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Abstract

The theory of approximation algorithms has seen great progress since 90’s,
and the optimal approximation ratio was revealed for many fundamental com-
binatorial optimization problems. Despite this success for individual prob-
lems, our understanding is not complete to have a unified understanding of
each class of problems. One of the most notable exceptions is an important
subclass of CSPs called MAX CSP, where there is a simple semidefinite pro-
gramming based algorithm provably optimal for every problem in this class
under the Unique Games Conjecture. Such a complete understanding is not
known for other basic classes such as coloring, covering, and graph cut prob-
lems.

This thesis tries to expand the frontiers of approximation algorithms, with
respect to the range of optimization problems as well as mathematical tools for
algorithms and hardness. We show tight approximabilities for various funda-
mental problems in combinatorial optimization beyond MAX CSP. It consists
of the following five parts:

1. CSPs: We introduce three variants of MAX CSP, called HARD CSP,
BALANCE CSP, and SYMMETRIC CSP. Our results show that current
hardness theories for MAX CSP can be extended to its generalizations
(HARD CSP, BALANCE CSP) to prove much stronger hardness, or can
be significantly simplified for a special case (SYMMETRIC CSP).

2. Applied CSPs: Numerous new optimization problems have emerged
since the last decade, as computer science has more actively interacted
with other fields. We study three problems called UNIQUE COVERAGE,
GRAPH PRICING, and decoding LDPC codes, motivated by networks,
economics, and error-correcting codes. Extending tools for MAX CSP,
we show nearly optimal hardness results or integrality gas for these prob-
lems.

3. Coloring: We study complexity of hypergraph coloring problems when
instances are promised to have a structure much stronger than admitting
a proper 2-coloring, and prove both algorithmic and hardness results.
For both algorithms and hardness, we give unifed frameworks that can
be used for various promises.



4. H -TRANSVERSAL: We study H -TRANSVERSAL, where given a graph
G and a fixed “pattern” graph H , the goal is to remove the minimum
number of vertices from G to make sure it does not include H as a sub-
graph. We show an almost complete characterization of the approxima-
bility of H -TRANSVERSAL depending on properties of H . One of our
algorithms reveals a new connection between path transversal and graph
partitioning.

5. We also study various cut problems on graphs, where the goal is to re-
move the minimum number of vertices or edges to cut desired paths or
cycles. We present a general tool called length-control dictatorship tests
to prove strong hardness results under the Unique Games Conjecture,
which allow us to prove improved hardness results for multicut, bicut,
double cut, interdiction, and firefigher problems.
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Chapter 1

Introduction

1.1 Combinatorial Optimization

Combinatorial optimization is a topic that involves searching for an optimal object from a
finite set of objects. Every combinatorial optimization problem studied in this thesis has
the following general structure.

Problem P .

Input: An object I that implicitly defines the feasible set XI and the objective func-
tion fI : XI → R+.

Output: A feasible solution x ∈ XI .

Goal: Minimize (or maximize) fI(x).

Let n := |I|, the length of the string representing I . Every problem in this thesis is an
NP-optimization problem in the sense that (1) the length of every x ∈ XI , (2) the time to
check whether x ∈ XI , (3) the time to compute fI(x) are all bounded by a polynomial in
n. The biggest bottleneck is that the feasible set XI may contain as many as exp(poly(n))
feasible solutions, which makes the trivial algorithm of trying every x ∈ XI prohibitively
inefficient. Therefore, one of the biggest goals of combinatorial optimization is to design
an algorithm that computes the optimal feasible solution in polynomial time.

Since its establishment as a coherent discipline in the 1950’s [Sch05], it has been
actively studied from mathematics, operations research, and computer science. Its in-
herent interdisciplinarity is based on the three pillars that are indispensable for complete
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understanding of each problem in the topic — algorithms, hardness, and mathematical
programming. Edmonds’ seminar paper for MAXIMUM MATCHING [Edm65] pioneered
the relationship between efficient algorithms and the properties of associated polyhedra
formed by natural linear programming (LP) relaxations. This tight relationship has been
proved to hold for so many combinatorial optimization problems, that one of the most
comprehensive textbooks in the field is devoted to it [Sch03].

On the other hand, the same paper successfully established polynomial time as the
major criterion to measure an algorithm’s efficiency. This work is followed by the Cook-
Levin theorem [Coo71, Lev73] and Karp’s 21 NP-complete problems [Kar72] that show
NP-completeness of some fundamental combinatorial optimization problems, implying
they will not admit an efficient algorithm unless P = NP. Active subsequent research
has successfully identified the complexity of each problem, so already in the early 21th
century “almost every combinatorial optimization problem has since been either proved to
be polynomial time solvable or NP-complete.” [Sch03]

1.2 Approximation Algorithms

Unfortunately, numerous combinatorial optimization problems have been proved to be
NP-complete, so polynomial time algorithms are unlikely to exist for those problems.
Approximation algorithms are considered as one of the most natural ways to circumvent
this difficulty.

Definition 1.2.1. For a maximization problem P , an algorithmA is called a c-approximation
algorithm (c ≤ 1) for P if for every input I , A runs in time poly(|I|) and outputs
A(I) ∈ XI such that

fI(A(I)) ≥ c ·max
x∈XI

fI(x).

For a minimization problem P , an algorithm A is called a c-approximation algorithm
(c ≥ 1) for P if for every input I , A runs in time poly(|I|) and outputs A(I) ∈ XI such
that

fI(A(I)) ≤ c · min
x∈XI

fI(x).

The number c is called an approximation ratio or approximation factor.

Similarly to the study of designing an exact algorithm, the study of approximation
algorithms and hardness of approximation have produced beautiful results that tighten
the relationship between algorithms, hardness, and mathematical programming. From
the algorithms side, the work of Goemans and Williamson [GW95] introduced one of
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the first applications of semidefinite programming (SDP) to approximation algorithms,
strictly improving the previous algorithms based on linear programming (LP). The search
for more powerful convex relaxations beyond LP and SDP has produced several LP and
SDP hierarchies, including Lovász-Schrijver [LS91], Sherali-Admas [SA90], and Sum-
of-Squares [Par00, Las01].

From the hardness side, the celebrated PCP theorem [ALM+98, AS98] first proved
that there exists a universal constant c < 1 such that it is NP-hard to approximate MAX

3-SAT within a factor of c. The parallel repetition theorem [Raz98] and the introduction
of long codes [BGS98] created a framework to prove strong hardness results for many
problems, culminating in Håstad’s optimal inapproximability results for various constraint
satisfaction problems [Hås01]. The Unique Games Conjecture [Kho02b] (UGC), though
its truth seems far from being settled, suggested even tighter relationships between mathe-
matical programming and hardness of approximation. Raghavendra [Rag08] showed that
assuming the UGC, for every problem in the wide class of problems called MAX CSP, no
polynomial time algorithm outperforms an algorithm based on natural SDP relaxations.
Conversely, ideas from computational hardness results often led to limitations of con-
vex relaxations [KV05, Sch08, Tul09, BCK15] for some problems by showing integrality
gaps.

1.2.1 Three Examples

For many decades, numerous combinatorial optimization problems have been studied in
terms of their exact solvability and approximability. While precisely classifying them into
well-defined categories is hard, there are several classes of problems that share some con-
ceptual/technical properties and techniques to study them. In this thesis, we focus on three
classes of problems, namely Constraint Satisfaction Problems (CSPs), coloring problems,
and covering problems. These three classes have been a focal point of combinatorial op-
timization and approximation algorithms research. They include 13 out of 21 Karp’s NP-
hard problems [Kar72] and 13 out of 23 problems covered by Vazirani’s textbook [Vaz01].
The more recent textbook by Williamson and Shmoys [WS11] also spend 30 out of its 60
technical sections on these three classes. We introduce the following three problems, one
from each class, whose approximabilities have been actively studied.

CSPs. From 3-SAT, CSPs have always played a crucial role in both exact and approx-
imate optimization. One of the most well-known CSPs in the approximation algorithms
literature is the following simple problem.
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MAX CUT

Input: A graph G = (V,E).

Output: A partition (A,B) of V (i.e., A ∪B = V , A ∩B = ∅).

Goal: Maximize the number of edges that have one endpoint in A and one endpoint
in B.

This problem belongs to a wide class of problems known as MAX CSP, where the input
consists of a set of variables and a set of constraints whose satisfaction depends on a small
number of variables, and the goal is to find an assignment to the variables to maximize the
number of satisfied constraints (see Section 2.1 for the precise definition).

For MAX CUT, a simple greedy approximation algorithm achieves a 0.5-approximation.
Goemans and Williamson [GW95] designed a 0.878-approximation algorithm that spurred
the study of applying SDPs to approximation algorithms. From the hardness side, the PCP
theorem [ALM+98, AS98] proved that there exists c > 0 such that it is NP-hard to ap-
proximate within a (1 − c) factor. Hastad’s optimal inapproximability results for some
other problems in MAX CSP, combined with the gadget of Trevisan et al. [TSSW00],
implied that MAX CUT is NP-hard to approximate within a factor of 17/16. Finally,
Khot et al. [KKMO07] showed that the 0.878-approximation algorithm by Goemans and
Williamson is tight under the Unique Games Conjecture.

While the approximability of MAX CUT is well understood, there are still important
open questions regarding the approximability of CSPs, motivatied by both theory and
applications. Building on the previous algorithms and hardness techniques for MAX CUT

and other CSPs, this thesis answers some of these questions.

Coloring. Given a map of countries, can we always color them with four colors so that
no adjacent countries get the same color? Starting from this natural question in mathemat-
ics known as the four color theorem, graph coloring has a history longer than computer
science. Surprisingly, the approximability of the following basic optimization problem is
still wide open.

COLORING 3-COLORABLE GRAPHS

Input: A graph G = (V,E) that admits a 3-coloring c : V → {1, 2, 3} such that
every edge (u, v) ∈ E satisfies c(u) 6= c(v).
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Output: A coloring d : V → {1, 2, . . . , χ} such that every edge (u, v) ∈ E satisfies
d(u) 6= d(v).

Goal: Minimize χ.

This problem has been an interesting testbed for both combinatorial ([Wig83, Blu94,
KT12]) and SDP-based algorithms ([KMS98a, AC06, Chl07]). Currently the best known
approximation algorithm guarantees χ = O(n0.19996) colors [KT17]. From the hardness
front, Garey et al. [GJS76] showed that it is NP-hard to color G with three colors, which
was improved to four colors [KLS00, GK04]. Assuming a variant of the Unique Games
Conjecture, Dinur et al. [DMR09] proved that it is NP-hard to color with any constant
number of colors.

This notion of graph coloring can be extended to hypergraphs where each edge can
contain more than two vertices. There are multiple notions of hypergraph coloring that
have been actively studied in mathematics and computer science, and this thesis studies
three such notions of coloring.

Cut and Covering. Given a graph, cut problems ask to remove the minimum number of
edges or vertices so that the resulting graph is not well-connected. While MINIMUM CUT

is one of the most famous combinatorial optimization problems that admit a polynomial
time algorithm, most other natural cut problems are NP-hard and we need to rely on ap-
proximation algorithms. The following problem is a natural generalization of MINIMUM

CUT.

UNDIRECTED MULTICUT

Input: A graph G = (V,E) and k pairs of vertices (s1, t1), . . . , (sk, tk).

Output: A subset F ⊆ E of edges such that in (V,E \ F ), every si is disconnected
from ti.

Goal: Minimize |F |.

This problem initiated the study of cuts and metrics and their relations to LP [LR99,
LLR95, GVY96, AR98], and the best approximation ratio is O(log k) [GVY96, AR98].
It is NP-hard to approximate within a factor 1 + ε for some ε > 0 [DJP+94], and NP-
hard to approximate within any constant factor assuming the Unique Games Conjec-
ture [CKK+06].

5



Cut problems can be generalized in many ways. They can be generalized to graph
covering problems where we want to choose the smallest subset of edges or vertices that
satisfies certain properties. For example, another important subclass of graph covering
problems is connectivity problems where we want to choose the smallest subset of edges or
vertices such that they induce a well-connected subgraph (e.g., TRAVELING SALESMAN

and STEINER TREE).

They all belong to the wide class of covering problems, where the input is a general
set system (a universe U and a collection of its subsets F = {S1, . . . , Sm}), and the
goal is to find the smallest subset T ⊆ U that intersects every Si (for UNDIRECTED

MULTICUT, given an instance G = (V,E) and (si, ti)1≤i≤k, take U = E and F to be
collection of all paths from si to ti). The approximability of the most general problem in
this class, MINIMUM SET COVER, is well understood [Fei98], but the techniques for this
problem cannot be easily applied to the above special classes. This thesis provides general
frameworks to study cut problems and graph covering problems.

1.3 This Thesis

This thesis tries to continue this line of work to prove the (nearly) optimal approximabil-
ities for combinatorial optimization problems. Our main contributions can be classified
into the following two categories: we expand the range of problems with optimal approx-
imation ratios, and the body of techniques and perspectives used to study them.

1.3.1 Expanding the Range of Problems

As alluded to by the three example problems in the previous section, this thesis studies
approximabilities of the three classes of combinatorial optimization problems: MAX CSP,
coloring, and graph covering problems. Results regarding MAX CSP and related problems
appear in Part I and II. Part III studies various notions of hypergraph coloring. Part IV
studies a special case of graph covering problems called H -TRANSVERSAL, and Part V
proves hardness of various cut problems. The final Chapter 19 discusses some future
directions naturally emerging from the results of this thesis, as well as other major classes
of optimization problems not covered in the thesis.

Recall that among three problems introduced (MAX CUT, COLORING 3-COLORABLE

GRAPHS, UNDIRECTED MULTICUT), MAX CUT is the only problem where the best ap-
proximation algorithm and the best hardness result match. This is not a coincidence,
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and most of the classic aforementioned algorithms and hardness results, including the
Goemans-Williamson algorithm [GW95], the PCP theorem [ALM+98, AS98], the par-
allel repetition theorem [Raz98], Håstad’s optimal inapproximability results [Hås01], the
UGC [Kho02b], and the optimality of SDP-based algorithms [Rag08] focus on MAX CSP.
While it is a wide class that contains many natural problems including MAX 3-SAT and
MAX CUT, there are numerous fundamental problems not captured by this class.

One of the most fundamental classes of problems not captured by MAX CSP is cov-
ering/packing problems, which include fundamental graph problems such as MAXIMUM

MATCHING, MAXIMUM DISJOINT PATHS, MINIMUM CUT. They have played an impor-
tant role in the development of exact combinatorial optimization algorithms. Although the
most general problems in the class (e.g., MINIMUM SET COVER and MAXIMUM INDE-
PENDENT SET), or some simple problems (e.g., VERTEX COVER) are well understood,
approximabilities of many fundamental problems in the class are not completely under-
stood yet. Also for coloring, as manifested by the large gap for COLORING 3-COLORABLE

GRAPHS, there are large gaps between algorithms and hardness results.

In addition to classical combinatorial optimization problems, the success of formulat-
ing numerous computational tasks as optimization problems creates new challenges and
opportunities for approximation algorithms. Such examples arise from various academic
fields including information/coding theory, machine learning/data mining, and computa-
tional economics.

One of the biggest goals of this thesis is to prove the (nearly) optimal approximation
factors for old and new problems beyond MAX CSP, hence the title Optimal approxima-
bilities beyond CSPs. We briefly summarize our contribution categorized by the problem
classes. See Chapter 2 for the formal definitions of the problems and our results on them.

Part I: CSPs. We start our thesis by revisiting MAX CSP. The result of Raghaven-
dra [Rag08] states that assuming the Unique Games Conjecture, a simple SDP-based al-
gorithm achieves the best approximation factor. While this seems to completely close the
study of MAX CSP, we address the following two questions:

1. The original MAX CSP allows every assignment to be feasible. What happens if we
only allow certain assignments to be feasible?

2. There are some special cases of MAX CSP where it is NP-hard to strictly outperform
a simple algorithm that assigns an independent random value to each variable. Can
we completely characterize these special cases?
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Chapter 4 studies the first question. We introduce two variants of MAX CSP called
BALANCE CSP and HARD CSP that capture the first question. For BALANCE CSP, an
assignment becomes feasible if and only if every value in the domain is assigned to the
same number of variables. For HARD CSP, the input consists of hard constraints and soft
constraints. An assignment is feasible if and only if it satisfies all hard constraints, and
our goal is to maximize the number of satisfied soft constraints. We show that these two
ways of restricting the set of feasible assignments make MAX CSP significantly harder.
One of the most surprising results of this chapter is the large difference between MAX

2-SAT and MAX CUT. The best approximation factor for MAX CUT and MAX 2-SAT is
0.878 [GW95] and 0.941 [LLZ02] respectively, which seems to suggest that MAX 2-SAT
is easier than MAX CUT. However, the hard version and the balance version of MAX CUT

both admit a robust algorithm, but neither of those for MAX 2-SAT does admit such an
algorithm (HARD 2-SAT does not even admit a constant factor approximation)!

Chapter 5 studies the second question. A CSP is called approximation resistant if
the best approximation factor (achieved by Raghavendra’s SDP) is also achieved by a
simple algorithm where each variable gets an independently sampled value from its do-
main. There is a large volume of work characterizing when a CSP is approximation resis-
tant [AH13, AK13, KTW14], but the characterization tends to be technically complicated.
We study a natural subclass of MAX CSP called SYMMETRIC CSP, and give a simpler
characterization for approximation resistance.

Part II: Applied CSPs. This part studies problems that can model real-world scenarios,
especially in economics and error-correcting codes. These problems can be thought as
variants of CSPs, but additional technical ideas are required in order to understand their
approximabilities. Chapter 6 proves nearly optimal NP-hardness of UNIQUE COVERAGE.
While this problem can be thought as a special case of MAX CSP, it also has a close con-
nection to MINIMUM SET COVER, which allows it to model situations in wireless/radio
networks and pricing.

Chapter 7 settles the tight approximation ratio for GRAPH PRICING that models the
following simple scenario with a single seller and multiple customers. Given a graph
G = (V,E), each vertex represents a type of items that the seller has, each with unlimited
copies. Each edge e = (u, v) corresponds to a customer that has her own budget be and is
interested in buying one item of type u and one item of type v. The customers are single-
minded in the sense that each customer e = (u, v) buys both u and v if the sum of the prices
does not exceed her budget (i.e. be ≥ p(u) + p(v), where p(v) indicates the price of item
v), in which the seller gets p(u) + p(v) from the customer. Otherwise, the customer does
not buy anything and the seller gets no profit from this customer. The goal of the seller is
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to set a nonnegative price to each item to maximize her profit from m customers. There
is a very simple (1/4)-approximation algorithm [BB07, LBA+07], and there have been
significant efforts to improve this algorithm or prove its optimality [KKMS09, KMR11,
CKLN13]. We finally prove the optimality of this simple approximation algorithm, by
introducing an intermediate problem called GENERALIZED MAX DICUT. While GRAPH

PRICING cannot be formally captured by combinatorial optimization since each vertex can
be assigned a positive real number, this intermediate problem bridges the current tools for
combinatorial optimization problems and GRAPH PRICING.

Chapter 8 studies the performance of an algorithm that decodes LDPC codes by for-
mulating it as a convex optimization problem. Previous results [Fel03, FWK05, FMS+07]
showed that formulating it as a LP achieves some nontrivial guarantee, and also proved its
limitations. We prove that formulating as a much stronger Sum-of-Squares hierarchy does
not significantly improve the performance.

Part III: Coloring. Graph coloring requires that for each edge (u, v), the color of u
must be different from the color of v. If we consider hypergraphs where each edge can
have more than two vertices, there are multiple ways to generalize this notion. One of the
most popular notions in computer science is weak coloring, where each hyperedge has to
have at least two different colors (e.g., it is okay to have all but one vertices have the same
colors). Under this notion, strong hardness results were proved [GHS02, DRS05, DG13,
GHH+14, KS14a, Hua15].

How can we strengthen the notion of weak coloring? In a k-uniform hypergraph and
a valid 2-weak coloring that colors each vertex with blue or red, each hyperedge can have
1 blue color and k − 1 red colors. What if we require that the number of blue vertices
and the number of red vertices are exactly the same in each hyperedge? Will it make the
task of weak coloring easier? The answer is yes, and there are simple random walk and
SDP-based algorithms that efficiently find a valid 2-coloring. So the next natural question
is when the two numbers are roughly the same in each hyperedge (e.g., differ by at most 1
or 2).

This notion is called low-discrepancy coloring, and we consider two more notions
called rainbow coloring and strong coloring. Informally, rainbow coloring requires that
every hyperedge has to have all possible colors at least once (so the number of colors
is at most the minimum cardinality of a hyperedge), and strong coloring requires that in
every hyperedge, no color appears more than once (so the number of colors is at least the
maximum cardinality of a hyperedge). All three notions imply weak-colorability. These
problems naturally capture a wider class of combinatorial optimization problems (e.g.,
scheduling), and exhibit a richer connection to discrepancy theory.
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In Part III, we study the approximability of weak coloring where the input hypergraph
is promised to admit one of these three strong notions of coloring. We present algorithms
that exploit such a strong structure, and also prove that weak coloring is still computation-
ally hard even under these strong promises. One of our main results proves that even when
a hypergraph admits a 2-coloring where in each hyperedge the number of blue vertices and
the number of red vertices differ by at most 2, it is NP-hard to find a weak c-coloring for
any constant c > 0.

Part IV: Subgraph Transversal and Graph Partitioning. Recall that a graph covering
problem refers to a problem where the input is a graphG = (V,E) and the goal is to choose
the minimum number of vertices or edges that satisfy some properties. In this part, we are
interested in the property that G does not include a specific subgraph H after removing
the chosen vertices or edges. There are numerous theorems from extremal graph theory
that estimate the size of the optimal solution for fixed G and H , starting from the famous
Turán’s theorem that studies how many edges we need to remove from an n-clique in order
to not include a k-clique.

LetH -TRANSVERSAL be the optimization problem where given a graphG and a fixed
“pattern” graph H , the goal is to remove the minimum number of vertices from G so that
it does not include H as a subgraph.1 Besides its connection to extremal graph theory,
this problem captures many fundamental combinatorial optimization problems as special
cases.

• WhenH is a single edge,H -TRANSVERSAL becomes the famous VERTEX COVER.

• When H is a k-Star, a tree with k vertices where each of k − 1 leaves has an edge
between the root, H -TRANSVERSAL becomes a natural degree reduction problem
where we want to remove the minimum number of vertices so that the maximum
degree becomes strictly less than k − 1. If G is a (k − 1)-regular graph, it becomes
MINIMUM DOMINATING SET.

• When H is a simple path with k vertices, H -TRANSVERSAL has been known as k-
PATH VERTEX COVER or Pk-HITTING SET that has been actively studied for small
values of k = 3, 4.

• When H is a family of all cycles instead of a single graph, H -TRANSVERSAL be-
comes FEEDBACK VERTEX SET.

1We also study the packing version in Part IV and the edge deletion version in the full version [GL15b].
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We try to characterize the approximability of H -TRANSVERSAL depending on H . When-
ever H has k vertices, there is a simple k-approximation algorithm. We show that for any
2-vertex connectedH , this algorithm is likely to be optimal, and complement this hardness
by presenting O(log k)-approximation algorithms for two 1-connected graphs, k-STAR

TRANSVERSAL and k-PATH TRANSVERSAL. Our algorithm for k-PATH TRANSVERSAL

uses the algorithm for k-VERTEX SEPARATOR as a subroutine, where given a graph G,
the goal is to remove the minimum number of vertices so that each connected component
has at most k vertices.

Part V: Cut Problems. Since the Max-Flow Min-Cut theorem, cut problems have played
an important role in the development of combinatorial optimization. One of the most im-
portant consequences of this theorem is a polynomial time exact algorithm for s-t MIN

CUT, where given a directed graph G and two vertices s and t, the goal is to remove the
minimum number of edges to ensure that there is no path from s to k. Consider a natural
generalization of this problem where we are given four vertices s1, t1, s2, t2, and we want
to remove the minimum number of edges to ensure that there is no path from s1 to t1 and
s2 to t2. A simple 2-approximation algorithm exists because we can separately compute
the minimum s1-t1 cut and the minimum s2-t2 cut and take their union. Is this simple
algorithm optimal?

In Part V, we also study various cut problems on graphs, where the goal is to remove
the minimum number of vertices or edges to cut desired paths, and prove strong hardness
results. The problems we study include multicut, bicut, doublecut, length-bounded cut,
interdiction, and firefighter problems. In particular, our results imply that the simple 2-
approximation above is optimal under the Unique Games Conjecture. Approximation
algorithms for cut problems, as well as the exact algorithm for s-t MIN CUT, are closely
related to their LP relaxations and metrics formed by the LP solutions. We introduce
a length-control dictatorship test that can prove hardness of such problems in a unified
manner based on their LP gap instances.

1.3.2 Methods and Tools

Our results in this thesis is the combination of algorithms, hardness results, and perfor-
mances of LP/SDP relaxations. Chapter 3 formally introduces mathematical and algo-
rithmic tools commonly used in this thesis, with simple illustrations showing how they are
used to design approximation algorithms or prove hardness of approximation results. More
advanced tools required for specific parts of the thesis (e.g., advanced discrete Fourier
analysis used to prove NP-hardness of approximation in Part III) will appear in respective
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parts.

Three Pillars. The relationship among the three pillars of approximation algorithms —
algorithms, hardness, and convex relaxations — have been more solidified in recent years.
Table 1.1 briefly summarizes our main results in this thesis in terms of which angle we took
to study each problem. Our results present even stronger pairwise relationships between
the three pillars. Some representative connections include:

• Algorithms and convex relaxations: All our algorithms are based on either LP or
SDP relaxations. See Section 3.4 for the formal introduction of LP/SDP relaxations
and the complete list of our algorithms.

• Convex relaxations and hardness: Integrality gaps, which show the limitation of a
certain convex relaxation for an optimization problem, can be interpreted as hard-
ness results under a restricted model of computation. For cut problems, we show
that the insights from these integrality gaps can be used to prove NP-hardness of
approximation under the Unique Games Conjecture. The results of this type were
known for MAX CSP [Rag08] and other variants of CSPs [KMTV11], but not for
more structured problems like cut problems.

• Hardness and algorithms: Several problems studied in this thesis could have gone
either way, which means that there was little consensus on whether each problem
admits a good approximation algorithm or it is hard to approximate. Some of the
results in this thesis, including hardness of GRAPH PRICING and algorithms for k-
PATH TRANSVERSAL, were achieved by the insights obtained in an effort to prove
the result from the other side.

In the following, we briefly introduce some common features of our methods and tools
used in this thesis: building general frameworks applicable to many problems, and intro-
ducing new conceptual viewpoints that bridge seemingly different problems or ideas.

Providing General Frameworks. We extend the techniques developed mainly for MAX

CSP and VERTEX COVER. While the current techniques are generally applicable for
MAX CSP, many other classes of problems lack such a general framework. While it is
impossible to create tools applicable to every combinatorial optimization problem, another
goal of this thesis is to provide a toolkit for wide classes of problems. We believe that the
tools presented in this thesis will be useful to study the associated classes beyond the
problems we study.
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LP SDP Hierarchies UG NP
Algorithms Algorithms Hardness Hardness

HARD CSP/ O O O
BALANCE CSP

SYMMETRIC CSP O
UNIQUE COVERAGE O

GRAPH PRICING O O
LDPC Decoding O

Coloring Problems O O
H -TRANSVERSAL / O O
Graph Partitioning

Cut Problems O

Table 1.1: Summary of our main results according to the pillars they belong to. UG-hardness
denotes NP-hardness assuming the Unique Games Conjecture.

This task is based on unifying the techniques of previous work. Even though most of
them have implicitly shared a large portion of common ideas and technical work, differ-
ent characteristics of problems that require specialized ideas make it hard to unify them
in a common framework. For each class of problems we study, we present a powerful
framework that simultaneously captures those specialized ideas and is applicable for many
problems in the class. Unifying the existing tools often led to creating new techniques by
reinterpreting them or combining ideas from two independently studied techniques.

1. Part III: For hypergraph coloring, we present a recipe to prove strong hardness under
the promise that hypergraphs not only admit a coloring with few colors but also have
additional structure. This encompasses numerous previous results on hypergraph
coloring in one framework, and yields new results.

2. Part V: Our results for various cut problems are based on the common framework
called length-control dictatorship tests presented in Part V. They are inspired by the
earlier results by Bansal and Khot [BK10] and Svensson [Sve13]. We give a new
interpretation of their ideas, which allows us to use the intuition from known LP
gaps for cut problems to show our results.

Introducing New Conceptual Viewpoints. Another paradigm frequently used in this
thesis is introducing a slightly different conceptual viewpoint for each optimization prob-
lem or proof technique. To understand an optimization problem, we often establish a
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connection to a seemingly different optimization problem that provides both conceptual
and technical tools to study the original problem from a new angle. For a proof technique,
reinterpretation of the technique in a slightly different framework makes the understanding
more robust, and allows us to apply it to more problems.

1. Chapter 6: UNIQUE COVERAGE is an interesting problem in the sense that it is a
special case of MAX CSP by definition, but it exhibits properties closer to MIN-
IMUM SET COVER. We prove nearly optimal NP-hardness of UNIQUE COVER-
AGE by combining ideas from hardness results for MAX CSP and MINIMUM SET

COVER that have been developed separately. More specifically, our proof reinter-
prets Feige’s MINIMUM SET COVER hardness result [Fei98] in a probabilistic proof
checking framework mainly used for MAX CSP.

2. Chapter 7: Our hardness for GRAPH PRICING is proved via an intermediate prob-
lem called GENERALIZED MAX DICUT. While the direct formulation of GRAPH

PRICING as a special case of MAX CSP results in complicated constraints, GENER-
ALIZED MAX DICUT provides the right abstraction of GRAPH PRICING as a MAX

CSP that allows us to seamlessly use the tools developed for MAX CSP.

3. Chapter 15: Our algorithm for k-PATH TRANSVERSAL uses an algorithm for a
graph partitioning problem called k-VERTEX SEPARATOR. We prove that any con-
nected graph without a long path has a small subset of vertices whose deletion
partitions the graph into smaller components. This connection allows us to apply
techniques for graph partitioning algorithms for k-PATH TRANSVERSAL. Our ap-
proximation algorithm runs in fixed-parameter tractable (FPT) time, and uses tools
from both approximation algorithms and FPT algorithms.

1.4 Previous Versions and Credits

Most of the results in this thesis have previously appeared in different forms, and many of
them are done with different coauthors.

• In Part I, Chapter 4 for HARD CSP, BALANCE CSP is based on the work with
Venkat Guruswami [GL14] and its journal version [GL16a]. Chapter 5 for SYM-
METRIC CSP is also based on another work with Venkat Guruswami [GL15a].

• In Part II, Chapter 6 for UNIQUE COVERAGE is based on the work with Venkat
Guruswami [GL16b]. Chapter 7 GRAPH PRICING is based on [Lee15]. Chapter 8
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for decoding LDPC codes is based on the work with Badih Ghazi [GL15a] and its
journal version [GL17].

• Part III is based on the following two papers: The work with Venkat Guruswami
[GL15d] proved hardness of MIN COLORING, and the work with Vijay Bhattiprolu
and Venkat Guruswami proved hardness of MAX 2-COLORING and all coloring
algorithms [BGL15].

• Part IV is based on the following two papers: The work with Venkat Guruswami
[GL15c] proved hardness of H -TRANSVERSAL and studied k-STAR TRANSVER-
SAL. [Lee17b] gave algorithms for k-VERTEX SEPARATOR and k-PATH TRANSVER-
SAL.

• Part V is based on the following two papers: [Lee17a] introduced the length con-
trol dictatorship tests to prove hardness of multicut, length-bounded cut, interdic-
tion, and firefighter problems, and the work with Kristóf Bérczi, Karthekeyan Chan-
drasekaran, Tamás Király, and Chao Xu [BCK+17] applied it to bicut and double
cut problems.
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Chapter 2

Problems and Summary of Results

This chapter formally introduces the problems studied in this thesis and states our results.
Section 2.1, 2.2, 2.3, 2.4, and 2.5 correspond to Part I, II, III, IV, and V respectively.

2.1 Constraint Satisfaction Problems

Constraint Satisfaction Problems (CSPs) are among the most fundamental and well-studied
classes of optimization problems. For a fixed domain D, a CSP is specified by a finite set
Π = {P1, . . . , Pl} of relations, where each relation Pi is a subset of Dki for some ki ∈ N.
Given such Π, MAX CSP(Π) is defined as follows.

MAX CSP(Π)

Input: A set of variables X = {x1, ..., xn} and a collection of constraints C =
{C1, ..., Cm}. Each constraint Ci is an expression of the form R(xi1 , . . . , xik) where
R is a relation of arity k contained in Π, and xij ’s are variables.

Output: An assignment σ : X → D.

Goal: Maximize the number of satisfied constraints. A constraint R(xi1 , . . . , xik) is
satisfied when (σ(xi1), . . . , σ(xik)) ∈ R.

2.1.1 Hard / Balanced CSPs

We consider two natural extensions of MAX CSP(Π).
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BALANCE CSP(Π)

Input: A set of variables X = {x1, ..., xn} and a collection of constraints C =
{C1, ..., Cm}.

Output: A balanced assignment σ : X → D. An assignment is called balanced if
for each q ∈ D, |σ−1(q)| = n

|D| .

Goal: Maximize the number of satisfied constraints.

Partitioning a set of objects into equal-sized subsets with desired properties is a basic
scheme used in Divide-and-Conquer algorithms. BALANCE CUT, also known as MAXI-
MUM BISECTION, is one of the most well-known examples of BALANCE CSP. The bal-
ance constraint is also one of the simplest non-local constraints where the current algo-
rithmic and hardness results on ordinary CSPs do not work.

HARD CSP(Π)

Input: A set of variables X = {x1, ..., xn}, a collection soft constraints S =
{C1, ..., Cms}, and a collection hard constraintsH = {H1, ..., Hmh}.

Output: An assignment σ : X → D that satisfies every hard constraint.

Goal: Maximize the number of satisfied soft constraints.

HARD CSP contains every MAX CSP by definition, and also several additional fun-
damental combinatorial optimization problems, such as (HYPERGRAPH) INDEPENDENT

SET, MULTICUT, GRAPH k-COLORING, and many other covering/packing problems.
While every assignment is feasible in ordinary MAX CSP, in HARD CSP only certain
assignments that satisfy all the hard constraints are considered as feasible, giving a more
general framework to study combinatorial optimization problems.

By the seminal work of Schaefer [Sch78], there are only three nontrivial classes of
Boolean CSPs for which satisfiability can be checked in polynomial time: 2-SAT, HORN-
SAT, and LIN-MOD-2. Among them, only MAX 2-SAT and MAX HORN-SAT admit a
robust algorithm, which outputs an assignment satisfying at least (1 − g(ε)) fraction of
constraints given a (1 − ε)-satisfiable instance, where g(ε) → 0 as ε → 0, and g(0) = 0.
We study how balance and hard constraints affect approximabilities of these two problems.
More specifically, we ask whether each variant admits a robust algorithm or a constant
factor approximation algorithm and obtain the following results. Given an assignment
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σ : X → D, let Val(σ) be the fraction of constraints satisfied by σ, and let Opt indicate
the fraction of constraints satisfied by an optimal assignment (satisfied soft constraints for
HARD CSP).

Theorem 2.1.1. There exists an absolute constant δ > 0 such that given an instance I
of BALANCE HORN 2-SAT (special case of BALANCE 2-SAT and BALANCE HORN-
SAT), it is NP-hard to distinguish between the following cases.

• Opt = 1

• Opt ≤ 1− δ

Theorem 2.1.2. For any ε > 0, there is a randomized algorithm such that given an instace
I of BALANCE SAT, in time poly(size(I), 1

ε
), outputs σ with Val(σ) ≥ (3

4
− ε)Opt(I)

with constant probability.

Theorem 2.1.3. For any ε > 0, given an instance I of HARD 2-SAT, it is UG-hard to
distinguish the following cases.

• Opt ≥ 1− ε
• Opt ≤ ε

Theorem 2.1.4. For any ε > 0, given an instance I of HARD HORN 3-SAT, it is NP-hard
to distinguish between the following cases.

• Opt ≥ 1− ε

• Opt ≤ ε

The above theorems imply that for both MAX 2-SAT and MAX HORN-SAT, bal-
ance constraints rule out robust algorithms but still allow constant-factor approximation
algorithms, while hard constraints rule out both robust algorithms and constant-factor ap-
proximation algorithms. Table 2.1 summarizes our results.

