their play is in equilibrium; this will allow us to define the strategies only on a small part of the
game tree. In contrast, agent 3 will deviate from its truthful strategy to gain utility, but in doing
so will become envious of agent 1.

In more detail, suppose after agent 2 trims the three pieces we have the following.
• Agent 1 values the first untrimmed piece at 1, and all other pieces and the trimmings at 0.
• Agent 2 values the second untrimmed piece at 1, and all other pieces and the trimmings at

0.
• Agent 3 values the untrimmed pieces at 1/7 and 0, respectively, the trimmed piece at 1/14,

and the trimmings at 11/14.
Now further suppose that if agent 3 is to take either untrimmed piece and consequently cut the
trimmings (i.e. take on the role of j in the protocol), then the first two agents always take the
pieces most valuable to agent 3. Thus, if agent 3 takes either untrimmed piece it will achieve
a utility of at most 1/7 + (11/14)(1/3) = 17/42 by taking the first untrimmed piece, and then
cutting the trimmings into three equal parts. On the other hand, if agent 3 takes the trimmed piece
of worth 1/14, agent 2 cuts the trimmings into three parts such that one of the pieces is worth
0 to agent 3, and the other two are equivalent in value (i.e. they have values (11/14)(1/2) =

11/28). Agents 1 and 3 take these two pieces. Thus, in this scenario, agent 3 receives a utility of
1/14 + 11/28 = 13/28 which is strictly better than the utility of 17/42. Agent 3 will therefore
choose to take the trimmed piece. However, in this outcome agent 1, from the point of view
of agent 3, receives a piece worth 1/7 + 11/28 = 15/28 and therefore agent 3 will indeed be
envious.

The foregoing example shows that envy-freeness is not guaranteed when agents strategize,
and so it is difficult to produce envy-free allocations when agents play to maximize their utility.
A natural question to ask, therefore, is whether there are any GCC protocols such that all SPNE
are envy-free, and existence of SPNE is guaranteed. This remains an open question, but we
do give an affirmative answer for the weaker solution concept of NE in the following theorem,
whose proof appears in Section 5.7.
Theorem 5.4.1. There exists a GCC protocol P such that on every cake cutting instance with
strictly positive valuation functions val1, . . . ,valn, an allocation X is the outcome of a NE of
the game induced by P and val1, . . . ,valn if and only if X is an envy-free contiguous allocation
that contains the entire cake.

Crucially, an envy-free contiguous allocation is guaranteed to exist [93], hence the set of NE
of protocol P is nonempty.

Theorem 5.4.1 is a positive result à la implementation theory (see, e.g., [68]), which aims to
construct games where the NE outcomes coincide with a given specification of acceptable out-
comes for each constellation of agents’ preferences (known as a social choice correspondence).
Our construction guarantees that the NE outcomes coincide with (contiguous) envy-free alloca-
tions, that is, in this case the envy-freeness criterion specifies which outcomes are acceptable.

That said, the protocol P constructed in the proof of Theorem 5.4.1 is impractical: its Nash
equilibria are unlikely to arise in practice. This further motivates efforts to find an analogous

58

result for SPNE. If such a result is indeed feasible, a broader, challenging open question would
be to characterize GCC protocols that give rise to envy-free SPNE, or at least provide a sufficient
condition (on the protocol) for the existence of such equilibria.

5.5 Proof of Theorem 5.3.1

Let ε > 0, and let f (n) be an upper bound on the number of operations (i.e., on the height of the
game tree) of the protocol. Define a grid, G1, such that every cell on the grid is worth at most

ε
2 f (n)2 to each agent. For every n, let K denote the maximum number of cut operations, where
0 ≤ K ≤ f (n). For each i ∈ {1, . . . ,K }, we define the grid Gi so that the following properties are
satisfied:
• The grids are nested, i.e., {0,1} ⊂ G1 ⊂ G2 ⊂ . . . ⊂ GK .
• There exists a unique point z ∈ Gi+1 between any two consecutive points x, y ∈ Gi, such

that x < z < y and z < Gi, for every i ∈ {1, . . . ,K − 1}.
• Each cell on Gi is worth at most ε

2 f (n)2 to any agent, for all i ∈ {1, . . . ,K }.
Having defined the grids, we compute the backward induction outcome on the discretized

cake, where the i-th Cut operation can only be made on the grid Gi. We will show that this
outcome is an ε-SPNE, even though agents could deviate by cutting anywhere on the cake. On
the continuous cake, the agents play a perturbed version of the idealized game from the grid G,
but maintain a mapping between the perturbed game and the idealized version throughout the
execution of the protocol, such that each cut point from the continuous cake is mapped to a grid
point that approximates it within a very small (additive) error. Thus when determining the next
action, the agents use the idealized grid as a reference. The order of the cuts is the same in the
ideal and perturbed game, however the values of the pieces may differ by at most ε/ f (n).

We start with the following useful lemma. (For ease of exposition, in the following we refer
to [x, y] as the segment between points x and y and vali (x, y) as the value of this segment to
agent i, regardless of whether x < y or y ≤ x.)
Lemma 5.5.1. Given a sequence of cut points x1, . . . , xk and nested grids G1 ⊂ . . . ⊂ Gk with
cells worth at most ε

4 f (n)2 to each agent, there exists a mapM : {x1, . . . , xk } → Gk such that:
1. For each i ∈ {1, . . . , k},M (xi) ∈ Gi.
2. The mapM is order-preserving. Formally, for all i, j ∈ {1, . . . , k}, xi < x j ⇐⇒ M(xi) <
M (x j) and xi = x j ⇐⇒ M(xi) =M (x j).

3. The piece [xi,M (xi)] is “small”, that is: vall (xi,M (xi)) ≤ kε
2 f (n)2 , for each agent l ∈ N .

4. For each i ∈ {1, . . . , k},M (xi) = 0 ⇐⇒ xi = 0 andM (xi) = 1 ⇐⇒ xi = 1.

Proof. We prove the statement by induction on the number of cut points k.
Base case: We consider a few cases. If x1 ∈ G1, then define M (x1) := x1. Otherwise,

let R(x1) ∈ G1 be the leftmost point on the grid G1 to the right of x1. If R(x1) , 1, define
M (x1) := R(x1); else, let L(x1) denote the rightmost point on G1 strictly to the left of 1 and
defineM (x1) := L(x1). To verify the properties of the lemma, note that:

1. M (x1) ∈ G1.

59

2. The mapM is order-preserving since there is only one point.
3. vall (x1,M (x1)) ≤ ε

2 f (n)2 for each agent l ∈ N since the grid G1 has (by construction) the
property that each cell is worth at most ε

2 f (n)2 to each agent, and the interval [x1,M (x1)]
is contained in a cell.

4. By the definition of L and R, the only timeM (x1) = 0 (resp. M (x1) = 1) is when x1 = 0
(resp. x1 = 1).

Induction hypothesis: Assume that a map M with the required properties exists for any
sequence of k − 1 cut points.

Induction step: Consider any sequence of k cut points x1, . . . , xk . By the induction hypothe-
sis, we can map each cut point xi to a grid representativeM (xi) ∈ Gi, for all i ∈ {1, . . . , k − 1},
in a way that preserves properties 1–4. We claim that the mapM on the points x1, . . . , xk−1 can
be extended to the k-th point, xk , such that the entire sequenceM (x1), . . . ,M (xk) satisfies the
requirements of the lemma. We consider four exhaustive cases.

1. xk ∈ {0,1}.
Then defineM (xk) = xk .

2. There exists i ∈ {1, . . . , k − 1} such that xk = xi.
Then defineM (xk) :=M (xi).

3. There exists i ∈ {1, . . . , k − 1} such that xi < xk , butM (xi) ≥ xk .
Let x j be the rightmost cut such that x j < xk ; becauseM is order-preserving, it holds that
M (x j) ≥ xk . Let R(M (x j)) be the leftmost point on Gk strictly to the right of M (x j),
and setM (xk) := R(M (x j)).
Now let us check the conditions. Condition (1) holds by definition. Condition (2) holds
because M (xk) > M (x j), and for every t such that xt > xk , M (xt) > M (x j) and
M (xt) ∈ Gk−1, whereasM (xk) uses a “new” point of Gk \ Gk−1 that is closer toM (x j).
For condition (3), we have that for every l ∈ N ,

vall (xk ,M (xk))

≤ vall
(
x j ,M (xk)

)
= vall

(
x j ,M (x j)

)
+ vall

(
M (x j),M (xk)

)
≤

(k − 1)ε
2 f (n)2 +

ε

2 f (n)2

=
kε

2 f (n)2 ,

where the third transition follows from the induction assumption. Condition (4) holds
vacuously in this case.

4. There exists i ∈ {1, . . . , k − 1} such that xi > xk , butM (xi) ≤ xk .
This case is symmetric to the previous case so we omit its analysis.

5. For every xi such that xi < xk , M (xi) < xk , and for every x j such that x j > xk ,
M (x j) > xk (and xk < {0,1}).
Let xi and x j be the rightmost and leftmost such cuts, respectively; without loss of gener-
ality they exist, otherwise our task is even easier.

60

Let R(xk) be the leftmost point in Gk such that R(xk) ≥ xk , and let L(xk) be the rightmost
point in Gk such that L(xk) ≤ xk . Assume first thatM (x j) > R(xk); then setM (xk) :=
R(xk). This choice obviously satisfies the four conditions, similarly to the base of the
induction.
Otherwise, R(xk) = M (x j) (notice that it cannot be the case that R(xk) > M (xk)); then
setM (xk) := L(xk). Let us check that this choice is order-preserving (as the other three
conditions are trivially satisfied). Note thatM (x j) ∈ Gk−1, so R(xk) ∈ Gk−1. Therefore, it
must hold that L(xk) ∈ Gk \Gk−1 — it is the new point that we have added between R(xk),
and the rightmost point the left of it on Gk−1. Since it is also the case thatM (xi) ∈ Gk−1,
we have thatM (xi) <M (xk) <M (x j).

By induction, we can compute a mapping with the required properties for k points. This
completes the proof of the lemma. �

Now we can define the equilibrium strategies. Let x1, . . . , xk be the history of cuts made
at some point during the execution of the protocol. By Lemma 5.5.1, there exists an order-
preserving mapM such that each point xi has a representative pointM (xi) ∈ Gi and the piece
[xi,M (xi)] is “small”, i.e.

vall (xi,M (xi)) ≤
kε

2 f (n)2 ≤
ε

2 f (n)

for each agent l ∈ N — using k ≤ f (n).
Consider any history of cuts (x1, . . . , xk). Let i be the agent that moves next. Agent i com-

putes the mapping (M (x1), . . . ,M (xk)). If the next operation is:
• Choose: agent i chooses the available piece (identified by the symbolic names of the cut

points it contains and their order) which is optimal in the idealized game, given the cur-
rent state and the existing set of ordered ideal cuts, M (x1), . . . ,M (xk). Ties are broken
according to a fixed deterministic scheme which is known to all the agents.

• Cut: agent i computes the optimal cut on Gk+1, say at x∗k+1. Then i maps x∗k+1 back to a
point xk+1 on the continuous game, such thatM (xk+1) = x∗k+1. That is, the cut xk+1 (made
in step k + 1) is always mapped by the other agents to x∗k+1 ∈ Gk+1. Agent i cuts at xk+1.

We claim that these strategies give an ε-SPNE. The proof follows from the following lemma,
which we show by induction on t (the maximum number of remaining steps of the protocol):
Lemma 5.5.2. Given a point in the execution of the protocol from which there are at most t
operations left until termination, it is tε

f (n) -optimal to play on the grid.

Proof. Consider any history of play, where the cuts were made at x1, . . . , xk . Without loss of
generality, assume it is agent i’s turn to move.

Base case: t = 1. The protocol has at most one remaining step. If it is a cut operation, then
no agent receives any utility in the remainder of the game regardless of where the cut is made.
Thus cutting on the grid (Gk) is optimal. If it is a choose operation, then let Z = {Z1, . . . , Zs}

be the set of pieces that i can choose from. Agent i’s strategy is to map each piece Z j to its
equivalent M (Z j) on the grid Gk , and choose the piece that is optimal on Gk . Recall that
valq

(
x j ,M (x j)

)
≤ ε

2 f (n) for each agent q ∈ N . Thus if a piece is optimal on the grid, it is

61

ε
f (n) -optimal in the continuous game (adding up the difference on both sides). It follows that i
cannot gain more than ε

f (n) in the last step by deviating from the optimal piece on Gk .

Induction hypothesis: Assume that playing on the grid is (t−1)ε
f (n) -optimal whenever there are

at most t −1 operations left on every possible execution path of the protocol, and there exists one
path that has exactly t − 1 steps.

Induction step: If the current operation is Choose, then by the induction hypothesis, playing
on the grid in the remainder of the protocol is (t−1)ε

f (n) -optimal for all the agents, regardless of i’s
move in the current step. Moreover, agent i cannot gain by more than ε

f (n) by choosing a different
piece in the current step, compared to piece which is optimal on Gk , since vali (xl ,M (xl)) ≤
ε

2 f (n) for all l ∈ {1, . . . , k}.
If the current operation is Cut, then the following hold:

1. By construction of the grid Gk+1, agent i can induce any given branch of the protocol using
a cut in the continuous game if and only if the same branch can be induced using a cut on
the grid Gk+1.

2. Given that the other agents will play on the grid for the remainder of the protocol, agent
i can change the size of at most one piece that it receives down the road by at most ε

f (n)
by deviating (compared to the grid outcome), since val j (xl ,M (xl)) ≤ ε

2 f (n) for all l ∈
{1, . . . , k + 1} and for all j ∈ N .

Thus by deviating in the current step, agent i cannot gain more than tε
f (n) . �

Since t ≤ f (n), the overall loss of any agent is bounded by ε by Lemma 5.5.2. We conclude
that playing on the grid is ε-optimal for all the agents, which completes the proof of the theorem.
�

5.6 Proof of Theorem 5.3.2
Before we begin, we take this moment to formally introduce the auxiliary concept of a mediated
game in an abstract sense. We will largely distance ourselves from the specificity of GCC games
here and work in a more general model. We do this for two purposes. First, it allows for a cleaner
view of the techniques; and second, we believe such general games may be of independent
interest. We begin with a few definitions.
Definition 5.6.1. In an extensive-form game, an action tuple is a tuple of actions that describe
an outcome of the game. For example, the action tuple (a1, . . . ,ar) states that a1 was the first
action to be played, a2 the second, and ar the last.
Definition 5.6.2. Given an action tuple, the kth action is said to be SPNE if the subtree of the
game tree rooted where the first k − 1 actions are played in accordance to the action tuple is
induced by some SPNE strategy profile. Furthermore, call such an action tuple k-SPNE.

Note that if the kth action is SPNE, so too are all actions succeeding it in the action tuple.
To clarify Definition 5.6.2, note that strategies of an extensive-form game are defined on every
possible node of the game tree, so a k-SPNE action tuple can be equivalently defined as being an
SPNE of the subgame rooted at the kth action.

With these definitions in hand, we can now describe the games of interest.

62

Definition 5.6.3. We call an extensive-form game a mediated game if the following conditions
hold:

1. The set of agents consists of a single special agent, referred to as the mediator, and some
finite number n of other regular agents. Intuitively, the mediator is an agent who is over-
seeing the proper execution of a protocol.

2. The height h of the game tree is bounded.
3. Every agent’s utility is bounded.
4. Starting from the first or second action, the mediator plays every second action (and only

these actions).
5. Every action played by the mediator shares the same action space:

{0, . . . ,n} ×
(
[0,1]2 ∪ 2{1,...,h}

)
.

This represents the agent who plays next (0 represents ending the game), and the interval
which represents their action space or the allowed pieces they may choose from.

6. The mediator’s utility is binary (i.e. it is in {0,1}) and is described entirely by the notion
of allowed edges. This is a set of edges in the game tree such that the mediator’s utility
is 1 iff it plays edges only in this set. Importantly, this set has the property that for every
allowed edge, each grandchild subtree (i.e. subtree that represents the next mediator’s
action) must have at least one allowed edge from its root. Intuitively, these edges are the
ones that follow the protocol the mediator is implementing.

7. A regular agent’s utility is continuous2 in the action tuple.
8. Allowed-edges-closedness: given a convergent sequence of action tuples where the me-

diator plays only allowed edges, the mediator must play only allowed edges in the limit
action tuple as well.

Note that appending meaningless actions (that affect no agent’s utility) to a branch of the
game tree will not affect the game in any impactful way. Thus, for the sake of convenience,
we will assume for any game we consider all leaves of the game occur at the same depth (often
denoted by r).

We now give a series of definitions and lemmas that culminate in the main tool used in the
proof of Theorem 5.3.2: all mediated games have an SPNE.
Definition 5.6.4. A sequence of action tuples

(
ai

1, . . . ,a
i
r

)
|i is said to be consistent if for every

j the agent who plays action ai
j is constant throughout the sequence and, moreover, its action

spaces are always subsets of [0,1] or always the same subset of {1, . . . ,h} throughout the se-
quence.
Lemma 5.6.5. Let

(
ai

1, . . . ,a
i
r

)
|i be a sequence of action tuples in a mediated game. Then there

is a convergent subsequence.

Proof. Due to the finite number of agents and bounded height of the game, we can find an
infinite consistent subsequence bi |i=

(
bi

1, . . . ,b
i
r

)
|i. It suffices to show this subsequence has a

2The notions of convergence, compactness and continuity, which we will utilize often, necessarily assumes our
action spaces are defined as metric spaces. Applicable metrics for the action spaces are not difficult to find, but are
cumbersome to describe fully. We therefore will not belabour this point much further.

63

convergent subsequence of its own. It is fairly clear that we can find a convergent subsequence
via compactness arguments, but there is a slight caveat: we must show that the limit action tuple
is legal. That is, if the limit action tuple is (a1, . . . ,ar) we must show that for every i < r such
that the mediator plays action i, action i + 1 is played by the agent prescribed by ai, and within
the bounds prescribed by it. We will prove this by induction.

Base hypothesis: First 0 actions have a convergent subsequence — this is vacuously true.
Induction hypothesis: Assume there exists a subsequence such that the first k actions con-

verge legally.
Induction step: We wish to show that there exists a subsequence such that the first k + 1

actions converge. By the inductive assumption, there exists a subsequence ci |i such that the
first k actions converge. Now suppose p plays the k + 1th action. If p is the mediator, then the
action space is indifferent to actions played previously and is compact. Thus, the ci |i must have
a convergent subsequence such that the k + 1th element of the action tuple converges and so we
are done.

Alternatively, if p is a regular agent, the action space is not necessarily indifferent to previous
actions. If the action spaces are always the same subset of {1, . . . ,h}, then we are clearly done.
We therefore need only consider the case where the action spaces will be contained in [0,1]. Due
to the compactness of this interval, there will be a convergent subsequence of ci |i such that the
k + 1th action converges to some γ ∈ [0,1]. Call this subsequence di |i.

We argue that γ is in the limit action space of the k+1th action. For purposes of contradiction,
assume this is false. Let δ be the length from γ to the closest point in the limit action space (i.e.
the action space in the limit given by the kth action played by the mediator). Then there exists
some M such that after the M th element in di |i, the closest point in the k + 1th action space to
γ is at least δ/2 away. Moreover, there exists some N such that after the N th element in di |i
the k + 1th action is no further than δ/3 to γ. Elements of di |i after element max(M,N) then
simultaneously must have the k + 1th action space be at least δ/2 away from γ and have a point
at most δ/3 away from γ. This is a clear contradiction. �

Lemma 5.6.6. For every k, if we have a convergent sequence of action tuples where the kth

action from the end is SPNE, then the kth action from the end for the limit action tuple is also
SPNE. That is, for every k, convergent sequences of (r−k +1)-SPNE action tuples are (r−k +1)-
SPNE.

Proof. We prove the result by induction on k.
Base Case (k = 0): This is vacuously true.
Induction hypothesis (k = m): Assume convergent sequences of (r − m + 1)-SPNE action

tuples are (r − m + 1)-SPNE.
Induction step (k = m + 1): Let ai |i= (ai

1, . . . ,a
i
r) |i be a convergent sequence of (r − m)-

SPNE action tuples with the limit action tuple (a1, . . . ,ar). We wish to show that if all actions
before the last m + 1 actions play their limit actions, then the remaining m + 1 actions are SPNE
— note that by Lemma 5.6.5 we know that the limit sequence is a valid action tuple.

Let p be the agent that commits the m + 1th action from the end. If p is the mediator, then by
the definition of mediated games the desired statement is true (specifically via the allowed-edges-
closedness condition). Now suppose instead that p is not the mediator, and simply a regular agent.

64

We show if the m + 1th action from the end took on some other valid value α , ar−m, there exists
SPNE strategies for the remaining m actions such that p achieves a utility no higher than had it
stuck with the limit action of ar−m.

