
Secure Large-Scale Outsourced Services
Founded on Trustworthy Code Executions

Bruno Vavala

CMU-CS-17-118

July 2017

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Faculty of Sciences
University of Lisbon

1749-16 Lisbon, Portugal

Thesis Committee:
Peter Steenkiste, Co-Chair

Nuno Neves, University of Lisbon, Co-Chair
Anupam Datta

Vyas Sekar
Antonia Lopes, University of Lisbon

Submitted in partial fulfillment of the requirements for the degree of
Doctor of Philosophy in Computer Science

Copyright c© 2017 Bruno Vavala

This research was sponsored by Fundação para a Ciência e Tecnologia (Portuguese Foundation for Science
and Technology) through the Carnegie Mellon Portugal Program under grant SFRH/BD/51562/2011 (until
August 2016) and the Information and Communication Technology Institute at Carnegie Mellon University,
by FCT through project UID/CEC/00408/2013 (LaSIGE), by the EC through project FP7-607109 (SEGRID)
and project H2020-643964 (SUPERCLOUD). The views and conclusions contained in this document are
those of the author and should not be interpreted as representing the official policies, either expressed or
implied, of any sponsoring institution, the Portuguese government, the U.S. government or any other entity.

Keywords: Trusted Computing, Cloud Security, Trusted Execution Abstraction,
Execution Integrity, Code Identity, Large-scale Data, TPM, Intel SGX,
Efficient Execution Verification, Passive Replication, Service Availability

This work was partially supported by the Fundação para a Ciência e Tecnologia (FCT) through research grant
SFRH/BD/51562/2011 (until August 2016) and through project UID/CEC/00408/2013 (LaSIGE), by the Informa-
tion and Communication Technology Institute at Carnegie Mellon University, by the EC through project FP7-607109
(SEGRID) and project H2020-643964 (SUPERCLOUD).

iii

iv

A Mamma, Papà, Titti,

a tutta la mia Famiglia e a Lucia,

per il loro costante e incondizionato affetto.

vi

Abstract
The Cloud Computing model has incentivized companies to outsource services to

third-party providers. Service owners can use third-party computational, storage and
network resources while avoiding the cost of acquiring an IT infrastructure. However,
they have to rely on the trustworthiness of the third-party providers, who ultimately
need to guarantee that the services run as intended.

The fundamental security challenge is how to empower companies that own and
outsource such services, or clients using them, to check service execution on the re-
mote cloud platform. A promising approach is based on hardware-enforced isola-
tion and attestation of the service execution. Assuming that hardware attacks are
infeasible, this protects the service from other malicious software or untrusted sys-
tem administrators. Also, it allows clients to check that the results were produced
as intended. While this paradigm is well known, previous work does not scale with
large code and data sizes, lacks generality both with respect to hardware (e.g., either
uses Trusted Platform Modules, TPMs, or Intel SGX) and software (e.g., only supports
MapReduce applications), and makes undesirable security tradeoffs (e.g., resorts to
a large Trusted Computing base, or TCB, to run unmodified services, or a small TCB
but with limited functionality).

This thesis shows how to secure the execution of large-scale services efficiently
and without these compromises. From the perspective of a client that sends a request
and receives a response, trust can be established by verifying a small proof of correct
execution that is attached to the result. On the remote provider’s platform, a small
trusted computing base enables the secure execution of generic services composed of
a large source code base and/or working on large data sets, using an abstraction layer
that is implementable on diverse trusted hardware architectures.

Our small TCB implements three orthogonal techniques that are the core con-
tributions of this thesis. The first one targets the identification (and the execution)
of only the part of code that is necessary to fulfill a client’s request. This allows an
increase both in security and efficiency by leaving any code that is not required to
run the service outside the execution environment. The second contribution enables
terabyte-scale data processing by means of a secure in-memory data handling mech-
anism. This allows a service to retrieve data that is validated on access and before
use. Notably, data I/O is performed using virtual memory mechanisms that do not
require any system call from the trusted execution environment, thereby reducing
the attack surface. The third contribution is a novel fully-passive secure replication
scheme that is tolerant to software attacks. Fault-tolerance delivers availability guar-
antees to clients, while passive replication allows for computationally efficient pro-
cessing. Interestingly, all of our techniques are based on the same abstraction layer of
the trusted hardware. In addition, our implementation and experimental evaluation
demonstrate the practicality of these approaches.

viii

Resumo
O modelo de computação baseado em Nuvem incentivou as empresas a exter-

nalizar serviços a fornecedores terceiros. Os proprietários destes serviços podem uti-
lizar recursos externos de computação, armazenamento e rede, evitando o custo de
aquisição de uma infraestrutura IT. No entanto, têm de confiar que os serviços de
fornecedores terceiros funcionem como planeado.

O desafio fundamental da segurança é fazer com que as empresas que possuem
e externalizam serviços, ou clientes que utilizam estes, possam controlar a execução
do serviço na plataforma remota baseada em Nuvem. Uma abordagem promissora é
o isolamento e a atestação da execução do serviço a nı́vel hardware. Assumindo que
os ataques ao hardware não são possı́veis, o serviço fica protegido contra software
malicioso ou administradores de sistema suspeitos. Além disso, permite aos clientes
controlarem que os resultados tenham sido produzidos como planeado. Embora esta
abordagem seja bem conhecida, os trabalhos anteriores não escalam com grandes
quantidades de código e dados, carecem de generalidade em relação ao hardware
(e.g., utilizam TPMs ou SGX) e ao software (e.g., recorrem a uma Trusted Computing
base, ou TCB, complexa para a execução de serviços não modificados, ou a uma TCB
simplificada que tem funcionalidades limitadas).

Esta tese propõe uma proteção para a execução de serviços de grande escala de
forma eficiente e sem as limitações anteriores. Da perspectiva de um cliente que en-
via um pedido e recebe uma resposta, a confiança pode ser estabelecida através de
uma pequena prova de que a execução foi correcta que é anexada à resposta. Na
plataforma do fornecedor remoto, um pequeno dispositivo de computação fiável per-
mite a execução segura de serviços genéricos constituı́dos por uma grande quan-
tidade de código e/ou que processam grandes conjuntos de dados, utilizando um
nı́vel de abstração que pode ser implementado em diversas arquitecturas de hard-
ware fiável.

A nossa TCB simplificada implementa três técnicas independentes que são os con-
tributos centrais desta tese. A primeira foca-se na identificação (e na execução) apenas
da parte de código que é precisa para completar um pedido de um cliente. Isto per-
mite um aumento de segurança e eficiência porque o código que não é necessário
para executar o serviço fica fora do ambiente de execução. A segunda contribuição
permite o processamento de dados na escala de um terabyte através de um mecan-
ismo seguro de gestão dos dados em memória. Isso permite a um serviço carregar
dados que são validados quando são acedidos e antes de serem utilizados. Em par-
ticular, a inserção e a saı́da dos dados é feita utilizando mecanismos de memória
virtual que não necessitam de chamadas de sistema a partir do ambiente de execução
fiável, reduzindo portanto a superfı́cie de ataque. A terceira contribuição é um novo
esquema de replicação seguro completamente passivo que é tolerante ataques de soft-
ware. A tolerância a faltas garante disponibilidade aos clientes, enquanto a replicação
passiva permite um processamento eficiente do ponto de vista computacional. Cu-
riosamente, todas as técnicas são baseadas no mesmo nı́vel de abstração do hardware

fiável. Além disso, a nossa implementação e avaliação experimental demonstram a
praticidade destas abordagens.

x

Riassunto
Il modello di calcolo basato su Cloud ha incentivato le aziende a esternalizzare

servizi a fornitori terzi. Oggi i proprietari di servizi possono disporre di una grande
varietà di risorse esterne per le loro esigenze di calcolo, di archiviazione e di rete,
evitando cosı̀ il costo di acquisizione di una infrastruttura IT. Devono, però, affidarsi
a fornitori terzi i quali, a loro volta, hanno bisogno di garantire che i servizi funzionino
come previsto.

La sfida fondamentale relativa alla sicurezza è come rendere aziende e clienti
che usano risorse esterne in grado di controllare l’esecuzione del servizio sulla pi-
attaforma Cloud remota. Un approccio promettente è basato sull’isolamento e attes-
tazione a livello hardware dell’esecuzione del servizio. Partendo dal principio che
attacchi hardware non possono accadere, il meccanismo protegge il servizio da altri
programmi maliziosi o da amministratori di sistema inaffidabili. Inoltre, il meccan-
ismo permette ai clienti di controllare che i risultati siano stati prodotti come pianifi-
cato. Sebbene tale approccio sia ben noto, i precedenti lavori di ricerca non operano in
modo soddisfacente con grandi quantità di codice e dati, sono carenti di generalità sia
con rispetto all’hardware (e.g., usano o TPMs o SGX) che al software (e.g., support-
ano solo applicazioni MapReduce), e fanno compromessi indesiderati sulla sicurezza
(e.g., ricorrono ad una grande Trusted Computing base, o TCB, per eseguire servizi
non modificati, oppure ad una piccola TCB ma con funzionalità limitate).

Questa tesi mostra come proteggere l’esecuzione di servizi di larga scala in modo
efficiente e senza tali compromessi. Dalla prospettiva di un cliente che invia una richi-
esta e riceve una risposta, la fiducia può essere verificata con una piccola prova di
corretta esecuzione in allegato alla risposta. Sulla piattaforma del fornitore remoto,
una piccola base di calcolo affidabile permette l’esecuzione sicura di servizi gener-
ici, che possono avere anche un grande codice sorgente e lavorare su grandi insiemi
di dati, utilizzando un livello di astrazione che può essere implementato su diverse
architetture di hardware affidabile.

La nostra piccola TCB implementa tre tecniche indipendenti che sono i contributi
centrali di questa tesi. La prima si concentra sull’identificazione (e l’esecuzione) della
sola parte di codice che è necessaria per completare una richiesta di un cliente. Questo
permette un miglioramento in termini di sicurezza e di efficienza poichè lascia fuori
dall’ambiente di esecuzione ogni altro codice che non è necessario per il funziona-
mento del servizio. Il secondo contributo permette il processamento di dati nella scala
di un terabyte attraverso un meccanismo sicuro di gestione dei dati in memoria. Tale
meccanismo consente di caricare dati che vengono validati al momento dell’accesso e
prima di essere utilizzati. In particolare, l’inserimento/uscita dei dati è svolto utiliz-
zando meccanismi di memoria virtuale che non richiedono alcuna chiamata di siste-
ma dall’ambiente di esecuzione affidabile, riducendo quindi la superficie di attacco.
Il terzo contributo è un nuovo schema di replicazione sicuro, completamente passivo,
che è tollerante ad attacchi software. La tolleranza ai guasti garantisce la disponibilità
del servizio ai clienti, mentre la replicazione passiva permette un processamento effi-

ciente dal punto di vista computazionale. Curiosamente, tutte le tecniche sono basate
sullo stesso livello di astrazione dell’hardware affidabile. Inoltre, la nostra implemen-
tazione e la valutazione sperimentale dimostrano la praticità di questi approcci.

xii

Acknowledgments

After so much hard work, it is time to look back and recognize that I would not
be sitting here writing these acknowledgments without the support of many people
that helped me reaching this far.

First of all, I am deeply grateful to my advisors Professor Nuno Neves (at FCUL)
and Professor Peter Steenkiste (at CMU). They fostered my personal and professional
growth with care and patience (a lot!). All of our interactions helped me to discard
weak and seemingly interesting ideas and to concentrate my research efforts towards
innovative and ambitious goals. Each and every thoughtful feedback that I received
from them stimulated me to better shape my ideas and encouraged me to improve my
research work. A special and warm thank you goes to Nuno, who went far beyond
his duties to support me in Portugal since before I decided to join also CMU.

I would like to say thank you to the faculties that accepted to join my thesis com-
mittee, namely Professor Anupam Datta, Professor Antonia Lopes and Professor Vyas
Sekar. I have received valuable feedback from them for improving my thesis and its
presentation. I hope there will be opportunities in the future to discuss and address
together with them new questions and challenges that this thesis raises.

Many thanks to the amazing managers Pedro Gonçalves at LaSIGE and Deborah
Cavlovich at CMU. Thank you for your promptness and efforts to help me in every
administrative process I had to go through.

As my journey began in Rome, I would like to thank my Master’s thesis advisor
Professor Alessandro Mei, Professor Luigi Vincenzo Mancini and Professor Federico
Massaioli, from Sapienza University of Rome, for encouraging me to pursue academic
research. Also, I would like to give a big hug to Dora (Bionda) Spenza, Marco (Ocram)
Barbera, Julinda Stefa, Ornela (Contessa) Dardha, Blerina Sinaimeri, Alessandro (Zio)
Cammarano, Antonio (Don) Davoli, Andrea (All-in) Cerone, Claudiu (Pam) Perta,
Marco (Senza) Cortina. I believe the awesome time we spent together is part of this
journey, and I am very happy that I could meet many of you in Lisbon.

My journey then continued in Portugal, and I am impressed by how many people
impacted my professional and personal life. I would like to thank (with my great
great pleasure) Professor Paulo Verissı́mo who hosted me at LaSIGE in the early
days. Also, many thanks to Professors Alysson Bessani, Fernando Ramos, Antonio
Casimiro, Miguel Correia and Iberia Meideros for the insightful discussions, for the
feedback they gave me on papers and presentations and for the help in organizing
the research group meetings. A big thank you also goes to Monica and Rudra (o
Indiano) Dixit, Juliana (Vovó) Veronese, João (mari...) Antunes, Vinicius Cogo, Je-

ferson (moleque) Souza, Patricia Gonçalves. Right after I moved to a new country,
they made me feel at home. And similarly did the friends and colleagues that I met
later, namely André (eu sou o maior) Nogueira, Henrique Moniz, Miguel (Presidente)
Garcia, Leticia Fleig, Pedro (MapReduce) Costa, Luı́s (Crypto) Brandão, Diego (SDN)
Kreutz, Tiago Oliveira, Ricardo Mendes, Tiago Cogumbreiro, Ricardo (Pato) Fonseca,
João Sousa, Tulio Ribeiro, André (Mariachi) Santos, Simão Fontes and Morgana, Rui
Fontes and Janete. A special thank you to Vinicius Cogo for lots and lots of support
with the Quinta testbed, and to André Nogueira for patiently discussing low-level im-
plementation details; my experiments would not have been possible without them.
A big hug also goes to Vincenzo Rocca who helped me since the very first day in Lis-
bon, while a big “beijinho” goes to my roommates Sónia Barbosa, Cristina Oliveira,
Teresa Matos, Debora Sanches, who felt all of the good and the bad things of living
in a house with a PhD student.

And my journey then continued at CMU. I am very grateful for all the good time
spent in Pittsburgh with Cristian (mamma mia) Cassella, Sarah Loos and Jeremy (yes,
I owe you a glass of wine!), Joana and Miguel Araujo (obrigado pelo bolo), Diana and
João Martins (sim, eu sou boa pessoa, mas não danço), Giorgio De Pieri (a Veneto lost
in Pittsburgh), Enico Iaia (who saved my life in the Death Valley), Jeronimo Segovia
(from eh-Spain), Sid (always-happy) Ghosh; my soccer teammates Hugo Pinto, Mat-
teo Rinaldi, Hugo Gonçalves and Philipp Reisinger; Sophie (beautiful dresses) and
Matt Mukerjee, David Naylor (The Graphic Designer), John (One-day-I’ll-know-how-
to-play-foosball) Wright, Yuchen Wu, George Nychis, Stefan Muller (The Actor), De-
bjani and Wolf Richter (dude, I do not forget, and Deb neither!).

I want to conclude with a big big thank you to my beautiful family for always
supporting me relentlessly. Thank you Mamma, Papà, Titty and Lucia. Luckily for
me you are always there when I succeed, when I need some advice or a few words of
comfort. Thank you also to my dear cousins in Canada, who hosted me for Christmas.
With all of you, Toronto could not look any cozier to me. And thank you also to
Vincenzo Rocca, Magda, Clara and (I-do-what-I-want-)Francesca, who made me feel
as part of their family in Portugal.

Certainly, I have accidentally omitted somebody. If you believe you are missing
here, you probably are (sorry about that!) and, to recover from my mistake, I am more
than willing to give you a big hug in person instead.

xiv

Contents

List of Figures xxi

List of Tables xxiii

List of Abbreviations xxv

1 Introduction 1

1.1 Security Implications of Code and Data Outsourcing 1

1.2 Alternatives for Securing Outsourced Services . 2

1.3 Focusing on Hardware-based Secure Foundations 3

1.3.1 Computing Model for Secure Outsourced Services 4

1.3.1.1 System Model . 5

1.3.1.2 Threat Model . 6

1.3.2 Available Hardware Architectures . 7

1.3.3 Can Such Hardware Be Actually Trusted? . 7

1.3.4 Trusted and Verifiable Code Executions . 8

1.3.5 The Ideal Theoretical and Practical Worlds 9

1.4 Requirements and Challenges . 10

1.4.1 Abstracting the Hardware-based Secure Foundations 11

1.4.2 Integrity of Large Code . 12

1.4.3 Scaling to Large Volumes of Data . 13

1.4.4 Availability for Secure Outsourced Services 14

1.5 Solving the Challenges for Secure Large-Scale Trusted Executions 15

1.5.1 An Abstraction for Trusted Executions . 15

1.5.2 Verifying an Application by Identifying just the Necessary Code 16

1.5.3 Feeding Code with Large-Scale Data using Secure Virtual Memory Maps . 16

xv

1.5.4 Improving Availability through Secure Replication 18

1.6 Summary of Contributions . 19

Thesis Statement . 20

2 Abstraction for Trustworthy Code Execution 21

2.1 A Brief Introduction to Trusted Computing . 21

2.1.1 Binding Together Code and Data . 22

2.1.2 Boosting Performance Leveraging Fast CPU 23

2.1.3 Reducing the Physical Trust Boundaries to a Single Chip 23

2.1.4 Today’s Trusted Computing . 24

2.2 Background of Two Trusted Computing Architectures 25

2.2.1 Background on XMHF-TrustVisor . 26

2.2.2 Background on Intel SGX . 27

2.3 An Abstraction of the Trusted Computing Component 30

2.3.1 TCC interface . 31

2.3.2 Example Implementations of the Primitives 34

2.3.2.1 Implementing execute . 34

2.3.2.2 Implementing attest . 36

2.3.2.3 Implementing verify . 38

2.3.2.4 Implementing auth put . 39

2.3.2.5 Implementing auth get . 41

2.3.2.6 Implementing create cnt . 42

2.3.2.7 Implementing get cnt . 43

2.3.2.8 Implementing incr cnt . 44

2.3.2.9 Implementing get cert . 46

2.3.3 Primitives in Practice . 47

3 The Multi-Identity Approach for Identification of (only) Actively Executed Code 49

Contributions . 50

3.1 Towards Trusted Executions of Actively Executed Code 51

3.1.1 Previous Work . 51

3.1.2 Security or Efficiency, But Not Both . 52

3.1.3 Problem Definition . 53

3.1.4 Overview of our Solution . 54

xvi

3.2 Model . 56

3.3 Secure Identification of Actively Executed Code . 57

3.3.1 A Naive Solution . 57

3.3.2 Reducing Communication . 57

3.3.3 Addressing Looping PALs . 60

3.3.4 Novel Secure Storage Solution . 62

3.3.5 A Flexible Trusted Execution Protocol . 64

3.3.5.1 Amortizing the attestation cost . 69

3.4 Experimental Analysis . 70

3.4.1 Implementation . 70

3.4.2 Automatic Verification . 71

3.4.3 Evaluation . 72

3.4.3.1 Code size . 73

3.4.3.2 End-to-end performance . 73

3.4.3.3 Optimized vs. non-optimized secure channels 74

3.5 Performance Model for Code Identification . 75

3.6 Other Related Work . 78

3.7 Summary . 79

4 Support for Large-scale Data in Integrity-protected Virtual Memory 81

Contributions . 82

4.1 Previous Work on Trusted Large-Scale Data Processing 82

4.2 Overview of LaStGT . 83

4.2.1 Operation . 84

4.2.2 Key Ideas . 84

4.2.3 Challenges . 85

4.3 Model . 86

4.4 Design of LaStGT . 86

4.4.1 Architecture . 87

4.4.2 From User Data to LaStGT-compatible State 88

4.4.3 Data Processing at the Untrusted Provider 89

4.4.3.1 Service Execution . 89

4.4.3.2 Loading state from disk into untrusted memory 90

4.4.3.3 Authenticated lazy loading from untrusted memory 90

xvii

4.4.3.4 Reclaiming memory . 91

4.4.4 Client Verification of a Remote Execution . 91

4.5 Implementation of LaStGT . 91

4.5.1 Overview . 91

4.5.2 Trusted Computing-architecture-independent Details 94

4.5.2.1 Building the state . 94

4.5.2.2 Maps for State Organization and Memory Management 95

4.5.2.3 State Registration . 96

4.5.2.4 Normal Execution and Lazy Loading 96

4.5.2.5 Loading Data From Disk and Reclaiming Maps 97

4.5.2.6 Attestation and Remote Verification 98

4.5.3 Implementation in XMHF-TrustVisor . 99

4.5.4 On the feasibility of LaStGT Using Intel SGX 100

4.5.4.1 Main Implementation Challenges and Solutions 100

4.5.4.2 Proposed SGX Optimizations . 102

4.5.5 How the TCC primitives are extended . 103

4.6 Evaluation . 107

4.6.1 TCB Size . 108

4.6.2 Comparing LaStGT and XMHF-TrustVisor 108

4.6.3 Microbenchmarks . 108

4.6.4 End-to-End Application Performance . 111

4.6.5 Discussion . 113

4.7 Summary . 114

5 Availability in Trusted Executions 117

Contributions . 119

5.1 Overview of Verifiable Passive Replication . 120

5.1.1 Rationale Behind Execution Verification in Replication 120

5.1.2 Solution and Challenges . 120

5.1.3 Architecture of V-PR . 121

5.1.4 V-PR’s Operations . 122

5.1.5 Benefits and Drawbacks of V-PR . 123

5.2 V-PR: Verified Passive Replication . 125

5.2.1 Replication Model and Hybrid Failure Model 125

xviii

5.2.2 Securing V-PR’s Context using the TCC . 126

5.2.3 System Initialization . 127

5.2.4 Normal execution . 129

5.2.5 Fault Handling . 132

5.3 Experimental Evaluation . 133

5.3.1 Implementation . 134

5.3.2 Analysis . 135

5.4 Summary . 140

6 Conclusions 141

6.1 Future Work . 142

6.1.1 Additional implementations . 142

6.1.2 Combining our techniques together . 143

6.1.3 Dynamically linked libraries . 143

6.1.4 Architecture-agnostic code identification . 143

6.1.5 Multicore trusted executions . 144

Bibliography 145

xix

xx

List of Figures

1.1 Secure service outsourcing model . 5

1.2 Anatomy of a trusted execution . 8

1.3 Impact of a TCC abstraction on service development 11

1.4 Usage and implementation of the trusted execution abstraction 12

2.1 System design and trusted component interface. 30

2.2 Which code calls which primitive . 31

2.3 Primitives as they are used in the implementations of a service and service client. . 47

3.1 Trends in Trusted Computing research work . 51

3.2 Latency of security-sensitive code registration in XMHF-TrustVisor 52

3.3 Overview of the architecture and of the multi-PAL execution protocol 54

3.4 The looping PALs problem . 61

3.5 Identity-dependent key derivation construction . 62

3.6 Identity-based secure storage . 63

3.7 Detailed multi-PAL execution protocol and verification 67

3.8 Sizes of PALs in multi-PAL SQLite . 73

3.9 Performance comparison between multi-PAL and monolithic SQLite 74

3.10 Breakdown of the code registration costs in XMHF-TrustVisor 76

3.11 Validation of the performance model for code identification 77

4.1 How to make trusted code offload data I/O to untrusted code 84

4.2 Three-party system model for outsourced large-scale data processing 86

4.3 System architecture of LaStGT . 87

4.4 LaStGT state hierarchy . 89

4.5 LaStGT abstraction of non-common mechanisms, and architecture-specific imple-

mentations . 92

xxi

4.6 Hash tree size as a function of the state size . 94

4.7 A map list in LaStGT . 96

4.8 In-Memory Locators . 97

4.9 How hierarchical components are referenced, and how shadow copies are used . . 99

4.10 Performance comparison between LaStGT and XMHF-TrustVisor 109

4.11 Time and speed for map I/O in LaStGT . 110

4.12 Time and speed for building the state hierarchy in LaStGT 110

4.13 Time to process one terabyte of data in LaStGT . 111

4.14 Time to run a nucleobase search algorithm on a human genome using LaStGT . . . 112

4.15 Time to query a SQLite-based key-value stores . 113

4.16 Time to query a SQLite-based key-value stores with optimized state parameters . . 113

5.1 Comparison between Active, Passive and Verified Passive Replication 118

5.2 Architecture of V-PR . 121

5.3 V-PR initialization protocol . 128

5.4 V-PR normal case protocol . 130

5.5 Actively-executed application-level code size of Prime, BFT-SMaRt and V-PR . . . 135

5.6 End-to-end latency, measured at the client, of a replicated zero-overhead service . 137

5.7 Application-level execution time of read/write requests and state updates 138

5.8 CPU cycle consumption for passively and actively replicated SQLite deployments . 138

5.9 Performance of a V-PR-ed SQLite implementation 139

xxii

List of Tables

2.1 Primitives used in this thesis . 32

3.1 Speed-up of multi-PAL SQLite compared to monolithic SQLite 73

4.1 Software components of LaStGT . 88

4.2 TCB breakdown of LaStGT and comparison with previous work 107

4.3 Overhead of context switch and of application resumption in LaStGT 109

5.1 Comparison between Active, Passive and Verified Passive Replication 123

5.2 Comparison between BFT-SMaRt, Prime and V-PR 136

xxiii

xxiv

List of Abbreviations

AES Advanced Encryption Standard

AEX Asynchronous EXit

AIK Attestation Identity Key

AR Active Replication

BFT Byzantine Fault Tolerant

CA Certification Authority

DAA Direct Anonymous Attestation

EPC Enclave Page Cache

EPID Enhanced Privacy ID

EPT (Intel) Extended Page Tables

fvTE flexible and verifiable Trusted Execution (protocol)

I/O Input/Output

IAS Intel Attestation Service

IMEL In-Memory Embedded Locator

ISV Independent Software Vendor

IT Information Technology

LaStGT LArge STate on a Generic Trusted component

KDF Key Derivation Function

LPC Low Pin Count (bus)

MAC Message Authentication Code

NPT (AMD) Nested Page Tables

PAL Piece of Application Logic

PCR Platform Configuration Register

PR Passive Replication

PSE Platform Specific Enclave

xxv

SDK Software Development Kit

SEV (AMD) Secure Encrypted Virtualization

SECS SGX Enclave Control Structure

SGX (Intel) Secure Guard eXtensions

SHA Secure Hash Algorithm

SLoC Source Lines of Code

SMR State Machine Replication

SME (AMD) Secure Memory Encryption

SMM State Map Manager

SSA State Save Area (frame)

SVM (AMD) Secure Virtual Machine

TCB Trusted Computing Base

TCC Trusted Computing Component

TPM Trusted Platform Module

µTPM micro Trusted Platform Module

TCS Thread Control Structure

TOCTOU Time Of Check Time Of Use

TXT (Intel) Trusted eXecution Technology

UTP Untrusted Third Party

V-PR Verified Passive Replication

VFS Virtual File System

VM Virtual Machine

VMM Virtual Machine Monitor

xxvi

Chapter 1

Introduction

As our society becomes more connected and information is used in a more pervasive way,

the systems are getting increasingly complex to process higher amounts of data. In just a few

decades, advancements in computing systems made it possible to conclude hundreds of millions

of financial transactions per day [211], connect billions of people [209, 210], rapidly and massively

scale the IT infrastructure of many companies [212], for example to allow cost-effective genome

sequencing technology [213].

As building large-scale systems requires lots of resources for hardware acquisition, software

development and maintenance, it is often convenient to run the services on third-party computa-

tional resources. Today, this practice is implemented through the Cloud Computing model. Sev-

eral cloud providers (e.g., Amazon EC2 [1], Rackspace [2], Microsoft Azure [3], IBM Cloud [4])

offer scalable resources to service providers, who exploit them to run disparate service applica-

tions, such as clinical decision support [5], predictive risk assessment for diseases [6], malware

and fraud detection [7, 8], sensitive financial accounting and business optimization [9, 223, 224]

and genome analytics [10, 11].

The practice of outsourcing services however has a security drawback. The service provider

does not physically own the hardware that runs the service application. This prevents the service

provider from being able to check and secure both the hardware and the software (e.g., the OS)

running it. In fact, the service provider has very little control over the service execution.

1.1 Security Implications of Code and Data Outsourcing

Due to a lack of physical ownership and control of computing resources, outsourced applica-

tions lack strong integrity guarantees [9, 12, 13, 14] for code and data. Also, as these resources are

1

remotely accessed [214, 215, 216], the remote activity is difficult to monitor. As a consequence,

new threats emerge that can tamper with an outsourced service execution.

Unfortunately, although guaranteeing security is a core competence of cloud providers, this

is not enough to rule out real threats. For example, one third of the top threats listed by the Cloud

Security Alliance [196] enable an attacker to tamper with the integrity of the computation and

for the data in the cloud. Namely: (i) service hijacking [203, 204], (ii) malicious insiders [15], (iii)

system vulnerabilities [205, 206] and (iv) shared technology issues [16, 17, 18]. These threats raise

suspicions about the trustworthiness of the results produced by an outsourced service, and they

can undermine the reputation of both cloud providers and service providers.

1.2 Alternatives for Securing Outsourced Services

Service providers and clients have little or no means to check whether the service has been

correctly executed on the cloud and that the delivered results are valid. A few techniques are

available to deal with these issues, namely: service re-execution, trusted auditors, secure com-

putation, and trusted hardware.

Service re-execution means making the clients (or whoever receives the results of the service)

re-execute the service code locally so to check whether the received results match their expecta-

tions [19]. Although this allows checking the correctness of the remote computation, it can be

classified as unrealistic for multiple reasons. First, it requires the clients to have the code and

enough resources to do the computation themselves. This invalidates the original motivation

for outsourcing a service, since verification is as expensive as the remote execution. Second, it

requires two executions, so it is inefficient. Third, two executions giving the same result must

likely be deterministic, thereby ruling out several services that use sources of non-determinism

(e.g., random values, thread schedulers).

Trusted auditors are essentially undercover clients that use the remote service with the sole

intent of checking the results it delivers [20]. This method still involves some re-execution, though

true clients do not have to run an expensive verification procedure. However, such a method is

fundamentally probabilistic, hoping that any long-lasting malicious activity will eventually be

detected by trusted auditors. Also, it is based on the strong assumption that an untrusted service

provider is unable to identify the trusted auditors, so to behave correctly (only) with them.

Trusted hardware means leveraging a hardware root of trust inside the cloud provider’s plat-

form [21, 22] so to get security guarantees about the executed service—much like a 1978 pro-

posal [23] advocated using physically secure hardware for privacy-preserving computation. In

2

particular, hardware-based isolation mechanisms and cryptographic protocols can be used to

secure service execution and to establish a secure channel between the client and the service exe-

cution. This allows the client to receive and verify a proof that the intended code was run and the

intended data was processed. Such technique makes the assumption that the hardware and its

manufacturer can be trusted and that the cryptographic protocols are secure. Also, the hardware

should be available on the remote execution platform.

Secure computation finally suggests to cryptographically encode the service—for instance

describing it as a boolean circuit and then using a circuit garbling technique to get confidential-

ity and authenticity guarantees [24]—and the input data so that the cloud provider can perform

the computation and deliver an encoded output that a client can easily verify. At a high level, the

verifiable computation scheme [25] works as follows. A client encodes a target function and the

input, generating public and private values. Public values are provided to the untrusted cloud

provider to produce an encoded output, while the client uses the private values to decode and

verify the validity of the encoded output. Hence, this technique only makes cryptographic as-

sumptions about the existence of computationally intractable problems, and it does not require

trusted hardware. However, despite significant recent advances, protocols for secure and verifi-

able computation remain inefficient and difficult to apply to existing services.

1.3 Focusing on Hardware-based Secure Foundations

In this thesis, our objective is to deliver integrity guarantees for code and data to clients of

outsourced services by making such services behave as expected and by empowering clients to

check the results. Namely, when clients use a remote service and receive data from it, they should

be able to easily make a trust decision: whether or not to accept the data as trustworthy.

This rules out the alternative of using trusted auditors, as “each” client should be empowered

with such capability. In that case, in fact, clients rely on the auditors to monitor the intended

behavior of the remote service and to notify the service providers if misbehavior is detected. So

all clients simply implement a trivial “accept-all-data” policy, and do not make any effort for

checking what they receive.

Making the trust decision “easily” also rules out service re-executions. As outsourced ser-

vices benefit from, and may require, the significant computational resources of cloud providers,

it is unlikely that clients using a low-power device could repeat the computation in a short time.

In addition, service providers might not be willing to share their proprietary service code or data

with their clients.

3

Secure Computation [26, 27, 28, 29, 30, 31, 32] is very attractive, but current solutions have

severe limitations. On one hand, secure computation does not require making trust assumptions

about the availability of trusted hardware and of a trusted manufacturer. On the other hand,

however, secure computations are still orders of magnitude slower than the original baseline

counterparts. Also, they are typically applied to relatively simple and small functions such as

matrix multiplication, SHA family of cryptographic hash functions, substring search, dot product

and AES encryption algorithms.

In contrast, lots of progress has been made on trusted hardware recently [33]. First of all, sev-

eral hardware architectures are being commercialized today. Notable examples are: TPMs [34],

crypto-cards [35] and CPUs with an extended instruction set [189, 200]. Also, these have been

used to secure, for instance, database applications [36, 37], unmodified applications [38], MapRe-

duce applications [39], containers [40], data analytics [41], with a reasonably small overhead.

Clients can easily leverage such trusted hardware to get security guarantees with just a “hint”.

The hint is given by the trusted service providers to the clients, and it is the identity of a service

code they should expect results from. Alternatively, it could also be a verification function [42] for

the service identity. This identity is a secure cryptographic hash, and therefore it is hard to find

two different codes that have the same identity. Similarly, the trusted hardware on the remote

untrusted platform can attest the identity of the executed code and what data it processed. If

clients can match the trusted and the attested identities, then they can establish trust in the result,

or refuse to accept it otherwise. As it is clear, clients are not required to run, or know anything

about, the service code. They can check the results independently from the service complexity.

For these reasons, this thesis focuses on the Trusted Computing area. In particular, it con-

tributes new protocols for hardware-based secure code execution. These protocols aim at ad-

vancing the state of the art for large-scale outsourced services in terms of security, efficiency and

generality from a hardware and a software perspective.

1.3.1 Computing Model for Secure Outsourced Services

Trusted hardware enriches the computing model (Figure 1.1) with a new party, i.e., the hard-

ware manufacturer, and with the additional assumption that the hardware does not suffer phys-

ical attacks. The trusted hardware is installed within the cloud provider’s platform and contains

embedded (or securely provisioned) keys, inaccessible to the cloud provider, to authenticate it-

self to a client at verification time. Similarly, service providers outsource the (execution of their)

service software to the cloud provider. The hardware manufacturer and the service providers

4

manufacturer

service owner/provider
(creator/developer)

cloud providerbuild & sell
trusted
hardware

client

build & outsource
code and data

hardware’s public key for hardware verification

service usage

identities of service code and data
for service verification

Figure 1.1: Model.

provide clients with the information that allows the secure verification of the service that is exe-

cuted remotely at the cloud provider. Namely, the manufacturer tells the clients how to authen-

ticate the results produced with the trusted hardware, while the service provider tells the clients

what they should expect to be executed remotely i.e., service f was executed over data x. So

eventually clients can establish trust in the returned result y.

On the cloud provider’s platform, the trusted hardware is able to set up an isolated environ-

ment for executing the service (see Section 1.3.4) that produces output data. In particular, the

cloud provider feeds the hardware with the service code and the input data, and later retrieves

the output data. Most importantly, the trusted hardware can sign the identities (hashes) of the

executed service code and data with its keys. This ultimately gives any client the possibility to

verify that the trusted hardware was used to execute the intended service. In addition, such a

verification can be performed per-execution and thus at a very fine-grain level.

From a security perspective, the security guarantees about the service execution ultimately

rely on the trusted manufacturer. In fact, the cloud provider is unable to tamper with the service

execution while it is isolated. Execution isolation is in turn guaranteed by the trusted hardware,

which inherits the trustworthiness of its manufacturer.

1.3.1.1 System Model

Our basic model consists of a client that wants to verify the results received from a remote

service possibly executing in an untrusted platform. The client relies on a trusted computing

5

component (TCC) installed on the cloud provider’s platform that provides a hardware root of

trust. The TCC is able to sign messages with an embedded (or securely provisioned [194]) pri-

vate key whose associated public key is certified by a Certification Authority (CA, possibly the

manufacturer itself) that is trusted by the client. Also, we assume that the code developers and

the data producers are additional entities, although in the rest of this thesis, unless otherwise

specified, their roles are played for simplicity by the service provider. These entities are trusted

by the client and provide information about the outsourced service code and the input data iden-

tities.

1.3.1.2 Threat Model

We consider any cloud provider’s platform fully untrusted except for the TCC. An adversary

may take control of any software running at the cloud provider, including the OS. So the adver-

sary is allowed to read and modify any data outside the TCC’s trusted computing base (TCB). We

assume the TCC is trustworthy due to its small hardware/software TCB, which does not include

peripherals such as disk or network devices. Notice that the physical components to be trusted

vary according to the TCC implementation. For example, considering TPM-based TCCs, physi-

cal components such as the CPU, the LPC bus, the memory modules and the communication bus

have to be trusted. Instead, in an SGX-based TCC, only the CPU package has to be trusted—this

also holds for other TCCs based on AMD SEV/SME [199, 200] or secure coprocessors [43, 193].

Physical attacks to these components are not considered.

The TCC must be able to provide an isolated execution environment and thus security guar-

antees for both code and data. The adversary is allowed to use the TCC using the TCC primitives

(Section 2.3.1), for instance to run code in the isolated environment or to inject forged data into

a trusted execution by modifying the input parameters. Also, after an isolated execution termi-

nates, the adversary can tamper with any output data and attestation—which are transferred

from the isolated environment to the untrusted environment.

Denial of Service (DoS) and cryptographic attacks are out of the scope of this thesis. DoS

attacks are difficult to prevent since we already assume that the OS is untrusted and untrusted

code can thus simply deny the use of the TCC. Cryptographic attacks are assumed to be com-

putationally infeasible for the adversary’s capabilities. In addition, side-channel attacks are not

considered.

6

1.3.2 Available Hardware Architectures

A diverse set of trusted hardware technologies are commercially available today. Notable

examples are: TPMs [34], crypto-cards [35] and CPUs with an extended instruction set (Intel

SGX, AMD SEV) [189, 200].

TPMs are passive devices (i.e., they reply to the commands they receive) connected to a typical

platform through the LPC bus—it allows low-bandwidth devices to communicate with the CPU.

TPMs alone are not sufficient to enable trusted executions (Section 1.3.4). As they are passive

devices, they need to work together with the main CPU using for instance AMD Secure Virtual

Machine (SVM) or Intel Trusted Execution Technology (TXT).

Cryptographic coprocessor cards are high-performance hardware security modules. They

relieve the main processor on the platform from the burden of running cryptographic opera-

tions (e.g., hashes and signatures) and instead execute them on a dedicated coprocessor inside a

tamper-responding package—that deletes its internal private keys and certificates if its tamper-

detection sensors are triggered. It is worth noting that these devices are designed to protect

against physical tampering. This comes at a cost since they are typically at least two orders more

expensive than TPMs. Also, they do not require SVM or TXT technology.

Finally, CPUs with an extended instruction set have been released recently. They provide

dedicated CPU instructions for trusted executions, which are fully performed within the CPU

package. They do not require external chips (as with TPMs) to deliver security guarantees and

they are considered robust against physical and software attacks. Two examples are the Intel Se-

cure Guard Extensions (SGX) [189] available on the Skylake microarchitecture, and AMD Secure

Memory Encryption (SME) and Secure Encrypted Virtualization (SEV) [199, 200, 201] available

on the Zen microarchitecture.

1.3.3 Can Such Hardware Be Actually Trusted?

Whether such hardware can be trusted or not is a debatable point and this thesis will not go

deep into this discussion. Each architecture has different security strengths and weaknesses. For

instance, while a TPM is a low-cost device that is considered tamper-resistant, communications

on the LPC bus can be attacked [44], which is an issue if the end-points (CPU and TPM) are

not mutually authenticated. Also, since there are multiple hardware components (TPM, CPU,

memory), several manufacturers must be trusted.

As another example, although Intel SGX confines the security perimeter to the CPU package,

some attacks are available to extract information from secure enclaves. Researchers have shown

7

trusted execution environment

Load and
Identify Execute Attest

Outsource Verify

client
(trusted verifier)

cloud provider
(untrusted third party)

service provider
(trusted developer)

Figure 1.2: Anatomy of a trusted execution.

how to exploit synchronization bugs [45], or to implement side-channel attacks [46, 47, 48], and

similarly how to mitigate them [49, 50, 51]. To the best of our knowledge however, no attacks

have been shown that pose a threat to the integrity of the executed code.

To conclude, trusted hardware is being analyzed by the research community to discover flaws,

and to improve its security and performance. The objective of this thesis is to build secure pro-

tocols on top of such hardware, though without assuming any specific hardware architecture.

1.3.4 Trusted and Verifiable Code Executions

The hardware architectures that we mentioned previously (Section 1.3.2) are necessary but

not sufficient for running outsourced services. Since these services are user-level applications,

low-level software that supports their trusted executions is necessary. Examples of systems that

support such executions are: Flicker [52], TrustVisor [53], SICE [54], Fides [55], Haven [38],

VC3 [39], Scone [40] and Graphene-SGX [56, 222]. Some are based on TPMs, some on SGX, while

others like TrustedDB [36] (which also incorporates a database engine application) are based on

the IBM 4764 cryptographic coprocessor. We will review these systems in Section 2.1.

A high-level picture of a trusted execution is displayed in Figure 1.2. The trusted service

provider outsources the service code together with the input data, while the client possibly is-

sues some requests. The service code is loaded and identified inside the trusted execution envi-

ronment (i.e., completely isolated from other untrusted applications executing on the platform,

including the OS). The service is then executed. Upon termination, the identity of the code, the

input data and the results are attested using the trusted hardware’s credentials and forwarded

to the client. Attestation is a mechanism for securely reporting local platform state information

(i.e., what code has been executed, what data has been processed, etc.) to a remote party (e.g., the

8

client). The client (1) verifies the attestation, specifically that it was issued by trusted hardware

certified by its manufacturer, and that (2) the hardware vouches for the received results, for the

execution of the intended code and for the processed data.

The execution verification step should not be confused with “formal verification”. The latter

is about proving that the code behaves according to a formal specification [57, 58]. In a trusted

execution, however, the attestation does not provide any information about the behavior of the

code. Rather, it simply states that a well-identified code (whose identity is the hash of its binary,

and is included in the attestation) has been loaded and executed and, similarly, the I/O data has

been bound to that execution. Hence, formal verification refers to an orthogonal problem, out

of the scope of this thesis, which can help to ensure that the executed code worked as it was

originally intended, e.g., proving the absence of implementation bugs.

The cost of a trusted execution includes not just the service code execution, but also the cost of

securing it (identification, attestation, etc.). A computationally expensive trusted execution can

result in high perceived latency for the client to get the results, while a significant verification

effort can translate into high cost for the client. In both cases, the trusted execution can end up

being less attractive than a non-outsourced service execution, and therefore, these performance

related aspects have to be taken into consideration while designing a solution.

1.3.5 The Ideal Theoretical and Practical Worlds

In theory. The following equations describe very concisely the concepts of a trusted service

execution (right-side) which is the secure version of an generic service execution (left-side).

y = F (x) (y, π) = T (F, x, n)
(original execution) (trusted execution)

Let us assume the service (code) we want to execute is described by a function F that pro-

cesses some input data x and then delivers some output data y. The trusted execution of F is

given by another function T that accepts in input the function F (e.g., its binary code), the input

data (x), a cryptographic nonce n and eventually it delivers the output data (y) together with a

verifiable proof of execution (or attestation) π. Such a proof is part of a message that includes the

output y. The proof has the following format:

π =< id(F), id(x), id(y), n >K−

The function id defines the identity of the input parameter (the code F , or the data x or y) and it

9

is defined as the cryptographic hash of the binary representation of the parameter. The message

thus contains the identities of the function (our original service), the input and output data, and

the nonce, and it is digitally signed with the hardware embedded private key K−.

The recipient of (y, π) can verify the execution as long as the function and input identities, the

nonce and the public keyK+ associated to the hardware embedded private key are known. The

execution verification is thus the authentication of a statement (< . . . >) signed by the trusted

hardware saying that code F was executed in isolation over x and returned y. A fresh nonce

prevents untrusted parties from replaying such (trustworthy) statements, while a default pub-

lic nonce explicitly provides such capability, thus allowing for example caching (and replaying)

statements and outputs. It should be noticed that the parameters (id(F), id(x), id(y), n, K+,

except the output y itself) are small pieces of data. These can be given to a client directly and re-

spectively by: the (service) function developers, the trusted (input) data source and the hardware

manufacturer. The nonce is generated before the execution by the client.

We stick to this paradigm throughout the thesis, so the contributions described in the next

chapters are heavily based on this theoretical definition of a trusted execution.

In practice. Ideally, it would be desirable to run trusted executions just as today’s services are

executed remotely. So let F be the remote service (e.g., a web server, a database engine, some

data analytics code), let x be the outsourced data (e.g., a website data, a database, a data set),

then perform the trusted execution to get the result (e.g., the dynamic content of the website, the

output of a DB query, the analytics results) and finally make sure they are valid by verifying π.

1.4 Requirements and Challenges

In the real world however, several challenges must be addressed. For instance, building on the

discussion in Section 1.3.5, we should design the function T , which enables trusted executions, in

a way that is easy to use by service providers, generic enough to abstract (and be implementable

on) several trusted hardware architectures, and whose implementation maintains the TCB small.

Also, the implementation should allow the outsourced service F , the input x and the output y

to scale efficiently to large code bases and large data sets, and to guarantee service availability to

clients. In addition, the system should keep the proof of execution π small and easy to verify.

In this thesis, we target four main requirements for securing outsourced services, which are

related to hardware abstraction, execution integrity, scale and availability. In particular:

1. an abstraction for implementing generic services on diverse Trusted Computing architec-

tures (Section 1.4.1);

10

A
B
S
T
R
A
C
T
I
O
N

system2

system1

systemn

. . .

service1

service2

servicem

. . .

system2

system1

systemn

. . .

service1

service2

servicem

. . .

