
Enabling Data-Driven Optimization of
Quality of Experience in Internet Applications

Junchen Jiang

CMU-CS-17-119
September 11, 2017

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee
Hui Zhang, Chair
Vyas Sekar, Chair
Srinivasan Seshan
Peter Steenkiste

Ion Stoica, UC Berkeley

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2017 Junchen Jiang

This research was sponsored by the National Science Foundation under grant numbers CNS-1345305, CNS-1040801,
and CCF-1536002, and by Intel Corporation Santa Clara under grant number 1011555. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing the official policies,
either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Internet applications, Quality of Experience, Data-Driven Networking, CFA,
VIA, Pytheas

iv

Abstract

The Internet is an eyeball economy dominated by applications such as Inter-
net video and Internet telephony, whose revenue streams crucially depend on user-
perceived Quality of Experience (QoE). Despite intense research towards better
QoE, existing approaches have failed to achieve the QoE needed by today’s appli-
cations, because they are not acting on the right signal and in the right place: they
either seek to rearchitect the in-network devices which have little information on
user-perceived QoE, or rely on end-to-end protocols which have limited knowledge
on network conditions.

The key contribution of this dissertation is to bridge the long-standing gap be-
tween the visibility to user-perceived QoE and the visibility to network conditions
by a data-driven approach. Our thesis is that one can substantially improve QoE by
maintaining a global view of up-to-date network conditions based on the QoE infor-
mation collected from many endpoints. In essence, this thesis revisits the question of
where to implement the functionality of QoE optimization. Unlike prior work which
optimizes QoE by in-network devices or individual endpoints, our approach uses a
logically centralized controller to optimize QoE, which retains endpoints’ visibility
to QoE while attaining a global view of real-time network conditions by consolidat-
ing information from many endpoints.

To prove the thesis, this dissertation provides a suite of solutions to address two
fundamental challenges. First, we need expressive models to capture complex re-
lations among QoE, decisions, and application sessions who share similar QoE-
determining factors. Second, we need scalable platforms to make real-time decisions
with fresh data from geo-distributed clients.

Our key insight is that there are persistent critical structures in the relations be-
tween QoE and session-level features. These structures allow us to build expressive
models that can identify network sessions with similar QoE-determining factors, and
their temporal persistence allows us to build scalable platforms by decoupling offline
structure-learning processes and real-time decision making processes. We have de-
veloped algorithms and end-to-end systems, which integrate machine-learning tech-
niques with our insight of persistent critical structures. We have used real-world de-
ployment and simulation driven by real datasets to show that our solutions can yield
substantial QoE improvement and consequently higher user engagement for video
streaming and Internet telephony than existing solutions as well as many standard
machine learning solutions.

vi

Acknowledgments

First and foremost, I am immensely grateful to my advisors, Hui Zhang and Vyas
Sekar, both of whom have been tireless mentors, counselors, co-authors, and career
advisors. Vyas has been instrumental in teaching me how to focus on the critical
aspects of any research project, and formulate my thoughts in the right context and
in the right way. Most important of all, I learned from him how to approach research
in a rigorous and efficient manner. Hui has been an unlimited source of insightful
guidance and vision. I was deeply indebted to him for inspiring and encouraging
me to pursue the research of application quality and its confluence with data-driven
paradigm. Throughout the years, he has always offered insightful advises at the right
moments, and remarkably, every meeting I recall with him ended with high spirit.
I cannot imagine any team of academic advisors with a better match of personality,
research approach, and advising style than Vyas and Hui. I am extremely lucky
to have had the benefit of their vision and wisdom in these formative years of my
research career.

In completing this dissertation, I am also intellectually and personally indebted
to Ion Stoica. He gave tremendous help in every project I worked on with Conviva.
He was among the first to point out the difference between the prior approach and
data-driven networking lies in that the former is driven by single-flow information,
while the latter by multi-flow information. His sharp questions and comments have
always pushed me to dig deep into details. I am thankful for his honest feedback that
improved me as a researcher.

I am grateful to other members of my committee, Peter Steenkiste and Srinivasan
Seshan, who have been an unlimited source of honest and constructive comments.
This dissertation is profoundly influenced by the comments that Srini drew from the
parallel between this dissertation and his prior work of SPAND and congestion man-
ager in the transport layer, and many of Peter’s constructive comments that brought
more coherence among the solutions of different applications. I am also thankful to
them for giving me the opportunity to be the teaching assistant for their computer
networks courses.

Throughout my PhD years, I have been greatly benefited from two fruitful collab-
orations with Conviva and Microsoft. I would like to give my gratitude to colleagues
at Conviva, Jibin Zhan, Aditya Ganjam, Davis Shepherd, Henry Milner, Faisal Sid-
diqui, Yan Li, Rui Zhang, Saiguang Che and Florin Dobrian, for patiently helping
me understand the state of the art of Internet video industry, and allowing me to
run experiments on their platforms. I would like to thank colleagues at Microsoft
Research, Ganesh Ananthanarayanan, Venkat Padmanabhan, Philip A. Chou, Ra-
jdeep Das, Ranveer Chandra, Robert Grandl, Yinglian Xie, and Yu Fang, as well as

colleagues at Microsoft Skype team, Esbjorn Dominique, Marcin Goliszewski, Dal-
ibor Kukoleca, and Renat Vafin. I would also like to thank Bruce Maggs in Akamai
who had provided invaluable feedback on several chapters of the dissertation. This
dissertation would not be possible without their earnest support.

I am thankful to the many graduate students at CMU, David Naylor, Matthew
Mukerjee, Raja Sambasivan, Seyed K. Fayaz, Tianlong Yu, Soo-Jin Moon, Hyeon-
taek Lim, Dongsu Han, Yuchen Wu, Carlo Angiuli, Jay-Yoon Lee, Zhuo Chen, Jin-
liang Wei, Antonis Manousis, Yixin Luo, who had provided invaluable feedbacks to
my early drafts and practice talks. I will always cherish the Tuesday seminars and
XIA meetings, from which I received more honest comments than from any con-
ferences or workshops. I was also fortunate to work with two extremely talented
visitors to CMU, Yi Sun from ICT China, and Shijie Sun from Tsinghua University.
Finally, I want to thank Deborah Cavlovich, Toni Fox, and Kathy McNiff for their
invaluable help on logistics. My research would not be possible without the financial
and intellectual support from the XIA project.

I would also like to thank my undergraduate advisor in Tsinghua, Bin Liu, for
accepting me to his group and bringing me to networking research. During my
undergraduate years, I was fortunate to work with Yi Tang, Chengchen Hu, Yi Wang,
Yan Chen, Mingui Zhang, Beichuan Zhang, and Kai Chen. I learned something from
each of them.

I would like to express my earnest gratitude to my parents for their constant
love and encouragement, without which none of my achievements would have been
possible. Thanks to them for always having faith in me and providing me with the
best education possible.

Last but not least, I would like to thank my beloved Xuezhi for her understanding
and unreserved support throughout my PhD years.

I am truly grateful to all those who helped me complete this dissertation. If I
neglected to mention you, I apologize. Please know that I greatly appreciate your
support.

viii

Contents

1 Introduction 1
1.1 Fundamental Limitations of Prior Approaches 1
1.2 New Paradigm: Data-Driven Networking . 2
1.3 Making Data-Driven Networking Practical . 3

1.3.1 Key Challenges . 4
1.3.2 Unifying Insight . 4
1.3.3 Proposed Solutions . 5

1.4 Summary of Results . 6
1.5 Organization . 7

2 Background 9
2.1 How Good is QoE Today? . 9

2.1.1 Video QoE . 9
2.1.2 VoIP QoE . 11

2.2 Today’s Application Distribution Infrastructures 12
2.2.1 Internet Video . 12
2.2.2 Internet Telephony . 14
2.2.3 Room for Improving QoE . 14

2.3 Prior Work on Quality Optimization . 15
2.3.1 In-Network Solutions . 17
2.3.2 Endpoint Solutions . 18
2.3.3 Other Related Work . 20

2.4 Prior Work on Data-Driven Optimization in Networking 20
2.4.1 Type I: Better Settings of Parameters 21
2.4.2 Type II: Better Run-Time Decisions . 21

2.5 Summary . 22

3 Overview 23
3.1 Formalizing DDN . 23

3.1.1 Conceptual Architecture . 23
3.1.2 Contrast to Prior Work . 24
3.1.3 Illustrative Examples of DDN Benefits 25

3.2 Challenges of DDN . 26
3.2.1 Need for Expressive Models . 26

ix

3.2.2 Need for Scalable Platforms . 27
3.3 Key Insight: Persistent Critical Structures of QoE-Determining Factors 28

3.3.1 How Intuitively Persistent Critical Structures Address the Challenges? . . 29
3.4 Making DDN Practical by Persistent Critical Structures 30

3.4.1 Critical Features Analysis . 31
3.4.2 Group-Based Control . 31
3.4.3 Guided Exploration . 32

3.5 Summary . 32

4 Structural Analysis of QoE Problems 35
4.1 Internet Video . 35

4.1.1 Methodology . 35
4.1.2 Temporal Patterns . 38
4.1.3 Spatial Patterns . 39
4.1.4 Cross-Metric Correlations . 41
4.1.5 Key Observations . 42

4.2 Internet Telephony . 42
4.2.1 Methodology . 43
4.2.2 Spatial Patterns . 43
4.2.3 Temporal Patterns . 45
4.2.4 Cross-Metric Correlations . 46

4.3 Summary . 46

5 Predictive QoE Optimization By Critical Feature Analysis 49
5.1 Background . 50

5.1.1 Data-Driven Quality Prediction . 50
5.1.2 Challenge 1: Complex QoE-Determining Factors 51
5.1.3 Challenge 2: Fresh Updates . 53

5.2 Overview of CFA Ideas . 53
5.2.1 Baseline Prediction Algorithm . 54
5.2.2 Critical Features . 55

5.3 Design of CFA . 56
5.3.1 Learning Critical Features . 57
5.3.2 Using Fresh Updates . 58
5.3.3 Putting It Together . 59

5.4 Implementation and Deployment . 60
5.4.1 Implementation of CFA Workflow . 60
5.4.2 Challenges in an Operational Setting . 61

5.5 Evaluation . 62
5.5.1 Prediction Accuracy . 62
5.5.2 Quality Improvement . 63
5.5.3 Timeliness of Prediction . 65

5.6 Insights from Critical Features . 66
5.6.1 Types of Critical Features . 67

x

5.6.2 Values of Critical Features . 68
5.7 Discussion . 68
5.8 Related Work . 69
5.9 Summary . 70

6 Cross-Session Throughput Prediction for Initial Video Bitrate Selection 71
6.1 Background . 72

6.1.1 Today’s Suboptimal Initial Bitrate Selection 72
6.1.2 Dataset . 72
6.1.3 Limitations of Simple Predictors . 73

6.2 Design of DDA . 75
6.2.1 Insight of DDA . 76
6.2.2 Algorithm . 76

6.3 Evaluation . 78
6.3.1 Prediction Accuracy . 78
6.3.2 Improvement of Bitrate Selection . 79

6.4 Related Work . 80
6.5 Summary . 81

7 Improving QoE via Exploration and Exploitation at Scale 83
7.1 Limitations of Predictive Approaches . 84

7.1.1 Limitation 1: Prediction Bias . 84
7.1.2 Limitation 2: Slow Reaction . 85

7.2 Casting QoE Optimization as a Exploration-Exploitation Process 85
7.2.1 Challenges of E2 in the Networking Context 86

7.3 Overview of Pytheas Ideas . 87
7.4 Pytheas Algorithms . 88

7.4.1 Session-Grouping Logic . 88
7.4.2 Per-Group E2 Logic . 90

7.5 Pytheas System Architecture . 90
7.5.1 Requirements . 90
7.5.2 Per-Group Control by Frontends . 91
7.5.3 Updating Session Groups in the Backend 92
7.5.4 Fault Tolerance . 92

7.6 Implementation and Optimization . 93
7.7 Evaluation . 95

7.7.1 End-to-End Evaluation . 95
7.7.2 Microbenchmarks . 97
7.7.3 Fault Tolerance . 100

7.8 Related Work . 101
7.9 Summary . 101

xi

8 Tackling Large Decision Spaces 103
8.1 VIA Architecture . 104
8.2 Potential Relaying Improvement . 105
8.3 VIA Relay Selection . 106

8.3.1 Problem Formulation . 106
8.3.2 Strawman Approaches . 107
8.3.3 Overview of VIA . 107
8.3.4 Prediction-Based Pruning . 108
8.3.5 Exploration-Exploitation Step . 110
8.3.6 Budgeted Relaying . 111

8.4 Evaluation . 112
8.4.1 Methodology . 113
8.4.2 Improvement of VIA . 113
8.4.3 VIA’s Design Choices . 115
8.4.4 Practical Relaying Factors . 116
8.4.5 Real-World Controlled Deployment . 117

8.5 Discussion . 119
8.6 Related Work . 119
8.7 Summary . 121

9 Lessons, Limitations, and Future Work 123
9.1 Summary of Contributions . 123
9.2 Lessons Learned . 124
9.3 Limitations of Proposed Solutions . 125
9.4 Future Work . 127

9.4.1 Rethinking Classic and New Challenges in Networking 127
9.4.2 Towards a Principled Architecture for Data-Driven Networking 128

9.5 Final Remark . 130

Bibliography 131

xii

List of Figures

1.1 Contrasting the DDN paradigm with classic approaches. The key distinction lies
in where to implement the functionality of QoE optimization (symbolized by the
gears): prior approaches implement it in the in-network devices or individual
endpoints, whereas DDN implements it in the controller that maintains a real-
time global view of QoE of millions of endpoints. 3

1.2 The main contribution of this dissertation is to present a suite of solutions (bot-
tom) to address the key challenges of DDN (top). The key insight (middle) is
that QoE-determining factors exhibit persistent critical structures. 4

2.1 Distributions of observed video QoE metrics – buffering ratio, average bitrate,
and join time. We see that a non-trivial number of sessions suffer quality prob-
lems. For instance, more than 5% of sessions have a buffering ratio larger than
10%. 10

2.2 Network performance metrics have considerable impact on VoIP QoE (poor call
rate or PCR); y-axis normalized to the maximum PCR. Vertical gray lines show
the thresholds for poor network performance. Numbers in the brackets show the
correlation coefficients. 11

2.3 Distributions of observed network performance metrics of Skype calls – RTT,
loss rate, jitter. Vertical grey lines show the thresholds for poor network perfor-
mance. 12

2.4 Today’s architecture of Internet video and Internet telephony. Components rele-
vant to this dissertation are highlighted; other details are omitted for clarity. The
figures depict the configurations (“control knobs”) that can be adaptively tune on
a per-session/-call base in order to improve QoE. 13

2.5 Spatial diversity and temporal dynamics of CDN performance [147]. The figures
suggest the opportunity of cross-CDN optimization: video buffering ratio can be
significantly reduced by dynamically picking the best CDN for each location and
at any point of time. 15

2.6 Prior approaches can be categorized by their placement of the functionality of
quality optimization along two dimensions. These design choices must make
fundamental trade-offs between more visibility to QoE and more visibility to
network conditions. 16

3.1 Overview of the DDN controller . 24

xiii

3.2 The technical roadmap of this dissertation towards making DDN practical. We
present three ideas to address the four manifestations of the high-level challenges
of expressive prediction models and scalable control platforms. The key enabling
insight behinds our ideas is the persistent critical structures of QoE-determining
factors. 27

3.3 Illustrations of how persistent critical structures help to address challenges of
DDN. (Each application session (depicted as a circle) on the left is mapped to
one of the available decisions (depicted as boxes) on the right.) 30

4.1 Representing the relationship between clusters using a DAG. Red boxes repre-
sent the problem clusters. 37

4.2 An illustration of the phase transition idea for identifying a critical cluster. . . . 38
4.3 Distributions of the prevalence and persistence of problem clusters. We find a

natural skewed distribution with a few clusters having high prevalence. Many
problem clusters last multiple hours and that a non-trivial number of problem
clusters last for tens of hours. 39

4.4 The number of critical clusters is significantly smaller than the number of prob-
lem clusters. The timeseries shown here is for the join time; we see similar
results for the other quality metrics too. 40

4.5 International vs. Domestic Calls. 43
4.6 Inter-domain vs. intra-domain calls. 44
4.7 The percentage of calls over poor network conditions that come from the worst

n AS pairs; AS-pairs are ranked in descending order of their contribution to total
amount of calls with poor performance. 44

4.8 Temporal patterns of poor network performance. Figure 4.8a and 4.8b show the
distribution of the persistence and prevalence of AS pairs having high PNR. . . . 45

4.9 Pair-wise correlation between performance metrics. The Y-axis shows the distri-
bution (10th, 50th, 90th percentiles) of one metric as a function the other metric
over the same set of calls. 46

5.1 Overview of a global optimization system and the crucial role of a prediction
system. 50

5.2 The high VSF is only evident when three factors (CDN, ISP and geo-location)
are combined. 52

5.3 Prediction error of some existing solutions is substantial (mean of relative error
in parentheses). 53

5.4 Due to significant temporal variability of video quality (left), prediction error
increases dramatically with stale data (right). 54

5.5 To reduce update delay, we run critical feature learning and quality estimation at
different timescales by leveraging persistence of critical features. 59

5.6 Implementation overview of CFA. The three stages of CFA workflow are imple-
mented in a backend cluster and distribute frontend clusters. 61

5.7 Streaming data loading has smoother impact on completion delay than batch data
loading. 61

xiv

5.8 Distributions of relative prediction error ({5,10,50,90,95}%iles) on AvgBitrate
and JoinTime and hit rates on BufRatio and VSF. They show that CFA outper-
forms other algorithms. 62

5.9 Results of real-world deployment. CFA outperforms the baseline random deci-
sion maker (over time and across different large cities, connection t ypes and
CDNs). 64

5.10 Comparison of quality improvement between CFA and strawmen. 65
5.11 Latency of critical features and quality values (x-axis) on increase in accuracy

(y-axis). 66
5.12 Analyzing the types of critical features: This shows a breakdown of the total

number of sessions assigned to a specific type of critical features. 67

6.1 Distribution of throughput in the FCC dataset 72
6.2 Prediction error of the last-mile predictor . 74
6.3 Prediction error of last-sample predictor . 74
6.4 Two manifestations of the high complex interaction between session features and

the throughput. 75
6.5 Mapping between sessions under prediction and prediction models. 76
6.6 CDF of prediction error. 78
6.7 Dissecting DDA prediction error. The boxes show the 10-20-50-80-90 percentile. 79
6.8 In-depth analysis of bitrate selection . 81

7.1 Limitations of prediction-oriented abstraction (e.g., CFA [126]) manifested in
two real examples. 84

7.2 Casting data-driven QoE optimization into formulation of exploration and ex-
ploitation (E2). 86

7.3 Illustration of group-based E2. 88
7.4 An illustrative example of session groups organized in a graph and how to a new

group is added. 90
7.5 For most groups, the sessions are in the same ASN and even same city. 92
7.6 Key components and interfaces of Pytheas implementation. 94
7.7 Distribution of improvement of Pytheas over the prediction-based baseline. . . . 96
7.8 Improvement in presence of load effect. 97
7.9 Factor analysis of Pytheas ideas . 98
7.10 Pytheas throughput is horizontally scalable. 99
7.11 Optimizations of frontend throughput. 99
7.12 Bandwidth consumption between clusters. 100
7.13 Pytheas can tolerate loss of a frontend cluster by falling back to player native

logic gracefully, and recovering the logic states in a new cluster. 100

8.1 VIA architecture with relay nodes at globally distributed data centers. A call can
either take “default path” (red) or a “relay path” (green). 104

8.2 Potential improvement of VIA. 105

xv

8.3 Distribution of how long the best relaying option (picked by oracle) lasts. The
optimal relaying options for 30% of AS pairs last for less than 2 days. 106

8.4 Overview of VIA relay selection based on prediction-guided exploration. 108
8.5 Path stitching in VIA to estimate performance through relay RN. Solid lines

represent historical call samples that we use to predict performance between
AS3 and AS4 (dotted line). RTTAS3↔AS4 = RTTAS1↔AS4 + RTTAS2↔AS3 −
RTTAS1↔AS2. 110

8.6 Improvement of VIA. PNR on individual metrics improve by 39%−45% and on
the ”at least one bad” metric by 23%. 113

8.7 VIA improvement on international and domestic calls. We also have similar
observation regarding inter-domain and intra-domain calls. 114

8.8 Dissecting VIA improvement on PNR by country of one side. There is a sub-
stantial diversity on VIA improvement across different countries. 115

8.9 Comparing guided-exploration strategies. 116
8.10 Impact of budget constraint on VIA. 117
8.11 Sensitivity analysis of VIA improvement. Figure 8.11a and 8.11b compares PNR

under different control granularities. Figure 8.11c shows PNR when some of the
(least used) relays are excluded. 118

8.12 Deployment results. CDF, over calls, of sub-optimality (lower is better) of VIA’s
performance. 118

xvi

List of Tables

1.1 Advantages of DDN over in-network approaches and endpoint-based approaches. 3

4.1 Reduction via focusing only on critical clusters and the effective coverage of the
critical clusters. 40

4.2 Analysis of the most prevalent critical clusters. A empty cell implies that we
found no interesting cluster in this combination. 41

4.3 Average Jaccard similarity index between the top 100 critical clusters for the
different metrics. We see that most metrics are relatively uncorrelated, possibly
because the critical features are very different. 42

5.1 Quality metrics and session features associated with each session. CDN and
Bitrate refer to initial CDN/bitrate values as we focus on initial selections. 51

5.2 Real-world examples of critical features confirmed by analysts at a large video
optimization vendor. 55

5.3 Notations used in learning of critical features. 57
5.4 Random A/B testing results of CFA vs. baseline in real-world deployment. 63
5.5 Each stage of CFA is refreshed to meet the required freshness of its results. . . . 65
5.6 Analysis of the most prevalent values of critical features. A empty cell implies

that we found no interesting values in this combination. 68

6.1 Limitations of today’s video players and how they benefit from throughput pre-
diction. www.lynda.com uses fixed bitrate of 520Kbps (360p) by default. Net-
flix (www.netflix.com/WiMovie/70136810?tr kid=439131) takes roughly 25 sec-
onds to adapt from the initial bitrate (560Kbps) to the highest sustainable bitrate
(3Mbps). 72

6.2 Basic statistics of the FCC dataset. 73
6.3 Comparing DDA and “Global” in AvgBitrate and GoodRatio. 80
6.4 Higher accuracy means better bitrate selection. 80

xvii

xviii

Chapter 1

Introduction

Today’s Internet is an “eyeball economy” driven by applications, such as Internet video streaming
(e.g., the share of video traffic of all consumer Internet traffic hit 70% in 2015 and is forecasted
to reach 82% of consumer Internet traffic by 2020 [6]) and Internet telephony (e.g., Skype users
spend over 2 billion minutes talking to each other every day [27]). As these applications rely on
user engagement to generate revenues, it has become of paramount importance that application
providers ensure high user-perceived Quality of Experience (QoE) in order to maintain high user
engagement [51, 135]. For instance, recent research shows that even one short video buffering
interruption can lead to 39% less time spent watching online videos and cause substantial revenue
losses for ad-based video sites. Suboptimal QoE can negatively affect subscription-based service
providers as well; e.g., our study with Microsoft Skype shows that most Skype users give low
rating to calls when experiencing more than 1.2% packet loss rate [125].

Given the importance of QoE, understanding and improving the QoE of Internet applications
have gained increasing attention from both academia and industry. This trend is best illustrated
by the recent growth in the number of publications (e.g., [51, 88, 123, 135, 147, 214]), workshops
(e.g., [31, 32, 33]), as well as commercial offerings (e.g., [5, 9]) for optimizing the QoE of
Internet video streaming, Internet telephony, mobile apps, and web services.

Despite the intense research towards better Internet QoE, measurement studies show that
existing approaches have failed to deliver the QoE needed by today’s applications. For instance,
several studies [122, 135, 147] showed that over 10% of video viewers spent more than 1% of
session duration in re-buffering interruptions, which could significantly reduce user engagement,
especially for live content [88]. Similar QoE problems are pervasive in Internet telephony as
well. Recent measurement on the quality of Skype calls showed that 17% calls experienced over
1.2% packet loss in the call’s duration [125], which can cause frustrating user experience [7, 19].
(We elaborate on these quality problems in Chapter 2.)

1.1 Fundamental Limitations of Prior Approaches

These suboptimal QoE issues stem from fundamental limitations of prior approaches. There are
two broadly defined classes of prior approaches, whose key difference lies in where to implement
the functionality for optimizing QoE.

1

• In-network approaches seek to improve QoE by improving the quality of service (QoS) of
ISPs and in-network services through better designs of in-network devices (e.g., routers,
switches, and middleboxes) and routing schemes. Although in-network approaches have
inspired influential projects and enormous intellectual legacy (e.g., [86, 96, 97, 117, 195,
205]), they are fundamentally limited by in-network devices’ lack of visibility to user-
perceived QoE, and thus it cannot react to QoE problems that are not reflected by lower-
level QoS metrics. Moreover, it is difficult, and increasingly so, to make substantial
changes to the network core, despite recent efforts to facilitate it [94].

• Endpoint approaches seek to improve QoE by using intelligent logic running at individual
endpoints to react to changes in network conditions, in order to fully utilize the existing
network resources. These approaches are pervasively used in application-level protocols
(e.g., [66, 121, 130, 190, 218]) and transport-level protocols (e.g., [89, 107, 116, 217]).
Unlike in-network approaches, endpoint-based approaches have direct insight to user-
perceived QoE and is arguably more deployable. However, endpoint-based approaches
are fundamentally limited by individual endpoints’ local visibility to network conditions.
As a result, each endpoint can react to the changes in network conditions and resource
availability only after the changes have affected the QoE, and when it reacts, it relies on
trial-and-error strategies driven by only local information which has limited view on the
network conditions. Both aspects lead to suboptimal QoE when network conditions change
constantly (e.g., flashcrowds) or when quality of the beginning of a session is critical (e.g.,
short video clips)

In essence, both approaches do not act on the right signal: they have limited visibility to either
user-perceived QoE or network conditions, both of which are critical to achieving desirable QoE
in practice. In contrast, this dissertation approaches the question of where to implement QoE
optimization with a radically different answer, and demonstrates that the new approach can get
the best of both worlds.

1.2 New Paradigm: Data-Driven Networking
This dissertation is inspired by a recent paradigm shift in computing and tries to bring it to net-
working research. In essence, Data-Driven Networking (DDN) offers a different answer to the
placement of the functionality of QoE optimization: instead of optimizing QoE at endpoints or
in-network devices, we could substantially improve QoE by using a logically centralized con-
troller (as illustrated in Figure 1.1) which maintains a global view of real-time network condi-
tions by gathering QoE measured from many application sessions1 and uses this global view to
make optimal decisions regarding the adaptation of individual sessions [127]. This design choice
brings two key advantages of DDN (Table 1.1).
DDN is driven by the right signal: Compared to in-network approaches, DDN can monitor
client-side applications and thus can directly optimize user-perceived QoE, rather than indirect
low-level metrics. Compared to endpoint-based approaches, DDN compensates the lack of vis-
ibility of network conditions at one endpoint by a real-time, global view of QoE observed from

1We use “client” to denote where a “session” is actually run.

2

Endpoint(based-
approaches

In(network-
approaches

(a) Classic approaches (in-network approaches
and endpoint-based approaches).

Data$Driven*
Networking

(b) Data-Driven Networking (DDN).

Figure 1.1: Contrasting the DDN paradigm with classic approaches. The key distinction lies
in where to implement the functionality of QoE optimization (symbolized by the gears): prior
approaches implement it in the in-network devices or individual endpoints, whereas DDN imple-
ments it in the controller that maintains a real-time global view of QoE of millions of endpoints.

Approaches Where data is collected? What data? Who make decisions?

In-network In-network devices
Packet-level statistics
no visibility to user-perceived QoE

In-network devices
not readily deployable

Endpoint-based Single endpoint
Performance of a single flow
limited visibility to network conditions

Endpoints
readily deployable

Data-Driven
Networking

Many endpoints
In-situ QoE of many endpoints
visibility to QoE & network conditions

Centralized controller
readily deployable

Table 1.1: Advantages of DDN over in-network approaches and endpoint-based approaches.

many endpoints, thus addressing the key limitation of the endpoint adaptation.

DDN is readily deployable: Unlike in-network approaches or the precursors of data-driven
quality optimization (e.g., [193]), DDN is fortuitously aligned with several recent technology
trends: Many application providers (e.g., [5, 88, 125, 135]) today have widely deployed client-
side instrumentations that can collect real-time in-situ QoE data en masse from clients. The
emergence of large-scale data analytics platforms and cloud infrastructure provides the abil-
ity to extract insights efficiently from large corpses of data (e.g., [28]) and streams of updates
(e.g., [227]). Finally, logically centralized control platforms are commonly employed by many
application providers (e.g., [101, 146]) and CDN providers (e.g., [74, 156]).

1.3 Making Data-Driven Networking Practical
While prior work has shown that DDN can potentially improve QoE, it is not clear how to
fully realize this potential in practice. The main contribution of this dissertation is a suite of

3

Challenge(#1
Expressive)prediction)models

Challenge(#2
Scalable)control)platforms

Key(Insight((Ch.(4)
Persistent)Critical)Structures) in)QoE9determining)factors

CFA(&(DDA
(Ch.(5,(6)
Accurate)QoE/throughput)
predictions)by)critical)features

Pytheas
(Ch.(7)
Scalable)exploration9exploitation)
by)group9based)control

VIA
(Ch.(8)
Tackling)large)decision)
spaces)by)guided)exploration

Figure 1.2: The main contribution of this dissertation is to present a suite of solutions (bottom)
to address the key challenges of DDN (top). The key insight (middle) is that QoE-determining
factors exhibit persistent critical structures.

algorithm and architectural solutions driven by domain-specific insights to make DDN practical
for QoE optimization. In particular, we identify key algorithmic and architectural challenges
to apply DDN to QoE optimization, address these challenges by novel algorithm and system
designs that integrate machine-learning techniques with domain-specific insights, and use real-
world deployment and large-scale emulation to demonstrate that our solutions can substantially
improve the QoE of video streaming and Internet telephony.

1.3.1 Key Challenges
To unleash DDN’s full potential in any Internet-scale application, one must address two funda-
mental challenges.

1. Expressive models: DDN needs to turn QoE measurements of millions of different appli-
cation sessions into actionable insights. Thus, we need expressive models to capture the
complex network-level and application-level factors that affect QoE.

2. Scalable platforms: DDN needs to turn the actionable insights into real-time control deci-
sions to be performed by geo-distributed clients. Thus, we need scalable platforms that can
respond to geo-distributed clients in real time with decisions based on the most up-to-date
insights extracted from information of other sessions.

1.3.2 Unifying Insight
We address these challenges by integrating machine learning techniques with the unifying in-
sight that there are persistent critical structures in the relationship between session-level fea-
tures, decisions, and QoE (as illustrated in Figure 3.1). At a high level, these structures have
two distinctive features: (1) they allow us to build expressive models that can identify network
sessions with similar QoE-determining factors, and (2) because these structures tend to be per-
sistent, we can build scalable platforms by decoupling offline structure-learning processes and
real-time decision making processes. To see an intuitive example of a persistent critical struc-
ture, let us consider a group of video sessions bottlenecked by a congested link. The quality of

4

these sessions may vary over time, but the fact that these video sessions are bottlenecked by the
same congested link remains true for the whole duration of the congestion event. In this exam-
ple, the correlation among the quality of these sessions is a persistent critical structure, which
manifests the underlying congestion. (We will give a formal definition of persistent structures in
Chapter 3.)

1.3.3 Proposed Solutions

Building on the insight of persistent critical structures, this dissertation develops three concrete
solutions to address the two aforementioned challenges in the context of Internet video and In-
ternet telephony. Next, we briefly describe the three components that constitute this dissertation.

• Expressive QoE Prediction Using Critical Features (Chapter 5 and 6). Prior work has
shown a substantial room for improving video QoE by dynamically selecting the optimal
CDN and bitrate for individual video sessions based on a real-time global view of network
conditions [147]. To realize this promise, we have developed CFA [126] (a video QoE
prediction system that can accurately predict the quality of a video client if it uses certain
CDN and bitrate), and DDA [124] (a throughput prediction system to accurately predict
end-to-end throughput at the beginning of a video session to help determine the highest-
yet-sustainable initial bitrate). Both techniques are inspired by the domain-specific insight
of persistent critical features, an instantiation of persistent critical structures, that each
video session has a small set of critical features that ultimately determines its video quality,
and these critical features change much more slowly than video quality, and thus can be
practically learned from history data.

• Group-Based Exploration-Exploitation at Scale (Chapter 7). While CFA and DDA
show promising QoE improvement by formulating the data-driven QoE optimization as
a prediction problem, this formulation is necessarily incomplete, as it suffers from a bi-
ased visibility and cannot respond to sudden changes. Drawing on a parallel from machine
learning, we argue that data-driven QoE optimization should instead be cast as a pro-
cess of real-time exploration-exploitation. To scale the real-time exploration-exploitation
process to millions of application sessions running in geo-distributed clients, we have de-
veloped a control platform called Pytheas [128], which relies on another illustration of
persistent critical structures that the sessions that exhibit similar QoE behaviors have sim-
ilar network-level features (e.g., IP prefix), and thus their fresh data could be collected by
the same geo-distributed front-end cluster close to the clients of these sessions. Inspired
by this insight, Pytheas uses a scheme called group-based exploration-exploitation, which
decomposes the global exploration-exploitation process of all sessions into subprocesses,
each managing a group of similar sessions and running in the geo-distributed front-end
cluster that has the fresh measurement data of these sessions.

• Tackling Large Decision Spaces via Guided Exploration (Chapter 8). The last project
tackles a challenge of large decision spaces, which is particularly relevant in Internet tele-
phony. In the first large-scale study on VoIP2 quality, we found that there is substantial

2We use the terms Internet telephony and VoIP interchangeably.

5

room for improving Skype quality by routing each call through the optimal relay clusters
in Microsoft’s cloud. However, identifying a close-to-optimal relay for each Skype call
in practice is challenging, due to the sheer number of possible relay paths (in hundreds)
and their dynamic performance (which could change on timescales of minutes). Neither
prediction-based methods (e.g., CFA) nor those based on exploration and exploitation (e.g.,
Pytheas) would suffice to handle such a large decision space. Our key insight to address
this challenge is another manifestation of the persistent critical structures that, for each pair
of caller AS and callee AS, there is a small and stable subset of relays that almost always
contains the best relay path. We have developed VIA [125], a Skype relay selection sys-
tem that achieves close-to-optimal quality using the concept of guided exploration, which,
instead of exploring the whole decision space of all possible relay choices, learns a small
set of promising relays for each AS pair based on long-term (e.g., daily) historical data,
and explores these promising relays using most calls in near real time.

Generalizability beyond Internet video and telephony: Finally, while this dissertation has
mostly focused on Internet video and Internet telephony, we observe similar data-driven oppor-
tunities in other applications (e.g., CDN overlay routing [156], web proxy selection [146]) where
solutions proposed in this dissertation are readily applicable. Besides application-specific QoE,
the insight of persistent structures can also help optimize other performance metrics, such as net-
work throughput. For instance, DDA (Chapter 6) shows the feasibility of predicting end-to-end
throughput by aggregating information of multiple network flows. These observations indicate
the potential generalizability of our solutions to realize more data-driven opportunities in a broad
set of scenarios in networking and distributed systems.

1.4 Summary of Results
In evaluating the solutions proposed in this dissertation, we focus on answering two questions.

• How much can QoE be improved by the proposed solutions? The ultimate goal of DDN is
to improve QoE. We examine the contribution of each solution by evaluating the incremen-
tal QoE improvement of adding one component at a time. For instance, by predicting the
best CDN and bitrate selections based on a global view of network conditions, CFA reduces
video re-buffering time on average by 32% compared to a state-of-the-art client-side logic
using local information (Chapter 5); and by re-casting the data-driven QoE optimization as
a real-time exploration-and-exploitation process, Pytheas further reduces the re-buffering
time on average by 30% over CFA (Chapter 7). In Chapter 8, we show that VIA achieves
better VoIP QoE than CFA and Pytheas by addressing the new challenge of large decision
spaces in Internet telephony. Moreover, this dissertation also tries to identify the circum-
stances under which the proposed solutions achieve more QoE improvement. For instance,
in Chapter 8, we observe improvement of VIA on both international and domestic Skype
calls, but international calls have a higher magnitude of improvement than domestic ones.

• Can the proposed solutions be deployed at Internet scale? Scalability is another critical
metric to evaluate the proposed solutions. Any proposed solution must operate at the scale
of a large application provider. In Chapter 5, we show that CFA can update video QoE

6

prediction every tens of seconds with sub-second response time to the scale of a large
video content provider (i.e., 10 million sessions every day), and in Chapter 7, we show that
Pytheas throughput scales horizontally with more machines in the controller, and that 30
CloudLab instances can make decisions for the population of a site like YouTube (5 billion
sessions per day) with measurement data of concurrent sessions with less than a second of
delay.

To demonstrate the benefit of our solutions in realistic settings, our evaluation methodology
combines real-world pilot deployment and emulation/simulation driven by large-scale datasets
collected from real users. For instance, in Chapter 5, we integrated CFA in a production sys-
tem [101] that provided video optimization service for major content providers in the US. We
deployed CFA on one of these content providers to improve QoE for 150,000 sessions each
day. We performed A/B tests (where each algorithm was used on a random subset of clients)
to evaluate the improvement of CFA over baseline random decision makers, which many video
optimization services use by default (modulo business arrangement like price).

Finally, in order to evaluate application QoE in a reliable and scalable fashion, this disserta-
tion does not use subjective QoE metrics (e.g., user-provided score), but focuses on the metrics
that can be objectively measured and known to have great impact on user satisfaction and en-
gagement. For instance, video QoE is measured by buffering time, start-up delay, and average
bitrate, each of which has been shown to have strong correlation with user engagement in mul-
tiple studies [88, 135]. While subjective metrics can directly reflect user satisfaction, we choose
to use these objectively measurable metrics as a proxy for real user satisfaction for two reasons:
(1) they can be passively collected en masse by instrumentation code running in client devices
without any user input, and (2) they are less noisy than subjective metrics which can be affected
by factors (e.g., content or personal preference) beyond the scope of this dissertation.

1.5 Organization
The rest of this dissertation is organized as follows. Chapter 2 begins with the background infor-
mation of Internet video and Internet telephony, including their QoE problems today and current
distribution infrastructures. It then discusses two recent research directions closely related to this
dissertation: quality optimization of Internet applications and application of data-driven tech-
niques in networked systems. In particular, it introduces a taxonomy of prior work on quality
optimization, which emphasizes the trade-offs between more visibility of QoE feedback and
more visibility of network conditions.

Chapter 3 presents an overview of the main insight and ideas of this dissertation. It begins
with a formal description of the DDN paradigm, concrete example applications that can benefit
from DDN, and a perspective on its advantages over prior approaches. It then elaborates the key
technical challenges in making DDN practical. Finally, it describes our key insight of persistent
structures in QoE-determining factors, and how the insight inspires our solutions to address the
DDN’s challenges. Chapter 4 presents a large-scale structural analysis on the video and VoIP
QoE problems in the wild. It provides empirical evidence of the persistent structures in QoE-
determining factors.

Chapters 5, 6, 7, and 8 describe four important components of this dissertation: (1) CFA and

7

DDA optimize video streaming quality by predicting video QoE and end-to-end throughput using
a global and real-time view of network conditions; (2) Pytheas optimizes quality of Internet-scale
applications by re-casting the DDN process as a real-time exploration-exploitation process over
millions of geo-distributed clients at scale; and (3) VIA addresses the challenge of large decision
spaces, and uses VoIP as a use-case where it optimizes network performance for VoIP calls by
selecting the optimal relay clusters.

Chapter 9 summarizes the contributions of the dissertation, discusses the limitations of the
proposed solutions, and ends with future work.

8

Chapter 2

Background

Before we embark on the solutions to improve QoE, it would be helpful to (1) motivate the need
for improving QoE by shedding light on today’s QoE problems in the wild, and (2) understand
the fundamental trade-offs in prior approaches to QoE optimization.

The first part of this chapter uses empirical measurement studies to show that there is a
substantial fraction of sessions in both Internet video and Internet telephony with bad QoE (Sec-
tion 2.1), and then discusses some salient aspects of distribution infrastructures of these applica-
tions today (Section 2.2).

The second part of this chapter discusses two research directions, which are closely related
to this dissertation: optimization of Internet applications quality and network performance (Sec-
tion 2.3) and application of data-driven techniques to improve networked systems (Section 2.4).
In particular, it presents a taxonomy of prior approaches to QoE optimization, which emphasizes
the fundamental trade-off between visibility to user-perceived QoE and visibility to network
conditions. The taxonomy also helps to crystallize the contrasts between prior work and this
dissertation (Section 3.1.2).

2.1 How Good is QoE Today?
We begin with large-scale measurement studies based on QoE observed by real users to shed light
on the how good (or bad) QoE is today for Internet video (Section 2.1.1) and Internet telephony
(Section 2.1.2) in the wild. For each application, we first introduce the QoE metrics and the
dataset, and then present empirical session-level QoE distributions for different quality metric.

2.1.1 Video QoE

Video QoE metrics: We focus on four key video QoE metrics that are common across differ-
ent content providers and have been shown to be critical for measuring quality as well as user
engagement:
1. Buffering ratio: Given a video session of duration T seconds, if the player spent B seconds

in buffering (i.e., waiting for the buffer to replenish), the buffering ratio is defined as B
T . Prior

work has shown that buffering ratio is a key metric that impacts user engagement [88].

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-05 0.001 0.1

C
D

F

Buffering ratio

(a) Buffering ratio

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 2000 4000 6000 8000 10000

C
D

F

Bitrate (kbps)

(b) Bitrate

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 100 10000 1e+06

C
D

F

Join time (ms)

(c) Join time

Figure 2.1: Distributions of observed video QoE metrics – buffering ratio, average bitrate, and
join time. We see that a non-trivial number of sessions suffer quality problems. For instance,
more than 5% of sessions have a buffering ratio larger than 10%.

2. Join time: This is the time taken for the video to start playing from the time the user clicks
on the “play” button. While join time may not directly impact the view time of a specific
video, it does have long-term effects as it reduces the likelihood of repeated visits [88, 135].

3. Average bitrate: Many video players today support adaptive bitrate selection and midstream
bitrate switching to adapt to changing bandwidth availability. The average bitrate of a session
is the time-weighted average of the bitrates used in a given video session.

4. Join failures: Some sessions may not even start playing the video; either the content is not
available on the CDN server or the CDN is under overload or other unknown reasons. We
mark such a session as a join failure if no content was played during this session.

Dataset: Our dataset is based on client-side measurements of video quality from over 300 mil-
lion sessions over a duration of two weeks. The unique feature of our dataset is that it is collected
over 379 distinct content providers spanning diverse genres, both live and video-on-demand con-
tent, different content delivery platforms, different types of bitrate adaptation algorithms, and
device/browser platforms. Though US viewers dominate the dataset (∼55%), there are a fair
number of European (∼12%) and Chinese (∼8%) users in the dataset. This is especially relevant
as it provides us with a panoramic view of state of Internet video delivery today. More details on
the datasets can be found in [122].
QoE distributions of different metrics: Figure 2.1 shows the distributions of the first three
quality metrics over the dataset. (Join failures are binary events; it is not meaningful to look
at a distribution.) The results reconfirm prior observations that there are a non-trivial number
of sessions with less-than-ideal quality [88, 147]. The key difference here is that these past
efforts only considered a small set of 3–4 content providers. In contrast, we are considering the
aggregate data from over 300 content providers, and our results suggest that the QoE problems
might be more pervasive than what we realized. For instance, more than 5% of all sessions have
a join time greater than 10 seconds; i.e., users had to wait for 10 seconds before the video even
started playing! Similarly, more than 5% of sessions had a buffering ratio that was greater than
10%. This is particularly bad as past studies show that even a 1% increase in buffering ratio can
lead to 3-4 minutes of lost viewership [88]. Finally, we also see that more than 80% of sessions
observe an average bitrate less than 2 Mbps; i.e., less than the lower end of today’s “HD” content.
Note that the dataset from which these observations are made is dominated by US-based content

10

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 150 300 450

P
C

R
 /
 M

a
x
 P

C
R

RTT (ms)

(a) PCR vs. RTT (0.97)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4

P
C

R
 /
 M

a
x
 P

C
R

Loss rate (%)

(b) PCR vs. Loss (0.95)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 4 8 12 16

P
C

R
 /
 M

a
x
 P

C
R

Jitter (ms)

(c) PCR vs. Jitter (0.91)

Figure 2.2: Network performance metrics have considerable impact on VoIP QoE (poor call rate
or PCR); y-axis normalized to the maximum PCR. Vertical gray lines show the thresholds for
poor network performance. Numbers in the brackets show the correlation coefficients.

providers where viewers in general have good broadband penetrations, so QoE could be even
worse in other less developed regions.