So suppose the m + 1th action from the end in the ith element of the sequence is αi such that
limi→∞ α

i = α. Since ai |i is a sequence of (r − m)-SPNE action tuples, we can construct the
sequence:

bi |i= (ai
1, . . . ,a

i
r−m−1,α

i, ãi
1, . . . , ã

i
m) |i

where the ãi
j are SPNE actions such that p achieves at most the utility achieved by instead playing

ai
r−m. Via Lemma 5.6.5, bi |i must have a convergent subsequence — call ci |i and indexed by

increasing function σ. That is, ci = bσ(i). ci |i is then a convergent sequence of (r−m+1)-SPNE
action tuples and thus, by the inductive assumption, its limit action tuple is also an (r − m + 1)-
SPNE.

Now consider the limit action tuple (a1, . . . ,ar) (of ai |i) and the limit action tuple of ci |i
denoted by (c1, . . . ,cr). Note that:

1. ∀i < r − m: ai = ci.
2. By the continuity requirement of mediated games (where Vp is the utility function of p):

Vp(a1, . . . ,ar)

= lim
i→∞

Vp(ai
1, . . . ,a

i
r)

= lim
i→∞

Vp(aσ(i)
1 , . . . ,aσ(i)

r)

≥ lim
i→∞

Vp(aσ(i)
1 , . . . aσ(i)

r−m−1,α
σ(i), ãσ(i)

r−m+1, . . . , ã
σ(i)
r)

= lim
i→∞

Vp(ci
1, . . . ,c

i
r)

= Vp(c1, . . . ,cr).

These two points imply that we can set SPNE strategies for the remaining m actions such that the
utility of p playing α is less than or equal to if it plays ar−m for the m + 1th action from the end
(when the actions preceding the m + 1th action from the end are those given in the limit action
tuple (a1, . . . ,ar)). As the α was arbitrary, the m + 1th action from the end of (a1, . . . ,ar) can be
made an SPNE action, which completes the proof. �

Lemma 5.6.7. All mediated games have an SPNE.

Proof. We prove the lemma via induction on the height of the game tree. Note that this is
possible as mediated games (like extensive-form games) are recursive: the children of a node of
a mediated game are mediated games.

Base case (at most 0 actions): This is vacuously true.
Induction hypothesis (at most k actions): Assume we have shown that any mediated game

with a game tree of height at most k has an SPNE.
Induction step (at most k + 1 actions): Let p be the agent that commits the first action. If p

is the mediator, any action that is an allowed edge will be SPNE; and if no such action exists,

65

any action will be SPNE (as the mediator is doomed to a utility of 0). Now suppose p is not the
mediator.

Assume by the inductive assumption, once p makes its move, all remaining (at most) k ac-
tions are SPNE actions. By the definition of a mediated game, p’s utility is bounded. Then the
least upper bound property of R implies that p’s utility as a function of the first action must have
a supremum S. Via the axiom of choice, we construct a sequence of possible actions for the
first action that approaches S in p’s utility. That is, we have some sequence xi |i such that if p
plays xi for the first action, it achieves some utility f (xi) — where limi→∞ f (xi) = S. Moreover,
let g(xi) map the action xi to a tuple of the remaining actions — which are SPNE. By Lemma
5.6.5 (xi,g(xi)) |i must have a convergent subsequence (yi,g(yi)) |i that converges to (y,g(y))
— where y is a legal first action and g(y) are legal subsequent actions.

Notice that (yi,g(yi)) |i is a convergent sequence of 2-SPNE action tuples and thus by Lemma
5.6.6, (y,g(y)) is a 2-SPNE action tuple as well. Furthermore, note that by the continuity re-
quirement of mediated games, y must give p a utility of S. Therefore, this must be an SPNE
action and so we are done. �

With this machinery in hand, we are now ready to complete the proof of Theorem 5.3.2.
Our main task is to make a formal connection between mediated games and (informed) GCC
protocols.

Proof of Theorem 5.3.2. Suppose we have a n-agent GCC protocol P with a bounded number
of steps and and set valuations of the agents val1, . . . ,valn. Then we wish to prove that there
exists an informed GCC protocol P′ that is equivalent to P up to tie-breaking such that the game
induced by P′ and val1, . . . ,valn has an SPNE.

Outfit P as a game M , such that all but the final condition of mediated games are satisfied —
that is, the mediator enforces the rules of P and achieves utility 1 if it follows the rules of P and
0 otherwise. More explicitly, the mediator plays every second action and upon examination of
the history of events (i.e. the ordering of the cuts made thus far, and results of choose queries),
decides the next agent to play and their action space based on the prescription of P. To see how
all but the last condition is satisfied, we go through them in order.

1. This is by definition.
2. The height of the tree is twice the height of the GCC protocol.
3. The mediator’s utility is bounded by 1 by definition, and all other agent’s utilities are

bounded by 1 as that is their value of the entire cake.
4. This is by definition.
5. When the mediator wishes to ask a Cut query to agent i in the interval [a,b], it plays the

action (i, (a,b)), whereas when it wishes to ask a Choose query to agent i giving them the
choice between the xth

1 , . . . , x
th
k pieces from the left, it plays the action (i, {x1, . . . , xk }).

This method of giving choose queries deviates slightly from the definition given in Section
5.2.1, but the two representations are clearly equivalent.

6. The allowed edges are ones that follow the rules of P.
7. This property is only relevant when considering Cut nodes. To establish it, first consider

the action in a single Cut node, and fix all the other actions. We claim that for every
ε > 0 there exists δ = δ(ε) > 0 that is independent of the choice of actions in other

66

nodes such that moving the cut by at most δ changes the values by at most ε . Indeed, let
us examine how pieces change as the cut point moves. As long as the cut point moves
without passing any other cut point, one piece shrinks as another grows. As the cut point
approaches another cut point, the induced piece — say k’th from the left — shrinks. When
the cut point passes another cut point x, the k’th piece from the left grows larger, or it
remains a singleton and another piece grows if there are multiple cut points at x. In any
case, it is easy to verify that the sizes of various pieces received in Choose nodes change
by at most δ if the cut point is moved by δ. Furthermore, note that the number of steps is
bounded by r and — since the value density functions are continuous — there is an upper
bound M on the value density functions such that if y − x ≤ δ′ then vali (x, y) ≤ Mδ′

for all i ∈ N . Therefore, choosing δ ≤ ε/(Mr) is sufficient. Finally, val1, . . . ,valn are
continuous even in the actions taken in multiple Cut nodes, because we could move the cut
points sequentially.

We now alter M such that at every branch induced by a comparison of cuts via an If-Else, we
allow in the case of a tie to follow either branch. Formally, suppose at a branch induced by the
statement “if x ≤ y then A else B” we now set in the case of x = y the edges for both A and B
as allowed. Then we claim the property of allowed-edges-closedness is satisfied.

To see this, let us consider action tuples. An action tuple where the mediator in M only plays
on allowed edges can be viewed as a trace of an execution of P which records the branch taken on
every If-Else statement — though when there is a tie the trace may follow the “incorrect” branch.
A convergent sequence of such action tuples at some point in the sequence must then keep the
branches it chooses in the execution of P constant — unless in the limit, the cuts compared in
a branch that is not constant coincide. Thus, we have that in the limit, if a branch is constant,
the mediator always takes an allowed edge trivially, and otherwise due to our modification of M
the mediator still takes an allowed edge. Furthermore, for all actions of the mediator that are not
induced by If-Else statements, the mediator clearly still plays on allowed edges and so we have
proved the claim.

Now as M is a mediated game, it has an SPNE S by Lemma 5.6.7. Let P′ be the informed
GCC protocol equivalent to P up to tie-breaking such that for every point in the game tree of M
that represents the mediator branching on an “if x ≤ y then A else B” statement in the original
protocol P, P′ chooses the A or B that S takes in the event of a tie. Then the informedness of the
tie-breaking is built into P′ and we immediately see that the SPNE actions of the regular agents
in M correspond to SPNE actions in P′. �

5.7 Proof of Theorem 5.4.1
The proof of the theorem uses the Thieves Protocol given by Algorithm 12. In this protocol,
agent 1 first demarcates a contiguous allocation X = {X1, . . . ,Xn} of the entire cake, where Xi is
a contiguous piece that corresponds to agent i. This can be implemented as follows. First, agent
1 makes n cuts such that the i-th cut is interpreted as the left endpoint of Xi. The left endpoint
of the leftmost piece is reset to 0 by the protocol. Then, the rightmost endpoint of Xi is naturally
the leftmost cut point to its right or 1 if no such point exists. Ties among overlapping cut points
are resolved in favor of the agent with the smallest index; the corresponding cut point is assumed

67

Agent 1 demarcates a contiguous allocation X of the cake
for i = 2, . . . ,n,1 do

// Verification of envy-freeness for agent i
Agent i Cuts in {[0,1]} // @wi
Agent i Cuts in {[wi,1]} // @ zi
for j = 1 to n do

if ∅ , ([wi, zi] ∩ X j) (X j then
// Agent i steals a non-empty strict subset of X j
Agent i Chooses from {[wi, zi] ∩ X j }

exit // Verification failed: protocol terminates
end if

end for
// Verification successful for agent i

end for
for i = 1 to n do

Agent i Chooses from {Xi}

end for
Algorithm 12: Thieves Protocol: Every NE induces a contiguous envy-free allocation that con-
tains the entire cake and vice versa.

to be the leftmost one. Notice that every allocation that assigns nonempty contiguous pieces to
all agents can be demarcated in this way.

After the execution of the demarcation step, X is only a tentative allocation. Then, the pro-
tocol enters a verification round, where each agent i is allowed to steal some non-empty strict
subset of a piece (say, X j) demarcated for another agent. If this happens (i.e., the if-condition is
true) then agent i takes the stolen piece and the remaining agents get nothing. This indicates the
failure of the verification and the protocol terminates. Otherwise, the pieces of X are eventually
allocated to the agents, i.e., agent i takes Xi.

We will require two important characteristics of the protocol. First, it guarantees that no state
in which some agent steals can be a NE; this agent can always steal an even more valuable piece.
Second, stealing is beneficial for an envious agent.

Proof of Theorem 5.4.1. Let P be the Thieves protocol given by Algorithm 12 and E be any NE
of P. Denote by X the contiguous allocation of the entire cake obtained during the demarcation
step, where Xi = [xi, yi] for all i ∈ N , and let wi and zi be the cut points of agent i during
its verification round. Assume for the sake of contradiction that X is not envy-free. Let k∗ be
an envious agent, where valk∗

(
X j∗

)
> valk∗ (Xk∗), for some j∗ ∈ N . There are two cases to

consider:
Case 1: Each agent i receives the piece Xi in E. This means that, during its verification round,

each agent i selects its cut points from the set
⋃n

j=1{x j , y j }. By the non-envy-freeness condition
for X above (and by the fact that the valuation function valk∗ is strictly positive), there exist
w′k∗ , z

′
k∗ such that x j∗ < w′k∗ < z′k∗ < y j∗ and valk∗

(
w′k∗ , z

′
k∗
)
> valk∗ (xk∗ , yk∗). Thus, agent k∗

could have been better off by cutting at points w′k∗ and z′k∗ in its verification round, contradicting

68

the assumption that E is a NE.
Case 2: There exists an agent i that did not receive the piece Xi. Then, it must be the case

that some agent k stole a non-empty strict subset [w′′k , z
′′
k] = [wk , zk] ∩ Z j of another piece X j .

However, agent k could have been better off at the node in the game tree reached in its verification
round by making the following marks: w′k =

x j+w
′′
k

2 and z′k =
z′′
k

+y j
2 . Since either x j ≤ w′′k <

z′′k < y j or x j < w′′k < z′′k ≤ y j (recall that [w′′k , z
′′
k] is a non-empty strict subset of X j and the

valuation function valk is strictly positive), it is also true that valk
(
w′k , z

′
k

)
> valk

(
w′′k , z

′′
k

)
,

again contradicting the assumption that E is a NE.
So, the allocation computed by agent 1 under every NE E is indeed envy-free; this completes

the proof of the first part of the theorem.
We next show that every contiguous envy-free allocation of the entire cake is the outcome of

a NE. Let Z be such an allocation, with Zi = [xi, yi] for all i ∈ N . We define the following set of
strategies E for the agents:

• At every node of the game tree (i.e., for every possible allocation that could be demarcated
by agent 1), agent i ≥ 2 cuts at points wi = xi and zi = yi during its verification round.

• Agent 1 specifically demarcates the allocation Z and cuts at points w1 = x1 and z1 = y1
during its verification round.

Observe that [wi, zi] ∩ Z j is either empty or equal to Z j for every pair of i, j ∈ N . Hence, the
verification phase is successful for every agent and agent i receives the piece Zi.

We claim that this is a NE. Indeed, consider a deviation of agent 1 to a strategy that consists
of the demarcated allocation Z′ (and the cut points w′1 and z′1). First, assume that the set of pieces
in Z′ is different from the set of pieces in Z . Then there is some agent k , 1 and some piece Z′j
such that the if-condition ∅ ⊂ [xk , yk]∩ Z′j ⊂ Z′j is true. Hence, the verification round would fail
for some agent i ∈ {2, . . . , k} and agent 1 would receive nothing. So, both Z′ and Z contain the
same pieces, and may differ only in the way these pieces are tentatively allocated to the agents.
But in this case the maximum utility agent 1 can get is max j val1

(
Z′j

)
, either by keeping the

piece Z′1 or by stealing a strict subset of some other piece Z′j . Due to the envy-freeness of Z , we
have:

max
j
val1

(
Z′j

)
= max

j
val1

(
Z j

)
= val1 (Z1) ,

hence, the deviation is not profitable in this case either.
Now, consider a deviation of agent i ≥ 2 to a strategy that consists of the cut points w′i and

z′i . If both w′i and z′i belong to
⋃n

j=1{xi, yi}, then [w′i , z
′
i] ∩ Z j is either empty or equal to Z j for

some j ∈ N . Hence, the deviation will leave the allocation unaffected and the utility of agent i
will not increase. If instead one of the cut points w′i and z′i does not belong to

⋃n
j=1{xi, yi}, this

implies that the condition
∅ ⊂ [w′i , z

′
i] ∩ Z j (Z j

is true for some j ∈ N , i.e., agent i will steal the piece [w′i , z
′
i] ∩ Z j . However, the utility

vali
(
[w′i , z

′
i] ∩ Z j

)
of agent i cannot be greater than vali

(
Z j

)
, which is at most vali (Zi) due

to the envy-freeness of Z . Hence, again, this deviation is not profitable for agent i.
We conclude that E is a NE; this completes the proof of the theorem. �

69

70

Chapter 6

Existence of Maximin Share Allocations and
Their Extensions

6.1 Introduction

In this chapter, we are interested in the fair allocation of indivisible goods, but to explain the
intricacies of this problem we start with a quick re-examining of the case of divisible goods (i.e.
the continuous analogue) which we have explored in Chapters 4 and 5. In this latter setting, we
have seen that we need to divide a heterogeneous cake between agents with different valuation
functions (that is, different agents may have different values for the same piece of cake).

When there are only two agents, the Cut and Choose protocol provided a compelling method
for dividing a cake — and will play an important conceptual role later on. Recall that under this
protocol, agent 1 cuts the cake into two pieces that he values equally, and agent 2 subsequently
chooses the piece that he prefers, giving the other piece to agent 1. The resulting allocation is
fair in the precise, formal sense known as envy-freeness: Each agent (weakly) prefers his own
allocation to the allocation of the other agent. Envy-free cake divisions exist for any number of
agents; today we know exactly how many cuts are needed to achieve such allocations in the worst
case [1], and how to constructively find them [20], [9]. Moreover, in the standard cake-cutting
setting — envy-freeness implies another natural fairness property called proportionality: Each
agent in the set of agents N receives a piece of cake whose value is at least 1/|N | of the agent’s
value for the entire cake.

Cake cutting is a nice metaphor for real-world problems like land division; the study of cake
cutting distills insights about fairness that are useful in related settings, such as the allocation of
computational resources [49, 81, 58, 84]. However, typical real-world situations where fairness
is a chief concern, for example, divorce settlements and the division of an estate between heirs,
involve indivisible goods (e.g., houses, cars, and works of art) — which in general preclude
envy-free, or even proportional, allocations. As a simple example, if there are several agents
and only one indivisible item to be allocated, the allocation cannot possibly be proportional or
envy free. Foreshadowing the approach we take below, we note that no allocation can be even
approximately (in a multiplicative sense) fair according to these notions, because some agents
receive an empty allocation of zero value.

71

So how can we divide an estate without lawyers? Potentially using an intriguing alternative
to classical fairness notions, recently presented by Budish [27] (building on concepts introduced
by Moulin [76]). Imagine that agent 1 partitioned the items into |N | bundles, and each agent in
N \{1} adversarially chose a bundle before agent 1. A smart agent would partition the bundles to
maximize his minimum value for any bundle. For the same reason we intuitively view the Cut-
and-Choose protocol as fair to agent 1, even before specifying fairness axioms, the allocation
that leaves agent 1 with his least desired bundle seems fair to agent 1 — as he is the one who
divided the items in the first place. Budish calls the value agent 1 can guarantee in this way his
maximin share (MMS) guarantee.1 But an allocation based on the division of agent 1 may make
another agent regret the fact that he was not the one to divide the items. The question is: Can we
allocate the items in a way that all agents receive a bundle worth at least as much as their MMS
guarantee? This question was recently addressed by Bouveret and Lemaître [16], and while they
were able to answer it for special cases (which we list in Section 6.1.3), they left the general
question open.

6.1.1 Model, Conceptual Contribution, and Technical Results
Let us begin with some notation and definitions.
• N = {1, . . . ,n}: The set of agents (of which there are n).
• M: The set of indivisible goods/items (of which there are m).
• For all k ∈ Z>0, [k] = {1, . . . , k} .
• vali : 2M → R≥0: The function taking a subset of the goods and returning i’s value for

said goods. We simplify notation by writing vali (j) instead of vali ({ j}) for a single item
j ∈ M. We assume that the valuation functions are additive (i.e. ∀S ⊆ M, vali (S) =∑

j∈S vali (j)).
• For any S ⊆ M, Πk (S) is the set of k-partitions of S. That is, the partitions of S that

comprise of k sets.
• k-maximin share (k-MMS) guarantee of agent i ∈ N is given by:

MMSi (k,S) = max
T1,...,Tk∈Πk (S)

min
j∈[k]
vali

(
Tj

)
.

We call a partition that realizes this value agent i’s k-maximin partition of S. The valuation
function used to determine an agent’s MMS guarantee will be clear from the context.

• An allocation A1, . . . , An ∈ Πn(M) allocates the subset of items Ai to each agent i.
• An allocation A1, . . . , An is a maximin share (MMS) allocation if:

∀i ∈ N , vali (Ai) ≥ MMSi (n,M).

The assumption of additivity may seem somewhat restrictive, but is made in most of the
related work on fair division of indivisible goods (see Section 6.1.3), including the paper of

1This term should not be confused with the terminology of the systems literature, where max-min fairness simply
refers to maximizing the value any agent receives [35] rather than an axiomatic notion of fairness.

72

Bouveret and Lemaître [16] that studies the maximin share guarantee in the same setting. And
more importantly, people find it difficult to specify combinatorial preferences, which is why some
deployed implementations of fair division methods (see Section 6.1.2) rely on additive valuation
functions. Finally, our positive result does not hold under larger classes of valuation functions,
e.g., subadditive and superadditive functions.

For the case of n = 2 constructing an MMS allocation can be trivially done by having one
agent produce an MMS partition, the other then choosing the better of the two sets (in his view),
and the other set going to the producer of the partition. In essence, this is the Cut and Choose
protocol in the indivisible good setting. Thus the interesting questions lie in the setting where
n ≥ 3. Our first result — the punchline of Section 6.2 — is negative:

Theorem 6.2.1. For any set of agents N such that n ≥ 3 there exist a set of items M of size
m ≤ 3n + 4, and (additive) valuation functions, that do not admit an MMS allocation.

We find this theorem surprising because extensive automated experiments by several groups
of researchers (including us) had failed to find a counterexample. Indeed, the counterexamples
rely on very intricate constructions. In Section 6.2 we first provide explicit counterexamples for
the cases of three and four agents (the latter illustrates the key ideas), and then give the full proof.

While this news may appear somewhat disconcerting, we strive in Sections 6.3, 6.4, and
6.5 to rosy the picture. In Section 6.3 we relax the MMS fairness notion in order to guarantee
existence. Unlike other fairness notions such as envy-freeness, the MMS guarantee supports a
multiplicative notion of approximation. Our main question is:

Is there a value γ > 0 such that we can always find an allocation A1, . . . , An that
satisfies vali (Ai) ≥ γ · MMSi (n,M) for all i?