A
B
S
T
R
A
C
T
I
O
N

system2

system1

systemn

. . .

service1

service2

servicem

. . .

system2

system1

systemn

. . .

service1

service2

servicem

. . .

abstraction

trusted hardware

Figure 1.3: Possible system-service implementations without (m × n, left-side) and with an ab-
straction (m+ n, right-side). Arrows define an ”implemented on” relation (e.g., a→ b says that
a is implemented on b).

2. Integrity of large code (Section 1.4.2);

3. Ability to scale to large volumes of data (Section 1.4.3);

4. Service availability in spite of failures, such as crashes (Section 1.4.4).

Additional requirements that pervade our contributions are: execution efficiency and verifi-

cation efficiency. Our requirements do not include supporting code or data confidentiality, which

is left as a future extension of our work.

1.4.1 Abstracting the Hardware-based Secure Foundations

Given the parties involved in the system model (Section 1.3.1), we observe that the current

practice of providing, developing on and using a specific Trusted Computing architecture is in-

convenient. Today (Figure 1.3 left-side) m service providers have to choose the Trusted Com-

puting architecture they need, and implement their services for that specific architecture. Need-

less to say, supporting additional architectures quickly increases development and maintenance

costs, due to the n×m different Trusted Computing architecture-service pairs that might result.

As several trusted hardware architectures and systems based on them (Section 1.3.4) offer

similar capabilities, it is natural to ask whether service providers can build on an abstraction

of such capabilities. The abstraction would be beneficial because it would provide a single in-

termediate between these systems and the services (Figure 1.3 right-side). In fact, each system

developer could implement the abstraction, while each service provider could simply use the

abstraction ”on account of what it does while completely disregarding how it works” [59], thereby being

”able to ignore details not relevant to his application area, and to concentrate on solving his problem” [60].

Although this slightly increases the cost for system developers—i.e., those who build a TPM-

based trusted hypervisor or an SGX driver for trusted service executions, because they addi-

tionally have to extend these systems with the implementation of the abstraction—it simplifies

11

service development, promotes comparisons among systems (e.g., the TPM-based trusted hy-

pervisor or the SGX-based code that underlie the abstraction) and allows switching/upgrading

hardware and system software. As a result, service providers could choose among multiple sys-

tems according to the security level of the trusted hardware (e.g., a low-cost TPM or an expensive

tamper-responding cryptographic co-processor) and the delivered performance.

abstraction

trusted hardware

build on

implementable
on

secure
system

Figure 1.4: Usage and implementation of the trusted execution abstraction.

The challenge is coming up with such an abstraction (Figure 1.4), which can deliver a sim-

ple and small execution interface for service providers, and whose implementation is feasible on

different TCC architectures. Borrowing from [61]:

• Try to make your design be appropriate for hardware likely to appear in the future.

• By not relying on idiosyncratic features of the hardware, one makes porting to new platforms much

easier.
We point out that we do not aim at defining an abstraction that can be implemented on all avail-

able systems. For instance, TrustVisor and VC3 can hardly perform the same operations since

the former focuses on self-contained x86 code, while the latter targets Hadoop applications.

We summarize our solution in Section 1.5.1 and discuss it in more detail in Chapter 2.

1.4.2 Integrity of Large Code

Reducing the TCB size is desirable [217] but maintaining the same functionality for a service

is challenging. For example, purging the hard-disk out of the TCB means renouncing to a trusted

mass storage support. As another example, although it is desirable to remove from the TCB large

code bases such as libraries and the OS, which are the order of 1M [198] and 10M [197] lines of

code respectively, this means giving up filesystems support and lots of other services. Whether

(or how much of) these should be included in the TCB is today a design choice that has to find

the right balance between security and generality. Many examples [38, 40, 62, 63] show that it is

12

hard to reduce the TCB, because “the interface between modern applications and operating systems is

so complex” [192].

The problem is exacerbated with large complex services that end up adding code to the TCB.

As the executed code is meant to be remotely verified, and as a client verifies the identity of the

code, such a large TCB has a significant impact on the code identification procedure.

On one hand, code identification provides the client with (a hash of the code and thus) in-

tegrity guarantees about the executed code. As these guarantees hold at load time, it cannot be

ruled out that the execution is not compromised at run time, particularly in the case of a large

complex code. Consequently, frequent code identification is desirable to refresh the integrity

guarantees.

On the other hand, identifying a large amount of code can be expensive. Such cost is due to:

the overhead of moving the code in and out the trusted execution environment, which depends

on the used Trusted Computing architecture; the overhead of hashing the code, which depends

on the used hash function; the size of the code. Solutions that attempt to reduce the first overhead

would likely be architecture-specific. Instead, improving the efficiency of hash functions—which

are already efficient—is difficult and out of scope. This leaves us with the challenge of how to

reduce the service code in order to reduce the identification effort, so that the performance gain

can finance the frequent identification. In the case of large code, we translate this challenge into

how to identify just the required code when it has to be executed.

We summarize our solution in Section 1.5.2 and discuss it in more detail in Chapter 3.

1.4.3 Scaling to Large Volumes of Data

Outsourced services such as databases or data analytics typically work with large volumes

of data that have to be verified. This allows a service to process correct data, as it was intended.

Also, it allows the end-users to get integrity guarantees about the data.

In this scenario, we identify two main challenges, namely how to secure the data and how to

supply the data to the executing service. Naive approaches such as hashing the data, or building

a hash tree, or providing input data upfront are not satisfactory, because trusted executions en-

vironments, such as in XMHF-TrustVisor and SGX, have limited memory available. As the data

scales up, it may not fit in memory; it is inefficient to make it available upfront to the service;

hierarchical authentication data structures, such as hash trees, can be large as well and this must

be taken into account. So memory is a concern.

Also, implementing a data I/O mechanism can have a negative impact on the TCB in three

13

ways. Such a mechanism could enlarge the TCB with: 1) peripherals (e.g., the disk); 2) lots of

code (e.g., the OS, or a filesystem) and 3) additional interface calls. So, the TCB size is a concern.

The challenge is how to exclude additional hardware peripherals while maintaining a TCB with

a small amount of code and a simple interface, while still being able to process large-scale data.

We summarize our solution in Section 1.5.3 and discuss it in more detail in Chapter 4.

1.4.4 Availability for Secure Outsourced Services

Availability is a requirement for both service providers and clients. Providers benefit from

showing that their execution infrastructure is always-available, while clients have higher as-

surance that they will eventually receive the service results they requested. Recall (from Sec-

tion 1.3.1.2) that we explicitly exclude DoS attacks from our threat model since availability triv-

ially cannot be attained in the context of an untrusted cloud provider that mounts such an attack.

A cloud provider’s platform however could suffer network intrusions or crashes. So a highly

available service should be able to provide the results despite such threats.

A replication scheme is the obvious solution, but both the active and passive replication al-

ternatives have shortcomings. Next, we elaborate on the disadvantages of current replication

schemes.

First, active replication, that is the replication of a service execution, can be computationally

expensive. Also, the outcomes of the executions should match. This goal is difficult to achieve

in complex non-deterministic systems, so service providers should either develop deterministic

services or convert existing services to make them deterministic, which is a non-trivial task [64,

65, 66].

Alternatively, passive replication, that is the replication of a service’s state (or data), is also

hard to accomplish. In fact, any data that crosses the security perimeter of a trusted component

should be protected. Data protection is based on cryptographic constructions that use secret keys

that belong to a single trusted execution domain (i.e., the keys depend on the system and the

trusted hardware that host the trusted execution). Therefore, replicating the data on different

platforms simply makes difficult to validate (and thus to consider as trusted) the data in the

trusted execution environment of another platform.

We summarize our solution in Section 1.5.4 and discuss it in more detail in Chapter 5.

14

1.5 Solving the Challenges for Secure Large-Scale Trusted Executions

In this thesis, we embrace these challenges and provide solutions for secure, efficient, scalable

and available outsourced services. We show how to deliver these features for real world services

that are composed of large code bases and use large data sets. Our contributions consist of three

main complementary techniques: fresh integrity guarantees and performance for outsourced

services with a large code base (Chapter 3); scalability to large amounts of data (Chapter 4);

availability through cost-effective service replication (Chapter 5). An additional contribution is

an abstraction for Trusted Computing on which the above techniques are built (Chapter 2).

Next we briefly provide the insights and an overview of our abstraction for trusted execu-

tions (Section 1.5.1) and of the techniques that, combined, enable to identify just the actively

executed code (Section 1.5.2) for large-scale data processing (Section 1.5.3) with availability guar-

antees (Section 1.5.4).

1.5.1 An Abstraction for Trusted Executions

As Trusted Computing architectures are very diverse, it is natural to ask whether it is at all

possible to define a single interface for a generic Trusted Computing Component (TCC). The key

insight is that ultimately, all Trusted Computing architectures are used to implement a similar

set of services needed to support a trusted execution. The TCC interface that we describe pro-

vides an abstraction for these services, rather than architectural features, allowing us to hide the

differences between Trusted Computing architectures from application developers.

The abstraction for trusted code executions that we present is defined by a small set of prim-

itives. These are our building blocks for the rest of the contributions. The primitives derive

immediately from fundamental Trusted Computing concepts such as isolated execution, sealed

storage, attestation, etc. They enable developers to build (or port) services on top of an abstract

trusted component, to optimize the implementation, and require minimal effort and no knowl-

edge of the details of the underlying trusted hardware architecture. In addition, the abstraction

enables cloud providers to upgrade the trusted hardware (and/or the system built on top of it)

as new architectures are released, or to compare these architectures with minimal effort. We

discuss two implementations on two different Trusted Computing architectures.

15

1.5.2 Verifying an Application by Identifying just the Necessary Code

In order to avoid the TCC effort for loading and identifying unnecessary parts of a large

sensitive service code, an obvious solution is to implement the service as a set of modules and to

only load and identify the modules that are executed. However, a more significant challenge is

how to efficiently verify that the control flow is respected, i.e., the intended modules are executed

in the intended order.

The insight is to leverage mutually-authenticated sealed storage to chain the modules together

and to let the client infer from a single attestation that the intended necessary set of modules were

executed in the intended order. One attestation verification allows to establish trust in a trusted

module. Since all modules are securely chained together pair-wise to exchange data, the verified

module could only have exchanged data with another trusted module in the order defined by

the secure chain.

The solution [67] that we present in Chapter 3 works as follows. First we split the code base

into suitable code modules that can be composed together to implement the original code base

logic. This can be achieved for example with known techniques such as program slicing [68] or

program partitioning [69]. We then design a protocol that lets the Trusted Computing architec-

ture load, identify and run only modules of the code base that are actually required during the

execution. This allows us to reduce the active TCB and to save resources since the trusted com-

ponent does not have to load and identify unneeded modules into the secure environment. The

correct execution sequence of code modules is guaranteed by a robust and verifiable execution

chain. Specifically, each module secures the application data using a secret key that depends

on its own identity and the identity of the next module in the correct sequence. The protocol

eventually allows the client to verify the execution chain efficiently by simply verifying a chain

end-point to bootstrap trust in the whole chain. An interesting consequence of this construction

is that the client does not require any knowledge of the exact execution order of the code mod-

ules, because the end-point verification ensures the correctness of the whole chain, whatever it

may be for a specific execution.

1.5.3 Feeding Code with Large-Scale Data using Secure Virtual Memory Maps

Two insights are at the core of the contribution. In particular, (i) data I/O can be performed

with no additional interface calls by simply handling page faults; (ii) memory constraints can be

overcome by organizing the state into hierarchical components which can be mapped in memory

efficiently and independently. Next, we elaborate on these insights.

16

First, by providing to the service code the entire view of the state in memory (i.e., code can

access any data by simply walking the memory), we can reduce the data I/O problem to a vir-

tual memory management problem. This can be solved without interface calls to the untrusted

environment and without including OS code or peripherals in the TCB. Moreover, since we only

assume the existence of virtual memory, which is a common feature in today’s systems, the tech-

nique is applicable to different TCCs.

Second, mapping large-scale data in memory raises issues when the address space is small

(e.g., 32-bit) or a limited set of addresses is a available (e.g., if the application can only access

a small range of memory, say 1GB). When dealing with a terabyte of data, even the associated

hash tree organized in an array may end up consuming lots of addresses. These issues can be

solved by organizing the data, and the authentication metadata, into small components orga-

nized hierarchically and each one having its own authentication metadata. These components

can be efficiently mapped in memory when required, and the data can be authenticated effi-

ciently through the hierarchical data structure. Most importantly, components that are no longer

needed in memory can be unloaded in order to allow reusing memory and addresses.

These insights led to the design and implementation of LaStGT [41] which we describe in

Chapter 4. LaStGT can handle a Large State on a Generic Trusted component using a small

TCB. The small TCB is the result of offloading many operations that are not security sensitive to

untrusted code, thereby avoiding implementing and running them within the trusted execution

environment. We specifically refer to data I/O to/from mass storage supports or through the

network. As a result, LaStGT does not include disks and network cards within the trust bound-

aries. LaStGT simply lets untrusted code manage data I/O between the storage medium and the

main memory and organize data into memory maps. Then, trusted code leverages paged virtual

memory and memory maps to incrementally load the data that the service needs to process. The

data is validated through a scalable authentication data structure before the service uses it, so to

ensure that it does not process unintended data.

Interestingly, besides the trusted execution interface, LaStGT does not require any additional

system call or interface between the service application and the virtual memory management

code. Our solution is purely based on virtual memory and thus generic and portable.

We point out however that there are two important differences with respect to VC3 [39]. First,

the current design of LaStGT does not target MapReduce applications but rather self-contained

x86 applications, which are not supported in VC3. As an example, we will show how the SQLite

database engine application [188] performs on LaStGT for handling terabyte-scale databases. Sec-

17

ond, LaStGT currently does not focus on data/code confidentiality but only data integrity.

1.5.4 Improving Availability through Secure Replication

Passive replication is not robust because the execution at the primary is not replicated (only

the state is replicated). The obvious insight is to leverage Trusted Computing to secure the pri-

mary execution, and to build a passive replication system inside the trusted environment of the

replicas. This however comes with significant challenges such as reducing the TCB (e.g., storage

and network peripherals) while preventing rollback attacks, and ensuring efficient operations for

instance avoiding repeated attestation and verification steps.

These issues can be solved by leveraging trusted counters and sealed storage, which are com-

mon features provided by Trusted Computing architectures. Trusted counters prevent rollback

attacks, as they can only be updated in a monotonically increasing fashion. Sealed storage allows

a service to protect data so that it can be stored in untrusted storage. These mechanisms can be

combined to implement a secure protocol, since the protocol’s state can be securely stored while

messages are exchanged among the replicas through the network.

This insight led to the concept of Verified Passive Replication (V-PR) [37] that we describe in

Chapter 5. By leveraging a client’s ability of verifying a trusted execution, V-PR avoids service

re-executions and simply replicates the state of the primary replica to the backup replicas—i.e.,

any data modification performed by the primary replica is mirrored on the backup replicas (this

is also known as Passive Replication, PR). Hence, V-PR faithfully follows the PR scheme rather

than AR, but crucially enriches it with trusted executions to provide stronger security guarantees.

V-PR is particularly attractive for computationally intensive services, since it does not require

re-executions, and for the same reason it natively supports non-deterministic implementations.

V-PR is also designed on our generic trusted execution primitives (Section 2.3) thereby inheriting

all the benefits that such abstraction provides.

We conclude by emphasizing three interesting aspects of V-PR. First, it helps to provide low-

cost replication for outsourced services. Second, it can benefits from our previous techniques

(Section 1.5.2, Section 1.5.3) since it heavily leverages trusted executions, but it is not directly

concerned with code identification or large-scale data processing. Third, V-PR is relevant to the

Dependability community as it provides a novel hardware-based approach to secure and efficient

replication that radically departs from the usual practice (i.e., AR).

18

1.6 Summary of Contributions

This thesis makes the following contributions:

1. We present a small set of primitives that provide an abstraction for trusted code execu-

tions. These are our building blocks for the rest of the contributions. We detail two imple-

mentations on two different Trusted Computing architectures, thereby showing that the

abstraction can hide their details to developers.

2. We present a new approach for code identification. The technique allows loading and iden-

tifying within the trusted execution environment only the code that is necessary to compute

the final output of an execution. The technique provides fresher code integrity guarantees,

lower startup time, lower end-to-end latency and a reduced active TCB.

3. We describe a system that allows services to process a large state. The system leverages

our set of primitives, and so generic trusted hardware, to guarantee data integrity and

uses protocols purely based on virtual memory to supply data to the executing service.

We implement the system by extending XMHF-TrustVisor, which was not designed for

large-scale data processing. We evaluate the system with large-scale data applications and

also show that it can outperforms the original hypervisor’s implementation when services

process a small state.

4. We show how to leverage trusted hardware to provide efficient service availability in a hy-

brid failure model—i.e., assuming that the TCC and any software running in the trusted

execution environment can only fail by crashing, thereby excluding physical attacks to

the TCC, while the rest of the system outside the TCC can experience arbitrary failures.

Namely, we design an efficient and secure fully passive replicated system that avoids ac-

tive service replication and also supports non-deterministic executions.

5. We implement our protocols on XMHF-TrustVisor and perform an experimental evaluation

using real-world applications. The results show that our protocols are practical.

19

Thesis Statement

We compress our findings into the following statement.

Thesis Statement: ” Outsourced large-scale services can be secured by means of an additional small

trusted computing base, which can provide code and data integrity, and support efficient, scalable and

available executions. Also, a handful of primitives can abstract the details of diverse trusted hardware

architectures, thereby hiding their differences from application developers. ”

20

Chapter 2

Abstraction for Trustworthy Code
Execution

This chapter is organized as follows.

• We first provide a brief introduction to Trusted Computing, describing how it began and

evolved and what architectures it provides to us today (Section 2.1).

• We pick two different architectures, XMHF-TrustVisor and Intel SGX, and provide a brief

description of how they work, thereby highlighting their differences (Section 2.2). These

architectures serve as reference for the rest of the work.

• Given the variety of available architectures, we introduce our abstraction of a trusted com-

puting component (TCC, Section 2.3). This allows us to devise general protocols and opti-

mizations that work regardless of the specific details of each architecture. The abstraction is

provided in terms of a small set of primitives (Section 2.3.1), for which we sketch a suitable

implementation (Section 2.3.2) on both our reference architectures. We ultimately argue

that their implementation can be adapted to additional architectures and future ones as

well. These primitives are the base above which (i.e., by calling them), or below which (i.e.,

through a suitable implementation, as we highlight), we will describe the techniques that

are the subject of the next chapters.

2.1 A Brief Introduction to Trusted Computing

The Trusted Computing area began with the proposal of a trusted open platform [21, 22] a bit

more than a decade ago. The research work in the area is oriented at devising new architectures

21

for a hardware and software root of trust, improving its performance and increasing its security.

Such a root of trust is strongly bound to its hardware manufacturer—who makes the chip—

and software developers—who make support (like a library) for applications—rather than the

cloud provider who owns the hardware. Each architecture aims at providing a computational

environment for general applications whose security ultimately relies on the root of trust. In

particular, it provides strong isolation from the OS and other software on the platform, secret

keys (based on the identity of the code) for protecting data in untrusted storage, and code identity

attestation to enable remote software authentication. Next, we review previous work.

2.1.1 Binding Together Code and Data

From a systems perspective, the problem of checking a remote execution has been initially in-

vestigated in the context of mobile code. Originally it was informally stated as the Linking Prob-

lem (LP, between code and data) for mobile code executed on untrusted hosts [70, 71]. Namely,

how a program executing at an untrusted host can sign the output of its computation, making

sure that its signatures cannot be forged. It was already suggested that solving this problem

would be difficult without resorting to special hardware [23, 70, 72], though researchers were

also looking for solutions based on homomorphic encryption to avoid the need for this support.

Trusted hardware was thus recognized early on as an important building block to solve this

problem, however, additional software is useful (if not necessary) to support actual code execu-

tion, for instance, by managing and protecting memory and providing I/O. BIND [73] solves the

linking problem by exploiting the hardware-based isolated execution of a safety kernel, which

guarantees the integrity of a critical piece of code through an attestation that a remote party can

verify. Moreover, it highlights the importance of fresh integrity guarantees (i.e., attested mea-

surements) because the computed identity of the executed code and data represents the applica-

tion’s state only at load time—code modifications due to attacks at execution time do not change

the computed identity and can therefore do harm and go undetected. Unfortunately, BIND’s

security kernel was not implemented [74].

Flicker [74] bridges this gap providing the first implementation of a secure code execution

architecture that minimizes the Trusted Computing Base (TCB). It works for small pieces of self-

contained code and leverages the Late Launch technology [75, 76] to guarantee security. Late

Launch provides the CPU extensions necessary to set up a dynamic root of trust (DRT). This

refers to an isolated and measured execution environment that can be set up at any time by

invoking a special security instruction.

22

A drawback of both BIND and Flicker is that they repeatedly use security features provided

by a Trusted Platform Module (TPM). The consequence is a significant execution slowdown due

to the interaction with a low-power TPM over a low-bandwidth LPC bus. This is particularly

noticeable during code identification and attestation since hash computations and digital signa-

tures are performed by the TPM.

2.1.2 Boosting Performance Leveraging Fast CPU

Given the slowness of the TPM, it has been seen as a mandatory requirement to run the bulk

of code identifications and attestations on the fast CPU available on a platform. The solution is

to perform the trusted execution of a small security module, that is identified and attested by

the TPM; then such module enforces isolation and performs code identification and attestation

of other software. In this way, the software to be protected leverages the security module and

avoids direct interaction with the TPM. This paradigm has been implemented in systems like:

TrustVisor [53], which improves performance; SICE [54], which further reduces the TCB; and

Fides [55], which eases application development.

2.1.3 Reducing the Physical Trust Boundaries to a Single Chip

For several years, a security issue remained to be addressed, namely: how to confine the trust

assumptions to a single chip. In fact, in typical TPM-based trusted executions, programs use

the TPM as a hardware root-of-trust, the CPU for computing, and (unencrypted) main memory

for storing instructions and data at runtime. Each of these must be trusted, together with their

interconnecting buses and the respective manufacturers.

This fueled research in architectures for on-single-chip trusted executions. For example,

AEGIS [77] proposes a single-chip secure processor architecture that is robust against physi-

cal attacks. It uses Physically Unclonable Functions (PUFs) for reliable secret generation, and

therefore does not require non-volatile memory to store secrets. AEGIS relies on a security ker-

nel that handles memory management, multitasking and authentication mechanisms for secure

code executions. However, the security kernel increases the TCB.

OASIS [78] delivers guarantees similar to AEGIS though with a reduced TCB. OASIS is a

CPU instruction set extension that provides Trusted Computing services and limits the security

perimeter to the CPU package. However, it requires hardware support.

TrustLite [79] is another hardware security architecture specific for low-cost embedded de-

vices. TrustLite enables the set up of isolated execution environments for software modules and

23

mutually authenticated channels between them. However, besides requiring hardware support,

it allows a limited number of memory protection regions.

Recently, single-chip solutions have been developed and commercialized, by ARM with Trust-

Zone [80], and by Intel with the Software Guard Extensions (SGX) [189]. TrustZone is mostly

deployed and used on mobile devices, though the specification is about security extensions for

the ARM processors. TrustZone provides hardware support for isolating and running code in a

“normal world” and in a “secure world”. Although the technology does not provide trusted stor-

age by default, thereby severely limiting its capabilities (e.g., attestation), it can be enhanced with

a firmware-TPM [81] to deliver TPM-like services. In this thesis we will not consider TrustZone.

Intel SGX provides code isolation, identification and attestation on the fast CPU by means

of dedicated instructions. The CPU alone does not clearly have the resources to load, identify

and execute a large program and process its data on the chip, so it needs off-chip memory. The

CPU uses off-chip memory by encrypting and authenticating any code and data of the trusted

execution that is stored to, or retrieved from, main memory. This allows SGX to maintain the

trust boundaries within the CPU package, thereby considering off-chip memory as untrusted.

Finally, Sanctum [82] is a set of hardware extensions similar to SGX that has been proposed

for a RISC-V CPU. Sanctum improves over SGX in at least two ways. First, it defends against some

side-channel attacks, while SGX excludes side-channel attacks from the threat model. Second,

its open implementation is “easier to analyze than SGX’s opaque microcode” [82].

2.1.4 Today’s Trusted Computing

Today1, diverse hardware and architectures are available for trusted executions. We list those

that we believe are the most popular.

First, Intel SGX is available on commercial CPU based on the Skylake and Kaby Lake microar-

chitectures. Also, SGX-based contributions are pullulating [38, 39, 40, 41, 49, 50, 63, 83, 84, 85, 86,

87, 88, 89, 90, 91, 92, 93].

AMD recently released processors based on the Zen microarchitecture, which includes AMD

Secure Memory Encryption and Secure Encrypted Virtualization [199, 200]. The former allows

it to maintain data in main memory in an encrypted form, thereby preventing snooping attacks

on the bus and making the CPU package the security perimeter within which data is processed

in cleartext. The latter provides support for encrypted virtual machines, thereby protecting their

execution from physical attacks and also other software running on the platform. The objective
1at the time of writing this thesis, i.e., early 2017

24

is to secure virtual machines from a potentially malicious hypervisor, while the objective of SGX

is to secure application-level code; this makes us believe that trusted executions with a small

TCB on AMD technology would follow an approach similar to XMHF-TrustVisor. Also, unlike

Intel’s solution, AMD SME and SEV use an ARM-based secure processor integrated within the

chip [199]. Software on the CPU communicates with the secure processor firmware using the

SEV driver [200].

Meanwhile, TPMs have been upgraded from v1.2 to v2.0. The main difference with respect

to v1.2 is the upgrade of cryptographic algorithms, for instance replacing SHA-1 with SHA-256,

and the ability to implement new cryptographic algorithms. Also, it should be considered that

TPMs have additional capabilities with respect to on-processor instruction set extensions, namely

monotonic counters, useful for preventing rollback attacks, and NVRAM, access-controlled non-

volatile memory useful to store (for instance) credentials. In addition, it is worthwhile noticing

that Microsoft Windows 10 requires a TPM v2.0 for several services [190].

2.2 Background of Two Trusted Computing Architectures

In this section we provide some background on two classes of trusted executions by using two

representative architectures: first, the virtualization-based class, which we describe using XMHF-

TrustVisor [53, 94] (Section 2.2.1); second, the instruction-based class, which we outline using In-

tel SGX [189] (Section 2.2.2). The former class leverages hardware support for virtualization,

particularly for virtualizing physical memory, to enforce isolation between the trusted and the

untrusted execution environments and requires a hypervisor. The latter class instead leverages

dedicated CPU instructions to create a secure environment, allocate memory for its exclusive

use, add code and data, execute and attest the code. We believe that the virtualization-based

class can also include the recent AMD Secure Encrypted Virtualization (SEV) technology, while

the instruction-based class can also include the Sanctum hardware extensions [82].

The background serves to highlight architectural differences between XMHF-TrustVisor and

SGX, such as memory management and entry/exit from a trusted execution, but also to show that

they share common features at a higher level (such as isolated code execution and attestation). We

will later abstract (Section 2.3) these features and use them as the foundation for the contributions

of this thesis. In particular, our protocols in Chapter 3, (partially) in Chapter 4 and in Chapter 5

are described in terms of these primitives.

25

2.2.1 Background on XMHF-TrustVisor

XMHF-TrustVisor is a tiny hypervisor that provides efficient isolated execution and attes-

tation of self-contained code. More precisely, TrustVisor is built as an “(hyper-)application”

within the extensible modular hypervisor framework (XMHF). At boot time, XMHF uses the

GETSEC[SENTER] instruction (on Intel processors) or SKINIT instruction (on AMD processors) to

start the trusted hypervisor. These instructions are respectively part of Intel Trusted eXecution

Technology (TXT) and AMD Secure Virtual Machine (SVM) and allow to launch a measured

environment for a Virtual Machine Monitor (VMM)2. The measurement process involves com-

puting a cryptographic hash (i.e., the identity) of the code before it is executed, and storing the

identity securely to be later attested. The identity is secured by resetting a platform configura-

tion register (PCR) on the TPM to 0—such a PCR reset denotes that the Dynamic Root of Trust

mechanism was triggered to launch a measured environment at runtime—and extending it (i.e.,

PCR ← hash(0||codeIdentity)) with the computed code identity to build a hash chain. These

PCRs can be later attested by the TPM, so that a client can check that the expected code (i.e.,

XMHF-TrustVisor’s) was loaded and executed.

XMHF-TrustVisor uses extended/nested page tables (EPTs on Intel, or NPTs on AMD) to se-

cure itself and any isolated code execution it performs. Such hardware page tables provide a

further level of translation of the virtualized guest physical memory addresses into the actual

physical memory addresses. Crucially, they also allow XMHF-TrustVisor to set up permissions,

and thus memory access control mechanisms, for specific physical memory pages. In this way,

the hypervisor can prevent the untrusted guest OS and other applications to tamper with the

hypervisor’s code/memory and with an isolated code execution. It clearly follows that the hy-

pervisor must be trusted to behave properly.

XMHF-TrustVisor provides isolated code execution and attestation by leveraging nested page

tables and hyper-calls as follows. The trusted execution environment can be created by regis-

tering the trusted application code through a registration hyper-call. Code memory pages are

isolated from the untrusted OS using nested page tables to forbid access to the physical pages.

Any access from untrusted code to isolated pages thus traps into the hypervisor. Only when the

instruction pointer points to the registered code’s entry point—by making a function call—the

execution flow traps into the hypervisor that switches to secure mode to execute the registered

code. The hypervisor takes care of marshaling I/O parameters in and out the trusted execution
2Intel TXT first launches an authenticated code module (ACM) signed by Intel. The ACM then measures and

launches the VMM [75].

26

environment. The code executes until it terminates. Most importantly, it is never preempted

and all input data is provided upfront. Termination occurs when the code attempts to execute

code outside its isolated region. Hence, it traps into the hypervisor that switches to non-sensitive

mode to run (and makes the output available to) the untrusted application code. In the untrusted

environment, the (still) isolated code can then be unregistered through a hyper-call which makes

the hypervisor remove the protections of the isolated pages and zero any sensitive data left in

memory by the execution.

A client can establish trust in the remote hypervisor-based execution by verifying two attes-

tations: one that vouches for the correct execution of XMHF-TrustVisor and for its public attes-

tation key, and one that vouches for the correct execution of the registered code. The former

is produced by the TPM—the hardware root of trust—to cover the PCR that contains XMHF-

TrustVisor’s identity and the public attestation key (possibly extended to the identity stored in

the PCR). The latter is similarly produced by XMHF-TrustVisor, through its software micro-TPM

(µTPM), to cover the identity of the registered code. The client can eventually verify that: (i) the

expected registered code identity is signed by a private key that is linked to the expected identity

of the hypervisor; (ii) both the identity and the key of the hypervisor are signed/attested by a

TPM whose public attestation key is certified by a Certification Authority, which is known and

trusted by the client. As a result, based on (i) and (ii), the client can make a trust decision, i.e.,

whether or not to trust the remote execution of the registered code and to accept the results. We

refer the reader to [53, 94] for additional details.

2.2.2 Background on Intel SGX

Intel SGX is an instruction set extension available on the Intel Skylake and Kaby Lake mi-

croarchitectures [225, 226], which enable trusted code execution and verification. It uses an area

in main memory, encrypted by the CPU, where code and data can be placed for secure processing.

It does not require external chips for attestation. Hence, the CPU package delimits the physical

security boundary.

The instruction set is extended by just two instructions: ENCLU and ENCLS. The instructions

allow the execution of “user” and “system” functions respectively, so they work with different

privilege levels. ENCLU executes user-level (non-privileged, i.e., ring-3) SGX leaf functions (e.g.,

ENCLU[EENTER]), while ENCLS executes privileged (ring-0) SGX leaf functions (e.g., ENCLS[ECREATE]).

So a privileged OS driver can execute the privileged (ENCLS) functions but these do not allow the

driver to tamper with a trusted execution. For brevity, we will refer directly to a leaf function

27

without specifying the instruction and we will describe only the leaf functions that are most

important for our contributions.

These instructions enable: memory management, transitions into and out of the trusted ex-

ecution environment, dynamic memory allocations and attestations. The untrusted OS can al-

locate regions, called Enclaves, in protected main memory (called Enclave Page Cache, EPC) to

run user-level code; the OS manages these regions by paging (encrypted) memory when neces-

sary. Since enclaves are specifically designed to isolate and protect confidentiality and integrity

of user-level code, this allows limiting the TCB to the CPU package and the user-level code that

is protected, purposefully excluding the OS. The user-level application contains trusted code in-

side the enclave region and untrusted code outside such region. Execution transitions into and

out of the enclave occur by means of user-level leaf functions, without OS intervention. Dynamic

memory allocation requires cooperation between the OS and the enclave. In particular, system

functions enable the OS to propose memory layout changes, while the enclave can validate and

accept or deny such changes. Finally, an enclave can use SGX leaf functions to attest its identity

locally (this aspect will be clarified later).

We now describe in more detail how SGX can be used to execute code securely. A secured

area called Enclave can be created (ECREATE, EADD, EEXTEND leaf functions) to set up an execution

environment for trusted application code. At enclave-creation time, a range of logical addresses

(ELRANGE) can be specified for enclave use. Memory accesses within ELRANGE (must) trans-

late to CPU-protected main memory pages; while accesses outside ELRANGE translate to un-

trusted memory pages, except for code access because the enclave cannot execute code that is

outside its secure region [189, 2.5.2]. Hence, it is worth stressing that the enclave can access, but

cannot execute instructions within the untrusted part of its application’s memory. One or more

Thread Control Structures (TCSs) can be included in the enclave. Each TCS contains one entry

point, where the enclave can start executing, and one (or more) State Save Area frame (or SSA),

where the architectural state of the enclave thread is stored on interruption. When the enclave is

finalized (EEINIT), its identity—the MRENCLAVE register value—has been calculated and its code is

ready to be executed.

The enclave runs by executing EENTER on a TCS. This enables enclave mode and transfers

control to the entry point contained in the specified TCS. Entering (resp. interrupting) an enclave

requires (resp. consumes) one SSA, and marks the TCS as busy (resp. available)—the processor

has to know where to save the processor state securely if the enclave is interrupted; also, if the

enclave is interrupted, another separate SSA must be available to re-enter it, again in case the new

28

execution is interrupted. The enclave executes until it either terminates (EEXIT, synchronous exit)

or is interrupted by an Asynchronous Exit (AEX). On AEX, the processor state (e.g., registers) is

saved in a SSA frame inside the enclave, and replaced by a synthetic state to avoid leaking secrets

when untrusted code resumes. The enclave can then be re-entered or resumed (ERESUME) through

a TCS. If resumed, the processor state is restored from a SSA.

Adding and removing enclave memory pages at runtime requires cooperation between un-

trusted privileged code (i.e., an OS driver) and the enclave’s trusted application code. The OS

can add empty pages of protected main memory to the enclave (EAUG leaf function, which adds

and zeroes a page); SGX then associates these pages to the enclave and marks them as pending.

Since protected memory is encrypted, it cannot be accessed by untrusted code, and these pages

can only be associated with one enclave instance, it follows that these pages are in fact isolated

from any other code. For each page, the enclave can accept it (EACCEPT), or accept and copy into it

the content of an available enclave page (EACCEPTCOPY); in both cases, SGX clears the pending bit;

most importantly, the enclave can access the page only once it has accepted it. Similarly, the OS

can reclaim enclave pages by changing their type (EMODT). The change must be accepted by the

enclave first, then the OS can remove (EREMOVE) the pages.

SGX uses a remote attestation capability to prove to a client that an enclave has been executed

in a trusted environment. The remote attestation is based on asymmetric cryptography and it is

performed by a special Quoting Enclave using its private key, while the associated public key

is kept by the Intel Attestation Service (IAS) [194]. The Quoting Enclave is meant to attest the

identities of other enclaves running on the same platform. In particular, it does so by converting

the local attestation by an enclave into a remote attestation. The local attestation allows SGX

enclaves to prove to other enclaves that they (both the attested enclave and the verifier enclave)

run on the same platform. The local attestation is based on symmetric cryptography and the

secret key is secured by the CPU.

The two-step attestation procedure [194] thus works as follows. In the first step, the enclave

produces a local attestation (using the EREPORT leaf function) as output. Such local attestation in-

cludes the enclave’s identity and some small data (REPORTDATA, a 64 bytes long data that is possibly

the hash of the received input and the produced output data). Untrusted code then forwards this

local attestation to a special Quoting Enclave. In the second step, the Quoting Enclave produces

as output a remote attestation for the original enclave using an Enhanced Privacy Identifier [95]

(EPID) signature. This remote attestation is eventually forwarded to the remote party and veri-

fied by contacting the IAS.

29

TrustVisorOS
SGX Driver

TPM SGX

App App

untrusted
service

trusted
service

 Hardware

 TCC interface

TCC

isolated execution
environment

Figure 2.1: System design and trusted component interface.

We mention that EPID uses group signatures that allow the signing platform to stay anony-

mous. EPID [95] is an extension of the Direct Anonymous Attestation (DAA) [96]. DAA has

been implemented on TPMs, for which (in their early versions) privacy issues due to attesta-

tions were already known. EPID improves on DAA by enabling key revocation without reducing

anonymity. Privacy is however out of the scope of this thesis.

For further details on Intel SGX, we refer the reader to [189, 194].

2.3 An Abstraction of the Trusted Computing Component

As the Trusted Computing area is relatively new and fast changing (see Section 2.1), we be-

lieve that working on a specific technology has drawbacks. In particular, architecture-specific

contributions would not be able to retrofit existing hardware, nor be a reference for future ar-

chitectures. So these contributions end up depending on technology that may quickly become

obsolete. Also, optimizations that work on an architecture may not apply, or be easily imple-

mented, on others. Finally, these contributions would not provide insights on the fundamentals

of trusted executions.

For example, XMHF-TrustVisor [53, 94], Flicker [52], SGX [189] and SEV [200] are different

architectures that share a common feature, i.e., they all enable trustworthy and verifiable re-

mote executions. However, it is not clear for instance how an application that is secured using

SGX could instead leverage XMHF-TrustVisor, or a future version of the hypervisor based on

AMD’s secure virtualization technology, or the Sanctum extensions. As another example, the

ability to allocate/load memory dynamically at runtime allows to avoid loading a large block of

memory upfront; however, in XMHF-TrustVisor, the hypervisor can take care of dynamic allo-

30

TCC
interface

untrusted
environment

trusted
environment

client

verify execute

attest,
auth_put,
auth_get,

create_cnt,
incr_cnt,
get_cnt

Figure 2.2: Which code calls which primitive.

cations/loading because it is trusted, while in SGX the procedure requires cooperation with the

trusted application.

For these reasons we abstract the trusted computing component (TCC, Figure 2.1), both hard-

ware and software, with a narrow interface. Such an interface consists of a small set of primitives

(Section 2.3.1) that we derive directly from well-known concepts such as isolated execution, code

attestation and attestation verification. Such an interface therefore allows us to fully hide the

details of both trusted hardware and software support for trusted execution.

2.3.1 TCC interface

The primitives that constitute our TCC interface are depicted in Figure 2.2, also showing

which code calls each primitive—and from what execution environment. The interface logically

extends through different execution environments, namely: in the untrusted environment of the

cloud provider, untrusted code is allowed to (call a primitive to) trigger an isolated execution; in

the trusted environment of the cloud provider, code executing in isolation can make the TCC per-

form a code identity attestation, for example; finally, the remote client can perform an attestation

verification to make a trust decision.

A natural question is whether such an interface is complete, i.e., whether the code executed

either using XMHF-TrustVisor or Intel SGX would look the same, or additional primitives are

necessary. The answer is that the interface is almost complete. Two additional mechanisms, for

exiting the execution environment and accepting memory, are required and can be easily imple-

mented. At the user-level, both require a simple “return” from a function in XMHF-TrustVisor,

31

Chapter Primitives Parameters
3 4 5 input output
3 3 3 execute code, input data output data
3 3 3 attest input and output data identities, nonce attestation

3 3 3 verify∗
remote attestation, code identity,

0/1 (false or true)input and output data identities,
nonce, certified TCC public key

3 auth put recipient code identity, plain text data encrypted data
3 auth get caller code identity, encrypted data plain text data

3 create cnt
service identifier

0
3 get cnt counter value
3 incr cnt counter value +1

3† 3† 3 get cert (none) TCC’s certificate
∗ implemented at the client † not used explicitly, but assumed in the model

Table 2.1: Primitives used in this thesis. The columns indicate: the name of the primitive, the
input and output parameters, the chapter (and so the technique) where a specific primitive is
used.

though a special instruction in SGX. Hence, simple wrappers can solve the issue. The implemen-

tation of LaStGT in Chapter 4 will elaborate more on this. We do not include these implementa-

tion details in the interface to simplify the description.

Our trusted execution primitives are detailed in Table 2.1. The primitives do not include the

enhancements that are presented in later chapters of this thesis.

Beginning from the “Chapter” columns, we highlight that the primitives execute, attest and

verify are common throughout the techniques in this thesis; auth put and auth get are exclusively

used to enable our technique (Chapter 3) for executing large code bases; create cnt, get cnt and

incr cnt are specifically required for secure and available passively replicated executions (Chap-

ter 5). We remark that get cert is explicitly used in Chapter 5 while the other techniques implicitly

use it by assuming its functionality in their respective system models.

Next, we briefly describe each primitive and then present their implementations.

• execute makes the TCC execute a code over some input data and eventually returns a result

as output. Both the code and the input data are provided as input parameters. The TCC is

responsible to identify the input code by hashing its binary and to store the identity securely in

an internal register. This identity is then used for code attestation.

We point out that the code to be executed is self-contained. This is a natural requirement

since the execution environment is strongly isolated and the code cannot rely on untrusted code,

which is outside the trusted computing base (TCB), so neither identified by the TCC nor verified

32

by the client. For example, although it would be tempting to enable system calls to the untrusted

OS from the isolated environment, this would enlarge the attack surface with hundreds of system

calls that are difficult to secure, making the system susceptible to Iago attacks [97] (i.e., system

calls that return values crafted by a malicious kernel so to induce the running code to undertake

an arbitrary computation). Hence, any service application executed on the TCC needs to be self-

contained, i.e., with statically linked libraries and no OS dependencies.

• attest makes the TCC produce an attestation using the TCC’s private key over the identity

of the code (say c), which is loaded and identified through the execute primitive. The attestation

allows binding the identities (or integrity measurements) of the input and output data together

with the identity of the code c, which is running on the TCC. The input data includes a client-

provided nonce and it is received by the code through the executeprimitive, while the output data

is the result of the execution of c. The executing code c is responsible (and must be programmed)

to compute the integrity measurements (i.e., hashes) of the input and output data before calling

the attest primitive and supplying these measurements as parameters.

• verify is implemented at the client and accepts as input an attestation and the respective

nonce, a certificate that vouches for the TCC’s public attestation key, and the execution param-

eters such as the code identity and the measurements of the input and output data. In XMHF-

TrustVisor, the TCC’s public attestation key belongs to the hypervisor; the key and the hypervisor

identity are verified using a TPM attestation. The verification is successful and returns true if the

TCC’s public key is certified by a trusted Certification Authority and the provided parameters

are the intended ones. Otherwise, it returns false and the client can make the decision to reject

the received results.

So far we have describe the basic primitives for trusted executions, that simply allow to exe-

cute, attest and verify some code. We remark that our contribution in Chapter 4 only uses these

primitives, though an enhanced version of execute that we describe later. Next, we extend this

basic set with primitives for secure storage and trusted counters. The primitives for secure stor-

age, also enhanced later, enable our contribution in Chapter 3, while those for trusted counters

enable our contribution in Chapter 5.

• auth put and auth get provide functionality for identity-dependent secure storage using a

secret key stored inside the TCC. The former (auth put) allows to protect some input data on the

behalf of the currently running code. It requires the code running on the TCC to specify the

identity of a recipient code that is allowed to retrieve the data when the recipient code will later

execute on the TCC. Similarly, the latter (auth get) allows to validate some protected input data. It

33

requires the code running on the TCC to specify the identity of the previously executed code that

originally put the data in secure storage. Notice that both primitives work with the identities of

the sender and of the recipient code, so the data is bound to two identities. Also, the TCC directly

computes the sender code identity in auth put and the recipient code identity in auth get, so the

identity of the running code is always included by the TCC.

• create cnt, incr cnt and incr cnt provide functionality for trusted counter management. In

particular, the TCC creates, stores and modifies pairs of (counter identifier cid, value), where

the identifier depends on the running code’s identity (computed by the TCC) and defined as

cid← h(code identity||sid). Here the sid represents a service identifier. All the primitives thus

accept a sid as input and finally return the last or the incremented counter value.

• get cert returns the public key (or the certificate) of the TCC. Such key enables a remote

party to verify the attestations issued by the TCC. It should be signed such that the resulting

trust anchor is a trusted root certification authority—possibly the manufacturer of the trusted

hardware component.

2.3.2 Example Implementations of the Primitives

We now describe two implementations of the primitives using the XMHF-TrustVisor and Intel

SGX architectures, which we introduced in Section 2.2. We use pseudo-code jointly with hyper-

calls (on XMHF-TrustVisor) or CPU instructions (on SGX) to describe their implementation. Such

description style allows us to intentionally hide “pedantic” details, mainly related to the exact

implementation of the I/O parameters of the primitives.

2.3.2.1 Implementing execute

The execute primitive represents the front end for the entire trusted code execution. Algo-

rithm 1 sketches an implementation for XMHF-TrustVisor while Algorithm 2 for Intel SGX. The

I/O parameters are the same in both. This is expected since the primitive is supposed to set

up a measured isolated address space with regions for various memory sections (i.e., text, data,

stack), to let the code start executing at its entry point(s), to get its output (possibly containing

an attached attestation) and return it. Let us elaborate now on some implementation-specific

details.

On XMHF-TrustVisor (Algorithm 1) the main steps can be grouped into code registration and

unregistration (lines 1, 5), I/O data marshaling and unmarshaling (lines 2, 4) and execution call

(line 3). Only the first group involves interaction with the hypervisor for (un)registering (i.e.,

34

(un)isolating) code pages, respectively at the beginning and at the end of the implementation.

The second group organizes the data (input data, nonce, heap memory for dynamic allocations,

memory to contain output data, etc.) in a buffer that the hypervisor will take care of bringing

in and out the trusted execution environment, respectively before the code execution starts and

immediately after it terminates. The execution call (in the middle of the primitive) acts just like

a function call, though it traps3 into the hypervisor that switches control to the isolated code.

Input: description of code’s text, data, stack
sections, and input data (including nonce)

Output: output data
1: trigger registration hyper-call to isolate code

and I/O memory pages
2: encode I/O parameters for I/O marshaling
3: call isolated code
4: decode output data
5: trigger unregistration hyper-call to return

isolated memory pages
6: return output data

Algorithm 1: execute primitive on XMHF-
TrustVisor. The implementation uses the
original version of the hypervisor.