2.1.2 Symmetric CSPs

In this section we assume that the domain is Boolean (i.e., D = {0, 1}). Recent works on
approximability of CSPs focus on characterizing every CSP according to its approximation
resistance. We define random assignments to be the class of algorithms that assign xi ← 1
with probability α independently for some α ∈ [0, 1]. A CSP is called approximation
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Ordinary Balance Hard
Ratio 0.9401 0.9401 N/A

MAX 2-SAT Robust (1− ε, 1−O(
√
ε)) N/A N/A

Hardness UG: (1− ε, 1− Ω(
√
ε)) NP: (1, 1− δ) UG:(1− ε, ε)

Ratio 0.7968 0.75 N/A
MAX HORN-SAT Robust (1− ε, 1−O( log log(1/ε)

log(1/ε) )) N/A N/A
Hardness UG: (1− ε, 1− Ω( 1

log(1/ε))) NP: (1, 1− δ) NP:(1− ε, ε)

Table 2.1: Summary of our results. ε > 0 indicates an arbitrary positive constant, while
δ > 0 is a fixed absolute constant. Ratio indicates the best approximation ratio. (1 −
ε, 1 − f(ε)) in a row labeled Robust indicates that there is a robust algorithm that find
an assignment satisfying (1 − f(ε)) fraction of constraints given an (1 − ε)-satisfiable
instance. (1− ε, 1− f(ε)) in a row labeled Hardness indicates that it is NP-hard to find an
assignment satisfying (1−f(ε)) fraction of constraints given an (1−ε)-satisfiable instance.
NP indicates that it is an NP-hardness result; UG indicates that it is based on the Unique
Games Conjecture. N/A means that a robust or constant-factor approximation algorithm
are ruled out by the hardness results. The results of this thesis are in boldface.

resistant, if for any ε > 0, it is NP-hard to have a (ρ∗+ ε)-approximation algorithm, where
ρ∗ is the approximation ratio achieved by the best random assignment. Even assuming the
UGC, the complete characterization of approximation resistance has not been found, and
previous works either change the notion of approximation resistance or study a subclass
of CSPs to find a characterization, and more general results tend to suggest more complex
characterizations.

We study a natural subclass of CSPs where the domain is Boolean and the constraint
language Π has one predicate Q which is symmetric — for any permutation π : [k]→ [k],
(x1, . . . , xk) ∈ Q if and only if (xπ(1), . . . , xπ(k)) ∈ Q. Equivalently, for every such Q,
there exists S ⊆ [k]∪{0} such that (x1, . . . , xk) ∈ Q if and only if (x1+· · ·+xk) ∈ S. Let
SYMMETRIC CSP(S) WITHOUT NEGATION denote such a symmetric CSP. We also study
SYMMETRIC CSP(S) WITH NEGATION where each constraint Cj is speficied by a tuple
(xj1 , . . . , xj,k) as well as bj,1, . . . , bj,k and satisfied if ((xj,1⊕bj,1)+ · · ·+(xj,k⊕bj,k)) ∈ S
where ⊕ denotes the addition in F2 and + denotes the addition in Z.

While this is a significant restriction, it is a natural one that still captures the follow-
ing fundamental problems, such as MAX SAT, MAX NOT-ALL-EQUAL-SAT, MAX t-
OUT-OF-k-SAT (with negation), and MAX CUT, MAX-SET-SPLITTING, DISCREPANCY

MINIMIZATION (without negation).

There is a simple sufficient condition to be approximation resistant due to Austrin and
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Mossel [AM09] with negation, and due to Austrin and Håstad [AH13] without negation.
For s ∈ [k] ∪ {0}, let P (s) ∈ R2 be the point defined by P (s) := ( s

k
, s(s−1)
k(k−1)

). For any
s, P (s) lies on the curve y = k

k−1
x2 − x

k−1
, which is slightly below the curve y = x2 for

x ∈ [0, 1]. Given a subset S ⊆ [k] ∪ {0}, let PS := {P (s) : s ∈ S} and conv(PS) be the
convex hull of PS . For symmetric CSPs, the conditions of [AH13] and [AM09] depend on
whether this convex hull intersects a certain curve or a point.

For SYMMETRIC CSP(S) WITHOUT NEGATION, the condition simply becomes whether
conv(PS) intersects the curve y = x2. If we let smin and smax be the minimum and max-
imum number in S respectively, by convexity of y = k

k−1
x2 − x

k−1
, it is equivalent to

that the line passing through P (smin) and P (smax) and y = x2 intersect, which is again
equivalent to

(smax + smin − 1)2

k − 1
≥ 4smaxsmin

k
. (2.1)

For SYMMETRIC CSP(S) WITH NEGATION, the condition of Austrin and Mossel
[AM09] is simplified to that conv(PS) contains the point (1

2
, 1

4
). We suggest that these

simplified sufficient conditions might also be necessary and thus precisely characterize
approximation resistance. We prove it for two natural special cases (which capture all
problems mentioned in the last paragraph) for both symmetric CSPs with/without nega-
tion, and provide reasons that we believe this is true at least for symmetric CSPs without
negation.

Conjecture 2.1.5. For S ⊆ [k − 1], SYMMETRIC CSP(S) WITHOUT NEGATION is ap-
proximation resistant if and only if (2.1) holds.

Theorem 2.1.6. If S ⊆ [k − 1] and S is either an interval or even, SYMMETRIC CSP(S)
WITHOUT NEGATION is approximation resistant if and only if (2.1) holds (the hardness
claim, i.e., the “if” part, is under the Unique Games Conjecture).

Theorem 2.1.7. If S ⊂ [k]∪{0} and S is either an interval or even, SYMMETRIC CSP(S)
WITH NEGATION is approximation resistant if and only if conv(PS) contains (1

2
, 1

4
) (the

hardness claim, i.e., the “if” part, is under the Unique Games Conjecture).

2.2 Applied CSPs

Part II studies applied CSPs. These problems are motivated by the intersection of combi-
natorial optimization and other fields such as economics and error-correcting codes. They
can be thought as a variant of CSPs, but also require new insights to study their approx-
imabilities.
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2.2.1 UNIQUE COVERAGE

We study the following natural problem that models numerous practical situations arising
from wireless networks, radio broadcast, and envy-free pricing.

UNIQUE COVERAGE

Input: A universe V of n elements and a collection E of m subsets of V .

Output: S ⊆ V .

Goal: Maximize the number of e ∈ E that intersects S in exactly one element.

When each e ∈ E has size at most k, this problem is also known as 1-IN-k HITTING

SET. While this problem can be captured as a MAX CSP, this problem differs from other
famous MAX CSP in the sense that arities of constraints (sizes of e ∈ E) can be different
and grow with n so that the traditional results for MAX CSP are not applicable. It admits
a simple Ω( 1

log k
)-approximation algorithm.

For constant k, we prove that 1-IN-k HITTING SET is NP-hard to approximate within
a factor O( 1

log k
). This improves the result of Guruswami and Zhou [GZ12], who proved

the same result assuming the Unique Games Conjecture.

Theorem 2.2.1. Assuming P 6= NP, for large enough constant k, there is no polynomial
time algorithm that approximates 1-in-k HS within a factor better than O( 1

log k
).

For UNIQUE COVERAGE, we prove that it is hard to approximate within a factor
O( 1

log1−ε n
) for any ε > 0, unless NP admits quasipolynomial time algorithms. This im-

proves the results of Demaine et al. [DFHS08], including their≈ 1/ log1/3 n inapproxima-
bility factor which was proven under the Random 3SAT Hypothesis.

Theorem 2.2.2. Assuming NP 6⊆ QP, for any ε > 0, there is no polynomial time algo-
rithm that approximates UNIQUE COVERAGE within a factor better than 1

log1−ε n
.

Our simple proof combines ideas from two classical inapproximability results for
MINIMUM SET COVER and MAX CSP, made efficient by various derandomization meth-
ods based on bounded independence.

22



2.2.2 Decoding LDPC Codes

Low-density parity-check (LDPC) codes are a class of linear error correcting codes orig-
inally introduced by Gallager [Gal62] and that have been extensively studied in the last
decades. A (dv, dc)-LDPC code of block length n is described by a parity-check matrix
H ∈ Fm×n2 (with m ≤ n) having dv ones in each column and dc ones in each row. In
many studies of LDPC codes, random LDPC codes have been considered. For instance,
Gallager studied in his thesis the distance and decoding-error probability of an ensemble
of random (dv, dc)-LDPC codes. Random (dv, dc)-LDPC codes were further studied in
several works (e.g., [SS94, Mac99, RU01, MB01, DPT+02, LS02, KRU12]). The reasons
why random (dv, dc)-LDPC codes have been of significant interest are their nice proper-
ties, their tendency to simplify the analysis of the decoding algorithms and the potential
lack of known explicit constructions for properties satisfied by random codes.

Sipser and Spielman [SS94] gave a linear-time decoding algorithm correcting a con-
stant fraction of errors (for dv, dc = O(1)). More precisely, the linear-time decoding
algorithm of Sipser-Spileman corrects Ω(1/dc)-errors on a random (dv, dc)-LDPC code.
A few years after, Feldman, Karger and Wainwright [FWK05, Fel03] introduced a decod-
ing algorithm that is based on a simple linear programming (LP) relaxation that corrects
Ω(1/dc)-errors on a random (dv, dc)-LDPC code.

However, the fraction of errors that is corrected by the Sipser-Spielman algorithm and
the LP relaxation of [FWK05] (which isO(1/dc)) can be much smaller than the best possi-
ble: in fact, [Gal62] (as well as [MB01]) showed that for a random (dv, dc)-LDPC code, the
exponential-time nearest-neighbor Maximum Likelihood (ML) algorithm corrects close to
H−1
b (dv/dc) probabilistic errors, which by Shannon’s channel coding theorem is the best

possible.

Inspired by the Sherali-Adams hierarchy, Arora, Daskalakis and Steurer [ADS12] im-
proved the best known fraction of correctable probabilistic errors by the LP decoder (which
was previously achieved by Daskalakis et al. [DDKW08]) for some range of values of dv
and dc. Both Arora et al. [ADS12] and the original work of Feldman et al. [FWK05, Fel03]
asked whether tightening the base LP using linear or semidefinite hierarchies can improve
its performance, potentially approaching the information-theoretic limit. More precisely,
in all previous work on LP decoding of error-correcting codes, the base LP decoder of
Feldman et al. succeeds in the decoding task if and only if the transmitted codeword is the
unique optimum of the relaxed polytope with the objective function being the (normalized)
l1 distance between the received vector and a point in the polytope. On the other hand, the
decoder is considered to fail whenever there is an optimal non-integral vector.

In this paper, we prove the first lower bounds on the performance of the Sherali-Adams
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and Sum-of-Squares hierarchies when applied to the problem of decoding random (dv, dc)-
LDPC codes.

Theorem 2.2.3 (Lower bounds in the Sherali-Adams hierarchy). For any dv and dc ≥ 5,
there exists η > 0 (depending on dc) such that a random (dv, dc)-LDPC code satisfies the
following with high probability: for any received vector, there is a fractional solution to the
ηn rounds of the Sherali-Adams hierarchy of value 1/(dc − 3) (for odd dc) or 1/(dc − 4)
(for even dc). Consequently, ηn rounds cannot decode more than a ≈ 1/dc fraction of
errors.

Theorem 2.2.4 (Lower bounds in the Sum-of-Squares hierarchy). For any dv and dc =
3 · 2i + 3 with i ≥ 1, there exists η > 0 (depending on dc) such that a random (dv, dc)-
LDPC code satisfies the following with high probability: for any received vector, there is a
fractional solution to the ηn rounds of the Sum-of-Squares hierarchy of value 3/(dc − 3).
Consequently, ηn rounds cannot decode more than a ≈ 3/dc fraction of errors.

2.2.3 GRAPH PRICING

We consider the following natural problem for a seller with a profit-maximization objec-
tive. Let I denote the indicator function.

GRAPH PRICING

Input: A graph G = (V,E). For each edge e, its budget be ∈ R+.

Output: Pricing p : V → (R+ ∪ {0}).

Goal: Maximize
∑

(u,v)∈E I[p(u) + p(v) ≤ b(u,v)](p(u) + p(v)).

This problem was proposed by Guruswami et al. [GHK+05], and has received much at-
tention. The best known approximation algorithm for a general instance, which guarantees
1
4

of the optimal solution, is given by Balcan and Blum [BB07] and Lee et al. [LBA+07].
The algorithm is simple enough to state here. First, assign 0 to each vertex with probabil-
ity half independently. For each remaining vertex v, assign the price which maximizes the
profit between v and its neighbors already assigned 0. This simple algorithm has been nei-
ther improved nor proved to be optimal. GRAPH PRICING is APX-hard [GHK+05], but the
only strong hardness of approximation result rules out an approximation algorithm with
a guarantee better than 1

2
[KKMS09] under the Unique Games Conjecture (via reduction

from MAXIMUM ACYCLIC SUBGRAPH).
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The 1
4
-approximation algorithm is surprisingly simple and does not even rely on the

power of a linear programming or semidefinite programming relaxation. The efforts to ex-
ploit the power of LP relaxations to find a better approximation algorithm have produced
positive results for special classes of graphs. Krauthgamer et al. [KMR11] studied the
case where all budgets are the same (but the graph might have a self-loop), and proposed
a 5+

√
2

6+
√

2
≈ 0.86-approximation algorithm based on a LP relaxation. In general case, the

standard LP is shown to have an integrality gap close to 1
4

[KKMS09]. Therefore, it is nat-
ural to consider hierarchies of LP relaxations such as the Sherali-Adams hierarchy [SA90]
(see [CT12] for a general survey and [GTW13, YZ14] for recent algorithmic results using
the Sherali-Adams hierarchy). Especially, Chalermsook et al. [CKLN13] recently showed
that there is a FPTAS when the graph has bounded treewidth, based on the Sherali-Adams
hierarchy. However, the power of the Sherali-Adams hierarchy and SDP, as well as the
inherent hardness of the problem, was not well-understood in general case.

We show that any polynomial time algorithm that guarantees a ratio better than 1
4

must
be powerful enough to refute the Unique Games Conjecture.

Theorem 2.2.5. Under the Unique Games Conjecture, for any ε > 0, it is NP-hard to
approximate GRAPH PRICING within a factor of 1

4
+ ε.

By the results of Khot and Vishnoi [KV05] and Raghavendra and Steurer [RS09] that
convert a hardness under the UGC to a SDP gap instance, our result unconditionally shows
that even a SDP-based algorithm will not improve the performance of a simple algorithm.
For the Sherali-Adams hierarchy, we prove that even polynomial rounds of the Sherali-
Adams hierarchy has an integrality gap close to 1

4
.

Theorem 2.2.6. Fix ε > 0. There exists δ > 0 such that the integrality gap of nδ-rounds
of the Sherali-Adams hierarchy for GRAPH PRICING is at most 1

4
+ ε.

2.3 Hypergraph Coloring

Coloring (hyper)graphs is one of the most important and well-studied tasks in discrete
mathematics and theoretical computer science. A K-uniform hypergraph G = (V,E) is
said to be χ-colorable if there exists a coloring c : V → {1, . . . , χ} such that no hyperedge
is monochromatic, and such a coloring c is referred to as a proper χ-coloring. Coloring
has been the focus of active research in both fields, and has served as the benchmark for
new research paradigms such as the probabilistic method (Lovász local lemma [EL75])
and semidefinite programming (Lovász theta function [Lov79]).
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Given a general χ-colorable K-uniform hypergraph, the problem of reconstructing a
χ-coloring is known to be a hard task. Even assuming 2-colorability, reconstructing a
proper 2-coloring is a classic NP-hard problem for K ≥ 3. Given the intractability of
proper 2-coloring, two notions of approximate coloring of 2-colorable hypergraphs have
been studied in the literature of approximation algorithms. The first notion, called MIN

COLORING, is to minimize the number of colors while still requiring that every hyper-
edge be non-monochromatic. The second notion, called MAX 2-COLORING allows only
2 colors, but the objective is to maximize the number of non-monochromatic hyperedges.1

Even with these relaxed objectives, the promise that the input hypergraph is 2-colorable
seems grossly inadequate for polynomial time algorithms to exploit in a significant way.
For MIN COLORING, given a 2-colorable K-uniform hypergraph, the best known algo-
rithm uses O(n1− 1

K ) colors [CF96, AKMH96], which tends to the trivial upper bound
n as K increases. On the other hand, [KS14b] shows quasi-NP-hardness of 2(logn)Ω(1)-
coloring a 2-colorable hypergraph (very recently the exponent was shown to approach
1/10 in [Hua15]).

The hardness results for MAX 2-COLORING show an even more pessimistic picture,
wherein the naive random assignment (randomly give one of two colors to each ver-
tex independently to leave a (1

2
)K−1 fraction of hyperedges monochromatic in expecta-

tion), is shown to have the best guarantee for a polynomial time algorithm when K ≥ 4
(see [Hås01]).

Given these strong intractability results, it is natural to consider what further relax-
ations of the objectives could lead to efficient algorithms. This motivates our main ques-
tion “how strong a promise on the input hypergraph is required for polynomial time al-
gorithms to perform significantly better than naive algorithms for MIN COLORING and
MAX 2-COLORING?”

There is a very strong promise on K-uniform hypergraphs which makes the task of
proper 2-coloring easy. If a hypergraph is K-partite (i.e., there is a K-coloring such that
each hyperedge has each color exactly once), then one can properly 2-color the hypergraph
in polynomial time [Alo14, McD93]. The same algorithm can be generalized to hyper-
graphs which admit a c-balanced coloring (i.e., c divides K and there is a K-coloring such
that each hyperedge has each color exactly K

c
times).

The promises on structured colorings that we consider in this thesis are natural relax-
ations of the above strong promise of a perfectly balanced coloring.

1The maximization version is also known as MAX-SET-SPLITTING, or more specifically MAX K-SET-
SPLITTING when considering K-uniform hypegraphs, in the literature.
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• A hypergraph is said to have discrepancy ` when there is a 2-coloring such that in
each hyperedge, the difference between the number of vertices of each color is at
most `.

• A χ-coloring (χ ≤ K) is called rainbow if every hyperedge contains each color at
least once.

• A χ-coloring (χ ≥ K) is called strong if every hyperedge contains K different
colors.

These three notions are interesting in their own right, and have been independently
studied. It is easy to see that `-discrepancy (` < K), χ-rainbow colorability (2 ≤ χ ≤ K),
and χ-strong colorability (K ≤ χ ≤ 2K − 2) all imply 2-colorability. For odd K, both
(K + 1)-strong colorability and (K − 1)-rainbow colorability imply discrepancy-1, so
strong colorability and rainbow colorability seem stronger than low discrepancy.

2.3.1 MIN COLORING

We prove the following strong hardness result.

Theorem 2.3.1. For any ε > 0 and Q, k ≥ 2, given a Qk-uniform hypergraph H =
(V,E), it is NP-hard to distinguish between the following cases.

• Completeness: There is a k-coloring c : V → [k] such that for every hyperedge
e ∈ E and color i ∈ [k], e has at least Q− 1 vertices of color i.

• Soundness: Every I ⊆ V of measure ε induces at least a fraction εOQ,k(1) of hy-
peredges. In particular, there is no independent set of measure ε, and every b1

ε
c-

coloring of H induces a monochromatic hyperedge.

Fixing Q = 2 gives a hardness of rainbow coloring with K optimized to be 2k.

Corollary 2.3.2. For all integers c, k ≥ 2, given a 2k-uniform hypergraphH , it is NP-hard
to distinguish whether H is rainbow k-colorable or is not even c-colorable.

On the other hand, fixing k = 2 gives a strong hardness result of discrepancy mini-
mization (with 2 colors).

Corollary 2.3.3. For any c,Q ≥ 2, given a 2Q-uniform hypergraph H = (V,E), it is NP-
hard to distinguish whetherH is 2-colorable with discrepancy 2 or is not even c-colorable.
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The above result strengthens the result of Austrin et al [AGH14] that shows hardness
of 2-coloring in the soundness case. However, their result also holds in (2Q+ 1)-uniform
hypergraphs with discrepancy 1, which is not covered by the results in this thesis. For
algorithms, we prove that all three promises lead to an Õ(n

1
k )-coloring that is decreasing

in k.

Theorem 2.3.4. Consider any k-uniform hypergraph H = (V,E) with n vertices and
m edges. For any ` < O(

√
k), If H has discrepancy-`, (k − `)-rainbow colorable, or

(k + `)-strong colorable, one can color H with Õ((m
n

)
`2

k2 ) ≤ Õ(n
`2

k ) colors.

These results significantly improve the current best algorithm that assumes only 2-
colorability and uses Õ(n1− 1

k ) colors. Table 2.2 summarizes our results.

Promised Coloring Structure Algorithm Hardness
K-partite 2-colorable Not rainbow K-colorable

(Almost/UG) Not weak O(1)-colorable
Rainbow (K − 1)-colorable Õ(n1/K)-colorable (Almost) Not weak O(1)-colorable

Rainbow K
2 -colorable Not weak O(1)-colorable

2-colorable with perfect balance 2-colorable
2-colorable with discrepancy 1 Õ(n1/K)-colorable Not 2-colorable
2-colorable with discrepancy 2 Õ(n4/K)-colorable Not weak O(1)-colorable

Table 2.2: Summary of algorithmic and hardness results for MIN COLORING a highly
structured K-uniform hypergraph. Almost means that ε > 0 fraction of vertices and
incident hyperedges must be deleted to have the structure. UG indicates that the result is
based on the Unique Games Conjecture. The results of this thesis are in boldface.

2.3.2 MAX 2-COLORING

For MAX 2-COLORING, we prove that our three promises, unlike mere 2-colorability, give
enough structure for polynomial time algorithms to perform significantly better than naive
algorithms. We also study these promises from a hardness perspective to understand the
asymptotic threshold at which beating naive algorithms goes from easy to UG/NP-Hard.
In particular assuming the UGC, for MAX 2-COLORING under `-discrepancy or (K − `)-
rainbow colorability, this threshold is ` = Θ(

√
K).

Theorem 2.3.5. There is a randomized polynomial time algorithm that produces a 2-
coloring of a K-uniform hypergraph H with the following guarantee. For any 0 < ε < 1

2
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(let ` = Kε), there exists a constant η > 0 such that if H is (K − `)-rainbow colorable or
(K+ `)-strong colorable, the fraction of monochromatic edges in the produced 2-coloring
is O(( 1

K
)ηK) in expectation.

For the `-discrepancy case, we observe that when ` <
√
K, our work for SYMMETRIC

CSP yields an approximation algorithm that marginally (by an additive factor much less
than 2−K) outperforms the random assignment.

The following hardness results suggest that this gap between low-discrepancy and rain-
bow/strong colorability might be intrinsic. Table 2.3 summarizes our results.

Theorem 2.3.6. For sufficiently large oddK, given aK-uniform hypergraph which admits
a 2-coloring with at most a (1

2
)6K fraction of edges of discrepancy larger than 1, it is UG-

hard to find a 2-coloring with a (1
2
)5K fraction of monochromatic edges.

Theorem 2.3.7. For even K ≥ 4, given a K-uniform hypergraph which admits a 2-
coloring with no edge of discrepancy larger than 2, it is NP-hard to find a 2-coloring with
a K−O(K) fraction of monochromatic edges.

Theorem 2.3.8. For K sufficiently large, given a K-uniform hypergraph which admits
a 2-coloring with no edge of discrepancy larger than O(logK), it is NP-hard to find a
2-coloring with a 2−O(K) fraction of monochromatic edges.

Theorem 2.3.9. ForK such that χ := K−
√
K is an integer greater than 1, and any ε > 0,

given a K-uniform hypergraph which admits a χ-coloring with at most ε fraction of non-
rainbow edges, it is UG-hard to find a 2-coloring with a (1

2
)K−1 fraction of monochromatic

edges.

Promises Algorithm Hardness

`-Discrepancy 1− (1/2)K−1 + δ, ` <
√
K UG: 1− (1/2)5K , ` = 1

NP: 1− (1/K)O(K), ` = 2

NP: 1− (1/2)O(K), ` = Ω(logK)

UG: 1− (1/2)K−1, ` ≥
√
K

(K − `)-Rainbow 1− (1/K)Ω(K), ` = o(K) UG: 1− (1/2)K−1, ` ≥
√
K

(K + `)-Strong 1− (1/K)Ω(K), ` = o(K).

Table 2.3: Summary of our algorithmic and hardness results for MAX 2-COLORING with
valid ranges of `.
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2.4 Subgraph Transversal and Graph Partitioning

Consider the following two classic problems.

MINIMUM SET TRANSVERSAL

Input: A universe U and a collection of subsets S1, . . . , Sm.

Output: F ⊆ U such that F intersects every Si.

Goal: Minimize |F |.

This problem is equivalent to MINIMUM SET COVER by taking the dual set system.

MAXIMUM SET PACKING

Input: A universe U and a collection of subsets S1, . . . , Sm.

Output: A subcollection Si1 , . . . , Sim′ which are pairwise disjoint.

Goal: Maximize m′.

Given the same input, it is clear that the optimum of the former is always at least that
of the latter (i.e. weak duality holds). Studying the (approximate) reverse direction of
the inequality (i.e. strong duality) as well as the complexity of both problems for many
interesting classes of set systems is arguably the most studied paradigm in combinatorial
optimization.

We focus on set systems where the size of each set is bounded by a constant k. With
this restriction, MINIMUM SET TRANSVERSAL and MAXIMUM SET PACKING are known
as k-HYPERGRAPH VERTEX COVER (k-HVC) and k-SET PACKING (k-SP), respec-
tively. This assumption significantly simplifies the problem since there are at most nk

sets. While there is a simple factor k-approximation algorithm for both problems, it is
NP-hard to approximate k-HVC and k-SP within a factor less than k − 1 [DGKR05] and
O( k

log k
) [HSS06] respectively.

2.4.1 H-Transversal / Packing

We study the following special cases of k-HYPERGRAPH VERTEX COVER and k-SET

PACKING. Let H be a fixed graph with k vertices.
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H -TRANSVERSAL

Input: A graph G = (V,E)

Output: F ⊆ V such that the induced subgraph G|V \F does not have H as a sub-
graph.

Goal: Minimize |F |.

H -PACKING

Input: A graph G = (V,E)

Output: Disjoint subsets S1, . . . , Sm ⊆ V where for each i, |Si| = k and G|Si has H
as a subgraph.

Goal: Maximize m.

These problems capture VERTEX COVER and MAXIMUM MATCHING as special cases
when H is a single edge. Other special cases where H is a clique or a cycle have been
also actively studied. In this thesis, we study approximabilities of H -TRANSVERSAL and
H -PACKING for every fixed graph H . They admit a simple k-approximation algorithm
as special cases of k-HYPERGRAPH VERTEX COVER and k-SET PACKING. We study
whether significantly better approximation algorithms (i.e., kδ-approximation for some
δ < 1) exist. Our main hardness result is the following.

Theorem 2.4.1. If H is a 2-vertex connected with k vertices, unless NP ⊆ BPP, no
polynomial time algorithm approximates H -TRANSVERSAL within a factor better than
k − 1, and H -PACKING within a factor better than Ω( k

log7 k
).

This result leaves us to study 1-connected graphs. In particular, we focus on k-Star and
k-Path, where k-Star denote K1,k−1, the complete bipartite graph with 1 and k−1 vertices
on each side, and k-Path is a simple path with k vertices. It is easy to see that k-STAR

PACKING is as hard to approximate as MAXIMUM INDEPENDENT SET on (k− 1)-regular
graphs, which is NP-hard to approximate within a factor Ω( k

log4 k
) [Cha13]. We show that

both k-STAR TRANSVERSAL and k-PATH TRANSVERSAL admit a good approximation
algorithm.

Theorem 2.4.2. k-STAR TRANSVERSAL can be approximated within a factor ofO(log k)
in polynomial time.
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Theorem 2.4.3. There is an O(log k)-approximation algorithm for k-PATH TRANSVER-
SAL that runs in time 2O(k3 log k)nO(1).

Note that the exponential dependence of the running time on k is necessary since find-
ing a k-Path for general k is NP-hard. Table 2.4 summarizes our results.

Promises H -TRANSVERSAL H -PACKING

2-connected Hard to approximate within k − 1 Hard to approximate within Ω( k
polylog(k))

k-Star Admits O(log k)-approximation Hard to approximate within Ω( k
polylog(k))

k-Path Admits O(log k)-approximation ?

Table 2.4: Summary of our algorithmic and hardness results for H -TRANSVERSAL and
H -PACKING for different H .

2.4.2 Partitioning a Graph into Small Pieces

On the way to our algorithm for k-PATH TRANSVERSAL, we study the following natural
graph partitioning problems.

k-VERTEX SEPARATOR

Input: An undirected graph G = (V,E) and k ∈ N.

Output: A subset S ⊆ V such that in the subgraph induced by V \ S (denoted by
G|V \S), each connected component has at most k vertices.

Goal: Minimize |S|.

k-VERTEX SEPARATOR is a special case of (k+1)-HVC and similar toH -TRANSVERSAL

in the sense that the goal is to remove the minimum number of vertices such that G has no
connected graph with k+ 1 vertices as a subgraph (H is replaced by a family of connected
graphs with k + 1 vertices). The edge version can be defined similarly.

k-EDGE SEPARATOR

Input: An undirected graph G = (V,E) and k ∈ N.

Output: A subset S ⊆ E such that in the subgraph (V,E \ S), each connected
component has at most k vertices.
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Goal: Minimize |S|.

Our primary focus is on the case where k is either a constant or a slowly growing
function of n (e.g. O(log n) or no(1)). Our problems can be interpreted as a special case
of three general classes of problems that have been studied separately (balanced graph
partitioning, k-HYPERGRAPH VERTEX COVER, and fixed parameter tractability (FPT)).

Our main result is the following algorithm for k-VERTEX SEPARATOR. For fixed
constants b, c > 1, an algorithm for k-VERTEX SEPARATOR is called an (b, c)-bicriteria
approximation algorithm if given an instance G = (V,E) and k ∈ N, it outputs S ⊆ V
such that (1) each connected component of G|S\V has at most bk vertices and (2) |S| is at
most c times the optimum of k-VERTEX SEPARATOR.

Theorem 2.4.4. For any ε ∈ (0, 1/2), there is a polynomial time ( 1
1−2ε

, O( log k
ε

))-bicriteria
approximation algorithm for k-VERTEX SEPARATOR.

Setting ε = 1
4

and running the algorithm yields S ⊆ V with |S| ≤ O(log k) ·Opt such
that each component in G|V \S has at most 2k vertices. Performing an exhaustive search
in each connected component yields the following true approximation algorithm whose
running time depends exponentially only on k.

Corollary 2.4.5. There is an O(log k)-approximation algorithm for k-VERTEX SEPARA-
TOR that runs in time nO(1) + 2O(k)n.

This gives an FPT approximation algorithm when parameterized by only k, and its ap-
proximation ratioO(log k) improves the simple (k+1)-approximation from k-HYPERGRAPH

VERTEX COVER. When Opt� k, it runs even faster than the time lower bound kΩ(Opt)nΩ(1)

for the exact algorithm assuming the Exponential Time Hypothesis [DDvH14].

The natural question is whether superpolynomial dependence on k is necessary to
achieve trueO(log k)-approximation. The following theorem proves hardness of k-VERTEX

SEPARATOR based on DENSEST k-SUBGRAPH. In particular, a polynomial timeO(log k)-
approximation algorithm for k-VERTEX SEPARATOR will implyO(log2 n)-approximation
algorithm for DENSEST k-SUBGRAPH. Given that the best approximation algorithm
achieves ≈ O(n1/4)-approximation [BCC+10] and nΩ(1)-rounds of the Sum-of-Squares
hierarchy have a gap at least nΩ(1) [BCV+12], such a result seems unlikely or will be
considered as a breakthrough.

Theorem 2.4.6. If there is a polynomial time f -approximation algorithm for k-VERTEX

SEPARATOR, then there is a polynomial time 2f 2-approximation algorithm for DENSEST

k-SUBGRAPH.
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For k-EDGE SEPARATOR, we prove that the trueO(log k)-approximation can be achieved
in polynomial time. This shows a stark difference between the vertex version and the edge
version.

Theorem 2.4.7. There is an O(log k)-approximation algorithm for k-EDGE SEPARATOR

that runs in time nO(1).

When k = no(1), our algorithm outperforms the previous best approximation algorithm
[KNS09, ENRS99].

2.5 Cut Problems

Part V proves the improved hardness results for many cut problems. Almost all results are
based on the common framework called the length-control dictatorship test.

2.5.1 DIRECTED MULTICUT

Given a directed graph and two vertices s and t, one of the most natural variants of s-t
MIN CUT is to remove the fewest edges to ensure that there is no directed path from s to
t and no directed path from t to s. This problem is known as s-t BICUT and admits the
trivial 2-approximation algorithm by computing the minimum s-t cut and t-s cut.

DIRECTED MULTIWAY CUT is a generalization of s-t BICUT that has been actively
studied. Given a directed graph with k terminals s1, . . . , sk, the goal is to remove the
fewest number of edges such that there is no path from si to sj for any i 6= j. DIRECTED

MULTIWAY CUT also admits 2-approximation [NZ01, CM16]. If k is allowed to increase
polynomially with n, there is a simple reduction from VERTEX COVER that shows (2−ε)-
approximation is hard under the UGC [GVY94, KR08].

DIRECTED MULTIWAY CUT can be further generalized to DIRECTED MULTICUT.
Given a directed graph with k source-sink pairs (s1, t1), . . . , (sk, tk), the goal is to re-
move the fewest number of edges such that there is no path from si to ti for any i.
Computing the minimum si-ti cut for all i separately gives the trivial k-approximation
algorithm. Chuzhoy and Khanna [CK09] showed DIRECTED MULTICUT is hard to ap-
proximate within a factor 2Ω(log1−ε n) = 2Ω(log1−ε k) when k is polynomially growing with
n. Agarwal et al. [AAC07] showed Õ(n

11
23 )-approximation algorithm, which improves the

trivial k-approximation when k is large.
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Very recently, Chekuri and Madan [CM16] showed a simple approximation-preserving
reduction from DIRECTED MULTICUT with k = 2 to s-t BICUT (the other direction is
trivially true), and (UNDIRECTED) NODE-WEIGHTED MULTIWAY CUT with k = 4 to
s-t BICUT. Since NODE-WEIGHTED MULTIWAY CUT with k = 4 is hard to approximate
within a factor 1.5 − ε under the UGC [EVW13] (matching the algorithm of Garg et
al. [GVY94]), the same hardness holds for s-t BICUT, DIRECTED MULTIWAY CUT, and
DIRECTED MULTICUT for constant k. To the best of our knowledge, 1.5 − ε is the best
hardness factor for constant k even assuming the UGC. In the same paper, Chekuri and
Madan [CM16] asked whether a factor 2−ε hardness holds for s-t BICUT under the UGC.

We prove that for any constant k ≥ 2, the trivial k-approximation for DIRECTED

MULTICUTmight be optimal. Our result for k = 2 gives the optimal hardness result for
s-t BICUT, answering the question of Chekuri and Madan.

Theorem 2.5.1. Assuming the Unique Games Conjecture, for every constant k ≥ 2 and
ε > 0, DIRECTED MULTICUT with k source-sink pairs is NP-hard to approximate within
a factor k − ε.

Corollary 2.5.2. Assuming the Unique Games Conjecture, for any ε > 0, s-t BICUT is
hard to approximate within a factor 2− ε.

2.5.2 Bicuts

The hardness of s-t BICUT suggests that it may be hard to outperform a simple approxi-
mation algorithm that outputs the union of the min s-t cut and the min t-s cut. This strong
hardness result also motivates the following question: Can an algorithm do better if it can
choose s and t? Formally, in the global version of bicut, denoted EDGE BICUT, the goal
is to find the smallest number of edges whose deletion ensures that there exist two distinct
nodes s and t such that s cannot reach t and t cannot reach s in the resulting digraph.

The dichotomy between global cut problems and fixed-terminal cut problems in undi-
rected graphs is well-known. For concreteness, recall EDGE 3-CUT and EDGE 3-WAY

CUT. In EDGE 3-CUT, the input is an undirected graph and the goal is to find the smallest
number of edges to delete so that the resulting graph has at least 3 connected components.
In EDGE 3-WAY CUT, the input is an undirected graph with 3 specified nodes and the
goal is to find the smallest number of edges to delete so that the resulting graph has at
least 3 connected components with at most one of the 3 specified nodes in each compo-
nent. While EDGE 3-WAY CUT is NP-hard [DJP+94], EDGE 3-CUT is solvable efficiently
[GH94]. Similarly, while s-t EDGE BICUT is inapproximable to a factor better than 2 as-
suming UGC, EDGE BICUT is approximable within a factor of 2− 1/448 [BCK+17].
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We also consider the problem between s-t BICUT and EDGE BICUT, denoted s-∗
EDGE BICUT: Given a directed graph with a specified node s, find the smallest number
of edges to delete so that there exists a node t such that s cannot reach t and t cannot
reach s in the resulting graph. s-∗ EDGE BICUT admits a 2-approximation by guessing
the terminal t and then using the 2-approximation for s-t EDGE BICUT. We show the
following inapproximability results for s-∗ EDGE BICUT:

Theorem 2.5.1. s-∗ EDGE BICUT has no efficient (4/3− ε)-approximation for any ε > 0
assuming the Unique Games Conjecture.