2.1.2 VoIP QoE

VoIP QoE metrics: Like video QoE metrics, VoIP QoE ideally should be based on some user-
provided scores, but getting such information directly from users is not scalable. Fortunately, for
a small random fraction of calls in Skype, users label the call quality on a discrete 5-point scale,
ranging from 1 (worst) to 5 (best). This allows us to study the correlation between these user-
provided scores and network metrics that can be objectively measured in a scalable fashion. We
can then use these network metrics to study the QoE problems across a large number of users.

Consistent with the operational practice in Skype, we deem the calls with a rating of 1 or 2 as
“poor”, and use the fraction of such calls, termed as the Poor Call Rate (PCR), as an empirical
metric of QoE. Figure 2.2 shows the impact of the three network performance metrics (RTT, loss
rate, jitter) on the (normalized) user-derived PCR1. For each network metric, we bin calls based
on their network performance and show the PCR of the calls within each bin. For statistical
significance, each bin has at least 1000 samples. The figures show PCR significantly increases
with all the three network metrics (correlation coefficients of 0.97, 0.95, 0.91), confirming that
user-perceived quality is indeed sensitive to network performance. Interesting, PCR is sensitive
to the entire spectrum of network metrics. This suggests that any improvement in RTT, loss or
jitter is likely to improve PCR.

Dataset: The dataset from Skype consists of a sampled set of 430 million audio calls drawn
from a seven month period. The sampled set includes both calls that use the default path (e.g.,
BGP-derived) between the caller and the callee as well as calls that are relayed through managed
relay nodes distributed across datacenters in different locations. Note that today such relaying

1Besides PCR, prior work also has provided analytical models to translate the network metrics into a measure of
audio call quality, called the Mean Opinion Score (MOS) (e.g., [80]). Our study also showed that MOS is similarly
correlated with these network metrics [125].

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800

C
D

F

RTT (ms)

(a) RTT

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10

C
D

F

Loss rate (%)

(b) Loss

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25

C
D

F

Jitter (ms)

(c) Jitter

Figure 2.3: Distributions of observed network performance metrics of Skype calls – RTT, loss
rate, jitter. Vertical grey lines show the thresholds for poor network performance.

is typically employed for connectivity (e.g., firewall or NAT traversal); i.e., the only instances
of relaying in our passively collected dataset correspond to the caller and callee being unable
to establish a direct connection. Despite this bias, the dataset offers a panoramic view across
diverse end-points from 1,905 ASes across 126 countries.

VoIP QoE distribution: Figure 2.3 shows the distribution of network performance experienced
by calls using default routes (BGP-based routes). The results show that a significant fraction of
calls (over 15%) occur on paths with RTT over 320ms, or loss over 1.2%, or jitter more than
12ms, which we pick as our thresholds for poor performance. These thresholds are in line with
literature from industry and standards bodies that recommend one-way end-to-end delay of no
more than 150 ms and a packet loss rate of no more than 1% for good call quality [7, 19]. Note
that these thresholds are on the average values over the call’s duration during which there may
be transient spikes (e.g., loss burst) in bad performance.

2.2 Today’s Application Distribution Infrastructures
Next, we provide the necessary background on Internet video and telephony, focusing on the
salient aspects of today’s protocols and distribution infrastructures.2 Specifically, we want to
answer two questions: (1) what are the tunable “knobs” in these applications (Section 2.2.3
and 2.2.2)? and (2) how much is the rooms for improving QoE by optimally tuning these “knobs”
(Section 2.2.3)?

2.2.1 Internet Video

Early Internet video technologies (e.g., Apple QuickTime [23], Adobe Flash RTMP [25]) were
based on connection-oriented video transport protocols, which maintain a session abstraction

2This section is not meant for a detailed documentation of their end-to-end delivery systems–readers may refer
to related work for a comprehensive overview of these applications’ infrastructures; e.g., [183] for Internet videos
and [57] for Internet telephony.

12

Internet

CDN1

…

…

CDN2

CDN3

… 0.8Mbps
2.4Mbps
5.2Mbps

…

…

(a) Internet video

Managed'Overlay

Internet

(b) Internet telephony

Figure 2.4: Today’s architecture of Internet video and Internet telephony. Components relevant
to this dissertation are highlighted; other details are omitted for clarity. The figures depict the
configurations (“control knobs”) that can be adaptively tune on a per-session/-call base in order
to improve QoE.

between the client and the server, and use (proprietary) stateful control protocols to manage the
data delivery. The new generation of Internet video technologies such as Microsoft Smooth-
Streaming [2], Apple’s HLS [171], and Adobe’s HDS [16], however, are HTTP-based adaptive
streaming protocols.

In these HTTP-based protocols, each video is typically encoded at multiple bitrates, and is
broken into 1-10 seconds chunks stored in multiple CDNs as individual files. When a client
streams a video, the player uses the HTTP protocol to fetch the chunks sequentially as individ-
ual web files from the server. Figure 2.4a gives a (simplified) depiction of the architecture of
how HTTP-based adaptive streaming protocols work in practice. The video chunks are stored in
web servers hosted by content delivery networks (CDNs). The video player first receives from
the content provider a manifest file (not shown) which enumerates a list of CDNs from which
the content can be fetched, as well as a list of available bitrates in which the content has been
pre-encoded. Then the player fetches video chunks sequentially, and can switch between bitrates
and CDNs at the boundary of any two chunks. Since each chunk is fetched with an indepen-
dent HTTP GET, there is almost no cost to switch the CDN and bitrate. (Note that the fetches
may reuse the same persistent connection if they are from the same CDN.) A video is typically
encoded in 3-8 bitrates, and is available from 2-4 CDNs.

Compared with connection-oriented protocols, HTTP-based adaptive streaming protocols en-
joy several advantages [121]. (1) The reliance on HTTP provides more ubiquitous reach and
support as this traffic can seamlessly traverse enterprise and home NATs and firewalls [167].
(2) The video servers are web servers and caches widely available from commercial CDNs with
significantly lower cost than streaming content from dedicated servers that support the early-
generation connection-oriented video protocols. (3) Finally, the use of HTTP as the underlying
transport protocols allows video streaming to benefit from many techniques proposed recently to
enhance web performance and security (e.g., [214]). These practical and performance benefits

13

have been a key driver for rapid growth of HTTP-based adaptive streaming protocols.

2.2.2 Internet Telephony
Like Internet video, Internet telephony (or audio-video conferencing services) has evolved for
more than a decade. The early architecture of Internet telephony relied on peer-to-peer (P2P)
overlay systems. This key technology, called UDP hole punching, uses well-connected peer-to-
peer users with public IP addresses as supernodes to enable connections between clients who did
not have public IP addresses or were behind firewall. This technology led to the early success
and a dramatic growth of VoIP services.

Over the past decade, VoIP services such as Skype and Google Hangouts, have been evolving
from the traditional P2P-based overlay towards using managed overlays which leverage well-
connected and well-provisioned cloud servers. A case in point is Skype, which started off with a
peer-to-peer approach to NAT and firewall traversal [133]. In the recent years, Skype has adopted
managed overlay [221], with some supernodes hosted in the cloud [1]. It has been reported that
Google Hangouts uses relays in the cloud for all calls, and moreover also has streams traverse the
cloud backbone from one relay to another [221]. Figure 2.4b depicts a (simplified) architecture
of how Internet telephony work over an managed overlay network. Each call can take either
the default path through the public Internet or a relayed path that routes the traffic through one
or more relay nodes in the data centers. Relayed paths could include a single relay to “bounce
off” traffic or a pair of relays to enable traffic to “transit through” the private backbone of the
managed overlay network.

While both generations of Internet telephony technologies are based on the same technol-
ogy of UDP hole punching for NAT and firewall traversal, the managed overlay approach enjoys
several practical benefits. (1) Global-scale managed overlays use the cloud infrastructure which
already exists and need not be built up from scratch, while P2P overlays involved building up
overlay networks from scratch, which limited their scale. (2) Supernodes in managed overlays
are cloud servers that have high available bandwidth and low latency to edge clients, while in P2P
overlays, supernodes were regular clients, and they sometimes became performance bottlenecks
due to their limited last-mile bandwidth or computational capacity. (3) In managed overlays,
communications between supernodes are through well-provisioned private backbone networks,
while in P2P overlays, all communications must compete bandwidth resources of public net-
works with other traffic.

2.2.3 Room for Improving QoE
While Internet video and Internet telephony services have been evolving towards protocols that
have less tunable knobs (e.g., the HTTP-based streaming protocol cannot change bitrate arbitrar-
ily as in traditional protocols, and managed overlays provide less overlay choices than P2P-based
ones) for practical considerations, these protocols still offer enough flexibility and recent research
has shown a substantial room for improving QoE by optimally selecting the best configuration
for each application session.
• Internet video: Prior research has shown that video QoE can be significantly improved by

better CDN and bitrate configuration for each video session. For instance, Figure 2.5 shows

14

1 2 3 4 5 6

6

5

4

3

2

1

0

Av
g.
,b
uf
fe
rin

g,r
at
io
,(%

)

Top,cities

(a) Spatial diversity

16
14
12
10
8
6
4
2
0

Av
g.
+b
uf
fe
rin

g+r
at
io
+(%

)

Hour
0 10 20 30 40 50 60 70

(b) Temporal dynamics

Figure 2.5: Spatial diversity and temporal dynamics of CDN performance [147]. The figures
suggest the opportunity of cross-CDN optimization: video buffering ratio can be significantly
reduced by dynamically picking the best CDN for each location and at any point of time.

that there is significant spatial diversity and temporal dynamics of CDN performance [147].
Note that most video players today start with a statically configured CDN or a random
CDN. This suggests a great opportunity of cross-CDN optimization, e.g., video buffering
ratio can be significantly reduced by dynamically picking the best CDN for each location
and at any point of time.

• Internet telephony: Similarly, it has also been shown that the number of Skype calls whose
QoE is negatively affected by network performance can be reduced by over 50% by ju-
diciously selecting supernodes to form a relay path for each Skype call [125]. (We will
elaborate on this in Section 8.2.)

These measurement results suggest that application QoE is sensitive to these configurations,
and by customizing for each application session with the optimal parameters, we can substan-
tially improve QoE over default or static configurations which are commonly found in today’s
implementations.

2.3 Prior Work on Quality Optimization

The evolution of the Internet has been driven largely by the need for better quality of a variety
of applications. Around early 2000s, many application providers of video streaming, VoIP, and
web services started discovering monetization strategies, allowing them to scale with reduced
costs. Since this inflection point, Internet applications have been growing and proliferating at an
unprecedented pace. Not surprisingly, given the importance of Internet applications, understand-
ing and improving their quality have a long history of intense research. This section introduces
a taxonomy of these prior efforts that emphasizes on on their inherent trade-offs.

Before introducing the taxonomy, I would like to clarify that we use the term “Internet qual-
ity” to include both quality of service (QoS) and quality of experience (QoE). While QoS is
different to QoE, it is closely relevant to this dissertation for two reasons. First, QoS has a strong
(albeit non-linear) correlation with QoE. For instance, video buffering highly depends on packet

15

In#network EndpointLo
w
er
/le
ve
ls

Ap
pl
ica

tio
n

More%direct%QoE feedback
Easier%to%deploy

More%insight% to%
network%conditions

Where%in%the%network?

W
hi
ch
%le
ve
l%i
n%
th
e%
pr
ot
oc
ol
%s
ta
ck
?

Figure 2.6: Prior approaches can be categorized by their placement of the functionality of quality
optimization along two dimensions. These design choices must make fundamental trade-offs
between more visibility to QoE and more visibility to network conditions.

loss, and VoIP call experience is very sensitive to network latency. Second, though ultimately
we care about QoE, much influential work has focused on providing QoS in the IP and transport
layers. Readers may refer to, for example [76], for more discussions on the relationship between
QoS and QoE.

Taxonomy: The prior approaches to quality optimization can be categorized based on their
answers to a key architectural question: where should the functionality of quality optimization be
implemented? There are two dimensions in the answers to the questions:
• Where in the network? There are two natural options: endpoint-based solutions which

rely only on endpoints (e.g., clients, servers, caches), and in-network solutions which re-
quire assists from in-network devices (e.g., switches, routers). To avoid any ambiguity,
solutions that involve both endpoints and in-network devices (e.g., router-assist congestion
control) fall into in-network solutions under such dichotomy, because they share similar
advantages and disadvantages with other in-network solutions. Note that although early
in-network solutions only operate in or below the IP layer, this has since changed as in-
network devices move up in the protocol stack to provide richer services (e.g., router-assist
video streaming [58]).

• Which level in the protocol stack? Because our ultimate objective is to improve application-
level QoE, it is natural that the solution should have access to the applications themselves,
i.e., at the application level. That said, the layering nature of the protocol stack means that
any improvement in the lower-level protocols (e.g., TCP, routing, wireless adaptation) may
benefit the application-level quality.

Design trade-offs: The choices regarding these two dimensions involve a key architectural
trade-off, illustrated in Figure 2.6.
• More visibility to user-perceived QoE: On one hand, optimizing quality at endpoints and

the application layer has the advantage of more direct and accurate information on user-

16

perceived QoE, which usually is available only to client-side applications. This allows their
optimization logic to be driven directly by the QoE as feedback. Implementing optimiza-
tion functionality in endpoints at the application layer also carries the practical advantage
of more flexibility since their software is upgraded more frequently than in-network de-
vices or lower layer protocols.

• More visibility to network conditions: On the other hand, while in-network solutions in
the lower layers have to rely on indirect metrics to infer QoE from encrypted application-
level communications [41, 52, 108], they enjoy the architectural advantage that they have
more accurate and finer-grained information on the network conditions (e.g., per-packet
congestion loss). Applications running in user-space sandboxes (e.g., browsers) are often
oblivious to changes in these low-level network conditions.

Next, we use the taxonomy to put prior work in perspective.

2.3.1 In-Network Solutions
The in-network approach has long been a focus of intense research. In-network solutions can
provide better services at multiple layers on the protocol stack.
IP-layer support for QoS: The two most prominent proposals of QoS services are the Inte-
grated Services (IntServ) and Differentiated Services (DiffServ). IntServ [64] uses the resource
reservation protocol (RSVP) [229] to provide the QoS by reserving resources explicitly at all
routers along an end-to-end path, and hence all routers must keep states related to services, lead-
ing to prohibitive scalability and complexity issues. In contrast, the DiffServ [62] aggregates
flows into pre-configured classes based on packet header fields, and hence is more scalable.
However, since DiffServ treats packets in the same class identically, it is difficult to provide
QoS with strong semantics to individual flows. Another widely used technique is the Multipro-
tocol Label Switching (MPLS) [176], which reduces the routing complexity and table lookups
by packet labeling techniques. Other in-network schemes also seek to provide richer services
by adding more functionality to IP layer, such as Multicast [93]. With rapid growth of Internet
traffic and applications, these early solutions have become increasingly unfit to cope with the
need for QoS with stronger semantics and more scalable implementation over an increasingly
ossified infrastructure. These trends have inspired many new in-network solutions over the past
decade, including novel QoS service architecture (e.g., Core-Stateless Fair Queueing [195]) and
clean-slate solutions (e.g., Active Networks [205], Network OS [105], and Content-Centric Net-
works [117]). While these efforts have enduring impact on the ensuing research, they impose
significant deployment cost to revamp the existing ISP infrastructure. As a result, the Internet
today still only provides best-effort service to most applications.
Router-assist congestion control: While congestion control is an end-to-end functionality,
many proposals have shown that congestion control may benefit from explicit router assis-
tance, such as providing explicit or implicit feedback on network congestions (e.g., ECN [96],
XCP [129], RCP [202], VCP [219]), and Active Queue management (AQM) schemes (e.g.,
RED [97], AVQ [136], and CoDel [158]). In XCP and RCP, each router along an end-to-end
path marks special bits on the packet header to help the senders determine the end-to-end avail-
able bandwidth. AQM schemes in contrast aims to prevent persistent queue buildup in routers,

17

by marking packets with ECN or dropping them before the queue is full, such as in [97]. Sim-
ilar to IP-layer support for QoS, these methods also add significantly complexity to in-network
devices and thus induce significant deployment cost. Moreover, most proposals require making
changes on all ISPs along the end-to-end paths, creating more barriers to deployment. A no-
table exception is in data centers, where router-assist congestion control mechanisms are widely
used, because network devices, and end hosts are under the same administrative domain, and are
upgraded on a regular basis.

SDN-based approach: SDN is a new network architecture to greatly simplify network man-
agement [94] by separating the data plane from the control plane that determines the routing
states [152], thus making the data plane “programmable”. The SDN-based solutions have many
open-source offerings (e.g., [59, 95]), and offer a viable path to the deployment of new routing
protocols, as routing table may be updated in near real-time without interrupting any ongoing
traffic [131], allowing routing to programmable on a per-flow basis. Moreover, recent research
on high-speed SDN-enabled routers has suggested that such programmability can be realized on
a per-packet level to implement AQM schemes in a scalable manner [187, 188]. The logically
centralized nature of SDN also offers an opportunity that individual ISPs can coordinate with
other ISPs (e.g., [181]) to provide end-to-end optimization and even application QoE optimiza-
tion (e.g., [58]). In today’s federated Internet architecture, optimizing end-to-end quality requires
multiple ISPs to coordinate, but even if each ISP is willing to adopt SDN paradigm for reducing
management costs, it remains unclear whether they have the incentives to coordinate to optimize
end-to-end application quality.

2.3.2 Endpoint Solutions

In contrast, the endpoint-based approach relies on endpoints to adapt to changes in network
conditions and resource availability.

Overlay routing: Overlay networking has been proposed as an alternative to adding function-
ality to the network core. It has been applied in a variety of contexts, such as virtual private
networks (VPNs) and multicast [55, 79, 164]. Of interest to us here is work focused on over-
lay routing with a view to improving routing QoS and robustness [47, 180]. This work showed
that network performance such as delay, packet loss, and reliability, could be improved by us-
ing an overlay path that traverses well-chosen waypoints. Despite this promise, overlay routing
for performance gains has not seen much adoption in practice, for several reasons including the
last-mile performance bottlenecks when client nodes are used as as peers, and the policy issues
involved in turning stub networks (e.g., university campus networks) into de facto transit net-
works. Perhaps most importantly, these early systems operate on a relatively small scale (e.g.,
RON [47] had tens of machines), and hence they still lack enough information to maintain an
up-to-date view of the dynamic network conditions. It is also unclear whether these systems can
scale up to support today’s applications running on millions of clients.

Congestion control: Over the past decades, TCP congestion control has received intense re-
search in the literature; from the early efforts towards a general-purpose scheme (e.g., [65, 116,
192]) to later work on specializing congestion control in different operational environments (e.g.,
data center [45], high bandwidth-delay product networks [107], and satellite connections [67])

18

and to the latest efforts towards a unifying scheme by using machine-generated code [217] and
modeling networks as a blackbox [89]. Current congestion control schemes suffer from a key
limitation that they only react based on the locally observed information; e.g., without assistance
of routers, they will only react after congestion has caused packet loss or latency inflation. A
notably exception is congestion manager [54, 193], which aggregates information of multiple
TCP connections to predict network performance for a new connection, but these schemes in-
volve changing the kernel or setting up management server, and thus did not see wide adoption.
Moreover, state-of-the-art congestion control schemes may mismatch with the goal of applica-
tions [103], and even cause bad interaction with control loops in the application layer [114, 121],
indicating that application-layer adaptation might be in a better position to meet the need of
applications.

Application-level adaptation: To cope with the dynamic network conditions, most applica-
tions run custom client-side adaptation logics in the application layer, rather than relying on
transport-level or in-network solutions for two reasons: (1) clients is in the best position to detect
and respond to QoE problems; and (2) recent work suggests the need for cross-CDN optimiza-
tions [147] and flexible web object scheduling [66], which implies the need for keeping minimal
state in the network or servers. In video streaming, most commercial products today perform pro-
prietary client-side bitrate adaptation (e.g., [2, 3, 22, 171]) over HTTP-based adaptive streaming
protocol [190]. Many studies have identified problems in existing client-adaptation algorithms
(e.g., [42, 84]), bad interactions with TCP control loops (e.g., [103, 114]), and techniques to im-
prove bitrate adaptation (e.g., [43, 121, 143]). Other efforts have demonstrated inefficiencies in
existing CDN and server selection strategies [37, 145, 147, 209]. In Internet telephony, there has
been work to improve client-side rate adaptation through multi-path wireless [130], network per-
formance profiling [85, 218], and better supernode selection [57, 133]). A shared feature of these
schemes is that the adaptation is driven by local information observed by a single application ses-
sion. A notably exception is SPAND [193], which proposed to improve endpoint adaptation by
sharing passive measurement from multiple endpoints at the application layer. This dissertation
is in part inspired by SPAND and revisits its ideas in the light of the advances in large-scale data
analytics and pervasive client-side instrumentations in today’s Internet applications.

Network performance prediction: The key issue of endpoint adaptation is that it can only
rely on limited, locally observed information to react to changes in network conditions. To
overcome this limitation, many studies have attempted to predicting network performance, such
as latency and available bandwidth, by exploiting stability and stationarity of network per-
formance (e.g., [113]), constancy of various network metrics [53, 230], and longitudinal pat-
terns of cellular performance (e.g., [159]). Researchers have explored three approaches to net-
work performance prediction: (1) to use packet-level probes to estimate end-to-end performance
(e.g., [112, 119, 169, 196]), (2) to build an “Internet performance map” based on active probes
from a selective set of “vantage points” (e.g., [83, 148, 173, 193]), and (3) to leverage the history
of the same client-server pair (e.g., [111, 120, 154, 201, 211]). While this work has shown sub-
stantial benefit of accurate performance predictions, it has not seen wide adoption for practical
reasons: the packet-level probing requires per-packet information which is invisible to applica-
tions, the Internet-map approach needs a dedicated monitoring infrastructure, and the history-
based approach requires enough history be accumulated before performance prediction is fea-

19

sible, but many application sessions, such as web, consist of a few short-lived flows sent from
different servers.

2.3.3 Other Related Work

Finally, we discuss other directions closely related to this dissertation.

QoE metrics: A key aspect in video and VoIP delivery is the need to optimize user-perceived
QoE. While there is evidence that video viewers are sensitive to frequent bitrate switches (e.g., [82]),
sudden changes in bitrate (e.g., [155]), and buffering (e.g., [88]), it is somewhat surprisingly
challenging to design a good QoE metric (e.g., [191]), and this is still an active area of research.
While recent work also suggests ISPs are inferring user experience from network-layer measure-
ments and QoS metrics (e.g., [41, 52, 108, 149, 184]), we argue that application providers are
in a better position than these infrastructure providers to measure and adapt to QoE. The goal of
this dissertation is not to offer new QoE models, but to improve the metrics that are known to
have high impact on user experience.

Video measurements: There are many recent measurement studies on understanding video con-
tent popularity and access patterns (e.g., [70][166]), flash crowds during highly popular events
(e.g., [223]), and their implications for CDN and caching designs. While these efforts help mo-
tive the techniques proposed in this dissertation, our goal again is to understand the structure of
quality problems and further develop solutions to actually improve QoE.

While both in-network solutions and endpoint solutions have to compromise on either visibil-
ity to QoE or visibility to network conditions, the solutions proposed in this dissertation strikes
a better balance by taking advantage of the access of millions of endpoints with a data-driven
approach.

2.4 Prior Work on Data-Driven Optimization in Networking

Another direction closely related to this dissertation is the application of the data-driven paradigm
to improving networked systems. We introduce a taxonomy of how networked systems can
benefit from the data-driven paradigm. We also use a concrete case study to show how data-
driven ideas can be applied to improve TCP congestion control in different ways.

While most systems already use data-driven techniques (e.g., TCP congestion control schemes
react against congestion signals such as packet loss and round-trip time), we argue that they could
be substantially improved by borrowing systematic frameworks from data science literature and
further exploring more data-driven opportunities by leveraging more available data. In particu-
lar, we observe two aspects of network systems along which the data-driven paradigm can help:
better setting of parameters within the existing adaptation logic, and better run-time decision
making logic to replace the existing one.

Since the way in which networking problems benefit from data-driven techniques bears much
resemblance to other systems areas, this section will focus on networking problem, but also draw
related work from a broad set of systems areas.

20

2.4.1 Type I: Better Settings of Parameters

The conventional wisdom has been that in most of network protocols, the adaptation should
use hand-picked parameters, (e.g., TCP parameters such as initial congestion window size and
AIMD parameters). Recent research, however, has shown that performance can be improved
by automatically tweaking these parameters to achieve better performance in different operat-
ing conditions (e.g., better parameters of TCP congestion control [92, 217], AQM logic [144,
185]), configurations of routing algorithms (e.g., [186], and workload modeling in wireless net-
works [46]). Recent research has also shown similar data-driven opportunities in other areas
including CPU cache replacement policy [118], database consistency management [203], and
rational database system management [210]. While these efforts are in entirely different areas,
they have largely exploited the same inefficacy in traditional control logic that the parameters are
statically configured based on assumptions that are ill-matched with the dynamic workload in
runtime. Such problem can be fixed by dynamically training these parameters with recent mea-
surements (e.g., [118]) or synthetically simulated data (e.g., [217]). The problem of learning the
best configurations for a complex system is conceptually similar to the hyper-parameter selection
problem in machine learning [61].
Case study: Tunning congestion control parameters: We use TCP congestion control as a case
study to show how a protocol can be improved by tuning the key parameters. Prior work on
Remy [217] showed that a machine-designed TCP that uses offline simulation driven by prior
knowledge of the network context (e.g., topology, degree of multiplexing) can learn the best
values of some key constants and achieve significant performance improvement over today’s
manually picked values; e.g., a simulated 15 Mbps fixed-rate link with eight senders contending
and an RTT of 150 ms, Remy-generated control logic achieves 40+% throughput speed up and
20+% delay reduction over many specially engineered TCP variants.

2.4.2 Type II: Better Run-Time Decisions

While finding better parameters of the existing control logics can improve performance, it is ar-
guably incomplete, since it still uses handcrafted control logics based on analytical model that
models the relationship between the feedback signals (e.g., RTT) with internal states of the un-
derlying system (e.g., router queue occupancy). While this approach served us well for decades,
it is fundamentally inefficient to characterize today’s application delivery systems, which have
grown too complex to model analytically. Rather than merely tuning the parameters for the exist-
ing control logic, recent research has made a case for a more direct approach in which the logic
models the network as a blackbox and use measurement data to drive the decision making. In
other word, rather than inferring the underlying network states and finding best decisions analyt-
ically, it builds a model that directly associate quality feedback with decisions (configurations).
Research has shown that this more direct data-driven approach can improve the performance of
routing [181], TCP throughput [89], server selection in web performance [146], as well as bitrate
adaptation in video streaming [150]. Besides networking problems, this approach also found its
application in improving resource scheduling in cloud services [44]. The techniques commonly
used in these solutions are largely based on exploration-exploitation strategies (multi-armed tech-
niques [215]), or Bayesian optimization [163]), in which feedback of network performance is

21

used to explore the decision spaces. Compared to the first type, the main advantage of the second
type is that it could converge to a better decision faster by making minimal assumption about
the underlying systems. A primary drawback, however, is that it has less interpretability as the
underlying system is modeled as a blackbox.
Case study: Blackbox-based congestion control: Again, we use TCP congestion control as a case
study to show how a protocol can be transformed to a simpler logic driven completely by mea-
surement data, while making less assumptions on the underlying network system. PCC [89]
attempts to simplified TCP congestion control algorithm by using locally observed performance
to directly drive the setting of congestion window size. Specifically, it continuously maintains a
model between observed performance (e.g., throughput and latency) and cwnd. This approach
greatly simplifies TCP congestion control, while at the same time, significantly improves TCP
performance; e.g., 10× higher throughput of TCP CUBIC on global commercial Internet.

2.5 Summary
In the first part of this chapter, we have used empirical studies to show that QoE problems are
pervasive in Internet video and Internet telephony. Then we have introduced related background
on today’s Internet video and Internet telephony services.

In the second part of this chapter, we have introduced a taxonomy to highlight the inherent
trade-offs in prior work to improve Internet application quality. In-network solutions have more
direct and accurate visibility to network conditions, while endpoint solutions can measure metrics
more directly related to user-perceived QoE, and are usually more deployable. As we will see,
our solution strikes a better balance between the visibility to user-perceived QoE and the visibility
to network conditions through taking a more data-driven approach to endpoint solutions.

In the last section, we have discussed two approaches to using the data-driven paradigm to
improve network systems: improving setting of parameters, and improving real-time decision-
making logic. While our solution follows the second type, it unleashes more data-driven benefit
by taking advantage of more data of real-time measurements collected from millions of end-
points.

22

Chapter 3

Overview

The main contribution of this dissertation is a suite of solutions to make data-driven QoE op-
timization practical – one can substantially improve QoE by maintaining a global view of up-
to-date network conditions based on the QoE information collected from many endpoints. Our
solutions achieve this through novel algorithm designs and system implementation that integrate
machine learning techniques with domain-specific insights.

This chapter is organized as follows. We begin with an overview of the envisioned archi-
tecture of data-driven QoE optimization, called Data-Driven Networking or DDN (Section 3.1).
Then we discuss the algorithmic and architectural challenges of DDN in Section 3.2, motivate
the unifying insights behind our solutions in Section 3.3, and finally describe the key ideas of
our solutions in Section 3.4.

3.1 Formalizing DDN

We begin with a conceptual overview of the Data-Driven Networking (DDN) paradigm (Sec-
tion 3.1.1), and then put the DDN approach in perspective of prior work (Section 3.1.2). We
end with some illustrative examples of how different applications can benefit from DDN (Sec-
tion 3.1.3).

3.1.1 Conceptual Architecture

DDN is a new paradigm for designing the adaptation logic of end-to-end protocols (such as adap-
tive video streaming protocols). Unlike prior endpoint approaches, DDN-based control loop is
driven by real-time multi-session (not single-session) view of in-situ quality [100] measurement
(not active measurements or indirect metrics), and automatically tuned actuation algorithms
based on data-driven insights (with little to no manual tuning).

A DDN-enabled protocol has two additional components: (a) the client-side instrumentation
code which runs inside client-side application to measure client-perceived quality of each session
and applies decisions made by DDN; and (b) the DDN controller which runs two loosely coupled
steps:

23

DDN#Controller

Data
Real-time#QoE of#clients

Actionable,insight

Real1time,control

1

2

Figure 3.1: Overview of the DDN controller

1. Aggregate quality measurement from client-side instrumentation into a global view of up-
to-date network conditions and some actionable insights.

2. Make control decisions based on the actionable insights, and send them to client-side in-
strumentation for execution.

DDN is aligned with several favorable technology trends, and can be readily deployed in
the existing distribution infrastructures of Internet applications. (1) Many application providers
today have widely deployed client-side instrumentations that can collect real-time in-situ QoE
data en masse from clients (e.g., [5, 88, 125, 135]). (2) Logically centralized control platforms
are commonly deployed by many application providers (e.g., content providers [101], web ser-
vices [146]) and CDN providers (e.g., [74, 156]). (3) The emergence of large-scale data analytics
platforms and cloud infrastructure provides the ability to extract insights efficiently from large
corpses of data (e.g., [28]) and streams of updates (e.g., [227]).

3.1.2 Contrast to Prior Work

The design choices of DDN bear distinctive features compared to both prior work on quality
optimization and other applications of data-driven techniques in networking.

Compared to prior work on quality optimization: We use the taxonomy described in Sec-
tion 2.3 to contrast the DDN approach to QoE optimization with prior work. Remember that
there are two classes of prior solutions: in-network solutions that change in-network devices,
and endpoint solutions that rely on endpoint adaptations.

• Unlike prior endpoint solutions which use only single-endpoint information, decision mak-
ing in DDN is driven by QoE information of multiple endpoints. By expanding the spa-
tial scope of input information from the QoE of one single endpoint to that of multiple
endpoints, DDN addressing the endpoint approach’s lacking of visibility to network con-
ditions, while retaining its ethos that the decision is driven by user-perceived QoE at the
application level. DDN is in spirit similar to seminal work from a decade agao (e.g.,
SPAND [193]), and our contribution lies in providing end-to-end solutions that combine

24

the recent advances in large-scale data analytics and domain-specific insights to make DDN
practical for today’s applications.

• Unlike in-network solutions which rely on indirect signals on quality (e.g., acks or band-
width), or active probes from a handful of vantage points (e.g., iPlane [148]), DDN relies
on in-situ QoE measurement to drive the adaptation; that is, what to be sensed matches
what to be optimized. While in-situ quality data may compromise on the fidelity of individ-
ual measurement, they are far more efficient than alternatives in obtaining a panoramic and
representative view of client-perceived quality from the growingly diverse platforms [100].
Relying solely on in-situ quality data also serves pragmatic purposes as many application
providers today already have a vested interest in measuring user-perceived quality for var-
ious reasons [26].

Compared to prior work on data-driven optimization in networking: In the taxonomy of
Section 2.4, DDN belongs to the type (Section 2.4.2) in which decisions are driven by directly
modeling their impact on the metric of interest (i.e., QoE). The key distinction of DDN is that
the decisions are driven by real-time data from many different application sessions, rather than
a single session as in prior work. This difference has two profound implications. (1) The input
data of DDN is much larger both in scale and scope, allowing DDN to learn a more accurately
model of the network conditions and make more informed decisions. (2) The input data of
DDN is collected from concurrent and history sessions that have different session-level features
(client-side, network-level, and server-side), so the DDN decision logic must take into account
the potentially complex relationship between these session-level features and QoE.

3.1.3 Illustrative Examples of DDN Benefits
Several early applications of DDN from prior work have shown tremendous promise of this new
paradigm.
CDN/bitrate selection for video: The first example shows how a global view of video quality
can optimize CDN and bitrate selection for individual video sessions. Video players today have
the flexibility of streaming content from one of multiple CDNs and bitrates. However, with only
information on a single session, the current protocols always start with a default CDN and fixed
(and conservative) bitrate, and gradually converge to a better bitrate and CDN by local trial-and-
error strategies. Given both performance of CDNs and client-side bandwidth have a substantial
spatial diversity and temporal variability [147], there is a remarkable room for improvement
by dynamically mapping a session to the optimal CDN and bitrate with no trial-and-errors. To
exploit this opportunity, one can imagine a DDN controller that maps a video session to the CDN
and bitrate that has the best quality on similar sessions (e.g., those in the same AS and watching
the same video content).
Relay selection for Internet telephony: The second example shows how VoIP quality can be
improved by a DDN controller that selects relay servers judiciously. VoIP applications (e.g.,
Hangout and Skype) use relay servers for NAT traversal, where the selection of relay servers
has traditionally been agnostic to real-time network conditions. But recent work has shown
a substantial room for improvement on call quality by selecting optimal relay servers for each
call [109]. To exploit this opportunity, one can imagine a DDN controller that select near-optimal

25

relay servers for individual Skype calls by identifying which relay has the best quality for similar
calls (e.g., those between the same source and destination ASes on the same date).

Online service cluster selection: The third example shows how the quality of online services
(e.g., search engines) can be improved by a centralized control platform, which selects optimal
proxies by consolidating quality data of multiple applications and profiles of the infrastructure.
Recent work [146] takes the stance of a company who has the visibility and controllability over
multiple applications as well as key infrastructure building blocks. By measuring end-to-end
quality from clients and dynamically modeling the workload of network paths and servers, it
can select proxies that reduce mean latency by 60% and carry 2× more traffic, compared with a
baseline that finds proxies by Anycast.

File sharing: Finally, file sharing applications (e.g., Dropbox) have the flexibility to allow each
client to fetch files [90] from a chosen server or data center. By using data-driven approaches
to predict the throughput between a client and a server [193, 199, 230], we could potentially
improve the QoE for these applications.

3.2 Challenges of DDN

Despite its promise, DDN has fundamental challenges that have to be addressed before we can
unleash its full potential. The next three sections present our roadmap (depicted in Figure 3.2)
towards making DDN practical. We start with describing the high-level algorithmic and archi-
tectural challenges, and their manifestations we have seen in different applications.

3.2.1 Need for Expressive Models

The algorithmic objective of DDN is to build a model that maps each session in the session-level
feature space to the optimal decision in the decision space. At a high level, the challenges to build
such a model stem from the complex relationships between session-level features, decisions, and
QoE. To address the challenge, we need an expressive model to express this complex relationship
using the available measurement data. We have seen two manifestations of the challenge of an
expressive model.

• High-dimensional relationship between session-level features and QoE: The first illustra-
tion is the need to handle the complex relationship, both spatially and temporally, between
video QoE and session-level features (Chapter 5). This complex relationship has made it
challenging to build an accurate video QoE prediction system, which could help to signif-
icantly improve video QoE. In particular, we observe a combinational effect where video
QoE is affect by a specific combination of feature values, but does not appear to be cor-
related with any individual feature. We also observe that QoE of different sessions may
be affected with different feature combinations. In addition to these spatial patterns, these
QoE-determining factors (as well as QoE itself) may change over time on timescales of
several minutes. Therefore, an accurate QoE prediction model must be expressive enough
to capture all these spatial and temporal complexities.

26

Challenge(#1((�3.2.1)
Expressive)prediction)models

Challenge(#2((�3.2.2)
Scalable)control)platforms

Near)real6time)
predictive)control

Geo6distributed)analytics)
with)a)fresh)global)view

Large)decision)
spaces

Complex)QoE6
determining)factors

Idea%#1 (�3.4.1, Ch.)5,)6)
Critical)feature)analysis

Idea%#2 (�3.4.2,)Ch.)7)
Group6based)control

Idea%#3 (�3.4.3,)Ch.)8)
Guided)exploration

Key(insight((�3.3)
Persistent)Critical)Structures

Figure 3.2: The technical roadmap of this dissertation towards making DDN practical. We
present three ideas to address the four manifestations of the high-level challenges of expressive
prediction models and scalable control platforms. The key enabling insight behinds our ideas is
the persistent critical structures of QoE-determining factors.

• Large decision spaces: The second illustration is the need to handle large decision spaces,
especially in Internet telephony, where one needs to find a good relay path for each VoIP
call in a set of hundreds of relay points. In addition, the performance of these relay paths
could change on timescales of minutes. Simply using geo-distance to reduce the decision
spaces is suboptimal because low geo-distance to end users do not necessarily mean low
latency and low packet loss rate which have weak if any correlation with the geo-distance.
Moreover, the best choice of relays depends on locations of both caller and callee. All
these suggest a need to reduce the size of the mapping between the client space and the
decision space.

3.2.2 Need for Scalable Platforms

The system design of DDN should meet the following requirements: the DDN controller has to
make control decisions in near real time based on fresh data from many other geo-distributed
clients, and serve the decisions to clients within low response time. The key architectural chal-
lenge is how to strike a balance between three seemingly conflicting objectives: (1) data fresh-
ness, (2) responsiveness to geo-distributed clients, and (3) global view. We have seen two mani-
festations of the challenge of a scalable platform.

• Global view vs. data freshness: A practical issue of running the DDN controller in the
existing control platforms of application providers is that it is not clear how to maintain a
fresh, global view of measurement data from all sessions. These control platforms typi-
cally consist of multiple geo-distributed frontend clusters and a centralized backend cluster.
Each session uploads its quality measurement to a nearby frontend, which then updates the
backend every tens of minutes to hours. While this design makes much sense for real-time

27

per-session quality monitoring and offline analytics, none of which requires fresh, global
data of all sessions, it is ill-suited to run the DDN control logic in either the geo-distributed
frontends (without global view) or the centralized backend (without fresh data).

• Near real-time predictive analytics: Even if we can gather real-time data to the same data
center, it is still very challenging to run real-time analytics to predict the optimal decision
in near real time, e.g., on a timescale of tens of seconds. As mentioned in Section 3.2.1,
we need a large amount of data to update a high-dimensional model between session-level
feature space and video QoE in near real-time (on timescales of tens of seconds). Our eval-
uation based on standard large-scale analytics platforms show that given the sheer volume
of measurement data, it would take tens of minutes, a magnitude longer than needed, to
update the model.

3.3 Key Insight: Persistent Critical Structures of QoE-Determining
Factors

Our solutions to address these challenges integrate standard ML algorithms and systems with a
key domain specific insight that Internet applications have persistent critical structures that help
identify network sessions with similar QoE-determining factors, and that such structure tends
to be persistent on timescales of at least tens of minutes. We now give the formal definition of
persistent critical structures and how they intuitively help address DDN’s challenges.
Formal definition: Let us first formally describe DDN as follows. In essence, DDN is as
a decision-making function F : 2S× 2D× S×R 7→ D, which takes as input a set of historical
sessions S ∈ 2S whose QoE is already measured, a set of available decisions D ∈ 2D, a new
session s ∈ S, and s’s timestamp t ∈ R, and outputs a decision d ∈ D for session s. Now, a
structure is formally defined as a function P : 2S×2D×S×R 7→ 2S×2D, which takes as input a
set of historical sessions S ∈ 2S, a set of decisions D∈ 2D, and a session s∈ S, and the timestamp
t ∈ R, and outputs a pair of subset of history sessions S′ ⊂ S and a subset of decisions D′ ⊂ D.
Key properties: Persistent critical structures are a type of structures that have two following
properties:
• Criticality: These structures identify (often small) subsets of history sessions and decisions

which are more critical than others history sessions or decisions in determining QoE; i.e.,
F(S,D,s, t) = F(S′,D′,s, t), where (S′,D′) = P(S,D,s, t). This essentially means the DDN
control logic can make the same decisions by only looking at the subset of relevant history
sessions and decisions.

• Persistence: These structures tend to persist on timescales of tens of minutes. This means
in a time window ∆ of tens of minutes, the function P is likely to find the same relevant
history sessions and decisions, i.e., P(S,D,s, t) = P(S,D,s, t +∆).

Illustrative examples: These persistent critical structures of QoE-determining factors can man-
ifest themselves in many forms. For instance, if the QoE of a video session depends on the server
load (i.e., some decision-specific properties) and client-side ASN (i.e., some session-level fea-
tures), and such dependency lasts for tens of minutes, then it would be possible to identify the

28

best decision for the session by looking at history sessions having in the same AS (instead of all
history sessions), and only consider server with low load (instead of all possible decisions).
Intuitively explanation of persistent critical structures: The intuitive explanation of these
persistent critical structures is that in networked systems and application delivery systems, per-
formance bottlenecks are often persistent, and the persistent critical structures can be viewed as
“manifestations” of these bottlenecks in the space of session-level features and decision-specific
properties–a session’s QoE only depend on history sessions and decisions experiencing the same
bottleneck. Such persistent bottlenecks can be found in many prior studies in the context video
streaming [126], web service [146], end-to-end network performance [230]. They can also be
viewed as a generalization of the persistent network congestions, which can be mathematically
explained using queueing theory (Chapter 6 of [132]). In Chapter 4, we will show evidence of
these persistent structures through an empirical structural analysis on QoE problems based on
real datasets.

3.3.1 How Intuitively Persistent Critical Structures Address the Challenges?
Next, we intuitively illustrate how the persistent critical structures help to address challenges of
DDN (Figure 3.3). In the next four sections, we will see more concrete ideas that are based on the
insight of persistent critical structures, and how they address challenges in the context of Internet
video and Internet telephony.
Reducing session-level feature spaces: One implication of the criticality of these domain-
specific structures is that the complex relationship between session-level features and QoE (an
manifestation of the challenge of expressive models in Section 3.2.1) can be expressed by low
dimensional models that can be maintained with limited available data. To see this idea in action,
let us consider the example of Figure 3.3a, in which we want to make the decision for a new
session (the orange circle) based on the QoE measured by the history sessions (the white circles).
It is suboptimal to look at only the sessions that match values on all features (e.g., IP prefix,
location, device, content, network path, etc) with the new session, because we will end up with
too few matches, and therefore the decisions will not be reliable. Nor is it scalable to use all
history sessions as the input to make the decision in real time. The advantage of persistent
critical structures is that each session’s QoE only depends on by a few critical features (rather
than all features). Therefore, we can find sufficient amount of similar sessions by matching along
the most relevant features. At a high level, this idea resembles the ML techniques that leverage
the “locality” in data to tackle curse of dimensionality [61].
Reducing large decision spaces: Another implication of the structures’ criticality property is
that the large decision spaces (another manifestation of the challenge of expressive models in
Section 3.2.1) can be reduced to a subset of most promising decisions which can be explore
efficiently by concurrent application sessions who share the same characteristics. Figure 3.3b
illustrates an example of this idea, where instead of exploring all decisions, it would be more
efficient to focus on a subset of decisions that are most likely to be optimal.
Decomposing the decision-making process: In the context of network applications, the persis-
tent critical structures often correlate with network locality (e.g., clients in the same IP prefix).
This observation allows us to strike a balance between global view and data freshness (Sec-

29

Sessions Decisions

(a) Reducing session-level feature
spaces.