Input: description of code’s text, data, stack
sections, and input data (including nonce)

Output: output data
1: init SGX Enclave Control Structure (SECS)
2: initialize TCS(s)
3: trigger system call to ECREATE enclave
4: for each code page to be isolated do
5: trigger system call to EADD enclave page
6: trigger system call to EEXTEND the page

content to the enclave
7: end for
8: trigger system call to EENIT the enclave
9: run EENTER on the enclave’s TCS

10: forward local attestation to Quoting Enclave
for remote attestation

11: trigger system call to EREMOVE the enclave
12: return output data

Algorithm 2: execute primitive on Intel
SGX. The implementation is typical for ap-
plications that do not make use of asyn-
chronous exits (AEX’s).

On Intel SGX (Algorithm 2), CPU instructions are used, rather than a hypervisor, to secure and

execute a piece of code in a so called Enclave. As before, we can spot the code isolation and un-

isolation (lines 1-8, 11) and execution (line 9) phases though I/O is performed differently. Code

isolation is performed by creating an enclave (lines 1-3), adding memory pages to it (line 5, i.e.,

associating pages of protected memory to the enclave and copying non-enclave memory content

into them), extending them (line 6, i.e., in Trusted Computing terms, measuring/hashing them,

concatenate the result with the MRENCLAVE register value in the SGX Enclave Control Structure

(SECS), where the identity of the code is calculated, then hash the concatenation and store the

result into MRENCLAVE) and finally initializing the enclave (line 8). Un-isolation is performed by

removing enclave memory (line 11, i.e., un-associating its pages from its SECS). All these oper-

ations require privileged instructions and must therefore be executed at the OS level, possibly
3A trap is not considered as an interaction with the hypervisor.

35

implemented by an ad-hoc driver. In our pseudo-code, we included a system call for each op-

eration for clarity. However other implementations may opt to move some complexity onto the

driver in order, for instance, to set up an enclave using a single system call. The code execution

phase instead occurs through an application-level instruction (line 9), so it does not require an

OS driver.

Data I/O is managed by using the capability of an enclave to access the untrusted part of the

address space—thus not shown in the algorithm. In particular, non-enclave code can supply/re-

ceive data to/from the enclave by letting the enclave read/write data in untrusted memory. It is

up to the enclave code to validate/protect the data.

Finally, the attestation step (line 10) converts a “local” attestation into a “remote” attestation—

recall Section 2.2.2. We provide some details of the enclave execution for clarity and to better

explain the difference with respect to the attestprimitive in SGX. While the enclave is running, the

enclave calls the attest primitive to get a local attestation—which proves to the Quoting Enclave

that the locally attested enclave runs on the same platform. When the enclave terminates, it

outputs the local attestation. At line 10, untrusted code forwards the local attestation to the

Quoting Enclave for converting it. The Quoting Enclave outputs the remote attestation, which

will be verified by the client. The remote attestation then replaces the local attestation in the

output data of the execute primitive.

2.3.2.2 Implementing attest

Two possible implementations are sketched in Algorithm 3 and Algorithm 4 taking the same

input parameters. The attestation parameter (i.e., the second input parameter in the algorithms)

represents an unambiguous succinct description of the I/O data that must be bound to the code

identity. It can be defined as the hash of the input and the output data and must be computed

(or available, e.g., when the input is loaded and validated on demand) at runtime in the trusted

execution environment. Notice that the attestation completely describes the computation that is

performed in the trusted environment. In fact, the identity of the code is included in the attesta-

tion by the TCC, while the attestation parameter and the nonce are added by the attest primitive.

So at verification-time, if the verification is successful, this allows the client to know precisely

what has been computed remotely.

A nonce can be included in the attestation to deliver freshness guarantees. Such nonce can

be generated by the verifier (e.g., a client), forwarded to the remote untrusted platform and

transferred to the trusted code inside the isolated execution environment as input to the exe-

36

cute primitive. This allows the verifier to prevent attestation replay attacks. However, in the case

of replay-insensitive computations (e.g., the sum of all integers in a large dataset), using a default

public nonce enables caching computation results and attestations that can be verified by several

clients. So, clients can still get the same security guarantees but the untrusted provider can save

computing power, trusted hardware resources and provide rapid responses.

On XMHF-TrustVisor the implementation (Algorithm 3) is heavily based on the attestation

protocol in [53]. The hypervisor sets up, manages and exposes primitives for a software-based

micro-TPM (µTPM). The µTPM provides a set of Platform Configuration Registers (µPCR’s),

initially set to zero, where a µPCR is the equivalent of a TPM’s PCR. The µTPM modifies these

registers by extending them with an integrity measurement im received in input, for example,

µPCR[0] ← h(µPCR[0]||im), thereby forming a hash chain. When a piece of code is registered

(recall Section 2.2.1) in the hypervisor, theµTPM extends aµPCR, sayµPCR[0], with the identity

of the code. The service code running in the trusted environment can extend other registers (say

µPCR[1], line 1) with the attestation parameter and then call the attestation hyper-call (line 2)

supplying the nonce and the indexes of the µPCR’s to be attested for client verification. The at-

testation is finally returned (line 3) to the service code. The service code is ultimately responsible

to return the attestation as output data.

It must be noted that this attestation alone is not sufficient, because the µTPM only provides

a “software” root of trust, and XMHF-TrustVisor itself (and its public attestation key) must be

attested by the hardware TPM and later verified. The TPM attestation is critical for the robust-

ness of the trust chain. However, in order to prevent slowdowns due to the hardware TPM, it is

separate from the code execution and thus not shown here. The hypervisor attestation can be per-

formed by untrusted code specifying the relevant TPM’s PCR registers that store the hypervisor’s

code identity and its attestation key measurement, and then the attestation can be forwarded to

the client for verification.

On Intel SGX (Algorithm 4) the primitive is essentially a wrapper for the “local” attestation

procedure that is executed using the EREPORT instruction. First of all, the instruction does not

accept the nonce directly but just a 64-byte buffer (EREPORTDATA structure). So, the primitive hashes

together (line 1) the input nonce and the attestation parameter, and supplies the result to the

instruction (line 2). The local attestation has to be produced targeting (i.e., specifying the identity

of the enclave that verifies the local attestation) the Quoting Enclave which later converts it into

a remote attestation.

This means that the primitive only returns (line 3) a local attestation to the enclave. It is

37

Input: nonce, attestation parameter
Output: output attestation

1: trigger extend hyper-call to extend
µPCR[1] with the attestation parameter

2: trigger attestation hyper-call supplying the
nonce to get the attestation of
µPCR[0], µPCR[1]

3: return attestation

Algorithm 3: attest primitive on XMHF-
TrustVisor. The identity of the service code
is stored in µPCR[0].

Input: nonce, attestation parameter
Output: output (local) attestation

1: n← hash(nonce || attestation parameter)
2: run EREPORT supplying n and the Quoting

Enclave’s identity
3: return attestation (i.e., the report structure)

Algorithm 4: attest primitive on Intel SGX.
The identity of the service code is stored in
the MRENCLAV E register inside the en-
clave, and then included in the report struc-
ture.

expected that the enclave later outputs such a local attestation on termination (i.e., in the execute

primitive, Algorithm 2) and that untrusted code then forwards it to the Quoting Enclave so to

be verified and converted—this is implemented in the execute primitive in Algorithm 2. The

output of the Quoting Enclave (i.e., the remote attestation) can then be forwarded to the client

for verification.

2.3.2.3 Implementing verify

The primitive is meant to be performed by a trusted verifier, which is represented by the

client in our model. Consequently, there is no trusted hardware (TPM, SGX, etc.) involved in the

verification procedure. We sketch two examples implementations.

On XMHF-TrustVisor as detailed in [53], the primitive (Algorithm 5) performs one verifica-

tion (line 1) for the TPM attestation—of the hypervisor code—and another for the hypervisor

attestation—of the executed code. We include the former in the primitive for clarity, although it

can be performed before the execution to verify the hypervisor’s identity and its public key. The

latter can be optimized by attesting and verifying a symmetric secret key in order to establish a

secure channel between the client and the trusted code execution for data authentication.

On Intel SGX the primitive (Algorithm 6) checks the fields of the attestation from the Quoting

Enclave (line 1) and, if successful, also contacts the Intel Attestation Service (IAS) [194] to verify

the digital signature performed with the Enhanced Privacy ID (EPID) scheme (line 4). If both

verifications succeed, then the remote enclave execution and its I/O data are the intended ones

(line 9) and the client can make a positive trust decision. Otherwise (line 2 or 7) the attestation is

not correct and the client should consider any received data as untrustworthy and reject it.

For brevity and clarity, we intentionally skip two steps: (i) the private EPID key provision-

ing protocol, to provide a private attestation key, and (ii) the registration at the Intel Attestation

38

Input: nonce, output hash, input hash, code
identity, hypervisor identity, hypervisor
public attestation key, TPM attestation,
certified TPM public attestation key,
hypervisor attestation

Output: true or false
1: if TPM attestation can be validated using

certified TPM public attestation key ∧
attested hypervisor identity is expected ∧
attested hypervisor public attestation key is
expected ∧ hypervisor attestation can be
validated using hypervisor public
attestation key ∧ nonce, code identity,
hash(input hash||output hash) are expected
then

2: return true
3: else
4: return false
5: end if

Algorithm 5: verify primitive for XMHF-
TrustVisor. The implementation uses the
original version of the hypervisor.

Input: nonce, output hash, input hash, code
identity, remote attestation (from Quoting
Enclave), public report key

Output: true or false
1: if code identity (i.e., MRENCLAVE register

value inside the remote attestation) not
expected ∨ hash(nonce||input hash||output
hash) (i.e., REPORTDATA structure inside the
remote attestation) not expected then

2: return false
3: end if
4: contact IAS [220] through APIs [221]
5: validate attestation report from IAS with

public report key
6: if IAS returns attestation not valid then
7: return false
8: end if
9: return true

Algorithm 6: verify primitive for Intel SGX.
The implementation is typical for SGX ap-
plications.

Note. Inside an enclave the verification is slightly
different as follows: the signed Attestation Verification
Report (returned by the IAS) is forwarded to the en-
clave, who performs the same checks as above and ad-
ditionally verifies the signature, so it requires one ad-
ditional input i.e., the public Report Key. See the im-
plementation of the get cert primitive on SGX for ad-
ditional details.

Service (IAS) to verify the attestations. (i) is necessary to provide the Quoting Enclave with a

private key which is used to convert local attestations into remote attestations by signing them.

(ii) is necessary since it is required by Intel and “only the IAS can verify the signature” [219]. We

believe these one-time procedures are mainly related with how Intel intends SGX to be used and

with Intel’s business relationships with its customers. As such topics are out of the scope of this

thesis, we refer the reader to [194, 219] for more details.

2.3.2.4 Implementing auth put

The primitive is called by the code running in the isolated environment to protect input data

that can be later authenticated by a recipient code (i.e., code that will be later run on the TCC us-

ing the execute primitive and that will receive the protected data), whose identity is also provided

as input to the primitive. This primitive will be useful, and is also enhanced, in our contribution

in Chapter 3. Two implementations are sketched in Algorithm 7 and Algorithm 8.

39

On XMHF-TrustVisor , the primitive (Algorithm 7) is implemented by means of the sealing op-

eration performed by the software-TPM inside the hypervisor. The running code seals (line 1)

the data, and the operation ensures that only the recipient code is able to unseal the data when

it runs. The software-TPM creates an encrypted data blob containing the data and information

about the sender and the recipient code identities (resp. digestAtCreation and digestAtRelease

fields inside the blob). The blob is then returned to the running code (line 2) so to be later trans-

ferred to the intended recipient code. The hypervisor-managed software-TPM will later enforce

access control to plain data at unseal-time.

Input: (recipient) code identity, data
Output: secured data

1: trigger hyper-call for sealing data specifying
the recipient identitya

2: return secured data

Algorithm 7: auth put primitive for XMHF-
TrustVisor. The implementation uses the
original version of the hypervisor.

aby suitably setting a digestAtRelease value that allows
unsealing the data only when µPCR[0] (i.e., the identity of
the running code) will match the recipient code identity.

Input: (recipient) code identity, data
Output: secured data

(following [98])
1: if there already exists a sealed

public/private Diffie-Hellman key pair
then

2: retrieve it from shared memory and
unseal it using EGETKEY

3: else
4: generate a public/private Diffie-Hellman

key pair
5: seal it using EGETKEY and save it in

shared memory
6: end if
7: run EREPORT to produce a local attestation

of the public key for the recipient code
identity

8: send attestation through shared memory
9: retrieve the recipient’s local attestation of its

key, and its key, from shared memory
10: run EGETKEY to retrieve the report key
11: verify that the local attestation belongs to

the intended recipient and that it attests the
received key

12: compute the secret key shared with the
recipient code

13: use key to authenticate/encrypt data
14: return secured data

Algorithm 8: auth put primitive for In-
tel SGX. The implementation follows the
guideline in [98].

On Intel SGX the primitive (Algorithm 8) is more complex since the EGETKEY instruction only

provides a secret sealing key to the running enclave, so it does not allow securing data to be

transmitted to another enclave. We use the technique in [98] to run a protocol for exchanging

public Diffie-Helmann keys between enclaves, so that they can create a secure channel between

40

them. If a key pair was previously sealed by the enclave, that pair is retrieved and used (lines 1-

2). Otherwise, the protocol lets an enclave generate a public/private key pair and put it in sealed

storage (lines 3-5). The enclave then generates a local attestation of its public key for the recipient

code (line 7), so that they can establish a secure channel. Message passing between enclaves and

persistent storage of sealed data are performed by making the enclave write/read protected data

in untrusted shared memory (lines 8-9), where it is then managed (or transferred elsewhere) by

untrusted code. After retrieving the local attestation of the recipient code and its public key, the

enclave verifies the local attestation (lines 10-11) to establish trust in the recipient code. If suc-

cessful, the enclave possesses the key of the intended recipient code and can therefore compute

a shared secret for protecting the data on the channel (lines 12-13).

A note on the initialization of a shared key. It may appear that there exists an initialization issue in

the first call of auth put and auth get in SGX. auth put needs to access a shared key for protecting

the data, and the protected data is then returned as output and sent on the channel. So the code

in auth get should first help generating such key and then use it on the received data. This means

that the first call to auth get cannot have the protected data immediately available as input. This

is not an issue but rather an implementation detail that can be addressed in multiple ways. We

mention two of them. (1) The data parameter could be a pointer to the data. In this case, auth get

only receives a pointer as input, and then accesses the data once the key is available. (2) The data

parameter could include a type field and a payload field. The init type could be used in the first

call without payload, to allow auth get to retrieve the shared key, while the protected type with

the protected input data in the payload field could be used in subsequent calls.

2.3.2.5 Implementing auth get

The primitive mirrors the behavior, and so the implementation, of the auth put primitive.

Even this primitives will be used and enhanced in our contribution in Chapter 3. For brevity, we

only highlight the noteworthy parts of the implementations.

On XMHF-TrustVisor the primitive (Algorithm 9) performs a second level of access control—

the first is performed by the software TPM inside the hypervisor to check if data unsealing (line 1)

is authorized (i.e., if the running code’s identity matches the identity of the intended recipient

code). The primitive simply checks that the unsealed data was indeed sent by the intended code

(lines 2-3). Only in this case it returns the unsealed data to the calling code (lines 4-5), otherwise

the unsealed data is discarded as it is considered untrustworthy (line 8).

On Intel SGX the primitive (Algorithm 10) instead exactly mirrors the auth put primitive, so we

41

Input: (sender) code identity, secured data
Output: validated data or ⊥

1: trigger hyper-call for unsealing data a

2: if data has been unsealed then
3: use sender code identity to compute

expected digestAtCreation
4: if digestAtCreation matches

expected digestAtCreation then
5: return data
6: end if
7: end if
8: return ⊥

Algorithm 9: auth get primitive for XMHF-
TrustVisor. The implementation uses the
original version of the hypervisor.

aThe hyper-call decrypts the data blob and checks that
the currently executing code is authorized to access it—in
our case by using µPCR[0] to check the digestAtRelease
in the data. If (and only if) so, it returns the data and a
digestAtCreation value that the running code can use to
check the identity of the code that originally sealed the data.

Input: (sender) code identity, secured data
Output: validated data or ⊥

(following [98])
1: if there already exists a sealed

public/private Diffie-Hellman key pair
then

2: retrieve it from shared memory and
unseal it using EGETKEY

3: else
4: generate a public/private Diffie-Hellman

key pair
5: seal it using EGETKEY and save it in

shared memory
6: end if
7: run EREPORT to produce local attestation of

the public key for the sender code identity
8: send attestation through shared memory
9: retrieve the sender’s local attestation of its

key, and its key, from shared memory
10: run EGETKEY to retrieve the report key
11: verify that the local attestation belongs to

the intended sender and that it attests the
received key

12: compute the secret key shared with the
sender code

13: use key to validate/decrypt data
14: if data is valid then
15: return data
16: else
17: return ⊥
18: end if

Algorithm 10: auth get primitive for In-
tel SGX. The implementation follows the
guideline in [98].

avoid further details. We refer to the auth put primitive (Section 2.3.2.4) for a discussion on the

initialization of the secret shared key used inside the primitive.

2.3.2.6 Implementing create cnt

The primitive allows to create a trusted monotonic counter at runtime. The primitive is used

in our contribution in Chapter 5. Next, we sketch two implementations. Another implementation

(for this and the other primitives for trusted counters) can be put in place by adapting a more

recent technique from Ariadne [99].

On XMHF-TrustVisor the primitive (Algorithm 11) is just a wrapper of a new hyper-call that

we implemented for creating a trusted counter (line 1) within the hypervisor. For completeness,

we provide some details of the hyper-call internals. The hyper-call implementation stores and

42

modifies pairs of (counterID, value), where the counter identifier depends on the running code’s

identity (i.e., the value stored in the platform configuration register µPCR[0] inside the software

micro-TPM of the hypervisor). More precisely, counterID ← hash(µPCR[0]||uID), where uID

is a user-defined identifier. So only well-identified code can have read/increment access to the

counter.

On Intel SGX it does not appear (from the specifications [189]) that trusted counters are avail-

able on the CPU. In the software development kit (SDK) [191] however, Intel provides support

through a Platform Specific Enclave (PSE) for such counters, which are apparently stored on the

Intel Management Engine.

The primitive (Algorithm 12) leverages such support to create a counter (line 1). We specify

a restrictive owner policy that allows enclaves with the same measurement (i.e., with the same

identity, and so built with the same code) to access the counter. Also, we seal (lines 5-6) the user-

defined counter ID with the counter ID received from the counter creation call—a sgx mc uuid t

structure with a 3-bytes ID and a 13-bytes nonce4—and we save the sealed data (line 7). The

reason for this procedure is that (i) the enclave needs the counter ID to access the counter, so

this has to be saved, possibly in untrusted memory—this is secure since access to the counter

is controlled by also checking the enclave’s identity—and (ii) the application in the enclave can

request more counters through the user-defined counter ID. So with this procedure, we ensure

such user-defined ID is paired with the counter ID, which is not returned as output to the running

code.

2.3.2.7 Implementing get cnt

The primitive allows to retrieve the current value of a trusted counter at runtime. This is used

in our contribution in Chapter 5. Two implementations are sketched next.

On XMHF-TrustVisor , the primitive (Algorithm 13) is a wrapper of a new hyper-call (line 1) that

we implemented for retrieving a trusted counter value within the hypervisor. In the following

we detail the internals of the hyper-call. As with the hyper-call for creating a counter, this im-

plementation computes the counter identifier using the running code’s identity and the received

user-defined counter identifier (see Section 2.3.2.6). So only well-identified code can retrieve the

counter’s value. The code in the hypervisor checks whether such counter has been previously

created by looking up the pair (counterID, value). If so, it returns the value, or an error (i.e., a

default value) otherwise. After the hypervisor returns a value, the primitive behaves similarly
4Definition of nonce from SDK: “An arbitrary number used only once to sign a cryptographic communication.”

43

Input: user-defined counter ID
Output: 0 or error

1: trigger hyper-call for creating the counter
supplying the user-defined counter ID

2: if error creating counter then
3: return error
4: end if
5: return result (i.e., initial value 0)

Algorithm 11: create cnt primitive for
XMHF-TrustVisor.

Input: user-defined counter ID
Output: 0 or error

1: call sgx create monotonic counter exa

with owner policy 0x2b

2: if error creating counter then
3: return error
4: end if
5: run EGETKEY to get seal key
6: seal user-defined counter ID, the monotonic

counter ID (from previous call), the counter
value

7: save sealed blob in untrusted memory
8: return value (i.e., initial value 0)

Algorithm 12: create cnt primitive for Intel
SGX.

asgx create monotonic counter only specifies a
default policy.

bSo that enclave with same measurement can access the
monotonic counter [191].

when it continues at line 2.

On Intel SGX the get cnt primitive (Algorithm 14) leverages the SDK support, following the

same steps of the counter creation primitive (Section 2.3.2.6). First, if the counter ID is not avail-

able, it attempts to read a sealed blob from untrusted memory, trying to unseal it and to match

the user-defined ID with the received one to retrieve the counter ID (lines 1-7). It then reads the

counter (line 9) using the counter ID (in the sgx mc uuid t structure). If the call fails or the value

does not match the sealed one, an error is reported (lines 10-11). Otherwise, the value is returned

to the running code (line 13).

2.3.2.8 Implementing incr cnt

The primitive allows to increment a trusted counter at runtime. Like the previous primitives

for trusted counters, this is also used in our contribution in Chapter 5. We describe two imple-

mentations.

On XMHF-TrustVisor , the primitive (Algorithm 15) wraps a new hyper-call (line 1) that we

implemented for incrementing a trusted counter within the hypervisor. The internals of the

hyper-call are implemented as follows. As with the create cnt hyper-call (Section 2.3.2.6), the

running code’s identity and the received user-defined counter identifier are used to compute

the counter identifier. So only well-identified code can retrieve the counter’s value. The code

in the hypervisor checks whether such counter has been previously created by looking up the

44

Input: user-defined counter ID
Output: counter value or error

1: trigger hyper-call for getting the counter’s
value supplying the user-defined counter
ID

2: if error getting counter’s value then
3: return error
4: end if
5: return counter’s value

Algorithm 13: get cnt primitive for XMHF-
TrustVisor.

Input: user-defined counter ID
Output: counter value or error

1: if the triple (user-defined counter ID,
counter ID, value) is unavailable then

2: read unsealed blob from untrusted
memory

3: run EGETKEY to get seal key
4: try unsealing the blob, or report error
5: end if
6: if user-defined counter ID mismatch then
7: return error
8: end if
9: call sgx read monotonic counter

supplying counter ID
10: if error reading or value mismatch then
11: return error
12: end if
13: return counter’s value

Algorithm 14: get cnt primitive for Intel
SGX.

pair (counterID, value). If so, it increments the value, updates the pair and returns the value, or

an error (i.e., a default value) otherwise. Similarly, after the hypervisor provides the value, the

primitive either returns the incremented value or an error.

On Intel SGX the incr cnt primitive (Algorithm 16) leverages the SDK support, following the

same steps of the counter creation primitive (Section 2.3.2.6). First, if the counter ID is not avail-

able, it attempts to read a sealed blob from untrusted memory, trying to unseal it and to match

the user-defined ID with the received one to retrieve the counter ID (lines 1-7). It then incre-

ments the counter (line 9) using the counter ID (in the sgx mc uuid t structure). If the call does

not succeed or the value does not match the sealed one (incremented by one), then it reports an

error (lines 10-11). Otherwise it seals the incremented value in a new triple, saves it in untrusted

memory (lines 13-15) and returns the incremented value (line 16).

[99] identifies a problem in these steps: the impossibility of reading or incrementing the

counter due to a power-loss after the counter has been incremented and before the sealed blob is

saved. This is not an issue here since the primitive is only built for and used by our V-PR system,

for verifiable passive replication, presented in Chapter 5. In V-PR, the power-loss (i.e., crash)

of a replica is already accounted for in the model and simply results in the inability to produce

messages that can be validated. Such misbehavior is simply ignored by the available replicas.

45

Input: user-defined counter ID
Output: counter value or error

1: trigger hyper-call for incrementing the
counter’s value supplying the user-defined
counter ID

2: if error incrementing counter’s value then
3: return error
4: end if
5: return incremented counter’s value

Algorithm 15: incr cntprimitive for XMHF-
TrustVisor.

Input: user-defined counter ID
Output: counter value or error

1: if the triple (user-defined counter ID,
counter ID, value) is unavailable then

2: read unsealed blob from untrusted
memory

3: run EGETKEY to get seal key
4: try unsealing the blob, or report error
5: end if
6: if user-defined counter ID mismatch then
7: return error
8: end if
9: call sgx increment monotonic counter

supplying counter ID
10: if error incrementing or value 6= previous

value +1 then
11: return error
12: end if
13: run EGETKEY to get seal key
14: seal user-defined counter ID, the monotonic

counter ID (from previous call), the
incremented counter value

15: save sealed blob in untrusted memory
16: return incremented counter’s value

Algorithm 16: incr cnt primitive for Intel
SGX.

2.3.2.9 Implementing get cert

The primitive returns a key that allows to verify a remote attestation.

On XMHF-TrustVisor the primitive (Algorithm 17) is meant to return the public attestation key

of the hypervisor (line 1), whose private counterpart is used by the hypervisor to issue remote

attestations. We recall that, in order to ensure the robustness of the trust chain, the verifying

party additionally needs the certificate of (or a certified) public Attestation Identity Key (AIK)

of the hardware TPM, which allows to verify the TPM attestation of XMHF-TrustVisor’s code

identity and public attestation key.

On Intel SGX implementing the primitive is more complex due to the nonexistence of such a

certificate or key. The verification of a remote attestation is in fact supposed to be performed

through a remote attestation verification service called Intel Attestation Service (IAS [219, 221]).

However, by analyzing the details, the IAS signs attestation reports with a private Report Key,

whose associated public key can be downloaded by the ISV (Independent Software Vendor) who

previously registered with Intel. The public Report Key is therefore our target key. So we let the

primitive return it (Algorithm 18, line 1). We stress that the key does not allow to verify directly

46

Input: ∅
Output: public attestation key

1: trigger hyper-call for retrieving the
hypervisor’s public attestation key

2: return key

Algorithm 17: get cert primitive for
XMHF-TrustVisor.

Input: ∅
Output: public report key

1: return public report key

Algorithm 18: get cert primitive for Intel
SGX.

untrusted service code
execute

trusted service code
auth_get
auth_put
attest
create_cnt
get_cnt
incr_cnt

service client code
verify

 trusted environment untrusted environment

trusted service code
auth_get, auth_put, attest,
create_cnt, get_cnt, incr_cnt

untrusted
service code
execute

Figure 2.3: Primitives as they are used in the implementations of a service and service client.

the attestation, but it allows to verify the attestation report signed by Intel (i.e., a trusted entity),

which states whether the verification was successful or not.

2.3.3 Primitives in Practice

How the primitives are used. We explain now how the primitive are used while programming

a service for a trusted execution (i.e., where they are in the service code), and how they are

used at runtime (i.e., the environment they are called from during the execution). Figure 2.3

shows a simplified diagram of the service and service client executables that only includes the

primitives. The untrusted service code contains the trusted service code, that is transferred and

executed inside the trusted environment, while the service client is implemented separately. As

we mentioned, only the verify primitive is implemented inside the service client code. Also, only

the execute primitive is called from the untrusted environment. The auth get, auth put, attest,

create cnt, get cnt and incr cnt primitives require the identity of the running code computed by

the TCC, so they are called inside the trusted execution environment while the trusted service

code is running.

We deliberately avoid to include the get certprimitive. Although relevant, its implementation

and execution could be separate from the service code and the service client code. In fact, the

same key pair for attestation and verification can be used in different trusted executions.

47

How our contributions leverage the primitives. In Chapter 3, we replace a large monolithic

code execution (using the execute primitive) with multiple executions of smaller code modules.

Any two code modules, that are adjacent with respect to the intended execution flow, exchange

data securely through the auth put and auth get primitives respectively, thereby forming a secure

execution chain.

In Chapter 4, we design the execute primitive so that it can seamlessly handle large-scale data

in main memory exploiting paged virtual memory. In particular, page fault interruptions are

handled in the implementation of the primitive, and so “below” the TCC interface.

In Chapter 5, we use the primitives to make Passive Replication secure. The execute primitive

is used to execute the service application at the primary replica and the state update service at

the backup replicas. Both services are part of the same application (i.e., they are in the same

binary), so the code executed at each replica has the same identity. The get cert primitive is used

to retrieve each replica’s TCC certificate. The replicas use these certificates to verify each other’s

attestations. Then the create cnt, get cnt and incr cnt primitives are used by the replicas to order

the state updates and to agree on what replica is the primary.

48

Chapter 3

The Multi-Identity Approach for
Identification of (only) Actively
Executed Code

As we increase the size of the code and the data that we supply as input to the execute prim-

itive (Section 2.3.2.1), security and efficiency issues arise. We will deal with large-scale data in

Chapter 4. Now we focus on the issues raised by a large code base, which derive from how the

identification of the code is performed in the primitive.

Code identification [22] is a key mechanism for guaranteeing execution integrity in Trusted

Computing (Section 1.3.4). It consists of attesting the identity of some code c within the Trusted

Computing Component (TCC, Section 2.3) of an untrusted cloud provider’s platform and then

verifying both the attestation and the code identity on the client side. More precisely, the TCC

computes c’s identity by hashing it, and attests the identity by digitally signing it. The attestation

is then sent to the client who verifies that the intended code was executed. By extending the same

procedure to the input and output data, the client is also able to verify that the received output

was obtained by running c with the intended input.

The major challenge with using code identification for securing increasingly complex soft-

ware is that the overhead of computing c’s identity before execution grows linearly with c’s size.

In particular, the overhead scales with the size of the code that may be executed, not the size of

the code modules that are actually executed. Consequently, this becomes a concern when the

actively executed code is only a fraction of the whole code base.

Previous work [38] circumvented this issue using an additional loader component but this

49

has some drawbacks. The component is loaded and identified first, and then it later loads and

validates on-demand other code to be executed. However, this enlarges the TCB due to the ad-

ditional component. Also, the integrity of the component is only guaranteed at load time, when

its identity is computed and stored by the TCC. The same argument holds similarly for the code

that is loaded and validated later. Hence, although such one-time code identification has low

overhead, it negatively impacts the freshness of the execution integrity guarantee.

In this chapter we present a protocol for code identification and execution that breaks the

coupling between code size and cost of identification, and solves the trade-off between security

and performance [67]. The protocol has two key desirable features. First, it allows the trusted

architecture to load, identify and run only modules of the code base that are actually executed.

Each module is identified as many times as it appears in an execution sequence. This provides

execution flexibility to the cloud provider, saves TCC resources and strengthens the execution

integrity property. Second, the correct execution sequence of code modules is ensured by a ro-

bust execution chain. Each module secures the application data using a secret key that depends

on its own identity and the identity of the next module in the execution sequence. These two

mechanisms combined enable a secure and efficient identification of the actively executed code.

The protocol further enables efficient verification on the client side. In fact, by only verifying

the execution of a chain end-point, the client can establish trust in the entire execution chain.

Noticeably and desirably, the client does not need to be aware a priori of the exact execution

order. Also, unused code modules have to be neither loaded nor verified.

In addition, our protocol is agnostic to the details of the TCC, which makes our contribution

generally applicable. The protocol is in fact based on a subset of the TCC primitives that we

introduced in Section 2.3.1. More precisely, five primitives (including one on the client for execu-

tion verification) represent the bridge between the protocol and the Trusted Computing services

provided by the TCC, such as isolated code execution, attestation and secure storage.

Contributions

• We present an analysis of today’s trend in trusted executions, how it is going to impact on

their performance and what the current solutions are.

• We design an efficient protocol for loading and identifying (and then executing) only the

code that is necessary to serve a client request. The protocol is built using a set of primitives

that abstract a generic trusted component. The cost of code identification scales with the

size of the modules that are executed, rather than with the size of the service code base.

50

Protect security
sensitive code from
TOCTOU attacks

Use trusted
hardware to

solve it

Combine HW/SW
mechanisms for

performance

Need to extend
TCB, so bloat
environment

with more code

Make a one-time
verification and

run forever

entry point

Code prone to
TOCTOU attacks

Use trusted
hardware

Combine HW/SW
for performance

Bloat TCB for
richer code

Verify-once-
execute-forever

timeline	
?

timeline	

Static Root of
Trust: a system
is able to boot
in a verifiable
trusted state.

[2004]

TOCTOU
Problem: static
measurements
do not reflect
later changes.

[2005-]

Dynamic Root
of Trust: build
a new robust
and verifiable
chain of trust
on demand.

[2008]

Fast Trusted
Computing:

combine slow
trusted chips
with software
on main CPU.

[2010-]

Large Trusted
Executions:
implement

large services
in the trusted
environment.

[2011-]

Figure 3.1: Trends in Trusted Computing research work show an initial focus on reducing the
Trusted Computing Base (TCB), while recent advances in technology enable to secure entire un-
modified services, thus enlarging the TCB.

• We analyze the security of our constructions. Also, we introduce a novel zero-round key

sharing technique for code executions based on a trusted component. The technique al-

lows two pieces of code, each one executed in isolation, to share a unique secret key using

their identities. As the two executions do not need to exchange any message, this improves

performance over current solutions. In addition, small changes are required to support the

technique on current trusted components.

• We implement the protocol on a hypervisor-based TCC, namely XMHF-TrustVisor [53, 94].

We apply it to the widely-deployed SQLite DB engine [188], model the implementation for

automatic verification using Scyther [100, 101], and show its performance benefits.

3.1 Towards Trusted Executions of Actively Executed Code

Current trends (Figure 3.1) in Trusted Computing evidence that the code used in trusted

execution is growing. We show that this raises either efficiency or security concerns in Trusted

Computing architectures, and that this is a result of how code identification1 is done today [22].

This helps us define the problem statement, goals, and outline our solution.

3.1.1 Previous Work

Early work used trusted hardware to verify the integrity of a system’s initial state [102, 103].

The mechanism involves identifying—taking integrity measurements, i.e., hashing—the soft-

ware components (e.g., BIOS, boot loader, OS, applications) that bring the system into an op-

erative state. The identities are stored on trusted hardware (e.g., a TPM) and conveyed to a client
1How an identity is assigned to the code to be executed. This identity can be later attested and verified remotely.

51

 10

 30

 50

 70

 0 500 1000 1500 2000
L
a
t
e
n
c
y

(
m
s
)

Code Size (KB)

code protection overhead (avg)

Figure 3.2: Security-sensitive code registration latency in XMHF-TrustVisor. It shows a linear
dependence between code size and protection overhead.

through an attestation. The client bootstraps trust in the system’s initial state by verifying the

validity of the attestation and by matching the identities with the expected ones.

Preserving trust during the execution is hard. Operating systems are constantly subject to

attacks; vulnerabilities are discovered on a daily basis [104]; and tools are available to exploit

them [105]. Hence, the guarantee that a system is trusted at a certain point in time may not hold

later—this is also known as time-of-check-time-of-use (TOCTOU) gap [73, 106].

This gap was reduced through the notion of late launch [76] to create a Measured Launch

Environment on demand. Flicker [52] shows that the technology can be used to run a security-

sensitive piece of code in isolation. The result is a dramatic reduction in TCB size and, conse-

quently, of the attack surface. Since then, faster architectures have been devised [53, 54, 55, 78,

107].

Improvements in Trusted Computing technology have made it possible to grow the code base

from a few kilobytes to hundreds of megabytes. In fact, in order to provide security guarantees

to a broader set of applications, some projects have secured entire database engines [36, 37], and

even unmodified Windows binaries such as SQL Server and Apache HTTP Server [38]. It thus

follows that the complexity of software running in a trusted environment is growing.

3.1.2 Security or Efficiency, But Not Both

There are currently two alternatives to deal with such large code bases, and both come with

downsides. We dub the first as measure-once-execute-forever [38]. The integrity measurement is

taken only before the execution of the code, which then continues to run in the trusted environ-

ment indefinitely. Unfortunately, this approach brings us back to the TOCTOU problem. Since

the integrity measurement of a code base is only taken once, it will not detect any successful

attack that later compromises the application.

52

The second alternative is instead dubbed measure-once-execute-once. The measurements are

repeated before each execution (e.g., an application based on Flicker [52]). This approach instead

may raise efficiency issues. In fact, in order to assign an identity to the code, it must be loaded

first and then hashed.

As an example, in Figure 3.2 we quantify this load-and-hash cost on XMHF-TrustVisor [53,

94]. We measured the time to register different code bases—the details of the experimental set-

ting can be found in Section 3.4.1. During this procedure, the memory pages of the code are

isolated and identified. The time scales linearly with the code size reaching about 37ms for just

1MB of code.

Such a linear dependence also holds for Intel SGX [107, 108], used to build secure Enclaves. In

fact, recalling Section 2.2.2, after an Enclave is created (ENCLS[ECREATE] instruction), code pages

must be added and measured (ENCLS[EADD], ENCLS[EEXTEND]). Hence, the overhead of creating an

Enclave identity grows linearly with the code size.

3.1.3 Problem Definition

Clearly code identification cost has become a bottleneck. On one hand, if the code is iden-

tified only once, identity integrity stales over time. One the other hand, if the code is identified

repeatedly, the overall execution time may increase considerably for large code bases. The ideal

balance is to have non-stale identities and an execution time less dependent from code base size.

In this thesis, we aim at making the secure execution cost scale with the size of the code

modules as they are executed, rather than the size of the code base as a whole, independently

from the trusted component in use. Such generally-applicable method can reduce the cost of

re-identifying some code, refresh the integrity guarantees, and also reduce the size of the active

TCB.

In summary, we seek to attain the following properties:

1. Secure proof of execution. The proof of execution of the correct code must be unforgeable, un-

ambiguous, and linked to the hardware root of trust.

2. Low TCC resource usage. The protocol should achieve security with minimal resource (code

identification, cryptography, storage, etc.) demand on the TCC.

3. Verification efficiency. The overhead for the client should be constant, independently from the

code base—i.e., a fixed number of hashes and digital signatures.

4. Communication efficiency. The protocol should be “non-interactive”, requiring only a small

additional constant amount of traffic to enable successful client verification.

53

A(){} ︎

B(){}︎

Identity Table
ID(A) ︎ A34D39FB︎
ID(B) ︎ B71686EC ︎
ID(C) ︎ E323AFEC ︎

CB
code
base

Hardware

OS

Apps
CB

TCC ID-based key

C(){}︎ secure

channel

1	

2	

3	

4	

A(){} ︎ B(){}︎

Identity Table
 ID(A) ︎ A34D39FB︎
 ID(B) ︎ B71686EC ︎
 ID(C) ︎ E323AFEC ︎

Figure 3.3: Sketch of our solution.

5. TCC agnostic execution. The protocol should use any underlying TC architecture as a black-box,

thus allowing to retrofit existing trusted components.

3.1.4 Overview of our Solution

The core of our solution is displayed in Figure 3.3. On the left, the code base is depicted as a

set of logically connected modules (arrows express the control flow graph) stored on the cloud

provider’s platform, working together to provide a service. Any two connected modules (e.g.,

A and B) communicate by means of authenticated messages, whose security is based on their

identities (or hashes, e.g., ID(A), ID(B)). The modules however do not contain any identity, in-

stead, they contain the row number in the Identity Table to retrieve the identity they need (e.g.,

A requires ID(B) for sending an authenticated message to B, and similarly B requires ID(A) for

receiving a message from A). The Identity Table thus contains the identities of all modules in the

code base. On the right, the modules of our code base (CB) are initially in the untrusted envi-

ronment, where there may be other untrusted applications (Apps) running above the untrusted

OS.

Our protocol leverages the trusted component to execute the modules in isolation as follows.

It starts the execution on the TCC of 1© the modules of the code base, one by one, that are nec-

essary to deliver the requested service (e.g., module C is not loaded). Given a particular client

request, only the modules required to serve it are considered active (A and B in the figure). Ac-

tive modules are loaded and run according to the correct execution order. Each module secures

2© the intermediate state before it terminates. The next active module is then executed 3© and it

validates the previous intermediate state 4©. Such state is passed between modules by means of

logical secure channels.

54

In contrast to having a single identity assigned to the code base, each module has its own

identity. This identity is calculated as the hash of the code, thus following the usual practice.

So it allows us to maintain backward compatibility, since we do not need to modify how the

underlying TCC identifies the code, to achieve a general solution that is implementable on the

trusted components available today. Our protocol builds a robust execution chain based on the

identities of the modules, and guarantees that the modules are executed in the correct order with

respect to the control flow graph—otherwise they are unable to validate the intermediate results

when exchanged on the secure channels.

Each executing active module has access to data and resources required for the computation.

Before the execution, each module is expected to receive either some input from the client (e.g.,

a request) or some intermediate state from other modules. Similarly, when it terminates, each

module is expected to produce either an output for the client (e.g., a reply) or some intermediate

state to be processed by the next module in the execution flow. Before and after the execution,

every piece of data to/from any module is handled in the untrusted environment of the cloud

provider’s platform. Consequently, such data must be secured by means of the available TCC

resources (e.g., secure storage).

An executing active module has access to the Identity Table (or identity set) of the code base.

The module can use an identity in this table to request the TCC to secure data for (or to validate

data received from) another module. In particular, intermediate states are transferred between

modules through logical identity-dependent secure channels, whose security is enforced by the

TCC. Such channels are “logical” in that the data is transferred between modules by the untrusted

code on the platform (i.e., A releases data to the untrusted code, then upon termination, A is

unloaded, so B is loaded and receives data from the untrusted code). The channel is secure as it

guarantees (1) data integrity, through message authentication codes, and (2) the authentication

of the end points based on their execution order (i.e., A sends to B and B receives from A, but B

and C will never exchange data). A benefit of these channels is that they maintain all the data

locally (at the cloud provider side) thereby avoiding the interaction with the client during the

execution.

A client reply is authenticated through a TCC attestation, or through previously established

symmetric secret keys. The last executed module (in the control flow graph) calls the TCC attes-

tation service, and the TCC attests the module’s identity. Such last module includes (the integrity

measurement of) some parameters in its attestation, such as the client’s initial request, the iden-

tity set of the code modules, and the reply. The client receives and verifies the attestation which,

55

jointly with the parameters used to generate it, represents the proof of execution. By verifying

the module’s identity and the identity set, the client can trust that the code base correctly served

the request.

Note that, by design, the hash chain created by the protocol enforces the execution order of

the modules and guarantees their integrity by letting the TCC compute their identities. This

means that the client does not have to be aware of the execution order for any specific execution,

which is a highly desirable feature, nor has to verify the identity of any executed module except

for the last one. This makes the protocol verification efficient.

3.2 Model

We extend the model introduced in Section 1.3.1 with some additional assumptions that are

specific to the presented technique.

Code base. Our service code is composed by q modules (or PALs2) p1, . . . , pq. The control flow is a

directed graph over the PALs describing their execution order. An execution flow is a sequence

of PALs of finite but unknown length n (e.g., p1, p3, . . . , p4) that respects the control flow. We refer

to a generic execution flow as m1, . . . ,mn.

We assume that the service is either originally created or suitably partitioned into code mod-

ules by the service authors. We briefly discuss how such modules can be defined in Section 3.6.

Provider-side. The code base is available on the cloud provider’s platform. Also, we leverage our

TCC abstraction (Section 2.3.1), and in particular the execute, attest, verify, auth put, auth get and

get cert primitives.

Client-side. The client knows the cryptographic hashes of the attested PALs, and also the hash

of the Identity Table (Figure 3.3), which represents the identity set. Ideally, the information is

provided by the (trusted) authors of the code base and it requires a constant amount of space.

Also, the client knows and trusts the TCC’s public key K+
TCC, that is used to verify the at-

testations issued with the TCC’s private key K-
TCC. It can be obtained through an initial TCC

Verification Phase: the client interacts with the cloud provider to retrieve K+
TCC and the associ-

ated certificate. If the public key is correctly certified by a trusted Certification Authority (e.g.,

the TCC manufacturer), then it can be trusted and used for verification. This step thus assumes

a suitable implementation of the get cert primitive (Section 2.3.1).

In addition, to simplify the description of a XMHF-TrustVisor-based implementation, we as-

sume that K+
TCC is the hypervisor’s public attestation key. Hence, we assume the client has al-

2Piece of Application Logic, using the notation of previous works [52, 53].

56

ready verified the hypervisor’s identity and its public key, so we do not supply the hypervisor’s

identity and the TPM attestation to the verify primitive.

3.3 Secure Identification of Actively Executed Code

3.3.1 A Naive Solution

A client could verify and establish trust in the execution of a large code base by iteratively

checking that each PAL is run correctly and respects the control flow graph. A relatively simple

protocol to achieve this is the following: the client sends a request to the cloud provider to execute

the first PALm1 on the TCC, and gives the input values for the service. When the PAL terminates,

the cloud provider forwards to the client an attestation returned by m1 that covers its identity

(i.e., the hash of the module), the input and the output data. The output includes the identity of

the next PAL to be run, besides the result of the execution (i.e., the intermediate state). Using the

verify primitive (Section 2.3.1), the client can verify that the output is valid, since it was calculated

with the correct code and the proper input. The same procedure can then be repeated for each

PAL in the execution flow until the final result (i.e., the actual reply for the client) is produced

by mn. The protocol ensures that the PALs are called in the right order and run over the correct

data. Hence, it offers the required correctness guarantees.

Although the naive approach is secure and only attests the code modules that are actually

executed, it has drawbacks. First, attestations are expensive, so a large number of executed mod-

ules can consume lots of TCC resources. Second, the approach is interactive, since it requires the

client to verify each PAL and to mediate the transfer of the intermediate state between the execu-

tions of two modules. So it is not verification efficient as the client has to check every attestation

and all the intermediate results produced by the executed PALs.

In the rest of the section we eliminate the above drawbacks. We explain a set of orthogonal

techniques that: remove the interactivity with the client and reduce the TCC attestations to one

(Section 3.3.2), address an issue with identity-based secure storage (Section 3.3.3), and optimize

performance with a novel TCC-based key sharing solution (Section 3.3.4). Finally, we present a

flexible and verifiable trusted execution protocol (Section 3.3.5).

3.3.2 Reducing Communication

When a trusted execution is requested, the client is only interested in obtaining the final reply

(generated by the last executed module mn) and in verifying the validity of the whole execution

57

(i.e., as if the code were executed as one single module). As a consequence, the intermediate

states do not have to be transmitted to the client as long as the client can later check that they

were handled correctly. Similarly, each PAL execution does not need to be attested as long as the

client is still able to verify the correctness of the final result.

In the naive protocol, the client is involved in each PAL execution to ensure that the result of

a piece of code mi is properly provided as input to the next module mi+1. This is accomplished

with two attestations returned to the client. The first is generated by mi and provides evidence

about mi’s intermediate state and the identity of the PAL that should be run next. The second

is generated by mi+1 and provides evidence that the PAL received the correct intermediate state.

Therefore, if a malicious cloud provider tampers with the execution, e.g., by running mi+1 with

some incorrect input data, this can be detected with the second attestation. Hence, the verifica-

tion of these attestations confirms that the intermediate state was correctly transferred from mi

to mi+1.