Furthermore, we consider the node-weighted variant of bicut, denoted NODE BICUT:
Given a directed graph, find the smallest number of nodes whose deletion ensures that there
exist nodes s and t such that s cannot reach t and t cannot reach s in the resulting graph.
Every directed graph that is not a tournament has a feasible solution to NODE BICUT.
NODE BICUT admits a 2-approximation by a simple reduction to s-t EDGE BICUT. We
show the following inapproximability results.

Theorem 2.5.2. NODE BICUT has no efficient (3/2 − ε)-approximation for any ε > 0
assuming the Unique Games Conjecture.

2.5.3 Double Cuts

Recall that an arborescence in a directed graph D = (V,E) is a minimal subset F ⊆ E of
arcs such that there exists a node r ∈ V with every node u ∈ V having a unique path from
r to u in the subgraph (V, F ) (e.g., see [Sch03]).

The input to the NODE DOUBLE CUT problem is a directed graph and the goal is
to find the smallest number of nodes whose deletion ensures that the remaining graph
has no arborescence. This problem is key to understanding fault tolerant consensus in
networks [TV15].

A directed graph D = (V,E) has no arborescence if and only if 2 there exist two
distinct nodes s, t ∈ V such that every node u ∈ V can reach at most one node in {s, t}
[BP13]. By this characterization, every directed graph that is not a tournament has a
feasible solution to NODE DOUBLE CUT. This characterization motivates the following
fixed-terminal version, denoted s-t NODE DOUBLE CUT: Given a directed graph with
two specified nodes s and t, find the smallest number of nodes whose deletion ensures that

2We believe that this characterization led earlier authors [BP13] to coin the term double cut to refer to
the edge deletion variant of the problem and we are following this naming convention.
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every remaining node u can reach at most one node in {s, t} in the resulting graph. An
instance of s-t NODE DOUBLE CUT has a feasible solution provided that the instance has
no edge between s and t. An efficient algorithm to solve/approximate s-t NODE DOUBLE

CUT immediately gives an efficient algorithm to solve/approximate NODE DOUBLE CUT.

In the edge-weighted variation of two-terminal double cut, namely s-t EDGE DOUBLE

CUT, the goal is to delete the smallest number of edges to ensure that every node in the
graph can reach at most one node in {s, t}. Similarly, in the global variant, denoted EDGE

DOUBLE CUT, the goal is to delete the smallest number of edges to ensure that there
exist nodes s, t such that every node u can reach at most one node in {s, t}. Thus, EDGE

DOUBLE CUT is equivalent to deleting the smallest number of edges to ensure that the
graph has no arborescence. The fixed-terminal variant s-t EDGE DOUBLE CUT is solvable
in polynomial time using maximum flow and, consequently, EDGE DOUBLE CUT is also
solvable in polynomial time [BP13].

We show the following inapproximability results for s-t NODE DOUBLE CUT.

Theorem 2.5.3. s-t NODE DOUBLE CUT has no efficient (2 − ε)-approximation for any
ε > 0 assuming the Unique Games Conjecture.

This matches a 2-approximation algorithm for s-t NODE DOUBLE CUT [BCK+17],
which also leads to a 2-approximation for NODE DOUBLE CUT. Note that the inapprox-
imability results for s-t NODE DOUBLE CUT do not imply the hardness of NODE DOUBLE

CUT. We also have the following inapproximability of NODE DOUBLE CUT.

Theorem 2.5.4. NODE DOUBLE CUT has no efficient (3/2 − ε)-approximation for any
ε > 0 assuming the Unique Games Conjecture.

2.5.4 NODE k-CUT and VERTEX COVER ON k-PARTITE GRAPHS

Another way to show hardness of NODE DOUBLE CUT is a reduction from the node-
weighted 3-cut problem in undirected graphs, though Theorem 16.2.4 shows a better hard-
ness using length-control dictatorship tests and we do not show this reduction in this thesis
([BCK+17] presents this reduction to show an inapproximability result only assuming
P 6= NP).

In the node weighted k-cut problem, denoted NODE 3-CUT, the input is an undirected
graph and the goal is to find the smallest subset of nodes whose deletion leads to at least
k connected components in the remaining graph. A classic result of Goldschmidt and
Hochbaum [GH94] showed that the edge-weighted variant, denoted EDGE k-CUT(more
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commonly known as k-CUT)—namely find a smallest subset of edges of a given undirected
graph whose deletion leads to at least k connected components—is solvable in polynomial
time when k is a constant. Surprisingly, the complexity of NODE k-CUT for k = 3 is
open. NODE k-CUT admits a 2(k − 1)/k-approximation algorithm [GVY04], and there
is a simple approximation preserving reduction from VERTEX COVER ON k-PARTITE

GRAPHS to NODE k-CUT. We prove that VERTEX COVER ON k-PARTITE GRAPHS is
hard to approximate within a factor 2(k−1)/k assuming the UGC, so that 2(k−1)/k may
be the optimal approximation factor for both VERTEX COVER ON k-PARTITE GRAPHS

and NODE k-CUT.

Theorem 2.5.5. VERTEX COVER ON k-PARTITE GRAPHS has no efficient (2(k− 1)/k−
ε)-approximation algorithm for any ε > 0 assuming the Unique Games Conjecture.

Theorem 16.2.1 for s-∗ EDGE BICUT and Theorem 16.2.2 for NODE BICUT follow
from the above theorem as they are as hard to approximate as VERTEX COVER ON k-
PARTITE GRAPHS for k = 3 and k = 4 respectively (see Section 16.5). We finally note
that Theorem 16.2.5 is the only UG-hardness result in this part that does not require a
length-control dictatorship test.

2.5.5 LENGTH-BOUNDED CUT/ SHORTEST PATH INTERDICTION

Another natural variant of s-t MIN CUT is the LENGTH-BOUNDED CUT problem, where
given an integer l, we only want to cut s-t paths of length strictly less than l.3 Its practical
motivation is based on the fact that in most communication/transportation networks, short
paths are preferred to be used to long paths [MM10].

Lovász et al. [LNLP78] gave an exact algorithm for LENGTH-BOUNDED VERTEX

CUT (l ≤ 5) in undirected graphs. Mahjoub and McCormick [MM10] proved that LENGTH-
BOUNDED VERTEX CUT admits an exact polynomial time algorithm for l ≤ 4 in undi-
rected graphs. Baier et al. [BEH+10] showed that both LENGTH-BOUNDED VERTEX

CUT (l > 5) and LENGTH-BOUNDED EDGE CUT(l > 4) are NP-hard to approxi-
mate within a factor 1.1377. They presented O(min(l, n

l
)) = O(

√
n)-approximation

algorithm for LENGTH-BOUNDED VERTEX CUT and O(min(l, n
2

l2
,
√
m)) = O(n2/3)-

approximation algorithm for LENGTH-BOUNDED EDGE CUT, with matching LP gaps.
LENGTH-BOUNDED CUT problems have been also actively studied in terms of their fixed
parameter tractability [GT11, DK15, BNN15, FHNN15].

3It is more conventional to cut s-t paths of length at most l. We use this slightly unconventional way to
be more consistent with SHORTEST PATH INTERDICTION.
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If we exchange the roles of the objective k and the length bound l, the problem be-
comes SHORTEST PATH INTERDICTION, where we want to maximize the length of the
shortest s-t path after removing at most k vertices or edges. It is also one of the cen-
tral problems in a broader class of interdiction problems. The study of SHORTEST PATH

INTERDICTION started in 1980’s when the problem was called as the k-most-vital-arcs
problem [CD82, MMG89, BGV89] and proved to be NP-hard [BGV89]. Khachiyan et
al. [KBB+07] proved that it is NP-hard to approximate within a factor less than 2. While
many heuristic algorithms were proposed [IW02, BB08, Mor11] and hardness in planar
graphs [PS13] was shown, whether the general version admits a constant factor approxi-
mation was still unknown.

Given a graph G = (V,E) and s, t ∈ V , let dist(G) be the length of the shortest s-t
path. For V ′ ⊆ V , let G \ V ′ be the subgraph induced by V \ V ′. For E ′ ⊆ E, we use the
same notation G \ E ′ to denote the subgraph (V,E \ E ′). We primarily study undirected
graphs. We first present our results for the vertex version of both problems (collectively
called as SHORT PATH VERTEX CUT onwards).

Theorem 2.5.3. Assume the Unique Games Conjecture. For infinitely many values of the
constant l ∈ N, given an undirected graph G = (V,E) and s, t ∈ V where there exists
C∗ ⊆ V \ {s, t} such that dist(G \ C∗) ≥ l, it is NP-hard to perform any of the following
tasks.

1. Find C ⊆ V \ {s, t} such that |C| ≤ Ω(l) · |C∗| and dist(G \ C) ≥ l.

2. Find C ⊆ V \ {s, t} such that |C| ≤ |C∗| and dist(G \ C) ≥ O(
√
l).

3. Find C ⊆ V \ {s, t} such that |C| ≤ Ω(l
ε
2 ) · |C∗| and dist(G \ C) ≥ O(l

1+ε
2 ) for

some 0 < ε < 1.

The first result shows that LENGTH-BOUNDED VERTEX CUT is hard to approximate
within a factor Ω(l). This matches the best l

2
-approximation up to a constant. [BEH+10].

The second result shows that SHORTEST PATH VERTEX INTERDICTION is hard to approx-
imate with in a factor Ω(

√
Opt), and the third result rules out bicriteria approximation —

for any constant c, it is hard to approximate both l and |C∗| within a factor of c.

The above results hold for directed graphs by definition. Our hard instances will have a
natural layered structure, so it can be easily checked that the same results (up to a constant)
hold for directed acyclic graphs. Since one vertex can be split as one directed edge, the
same results hold for the edge version in directed acyclic graphs.
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For LENGTH-BOUNDED EDGE CUT and SHORTEST PATH EDGE INTERDICTION in
undirected graphs (collectively called SHORTEST PATH EDGE CUT onwards), we prove
the following theorems.

Theorem 2.5.4. Assume the Unique Games Conjecture. For infinitely many values of the
constant l ∈ N, given an undirected graph G = (V,E) and s, t ∈ V where there exists
C∗ ⊆ E such that dist(V \ C∗) ≥ l, it is NP-hard to perform any of the following tasks.

1. Find C ⊆ E such that |C| ≤ Ω(
√
l) · |C∗| and dist(G \ C) ≥ l.

2. Find C ⊆ E such that |C| ≤ |C∗| and dist(G \ C) ≥ l
2
3 .

3. Find C ⊆ E such that |C| ≤ Ω(l
2ε
3 ) · |C∗| and dist(G \ C) ≥ O(l

2+2ε
3 ) for some

0 < ε < 1
2
.

Our hardness factors for the edge versions, Ω(
√
l) for LENGTH-BOUNDED EDGE CUT

and Ω( 3
√
Opt) for SHORTEST PATH EDGE INTERDICTION, are slightly weaker than those

for their vertex counterparts, but we are not aware of any approximation algorithm spe-
cialized for the edge versions. It is an interesting open problem whether there exist better
approximation algorithms for the edge versions.

2.5.6 RMFC

RESOURCE MINIMIZATION FOR FIRE CONTAINMENT (RMFC) is a problem closely
related to LENGTH-BOUNDED CUT with the additional notion of time. Given a graph G,
a vertex s, and a subset T of vertices, consider the situation where fire starts at s on Day 0.
For each Day i (i ≥ 1), we can save at most k vertices, and the fire spreads from currently
burning vertices to its unsaved neighbors. Once a vertex is burning or saved, it remains
so from then onwards. The process is terminated when the fire cannot spread anymore.
RMFC asks to find a strategy to save k vertices each day with the minimum k so that no
vertex in T is burnt. These problems model the spread of epidemics or ideas through a
social network, and have been actively studied recently [CC10, ACHS12, ABZ16, CV16].

RMFC, along with other variants, is first introduced by Hartnell [Har95]. Another
well-studied variant is called the FIREFIGHTER problem, where we are only given s ∈ V
and want to maximize the number of vertices that are not burnt at the end. It is known
to be NP-hard to approximate within a factor n1−ε for any ε > 0 [ACHS12]. King
and MacGillivray [KM10] proved that RMFC is hard to approximate within a factor
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less than 2. Anshelevich et al. [ACHS12] presented an O(
√
n)-approximation algorithm

for general graphs, and Chalermsook and Chuzhoy [CC10] showed that RMFC admits
O(log∗ n)-approximation in trees. Very recently, the approximation ratio in trees has
been improved to O(1) [ABZ16]. Both Anshelevich et al. [ACHS12] and Chalermsook
and Chuzhoy [CC10] independently studied directed layer graphs with b layers, showing
O(log b)-approximation.

Our final result on RMFC assumes a variant of the Unique Games Conjecture which
is not known to be equivalent to the original UGC. See Conjecture 3.2.4 for the exact
statement.

Theorem 2.5.5. Assuming Conjecture 3.2.4, it is NP-hard to approximate RMFC in undi-
rected graphs within any constant factor.

Again, our reduction has a natural layered structure and the result holds for directed
layered graphs. With b layers, we prove that it is hard to approximate with in a factor
Ω(log b), matching the best approximation algorithms [CC10, ACHS12]. Table 2.5 sum-
marizes our results.

Promises Algorithm Hardness
DIRECTED MULTICUT k k − ε

s-t BICUT 2 2− ε
s-∗ EDGE BICUT 2 4/3− ε

NODE BICUT 2 3/2− ε
s-t NODE DOUBLE CUT 2 2− ε

NODE DOUBLE CUT 2 3/2− ε
LENGTH-BOUNDED VERTEX CUT O(l) Ω(l)

SHORTEST PATH VERTEX INTERDICTION Ω(
√
Opt)

LENGTH-BOUNDED EDGE CUT O(l) Ω(
√
l)

SHORTEST PATH EDGE INTERDICTION Ω( 3
√
Opt)

NODE k-CUT/ 2(k − 1)/k 2(k − 1)/k − ε
VERTEX COVER ON k-PARTITE GRAPHS

RMFC
√
n ω(1)

Table 2.5: Summary of our hardness results for various cut problems.
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Chapter 3

Preliminaries

This chapter introduces the common tools used to design an efficient approximation algo-
rithms or prove hardness of approximation, including LABEL COVER, UNIQUE GAMES,
Fourier analysis, LP/SDP relaxations and their hierarchies.

3.1 LABEL COVER

The celebrated PCP theorem [ALM+98, AS98] and the parallel repetition theorem [Raz98]
proved a strong hardness result for LABEL COVER. It has been used to prove opti-
mal hardness results for MAXIMUM INDEPENDENT SET [Hås96], MAX CSP [Cha13],
CHROMATIC NUMBER [FK98], and MINIMUM SET COVER [Fei98]. See Trevisan’s sur-
vey [Tre05] and the textbook of Ausiello et al. [ACG+99] for overview of these results.
Many textbooks on approximation algorithms [Hoc96, Vaz01, WS11] also have a chapter
devoted to introduce hardness of LABEL COVER and its consequences. In this thesis, it is
used in Chapter 6 for UNIQUE COVERAGE, and Part III for hypergraph coloring.

An instance of LABEL COVER consists of a biregular bipartite graph G = (UG ∪
VG, EG) where each edge e = (u, v) is associated with a projection πe : [R] 7→ [L]
for some positive integers R and L. For u ∈ UG, let N(u) denote its neighbors and
D := |N(u)| be the left degree. We additionally require that every projection πe is d-
regular, i.e., R = dL and for every j ∈ [L], |π−1

e (j)| = d. A labeling l : UG ∪ VG 7→ [R]
satisfies e = (u, v) when πe(l(v)) = l(u). The standard application of PCP Theorem,
Parallel Repetition Theorem, and the trick of Wenner [Wen13] to make each projection
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d-regular1, implies the following theorem.

Theorem 3.1.1. There exists an absolute constant τ < 1 such that the following is true.
For any positive integer r > 0, there is a reduction that given an instance φ of 3SAT with
n variables, outputs an instance of LABEL COVER (G, {πe}e) with |UG|, |VG| = nO(r),
R = 10r, L = 2r, d = D = 5r in time nO(r), and satisfies the following.

• Completeness: If φ is satisfiable, there exists a labeling that satisfies every projec-
tion.

• Soundness: If φ is not satisfiable, every labeling satisfies at most τ r fraction of
projections.

The above basic LABEL COVER is used to prove a nearly optimal hardness result for
UNIQUE COVERAGE in Chapter 6. Several variants of LABEL COVER have been previ-
ously developed to prove hardness of various problems (e.g., SMOOTH LABEL COVER to
prove hardness for hypergraph coloring [Kho02a], MULTILAYERED LABEL COVER for
K-HYPERGRAPH VERTEX COVER[DGKR05] HYPERGRAPH LABEL COVER to prove
hardness for polynomial reconstruction [GKS10]). For hardness of hypergraph coloring
under strong promises in Part III, we introduce the following variants of LABEL COVER.
We introduce them and their hardness results in Section 10.2.

3.2 UNIQUE GAMES

The Unique Games Conjecture is first introduced by Khot [Kho02b] to prove hardness of
MIN 2CNF DELETION and other problems. Since then, it has been used to prove various
hardness results that LABEL COVER-based techniques could not. It includes VERTEX

COVER [KR08], MAX CUT [KKMO07], and every MAX CSP [Rag08]. We refer the
reader to the survey of Khot [Kho10] and Trevisan [Tre12] for overview of these results.
We formally introduce the UNIQUE GAMES and Unique Games Conjecture.

Definition 3.2.1. An instance L(B(U∪W,E), [R], {π(u,w)}(u,w)∈E) of UNIQUE GAMES

consists of a biregular bipartite graph B(U ∪ W,E) and a set [R] of labels. For each
edge (u,w) ∈ E there is a constraint specified by a permutation π(u,w) : [R] → [R].

1The basic 2-prover game based on 3SAT does not make the projections d-regular, but a simple trick
allows us to assume this without loss of generality. See Theorem 1.17 of Wenner [Wen13] for the formal
proof.
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Given a labeling l : U ∪W → [R], an edge e = (u,w) is said to be satisfied if l(u) =
π(u,w)(l(w)). Let

ValUG(l) :=
1

|E|
· | {e ∈ E : l satisfies e} |,

and
OptUG(L) := max

l:U∪W→[R]
ValUG(l).

Conjecture 3.2.2 (The Unique Games Conjecture [Kho02b]). For any constants η > 0,
there is R = R(η) such that, for a UNIQUE GAMES instance L with label set [R], it is
NP-hard to distinguish between

• OptUG(L) ≥ 1− η.

• OptUG(L) ≤ η.

We call a computational task UG-hard if it is NP-hard assuming the Unique Games
Conjecture. To show the optimal hardness result for VERTEX COVER, Khot and Regev
[KR08] introduced the following seemingly stronger conjecture, and proved that it is in
fact equivalent to the original Unique Games Conjecture.

Conjecture 3.2.3 (Khot and Regev [KR08]). For any constants η > 0, there is R = R(η)
such that, for a UNIQUE GAMES instance L with label set [R], it is NP-hard to distinguish
between

• There is a setW ′ ⊆ W such that |W ′| ≥ (1−η)|W | and a labeling l : U∪W → [R]
that satisfies every edge (u,w) for u ∈ U and w ∈ W ′.

• OptUG(L) ≤ η.

For RMFC, we use the following variant of UNIQUE GAMES, which is not known to
be equivalent to the original conjecture.

Conjecture 3.2.4. For any constants η > 0, there is R = R(η) such that, for a UNIQUE

GAMES instance L with label set [R], it is NP-hard to distinguish between

• There is a setW ′ ⊆ W such that |W ′| ≥ (1−η)|W | and a labeling l : U∪W → [R]
that satisfies every edge (u,w) for u ∈ U and w ∈ W ′.

45



• OptUG(L) ≤ η. Moreover, the instance satisfies the following expansion property:
For every set S ⊆ W , |S| = |W |

10
, we have |N(S)| ≥ 9

10
|U |, where N(S) := {u ∈

U : ∃w ∈ S, (u,w) ∈ E}.

Conjecture 3.2.4 is similar to that of Bansal and Khot [BK09], under which the optimal
hardness of Minimizing Weighted Completion Time with Precedence Constraints is proved.
Their conjecture requires that in the soundness case, ∀S ⊆ W with |S| = δ|W |, we must
have |N(S)| ≥ (1 − δ)|U | for arbitrarily small δ. Our conjecture is a weaker (so more
likely to hold) since we require this condition for only one value δ = 1

10
.

3.3 Fourier Analysis

Whether Unique Games Conjecture is true or not, one of the greatest influences of Unique
Games Conjecture is to spur extensive use of discrete Fourier analysis in hardness of ap-
proximation. As Khot [Kho10] wrote in his survey, applications to hardness of approxi-
mation actually led to some new Fourier analytic theorems. Furthermore, some of these
advanced tools developed primarily for UNIQUE GAMES were used with LABEL COVER

to prove NP-hardness results. We refer the reader to the textbook of O’Donnell [O’D14]
for general introduction to discrete Fourier analysis and its applications on hardness of
approximation. Throughout this thesis, tools from discrete Fourier analysis are used ex-
tensively in the following places.

• UG hardness: Chapter 4 for HARD CSP, Chapter 7 for GRAPH PRICING, Part V for
cut problems.

• NP hardness: Part III for coloring problems.

• SDP-based algorithm: Chapter 5 for SYMMETRIC CSP.

In this section, we present some of basic tools of discrete Fourier analysis. More
advanced techniques used in a specific part of this thesis, mostly those for NP-hardness of
coloring in Part III, will be presented in the respective sections.

First we introduce standard tools on correlated probability spaces from Mossel [Mos10].
Fix a finite set Ω. Given a probability space (Ω, µ) (we always consider finite probability
spaces), let L(Ω) be the set of functions {f : Ω→ R} and for an interval I ⊆ R, LI(Ω)
be the set of functions {f : Ω→ I}. For a subset S ⊆ Ω, define measure of S to be
µ(S) :=

∑
ω∈S µ(ω). A collection of probability spaces are said to be correlated if there
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is a joint probability distribution on them. We will denote k correlated spaces Ω1, . . . ,Ωk

with a joint distribution µ as (Ω1 × · · · × Ωk, µ).

Definition 3.3.1. Given two correlated spaces (Ω1 × Ω2, µ), we define the correlation
between Ω1 and Ω2 by

ρ(Ω1,Ω2;µ) := sup {Cov[f, g] : f ∈ L(Ω1), g ∈ L(Ω2),Var[f ] = Var[g] = 1} .

Definition 3.3.2. Given a probability space (Ω, µ) and a function f ∈ L(Ω) and p ∈ R+,
let ‖f‖p := Ex∼µ[|f(x)|p]1/p.

We use the following lemma to bound the correlation ρ(Ω1,Ω2; ν). While the quantitative
guarantee of this lemma is often not optimal, the fact that ρ < 1 suffices for our purpose for
various covering and cut problems. In Section 7.4 for GRAPH PRICING and Section 17.6
for SHORT PATH EDGE CUT, we use more direct methods to prove better bounds on ρ.

Lemma 3.3.3 (Lemma 2.9 of [Mos10]). Let (Ω1 × Ω2, µ) be two correlated spaces such
that the probability of the smallest atom in Ω1 × Ω2 is at least α > 0. Define a bipartite
graph G = (Ω1 ∪ Ω2, E) where (a, b) ∈ Ω1 × Ω2 satisfies (a, b) ∈ E if µ(a, b) > 0. If G
is connected, then ρ(Ω1,Ω2;µ) ≤ 1− α2

2
.

At the heart of discrete Fourier analysis is the following decomposition of any function
on a product space.

Definition 3.3.4. Consider a product space (ΩR, µ⊗R) and f ∈ L(ΩR). The Efron-Stein
decomposition of f is given by

f(x1, . . . , xR) =
∑
S⊆[R]

fS(xS)

where (1) fS depends only on xS and (2) for all S 6⊆ S ′ and all xS′ , Ex′∼µ⊗R [fS(x′)|x′S′ =
xS′ ] = 0.

This decomposition allows us to understand many natural combinatorial quantities using
tools from analysis. The influence is a such quantity.

Definition 3.3.5. The influence of the ith coordinate on f is defined by

Infi[f ] := Ex1,...,xi−1,xi+1,...,xR [Varxi [f(x1, . . . , xR)].

The influence has a convenient expression in terms of the Efron-Stein decomposition.

Infi[f ] = ‖
∑
S:i∈S

fS‖2
2 =

∑
S:i∈S

‖fS‖2
2.
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As the name suggests, the influence measures how much value of f depends on the ith
coordinate. Let Ω = {+1,−1} and µ(+1) = µ(−1) = 1/2, and consider the following
three functions from ΩR → {−1, 1} for some odd number R.

1. Dictator: Fix i ∈ [R], and let fD(x1, . . . , xR) = xi.

• Infi[fD] = 1 and Infj[fD] = 0 for all j 6= i.

2. Majority: fM(x1, . . . , xR) = sign(x1 + · · ·+ xR).

• For every i ∈ [R], Infi[fM ] is the probability that R − 1 independently flipped
coins show exactly R−1

2
heads and tails respectively, so Infi[fM ] = Θ(1/

√
R).

3. XOR: fX(x1, . . . , xR) =
∏R

i=1 xi.

• Infi[fX ] = 1 for every i ∈ [R].

Among these functions, we can clearly say that i is the only influential coordinate in fD,
and fM has no single influential coordinate. The situation becomes unclear for fX since
every coordinate has the highest possible influence. It turns out that having too many
coordinates of high influence causes a technical problem for applications in hardness of
approximation. To fix it, we introduce two variants of influence.

Definition 3.3.6. Let ρ ∈ [−1, 1]. The noisy operator Tρ acts on f by

Tρf(x) = Ey[f(y)] ,

where each coordinate yi of y is independently sampled such that it is equal to xi with
probability ρ and newly sampled from µ with probability (1 − ρ). We call Infi[Tρf ] the
noisy influence of the ith coordinate. Equivalently it can be defined as

Infi[Tρf ] =
∑
S:i∈S

ρ|S|‖fS‖2
2.

Definition 3.3.7. We also define the low-degree influence of the ith coordinate.

Inf≤di [f ] :=
∑

S:i∈S,|S|≤d

‖fS‖2
2.

Since the Efron-Stein decomposition of fX is fX = (fX)[R], we can see that Infi[TρfX ] =

ρR and Inf≤di [fX ] = 0 for d < R. The following lemma formally shows that both notions
significantly reduce the number of influential coordinates.
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Lemma 3.3.8 ([O’D14]).
∑

i Inf
≤d
i [f ] ≤ d · Var[f ] and

∑
i Infi[T1−δf ] ≤ (1/δ) · Var[f ].

The final crucial tool of discrete Fourier analysis for hardness of approximation is
the following invariance principle. It states that if two functions f, g : ΩR → R do not
share an (low-degree) influential coordinate, we can treat f and g as functions on Gaussian
spaces with the same expected values and deduce upper and lower bounds on E[fg].

Definition 3.3.9. For a, b ∈ [0, 1] and ρ ∈ (0, 1), let

Γρ(a, b) := Pr[X ≤ Φ−1(a), Y ≥ Φ−1(1− b)],
Γρ(a, b) := Pr[X ≤ Φ−1(a), Y ≤ Φ−1(b)],

where X and Y are ρ-correlated standard Gaussian variables and Φ denotes the cumula-
tive distribution function of a standard Gaussian.

Theorem 3.3.10 (Lemma 6.8 of [Mos10]). Let (Ω1 × Ω2, µ) be correlated spaces such
that the minimum nonzero probability of any atom in Ω1 × Ω2 is at least α and such that
ρ(Ω1,Ω2;µ) ≤ ρ < 1. Then for every ε > 0 there exist τ, d depending only on ρ, ε, α such
that if f : ΩR

1 → [0, 1], g : ΩR
2 → [0, 1] satisfy min(Inf≤di [f ], Inf≤di [g]) ≤ τ for all i, then

Γρ(Ex[f ],Ey[g])− ε ≤ E(x,y)∈µ⊗R [f(x)g(y)] ≤ Γρ(Ex[f ],Ey[g]) + ε.

Some of our results only use the fact that Γρ(Ex[f ],Ey[g]) > 0 and take ε = Γρ(Ex[f ],Ey[g])/2
to show that the expected value is strictly positive, while others use additional quantitative
bounds in Gaussian spaces. Section 5.2.2 for SYMMETRIC CSP, Section 7.7 for GRAPH

PRICING, Section 17.6 for cut problems contain our technical results on Gaussian space.

The tools introduced in this section suffice for most UG-hardness results in this thesis
(except more direct calculations for bounding the correlation ρ). To adapt them for LABEL

COVER to prove NP-hardness, we need more advanced tools since the set ofR coordinates
have an additional structure — there is an equivalence relation on [R] and coordinates in
the same equivalence class (we call block) are more correlated than those outside. See
Section 10.2 for more Fourier analysis background for this purpose.

3.3.1 Dictatorship Tests for VERTEX COVER

As an illustration of how these tools from discrete Fourier analysis are used for hardness
of approximation, we present a dictatorship test for VERTEX COVER. A dictatorship test
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for a combinatorial problem P is an instance of the problem where its set of vertices (if P
is a graph or hypergraph problem) or its set of variables (if P is a CSP) is ΩR for some R.
Then any solution to this problem can be represented as a function f : ΩR → Q. For CSPs,
Q denotes the domain from which each variable can take a value, and for covering or cut
problems, Q = {0, 1} where 1 indicates that the vertex will be removed. It is required to
have two properties.

• Completeness: For each i ∈ [R], there is a dictator function fD(x1, . . . , xR) that
only depends on xi and corresponds to a good solution P .

• Soundness: Any f : ΩR → Q that does not reveal an (low-degree or noisy) influen-
tial coordinate will not be a good solution to P . Equivalently, any f that corresponds
to a good solution will reveal a corodinate with large (low-degree or noisy) influen-
tial coordinate.

It is also known as the long code and was first introduced by Bellare, Goldreich, and Su-
dan [BGS98], and has played a crucial role in proving both NP-hardness and UG-hardness
of approximation.

Now we present the dictatorship test for VERTEX COVER constructed by Bansal and
Khot [BK10]. We do not present the full reduction from UNIQUE GAMES here, but similar
reductions for our new results of this thesis will be presented in the respective sections.
This dictatorship test can be used to show that VERTEX COVER is UG-hard to approximate
within a factor 2 − ε for any ε > 0. Khot and Regev [KR08] first proved this result, and
Austrin et al. [AKS09] and Bansal and Khot [BK09, BK10] proved stronger versions of
this results using more advanced tools from Fourier analysis.

Let Ω := {∗, 0, 1}, and fix ε > 0 and R ∈ N. Our dictatorship test Dvc
R,ε = (ΩR, E)

is defined as follows. Each vertex is represented by vx where x ∈ ΩR is a R-dimensional
vector. Consider the probability space (Ω, µ) where Ω := {0, 1, ∗}, and µ : Ω 7→ [0, 1]
with µ(∗) = ε and µ(x) = (1− ε)/2 for x 6= ∗. We define the weight wt(vx) := µ⊗R(x) =∏R

i=1 µ(xi). The sum of weights is 1. Two vertices vx and vy have an edge if and only
if for any 1 ≤ l ≤ R, [xl 6= yl] or [yl = ∗] or [xl = ∗]. We now prove the two desired
properties.

Completeness. Fix q ∈ [R] and let Uq := {vx : xq = 0 or ∗}. The weight of Uq is
wt(Uq) = (1 + ε)/2. Note that Uq only depends on xq.

Lemma 3.3.11. Uq is a vertex cover.
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Proof. Let {vx, vy} be an edge of Dvc
R,ε. If both endpoints do not belong to Uq, it implies

xq = yq = 1. It contradicts our construction.

Soundness. To analyze soundness, we define a correlated probability space (Ω1×Ω2, ν)
where both Ω1,Ω2 are copies of Ω. It is defined by the following process to sample (x, y) ∈
Ω2.

1. Sample x ∈ {0, 1} uniformly at random. Let y = 1− x.

2. Change x to ∗ with probability ε. Do the same for y independently.

We note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1/3,
the minimum probability of any atom in Ω1 × Ω2 is ε2. Consider the bipartite graph on
Ω1 ∪ Ω2 such that x ∈ Ω1 and y ∈ Ω2 are connected if and only if (x, y) is sampled with
nonzero probability. For any x ∈ Ω1, note that (x, ∗) is a valid edge, and so is (∗, ∗), so x
is connected to the edge (∗, ∗). The same argument shows that any y ∈ Ω2 is connected to
(∗, ∗), so this bipartite graph is indeed connected. Therefore, we can apply Lemma 3.3.3
to have ρ(Ω1,Ω2; ν) ≤ ρ := 1− ε4/2.

Fix an arbitrary vertex cover U ⊆ V of wt(U) ≤ 1 − ε. Let f : ΩR 7→ {0, 1} be
the indicator function of U so that Ex∈µ⊗R [f(x)] = µ⊗R(U) ≤ 1 − ε. Theorem 3.3.10
(ρ ← ρ, α ← ε2, ε ← Γρ(ε, ε)/2) states that there exist τ and d such that if Inf≤di [f ] ≤ τ
for all i ∈ [R],

E(x,y)∼ν⊗R [(1−f)(x) ·(1−f)(y)] ≥ Γρ(1−E[f ], 1−E[f ])−Γρ(ε, ε)/2 ≥ Γρ(ε, ε)/2 > 0.

This implies that there exists x, y such that there is an edge between vx and vy but neither
vx nor vy is contained in U . This contradicts that U is a vertex cover.

Therefore, if Inf≤di [U ] ≤ τ for all i (i.e., U does not reveal any influential coordi-
nate), then wt(U) ≥ 1 − ε. Note that by Lemma 3.3.8, the number of coordinates i with
Inf≤di [f ] ≥ τ is at most d

τ
, and that d and τ only depend on ε, but not R. This fact is crucial

for the reduction from UNIQUE GAMES since we would like to keep the number of coor-
dinates with large low-degree influence small regardless of the total number of coordinates
R. See the respective reductions for details.

In summary, in the completeness case, there is a dictator function corresponding to a
vertex cover of weight (1 + ε)/2. Indeed, after deleting vertices of total weight at most
ε, the graph becomes a bipartite graph. In the soundness case, unless we reveal an (low-
degree) influential coordinate, every vertex cover has weight at least (1 − ε). The gap
between the two cases approaches to 2 as ε→ 0.
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3.4 LP/SDP and Integrality Gaps

Linear programming (LP) concerns the problem of maximizing or minimizing a linear
function over a polyhedron. It is expressed as

maximize cTx

subject to Ax ≤ b

x ≥ 0,

where x ∈ Rn is a variable, and c ∈ Rn, A ∈ Rm×n, b ∈ Rm are fixed constants.

Semidefinite programming (SDP) concerns the problem of maximizing or minimizing
a linear function over the intersection of a positive semidefinite cone and an affine space.
It is expressed as

maximize cTx

subject to
n∑
i=1

xiAi � B

x ≥ 0,

where x ∈ Rn is a variable, and c ∈ Rn, Ai ∈ Rm×m, C ∈ Rm×m are fixed constants.
Note that A � B if and only if yTAy ≤ yTBy for all y ∈ Rm.

Given a maximization problem P , we often consider a natural LP or SDP relaxation
R. The optimum of such relaxation OptR is at least as big as the integral optimum OptP .
The integrality gap of the relaxation R is defined to be the infimum of OptP

OptR
over every

instance of P . For the minimization problem, it is defined to be the supremum of OptP
OptR

.

All algorithmic results in this thesis rely on LP or SDP relaxations. Table 3.1 sum-
marizes them. Among them, our algorithms for BALANCE SAT, GENERALIZED MAX

DICUT, k-STAR TRANSVERSAL, and k-VERTEX SEPARATOR also prove that the inte-
grality gaps for these problems are small. The algorithms for SYMMETRIC CSP, MAX 2-
COLORING, MIN COLORING are based special relaxations designed for certain promises
on input instances, so they do not necessarily prove that the integrality gaps are small. For
k-PATH TRANSVERSAL, the algorithm starts from solving a LP relaxation that is known to
have a large integrality gap, but bypasses this integrality gap to achieve an approximation
ratio much better than the integrality gap while still using the optimal LP solution.
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Problem Type Relaxation Location
BALANCE SAT CSP LP Section 4.3.2

SYMMETRIC CSP CSP SDP Chapter 5
GENERALIZED MAX DICUT CSP LP Chapter 7.6

MAX 2-COLORING Coloring SDP Chapter 11
MIN COLORING Coloring SDP Chapter 11

k-STAR TRANSVERSAL Covering LP Chapter 14
k-VERTEX SEPARATOR Covering LP Chapter 15
k-PATH TRANSVERSAL Covering LP Chapter 15

Table 3.1: Summary of our algorithmic results in this thesis.