Sessions Decisions

(b) Reducing large decision spaces.

Sessions

Frontend

Backend

(c) Decomposing the decision-making
process.

Figure 3.3: Illustrations of how persistent critical structures help to address challenges of DDN.
(Each application session (depicted as a circle) on the left is mapped to one of the available
decisions (depicted as boxes) on the right.)

tion 3.2.2) with an implementation that is amenable to the infrastructure of geo-distribution fron-
tend clusters. At a high level, the idea (illustrated in Figure 3.3c) is to decompose all sessions
into groups of similar sessions who share the persistent critical structure as well as the network
locality. Since the sessions in the same group share network locality, their QoE measurement will
be sent to the same nearby frontend cluster. To make decisions for the sessions in a group, we
can use a logic that runs in the same frontend cluster where their fresh data is collected, and that
uses only the information of these similar sessions to make decisions. In this way, the decisions
are effectively equivalent to using a fresh global view, because they are made with fresh data of
the most relevant sessions.

Learning the persistent critical structures from data: While the criticality of the persistent
critical structures serves as the key to making DDN practical, it is unclear how to obtain these
structures in the first place. The key to learning these structures lies in their persistence. Since
these structures tend to persist on long timescales, we can learn these structures from massive
data in time windows of long timescales and use an offline process that is separate from real-
time decision making. Figure 3.3c illustrates the idea: we can run an algorithm to discover the
persistent critical structures in the backend cluster where the measurement data of all sessions
are collected. And although the data received by the backend cluster is slightly stale, it is still
sufficient to learn the slow-changing persistent critical structures.

3.4 Making DDN Practical by Persistent Critical Structures

The insight of persistent critical structures enables three key ideas (Figure 3.2) to address DDN’s
challenges in the context of Internet video streaming and Internet telephony.

30

3.4.1 Critical Features Analysis

Prior work has shown that video QoE can be improved by a prediction system that accurately
predicts the QoE of a video session, if it uses a certain CDN and bitrate. The challenge is that
this prediction system must be (a) expressive enough to capture complex relations between video
quality and observed session features, and (b) capable of updating quality predictions in near real
time. We have tried several off-the-shelf machine learning techniques, such as random forests
and SVM, but found they did not produce expected QoE improvements, because the long-term
historical data is too coarse-grained for these algorithms to capture the dynamics of video quality,
while the short-term historical data is not sufficient for the algorithms to learn complex relations
between video quality and observed session features.

Our solution leverages an instantiation of persistent critical structures in video streaming,
called persistent critical features: each video session has a small set of critical features that
ultimately determines its video quality, and these critical features change much more slowly than
video quality. Let us consider a concrete example of such persistent critical features from [126].
In a real-world incident, video sessions of Comcast users in Baltimore who watched videos from
Level3 CDN experienced high failure rate (VSF) for several hours. The reason turned out to
be the overloaded local cluster serving Comcast users in that area, which can be characterized
by three critical features: CDN (“Level3”), ASN (“Comcast”) and City (“Baltimore”), and the
correlation between the combination of these feature values and high VSF persist for the whole
duration of this incident, even though the QoE has fluctuated a lot during this period.

The insight of persistent critical features has inspired a prediction model that captures com-
plex QoE-determining factors and is amenable to scalable implementation. Given a video session
under prediction, the model identifies many similar sessions from a short-term history by match-
ing only on its critical features, thus capturing complex QoE determining factors while avoiding
curse of dimensionality. The persistence of these critical features also naturally enables decou-
pled implementation: we can learn these critical features from long-term historical data and
update the models by short-term historical data in near real time to capturing quality fluctuation.

3.4.2 Group-Based Control

While the predictive decision-making algorithm described above shows promising QoE improve-
ment, it faces has two fundamental limitations. (a) Casting the data-driven QoE optimization as
a prediction problem suffers from the many known biases such as incomplete visibility. (b) The
prediction algorithm is not a geo-distributed one, so it requires a fresh and global view be main-
tained in one cluster. Having a fresh and global view physically in the same cluster is, however,
impractical because in many control platforms, measurement data are first collected in several
geo-distributed frontend clusters each having a partial view of nearby clients, and then period-
ically archived in a backend cluster to form a global though slightly staled view. A baseline
approach is to run control logic in a single backend cluster with global data from frontend clus-
ters, but this approach leads to non-trivial staleness of the global data and suboptimal decisions.

To overcome these limitations, we re-cast the data-driven QoE optimization as a real-time
exploration and exploitation process, and build a practical system to run it among all clients at
scale. Our key insight is inspired by the criticality of persistent critical structures – the clients that

31

exhibit similar QoE behavior will have similar network-level features (e.g., same IP prefix), and
thus their fresh data will likely be collected by the same frontend cluster. We see manifestations
of this insight in many settings. For instance, video sessions with similar QoE from the same
CDN/server tend to match on client IP prefix [126, 199]. Similarly, VoIP calls between the same
ASes are likely to share the best relays [125], and clients from same /24 IP prefix will have
similar web load time from the same edge proxy [146].

This insight inspires the notion of group-based control, which enables the real-time global
exploration-exploitation process by decomposing the process into subprocesses, each controlling
a group of clients with similar context by network locality and other key session-level features
and running in the frontend cluster that has these clients’ fresh data. Since sessions within a
group share network locality (e.g., in the same locations and IP prefixes), they are likely to be
mapped to the same frontend cluster. By running the per-group exploration-exploitation logic in
this frontend cluster, we can update decisions with fresh data from other sessions i n the group
received by this frontend cluster.

3.4.3 Guided Exploration

To make data-driven QoE optimization practical in Internet telephony, we have to address an
additional challenge that it has a large decision space of relay choices, so there are usually not
enough VoIP calls to reliably estimate the dynamic network performance between each AS pair.

The key insight to address this challenge is another illustration of persistent critical structures
– the stability of promising relay choices: for each pair of caller AS and callee AS, there is a
small and stable subset of relays that almost always contains the best relay. This insight has
two implications: (1) because this subset of relays is stable, it can be learned from history; and
(2) because this subset has only a few relays (less than five), it can be explored efficiently even
with limited data. Inspired by this insight, we develop a relay selection system that achieved
close-to-optimal quality using the concept of guided exploration. The idea is to learn a small set
of promising relays for each AS pair based on long-term (e.g., daily) historical data, and explore
these relays using most calls in real time.

3.5 Summary

In this section, we first discussed the advantages of DDN over prior approaches. As an application-
level endpoint approach, DDN enjoys the advantage of direct access to user-perceived QoE, and
at the same time, compensates the limited insight to network conditions by consolidating real-
time measurement from many endpoints, thus achieving the best world of both endpoint solutions
and in-network solutions.

We have also presented an overview of our solutions to address DDN’s technical challenges–
the need for expressive models and scalable systems. Our key insight is that there are persistent
critical structures in the relationship between session-level features, decisions, and QoE. This
insight has led to three concrete ideas, which we will present in the next chapters: (1) critical
feature analysis to enable an expressive QoE prediction model, (2) group-based control to enable

32

real-time exploration-exploitation process at scale, and (3) guided exploration to handle the large
decision spaces, particularly in Internet telephony.

33

34

Chapter 4

Structural Analysis of QoE Problems

We have seen that DDN is a promising alternative to overcoming the fundamental limitations
in prior work of QoE optimization, and the key insight to make DDN practical is the persistent
critical structures in the QoE-determining factors. In this chapter, we present empirical evidence
of these persistent critical structures by using a large-scale structural analysis on the video and
VoIP QoE. In particular, we shed light on the temporal persistence and spatial criticality of these
structures of QoE-determining factors in the wild.
• Spatial patterns: Are the QoE problems uniformly spread through the space of feature

combinations or are there specific combinations that have a higher concentration?
• Temporal patterns: Is each QoE problem a transient for a specific ISP, CDN, or provider

(or combination of these) or are these problems persistent over long periods?
We also show that there are substantial correlations among the QoE problems of different metrics,
suggesting that it is possible to improve multiple QoE metrics simultaneously.

This chapter is organized as follows. Section 4.1 presents the structural analysis on video
QoE, Section 4.2 presents a similar analysis on VoIP QoE, and Section 4.3 summarizes the
chapter with key observations.

4.1 Internet Video
In this section, we begin by describing our dataset and the methodology of analyzing spatial
and temporal patterns of video QoE problems (Section 4.1.1), then present our results in Sec-
tion 4.1.3, 4.1.2, and 4.1.4, and finally summarizes the observations in Section 4.1.5.

4.1.1 Methodology

Dataset: We use the same dataset as described in Section 2.1.1. The dataset consists of
client-side measurements of video quality from over 300 million sessions of 379 distinct content
providers spanning diverse genres, both live and video-on-demand content, different content de-
livery platforms, different types of bitrate adaptation algorithms, and device/browser platforms.

Session-level features: The basic unit in our dataset is a video session. A session represents

35

a user viewing a video on one of our affiliates’ sites for some duration of time. Each session is
associated with a set of seven features:
1. ASN: The Autonomous System Number (ASN) that the client IP belongs to. Note that a

single ISP (e.g., Comcast) may own different ASNs both for management and business rea-
sons. We focus on the ASN as it is more fine-grained than the ISP granularity. We observe
in aggregate 15K unique ASNs spanning multiple countries.

2. CDN: In total, we observe 19 unique CDNs spanning popular CDN providers as well as
several in-house and ISP-run CDNs. (Some providers use proprietary CDN switching logic;
in this case we pick the segment of the session with the CDN used for the longest duration.)

3. Content provider (Site): This is the specific provider from which the client requested some
content. We have 379 content providers that span different genres of content. We use the
terms site and content provide interchangeably.

4. VoD or Live: Video content falls in one of two categories: video-on-demand (VoD) or Live.
We use a binary indicator to see if the particular content was a Live event or a VoD video.

5. Player type: We see diverse players such as Flash, Silverlight, and HTML5.
6. Browser: We see diverse client browsers including Chrome, Firefox, MSIE, and Safari.
7. Connection type: Finally, we have the type of access network connection such as mo-

bile/fixed wireless, DSL, fiber-to-home. These annotations come from third party services [24].

Identifying problem sessions: Our focus is on understanding quality problems as they appear
in the wild. To this end, we identify problem sessions w.r.t. each of the quality metrics. Note that
a given session may appear as a problem session on a subset of metrics; i.e., it might have a low
join time but may have a high buffering ratio or vice versa. We consider the metrics separately
to avoid implicitly assuming that the metrics or failures are correlated.

• For join failures, we use a binary indicator if the session failed or not. For the remaining
metrics, we choose specific thresholds based on domain-specific knowledge and observations
in prior work1. Our specific thresholds and rationale are follows.
• For buffering ratio, we identify a problem session if the value is greater than 5%; this is

based on the observation that beyond this value there is a sharp decrease in amount of video
viewed [88].
• For bitrate, we mark a problem session if the average bitrate is less than 700kbps; this value

roughly corresponds to the recommended “360p” setting on video providers. We use a fixed
threshold of bitrate in this work for simplicity, but we do acknowledge that bitrate settings
are content-dependent (e.g., some contents do not provide high resolution streams).
• Third, we mark all sessions with a join time greater than 10 seconds; this represents a con-

servative upper bound on the tolerance of users [63, 135].

Identifying problem clusters: We begin by dividing our dataset into discrete one hour epochs.2

1 We do acknowledge that there is no ideal choice of threshold and it is likely that these thresholds will evolve as
user expectations and network conditions improve. As such, the choice of thresholds is illustrative of the structure
of video quality problems that occur today. The methodology and qualitative observations we present are not tied
to the specific thresholds. We have confirmed that the results are qualitatively similar for other choices of these
thresholds as well.

2One hour is the finest granularity of the dataset and thus we cannot analyze effects at smaller timescales.

36

ASN1,&CDN1&
ProbRa/o&&=&0.3&

ASN1,&CDN2&
ProbRa/o&&=&0.1&

ASN2,&CDN1&
ProbRa/o&&=&0.3&

ASN1&
ProbRa/o&&=&0.2&

CDN1&
ProbRa/o&&=&0.5&

ASN2&
ProbRa/o&&=&0.1&

CDN2&
ProbRa/o&&=&0.05&

Root&
ProbRa/o&&=&0.1&

Figure 4.1: Representing the relationship between clusters using a DAG. Red boxes represent
the problem clusters.

As a first step to analyze the structure, we cluster3 together sessions that share one or more
client/session features within the same epoch. For instance, the cluster “ASN=ASN1” describes
all sessions where the user belongs to ASN1 and the cluster “ASN=ASN1, CDN=CDN1”, de-
scribes all sessions where the user belongs to ASN1 and the session was assigned to a server
from CDN1. In order for our observations to be reliable, we want to focus on clusters that are
deemed to be statistically significant sources of problem sessions. To this end, we define the
problem ratio of a cluster as the ratio # of problem sessions

of sessions . Then, we cull out the clusters whose
problem ratio is significantly higher than the global average problem ratio. We also remove all
clusters that have a small number of sessions in aggregate; i.e., problems observed within a small
cluster may not be statistically significant. Combining these two steps, we define a problem
cluster as a cluster that has a problem ratio ≥ 1.5× the global problem ratio,4 and the number of
sessions in this cluster is ≥ 1000. In the rest of this paper, we start from the problem clusters as
our basis and subsequently refine the analysis.

While the grouping of problem sessions into problem clusters provides some insights into the
structure of problems, there is still one key missing aspect. Specifically, we may have different
granularities of problem clusters that may be intrinsically related to the same underlying root
cause. Thus, our next step is to refine these problem clusters to identify such potential causal
structures across the problem sessions.

The set of all clusters can be viewed as a hierarchical structure across the space of client/session
features with natural parent-child relationships. We can visualize these parent-child relationships
as a DAG as shown in Figure 4.1. A cluster C1 is a parent of cluster C2, if the set of features
defining the cluster C1 is a strict subset of that of C2. For instance, the cluster “ASN1” is a parent
of the more specific clusters “ASN1, CDN1” and “ ASN1, CDN2”.

3The term “cluster” represents a group of sessions that share common features, and it is indeed different from
traditional clustering algorithms where a cluster can be a group of any data points.

4This value roughly represents two standard deviations away from the mean of the per-cluster problem ratio
distribution.

37

Root$

CDN1$ ASN1$

CDN1,ASN1$

CDN1,ASN1,Site1$ CDN1,ASN1,Wireless$

CDN1,ASN1,Site1,wireless$

Not$problem$cluster$
once$removing$
(CDN1,ASN1)$

Problem$cluster$

Cri>cal$cluster$of$
leaf$(CDN1,$ASN1,$
Site1,$wireless)$

Figure 4.2: An illustration of the phase transition idea for identifying a critical cluster.

Identifying critical clusters: Our goal is to identify a small number of critical clusters that
can potentially explain the occurrences of different problem clusters. In our example in Fig-
ure 4.1, intuitively we should pick the “CDN1” cluster rather than pick “ASN1, CDN1” and
“ASN2, CDN2” clusters separately. Given that we do not have ground truth, critical clusters can
serve as starting points for further investigation. An intuitive criterion for identifying a critical
cluster is analogous to the notion of the minimum description length (or Occam’s razor) from
the machine learning literature. Conceptually, we should pick the most compact description to
explain an observation. Building on the above intuition, we can identify a critical cluster as con-
sisting of the minimal set of features that when combined together can lead to significantly high
problem ratio in its cluster (e.g., a problem cluster) and removing even one feature from this set
will reduce the problem ratio. To this end, we identify critical clusters using a phase transition
algorithm as follows. For each session, we construct all logical paths in the DAG from the root
to the leaf. Then, for each of these paths, we identify the point closest to the root along this
path such that every cluster that is a descendant is a problem cluster and once removing it every
cluster that is an ancestor is not a problem cluster. We use Figure 4.2 to explain the intuition. In
this figure, “CDN1, ASN1” is the critical cluster—every cluster that is a child of this combina-
tion is a problem cluster and if we remove the sessions in this combination, the parents “CDN1”
and “ASN1” cease to be problem clusters. That is, this combination of features represents a key
“transition point” in this hierarchy between problem clusters and non-problem clusters.

4.1.2 Temporal Patterns

We begin by analyzing the temporal prevalence and persistence of the problem clusters.

Prevalence of problem cluster: We define the prevalence of a problem cluster as the fraction of
the total number of epochs in which this cluster appears as a problem cluster. Figure 4.3a shows

38

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0.001 0.01 0.1 1

F
ra

c
ti
o
n
 o

f
p
ro

b
le

m
 c

lu
s
te

rs

Prevalence (Fraction of time)

Buffering ratio
Bitrate

Join time
Join failure

(a) Distribution of the prevalence of problem clusters

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 10 100

F
ra

c
ti
o
n
 o

f
p
ro

b
le

m
 c

lu
s
te

rs

Persistence (hours)

Buffering ratio
Bitrate

Join time
Join failure

(b) Inverse CDF of the median persistence of problem
clusters

Figure 4.3: Distributions of the prevalence and persistence of problem clusters. We find a natural
skewed distribution with a few clusters having high prevalence. Many problem clusters last
multiple hours and that a non-trivial number of problem clusters last for tens of hours.

the distribution of the prevalence of the problem clusters for the different quality metrics. We see
a consistent pattern across all quality metrics that around 10% of the clusters have a prevalence
greater than 8% across all metrics. In other words, many of these problem clusters are repeated
observations that are recurrent problem events.
Prevalence of problem cluster: We define the persistence of a problem cluster in terms of
the length of the consecutive occurrences of this cluster as a problem cluster. To this end, we
coalesce consecutive occurrences of the cluster into a single logical event that lasts for multiple
hours. For each problem cluster, we consider the distribution of the length of these “streaks” and
report the median value. Figure 4.3b shows the distribution of the median persistence. For three
of the metrics, more than 60% of the problem clusters have a median duration that last more than
2 hours.

4.1.3 Spatial Patterns
The previous results showed that there are a non-trivial number of persistent/prevalent problem
clusters that last for several hours. As we discussed earlier, multiple problem clusters may be
implicitly related by a single root cause as we saw in Figure 4.1. To this end, we focus next on the
critical clusters using the algorithm described in Section 4.1.1. Recall that every critical clusters
is also a problem cluster; i.e., it has a sufficiently high problem ratio and it has a significant
number of sessions. The motivation to focus on a few critical cluster rather than all problem
clusters is the observation (as shown shortly) that a small fraction of problem clusters cover most
of the problem sessions.
Critical cluster analysis: Figure 4.4 shows the number of problem clusters relative to the
number of critical clusters in the case of the Join Time metric. We see that number of critical
clusters is almost 50× lower than the number of problem clusters suggesting that there are indeed

39

 10

 100

 1000

 10000

 100000

3/11 0AM

3/12 0AM

3/13 0AM

3/14 0AM

3/15 0AM

3/16 0AM

3/17 0AM
#

 o
f

c
lu

s
te

rs
 (

lo
g

)

Time (hr)

Problem clusters
Critical clusters

Figure 4.4: The number of critical clusters is significantly smaller than the number of problem
clusters. The timeseries shown here is for the join time; we see similar results for the other
quality metrics too.

Metric Mean prob-
lem clusters

Mean criti-
cal clusters

Mean problem
cluster coverage

Mean critical
cluster coverage

BufRatio 10433 286 (2%) 0.8 0.66 (82%)
JoinTime 9953 247 (2%) 0.86 0.83 (96%)

JoinFailure 9620 302 (3%) 0.87 0.84 (96%)
Bitrate 9437 287 (3%) 0.57 0.44 (77%)

Table 4.1: Reduction via focusing only on critical clusters and the effective coverage of the
critical clusters.

a small number of events that might have “caused” most problems. One natural question is
whether the critical clusters cover most of the problem sessions. Table 4.1 summarizes the mean
coverage and reduction of the critical clusters for the four quality metrics and in all cases, we
see that the number of critical clusters is only 2-3% of the number of problem clusters (i.e., 50×
fewer), but they manage to cover 44–84% of the problem sessions. As a point of reference,
we also show the coverage of the problem clusters; i.e., not all sessions are part of a problem
cluster as they may be part of small clusters or clusters with very small problem ratio. We see
that the critical clusters cover almost all problem sessions that are part of some problem cluster;
i.e., many of the coverage gaps are really due to problem sessions that belong to a statistically
insignificant cluster (i.e., either with too few sessions or with too few problem sessions).

Next, we analyze the structure of the critical clusters for the different quality metrics. First,
we analyze the types of client/session feature combinations that appear frequently in the critical
clusters. Then, we analyze if the different metrics are correlated in the critical clusters. Finally,
we highlight some interesting observations and some hypothesis to explain the most prevalent
critical clusters.

Understanding most prevalent critical clusters: In order to illustrate the causes for the prob-
lem, we consider the critical clusters with a prevalence higher than 60% for the different quality
metrics. For clarity of presentation, we only consider the critical clusters whose features fall in
one of the following categories: ASN, CDN, Site, and ConnectionType as our previous break-
down shows these as the most dominant features. We present this analysis with two disclaimers.
First, due to the sensitive nature of this data, we do not present the names of the actual providers,

40

ASN CDN Site ConnType
BufRatio Asian ISPs In-house, single

bitrate
Single bitrate Mobile wireless

JoinTime Chinese ISPs access-
ing CDNs in China,
but player loads mod-
ules from US CDN

In-house
CDNs of UGC
providers

High bitrates

JoinFailure Same set as
buffering ratio

Same single global
CDN, maybe low
priority providers

Bitrate Wireless provider UGC Sites

Table 4.2: Analysis of the most prevalent critical clusters. A empty cell implies that we found no
interesting cluster in this combination.

but focus on their characteristics. Second, this involves a fair amount of manual analysis and
domain knowledge. As such, we intend this result to be illustrative (and somewhat speculative)
rather than attempt to be conclusive. This said, we still believe that the high-level insights are
still useful to inform future video delivery architectures.

Table 4.2 presents some of the anecdotal examples we observed. The empty cells simply
indicate that there were no critical clusters in this category with a prevalence higher than 60%.
We see a few interesting patterns here. In terms of buffering ratio, we see that the top ASNs are
typically in Asia, and the content providers that had issues typically only had a single bitrate of
content. The CDNs with buffering/join time problems are also typically “in-house” CDNs run
by the Site itself; i.e., not a third-party CDN like Akamai or Limelight. We also see that wireless
connections and wireless ISPs appear in the buffering and bitrate cells respectively, which is
somewhat expected.

One interesting artifact we uncovered in the case of join time was that these were mostly
ASNs in China accessing content from Chinese CDNs but there were third-party player modules
loaded from US providers that led to higher join times. Another curious observation is that all
the Sites with significant join failures tended to use the same global CDN. However, the CDN
in aggregate does not have a significant presence in terms of failures, except in the case of these
Sites.5 We speculate that these, presumably low-end, providers may have lower priority service
and could have potentially benefited from using multiple CDNs.

4.1.4 Cross-Metric Correlations

Next, we would like to know how much the critical clusters of different quality metrics correlate
with each other. In other words, a different set of CDNs or Sites may be responsible for problems
across buffering ratio and join time. To analyze this, we compute the Jaccard similarity index
between the top-100 in terms of the total number of problem sessions covered critical clusters

5These Sites used a single CDN; recall that our critical cluster algorithm will prefer more compact descriptions
and thus features these problems to the Site rather than the single Site-CDN combination.

41

BufRatio vs.
Bitrate

BufRatio vs.
JoinTime

BufRatio vs.
JoinFailure

Bitrate vs.
JoinTime

Bitrate vs.
JoinFailure

JoinTime vs.
JoinFailure

0.07 0.23 0.13 0.08 0.01 0.09

Table 4.3: Average Jaccard similarity index between the top 100 critical clusters for the differ-
ent metrics. We see that most metrics are relatively uncorrelated, possibly because the critical
features are very different.

for the different metrics. (The Jaccard similarity measure for two sets A and B is |A∩B|
|A∪B| .) We find

that the overlap between the different metrics is only around 23% in the best case (buffering ratio
and join time) and in the worst case is only around 1% (between bitrate and join failure). We
manually analyzed the specific clusters and we found that the actual set of Site, CDN, and ASN
critical clusters are indeed very different.

4.1.5 Key Observations

Our key observations from the analysis of problem clusters and critical clusters are:

• There is a distinct skewed distribution in the prevalence; around 8-12% of the problem clus-
ters appear more than 10% of the time.
• There is also a skewed distribution in the persistence; more than 60% of problem clusters

have a median duration greater than 2 hours.
• We find that a small number of critical clusters (2-3% of the number of problem clusters) can

account for 44-84% of all problem sessions.
• While the set of feature combinations in the critical clusters that cover the most number of

problem sessions is very similar across the quality metrics (i.e., Site, CDN, ASN), the actual
values of these features is very different (with a max overlap of 23%).
• We see a few expected patterns such as Asian and wireless ISPs appearing as most prevalent

critical clusters. We see some unexpected patterns that can be easily alleviated (e.g., the
player modules loaded remotely for Chinese users) and Sites that could benefit from standard
strategies such as using more fine-grained bitrates or using multiple CDNs.

4.2 Internet Telephony

We have seen in Section 2.1.2 that user experience is sensitive to poor network performance and
that a significant fraction of calls suffer from poor performance when using default routing.

In this section, we use production data from a large VoIP service provide Skype (same dataset
described in Section 2.1.2) to understand the QoE problems in Internet telephony based on a sim-
ilar spatial and temporal analysis used in the last section. We begin by describing the dataset,
QoE metrics, and the methodology of analyzing spatial and temporal patterns of VoIP QoE prob-
lems (Section 4.2.1), and present our results in Section 4.2.2, 4.2.3, and 4.2.4.

42

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

RTT Loss Jitter At least 1

bad metric

P
o
o
r

N
e
tw

o
rk

 R
a
te

International

Domestic

(a) International vs. domestic

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 40 80 120 160 200

P
o
o
r

N
e
tw

o
rk

 R
a
te

o
fi
n
te

rn
a
ti
o
n
a
l
c
a
lls

Source countries ranked by
Poor Network Rate of international calls

At least 1 bad
RTT
Loss
Jitter

(b) Countries of one side of a call

Figure 4.5: International vs. Domestic Calls.

4.2.1 Methodology

Identifying bad QoE: First, we define bad VoIP QoE by a similar threshold-based method as we
defined problem sessions in video. We define the poor network rate (PNR) of a network metric
for a set of calls as the fraction of calls whose performance on the metric is worse than the chosen
thresholds: RTT ≥ 320ms, loss rate ≥ 1.2%, jitter ≥ 12ms. Recall from Figure 2.3 that these
thresholds correspond to the user-specified poor call rate (PCR) of 0.3. These values are in line
with literature from industry and standards bodies that recommend one-way end-to-end delay of
no more than 150 ms and a packet loss rate of no more than 1% for good call quality [7, 19].

Clustering calls: Similarly to video streaming, we would like to understand whether the calls
with bad network performance concentrate spatially (e.g., are they mostly International calls?)
and persist over time. To this end, we group calls in the dataset based on different spatial features
(e.g., geo-locations and IP prefixes of the caller and callee) as well as time-stamp (the date in
which the call was made).

4.2.2 Spatial Patterns

International vs. domestic calls: On all three network metrics, we see that international calls
(between users in different countries) have a higher PNR, i.e., they are more likely to suffer
from bad network performance than domestic calls. Figure 4.5 shows a 2− 3× higher PNR
on international calls than on domestic calls. The figures also show the fraction of calls with
at least one metric being poor (the last pair of bars), where the gap between international and
domestic calls is even larger. Though conclusively diagnosing the root cause of bad performance
on international calls is hard and beyond the scope of this work, the higher PNR for international
calls points to the WAN path as the culprit.6

To understand this further, Figure 4.5b zooms into the international calls and classifies them

6One aspect is that users tend to use VoIP regardless of its performance for international calls, unlike domestic
calls.

43

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

RTT Loss Jitter At least 1

bad metric

P
o
o
r

N
e
tw

o
rk

 R
a
te

Interdomain

Intradomain

(a) Inter-domain vs. intra-domain

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 500 1000 1500 2000

P
o
o
r

N
e
tw

o
rk

 R
a
te

o
fi
n
te

rd
o
m

a
in

 c
a
lls

Source ASes ranked by
Poor Network Rate of interdomain calls

RTT
Loss
Jitter

At least 1 bad

(b) Source AS

Figure 4.6: Inter-domain vs. intra-domain calls.

 0

 5

 10

 15

 20

RTT Loss Jitter At least
1 bad metric

%
 o

f
P

o
o

r
N

e
tw

o
rk

 C
a

lls
fr

o
m

 t
h

e
 w

o
rs

t
k
 A

S
 p

a
ir
s

The worst 10 AS pairs
The worst 100 AS pairs

The worst 1000 AS pairs

Figure 4.7: The percentage of calls over poor network conditions that come from the worst n AS
pairs; AS-pairs are ranked in descending order of their contribution to total amount of calls with
poor performance.

by the country of the callers (source). We see that there is a skewed distribution, with cer-
tain countries having a PNR as high as on the individual metrics. The PNR of international
calls across the remaining countries drops gradually but half of them still see a non-negligible
PNR of 25%− 50%. This suggests that poor network performance is quite widespread, high-
lighting the suitability of a globally deployed overlay network that provides high performance
inter-connection between overlay nodes.

Inter-AS vs. intra-AS calls: Similar to international calls, calls across ASes are 2−3× more
likely to experience poor network performance than those within the same AS domain. This,
again, points to the need for enabling alternatives to default routing to improve WAN perfor-
mance.

Not just a few problematic source-destination pairs: Contrary to our expectation, a few
source-destination pairs alone do not account for a big chunk of the PNR. Figure 4.7 shows the
fraction of calls that suffer from poor network performance from the worst AS pairs, ranked in

44

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 5 10 15 20

C
D

F

Persistence (day)

RTT
Loss
Jitter

(a) Persistence

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Prevalence (Fraction of time)

RTT
Loss
Jitter

(b) Prevalence

Figure 4.8: Temporal patterns of poor network performance. Figure 4.8a and 4.8b show the
distribution of the persistence and prevalence of AS pairs having high PNR.

order of their contribution to the overall PNR. Even the worst 1000 AS pairs together only count
for less than 15% of the overall PNR. This means that localized solutions that fix a few bad ASes
or AS pairs, e.g., informing the AS administrators or the clients directly regarding their ISPs, are
not sufficient.

While the above analysis was at the granularity of ASes, we also tested at other, finer granu-
larities (e.g., /24 and /20 prefixes of the caller and callee IP addresses) and found similar results
(of not just a few culprits). In fact, for the pairs with sufficient data density at the /24 granular-
ity, we found that performance distributions of the network metrics were similar to those at the
granularity of ASes.

4.2.3 Temporal Patterns

We now analyze temporal patterns of poor network performance. We perform this analysis by
grouping the performance of AS pairs into 24-hour time windows.7 We conservatively label an
AS pair as having high PNR for a specific metric (on a given day) if its PNR on that day is at
least 50% higher than the overall PNR of all calls on that day.

Figure 4.8a and 4.8b show the distribution of persistence and prevalence of high PNR AS-
pairs. The persistence of an AS pair is the median number of consecutive days when it has
high PNR. The prevalence of an AS pair is the fraction of time it has high PNR. The figures
show a highly skewed distribution with 10%− 20% AS pairs always having high PNR, while
60%−70% AS pairs have poor performance for less than 30% of time and lasting no longer than
one day at a stretch. This observation suggests that instead of statically configuring the system
to improve performance for only the (relatively few) most prevalent and persistent AS pairs, we
need to dynamically decide if a call should use default Internet routing or be relayed.

7Different grouping granularities yielded similar observations.

45

 0

 2

 4

 6

 8

 10

 0 150 300 450

L
o

s
s
 (

%
)

RTT (ms)

(a) RTT vs. loss rate

 0

 5

 10

 15

 20

 25

 30

 35

 0 150 300 450

J
it
te

r
(m

s
)

RTT (ms)

(b) RTT vs. jitter

 0

 2

 4

 6

 8

 10

 12

 14

 0 5 10 15 20

L
o

s
s
 (

%
)

Jitter (ms)

(c) Jitter vs. loss rate

Figure 4.9: Pair-wise correlation between performance metrics. The Y-axis shows the distribu-
tion (10th, 50th, 90th percentiles) of one metric as a function the other metric over the same set of
calls.

4.2.4 Cross-Metric Correlations

As there could be dependencies between network metrics, improving one metric may increase
PNR of another metric. Figure 4.9 shows the three pair-wise correlations. While the plot is based
on an aggregation of data across all calls and paths, the substantial spread suggests at least the
possibility that improving one performance metric could lead to a worsening of the other metrics.
Therefore, we also focus on reducing PNR of three metrics collectively, i.e., minimizing how
often at least one of the metrics is poor.

4.3 Summary
In this chapter, we have used empirical studies based on real large-scale datasets of video and
VoIP QoE to shed light on the structures of QoE problems in the wild. Our findings suggest that
there are persistent critical structures in the factors that determine video and VoIP QoE. Our key
observations can be summarized as follows:

• QoE depends on critical spatial structures. Most quality problems can be attributed to a
relatively small number of feature value combinations. We observe that in both Internet
video and Internet telephony, bad quality can be attributed to smaller number of session-
level features. For instance, we see that critical clusters of bad video quality only account
for 2-3% of all problem clusters. Note that VoIP quality problems are relatively more spa-
tially spread out than video quality problems, because VoIP quality depends on both sides
of a call, while the video quality more often is determined by the client-side performance.

• Many quality problems tend to persist on timescales of tens of minutes to hours. We ob-
serve that a substantial fraction of problems last for multiple hours (even days). For in-
stance, 60% of the problem clusters have a median duration that last more than 2 hours.
At the same time, we note that both video and VoIP quality problems have highly skewed
distributions in the prevalence and persistence, where some problems are still transit.

46

• Quality problems of different metrics are correlated. Finally, we observed that the quality
problems of different metrics are likely to be correlated, suggesting that, instead of having
to trading one metric for another, it is possible to improve multiple metrics simultaneously.

47

48

Chapter 5

Predictive QoE Optimization By Critical
Feature Analysis

In this chapter, we present the first illustration of how DDN paradigm improves video QoE by
formulating DDN as a prediction problem. Prior studies have shown that video quality can be
substantially improved by optimally selecting the best CDN and bitrate for each video session,
and the key to realize this potential is to build an video quality prediction system that can accu-
rately predict the quality of a video session, if it were to use any combination of CDN and bitrate.
However, building such a prediction system is challenging on two fronts. First, the relationships
between video quality and observed session features can be quite complex. Second, video quality
changes dynamically. Thus, we need a prediction model that is (a) expressive enough to capture
these complex relationships, and (b) capable of updating quality predictions in near real-time.
Unfortunately, several seemingly natural solutions (e.g., simple machine learning approaches
and simple network models) fail on one or more fronts.

To address these challenges, we present Critical Feature Analytics (CFA), which is inspired
by the persistent critical structures of the QoE-determining factors. In particular, video quality is
typically determined by a small subset of critical features whose criticality persists over several
tens of minutes. This enables a scalable and accurate workflow where we automatically learn
critical features for different sessions on coarse-grained timescales, while updating quality pre-
dictions in near real-time. Using a combination of real-world pilot deployment and trace-driven
analysis, we demonstrate that CFA leads to significant improvements in video quality; e.g., 32%
less buffering time and 12% higher bitrate than a random decision maker.

This chapter is organized as follows. Section 5.1 provides some background on the promise of
video QoE prediction, and identifies key challenges in building an accurate video QoE prediction
system. Then Section 5.2, Section 5.3, and Section 5.4 outlines the key design ideas behind
CFA, the detailed design, and implementation of CFA, respectively. Section 5.5 presents real-
world and trace-driven evaluation that demonstrates substantial quality improvement by CFA.
Section 5.6 uses critical features learned by CFA to make interesting observations about video
quality. Finally, Section 5.7 discusses some open issues in CFA, Section 5.8 discusses the related
work, and Section 5.9 concludes the section.

49

History of quality
measurements Decision Maker

Video Streaming Ecosystem

Global Optimization System

Global view of
video quality

Quality prediction of
potential decision

Prediction System

Figure 5.1: Overview of a global optimization system and the crucial role of a prediction system.

5.1 Background

This section begins with some background on video quality prediction. Then, we articulate two
key challenges faced by any video quality prediction system: (1) The factors affecting video
quality are complex, so we need expressive models; (2) Quality changes rapidly, so models
must be updated in near real-time by recent quality measurements. We also argue why existing
solutions do not address these challenges.

5.1.1 Data-Driven Quality Prediction

Prior work has made the case for a quality optimization system (Figure 5.1) that uses a prediction
oracle to suggest the best parameter settings (e.g., bitrate, CDN) to optimize quality (e.g., [50,
101, 145, 147, 156]). Seen in a broader context, this predictive approach can be applied beyond
Internet video (e.g., [41, 78, 81, 177, 193]).

In the context of video streaming, most video service providers today allow a video client
(player) to switch CDN and bitrate among a set of available choices [101, 145, 147]. These
switches have little overhead and can be performed at the beginning of and during a video play-
back [190]. Our goal then is to choose the best CDN and bitrate for a client by accurately
predicting the video quality of each hypothetical choice of CDN and bitrate. In theory, if we
can accurately predict the quality of each potential decision, then we can identify the optimal
decision.

To this end, we envision a prediction system that uses a global view of quality measurements
to make predictions for a specific video session. It learns a prediction function for each quality
metric Pred : 2S×S 7→ R, which takes as input a given set of historical sessions S ∈ 2S whose
quality is already measured, and a new session s ∈ S, and outputs a quality prediction p ∈ R for
s.

Each quality measurement summarizes the quality of a video session for some duration of
time (in our case, one minute). It is associated with values of four quality metrics (as defined in
Section 2.1.1) and a set of features (summarized in Table 5.1). By feature, we refer to the type
of attribute (e.g., CDN), rather than value of these attributes (e.g., CDN = Akamai) In general,

50

Features Description
ASN Autonomous System to which client IP belongs.
City City where the client is located.
ConnectionType Type of access network; e.g., mobile/fixed wireless, DSL, fiber-to-

home.
Player e.g., Flash, iOS, Silverlight, HTML5.
Site Content provider of requested video contents.
LiveOrVoD Binary indicator of live vs. VoD content.
ContentName Name of the requested video object.
CDN CDN a session started with.
Bitrate Bitrate value the session started at.

Table 5.1: Quality metrics and session features associated with each session. CDN and Bitrate
refer to initial CDN/bitrate values as we focus on initial selections.

the set of features depends on the degree of instrumentation and what information is visible to
a specific provider. For instance, a CDN may know the location of servers, whereas a third-
party optimizer [9] may only have information at the CDN granularity. Our focus is not to
determine the best set of features that should be recorded for each session, but rather engineer a
prediction system that can take an arbitrary set of features as inputs and extract the relationships
between these features and video quality. In practice, the above set of features can already
provide accurate predictions that help improve quality.

Our dataset consists of 6.6 million quality measurements collected from 2 million clients
using 3 large public CDNs distributed across 168 countries and 152 ISPs.

Next, we show real examples of the complex factors that impact video quality, and the limi-
tations of strawman solutions in capturing these relationships.

5.1.2 Challenge 1: Complex QoE-Determining Factors

High-dimensional relationship between video quality and session features: Video qual-
ity could be impacted by combinations of multiple components in the network. Such high-
dimensional effects make it harder to learn the relationships between video quality and features,
in contrast to simpler settings where features affect quality independently (e.g., assumed by Naive
Bayes).

In a real-world incident, video sessions of Comcast users in Baltimore who watched videos
from Level3 CDN experienced high failure rate (VSF) due to congested edge servers, shown by
the blue line in Figure 5.2. The figure also shows the VSF of sessions sharing the same values on
one or two features with the affected sessions; e.g., all Comcast sessions across different cities
and CDNs. In the figure, the high VSF of the affected sessions cannot be clearly identified if we
look at the sessions that match on only one or two features. Only when three features of CDN
(“Level3”), ASN (“Comcast”) and City (“Baltimore”) are specified (i.e., blue line), can we detect
the high VSF and predict the quality of affected sessions accurately.

In practice, we find that such high-dimensional effects are the common case, rather than an

51

0

0.2

0.4

0.6

0.8

0 5 10 15 20 25
V

S
F

Time (hour)

3-Feature Best 2-Feature Best 1-Feature Global

Figure 5.2: The high VSF is only evident when three factors (CDN, ISP and geo-location) are
combined.

anomalous corner case. For instance, more than 65% of distinct CDN-ISP-City values have VSF
that is at least 50% higher or lower than the VSF of sessions matching only one or two features
(not shown). In other words, their quality is affected by a combined effect of at least three
features.

Limitation of existing solutions: It might be tempting to develop simple predictors; e.g.,
based on the last-hop connection by using average quality of history sessions with the same
ConnectionType value. However, they do not take into account the combined impact of features
on video quality. Conventional machine learning techniques like Naive Bayes also suffer from
the same limitation. In Figures 5.3a and 5.3b, we plot the actual JoinTime and the prediction
made by the last-hop predictor and Naive Bayes (from Weka [30]) for 300 randomly sampled
sessions. The figures also show the mean relative error (|predicted−actual|

actual). For each session, the
prediction algorithms train models using historical sessions within a 10-minute interval prior to
the session under prediction. It shows that the prediction error of both solutions is significant and
two-sided (i.e., not fixable by normalization).

Highly diverse structures of factors. The factors that affect video quality vary across different
sessions. This means the prediction algorithm should be expressive enough to predict quality
for different sessions using different prediction models. For instance, the fact that many fiber-
to-the-home (e.g., FiOS) users have high bitrates and people on cellular connections have lower
bitrates is largely due to the speed of their last-mile connection. In contrast, some video clients
may experience video loading failures due to unavailability of specific content on some CDNs.
Chapter 4 has shown that many heterogeneous factors are correlated with video quality issues.
In Section 5.2, we show that 15% of video sessions are impacted by more than 30 different
combinations of features and give real examples of different factors that affect quality.

Limitation of existing solutions: To see why existing solutions are not sufficient, let us consider
the k-nearest neighbor (k-NN) algorithm. It does not handle diverse relationships between quality
and features, because the similarity between sessions is based on the same function of features
independent of the specific session under prediction. In Figure 5.3c, we plot the actual values
of JoinTime and the prediction made by k-NN with the same setup as Figure 5.3a(b). Similar to
Naive Bayes and the last-hop predictor, k-NN has substantial prediction error.

52

 0

 10

 20

 30

 0 10 20 30P
re

d
ic

te
d

 J
o

in
T

im
e

 (
s
e

c
)

Actual JoinTime (sec)

(a) Last hop (0.76)

 0

 10

 20

 30

 0 10 20 30P
re

d
ic

te
d

 J
o

in
T

im
e

 (
s
e

c
)

Actual JoinTime (sec)

(b) Naive Bayes (0.61)

 0

 10

 20

 30

 0 10 20 30P
re

d
ic

te
d

 J
o

in
T

im
e

 (
s
e

c
)

Actual JoinTime (sec)

(c) k-NN (0.63)

Figure 5.3: Prediction error of some existing solutions is substantial (mean of relative error in
parentheses).

5.1.3 Challenge 2: Fresh Updates

Video quality has significant temporal variability. In Figure 5.4a, for each quality metric and
combination of specific CDN, city and ASN, we compute the mean quality of sessions in each
10-minute interval, and then plot the CDF of the relative standard deviation (stddev

mean) of the quality
across different intervals. In all four quality metrics of interest, we see significant temporal
variability; e.g., for 60% of CDN-city-ASN combinations, the relative standard deviation of
JoinTime across different 10-minute intervals is more than 30%. Such quality variability has
also been confirmed in other studies (e.g., [147]).

The implication of such temporal variability is that the prediction system must update models
in near real-time. In Figure 5.4b, we use the same setup as Figure 5.3, except that the time
window used to train prediction models is several minutes prior to the session under prediction.
The figure shows the impact of such staleness on the prediction error for JoinTime. For both
algorithms, prediction error increases dramatically if the staleness exceeds 10 minutes. As we
will see later, this negative impact of staleness on accuracy is not specific to these prediction
algorithms (Section5.5.3).

Limitation of existing solutions: The requirement to use the most recent measurements makes
it infeasible to use computationally expensive models. For instance, it takes at least one hour to
train an SVM-based prediction model from 15K quality measurements in a 10-minute interval
for one video site, so the quality predictions will be based on information from more than one
hour ago.

5.2 Overview of CFA Ideas
This section presents the domain-specific insights we use to help address the expressiveness
challenge (Section 5.1.2). The first insight is that sessions matching on all features have similar
video quality. However, this approach suffers from the curse of dimensionality. Fortunately,
we can leverage a second insight that each video session has a subset of critical features that
ultimately determine its video quality. We conclude this section by highlighting two outstanding

53

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10

C
D

F

Relative stddev

BufRatio
AvgBitrate

JoinTime
VSF

(a) Temporal variability

 0

 5

 10

 15

 20

 1 2 4 8 16

%
 i
n
c
re

a
s
e
 i
n
 a

v
g

p
re

d
ic

ti
o
n
 e

rr
o
r

Staleness (min)

Naive Bayes
k-NN

(b) Impact of staleness on accuracy

Figure 5.4: Due to significant temporal variability of video quality (left), prediction error in-
creases dramatically with stale data (right).