Attestations are a key mechanism in secure code execution but the overhead they impose is

a concern. Attestations are essential because they convey the execution integrity property to a

client. However, they are expensive since they involve digital signatures. In addition, each one

imposes a non-zero overhead on the client. Verification requires not only the signature check,

but also access to a copy of all data that is attested (i.e., at least the measurement of the code, the

input and the output data).

In our approach, we build a “secure channel” between PALs without the client’s supervi-

sion, thus saving attestations, communications and verification effort. We leverage the TCC se-

cure storage capabilities (Section 2.3) to protect the data while it is saved locally in the cloud

provider’s untrusted storage. Recall that the TCC secure storage uses code identity to authenti-

cate the auth put and auth get operations. By ensuring that only the correct code modules access

security-sensitive intermediate state results, secure storage can be used as the basis to build a se-

cure data transmission between PALs, instead of relying on attestations. Essentially, a mutually-

authenticated channel is created: a PAL mi authenticates the identity of the previous sender mi-1

when it gets the data from a protected input, and uses the identity of the next recipient mi+1 to

securely store its results, before releasing them to the cloud provider’s untrusted environment.

It is because of this construction that the client only needs to verify the last executed PAL. Con-

sequently, it is critical to ensure that such single verification can indeed be utilized to bootstrap

trust into an arbitrary number of correct (though unverified) PALs that were called previously.

We now present the end-to-end scenario for completeness and clarity.

58

The client first issues a service request and provides the input value in and a fresh nonceN to

the cloud provider. The cloud provider calls the first module with the input: execute(m1, in||N).

m1 carries out the initial part of the service computation and it invokes auth put(h(m2), h(in)||N ||out)
before terminating. In other words, it saves a measurement of the input and any output interme-

diate state in secure storage, specifying the identity of the only subsequent PAL that is allowed

to retrieve it (i.e., m2 in the service execution flow). The outcome of the call is the protected

data {h(in)||N ||out}m1−m2
K , which is then returned to the cloud provider. Notice that m1 is not

attested, so it will not be verified by the client. The notation {}mi−mj
K refers to a message sent by

mi to mj and protected with a TCC-internal secret key K.

The cloud provider next calls execute(m2, {h(in)||N ||out}
m1−m2
K) to run module m2. The PAL

authenticates the received data to make sure that it came from trusted source. This is achieved by

calling auth get(h(m1), {h(in)||N ||out}
m1−m2
K)withm1’s identity. If the identity is not correct then

auth get fails, otherwise it succeeds and the PAL continues (the second part of) the service exe-

cution. Before it terminates, the PAL performs auth put(h(m3), h(in)||N ||out) to secure the new

output intermediate state for the subsequent PAL. This procedure is repeated by all intermediate

PALs.

The last PAL is attested and verified by the client. After mn retrieves the result from mn-1

and runs the service code, it calls the attestation primitive attest(N, h(in)||h(out)) to get a proof

of execution that covers the input and output measurements, besides mn’s own code. Since the

attestation includes the nonce N , it also gives assurance about the freshness of the computa-

tion. The output with the attestation and the reply data {report, out} is first released to the cloud

provider’s untrusted environment, and then forwarded to the client. The client verifies the exe-

cution proof by calling verify(mn, h(in), h(out), N,K
+
TCC, report) and accepts the result only if the

primitive succeeds.

Analysis. The attestation binds together the initial inputs, the output and the identity of the last

PAL. The cryptographic mutually authenticated chain that linksmn to the previous PALs ensures

that computation is performed only among correct PALs: when the verification of the correct exe-

cution of mn succeeds then, by construction, the client also trusts that mn can only have received

data from a valid mn-1; the same reasoning can be repeated up to m1, which is the single entry

point to the service and is the PAL that received the initial input data. Hence, correct intermedi-

ate PALs only accept data from (respectively deliver data to) correct PALs. Furthermore, as each

piece of code specifies the receiver in auth put, the overall execution order must match a valid

control flow.

59

The only data that is accepted inside the trusted environment without being initially validated

is the client’s input. Similarly, the only data that is released outside without being protected in se-

cure storage is the final output. However, their measurements are included in the last attestation,

which allows the verification of the overall execution chain.

Freshness is guaranteed by the client provided nonce, which is propagated throughout the

full execution. This prevents attacks where a malicious cloud provider would replace the output

of a PAL mi with a value returned by the same PAL in a previous run of the protocol. Notice

however that this attack could only succeed if the initial client input values (and so h(in)) were

the same in both service executions.

3.3.3 Addressing Looping PALs

PALs that exchange their intermediate state through TCC-based secure storage must have

access to each others’ identities. In auth put, a module must specify the identity of the next PAL

that should be granted access to secured data. Similarly, in auth get, a PAL must give the identity

of the sender module from which it is supposed to receive the data.

A straightforward approach is to include the identities of the next PALs statically in the code

of a PAL. Unfortunately, this solution does not work out due to possible loops in the control

flow graph of the service that end up creating unsolvable hash loops. Consider the example in

Figure 3.4 (left-side), where a PAL contains some code and the identites of other PALs appended

to its code, e.g., m1 = c1||h(m3). It follows that:

m1 = c1||h(m3) = c1||h(c3||h(m1)||h(m4))

m3 = c3||h(m1)||h(m4)

This example shows that loops in a control flow graph require a module to depend on a hash of

itself. Solving the above equations cannot be done for cryptographic hashes as it would require

us to violate the properties of these functions. Trapdoor functions could be used instead but they

bring a few drawbacks. First, they are typically based on asymmetric cryptography. Hence, they

are comparatively more expensive and further introduce the difficulty of protecting the private

key. Second, they do not answer the more fundamental question of whether these hash loops

can be avoided. In the following we show how to solve this issue without trapdoor functions.

Our approach uses a level of indirection to separate a PAL’s code from its identity. We replace

the critical identity information, hard-coded inside a PAL, with a lookup operation in a table

Tab. The table contains the set of all PALs’ identities and is built when the modules are originally

60

3. look up
 PAL1‘s ref

TabTab
PAL Ref

1 refPAL1

2 ...
3 refPAL3

4 refPAL4

2. pass
 data4.

pa
ss

da
ta

1. look up
 PAL3’s ref

PAL1
next:3

PAL3
next:1
next:4

PAL1
refPAL3

PAL3
refPAL1

refPAL4

3. look up
 PAL1‘s id

TabTab
PAL ID

1 idPAL1

2 ...
3 idPAL3

4 idPAL4

2. pass
 data4.

pa
ss

da
ta

1. look up
 PAL3’s id

PAL1
next:3

PAL3
next:1
next:4

PAL1
idPAL3

PAL3
idPAL1

idPAL4

Figure 3.4: The looping PALs problem (left-side) and our solution of detaching PALs from identities
(right-side).

created. In addition, we hard-code inside each PAL the index(es) in Tab of the correct next PAL(s)

in the control flow (Figure 3.4 right-side). It is not necessary to hard-code the index(es) in Tab

of the correct previous PAL(s) in the control flow, since the index can be provided at runtime as

untrusted input—if such index is not the intended one, the PAL ends up retrieving the wrong

identity from the table and therefore it is unable to authenticate the data that was destined to it

by the intended sender PAL. The identities thus become independent from each other and each

PAL’s hash can be computed despite any loop in the control flow graph. The chain that binds our

PALs together is now based on Tab, which translates an index into an identity.

Tab is critical to ensure the correct execution flow of the PALs. Hence, it has to be protected

throughout the computation of all modules and eventually verified as follows. The first PAL

accepts the table as input and propagates it to subsequent PALs using the TCC-based secure

storage. The attestation of one PAL—the last executed in the control flow—has to cover the mea-

surement of Tab. In order to eventually verify the execution, the client needs to be aware of: the

last executed PAL’s identity and the integrity measurement of Tab. Notice that this imposes only

a small additional constant space and time overhead for any trusted execution.

The service developers should produce Tab together with the executable modules. Tab and

PALs should be deployed on the cloud provider. The integrity measurements of (attested) PALs

and Tab should be provided to the client to enable verification.

Analysis. The table Tab fixes the set of identities of the PALs that are allowed to implement

each part of the service functionality. When the client verifies the correctness of the last executed

PAL, say mn, together with Tab, the client can trust that only valid PALs were used throughout

the execution process. In fact, Tab ensures that only correct identities are used for secure stor-

age operations, and only correct PALs have access to securely stored data that is critical for the

61

Ksndr−rcpt =

{
fK (Reg, rcpt) on kget sndr by sndr
fK (sndr,Reg) on kget rcpt by rcpt

Figure 3.5: Identity-dependent key derivation construction for Secure Storage. rcpt is the identity
of the recipient PAL and sndr is the identity of the sending PAL. Reg is the register inside the
TCC that stores the identity of the currently executing PAL. It is equivalent to a PCR on TPMs
[76] or to the MRENCLAV E register in Intel SGX [107]. f() is a keyed hash function.

execution.

3.3.4 Novel Secure Storage Solution

Secure channels that are used to transfer intermediate results across trusted PAL executions

should be available with low overhead. In particular, they should be (1) fast to set up, (2) require

minimal TCC support, and (3) ensure mutual authentication of the end points.

The secure channel design described above can be built on current trusted components, but

the core construction inside its implementation is usually inefficient as it provides more guar-

antees than desired. For example, on TPMs v1.2, sealed storage is based on asymmetric cryp-

tography, which provides non-repudiation unnecessarily. As another example, while symmetric

algorithms are available on TPMs v2.0, the trusted component still implements and enforces data

access control (i.e., it checks whether the identified code is allowed to access the data), besides

guaranteeing the confidentiality or integrity of sealed data. Intel SGX instead uses a different

paradigm. The ENCLU[EGETKEY] instruction (for sealing) only provides a key to the Enclave based

on its identity. The key is used by the Enclave to protect the data that can be then released out-

side its secure execution environment. Unfortunately, when two Enclaves need a shared secret

key, they have to run an authentication protocol [98] to bootstrap trust in each other’s attestations

and validate public Diffie-Hellman keys. This involves at least two message exchanges, besides

asymmetric cryptographic operations.

We propose a new construction that binds a secret shared key to the identities of two PALs

efficiently. In particular, for any two PALs, the construction can build a secret key to create their

secure channel. For any such key, only the PALs with the correct identity can access it. Keys are

derived from a master keyK , which is a secret symmetric key that the TCC maintains internally

for computing identity-dependent keys. Any PAL mi can use an identity-dependent key to pro-

tect data. Any such key depends on: K , mi’s identity and another PAL mj’s identity. Also, the

key can only be accessed by mi and mj. When module mi wants to secure some information, it

calls kget sndr with the identity of the receiver PAL mj. The TCC then performs the operations

62

in Figure 3.5 to derive a secret shared key Kmi−mj
that is then returned to the PAL. To retrieve

the same key later, mj invokes kget rcpt to perform an equivalent operation. Provided that the

source and the recipient PALs respectively supply each other’s identity (i.e., resp. rcpt≡h(mj) or

sndr≡h(mi)) to the TCC, the computed key is the same in the two cases.

PAL1

next PAL: 2

1. kget_sndr(idPAL2)

PAL2

next PAL: 3

Tab
PAL ID

1 idPAL1
2 idPAL2
3 idPAL3

measurement of PAL2

TCC Reg K
Kp1-p2

2. kget_rcpt(idPAL1)

Keyed Hash Function

Figure 3.6: Identity-based Secure Storage. It enables two PALs to share a mutually authenticated
secret key in zero rounds, with no message exchange. Two PALs can use such key to transfer data
securely with minimal overhead.

The usage of the shared key for the new secure storage construction is shown in Figure 3.6.

It allows the protection of data that is transmitted between adjacent PALs. PALs can use the

identity table Tab to look up the identity of the next executing PAL according to the control flow.

Next, the sender PAL (resp. recipient PAL) calls kget sndr (resp. kget rcpt) to obtain the shared

key. The key is then used by the PAL to secure (resp. validate) the data to be released to (resp.

supplied by) the cloud provider. As we will detail later, we wrap this functionality inside the

auth put and auth get TCC primitives.

Our construction can be seen as a generalization of the Intel SGX approach, since a PAL is

allowed to set up a secure channel not only with another code module but also with itself—e.g.,

to seal and save data in external untrusted storage. Instead, in contrast to TPM sealed storage, in

our construction the TCC does not make any access control decision on whether to accept or reject

a PAL request, based on its current configuration (e.g., the value of the PCR registers) and the

information included in the sealed data. The TCC always generates symmetric keys on-demand.

It is up to a PAL to decide whether to encrypt or just authenticate some data, and what PAL is

the recipient of the data. So it is crucial that correct modules have access to correct identities.

If data is encrypted and an invalid module attempts to decrypt it, it simply gets some random

information because with high probability the wrong key is used. Similarly, if a valid module is

run with incorrect data (possibly from a malicious module), it is simply unable to authenticate

63

the input.

Analysis. In the key derivation function, the TCC uses the computed identity of the currently

executing PAL and a possibly untrusted identity provided by the PAL itself. These are positioned

differently by the TCC in the f function, depending on whether the current PAL is saving or re-

trieving data (as in Figure 3.5). The presence and the eventual verification of tableTab ensure that

only correct identities (and thus PALs) are used to call the key derivation function. Furthermore,

since a valid PAL forwards the data to the intended next PAL in accordance with the control flow,

this guarantees that the right order of execution is followed and that only the correct next PAL

can decrypt/validate the data.

How the TCC primitives are extended.

The implementation of the auth put primitive (previously presented in Algorithm 7 and Al-

gorithm 8) can be extended to include our construction as highlighted in Algorithm 19 and Al-

gorithm 20 (in dark background, bottom-side). The construction allows two pieces of code to

retrieve (line 1) an identity-dependent secret key (based on both their identities) that they share

immediately without exchanging messages. The construction is efficient as it involves computing

just a single hash. We point out however that while this has been evaluated in XMHF-TrustVisor

(Section 3.4.3), because the hypervisor can be easily customized, it instead requires small (in our

opinion) extensions to the CPU microcode to be supported by SGX.

The implementation of the auth get primitive (previously presented in Algorithm 9 and Al-

gorithm 10) can be extended to include our construction as highlighted in Algorithm 21 and Al-

gorithm 22 (in dark background, bottom-side). As the implementation mirrors the operations in

the auth put primitive, we only highlight the simplicity of implementing it in XMHF-TrustVisor,

and the algorithmically visible benefits—i.e., no key exchange, no asymmetric cryptography, and

shared secret key available with just one instruction—if it were implementable on SGX.

3.3.5 A Flexible Trusted Execution Protocol

We now integrate the presented techniques into the Flexible and Verifiable Trusted Execution

(fvTE) protocol detailed in Figure 3.7. The protocol is based on our TCC abstraction (Section 2.3,

enhanced with our new constructions in Section 3.3.4) and ensures all properties specified in Sec-

tion 3.1, namely it allows a client to securely and efficiently check the correctness of an arbitrary

code execution. We now describe the main steps.

The client begins the protocol by submitting a service request to the cloud provider, including

the service input in and a nonce N . The cloud provider then starts running the first PAL m1

64

Input: (recipient) code identity, data
Output: secured data

1: trigger hyper-call for sealing data specifying
the recipient identitya

2: return secured data

aby suitably setting a digestAtRelease value that allows
unsealing the data only when µPCR[0] (i.e., the identity of
the running code) will match the recipient code identity.

Input: (recipient) code identity, data
Output: secured data

1: trigger hyper-call to retrieve the identity-
dependent sender key
KµPCR[0]−recipient identity

2: use key to authenticate/encrypt data
3: return secured data

Algorithm 19: auth put primitive for
XMHF-TrustVisor. Above, the original
implementation from Algorithm 7. Below,
dark areas highlight the differences of the
implementation using our construction.

Input: (recipient) code identity, data
Output: secured data

(following [98])
1: if there already exists a sealed

public/private Diffie-Hellman key pair
then

2: retrieve it from shared memory and
unseal it using EGETKEY

3: else
4: generate a public/private Diffie-Hellman

key pair
5: seal it using EGETKEY and save it in

shared memory
6: end if
7: run EREPORT to produce a local attestation

of the public key for the recipient code
identity

8: send attestation through shared memory
9: retrieve the recipient’s local attestation of its

key, and its key, from shared memory
10: run EGETKEY to retrieve the report key
11: verify that the local attestation belongs to

the intended recipient and that it attests the
received key

12: compute the secret key shared with the
recipient code

13: use key to authenticate/encrypt data
14: return secured data

Input: (recipient) code identity, data
Output: secured data

1: run EGETKEY to retrieve the identity-
dependent sender key
KMRENCLAVE−recipient identity

b

2: use key to authenticate/encrypt data
3: return secured data

Algorithm 20: auth put primitive for Intel
SGX. Above, the original implementation
from Algorithm 8. Below, dark areas high-
light the differences of the implementation
using our construction.

bNote. This is our novel proposal for secure message pass-
ing between enclaves. At the time of writing, this construc-
tion is not available on SGX so it is not implementable.

65

Input: (sender) code identity, secured data
Output: validated data or ⊥

1: trigger hyper-call for unsealing data a

2: if data has been unsealed then
3: use sender code identity to compute

expected digestAtCreation
4: if digestAtCreation matches

expected digestAtCreation then
5: return data
6: end if
7: end if
8: return ⊥

aThe hyper-call decrypts the data blob and checks that
the currently executing code is authorized to access it—in
our case by using µPCR[0] to check the digestAtRelease
in the data. If (and only if) so, it returns the data and a
digestAtCreation value that the running code can use to
check the identity of the code that originally sealed the data.

Input: (sender) code identity, secured data
Output: validated data or ⊥

1: trigger hyper-call to retrieve the
identity-dependent receiver key
Ksender identity−µPCR[0]

2: use key to validate/decrypt data
3: if data is valid then
4: return data
5: end if
6: return ⊥

Algorithm 21: auth get primitive for
XMHF-TrustVisor. Above, the original
implementation from Algorithm 9. Below,
dark areas highlight the differences of the
implementation using our construction.

Input: (sender) code identity, secured data
Output: validated data or ⊥

(following [98])
1: if there already exists a sealed

public/private Diffie-Hellman key pair
then

2: retrieve it from shared memory and
unseal it using EGETKEY

3: else
4: generate a public/private Diffie-Hellman

key pair
5: seal it using EGETKEY and save it in

shared memory
6: end if
7: run EREPORT to produce local attestation of

the public key for the sender code identity
8: send attestation through shared memory
9: retrieve the sender’s local attestation of its

key, and its key, from shared memory
10: run EGETKEY to retrieve the report key
11: verify that the local attestation belongs to

the intended sender and that it attests the
received key

12: compute the secret key shared with the
sender code

13: use key to validate/decrypt data
14: if data is valid then
15: return data
16: else
17: return ⊥
18: end if

Input: (sender) code identity, secured data
Output: validated data or ⊥

1: run EGETKEY to retrieve the
identity-dependent recipient key
Ksender identity−MRENCLAVE

b

2: use key to validate/decrypt data
3: if data is valid then
4: return data
5: else
6: return ⊥
7: end if

Algorithm 22: auth get primitive for Intel
SGX. Above, the original implementation
from Algorithm 10. Below, dark areas high-
light the differences of the implementation
using our construction.

bNote. This is our novel proposal for secure message pass-
ing between enclaves. At the time of writing, this construc-
tion is not available on SGX so it is not implementable.

66

Entity fvTE Protocol
1 C � UTP Request service execution with input in and nonce N!
2 UTP Prepare input: in1 � in || N || Tab !
3
4
5

6

UTP�TCC

{{res1}Km1-m2 , Tab[1] ,Tab[2]} � execute(m1, in1)!
Repeat for 2 ≤ i ≤ n-1!
 {{resi}Kmi - mi+1, Tab[i] ,Tab[i+1]} � !
 execute(mi, {resi-1 }Kmi-1 – mi || Tab[i-1])!
{resn ,report} � execute(mn, {resn-1}Kmn-1 – mn || Tab[n-1])!

7 UTP � C Return to client: {resn , report }!

8 C
Check execution:
 verify(h(mn), h(in) || h(Tab) || h(resn), N, K+

TCC, report) !

PAL execute() step

9
10
11
12
13

m1

Identify m1 in REG !
Execute m1 with in1 and compute out!
res1 � out || h(in) || N || Tab!
{res1}Km1-m2 � auth_put(Tab[2], res1)!
Return: {{res1}Km1-m2 , Tab[1] ,Tab[2]} !

14
15
16
17
18
19

mi

Identify mi in REG !
ini � auth_get(Tab[i-1], {resi}Kmi -1 - mi)!
Execute mi with ini and compute out!
resi � out || h(in) || N || Tab!
{resi}Kmi – mi+1 � auth_put(Tab[i+1], resi)!
Return: {{resi}Kmi – mi+1 , Tab[i] ,Tab[i+1]} !

20
21
22
23
24
25

mn

Identify mn in REG!
inn � auth_get(Tab[n-1], {resn-1}Kmn -1 - mn)!
Execute mn with inn and compute out!
resn � out || h(in) || N || Tab!
report � attest(N, h(in) || h(Tab) || h(resn))!
Return: {resn , report} !

Figure 3.7: fvTE protocol run by client C, the trusted component TCC and the cloud provider
UTP (above, lines 1-8), and the execute step at the various PALs mi (below, lines 9-25). A single
attestation and verification allows the client to trust the service execution, independently from
the number of executed PALs. Also, only PALs that are necessary to serve a specific request are
loaded and executed using the TCC.

by providing the client’s input, the nonce and the identity table, i.e., < in||N ||Tab > (lines 2-3).

Notice that this is the only entry point of non-authenticated (and thus untrusted) data. However,

the correctness of such data will be eventually verified by the client before accepting the reply.

The first PAL is run with the input and produces an intermediate state out (lines 9-10). Before

returning, it prepares the data to be forwarded to the next PAL: the output, a hash of the input,

the nonce and the identity table (line 11). The hash is used as an optimization to minimize the

information to be transferred to subsequent PALs. This data is secured using auth put, specifying

the identity of the PAL that should follow in the execution flow (h(m2) ≡ Tab[2] 3). The PAL

terminates by releasing to the cloud provider the secured intermediate state, and the identity of
3Notice that “2” actually corresponds to the index of the next PAL in the execution flow that is hard-coded in m1.

The index is used for the lookup operation in Tab. We use this simplification in the description for brevity.

67

the current and the next PAL (line 13).

The execution of the subsequent intermediate PALs proceeds similarly. They use auth get to

obtain the previous intermediate state (line 15), whose validity derives from the properties of

the secure channel. They execute their service code and propagate the result according to the

expected control flow (lines 17-19). Notice that the values < h(in)||N ||Tab > are simply left un-

changed by each intermediate PAL as a way to propagate them to the final PAL (h(mn) ≡ Tab[n]).

mn prepares the output for the client. After it retrieves the intermediate result from secure

storage, it executes the code (lines 21-22) and performs an attestation that binds together mn’s

identity, the nonce, the client’s request input, the identity table and the final output (lines 23-24).

When mn terminates, it releases the final output and the report to the cloud provider (line 25).

The cloud provider forwards the output to the client for verification (line 7). At this point,

the client has the following information: mn’s identity and h(Tab) that were outsourced by the

authors of the code; the originally created request (in) and the fresh nonce; the final output (out)

and the attestation as issued bymn; the trusted TCC’s public key (see assumptions in Section 3.2).

The client can thus verify the attestation, and so the execution correctness, and establish trust in

the service output (line 8).

Discussion. The protocol ensures that the properties in Section 3.1.3 are achieved as follows:

1. Secure proof of execution. The proof is unforgeable because it is conveyed by an attestation,

i.e., a digital signature over (secure hashes of) the input, the output, the identity table. The

signature is linked to the TCC hardware root of trust through a chain of digital certificates,

whose ultimate root is a Certification Authority trusted by the client. The proof is unam-

biguous because of the attested identity of the last PALmn and Tab, and it is unique due to

the inclusion of the nonce N . The execution flow cannot be tampered with, since only the

correct PALs can be run in the expected order. This last point is ensured through the novel

storage primitive (and the identity tableTab) that prevents invalid PALs from accessing and

tampering with the output of the intermediate states.

2. Verification efficiency. The client only has to perform a constant number of hashes and check

one digital signature to validate the result. Such verification effort is independent from the

number of executed PALs.

3. Communication efficiency. The client interacts only once with the cloud provider to send the

input and receive the output of the service. Also, the client provides and receives a constant

additional amount of data, i.e., the nonce N and report.

4. Low TCC resource usage. Throughout the protocol, only the PALs that are required to serve

68

the client request are loaded, identified and run. Furthermore, public key cryptography us-

age is limited to one attestation, while symmetric cryptography is used for fast key deriva-

tion on the TCC. Hence, the protocol consumes TCC resources efficiently and proportion-

ally to what is actually executed.

5. TCC-agnostic execution. The execution protocol only uses the TCC abstraction (Section 2.3).

As the interface can be implemented on different trusted components, the protocol is not

restricted to any specific architecture, so it is general.

3.3.5.1 Amortizing the attestation cost

Reducing the number of attestations provides benefits both to the cloud provider and to the

client. However, producing one attestation for each request from a client is still computationally

expensive and also imposes some verification overhead on the client. It is common practice to

avoid this overhead by establishing a secure channel based on a symmetric secret key between

the trusted environment and the client. In particular, one attestation is produced and verified to

establish trust in a symmetric key. Then the client uses the key to issue multiple requests and to

authenticate the associated replies. So the cost of one attestation can be amortized over multiple

requests from a client.

We sketch how this technique can be used also with our protocol. The code base can be en-

riched with another PAL mC that establishes the secure channel with the client. mC receives the

client’s fresh public key pkC as input at the beginning of the computation. It assigns the identity

idC = h(pkC) to the client; it uses kget sndr (Section 3.3.4) to retrieve the identity-dependent key

KmC−C to be shared with the client; it encrypts KmC−C with pkC and attests the result. The at-

testation and the encrypted data are sent back to the client. The client verifies the attestation and

retrieves KmC−C . In subsequent requests, the client authenticates (or encrypts) messages with

KmC−C and attaches idC . The client’s identity allows mC to recompute KmC−C without main-

taining any state for the secure channel. mC can thus authenticate requests from the client and

forward them to the first PAL in the original execution flow. Similarly,mC receives the computed

reply from the last PAL (in the original execution flow) and authenticates it with KmC−C for the

client.

Notice that only mC is attested once for setting up the secure channel with the client, and the

(encrypted) secret shared key is the attested output. Also, since Tab is included in the attestation

(as mandated by our protocol), the client implicitly verifies the identities of the other PALs that

later receive and process its request.

69

3.4 Experimental Analysis

This section focuses on the implementation and evaluation of our protocol when applied to

a real-world service. The protocol is used to securely link together code modules of the widely-

deployed SQLite database engine. We model the implementation using Scyther for automatic

verification. Our results show that the code identification overhead can be significantly reduced

without trading off security and functionality.

3.4.1 Implementation

Trusted component. We implemented the TCC using XMHF-TrustVisor [53, 94], which is based

on a hardware TPM, and whose code is open-source and easy to customize. Some background

about the hypervisor can be found in Section 2.2.1.

In order to implement our protocol, we modified XMHF-TrustVisor by adding three hyper-

calls. The first makes memory available to a PAL in its address space. This avoids allocating

memory in the untrusted environment, then transferring it to the trusted environment and mak-

ing it accessible to a PAL as dynamic memory. Consequently, such memory space is neither part

of a PAL’s identity, nor of a PAL’s input data, and it can be provided more efficiently. The second

hyper-call is kget sndr, which is used in the auth put primitive to retrieve a shared key to secure

some data for a known receiver PAL. As the TCC only computes a secret key, this allows a devel-

oper to choose and implement the security technique that is most suitable for the application (e.g.,

message authentication codes or authenticated encryption). The third hyper-call is kget rcpt,

which is used in the auth get primitive to retrieve a shared key to validate some data that was

previously secured by a known sender PAL. The TCC-specific key (i.e., K in Section 3.3.4) that

is used for identity-dependent key derivation is initialized inside XMHF-TrustVisor when the

platform boots.

Platform. We used a Dell PowerEdge R420 Rack Server, with a 2.2GHz Intel Xeon E5-2407 CPU,

3GB of memory, a TPM v1.2, and running Ubuntu 12.04 with a Linux kernel 3.2.0-27. The re-

sources were fully dedicated to our experiments.

Application. We apply our protocol to the SQLite database engine [188], which has a code base

of about 88K lines of source code. SQLite is open-source and widely deployed, e.g., on Android

[109], iCloud [110] and other operating systems [111].

We create a multi-PAL SQLite engine with a small per-operation code footprint. Different

PALs handle specific queries. Each PAL is handcrafted by trimming the unused code off the

original code base. Then, our protocol is used to securely link these PALs together.

70

Our current multi-PAL SQLite engine consists of 4 PALs that implement some of the most

representative SQL operations. We emphasize that additional operations can be included by fol-

lowing the same approach (see Section 3.6) so to match the functionality of the original database

engine. PAL0 is the first one called from the untrusted environment on the cloud provider’s

platform and it receives the input data from the client. PAL0 parses the client’s request to recog-

nize the type of query, and then forwards it to a specialized PAL for the execution by means of

our secure channels. Select queries are passed to PALSEL. Insert queries are sent to PALINS .

Delete queries are passed to PALDEL. The last executed PAL builds the reply that is released to

the cloud provider’s untrusted environment, from which it is then forwarded to the client. There-

fore, requests from the client follow the execution flows: PAL0→PALSEL, PAL0→PALINS , or

PAL0→PALDEL.

We compare multi-PAL SQLite against a baseline implementation of the full SQLite database

engine. We implemented it as a monolithic PALSQLITE that can execute any query.

We perform end-to-end experiments, where a client performs select, insert and delete queries

on the server that maintains a database. Queries are received through a ZeroMQ [112] socket at

the cloud provider, and delivered to PAL0 for initial processing. The experiments were based

on a small size database because it highlights the overhead due to code identification, which is

the focus of this chapter.

3.4.2 Automatic Verification

We verified the fvTE protocol applied to SQLite using Scyther [100, 101], a public tool for

the automatic verification of security protocols. We chose Scyther as it supports unbounded

verification of security properties or their violation by providing feasible attacks.

Protocol Modeling. The security protocol is performed among the following entities: the client,

the 4 PALs and the TCC. The cloud provider is untrusted and it is modeled by Scyther as an

adversary that is able to forge and replay messages. We describe the execution verification of

a select query—it will be evident that it can be adapted to other executions in a straightforward

manner.

Messages are exchanged on two channels: one between the client and the TCC; and another

between the TCC and a PAL that is executing. The first one is modeled as an insecure channel

because the client and the TCC do not share any secret. So the first message is not secured and

the last message is signed by the TCC (i.e., attested through the private key K-
TCC). The second

channel is instead modeled as a secure channel. We let the TCC and each PAL share a fresh secret

71

key (e.g.,KTCC↔PAL ≡ KPAL↔TCC) to secure their communication. The reason is that each PAL

runs (and terminates) above the TCC when the execution environment is already isolated. This

implies a secure data/control transfer between the TCC and each PAL.

A logical secure channel is available between pairs of PALs. The channel is protected with

the key (for instance, KPAL0↔PALSEL) shared between the indicated PALs. The TCC essentially

forwards messages between the direct channels that it establishes with each PAL. This is modeled

through message encapsulation: a PAL first secures the message using the key that it shares with

another PAL, and then it secures the message again using the key shared with the TCC. The

security of the channel derives from our construction in Section 3.3.4.

Protocol Verification. The execution chain is verified in three steps. First, the TCC validates

that PAL0 successfully completes an execution on inputs< in,N, Tab > and delivers a response

< resPAL0 > securely linked to the inputs. This allows the TCC to trust that resPAL0 is the correct

output of PAL0. Second, the TCC validates that PALSEL successfully completes an execution

on input < resPAL0 >, which includes h(in), N, Tab, and delivers a response < resPALSEL >

securely linked to the inputs. This lets the TCC trust that resPALSEL is the correct output of

PALSEL. Third, the client validates that the TCC successfully completes an execution on inputs

< in,N, Tab > and delivers a response resPALSEL securely linked to the inputs. Finally, this

allows the client to trust that resPALSEL is the valid output.

Scyther verified the protocol execution in about 35 minutes, on a MacBook Pro with a 2.3GHz

Intel i7 CPU.

Discussion. The reader should note that the successful verification refers to the fvTE proto-

col as applied to the multi-PAL SQLite design and not to the general protocol (in Figure 3.7).

However, this verification together with the analysis performed during the protocol description

(Section 3.3.5) gives us confidence that our approach is correct. Verifying an actual implementa-

tion is an orthogonal problem that could be addressed with Ironclad Apps [113].

3.4.3 Evaluation

We evaluate the multi-PAL SQLite and compare it against the full monolithic SQLite. An

always-positive speed-up was observed with our design, which shows that for this setting it is

convenient to load and integrity-measure only the modules that are executed out of a large code

base.

72

 0
30
0

60
0

90
0
12
00

PAL0 PALSEL PALINS PALDEL PALSQLITE

C
od
e
S
iz
e
(k
ilo
by
te
s)

monolithic SQLite (baseline)
multi-PAL SQLite

12
135 90

155

1085

 0
30
0

60
0

90
0
12
00

PAL0 PALSEL PALINS PALDEL PALSQLITE

C
od
e
S
iz
e
(k
ilo
by
te
s)

monolithic SQLite (baseline)
multi-PAL SQLite

12
135 90

155

1085

Figure 3.8: Size of each PAL’s code in our SQLite code base.

3.4.3.1 Code size

The size of the code for each PAL protected by XMHF-TrustVisor at registration time is shown

in Figure 3.8. The size of the full SQLite implementation is about 1MB, while common operations

such as select, insert, delete can be implemented in as little as 9-15% of the code base.

3.4.3.2 End-to-end performance

The performance results for each execution flow are displayed in Figure 3.9, and summa-

rized in Table 3.1. Each run is one end-to-end query execution, i.e., the client sends one request

and receives the corresponding reply. We have included the execution times with and without

attestation. The average of at least 10 runs is displayed with the 95% confidence interval. XMHF-

TrustVisor computes an attestation using a 2048bit RSA key and, in our testbed, it takes around

56ms. Such overhead could be reduced by establishing a secure session with the client (see Sec-

tion 3.3.5).

speed-up w/ attestation w/o attestation
Insert 1.46× 2.14×
Delete 1.26× 1.63×
Select 1.32× 1.73×

Table 3.1: Summary of the achieved per-operation speed-up.

Overall, our protocol improves substantially on the previous approach. For example, insert

is about 1.46× faster than the traditional approach using the monolithic SQLite; the result could

be improved to become up to 2× faster by considering more efficient attestation mechanisms.

Notice that if the original code base gets larger, then the benefit increases.

73

 0
30

60
90

12
0

15
0

Insert Delete Select

Ti
m
e
(m
ill
is
ec
on
ds
)

monolithic SQLite (baseline)
multi-PAL SQLite

90

106
96

132 134
127

W/ Attestation

 0
20

40
60

80

Insert Delete Select

Ti
m
e
(m
ill
is
ec
on
ds
)

monolithic SQLite (baseline)
multi-PAL SQLite

35

47
41

75 77
71

W/O Attestation

Figure 3.9: Performance comparison between the multi-PAL and the monolithic SQLite
databases. (lower is better)

At the application level (i.e., without considering the underlying TCC overhead), the execu-

tion time of SQLite is similar for queries that are executed in the monolithic PALSQLITE or in

the small PALs. This is expected since they execute essentially the same code on the same state.

Consequently, the performance differences are mainly the result of the different size of the code

that is loaded in the trusted environment.

Finally, we measured the overhead ofPAL0 in our end-to-end experiments. PAL0 terminates

its execution in about 6ms. Considering attestation, this corresponds to an overhead of 6.6% for

insert, 5.6% for delete, 6.2% for select. Without attestation, the overhead is 17.1%, 12.7%, 14.6%

respectively.

3.4.3.3 Optimized vs. non-optimized secure channels

We compare our secure storage construction (Section 3.3.4) with the original one of XMHF-

TrustVisor (i.e., seal and unseal). Both use symmetric cryptography, but XMHF-TrustVisor’s se-

74

cure storage requires more operations for: (i) managing TPM-like data structures because it im-

plements a software micro-TPM; (ii) using AES for encryption, in order to guarantee secrecy

of sealed data; (iii) retrieving random numbers for the initialization vector to guarantee seman-

tic security; (iv) using SHA1-HMAC for integrity protection. Instead, our construction only uses

SHA1-HMAC, keyed with the TCC secret created at boot time, to derive identity-dependent keys.

The results of the performance measured inside the hypervisor are: 15µs and 16µs for kget rcpt

and kget sndr; and 122µs and 105µs for seal and unseal respectively. The operations in our con-

struction are respectively 8× and 6.5× faster. In our experiments, using XMHF-TrustVisor’s na-

tive secure storage (recall from Section 3.3.4 that both can be used to implement secure channels)

does not change the results in Figure 3.9 noticeably. The difference in overhead is at least two or-

ders of magnitude smaller than the end-to-end execution time. Notice however that in large-scale

services of several interconnected PALs and long execution flows, such overhead could become

non-negligible.

3.5 Performance Model for Code Identification

In this section we devise a performance model for code identification to study under what cir-

cumstances using the fvTE protocol outperforms the traditional approach of monolithic trusted

executions. For the traditional approach, we can model the costs for code execution as follows:

T = (tis(C) + tid(C) + t1)︸ ︷︷ ︸
code protection cost

+ (tis(in) + tid(in) + t2)︸ ︷︷ ︸
input protection cost

+

(tis(out) + tid(out) + t3)︸ ︷︷ ︸
output protection cost

+ tatt︸︷︷︸
attestation cost︸ ︷︷ ︸

TCC-dependent costs

+ tX︸︷︷︸
execution

cost

We distinguish between TCC-related costs and application-level costs. The latter (tX) is invari-

ant with respect to the trusted execution protocol actually used, and only depends on the plat-

form where the application runs. The former instead depends on the TCC and on the imple-

mented protocols for isolation (is), identification (id) and attestation (att) of a code base (C) and

input/output (in/out) data. As shown later, identification and isolation costs are linear in the

size of the argument (C, in, or out), while t1, t2, t3 are constant additional costs—so linear costs

are modeled as y = ax+ bx+ c.

The code protection cost thus impacts part of the overall cost for a trusted execution. Such

an impact is less noticeable when the input/output data protection costs or the execution cost

75

 0

 50

 100

 150

 200

36 135 528 2097 4194 8384

Ti
m

e
(m

s)

Code size (KB)

Oth. constant-time ops

Scratch Memory Alloc

Code Isolation

Code Identification

Figure 3.10: Breakdown of the code registration costs inside XMHF-TrustVisor.

outweigh the code protection cost. However, the focus of this chapter is on code identification.

Therefore, for the sake of performance modeling, we put emphasis on trusted executions where

the code protection cost outweighs the other terms with the following approximation

T ≈ tis(C) + tid(C) + t1

The experimental quantification of these costs in XMHF-TrustVisor is shown in Figure 3.10. We

built a set of PALs each having an increasing number of NOP (no operation) instructions. The

times for code isolation and identification grow with code size. Other operations, including

scratch memory allocation, are code-independent and have constant cost (i.e., t1 overall).

We model the costs of the fvTE protocol in a similar way:

TfvTE =(tis(E) + tid(E) + nt1) + n (tis(in) + tid(in) + t2)+

n (tis(out) + tid(out) + t3) + tatt + tX

Here E is the set of n PALs in an execution flow, and we define |E| as their aggregated size. Code

protection costs are approximated as—notice the per-PAL constant costs (nt1):

TfvTE ≈ tis(E) + tid(E) + nt1

Our protocol is more efficient than the previous approach when protecting the execution flow

is less expensive than protecting the whole code base. This can be defined as:

efficiency
ratio

T

TfvTE

 positive, if > 1

negative, if ≤ 1

A positive efficiency ratio indicates that it is worth having multiple PALs. Instead, a negative

efficiency ratio indicates that it is better to protect the whole code base. The (positive) efficiency

condition can be defined as follows. First, given the linearity of the code isolation and identifi-

76

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600
 1800
 2000

 2 4 6 8 10 12 14 16

C

E|
 (K

yl
ob

yt
es

)

PALs in Execution Flow

Efficiency Condition is false

empirical check

trend

multi-PAL SQLite DB

Figure 3.11: Validation of the performance model. The trend line divides the plane in two parts.
Points (x; y) = (difference between size of the code base and aggregated size of executed PALs;
number of executed PALs) above (resp. below) the line indicate when the presented protocol is
more (resp. less) efficient than a monolithic execution. The slope of trend line represents the t1/k
constant in the efficiency condition.

cation costs, we group them as tid(C) + tis(C) = k|C| for some constant k, where |C| is the size of

the code base. Then:
k|C|+ t1
k|E|+ nt1

> 1 → |C| − |E|
n− 1

>
t1
k

efficiency
condition

The efficiency ratio depends on both the size of the code base and the size of the execution

flow. However, the efficiency condition depends only on their difference (in addition to n and

t1/k, the architecture-specific constant discussed later).

We validate the model through an experiment that uses different sets of PALs with cardinal-

ity from 2 to 16. For each set we varied the aggregated size |E| (i.e., the size of executed code).

We empirically measured the maximum aggregated size for each set for which the fvTE proto-

col is faster than the traditional monolithic approach. This corresponds to the empirical check in

Figure 3.11. Notice that the trend of these empirical measurements is well approximated by a

straight line which divides the plane in two areas: the shaded one where the efficiency condition

is false, and the other area where it is true. The slope of the line represents the constant t1/k.

Discussion. The constant t1/k depends strongly on the TCC. In our experiments, it depends

on our testbed hardware platform and the software (XMHF-TrustVisor, see Section 3.4.1) that

provides trusted computing services. In Flicker [52] both terms are larger due to the interaction

with the slow TPM, particularly k for the identification. Instead, technologies such as Intel SGX

[189] are expected to reduce significantly both t1 and k. However, since the constant also depends

on the software that supports trusted executions, it is difficult to predict its trend without running

experiments on a real platform.

77

3.6 Other Related Work

Code identity and trusted executions. Code identity has been originally defined as the digest of

a program’s code in [114]. The same definition was later borrowed by several architectures (see

Section 2.1). Tools that leverage some of these architectures, such as Flicker [52], TrustVisor [53],

Haven [38] do not address the problem of code size inside the trusted environment and execute

monolithic applications, whose identity can be verified remotely. In this thesis, we do not change

the definition of code identity (i.e., the hash of the binary), and we observe that another way for

the client to verify a remote execution is to (be able to) make trust inferences. Therefore, by

building a robust chain of trust throughout the modules of a large code base, it is sufficient for

the client to verify only part of the chain to infer that the execution of the whole code base was

performed correctly.

OASIS [78] proposes to deal with an application whose size is greater than the cache by build-

ing a Merkle tree over its code blocks. However, it requires new hardware support, so it does not

provide general solution that retrofits existing trusted computing components. Our protocol in-

stead could leverage OASIS by implementing our TCC abstraction (Section 2.3) and, with minimal

modifications, it could also include our novel secure storage construction (Section 3.3.4).

The BIND service [73] leverages fine-grained code attestation to secure a distributed system.

BIND targets small pieces of code, while our protocol is able to provide execution integrity guar-

antees of large code bases. Additionally, although small modules could use BIND to build a

chain by verifying each other, the resulting construction (similar to that in Section 3.3.1) would

not be verification efficient and could incur verification loop issues (Section 3.3.3). Our proto-

col addresses these drawbacks and guarantees integrity when the client eventually verifies the

execution.

Another mechanism [115] proposes an efficient verification primitive in which some code for

hash computation is embedded in the software code at compile-time. The program execution

is traced by deterministically hashing inputs and outputs of sequences of instructions. Unfortu-

nately, it requires some re-computation, which diminishes the advantages of outsourcing com-

putation. Also, its security relies on the strong assumption that the adversary does not perform

code analysis.

One research project related to ours is the On-board Credential (ObC) Project [116, 117, 118].

The ObC Project defines an open architecture based on secure hardware [119, 120] for the in-

stallation and execution of credential mechanisms on constrained ObC-ready (typically mobile)

devices. It enables a service provider to provision secrets to a family of (installed) credential

78

programs [117], which are executed slice-wise in a secure environment [116], possibly using

the TPM’s late launch mechanism [118]. Such credential programs are application or platform-

specific, while our work is concerned about the efficient verification of executions that are per-

formed on a generic trusted component. The chain of trust among the slices is based on the slice

endorsement token, containing the family and program-specific secrets, which is created online on

a per-slice basis. In our case, the chain is explicit in each PAL through a reference to the previ-

ous/next PAL’s identity, and only needs an offline setup (i.e., the process of making the code base

available on the cloud provider) performed by the service authors. Also, access to secured data is

controlled by (our) construction through the trusted component, allowing secure data exchange

among PALs pairwise.

Defining code modules. Making modules/partitions out of programs is a programming-langua-

ge problem that has been widely studied, e.g., in the context of privilege separation [121], parallel

program execution [122, 123] and secure distributed computation [69]. Defining such a method

for PALs is orthogonal to, and out of the scope of, the presented contribution. We mention how-

ever that we built our SQLite-based prototype (Section 3.4.3) by using both static and dynamic

program analysis to distinguish the non-active code and remove it, and performing extensive

testing to check the correctness of the resulting active code. As an additional example, in an-

other application for secure image filtering, we implemented and protected each filter as a sepa-

rate task, and then created a secure and efficiently verifiable chain using our protocol, though a

different implementation of the TCC primitives (using Flicker [74]).

3.7 Summary

This chapter shows that current trends in Trusted Computing create a trade-off between secu-

rity and efficiency due to the identity assignment for large code bases. To remove such trade-off,

we introduce the multi-identity approach through a general protocol that enables efficiently ver-

ifiable (at the client) and flexible (at the cloud provider) trusted executions of arbitrarily sized

code bases by loading and identifying only the actively executed code. The protocol shows pos-

itive results already with a code base of 1MB that implements a real-world database engine. We

address the challenge of how to handle efficiently a large state in a trusted execution in Chap-

ter 4.

79

80

Chapter 4

Support for Large-scale Data in
Integrity-protected Virtual Memory

This chapter looks at how we can supply lots of data to a program executed using the exe-

cute primitive (recall Section 2.3.1). Two main motivations drive this research step. First, many

outsourced services habitually process terabyte-scale data [5, 6, 7, 8, 9, 10, 11]. Second, the state-

of-the-art security protocols that are available to provide integrity guarantees for such services

make a trade-off between security and functionality.

Elaborating on such trade-off, previous systems either support the processing of small pieces

of data [52, 53] or they target specific services such as a database engine [124] or MapReduce ap-

plications [39]. Recent work such as Haven [38] has shown how to support unmodified services,

and therefore includes large-scale data processing applications. However, as we also mentioned

in other chapters, Haven relies on a considerable TCB that includes a library OS. So, on one hand,

although a large TCB can give support for the execution of general services, it comes with the

downsides of a large TCB as already discussed in Section 1.4.2. On the other hand, limited sup-

port for small pieces of code and data and application-specific frameworks severely shrink the

domain of services that can be run securely.