3.4.1 Relaxations for CSP and Hierarchies

One of the most natural LP hierarchies is the following Sherali-Adams hierarchy [SA90].
Let (V, C) be an instance of CSP where each variable v ∈ V can take a value in finite set
Q and each constraint C ∈ C depends on at most k variables.

Let r be a positive integer. A r-local distribution is defined as the collection of variables
{xS(α)} where S ranges over a subset of V of size at most r, and α : S → Q is a partial
assignment to variables in S. As the name suggests, it is required to satisfy the following
three constraints. For α : S → Q and β : T \S → Q, let α◦β : T → Q be the assignment
consistent with α and β.

• x∅ = 1.

• xS(α) ≥ 0 for all S, α.

•
∑

β:T\S→Q xT (α ◦ β) = xS(α) for all S ⊆ T , α : S → Q.

If r ≥ t, for each constraint C ∈ C that depends on variables in S, the probability that
C is satisfied by this local distribution is

yC :=
∑

α:S→Q and α satisfies C
xS(α).
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Therefore, the r-rounds of Sherali-Adams relaxation for this CSP is

maximize
∑
C∈C

yC

subject to yC =
∑

α:S→Q and α satisfies C
xS(α) ∀C ∈ C.

{xS,α} is a r-local distribution.

If r < t, yC cannot be defined naturally, but for BALANCE SAT in Section 4.3.2, we have
a natural way to define yC to have a nontrivial approximation algorithm when r = 1 and t
is not bounded.

We can further strengthen this Sherali-Adams hierarchy to Lasserre or Sum-of-Squares
hierarchies introduced in [Las01, Par00]. The r-rounds of Sum-of-Squares hierarchy in-
volve a 2r-local distribution {xS(α)} as well as a set of vectors {vS(α)} for every |S| ≤ r
and α : S → Q with the following property: for any S, T ⊆ V with |S|, |T | ≤ t and any
α : S → Q and β : T → Q, we have

〈vS(α), vT (β)〉 = xS∪T (α ◦ β)

if α and β are consistent on S ∩ T , and 〈vS(α), vT (β)〉 = 0 otherwise.

Sherali-Adams and Sum-of-Squares hierarchies have been actively studied recently.
See the survey of Chlamtac and Tulsiani [CT12] and Barak and Steurer [BS14]. For
GRAPH PRICING (and GENERALIZED MAX DICUT) and decoding LDPC codes, we
present strong lower bounds on the integrality gaps of these hierarchies. Table 3.2 sum-
marizes them.

Problem Relaxation Location
GRAPH PRICING and Sherali-Adams Section 7.5

GENERALIZED MAX DICUT

Decoding LDPC codes Sherali-Adams and Sum-of-Squares Chapter 8

Table 3.2: Summary of our integrality gap results in this thesis.

3.4.2 Relaxations for Covering

Let (V,S) be a set system where S = {S1, . . . , Sm} and each Si is a subset of V . Consider
the covering problem where we want to find the smallest set U ⊆ V such that U ∩ Si 6= ∅
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for every i. This problem can be viewed as a variant of CSP where each element v ∈ V
becomes a variable that can have either 1 (meaning v ∈ U ) or 0 (meaning v /∈ U), and
each set Si becomes a constraint that at least one variable v ∈ Si has to be assigned 1.
Let k := maxi |Si|. Whenever r ≥ k, the following Sherali-Adams hierarchy gives a
relaxation.

minimize
∑
v∈V

xv(1)

subject to xSi(0, . . . , 0) = 0 ∀Si ∈ S.
{xS,α} is a r-local distribution.

Our algorithms for k-STAR TRANSVERSAL and k-VERTEX SEPARATOR are inspired
by the above relaxation (r = maximum degree for k-STAR TRANSVERSAL and r = O(k)
for k-VERTEX SEPARATOR), but the final relaxations we use have at mostO(n2) variables
in total (the one for k-VERTEX SEPARATOR has an exponential number of constraints
and we construct a good separation oracle). When r = 1, we have the following basic
relaxation where variables are {xv}v∈V .

minimize
∑
v∈V

xv

subject to
∑
v∈Si

xv ≥ 1 ∀Si ∈ S.

x ≥ 0.

If every Si has at least k elements, setting xv = 1
k

for all v ∈ V is a feasible LP solu-
tion. This LP has a large integrality gap (k − o(1)) for k-PATH TRANSVERSAL, but our
O(log k)-approximation algorithm for k-PATH TRANSVERSAL starts solving the above
LP, bypassing its integrality gap while still using its solution.

3.4.3 Relaxations for Coloring

The study of (hyper)graph coloring is one of the first places where connections between
SDP and combinatorial optimization were made. Given a graph G = (V,E), Lovász
[Lov79] defined the Lovász theta function θ(G), which is lower bounded by the size of
the maximum independent set of G and upper bounded by the chromatic number of tis
complement graph G = (V,E) where E =

(
V
2

)
\ E. As a relaxation of MAXIMUM

INDEPENDENT SET, θ(G) can be defined as the optimal value of the following SDP. The
only variable is an n× n matrix X . Let J be the matrix of all ones.
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maximize 〈J,X〉
subject to Tr(X) = 1

X(i, j) = 0 ∀(i, j) ∈ E
X � 0

This is a relaxation of MAXIMUM INDEPENDENT SET, since if S ⊆ V is an independent
set, letting 1S be the indicator vector of S and X = 1S 1

T
S /|S| certifies that θ(G) ≥ |S|.

Its dual is the following SDP.

minimize α

subject to αI +B � J

B(i, j) = 0 ∀(i, j) /∈ E

which is equivalent to the following vector program by considering vectors b1, . . . , bn such
that (αI +B − J)(i, j) = 〈bi, bj〉.

minimize α

subject to ||bi||2 = α− 1

〈bi, bj〉 = −1 ∀i 6= j and (i, j) 6= E

Note that the optimal value of this program is always at least 1. Let ci := bi/(α − 1), and
let the new objective function be t := −1/

√
α− 1. We were minimizing α ≥ 1, so we

are also minimizing t. Since θ(G) is at most the chromatic number of G, we can conclude
that the following program is a relaxation of the chromatic number of G in the sense that
if G can be colored by χ colors, the optimal value of the program is at most − 1

χ−1
.

minimize t

subject to ||ci||2 = 1

〈ci, cj〉 = t ∀(i, j) ∈ E

Consider a regular (χ− 1)-simplex centered at the origin where each vertex is at distance
1 from the center. Let u1, . . . , uχ be the vertices. It is simple to check that 〈ui, uj〉 =
−1/(χ− 1). The geometric intuition of this program is that if G is χ-colorable, assigning
one of ui to each vertex according to its color certifies that t ≤ −1/(χ − 1). There are
other natural equivalent formulations of the θ function. We refer the reader to the lecture
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notes of Todd [Tod12] and the survey of Knuth [Knu94] for those formulations and their
equivalences.

In this thesis, we study the problem of hypergraph coloring under strong proimses.
They allow us to write strong and intuitive SDPs and guarantee its feasibility. These SDPs
will still assign a unit vector to each vertex. Given a hypergraph H = (V,E), the three
promises we study are the following.

• A hypergraph is said to have discrepancy ` when there is a 2-coloring such that in
each hyperedge, the difference between the number of vertices of each color is at
most `.

• A χ-coloring (χ ≤ K) is called rainbow if every hyperedge contains each color at
least once.

• A χ-coloring (χ ≥ K) is called strong if every hyperedge contains K different
colors.

Our SDP relaxations for low-discrepancy, rainbow-colorability, and strong-colorability
are the following.

Discrepancy `. This program is feasible by assigning a unit vector w or −w to each
vertex according to the 2-coloring minimizing the discrepancy.∣∣∣∣∣

∣∣∣∣∣∑
i∈e

ui

∣∣∣∣∣
∣∣∣∣∣
2

≤ ` ∀ e ∈ E

||ui||2 = 1 ∀ i ∈ [n]

ui ∈ Rn ∀ i ∈ [n]

(K − `)-Rainbow Colorability. This program is feasible by assigning a vertex of a
regular (K − `− 1) simplex to each vertex according to a rainbow coloring.∣∣∣∣∣

∣∣∣∣∣∑
i∈e

ui

∣∣∣∣∣
∣∣∣∣∣
2

≤ ` ∀ e ∈ E

〈ui, uj〉 ≥
−1

K − `− 1
∀ e ∈ E, ∀ i < j ∈ e

||ui||2 = 1 ∀ i ∈ [n]

ui ∈ Rn ∀ i ∈ [n]
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(K+ `)-Strong Colorability. This program is feasible by assigning a vertex of a regular
(K + `− 1) simplex to each vertex according to a strong coloring.

〈ui, uj〉 =
−1

K + `− 1
∀ e ∈ E, ∀ i < j ∈ e

||ui||2 = 1 ∀ i ∈ [n]

ui ∈ Rn ∀ i ∈ [n]
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Part I

Constraint Satisfaction Problems
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Chapter 4

Balance / Hard CSP

4.1 Introduction

The study of the complexity of Constraint Satisfaction Problems (CSPs) has seen much
progress, with beautiful well-developed theories explaining when they admit efficient sat-
isfiability and approximation algorithms. A CSP is specified by a finite set Π of relations
(relations can have different arities) over some finite domain Q. An instance of a MAX

CSP(Π) consists of a set of variables X = {x1, ..., xn} and a collection of constraints
C = {C1, ..., Cm} each of which is a relation from Π applied to some tuple of variables
from X . Constraints are weighted and we assume that

∑
i wt(Ci) = 1. For any assign-

ment σ : X → Q, Val(σ) is the total weight of satisfied constraints by σ, and our goal is
to find σ that maximizes Val(σ). We consider two natural extensions of MAX CSP(Π).

Definition 4.1.1 (CSP with balance constraints). An instance of BALANCE CSP(Π) over
domain Q, I = (X,C) consists of set of variables X and a collection of constraints C,
as in MAX CSP(Π). An assignment σ : X → Q is called balanced if for each q ∈ Q,
|σ−1(q)| = n

|Q| . Define ValB(σ) = Val(σ) if σ is balanced, and ValB(σ) = 0 otherwise.
Let OptB(I) = maxσ ValB(σ). Our goal is to find σ that maximizes ValB(σ).

The notion of BALANCE CSP is interesting both practically and theoretically. Parti-
tioning a set of objects into equal-sized subsets with desired properties is a basic scheme
used in Divide-and-Conquer algorithms. BALANCE CUT, also known as MAXIMUM BI-
SECTION, is one of the most well-known examples of BALANCE CSP. Theoretically, the
balance constraint is one of the simplest non-local constraints where the current algorith-
mic and hardness results on ordinary CSPs do not work.
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Definition 4.1.2 (CSP with hard constraints). An instance of HARD CSP(Π) I = (X,S,H)
consists of set of variables X and a two collections of constraints S = {S1, ..., SmS} and
H = {H1, ..., HmH} (S stands for soft constraints and H stands for hard constraints, and
only soft constraints are weighted). An assignment σ : X → Q is feasible if it satisfies all
constraints in H . Let ValH(σ) be the total weight of satisfied constraints in S if σ is feasi-
ble, and 0 otherwise. Let OptH(I) = maxσ ValH(σ). Our goal is to find σ that maximizes
ValH(σ).

HARD CSP contains every MAX CSP by definition, and also several additional fun-
damental combinatorial optimization problems, such as (Hypergraph) Independent Set,
Multicut, Graph-k-Coloring, and many other covering/packing problems. While every as-
signment is feasible in ordinary MAX CSP, in HARD CSP only certain assignments which
satisfy all the hard constraints are considered as feasible, giving a more general framework
to study combinatorial optimization problems.

By the seminal work of Schaefer [Sch78], there are only three nontrivial classes of
Boolean CSPs for which satisfiability can be checked in polynomial time: 2-SAT, Horn-
SAT, and LIN-mod-2.1 Even among them, there is a stark difference in terms of approx-
imability. Håstad [Hås01] showed that for MAX LIN-MOD-2, it is NP-hard to find an
assignment that satisfies (1

2
+ ε) fraction of constraints even when there is an assignment

that satisfies (1 − ε) fraction of constraints, for any ε > 0. Even for the special case
where all linear equations are homogeneous (so that x1 = · · · = xn = 0 trivially satisfies
all equations), Holmerin and Khot [HK04] showed the same result for its balance ver-
sion. On the other hand, a series of works [GW94, Zwi98b, CMM07] showed that MAX

2-SAT and MAX HORN-SATadmit a robust algorithm, which outputs an assignment sat-
isfying at least (1− g(ε)) fraction of constraints given a (1− ε)-satisfiable instance, where
g(ε) → 0 as ε → 0, and g(0) = 0. The exact behavior of the function g(·) for MAX

LIN-MOD-2 and MAX HORN-3-SAT has been pinned down under the Unique Games
conjecture [KKMO07, GZ12]. Generalizing this, all Boolean CSPs were classified with
respect to how well they can be robustly approximated (i.e., the behavior of the function
g(·)) in [DK13]. From our perspective, it is natural to investigate the effects of balance
and hard constraints applied to the most tractable classes of Boolean CSPs (MAX LIN-
MOD-2, MAX HORN-SAT, MAX CUT) and study how hard each variant becomes. This
is the task we undertake in this chapter.

Between balance and hard constraints, which one makes the original problem harder?
1An instance of Horn-SAT is a set of Horn clauses, each with at most one unnegated literal. An instance

of LIN-mod-2 is linear equations mod 2. Dual-Horn-SAT in which clauses have at most one negated literal
also admits an efficient satisfability algorithm, but as it obviously has the same properties as Horn-SAT, we
focus on Horn-SAT in this chapter.
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They are not directly comparable since each variant inherits different characteristics of
the original problem. For BALANCE SAT which includes both BALANCE 2-SAT and
BALANCE HORN-SAT, it is easy to find σ with ValB(σ) ≥ 0.5 − choose an arbitrary
assignment with the same number of 0’s and 1’s, and try it and its complement. Therefore,
BALANCE SAT admits a constant-factor approximation algorithm, but given an instance
that admits a balanced satisfying assignment, even for 2-SAT and Horn-SAT, it is not clear
how to find such an assignment.

The situation is exactly opposite in the case of HARD 2-SAT or HARD HORN SAT.
Given an instance I that admits a satisfying (both hard and soft constraints) assignment
(i.e., OptH(I) = 1), well-known algorithms for 2-SAT or Horn-SAT will find such an
assignment. However, for any ε > 0, when OptH(I) = 1 − ε, it is not clear how to find
σ such that ValH(σ) ≥ c for some absolute constant c, or even ValH(σ) ≥ ε. Therefore,
adding hard constraints preserves the fact that satisfiability can be checked in polynomial
time, but does not preserve a simple constant-factor approximation algorithm.

Though each of balance and hard constraints does not preserve one of the important
characteristics of the original CSP in a simple way, there might be a hope that a more
sophisticated algorithmic idea gives an efficient algorithm deciding satisfiability for BAL-
ANCE CSP, a constant-factor approximation algorithm for HARD CSP, or a robust algo-
rithm for both of them.

4.1.1 Our Results

In this chapter, we prove strong hardness results for these problems, proving APX-hardness
of deciding satisfiability of balanced versions and Unique Games-hardness of constant fac-
tor approximation algorithms on (1−ε)-satisfiable instances of hard versions, of both MAX

LIN-MOD-2 and MAX HORN-SAT. The results are formally stated below.

Balanced CSP. For BALANCE 2-SAT and BALANCE HORN-SAT, the Schaefer-like di-
chotomy due to [CSS10] for the (decision version of) Boolean BALANCE CSP, implies
that we cannot efficiently decide whether the given instance is satisfiable or not. This di-
chotomy was extended to all domains in [BM10], which is somewhat surprising given the
status of the dichotomy conjecture for CSPs without any balance/cardinality constraint.

We show the following stronger statement that rules out even a robust satisfiability
algorithm for the common special case BALANCE HORN 2-SAT.

Theorem 4.1.1. There exists an absolute constant δ > 0 such that given an instance I
of BALANCE HORN 2-SAT (special case of BALANCE 2-SAT and BALANCE HORN-
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SAT), it is NP-hard to distinguish the following cases.

• OptB(I) = 1

• OptB(I) ≤ 1− δ

This result should be contrasted with the fact that a special case of BALANCE 2-SAT,
namely BALANCE CUT (MAXIMUM BISECTION), does admit a robust algorithm [GMR+11,
RT12, ABG13]. The work [ABG13] also shows that the guaranteed approximation ratio
for BALANCE 2-SAT (which is the worst ratio ValB(σ)

OptB(I)
over every instance I and σ found

by the algorithm) is indeed equal to the best known approximation ratio for MAX LIN-
MOD-2 [LLZ02], i.e., αLLZ ≈ 0.9401, so adding the balance constraint does not make the
problem harder in this regard.

While several nontrivial approximation algorithms for BALANCE 2-SAT have been
studied, as far as we know, no algorithm for BALANCE HORN-SAT or even BALANCE

SAT has been suggested in the literature. Other than the trivial 0.5-approximation algo-
rithm given above, we also show that a slight modification to 3

4
-approximation algorithm

due to Goemans and Williamson [GW94] gives the algorithm with the same ratio.

Theorem 4.1.2. For any ε > 0, there is a randomized algorithm such that given an instace
I of BALANCE SAT, in time poly(size(I), 1

ε
), outputs σ with ValB(σ) ≥ (3

4
−ε)OptB(I)

with constant probability.

Hard CSP. For HARD 2-SAT, robust algorithms are ruled out in a more radical way,
assuming the Unique Games Conjecture.

Theorem 4.1.3. For any ε > 0, given an instance I of HARD 2-SAT, it is UG-hard to
distinguish the following cases.

• OptH(I) ≥ 1− ε
• OptH(I) ≤ ε

This result again shows a stark difference between MAX LIN-MOD-2 and MAX CUT

since the famous algorithm of Goemans and Williamson [GW95] works well with hard
constraints; if vertices u and v must be separated, we require the vectors corresponding
to them to be placed in antipodal positions, and any hyperplane rounding separates them.
It shows that HARD CUT admits both a constant-factor approximation algorithm and a
robust algorithm while HARD 2-SAT admits neither of them.

For HARD HORN 2-SAT, simple algorithmic and hardness tricks show that finding σ
with ValH(σ) ≥ 1− 2ε given OptH(I) = 1− ε is the best possible, assuming the Unique
Games Conjecture.
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Observation 4.1.3. There is a polynomial time algorithm that for any ε > 0, if the given
instance I of MAX HORN-2-SAT satisfies OptH(I) = 1 − ε, finds σ with ValH(σ) ≥
1− 2ε. Furthermore, for any ε, δ > 0, it is UG-hard to distinguish the following cases.

• OptH(I) ≥ 1− ε− δ.
• OptH(I) ≤ 1− 2ε+ δ.

The above algorithmic trick does not work for other robust algorithms, and for HARD

HORN 3-SAT (or higher arities), we have the following NP-hardness result.

Theorem 4.1.4. For any ε > 0, given an instance I of HARD HORN 3-SAT, it is NP-hard
to distinguish the following cases.

• OptH(I) ≥ 1− ε
• OptH(I) ≤ ε

The complete algorithmic and hardness results are summarized in Table 4.1.

Ordering constraints over larger domain. If we go beyond the Boolean domain, the
situation is not as clear; indeed even satisfiabilities of ordinary CSPs are not completely
classified yet. We consider a simple and natural CSP of arity two over larger domains,
namely MAX CSP(<) over domain [q] = {1, 2, ..., q} − every constraint says that one
variable must be less than another. This problem can also be understood as a graph-
theoretic problem; given a directed graph G = (V,E), delete the minimum number of
edges so that the remaining graph has no walk of length q (for the formal definition, see
Section 4.4). If the domain is unbounded (indeed, [n] is enough), this is exactly the well-
known MAXIMUM ACYCLIC SUBGRAPH problem.

For all of these problems, a random assignment will give a constant-factor approxima-
tion algorithm. We observe that for fixed q, MAX CSP(<) over [q] also admits a robust
algorithm, and the same holds also for HARD CSP(<) over [q]. However, we show that
adding hard constraints rules out the possibility of a constant-factor approximation algo-
rithm, regardless of whether [q] is fixed or unbounded.

Theorem 4.1.5. For any k ≥ 2 and ε > 0, given an instance I of HARD CSP(<) over
[2k + 1], it is UG-hard to distinguish the following cases.

• OptH(I) ≥ (1− ε)k−1
k

• OptH(I) ≤ ε
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Ordinary Balance Hard
0.9401 0.9401 N/A

MAX 2-SAT (1− ε, 1−O(
√
ε)) N/A N/A

UG: (1− ε, 1− Ω(
√
ε)) NP: (1, 1− δ) UG:(1− ε, ε)

0.8786 0.8776 0.8786
MAX CUT (1− ε, 1−O(

√
ε)) Same as left Same as left

UG: (1− ε, 1− Ω(
√
ε)) Same as left Same as left

0.9401 0.9401 N/A
MAX HORN-2-SAT (1− ε, 1− 2ε) N/A (1− ε, 1− 2ε)

NP: (1, 1− δ) UG:(1− ε, 1− 2ε)

0.7968 0.75 N/A
MAX HORN-SAT (1− ε, 1−O( log log(1/ε)

log(1/ε) )) N/A N/A
UG: (1− ε, 1− Ω( 1

log(1/ε))) NP: (1, 1− δ) NP:(1− ε, ε)

Table 4.1: Summary of several BALANCE CSP and HARD CSP. ε > 0 indicates an
arbitrary positive constant, while δ > 0 is a fixed absolute constant. In each cell, the first
row contains the best approximation ratio. (1 − ε, 1 − f(ε)) in the second row indicates
that there is a robust algorithm that find an assignment satisfying (1 − f(ε)) fraction of
constraints given an (1− ε)-satisfiable instance. (1− ε, 1− f(ε)) in the third row indicates
that it is NP-hard to find an assignment satisfying (1− f(ε)) fraction of constraints given
an (1− ε)-satisfiable instance. NP indicates that it is an NP-hardness result; UG indicates
that it is based on the Unique Games Conjecture. N/A means that a robust or constant-
factor approximation algorithm are ruled out by the hardness results. The results of this
thesis are in boldface.
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Over {1, 2, 3, 4}, it is also UG-hard to distinguish whether OptH(I) ≥ 1−ε
2

or OptH(I) ≤
ε.

Also, for any ε > 0, given an instance I of HARD CSP(<) over the unbounded
domain (an instance of MAXIMUM ACYCLIC SUBGRAPH with several edges that must
be included), it is UG-hard to distinguish the following cases.

• OptH(I) ≥ 1− ε

• OptH(I) ≤ ε

We also provide a constant-factor approximation algorithm for HARD CSP(<) over
{1, 2, 3} (albeit with a worse ratio than its ordinary counterpart), showing a difference
between {1, 2, 3} and {1, 2, 3, 4}, and complete the picture of the approximability of these
Ordering CSPs with hard constraints.

4.1.2 Organization

Section 4.2 proves the results about HARD CSP: HARD 2-SAT in Section 4.2.1 and HARD

HORN SAT in Section 4.2.2. Section 4.3 proves the results about BALANCE CSP: hard-
ness results in Section 4.3.1 and algorithmic results in Section 4.3.2. Section 4.4 proves the
results about Ordering CSP. Section 4.5 discusses some open problems in this direction.

4.2 CSP with hard constraints

4.2.1 HARD 2-SAT

Fix p = 1/2− ε for some ε > 0. We let {0, 1}R(p) be the R-dimensional Boolean hypercube
with p-biased distribution; each coordinate of x ∈ {0, 1}R(p) is independently set to 1 with
probability p and 0 with probability 1 − p. In the notation of Section 3.3, the p-biased
distribution is (Ω, µ) where Ω = {0, 1}, µ(1) = p and µ(0) = 1 − p. The product
distribution {0, 1}R(p) is simply equal to (ΩR, µ⊗R). Let f : {0, 1}n(p) → R.

At the heart of every hardness result based on the Unique Games Conjecture is an ap-
propriate dictatorship test. The dictatorship test for VERTEX COVER (and its maximiza-
tion version MAXIMUM INDEPENDENT SET) is a graph G = (V,E) where V = {0, 1}R(p)
(vertices are weighted according to p-biased distribution). This graph must ensure that
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• Completeness: For each 1 ≤ i ≤ R, ith dictator function fi(x1, ..., xR) = xi is the
indicator function of a large independent set.

• Soundness: For every moderate-sized independent set D, its indicator function has
a coordinate with large noisy influence (as defined in Definition 3.3.6).

The edges are constructed such that there is an edge between (x1, ..., xR) and (y1, ..., yR)
if and only if there is no coordinate i such that xi = yi = 1. The first condition can be
easily checked since fi(x) = fi(y) = 1 for some i means xi = yi = 1 and there is no
edge between x and y. This construction was used in Dinur and Safra [DS05], and Khot
and Regev [KR08] to prove hardness of VERTEX COVER. Later Austrin et al. [AKS09]
gave a different (and arguably simpler) analysis of the same test, relying on the invariance
principle of Mossel et al. [MOO10].

Theorem 4.2.1 (Implicit in [AKS09]). Let G = (V,E) be the graph constructed as above
and Infi(Tρf) be the noisy influence defined in Definition 3.3.6. The following properties
hold.

• Completeness: For each 1 ≤ i ≤ R, ith dictator function fi(x1, ..., xR) = xi is the
indicator function of a large independent set of weight p.

• Soundness: For every ε > 0, there exist τ > 0 and δ > 0 such that the following
holds. If D is an independent set of weight at least ε and f : {0, 1}R(p) → {0, 1} is
the indicator function of D, then there exists i such that Infi(T1−δf) ≥ τ .

Combined with the standard technique converting a dictatorship test to a hardness re-
sult based on the Unique Games Conjecture, it is shown that it is UG-hard to distinguish
whether the maximum independent set has weight at least 1/2− ε or at most ε.

There is a simple approximation-preserving reduction from MAXIMUM INDEPEN-
DENT SET to HARD HORN 2-SAT. Given G constructed as above,

• X = V ; each variable corresponds to one vertex.

• For each edge (x, y) ∈ E, add a hard constraint (¬x ∨ ¬y).

• For each vertex x ∈ V , add a soft constraint x.

Hard constraints ensure that two variables corresponding to neighboring vertices cannot be
set to True simultaneously, and maximizing the total weight of satisfied soft constraints is
equivalent to maximizing the total weight of the vertices set to True. Therefore, the same
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hardness result also holds for HARD 2-SAT. This hardness result rules out any constant-
factor approximation algorithm, but does not apply to instances that are almost satisfiable.
In fact, HARD HORN 2-SAT inherits the same hardness result (as the above reduction
only uses Horn clauses), but it has a robust algorithm (See Section 4.2.2).

Our crucial observation to amplify this gap to 1 − ε and ε is that dictatorship func-
tions always give different values to a pair of antipodal points. Since our predicate is a
disjunction of two variables (vertices), if we change soft constraints so that

S =
{

(u ∨ v) : {u, v} is an antipodal pair in {0, 1}R(p)
}

Then, every dictator function fi will satisfy all the hard and soft constraints. To ensure the
soundness, we have to perturb the distribution a little bit, but still almost all the weight
will be concentrated around antipodal points. Given the dictatorship test G = (V,E) for
VERTEX COVER, the dictatorship test for HARD 2-SAT is I = (X,S,H) such that

• X = V ; each variable corresponds to one vertex.

• For each edge (x, y) ∈ E, add a hard constraint (¬x ∨ ¬y).

• Sample an ordered pair (x, y) such that for each i,

P[xi = yi = 0] = 2ε and P[xi = 1, yi = 0] = P[xi = 0, yi = 1] = 1/2− ε .

Add a soft constraint (x ∨ y) with the weight equal to the probability of (x, y).

With this trick, we can obtain a dictatorship test for HARD 2-SAT with a much larger gap.

Theorem 4.2.2. Let I = (X,S,H) be the instance of HARD 2-SAT constructed as above.

• Completeness: For each 1 ≤ i ≤ R, ith dictator function fi(x1, ..., xR) = xi
satisfies ValH(fi) = 1− 2ε.

• Soundness: For every ε > 0, there exist τ > 0 and δ > 0 such that the following
holds. If f : {0, 1}R(p) → {0, 1} satisfies ValH(f) ≥ 2ε, then there exists i such that
Infi(T1−δf) ≥ τ .

Proof. COMPLETENESS: It is already shown that ith dictator function fi satisfies all the
hard constraints. The only soft constraints that fi fail to satisfy is (x∨ y) where xi = yi =
0. Since the probability of picking xi = yi = 0 is 2ε, ValH(fi) = 1− 2ε.
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SOUNDNESS: If f is a function that satisfies all the hard constraints, it is also the indicator
function of some independent set D. We claim that the weight of D in {0, 1}R(p) with
p = 1/2− ε is at least ValH(fi)/2. For z ∈ {0, 1}R(p), let deg(z) be the sum of the weights
of soft constraints (z ∨ x) or (x ∨ z) for some x ((z ∨ z) contributes twice). (x, y) ∼ S
indicates that it is sampled according to its weight defined above. Note that its marginal
distribution of x (and y) is exactly the p-biased distribution on {0, 1}R(p). Therefore,

deg(z) = P(x,y)∼S[z = x] + P(x,y)∼S[z = y]

= 2 P(x,y)∼S[z = x]

= 2 Px∼{0,1}R(p) [z = x]

= 2 wt(z) .

It means that for any z, switching f(z) from 0 to 1 increases ValH(f) by at most 2wt(z).
Therefore, ValH(f) is at most two times the weight ofD. Thus ValH(f) ≥ 2ε indicates that
the weight of D is at least ε. We can now use Theorem 4.2.1 to finish the argument.

Combined with the standard technique converting a dictatorship test to a hardness re-
sult based on the Unique Games Conjecture, the main theorem of this section is proved.

Theorem 4.2.3 (Restatement of Theorem 4.1.3). For any ε > 0, given an instance I of
HARD 2-SAT, it is UG-hard to distinguish the following cases.

• OptH(I) ≥ 1− ε
• OptH(I) ≤ ε

Proof. Given an instance of L(G(U ∪W,E), [R], {π(v, w)}(v,w)∈E) of Unique Games, we
construct an instance I = (X,S,H) of HARD 2-SAT.

• X = W × {0, 1}R. The weight of (w, x) is the weight of x in {0, 1}R(1/2−ε), divided
by |W | (weights are only used in the analysis).

• For every pair of edges (u,w1), (u,w2) with the same endpoint u ∈ U , and every
x, y ∈ {0, 1}R, such that there is no i such that xπ−1(u,w1)(i) = yπ−1(u,w2)(i) = 1, add
a hard constraint (¬(w1, x) ∨ ¬(w2, y)).

• For each w, sample an ordered pair (x, y) such that for each i, P[xi = yi = 0] = 2ε
and P[xi = 1, yi = 0] = P[xi = 0, yi = 1] = 1/2 − ε. Add a soft constraint
((w, x) ∨ (w, y)) with the weight equal to the probability of (x, y) divided by |W |.
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Note that the variables and hard constraints of this construction are identical to that of
VERTEX COVER (MAXIMUM INDEPENDENT SET) of [AKS09]. We use the variant of
the Unique Games Conjecture (see Conjecture 3.2.3), and prove the following:

Lemma 4.2.1. Given an instance of Unique Games L and the instance I produced as
above,

• If there is a setW ′ ⊆ W such that |W ′| ≥ (1−ε)|W | and a labeling l : U∪W → [R]
that satisfies every edge (u,w) for u ∈ U and w ∈ W ′, then OptH(I) ≥ 1− 3ε.

• There is a function f : R+ → R+ such that if OptUG(L) ≤ f(ε), then OptH(I) ≤ 2ε.

Proof. We establish the completeness and soundness in turn.

COMPLETENESS: Let W ′ ⊆ W and l : U ∪ W → [R] be a subset and a labeling
satisfying the above condition. For anyw ∈ W ′, x ∈ {0, 1}, set (w, x) = xl(w). Ifw /∈ W ′,
(w, x) = 0 for all x. Note that this satisfies all the hard constraints; if there is a violated
hard constraint (¬(w1, x) ∨ ¬(w2, y)), it means that there exist u ∈ U , w1, w2 ∈ W ′

such that l(w1) = π−1(u,w1)(l(u)), l(w2) = π−1(u,w2)(l(u)), and xl(w1) = yl(w2) =
1. It contradicts the above contradiction. For each w ∈ W ′, the only soft constraints
((w, x) ∨ (w, y)) that are not satisfied by this assignment have xl(u) = yl(u) = 0, which
happens with probability 2ε. Therefore, the total weight of soft constraints satisfied is at
least (1− ε)(1− 2ε) ≥ 1− 3ε.

SOUNDNESS: Suppose there is an assignment σ : U × {0, 1}R → {0, 1} such that it
satisfies all the hard constraints and ValH(σ) ≥ 2ε. Let D ⊆ U × {0, 1}R be the support
of σ. Since σ satisfies all the hard constraints, D is an independent set of the graph whose
vertex set is U×{0, 1}R and each pair of variables in a same hard constraint forms an edge.
Note that this is the same graph used in the hardness of VERTEX COVER in [AKS09].

Since the soft constraints are defined within each hypercube u× {0, 1} for each u, we
can use the same analysis from Theorem 4.2.2 (which says that the sum of weights of the
soft constraints containing a variable in the HARD 2-SAT instance is exactly two times
the weight of the corresponding vertex in the MAXIMUM INDEPENDENT SET instance)
to conclude that the weight of D is at least ε. We can invoke Theorem 3.1 of [AKS09] to
argue that Opt(L) ≥ f(ε) for some fixed function f : R+ → R+.

Therefore, if we can distinguish whether OptH(L) ≥ 1 − 3ε or OptH(L) ≤ 2ε for
some ε > 0, then we can refute Conjecture 3.2.3, which is equivalent to the original
Unique Games Conjecture. This proves Theorem 4.1.3.
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4.2.2 HARD HORN SAT

Suppose there is a very strong robust algorithm for MAX CSP(Π) in the sense that if the
algorithm can find σ such that Val(σ) ≥ 1 − cε whenever Opt(I) ≥ 1 − ε for some
absolute constant c (or in other words, we have a constant-factor approximation algorithm
for the minimization version that seeks to minimize the weight of unsatisfied constraints).
The performance of this algorithm is preserved for HARD CSP(Π) by the following trick:
convert all hard constraints to soft constraints, but give them very large weight so that they
will never be violated in the optimal solution. This will result in I ′ such that Opt(I ′) ≥
1−ε′ where ε′ � ε, but the algorithm still finds σ such that ValH(σ) ≥ 1−cε′ as a solution
to I ′, which also satisfies ValH(σ) ≥ 1− cε as a solution to I.

Now, MAX HORN-2-SAT is a problem that admits such a robust algorithm with c =
2 [GZ12] (c = 3 was earlier shown in [KSTW01]), and therefore we can conclude that
HARD HORN 2-SAT admits a similar robust algorithm.

Furthermore, the reduction from MAXIMUM INDEPENDENT SET to HARD 2-SAT
introduced in Section 4.2.2 is indeed a reduction to HARD HORN 2-SAT. Therefore, by
previous results about MAXIMUM INDEPENDENT SET [BK10, KR08], for any ε > 0, it
is UG-hard to find σ with ValH(σ) ≥ ε even when OptH(I) ≥ 1/2 − ε. By adding many
dummy constraints that are always satisfiable, for any ε, δ > 0, it is UG-hard to find σ with
ValH(σ) ≥ 1− 2ε + δ even when OptH(I) ≥ 1− ε− δ. These facts justfy the following
observation made about HARD HORN 2-SAT.

Observation 4.2.2 (Restatement of Observation 4.1.3). There is a polynomial time al-
gorithm that for any ε ≥ 0, if the given instance I of MAX HORN-2-SAT satisfies
OptH(I) = 1− ε, finds σ with ValH(σ) ≥ 1− 2ε.

Furthermore, for any ε, δ > 0, it is UG-hard to distinguish the following cases.

• Opt(I) ≥ 1− ε− δ.
• Opt(I) ≤ 1− 2ε+ δ.

The above algorithmic result for MAX HORN-2-SAT does not hold for MAX HORN-
SAT in general since the robust algorithm is only guaranteed to find an assignment satis-
fying 1−O

(
log log(1/ε)

log(1/ε)

)
fraction of clauses [Zwi98b], and this exponential loss is inherent

under the Unique Games conjecture [GZ12]. In fact, even Horn-3-SAT is powerful enough
to encode constraints of other hard problems with unbounded arity, which results in a very
strong hardness result, stated below.2

2We learned from Andrei Krokhin that this result, with essentially the same proof, was also shown by
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Theorem 4.2.4 (Restatement of Theorem 4.1.4). For any ε > 0, given an instance I of
HARD HORN 3-SAT, it is NP-hard to distinguish the following cases.