Input: Session under prediction s, Previous sessions S
Output: Predicted quality p
/* S′:identical sessions matching on all features with s in recent

history(∆) */

1 S′← SimilarSessionSet(s,S,AllFeatures,∆);
/* Summarize the quality (e.g.,median) of the identical sessions in S′.

*/

2 p← Est(S′);
3 return p;

Algorithm 1: Baseline prediction that finds sessions matching on all features and uses
their observed quality as the basis for prediction.

issues in translating these insights into a practical prediction system.

5.2.1 Baseline Prediction Algorithm
Our first insight is that sessions that have identical feature values will naturally have similar (if
not identical) quality. For instance, we expect that all Verizon FiOS users viewing a specific
HBO video using Level3 CDN in Pittsburgh at Fri 9 am should have similar quality (modulo
very user-specific effects such as local Wi-Fi interference inside the home). We can summarize
the intuition as follows:

Insight 1: At a given time, video sessions having same value on every feature have similar
video quality.

Inspired by Insight 1, we can consider a baseline algorithm (Algorithm 1). We predict a
session’s quality based on “identical sessions”, i.e., those from recent history that match values
on all features with the session under prediction. Ideally, given infinite data, this algorithm is
accurate, because it can capture all possible combinations of factors affecting video quality.

However, this algorithm is unreliable as it suffers from the classical curse of dimensional-

54

Quality issue Set of critical features
Issue on one player of Vevo {Player,Site}
ESPN flipping between CDNs {CDN,Site,ContentName}
Bad Level3 servers for Com-
cast users in Maryland

{CDN,City,ASN}

Table 5.2: Real-world examples of critical features confirmed by analysts at a large video opti-
mization vendor.

ity [168]. Specifically, given the number of combinations of feature values (ASN, device, content
providers, CDN, just to name a few), it is hard to find enough identical sessions needed to make
a robust prediction. In our dataset, more than 78% of sessions have no identical session (i.e.,
matching on all features) within the last 5 minutes.

5.2.2 Critical Features

In practice, we expect that some features are more likely to “explain” the observed quality of a
specific video session than others. For instance, if a specific peering point between Comcast and
Netflix in New York is congested, then we expect most of these users will suffer poor quality,
regardless of the speed of their local connection.

Insight 2: Each video session has a subset of critical features that ultimately determines its
video quality.

We already saw some real examples in Section 5.1.2: in the example of high dimension-
ality, the critical features of the sessions affected by the congested Level3 edge servers are
{ASN,CDN,City}; in the examples of diversity, the critical features are {ConnectionType} and
{CDN,ContentName}. Table 5.2 gives more real examples of critical features that we have
observed in operational settings and confirmed with domain experts.

A natural implication of this insight is that it can help us tackle the curse of dimensionality.
Unlike Algorithm 1, which fails to find a sufficient number of sessions, we can estimate quality
more reliably by aggregating observations across a larger amount of “similar sessions” that only
need to match on these critical features. Thus, critical features can provide expressiveness while
avoiding curse of dimensionality.

Algorithm 2 presents a logical view of this idea:
1. Critical feature learning (line 1): First, find the critical features of each session s, denoted

as CriticalFeatures(s).
2. Quality estimation (line 2, 3): Then, find similar sessions that match values with s on crit-

ical features CriticalFeatures(s) within a recent history of length ∆ (by default, 5 minutes).
Finally, return some suitable estimate of the quality of these similar sessions; e.g., the me-
dian1 (for BufRatio, AvgBitrate, JoinTime) or the mean (for VSF).

1We use median because it is more robust to outliers.

55

Input: Session under prediction s, Previous sessions S
Output: Predicted quality p
/* CFs:Set of critical features of s */

1 CFs←CriticalFeatures(s);
/* S′:Similar sessions matching values on critical features CFs with s.

*/

2 S′← SimilarSessionSet(s,S,CFs,∆);
/* Summarize the quality of the similar sessions in S′. */

3 p← Est(S′);
4 return p;

Algorithm 2: CFA prediction algorithm, where prediction is based on similar sessions
matching on critical features.

A practical benefit of Algorithm 2 is that it is interpretable [212], unlike some machine learn-
ing algorithms (e.g., PCA or SVM). This allows domain experts to combine their knowledge
with CFA and diagnose prediction errors or resolve incidents, as we explore in Section 5.6.2.

At this time, it is useful to clarify what critical features are and what they are not. In essence,
critical features provide the explanatory power of how a prediction is made. However, critical
features are not a minimal set of factors that determine the quality (i.e., root cause). That is, they
can include both features that reflect the root cause as well as additional features. For example,
if all HBO sessions use Level3, their critical features may include both CDN and Site, even if
CDN is redundant, since including it does not alter predictions. The primary objective of CFA is
accurate prediction; root cause diagnosis may be an added benefit.

5.3 Design of CFA

In this section, we present the detailed design of CFA and discuss how we address the two
practical challenges mentioned in the previous section: learning critical features and reducing
update delay.

The key to addressing these challenges is our third and final domain-specific insight:

Insight 3: Critical features tend to persist on long timescales of tens of minutes.

This insight is derived from prior measurement studies. For instance, our measurement study
in Chapter 4 on shedding light on video quality issues in the wild showed that the factors that
lead to poor video quality persist for hours, and sometimes even days. Another recent study from
the C3 system suggests that the best CDN tends to be relatively stable on the timescales of few
tens of minutes [101]. We independently confirm this observation in Section 5.5.3 that using
slightly stale critical features (e.g., 30-60 minutes ago) achieves similar prediction accuracy as
using the most up-to-date critical features. Though this insight holds for most cases, it is still
possible (e.g., on mobile devices) that critical features persist on a relatively shorter timescale
(e.g., due to the nature of mobility).

Note that the persistence of critical features does not mean that quality values are equally

56

Notations Domains Definition
s,S,S A session, a set of sessions, set of all sessions
q(s) S 7→ R Quality of s
QualityDist(S) 2S 7→ 2R {q(s)|s ∈ S}
f ,F,F A feature, a set of features, set of all features
CriticalFeatures(s) S 7→ 2F Critical features of s
V Set of all feature values
FV (f ,s) F×S 7→ V Value on feature f of s
FSV (F,s) 2F×S 7→ 2V Set of values on features in F of s
SimilarSessionSet
(s,S,F,∆)

F × 2F × S ×
R+ 7→ 2F

{s′|s′ ∈ S, t(s) − ∆ < t(s′) <
t(s),FSV (F,s′) = FSV (F,s)}

Table 5.3: Notations used in learning of critical features.

persistent. In fact, persistence of critical features is on a timescale an order of magnitude longer
than the persistence of quality. That is, even if quality fluctuates rapidly, the critical features that
determine the quality do not change as often.

As we will see below, this persistence enables (a) automatic learning of critical features from
history, and (b) a scalable workflow that provides up-to-date estimates.

5.3.1 Learning Critical Features
Recall that the first challenge is obtaining the critical features for each session. The persistence
of critical features has a natural corollary that we can use to automatically learn them:

Corollary 3.1: Persistence implies that critical features of a session are learnable from history.

Specifically, we can simply look back over the history and identify the subset of features F
such that the quality distribution of sessions matching on F is most similar to that of sessions
matching on all features. For instance, suppose we have three features 〈ContentName,ASN,CDN〉
and it turns out that sessions with ASN = Comcast,CDN = Level3 consistently have high buffer-
ing over the last few hours due to some internal congestion at the corresponding exchange point.
Then, if we look back over the last few hours, the data from history will naturally reveal that
the distribution of the quality of sessions with the feature values 〈ContentName = Foo,ASN =
Comcast,CDN =Level3〉will be similar to 〈ContentName= ∗,ASN =Comcast,CDN =Level3〉,
but very different from, say, the quality of sessions in 〈ContentName = ∗,ASN = ∗,CDN =
Level3〉, or 〈ContentName = ∗,ASN = Comcast,CDN = ∗〉. Thus, we can use a data-driven ap-
proach to learn that ASN,CDN are the critical features for sessions matching 〈ContentName =
Foo,ASN = Comcast,CDN = Level3〉.

Algorithm 3 formalizes this intuition for learning critical features. Table 5.3 summarizes the
notation used in Algorithm 3. For each subset of features F (line 3), we compute the similar-
ity between the quality distribution (DF) of sessions matching on F and the quality distribution
(D f inest) of sessions matching on all features (line 7). Then, we find the F that yields the max-
imum similarity (line 8-10), under one additional constraint that SimilarSessionSet(s,S,F,∆)

57

Input: Session under prediction s, Previous sessions S
Output: Critical features for s
/* Initialization */

1 MaxSimilarity←−∞,CriticalFeatures← NULL;
/* D f inest:Quality distribution of sessions matching on F in ∆learn.

*/
2 D f inest ← QualityDist(SimilarSessionSet(s,S,F,∆learn));
3 for F ⊆ 2F do

/* Exclude F without enough similar sessions for prediction.

*/
4 if |SimilarSessionSet(s,S,F,∆)|< n then
5 continue;

/* DF:Quality distribution of sessions matching on F in ∆learn.

*/
6 DF ← QualityDist(SimilarSessionSet(s,S,F,∆learn));

/* Get similarity of D f inest & DF. */
7 Similarity← Similarity(DF ,D f inest);
8 if Similarity > MaxSimilarity then
9 MaxSimilarity← Similarity;

10 CriticalFeatures← F ;
11 return CriticalFeature;

Algorithm 3: Learning of critical features.

should include enough (by default, at least 10) sessions to get reliable quality estimation (line
4-5). This check ensures that the algorithm will not simply return the set of all features.

As an approximation of the duration in which critical features persist, we use ∆learn = 60min.
Note that ∆learn is an order of magnitude larger than the time window ∆ used in quality esti-
mation, because critical features persist on a much longer timescale than quality values. We
use (the negative of) Jensen-Shannon divergence between D1 and D2 to quantify their similarity
Similarity(D1,D2).

Although Algorithm 3 can handle most cases, there are corner cases where SimilarSessionSet(s,S,F,∆learn)
does not have enough sessions (i.e., more than n) to compute Similarity(DF ,D f inest) reliably. In
these cases, we replace D f inest by the set of n sessions that share most features with s over
the time window of ∆learn. Formally, we use {s′|s′ matches ks features with s}, where ks =
argmink (|{s′|s′ matches k features with s| ≥ n}|).

5.3.2 Using Fresh Updates
Next, we focus on reducing the update delay between when a quality measurement is received
and used for prediction.

Naively running critical feature learning and quality estimation of Algorithm 2 can be time-
consuming, causing the predictions to rely on stale data. In Figure 5.5(a), TCFL and TQE are
the duration of critical feature learning and the duration of quality estimation, respectively. The
staleness of quality estimation (depicted in Figure 5.5) to respond to a prediction query can

58

TCFL% TQE%

Dura%on(of(cri%cal(feature(learning(

Dura%on(of(quality(es%ma%on(

Time(

T% T%

Predic%on(
query(

TCFL%

Time(

TCFL%

Predic%on(
query(

..."

Staleness(of(quality(es%mates(~TQE%

Staleness(of(cri%cal(features(~TCFL%Staleness(of(quality(es%mates(~T%

Learned(cri%cal(
features(

TQE%

(a) Naive workflow (b) CFA workflow

TCFL%

TQE% TQE% TQE% TQE%TCFL% TQE%

Figure 5.5: To reduce update delay, we run critical feature learning and quality estimation at
different timescales by leveraging persistence of critical features.

be as large as the total time of two steps (i.e., TCFL +TQE), which typically is tens of minutes
(Section 5.5.3). Also, simply using more parallel resources is not sufficient. The time to learn
critical features using Algorithm 3 grows linearly with the number of sessions under prediction,
the number of history sessions, and the number of possible feature combinations. Thus, the
complexity of learning critical features TCFL is exponential in the number of features. Given the
current set of features, TCFL is on the scale of tens of minutes.

To reduce update delay, we again leverage the persistence of critical features:

Corollary 3.2: Persistence implies that critical features can be cached and reused over tens of
minutes.

Building on Corollary 3.2, we decouple the critical feature learning and quality estimation
steps, and run them at separate timescales. On the timescale of tens of minutes, we update the
results of critical feature learning. Then, on a faster timescale of tens of seconds, we update
quality estimation using fresh data and the most recently learned critical features.

This decoupling minimizes the impact of staleness on prediction accuracy. Learning criti-
cal features on the timescale of tens of minutes is sufficiently fast as they persist on the same
timescale. Meanwhile, quality estimation can be updated every tens of seconds and makes pre-
dictions based on quality updates with sufficiently low staleness. Thus, the staleness of quality
estimation TQE of the decoupled workflow (Figure 5.5(b)) is a magnitude lower than TQE +TCFL
of the naive workflow (Figure 5.5(a)). In Section 5.5.3, we show that this workflow can retain
the freshness of critical features and quality estimates.

In addition, CFA has a natural property that two sessions sharing all feature values and oc-
curring close in time will map to the same critical features. Thus, instead of running the steps
per-session, we can reduce the computation to the granularity of finest partitions, i.e., distinct
values of all features.

5.3.3 Putting It Together

Building on these insights, we create the following practical three-stage workflow of CFA.

59

• Stage I: Critical feature learning (line 1 of Algorithm 2) runs offline, say, every tens of
minutes to an hour. The output of this stage is a key-value table called critical feature func-
tion that maps all observed finest partitions to their critical features.
• Stage II: Quality estimation (line 2,3 of Algorithm 2) runs every tens of seconds for all

observed finest partitions based on the most recent critical features learned in the first stage.
This outputs another key-value table called quality function that maps a finest partition to the
quality estimation, by aggregating the most recent sessions with the corresponding critical
features.
• Stage III: Real-time query/response. Finally, we provide real-time query/response on the

arrival of each client, operating at the millisecond timescale, by simply looking up the most
recent precomputed value function from the previous stage. These operations are simple and
can be done very fast.

Finally, instead of forcing all finest partition-level computations to run in every batch, we can
do triggered recomputations of critical feature learning only when the observed prediction errors
are high.

5.4 Implementation and Deployment

This section presents our implementation of CFA and highlights engineering solutions to address
practical challenges in operational settings (e.g., avoiding bulk data loading and speeding up
development iterations).

5.4.1 Implementation of CFA Workflow

CFA’s three stages are implemented in two different locations: a centralized backend cluster and
geographically distributed frontend clusters as depicted in Figure 5.6.

Centralized backend: The critical feature learning and quality estimation stages are imple-
mented in a backend cluster as periodic jobs. By default, critical feature learning runs every 30
minutes, and quality estimation runs every minute. A centralized backend is a natural choice
because we need a global view of all quality measurements. The quality function, once updated
by the estimation step, is disseminated to distributed frontend clusters using Kafka [134].

Note that we can further reduce learning time using simple parallelization strategies. Specif-
ically, the critical features of different finest partitions can be learned independently. Similarly
in Algorithm 3, the similarity of quality distributions can be computed in parallel. To exploit this
data-level parallelism, we implement them as Spark jobs [28].

Distributed frontend: Real-time query/response and decision makers of CDN/bitrate are co-
located in distributed frontend clusters that are closer to clients than the backend. Each frontend
cluster receives the quality function from the backend and caches it locally for fast prediction.
This reduces the latency of making decisions for clients.

60

Cri$cal(Feature(
Learning(

Quality(Esmaon(

Real7$me(
Query/Response(

Backend(

Decision(Making(

Frontend(

...(

Clients(Clients(Clients(

Figure 5.6: Implementation overview of CFA. The three stages of CFA workflow are imple-
mented in a backend cluster and distribute frontend clusters.

 68
 70
 72
 74
 76
 78
 80
 82
 84

 0 50 100 150 200 250 300 350 400

A
v
g

 c
o

m
p
le

ti
o

n
 t
im

e

o
f

b
a
c
k
g

ro
u

n
d

 j
o

b
s
 (

s
e

c
)

Time (min)

Batch
Smooth

Figure 5.7: Streaming data loading has smoother impact on completion delay than batch data
loading.

5.4.2 Challenges in an Operational Setting

Mitigating impact of bulk data loading: The backend cluster is shared and runs other delay-
sensitive jobs; e.g., analytics queries from production teams. Since the critical feature learning
runs periodically and loads a large amount of data (≈30 GB), it creates spikes in the delays of
other jobs (Figure 5.7). To address this concern, we engineered a simple heuristic to evenly
spread the data retrieval where we load a small piece of data every few minutes. As Figure 5.7
shows, this reduces the spikes caused by bulk data loading in batch mode. Note that this does
not affect critical feature learning.

Iterative algorithm refinement: Some parameters (e.g., learning window size ∆learn) of CFA
require iterative tuning in a production environment. However, one practical challenge is that
the frontend-facing part of the backend can only be updated once every couple of weeks due
to code release cycles. Thus, rolling out new prediction algorithms may take several days and
is a practical concern. Fortunately, the decoupling between critical feature learning and quality
estimation (Section 5.3.2) means that changes to critical feature learning are confined to the

61

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

CFA NB DT k-NN LH ASN

R
e

la
ti
v
e

 e
rr

o
r

(a) AvgBitrate

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

CFA NB DT k-NN LH ASN

R
e

la
ti
v
e

 e
rr

o
r

(b) JoinTime

0
20
40
60
80

100
120

CFA NB DT k-NN LH ASN

H
it

R
at

e
(%

)

Good Quality Bad Quality

(c) BufRatio

0
20
40
60
80

100
120

CFA NB DT k-NN LH ASN

H
it

R
at

e
(%

)

Good Quality Bad Quality

(d) VSF

Figure 5.8: Distributions of relative prediction error ({5,10,50,90,95}%iles) on AvgBitrate and
JoinTime and hit rates on BufRatio and VSF. They show that CFA outperforms other algorithms.

backend cluster. This enables us to rapidly refine and customize the CFA algorithm.

5.5 Evaluation
In this section, we show that:
• CFA predicts video quality with 30% less error than competing machine learning algorithms

(Section 5.5.1).
• Using CFA-based prediction, we can improve video quality significantly; e.g., 32% less

BufRatio, 12% higher AvgBitrate in a pilot deployment (Section 5.5.2).
• CFA is responsive to client queries and makes predictions based on the most recent critical

features and quality measurements (Section 5.5.3).

5.5.1 Prediction Accuracy
We compare CFA with five alternative algorithms: three simple ML algorithms, Naive Bayes
(NB), Decision Tree (DT), k-Nearest Neighbor (k-NN)2, and two heuristics which predict a ses-
sion’s quality by the average quality of other sessions from the same ASN (ASN) or matching

2NB, DT, and k-NN are mplemented using a popular ML library weka[30].

62

CFA Baseline Improvement
QoE 155.43 138.27 12.4%
BufRatio 0.0123 0.0182 32%
AvgBitrate 3200 2849 12.31%

Table 5.4: Random A/B testing results of CFA vs. baseline in real-world deployment.

the last-mile connection type (LH). All algorithms use the same set of features listed in Table 5.1.
Ideally, we want to evaluate how accurately an algorithm can predict the quality of a given

client on every choice of CDN and bitrate. However, this is infeasible since each video client
is assigned to only one CDN and bitrate at any time. Thus, we can only evaluate the prediction
accuracy over the observed CDN-bitrate choices, and we use the quality measured on these
choices as the ground truth. That said, this approach is still useful for doing a relative comparison
across different algorithms.

For AvgBitrate and JoinTime, we report relative error: |p−q|
q , where the q is the ground

truth and p is the prediction. For BufRatio and JoinTime, which have more “step function” like
effects [88], we report a slightly different measure called hit rate: how likely a session with
good quality (i.e., BufRatio < 5%, VSF=0) or bad quality is correctly identified. Figure 5.8
shows that for AvgBitrate and JoinTime, CFA has the lowest {5,10,50,90}%th percentiles of
prediction error and lower 95%th percentiles than most algorithms. In particular, median error
of CFA is about 30% lower than the best competing algorithm. In terms of BufRatio and VSF,
CFA significantly outperforms other algorithms in the hit rate of bad quality sessions. The reason
for hit rate of bad quality to be lower than that of good quality is that bad quality sessions are
almost always less than good quality, which makes them hard to predict. Note that accurately
identifying sessions that have bad quality is crucial as they have the most room for improvement.

5.5.2 Quality Improvement

Pilot deployment: As a pilot deployment, we integrated CFA in a production system that pro-
vides a global video optimization service [101]. We deployed CFA on one major content provider
and used it to optimize 150,000 sessions each day. We ran an A/B test (where each algorithm
was used on a random subset of clients) to evaluate the improvement of CFA over a baseline ran-
dom decision maker, which many video optimization services use by default (modulo business
arrangement like price) [38].

Table 5.4 compares CFA with the baseline random decision maker in terms of the mean
BufRatio, AvgBitrate and a simple QoE model (QoE = −370 ∗ Bu f Ratio + AvgBitrate/20),
which was suggested by [88, 147]. Over all sessions in the A/B testing, CFA shows an im-
provement in both BufRatio (32% reduction) and AvgBitrate (12.3% increase) compared to the
baseline. This shows that CFA is able to simultaneously optimize multiple (possibly conflicting)
metrics. To put these numbers in context, our conversation with domain experts confirmed that
these improvements are significant for content providers and can potentially translate into sub-
stantial benefits in engagement and revenues [10]. CFA’s superior performance and that CFA is
more automated than the custom algorithm indicate that domain experts were willing to invest

63

 60

 80

 100

 120

 140

 160

 180

 0 5 10 15 20

Q
o

E
Time (hour)

CFA
Baseline

(a) CFA vs. baseline by time

 0

 40

 80

 120

 160

 200

 240

Level3
Akamai

Amazon

Q
o

E

CDNs

CFA
Baseline

 0

 40

 80

 120

 160

 200

 240

Cable
DSL

Mobile
Satellite

Last hop connections

CFA
Baseline

 0

 40

 80

 120

 160

 200

 240

 280

LA NYC
ORL

CHI
SEA

Major US cities

CFA
Baseline

(b) CFA vs. baseline by spatial partitions

Figure 5.9: Results of real-world deployment. CFA outperforms the baseline random decision
maker (over time and across different large cities, connection t ypes and CDNs).

time running longer pilot. Figure 5.9 provides more comparison and shows that CFA consistently
outperforms the baseline over time and across different major cities in the US, connection types
and CDNs.

Trace-driven simulation: We complement this real-world deployment with a trace-driven sim-
ulation to simultaneously compare more algorithms over more quality metrics. However, one
key challenge is that it is hard to estimate the quality of a decision that was not used by a specific
client in the trace.

To address this problem, we use the counterfactual methodology from prior work in online
recommendation systems [140, 142]. Suppose we have quality measurements from a set of
clients, where client c is assigned to a decision drand(c) of CDN and bitrate at random. Now,
we have a new hypothetical algorithm that maps client c to dalg(c). Then, we can evaluate the
average quality of clients assigned to each decision d, {c|dalg(c) = d}, by the average quality of
{c|dalg(c) = d,drand(c) = d}. Finally, the average quality of the new algorithm is the weighted
sum of average quality of all decisions, where the weight of each decision is the fraction of ses-
sions assigned to it. This can be proved to be an unbiased (offline) estimate of dalg’s (online)
performance [49].3 For instance, if out of 1000 clients assigned to use Akamai and 500Kbps,

3One known limitation of this analysis is that it assumes the new assignments do not affect each decision’s
overall performance. For instance, if we assign all sessions to one CDN, they may overload the CDN and so this
CDN’s quality in the random assignments is no longer useful. Since this work only focuses on controlling traffic at

64

0
10
20
30
40
50
60

QoE

BufRatio

AvgBitra
te

JoinTime
VSF

Im
pr

ov
em

en
t (

%
) Over baseline

Over the best prediction algorithm

Figure 5.10: Comparison of quality improvement between CFA and strawmen.

Stage Run time (mean / median) Required freshness
Critical feature learning 30.1/29.5 min 30-60 min
Quality estimation 30.7/28.5 sec 1-5 min
Query response 0.66/0.62 ms 1 ms

Table 5.5: Each stage of CFA is refreshed to meet the required freshness of its results.

200 clients are assigned to this decision in the random assignment, then we can use the aver-
age quality of these 200 sessions as an unbiased estimate of the average quality of these 1000
sessions. Fortunately, our dataset includes a (randomly chosen) portion of clients with random-
ized decision assignments (i.e., CDN and bitrate). Thus, we only report improvements for these
clients.

Figure 5.10 uses this counterfactual methodology and compares CFA with the best alternative
from Section 5.5.1 for each quality metric and the baseline random decision maker (e.g., the best
alternative of AvgBitrate is k-NN). For each quality metric and prediction algorithm, the decision
maker selects the CDN and bitrate that has the best predicted quality for each client. For instance,
the improvement of CFA over the baseline on VSF is 52% – this means the number of sessions
with start failures is 52% less than when the baseline algorithm is used. The figures show that
CFA outperforms the baseline algorithm by 15%-52%. They also show that CFA outperforms
the best prediction algorithms by 5%-17%.

5.5.3 Timeliness of Prediction

Our implementation of CFA should (1) retain freshness to minimize the impact of staleness on
prediction accuracy, and (2) be responsive to each prediction query.

We begin by showing how fast each stage described in Section 5.3.2 needs to be refreshed.
Figure 5.11 shows the impact of staleness of critical features and quality values on the prediction
accuracy of CFA. First, critical features learned 30-60 minutes before prediction can still achieve

a small scale relative to the total load on the CDN (and our experiments are in fact performed at such a scale), this
methodology is still unbiased.

65

 0

 4

 8

 1 10 100

%
 i
n

c
re

a
s
e

 i
n

 a
v
g

 p
re

d
ic

ti
o

n
 e

rr
o

r

Staleness (min)

Critical feature
Quality value

(a) BufRatio

 0

 4

 8

 12

 1 10 100

%
 i
n

c
re

a
s
e

 i
n

 a
v
g

 p
re

d
ic

ti
o

n
 e

rr
o

r

Staleness (min)

Critical feature
Quality value

(b) AvgBitrate

 0

 4

 8

 12

 16

 20

 1 10 100

%
 i
n

c
re

a
s
e

 i
n

 a
v
g

 p
re

d
ic

ti
o

n
 e

rr
o

r

Staleness (min)

Critical feature
Quality value

(c) JoinTime

 4

 8

 12

 16

 20

 24

 1 10 100
%

 i
n

c
re

a
s
e

 i
n

 a
v
g

 p
re

d
ic

ti
o

n
 e

rr
o

r
Staleness (min)

Critical feature
Quality value

(d) VSF

Figure 5.11: Latency of critical features and quality values (x-axis) on increase in accuracy (y-
axis).

similar accuracy as those learned 1 minute before prediction. In contrast, quality estimation can-
not be more than 10 minutes prior to when prediction is made (which corroborates the results of
Figure 5.4b). Thus, critical feature learning needs to be refreshed every 30-60 minutes and qual-
ity estimation should be refreshed at least every several minutes. Finally, prediction queries need
to be responded to within several milliseconds [101] (ignoring network delay between clients
and servers).

Next, we benchmark the time to run each logical stage described in Section 5.3.2. Real-time
query/response runs in 4 geographically distributed data centers. Critical feature learning and
quality estimation run on two clusters of 32 cores. Table 5.5 shows the time for running each
stage and the timescale required to ensure freshness. It confirms that the implementation of CFA
is sufficient to ensure the freshness of results in each stage.

5.6 Insights from Critical Features

In addition to the predictive power, CFA also offers insights into the “structure” of video quality
in the wild. In this section, we focus on two questions: (1) What types of critical features are
most common? (2) What factors have significant impact on video quality?

66

21%

21%

14%
10%

10%

24%

[ASN, City, CDN,
ConnectionType]
[ASN, City, CDN]

[ASN, City, CDN, Bitrate]

[ASN, CDN, Bitrate,
ContentName]
[Bitrate, ConnectionType,
Player]
Other

(a) BufRatio

17%

15%

15%
11%

9%

33%

[ASN, Bitrate, Player,
ConnectionType]
[City, CDN, Player,
ConnectionType]
[CDN, Bitrate]

[CDN, ConnectionType,
Player]
[ASN, City, CDN]

Other

(b) AvgBitrate

20%

14%

14%
12%

9%

31%

[ASN, CDN, Bitrate,
ConnectionType]
[Bitrate, ConnectionType]

[City, CDN, ConnectionType]

[CDN, ContentName,
Bitrate]
[CDN, Bitrate, Player]

Other

(c) JoinTime

21%

20%

16%
11%

10%

22%

[ASN, CDN,
ConnectionType]
[City, CDN, ContentName]

[ASN, City, CDN, Bitrate]

[CDN, Bitrate,
ConnectionType, Player]
[ASN, CDN, ContentName]

Other

(d) VSF

Figure 5.12: Analyzing the types of critical features: This shows a breakdown of the total number
of sessions assigned to a specific type of critical features.

5.6.1 Types of Critical Features

Popular types of critical features: Figure 5.12 shows a breakdown of the fraction of sessions
that are assigned to a specific type of critical feature set. We show this for different quality
metrics. (Since we focus on a specific VoD provider, we do not consider the Site or LiveOrVoD
for this analysis.) Across all quality metrics, the most popular critical features are CDN, ASN
and ConnectionType, which means video quality is greatly impacted by network conditions at
the server (CDN), transit network (ASN), and last-mile connection (ConnectionType).

We also see interesting patterns unique to individual metrics. City is among the top critical
features of BufRatio. This is perhaps because network congestion usually depends on the volume
of concurrent viewers in a specific region. Bitrate (initial bitrate) has a larger impact on AvgBi-
trate than on other metrics, since the videos in the dataset are mostly short content (2-5 minutes)
and AvgBitrate is correlated with initial bitrate. Finally, ContentName has a relatively large im-
pact on failures (VSF) but not other metrics, because VSF is sometimes due to the requested
content not being ready.
Distribution of types of critical features: While the quality of about 50% of sessions is im-
pacted by 3-4 popular types of critical features, 15% of sessions are impacted by a diverse set
of more than 30 types of critical feature (not shown). This corroborates the need for expressive
prediction models that handle the diverse factors affecting quality (Section 5.1.2).

67

City ASN Player ConnectionType
BufRatio Some major east-

coast cities
Satellite, Mobile,
Cable

AvgBitrate Cellular carriers Players with dif-
ferent encodings

JoinTime Cellular carrier Satellite, DSL
VSF Small ISPs Satellite, Mobile

Table 5.6: Analysis of the most prevalent values of critical features. A empty cell implies that
we found no interesting values in this combination.

5.6.2 Values of Critical Features
Next, we focus on the most prevalent feature values (e.g., a specific ASN or player). To this
end, we define prevalence of a feature value by the fraction of video sessions matching this
feature value that have this feature as one of their critical features; e.g., the fraction of video
sessions from Boston that have City as one of their critical features. If a feature value has a large
prevalence, then the quality of many sessions that have this feature value can be explained by
this feature.

We present the values of critical features with a prevalence higher than 50% for each quality
metric and only consider a subset of the features (ASN, City, ContentName, ConnectionType)
that appear prominently in Figure 5.12. We present this analysis with two caveats. First, due to
proprietary concerns, we do not present the names of the entities, but focus on their characteris-
tics. Second, we cannot confirm some of our hypothesis as it involves other providers; as such,
we intend this result to be illustrative rather than conclusive.

Table 5.6 presents some anecdotal examples we observed. In terms of BufRatio, we see
some of the major east coast cities (e.g., Boston, Baltimore) are more likely to be critical fea-
ture values than other smaller cities. We also see both poor (Satellite, Mobile) and broadband
(Cable) connection types have high prevalence on BufRatio and JoinTime. This is because poor
quality sessions are bottlenecked by poor connections, while some good quality sessions are
explained by their broadband connections. “Player” has a relatively large prevalence on Avg-
Bitrate, because the content provider uses different bitrate levels for different players (Flash or
iOS). Finally, in terms of VSF, some small ISPs have large prevalence. We speculate that this is
because their peering relationships with major CDNs are not provisioned, so their video sessions
have relatively high failure rates.

5.7 Discussion

Relationship to existing ML techniques: CFA is a domain-specific prediction system that
outperforms some canonical ML algorithms (Section 5.5.1). We put CFA in the context of three
types of ML algorithms.
• Multi-armed bandit algorithms [215] find the decision with the highest reward (i.e., best

CDN and bitrate) from multiple choices. They assume each decision has a fixed distribution

68

of rewards, but the video quality of a CDN also depends on client-side features. In contrast,
contextual multi-armed bandit algorithms [189] assume the best decision depends on con-
textual information, but they require appropriate modeling between the context and decision
space, to which critical features provide one viable approach.
• The feature selection problem [106] seems similar to critical feature learning, but with a key

difference: critical features vary across video sessions. Thus, techniques looking for features
that are most important for all sessions are not directly applicable.
• Advanced ML algorithms today can handle highly complex models [139, 182] efficiently, so

in theory the critical features could be automatically identified, albeit in an implicit manner.
CFA uses existing ML models (specifically, the “variable kernel conditional density estima-
tion” method [206]) and may be less accurate than advanced ML techniques, but CFA can
predict with more recent data since it tolerates stale update on the critical features. Further-
more, CFA is less opaque since it is based on domain-specific insights about critical features
(Section 5.2).

Prediction and selection bias: One concern of making predictions and decisions based on
quality measurements from clients is that they may be biased by previous decisions. For instance,
if we move all video clients to the current optimal decision, we would not be able to predict
quality on other decisions (i.e., a classical exploration-exploitation tradeoff). A simple solution
to address the issue is to make random selection on a small portion (e.g., 10%) of clients.
Finer grain selection: Currently, CFA selects the resources at the CDN granularity. This means
CFA cannot do much if the CDN redirects the client based on its location and the servers the
CDN redirects the client to are congested. However, if the client were able to specify the server
to stream from, we could avoid the overloaded servers and improve the quality.
Leveraging network and CDN information: CFA makes predictions and decisions based on
client side information only. While clients provide accurate information regarding QoE, this
information is not always optimal when making predictions and decisions. Prediction can be
much more accurate if CFA were to leverage finer-grained information from other entities in the
ecosystem, including servers, caches and network path.
Critical vs. minimal features: In general, critical features are not intended to be the minimal
set of features that determines the quality. This makes critical features slightly less useful for root
cause diagnosis. An interesting direction for future work is to incorporate notions of description
length (MDL) into the learning process [175].

5.8 Related Work

Internet video optimization: There is a large literature on measuring video quality in the wild
(e.g., content popularity [166, 223], quality issues [122] and server selection [197, 209]) and
techniques to improve user experience (e.g., bitrate adaptation algorithms [115, 121, 225], CDN
optimization and federation [50, 145, 156, 165] and cross-provider cooperation [99, 123, 226]).
Our work builds on insight from the prior work (e.g., critical features of Section 5.2.2 are inspired
by quality “bottleneck” in [122]). That said, the global optimization system in our work is an
enhancement of these approaches as it uses the accurate prediction of CFA to make predictive

69

decisions. While a case for similar vision is made in [147], our work gives a systematic and
practical algorithmic design.
Global coordination platform: Decision making based on a global view is similar to other
logically centralized control systems (e.g., [101, 147, 200, 202]). They examined the architec-
tural issues of decoupling control plane from data plane, including scalability (e.g., [87, 208]),
fault tolerance (e.g., [161, 222]) and use of big data systems (e.g., [28, 101]). In contrast, our
work offers concrete algorithmic techniques over such control platform [101] for video quality
optimization.
Large-scale data analytics in system design: Many studies have applied data-driven and “Big
Data” techniques to system problems, such as performance monitoring and diagnosis (e.g., [78,
177, 194]), revenue debugging (e.g., [60]), TCP throughput prediction (e.g., [111, 154]), and
tuning TCP parameters (e.g., [179, 193]). Recent studies also try to operate these techniques
at scale [81]. While CFA shares the data-driven approach, we exploit video-specific insights to
achieve scalable and accurate prediction based on a global view of quality measurements, and
we are not aware of prior publications on real-time predictive analytics at scale.
Relationship of CFA to ML techniques: CFA is a domain-specific prediction system that
outperforms some canonical ML algorithms. Due to space limitations, we only highlight some
salient points. In essence, CFA is an instance of a “variable kernel conditional density estimation”
method [206]. It addresses the curse of dimensionality by contracting parts of the feature space
that are not critical for prediction or in which there is too little available data.
QoE models: Prior work has shown correlations between various video quality metrics and user
engagement (e.g., users are sensitive to BufRatio [88]), and built various QoE model (e.g., [41,
51, 135, 191]. Our work focuses on improving QoE by predicting individual quality metrics, and
can be combined with these QoE models.

5.9 Summary
This chapter presents the first illustration of how DDN can be used to improves video QoE. In
particular, we have formulated data-driven QoE optimization as a prediction problem, which as
shown by prior work could lead to improved QoE. However, prior efforts failed to provide a
prescriptive solution that (a) is expressive enough to tackle the complex feature-quality relation-
ships observed in the wild and (b) can provide near real-time quality estimates. To this end, we
developed CFA, a solution based on domain-specific insight of critical features (an illustration of
the persistent critical structures) that video quality is typically determined by a subset of critical
features which tend to be persistent. CFA leverages these insights to engineer an accurate algo-
rithm that outperforms off-the-shelf machine learning approaches and lends itself to a scalable
implementation that retains model freshness. Using real deployments and trace-driven analy-
ses, we showed that CFA achieves up to 30% improvement in prediction accuracy and 12-32%
improvement in QoE over alternative approaches. CFA leverages these insights to engineer an
accurate algorithm that outperforms off-the-shelf machine learning approaches and lends itself
to a scalable implementation that retains model freshness. Using real deployments and trace-
driven analyses, we showed that CFA achieves up to 30% improvement in prediction accuracy
and 12-32% improvement in QoE over alternative approaches.

70

Chapter 6

Cross-Session Throughput Prediction for
Initial Video Bitrate Selection

In the previous chapter, we have demonstrated that if we observe the QoE of many video sessions,
we can improve QoE by predicting QoE of any given video session based on the QoE of similar
sessions. However, it is not always feasible for anyone to measure QoE directly, as it requires
access to the internal states of the client-side applications. In the meantime, there are public
datasets on throughput measurements, e.g., FCC Measuring BroadBand America Platform [14],
which can be used as input to the QoE prediction system. To exploit this opportunity, we remove
the assumption that QoE can be observed from video sessions from the CFA formulation, and
pose the question that whether it is feasible to prediction end-to-end throughput of a video session
based on the throughput observed from other HTTP sessions in third-party datasets.

The new objective of throughput prediction is particularly relevant to improving the video
QoE of many content provide. Most video players today start streaming videos in a low bitrate
and then gradually increase the bitrate using a local logic, which typically takes several seconds
to tens of seconds before it reaches a high and sustainable bitrate (if it ever does before the
session ends). In contrast, if the player can accurately predict throughput before a video session
starts, it will be able to start streaming in the highest-yet-sustainable bitrate (Section 6.1).

To accurately predict end-to-end throughput, this chapter argues for a cross-session predic-
tion approach inspired by DDN, where throughput measured on sessions of different servers
and clients is used to predict the throughput of a new session. We observe substantial similar-
ity among the throughput of similar sessions, but it is challenging to transform such similarity
to accurate throughput prediction due to complex relations between session-level features and
throughput. We develop an accurate throughput predictor called DDA, which combines the near-
est neighbor model with the domain-specific insight that throughput only depends a subset of
session-level features (Section 6.2). DDA is another illustration of persistent critical structures.
Using two throughput measurement datasets, we show that DDA predicts throughput more accu-
rately than simple predictors and conventional machine learning algorithms; e.g., DDA’s 80%ile
prediction error of DDA is ≥ 50% lower than other algorithms. We also show that this improved
accuracy enables video players to select a higher sustainable initial bitrate; e.g., compared to
initial bitrate without prediction, DDA leads to 4× higher average bitrate (Section 6.3).

71

Bitrate selection Examples Limitations How throughput prediction helps
Fixed bitrate NFL, Lynda Too low bitrates Higher bitrate with less re-buffering

and lower start-up time
Adaptative bitrate

ESPN, Vevo,
Netflix

Initial chunks are used
to probe throughput

Table 6.1: Limitations of today’s video players and how they benefit from throughput
prediction. www.lynda.com uses fixed bitrate of 520Kbps (360p) by default. Netflix
(www.netflix.com/WiMovie/70136810?tr kid=439131) takes roughly 25 seconds to adapt from
the initial bitrate (560Kbps) to the highest sustainable bitrate (3Mbps).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 30 60 90 120 150

C
D

F

Throughput/Bitrate (Mbps)

Mean ideal bitrate
 = 27.2Mbps

Throughput
Ideal bitrate

Figure 6.1: Distribution of throughput in the FCC dataset

6.1 Background

6.1.1 Today’s Suboptimal Initial Bitrate Selection
A video player should ideally pick the highest initial bitrate that is sustainable (i.e., below the
throughput), in order to ensure desired user experience of video streaming. Existing approaches
to initial bitrate selection, however, are inefficient. Table 6.1 shows measured anecdotal evidence
of such inefficiencies from several commercial providers. Fixed-bitrate players that use the same
bitrate for the whole video session often intentionally use low bitrate to prevent mid-stream
rebuffering (e.g., NFL, Lynda). Even if bitrate can be adapted midstream (e.g., [22, 121, 190])
the player often conservatively starts with a low bitrate and takes a significant time to reach the
optimal bitrate (e.g., Netflix). Furthermore, for short video clips such adaptation may not reach
the desired bitrate before the video finishes (e.g., Vevo music clips).

6.1.2 Dataset
We use two datasets of HTTP throughput measurement to evaluate DDA’s performance: (i) a
primary dataset collected by FCC’s Measuring Broadband American Platform [14] in September
2013, and (ii) a supplementary dataset collected by a major VoD provider in China.
FCC dataset: This dataset consists of 9.9 million sessions and is collected from 6204 clients
in US spanning 17 ISPs. In each test, a client set up an HTTP connection with one of the web
servers for a fixed duration of 30 seconds and attempted to download as much of the payload as
possible. It also recorded average throughput at 5 second intervals during the test. The test used

72

Feature Description # of unique values
ClientID Unique ID associated to a client 6204
ISP ISP of client (e.g., AT&T) 17
State The US state where the client is located 52
Technology The connection technology (e.g., DSL) 5
Target The server-side identification 30
Downlink Advertised download speed of the last connec-

tion (e.g., 15MB/s)
36

Uplink Advertised upload speed of the last connection
(e.g., 5MB/s)

25

Table 6.2: Basic statistics of the FCC dataset.

three concurrent TCP connections to ensure the line was saturated. Reader may refer to [15] for
more details on the methodology.

Figure 6.1 shows the throughput distribution of all sessions. It also shows the distribution of
ideal bitrate (i.e., highest bitrate chosen from {0.016, 0.4, 1.0, 2.5, 5.0, 8.0, 16.0, 35.0}Mbps1

below the throughput). With perfect throughput prediction, we should be able to achieve average
bitrate of 26.9Mbps with no session suffering from re-buffering. Compared to the fixed initial
bitrate (e.g., 2.5Mbps) used today, this suggests a large room of improvement.

The clients represent a wide spatial coverage of ISPs, geo-locations, and connection tech-
nology (see Table 6.2). Although the number of targets are relatively small, the setting is very
close to what real-world application providers face – the clients are widely distributed while the
servers are relatively fewer. In addition, its measurement frequency (i.e., each client fetching
content from each server once every hour) provides a unique opportunity to test the prediction
algorithms’ sensitivity to different measurement frequency. For instance, to emulate the effect
of reduced data, we take one (the first) 5-second throughput sample from each test, and then
randomly drop (e.g., 90% of) the available measurements to simulate a dataset where each client
accesses a server less frequently (e.g., in average once every 10 hours).
Supplementary VoD dataset: As a supplementary dataset, we use throughput dataset of 0.8
millions VoD sessions, collected by a major video content provider in China. Each video session
has the average throughput and a set of features, that are different from the FCC dataset, including
content name, user geolocation, user ID and server IP. This provides an opportunity to test the
sensitivity of the algorithms to different sets of available features.

6.1.3 Limitations of Simple Predictors

This section starts by showing that simple predictors fail to yield desirable prediction accuracy,
and then shows fundamental challenges of cross-session throughput prediction.

• First, we consider the last-mile predictor, which uses sessions with the same downlink fea-
ture (see definition in Table 6.2) to predict a new session’s throughput. This is consistent

1The bitrates are recommended upload encoding by YouTube [34].