These reasons led us to devise LaStGT, a system that in spite of its small TCB can handle a

Large State on a Generic Trusted component. LaStGT supports a wide range of service applica-

tions since it focuses on x86 code, rather than specific frameworks, and only assumes the avail-

ability of paged virtual memory—which is widely used in today’s processors. In contrast with

previous work, LaStGT is built on a TCC abstraction (Section 2.3.1, enhanced in Section 4.5.5). So

it can work on different hardware architectures.

LaStGT presents three additional key features. First, it focuses on not needing to modify the

81

code of service applications, thereby making their implementation independent from LaStGT.

For example, in our evaluation (Section 4.6) we did not modify the source code of the SQLite

database engine. Consequently, LaStGT does not require the service developers to know about,

or implement anything related to, LaStGT’s security internals. Second, it imposes no additional

verification effort (compared to the protocol in Chapter 3) because it does not heavily change

how a client verifies a remote execution. Third, its data structures and procedures can be easily

customized. As these mechanisms are implemented at the application-level, they can be easily

optimized or upgraded. We defer the overview of LaStGTto Section 4.2.

Contributions

• We present LaStGT’s design, describing how it can protect large-scale data in memory effi-

ciently, and how it enables a client to verify the identity of the service code, data and results.

• We detail how LaStGT has been implemented on XMHF-TrustVisor [53] using a commodity

platform equipped with a TPM. Also, we discuss a possible implementation using the Intel

SGX instruction set and propose some optimizations. In addition, we highlight important dif-

ferences between the two architectures and how LaStGT deals with them.

• We evaluate our XMHF-TrustVisor-based implementation using terabyte-scale data. We show

that LaStGT has a small TCB compared to state-of-the-art prototypes, and good performance.

We also discuss expected improvements of our prototype with an SGX-based implementation.

4.1 Previous Work on Trusted Large-Scale Data Processing

We review previous work on trusted executions focusing on how generic systems handle data

I/O and how application-specific frameworks handle large-scale data. Also, we review recent

work on secure execution based on SGX and additional approaches for ensuring the integrity of

computation on large data.

Trusted Execution Environments for Generic Applications. Flicker [52], TrustVisor [53], Mini-

box [62] and Haven [38] all support secure execution (as we mentioned in Section 2.1) and they

handle data I/O as follows. Flicker [52] and TrustVisor [53] transfer data to/from the secure

environment at execution startup and termination only. The application thus receives all input

data upfront. This can be inefficient if not all data is used, and the data size is also bounded by

the available physical memory. MiniBox [62] and Haven [38] implement new system calls for

dynamic memory and secure file I/O. Both construct a hash tree over the data, encrypt the data

82

and handle I/O through the interface with the untrusted environment for disk access. How-

ever, working with a full hash tree in memory does not scale for applications that operate on a

large state, since the hash tree itself can consume a large amount of memory. Also, their design

exposes several system calls, though fewer than an OS interface, that must be secured against

Iago attacks [97].

Application-Specific Trusted Execution Environments. M2R [125] and VC3 [39] were designed

for trusted execution of large-scale MapReduce applications. VC3 leverages Intel SGX for guar-

anteeing integrity and confidentiality of map and reduce functions. M2R improves the level of

privacy by hiding the memory access patterns through a secure data shuffler. Compared with

the earlier platforms, these two systems achieve a small TCB at the expense of generality, since

they only support MapReduce.

Other SGX Applications. Graphene-SGX [56, 222] can run unmodified Linux applications. As

it includes a library OS, the same arguments that we used for Haven apply. Scone [40] secures

Docker container applications while Panoply [63] secures Linux applications. The former sup-

ports multi-threaded container applications and has a larger TCB, mainly due to the libc library,

while the latter is designed for multi-process applications and has a smaller TCB since it exposes

a POSIX-level interface thus leaving the libc library outside the enclave. Ryoan [83] secures a

distributed sandbox by leveraging SGX to ensure that possibly untrusted code can use, but not

leak, sensitive data. These systems [40, 63, 83] are orthogonal to LaStGT since they focus on

secure concurrent/distributed processing and do not target large-scale data. In addition, they

expose from tens [40, 83] to hundreds [63] of interface calls, many of which are related to data I/O

from/to files. LaStGT complements them with secure in-memory large-scale data handling that

requires no additional interface, but instead relies on page faults and handles data authentication

in a scalable fashion.

Additional Approaches. TrustedDB [124] and IntegriDB [31] are secure and scalable database

systems. Both are application-specific but they have different approaches. TrustedDB uses trusted

hardware, as LaStGT does, and it is fast. IntegriDB only makes cryptographic assumptions and

does not leverage trusted hardware, but performance suffers from the use of expensive crypto-

graphic primitives. LaStGT is not application-specific and does not require expensive crypto-

graphic operations (besides one attestation) as it leverages hardware-based security.

4.2 Overview of LaStGT

We give an overview of LaStGT, presenting its key ideas, benefits and challenges.

83

trusted environment

access data
in block bi

handle
page fault

is bi in
memory?

load data

validate data

yes

continue execution flow

no

resume
4

1

2

3

trusted
execution

application
flow

application execution flow

Figure 4.1: Example of a program execution inside a trusted environment that offloads data I/O
from storage or network devices to untrusted code.

4.2.1 Operation

LaStGT allows a client to verify the results produced by an application that processes large-

scale data on an untrusted platform. The execution of the self-contained service application is

secured by means of a trusted hardware component. This component enables the establishment

of an isolated execution environment, where the trusted service code is identified, executed and

attested. The service processes requests received from a client by reading and writing local state

of up to a terabyte of data (in our current implementation) maintained in a set of files. LaStGT

ensures the integrity of the data used during the secure execution, exploiting the key ideas de-

scribed below. Next, the service generates an attested reply for the client. The reply binds to-

gether the identities of the service code, the local state used by the service, the client’s request,

and the reply. Finally, the client verifies and accepts (if valid) the reply.

4.2.2 Key Ideas

The core of LaStGT is a secure and efficient data loading technique purely based on paged

virtual memory and asynchronous handlers (Figure 4.1). LaStGT presents the large state to the

service code as a memory region in its address space, thus allowing it to access the data directly

(shaded area, left-side) without requiring explicit calls to privileged code. Data is however not

preloaded for efficiency reasons and possible memory constraints. Instead, accesses result in

page faults Ê that LaStGT handles transparently by moving the data from the untrusted part of

the system Ë into the secure environment. While the service application remains interrupted, the

84

data is cryptographically validated Ì by a trusted application-level handler (shaded area, right-

side) whose execution is asynchronous (i.e., independent from the service application). Only if

the loaded data is valid, is the interrupted service allowed to resume Í.

Benefits. Some of the benefits that this design offers include:

• First, it reduces the problem of large-scale data handling to a virtual memory management

problem. As virtual memory is widely supported, LaStGT can be implemented on pretty

much any Trusted Computing-capable systems, also enabling hardware diversity.

• Second, it keeps the TCB small by not including the OS. Moreover, it does not involve system

calls to privileged or untrusted code, that may create vulnerabilities (for instance due to

Iago attacks [97]).

• Third, it does not need alterations to the service code since data validation and integrity

protection is done transparently.

• Fourth, data validation, integrity protection and (un)loading are handled by customizable

application-level code. This allows tuning the authenticated data structures to data access

patterns, upgrading deprecated cryptographic algorithms, or devising application-specific

data eviction policies.

4.2.3 Challenges

Implementing LaStGT has several challenges:

• Offloading I/O securely to untrusted code. Transferring data (e.g., disk I/O) does not represent

useful computation for the application, but can increase the TCB size and put peripherals

in the trust boundaries. Offloading such operations to untrusted code reduces the TCB but

requires means to validate or protect data when it crosses the trust boundaries.

• Transparency. Services should only have to access data and perform computation, without

dealing with orthogonal issues such as data loading and state management. Performing

these tasks transparently simplifies service development and, ultimately, the use of LaStGT.

• Securely overcoming memory constraints. Physical memory is limited, especially for secure

executions. For example, on a recent Dell Optiplex 7040 [202], SGX is constrained to use

only up to 128MB of memory (out of 32GB). Hence, an efficient memory management is

needed for handling a terabyte-scale state and the associated authenticated data structure

in memory.

• Dealing with architectural differences. The platforms that enable trusted executions have dif-

85

1. provide state authentication data

2. outsource
 large state

3. send  
 request

5. receive  
 authenticated

 reply

4. execute  
 command

SV

P

Figure 4.2: Three-party system model that includes the (client) Verifier, the Provider and the
(data) Source.

ferent architectures. This makes hard to hide their differences through abstraction. For

example, XMHF-TrustVisor and SGX use completely different mechanisms for secure ex-

ecution and for paging. So, it is challenging to devise a single design that works for both

platforms.

4.3 Model

We extend the model introduced in Section 1.3.1 with some additional parties that are specific

to LaStGT.

We assume three parties (Figure 4.2): a trusted source S producing lots of data (user state);

an untrusted service provider P with significant computational resources; a trusted verifier V

that uses P ’s resources. P and V directly derive from our basic model in Section 1.3.1. S gives

authentication data to V (Step 1) and the user state to P (Step 2). V sends requests to P (Step 3),

who applies them to the data (Step 4) and returns replies (Step 5) that V checks. Here we focus

on a single request/reply exchange with the client. Simple extensions can be devised to deal

with subsequent requests and to authenticate updates to the state.

4.4 Design of LaStGT

We introduce the architecture of LaStGT (Section 4.4.1) and describe how data is protected at

the source (Section 4.4.2), processed by the service provider (Section 4.4.3), and verified by the

client (Section 4.4.4). In Section 4.5 we detail implementations on two different Trusted Comput-

ing architectures.

86

OS

Supervisor

 Hardware

other
untrusted
software

service code
state handler

SMM
(state map manager)

run/
resume

fault

address
space 
changes

accept 
/deny

organize
state maps

disk/network
I/O

untrusted application code

SGX/TPM

state maps

trusted application code

untrusted hardwaretrusted hardware

(possibly)
trusted
privileged
code

untrusted
privileged 
code

LaStGT library

Figure 4.3: LaStGT’s system architecture.

4.4.1 Architecture

LaStGT’s architecture is depicted in Figure 4.3. We distinguish between three types of compo-

nents, namely from the bottom up: hardware (CPU, memory, security chips, disk, Trusted Com-

puting hardware, etc.), privileged code (OS, drivers, etc.) and user-level (or application-level,

non-privileged) code. We also distinguish between two types of code execution: trusted code

(left-side) and untrusted code (right-side) run inside and outside of the trusted environment, re-

spectively. Depending on the Trusted Computing component, the Supervisor’s privileged code

must be trusted (e.g., in XMHF-TrustVisor) or can be untrusted (e.g., in SGX), as discussed in Sec-

tion 4.5. The two hardware/software stacks represent the trusted and the untrusted execution

environments. A hardware-based (e.g., a TPM and Intel TXT, Intel SGX, or a secure coprocessor)

isolation mechanism prevents untrusted code from tampering with the trusted counterpart.

User-level code includes both untrusted and trusted code. The trusted user-level code is trans-

ferred and identified at runtime inside the trusted environment. The untrusted code organizes

data and memory for the trusted user-level code, which validates the data before using it. Ta-

ble 4.1 lists key software modules in LaStGT, where they execute, and what implementation they

apply to. In Section 4.4.3 we discuss how they work together to bring data securely into the

trusted environment.

87

Component Functionality Trusted Trusted Computing arch. Implementation

service code self-contained general purpose service 3 both app-level code

state handler check modifications to secure address
space; data validation and protection

3 both app-level code

SMM organization of state in memory; pro-
posal of new memory maps

7 both app-level code

Supervisor

(un)map pages in trusted application
address space; switch among compo-
nents

3 XMHF-TrustVisor hypervisor

proposal of modifications to isolated
address space

7 SGX OS-level driver

Table 4.1: LaStGT’s software components.

4.4.2 From User Data to LaStGT-compatible State

The data produced by the data source has to be protected for client verification and struc-

tured for processing it securely and efficiently on LaStGT. How data is structured and protected

impacts the efficiency of computing the metadata at the data source, the performance of verify-

ing the data at the untrusted provider (e.g., how much data has to be loaded to verify the data

that is used) and the verification effort (i.e., time and data required) at the client.

This leads to the following requirements for protecting the data. First, it should be efficient

and incremental, so the metadata can be computed as data is produced. Second, it should enable

piece-wise data validation, so to handle only subsets of data in memory. Third, it should enable

constant time verification by the client.

LaStGT provides these features by pre-processing the user data into a state hierarchy of sub-

components, consisting of blocks of user data at the leaves and structural and authentication

metadata higher up in the tree (Figure 4.4). Each component has a cryptographic identity that

depends on its sub-components’ identities, and ultimately on the user data. These identities form

a cryptographic hash tree optimized for dealing with a large state, as described in Section 4.5.2.1.

The structure is built using an incremental procedure and allows piece-wise data loading and

validation through the concepts of data chunk and block. Also, it enables constant time verification

at the client by checking the state identity, i.e., the identity of the root.

88

STATE ROOT

directory

directory master-chunk master-chunk...

chunkchunk

1 0 . . 0 1 1 0 0

block … block

...

......

h ie r a r c hy pr im i t i ves
register

(handler code)

validate
(handler code)

read/write
(service code)

desc r ip t i on
one-time call,
constant-time,

small memory footprint

per-item validation,
small memory footprint

r/w access to
in-memory data
as in original file

state root

chunk
datametadata

a block spans one or more
pages in memory

directory indicates list of
files, master-chunk

indicates a file, both have
authentication metadata

a file slice

data blocks of file slice, 
hash tree of blocks

a block spans one or
more pages in memory

1 0 1 . . . 1 0 1 1 0 1 1 0 0

Figure 4.4: State hierarchy. A directory can contain several master chunks and (sub-)directories.
The relevant primitives (register, validate) build a chain of trust between the service reads/writes
and the state root verified by a client.

4.4.3 Data Processing at the Untrusted Provider

We describe how LaStGT manages the service code execution (Section 4.4.3.1), how data is

read from disk (Section 4.4.3.2), loaded into the trusted environment (Section 4.4.3.3) and re-

claimed (Section 4.4.3.4).

4.4.3.1 Service Execution

A LaStGT execution begins by registering the state root identity (provided by the data source)

with the state handler in the trusted execution environment (Section 4.5.2.3). This is a one-time

procedure that must be secure since the integrity of the entire state hierarchy, including the user

data, depends on the correctness of the state root identity. It is not necessary to load the full state

upfront, since the root is sufficient to validate any data that is loaded during the execution. After

the execution terminates, the registered (root) identity of the input data is also included in the

attestation so that a client can verify it.

The service code is then executed and it uses regular I/O calls to access user data, though

without issuing any system call. I/O calls use the LaStGT library to access the user data. The

library has a memory-mapped view of the state hierarchy, which it traverses beginning from

the registered state root to access the data. As the data, including the metadata, is not available

upfront in the isolated memory, the library execution is interrupted by page faults, which are

handled by the Supervisor, as described in the next section.

89

In-Memory Embedded Locators (IMELs). A naive loading would allocate (for example) 240

virtual addresses upfront for a state hierarchy of 1TB, and each page access would trigger a page

fault. This is feasible on 64-bit architectures, but the SMM would have to ask the OS for many vir-

tual address mappings, most of which may not be used. Also, the OS may be required to remap

physical pages and do some paging to disk. This would occur similarly for the Supervisor while

managing pages in the trusted execution environment, thus adding overhead. In addition, some

platforms, e.g., XMHF-TrustVisor, use 32-bit addresses and so have architectural limitations.

To deal with these overheads and constraints, LaStGT uses IMELs to reuse addresses and

memory. IMELs are memory pages embedded in the state hierarchy at runtime between a par-

ent and a child component (e.g., a master chunk and a chunk). Specifically, a parent component

points to an IMEL that contains the address of its child component, rather than pointing to its

child component directly. By not loading the IMEL in isolated memory when the parent compo-

nent is first loaded, this makes the service code raise a page fault on a memory page that contains

an address, rather than the child component. So IMELs just provide positions in memory. They

can be filled at runtime and loaded in isolated memory together with the child components they

reference. Similarly, they can be unloaded together with the component, so to reuse the allocated

memory with other data.

4.4.3.2 Loading state from disk into untrusted memory

The Supervisor delegates to the untrusted SMM the handling of page faults related to data

that is not yet in main memory. In particular, it does so by transferring control and providing

the fault address to the SMM (Section 4.5.2.5). Performing such tasks at user level moves the

code out of the Supervisor’s TCB, which is important in architectures where the Supervisor must

be trusted. The SMM uses the fault address to figure out what state component (see hierarchy

Figure 4.4) should be loaded from disk. It then loads the component from disk and places it into

untrusted memory. For any component that is in memory (e.g., chunks, IMEL, etc.), the SMM

maintains a map item in a map list (Figure 4.7, Section 4.5.2.2). The map list is updated before the

SMM returns control to the Supervisor. These maps will be used by the Supervisor for moving

pages into the trusted environment, and by the state handler for validation.

4.4.3.3 Authenticated lazy loading from untrusted memory

LaStGT optimizes loading data from untrusted memory into the isolated memory using au-

thenticated lazy loading, i.e., pages or blocks are loaded on demand (Section 4.5.2.4). This is done

90

either after a page fault on data already in untrusted memory or after data has been fetched from

disk. In particular, the Supervisor handles page faults by using the memory maps to locate the

pages; if the Supervisor is trusted, it maps the pages in isolated memory; while if it is untrusted,

it provides memory pages in isolated memory where the data will be copied into. The state

handler is then invoked to validate them.

Page and data validation are performed within the trusted environment by the state handler

before the service code can access the data. This ensures that the library (and thus the service)

can only access valid data—there is no data validation performed within the service code, so the

operation is fully transparent to the service code. The procedure is performed at the user-level

because the Supervisor may be untrusted depending on the Trusted Computing-architecture.

4.4.3.4 Reclaiming memory

The untrusted SMM can reclaim state components from isolated memory by updating the

map list (Section 4.5.2.5). The reclaim is validated and accepted (or denied) by the state handler

and, only when it is accepted, the Supervisor is allowed to withdraw the reclaimed pages from

the trusted execution environment.

4.4.4 Client Verification of a Remote Execution

As in Chapter 3, the verification of a remote execution is equivalent to verifying a hardware-

based execution attestation. The attestation vouches for the identities of: 1) the executed code, 2)

the input and 3) output data, 4) a client-provided nonce (Section 4.5.2.6). A successful verification

validates the signature, using a manufacturer-certified public key (or an Attestation Verification

Service [194]), and makes sure that the attested identities are the intended ones.

4.5 Implementation of LaStGT

4.5.1 Overview

Figure 4.5 zooms into the architecture (Figure 4.3), detailing the implementation of LaStGT.

In particular, Figure 4.5(a) abstracts the specific details of the hypervisor-based implementa-

tion (Figure 4.5(b)) and of the SGX-based implementation (Figure 4.5(c)). This helps identify-

ing common parts of LaStGT whose code can be shared across different Trusted Computing-

architectures.

91

state
handler

service
code

 SMM

Hardware

Supervisor OS

loadState,
storeState

isolateMemory,
unisolateMemory

createEnvironment,
runAt, mapIn, mapOut

architecture-

adaptation library

memory

management

register,
validate

LaStGT

lib
exit adaptation

(a) LaStGT generic implementation.

state
handler

service
code

HardwareTPM

Hypervisor

OS

SMM

runAt, createEnvironment, mapIn, mapOut

unisolateMemory, isolateMemory

loadState,
storeStatehyper-call

dispatcher

call

trap-handler

Nested
Page
Tables

register,
validate

LaStGT

lib

(b) Trustvisor-specific implementation.

state
handler

service
code

 SGX / CPU

SGX-

SGX Kernel
Driver

OS

EENTER,ERESUME

SMM

runAt, createEnvironment, mapIn, mapOut

unisolateMemory

loadState,
storeState

ECREATE,
EADD,
EEXTEND,
EINIT

EMODT,ETRACK,EREMOVE
EAUGEACCEPT(COPY)

system-call

dispatcher

wrapper
LaStGT

lib

isolateMemory

EEXIT

trap
handler

register,
validate

(c) SGX-specific implementation.

Figure 4.5: LaStGT abstraction of non-common mechanisms (Figure 4.5(a), black boxes). Trusted
Computing-architecture-specific implementations (Figure 4.5(b) and Figure 4.5(c)).

92

The primitives in bold are common across implementations. Inside the SMM, they allow the

untrusted user-level code to set up the environment (createEnvironment) for the execution of

the trusted user-level code, to run it (runAt), to map state components data and metadata in and

out (mapIn, mapOut) of the isolated address space—though the state handler validates them

first—and to manage state components on disk (loadState, storeState) through the untrusted

OS. At the privileged level inside the Supervisor, the primitives (isolateMemory, unisolateMem-

ory) allow the Supervisor to provide memory pages to (or to withdraw them from) the isolated

address space of the trusted application code according to the maps configured by the SMM. The

attestation primitive that is used by the state handler is not shown to simplify the description and

the figures.

Several primitives need to interact with hardware and software that are specific to the Trusted

Computing architecture that is used (abstracted by the black boxes in Figure 4.5(a)). First, the

architecture-adaptation library includes code to execute a hyper-call or a system-call handled by a

dispatcher, or to execute an instruction wrapper, or a call that traps into a trap-handler. The memory

management and the exit adaptation boxes have very specific functions. The former touches the

state handler due to the EACCEPT and EACCEPTCOPY SGX instructions (Section 4.5.4) that the state

handler runs to accept changes to enclave pages. The latter instead hides the EEXIT instruction

in SGX, or a simple return of a function in XMHF-TrustVisor, to terminate the execution. Finally,

LaStGT simply uses the OS and standard libraries for managing state on disk.

Inside the trusted application code, the LaStGT library mainly navigates the state hierarchy,

while the register (Section 4.5.2.3) and validate (Section 4.5.2.4) primitives hide the details of the

memory maps and of the authenticated data structure embedded in the LaStGT-compatible state.

Also, in XMHF-TrustVisor, the trusted application code just directly calls the hypervisor for the

attestation (not shown). In SGX, instead, it has to run dedicated instructions to terminate, to

accept pages and to attest, thereby making the code more dependent on the Trusted Computing

architecture.

To summarize, LaStGT can deal with the architectural differences between XMHF-TrustVisor

and SGX through small adaptations within a single design. Next, we describe the architecture-

independent components of LaStGT (Section 4.5.2), our implementation for XMHF-TrustVisor

(Section 4.5.3), and a design for SGX (Section 4.5.4) in more detail.

93

210

220

230

240

220 225 230 235 240 245 250

Tr
ee

 s
iz

e
(b

yt
es

)

State size (bytes)

bytes/block 210

215

220

225

230

Figure 4.6: Hash tree size (y) as a function of the state size (x) for different block sizes, with a 32
bytes hash (e.g., SHA256). Shaded area is our target.

4.5.2 Trusted Computing-architecture-independent Details

4.5.2.1 Building the state

As discussed in Section 4.4.2, the user state and its meta data is organized in a state hierarchy

(Figure 4.4). The state root contains one hash value that both the service and client code rely on to

validate the authenticity of the data. A directory is a set of (sub-)directories and master chunks.

A master chunk maps one-to-one to a file in the filesystem. Each master chunk includes a set of

chunks, each of which corresponds to a contiguous sequence of user data in the file. The user

data in a chunk is further logically divided into a set of blocks. Each chunk also includes metadata,

called a chunk descriptor. It contains a static hash tree built from the chunk’s data. The leaves of

the tree are computed by hashing contiguous bytes of a block in the chunk. The root of the tree

represents the identity of the chunk. The identities of the chunks are hashed to form the identity

of their parent master chunk, and so on up to the root, which is the identity of the entire state.

Only a configuration file and two parameters (chunk and block size) are required to build a

LaStGT-compatible state. This information is defined by the user. The configuration file is a list

of files (each one producing a master chunk) and directories to be included in the state.

This design of the state hierarchy allows to manage data in memory very efficiently. We can

load fixed-size chunks from disk as needed, without dealing with the entire state data at once.

Then we can load blocks from untrusted memory into the trusted execution environment, possi-

bly batching the transfer of the pages spanned by a block. Also, as the authentication metadata

is distributed across the state hierarchy, we can easily and locally validate data blocks in a chunk

and update the hash tree when a block is modified. In fact, the hash trees of other chunks can

remain on disk.

94

Distributing the authentication data is important for our target state sizes. A single file-wide

(as in Minibox) or disk-wide (as in Haven) hash tree has several drawbacks in comparison. First,

a single tree can take up to gigabytes (Figure 4.6, top-right of shaded area). Second, the size of the

tree adds complexity to cache it in secure memory and in untrusted memory. Finally, one could

opt to load a data block together with a short membership proof (linear in the height h of the tree).

However, when using a single tree for a 1TB of user data (240 bytes) and small blocks (210 bytes),

the hash tree is tall h = 31, so the proof is large, i.e., (h− 1) nodes× 32 bytes/node = 960 bytes or

93% of block size, and verifying it takes many (i.e., h− 1) hashes.

4.5.2.2 Maps for State Organization and Memory Management

LaStGT uses memory maps for state and memory management. Figure 4.7 shows some entries

in an example map list that the SMM uses to store type, address and size (in pages) of the mem-

ory the entry represents. The SMM uses different map types for metadata and data (currently

15 types, including those for IMELs, debugging and performance measurements), including a

special one to reclaim a map. The maps are also shared with the Supervisor which manages the

physical pages (in SGX, or the memory access permissions in XMHF-TrustVisor), and with the

state handler that validates changes to the address space.

Memory accesses to data that is not in the trusted environment trigger a page fault and the

Supervisor is invoked. The Supervisor looks up the page fault address into the memory maps. If

the address points to data mapped in memory, this is a map hit and the Supervisor performs lazy

loading in the secure environment (Section 4.5.2.4). If the address instead points to non-mapped

data, this is a map miss and the Supervisor triggers the procedure for loading state from disk or

for shutting down the execution in the case of an illegal access (Section 4.5.2.5).

The state handler uses the maps to locate metadata for validation and to ensure that pointers

to supposedly non-mapped components do not incorrectly dereference mapped components—

they must produce a fault. Notice that the initial maps (if any) must be embedded in the trusted

user-level code and so included in the code identity eventually verified by a client. So, initial and

subsequent maps can be trusted. To avoid tampering from the SMM, who might maliciously

swap map types (e.g., the state root map type for a IMEL type) for instance, the state handler

maintains a secure copy of the map list.

95

function (args)
{

/* this trusted function */
/* has some fancy code */

}

handler (memory_args)
{

/* this trusted handler */
/* 1. validates args */
/* 2. modifies the trusted
 memory space */

}

trusted
source code

entry points

0x08900000
0x09a00000

map item

type
(8bits)

address
(64bits)

pages
(32bits)

map list

D 0x0b000000 218 (1G)
H 0x4b000000 1 (4K)
C 0x4b001000 215 (128M)
H 0x53001000 1 (4K)
C 0x53002000 215 (128M)

…

map item

type
(8bits)

address
(64bits)

pages
(32bits)

map list

D 0x0b000000 218 (1G)
H 0x4b000000 1 (4K)
C 0x4b001000 215 (128M)
H 0x53001000 1 (4K)
C 0x53002000 215 (128M)

…

map item

type
(8bits)

address
(64bits)

pages
(32bits)

map list
type (8bits) address (64bits) pages (32bits)

D 0x0b000000 218 (=1GB)
H 0x4b000000 1 (=4KB)
C 0x4b001000 215 (=128MB)

map list
type address pages (=length)

D 0x0b000000 218 (=1GB)
H 0x4b000000 1 (=4KB)
C 0x4b001000 215 (=128MB)

…

Figure 4.7: Example of a map list. Items describe type (D=dynamic memory, not included in
state hierarchy; H=in-memory embedded locator; C=chunk), location and size of a map. Other
types (and entries) are available for: root, directories, master chunks, chunk metadata, input and
output maps.

4.5.2.3 State Registration

State registration is the first code executed in the trusted environment. It allows the state

handler to receive the state root map. The map contains a single hash value for authenticating

the metadata and data in the state hierarchy. The state handler uses the register primitive to copy

the root hash to a static variable representing the input state—once set, it cannot be overwritten

nor reset (without beginning a new trusted execution).

4.5.2.4 Normal Execution and Lazy Loading

The service execution is triggered by the LaStGT library that begins the execution in the

trusted environment. The library initializes the state base pointer to the state root map set up

at registration-time. Then, starting from the state root, it walks the state hierarchy by following

the pointers between parent and child components.

Correct access of a state component. LaStGT has to ensure that the library: (i) produces a page

fault when it accesses a non-validated state component; (ii) will find valid content in memory and

hence (iii) can be resumed only in this case. The state handler ensures (i) by peeking into a state

component being loaded to check that it has a pointer to an IMEL page that is not yet mapped

in the isolated memory (e.g., csc3 in Figure 4.8). The handler ensures (ii) by cryptographically

validating the state component using the validate primitive. For example, in the case of a chunk,

the primitive checks the chunk’s hash tree and whether its root matches that stored in the parent

master chunk. For an IMEL, instead, the state handler simply checks that it contains the address

of valid state component being loaded jointly. How we can ensure (iii) depends on the used

Trusted Computing architecture, so we defer the explanation to Section 4.5.3 and Section 4.5.4.

Loading metadata vs. Loading data. Except for the original user data in a chunk, the rest of the

state hierarchy is considered metadata. Metadata (directories, master chunks, chunk metadata)

96

state component
metadata
child state comp.:
 csc1:0x0900a000

csc2:0x0900b000
csc3:0x0900c000
csc4

csc5

csc6

…

0x0c0df000

0x0d0ab000

Nested State Locators

page
delimiter

page
delimiter

I n
Memory
E mbedded
L ocator
 page

child state
component metadata

…

child state
component metadata

Figure 4.8: IMEL pages contain positions of data in memory. They allow the LaStGT library to
access a child state component (e.g., a chunk, csc2), and they help the untrusted code to locate
such component and load it. Other IMELs (e.g., at csc1, csc3) that are not accessed are not loaded.

and data have different types of maps. This allows the Supervisor to behave differently when the

library produces a page fault while walking through the state components. If the fault address

is map-hit by a data-typed map (only containing data), one data block is loaded. In this case,

the state handler just performs cryptographic validation. If the address is instead map-hit by a

metadata-typed map (only containing metadata), then the entire map is loaded. The rationale is

that metadata is small (compared to data, see evaluation Section 4.6) and can best be validated

immediately. This later allows validation of a data block in constant time—it is sufficient to check

if a block’s hash matches the associated hash tree leaf.

4.5.2.5 Loading Data From Disk and Reclaiming Maps

If the Supervisor cannot find a map that covers the page fault address, then that is a map miss.

A map miss only occurs on IMEL pages unless bugs result in illegal map misses. The Supervisor

transfers control to the SMM to handle the map miss. The SMM uses the fault address to locate

the IMEL and needs metadata in untrusted memory to locate the data on disk. For this reason

the SMM maintains shadow copies of parent state components—treated later (Section 4.5.3, Sec-

tion 4.5.4) due to differences in the trusted address space configuration between the considered

Trusted Computing architectures. So the child state component is loaded from disk into an arbi-

trary free memory range and the associated IMEL page is updated. Then the SMM creates map

entries for both the IMEL page and the child component and informs the Supervisor of the new

maps. The Supervisor retries handling the fault whose address should result now in a map hit.

When a map miss does not reference a IMEL page (e.g., the null 0×0 address), this is consid-

97

ered a software bug. The SMM thus triggers an execution shutdown (segmentation fault).

Reclaiming maps. The SMM reclaims a map m = (type, address, pages) by inserting in the list

another entry m′ = (reclaim, address, pages) with a special reclaim-type. Finally, the handler

checks the validity of the reclaim (for instance, as explained next, that the reclaimed component

has no modified descendant component) and accepts giving the map back to the SMM.

Reclaiming maps in the presence of modified data. While there is a modified state component

mapped in (e.g., a chunk), the state handler never accepts the reclaim of any map of that com-

ponent’s ancestors (e.g., a master chunk). The hash tree in fact may not be up to date with the

modifications. If a reclaimed component has no child components in the secure environment, the

state handler updates the hash tree (if necessary) and accepts the reclaim. At attestation-time,

the state handler similarly updates the hash tree root. This allows clients to know the identity,

and verify the integrity of, the output state.

4.5.2.6 Attestation and Remote Verification

LaStGT combines in the attestation a client-provided nonce and the identities of the registered

state, the output state (if any), the client request, the reply, the trusted application code. The

attestation is performed as in Chapter 3 using the attest primitive. The attestation parameter

(i.e., the attested data) is however enriched by the trusted state handler’s code by combining the

identities of the registered/output state in addition to the identities of the request and the reply.

The state handler initially receives from the SMM specially-typed maps that contain the re-

quest, the reply and the nonce. It accepts the maps and, respectively, it hashes the request map

to save the request identity, it saves the nonce, it zeroes the reply map that is later filled by the

service code. After the service code execution terminates, when the state handler runs again to

perform the attestation, the data in the reply map is also hashed to get the identity. The state

handler then hashes the identities of the state, the request and the reply together with the nonce.

The result can be either hash-chained to the trusted application code identity and attested in

XMHF-TrustVisor, or provided in input for the cryptographic report that includes the trusted

application code identity, in SGX.

Assuming that the client receives the reply (and recalling our model, see Section 4.3), the

client knows all of the attestation parameters and can therefore verify the attestation. In particu-

lar, the client establishes trust in the reply only if the identities that are combined in the attestation

match the expected ones.

98

 ELRANGE

 isolated environment

original state

shadow copies

initialized uninitialized

shadow copies transposed
data

 ELRANGE

 isolated environment

shadow copies

initialized uninitialized

shadow copies transposed
data

Figure 4.9: In the trusted environment, parent state components can reference child ones in un-
trusted main memory either directly using their addresses (in XMHF-TrustVisor, left-side), or
indirectly through their transposed addresses in uninitialized pages within the enclave’s secure
range, where they will be loaded (in SGX, right-side). Referenced components, that are not yet
in untrusted memory, are located and loaded using metadata shadow copies.

4.5.3 Implementation in XMHF-TrustVisor

A representation of the XMHF-TrustVisor-based implementation is displayed in Figure 4.5(b).

For background about XMHF-TrustVisor, we refer the reader to Section 2.2.1.

The architecture of XMHF-TrustVisor simplifies (compared to SGX) the implementation of

LaStGT in two ways. First, the hypervisor can keep the service interrupted (after a page fault)

until successful validation by the state handler, so the service always accesses valid data when it

is resumed. Second, the hypervisor can modify the trusted application code’s page tables, so it

can be trusted to load (and similarly unload) data at the correct position in the trusted execution

environment.

The extended hypervisor orchestrates a LaStGT execution based on the feedback received

from the application-level, which returns true or false as the result of data validation. The hy-

pervisor begins by running the state handler supplying the maps of the state root, the heap mem-

ory, the request, the reply and the nonce. Feedback from the state handler is a return value: 0,

registration (or validation) unsuccessful; 1, registration (or validation) successful. If successful,

the service code can be executed until termination, or until a page fault occurs by accessing a

non-isolated state component as shown in Figure 4.9 (left-side). On termination, the hypervisor

asks the state handler to protect the integrity of modified pages in the state hierarchy up to the

root and to attest the result.

On page fault, the hypervisor checks the maps. In the map-hit case, it provides the data

and the page fault address to the state handler for validation and, if successful, it resumes the

service code. In the map-miss case, the hypervisor provides the page fault address to the SMM.

The SMM uses it to locate the metadata shadow copy of the (isolated) state component, which

is used to load the missing (child) state component in memory. The SMM then returns the new

maps to the hypervisor.

99

The hypervisor switches control flow between the service code, the state handler and the

SMM by alternating the execution of the VM with the untrusted OS and of the VM with the

service code. Namely, it updates the instruction pointer to one of the entry points (service code,

state handler, SMM) or to the faulted service code instruction. In the case of an entry point,

the hypervisor pushes a special instruction pointer on the stack so the code traps back into the

hypervisor when it returns.

The hypervisor isolates a map by ensuring that: its pages are (lazily, Section 4.5.2.4) inserted

in the page tables of the trusted application code; the nested page tables are configured to grant

trusted application code access to the associated physical pages, while denying the SMM and the

OS access to them. Un-isolating a map works in the opposite way.

4.5.4 On the feasibility of LaStGT Using Intel SGX

A representation of LaStGT implementation in SGX is displayed in Figure 4.5(c). For a back-

ground about Intel SGX, we refer the reader to Section 2.2.2.

4.5.4.1 Main Implementation Challenges and Solutions

In SGX, the memory management and the secure control flow management are slightly more

complex (compared with XMHF-TrustVisor) for three reasons. First, addresses and content of

enclave memory pages to be added or removed at runtime must be checked and accepted by

the enclave at the application-level, without help from trusted privileged code. Second, enclave

code can access untrusted memory outside ELRANGE. While this is useful to load (and then

validate) data from untrusted memory, it opens the risk of using incorrect data inadvertently.

Third, untrusted code can run/resume enclave code at any time. Hence, concurrency issues may

arise within the enclave, particularly when resolving a page fault or performing an attestation.

LaStGT deals with the first challenge as follows. Since untrusted code cannot start the enclave

execution at an arbitrary instruction, we build the enclave with separate entry points for the

service code and the state handler. This allows running the state handler while the service code

is interrupted.

A mechanism is required to ensure that the service code can only be resumed, and not re-

executed, after an interruption. As untrusted code can behave arbitrarily, it can restart the enclave

at the service code entry point. We thus build the enclave with a single area (SSA) per entry point

(TCS) to save the processor state on interruption (e.g., due to a page fault). As an interruption

consumes one such area and the CPU requires one SSA to be available to start the enclave, this

100

prevents multiple executions at the service code entry point, before the service code terminates.

When the state handler is executed, the handler has to validate the position where memory

pages are supplied, and the content these pages should have. The position is the address of the

page where the fault occurred during the service code execution. Such address is found using

the CR2 control register where the CPU stores the fault address. However, reading CR2 requires

privileges, so the application-level enclave code cannot do it. Also, the state handler cannot trust

the (untrusted) SGX driver to supply it correctly, although it expects the driver to supply the

memory pages. Fortunately, the CPU includes the value of CR2 in the enclave’s secure region

when the execution is interrupted. So the state handler has access to a trusted address and can

check that a map (in the list) covers it.

LaStGT deals with the second challenge as follows. Ensuring that the service code does not

access incorrect data, particularly in untrusted memory, requires validating data and pointers to

data. Validation must occur while the data is inside the secure region. Pointers to data must have

addresses inside the secure region. Also, if the data has not yet been accessed, referenced pages

must be unavailable so to produce a page fault.

Validating the content of the memory pages is tricky because they are not available, otherwise

the service code could be resumed. The challenge is to enable the resumption of the service code

only after the pages are available with the right content. This is solved by validating the content

elsewhere and leveraging SGX to fill the pages appropriately as follows. At creation-time, we

include in the enclave a buffer large enough (e.g., 4MB) to contain a state component metadata

or a data block. We program the state handler to copy the data from non-enclave memory to the

internal buffer and to validate it. Besides validating the integrity of the data, the state handler

also checks that any address referencing an IMEL or a child state component falls within the

secure region. This prevents the service code from accessing untrusted memory. We discuss

later where the data is placed in untrusted memory.

Assuming the data is valid, the next step is placing it correctly so that the service code can

be resumed and access it. We resort to the EACCEPTCOPY SGX instruction to do it. The instruction

allows to copy an available enclave page into an uninitialized enclave page and to initialize it. So

the state handler executes the instruction to copy a page of the buffer containing the data into a

still unavailable page that the interrupted service code cannot access. After this step, the service

code can make progress since the page is available and contains valid data. The procedure can

be easily extended to batch the validation and acceptance of a set of pages. We mention that

SGX provides another instruction for accepting memory pages, i.e., EACCEPT. This is useful for

101

dynamic memory allocations (e.g., our dynamic memory map), that are supposed not to contain

sensitive data initially—in fact they are zeroed. However, using it in the previous step would

not be secure, because it initializes the memory pages (which become accessible) before they are

filled with valid data.

Now we explain how our maps are used as the data has to be transferred from untrusted

memory to the trusted buffer and then copied elsewhere in the enclave’s memory. In XMHF-

TrustVisor, since we can (un)isolate a single memory page, one map per component is sufficient.

In SGX, instead, the SMM cannot load data directly into the enclave region, and the state handler

should have some means to locate data in untrusted memory. Our solution is mapping each state

component into two map lists, M1 and M2, thereby having two maps. M1 follows our original

description: it expresses where memory and data are or should be placed within the enclave

region—so the addresses belong to the enclave region. M2 is logically derived fromM1 by trans-

posing the address of each map into an address in untrusted memory. So, the SMM uses M2 to

arrange in untrusted memory the state components that are loaded from disk, and it uses M1 to

arrange the same components in trusted memory. Instead, the state handler usesM2 to (un)load

data to/from untrusted memory, and uses a private copy of M1 to ensure the correct position of

the maps in the enclave’s secure region.

LaStGT deals with the third challenge as follows. As the attestation is performed by the state

handler, the handler has to make sure that the service has indeed terminated and will not modify

the state (e.g., if it is re-executed) during the attestation. We address this concurrency problem

by synchronizing the service code and the state handler using shared variables transparently

inside our linked library. Notice that in a multi-core environment, such shared variables can

be managed in transactional regions with Intel TSX (Transactional Synchronization Extensions),

which is available on the Skylake microarchitecture and compatible with SGX [189, 6.14].

4.5.4.2 Proposed SGX Optimizations

We propose two optimizations for SGX, both related to data I/O. The first one aims to reduce

the number of page writes for mapping data inside the enclave’s memory. We propose two new

instructions, EAUG DIRTY and EACCEPT HASHCOND to achieve this objective. The second one aims to

reduce the number of execution transitions between enclave code and untrusted code for the

page trimming procedure, which is a two-phase protocol as in [189, 3.5.9]. We propose another

instruction, EPRE ACCEPT to achieve this second objective.

Problem and proposed optimization for mapping data in. Loading 1 page (4KB) into an ini-

102

tialized enclave, within ELRANGE, implies writing 4 pages (16KB): (1) when the Supervisor runs

EAUG that zeroes an uninitialized page p1; (2) when the SMM loads 4KB of data from disk into an

untrusted page p2; (3) when the enclave copies p2 into an in-enclave buffer page p3 for validation;

(4) when the enclave runs EACCEPTCOPY that copies p3 into p1 and initializes p1 for the service to

access it.

We claim that 4 page writes are optimal with the current SGX instructions [189] though they

have high overhead. So we propose two new instructions to reduce writes to 2.

1. The Supervisor executes EAUG DIRTY to copy a source dirty (i.e., containing data) page from

untrusted memory to an in-enclave uninitialized (i.e., marked as pending) page.

2. The enclave executes EACCEPT HASHCOND that hashes the uninitialized page and compares

the result with an in-enclave-memory hash value. If they match, the page is initialized for

enclave use, otherwise a violation is reported.

The first step includes 2 page writes: initially, the OS writes the data in an untrusted memory

page; then EAUG DIRTY writes an in-enclave page. The second copy is similar to EADD’s page copy

(Section 2.2.2), except that EADD only works at enclave-creation time, while EAUG DIRTY (like EAUG)

only works at runtime. Also, the page hash can be computed with SHA-256 CPU instructions,

already used by SGX. So we believe these functions can be realized by extending the SGX mi-

crocode.

Problem and proposed optimization for trimming pages. Trimming pages requires a two-

phase protocol between the Supervisor and the state handler. The cost can be amortized by

trimming pages in batch (e.g., large maps with thousands of pages). However, trimming few

pages (e.g., small metadata maps) still requires entering/exiting the enclave twice.

We propose an EPRE ACCEPT instruction to pre-accept a future trim request and merge the two

phases. Roughly—the notation SGX.y denotes an operation that requires the execution of an

SGX instruction, while other text above the arrows simply refers to protocol messages:

Supervisor
prepare−trim−−−−−−−−−→ Handler

ok, SGX.pre−accept−−−−−−−−−−−−−→ Supervisor
SGX.trim−−−−−−→ Supervisor

This requires entering/exiting the enclave just once. We believe this optimization is also feasible

with a microcode extension.

4.5.5 How the TCC primitives are extended

We have to extend the primitives in Section 2.3.1 in order to support LaStGT’s virtual mem-

ory management. Since the management is performed by suitably handling interruptions of the

103

secured service application while it is executing, support for LaStGT can be fully implemented

within the execute primitive. In addition, small changes are required to the verify primitive. This

clarifies how we provide such a support “below” the primitives (Section 2.3.1).

An enhanced execute primitive. Algorithm 23 and Algorithm 24 (dark background, bottom-

side) highlight how the execute primitive changes. We point out that, in XMHF-TrustVisor, in-

memory data management is performed at the level of the hypervisor (and thus not shown)

which provides memory and data to the trusted execution. In SGX instead, data management is

deputed to the untrusted application-level (AEX code block, lines 14-24).

The AEX block is executed when the enclave is interrupted, for instance due to a page fault.

In the case of a map miss (i.e., the needed data is not in memory), the SMM is called to load

the data in memory (line 16); we display such direct call for clarity, however, the SMM can be

implemented outside the primitive and then used as we describe in a note below. Once the

data is in memory, the AEX code block leverages the OS driver to run privileged instructions to

supply memory to the enclave (line 18, though the instructions are not detailed for brevity). For

security reasons however, the enclave code must accept any supplied memory before using it, and

also has to retrieve and validate data from untrusted memory. These operations are performed

by letting the enclave code start at a different entry point (line 20). If validation is successful,

then the original execution flow can be resumed (line 21). If the interruption is unexpected, or

the untrusted application-level is unable to resolve the page fault, then the execution is simply

terminated (line 23), so no results or attestations are produced.

The reader can easily check that the implementation is compatible with the primitives intro-

duced in Section 4.5.1. For example, by considering the SGX implementation, it is easy to spot

where the createEnvironment and runAt primitives are implemented, while mapIn, MapOut,

loadState and storeState are implemented inside the SMM.

A note on customizable data structures and algorithms. In Algorithm 24 (line 16), we abused

notation for brevity by inserting a call to the SMM to resolve a map miss. As the SMM appears to

be inside the primitive, this may raise questions about how the user can customize data structures

and algorithms in LaStGT.

We provide a straightforward alternative to customize them. The alternative is to extend the

parameters of the executeprimitive with a callback function for the SMM. If a callback is provided,

the execute primitive uses it (at line 16) to call the user function. Otherwise the primitive can use

a default implementation.

Small modifications to the verify primitive. Algorithm 25 and Algorithm 26 (dark background,

104

Input: description of code’s text, data, stack
sections, and input data (including nonce)

Output: output data
1: trigger registration hyper-call to isolate code

and I/O memory pages
2: encode I/O parameters for I/O marshaling
3: call isolated code
4: decode output data
5: trigger unregistration hyper-call to return

isolated memory pages
6: return output data

1: trigger registration hyper-call to isolate code
and memory pages for input and output

2: trigger hyper-call to register input data root
maps and SMM entry point

3: call isolated code
4: output data← output data map
5: trigger unregistration hyper-call to return

isolated memory pages
6: return output data

Algorithm 23: execute primitive on XMHF-
TrustVisor. Above, the original implemen-
tation from Algorithm 1. Below, dark areas
highlight the differences of the implemen-
tation that support LaStGT.

