
Architectural Support for
Managing Privacy Tradeo�s

in the Internet
David Naylor
August 2017
CMU-CS-17-116

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

¿esis Committee:
Peter Steenkiste, Chair

Vyas Sekar
Srini Seshan

Dave Oran (Network Systems Research & Design; MIT Media Lab)
Adrian Perrig (ETH Zürich)

Submitted in partial ful�llment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2017 David Naylor.

¿is work was supported by the Department of Defense (DoD) through the National Defense Science & Engineering Graduate Fellowship (ND-
SEG) Program, by the National Science Foundation under grants numbered CNS-1040801 and CNS-1345305, and by the European Union under
the FP7 Grant Agreement n. 318627 (Integrated Project “mPlane”).

¿e views and conclusions contained in this document are those of the author and should not be interpreted as representing the o�cial policies,
either expressed or implied, of any sponsoring institution, the U.S. government, or any other entity.



Keywords: networks, privacy, anonymity, secrecy, accountability, TLS, HTTPS, encryption,
middleboxes, trusted computing, SGX



To my parents
who made me think getting a PhD

was a normal thing to do.



iv



Abstract
Using a communication network entails an inherent privacy risk: packets cross an

infrastructure maintained by several parties other than the sender and receiver, each of
which has the opportunity to observe the packets as they are processed and forwarded.
¿is poses a risk because packets carry information that usersmight rather keep private,
namely: (1) the source address, which exposes the sender, (2) the destination address,
which exposes the recipient, and (3) the body, which can expose user data. Beyond the
information explicitly carried by the packet, observers can also learn sensitive things
merely from the fact that a packet happened to be in a certain place at a certain time.
All of this information is o en divided into two categories: data (the actual message
being communicated, e.g., the contents of an email) andmetadata (information about
the communication, e.g., “A emailed B at 12:07 today”).

Fortunately, we have tools, widely used in practice, to protect this information.
Unfortunately, these tools tend tomake aggressive trade-o�s, sacri�cing other desirable
properties for the sake of privacy. For example, to protect data, the use of encryption
is widespread—on the Web, for instance, many sites have switched from HTTP to
HTTPS. Unfortunately, encryption blindsmiddleboxes, which can lead to a loss of
functionality, performance, and even security. And to protect metadata, anonymous
communication systems like Tor reduce accountability by preventing network operators
from learning who sent a packet and also o en introduce performance overheads.

¿ese “privacy vs. X” tussles seem fundamental, because privacy requires hid-
ing information like source addresses and payloads, while the other properties—
performance, accountability, functionality, and security—require exposing that in-
formation. How can we do both? In this thesis, we argue �rst that a practical balance
is possible if we carefully control access to packet data and metadata and second that
this requires architectural support from the network.

We make this argument in two parts. First, we show how to keep in-�ight data
private while at the same time allowing middleboxes like caches, compression proxies,
and intrusion detection systems to operate. We motivate, design, and evaluate two
protocols for secure communication that includes middleboxes, each one granting
data access only to middleboxes explicitly trusted by an endpoint and also limiting
the scope of what those middleboxes can do with that data. With fully-functional
implementations, we show that these protocols are deployable and have minimal
performance overhead.

Second, we show how re-thinking the way the network treats source addresses can
enable a balance between privacy and accountability that is not possible today. We
present the design of a new network architecture that separates source addresses into
distinct “accountability” and “return” addresses and show with trace-driven analysis
that the performance overhead is reasonable. In order to compare our new architecture
to related work, we also develop an evaluation methodology for quantifying “how
private” a network architecture is.
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Chapter 1 Introduction

Before the Internet, we stored all of our personal (digital) data on our personal computers, which
we kept safely in our homes or o�ces. ¿at data was only accessible to others in person—they
could read our �les only if we typed in our passwords and permitted them physical access to our
machines. Understanding who could see our data was easy; sharing it was not.

¿e Internet changed this—it made sharing trivial, but it brought with it many new privacy
concerns for users. Using a communication network inherently involves sending data across an
infrastructure maintained by a number of parties other than the sender and receiver, each of which
has the opportunity to observe packets as they are processed and forwarded. ¿is poses a risk
because packets carry information that users might rather keep private, namely: (1) the packet’s
source address, which exposes the sender, (2) the destination address, which exposes the recipient,
and (3) the body, which can expose various pieces of user data. And this is just the information
explicitly carried in the packet; observers can also learn sensitive information merely from the fact
that a packet happened to be in a certain place at a certain time (exploiting this information is
known as tra�c analysis). All of this information is o en divided into two categories: data (the
actual message being communicated, e.g., the contents of an email) andmetadata (information
about the communication, e.g., “A emailed B at 12:07 today”).

¿ere are good reasons to hide both types of information. For example, preventing unauthorized
access to data sent over the network protects online shoppers’ credit card information from the 
and allows employees of a company to exchange con�dential documents. Other times, what users
send is less important than to whom they send it, so techniques for hiding metadata help users
protect their identities while, for instance, accessing health websites without revealing personal
medical conditions, posting to whistleblowing websites, or speaking out against an oppressive
political regime [214].

Well-known (and widely used) techniques exist today that provide these properties (we describe
them in more detail later). ¿e problem with these existing methods—and the focus of this thesis—
is that they tend to make aggressive trade-o�s, sacri�cing other desirable properties for the sake of
privacy. For example, to protect data, the use of encryption is widespread—on theWeb, for instance,
many sites have switched from HTTP to HTTPS. Unfortunately, encryption blindsmiddleboxes,
which, as we will discuss, can lead to a loss of functionality, performance, and/or security. To
protect metadata, anonymous communication systems like Tor reduce accountability by preventing
network operators from learning who sent a packet and o en introduce performance overheads.

¿ese Privacy vs. X tussles are fundamental, so striking a balance is non-trivial. In some cases,
users themselves might have multiple con�icting objectives. For instance, users want privacy and
performance, so they might be torn about whether or not to give a compression proxy access to
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their data. Worse, the Internet is comprised of many di�erent entities, each with its own goals
and priorities. For example, users may want to use the network anonymously, while operators,
employers, and law enforcement want to keep their networks secure and prevent misbehavior.
Likewise, allowing middleboxes access to packet payloads is tricky because users want to keep their
information secret, operators want security and low cost, and content providers want to deliver a
good user experience.

¿is all adds up to a formidable challenge: designing privacy mechanisms that o�er a practical
balance between privacy, functionality, accountability, performance, and security. Viable solutions
must provide enough of each property to satisfy all parties.

THESIS STATEMENT

Despite the fundamental tension between hiding personal information from the network
(to provide privacy) and exposing it (to enable accountability, performance optimizations,
additional functionality, and security screening), carefully designed architectural support
can enable mechanisms that o�er realistic balances.

1.1 Background

1.1.1 Our Setting

¿is thesis considers privacy and security issues related to data transmitted over a communication
network. Before we discuss those privacy and security properties themselves, this section lays out
some basic assumptions about the network and the adversary. Individual chapters may make (and
will state if so) di�erent or additional assumptions.

We model a network as a set of hosts, or endpoints, and network boxes (e.g., routers, NATs,
�rewalls, etc.) connected by links. A “conversation” between two endpoints is a �ow, which
consists of one or more packets.

¿e adversary might have vantage points on any number of links or boxes—for example, by
sni�ng a Wi-Fi link, by compromising a router, or by subpoenaing logs from one or more routers.
Every time a packet passes through a vantage point, an event we call a sighting, the adversary can
observe and/or modify any part of the packet. ¿e adversary can also drop packets entirely, reorder
packets, or inject brand new packets of its own.

We assume that the adversary cannot break standard cryptographic primitives (i.e., it is compu-
tationally bounded) and that it cannot compromise the endpoints themselves (that is, we do not
consider privacy from endpoint applications, like web servers, who might track a user’s activity).
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1.1.2 User Goals

What security and privacy properties do users care about when they use the Internet? To start, let
us consider the problem from an intuitive perspective. Broadly speaking, users have three goals
(shown on the right half of Figure 1.1):

USER GOAL 1: Protect their personal information from disclosure.
For example, users want to be able to read their email or deposit a check without anyone
else (aside from their email provider or their bank) learning the contents of their inbox or
their checking account.

USER GOAL 2: Make sure the information they access is the “correct” information.
For example, drivers navigating with Google Maps should be sure that the route they follow
truly came from Google and investors trading stocks cannot a�ord to make decisions
based on bogus market data.

USER GOAL 3: Prevent others from tracking their online activity.
For example, an employee may not want their employer or health insurance provider
to know what symptoms they have researched recently and a reporter might want to
communicate with sources while keeping them anonymous.

Now let us be more precise. First, we can draw a line between the �rst two user goals and
the third: the former relate to the data being communicated, and the latter relates to the com-
munication itself. Next, we will introduce the �ve standard security properties that underlie the
user goals: secrecy, entity authentication, data authentication, sender/receiver anonymity, and
�ow unlinkability. ¿e le half of Figure 1.1 shows these properties; an arrow from a property to
a user goal indicates that that property is required to meet that goal. ¿roughout the rest of this
thesis, we will extend this �gure, working from right to le . In Part II, we describe the �rst three
properties (those needed for data privacy) in more detail and introduce techniques for providing
them. Likewise, Part III explains the latter two properties (those needed for metadata privacy) and
discusses techniques that o�er them. Each part will focus on how these techniques can hinder
performance, accountability, functionality, and security for the sake of privacy and how appropriate
network support can resolve this tension. Figure 1.2 shows the �nal, completed version of Figure 1.1.

1.2 Overview and Contributions

1.2.1 Protecting In-Flight Data (Without Giving Up Performance and
Functionality)

To protect data sent over the network, communicating parties can use encryption. ¿is is o en
done at the transport layer with Transport Layer Security (TLS) [94], the standard protocol for
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Figure 1.1: Properties and Goals. Five key security and privacy properties underlie users’ privacy goals.

adding encryption and authentication to a TCP connection. Most notably, the secure version
of HTTP, known as HTTPS, is simply HTTP on top of TLS instead of directly on top of TCP.
Encryption can also be performed at the network layer using IPsec [147].

Encryption guarantees that only the communicating parties can see the contents of their
communication, but this is meaningless without a way to verify that the encrypted communication
is with the intended party. ¿at is, when a user makes a purchase on Amazon.com, how do they
know the server to which they just sent their credit card number is actually an Amazon server? To
solve this problem, encryption is o en used in conjunction with an authenticationmechanism. In
theWeb, each site has a public/private key pair, and a public key infrastructure (PKI) consisting of
a hierarchy of certi�cate authorities (CAs)maintains a public mapping of public keys to domain
names. ¿ese mappings are represented by certi�cates, which are digitally signed statements
issued by CAs that a particular domain owns a particular public key. During a TLS handshake, the
client’s Web browser veri�es that the server has access to the private key belonging to the intended
domain. Assuming sites truly keep their private keys private, this is evidence that the client has
established a connection with the intended party.

Limitations. Encryption can reduce performance, functionality, and, ironically, security by pre-
ventingmiddleboxes—devices in the network that process tra�c beyond basic packet forwarding—
from operating on packet contents. Middleboxes are widely deployed (most networks have roughly
the same number of them as they do routers and switches [208]), and they perform a variety of
useful functions. For example, caches can reduce latency by storing a copy of recently requested
content so it can be returned faster for subsequent requests; compression proxies help users manage
mobile data usage by compressing data; �rewalls, intrusion detection systems (IDSes), and virus
scanners enhance security; load balancers improve performance by spreading tra�c among multi-
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ple backend servers; and parental �lters help parents control what young children can access. When
tra�c is encrypted, these middleboxes become blind—all they can see is a stream of encrypted bits
whizzing past—and we lose the bene�ts of the services they provide.

¿is problem has attracted a fair amount of attention lately. ¿ere are a number of proposed
techniques (some already used in practice) for including middleboxes in encrypted sessions [99,
156, 159, 164, 187] (see Section II.3 for more details) as well as ongoing discussions in groups like
the IETF, IEEE, and ETSI. Unfortunately, these solutions are ad hoc and lead to several important
security problems.

As an example, let us consider the most common approach for adding a middlebox to a
TLS connection. Suppose a company wants to virus scan all PDFs downloaded on the company
network. Before a new employee is given network access, an administrator installs a custom root CA
certi�cate on that employee’s machine. Now, every time the employee opens a new TLS connection
from that machine, the company’s virus scanner intercepts the connection, fabricates a certi�cate
for the intended Web site on-the-�y (which the browser will accept because it is signed by the
custom root certi�cate), and opens a second connection to the target server. ¿e browser (and the
employee) thinks it has an end-to-end secure connection to the server, when in reality, the virus
scanner can inspect and modify all tra�c completely transparently to the endpoints. With this type
of interception, is it impossible for the client to (1) authenticate both the middlebox and the server
(it must simply trust that the middlebox will properly authenticate the server) and (2) ensure that
the middlebox↔server connection is using a particular cipher suite (or that it is using encryption
at all). Indeed, both of these problems occur in practice with alarming regularity: interception
proxies use outdated cipher suites or fail to check server certi�cates [99].

Approach. ¿eproblems above stem from the fact that techniques like interception-with-custom-
root-certi�cate all try to retro�t TLS, which was designed to be used between two parties, onto
client-middlebox-server connections. Since middleboxes have become an integral part of modern
network infrastructures, we argue that we need a new protocol that acknowledges this reality and
supports “multi-entity communication” by design. Part II describes our e�orts toward designing
such a protocol, which are guided by two core principles:

Middleboxes as First-Class Citizens. TLS was designed to facilitate a secure connection between
two endpoints and thus is not equipped to allow an endpoint to authenticate or negotiate ciphers
with more than one other party. ¿is leads to the problems described above. Instead, we need a
protocol that allows endpoints to explicitly perform a TLS-like handshake with both the other
endpoint as well as one or more middleboxes.

Principle of Least Privilege. In some cases, endpoints may wish to restrict how much of the session
data a middlebox can see or what types of modi�cations it can make. For example, an administrator
might require a user to give access to a middlebox the user does not completely trust. Or, even if the
user does fully trust the middlebox, its presence increases the attack surface (it is yet another party
that could be attacked by an adversary trying to steal user data). Since most middleboxes only need
access to speci�c portions of the session data, or only need to perform speci�c operations on that
data, it is possible to lessen the impact of a potential breach by limiting what the middlebox can see
and do. (In general, this idea is called the principle of least privilege: in any system, each component
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should have the fewest permissions it needs to do its job and no more [200].) In Chapter 3 we
discuss cryptographic approaches and in Chapter 4 we leverage trusted hardware.

Finally, the broader point we want to make here is that it remains unclear which security prop-
erties are required for “secure” communication among many parties. ¿is is an important question
for researchers and practitioners to address, and we hope the work presented here represents a
useful starting point.

Contributions. Wemake the following contributions, described in Part II:
• Astudyof the impacts of encryptingWeb tra�c. InChapter 2we present ourmeasurement
study on the impact of using TLS, which shows that the loss of middleboxes is the most
serious negative e�ect of switching to HTTPS.

• A design space for secure multi-entity communication protocols. Chapter 4 begins with
a description of the properties one might want in a secure multi-entity communication
protocol and the interactions among them.

• Techniques for giving middleboxes access to encrypted data with �ne-grained access
control. Chapter 3 presents a novel abstraction, encryption contexts, which allows endpoints
to restrict which parts of the data stream middleboxes can read or write. We then present
Multi-Context TLS (mcTLS), a protocol that uses encryption contexts to apply the principle
of least privilege to middleboxes.

• Techniques for securely outsourcing middleboxes. Chapter 4 presents Middlebox TLS
(mbTLS), a protocol for secure communication including middleboxes that uses trusted
computing hardware, like Intel SGX, to protect session data from middlebox infrastructure
providers. mbTLS also solves practical deployment problems, like legacy support and in-band
middlebox discovery.

1.2.2 Protecting CommunicationMetadata (Without Giving up
Accountability)

Several anonymity systems exist in research and in practice. ¿e simplest is an anonymizing proxy,
which works by encrypting the sender’s packets and tunneling them to a proxy that decrypts them
and forwards them to the ultimate destination. A single proxy is su�cient against an adversary with
limited capabilities; if an adversary is more powerful (e.g., has multiple vantage points throughout
the network), this idea can be extended by encrypting the packet multiple times and forwarding it
through a series of proxies, each of which strips o� a layer of encryption and forwards the packet
to the next hop. ¿is process is known as onion routing [118] and is used by Tor [96].

However, since Tor attempts to introduce as little delay as possible, it is still susceptible to
timing attacks—an adversary can link packets entering and leaving a Tor relay even though the
payload has been re-encrypted. One solution is for the anonymizing proxies to gather a batch of
packets from multiple clients and release them in a di�erent order a er an arti�cial delay. Such a
proxy is called amix [75]; a network of mixes can hide true tra�c patterns by introducing arti�cial
delay or dummy cover tra�c [54, 89, 90, 112, 122, 153, 154, 169, 210].
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Another solution is to form an overlay network and run a special cryptographic communication
protocol on top where users of the overlay can communicate anonymously (examples of this include
DC-nets [76, 119] andmailbox systems [41, 85, 150, 223] based on private information retrieval).
At the IP layer, the adversary only learns that a user is using the system.

(See Section III.1.2 and Section III.3.1 for a more detailed discussion of these techniques and
systems.)

Limitations. ¿ese systems all share two major limitations. ¿e �rst is that many impair per-
formance by introducing latency or reducing available bandwidth. ¿ese systems o�er various
degrees of protection, with a pronounced tradeo� between anonymity and performance. ¿is
means that many of these techniques are not suitable for default, always-on protection and must be
used selectively, only when the need for privacy outweighs the desire for a fast browsing experience.

¿e second limitation is that, though the particulars vary from system to system, each system is
designed to hide a packet’s true sender and true receiver. From a privacy perspective, this is exactly
the property we want: patients can access healthcare information unobserved, dissidents can safely
dissent, and whistleblowers can whistleblow without fear of retaliation. Unfortunately, this also
means that those who want to misbehave—e.g., launch network attacks, download illegal content,
or harass others—can also do so with impunity. Network administrators and law enforcement,
who typically use packet source addresses to �nd the sources of such abuses, are le more or less
helpless. ¿e result is that accountability becomes signi�cantly more di�cult, if not impossible.

In fact, the problem is even worse, because, even in the absence of these anonymity systems,
today’s Internet does not provide strong accountability to begin with. IP source addresses are easily
spoofed—that is, one host can easily claim to be a di�erent host. When a host sends a packet, it is
free to write any address it likes into the source address �eld. ¿ere are a couple (relatively weak)
methods used to deal with this today. First, source networks can perform egress �ltering—that is,
the network’s border routers can drop any outbound packets with source addresses outside their
address space. Similarly, transit networks can perform ingress �ltering [48], dropping inbound
packets with invalid source addresses. One common way to determine if an incoming source
address is valid is called unicast reverse path forwarding (uRPF). Upon receiving a packet on
a particular interface, a router checks its forwarding tables to make sure that its route to that
source address leaves through that interface. If not, the packet is dropped. More sophisticated
variants have been proposed by the research community [98, 141, 185], but have not been adopted
in practice.

Unfortunately, ingress and egress �ltering are at best marginally e�ective because they only
operate at the granularity of a subnet (hosts within a subnet can still spoof one another’s addresses).
Furthermore, even if we could completely prevent spoo�ng, the accountability picture is not
complete. Many attacks come from compromised hosts (“bots”) that send attack tra�c from their
actual addresses. Since this tra�c is not spoofed, the �ltering techniques described above do not
help, and IP does not provide any mechanisms for reporting or blocking malicious tra�c.

Approach. In this thesis, we argue that both classes of solutions (anonymity systems and anti-
spoo�ng �lters) are constrained by lack of support from the network itself. In the case of anonymity,
in order to hide the identity of a packet’s sender, clearly something must change about the source

9



address. Because the IP architecture does not o�er any primitives for anonymous communication,
the techniques described above all operate as overlays, implicitly changing the meaning of the
source address. ¿e IP speci�cation assumes that the source address identi�es a sender end-to-end,
but this is not true, for example, of a packet leaving a Tor node. Fundamentally, this is the reason
anonymity systems subvert accountability. Network operators who only have a network-level view
have no way to discover the true sender. Any change to the semantics of source addresses requires
support from the network if some degree of accountability is to be maintained.

¿e same holds true for accountability: without support from the network (i.e., routers),
endhosts have limited options for (1) preventing source address spoo�ng and (2) blockingmalicious
tra�c. (For instance, in the case of DDoS, once the network delivers attack tra�c, the damage
is done, even if the victim drops it.) We are not the �rst to point this out—the Accountable
Internet Protocol (AIP) [40] proposed the idea of self-certifying addresses, where each host has
a public/private key pair and its network address is derived from the public key. AIP builds on
this with two things: (1) an anti-spoo�ng mechanism (routers can challenge senders to prove they
have the private key corresponding to their address) and (2) a shuto� mechanism where a victim
under attack can tell the attacker’s network interface card (NIC) to block the o�ending �ow. AIP’s
primary drawback is its lack of privacy: hosts are now cryptographically linked to each packet they
send, making anonymous communication even harder than it is today.

We propose that architectural support—that is, anonymity and accountability mechanisms
directly supported by the network—can more naturally enable realistic trade-o�s. So, we ask the
question: if we couldmake changes to the network architecture, how could we balance the two? ¿e
answer, at a high level, is to decouple anonymity and accountability. Currently, the only “handle” the
network provides for �nding and punishing a malicious sender is the source address. Unfortunately,
the source address is also used to identify the sender (so the receiver knows where to respond). ¿is
makes it di�cult to have both anonymity and accountability, since for the latter source addresses
would ideally be unforgeable, while for the former there would ideally be no source addresses
at all. In Chapter 5 we describe the Accountable and Private Internet Protocol (APIP) [176], our
network architecture that decouples the source address’ accountability and return address roles. To
our knowledge, APIP was the �rst network architecture to provide both more accountability and
more privacy than IP. Since then, the Accountable and Private Network Architecture (APNA) [155]
builds on these ideas with a thorough design for ISP-brokered accountability and privacy.

In the course of doing this work, we sought to put APIP in context with other anonymity systems
and encountered an interesting problem: how can we measure “how private” a network architecture
is? Existing anonymity metrics, as we describe in Section III.3.2, are geared toward evaluating
a complete system—that is, how much anonymity can a user expect given a particular topology
and tra�c patterns? But how much of this is fundamental to the architecture and how much is
the product of the details of one particular deployment of that architecture is hard to say. (No
matter how good an architecture is, if there are only two active users, observers know exactly who
is communicating.) In Chapter 6 we present our work on a deployment- and usage-independent
metric for architectural anonymity.

Contributions. Concretely, we make the following contributions, described in Part III:
• Architectural support for balancing privacy and accountability. In Chapter 5 we intro-
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duce a new network architecture, the Accountable and Private Internet Protocol (APIP), that
explicitly balances privacy and accountability—and, in fact, o�ers more of each than the
current Internet, without introducing signi�cant overhead in the default case.

• Techniques for quantifying privacy.While—and a er—we designed APIP, we found we
struggled to rigorously compare it to other architectures in terms of privacy. ¿is turned out
to be a tricky, open problem; Chapter 6 describes our e�orts on how to quantify “how much
privacy” a network architecture provides.
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Part II

Protecting In-Flight Data
(Without Giving Up Performance and Functionality)

1. What are the consequences of encrypting all Internet tra�c?
2. How can we keep the bene�ts of encryption without giving up the bene�ts
of middleboxes?

3. How can we do this even when middleboxes are physically controlled by
an untrusted party?

Based on work appearing in CoNEXT 2014 [175] and SIGCOMM 2015 [177].
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Introduction

When users communicate on the Internet, they might naturally expect the data they send to be
safe from prying eyes and the data they receive to be “correct” (the �rst two goals we introduced
in Section 1.1.2). Unfortunately, the Internet was not designed to provide these guarantees. It was
not designed to protect the data it carries, nor was it designed to make any guarantees about the
identities of remote endpoints—it only delivers data to addresses that have no higher-level meaning,
and even those are easily faked. Intuitively, this means that an attacker in the network is able to:

1. Read data a user sends or receives.
2. Pretend to be the person with whom the user wants to communicate.
3. Change data a users sends or receives.

As a concrete example, suppose a user makes a purchase from an online vendor. ¿e �rst
vulnerability means that an attacker can see the user’s credit card number when the user sends it to
the vendor. Even if we �x this by using encryption, the second vulnerability means the attacker
can still learn card numbers by pretending to be the vendor. Finally, the third vulnerability means
that the attacker can modify the user’s shipping address to one of the attacker’s choosing.

II.1 Protecting In-Flight Data...

Now we precisely de�ne the security properties that prevent the attacks described above and
techniques for providing those properties.

II.1.1 Properties

Recall the high-level user goals presented in Section 1.1.2. ¿e �rst two—Protect Personal Information
from Disclosure and Get “Correct” Data—both have to do with guarantees we would like about the data
we send and receive over the Internet. Both goals are achieved if we can provide the following
three properties:

PROPERTY 1: Secrecy
Adversaries cannot read application data. (¿is is sometimes referred to as con�dential-
ity.1)
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PROPERTY 2: Entity Authentication.
An endpoint can verify that the other endpoint is truly the entity with which it expects to
communicate.

PROPERTY 3: Data Authentication.
Upon receiving a message, an endpoint can verify (1) that it was originated by the other
endpoint and (2) it was notmodi�ed in �ight (this second requirement by itself is sometimes
referred to as data integrity).

¿e �rst two properties, secrecy and entity authentication, are both required to protect users’
personal information from disclosure. Secrecy is obvious: if an adversary can directly read sensitive
data on-the-wire, e.g., by sni�ng public Wi-Fi, clearly personal information is not protected from
disclosure. Secrecy alone is not enough, however. For example, even if a user’s browser uses an
encrypted connection to fetch email, if an adversary can trick it into connecting to the adversary’s
server instead of the true email server and the user supplies their credentials, then the adversary
has gained access to the user’s email. ¿erefore, it is also crucial to establish a secret channel to the
correct server; this is entity authentication.

¿e second user goal, accessing the “correct” information, requires both entity and data au-
thentication. Whereas above we used entity authentication to ensure we only gave our personal
information to trusted entities, here we use it to ensure we only fetch information from trusted
entities. ¿is must be coupled with data authentication, which certi�es that each message the user
receives really came from that trusted entity (as opposed to being injected into the network by an
attacker) and that it was not tampered with in transit. With both entity and data authentication, the
user is assured that (1) they are communicating with the expected, trusted party, (2) each message
they receive was sent by that party, and (3) no one else changed the data since it was sent.

II.1.2 Techniques

Properties 1, 2, and 3 can be provided with three well-known techniques, respectively (Figure II.1):

TECHNIQUE 1: Encryption
Encryption provides secrecy by preventing anyone without the decryption key from reading
the encrypted data.

TECHNIQUE 2: Asymmetric Key Exchange + Public Key Infrastructure (PKI)
Asymmetric key exchange protocols [167], like Di�e-Hellman, allow two parties who have
had no prior contact to establish a shared secret. A PKI ties the public key used in that

1We use the term secrecy instead of con�dentiality because in many contexts con�dentiality implies that one party is
safeguarding another party’s data by keeping it secret on their behalf. For example, healthcare providers are required to
keep medical records con�dential. Secrecy is more general and applies well in the context of network communication
where both endpoints are equal stakeholders in keeping the data they exchange hidden.
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Figure II.1: Data Protection Techniques. Properties 1, 2, and 3 from Section II.1.1 are frequently achieved
using encryption, asymmetric key exchange + PKI, and message authentication codes (MACs).

key exchange to a particular real-world entity (e.g., a domain name). ¿is makes entity
authentication possible—users can verify that whomever they just established a key with is
the intended party (and then use that key for encryption and/or MAC).

TECHNIQUE 3: Message Authentication Codes (MACs)
MACs are cryptographic checksums that allow you to detect unauthorized changes to a
piece of data. A MAC algorithm takes in a message and a symmetric key and produces
a token, which is sent along with the original message. ¿e recipient, using the same
symmetric key, can use this token to verify that no one tampered with the message. ¿is
provides data authentication.

II.2 ...Without Giving Up Performance and Functionality

Encryption. Fortunately, there are widely used protocols that implement the techniques de-
scribed above. ¿e de facto standard is called Transport Layer Security (TLS) [94]. TLS uses
Encryption to protect data from unauthorized eyes (Secrecy). To establish the symmetric key used
for encryption, it uses Asymmetric Key Exchange protocols like Di�e Hellman Key Exchange [95] and
relies on a PKI to bind public keys to human-readable entity names (Entity Authentication). And every
message sent using TLS is protected with a MAC that allows endpoints to detect whether anyone
without the session key modi�ed it (Data Authentication).

¿ere are other variants of TLS.¿e dominant version today, TLS 1.2, will soon be replaced with
TLS 1.3 [196], which promises faster handshakes and fewer options (eliminating weak cipher suites
and making the protocol easier to reason about). ¿ere is also a variant of TLS, calledDatagram
Transport Layer Security (DTLS) [198], that runs over UDP instead of TCP.

¿ough TLS is the dominant encryption protocol in today’s Internet, there are alternatives. For
example, Google’sQUIC [124] protocol combines the functionality of TCP and TLS into a single
protocol with shorter handshakes (like TLS 1.3) and timer-based congestion control. Another
example is TCPcrypt [63], a TCP extension that encrypts application data at the transport layer
by default. Compared to TLS, it (1) imposes less server overhead, (2) o�ers more authentication
options than just certi�cates, and (3) is more backwards compatible since applications just use TCP
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like normal; they do not need an application-level protocol for �nding out if the other endpoint
supports TLS.

Finally, encryption can also be performed at the network layer using IPsec [147].

Middleboxes. In introductory networks courses, students o en learn the mantra “smart edge,
dumb core.” ¿is was one of the guiding design principles in the early days of the Internet: in an
e�ort to curb the complexity of building such an ambitious system, and in recognition of the fact
that router technology was weak compared to endpoints, the routers comprising the network itself
(“the core”) should be as simple as possible. A router’s job was just to forward packets towards their
destinations and nothing else; any additional functionality was to be implemented on the more
powerful endpoints (“the edge”).

¿e world today is completely di�erent. In addition to routers—which are now orders of magni-
tude more powerful and complex—the network is full of middleboxes—devices that process tra�c
beyond just basic packet forwarding. ¿is includes load balancers, caching proxies, compression
proxies, �rewalls, virus scanners, intrusion detection systems, and parental content �lters. Our
focus is on application-layer middleboxes, sometimes called proxies or in-path services, which
we loosely de�ne as middleboxes that access application-layer data (as opposed to, e.g., a �rewall
operating only on IP and TCP headers).

Middleboxes are everywhere. In a 2012 survey of network operators, networks of all sizes
reported having roughly as many middleboxes as they do routers and switches [208]. For web
proxies in particular, 14% of Netalyzer sessions show evidence of a proxy [228] and all four major
U.S. mobile carriers use proxies—connections to the top 100 Alexa sites are all proxied, with the
exception of YouTube on T-Mobile [235].

Encryption + Middleboxes. On their own, encryption and middleboxes are each bene�cial:
encryption improves security and privacy, andmiddleboxes improve performance, enhance security,
and add other functionality. ¿e problem is, they do not play well together—when tra�c is
encrypted, middleboxes become blind and can no longer do their jobs. To some this is a good
thing. Privacy comes before all else, they argue, and, in fact, blinding middleboxes is o en cited as
a motivation for encryption.

Unfortunately, it is not so simple; we cannot simply turn on HTTPS, close our eyes, and hope
for the best. ¿ere are several reasons it is important to �nd a way to use both encryption and
middleboxes.

Middleboxes are useful. Providing processing and storage in the network has proven to be an e�ective
way to help users, content providers, and network operators alike. For example, techniques such
as caching, compression, prefetching, packet pacing, and reformatting improve load times for
users [156, 235], reduce data usage for operators and users [37, 103, 175, 190, 232], and reduce energy
consumption on the client [97, 130, 175, 190]. Middleboxes can also add functionality not provided
by the endpoints, such as virus scanners in enterprises or content �lters for children.

Middleboxes can enhance security. Somewhat ironically (considering the arguments against middle-
boxes tend to revolve around privacy and security), many middleboxes are deployed to improve
security. If all intrusion detection systems (IDSes), virus scanners, and ex�ltration detectors sud-
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denly disappeared, this would clearly have a negative impact on security. Worse still, network
operators might respond to the prospect of losing these middleboxes by either dropping [181, 187]
or transparently intercepting [99] encrypted connections, resulting in a net decrease in security.
Finally, users may trust a middlebox more than the application; for example, apps can unexpectedly
leak personal information to a server [229], so users may want a middlebox to act as a watchdog.

In-network may be better. First, functions such as caching and packet pacing are inherently more
e�ective in the network [97, 103, 130]. Second, client implementations may be problematic because
the client may be untrusted or its so ware, URL blacklists, virus signatures, etc., may be out-of-date
(e.g., only a third of Android users run the latest version of the OS and over half are more than
two years out of date [9]). ¿ird, while servers can implement functions such as compression,
they may choose not to. A 2014 AT&T study �nds that, for the top 500 Alexa sites, only 32% of
server responses are compressed; most of these are (already compact) images, but compressing the
remainder would yield 11%–13% bandwidth savings [190]. Finally, other functionality, like parental
�ltering, might depend on local regulations. Having carriers implement these features locally is
easier than asking each content provider or client to learn the rules for each country.

¿ey are widely used. In a 2012 survey of network operators, networks of all sizes reported hav-
ing roughly as many middleboxes as L3 routers [208]. For web proxies in particular, 14% of
Netalyzer sessions show evidence of a proxy [228] and all four major U.S. mobile carriers use
proxies—connections to the top 100 Alexa sites are all proxied, with the exception of YouTube on
T-Mobile [235]. In addition, all actors in the Internet use middleboxes. ¿ey are widely deployed in
client networks (e.g., enterprise �rewalls, cellular networks), and of the three IETF RFCs on using
middleboxes with TLS, two are led by operators [156, 159] and one by a content provider [187].
Given this investment, middleboxes are unlikely to go away, so we need a clean, secure way to
include them in encrypted sessions.

¿e Internet is a market-driven ecosystem.¿e Internet is not a centrally managed monopoly but is
a market-driven ecosystem with many actors making independent decisions. For example, while
servers can compress data, many only do so selectively [190]. Similarly, content providers may
decide not to support device-speci�c content formatting but instead rely on third party providers,
which can be selected by the client or content provider. For functions such as content �ltering,
clients may decide to pay for the convenience of having a single middlebox provider of their choice,
instead of relying on individual content providers. Enterprise networks may similarly decide to
outsource functionality [208]. Fundamentally, middleboxes give actors more choices, which leads
to competition and innovation.

Do we really need a new protocol? By design, TLS supports secure communication between
exactly two parties. Despite this, middleboxes are frequently inserted in TLS sessions, but this
has to be done transparently to TLS. Consider an enterprise network that wants to insert a virus
scanner in all employee sessions. A common solution is to install a custom root certi�cate on the
client [99, 132, 183]. ¿e middlebox can then create a certi�cate for itself (purported to be from
the intended server) and sign it with the custom root certi�cate. A er the client connects to the
middlebox, the middlebox connects to the server and passes the data from one connection to the
other. We refer to this as split TLS and it gives rise to several problems:
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(i) ¿ere is no mechanism for authenticating the middlebox.While users can inspect the certi�cate
chain to check who signed the certi�cate, very few do that or understand the di�erence. Moreover,
even if they do, they have no information about what functions the middlebox performs.
(ii)¿e client has no security guarantees beyond the �rst hop.While the connection to the middlebox
is encrypted, the client cannot verify that TLS is being used from the middlebox to the server,
whether additional middleboxes are present, or (depending on what application-level authentica-
tion is used) whether the endpoint of the session is even the intended server. ¿e user needs to
completely trust the middlebox, which they may not even know about. A recent study shows that
TLS interception proxies used in practice today o en reduce security by using weak cipher suites
or failing to check server certi�cates [99].
(iii) Middleboxes get full read/write access to the data stream.Middleboxes can read and modify any
data transmitted and received over TLS sessions despite the fact that many middleboxes only need
selective access to the data stream (see Table 3.1 in Section 3.2).

Given these problems, it should not be a surprise that users are concerned about (transparent)
middleboxes. One could even argue that using TLS in this way is worse than not using TLS at
all [67], since clients and servers are under the illusion that they have a secure session, while some
of the expected security properties do not actually hold.

In an e�ort to address the tussle between encryption and middleboxes, the chapters in this part
make the following contributions:

• Astudyof the impacts of encryptingWeb tra�c. InChapter 2we present ourmeasurement
study on the impact of using TLS, which shows that the loss of middleboxes is the most
serious negative e�ect of switching to HTTPS.

• Techniques for giving middleboxes access to encrypted data with �ne-grained access
control. Chapter 3 presents Multi-Context TLS (mcTLS), our protocol for including middle-
boxes in secure communication sessions. mcTLS applies the principle of least privilege to
middleboxes by allowing endpoints to restrict which parts of the data stream middleboxes
can read or write.

• Adesign space for secure communicationprotocols that includemiddleboxes. Chapter 4
presents a design space for securemulti-entity communication protocols, carefully describing
the range of features that such a protocol might have. We also discuss how these features
interact and how protocol designers are forced to make tradeo�s.

• Techniques for securely outsourcing middleboxes. Chapter 4 also presents Middlebox
TLS (mbTLS), another protocol for secure communication including middleboxes that
uses trusted computing hardware, like Intel SGX, to protect session data from middlebox
infrastructure providers. mbTLS also addresses a number of practical deployability concerns.

II.3 RelatedWork

¿ere are two high-level approaches for reconciling encryption and middleboxes: (1) design
cryptographic primitives that allows middleboxes to operate directly on encrypted data, or (2) make
a security protocol that allows middleboxes to decrypt encrypted data.
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II.3.1 Operating on Encrypted Data

¿e theory community’s answer to this problem is fully homomorphic encryption [113, 115], which
enables an untrusted party to compute arbitrary functions over encrypted data. Unfortunately, these
techniques are still orders of magnitude too slow to use in practice [84, 120]. Instead, researchers
have developed special-purpose cryptosystems that allow a small set of speci�c functions to be
executed on encrypted data, like search or range queries [38, 49, 215, 238].

Two recent systems bring these techniques to middleboxes. BlindBox [209] introduces a
new primitive called DPIEnc, which can be used to encrypt a set of IDS rules and a data stream
such that an IDS can match the encrypted rules against the encrypted data stream without ever
learning the contents of either. BlindBox has two limitations: (1) it only works for pattern-matching
style middleboxes, like IDSes, but cannot handle other middleboxes functions like caching or
compression; and (2) it is (currently) too costly to use in practice. Embark [151] is designed
speci�cally to allow network administrators to outsource network-layer middleboxes to a cloud
provider without giving the cloud service private information about their network. For example,
by encrypting IP headers using a scheme they develop called Pre�xMatch, a cloud-based �rewall
can match encrypted packets to �rewall rules without learning what those rules actually are.

II.3.2 Granting Access to Encrypted Data

Several approaches for granting middleboxes access to encrypted communication sessions have
been proposed (some of which are already used in practice). Here we brie�y summarize the
approaches and their limitations.

(1) Custom Root Certi�cate. ¿is is the approach currently taken by many enterprises. System
administrators install a root certi�cate on employee devices; when an employee starts a connection
to a website, the proxy impersonates the site by making a certi�cate for that site on-demand and
signing it with the custom root certi�cate. It then opens a second TLS connection to the intended
destination and forwards data between the client and server. ¿e user agent, unaware there is a
proxy at all, thinks it is connecting directly to the server. (In the following chapters, we sometimes
refer to this approach as “split TLS.”)
Limitations: First, neither the client nor the server knows about the proxy; clearly, then, the proxy
is not authenticated to either endpoint. Furthermore, the client cannot tell if the proxy properly
authenticated the server or if the proxy–server connection is even encrypted at all. Finally, users
are taught bad habits if they install the certi�cate themselves, and, in either case, most companies
probably do not protect their signing keys as well as the CAs do, giving hackers looking to steal
data from employee devices an attractive attack vector.

(2) “I’m a proxy” Certi�cate Flag. A 2014 IETF dra from Ericsson and AT&T proposes using
the X.509 Extended Key Usage extension to indicate that a certi�cate belongs to a proxy [159].
Upon receiving such a certi�cate during a TLS handshake, the user agent would omit the domain
name check (presumably with user permission) and establish a TLS session with the proxy, which
would in turn open a connection with the server. Based on user preferences, the user agent might
only accept proxy certi�cates for certain sessions.
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Limitations: In this case, the client is aware of the proxy but the server is not. Second, as above, the
client cannot tell whether the connection from the proxy to the server is properly authenticated
and encrypted.

(3) Pass Session Key Out-of-Band. Another IETF dra , this one from Google, assumes that the
client maintains a persistent TLS connection with the proxy and multiplexes multiple sessions
over that connection (much how Google’s data compression proxy operates). A er establishing an
end-to-end TLS connection with the server (which the proxy blindly forwards), the client passes
the session key to the proxy before transmitting data on the new connection [187]. Again, the user
agent can selectively grant the proxy access on a per-connection basis based on user preference.

(4) Ship a Custom Browser. A fourth option is to modify the browser itself to accept certi�cates
from certain trusted proxies. ¿is is the approach Viasat takes for its Exede satellite Internet
customers [156], arguing that caching and prefetching are critical on high-latency links.
Limitations:¿is solution is essentially the same as (1), so it shares the same limitations. In addition,
it has the drawback that a custom browser might not be updated quickly, is expensive to develop
and maintain, and may be inconvenient for users.

(5) Proxy Server Extension. ¿e most promising approach so far is Cisco’s TLS Proxy Server
Extension [164]. ¿e proxy receives a ClientHello from the client, establishes a TLS connection with
the server, and includes the server’s certi�cate and information about the ciphersuite negotiated
for the proxy-server connection in a ProxyInfoExtension appended to the ServerHello it returns to
the client. ¿e client can then check both the proxy’s and the server’s certi�cate.
Limitations:¿e client must completely trust the middlebox to provide honest information about
the server certi�cate and ciphersuite. ¿e proxy is not necessarily visible to the server.

Other Approaches. An alternative to TLS-based techniques is an extension to IPsec that allows
portions of the payload to be encrypted/authenticated between the two end-points of a security
association and leaves the remainder in the clear [144]. ¿e authors target this architecture for
securely enabling intermediary-based services for wireless mobile users. ¿is solution leaves data
for middleboxes completely unencrypted.