73

 0

 0.5

 1

 0 0.5 1 1.5 2

C
D

F

Error (MB/s)

(a) Non-normalized absolute

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Error (%)

(b) Normalized absolute

 0

 0.5

 1

-2 -1 0 1 2

C
D

F

Error (MB/s)

(c) Non-normalized signed

 0

 0.5

 1

-1 -0.5 0 0.5 1

C
D

F

Error (%)

(d) Normalized signed

Figure 6.2: Prediction error of the last-mile predictor

 0

 0.5

 1

 0 0.5 1 1.5 2

C
D

F

Error (MB/s)

(a) Non-normalized absolute

 0

 0.5

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Error (%)

(b) Normalized absolute

 0

 0.5

 1

-2 -1 0 1 2

C
D

F

Error (MB/s)

(c) Non-normalized signed

 0

 0.5

 1

-1 -0.5 0 0.5 1

C
D

F

Error (%)

(d) Normalized signed

Figure 6.3: Prediction error of last-sample predictor

to the conventional belief that last-mile connection is usually the bottleneck. However, Fig-
ure 6.2a and 6.2b show substantial prediction error2, especially on the tail where at least
20% of sessions have more than 20% error (Figure 6.2b). To put it into perspective, if a
player chooses bitrate based on throughput prediction that is 20% higher or lower than the
actual, the video session will experience mid-stream re-buffering or under-utilize the con-
nection. Finally, Figure 6.2c and 6.2d show that the prediction error is two-sided, suggesting
that simply adding or multiplying the prediction by a constant factor will not fix the high
prediction error.
• Second, we consider the last-sample predictor, which uses the throughput of the last session

of the same client-target pair to predict the throughput of a future session. However, the last-
sample predictor is not reliable as the last sample is too sparse and noisy to offer reliable
and accurate prediction. Figure 6.3 shows that, similar to the last-mile predictor, (i) the
prediction error, especially on the tail, is not desirable – more than 25% of sessions have more
than 20% normalized prediction error, and (ii) the prediction error is two-sided, suggesting
the prediction error cannot be fixed by simply adding or multiplying the prediction with a
constant factor.

Challenges: The fundamental challenge to produce accurate prediction is the complex under-
lying interactions between session features and their throughput. In particular, there are two
manifestations of such high complexity.

First, the simple predictors are both based on single feature (e.g., downlink or time), while
combinations of multiple features often have a much greater impact on throughput than individ-
ual features. This can be intuitively explained as the throughput is often simultaneously affected

2Given throughput prediction p and actual throughput q, we define four types of prediction error: non-normalized
absolute prediction error: |p− q|, normalized absolute prediction error: |p−q|

q , non-normalized signed prediction
error: p−q, normalized signed prediction error: p−q

q .

74

1

10

100

1000

10000

[Frontier,DSL,X]

[Frontier,DSL]
[DSL,X]

[Frontier,X]

[Frontier]
[DSL] [X]

A
vg

. t
hr

ou
gh

pu
t

(K
B

/s
)

(a) The average throughput of sessions matching
all and a subset of three features: ISP = Fron-
tier, Technology = DSL and Target = sam-
knows1.lax9.level3.net (X). Time: 18:00-00:00 UTC,
Oct 7, 2013

 20

 25

 30

 35

 40

03:00 09:00 15:00 21:00

R
e
la

ti
v
e
 i
n
fo

rm
a
ti
o
n

g
a
in

 (
%

)

Time (Oct 1 2013 UTC)

Frontier
TimeWarner

(b) The relative information gain of Target in two ISPs
over time.

Figure 6.4: Two manifestations of the high complex interaction between session features and the
throughput.

by multiple factors (e.g., the last-mile connection, server load, backbone network congestion,
etc), and that means sessions sharing individual features may not have similar throughput. Fig-
ure 6.4a gives an example of the effect of feature combinations. It shows the average throughput
of sessions of ISP Frontier using DSL fetching target samknows1.lax9.level3.net, and average
throughput of sessions having same values on one or two of the three features. The average
throughput when all three features are specified is at least 50% lower than any of other cases.
Thus, to capture such effect, the prediction algorithm must be expressive to combine multiple
features.

Second, the simple predictors both use same feature to all sessions, but the impact of same
features on different sessions could be different. For instance, throughput is more sensitive to
last-mile connection when it is unstable (e.g., Satellite), and it depends more to ISP during peak
hours when the network tends to be the bottlenecks. Figure 6.4b shows a real-world example.
Relative information gain3 is often used to quantify how useful a feature is used for prediction.
The figure shows the relative information gain of feature Target on the throughput of sessions
in two ISPs over time. It shows that the impact of the same feature varies across sessions in
different hours and in different ISPs.

We will see in Section 6.3 that due to the complex underlying interactions between features
and throughput, it is non-trivial for conventional machine learning algorithms (e.g., decision tree,
naive bayes) to yield high accuracy.

6.2 Design of DDA
In this section, we present the DDA approach that yields accurate throughput prediction (Sec-
tion 6.3). We start with an intuitive description of DDA before formally describing the algorithm.

3RIG(Y |X) = 1−H(Y |X)/H(Y), where H(Y) and H(Y |X) are the entropy of Y and the average conditional
entropy of Y [18].

75

Sessions under prediction

s1 s2 s3

+ High accuracy
 Low reliability

+ High reliability
 Low accuracy

Pool of prediction models

Nearest Neighbor
<All features, Last 5 min>

Global
<No feature, All history>

Figure 6.5: Mapping between sessions under prediction and prediction models.

6.2.1 Insight of DDA

At a high level, DDA finds for any session s a prediction model – a pair of features and time
range, which is used to aggregate history sessions that match the specific features with s and
happened in the specific range.

To motivate how DDA maps a session to a prediction model, let us consider two straw-
men of session-model mapping shown in Figure 6.5. The first strawman maps each session s
to the “Nearest Neighbor” prediction model (dash arrows), which aggregates only history ses-
sions matching all features with s and happening in very short time (e.g., 5 minute) before s.
Theoretically, “Nearest Neighbor” model should be highly accurate as it represents sessions that
are the most similar to s, but history sessions meeting this requirement are too sparse to pro-
vide reliable prediction. Alternatively, one can map any s to the “Global” prediction model (dot
arrows), which aggregates all history sessions regardless of their features or happening time.
While “Global” model is highly reliable as it has substantial samples in history, the accuracy is
low because it does not capture the effect of feature combination introduced in the last section.

Ideally, we would like achieve both high accuracy and high reliability. To this end, DDA
(shown by solid arrows in Figure 6.5) differs from the above strawmen in two important aspects.
First, DDA finds for a given session a prediction model between the Nearest Neighbor and Global
prediction models, so that it strikes a balance between being closer to Nearest Neighbor for
accuracy and being closer to Global for reliability. The resulting prediction model should be
expressive (e.g., have more features) and yet have enough samples to offer a reliable prediction.
Second, instead of mapping all sessions to the same prediction model, DDA maps different
sessions to different prediction models, which allows DDA to address inherent heterogeneity
that the same feature has different impact on different sessions.

6.2.2 Algorithm

Overall workflow: DDA uses two steps to predict the throughput of a new session s.
1. First, DDA learns a prediction model M∗s based on history data. A prediction model is a pair

of feature combination and time range.

76

2. Second, DDA estimates s’s throughput by the median throughput of sessions in Agg(M∗s ,s)
that match s on the feaures of M∗s and are in the time range of M∗s . I.e., DDA’s prediction is
Pred(s) = Median(Agg(M∗s ,s)).

Learning of prediction model: First, DDA learns a prediction model M∗s based on history
data from a pool of all possible prediction models, i.e., pairs of all feature combinations (i.e.,
2n subsets of n features in Table 6.2) and possible time windows. Specifically, the possible time
windows include time windows of certain history length (i.e., last 10 minutes to last 10 hours)
and those of same time of day/week (i.e., same hour of day in the last 1-7 days or same hour of
week in the last 1-3 weeks).

The objective of M∗s is to minimize the prediction error, Err(Pred(s),sw) =
|Pred(s)−sw|

sw
, where

sw is the actual throughput of s. That is,

M∗s = argmin
M

Err(Median(Agg(M,s)),sw) (6.1)

Rather than solving Eq 6.1 analytically, DDA takes a data-driven approach and finds the best
prediction model over a set of history sessions Est(s) (defined shortly). Formally, the process
can be written as following:

M∗s = argmin
M

1
|Est(s)| ∑

s′∈Est(s)
Err(Median(Agg(M,s′)),s′w) (6.2)

Est(s) should include sessions that are likely to share the best prediction model with s. In DDA,
Est(s) consists of sessions that match features Target, ISP, Technology and Downlink with s and
happened within 4 hours before s.

Estimating throughput: Second, DDA estimates s’s throughput by the learned prediction
model M∗s . To make the prediction Pred(s) reliable, DDA ensures that Pred(s) is based on a
substential amount of sessions in Agg(M∗s ,s). Therefore, if M∗s yields Agg(M∗s ,s) with less than
20 sessions, DDA will remove that model from the pool and learn the prediction model as in the
first step again. We have also found that for some pairs of client and server, DDA’s prediction
error is one-sided. For instance, the throughput of a particular client-server pair is 1Mbps, while
the best prediction model always predicts 2Mbps (i.e., a one-sided 100% error). We compensate
this error by changing Median(S) to Median(S,k) which reports the median of throughput in S
times a factor k. To train a proper value of k, DDA first uses Eq 6.2 to learn M∗s by assuming
k = 1, and then, DDA trains the best factor k∗s for s as follows:

k∗s = argmin
k

1
|Est(s)| ∑

s′∈Est(s)
Err(Median(Agg(M∗s ,s

′),k),s′w)

where k is chosen from 0 to 5. Finally, the prediction made by DDA will be Median(Agg(M∗s ,s),k
∗
s).

77

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 15 30 45 60

C
D

F

Prediction error (%)

DDA
DT
LS
NB
LM

(a) FCC

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

C
D

F

Prediction error (%)

DDA
DT
LS
NB

(b) VoD China

Figure 6.6: CDF of prediction error.

6.3 Evaluation
This section evaluates the prediction accuracy of DDA (Section 6.3.1) and how much DDA
improves video bitrate (Section 6.3.2). Overall, our findings show the following:
1. DDA can predict more accurately than other predictors.
2. With higher accuracy, DDA can select better bitrate.

6.3.1 Prediction Accuracy

Methodology: As points of comparison, we use implementations of Decision Tree (DT) and
Naive Bayes (NB) with default configurations in weka, a popular ML tool [30]. For a fair
comparison, all algorithms use the same set of features. We also compare them with last-mile
predictor (LM)4 and last-sample predictor (LS), introduced in Section 6.1. We update the model
of other algorithms in a same way as DDA: for each session under prediction, we use all available
history data before it as the train data. Each session’s timestamp is grouped into 10-minute inter-
vals and used as discrete time feature. By default, we use absolute normalized error (Section 6.2)
as the metric of prediction error, and the results are based on the FCC dataset, unless specified
otherwise.
Distribution of prediction error: Figure 6.6 shows the distribution of prediction error of DDA
and other algorithms. DDA outperforms all algorithms, especially on the tail of prediction error.
For the FCC dataset (Figure 6.6a), 80%ile prediction error of DDA is 50% to 80% lower than
that of other algorithms, and DDA has less than 20% sessions with more than 10% prediction
error, while all other algorithms have at least 30% session with more than 10% error. While
the VoD dataset in general has higher prediction error than the FCC dataset (due to the lack
of some features such as last-connection and longitudinal information), DDA still outperforms
other algorithms, showing that DDA is robust to the available features.
Dissecting prediction accuracy of DDA: To evaluate the prediction accuracy in more details,
we first partition the prediction error by four most popular ISPs (6.7a) and by different time

4LM is not applicable to the VoD dataset as it has no feature related to last-mile connection.

78

 0

 20

 40

 60

 80

Comcast

TimeWarner

Verizon
Charter

P
re

d
ic

ti
o
n
 e

rr
o
r

(%
)

DDA
DT
NB

(a) Prediction error vs. ISP

 0

 20

 40

 60

 80

0:00-6:00

6:00-12:00

12:00-18:00

18:00-24:00P
re

d
ic

ti
o
n
 e

rr
o
r

(%
)

DDA
DT
NB

(b) Prediction error vs. time of day (UTC)

 0

 40

 80

 120

 160

0.0 0.1 0.3 0.5 0.7P
re

d
ic

ti
o
n
 e

rr
o
r

(%
)

Random drop rate

DDA
DT
NB

(c) Prediction error vs. random drop rate

Figure 6.7: Dissecting DDA prediction error. The boxes show the 10-20-50-80-90 percentile.

of day (6.7b). Although the ranking of algorithms varies across different partitions, DDA con-
sistently outperforms other two algorithms (DT, NB), especially in the tail of 90%ile. Finally,
Figure 6.7c evaluates DDA’s sensitivity to measurement frequency by comparing the distribu-
tion of prediction error of three algorithms under different random drop rates (Section 6.1.2). It
shows that DDA is more robust to measurement frequency than the other algorithms.

6.3.2 Improvement of Bitrate Selection

Methodology: To evaluate bitrate selected based on some prediction algorithm, we consider
a simple bitrate selection algorithm (while a more complex algorithm is possible, it is not the
focus of this paper): given a session of which the prediction algorithm predicts the throughput
by w, the bitrate selection algorithm simply picks highest bitrate from {0.016, 0.4, 1.0, 2.5, 5.0,
8.0, 16.0, 35.0}Mbps [34] and below αw, where α represents the safety margin (e.g., higher α

means higher bitrate at the risk of exceeding the throughput). We use two metrics to evaluate the
performance: (1) AvgBitrate – average value of picked bitrate, and (2) GoodRatio – percentage
of sessions with no re-buffering (i.e., picked bitrate is lower than the throughput). Therefore,
one bitrate selection algorithm is better than another if it has both higher AvgBitrate and higher
GoodRatio. As points of reference, “Global” bitrate selection algorithm picks the same bitrate for
any session, which represents how today’s players select starting bitrate. As a optimal reference
point, “Ideal” bitrate selection algorithm picks the bitrate identical to the throughput for any
session (Section 6.1.2).

Overall improvement: Table 6.3 compares DDA-based bitrate selection and the “Global”. In

79

FCC VoD China
AvgBitrate GoodRatio AvgBitrate GoodRatio

Global 2.5Mbps 88.2% 2.5Mbps 77.5%
DDA 13.3Mbps 99.5% 2.7Mbps 88.2%
Ideal 27.2Mbps 100% 3.5Mbps 100%

Table 6.3: Comparing DDA and “Global” in AvgBitrate and GoodRatio.

Mean/median
prediction error

AvgBitrate GoodRatio

DDA 9.0%/2.3% 13.3Mbps 99.5%
DT 23.1%/3.4% 13.0Mbps 91.0%
LS 28.7%/9.8% 12.3Mbps 90.6%
NB 91.4%/17.1% 12.2Mbps 71.8%

Table 6.4: Higher accuracy means better bitrate selection.

both algorithms, we use α = 0.8 for the FCC dataset, and α = 0.6 for the VoD dataset. In both
datasets, DDA leads to higher AvgBitrate and GoodRatio, and DDA is much closer to “Ideal”
than “Global”. Note that the VoD dataset still has a substantial room of improvement due to the
relatively low prediction accuracy (Figure 6.6b).
Bitrate selection vs. prediction accuracy: Next, we examine the intuition that higher pre-
diction accuracy leads to higher performance of bitrate selection. Table 6.4 shows the bitrate
selection performance as a function of median prediction error. We consider four prediction al-
gorithms (DDA, DT, LS, NB). For a fair comparison, the bitrate selection algorithm always uses
α = 0.8. As prediction error increases, the performance of bitrate selection degrades in terms of
both lower AvgBitrate and lower GoodRatio.
Understanding bitrate improvement: There is a natural tradeoff between AvgBitrate and
GoodRatio (e.g., higher α means higher AvgBitrate at the cost of lower GoodRatio). Fig-
ure 6.8a shows such tradeoff of various bitrate selection algorithms by adjusting the value α .
It is shown that DDA-based bitrate selection strikes a better tradeoff of higher AvgBitrate and
higher GoodRatio (i.e., more towards the top-right corner of the figure).

Finally, we would like to test the robustness of DDA-based bitrate selection in different re-
gions. Figure 6.8b compares the AvgBitrate of DDA with “Global” and “Ideal” in four popular
ISPs. DDA uses the maximum α on the tradeoff curve in Figure 6.8a that ensures at least 95%
GoodRatio, while “Global” only has GoodRatio of 88.2%. Across all ISPs, DDA consistently
outperforms “Global” and achieve at least 60% of the “Ideal”.

6.4 Related Work
At a high-level, our work is related to prior work in measuring Internet path properties, bandwidth
measurements, and video-specific bitrate selection. With respect to prior measurement work, our
key contribution is showing a practical data-driven approach for throughput prediction. In terms

80

 0

 2

 4

 6

 8

 10

 12

 14

 16

 70 80 90 100

A
v
g
B

it
ra

te
 (

M
b
p
s
)

GoodRatio (%)

DDA
DT
LS
NB

Global

(a) AvgBitrate-GoodRatio tradeoff

0

10

20

30

40

50

Comcast

TimeWarner
Verizon

Charter

A
vg

B
itr

at
e

(M
bp

s)

Global
DDA
Ideal

(b) Performance by ISP

Figure 6.8: In-depth analysis of bitrate selection

of video, our predictive approach offers a more systematic bitrate selection mechanism.
Measuring path properties: Studies on path properties have shown prevalence and persis-
tence of network bottlenecks (e.g., [113]), constancy of various network metrics [230], longitu-
dinal patterns of cellular performance (e.g., [159]), and spatial similarity of network performance
(e.g., [53]). While DDA is inspired by these insights, it addresses a key gap because these efforts
fall short of providing a prescriptive algorithm for throughout prediction.
Bandwidth measurement: Unlike prior “path mapping” efforts (e.g., [83, 148, 173, 193]), DDA
uses a data-driven model based on available session features (e.g., ISP, device). Specifically,
video measurements are taken within a constraint sandbox environment (e.g., browser) that do
not offer interface for path information (e.g., traceroute). Other approaches use packet-level
probing to estimate the end-to-end performance metrics (e.g., [112, 119, 169, 196]). Unlike
DDA, these require additional measurement and often need full client/server-side control which
is often infeasible in the wild. A third class of approaches leverages the history of the same
client-server pair (e.g., [111, 120, 154, 201, 211]). However, they are less reliable when the
available history of the same client and server is sparse.
Bitrate selection: Choosing high and sustainable bitrate is critical to video quality of experi-
ence [51]. Existing methods (e.g., [121, 153]) require either history measurement between the
same client and server or the player to probe the server to predict the throughput. In contrast,
DDA is able to predict throughput before a session starts. Other approaches include switching
bitrate midstream (e.g., [115, 207, 224]) but do not focus on the initial bitrate problem which is
the focus of DDA.

6.5 Summary
Inspired by the DDN paradigm, this chapter has presented DDA to demonstrate the feasibility
of using throughput measurement on many HTTP sessions to accurately predict throughput and
has applied DDA to initial video bitrate selection. DDA uses another illustration of the per-
sistent critical structures that HTTP throughput depends on a subset of session-level features,

81

which persist on long timescales. Evaluation based on two real-world datasets shows (i) DDA
predicts throughput more accurately than simple predictors and conventional machine learning
algorithms, and (ii) with more accurate throughput prediction, a player can choose a higher-yet-
sustainable bitrate (e.g., compared to initial bitrate without prediction, DDA leads to 4× higher
average bitrate with less sessions using bitrate exceeding the throughput).

82

Chapter 7

Improving QoE via Exploration and
Exploitation at Scale

The previous two chapters have formulated the DDN process as a prediction problem, where
we use observed QoE of recent sessions to build a QoE prediction system to inform the optimal
selection of key configurations (e.g., server, bitrate, relay). While such prediction-based formu-
lation has shown promising QoE improvements, it is necessarily incomplete as it: (1) suffers
from many known biases (e.g., incomplete visibility) and (2) cannot respond to sudden changes
(e.g., load changes). Drawing on a parallel from machine learning, we argue that data-driven
QoE optimization should instead be cast as a real-time exploration and exploitation (E2) process
rather than as a prediction problem. However, applying E2 in network applications, introduces
architectural (e.g., how to update decisions in real time with fresh data) and algorithmic (e.g.,
capturing complex interactions between session features vs. QoE) challenges.

In this chapter, we present Pytheas, a control platform which addresses these challenges using
a group-based E2 mechanism. Inspired by the insight of persistent critical structures, we observe
that application sessions sharing the same features (e.g., IP prefix, location) can be grouped so
that we can run E2 algorithms at a per-group granularity. This naturally captures the complex
interactions and is amenable to realtime control with fresh measurements. Using an end-to-end
implementation and a proof-of-concept deployment in CloudLab, we show that Pytheas improves
video QoE over a state-of-the-art prediction-based system by up to 31% on average and 78% on
90th percentile of per-session QoE.

This chapter is organized as follows. We begin with the limitation of prediction-based work-
flow (Section 7.1) and why real-time E2 is a better abstraction for DDN (Section 7.2). Then
we articulate key technical challenges for real-time E2, and outline the design rationale behind
Pytheas (Section 7.3) to address the challenges. We then present more details of Pytheas on its
algorithm design (Section 7.4), system design (Section 7.5), and implementation issues (Sec-
tion 7.6). Finally, we evaluate the performance of Pytheas in Section 7.7, discuss related work in
Section 7.8, and summarize the chapter in Section 7.9.

83

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000

 0 20 40 60 80 100 120 140 160

J
o

in
T

im
e

 (
m

s
)

Time (sec)

Random data collection
Optimal

(a) Example A: Suboptimal quality due to fixed
random data collection.

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500
 5000

 0 100 200 300 400 500

J
o

in
T

im
e

 (
m

s
)

Time (sec)

Periodic prediction update
Optimal

(b) Example B: Overload and oscillations between
decisions due to periodic prediction.

Figure 7.1: Limitations of prediction-oriented abstraction (e.g., CFA [126]) manifested in two
real examples.

7.1 Limitations of Predictive Approaches
Many prior approaches (e.g., [101, 126, 146, 199]) for data-driven QoE optimization use a
prediction-based workflow. That is, they periodically train a quality prediction model based on
passive measurements to inform decisions for future sessions; e.g., using history data to decide
what will be the best relay server for a Skype call or the best CDN for a video session? While
such prediction-based approaches have proved useful, they suffer from well-known limitations,
namely, prediction bias and slow reaction [110, 193]. Next, we highlight these issues using
CDN selection in video streaming as a concrete use case.

7.1.1 Limitation 1: Prediction Bias

A well-known problem of prediction-based workflows is that the prediction can be biased by
prior decisions. Because the input measurement data are based on previous set of best decisions,
we will not have a reliable way to estimate the potential quality improvements of other decisions
in the future [193]. A simple solution is to use a fixed percentage of sessions to explore different
decisions. This could eliminate the above prediction bias. However, it can still be suboptimal,
since it might either let too many sessions use suboptimal decisions when quality is stable, or
collect insufficient data in presence of higher variance.

Example A: Figure 7.1a shows a trace-driven evaluation to highlight such prediction biases. We
use a trace of one of the major video providers in US. As a baseline, we consider prior work
called CFA [126], which uses a fixed fraction of 10% sessions to randomly explore suboptimal
decisions.1 We see that it leads to worse average video startup latency, or join time, than an opti-
mal strategy that always picks the CDN with the best average quality in each minute. Each video
session can pick CDN1 or CDN2, and in the hindsight, CDN1 is on average better CDN2, except
between t=40 and t=120, when CDN2 has a large variance. Even when CDN1 is consistently
better than CDN2, CFA is worse than optimal, since it always assigns 10% of sessions to use
CDN2. At the same time, when CDN2 becomes a better choice, CFA cannot detect this change

1The process begins by assigning sessions uniformly at random to all decisions in the first minute, and after that,
it assigns 90% sessions to the optimal decisions based on the last minute.

84

in a timely fashion as 10% is too small a fraction to reliably estimate quality of CDN2.

7.1.2 Limitation 2: Slow Reaction
Due to the time taken to aggregate sufficient data for model building, today’s prediction-based
systems update quality predictions periodically on coarse timescales; e.g., CFA updates mod-
els every tens of seconds [126], and VIA updates its models every several hours [125]. This
means that they cannot quickly adapt to changes in operating conditions which can cause model
drifts. First, if there are sudden quality changes (e.g., network congestion and service outage),
prediction-based approaches might result in suboptimal quality due to its slow reaction. Further-
more, such model shifts might indeed be a consequence of the slow periodic predictions; e.g.,
the best predicted server or CDN will receive more requests and its performance may degrade as
its load increases.
Example B: We consider an AS and two CDNs. For each CDN, if it receives most sessions from
the AS, it will be overloaded, and the sessions served by it will have bad quality. Figure 7.1b
shows that CFA, which always picks the CDN that has the best quality in the last minute, has
worse quality than another strategy which assigns half of sessions to each CDN. This is be-
cause CFA always overloads the CDN that has the best historical performance by assigning most
sessions to it, and CFA will switch decisions only after quality degradation occurs, leading to
oscillations and suboptimal quality.

At a high level, these limitations of prediction-based approaches arise from the logical sep-
aration between measurement collection and decision making. Next, we discuss what the right
abstraction for data-driven QoE optimization should be to avoid these limitations.

7.2 Casting QoE Optimization as a Exploration-Exploitation
Process

To avoid these aforementioned limitations of prediction-based approaches, ideally we want a
framework where decisions are updated in concert with measurement collection in real time.
There is indeed a well-known abstraction in the machine learning community that captures this—
exploration and exploitation (E2) processes [215]. Drawing on this parallel, we argue why data-
driven QoE optimization should be cast instead as a real-time E2 process rather than a prediction-
based workflow.
Background on exploration and exploitation: An intuitive way to visualize the exploration
and exploitation (E2) process is through the lens of a multi-armed bandit problem [215]. Here, a
gambler pulls several slot machines, each associated with an unknown reward distribution. The
goal of the gambler is to optimize the mean rewards over a sequence of pulls. Thus, there is
some intrinsic exploration phase where the gambler tries to learn these hidden reward functions,
and subsequent exploitation phase to maximize the reward. Note that the reward functions could
change over time, and thus this is a continuous process rather than a one-time shot.
QoE optimization as E2 (Figure 7.2): Given this framework, we can see a natural mapping
between E2 and data-driven QoE optimization. Like E2, data-driven QoE optimization observes

85

RewardReward

Goal:&Maximize&mean&rewards&
given&a&limited&amount&of&pulls

Slot+machines

Pulls+by+a+gambler

(a)$Exploration$and$exploitation$
(Multi2armed$bandits)

QoEQoE

Goal:&Optimize&mean&quality&
given&a&limited&set&of&sessions

Decision+space

Sessions

(b)$Data2driven$QoE optimization

…

Figure 7.2: Casting data-driven QoE optimization into formulation of exploration and exploita-
tion (E2).

the QoE (i.e., reward) of a decision every time the decision is used (i.e., pulled) by a session. Our
goal is to maximize the overall QoE after a sequence of sessions.

Casting data-driven optimization as E2 not only provides a systematic framework for data-
driven QoE optimization, but also allows us to leverage well-known algorithms (e.g., [48]) from
the machine learning literature. As E2 integrates the measurement collection (exploration) and
decision making (exploitation) in a joint process, we can dynamically explore decisions whose
quality estimation has high uncertainty, and exploit decisions that are clearly better. For instance,
in Example A, an E2 process could reduce traffic for exploration when QoE is stable (before 40
second and after 120 seconds), and raise it when QoE changes (between 40 second and 120
second). By running E2 in real time with the most up-to-date measurement data, we could
detect QoE drift as soon as some sessions have experienced them, and adapt to them faster
than prediction-based approaches. For instance, in Example B, real-time E2 would detect load-
induced QoE degradation on CDN1 as soon as its QoE is worse than CDN2, and start switching
sessions to CDN2 before overloading CDN1.2

7.2.1 Challenges of E2 in the Networking Context

While E2 offers the right abstraction in contrast to prediction-based approaches, applying it in
network applications raises practical challenges:
• Traditional E2 techniques (e.g., [81, 141, 215]) need fresh measurements of all sessions,

but getting such a fresh and global view is challenging, because application providers store
fresh data in geo-distributed clusters, called frontend clusters, which only have a partial
view across sessions. Existing analytics framework for such geo-distributed infrastructure,
however, either trade global view for data freshness (e.g., [101]), or target query patterns of
a traditional database (e.g., [170]), not millions of concurrent queries from geo-distributed
clients, as in our case.

2Note that we do not need to know the capacity of each CDN, which is often unknown to content providers.

86

• Traditional E2 techniques also make strong assumptions about the context that affects the
reward of a decisions, but they may not hold in network settings. For instance, they often
assume some notion of continuity in context (e.g., [189]), but even when some video sessions
match on all aspects of ISP, location, CDN resource availability, they may still see very
different QoE, if they differ on certain key feature (e.g., last-hop connection) [126].

7.3 Overview of Pytheas Ideas
To address the practical challenges of applying E2 in network applications, we observe a key
domain-specific insight in networked applications that enables us to address both challenges in
practice. We highlight the intuition behind our insight, which we refer to as group-based E2, and
then provide an overview of the Pytheas system which builds on this insight.
Insight of Group-based E2: Our insight is that the “network context” of application sessions
is often aligned with their “network locality”. That is, if two sessions share the context that
determines their E2 decisions, they will be likely to match on some network-specific features.
We see manifestations of this insight in many settings. For instance, video sessions with similar
QoE from the same CDN/server tend to match on client IP prefix [126, 199]. Similarly, VoIP
calls between the same ASes are likely to share the best relays [125], and clients from same /24
IP prefix will have similar web load time from the same edge proxy [146]. In Section7.5.2, we
validate this insight with a real-world dataset.

This insight inspires the notion of group-based E2, which can address the above challenges
by enabling an effective decomposition of the E2 process (Figure 7.3a). Specifically, instead of a
global E2 process over all sessions, we group together sessions with similar context by network
locality and other key features (such as device and location), and use one E2 process for each
group. Since sessions within a group share network locality (e.g., in the same locations and IP
prefixes), they are likely to be mapped to the same frontend cluster. By running the per-group
E2 logic in this frontend cluster, we can update decisions with fresh data from other sessions in
the group received by this frontend cluster. Furthermore, as each group consists of sessions with
similar context, it is sufficient to use traditional E2 techniques based on the data of sessions in one
group, without needing a global view of all sessions. It is important to note that sessions are not
grouped entirely based on IP prefixes. The sessions in the same network locality could have very
different QoE, depending on the device, last-hop connectivity, and other features. Therefore, we
group sessions on a finer granularity than IP prefix.
System overview: Figure 7.3b shows how the group-based E2 is realized in the Pytheas archi-
tecture. Each session group is managed by one per-group E2 process run by one frontend cluster.
When a session comes in, it sends a request for its control decisions, which includes its features,
to the Pytheas system. The request will be received by a frontend cluster, which maps the session
to a group based on its features, then gets the most up-to-date decision from the local per-group
E2 process, and returns the decision to the session. Each session measures its QoE and reports it
to the same frontend cluster. When this frontend receives the QoE measurement, it again maps
the session to a group, and updates the E2 logic of the group with the new measurement. In
most cases, the E2 logic of a group is run by the same cluster that receives the requests and
measurements of its sessions, so E2 logic can be updated in real time.

87

(a)$Logical$view (b)$Architectural$view

Frontend

Backend

Frontend

Figure 7.3: Illustration of group-based E2.

The backend cluster has a global, but slightly stale, view of QoE of all sessions, and it de-
termines the session groups – which group each session belongs to and which frontend should
run the per-group logic for each group. Normally, such grouping is updated periodically on a
timescale of minutes. During sudden changes such as frontend cluster failures, it can also be
triggered on demand to re-assign groups to frontend clusters.

The following sections will present the algorithms (Section 7.4) and system design (Sec-
tion 7.5) of Pytheas, and how we implemented it (Section 7.6) in more details.

7.4 Pytheas Algorithms
Using group-based E2, Pytheas decouples real-time E2 into two parts: a session-grouping logic
to partition sessions into groups, and a per-group E2 logic that makes per-session decisions. This
section presents the design of these two core algorithmic pieces and how we address two issues:3

(i) Grouping drift: the session-grouping logic should dynamically regroup sessions based on the
context that determines their QoE; and (ii) QoE drift: the per-group control logic should switch
decisions when QoE of some decisions change.

7.4.1 Session-Grouping Logic
Recall that sessions of the same group share the same factors on which their QoE and best deci-
sions depend. As a concrete example, let us consider CDN selection for video. Video sessions in
the same AS whose QoE depends on the local servers of different CDNs should be in the same
group. However, video sessions whose QoE is bottlenecked by home wireless and thus is inde-
pendent to CDNs should not be in the same group. In other words, sessions in the same group
share not only the best decision, but also the factors that determine the best decisions.

A natural starting point for this grouping decision is using the notion of critical features
proposed in prior work [126]. At a high level, if session A and B have the same values of critical
features, they will have similar QoE. Let S(s,F,∆) denote the set of sessions that occur within

3We assume in this section that the per-group control logic is updated in real time (which will be made possible
in the next section).

88

the last ∆ time interval and share the same feature values as s on the set of features F , and let
Q(X) denote the QoE distribution of a session set X . Then, the critical feature set F∗ of a session
s:

argminF⊆Fall,|S(s,F,δ)|>n|Q(S(s,Fall,∆))−Q(S(s,F,∆))|

That is, the historical session who match values on critical features F∗ with s have very similar
QoE distribution to those matching on all features with s on a long timescale of ∆ (say last hour).
The clause |S(s,F,δ)| > n ensures that there is sufficient mass in that set to get a statistically
significant estimate even on small timescales δ (e.g., minutes). Such a notion of critical features
has also been (implicitly) used in many other applications; e.g., AS pairs in VoIP [125] and /24
prefixes for web page load time [146]. Thus, a natural strawman for grouping algorithm is to
groups sessions who match on their critical features, i.e., they have similar QoE.

However, we observe two problems inherent to critical features, which make it unsuitable to
directly group sessions based on critical features: (1) First, grouping sessions based on critical
features may result in groups that consist of only sessions using similar decisions, so their mea-
surement will be biased towards a subset of decisions. (2) Second, grouping sessions based on
critical features will also create overlaps between groups, so E2 logic of different groups could
make conflicting decisions on these overlapping sessions. For instance, consider two Comcast
sessions, s1 and s2, if the critical feature of s1 is ISP, and the critical feature of s2 is its local WiFi
connection, s2 will be in both the “WiFi” group and the “Comcast” group.

To address these issues, we formulate the goal of session grouping as following. Given a
session set, the session-grouping logic should output any non-overlapping partition of sessions
so that if two sessions s1 and s2 are in the same group, s1 and s2 should match values on s1 or
s2’s non-decision-specific critical features. Non-decision-specific features are the features inde-
pendent of decisions; e.g., “device” is a feature independent of decisions, since video sessions of
the same device can make any decisions regarding CDN and bitrate.

Operationally, we use the following approach to achieve such a grouping. First, for each
session, we learn its critical features, and then ignore decision-specific features from the set of
critical features of each session. Then, we recursively group sessions based on the remaining
critical features in a way that avoids overlaps between groups. We start with any session s1, and
create a group consisting of all sessions that match with s1 on s1’s critical features. We then
recursively do the two following steps until every session is in some group. We find a session
s2, who is not included in any existing group, and create a new group of all sessions that match
with s2 on s2’s critical features. If the new group does not overlap with any existing group, it will
be a new individual group, otherwise, we will add it to the existing groups in the way illustrated
in Figure 7.4. We organize the existing groups in a graph, where each node is split by values of
a certain feature, and each group includes multiple leaf nodes. For instance, if we want to add
a new group that consists of sessions whose “content” is “Super Bowl” to a graph of existing
groups as shown in Figure 7.4a, we will fork a path to create a new leaf node whenever the new
group overlap with a existing group. Note that, this means multiple leaf nodes may be belong to
the same group (e.g., “Group 3” in Figure 7.4b contains two different leaf nodes).

89

All#Sessions

ASN=7922 ASN=20001 …

World#Cup
Group#2

Pittsburgh
Group#1 New#York…

…

Geo

Content

ASN
All#Sessions

ASN=7922 ASN=20001 …

Super#Bowl
Group#3

World#Cup
Group#2

Pittsburgh
Group#1 New#York…

…

Super#Bowl
Group#3 …

Geo

Content

ASN

(a)$Existing$groups$organized$inagraph (b)$After$insertionofa$group$with$
critical$feature${Content=“Super$Bowl”}

Content

Figure 7.4: An illustrative example of session groups organized in a graph and how to a new
group is added.

7.4.2 Per-Group E2 Logic

To run E2 in presence of QoE drift, we use Discounted UCB algorithm [102], a variant of the
UCB algorithm [48], as the per-group E2 logic. UCB (Upper Confidence Bound) algorithms [48]
are a family of algorithms to solve the multi-armed bandits problem. The core idea is to always
opportunistically choose the arm that has the highest upper confidence bound of reward, and
therefore, it will naturally tend to use arms with high expected rewards or high uncertainty. Note
that the UCB algorithms do not explicitly assign sessions for “exploration” and “exploitation”.

We use Discounted UCB algorithm to adapt to QoE drift, because it automatically gives
more weight to more recent measurements by exponentially discounting historical measure-
ments. Therefore, unlike other UCB algorithms which will (almost) converge to one decision,
Discounted UCB is more likely to revisit suboptimal decisions to retain visibility across all de-
cisions. We refer readers to [102] for more details. Given a session s, it returns a decision that
has not been tried, if there is any. Otherwise, it calculates a score for each potential decision d
by adding up an exponentially weighted moving average of d’s history QoE and an estimation
on the uncertainty of reward of d, and picks the decision with highest score.

7.5 Pytheas System Architecture

Given the algorithmic pieces from the previous section, next we discuss how we map them into a
system architecture. At a high level, the E2 logic of each group is independently run by frontend
clusters, while the session-to-group mapping is continuously updated by the backend.

7.5.1 Requirements

The Pytheas system design must meet four goals:

90

1. Fresh data: The per-group E2 logic should be updated every second with newest QoE mea-
surements.

2. Global scale: It should handle millions of geo-distributed sessions per second.
3. Responsiveness: It should respond to requests for decisions from sessions within a few mil-

liseconds.
4. Fault tolerance: QoE should not be significantly impacted when parts of the system fail.

A natural starting point to achieve this goals might be to adopt a “split control plane” ap-
proach advocated by prior work for prediction-based approaches [101, 126]. At a high level,
this split control plane has two parts: (1) a backend cluster that generates centralized predictions
based on global but stale data, and (2) a set of geodistributed frontend servers that use these pre-
dictions from the backend to make decisions on a per-session basis. This split control architecture
achieves global scale and high responsiveness, but fundamentally sacrifices data freshness.

Pytheas preserves the scale and responsiveness of the split control approach, but extends in
two key ways to run group-based E2 with fresh data. First, each frontend cluster runs an active E2
algorithm rather than merely executing the (stale) prediction decisions as in prior work. Second,
the frontend clusters now run per-group logic, not per-session logic. This is inspired by the
insight that sessions in the same group are very likely to be received by the same frontend cluster.
Thus, group-based E2 could achieve high data freshness on the session group granularity, while
having the same scale and responsiveness to split control. Next, we discuss the detailed design
of the frontend and backend systems.

7.5.2 Per-Group Control by Frontends

The best case for group-based E2 is when all sessions of the same group are received by the
same frontend cluster. When this is true, we can run the per-group E2 logic (Section 7.4.2) in
real time with fresh measurements of the same group. In fact, this also is the common case.
To show this, we ran session-grouping logic (Section 7.4.1) on 8.5 million video sessions in a
real-world trace, and found around 200 groups each minute. Among these groups, we found that
(in Figure 7.5) for 95% of groups, all sessions are in the same AS, and for 88% of groups, all
sessions are even in the same AS and same city. Since existing session-to-frontend mappings
(e.g., DNS or Anycast-based mechnisms) are often based on AS and geographical location, this
means that for most groups, their sessions will be verly likely to be received in the same frontend
clusters.

In practice, however, it is possible that sessions of one group are spread across frontend
clusters. We have two options in this case:
1. Pick one cluster as the leader cluster of this group and let it run the E2 logic of the group

based on the measurements received by this cluster. Meanwhile, other clusters, called proxy
clusters of the group, simply receive decisions periodically from the leader cluster.

2. Keep the leader cluster and proxy clusters, but let proxy clusters not only receive decisions
from the leader, but also forward QoE measurements to the leader cluster.

We see a tradeoff between the two options. While Option 1 is less complex to implement than
Option 2, the leader proxy in Option 1 runs per-group logic based on only a subset of sessions,
especially when the sessions of a group are evenly spread across many frontend clusters. We

91

 0

 20

 40

 60

 80

 100

Join time Buffering ratio

%
 g

ro
u
p
s
 w

h
o
s
e
 s

e
s
s
io

n
s

m
a
tc

h
 o

n
 c

e
rt

a
in

 f
e
a
tu

e
rs

ASN+City
ASN+State

ASN

Figure 7.5: For most groups, the sessions are in the same ASN and even same city.

pick Option 2, because it is cleaner in that the per-group logic is based on all sessions in a group.
In fact, implementing Option 2 does not add much complexity. Finally, Option 2 can easily fall
back to Option 1 by stop forwarding measurements from proxy clusters to the leader cluster.

7.5.3 Updating Session Groups in the Backend

The backend cluster uses a global, stale view of measurements to update two tables, which are
sent to the frontend to regroup sessions.
• First, the backend runs the session-grouping logic (Section 7.4.1) to decide which group each

session belongs to, and outputs a session-to-group table.
• Second, it decides which frontend should be the leader cluster of each group and outputs

a group-to-leader table. For each group, we select the frontend cluster that receives most
sessions in the group as the leader.

The backend periodically (by default, every ten minutes) updates the frontend clusters with these
two maps. The only exception for the maps to be updated in near real time is when one or more
frontend clusters fail, which we discuss next.

7.5.4 Fault Tolerance

As we rely on fault-tolerant components for the individual components of Pytheas within each
cluster (see Section 7.6), the residual failure mode of Pytheas is when some clusters are not
available. Next, we discuss how we tackle three potential concerns in this setting.

First, if a failed frontend is the leader cluster of a group, the states of the E2 logic of the group
will be lost, and we will not be able to update decisions for sessions of the group. To detect
frontend failures and minimize their impact, each frontend sends frequent heartbeat messages
through a “fast channel” every few seconds (by default, every five seconds) to the backend,
so backend can detect frontend failures based on these heartbeat messages. Once the backend
detects a frontend failure, it will select a new leader clusters for any group whose leader cluster
has been the failed one, and recover the per-group logic in the new leader cluster. To recover
the per-group states, each leader always shares the per-group states with its proxy clusters in
the decision update messages, so that when a proxy cluster is selected as the new leader, it can
recover the per-group states as they are cached locally. Note that even without a leader cluster,

92

a proxy cluster can still respond requests with the cached decisions made by the leader cluster
before it fails.

Second, the sessions who are assigned to the failed frontend will not receive control deci-
sions. To minimize this impact, Pytheas will fall back to the native control logic. Take video
streaming as an example, when Pytheas is not available, the client-side video player can fall
back to the control logic built into the client-side application (e.g., local bitrate adaptation) to
achieve graceful QoE degradation, rather than crash [101].

Finally, if the backend cluster is not available, Pytheas will not be able to update groups.
However, Pytheas does not rely on backend to makde decisions, so clients will still receive
(albeit suboptimal) decisions made by Pytheas’s frontend clusters.

7.6 Implementation and Optimization
Pytheas is open source (≈ 10K lines of code across Java, python, and PHP) and can be accessed
at [13]. Next, we describe the APIs for applications to integrate with Pytheas, and then de-
scribe the implementation of frontend and backend, as well as optimizations we used to remove
Pytheas’s performance bottlenecks.
Pytheas APIs: Application sessions communicate with Pytheas through two APIs (Figure 7.6b):
One for requesting control decisions, one for uploading measurement data. Both are imple-
mented as standard HTTP POST messages. The session features are encoded in the data field
of the POST message. Pytheas also needs content providers to provide the schema of the mes-
sage that sessions send to the Pytheas frontend, as well as a list of potential decisions. Content
providers may also provide QoE models that compute QoE metrics from the raw quality mea-
surements sent by sessions.
Frontend: Figure 7.6b shows the key components and interfaces of a frontend cluster. When a
session sends a control request to Pytheas, the request will be received by one of the client-facing
servers run by Apache httpd [17]. The server processes the request with a PHP script, which first
maps the session to a group and its leader cluster by matching the session features with the
session-to-group and group-to-leader tables. Then the server queries the E2 logic of the group
(Section 7.4.2), for the most up-to-date decision of the group, and finally returns the decision
to the session. The script to process the measurement data uploaded by a session is similar;
a client-facing server maps it to a group, and then forwards it to the per-group E2 logic. The
per-group E2 logic is a Spark Streaming [29] program. It maintains a key-value map (a Spark
RDD) between group identification and the per-group E2 states (e.g., most recent decisions),
and updates the states every second by the most recent measurement data in one MapReduce
operation. The communication between these processes is through Kafka [21], a distributed
publish/subscribe service. We used Apache httpd, Spark Streaming, and Kafka, mainly because
they are horizontally scalable and highly resilient to failures of individual machines.