We answer this question in the positive for

γ = γn :=
2bncodd

3bncodd − 1
, or alternatively,

2
⌊

n+1
2

⌋
− 1

3
⌊

n+1
2

⌋
− 2

where bncodd is the largest odd number that is less than or equal to n. Note that γn is always
greater than 2/3, and it is equal to 3/4 for the important cases of three and four agents. More
precisely, we prove the following theorem in Section 6.3.

Theorem 6.3.1. There always exists an allocation A1, . . . , An such that for all i ∈ N , vali (Ai) ≥
γnMMSi (n,M). Moreover, for every ε > 0, an allocation A1, . . . , An such that for all i ∈ N ,
vali (Ai) ≥ (1 − ε)γnMMSi (n,M) can be computed in polynomial time in n and m.

In Section 6.4 we then give theoretical explanations on why MMS allocations always exist in
practice and simulations by showing that under a sensible randomized model, such allocations
exist with high probability. Section 6.5 further adds that in the case of m ≤ n + 4 goods we can
always guarantee an MMS allocation.

Finally, in Section 6.6 we examine a slightly tangential fairness notion recently introduced
in [30] that applies the concept of MMS at the pairwise level. We improve the best guaranteed
approximation factor known for this notion from 2/

(
1 +
√

5
)
≈ 0.618 to

(√
17 − 1

)
/4 ≈ 0.781.

73

6.1.2 Practical Applications of Our Results
The theory of fair division has been extensively studied, as shown, e.g., by the books by Moulin
[75] and Brams and Taylor [21]. Despite the abundance of extremely clever fair division algo-
rithms, very few have been implemented. Budish’s [27] work is a rare example; his method is
currently used for MBA course allocation at the Wharton School of the University of Pennsylva-
nia. Another example is the adjusted winner method [21], which assumes that there are exactly
two agents (with additive valuation functions). Adjusted winner has been patented by NYU and
licensed to Fair Outcomes, Inc.

As mentioned in Chapter 1, we are involved in an effort to change this situation by building a
fair-division website called Spliddit [50], available at www.spliddit.org. Spliddit contains im-
plementations of existing mechanisms for the division of rent, credit, taxi/Uber fare, and chores.
However, for the fifth application — dividing indivisible goods — we were unable to find sat-
isfactory methods for more than two agents, despite discussions with leading experts on fair
division (we survey some existing methods in Section 6.1.3). This provided strong motivation
for the theoretical work reported here.

The approach we ultimately implemented relied heavily on Theorem 6.3.12. We consider
three “levels” of fairness: envy-freeness, proportionality, and (approximate) MMS guarantee. It
is easy to verify that each of these fairness notions implies the ones following it. Users specify
their valuation functions by distributing a fixed pool of points between the items. We then find
an allocation that maximizes social welfare —

∑
i∈N vali (Ai) — subject to the strongest fea-

sible fairness constraint (using an integer linear programming formulation, which is solved via
CPLEX). For MMS, we maximize the value of γ for which the γ-MMS guarantee is feasible.
By Theorem 6.3.1, achieving γ > 2/3 of the MMS guarantee is always feasible, so the theorem
ensures an outcome that is, well, fair enough. By providing rigorous fairness guarantees that are
easy to explain, it justifies Spliddit’s tagline, “provably fair solutions”.

6.1.3 Related Work

Prior work

Motivated by the problem of allocating courses to students, Budish [27] studies a solution con-
cept that he calls approximate competitive equilibrium from equal incomes (CEEI). Budish shows
the existence of an approximate CEEI (with certain approximation parameters), even when the
preferences of agents are unrestricted (so they may correspond to any combinatorial valuation
functions). Roughly speaking, an approximate CEEI guarantees that vali (Ai) ≥ MMSi (n+1,M),
that is, each of the n agents receives its (n + 1)-MMS guarantee. However, this result takes ad-
vantage of an approximation error in the items that are allocated (some items might be in excess
demand or excess supply). The approximation error grows with the overall number of items,
and with the number of items demanded by each agent, but not with the number of agents or
the number of copies of each item. Therefore, as the two latter parameters go to infinity, the
error goes to zero. A large economy, in this sense, is plausible in the context of MBA course
allocation, because there are many MBA students, many seats in each course, but relatively few

2We have since further refined our approach as discussed in [30].

74

courses that are offered, and even fewer courses a single student can take. But Budish’s results
do not provide practical guarantees when there are, say, three or four agents, and (very possibly)
only one copy of each item — which is the setting we are interested in.

Like us, Bouveret and Lemaître [16] focus on the division of indivisible goods between agents
with additive valuations. They study a hierarchy of fairness properties, of which the maximin
share guarantee is the weakest (it is easy to see that allocations satisfying the other properties
may not exist). Among other results, they show that MMS allocations exist in the following
cases: (i) valuations for items are 0 or 1; (ii) the values different agents assign to items form
identical multisets; and (iii) m ≤ n + 3. They also present results from extensive simulations
using different distributions over item values; MMS allocations exist in each and every trial.

Also related is the work of Lipton et al. [65]. Among other results, they give a polynomial-
time algorithm that computes approximately envy-free allocations, where the approximation is
additive. Specifically, they let α be the largest possible increase in value an agent can have from
adding one item to his bundle, and produce an allocation such that vali (Ai) ≥ vali

(
A j

)
− α

for all i, j ∈ N . This interesting result may not be very practical in and of itself; for example, if
one of the items is extremely valuable, the agents would not be guaranteed anything. In contrast,
assuming items have positive values, an MMS allocation (or any multiplicative approximation
thereof) gives some agent a bundle worth zero (if and) only if any allocation gives some agent a
bundle worth zero.

Hill [55] shows that when valuations are additive, indivisible items can be allocated in a
way that a certain value is guaranteed to each agent; and Markakis and Psomas [67] refine this
guarantee and construct a polynomial time algorithm that achieves it. However, the guaranteed
value is defined using an unwieldy function that depends on the number of agents as well as on
the value of the most valuable item, and even for three agents the function’s value quickly goes
down to zero as the most valuable item becomes more valuable.

When there are exactly two agents, practical methods for dividing indivisible goods are avail-
able. For example, recent work by Brams et al. [19] gives a method satisfying several desirable
properties, including envy-freeness; its main shortcoming is that it may not allocate all items (it
generates a “contested pile” of unallocated items). The adjusted winner method [21], mentioned
above, is another practical method (which is routinely being used, as discussed in Section 6.1.2)
— but it implicitly assumes that the items are divisible and would typically require splitting one
of the items. In any case, for more than two agents, one encounters a great many paradoxes
when contemplating standard fairness notions [17]. Moreover, generalizing these practical 2-
agent protocols is impossible; for example, adjusted winner can be interpreted as a special case
of the egalitarian equivalent [82] rule (for two agents and additive valuation functions), but the
latter method strongly relies on divisibility and may end up splitting all goods.

From an algorithmic viewpoint, our work is related to papers on the problem of allocating
indivisible goods to maximize the minimum value any agent has for his bundle (under additive
valuation functions) — also known as the Santa Claus problem [14, 11, 6]. Woeginger [99]
studies the special case of agents with identical valuations, and presents a polynomial time ap-
proximation scheme that we leverage below.

75

Subsequent work

Since the publication of the earliest version of our results [86], several papers have followed up
on our work.

The preliminary version of Theorem 6.3.1 [86] achieves a 2/3 − ε approximation of the
MMS guarantee in polynomial time only in m, that is, computational efficiency requires a con-
stant number of agents. The main result of Amanatidis et al. [4] improves the running time of that
algorithm: they achieve a 2/3−ε fraction of the MMS guarantee in polynomial time for any num-
ber of agents. They do this by modifying one of the steps of the original (unintuitive) algorithm
of Procaccia and Wang [86]. The current proof of Theorem 6.3.1 is completely different from
the original one, and, in particular, immediately leads to an (arguably) intuitive, polynomial-time
algorithm. Among other results, Amanatidis et al. [4] also show that a 7/8-MMS allocation can
be guaranteed for three agents, improving on our bound of 3/4 for this case.

In a newer paper, Amanatidis et al. [3] design truthful approximations algorithms for the
MMS guarantee. For the so-called cardinal model, where agents report their value for each item,
they provide a truthful algorithm that achieves aΘ(m)-approximation of the MMS guarantee. For
the case of two agents (where an MMS allocation always exists), they are able to give a truthful
1/2-approximation of the MMS guarantee, and prove that no truthful algorithm can yield a better
ratio.

In our very recent work with colleagues [29], we advocate the Max Nash Welfare solution,
which maximizes the product of utilities, as a method for allocating indivisible goods. We show
that this solution, which is clearly Pareto efficient, satisfies an approximate envy-freeness prop-
erty, and also provides a Θ(1/

√
n) approximation of the MMS guarantee in theory, and a much

better approximation in practice. The new solution was deployed on Spliddit in May 2016.

6.1.4 Open Problems
One obvious question remains open. Theorem 6.2.1 does not provide an upper bound on the the
constant γ > 0 such that γ-MMS allocations always exist, and our constructions in Section 6.2
provide very weak upper bounds. Our lower bound, given by Theorem 6.3.1, is 2/3. Narrowing
this gap is, in our view, an important challenge.

As noted above, Budish [27] introduced a different notion of MMS approximation. In its ideal
form, we would ask for an allocation such that vali (Ai) ≥ MMSi (n + 1,M). We have designed
an algorithm that achieves this guarantee for the case of three agents (it is already nontrivial).
Proving or disproving the existence of such allocations for a general number of agents remains
an open problem; a positive result would provide a compelling alternative to Theorem 6.3.1.

6.2 Nonexistence of Exact MMS Allocations
In this section we will show that, in general, MMS allocations are not guaranteed to exist (even
under our assumption of additive valuation functions). But, to give some context for this result,
let us briefly discuss a case where they do exist. As briefly mentioned previously and first pointed
out by Bouveret and Lemaître [16], when there are two agents we can achieve an MMS alloca-
tion — essentially via an indivisible analog of the Cut and Choose protocol. First, let agent 1

76

divide the items according to a 2-maximin partition S1,S2 of his, i.e., the partition that maximizes
min j∈[2] val1

(
Sj

)
. Allocate to agent 2 his preferred subset, and give the other subset to agent 1.

Agent 1 clearly achieves his MMS guarantee, but what about agent 2? By the additivity of val2,
there exists j ∈ [2] such that val2

(
Sj

)
≥ val2 (M) /2. In addition, in any partition S′1,S

′
2 there

exists k ∈ [2] such that val2
(
S′k

)
≤ val2 (M) /2, hence MMS2(2,M) ≤ val2 (M) /2. It follows

that there exists j ∈ [2] such that val2
(
Sj

)
≥ MMS2(2,M).

In contrast, MMS allocations may not exist when the number of agents is at least three.
Theorem 6.2.1. For any set of agents N such that n ≥ 3 there exist a set of items M of size
m ≤ 3n + 4, and (additive) valuation functions, that do not admit an MMS allocation.

The case of n = 3 is handled separately, in Section 6.2.1. A single construction works for
any n ≥ 4, but because it is rather complex, we first illustrate the main ideas in Section 6.2.2 for
the special case of n = 4, and then provide the full construction in Section 6.2.3.

6.2.1 Proof of Theorem 6.2.1 for n = 3

Let the set of items beM = {(i, j) | i ∈ [3], j ∈ [4]} (note that m = 12 < 3n + 4). The valuation
functions of the three agents are defined using the following two matrices:

S =

1 1 1 1
1 1 1 1
1 1 1 1

, T =

17 25 12 1
2 22 3 28

11 0 21 23

,

in conjunction with the three matrices:

E (1) =

3 −1 −1 −1
0 0 0 0
0 0 0 0

, E (2) =

3 −1 0 0
−1 0 0 0
−1 0 0 0

, E (3) =

3 0 −1 0
0 0 −1 0
0 0 0 −1

.

For each item (i, j) ∈ M, we let

valk ({(i, j)}) = 106 · Si,j + 103 · Ti,j + E (k)
i,j .

Our first goal is to compute the MMS guarantee of each agent. To this end, we will find it
convenient to label each element of T with three of nine possible labels (1,2,3,α, β,γ,+,−,∗):

α171
+

α251
−

β121
+

γ11
∗

α22
−

β222
∗

γ32
+

γ282
−

α113
∗

β03
−

β213
∗

γ233
+

T has the following Sudoku-like property: For each label there are exactly four elements with
that label, and the sum of these 4 elements is exactly 55. Moreover, any four elements whose
sum is 55 must have the same label.

This observation facilitates a straightforward computation of MMS guarantees. Agent 1 can
divide the 12 items into three subsets: a subset consisting of the four elements labeled with 1 (the
first row), a subset consisting of the four elements labeled by 2 (the second row), and a subset

77

consisting of the four elements labeled by 3 (the third row). For each subset, the sum of its four
elements in S, T and E (1) is 4, 55 and 0 respectively. Hence, MMS1(3,M) = 4 · 106 + 55 · 103 +

0 = 4055000. Agent 2’s maximin partition is obtained by dividing the items into three subsets
according to the labels α, β and γ, and agent 3’s maximin partition corresponds to the labels +,−
and ∗; all MMS guarantees are 4055000.

We next characterize MMS allocations of M, with the goal of showing that no such allo-
cations exist. First note that a valid MMS allocation of M must allocate at least four items
to each agent. Indeed, for any bundle X ⊆ M such that |X | = 3 and each agent i = 1,2,3,
vali (X) ≤ 3 · 106 + 76 ∗ 103 + 3 < 4055000. Because there are twelve items, each agent must
receive exactly four items.

We now claim that in an MMS allocation each agent must receive four items with the same
label. Indeed, as noted above, the only bundles whose values in T add up to 55 consist of four
items with identical labels. Suppose that an agent is allocated four items with different labels.
Since the sum of all the elements in T is 165 = 55 × 3, there must be an agent with four items
whose sum in T is less than 55. This agent’s value is at most 4 · 106 + 54 · 103 + 3 < 4055000.

It is easy to verify that there are only three ways to divideM into three subsets such that the
items in each subset have identical labels:

1. Dividing according to the labels 1,2,3.

2. Dividing according to the labels α, β,γ.

3. Dividing according to the labels +,− and ∗.
All three ways will fail to give some agent his MMS guarantee of 4055000. Indeed, in case (1),
there is an agent i1 ∈ {2,3}who is allocated items labeled by 2 or 3. The sum of the corresponding
elements in E (i1) is −1, hence the value i1 obtains is 4 · 106 + 55 · 103 − 1 = 4054999 < 4055000.
In case (2), an agent i2 ∈ {1,3} must be allocated a subset of items labeled with β or γ; and in
case (3), an agent i3 ∈ {1,2} must be allocated a subset of items labeled with − or ∗. By the
same reasoning as in case (1), in cases (2) and (3) agent il , l = 2,3, ends up with value at most
4054999. We conclude that it is impossible to satisfy the MMS guarantees of all three agents. �

6.2.2 Proof of Theorem 6.2.1 for n = 4

Because the construction for n ≥ 4 is somewhat intricate, we start by explicitly providing the
special case of n = 4 as previously mentioned. To this end, let us define the following two
matrices, where ε is a very small positive constant (ε = 1/16 will suffice).

S =

7
8 0 0 1

8
0 3

4 0 1
4

0 0 1
2

1
2

1
8

1
4

1
2

1
8

, T =

0 ε4 0 −ε4

ε3 0 −ε3 + ε2 −ε2

0 −ε4 + ε 0 ε4 − ε

−ε3 −ε ε3 − ε2 ε2 + ε

.

Let M = S + T . Crucially, the rows and columns of M sum to 1. Let M contain goods that
correspond to the nonzero elements of M , that is, for every entry Mi,j > 0 we have a good (i, j);
note that m = 14 < 3n + 4.

Next, partition the 4 agents into P = {1,2} and Q = {3,4}. Define the valuations of the agents

78

in P as follows where 0 < ε̃ � ε (ε̃ = 1/64 will suffice):

M +

0 0 0 −ε̃
0 0 0 −ε̃
0 0 0 −ε̃
0 0 0 3ε̃

.

That is, the values of the rightmost column are perturbed. For example, for i ∈ P, vali ({(1,4)}) =

1/8 − ε4 − ε̃ . Similarly, for agents in Q, the values of the bottom row are perturbed:

M +

0 0 0 0
0 0 0 0
0 0 0 0
−ε̃ −ε̃ −ε̃ 3ε̃

.

It is easy to verify that the MMS guarantee of all agents is 1 by partitioning the items based off

their rows (for agents in Q) or columns (for agents in P). Moreover, our construction ensures
the unique MMS partition of the agents in P (where every subset has value 1) corresponds to the
columns of M , and the unique MMS partition of the agents in Q corresponds to the rows of M .
If we divide the goods by columns, one of the two agents in Q will end up with a bundle of goods
worth at most 1 − ε̃ — which is less than his MMS guarantee of 1. Similarly, if we divide the
goods by rows, one of the agents in P will receive a bundle worth only 1 − ε̃ . Any other division
will certainly fail assuming that ε̃ is sufficiently small. �

6.2.3 Proof of Theorem 6.2.1 for n ≥ 4

With the illustrative example of n = 4 under our belt, we are now ready for the general case
where n ≥ 4. The crux of the argument is proving the existence of a matrix M ∈ Rn×n with the
following properties:

1. All entries are non-negative (i.e. ∀i, j : Mi,j ≥ 0).

2. All entries of the last row and column are positive (i.e. ∀i : Mi,n,Mn,i > 0).

3. All rows and columns sum to 1 (i.e. M1 = MT 1 = 1).

4. Define M+ as the set of all positive entries in M . Then if we wish to partition M+ into n
subsets that sum to exactly 1 then our partition must correspond to the rows of M or the
columns of M .

To begin, let S ∈ Rn×n be the following matrix.

2n−1−1
2n−1 0 0 · · · 0 0 1

2n−1

0 2n−2−1
2n−2 0 · · · 0 0 1

2n−2

0 0 2n−3−1
2n−3 · · · 0 0 1

2n−3
...

...
...

. . .
...

...
...

0 0 0 · · · 3
4 0 1

4
0 0 0 · · · 0 1

2
1
2

1
2n−1

1
2n−2

1
2n−3 · · · 1

4
1
2

1
2n−1

i.e. Si,j =

2n−i−1
2n−i if i = j , n
1

2n− j if i = n and j , n
1

2n−i if j = n and i , n
1

2n−1 if i = j = n
0 otherwise.

79

Now for ε ≈ 0 where ε > 0, and for all i ∈ [n − 2], let ri = ε2n−2i−2, and ci = ε2n−2i−3.
Specifically, this implies:

0 < r1 � c1 � r2 � c2 � . . . � rn−2 � cn−2 = ε ≈ 0.

Furthermore, let T ∈ Rn×n be the matrix given by (where we will define x, y, z and the ui, and vi
below):

0 v1 0 · · · 0 0 −r1
u1 0 v2 · · · 0 0 −r2
0 u2 0 · · · 0 0 −r3
...

...
...

. . .
...

...
...

0 0 0 · · · 0 vn−2 −rn−2
0 0 0 · · · un−2 0 −y

−c1 −c2 −c3 · · · −cn−2 −x z

i.e. Ti,j =

u j if i = j + 1 and j ≤ n − 2
vi if j = i + 1 and i ≤ n − 2
−ri if j = n and i ≤ n − 2
−c j if i = n and j ≤ n − 2
−x if i = n and j = n − 1
−y if i = n − 1 and j = n
z if i = j = n
0 otherwise.

Note the only nonzero entries are on the first diagonals above and below the main diagonal, and
the last row and column.

Now assign positive values to the ui,vi, x, y, and z such that all rows and columns sum to zero.
A bit of arithmetic then gives:

ui =
*.
,

∑
j≤i,j≡i (mod 2)

c j
+/
-
−

*.
,

∑
j≤i,j.i (mod 2)

r j
+/
-
≈ ci

vi =
*.
,

∑
j≤i,j≡i (mod 2)

r j
+/
-
−

*.
,

∑
j≤i,j.i (mod 2)

c j
+/
-
≈ ri

x = vn−2 ≈ rn−2

y = un−2 ≈ cn−2

z =
*.
,

∑
j≤n−2,j≡n (mod 2)

r j + c j
+/
-
≈ cn−2.

Now define M = S + T and M+ = {(i, j) | Mi,j , 0}. Moreover, for a set X ⊆ M+, let∑
X =

∑
(i,j)∈X Mi,j . Then we see for sufficiently small ε that the following properties hold.

[P1] Mi,j ≥ 0 and if Si,j , 0 or Ti,j , 0, then Mi,j > 0.

[P2] Mi,j ≈ Si,j .