Another alternative to a transport-layer protocol, like TLS, is supporting trusted intermedi-
aries at the network layer. ¿e Delegation-Oriented Architecture (DOA) [225] and Named Data
Networking (NDN) [138] do this with their own security mechanisms and properties. Unlike the
techniques above, these approaches cannot be immediately deployed.
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Chapter 2 The Cost of Ubiquitous
Encryption

Increased user concern over online security and privacy (speci�cally, User Goals 1 and 2) has led
to widespread adoption of TLS, the protocol for encrypted, authenticated communication we
introduced in Section II.2. However, as with any security solution, it does not come for free. TLS
may introduce overhead in terms of infrastructure costs, communication latency, data usage, and
energy consumption. Moreover, given the opaqueness of the encrypted communication, any
middleboxes requiring visibility into application layer content, such as caches and virus scanners,
become ine�ective.

¿is chapter sheds light on these costs by studying HTTPS, the secure version of HTTP (which
uses TLS). First, using datasets collected from large ISPs, we examine the accelerating adoption of
HTTPS over the last three years. Second, we quantify the direct and indirect costs of this evolution.
Our results show that, while deploying TLS has some direct performance impact, these e�ects can
largely be “engineered away.” ¿e far bigger concern is the loss of middleboxes, which we show can
measurable negative impact on (among other things) data usage, energy usage, and security. ¿is
result motivates the work we present in Chapter 3 and Chapter 4.

2.1 Introduction

¿eHyperText Transfer Protocol (HTTP) was �rst introduced in the early ’90s. Since then, the
Internet has changed signi�cantly, becoming a vital infrastructure for communication, commerce,
education, and information access. HTTPS, the secure version of HTTP, runs HTTP on top of
TLS[94]. While originally geared toward services that require data con�dentiality or authentication
between client and server, like online banking or e-commerce, the increasing personalization of
the web has led to a number of other services adopting HTTPS, such as GMail, Facebook, and even
YouTube. Furthermore, all major browsers require the use of TLS for all HTTP/2 [135] connections,
mirroring a fundamental design decision of SPDY [220], which was used as the starting point for
HTTP 2.0.

Given users’ growing concerns about security and privacy on the Internet, adopting encryption
by default in all HTTP communication sounds like a good idea. However, security always comes at
a cost, and HTTPS is no di�erent (graphically depicted in Figure 2.1). In this chapter, we aim to
categorize and quantify the cost of the “S” in HTTPS.

First, we look at the way HTTPS adoption has evolved over the past three years. Such an
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Figure 2.1: Impact of TLS.¿emechanisms comprising TLS, their e�ect on the netowrk, and the potential
costs of those e�ects.

analysis is important because, besides quantifying trends, it sheds light on the cost of deploying
HTTPS for web services, a cost that seems to be diminishing: 50% of web tra�c �ows today are
secure, including, for the �rst time, large content (e.g., 50% of YouTube streaming �ows are over
HTTPS).

Second, we study how TLS impacts latency, data consumption, and battery life for clients.
HTTPS requires an additional handshake between the client and the server in addition to the
added computational cost of cryptographic operations. We study how signi�cant these costs are
for �ber, Wi-Fi, and 3G connections.

Lastly, while encryption provides a clear value to the end user in terms of con�dentiality and
authentication, it could have implications that are harder to assess. Over the past 15 years, an
increasing number of network functionalities have been performed by transparent and explicit
middleboxes, aiming to reduce the amount of backbone tra�c, compress content before trans-
mission on expensive wireless links, �lter inappropriate/undesired content, and protect users
and organizations from security threats. ¿ese boxes suddenly become blind in the presence of
encryption. We show that there are clear cases where losing such functionality may not only harm
network e�ciency, but also increase latency by more than 50% and consume up to 30% more
energy for 3G mobile devices.

Using three di�erent datasets, captured in residential and cellular networks, as well as controlled
experiments, our work shows that: (i) HTTPS usage is increasing despite potential deployment
costs, (ii) HTTPS has a perceptible impact on clients in terms of latency, (iii) its data overhead
seems to be limited, (iv) it could lead to signi�cantly increased battery consumption for large
objects.

¿is creates a complex tradeo� that depends on many factors, including context and personal
preference. While speci�c workloads will always be served through HTTPS (e.g., �nancial trans-
actions), there are a number of applications where encryption could be optional or the service
could be assisted by trusted proxies, which bring back the bene�ts of middleboxes, as described in
a recent IETF proposal [159]. How to best manage this tradeo� is an open question that challenges
the research community.
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Figure 2.2: TLS Handshake. If the server supports it, subsequent connections from the same client to the
same server can use a 1 RTT version of the handshake.

In the context of this thesis, our results show that the the biggest potential cost, though hard to
quantify, is the loss of middleboxes, which we show can measurable negative impact on (among
other things) data usage, energy usage, and security. ¿is result motivates the work we present in
Chapter 3 and Chapter 4.

2.2 HTTPS Overview

SSL/TLS is the standard protocol for providing authenticity and con�dentiality on top of TCP
connections. Today, it is used to provide a secure version of traditional protocols (e.g., IMAP,
SMTP, XMPP, etc.); in particular, the usage of HTTP over TLS is commonly known as HTTPS.

Each TLS connection begins with a handshake between the server and the client. In this
handshake, the Public Key Infrastructure (PKI) suite is used to authenticate the server (and
sometimes the client) and to generate cryptographic keys to create a secure channel for data
transmission.

Figure 2.2 (le ) sketches the steps in a full TLS negotiation. In this scenario, the client and
the server incur di�erent costs. On the server side, the primary cost is computing the session key.
¿is involves complex public key cryptography operations (typically RSA), limiting the number of
connections per second the server can support [42, 72, 81]. For clients, the major cost is latency.
¿is depends on (i) server performance, (ii) the distance between client and server since a full
negotiation requires two RTTs (three including the TCP handshake), and (iii) if the application
chooses to do so, the latency to verify the server’s certi�cate with the PKI (e.g., an OSCP/CRL
check).

Unsurprisingly, a few optimizations have been proposed to reduce handshake costs. Hardware
accelerators, GPU architectures [140], or “rebalancing” the RSA computations [72] can easily boost
server performance by a factor of 10. Also, the TLS standard provides a fast negotiation mechanism,
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shown in Figure 2.2 (right). In this case a SessionID is used to retrieve a previously negotiated
session key, (i) avoiding the cost of creating a new session key and (ii) reducing the handshake to 1
RTT (2 including the TCP handshake). Note that the adoption of fast negotiation is controlled by
the server; as we see in Section 2.4, only some services deploy it.

2.3 HTTPS Usage Trends

A common belief is that deploying HTTPS increases infrastructure costs (to accommodate the
resulting computational, memory, and network overhead) in addition to the cost of certi�cates (up
to $1,999/year each1). ¿us, onewould expect services to carefully deployHTTPS only when needed.
To test this, we examine recent HTTPS usage trends. We collected per-�ow logs from a vantage
point monitoring the tra�c of about 25,000 residential ADSL customers of a major European
residential ISP (“Res-ISP”). ¿e vantage point runs Tstat [109], which implements a classi�er
supporting both HTTP and TLS identi�cation. For TLS tra�c, Tstat parses the ClientHello
and ServerHello TLS handshake messages to extract (i) Server Name Indication (SNI), i.e., the
hostname to which the client is attempting to connect, and (ii) Subject Common Name (SCN)
carried in the server certi�cate, i.e., the name the server itself presents. Tstat is also able to identify
the presence of SPDY in the TLS connections. In the following, we use this rich ISP dataset to
characterize the evolution of HTTPS usage. At the time of writing, HTTPS and HTTP combined
represent 75% of all TCP tra�c (by volume) in Res-ISP.

Figure 2.3 reports the evolution of the HTTPS tra�c share from April 2012 to September 2014.
Both volume and �ow shares are shown. ¿e growth of HTTPS adoption is striking, with the
HTTPS �ow share more than doubling in two years. In September 2014, 44.3% of web connections
already use HTTPS.2 ¿e sharp bump in April 2013 is due to Facebook enabling HTTPS by default
for all users [194].

1https://www.symantec.com/page.jsp?id=compare-ssl-certi�cates
2 Curiously, only 5.5% of �ows successfully negotiated SPDY, despite 55% of clients o�ering the option. ¿is

highlights that SPDY is only supported by a handful of (popular) services, namely Google and Facebook.
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Looking at volume, we see a much slower growth. Intuitively, one would expect that most
HTTPS �ows carry small, privacy-sensitive objects. We see this until January 2014 when YouTube
began delivering video content over HTTPS, clearly increasing the HTTPS volume share. As of
September 2014, as much as 50% of YouTube’s aggregate tra�c volume is carried over HTTPS.

Figure 2.4 further details HTTPS trends with respect to upload volume, download volume,
number of hostnames, and number of server IP addresses. We compare the �rst week of April
in 2012, 2013 and 2014 (results are consistent for other weeks). Percentages show the year-to-year
increase. ¿e growth of HTTPS is again evident. For instance, HTTPS accounts for 80% of the
upload volume in 2014; it was only 45.7% in 2012. ¿is re�ects the fact privacy-sensitive information
tends to be uploaded using HTTPS more and more. Interestingly, the fraction of data downloaded
using HTTPS is smaller than the fraction uploaded. However, YouTube’s shi to HTTPS in 2014
dramatically changed the landscape: HTTPS download volume more than doubled compared to
2013. Figure 2.4 also highlights a constant year-by-year increase for both the fraction of hostnames
and server IP addresses accessed using TLS. Interestingly, 72% of the TLS hostnames are accessed
exclusively over TLS in 2014.

¿ese results clearly show that, despite the perceived costs, services are rapidly deploying
HTTPS. ¿is shi is undoubtedly related to the recent attention toward guaranteeing end-users
privacy. However, this may also be an indication of increasingly manageable infrastructural costs.
¿is is consistent with the report from the GMail team a er their switch to HTTPS: “On our
production frontend machines, SSL/TLS accounts for less than 1% of the CPU load, less than 10KB
of memory per connection and less than 2% of network overhead.” [152] Reports from Facebook
are similar [51].

Takeaway: HTTPS accounts for 50% of all HTTP connections and is no longer used solely for small
objects, suggesting that the cost of deployment is justi�able and manageable for many services.
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2.4 Page Load Time

We now investigate howmuch HTTPS a�ects load time, an important quality-of-experience metric
for web browsing.

Overall Page Load Time. First we quantify the HTTPS page load time overhead through active
experiments. We load each of the top 500 Alexa sites 20 times, �rst using HTTP and then using
HTTPS. For the download, we use PhantomJS [21], a fully-�edged headless browser running on a
Linux PC. From each run, we extract the average and median load times. ¿e test PC is connected
�rst using a 3G USB modem and then via �ber, two typical real-world environments. ¿e local
cache is cleared between page loads.

Results are reported in Figure 2.5. Plots show the Cumulative Distribution Function (CDF)
of the ratio of HTTPS to HTTP page load time (le ) and the absolute di�erence (right). ¿e
benchmark shows that using HTTPS signi�cantly increases load time. ¿is is especially evident
on 3G, where the extra latency is larger than 500 ms for about 90% of websites, and 25% of the
pages su�er an increase of at least 1.2 s (i.e., an in�ation factor larger than 1.5x). On �ber, the extra
latency is smaller; still, for 40% of the pages, HTTPS adds more than 500 ms (1.3x).
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We also captured an HTTP Archive (HAR) for each page, which contains statistics about the
individual connections used to load the page. Figure 2.6 (le ) shows 40% of the sites open fewer
TCP connections when loaded over HTTPS compared to HTTP. Even so, Figure 2.6 (right) shows
nearly half of the sites spend more time establishing those connections; the increased time per
handshake is caused primarily by TLS negotiation overhead (see below). By examining the HARs,
we see that many of the sites using fewer connections serve fewer objects (1–3 fewer on average,
but in some cases upwards of 100 fewer) and do so from fewer hosts (typically 1–2 fewer, but in
some cases up to 40 fewer). We suspect these are intentional changes to the HTTPS version of the
site designed to avoid costly TLS handshakes.

TLSHandshake delay cost: Webpage load time has been an active area of research [102, 104, 123,
136, 224, 226, 227]; understanding the exact cause(s) of the in�ation noted above is quite complex
and out of scope for this work. However, it is still interesting to understand whether the overall
page latency is primarily a�ected by network latency or by protocol overhead. To better understand
this, we modi�ed Tstat to extract the (i) duration and (ii) number of bytes of each TLS handshake
from a one-hour pcap trace collected on April 3rd 2014 from Res-ISP. About 1 million TLS �ows
are present.

Figure 2.7 (le ) shows a scatter plot of the TLS handshake durationwith respect to theminimum
external RTT (i.e., the RTT between the vantage point and the remote server3). ¿e external RTT
is reasonably representative of the distance to the remote server. For this analysis we selected
popular services as representative cases (we classify based on the Server Name Indication in the
ClientHello).

First, all services exhibit vertical clusters of points, which likely re�ect the di�erent data centers
o�ering that service. For instance, when the external RTT is larger than 100 ms, the server is
outside Europe. More interestingly, no matter how close the servers are, all clusters contain samples
with very high TLS handshake duration, i.e., up to several seconds. To better capture this e�ect,
Figure 2.7 (center) reports the CDF of the TLS handshake duration for individual services and

3Tstat extracts RTT per-�ow statistics monitoring the time elapsed between TCP data segments and the corre-
sponding TCP ACK.
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for the tra�c aggregate (black dotted line). Google services (which are also the closest) exhibit
the smallest TLS negotiation delay, though 10% of measurements are more than 300 ms. Since a
full TLS handshake requires at least 2 RTT (1 RTT in case of SessionID reuse), services handled
by U.S. servers (e.g., Hotmail, Twitter, Amazon S3) experience huge extra costs. For instance, for
Twitter, negotiation takes over 300 ms for more than 50% of the HTTPS connections. In general,
5% of requests experience a handshake at least 10 times longer than the RTT. ¿is might be due to
client or server overhead, network congestion, or a slow OCSP check.

Looking closer, we �nd that 4% of clients experience at least one connection with a TLS
handshake duration higher than 300 ms. For such connections, 50% (75%) have an internal RTT
(i.e., the RTT between the vantage point and the end-user device) of 51 ms (97 ms). ¿e same holds
true with less conservative thresholds (e.g., 1 second). ¿is demonstrates that even clients with
good network connectivity can still signi�cantly su�er from TLS handshake overhead. TLS fast
negotiation can help to reduce the handshake latency, but we �nd this being used in only 30% of
the connections. We speculate this represents a lower bound, but, unfortunately, based on available
data, we cannot assess the achievable upper bound obtained from a wider adoption of TLS fast
negotiation.

Takeaway:¿e extra latency introduced by HTTPS is not negligible, especially in a world where one
second could cost 1.6 billion in sales [100].

2.5 Data Usage

HTTPS also impacts the volume of data consumed due to (i) the size TLS handshake and (ii) the
inability to utilize in-network caches and compression proxies.

TLS Handshake Data Cost. ¿e impact of the TLS handshake overhead depends on how much
use the connection sees; the more data transferred, the lower the relative cost of the negotiation
packets. Figure 2.7 (right) reports the Complementary Cumulative Distribution Function (CCDF)
of the ratio between TLS handshake size and total bytes carried in the TCP connection. Results
refer to a peak hour in April 2014 for the Res-ISP dataset and are consistent with other time periods.
We see that many TLS connections are not heavily used. In fact, for 50% of them, the handshake
represents more than 42% of the total data exchanged. However, some services, like those running
on Amazon S3, do actually use connections e�ciently, reducing the impact of the negotiation
cost. Some services also try to mask negotiation latency by “pre-opening” connections before they
actually need to send data. In this case, the negotiation overhead is 100% if the connection is never
used. ¿is is captured in the rightmost part of Figure 2.7 (right), which also highlights how this
optimization is heavily used by Google, Amazon S3, and Twitter, but is not by Hotmail and Apple
services. Despite all this variability, the average TLS negotiation overhead amounts to 5% of the
total volume in this dataset.

In-Network Proxies. HTTPS prevents in-network content optimizations, like proxies that per-
form compression and caching. To evaluate the impact of this loss, we analyze logs from two
production HTTP proxies for mobile networks: Transp-Proxy and OptIn-Proxy. Transp-Proxy
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refers to a transparent proxy in a major European mobile carrier serving more than 20 million
subscribers. OptIn-Proxy, on the other hand, is an explicit proxy serving 2000 mobile subscribers
daily in a major European country. For Transp-Proxy, we analyze the past two years of tra�c and
for OptIn-Proxy we consider a week-long trace fromMay 2014.
Caching (ISP Savings): An ISP can save upstream bandwidth by serving static content from its own
transparent cache. In the Transp-Proxy dataset, the average cache hit ratio over the past two years
was 14.9% (15.6% of the total data volume), amounting to savings of 2 TB per day for a single proxy
instance serving 3 million subscribers. For OptIn-Proxy, we see daily savings of 1.3 GB, which, if
scaled up to the Transp-Proxy population, matches the observed Transp-Proxy savings.

We also witnessed a decrease in cache e�ciency: the cache hit ratio of Transp-Proxy dropped
from 16.8% two years ago to 13.2% in June 2014. Based on our analysis, it is not easy to conclude
how much of the decreasing e�ectiveness of caching is related to the adoption of HTTPS and how
much is caused by the increased personalization of web tra�c. Either way, savings of this size
can be still be signi�cant to network operators; such savings will be totally eliminated if content
delivery moves entirely to HTTPS.
Compression (Users Savings): Before returning content to users, web proxies typically apply lossless
(e.g., gzip) compression to objects and, in more aggressive settings, even scale or re-encode images.
¿is functionality is particularly helpful in cellular networks where the capacity is limited and
where users o en have restrictive data allowances. ¿e Transp-Proxy trace shows a compression
ratio of 28.5% (i.e., the last-mile of the network and the users save one-third of the original data
size). In terms of average volume, this amounts to only 2.1 MB per user per day (on average a
mobile user downloads less than 10 MB per day). For heavy users, though, this may translate to
signi�cant savings (e.g., more than 300 MB per month).

Takeaway:Most users are unlikely to notice signi�cant jumps in data usage due to loss of compression,
but ISPs stand to see a large increase in upstream tra�c due to loss of caching.

2.6 Battery Life

HTTPS has the potential to negatively impact battery life (particularly on mobile devices) due to
(i) the extra CPU time required for the cryptographic operations and (ii) increased radio uptime
due to longer downloads.

Synthetic Content. To measure the raw energy overhead of HTTPS, we instrumented a Galaxy
S II with a power meter that samples the current drawn by the phone every 200 µs. We used the
test phone to download synthetic objects over 3G and Wi-Fi (i.e., an access point connected to
a �ber link). Objects range in size from 1 kB to 1 MB and are hosted on a web server under our
control. Objects are downloaded 100 times each over HTTP and HTTPS using curl (compiled for
Android). We con�gured the server to deliver tra�c avoiding any proxy cache along the path.4
During our tests, the screen was on at its minimum brightness.

4¿e 3G carrier used in the experiment runs transparent proxies acting on tra�c to port 80. By con�guring the
webserver to listen on a di�erent port, we bypass the cache.
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HTTP (with proxy) and HTTPS (without proxy): energy consumption increase when using HTTP+proxy
(le ) and download rate over time for one video (right). Results for 3G.

Figure 2.8 shows both average time (right y-axis) and energy (le y-axis) to complete each
download. It is immediately clear that energy consumption is strongly correlated to download
time; this is not surprising, as leaving the radio powered up is costly. (We also see a slight overhead
for large objects over HTTPS on Wi-Fi but not on 3G, but we were unable to precisely determine
the cause. ¿e di�erence is less than one standard deviation.) ¿e key takeaway here is, download
time aside, we do not see a noticeable overhead due to cryptographic operations.

Total Energy (mAh) Avg. Current (mA)
3G Wi-Fi 3G Wi-Fi

HTTP 210.8 175.7 633 520
HTTPS 217.7 178.0 653 531

Table 2.1: Energy Consumption DuringWeb Browsing. Energy consumed loading CNN homepage.
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Real Content. We complement the previous analysis by loading real content. We mirror the
CNN homepage on our controlled webserver and download it 50 times using Chrome for Android
over HTTP and HTTPS (enforcing 20 seconds of wait between consecutive downloads). Results
are listed in Table 2.1 (numbers presented are cumulative for all 50 loads). As in the previous
benchmark, HTTPS tests do not show an appreciable increase in energy costs.

In a second experiment, we play four 5- to 12-minute YouTube videos. Since the YouTube app
does not deliver video content over HTTPS for mobile devices (nor does the YouTube mobile site),
we �rst force the phone to load the desktop version of the YouTube portal. Over Wi-Fi, there was
no di�erence; on 3G, on the other hand, our network’s Web proxy signi�cantly impacted the HTTP
results. For two videos, playback over HTTP (with proxy) consumes nearly 25% less energy than
over HTTPS (without proxy); for the other two, 10%–20% more (Figure 2.9 le ).

¿e di�erences are caused by two distinct proxy behaviors. First, the proxy throttles the
download rate (Figure 2.9 right) to reduce congestion and avoid wasting bandwidth if the user
abandons the video. Without the proxy (HTTPS), the whole video loads immediately and the
radio sleeps while it plays. With the proxy (HTTP), the download is slow and steady, lasting the
duration of the video. Without the opportunity to sleep, playback over HTTP consumes more
energy. Second, the proxy injects javascript into the pages it returns, which, among other things,
rewrites the URLs sent to YouTube to request encodings and qualities more appropriate for mobile
devices. For YouTube 2 and YouTube 4, the player requests the content in the webm format, for
which our phone does not have hardware decoding support; the proxy changes webm to mp4, which
our phone can decode in hardware. ¿e bene�t of hardware decoding outweighed the cost of radio
uptime.

Of course, these numbers should be taken with a grain of salt, since using the desktop version
of YouTube on a phone is unrealistic (but they are still relevant to PC users connecting via USB
modem or tethering). We played the same four videos with YouTube’s mobile portal in addition to
two new videos from Vimeo’s mobile site and veri�ed that the mobile players request mp4 from the
start, so the proxy does not help decrease decoding costs. ¿e mobile video was still throttled.

Stepping back, we see these results as concrete examples of a proxy helping and a proxy
hurting end users, suggesting that (1) operators should think carefully about how they con�gure
middleboxes and (2) the community should think carefully about shutting them out by switching
to HTTPS by default.
Takeaway: HTTPS’ cryptographic operations have almost no impact on energy costs, but the loss of
proxies can signi�cantly impact battery life (positively and negatively).

2.7 Loss of Middleboxes

In Section II.2 we introduced middleboxes—devices in the network that process tra�c beyond
basic packet forwarding. Encrypting tra�c blinds middleboxes; they can no longer do their jobs
when all they see is encrypted bits. ¿ough it is not always easy to quantify, the loss of middleboxes
is almost surely the biggest cost caused by ubiquitous encryption. In this section, we discuss some
of these costs.

Middleboxes are widely used for the simple reason that adding processing and storage in the
network has proven to be an e�ective way to help users, content providers, and network operators by,
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e.g., improving performance, reducing cost, or providing functionality not o�ered by the endpoints.
Some examples:

Load Time. Web proxies can decrease page load time with caching and compression. In mobile
networks, image compression can decrease page load time by 5X [235] and in extreme scenarios,
like satellite links, actively prefetching and pushing content can yield 4X improvements [156].

Data Usage. Google boasts its data compression proxy can reduce the size of a web page up
to 50% and device-speci�c image resizing can shrink images up to 80% [10]. We saw earlier in
Section 2.5 that text compression and image resizing reduce data consumption by nearly a third
and 16 TB are served from the cache daily, saving upstream bandwidth and reducing tra�c on the
air. TCP-level redundancy elimination (RE) can go further, saving 30%–40% [232].

Energy Consumption. As we saw in Section 2.6, selecting alternate video encodings for certain
YouTube videos can decrease energy consumption by 10%–20% on some devices. Scheduling
packet delivery can allow radios to sleep up to 70% of object transfer time [97].

Security. Ubiquitous encryption will render all deep packet inspection (DPI) boxes ine�ective.
¿e advantage that in-network DPIs have is the ability to observe the tra�c of multiple clients at the
same time to draw inferences, while access to application layer content allows them to block threats
by searching for pre-de�ned signatures (e.g., a known malware binary). Unsophisticated DDoS
attacks may still be detectable through statistical analysis of the HTTPS tra�c, but application
layer �ngerprinting will have to be pushed to the client. Another example is virus scanning, which
many enterprise networks perform on all inbound tra�c to protect employee machines.

Additional Functionality. Middleboxes can add other kinds of functionality not provided by
the endpoints. For instance, a number of telecommunications providers today provide parental
�ltering through the use of explicit blacklists, such as the Internet Watch Foundation5 list. ¿rough
direct communication with IWF, we found out that only 5% of their current blacklist is pure
domains or sub-domains that could still be blocked in the presence of HTTPS. To maintain full
functionality, the IWF list would have to again be moved to the client, where one can still observe
the complete URL being accessed.

Other opt-in services o�ered by some providers are similarly a�ected, like content prioritization
(e.g., postponing ad delivery) or blocking tracking cookies. (Interestingly, losing the ability to block
tracking cookies hurts privacy, which is one of the goals of using TLS to begin with.)

Takeaway:¿ough di�cult to quantify, the loss of in-network services is potentially substantial; some
of that functionality could be equally well performed on the client, while some may require a total
rethink, like DPI-based Intrusion Prevention Systems (IPSes).

5https://www.iwf.org.uk
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2.8 Conclusion

Motivated by increased awareness of online privacy, the use of HTTPS has increased in recent
years. Our measurements reveal a striking ongoing technology shi , indirectly suggesting that
the infrastructural cost of HTTPS is decreasing. However, HTTPS can add direct and noticeable
protocol-related performance costs, e.g., signi�cantly increasing latency, critical inmobile networks.

More interesting, though more di�cult to fully understand, are the indirect consequences of
the HTTPS: most in-network services simply cannot function on encrypted data. For example, we
see that the loss of caching could cost providers an extra 2 TB of upstream data per day and could
mean increases in energy consumption upwards of 30% for end users in certain tases. Moreover,
many other value-added services, like parental controls or virus scanning, are similarly a�ected,
though the extent of the impact of these “lost opportunities” is not clear.

What is clear is this: the “S” is here to stay, and the network community needs to work to
mitigate the negative repercussions of ubiquitous encryption. To this end, we see two parallel
avenues of future work: �rst, low-level protocol enhancements to shrink the performance gap,
like Google’s ongoing e�orts to achieve “0-RTT” handshakes.6 Second, to restore in-network
middlebox functionality to HTTPS sessions, we expect to see trusted middleboxes [159] become
an important part of the Internet ecosystem. ¿e next two chapters of this thesis develop protocols
for safely including trusted middleboxes in secure communication sessions.

6http://blog.chromium.org/2013/06/experimenting-with-quic.html
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Chapter 3 AccessControl forMiddleboxes
in TLS

In Chapter 2, we saw that a signi�cant fraction of Internet tra�c is now encrypted. However, TLS
assumes that all functionality resides at the endpoints, making it impossible to use middleboxes that
optimize network resource usage, improve user experience, and protect clients and servers from
security threats. Furthermore, in Section II.2 we saw that re-introducing in-network functionality
into TLS sessions today is done through hacks, o en weakening overall security.

In this chapter we introduce Multi-Context TLS (mcTLS), which extends TLS to support
middleboxes. mcTLS breaks the current “all-or-nothing” security model by allowing endpoints
and content providers to explicitly introduce middleboxes in secure end-to-end sessions. mcTLS’
key feature is access control: the endpoints can control which parts of the data they can read or
write.

We evaluate a prototype mcTLS implementation in both controlled and “live” experiments,
showing that its bene�ts come at the cost of minimal overhead. More importantly, we show
that mcTLS can be incrementally deployed and requires only small changes to client, server, and
middlebox so ware.

3.1 Introduction

As we saw in Chapter 2, 40% of all HTTP �ows use TLS and this number is estimated to grow
by 40% every 6 months [180]. ¿is is good news for privacy. However, TLS makes a funda-
mental assumption: all functionality must reside at the endpoints. In reality, as we introduce in
Section II.2, Internet sessions are augmented by middleboxes providing services like intrusion
detection, caching, parental �ltering, content optimization (e.g., compression, transcoding), or
compliance to corporate practices in enterprise environments. ¿ese functional units, o en re-
ferred to asmiddleboxes, o�er many bene�ts to users, content providers, and network operators, as
evidenced by their widespread deployment in today’s Internet.

In Section II.2, we describe the “split TLS” approach used today for including middleboxes in
TLS sessions and argue why this approach broken from a security perspective. Recently, industrial
e�orts—e.g., one by Ericsson and AT&T [159] and one by Google [187] o�er improvements, but as
we discuss in Section 3.6, still lack some important security properties.

In this chapter we presentMulti-Context TLS (mcTLS), a protocol that builds on top of TLS to
allow endpoints to explicitly and securely include middleboxes with complete visibility and control.
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¿e key feature of mcTLS is access control: the endpoints can control which parts of the data each
middlebox can read or write. ¿is is based on the observation that most common middleboxes do
not need full read/write access to all session data (see Table 3.1); most can successfully do their jobs
with fewer permissions—e.g., a parental �lter only needs read-only access to HTTP GET headers
so it can see the URL being fetched and decide whether to block the connection. mcTLS applies the
principle of least privilege [200] to middleboxes by allowing endpoints to grant them the minimum
level of access they need to do their jobs and nothing more.

In summary, mcTLS:
1. provides endpoints explicit knowledge and control over whichmiddleboxes are part of the
session.

2. allows users and content providers to dynamically choose which portions of content are
exposed to in-network services (e.g., HTTP headers vs. content).

3. protects the authenticity and integrity of data while still enabling modi�cations by selected
middleboxes by separating read and write permissions.

4. is incrementally deployable.
We implemented mcTLS in the OpenSSL library. Our evaluation shows that mcTLS has

negligible impact on page load time or data overhead for loading the top 500 Alexa sites and
incorporating mcTLS into applications is relatively easy in many cases.

Our contributions are as follows:
1. a practical extension to TLS that explicitly introduces trusted in-network elements into
secure sessions with the minimum level of access they need.

2. an e�cient �ne-grained access control mechanism which we show comes at very low cost.
3. strategies for using mcTLS to address concrete, relevant use cases, many of which can
immediately bene�t applications with little e�ort using mcTLS’s most basic con�guration.

4. a prototype implementation of mcTLS tested in controlled and live environments (our
implementation is available online [1]).

3.2 Multi-Context TLS (mcTLS)

¿is section presents the design of multi-context TLS (mcTLS), which augments TLS with the
ability to securely introduce trusted middleboxes. Middleboxes are trusted in the sense that they
have to be inserted explicitly by either the client or the server, at both endpoints’ consent. We �rst
summarize our design requirements, then introduce the key ideas, and �nally describe the key
components of the protocol. A more detailed description of mcTLS is available online [1].

3.2.1 Protocol Requirements

First, we require mcTLS to maintain the properties provided by TLS (extended to apply to middle-
boxes):
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Request Response
Headers Body Headers Body

Cache ○ ● ●

Compression ● ●

Load Balancer ○

IDS ○ ○ ○ ○

Parental Filter ○

Tracker Blocker ● ●

Packet Pacer ○

WANOptimizer ○ ○ ○ ○

(● = read/write; ○ = read-only)

Table 3.1:Middlebox Permissions. Examples of app-layer middleboxes and the permissions they need for
HTTP. No middlebox needs read/write access to all of the data.

R1: Entity Authentication. Endpoints should be able to authenticate each other and all middle-
boxes. Similar to TLS usage today, we expect that clients will authenticate all entities in the session,
but servers may prefer not to (e.g., to reduce overhead).

R2: Data Secrecy. Only the endpoints and trusted middleboxes can read or write the data.

R3: Data Integrity &Authentication. All members of the sessionmust be able to detect in-�ight
modi�cations by unauthorized third parties, and endpoints must be able to check whether the data
was originated by the other endpoint (vs. having been modi�ed by a trusted middlebox).

Second, the introduction of middleboxes brings with it two entirely new requirements:

R4: Explicit Control & Visibility. ¿e protocol must ensure that trusted middleboxes are added
to the session at the consent of both endpoints. Endpoints must always be able to see all trusted
middleboxes in the session.

R5: Least Privilege. In keeping with the principle of least privilege [200], middleboxes should
be given the minimum level of access required to do their jobs [158, 172]. Middleboxes should have
access only to the portion of the data stream relevant to their function; if that function does not
require modifying the data, access should be read-only. Many common middleboxes do not need
full read/write access to the entire data stream (see Table 3.1).

Finally, our protocol should meet all �ve requirements without substantial overhead, e.g., in terms
of latency, data usage, computation, connection state, burden on users or administrators, etc.

3.2.2 Threat Model

A successfully negotiated mcTLS session meets the above requirements in the face of computation-
ally bounded network attackers that can intercept, alter, drop, or insert packets during any phase
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of the session. Like TLS, mcTLS does not prevent denial of service.
We assume that all participants in an mcTLS session execute the protocol correctly and do not

share information out-of-band. For example, the client could share keys with a middlebox not
approved by the server, or middleboxes could collude to escalate their permissions. We do not
consider such attacks because no protocol (including TLS) can prevent a party from sharing session
keys out-of-band. Furthermore, such attacks are unlikely since at least two colluding parties would
need to run a malicious mcTLS implementation. Major browsers and Web servers (especially
open source ones) are unlikely to do this, since they would almost surely be caught. Mobile apps
using HTTP would need to implement HTTP themselves instead of using the platform’s (honest)
HTTP library. If it is essential to know that parties have not shared keys with unauthorized parties,
some sort of remote attestation is the most promising solution (we describe remote attestation in
Section 4.3.3).

Finally, even when all parties are honest, adding more entities to a session necessarily increases
the attack surface: a bug or miscon�guration on any one could compromise the session. ¿is risk
is inherent in the problem, not any particular solution.

3.2.3 Design Overview

To satisfy the �ve design requirements, we add two key features to TLS:

(1) Encryption Contexts (R2, R3, R5) In TLS, there are only two parties, so it makes no sense
to restrict one party’s access to part of the data. With trusted middleboxes, however, the endpoints
may wish to limit a middlebox’s access to only a portion of the data or grant it read-only access. To
make this possible, mcTLS introduces the notion of encryption contexts, or contexts, to TLS. An
encryption context is simply a set of symmetric encryption andmessage authentication code (MAC)
keys for controlling who can read andwrite the data sent in that context (Section 3.2.4). Applications
can associate each context with a purpose (opaque to mcTLS itself) and access permissions for
each middlebox. For instance, web browsers/servers could use one context for HTTP headers and
another for content. We describe several strategies for using contexts in Section 3.3.2.

(2) Contributory Context Keys (R1, R4) ¿e client and server each perform a key exchange
with each middlebox a er verifying the middleboxes’ certi�cates if they choose to (R1). Next, the
endpoints each generate half of every context key and send to each middlebox the half-keys for the
contexts to which it has access, encrypted with the symmetric keys derived above. ¿e middlebox
only gains access to a context if it receives both halves of the key, ensuring that the client and
server are both aware of each middlebox and agree on its access permissions (R4). ¿e server may
relinquish this control to avoid extra computation if it wishes (Section 3.2.6).

3.2.4 ThemcTLS Record Protocol

¿e TLS record protocol takes data from higher layers (e.g., the application), breaks it into “man-
ageable” blocks, optionally compresses, encrypts, and then MAC-protects each block, and �nally
transmits the blocks. mcTLS works much the same way, though each mcTLS record contains only
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data associated with a single context; we add a one byte context ID to the TLS record format. Record
sequence numbers are global across contexts to ensure the correct ordering of all application data
at the client and server and to prevent an adversary from deleting an entire record undetected. Any
of the standard encryption and MAC algorithms supported by TLS can be used to protect records
in mcTLS. (So, details like the order of encryption and MAC depend on the cipher suite; mcTLS
makes no changes here.)

Building on [172, 173], mcTLSmanages access to each context by controlling whichmiddleboxes
are given which context keys. For each context, there are four relevant parties, listed in decreasing
order of privilege: endpoints (client and server), writers (middleboxes with write access to the
context), readers (middleboxes with read-only access to the context), and third parties (blanket
term for middleboxes with no access to the context, attackers, and bit �ips during transmission).
Changes by writers are legal modi�cations and changes by readers and third parties are illegal
modi�cations. mcTLS achieves the following three access control properties:

1. Endpoints can limit read access to a context to writers and readers only.
2. Endpoints can detect legal and illegal modi�cations.
3. Writers can detect illegal modi�cations.

Controlling Read Access Each context has its own encryption key (called Kreaders, described
below). Possession of this key constitutes read access, so mcTLS can prevent a middlebox from
reading a context by withholding that context’s key.

Controlling Write Access Write access is controlled by limiting who can generate a valid MAC.
mcTLS takes the following “endpoint-writer-reader” approach to MACs. Each mcTLS record
carries three keyed MACs, generated with keys Kendpoints (shared by endpoints), Kwriters (shared by
endpoints and writers), and Kreaders (shared by endpoints, writers, and readers). Each context has
its own Kwriters and Kreaders but there is only one Kendpoints for the session since the endpoints have
access to all contexts.
Generating MACs

• When an endpoint assembles a record, it includes three MACs, one with each key.
• When a writer modi�es a record, it generates new MACs with Kwriters and Kreaders and
simply forwards the original Kendpoints MAC.

• When a reader forwards a record, it leaves all three MACs unmodi�ed.

Checking MACs
• When an endpoint receives a record, it checks the Kwriters MAC to con�rm that no illegal
modi�cations were made and it checks the Kendpoints MAC to �nd out if any legal modi�ca-
tions were made (if the application cares).

• When a writer receives a record, it checks the Kwriters MAC to verify that no illegal modi�-
cations have been made.

• When a reader receives a record, it uses the Kreaders MAC to check if any third party modi�-
cations have been made.
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Notation Meaning

DH+

E , DH
−

E Entity E’s ephemeral Di�e-Hellman public/private key pair
DHCombine(⋅, ⋅) Combine Di�e-Hellman public and private keys to produce a shared secret
PK+E , PK

−

E Entity E’s long-term signing public/private key pair (e.g., RSA)
SignPK−E (⋅) Signature using E’s private key

SE Secret known only to entity E
PSE1-E2 Pre-secret shared by entities E1 & E2
SE1-E2 Secret shared between entities E1 & E2
PRFS(⋅) Pseudorandom function keyed with secret S as de�ned in the TLS RFC [94]

KE1-E2 Symmetric key shared by E1 and E2
KE Key material generated by entity E
EncK(⋅) Symmetric encryption using key K
MACK(⋅) Message authentication code with key K
AuthEncK(⋅) Authenticated encryption with key K

H(⋅) Cryptographic hash
∣∣ Concatenation

Table 3.2: Notation. Notation used in this chapter.

Note that with the endpoint-writer-reader MAC scheme, readers cannot detect illegal changes
made by other readers. ¿e problem is that a shared key cannot be used by an entity to police other
entities at the same privilege level. Because all readers share Kreaders (so that they can detect third
party modi�cations), all readers are also capable of generating valid Kreaders MACs. ¿is is only
an issue when there are two or more readers for a context and, in general, readers not detecting
reader modi�cations should not be a problem (reader modi�cations are still detectable at the next
writer or endpoint). However, if needed, there are two options for �xing this: (a) readers and
writers/endpoints share pairwise symmetric keys; writers/endpoints compute and append a MAC
for each reader, or (b) endpoints and writers append digital signatures rather than MACs; unlike
Kwriters MACs, readers can verify these signatures. ¿e bene�ts seem insu�cient to justify the
additional overhead of (a) or (b), but they could be implemented as optional modes negotiated
during the handshake.

3.2.5 ThemcTLS Handshake Protocol

¿emcTLS handshake is very similar to the TLS handshake. We make two simpli�cations here
for ease of exposition: �rst, although the principles of the mcTLS handshake apply to many of
the cipher suites available in TLS, we describe the handshake using ephemeral Di�e-Hellman
with RSA signing keys because it is straightforward to illustrate and common in practice. Second,
we describe the handshake with a single middlebox, but extending it to multiple middleboxes is
straightforward. Table 3.2 de�nes the notation we use in this chapter.

¿e purpose of the handshake is to:
• Allow the endpoints to agree on a cipher suite, a set of encryption contexts, a list of middle-
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mcTLS mcTLS (Client Key Dist.) Split TLS
Client Middlebox Server Client Middlebox Server Client Middlebox Server

Hash 12 + 6N 0 12 + 6N 10 + 5N 0 10 + 5N 10 20 10
Secret Comp. N + 1 2 N + 1 N + 1 1 1 1 2 1

Key Gen. 4K + N + 1 (k ≤ 2K) + 2 4K + N + 1 2K + N + 1 1 1 1 2 1
Asym Verify N + 1 n ≤ 1 n ≤ N N + 1 n ≤ 1 0 1 1 0
Sym Encrypt N + 2 0 N + 2 N + 2 0 1 1 2 1
Sym Decrypt 2 2 2 1 1 2 1 2 1

(N = number of middleboxes; K = number of contexts)

Table 3.3: mcTLS Handshake Crypto. Cryptographic operations performed by the client, middlebox, and
server during the handshake. Assumes no TLS extensions, a DHE-RSA cipher suite, and the client is not
authenticated with a certi�cate.

boxes, and permissions for those middleboxes.
• Allow the endpoints to authenticate each other and all of the middleboxes (if they choose
to).

• Establish a shared symmetric key Kendpoints between the endpoints.
• Establish a shared symmetric key Kwriters for each context among all writers and a shared
symmetric key Kreaders

1 for each context among all readers.

Handshake. Belowwe explain the steps of amcTLS handshake (shown in Figure 3.1), highlighting
the di�erences from TLS. Note that it has the same 2-RTT “shape” as TLS.

1 Setup: Each party generates a (public) random value and an ephemeral Di�e-Hellman key
pair (the middlebox generates two key pairs, one for the client and one for the server). ¿e
endpoints also each generate a secret value.