While the above implementation is functionally sufficient, we observed that the frontend
throughput if implemented as-is is low. Next, we discuss the optimizations to overcome the
performance bottlenecks.
• Separating logic from client-facing servers: When a client-facing server queries the per-

group control logic, the client-facing server is effectively blocked, which significantly re-

93

Session
Video&player,&Browser,&or&server

Measurement*data*
[Features,Decision,

Quality]

Frontend

HTTTP&POST

Control*decision*
[Features,Decision]

Decision*request
[Features,

PotentialDecisions]

(a) API to application sessions

Client'facing,servers
Apache'httpd

Per'group,logic
Spark'Streaming

Publish/subscribe
Kafka

Frontend

Per$group)decisions
[GroupId,Features,

Decision]

Measurement)data
[GroupId,Features,
Decision,Quality]

Measurement)data)
from)proxy)clusters

Per$group)decisions)&)
states)to)proxy)cluster

Load,balancerMeasurement)
data

Control)decisions

Decision)requestsSession

(b) Frontend

Publish/subscribe
Kafka

Client/facing3
servers

Backend

Frontend

Session/grouping3logic
Spark

History3storage
HDFS

Session'to'group-&-
group'to'leader-tables
[Features,GroupId,
LeaderCluster]

Measurement-data:-
[Features,Decision,

Quality]

Per/group3logic

Fast-channel
HeartBeat

(c) Backend

Figure 7.6: Key components and interfaces of Pytheas implementation.

duces the throughput of client-facing servers. To remove this bottleneck, we add an in-
termediate process in each client-facing server to decouple querying control logic from
responding requests. It frequently (by default every half second) pulls the fresh decision of
each group from per-group logic and writes the decision in a local file of the client-facing
server. Thus, the client-facing server can find the most up-to-date decisions from local
cache without directly querying the control logic.

94

• Replacing features with group identifier: We found that when the number of session fea-
tures increases, Spark Streaming has significantly lower throughput as it takes too long
to copy the new measurement data from client-facing servers to Kafka and from Kafka
to RDDs of Spark Streaming. This is avoidable, because once the features are mapped
to a group by the client-facing servers, the remaining operations (updating and querying
per-group logic) are completely feature-agnostic, so we can use group ID as the group
identifier and remove all features from messages.

Backend: Figure 7.6c shows the key components and interfaces of the backend cluster. Once
client-facing servers receive the measurement data from sessions, they will forward the measure-
ment data to the backend cluster. On receiving these measurement data, the backend stores
them in an HDFS for history data, and periodically (by default every 10 minutes) runs the
session-grouping logic (Section 7.4.1) as a Spark [28] job to learn the session-group mapping
and group-cluster mapping from the stored history data. These tables are sent to each frontend
through Kafka, so that the future messages (requests and measurement data) from sessions will
be matched against new tables. In addition, to detect failures of frontend clusters, each frontend
cluster sends a small heartbeat message to the backend cluster every 5 seconds.

7.7 Evaluation
To evaluate Pytheas, we run our prototype [13] across multiple instances in CloudLab [8]. Each
instance is a physical machine that has 8 cores (2.4 GHz) and 64GB RAM. These instances are
grouped to form two frontend clusters and one backend cluster (each includes 5 to 35 instances).
This testbed is an end-to-end implementation of Pytheas described in Section 7.64.

By running trace-driven evaluation and microbenchmarks on this testbed deployment, we
show that:
• In the use case of video streaming, Pytheas improves the mean QoE by up to 6-31% and the

90th percentile QoE by 24-78%, compared to a prediction-based baseline (Section 7.7.1).
• Pytheas is horizontally scalable and has similar low response delay to existing prediction-

based systems (Section 7.7.2).
• Pytheas can tolerate failures on frontend clusters by letting clients fall back to local logic and

rapidly recovering lost states from other frontends (Section 7.7.3).

7.7.1 End-to-End Evaluation

Methodology: To demonstrate the benefit of Pytheas on improving QoE, we use a real-world
trace of 8.5 million video sessions collected from a major video streaming sites in US over a
24-hour period. Each video session can choose one of two CDNs. The sessions are replayed in
the same chronological order as in the trace. We call a group of sessions a unit if they match
values on AS, city, connection type, player type and content name.5 We assume that when a

4Pytheas can use standard solutions such as DNS redirection to map clients to frontend clusters, and existing
load balancing mechanisms provided by the host cloud service to select a frontend server instance for each client.

5The notion of unit is used to ensure statistical confidence of QoE evaluation, and is not used in Pytheas.

95

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 0 20 40 60

C
D

F

Improvement (%)

(a) Join time

 0

 0.2

 0.4

 0.6

 0.8

 1

-20 0 20 40 60 80 100

C
D

F

Improvement (%)

(b) Buffering ratio

Figure 7.7: Distribution of improvement of Pytheas over the prediction-based baseline.

video session is assigned to a CDN, its QoE would be the same to the QoE of a session that
is randomly sampled from the same unit who use the same CDN in the same one-minute time
window. For statistical confidence, we focus on the units which have at least 10 sessions on
each CDN in each one-minute time windows for at least ten minutes. We acknowledge that our
trace-driven evaluation has constraints similar to the related work, such as the assumption that
QoE in a small time window is relatively stable in each unit (e.g., [125]) and a small decision
space (e.g., [126]).

For each video session in the dataset, we run a DASH.js video player [12], which commu-
nicates with Pytheas using the API described in Figure 7.6a. To estimate the QoE of a video
session, the video player does not stream video content from the selected CDN. Instead, it gets
the QoE measurement from the dataset as described above.

We use CFA [126] as the prediction-based baseline. It is implemented based on [126]. CFA
updates QoE prediction in the backend every minute, and trains critical features every hour.
The frontend clusters run a simple decision-making algorithm – for 90% sessions, it picks the
decision that has the best predicted QoE, and for the rest sessions, it randomly assigns them to a
CDN.

We consider two widely used video QoE metrics [88, 126]: join time (the start-up delay
of a video session), and buffering ratio (the fraction of session duration spent on rebuffering).
We define improvement of Pytheas for a particular unit at t-th minute by ImprovePytheas(t) =
QCFA(t)−QPytheas(t)

QCFA(t)
, where QPytheas(t) and QCFA(t) are the average QoE of Pytheas in t-th minute

and that of the baseline, respectively. Since we prefer smaller values on both metrics, a positive
value means Pytheas has better QoE.

Overall improvement: Figure 7.7 shows the distribution of improvement of Pytheas across all
sessions. We can see that the mean improvement is 6% for join time and 31% for buffering ratio,
and the 90th percentile improvement is 24% for join time and 78% for buffering ratio. To put
these numbers in context, prior studies show a 1% decrease in buffering can lead to more than a
3-minute increase in expected viewing time [88]. Note that Pytheas is not better than the baseline
on every single session, because the E2 process inherently uses a (dynamic) fraction of traffic to
explore suboptimal decisions.

96

 0

 10

 20

 30

 40

 50

Mean 90th percentile

Im
p
ro

v
e
m

e
n
t
(%

)
o
v
e
r

p
re

d
ic

ti
o
n
-b

a
s
e
d
 b

a
s
e
lin

e Low load
High load

(a) Join time

 0

 20

 40

 60

 80

 100

Mean 90th percentile

Im
p
ro

v
e
m

e
n
t
(%

)
o
v
e
r

p
re

d
ic

ti
o
n
-b

a
s
e
d
 b

a
s
e
lin

e Low load
High load

(b) Buffering ratio

Figure 7.8: Improvement in presence of load effect.

Impact of load-induced QoE degradation: We consider the units where QoE of a CDN could
significantly degrade when most sessions of the unit are assigned to use the same CDN. We
assume that the QoE of a session when using a CDN under a given load (defined by the number
of sessions assigned to the CDN in one minute) is the same to the QoE of a session randomly
chosen in the dataset which uses the same CDN when the CDN is under a similar load. Figure 7.8
shows that the improvement of Pytheas when the number of sessions is large enough to overload
a CDN is greater than the improvement when the number of sessions is not large enough to
overload any CDN. This is because the prediction-based baseline could overload a CDN when too
many sessions are assigned to the same CDN before CFA updates the QoE prediction, whereas
Pytheas avoids overloading CDNs by updating its decisions in real time.
Contribution of Pytheas ideas: Having shown the overall benefit of Pytheas, we now evalu-
ate the contribution of different components of Pytheas: (1) E2; (2) real-time update; and (3)
grouping. We replace certain pieces of Pytheas by baseline solutions and compare their QoE
with Pytheas’s QoE. Specifically, for (1), we replace the per-group E2 logic by CFA’s decision-
making logic; for (2), we run Pytheas with data of one-minute staleness; and for (3), we run the
same E2 process over all sessions, rather than on per-group basis. Figure 7.9 shows the improve-
ment of Pytheas over each baseline, and it shows that each of these ideas contributes a nontrivial
improvement to Pytheas; about 10-20% improvement on average QoE and 15-80% on the 90th
percentiles.

7.7.2 Microbenchmarks
We create micro-benchmarks to evaluate the scalability and bandwidth consumption of Pytheas,
as well as the benefits of various performance optimizations (Section 7.6).

Scalability

Frontend: Figure 7.10a shows the maximum number of sessions that can be served in one sec-
ond, while keeping the update interval of per-group logic to be one second. Each session makes

97

 0

 10

 20

 30

 40

 50

Mean 90th percentile

Q
o
E

 g
a
p
 (

%
)

b
e
tw

e
e
n

P
y
th

e
a
s
 a

n
d
 b

a
s
e
lin

e
s Pytheas w/o E2

Pytheas w/o RealTime
Pytheas w/o Grouping

(a) Join time

 0

 20

 40

 60

 80

 100

 120

Mean 90th percentile

Q
o
E

 g
a
p
 (

%
)

b
e
tw

e
e
n

P
y
th

e
a
s
 a

n
d
 b

a
s
e
lin

e
s Pytheas w/o E2

Pytheas w/o RealTime
Pytheas w/o Grouping

(b) Buffering ratio

Figure 7.9: Factor analysis of Pytheas ideas

one control request and uploads QoE measurement once. Each group has the same amount of
sessions. The size of control request message is 100B. We run Apache Benchmark [4] for 20
times and report the average throughput. We can see that the throughput is almost horizontally
scalable to more frontend server instances. While the number of groups does impact the perfor-
mance of frontend cluster, it is only to a limited extent; throughput of handling 10K groups is
about 10% worse than that of handling one group.

Next, we evaluate the performance optimizations described in Section 7.6. We use a frontend
cluster of 32 instances. Figure 7.11 shows that by separating E2 logic from client-facing servers,
we can achieve 8x higher throughput, because each request reads cached decisions, which are
still frequently updated. By replacing features by group identifiers, we can further increase
throughput by 120%, because we can copy less data from client-facing servers to the servers
running E2 logic. Note these results do not merely show the scalability of Spark Streaming or
web servers; they show that our implementation of Pytheas introduces minimal additional cost,
and can fully utilize existing data analytics platforms.

Backend: Figure 7.10b shows the maximum number of sessions that can be served in each
second by a backend cluster, while keeping the completion time of session-grouping logic within
5 minutes or 10 minutes. We see that the throughput is also horizontally scalable with more
instances in the backend cluster.

To put the scalability numbers of both frontend and backend in context, let us consider a
content provider like YouTube which has 5 billion sessions per day [35] (i.e., 57K sessions
per second). Pytheas can achieve this throughput using one frontend cluster of 18 instances
and a backend cluster of 8 instances, which is a tiny portion compared to the sheer number of
video servers (at least on the magnitude of hundreds of thousands [36]). This might make Spark
Streaming and Kafka an overkill for Pytheas, but the scale of data rate can easily increase by one
to two magnitudes in real world, e.g., tens of GB/s; for instance, each video session can request
tens of mid-stream decisions during an hour-long video, instead of an initial request.

98

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 10 15 20 25 30 35

T
h
ro

u
g
h
p
u
t
(T

h
o
u
s
a
n
d
 R

P
S

)

Number of instances

1 group
100 groups
10k groups

(a) Frontend

 0

 20

 40

 60

 80

 100

 120

 140

 160

 0 2 4 6 8 10 12 14 16

T
h
ro

u
g
h
p
u
t
(T

h
o
u
s
a
n
d
 R

P
S

)

Number of instances

Regroup per 5min
Regroup per 10min

(b) Backend

Figure 7.10: Pytheas throughput is horizontally scalable.

 0

 40

 80

 120

 160

 200

Basic Separate
logic request

Separate logic
request+

Replace features
by group

Web server
w/o logic

T
h
ro

u
g
h

p
u

t
(T

h
o
u

s
a
n

d
 R

P
S

)

Figure 7.11: Optimizations of frontend throughput.

Bandwidth consumption

Since the inter-cluster bandwidth could be costly [170, 213], we now evaluate the inter-cluster
bandwidth consumption of Pytheas. We consider one session group that has one proxy cluster
and one leader cluster.

First, we evaluate the impact of message size. We set the fraction of sessions received by
the proxy cluster to be 5% of the group, and increase the request message size by adding more
features. Figure 7.12a shows that the bandwidth consumption between the frontend clusters
does not grow with larger message size, because the session features are replaced by group
identifiers by the client-facing servers. Only the bandwidth consumption between frontend and
backend grows proportionally with the message size but such overhead is inherent in existing
data collection systems and is not caused by Pytheas.

Next, we evaluate the impact of fraction of sessions received by the proxy cluster. We set
the message size to be 400B, and change the fraction of sessions received by each proxy cluster.
Figure 7.12a shows that the bandwidth consumption between frontend clusters raises as more
measurement data need to be forwarded from proxy to the leader cluster, but it is much smaller
than the bandwidth consumption between frontend and backend.

99

 1

 10

 100

 1000

 0 200 400 600 800

B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n

 (
M

b
p
s
)

Size of session features (B)

Frontend <-> Backend
Frontend <-> Frontend

(a) Impact of message size

 0.1

 1

 10

 100

 1000

 0 10 20 30 40 50

B
a
n
d
w

id
th

 c
o
n
s
u
m

p
ti
o
n

 (
M

b
p
s
)

% of sessions not in leader cluster

Frontend <-> Backend
Frontend <-> Frontend

(b) Impact of % sessions not in the leader cluster

Figure 7.12: Bandwidth consumption between clusters.

 0

 2000

 4000

 6000

 8000

 5 10 15 20 25 30 35 40

A
v
g
 j
o

in
 t

im
e
 (

m
s
)

Time (sec)

Frontend f1 (fails at 25 sec)
Frontend f2 (per-group states restarted)

Frontend f2 (per-group states recovered)

Figure 7.13: Pytheas can tolerate loss of a frontend cluster by falling back to player native logic
gracefully, and recovering the logic states in a new cluster.

7.7.3 Fault Tolerance

Finally, we stress test the prototype under the condition that a leader frontend cluster fails. We
set up 10 video players, each of which can stream content from two CDNs. CDN1 has 5000ms
join time and CDN2 has 1000ms join time. By default, the player’s native logic chooses CDN1.
There are two frontend clusters, f1 and f2. The experiment begins with f1 being the leader cluster,
and it loses connection at t = 25.

Figure 7.13 shows the time-series of QoE of sessions that are mapped to each frontend clus-
ters. First, we see that the sessions mapped to f1 can fall back to the CDN chosen by the player’s
native logic, rather than crashing. Second, right after f1 fails, f2 should still be able to give
cached decision (made by f1 before it fails) to its sessions. At t = 30, the backend selects f2
as the new leader for the group. At the point, a naive way to restart per-group logic in the new
leader is to start it from scratch, but this will lead to suboptimal QoE at the beginning (the dotted
line between t = 30 and t = 35). Pytheas avoids this cold-start problem by keeping a copy of
the per-group states in the proxy cluster. This allows the proxy cluster to recover the per-group
control states without QoE degradation.

100

7.8 Related Work

Data-driven QoE optimization: There is a large literature on using data-driven techniques to
optimize QoE for a variety of applications, such as video streaming (e.g., [101, 126]), web ser-
vice (e.g., [146, 193]), Internet telephony [109, 125], cloud services (e.g., [137]), and resource
allocation (e.g., [56]). Some recent work also shows the possibility of using measurement traces
to extrapolate the outcome of new system configurations [40]. Unlike these prediction-based ap-
proaches, we formulate QoE optimization as an real-time E2 process, and show that by avoiding
measurement bias and enabling real-time updates, this new formulation achieves better QoE than
prediction-based approaches.
Related machine learning techniques: E2 is closely related to reinforcement learning [215],
where most techniques, including the per-group E2 logic used in Pytheas, are variants of the
UCB1 algorithm [48], though other approaches (e.g., [39]) have been studied as well. Besides
E2, Pytheas also shares the similar idea of clustering with linear mixed models [151], where a
separate model is trained for each cluster of data points. While we borrow techniques from this
rich literature [102, 174], our contribution is to shed light on the link between QoE optimization
and the techniques of E2 and clustering, to highlight the practical challenges of adopting E2 in
network applications, and to show group-based E2 as a practical way to solve these challenges.
Though there have been prior attempts to cast data-driven optimization as multi-armed bandit
processes in specific applications (e.g., [125]), they fall short of a practical system design.
Geo-distributed data analytics: Like Pytheas, recent work [170, 172, 213] also observes that
for cost and legal considerations, many geo-distributed applications store client-generated data in
globally distributed data centers. However, they focus on geo-distributed data analytics platforms
that can handle general-purpose queries received by the centralized backend cluster. In contrast,
Pytheas targets a different workload: data-driven QoE optimization uses a specific type of logic
(i.e., E2), but has to handle requests from millions of geo-distributed sessions in real time.

7.9 Summary
While previous two chapters have shown impressive QoE improvement by formulating DDN
as a prediction process, they have key limitations that curtail the potential of data-driven opti-
mization. Drawing on a parallel from machine learning, we argue that real-time exploration and
exploitation is a better abstraction for this domain. In designing Pytheas, we have addressed key
practical challenges in applying real-time E2 to network applications. Our key idea is a group-
based E2 mechanism, inspired by the insight of persistent critical structures in QoE-determining
factors. We observe that application sessions sharing the same features can be grouped so that we
can run E2 at a coarser per-group granularity. Using an end-to-end implementation and proof-
of-concept deployment of Pytheas in CloudLab, we showed that Pytheas improves video quality
over state-of-the-art prediction-based system by 6-31% on mean, and 24-78% on tail QoE.

101

102

Chapter 8

Tackling Large Decision Spaces

In previous chapters, we have focused on addressing system and algorithmic challenges resulting
from a complex relationship between session-level features and QoE. In this chapter, we examine
another challenge caused by large decision spaces. As we will see, this challenge is especially
salient in Internet telephony.

To alleviate call quality problems shown in Section 4.2, we present in this chapter an archi-
tecture called VIA, which revisits the use of traditional overlay techniques to relay calls using
the emerging architecture of managed overlay networks, which use the well-connected cloud
servers and private backbone network as VoIP relay points (supernodes) and network paths. Our
trace-driven analysis shows that the number of calls whose quality is impacted by poor network
performance can be reduce by 53% by optimally selecting the relay path in Microsoft’s managed
overlay network.

While it is tempting to realize this potential improvement by using a DDN-based solution
similar to Pytheas, it is challenging to discover best relay paths due to the sheer number of possi-
ble relay paths (in hundreds) and their dynamic performance (which could change on timescales
of minutes). To address the challenge of large decision spaces, we develop a practical relay
selection system for VIA that intelligently combines prediction-based filtering with an online
exploration-exploitation strategy. The key insight of VIA relay selection is that the decision
space can be reduced by leveraging the persistent critical structures: for each pair of caller AS
and callee AS, there is a small and stable subset of promising relays that contains the best one.
Trace-driven analysis and a small-scale deployment shows that VIA cuts the incidence of poor
network conditions for calls by 45% (and for some countries and ASes by over 80%) while
staying within a budget for relaying traffic through the managed network.

This chapter is organized as follows. We begin by describing the architecture of relay selec-
tion in Internet telephony in Section 8.1, and quantify the potential benefits of a managed overlay
network for improving audio call quality in Section 8.2. Then in Section 8.3, we then highlight
the challenges in achieving these benefits and present a practical relay selection algorithm that
delivers close-to-optimal performance. Section 8.4 uses simulation driven by real-traffic mea-
surement and shows that VIA can significantly improve Skype performance on network metrics.
Finally, we discuss related work in Section 8.6, and summarize the section in Section 8.7.

103

MDN

BGP'based- routing

DC1

DC2 DC3

DC4

Caller
Callee

Relay&paths

Direct&path

Control-logic

Figure 8.1: VIA architecture with relay nodes at globally distributed data centers. A call can
either take “default path” (red) or a “relay path” (green).

8.1 VIA Architecture

Figure 8.1 presents the VIA architecture that consists of relay nodes placed at globally distributed
datacenters, such as those run by Amazon, Google, and Microsoft. Indeed, VIA’s architecture
bears similarities to those used by Google Hangouts and Skype [221], but with a key difference
— today, the relays are typically used to provide connectivity between any two clients, while
VIA is engineered to explicitly optimize network performance and call quality.

Each call can take either the “default path” (red arrow) or a “relayed path” (green arrows)
that routes the traffic through one or more relay nodes in the DCs. Relayed paths could include
a single relay to ”bounce off” traffic or a pair of relays to enable traffic to ”transit through” the
private backbone of the managed overlay network.

In our study, we use all the relay nodes operated by Skype. They are all located in a single
AS (so all inter-relay paths are within a private WAN) but spread across many tens of datacenters
and edge clusters worldwide. We assume the caller (or callee) can reach these relays by explicitly
addressing the particular relay(s). The network path between a relay and a client is determined
by BGP.

When establishing a call, after the caller signals its callee, both the caller and callee contact a
controller (Figure 8.1) to determine whether they should use the direct path or a relayed path, and,
in case of the latter, which relay(s) they should use. The controller makes this decision based on
the performance measurements from historical calls and policy constraints (such as those based
on relay budget or current load), to be described in Section 8.3. To aid in this process, Skype
clients periodically push the network metrics derived from their calls, to the controller.

The controller does not need to directly monitor the relay nodes because their performance
(including degradation and failure) would be reflected in the end-to-end measurements made
by clients who use the relays. To avoid overloading the controller, each client could cache the
relaying decisions and refresh periodically though we do not consider this here. (We discuss
implementation issues in Section 8.5).

104

 0

 20

 40

 60

 80

 100

RTT Loss Jitter

%
 o

f
re

d
u
c
ti
o
n

Median

90th%

99th%

(a) Performance distribution

 0

 10

 20

 30

 40

 50

 60

RTT Loss Jitter At least

one bad

%
 R

e
d
u
c
ti
o
n
 o

f
P

N
R

(b) Poor Network Rate

Figure 8.2: Potential improvement of VIA.

8.2 Potential Relaying Improvement
Next, we quantify the potential gains of VIA, using an “oracle” control logic, which enjoys the
benefit of foresight. For each call between a source-destination pair, it has knowledge of the
average performance of each relaying option on a given day. As shown in Figure 8.1, a relaying
option could be either the default (direct) path, a bouncing relay path, or a transit relay path.
For each source-destination pair, the oracle picks the relaying option that has the best average
performance (i.e., lowest RTT, loss rate, or jitter) for this source-destination pair on this day—
either a relay path or the direct path.1 We also have information from Skype on the RTT, loss and
jitter between their relay nodes, which we use in estimating the performance of a transit relay
path.

The oracle makes two simplifying assumptions: (1) there are no load restrictions on the relays
or the network backbone, and (2) the performance measurements of each relaying option are
indicative samples of its actual performance. In Section 8.3.6, we will relax the first assumption
by introducing a budget constraint on the fraction of calls being relayed.
Gains from oracle approach: Figure 8.2 shows the improvement (i.e., reduction) in the values
of RTT, loss and jitter individually as well as the PNR (defined in Section 4.2.1). Specifically,
if a statistic goes from b to a, we define the relative improvement as 100× (b−a

b), which lies
between 0 and 100.

The oracle can help reduce RTT, loss and jitter by 30%-60% at median (Figure 8.2a). Re-
duction at the tail, which is of particular significance in interactive services, is nearly 40%-65%
with the oracle’s choice of relaying. All this translates to a healthy reduction in the PNR on each
of RTT, loss, and jitter (Figure 8.2b, left three bars) of up to 53%. Source-destination pairs with
fewer calls between them have a lower impact on the PNR and its improvement.

We also analyze the reduction in PNR when the three metrics are considered together, i.e.,
improving from a situation where at least one of the metrics is poor to a situation where none

1Picking a day’s granularity gives us sufficient samples for most of the relaying options. Nevertheless, for the
small fraction of source-destination pairs for which we had sufficient samples on a timescale of minutes, we found
that the oracle still had a significant benefit.

105

 0

 0.2

 0.4

 0.6

 0.8

 0 5 10 15 20

C
D

F

Duration (days) in which the best relaying
option remain the same for a src-dst AS pair

RTT
Loss
Jitter

Figure 8.3: Distribution of how long the best relaying option (picked by oracle) lasts. The optimal
relaying options for 30% of AS pairs last for less than 2 days.

of the three is poor (i.e., RTT ≤ 320ms, loss ≤ 1.2%, and jitter ≤ 12ms), while still optimizing
for RTT, loss and jitter individually. Even while optimizing for each of the three metrics, we can
obtain a PNR for “at least one bad” metric; we conservatively pick the worst among the three
for our analysis. Despite this strict stipulation, we can achieve reduction of over 30% in PNR
(Figure 8.2b, right-most bar).
Need for dynamic relay selection: Whether the controller should select relay dynamically
depends on how often the relaying decisions need to be updated. Figure 8.3 shows the distribution
of the median duration during which the oracle picks the same relaying option for a source-
destination AS pair. The optimal relaying option for 30% of AS pairs lasts for less than 2 days,
and only 20% of AS pairs have the same optimal relay option for more than 20 days. This,
together with the observation on the relatively low persistence of poor performance (Figure 4.8),
suggests that the relay selection should be done dynamically, rather than statically.

8.3 VIA Relay Selection
Having shown that relaying through VIA could provide significant gains, we now devise a prac-
tical algorithm for relay selection. We begin by formulating the problem of relay selection. We
describe two classes of strawman approaches — purely predictive and exploration-based — and
highlight limitations of both classes. We then present the core intuition behind our relay selection
algorithm, called prediction-guided exploration and then describe the solution.

8.3.1 Problem Formulation
Our goal is to assign each call to a particular relaying option as discussed in Section 8.1. Recall
that a relaying option can use the default path, use a specific one-hop relay node (i.e., bouncing
relaying), or use a specific pair of relay nodes (i.e., transit relaying). Let C denote the set of calls
we want to optimize and let R denote the set of available relaying options. We use c ∈ C and
r ∈ R to denote a specific call and relaying option, respectively. Let Q(c,r) denote the expected
value of a network metric for c when using r (a smaller value is better). We assume that the

106

relaying decisions for calls are independent; i.e., the performance of a call is not impacted by the
relaying decisions made for other calls.

The goal of VIA is to assign optimal relaying options for each c ∈ C. Let Assign : C→ R
denote the assignment function output by some algorithm and let Assign(c) be the relaying option
assigned for call c ∈C. Formally, our objective is to find the optimal assignment

arg min
Assign∈RC ∑

c∈C
Q(c,Assign(c))

This is a minimization problem because a lower value is better for each of our network quality
metrics Q.

8.3.2 Strawman Approaches
We can consider two classes of approaches for the optimal assignment of relaying options to
calls:

1. Exploration-based: One approach is to set aside a fraction of the calls for measurement-
based exploration of the performance of each possible relaying option for every source-
destination pair. For instance, for every AS-pair and every possible relaying option r, we
will explicitly use some of the calls to explore the option and measure the performance,
Q(c,r).

2. Prediction-based: An alternative to the exploration-based approach is to use the recent
history of observed call performance. Suppose, VIA has available as input call records
with measured performance H. Then, we can use suitable prediction algorithms to predict
the performance Q(c,r) for every combination, and select the option that has the best
predicted performance.

Unfortunately, we observe in practice that both classes of approaches individually have very
poor accuracy in predicting Q(c,r). This ultimately results in a poor assignment strategy and
poor call quality. There are two key reasons.

First, there is a fundamental problem because of skew in data density. Specifically, there is a
substantial difference in the number of call samples available across different source-destination
pairs, both for the direct path and for the various relayed paths. This variability arises because
of the large space of choices: N end-points and M relay strategies lead to O(N2M) choices.
Furthermore, certain end-points make/receive fewer calls, yielding fewer samples. Second, there
is inherent variability in the observed performance. Consequently, to estimate Q(c,r), we need
a significant number of samples before the empirically observed values can converge to the true
values.

The skew and the variability make prediction inaccurate and exploration ineffective and/or
expensive (in terms of the effort to be expended).

8.3.3 Overview of VIA

The key intuition behind our solution is the empirical observation that even though a prediction-
based approach may not predict the optimal choice, the optimal is likely in the top few of its

107

Real%time)relay)
selection)(§4.6)
Runs+per+call

Prediction%based)Pruning)(§4.5)
Updates+every+T hours

Call+
history

Stage)1:)Feedback+of+performance+information

Stage)2:)
TomographyC
based+coverage
expansion

Stage)3:)
Selection+of+top+k
choices+based+
on+prediction

Stage)4a:)
Guided+exploration+
on+the+top+k+choices

Stage)4b:)
General+Exploration+
on+all+choicesFeedback+of+performance+information

Figure 8.4: Overview of VIA relay selection based on prediction-guided exploration.

predictions. In other words, if we look at the top-k choices (those who have the best predicted
performances), the optimal choice will likely be a member of that set.

We can exploit this observation to prune the search space for our exploration step. That is,
the exploration approach does not need to blindly explore the set R of all possible strategies, but
instead can focus on a much smaller set of top-k predictions. We refer to this as a prediction-
guided exploration approach. The top-k pruning is not to be confused with a similar machine
learning problem which seeks to find k best options (e.g., [68]). In contrast, we care more about
the best relaying option – our top-k candidates may have bad options, but the best relaying option
is very likely to be among them, and can be found by exploration techniques.

Figure 8.4 depicts the main stages in VIA, and Algorithm 4 shows the pseudocode. In a
nutshell, the logical stages are:

1. gathering performance information from call history,

2. using network tomography to expand the coverage of the information from call history,

3. using the (expanded) history information to predict performance and prune all but the most
promising top-k relaying options, and

4. perform exploration-exploitation on the top-k relaying options as well as all relaying op-
tions using multi-armed bandit (MAB) techniques.

Finally, the observed performance of each call will be stored in call history, i.e., fed back to
stage 1. Stages 2 and 3 (shown in light blue) are performed at a periodicity of T hours (by default
24 hours), i.e., the pruned list of candidate relaying options are refreshed every T hours. Stages
1 and 4 (shown in light green) are performed on a per-call basis. We discuss these stages in the
sub-sections that follow.

8.3.4 Prediction-Based Pruning
Using call history data, VIA proceeds to predict, with confidence intervals, the performance
between a source-destination pair over each relaying option: direct paths, and each transit and
bouncing relay.
Expanding coverage by network tomography: Call history tells us the performance of paths
that were actually used. As there is skew in call distribution, there might be “holes”, i.e., no call

108

Input: Set of calls C to be assigned to relaying options R, and set of historical calls H
Output: A relay assignment, Assign, where each call c ∈C is assigned a relay option

Assign(c) ∈ R

/* Stage 2: Tomography-based performance predictor trained from H */

1 Pred← BuildPredictor(H)
/* Stage 3: Pick Top-k candidates based on history-based prediction. */

2 Assign← /0
3 for (s,d) do
4 TopK← GetTopK(s,d,R,Pred)

/* See Algorithm 5 */

5 for c ∈C do
6 if RandomFloat(0,1)< ε then

/* Stage 4a: Explore the Top-k candidates */

7 r← Explore(c,s,d,TopK,Assign,Pred)

8 else
/* Stage 4b: Randomly explore all relaying options */

9 Assign(c)← Random(R)
10 Assign(c)← r
11 return Assign

Algorithm 4: Relay selection algorithm of VIA

history for the network path between a source-destination pair through a specific relaying option.
Can we learn about the performance of these network paths?

If we knew the performance of the individual network segments (e.g., client to relay) that
comprise an end-to-end path, we could compose these to estimate the performance of the path.
In principle, measurements of the individual network segments could be made by the relays
themselves. However, the relays in Skype were only designed to forward traffic and we were
not in a position to add new functionality to these relay nodes (and potentially impose additional
overheads).

Network tomography provides an alternative. By combining end-to-end measurements across
several, partially-overlapping paths, network tomography can help estimate the performance of
each network segment. Then, by stitching together the estimates for the individual segments, we
can estimate the performance of a path not seen before.

Figure 8.5 shows a simple example of how network tomography expands coverage. We use
linear tomography, and apply it to individual

Given a relay path that uses relaying option r and between source AS s and destination AS d,
our tomography algorithm models it as a path consisting of two segments: a segment between s
and r and a segment between d and r. Modeling network end-points on AS level is a pragmatic
trade-off: it gives us sufficient data on many source-destination pairs, and still produce significant
improvement (see Section 8.4.4 for comparison between different granularities). The prediction
algorithm can work at a finer granularity (e.g., /24 IP prefix) when more data are available.

109

Figure 8.5: Path stitching in VIA to estimate performance through relay RN. Solid lines represent
historical call samples that we use to predict performance between AS3 and AS4 (dotted line).
RTTAS3↔AS4 = RTTAS1↔AS4 + RTTAS2↔AS3 − RTTAS1↔AS2.

The Pred module (Algorithm 4, line 2) predicts for a source-destination pair (s and d) both the
mean performance Predmean(s,d,r) for a specific relaying option r, and its standard error of mean
(SEM) Predsem(s,d,r). Based on these, Pred estimates both the lower and higher 95% confi-
dence bounds: Predlower(s,d,r)=Predmean(s,d,r)−1.96Predsem(s,d,r) and Predupper(s,d,r)=
Predmean(s,d,r)+1.96Predsem(s,d,r).
Pruning to get top-k choices: Pruning does not necessarily narrow down to the single best
relaying option. However, we see that the best relaying option is often among the top-k predicted
options for a small value of k. For instance, the probability of the option with the minimum
RTT being included even in top three or four (k = 3 or 4) is 60%− 80% as against just 29% if
we were to pick only the option with the predicted minimal RTT (k = 1). Therefore, we adopt
the approach of using our predictor to pick the top-k relaying options and use that for guided
exploration.

Instead of using a fixed value of k, VIA dynamically decides k based on the lower and higher
confidence bounds for each relay r on the particular source-destination pair s and d. Algorithm 5
shows the pseudocode. Specifically, we define top-k to be the minimal set of relaying options
such that the lower 95% confidence bound (Predlower(s,d,r)) of any relay option not in the top-
k is higher than the upper 95% confidence bound (Predupper(s,d,r)) of any relay option in the
top-k. (Recall that the lower the value of a network metric, the better it is.) In other words, we
are very sure that any relay option that is not included in the top-k is worse than any that is. For
instance, the probability of the option with minimal RTT being included in such top-k is over
90%.

8.3.5 Exploration-Exploitation Step
Exploring the top-k choices for each source-destination pair (Explore of line 10 in Algorithm 4)
can be formulated as an instance of the classic multi-armed bandit problem, where each of the
relaying options is an “arm” of the bandit and the network performance obtained is the “reward”.
While bandit selection is a much studied problem, doing so under high-variance and dynamically
changing performance distributions (i.e., rewards) of the bandits, and also limited budget for each
bandit, requires interesting adaptations, as outlined below.

Relay options selected by the basic exploration-exploitation process assigns a fraction of
calls to explore different relay options (ε-greedy) and the rest to exploit the best decision.2 As

2Exploration-exploitation could also be invoked on per-packet basis within the call. However, this would require

110

Input: Source AS s, destination AS d, relaying options R, and predictor Pred (from Algorithm 4)
Output: Top k relaying options TopK for (s, d) calls

1 Function GetTopK(s,d,R,Pred)
/* Initializing variables */

2 TopK← /0; Remained← R; h← ∞

3 while true do
4 r← argminr∈RemainedPredupper(s,d,r)
5 if Predlower(s,d,r)> h then
6 break
7 else
8 h← Predhigh(s,d,r) Remained← Remained\{r} TopK← TopK∪{r}
9 return TopK

Algorithm 5: Predicting the top-k choices.

briefly mentioned earlier, standard exploratory approaches are slow to converge (Section 8.3.2)
and often fail to select the best decision (Section 8.4.3). This is because exploring in presence of
high variability requires a lot of samples, which is infeasible due to data sparseness and skew.

Algorithm 6 shows the pseudocode of our approach. Here, we choose the UCB1 algo-
rithm [48] as our basic starting point. UCB1 is well-suited for our purpose because it does
not require explicitly specifying the fraction of samples for exploration. Instead, it transparently
combines both exploration as well as its exploitation decisions. We make two modifications to
the basic algorithm in order to make it work well in our context.

1. UCB1 normalizes rewards (i.e., performance) from each bandit (i.e., relay option) to be
between 0 and 1. In our situation, however, normalizing based on the full range of values
of each performance metric is problematic due to the large variance in distribution (e.g.,
unusually large RTT). Normalizing all values based on such a wide range leads to poor
decisions because the difference between values in the common case become hard to dis-
cern. Instead, we normalize the rewards by dividing them by the average of upper 95%
confidence bounds (Predupper(s,d,r)) of the top-k candidates.

2. The top-k pruning in Section 8.3.4 is a function of only the samples explored. Therefore, to
avoid being blindsided by dynamically changing performance distributions, VIA also sets
aside ε fraction of calls to random relays (outside of the top-k) for general exploration.
This step is not required in traditional exploration-exploitation techniques as they assume
the reward (performance) distribution of each bandit (relay option) is static, which may not
hold in our context.

8.3.6 Budgeted Relaying
We extend VIA’s relaying decision to consider budget constraints: so the fraction of calls being
relayed must be less than a certain limit, B (e.g., 30%). While such an overall budget on relayed

packet-level control, which is out of the scope of this paper.

111

Input: Call c, source AS s, destination AS d, top k relaying options TopK, relay assignment
Assign, predictor Pred

Output: Relay selection of c

1 Function Explore(c,s,d,TopK,Assign,Pred)
/* Initializing variables */

2 ucbmin← ∞; rtop← null
/* To avoid outliers, we do not use maximum performance as normalizer w. */

3 w← 1
|TopK| ∑r∈TopK(Predupper(s,d,r))

/* Following is the standard UCB1, except for the normalization scheme. */

4 T ← |Assign|+1
5 for r ∈ TopK do
6 Cr←{c′|Assign(c′) = r}

/* Q is the quality function. */

7 ucb← 1
w|Cr| ∑c′∈Cr Q(c′,r)−

√
0.1logT
|Cr|

8 if ucb < ucbmin then
9 rtop← r

10 ucbmin← ucb
11 return rtop

Algorithm 6: Exploring the top-k candidates in real time using modified UCB1.

calls is simple, in general it may also be of interest to consider other budget models, such as
per-relay limits or bandwidth cap on call-related traffic.

VIA utilizes the budget using a simple extension to the heuristic in Section 8.3.5. It decides
to relay a call only if the benefit of relaying is sufficiently high. If the overall budget for relaying
calls is B percent, a call should be relayed only if the benefit of relaying it is within the top B
percentile of calls. VIA uses historical call information (of relaying benefits) to keep track of
the percentiles. It decides to relay a call only if the expected benefit is above the Bth percentile
benefit.

8.4 Evaluation

In this section, we show that VIA can significantly improve performance on network metrics.
Specifically, we show that:
• VIA achieves substantial improvement on all network metrics — 20%− 58% reduction on

median (compared to the oracle’s 30%-60%; Section 8.2) and 35%−60% on 99th percentile.
VIA reduces PNR by 39%−45% for the individual metrics (compared to the oracle’s 53% in
Figure 8.2b), and by 23% when PNR is computed on an ”at least one bad” metric (compared
to the oracle’s 30%).
• VIA achieves close-to-optimal performance under budget constraints by selectively relaying

calls that have higher potential benefit (Section 8.3.6).

112

 0

 20

 40

 60

 80

 100

RTT Loss Jitter At least
one bad

R
e

d
u

c
ti
o

n
 o

f
P

N
R

 (
%

)
Strawman I
Strawman II

VIA
Oracle

(a) VIA, strawmen, oracle vs. default

 0

 20

 40

 60

 80

 100

RTT Loss Jitter

%
 o

f
re

d
u

c
ti
o

n Median

90th%

99th%

(b) VIA improvement on percentiles

Figure 8.6: Improvement of VIA. PNR on individual metrics improve by 39%−45% and on the
”at least one bad” metric by 23%.

• VIA’s improvement increases as relay decisions are made at finer spatial granularities and
more dynamically. However, we start to see diminishing gains at granularities finer than
AS-pair and daily.

8.4.1 Methodology

We perform data-driven simulations based on 430 million Skype calls (Section 6.1.2). The calls
are replayed in the same chronological order as in the trace thereby allowing VIA to gain knowl-
edge as it goes along (using newer call measurements). We assume that when a call is assigned
to certain relay option, its performance would be the same as that of a call which is randomly
sampled from the set of calls between the same AS pair through the same relay option in the same
24-hour window. Tomography-based performance prediction is made based on call performance
in the last 24-hour window. For statistical confidence, in each 24-hour window, we focus on AS
pairs where there are at least 10 calls on at least 5 relay options 3. Also, the relaying options
considered for a call are only those with at least 10 call samples. To quantify the confidence in
the results, we also add error bars (of standard error of mean) to the graphs. Note that even with
the aggregation, we used distribution (e.g., mean, percentiles) of the metrics and not per-call
values for evaluation.

This section shows how much VIA can reduce PNRs (fraction of calls having poor perfor-
mance on the individual network metrics or on the ”at least one bad” metric), compared with the
oracle approach and a strawman, such as using the default paths for all calls (”default strategy”).

8.4.2 Improvement of VIA

PNR reduction: Figure 8.6a shows the PNR reduction of VIA over default strategy (always
using default paths), and compares it with the PNR reduction of pure prediction-based selection,
based just on history (Strawman I), pure exploration-based selection without any pruning of the
options up front (Strawman II), and oracle. Across all three performance metrics, we see that VIA

3Otherwise, selecting relays from a handful of candidates would be trivial. 32 million calls remain after these
filters.

113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

RTT Loss Jitter At least

one bad

P
N

R

Direct

VIA

Oracle

(a) International

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

RTT Loss Jitter At least

one bad

P
N

R

Direct

VIA

Oracle

(b) Domestic

Figure 8.7: VIA improvement on international and domestic calls. We also have similar obser-
vation regarding inter-domain and intra-domain calls.

achieves close-to-oracle performance and significantly outperforms both the default strategy and
the two strawman approaches. The strawman approaches yield much less improvement, which
confirms the inefficiency of the pure predictive and pure exploratory strategies (Section 8.3.2).

Improvement on percentiles: Figure 8.6b shows the improvement over default strategy on dif-
ferent percentiles. We first calculate the percentiles of performance of each strategy and calculate
the improvement between these percentiles (which avoids the bias of calculating improvement
on each call). We see that VIA has improved performance on both median (by 20%−58%) and
the extreme tail (by 20%− 57% on 90th percentile), which shows VIA is able to improve the
performance of a wide spectrum of calls.

Transit vs. bouncing relay: Finally, we find that also using transit relaying (i.e., using inter-
DC connection between the ingress and egress relays as part of the path) usually results in higher
improvement on PNR than only using bouncing relays (i.e., using one relay node to bounce off
traffic). On AS pairs which have used both bouncing and transit relays, we see 50% lower PNR
when both transit and bouncing relays are available than when transit relays are excluded. We
also find that VIA sends about 54% calls to bouncing relays, 38% to transit relays, 8% to default
paths, with a marginal difference in the distribution across network metrics.

International vs. domestic: Figure 8.7 compares PNR of international and domestic calls under
strategies of default, VIA and oracle.We see significant improvement of VIA on both international
and domestic calls, while international calls have a slightly higher magnitude of improvement
than domestic calls. This can be explained by the fact that relaying has limited benefits when the
bottleneck is the last-mile ISP or the last-hop connection.

Benefits by countries: Figure 8.8 further dissects the improvement of VIA by countries (with
one side of the international call in that country) with worst (direct) PNR. It shows that the worst
countries have a much higher (direct) PNR than the global PNR, shown by the horizontal red
line, and that the performance of VIA is closer to the oracle than to the default for most of these
countries.