• OptH(I) ≥ 1− ε
• OptH(I) ≤ ε

Proof. We reduce Ek-HYPERGRAPH INDEPENDENT SET to MAX HORN-3-SAT. An
instance of Ek-HYPERGRAPH INDEPENDENT SET is a hypergraph G = (V,E) where
each hyperedge e ∈ E contains exactly k vertices. Our goal is to find a set D ⊆ V with
the maximum weight such that no hyperedge e is a subset of D.

Given a graph G = (V,E), we construct the instance I = (X,S,H) of MAX HORN-
3-SAT as follows.

• X = V ∪ {ye,j : e ∈ E, 1 ≤ j ≤ k}; there is one variable for each vertex, and k
variables for each hyperedge. Each variable corresponding to a vertex indicates that
the vertex is picked or not.

• For each hyperedge e = (v1, ..., vk) ∈ E, add hard constraints

– (v1 → ¬ye,1) ≡ (¬v1 ∨ ¬ye,1)

– 2 ≤ j ≤ k: (¬ye,i−1 ∧ vi → ¬ye,i) ≡ (ye,i−1 ∨ ¬vi ∨ ¬ye,i)
– ye,k

• For each vertex v ∈ V , add a soft constraint v with the same weight as in G.

The above construction ensures that there is at most one unnegated literal per each clause,
so this is indeed an instance of MAX HORN-3-SAT. Once v1, ..., vn are fixed, a quick
check of the second set of constraints corresponding to hyperedge e ensures that there
exists ye,1, ..., ye,k that satisfy all the constraints if and only if at least one of v1, ..., vk
is set to False. Since the weight of satisfied soft constraints is equal to the weight of
vertices picked, this is an approximation-preserving reduction from Ek-HYPERGRAPH

INDEPENDENT SET to MAX HORN-3-SAT. Dinur et al [DGKR05] showed that for the
former, it is NP-hard to distinguish

• There is an independent set of weight (1− 1
k−1
− ε).

• Every independent set is of weight at most ε.

By taking k large and ε small, we get the desired result for MAX HORN-3-SAT.

Siavosh Bennabas. But as we are not aware of a published reference, we include the simple proof.
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4.3 Balance Constraints

4.3.1 Hardness Results

Theorem 4.3.1 (Restatement of Theorem 4.1.1). There exists an absolute constant δ > 0
such that given an instance I of BALANCE HORN 2-SAT (special case of BALANCE

2-SAT and BALANCE HORN-SAT), it is NP-hard to distinguish the following cases.

• OptB(I) = 1

• OptB(I) ≤ 1− δ

Proof. We reduce from MAX 3-SAT(B) to MAXIMUM INDEPENDENT SET to BALANCE

HORN 2-SAT, where in MAX 3-SAT(B) each variable occurs at most B times. The fol-
lowing description of the reduction from MAX 3-SAT(B) to MAXIMUM INDEPENDENT

SET is from Papadimitriou and Yannakakis [PY91].

Construct a graph with one node for every occurrence of every literal. There
is an edge connecting any two occurrences of complementary literals, and
also, an edge connecting literal occurrences from the same clause (thus, there
is a triangle for every clause with 3 literals, and an edge for a clause with 2
literals). The size of the maximum independent set in the graph is equal to the
maximum number of clauses that can be satisfied. If every variable occurs at
most B times in the clauses, then the degree is at most B + 1.

Note that in the above reduction, there is an independent set of size l if and only if there
is an assignment that satisfies l clauses. For some constants B and δ0 > 0, it is NP-hard to
find an assignment satisfying (1− δ0) fraction of clauses in a satisfiable instance of MAX

3-SAT(B). Let m be the number of clauses, and n be the number of variables of the given
MAX 3-SAT(B) instance, so we have 3m vertices, and at most 1.5(B + 1)m ≤ 2Bm
edges in the graph. Our BALANCE HORN 2-SAT instance I consists of 4m variables; 3m
of them correspond to the vertices of the graph, and m of them do not participate in any
constraint. For each edge (u, v) we add the constraint (¬u ∨ ¬v). Finally, we have the
balance constraint that exactly 2m of them should be 1 (1 means True in 2-SAT, and that
the vertex is picked in the Independent Set problem).

If the MAX 3-SAT instance is satisfiable, we have an independent set of size 2m
consisting of m vertices from the graph and m of the dummy vertices, so the BALANCE

HORN 2-SAT instance is also satisfiable.

74



Now suppose that OptB(I) > 1 − δ. This means that there is a balanced assignment
(at least m 1’s amongst the non-dummy variables) such that at most a fraction δ of the
edges have both endpoints set to 1. By switching 2δBm vertices from 1 to 0, all clauses
of BALANCE HORN 2-SAT will be satisfied. This means that there is an independent set
of size at least (1 − 2δB)m, and therefore also an assignment that satisfies (1 − 2δB)m
clauses of the MAX 3-SAT(B) instance. It follows that we must have δ ≥ δ0

2B
.

Unlike the reduction from MAXIMUM INDEPENDENT SET to HARD HORN 2-SAT
introduced in Section 4.2.1 (hard clauses for independence constraints, and soft clauses
for the objective), we use clauses to enforce independence constraints, and the balance
constraint to maximize the objective. For the soundness analysis, given a good assignment
to BALANCE HORN 2-SAT, when viewed as a (slightly infeasible) solution to MAXIMUM

INDEPENDENT SET, the balance constraint ensures that the objective is good, but there
might be some adjacent vertices picked. The bounded degrees allow us to fix this solution
to an independent set while still retaining many vertices.

4.3.2 Algorithmic Results

One of the most well-studied BALANCE CSP is BALANCE CUT (MAXIMUM BISEC-
TION). Over a long line of work [FJ95, HZ01, Ye01, FL01, RT12, ABG13], the approx-
imation ratio for MAXIMUM BISECTION has become 0.8776 which is very close to the
optimal (under the Unique Games Conjecture) approximation ratio for MAX CUT which
is about 0.8786. MAXIMUM BISECTION admits a robust algorithm as well [GMR+11,
RT12]. Note that BALANCE CSP(Π) is no easier to approximate than MAX CSP(Π),
since any instance of MAX CSP(Π) can be reduced to an instance of BALANCE CSP(Π)
by adding dummy variables that do not participate in any constraint.

For BALANCE 2-SAT, the best known approximation ratio is 0.9401, matching the
best known approximation ratio of MAX 2-SAT [LLZ02]. This result indicates that in the
approximation ratio perspective, adding the balance constraint does not make the problem
harder. However, Theorem 4.3.1 rules out any robust algorithm for BALANCE 2-SAT,
which shows a stark difference between the balanced versions of MAX 2-SAT and MAX

CUT.

For BALANCE HORN-SAT, the same hardness result shows that we cannot hope for
any robust algorithm. Therefore, the only remaining quetion is whether there is an algo-
rithm whose approximation ratio nearly matches that of the best algorithm for ordinary
MAX HORN-SAT. The best approximation ratio for MAX HORN-SAT is achieved by an
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algorithm for more general MAX SAT, which achieves 0.7968-approximation [ABZ06].3

The most recent results on BALANCE CUT and BALANCE 2-SAT [RT12, ABG13] rely
on Lasserre SDP hierarchies. The purpose of using a more sophisticated SDP rather than
the basic SDP of Goemans and Williamson [GW95], is that during the rounding scheme,
the vertices are not rounded independently; even if we add the balance constraint in the
SDP relaxation, the final solution is not guaranteed to be approximately balanced when
we do not have a guarantee about their correlations. The goal of Lasserre hierarchies is to
produce an SDP solution with low global correlation so that each vertex can be rounded
almost independently.

However, in the 3/4-approximation algorithm for MAX SAT by Goemans and Williamson
[GW94], which is based on a LP-relaxation, each variable is rounded independently.
Therefore, adding the balance constraint ensures that the final solution is almost balanced
by a simple application of Chernoff bound. After a simple correction phase to get per-
fect balance (slightly more sophisticated than [RT12] since the arity is not bounded), we
obtain an algorithm which is not far from the best algorithm for MAX SAT in terms of
approximation ratio.

Theorem 4.3.2 (Restatement of Theorem 4.1.2). For any ε > 0, there is a randomized al-
gorithm such that given an instace I of BALANCE SAT, in time poly(size(I), 1

ε
), outputs

σ with ValB(σ) ≥ (3
4
− ε)OptB(I) with constant probability.

Proof. Let I = (X,C) be an instance BALANCE SAT, where X = {x1, ..., xn} is the set
of variables and C = {C1, ..., Cm} is the set of clauses. For each 1 ≤ j ≤ m, let C+

j (resp.
C−j ) be the set of variables which appear in Cj unnegated (resp. negated). The following
is a natural LP relaxation of BALANCE SAT.

maximize
m∑
j=1

wt(Cj)zj

subject to ∀1 ≤ j ≤ m :
∑
i∈C+

j

yi +
∑
i∈C−j

(1− yi) ≥ zj

∀1 ≤ j ≤ m : 0 ≤ zj ≤ 1

∀1 ≤ i ≤ n : 0 ≤ yi ≤ 1
n∑
i=1

yi =
n

2

Given the solution (yi, zj) to the above LP, the rounding algorithm is simple:
3The same paper gives another algorithm whose approximation ratio is 0.8434 under some conjecture.
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1. Choose a ∈ {0, 1} uniformly at random.

2. If a = 0, set σ(xi) = 1 with probability yi independently; if a = 1, set σ(xi) = 1
with probability 0.5 independently.

3. If the final solution is unbalanced (there exists b ∈ {0, 1} such that |σ−1(b)| =
(0.5 + η)n for some η > 0), pick exactly ηn variables from σ−1(b) uniformly at
random, set them to 1− b.

4. Iterate it O(1/ε) times.

Claim 4.3.1. At the end of step 2, E[Val(σ)] ≥ 3/4 (note that it is Val(σ), but not ValB(σ)).

Proof. For each Cj , let k be the number of variables in Cj and without loss of generality
assume Cj = x1 ∨ ... ∨ xk by renaming and negating variables. If a = 0, the probability
that Cj is satisfied is

1− Πk
i=1(1− yi) ≥ 1− (

∑k
i=1(1− yi)

k
)k ≥ 1− (1− zi

k
)k ≥ βkzi

where βk = 1−(1− 1
k
)k. If a = 1, the probability thatCj is satisfied is at least αk = 1−2−k.

Overall, the probability that Cj is satisfied is αk+βk
2

. For k = 1, 2, αk+βk
2

= 3
4
, and for

k ≥ 3, αk+βk
2
≥ 7/8+(1−1/e)

2
≥ 3

4
.

By a simple averaging argument, with probability at least ε, Val(σ) ≥ 3/4 − ε. Since
each variable is rounded independently once a is fixed, by Chernoff bound, P[|σ−1(1) −
n
2
| > εn] ≤ 2exp(−2ε2

n
) = on(1). Therefore, at the end of step 2, the probability that

Val(σ) ≥ 3/4− ε and |σ−1(1)− n
2
| ≤ εn is at least ε/2.

Let b be such that |σ−1(b)| = (1/2 + η)n for some 0 < η ≤ ε. In step 3, we randomly
choose ηn variables from σ−1(b), and set them to 1− b. Fix a constraint Cj that is satisfied
by σ. Since Cj is a disjunction, there is only one assignment to the variables appearing
Cj that makes Cj unsatisfied. Since Cj is already satisfied, to reach the only unsatisfying
assignment, at least one variable must be switched. If there is a variable that must be
switched from 1− b to b, then Cj is guaranteed to be satisfied even after step 3. Otherwise,
there are k variables (k ≥ 1) that must be swithced from b to 1 − b, and the probability
of switching all of them is at most the probability of switching one of them, which is

ηn
(1/2+η)n

≤ 2η. Therefore, in expectation, at most 2η fraction of already satisfied clauses
can be unsatisfied, and with probability half, at most 4η ≤ 4ε fraction of satisfied clauses
can be unsatisfied. Combining step 2 and 3, in each iteration, we get a balanced σ with
ValB(σ) ≤ 3/4 − 5ε with probability ε/4. This probability can be made to a constant by
repeating O(1/ε) times.
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4.4 Ordering with Hard Constraints

Another natural class of 2-ary CSPs over non-Boolean domain is MAX CSP(<). MAX

CSP(<) over the unbounded domain (indeed [n] is enough) is the famous MAXIMUM

ACYCLIC SUBGRAPH, which admits a simple 1
2
-approximation algorithm that is optimal

under the Unique Games Conjecture [GMR08]. For fixed q, MAX CSP(<) over [q] also
admits a simple (q−1)

2q
algorithm by taking a random assignment.

These ordering problems can be best understood in terms of choosing the maximum
subgraph of a directed graph with certain desired properties. MAX CSP(<) over [q] is
equivalent to the following problem: given a directed graphG = (V,E), findG′ = (V,E ′)
with E ′ ⊆ E such that G′ does not have a walk of length q and |E ′| is maximized. A walk
of length q is a sequence of vertices v0 → · · · → vq (vertices can be repeated) such that
(vi, vi+1) ∈ E for 0 ≤ i < q. Note that a directed cycle results in a walk of any length.
MAXIMUM ACYCLIC SUBGRAPH is to find G′ such that G′ does not have any cycle.

Instead of choosing a subset of the edges, we can try to find a subset of the vertices
so that the induced subgraph has desired properties. Let MAX VERTEX CSP(<) and
MAXIMUM VERTEX ACYCLIC SUBGRAPH be the analogous problems where the goal is
to choose the subset of variables (vertices) with the maximum weight so that the induced
CSP is satisfiable (induced graph has the desired properties).

Despite of their similarity, MAX VERTEX CSP problems seem to be harder than their
edge counterparts. There is no intuitive constant-factor approximation algorithm, like tak-
ing a random assignment in the edge problems. Svensson [Sve13] confirmed that these
problems are indeed a lot harder to approximate, assuming the Unique Games Conjecture.

Theorem 4.4.1 (Theorem 1 of [Sve13]). For any k ≥ 2 and ε > 0, given an instance I of
MAX VERTEX CSP(<) over the domain [k − 1], it is UG-hard to distinguish

• Opt(I) ≥ (1− ε)k−1
k

• Opt(I) ≤ ε

Also, for any ε > 0, given an instance I of MAXIMUM VERTEX ACYCLIC SUB-
GRAPH, it is UG-hard to distinguish

• Opt(I) ≥ 1− ε
• Opt(I) ≤ ε

We show that introducing hard constraints makes the edge versions almost as hard as
the vertex counterparts. The reduction, introduced in Even et al. [ENSS98], is simple:
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split each vertex v to a soft edge vin → vout and add a hard edge uout → vin for each edge
u→ v. This is almost enough to show the following theorem.

Theorem 4.4.2 (Restatement of Theorem 4.1.5). For any k ≥ 2 and ε > 0, given an
instance I of HARD CSP(<) over [2k + 1], it is UG–hard to distinguish the following
cases.

• OptH(I) ≥ (1− ε)k−1
k

• OptH(I) ≤ ε

Over the domain {1, 2, 3, 4}, it is also UG-hard to distinguish whether

OptH(I) ≥ 1− ε
2

or OptH(I) ≤ ε .

Also, for any ε > 0, given an instance I of HARD CSP(<) over the unbounded domain (an
instance of MAXIMUM ACYCLIC SUBGRAPH with several edges that must be included),
it is UG-hard to distinguish the following cases.

• OptH(I) ≥ 1− ε
• OptH(I) ≤ ε

Proof. The last result about the unbounded domain (MAXIMUM ACYCLIC SUBGRAPH

with hard edges) is immediate from the reduction above and the hardness of MAXIMUM

VERTEX ACYCLIC SUBGRAPH.

We will now describe the first reduction from the instance I of MAX VERTEX CSP(<)
over [k−1] to the instance I ′ of HARD CSP(<) over [2k+1] (in this proof, we identify each
instance of the CSP with its underlying directed graph). We perform the same reduction
as above, and add two special vertices s and t. Add a hard edge s → vin if vin has no
incoming edge. Make a hard edge vout → t if vout has no outgoing edge.

There is a one-to-one correspondence between the vertices of I and the soft constraints
of I ′. Let G denote a vertex-induced subgraph of I and G′ be its corresponding edge
subgraph of I ′. If there is a walk (v1, . . . , vk) of length k − 1 exists in G, let v0 be any
vertex which has a outgoing edge to v1 (v0,out := s if v1 has no incoming edge), and let
vk+1 be any vertex which has a incoming edge from vk (vk+1,in := t if vk has no outgoing
edge). Then v0,out → v1,in → v1,out · · · → vk,out → vk+1,in is a walk of length 2k+1 inG′.
Similarly, since any walk ofG′ alternates soft edges and hard edges, a walk of length 2k+1
in G′ induces a walk of length k−1 in G. Therefore, there is a one-to-one correspondence
between feasible solutions, and corresponding solutions have the same weight.
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Finally, we show the hardness of HARD CSP(<) over {1, 2, 3, 4} by reducing MAX-
IMUM INDEPENDENT SET to it. Given an instance (undirected graph) I, consider it as
a directed graph with edges going both directions, and apply the above reduction to get
I ′. There is again one-to-one correspondence between a vertex-induced subgraph G ⊆ I
and a edge subgraph G′ ⊆ I ′. If (u, v) ∈ G, uin → uout → vin → vout → uin forms
a cycle of G′, so it is not feasible. If there is a walk of length at least 4 in G′, since it
alternates soft and hard constraints, there are two neighboring vertices u and v so that
uin → uout, vin → vout ∈ G′, so G is not an independent set.

It is easy to get a constant-factor approximation for HARD CSP(<) over the domain
{1, 2}. Each hard constraint uniquely determines the value of the variables participating,
and randomly assigning remaining variables ensures that each soft constraint, if satisfiable
at all, can be satisfied with some constant probability. A slight extension of this technique
works for {1, 2, 3} as well, in stark constrast to {1, 2, 3, 4}.

Theorem 4.4.3. There is a constant-factor approximation algorithm for HARD CSP(<)
over {1, 2, 3}.

Proof. Let I be an instance of HARD CSP(<) over {1, 2, 3}. We also think I as a directed
graph (V,E) such that for each constraint u > v there is an edge u → v. Each edge
is either hard or soft, depending on the corresponding constraint. By virtue of certain
combinations of hard constraints, namely paths of length 2, the value of some vertices
becomes fixed; let F1, F2, F3 be the set of vertices fixed to 1, 2, 3 respectively. In the
subgraph induced by V \ (F1 ∪ F2 ∪ F3), let B be the set of vertices v such that v → u
is a hard edge for some u. Similarly, S be the set of vertices u such that v → u is hard
for some v. Let R be the remaining vertices. Note there is no hard edge from F1 ∪ F2 to
B ∪ S ∪ R, and no hard edge from B ∪ S ∪ R to F2 ∪ F3, and from S to B (e.g. if there
is a hard edge from S to B, we have a path of length 2 and these vertices should be fixed).
The algorithm is the following.

1. Choose a ∈ {0, 1} uniformly at random.

2. If a = 0, for each vertex v ∈ B, v = 3; for each vertex v ∈ S, choose v ∈ {1, 2}
uniformly and independently.

3. If a = 1, for each vertex v ∈ B, choose v ∈ {2, 3} uniformly and independently;
for each vertex v ∈ S, choose v = 1.

4. Regardless of a, for each vertex v ∈ R, choose v ∈ {1, 2, 3} uniformly and inde-
pendently.
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Simple case analyses between possible soft edges between the sets yield the following:

• Each soft edge completely inside one of B, S,R is satisfied with probability at least
1/8.

• Each soft edge whose one endpoint is in R and the other in one of B, S is satisfied
by with probability at least 1/12.

• Each soft edge to F1 or from F3 is satisfied with probability at least 1/4.

Therefore, the above simple algorithm yields a 1/12-approximation algorithm.

For fixed q, MAX CSP(<) over [q] admits a simple robust algorithm that finds a solu-
tion of value (1−qε), given (1−ε)-satisfiable instance: given a directed graphG = (V,E),
set one nonnegative variable ye for each e, and for any walk of length q, add a constraint
that the sum of the corresponding y’s must be at least 1. Deleting e when ye ≥ 1

q
gives a q-

approximation algorithm for the minimization version. As this is a strong robust algorithm
(as discussed in Section 4.2.2), it is preserved for HARD CSP(<) over [q].

Observation 4.4.1. For fixed q, HARD CSP(<), and consequently MAX VERTEX CSP(<)
over [q] admits a robust algorithm.

That gives the complete picture of the status these problems. The conclusion is that
adding hard constraints to a problem makes it as hard as its vertex counterparts, which is
much harder to approximate.

4.5 Discussion

MAX CUT is one of the simplest and well-studied CSPs. Its variants with balance or
hard variants also inherit the desirable algorithmic properties of the original version —
in particular both these variants admit robust satisfiability as well as constant-factor ap-
proximation algorithms. However, these algorithmic results do not extend to even slightly
more general CSPs; in MAX LIN-MOD-2, even one of balance and hard variants rule out
the possibility of a robust algorithm. Furthermore, HARD 2-SAT does not even have a
constant-factor approximation algorithm, and the hardness result for BALANCE 2-SAT
also holds for BALANCE HORN 2-SAT (which does not even capture MAX CUT).

These delicate differences even for CSPs of arity two over the Boolean domain (where
satisfiability is always in P) suggest that adding balance or hard constraints highlights
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previously unnoticed characteristics with respect to the approximability of each predi-
cate. This chapter settles the approximability of almost all interesting arity two CSPs over
Boolean domain, demonstrating the effect of hard and balance constraints on some classic
problems.

While our techniques are relatively simple twists to known ones (with the one underly-
ing the inapproximability of HARD 2-SAT being the most significant), we think the body
of results highlights subtle (and perhaps surprising) differences between CSPs in the pres-
ence of hard/balance constraints, and raises the challenge of extending our study to larger
arity or domains. Attempts at such a generalization should be interesting by itself and also
illuminate new aspects of CSPs.

In this regard, we record some simple observations on robust algorithms for HARD

CSP(Π). In the weighted minimization version (MIN UNCUT, MIN CNF DELETION and
FEEDBACK ARCS SET are minimization versions of some problems we studied in this
chapter), where the goal is to minimize the weight of unsatisfied constraints, hard con-
straints do not add to the difficulty of the original version as can be seen via the simple
trick of converting all hard constraints to soft constraints and giving them large enough
weight. Therefore, a constant-factor approximation algorithm for the minimization ver-
sion will yield a robust satisfiability algorithm for HARD CSP(Π) as well. In general we
do not have a reduction in the reverse direction since the robust algorithm might be al-
lowed runtime exponential in ε (e.g. nO( 1

ε
)) on (1 − ε)-satisfiable instances. Also, when

the approximation factor for the minimization version depends on the instance size (e.g.
O(
√

log n) for MIN CNF DELETION [ACMM05]), we do not automatically get a robust
algorithm for the associated CSP with hard constraints.

We have an example, namely HARD 2-SAT, where constant-factor and robust ap-
proximations are both hard in the presence of hard constraints, and an example (HARD

HORN 2-SAT) where robust approximation is possible but a constant-factor approxima-
tion is hard. It is easy to see that HARD LIN-MOD-2 admits an efficient constant factor
approximation but not a robust algorithm; its ordinary version (without hard constraints),
however, also has the same property. This raises the following interesting question: Is
there a CSP which admits an efficient robust satisfiability algorithm, and whose hard ver-
sion admits a constant-factor approximation algorithm but no robust algorithm? Or must
a robust algorithm also exist for the hard version under these conditions?
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Chapter 5

Symmetric CSP

5.1 Introduction

Constraint Satisfaction Problems (CSPs) are among the most fundamental and well-studied
class of optimization problems. Given a fixed integer k and a predicate Q ⊆ {0, 1}k, an
instance of CSP(Q) without negation is specified by a set of variables X = {x1, . . . , xn}
on the domain {0, 1} and a set of constraints C = {C1, . . . , Cm}, where each constraint
Cj = (xj,1, . . . , xj,k) is a k-tuple of variables. An assignment X → {0, 1} satisfies Cj
if (xj,1, . . . , xj,k) ∈ Q. For an instance of CSP(Q) with negation, each constraint Cj is
additionally given offsets (bj,1, . . . , bj,k) ∈ {0, 1}k and is satisfied if (xj,1⊕ bj,1, . . . , xj,k⊕
bj,k) ∈ Q where ⊕ denotes the addition in F2. The goal is to find an assignment that
satisfies as many constraints as possible.

CSPs contain a large number of famous problems such as MAX SAT (with nega-
tion), and MAX CUT / MAX-SET-SPLITTING (without negation) by definition. They have
always played a crucial role in the theory of computational complexity, as many break-
through results such as the NP-completeness of 3SAT, the Probabilistically Checkable
Proofs (PCP) theorem, and the Unique Games Conjecture (UGC) study hardness of a cer-
tain CSP.

Based on these works, recent works on approximability of CSPs focus on characteriz-
ing every CSP according to its approximation resistance. We define random assignments
to be the class of algorithms that assign xi ← 1 with probability α independently. A
CSP is called approximation resistant, if for any ε > 0, it is NP-hard to have a (ρ∗ + ε)-
approximation algorithm, where ρ∗ is the approximation ratio achieved by the best random
assignment. Even assuming the UGC, the complete characterzation of approximation re-
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sistance has not been found, and previous works either change the notion of approximation
resistance or study a subclass of CSPs to find a characterization, and more general results
tend to suggest more complex characterizations.

This chapter considers a natural subclass of CSPs where a predicate Q is symmetric —
for any permutation π : [k] → [k], (x1, . . . , xk) ∈ Q if and only if (xπ(1), . . . , xπ(k)) ∈ Q.
Equivalently, for every such Q, there exists S ⊆ [k] ∪ {0} such that (x1, . . . , xk) ∈ Q if
and only if (x1 + · · · + xk) ∈ S. Let SCSP(S) denote such a symmetric CSP. While this
is a significant restriction, it is a natural one that still captures the following fundamen-
tal problems, such as MAX SAT, MAX NOT-ALL-EQUAL-SAT, MAX t-OUT-OF-k-SAT
(with negation), and MAX CUT, MAX-SET-SPLITTING, DISCREPANCY MINIMIZATION

(without negation). Except the work of Austrin and Håstad [AH13], many works on this
line focused CSPs with negation, while we feel that the aforementioned problems without
negation have a very natural interpretation as (hyper)graph coloring and are worth study-
ing.

There is a simple sufficient condition to be approximation resistant due to Austrin and
Mossel [AM09] with negation, and due to Austrin and Håstad [AH13] without negation.
For SCSPs, we show that these simple sufficient conditions can be further simplfied and
understood more intuitively, and suggest that they might also be necessary for and thus
precisely characterize approximation resistance. We prove it for two natural special cases
(which capture all problems mentioned in the last paragraph) for both SCSPs with / with-
out negation, and provide reasons that we believe this is true at least for SCSPs without
negation.

5.1.1 Related Work

Given the importance of CSPs and the variety of problems that can be formulated as a CSP,
it is a natural task to classify all CSPs according to their computational complexity for
some well-defined task. For the task of deciding satisfiability (i.e., finding an assignment
that satisfies every constraint if there is one), the work of Schaefer [Sch78] gave a complete
characterization on the Boolean domain in 1978.

However, such a classification seems much harder when we study approximability
of CSPs. Since the seminal work of Håstad [Hås01], many natural problems have been
proven to be approximation resistant. These examples include MAX 3-SAT / MAX 3-LIN
(with negation) and MAX 4-SET-SPLITTING (without negation), and for Boolean CSPs of
arity 3, putting together the hardness results of [Hås01] with the algorithmic results of
Zwick [Zwi98a], it is known that a CSP is approximation resistant if and only if it is
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implied by parity. However, characterizing approximation resistance of every CSP for
larger arity k is a harder task. The Ph.D. thesis of Hast [Has05] is devoted to this task for
k = 4, and succeeds to classify 354 out of 400 predicates.

The advent of the Unique Games Conjecture (UGC) [Kho02b], though it is not as
widely believed as P 6= NP, revived the hope to classify every CSP according to its ap-
proximation resistance. For CSPs with negation, the work of Austrin and Mossel [AM09]
gave a simple sufficient condition to be approximation resistant, namely the existence of a
balanced pairwise independent distribution that is supported on the satisfying assignments
of the predicate. The work of Austrin and Håstad [AH13] proved a similar sufficient con-
dition for CSPs without negation, and that if this condition is not met, this predicate (both
with / without negation) is useful for some polynomial optimization — for every such
Q, there is a k-variate polynomial p(y1, . . . , yk) such that if we are given an instance of
CSP(Q) that admits a (1−ε)-satisfying assignment, the altered problem, where we change
each constraint Cj’s payoff from I[(xj,1 ⊕ bj,1, . . . , xj,k ⊕ bj,k) ∈ Q] (where I[·] is the in-
dicator function) to p(xj,1 ⊕ bj,1, . . . , xj,k ⊕ bj,k), admits an approximation algorithm that
does better than any random assignment.

Predicates that don’t admit a pairwise independent distribution supported on their sat-
isfying assignments can be expressed as the sign of a quadratic polynomial (see [AH13]).
This motivates the study of the approximability of such predicates, though it is known that
there are approximation resistant predicates that can be expressed as a quadratic threshold
function and thus the sufficient condition of Austrin and Mossel [AM09] is not necessary
for approximation resistance. Still this motivates the question of understanding which
quadratic threshold functions can be approximated non-trivially.

Cheraghchi, Håstad, Isaksson, and Svensson [CHIS12] studied the simpler case of
predicates which are the sign of a linear function with no constant term, obtaining al-
gorithms beating the random assignment threshold of 1/2 in some special cases. Austrin,
Benabbas, and Magen [ABM12] conjecture that every such predicate can be approximated
better than a factor 1/2 and is therefore not approximation resistant. They prove that pred-
icates that are the sign of symmetric quadratic polynomials with no constant term are not
approximation resistant.

Assuming the UGC, the work of Austrin and Khot [AK13] gave a characterization of
approximation resistance for even k-partite CSPs, and Khot, Tulsiani, and Worah [KTW14]
gave a characterization of strong approximation resistance for general CSPs — strong ap-
proximation resistance roughly means hardness of finding an assignment that deviates
from the performance of the random assignment in either direction (i.e., it is hard to also
find an assignment saisfying a noticeably smaller fraction of constraints than the random
assignment). These two works are notable in studying approximation resistance of gen-
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eral CSPs, but their characterizations become more complicated, which they suggest is
necessary.

Without the UGC, even the existence of pairwise independent distribution supported
on the predicate is not known to be sufficient for approximation resistance. Another line
of work shows partial results either by using a stronger condition [Cha13], or by using
a restricted model of computation (e.g., Sherali-Adams or Lasserre hierarchy of convex
relaxations) [Tul09, BGMT12, BCK15].

5.1.2 Our Results

Our work was initially motivated by a simple observation that for symmetric CSPs, the
sufficient condition to be approximation resistant by Austrin and Håstad [AH13] admits a
more compact and intuitive two-dimensional description in R2.

Fix a positive integer k and denote [k] = {1, 2, . . . , k}. For s ∈ [k]∪{0}, let P (s) ∈ R2

be the point defined by P (s) := ( s
k
, s(s−1)
k(k−1)

). For any s, P (s) lies on the curve y =
k
k−1

x2 − x
k−1

, which is slightly below the curve y = x2 for x ∈ [0, 1]. Given a subset
S ⊆ [k] ∪ {0}, let PS := {P (s) : s ∈ S} and conv(PS) be the convex hull of PS . For
symmetric CSPs, the condition of Austrin and Håstad depends on whether this convex hull
intersects a certain curve or a point.

For SCSP(S) without negation, the condition becomes whether conv(PS) intersects
the curve y = x2. If we let smin and smax be the minimum and maximum number in S
respectively, by convexity of y = k

k−1
x2 − x

k−1
, it is equivalent to that the line passing

through P (smin) and P (smax) and y = x2 intersect, which is again equivalent to (see
Lemma 5.4.4)

(smax + smin − 1)2

k − 1
≥ 4smaxsmin

k
. (5.1)

A simple calculation shows that the above condition is implied by (smax − smin) ≥√
2(smax + smin) which in turn holds if (smax − smin) ≥ 2

√
k. This means that SCP(S)

is approximation resistant unless smin and smax are very close. See Figure 5.1 for an
example.

For general CSP(Q) with Q ⊆ {0, 1}k, Q is positively correlated if there is a distri-
bution µ supported on Q and p, ρ ∈ [0, 1] with ρ ≥ p2 such that Prµ[xi = 1] = p for
every i ∈ [k] and Prµ[xi = xj = 1] = ρ for every 1 ≤ i < j ≤ k. Austrin and Has-
tad [AH13] proved that CSP(Q) is approximate resistant if Q is positively correlated. For
SCSP(S), Lemma 5.4.3 shows that (5.1) holds if and only if QS is positively correlated
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Figure 5.1: An example when k = 10 and S = {2, 5, 8}. The solid curve is y = x2 and the
dashed curve is y = k

k−1
x2 − x

k−1
, where all P (s) lie. In this case the triangle conv(PS)

intersects y = x2, so SCSP(S) is approximation resistant.

where QS := {(x1, . . . , xk) ∈ {0, 1}k : x1 + · · ·+ xk ∈ S}.
We conjecture that this simple condition completely characterizes approximation re-

sistance of symmetric CSPs without negation. Note that we exclude the cases where S
contains 0 or k, since without negation, a trivial deterministic strategy to give the same
value to every variable satisfies every constraint.

Conjecture 5.1.1. For S ⊆ [k − 1], SCSP(S) without negation is approximation resistant
if and only if (5.1) holds.

The hardness claim, the “if” part, is currently proved only under the UGC, but our
focus is on the algorithmic claim that the violation of (5.1) leads to an approximation al-
gorithm that outperforms the best random assignment. Even though we were not formally
able to prove Conjecture 5.1.1, we explain the rationale behind the conjecture and we
prove it for the following two natural special cases in Section 5.2:

1. S is an interval: S contains every integer from smin to smax.
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2. S is even: s ∈ S if and only if k − s ∈ S.

Theorem 5.1.1. If S ⊆ [k − 1] and S is either an interval or even, SCSP(S) without
negation is approximation resistant if and only if (5.1) holds (the hardness claim, i.e., the
“if” part, is under the Unique Games conjecture).

For SCSP(S) with negation, the analogous condition is whether conv(PS) contains a
single point (1

2
, 1

4
). This is equivalent to that QS := {(x1, . . . , xk) ∈ {0, 1}k : x1 +

· · · + xk ∈ S} is balanced pairwise independent (see Section 5.4). While it is tempting
to pose a conjecture similar to Conjecture 5.1.1, we refrain from doing so due to the
lack of evidence compared to the case without negation. However, we prove the following
theorem which shows that the analogous characterization works at least for the two special
cases introduced above.

Theorem 5.1.2. If S ⊂ [k] ∪ {0} and S is either an interval or even, SCSP(S) with
negation is approximation resistant if and only if conv(PS) contains (1

2
, 1

4
) (the hardness

claim, i.e., the “if” part, is under the Unique Games conjecture).

5.1.3 Techniques

We mainly focus on SCSPs without negation, and briefly sketch why the violation of (5.1)
might lead to an approximation algorithm that outperforms the best random assignment.
Let α∗ be the probability that the best random assignment uses, and ρ∗ be the expected frac-
tion of constraints satisfied by it. Our algorithms follow the following general framework:
sample correlated random variables X1, . . . , Xn, where each Xi lies in [−α∗, 1− α∗], and
independently round xi ← 1 with probability α∗ +Xi.

Fix one constraint C = (x1, . . . , xk) (for SCSPs with negation, additionally assume
that offsets are all 0). Using symmetry, the probability that it is satisfied by the above
strategy can be expressed as

ρ∗ +
k∑
l=1

clEI∈([k]
l )[
∏
i∈I

Xi].

For some coefficients {cl}l∈[k]. These coefficients cl can be expressed by the following
two ways.

• Let f(α) : [0, 1]→ [0, 1] the be probability that a constraint is satisfied by a random
assignment with probability α. Then cl is proportional to f (l)(α∗), the l’th derivative
of f evaluated at α∗.
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• Let Q = {(x1, . . . , xk) ∈ {0, 1}k : (x1 + · · ·+ xk) ∈ S} be the predicate associated
with S. When α∗ = 1

2
, cl is proportional to the Fourier coefficient Q̂(T ) with

|T | = l.