[P3] All rows and columns sum to 1 (i.e. M1 = MT 1 = 1).

[P4] ∀i ∈ [n − 1] if we have X ⊆ M+ s.t. (i, i) ∈ X and
∑

X = 1 then exactly one of the
following is true:

(a) (i,n) ∈ X .

80

(b) (n, i) ∈ X .

(c) (1,n), (2,n), . . . , (i − 1,n), (n,n) ∈ X .

(d) (n,1), (n,2), . . . , (n, i − 1), (n,n) ∈ X .

(e) ∃ j, k < i s.t. (j,n), (n, k) ∈ X .

This is easy to see when we take note that M ≈ S by [P2].

[P5] If X ⊆ M+ s.t.
∑

X = ri, then X = {(i, i − 1), (i, i + 1)}.

[P6] If X ⊆ M+ s.t.
∑

X = ci, then X = {(i − 1, i), (i + 1, i)}.

[P7] If X ⊆ M+ s.t.
∑

X = x, then X = {(n − 2,n − 1)}.

[P8] If X ⊆ M+ s.t.
∑

X = y, then X = {(n − 1,n − 2)}.
We now make a key observation with respect to M .

Lemma 6.2.2. Suppose X1, . . . ,Xn is a partition of M+ such that
∑

Xi = 1 for all i. Then for
sufficiently small ε , the partition must correspond to the rows of M or the columns of M.

Proof. Let us first consider the subset in the partition which includes (1,1). WLOG assume this
is X1. We wish to prove that X1 is either:

1. the first row = {(1,1), (1,2), (1,n)}, or
2. the first column = {(1,1), (2,1), (n,1)}.

By [P4] we see that exactly one of (n,1), (1,n), and (n,n) must be part of X1.

1. Suppose (n,n) ∈ X1. Then
∑

X1 ≥ M1,1 + Mn,n = 1 + z > 1. This is therefore impossible.
2. Suppose (1,n) ∈ X1. As M1,1 + M1,n = 1−r1 we see that by [P5] we must have (1,2) ∈ X1.

Then X1 corresponds to the first row.
3. Suppose (n,1) ∈ X1. As M1,1 + Mn,1 = 1−c1 we see that by [P6] we must have (2,1) ∈ X1.

Then X1 corresponds to the first column.

Now suppose we wish to find a partition as in the lemma’s statement such that the first i − 1
rows are in the partition where i ∈ {2, . . . ,n}. Then we claim row i must be in the partition as
well. Importantly, this implies that if the first row is to be in the partition, then the partition must
be the rows.

We first consider the case where i ≤ n − 1. Let Xi denote the subset in the partition that
includes (i, i). By [P4] we see that we must have one of the following.

1. (i,n) ∈ Xi.
If i ≤ n − 2 we find that Mi,i + Mi,n = −ri and so by [P5] we have (i, i − 1), (i, i + 1) ∈ Xi.
We therefore find that Xi = {(i, i − 1), (i, i), (i, i + 1), (i,n)}. On the other hand, if i = n − 1
we find that Mi,i + Mi,n = −y and so by [P8] we have (n − 1,n − 2) ∈ Xi. Thus Xi =

{(n − 1,n − 2), (n − 1,n − 1), (n − 1,n)}. In either case Xi is the ith row.
2. (n, i) ∈ Xi.

If i ≤ n − 2 we find that Mi,i + Mn,i = −ci and so by [P6] we have (i − 1, i) ∈ Xi. But
(i − 1, i) is in a previous row, which by our assumption is already assigned to a subset in
the partition. On the other hand, if i = n − 1 we have Mi,i + Mn,i = −x and so by [P7] we

81

have (n − 2,n − 1) ∈ Xi. Similarly to before, this element is in a previous row and thus is
already assigned to a subset in the partition.

3. (1,n), (2,n), . . . , (i − 1,n), (n,n) ∈ Xi.
As (1,n) is in a previous row it is already assigned to a subset in the partition.

4. (n,1), (n,2), . . . , (n, i − 1), (n,n) ∈ Xi.
This is impossible because∑

Xi ≥ Mi,i + Mn,1 + Mn,2 + . . . + Mn,i−1 + Mn,n

= 1 − r1 − r2 − . . . − ri−1 + z
= 1 + ri + ri+1 + . . . + rn+2 + y

> 1.

5. ∃ j, k < i s.t. Mj,n,Mn,k ∈ Xi.
As (j,n) is in a previous row it is already assigned to a subset in the partition.

Next, suppose i = n. In this case, since we are only allowed n subsets in this partition, all
remaining entries (i.e. the last row) must be in the last set. By [P3] we know this last row sums
to 1. We therefore have shown that if the first row is in the partition, then the partition simply
corresponds to the rows. A similar argument gives an analogous result for columns. As the first
row or first column must be a subset in the partition (namely as X1) we are done. �

To show the n ≥ 4 counterexample, we now consider our construction through the lens of
MMS allocations. We first show that there exists a set of 5n − 6 such goods for n ≥ 4.

Partition the n agents into two groups P and Q such that |P |, |Q | ≥ 2 and letM = M+. Note
that there are |M+ | = 5n − 6 such goods. For k ∈ P, we define:

valk ({(i, j)}) =

Mi,j if j < n
Mi,j − ε̃ if j = n and i < n
Mi,j + (n − 1)ε̃ if j = n and i = n

and similarly, for k ∈ Q, let

valk ({(i, j)}) =

Mi,j if i < n
Mi,j − ε̃ if i = n and j < n
Mi,j + (n − 1)ε̃ if i = n and j = n

where ε̃ > 0 and is small enough to ensure all valk ({(i, j)}) ≥ 0. That is, the agent valuations
are defined by the entries of M aside from perturbations on the last column for agents in P and
on the last row for agents in Q.

As all agents in P (respectively Q) can partition the goods into columns (respectively rows)
such that the value of each subset in the partition is exactly 1, the MMS guarantee of all agents
in P (respectively Q) must be 1.

Next, let us consider an allocation of the goods. Lemma 6.2.2 tells us that if the valk ({(i, j)})
were exactly equal to the Mi,j there are only two ways to allocate the goods such that every subset

82

in the partition has value 1 (i.e. we get an MMS allocation): via the rows or via the columns. But
note that the alteration to the value of a good (i, j) from Mi,j is at most (n − 1)ε̃ and indeed no
subset of goods can have its total value altered by more than (n − 1)ε̃ for any agent. Therefore,
we claim that if we wish to have any hope of achieving an MMS allocation we must still partition
according to the rows or columns (assuming ε̃ is sufficiently small). To see this, define

γ = max
(X1,...,Xn)∈X

min
i∈N

∑
Xi

where X is the set of partitions of M+ excluding the rows and the columns. Importantly, via
Lemma 6.2.2 and the finite nature of X we know that γ < 1. Now suppose ε̃ < 1−γ

n−1 . Then for
any allocation that did not correspond to the rows or columns some agent must have value at
most γ + (n − 1)ε̃ < 1. This proves the claim.

Now note that if we split via rows the agents of P will believe only the last row is worth at
least 1 and all other rows are worth strictly less than 1. As there are at least two agents in P,
not all agents can receive their MMS guarantee. A similar issue occurs when we split via the
columns for the agents in Q. Therefore, there exists no MMS allocation in this setting.

We have just shown the result for 5n − 6 goods (for n ≥ 4) and now set our sights on 3n + 4
goods. Let ñ = d(n + 4)/2e ≥ 4. We know that we can find 5ñ − 6 goods that do not admit an
MMS allocation for ñ agents. Take this set of goods, and let there be n agents such that bn/2c
agents are in group P and the remaining dn/2e are in group Q. Finally, add n − ñ goods each of
value 1 to all agents. Note that the number of goods is:

m = (5ñ − 6) + (n − ñ) = 4ñ + n − 6 = 4 d(n + 4)/2e + n − 6 ≤ 3n + 4.

Further observe that:

n − ñ = n − d(n + 4)/2e = bn/2c − 2.

Thus, we have that of the agents who did not receive any of the new n − ñ items of value 1
there must be at least |P | − (n − ñ) ≥ 2 agents in P. Similarly, there must be |Q | − (n − ñ) ≥ 2
agents in Q. As we still must have at least 2 agents in both P and Q when we allocate the original
5ñ − 6 goods no MMS allocation exists. �

6.3 Existence and Computation of Approximate MMS Allo-
cations

To circumvent Theorem 6.2.1 we introduce a new notion of approximate maximin share guar-
antee: rather than asking for an allocation A1, . . . , An such that vali (Ai) ≥ MMSi (n,M) for all
i ∈ N , we look for γ-approximate MMS allocations such that vali (Ai) ≥ γ · MMSi (n,M) for
some γ > 0.

To this end, recall that for all k ∈ N, we denote

γk =
2bkcodd

3bkcodd − 1
.

Our main result is that γn-approximate MMS allocations always exist.

83

Theorem 6.3.1. There always exists an allocation A1, . . . , An such that for all i ∈ N , vali (Ai) ≥
γnMMSi (n,M). Moreover, for every ε > 0, an allocation A1, . . . , An such that for all i ∈ N ,
vali (Ai) ≥ (1 − ε)γnMMSi (n,M) can be computed in polynomial time in n and m.

Paramount to the proof of Theorem 6.3.1 is Algorithm 13. The only part of the algorithm
that is not elementary is Step 7(a), which says “repeat until no cycles exist”. Intuitively, each
time the bundles are rotated along a cycle, the total number of edges in the envy graph decreases,
and therefore the cycle elimination process must terminate. This claim is formally established
by Lipton et al. [65], who use it to show that an algorithm that essentially coincides with Steps 6
and 7 of Algorithm 13 achieves the α-envy-freeness property discussed in Section 6.1.3.

1. If there is an agent who believes any single item is worth γn of his MMS guarantee, give it
to him and eliminate him and his item from all further consideration. Repeat until no such
agent exists.

2. If only two agents remain, let one of the two agents produce a 2-MMS partition and have
the other take his more preferred bundle. The remaining bundle is given to the agent who
produced the partition and the algorithm ends.

3. In lexicographic order, give each remaining agent their most favored item not already given
away or eliminated (breaking ties between items lexicographically).

4. In reverse lexicographic order, give each remaining agent their most favored item not al-
ready given away or eliminated (breaking ties between items lexicographically).

5. If a non-eliminated agent believes that his last received item (the one given to him in Step
4), in addition to any two items not already given out or eliminated, is worth γn of his
MMS guarantee, then:

(a) Exchange his current two items for these three items (his last received item remains
with him).

(b) Eliminate this agent and his three items.

(c) Have all other remaining agents (the others who received items in steps 3 and 4)
return their items.

(d) Go to Step 3.

6. Create a directed envy graph G = (V,E) where V represents the remaining agents and there
is an edge (i, j) iff i believes his current bundle is worth strictly less than that of j.

7. Loop through the following until all items have been allocated.

(a) If there is a cycle in G then eliminate it by having each agent in the cycle give his
bundle to the agent before him in the cycle (and receive the bundle from the agent
after him). Update the edges so that (i, j) exists iff i believes his current bundle is
worth strictly less than that of j, as before. Repeat until no cycles exist.

(b) As there is no cycle in G, there exists at least one agent who has no incoming edges.
Give one of the items not already given out or eliminated to one of these agents.

Algorithm 13

84

We prove Theorem 6.3.1 in two steps. In Section 6.3.1, we show that Algorithm 13 produces a
γn-approximate MMS allocation. The algorithm would clearly run in polynomial time, if it were
given an oracle that can compute MMS partitions. In Section 6.3.2, we explain how to convert
the algorithm to a polynomial time algorithm, at the cost of decreasing the MMS approximation
ratio by ε .

6.3.1 Proof of Theorem 6.3.1: Existence

Fix the number of agents n, and denote γ = γn. Assume, for the sake of contradiction, that the
existence claim in Theorem 6.3.1 is false. In particular, we have a counterexample where agent
i ∈ N does not achieve the desired γ ratio of his MMS guarantee on the item set M, when
Algorithm 13 is executed on this instance. For notational convenience, further assume i’s MMS
guarantee is 1 in this instance (normalizing if necessary) and that values always refer to those of
agent i unless otherwise specified.
Observation 6.3.2. If i is eliminated at any point, then he achieves a γ fraction of his MMS
guarantee (i.e. he receives a value of at least γ).
Observation 6.3.3. γk is a non-increasing function of k, and is in (2/3,3/4] for k ≥ 3.
Lemma 6.3.4. If the set of agents eliminated in step 1 of the algorithm in our counterexample
(where i fails to achieve a value of γ) is non-empty but does not contain i, then there exists a
counterexample where no agents are eliminated in step 1.

Proof. Let Ñ be the set of agents remaining after step 1 in our counterexample, and M̃ the set
of items.

Now consider the execution of the algorithm on the set of agents Ñ and items M̃. Observe
that upon completion of step 1, the executions on this instance and the original (i.e. the execution
with N and M) are equivalent. That is, the agents in Ñ are given the same items in both
instances.

Finally, consider i’s value in the altered instance. As each eliminated agent took only one
item and because a single item can only occupy a single bundle in an MMS partition, we have
that

MMSi (|Ñ |,M̃) ≥ MMSi (|N |,M). (6.1)

Recall that i’s value on the altered instance is equal to his value on the original instance, which
is less than γ|N |MMSi (|N |,M) ≤ γ ˜|N |MMSi (|Ñ |,M̃), where the weak inequality follows from
Equation (6.1) and Observation 6.3.3. Therefore, i does not achieve the desired γ ˜|N | ratio of his
MMS guarantee on the altered instance. �

Observation 6.3.5. If the algorithm terminates on step 2, then all agents achieve the desired γ
approximation.

Importantly, Observation 6.3.2 and Lemma 6.3.4 suggest that we may safely assume that no
agent is eliminated in step 1 in our counterexample — and, in fact, that i is not eliminated at any
point. Observation 6.3.5 further allows us to assume that the algorithm does not terminate at step
2 and so, in addition, n ≥ 3. With this in mind, we introduce the following notation.

85

• For j ∈ N , Φ j denotes the set of the two most valuable items (in i’s view) that j possesses
at the beginning of step 6 (breaking ties arbitrarily). In particular, if j is not eliminated in
step 5 he has exactly two items, and otherwise he has exactly three.

• For j ∈ N , Ψj denotes the bundle containing Φ j upon completion of the entire algorithm
(it is easy to check that the algorithm will never separate them). Note that j may not receive
this bundle upon algorithm completion due to step 7, but all agents receive exactly one of
these bundles.

• For j ∈ N , v j denotes vali
(
Φ j

)
.

• For j ∈ N , Vj denotes vali
(
Ψj

)
.

• p denotes i’s value for the item i received in the last iteration of step 3.
• q denotes i’s value for the item i received in the last iteration of step 4. Note that p + q = vi

and p ≥ q.
• î denotes the index such that upon algorithm completion i receives bundle Ψî. Note that

we must have Vî < γ.

With this notation we are now ready for the following key observations and lemmas.
Observation 6.3.6. v j ≤ Vj (since v j = vali

(
Φ j

)
≤ vali

(
Ψj

)
= Vj).

Observation 6.3.7. During steps 6 and 7, i’s value is non-decreasing (since i only exchanges his
bundle for one he envies).
Observation 6.3.8. p + q = vi < γ (since by Observation 6.3.7 i must receive a value of at least
vi upon algorithm completion).
Observation 6.3.9. q < γ/2 (by Observation 6.3.8 and q ≤ p).
Lemma 6.3.10. If j , i is eliminated in step 5, then at most one of j’s three items has value in
(q,p], and the others each have value at most q.

Proof. When j is eliminated in step 5, he retains the item he received in step 4 and receives two
others. The item he received in step 4 is clearly of value at most p, as otherwise i would have
taken this in step 3. Similarly, the other two items each must be of value at most q, as i could
have taken either in step 4. �

Corollary 6.3.11. If j , i is eliminated in step 5, then Vj ≤ p + 2q < γ + q (By Lemma 6.3.10
and Observation 6.3.8).
Lemma 6.3.12. If Φ j (Ψj then v j < γ and Vj < γ + q.

Proof. If Φ j (Ψj then we must have one of two cases.

1. j is eliminated in step 5.
Lemma 6.3.10 and Observation 6.3.8 shows us that v j ≤ p + q < γ and Corollary 6.3.11
shows us that Vj < γ + q.

2. During steps 6 and 7, the bundle initially denoted by Φ j and ending as Ψj received at least
one item.
Let us consider the last time this bundle received an item. i must not have envied whomever
held the bundle at the time, and therefore its value to i before the addition of the new item

86

must be less than γ. Thus, v j < γ. Furthermore, the added item must have value at most q
(as otherwise i would have selected this item in step 4) and so we have Vj < γ + q.

�

Corollary 6.3.13. If v j ≥ γ, then Ψj = Φ j and thus Vj = v j as well (by Lemma 6.3.12).
Lemma 6.3.14. It holds that v j ≤ Vj ≤ max(v j , γ + q).

Proof. v j ≤ Vj is true by Observation 6.3.6. Regarding the second inequality, if Φ j = Ψj then
we clearly have Vj = v j ≤ max(v j , γ + q). Otherwise Lemma 6.3.12 applies and we see that
Vj < γ + q ≤ max(v j , γ + q). �

Lemma 6.3.15. If v j ≤ γ + q we have Vj ≤ γ + q.

Proof. If Φ j (Ψj , then Lemma 6.3.12 applies. Otherwise, Vj = v j which gives the result. �

For the following observations, recall that agents choose in lexicographic order (increasing
index) in Step 3, and in reverse lexicographic order (decreasing index) in Step 4.
Observation 6.3.16. If j ≤ i is not eliminated, then the more valuable of Φ j’s two items (in i’s
view) i values less than γ (as otherwise i would have taken this item in step 1) and the other
i values at most q (as otherwise i would have taken this item in step 4). This further implies
v j < γ + q.
Observation 6.3.17. If j > i is not eliminated, then each of the two items in Φ j must have value
at most p to i (as otherwise i would have taken one of these items in step 3). This further implies
v j ≤ 2p.
Lemma 6.3.18. For all j ≤ i we have v j ≤ Vj ≤ γ + q.

Proof. If j is eliminated in step 5, then Corollary 6.3.11 applies and we see that v j ≤ γ + q.
Otherwise, by Observation 6.3.16 we still have that v j ≤ γ + q. Combining this with Lemma
6.3.14 gives the result. �

Lemma 6.3.19. For all j > i we have v j ≤ Vj ≤ max(2p, γ + q).

Proof. If j is eliminated in step 5, then Corollary 6.3.11 applies and we see that v j ≤ γ + q as
before. Otherwise, by Observation 6.3.17 we have that v j ≤ 2p. Combining this with Lemma
6.3.14 gives the result. �

Lemma 6.3.20. It holds that p < 1/2.

Proof. Assume for contradiction that p ≥ 1/2. Let S = { j | v j > 1}. We make the following
observations for each j ∈ S:

87

• j > i.
If j ≤ i we have:

v j ≤ γ + q (by Lemma 6.3.18)
< γ + (γ − p) (since p + q < γ)
= 2γ − p
≤ 2(3/4) − 1/2 (by Observation 6.3.3 and our assumption p ≥ 1/2)
= 1.

Thus, if j ≤ i we have v j ≤ 1 and so we cannot have that j ∈ S.
• Ψj = Φ j .

This follows from Corollary 6.3.13 and noting that γ < 1.
• There are only two items in Ψj and each has value at most p.

Since Ψj = Φ j , we have that Ψj has only two items. Furthermore, as we know that j > i,
the two items in Ψj each have value at most p by Observation 6.3.17.

Now let T =
{

j | v j ∈ [γ,1]
}
. Observe that for all j ∈ T , we have Ψj = Φ j and so there are

only two items in Ψj (by Corollary 6.3.13 and noting that γ < 1). Now consider the following
algorithm (which we use only as a tool in our proof and not as a useful algorithm in and of itself).

1. Let P = {A1, . . . , An} be some MMS partition for i.
2. Flag the item i receives in the last invocation of step 3 (which is worth p).3
3. Flag the 2|S | items corresponding to the Ψj for j ∈ S.
4. While T , ∅:

(a) Remove some t ∈ T .
(b) Denote the two items corresponding to Ψt by x and y.
(c) Denote by G the bundle in P that x belongs to.
(d) Denote by H the bundle in P that y belongs to.
(e) Flag x and y.
(f) If G , H replace G and H with {x, y} and (G ∪ H) \ {x, y} in P. That is, if G , H

we replace P with (P \ {G,H }) ∪ {{x, y}, (G ∪ H) \ {x, y}}.

We claim that an invariant of the loop in the algorithm (and therefore holds upon algorithm
completion) is that for all G ∈ P:

• if there are zero flagged items in G, then i values G at least at 1.
• if there is exactly one flagged item in G, then i values the non-flagged items of G at least

at 1 − p.