Input: description of code’s text, data, stack
sections, and input data (including nonce)

Output: output data
1: init SGX Enclave Control Structure (SECS)
2: initialize TCS(s)
3: trigger system call to ECREATE enclave
4: for each code page to be isolated do
5: trigger system call to EADD enclave page
6: trigger system call to EEXTEND the page

content to the enclave
7: end for
8: trigger system call to EENIT the enclave
9: run EENTER on the enclave’s TCS

10: forward local attestation to Quoting Enclave
for remote attestation

11: trigger system call to EREMOVE the enclave
12: return output data

1: init SGX Enclave Control Structure (SECS)
2: initialize TCS(s)
3: trigger system call to ECREATE enclave
4: for each code page to be isolated do
5: trigger system call to EADD enclave page
6: trigger system call to EEXTEND the page

content to the enclave
7: end for
8: trigger system call to EENIT the enclave
9: run EENTER on enclave’s state handler’s TCS

to register input data root maps
10: run EENTER on the enclave’s TCS
11: forward local attestation to Quoting Enclave

for remote attestation
12: trigger system call to EREMOVE the enclave
13: return output data

14: On AEX:
15: if map miss then
16: call SMM
17: end if
18: do memory management (reclaim/pro-

vide pages)
19: if map hit then
20: run EENTER on state handler’s TCS

(and wait for termination)
21: run ERESUME on enclave’s TCS
22: else
23: segmentation fault⇒ shutdown
24: end if

Algorithm 24: execute primitive on Intel
SGX. Above, the original implementation
from Algorithm 2. Below, dark areas high-
light the differences of the implementation
that support LaStGT.

105

Input: nonce, output hash, input hash, code
identity, hypervisor identity, hypervisor
public attestation key, TPM attestation,
certified TPM public attestation key,
hypervisor attestation

Output: true or false
1: if TPM attestation can be validated using

certified TPM public attestation key ∧
attested hypervisor identity is expected ∧
attested hypervisor public attestation key is
expected ∧ hypervisor attestation can be
validated using hypervisor public
attestation key ∧ nonce, code identity,
hash(input hash||output hash) are expected
then

2: return true
3: else
4: return false
5: end if

Input: nonce, output hash,
request hash and state (root) hash , code

identity, hypervisor identity, hypervisor
public attestation key, TPM attestation,
certified TPM public attestation key,
hypervisor attestation

Output: true or false
1: if TPM attestation can be validated using

certified TPM public attestation key ∧
attested hypervisor identity is expected ∧
attested hypervisor public attestation key is
expected ∧ hypervisor attestation can be
validated using hypervisor
public attestation key∧ nonce, code identity,
hash(request hash||state hash||output hash)

are expected then
2: return true
3: else
4: return false
5: end if

Algorithm 25: verify primitive for XMHF-
TrustVisor. Above, the original implemen-
tation from Algorithm 5. Below, dark areas
highlight the differences of the implemen-
tation that support LaStGT.

Input: nonce, output hash, input hash, code
identity, remote attestation (from Quoting
Enclave), public report key

Output: true or false
1: if code identity (i.e., MRENCLAVE register

value inside the remote attestation) not
expected ∨ hash(nonce||input hash||output
hash) (i.e., REPORTDATA structure inside the
remote attestation) not expected then

2: return false
3: end if
4: contact IAS [220] through APIs [221]
5: validate attestation report from IAS with

public report key
6: if IAS returns attestation not valid then
7: return false
8: end if
9: return true

Input: nonce, output hash,
request hash and state (root) hash , code

identity, remote attestation (from Quoting
Enclave), public report key

Output: true or false
1: if code identity (i.e., MRENCLAVE register

value inside the remote attestation) not
expected ∨
hash(nonce||request hash||state hash||

output hash) (i.e., REPORTDATA structure
inside the remote attestation) not expected
then

2: return false
3: end if
4: contact IAS [220] through APIs [221]
5: validate attestation report from IAS with

public report key
6: if IAS returns attestation not valid then
7: return false
8: end if
9: return true

Algorithm 26: verify primitive for Intel
SGX. Above, the original implementation
from Algorithm 6. Below, dark areas high-
light the differences of the implementation
that support LaStGT.

Note. Inside an enclave the verification is slightly
different as follows: the signed Attestation Verifica-
tion Report (returned by the IAS) is forwarded to the
enclave, who performs the same checks as above and
additionally verifies the signature, so it requires one
additional input i.e., the public Report Key. For addi-
tional details, see the implementation of the get cert
primitive on SGX (Section 2.3.2).

106

VC3 Haven LaStGT∗

hypervisor library SQLite

SLoC
×
103

9.2
[39]

23.1+
O(103)#

[38]

15.1 [94]
7.7 92.6

+1.9‡︸ ︷︷ ︸
24.7 ︸ ︷︷ ︸

100.3
* based on XMHF-TrustVisor ‡ LaStGT core code and headers
LibOS contains millions of lines of code

Table 4.2: TCB size breakdown (in thousand source lines of code) and comparison. SQLite is
included as an example real-world application ported to LaStGT.

bottom-side) highlight how the verify primitive changes. As it can be noticed, the main differ-

ence is providing the client with the state root hash, that allows to verify that the remote service

processed the intended large data set. Therefore, the complexity of the primitive—and so the

verification effort for the client—does not change with respect to the previous version (top-side

of the algorithms).

4.6 Evaluation

We implemented LaStGT using XMHF-TrustVisor [53, 94], and now we analyze our imple-

mentation by quantifying its TCB, comparing it with the original XMHF-TrustVisor and running

both micro-benchmarks and real-world applications.

Experimental setting. We use a Dell PowerEdge R420 Server equipped with: a 2.2GHz Intel

Xeon E5-2407 CPU; 16GB of DDR3 memory; a TPM v1.2; a primary 300GB, 15Krpm hard-disk;

a secondary 2TB 7.2Krpm hard-disk. The server runs Ubuntu 12.04 32-bit with a Linux kernel

3.2.0-27. The resources are fully dedicated to our experiments. LaStGT uses the secondary disk

to ensure uniform experimental conditions.

Data is organized in chunks of 128MB and blocks of 256KB. Our micro-benchmarks justify

these values for sequential workloads (typical of data analytics) and we suggest optimizations

for random workloads (Section 4.6.5). We assume the worst-case scenario that requires LaStGT

to maintain a low memory footprint. Hence, we configure the SMM to reclaim old chunk maps

when the service code tries to access a new one.

107

4.6.1 TCB Size

We quantify LaStGT’s TCB size using the lines of source code (SLoC) metric, as calculated by

the SLOCCount tool [195], and we compare it with previous work (Table 4.2). At the hypervisor

level, the TCB size increases by 12%. The LaStGT library adds an additional 7.7 SLoC of user-level

code, which is relatively small. For example, it increases the size of the SQLite service code by

only 8.3%.

The table also compares the TCBs of LaStGT, VC3 and Haven. Haven’s TCB is notably large

due to the library OS. LaStGT’s TCB is larger than that of VC3. However, first, LaStGT currently

includes XMHF-TrustVisor’s TCB, while VC3 is based on SGX and so does not include any priv-

ileged code; second, LaStGT is not application-specific and can run generic self-contained appli-

cations.

We expect LaStGT’s SGX implementation to have a smaller TCB than the current one. As

SGX keeps privileged code out of the enclave, the hypervisor functionality—to manage the VMs,

protect the isolated memory from the untrusted OS, and schedule the execution of trusted and

untrusted applications—will be moved out of the TCB and implemented in untrusted code, while

retaining similar security guarantees.

4.6.2 Comparing LaStGT and XMHF-TrustVisor

As a baseline experiment, we compare LaStGT with the original XMHF-TrustVisor imple-

mentation. LaStGT can be much faster than XMHF-TrustVisor depending on the amount of data

that the application processes, as displayed in Figure 4.10. The experiment uses a 512MB dataset

that is read sequentially and fits in memory; XMHF-TrustVisor cannot process data whose size

is larger than memory. The figure allows us to compare the time (y-axis) each tool takes to read

some amount of data (x-axis). XMHF-TrustVisor always exhibits a large startup time (dependent

on the data size) as it reads everything upfront into memory. In contrast, LaStGT exhibits a per-

formance that is related to the parts of memory that are actually read/written thanks to its ability

to do incremental data loading and validation. For example, in an execution that only touches

half of the dataset, TrustVisor would roughly end up taking twice as much time as LaStGT.

4.6.3 Microbenchmarks

LaStGT incurs overhead when it needs access to additional data through page faults. The pri-

mary sources of overhead include switching control between software components, (un)loading

maps in isolated memory, and disk accesses by the SMM. Since the last one is the same for trusted

108

0
2
4
6
8
10
12

0
MB

128
MB

256
MB

384
MB

512
MB

se
co
nd
s

TrustVisor
LaSt-GT

begin reading

load state from disk,
encode it in memory,
transfer it in secure memory,
hash it

transfer data back

transfer block in secure memory,
validate and read

end reading

load chunk from disk

Figure 4.10: Comparison between LaStGT and XMHF-TrustVisor.

and untrusted executions, we just focus on quantifying the overhead of the first two. We also

quantify the overhead of preparing the state hierarchy by the content source. We present results

that are the average of 1000 experiments with a 95% confidence interval.

Context-Switching. We measure the overhead to switch between the Supervisor, the state han-

dler and the SMM (Section 4.4.3.2).

The Supervisor invokes the SMM when data is needed from disk. This involves switching

from the trusted to the untrusted environment, and back (see table below). This time is mostly

used to transfer the memory map list between the untrusted and the trusted execution environ-

ments. This requires inspecting the nested page tables of the virtual machine to check permis-

sions for the data transfer, and then modifying both the nested page tables with the new permis-

sions and the sensitive environment page tables to add (or remove) the pages from the isolated

virtual address space (Section 4.5.3).

Ê trusted-untrusted Ë state handler Ì SMM
env. switching resumption resumption
191.68µs± 0.12 36.11µs± 0.08 39.93µs± 0.5

Table 4.3: Context switch and application resumption overhead.

A second source of overhead is that associated with resuming the state handler, after some

data has been brought into the secure environment, and the SMM for disk access. These resump-

tion times (Table 4.3) include the overhead of the XMHF-TrustVisor software stack1, of virtual-

ization to resume the trusted VM or the untrusted VM, and of the VM interruption to return

back into the hypervisor. The slightly higher and more variable overhead for the SMM can be

attributed to scheduling delays (time slicing, preemption) caused by the OS. This does not occur

in the isolated (and dedicated) execution environment where the state handler runs.

This means that the overheads for invoking the SMM and the state handler from the Super-
1TrustVisor is an application running within XMHF [94].

109

visor after a page fault are Ê+Ì and Ê+Ë respectively, in addition to the processing cost (e.g.,

accessing disk or validating data).

101µs

102µs

103µs

104µs

105µs

106µs

4
KB

8
KB

16
KB

32
KB

64
KB

128
KB

256
KB

512
KB

1
MB

2
MB

4
MB

8
MB

16
MB

32
MB

64
MB

 50
 100
 150
 200
 250
 300

MB/s

micro-seconds
MB/sec

Figure 4.11: Log-scale average time (bars, left y-axis) and speed (line, right y-axis) for mapping
data (x-axis) inside/outside the isolated trusted environment. The right y-axis shows the attained
speed.

I/O data mapping overhead. The overhead for transferring memory maps between the two ex-

ecution environments (Section 4.5.3) is shown in Figure 4.11. Larger maps can be transferred at

higher speed. This suggests that if the application has to process all data in a map, it is advan-

tageous to transfer more data per fault to reach high-speed (e.g., using a 256KB block size as we

did).

From user data to LaStGT-compatible state. Figure 4.12 shows the cost of building the state

hierarchy (Section 4.4.2) for user data sizes from 1MB to 2GB. This is sufficient for our evaluation

since disk bottlenecks (for reading data and writing back metadata) show up already at 64MB.

For larger states, the throughput stabilizes at ≈ 60MB/s.

 5s

10s

15s

20s

25s

30s

35s

1
MB

2
MB

4
MB

8
MB

16
MB

32
MB

64
MB

128
MB

256
MB

512
MB

1
GB

2
GB

 10

 20

 30

 40

 50

 60
seconds

 5s

10s

15s

20s

25s

30s

35s

1
MB

2
MB

4
MB

8
MB

16
MB

32
MB

64
MB

128
MB

256
MB

512
MB

1
GB

2
GB

 10

 20

 30

 40

 50

 60
MB/sec

Figure 4.12: Time (bars, left y-axis) and speed (line, right y-axis) to build the LaStGT-compatible
state for different state sizes.

Building the hash tree also incurs a high cryptographic cost. It needs to hash 29 × 256KB-

sized blocks and 210−2 tree nodes (i.e., all nodes except the root). The procedure is optimized to

110

take linear time in the size of the hash tree. We chose SHA-256 as the hash function and carefully

optimized it.

Different applications can leverage the incremental construction and parallelize the opera-

tions. We recall and stress in fact that chunks can be built separately.

4.6.4 End-to-End Application Performance

We run experiments with three applications with different data access patterns. They include:

a simple application that sequentially walks 1TB of data, checking the first page of each data

chunk; a nucleobase search application [126, 3.2] that accesses data sequentially, requiring all

blocks of all chunks; and SQLite [188], which accesses random blocks of chunks.

Tera-scale data processing. We use a synthetic state of 1TB. The LaStGT-compatible state con-

tains (in addition to the state root and one directory) one master chunk of 2.5MB that carries a

list of 8192 chunks. This master chunk size is much larger than the 256KB hash list contained

in the master chunk due to additional metadata (e.g., size and name) relative to the chunks that

we maintain. Each chunk has 33KB of metadata (32KB due to the static hash tree, so 97%) and

128MB of data.

The execution environment is initially composed by a heap map of 262K memory pages (1GB)

loaded lazily—though just a few are used in this application—and a state root map that fits in 1

page. Directory and IMELs are loaded as they are accessed, and they also fit in 1 page each. The

master chunk instead fits in 641 pages. As chunks are accessed, two additional maps are included

in the environment: the chunk metadata that fits in 9 pages and is loaded; and the chunk data

that fits in 32768 pages and is lazily loaded. Only about 15 maps are present at a time due to the

state hierarchy and the assumed environment constraints.

Figure 4.13 provides the progress of the application. It takes roughly 13 hours to process the

terabyte of data, rather steadily at 23MB/s—the zoomed in segment shows a slight variability.

0.2TB
0.4TB
0.6TB
0.8TB
1.0TB

0h 2h 4h 6h 8h 10h 12h 14h

0.9TB

11h 12h

Figure 4.13: Progress in hours to process 1TB of data. In the zoom-in, the black straight dashed
line highlights a negligible variability in processing speed.

111

We emphasize that the experiment uses a dataset between 1 and 2 orders of magnitude larger

than previous work on secure data analytics [39, 125]. Also, it is unprecedented on the XMHF-

TrustVisor software stack [53, 62, 94]—designed for small applications—and on a bare-metal hy-

pervisor.

Nucleobase search. This application [126, 3.2] searches for a nucleobase sequence among the

billion-scale reads (i.e., fragments obtained from DNA sequencing machines [207]) present in the

FASTQ format2 of the human genome in [208]. The application is relevant to investigate protein-

coding mRNA sequence or to assemble sequences to reconstruct a contiguous interval of the

genome [127].

Figure 4.14 shows the outcome of our experiment on a human genome of roughly 0.3TB. The

experiment produces about 1.15 million page faults that are handled directly by the hypervisor,

and about 2.24 thousand are forwarded to the SMM for grabbing data from disk. The Nucleobase

search is slower than the first application because it uses all the data and also involves more

processing.

0.10TB

0.20TB

0.30TB

0h 1h 2h 3h 4h 5h 6h 7h 8h 9h

LastGT-based Nucleobase search

Figure 4.14: Progress in hours to process a 0.3TB large human genome.

Database engine. The final application is the full SQLite (v.3.8.7.2) [188]—a real-world database

engine with a non-trivial code base of 92.6K lines of code—that we execute on LaStGT with-

out modifying its source code. We compile it with a virtual file system module that uses the

LaStGT’s library to access the state, and with an abstraction layer that uses LaStGT’s functionality

for memory management and I/O. The benchmark measures the time to query key-value stores

of different sizes to get the value associated to a specific key.

The results are shown in Figure 4.15. The query time grows slowly until x = 128MB due

to the larger data that is loaded in untrusted memory and to the larger hash tree that has to be

validated in the trusted execution environment. At x = 128MB, 256MB, 512MB the query time

stabilizes. This is due to the data access pattern of SQLite which only involves the first chunk.

At x = 1GB, 2GB however, SQLite also accesses the 7th chunk before going back to the first one.
2Common text format used for storing sequences and quality score.

112

This forces LaStGT to load and validate the metadata of several chunks and to maintain their data

in untrusted memory in the case it is accessed. This happens similarly with larger databases. For

instance, at x = 0.25TB, SQLite requires access to one more chunk (the 420th) in addition to those

listed before. Hence, the overhead scales linearly with the number of accessed chunks.

 0

 5

10

15

20

1
MB

2
MB

4
MB

8
MB

16
MB

32
MB

64
MB

128
MB

256
MB

512
MB

1
GB

2
GB

... 0.25
TB

seconds

Figure 4.15: Time (y) to query a SQLite-based key-value store of different sizes (x). The state is
built using 128MB chunk and 256KB block sizes.

A glimpse of chunk & block size optimization. In order to show the benefits of optimizing

LaStGT for specific application requirements, we repeated the previous SQLite-based experi-

ments by first protecting the database using a smaller chunk size (1MB) and block size (4KB).

The results in Figure 4.16 show about an order of magnitude better performance. This is chiefly

due to the smaller chunks read from disk and smaller data blocks transferred in secure memory

whenever the engine performs a random memory access. The performance with a terabyte-scale

state is in the order of a few seconds. This is due to a large master chunk that contains metadata

for many (about 280K) small chunks, in contrast with the few (about 2K) large chunks in the

previous experiment.

0.0

0.2

0.4

128
MB

256
MB

512
MB

1
GB

2
GB

... 0.25
TB

3.2

3.4

3.6
seconds

Figure 4.16: Time (y) to query a SQLite-based key-value store of different sizes (x). The state is
built using 1MB chunk and 4KB block sizes.

4.6.5 Discussion

The performance of LaStGT can be optimized by tuning the parameters of state hierarchy and

by leveraging better performing trusted components. First, the chunk and block sizes that we

113

fixed for all experiments can instead be tuned for specific applications. This optimization prob-

lem is left for future work. However, intuitively (as we also evidenced in Section 4.6.4), smaller

chunk and block sizes reduce unnecessary data validation and data loading, while they slightly

increase the authentication metadata in the hierarchy. Second, when a memory map is created,

LaStGT optimizes for lazy loading in isolated memory, but XMHF-TrustVisor still requires the

data to be present in untrusted main memory. This means writing data in memory bypassing

critical optimizations such as lazy loading from disk. In this case, we believe that the SGX im-

plementation can be beneficial to take advantage of the highly optimized kernel software stack,

in addition to avoiding expensive virtualization operations such as VMEXITs and maintaining

nested page tables.

4.7 Summary

This chapter shows that current solutions that provide hardware-based integrity guarantees

for large-scale data applications make a trade-off between security and functionality, namely:

they support unmodified generic applications but they have a large TCB; or they have a small

TCB but they are application-specific (e.g., for MapReduce). In order to mitigate such trade-off,

this chapter presents the design, implementation and evaluation of LaStGT, a secure system built

on a generic trusted component for self-contained x86 code that processes large-scale data.

LaStGT has a small TCB and enables end-users to verify the validity of the results received

from the securely isolated application. Specifically, in line with the objective of this thesis, LaStGT

provides the following integrity guarantee to a client:

“if the client can verify the results attested by the trusted component on the service provider platform,

then the client request was processed by the intended code on the intended (large) input state, so the

received response can be trusted. ”

Also, LaStGT clearly separates duties between software components: the service code per-

forms the intended computation; a library (linked with the service code) provides access to large-

scale data; a separate handler code guarantees the integrity of the data, and it is fully independent

from the service code; finally, the privileged code running below supplies memory resources as

required. This makes easy to build or port applications on LaStGT, and also to customize data

structures and algorithms of our default implementation.

Finally, our experiments with applications such as databases and genome analytics prove that

114

general large-scale applications can run on systems with a small TCB. We also provide evidence

that the overhead in XMHF-TrustVisor is mostly due to expensive data I/O and context switch.

We expect that such overhead can be heavily reduced by using Intel SGX and by optimizing

LaStGT’s parameters according to the requirements of a specific application.

115

116

Chapter 5

Availability in Trusted Executions

Now we focus on how to make trusted executions available. Availability is about guarantee-

ing that a computing service can be accessed and used in spite of failures on the cloud provider’s

platforms, and it is one of the fundamental computer security objectives [128]. This is particu-

larly relevant in the cloud computing model (Section 1.3.1) where security threats (Section 1.1)

harm both the client, through service and data disruption, and the service provider by harming

its reputation and profit.

The usual approach for providing availability is to use Replication [129]. In particular, making

component replicas work together so that, when some components malfunction, others can keep

the system operating correctly.

The key challenge in replication is how to coordinate these replicas. Our security model (in-

troduced in Section 1.3.1 and extended later in Section 5.2.1) makes this challenge more difficult

to deal with because it assumes that these replicas can behave arbitrarily. Such behavior is com-

monly known as Byzantine [130, 131]—due to service hijacking and vulnerabilities for instance.

Hence, a replica can fail by crashing or by sending out forged messages with the intent of dis-

rupting the functionality and data throughout the distributed system.

There are two main paradigms for designing a replicated system, namely active replication (AR)

[132, 133] or passive replication (PR) [134, 135, 136, 137]. At a high level, AR makes multiple ser-

vice computations, while PR replicates the state of a service. We provide a brief overview of

these techniques.

In AR (Figure 5.1 left-side), all replicas run the service operations. PBFT [138] is a well-known

example. In order for these replicas to return the same result following an execution, they are

required to be deterministic (state machines). For this reason, AR is also commonly known as

State Machine Replication (SMR). Also, in order for the replicas to provably reach and agree on

117

client replica isolated environment

service code state update code unused
code

active replication passive replication V-PR

Figure 5.1: Comparison among replicated systems based on active replication (left), passive repli-
cation (middle), verified passive replication (right).

a common output despite arbitrary failures, it is assumed that at most a third of them can be

faulty. Byzantine Fault Tolerant (BFT) protocols are known as BFT-SMR. Besides the overhead of

executing redundant operations, these protocols require to run non-trivial coordination protocols

(e.g., consensus or atomic broadcast) to maintain consistency in the distributed system. Although

significant effort has been spent to make BFT-SMR practical [138, 139, 140, 141, 141, 142, 142, 143,

144, 145, 146, 147, 148, 149, 150, 151, 152, 153, 154, 155], the cost continues to be high. Furthermore,

BFT-SMR non-deterministic executions may cause the state on the replicas to diverge [154, 156,

157, 158]. The solution is often to assume that the service is deterministic, thereby restricting its

applications.

In PR (Figure 5.1 middle), only the primary replica runs the service, while the backup replicas

receive and apply state updates. PR delivers several benefits but has a significant security draw-

back. First, it saves CPU resources for computationally intensive services since only one replica

executes the service code. Second, it allows replicating non-deterministic services since backup

replicas do not have to replicate the same execution; rather, they catch up with the primary replica

using the state updates. Third, the centralized control offered at the primary is resource-efficient

and enables easy and cheap coordination of the other replicas without requiring consensus or

atomic broadcast protocols. These reasons justify the attractiveness of the approach, which has

been adopted by many popular systems, like GFS [159], Boxwood [160], Niobe [161], Remus [162],

Tardigrade [163] and Zookeeper [164]. The security drawback is that it does not tolerate arbitrary

failures since the computation is not replicated. In fact, a malicious primary could compromise

the system state undetectably by hijacking the service execution flow and/or broadcasting forged

updates to the backup replicas.

In this chapter we improve PR to bridge the security gap with AR. In particular, we introduce

the concept of Verified Passive Replication (V-PR, Figure 5.1 right-side). V-PR is a fully passive

118

replicated system that inherits the efficiency benefits of PR and uses our generic Trusted Com-

puting component (TCC, Section 2.3) to provide security guarantees in a hybrid failure model.

The model excludes physical or side-channel attacks on the TCC and is similar to that introduced

in [139, 165, 166], since the trusted component can only fail by crashing, while the rest of the sys-

tem can experience arbitrary failures; we elaborate more on the model in Section 5.2.1. By using

the TCC to secure the service, V-PR ensures that the execution at the primary replica is verifiable

through the identity attestation of the executed code. The backup replicas can thus establish

trust in the state updates coming from the primary once they can verify that the intended code

produced them. The primary replica can similarly establish trust in a backup replica, thereby

ensuring that the state has been replicated correctly.

As a result, V-PR is both secure and efficient. Malicious software is unable to tamper with

the operations performed at a replica, and in particular with the messages it sends out, which

are authenticated in the trusted execution environment. The overall system is resource efficient

for three reasons. First, it reduces the demand of computational resources, which is typical of

PR systems. Second, the coordination protocol is cheaper (in terms of network messages) than

typical AR protocols. Third, the TCC allows a decrease on the number of replicas with respect

to AR schemes that do not leverage a trusted component. In addition, V-PR natively supports

non-deterministic executions. In our experimental evaluation, we show the benefits of V-PR

by comparing it with state-of-the-art replication protocols and by implementing a real-world

database engine on top of it.

Contributions

• We present the design of the V-PR system backed by a trusted component that always

guarantees safety in a hybrid failure model, and also guarantees liveness during periods of

partial synchrony.

• We define secure protocols for system initialization, fault-tolerant execution and primary

change.

• We implement V-PR on XMHF-TrustVisor [53, 94]. We show that the performance of V-

PR is close to that of state-of-the-art protocols in BFT-SMR such as BFT-SMaRt [167] and

Prime [168]. We port the SQLite [188] database engine on V-PR. Finally, we provide evi-

dence that V-PR’s main source of overhead derives from the underlying trusted component,

which will become more efficient as Trusted Computing technology continues to improve.

119

5.1 Overview of Verifiable Passive Replication

5.1.1 Rationale Behind Execution Verification in Replication

A service S may experience several types of failures that can undermine its correctness.

Among these, Byzantine failures [131] represent the most general class. This means making

no assumptions about the correctness of S’s execution on a platform. As a result, the observable

actions of S (i.e., the messages it sends out) are allowed to be arbitrary, so they cannot be trusted.

For example, these messages can be: none, as if the platform crashed; corrupted, due to a bit that

was flipped; or malicious, as if they were forged due to a software attack.

Byzantine failures represent an important issue in PR. Clients and replicas have no means

for checking the execution of the service, and the computation performed by the primary is not

replicated, thereby lacking redundancy. In this aspect, the problem turns out to be similar to

that of checking the execution of services outsourced to untrusted clouds that we introduced in

Chapter 1 and that is the subject of thesis.

5.1.2 Solution and Challenges

As we did for outsourced services, using our abstraction (Chapter 2.3) to devise solutions for

efficient identification of large code (Chapter 3) and for large-scale data processing (Chapter 4),

we solve this problem by leveraging our TCC for execution isolation, code attestation, secure

storage and (additionally) trusted counters. This allows us to: reduce the attack surface, for

instance by excluding the OS from the TCB; protect and identify the code executed at the primary;

program the backups and clients to verify the execution of the primary replica; prevent rollback

of the state of the replicas. Hence, we can avoid the AR approach, inherit the benefits of PR

(particularly efficiency and non-deterministic executions) and provide clients with integrity and

availability guarantees of the passively-replicated service execution.

There are however several challenges to be overcome.

• First, although backups can verify the primary’s execution, the primary itself must also be

able to ensure that its state (i.e., the data) is propagated to the backups as intended. If the

data has not been replicated, the primary’s crash can result into data loss. This means that

our solution requires mutual verification between primary and backup replicas.

• Second, how can we efficiently initialize the distributed system? We need a way to bring

the replicas into an operative trusted state in which they can communicate with each other

efficiently. In Trusted Computing parlance, verification is about attestation, but attestations

120

Manager	Manager	 U-Manager	

Service	
10. reply

OS	

Security	MW	

Service	Client	

2. request

1. request

9. reply

5. request 6.reply

3. request
8. reply

4. request
7. reply

		 		TCC		

client	 primary	replica	 backup	replica	

U-Manager	

OS	
7a. update
7e. ack

7b. update
7d. ack

7c. trusted update

Network	

Oth.
Svcs	

Update	Service	

Oth.
Svcs	

Level	
Applica6on	

Middleware	

SW/HW		
support	

		 		TCC		

Oth.
Svcs	

Update	

OS	

Figure 5.2: Architecture of V-PR. Light shaded parts correspond to the trusted system compo-
nents.

are expensive. Therefore, we want to minimize their use.

• Third, how can we ensure that replicas cannot be rolled back, particularly the primary?

Recall that we are assuming a hybrid failure model where the TCC (so the trusted execution

environment) behaves correctly but the rest of the system can experience arbitrary failures,

while previous PR models assume that the primary is trusted. So in our case, the state of

the trusted service code could be rolled back to a previous version while it is stored in the

untrusted environment.

• Fourth, how to prevent replies from being forwarded to clients before the state updates (if

any) are propagated. Again, in PR this is not an issue because the primary is trusted and

waits for acknowledgement from the backup replicas before replying. In our case however,

once the untrusted part of the primary receives the replies from the trusted service code

(i.e., when the execute primitive returns), it could forward these back to the clients immedi-

ately. Unfortunately, if the primary fails, this results into data loss because backup replicas

are not up to date.

5.1.3 Architecture of V-PR

We now present V-PR, a fully-passive replicated system that allows the cloud provider to

provide availability guarantees to clients. More precisely, V-PR is always safe in the hybrid fail-

ure model, while liveness is guaranteed during periods of partial synchrony (see Section 5.2.1).

Figure 5.2 displays the architecture of V-PR. In each replica, we distinguish between the trusted

execution environment (light shaded boxes on the left-side of each replica) and the untrusted

execution environment (right-side of each replica). The client is fully trusted and can reach the

primary replica through the network.

121

We distinguish between three layers in the distributed system. At the bottom, we have the

TCC (Section 2.3.1) and the OS that provide support for executing service applications and for

data I/O. In the middle, we have middleware components: the security middleware, or SMW, at

the client; the Manager and U-Manager at the replicas. These components implement the core of

V-PR. In addition, there may be other service applications, independent from V-PR, running at

the client and at the replicas. At the top, we have the service client (at the client) and the service

and update state application (at the replicas). The service application refers to application-level

code for which clients require integrity and availability guarantees. The update application ap-

plies state updates received by the primary.

The core components of V-PR take care of security and availability. In particular, the SMW

and the primary Manager establish a secure channel between the client and the primary (and so

the replicated system). The channel is used to secure messages between the service client and ser-

vice application. The Managers implement key management, authentication and the replication

logic inside the trusted environment. The U-Managers instead are simple applications imple-

mented on top of the untrusted OS to perform data I/O with the respective Managers, network

and storage operations.

5.1.4 V-PR’s Operations

As we mentioned, V-PR is a fully-passive replicated system and works as follows. A client

sends a request to the primary. The primary executes the request (e.g., a query from the client

over a database). If there are state updates, the primary broadcasts them to the backup replicas.

When the primary receives enough acknowledgments, the reply is sent back to the client.

More into details, during the initialization of the system, the client’s SMW securely exchanges

a secret key with the primary’s Manager. In addition, all the replicas’ Managers share a secret

key. These keys allow the establishment of a secure channel between the client and the primary

and another secure channel among the replicas.

V-PR’s operations can thus be described as follows (see Figure 5.2). The service client sends

a request (1) to the replicated system using the SMW to authenticate it (2). The request is de-

livered by the OS to the primary U-Manager (3), and then forwarded to the primary Manager

(4). The primary Manager validates the request and passes it (5) to the service application for

the execution. The primary Manager retrieves the reply (6) and gathers the state updates, if any.

Both the reply and the updates are protected and transferred to the primary U-Manager (7) in the

untrusted environment. The primary U-Manager broadcasts the updates to the backup replicas

122

Features Replication Protocols
AR PR V-PR

Byzantine Resistant yes no yes
except physical

[] failures []

Replicas 2f+1 2f+1 [169] 2f+1
with trust

assumptions f+1 [134] with trust
assumptions

Asynchronous yes yes [169] yes
for safety, partially

synchronous for liveness no [134]
(Re-)Computations O(n) O(1) O(1)

Message Size O(din) O(u) O(u+ dout)

Non-determinism no yes yes

Table 5.1: Comparison between Active Replication (AR), Passive Replication (PR) and our new
proposal Verified Passive Replication (V-PR).

(7a), where these are delivered to the backup U-Manager (7b). The updates are then forwarded

to the backup Manager who validates and passes them to the update application that applies

them deterministically, and finally returns an acknowledgement to the backup U-Manager (7c).

The backup U-Manager forwards the acknowledgement back to the primary (7d), where it is

delivered to the primary U-Manager (7e). After enough acknowledgements are received and

processed by the primary, the authenticated reply is sent back to the client (8). At the client, the

reply is delivered to the SMW (9), validated and then passed to the service client application (10).

5.1.5 Benefits and Drawbacks of V-PR

We discuss how V-PR combines benefits and drawbacks of AR and PR (Table 5.1).

• V-PR is safe in the hybrid failure model. In particular, it is robust against arbitrary failures

that do not concern the TCC, for example: software attacks, compromised OS, message cor-

ruptions, physical attacks that do not affect the trusted component (e.g., disk data snooping

and corruption). Also, it can tolerate crash failures that concern the TCC and its execution

environment, for instance: a crash of the service code application, a hardware failure that

makes the TCC halt.

However, it does not protect against programming flaws in the service. This holds even

in SMR systems unless the replicas employ diverse service software [170, 171]. Arguably,

given the minimality and constraints of our trusted execution environment, such latent

vulnerabilities could be more difficult to exploit in V-PR.

V-PR also does not protect against persistent or transient hardware failures in the trusted

123

component that disrupt the service (unless it crashes). Persistent failures may also affect

SMR systems that do not use diverse hardware. Instead, transient failures could be ad-

dressed through functional hardware redundancy. For example, the Recovery Unit in an

IBM z10 maintains the whole processor state in a buffer to retry the work on error; also,

instruction-processing damage checks are performed [172]. So this is an orthogonal issue.

• V-PR is resilient-optimal. It only requires the correctness of a majority of replicas, which is a

lower bound for crash-tolerant asynchronous distributed systems [173]. Similarly, this also

holds for AR systems that leverage a trusted component, thereby making trust assumptions.

In the absence of such a trusted component, the optimal resiliency requires two thirds of

the replicas to be correct [131]. The PR system in [134] uses fewer replicas but assumes the

synchronous model.

• V-PR is safe in the asynchronous model, though it requires partial synchrony for live-

ness [173, 174]. This ensures that the system keeps working despite the failure of the pri-

mary replica. The requirement also holds for several SMR systems [151, 167, 175, 176],

since assuming partial synchrony allows circumventing the impossibility of coordinating

replicas in a completely asynchronous system [177].

• Computational efficiency and simplicity are achieved by relying on a single service exe-

cution. This saves overall a linear factor in processor cycles and request ordering effort

with respect to AR. In fact, previous SMR systems [140, 149, 178] require several execut-

ing replicas that are linear in the number of faults they tolerate. The saving also holds for

the number of exchanged messages because Byzantine agreement requires a number of

messages that is quadratic in the number of replicas [179] (assuming optimal-resiliency).

• The size of the messages that the replicas exchange is application-dependent. In AR, this

depends on the request size (i.e., input data din), while in PR it depends on the size of the

state updates u. V-PR additionally includes the client reply dout alongside the state updates

to ensure that it is delivered even upon the failure of the primary.

Another difference is related to the number of messages exchanged with the client. In AR,

such number is usually a (linear) function of the number of replicas in the system, since the

client has to make sure that enough replicas performed the work correctly. In PR, instead,

only the primary exchanges messages with the client. In V-PR specifically, this is safe since

the client can verify that he exchanges messages with the service code that runs in the

trusted execution environment of the primary replica.

124

• V-PR can run a non-deterministic service, similar to PR. This is an important difference with

respect to AR, whose theory is based on “deterministic” SMR. Some complex techniques

are known to relax such deterministic behavior assumption. One is to guarantee that repli-

cas reach the same state and output after non-deterministic operations using the execute-

verify-recover paradigm [154], while another technique is to hide the non-determinism us-

ing abstraction [180].

5.2 V-PR: Verified Passive Replication

This section presents the replication model to clarify the assumption we make for V-PR (Sec-

tion 5.2.1). Also, it introduces the V-PR context structure for storing security-sensitive local in-

formation and explains how V-PR interacts with the TCC to protect it (Section 5.2.2). Then it

describes how the V-PR system is initialized (Section 5.2.3), how it works in a normal execution

(Section 5.2.4) and how it deals with the failure of the primary (Section 5.2.5).

5.2.1 Replication Model and Hybrid Failure Model

We extend the model introduced in Section 1.3.1 with some additional assumptions that are

specific to V-PR.

The system consists of a group of n replicas, each one equipped with a TCC. The V-PR Man-

ager and the replicated service run in the protected environment provided by the TCC. The rest,

including the V-PR U-Manager, the OS and other services, execute in the untrusted part of the

replica. For a background about the TCC and its primitives we refer to Section 2.3.1. An arbitrary

number of clients can access the system, but they need to be enrolled beforehand to obtain the

necessary authentication credentials (e.g., by contacting an identity management service).

At most a minority f = bn−12 c of the replicas can fail. At each replica, the TCC can only

suffer crashes but the rest of the system and network might experience arbitrary (or Byzantine)

failures. This means that code running in the trusted execution environment either produces

correct results or no values. Untrusted components (such as the U-Managers) may corrupt data,

delay the execution or do any other attempt to maliciously break the protocol. With regard to

messages, they might be modified, removed or delayed during transmission.

The presented model is similar to the hybrid failure model introduced in [139, 165, 166] and

to those used in previous work based on trusted components [139, 140, 141, 151, 152, 181, 182].

The similarity lies in the trusted hardware component that is assumed to behave correctly. The

125

main difference lies is the power of such a component, which performs computation by means

of the execute primitives, while in previous work it is mainly used to assign trusted counter val-

ues to messages and to sign them in order to prevent equivocation (due to malicious processes)

throughout the system.

V-PR ensures safety in the hybrid failure model, and asynchrony can only prevent the repli-

cas from making progress. Liveness is guaranteed in periods of partial synchrony, when mes-

sages are delivered and processed within a fixed but possibly unknown time bound. This can be

achieved through retransmissions and acknowledgments.

5.2.2 Securing V-PR’s Context using the TCC

As the execute primitive runs code in the trusted environment to process a request and termi-

nates when a reply is available, a secure mechanism is necessary to store local V-PR information

(i.e., the current state, whether the replica is the primary or a backup, any secret key already

exchanged with the other replicas). The execute primitive in fact has not been designed to run

indefinitely, waiting for more requests to arrive. Also, no direct access to persistent storage is

available from the trusted execution environment in order to minimize the trusted computing

base. Hence, the local V-PR information must be provided as input from the untrusted envi-

ronment, validated and protected by the Manager and returned as output to the U-Manager for

long-term storage, waiting for the next execution.

In V-PR, the local information of a replica is stored in the context data structure (ctx). The TCC

secure storage primitives allow protecting and validating ctx as it transits between the trusted

and the untrusted execution environments, as part of the input and output of the execute primi-

tive. Also, the TCC trusted counters prevent such data structure to be rolled back by code in the

untrusted environment while trusted code is not running.

The Context Data Structure is constituted by the following most relevant fields:

• id: the identifier of the replica
• nreplicas: the number of replicas
• clientCred: for client authentication
• state: a description of the current service state, i.e., h(statej). It identifies the state unam-

biguously when associated with a trusted state counter, i.e., the pair (state counter, state)

is unique
• K: a system-wide shared key, created by the primary during the initialization and for-

warded to the backups

126

• auth: authenticator to protect the ctx structure while it is stored by the U-Manager (e.g., a

MAC)

How V-PR leverages TCC secure storage. The integrity of ctx and the confidentiality of K,

which is shared only among Managers in the trusted environment, are critical for the system’s

operations. They are protected by each Manager before returning to the U-Manager: (i) an au-

thenticator (e.g., a MAC) is computed with K; (ii) K is encrypted using the auth put TCC primi-

tive, specifying the identity of the running trusted application code (which includes the code of

the Manager, the service and the update applications) as the intended receiver; consequently, K

cannot be accessed from the untrusted environment by the U-Managers, nor by any application

executing on the TCC with a different identity. Later on, when the Manager is re-executed, it

calls the auth get primitive to decrypt K, and then verifies the integrity of the received context.

We will omit these steps while presenting the protocols.

How V-PR leverages trusted counters. The TCC maintains a trusted state counter and a trusted

view counter between executions of the Manager. The Manager handles them using the create cnt,

get cnt and incr cnt TCC primitives (Section 2.3.1). The former counter is used to assign unique

and ordered values to state updates (and consequently also to state versions) and it is incre-

mented whenever client requests produce a modification of the service state. The latter counter

is used to determine the role of a replica at a given time, by counting the number of primary

changes: a replica is the primary if viewcounter mod nreplicas = id, otherwise it is a backup.

These trusted counters are important in the case of malicious replicas to prevent state rollback

attacks and to prevent the existence of multiple primaries that can make progress, because they

could produce divergent states.

5.2.3 System Initialization

The system initialization must ensure three key objectives: (i) every correct replica of the

system is able to join the group, while malicious replicas are excluded; (ii) a system-wide secret

key K is securely shared among the replicas, so that messages can be exchanged securely and

efficiently among the trusted execution environments of the replicas; (iii) all replicas finish the

initialization with the same starting state (state1). The main challenge in solving this problem is

that the storage primitives only work with the local hardware component (Section 2.3.1), so the

Managers do not have an immediately available secure channel, and this has to be built using the

insecure U-Managers. PR does not need them because replicas are assumed to be trustworthy,

so a more lightweight mechanism is sufficient.

127

(n,	servCerts[],	sid,	state1,		
clientCred,	Join[])	

Bi	

P	
TCC	

TCC	

get	prK	&	decrypt	K	
validate	Accept	msg	
adopt	ctx	with	own	ident	i	
create	view	&	state	counters	
create	Ki	
make	ACK_initi	
secure	ctx	and	K	

get	my	idenBfier	i	
create	(puK,	prK)	pair	
s	←	h(puK||servCerts)	
Ai	←aFest(0,	s)	
make	Joini	
secure	prK	

validate	Join[]	msgs	
create	&	init	context	(ctx)	
create	view	&	state	counters	
save	clientCreds	
save	hash	of	state	1	
generate	K	
encrypt	K	with	each	puK	
s	←	h(K||servCerts)	
Ap	←	aFest(0,	s)	
make	Accept	
secure	ctx	and	K	

Joini=<i,	Ai,	puK>	n,	servCerts[],	
sid,	state1,		
clientCred	

(i,	Joini	
prk	secured)	

(n,	servCerts[])	

(ctx,	Accept)	

Accept	=	<ctx,	Ap,		
						{K}puK’s,	state1	>	

(n,	servCerts[],		
prk	secured,	Accept)	

(ctx,	ACK_initi)	

validate	ACK_init[]	msg	
check	majority	of	ACK_init	
increment	state	counter	to	1	

ACK_initi	=	<I,	h(Accept}>K		

(ctx,	ACK_init[])	 (ctx)	

n,	servCerts[]	

Figure 5.3: V-PR system initialization. The first two messages (i.e., the first Bi → P and P → Bi)
are protected through attestation while the other messages (i.e., the second Bi → P) use a MAC
authenticator based on K.

The initialization protocol is displayed in Figure 5.3. When primary and backup Managers

start, their identities are computed. Then they run the initialization protocol inside the trusted

execution environment, leveraging the TCC primitives for secure storage and trusted counters.

The untrusted U-Managers simply take care of message passing among replicas and with their

associated Managers.

The first objective is achieved in two steps. In the first step, the system administrator supplies

the replicas with the size of the group and a vector of TCC certificates. Each certificate belongs

to one specific replica’s TCC. In addition, the primary replica is also given a service identifier,

the initial service state (state1) and a set of credentials (clientCred) to authenticate clients. In the

second step, the Managers at the backup replicas begin to run a protocol for mutual attestation

with the primary Manager. Each backup Manager generates a fresh public/private key pair

and performs an attestation of the public key—while the private key is locally saved in secure

storage—and the certificate vector. The attestation allows the primary Manager to verify the

identity of the trusted application running at the backup replica, to establish trust in the public

key generated by the backup Manager and to ensure that the replicas are setting up a secure

group. A Join message is finally returned and sent to the primary U-Manager with the backup

replica identifier, the attestation and the public key.

Notice that the identity of the code running in the trusted environment can be easily verified

because all replicas are implemented with the same trusted code. So they have the same code

identity when they are loaded and executed by the TCCs. They differentiate among themselves

through the index in the certificate vector that points to the public key of the local TCC.

The second objective is attained by means of a secure symmetric key exchange between the

primary and the backup Managers. The primary Manager validates the Join messages, i.e.,

128

the attestation of each backup replica, its public key and the certificate vector. Also, it creates

and initializes a new context ctx. In particular, it saves the (hash of the) initial service state, a

newly generated random secret keyK, and it creates the trusted view and state counters with the

create cnt primitive (Section 2.3.1) and identifiers sid||1 and sid||2 respectively. Then, the primary

Manager encryptsK using the public key of each replica, and finally attestsK and the certificate

vector. This later allows the backup replicas to verify the identity of the primary, to establish

trust inK and to ensure they are setting up a secure group. An Acceptmessage is then returned

and sent to the backup U-Managers with the new context, the attestation, the encrypted K and

the initial service state. Finally, each backup Manager validates the Accept message, including

the primary’s identity, decrypts K and initializes its local context and counters.

The third objective is achieved by making each of the backup Managers send an acknowl-

edgment (ACK initi) to the primary, authenticated withK. The primary Manager waits for the

arrival of enough ACKs in order to install the initial service state (state1) and advance the state

counter. This state is then propagated to the backup Managers through the initial state updates,

as described in the next section.

5.2.4 Normal execution

V-PR’s processing provides the following guarantees in the hybrid model (Section 5.2.1):

(i) client requests are served as intended; (ii) state updates are installed; (iii) recoverability and

consistency are ensured in the case of failures. Read requests are only handled by the primary

since they do not update the state. For write requests, the procedure requires a majority of repli-

cas to be available. Also, on the critical path, it uses three sequential trusted executions: two at

the primary Manager for processing a request and the respective acknowledgments, and one at

the backup Manager to process the state updates.