2 Client Hello: Like TLS, an mcTLS session begins with a ClientHellomessage containing
a random value. In mcTLS, the ClientHello carries a MiddleboxListExtension, which
contains (1) a list of the middleboxes to include in the session—we discuss building this
list in the �rst place in Section 3.5.1—and (2) a list of encryption contexts, their purposes
(strings meaningful to the application), and middlebox access permissions for every context.
¿e client opens a TCP connection with the middlebox and sends the ClientHello; the
middlebox opens a TCP connection with the server and forwards the ClientHello.

3 Certi�cate&Public Key Exchange: As in TLS, the server responds with a series ofmessages
containing a random value, its certi�cate, and an ephemeral public key signed by the key
in the certi�cate. ¿e middlebox does the same: it sends its random value, certi�cate, and
ephemeral public key to both the client and the server. ¿e client sends an ephemeral public
key, which the middlebox saves and forwards to the server. ¿e middlebox piggy-backs its
messages on the ServerKeyExchange and ClientKeyExchange messages (indicated by
dashed arrows). ¿e ephemeral keys provide forward secrecy; the middlebox uses di�erent
key pairs for the client and the server to prevent small subgroup attacks [166].

4 Shared Key Computation: ¿e client computes two secrets (SC-M and SC-S) using the

1¿ough we describe each as one key for simplicity, Kreaders and Kend points are really four keys each (just like the
“session key” in TLS): an encryption key for data in each direction and a MAC key for data in each direction. Likewise,
Kwr i ters is really one MAC key for each direction.
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Figure 3.1: mcTLS Handshake.
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contributions from the server and middlebox, which it uses to generate a symmetric key
shared with the middlebox (KC-M) and the server (Kendpoints). ¿e client also generates
“partial keys,” KC

writers and KC
readers, for each context, using a secret known only to itself.

¿e server follows the same procedure as the client, resulting in Kendpoints, KS-M , KS
writers, and

KS
readers. ¿e server may choose to avoid this overhead by asking the client to generate and

distribute complete context keys (Section 3.2.6).
When themiddlebox receives the ClientKeyExchange, it computes KC-M and KS-M using
the client’s and server’s ephemeral public keys, respectively; it will use these keys later to
decrypt context key material from the client and server.

5 Context Key Exchange: Next, for each context, the endpoints send the partial context keys
to the middlebox (KC

readers and K
S
readers if it has read access and K

C
writers and KS

writers if it has
write access). ¿ese messages are sent encrypted and authenticated under KC-M and KS-M ,
ensuring the secrecy and integrity of the partial context keys. ¿e middlebox forwards each
message on to the opposite endpoint so it can be included in the hash of the handshake
messages that is veri�ed at the end of the handshake. ¿e endpoints also send all of the
partial context keys to the opposite endpoint encrypted under Kendpoints. ¿e middlebox
forwards this message (but cannot read it).

6 Context Key Computation: ¿e client indicates that the cipher negotiated in the
handshake should be used by sending a ChangeCipherSpec message. Receipt of the
ChangeCipherSpec message prompts all parties to generate context keys using PRF(⋅)
keyed with the concatenation of the partial context keys. ¿is “partial key” approach serves
two purposes: (1) it provides contributory key agreement (both endpoints contribute ran-
domness) and (2) it ensures that a middlebox only gains access to a context if the client and
server both agree.

7 Finished: ¿emcTLS handshake concludes with the exchange of Finishedmessages. As in
TLS, the Finishedmessage contains a hash of the concatenation of all handshake messages
(including those directed to the middlebox): PRFSC-S( f inished_l abel ,H(messages)). Ver-
ifying this message ensures that both endpoints observe the same sequence of identical
handshake messages, i.e., no messages were modi�ed in �ight.

Details. ¿ere are a few subtle di�erences between the mcTLS and TLS handshakes. We brie�y
highlight the changes here and argue why they are safe; for a more detailed security analysis, see [1].

• For simplicity, the middlebox cannot negotiate session parameters (e.g., cipher suite or
number of contexts). A more complex negotiation protocol could be considered in future
work if needed.

• ¿e server’s context key material is not included in the client’s Finishedmessage, since this
would require an extra RTT.However, this keymaterial is sent encrypted andMAC-protected,
so an adversary cannot learn or modify it.

• ¿e client cannot decrypt the context key material the server sends the middlebox and vice
versa. ¿is would require establishing a three-way symmetric key between both endpoints
and each middlebox. Because the middlebox needs key material from both endpoints, one
rogue endpoint cannot unilaterally increase a middlebox’s permissions.
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• ¿e middlebox cannot verify the handshake hash in the Finished message because it
does not know Kendpoints. We do not include per-middlebox Finishedmessages to avoid
overhead. ¿is means it is possible for the middlebox to observe an incorrect sequence of
handshake messages. However, this is at most a denial of service attack. For instance, even
though the middlebox cannot detect a cipher suite downgrade attack, the endpoints would
detect it and terminate the session. Furthermore, context key material is sent encrypted and
MAC-protected under keys each endpoint shares with the middlebox, so as long as at least
one endpoint veri�es the middlebox’s certi�cate, an adversary cannot learn or modify the
context keys.

3.2.6 Reducing Server Overhead

One concern (albeit a diminishing one [51, 152]) about deploying TLS is that the handshake is
computationally demanding, limiting the number of new connections per second servers can
process. We do not want to make this problem worse in mcTLS, and one way we avoid this is by
making certain features optional. For example, similar to TLS, authentication of the entities in the
session is optional—in some cases, the server may not care who the middleboxes are. Another
burden for servers in mcTLS is generating and encrypting the partial context keys for distribution
to middleboxes. Rather than splitting this work between the client and server, it can optionally be
moved to the client: context keys are generated from the master secret shared by the endpoints
and the client encrypts and distributes them to middleboxes (“client key distribution mode”). ¿is
reduces the server load, but it has the disadvantage that agreement about middlebox permissions is
not enforced. (Note that this does not sacri�ce contributory key agreement in the sense that both
endpoints contribute randomness. ¿e client generates the context keys from the secret it shares
with the server; if client/server key exchange was contributory, the context keys inherit this bene�t.)
Choosing a handshake mode is le to content providers, who can individually decide how to make
this control-performance tradeo�; servers indicate their choice to clients in the ServerHello.

Table 3.3 compares the number of cryptographic operations performed by mcTLS and the
split TLS approach described in Section II.3.2. We show numbers for mcTLS both without and
with client context key distribution. If we consider a simple example with a single middlebox
(N = 1), the additional server load using client key distribution mode is limited to a small number
of lightweight operations (Hash and Sym Decrypt).

3.3 UsingmcTLS

3.3.1 Using Contexts

Just as the architects of HTTP had to de�ne how it would operate over TLS [195], protocol designers
need to standardize how their applications will use mcTLS. From an application developer’s
perspective, the biggest change mcTLS brings is contexts: the application needs to decide how
many contexts to use and for what. First we give the topic a general treatment and then follow up
with some concrete use cases below.
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Figure 3.2: Controlling Permissions with Encryption Contexts. Strategies for using encryption contexts:
context-per-section (le ) and context-as-permissions (right).

¿ere are two ways to think about contexts: as sections of the data stream or as con�gurations
of middlebox permissions. For example, suppose an application wants to transfer a document
consisting of three pieces, A, B, andC, via twomiddleboxes,M1 andM2. M1 should have read access
to the entire document andM2 should read A, write B, and have no access to C. ¿e application
could allocate one context for each piece and assign the appropriate permissions (Figure 3.2 le ),
or it could create one context for each combination of permissions and use the appropriate context
when sending each piece of the document (Figure 3.2 right).

Which model is appropriate depends on the use case: in the context-per-section model, n
sections means n contexts. In the contexts-as-permissions model, m middleboxes means 3m
contexts. In practice, we expect at least one of these numbers to be small, since data in a session o en
is not of wildly varying levels of sensitivity and since most middleboxes need similar permissions
(Table 3.1). For instance, in the case of HTTP, we imagine four contexts will be su�cient: request
headers, request body, response headers, and response body. (¿ough you could imagine extreme
cases in which each HTTP header has its own access control settings.)

Finally, the example above uses a static context assignment, but contexts can also be selected
dynamically. An application could make two contexts, one which a middlebox can read and one it
cannot, and switch between them to enable or disable middlebox access on-the-�y (for instance, to
enable compression in response to particular user-agents).

3.3.2 Use Cases

Data Compression Proxy. Many users—particularly on mobile devices—use proxies like
Chrome’s Data Compression Proxy [37], which re-scale/re-encode images, to reduce their data
usage. However, Google’s proxy currently ignores HTTPS �ows. With mcTLS, users can instruct
their browsers to give the compression proxy write access to HTTP responses. One step further,
the browser and web server could coordinate to use two contexts for responses: one for images,
which the proxy can access, and the other for HTML, CSS, and scripts, which the proxy cannot
access. Context assignments can even change dynamically: if a mobile user connects to Wi-Fi
mid-page-load, images might also be transferred over the no-access context since compression is
no longer required.
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Parental Filtering. Libraries and schools—and sometimes even entire countries [70]—o en
employ �lters to block age-inappropriate content. Such �lters o en depend on seeing the full
URL being accessed (only 5% of the entries on the Internet Watch Foundation’s blacklist are entire
(sub-)domains [175]). With mcTLS, IT sta� could con�gure their machines to allow their �lter read-
only access to HTTP request headers, and user-owned devices connecting to the network could be
con�gured to do the same dynamically via DHCP. ¿e �lter drops non-compliant connections.

Corporate Firewall. Most companies funnel all network tra�c through intrusion detection
systems (IDS)/�rewalls/virus scanners. Currently, these devices either ignore encrypted tra�c or
install root certi�cates on employees’ devices, transparently giving themselves access to all “secure”
sessions. With mcTLS, administrators can con�gure devices to give the IDS—which users can now
see—read-only access. Security appliances no longer need to impersonate end servers and users
no longer grow accustomed to installing root certi�cates.

Online Banking. ¿ough we designed mcTLS to give users control over their sessions, there
are cases in which the content provider really does know better than the user and should be able
to say “no” to middleboxes. A prime example is online banking: banks have a responsibility to
protect careless or nontechnical users from sharing their �nancial information with third parties.
¿e server can easily prevent this by simply not giving middleboxes its half of the context keys,
regardless of what level of access the client assigns.

HTTP/2 Streams. One of the features of HTTP/2 is multiplexing multiple streams over a single
transport connection. mcTLS allows browsers to easily set di�erent access controls for each stream.

3.4 Evaluation

mcTLS’ �ne-grained access control requires generating and distributing extra keys, computing
extra MACs, and, possibly, sending a larger number of smaller records than TLS. In this section
we evaluate this overhead.

Experimental Setup. We built a prototype of mcTLS by modifying the OpenSSL2 implemen-
tation of TLSv1.2. ¿e prototype supports all the features of mcTLS’s default mode, described
in Section 3.2.4 and Section 3.2.5. We use the DHE-RSA-AES128-SHA256 cipher suite, though
nothing prevents mcTLS from working with any standard key exchange, encryption, or MAC
algorithm. In addition, though the MiddleboxKeyMaterialmessage should be encrypted using
a key generated from the DHE key exchange between the endpoints and the middlebox, we use
RSA public key cryptography for simplicity in our implementation. As a result, forward secrecy is
not currently supported by our implementation. mcTLS requires some additions to the API, e.g.,
de�ning contexts and their read/write permissions, but these are similar to the current OpenSSL
API.

2OpenSSL v1.0.1j from October 2014
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Figure 3.3: Time to �rst byte vs. # contexts (le ) and # middleboxes (right).

Next we wrote a simple HTTP client, server, and proxy that support four modes of operation:
1. mcTLS: Data transferred using mcTLS.
2. SplitTLS: Split TLS connections between hops; middleboxes decrypt and re-encrypt data.
3. E2E-TLS: A single end-to-end TLS connection; middleboxes blindly forward encrypted
data.

4. NoEncrypt: No encryption; data transferred and forwarded in the clear over TCP.
We instrumented the mcTLS library and our applications to measure handshake duration, �le

transfer time, data volume overhead, and connections per second.
We test in two environments. (1) Controlled: Client, middleboxes, and server all run on a single

machine. We control bandwidth (10 Mbps unless otherwise noted, chosen from the median of
SpeedTest.net samples) and latency with tc. (2)Wide Area: We run the client, middlebox, and
server on EC2 instances in Spain, Ireland, and California, respectively. ¿e client connects either
over �ber or 3G. Unless otherwise speci�ed, experiments in either environment consist of 50 runs
for which we report the mean; error bars indicate one standard deviation. Middleboxes are given
full read/write access to each context since this is the worst case for mcTLS performance.

3.4.1 Time Overhead

Handshake Time. Figure 3.3 (le ) shows the time to �rst byte as the number of contexts increases.
¿ere is one middlebox and each link has a 20 ms delay (80 ms total RTT). NoEncrypt serves as
a baseline, with a time to �rst byte of 160 ms, or 2 RTT. Up to 9 contexts, mcTLS, E2E-TLS, and
SplitTLS each take 4 RTTs. At 10 contexts, mcTLS jumps to 5 RTT and at 14 to 7.

¿e culprit was TCP’s Nagle algorithm, which delays the transmission of data until a full MSS
is ready to be sent. At 10 contexts, the handshake messages from the proxy to the server exceed
1 MSS and Nagle holds the extra bytes until the �rst MSS is ACKed. At 14 contexts the same thing
happens to the middlebox key material from the client (+1 RTT) and the server (+1 RTT). Disabling
the Nagle algorithm (not uncommon in practice [170]) solved the problem. We tried E2E-TLS,
SplitTLS, and NoEncrypt without Nagle as well, but their performance did not improve since
their messages never exceed 1 MSS.
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Figure 3.4: Transfer Time. File download time for various con�gurations of link speed and �le size.

Time to �rst byte scales linearly with the number of middleboxes, since in our experiments
adding a middlebox also adds a 20 ms link (Figure 3.3 right). ¿e latency increase and the extra
key material to distribute exacerbate the problems caused by Nagle; disabling it once again brings
mcTLS performance in line with E2E-TLS and SplitTLS. Finally, if middleboxes lie directly on
the data path (which o en happens), then the only additional overhead is processing time, which
is minimal.
Takeaway:mcTLS’s handshake is not discernibly longer than SplitTLS’s or E2E-TLS’s.

File Transfer Time. Next we explore the timing behavior of each full protocol by transferring
�les through a single middlebox. To choose realistic �le sizes, we loaded the top 500 Alexa pages
and picked the 10th, 50th, and 99th percentile object sizes (0.5 kB, 4.9 kB, and 185 kB, respectively).
We also consider large (10MB) downloads (e.g., larger zip �les or video chunks).

¿e �rst four bar groups in Figure 3.4 show the download time for increasing �le sizes at 1 Mbps;
each bar represents 10 repetitions. As expected, the handshake overhead dominates for smaller �les
(<5 kB); all protocols that use encryption require an additional ∼17 ms compared to NoEncrypt.
mcTLS is comparable to E2E-TLS and SplitTLS. We see the same behavior when downloading
�les at di�erent link rates or in the wide area (last four bar groups). Handshake and data transfer
dominate download time; protocol-speci�c processing makes little di�erence.
Takeaway: mcTLS transfer times are not substantially higher than SplitTLS or E2E-TLS irrespective
of link type, bandwidth, or �le size.

Page Load Time. To understand how the micro-benchmarks above translate to real-world per-
formance, we examine web page load time. ¿ough we have not yet ported a full-blown web
browser to mcTLS, we approximate a full page load in our simple client as follows. First, we load
all of the Alexa top 500 pages that support HTTPS in Chrome. For each page, we extract a list
of the objects loaded, their sizes, and whether or not an existing connection was re-used to fetch
each one (we cannot tell which connection was used, so we assign the object to an existing one
chosen at random). Next, our client “plays back” the page load by requesting dummy objects
of the appropriate sizes from the server. We make the simplifying assumption that each object
depends only on the previous object loaded in the same connection (this might introduce false
dependencies and ignore true ones).
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Figure 3.6: Page load time for di�erent protocols.

First, we compare three mcTLS strategies: 1-Context (all data in one context), 4-Context
(request headers, request body, response headers, response body), and ContextPerHeader (one
context for each HTTP header, one for request body, and one for response body). Figure 3.5 shows
the CDF of page load times for each strategy. ¿e plot shows similar performance for each strategy,
indicating that mcTLS is not overly sensitive to the way data is placed into contexts.

Next we compare mcTLS to SplitTLS, E2E-TLS, and NoEncrypt (Figure 3.6). We use the
4-Context strategy for mcTLS, since we imagine it will be the most common. SplitTLS, E2E-TLS,
and NoEncrypt perform the same, while mcTLS adds a half second or more. Once again, Nagle
is to blame: sending data in multiple contexts causes back-to-back send() calls to TCP. ¿e �rst
record is sent immediately, but the subsequent records are held because they are smaller than an
MSS and there is unacknowledged data in �ight. Repeating the experiment with Nagle turned o�
closed the gap.
Takeaway:mcTLS has no impact on real world Web page load times.

3.4.2 Data Volume Overhead

Most of mcTLS’ data overhead comes from the handshake, and it increases with the number of
middleboxes and contexts (due to certi�cates and context key distribution). Figure 3.7 shows
the total size of the handshake for di�erent numbers of contexts and middleboxes. For a base
con�guration with one context and no middleboxes, the mcTLS handshake is 2.1 kB compared to
1.6 kB for SplitTLS and E2E-TLS. Note that the handshake size is independent of the �le size.

Next, each record carries MACs (three in mcTLS, one in TLS). ¿eir impact depends on
the application’s sending pattern—smaller records mean larger overhead. For the web browsing
experiments in Section 3.4.1, the median MAC overhead for SplitTLS compared to NoEncrypt
was 0.6%; as expected, mcTLS triples that to 2.4%.

Finally, padding and header overhead are negligible.
Takeaway:Apart from the initial handshake overhead, which is negligible for all but short connections,
mcTLS introduces less than 2% additional overhead for web browsing compared to SplitTLS or
E2E-TLS.
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Figure 3.8: Load sustainable at the server (le ) and middlebox (right).

3.4.3 CPU Overhead

Figure 3.8 (le ) shows the number of connections (only handshakes) per second the server can
sustain. We see that the extra asymmetric encryption for distributing middlebox key material takes
a toll. ¿e mcTLS server handles 23% fewer connections than SplitTLS or E2E-TLS; that number
drops to 35% fewer as the number of contexts, and therefore the number of partial context keys
the server must encrypt, increases. We note two things: (1) key distribution optimizations, which
we intend to pursue in future work, can shrink this gap, and (2) the server can reclaim this lost
performance if the client handles key generation/distribution (Section 3.2.6).

¿e results for themiddlebox aremore interesting (Figure 3.8 right). First, E2E-TLS signi�cantly
outperforms mcTLS and SplitTLS (note the change in Y scale) because it does not participate in a
TLS handshake. Second, mcTLS performs better than SplitTLS because in SplitTLS the proxy
has to participate in two TLS handshakes. ¿ese results show it is not only feasible, but practical to
use middleboxes in the core network.
Takeaway: mcTLS servers can serve 23%–35% fewer connections per second than SplitTLS, but
mcTLSmiddleboxes can serve 45%–75% more.
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3.4.4 Deployment

To begin understanding deployability, we built an extension to the Ruby SSL library that adds
support for mcTLS with less than 250 lines of C code. Using the extension, we then built a 17 line
Ruby web client with the same functionality as our C/OpenSSL-based evaluation client. While
a bit more work is needed to make the extension more Ruby-like, the potential to easily write
mcTLS-enabled mobile apps with developer-friendly tools like RubyMotion [2] is promising.

We also modi�ed the OpenSSL s_time benchmarking tool to support mcTLS. Again, minimal
changes were required: less than 30 new lines of C code were added, and about 10 lines were slightly
changed. ¿is means that relatively minor developer e�ort is required to gain the full bene�ts of
mcTLS.

While supporting �ne-grained access control requires the minimal e�ort of assigning data to
a context and setting middlebox permissions for those contexts, many of the bene�ts of mcTLS
are immediately available with just support from the HTTP client library and server. For example,
HTTP libraries could use the 4-Context strategy by default, requiring no additional programming
or e�ort from application developers. Finally, we note that clients and servers can easily fall back
to regular TLS if an mcTLS connection cannot be negotiated.

Takeaway: Upgrading an application or library to mcTLS appears to be straightforward and easy.

3.5 Discussion

3.5.1 Middlebox Discovery

mcTLS assumes that the client has a list of middleboxes prior to initiating a handshake, which it
includes in the ClientHello. Building this list is largely orthogonal to mcTLS itself; many existing
mechanisms could be used, depending on who is trying to add a middlebox to the session. For
example:

• Users or system administratorsmight con�gure the client (application or OS) directly (e.g.,
the user might point his browser toward Google’s SPDY proxy). If users express interest in,
e.g., a “nearby” data compression proxy, rather than a particular one, clients could discover
available proxies using mDNS [79] or DNS-SD [78].

• Content providers could specify middleboxes to be used in any connection to its servers
using DNS.

• Network operators can use DHCP or PDP/PDN to inform clients of any required middle-
boxes (e.g., virus scanners).

If a priori mechanisms like these are not �exible enough, the handshake could be extended
to allow, e.g., on-path middleboxes to insert themselves (subject to subsequent approval by the
endpoints, of course) during session setup. ¿e costs and bene�ts of this are not immediately clear;
we leave working out the details of more complex session negotiation for future work.
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R1 R2 R3 R4 R5

mcTLS ● ● ● ● ●

(1) Custom Certi�cate
(2) Proxy Certi�cate Flag ○ ○

(3) Session Key Out-of-Band ● ● ○

(4) Custom Browser
(5) Proxy Server Extension ○ ○ ○ ○

(● = full compliance; ○ = partial compliance)

Table 3.4: Comparison of Solutions. Design principle compliance for mcTLS and competing proposals.

3.5.2 User Interface

¿e technical solution for adding middleboxes to secure communication sessions means little
without suitable interfaces through which users can control it. ¿e primary challenges for such an
interface are:

• Indicating to the user that the session is “secure.” Re-using the well-known lock icon is
misleading, since the semantics of TLS and mcTLS di�er.

• Communicating to the user who can do what.Which middleboxes can read the user’s data?
Which can modify it? What modi�cations do they make? Who owns the middleboxes? Who
added them to the session and why?

• Allowing users to set access controls. Which sessions can a middlebox see? Within those
sessions, which �elds can it read or write? ¿e di�culty is making such controls simple and
scalable. For instance, asking users to set middlebox permissions for each domain they visit
is not practical.

Designing a satisfactory interface atop mcTLS is a project in and of itself, one we cannot begin to
do justice here.

3.6 Comparison to RelatedWork

¿ere has been a lot of recent interest, particularly in industry, for including intermediaries in
encrypted sessions. Section II.3 describes several such proposals. Below we compare them to
mcTLS in terms of our �ve design requirements (summarized in Table 3.4).

(1) Custom Root Certi�cate. ¿is technique does not meet any of our requirements. First, the
server, and in many cases the client, is not aware of the existence of the middlebox (R4) so it clearly
cannot authenticate it (R1). Second, the middlebox has full read and write access to all data in the
session (R5). Finally, since the client has no control a er the �rst hop, there is no guarantee about
the secrecy, integrity, or authenticity of the data (R2, R3) or the identity of the server (R1).

(2) “I’m a proxy” Certi�cate Flag. In this case, the client is made explicitly aware of the presence
of the middlebox, so it can authenticate it (R1) and can control its use on a per connection basis
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(R4). ¿e client still cannot authenticate the server and the server is unaware of the middlebox. R2,
R3, and R5 remain unaddressed.

(3) Pass Session Key Out-of-Band. Compared with (1), this solution has the additional bene�t
that the client authenticates both the middlebox and the server (R1) and knows that the session is
encrypted end-to-end (R2). R3, R4, and R5 are still partially or completely unaddressed.

(4) Ship a Custom Browser. ¿is solution is essentially the same as (1), so it also fails all require-
ments. In addition, it has the drawback that a custom browser may not be updated quickly, is
expensive to develop and maintain, and may be inconvenient to users.

(5) Proxy Server Extension. ¿e client must completely trust the middlebox to provide honest
information about the server certi�cate and ciphersuite, so this solution only partially ful�lls R1,
R2, and R3. ¿e proxy is not necessarily visible to the server, so only partial R4. Finally, the proxy
has read/write access to all data (R5).

Other Approaches. An alternative to TLS-based techniques is an extension to IPsec that allows
portions of the payload to be encrypted/authenticated between the two end-points of a security
association and leaves the remainder in the clear [144]. ¿is solution leaves data for middleboxes
completely unencrypted (R2); R1 and R3 are also violated. Furthermore, this approach does not
allow explicit control of the data �ow to di�erent entities (R4).

Tcpcrypt [62, 63] is an alternative proposal for establishing end-to-end encrypted sessions.
Similar to TLS, tcpcrypt supports communication between two endpoints only, but we believe that
the concepts of encryption contexts and contributory context keys could be applied to it as well.
However, because of mcTLS’s increased handshake size, it may no longer be possible to embed the
entire handshake in the TCP handshake.

3.7 Conclusion

¿e increasing use of TLS provides privacy and security, but also leads to the loss of capabilities that
are typically provided by an invisible army of middleboxes o�ering security, compression, caching,
or content/network resource optimization. Finding an incrementally deployable solution that can
bring back these bene�ts while maintaining the security expectations of clients, content providers,
and network operators is not easy. mcTLS does this by extending TLS, which already carries
a signi�cant portion of HTTP tra�c. mcTLS focuses on transparency and control: (1) trusted
middleboxes are introduced at the consent of both client and server, (2) on a per session basis, (3)
with clear access rights (read/write), and (4) to speci�c parts of the data stream.

We show that building such a protocol is not only feasible but also introduces limited overhead
in terms of latency, load time, and data overhead. More importantly, mcTLS can be incrementally
deployed and requires only minor modi�cations to client and server so ware to support the
majority of expected use cases. By using mcTLS, secure communication sessions can regain lost
e�ciencies with explicit consent from users and content providers.
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Chapter 4 Outsourced Middleboxes and
Legacy Clients in TLS

In Chapter 3, we presented Multi-Context TLS, which introduced access control for middleboxes.
Unfortunately, in doing so, mcTLS requires that both endpoints be upgraded, which makes it
unlikely to be deployed in the immediate future. ¿is raises the question: what properties are
most important for secure communication sessions with middleboxes? Is access control crucial?
Is it worth the slow rollout? Are there easier-to-deploy protocols that still provide “enough” se-
curity? Despite initial e�orts in both industry and academia, we remain unsure how to integrate
middleboxes into secure sessions—it is not even clear how to de�ne “secure” in this multi-party
context.

So, in this chapter, we �rst step back and describe a design space for secure communication pro-
tocols for more than two parties, highlighting tradeo�s between mutually incompatible properties.
We then target real-world requirements unmet by existing protocols, like outsourcing middleboxes
to untrusted infrastructure and supporting legacy clients. We propose a security de�nition and
presentMiddlebox TLS (mbTLS), a protocol that provides it (in part by using Intel SGX to protect
middleboxes from untrusted hardware). Finally, we show that mbTLS is deployable today and
introduces low overhead, and we describe our experience building a simple mbTLS HTTP proxy.

4.1 Introduction

So far we have seen a number of solutions using middleboxes along with encryption, most notably
the “split TLS” approach in widespread use today. We have also seen how approaches like split
TLS drastically weaken overall security. ¿ese weaknesses underscore the fact that, while the
properties of TLS are well-understood in the two-party case, it is unclear how to de�ne “secure” in
the multi-party case. In response, recent work has proposed new protocols alongside new security
de�nitions. For example, Multi-Context TLS (mcTLS) (Chapter 3) allows endpoints to restrict
which parts of the data stream the middleboxes can read or write and BlindBox [209] allows
middleboxes to operate directly on encrypted data. However, these are largely “point solutions”
that, while useful in certain scenarios, leave several real-world needs unmet.

In this chapter, we focus on three practical requirements that are so far unaddressed. First, there
is increasing interest in outsourcing middlebox functionality to third-party cloud providers [6, 31,
151, 208] or to ISPs [14, 24, 33]. ¿is setting poses a new challenge: the owner of middlebox so ware
(“middlebox service provider”) and the owner of the hardware it runs on (“infrastructure provider”)
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are not the same. If the infrastructure is untrusted, existing protocols like “split TLS” and mcTLS
cannot provide the standard security properties TLS gives us today because (1) session data and
keys are visible in memory and (2) the endpoints cannot tell if infrastructure provider actually
ran the intended code. Second, in order to be realistically deployable, any new protocol should
be reverse compatible with TLS. ¿at is, if one endpoint wants to include a middlebox, it must be
able to do so even while inter-operating with legacy TLS endpoints. And third, though less �ashy,
the ability to discover middleboxes on-the-�y is a practical requirement in many contexts. For
example, if a service provider places proxies in edge ISPs, directing each client to connect to its
local proxy using DNS (1) is an unnecessary con�guration burden and (2) is brittle, since clients
can use non-local DNS resolvers like OpenDNS.

We make two primary contributions in this chapter. First, we carefully articulate a design
space for secure multi-entity communication protocols (and use it to place previous work in
context). We describe the di�erent properties that such a protocol might have and argue why
some combinations are impossible to achieve at once, suggesting that the community needs
to either carefully select which set of properties to support or develop di�erent protocols for
di�erent use cases. Second, we presentMiddlebox TLS (mbTLS), a protocol for secure multi-entity
communication that addresses the needs described above:
(1) mbTLS protects session data from third party infrastructure providers. mbTLS leverages trusted
computing technology, like Intel SGX [39, 129, 165], to isolate themiddlebox execution environment
from the third party infrastructure.
(2) mbTLS interoperates with legacy TLS endpoints. Unlike mcTLS or BlindBox, an mbTLS endpoint
can securely include middleboxes in a session with an unmodi�ed TLS endpoint. In our tests, we
successfully loaded content from more than 300 of the top Alexa sites using an mbTLS client.
(3) mbTLS provides other useful properties unique to multi-party settings. For example, mbTLS
guarantees that data visits middleboxes in the order speci�ed by the endpoints, prevents attackers
from learning whether or not a middlebox modi�ed a piece of data before forwarding it on, and
provides in-band middlebox discovery.

We implement mbTLS using OpenSSL and the Intel SGX SDK and evaluate its performance,
showing that (1) mbTLS adds no handshake latency compared to TLS, (2) mbTLS reduces CPU
load on the middlebox and adds reasonable overhead on the server, and (3) running inside an SGX
enclave does not degrade throughput.

Our hope is that mbTLS represents a signi�cant and practical step toward bridging the gap
between end-to-end security and the reality that middleboxes are not going away.

4.2 Multi-Entity Communication

Most network communication sessions today involve more parties than just a client and a server.
By and large, these additional parties fall into one of three categories:

Network-LayerMiddleboxes (e.g., �rewall, NAT, layer 3 load balancer). ¿ey process data packet
by packet and do not need to reconstruct or access application layer data.

58



Application-Layer Middleboxes (e.g., virus scanner, IDS, parental �lter, cache, compression proxy,
application layer load balancer). ¿ese do need access to application layer data.

Application-Layer Delegates (e.g., CDNs). In contrast to middleboxes, which act as intermedi-
aries between client and server at communication time, we use the term delegate for intermediaries
that take on the role of the server during the session (though in terms of real-world relationships,
they are still more naturally viewed as intermediaries). Content delivery networks (CDNs) are a
good example; clients talk to CDN servers and not directly with the origin server.

As our security practices improve and we move toward an Internet where encryption is ubiq-
uitous, it is becoming clear that we do not have an adequate protocol for secure multi-entity
communication, nor do we know exactly what properties one should provide. In the two-party
case, it is well understood what security properties we want and how to achieve them; we have been
using TLS successfully for years. But in the multi-party case, there are still two key unanswered
questions: (1) what security properties should hold for sessions involving three or more parties? and
(2) what are the best mechanisms to enforce those properties?

¿e answers to these questions will be di�erent for each of the three categories of intermediaries.
In this chapter, we focus on secure multi-entity communication for application-layer middleboxes.
Even among just application-layermiddleboxes, security needs are potentially diverse—for example,
intrusion detection systems and compression proxies behave very di�erently and trust relationships
di�er between an administrator-mandated virus scanner and an opt-in compression service—which
suggests there may not be a single one-size-�ts-all solution. Our �rst step toward answering these
questions is to articulate the design space.

4.2.1 Design Space

TLS Security Properties. TLS currently provides the following properties in the two-party case.
Clearly we want these properties in the multi-party case as well, but it turns out there are multiple
ways to extend the two-party de�nitions to the multi-party case.

Data Secrecy and Data Authentication. Only the endpoints can read and write session data. By
“write,” we mean create, modify, delete, replay, or re-order messages. Furthermore, with a modern
cipher suite, communication is forward secret (the compromise of a long-term private key does not
help an attacker access previous sessions’ data). To extend these properties beyond two parties, the
following two questions arise.

Granularity of Data Access. yes/no RW/RO/None func. crypto

Do middleboxes have complete access to session data, or do they have some level of partial
access? ¿is could mean they can read/write some bytes but not others (e.g., HTTP headers but
not HTTP bodies), as in mcTLS [177], or that they can perform a limited set of operations over
encrypted data (e.g., search for patterns), as in BlindBox [209].

De�nition of “Party.” machine program

When a party is added to a session, is session data accessible to anyone with physical access to
the machine, or only to the middlebox service so ware? ¿is distinction becomes important
when middleboxes are outsourced to third-party hardware (e.g., cloud providers or ISPs).
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Entity Authentication. Each endpoint can verify that the other is operated by the expected entity by
verifying that they possess a private key that a CA has certi�ed belongs to that entity. To extend
this property beyond two parties, the following question arises.

De�nition of “Identity.” owner code

When a party in a session veri�es the “identity” of another party, what is it checking? ¿at the
machine is owned by the expected entity (e.g., this is a YouTube server)? ¿at the machine is
running the expected so ware and is correctly con�gured (e.g., Apache v2.4.25 with only strong
TLS cipher suites enabled)? Both?

Other Security Properties. In the multi-party case, a number of new security properties arise.

Path Integrity. yes no

Does the protocol enforce that data must traverse middleboxes in a �xed order (and that they
cannot be skipped)? Path order can impact security, especially when middleboxes perform �lter-
ing/sanitization functions.

Data Change Secrecy. none value value + size

Can the adversary learn anything about the communication by observing data before and a er a
middlebox? Protocols could o�er no protection (adversary knows any time a middlebox makes a
change), value protection (adversary does not learn when a middlebox changes a message so long
as the size stays constant), or value + size protection (adversary does not learn about any changes).

Authorization. 0 endpts 1 endpt both endpts endpts + mboxes

Who gets to add a middlebox to a session (and decide what permissions it has)? Do both endpoints
need to be made aware, so they can terminate the session if they do not approve? Only one? Should
middleboxes be aware of other middleboxes?

Other Properties. Finally, there are a number of non-security properties that impact protocol
deployability and usability.

Legacy Endpoints. both upgrade 1 legacy both legacy

Do both endpoints need to be upgraded to a new protocol, or can one or both be legacy TLS
endpoints?

In-Band Discovery. yes yes + 1 RTT no

Does the protocol allow endpoints to discover on-path middleboxes on-the-�y? If so, does adding
discovered middleboxes add time to the handshake?

Computation. arbitrary limited

Does the protocol restrict what kinds of jobs middleboxes can perform? I.e., can they perform
arbitrary computations on the data, or are they limited to a certain class of operations (e.g., pattern
matching)?
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Data Granularity RW/RO/None 3

func. crypto 3

Entity Auth. owner 7

Path Integrity yes 3

Legacy Endpoints 1 legacy 3 3 7 7 7

both legacy 3 7 7 7 7 7

Change Secrecy value 3

Authorization 1 endpoint 3 7

both endpoints 3

Computation arbitrary 7

( 3 = enables; 7 = prevents; no mark = no interaction)

Table 4.1: Properties vs. Mechanisms. Each column lists a mechanism a protocol might use and each row
lists a property you might want the protocol to have. Many mechanisms enable some properties while at the
same time preventing others.

4.2.2 Design Tradeo�s

Let us look at existing approaches in the context of this design space, highlighting how the mech-
anisms they introduce interact with the properties described above. It is o en the case that a
mechanism that provides a particular property along one dimension o en eliminates options along
another. Table 4.1 gives several examples of this; below we describe a few in detail.

TLS Interception with Custom Root Certi�cates [99, 132, 183] is the standard approach today.
First, an administrator provisions clients with custom root certi�cates (this is easy in managed
environments like corporate networks). ¿en, when the client opens a new connection, the
middlebox intercepts, impersonates the intended server by fabricating a certi�cate for that domain,
and opening a second connection to the server. ¿ough this means both clients can be legacy
TLS clients [Legacy: both legacy ], it also makes it impossible for clients to authenticate the server
[Authentication: owner ]—they must trust the middlebox to do so (trust which, in practice, is o en
misplaced [99]).
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Multi-Context TLS (mcTLS) [177] o�ers access control—endpoints can restrict which parts of
the data middleboxes can access and whether that access is read/write or read only [Data access:
RW/RO/None ]. It does this by encrypting di�erent parts of the data with di�erent keys and only
giving middleboxes certain keys. ¿is requires that both endpoints run mcTLS, precluding legacy
endpoints, since a legacy TLS endpoint only knows what to do with one key [Legacy: 1 legacy

both legacy ]. Furthermore, each endpoint generates part of the key material for each of these keys,
ensuring that a middlebox only gains access if both endpoints agree [Authorization: both endpts ].
¿is also prevents legacy support.

BlindBox [209] o�ers searchable encryption—pattern-matching middleboxes like intrusion detec-
tion systems can operate directly on encrypted data [Data access: func. crypto ]. But searchable
encryption only works for pattern-matching; it cannot support other middleboxes, like compres-
sion proxies, that perform arbitrary computation [Computation: arbitrary ]. It also requires that
both endpoints understand BlindBox’s encryption scheme [Legacy: 1 legacy both legacy ].

Middlebox TLS (mbTLS) (this chapter). We will soon see this for mbTLS too: for example, mbTLS
uses a di�erent symmetric key for each “hop” in the session, allowing mbTLS to provide path
integrity [Path integrity: yes ], but making it impossible to support two legacy endpoints [Legacy:
both legacy ].

¿e takeaway is this: there is no one-size-�ts-all solution for secure communication with
application-layermiddleboxes. Each protocol here gives up desirable properties in order to provide
others. Di�erent properties, and therefore di�erent protocols, will lend themselves best to di�erent
use cases.

4.3 Middlebox TLS

In this section, we presentMiddlebox TLS, ormbTLS, a protocol for secure multi-entity communi-
cation that lets endpoints establish a secure communication session that includes application-layer
middleboxes. ¿e solutions introduced in Section 4.2.2 fail to address some real-world needs,
making them harder to deploy and reducing the incentive to do so in the �rst place. We saw in
Section 4.2.2 that it is hard to build a super-protocol incorporating all the good features from
Section 4.2.1; instead, we focus on the following three real-world needs:
(1) Protection for Outsourced Middleboxes: ¿ere is an increasing interest in deploying middle-
boxes in third party environments. ¿is takes one of two forms. First, network functions can
be outsourced to a cloud provider1 that specializes in operating middleboxes, freeing network
administrators from learning to operate specialized boxes and leveraging economy of scale to drive
down costs [6, 31, 208]. Second, deploying middleboxes in client ISPs can help lower latency or
bandwidth costs [14, 24, 33]. (For example, Google’s Edge Network proxies connections using
nodes in client ISPs [14].) In both cases, the logical owner of the network function and the operator
of the hardware it runs on are di�erent. Since the middlebox infrastructure may not be trusted, we

1¿is trend is encouraged by maturing technology for running middlebox applications on commodity hardware
(NFV) [106, 114, 162, 205], including commercial o�erings [7, 17, 20].

62



must protect session data from the middlebox infrastructure in addition to traditional network
attackers.
(2) Legacy Interoperability: Protocols like BlindBox [209] and mcTLS [177] require both endpoints
to be upgraded. Others require that at least the client be upgraded [156, 159, 164], meaning servers
cannot include middleboxes in a session with a legacy client. Realistically, however, it is not an
option to wait until every client in the Internet is upgraded; this is particularly true given that as
many as 10% of HTTPS connections are already intercepted [99]. ¿erefore, it is crucial to support
legacy endpoints.
(3) In-Band Discovery:¿is is important for practical deployment in the use cases we target. For
example, suppose a service provider places proxies in edge ISPs. Directing clients to connect to
their local proxy using DNS (1) is an unnecessary con�guration burden and (2) is brittle, since
clients can use non-local DNS resolvers like OpenDNS. Another example is guest networks where
administrators cannot feasibly con�gure every client device that joins (nor would those users want
them to).

4.3.1 Threat Model

Parties. We identify six distinct parties and label each as “trusted” or “untrusted,” where trusted
means that party is authorized to access session data.
Client (C) [trusted]:¿e user, their machine, and the so ware they run (e.g., a web browser). We
assume any other so ware running on the machine is trusted (i.e., misbehavior by this so ware is
out of scope).
Service Provider (S) [trusted]: ¿e company providing the online service, its servers, and the
so ware it runs (e.g., a web server). As with the client, we do not consider attacks by other so ware
running on the company’s servers or by malicious employees.
¿ird Parties (TP) [untrusted]: Anyone else with access to network tra�c, such as ISPs or co�ee
shop Wi-Fi sni�ers.
Middlebox So ware (MS) [trusted]:¿emiddlebox so ware that processes session data.
Middlebox Service Provider (MSP) [trusted]:¿e entity o�ering the middlebox service.
Middlebox Infrastructure Provider (MIP) [untrusted]:¿e entity providing the hardware on which
theMS runs.

¿eMIP could be theMSP itself or a third party such as a customer ISP or a dedicated cloud
middlebox service, in which case we assume this company, its employees, its hardware, and any
other so ware running on its machines are not trusted. For example, suppose Google implements
their Flywheel compression proxy [37] using Apache httpd running on Amazon EC2. In this case,
MS = Apache httpd, MSP = Google, and MIP = Amazon. By distinguishing between MS and
MIP, we will require mbTLS to permit only middlebox so ware to access session data. [Party:
program ]

Adversary Capabilities. We assume an active, global adversary that can observe and control
any untrusted part of the system. In the network, the adversary can observe, modify, or drop
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any packet and inject new ones. On the middlebox infrastructure, the adversary has complete
access to all hardware (e.g., it can read and manipulate memory) and so ware (e.g., it can execute
arbitrary code, including privileged code like a malicious OS). ¿is includes the ability to modify
or replace middlebox code sent by the MSP to be executed by the MIP. We assume the adversary
is computationally bounded (i.e., cannot break standard cryptographic primitives) and cannot
compromise trusted computing hardware (in our case, Intel SGX-enabled CPUs). Side channel
attacks (e.g., based on tra�c or cache access patterns), exploitable �aws in middlebox so ware,
and denial of service are out of scope.