3The concept of flagging can be thought of as inclusion in some flag set, but we find this approach intuitively
clearer.

88

As initially P is an MMS partition, we know that before we enter the loop for the first time,
any bundle of P without any flagged items must have a value of at least i’s MMS guarantee,
which is 1. Furthermore, as all of the 2|S | + 1 items initially flagged must have value at most
p, any bundle with exactly one flagged item must have value at least 1 − p for the non-flagged
items. Our invariant thus holds initially.

During a loop iteration if we have that G = H then since flagging x and y forces G(= H)
to have at least two flagged items, our invariant continues to hold vacuously. It therefore only
remains to show that when we replace G,H with {x, y}, (G ∪ H) \ {x, y} our invariant still holds.
As the set {x, y} contains two flagged items, we need not show anything of this set. We focus
now on the set (G ∪ H) \ {x, y}.

During a loop iteration we have the following cases:

• (G ∪ H) \ {x, y} has zero flagged items.
In this case, both G and H had zero flagged items before the flagging of x and y and
therefore, they each have value at least 1. Thus, the non-flagged items in (G ∪ H) \ {x, y}
have value at least

1 + 1 − vali ({x, y}) ≥ 1 + 1 − 1 = 1

where we have used the fact that vali ({x, y}) = vt for some t ∈ T and therefore by the
definition of T is at most 1.

• (G ∪ H) \ {x, y} has exactly one flagged item.
In this case, exactly one of G \ {x} and H \ {y} has a flagged item (and exactly one flagged
item). Then we have that the non-flagged items of (G ∪ H) \ {x, y} have value at least

1 + 1 − p − vali ({x, y}) ≥ 1 + 1 − p − 1 = 1 − p.

• (G ∪ H) \ {x, y} has two or more flagged items.
In this case, we need not prove any property of the bundle.

This proves the loop invariant.
Once this algorithm completes, we have that for all j ∈ S∪T , both of the two items in Ψj are

flagged, as is i’s first item received (which is worth p). If we let k = |S ∪ T |, then we have that
the total value of all non-flagged items is:

−p +
∑

j<S∪T

Vj = Vî − p +
∑

j<S∪T∪{î}

Vj

< γ − p + (n − k − 1)(γ + q) (by Vî < γ and Lemma 6.3.15)
< γ − p + (n − k − 1)(γ + (γ − p)) (since p + q < γ)
= (2n − 2k − 1)γ − (n − k)p.

We will now contradict this statement by in fact demonstrating that the total value of all non-
flagged items must simultaneously be at least (2n − 2k − 1)γ − (n − k)p — thus completing the
proof.

89

Denote by α j the number of bundles of the final partition with exactly j flagged items. Then
the total value of non-flagged items must be at least α0 + α1(1 − p) due to the loop invariant.
Importantly, by counting the number of flagged items, we also have that:

2k + 1 =
∑
j≥1

jα j ≥ α1 + 2
∑
j≥2

α j = α1 + 2(n − α0 − α1)

⇒ α1 ≥ 2n − 2k − 1 − 2α0.

Thus, to prove the desired contradiction it suffices to show that the solution to the following
optimization problem is at least 0.

min
α0,α1,p

α0 + α1(1 − p) − (2n − 2k − 1)γ + (n − k)p

s.t. α1 ≥ 2n − 2k − 1 − 2α0

α0 ≥ max(0,n − 2k − 1).

As p < γ < 1 we have that 1 − p > 0 and so it is best to minimize α1 under the constraint.
That is, the constraint should be tight at the optimal solution. We can therefore assume α1 =

2n − 2k − 1 − 2α0 and with a bit of arithmetic we arrive at the following equivalent optimization
problem.

min
α0,p

α0(2p − 1) + (2n − 2k − 1)(1 − p − γ) + (n − k)p

s.t. α0 ≥ max(0,n − 2k − 1).

As p ≥ 1/2 we have that 2p − 1 ≥ 0 and so it is also best to minimize α0 — the number of
bundles with zero flagged items. Thus, we have that α0 = max(0,n − 2k − 1) and so we have the
further reduced optimization problem:

min
p

max(0,n − 2k − 1) · (2p − 1) + (2n − 2k − 1)(1 − p − γ) + (n − k)p. (6.2)

In regards to the final variable of our optimization, p, we see that our objective is linear and
therefore we need only consider the extreme values of 1/2 and γ. We are left with three cases to
analyze — each of which is a matter of straightforward computation.

• p = 1/2.
The objective of (6.2) is

(2n − 2k − 1) (1/2 − γ) + (n − k)(1/2)

= (2n − 2k − 1)
(

1
2
−

2bncodd

3bncodd − 1

)
+ (n − k)/2

=
nbncodd − 3n + bncodd + 1 − k (bncodd − 3)

2(3bncodd − 1)
.

90

As the denominator is always greater than 0, to show this is at least 0 it suffices to show
the numerator itself is at least 0. The numerator is

nbncodd − 3n + bncodd + 1 − k (bncodd − 3)
≥ nbncodd − 3n + bncodd + 1
− (n − 1)(bncodd − 3) (since bncodd ≥ 3 and k ≤ n − 1)

= 2bncodd − 2
≥ 2(3) − 2
> 0.

• n ≥ 2k + 1 and p = γ.
The objective of (6.2) is

(n − 2k − 1)(2γ − 1) + (2n − 2k − 1)(1 − 2γ) + (n − k)γ
= n − (n + k)γ

= n − (n + k)
(

2bncodd

3bncodd − 1

)
=

nbncodd − 2k bncodd − n
3bncodd − 1

.

As before, it suffices to show the numerator is at least 0. When n is odd we have that the
numerator is

n2 − 2kn − n = n(n − (2k + 1)) ≥ 0.

If, on the other hand, n is even we have that the numerator is

n(n − 1) − 2k (n − 1) − n = (n − 1)(n − (2k + 1)) − 1
≥ (n − 1) − 1 (because n is even n − (2k + 1) ≥ 1)
≥ 0.

• n ≤ 2k and p = γ.
The objective of (6.2) is

(2n − 2k − 1)(1 − 2γ) + (n − k)γ = (2n − 2k − 1) + (−3n + 3k + 2)γ

= (2n − 2k − 1) + (−3n + 3k + 2)
(

2bncodd

3bncodd − 1

)
=
bncodd − 2n + 2k + 1

3bncodd − 1
.

As before, it suffices to show the numerator is at least 0; it is at least

(n − 1) − 2n + 2k + 1 = −n + 2k
≥ 0.

91

�

Lemma 6.3.21. It holds that q > n
n−1 (1 − γ).

Proof. Suppose for purposes of contradiction that q ≤ n
n−1 (1 − γ). For all j ∈ N we have:

Vj ≤ max(2p, γ + q) (by Lemmas 6.3.18 and 6.3.19)

≤ max
(
2(1/2), γ +

n
n − 1

(1 − γ)
)

(by Lemma 6.3.20 and our assumption on q)

= max
(
1,

n − γ
n − 1

)
=

n − γ
n − 1

(since γ < 1).

We then see that:
n∑

j=1

Vj = Vî +
∑
j,î

Vj < γ + (n − 1)
n − γ
n − 1

= n.

That
∑n

j=1 Vj < n clearly contradicts that i’s MMS guarantee is 1. �

Lemma 6.3.22. n is even.

Proof. Suppose for purposes of contradiction that n is odd. By Lemma 6.3.21, we must have
that:

q >
n

n − 1
(1 − γ)

=
n

n − 1

(
1 −

2n
3n − 1

)
(by the definition of γ)

=
n

3n − 1
= γ/2.

This clearly contradicts Observation 6.3.9’s statement that q < γ/2. �

Corollary 6.3.23. γ =
2(n−1)

3(n−1)−1 (by the definition of γ and Lemma 6.3.22).
Lemma 6.3.24. It holds that n

n−1 (1 − γ) ≥ 1/3.

Proof.

n
n − 1

(1 − γ) =
n

n − 1

(
1 −

2(n − 1)
3(n − 1) − 1

)
(by Corollary 6.3.23)

=
1
3

3n2 − 6n
3n2 − 7n + 4

≥
1
3

3n2 − 6n
3n2 − 7n + n

(since n ≥ 4 by Lemma 6.3.22 and n ≥ 3)

= 1/3.

�

92

Let us now take this moment to introduce the following notation.
• X : the set of agents who are eliminated (in step 5).
• Y : the set of agents j < X and j < i where v j ≥ γ.
• Z: the set of agents j < X and j > i where v j ≥ γ.
• x = |X |, y = |Y |, and z = |Z |.

Observation 6.3.25. i < X ∪ Y ∪ Z (since i is not eliminated).
Observation 6.3.26. For all j < Z we have Vj ≤ γ + q (by Corollary 6.3.11 and Lemmas 6.3.15
and 6.3.18).
Observation 6.3.27. For all j ∈ Z we have Vj = v j ≤ 2p < 1 (by Corollary 6.3.13, Observation
6.3.17, and Lemma 6.3.20).
Lemma 6.3.28. î < X ∪ Y ∪ Z.

Proof. If î ∈ X , then Ψî must go to the eliminated agent î (who is thus not i). If î ∈ Y ∪ Z , then i
would receive a value = Vî ≥ vî ≥ γ. �

Lemma 6.3.29. It holds that Z = ∅ (i.e. z = 0).

Proof. Assume for purposes of contradiction that z ≥ 1. Then we have the following.

n∑
j=1

Vj =
∑
j∈Z

Vj + Vî +
∑

j∈N\(Z∪{î})

Vj

<
∑
j∈Z

1 + γ +
∑

j∈N\(Z∪{î})

(γ + q) (by Observations 6.3.26 and 6.3.27 and Vî < γ)

= z + γ + (n − z − 1)(γ + q)
< z + γ + (n − z − 1)(γ + γ/2) (by Observation 6.3.9)
= (1 − 3γ/2)z + (3n − 1)(γ/2)
< (1 − 3γ/2) + (3n − 1)(γ/2) (since γ > 2/3 by Observation 6.3.3 and z ≥ 1)

=

(
1 −

3
2
·

2(n − 1)
3(n − 1) − 1

)
+

3n − 1
2
·

2(n − 1)
3(n − 1) − 1

(by Corollary 6.3.23)

= n.

That
∑n

j=1 Vj < n clearly contradicts that i’s MMS guarantee is 1. �

Lemma 6.3.30. It holds that x + y > n − 3.

Proof. Assume for purposes of contradiction that x + y ≤ n− 3. Let us consider the n− x − y− 1
values Vj for j ∈ N \

(
X ∪ Y ∪ {î}

)
. As i was not eliminated in step 5, i must believe the two

most valuable items not given out or eliminated at the beginning of step 6 sum to value < γ − q.
This statement, along with the fact n− x−y−1 ≥ 2 (since we are assuming x+y ≤ n−3), implies
i’s value for the n − x − y − 1 largest items not given out or eliminated at the beginning of step 6
is at most (n− x − y − 1)(γ − q)/2. Simultaneously, we know for all j ∈ N \ (X ∪Y ∪ Z ∪ {î}) =

N \ (X ∪ Y ∪ {î}) (we have used Lemma 6.3.29 for the equality), the value of the bundle that at

93

step 6 starts as Φ j and upon algorithm completion becomes Ψj before it receives its last item is
less than γ (as otherwise, i would envy this bundle). This yields:∑

j∈N\(X∪Y∪{î})

Vj < (n − x − y − 1)(γ + (γ − q)/2).

Noting that Vî < γ and for all j ∈ X ∪ Y we have Vj < γ + q by Corollary 6.3.11 and Lemma
6.3.18, we then get:

n∑
j=1

Vj =
∑

j∈X∪Y

Vj + Vî +
∑

j∈N\(X∪Y∪{î})

Vj

< (x + y)(γ + q) + γ + (n − x − y − 1)(γ + (γ − q)/2).

We claim this last quantity, a function which we will call V , is smaller than n for the relevant
values of q — i.e. q ∈

(
n

n−1 (1 − γ), γ/2
)

(the relevant values are determined by Observation
6.3.9 and Lemma 6.3.21). Indeed, observe that V is a linear function in q. Moreover, note that
since γ ≤ 3/4 (by Observation 6.3.3) we have:

γ/3 ≤ (3/4)/3 = 1 − 3/4 ≤ 1 − γ ≤
n

n − 1
(1 − γ).

This implies that the domain
(

n
n−1 (1 − γ), γ/2

)
is contained in [γ/3, γ/2]. Thus, to show the

desired inequality V < n it suffices to show the inequality for q ∈ {γ/3, γ/2}:

V (γ/3) = (x + y)(4γ/3) + γ + (n − x − y − 1)(γ + γ/3)
= (4γ/3)(n − 1/4)
≤ (4(3/4)/3)(n − 1/4) (by Observation 6.3.3)
= n − 1/4
< n.

V (γ/2) = (x + y)(3γ/2) + γ + (n − x − y − 1)(γ + γ/4)
= (γ/4)(5n + x + y − 1)
≤ (γ/4)(5n + (n − 3) − 1) (since we are assuming x + y ≤ n − 3)
= (γ/2)(3n − 2)

=
3n − 2

2
2(n − 1)

3(n − 1) − 1
(by Corollary 6.3.23)

= n −
n − 2

3n − 4
< n.

We can therefore conclude that
∑n

j=1 Vj < V < n — contradicting that i’s MMS guarantee is 1.
�

Lemma 6.3.31. It holds that x + y , n − 2.

94

Proof. Assume for purposes of contradiction that x + y = n − 2. Consider the set H of items
composed of the following.

• The items in all of the Ψj for all j ∈ X (equivalently, the items that go to the agents in X).
There are 3x such items, and by Lemma 6.3.10 we know i values all of these items at a
value of at most q, except for at most x of them which may have value in (q,p].

• The items in all of the Ψj for all j ∈ Y.
By Corollary 6.3.13 there are 2y such items, but we will imagine as if the y largest items
(in i’s view) are in fact two inseparable items — giving us instead 3y such items. Note that
each such pair of inseparable items are of value < γ and the other y items have value at
most q by Observation 6.3.16.

• The two items in Φi (which i values at p and q).
• The item i values most (breaking ties arbitrarily) among those not eliminated nor given

out at the beginning of step 6.
Let ∆ denote i’s value of this item. Note that ∆ ≤ q as otherwise i would have taken this
item in step 4.

Observe that any single item of H is of value ≤ p and any two items have value at most
max(2p, γ) ≤ max(2(γ − q), γ) = 2(γ − q).

We are interested in the value of all items aside from these 3x + 3y + 2 + 1 = 3(n − 1) items,
which we will denote by r . That is, r = (

∑
j<X∪Y Vj)− (p+q+∆). Now fix A1, . . . , An to be some

MMS partition for i. In each of the following four encompassing cases, we will demonstrate that
r ≥ 2γ − p − q.

1. There exists an A j that contains no items inH .

r ≥ vali
(
A j

)
≥ 1 (since i’s MMS value is 1)
= 2(2(3/4) − 1)
≥ 2(2γ − 1) (by Observation 6.3.3)
= 2(γ − (1 − γ))

≥ 2
(
γ −

n
n − 1

(1 − γ)
)

≥ 2(γ − q) (by Lemma 6.3.21)
= 2γ − q − q
≥ 2γ − p − q.

2. There exists an A j that contains exactly one item inH .
In this case there must exist some other Ak with at most two items from H as |H | =

3(n − 1). As previously observed, the single item in A j ∩H must be of value ≤ p and the

95

two items in Ak ∩H must be of value ≤ 2(γ − q). Thus we have:

r ≥ vali
(
A j

)
+ vali (Ak) − p − 2(γ − q)

≥ 2 − p − 2(γ − q) (since i’s MMS value is 1)
= (2γ − p − q) + (−4γ + 3q + 2)
≥ (2γ − p − q) + (−4(3/4) + 3(1/3) + 2) (since q ≥ 1/3 by Lemma 6.3.24)
= 2γ − p − q.

3. n ≥ 6 and all the A j contain at least two items inH .
In this case there must be at least three A j with exactly two items fromH as |H | = 3(n−1).
Without loss of generality, suppose this is true of A1, A2, and A3. In each of these three
we must have that the two items fromH have value ≤ 2(γ − q) as previously mentioned.
Thus we have:

r ≥ vali (A1) + vali (A2) + vali (A3) − 3(2(γ − q))
≥ 3 − 3(2(γ − q)) (since i’s MMS value is 1)
= (2γ − p − q) + (−8γ + p + 7q + 3)
≥ (2γ − p − q) + (−8γ + 8q + 3)

≥ (2γ − p − q) +

(
−8γ + 8

n
n − 1

(1 − γ) + 3
)

(by Lemma 6.3.21)

= (2γ − p − q)

+

(
−8

2(n − 1)
3(n − 1) − 1

+ 8
n

n − 1

(
1 −

(
2(n − 1)

3(n − 1) − 1

))
+ 3

)
(by Corollary 6.3.23)

= (2γ − p − q) +
n2 − 5n − 4

(n − 1)(3n − 4)

> (2γ − p − q) +
n2 − 5n − n

(n − 1)(3n − 4)
(since we are assuming n ≥ 6)

= (2γ − p − q) +
n(n − 6)

(n − 1)(3n − 4)
≥ 2γ − p − q (since we are assuming n ≥ 6).

4. n = 4 and all the A j contain at least two items inH .
In this special case, there is one A j with exactly three items inH , and three A j (without loss
of generality, say A1, A2, and A3) with exactly two items inH due to |H | = 3(n − 1) = 9.
Furthermore, a tedious brute force computation (which we omit) demonstrates that in this
case, the six most valuable items are of value at most 2γ + p + q. Thus we have:

r ≥ vali (A1) + vali (A2) + vali (A3) − (2γ + p + q)
≥ 3 − (2γ + p + q) (since i’s MMS value is 1)
= 4(3/4) − (2γ + p + q)
= 4γ − (2γ + p + q) (by the definition of γ)
= 2γ − p − q.

96

As the four cases above encompass all possible scenarios, we do indeed find that r ≥ 2γ −
p − q. We therefore find: ∑

j<X∪Y

Vj = r + p + q + ∆

≥ (2γ − p − q) + p + q + ∆

= 2γ + ∆.

However, we know regarding the two j < X ∪ Y that one of the Vj must go to i (i.e. j = î) and
is therefore of value < γ, while the other must have value < γ + ∆. We thus simultaneously find
that: ∑

j<X∪Y

Vj < γ + γ + ∆ = 2γ + ∆.

This is a clear contradiction. �

Lemma 6.3.32. It holds that x + y , n − 1.

Proof. Assume for purposes of contradiction that x + y = n − 1. In this case N \ {X ∪ Y } = {i}.
Similarly to Lemma 6.3.31’s proof, we introduce a set of interest under the name of H . This is
identical to before except it does not include the one item whose value was denoted as ∆. For
convenience, we have restated the rest of set’s contents here.

• The items in all of the Ψj for all j ∈ X (equivalently, the items that go to the agents in X).
There are 3x such items, and by Lemma 6.3.10 we know i values all of these items at a
value of at most q, except for at most x of them which may have value in (q,p].

• The items in all of the Ψj for all j ∈ Y.
By Corollary 6.3.13 there are 2y such items, but we will imagine as if the y largest items
(in i’s view) are in fact two inseparable items — giving us instead 3y such items. Note that
each such pair of inseparable items are of value < γ and the other y items have value at
most q by Observation 6.3.16.

• The two items in Φi (which i values at p and q).

If we again let A1, . . . , An be an MMS partition for i we see that there exists some A j that
contains at most two ofH since |H | = 3x +3y+2 = 3n−1. vali

(
A j \ H

)
must then be at least

vali
(
A j

)
− max(2p, γ) ≥ 1 − max(2p, γ). We therefore find that upon algorithm completion i

must receive a value of at least 1 −max(2p, γ) + p + q. If 2p ≤ γ we have that:

1 −max(2p, γ) + p + q
= 1 − γ + p + q
≥ 1 − γ + q + q (since q ≤ p)
≥ 1 − 3/4 + 1/3 + 1/3 (by Observation 6.3.3 and Lemmas 6.3.21 and 6.3.24)
= 11/12.

97

Whereas if 2p > γ we have that:

1 −max(2p, γ) + p + q
= 1 − 2p + p + q
= 1 − p + q
> 1 − (γ − q) + q (since p + q < γ)
= 1 + 2q − γ
≥ 1 + 2(1/3) − 3/4 (by Observation 6.3.3 and Lemmas 6.3.21 and 6.3.24)
= 11/12.