Given this observation, α∗ for SCSPs without negation has nice properties since it
should be a global maximum in the interval [0, 1]. In particular, it should be a local max-
imum so that c1 = f ′(α) = 0 and c2, f

′′(α) ≤ 0. By modifying an algorithm by Austrin
and Håstad [AH13], we prove that we can sample X1, . . . , Xn such that the average sec-
ond moment E[XiXj] is strictly negative if (5.1) does not hold. By scaling Xi’s so that the
product of at least three Xi’s becomes negligible, this idea results in an approximation al-
gorithm that outperforms the best random assignment, except in the degenerate case where
c2 = f ′′(α∗) = 0 even though α∗ is a local maximum. This is the main rationale behind
Conjecture 5.1.1 and we elaborate this belief more in Section 5.2. It is notable that our
conjectured characterization for the case without negation only depends on the minimum
and the maximum number in S, while α∗ also depends on other elements.

For SCSPs with negation where α∗ is fixed to be 1
2
, the situation becomes more com-

plicated since c1 and f ′(α) are not necessarily zero and there are many ways that conv(PS)
does not contain (1

2
, 1

4
) (in the case of SCSPs without negation, the slope of the line sep-

arating conv(PS) and y = x2 is always positive, but it is not the case here). Therefore, a
complete characterization requires understanding interactions among c1, c2, and the sep-
arating line. We found that the somewhat involved method of Austrin, Benabbas, and
Magen [ABM12] gives a way to sample these X1, . . . , Xn with desired first and second
moments to prove our results when S exhibits additional special structures, but believe
that a new set of ideas are required to give a complete characterization.

5.1.4 Organization

In Section 5.2, we study SCSPs without negation. We further elaborate our characteriza-
tion in Section 5.2.1, and provide an algorithm in Section 5.2.2. We study SCSPs with
negation in Section 5.3.
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5.2 Symmetric CSPs without Negation

5.2.1 A 2-dimensional Characterization

Fix k and S ⊆ [k − 1]. Our conjectured condition to be approximation resistant is
that conv(PS) intersects the curve y = x2, which is equivalent to (5.1). Austrin and
Håstad [AH13] proved that this simple condition is sufficient to be approximation resis-
tant.

Theorem 5.2.1 ([AH13]). Let S ⊆ [k − 1] be such that (5.1) holds. Then, assuming the
Unique Games Conjecture, SCSP(S) without negation is approximation resistant.

They studied general CSPs and their condition is more complicated than stated here.
See Section 5.4 to see how it is simplified for SCSPs. We conjecture that for SCSPs, this
condition is indeed equivalent to approximation resistance.

Conjecture 5.2.1 (Restatement of Conjecture 5.1.1). For S ⊆ [k − 1], SCSP(S) without
negation is approximation resistant if and only if (5.1) holds.

To provide our rationale behind the conjecture, we define the function f : [0, 1] →
[0, 1] to be the probability that one constraint is satisfied by the random assignment that
gives xi ← 1 independently with probability α.

f(α) =
∑
s∈S

(
k

s

)
αs(1− α)k−s

Let α∗ ∈ [0, 1] be a value that maximizes f(α), and ρ∗ := f(α∗). There might be
more than one α with f(α) = ρ∗. In Section 5.2.2, we prove that S is not approximation
resistant if there exists one such α∗ with a negative second derivative.

Theorem 5.2.2. S ⊆ [k − 1] be such that (5.1) does not hold and there exists α∗ ∈
[0, 1] such that f(α∗) = ρ∗ and f ′′(α∗) < 0. Then, there is a randomized polynomial
time algorithm for SCSP(S) that satisfies strictly more than ρ∗ fraction of constraints in
expectation.

Since f(0) = f(1) = 0 < ρ∗, every α ∈ [0, 1] with f(α) = ρ∗ must be a local
maximum, so it should have f ′(α) = 0 and f ′′(α) ≤ 0. If α is a local maximum, f ′′(α) =
0 also implies f ′′′(α) = 0, so ruling out this degeneracy at a global maximum gives the
complete characterization!
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Figure 5.2: Examples for k = 36. Left: S = {18}, (5.1) is not satisfied, unimodal with
α∗ = 1

2
, f ′′(1

2
) < 0. Middle: S = {15, 21}, (5.1) is satisfied with equality, unimodal with

α∗ = 1
2
, but f ′′(1

2
) = 0. Right: S = {14, 22}, (5.1) is satisfied with slack, bimodal with

two α∗, but f ′′(α∗) < 0.

Ruling out this degeneracy at a global maximum does not seem to be closely related to
general shape of f(α) or S. It might still hold even if f(α) has multiple global maxima,
or S satisfies (5.1) so that SCSP(S) is approximation resistant.

However, examples in Figure 5.2 led us to believe that the condition (5.1) is also related
to general shape of f . When S contains two numbers l and r with l + r = k, as two
numbers become far apart, f becomes unimodal to bimodal, and the transition happens
exactly when (5.1) starts to hold. Furthermore, the degenerate case f ′(α∗) = f ′′(α∗) = 0
happens when (5.1) holds with equality. Intuitively, when two numbers l and r are far
apart, the best strategy is to focus on only one of them (i.e. α∗ ≈ l

k
or r

k
), so f is bimodal.

If l and r are close enough, it is better to target in the middle to satisfy both l and r, so f
becomes unimodal with a large negative curvature at α∗.

Having more points between l and r seems to strengthen the above intuition, and re-
moving the assumption that l + r = k only seems to add algebraic complication without
hurting the intuition. Thus, we propose the following stronger conjecture that implies
Conjecture 5.1.1.

Conjecture 5.2.2. If (5.1) does not hold, f(α) is unimodal in [0, 1] with the unique maxi-
mum at α∗, and f ′′(α∗) < 0.

While we are unable to formally prove Conjecture 5.2.2 for every S, we establish it for
the case when S is either an interval (Section 5.2.3) or even (Section 5.2.4), thus proving
Theorem 5.1.1.
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5.2.2 Algorithm

Let α∗ ∈ [0, 1] be such that f(α∗) = ρ∗ and f ′′(α∗) < 0. Furthermore, suppose that S does
not satisfy (5.1). We give a randomized approximation algorithm which is guaranteed to
satisfy strictly more than ρ∗ fraction of constraints in expectation, proving Theorem 5.2.2.
Let D := D(k) be a large constant determined later. Our strategy is the following.

1. Sample X1, . . . , Xn from some correlated multivariate normal distribution where
each Xi has mean 0 and variance at most σ2 for some σ := σ(k).

2. For each i ∈ [n], set

X ′i =


−Dα∗ if Xi < −Dα∗

D(1− α∗) if Xi > D(1− α∗)
Xi otherwise

so that α∗ +
X′i
D

is always in [0, 1].

3. Set xi ← 1 independently with probability α∗ +
X′i
D

.

Fix one constraint C and suppose that C = (x1, . . . , xk). We consider a multivariate
polynomial

g(y1, . . . , yk) :=
∑

T⊆[k],|T |∈S

∏
i∈T

(α∗ +
yi
D

)
∏

i∈[k]\T

(1− α∗ − yi
D

).

g(X ′1, . . . , X
′
k) is equal to the probability that the constraint C is satisfied. By symmetry,

for any 1 ≤ i1 < · · · < il ≤ k, the coefficient of a monomial yi1yi2 . . . yil only depends on
l. Let cl be this coefficient.

Lemma 5.2.3. cl = (k−l)!
k!Dl

f (l)(α∗).

Proof. Note that g(y, y, . . . , y) = f(α∗ + y
D

), which has the Taylor expansion

k∑
l=0

f (l)(α∗)

l!
(
y

D
)l.

Since g is multilinear, by symmetry, the coefficient of a monomial yi1yi2 . . . yil in g(y1, . . . , yk)

is equal to the coefficient of yl in f(α∗ + y
D

) divided by
(
k
l

)
, which is cl = (k−l)!

k!Dl
f (l)(α∗).
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We analyze the overall performance of this algorithm. First we prove the following
technical lemma about Gaussians.

Lemma 5.2.4. Let Y1, . . . , Yl be sampled from a multivariate normal distribution where
each Yi has mean 0 and variance at most σ2. Let Y ′1 , . . . , Y

′
l be such that

Y ′i =


Yi if |Yi| ≤ D

D if Yi > D

−D if Yi < −D

Then, for large enough D,

|E[
l∏

i=1

Yi]− E[
l∏

i=1

Y ′i ]| ≤ 2l · σl · l! · e−D/l.

Proof. For each i ∈ [l], let Y ′′i = Y ′i − Yi. Take D large enough so that

E[|Y ′′i |l] = 2

∫ ∞
y=D

(y −D)lφ(y) ≤ 2

∫ ∞
y=D

ylφ(y) ≤ e−D.

Also each Yi, a normal random variable with mean 0 and variance σ, satisfies E[|Yi|l] ≤
σl · l!. We have

|E[
l∏

i=1

Yi]− E[
l∏

i=1

Y ′i ]|

= |
∑

T⊆[l],T 6=[l]

E[
∏
i∈T

Yi
∏
i/∈T

Y ′′i ]|

≤
∑

T⊆[l],T 6=[l]

∏
i∈T

(E[|Yi|l])1/l
∏
i/∈T

(E[|Y ′′i |l])1/l By Generalized Hölder’s inequality [Che01]

≤ 2l · σl · l! · e−D/l .

LetDl be the distribution on
(

[n]
l

)
where we sample a constraintC uniformly at random,

sample l distinct variables from
(
C
l

)
, and output their indices. We prove the following

lemma, which implies that by taking large D, the effect of truncation from Xi to X ′i and
the contribution of monomials of degree greater than two become small.

Lemma 5.2.5. The expected fraction of constraints satisfied by the above algorithm is at
least

ρ∗ + c2

(
k

2

)
E(i,j)∼D2 [XiXj]−Ok(

1

D3
) = ρ∗ +

f ′′(α∗)

2D2
E(i,j)∼D2 [XiXj]−Ok(

1

D3
),
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where Ok(·) is hiding constants depending on k.

Proof. For any s ∈ {1, . . . , k − 1}, the function fs(α) =
(
k
s

)
αs(1 − α)k−s is unimodal

in [0, 1] with the maximum at α = s
k
. As long as S does not contain 0 or k, f(α) =∑

s∈S fs(α) cannot have a local maximum in [0, 1
k
) and (1− 1

k
, 1], so we can assume that

α∗ ∈ [ 1
k
, 1− 1

k
].

For any 1 ≤ l ≤ k and 1 ≤ i1 < · · · < il ≤ k, we apply Lemma 5.2.4 (set D ← D
k

),

|E[
l∏

j=1

Xij ]− E[
l∏

j=1

X ′ij ]| ≤ 2l · σl · l! · e−D/kl.

If we expand f(α) =
∑k

l=0 alα
l, each coefficient al has magnitude at most 2k, which

means that |f (l)(α∗)| is bounded by k2kk!. Therefore, any |cl| is at most k2kk!. Let cmax
be this quantity. Summing over this error for all monomials, the probability that a fixed
constraint C = {x1, . . . , xk} is satisfied is

E[g(X ′1, . . . , X
′
k)] ≥ E[g(X1, . . . , Xk)]− cmax · 22k · σk · k! · e−D/k2

= ρ∗ +
k∑
l=1

cl
∑

1≤i1<···<il≤k

Xi1Xi2 . . . Xil −Ok(e
−D/k2

)

= ρ∗ +
k∑
l=1

cl
∑

1≤i1<···<il≤k

Xi1Xi2 . . . Xil −Ok(e
−D/k2

)

Averaging over m constraints, the expected fraction of satisfied constraints is at least

ρ∗ +
k∑
l=1

cl

(
k

l

)
E(i1,...,il)∼Dl [Xi1 . . . Xil ]−Ok(e

−D/k2

)

= ρ∗ + c2

(
k

2

)
E(i1,i2)∼D2 [Xi1Xi2 ] +

k∑
l=3

cl

(
k

l

)
E(i1,...,il)∼Dl [Xi1 . . . Xil ]−Ok(e

−D/k2

)

= ρ∗ + c2

(
k

2

)
E(i1,i2)∼D2 [Xi1Xi2 ]−Ok(

1

D3
)

= ρ∗ +
f ′′(α∗)

2D2
E(i,j)∼D2 [XiXj]−Ok(

1

D3
),

where the first equality follows from the fact that E[Xi] = 0 for all i. Recall that cl =
(k−l)!
k!Dl

f (l)(α∗) so that |cl| = Ok(
1
Dl

).
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Therefore, if we have a way to sample X1, . . . , Xn such that each Xi has mean 0 and
variance at most σ2, and E(i,j)∼D2 [XiXj] < −δ for some δ := δ(k) > 0, taking D large
enough ensures that the algorithm satisfies strictly more than ρ∗ fraction of constraints. We
now show how to do such a sampling. Our basic intuition is that if S does not satisfy (5.1),
there is no positively correlated distribution supported byQS := {(x1, . . . , xk) : x1 + · · ·+
xk}, which helps to find a distribution with negative correlation.

We assume that for some ε := ε(k) > 0, the given instance admits a solution that
satisfies (1−ε) fraction of constraints. Otherwise, the random assignment with probability
α∗ guarantees the approximation ratio of ρ∗

1−ε . The following lemma completes the proof
of Theorem 5.2.2.

Lemma 5.2.6. Suppose that S does not satisfy (5.1). For sufficiently small ε, δ > 0 and suf-
ficiently large σ all depending only on k, given an instance of SCSP(S) where (1− ε) frac-
tion of constraints are simultaneously satisfiable, it is possible to sample X1, . . . , Xn from
a multivariate normal distribution such that each Xi has mean 0 and variance bounded
by σ2, and E(i,j)∼D2 [XiXj] < −δ.

Proof. Recall that (5.1) is equivalent to the fact that the line ` passing P (smin) and P (smax)
intersects the curve y = x2. Let a be the value such that the vector (a,−1) is orthogonal to
`. a is strictly positive since ` has a positive slope. If ` and y = x2 do not intersect, there
is a line with the same slope as ` that strictly separates y = x2 and {P (s) : s ∈ S}— in
other words, there exists c ∈ R such that

• ax− y + c > γ > 0 for (x, y) ∈ {P (s) : s ∈ S}.

• ax− x2 + c < 0 for any x ∈ R⇒ c < −a2

4
.

Consider a constraint C = (x1, . . . , xk). Since (Ei∈[k][xi],Ei 6=j∈[k][xixj]) = P (x1 +
· · ·+ xk), if C is satisfied,

aEi∈[k][xi]− Ei 6=j∈[k][xixj] + c > γ.

Let

η := − min
x1,...,xk∈{0,1}

(
aEi∈[k][xi]− Ei 6=j∈[k][xixj] + c

)
.

We solve the following semidefinite programm (SDP):

maximize aEi∈D1 [〈v0, vi〉]− Ei,j∈D2 [〈vi, vj〉] + c

subject to ||v0|| = 1

〈vi, v0〉 = ||vi||2 for all i ∈ [n]
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Note that 〈vi, v0〉 = ||vi||2 implies ||vi|| ≤ 1. For any assignment to x1, . . . , xn, setting
vi = xiv0 satisfies that xi = 〈v0, vi〉 and xixj = 〈vi, vj〉. Since at least (1 − ε) fraction
of constraints can be simultaneously satisfied, the optimum of the above SDP is at least
(1−ε)γ−εη. Given γ > 0 and η, take sufficiently small ε, δ > 0 such that (1−ε)γ−εη = δ.
There are finitely many S (thus γ and η) for each k, so ε and δ can be taken to depend
only on k. Given vectors v0, v1, . . . , vn, we sample X1, . . . , Xn by the following simple
procedure:

1. Sample a vector g whose coordinates are independent standard normal.

2. Let Xi = 〈g, vi − a
2
v0〉.

It is clear that E[Xi] = 0 for each i, and E[X2
i ] = ||vi − a

2
v0||2 ≤ (a + 1)2 + 1, so

taking σ := σ(k) large enough ensures that the variance of each Xi is bounded by σ2. We
now compute the second moment.

Ei,j∼D2 [XiXj]

= Ei,j∼D2 [〈vi −
a

2
v0, vj −

a

2
v0〉]

= Ei,j∼D2 [〈vi, vj〉]− aEi∈D1 [〈vi, v0〉] +
a2

4
< Ei,j∼D2 [〈vi, vj〉]− aEi∈D1 [〈vi, v0〉]− c
≤ − ((1− ε)γ − εη) = −δ,

where the first inequality follows from c < −a2

4
and the second follows from the optimality

of our SDP.

5.2.3 Case of Interval S

We study properties of f(α) when S is an interval — S = {smin, smin + 1, . . . , smax −
1, smax}, and prove Conjecture 5.2.2 for this case. One notable fact is that as long as S
is an interval, the conclusion of Conjecture 5.2.2 is true even if S does satisfy (5.1) and
becomes approximation resistant.

Lemma 5.2.7. Suppose S ⊆ [k − 1] is an interval. Then, f(α) is unimodal in [0, 1] with
the unique maximum at α∗ and f ′′(α∗) < 0.

Proof. Let l := smin and r = smax. Given

f(α) =
r∑
s=l

(
k

s

)
αs(1− α)k−s
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and

f ′(α) =
r∑
s=l

(
k

s

)(
sαs−1(1− α)k−s − (k − s)αs(1− α)k−s−1

)
,

since
(
k
s

)
(k − s) =

(
k
s+1

)
(s+ 1), we have

f ′(α) =

(
k

l

)
lαl−1(1− α)k−l −

(
k

r

)
(k − r)αr(1− α)k−r−1.

If 0 < α < 1, setting β := α
1−α gives a unique non-zero solution to f ′(β) = 0. This proves

the unimodality. For the second derivative,

f ′′(α) =

(
k

l

)
l(l − 1)αl−2(1− α)k−l −

(
k

l

)
l(k − l)αl−1(1− α)k−l−1+(

k

r

)
(k − r)(k − r − 1)αr(1− α)k−r−2 −

(
k

r

)
r(k − r)αr−1(1− α)k−r−1

=

(
k

l

)
lαl−2(1− α)k−l−1

(
(l − 1)(1− α)− (k − l)α

)
+(

k

r

)
(k − r)αr−1(1− α)k−r−2

(
(k − r − 1)α− r(1− α)

)
.

Since l−1
k−1

< l
k
≤ α∗ ≤ r

k
< r

k−1
,

(l − 1)(1− α∗)− (k − l)α∗ = (l − 1)− (k − 1)α∗ < 0

and
(k − r − 1)α∗ − r(1− α∗) = (k − 1)α∗ − r < 0,

so that f ′′(α∗) < 0.

5.2.4 Case of Even S

We study properties of f(α) when S is even — s ∈ S if and only if k − s ∈ S, and prove
Conjecture 5.2.2 for this case. We first simplify (5.1) for this setting. If we let l := smin
and r := smax = k − l, (5.1) is equivalent to

(l + r − 1)2

k − 1
≥ 4lr

k
⇔ k(k − 1) ≥ 4lr ⇔ (r − l)2 ≥ k.

Therefore, (5.1) is equivalent to
r − l ≥

√
k (5.2)
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Lemma 5.2.8. Suppose S ⊆ [k − 1] is even. If (5.2) does not hold, f(α) is unimodal in
[0, 1] with the unique maximum at α∗ = 1

2
and f ′′(α∗) < 0.

Proof. Given a even S, let S1 = {s ∈ S : s ≤ k/2}. When we write fS to denote the
dependence of f on S, we can decompose fS(α) =

∑
s∈S1

f{s,k−s}(α), so the following
claim proves the lemma.

Claim 5.2.9. Let l ≤ k
2

and r = k − l such that r − l <
√
k ⇔ k(k − 1) < 4lr. Let

S = {l, r}. f is unimodal with the unique maximum at 1
2
, and f ′′(1

2
) < 0.

Proof. Note that f is symmetric around α = 1/2. If there exists a local maximum at
α′ ∈ (0, 1/2), f also has a local maximum at (1− α′) with the same value, so there must
exist a local minimum in (α′, 1 − α′). In particular, there is α ∈ (α′, 1 − α′) such that
f ′(α) = 0 and f ′′(α) ≥ 0. We prove that such an α cannot exist.

f ′(α) = 0

⇔
(
k

l

)
αl−1(1− α)r−1(l − kα) +

(
k

r

)
αr−1(1− α)l−1(r − kα) = 0

⇔
(
k
l

)
αl−1(1− α)r−1(

k
r

)
αr−1(1− α)l−1

=

(
k
l

)
(1− α)r−l(
k
r

)
αr−l

= −(kα− r)
(kα− l)

Similarly,

f ′′(α) ≥ 0

⇔
(
k
l

)
(1− α)r−l(
k
r

)
αr−l

≥ −r(r − 1)(1− α)2 − 2rlα(1− α) + l(l − 1)α2

l(l − 1)(1− α)2 − 2rlα(1− α) + r(r − 1)α2
.

By symmetry, we can assume α ≥ 1
2
, so that (kα− l) ≥ 0 and l(l−1)(1−α)2−2rlα(1−

α) + r(r − 1)α2 ≥ 0.

(kα− r)
(kα− l)

≤ r(r − 1)(1− α)2 − 2rlα(1− α) + l(l − 1)α2

l(l − 1)(1− α)2 − 2rlα(1− α) + r(r − 1)α2

⇔ (kα− r)(l(l − 1)(1− α)2 − 2rlα(1− α) + r(r − 1)α2)

≤ (kα− l)(r(r − 1)(1− α)2 − 2rlα(1− α) + l(l − 1)α2)

⇔ α2(l3 − r3 − (l2 − r2) + rl(l − r)− 2k(l2 − r2) + 2k(l − r)) + α(k(l2 − r2)− k(l − r))− rl(l − r) ≤ 0

⇔ α2(−k2 + k) + α(k2 − k)− rl ≥ 0 divide by (l − r) and use l + r = k
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However, α2(−k2 +k) +α(k2−k)− rl has a negative leading coefficient and its discrim-
inant is

(k2 − k)2 − 4rl(k2 − k) = (k2 − k)(k2 − k − 4rl) < 0

by the assumption of the claim.

We do not formally prove the converse, but Figure 5.2 shows examples where it is
tight. When (5.2) holds with equality, f still has the unique local maximum at 1

2
but

f ′′(1
2
) = 0, and even when (5.2) holds with small slack, two local maxima start to appear.

This phenomenon is one of the main reasons that we pose Conjecture 5.2.2. Though we
were not able to formally prove for the general case, we believe that the violation of (5.1)
not only allows us to sample random variables with desired second moments but also
ensures that f(α) is a nice unimodal curve.

5.3 Approximability of Symmetric CSPs with Negation

Fix k and S ⊂ [k] ∪ {0}. In this section, we consider SCSP(S) with negation and prove
Theorem 5.1.1. Note that in this section we allow S to contain 0 or k. For example, famous
MAX 3-SAT is 3-SCSP({1, 2, 3}). We still exclude the trivial case S = [k] ∪ {0}.

The condition we are interested in is whether conv(PS) contains (1
2
, 1

4
). In SCSPs with

negation, the sufficient condition of Austrin and Mossel on general CSPs to be approxi-
mation resistant becomes equivalent to it. See Appendix 5.4 to see the equivalence.

Theorem 5.3.1 ([AH13]). Fix k and let S ⊂ [k] ∪ {0} be such that conv(PS) contains
(1

2
, 1

4
). Then, assuming the Unique Games Conjecture, SCSP(S) with negation is approxi-

mation resistant.

On the other hand, we now show that the algorithm of Austrin et al. [ABM12], which is
inspired by Hast [Has05], can be used to show that if S is an interval or even and conv(PS)
does not contain (1

2
, 1

4
), SCSP(S) is not approximation resistant.

Let f : {0, 1}k → {0, 1} be the function such that f(x1, . . . , xk) = 1 if and only if
(x1+· · ·+xk) ∈ S. Define the inner product of two functions as 〈f, g〉 = Ex∈{0,1}k [f(x)g(x)],
and for T ⊆ [k], let χT (x1, . . . , xk) =

∏
i∈T (−1)xi . It is well known that {χT}T⊆[k] form

an orthonormal basis and every function has a unique Fourier expansion with respect to
this basis,

f =
∑
T⊆[k]

f̂(T )χT , f̂(T ) := 〈f, χT 〉.

99



Define
f=d(x) =

∑
|T |=d

f̂(S)χT (x).

The main theorem of Austrin et al. [ABM12] is

Theorem 5.3.2 ([ABM12]). Suppose that there exists η ∈ R such that

2η√
2π
f=1(x) +

2

π
f=2(x) > 0 (5.3)

for every x ∈ f−1(1). Then there is a randomized polynomial time algorithm that approx-
imates SCSP(S) better than the random assignment in expectation.

We compute f=1 and f=2.

f̂({1}) = 〈f, χ{1}〉 =
1

2k

∑
s∈S

((
k − 1

s

)
−
(
k − 1

s− 1

))
f̂({1, 2}) = 〈f, χ{1,2}〉 =

1

2k

∑
s∈S

((
k − 2

s

)
− 2

(
k − 2

s− 1

)
+

(
k − 2

s− 2

))

By symmetry, f̂(T ) =: f̂1 is the same for all |T | = 1 and f̂(T ) =: f̂2 is the same for all
|T | = 2. If we let s = x1 + · · ·+ xk,

f=1(x) = f̂1

∑
i∈[k]

(−1)xi = kf̂1Ei∈[k][−2xi + 1] = kf̂1(−2
s

k
+ 1)

f=2(x) = f̂2

∑
i 6=j

(−1)xi+xj =

(
k

2

)
f̂2Ei 6=j[(−2xi + 1)(−2xj + 1)] =

(
k

2

)
f̂2(4

s(s− 1)

k(k − 1)
− 4

s

k
+ 1).

When S is an interval. Let S = {l, l+1, . . . , r−1, r}. If r ≤ k
2
, we have (−2s

k
+1) ≤ 0

for all s ∈ S, so choosing η either large enough or small enough ensures (5.3). Similarly,
if l ≥ k

2
, (5.3) holds. Therefore, we assume that l < k

2
and r > k

2
, and compute f̂2.

f̂2 =
1

2k

r∑
s=l

((
k − 2

s

)
− 2

(
k − 2

s− 1

)
+

(
k − 2

s− 2

))
=

1

2k

((
k − 2

l − 2

)
−
(
k − 2

l − 1

)
+

(
k − 2

r

)
−
(
k − 2

r − 1

))
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Since
(
k−2
l−1

)
>
(
k−2
l−2

)
for 0 < l < k

2
and

(
k−2
r−1

)
>
(
k−2
r

)
for k

2
< r < k, f̂2 < 0 except when

l = 0 and r = k (i.e., S = [k] ∪ {0}).
If conv(PS) does not contain (1

2
, 1

4
), there exist α, β ∈ R such that for any (a, b) ∈

conv(PS),

α(a− 1

2
) + β(b− 1

4
) > 0.

If k is even, s := k
2
∈ S and P (s) = (1

2
, s−1

2(k−1)
) where s−1

2(k−1)
< 1

4
, which implies β < 0

since the above inequality should hold for all s ∈ S. When k is odd (let k = 2s + 1), s
and s+ 1 should be in S and

1

2

(
P (s) + P (s+ 1)

)
= (

1

2
,

s2

k(k − 1)
),

where s2

k(k−1)
< 1

4
. Therefore, we can conclude β < 0 in any case. For any x ∈ f−1(1)

with s = x1 + · · ·+ xk and P (s) = (a, b),

2η√
2π
f=1(x) +

2

π
f=2(x)

=
2η√
2π
kf̂1(−2a+ 1) +

2

π

(
k

2

)
f̂2(4b− 4a+ 1)

=
8

βπ

(
k

2

)
f̂2

( 2η√
2π
kf̂1

8
βπ

(
k
2

)
f̂2

(−2a+ 1) + β(b− a+
1

4
)

)

=
8

βπ

(
k

2

)
f̂2

(
(−α + β

2
)(−2a+ 1) + β(b− a+

1

4
)

)
by adjusting η so that

2η√
2π
kf̂1

8
βπ

(
k
2

)
f̂2

= −α + β

2

=
8

βπ

(
k

2

)
f̂2

(
α(a− 1

2
) + β(b− 1

4
)

)
> 0.

Therefore, (5.3) is satisfied if S is an interval and conv(S) does not contain (1
2
, 1

4
).

When S is even. Given S, let Q ∈ {0, 1}k be the predicate associated with S and
f : {0, 1}k → {0, 1} be the indicator function of Q. We want to show that when S is
even,

2η√
2π
f=1(x) +

2

π
f=2(x) > 0
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is satisfied for any x ∈ f−1(1). When S is even,

f̂1 =
1

2k+1

∑
s∈S

((
k − 1

s

)
−
(
k − 1

s− 1

)
+

(
k − 1

k − s

)
−
(

k − 1

k − s− 1

))
= 0.

We compute the sign of the contribution of each s to f̂2.(
k − 2

s

)
− 2

(
k − 2

s− 1

)
+

(
k − 2

s− 2

)
≥ 0

⇔ (k − s)(k − s− 1)− 2s(k − s) + s(s− 1) ≥ 0

⇔ 4s2 − 4sk + k2 − k ≥ 0

⇔ s ≤ k −
√
k

2
or s ≥ k +

√
k

2

We also consider the line passing P (s) and P (k − s). If we denote t = k − s, Its slope is

t(t−1)−s(s−1)
k(k−1)

t−s
k

=
t2 − s2 − (t− s)
(k − 1)(t− s)

= 1,

and the value of this line at 1
2

is at least 1
4

when

s(s− 1) + (k − s)(k − s− 1)

2k(k − 1)
≥ 1

4

⇔ 2s(s− 1) + 2(k − s)(k − s− 1) ≥ k(k − 1)

⇔ s ≤ k −
√
k

2
or s ≥ k +

√
k

2
.

Intuitively, if we consider the line of slope 1 that passes (1
2
, 1

4
), P (s) is below this line

if s ∈ (k−
√
k

2
, k+

√
k

2
). Let S1 = S ∩ {0, 1, . . . , dk

2
e}. If S1 contains a value s1 ≤ k−

√
k

2

and a value s2 ≥ k−
√
k

2
(including the case s1 = s2 = k−

√
k

2
is an integer in S1), the line

passing P (s1) and P (k − s1) passes a point (1
2
, t1) for some t1 ≥ 1

4
and the line passing

P (s2) and P (k− s2) passes a point (1
2
, t2) for some t2 ≤ 1

4
. Therefore, conv(PS) contains

a point (1
2
, 1

4
) and S becomes balanced pairwise independent. We consider the remaining

two cases.
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1. s < k−
√
k

2
for all s ∈ S1: f̂2 > 0 and for all s ∈ S, −( s

k
− 1

2
) + ( s(s−1)

k(k−1)
− 1

4
) > 0.

Therefore, for any x ∈ f−1 with s = x1 + · · ·+ xk,

2η√
2π
f=1(x) +

2

π
f=2(x)

=
2

π
f=2(x)

=
2

π

(
k

2

)
f̂2(4

s(s− 1)

k(k − 1)
− 4

s

k
+ 1)

> 0.

2. s > k−
√
k

2
for all s ∈ S1: f̂2 < 0 and for all s ∈ S, −( s

k
− 1

2
) + ( s(s−1)

k(k−1)
− 1

4
) < 0.

Similarly as above, for any x ∈ f−1 with s = x1 + · · ·+ xk, (5.3) is satisfied.

5.4 Austrin-Håstad Condition for Symmetric CSPs

This section explains how the condition of Austrin-Håstad [AH13] is simplified for SCSPs.
They studied general CSPs where a predicate Q is a subset of {0, 1}k. Note that given
S ⊆ [k] ∪ {0}, SCSP(S) is equivalent to CSP(Q) where

Q = {(x1, . . . , xk) ∈ {0, 1}k : (x1 + · · ·+ xk) ∈ S} (5.4)

Given Q, their general definition of pairwise independence and positive correlation is
given below.

Definition 5.4.1. Q is balanced pairwise independent if there is a distribution µ supported
on Q such that Prµ[xi = 1] = 1

2
for every i ∈ [k] and Prµ[xi = xj = 1] = 1

4
for every

1 ≤ i < j ≤ k.

Definition 5.4.2. Q is positively correlated if there is a distribution µ supported on Q and
p, ρ ∈ [0, 1] with ρ ≥ p2 such that Prµ[xi = 1] = p for every i ∈ [k] and Prµ[xi = xj =
1] = ρ for every 1 ≤ i < j ≤ k.

We formally prove that their definitions have simpler descriptions in R2 for symmetric
CSPs. Recall that given s ∈ [k] ∪ {0},

P (s) = (
s

k
,
s(s− 1)

k(k − 1)
) ∈ R2 and PS := {P (s) : s ∈ S} .
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Lemma 5.4.3. Let S ⊆ [k]∪{0} and Q be obtained by (6.4). Q is pairwise independent if
and only if conv(PS) contains (1

2
, 1

4
), andQ is positively correlated if and only if conv(PS)

intersects the curve y = x2.

Proof. We first prove the second claim of the lemma. Let Q be positively correlated with
parameters p, ρ (ρ ≥ p2) and the distribution µ such that Prµ[xi = 1] = p for all i,
Prµ[xi = xj = 1] = ρ and for all i < j. Let ν be the distribution of x1 + · · · + xk where
(x1, . . . , xk) are sampled from µ.

(p, ρ) = (Ei[xi],Ei<j[xixj]) = (Es∼ν [
s

k
],Es∼ν [

s(s− 1)

k(k − 1)
]) = Es∼ν [P (s)],

proving that positive correlation of Q implies (p, ρ) ∈ conv(PS). Since P (s) is strictly
below the curve y = x2 for any s ∈ [k − 1] and (p, ρ) is on or above this curve, conv(PS)
must intersect y = x2.

Suppose that conv(PS) intersects the curve y = x2. There exists a distribution ν on
S such that Es∼ν [P (s)] = (p, p2). Let µs be the distribution on {0, 1}k that uniformly
samples a string with exactly s 1’s. Let µ be the distribution where s is sampled from ν
and (x1, . . . , xk) is sampled from µs. By definition, Prµ[xi = 1] and Prµ[xi = xj = 1] do
not depend on choice of indices,

Pr
µ

[x1 = 1] = Eµ[x1] = Es∼νEx∼µs [x1] = Es∼ν [
s

k
] = p

Pr
µ

[x1 = x2 = 1] = Eµ[x1x2] = Es∼νEx∼µs [x1x2] = Es∼ν [
s(s− 1)

k(k − 1)
] = p2,

implying that (p, p2) ∈ conv(PS).

The proof of the first claim is similar except that the curve y = x2 is replaced by
(1

2
, 1

4
).

Lemma 5.4.4. conv(PS) intersects the curve x = y2 if and only if

(smax + smin − 1)2

k − 1
≥ 4smaxsmin

k
.

Proof. Let l = smin and r = smax. The line passing P (l) and P (r) has a slope
r(r−1)−l(l−1)

k(k−1)
r−l
k

=
r+l−1
k−1

and a y-intercept b such that

l(l − 1)

k(k − 1)
=
r + l − 1

k − 1
· l
k

+ b⇔ b =
l(l − 1)− l(r + l − 1)

k(k − 1)
=

−lr
k(k − 1)

.
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This line intersects y = x2 if and only if

x2 =
r + l − 1

k − 1
x− lr

k(k − 1)

has a real root, which is equivalent to

(
r + l − 1

k − 1
)2 − 4lr

k(k − 1)
≥ 0⇔ (r + l − 1)2

k − 1
≥ 4lr

k
.
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Applied CSPs
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Chapter 6

Unique Coverage

6.1 Introduction

Given a universe V of n elements and a collection E of m subsets of V , the UNIQUE

COVERAGE problem asks to find S ⊆ V to maximize the number of e ∈ E that intersects
S in exactly one element. When each e ∈ E has size at most k, this problem is also known
as 1-IN-k HITTING SET.

UNIQUE COVERAGE models numerous practical situations where each element repre-
sents a service and each subset represents a customer interested in the services it contains.
We want to activate some services to satisfy customers, but customers want exactly one
service from her list to be activated because more than one service may lead to confusion
or high cost. These natural scenarios have been studied in many fields including wireless
networks, radio broadcast, and envy-free pricing. We refer the reader to the work of Gu-
ruswami and Trevisan [GT05] and Demaine et al. [DFHS08] for a more detailed list of ap-
plications. Chalermsook et al. [CCKK12] showed an approximation-preserving reduction
from UNIQUE COVERAGE to a special case of envy-free pricing called the TOLLBOOTH

PRICING problem, so our result improves the hardness of TOLLBOOTH PRICING as well.