4.3.2 mbTLS Properties

Based on the design requirements above, we de�ne “secure” for mbTLS by the following four
security properties. “¿e adversary” means any party marked untrusted in Section 4.3.1.

P1 Data Secrecy. P1A ¿eadversarymust not be able to read session data. P1B Communication
should be forward secret (the compromise of a long-term private key does not help an attacker
access previous sessions’ data). P1C ¿e adversary should learn nothing more from observing
ciphertext than it would if each “hop” were its own, independent TLS connection. [Change secrecy:
value ]

P2 Data Authentication.¿e adversary must not be able to modify, delete, or inject session data.
¿is includes replaying or re-ordering data.

P3 Entity Authentication. Endpoints must be able to verify they are talking to the “right thing.”
¿is encompasses two subtly intertwined properties. P3A Each endpoint can verify that the
other endpoint is operated by the expected entity and that eachMS is operated by the expected
MSP (e.g., a YouTube server). [Identity: owner ] P3B Each endpoint can verify that the other
endpoint and eachMS is running the expected so ware and that it is correctly con�gured (e.g.,
Apache v2.4.25 with only strong TLS cipher suites enabled). [Identity: code ]

P4 Path Integrity.¿e endpoints �x an ordered path of middleboxes for a session. It must not
be possible for any other entity (including a middlebox) to cause session data to be processed
by middleboxes in a di�erent order (including skipping a middlebox). Note that all client-side
middleboxes are required to come before all server-side middleboxes (see Section 4.4.2). [Path
integrity: yes ]

In addition to these security properties, we also have the following performance and
functionality-related goals:

P5 Legacy Interoperability. mbTLS should work with legacy TLS endpoints (client or server) so
long as one of the endpoints has been upgraded. [Legacy endpoints: 1 legacy ]

P6 In-Band Discovery. mbTLS should discover on-path middleboxes during session setup.
[Discovery: yes ]

P7 Minimal Overhead. mbTLS should introduce as little overhead (compared to TLS) as possible.
Importantly, mbTLS should not add any round trips to the TLS handshake.
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Primary TLS Session
(data transfer)

Secondary TLS Session
(pass primary session key)

Figure 4.1: Naïve Approach. Establish a TLS session end-to-end and pass the session key to the middlebox
over a secondary TLS session.

Primary TLS Session
(data transfer)

Secondary TLS Session
(pass primary session key)

Secure Execution
Environment
(e.g., SGX Enclave)

Unique Per-Hop Keys

Figure 4.2:mbTLSApproach. Generate unique keys for each “hop” and runmiddleboxes in secure execution
environments.

4.3.3 Design Overview

Since TLS already provides many of the properties we want, one simple approach is the following:
establish a regular TLS session between the client and the server, then pass the session keys to
the middleboxes over separate, secondary TLS sessions (Figure 4.1) [187]. ¿is provides many of
the security properties we want: data is encrypted and integrity-protected against changes from
third parties, the communication is forward secret if a forward secure cipher suite is used, and the
endpoints can verify one another’s identify using certi�cates.

However, using TLS in this way is insu�cient in our threat model for three reasons: (1) it has
no mechanism to provide path integrity since it was designed for two parties P4 ; (2) the same key
is used for encryption on each “hop” in the session, making it simple for adversaries to compare
records entering and leaving a middlebox to see if they changed P1C ; and (3) the infrastructure
provider can access session data in memory P1A , access key material in memory and use it to
forge MACs P2 , and potentially run so ware other than what was provided by theMSP P3B .

We address these insu�ciencies by introducing the following features (Figure 4.2), and we call
the resultMiddlebox TLS (mbTLS).
• In-BandMiddlebox Discovery. As long as one of the endpoints supports mbTLS, middleboxes
can announce themselves and join the session (with endpoint approval) during the primary TLS
handshake ( P6 ).

• Secure Execution Environments.Middleboxes can optionally run in a secure execution envi-
ronment, like an Intel SGX enclave, to protect session data and keys from an untrusted MIP
( P1A , P2 ) and to allow endpoints to verify the so ware identity of theMS ( P3B ).

• Unique Per-Hop Keys. Each “hop” uses its own symmetric keys for protecting session data.
¿is prevents adversaries from delivering records to an out-of-sequence middlebox ( P4 ) and
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makes it impossible to tell when a middlebox forwards data without changing it ( P1C ).

An Aside: Trusted Computing and SGX. Some features of mbTLS rely on trusted computing
technology, like Intel’s So ware Guard Extensions (SGX) [39, 129, 165]. In particular, mbTLS
uses two features provided by SGX—secure execution environments and remote attestation—
though any trusted computing technology that o�ers these features, like Microso ’s Virtual Secure
Mode (VSM) [45] or ARM TrustZone [5] would work as well. (Other technologies, like ARM
TrustZone [5], o�er similar functionality, but provide slightly di�erent security guarantees.) We
brie�y describe these features now; if you are familiar with SGX, skip ahead to Section 4.3.4.

Secure Execution Environment. SGX allows applications to run code inside a secure environment
called an enclave. An enclave is a region of protected memory containing program code and data;
before cache lines are moved to DRAM, they are encrypted and integrity-protected by the CPU.
As long as the CPU has not been physically compromised, even malicious hardware or privileged
so ware cannot access or modify enclave memory.

Remote Attestation. SGX can provide code running in an enclave with a special message, signed by
the CPU, called an attestation, that proves to remote parties that the code in question is indeed
running in an enclave on a genuine Intel CPU.¿e attestation includes a cryptographic hash of
initial state of the enclave code and data pages (so the remote veri�er can see that the expected code
is running) as well as custom data provided by the enclave application (we use this to integrate
attestation with the TLS handshake).

4.3.4 ThembTLS Protocol

At a high level, the endpoints do a standard TLS handshake, establishing a primary TLS session,
which will eventually be used for data transfer. Each endpoint adds zero or more middleboxes
to a session, which we refer to as client-side and server-side middleboxes and can be known a
priori or discovered during the handshake ( P6 ). Each endpoint has no knowledge of the other’s
middleboxes (or if it has any at all) which means an mbTLS endpoint can inter-operate with legacy
TLS endpoints ( P5 ). ¿e endpoints simultaneously establish a secondary TLS session with each
of their middleboxes. Once an endpoint has a secure channel to a middlebox (which can include
verifying that the middlebox so ware is running in a secure execution environment), it sends the
middlebox the key material it needs to join the primary end-to-end session.

Control Messaging. mbTLS uses the same per-hop TCP connections for the primary and sec-
ondary handshakes. Compared to opening secondary TCP connections, this reduces overhead
( P7 ) by (1) reducing TCP state on both middleboxes and endpoints, (2) keeps all handshake
messages on the same path since the overall handshake is only as fast as the slowest, least reliable
path, and (3) keeps client-side middleboxes discovery from adding a round trip (see below). We
introduce a new TLS record type (Encapsulated) to wrap secondary TLS records between a
middlebox and its endpoint. ¿ese records consist of an outer TLS record header followed by a one
byte subchannel ID and the encapsulated record. For details on mbTLS message formats, see [18].
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Figure 4.3: mbTLS Handshake. Note that it consists of multiple standard TLS handshakes, interleaved, with
a few additional messages (shaded).
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Client-Side Middlebox Discovery. mbTLS allows clients to include both middleboxes known a
priori (e.g., con�gured by a user or announced via DNS, DHCP, or PDP/PDN) and those discovered
during session establishment (on the default routing path) P6 . To inform on-path middleboxes
that the client supports mbTLS, the primary ClientHello includes a new MiddleboxSupport
TLS extension. When it sees the extension, the middlebox (1) forwards the ClientHello onward
toward the server and (2) begins its own secondary handshake with the client. In this secondary
handshake, the middlebox plays the role of the server. ¿e original, primary ClientHello serves
double-duty as the ClientHello for the secondary handshake as well; the middlebox responds
directly with a ServerHello (this is to avoid an extra round trip P7 ). However, in all computations,
both the client and the middlebox use PRF(ClientRandom∣∣MiddleboxRandom) in place of the
original ClientRandom used in the primary handshake.

¿ere may be multiple client-side middleboxes. Secondary handshake messages are sent in
Encapsulated records, each middlebox with its own subchannel ID. Middleboxes wait until they
see the primary ServerHello, bu�er it, assign themselves the next available subchannel ID, inject
their own secondary ServerHello into the data stream using that ID, and �nally forward the
primary ServerHello. ¿is process ensures that each middlebox gets a unique subchannel ID
with minimal coordination.

Server-Side Middlebox Discovery. Server-side middleboxes can also be pre-arranged (e.g., via
DNS) or discovered on the �y ( P6 ). Discovery is slightly trickier in the server-side case, however.
Unlike the client, the server does not announce mbTLS support using the MiddleboxSupport
extension for two reasons: �rst, the TLS spec forbids the server from including an extension
in the ServerHello that the client did not include in the ClientHello [94]; relying on a
MiddleboxSupport extension for the server would fail if the client does not also support mbTLS.
Second, even if this were possible, if server-side middleboxes waited to announce their presence un-
til a er the server’s ServerHello, the middlebox-server handshake would �nish a er the primary
handshake, lengthening the overall handshake process to more than two RTTs (against P7 ).

Instead, server-side middleboxes optimistically announce themselves with a new
MiddleboxAnnouncementmessage before they know if the server supports mbTLS. If it does not,
then depending on its TLS implementation, it will either ignore the MiddleboxAnnouncement
and the handshake will proceed without the middlebox, or the handshake will fail. (In either case,
the middlebox will cache this information and not announce itself to this server again.) If the
handshake fails, the client will need to retry. ¿ere is a potential danger that client so ware might
interpret this to mean the server is running an out-of-date TLS stack and retry using an older
version of TLS.We veri�ed that Chrome and Firefox do not exhibit this behavior; Chrome will try a
second TLS 1.2 handshake, and Firefox will not retry at all (meaning the user will need to manually
click “Refresh”). Furthermore, in practice, we expect server-side middleboxes and servers will
typically be under the same administrative control, in which case the middleboxes know that
the server supports mbTLS. Like the client-side middleboxes, server-side middleboxes assign
themselves unused subchannel IDs when they send their MiddleboxAnnouncementmessages.

Secure Environment Attestation. We have extended the TLS 1.2 handshake (see Figure 4.4)
to optionally include a remote attestation (in addition to the standard certi�cate check), which
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Figure 4.4: Updated StateMachine.¿eTLS 1.2 state machine (le ) and ourmodi�cation to support remote
attestation (right). Changes to the TLS state machine should be made carefully; we argue this change is a
small one, and easy to reason about.
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Figure 4.5: Unique Per-Hop Keys. Each hop encrypts and MAC-protects data with a di�erent key—the
client generates keys for the client-side hops (KC−C1 and KC1−C0), the server generates keys for the server-side
hops (KS0−S1 and KS1−S), and the primary session key (KC−S) bridges the sides.

the endpoints may use here to verify that (1) the secondary (or primary) TLS sessions terminate
inside a secure execution environment ( P1A , P2 ) and (2) the middlebox is running the expected
so ware in the expected con�guration ( P3B ). ¿e goal is to convince the endpoint that only the
middlebox application running in the enclave knows the TLS session key being established. ¿e main
idea is the following: since the attestation includes the identity of the code, and we assume the
code (application + mbTLS library) has been inspected and is trusted, then if the code tells us that
it generated the secret key material for this handshake and did not export it, then we can trust it.
¿e challenge becomes identifying “this handshake”—how can the endpoint be sure an adversary
is not replaying an old attestation from a di�erent handshake?

¿ismeans, in addition to the code identity, the attestationmust include some kind of handshake
identi�er (e.g., SGX allows attestations to include 64 bytes of arbitrary “user data”). A good
handshake identi�er should be something that (1) is present in every handshake (so, not the session
ID, which the server can choose not to support), (2) will not normally repeat in future handshakes,
and (3) cannot be forced to repeat by an attacker (so, not the client random). Good candidates
include anything based on the ephemeral keys exchanged in the handshake. ¿e pre-master
secret, or anything derived from it, would be a good choice, except this is only known to the
middlebox a er receiving the ClientKeyExchange from the endpoint. If we wait this long to
send the attestation, we delay the overall end-to-end handshake. Instead, we base the handshake
identi�er on just the middlebox’s key material (our implementation uses a hash of the middlebox’s
public ephemeral Di�e Hellman key). It is okay that these are public because they do not repeat
normally and an attacker cannot force them to. ¿is requires that the server use a key exchange
method with an ephemeral public key (since a �xed public key will be the same in each handshake),
but using ephemeral keys for forward secrecy is standard best practice anyway.

Unique Per-Hop Keys. At the end of a mbTLS handshake, the session looks like Figure 4.5. A er
�nishing the secondary handshakes with its middleboxes, each endpoint generates a symmetric
key for each hop on its side of the connection (e.g., the client generates KC−C1 and KC1−C0 in the
�gure). ¿is prevents an adversary from causing records to skip a middlebox or traverse the
middleboxes out-of-order ( P4 ) and also prevents eavesdroppers from detecting whether or not
a middlebox modi�ed a record ( P1C ). Endpoints distribute these keys to their middleboxes in
MiddleboxKeyExchange records encrypted using the secondary connection keys, which, just like
the secondary handshake messages, are sent in Encapsulated records in the data stream. ¿e
session key established as a result of the primary handshake, KC−S , serves as a “bridge” between
the client-side and server-side middleboxes (or between a middlebox and a legacy endpoint P5 ).
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Security Property ¿reat Defense (TLS) Defense (mbTLS)

Data Secrecy P1A Data read on-the-wire by TP orMIP Encryption Encryption*
P1A Data read inMS application memory byMIP — Secure Execution Environment

P1C TP compares record entering and leavingMS to see if it
was modi�ed

— Unique Per-Hop Keys

Data Authentication P2 Records dropped, injected, or modi�ed on-the-wire MACs MACs*
P2 Data deleted, injected, or modi�ed in RAM byMIP — Secure Execution Environment

Entity Authentication P3A C establishes key with wrong so ware on S Certi�cate Certi�cate
P3A C establishes key with so ware on hardware operated
by someone other than S

Certi�cate Certi�cate

P3B C or S establishes key with wrongMS so ware — Remote Attestation
P3A C or S establishes key withMS so ware operated by
someone other thanMSP

— Certi�cate*

Path Integrity P4 Records passed to middleboxes in the wrong order — Unique Per-Hop Keys

Table 4.2:¿reats andDefenses. HowmbTLSdefends against concrete threats to our core security properties.
For comparison, we include TLS where applicable. An asterisk indicates that defense also relies on the secure
environment to safeguard the session key.

4.3.5 Discussion

Session Resumption. mbTLS fully supports both ID-based and ticket-based session resumption.
Each sub-handshake (the primary handshake and the secondary handshakes) simply does a stan-
dard abbreviated handshake; the only minor di�erence is that the session tickets for middleboxes
should contain the session keys for the end-to-end session (in addition to the key for the endpoint-
middlebox sub-session). A new attestation is not required, because only the enclave knows the key
needed to decrypt the session ticket. A client that wishes to resume a session stores a session ID or
ticket for the server and each client-side middlebox. If the server also uses mbTLS, it can either
cache the session IDs/tickets for its middleboxes or ask the client cache them and send them in its
ClientHello.

TLS 1.3. TLS 1.3 [197] signi�cantly changes the TLS handshake compared to TLS 1.2 and earlier,
shortening it from two round trips to just one. With minor modi�cations, mbTLS’s handshake can
be adapted to TLS 1.3. ¿ere is one caveat: when client-side middleboxes are present, data sent by
the server in the same �ight as the server Finished could be delayed, in the worst case, up to one
round trip. In most cases, however, clients send application data �rst; in these cases, there is no
issue.

4.4 Security Analysis

4.4.1 Core Security Properties

We now revisit each security property from Section 4.3.2, arguing why mbTLS provides it. Table 4.2
summarizes the concrete threats we address, how TLS defends against them in the two-party case,
and how mbTLS defends against them in the multi-party case.
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P1 Data Secrecy.
P1A ¿e adversary must not be able to read session data. Decrypting session data requires access to
one of the symmetric keys shown in Figure 4.5. ¿e bridge key, KC−S , is established during the end-
to-end client-server TLS handshake in which the endpoints verify one another’s certi�cates. Next,
this key and the rest of the session keys (e.g., KC−C1, KC1−C0, etc.) are transferred to the middleboxes
over individual secondary TLS connections; importantly, these secondary connections terminate
inside the SGX enclave, meaning theMIP cannot access the secondary session’s key in memory, so
only theMS (and not theMIP) learns the primary session keys. Remote attestation proves to a
middlebox’s endpoint that theMS is truly running in the secure environment.
P1B Communication should be forward secret.¿e bridge key (KC−S) is the result of the (standard)
primary TLS handshake, so if the primary handshake is forward secure, so isKC−S . ¿e other session
keys (e.g., KC−C0, KC0−C1, etc.) are generated fresh for each session and sent to the middleboxes
over (standard) secondary TLS connections. ¿erefore, if these secondary handshakes are forward
secure, so are the non-bridge session keys.
P1C ¿e adversary should learn nothing more from observing ciphertext than it would if each hop
were its own, independent TLS connection. Since each hop uses its own independent encryption
and MAC keys, a er the handshake each hop e�ectively operates like its own TLS connection.
In particular, this prevents an adversary from learning whether or not a middlebox modi�ed a
record (though it can still see the sizes and timings of each record, including whether a middlebox
increased or decreased the size of the data).

P2 Data Authentication. ¿e adversary must not be able to modify, delete, or inject session data.
Each record carries amessage authentication code (MAC), a small tag generated using the session
key that identi�es a piece of data. Unauthorized changes can be detected if the MAC does not
match the data. Since only the endpoints and eachMS know the session keys (see P1A), only these
entities can modify or create records.

P3 Entity Authentication.
P3A Each endpoint can verify that the other endpoint is operated by the expected entity and that each
MS is operated by the expectedMSP. First, the client and server can require one another’s certi�cate
in the primary handshake (though typically client authentication happens at the application layer).
A certi�cate binds the server’s public key to its identity, and that public key is used in the primary
handshake to negotiate the shared bridge key, so a er a successful handshake, the client is assured
that any data encrypted with that bridge key can only be decrypted by the expected service provider
(or middleboxes it chose to add to the session). Second, endpoints can also require certi�cates
from middleboxes. Since the private key corresponding to the certi�cate is stored in the enclave,
inaccessible by the MIP (and remote attestation proves that this is the case), the endpoint is
convinced it it talking to so ware supplied and con�gured by the expectedMSP.
P3B Each endpoint can verify that the other endpoint and each MS is running the expected so ware
and that it is correctly con�gured. Since our threat model assumes that the SP and all so ware
running on its server is trusted, and in P3A we veri�ed that the server possesses the SP’s private
key, the client trusts that the machine is properly con�gured with the expected application so ware.
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¿e same logic applies to the middleboxes, with the additional step that the remote attestation
convinces the endpoint that theMS is safely isolated in the secure execution environment.

P4 Path Integrity. Each endpoint picks an order for its middleboxes. It must not be possible for
any other entity (including the other endpoint or any middlebox) to cause session data to be processed
by middleboxes in a di�erent order.¿is follows from the fact that mbTLS uses a fresh key for each
hop. Suppose an adversary sni�s a record from the C1 − C0 link in Figure 4.5 and tries to insert it
on the S0 − S1 link (thereby skipping middleboxes C0 and S0). ¿e record will be encrypted and
MAC’d with KC1−C0, but C1 expects data secured with KS1−S0, so the MAC check will fail and the
record will be discarded. (Note, that an endpoint can inject, delete, or modify data anywhere in its
portion of the path because it knows all the session keys on its side. We discuss potential security
implications below.)

4.4.2 Other Security Properties

Endpoint Isolation. Endpoints can only authenticate their own middleboxes, not those added by
the other endpoint. In fact, an endpoint likely does not even know about the other side’smiddleboxes.
¿is follows from the way keys are generated and distributed. Checking a certi�cate or an attestation
is only meaningful if the public key in the certi�cate is used for key exchange (then you trust that
only the entity associated with that public key can decrypt what you send with the new symmetric
key). Since endpoints don’t do a KE with the other side’s middleboxes, they have no means of
authenticating one another, even if they exchanged certi�cates/attestations. ¿is limitation seems
reasonable; since the endpoints presumably trust one another or they would not be communicating
to begin with, it is natural to trust the other endpoint to properly authenticate any middleboxes it
adds to the session.

Path Flexibility. It is not possible to interleave client-side and server-side middleboxes. To support
this, the endpoints would need to coordinate to generate/distribute keys to the interleaved portion of
the path. ¿is means (1) extra work for endpoints and (2) the endpoints would need to know about
(some of) one another’s middleboxes. ¿is would also mean that one endpoint could modify/inject
tra�c a er the other endpoint’s middleboxes, which could be a security problem if one of those
middleboxes does some kind of �ltering or sanitization.

Untrusted MSPs. mbTLS can provide guarantees even when the service provider is untrusted. In
our threat model, both the SP and the MSPs are trusted. However, even in a more pessimistic
threat model where they are untrusted, remote attestation can still provide P1 , P2 , P3 , and P4 ,
since the attestation identi�es the code running in the secure environment. ¿is relies on two big
assumptions: (1) that so ware is known to “behave well” (e.g., does not export session data outside
the enclave), which is a di�cult problem, and (2) that the client knows a hash of this “known good”
so ware. For example, a client could connect to an untrusted Web proxy if the so ware is open
source and has been publicly veri�ed to keep session data con�dential, even if the client trusts
neither the company operating the service nor the infrastructure it runs on.
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Middlebox State Poisoning. It is not safe to use mbTLS with client-sidemiddleboxes that keep
global state. Since endpoints know the keys for each hop on their side of the connection, amalicious
client can read and/or modify data on any of these hops without its middleboxes knowing. ¿is is
a problem when a middlebox that shares state across multiple clients, like a Web cache. A client
with access to a link between the cache and the server could (1) request a page, (2) drop the server’s
response, and (3) inject its own response, thereby poisoning the cache for other clients.

One possible solution is to alter the handshake protocol so that middleboxes establish keys
with their neighbors rather than endpoints generating and distributing session keys; this means
each party only knows the key(s) for the hop(s) adjacent to it. ¿e downside is the client has lost
the ability to verify the server’s certi�cate and establish a session key using the public key in that
certi�cate. Instead, the client must trust its middleboxes to authenticate the server. ¿is may be
reasonable, since the SGX attestation should convince the client that the middlebox is running
so ware that will do so, but we did not take this approach in mbTLS because, where possible, we
prefer to rely on cryptography, since relying on SGX also means relying on the correctness of the
protocol library code.

Bypassing “Filter” Middleboxes. At �rst glance it appears that the fact endpoints know all the
session keys on their side opens another attack: if a middlebox performs some kind of �ltering
function (e.g., a virus scanner, parental �lter, or data ex�ltration detector mandated by an adminis-
trator), this means the endpoint has the keys to access incoming data before it is �ltered or inject
outbound data a erward. However, if an endpoint is capable of reading or writing data “on the
other side of ” of the �lter (i.e., physically retrieve/inject packets from/into the network beyond the
middlebox), then the �lter was useless to begin with, so mbTLS does not enable new attacks.

4.5 Evaluation

We evaluate four critical aspects of mbTLS. First, our security analysis argues that mbTLS is secure
(Section 4.4). Second, with a series of real-world experiments, we show that mbTLS is immediately
deployable (Section 4.5.1). ¿ird, we show mbTLS imposes reasonable CPU overhead for servers
wishing to deploy it (and reduces it for middleboxes) (Section 4.5.2). Finally, we show that SGX
applications can support network I/O heavy workloads (Section 4.5.3).

Prototype Implementation.We implemented mbTLS in OpenSSL (v1.1.1-dev) using the Intel SGX
SDK for Windows (v1.7). Our prototype currently supports any cipher suites using DHE or ECDHE
for key exchange and AES256-GCM for bulk encryption. Recall that, if mbTLS is used with SGX,
our attestation procedure requires an ephemeral key exchange (Section 4.3.4). However, there is
no reason we could not support encryption algorithms other than AES256-GCM. We also provide
a support library for running our mbTLS implementation inside an SGX enclave. Our support
library implements 8 libc functions directly in the enclave (3 of which are only used for debugging
and can be removed in production builds) and exits the enclave for another 7 libc functions (4 of
which are for debugging). ¿e middlebox in the following experiments is a simple HTTP proxy
that performs HTTP header insertion.

Testbed. Our local testbed comprises four servers running Windows Server 2016, with SGX-
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Network Type # Sites Network Type # Sites

Enterprise 6 University 11
Residential 34 Public 1

Mobile 2 Hosting 56
Colocation Services 35 Data Center 19

Uncategorized 77 Total 241

Table 4.3: Handshake Viability. Number of distinct sites from which we performed mbTLS handshakes to
our test server, broken down by network type. All handshakes were successful.

enabled Intel Core i7 6700 processors and an SGX-enabled motherboard. ¿ese are connected
through Mellanox ConnectX-3 40Gbps network cards to a local Arista 7050X switch.

4.5.1 Deployability

We test two things through real-world deployments: (1) Do �rewalls or tra�c normalizers in the
public Internet block mbTLS connections? (2) Can mbTLS interoperate with legacy endpoints?

Handshake Viability. Since mbTLS introduces new TLS extensions (MiddleboxSupport) and
record types (Encapsulated and MiddleboxAnnouncement), we verify that existing �lters, like
�rewalls, tra�c normalizers, or IDSes, do not drop our handshakes. To do so, we connect to a
middlebox and server running in Azure from clients located in various networks around the world.
¿e middlebox is con�gured to be a client-side middlebox, so the new message types traverse the
networks between the client and the data center. To test a diverse set of client networks, we do two
things. First, we run our client through TOR, using 550 exit nodes located in 46 countries across
214 ASes. Using whois data, we categorized the networks by type. We chose not to use platforms
such as PlanetLab as these are mainly placed in university networks, which are typically not heavily
�ltered. Second, we manually connect from di�erent types of networks to �ll in gaps in the Tor
experiment (namely public, mobile, and data center networks). Table 4.3 shows a breakdown of
the distinct client networks from which we initiated a handshake. All handshakes were successful.

Legacy Interoperability. To demonstrate that mbTLS can communicate with legacy endpoints,
we use a version of curl [8] modi�ed to use mbTLS to download the root HTML document for
the top 500 Alexa sites that support HTTPS via our SOCKS HTTP proxy running in Azure. Only
385 sites in the Alexa top 500 support HTTPS; we successfully connected to 308 of these. Of the
77 that failed, 19 had invalid or expired certi�cates. Another 40 did not support AES256-GCM, the
only encryption algorithm currently supported by our prototype (note that this is a limitation of
our prototype, not the protocol). Another 13 failed due to redirects our SOCKS implementation
did not properly handle. We are currently debugging the remaining 5, though we are con�dent the
failures were not due to a protocol �aw.
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Figure 4.6: Handshake CPUMicrobenchmarks. Each bar shows the time spent executing a single hand-
shake (not including waiting for network I/O). Each bar is the mean of 1000 trials; error bars show a 95%
con�dence interval of the mean.

4.5.2 Performance Overhead

mbTLS does not modify the TLS record layer, so it has no impact on data transfer performance.
On the other hand, it does change the handshake, so we (1) investigate the computational expense
of performing a handshake (a concern for servers and middleboxes, which need to handle many
connections), and (2) empirically verify that mbTLS does not increase session setup latency.

Handshake CPU Microbenchmarks. We measured the time it costs clients, middleboxes, and
servers to perform TLS and mbTLS handshakes. As Figure 4.6 shows, without a middlebox, the
TLS and mbTLS times are close (we suspect the di�erence is ine�ciency in our implementation,
not any fundamental property of the protocol). Second, for the middlebox, a mbTLS handshake
is cheaper, because the middlebox only performs one TLS handshake (as opposed to two in Split
TLS). Finally, the server’s load is not impacted by client-side middleboxes and increases linearly
with the number of server-side middleboxes. Note, however, that each server-side middlebox
only adds approximately 20% of the original, no-middlebox handshake time; this is because, for
each middlebox, the server performs one additional client TLS handshake, which is cheaper than
a server handshake. (Key exchange was ECDHE-RSA; results were similar for DHE-RSA. Machine
specs: Intel i7-6700K CPU at 4 GHz; 16 GB RAM; Windows 10.)

Handshake Latency. To con�rm that our handshake protocol does not in�ate session setup in
practice (it should not, since it maintains the same four-�ight “shape” as TLS), we perform several
handshakes across data centers in Microso Azure. We deploy VMs in four regions (Australia, US
West, US East, and UK) and test all permutations of a client-middlebox-server path across them
(with no two VMs in the same DC). In each test, we compare the time to fetch a small object using
mbTLS and TLS. For regular TLS, the middlebox simply relays packets, i.e., it does not perform
split TLS—this is the worst-possible case to compare mbTLS against since the middlebox performs
no handshake operations. Figure 4.7 summarizes the results, broken into handshake time and
data transfer time. Each bar is the mean of 100 trials; error bars show a 95% con�dence interval.

76



usw
-u

se
-u

k

usw
-u

k-u
se

au-u
sw

-u
se

use
-u

sw
-u

k

au-u
se

-u
sw

au-u
se

-u
k

au-u
sw

-u
k

au-u
k-u

se

usw
-au-u

se

au-u
k-u

sw

usw
-au-u

k

use
-au-u

k

Path (client-mbox-server)

0

500

1000

1500

2000

Ti
m

e 
(m

s)

Handshake Data TransferTLS mbTLS

Handshake Data Transfer
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We observe that mbTLS increases the handshake latency on average by 0.7% (1.2% in the worst
case—a 10 ms increase out of 800 ms). ¿is is likely due simply to handshake computations on the
middlebox.

4.5.3 Network I/O in SGX

Finally, we investigate network I/O preformance from the enclave. SGX imposes restrictions on
what enclave code can do. Since only the CPU is trusted, interaction with the outside world is not
permitted by default (notably, system calls are not permitted, since the OS is untrusted). When
an enclave thread needs to make a system call, there are two high-level strategies: (1) it copies the
arguments into unprotected memory, exits the enclave, executes the call, re-enters the enclave, and
copies the result back into enclave memory (this boundary-crossing incurs a performance penalty);
or (2) it places a request in a shared queue and another thread outside the enclave executes the
call passes the result back into the enclave via a response queue. To borrow terminology from
SCONE [44], these are synchronous and asynchronous system calls, respectively.

In a microbenchmark of repeated pwrite()s, SCONE found that, for small bu�er sizes, asyn-
chronous calls can be up to an order of magnitude faster. However, here we are concerned speci�-
cally with send()s and recv()s, so we performed a small experiment to test the enclave’s impact
on throughput. We con�gured four machines in our lab to be a middlebox, a server and two clients.
¿e clients send a stream of random bytes, sent in encrypted chunks whose size we vary. ¿e
middlebox is con�gured with one of four behaviors: it either simply forwards the (encrypted) data
to the server or it decrypts and re-encrypts it before forwarding, and it does this either outside
or inside the enclave. We add connections from multiple client threads until the middlebox is
saturated.

Figure 4.8 shows that the enclave did not have a noticeable impact on throughput, suggesting
that optimizations like asynchronous system calls are not necessary for applications with I/O heavy
workloads. We suspect this is due to the high interrupt rates of I/O-heavy workloads; overhead from
interrupt handling overwhelms any overhead from a thread crossing the enclave boundary. Even if
a developer uses asynchronous system calls, under the impression that a thread will permanently
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bu�ers are not statistically signi�cant.

live in the enclave, that thread will still leave the enclave whenever that core is interrupted. While
pinning interrupts to a di�erent core to avoid interrupting the enclave might help, you then pay
the cost of transferring the received data from the core handling interrupts to the core running
the enclave. Figure 4.8 also shows that the throughput when the middlebox decrypts/encrypts
data plateaus around 7 Gbps. ¿is is yet another source of CPU overhead that helps outweigh any
performance penalty from enclave transitions.

4.6 RelatedWork

Middlebox as an Endpoint. In Section 4.2.2 we describe the current practice of intercepting
TLS connections using custom root CA certi�cates. Other proposals include a 2014 IETF dra 
from Ericsson and AT&T [159] which would allow a proxy to intercept a TLS handshake and return
a certi�cate identifying itself as such; if the client chooses, it can complete the handshake with
the proxy and rely on the proxy to open its own TLS connection to the server. A related Cisco
proposal [164] builds on this by introducing a ProxyInfoExtension which the proxy would
use to pass the client information about the certi�cate and cipher suite used on the proxy-server
connection. Finally, at least one ISP ships custom browsers with the certi�cates for its proxies
built in [156]. Unfortunately, these approaches do not allow the client to authenticate the server or
verify what cipher suite is used between the middlebox and the server. One could argue that, if the
middlebox ran in a trusted execution environment, then it could be trusted to properly authenticate
the server and use strong ciphers. However, where possible we prefer to rely on cryptography than
on SGX.

Middlebox as a Middlebox. In contrast to the above approaches, which glue together separate
TLS connections, several techniques have been developed formaintaining some form of end-to-end
session. An IETF dra from Google has clients connect to servers directly and pass the session
key to a proxy out-of-band over a separate TLS connection [187]. CloudFlare’s Keyless SSL does
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much the same thing for server-side delegates [218] (and [59] de�nes a formal security de�nition
for keyless SSL and patches two attacks). Both of these techniques expose data to the middlebox
infrastructure and fail to provide path integrity (the same session key is used on each hop).

We discuss mcTLS [177] and BlindBox [209] in Section 4.2.2.
¿e security concerns for network-layer middleboxes, which operate on L3 and L4 header

�elds (e.g., NATs and �rewalls), are orthogonal to the concerns mbTLS addresses. Embark [151] is
designed speci�cally to allow network administrators to outsource network-layer middlebox to a
cloud provider without giving the cloud service private information about their network.

Network Architectures. ¿e Delegation-Oriented Architecture (DOA) [225] provides network
support for routing a packet through one or more intermediaries, but does not by itself provide all
of our security properties. ICING [174] is a mechanism for enforcing path integrity and is more
general than ours. Our path integrity mechanism takes advantage of the fact that mbTLS already
share keys and each mbTLS record is already MAC-protected.

SGX. Protecting outsourced middleboxes with SGX was brie�y discussed in [149], but without
a concrete protocol or implementation. S-NFV [212] sketches a framework for implementing
SGX-protected middlebox applications. PRI [202] details the design of an SGX-based IDS. Both
focus on the middlebox application architecture rather than the protocol for including a middlebox
in a communication session to begin with. ¿ere are also a number of TLS implementations
designed to work in SGX enclaves [16, 25, 46, 230]. ¿ese libraries port unmodi�ed TLS; we go a
step further and extend the TLS handshake to include remote attestation, allowing one party to
verify that the TLS session terminates inside an enclave (though this requires both to upgrade to
mbTLS). Finally, there is a rapidly growing body of work on how to build SGX-protected systems
(or port existing ones) [35, 44, 50, 134, 213]. ¿ese are all orthogonal to this work and could be used
in concert with mbTLS to build an SGX-protected middlebox.

4.7 Conclusion

In this chapter we presented Middlebox TLS, or mbTLS, a protocol for secure multi-entity commu-
nication. Unlike previous solutions for integrating middleboxes into secure sessions, mbTLS (1)
interoperates with legacy TLS endpoints and (2) can protect session data from untrusted middlebox
infrastructure using trusted computing technology like Intel SGX. Our prototype implementation
shows that mbTLS can indeed communicate with real, unmodi�ed web servers and incurs reason-
able overhead. Finally, we discuss the space of security properties for multi-entity communication
and the trade-o�s protocol designers must make among them.
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Part III

Protecting Communication Metadata
(Without Giving Up Accountability)

1. How can we protect communication metadata and also hold users ac-
countable at the same time?

2. How do we compare the privacy properties of network architectures?

Based on work appearing in SIGCOMM 2014 [176] and HotNets 2015 [178].
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Introduction

When users communicate over the network, clearly the application data itself o en contains
information that ought to be private, like personal conversations, medical data, or credit card
numbers. But even with the payload hidden, adversaries can still learn other sensitive information,
including:

• who communicated with whom?
• who communicated at all?
• when did these communications happen?
• how many bytes were exchanged?

¿is “extra” information about the communication is calledmetadata and it can reveal a lot
that the communicating parties might rather keep private. For example, one study found that not
only are telephone numbers trivially re-identi�able, telephone metadata can reveal highly sensitive
information [163]. Consider these two examples from their study:

Participant D placed calls to a hardware outlet, locksmiths, a hydroponics store, and a head shop
in under 3 weeks.

Participant E made a lengthy phone call to her sister early one morning. ¿en, 2 days later,
she called a nearby Planned Parenthood clinic several times. Two weeks later, she placed brief
additional calls to Planned Parenthood, and she placed another short call 1 month a er.

Even without the contents of these calls, it is not hard to conclude some fairly personal facts
about participants D and E. Other researchers found that, using only the sizes and timestamps
of encrypted Skype packets, it is possible not only to determine what language the speakers are
using [234], but also to detect when they say target phrases [233]. ¿ese are not just academic
concerns; communication metadata is regularly recorded and used today. Former NSA and CIA
director General Michael Hayden put it succinctly: “We kill people based on metadata” [82].

III.1 Protecting CommunicationMetadata...

III.1.1 Properties

Once again, recall the high-level user goals presented in Section 1.1.2. ¿e third user goal, Keep
Activity Private, is the combination of two properties:
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PROPERTY 4: Sender/Receiver Anonymity.
Intuitively, this means the adversary cannot tell that two particular endpoints are commu-
nicating. We formalize this idea below.

PROPERTY 5: Flow Unlinkability.
If an adversary can identify that multiple �ows came from the same user, it can begin to
build a history of that user’s activity. (It can do this even though it may not know who that
user is, and, in the event that future activity gives away the user’s identity, it can retroactively
link past activity to that user.)

Anonymity is actually many closely related ideas intertwined, and a lot of terminology has
been introduced to precisely de�ne it. We begin by reviewing this terminology from the literature
and then re�ne it.

Anonymity in the Literature

In their 1987 paper on communication anonymity, P�tzmann and Waidner break down anonymity
into sender anonymity, recipient anonymity, and sender-recipient unlinkability [189]. P�tz-
mann later clari�ed this terminology in 2001 along with Köhntopp [188] (the following de�nitions
are taken from their paper verbatim):

Anonymity is the state of being not identi�able within a set of subjects, the anonymity set.

Unlinkability of two or more items (e.g., subjects, messages, events, actions, etc.) means that
within this system, these items are no more and no less related than they are related given the
adversary’s a-priori knowledge.

Based on these fundamental de�nitions, they go on to de�ne useful combinations. For example:

Sender anonymity means that a particular message is not linkable to any sender and that, to a
particular sender, no message is linkable.

Relationship anonymity [sender/receiver anonymity] means that it is untraceable who com-
municates with whom. In other words, sender and recipient [...] are unlinkable.

Anonymity in this Document

¿ough intuitive, these de�nitions are a bit vague. Let us start with sender/receiver anonymity.
What does it mean for the sender and receiver to be unlinkable? P�tzmann and Köhntopp only
go so far as to state that a su�cient condition is to have either sender anonymity or receiving
anonymity—if the messages being exchanged cannot be linked to the sender (or receiver), clearly
the sender (receiver) cannot be linked to the receiver (sender). We argue that, while true, this
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Same packet?

Sighting-Packet Linkability

Sent by?

Sighting-Sender Linkability

Destined to?

Sighting-Receiver Linkability

Same flow?

Packet-Packet Linkability

Same host?

Flow-Flow Linkability

Figure III.1: Linkability. Illustrations of each type of linkability. Each rectangle represents a packet sighting
at the router below it.

characterization is not particularly useful for two reasons. First, if the adversary has a vantage
point on the �rst (last) link (a common scenario), it knows who the sender (receiver) is based on
network topology regardless what information is in the packet, so in this case it is impossible to
have sender (receiver) anonymity.

Second, the de�nition above for sender anonymity is not a very useful one. Consider the
following example: a sender, S, sends a packet, which at some point traverses a NAT. Before the
NAT, the packet’s source address is that of S; a er the NAT, its source address is that of S’s home
network. To anyone observing the packet before the NAT, the sender is clearly S. To anyone
observing the packet a er the NAT, the sender could be any host in S’s home network. Is the packet
linkable to S or not?

¿is example illustrates the futility of talking about packet-host linkability. ¿e problem is
one of granularity: talking about linkability at the granularity of packets is not useful, because
packets can be changed as they move through the network, which can in turn change whether they
can be linked to the sender or receiver. What we really care about is the interplay between three
things: sighting-host linkability, sighting-packet linkability, and packet-�ow linkability. First
we o�er precise de�nitions for these terms and then we compose them to o�er our own de�nition
of sender/receiver anonymity.

Linkability. P�tzmann and Köhntopp’s de�nition refers to linkability between two or more “items.”
¿ere are a few di�erent types of item-item pairs we care about (see Figure III.1). ¿e �rst four are
“fundamental” in the sense that we cannot a priori de�ne how the adversary determines if a pair of
items are linkable; adversaries of varying power might come to di�erent conclusions.

Sighting-Packet Linkability. Are these sightings the same packet? ¿e adversary can deter-
mine this using any means available to it (e.g., by comparing payloads or timing analysis). We
denote this by LinkableSightingsP (⋅, ⋅).

Sighting-Flow Linkability. Are these sightings part of the same �ow? ¿e adversary can
determine this using any means available to it (e.g., timing analysis or TCP sequence numbers).
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We denote this by LinkableSightingsF (⋅, ⋅).

Sighting-Sender Linkability. Was the packet observed in this sighting sent by host H?
¿e adversary can determine this using any means available to it (e.g., from the packet’s
source address or by sni�ng the link connecting H to the network). We denote this by
LinkableSightingSenderH (⋅).

Sighting-Receiver Linkability. Is the packet observed in this sighting destined for host
H? As above, the adversary can determine this in many ways. We denote this by
LinkableSightingReceiverH (⋅).