We therefore find that i must achieve a value of at least 11/12 ≥ 3/4 ≥ γ. �

Note that the statements of Lemmas 6.3.30, 6.3.31, and 6.3.32 imply that x+y = n. However,
as we know that i < X ∪Y by Observation 6.3.25, we also see that x + y < n. This contradiction
concludes the proof that Algorithm 13 must produce a γ-approximate MMS allocation. �

6.3.2 Proof of Theorem 6.3.1: Polynomial Time
While Algorithm 13 seems rather innocent at first glance, it does make one computational leap
by letting agents compute their MMS guarantee, or an MMS partition. It is easy to see that this
is NP-hard; in fact, even when there are two agents with identical valuations, it is NP-hard to
determine whether the the MMS guarantee is vali (M) /2 — this can be shown via an immediate
reduction from Partition.

Woeginger [99] studied the problem of computing an MMS partition, albeit under a different
name: scheduling jobs on identical machines to maximize the minimum completion time. He
gave a polynomial-time approximation scheme (PTAS), and showed that no fully polynomial-
time approximation scheme (FPTAS) exists unless P = NP. Using our terminology, this means
that given a constant ε > 0 we can compute a partition A1, . . . , An of the set of itemsM so that
mini∈N vali (Ai) ≥ (1 − ε)MMSi (n,M) in polynomial time.

The modified algorithm is almost identical to Algorithm 13, but for two critical differences.
1. When we need to compute an agent’s MMS guarantee, we instead compute a 1− ε approx-

imation via the PTAS.

2. If two agents remain in Step 2, then we compute a 1−ε approximation to an MMS partition
via the PTAS.

The analysis of Section 6.3.1 goes through largely unchanged, giving each agent a bundle of
value (1 − ε)γMMSi (n,M). �

6.4 Random Valuations
We have now seen that MMS allocations do not always exist but are guaranteed a 2/3 approxima-
tion. However, as we have noted previously, constructions where a full MMS allocation does not
exist is extremely rare in practice and indeed, our counterexamples to the existence in Section

98

6.2 are very sensitive: tiny random perturbations are extremely likely to invalidate them. Our
goal in this section is to prove MMS allocations do, in fact, exist with high probability, if a small
amount of randomness is present.

To this end, let us consider a probabilistic model with the following features:
1. For all i ∈ N , Di denotes a probability distribution over [0,1].

2. For all i ∈ N ,g ∈ M, vali (g) is randomly sampled from Di.

3. The set of random variables {vali (g)}i∈N ,g∈M is mutually independent.
We will establish the following theorem:

Theorem 6.4.1. Assume that for all i ∈ N , V[Di] ≥ c for a constant c > 0. Then for all ε > 0
there exists K = K (c, ε) such that if max(n,m) ≥ K, then the probability that an MMS allocation
exists is at least 1 − ε .

In words, as long as each Di has constant variance, if either the number of agents or the
number of goods goes to infinity, there exists an MMS allocation with high probability. In par-
allel, independent work, Amanatidis et al. [4] establish (as one of several results) a special case
of Theorem 6.4.1 where each Di is the uniform distribution over [0,1]. Dealing with arbitrary
distributions presents significant technical challenges, and is also important in terms of explain-
ing the abovementioned experiments, which cover a wide range of distributions. Yet the result
of Amanatidis et al. is not completely subsumed by Theorem 6.4.1, as they carefully analyze the
rate of convergence to 1.

Our starting point is a result by Dickerson et al. [38], who study the existence of envy-free
allocations. They show that an envy-free allocation exists with high probability as m → ∞, as
long as n ∈ O(m/ ln m), and the distributionsDi satisfy the following conditions for all i, j ∈ N :

1. P
[
arg maxk∈N valk (g) = {i}

]
= 1/n.

2. There exist constants µ, µ∗ such that

0 < E
[
vali (g)

���� arg max
k∈N
valk (g) = { j}

]

≤ µ < µ∗

≤ E
[
vali (g)

���� arg max
k∈N
valk (g) = {i}

]
.

The proof uses a naïve allocation algorithm: simply give each good to the agent who values
it most highly. The first condition then implies that each agent receives roughly 1/n of the goods,
and the second condition ensures that each agent has higher expected value for each of his own
goods compared to goods allocated to other agents.

It turns out that, via only slight modifications, their theorem can largely work in our setting.
That is, alter their allocation algorithm to give a good g to an agent i who believes g is in the top
1/n of their probability distribution Di. If there are multiple such agents, choose one uniformly
at random and if no such agent exists, give it to any agent uniformly at random.

This procedure is fairly straightforward for continuous probability distributions. For exam-
ple, if agent i’s distribution Di is uniform over the interval [0,1] then he believes g is in the top
1/n of Di if vali (g) ≥ (n − 1)/n. However, distributions with atoms require more care. For
example, suppose Di is 1/3 with probability 7/8 and uniform over [1/2,1] with probability 1/8.

99

Then if n = 3, i believes g is in the top 1/n ofDi if vali (g) > 1/3 or if vali (g) = 1/3 he should
believe it is in his top 1/n only 1/n − 1/8 = 5/24 of the time. To implement such a procedure,
when sampling from Di, we should first sample from the uniform distribution over [0,1]. If our
sampled value is at least (n − 1)/n we will say i has drawn from his top 1/n. We then convert
our sampled value to a sampled value from Di by applying the inverse CDF.

Utilizing the observation that any envy-free allocation is also an MMS allocation we can
then restate the result of Dickerson et al. [38] as the following lemma, whose proof we will see
in Section 6.4.1.

Lemma 6.4.2 ([38]). Assume that for all i ∈ N , V[Di] ≥ c for a constant c > 0. Then for all
ε > 0 there exists K = K (ε) such that if m ≥ K and m ≥ αn ln n, for some α = α(c), then the
probability that an MMS allocation exists is at least 1 − ε .

Note that the statement of Lemma 6.4.2 is identical to that of Theorem 6.4.1, except for two
small changes: only m is assumed to go to infinity, and the additional condition m ≥ αn ln n. So it
only remains to deal with the case of m < αn ln n. We can handle this scenario via consideration
of the case m < n8/7 — formalized in the following lemma.

Lemma 6.4.3. For all ε > 0 there exists K = K (ε) such that if n ≥ K and m < n8/7, then the
probability that an MMS allocation exists is at least 1 − ε .

Note that this lemma actually does not even require the minimum variance assumption, that
is, we are proving a stronger statement than is needed for Theorem 6.4.1.

It is immediately apparent that when the number of goods is relatively small, we will not be
able to prove the existence of MMS allocations via the existence of envy-free allocations. For
example, envy-free allocations certainly do not exist if m < n, and are provably highly unlikely
to exist if m = n + o(n) [38]. Our approach to this lemma (which we give in Section 6.4.2) is
therefore significantly more intricate.

6.4.1 Proof of Lemma 6.4.2

The crux of the proof in [38] relies on the allocation algorithm only satisfying the following two
properties.

1. For any good g, if we do not condition on the vali (g), then every agent has a 1/n proba-
bility of receiving g.

2. For some constant ∆, we have that

E
[
vali (g) | i receives g

]
− E

[
vali (g) | i does not receive g

]
≥ ∆.

We must show that our allocation algorithm implies these two properties in our setting. The
first is clear via symmetry and so we turn our attention to the second. We claim that ∆ = c/16
suffices (recall that V [Di] ≥ c).

100

Let X ∼ Di, X̄ = E [X], p = P
[
X < X̄

]
, and γ represent the value such that P

[
X ≥ γ

]
=

1/n4. We first show that E
[
X | X ≥ γ

]
− E

[
X | X < γ

]
≥ c/2.

c ≤ V [X]

= E
[
(X − X̄)2

]

≤ E
[
|X − X̄ |

]

= pE
[
X̄ − X | X < X̄

]
+ (1 − p)E

[
X − X̄ | X ≥ X̄

]

= −pE
[
X | X < X̄

]
+ (1 − p)E

[
X | X ≥ X̄

]
+ (2p − 1) X̄ .

Knowing that X̄ = pE
[
X | X < X̄

]
+ (1 − p)E

[
X | X ≥ X̄

]
there are two cases.

1. γ < X̄ .

c ≤ −pE
[
X | X < X̄

]
+ (1 − p)E

[
X | X ≥ X̄

]
+ (2p − 1) X̄

= −2pE
[
X | X < X̄

]
+ X̄ + (2p − 1) X̄

= 2p
(
X̄ − E

[
X | X < X̄

])
≤ 2p

(
E

[
X | X ≥ γ

]
− E

[
X | X < γ

])
≤ 2

(
E

[
X | X ≥ γ

]
− E

[
X | X < γ

])
.

2. γ ≥ X̄ .

c ≤ −pE
[
X | X < X̄

]
+ (1 − p)E

[
X | X ≥ X̄

]
+ (2p − 1) X̄

= −X̄ + 2(1 − p)E
[
X | X ≥ X̄

]
+ (2p − 1) X̄

= 2(1 − p)
(
E

[
X | X ≥ X̄

]
− X̄

)
≤ 2(1 − p)

(
E

[
X | X ≥ γ

]
− E

[
X | X < γ

])
≤ 2

(
E

[
X | X ≥ γ

]
− E

[
X | X < γ

])
.

In either case, we see that E
[
X | X ≥ γ

]
− E

[
X | X < γ

]
≥ c/2 as desired. Now observe that

E
[
vali (g) | i receives g

]
= (1 − 1/n)n E

[
X | X < γ

]
+

(
1 − (1 − 1/n)n) E [

X | X ≥ γ
]
,

and

E
[
vali (g) | i does not receive g

]
≤ E

[
vali (g)

]
= (1 − 1/n) E

[
X | X < γ

]
+ (1/n)E

[
X | X ≥ γ

]
.

Thus, we have that

E
[
vali (g) | i receives g

]
− E

[
vali (g) | i does not receive g

]
≥

(
(1 − 1/n) − (1 − 1/n)n) (

E
[
X | X ≥ γ

]
− E

[
X | X < γ

])
≥ (1/2 − 1/e) (c/2)
≥ c/16.

4As discussed previously, such a γ may not exist in distributions with atoms, but we ignore this possibility purely
for ease of exposition.

101

�

6.4.2 Proof of Lemma 6.4.3
We assume that m > n, because an MMS allocation always exists when m ≤ n (in fact, when
m ≤ n + 4, as Theorem 6.5.1 will show). We will require the following notions and lemma.
Definition 6.4.4. A ranking of the goodsM for some agent i ∈ N is the order of the goods by
value from most valued to least. Ties are broken uniformly at random. Furthermore, a good g’s
rank for an agent i is the position of g in i’s ranking.

An important observation of the rankings that we will use often throughout this section is that
the agents’ rankings are independent of each other.
Definition 6.4.5. Suppose X ⊆ N and Y ⊆ M where |X | ≤ |Y |. Let

s = s(X,Y) = |X | d|Y |/|X |e − |Y |,

and Γ = Γ(X,Y) be the bipartite graph where:
1. L represents the vertices on the left, and R on the right.
2. L is comprised of b|Y |/|X |c copies of the first s agents of X and d|Y |/|X |e copies of the

remaining agents in X.
3. R = Y.
4. The ith copy of an agent has an edge to a good g iff g’s rank is in ((i − 1)∆, i∆] in the

agent’s ranking where ∆ = ln3 n.
Note that in this definition |L | = |R| since if we let x = |X | and y = |Y | (and therefore

s = x dy/xe − y). Then

|L | = s by/xc + (x − s) dy/xe
= x dy/xe − s (dy/xe − by/xc) .

If x divides y, then we have that dy/xe = by/xc =
y
x and so |L | = y. If, on the other hand, x does

not divide y, then we have that dy/xe − by/xc = 1 and so we have

|L | = x dy/xe − s
= x dy/xe − (x dy/xe − y)
= y.

Therefore, in either case, |L | = y = |Y | = |R|.
Definition 6.4.6. Suppose X ⊆ N and Y ⊆ M as before. Then the matched draft on X and Y is
the process of constructing Γ and producing an allocation corresponding to a perfect matching
of Γ. That is, if a perfect matching exists then an agent in X is given all goods the copies of it
are matched to. In the event that no perfect matching exists, the matched draft is said to fail.
Lemma 6.4.7. Suppose of the m < n8/7 goods x = γ bm/nc are randomly chosen and removed,
where γ ≤ n1/3, and the remaining m̃ := m − x goods are allocated via a matched draft to
ñ := n − γ agents. Then this matched draft succeeds with probability→ 1 as n → ∞ (note that
as n → ∞, so too do ñ, m̃).

102

Proof. Define d as the minimum degree of a vertex of L in Γ and D = 2 lg n ln n. Then we have

P [matched draft fails]
= P [matched draft fails | d < D]P [d < D]

+ P [matched draft fails | d ≥ D]P [d ≥ D]
≤ P [d < D] + P [matched draft fails | d ≥ D] .

Let us consider these two terms separately and show they→ 0 as n → ∞.
Denoting by pi j

D the probability that the ith of the ñ remaining agents has less than D of the
m̃ remaining goods ranked in positions ((j − 1)∆, j∆]. Then we have

P [d < D] ≤
ñ∑

i=1

dm̃/ñe∑
j=1

pi j
D

=

ñ∑
i=1

dm̃/ñe∑
j=1

p11
D (by independence)

= ñ dm̃/ñe p11
D

≤ 2m̃p11
D .

Now let the random variable X denote the number of the x randomly chosen goods ranked in the
top ∆ for first remaining agent. Then we have

P [d < D] ≤ 2m̃p11
D = 2m̃P [∆ − D < X ≤ ∆] .

For sufficiently large n and i ∈ (∆ − D,∆] we further note that P [X = i] ≤ P [X = ∆/2] and so

P [d < D] ≤ 2m̃P [∆ − D < X ≤ ∆]

= 2m̃
∆∑

i=∆−D+1

P [X = i]

≤ 2m̃
∆∑

i=∆−D+1

P [X = ∆/2]

≤ 2m̃DP [X = ∆/2]

= 2m̃D
(

x
∆/2

) (
∆

m

)∆/2 (
1 −
∆

m

) x−∆/2

≤ 2m̃D
(

x
∆/2

) (
∆

m

)∆/2
≤ 2m̃D

(
ex
∆/2

)∆/2 (
∆

m

)∆/2
(by the standard inequality

(
p
q

)
≤

(
ep
q

)q

)

= 2m̃D
(

2ex
m

)∆/2
.

103

Now substituting in that ∆ = ln3 n, m̃ < m < n8/7, D = 2 lg n ln n, and x/m ≤ γ bm/nc /m ≤
γ/n ≤ n−2/3 we then find that the last quantity→ 0 as n → ∞.

A quick note for rigor: We have used the probability mass function of the binomial distribu-
tion here when we technically require the use of the hypergeometric. However, as the probability
of a collision occurring is asymptotically low itself it is insignificant and as the inclusion of this
analysis would only greatly convolute the proof, we omit it.

Next let us consider P [matched draft fails | d ≥ D]. We would like to appeal to the plethora
of results on perfect matchings in bipartite Erdös-Rényi graphs [15] or random bipartite k-out
graphs [70], but due to the lack of independence on the edge existences we do not satisfy a crucial
assumption of much of this literature, and more importantly its proofs. We will therefore prove
this in full here via an approach that allows us to ignore the dependence. We will utilize Hall’s
theorem and denote by N (X) the set of neighbors of X in the bipartite graph Γ.

P [matched draft fails | d ≥ D]
= P [∃ X ⊆ L s.t. |X | < |N (X) | | d ≥ D]

≤
∑
X⊆L

P [|X | < |N (X) | | d ≥ D]

≤

m̃∑
i=D

∑
X⊆L
|X |=i

∑
Y⊆R
|Y |=i−1

P [N (X) ⊆ Y | d ≥ D] .

If the edges of Γ were independent then we would find that for |X | = i and |Y | = i − 1,

P [N (X) ⊆ Y] =

(
i − 1

m̃

)∑
x∈X |N (x) |

,

and more importantly

P [N (X) ⊆ Y | d ≥ D] ≤
(
i − 1

m̃

) iD

. (6.3)

Via our independence assumptions in our randomized setting there is only one form of depen-
dence in the edges of Γ. Specifically, if we take all copies of any agent i ∈ L, then their neighbors
in R never intersect. Though this does indeed introduce dependence into our system, note that
we still have that Equation (6.3) as the dependence only lowers the probability of N (X) “fitting”

104

into Y . We therefore find

P [matched draft fails | d ≥ D]

≤

m̃∑
i=D

∑
{X⊆L | |X |=i}

∑
{Y⊆R| |Y |=i−1}

(
i − 1

m̃

) iD

=

m̃∑
i=D

(
m̃
i

) (
m̃

i − 1

) (
i − 1

m̃

) iD

≤

bm̃/2c∑
i=D

(
m̃
i

) (
m̃

i − 1

) (
i − 1

m̃

) iD

+

m̃∑
i=dm̃/2e

(
m̃

m̃ − i

) (
m̃

m̃ − i + 1

) (
i − 1

m̃

) iD

=

bm̃/2c∑
i=D

(
m̃
i

) (
m̃

i − 1

) (
i − 1

m̃

) iD

+

bm̃/2c∑
j=0

(
m̃
j

) (
m̃

j + 1

) (
m̃ − j − 1

n

) (m̃− j)D

.

We now show both of these terms separately→ 0 as n → ∞.
First,

bm̃/2c∑
i=D

(
m̃
i

) (
m̃

i − 1

) (
i − 1

m̃

) iD

≤

bm̃/2c∑
i=D

(m̃e
i

) i (m̃e
i − 1

) i−1 (
i − 1

m̃

) iD

≤

bm̃/2c∑
i=D

(m̃e
i − 1

)2i−1 (
i − 1

m̃

) iD

=

bm̃/2c∑
i=D

(
i − 1

m̃

) i(D−2)+1

e2i−1

=

bm̃/2c∑
i=D

(
bm̃/2c − 1

m̃

) i(D−2)+1

e2i−1

≤

bm̃/2c∑
i=D

e2i−1

2i(D−2)+1

=

bm̃/2c∑
i=D

1
2e

(
e2

2D−2

) i

≤

bm̃/2c∑
i=D

1
2e

e2

2D−2

= (bm̃/2c − D + 1)
(e
2D−1

)
≤ m

(e
2D−1

)
.

Substituting in that m̃ ≤ m < n8/7 and D = 2 lg n ln n we then find that the last quantity→ 0 as
n → ∞.

105

Second,

bm̃/2c∑
j=0

(
m̃
j

) (
m̃

j + 1

) (
m̃ − j − 1

m̃

) (m̃− j)D

≤ m̃
(

m̃ − 1
m̃

) m̃D

+

bm̃/2c∑
j=1

(
m̃e
j

) j (
m̃e

j + 1

) j+1 (
m̃ − j − 1

m̃

) (m̃− j)D

≤ m̃
(
1 −

1
m̃

) m̃D

+

bm̃/2c∑
j=1

(
m̃e
j

)2 j+1 (
1 −

j + 1
m̃

) (m̃− j)D

≤ m̃e−D +

bm̃/2c∑
j=1

(
m̃e
j

)2 j+1

e−D(j+1)(m̃− j)/m̃

≤ m̃e−D +

bm̃/2c∑
j=1

(
m̃e
j

)2 j+1

e−D(j+1)/2

≤ m̃e−D +

bm̃/2c∑
j=1

(
m̃2e2

j2eD/2

) j+1

≤
n8/7

n2 lg n +

bn8/7/2c∑
j=1

(
(n8/7)2e2

j2nlg n

) j+1

≤
n8/7

n2 lg n +
⌊
n8/7/2

⌋ (
(n8/7)2e2

nlg n

)
→ 0,

where the third inequality follows from 1 + x ≤ ex for all x.
Thus, we find that as n → ∞ the matched draft succeeds with probability→ 1. �

We are now ready to prove the main lemma.

Proof of Lemma 6.4.3. Recall that we may assume that m > n. We will ensure every agent has at
most one less good than any other agent. Let s then represent the number of agents that receive
one less good than any other agent, that is,

s = n dm/ne − m.

We consider two separate cases here.

Case 1: s ≤ n1/3. In this scenario we do the following.

1. If possible, give each of the first s agents their top bm/nc goods. Otherwise, fail to produce
any allocation.

2. Hold a matched draft for the remaining (n − s) dm/ne goods and n − s agents.

106

We first show that as n → ∞ this procedure successfully produces an allocation with probability
→ 1.

Consider the probability that the first step of the procedure successfully completes. That is,
the first s agents each get their top bm/nc goods. Similarly to a birthday paradox like argument
we get that this occurs with probability at least

sbm/nc∏
i=1

(
1 −

i − 1
m

)
>

(
1 −

sm/n
m

) sm/n

≥

(
1 −

1
n2/3

)n1/3+8/7−1

=

(
1 −

1
n2/3

)n10/21

.