There is a simple Ω( 1
log k

)-approximation algorithm for 1-IN-k HITTING SET. First,
consider the case where each subset e has the same cardinality k (also known as 1-IN-k
HITTING SET). Independently adding each v ∈ V to S with probability 1

k
will ensure that

each set e ∈ E will intersect S in exactly one element with probability (1− 1
k
)k−1, which

approaches 1
e

as k grows. For the general case where each subset has cardinality at most k
(assume k is a power of 2), randomly choosing a value l ∈ {2, 4, 8, . . . , k} first and inde-
pendently adding each v ∈ V to S with probability 1

l
will give an Ω( 1

log k
)-approximation

109



algorithm. If there exists S ⊆ V that intersects every subset in exactly one element, solv-
ing the standard LP relaxation and independently rounding with the resulting solution will
guarantee a factor 1/e-approximation even if the subsets have different sizes [GT05].

These approximation algorithms highlight interesting theoretical aspects of this prob-
lem. 1-IN-k HITTING SET can be naturally interpreted as a Constraint Satisfaction Prob-
lem (CSP) where each element v ∈ V becomes a variable taking a value from {0, 1}
(v ← 1 corresponds to v ∈ S), and each subset becomes a constraint. Each con-
straint e = (v1, . . . , vl) is satisfied by an assignment σ : V → {0, 1} if and only if
σ(v1) + · · · + σ(vl) = 1. An Ω(1)-approximation for 1-IN-Ek HITTING SET and an
Ω( 1

log k
)-approximation for 1-IN-k HITTING SET exhibit an example where mixing pred-

icates of different arities decreases the best approximation ratio significantly. The second
Ω(1)-approximation when every subset can be intersected exactly once shows a rare ex-
ample where perfect completeness of a CSP allows a much better approximation. When
k is a growing function of n, as pointed out in [DFHS08], UNIQUE COVERAGE is one
of few natural maximization problems for which the tight approximation threshold is
(semi)logarithmic (i.e., Ω(logc n) for some 0 < c ≤ 1).

There are even more theoretically interesting developments from the hardness side.
Demaine, Feige, Hajiaghayi, and Salavatipour [DFHS08] showed it is hard to approxi-
mate UNIQUE COVERAGE within a factor of Ω( 1

logε n
) for some constant ε > 0 depending

on δ, assuming that NP 6⊆ BPTIME(2n
δ
) for some constant δ > 0. Their second result

proved that the inapproximability can be strengthened to Ω( 1

log1/3−ε n
) for any ε > 0 assum-

ing Feige’s Random 3SAT Hypothesis [Fei02]. For 1-IN-k HITTING SET for constant k,
Guruswami and Zhou [GZ12] recently proved that the Ω( 1

log k
)-approximation is optimal,

assuming Khot’s Unique Games Conjecture [Kho02b]. Since many other problems whose
strong inapproximabilities are known only under Feige’s or Khot’s conjecture, it was open
whether we were able to bypass these conjectures to show almost optimal inapproximabil-
ity only assuming P 6= NP or NP 6⊆ QP.

Our main contribution in this chapter is a positive answer to this question. For 1-IN-k
HITTING SET for constant k, we prove the following theorem.

Theorem 6.1.1. Assuming P 6= NP, for large enough constant k, there is no polyno-
mial time algorithm that approximates 1-IN-k HITTING SET within a factor better than
O( 1

log k
).

This result bypasses the Unique Games Conjecture to show that the simple Ω( 1
log k

)-
approximation algorithm is the best polynomial time algorithm up to a constant factor. For
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UNIQUE COVERAGE, we prove that following theorem. Recall that

QP = ∪c∈NDTIME(2logc n).

Theorem 6.1.2. For any ε > 0, assuming NP 6⊆ DTIME(2logO(1/ε) n), there is no poly-
nomial time algorithm that approximates UNIQUE COVERAGE within a factor better than

1
log1−ε n

. In particular, for any fixed ε > 0, unless NP 6⊆ QP, there is no polynomial time
algorithm that approximates UNIQUE COVERAGE within a factor better than 1

log1−ε n
.

Compared to the first result of Demaine et al., we replace their assumption NP 6⊆
BPTIME(2n

δ
) for some δ by a much weaker assumption NP 6⊆ QP and at the same

time show an improved (and near-optimal) inapproximability factor, which is near-optimal
and also improves their second result conditioned on the Random 3SAT Hypothesis.

Besides these improvements, our proof is also significantly simpler than previous
works. The result of Guruswami and Zhou for constant k is obtained by constructing a gap
instance for a semidefinite programming (SDP) relaxation for the problem, and using the
sophisticated result of Raghavendra [Rag08] that converts an SDP gap to a Unique Games
hardness. Demaine et al. first showed a reduction from an intermediate problem called
Balanced Bipartite Independent Set (BBIS) to UNIQUE COVERAGE, and used the Ran-
dom 3SAT Hypothesis or Khot’s Quasirandom PCP [Kho06] to prove hardness of BBIS.
Our two theorems are corollaries of one simple reduction from the basic Label Cover,
whose hardness relies only on the PCP theorem and the Parallel Repetition Theorem.

6.1.1 Techniques

While UNIQUE COVERAGE can be interpreted as a CSP, it also seems similar to the Max
k-Coverage problem, where, given a set system (V,E), we want to find a subset S ⊆ V
with |S| = k that intersects as many e ∈ E as possible.1 Max k-Coverage is tightly related
to the more famous Set Cover problem and admits an e−1

e
-approximation algorithm which

is proved to be tight [LY94, Fei98]. It can be also interpreted as a variant of CSPs where
each element becomes a variable taking a value from {0, 1}, and each subset becomes a
constraint that is satisfied if at least one of its variables is assigned 1, and we additionally
require that at most k variables have to be assigned 1.

A weaker but simple inapproximability of Max k-Coverage can be proved via the Label
Cover problem. An instance of Label Cover consists of a biregular bipartite graph G =

1Max k-Coverage is usually stated in terms of the dual set system, where we want to find a subcollection
E′ ⊆ E of subsets with |E′| = k that maximizes the number of elements covered.
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(UG ∪ VG, EG) where each edge e = (u, v) is associated with a projection πe : [R] 7→ [L]
for some positive integers R and L, and we look for a labeling l : UG ∪ VG 7→ [R] that
satisfies as many e ∈ EG as possible (e = (u, v) is satisfied when πe(l(v)) = l(u)). Given
an instance of Label Cover, the reduction to Max k-Coverage makes every (vertex, label)-
pair of Label Cover as an element of the set system, and for each projection e = (u, v) ∈
EG and b ∈ {0, 1}L, there is a subset corresponding to (e, b) containing {(u, j) : bj =
0} ∪ {(v, j) : bπe(j) = 1}. It is a simple but useful exercise to check that if a labeling l
satisfies every projection, its canonical set {(v, l(v)) : v ∈ UG ∪ VG} will intersect every
subset exactly once. However, it is also easy to see that for any labeling l, its canonical set
will intersect at least half of subsets exactly once.

In order to prove a stronger inapproximability result, we have a subset for each tuple
(e1, . . . , eq, b) for various values of q where e1, . . . , eq share an endpoint in UG. If l satisfies
all e1, . . . , eq, its canonical set will intersect (e1, . . . , eq, b) in exactly one element for many
(but not all) b, but if l does not even approximately satisfy e1, . . . , eq, there is no way to
intersect many subsets in exactly one element. Even though our technique is different from
traditional hardness results for Max-CSPs (e.g., no long code consisting of variables), the
idea of probabilistic checking (i.e., subsets having weights summing up to 1, and the
instance is interpreted as a probabilistic procedure where we sample a subset e according
to weights and check |S ∩ e| = 1) conceptually simplifies the proof and technically makes
the reduction efficient by appealing to various derandomization methods based on bounded
independence.

6.1.2 Preliminaries

An instance of UNIQUE COVERAGE is simply a set system. We view the set system as a
hypergraph H = (VH , EH), where VH is the universe of elements and EH is a collection
of hyperedges. Unless stated otherwise, every log in this chapter indicates a logarithm
base 2. We use a ∼ D to indicate that a random variable a is sampled from a distribution
D. When a random variable a is sampled uniformly from a set A, we write a ∈ A. For a
positive integer m, we denote [m] := {1, 2, . . . ,m}.

6.2 Reduction from LABEL COVER

Our main reduction is from LABEL COVER introduced in Chapter 3.1. Given an instance
of Label CoverG = (UG∪VG, EG) with projections {πe}e∈EG with parametersR,L,D, d,
we produce an instance H = (VH , EH) of UNIQUE COVERAGE. The set of vertices VH is
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defined to be VG × [R]. In the following, we describe a probabilistic procedure to sample
a hyperedge e. EH is defined to be the set of hyperedges with nonzero probability, with
these probabilities as weights. We abuse notation and let EH also denote the distribution.
There are three distributions used to describe the entire procedure.

1. Let Q be a positive integer to be determined later. We will take Q to be a power of
2 and Q < D. Let D be a uniform distribution on {2, 4, 8, . . . , Q}.

2. For each u ∈ UG, let Du,Q be a uniform pairwise independent distribution on
(v1, . . . , vQ) ∈ N(u)Q such that

Pr
(v1,...,vQ)∼Du,Q

[vi = v, vj = v′] =
1

D2
for all i 6= j ∈ [Q] and v, v′ ∈ N(u),

and its support has size D2. Note that it implies that Pr[vi = v] = 1
D

for all i ∈ [Q]
and v ∈ N(u).

Claim 6.2.1. Such a distribution Du,Q exists.

Proof. Du,Q can be described by the following standard procedure. Fix a bijection
f from N(u) to the finite field FD (recall that D is a power of 5), another injective
mapping g from [Q] to a subset of FD, sample a, b ∈ FD independently, and output
vi ← f−1(a · g(i) + b). It is a standard fact that this distribution is uniform pairwise
independent.

3. LetDL be a uniform 4-wise independent distribution on (c1, . . . , cL) ∈ {0, 1}L such
that for all (j1, j2, j3, j4) ∈

(
[L]
4

)
and (b1, b2, b3, b4) ∈ {0, 1}4,

Pr
(c1,...,cL)∼DL

[cji = bi for 1 ≤ i ≤ 4] =
1

24
,

and its support has size 2L2.

Claim 6.2.2. Such a distribution DL exists.

Proof. DL can be described by the following procedure. Fix a bijection σ from [L]
to the finite field FL (recall that L is a power of 2). Sample a, b ∈ FL and d ∈ F2

independently, and output ci ← Tr(a ·σ(i)3 + b ·σ(i))+d where Tr is the Trace map
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from FL to F2. This distribution is uniform over the codewords of a binary linear
code whose dual is a linear code (specifically, a BCH code) of minimum distance
at least 5, and is therefore uniform 4-wise independent. As this explicit form of
the 4-wise independent distribution may not be that widely known, let us give some
details. For a linear code C ⊆ FnL, define Tr(C) = {(Tr(c1),Tr(c2), · · · ,Tr(cn)) |
(c1, c2, . . . , cn) ∈ C}; note that Tr(C) ⊆ Fn2 is a binary linear code. Then Delsarte’s
identity states that Tr(C)⊥ = C⊥ ∩ Fn2 (see, for instance, [Sti08, Chap. 9]). Apply
this to C being the Reed-Solomon code of block length L and dimension 4 over FL,
i.e., C = {(p(α))α∈FL | p ∈ FL[X], deg(p) ≤ 3}. Then it is a well-known fact that
C⊥ is the Reed-Solomon code of dimension L − 4, i.e., C⊥ = {(p(α))α∈FL | p ∈
FL[X], deg(p) ≤ L− 5}. So C⊥, and hence also C⊥ ∩ FL2 (which equals Tr(C)⊥),
has minimum distance at least 5. Finally, we observe that Tr(C) = {

(
Tr(aα3 +

bα) + d
)
α∈FL

| a, b ∈ FL, d ∈ F2} since Tr(α2) = Tr(α).

Given these distributions, a random hyperedge e is sampled by the following procedure:

• Sample u ∈ UG.

• Sample q ∼ D.

• Sample (v1, . . . , vQ) ∼ Du,Q. Note that only v1, . . . , vq are used in the reduction.
This slightly redundant sampling reduces the number of distributions involved and
simplifies our analysis.

• Sample (c1, . . . , cL) ∼ DL.

• For j ∈ [L], consider a block of vertices ∪qi=1({vi} × π−1
(u,vi)

(j)). Every block has
cardinality at most qd. It has exactly qd vertices when v1, . . . , vQ are pairwise dis-
tinct.

– If cj = 0, add d vertices in {v1} × π−1
(u,v1)(j) to e.

– If cj = 1, add the entire block to e.

Note that the maximum cardinality of any hyperedge is RQ, |VH | = |VG| ·R, and the total
number of hyperedges with nonzero probability is bounded by s := |UG| · logQ ·D2 · 2L2.
Also, our definition of weights ensures that the weight of each hyperedge is an integer
multiple of 1

s
, so one can view this weighted instance as an unweighted instance with

exactly s hyperedges. Since we use s as the size of the instance throughout the paper, the
same hardness results hold for unweighted UNIQUE COVERAGE.
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6.2.1 Completeness

Lemma 6.2.3. If the instance (G, {πe}e) of Label Cover admits a labeling l that satisfies
every projection, there exists S ⊆ VH such that Pre∼EH [|e ∩ S| = 1] ≥ 1

2
.

Proof. Given a labeling l : UG ∪ VG 7→ [R], let S := ∪v∈VG{(v, l(v))}. From the above
probabilistic procedure to sample a hyperedge e, every choice of u, q, v1, . . . , vq satisfies
π(u,v1)(l(v1)) = · · · = π(u,vq)(l(vq)). In particular, S and ∪qi=1({vi} × [R]) intersect in
exactly one block corresponding to l(u) ∈ [L]. Therefore, if cl(u) = 0, which happens
with probability 1

2
, (v1, l(v1)) is the only element in S ∩ e.

6.2.2 Soundness

For soundness, we prove that if the Label Cover instance (G, {πe}) does not admit a good
labeling, the UNIQUE COVERAGE instance H does not have a good solution either.

Lemma 6.2.4. If every labeling l : UG ∪ VG 7→ [R] satisfies at most ε fraction of projec-
tions, for every S ⊆ VH , Pre∼EH [|e ∩ S| = 1] ≤ 2Q

√
ε+ Q2

D
+O

(
1

logQ

)
.

Proof. Fix S ⊆ VH . We construct a partial labeling l : VG 7→ [R] as follows. For each
v ∈ VG and j ∈ [R], we say that v picks j if (v, j) ∈ S. If v picked at least one label, we
choose an arbitrarily picked label j and set l(v) = j. Otherwise, we set l(v) = ∅, which
means that every projection that includes v will not be satisfied. Note that we have not
defined labels for UG yet.

For q ∈ {2, 4, 8, . . . , Q}, u ∈ UG, and v1, . . . , vq ∈ N(u), we say that (u, v1, . . . , vq)
is weakly satisfied by a partial labeling to VG if there exist 1 ≤ i < j ≤ q such that
l(vi) 6= ∅, l(vj) 6= ∅, and π(u,vi)(l(vi)) = π(u,vj)(l(vj)). Note that if the Label Cover
instance admitted a labeling l∗ that satisfied every projection, every tuple (u, v1, . . . , vq)
with v1, . . . , vq ∈ N(u) would satisfy π(u,v1)(l

∗(v1)) = · · · = π(u,vq)(l
∗(vq)). The follow-

ing claim shows that since the Label Cover instance does not admit a good labeling, if
we sample u, v1, . . . , vQ as in the reduction, (u, v1, . . . , vQ) is unlikely to be even weakly
satisfied.

Claim 6.2.5. Suppose we sample u ∈ UG and (v1, . . . , vQ) ∼ Du,Q. The probability that
(u, v1, . . . , vQ) is weakly satisfied is at most Q2ε.

Proof. Fix 1 ≤ i < j ≤ Q. We will show that the probability that π(u,vi)(l(vi)) =

π(u,vj)(l(vj)) is at most ε, which implies the claim by taking the union bound over
(
Q
2

)
pairs.
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Given a labeling l′ : UG ∪ VG 7→ [R], since the Label Cover instance is biregular, the
fraction of satisfied projections by l′ is equal to Pru,vi [π(u,vi)(l

′(vi)) = l′(u)] (u, v1, . . . , vQ
are sampled as above). Now let l′ be the randomized extension to l, where l′(v) = l(v) for
v ∈ VG and each u ∈ UG independently picks one more random neighbor v ∈ N(u) and
sets l′(u)← π(u,v)(l(v)). The expected the fraction of satisfied projections by this random
labeling l′ is equal to

Pr
u,vi,v

[π(u,vi)(l
′(vi)) = l′(u)] = Pr

u,vi,v
[π(u,vi)(l(vi)) = π(u,v)(l(v))]

= Pr
u,vi,vj

[π(u,vi)(l(vi)) = π(u,vj)(l(vj))],

where the last equality uses the fact that Du,Q is uniform pairwise independent, so that
given u, the pair (vi, v) has the same joint distribution as (vi, vj). This quantity is at most
ε, since every labeling satisfies at most ε fraction of projections.

By an averaging argument, the fraction of u ∈ UG such that

Pr
(v1,...,vQ)∼Du,Q

[(u, v1, . . . , vQ) is weakly satisfied] > Q
√
ε

is at most Q
√
ε. Call these u bad, and fix a good u. Since the probability that vi = vj is

exactly 1
D

for fixed i 6= j,

Pr
(v1,...,vQ)∼Du,Q

[∃i 6= j s.t. vi = vj] ≤
(
Q

2

)
1

D
≤ Q2

D
. (6.1)

Fix q ∈ {2, 4, 8, . . . , Q}. For fixed u, by the definition of weak satisfaction, the prob-
ability of weak satisfaction decreases as the number of considered neighbors q decreases,
i.e.,

Pr
(v1,...,vQ)∼Du,Q

[(u, v1, . . . , vq) is weakly satisfied]

≤ Pr
(v1,...,vQ)∼Du,Q

[(u, v1, . . . , vQ) is weakly satisfied]

≤Q
√
ε. (6.2)

Fix v1, . . . , vq ∈ N(u) such that (u, v1, . . . , vq) is not weakly satisfied and v1, . . . , vq
are pairwise distinct. Let p := |{i ∈ [q] : l(vi) 6= ∅}|. The fact that (u, v1, . . . , vq)
is not weakly satisfied implies that for at least p values of j ∈ [L], the corresponding
block ∪qi=1({vi} × π−1

(u,vi)
(j)) intersects S. Consider the probabilistic procedure to sample

a hyperedge e as in the reduction.
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Claim 6.2.6. Given u, q, v1, . . . , vq, and p satisfying the conditions above, the probability
that |e ∩ S| = 1 is at most 

0 p = 0

1 1 ≤ p ≤ 4

O
(

1
p2

)
p > 4.

Proof. The above upper bounds are clear when p = 0 or 1 ≤ p ≤ 4. For p ≥ 5, note
that if at least 2 of p different blocks see cj = 1 and decide to add the whole block to e,
|e ∩ S| ≥ 2. Therefore, if we let {i ∈ [q] : l(vi) 6= ∅} = {i1, . . . , ip}, Pr[|e ∩ S| = 1] is at
most the probability that ci1 + · · ·+cip ≤ 1 when (c1, . . . , cL) ∼ DL. We use the following
concentration inequality for the sum of k-wise independent random variables by Bellare
and Rompel [BR94].

Theorem 6.2.1 ([BR94]). Let k be an even integer, and let X be the sum of n k-wise
independent random variables taking values in [0, 1]. Let µ = E[X] and a > 0. Then we
have

Pr[|X − µ| > a] < 1.1

(
nk

a2

)k/2
.

Applying the above theorem with n← p, µ = p/2, k ← 4, a← p/4 gives

Pr[ci1 + · · ·+ cip ≤ 1] < 1.1

(
64

p

)2

= O

(
1

p2

)
.

Let α := α(u) be the fraction of v ∈ N(u) such that l(v) 6= ∅. For 1 ≤ i ≤ q,
let bi ∈ {0, 1} be the random variable such that bi = 1 if and only if l(vi) 6= ∅. By
pairwise independence of {v1, . . . , vq}, {b1, . . . , bq} are also pairwise independent, and
Pr[bi = 1] = α for each i. Let Bu,q,α be the distribution on b1 + · · · + bq. By (6.1), (6.2),
and Claim refclaim:p, for fixed good u and q, Pre[|e ∩ S| = 1 |u, q] is at most

Q
√
ε+

Q2

D
+

q∑
p=1

Pr
X∼Bu,q,α

[X = p] ·O
(

1

p2

)
. (6.3)

We now consider the expected value of (6.3) over q ∼ D, with u still fixed.

Claim 6.2.7.

Eq∼D
[ q∑
p=1

Pr
X∼Bu,q,α

[X = p] ·O
(

1

p2

)]
= O(

1

logQ
).
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Proof. Since PrX∼Bu,q,α [X = p] = 0 when p > q,

Eq∼D
[ q∑
p=1

Pr
X∼Bu,q,α

[X = p] ·O
(

1

p2

)]
= Eq∼D

[ Q∑
p=1

Pr
X∼Bu,q,α

[X = p] ·O
(

1

p2

)]

=

Q∑
p=1

O

(
1

p2

)
Eq∼D

[
Pr

X∼Bu,q,α
[X = p]

]
.

Since
∑Q

p=1O

(
1
p2

)
= O(1), it suffices to prove that for any 1 ≤ p ≤ Q,

Eq∼D
[

Pr
X∼Bu,q,α

[X = p]

]
= O

( 1

logQ

)
. (6.4)

We analyze it by considering how Pr[X = p] changes as q gets smaller or larger. For
the lower tail where qα ≤ p

2
, let y be the biggest integer such that 2y ∈ [2, Q] and α2y ≤ p

2
.

For every x = y, y − 1, . . . , 1, by Markov’s inequality,

Pr
X∼Bu,2x,α

[X = p] ≤ Pr
X∼Bu,2x,α

[X ≥ p] ≤ α2x

p
.

By our choice of y, when x = y, α2x

p
≤ 1

2
, and it decreases by a factor of 2 as we

decrease x by 1. Therefore,

Pr
q

[
qα ≤ p

2

]
· Eq
[

Pr
X∼Bu,q,α

[X = p]

∣∣∣∣ qα ≤ p

2

]
(6.5)

=
1∑

x=y

Pr
q

[q = 2x] · Eq
[

Pr
X∼Bu,q,α

[X = p]

∣∣∣∣ q = x

]

≤ 1

logQ

1∑
x=y

(
α2x

p
) ≤ O

( 1

logQ

)
.

For the upper tail where qα ≥ 2p, let y be the smallest integer such that 2y ∈ [2, Q]
and α2y ≥ 2p. For every x = y, y + 1, . . . , logQ, let X be a random variable sampled
from X ∼ Bu,2x,α. By pairwise independence of (b1, . . . , bq), Var[X] ≤ E[X] = α2x. By
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Chebyshev’s inequality,

Pr
X∼Bu,2x,α

[X = p]

≤ Pr
X∼Bu,2x,α

[X ≤ p]

≤ Pr
X∼Bu,2x,α

[|X − E[X]| ≥ |E[X]− p|]

≤ α2x

(α2x − p)2
.

By our choice of y, for any x ≥ y, α2x

(α2x−p)2 ≤ α2x

(α2x

2
)2

= 4
α2x

, and it is decreased by a
factor of 2 as we increase x by 1. Therefore,

Eq
[

Pr
X∼Bu,q,α

[X = p]

∣∣∣∣ qα ≥ 2p

]
Pr
q

[
qα ≥ 2p

]
≤ 1

logQ

logQ∑
x=y

4

α2x
≤ O

( 1

logQ

)
. (6.6)

Finally,

Pr[
p

2
≤ q ≤ 2p] ≤ O

( 1

logQ

)
. (6.7)

Equations (6.5), (6.6), (6.7) imply (6.4), which completes the proof of the claim.

Therefore, for a good u, Pre[|e ∩ S| = 1 |u] is at most

Q
√
ε+

Q2

D
+O

( 1

logQ

)
,

and the overall probability Pre[|e ∩ S| = 1] is at most

2Q
√
ε+

Q2

D
+O

( 1

logQ

)
, (6.8)

as desired in the Lemma.

6.3 Main Results

We compose our reduction from Label Cover to UNIQUE COVERAGE with the standard
reduction from 3SAT to Label Cover. We restate Theorem 3.1.1 that shows the properties
of the reduction from 3SAT to Label Cover.
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Theorem 6.3.1 (Restatement of Theorem 3.1.1). There exists an absolute constant τ <
1 such that the following is true. For any positive integer r > 0, there is a reduction
that given an instance φ of 3SAT with n variables, outputs an instance of Label Cover
(G, {πe}e) with |UG|, |VG| = nO(r), R = 10r, L = 2r, d = D = 5r in time nO(r), and
satisfies the following.

• Completeness: If φ is satisfiable, there exists a labeling that satisfies every projec-
tion.

• Soundness: If φ is not satisfiable, every labeling satisfies at most τ r fraction of
projections.

Let γ > 1 be an absolute constant such that γτ 1/2 < 1
γ

and γ2

5
< 1

γ
, and for each r,

let Q = Q(r) be the largest power of 2 at most γr. We run our reduction given the Label
Cover instance (G, {πe}e) to produce an instance of UNIQUE COVERAGE H = (VH , EH).
Recall that |VH | = |VG| · R = nO(r), and |EH | = |UG| · logQ ·D2 · 2L2 = nO(r), and the
cardinality of each hyperedge is at most RQ.

If φ is satisfiable, (G, {πe}e) admits a labeling that satisfies every constraint, so by
Lemma 6.2.3, there exists S ⊆ VH such that the total weight of the hyperedges intersecting
S in exactly one element is at least 1

2
. If φ is not satisfiable, every labeling of (G, {πe}e)

satisfies at most ε = τ r fraction of projections, and by Lemma 6.2.4, for any S ⊆ VH , the
total weight of hyperedges intersecting S in exactly one element is at most

2Q
√
ε+

Q2

D
+O

( 1

logQ

)
.

As r increases, (6.8) becomes

2Q
√
ε+

Q2

D
+O

( 1

logQ

)
≤ 2(γτ 1/2)r +

(γ2

5

)r
+O(

1

logQ
)

≤ 3

Q
+O(

1

logQ
) = O(

1

logQ
) = O(

1

log(RQ)
),

using the fact that log(RQ) = Θ(logQ).
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6.3.1 1-IN-k HITTING SET for Constant k

We set parameters to show inapproximability of 1-in-k for constant k, proving Theo-
rem 6.1.1. Given a constant k, take the largest r such that k

20
≤ RQ ≤ k (R is always a

power of 10 and Q is a power of 2). Since r is a constant, the combined reduction from
3SAT to 1-IN-k HITTING SET runs in time polynomial in n. Therefore, if we approximate
1-IN-k HITTING SET within a factor better than O( 1

log(RQ)
) = O( 1

log k
) in polynomial time

in |VH |, we can decide whether a given formula φ is satisfiable or not in time polynomial
in n.

Note that the choice of r given k depends on the absolute constant τ in Theorem 3.1.1,
and the gap of O( 1

log k
) depends on another absolute constant hidden in (6.4). Therefore,

our result requires k to be larger than some function of these two constants to show APX-
hardness. But even when k = 2, 1-IN-k HITTING SET already captures the Max Cut
problem and is APX-hard.

6.3.2 UNIQUE COVERAGE

We now set parameters to show inapproximability of UNIQUE COVERAGE, proving Theo-
rem 6.1.2. Given ε > 0, let r = log1/ε n. For some absolute constant α > 1, the combined
reduction from 3SAT in UNIQUE COVERAGE runs in time nα log1/ε n = 2α log1/ε+1 n, which
is quasi-polynomial in n. Note that |VH | ≤ 2α log1/ε+1 n and RQ ≥ 2βr = 2β log1/ε n for
another absolute constant β > 0. Therefore,

logRQ ≥ β log1/ε n = β · α−
1

1+ε · (α log1/ε+1 n)
1

1+ε = Ω(log
1

1+ε |VH |),

so if we approximate UNIQUE COVERAGE within a factor better than O( 1
log1−ε |VH |

) in
time polynomial in |VH |, we can decide whether a given formula φ is satisfiable or not in
quasi-polynomial time in n.
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Chapter 7

Graph Pricing

7.1 Introduction

Consider the following natural problem for a seller with a profit-maximization objective.
The seller has n types of items 1, . . . , n, each with unlimited copies, and there are m
customers 1, . . . ,m. Each customer j has her own budget bj and a subset of items ej ⊆
{1, . . . , n} that she is interested in. Customers are single-minded in a sense that each
customer j buys all items in ej if the sum of the prices does not exceed her budget (i.e. bj ≥∑

i∈ej p(i), where p(i) indicates the price of item i), in which the seller gets
∑

i∈ej p(i)
from the customer. Otherwise, the customer does not buy anything and the seller gets no
profit from this customer. The goal of the seller is to set a nonnegative price to each item
to maximize her profit from m customers.

This problem was proposed by Guruswami et al. [GHK+05], and has received much
attention. Let k be the maximum cardinality of any ei. Approximability of this problem
achieved by polynomial time algorithms for large k and n is relatively well-understood
now. There is a polynomial time algorithm that guarantees O(min(k, (n log n)1/2)) frac-
tion of the optimal solution, while we cannot hope for an approximation ratio better than
Ω(min(k1−ε, n1/2−ε)) for any ε > 0 under the Exponential Time Hypothesis [CLN13].

The special case k = 2 has also been studied in many works separately. The instance
can be nicely represented by a graph, with vertices as items and edges as customers, so
this problem is called the GRAPH (VERTEX) PRICING problem. The fact that this case
can be represented as a graph not only gives a theoretical simplification, but also makes
the problem flexible to model other settings. For example, Lee et al. [LBA+07, LBA+08]
independently suggested the same problem from the networking community, motivated by
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the study of pricing traffic between different levels of internet service providers under the
presence of peering.

The best known approximation algorithm for a general instance of GRAPH PRICING,
which guarantees 1

4
of the optimal solution, is given by Balcan and Blum [BB07] and

Lee et al. [LBA+07] The algorithm is simple enough to state here. First, assign 0 to
each vertex with probability half independently. For each remaining vertex v, assign the
price which maximizes the profit between v and its neighbors already assigned 0. This
simple algorithm has been neither improved nor proved to be optimal. GRAPH PRICING

is APX-hard [GHK+05], but the only strong hardness of approximation result rules out
an approximation algorithm with a guarantee better than 1

2
[KKMS09] under the Unique

Games Conjecture (UGC) (via reduction from MAXIMUM ACYCLIC SUBGRAPH).

The 1
4
-approximation algorithm is surprisingly simple and does not even rely on the

power of a linear programming (LP) or semidefinite programming (SDP) relaxation. The
efforts to exploit the power of LP relaxations to find a better approximation algorithm have
produced positive results for special classes of graphs. Krauthgamer et al. [KMR11] stud-
ied the case where all budgets are the same (but the graph might have a self-loop), and
proposed a 5+

√
2

6+
√

2
≈ 0.86-approximation algorithm based on a LP relaxation. In general

case, the standard LP is shown to have an integrality gap close to 1
4

[KKMS09]. Therefore,
it is natural to consider hierarchies of LP relaxations such as the Sherali-Adams hierar-
chy [SA90] (see [CT12] for a general survey and [GTW13, YZ14] for recent algorithmic
results using the Sherali-Adams hierarchy). Especially, Chalermsook et al. [CKLN13] re-
cently showed that there is a FPTAS when the graph has bounded treewidth, based on the
Sherali-Adams hierarchy. However, the power of the Sherali-Adams hierarchy and SDP,
as well as the inherent hardness of the problem, was not well-understood in general case.

7.1.1 Our Results

In this chapter, we show that any polynomial time algorithm that guarantees a ratio better
than 1

4
must be powerful enough to refute the Unique Games Conjecture.

Theorem 7.1.1. Under the Unique Games Conjecture, for any ε > 0, it is NP-hard to
approximate GRAPH PRICING within a factor of 1

4
+ ε.

By the results of Khot and Vishnoi [KV05] and Raghavendra and Steurer [RS09] that
convert a hardness under the UGC to a SDP gap instance, our result unconditionally shows
that even a SDP-based algorithm will not improve the performance of a simple algorithm.
For the Sherali-Adams hierarchy, we prove that even polynomial rounds of the Sherali-
Adams hierarchy has an integrality gap close to 1

4
.
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Theorem 7.1.2. Fix ε > 0. There exists δ > 0 such that the integrality gap of nδ-rounds
of the Sherali-Adams hierarchy for GRAPH PRICING is at most 1

4
+ ε.

One possible way to prove Theorem 7.1.2 is to compose our reduction from UNIQUE

GAMES in Theorem 7.1.1 with the integrality gap of the Sherali-Adams hierarchy for
UNIQUE GAMES found by Charikar et al. [CMM09]. Our proof extends techniques
of [CMM09] directly for our problem to have a more intuitive and efficient gap instance.

Our result is based on an interesting generalization of MAX DICUT, which we call
GENERALIZED MAX DICUT. It is parameterized by a positive integer T ≥ 1. An instance
consists of a directed graph D = (V,A) and a label on each edge lA : E → {1, . . . , T},
where the goal is to assign to each vertex v a label lV (v) from {0, . . . , T} to maximize the
number of satisfied edges — each edge (u, v) is satisfied if lV (u) = 0 and lV (v) = lA(u, v).

This problem shares many properties with GRAPH PRICING, including a simple com-
binatorial 1

4
-approximation algorithm. There is an approximation-preserving reduction

from GENERALIZED MAX DICUT(T ) on directed acyclic graphs (DAGs) to GRAPH PRIC-
ING for any T . We prove the following theorems that it is hard to improve upon this simple
algorithm for large T even on DAGs, which immediately imply Theorem 7.1.1 and 7.1.2.

Theorem 7.1.3. Under the Unique Games Conjecture, it is NP-hard to approximate GEN-
ERALIZED MAX DICUT(T ) on directed acyclic graphs within a factor of 1

4
+O( 1

T 1/4 ).

Theorem 7.1.4. Fix T and ε > 0. There exists δ > 0 such that the integrality gap of nδ-
rounds of the Sherali-Adams for GENERALIZED MAX DICUT(T ) is at most T+1

4T
(1 + ε).

Furthermore, the same result holds even when the graph is acyclic.

It is also interesting to compare the above results to other arity two Constraint Satis-
faction Problems (CSPs), since whether the domain is Boolean (e.g. MAX CUT, MAX 2-
SAT [GW95]) or not (e.g. 2-CSP with bounded domain [Hås08], UNIQUE GAMES [CMM06]),
SDP-based algorithms give a strictly better guarantee than LP-based or combinatorial al-
gorithms. As discussed above, our result unconditionally says that a SDP-based algo-
rithm cannot outperform a simple combinatorial algorithm for this arity two CSP (as T
increases).1

1 Formally, (approximation ratio of the SDP-based algorithm) / (approximation ratio of the best known
combinatorial algorithm) = 1 + O( 1

T 1/4 ) for GENERALIZED MAX DICUT. For UNIQUE GAMES with T
labels, the SDP-based algorithm of Charikar et al. [CMM06], which satisfies roughly T−ε/(2−ε) fraction of
constraints in an (1 − ε)-satisfiable instance, performs better than the random assignment by any constant
factor as T increases.
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7.1.2 Related Work and Our Techniques

Formulation of GENERALIZED MAX DICUT. Our conceptual contribution is the in-
troduction of GENERALIZED MAX DICUT as a CSP that captures the complexity of
GRAPH PRICING. It is inspired by the work of Khandekar et al. [KKMS09], and our
reduction is the almost same as their reduction from MAXIMUM ACYCLIC SUBGRAPH to
GRAPH PRICING.

In the natural formulation of GRAPH PRICING as a CSP, each vertex is assigned an
(half-)integer price from 0 to B for the maximum budget B, and each customer becomes
multiple constraints on two variables since the payoff linearly depends on the prices. It is
shown in [KKMS09] that a half-integral optimal solution always exists for integral bud-
gets, so this is a (almost) valid relaxation. However, as each customer becomes multiple
constraints with different payoffs, it seems hard to apply current techniques developed for
well-studied CSPs to this formulation.

Khandekar et al.’s main idea was to use two well-known CSPs — MAS for the hardness
of approximation and MAX DICUT on directed acyclic graphs for the integrality gap of the
standard LP. The former is harder to approximate, and the latter has the lower optimum.2

GENERALIZED MAX DICUT seems to combine ingredients of both problems needed for
GRAPH PRICING. It certainly inherits properties of MAX DICUT including low integral
optima, but is much harder to approximate than MAX DICUT by Theorem 7.1.3.