¿e last two are “composite” de�nitions, in the sense that they build on the above de�nitions and
do not require (additional) assumptions about the adversary.

Packet-Packet Linkability. Are these packets part of the same �ow? When we talk about
packet linkability, a packet is de�ned as a set of linkable sightings. We denote this by
LinkablePackets (⋅, ⋅) and de�ne it as follows:

LinkablePackets (P1, P2) ∶= ∃a ∈ P1, b ∈ P2 s.t. LinkableSightingsF (a, b) (4.1)

Flow-Flow Linkability. Are these �ows from/to the same host H? When we talk about �ow
linkability, a �ow is de�ned as a set of linkable packets. We denote this by LinkableFlowsH (⋅, ⋅)
and de�ne it as follows:

LinkableFlowsH (F1, F2) ∶= ∃a ∈ F1, b ∈ F2 s.t.
[LinkableSightingSenderH (a) ∧ LinkableSightingSenderH (b)]
∨ [LinkableSightingReceiverH (a) ∧ LinkableSightingReceiverH (b)] (4.2)

Note: in these de�nitions, we use the terms “packet” and “�ow” from the point of view of the adversary.
For example, a packet entering and leaving a proxy that re-encrypts the payload might appear to some
adversaries to be two di�erent packets even though, in a ground truth sense, they are the same packet.

Sender/Receiver Anonymity.We are now able to de�ne sender/receiver linkability, which we use
as our de�nition of sender/receiver anonymity. Intuitively, a sender and receiver are linkable if we
have (1) a sighting that is linkable to the sender, (2) a sighting that is linkable to the receiver, and
(3) those two sightings are themselves linkable. Sender/receiver linkability is formalized as follows:

LinkableSenderReceiver (H1,H2) ∶= ∃a, b s.t.
LinkableSightingSenderH1 (a) ∧ LinkableSightingReceiverH2 (b) ∧ LinkableSightingsF (a, b)

(4.3)

Figure III.2 puts these new de�nitions in context in the concept map from Figure 1.1. ¿is will
be useful below when we discuss techniques for providing these properties.
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Figure III.2: Sender/Receiver Anonymity. A breakdown of the properties contributing to sender/receiver
anonymity.
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Figure III.3: Signals. A network adversary uses three types of signals to break users’ anonymity: packet
contents, topological location, and timing.

III.1.2 Techniques

Protecting communication metadata—that is, providing anonymity—is less straightforward than
protecting the data itself. Before we discuss methods for doing so, �rst consider the problem from
the adversary’s point of view. How does an adversary learn about users’ communication patterns
by observing network tra�c? Every time the adversary sees a packet at one of its vantage points (a
sighting), it learns from three primary signals:

SIGNAL 1: Packet Contents
¿e bits in a packet explicitly encode information that may be useful to an adversary. For
example, if two hosts with public IP addresses are communicating without any intervening
proxies, the source and destination IP addresses directly link the packet to the sender
and receiver. And the standard “5-tuple” (network addresses, transport port numbers,
and transport protocol number) is an easy way to group packets into �ows. We assume
application payloads are encrypted and therefore consider leakage of identity information
in payloads out of scope (though the adversarymay use equality tests on encrypted payloads
to link multiple sightings of the same packet).

SIGNAL 2: Topological Location
A vantage point’s topological location restricts the sets of possible senders or receivers.
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Figure III.4:Metadata Protection Techniques. Techniques for hiding communication metadata leaked by
the signals.

¿is is particularly true on the �rst and last hops, where the presence of a packet uniquely
identi�es the sender or receiver.

SIGNAL 3: Time
Packet timing (and ordering) can help the adversary link sightings of the same packet
at di�erent vantage points even if the contents have changed (e.g., before and a er a Tor
relay). Timing can also help link packets in the same �ow—packets in a burst are more
likely to be part of the same �ow.

To prevent adversaries from learning anything useful from this information, a few categories of
defenses have emerged (Figure III.4). ¿e �rst four deal with hiding information typically leaked
by Packet Contents. Let us start with the payload:

TECHNIQUE 4: Mutate Payload
We assume the payload is encrypted, which means its only use to the adversary is linking
sightings of the same packet. ¿is can be prevented by mutating the payload (e.g., re-
encrypting it under a new key). Tor relays do this.

Hiding headers is trickier, because certain pieces of sensitive information are needed by certain
entities to carry out network communication, namely (1) the destination (needed by routers to
deliver the packet), (2) the source (needed by return path routers to deliver the reply), and (3) a
�ow ID (needed by routers and some middleboxes for tra�c engineering and by endpoints for
demultiplexing). (Note that “destination” and “source” do not necessarily mean addresses in a
header, but rather the knowledge, in any form or at any granularity, of where the packet should be
delivered and where replies should be sent.) ¿is communication state is needed for successful
communication, but that does not mean it needs to be publicly visible. Wemake three observations,
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each leading to a general technique for hiding communication state:

TECHNIQUE 5: Encrypt State
Observation 1: Not all devices need all of the information.
For example, the receiver does not need to know the source so long as the network is able
to deliver the reply (typically routers know how to deliver responses because the sender
passes the receiver its address, which the receiver uses as the destination address in its
response). Furthermore, each device may not need to know it at its fullest granularity (e.g.,
the �rst hop router does not need to know the exact destination, it only needs a rough idea
of which direction to send the packet). ¿is suggests forwarding state could be broken into
pieces which are individually encrypted for the routers that need them.

TECHNIQUE 6: Store State
Observation 2: Communication state does not need to be carried in each packet.
It can also be stored on the devices that need it rather than being carried around the network,
where it is visible at more vantage points. For example, a network address translator
(NAT) sits at the border of two networks, an “internal” network and an “external” network,
and rewrites the addresses of the internal hosts in all packets leaving the internal network
to a single, shared address. It also assigns the �ow a new TCP or UDP port number, which
it uses to disambiguate internal hosts when inbound tra�c arrives; this internal address↔
external port mapping is stored on the NAT. By doing this, sightings of a packet outside
the NAT cannot be attributed to a speci�c sender.

Another example can be found in a future Internet architecture called Named Data
Networking (NDN) [138]. Packets in NDN do not contain source addresses at all; instead,
packets leave “breadcrumbs” in the routers they traverse and response tra�c follows these
breadcrumbs back to the initial sender.

TECHNIQUE 7: Multicast
Observation 3: Communication may still be possible even with less than complete information.
For example, even without a destination address, routers couldmulticast a packet to many
hosts in the network. ¿e intended recipient looks for a secret (e.g., encrypted) signal that
the packet is for it.

¿e next technique is used to hide the Topology signal:

TECHNIQUE 8: Indirection
Forwarding tra�c through some kind of relay—like an anonymizing proxy, a VPN end-
point, or a circuit of Tor relays—takes it o� the default routing path from sender to receiver.
¿is limits what an adversary can learn from the topological location of a vantage point,
since the packet’s presence does not necessarily mean that the true destination is nearby.
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And, �nally, the remaining two techniques are for hiding Timing information:

TECHNIQUE 9: Arti�cial Delay
An intermediary in the network can delay packets arti�cially to hide correlations in packet
arrival timings. ¿is is o en done in batches—the intermediary delays packets until it has
a full batch, then releases them in a random order. (Such an intermediary is called amix.)

TECHNIQUE 10: Dummy Tra�c (Cha�)
Rather than introducing arti�cial delay to hide timing patterns, “dummy” packets can be
used to �ll gaps between real packets so that the adversary always sees tra�c �owing at a
�xed rate. ¿is practice is sometimes called cha�ng and the dummy tra�c is cha�.

As a concrete example, consider Tor [96]. Tor is a real-world anonymous communication
service that combines techniques 4, 5, and 8 in a primitive called onion routing [118]. Tor clients
forward packets through a series of proxies called relays (indirection), each of which re-encrypts
the payload to prevent adversaries from linking sightings before and a er (payload mutation). In
Section III.3.1, we will discuss other concrete instantiations of these techniques from research and
practice.

III.2 ...Without Giving Up Accountability

Researchers have long recognized the need for anonymous communication systems to protect
metadata, and we will discuss several concrete instantiations of the techniques introduced above
in Section III.3.1. Furthermore, these systems are not merely academic endeavors; several have
been deployed and have sizeable user bases, and the recent attention drawn to mass surveillance by
intelligence agencies has increased user awareness of existing services like VPNs and Tor [23, 66,
68, 128, 182]. Section III.3.1 describes concrete systems in detail.

However, using systems like Tor to hide senders’ identities, while good from a privacy perspec-
tive, also allows misbehavior to go unpunished. Network operators and law enforcement use packet
source addresses to track down users who abuse the network by doing things like downloading
illegal content, sending SPAM, or harassing other users. If users can hide their true source addresses
at will, these authorities lose the ability to identify miscreants, resulting in a loss of accountability.

At the other extreme, mechanisms that improve accountability o en do so at the expense
of privacy. For example, the Accountable Internet Protocol (AIP) [40] prevents source address
spoo�ng by cryptographically linking packets to their senders.

One way to think about this, illustrated by Figure III.5, is the following. ¿e current Internet
architecture provides virtually no support for privacy or accountability. Existing techniques, like
Tor and AIP, provide one at the expense of the other. Our goal is to provide a practical balance of
both.

We argue that providing this balance requires support from the network. Clearly if we want
accountability-related features like source address spoo�ng prevention or the ability to block attack
tra�c, we need help from the routers; once the network delivers spoofed or otherwise malicious
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Figure III.5: Accountability vs. Privacy. IP provides little support for privacy or accountability. Existing
techniques provide one at the expense of the other. Our goal is to achieve a useful balance of both.

packets to a victim, the damage may already be done even if the victim can identify the packet as
malicious and drop it. At the same time, anonymity systems are designed to break the link between
the source address visible in the packet and the true sender. ¿is breaks the traditional assumption
that the source address is a “handle” we can use to identify misbehaving senders. ¿e network
needs to acknowledge this and provide a suitable replacement.

In an e�ort to address this tussle between privacy and accountability, the chapters in this part
make the following contributions:

• Architectural support for balancing privacy and accountability. In Chapter 5 we intro-
duce a new network architecture, the Accountable and Private Internet Protocol (APIP), that
explicitly balances privacy and accountability—and, in fact, o�ers more of each than the
current Internet, without introducing signi�cant overhead in the default case.

• Techniques for quantifying privacy.While—and a er—we designed APIP, we found we
struggled to rigorously compare it to other architectures in terms of privacy. ¿is turned out
to be a tricky, open problem; Chapter 6 describes our e�orts on how to quantify “how much
privacy” a network architecture provides.

III.3 RelatedWork

III.3.1 Anonymity Systems

In this section, we summarize existing anonymous communication systems from research and
practice, binning them loosely into categories based on the strength of their guarantees and the
overhead they impose. (Danezis et al. provide a more thorough overview of the �eld through
2009 [88].) ¿ese systems are generally concrete instantiations of one or more of the high-level
techniques presented in Section III.1.2. A general rule of thumb for understanding their design is
that any anonymity system is a balancing act between three desirable things: (1) low latency, (2)
high bandwidth, and (3) strong anonymity.
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Lightweight.¿e�rst class of systems are those that attempt to provide the best anonymity possible
without in�ating latency or reducing bandwidth. ¿ough unable to stand up to powerful, global
adversaries like a malicious ISP or a government spy agency, this class of solutions is well-suited
for more limited attackers like local Wi-Fi sni�ers or end servers.

Anonymizing Relay. ¿e simplest privacy service is a single relay, either at the network layer (a
VPN) or at the transport or applications layers (a proxy). Examples include Anonymizer [4],
VyprVPN [29], ExpressVPN [12], Hide My Ass! [15], and StrongVPN [22]. ¿ese services work by
encrypting the sender’s packets (Encrypt State) and tunneling them to a proxy that decrypts them
(Mutate Payload) and forwards them to the ultimate destination. ¿e true destination’s address is
not visible before the relay; a er the relay, the true sender’s address is unavailable Furthermore, the
detour through the relay can help to hide information revealed by topology (Indirection).

Network-Layer Onion Routing. ¿is bin includes LAP [131], Dovetail [201], HORNET [77], and
an unnamed architecture designed around the principle of least privilege [157, 158]. At a high
level, these approaches all work by (1) sending each packet along the path it would have taken
anyway, without the privacy protections, to avoid path stretch and (2) exposing, at each router,
only the forwarding state needed to pick the next hop (e.g., by encrypting each router’s next-hop
information).

Medium-weight.

Onion Routing. A single relay is su�cient against an adversary with limited capabilities; if an
adversary is more powerful (e.g., has multiple vantage points or observations collected over time),
this idea can be extended by encrypting a packet multiple times and forwarding it through a series
of relays, each of which strips o� a layer of encryption and forwards the packet to the next hop.
¿is process is known as onion routing [118]. ¿e most well-known instantiation of this idea is
Tor [96], a popular onion routing service with over twomillion daily users [28]. However, since Tor
attempts to introduce as little delay as possible, it is still susceptible to timing attacks—an adversary
can link packets entering and leaving a Tor relay even though the payload has been re-encrypted.
Like anonymizing proxies, onion routing uses a combination of Encrypt State, Mutate Payload, and
Indirection (it just uses more of each).

Onion routing traditionally relies on a PKI (doing the onion encryption requires knowing the
public keys of the relays). An interesting alternative approach takes advantage of path diversity in
the network and uses information slicing to provide similar guarantees without a PKI [145].

Heavyweight. To resist even tra�c analysis attacks by powerful, global adversaries, a variety of
heavyweight techniques can be used. In exchange for stronger anonymity guarantees, each one
sacri�ces some combination of low latency and high bandwidth.

Mix Nets. Building on onion routing, imagine now that each relay gathers a batch of packets from
multiple users of the system, shu�es them [110, 179], and releases them. Such a relay is called a
mix [75]. Examples based on a �xed infrastructure of mixes include Babel [122], Mixmaster [169],
Mixminion [90], and the Java Anonymous Proxy [54]; Drac [89], Blindspot [112], and P 5 [210]
use a peer-to-peer model. ¿e trouble is, unless the mix net’s users generate a very large volume
of tra�c, the system has to either (1) wait for signi�cant periods of time to gather a big enough
batch to shu�e and release (Arti�cial Delay), adding latency overhead, or (2) introduce Dummy Traf�c
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(Cha�) to “�ll in the gaps,” adding bandwidth overhead. More recent systems, like Aqua [154] and
Herd [153], try to reduce these overheads by carefully balancing cha� vs. delay for the anticipated
workload (Aqua targets bulk �le transfer, like BitTorrent, and Herd targets VoIP) and by playing
other tricks.

DC-Nets. Another approach, also due to Chaum, is a cryptographic construction called aDining
Cryptographers Network, or DC-Net [76, 119]. DC-nets are peer-to-peer systems which divide
communication into rounds; in each round, one peer can publish a public, anonymous message.
Each pair of peers shares a symmetric key; during a round, the peer whose turn it is to speak uses
these keys to generate pseudo-random strings for each other peer. It then XORs these strings
together along with its message and publishes the result; everyone else can recover the message by
generating the same pseudo-random strings and XORing them with the published ciphertext. ¿e
trick is making this scale: all participants in the DC-net need pairwise keys with one another, and
each round requires n2 communication. Dissent [86, 231] introduces a hybrid infrastructure/P2P
model that allows their system to scale to more users. Another problem with DC-nets is their
susceptibility to insider “jamming” attacks in which a malicious peer speaks out of turn, preventing
honest users from speaking. Herbivore [117] combats this by breaking the network into smaller
“anonymity cliques” while Verdict [87] uses cryptographic mechanisms to prevent jamming.

Mailbox Systems. Finally, there is yet another class of anonymous communication systems that
are essentially databases where a sender/receiver write/read messages to/from a pre-arranged
database entry. ¿e systems are designed to allow these writes and reads to happen without anyone
learning which key is being written or read. ¿ree such systems are P3 [150], Vuvuzela [223], and
Pung [41]. Vuvuzela’s guarantees are based on di�erential privacy. Riposte [85] uses these ideas
to implement a public message board system (think: anonymous Twitter) rather than supporting
two-way conversations.

III.3.2 Measuring Anonymity

¿ere are a number of proposals for measuring network layer privacy, many of which fall into two
broad classes.

¿e �rst is a group of techniques for characterizing how much the adversary knows about the
anonymity set, beginning with simply the size of the set [55, 76]. However, unless the distribution
of suspicion across hosts in the anonymity set is uniform, set size does not mean much; for
non-uniform distributions, the maximum probability [221] or the entropy of the distribution [92,
206] are more meaningful. (Reiter and Rubin capture these ideas with an informal scale with
intuitive levels like “beyond suspicion,” “probable innocence,” and “possible innocence” [193].)
Entropy captures how much the adversary knows about who is communicating, not how much it
learned from observing the system; mutual information can be used to characterize how much
the communication protocol is to blame for what the adversary knows [74, 91]. ¿e authors of
[93] propose a Bayesian de�nition of anonymity that can reason about what an attacker learns by
combining multiple sources of knowledge, some of which may be incorrect. Entropy and mutual
information both describe the adversary’s ability to link one particular output to its corresponding
input, which can be misleadingly optimistic. A better measure considers the likelihood of all
possible matchings of inputs to outputs [101, 116].
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¿e second group of techniques is formal methods, which specify an anonymity system in some
formal language and then automatically verify properties about it. Some use process calculi [57, 203],
which is good at encoding protocols but less so at expressing privacy properties. Others use
epistemic logic [73, 111, 219], which clearly captures privacy properties but makes it more di�cult to
encode the protocol. Function views can combine the bene�ts of a process calculus with epistemic
logic [133].
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Chapter 5 Balancing Privacy and
Accountability in the Network

¿ough most would agree that accountability and privacy are both valuable, today’s Internet
provides little support for either. Previous e�orts have explored ways to o�er stronger guarantees
for one of the two, typically at the expense of the other; indeed, at �rst glance accountability and
privacy appearmutually exclusive. At the center of the tussle is the source address: in an accountable
Internet, source addresses undeniably link packets and senders so hosts can be punished for bad
behavior. In a privacy-preserving Internet, source addresses are hidden as much as possible.

In this chapter, we argue that a balance is possible. We introduce the Accountable and Private
Internet Protocol (APIP), which splits source addresses into two separate �elds—an accountabil-
ity address and a return address—and introduces independent mechanisms for managing each.
Accountability addresses, rather than pointing to hosts, point to accountability delegates, which
agree to vouch for packets on their clients’ behalves, taking appropriate action when misbehavior
is reported. With accountability handled by delegates, senders are now free to mask their return
addresses; we discuss a few techniques for doing so.

5.1 Introduction

Today’s Internet is caught in a tussle [80] between service providers, who want accountability,
and users, who want anonymity (Keep Activity Private). Each side has legitimate arguments: if
senders cannot be held accountable for their tra�c (e.g., source addresses are spoofable), stopping
in-progress attacks and preventing future ones becomes next to impossible. On the other hand,
there are legitimate anonymous uses of the Internet, such as accessing medical web sites without
revealing personal medical conditions, posting to whistleblowing web sites, or speaking out against
an oppressive political regime.

At the network layer, mechanisms for providing one or the other o en boil down to either
strengthening or weakening source addresses. In an accountable Internet, source addresses undeni-
ably link packets and senders so miscreants can be punished for bad behavior, so techniques like
egress �ltering and unicast reverse path forwarding (uRPF) checks aim to prevent spoo�ng. In a
private Internet, senders hide source addresses as much as possible, so services like Tor work by
masking the sender’s true source address.

We argue that striking a balance between accountability and privacy is fundamentally di�cult
because the IP source address is used both to identify the sender (accountability) and as a return
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address (privacy). In fact, the function of the source address has evolved to be even more complex,
serving a total of �ve distinct roles: packet sender, return address, error reporting (e.g., for ICMP),
accountability (e.g., uRPF), and to calculate a �ow ID (e.g., as part of the standard 5-tuple).

¿is chapter explores how changes to the network architecture could help by asking the question,
“What could we do if the accountability and return address roles were separated?” Our answer,
the Accountable and Private Internet Protocol (APIP), does just that, creating an opportunity for
a more �exible approach to balancing accountability and privacy in the network. APIP utilizes
the accountability address in a privacy-preserving way by introducing the notion of delegated
accountability, in which a trusted third party vouches for packets and �elds complaints. With
accountability handled by delegates, senders have more freedom to hide return addresses. We
make the following contributions:

• An analysis of the roles of the source address in today’s Internet.
• ¿e de�nition of design options for an accountability address and the accompanying mecha-
nisms for holding hosts accountable in a privacy-preserving way.

• An analysis of the impact of these design options on the privacy-accountability tradeo�.
• ¿e de�nition and evaluation of two end-to-end instantiations of APIP.

¿e remainder of the chapter is organized as follows. A er teasing apart the various roles of
the source address (Section 5.2), Section 5.3 discusses challenges in balancing accountability and
privacy. Section 5.4 gives a high-level overview of APIP. Section 5.5 describes possible designs
for delegated accountability while Section 5.6 analyzes their implications for privacy. Section 5.7
discusses real-world deployment issues and presents two example end-to-end instantiations of
APIP. We evaluate the feasibility of APIP in Section 5.8 and �nish with a discussion of related work
(Section 5.9) and conclusion (Section 5.10).

5.2 Source Address Overload

We now investigate the roles of source addresses, since they play a key role in the seemingly
fundamental con�ict between accountability and privacy in the network. Source addresses today
attempt to ful�ll at least �ve distinct roles:

1. Return Address.¿is is a source address’s most obvious role: the receiving application uses
the source address as the destination for responses. (¿is is, for example, built into TCP
connection establishment.)

2. Sender Identity. Historically, source addresses have been used as a crude (and ine�ective)
way of authenticating a sender or to link multiple sessions to a single “user.”

3. Error Reporting. If a packet encounters a problem, the ICMP error message is directed to
the source address.

4. Flow ID. Source addresses are one component of the 5-tuple used to classify packets into �ows,
both in the network (monitoring, tra�c engineering) and at endpoints (demultiplexing).

5. Accountability. Techniques such as uRPF checks and egress �ltering can be viewed as weak
accountability mechanisms protecting against certain types of address spoo�ng. Recent work
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Role Where Used Layer Comments

Return Address Destination Transport Routers forward purely based on the destination ad-
dress; the return address is used only by the destina-
tion.

Sender Identity Destination Application No longer used to authenticate users, but may be used
to, e.g., track “users” across sessions in web access logs.

Error Reporting Routers Network Destination for error messages.
Destination Network

Flow ID Destination Transport End-hosts need a way to demultiplex �ows.
Routers Network Routers distinguish �ows for tra�c monitor-

ing/engineering.

Accountability Routers Network In designs like AIP, routers may require a valid (chal-
lengeable) source address.

Destination Network It must be possible to identify and shut down a mali-
cious �ow.

Table 5.1: Source Address Roles.¿e roles a source address plays and where each is used.

o�ers stronger protection than that o�ered by IP. For example, AIP [40] uses cryptographic
identi�ers as source addresses that can be used to verify that the host identi�ed really did
send the packet.

Somewhat to our surprise, many proposed architectures use source addresses for the same
purposes. ¿is includes proposals that are very di�erent from IP, such as architectures that use paths
or capabilities, rather than addresses, to identify a destination. For instance, SCION [240] headers
include AS-level paths selected jointly by the ISPs and source and destination networks to specify
how to reach the destination. However, each packet still has an AIP-style source identi�er that
ful�lls the above roles. Also, in ICING [174] and capability-based architectures such as SIFF [236],
TVA [237], or FANFARE [211], packets carry pre-approved router-level paths, but they also carry
traditional source and destination addresses.

To understand the impact of repurposing the source address as an accountability address in
APIP, we ask two questions about each role:

(1) Is it needed by the network? If not, it can be moved deeper in the packet, opening up more
design options and simplifying the network header.

(2) Is it needed in every packet? If not, it could be stored elsewhere, e.g., on the routers or end-
hosts that will use it. ¿is simpli�es the packet header, but may add complexity to protocols that
have to maintain the state.

Table 5.1 summarizes the answers to these questions. Two high-level takeaways emerge: (1)
not all roles involve the network, and (2) some information is not needed in every packet. ¿e
following observations are particularly relevant to the accountability versus privacy tussle:
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1. ¿e accountability role is the network’s primary use of source addresses. Error reporting
bene�ts the host, not the network. Hosts could choose to forgo error reports for the sake of
privacy or have them sent to the accountability address. Flow ID calculation could use the
accountability address.

2. ¿e return address role is not used by the network at all. It could be moved deeper in the
packet, encrypted end-to-end, and/or omitted a er the �rst packet of a �ow.

5.3 Accountability versus Privacy

A number of research e�orts focus on improving either accountability or sender privacy in the
network, but unfortunately this o en comes at the price of weakening the other. To illustrate this
point, we summarize one well-known technique for each and then elaborate on the goals of this
chapter.

5.3.1 PreviousWork

Accountability and Nothing But. ¿e Accountable Internet Protocol (AIP) [40] is a network
architecture whose primary objective is accountability. Each host’s endpoint identi�er (EID) is
the cryptographic hash of its public key, and AIP introduces two mechanisms that use these
“self-certifying” EIDs to hold hosts accountable.

First, �rst-hop routers in AIP prevent spoo�ng by periodically “challenging” a host by returning
the hash of a packet it purportedly sent. Hosts maintain a cache of hashes of recently sent packets
and respond a�rmatively if they �nd the speci�ed packet hash; the response is signed with the
private key corresponding to the source EID. If a challenge elicits no response or the response has
an invalid signature, the router drops the original packet. Second, AIP proposes a shuto� protocol:
a victim under attack sends the attacking host a shuto� packet, prompting the attacker’s NIC to
install a �lter blocking the o�ending �ow. Shuto� packets contain the hash of an attack packet (to
prove the host really sent something to the victim) and are signed with the victim’s private key (to
prove the shuto� came from the victim).

AIP su�ers from three important limitations: �rst, cryptographically linking senders to their
packets’ source addresses precludes any possibility of privacy. Second, though bad behavior is
always linkable to the misbehaving host, AIP does not facilitate a long-term �x—the shuto�
protocol is only a stop-gap measure. Finally, AIP requires that well-intentioned owners install
“smart NICs” that implement the challenge and shuto� protocols, since a compromised OS could
ignore shuto�s. We draw heavily on ideas from AIP while addressing these limitations.

Privacy and Nothing But. ¿e best available solution for hiding a return address is using a mix
net or onion routing service like Tor [75, 192, 193]. Observers in the network only see the identity of
the two onion routers on that link in the Tor path. Of course, accountability is much more di�cult
to achieve since the identity of the sender is hidden inside the packet, behind one or more layers
of encryption. Liu et al. propose an architecture that o�ers a high degree of privacy by baking
Tor into the network itself [157]. However, in addition to the lack of accountability, the increased
header overhead and latency make Tor unsuitable as a default, “always-on” solution.
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5.3.2 Goals and Threat Model

¿e examples show that the source address represents a control point in the tussle between privacy
and accountability. Unfortunately, it is a very crude one since there seem to be only two settings:
privacy (x)or accountability. ¿e high level goal of this chapter is to rede�ne the source address so
it can properly balance the accountability and privacy concerns of providers and users.

Accountability. At the network layer, by accountability we mean that hosts cannot send tra�c
with impunity: malicious behavior can be stopped and perpetrators can be punished. Speci�cally, we
would like our design to have the following three properties:

1. Anyone can verify that a packet is “vouched for”—a known entity is willing to take responsi-
bility if the packet is malicious.

2. Malicious �ows can be stopped quickly.
3. Future misbehavior from malicious hosts can be prevented (i.e., by administrative or legal
action).

Privacy. Our goal is to give users more anonymity than they have in the current Internet. At the
same time, since changes to the network layer a�ect all tra�c in the Internet, the mechanisms we
introduce should be lightweight enough that they do not impose overhead in the default case. For
this reason, we target only the Packet Contents signal; hiding the Topological Location and Time signals
require introducing signi�cant overheads (Section III.1.2).

¿erefore, APIP allows senders to hide their network addresses from some combination of
third-party observers in the source domain, transit ISPs, and the destination host. Our threat
model excludes the following:

• We do not consider anonymity from the operator of the source domain itself (since it can
identify the sender based on the physical “port” through which the packet entered the
network).

• APIP does not hide a packet’s destination; senders wishing to make their packets unlinkable
to the destination should use solutions such as Tor.

• Timing attacks—e.g., using tra�c analysis to link packets arriving at a host with response
packets leaving the host—are out of scope.

• ¿ough we do not introduce new techniques for �ow anonymity—i.e., the inability of
observers to link packets belonging to the same �ow, which can be useful if features like
the size of a communication are sensitive—we discuss how APIP a�ects the linkability of
packets in a �ow.

• Application-layer privacy concerns are out of scope.
Finally, note that APIP is not limited to any one particular address hiding mechanism, but rather
makes it possible for senders to hide their addresses any way they see �t.
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Accountability: NID:HID:SID

Return: NID:HID:SID

...

Destination: NID:HID:SID

used by routers 
for forwarding

used by anyone
for challenging

used by destination
for responding

used by routers 
as a !ow ID

Figure 5.1: APIP Headers. Packet carry a destination address (used by routers for forwarding), an account-
ability address (used to report malicious packets), and an optional return address (used by the receiving
endpoint for responding).

5.4 Basic Design

¿e Accountable and Private Internet Protocol (APIP) separates accountability and return ad-
dresses. A dedicated accountability address allows us to address the limitations of an accountability-
above-all-else approach like AIP by introducing delegated accountability. Rather than identifying
the sender, a packet’s accountability address identi�es an accountability delegate, a party who is
willing to vouch for the packet. With accountability handled by delegates, senders are free to
mask return addresses (e.g., by encrypting them end-to-end or using network address translation)
without weakening accountability.

Addressing. We think APIP is applicable to many di�erent network architectures, so as much as
possible we avoid making protocol-speci�c assumptions. To discuss source addresses generally, we
adopt three conventions.

First, each packet carries at least two addresses (Figure 5.1): (1) a destination address (used to
forward the packet) and (2) an accountability address (identifying a party—not necessarily the
sender—agreeing to take responsibility for the packet). It may also carry a return address (denoting
where response tra�c should be sent) as a separate �eld in the packet. Return addresses may not
be present in all packets, e.g., they may be stored with connection state on the receiver. Also, as we
discuss later, the return address may not always be part of the network header.

Second, an address consists of three logical pieces: (1) a network ID (NID), used to forward
packets to the destination domain, (2) a host ID (HID), used within the destination domain to
forward packets to the destination host, and (3) a socket ID (SID), used at the destination host to
demultiplex packets to sockets. We write a complete address as NID:HID:SID. ¿ese logical IDs
may be separate header �elds or could be combined (e.g., an IP address encodes both an NID and
an HID; the port number serves as an SID).

Finally, to simplify our description of APIP, we initially assume that HIDs are self-certifying,
as de�ned by AIP, to bootstrap trust in interactions with accountability delegates. We relax this
assumption in Section 5.7.3.

Life of a Packet. Figure 5.2 traces the life of a packet through APIP.
1 ¿e sender sends a packet with an accountability address identifying its accountability
delegate. If a return address is needed, it can be encrypted or otherwise masked.
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Delegate
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5Veri er

Figure 5.2: APIP Overview.¿e life of a packet in APIP.

2 ¿e sender “briefs” its accountability delegate about the packet it just sent.
3 A veri�er (any on-path router or the receiver) can con�rm with the accountability delegate

that the packet is a valid packet from one of the delegate’s clients. Packets that are not vouched
for are dropped.

4 If the receiver determines that packets are part of a malicious �ow, it uses the accountability
address to report the �ow to the accountability delegate, which stops verifying (e�ectively
blocking) the �ow and can pursue a longer term administrative or legal solution.

5 ¿e receiver uses the return address in the request as the destination address in the response.
It is useful to identify the key di�erences between APIP and the AIP and Tor protocols discussed

in Section 5.3. Delegated accountability o�ers two key bene�ts over AIP. First, it dramatically
improves sender privacy: only the accountability delegate, not the whole world, knows who sent
a packet. Second, it o�ers a more reliable way of dealing with malicious �ows compared to a
smart NIC. ¿ird, it o�ers a clearer path to long-term resolution to bad behavior. For example, the
delegate can contact the well-intentioned owner of a misbehaving host out-of-band (e.g., requiring
them to run anti-virus tools). While Tor provides stronger privacy properties than APIP, by simply
changing how source addresses are treated, APIP can provide sender privacy with much lower
overhead since the return address can be hidden from the network. Techniques for doing so
(Section 5.6) are lightweight enough to be viable options for “default on” use.

5.5 Delegating Accountability

¿is section describes how accountability can be delegated. We will assume delegates can be trusted,
e.g., their role is played by a reputable commercial company or source domain. We discuss the
problem of rogue delegates in Section 5.7.1. APIP de�nes four aspects of delegate operation: the
form of the address used to reach a delegate plus the three operations all delegates must support —
the delegate “interface,” so to speak. Delegates expose one operation to their clients:

brief(packet, clientID): Whenever a host sends a packet, it must “brief ” its delegate—if
the delegate is to vouch for the packet on behalf of the sender, it needs to know which
packets its clients actually sent.
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Acct: Symantec
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Dest: YouTube

(a) Without SIDs.

Symantec
Clients

Acct: Symantec:SID2

...

Dest: YouTube

(b) Per-host SIDs.

Figure 5.3: Flow Granularity. Adding SIDs to accountability addresses for �ow di�erentiation.

To the outside world, accountability delegates o�er two operations, borrowed largely from AIP:

verify(packet): Anyone in the network can challenge a packet; its accountability delegate
responds a�rmatively if the packet was sent by a valid client and the �ow has not been
reported as malicious.

shuto�(packet): Given an attack packet, the victim can report the packet to the account-
ability delegate; in response, the delegate stops verifying (blocks) the �ow in question and
pursues a long term solution with the sender.

We now discuss options for constructing the accountability address and for implementing the
delegate interface.

5.5.1 Accountability Addresses

Accountability addresses serve two related functions. First, the address is used to send veri�cation
requests and shuto�s to an accountability delegate. ¿e NID:HID portion of the address is used to
direct messages to the delegate server. Second, routers o en need to identify �ows, e.g., for tra�c
engineering (TE) or monitoring purposes, and today source addresses are o en part of the �ow ID.
¿e granularity of this ID is even more important in APIP since tra�c is veri�ed (and blocked) per
�ow. In this section, we discuss the implications of replacing source addresses with accountability
addresses for �ow identi�cation.
Creating Flow IDs Routers construct �ow IDs using information available in the network and
transport headers. However, in APIP, if an accountability address merely points to a delegate,
packets from all clients of a particular delegate will be indistinguishable, robbing routers of the
ability to distinguish �ows at a �ner granularity than delegate↔destination (Figure 5.3a). ¿is may
be too coarse-grained, especially since the �ow ID is used for dropping packets from malicious
�ows. In e�ect, every �ow that shares a delegate with a malicious �ow will share its fate. (TE tends
to work with coarser-grained �ows, so destination addresses alone may be su�ciently granular.)
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Figure 5.4: Brie�ng Techniques

¿esimplest way to support �ner-grain �ow IDs is to include the delegate’s SID in the calculation,
similar to the way port numbers are used today. For example, delegates could assign a group of
SIDs to each client source domain, which it can use to de�ne network-level �ows as it sees �t (see
below). Accountability delegates with many clients would require a large pool of SIDs to achieve
�ne granularity (e.g., at the host or TCP �ow level). If the SID is not su�cient, it is possible to add
a separate �ow ID �eld to the packet header to improve granularity. In our discussion, we will use
the term �ow ID to refer to both the SID only and SID plus dedicated �eld approaches.

Controlling Flow Granularity How the �ow ID is assigned a�ects both privacy and the amount
of collateral damage caused when an aggregate �ow containing a malicious sender is blocked. At
one extreme, a delegate could use a single �ow ID for all its customers, which provides the biggest
possible anonymity set, but may result in a lot of legitimate tra�c being dropped if any client
sends malicious tra�c. At the other extreme, assigning senders unique �ow IDs (Figure 5.3b), or a
separate �ow ID per TCP �ow, allows �ne grain �ltering, but allows sender/TCP �ow linkability.
¿e solution we propose is for delegates to assign each client a pool of �ow IDs which it can assign
to packets based on internal policies. Delegates check that clients are using �ow IDs assigned to
them as part of the veri�cation process (Section 5.5.3).

Source Domain Accountability Address Management An interesting alternative to senders picking
a �ow ID for each packet (within boundaries set by their delegate) is to have �ow IDs assigned at
the level of the source domain. For example, individual hosts could send packets with a traditional
source address. If a packet leaves the source domain, the gateway routers replace it with an
accountability address and hide the return address (like a NAT; see Section 5.6). ¿is approach
is especially attractive for source domains that act as the accountability delegate for their hosts
(Section 5.7.4). Centralized management simpli�es managing the pool of �ow IDs, enforcing
policies, and incremental deployment. ¿e drawback is that individual users lose control over
sender privacy.
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5.5.2 Brief()

Accountability delegates need to know which packets their clients have sent if they are to vouch for
them when challenged with a verify(). We consider two approaches in this section. Accountability
delegates can choose any method, possibly on a per-client basis.

Fingerprint Collection. ¿e simplest solution is for senders to proactively send their delegates
�ngerprints of the packets they send (Figure 5.4a). ¿e delegate stores the �ngerprints (e.g., for 30
seconds), and when it receives a verify(), it searches for the �ngerprint and returns VERIFIED if it
�nds it. For reasons explained in Section 5.5.3, a packet’s �ngerprint is actually more than just a
simple hash:

F(P) = H (KSDS ∣∣ Pheader ∣∣ H(Pbody))

Here H is a cryptographically secure hash function and KSDS is a symmetric key established when
sender S signed up for service with delegateDS . It is included in the �ngerprint to prevent observers
from linking P to F(P). Each brief includes a client ID, a �ngerprint, and a message authentication
code (MAC):

Sender transmits packet and brief:

S → R ∶ P
S → DS ∶ brief(P) = clientID ∣∣ F(P)

∣∣MACKSDS
(clientID ∣∣ F(P))

To reduce delegate storage requirements and network overhead, rather than sending full-
sized �ngerprints, hosts can instead periodically provide their delegate with a bloom �lter of the
�ngerprints of all packets sent since the last brief. Accountability delegates keep the �lters received
in the last thirty seconds.

Note that in either case (�ngerprints or bloom �lters), the delegate can vouch for its clients’ pack-
ets without knowing anything about their contents. Finally, if gateway routers assign accountability
addresses, they can also take responsibility for brie�ng the delegate.
Bootstrapping Who vouches for briefs? ¿at is, how do senders get briefs to their delegates if the
packets carrying them cannot be veri�ed? Clients include a special “token” in brief packet headers
(e.g., as the SID in the destination address) proving to the delegate that the brief is from a valid
client. Since veri�cation requests include a copy of the unveri�ed packet’s header (see Section 5.5.3),
the delegate can see that both the accountability and destination addresses point at the delegate,
indicating the packet is a brief, cueing the delegate to check for the token. Delegates can use any
scheme to select tokens. One possibility is using a hash chain based on a shared secret. Each brief
uses the next hash in the chain, preventing replays. (¿is ensures the brief is from a valid client—we
discuss “brief-�ood” DoS attacks from malicious clients in Section 5.7.2.)

Recursive Veri�cation. ¿e alternative to �ngerprint collection is to have hosts store the �n-
gerprints of recently sent packets. When a delegate receives a verify(), the delegate forwards
the veri�cation packet to the host that sent it. ¿e host responds “yes” or “no” to the delegate,
which passes the response on to the original challenger (Figure 5.4b). In this case, brief() is a
NOP. Recursive veri�cation reduces network and storage overhead, but the catch is that in order
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to work, each veri�cation request must carry enough information for the delegate to map the
packet to a customer. ¿is impacts the �ow ID granularity (Section 5.5.1): when using recursive
veri�cation, delegate must ensure that no two clients share a �ow ID (or it must be willing to
forward a veri�cation to multiple clients).

5.5.3 Verify()

Verify() is nearly identical to AIP’s anti-spoo�ng challenge, the di�erence being that an AIP
challenge asks, “Is this packet’s source address spoofed?” whereas verify() asks, “Do you vouch
for this packet?” In AIP, �rst-hop routers periodically verify that packets purporting to be from
a particular host are not spoofed. Likewise, in APIP routers periodically verify that �ows are
using valid accountability delegates and have not been reported for misbehavior. Veri�ed �ows
are added to a whitelist whose entries expire at the end of each veri�cation interval (e.g., 30
seconds); if a �ow is still active, it is re-veri�ed. Consider a sender S, a receiver R, and a router
V (“veri�er”). If V receives a packet P from S to R and the �ow S → R is not in the whitelist, V
sends a veri�cation packet to S’s accountability delegate, DS (identi�ed in the packet). To avoid
bu�ering unveri�ed packets, V can drop P and send an error message notifying S that P was
dropped pending veri�cation.

¿e veri�cation packet includes P’s �ngerprint plus a MAC computed with a secret key known
only to V . DS now checks three things: (1) it has received a brief from S containing F(P), (2) the
accountability address in P is using an SID assigned to S, and (3) transmission from S to R has
not been blocked via a shuto� (Section 5.5.4). If everything checks out, DS returns a copy of the
veri�cation packet signed with its private key to V , which adds S → R to its whitelist. ¿e protocol,
below, shows both �ngerprint collection (›) and recursive veri�cation (˛), though only one or
the other would be used in practice. (KV is a secret known only to V ; K+

DS
/K−

DS
is the delegate’s

public/private keypair; KSDS is the symmetric key shared by S and DS .)

Sender transmits packet and brief:

S → R ∶ P
› S → DS ∶ brief(P)

Veri�er sends error to sender and veri�cation to delegate:

V → S ∶ DROPPED (VERIFYING) ∣∣ F(P)
V → DS ∶ verify(P) = Pheader ∣∣ H(Pbody)

∣∣MACKV (Pheader ∣∣ H(Pbody))
Delegate veri�es packet and responds:

˛ DS → S ∶ {verify(P)}KSDS

˛ S → DS ∶ {VERIFIED ∣∣ verify(P)}KSDS

DS → V ∶ {VERIFIED ∣∣ verify(P) ∣∣ K+

DS
}K−DS

V ∶ add �ow entry to whitelist

¿ere are three points worth noting about this protocol. First, D returns the original veri�cation
packet so V does not have to keep state about pending veri�cations. V uses the MAC to ensure
that it originated the veri�cation request, preventing attackers from �lling V ’s whitelist with bogus
entries by sending it veri�cations it never asked for.
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Second, the delegate needs to know the packet’s destination address (R) so it can check if tra�c
S → R has been shut o�. Since briefs only contain �ngerprints, the delegate does not already have
this information, so the veri�cation request includes a copy of P’s header. It also includes a hash of
the body so the delegate can �nish computing the �ngerprint of packet being veri�ed to check that
it matches a brief in its cache.