But as

lim
x→∞

(
1 −

1
ω(x)

) x

= 1

we find that this too goes to 1 as n → ∞.
Now consider the second step of the procedure. By Lemma 6.4.7 with γ = s, we know that

this succeeds with probability 1 as n → ∞. Therefore the entire procedure will successfully
complete with the same asymptotic probability guarantee.

To prove the theorem then, it suffices to show that if the procedure successfully completes,
then we have an MMS allocation. Since for every agent any MMS partition must include a
subset with at most bm/nc goods and the first s agents are given their top bm/nc goods, they
must receive their MMS value.

Let us turn our attention then to the remaining n − s agents. Upon successful completion
of the matched draft, we know that all of these agents will receive goods ranked in their top
∆ dm/ne. We claim that for sufficiently large n any agent’s MMS partition must include a subset
of at most dm/ne goods where each good is ranked lower than ∆ dm/ne. Suppose this were not
true for purposes of contradiction. Then each of the n subsets in an offending agent’s MMS
partition must include either one of the top ∆ dm/ne goods or dm/ne + 1 goods. We then see that
for sufficiently large n, the number of such subsets is bounded by

∆ dm/ne +
m − ∆ dm/ne
dm/ne + 1

= ∆ dm/ne +
s(dm/ne − 1) + (n − s) dm/ne − ∆ dm/ne

dm/ne + 1

=
∆ dm/ne2 + n dm/ne − s

dm/ne + 1

≤
dm/ne
dm/ne + 1

n + ∆ dm/ne

≤
n1/7

n1/7 + 1
n +

(
ln3 n

) (
n1/7

)
< n.

Thus the offending agent cannot produce such an MMS partition which proves the claim.
Now note that the n − s agents of interest have MMS partitions with bundles that include the

same number of goods they received, but all of which are worth strictly less than every good in
their bundle. They therefore must have achieved their MMS value.

107

Case 2: s > n1/3. In this scenario we simply run a matched draft. Similarly to the previous case
we know from Lemma 6.4.7 with γ = 0 that all the agents will receive goods ranked in their top
∆ dm/ne with probability→ 1 as n → ∞.

In this case for sufficiently large n any agent’s MMS partition must include a subset of at
most bm/nc goods where each good is ranked lower than ∆ dm/ne. Again, suppose this were
not true for purposes of contradiction. Then each of the n subsets in an agent’s MMS partition
must include either one of the top ∆ dm/ne goods or bm/nc + 1 = dm/ne goods (in this case
m . 0 (mod n)). We then see that for sufficiently large n, the number of subsets is at most

∆ dm/ne +
m − ∆ dm/ne
dm/ne

= ∆ bm/nc +
s(dm/ne − 1) + (n − s) dm/ne

dm/ne

= n + ∆ bm/nc −
s

dm/ne

≤ n +
(
ln3 n

) (
n1/7

)
−

n1/3

n1/7

< n.

Via logic similar to the previous case, we conclude that all agents must have achieved their MMS
value. �

6.5 A Small Number of Goods Guarantees the Existence of an
MMS Allocation

In Section 6.2 we saw that even with m = 3n+4 goods, we cannot guarantee an MMS allocation.
In this section, we consider the dual problem: For what values of m are we assured there are
always such desired allocations?

As we have previously mentioned, when m < n, the MMS guarantee of each agent is 0, so
any allocation is an MMS allocation. If m = n, we have that MMSi (n,M) = ming∈M vali (g). So
any allocation that gives a single good to each agent fits the bill. The case of m = n + 1 is still
trivial: the MMS partition of an agent puts his two least desirable goods in one bundle, and every
other good in a singleton bundle. Therefore, it is sufficient to let the agents choose a single good
each in the order 1, . . . ,n − 1, and allocate to agent n the two remaining goods. Bouveret and
Lemaître [16] extend this argument to show that an MMS allocation exists whenever m ≤ n + 3.

In this section, which we view as a bit of an aside, we slightly improve the bound of Bouveret
and Lemaître [16] to m ≤ n + 4. While the improvement is not of major excitement, we include
it as we believe the approach is quite interesting and its ideas may be used to further hone the
bounds.
Theorem 6.5.1. If m ≤ n + 4 then there exists an MMS allocation.

Proof. We give a detailed algorithm (with some commentary) to handle the case of m ≤ n + 4 as
Algorithm 14, but we highlight some of the nuances here.

108

while ∃i ∈ N s.t. ∃g ∈ M where vali (g) ≥ MMSi (|N |,M) do
Give g to agent i.
N ← N \ {i}
M ←M \ {g}

end while
// Note that at this point |N | ≤ 4.
For convenience, relabel the agents to 1,2, . . .
if |N | = 1 then

Give all ofM to agent 1.
else if |N | = 2 then

Use an MMS partition for these two agents on the remaining goodsM.
else if |N | = 3 then

// |M| ∈ {6,7}, so every MMS partition of any agent has two subsets of size 2.
Let X1,X2,X3 be an MMS partition of agent 1 where |X1 | = |X2 | = 2.
if ∃i ∈ {2,3} s.t. vali (X1) < MMSi (|N |,M) or vali (X2) < MMSi (|N |,M) then

WLOG assume val2 (X1) < MMS2(|N |,M).
Let Y1,Y2,Y3 be an MMS partition of agent 2.
// Note that X1 is not contained in any single one of Y1,Y2,Y3.
WLOG assume X1 ⊆ Y1 ∪ Y2.
Z := (Y1 ∪ Y2) \ X1.
Let agent 3 take one of X1,Y3, Z .
if agent 3 chooses X1 then

// As val2 (X1) < MMS2(|N |,M) one of val2 (X2) ,val2 (X3) ≥ MMS2(|N |,M).
Give agent 2 one of X2 and X3 such that he achieves his MMS.
Give agent 1 the other subset.

else if agent 3 chooses Y3 then
Give X1 to agent 1.
// Note that val2 (Y1) ,val2 (Y2) ≥ MMS2(|N |,M) and val2 (X1) < MMS2(|N |,M).
// Thus, val2 (Z) = val2 (Y1) + val2 (Y2) − val2 (X1) > MMS2(|N |,M).
Give Z to agent 2.

else if Agent 3 chooses Z then
Give X1 to agent 1.
Give Y3 to agent 2.

end if
else

Give X3 to agent 1.
Give X1 to agent 2.
Give X2 to agent 3.

end if
else if |N | = 4 then

// |M| = 8, so every MMS partition of any agent has only subsets of size 2.
Let the agents choose a single good one at a time in the order: 1,2,3,4,4,3,2,1.

end if
Algorithm 14: MMS Allocation for m ≤ n + 4.

109

Observe that whenever an agent believes a single good is worth at least his MMS value we
can give that good to him and in the reduced problem (where there is one less agent and one less
good) every agent’s MMS value has not decreased. Thus, so long as the reduced problem has an
MMS allocation we will have an MMS allocation overall.

Now note that as long as m < 2n every MMS partition of any agent must include a subset
with a single good. We can therefore utilize the observation repeatedly until there are at most 4
agents left. In the event that there are at most 2 agents left, we know this is easily handled and so
only the cases where there are 3 or 4 agents remaining are of interest.

In the more complex outcome where there are 3 agents we essentially have an intricate case
analysis that is best understood via the fully explicit treatment given in Algorithm 14. We there-
fore only consider the case where there are 4 agents left here. In such an outcome exactly 8
goods remain and in every MMS partition of any agent all subsets of the partition are of size 2
(as otherwise some agent achieves his MMS value with a single good).

We claim then that for any agent i if the goods g1, ...,g8 were sorted by value in that order
(i.e. vali

(
gj

)
≥ vali (gk) for all j ≤ k) then {g1,g8}, {g2,g7}, {g3,g6}, {g4,g5} is an MMS

partition for i (i.e. the partition where gj paired with g9− j). Suppose this were not true, then let
j ∈ arg mink≤4(vali (gk) + vali (g9−k)). Now let S1,S2,S3,S4 be any MMS partition for i and
consider the good gj is paired with, say gk . We know that that k < 9 − j as otherwise we would
have

MMSi (|N |,M) = min
k
vali (Sk)

≤ vali
(
gj

)
+ vali (gk)

≤ vali
(
gj

)
+ vali

(
g9− j

)
= min

k≤4
(vali (gk) + vali (g9−k)).

Now consider the j goods g9− j ,g10− j , ...,g8. As we require MMSi (|N |,M) = mink vali (Sk) >
vali

(
gj

)
+ vali

(
g9− j

)
we must have that the goods they are paired with in the MMS partition

chosen have value greater than vali
(
gj

)
. Unfortunately, there are at most j − 1 such goods — a

clear contradiction.
Thus, if we allow agents to choose one good at a time, we find that so long as an agent gets

to make the jth and (9 − j)th choice, he will have his MMS value.
As mentioned above, see Algorithm 14 for the complete approach. �

6.6 MMS Guarantees on Subsets of N

In the previous sections of this chapter, we have focussed solely on the problem of ensuring
each agent i achieves a value of MMSi (n,M) (or some approximation to it). [30] introduced
another concept of fairness relating to MMS which alters the application granularity of the MMS
guarantee.
Definition 6.6.1. An allocation A1, . . . , An satisfies a γ approximate pairwise maximin share

110

(PMMS) guarantee if

∀i, j ∈ N : vali (Ai) ≥ γ · MMSi
(
2, Ai ∪ A j

)
.

Specifically, [30] gives an algorithm that admits a 2/
(
1 +
√

5
)
≈ 0.618 approximation and

they leave it open whether a 1-PMMS allocation always exists no matter the agents, goods, and
valuations.

In this section we show the following theorem.
Theorem 6.6.2. Algorithm 15 achieves a

(√
17 − 1

)
/4 ≈ 0.781 approximation to PMMS and

runs in polynomial time.
The rest of this section is devoted entirely to the proof of this theorem. As the algorithm’s

complexity is clearly polynomial, we focus solely on the approximation factor.
For sake of notational convenience throughout this proof we will let α =

(
3 +
√

17
)
/4

and γ =
(√

17 − 1
)
/4 (the approximation factor). Now let i be any general agent. To prove

the theorem, we show that i maintains the desired ratio w.r.t. every other agent throughout the
algorithm. We start with two useful observations.
Observation 6.6.3. If an agent believes the value of his bundle and another bundle is u and v

respectively, then he achieves an approximation ratio of at least u
(u+v)/2 = 2u

u+v w.r.t. that bundle.
Observation 6.6.4. If i is flagged, then ∀ j , i, we have that at every point of the algorithm after
i receives his good in the first phase, at least one of the following hold.

1. j has one item.
2. i values j’s bundle at a value ≤ 1 + 1/α times of his own.

Lemma 6.6.5. If i is flagged, then ∀ j , i he achieves the desired ratio w.r.t. j.

Proof. If at the end of the algorithm, j has only one item then clearly i achieves a ratio of ≥ 1.
Otherwise, by Observation 6.6.4, we have that i must value j’s bundle ≤ 1 + 1/α of his own.
Thus by Observation 6.6.3 i achieves a ratio of:

≥
2

1 + 1 + 1/α
=

2
2 + 1/α

= γ.

�

Now for further notational convenience if i is not flagged let p = pi and q = qi.
Lemma 6.6.6. If i is not flagged, then from the beginning of the envy-cycle-elimination phase to
the end of the algorithm, he achieves the desired ratio w.r.t. Φ j for all j.

Proof. There are five cases to consider.

1. j is flagged.
In this case Φ j has only one good so i must have a ratio of ≥ 1.

2. j is not flagged and j = i.
In this case vali

(
Φ j

)
= p + q and i has at least this value due to the properties of the

envy-cycle-elimination phase. Thus, i must have a ratio of ≥ 1.

111

1: // Phase 1 (first good)
2: for i = 1, . . . ,n do
3: Let g be the most valuable remaining good in i’s view.
4: Let j < i be the agent whom i believes has the most valuable good so far of the non-flagged

agents.
5: if j’s item has value to i at least ((3 +

√
17)/4) · vali (g) then

6: Give j’s item to i.
7: Flag i.
8: Swap the indices of i and j (so j is flagged).
9: i ← i − 1 (i.e. redo the for loop for the new i).

10: else
11: Give g to i.
12: end if
13: end for
14: Let pi be the value of the good i currently has (to i).
15: // Phase 2 (reverse lexicographic draft)
16: // Run a single round draft on the remaining goods for all non-flagged agents in reverse

lexicographic order. i).
17: for i = n, . . . ,1 do
18: if i is not flagged then
19: Let i take the most valuable good of those remaining.
20: end if
21: end for
22: For every non-flagged agent i, let qi be the value of the good i received in this phase (to i).
23: For every agent i, let Φi be the set of (at most two) goods they currently have.
24: // Phase 3 (envy-cycle-elimination)
25: Create a directed envy graph G = (V,E) where V represents the agents and there is an edge

(i, j) iff i is flagged and believes j’s bundle is worth at least his own, or i is not flagged and
believes j’s bundle is worth at least max(i’s value of his own bundle,

√
2pi).

26: while there are unallocated goods do
27: while there is a cycle in G do
28: Take any cycle and eliminate it by having each agent in the cycle give his bundle to the

agent before him in the cycle (and receive the bundle from the agent after him). Update
the edges.

29: end while
30: As there is no cycle in G, there exists at least one agent who has no incoming edges. Give

one of the items not already given out to one of these agents.
31: end while

Algorithm 15:
(√

17 − 1
)
/4 ≈ 0.781-PMMS

112

3. j is not flagged, j > i, and i’s bundle is a (not necessarily strict) superset of Φi.
In this case Φ j has two goods, neither of which are strictly more valuable to i than p and i
has at least one good of value p in his own bundle. Thus, i must have a ratio of ≥ 1.

4. j is not flagged, j > i, and i’s bundle is not a (not necessarily strict) superset of Φi.
In this case Φ j has two goods, neither of which are strictly more valuable to i than p and
therefore vali

(
Φ j

)
≤ 2p. As i’s bundle is not a superset of Φi, he must have taken part

in a cycle elimination. Thus i must have a value of at least
√

2p for his own bundle. By
Observation 6.6.3 i must then have a ratio of:

≥
2
√

2p
√

2p + 2p
=

2

1 +
√

2
> γ.

5. j is not flagged and j < i.
In this caseΦ j has two goods, one of which i values ≤ αp (as otherwise i would have taken
it and become flagged) and the other he values ≤ q (as otherwise he would have taken it in
the reverse lexicographic draft phase). Thus, by Observation 6.6.3 i must achieve a ratio
of:

≥
2(p + q)

p + q + αp + q
=

2(p + q)
(1 + α)p + 2q

=
2(1 + x)

1 + α + 2x
.

If x = q/p ∈ [0,1]. Simultaneously, i must achieve a ratio of:

≥
i’s value for i’s bundle

i’s value for i’s bundle + i’s value for Φ j’s second item

≥
p + q

p + q + q

=
p + q

p + 2q

=
1 + x

1 + 2x
.

So i must achieve a ratio of:

≥ min
x∈[0,1]

max
(

2(1 + x)
1 + α + 2x

,
1 + x

1 + 2x

)
.

Clearly as x increases, the first term in the maximization increases while the second de-
creases. Furthermore, after a bit of arithmetic we see that they intersect only at x =

(α − 1)/2. Thus substituting this value of x into either of the terms in the maximiza-
tion give the result of the minimum which, after some further arithmetic, yields that the
minimum is:

≥
1 + α

2α
= γ.

�

113

Lemma 6.6.7. If i is not flagged, then from the beginning of the envy-cycle-elimination phase to
the end of the algorithm, he achieves the desired ratio w.r.t. the bundle which contains Φ j for all
j.

Proof. If Φ j is equivalent to this bundle then Lemma 6.6.6 applies so we can safely assume Φ j is
a strict subset of this bundle. If u is the value of i’s bundle to himself, then vali (this bundle) ≤
max

(
u,
√

2p
)

+ q. Thus, by Observation 6.6.3 i must achieve a ratio of:

≥
2u

u + max
(
u,
√

2p
)

+ q
= min *

,

2u
u + u + q

,
2u

u +
√

2p + q
+
-
.

Note however that (as p + q ≤ u and q ≤ p imply q ≤ u/2)

2u
u + u + q

≥
2u

u + u + u/2
=

4
5
> γ,

and

2u

u +
√

2p + q
≥

2(p + q)

p + q +
√

2p + q
≥

2(p + q)

p + q +
√

2p +
√

2q
=

2

1 +
√

2
> γ.

�

Combining the results of Lemmas 6.6.5 and 6.6.7 complete the proof of Theorem 6.6.2.

114

Bibliography

[1] N. Alon. “Splitting necklaces”. In: Advances in Mathematics 63 (1987), pages 241–253 (page 71).
[2] N. Alon, F. Fischer, A. D. Procaccia, and M. Tennenholtz. “Sum of Us: Strategyproof Selection

from the Selectors”. In: Proceedings of the 13th Conference on Theoretical Aspects of Rationality
and Knowledge (TARK). 2011, pages 101–110 (pages 7, 17).

[3] G. Amanatidis, G. Birmpas, and E. Markakis. “On Truthful Mechanisms for Maximin Share
Allocations”. In: Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI). Forthcoming. 2016 (page 76).

[4] G. Amanatidis, E. Markakis, A. Nikzad, and A. Saberi. “Approximation Algorithms for Com-
puting Maximin Share Allocations”. In: Proceedings of the 42nd International Colloquium on
Automata, Languages and Programming (ICALP). 2015, pages 39–51 (pages 76, 99).

[5] O. Arzi, Y. Aumann, and Y. Dombb. “Throw One’s Cake — and Eat It Too”. In: Proceedings
of the 4th International Symposium on Algorithmic Game Theory (SAGT). 2011, pages 69–80
(pages 3, 47).

[6] A. Asadpour and A. Saberi. “An approximation algorithm for max-min fair allocation of indi-
visible goods”. In: Proceedings of the 39th Annual ACM Symposium on Theory of Computing
(STOC). 2007, pages 114–121 (page 75).

[7] Y. Aumann, Y. Dombb, and A. Hassidim. “Computing Socially-Efficient Cake Divisions”. In:
Proceedings of the 12th International Conference on Autonomous Agents and Multi-Agent Sys-
tems (AAMAS). 2013, pages 343–350 (pages 49, 51).

[8] H. Aziz, O. Lev, N. Mattei, J. S. Rosenschein, and T. Walsh. “Strategyproof Peer Selection”. In:
arXiv preprint arXiv:1604.03632 (2016) (pages 20, 30, 31).

[9] H. Aziz and S. Mackenzie. A Discrete and Bounded Envy-Free Cake Cutting Protocol for Any
Number of Agents. CoRR abs/1604.03655. 2016 (pages 3, 35, 37, 71).

[10] E. Balkanski, S. Brânzei, D. Kurokawa, and A. D. Procaccia. “Simultaneous Cake Cutting”. In:
Proceedings of the 28th AAAI Conference on Artificial Intelligence (AAAI). 2014, pages 566–572
(page 49).

[11] N. Bansal and M. Sviridenko. “The Santa Claus problem”. In: Proceedings of the 38th Annual
ACM Symposium on Theory of Computing (STOC). 2006, pages 31–40 (page 75).

[12] X. Bei, N. Chen, X. Hua, B. Tao, and E. Yang. “Optimal Proportional Cake Cutting with Con-
nected Pieces”. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI).
2012, pages 1263–1269 (pages 36, 47, 49).

[13] D. Berga and R. Gjorgjiev. Impartial Social Rankings. Manuscript. 2014 (pages 8, 21).
[14] I. Bezáková and V. Dani. “Allocating Indivisible Goods”. In: SIGecom Exchanges 5.3 (2005),

pages 11–18 (page 75).
[15] B. Bollobás. Random Graphs. 2nd. Cambridge University Press, 2001 (page 104).

115

[16] S. Bouveret and M. Lemaître. “Characterizing conflicts in fair division of indivisible goods using
a scale of criteria”. In: Proceedings of the 13th International Conference on Autonomous Agents
and Multi-Agent Systems (AAMAS). 2014, pages 1321–1328 (pages 72, 73, 75, 76, 108).

[17] S. J. Brams, P. H. Edelman, and P. C. Fishburn. “Fair division of indivisible items”. In: Theory
and Decision 55.2 (2003), pages 147–180 (page 75).

[18] S. J. Brams, M. Feldman, J. Morgenstern, J. K. Lai, and A. D. Procaccia. “On Maxsum Fair Cake
Divisions”. In: Proceedings of the 26th AAAI Conference on Artificial Intelligence (AAAI). 2012,
pages 1285–1291 (pages 36, 41, 49).

[19] S. J. Brams, M. Kilgour, and C. Klamler. “Two-Person Fair Division of Indivisible Items: An
Efficient, Envy-Free Algorithm”. In: Notices of the AMS 61.2 (2014), pages 130–141 (page 75).