114

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

PH PK LK IN AE SA US EG QA JO

P
N

R
 (

R
T

T
)

Countries ranked by PNR of its international calls

Direct
VIA

Oracle

(a) PNR of RTT

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

EG JP SA PH KR PK JO IN AE DZ

P
N

R
 (

L
o

s
s
 r

a
te

)

Countries ranked by PNR of its international calls

Direct
VIA

Oracle

(b) PNR of loss rate

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

AE EG PH LK PK US QA SA DZ IN

P
N

R
 (

J
it
te

r)

Countries ranked by PNR of its international calls

Direct
VIA

Oracle

(c) PNR of jitter

Figure 8.8: Dissecting VIA improvement on PNR by country of one side. There is a substantial
diversity on VIA improvement across different countries.

8.4.3 VIA’s Design Choices

Prediction accuracy of relay-based tomography: As a first step, VIA uses relay-based tomog-
raphy (Section 8.3.4) to predict the performance each relaying option. We evaluated the accuracy
of tomography-based predictions on the different metrics and found that on 71% of calls, the pre-
dicted performance is within 20% from the actual performance. However, for 14% of the calls,
the error can be ≥ 50%. This non-negligible prediction error explains the poor performance of
Strawman I (pure prediction-based) that we have seen in Figure 8.6a, and also motivates real-time
exploration.

Benefits of prediction-guided exploration: As discussed in Section 8.3, VIA is not a simple

115

 0

 20

 40

 60

 80

 100

RTT Loss Jitter At least
one bad

R
e

d
u

c
ti
o

n
 o

f
P

N
R

 (
%

)

Top-2, original UCB
Top-k, original UCB

VIA (Top-k, modified UCB)

Figure 8.9: Comparing guided-exploration strategies.

combination of prediction and exploration approach. First, instead of picking a fixed number
top candidates, VIA pick top candidates by taking variance of prediction into account. Second,
instead of using the original UCB1 algorithm, which assumes a normal distribution of rewards,
we adopt a different way to normalize values to cope with performance outliers. Figure 8.9
quantifies the incremental contribution of both modifications on PNR of the three metrics. It
shows that each modification makes a significant contribution to VIA’s improvement. With the
“at least one bad” metric, picking top k and using the normalized reward reduces PNR by 24%
compared to 15% with just the top 2 (loss rate PNR by 44% compared to 26%).

8.4.4 Practical Relaying Factors

Relaying budget: Being able to use relays judiciously within a budget for relayed calls is an
inherent requirement in the context of managed overlay networks such as VIA. Here, we define
budget as the maximum fraction of calls being relayed. We only impose an overall budget, not
a per-relay one. Figure 8.10 shows the impact of budget on PNR (of at least one bad metric) of
three strategies: oracle, budget-unaware VIA and budget-aware VIA. The budget-unaware VIA,
which selects relays based on Algorithm 4, will relay calls whenever there is potential benefit of
doing so, without taking into consideration the overall budget of relaying. Therefore, there is a
risk of the budget getting used up by calls with only small benefit. In contrast, budget-aware VIA

(Section 8.3.6) relays a call only when the benefit is larger than a threshold, which depends on
the actual budget. That means calls with minimal benefit will not be relayed, saving resources for
the calls that would benefit the most by relaying. From Figure 8.10, we see that the budget-aware
VIA (Section 8.3.6) can use budget much more efficiently than the budget-unaware VIA. Also,
budget-aware VIA can achieve about half of the maximum benefit (i.e., when budget is 100% of
calls) with a budget of 0.3 (i.e., only relying 30% of calls).

Relaying decision granularities: We show performance improvement as a function of the
spatial and temporal granularity at which VIA operates. First, to show the impact of spatial
granularity, Figure 8.11a fixes the temporal granularity to running stage (2) and (3) of VIA every
24 hours, i.e., T = 24 hours (Figure 8.4) and compares the PNR if different relay options could
be selected for calls in different spatial granularities. For fair comparison, the PNR are calculated
based on the same set of calls.

We see two consistent trends. First, making decision at granularities coarser than a per AS

116

 0.1

 0.12

 0.14

 0.16

 0.18

 0 20 40 60 80 100

P
N

R
 o

f
a

t
le

a
s
t

o
n

e
b

a
d

 m
e

tr
ic

Budget (as % of total calls)

Oracle
Budget-unaware VIA

Budget-aware VIA

Figure 8.10: Impact of budget constraint on VIA.

pair results in a smaller reduction in PNR. For instance, different ISPs within a country have
different peering relationships, and thus may have different optimal relay options, but such op-
portunities will not be exploited when making decision per country. Second, making decisions
on finer granularities does not help much, though for a different reason. At finer granularities,
the coverage becomes much smaller, which make VIA unable to predict many potential relay
options. In future work we hope to analyze a much larger data set In Figure 8.11b, we see a
similar pattern when comparing PNR of different temporal granularities, i.e., different values of
T (Section 8.3.3).
Relay usage: Figure 8.11c shows reduction of PNR when a subset of (least used) relays is
excluded. We see that the contribution of benefits from different relay nodes are highly skewed.
Removing 50% of the (least used) relays causes little drop in VIA’s gains. This suggests that
new relays should be deployed carefully in future.

8.4.5 Real-World Controlled Deployment
We implemented and deployed a prototype containing the relevant components of VIA at a small
scale using modified Skype clients and using Skype’s production relays. The central controller
of our prototype (Figure 8.1), deployed on the public Microsoft Azure cloud, aggregated per-
formance measurements from instrumented Skype clients and implemented the relay selection
algorithm. The instrumented Skype clients contacted the controller to decide which of the relays
of Skype, if any, to use for their calls. We deploy the instrumented client on 14 machines across
Singapore, India, USA, UK and Sri Lanka. Overall, we required minimal modifications to the
Skype client.

The controller also orchestrated each client to make calls to the other clients. In total, it cre-
ated around 1000 calls between 18 caller-callee pairs. Specifically, it instructed each caller-callee
pair to make (short) back-to-back calls using 9−20 different relaying options, 4−5 times each.
Since our testbed is at a small scale, such back-to-back calling provides us with high density per-
formance samples between source-destination pairs through many different relays. We use these
samples to perform a controlled experiment on VIA’s relaying heuristic with accurate ground
truth. For simplicity, we omit the direct path as an option.

The results are shown in Figure 8.12, where each curve shows the CDF of “sub-optimality”
of VIA’s performance on each call, defined by PerfVIA−Perforacle

Perforacle
. We found that VIA’s relaying

decision is within 20% of an oracle’s performance for 70% of the calls. Note that this is despite

117

 20

 40

 60

/24 pair

/20 pair

AS pair

Country pair

Src AS
Src Country

R
e

d
u

c
ti
o

n
 o

f
P

N
R

 (
%

)

Different spatial granularities
(with fixed time window of 24 hr)

RTT
Loss
Jitter

(a) Impact of spatial granularity

 0

 20

 40

 60

 80

6 hr 24 hr 2 days 1 week Infinite

R
e

d
u

c
ti
o

n
 o

f
P

N
R

 (
%

)

Different time windows
(with fixed spatial granularity of AS pair)

RTT
Loss
Jitter

(b) Impact of temporal granularity

 0

 20

 40

 60

 80

 0 20 40 60 80 100

R
e

d
u

c
ti
o

n
 o

f
P

N
R

 (
%

)

% of relays removed

RTT
Loss
Jitter

(c) Impact of relay deployment

Figure 8.11: Sensitivity analysis of VIA improvement. Figure 8.11a and 8.11b compares PNR
under different control granularities. Figure 8.11c shows PNR when some of the (least used)
relays are excluded.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Suboptimality of VIA w.r.t oracle

RTT
Loss rate

Jitter

Figure 8.12: Deployment results. CDF, over calls, of sub-optimality (lower is better) of VIA’s
performance.

picking the best relay (i.e., sub-optimality of 0) for no more than 30% of the calls. When there
are multiple relaying options with similar performance, temporal fluctuations may lead to not
always picking the best option. But VIA usually picks the option that is close in performance to
the best.

118

8.5 Discussion

Cost of centralized control in VIA: Our pilot deployment and client modifications suggest a
feasible path to a large-scale deployment from a software update and engineering perspective.
One potential concern, however, is the scalability and responsiveness of the control platform.
On the one hand, VIA introduces minimal per call overhead, since the client-controller com-
munication need only consist of one measurement update and one control message exchange
per call and can be further reduced if the clients cache the best relaying options. On the other
hand, handling a large number of call connections at one logical controller presents a scalability
challenge, though partitioning techniques provide a good starting point. Also, we conjecture
that approaches similar to the split-control architecture employed in C3 [101] might offer a scal-
able realization, since the measurement and control exchange of the C3 controller (which directs
clients to video CDNs) is similar to the measurement and control needed for a large-scale VOIP
relay server.

Hybrid reactive decentralized approaches: A natural alternative to relay selection is to simply
have clients try a list of relay options sequentially or in parallel, and pick the best option. Such
an approach may be good enough for long-lived calls. This would avoid the overhead of data
collection and generating the network map. However, as we discussed earlier, this may not be
feasible given the large search space of relaying options. An interesting hybrid approach is using
the prediction-guided exploration observations as a means to prioritize or prune this approach.
We intend to explore this approach going forward.

Active Measurements: While our current solution relied entirely on passive measurements
from client calls, there is an opportunity to augment it with active measurements (by making
mock calls between users or from users to relays), especially since the client software can be
readily controlled to make them. Active measurements can be intelligently orchestrated to fill
“holes” in the passively obtained measurements, thereby making our prediction-guided explo-
ration (both its aspects—tomography as well as bandit solution) more effective. Doing so will
require considering the additional load imposed on the clients due to the collection.

8.6 Related Work

Overlay routing: Overlay networking has been explored in a variety of contexts, such as virtual
private networks (VPNs) and multicast [55, 93, 164]. Of interest to us here is work focused
on overlay routing with a view to improving performance [47, 180]. This work showed that
performance in terms of network metrics such as delay and packet loss, and also reliability,
could be improved by using an overlay path that traverses well-chosen waypoints.

Despite this promise, overlay routing for performance gains has not seen much adoption in
practice, for several reasons including the last-mile performance bottlenecks encountered in us-
ing client nodes as peers and the policy issues involved in turning stub networks (e.g., university
campus networks) into de facto transit networks. Perhaps most importantly, these efforts in-
volved building up overlay networks from scratch, both in terms of physical infrastructure and
network probing, which limited their scale.

119

Our work revisits the idea of overlay routing in the context of (a) global-scale managed
networks, so the global infrastructure already exists and need not be built up from scratch, and
(b) a large-scale interactive real-time service, Skype, which provides both a compelling need
for improving performance and (passive) measurements to obviate the need for active network
probing.

Evolution of AV conferencing services: The architecture of audio-video conferencing services
has been evolving, with a trend towards leveraging cloud resources. A case in point is Skype,
which started off with a peer-to-peer approach to NAT and firewall traversal, with some well-
connected clients with public IP addresses serving as super-nodes [133]. However, in the recent
years, Skype has moved to a hybrid model [221], with some super-nodes hosted in the cloud [1].
It has been reported that Google Hangouts uses relays in the cloud for all calls, and moreover
also has streams traverse the cloud backbone from one relay to another [221].

Our work is in line with these trends, but focused on performance rather than NAT/firewall
traversal. Also, since we focus on managed networks, being selective in which streams are routed
via the cloud is crucial in our context.

CDN server selection: Optimal server selection is a much-studied problem, especially in the
context of content distribution networks [209, 216]. The main considerations in the selection
process are typically proximity of the client to replicas and the load on the replicas. The main
distinction of our work is our focus on client-to-client communication, which means that relay
selection needs to focus on end-to-end performance rather than just between the cloud edges and
the client.

Internet performance prediction: There is a large body of work on Internet performance
prediction [98, 148, 157], with a focus on metrics such as bandwidth, delay, and packet loss rate.
The general approach is to probe the network selectively, at chosen times and along chosen paths,
and then to use the measurements to either embed the network nodes in a coordinate space [83] or
estimate the performance of network segments using network tomography techniques [69]. Since
we have access to network metrics for a large volume of calls, our work focuses on leveraging
this data rather than performing active measurements.

Measurement studies: Over the years, there have been a number of measurement studies of
large Internet services, including web sites [160], CDNs [178], and video-on-demand stream-
ing [77, 88]. There have also been studies of audio-video conferencing by working outside the
system, say by running active measurements to Skype super-nodes [220] or sniffing traffic in
modest-size deployments [221]. To our knowledge, this work is the first study of a commercial
VoIP service at scale by directly working with end-to-end performance metrics recorded by the
communicating peers themselves.

Estimating VoIP Quality: Several models have been proposed and studied for estimating VoIP
quality, typically the Mean Opinion Score (MOS), based on network performance metrics [72,
73, 75, 80, 220]. These models vary in the particular network metrics and codecs they consider.
In Section 8.2, we used the model proposed in [80], which is based on the E-Model defined by
the ITU [20].

120

8.7 Summary
By some estimates, the call volume of Internet telephony has surpassed that of traditional tele-
phony. Given its importance, in this chapter, we have applied DDN paradigm to improve VoIP
QoE. To mitigate calls with poor network performance, we revisit the classical overlay network
techniques with the emerging managed overlay networks operated by large cloud providers. Calls
between users with poor network conditions can be selectively relayed via the managed overlay
network. To fully realize the benefit of a managed overlay infrastructure, we have presented the
design of VIA, a system that dynamically selects a close-to-optimal relay path in the managed
overlay for each call.

In doing so, VIA addresses a missing piece in previous DDN-based solutions (e.g., CFA or
Pytheas): data sparsity caused by a large decision space. The key insight of VIA to address this
challenge is that, for each pair of caller ISP and callee ISP, there is a small and stable subset
of relays that almost always contains the best relay. Inspired by the insight, VIA uses a guided
exploration procedure using predicted performance derived from end-to-end measurements col-
lected by the clients, while dealing with variances in real-world estimates and keeping the volume
of relayed calls within a budget. Data-driven evaluation shows that VIA improves call quality by
45%, which closely matches the potential benefits indicated by an oracle relay selection strategy
that has hindsight information.

121

122

Chapter 9

Lessons, Limitations, and Future Work

In this chapter, we conclude the dissertation by summarizing its key contributions (Section 9.1),
the lessons learned from our implementation and deployment of the proposed solutions (Sec-
tion 9.2), and fundamental limitations of our solutions (Section 9.3). We will end with identifying
the key future research topics and outlining a research agenda to help the networking community
recognize and embrace the data-driven networking paradigm (Section 9.4).

9.1 Summary of Contributions

A historical perspective: The past decades have seen intense research efforts towards ensuring
high quality of Internet applications by following two traditional approach: the in-network ap-
proach and the endpoint-based approach. To optimize QoE under dynamic network conditions,
ideally we need to accurate information regarding both user-perceived QoE and network condi-
tions, but both in-network and endpoint approaches have fundamental limitations on at least one
front, and are ill-suited to meet QoE requirements of today’s applications. On one hand, the in-
network approach has limited visibility to user-perceived QoE, and requires costly re-architecting
ISPs’ infrastructure. On the other hand, the endpoint approach has to infer network conditions
from limited, and often noisy, local information of individual end users. As a result, we have
seen that a substantial fraction of video viewers and VoIP users suffer from suboptimal quality.

Our thesis: The key contribution of this dissertation is to improve application QoE by bridging
the long-standing gap between the visibility to user-perceived QoE and the visibility to network
conditions. Our thesis is that one can substantially improve QoE by maintaining a global view of
up-to-date network conditions based on the QoE information collected from many endpoints. In
essence, we revisit the question of “where to implement the functionality of QoE optimization”,
and demonstrate the feasibility and benefit of a different design choice, called data-driven net-
working (DDN): one can optimize QoE by using a logically centralized controller that retains the
visibility to QoE while attaining a global view of real-time network conditions by consolidating
information from many endpoints.

Challenges: This dissertation provides a suite of solutions to make DDN practical by addressing
its two fundamental challenges: (1) the need for expressive models to capture complex relations

123

among sessions who share similar QoE-determining factors, and (2) the need for scalable control
platforms to make real-time decisions with fresh data from geo-distributed clients.
Solutions inspired by the insight of persistent critical structures: The key insight underly-
ing this dissertation is that there are some domain-specific persistent critical structures in the
relationship among session-level features, decisions, and QoE.
• Expressive models: At a high level, the persistent critical structures allow us to build ex-

pressive models that can identify a subset of network sessions with similar QoE-determining
factors and a subset of decisions that are most promising. For instance, CFA (Chapter 5)
and DDA (Chapter 6) use a small subset of critical features on which a session’s QoE
really depends to discover the video sessions who have similar quality. VIA (Chapter 8)
uses Guided Exploration to reduces the large decision spaces to a small subset of the most
promising relay paths. Moreover, the fact that these structures tend to persistent on longer
timescales than QoE itself suggests that we can use a longer time window and learn these
structures from more history data.

• Scalable control platforms: Because the persistent critical structures often correlate with
network locality, they enable an effective spatial decomposition of the global data-driven
process into smaller-scale subprocesses which are naturally amenable for a scale-out im-
plementation in today’s cloud infrastructure. Pytheas (Chapter 7) uses Group-based E2 to
decompose the global E2 process of all sessions into independent E2 subprocesses, each
of which controls a group of sessions sharing network locality as well as critical features
and runs in a geo-distributed frontend cluster with fresh data of these sessions. Pytheas can
scale horizontally and can make decision for a population of a site like YouTube (5billion
users per day) with measurement data of concurrent sessions in less than a second of delay.

QoE improvement: Using real-world deployment and offline emulation driven by large-scale
measurement of real traffic, we have shown that the solutions proposed in this dissertation can
lead to substantial QoE improvement in video streaming and VoIP. For instance, in video stream-
ing, we demonstrate that CFA leads to 32% less buffering time than a baseline random decision
maker, and Pytheas leads to a further 31% reduction on buffering time over CFA. In Internet
telephony, we use trace-driven analysis and a small-scale deployment shows that VIA cuts the
incidence of poor network conditions for calls by 45% (and for some countries and ASes by over
80%) while staying within a budget for relaying traffic through the managed overlay.

9.2 Lessons Learned
We summarize four lessons drew from the interaction with industry (Conviva and Microsoft
Skype) in our attempts to deploy the proposed solutions in the real world.

Lesson #1: Need for offline evaluation One of the practical challenges we encountered in
working with Conviva and Microsoft Skype has been how to demonstrate the DDN’s benefit
with sufficient confidence in an offline fashion, i.e., before implementing our solutions in the
production system. A natural solution is to use simulation driven by measurement trace col-
lected from real traffic, but this could be greatly biased by how the trace were collected; e.g.,

124

we would not able to evaluate the performance of Akamai in Pittsburgh if Pittsburgh users have
only used other CDNs. While a full discussion on how to build an accurate trace-driven simu-
lator (e.g., [204]) is beyond our scope, we found that it would be very useful to randomize the
decisions even on a small portion of sessions when collecting trace for offline evaluation, as it
allows us to estimate the outcome of alternative decisions.

Lesson #2: Need for gradual deployment Another consideration equally critical to these
application providers is the ability to gradually roll-out the proposed solutions in real production
settings to gain sufficient confidence before deploying them on a large scale. Besides the natural
solution of A/B testing, surprisingly, we found that even deploying part of the proposed solution
could reveal useful information, and potentially lead to more confidence for deploying the end-to-
end solution. For instance, it is difficult to deploy VIA’s online relay selection in today’s Skype
relaying system which does not support changing relays on a per-call basis as needed by VIA,
but it is practical to deploy VIA’s offline relay pruning part which updates the prediction on relay
performance on a coarse timescale. While the resulting performance is suboptimal compared to
that of the full system of VIA, it is sometimes necessary to trade some performance benefit for
an implementation compatible to the existing systems for practical reasons.

Lesson #3: Leveraging application-specific resilience A key enabler for the scale-out and
fault-tolerant architecture of Pytheas and parallel industry efforts such as C3 [101] is that we
were able to exploit domain-specific properties that allows us to weaken some requirements.
For instance, Pytheas tolerates controller failures by leveraging the fact that without the Pytheas
controller, video players can still stream videos and quickly fall back to use the built-in local
adaptation logic react to network conditions, albeit with suboptimal quality. In essence, our
insight of persistent critical structures can be also viewed as an instantiation of application-level
resilience. Though it is always more desirable to have a general-purpose solution, we believe it
is possible to leverage application-specific resilience and engineer simpler schemes to meet the
requirements of specific applications.

Lesson #4: Need for interpretability Our conversations with domain experts revealed that
they were apprehensive about using complex machine learning models (e.g., SVM, PCA or neu-
ral network-based techniques) that use non-intuitive “projections” of features, because the deci-
sions made by these algorithms are not mappable to real-world effects (e.g., which CDN), which
is critical to diagnostics and incident response. Therefore, we strove to integrate our solutions
with interpretability [212], allowing domain experts to combine their knowledge and diagnose
prediction errors or resolve incidents. For instance, a practical benefit of CFA is that when we
observe high prediction errors, we can check the critical features based on which predictions
were made, and try to correlate them with known network incidents.

9.3 Limitations of Proposed Solutions
This section examines the limitations in our work.

125

Limitation #1: Root cause diagnosis While our algorithms provide the explanatory power
of how a prediction or a decision is made, they are not design for root cause diagnosis. For
instance, in CFA, critical features are not a minimal set of factors that determine the quality (i.e.,
root cause). That is, they can include both features that reflect the root cause as well as additional
features. For example, if all HBO sessions use Level3, their critical features may include both
CDN and Site, even if CDN is redundant, since including it does not alter predictions. The
primary objective of CFA is accurate prediction; root cause diagnosis may be an added benefit.
In essence, this dissertation aims at building a statistics correlation between features, decisions,
and QoE to help improve QoE, but causal analysis is fundamentally different and is known to be
generally more difficult than identifying statistic correlations.

Limitation #2: Skewed visibility While driving decision making by QoE observed by mil-
lions of application sessions enjoys many advantages, the view on network conditions provided
by these sessions is fundamentally skewed in two aspects. (1) Since many applications such as
video streaming rely heavily on CDNs to push content closer to clients, network paths of today’s
application sessions are skewed towards the paths from edge servers/caches to clients. (2) Ap-
plication quality is generally imbalanced with most sessions having good quality, but it is the
identification of bad quality that leads to more QoE improvement; e.g., problem clusters usually
do not have over 50% bad-quality sessions, but the fraction is still significantly higher than the
global average (Section 4.1).

Limitation #3: Handling flash crowds Flash crowds happen when many sessions join at the
same time and cause part of the resources (decisions) to be overloaded. While Pytheas can handle
load-induced QoE fluctuations that occur in individual groups, overloads caused by flash crowds
are different in that they could affect sessions in multiple groups. A natural solution is to regroup
those affected sessions immediately after a flashcrowd occurs, but Pytheas does not support such
real-time update on groups. To handle flash crowds, Pytheas would need a separate mechanism
to detect flash crowds and create groups for the affected sessions in real time.

Limitation #4: Agnostic to cost of switching decisions Our solutions do not consider the cost
of switching decisions during the course of an application session. While they are reasonable to
today’s DASH-based video streaming protocols [11], in which switching bitrate and CDN merely
needs a change of in the HTTP request, other applications (e.g., VoIP) may have significant cost
when switching decisions in the middle of a session, so to avoid excessive switching of decisions,
the control logic must not too sensitive to QoE fluctuations. Moreover, our solutions are agnostic
to the cost of switching a large portion of clients from one decision to another, and this may cause
practical issues as well. For instance, content providers usually pay CDNs by the 95th percentile
traffic, so we must carefully take the traffic distribution into account.

Limitation #5: Limited decision space A final limitation of the DDN approach is that its po-
tential room of improvement is fundamentally limited by the granularity of the “control knobs”
exposed by the underlying delivery system. For instance, in video streaming, our solutions cur-
rently select resources at the CDN granularity. This means we cannot do much if the CDN

126

redirects the client based on its location and the servers the CDN redirects the client to are con-
gested. However, if the client were able to specify the server to stream from, we could avoid the
overloaded servers and improve quality.

9.4 Future Work

The application of data-driven paradigm in networked and distributed systems is vast, and still
in its infancy. We believe this dissertation is merely a beginning and in the near future, there
will be tremendous opportunities for data-driven techniques, driven by both “use pulls” (high
QoE/performance requirements and the increasing complexity of networked systems) and “tech-
nology pushes” (availability of big data in networking and new data analytics capability).

This section identifies two broad research directions to explore this confluence of data-driven
paradigms and networked and distributed systems.
• The data-driven paradigm inspires rethinking many classic problems in networking as well

as enabling new services (Section 9.4.1).
• As diverse applications realize the benefit of the data-driven paradigm, there will be an

increasing need for a common, principled architecture to address common challenges and
extract reusable design principles. (Section 9.4.2).

9.4.1 Rethinking Classic and New Challenges in Networking

End-to-end adaptation: As the Internet grows more complex and diverse, it is untenable for
traditional end-to-end protocols, such as TCP congestion control, to react in real time to changes
in network conditions and resource availability based on local information. We believe data-
driven techniques offer a promising alternative. Consider TCP; we can envision a new service
that aggregates real-time performance of similar TCP connections and predicts the largest win-
dow size for which a TCP connection will not experience congestion losses. This service can
potentially lead to better TCP performance than many state-of-the-art techniques, as it needs lit-
tle active probing and can train the logic in near real time, rather than offline. An early promise
of this approach was shown in our prior work of CS2P [199] which can accurately predict HTTP
throughput using information of similar HTTP sessions, and CS2P could potentially be extended
to inferring optimal window sizes from the HTTP throughput prediction.

Internet traffic map: Many Internet services can benefit from a traffic map service that can
predict performance (e.g., available bandwidth) of any network path, but prior efforts towards
such a service suffer from limited coverage, high probing overhead, or significant data staleness.
Fortunately, passive measurements of applications like video streaming offer a new enabler for
such a service, as they provide real-time measurements of network state from millions of vantage
points without incurring any probing overhead! My prior work [125, 198] shows it is feasible to
predict coarse-grained performance metrics (e.g., RTT between ISPs) by mapping video quality
to simple network models. Extending these maps to predicting fine-grained (e.g., link-level)
metrics provide an interesting next step.

127

Eliminating biases in trace-driven evaluation: Before implementing any DDN-based algo-
rithm, the first question asked by any content provider is always “can I quantify how much
DDN would actually improve my application’s quality?” A natural solution is to use the trace
already available to content providers to extrapolate the counterfactual outcome of a different
algorithm, but this is challenging, since the data could be biased by the trace collection process
or could have high variance due to data sparseness. This is known in ML literature as off-policy
evaluation problem, and a promising solution is the recently proposed doubly robust (DR) esti-
mator [91]. While the DR is a promising starting point, there are network-specific factors that
it does not consider. For instance, the DR estimator will not identify quality degradation due to
server overload, if such overload never happens in the dataset.

Data-Driven Configurations in Internet of Things: The past few years have witnessed a dra-
matic increase in Internet of Things (IoT) devices and their applications. One distinctive feature
of these IoT applications is that they emphasize more on data analytics that has diverse require-
ments (e.g., delay sensitive vs. accuracy sensitive), and operates on devices of heterogeneous
capacity and power duration (e.g., general-purpose machines vs. specialized hardware). More-
over, as IoT devices need to constantly interact with users, their workloads are more dynamic,
if not more unpredictable, than traditional Internet hosts. Fortunately, the underlying techniques
used in IoT data analytics offer many “knobs” that could potentially cope with such a hetero-
geneity; e.g., tuning hype-parameters of deep neural networks, flexible consistency guarantees in
database, and various types of cloud resources. The challenge, however, is how to dynamically
identify the configurations that are suitable to each IoT analytics task at any point of time. A
case in point is the selection of configurations in surveillance video analytics [228], where it is
challenging to strike a dynamic balance between timeliness and fidelity for queries with diverse
requirements. Drawing on a parallel to similar problems (e.g., parameter selection in congestion
control [217] and cloud configuration selection [44], we argue we should leverage data-driven
techniques to learn the best configurations for these knobs based on real-time workload and mon-
itoring data. Despite these conceptual similarity, IoT data analytics poses system challenges that
have not been fully understood; e.g., how to scale the process to millions of devices who has
limited bandwidth and capacity.

9.4.2 Towards a Principled Architecture for Data-Driven Networking

Custom Data Analytics Stack for Networking: While data-driven techniques can be applied
to many problems, there are common challenges across these applications. First, while it is
tempting to use general-purpose techniques to analyze networking data, one must take into ac-
count network-specific knowledge to avoid undesirable outcomes; e.g., to optimize overall per-
formance, ESPN may use small ISPs to use suboptimal CDNs and let Comcast users use optimal
CDNs, causing a reverse network neutrality violation in which content providers discriminate
against ISPs! Second, one also needs to leverage application-specific resilience; e.g., to probe
both optimal and suboptimal servers without affecting quality, a video player can use the optimal
server to fetch most content, but use suboptimal servers when the buffer is full. Therefore, we
envision a custom data analytics stack for networking built on top of state-of-the-art analytics
stacks (e.g., Spark), which leverages network-/application-specific opportunities, and offers ab-

128

stractions to express network/application concepts (e.g., sessions) and requirements (e.g., data
staleness). It is helpful to draw a parallel to the parallel efforts of building an analytics stack for
graph processing [104], where researchers realized the limitations of Spark in supporting graph
processing operations, and customized Spark and built a software layer over it to support APIs
specific for graph processing.

Architecture of Cross-Provider Data Sharing: So far our work has been primarily within the
scope of a single service provider. Looking forward, we argue that there is greater room for im-
proving application QoE by bringing more service providers into the loop. These providers can
be ISPs, CDNs, and cloud services, whose revenue is also driven, albeit indirectly, by high QoE.
Unfortunately, a fundamental limitation of today’s federated Internet structure is that many prob-
lems arise because each service provider has little visibility into either the QoE of its sessions
or the decisions made by others. For instance, ESPN clients use HTTP-based bitrate-adaptation
video players, which can select both CDN (e.g., Akamai and Limelight) and bitrate, and in many
cases these players perform poorly because ESPN cannot know whether the bottleneck link is at
edge ISPs (e.g., Comcast) or CDN servers (e.g., Akamai). Now, if Comcast shares with ESPN
additional information that attributes bottlenecks to Comcast rather than Akamai, the players can
react to ISP congestion by lowering the bitrate, rather than blindly switching between Akamai
and Limelight. Building on this intuition and our early work [123], we argue that the fundamental
problem lies in the limited interfaces between service providers, and that a principled approach
to re-architecting these interfaces with explicit QoE optimization in mind is needed. We envision
an Experience-Oriented Network Architecture (EONA), where service providers share QoE infor-
mation and key configuration changes in order to optimize user-perceived QoE in a coordinated
way, while still keeping the federated structure. EONA can be realized without changing the
data/control plane protocols; instead, it adds new interfaces between the “controllers” of service
providers (e.g., an SDN controller, a cloud orchestrator, or a global video control plane [147]).
Despite EONA’s potential, there are many open-ended questions: How to incentivize EONA to
attract service providers? What is the minimal set of information that has to be shared? How to
preserve privacy when sharing data between providers?

Infonomics of Network Measurement Data: A key practical challenge to democratize the
benefit of data-driven paradigm in networking is that most measurement data are independently
collected and maintained by individual domains (e.g., video sites, web sites, ISP, CDNs). It
would be impractical to assume they will voluntarily share the insight extracted from their data
for a common goal. While prior studies have largely focused on how to ensure data privacy by
techniques like differential privacy [71, 162]. they have overlooked many key issues, including
the incentive structure of data sharing, and how data fidelity (timeliness, granularity, etc) affect
the willingness of others to use these data. We argue that a more effective and comprehensive
solution is to develop a marketplace of network measurement data, where the key is a pricing
framework to quantify the value of these network measurement data as well as the incentive of
others to purchase them as oppose to learning it from what they already have. Such marketplace
of network measurement data can be viewed as an instance of infonomics [138], an emerging
notion in economics to measure, manage and monetize data as a real asset.

129

9.5 Final Remark
The past decade has witnessed the coming of age of data-driven paradigm in various aspects of
computing (partly) empowered by advances in networked and distributed systems (cloud com-
puting, MapReduce, etc). The overarching argument of this dissertation is that the benefits can
flow the opposite direction as well: networked systems can be improved by data-driven paradigm
– by leveraging a dramatically increased amount of measurement data and the state-of-the-art
ML and large-scale data analytics techniques, we can unleash the “unreasonable effectiveness of
data” in networking.

130

Bibliography

[1] Microsoft: Skype runs on Windows Azure; Sky-
Drive up next. http://www.zdnet.com/article/
microsoft-skype-runs-on-windows-azure-skydrive-up-next/.
2.2.2, 8.6

[2] SmoothStreaming Protocol. http://go.microsoft.com/?linkid=9682896.
2.2.1, 2.3.2

[3] Akamai HD Adaptive Streaming. http://wwwns.akamai.com/hdnetwork/
demo/index.html. 2.3.2

[4] Apache HTTP Server Benchmarking. https://httpd.apache.org/docs/2.4/
programs/ab.html. 7.7.2

[5] Artiza Networks. http://www.artizanetworks.com/. 1, 1.2, 3.1.1

[6] White paper: Cisco VNI Forecast and Methodology, 2015-2020.
http://www.cisco.com/c/en/us/solutions/collateral/
service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html, . 1

[7] Quality of Service for Voice over IP. http://www.cisco.com/c/en/us/td/
docs/ios/solutions_docs/qos_solutions/QoSVoIP/QoSVoIP.pdf, .
1, 2.1.2, 4.2.1

[8] CloudLab. https://www.cloudlab.us/. 7.7

[9] Conviva Inc. http://www.conviva.com/, . 1, 5.1.1

[10] Personal communication with aditya ganjam from conviva, who is an expert on video qoe.,
. 5.5.2

[11] Overview of mpeg-dash standard. http://dashif.org/mpeg-dash/, . 9.3

[12] dash.js. https://github.com/Dash-Industry-Forum/dash.js/wiki, .
7.7.1

[13] Source code of Pytheas. https://github.com/nsdi2017-ddn/ddn. 7.6, 7.7

[14] Measuring Broadband America 2014. https://www.fcc.gov/
measuring-broadband-america/2014/validated-data-fixed-2014,
. 6, 6.1.2

[15] 2014 Measuring Broadband America Report Technical Appendix. http:

131

http://www.zdnet.com/article/microsoft-skype-runs-on-windows-azure-skydrive-up-next/
http://www.zdnet.com/article/microsoft-skype-runs-on-windows-azure-skydrive-up-next/
http://go.microsoft.com/?linkid=9682896
http://wwwns.akamai.com/hdnetwork/demo/index.html
http://wwwns.akamai.com/hdnetwork/demo/index.html
https://httpd.apache.org/docs/2.4/programs/ab.html
https://httpd.apache.org/docs/2.4/programs/ab.html
http://www.artizanetworks.com/
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/complete-white-paper-c11-481360.html
http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/qos_solutions/QoSVoIP/QoSVoIP.pdf
http://www.cisco.com/c/en/us/td/docs/ios/solutions_docs/qos_solutions/QoSVoIP/QoSVoIP.pdf
https://www.cloudlab.us/
http://www.conviva.com/
http://dashif.org/mpeg-dash/
https://github.com/Dash-Industry-Forum/dash.js/wiki
https://github.com/nsdi2017-ddn/ddn
https://www.fcc.gov/measuring-broadband-america/2014/validated-data-fixed-2014
https://www.fcc.gov/measuring-broadband-america/2014/validated-data-fixed-2014
http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf
http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf
http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf

//data.fcc.gov/download/measuring-broadband-america/2014/
Technical-Appendix-fixed-2014.pdf, . 6.1.2

[16] Adobe HTTP Dynamic Streaming. www.adobe.com/products/
hds-dynamic-streaming.html. 2.2.1

[17] Apache HTTP Server Project. https://httpd.apache.org/. 7.6

[18] Information Gain. http://www.autonlab.org/tutorials/infogain11.
pdf. 3

[19] G.114: ITU Recommendation of One-way Transmission Time. https://www.itu.
int/rec/T-REC-G.114/en, . 1, 2.1.2, 4.2.1

[20] G.107: The E-Model, a computational model for use in transmission planning. https:
//www.itu.int/rec/T-REC-G.107-201506-I/en, . 8.6

[21] Apache Kafka. https://kafka.apache.org/. 7.6

[22] Mail Service Costs Netflix 20 Times More Than
Streaming. https://www.techspot.com/news/
42036-mail-service-costs-netflix-20-times-more-than-streaming.
html. 2.3.2, 6.1.1

[23] Apple QuickTime. www.apple.com/quicktime/download/. 2.2.1

[24] Quova. http://developer.quova.com/. 7

[25] Real-Time Messaging Protocol. www.adobe.com/devnet/rtmp.html. 2.2.1

[26] The ACM SIGCOMM Workshop on QoE-based Analysis and Management of Data
Communication Networks (Internet-QoE 2016). http://conferences.sigcomm.
org/sigcomm/2016/qoe.php. 3.1.2

[27] Skype Users Hit 2 Billion Minutes A Day Milestone. http://www.silicon.co.
uk/workspace/skype-users-2-billion-minutes-112054. 1

[28] Spark. http://spark.incubator.apache.org/, . 1.2, 3.1.1, 5.4.1, 5.8, 7.6

[29] Apache Spark Streaming. http://spark.apache.org/streaming/, . 7.6

[30] The Weka Manual 3.6.10. https://katie.mtech.edu/classes/csci347/
Resources/WekaManual-3-6-10.pdf. 5.1.2, 2, 6.3.1

[31] The ACM SIGCOMM 2013 Workshop on Future Human-Centric Multimedia Networking
(FhMN 2013). http://conferences.sigcomm.org/sigcomm/2013/fhmn.
php, . 1

[32] The ACM SIGCOMM Workshop on QoE-based Analysis and Management of Data
Communication Networks (Internet-QoE 2016). http://conferences.sigcomm.
org/sigcomm/2016/qoe.php, . 1

[33] The ACM SIGCOMM 2012 Workshop on Measurements Up and Down the Stack
(W-MUST 2012). http://conferences.sigcomm.org/sigcomm/2012/
wmust.php, . 1

[34] Recommended Upload Encoding Settings. https://support.google.com/

132

http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf
http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf
http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf
http://data.fcc.gov/download/measuring-broadband-america/2014/Technical-Appendix-fixed-2014.pdf
www.adobe.com/products/hds-dynamic-streaming.html
www.adobe.com/products/hds-dynamic-streaming.html
https://httpd.apache.org/
http://www.autonlab.org/tutorials/infogain11.pdf
http://www.autonlab.org/tutorials/infogain11.pdf
https://www.itu.int/rec/T-REC-G.114/en
https://www.itu.int/rec/T-REC-G.114/en
https://www.itu.int/rec/T-REC-G.107-201506-I/en
https://www.itu.int/rec/T-REC-G.107-201506-I/en
https://kafka.apache.org/
https://www.techspot.com/news/42036-mail-service-costs-netflix-20-times-more-than-streaming.html
https://www.techspot.com/news/42036-mail-service-costs-netflix-20-times-more-than-streaming.html
https://www.techspot.com/news/42036-mail-service-costs-netflix-20-times-more-than-streaming.html
www.apple.com/quicktime/download/
http://developer.quova.com/
www.adobe.com/devnet/rtmp.html
http://conferences.sigcomm.org/sigcomm/2016/qoe.php
http://conferences.sigcomm.org/sigcomm/2016/qoe.php
http://www.silicon.co.uk/workspace/skype-users-2-billion-minutes-112054
http://www.silicon.co.uk/workspace/skype-users-2-billion-minutes-112054
http://spark.incubator.apache.org/
http://spark.apache.org/streaming/
https://katie.mtech.edu/classes/csci347/Resources/WekaManual-3-6-10.pdf
https://katie.mtech.edu/classes/csci347/Resources/WekaManual-3-6-10.pdf
http://conferences.sigcomm.org/sigcomm/2013/fhmn.php
http://conferences.sigcomm.org/sigcomm/2013/fhmn.php
http://conferences.sigcomm.org/sigcomm/2016/qoe.php
http://conferences.sigcomm.org/sigcomm/2016/qoe.php
http://conferences.sigcomm.org/sigcomm/2012/wmust.php
http://conferences.sigcomm.org/sigcomm/2012/wmust.php
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en

youtube/answer/1722171?hl=en, . 1, 6.3.2

[35] Youtube Statistics. http://fortunelords.com/youtube-statistics/, .
7.7.2

[36] How many servers does youtube. https://atkinsbookshelf.wordpress.
com/tag/how-many-servers-does-youtube/, . 7.7.2

[37] Vijay Kumar Adhikari, Yingying Chen, Sourabh Jain, and Zhi-Li Zhang. Where Do You
’Tube’? Uncovering YouTube Server Selection Strategy. In ICCCN, 2011. 2.3.2

[38] Vijay Kumar Adhikari, Yang Guo, Fang Hao, Volker Hilt, , and Zhi-Li Zhang. A Tale
of Three CDNs: An Active Measurement Study of Hulu and Its CDNs. In IEEE Global
Internet Symposium, 2012. 5.5.2

[39] Alekh Agarwal, Daniel Hsu, Satyen Kale, John Langford, Lihong Li, and Robert Schapire.
Taming the Monster: A Fast and Simple Algorithm for Contextual Bandits. In ICML. 7.8

[40] Alekh Agarwal, Sarah Bird, Markus Cozowicz, Luong Hoang, John Langford, Stephen
Lee, Jiaji Li, Dan Melamed, Gal Oshri, and Oswaldo Ribas. A Multiworld Testing Deci-
sion Service. arXiv preprint arXiv:1606.03966, 2016. 7.8

[41] Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Shobha Venkataraman, and He Yan.
Prometheus: Toward Quality-Of-Experience Estimation for Mobile Apps from Passive
Network Measurements. In MobiCom, 2014. 2.3, 2.3.3, 5.1.1, 5.8

[42] Saamer Akhshabi, Ali C Begen, and Constantine Dovrolis. An Experimental Evaluation
of Rate-Adaptation Algorithms in Adaptive Streaming over HTTP. In ACM MMSys, 2011.
2.3.2

[43] Saamer Akhshabi, Lakshmi Anantakrishnan, Constantine Dovrolis, and Ali C. Begen.
What Happens when HTTP Adaptive Streaming Players Compete for Bandwidth? In
NOSSDAV, 2012. 2.3.2

[44] Omid Alipourfard, Hongqiang Harry Liu, Jianshu Chen, Shivaram Venkataraman, Minlan
Yu, and Ming Zhang. CherryPick: Adaptively Unearthing the Best Cloud Configurations
for Big Data Analytics. In NSDI, 2017. 2.4.2, 9.4.1

[45] Mohammad Alizadeh, Albert Greenberg, David A Maltz, Jitendra Padhye, Parveen Patel,
Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. Data Center TCP (DCTCP).
In ACM SIGCOMM CCR, volume 40, pages 63–74, 2010. 2.3.2

[46] Mohammad Abu Alsheikh, Shaowei Lin, Dusit Niyato, and Hwee-Pink Tan. Machine
Learning in Wireless Sensor Networks: Algorithms, Strategies, and Applications. IEEE
Communications Surveys & Tutorials, 16(4):1996–2018, 2014. 2.4.1

[47] David G. Andersen, Hari Balakrishnan, M. Frans Kaashoek, and Robert Morris. Resilient
Overlay Networks. In SOSP, 2001. 2.3.2, 8.6

[48] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-Time Analysis of the Multi-
armed Bandit Problem. Machine Learning, 47(2-3):235–256, 2002. 7.2, 7.4.2, 7.8, 8.3.5

[49] Peter C Austin. An Introduction to Propensity Score Methods for Reducing the Effects
of Confounding in Observational Studies. Multivariate Behavioral Research, 46(3):399–

133

https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en
https://support.google.com/youtube/answer/1722171?hl=en
http://fortunelords.com/youtube-statistics/
https://atkinsbookshelf.wordpress.com/tag/how-many-servers-does-youtube/
https://atkinsbookshelf.wordpress.com/tag/how-many-servers-does-youtube/

424, 2011. 5.5.2

[50] Athula Balachandran, Vyas Sekar, Aditya Akella, and Srinivasan Seshan. Analyzing the
Potential Benefits of CDN Augmentation Strategies for Internet Video Workloads. In
IMC, 2013. 5.1.1, 5.8

[51] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and Hui
Zhang. Developing a Predictive Model of Quality of Experience for Internet Video. In
SIGCOMM, 2013. 1, 5.8, 6.4

[52] Athula Balachandran, Vaneet Aggarwal, Emir Halepovic, Jeffrey Pang, Srinivasan Seshan,
Shobha Venkataraman, and He Yan. Modeling Web Quality-Of-Experience on Cellular
Networks. In MobiCom, 2014. 2.3, 2.3.3

[53] Hari Balakrishnan, Mark Stemm, Srinivasan Seshan, and Randy H Katz. Analyzing Sta-
bility in Wide-Area Network Performance. In SIGMETRICS, 1997. 2.3.2, 6.4

[54] Hari Balakrishnan, Hariharan S Rahul, and Srinivasan Seshan. An Integrated Congestion
Management Architecture for Internet Hosts. In ACM SIGCOMM CCR, volume 29, pages
175–187, 1999. 2.3.2