¿ird, the last line in the protocol adds the �ow to the white list, identi�ed by its accountability
address, destination address, and �ow ID, as described in Section 5.5.1.

ISP Participation. ¿ough anyone can verify a packet, APIP is most e�ective when routers
closest to the source perform veri�cation. An ISP that suspects a customer/peer might not be
properly verifying its tra�c can apply business pressure or possibly dissolve peering relationships
if it �nds an inordinate amount of unveri�ed tra�c. Another concern is that domains might verify
tra�c with a long veri�cation interval (that is, a er verifying a packet from a �ow, the same �ow is
not veri�ed again for an extended period of time). ¿is allows malicious �ows to do damage even if
the �ow’s delegate receives a shuto�() since the �ow will not be blocked until the next veri�cation.
¿e impact of long veri�cation intervals could be mitigated if transit networks also verify tra�c
(see Section 5.8.1 for expected time-to-shuto�); a er a shuto�(), the �lter moves toward the sender
as closer routers re-verify the �ow. Also, even if routers are slow to react, APIP still facilitates a
long-term �x eventually.

5.5.4 Shuto�()

Today, when hosts or routers identify a malicious �ow, they can locally �lter packets and work with
neighboring ISPs to stop tra�c. In APIP, they can also send a shuto�() request to the attacker’s
delegate. ¿is is particularly useful for receivers, who should have the �nal say as to whether a �ow
is wanted or not. ¿e protocol di�ers from AIP’s shuto� protocol in two important ways. First,
shuto�s are directed to accountability delegates, not to senders. Second a delegate can not only
block the o�ending �ow, but it can also pursue a long-term �x. ¿e shuto�() protocol is shown
below (between receiver R and S’s delegate DS regarding packet P from sender S):

Sender transmits packet and brief:

S → R ∶ P
S → DS ∶ brief(P)
Receiver sends shuto�:

R → DS ∶ shuto�(P) = {Pheader ∣∣ H(Pbody)
∣∣ duration ∣∣ K+

R}K−R
Sender’s delegate veri�es shuto� and takes action:

DS ∶ check H(K+

R) == dest(Pheader)
DS ∶ block o�ending �ow for duration sec
Receivers can always shut o� tra�c directed at them. When the delegate receives the shuto�(),

it checks that the shuto�() was signed by the private key corresponding to the recipient of the
packet in question (so the shuto�() contains both the victim’s public key and the original packet’s
header; the delegate compares the hash of the public key to the packet’s destination address). If the
veri�er is a router and the shuto�() is signed by an ISP’s key, it might also be honored, but perhaps
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Adversary End-to-end Encryption Address Translation

Source Domain Source domain always knows a packet’s
sender.

Source domain always knows a packet’s
sender.

Observers in
Source Domain

Other source domain customers. ¿e sender. ¿e sender’s address is
observable until the packet reaches the
border router where NAT is performed.

Transit Networks
Starts as source domain’s customers and
grows the farther the packet travels. By
the time it reaches the core, it could have
come from anywhere.

Source domain’s customers.

Receiver
¿e sender. ¿e receiver decrypts the
return address, which is the sender’s
address. If the sender is concerned with
anonymity from the receiver, end-to-end
encryption is not a viable option.

Source domain’s customers.

Table 5.2: APIP Privacy. Comparison of sender anonymity set, as seen by di�erent adversaries, for end-to-
end encryption and NAT.

only with manual intervention—if a reputable ISP says one of your clients is attacking its network,
chances are you should listen. A er verifying a shuto�(), the attacker’s delegate responds in two
ways.

Short-term �x: To provide the victim immediate relief, the delegate blocks the o�ending �ow
by ceasing to verify packets from the attacker to the victim. Routers only save �ow veri�cations
in their whitelists temporarily; when a router on the path from S to R next tries to verify the
attack �ow, the delegate responds DROP_FLOW. ¿is means the attack could last up to a router’s
veri�cation interval—we discuss expected shuto� time in Section 5.8.1. If delegates work with ISPs,
response time could be shortened by pushing veri�cation revocations from delegates to routers.
Alternatively, if we assume widespread shuto� support in NICs, delegates could send shuto�s to
directly to attackers, as in AIP.

Long-term �x: Since clients sign contracts with their delegates, a delegate can contact the
owner of misbehaving hosts out-of-band. Since most unwanted tra�c comes from botnets of
compromised hosts with well-intentioned owners [143], the owner will generally �x the problem, at
which point the delegate can unblock �ows from the host. If a client refuses to comply, the delegate
can terminate service or report him to the authorities.

5.6 Masking Return Addresses

APIP separates accountability from other source address roles, allowing senders to hide the return
address from observers in the network. APIP does not de�ne any particular privacy mechanism,
but rather enables various lightweight, “always-on” strategies for increasing the default level of
privacy for all tra�c without weakening accountability. We o�er two examples: end-to-end return
address encryption and network address translation. Since our focus is sender-�ow unlinkability,
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our primary concern is the size of the sender anonymity set from the perspective of four possible
adversaries: the source domain, observers in the source domain, transit networks, and the receiver
(Table 5.2).

End-to-end Encryption. Since the return address is used only by the receiver and not by routers,
a simple idea is to encrypt it end-to-end (e.g., using IKE [127], à la IPsec); now only the destination
and accountability addresses are visible in the network. We imagine two variants: one in which
return address encryption is a network layer standard and can be performed end-to-end or gateway-
to-gateway and one in which the return address is moved to a higher layer (e.g., transport or session
layer).

Of course, though the return address is encrypted in the forward direction, it will be plainly
visible as the destination address in responses; determined attackers may be able to link the
outbound and inbound tra�c (e.g., with timing analysis). Still, even this simple strategy o�ers
increased privacy against passive observers, e.g., reviewing logs from a core ISP.

Network Address Translation. Encrypting the return address end-to-end hides it from the
network, but not from the destination. For privacy from the network and the recipient, edge
ISPs’ border routers could perform address translation on outbound packets’ return addresses by
changing NID:HID:SID to NID:HID’:SID’. (¿is can be done deterministically to avoid keeping
large translation tables [191].) Note that in contrast to the encryption option, response packets sent
by the destination will not reveal the identity of the original sender (in the destination address).
¿e downside is that, in contrast to encrypted return addresses, the anonymity set shrinks closer
to the source.

Today, increased use of NAT might be a controversial proposition, but cleaner thinking about
source addresses mitigates some of the chief arguments against it. For example, in 2006 the entire
nation of Qatar was banned from Wikipedia when one user vandalized an article because the
country’s sole ISP uses a NAT with one external IP address [32]; in APIP, all hosts could share
one external return address while still being held individually accountable via the accountability
address.

Second, NATs are traditionally deployed for address space separation—the privacy they provide
is a side e�ect [216]. ¿is is known to cause problems for servers or P2P applications. In contrast,
we suggest NATing for privacy, which can be done selectively for outgoing connections. Incoming
connections are not a�ected, so servers, for example, can publish their internal address to DNS and
receive incoming connections without any kind of hole punching. Of course, NATing for incoming
connections also has security bene�ts, but this is an orthogonal issue.

Reducing Overhead Not all packets need a return address. For connection oriented tra�c, the
return address needs to be sent to the destination only once during the establishment of the
connection (and also when a mobile device switches networks). ¿e destination can store it and
reuse it for later packets. Doing so (1) ameliorates the header overhead introduced by splitting
accountability and return addresses in the �rst place and (2) allows NATs to modify many fewer
packets.

Beyond the First Hop No matter how far a packet travels, the sender anonymity set is still just
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the sender’s source domain. ¿ough this may be su�cient for most senders, the NAT approach
can be extended by performing address translation at more border routers. ¿ough core ISPs are
unlikely to do this, if the �rst 2–3 domains in the path do, a packet’s sender anonymity set grows
signi�cantly before reaching the core (and ultimately its destination).

5.7 In the Real World

5.7.1 Holding Delegates Accountable

Delegates have three responsibilities: protecting the privacy of their clients, verifying packets with
�ngerprints that match those sent by valid clients, and dropping invalid packets. We brie�y discuss
how malicious or compromised delegates can either harm their clients or allow their clients to
harm others.
(1) Releasing private information about clients. Delegates can learn a lot about who their clients
communicate with, information they could use for their own bene�t or reveal to a third party.
Upon discovering a leak, the client can terminate service, �nd a new delegate, and potentially
pursue legal action for breach of contract. Note that delegates only see packet headers, not packet
contents. (An interesting direction for future work is exploring anonymous brie�ng schemes, e.g.,
based on cryptography or the use of an intermediary.)
(2) Failing to verify clients’ packets. Delegates can e�ectively perform a DoS attack on clients by
failing to verify their packets. Senders can detect this due to the excessive number of DROPPED
(VERIFYING) or DROPPED (VERIFICATION FAILED) error messages they will receive from veri-
�ers. Again, the client can then terminate service.
(3) Verifying invalid packets. Delegates can support attacks by verifying packets for which they did
not receive a brief from a client or which belong to �ows that have been shut o�. (Such a delegate
may be compromised or miscon�gured or may even be colluding with an attacker.) Victims can
detect such malicious behavior (e.g., by observing that their shuto� requests have been ignored).

Who Can be a Delegate? ¿e likelihood of any of the above problems occurring depends on
who can be a delegate. ¿e issue of delegate oversight is complex; given space constraints, we can
only hope to lay the groundwork for discussion and future work.

At one extreme, a single central authority could provide some form of oversight over delegates,
similar to how ICANN accredits TLDs; veri�ers would then only accept delegates on a whitelist
published by this authority. ¿is has the advantage that delegates can bemonitored andmisbehaving
delegates can be immediately removed from the whitelist, creating an incentive for responsible
delegate management. On the other hand, vetting all delegates is a huge burden for a single
authority and the role (and power) of a single organization in charge of such a critical function is
likely to raise political concerns.

¿e other extreme is a free-for-all: a host can pick any host to be its delegate. ¿is �exibility
opens the door for many deployment models. Besides commercial (third party) delegates, hosts can
be their own delegates (similar to AIP), use their source domain as their delegate (Section 5.7.4), or
form a peer-to-peer delegate network, in which hosts (or domains) vouch for one other. ¿e critical
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drawback of this �exibility is weaker protection against attacks—bots in a botnet, for example,
can vouch for one another’s packets regardless how many shuto�()s they receive. It will clearly be
harder to defend against such attacks compared to the case where there are only a limited number
of vetted delegates.

Naturally, a pragmatic solution likely falls somewhere in between these extremes. For example,
a set of well-known commercial “delegate authorities” could emerge, similar to today’s certi�cate
authority infrastructure, each publishing a delegate whitelist. Alternatively, various groups could
maintain delegate blacklists based on historical incidents, similar to today’s security companies’
publishing malware signatures. Individual veri�ers can then decide which delegates to accept, a
decision that could depend on many factors, including their position in the network (tier 1 versus
edge), local regulation, historical information, or the “trust domain” they belong to [240]. Many
other forms of semi-structured self regulation are possible.

5.7.2 Attacking APIP

We need to ensure that hosts cannot use APIP mechanisms to undermine APIP itself; two potential
such attacks are “veri�cation-�ooding” and “brief-�ooding.”

Veri�cation-Flooding. Attackers could attempt to overwhelm an accountability delegate with
bogus veri�cation requests—rendering it incapable of verifying honest hosts’ packets—by sending
a large number of dummy packets with accountability addresses pointing at the victim delegate.
To these bogus veri�cations, the delegate could respond DROP_HOST (as opposed to DROP_FLOW).
Source domains should track the number of DROP_HOSTs their customers generate, taking action
if it is too high.

Brief-Flooding. Similar to veri�cation �ooding, malicious clients could target their own delegate
by sending a �ood of briefs. ¿is attack is tricky, since it is hard to distinguish from an honest host
that happens to send lots of packets. Delegates can enact their own policies (e.g.: will accept 1 brief
per second; must use bloom �lters), which should be agreed upon when the client initially signs
up for service.

5.7.3 Bootstrapping Trust

We now relax our initial assumption that HIDs are self-certifying; doing so does not break APIP,
but requires us to do a small amount of extra work in brief(), verify(), and shuto�().

brief() Clients already encrypt brief()s using a symmetric key established when the client regis-
tered for service, so no change is required.

verify() Delegates use their private keys to sign veri�cation responses. If keys are not bound to
HIDs, a PKI can be used instead; veri�ers now need to check a delegate’s certi�cate before trusting
a response.
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Figure 5.5: Design 1: 1 Host sends packet using its own address as the source address. 2 ¿e ISP’s border
router saves a hash of the packet and 3 performs address translation on the source address. 4 If the packet
is malicious, the receiver sends a shuto�() to the border router, otherwise 5 it responds. 6 ¿e border
router translates the response’s destination address back to the original sender’s address.

Design 1 Design 2

Delegate Source domain ¿ird party
Brie�ng Fingerprint collect. Recursive ver.
Source Addr. Single �eld Separate �elds
Return Addr. NAT NAT or encrypt

Table 5.3: Comparison of APIP Deployments. Two possible instantiations of APIP.

shuto�() Victims sign shuto�() messages to convince the attacker’s delegate that the shuto�
truly came from the recipient of the o�ending packet. While we think it is reasonable to assume
delegates register keys with a PKI for signing verify()s, there are many more hosts than delegates,
so here we instead rely on veri�cation. Upon receiving a shuto�(), the attacker’s delegate sends a
veri�cation packet to the victim’s delegate to check that the shuto� really came from the original
packet’s recipient:

R → DR ∶ brief(shuto�(P))
DS → DR ∶ X = verify*(shuto�)
DR → DS ∶ {VERIFIED ∣∣ X}K−DS

When verifying a shuto�(), the delegate needs to look inside the shuto� packet, at the header of
the original packet that prompted the shuto�, and check that its destination (the victim) sent the
shuto�. (We denote verify() with this additional check verify*().)

5.7.4 Concrete Designs

APIP is an architecture that allows routers and destinations to identify an entity that is willing to
take responsibility for the packet, but properties of APIP depend on how it is deployed. For the
sake of concreteness, we now sketch two end-to-end instantiations of APIP with very di�erent
properties. Table 5.3 summarizes the two designs.

Design 1. In the �rst design (Figure 5.5), the source domain acts as the accountability delegate
for its hosts. Hosts are not aware of APIP and send packets with traditional source addresses. ¿e
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Figure 5.6: Design 2: 1 Host sends packet and 2 saves hash. 3 First-hop router sends verify() to the
packet’s accountability delegate, which 4 forwards the veri�cation to the host. 5 Using the accountability
address, the receiver can send a shuto�(); otherwise 6 it responds using the return address.

gateway routers for the domain use address translation to mask the return address, turning the
source address into a combined accountability address and masked return address. ¿ey also
collect packet �ngerprints and respond to verify() and shuto�() requests. Gateway routers could
either collectively act as a distributed accountability delegate and keep briefs locally, or they could
periodically send briefs to a shared accountability server. ¿is �rst design could be viewed as a
variant of AIP, but implemented at the source domain level instead of individual senders.

¿is design o�ers a number of advantages. First, it is very e�cient: gateway routers already
naturally see all packets, eliminating the overhead of brie�ng a third party. Second, the source
domain can immediately block malicious �ows at the source in response to a shuto�, whereas
external delegates can typically only stop �ows indirectly. ¿ird, hosts do not need to be modi�ed.

Finally, this �rst design allows for incremental deployment of APIP over IP. Domains could
implement accountability and address translation, as described. Packets would need to be marked
to indicate whether the source domain supports APIP (e.g., by repurposing an ECN bit). Since
both return tra�c and verify()s/shuto�()s would arrive at the domain’s border routers, verify()
and shuto�() would each be assigned a new IP protocol number so the border router knows what
to do with the packet. Since IP addresses are not cryptographic, external keys would have to be
used to ensure the integrity of the verify() and shuto�() operations, as described in Section 5.7.3.

Design 2. ¿e second design (Figure 5.6) uses a commercial third party that o�ers accountability
delegation as a service (perhaps as part of a bundle with antivirus or �rewall so ware). In this
design, senders insert both an accountability address and a return address in the packet; the return
address can be masked either with encryption or a NAT. Since the delegate is o�-site, recursive
veri�cation is attractive: rather than regularly sending briefs, hosts save packet hashes and the
delegate challenges clients when it itself is challenged.

One advantage of this solution is that it allows companies, universities, or small domains to
avoid the hassle of managing delegate servers themselves by outsourcing delegation. Another
advantage is that it is harder for observers in the network to determine what source domain the
sender belongs to. ¿e drawback is that there is more overhead than in the �rst design.
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Figure 5.7: Storage Overhead [brief()]. Brief cache
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Figure 5.8: Bandwidth Overhead [brief()]. Band-
width required for briefs in our trace.

5.8 Evaluation

¿eprimary questionwe consider in the section is: “is delegated accountability technically feasible?”
Using a trace of NetFlow data from the border routers of a mid-sized university, we explore the
costs of brief() and verify() and the e�cacy of shuto�(). ¿e �ve minute trace was taken on June
18, 2013 at noon and contains ten million �ows. We then present a short privacy analysis.

5.8.1 Delegated Accountability

Brief() Brie�ng the delegate incurs computational overhead at the sender, storage overhead at
the delegate, and bandwidth overhead in the network. In Section 5.5.2 we suggested that senders
could report their tra�c to their delegates by sending a list of packet �ngerprints or by sending a
bloom �lter of recent �ngerprints.

Computational Overhead Producing a packet �ngerprint requires computing two hashes; we
assume that computing the MAC of the �ngerprint, in the worst case, costs one additional hash.
Commodity CPUs can compute in the neighborhood of 5–20MH/s [19], which translates to 0.9–3.4
Gbps (conservatively assuming 64B packets). ¿is is more than reasonable for endhosts; for servers
sending large volumes of tra�c, we expect data centers could outsource brie�ng to an in-path
appliance built with ASICs—current ASIC-based bitcoin miners perform 5–3,500 GH/s, translating
to 0.9–600 Tbps.

Storage Overhead Next we consider the storage requirements at the delegate for saving briefs.
Briefs are periodically purged from the cache; if a verify() arrives for a legitimate packet whose
brief has been deleted, the sender must retransmit the packet. Assuming a single delegate serves
all hosts in our trace, the �rst two series in Figure 5.7 show the size of the brief cache for di�erent
expiration intervals assuming the delegate stores individual �ngerprints, each a 20 byte SHA-1
hash. ¿e remaining series consider the space required if, instead of sending a �ngerprint per

113



0 20 40 60 80 100 120
Verification Interval (sec)

0

50

100

150

200

250

300

350

400

450

T
h
o
u
sa

n
d
 V

e
ri

fi
e
s 

p
e
r 

S
e
co

n
d

Maximum
Average

Figure 5.9: CPU Overhead [verify()]. Veri�cation
rate at delegate vs. �ow veri�cation interval.
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Figure 5.10: Storage Overhead [verify()]. Size of ver-
i�ed �ow whitelist vs. �ow veri�cation interval.

packet, hosts send a bloom �lter every second for each active �ow1. We assume that hosts size each
�lter appropriately based on how many packets from the �ow were sent during the past second. If
briefs expire every n seconds, we report brief cache sizes based on both the average and maximum
number of packets seen across n-second bins in our trace.
Bandwidth Overhead Figure 5.8 shows the bandwidth required for the same brie�ng schemes
discussed above. Sending �ngerprints consumes an additional 2.5% of the original tra�c volume,
which was just under 10 Gbps; the bloom �lter schemes consume 0.25%–0.5%. ¿e bloom �lter
results assume a simple update scheme: every second, each host sends a bloom �lter for packets
sent in each �ow1 during the last 30 seconds; when the delegate gets a new �lter for an existing �ow,
it replaces the old �lter (using a bloom �lter alternative that supports resizing is interesting future
work). Note brie�ng overhead can be avoided entirely if (1) the ISP is the accountability delegate,
so border routers save hashes directly, or (2) delegates use recursive veri�cation (Section 5.5.2).

Verify() ¿emagnitude of veri�cation overhead is determined by the veri�cation interval and
�ow granularity (fewer �ows means fewer veri�cations; in our analysis, each “�ow” is a TCP �ow,
so our numbers are an upper bound). ¿ere is a tradeo� between long and short veri�cation
intervals. ¿e longer the interval, the more whitelist space is required at routers to remember
which �ows have been veri�ed and the longer a malicious sender could transmit before being shut
o�. On the other hand, shorter intervals mean more work (more verify()s) for the delegate.
Computational Overhead Figure 5.9 shows how many verify()s per second an accountability dele-
gate serving all the hosts in our trace would see at various veri�cation intervals. A key observation
here is that a er 10 seconds, increasing the veri�cation interval does not signi�cantly decrease
veri�cation rate at the delegate since most �ows are short. ¿is knee suggests that 10 seconds might
make a good interval for use in practice.

In our trace, a veri�cation interval of 10 seconds generates amaximum of 78,000 verify()s per

1In practice, we think hosts should send one bloom �lter for all tra�c each second, not one per �ow. Unfortunately,
for privacy reasons, our trace did not include local addresses, so we could not merge �ows originating from the same
sender.
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second, each causing a lookup in a table with 1.5 million entries (assuming delegates save briefs for
30 seconds) and one signature generation at the delegate. We think these numbers are reasonable
and leave enough headroom to comfortably handle larger networks—CuckooFilter [242] achieves
more than 180,000 lookups per second in a table with one billion entries and the Ed25519 signature
system [53] can perform 109,000 signatures per second on a 2010 quad-core 2.4GHzWestmere
CPU.
Storage Overhead As routers verify �ows, they keep a whitelist of veri�ed �ows so that every single
packet need not be veri�ed. Whitelist entries expire at the end of each veri�cation interval, at
which point the �ow is re-veri�ed. We use our trace to estimate the size of this whitelist.

To account for network architectures with addresses signi�cantly larger than IP’s, we assume
each address is 60 bytes—20 bytes each for the NID, HID, and SID. (Many research e�orts explore
self-certifying IDs [40, 47, 125, 171] which are typically the hashes of a name or public key; we choose
20 bytes since SHA-1 produces 20 byte digests.) Entries identify �ows at a host-host granularity, so
each one is 120 bytes (two 60 byte addresses).

Figure 5.10 shows the size of the whitelist as we vary the veri�cation interval. For a given
veri�cation interval, we group the �ows in our trace into bins the size of that interval; �ows belong
to a bin if they were active during that time period (so a �ow could belong to multiple bins). ¿e
�gure reports the whitelist size based on both the average number of �ows across bins as well as the
maximum seen in any bin. A 10 second interval requires a maximum of 94 MB of whitelist space.

Shuto�() A er receiving a shuto�(), a delegate blocks malicious �ows by ceasing to verify them.
¿e next time a router on the path from the attacker to the victim veri�es the �ow, the delegate
returns DROP_FLOW and the router blocks the �ow. How quickly this happens a er a shuto�()
depends on how many on-path routers perform veri�cation and how o en they verify each �ow.
Figure 5.11 shows the expected delay before a shuto� takes e�ect for di�erent veri�cation intervals
as a function of the number of participating routers.
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5.8.2 Privacy

Howmuch privacy does APIP buy? If a sender uses its source domain as a delegate, this depends on
the size of that domain. Raghavan et. al. �nd that, if ISPs were to aggregate pre�xes geographically,
over half of the pre�xes advertised by many popular last-mile ISPs would include more than 10
million IPs [191].

If a sender uses a third party delegate, the anonymity set grows the farther a packet travels from
the source domain. To see howmuch, we use Route Views [27] data from January 1, 2014 to roughly
estimate AS “fanout.” For each AS, we track how many customer networks sit beneath it in the AS
hierarchy. (To be conservative, we only count an AS as a customer if it originates a pre�x. Transit
networks with no hosts do not contribute to an anonymity set.) For each BGP announcement, we
add the origin AS to its �rst- and second-hop providers’ customer sets. Figure 5.12 shows a CDF of
�rst- and second-hop anonymity set sizes. Notably, 50% of ASes originating pre�xes have at least
180 �rst-hop “siblings” and 90% have over 900 second-hop siblings. ¿ough drawing conclusions
about AS topology based on BGP announcements is imprecise, these ballpark �gures give an idea
of the anonymity bene�ts of delegated accountability.

5.9 RelatedWork

Privacy. Various techniques exist for hiding network source addresses, including crowds [193],
mixes [75], and onion routing [192]. Real-world implementations based on these ideas include
Anonymizer [4] and Tor [26, 96]. Liu et al. consider building onion routing into the network
architecture itself [157]. NDN [139] takes a more radical approach by eliminating source addresses
altogether; data �nds the sender by following “bread crumbs” le by the request. ¿e drawback to
all of these approaches is a complete lack of accountability; there is no easy way to link malicious
tra�c with senders.

Raghavan et. al. [191] describe ISPs o�ering NAT for privacy as a service but uses a single
source address. LAP [131] is similar to (but more secure than) our “NAT-at-every-hop” approach
but does not consider accountability.

Accountability. Techniques like ingress/egress �ltering [107, 148] aim to provide some degree of
accountability by reducing the prevalence of source address spoo�ng; more sophisticated variants
exist [98, 141, 185]. ¿is class of approaches has limitations we address: (1) source addresses are
only protected on a domain granularity, (2) �ltering by itself provides no “shuto�” mechanism for
misbehaving hosts who do not send spoofed packets, and (3) it is not compatible with schemes for
hiding return addresses for the sake of anonymity.

As described in Section 5.3.1, our verify() and shuto�() mechanisms borrow heavily from
AIP [40], which in turn based its mechanisms on ideas presented by Shaw [207] and in AITF [43].
By modifying these mechanisms to work with delegates, we make them privacy-preserving, enable
long-term resolution, and avoid relying on self-certifying IDs.

Accountability delegates are described in [52], but the protocol is costly and is not evaluated;
privacy receives only passing mention.
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Balancing Accountability and Privacy. ¿e idea of identify escrow is not new (e.g., [69]). In
particular, our notion of delegated accountability is similar in �avor to the contractual anonymity
described in RECAP [204], in which a service provider (e.g., an online forum) o�ers its users
anonymity which can be broken only if they violate a pre-arranged contract. ¿e key di�erence is
that RECAP provides contractual anonymity at the application layer while we balance anonymity
and accountability at the network layer, which poses unique constraints (like requiring source
addresses to be both routable and anonymizable).

¿e closest work to ours is Persona [160], a network architecture designed to provide both
anonymity and accountability. In Persona, routers re-encrypt source addresses at each hop to
provide privacy; to provide accountability, the authors argue that by simply requiring each router
to store all past encryption keys, a host under attack can ask the last-hop router to decrypt the
packet’s source address, revealing the second-to-last-hop router. ¿is victim then contacts this
router, repeating the process until the original sender is revealed. However, we argue that Persona
does not really provide more accountability than the current Internet, but rather maintains the
same level of accountability despite the improved anonymity. First, Persona does not enforce any
anti-spoo�ng mechanism, so even if an attack victim asks the network to decrypt a source address,
that address may be useless. Second, even if the initial source address is not spoofed, the recursive
decryption procedure is less e�cient than our approach, which just requires a communication
with a single delegate.

Addressing. ¿e use of addresses that consist of separate network, host and socket IDs, creating
separate identi�ers and locators, has been widely proposed [105, 142, 168]. [65, 71] discuss the
meaning of source addresses, though without our focus on privacy and accountability.

5.10 Conclusion

¿is chapter attempts to show that a balance between accountability and privacy in the network is
possible. By decoupling source addresses’ roles as accountability addresses and return addresses,
APIP strikes a balance between the two seemingly incompatible goals. Delegated accountability
allows routers to verify that each packet they forward is vouched for and allows attack victims
to report the abuse while at the same time permitting senders to hide their return addresses.
Furthermore, the changes to traditional thinking about source addresses required to implement
APIP are not radical; though more exploration is clearly required, we think the ideas presented
here could be applied to the current Internet.
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Chapter 6 Evaluating Network Layer
Privacy Techniques

In Chapter 5 we introduced APIP, a network architecture that o�ers both better accountability and
better privacy than IP does. And APIP is not the only proposal to make the network layer more
private: a number of other alternative architectures promise improved privacy [77, 131, 139, 157,
158, 201, 217]. Naturally, we would like to be able to evaluate and compare these techniques, and
so there are also many metrics for measuring “how private” a network architecture or protocol
is. Unfortunately, in an e�ort to yield precise results, many of these analyses require speci�c
information about the exact topology and state of the network; this makes these metrics hard to
use and means that their results do not generalize well. Instead, in this chapter we consider what
we call the architectural privacy evaluation problem, which speci�cally focuses on measuring
how private an architecture itself is, not a speci�c deployment of that architecture. We de�ne a
new privacy metric that does not depend on topology or tra�c patterns and use it to evaluate
architectures from practice and from research. We then explore a hypothetical “build-your-own”
privacy service ISPs could o�er to plug missing holes uncovered in our analysis.

6.1 Introduction

Online privacy is a critical issue today [23, 66, 68, 128, 182] and an important part of privacy is the
ability to exchange messages across the network with some degree of anonymity—this is the third
user goal (Keep Activity Private). While systems like Tor o�er some degree of anonymity today at the
expense of performance, researchers continue to explore how to update the network itself to protect
users in the default case. In Chapter 5 we introduced APIP, a network architecture that o�ers both
better accountability and better privacy than IP does. And APIP is not the only proposal to make
the network layer more private: a number of other alternative architectures promise improved
privacy [77, 131, 139, 157, 158, 201, 217].

Naturally, we would like to be able to evaluate and compare these techniques, and so there are
also manymetrics for measuring “how private” a network architecture or protocol is. Unfortunately,
(1) these privacy metrics tend to depend on speci�c topology and tra�c information that is hard
to collect (like complete network topologies and instantaneous tra�c patterns), and (2) even if you
did collect it, the result would be very speci�c to that particular setting and would not generalize
well. ¿is means that, while these metrics do a good job characterizing speci�c scenarios, they are
not well suited to evaluating architectures at a high level.
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We focus on this latter problem, which we call the architectural privacy evaluation problem:
how do you make statements like “architecture 1 is more private than architecture 2” without the
context of a particular topology or tra�c pattern? Feedback at this level is important for network
architects designing a new architecture or anonymity system—fundamental privacy problems in the
architecture itself, like requiring a cryptographically veri�able source address in every packet [40],
cannot easily be undone in the deployment or use stages. It is also important to users in actual
operational networks, because, although there is a topology and a tra�c matrix, users typically do
not know it.

We propose a new measure of privacy, the anonymity set radius, based on how many hops
between the sender (or receiver) and the adversary’s vantage points are unknown to the adversary.
¿is marks o� a portion of the (unspeci�ed) topology as the anonymity set, and the “radius” of this
area serves as a proxy for its size (which we cannot report without information about a particular
deployment). We use this idea to evaluate a handful of architectures from practice and from
research. Finally, we imagine a new highly customizable, paid anonymity service ISPs could o�er
to help meet user needs not covered by today’s anonymity systems. Our primary contributions are:
(1)Amethodology for evaluating theprivacy of an architecture outside the context of a particu-
lar deployment (Section 6.4).We de�ne a newmetric, the anonymity set radius, for characterizing
an anonymity set without knowing details like topology or how many senders are in the network.
(2) An analysis of existing architectures in terms of the privacy they provide and at what cost
(Section 6.4.2). In particular, we note conspicuous holes in the privacy vs. cost design space.
(3) ¿e high-level design of a “build-your-own” privacy service ISPs could o�er (Section 6.5).
We describe how ISPs could o�er anonymity as a paid service and let users customize exactly the
privacy guarantees they need on-demand. We show how this service could �ll the gaps we �nd in
the design space in Section 6.4.2.

6.2 Network Layer Privacy

We are interested in the following privacy evaluation problem: given a network protocol, archi-
tecture, or system (e.g., “IP with NATs” or “Tor”), evaluate it in terms of (1) privacy (how well
does it work?) and (2) cost (what overheads are incurred to achieve that privacy?). To help us be
more precise about the meanings of “evaluate,” “privacy,” and “cost,” we start by discussing network
privacy broadly.

A useful way to structure this discussion is walking through the work�ow a typical network
adversary would follow to break a user’s privacy. In this chapter, we focus on property 4 from
Figure III.4, Sender/Receiver Anonymity, which has three sub-properties: Sighting-Sender Unlinkability,
Sighting-Receiver Unlinkability, and Sighting-Flow Unlinkability. ¿is suggests that, at a high level, an
attacker must (somehow) do the following:

1. Construct per-sighting sender and receiver anonymity sets.¿e adversary uses informa-
tion from each sighting—like a source or destination address, or the topological location of
the sighting—to identify anonymity sets for the sender and receiver for that sighting (i.e., sets
of hosts who could have sent or received the packet). ¿e larger the anonymity set the better.
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2. Link multiple sightings to a single �ow.¿e adversary tries to group all sightings from the
same �ow (either di�erent sightings of the same packet—e.g., by matching identical payloads
even if the headers have changed—or di�erent packets in the same �ow—e.g., packets with
the same 5-tuple). Linking multiple sightings of one packet is important because di�erent
identity information might leak at di�erent vantage points; if the adversary can link the
sightings, it can combine these pieces of information. Likewise, di�erent packets from the
same �ow may carry di�erent identity information that could be combined.

3. Combine information from the individual sightings. Taking the intersection of all linkable
per-sighting sender and receiver anonymity sets helps the adversary narrow down who the
sender and receiver could be.

¿us, the evaluation techniques we propose focus on quantifying what the adversary learns
about the sender and receiver anonymity sets in some way. ¿is means we need a way to evaluate
both (1) how much the adversary learns about the anonymity sets from each sighting and (2) the
adversary’s ability to link sightings.

¿ere are already a number of proposed metrics for doing this. As we saw in Section III.3.2, an
obvious example is simply reporting the size of the anonymity set. More sophisticated versions of
this use probability or information theory to o�er more meaningful scores (for example, assign
each member of the anonymity set a “likelihood of being the sender” and take the entropy of
this distribution). Unfortunately, these approaches su�er from two problems: (1) the information
needed to compute a score is di�cult to collect in practice—set size requires knowing how many
hosts are in your network and assigning sender likelihoods requires very precise information
about the topology and current tra�c—and (2) even with the necessary information, each score is
speci�c to a particular topology and tra�c matrix; it is di�cult to use these metrics to evaluate a
architecture in general.

Let’s make this idea more concrete. Networks can be described at di�erent levels of detail, and
the level you pick has a big impact on how you measure its privacy properties. ¿e levels are, from
high-level to low-level:

1. Architecture:¿e design of an architecture impacts its privacy in ways that generalize across
multiple deployments. ¿e primary signal to consider at this level is Packet Contents; header
formats and forwarding semantics do not change with the topology. Topology comes into
play only when an architecture sends a packet away from the shortest path to confuse the
adversary. Likewise, Timing only enters this high-level picture if devices arti�cially delay
packets (Section III.1.2).

2. Deployed Network: By “deployed network,” we mean a concrete set of routers and hosts
arranged in a particular topology. Topology now includes a notion of how many hosts are
located in di�erent parts of the network, so the location of a vantage point could reveal
additional information not explicitly present in packet headers. Timing plays a slightly larger
role at this level as well, since simple transmission and queueing delay calculations based on
the topology can tell the adversary whether or not two sightings might be linked.

3. In-Use Network:When users are actually sending tra�c across the network, we call it “in
use.” At this level, the Timing signal becomes more important, because the presence of cross-
tra�c has a big impact on the adversary’s ability to link sightings to a packet or packets to a

121



A

packets are linkable

B C D
re-encrypt

Figure 6.1: Life of a Packet. If packet headers are modi�ed as a packet is forwarded, they might leak di�erent
information about the source and destination at each hop (represented here by A, B, C, and D). If they
payload is also re-encrypted, then sightings before and a er the re-encryption cannot be linked. Here, the
adversary can combine information A, B, and C, but not D.

�ow. If only one sender is active in the network, clearly nothing can provide them privacy.
¿e limitations we noted above about existing evaluation techniques boil down to this: those

techniques are designed to assess deployed or in-use networks. Although measuring privacy at the
deployed or in-use network level is more precise, the results are di�cult to obtain in practice and do
not generalize. Instead, we are interested in �lling in what is, to our knowledge, missing: a privacy
evaluation methodology at the architectural level. What are the properties of an architecture by
itself, without the context of a particular deployment? ¿is is useful for network architects in the
design phase and network operators in the deployment phase who want to understand the impact
of their design on privacy.

¿is means we are largely concerned with how the architecture operates on a packet rather
than how one sender’s tra�c interacts with another’s. Consider a packet moving through a network
from the perspective of privacy: the packet traverses a series of devices, some of which modify
its contents, timing, and path in an e�ort to hide the Packet Contents, Timing, and Topology signals
(examples include re-encrypting the payload or exposing a previously encrypted next-hop header).
In this chapter, we call these types of modi�cations privacy primitives; they were discussed in
detail in Section III.1.2 (techniques 4–10) and are summarized here in Table 6.1. ¿e primitives (1)
cause packets to leak di�erent information about the sender and receiver at di�erent points along
its path (represented abstractly as A, B, C, and D in Figure 6.1) and/or (2) prevent an adversary
from linking sightings of the packet in one part of the network from another. ¿ese points form
the boundaries of what we call linkable segments (there are two in the �gure)—the adversary knows
that all sightings within a linkable segment belong to the same packet, so the information leaked
by these sightings can be pooled.

6.3 Method 1: Share Count Analysis

Our �rst technique, share count analysis, draws inspiration from header space analysis (HSA) [146],
though the details are di�erent since our goal is not to verify properties of actual operational
networks but rather to quantitatively compare network architectures. Like HSA, we send test packets
through models of network devices and track how the headers change. Unlike HSA, we are not
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Primitive Description Costs Examples

Indirection Forward packet along a path other than
the default path to the destination. (E.g.,
send packet through a series of overlay
nodes.)

(1) Latency overhead due to path stretch.
(2) Bandwidth overhead for sending
packet on more links than necessary.

Tor [96]

Arti�cial Delay Gather a batch of packets, wait, and re-
lease them in a di�erent order.

(1) Latency overhead due to batching
and delay.

Mixes [75]

Dummy Tra�c Inject arti�cial cross-tra�c. (1) Bandwidth overhead for sending ex-
tra packets.

CSL [239]
HISP [199]

Mutate Payload Change packet contents to prevent link-
ingmultiple sightings of the same packet.
(E.g., re-encrypt the packet at each hop.)

(1) Encryption computation.
(2) Key management/distribution.

Tor [96]

Encrypt State Carry state in packet header individually
encrypted for each device. (E.g., source
routing with each entry encrypted for the
corresponding router, like how Tor builds
circuits.)

(1) Encryption computation.
(2) Key management/distribution.

Tor [96]
LAP [131]

Store State Store state on the devices that need it, not
in headers. (E.g., a NAT stores a packet’s
source address and removes it from the
packet itself.)

(1) Per-�ow storage.
(2) Per-packet access latency.
(3) Fate sharing: if state is lost, �ow is
lost.

NAT
NDN [139]

Multicast Omit some destination entirely. (E.g.,
omit destination and broadcast packet to
all hosts or include only destination do-
main and multicast to all hosts in that
domain.)

(1) Bandwidth overhead for sendingmul-
tiple copies of packet.
(2) Computation (each host needs to
check if it is the true destination for each
packet).

Anocast [36]
WAR [64]

Table 6.1: Privacy Primitives. General techniques for hiding input signals. Primitives in the top section
hide topology, those in the middle section hide timing, and the bottom group hide packet contents. Each
one incurs some kind of overhead. ¿ese ideas are used as building blocks to construct privacy-preserving
protocols. Note that scrambling packet contents does not directly hide communication state, but rather
prevents the adversary from putting together communication state learned at di�erent vantage points.

concerned with the actual bits in the header, but rather how much information they give away. We
represent this leaked information using share counts, which we explain in Section 6.3.1. First we
describe our models for the adversary, packets, and the network, and then we describe how we use
share counts to analyze an architecture.

6.3.1 Methodology

NetworkModel

Packets. To address diversity in header format, we make no assumptions about the contents or
formats of headers. Instead, we represent each packet as fourmeta-�elds: all of the header bits that
contribute to identifying (1) the sender, (2) the source network, (3) the destination, and (4) the �ow.
¿ese meta-�elds may overlap—for example, in IP, the source address both identi�es the sender
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Figure 6.2:Meta-�elds. Example showing how TCP/IP �elds map to meta-�elds.

and contributes to identifying the �ow. Before using our tool, a human expert must decide how to
map the bits in each architecture’s header to these four meta-�elds. (Figure 6.2 shows this mapping
for TCP/IP.)

In addition to the meta-�elds, each packet has a body, which, as noted above, we assume
is encrypted and so we treat as an opaque value used only for equality testing to link multiple
snapshots of the same packet together even if the headers have changed.

Finally, each packet carries a share count for each meta-�eld. A share count indicates how
many entities in the network could share the current value for that meta-�eld. For example, how
many senders share the same value for the Sender-ID? In IP, when a packet leaves the sender, its
Sender-ID share count is 1; when it leaves a NAT, the share count is the number of hosts in the
source network. We also include a � h share count, which tracks how many of a sender’s �ows
share the same Sender-ID (as opposed to how many senders). For instance, if a host is multihomed
and sends half of its tra�c on each link, the sender �ow share count is 1

2 .

Network Boxes. Wemodel a path through the network as a series of network boxes connected
by links. Boxes may change the values of some header �elds (and therefore change the values of
some meta-�elds and share counts) or of the body (e.g., a Tor relay re-encrypts it). Each box is
de�ned by two properties (which must be manually speci�ed for each architecture):

1. Does the box change anymeta-�elds and/or the body? We do not model actual values; each
�eld is represented as an integer, which is incremented if a box changes it.