The description below assumes that client and the primary Manager share a key Kcl. De-

pending on the client authentication solution, Kcl may be derived on-the-fly by combining the

identifier (clientID) and the credentials (clientCred) supplied by the system administrator, or

through a key distribution protocol. For example, clientCred could correspond to a master key

K master cl, whose confidentiality is protected with the TCC secure storage;K master cl could

be used to derive client specific keys Kcl = KDFK master cl(clientID), where KDF is a secure

key derivation function; during the enrollment process in the system, the client could be given

an identifier clientID and Kcl. It should be noted that clientCred is included in the context

(ctx) structure; as ctx is used by all replicas, any replica can recover Kcl when it becomes the

129

validate	state	update	
			check	authL1[i]	&		

											authL2[i]	

					make	ACKi	
j
	

State_update	j	=	<	Req,		
				Blind-res,	updates	j	>,		
												authL1[],	authL2[]	

							ACKi	j	=	<i,								
				h(State_update	j)	>Ki		

ACKi	j-1	=	<i,		
		h(State_update	j	-1)	>Ki		

(ctx,	state	j-1,		
Req,	ACK[])		

perform	similar	
tasks	as	in	the	

pessimisEc	

protocol	
		
		

(ctx,	state	j	,	Blind-res,		
State_updatej	,	blinder

j-1)			

Req=<clientID2,		
									cnt2,	op>Kcl2	

Res=<clientID1,	cnt1,	
										result>Kcl1	

unblind	Res	for		
					Req	of	round	j-1	

Bi	

P	
TCC	

TCC	

validate	ACKs	
check	majority	of	ACKs	

increment	counter	to	j	

compute	blinder	

validate	state	j-2	

									&	state	updates		

increment	counter	to	j-1		

apply	updates	up	to	j-1	

make	ACKi	
j
	

validate	Req	&	state	j-1	
serve	Req	

make	Res	

if	there	are	updates	

				blind	Res	to	Blind-res	
				save	info	of	new	state	j	

				make	State_updatej	
		

		

Req=<clientID,		
									cnt,	op>Kcl	

(ctx,					
state	j-1,	Req)		

(ctx,	state	j-1,	ACKi	
j)	

(ctx,	state	j	,	Blind-res,	
				State_updatej)	

ACKi	j	=	<i,	h(State_updatej)	>K		

Res=<clientID,	cnt,	result>Kcl	

State_update	j	=	<	h(Req),		
							Blind-res,	updates	j	>K	

unblind		
Blind-res	

(ctx,	ACK[])	 (ctx,	blinder)	

(ctx,	state	j-2	,		
State_update	j-1,	State_update	j)	

Figure 5.4: V-PR normal case operations to serve a client request that produces state updates.

primary. As another example, the technique in Section 3.3.5.1 could be used to let the client and

the primary exchange a symmetric secret key, by leveraging the client’s fresh public key and the

primary’s attestation to verify the primary’s code and establish trust in the exchanged key. The

interactions between the client and the primary Manager can then be protected with this shared

key using standard solutions.

Figure 5.4 shows how V-PR processes requests. Whenever the client calls a service operation,

it creates a request message (Req) with the clientID, a session counter (cnt) and an operation

(op) including the associated parameters. The message is authenticated and integrity protected

with Kcl (e.g., by adding a MAC), and transmitted to the primary.

When the message is delivered, the primary U-Manager executes the Manager with the last

context (ctx), the current state version (statej−1) and the request. The Manager validates the

context, the request and the state, and runs the operation. Next, it produces a response message

(Res) for the client using the output returned by the service. The response to a read request is

simply authenticated and sent back to the client.

Instead, the response to a write request raises the challenge of propagating the updates to

the backups before the client receives a response. This challenge is specific to V-PR because in

hybrid failure model the U-Manager cannot be trusted to propagate the updates, to wait for the

acknowledgements and then to send the reply to the client. Let us describe the issue using the

following example scenario: a client requests to store some data d; the primary Manager performs

the operation and returns an authenticated success response; the U-Manager does not broadcast

the state updates, but rather forwards the response immediately to the client; now let us assume

that the primary replica crashes and another one takes over; the client is unable to read d back

130

since the data is lost.

Our solution is to blind the response (Blind-res). With the blinding procedure the primary

Manager ensures that the client cannot accept the response in the case the U-Manager forwards

it too early by skipping the state propagation step. This is achieved by XORing a blinder value

with the response message authenticator, thereby preventing the validation of the message. The

blinder value is computed using a secure pseudo-random number generator seeded with the

secret K, the state counter and the current state hash. This associates the blinder value to the

state that has to be propagated and that was generated together with Res.

In addition to the blinded response, the primary Manager also releases an updated context

and the state updates. In particular, in the updated context, the state field is the hash of the up-

dated state (after the write request request has been performed). Also, a State updatej message

is created for the backups; this includes the client request, the blinded reply and the update in-

formation (updatesj) to bring the state from version j − 1 to version j. The hash of the request

and reply are useful in case of failure to match the retransmitted client request to its associated

response, without re-doing the operation in statej . If these are not available, the new primary

proceeds from statej−1.

Backup Managers do not explicitly send messages to each other to coordinate. We leverage

the trustworthiness of the primary Manager to securely make this optimization. In particular, the

arrival of j-th update at a backup implies that state j − 1 was accepted by a majority of (primary

and backup) replicas, and that the primary therefore decided to proceed with state j. The result

is that backup replicas do not need to send messages to each other to ensure that the updates

have been received and match. Rather, they can infer this fact when they receive the subsequent

update from the primary. In turn, this means that they do not immediately apply an update.

When State updatej is received, backup Managers must validate the State updatej−1 and

State updatej messages, in order to check for corruptions and ensure that they are applied in the

correct order 1. In particular, in order to apply the updates in State updatej−1, the trusted state

counter must be equal to j − 2, which indicates the last state that was applied, even by the other

replicas. In this case, the j − 1 update is applied and the trusted state counter is incremented to

j − 1. Also, each backup Manager i creates an acknowledgement ACKj
i to inform the primary

Manager that State updatej is locally available and has been validated, though not yet applied.

The primary U-Manager waits for the arrival of a majority of these acknowledgements. Then,

it executes the primary Manager, who checks for a majority of valid acknowledgements—this en-
1Notice that for the first state update j is equal to 2; State0 is the uninitialized service state, and State update1 is

actually represented by the initial state from the initialization procedure.

131

sures that at least one correct replica has received the latest state that survives in the case of mul-

tiple failures. The primary Manager then increments the state counter to j, thereby installing the

last state, and outputs the blinder value. The primary U-Manager finally unblinds the blinded re-

sponse message, by simply XORing the blinder value to the message authenticator, and forwards

it to the client who can now validate it.

5.2.5 Fault Handling

V-PR handles failures of the primary by changing the primary though, due to the peculiar

failure model (Section 5.2.1), using a different mechanism than PR’s. In particular, the Managers

do not execute continuously and have no direct access to network resources—they run on the TCC

with the execute primitive (Section 2.3.1)—so they cannot perform system/network monitoring.

In PR instead, there are no such constraints since the replicas are trustworthy.

In V-PR, the recovery procedure is timeout-driven and is triggered by the U-Managers. This

allows the backup replicas to select a new primary in order to make progress. Although U-

Managers are considered untrusted, recall that a majority of U-Managers are assumed not to

mount a DoS attack, such as not executing the recovery protocol or executing it frequently. This

is reasonable since it is in the interest of the cloud provider that the system keeps operating to

benefit the clients. Therefore, each U-Manager is assumed to begin the recovery procedure when

it stops receiving valid state updates for a period to time2.

The selection of a new primary is guided by two principles: Unique Majority and Progress Ev-

idence. First, a primary is effectively changed when a majority of replicas increment their trusted

view counter to the same value. This guarantees the uniqueness of a primary that is able to make

progress, since a majority of the backups recognize its authority to issue state updates. This also

forces the other replicas to move to the newer view because client requests, or updates, cannot

be successfully processed in the older view.

Second, a replica can safely apply all state updates up to state j − 1 when state update j is

received, independently of the view number. In fact, for the primary Manager to issue the state

update j, it must have received the acknowledgements for state j − 1. Consequently, replicas

may change view, but they can still make progress with any two consecutive updates. This is

safe because, as we mentioned, the primary Manager has to receive acknowledgments from a
2The U-Managers, however, should adjust the timeouts to reflect the current situation where the primary is taking

longer to transmit messages (e.g., due either to processing delays or network congestion). To prevent the case where
a malicious primary U-Manager tries to delay the whole system, the timeouts are only increased up to a certain value
defined by the system administrator.

132

majority of replicas for the j − 1 update in order to later issue the j update.

In more detail, the recovery protocol encompasses the following steps. All backup replicas

start the timeout. When the timeout at a backup replica expires, the U-Manager executes the local

Manager to obtain a Probe changemessage. The message contains an authenticated description

of the current configuration (including the state and view counter values) and it is broadcast to

all replicas.

Replicas wait for a majority of Probe change messages that match the same configuration

of their local Manager before moving to the next phase. In the meanwhile, they continue to

participate in the system as usual, in case more recent state updates are delivered.

The Manager is called again when enough Probe changemessages are delivered. It validates

the messages and then returns aProbe reply also containing the current configuration. A set with

a majority of valid Probe reply messages that match the same backup Manager’s configuration

triggers the view change. The Manager is called to increment the trusted view counter and a

final New primary message is produced and broadcast to inform about the new view.

A corner case. Let us assume that the old primary crashes while broadcasting the j + 1-th state

update (u1). If the new primary receives this message, then it re-broadcasts the same update to be

processed by backup replicas. When enough acknowledgements arrive, the client reply—recall

that this is included in the update message—is unblinded and forwarded to the client.

However, if the new primary does not receive the state update that was issued by the previ-

ous primary replica, then the client times out and re-issues the request. The new primary can

therefore make progress by computing a new j + 1-th state update (say u2 and possibly u2 6= u1).

Since the backup replicas have not yet increased their trusted state counters to j + 1, they can fa-

vor u2 over u1 and drop u1. In fact, this update will only become definitive when the j + 2-th

update is broadcast. Then the computation proceeds as in the normal case (Section 5.2.4).

5.3 Experimental Evaluation

This section provides details on the implementation of V-PR and analyzes its performance in

a cluster of servers. We evaluate V-PR and compare it with two publicly available open-source

state-of-the-art libraries that implement BFT-SMR, namely BFT-SMaRt [167] and Prime [168].

Both libraries are being actively maintained3 and have been used in several other studies, e.g., [155,

176, 183, 184, 185, 186].
3at the time of writing

133

5.3.1 Implementation

Trusted execution environment. We instantiated our TCC using XMHF-TrustVisor. The trusted

hypervisor does not natively support the trusted counter primitives. We have implemented them

following the same approach used for the existing sealed storage primitives. Trusted counters

can be accessed only if the running code—whose identity is saved by the hypervisor—satisfies

the access control policy (i.e., it is the same one that initially created the counters). We refer to

Section 2.2.1 for some background about XMHF-TrustVisor and to Section 2.3.2 for additional

details on the implementation of the primitives.

Message passing. V-PR (more precisely each U-Manager) uses a communication subsystem

based on ZeroMQ [112], a high-performance messaging library that abstracts details of the un-

derlying socket implementation.

Service application. The service we replicate is a full SQLite database engine [188]. Our SQLite

version is self-contained (i.e., with statically linked libraries and no OS support) to run in the

isolated environment provided by XMHF-TrustVisor.

We had to address the challenge of how to allow SQLite to access the data and store it durably.

In the isolated environment, in fact, the application does not have access to disk. We note that

the durability property on a single platform is not strictly necessary in our case, because the data

is also replicated on the backups—many of which are assumed not to fail. So we addressed this

challenge by implementing a module for fast in-memory database operations. This is a Virtual

File System (VFS) module that is registered inside SQLite, and allows the Manager to intercept

updates to the state whenever SQLite modifies the database. We stress that we did not modify the

SQLite code as the database abstracts the underlying implementation of the file system through

the VFS notion.

This implementation, and V-PR more in general, is orthogonal to LaStGT (Chapter 4) and it

is currently not based on it4. The intercept of the updates is performed inside the VFS module

which lies between SQLite and the low-level primitives for file I/O that are implemented in the

LaStGT library. This makes V-PR compatible with LaStGT. An interesting alternative would be

to extend LaStGT with V-PR, by adding functionality for tracking and propagating page writes in

virtual memory. This would make the replication fully application-agnostic and usable by other

LaStGT’s applications. We reiterate however that neither the integration with, nor the extension

of, LaStGT have been further investigated.

Experimental setup. Our testbed is a set of Dell PowerEdge R420 rack servers, running Ubuntu
4Also, V-PR [37] is prior to LaStGT [41].

134

 0

 5

10

Prime
Replica

BFT-SMaRt
Replica

V-PR
Primary

V-PR
Backup

KS
Lo

C 30

50

70

90
Prime
BFT-SMaRt
V-PR
SQLite

Figure 5.5: Actively-executed application-level code size of Prime, BFT-SMaRt and V-PR. The V-
PR case is divided in two parts: the V-PR primary that actively executes the service code, and
the V-PR backup that only execute the update service.

12.04 with a Linux kernel version 3.2.0-27. The servers are equipped with Intel Xeon E5-2407

CPUs, 3GB of memory and a TPM v.1.2. We use the minimal number of machines that are re-

quired to tolerate one fault (i.e., f = 1), namely: three machines (2f + 1) are used to test V-PR;

instead, BFT-SMR libraries are tested on four replicas (3f + 1), as their models require. The

machines are connected with a 1 Gb/s network through a Dell PowerConnect 5448 switch.

5.3.2 Analysis

This section addresses the following points: (1.) it quantifies the code size of V-PR and com-

pares it against the size of Prime and BFT-SMaRt; (2.) it compares the basic performance of V-PR

with Prime and BFT-SMaRt; (3.) it analyzes V-PR’s overhead by running a simple zero-overhead

service; (4.) it analyzes non-deterministic executions in V-PR; (5.) it evaluates the application-

level CPU savings; (6.) it studies V-PR’s end-to-end latency in a realistic scenario; (7.) it presents

V-PR’s main sources of overhead.

1. Code size. In Figure 5.5 we present a breakdown of the code size (in thousand source lines

of code, KSLoC) of V-PR, BFT-SMaRt and Prime calculated with the SLOCCount tool [195]. For

V-PR, we show the size of the core logic executed at the replicas, including the Manager, the

U-Manager and the communication support built with ZeroMQ. The reported lines of code of

BFT-SMaRt and Prime correspond to the respective releases that we downloaded. Notice that we

consider the overall code size, and not the trusted computing base (TCB), because BFT-SMaRt and

Prime do not execute code in a trusted environment.

We make the following observations. First, it is possible to notice that the size of the three

replication schemes—considering the V-PR Primary implementation—is comparable and this is

135

BFT-SMaRt Prime V-PR

Messages (r)
(w)

1+1
4+3+16+16+4 3+16+16+3+12+16

1+1
1+3+3+1

Hops (r) 2 (w) 5 6 (r) 2 (w) 4
Replicas (f = 1) 4 4 3

Executions
4

(active)
4

(active)
1 (active)
2 (passive)

Table 5.2: Normal request execution in BFT-SMaRt, Prime and V-PR.

expected. However, when considering the code actively used at a backup V-PR replica the differ-

ence is significant. We clarify that the full V-PR and SQLite must be available at all replicas but,

in the case of backups, the replicas never run the SQLite code while they remain backup repli-

cas. So about 90% of the total code is unused. In fact, backup replicas only need the SQLite code

to ensure that the identity of the code in the trusted environment matches the code identity at

the other replicas. This level of asymmetry is not possible in BFT-SMR because the correctness of

the result stems from the replicated execution of the service. Even in the fault-free scenario, SMR

has to guarantee that at least a majority of replicas execute the service [140], so they must have

the code. Also, such asymmetry is relevant, and in favor of V-PR, when considering alternative

system designs based on AR and trusted components.

2. Basic performance comparison. We analyze inherent features of V-PR, BFT-SMaRt and Prime

at run-time (Table 5.2). The exchanged messages measure the coordination overhead to maintain

state consistency, as shown in [138]. Each message exchange phase counts as one hop. V-PR out-

performs BFT-SMaRt and Prime because it does not implement expensive coordination protocols

for request ordering, such as Consensus, by verifying the work performed by each replica.

In V-PR, the primary does not have any interaction with the backups for read requests—client

request and reply (i.e., 2 hops) are the only messages. V-PR recognizes automatically a-posteriori

which requests contain read or write operations by tracking the changes to the database using the

VFS module. BFT-SMaRt has a similar optimized execution for read-only operations—using the

invokeUnordered primitive—which avoids the call to the atomic multicast protocol. The main

difference with respect to V-PR is that such capability has to be explicitly programmed (a-priori)

into the client application by calling a specific read-only operation, while in V-PR this is not

required. For Prime, although client operations can be classified as read-only or read/write, no

such optimization is mentioned in [168] and we noticed no significant difference with respect to

write-only requests—later on the authors confirmed our analysis.

Write requests must be ordered in all systems. In V-PR this procedure is centralized at the

136

primary: client requests are ordered through a session counter, while state updates are ordered

through the state counter. As a consequence, in a write request, the update message of the pri-

mary and the acknowledgements of the backups are the only messages that are transmitted in the

distributed system. Compared to read requests, this results into 2 additional hops. In BFT-SMaRt

and Prime, instead, the ordering procedure is an expensive Byzantine fault-tolerant protocol that

requires several phases and messages exchanges among all replicas.

 0

 2

 4

 6

 8

 10

 12

 14

 2 4 6 8 10 12 14

La
te

nc
y

(m
s)

Batch Size

VPR read-only
BFT-SMaRt read-only

 0
 5

 10
 15
 20
 25
 30
 35
 40
 45

 2 4 6 8 10 12 14
La

te
nc

y
(m

s)

Batch Size

VPR write-only
BFT-SMaRt write-only
Prime write-only

Figure 5.6: End-to-end latency, measured at the client, of a replicated zero-overhead service.

3. V-PR’s overhead with a zero-overhead service. Figure 5.6 presents the results of an exper-

iment based on a simple zero-overhead service in fault-free runs. This allows us to determine

the replication overhead while excluding any overhead due to the replicated application. The

results show that V-PR is slower than BFT-SMaRt for single requests, which is primarily due to

the TCC. Also, Prime is mainly delayed by the heavy use of signatures. However, all systems take

advantage of request batching5 to improve their efficiency. Noticeably, V-PR matches BFT-SMaRt

latency when the batch size reaches around 12 requests.

4. Non-deterministic executions. V-PR does not need to track non-deterministic actions dur-

ing the execution of SQLite. As V-PR is based on passive replication, its target is the replication

of the state that is the result of the execution after SQLite terminates; it does not target the ac-

tions that led to a specific state. Consequently, the primary does not need to track calls such as

sqlite3 randomness as in Eve [154], or to implement upcalls as in BASE [180].

5. CPU savings. Figure 5.8 compares the application-level CPU consumption (in cycles) between

a passive replication and an active replication of SQLite. Backup replicas do not execute SQLite.

SQLite write operations are intercepted before they actually modify the database, so to form the

state updates to be forwarded to the backup replicas. The backup replicas merely apply the state
5V-PR uses batching to send more data in a single call to the trusted Manager executing on the TCC.

137

 0

 0.5

 1

 1.5

 2

 2.5

 3

 1 2 3 4 5 6 7

Ti
m

e
(m

s)

Executed Requests

SQLite read operation
SQLite write operation

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0 5 10 15 20

Ti
m

e
(m

s)

Size (KB)

Trusted State Updates

Figure 5.7: Application-level execution time of: read/write requests at the primary (left-side);
state updates per-kilobyte at the backups (right-side). The time interval between execution start
and termination is taken from the hypervisor.

 50
 100
 150
 200
 250
 300
 350
 400
 450

 20 40 60 80 100 120

C
PU

 C
yc

le
s

(×
 1

06)

Executed Requests

SQLite, 1 Primary, 2 Backups
SQLite, 4 Active Replicas

Figure 5.8: Average system-wide application-level CPU cycle consumption for passively and ac-
tively replicated SQLite deployments.

updates received by the primary. This is a simple deterministic procedure, whose complexity is

linear in the size of the updates.

The amount of savings is proportional to the processing effort performed by the replicated

service. In the experiments, the write workload is created with simple delete queries, that pro-

duce state updates and thus force V-PR to use the three replicas—recall that read queries are only

executed at the primary. As we grow the number of delete requests, it is possible to observe an

increasing gap between the two curves. More expensive queries, such as grouping and sorting

operations, would make the gap wider, thus being favorable to V-PR.

6. End-to-end measurements. Figure 5.9 presents the performance of our V-PR-ed SQLite. We

executed read-only requests (such as select operations) and write-only requests (such as delete

138

 0

 50

 100

 150

 200

 250

 300

 1 2 3 4 5 6 7
Th

ro
ug

hp
ut

 (Q
PS

)

Batch Size

VPR-SQLite read-only
VPR-SQLite write-only

Figure 5.9: End-to-end performance of a V-PR-ed SQLite implementation.

operations) over a table of 200 items. Writes are slower than reads due to the additional required

TCC calls. Request batching allows to increase the throughput by more than 3× for both types

of operations, since it amortizes the TCC overhead (e.g., for loading and identifying SQLite code

and input data) over multiple requests.

7. Main sources of overhead. The V-PR-ed SQLite overall incurs three costs, namely: (1) the

SQLite and the update service execution costs, which have been shown in Figure 5.7; (2) the cost

of the V-PR middleware (i.e., Managers and U-Managers), which has been shown in Figure 5.6;

(3) the cost due to the underlying TCC. Since Figure 5.9 combines these costs together, we can ar-

gue that (3) is the most significant, and we also show how it can improve with newer technology.

As an example, let us consider the execution time of a single read request. SQLite takes

about 0.5ms to complete, while V-PR’s latency adds around 3.5ms. Assuming that the TCC has

zero cost, it follows that the expected throughput should be around 250qps. Yet, the observed

throughput is about 60qps, i.e., > 4× lower than expected. A similar analysis holds for write

requests and large batch sizes. Consequently, such high overhead is chiefly due the TCC that is

based on XMHF-TrustVisor.

This is not surprising since the hypervisor performs several operations with non-negligible

cost. In particular, it has to load and identify the application’s code (including V-PR and SQLite);

it has to load the input data and to provide memory for the output state updates. Additional

costs include invoking the trusted counter and secure storage operations—we do not include the

one-time attestation cost that is paid at setup time. These costs involve virtualization operations

such as context switches and/or updates to the extended page tables for data I/O.

There are at least two ways to lower these costs. The first one is to batch the requests, the up-

dates and the replies, as we have shown previously. This allows us to amortize context switches,

139

code identification and input state loading over multiple executions. In fact, although batched

data requires additional memory pages, the overhead for handling them is much smaller than

that of serving a request in a separate trusted execution.

The second one is to leverage better performing Trusted Computing technology, which can

be easily integrated below V-PR. In fact, V-PR is not bound to XMHF-TrustVisor but rather to the

TCC abstraction (Section 2.3.1) that we implemented using the trusted hypervisor, and for which

we also described an implementation based on Intel SGX [189]. SGX is expected to significantly

improve the performance of V-PR with and without batching, because these optimizations are

implemented above our TCC interface which is agnostic to the used trusted hardware compo-

nent. In particular, V-PR would not incur any virtualization overhead and it would benefit from

dedicated instructions on the fast CPU for trusted executions.

5.4 Summary

V-PR is the first fully-passive replication protocol that is safe and live in the hybrid failure

model in the presence of partial synchrony. V-PR leverages trusted hardware to deliver security

guarantees and to allow replicas to verify each other’s execution. As a result, only the primary

replica runs a (possibly non-deterministic) secured service, thereby saving computational re-

sources at the backup replicas. Our experimental evaluation shows that: V-PR has comparable

performance with state-of-the-art BFT-SMR protocols; it is cheaper than BFT-SMR protocols in

terms of messages and number of replicas that are necessary to tolerate the same number of fail-

ures; its main source of overhead is due to our TCC implementation based on XMHF-TrustVisor.

Our expectation is that V-PR can improve using a better performing TCC, for instance based on

Intel SGX.

We remark that V-PR is orthogonal to, and can greatly benefit from: 1) our multi-identity

approach (Chapter 3) to reduce and identify more frequently the code to be loaded inside the

trusted execution environment; 2) our approach to handle a large state (Chapter 4) as it provides

with an efficient and scalable data I/O mechanism. In addition, V-PR enables cloud providers

to deliver highly available trusted services to clients, who can also efficiently verify that service

results were produced and replicated as intended.

140

Chapter 6

Conclusions

Cloud computing—and more generally the use of remote resources—is becoming more and

more attractive, but its adoption raises severe security issues. The problem stems from not

owning and controlling the physical resources to run outsourced services. Clients and service

providers are left with two alternatives: either to have faith in the cloud provider or to avoid

using external resources.

In this thesis we argue that there is a third more satisfactory way out of this dilemma: to use

trusted hardware to secure these outsourced services. Trusted hardware allows a cloud provider

to execute an outsourced service while being unable to control its execution. In particular, the

hardware provides with a root-of-trust that uses execution isolation mechanisms to prevent un-

trusted hardware and software to tamper with the code executing in the trusted environment.

Between such a simple concept and a concrete secure system for outsourced services there

exist many challenges that are raised by the interests of different parties: hardware manufacturers

constantly improve the technology and push for its adoption; cloud providers want to attract

customers by offering diverse high-performance computational resources where they can run

services; service providers do not want to limit the functionality of their services or to re-engineer

them; clients want to have simple means to verify remote executions and to make trust decisions.

These challenges can be tackled starting from a Trusted Computing abstraction. The abstrac-

tion relies on a hardware root-of-trust and to provide a secure foundation for executing services.

We show that a handful of primitives can fulfill the needs of all parties: manufacturers can build

hardware that allows the implementation of the abstraction; cloud providers can offer hardware

resources and a system where the abstraction allows to run services securely; service providers

can use the hardware-agnostic abstraction to develop their services; clients can establish trust in

the results they receive in one call. The contributions of this thesis bolster these claims and show

141

how to provide security and efficiency by working around these primitives.

We show how to deliver higher integrity guarantees and performance for large outsourced

services by reducing the active TCB. The technique allows to load less code (w.r.t. a large ser-

vice code base) in the execution environment and so to identify it more frequently. Since code

identification is related to execution integrity, multiple identifications for shorter executions re-

duce the window of vulnerability with respect to a single identification for a longer execution. In

addition, if a small amount of code is necessary for an execution, this can also result into better

performance.

We show how to extend functionality to large-scale data processing using our abstraction and

no calls for data I/O. The key for this goal is a clever use and management of virtual memory,

which is commonly available in today’s platforms. In particular, being “virtual”, it does not

require to expose any mechanism to the application via the abstraction interface.

Finally, we show that even implementing and running a highly available outsourced service

is feasible and convenient. A distributed protocol allows to set up a distributed system by ini-

tializing service replicas. Then, by leveraging the trustworthiness of our hardware-based secure

foundations, we can implement a passively replicated service. This benefits the cloud provider by

saving computational resources, and also the service provider by allowing the implementation

of non-deterministic services. Interestingly, even in this case, clients can maintain the one-call-

to-verify feature.

6.1 Future Work

We outline interesting research topics that represent a natural continuation of this thesis work.

6.1.1 Additional implementations

First of all, it would be interesting to implement our findings on SGX. Although simple im-

plementations could be attempted on current CPUs, we mention that LaStGT is not yet imple-

mentable. The advanced virtual memory management features used by LaStGT are in fact part

of SGXv2 which, to the best of our knowledge, is not yet available on current hardware—only

SGXv1 is available.

An additional implementation could be based on AMD SEV. As SEV targets virtual machines,

the implementation would likely follow an approach very similar to XMHF-TrustVisor to reduce

the TCB and enable trusted executions. Differently from XMHF-TrustVisor however, the imple-

142

mentation would not require a TPM, or to trust additional hardware modules, since the secure

execution would be confined on the main CPU. In addition, the implementation would allow us

to understand whether our TCC abstraction holds up or requires adjustments.

6.1.2 Combining our techniques together

Although we have shown that the presented techniques are orthogonal, they have not been

integrated into one system. A future implementation however would likely borrow from our

multi-PAL approach and from V-PR to extend LaStGT further, rather than implementing them

as they have been described. The reason is that the multi-PAL approach requires making suitable

code modules, while V-PR requires additional code to intercept state updates performed by the

applications. These requirements could be similarly handled by LaStGT by tracking accesses to

code and state pages in memory. This would further enhance the generality of our approaches.

6.1.3 Dynamically linked libraries

Making applications to be self-contained, as we assume in this thesis, requires putting to-

gether libraries from different developers. While this is feasible, it has some drawbacks. For

instance, the libraries must be available at build time. Also, they are difficult to be updated for

two reasons: first, they are statically linked in the executable; second, the update of a single bit

changes (with high probability) the identity of the self-contained application, which cannot be

verified by a client—unless the client is informed of the new identity.

We believe that software components from different developers should be identified and ver-

ified separately. Ideally, developers would implement their services/libraries and publish them

together with a signature over their code identities for authentication and accountability.

6.1.4 Architecture-agnostic code identification

Although this thesis makes service development architecture-agnostic (through our abstrac-

tion in Chapter 2), different implementations of the abstraction may compute different identities

for the executed code. For example, let us consider our self-contained SQLite database engine’s

code. When this service is executed and attested (using execute and attest, Chapter 2), the attested

code identity is id′ in XMHF-TrustVisor, id′′ on Intel SGX and (with high probability) id′ 6= id′′.

So, at verification time, a client has to verify an identity that depends on the used architecture, de-

spite the same piece of code is executed. Hence, service developers have to provide these trusted

143

identities for different architectures, because code identity is not architecture-agnostic. Promis-

ing approaches to solve this problem are: a level of indirection through the creation of some

loader code that performs a standardized identification of the executed code; or an attestation

mechanism that conveys properties rather than the identity of a specific binary code [187].

6.1.5 Multicore trusted executions

Exploiting multicore architectures is highly desirable for performance, but it raises chal-

lenges, namely: how to schedule multiple threads securely while maintaining a small TCB; how

to support thread creation, execution and coordination with other threads while avoiding to en-

large the interface.

144

Bibliography

[1] Amazon, “Amazon EC2,” http://aws.amazon.com/ec2/.

(cited on page 1.)

[2] Rackspace, “Cloud Servers,” http://www.rackspace.com/cloud/servers/.

(cited on page 1.)

[3] Microsoft, “Microsoft Azure,” https://azure.microsoft.com.

(cited on page 1.)

[4] IBM, “IBM Cloud,” http://www.ibm.com/cloud-computing/.

(cited on page 1.)

[5] A. F. Simpao, L. M. Ahumada, J. A. Gálvez, and M. A. Rehman, “A Review of Analytics

and Clinical Informatics in Health Care,” Journal of Medical Systems, vol. 38, no. 4, p. 45, apr

2014.

(cited on pages 1 and 81.)

[6] K. Srinivas, B. Rani, and A. Govrdhan, “Applications of Data Mining Techniques in Health-

care and Prediction of Heart Attacks,” International Journal on Computer Science and Engineer-

ing (IJCSE), vol. 02, no. 2, pp. 250–255, 2010.

(cited on pages 1 and 81.)

[7] D. H. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Faloutsos, “Polonium: Tera-Scale

Graph Mining and Inference for Malware Detection,” in Proceedings of the SIAM Interna-

tional Conference on Data Mining (SDM), apr 2011, pp. 131–142.

(cited on pages 1 and 81.)

[8] L. Akoglu, H. Tong, and D. Koutra, “Graph based anomaly detection and description: a

survey,” Data Mining and Knowledge Discovery, vol. 29, no. 3, pp. 626–688, may 2015.

(cited on pages 1 and 81.)

[9] K. Ren, C. Wang, and Q. Wang, “Security Challenges for the Public Cloud,” IEEE Internet

145

Computing, vol. 16, no. 1, pp. 69–73, jan 2012.

(cited on pages 1 and 81.)

[10] H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, and

R. Durbin, “The Sequence Alignment/Map format and SAMtools.” Bioinformatics (Oxford,

England), vol. 25, no. 16, pp. 2078–9, aug 2009.

(cited on pages 1 and 81.)

[11] B. Langmead and S. Salzberg, “Fast gapped-read alignment with Bowtie 2,” Nature methods,

vol. 9, no. 4, pp. 357–359, 2012.

(cited on pages 1 and 81.)

[12] R. Chow, P. Golle, M. Jakobsson, E. Shi, J. Staddon, R. Masuoka, and J. Molina, “Controlling

Data in the Cloud: Outsourcing Computation without Outsourcing Control,” Proceedings

of the ACM workshop on Cloud computing security (CCSW), pp. 85–90, 2009.

(cited on page 1.)

[13] W. Jansen and T. Grance, “Guidelines on Security and Privacy in Public Cloud Comput-

ing,” NIST Special Publication, pp. 800–144, 2011.

(cited on page 1.)

[14] J. Tang, Y. Cui, Q. Li, K. Ren, J. Liu, and R. Buyya, “Ensuring Security and Privacy Preser-

vation for Cloud Data Services,” ACM Computing Surveys, vol. 49, no. 1, pp. 1–39, jun 2016.

(cited on page 1.)

[15] W. R. Claycomb and A. Nicoll, “Insider Threats to Cloud Computing: Directions for New

Research Challenges,” in Proceedings of the 36th Computer Software and Applications Confer-

ence (COMPSAC), jul 2012, pp. 387–394.

(cited on page 2.)

[16] T. Ristenpart, E. Tromer, H. Shacham, and S. Savage, “Hey, you, get off of my cloud: explor-

ing information leakage in third-party compute clouds,” in Proceedings of the 16th Conference

on Computer and Communications Security (CCS), 2009, p. 199.

(cited on page 2.)

[17] Y. Zhang, A. Juels, M. K. Reiter, and T. Ristenpart, “Cross-VM side channels and their use

to extract private keys,” in Proceedings of the Conf. on Computer and Communications Security

(CCS), 2012, p. 305.

(cited on page 2.)

146

[18] M. S. Inci, B. Gulmezoglu, G. Irazoqui, T. Eisenbarth, and B. Sunar, “Cache Attacks Enable

Bulk Key Recovery on the Cloud,” in Proceedings of the 18th Conference on Cryptographic

Hardware and Embedded Systems (CHES), 2016, pp. 368–388.

(cited on page 2.)

[19] A. Haeberlen, P. Kouznetsov, and P. Druschel, “PeerReview: Practical accountability for

distributed systems,” in Proceedings of the Symposium on Operating Systems Principles (SOSP),

2007, pp. 175–188.

(cited on page 2.)

[20] A. Sherman, A. Stavrou, J. Nieh, A. D. Keromytis, and C. Stein, “Adding Trust to P2P Distri-

bution of Paid Content,” in Proceedings of the International Conference on Information Security

(ISC), vol. 5735, Berlin, Heidelberg, 2009, pp. 459–474.

(cited on page 2.)

[21] P. England and M. Peinado, “Authenticated Operation of Open Computing Devices,” in

Proceedings of the 7th Australian Conference on Information Security and Privacy (ACISP), jul

2002, pp. 346–361.

(cited on pages 2 and 21.)

[22] P. England, B. Lampson, J. Manferdelli, M. Peinado, and B. Willman, “A Trusted Open

Platform,” Computer, vol. 36, no. 7, pp. 55–62, 2003.

(cited on pages 2, 21, 49, and 51.)

[23] R. Rivest, “On databanks and privacy homomorphism,” Foundations of Secure Computation,

pp. 168–177, 1978.

(cited on pages 2 and 22.)

[24] M. Bellare, V. T. Hoang, and P. Rogaway, “Foundations of Garbled Circuits,” in Proceedings

of the International Conference on Computer and Communications Security (CCS), oct 2012, pp.

784–796.

(cited on page 3.)

[25] R. Gennaro, C. Gentry, and B. Parno, “Non-interactive verifiable computing: outsourcing

computation to untrusted workers,” in Proceedings of the 30th Annual Conference on Advances

in Cryptology (CRYPTO), aug 2010, pp. 465–482.

(cited on page 3.)

[26] A. C. Yao, “Protocols for secure computations,” in Proceedings of the 23rd Annual Symposium

on Foundations of Computer Science (SCFS), nov 1982, pp. 160–160–164–164.

147

(cited on page 4.)

[27] ——, “How to generate and exchange secrets,” in 27th Annual Symposium on Foundations of

Computer Science (sfcs 1986). IEEE, oct 1986, pp. 162–167.

(cited on page 4.)

[28] B. Braun, A. J. Feldman, Z. Ren, S. Setty, A. J. Blumberg, and M. Walfish, “Verifying compu-

tations with state,” in Proceedings of the 24th ACM Symposium on Operating Systems Principles

(SOSP), 2013, pp. 341–357.

(cited on page 4.)

[29] B. Parno and C. Gentry, “Pinocchio: Nearly practical verifiable computation,” in Proceedings

of the IEEE Symposium on Security and Privacy (S&P), 2013, pp. 238–252.

(cited on page 4.)

[30] J. van den Hooff, M. F. Kaashoek, and N. Zeldovich, “VerSum,” in Proceedings of the ACM

Conference on Computer and Communications Security (CCS), nov 2014, pp. 1304–1316.

(cited on page 4.)

[31] Y. Zhang, J. Katz, and C. Papamanthou, “IntegriDB,” in Proceedings of the 22nd ACM Con-

ference on Computer and Communications Security (CCS), oct 2015, pp. 1480–1491.

(cited on pages 4 and 83.)

[32] D. Fiore, C. Fournet, E. Ghosh, M. Kohlweiss, O. Ohrimenko, and B. Parno, “Hash First,

Argue Later,” in Proceedings of the ACM Conference on Computer and Communications Security

(CCS), 2016, pp. 1304–1316.

(cited on page 4.)

[33] D. Sgandurra and E. Lupu, “Evolution of Attacks, Threat Models, and Solutions for Virtu-

alized Systems,” ACM Computing Surveys, vol. 48, no. 3, pp. 1–38, feb 2016.

(cited on page 4.)

[34] Trusted Computing Group, “TPM Main Specs v1.2, Rev. 116,” 2011.

(cited on pages 4 and 7.)

[35] IBM, “IBM PCI-e Cryptographic Coprocessor,” http://www-

03.ibm.com/security/cryptocards/pciecc.

(cited on pages 4 and 7.)

[36] S. Bajaj and R. Sion, “TrustedDB,” in Proceedings of the International Conference on Manage-

ment of Data (SIGMOD), 2011, pp. 205–216.

148

(cited on pages 4, 8, and 52.)

[37] B. Vavala, N. Neves, and P. Steenkiste, “Securing Passive Replication Through Verification,”

in Proceedings of the 34st IEEE Symposium on Reliable Distributed Systems (SRDS), 2015, pp.

176–181.

(cited on pages 4, 18, 52, and 134.)

[38] A. Baumann, M. Peinado, and G. Hunt, “Shielding applications from an untrusted cloud

with Haven,” in Proceedings of the 11th USENIX Conference on Operating Systems Design and

Implementation (OSDI), oct 2014, pp. 267–283.

(cited on pages 4, 8, 12, 24, 49, 52, 78, 81, 82, and 107.)

[39] F. Schuster and M. Costa, “VC3: Trustworthy data analytics in the cloud,” in Proceedings of

the IEEE Symposium on Security and Privacy (S&P), 2015, pp. 38–54.

(cited on pages 4, 8, 17, 24, 81, 83, 107, and 112.)

[40] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind, D. Muthuku-

maran, M. L. Stillwell, D. Goltzsche, D. Eyers, P. Pietzuch, and C. Fetzer, “SCONE: Secure

Linux Containers with Intel SGX,” in Proceedings of the 12th USENIX Conference on Operat-

ing Systems Design and Implementation (OSDI), 2016, pp. 689–704.

(cited on pages 4, 8, 12, 24, and 83.)

[41] B. Vavala, N. Neves, and P. Steenkiste, “Secure Tera-scale Data Crunching with a Small

TCB,” in Proceedings of the 47th IEEE/IFIP International Conference on Dependable Systems and

Networks (DSN), jun 2017.

(cited on pages 4, 17, 24, and 134.)

[42] B. Parno, J. M. McCune, and A. Perrig, “Bootstrapping Trust in Commodity Computers.”

in IEEE Symposium on Security and Privacy, 2010, pp. 414–429.

(cited on page 4.)

[43] S. W. Smith and S. Weingart, “Building a high-performance, programmable secure copro-

cessor,” Computer Networks, vol. 31, no. 9, pp. 831–860, 1999.

(cited on page 6.)

[44] J. Winter and K. Dietrich, “A Hijacker’s Guide to the LPC Bus,” in Proceedings of the 8th

European conference on Public Key Infrastructures, Services, and Applications, 2012, pp. 176–

193.

(cited on page 7.)

149

[45] N. Weichbrodt, A. Kurmus, P. Pietzuch, and R. Kapitza, “AsyncShock: Exploiting synchro-

nisation bugs in intel SGX enclaves,” in Proceedings of the European Symposium on Research

in Computer Security (ESORICS), vol. 9878 LNCS, 2016, pp. 440–457.

(cited on page 8.)

[46] Y. Xu, W. Cui, and M. Peinado, “Controlled-Channel Attacks: Deterministic Side Channels

for Untrusted Operating Systems,” in Proceedings of the IEEE Symposium on Security and

Privacy (S&P), may 2015, pp. 640–656.

(cited on page 8.)

[47] S. Shinde, Z. L. Chua, V. Narayanan, and P. Saxena, “Preventing Page Faults from Telling

Your Secrets,” in Proceedings of the 11th ACM on Asia Conference on Computer and Communi-

cations Security (ASIACCS), 2016, pp. 317–328.

(cited on page 8.)

[48] F. Brasser, U. Müller, A. Dmitrienko, K. Kostiainen, S. Capkun, and A.-R. Sadeghi, “Soft-

ware Grand Exposure: SGX Cache Attacks Are Practical,” arXiv:1702.07521, feb 2017.

(cited on page 8.)

[49] J. Seo, B. Lee, S. Kim, M. Shih, I. Shin, D. Han, and T. Kim, “SGX-Shield: Enabling Address

Space Layout Randomization for SGX Programs,” in Proceedings of the Network & Distributed

System Security Symposium (NDSS), 2017.

(cited on pages 8 and 24.)

[50] M.-w. Shih, S. Lee, K. Taesoo, and M. Peinado, “T-SGX : Eradicating Controlled-Channel

Attacks Against Enclave Programs,” in Proceedings of the Network & Distributed System Secu-

rity Symposium (NDSS), 2017.

(cited on pages 8 and 24.)

[51] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privileged Side-Channel Attacks

in Shielded Execution with Déjà Vu,” in Proceedings of the Asia Conference on Computer and

Communications Security (ASIACCS), 2017, pp. 7–18.

(cited on page 8.)

[52] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki, “Flicker: An Execution

Infrastructure for TCB Minimization,” in Proceedings of the European Conference in Computer

Systems (EuroSys), 2008, pp. 315–328.

(cited on pages 8, 30, 52, 53, 56, 77, 78, 81, and 82.)

[53] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig, “TrustVisor: Efficient

150

TCB Reduction and Attestation.” in Proc. of the IEEE Symposium on Security and Privacy

(S&P), 2010, pp. 143–158.

(cited on pages 8, 23, 25, 27, 30, 37, 38, 51, 52, 53, 56, 70, 78, 81, 82, 107, 112, and 119.)

[54] A. M. Azab, P. Ning, and X. Zhang, “SICE: a hardware-level strongly isolated computing

environment for x86 multi-core platforms,” in Proceedings of the 18th Conference on Computer

and Communications Security (CCS), 2011, pp. 375–388.

(cited on pages 8, 23, and 52.)

[55] R. Strackx and F. Piessens, “Fides,” in Proceedings of the ACM Conference on Computer and

Communications Security (CCS), oct 2012, p. 2.

(cited on pages 8, 23, and 52.)

[56] C.-C. Tsai, D. E. Porter, and M. Vij, “Graphene-SGX: A Practical Library OS for Unmodi-

fied Applications on SGX,” in Proceedings of the USENIX Annual Technical Conference (ATC),

2017.

(cited on pages 8 and 83.)

[57] R. Floyd, “Assigning meanings to programs,” Mathematical aspects of computer science, 1967.

(cited on page 9.)

[58] C. A. R. Hoare, “An axiomatic basis for computer programming,” Communications of the

ACM (CACM), vol. 12, no. 10, pp. 576–580, oct 1969.

(cited on page 9.)

[59] E. W. Dijkstra, “Structured programming,” in Chapter I: Notes on Structured Programming,

O. J. Dahl, E. W. Dijkstra, and C. A. R. Hoare, Eds. Academic Press Ltd., 1972, pp. 1–82.

(cited on page 11.)

[60] B. Liskov and S. Zilles, “Programming with abstract data types,” ACM SIGPLAN Notices,

vol. 9, no. 4, pp. 50–59, apr 1974.

(cited on page 11.)

[61] A. S. Tanenbaum, “Lessons learned from 30 years of MINIX,” Communications of the ACM

(CACM), vol. 59, no. 3, pp. 70–78, feb 2016.

(cited on page 12.)

[62] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry, “MiniBox: a two-way

sandbox for x86 native code,” in Proc. of the USENIX Annual Technical Conference (ATC), jun

2014, pp. 409–420.

151

(cited on pages 12, 82, and 112.)

[63] S. Shinde, D. L. Tien, S. Tople, and P. Saxena, “PANOPLY: Low-TCB Linux Applications

with SGX Enclaves,” in Proceedings of the Annual Network and Distributed System Security

Symposium (NDSS), 2017.

(cited on pages 12, 24, and 83.)

[64] T. Liu, C. Curtsinger, and E. D. Berger, “Dthreads: efficient deterministic multithreading,”

in Proceedings of the 23rd ACM Symposium on Operating Systems Principles (SOSP), 2011, p.

327.

(cited on page 14.)

[65] T. Bergan, O. Anderson, J. Devietti, L. Ceze, D. Grossman, T. Bergan, O. Anderson, J. Devi-

etti, L. Ceze, D. Grossman, T. Bergan, O. Anderson, J. Devietti, L. Ceze, and D. Grossman,

“CoreDet: a compiler and runtime system for deterministic multithreaded execution,” in

Proceedings of the 15th Conference on Architectural Support for Programming Languages and Op-

erating Systems (ASPLOS), vol. 38, no. 1, 2010, p. 53.

(cited on page 14.)

[66] H. Cui, J. Simsa, Y.-H. Lin, H. Li, B. Blum, X. Xu, J. Yang, G. A. Gibson, and R. E. Bryant,

“Parrot: a practical runtime for deterministic, stable, and reliable threads,” in Proceedings

of the 24th ACM Symposium on Operating Systems Principles (SOSP), 2013, pp. 388–405.

(cited on page 14.)

[67] B. Vavala, N. Neves, and P. Steenkiste, “Secure Identification of Actively Executed Code on

a Generic Trusted Component,” in Proceedings of the 46th IEEE/IFIP International Conference

on Dependable Systems and Networks (DSN), jun 2016, pp. 419–430.