[55] S. Banerji, B. Bhattacharjee, and C. Kommareddy. Scalable Application Layer Multicast.
In SIGCOMM, 2002. 2.3.2, 8.6

[56] Yanan Bao, Xin Liu, and Amit Pande. Data-Guided Approach for Learning and Improving
User Experience in Computer Networks. In Asian Conference on Machine Learning,
2015. 7.8

[57] Salman A Baset and Henning Schulzrinne. An Analysis of the Skype Peer-To-Peer Inter-
net Telephony Protocol. arXiv preprint cs/0412017, 2004. 2, 2.3.2

[58] Abdelhak Bentaleb, Ali C Begen, and Roger Zimmermann. SDNDASH: Improving QoE
of HTTP Adaptive Streaming Using Software Defined Networking. In ACM Multimedia.
2.3, 2.3.1

[59] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi, Toshio
Koide, Bob Lantz, Brian OConnor, Pavlin Radoslavov, and William Snow. ONOS: To-
wards an Open, Distributed SDN OS. In HotSDN. 2.3.1

[60] Ranjita Bhagwan, Rahul Kumar, Ramachandran Ramjee, George Varghese, Surjyakanta
Mohapatra, Hemanth Manoharan, and Piyush Shah. Adtributor: Revenue Debugging in
Advertising Systems. In NSDI, 2014. 5.8

[61] Christopher M Bishop. Pattern Recognition and Machine Learning. Springer, 2006. 2.4.1,
3.3.1

[62] Steven Blake, David Black, Mark Carlson, Elwyn Davies, Zheng Wang, and Walter Weiss.
An Architecture for Differentiated Services. Technical report, RFC 2475, 1998. 2.3.1

[63] Anna Bouch, Allan Kuchinsky, and Nina Bhatti. Quality Is in the Eye of the Beholder:
Meeting Users’ Requirements for Internet Quality of Service. In ACM CHI, 2000. 4.1.1

[64] Robert Braden, David Clark, and Scott Shenker. Integrated Services in the Internet Archi-
tecture: An Overview. Technical report, RFC 1633, 1994. 2.3.1

134

[65] Lawrence S Brakmo, Sean W O’Malley, and Larry L Peterson. TCP Vegas: New Tech-
niques for Congestion Detection and Avoidance, volume 24. ACM, 1994. 2.3.2

[66] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V Madhyastha, and Vyas Sekar.
Klotski: Reprioritizing Web Content to Improve User Experience on Mobile Devices. In
NSDI, 2015. 1.1, 2.3.2

[67] Carlo Caini and Rosario Firrincieli. TCP Hybla: A TCP Enhancement for Heterogeneous
Networks. International Journal of Satellite Communications and Networking, 22(5):
547–566, 2004. 2.3.2

[68] Wei Cao, Jian Li, Yufei Tao, and Zhize Li. On Top-K Selection in Multi-Armed Bandits
and Hidden Bipartite Graphs. In NIPS, 2015. 8.3.3

[69] Rui Castro, Mark Coates, Gang Liang, Robert Nowak, and Bin Yu. Network Tomography:
Recent Developments. Statistical Science, 19(3):499–517, 2004. 8.6

[70] Meeyoung Cha, Haewoon Kwak, Pablo Rodriguez, Yong-Yeol Ahn, and Sue Moon. I
Tube, You Tube, Everybody Tubes: Analyzing the World’s Largest User Generated Con-
tent Video System. In IMC, 2007. 2.3.3

[71] Ang Chen and Andreas Haeberlen. PRISM: Private Retrieval of the Internets Sensitive
Metadata. In CSET, 2015. 9.4.2

[72] Chien-Nan Chen, Cing-Yu Chu, Su-Ling Yeh, Hao hua Chu, and Polly Huang. Modeling
the QoE of Rate Changes in Skype/SILK VoIP Calls. In ACM Multimedia, 2012. 8.6

[73] Chien-Nan Chen, Cing-Yu Chu, Su-Ling Yeh, Hao hua Chu, and Polly Huang. Measuring
the Perceptual Quality of Skype Sources. In SIGCOMM W-MUST, 2012. 8.6

[74] Fangfei Chen, Ramesh K Sitaraman, and Marcelo Torres. End-User Mapping: Next Gen-
eration Request Routing for Content Delivery. In ACM SIGCOMM CCR, volume 45,
pages 167–181, 2015. 1.2, 3.1.1

[75] Kuan-Ta Chen, Chun-Ying Huang, Polly Huang, and Chin-Laung Lei. Quantifying Skype
User Satisfaction. In SIGCOMM, 2006. 8.6

[76] Yanjiao Chen, Kaishun Wu, and Qian Zhang. From QoS to QoE: A Tutorial on Video
Quality Assessment. IEEE Communications Surveys & Tutorials, 17(2):1126–1165, 2015.
2.3

[77] Maureen Chesire, Alec Wolman, Geoffrey M Voelker, and Henry M Levy. Measurement
and Analysis of a Streaming Media Workload. In USENIX USITS, 2001. 8.6

[78] David R Choffnes, Fabián E Bustamante, and Zihui Ge. Crowdsourcing Service-Level
Network Event Monitoring. In ACM SIGCOMM CCR, volume 40, pages 387–398, 2010.
5.1.1, 5.8

[79] Yang-hua Chu, Sanjay G Rao, Srinivasan Seshan, and Hui Zhang. A Case for End System
Multicast. IEEE JSAC, 20(8):1456–1471, 2002. 2.3.2

[80] Robert G Cole and Joshua H Rosenbluth. Voice over IP Performance Monitoring. ACM
SIGCOMM CCR, 31(2):9–24, 2001. 1, 8.6

[81] Daniel Crankshaw, Peter Bailis, Joseph E Gonzalez, Haoyuan Li, Zhao Zhang, Michael J

135

Franklin, Ali Ghodsi, and Michael I Jordan. The Missing Piece in Complex Analytics:
Low Latency, Scalable Model Management and Serving with Velox. In CIDR, 2015.
5.1.1, 5.8, 7.2.1

[82] Nicola Cranley, Philip Perry, and Liam Murphy. User Perception of Adapting Video Qual-
ity. International Journal of Human-Computer Studies, 64(8), 2006. 2.3.3

[83] Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A Decentralized
Network Coordinate System. In SIGCOMM, 2004. 2.3.2, 6.4, 8.6

[84] Luca De Cicco and Saverio Mascolo. An Experimental Investigation of the Akamai Adap-
tive Video Streaming. HCI in Work and Learning, Life and Leisure, pages 447–464, 2010.
2.3.2

[85] Luca De Cicco, Saverio Mascolo, and Vittorio Palmisano. Skype Video Responsiveness
to Bandwidth Variations. In NOSSDAV, 2008. 2.3.2

[86] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and Simulation of a Fair
Queueing Algorithm. In SIGCOMM, 1989. 1.1

[87] Advait Dixit, Fang Hao, Sarit Mukherjee, TV Lakshman, and Ramana Kompella. Towards
an Elastic Distributed Sdn Controller. In HotSDN, 2013. 5.8

[88] Florin Dobrian, Vyas Sekar, Asad Awan, Ion Stoica, Dilip Antony Joseph, Aditya Gan-
jam, Jibin Zhan, and Hui Zhang. Understanding the Impact of Video Quality on User
Engagement. In SIGCOMM, 2011. 1, 1.2, 1.4, 1, 2, 2.1.1, 2.3.3, 3.1.1, 4.1.1, 5.5.1, 5.5.2,
5.8, 7.7.1, 7.7.1, 8.6

[89] Mo Dong, Qingxi Li, Doron Zarchy, P Brighten Godfrey, and Michael Schapira. PCC:
Re-Architecting Congestion Control for Consistent High Performance. In NSDI, 2015.
1.1, 2.3.2, 2.4.2

[90] Idilio Drago, Marco Mellia, Maurizio M Munafo, Anna Sperotto, Ramin Sadre, and Aiko
Pras. Inside Dropbox: Understanding Personal Cloud Storage Services. In IMC, 2012.
3.1.3

[91] Miroslav Dudı́k, John Langford, and Lihong Li. Doubly Robust Policy Evaluation and
Learning. In ICML, 2011. 9.4.1

[92] Nandita Dukkipati, Tiziana Refice, Yuchung Cheng, Jerry Chu, Tom Herbert, Amit Agar-
wal, Arvind Jain, and Natalia Sutin. An Argument for Increasing TCP’s Initial Congestion
Window. ACM SIGCOMM CCR, 40(3):26–33, 2010. 2.4.1

[93] Hans Eriksson. Mbone: The Multicast Backbone. Communications of the ACM, 37(8):
54–61, 1994. 2.3.1, 8.6

[94] Nick Feamster, Jennifer Rexford, and Ellen Zegura. The road to sdn: an intellectual
history of programmable networks. ACM SIGCOMM CCR, 44(2):87–98, 2014. 1.1, 2.3.1

[95] SDN Floodlight. OpenFlow Controller. Web: https://github.com/floodlight/floodlight.
2.3.1

[96] Sally Floyd. TCP and Explicit Congestion Notification. ACM SIGCOMM CCR, 24(5):
8–23, 1994. 1.1, 2.3.1

136

[97] Sally Floyd and Van Jacobson. Random Early Detection Gateways for Congestion Avoid-
ance. IEEE/ACM Transactions on Networking, 1(4):397–413, 1993. 1.1, 2.3.1

[98] Paul Francis, Sugih Jamin, Cheng Jin, Yixin Jin, Danny Raz, Yuval Shavitt, and Lixia
Zhang. IDMaps: A Global Internet Host Distance Estimation Service. IEEE/ACM Trans-
action on Networking, 9(5):525–540, October 2001. 8.6

[99] Benjamin Frank, Ingmar Poese, Yin Lin, Georgios Smaragdakis, Anja Feldmann, Bruce
Maggs, Jannis Rake, Steve Uhlig, and Rick Weber. Pushing CDN-ISP Collaboration to
the Limit. ACM SIGCOMM CCR, 43(3), 2013. 5.8

[100] Aditya Ganjam, Vyas Sekar, and Hui Zhang. In-Situ Quality of Experience Monitoring:
The Case for Prioritizing Coverage Over Fidelity. 3.1.1, 3.1.2

[101] Aditya Ganjam, Faisal Siddiqi, Jibin Zhan, Ion Stoica, Junchen Jiang, Vyas Sekar, and
Hui Zhang. C3: Internet-Scale Control Plane for Video Quality Optimization. In NSDI,
2015. 1.2, 1.4, 3.1.1, 5.1.1, 5.1.1, 5.3, 5.5.2, 5.5.3, 5.8, 7.1, 7.2.1, 7.5.1, 7.5.4, 7.8, 8.5, 9.2

[102] Aurélien Garivier and Eric Moulines. On Upper-Confidence Bound Policies for Non-
Stationary Bandit Problems. arXiv preprint arXiv:0805.3415, 2008. 7.4.2, 7.8

[103] Monia Ghobadi, Yuchung Cheng, Ankur Jain, and Matt Mathis. Trickle: Rate Limiting
YouTube Video Streaming. In ATC, 2012. 2.3.2

[104] Joseph E Gonzalez, Reynold S Xin, Ankur Dave, Daniel Crankshaw, Michael J Franklin,
and Ion Stoica. GraphX: Graph Processing in a Distributed Dataflow Framework. In
OSDI, 2014. 9.4.2

[105] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff, Martı́n Casado, Nick McKeown,
and Scott Shenker. NOX: Towards an Operating System for Networks. ACM SIGCOMM
CCR, 38(3):105–110, 2008. 2.3.1

[106] Isabelle Guyon and André Elisseeff. Pattern Recognition and Machine Learning. The
Journal of Machine Learning Research, 3:1157–1182, 2003. 5.7

[107] Sangtae Ha, Injong Rhee, and Lisong Xu. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. ACM SIGOPS Operating Systems Review, 42(5):64–74, 2008. 1.1, 2.3.2

[108] Emir Halepovic, Jeffrey Pang, and Oliver Spatscheck. Can You GET Me Now?: Esti-
mating the Time-to-first-byte of HTTP Transactions with Passive Measurements. In IMC,
2012. 2.3, 2.3.3

[109] Osama Haq and Fahad R Dogar. Leveraging the Power of Cloud for Reliable Wide Area
Communication. In HotNets, 2015. 3.1.3, 7.8

[110] Haibo He and Edwardo A Garcia. Learning from Imbalanced Data. IEEE Transactions
on Knowledge and Data Engineering, 21(9):1263–1284, 2009. 7.1

[111] Qi He, Constantine Dovrolis, and Mostafa Ammar. On the Predictability of Large Transfer
TCP Throughput. ACM SIGCOMM CCR, 35(4):145–156, 2005. 2.3.2, 5.8, 6.4

[112] Ningning Hu, Li Erran Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang. Locat-
ing Internet Bottlenecks: Algorithms, Measurements, and Implications. In SIGCOMM,
2004. 2.3.2, 6.4

137

[113] Ningning Hu, Li Li, Zhuoqing Morley Mao, Peter Steenkiste, and Jia Wang. A Measure-
ment Study of Internet Bottlenecks. In INFOCOM, 2005. 2.3.2, 6.4

[114] Te-Yuan Huang, Nikhil Handigol, Brandon Heller, Nick McKeown, and Ramesh Johari.
Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard. In IMC, 2012.
2.3.2

[115] Te-Yuan Huang, Ramesh Johari, Nick McKeown, Matthew Trunnell, and Mark Watson.
A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming
Service. In SIGCOMM, 2014. 5.8, 6.4

[116] Van Jacobson. Congestion Avoidance and Control. In ACM SIGCOMM CCR, volume 18,
pages 314–329, 1988. 1.1, 2.3.2

[117] Van Jacobson, Diana K. Smetters, James D. Thornton, Michael F. Plass, Nicholas H.
Briggs, and Rebecca L. Braynard. Networking Named Content. In CoNext, 2009. 1.1,
2.3.1

[118] Akanksha Jain and Calvin Lin. Back to the Future: Leveraging Belady’s Algorithm for
Improved Cache Replacement. In ISCA. 2.4.1

[119] Manish Jain and Constantinos Dovrolis. End-To-End Available Bandwidth: Measurement
Methodology, Dynamics, and Relation with TCP Throughput. IEEE/ACM Transactions
on Networking, 11(4):537–549, 2003. 2.3.2, 6.4

[120] Manish Jain and Constantinos Dovrolis. End-To-End Estimation of the Available Band-
width Variation Range. In SIGMETRICS, 2005. 2.3.2, 6.4

[121] Junchen Jiang, Vyas Sekar, and Hui Zhang. Improving Fairness, Efficiency, and Stability
in HTTP-Based Adaptive Streaming with Festive . In CoNEXT, 2012. 1.1, 2.2.1, 2.3.2,
5.8, 6.1.1, 6.4

[122] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Shedding Light on the Structure
of Internet Video Quality Problems in the Wild. In CoNEXT, 2013. 1, 2.1.1, 5.8

[123] Junchen Jiang, Xi Liu, Vyas Sekar, Ion Stoica, and Hui Zhang. EONA: Experience-
Oriented Network Architecture. In HotNets, 2014. 1, 5.8, 9.4.2

[124] Junchen Jiang, Vyas Sekar, and Yi Sun. DDA: Cross-Session Throughput Prediction with
Applications to Video Bitrate Selection. arXiv preprint arXiv:1505.02056, 2015. 1.3.3

[125] Junchen Jiang, Rajdeep Das, Ganesh Anathanarayanan, Philip Chou, Venkata Padman-
abhan, Vyas Sekar, Esbjorn Dominique, Marcin Goliszewski, Dalibor Kukoleca, Renat
Vafin, and Hui Zhang. Via: Improving Internet Telephony Call Quality Using Predictive
Relay Selection. In SIGCOMM, 2016. 1, 1.2, 1.3.3, 1, 2.2.3, 3.1.1, 3.4.2, 7.1.2, 7.3, 7.4.1,
7.7.1, 7.8, 9.4.1

[126] Junchen Jiang, Vyas Sekar, Henry Milner, Davis Shepherd, Ion Stoica, and Hui Zhang.
CFA: a practical prediction system for video QoE optimization. In NSDI, 2016. (docu-
ment), 1.3.3, 3.3, 3.4.1, 3.4.2, 7.1, 7.1.1, 7.1.2, 7.2.1, 7.3, 7.4.1, 7.5.1, 7.7.1, 7.8

[127] Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui Zhang. Unleashing the potential of data-
driven networking. In COMSNET, 2017. 1.2

138

[128] Junchen Jiang, Shijie Sun, Vyas Sekar, and Hui Zhang. Pytheas: Enabling Data-Driven
Quality of Experience Optimization Using Group-Based Exploration-Exploitation. In
NSDI, 2017. 1.3.3

[129] Dina Katabi, Mark Handley, and Charlie Rohrs. Congestion Control for High Bandwidth-
Delay Product Networks. ACM SIGCOMM CCR, 32(4):89–102, 2002. 2.3.1

[130] Rajat Kateja, Nimantha Baranasuriya, Vishnu Navda, and Venkata N Padmanabhan. Di-
versifi: Robust Multi-Link Interactive Streaming. In CoNEXT, 2015. 1.1, 2.3.2

[131] Naga Praveen Katta, Jennifer Rexford, and David Walker. Incremental Consistent Up-
dates. In HotSDN, 2013. 2.3.1

[132] Srinivasan Keshav. Mathematical Foundations of Computer Networking. Addison-Wesley,
2012. 3.3

[133] Wookyun Kho, Salman Abdul Baset, and Henning Schulzrinne. Skype Relay Calls: Mea-
surements and Experiments. In INFOCOM Global Internet Workshop, 2008. 2.2.2, 2.3.2,
8.6

[134] Jay Kreps, Neha Narkhede, and Jun Rao. Kafka: A Distributed Messaging System for
Log Processing. In NetDB, 2011. 5.4.1

[135] S. Shunmuga Krishnan and Ramesh K. Sitaraman. Video Stream Quality Impacts Viewer
Behavior: Inferring Causality Using Quasi-Experimental Designs. In IMC, 2012. 1, 1.2,
1.4, 2, 3.1.1, 4.1.1, 5.8

[136] Srisankar Kunniyur and Rayadurgam Srikant. Analysis and Design of an Adaptive Vir-
tual Queue (AVQ) Algorithm for Active Queue Management. In ACM SIGCOMM CCR,
volume 31, pages 123–134, 2001. 2.3.1

[137] Katrina LaCurts, Jeffrey C Mogul, Hari Balakrishnan, and Yoshio Turner. Cicada: Intro-
ducing Predictive Guarantees for Cloud Networks. In HotCloud, 2014. 7.8

[138] Doug Laney. Infonomics: The Economics of Information and Principles of Information
Asset Management. In The Fifth MIT Information Quality Industry Symposium. Cam-
bridge, 2011. 9.4.2

[139] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep Learning. Nature, 521(7553):
436–444, 2015. 5.7

[140] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A Contextual-Bandit Ap-
proach to Personalized News Article Recommendation. In WWW, 2010. 5.5.2

[141] Lihong Li, Wei Chu, John Langford, and Robert E Schapire. A Contextual-Bandit Ap-
proach to Personalized News Article Recommendation. In WWW, 2010. 7.2.1

[142] Lihong Li, Wei Chu, John Langford, and Xuanhui Wang. Unbiased Offline Evaluation of
Contextual-Bandit-Based News Article Recommendation Algorithms. In ACM WSDM,
2011. 5.5.2

[143] Zhi Li, Xiaoqing Zhu, Joshua Gahm, Rong Pan, Hao Hu, Ali C Begen, and David Oran.
Probe and Adapt: Rate Adaptation for HTTP Video Streaming at Scale. IEEE JSAC, 32
(4):719–733, 2014. 2.3.2

139

[144] XinAn Lin and Dong Zhang. Kemy: An AQM Generator Based on Machine Learning. In
ChinaCom, 2015. 2.4.1

[145] Harry Liu, Ye Wang, Yang Richard Yang, Alexander Tian, and Hao Wang. Optimizing
Cost and Performance for Content Multihoming. In SIGCOMM, 2012. 2.3.2, 5.1.1, 5.1.1,
5.8

[146] Hongqiang Harry Liu, Raajay Viswanathan, Matt Calder, Aditya Akella, Ratul Mahajan,
Jitendra Padhye, and Ming Zhang. Efficiently Delivering Online Services over Integrated
Infrastructure. In NSDI, 2016. 1.2, 1.3.3, 2.4.2, 3.1.1, 3.1.3, 3.3, 3.4.2, 7.1, 7.3, 7.4.1, 7.8

[147] Xi Liu, Florin Dobrian, Henry Milner, Junchen Jiang, Vyas Sekar, Ion Stoica, and Hui
Zhang. A Case for a Coordinated Internet Video Control Plane. In SIGCOMM, 2012.
(document), 1, 1.3.3, 2.1.1, 2.5, 2.2.3, 2.3.2, 3.1.3, 5.1.1, 5.1.1, 5.1.3, 5.5.2, 5.8, 9.4.2

[148] Harsha V Madhyastha, Tomas Isdal, Michael Piatek, Colin Dixon, Thomas Anderson,
Arvind Krishnamurthy, and Arun Venkataramani. iPlane: An Information Plane for Dis-
tributed Services. In OSDI, 2006. 2.3.2, 3.1.2, 6.4, 8.6

[149] Ajay Anil Mahimkar, Han Hee Song, Zihui Ge, Aman Shaikh, Jia Wang, Jennifer Yates,
Yin Zhang, and Joanne Emmons. Detecting the Performance Impact of Upgrades in Large
Operational Networks. In SIGCOMM, 2010. 2.3.3

[150] Hongzi Mao, Ravi Netravali, and Mohammad Alizadeh. Neural Adaptive Video Stream-
ing with Pensieve. In SIGCOMM, 2017. 2.4.2

[151] Charles E McCulloch and John M Neuhaus. Generalized Linear Mixed Models. Wiley
Online Library, 2001. 7.8

[152] Nick McKeown, Tom Anderson, Hari Balakrishnan, Guru Parulkar, Larry Peterson, Jen-
nifer Rexford, Scott Shenker, and Jonathan Turner. OpenFlow: Enabling Innovation in
Campus Networks. ACM SIGCOMM CCR, 38(2):69–74, 2008. 2.3.1

[153] Konstantin Miller, Abdel-Karim Al-Tamimi, and Adam Wolisz. Low-Delay Adaptive
Video Streaming Based on Short-Term TCP Throughput Prediction. arXiv preprint
arXiv:1503.02955, 2015. 6.4

[154] Mariyam Mirza, Joel Sommers, Paul Barford, and Xiaojin Zhu. A Machine Learning
Approach to TCP Throughput Prediction. In SIGMETRICS, 2007. 2.3.2, 5.8, 6.4

[155] Ricky K. P. Mok, Edmond W. W. Chan, Xiapu Luo, and Rocky K. C. Chang. Inferring the
QoE of HTTP Video Streaming from User-Viewing Activities . In SIGCOMM W-MUST,
2011. 2.3.3

[156] Matthew K Mukerjee, David Naylor, Junchen Jiang, Dongsu Han, Srinivasan Seshan, and
Hui Zhang. Practical, real-time centralized control for cdn-based live video delivery. In
SIGCOMM, 2015. 1.2, 1.3.3, 3.1.1, 5.1.1, 5.8

[157] TS Eugene Ng and Hui Zhang. Predicting Internet Network Distance with Coordinates-
based Approaches. In INFOCOM, 2002. 8.6

[158] Kathleen Nichols and Van Jacobson. Controlling Queue Delay. Communications of the
ACM, 55(7):42–50, 2012. 2.3.1

140

[159] Ashkan Nikravesh, David R Choffnes, Ethan Katz-Bassett, Z Morley Mao, and Matt
Welsh. Mobile Network Performance from User Devices: A Longitudinal, Multidimen-
sional Analysis. In PAM, 2014. 2.3.2, 6.4

[160] Venkata N. Padmanabhan and Lili Qiu. The Content and Access Dynamics of a Busy Web
Site: Findings and Implications. In SIGCOMM, 2000. 8.6

[161] Aurojit Panda, Colin Scott, Ali Ghodsi, Teemu Koponen, and Scott Shenker. CAP for
Networks. In HotSDN, 2013. 5.8

[162] Antonis Papadimitriou, Arjun Narayan, and Andreas Haeberlen. DStress: Efficient Dif-
ferentially Private Computations on Distributed Data. In EuroSys, 2017. 9.4.2

[163] Martin Pelikan, David E Goldberg, and Erick Cantú-Paz. BOA: The Bayesian optimiza-
tion algorithm. In Annual Conference on Genetic and Evolutionary Computation. Morgan
Kaufmann Publishers Inc., 1999. 2.4.2

[164] Dimitrios Pendarakis, Sherlia Shi, Dinesh Verma, and Marcel Waldvogel. ALMI: An
Application Level Multicast Infrastructure. In USENIX USITS, 2001. 2.3.2, 8.6

[165] Larry Peterson and Bruce Davie. Framework for CDN Interconnection. 2013. 5.8

[166] Louis Plissonneau and Ernst Biersack. A Longitudinal View of HTTP Video Streaming
Performance. In MMSys, 2012. 2.3.3, 5.8

[167] Lucian Popa, Ali Ghodsi, and Ion Stoica. HTTP as the narrow waist of the future internet.
In HotNets, 2010. 2.2.1

[168] Warren B Powell. Approximate Dynamic Programming: Solving the Curses of Dimen-
sionality, volume 703. John Wiley & Sons, 2007. 3

[169] Ravi Prasad, Constantinos Dovrolis, Margaret Murray, and KC Claffy. Bandwidth Esti-
mation: Metrics, Measurement Techniques, and Tools. In IEEE Network, 2003. 2.3.2,
6.4

[170] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya Akella,
Paramvir Bahl, and Ion Stoica. Low Latency Geo-Distributed Data Analytics. In SIG-
COMM, 2015. 7.2.1, 7.7.2, 7.8

[171] R. Pantos. Http live streaming. Mar. 2011. IEFT Draft. 2.2.1, 2.3.2

[172] Ariel Rabkin, Matvey Arye, Siddhartha Sen, Vivek S Pai, and Michael J Freedman. Ag-
gregation and Degradation in Jetstream: Streaming Analytics in the Wide Area. In NSDI,
2014. 7.8

[173] Venugopalan Ramasubramanian, Dahlia Malkhi, Fabian Kuhn, Mahesh Balakrishnan, Ar-
chit Gupta, and Aditya Akella. On the Treeness of Internet Latency and Bandwidth. In
SIGMETRICS, 2009. 2.3.2, 6.4

[174] Philippe Rigollet and Assaf Zeevi. Nonparametric Bandits with Covariates. In Conference
on Learning Theory, 2010. 7.8

[175] Jorma Rissanen. A Universal Prior for Integers and Estimation by Minimum Description
Length. The Annals of Statistics, pages 416–431, 1983. 5.7

[176] Eric Rosen, Arun Viswanathan, and Ross Callon. Multiprotocol Label Switching Archi-

141

tecture. Technical report, RFC 3031, 2000. 2.3.1

[177] Raja R Sambasivan, Alice X Zheng, Michael De Rosa, Elie Krevat, Spencer Whitman,
Michael Stroucken, William Wang, Lianghong Xu, and Gregory R Ganger. Diagnosing
Performance Changes by Comparing Request Flows. In NSDI, 2011. 5.1.1, 5.8

[178] Stefan Saroiu, Krishna P. Gummadi, Richard J. Dunn, Steven D. Gribble, and Henry M.
Levy. An Analysis of Internet Content Delivery Systems. In OSDI, 2002. 8.6

[179] Stefan Savage, Neal Cardwell, and Tom Anderson. The Case for Informed Transport
Protocols. In HotOS, 1999. 5.8

[180] Stefan Savage, Andy Collins, Eric Hoffman, John Snell, and Tom Anderson. The End-to-
end Effects of Internet Path Selection. In SIGCOMM, 1999. 2.3.2, 8.6

[181] Michael Schapira, Yaping Zhu, and Jennifer Rexford. Putting BGP on the Right Path: A
Case for Next-Hop Routing. In HotNets, 2013. 2.3.1, 2.4.2

[182] Bernhard Schölkopf and Alexander J Smola. Learning with Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. MIT press, 2002. 5.7

[183] Michael Seufert, Sebastian Egger, Martin Slanina, Thomas Zinner, Tobias Hobfeld, and
Phuoc Tran-Gia. A Survey on Quality of Experience of HTTP Adaptive Streaming. IEEE
Communications Surveys & Tutorials, 17(1):469–492, 2015. 2

[184] Muhammad Zubair Shafiq, Jeffrey Erman, Lusheng Ji, Alex X. Liu, Jeffrey Pang, and Jia
Wang. Understanding the Impact of Network Dynamics on Mobile Video User Engage-
ment. In SIGMETRICS. 2.3.3

[185] Muhammad Saleh Shah, Asim Imdad Wagan, and Mukhtiar Ali Unar. SAM: Support
Vector Machine Based Active Queue Management. arXiv preprint arXiv:1604.00557,
2016. 2.4.1

[186] Deepak K Sharma, Sanjay K Dhurandher, Isaac Woungang, Rohit K Srivastava, Anhad
Mohananey, and Joel JPC Rodrigues. A Machine Learning-Based Protocol for Efficient
Routing in Opportunistic Networks. IEEE Systems Journal, 2017. 2.4.1

[187] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad Alizadeh,
Hari Balakrishnan, George Varghese, Nick McKeown, and Steve Licking. Packet Trans-
actions: High-Level Programming for Line-Rate Switches. In SIGCOMM, 2016. 2.3.1

[188] Anirudh Sivaraman, Suvinay Subramanian, Mohammad Alizadeh, Sharad Chole, Shang-
Tse Chuang, Anurag Agrawal, Hari Balakrishnan, Tom Edsall, Sachin Katti, and Nick
McKeown. Programmable Packet Scheduling at Line Rate. In SIGCOMM, 2016. 2.3.1

[189] Aleksandrs Slivkins. Contextual Bandits with Similarity Information. The Journal of
Machine Learning Research, 15(1):2533–2568, 2014. 5.7, 7.2.1

[190] Iraj Sodagar. The Mpeg-Dash Standard for Multimedia Streaming over the Internet. IEEE
MultiMedia, 18(4):62–67, 2011. 1.1, 2.3.2, 5.1.1, 6.1.1

[191] Han Hee Song, Zihui Ge, Ajay Mahimkar, Jia Wang, Jennifer Yates, Yin Zhang, Andrea
Basso, and Min Chen. Q-score: Proactive Service Quality Assessment in a Large IPTV
System. In IMC, 2011. 2.3.3, 5.8

142

[192] Kun Tan Jingmin Song, Q Zhang, and M Sridharan. Compound TCP: A Scalable and
TCP-Friendly Congestion Control for High-Speed Networks. PFLDnet, 2006. 2.3.2

[193] Mark Stemm, Randy Katz, and Srinivasan Seshan. A Network Measurement Architecture
for Adaptive Applications. In INFOCOM, 2000. 1.2, 2.3.2, 3.1.2, 3.1.3, 5.1.1, 5.8, 6.4,
7.1, 7.1.1, 7.8

[194] Mark Stemm, Randy Katz, and Srinivasan Seshan. A Network Measurement Architecture
for Adaptive Applications. In INFOCOM, 2000. 5.8

[195] Ion Stoica, Scott Shenker, and Hui Zhang. Core-Stateless Fair Queueing: Achieving
Approximately Fair Bandwidth Allocations in High Speed Networks. In SIGCOMM,
1998. 1.1, 2.3.1

[196] Jacob Strauss, Dina Katabi, and Frans Kaashoek. A Measurement Study of Available
Bandwidth Estimation Tools. In SIGCOMM Conference on Internet Measurement, 2003.
2.3.2, 6.4

[197] Ao-Jan Su, David R Choffnes, Aleksandar Kuzmanovic, and Fabián E Bustamante. Draft-
ing Behind Akamai (Travelocity-Based Detouring). In ACM SIGCOMM CCR, volume 36,
pages 435–446, 2006. 5.8

[198] Yi Sun, Junchen Jiang, Vyas Sekar, Hui Zhang, Fuyuan Lin, and Nanshu Wang. Using
Video-Based Measurements to Generate a Real-Time Network Traffic Map. In HotNets,
2014. 9.4.1

[199] Yi Sun, Xiaoqi Yin, Junchen Jiang, Vyas Sekar, Fuyuan Lin, Nanshu Wang, Tao Liu,
and Bruno Sinopoli. CS2P: Improving Video Bitrate Selection and Adaptation with Data-
Driven Throughput Prediction. In SIGCOMM, 2016. 3.1.3, 3.4.2, 7.1, 7.3, 9.4.1

[200] Lalith Suresh, Marco Canini, Stefan Schmid, and Anja Feldmann. C3: Cutting Tail La-
tency in Cloud Data Stores via Adaptive Replica Selection. In NSDI, 2015. 5.8

[201] Martin Swany and Rich Wolski. Multivariate Resource Performance Forecasting in the
Network Weather Service. In ACM/IEEE Conference on Supercomputing, 2002. 2.3.2,
6.4

[202] C-H Tai, Jiang Zhu, and Nandita Dukkipati. Learning from Imbalanced DataMaking
Large Scale Deployment of RCP Practical for Real Networks. In INFOCOM, 2008. 2.3.1,
5.8

[203] Dixin Tang, Hao Jiang, and Aaron J. Elmore. Adaptive Concurrency Control: Despite the
Looking Glass, One Concurrency Control Does Not Fit All. In CIDR, 2017. 2.4.1

[204] Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster, and Mostafa Am-
mar. Answering What-If Deployment and Configuration Questions with WISE. In ACM
SIGCOMM CCR, volume 38, pages 99–110, 2008. 9.2

[205] David L Tennenhouse and David J Wetherall. Towards an Active Network Architecture.
In DARPA Active Networks Conference and Exposition, 2002. 1.1, 2.3.1

[206] George R Terrell and David W Scott. Variable Kernel Density Estimation. The Annals of
Statistics, pages 1236–1265, 1992. 5.7, 5.8

143

[207] Guibin Tian and Yong Liu. Towards Agile and Smooth Video Adaptation in Dynamic
HTTP Streaming. In CoNEXT. 6.4

[208] Amin Tootoonchian, Sergey Gorbunov, Yashar Ganjali, Martin Casado, and Rob Sher-
wood. On Controller Performance in Software-Defined Networks. In USENIX Hot-ICE,
2012. 5.8

[209] Ruben Torres, Alessandro Finamore, Jin Ryong Kim, Marco Mellia, Maurizio M. Munafo,
and Sanjay Rao. Dissecting Video Server Selection Strategies in the YouTube CDN. In
ICDCS, 2011. 2.3.2, 5.8, 8.6

[210] Dana Van Aken, Andrew Pavlo, Geoffrey J Gordon, and Bohan Zhang. Automatic
Database Management System Tuning Through Large-scale Machine Learning. In ICDM.
2.4.1

[211] Sudharshan Vazhkudai, Jennifer M Schopf, and Ian Foster. Predicting the performance of
wide area data transfers. In IPDPS, 2001. 2.3.2, 6.4

[212] Alfredo Vellido, JD Martin-Guerroro, and P Lisboa. Making Machine Learning Mod-
els Interpretable. In European Symposium on Artificial Neural Networks, Computational
Intelligence and Machine Learning (ESANN). Bruges, Belgium, 2012. 4, 9.2

[213] Ashish Vulimiri, Carlo Curino, P Brighten Godfrey, Thomas Jungblut, Jitu Padhye, and
George Varghese. Global Analytics in the Face of Bandwidth and Regulatory Constraints.
In NSDI, 2015. 7.7.2, 7.8

[214] Xiao Sophia Wang, Aruna Balasubramanian, Arvind Krishnamurthy, and David Wether-
all. How Speedy is SPDY. In NSDI, 2014. 1, 2.2.1

[215] Richard Weber. On the Gittins Index for Multiarmed Bandits. The Annals of Applied
Probability, pages 1024–1033, 1992. 2.4.2, 5.7, 7.2, 7.2.1, 7.8

[216] Patrick Wendell, Joe Wenjie Jiang, Michael J. Freedman, and Jennifer Rexford. DONAR:
Decentralized Server Selection for Cloud Services. In SIGCOMM, 2010. 8.6

[217] Keith Winstein and Hari Balakrishnan. TCP ex Machina: Computer-Generated Conges-
tion Control. In SIGCOMM, 2013. 1.1, 2.3.2, 2.4.1, 9.4.1

[218] Keith Winstein, Anirudh Sivaraman, and Hari Balakrishnan. Stochastic Forecasts Achieve
High Throughput and Low Delay over Cellular Networks. In NSDI, 2013. 1.1, 2.3.2

[219] Yong Xia, Lakshminarayanan Subramanian, Ion Stoica, and Shivkumar Kalyanaraman.
One More Bit is Enough. ACM SIGCOMM CCR, 35(4):37–48, 2005. 2.3.1

[220] Haiyong Xie and Yang Richard Yang. A Measurement-based Study of the Skype Peer-to-
Peer VoIP Performance. In IPTPS, 2012. 8.6

[221] Yang Xu, Chenguang Yu, Jingjiang Li, and Yong Liu. Video Telephony for End-
consumers: Measurement Study of Google+, iChat, and Skype. In IMC, 2012. 2.2.2,
8.1, 8.6

[222] Hong Yan, David A Maltz, TS Eugene Ng, Hemant Gogineni, Hui Zhang, and Zheng Cai.
Tesseract: A 4D Network Control Plane. In NSDI, 2007. 5.8

[223] Hao Yin, Xuening Liu, Feng Qiu, Ning Xia, Chuang Lin, Hui Zhang, Vyas Sekar, and

144

Geyong Min. Inside the bird’s nest: measurements of large-scale live VoD from the 2008
olympics. In IMC, 2009. 2.3.3, 5.8

[224] Xiaoqi Yin, Vyas Sekar, and Bruno Sinopoli. Toward a Principled Framework to Design
Dynamic Adaptive Streaming Algorithms over HTTP. In HotNets, 2014. 6.4

[225] Xiaoqi Yin, Abhishek Jindal, Vyas Sekar, and Bruno Sinopoli. A Control-Theoretic Ap-
proach for Dynamic Adaptive Video Streaming over HTTP. In SIGCOMM, 2015. 5.8

[226] Minlan Yu, Wenjie Jiang, Haoyuan Li, and Ion Stoica. Tradeoffs in CDN Designs for
Throughput Oriented Traffic. In CoNEXT, 2012. 5.8

[227] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and Ion Sto-
ica. Discretized Streams: Fault-Tolerant Streaming Computation at Scale. In SOSP. 1.2,
3.1.1

[228] Haoyu Zhang, Ganesh Ananthanarayanan, Peter Bodik, Matthai Philipose, Paramvir Bahl,
and Michael J Freedman. Live Video Analytics at Scale with Approximation and Delay-
Tolerance. In NSDI, 2017. 9.4.1

[229] Lixia Zhang, Steve Deering, Deborah Estrin, Scott Shenker, and Daniel Zappala. RSVP:
A New Resource Reservation Protocol. IEEE Network, 7(5):8–18, 1993. 2.3.1

[230] Yin Zhang and Nick Duffield. On the constancy of internet path properties. In SIGCOMM
Workshop on Internet Measurement, 2001. 2.3.2, 3.1.3, 3.3, 6.4

145

	1 Introduction
	1.1 Fundamental Limitations of Prior Approaches
	1.2 New Paradigm: Data-Driven Networking
	1.3 Making Data-Driven Networking Practical
	1.3.1 Key Challenges
	1.3.2 Unifying Insight
	1.3.3 Proposed Solutions

	1.4 Summary of Results
	1.5 Organization

	2 Background
	2.1 How Good is QoE Today?
	2.1.1 Video QoE
	2.1.2 VoIP QoE

	2.2 Today's Application Distribution Infrastructures
	2.2.1 Internet Video
	2.2.2 Internet Telephony
	2.2.3 Room for Improving QoE

	2.3 Prior Work on Quality Optimization
	2.3.1 In-Network Solutions
	2.3.2 Endpoint Solutions
	2.3.3 Other Related Work

	2.4 Prior Work on Data-Driven Optimization in Networking
	2.4.1 Type I: Better Settings of Parameters
	2.4.2 Type II: Better Run-Time Decisions

	2.5 Summary

	3 Overview
	3.1 Formalizing DDN
	3.1.1 Conceptual Architecture
	3.1.2 Contrast to Prior Work
	3.1.3 Illustrative Examples of DDN Benefits

	3.2 Challenges of DDN
	3.2.1 Need for Expressive Models
	3.2.2 Need for Scalable Platforms

	3.3 Key Insight: Persistent Critical Structures of QoE-Determining Factors
	3.3.1 How Intuitively Persistent Critical Structures Address the Challenges?

	3.4 Making DDN Practical by Persistent Critical Structures
	3.4.1 Critical Features Analysis
	3.4.2 Group-Based Control
	3.4.3 Guided Exploration

	3.5 Summary

	4 Structural Analysis of QoE Problems
	4.1 Internet Video
	4.1.1 Methodology
	4.1.2 Temporal Patterns
	4.1.3 Spatial Patterns
	4.1.4 Cross-Metric Correlations
	4.1.5 Key Observations

	4.2 Internet Telephony
	4.2.1 Methodology
	4.2.2 Spatial Patterns
	4.2.3 Temporal Patterns
	4.2.4 Cross-Metric Correlations

	4.3 Summary

	5 Predictive QoE Optimization By Critical Feature Analysis
	5.1 Background
	5.1.1 Data-Driven Quality Prediction
	5.1.2 Challenge 1: Complex QoE-Determining Factors
	5.1.3 Challenge 2: Fresh Updates

	5.2 Overview of CFA Ideas
	5.2.1 Baseline Prediction Algorithm
	5.2.2 Critical Features

	5.3 Design of CFA
	5.3.1 Learning Critical Features
	5.3.2 Using Fresh Updates
	5.3.3 Putting It Together

	5.4 Implementation and Deployment
	5.4.1 Implementation of CFA Workflow
	5.4.2 Challenges in an Operational Setting

	5.5 Evaluation
	5.5.1 Prediction Accuracy
	5.5.2 Quality Improvement
	5.5.3 Timeliness of Prediction

	5.6 Insights from Critical Features
	5.6.1 Types of Critical Features
	5.6.2 Values of Critical Features

	5.7 Discussion
	5.8 Related Work
	5.9 Summary

	6 Cross-Session Throughput Prediction for Initial Video Bitrate Selection
	6.1 Background
	6.1.1 Today's Suboptimal Initial Bitrate Selection
	6.1.2 Dataset
	6.1.3 Limitations of Simple Predictors

	6.2 Design of DDA
	6.2.1 Insight of DDA
	6.2.2 Algorithm

	6.3 Evaluation
	6.3.1 Prediction Accuracy
	6.3.2 Improvement of Bitrate Selection

	6.4 Related Work
	6.5 Summary

	7 Improving QoE via Exploration and Exploitation at Scale
	7.1 Limitations of Predictive Approaches
	7.1.1 Limitation 1: Prediction Bias
	7.1.2 Limitation 2: Slow Reaction

	7.2 Casting QoE Optimization as a Exploration-Exploitation Process
	7.2.1 Challenges of E2 in the Networking Context

	7.3 Overview of Pytheas Ideas
	7.4 Pytheas Algorithms
	7.4.1 Session-Grouping Logic
	7.4.2 Per-Group E2 Logic

	7.5 Pytheas System Architecture
	7.5.1 Requirements
	7.5.2 Per-Group Control by Frontends
	7.5.3 Updating Session Groups in the Backend
	7.5.4 Fault Tolerance

	7.6 Implementation and Optimization
	7.7 Evaluation
	7.7.1 End-to-End Evaluation
	7.7.2 Microbenchmarks
	7.7.3 Fault Tolerance

	7.8 Related Work
	7.9 Summary

	8 Tackling Large Decision Spaces
	8.1 VIA Architecture
	8.2 Potential Relaying Improvement
	8.3 VIA Relay Selection
	8.3.1 Problem Formulation
	8.3.2 Strawman Approaches
	8.3.3 Overview of Via
	8.3.4 Prediction-Based Pruning
	8.3.5 Exploration-Exploitation Step
	8.3.6 Budgeted Relaying

	8.4 Evaluation
	8.4.1 Methodology
	8.4.2 Improvement of VIA
	8.4.3 VIA's Design Choices
	8.4.4 Practical Relaying Factors
	8.4.5 Real-World Controlled Deployment

	8.5 Discussion
	8.6 Related Work
	8.7 Summary

	9 Lessons, Limitations, and Future Work
	9.1 Summary of Contributions
	9.2 Lessons Learned
	9.3 Limitations of Proposed Solutions
	9.4 Future Work
	9.4.1 Rethinking Classic and New Challenges in Networking
	9.4.2 Towards a Principled Architecture for Data-Driven Networking

	9.5 Final Remark

	Bibliography