2. What are the share counts for each meta-�eld a er a packet leaves the box?

Analysis Procedure

Share count analysis uses the model presented above by creating a path of network boxes, labelling
some links and boxes as vantage points, sending a symbolic packet along the path, and recording
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(N = num networks; H = num hosts; Hn = hosts per network; Fh = �ows per host)

Figure 6.3: Share Counts Example. Test packet travelling through a NAT and an anonymizer.

the share counts seen by the adversary. ¿e adversary learns something if a share count ever reaches
one. (Being able to model an adversary simply by placing vantage points on any set of links and
boxes gives us the �exibility to represent a variety of adversaries—we discuss this further below.)
Here we describe the details, presented in �ve steps.

(1) Generate paths. Since we do not currently take the physical location of a vantage point into
account, we test using a single path. ¿e base path is:

[sender]-[router]-[destination]

When we test an architecture or tool that requires specialized boxes, we add those boxes as needed.
For example, the test path for IP w/ NAT is:

[sender]-[nat]-[router]-[destination]

Depending on the adversary we want to model, we set certain links and boxes to be vantage points
(see Section 6.3.1).

(2) Forward test packet. Next we forward a test packet through the path, updating the meta-
�elds, body, and share counts at each box (Figure 6.3). At each vantage point, we save a snapshot of
the packet state.

(3) Group “linkable snapshots.” ¿e adversary uses the packet body to link packet snapshots
from di�erent vantage points. If a box changes the body, then, as far as the adversary knows,
snapshots from vantage points on either side of that box were generated by di�erent packets,
meaning the adversary cannot combine the information it learns from each set of snapshots
individually. Of course, if the adversary has a vantage point on a box that changes the body, then it
can link the snapshots. ¿e result of this step is one or more sets of linkable snapshots.

(4) Consolidate information from snapshots. For each set of linkable snapshots and for each
meta-�eld, select the snapshot with the minimum share count. Record this share count and the
corresponding meta-�eld value. For the Flow-ID share count and the sender �ow share count, we
instead record the maximum.
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¿is network info... ...narrows the anonymity set to... ...if the adversary knows

Source domain customers of source ISP list of ISP’s customers
Source domain a�liates of business/university employee/student roster
Source domain residents of neighborhood network address to location mapping
Destination domain customers of company/service X list of X’s customers
Destination domain people interested in topic Y advertising pro�les
Destination domain particular user of public site Z activity log (posts & timings) from Z

Table 6.2: External Information. Examples of external information an adversary could use to connect
packets to human users.

(5) Test what adversary learned. We can use the minimum share counts to test whether the
adversary achieved its goals. It was able to link the source network to the destination (G1) if:

(Source-Network-ID share count == 1) &&
(Destination-ID share count == 1)

Similarly, the adversary linked the sender to the destination (G2) if:

(Sender-ID share count == 1) &&
(Destination-ID share count == 1)

Metrics

Share count analysis allows us to evaluate architectures using multiple metrics, each involving a
run of the procedure described in Section 6.3.1. In this evaluation, we de�ne two speci�c goals for
the adversary:

(G1) Given a packet, link the human sender to the destination (“WHO”).We assume that the
adversary’s best shot at doing this is to learn the packet’s source network, which, combined
with some amount of external information (see Table 6.2), could yield a small set of human
individuals.

(G2) Given auser, construct a history of their online activity (“WHAT”). For this, the adversary
must link �ows to a common “sender ID” (e.g., an IP address). ¿e sender IDmay be opaque
in the sense that it does not identify a person; here it is only needed to link �ows from the
same (potentially unknown) person.

We start by asking whether four real-world adversaries can achieve G1 and G2:

1. Local Eavesdropper (e.g., someone sni�ng open Wi-Fi): We place a vantage point on the
link leaving the sender.

2. Global Surveillance (e.g., monitoring by a nation-state): We place a vantage point on every
router.

3. Source ISP (e.g., employer or school): We place a vantage point on the link leaving the sender.
We relax G1 and G2 to only check the Destination-ID share count, since the source ISP
already knows the sender and source network.
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1-G1 1-G2 2-G1 2-G2 3 4-G1 4-G2 5-G1 (6-G1) 5-G2 (6-G2) 7 8

IP ● ● ● ● ● ● ● 1 (3) 1 (3) 1 Fh
IP-NAT ● ● ● ○ ● ● ○ 1 (5) 1 (2) 1 Fh
IP-Tor ○ ○ ○ ○ ○ ○ ○ 3 (1) 3 (1) 1 Fh

APIP-ISP-NAT-Unique ● ● ● ● ● ● ● 1 (5) 1 (5) 1 Fh ⋅Hd
K

APIP-External-Encrypted-Shared ○ ○ ○ ○ ● ● ● ∞ (0) ∞ (0) H f 1
i3 ○ ○ ○ ○ ○ ○ ○ 1 (1) 1 (1) 1 Fh

(Fh = �ows per host; Hd = hosts per delegate; K = num �ow IDs; H f = hosts per �ow ID)

Table 6.3: Comparing Architectures with Share Counts. Overall comparison of representative combina-
tions of architectures and tools.

4. Destination (e.g., web server): We place a vantage point on the destination. We relax G1 and
G2 to only check the Source-Network-ID and Sender-ID share counts, since the destination
already knows its own identity.

Next, we consider arbitrary network adversaries by testing all combinations of vantage points and
asking:

5. What is the minimum number of vantage points needed to achieve G1? And G2?
6. How many di�erent combinations can achieve these minimums? (More possibilities means

more opportunities for the adversary to succeed.)
Finally, we check two adversary-independent metrics:

7. What is the maximum Flow-ID share count at seen at any box?
8. What is the maximum sender �ow share count seen at any box?

For privacy reasons, some architectures may give multiple TCP �ows the same Flow-ID. However,
this means that network boxes have coarser-grained handles for tra�c engineering and, worse,
that if an administrator wants to block a misbehaving �ow, other benign �ows will be blocked with
it. ¿erefore, the maximum Flow-ID share count (7) is a measure of collateral damage. If a single
host has multiple Flow-IDs, the maximum sender �ow share count (8) indicates how successfully
the adversary can reconstruct a user’s activity history.

Finally, note that the eight questions we list here are merely examples of the kinds of metrics
share count analysis supports; as we extend the model, we can ask more (and more sophisticated)
questions. As it stands, though, this list demonstrates the variety of information we can learn from
share counts.

6.3.2 Results

We implemented share count analysis and ran it on IP, APIP, and i3. We tested �ve variants of IP
(IP, IP w/ NAT, IP w/ Anonymizer, IP w/ Tor, and IP w/ NAT and Tor). We assume i3 is deployed as
an overlay where packets from endpoints to the i3 infrastructure expose the endpoint’s IP address
and that TLS is used between endpoints and the i3 rendezvous node, meaning the payload is
re-encrypted at the rendezvous server.

APIP packets carry two addresses: a return address (for replying to the sender) and an account-
ability address (which points to a third party delegate who �elds complaints about the packet). We
tested all eight combinations of the following three options: First, senders can “hide” their return
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address using (1) NAT or (2) encryption (the return address is encrypted with the payload, so
it is only accessible to the �nal destination). Second, the delegate could be run by (1) the source
ISP, meaning the accountability address gives away the sender’s source network, or (2) an external
third party. ¿ird, each APIP packet contains a �ow ID, which routers use to block malicious
�ows. Delegates assign each client either (1) a set of �ow IDs that are unique to it or (2) a set of
�ow IDs that are shared among multiple of the delegate’s clients.

In this section we summarize the results, which are labelled by question number (1–8) and goal
(G1 or G2) (see Section 6.3.1). For yes/no questions, ● = yes and ○ = no.

Comparing Architectures. To start, Table 6.3 presents the complete results for IP, IP w/ NAT, IP
w/ Tor, a weak and a strong variant of APIP, and i3.

First, we see that IP was not designed with privacy in mind; you need Tor to get any kind of
privacy guarantees. Using a NAT helps a little by preventing adversaries without vantage points
inside the NAT from linking two separate �ows initiated by the same sender. Tor does quite well,
although this analysis does not re�ect its performance overhead.

Second, the weakest version of APIP (ISP delegate with NATed return addresses and unique
�ow IDs) appears to be no better than plain IP. ¿ere is one subtle di�erence in column 8, however:
since each sender has a set of �ow IDs to choose from for each �ow, the adversary can only link a
fraction of a sender’s activity. (Furthermore, though not represented in the results, any version of
APIP has stronger accountability than IP.)

Next, the strongest version of APIP we tested falls short of Tor in terms of privacy, but it comes
with none of Tor’s performance costs. Also, note that the in�nities for 5-G1 and 5-G2 are misleading;
currently our model only considers on-path boxes, so in�nity is correct in the sense that there is
no combination of on-path boxes that could be compromised to achieve G1 or G2. However, if the
accountability delegate were compromised, these connections could be made.

Finally, i3’s stats match Tor’s, with the exception that fewer vantage points are needed to achieve
G1 and G2 (the adversary only needs to compromise the i3 rendezvous node instead of three Tor
relays).

When Can the Adversary Learn the Source Network? ¿e columns in the table below indicate
whether a local sni�er, global surveillance, and the destination can learn the source network,
respectively.

1-G1 2-G1 4-G1

IP ● ● ●

IP-NAT ● ● ●

IP-Tor ○ ○ ○

APIP-ISP-*-* ● ● ●

APIP-External-*-* ○ ○ ●

Since IP was not designed to protect this information, only Tor is able to hide it; even a NAT
does not help. For APIP, if source domains act as accountability delegates, then the accountability
address gives away the source network. With an external delegate, the source network is hidden
from local and global adversaries. However, the destination server still learns the source network.
If the return address is included (encrypted) inside the packet body, then the destination learns
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the sender’s unmodi�ed address and therefore the source network. If the return address is hidden
using NAT, then the destination cannot connect the packet to a particular sender, but still learns the
source domain. ¿is could be mitigated if multiple ISPs were willing to perform address translation
as packets leave their networks.

Finding E�ective Vantage Points. Share count analysis can give us a sense of how hard it is for
an adversary to achieve a particular goal by determining the minimum number of vantage points
needed (fewer vantage points means easier attack) and how many ways those vantage points could
be placed (more options means easier attack). For example, in IP a single vantage point is enough
to link both the sender and the source network to the destination. With Tor, on the other hand,
three vantage points are needed (the three Tor relays). And, with Tor and a NAT, linking the sender
to the destination requires a fourth vantage point: one inside the NAT to link the sender’s internal
and external addresses.

5-G1 6-G1 5-G2 6-G2

IP 1 3 1 3
IP-Tor 3 1 3 1

IP-NAT-Tor 3 1 4 2

Of course, share count analysis can also produce the successful paths themselves. As a sanity
check, we see that for IP with NAT and Tor, the adversary must compromise the Tor relays and
also either the link inside the NAT or the NAT itself (* indicates a vantage point):

[sender]*[nat]-[router]-[tor-entry*]-[router]-[tor-relay*]-[router]-[tor-exit*]-[router]-[destination]

[sender]-[nat*]-[router]-[tor-entry*]-[router]-[tor-relay*]-[router]-[tor-exit*]-[router]-[destination]

¿eCost of Privacy. Next we consider the adversary’s ability to link multiple �ows to the same
user for the di�erent variants of APIP. ¿e �rst column in the table below shows whether a global
adversary can link the packet to both the destination and the sender (2-G2). ¿e second column
shows howmany total TCP �ows are shut o� when a misbehaving �ow is reported (in APIP, routers
block bad �ows that have been reported to accountability delegates). Finally, the third column
shows how many of the sender’s �ows can be linked (in APIP, each sender is given a group of �ow
IDs to assign to its �ows as it chooses).

2-G2 7 8

APIP-*-*-Unique ● 1 Fh ⋅Hd
K

APIP-*-*-Shared ○ H f 1
(Fh = �ows per host; Hd = hosts per delegate;
K = num �ow IDs; H f = hosts per �ow ID)

First, notice the obvious tradeo� between sender-�ow linkability and collateral damage. With
shared �ow IDs, the adversary cannot link �ows to users, so it cannot build a history of any user’s
online behavior. On the other hand, since multiple hosts share the same set of �ow IDs, when a
router blocks a malicious �ow, it could also block up to H f benign hosts’ �ows as well.

Second, even when the adversary can link �ows to senders (i.e., when each sender is assigned a
set of unique �ow IDs), since it has multiple �ow IDs to choose among, tra�c sent with di�erent
�ow IDs appears to come from di�erent senders. In the third column, we see that the maximum
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fraction of the sender’s �ows that can be linked is Fh ⋅Hd
K . ¿e denominator, K, is the number of

possible �ow IDs, which is determined by the number of bits in the header given to the �ow ID.
¿is is useful feedback to protocol designers, who can now see a direct numerical link between
privacy and header format.

6.4 Method 2: Anonymity Set Radius

¿e advantage of the share counts approach is its ability to answer a variety of questions. For
instance, as we just saw, share count analysis was able not only to tell us when an adversary was
able to learn the identity of the sender and/or receiver, but also how many vantage points were
required and which combinations of vantage points were successful. Unfortunately, the share count
abstraction does not perform as well as we would like in the absence of a concrete topology or
external information (Table 6.2). ¿is is because, without concrete numbers, it lacks resolution,
so to speak. ¿e Sender-ID share count can be ONE_HOST, ONE_NETWORK, MANY_NETWORKS, or
WHOLE_INTERNET; we would like more granularity. In this section, we propose an alternative
metric for quantifying network architecture privacy called the anonymity set radius. While less
expressive than share counts, it o�ers better discerning power with incomplete information.

6.4.1 Methodology

At a high level, our methodology can be summarized as follows:
INPUT: (1) An architecture, speci�ed as a list of privacy primitives and where they are used. (2) An
adversary, speci�ed as a set of vantage points.
OUTPUT: (1) ¿e most speci�c information the adversary can learn about the sender and receiver
of a �ow. (2) ¿e total cost of the primitives used.
METHOD: (1) To evaluate privacy, we �rst identify the linkable segments between the sender and
receiver and then characterize what the adversary learns about the sender and receiver anonymity
sets in each segment. ¿e result will be a list, with one entry per linkable segment, indicating
what the adversary learned about each region. In Figure 6.1, this would be [A+ B + C ,D]. (2) To
evaluate cost, we associate one or more costs with each primitive (e.g., storage overhead, header
overhead, or processing overhead) and report the number of times each cost is incurred (e.g., “state
stored on n routers”).

¿e remainder of this section explains our approach to evaluating architectural privacy:
1. We propose de�nitions for “privacy” and “cost” at the architectural level.
2. We present a methodology architectural privacy evaluation.

Characterizing Privacy

In this section, we propose a way to quantify an anonymity set without knowing a concrete topology
or distribution of hosts (recall that metrics like set size require knowing the topology and host
count, and entropy additionally requires tra�c information). As a proxy for anonymity set size, we
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Figure 6.4: Anonymity Set Radius.Without a concrete topology, we measure the size of the anonymity set
in hops, which give an intuitive, though not exact, sense of its size. Nodes could represent routers or ASes;
solid black nodes are on the path from sender to receiver, while hollow gray nodes are other routers or ASes
in the anonymity set.

introduce anonymity set radius. ¿ough less precise than entropy, it does not require a topology or
tra�c matrix.

Anonymity Set Radius. To represent the size of an anonymity set when we do not know the
topology or how many hosts or ASes are in the network, we count the number of “hops” (at the
granularity of routers or ASes) from the sender to the closest point on the path that the adversary
can identify as a proxy for the anonymity set size. We call this the anonymity set radius because
you can think of the distance between a point on the path and the sender as de�ning the radius
of a circular sender anonymity set (see Figure 6.4). Picture the path from a vantage point back
to the sender and suppose the adversary were trying to physically move along this path to the
source—how many hops could it take before it no longer knows where to go? ¿is point marks
the edge of the portion of the network that could contain the sender. ¿e “radius” of this area is
the number of remaining hops from the border to the source (in the �gure, 2). ¿e same applies
to the receiver. ¿e term “radius” implies that exposing a linear number of hops may result in
a more-than-linear decrease in anonymity set size, because learning each successive hop to the
sender eliminates subtrees of ASes that could have contained the sender.

For example, if the adversary sees a packet with a public IP source address, it knows the exact
sender, so the anonymity set is 1 host and has a radius of 0. If the sender is behind a NAT, the
adversary only learns the sender’s network, so the anonymity set is the whole source network
and the radius is 1. And, in the extreme case of Tor, the radius is in�nity—that is, the anonymity
set includes all hosts in the Internet—when a packet is between two Tor relays, because both the
packet’s headers and physical location give away nothing about the true sender or true receiver.

Radius Reduction. What is a “good” radius? When should a network architect conclude their
design is “private enough”? It is tempting to say headers should leak no identifying information—the
radius, from observing just Packet Contents, should be in�nity! ¿ough an appealing goal, this
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Figure 6.5: Radius Reduction. A packet’s physical presence at a particular vantage point gives away a
baseline amount of information about the anonymity set (dashed circle). Information in packet headers
might allow the adversary to narrow this down to a smaller e�ective radius (solid circle). In this example,
the NAT replaces the sender’s address with the network’s address, which yields an e�ective radius of 1. Since
the baseline radius is 2, we say the packet headers caused a radius reduction of 1.

is not realistic because some amount of information about the sender and receiver is necessary
for communication to happen (see the discussion of communication state in Section III.1.2).
Fortunately, protocol designers can reasonably let Packet Contents leak more than zero because some
information is already leaked by Topology and Timing. A packet’s mere presence on a link, even if all
the bits in the packet were set randomly, gives away some amount of information, which we call
the timing and topology (T&T) baseline:

Timing & Topology Baseline:¿e information leaked by the packet’s physical presence along
the default path from sender to receiver even if all the bits in a packet were set randomly.

¿is is the baseline amount of leakage to be expected in a typical network communication; the
primitives for hiding the timing and topology signals (Section III.1.2) typically require taking a
longer path or introducing arti�cial delay—overhead users only want to pay when privacy really
matters. A reasonable target for protocol designers, then, is to ensure that, in the default case,
headers never leak more than the T&T baseline already does.

To measure this, we introduce a second metric: baseline radius reduction. ¿e radius by itself
captures how much the adversary is able to narrow down the anonymity set; radius reduction
captures how much additional information packet headers leak. Since each router knows which
port a packet arrives on and which port it leaves from, Topology gives away the previous and next
hops in the default path from source to destination; communication state should not give away
more than this. Radius reduction captures how many extra hops are revealed in reality.

As shown in Figure 6.5, the physical location of a vantage point results in a baseline radius (the
dashed circle). Information from packet headers could give the adversary more information about
the source, leading to a smaller e�ective radius (the solid circle shows an example for vanilla IP
with a NATed source address—the source address shrinks the anonymity set to the source network,
with a radius of 1). Since the baseline radius was 2, the radius reduction due to headers is 1.
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Figure 6.6:Multiple Vantage Points.¿e adversary might learn di�erent information at di�erent vantage
points. For example, vantage points near the sender typically learn more about the sender than the receiver;
vice-versa for vantage points near the receiver (we see this in the anonymity radii shown in the �gure). If
the adversary can link sightings from both vantage points, it can learn a lot about both the sender and the
receiver.

Characterizing Cost

To characterize the cost of an architecture’s privacy features, we again turn to the privacy primitives
in Section III.1.2. Each primitive incurs one or more overheads, listed in the third column of
Table 6.1. ¿ere are �ve general types of cost: (1) communication latency, which impacts the
user; (2) bandwidth overhead, which impacts both the user (throughput and data plan usage) and
the network (provisioning for congestion); (3) storage, which requires space on network devices,
adds access latency during forwarding, and can break ongoing connections if state is lost; (4)
computation for cryptographic operations, which could lower device throughput; and (5) key
distribution, which introduces management burden.

To characterize an architecture, we count the number of devices (e.g., routers) employing each
primitive, adding a tally to each corresponding overhead category; we then report this list of counts.
For example, the path in Figure 6.5 has a NAT, which stores the source’s address, so the cost is [1x
Storage]. ¿ough this is a loose, qualitative characterization, it gives a sense of privacy vs. cost
tradeo� an architecture makes.

Evaluating an Architecture

At a high level, the idea is to �rst determine the sender and receiver radii for each vantage point
(based on the vantage point’s location, information in the headers, and whether or not the packet
leaves its default path) and then to check whether or not sightings at those vantage points are
linkable (based on information in the headers, whether the payload has been altered, and whether
or not the packet is arti�cially delayed). Typically one vantage point learns a smaller sender radius,
another learns a smaller receiver radius, and the adversary would like to put the two together
(Figure 6.6).

Evaluating with a Path. Suppose we want to evaluate an architecture. To start, for simplicity,
assume we are given the complete path of devices from sender to receiver—not necessarily a
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Figure 6.7: Evaluating a Path. Dashed boxesmark privacy which primitives a device performs. ¿e numbers
below the path indicate the e�ective sender and receiver radii leaked by packet headers in that region of the
path. ¿e bars above the path indicate segments of the path in which sightings from multiple vantage points
can be linked.

full network topology, and no tra�c matrix, just a path of devices. ¿e procedure, illustrated in
Figure 6.7, is as follows:

1. Mark which primitives each device implements, if any. (Represented by dashed boxes in the
�gure.)

2. Mark boundaries of linkable segments. We consider devices that (1) alter the appearance
of the payload (e.g., by re-encrypting it) and (2) change header �elds that uniquely identify
the �ow (e.g., the standard 5-tuple) to break linkability. Additionally introducing arti�cial
delay o�ers stronger guarantees against timing attacks, but adds so much overhead we do
not require it. (In the �gure, the proxy re-encrypts packets, so it interrupts linkability.)

3. Mark boundaries of regions where headers reveal di�erent information (i.e., devices that
encrypt, store, or omit state). (In the �gure, the NAT stores the packet’s source address and
replaces it with the network’s address. ¿e receiver’s address is encrypted on the sender side of
the proxy and the sender’s address is encrypted on the receiver side of the proxy.)

4. Assign 4-tuple (Sender Radius, Receiver Radius, Sender Radius Reduction, Receiver Radius
Reduction) to each region with a vantage point. Regions where indirection is used to send
the packet o�-path have sender and receiver radii of∞. (Assume each link in the example is
a vantage point. For clarity, the �gure only shows e�ective radii, not radius reduction.)

5. Merge the radius tuples for regions in the same linkable segment by takingminimum e�ective
radius and the maximum radius reduction across regions in a segment. (In the �gure, the �rst
linkable segment has minimum (sender, receiver) radii of (0, 2). ¿e second segment already
has only one region, (3, 0).)

6. Report (1) a list of the 4-tuples for the linkable segments (in the example: [(0, 2), (3, 0)]) and
(2) a list of costs associated with the primitives marked in step 1 ([1x Storage, 1x Key Dist, 2x
CPU]).
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Figure 6.8: Canonical Path. In the absence of concrete topologies, we evaluate using a path that includes
devices representing common real-world adversaries plus any architecture-speci�c devices, like NATs or Tor
relays. Dots represent a number of unspeci�ed hops.

Evaluating without a Path. Now suppose we want to evaluate a protocol but we do not even
have a concrete path from sender to receiver (and, of course, still no tra�cmatrix)—in general, this
is the case when we evaluate a protocol at the highest speci�cation level (Section 6.2). ¿e process
will be very similar to that presented above in the case with a concrete path, except instead of hard
hop numbers, we will use variables to represent the length of certain parts of the hypothetical path.

In the absence of a concrete path, we de�ne a canonical path—a generic sequence of devices that
capture the protocol’s behavior and most common adversaries. Shown in Figure 6.8, the canonical
path consists of: (1) the sender and the receiver; (2) three routers, representing the sender’s AS, the
receiver’s AS, and transit ASes; and (3) any devices relevant to the privacy protocol being evaluated
(e.g., a NAT or a Tor relay). ¿e dots in the �gure represent an unknown number of unspeci�ed
hops. ¿e �rst two pieces (sender, receiver, and routers) ensure that the path captures several
real-world adversaries:

• Local Eavesdropper (e.g., someone sni�ng open Wi-Fi): Put a vantage point on the link
leaving the sender.

• Global Surveillance (e.g., monitoring by a nation-state): Put a vantage point on the “transit
ASes” router.

• Source ISP (e.g., employer): Put a vantage point on the “source AS” router.
• Receiver (e.g., web server): Put a vantage point on the receiver.

¿e third piece, protocol-speci�c devices, is needed because devices like Tor relays a�ect privacy
by operating on packet contents; modelling them also allows us to represent privacy breaches if
they are compromised. In a real deployment, paths may containmore devices, but we know every
path will contain at least these devices.

Now, let h(X ,Y), abbreviated hXY , be a function that gives the number of hops to X from Y
(Figure 6.9). We will use the notation hX = h(X , ⋅) to mean the distance to X from an unspeci�ed
Y . We can now describe the distance to the sender from any point on the path as hS and the
distance to the receiver as hR; this notation is useful to describe the radius observed along a region
of the path consisting of multiple vantage points. For example, in Figure 6.10, the sender radius
reduction before the NAT is hS − 1 (that is, the headers give away all the remaining hops to the
sender) whereas the sender radius reduction a er the NAT is hS − 2 (the headers only give away the
path up until the NAT). Note that the e�ective radius and radius reduction values always sum to
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Figure 6.9: Variable Hop Counts.Without a concrete path, the hop count from X to Y is represented as
h(X ,Y), or hXY . In the �gure, the distance from the vantage point V to the receiver is hRV hops; the distance
to the proxy is hPV hops.
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Figure 6.10: Variable Radius Reduction.¿e notation hS or hR can be used to describe the number of hops
to the sender or receiver from any vantage point in a region of the path. For example, the sender radius
reduction for any vantage point to the le of the NAT is hS − 2.
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Figure 6.11: Privacy vs. Cost Design Space. ¿ese plots compare architectures in terms of privacy and
cost with respect to three di�erent adversaries: global surveillance (le ), the receiver (center), and a local
eavesdropper (right). In each case, an ideal architecture (top le corner) is conspicuously absent.

h{S ,R} − 1 because the baseline radius is h{S ,R} − 1 and the radius reduction is the di�erence between
the baseline and e�ective radius.

6.4.2 Evaluating Existing Architectures

Table 6.4 lists some network architectures from practice and from research. ¿e second column
describes which privacy primitives each one uses, the e�ective radii for a global observer, and the
total cost of the primitives. ¿e third column shows privacy diagrams like the ones introduced in
Section 6.4.1.

“IP” and “IP with NAT” are straightforward (but note that we do not consider IP multicast);
“Overlay Tor” refers to the standard Tor systemwith three overlay onion relays in the path. “Network-
Layer Tor (Net-Tor)” is a recently proposed systemwhere layer 3 routers act as onion relays [157, 158];
in our examples, we assume that the onions only protect header information hop-by-hop and that
the packet takes the normal default path to the receiver (i.e., there is no path stretch) and that
every router in the path participates (not just 3). “Proxy” is a single intermediary server that swaps
headers and re-encrypts the payload, like a single Tor relay. ¿is also captures the basic behavior of
i3 [217]. NDN [139] is a content-centric network architecture whose salient feature here is its lack of
source addresses: every router remembers on which input port a request for a given piece of content
arrives; responses follow this path of “breadcrumbs” back to the original requester. Destination
addresses, which name pieces of content rather than hosts, are fully visible along the whole path.
(Because of the change in destination address semantics, the meaning of the receiver anonymity
radius is somewhat di�erent for NDN. In IP, the destination address makes it clear who the sender
is speaking to, which, in the case of the Web at least, can o en be mapped to what content they are
retrieving. In NDN, this mapping is no longer needed for the adversary to determine what, but
determining whomay now require vantage points close to content sources.) Finally, though not
pictured, a “mix network” [75] is essentially Tor with arti�cial delay and re-ordering at each relay.

Figure 6.11 places these architectures in relation to one another in terms of privacy and cost with
respect to three di�erent adversaries: global surveillance, the receiver, and a local eavesdropper
(Section 6.4.1). Privacy rankings are based on each architecture’s (src, dst) radius score. Cost
rankings are somewhat subjective; directly comparing di�erent kinds of overhead is di�cult—
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Table 6.4: Privacy Protocols. Some architectures from practice and from research, the privacy primitives
they use to hide communication state, and their privacy properties. Each diagram shows the canonical
evaluation path, the e�ective radii and radius reduction scores at di�erent locations along the path (below),
and the linkable segments (above).
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which one is “worse” depends on personal priorities and whether you ask a user or a network
operator. For example, in both NDN and Net-Tor each router implements a primitive, but in the
former case routers store state and in the latter case they perform cryptographic operations.

Two high-level takeaways emerge at a glance. First, an architecture’s placement changes from ad-
versary to adversary because vantage point location impacts e�ectiveness (leakage is not consistent
across the path). A particularly striking example of this is NDN: a vantage point on the �rst-hop
link from the sender has a score of (0, 0) whereas the last link before the receiver has a score of
(hSR , 0)—that is, a vantage point near the sender is very serious in NDN whereas a vantage point
near the receiver (or the receiver itself) is harmless. Second, none of the plots has an architecture
in the (ideal) top le position! We return to this point in Section 6.5.

Global Adversary (le ). First, NATs and NDN do nothing against a global adversary because in
both cases a vantage point on the link leaving the sender learns the sender from topology and learns
the receiver because its address is on display in the headers; both systems earn a privacy score of
[(0, 0)]. Next, note that mix nets, Tor, and proxy have identical privacy scores: [(0,∞), (∞, 0)].
We place them at di�erent levels of privacy, however, due to subtle di�erences in linkability: mix
nets use arti�cial delay to make linking sightings di�cult; Tor is more susceptible to timing attacks.
A proxy is like Tor but with only one relay, so linking sightings based on timing is easier yet. Finally,
we rank Net-Tor slightly above proxy in terms of privacy because, even though its radius score is
slightly worse—the adversary learns 1 hop instead of 0—linking sightings across the path requires
more work since each router acts as an onion relay (compared to the single proxy).

Receiver (center). First, the di�erences in privacy ranking between mixes, Tor, and proxy have
disappeared. In the case of the global adversary, that di�erentiation was caused by di�erences in
the adversary’s ability to link sightings from di�erent vantage points. In this case, the adversary has
just a single vantage point (the receiver). Second, NDN is suddenly very e�ective, and at a modest
cost. NDN is so e�ective because the last-hop router before the receiver implements a privacy
primitive; this gives the biggest sender radius possible without adding any indirection latency since
the router was on-path already. No anonymity system today can provide last-hop functionality
for every possible receiver; they all involve overlay nodes multiple hops away. (More on this in
Section 6.5.) Finally, against the receiver, a simple NAT helps slightly; preventing the adversary
from identifying which host in the source network is the sender may be useful.

Local Eavesdropper (right). ¿e results here are similar to the receiver case, except NAT and
NDN drop back to (0, 0). Given that a local adversary is relatively weak (picture a Wi-Fi sni�er
in a co�ee shop), it is particularly apparent—and frustrating—that no strong, low-cost solution
exists.

6.5 A Build-Your-Own Privacy Service

We saw in Section 6.4.2 that there are some surprising holes in the privacy vs. cost design space.
Speci�cally, it is surprising that there is no highly private yet low cost solution for relatively weak
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Primitive Pricing Guidelines

Indirection Charge per extra link due to extra tra�c. (¿e corresponding
latency increase also impacts user experience, but not pricing.)

Arti�cial Delay Charge per router due to need for increased bu�er space. (Again,
latency also hurts UX.)

Dummy Tra�c Charge per kB per link (for extra tra�c).
Multicast Charge per kB per extra link (extra tra�c).

Encrypt State Charge per router (for extra computation). (Header overhead han-
dled implicitly with existing data cap.)

Distribute State Charge per router (for per-�ow storage). (Fate sharing also lowers
reliability for user.)

Scramble State Charge per router (for extra computation).

Table 6.5: Pricing. ISP pricing guidelines for each primitive.

adversaries like the receiver or a local eavesdropper. More generally, is it possible to give users
exactly the privacy/cost tradeo� they want for each connection? Today we have a small number of
anonymity systems that cover just a few discrete points in the design space; what if we could create
exactly the protocol we needed, at any point in the design space, on an on-demand basis?

Imagine ISPs wanted to help solve this problem by o�ering anonymity as a paid service. ¿is
service would let users customize their protection to guard against a particular adversary but
without paying for unnecessary protection. To do this, ISPs could provide a “build-your-own-
protocol” service by o�ering the privacy primitives in Table 6.1 on a per-router (or per-AS) basis.
¿e user (with the help of some con�guration tool) would essentially build a custom protocol to
address their needs by enabling certain primitives on certain routers. ISPs assign a cost to each
primitive and charge users based on which primitives they enable, on how many routers, and how
much tra�c they send through that con�guration (see Table 6.5). (For the moment, we blithely
ignore practical issues like user interfaces, limited user expertise, and coordination across ISPs.)

Example Scenarios. To motivate the usefulness of such a service, we describe how it could help
in the case of three common adversaries users worry about for which today’s privacy systems are
not a perfect �t.
Server Logs. Users may want to hide their identify at the receiver, either to be anonymous from the
service itself, or because logs might be subpoenaed or stolen. ¿is is a very simple adversary—there
is only one vantage point, so linkability never even enters the picture. All that’s needed is to use
the last-hop router before the receiver to remove any information identifying the sender from the
packet. ¿is can be done by either storing the sender’s address on the router and replacing it with
the router’s address in the packet (“Store Previous Hop”), or by giving the receiver a stack of headers
(Receiver → Router, {Router → Sender}KRouter ) to respond with, where the Router → Sender
header is encrypted for the router (“Carry Previous Hop”). In either case, the radius score at the
receiver is (hS − 1, 0) (Figure 6.13).
Public Wi-Fi Sni�er. Users using public Wi-Fi at airports or co�ee shops may want to hide their
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Multicast Y/N Y/N Y/N Y/N

Store Previous Hop Y/N Y/N Y/N Y/N
Carry Previous Hop Y/N Y/N Y/N Y/N

Carry-then-store Next Hop Y/N Y/N Y/N Y/N
Carry Next Hop Y/N Y/N Y/N Y/N

Re-encrypt Payload Y/N Y/N Y/N Y/N

Inject Dummy Traffic Y/N Y/N Y/N Y/N
Batch & Delay Y/N Y/N Y/N Y/N

Send Off-Path via X Y/N Y/N Y/N Y/N

Figure 6.12: Building a Protocol. Users can customize their level of protection by enabling primitives on
speci�c routers.
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Figure 6.13: Scenario: Server
Logs. Hiding the sender’s iden-
tity from the receiver only requires
help from the last-hop router.
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Figure 6.14: Scenario: Public Wi-
Fi Sni�er. Hiding the receiver’s
identity from local eavesdroppers
only requires help from the �rst-
hop router.
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Figure 6.15: Scenario: Untrusted
ISP(s). Hiding the receiver’s iden-
tity from an access network that
controls the �rst k hops only re-
quires help from router k + 1.
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activity from local eavesdroppers. ¿is is the mirror image of the previous example: simply include
an encrypted next-header for the �rst-hop router (Figure 6.14). ¿is could be done for every
packet (“Carry Next Hop”), or the router could store this information for subsequent packets
(“Carry-then-store Next Hop”).
Untrusted ISP.¿ere may be cases where users do not trust their access network (e.g., they may
be travelling and accessing the Internet from a country that practices censorship or surveillance).
¿is is similar to the previous scenario, except now the adversary might have vantage points on the
�rst k links. By using one of the primitives described above on router k + 1, the adversary’s receiver
radius is hSR − k (Figure 6.15).

¿ese examples show why a system like the one proposed in this section could shine: In all
three scenarios, which consider adversaries located either close to the sender or close to the receiver,
there is no existing solution in the top le corner of the privacy vs. cost plots in Figure 6.11 (center
and right). ¿e primary reason for this is that there is no way to place primitives near the adversary
(where they are most e�ective) and only there (to keep costs down). Anonymity systems today, like
VPNs or Tor, are forced to operate as overlays, since not all routers are willing to participate, which
limits how close to the adversary we can place primitives. ¿is limits e�ectiveness. And proposals
like NDN and Net-Tor, which do push functionality to the routers themselves, do not allow precise
control over which routers participate, increasing cost unnecessarily.

Custom Protection. In general, to build a custom anonymity protocol for a particular adversary
(set of suspected vantage points), the user needs to decide which primitives to enable at each router
(picture enabling switches in the grid in Figure 6.12).
(1) Limit identity leakage at each vantage point. Since by default each vantage point can see 1
hop forward and 1 hop backward (the T&T baseline), we start by hiding forwarding state on the
routers immediately up- and downstream of each vantage point. Sender identity can be hidden
using multicast, encryption (“Carry Previous Hop”), or in-network state (“Store Previous Hop”).
Destination state is similar, with one important di�erence. In the case of the source, a router
just needs to know the previous hop, which it already knows without extra information in the
header because it saw where the packet came from. For the destination, on the other hand, a
router needs to be told the next hop, which requires some kind of information from the packet
itself. So, next-hop information can either be carried (encrypted) in every packet (“Carry Next
Hop”), or be carried in the �rst packet, stored on the router, and omitted in subsequent packets
(“Carry-then-store Next Hop”).

Now the only leakage is due to the T&T baseline. If a vantage point is near one endpoint, the
baseline gives away a lot of information about that endpoint and very little about the other; based
on this, the adversary is unlikely to link the sender and receiver (Figure 6.16 top). On the other
hand, if a vantage point is near the middle of the path, the baseline gives away a moderate amount
of information about both the sender and receiver (bottom). If this is unacceptable, it may be
necessary to enable indirection.
(2) If there are multiple vantage points, break linkability between consecutive vantage points. Simply
re-encrypting the packet at an intermediate router might su�ce, but, for a higher cost, enabling
arti�cial delay as well will decrease the chances the adversary can link packets.
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Figure 6.16: Impact of Vantage Point Location. A vantage point near one endpoint learns a lot about that
endpoint and very little about the other, whereas a vantage point in the middle of the path learns a moderate
amount about both endpoints.
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Figure 6.17: Anonymity Radius vs. Share Counts: Anonymity Set Shape. Anonymity radius can only
express anonymity sets that are subsets of the network topology, as shown by the dashed lines (le ). Share
counts can incorporate external information to express anonymity sets like “users in networks A and C who
are also Net�ix subscribers,” again shown by a dashed line (right).

6.6 Conclusion

¿is chapter explores privacy at the network layer. We o�er structure to the discussion bymodelling
the problem—the adversary work�ow—and by articulating the basic building blocks underlying
most anonymity systems—the privacy primitives. ¿en we address the problem of evaluating
a network architecture in terms of privacy. Unlike previous approaches, ours does not require
speci�c information about a concrete deployment of an architecture, but rather evaluates the
intrinsic privacy properties of the architecture itself. We use our methodology to evaluate existing
anonymity systems and to propose a new “build-your-own” privacy service.

Share Counts vs. Anonymity Radius. In this chapter, we proposed two metrics, share counts
and anonymity radii (“hop counts”). Both are abstractions for describing the size of an anonymity
set.
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Figure 6.18: Anonymity Radius vs. Share Counts: Anonymity Set Size. Without a concrete topology,
anonymity radius can roughly quantify how many networks are in the anonymity set (le ), whereas share
counts cannot (right). ¿is example shows network-layer Tor.

Hop counts, however, can only express anonymity sets based on topology-related identity
information (Figure 6.17a). ¿at is, they work by partitioning o� a subset of the (hypothetical)
network topology as the anonymity set and their only degree of freedom is selecting the size of that
subnet. Share counts, on the other hand, are much more general; they can express anonymity sets
that do not neatly follow topological boundaries (Figure 6.17b). For example, suppose an attacker
has access to external information like a list of subscribers to a particular Web site (see Table 6.2 for
more examples). If it combines this with knowledge of a packet’s source and destination networks, it
can produce an anonymity set that is the intersection of hosts in the source network and subscribers
to the destination service. Share counts can capture this, and so in a sense have the potential to be
more precise than hop counts.

Additionally, share counts can capture privacy-related properties beyond sender and receiver
anonymity sets. First, the sender �ow share count, which indicates how many of one sender’s
�ows share the same Sender-ID, captures how much of one user’s activity the adversary can link
together. ¿e anonymity radius metric has no analog for this. Second, the Flow-ID share count
quanti�es how much collateral damage will result from a �ow being blocked (e.g., in AIP or APIP).
Finally, if share count analysis were extended to run over multiple (real or hypothetical) paths with
a consistent set of (real or hypothetical) hosts, the Sender-ID share count would expose the fact
that in architectures with persistent host IDs, like AIP or XIA, a host’s activity could be tracked
across multiple networks (e.g., a campus network and public Wi-Fi in a co�ee shop).

On the other hand, in the absence of concrete information like a network topology or external
information, share counts have less discerning power than hop counts. Without a concrete topology,
share counts use the constants ONE_HOST, ONE_NETWORK, MANY_NETWORKS, and WHOLE_INTERNET
in place of actual numbers. Share counts lack a way to distinguish, for example, in an architecture
based on network-layer Tor, what an adversary learns from a vantage point two hops from the
source versus �ve hops from the source (in each case, the anonymity set size is MANY_NETWORKS)
(Figure 6.18b). Hop counts were designed speci�cally to disambiguate these cases without concrete
topologies (Figure 6.18a).
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Part IV

Conclusions and Future Work

145





Chapter 7 Conclusion

¿is thesis describes the motivation, design, and evaluation of network architectures and protocols
that, taken together, deliver on our overarching vision: a network that protects users’ privacy
without compromising on performance, accountability, functionality, or security.

¿is is surprisingly hard to achieve, and the underlying issue is controlling access to information.
In the case of data privacy, that information is the application layer data carried in packet payloads;
in the case of metadata privacy, that information is the network source address. In each case, there
are both legitimate uses and malicious uses of this information in the network. We have discussed
these at length in this thesis: given access to application data, the network can serve requests from
caches, compress data, or detect attacks; given access to the source address, operators can �nd
attackers. At the same time, users would sometimes like to hide this information from the network
to prevent malicious uses, like identity the , harassment, or imprisonment by a hostile government.

¿e current Internet architecture was not designed to hide any information from the network,
so it enjoys all of the performance, accountability, functionality, and security bene�ts described
above but provides no privacy. On the other hand, protocols like Tor and TLS go to the other
extreme: Tor hides network headers and topology information and TLS hides application data,
providing privacy but precluding any bene�cial uses of that information. ¿is thesis argues that if
we carefully control which entities can access or alter each piece of a packet, and potentially what
they can do with that information when they do, we can achieve a balance of all of these properties.
In order to do this, however, support from the network is required. ¿is is because the network
uses the information in question, so unilaterally changing where it is stored (e.g., changing the
meaning of header �elds) or how it is stored (e.g., encrypting what used to be plaintext) would
disrupt the operation of the network.