(cited on pages 16 and 50.)

[68] F. Tip, “A Survey of Program Slicing Techniques,” Journal of Programming Languages, vol. 3,

1995.

(cited on page 16.)

[69] S. Zdancewic, L. Zheng, N. Nystrom, and A. C. Myers, “Secure program partitioning,”

ACM Transactions on Computer Systems (TOCS), vol. 20, no. 3, pp. 283–328, aug 2002.

(cited on pages 16 and 79.)

[70] T. Sander and C. F. Tschudin, “Towards mobile cryptography,” in Proceedings of the IEEE

Symposium on Security and Privacy (S&P), 1998, pp. 215–224.

(cited on page 22.)

152

[71] ——, “Protecting Mobile Agents Against Malicious Hosts,” Mobile Agents and Security

(LNCS), vol. 1419, no. 1998, pp. 44–60, jan 1998.

(cited on page 22.)

[72] D. Chess, B. Grosof, C. Harrison, D. Levine, C. Parris, and G. Tsudik, “Itinerant agents for

mobile computing,” IEEE Personal Communications, vol. 2, no. 5, pp. 34–49, oct 1995.

(cited on page 22.)

[73] E. Shi, A. Perrig, and L. van Doorn, “BIND: A Fine-Grained Attestation Service for Secure

Distributed Systems,” in Proceedings of the IEEE Symposium on Security and Privacy (S&P),

may 2005, pp. 154–168.

(cited on pages 22, 52, and 78.)

[74] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri, “How low can you go?”

in Proceedings of the 13th International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS), vol. 43, no. 3, mar 2008, p. 14.

(cited on pages 22 and 79.)

[75] D. Grawrock, The Intel Safer Computing Initiative: Building Blocks for Trusted Computing, ser.

Engineer to Engineer Series. Intel Press, 2006.

(cited on pages 22 and 26.)

[76] ——, Dynamics of a Trusted Platform: A Building Block Approach. Intel Press, apr 2009.

(cited on pages 22, 52, and 62.)

[77] G. E. Suh, D. Clarke, B. Gassend, M. van Dijk, and S. Devadas, “AEGIS,” in Proceedings of

the 17th Annual International Conference on Supercomputing (ICS), 2003, pp. 160–171.

(cited on page 23.)

[78] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Perrig, and A. Vasudevan, “OASIS,” in

Proceedings of the 2013 Conference on Computer & Communications Security (CCS), nov 2013,

pp. 13–24.

(cited on pages 23, 52, and 78.)

[79] P. Koeberl, S. Schulz, A.-R. Sadeghi, and V. Varadharajan, “TrustLite,” in Proceedings of the

9th European Conference on Computer Systems (EuroSys), 2014, pp. 1–14.

(cited on page 23.)

[80] ARM Security Technology, “Building a Secure System using TrustZone Technology,” pp.

1–108.

153

(cited on page 24.)

[81] H. Raj, S. Saroiu, A. Wolman, R. Aigner, J. Cox, P. England, C. Fenner, K. Kinshumann,

J. Loeser, D. Mattoon, M. Nystrom, D. Robinson, R. Spiger, S. Thom, and D. Wooten, “fTPM:

A Software-only Implementation of a TPM Chip,” in Proceedings of the 25th USENIX Security

Symposium, 2016.

(cited on page 24.)

[82] V. Costan, I. Lebedev, and S. Devadas, “Sanctum: Minimal Hardware Extensions for Strong

Software Isolation,” in Proceedings of the 25th USENIX Security Symposium, 2016.

(cited on pages 24 and 25.)

[83] T. Hunt, Z. Zhu, Y. Xu, S. Peter, and E. Witchel, “Ryoan : A Distributed Sandbox for Un-

trusted Computation on Secret Data,” in Proceedings of the 12th USENIX Conference on Op-

erating Systems Design and Implementation (OSDI), 2016, pp. 533–550.

(cited on pages 24 and 83.)

[84] S. Brenner, C. Wulf, D. Goltzsche, N. Weichbrodt, M. Lorenz, C. Fetzer, P. Pietzuch, and

R. Kapitza, “SecureKeeper: Confidential ZooKeeper using Intel SGX,” in Proceedings of the

International Middleware Conference (Middleware), 2016, pp. 1–13.

(cited on page 24.)

[85] S. Kim, J. Han, J. Ha, T. Kim, and D. Han, “Enhancing Security and Privacy of Tor’s Ecosys-

tem by using Trusted Execution Environments,” in Proceedings of the 14th USENIX Sympo-

sium on Networked Systems Design and Implementation (NSDI), 2017.

(cited on page 24.)

[86] W. Zheng, A. Dave, J. G. Beekman, R. A. Popa, J. E. Gonzalez, and I. Stoica, “Opaque:

An Oblivious and Encrypted Distributed Analytics Platform,” in Proceedings of the 14th

USENIX Symposium on Networked Systems Design and Implementation (NSDI), 2017.

(cited on page 24.)

[87] D. Kuvaiskii, O. Oleksenko, S. Arnautov, B. Trach, P. Bhatotia, P. Felber, and C. Fetzer,

“SGXBounds: Memory Safety for Shielded Execution,” in Proceedings of the European Con-

ference on Computer Systems (EuroSys), 2017.

(cited on page 24.)

[88] J. Behl, T. Distler, and R. Kapitza, “Hybrids on Steroids: SGX-Based High Performance

BFT,” in Proceedings of the European Conference in Computer Systems (EuroSys), 2017.

(cited on page 24.)

154

[89] M. Orenbach, M. Minkin, P. Lifshits, and M. Silberstein, “Eleos: ExitLess OS services for

SGX enclaves,” in Proceedings of the European Conference in Computer Systems (EuroSys), 2017.

(cited on page 24.)

[90] V. Karande, E. Bauman, Z. Lin, and L. Khan, “SGX-Log,” in Proceedings of the Asia Conference

on Computer and Communications Security (CCS), 2017, pp. 19–30.

(cited on page 24.)

[91] S. Chen, X. Zhang, M. K. Reiter, and Y. Zhang, “Detecting Privileged Side-Channel Attacks

in Shielded Execution with Déjà Vu,” in Proceedings of the Asia Conference on Computer and

Communications Security (CCS), 2017, pp. 7–18.

(cited on page 24.)

[92] S. Tamrakar, J. Liu, A. Paverd, J.-E. Ekberg, B. Pinkas, and N. Asokan, “The Circle Game,”

in Proceedings of the Asia Conference on Computer and Communications Security (CCS), 2017,

pp. 31–44.

(cited on page 24.)

[93] J. Lind, C. Priebe, D. Muthukumaran, D. O’Keeffe, P.-L. Aublin, F. Kelbert, T. Reiher,

D. Goltzsche, D. Eyers, R. Kapitza, C. Fetzer, and P. Pietzuch, “Glamdring: Automatic

Application Partitioning for Intel SGX,” in Proceedings of the USENIX Annual Technical Con-

ference (ATC), 2017.

(cited on page 24.)

[94] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta, “Design, Implementa-

tion and Verification of an eXtensible and Modular Hypervisor Framework,” in Proceedings

of the IEEE Symposium on Security and Privacy (S&P), may 2013, pp. 430–444.

(cited on pages 25, 27, 30, 51, 53, 70, 107, 109, 112, and 119.)

[95] E. Brickell and J. Li, “Enhanced Privacy ID,” in Proceedings of the ACM workshop on Privacy

in electronic society (WPES), 2007, p. 21.

(cited on pages 29 and 30.)

[96] E. Brickell, J. Camenisch, and L. Chen, “Direct anonymous attestation,” in Proceedings of the

11th ACM Conference on Computer and Communications Security (CCS), 2004, p. 132.

(cited on page 30.)

[97] S. Checkoway and H. Shacham, “Iago attacks,” in Proceedings of the 18th Conference on Archi-

tectural Support for Programming Languages and Operating Systems (ASPLOS), vol. 41, no. 1,

mar 2013, p. 253.

155

(cited on pages 33, 83, and 85.)

[98] I. Anati and S. Gueron, “Innovative technology for cpu based attestation and sealing,” in

Proceedings of the 2nd Workshop on Hardware and Architectural Support for Security and Privacy

(HASP), 2013.

(cited on pages 40, 42, 62, 65, and 66.)

[99] R. Strackx and F. Piessens, “Ariadne: A Minimal Approach to State Continuity,” in Proceed-

ings of the 25th USENIX Security Symposium, 2016, pp. 875–892.

(cited on pages 42 and 45.)

[100] C. J. Cremers, “The Scyther Tool: Verification, Falsification, and Analysis of Security Proto-

cols,” in Proceedings of the 20th international conference on Computer Aided Verification (CAV),

vol. 5123, Berlin, Heidelberg, jul 2008, pp. 414–418.

(cited on pages 51 and 71.)

[101] ——, “Unbounded verification, falsification, and characterization of security protocols by

pattern refinement,” in Proceedings of the 15th conference on Computer and Communications

Security (CCS), oct 2008, p. 119.

(cited on pages 51 and 71.)

[102] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design and implementation of a TCG-

based integrity measurement architecture,” in Proceedings of the 13th USENIX Security Sym-

posium, 2004, p. 16.

(cited on page 51.)

[103] B. Kauer, “OSLO: improving the security of trusted computing,” in Proceedings of 16th

USENIX Security Symposium, aug 2007, p. 16.

(cited on page 51.)

[104] “Open Sourced Vulnerability Database,” http://www.osvdb.org/.

(cited on page 52.)

[105] “Exploit-DB,” http://www.exploit-db.com/.

(cited on page 52.)

[106] S. Bratus, N. D’Cunha, E. Sparks, and S. W. Smith, “TOCTOU, Traps, and Trusted Com-

puting,” in Proceedings of the 1st international conference on Trusted Computing and Trust in

Information Technologies (TRUST), vol. 4968, 2008, pp. 14–32.

(cited on page 52.)

156

[107] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas, H. Shafi, V. Shanbhogue, and U. R.

Savagaonkar, “Innovative instructions and software model for isolated execution,” in Pro-

ceedings of the 2nd Workshop on Hardware and Architectural Support for Security and Privacy

(HASP), 2013, pp. 1–1.

(cited on pages 52, 53, and 62.)

[108] Intel, “Software Guard Extensions,” https://software.intel.com/sites/

default/files/managed/48/88/329298-002.pdf.

(cited on page 53.)

[109] “SQLite in Android,” http://developer.android.com/reference/ android/ database/ sqlite/ SQLite-

Database.html.

(cited on page 70.)

[110] “SQLite in iCloud,” https://developer.apple.com/library/ios/ documentation/ DataManagement/

Conceptual/ UsingCoreData WithiCloudPG/ UsingSQLiteStoragewithi Cloud/UsingSQLiteStor-

agewithiCloud.html.

(cited on page 70.)

[111] “SQLite Deployments,” http://sqlite.org/mostdeployed.html.

(cited on page 70.)

[112] ZeroMQ, “http://zeromq.org/.”

(cited on pages 71 and 134.)

[113] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan, B. Parno, D. Zhang, and B. Zill, “Iron-

clad apps: end-to-end security via automated full-system verification,” in Proc. of the 11th

USENIX conference on Operating Systems Design and Implementation (OSDI), oct 2014, pp.

165–181.

(cited on page 72.)

[114] B. Lampson, M. Abadi, M. Burrows, and E. Wobber, “Authentication in distributed sys-

tems: theory and practice,” ACM Transactions on Computer Systems (TOCS), vol. 10, no. 4,

pp. 265–310, nov 1992.

(cited on page 78.)

[115] Y. Chen, R. Venkatesan, M. Cary, R. Pang, S. Sinha, and M. H. Jakubowski, “Oblivious

Hashing: A Stealthy Software Integrity Verification Primitive,” in Proceedings of the 5th In-

ternational Workshop on Information Hiding (IH), oct 2002, pp. 400–414.

(cited on page 78.)

157

[116] J.-E. Ekberg, N. Asokan, K. Kostiainen, and A. Rantala, “Scheduling execution of creden-

tials in constrained secure environments,” in Proceedings of the Workshop on Scalable Trusted

Computing (STC), 2008.

(cited on pages 78 and 79.)

[117] K. Kostiainen, J.-E. Ekberg, N. Asokan, and A. Rantala, “On-board credentials with open

provisioning,” in Proceedings of the 4th International Symposium on Information, Computer, and

Communications Security (ASIACCS), 2009, p. 104.

(cited on pages 78 and 79.)

[118] S. Bugiel and J.-E. Ekberg, “Implementing an application-specific credential platform using

late-launched mobile trusted module,” in Proceedings of the 5th ACM workshop on Scalable

trusted computing (STC), 2010, p. 21.

(cited on pages 78 and 79.)

[119] Trusted Computing Group, “MTM Specification v1.0 rev. 7.02,” 2010.

(cited on page 78.)

[120] ——, “Mobile Trusted Module 2.0 Use Cases,” 2011.

(cited on page 78.)

[121] D. Kilpatrick, “Privman: A library for partitioning applications,” in Proceedings of the

USENIX Annual Technical Conference (Freenix track), 2003.

(cited on page 79.)

[122] M. Girkar and C. Polychronopoulos, “Partitioning programs for parallel execution,” in Pro-

ceedings of the 2nd Int. Conference on Supercomputing (ICS), 1988, pp. 216–229.

(cited on page 79.)

[123] E. Yardimci and M. Franz, “Mostly static program partitioning of binary executables,” ACM

Transactions on Programming Languages and Systems (TOPLAS), vol. 31, no. 5, pp. 1–46, jun

2009.

(cited on page 79.)

[124] S. Bajaj and R. Sion, “TrustedDB: A Trusted Hardware-Based Database with Privacy and

Data Confidentiality,” IEEE Transactions on Knowledge and Data Engineering, vol. 26, no. 3,

pp. 752–765, mar 2014.

(cited on pages 81 and 83.)

[125] T. T. A. Dinh, P. Saxena, E.-C. Chang, B. C. Ooi, and C. Zhang, “M 2 R: enabling stronger

158

privacy in mapreduce computation,” in Proceedings of the 24th USENIX Security Symposium

(SEC), aug 2015, pp. 447–462.

(cited on pages 83 and 112.)

[126] B. Haubold and T. Wiehe, Biological Sequences and the Exact String Matching Problem.

Birkhäuser Verlag, Basel (Switzerland), 2006.

(cited on pages 111 and 112.)

[127] J. C. Venter and Et-al., “The Sequence of the Human Genome,” Science, vol. 291, no. 5507,

pp. 1304–1351, 2001.

(cited on page 112.)

[128] W. Stallings and L. Brown, Computer Security: Principles and Practice, 3rd ed. Prentice Hall,

2014.

(cited on page 117.)

[129] A. S. Tanenbaum and M. Van Steen, Distributed Systems: Principles and Paradigms. Pearson

Prentice Hall, 2002, vol. paperback.

(cited on page 117.)

[130] M. Pease, R. Shostak, and L. Lamport, “Reaching Agreement in the Presence of Faults,”

Journal of the ACM (JACM), vol. 27, no. 2, pp. 228–234, 1980.

(cited on page 117.)

[131] L. Lamport, R. Shostak, and M. Pease, “The Byzantine Generals Problem,” ACM Transac-

tions on Programming Languages and Systems (TOPLAS), vol. 4, no. 3, pp. 382–401, 1982.

(cited on pages 117, 120, and 124.)

[132] L. Lamport, “Time, clocks, and the ordering of events in a distributed system,” Communi-

cations of the ACM, vol. 21, no. 7, pp. 558–565, 1978.

(cited on page 117.)

[133] F. B. Schneider, “Implementing fault-tolerant services using the state machine approach: a

Tutorial,” ACM Computing Surveys (CSUR), vol. 22, no. 4, pp. 299–319, 1990.

(cited on page 117.)

[134] P. A. Alsberg and J. D. Day, “A principle for resilient sharing of distributed resources,” in

In Proc. of the 2nd International Conference on Software Engineering (ICSE), 1976, p. 562.

(cited on pages 117, 123, and 124.)

[135] N. Budhiraja, K. Marzullo, F. B. Schneider, and S. Toueg, “Optimal Primary-Backup Pro-

159

tocols,” in Proceedings of the 6th International Workshop on Distributed Algorithms (WDAG),

1992, p. 378.

(cited on page 117.)

[136] ——, “The primary-backup approach,” in Distributed systems (2nd Ed.), may 1993, pp. 199–

216.

(cited on page 117.)

[137] N. Budhiraja and K. Marzullo, “Tradeoffs in implementing primary-backup protocols,”

in Proceedings of the 7th International Parallel and Distributed Processing Symposium (IPDPS),

1995, pp. 280–288.

(cited on page 117.)

[138] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM

Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, nov 2002.

(cited on pages 117, 118, and 136.)

[139] M. Correia, N. Neves, and P. E. Verı́ssimo, “How to Tolerate Half Less One Byzantine Nodes

in Practical Distributed Systems,” in Proceedings of the 23rd IEEE International Symposium on

Reliable Distributed Systems (SRDS), 2004, pp. 174–183.

(cited on pages 118, 119, and 125.)

[140] R. Kapitza, J. Behl, C. Cachin, T. Distler, S. Kuhnle, S. V. Mohammadi, W. Schröder-

Preikschat, and K. Stengel, “CheapBFT: resource-efficient byzantine fault tolerance,” in

Proceedings of the 7th European Conference on Computer Systems (EuroSys), 2012, p. 295.

(cited on pages 118, 124, 125, and 136.)

[141] G. S. Veronese, M. Correia, A. Bessani, L. C. Lung, and P. E. Verı́ssimo, “Efficient Byzantine

Fault-Tolerance,” IEEE Transactions on Computers, vol. 62, no. 1, pp. 16–30, jan 2013.

(cited on pages 118 and 125.)

[142] T. Wood, R. Singh, A. Venkataramani, P. Shenoy, and E. Cecchet, “ZZ and the art of practical

BFT execution,” in Proceedings of the 6th Conference on Computer Systems (EuroSys), 2011, pp.

123–138.

(cited on page 118.)

[143] A. Clement, E. L. Wong, L. Alvisi, M. Dahlin, and M. Marchetti, “Making Byzantine fault

tolerant systems tolerate Byzantine faults,” Proceedings of the 6th USENIX Symposium on

Networked Systems Design and Implementation (OSDI), pp. 153–168, 2009.

(cited on page 118.)

160

[144] R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The next 700 BFT protocols,” in

Proceedings of the 5th European conference on Computer systems (EuroSys), 2010, p. 363.

(cited on page 118.)

[145] R. Garcia, R. Rodrigues, and N. Preguiça, “Efficient middleware for byzantine fault toler-

ant database replication,” in Proceedings of the 6th European conference on Computer systems

(EuroSys), 2011, pp. 107–122.

(cited on page 118.)

[146] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira, “HQ replication: a hybrid

quorum protocol for byzantine fault tolerance,” in Proceedings of the 7th Symposium on Op-

erating Systems Design and Implementation (OSDI), 2006, pp. 177–190.

(cited on page 118.)

[147] J.-P. Martin and L. Alvisi, “Fast Byzantine Consensus,” in Proceedings of the International

Conference on Dependable Systems and Networks (DSN), jun 2005, pp. 402–411.

(cited on page 118.)

[148] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. L. Wong, “Zyzzyva: Speculative Byzan-

tine Fault Tolerance,” in Proceedings of the 21st Symposium on Operating Systems Principles

(SOSP), vol. 41, no. 6, 2007, pp. 45–58.

(cited on page 118.)

[149] J. Yin, J.-P. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin, “Separating agreement

from execution for byzantine fault tolerant services,” in Proceedings of the Symposium on

Operating Systems Principles (SOSP), vol. 37, no. 5, 2003.

(cited on pages 118 and 124.)

[150] T. Distler, I. Popov, and W. Schröder-Preikschat, “SPARE: Replicas on Hold.” in Proceedings

of the Network & Distributed System Security Symposium (NDSS), 2011.

(cited on page 118.)

[151] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz, “Attested append-only memory:

making adversaries stick to their word,” in Proceedings of 21st Symposium on Operating Sys-

tems Principles (SOSP), vol. 41, no. 6, 2007, p. 189.

(cited on pages 118, 124, and 125.)

[152] I. Abraham, M. K. Aguilera, and D. Malkhi, “Fast Asynchronous Consensus with Optimal

Resilience,” in Proceedings of the 24th Conference on Distributed Computing (DISC), 2010, pp.

4–19.

161

(cited on pages 118 and 125.)

[153] J. Hendricks, S. Sinnamohideen, G. R. Ganger, and M. K. Reiter, “Zzyzx: Scalable fault

tolerance through Byzantine locking,” in IEEE/IFIP International Conference on Dependable

Systems & Networks (DSN), jun 2010, pp. 363–372.

(cited on page 118.)

[154] M. Kapritsos, Y. Wang, V. Quema, A. Clement, L. Alvisi, and M. Dahlin, “All about Eve:

execute-verify replication for multi-core servers,” in Proceedings of the 10th USENIX confer-

ence on Operating Systems Design and Implementation (OSDI), oct 2012, pp. 237–250.

(cited on pages 118, 125, and 137.)

[155] P.-L. Aublin, S. B. Mokhtar, and V. Quema, “RBFT: Redundant Byzantine Fault Tolerance,”

in Proceedings of the 33rd International Conference on Distributed Computing Systems (ICDCS),

2013, pp. 297–306.

(cited on pages 118 and 133.)

[156] J. G. Slember and P. Narasimhan, “Static analysis meets distributed fault-tolerance: en-

abling state-machine replication with nondeterminism,” in Proceedings of the 2nd Conference

on Hot topics in System Dependability (HotDep), nov 2006, p. 2.

(cited on page 118.)

[157] R. van Renesse and R. Guerraoui, “Replication techniques for availability,” in Replication.

Springer-Verlag, jan 2010, pp. 19–40.

(cited on page 118.)

[158] J. Antunes and N. Neves, “DiveInto: Supporting Diversity in Intrusion-Tolerant Systems,”

in Proceedings of the 30th Symposium on Reliable Distributed Systems (SRDS), 2011, pp. 137–

146.

(cited on page 118.)

[159] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The Google file system,” in Proceedings of the

19th Symposium on Operating Systems Principles (SOSP), vol. 37, no. 5, dec 2003, p. 29.

(cited on page 118.)

[160] J. MacCormick, N. Murphy, M. Najork, C. A. Thekkath, and L. Zhou, “Boxwood: abstrac-

tions as the foundation for storage infrastructure,” in Proceedings of the 6th Symposium on

Opearting Systems Design & Implementation (OSDI), dec 2004, p. 8.

(cited on page 118.)

162

[161] J. Maccormick, C. A. Thekkath, M. Jager, K. Roomp, L. Zhou, and R. Peterson, “Niobe: a

Practical Replication Protocol,” Journal ACM Transactions on Storage (TOS), vol. 3, no. 4, pp.

1–43, feb 2008.

(cited on page 118.)

[162] B. Cully, G. Lefebvre, D. Meyer, M. Feeley, N. Hutchinson, and A. Warfield, “Remus: high

availability via asynchronous virtual machine replication,” in Proceedings of the 5th Sympo-

sium on Networked Systems Design and Implementation (NSDI), apr 2008, pp. 161–174.

(cited on page 118.)

[163] J. R. Lorch, A. Baumann, L. Glendenning, D. T. Meyer, and A. Warfield, “Tardigrade: lever-

aging lightweight virtual machines to easily and efficiently construct fault-tolerant ser-

vices,” in Proceedings of the 12th USENIX Conference on Networked Systems Design and Im-

plementation (NSDI), 2015, pp. 575–588.

(cited on page 118.)

[164] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, “ZooKeeper: wait-free coordination for

internet-scale systems,” in Proceedings of the USENIX Annual Technical Conference (ATC),

jun 2010, p. 11.

(cited on page 118.)

[165] M. Correia, N. Neves, L. C. Lung, and P. E. Verı́ssimo, “Low complexity Byzantine-resilient

consensus,” Distributed Computing, vol. 17, no. 3, p. 237, 2005.

(cited on pages 119 and 125.)

[166] P. E. Verı́ssimo, “Travelling through wormholes,” ACM SIGACT News, vol. 37, no. 1, p. 66,

mar 2006.

(cited on pages 119 and 125.)

[167] J. Sousa, E. Alchieri, and A. Bessani, “State Machine Replication for the Masses with BFT-

SMaRt,” in Proceedings of the IEEE Conference on Dependable Systems & Networks (DSN), 2014,

pp. 355–362.

(cited on pages 119, 124, and 133.)

[168] Y. Amir, B. Coan, J. Kirsch, and J. Lane, “Prime: Byzantine Replication under Attack,” IEEE

Transactions on Dependable and Secure Computing (TDSC), vol. 8, no. 4, pp. 564–577, jul 2011.

(cited on pages 119, 133, and 136.)

[169] X. Defago, A. Schiper, and N. Sergent, “Semi-passive replication,” in Proceedings of the 17th

IEEE Symposium on Reliable Distributed Systems (SRDS), 1998, pp. 43–50.

163

(cited on page 123.)

[170] M. Garcia, A. Bessani, I. Gashi, N. Neves, and R. Obelheiro, “OS diversity for intrusion

tolerance: Myth or reality?” in Proceedings of the 41st International Conference on Dependable

Systems & Networks (DSN), jun 2011, pp. 383–394.

(cited on page 123.)

[171] ——, “Analysis of operating system diversity for intrusion tolerance,” Software: Practice

and Experience, vol. 44, no. 6, pp. 735–770, jun 2014.

(cited on page 123.)

[172] IBM, “System z10,” http://www.redbooks.ibm.com/redbooks/pdfs/ /sg247516.pdf.

(cited on page 124.)

[173] C. Dwork, N. Lynch, and L. Stockmeyer, “Consensus in the presence of partial synchrony,”

Journal of the ACM (JACM), vol. 35, no. 2, pp. 288–323, 1988.

(cited on page 124.)

[174] D. Dolev, C. Dwork, and L. Stockmeyer, “On the minimal synchronism needed for dis-

tributed consensus,” Journal of the ACM, vol. 34, no. 1, pp. 77–97, 1987.

(cited on page 124.)

[175] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong, “Zyzzyva: Speculative Byzantine

Fault Tolerance,” ACM Transactions on Computer Systems (TOCS), vol. 27, no. 4, p. 7, dec

2009.

(cited on page 124.)

[176] P.-L. Aublin, R. Guerraoui, N. Knežević, V. Quéma, and M. Vukolić, “The Next 700 BFT

Protocols,” ACM Transactions on Computer Systems (TOCS), vol. 32, no. 4, pp. 1–45, jan 2015.

(cited on pages 124 and 133.)

[177] M. J. Fischer, N. Lynch, and M. S. Paterson, “Impossibility of distributed consensus with

one faulty process,” Journal of the ACM (JACM), vol. 32, no. 2, 1985.

(cited on page 124.)

[178] M. Castro and B. Liskov, “Practical byzantine fault tolerance and proactive recovery,” ACM

Transactions on Computer Systems (TOCS), vol. 20, no. 4, pp. 398–461, 2002.

(cited on page 124.)

[179] D. Dolev and R. Reischuk, “Bounds on information exchange for Byzantine agreement,”

Journal of the ACM (JACM), vol. 32, no. 1, p. 191, 1985.

164

(cited on page 124.)

[180] R. Rodrigues, M. Castro, and B. Liskov, “BASE: using abstraction to improve fault toler-

ance,” in Proceedings of the eighteenth Symposium on Operating Systems Principles (SOSP),

vol. 35, no. 5, 2001, p. 15.

(cited on pages 125 and 137.)

[181] D. Levin, J. R. Douceur, J. R. Lorch, and T. Moscibroda, “TrInc: small trusted hardware

for large distributed systems,” in Proceedings of the 6th USENIX Symposium on Networked

Systems Design and Implementation (NSDI), 2009, pp. 1–14.

(cited on page 125.)

[182] M. Correia, G. S. Veronese, and L. C. Lung, “Asynchronous Byzantine consensus with 2f+1

processes,” in Proceedings of the ACM Symposium on Applied Computing (SAC), mar 2010, p.

475.

(cited on page 125.)

[183] F. Sheldon, D. Fetzer, D. Manz, J. Huang, S. Goose, T. Morris, J. Dang, J. Kirsch, and D. Wei,

“Intrinsically resilient energy control systems,” in Proceedings of the 8th Annual Cyber Secu-

rity and Information Intelligence Research Workshop (CSIIRW), 2013, p. 1.

(cited on page 133.)

[184] J. Behl, T. Distler, and R. Kapitza, “Consensus-Oriented Parallelization,” in Proceedings of

the 16th Annual Conference on Middleware, 2015, pp. 173–184.

(cited on page 133.)

[185] T. Distler, C. Bahn, A. Bessani, F. Fischer, and F. Junqueira, “Extensible distributed coordi-

nation,” in Proceedings of the 10th European Conference on Computer Systems (Eurosys), 2015.

(cited on page 133.)

[186] R. Guerraoui, A.-M. Kermarrec, M. Pavlovic, and D.-A. Seredinschi, “Atum: Scalable

Group Communication Using Volatile Groups,” in Proceedings of the 17th International Con-

ference Middleware, 2016, pp. 1–14.

(cited on page 133.)

[187] A.-R. Sadeghi and C. Stüble, “Property-based attestation for computing platforms,” in Pro-

ceedings of the workshop on New Security Paradigms (NSPW), sep 2004, p. 67.

(cited on page 144.)

[188] SQLite. www.sqlite.org

165

www.sqlite.org

(cited on pages 17, 51, 70, 111, 112, 119, and 134.)

[189] Intel. Intel Software Guard Extensions. https://software.intel.com/sites/default/

files/managed/48/88/329298-002.pdf

(cited on pages 4, 7, 24, 25, 28, 30, 43, 77, 102, 103, and 140.)

[190] Microsoft. Minimum hardware requirements for Windows 10. https://msdn.microsoft.

com/en-us/library/windows/hardware/dn915086

(cited on page 25.)

[191] Intel. Intelĺ SGX SDK for Windows* User Guide. https:

//software.intel.com/sites/default/files/managed/b4/cf/

Intel-SGX-SDK-Developer-Reference-for-Windows-OS.pdf

(cited on pages 43 and 44.)

[192] A. Baumann, M. Peinado, G. Hunt, K. Zmudzinski, C. V. Rozas, M. Hoekstra. ”Secure exe-

cution of unmodified applications on an untrusted host”. Poster/Work-in-Progress. SOSP,

2013. http://research.microsoft.com/pubs/204758/sosp13-abstract.pdf

(cited on page 13.)

[193] IBM. IBM Systems Cryptographic Hardware Products. http://www-03.ibm.com/

security/cryptocards/

(cited on page 6.)

[194] Intel Software Guard Extensions: EPID Provisioning and Attestation Services.

https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%

20sgx%20provisioning%20and%20attesatation%20final.pdf

(cited on pages 6, 29, 30, 38, 39, and 91.)

[195] David A. Wheeler. SLOCCount. http://www.dwheeler.com/sloccount/sloccount.

html

(cited on pages 108 and 135.)

[196] Cloud Security Alliance. The Treacherous 12 – Cloud Computing Top Threats in 2016.

https://downloads.cloudsecurityalliance.org/assets/research/top-threats/

Treacherous-12_Cloud-Computing_Top-Threats.pdf

(cited on page 2.)

[197] Kernel Statistics. http://linuxcounter.net/statistics/kernel

(cited on page 12.)

166

https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://software.intel.com/sites/default/files/managed/48/88/329298-002.pdf
https://msdn.microsoft.com/en-us/library/windows/hardware/dn915086
https://msdn.microsoft.com/en-us/library/windows/hardware/dn915086
https://software.intel.com/sites/default/files/managed/b4/cf/Intel-SGX-SDK-Developer-Reference-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/b4/cf/Intel-SGX-SDK-Developer-Reference-for-Windows-OS.pdf
https://software.intel.com/sites/default/files/managed/b4/cf/Intel-SGX-SDK-Developer-Reference-for-Windows-OS.pdf
http://research.microsoft.com/pubs/204758/sosp13-abstract.pdf
http://www-03.ibm.com/security/cryptocards/
http://www-03.ibm.com/security/cryptocards/
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
https://software.intel.com/sites/default/files/managed/ac/40/2016%20WW10%20sgx%20provisioning%20and%20attesatation%20final.pdf
http://www.dwheeler.com/sloccount/sloccount.html
http://www.dwheeler.com/sloccount/sloccount.html
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.pdf
https://downloads.cloudsecurityalliance.org/assets/research/top-threats/Treacherous-12_Cloud-Computing_Top-Threats.pdf
http://linuxcounter.net/statistics/kernel

[198] GNU C Library. https://www.openhub.net/p/glibc/analyses/latest/languages_

summary

(cited on page 12.)

[199] AMD. Secure Memory Encryption. http://developer.amd.com/wordpress/media/

2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf

(cited on pages 6, 7, 24, and 25.)

[200] AMD. Secure Encrypted Virtualization. http://support.amd.com/TechDocs/55766_

SEV-KM%20API_Spec.pdf

(cited on pages 4, 6, 7, 24, 25, and 30.)

[201] AMD. AMD64 Architecture Programmer’s Manual Volume 2: System Programming.

http://support.amd.com/TechDocs/24593.pdf

(cited on page 7.)

[202] Dell Optiplex 7040. http://www.dell.com/support/manuals/pt/pt/ptbsdt1/

optiplex-7040-desktop/Opti7040_SFF_OM/System-Setup-options?guid=

GUID-50D00E06-502E-4575-83EE-8682F97BF667

(cited on page 85.)

[203] Cisco. Cisco Cloud Services Platform 2100 Remote Command Execution Vulner-

ability (CVE-2016-6374). https://tools.cisco.com/security/center/content/

CiscoSecurityAdvisory/cisco-sa-20160921-csp2100-2

(cited on page 2.)

[204] Amazon. Amazon Linux AMI Security Advisory: ALAS-2016-653. https://alas.aws.

amazon.com/ALAS-2016-653.html

(cited on page 2.)

[205] Cisco. Cisco Cloud Services Platform 2100 Command Injection Vulnerability (CVE-2016-

6373). https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/

cisco-sa-20160921-csp2100-1

(cited on page 2.)

[206] Rackspace. QEMU ”VENOM” Vulnerability (CVE-2015-3456). https://community.

rackspace.com/general/f/53/t/5187

(cited on page 2.)

[207] Illumina. Sequencing Systems. http://illumina.com/systems/sequencing.html

167

https://www.openhub.net/p/glibc/analyses/latest/languages_summary
https://www.openhub.net/p/glibc/analyses/latest/languages_summary
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://developer.amd.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
http://support.amd.com/TechDocs/55766_SEV-KM%20API_Spec.pdf
http://support.amd.com/TechDocs/24593.pdf
http://www.dell.com/support/manuals/pt/pt/ptbsdt1/optiplex-7040-desktop/Opti7040_SFF_OM/System-Setup-options?guid=GUID-50D00E06-502E-4575-83EE-8682F97BF667
http://www.dell.com/support/manuals/pt/pt/ptbsdt1/optiplex-7040-desktop/Opti7040_SFF_OM/System-Setup-options?guid=GUID-50D00E06-502E-4575-83EE-8682F97BF667
http://www.dell.com/support/manuals/pt/pt/ptbsdt1/optiplex-7040-desktop/Opti7040_SFF_OM/System-Setup-options?guid=GUID-50D00E06-502E-4575-83EE-8682F97BF667
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20160921-csp2100-2
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20160921-csp2100-2
https://alas.aws.amazon.com/ALAS-2016-653.html
https://alas.aws.amazon.com/ALAS-2016-653.html
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20160921-csp2100-1
https://tools.cisco.com/security/center/content/CiscoSecurityAdvisory/cisco-sa-20160921-csp2100-1
https://community.rackspace.com/general/f/53/t/5187
https://community.rackspace.com/general/f/53/t/5187
http://illumina.com/systems/sequencing.html

(cited on page 112.)

[208] DNAnexus Sequence Read Archive. Homo Sapiens SRR622458-NA12891. http://sra.

dnanexus.com/runs/SRR622458

(cited on page 112.)

[209] USA Today. Facebook has a billion users in a single day, says Mark Zuckerberg. http:

//www.bbc.com/news/world-us-canada-34082393

(cited on page 1.)

[210] BBC. WhatsApp reaches a billion monthly users. http://www.bbc.com/news/

technology-35459812

(cited on page 1.)

[211] Visa. Visa acceptance for retailers. https://usa.visa.com/run-your-business/

small-business-tools/retail.html

(cited on page 1.)

[212] Amazon. All Customer Success Stories. https://aws.amazon.com/solutions/

case-studies/all

(cited on page 1.)

[213] Amazon. Illumina Case Study. https://www.resilientsystems.

com/cyber-resilience-knowledge-center/incident-response-blog/

security-business-flexibility

(cited on page 1.)

[214] Amazon. AWS Global Infrastructure. https://aws.amazon.com/about-aws/

global-infrastructure

(cited on page 2.)

[215] Microsoft. Azure regions. https://azure.microsoft.com/en-us/regions

(cited on page 2.)

[216] Google. Google Cloud Platform Locations. https://cloud.google.com/about/

locations/

(cited on page 2.)

[217] US Department of Defense. Orange Book, DoD 5200.28-STD. Trusted Computer Sys-

tem Evaluation Criteria (TCSEC). https://upload.wikimedia.org/wikipedia/commons/

a/aa/Trusted_Computer_System_Evaluation_Criteria_DOD_5200.28-STD.pdf

168

http://sra.dnanexus.com/runs/SRR622458
http://sra.dnanexus.com/runs/SRR622458
http://www.bbc.com/news/world-us-canada-34082393
http://www.bbc.com/news/world-us-canada-34082393
http://www.bbc.com/news/technology-35459812
http://www.bbc.com/news/technology-35459812
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://usa.visa.com/run-your-business/small-business-tools/retail.html
https://aws.amazon.com/solutions/case-studies/all
https://aws.amazon.com/solutions/case-studies/all
https://www.resilientsystems.com/cyber-resilience-knowledge-center/incident-response-blog/security-business-flexibility
https://www.resilientsystems.com/cyber-resilience-knowledge-center/incident-response-blog/security-business-flexibility
https://www.resilientsystems.com/cyber-resilience-knowledge-center/incident-response-blog/security-business-flexibility
https://aws.amazon.com/about-aws/global-infrastructure
https://aws.amazon.com/about-aws/global-infrastructure
https://azure.microsoft.com/en-us/regions
https://cloud.google.com/about/locations/
https://cloud.google.com/about/locations/
https://upload.wikimedia.org/wikipedia/commons/a/aa/Trusted_Computer_System_Evaluation_Criteria_DOD_5200.28-STD.pdf
https://upload.wikimedia.org/wikipedia/commons/a/aa/Trusted_Computer_System_Evaluation_Criteria_DOD_5200.28-STD.pdf

(cited on page 12.)

[218] Bruno Vavala, Nuno Neves, Peter Steenkiste. Secure Tera-scale Data Crunching with a

Small TCB. (submitted for publication)

(not cited.)

[219] Intel. Intel Software Guard Extensions Remote Attestation End-

to-End Example. https://software.intel.com/en-us/articles/

intel-software-guard-extensions-remote-attestation-end-to-end-example

(cited on pages 39 and 46.)

[220] Intel. Intel Attestation Service (IAS). https://as.sgx.trustedservices.intel.com:443

(cited on pages 39 and 106.)

[221] Intel. Intel Attestation Service API. https://software.intel.com/sites/default/

files/managed/3d/c8/IAS_1_0_API_spec_1_1_Final.pdf

(cited on pages 39, 46, and 106.)

[222] C. Tsai, D. Porter. “Graphene / Graphene-SGX Library OS - a library OS for Linux multi-

process applications, with Intel SGX support”. https://github.com/oscarlab/graphene

(cited on pages 8 and 83.)

[223] IBM. IBM Financial Transaction Manager. https://www.ibm.com/us-en/marketplace/

financial-transaction-software

(cited on page 1.)

[224] Oracle. Oracle Financials Cloud. https://cloud.oracle.com/en_US/financials-cloud

(cited on page 1.)

[225] Intel. Intel Skylake Products. http://ark.intel.com/products/codename/37572/

Skylake

(cited on page 27.)

[226] Intel. Intel Kaby Lake Products. https://ark.intel.com/products/codename/82879/

Kaby-Lake

(cited on page 27.)

169

https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://software.intel.com/en-us/articles/intel-software-guard-extensions-remote-attestation-end-to-end-example
https://as.sgx.trustedservices.intel.com:443
https://software.intel.com/sites/default/files/managed/3d/c8/IAS_1_0_API_spec_1_1_Final.pdf
https://software.intel.com/sites/default/files/managed/3d/c8/IAS_1_0_API_spec_1_1_Final.pdf
https://github.com/oscarlab/graphene
https://www.ibm.com/us-en/marketplace/financial-transaction-software
https://www.ibm.com/us-en/marketplace/financial-transaction-software
https://cloud.oracle.com/en_US/financials-cloud
http://ark.intel.com/products/codename/37572/Skylake
http://ark.intel.com/products/codename/37572/Skylake
https://ark.intel.com/products/codename/82879/Kaby-Lake
https://ark.intel.com/products/codename/82879/Kaby-Lake

	List of Figures
	List of Tables
	List of Abbreviations
	1 Introduction
	1.1 Security Implications of Code and Data Outsourcing
	1.2 Alternatives for Securing Outsourced Services
	1.3 Focusing on Hardware-based Secure Foundations
	1.3.1 Computing Model for Secure Outsourced Services
	1.3.1.1 System Model
	1.3.1.2 Threat Model

	1.3.2 Available Hardware Architectures
	1.3.3 Can Such Hardware Be Actually Trusted?
	1.3.4 Trusted and Verifiable Code Executions
	1.3.5 The Ideal Theoretical and Practical Worlds

	1.4 Requirements and Challenges
	1.4.1 Abstracting the Hardware-based Secure Foundations
	1.4.2 Integrity of Large Code
	1.4.3 Scaling to Large Volumes of Data
	1.4.4 Availability for Secure Outsourced Services

	1.5 Solving the Challenges for Secure Large-Scale Trusted Executions
	1.5.1 An Abstraction for Trusted Executions
	1.5.2 Verifying an Application by Identifying just the Necessary Code
	1.5.3 Feeding Code with Large-Scale Data using Secure Virtual Memory Maps
	1.5.4 Improving Availability through Secure Replication

	1.6 Summary of Contributions
	Thesis Statement

	2 Abstraction for Trustworthy Code Execution
	2.1 A Brief Introduction to Trusted Computing
	2.1.1 Binding Together Code and Data
	2.1.2 Boosting Performance Leveraging Fast CPU
	2.1.3 Reducing the Physical Trust Boundaries to a Single Chip
	2.1.4 Today's Trusted Computing

	2.2 Background of Two Trusted Computing Architectures
	2.2.1 Background on XMHF-TrustVisor
	2.2.2 Background on Intel SGX

	2.3 An Abstraction of the Trusted Computing Component
	2.3.1 TCC interface
	2.3.2 Example Implementations of the Primitives
	2.3.2.1 Implementing execute
	2.3.2.2 Implementing attest
	2.3.2.3 Implementing verify
	2.3.2.4 Implementing auth_put
	2.3.2.5 Implementing auth_get
	2.3.2.6 Implementing create_cnt
	2.3.2.7 Implementing get_cnt
	2.3.2.8 Implementing incr_cnt
	2.3.2.9 Implementing get_cert

	2.3.3 Primitives in Practice

	3 The Multi-Identity Approach for Identification of (only) Actively Executed Code
	Contributions
	3.1 Towards Trusted Executions of Actively Executed Code
	3.1.1 Previous Work
	3.1.2 Security or Efficiency, But Not Both
	3.1.3 Problem Definition
	3.1.4 Overview of our Solution

	3.2 Model
	3.3 Secure Identification of Actively Executed Code
	3.3.1 A Naive Solution
	3.3.2 Reducing Communication
	3.3.3 Addressing Looping PALs
	3.3.4 Novel Secure Storage Solution
	3.3.5 A Flexible Trusted Execution Protocol
	3.3.5.1 Amortizing the attestation cost

	3.4 Experimental Analysis
	3.4.1 Implementation
	3.4.2 Automatic Verification
	3.4.3 Evaluation
	3.4.3.1 Code size
	3.4.3.2 End-to-end performance
	3.4.3.3 Optimized vs. non-optimized secure channels

	3.5 Performance Model for Code Identification
	3.6 Other Related Work
	3.7 Summary

	4 Support for Large-scale Data in Integrity-protected Virtual Memory
	Contributions
	4.1 Previous Work on Trusted Large-Scale Data Processing
	4.2 Overview of LaStGT
	4.2.1 Operation
	4.2.2 Key Ideas
	4.2.3 Challenges

	4.3 Model
	4.4 Design of LaStGT
	4.4.1 Architecture
	4.4.2 From User Data to LaStGT-compatible State
	4.4.3 Data Processing at the Untrusted Provider
	4.4.3.1 Service Execution
	4.4.3.2 Loading state from disk into untrusted memory
	4.4.3.3 Authenticated lazy loading from untrusted memory
	4.4.3.4 Reclaiming memory

	4.4.4 Client Verification of a Remote Execution

	4.5 Implementation of LaStGT
	4.5.1 Overview
	4.5.2 Trusted Computing-architecture-independent Details
	4.5.2.1 Building the state
	4.5.2.2 Maps for State Organization and Memory Management
	4.5.2.3 State Registration
	4.5.2.4 Normal Execution and Lazy Loading
	4.5.2.5 Loading Data From Disk and Reclaiming Maps
	4.5.2.6 Attestation and Remote Verification

	4.5.3 Implementation in XMHF-TrustVisor
	4.5.4 On the feasibility of LaStGT Using Intel SGX
	4.5.4.1 Main Implementation Challenges and Solutions
	4.5.4.2 Proposed SGX Optimizations

	4.5.5 How the TCC primitives are extended

	4.6 Evaluation
	4.6.1 TCB Size
	4.6.2 Comparing LaStGT and XMHF-TrustVisor
	4.6.3 Microbenchmarks
	4.6.4 End-to-End Application Performance
	4.6.5 Discussion

	4.7 Summary

	5 Availability in Trusted Executions
	Contributions
	5.1 Overview of Verifiable Passive Replication
	5.1.1 Rationale Behind Execution Verification in Replication
	5.1.2 Solution and Challenges
	5.1.3 Architecture of V-PR
	5.1.4 V-PR's Operations
	5.1.5 Benefits and Drawbacks of V-PR

	5.2 V-PR: Verified Passive Replication
	5.2.1 Replication Model and Hybrid Failure Model
	5.2.2 Securing V-PR's Context using the TCC
	5.2.3 System Initialization
	5.2.4 Normal execution
	5.2.5 Fault Handling

	5.3 Experimental Evaluation
	5.3.1 Implementation
	5.3.2 Analysis

	5.4 Summary

	6 Conclusions
	6.1 Future Work
	6.1.1 Additional implementations
	6.1.2 Combining our techniques together
	6.1.3 Dynamically linked libraries
	6.1.4 Architecture-agnostic code identification
	6.1.5 Multicore trusted executions

	Bibliography