[20] S. J. Brams and A. D. Taylor. “An Envy-Free Cake Division Protocol”. In: The American Mathe-
matical Monthly 102.1 (1995), pages 9–18 (pages 3, 35, 54, 71).

[21] S. J. Brams and A. D. Taylor. Fair Division: From Cake-Cutting to Dispute Resolution. Cam-
bridge University Press, 1996 (pages 74, 75).

[22] S. J. Brams, A. D. Taylor, and W. S. Zwicker. “A moving-knife solution to the four-person envy-
free cake-division problem”. In: Proceedings of the American Mathematical Society 125.2 (1997),
pages 547–554 (page 54).

[23] S. Brânzei, I. Caragiannis, and D. Kurokawa A. D. Procaccia. An Algorithmic Framework for
Strategic Fair Division. 2016 (page 3).

[24] S. Brânzei and P. B. Miltersen. “A Dictatorship Theorem for Cake Cutting”. In: Proceedings of
the 24th International Joint Conference on Artificial Intelligence (IJCAI). 2015, pages 482–488
(pages 49, 51).

[25] S. Brânzei and P. B. Miltersen. “Equilibrium Analysis in Cake Cutting”. In: Proceedings of the
12th International Conference on Autonomous Agents and Multi-Agent Systems (AAMAS). 2013,
pages 327–334 (pages 49, 51, 54, 56).

[26] S. Brânzei, A. D. Procaccia, and J. Zhang. “Externalities in Cake Cutting”. In: Proceedings of
the 23rd International Joint Conference on Artificial Intelligence (IJCAI). 2013, pages 55–61
(page 49).

[27] E. Budish. “The combinatorial assignment problem: Approximate competitive equilibrium from
equal incomes”. In: Journal of Political Economy 119.6 (2011), pages 1061–1103 (pages 3, 72,
74, 76).

[28] C. Busch, M. S. Krishnamoorthy, and M. Magdon-Ismail. “Hardness Results for Cake Cutting”.
In: Bulletin of the EATCS 86 (2005), pages 85–106 (page 36).

[29] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. “The Unrea-
sonable Fairness of Maximum Nash Product”. In: Proceedings of the 17th ACM Conference on
Economics and Computation (EC). Forthcoming. 2016 (page 76).

[30] I. Caragiannis, D. Kurokawa, H. Moulin, A. D. Procaccia, N. Shah, and J. Wang. “The Unrea-
sonable Fairness of Maximum Nash Welfare”. In: Proceedings of the 17th ACM Conference on
Economics and Computation (EC). 2016, pages 305–322 (pages 3, 73, 74, 110, 111).

[31] I. Caragiannis, J. K. Lai, and A. D. Procaccia. “Towards more expressive cake cutting”. In: Pro-
ceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI). 2011,
pages 127–132 (pages 36, 49).

[32] Y. Chen, J. K. Lai, D. C. Parkes, and A. D. Procaccia. “Truth, Justice, and Cake Cutting”. In:
Games and Economic Behavior 77 (2013). Preliminary version in AAAI’10, pages 284–297
(pages 36, 37, 41, 44, 47, 49, 51).

116

[33] G. de Clippel, H. Moulin, and N. Tideman. “Impartial division of a dollar”. In: Journal of Eco-
nomic Theory 139 (2008), pages 176–191 (pages 8, 21).

[34] Y. J. Cohler, J. K. Lai, D. C. Parkes, and A. D. Procaccia. “Optimal Envy-Free Cake Cutting”. In:
Proceedings of the 25th AAAI Conference on Artificial Intelligence (AAAI). 2011, pages 626–631
(pages 36, 47, 49).

[35] A. Demers, S. Keshav, and S. Shenker. “Analysis and simulation of a fair queueing algorithm”.
In: Proceedings of the ACM Symposium on Communications Architectures & Protocols (SIG-
COMM). 1989, pages 1–12 (page 72).

[36] X. Deng, Q. Qi, and A. Saberi. “Algorithmic Solutions for Envy-Free Cake Cutting”. In: Opera-
tions Research 60.6 (2012), pages 1461–1476 (page 51).

[37] X. Deng, Q. Qi, and A. Saberi. On the Complexity of Envy-Free Cake Cutting. CoRR abs/0907.1334.
2009 (page 37).

[38] J. P. Dickerson, J. Goldman, J. Karp, A. D. Procaccia, and T. Sandholm. “The Computational
Rise and Fall of Fairness”. In: Proceedings of the 28th AAAI Conference on Artificial Intelligence
(AAAI). 2014, pages 1405–1411 (pages 99, 100).

[39] J. Douceur. “Paper rating vs. paper ranking”. In: Operating Systems Review 43 (2009), pages 117–
121 (page 8).

[40] L. E. Dubins and E. H. Spanier. “How to cut a cake fairly”. In: American Mathematical Monthly
68.1 (1961), pages 1–17 (page 50).

[41] B. Edelman, M. Ostrovsky, and M. Schwarz. “Internet Advertising and the Generalized Second-
Price Auction: Selling Billions of Dollars Worth of Keywords”. In: American Economic Review
97.1 (2007), pages 242–259 (page 54).

[42] J. Edmonds and K. Pruhs. “Balanced allocations of cake”. In: Proceedings of the 47th Symposium
on Foundations of Computer Science (FOCS). 2006, pages 623–634 (page 51).

[43] J. Edmonds and K. Pruhs. “Cake cutting really is not a piece of cake”. In: Proceedings of the 17th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 2006, pages 271–278 (pages 36,
51).

[44] S. Even and A. Paz. “A note on cake-cutting”. In: Discrete Applied Mathematics 7 (1984),
pages 285–296 (page 50).

[45] F. Fischer and M. Klimm. “Optimal Impartial Selection”. In: Proceedings of the 15th ACM Con-
ference on Economics and Computation (EC). 2014, pages 803–820 (page 8).

[46] P. C. Fishburn. “Condorcet social choice functions”. In: SIAM Journal on applied Mathematics
33.3 (1977), pages 469–489 (page 20).

[47] C. Fong. “Social preferences, self-interest, and the demand for redistribution”. In: Journal of
Public Economics 82.2 (2001), pages 225–246 (page 1).

[48] Y. Gal, M. Mash, A. D. Procaccia, and Y. Zick. Which Is the Fairest (Rent Division) of Them All?
Manuscript. 2016 (page 3).

[49] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and I. Stoica. “Dominant Re-
source Fairness: Fair Allocation of Multiple Resource Types”. In: Proceedings of the 8th USENIX
Conference on Networked Systems Design and Implementation (NSDI). 2011, pages 24–37 (page 71).

[50] J. Goldman and A. D. Procaccia. “Spliddit: Unleashing Fair Division Algorithms”. In: SIGecom
Exchanges 13.2 (2014), pages 41–46 (pages 1, 49, 74).

[51] R. Haenni. “Aggregating Referee Scores: an Algebraic Approach”. In: Proceedings of the 2nd In-
ternational Workshop on Computational Social Choice (COMSOC). 2008, pages 277–288 (page 8).

117

[52] C. Harris. “Existence and Characterization of Perfect Equilibrium in Games of Perfect Informa-
tion”. In: Econometrica 53.3 (1985), pages 613–628 (page 57).

[53] G. A. Hazelrigg. Dear Colleague Letter: Information to Principal Investigators (PIs) Planning to
Submit Proposals to the Sensors and Sensing Systems (SSS) Program October 1, 2013, Deadline.
Retrieved on June 17, 2014. 2013. url: http://www.nsf.gov/pubs/2013/nsf13096/
nsf13096.jsp?WT.mc_id=USNSF_25#reference1 (pages 5, 8).

[54] H. Hellwig and W. Leininger. “On the Existence of Subgame-Perfect Equilibrium in Infinite-
Action Games of Perfect Information”. In: Journal of Economic Theory 45 (1987), pages 55–75
(page 57).

[55] T. Hill. “Partitioning general probability measures”. In: Annals of Probability 15.2 (1987), pages 804–
813 (page 75).

[56] R. Holzman and H. Moulin. “Impartial nominations for a prize”. In: Econometrica 81.1 (2013),
pages 173–196 (pages 7, 8).

[57] A. Kahng, Y. Kotturi, C. Kulkarni, D. Kurokawa, and A. D. Procaccia. Randomized Algorithms
for Impartial Peer Ranking. Manuscript. 2017 (page 2).

[58] I. Kash, A. D. Procaccia, and N. Shah. “No Agent Left Behind: Dynamic Fair Division of Multiple
Resources”. In: Journal of Artificial Intelligence Research 51 (2014), pages 579–603 (page 71).

[59] D. Kurokawa, J. K. Lai, and A. D. Procaccia. “How to cut a cake before the party ends”. In:
Proceedings of the 27th AAAI Conference on Artificial Intelligence (AAAI). 2013, pages 555–561
(pages 3, 49, 51).

[60] D. Kurokawa, O. Lev, J. Morgenstern, and A. D. Procaccia. “Impartial Peer Review”. In: Pro-
ceedings of the 24th International Joint Conference on Artificial Intelligence (IJCAI). 2015,
pages 582–588 (page 2).

[61] D. Kurokawa, A. D. Procaccia, and N. Shah. “Leximin Allocations in the Real World”. In: Pro-
ceedings of the 16th ACM Conference on Economics and Computation (EC). 2015, pages 345–
362 (pages 3, 49).

[62] D. Kurokawa, A. D. Procaccia, and J. Wang. Fair Enough: Guaranteeing Approximate Maximin
Shares. Manuscript. 2017 (page 3).

[63] D. Kurokawa, A. D. Procaccia, and J. Wang. “When can the maximin share guarantee be guar-
anteed?” In: Proceedings of the 30th AAAI Conference on Artificial Intelligence (AAAI). 2016,
pages 523–529 (page 3).

[64] M. Li, J. Zhang, and Q. Zhang. “Truthful Cake Cutting Mechanisms with Externalities: Do Not
Make Them Care for Others Too Much!” In: Proceedings of the 24th International Joint Confer-
ence on Artificial Intelligence (IJCAI). 2015, pages 589–595 (page 49).

[65] R. J. Lipton, E. Markakis, E. Mossel, and A. Saberi. “On approximately fair allocations of in-
divisible goods”. In: Proceedings of the 6th ACM Conference on Economics and Computation
(EC). 2004, pages 125–131 (pages 37, 75, 84).

[66] A. Mackenzie. Impartiality and symmetry. Manuscript. 2014 (pages 8, 21).
[67] E. Markakis and C.-A. Psomas. “On Worst-Case Allocations in the Presence of Indivisible Goods”.

In: Proceedings of the 5th Conference on Web and Internet Economics (WINE). 2011, pages 278–
289 (page 75).

[68] E. Maskin. “Nash Equilibrium and Welfare Optimality”. In: Review of Economic Studies 66
(1999). First circulated in 1977, pages 23–38 (page 58).

[69] A. Maya and N. Nisan. “Incentive Compatible Two Player Cake Cutting”. In: Proceedings of the
8th Conference on Web and Internet Economics (WINE). 2012, pages 170–183 (page 51).

118

http://www.nsf.gov/pubs/2013/nsf13096/nsf13096.jsp?WT.mc_id=USNSF_25#reference1
http://www.nsf.gov/pubs/2013/nsf13096/nsf13096.jsp?WT.mc_id=USNSF_25#reference1

[70] C. J. H. McDiarmid. “Clutter percolation and random graphs”. In: Mathematical Programming
Study 13 (1980), pages 17–25 (page 104).

[71] M. Merrifield and D. Saari. “Telescope Time Without Tears: a Distributed Approach to Peer
Review”. In: Astronomy and Geophysics 50.4 (2009), pages 2–6 (pages 5, 8, 17).

[72] M. Mitzenmacher. NSF Reviewing Trial Run. Retrieved on June 17, 2014. 2013. url: http:
//mybiasedcoin.blogspot.com/2013/06/nsf-reviewing-trial-run.html (page 5).

[73] D. Monderer and M. Tennenholtz. “Strong mediated equilibrium”. In: Artificial Intelligence 173.1
(2009), pages 180–195 (page 57).

[74] E. Mossel and O. Tamuz. “Truthful fair division”. In: Proceedings of the 3rd International Sym-
posium on Algorithmic Game Theory (SAGT). 2010, pages 288–299 (page 51).

[75] H. Moulin. Fair Division and Collective Welfare. MIT Press, 2003 (page 74).
[76] H. Moulin. “Uniform externalities: Two axioms for fair allocation”. In: Journal of Public Eco-

nomics 43.3 (1990), pages 305–326 (page 72).
[77] A. Nicolò and Y. Yu. “Strategic divide and choose”. In: Games and Economic Behavior 64.1

(2008), pages 268–289 (pages 51, 54).
[78] O. Nierstrasz. “Identify the champion”. In: Pattern Languages of Program Design. Edited by N.

Harrison, B. Foote, and H. Rohnert. Volume 4. Addison-Wesley, 2000, pages 539–556 (page 8).
[79] A. Othman, C. H. Papadimitriou, and A. Rubinstein. “The complexity of fairness through equilib-

rium”. In: Proceedings of the 15th ACM Conference on Economics and Computation (EC). 2014,
pages 209–226 (page 3).

[80] A. Othman, T. Sandholm, and E. Budish. “Finding approximate competitive equilibria: Efficient
and fair course allocation”. In: Proceedings of the 9th International Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS). 2010, pages 873–880 (page 3).

[81] D. C. Parkes, A. D. Procaccia, and N. Shah. “Beyond Dominant Resource Fairness: Extensions,
Limitations, and Indivisibilities”. In: Proceedings of the 13th ACM Conference on Economics and
Computation (EC). 2012, pages 808–825 (page 71).

[82] E. Pazner and D. Schmeidler. “Egalitarian equivalent allocations: A new concept of economic
equity”. In: Quarterly Journal of Economics 92.4 (1978), pages 671–687 (page 75).

[83] C. Piech, J. Huang, Z. Chen, C. Do, A. Ng, and D. Koller. “Tuned models of peer assessment in
MOOCs”. In: arXiv preprint arXiv:1307.2579 (2013) (page 19).

[84] A. D. Procaccia. “Cake Cutting: Not Just Child’s Play”. In: Communications of the ACM 56.7
(2013), pages 78–87 (pages 52, 71).

[85] A. D. Procaccia. “Thou Shalt Covet Thy Neighbor’s Cake”. In: Proceedings of the 21st Interna-
tional Joint Conference on Artificial Intelligence (IJCAI). 2009, pages 239–244 (pages 36, 37,
49, 51).

[86] A. D. Procaccia and J. Wang. “Fair Enough: Guaranteeing Approximate Maximin Shares”. In:
Proceedings of the 14th ACM Conference on Economics and Computation (EC). 2014, pages 675–
692 (page 76).

[87] Ariel D. Procaccia. NSF (actually) reviewing via social choice. Retrieved on June 17, 2014. 2013.
url: http://agtb.wordpress.com/2013/06/10/nsf- actually- reviewing- via-
social-choice/ (page 5).

[88] J. M. Robertson and W. A. Webb. Cake Cutting Algorithms: Be Fair If You Can. A. K. Peters,
1998 (pages 36, 50–53).

119

http://mybiasedcoin.blogspot.com/2013/06/nsf-reviewing-trial-run.html
http://mybiasedcoin.blogspot.com/2013/06/nsf-reviewing-trial-run.html
http://agtb.wordpress.com/2013/06/10/nsf-actually-reviewing-via-social-choice/
http://agtb.wordpress.com/2013/06/10/nsf-actually-reviewing-via-social-choice/

[89] M. Roos, J. Rothe, and B. Scheuermann. “How to Calibrate the Scores of Biased Reviewers by
Quadratic Programming”. In: Proceedings of the 25th AAAI Conference on Artificial Intelligence
(AAAI). 2011, pages 255–260 (page 8).

[90] Y. Shoham and K. Leyton-Brown. Multiagent Systems: Algorithmic, Game-Theoretic, and Logi-
cal Foundations. Cambridge University Press, 2008 (page 54).

[91] H. Steinhaus. “The problem of fair division”. In: Econometrica 16 (1948), pages 101–104 (page 35).
[92] W. Stromquist. “Envy-free cake divisions cannot be found by finite protocols”. In: The Electronic

Journal of Combinatorics 15 (2008), #R11 (pages 3, 37).
[93] W. Stromquist. “How to cut a cake fairly”. In: American Mathematical Monthly 87.8 (1980),

pages 640–644 (page 58).
[94] F. E. Su. “Rental harmony: Sperner’s lemma in fair division”. In: American Mathematical Monthly

106.10 (1999), pages 930–942 (page 37).
[95] H. K. Suen. “Peer assessment for massive open online courses (MOOCs)”. In: The International

Review of Research in Open and Distributed Learning 15.3 (2014) (page 19).
[96] S. Tamura and S. Ohseto. “Impartial nomination correspondences”. In: Social Choice and Welfare

43 (2014), pages 47–54 (page 8).
[97] W. Thomson. “Fair Allocation Rules”. In: Handbook of Social Choice and Welfare. Edited by

K. J. Arrow, A. Sen, and K. Suzumura. Volume 2. North-Holland, 2010. Chapter 21 (page 20).
[98] R. V. Vohra. A Mechanism Design Approach to Peer Review. Retrieved on June 17, 2014. 2013.

url: http : / / theoryclass . wordpress . com / 2013 / 06 / 06 / a - mechanism - design -
approach-to-peer-review/ (page 5).

[99] G. J. Woeginger. “A polynomial-time approximation scheme for maximizing the minimum ma-
chine completion time”. In: Operations Research Letters 20.4 (1997), pages 149–154 (pages 75,
98).

[100] G. J. Woeginger and J. Sgall. “On the complexity of cake cutting”. In: Discrete Optimization 4
(2007), pages 213–220 (pages 36, 51).

[101] L. Zhou. “Inefficiency of strategy-proof allocation mechanisms in pure exchange economies”. In:
Social Choice and Welfare 8 (1991), pages 247–254 (page 51).

120

http://theoryclass.wordpress.com/2013/06/06/a-mechanism-design-approach-to-peer-review/
http://theoryclass.wordpress.com/2013/06/06/a-mechanism-design-approach-to-peer-review/

	1 Introduction
	2 Impartial Peer Review
	2.1 Introduction
	2.1.1 Our Approach
	2.1.2 Our Results
	2.1.3 Related Work

	2.2 The Model
	2.3 The Credible Subset Mechanism
	2.4 Impossibility Results
	2.5 Discussion

	3 Impartial Peer Ranking
	3.1 Introduction
	3.1.1 Model and Results
	3.1.2 Related Work

	3.2 Notation and Definitions
	3.3 k-partite, Forward (i.e. Standard) Error, and Backward Error
	3.4 Committee and Mixed Error
	3.5 Committee in the ``Top k'' Setting
	3.6 Discussion
	3.7 Proof k-partite (Algorithm 3) is Well-defined

	4 Cake Cutting with Piecewise Valuations
	4.1 Introduction
	4.1.1 Model and Results
	4.1.2 Related work

	4.2 Preliminaries
	4.3 General vs. Piecewise Uniform Valuations
	4.4 Bounded Algorithm for Piecewise Linear Valuations
	4.5 Pareto Optimality and Strategyproofness
	4.6 Discussion

	5 Cake Cutting Equilibria
	5.1 Introduction
	5.1.1 Model and Results
	5.1.2 Related Work

	5.2 The Model
	5.2.1 Generalized Cut and Choose Protocols
	5.2.2 The Game

	5.3 Existence of Equilibria
	5.3.1 Approximate SPNE
	5.3.2 Informed Tie-Breaking

	5.4 Fair Equilibria
	5.5 Proof of Theorem 5.3.1
	5.6 Proof of Theorem 5.3.2
	5.7 Proof of Theorem 5.4.1

	6 Existence of Maximin Share Allocations and Their Extensions
	6.1 Introduction
	6.1.1 Model, Conceptual Contribution, and Technical Results
	6.1.2 Practical Applications of Our Results
	6.1.3 Related Work
	6.1.4 Open Problems

	6.2 Nonexistence of Exact MMS Allocations
	6.2.1 Proof of Theorem 6.2.1 for n = 3
	6.2.2 Proof of Theorem 6.2.1 for n = 4
	6.2.3 Proof of Theorem 6.2.1 for n 4

	6.3 Existence and Computation of Approximate MMS Allocations
	6.3.1 Proof of Theorem 6.3.1: Existence
	6.3.2 Proof of Theorem 6.3.1: Polynomial Time

	6.4 Random Valuations
	6.4.1 Proof of Lemma 6.4.2
	6.4.2 Proof of Lemma 6.4.3

	6.5 A Small Number of Goods Guarantees the Existence of an MMS Allocation
	6.6 MMS Guarantees on Subsets of N

	Bibliography