7.1 Contributions

In Part II, we explored controlling access to packet payloads. As we saw, the payload was tradition-
ally accessible to anyone, so an ecosystem of middleboxes sprang up to perform optimizations like
caching or security functions like virus scanning. On the other hand, payloads carry sensitive user
data, so common practice today is to use encryption so that only endpoints can access it. In this
part, we argue that “anyone” is too permissive and “only endpoints” is too restrictive and introduce
two new protocols, mcTLS and mbTLS, as intermediate points.

Chapter 2 presented ourmeasurement study on the impact of using TLS, which showed that the
loss of middleboxes is the most serious negative e�ect of switching to HTTPS. Other potential
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costs were either already minimal (e.g., increased computation or energy consumption) or
can be “engineered away” with protocol improvements (e.g., QUIC [124], Zero [137], and TLS
1.3 [196] are all working toward eliminating TLS’s extra round trips).

Chapter 3 introduced the idea of encryption contexts, an abstraction endpoints can use to
restrict which parts of the data stream each middlebox can access and whether that access
is read/write or read-only. We presented Multi-Context TLS, a protocol that implements
the encryption context abstraction in TLS. mcTLS applies the principle of least privilege to
middleboxes by allowing endpoints to give them the minimum amount of access they need to
do their jobs.

Chapter 4 took a broader perspective and described a design space for secure multi-entity
communication protocols, which it used to put previous proposals (including mcTLS) into
context. Next we identi�ed gaps in this design space where real-world needs were not satis�ed
and presented Middlebox TLS, a protocol o�ering techniques for discovering middleboxes
on-the-�y, protecting middlebox path integrity, and securing middleboxes that are outsourced
to third party hardware.

¿ough we have focused on the technical insights and implementation artifacts, perhaps the most
important impact of mcTLS andmbTLS is encouraging discussion of encrypted tra�c interception.
¿e prevailing opinion in some large technology companies and standards bodies is that, because
application data could be used maliciously, it should be encrypted end-to-end, period. In our
view, this argument (1) dismisses the bene�ts of middleboxes without carefully weighing them
against privacy bene�ts of end-to-end encryption and (2) glosses over the reality that, as we have
discussed, TLS interception via mechanisms that are not secure (e.g., custom root certi�cates) is
commonplace today and unlikely to disappear in practice. In this light, we see mcTLS and mbTLS
as strengthening privacy, not weakening it—saying that these protocols weaken privacy compared
to end-to-end encryption is true, but end-to-end encryption is the wrong baseline. A conversation
about the risks and bene�ts of encrypted tra�c inspection is crucial, and we hope to see it continue.

In Part III, we turned our attention to controlling access to packet source addresses. Here, we
were concerned with both who can see them (privacy) and how trustworthy they are (account-
ability). We saw that the current Internet does a poor job on both accounts: source addresses are
visible to everyone and are easily spoofed. Previous work �xes only one problem or the other—for
example, AIP [40] makes source addresses unspoofable but leaves them visible to anyone whereas
Tor [96, 158] makes a packet’s true source address visible to only one Tor relay. Once again, in this
part, we establish a practical middle ground.

Chapter 5 presented a new network architecture, the Accountable and Private Internet Protocol
(APIP), that explicitly balances privacy and accountability—and, in fact, o�ers more of each
than the current Internet, without introducing signi�cant overhead in the default case. We
argued that the reason for the tension between accountability and privacy is that the IP source
address is overloaded: it serves both as a “return address” (identifying the packet’s sender) and
an “accountability address” (acting as a handle for �nding malicious senders). APIP recognizes
this and explicitly separates the two, giving each packet a destination address (as before), an
accountability address, and a return address.
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Chapter 6 answered the question: how can we measure “how private” a network architecture
is? We presented two new metrics, share counts and the anonymity set radius, for quantifying
an architecture’s privacy properties even in the absence of a concrete deployment (topology
and tra�c).

A good guiding principle in research is to question assumptions. ¿e insight behind APIP came
from revisiting basic assumptions about network source addresses. In Section 5.2 we identi�ed �ve
roles currently ful�lled by source addresses in IP. By disentangling two of them—return address
and accountability—we were able to balance privacy and accountability. ¿is experience suggests
it may be worth revisiting the remaining roles and considering whether con�ating them is causing
other problems. For instance, could anything be gained by explicitly separating error reporting
and return addresses? What about other header �elds—are there other basic assumptions worth
revisiting?

7.2 Impact
• Academic Recognition:

APIP [176], from Chapter 5, received a Best Paper Award at SIGCOMM 2014.
• Industry Recognition:

mcTLS [177], from Chapter 3, has been patented by Telefónica.
mcTLS is in the standardization process at the EuropeanTelecommunications Standards
Institute (ETSI) [34].
mbTLS, from Chapter 4, has been patented by Microso .

• Open Source:
Our library for Web page load experiments, developed for Chapter 2, is available on
GitHub [30].
mcTLS, from Chapter 3, is available on GitHub [3].

• Education:
mcTLS, from Chapter 3, has been included in courses such as “Understanding and
Securing TLS” (CS 6501) at the University of Virginia and “Graduate Level Security”
(CMSC 8180) at the University of Maryland.
APIP, from Chapter 5, has been included in courses such as “Computer Networks” (15-
744) at Carnegie Mellon, “Network Security” (18-731) at Carnegie Mellon, “Advanced
Computer Networks” (CS 538) at UIUC, “Security and Privacy” (ELE 574) at Princeton,
and “Computer Communications” (CS 5220) at the University of Colorado.

• Other:
mcTLS [177], from Chapter 3, was featured on ¿e Morning Paper [83], a popular
blog that posts “an interesting/in�uential/important paper from the world of CS every
weekday morning.”
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Chapter 8 FutureWork

8.1 Near-Term

Formal Protocol Veri�cation. We have not formally veri�ed mcTLS or mbTLS. Instead, in the
security analyses presented in Section 4.4 and Appendix B, we assume TLS is a secure starting point,
make as few changes to TLS as possible, anticipate possible attacks against the changes we do make,
and argue why those particular attacks cannot happen. Even features that appear simple, however,
can interact in unexpected ways that can undermine security; formal veri�cation is important for
catching these cases. In fact, TLS itself has not yet been formally veri�ed in its entirety, though
recent work is making steady progress toward this [56, 58, 60, 61].

From Trusted Computing to Trusted Systems. With mbTLS, we have so far focused on the
core protocol design and middlebox so ware architecture; we have largely ignored practical issues
even though they are equally important to mbTLS’s real-world success.

One class of issues is “implementation details” like key and identity management. ¿ere are
many problems to solve here: how do we handle sharingmiddlebox state across replicated instances
when sessions are bound to SGX enclaves on a particular CPU? And since mbTLS uses remote
attestations to prove that a particular piece of so ware is running on the middlebox, how do
endpoints know what so ware identity to expect? And how can wemanage keys to prevent Cuckoo
attacks, where a powerful adversary invests resources in cracking a single SGX CPU in order to
forge attestations in the future?

Another class of problems pertains to designing middlebox so ware that runs on trusted
hardware—it is more complicated than “just drop the code as-is into an enclave.” First, we need
analysis tools that can track the �ow of sensitive information to make sure it cannot inadvertently
leak outside the enclave (implicitly or explicitly). ¿is includes understanding when a program is
vulnerable to side channel attacks (e.g., cache timing attacks). Second, is it important to isolate
session state from di�erent clients? If so, can we, e.g., spin up a new enclave for each connection,
or at least each user?

Making APIP Practical. Chapter 5 presents the high-level design of APIP plus a �rst-pass
feasibility evaluation based on one packet trace from a university network. To show how to make
APIP deployable in real life, there are a number of low-level details to work out (APNA already
tackles many of these details [155]). For example:

Delegate Scalability Clients need to send packet �ngerprints to their delegates in a way that does not
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overwhelm the network, storage on the delegate, or the delegate’s ability to search for a �ngerprint
when it receives a verify(). ¿ere are many parameters to tune here: for example, assuming
clients store �ngerprints of outbound packets in Bloom �lters, how o en should they send those
Bloom �lters to their delegates? More o en means more �lters for the delegate to store and search,
but shorter veri�cation latencies since delegates get briefs sooner. Another example is �ow ID
granularity. If more hosts share the same �ow IDs, they get better privacy (two �ows with the same
ID did not necessarily come from the same sender). But, since delegates search for briefs based on
�ow ID, more clients sharing a �ow ID means more Bloom �lters to check for each verify().

Flow Setup Latency If implemented naively, waiting for a brief() and one or more verify()s at the
start of each TCP �ow will cause serious performance problems for applications that use many
short-lived connections (e.g., like web browsing). ¿ere are various solutions to explore here:
veri�ers could rate limit or allow N packets from each �ow to go through while they wait for
responses from delegates. ¿is requires routers to keep state, however; another possibility is letting
TCP SYN or TLS HELLO packets to pass through unveri�ed, though this may not be feasible for
security reasons. If we expect multiple routers on a path to perform veri�cation, perhaps it will be
necessary to “staple” veri�cations along with the �rst packet of each �ow to avoid a round trip to
the delegate at each veri�er.

ADeeper Analysis of Architectural Privacy. We see the privacy metrics presented in Chapter 6
as initial steps. Currently, they serve largely to structure a manual analysis of an architecture or
protocol—a sort of mental checklist. Most of the process requires a human expert with a thorough
understanding of how an architecture’s network elements interact with packets and what these
interactions mean for privacy. ¿ese metrics could be much more useful, however, if combined
with techniques for automatically discovering how protocol features interact to impact anonymity
with minimal human guidance. Given a protocol spec, a packet trace, or even source code, could a
tool learn the mappings from header �elds to meta-�elds that we use in share count analysis? For
example, based on packet traces, could such a tool deduce on its own that the address/protocol/port
5-tuple serves as a �ow ID in TCP/IP? Or that TCP sequence numbers can be used to link packets
in the same �ow with high probability?

8.2 Long-Term

A Full-Stack Approach to Privacy. ¿is thesis focuses on privacy at the network and transport
layers. But the other layers cannot be ignored: MAC addresses can be used to track users, and
application layer data contains all kinds of personally identi�able information. Privacy at these
layers has seen plenty of attention (e.g., [11, 13, 108, 121, 161, 184, 222]), but this is not enough. Prior
research argues that a true privacy solution must consider all layers of the network stack. To
e�ectively switch identities, users must use a new identi�er at each layer; this set of identities is
called a pseudonym [126]. For example, at the very least, a pseudonym would consist of a newMAC
address, a new IP address, and a new collection of cookies in the browser.

E�orts in this vein are related to multiple parts of this thesis. For example, mcTLS could be
used to hide from middleboxes information that could be used to uniquely identify a user, like the
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user agent HTTP header. Share counts could be generalized across layers—for instance, based on
tra�c traces or server logs, users could be told how common (or uncommon) requests from their
browsers look (e.g., are you identi�able by your HTTP headers?). In APIP, a cross-layer pseudonym
would also include a new �ow ID. One common strategy might be to use a di�erent pseudonym
for each website a user visits. Based on this and the other strategies proposed by Han et al. [126], it
would be interesting to calculate how many �ow IDs each delegate would need and how it could
recycle �ow IDs across its clients.

A Veri�able Internet: Bringing Trusted Computing to the Network. Currently, many proper-
ties of our network communications are di�cult for us to verify; we must blindly trust our ISPs.
For instance, if an ISP claims to be net neutral—that it does not provide packets from di�erent
senders or applications with di�erent service qualities—we are currently forced to verify this by
reverse-engineering its tra�c shaping policies through external measurements. Another example is
privacy: we know intelligence agencies work with major ISPs to track end-to-end communication
patterns, but we do not know exactly what information ISPs release to authorities and under what
conditions.

By implementing pieces of router functionality in trusted environments like SGX enclaves,
we could start to change this “network-as-a-black-box” dynamic. Endhosts could verify the
identity of router so ware/�rmware/hardware, thereby also verifying properties about its behavior.
Furthermore, if one of the behaviors of the veri�ed so ware is to perform the same veri�cation on
all neighboring routers, a host connecting to the network only needs to verify its �rst-hop router
in order to have guarantees about the behavior of, ideally, the entire Internet. (¿is idea was used
in TrueNet to localize malicious or faulty routers [241].)

Consider a speci�c example: just like Web services have privacy policies about the informa-
tion they collect, so too could ISPs. For example, an ISP might promise to only disclose logs of
source/destination IP address pairs in response to subpoenas signed with a certain authority’s
private key. Using remote attestation, an endhost (or an edge network on behalf of its customers)
could verify that all routers on a packet’s path run so ware that abides by these privacy policies.

As a starting point, rather than hosts verifying correct behavior of the network, the network
could verify correct behavior of the hosts [186], ensuring, for example, that hosts do not spoof
source addresses, that they honor source quench messages (a DoS defense mechanism), and that
they implement congestion control honestly (rather than greedily taking more than their fair share
when the network is congested). Ideas like these were �oated in the early days of trusted computing
(e.g., the Trusted Computing Group’s “Trusted Network Connect”), but recent technological
advances like SGX now put them within practical reach.
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Appendix A mcTLS Protocol Details

¿is documentation, with primary contributions from Kyle Schomp, is included here for complete-
ness. It is also available at [1].

¿emcTLS protocol is designed to enable secure communication between a client, server, and 1
or more middleboxes in series between the client and server. ¿e protocol is built as an extension to
the TLSv1.2 protocol. ¿is document extends and modi�eds the TLSv1.2 speci�cation [94]. Where
details are omitted here, the reader should assume that no changes are made from the TLSv1.2
speci�cation.

A.1 Goals

mcTLS is designed to provide the following �ve properties:
1. Entity Authentication: As in TLS, the client must be able to verify the identity of the server.
Additionally, the endpoints must be able to authenticate each middlebox.

2. Payload Secrecy:¿ird parties must not be able to read any application data.
3. Payload Integrity: Changes to application data by third parties or by middleboxes with
read-only access must be detectable.

4. Visibility: Both endpoints must be aware of all middleboxes in the session. mcTLS does not
support transparent middleboxes.

5. Least Privilege: Each middlebox should be granted the minimum level of access needed to
do its jobs.

A.2 De�nitions and Notation

• mcTLS uses a pseudorandom function, constructed as in TLS 1.2, to expand secrets into
blocks of key material:

PRF(secret, label, seed)

• In this document, + indicates concatenation.
• ¿is document introduces the idea of an encryption context. We use the terms “context” and
“slice” interchangeably.
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A.3 Handshake Protocol

¿e client generates a list of middleboxes to be used through a middlebox discovery mechanism
outside the scope of this document. ¿e client sends a TLS ClientHello message with the middlebox
list included as a TLS extension. See Middlebox List Extension for the format. ¿e ClientHello
must carry the mcTLS TLS version number. When the �rst middlebox sees the ClientHello, it
opens a TCP connection with the next middlebox and forwards the ClientHello. ¿is continues
until it reaches the server. Each middlebox examines the compression and cipher suites proposed
by the client and eliminates those it does not support. ¿e server reads the middlebox list and may
immediately terminate the connection if the middlebox list violates the application requirements.

¿e server sends a ServerHello message specifying the compression and cipher suites to be
used (i.e., the ones it picked from those o�ered by the client). At this point, the client will wait
to receive a Certi�cate message from each middlebox and the server. Similarly, the server will
wait until it receives a Certi�cate message from each middlebox. If ephemeral public key en-
cryption is being used, then Certi�cate messages must be followed with ServerKeyExchange
messages. Once all Certi�cate and ServerKeyExchange messages are received, the client sends
a TLS ClientKeyExchange message to the server. With the receipt of this message, the client
and server possess a shared master secret. In TLS, the master secret is used to generate the ses-
sion key, which is used for encrypting and MAC-protecting application data. In mcTLS, we
refer to this “session key” as the endpoint_encryption_key and the endpoint_MAC_key. ¿e
endpoint_encryption_key is only used for transferring context key material between the client
and the server and the endpoint_MAC_key is used for generating each record’s endpoint MAC
(see Message Authentication Codes).

A er distribution of the server and middlebox certi�cates, both the client and server gen-
erate two secrets for each context: the client_read_secret/client_write_secret and
server_read_secret/server_write_secret. ¿ese secrets are used by all parties (middle-
boxes and endpoints) to generate the context keys (see Context Key Generation) that will be used
by the record protocol to encrypt and MAC-protect application data.

¿e client and server will send MiddleboxKeyMaterial messages to each middlebox and the
opposite endpoint to distribute these secrets. MiddleboxKeyMaterial is a new TLS message type.
See MiddleboxKeyMaterial Message section for format. ¿e client and server should send one
another MiddleboxKeyMaterial messages containing secrets for all contexts in the middlebox_list
extension. A violation must be treated as a protocol error. Middleboxes will receive secrets for each
context for which they have read or write access. Once a MiddleboxKeyMaterial message arrives at
its intended middlebox recipient, it must be forwarded on to the opposite end of the handshake
to ensure that both the client and server observe the full sequence of handshake messages. ¿e
MiddleboxKeyMaterial message for the opposite end of the session must be sent last.

Once all MiddleboxKeyMaterial messages have been received, the client, server, and mid-
dleboxes have the encryption contexts necessary to transmit application data. First, however,
validation of a successful handshake must be performed. ¿is is accomplished by the Change-
CipherSpec message to indicate the newly negotiated encryption contexts should now be used
and the transmission of a Finished message including a MAC of all handshake messages using
endpoint_MAC_key. If the client or server fail to validate the Finished message, then the client
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and server must not have observed the same sequence of handshake messages. ¿is is a fatal error.
CLIENT MIDDLEBOX 1 MIDDLEBOX 2 SERVER

ClientHello -----------------x-------------------x---------------------->

ServerHello
Certificate

ServerKeyExchange
<-----------------------x-------------------x-------------- ServerHelloDone

Certificate
ServerKeyExchange

< - - - - - - - - - - - o - - - - - ServerHelloDone - - - - - - - >

Certificate
ServerKeyExchange

< - - - - - - - ServerHelloDone - - - - - o - - - - - - - - - - ->

ClientKeyExchange --------------x-------------------x---------------------->
MiddleboxKeyMaterial[M1] ----------x-------------------o---------------------->
MiddleboxKeyMaterial[M2] ----------o-------------------x---------------------->
MiddleboxKeyMaterial[S] -----------o-------------------o---------------------->

ChangeCipherSpec
Finished -------------------x-------------------x---------------------->

<-----------------------x-------------------o---------- MiddleboxKeyMaterial[M1]
<-----------------------o-------------------x---------- MiddleboxKeyMaterial[M2]
<-----------------------o-------------------o---------- MiddleboxKeyMaterial[C]

ChangeCipherSpec
<-----------------------x-------------------x------------------ Finished

Application Data <-------------x-------------------x-------------> Application Data

(In the �gure, x indicates the middlebox reads and forwards the message; o indicates it just
forwards it. ¿e spaced dashed lines indicate the middlebox certi�cate/key exchange messages
are sent piggy-backed on the ServerKeyExchange (toward the client) and ClientKeyExchange
(toward the server) messages.)

A.3.1 Middlebox List Extension

mcTLS de�nes a new TLS handshake extension middlebox_list with tentative type ID 0x�06. ¿e
extension contains:

• A list of context IDs and descriptions. A context description is a string meaningful only to
the application; mcTLS does not use it.

• A list of middleboxes. Each entry speci�es the middlebox’s address, a unique ID, a list of the
contexts for which the middlebox has read access, and a list of the contexts for which the
middlebox has write access.

In order to make this list, the client application must know in advance how many contexts it
will need, which middleboxes should be included, and what their permissions should be. How it
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knows these things is beyond the scope of this document. ¿e format is as follows:

middlebox_list {
slice {

slice_id
purpose

}[ ]
middlebox {

address
middlebox_id
read_slices[ ]
write_slices[ ]

}[ ]
}

All elements of variable size are prepended with their length. slice_id is a single byte unique
identi�er that will uniquely identify an encryption context (each record will be tagged with a one
of these IDs—see Record Format). A slice purpose is a byte array with which the application may
specify the purpose of the slice. Eachmiddlebox is identi�ed by an address, which is a utf8 character
array containing either the domain name or IP address of the middlebox, and a middlebox_id,
which is a one byte unique identi�er. Each middlebox is also assigned a set of 0 or more contexts
from the list slice_ids for which the middlebox has read access and a set of 0 or more slices for
which the middlebox has write access. To have write access, a middlebox must also have read
access. ¿e middlebox_id values 0x00-0x02 are reserved, with 0x01 always identifying the client
and 0x02 always identifying the server.

A.3.2 Middlebox KeyMaterial Message

mcTLS introduces a new handshake message type for delivering context key material to mid-
dleboxes. During the handshake, both the client and server will send a MiddleboxKeyMaterial
message to each middlebox with tentative handshake message type 0x28. ¿e payload of the
message is encrypted with a symmetric key shared between the endpoint sending the message and
the middlebox receiving it and contains a “partial secret” for each context to which the middlebox
has access. Once a middlebox receives and decrypts a MiddleboxKeyMaterial message from both
the client and the server, it uses both secrets to generate the keys that will actually be used in the
encryption of application data (see Context Key Generation). ¿e format of the message is as
follows:

MiddleboxKeyMaterial {
middlebox_id
key_material {

slice_id
read_secret
write_secret

}[ ]
}
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A.3.3 Context Key Generation

¿e keys used to encrypt/decrypt and MAC-protect application data are called context keys. ¿ere
are six symmetric keys associated with each context:

• client_read_key: Encrypt/decrypt data from client to server.
• server_read_key: Encrypt/decrypt data from server to client.
• client_read_MAC_key: Compute reader MAC for data from client to server.
• server_read_MAC_key: Compute reader MAC for data from server to client.
• client_write_MAC_key: Compute writer MAC for data from client to server.
• server_write_MAC_key: Compute writer MAC for data from server to client.

For simplicity, when referring to these keys elsewhere in this document, we do not distinguish
between the client-to-server key and the server-to-client key (for example, we may simply refer to
a context’s read_MAC_key).

A er receiving a MiddleboxKeyMaterial message from each endpoint, all parties compute the
context keys for the contexts that they can access. For each context, each party uses the partial
secrets (one from the client and one from the server) to compute two blocks of key material:
read_key_block = PRF(client_read_secret + server_read_secret, "reader keys",

client_random + server_random)
write_key_block = PRF(client_write_secret + server_write_secret, "writer keys",

client_random + server_random)

¿e read_key_block is partitioned into client_read_key, server_read_key,
client_read_MAC_key, and server_read_MAC_key; the write_key_block is partitioned into
client_write_MAC_key and server_write_MAC_key.

A.4 Record Protocol

A.4.1 Record Format

¿e TLS record format includes 1 byte for identifying the type of message, 2 bytes for the version of
TLS in use, and 2 bytes for the message length. ¿e header is followed by the encrypted payload
including the message, MAC, and padding for block ciphers. We extend the header to include a 1
byte context ID:
0-------8---------------24--------------40------48----------------------------N
| TYPE | VERSION | LENGTH | CTXT | PROTECTED PAYLOAD |
-------------------------------------------------------------------------------

mcTLS uses a new TLS version number so that middleboxes and servers can identify an mcTLS
message by decoding only the �rst 3 bytes of the record. Tentatively, this version number is set to
6.102.

Upon receiving an mcTLS record from the wire, the mcTLS-aware client, middlebox, or server
must read the context ID value from the header and apply the correct encryption context in the
decryption operation. If a middlebox does not have keys for a particular context, it should forward
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the record unmodi�ed to the next middlebox or endpoint. If a client or server does not have keys
for the context, this should be treated as a protocol error.

Similarly, when generating a record for transmission on the wire, the mcTLS-aware application
must specify an encryption context. ¿e record protocol uses the corresponding keys to encrypt
and MAC-protect the payload and places the context ID in the record header.

A.4.2 Message Authentication Codes

TLS uses a keyed MAC to detect message tampering by parties. mcTLS uses three MACs for each
record:

• A reader MAC, generated with the context’s read_MAC_key. ¿is is used to detect changes
by third parties.

• A writer MAC, generated with the context’s write_MAC_key. ¿is is used to detect (illegal)
changes by middleboxes with read-only access.

• An endpoint MAC, generated with the endpoint_MAC_key. ¿is is used to detect (legal)
changes by middleboxes with write access.

¿e MAC format has not changed:
MAC_function(MAC_write_key, seq_num + record.type + record.version + record.length

+ record.content)

¿e plus sign, +, indicates concatenation. Sequence numbers are global across all encryption
contexts to enforce correct ordering of all application data at the client and server. In order to
maintain consistent sequence numbers across the full session, middleboxes must never modify the
number or order of mcTLS records on the communication medium.

¿e order of the MACs a er the record payload is not signi�cant and chosen arbitrarily to be:
payload, reader MAC, writer MAC, endpoint MAC.

A.5 Application Programming Interface

To enable mcTLS applications, the TLS API must be expanded to include new methods for specify-
ing the encryption context in use, handling of the MAC, and specifying the middleboxes to use in
a handshake. ¿e following methods have been added to the API:
int mcTLS_connect(SSL *ssl, mcTLS_SLICE* slices, int slices_len, mcTLS_PROXY *middleboxes, int middleboxes_len);
int mcTLS_middlebox(SSL *ssl, SSL* ( *connect_func)(SSL *ssl, char *address), SSL **ssl_next);
int mcTLS_get_slices(SSL *ssl, mcTLS_SLICE **slices, int *slices_len);
int mcTLS_get_middleboxes(SSL *ssl, mcTLS_PROXY **middleboxes, int *middleboxes_len);
mcTLS_PROXY* mcTLS_generate_middlebox(SSL *s, char* address);
mcTLS_PROXY* mcTLS_middlebox_from_id(SSL *ssl, int middlebox_id); **TO BE REMOVED**
mcTLS_SLICE* mcTLS_generate_slice(SSL *s, char* purpose);
mcTLS_SLICE* mcTLS_slice_from_id(SSL *ssl, int slice_id); **TO BE REMOVED**
int mcTLS_assign_middlebox_write_slices(SSL *s, mcTLS_PROXY* middlebox, mcTLS_SLICE* slices[ ], int slices_len);
int mcTLS_assign_middlebox_read_slices(SSL *s, mcTLS_PROXY* middlebox, mcTLS_SLICE* slices[ ], int slices_len);
int mcTLS_read_record(SSL *ssl, void *buf, int num, mcTLS_SLICE **slice, mcTLS_CTX **mac);
int mcTLS_write_record(SSL *ssl, const void *buf, int num, mcTLS_SLICE *slice);
int mcTLS_forward_record(SSL *ssl, const void *buf, int num, mcTLS_SLICE *slice, mcTLS_CTX *mac, int modified);

mcTLS_connect(...) expands on the standard TLS connectmethod to allow clients to specify
the middlebox list to be included in the extension of the handshake.
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mcTLS_generate_middlebox(...) is used by the client to generate the state for a middlebox.
¿is should be called once for each middlebox in the session and the resulting state objects passed
to mcTLS_connect(...).

mcTLS_generate_slice(...) is used by the client to initialize the state for each slice to be
used in a session. It should be called once be slice and the resulting state objects passed as an array
to mcTLS_connect(...).

mcTLS_assign_middlebox_write_slices(...) and
mcTLS_assign_middlebox_read_slices(...) are used to specify the slices that a middlebox
has read and write access to. Setting these will control the distribution of encryption contexts
during the handshake. Write access for a middlebox implies read access.

mcTLS_middlebox(...) is the equivalent call of mcTLS_connect(...) for a middlebox
implementation. Upon receiving a connection from a client, the middlebox will instantiate an
instance of the SSL library and call mcTLS_middlebox(...) passing a callback function. ¿e
callback function will be called during the handshake to enable the application to make a connec-
tion to the next middlebox or the server and create another SSL library instance for the second
connection.

mcTLS_read_record(...) is used by clients, servers, and middleboxes to read the next
available record from the communication medium. If there is no record available, the return value
is 0. slice returns the encryption context used to decrypt the message or an empty encryption
context if the speci�ed encryption context is not available to the middlebox. If an encryption
context is not available at either the client or the server, it should be treated as a fatal error.

mcTLS_write_record(...) is used by clients and servers. ¿e message is encrypted using
the speci�ed encryption context and written to the communication medium. If the encryption
context is not available, an error is returned.

mcTLS_forward_record(...) is used by mcTLS middleboxes to send a record on a er
processing. If the encryption context is not available, then the application data passed is treated as
an encrypted record and forwarded without further processing. If modi�ed is false, the speci�ed
MAC is used and the message is then encrypted. If modi�ed is true, the speci�ed MAC value is
ignore and a newMAC will be generated before encryption. Because the MAC generation includes
a sequence number, the middlebox must insure that the number of sent and received records
remains consistent and ordered upon each side of the middlebox.

mcTLS_SLICE is a new structure that includes the full encryption context of a traditional TLS
session. ¿e mcTLS client, server, and middlebox must maintain one structure for each encryption
context negotiated for the session. ¿e mcTLS_SLICE structure includes a slice_id 1 byte value
used to identify the slice within the mcTLS record format and a have_material boolean value that
indicates whether this client, server, or middlebox has the encryption context. Clients and servers
should treat the receipt of any message for a slice where have_material is not true as a protocol
error. ¿e structure has the following members which are relevant to the application.
mcTLS_SLICE {

int read_access;
int write_access;
char *purpose;

}

read_access and write_access are boolean values indicating whether the middlebox has
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read or write access to the slice, respectively. Clients and servers always have both read and write
access to all slices. Purpose is a null terminated string that is de�ned by the client before the
handshake to assign an application dependent meaning to the slice. It can be used to indicate what
type of application data should be pass with each slice.

mcTLS_CTX is context information from a previous call to mcTLS_read_record(...). Mid-
dlebox implementations should pass the context to the related mcTLS_forward_record(...)
call. Client and server implementations may ignore this value.
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Appendix B mcTLS Security Analysis

B.1 Handshake Protocol

¿emcTLS handshake is ultimately responsible for two things:
1. Distributing context keys to the correct entities. (¿e context keys are used to en-
crypt/decrypt/MAC application data, so if only the correct entities have the context keys
then only the correct entities can access/alter application data.)

2. Negotiating session con�guration parameters between the client and ther server. [cipher
suite, session path (list of middleboxes + server), number of contexts, middleboxes permissions
for each context]. (Doing this successfully implies that no one but the client and server—
including middleboxes—can force the session to use a weak encryption cipher or give
middleboxes higher permissions than the application intended.)

1. Distributing Context Keys Like TLS, mcTLS can operate in multiple authentication modes.
Any party may optionally authenticate any other party, with the exception that middleboxes never
authenticate one another. As we argue below, as long as each middlebox and the server are authenti-
cated by at least one endpoint (though clearly the client must be the one to authenticate the server),
a man-in-the-middle attack is not possible. In particular, it is su�cient for the client to authenticate
each middlebox and the server; the middleboxes and the server do not need to authenticate anyone.
For simplicity, in the rest of this document we assume that the client authenticates everyone.

Since the client sends partial context secrets to each party encrypted under a symmetric key it
shares with that party, it is su�cient to show that each symmetric key the client establishes is really
shared by the correct entity (see below). (Even if the server does not authenticate anyone and sends
partial context secrets to an adversary, the server’s partial secrets are useless without secrets from
the client as well.)

2. Session Con�guration Many con�guration parameters are exchanged before any parties have
established shared keys, so they are sent in the clear. ¿ese values’ being visible is not a security risk,
but an attacker could weaken the security of the session by actively modifying these messages in
�ight (e.g., to make the endpoints pick a weaker encryption algorithm than they ordinarily would).

Endpoints: If handshake messages are modi�ed, the client and server will compute di�erent
handshake transcript hashes and will abort the session when they notice the discrepancy. Since
these hashes are protected by endpoint_MAC_key, an adversary cannot update them to re�ect any
changes it made to earlier handshake messages. ¿erefore, to show that con�guration parameters
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are safe, it is su�cient to show that the client establishes a shared key with the correct server (see
below).

Middleboxes: mcTLS does not give middleboxes a way to verify the handshake transcript.
¿is means an adversary could arbitrarily alter any handshake message sent to a middlebox.
Middleboxes forward all handshake messages to the opposite endpoint, but the adversary could
drop the forwarded modi�ed message and replay the correct message to the endpoint, making this
attack undetectable by the endpoints when they exchange Finished messages. For each piece of
information carried by the handshake in the clear, we argue that the security of the session is not
compromised if the middlebox cannot verify it.

• Cipher Suite: ¿e endpoints pick a cipher suite without input from middleboxes. If the
cipher suite is modi�ed by anyone (attacker or middlebox), the endpoints will detect the
change. Attackers cannot in�uence the choice of cipher suite by modifying the cipher suite
right before the ClientHello/ServerHello passes through a middlebox and correcting the
change before it is forwarded to an endpoint. In this case, the middlebox will not be able to
decrypt application data, but this is a denial of service attack (no di�erent from the adversary
dropping all packets to that middlebox).

• Number of Contexts: Same argument.
• Middlebox Context Permissions: Same argument.
• Session Path:¿e session path is more subtle because middleboxes actually use this infor-
mation during the handshake process—it tells each one what “next hop” to connect to. An
adversary could replace the last hop in the path—the intended server S—with an alternate
server, S’. ¿e last middlebox in the path, M, would connect to S’ and successfully establish a
key with it. (¿is works even if M authenticates the server, because authentication depends
on checking a certi�cate, which requires that you know the domain name of the correct
party. In this case, the adversary has altered the domain name in the session path, making
M think that S’ is the correct server.) Meanwhile, the adversary sends S copies of all of the
expected handshake messages, so the client and the server do not detect that anything is
amiss. However, this attack does not succeed: S’ does not learn the context keys. ¿is is
because middleboxes never use the shared keys they establish with each endpoint to forward
context key material; they only use them to receive context key material. So, S’ can send
bogus context keys to M (a DoS attack). And even though the client sends legitimate context
keys to M, M never forwards these to S’ encrypted under a key S’ knows.

Key Exchange So far we have determined that the mcTLS handshake succeeds in its two goals if
the client successfully establishes a shared key with each party (known only to the client and that
party). Here we argue that this is the case:

Client-Server Key Exchange: ¿e client and server use a standard TLS KE mechanism to
derive a shared secret. Although mcTLS adds extra information to these handshake messages for
other purposes, the information related to client-server KE is unchanged and is used exactly as it is
used in TLS. ¿erefore, with respect to client-server KE, mcTLS inherits TLS’ security properties.
(¿e fact that these messages are now forwarded via one or more middleboxes is irrelevant; as far
as client-server KE is concerned, the middleboxes are just like any other third-party entity that
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TLS was designed to protect against.)
Client-Middlebox Key Exchange: mcTLS adds client-middlebox key exchanges to the TLS

handshake. ¿ese KEs are performed using standard TLS KE mechanisms. By considering the
middleboxes one at a time, the messages exchanged between the client and each middlebox look
like a standard client-server TLS KE (and are generated/used just as they would be if the middlebox
were a server in a normal TLS KE). ¿erefore, the client establishes a shared secret with each
middlebox with the same security properties as a normal TLS KE.

Note: It may seem strange that the middleboxes do not need to authenticate anyone. ¿is is
because mcTLS is designed with the philosophy that the session “belongs to” the endpoints. ¿e
endpoints decide which middleboxes should be able to access/alter application data and mcTLS
enforces this. In contrast, middlebox A cannot ensure that middlebox B does or does not have
access to a session; we view this as a policy issue, not a security property for mcTLS to guarantee.

B.2 Record Protocol

¿e mcTLS record protocol carries data which has been assigned by the application to one of
multiple encryption contexts. Each context has two keys: a read key and a write key. ¿e endpoints
also share a key (the endpoint key) that is not particular to any one context. Before sending a
record, mcTLS MAC-protects and encrypts it in the same way TLS would, except that mcTLS
encrypts using the context’s read key and generates three MACs, one for each key. ¿e handshake
protocol ensures that the correct parties have the correct context keys.

Read/Write Access Which contexts an entity can read or write depends on which keys it has.
• ¿ird parties.¿e handshake ensures that third parties learn no context keys, so they cannot
decrypt application data or recompute MACs (so they can neither read nor write). ¿e same
security properties that apply to third parties in TLS apply in mcTLS.

• Readers.Middleboxes with read-only permission for a context are given only the read key.
¿is means they can decrypt the data, but cannot recompute the writer or endpoint MACs,
so they do not have write access. (More on checking MACs below.)

• Writers.Middleboxes with read+write permission for a context have both the read key and
the write key, meaning they can decrypt (read access) and recompute the write MAC (write
access).

• Endpoints. Endpoints know all context keys, so they have full read+write access to the data
stream.

Detecting IllegalWrites: “Illegal reads” simply cannot happen; parties without read permission
do not know the decryption key. Illegal writes (i.e., modi�cations by middleboxes with read-only
access) are possible in the sense they can use the read key to decrypt, change, and re-encrypt
application data. mcTLS’ endpoint-writer-reader MAC scheme allows endpoints and writers to
detect such modi�cations.

Readers
• Can detect third party changes because each record includes a MAC computed with the
read key. (Endpoints and writers generate this MAC whenever they modify a record.)
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• Cannot detect changes by other readers because all readers know the read key, so another
reader could make an illegal change and generate a new, valid read MAC. Developers of
middlebox so ware should be aware of this limitation and take appropriate precautions if
illegal changes by another reader could pose a security risk to their application.

• Cannot detect writer changes because they do not know the write key (and so cannot verify
the writer MAC). ¿is is okay, because a change by a writer is not a security violation.

Writers
• Can detect third party changes by checking the reader MAC.
• Can detect reader changes by checking the writer MAC.
• Cannot detect changes by other writers because all writers know the write key, so they can
generate a new, valid writer MAC. Again, a change by a writer is not a security violation.

Endpoints
• Can detect third party changes by checking the reader MAC.
• Can detect reader changes by checking the writer MAC.
• Can detect writer changes by checking the endpoint MAC. Again, a writer change is not a
security violation, but the endpoint application may be curious whether or not the record
was changed by a middlebox.

Dropping, Reordering, or Replaying Records Like TLS, records in mcTLS carry sequence
numbers (included in the MACs) to prevent dropping, reordering, or replaying records. In mcTLS,
sequence numbers are global across contexts, otherwise attackers could delete a context entirely or
drop the last record in a context without detection. Like TLS, separate encryption/MAC keys in
each direction prevent replaying a record from one direction in the other direction.
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Appendix C mbTLS Protocol Details

¿is appendix describes the message formats and protocol constants used in our implementation
of mbTLS. It follows the formatting conventions set forth in the RFC 5246 (TLS 1.2) [94].

C.1 Record Protocol

mbTLS adds three new record types (bold):

enum {
change_cipher_spec(20),
alert(21),
handshake(22),
application_data(23),
mbtls_encapsulated(30),
mbtls_key_material(31),
mbtls_middlebox_announcement(32),
(255)

} ContentType;

Encapsulated. ¿e MBTLSEncapsulated record is used to carry secondary handshake messages.

struct {
uint8 subchannelId;
opaque record[TLSPlaintext.length-1];

} EncapsulatedRecord;

Here, record is another complete TLS record. Because the inner record is the outer recordâĂŹs
payload, which is limited to 214 bytes, and because the subchannel ID uses 1 byte, the inner record’s
payload is limited to 214−1 bytes. MBTLSEncapsulated records may only be sent during handshake
or renegotiation.
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Key Material. ¿e MBTLSKeyMaterial record is used by endpoints to send symmetric key
material to their middleboxes.

struct {
uint32 key_len;
uint32 iv_len;
opaque clientWriteKey[key_len];
opaque clientWriteIV[iv_len];
opaque clientReadKey[key_len];
opaque clientReadIV[iv_len];
opaque serverWriteKey[key_len];
opaque serverWriteIV[iv_len];
opaque serverReadKey[key_len];
opaque serverReadIV[iv_len];

} VMPGCMKeyMaterial;

struct {
Version client_server_version;
opaque client_to_server_sequence[8];
opaque server_to_client_sequence[8];
CipherSuite cipher_suite; /* 2 bytes */
select(cipher_suite) {

case TLS_RSA_WITH_AES_256_GCM_SHA384:
VMPGCMKeyMaterial;

}
} VMPKeyMaterial;

¿e MBTLSKeyMaterial message is always sent encapsulated in a subchannel (i.e., in an
MBTLSEncapsulated record). It contains the TLS version negotiated between the client and the
server, the sequence number for client-to-server data (write sequence from client’s perspective and
read sequence from server’s) and the sequence number for server-to-client data. It also contains
key and IV material in a format dependent on the cipher suite.

Middlebox Announcement. ¿e MBTLSMiddleboxAnnouncementmessage is used by middle-
boxes to alert the server to their presence.

struct {
} VMPMiddleboxAnnouncement;

¿e MBTLSMiddleboxAnnouncementmessage is always sent encapsulated in a subchannel (i.e.,
in an MBTLSEncapsulated record). ¿emessage is empty, and only serves to alert the server of the
middlebox’s presence. Middleboxes never send this message to a client; to announce themselves to a
client, they simply respond to the ClientHello in the MiddleboxSupportExtension described
below.
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C.2 Handshake Protocol

mbTLS adds one handshake protocol message (bold):

enum {
hello_request(0), client_hello(1), server_hello(2),
certificate(11), server_key_exchange (12),
certificate_request(13), server_hello_done(14),
certificate_verify(15), client_key_exchange(16),
sgx_attestation(17),
finished(20), (255)

} HandshakeType;

SGX Attestation. ¿e SGXAttestation handshake message can be optionally used during the
handshake for the server to send the client an SGX attestation (quote). ¿is feature is independent
of the rest of mbTLS.

struct {
opaque sgx_quote<0..2^14-1>;

} SGXAttestation;

sgx_quote follows Intel’s sgx_quote_t format.

Middlebox Support Extension. mbTLS also adds one TLS extension, the
MiddleboxSupportExtension:

struct {
uint8 numHellos;
uint16 helloLengths[numHellos];
opaque clientHellos[numHellos];

} MiddleboxSupportExtension;

¿e MiddleboxSupportExtension is sent by a TLS client in the ClientHellomessage. It
indicates that the client supports mbTLS, inviting on-path middleboxes to announce themselves to
the client. ¿e extension carries one ormore “optimistic” ClientHellos, to which themiddleboxes
may respond with ServerHellos.
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