Uniques Games-Hardness. Proving hardness of GENERALIZED MAX DICUT on gen-
eral graphs is relatively straightforward — proposing a dictatorship test with high com-
pleteness and low soundness, and plugging it into the recipe of Khot et al. [KKMO07] to
deduce the hardness result. The dictatorship test is an instance of GENERALIZED MAX

DICUT with the set of vertices {0, ..., T}R (called hypercube) for some R ∈ N. The
main question in constructing a dictatorship test is how to sample (x, y) ∈ {0, . . . , T}2,
which induces a distribution on {0, . . . , T}2. In GENERALIZED MAX DICUT, 0 is the
only special label such that every directed edge is satisfied only if its tail is assigned 0.
The simple combinatorial algorithm samples 0 heavily — the marginal distribution satis-
fies Pr[x = 0] ≥ 0.5, while the solution to the Sherali-Adams hierarchy constructed in
Theorem 7.1.4 treats 0 as other labels, having Pr[x = 0] = 1

T+1
. The latter distribution

had a disadvantage that x and y are perfectly correlated — the value of x determines the

2 Under the Unique Games Conjecture, the best inapproximability ratio is 0.5 for MAXIMUM ACYCLIC
SUBGRAPH [GHM+11] and 0.874 for MAX DICUT [Aus10]. For the lower bound on integral optima, the
maximum acyclic subgraph always has at least half of edges, while there is a directed acyclic graph where
every directed cut cannot have more than 1

4 + ε fraction of edges for any ε > 0.
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value of y.

To show the hardness based on the UGC (roughly equivalent to constructing a solution
that fools SDP), we found that Pr[x = 0] = 1

T 1/4 is enough. In this case, we can ensure
that the probability that dictators pass the test is large, while x and y behave almost inde-
pendently. Based on the low correlation, we use the result of Mossel [Mos10] to show low
soundness.

The resulting dictatorship test is not a DAG. To fix this problem, the final dictatorship
test has the vertex set V × [T ]R for some DAG D = (V,A). For each edge (u, v) ∈ A, the
above dictatorship test is performed so that each edge of the dictatorship test goes from
the hypercube associated with u to the one with v. This idea of keeping the dictatorship
test acyclic is used in Svensson [Sve13], where he takes (the undirected version of) D to
be a complete graph. We take a nontrivial DAG found by Alon et al. [ABG+07] where
any directed cut has at most 1

4
+ o(1) fraction of edges. In the soundness case, if every

hypercube is pseudorandom, the soundness analysis of an individual dictatorship test as-
sociated with each edge gives a rounding algorithm that finds a large directed cut in D,
which contradicts the choice of D.

This style of argument, composing the dictatorship test with a certain instance and
solving this instance by the soundness analysis, resembles that of Raghavendra [Rag08]
for CSPs, Guruswami et al. [GHM+11] for ordering CSPs, Kumar et al. [KMTV11] for
strict CSPs, and Guruswami and Saket [GS10] for k-uniform k-partite Hypergraph Vertex
Cover. While they require the instance to have a good fractional solution (LP or SDP)
but the low integral optimum, we only need the low integral optimum (of even a simpler
problem) and our individual dictatorship test ensures completeness and part of soundness.
We hope that this two-level technique — constructing a simple dictatorship test for each
edge and composing it with a certain instance with purely combinatorial properties —
makes it easier to bypass the barrier of finding a gap instance and prove hardness for many
other problems, especially those with structured instances.

Sherali-Adams Gap. On the integrality gap of GENERALIZED MAX DICUT on a DAG,
our work generalizes the work of Charikar et al. [CMM09], which showed a similar result
for MAX CUT, in several directions. The first obstacle is to find a DAG with a low integral
optimum which is amenable to construct a good solution to the Sherali-Adams hierarchy.
Previous works which obtained lower bounds for the Sherali-Adams hierarchy [ABLT06,
dlVKM07, CMM09] used G(n, p), but G(n, p) with an consistent orientation will not
result in a low integral optimum. Instead, we show that sparsifying the aforementioned
graph constructed in Alon et al. [ABG+07], which is already a DAG with a low integral
optimum, gives other desired properties as well.
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Given a set S of k vertices, we define a local distribution on the events {lV (v) = i}v∈S,i∈T .
One caveat of the above approach is that local distributions obtained might be inconsistent,
in a sense that S and S ′ might induce different marginal distributions on S ∩ S ′. Charikar
et al.’s main idea is to embed them into l2 and use hyperplane rounding to produce con-
sistent ones. The most technical part of our work is to extend the hyperplane rounding to
work for non-Boolean domains. It is a complicated task in general, but we use the fact
that the embedding is explicitly constructed for two adjacent vertices and it exhibits some
symmetry, so that we can analyze the performance of our rounding. For T = 1, our result
matches that of [CMM09].

7.1.3 Organization

Section 7.2 introduces problems and notations formally. Section 7.4 and Section 7.5
present Unique Games-hardness and Sherali-Adams integrality gaps of GENERALIZED

MAX DICUT respectively, which can be combined with the reduction in Section 7.3 to
give the same results for GRAPH PRICING.

7.2 Preliminaries

For any positive integer n, let [n]0 := {0, 1, 2, . . . , n} and [n] := {1, 2, . . . , n}. Given a
sequence of numbers a1, ..., an, let max2j[aj] be the second largest number among aj’s.

GRAPH PRICING. An instance of GRAPH PRICING consists of an undirected (possibly
contain parallel edges) graph G = (V,E) with budgets b : E → R+ and weights w : E →
R+. Our goal is to find a pricing p : V → R+ ∪ {0} to maximize

Val(p) :=
∑

e=(u,v)∈E

w(e)(p(u) + p(v))I[p(u) + p(v) ≤ b(e)]

where I[·] is the indicator function. Let Opt(G, b, w) := maxp Val(p).

Remark 7.2.1. This definition of GRAPH PRICING above coincides with General GRAPH

PRICING defined in Khandekar et al. [KKMS09]. They presented an additional reduction
from General GRAPH PRICING to GRAPH PRICING with no parallel edge and w(e) = 1.
Throughout this paper, we use the definition above and allow weights and parallel edges
for simplicity. In practice, weights can be naturally interpreted as the number of customers
interested in the same pair.
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Remark 7.2.2. Another well-known pricing problem assumes that each customer will buy
the cheapest item of her interest if she can afford it, which means that the value of the
pricing p becomes

Val(p) :=
∑

e=(u,v)

w(e) min(p(u), p(v))I[min(p(u), p(v)) ≤ b(e)].

This is called unit-demand pricing. Its approximability is similar to that of our single-
minded pricing, including algorithms / hardness results for k-Hypergraph Pricing for
large k [CLN13], and a simple 1

4
-approximation algorithm for GRAPH PRICING (k = 2).

Indeed, GENERALIZED MAX DICUT is also reducible to Unit-demand GRAPH PRICING

and Theorem 7.1.1 and 7.1.2 hold for it as well. We focus on Single-minded GRAPH PRIC-
ING here.

GENERALIZED MAX DICUT. Fix a positive integer T . An instance of GENERALIZED

MAX DICUT(T ) consists of a digraph D = (V,A) with a label lA : A → [T ] and a
weight w : A → R+ on each edge. Assume that the sum of weights is normalized to 1.
(u, v) denotes the edge of D from u to v. We allow parallel edges from u to v if they
have different labels (if parallel edges have the same label, simply merge them). Our goal
is to find a labeling lV : V → [T ]0 (note vertices can be assigned 0, while edges are
not) to maximize the weight of satisfied edges — (u, v) is satisfied when lV (u) = 0 and
lV (v) = lA(u, v). Note than when T = 1, the problem becomes MAX DICUT. Given
an instance D = (V,A), lA, and w, let Opt(G, lA, w) be the maximum weight of edges
satisfied by any labeling of vertices. Given an assignment lV : V → [T ]0 to the vertices,
let Val(lV ) be the weight of edges satisfied by lV . Note that unlike GRAPH PRICING,
the value of any assignment is normalized between 0 and 1. The normalized outdegree,
denoted by ndeg, is defined to be [

∑
u(max(u,v)∈Aw(u, v))]−1. In unweighted instances

(i.e. w(e) = 1
|A| for all e), ndeg ≥ |A|

|V | .

Sherali-Adams Hierarchy. In its most intuitive and redundant form, a feasible solution
to the r-rounds of the Sherali-Adams hierarchy for a CSP with the domain [q]0 consists of∑r

i=1

(
n
r

)
(q+1)r variables {xS(α)} for each subset of variables S with cardinality at most

r, and α ∈ ([q]0)S . Each xS(α) can be interpreted as the probability that the variables in
S are assigned α. Therefore, it is required to satisfy the following natural conditions: (1)
xS(α) ≥ 0 for all S, α. (2)

∑
α∈([q]0)S xS(α) = 1 for all S. (3)

∑
α∈([q]0)S

′\S xS′(α ◦ β) =

xS(β) for all S ⊆ S ′, β ∈ ([q]0)S , where α ◦ β ∈ ([q]0)S
′∪S denote the joint assignment to

the variables in S ′.
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The r-rounds of the Sherali-Adams hierarchy for GRAPH PRICING and GENERAL-
IZED MAX DICUT(T ) can be obtained by choosing an appropriate domain and an ob-
jective function, while using the constraints given above. For GRAPH PRICING, if we
choose the domain to be [B]0 where B is the maximum budget, the objective function is
the following. ∑

e=(u,v)

w(e)
∑

(i,j)∈([B]0)2,i+j≤b(u,v)

(i+ j) · x(u,v)(i, j)

Since p(v) can be real, it is not clear whether this is a relaxation, even when the budgets are
integers. [KKMS09] shows that there is a half-integral optimal solution. The maximum
budget B can be exponentially big in the size of an instance, and a standard trick is to
consider only the powers of (1 + ε) as valid prices. It loses at most ε fraction of the
optimum. Our gap instance and proposed solution to the hierarchy have the marginal on
each vertex supported by a constant number of prices, so they are applicable to any choice
of the domain.

For GENERALIZED MAX DICUT(T ), the domain is [T ]0, and the objective function is∑
(u,v)∈A

w(u, v)x(u,v)(0, lA(u, v)).

Given an instance and a relaxation, we define the integrality gap to be the integral op-
timum divided by the value of the best solution to the relaxation. Since both our problems
are maximization problems, it is at most 1 and a small number indicates a large gap.

7.3 Reduction from GENERALIZED MAX DICUT to GRAPH
PRICING

Theorem 7.3.1. For any T > 0, there is a polynomial time reduction from an instance
(D = (V,A), lA, wGMD) of GENERALIZED MAX DICUT(T ), where D is acyclic and
ndeg ≥ 1

ε
, to an instance (G, b, wGP) of GRAPH PRICING such that Opt(D, lA, wGMD) ≤

Opt(G, b, wGP) ≤ Opt(D, lA, wGMD) + 3ε.

Proof. Fix an instance (D = (V,A), lA, wGMD) of GENERALIZED MAX DICUT(T ) with
n = |V | andm = |A|. LetG be the underlying undirected graph ofD. Our reduction from
GENERALIZED MAX DICUT on directed acyclic graphs to GRAPH PRICING is almost the
same as the one in Khandekar et al. [KKMS09] with some simplification. LetM be a large
number which will be fixed later.
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The resulting instance of GRAPH PRICING is based on the same graph G. Since D
is acyclic, there is an injective function s : V → [n] such that for each edge (u, v) ∈ A,
s(u) > s(v). For each edge (u, v) ∈ A, b(u, v) = MTs(v)+lA(u,v)−1 and wGP(u, v) =
wGMD(u,v)
b(u,v)

.

To avoid confusion, let OptGMD, ValGMD denote Opt, Val for GENERALIZED MAX

DICUT instances, and OptGP and ValGP for GRAPH PRICING instances. Fix a labeling
lV : V → [T ]0. The corresponding canonical solution p : V → R+ ∪ {0} defined by

p(v) =

{
MTs(v)+lV (v)−1 if lV (v) 6= 0

0 otherwise

gives ValGP(p) ≥ ValGMD(lV ) — for each (u, v) ∈ A satisfied by lV , p gets p(v)wGP(u, v) =
wGMD(u, v). Therefore, OptGP(G, b, wGP) ≥ OptGMD(D, lA, wGMD). The following lemma
shows that the converse is almost true.

Lemma 7.3.2 ([KKMS09]). For any p, ValGP(p) ≤ OptGMD(D, lA, wGMD) + 1
M

+ 2ε.

Proof. Given p, we define the principal part of ValGP(p) as∑
(u,v)∈A

wGP(u, v)p(v)I[p(u) + p(v) ≤ b(u, v)].

Note that for each directed edge, only the price of its head contributes.

We first bound the principal part of ValGP(p). For a vertex v, the only edges where
wGP(u, v)p(v) > wGMD(u,v)

M
satisfy MTs(v)+lA(u,v)−2 < p(v) ≤ MTs(v)+lA(u,v)−1. If there

is such an edge, let l′V (v) = lA(u, v). Otherwise, let l′V (v) = 0. Fix an edge (u, v)

where wGP(u, v)p(v) > wGMD(u,v)
M

. l′V (v) = lA(u, v) by above. If l′V (u) 6= 0, it means
p(u) > MTs(u)−1 ≥ MTs(v)+T−1 ≥ b(u, v), so (u, v) contributes 0 to the principal part
of ValGP(p). Therefore, for each edge (u, v) that contributes more than 1

M
to the principal

part of ValGP(p), l′V satisfies (u, v). Therefore, the principal part of ValGP(p) is at most
OptGMD(D, lA, wGMD) + 1

M
.

For the non-principal part of ValGP(p), for each vertex u, and we bound∑
(u,v)∈A

wGP(u, v)p(u)I[p(u) + p(v) ≤ b(u, v)] ≤
∑

(u,v)∈A,p(u)≤b(u,v)

wGMD(u, v)
p(u)

b(u, v)
.

Note that all edges (u, v) have different b(u, v), and any two differ by at least a factor of
M . Let wu := max(u,v)∈AwGMD(u, v). Therefore, the right hand side can be bounded by
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wu(1 + 1
M

+ 1
M2 + . . . ) ≤ 2wu, where∑

u

wu =
1

ndeg
≤ ε.

This shows that the non-principal part of ValGP(p) is at most 2ε, proving the lemma.

Taking M ≥ 1
ε

proves the theorem.

7.4 Approximability of GENERALIZED MAX DICUT

Recall that GENERALIZED MAX DICUT(1) is exactly the well-known MAX DICUT prob-
lem, which admits a 0.874-approximation algorithm [LLZ02] as any MAX 2-CSP over
the Boolean domain. As T increases, however, the best approximation ratio for MAX 2-
CSP over the domain of size T + 1 can be at most O( log T√

T
) [Cha13], so viewing it as a

general MAX 2-CSP does not yield a constant-factor approximation algorithm.

There is a simple 1
4
-approximation algorithm, similar to the one for GRAPH PRICING

— assign 0 to each vertex with probability half independently and assign nonzero values
to the remaining vertices greedily. The proof is based on the fact that we can easily find
the optimal solution once the set of vertices assigned 0 is given. For small T , we can do a
little better based on a standard LP relaxation. The proof is given in Section 7.6.

Theorem 7.4.1. There is a polynomial time approximation algorithm for GENERALIZED

MAX DICUT(T ) that guarantees 1
4

+ Ω( 1
T

) of the optimal solution.

However, we prove that for large T , it is Unique Games-hard to improve the approxi-
mation ratio from 1

4
to a better constant.

Theorem 7.4.2 (Restatement of Theorem 7.1.3). Under the Unique Games Conjecture,
it is NP-hard to approximate GENERALIZED MAX DICUT(T ) on directed acyclic graphs
within a factor of 1

4
+O( 1

T 1/4 ).

Together with the reduction shown in Theorem 7.3.1, it immediately implies Theo-
rem 7.1.1 for GRAPH PRICING. Besides working on DAGs, the reduction also requires
that ndeg be large, but it can be easily ensured by taking an UNIQUE GAMES instance with
large degree. See Section 7.4.3 to see the full details.

The theorem is proved by proposing a dictatorship test with high completeness and
low soundness, combined with the standard technique to convert a dictatorship test to a
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hardness result based on the Unique Games Conjecture [KKMO07]. Constructing the
dictatorship test has two components — a simple dictatorship test based on correlation
and Gaussian geometry, and composing it with a designated DAG.

7.4.1 Dictatorship Test

Consider the hypercube ([T ]0)R where [T ]0 = {0, 1, . . . , T}. Let Ω1 = Ω2 = [T ]0. For
t ∈ [T ], Pt is a probability measure on Ω1×Ω2. Let P be the marginal on Ωi in Pt (which
does not depend on t and i). We want to ensure that P(0) = δ, P(j) = 1−δ

T
for j ∈ [T ]

where δ = 1
T 1/4 . Let P′ be the distribution on Ω1 such that P′(0) = ( 1

1− 1−δ
T

)(δ − 1−δ
T

),

P′(j) = ( 1
1− 1−δ

T

)(1−δ
T

) (subtract 1−δ
T

from P(0) and renormalize). Pt is defined by the

following procedure to sample (x, y). Sample y according to P. If y = t, set x =
0. Otherwise, sample x from P′ independently. It is easy to see that the marginal of
both x and y is P. We show that (x, y) are almost independent as T increases. Recall
from Definition 3.3.5 that given a distribution Q on Ω1 × Ω2, the correlation between two
correlated spaces is defined as

ρ(Ω1,Ω2;Q) = sup {Cov[f, g] : f : Ω1 → R, g : Ω2 → R,Var[f ] = Var[g] = 1} .

Lemma 7.4.3. For any t, ρ(Ω1,Ω2;Pt) ≤
√

2
Tδ

.

Proof. Let f : Ω1 → R be the function satisfying E[f ] = 0, E[f 2] = 1. Let L be the
Markov operator defined in Section 2.1 of Mossel [Mos10] such that

(Lf)(y) = E[f(X)|Y = y]

for y ∈ Ω2 and (X, Y ) ∈ Ω1 × Ω2 is distributed according to Pt. By Lemma 2.8
of [Mos10],

ρ(Ω1,Ω2) = sup
f

√
E[(Lf)2].

Let f(i) = ai, (Lf)(i) = bi for i ∈ [T ]0. bt = a0 and all the other bi’s are equal to EP′1
[f ],

which is equal to ( 1
1− 1−δ

T

)(EP1 [f ]− 1−δ
T
a0) = ( 1

1− 1−δ
T

)(−1−δ
T
a0).
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E[(Lf)2] = (
1− δ
T

)a2
0 + (1− 1− δ

T
)[(

1

1− 1−δ
T

)(−1− δ
T

a0)]2

= (
1− δ
T

)a2
0 + (

1

1− 1−δ
T

)(
1− δ
T

a0)2

= (
1− δ
T

)a2
0[1 + (

1

1− 1−δ
T

)(
1− δ
T

)]

≤ 2

T
a2

0

≤ 2

Tδ

Since δa2
0 ≤ E[f 2] ≤ 1.

Another component of the dictatorship test is the directed acyclic graph D = (V,A)
of Alon et al. [ABG+07], where every directed cut has size at most (1

4
+ o(1))|A|. Fix a

graph D = (V,A) such that every dicut cuts at most (1
4

+ 1
T 1/4 )|A| edges. Note that the

size of this graph depends only on T . We now describe the dictatorship test. The prover is
expected to provide Fv : ([T ]0)R → ([T ]0) for each v ∈ V .

1. Choose (u, v) ∈ A and t ∈ [T ] uniformly at random.

2. For each i ∈ [R], pick (xi, yi) according to Pt.

3. Accept if Fu(x) = 0 and Fv(y) = t.

This dictatorship test can be naturally interpreted as an instance of GENERALIZED

MAX DICUT(T ) with the vertex set V × ([T ]0)R. The weight of edge ((u, x), (v, y)) with
label t is equal to the probability that it is sampled, and a labeling l : V × ([T ]0)R 7→ [T ]0

passes with probability Val(l) (by Fv(x) = l(v, x)).

7.4.2 Completeness and Soundness

The ith dictator function is Di : ([T ]0)R → [T ]0 given by Di(x1, . . . , xR) = xi. The
purpose of the above dictatorship test is to allow dictatorship functions to be accepted with
high probability while penalizing functions far from any dictator. The following lemma
for completeness is immediate from the test — for any fixed t and i, Pr[xi = 0, yi = t] =
Pr[yi = t] = 1−δ

T
.
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Lemma 7.4.4 (Completeness). Suppose that for some i, Fv = Di for all v ∈ V . The above
test accepts with probability 1−δ

T
.

For v ∈ V and t ∈ [T ]0, let Fv,t : ([T ]0)R → {0, 1} be defined such that Fv,t(x) = 1
iff Fv(x) = t, and µv,t := Pr[Fv(x) = t] = E[Fv,t(x)] where x ∼ P. For each Fv,t and
i ∈ [R], let Infi[Fv,t] and Inf≤di (Fv,t) the influence and the low-degree influence defined in
Definition 3.3.5 and 3.3.7.

Lemma 7.4.5 (Soundness). For large enough T , there exist τ and d (depending on T ) such
that if Inf≤di (Fv,t) ≤ τ for all i ∈ [R], t ∈ [T ]0, and v ∈ V , the probability of accepting is
at most 1

4T
+ 4

T 5/4 .

Proof. Applying Theorem 3.3.10 (set ε ← 1
T 5/4 and α = Θ( 1

T 2 )), the probability of ac-
cepting is at most

E(u,v)∈A[Et∈[T ][E(x,y)∼(Pt)⊗R [Fu,0(x)Fv,t(y)]]] ≤ E(u,v)∈A[Et∈[T ][Γρ(µu,0, µv,t) +
1

T 5/4
]].

The following lemma, whose proof is given in Section 7.7, shows that it is at most

E(u,v)∈A[Γρ(µu,0,
1− µv,0

T
)] +

1

T 5/4
.

Lemma 7.4.6. Fix ρ, a ∈ (0, 1). The function f(b) := Γρ(a, b) is concave.

The following lemma, whose proof is again given in Section 7.7, shows that it is at
most

E(u,v)∈A[µu,0
(1− µv,0)

T
+

2

T 5/4
] +

1

T 5/4
=

1

T
E(u,v)∈A[µu,0(1− µv,0)] +

3

T 5/4
.

Lemma 7.4.7. For large enough T and δ = 1
T 1/4 , the following holds. For any a ∈

[0, 1], b ∈ [0, 1
T

] and ρ ∈ (0,
√

2
Tδ

), Γρ(a, b) ≤ ab+ 2
T 5/4 .

Given {µv,0}v∈V , imagine the rounding algorithm which puts v ∈ S with probability
µv,0 independently. The expected fraction of edges from S to V \ S is E(u,v)∈A[µu,0(1 −
µv,0)], which is at most the fractional size of maximum dicut of D. Since we took D to
satisfy that E(u,v)∈A[µu,0(1−µv,0)] ≤ 1

4
+ 1

T 1/4 , the probability of accepting is at most 1
4T

+
4

T 5/4 as desired. Note that the probabilities of accepting in completeness and soundness

differ by a factor of
1

4T
+ 4

T5/4

1−δ
T

=
1
4

+ 4

T1/4

1− 1

T1/4

= 1
4

+O( 1
T 1/4 ).
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7.4.3 Reduction from UNIQUE GAMES

In this subsection, we introduce the reduction from the UNIQUE GAMES to GENERAL-
IZED MAX DICUT(T ), using the dictatorship test constructed.

Theorem 7.4.8 (Restatement of Theorem 7.1.3). Under the Unique Games Conjecture,
it is NP-hard to approximate GENERALIZED MAX DICUT(T ) on directed acyclic graphs
within a factor of 1

4
+O( 1

T 1/4 ).

Proof. Given an instance of L(G(U ∪W,E), [R], {π(v, w)}(v,w)∈E) of UNIQUE GAMES,
we construct an instanceD(V ,A), lA of GENERALIZED MAX DICUT(T ). For x ∈ ([T ]0)R

and a permutation π : [R] → [R], let x ◦ π ∈ ([T ]0)R be defined by (x ◦ π)i = (x)π−1(i).
Let D = (V,A) be the fixed-size graph where the maximum dicut has at most (1

4
+ 1

T 1/4 )
fraction of edges.

• V = U × V × ([T ]0)R.

• Sample w ∈ W uniformly at random and its neighbors u1, u2 uniformly and inde-
pendently. Sample t ∈ [T ], (v1, v2) ∈ A, and x, y ∈ ([T ]0)R from the dictatorship
test. Add an edge ((u1, v1, x ◦ πu1,w), (u2, v2, y ◦ πu2,w)) to A with label t. The
weight is equal to the probability that this edge is sampled.

Completeness. Suppose that ValUG(l) ≥ 1− α for some labeling l : U ∪W → [R].

Set lV(u, v, (x1, . . . , xR)) = xl(u). For w, u1, u2 sampled as above, with probability
1− 2α, π(u1, w)−1(l(u1)) = π(u2, w)−1(l(u2)). In that case, by Lemma 7.4.4,

Pr
v1,v2,t,x,y

[lV(u1, v1, x ◦ πu1,w) = 0, lV(u2, v2, y ◦ πu2,w) = t]

= Pr
v1,v2,t,x,y

[(x ◦ πu1,w)l(u1) = 0, (y ◦ πu2,w)l(u2) = t]

= Pr
v1,v2,t,x,y

[(x)π(u1,w)−1(l(u1)) = 0, (y)π(u2,w)−1(l(u2)) = t]

≥1− δ
T

.

Therefore, ValGMD(lV) ≥ (1−2α)(1−δ)
T

.

Soundness. For each u ∈ U, v ∈ V and t ∈ [T ]0, let Fu,v,t : ([T ]0)R → {0, 1} be defined
by

Fu,v,t(x) = 1 if and only if lV(u, v, x) = t.
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Similarly, for each w ∈ W, v ∈ V and t ∈ [T ]0, let Hw,v,t : ([T ]0)R → [0, 1] be the
function defined by

Hw,v,t(x) = E(u,w)∈E[Fu,v,t(x ◦ π(u,w))] = Pr
(u,w)∈E

[lV(u, v, x ◦ π(u,w)) = t].

Suppose that there exists lV such that ValGMD(lV ) ≥ 1
4T

+ 5
T 5/4 . For at least 1

T 5/4

fraction of w, an edge of A sampled by first choosing w is satisfied with probability more
than 1

4T
+ 4

T 5/4 . By Lemma 7.4.5, there exist τ and d, such that, for each such w, we
have Inf≤di [Hw,v,t] > τ for some i, v and t. Set lV(w) = i. For other w’s, choose lV (w)
arbitrarily.

From the representation of influences in terms of Fourier coefficients (equation (6) of
Khot et al. [KKMO07]),

τ < Inf≤di [Hw,v,t] ≤ E(u,w)∈E[Inf≤dπ(u,w)(i)[Fu,v,t]]

and we conclude that τ/2 fraction of neighbors u of w have Inf≤dπ(u,w)(i)(Fu,v,t) ≥ τ/2. We
choose lV(u) uniformly from{

i : Inf≤di [Fu,v,t] ≥ τ/2 for some t, v
}
.

Since
∑

i Inf
≤d
i [Fu,t] ≤ d, there are at most 2(T+1)d|V |

τ
of candidate i’s for each u. If u have

no candidate, choose lV (u) arbitrarily. The above strategy satisfies ( 1
T 5/4 )( τ

2
)( τ

2(T+1)d|V |)
fraction of constraints in expectation. Taking α small enough completes the proof of the
theorem.

Now, we present the full proof of our main theorem.

Theorem 7.4.9 (Restatement of Theorem 7.1.1). Under the Unique Games Conjecture,
for any ε > 0, it is NP-hard to approximate GRAPH PRICING within a factor of 1

4
+ ε.

Proof. Given ε > 0, let T large enough so that 1
T 1/4 < ε

2
. Theorem 7.1.3 tells that it is

hard to distinguish

• Completeness: OptGMD ≥ 1
T
− 2

T 4/5 = 1−O(ε)
T

.

• Soundness: OptGMD ≤ 1
4T

+ 5
T 4/5 = 1+O(ε)

4T
.
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Let t = T
ε
. We can assume that each vertex in the UNIQUE GAMES instance is of degree

at least t, since duplicating each vertex v into t copies v1, ..., vt and duplicating each con-
straint (u, v) into t2 copies (ui, vj)1≤i,j≤t preserves the optimum. Therefore, the instance
of GENERALIZED MAX DICUT obtained from the above UNIQUE GAMES instance will
have ndeg ≥ t. Theorem 7.3.1 shows that it is NP-hard to distinguish

• Completeness: OptGP ≥ OptGMD = 1−O(ε)
T

.

• Soundness: OptGP ≤ OptGMD + 1
t

= 1+O(ε)
4T

+ ε
T

= 1+O(ε)
4T

.

7.5 Integrality Gaps for GENERALIZED MAX DICUT

Fix a positive integer T and ε ∈ (0, 1
100

). We present an instance of GENERALIZED MAX

DICUT(T ) (D = (V,A), lA) (we only deal with unweighted instances in this section and
omit w) such that D is acyclic, |V | ≤ ε|A| (so that ndeg ≥ 1

ε
), and a solution to nδ-rounds

of the Sherali-Adams hierarchy such that the integrality gap is at most T+1
4T

(1 + ε). This
result almost matches a simple 1

4
-approximation algorithm.

Through the reduction given in Theorem 7.3.1, we also prove Theorem 7.1.2 — a bad
integral solution is guaranteed by the reduction, a good solution to the Sherali-Adams
hierarchy is obtained by the mapping lV (u) = i to p(u) = MTs(u)+i−1 (if i 6= 0) or 0
(otherwise). The budget in the resulting instance is an integer exponential in the size of
instances, and our gap works even for a strong linear programming hierarchy where there
is a variable for each vertex v and an integer price i.

The rest of this section is devoted to the proof of Theorem 7.1.4.

7.5.1 Obtaining a Good Instance

Our graph D is obtained by randomly sparsifying the graph D∗ = (V,A∗) constructed
in Alon et al. [ABG+07], followed by an appropriate postprocessing. D∗ is a directed
acyclic graph with n vertices and m∗ = Θ(n

5
3 ) edges. Its underlying undirected graph

G∗ = (V,E∗) is a simple graph with the same number of vertices and edges, with the
maximum degree ∆∗ = Θ(n

2
3 ). Actually, V = [n] and (u, v) ∈ E only if |u − v| ≤ r

where r := Θ(n
2
3 ). It has the property that any directed cut has size at most m∗

4
+ o(m∗)

edges.
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The first version of D = (V,A) is constructed as the following. V := V∗ = [n], and
for each edge (u, v) ∈ A∗, put (u, v) ∈ A with probability p := ∆

∆∗
for some ∆ to be fixed

later. LetG = (V,E) be the underlying undirected graph ofD. lA is obtained by assigning
each l(u, v) a random number from [T ].

Like previous integrality gap constructions for MAX CUT and VERTEX COVER (e.g.
[ABLT06, dlVKM07, STT07, CMM09]) , D must be postprocessed to be amenable to
have a Sherali-Adams solution with a large value. Intuitively, we need to have the un-
derlying undirected graph G locally sparse — if we look at a neighborhood of a certain
vertex, the graph almost looks like a tree. We use the notion of [CMM09] to measure how
locally sparse the graph is.

Definition 7.5.1. We say that G′ is l-path decomposable if every 2-connected subgraph H
of G′ contains a path of length l such that every vertex of the path has degree 2 in H .

The first version of the instance already has Opt(D, lA) ≈ 1
4T

with high probability.
In order to make the instance locally sparse, we additionally need to remove some of the
edges, but the fraction of removed edges is so small that it does not affect Opt(D, lA) too
much. As a result, we get the following theorem.

Theorem 7.5.2. Given T and ε, µ > 0, there exist constants ∆, δ and l = Θ(log n) (all
constants depending on T and ε, µ) such that there is an instance of GENERALIZED MAX

DICUT(T ) (D, lA) with the underlying undirected graph G with the following properties.

• Acyclicity: D is a DAG.

• Low integral optimum: Opt(D, lA) ≤ 1+ε
4T

.

• Almost regularity: Maximum degree of G is at most 2∆, and G has at least Ω(∆n)
edges.

• Local sparsity: For k ≤ nδ, every induced subgraph of G on (2∆)lk vertices is
l-path decomposable.

• Large noise: For k ≤ nδ, (1− µ)l/10 ≤ µ
5k

.

The last condition, large noise, is needed to ensure that in a LP solution, even though
adjacent vertices are very correlated to give a large value, far away vertices behave almost
independently. The meaning of each condition will be elaborated in later sections.

Proof. Our graph D is obtained by randomly sparsifying the graph D∗ = (V,A∗) con-
structed in Alon et al. [ABG+07] after an appropriate postprocessing. D∗ is a directed
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acyclic graph with n vertices and m∗ = Θ(n
5
3 ) edges. Its underlying undirected graph

G∗ = (V,E∗) is a simple graph with the same number of vertices and edges, with the
maximum degree ∆∗ = Θ(n

2
3 ). Actually, V = [n] and (u, v) ∈ E only if |u − v| ≤ r

where r := Θ(n
2
3 ). It has the property that any directed cut has size at most m∗

4
+ o(m∗)

edges.

The first version of D = (V,A) is constructed as the following. V := V∗ = [n], and
for each edge (u, v) ∈ A∗, put (u, v) ∈ A with probability p := ∆

∆∗
for some ∆ to be fixed

later. LetG = (V,E) be the underlying undirected graph of V . lA is obtained by assigning
each l(u, v) a random number uniformly sampled from [T ].

Integral Solution. The following lemma shows that if ∆ is big enough, Opt(D, lA) is
close to 1

4T
.

Lemma 7.5.3. If G satisfies the above four properties and ∆ = Ω(T log T
ε2

), then D and lA
obtained by the above process satisfies Opt(D, lA) ≤ 1+4ε

4T
with high probability.

Proof. Fix one assignment lV : V → [T ]0. For any edge (u, v) ∈ A∗ call it a candidate
when lV (u) = 0, lV (v) 6= 0. Note that the number of candidate edges is at most the
cardinality of the maximum directed cut of D∗, which is at most 1+o(1)

4
m∗.

For each candidate edge (u, v), the probability that (u, v) ∈ A with lA(u, v) = lV (v) is
1
T

. Therefore, the expected number of satisfied edges is at most (1+o(1))∆m∗
4∆∗T

. By Chernoff

bound, the probability that it is bigger than (1+ε)pm∗
4T

is bounded by exp(−Ω( ε
2pm∗
T

)) =

exp(−Ω( ε
2∆n
T

)). By taking union bound over (T + 1)n different lV ’s, the probability that
there exists an assignment with more than (1+ε)pm∗

4T
satisfied edges is at most

exp(−Ω(
ε2∆n

T
)) ∗ exp(n log(T + 1)) ≤ n−1

for ∆ := Ω(T log T
ε2

). Similarly, we can conclude that |A| ≥ (1 − ε)m∗p with high proba-
bility. Therefore, Opt(D, lA) is at most (1+ε)

4T (1−ε) ≤
1+4ε
4T

with high probability.

The above lemma is the only place where it is desirable to have large |A| = |E|. For
the rest of this subsection, we are going to delete some edges of D (and G) to satisfy
desired properties. Note that in any case, the number of edges deleted is much less than
εpm∗ so that each deletion does not hurt the above lemma.
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Maximum Degree Control. Since the maximum degree in G∗ is ∆∗, expected degree
of each vertex v ∈ V in G is at most p∆∗ = ∆. Call a vertex v ∈ V bad if it has degree
more than 2∆ in G, and call an edge (u, v) ∈ E bad if either u or v is bad. Fix an edge
(u, v). The probability that (u, v) becomes bad given (u, v) ∈ E is at most 2 exp(−∆

4
).

The expected number of bad edges is at most 2 exp(−∆
4

)pm∗, and by Markov’s inequality,
with probability at least half, the number of bad edges is at most 4 exp(−∆

3
)pm∗.

Deleting all bad edges guarantees that the maximum degree of G is at most 2∆, and
with probability at least half, we delete only 4 exp(−∆

3
)pm∗ edges, which is much smaller

than εpm∗ since ∆ = Ω( 1
ε2

).

Girth Control. The expected number of cycles of length i is bounded by

n(2r)i−1pi = n(2r)i−1(
∆

∆∗
)i ≤ n(C∆)i

∆∗

for some absolute constant C. When i = O( logn
log ∆

) the above quantity becomes less than
n0.5. Assume l = O( logn

log ∆
) (it will be fixed even smaller than that later). Summing over

i = 4, . . . , l ensures that the expected number of cycles of length up to l is at mostO(n0.6),
and it is less than O(n0.7) with high probability. Removing one edge for each cycle of
length up to l ensures that G has girth at least l.

Local Sparsity Control. Let η = 1
3l

for some l fixed later. We want to show that there
exists Γ > 0 such that every subgraph G′ of G induced on t ≤ nΓ vertices have only
(1 + η)t edges.

For 4 ≤ t ≤ 1/η, we count the number of connected subgraphs of G∗ with t vertices
and t+ 1 edges.

Lemma 7.5.4. The number of connected subgraphs of G∗ with t vertices and t + 1 edges
is bounded by 2nt2∆t−1

∗ .

Proof. For each of such subgraphs, the only possible degree sequences are (4, 2, 2, 2, . . . )
or (3, 3, 2, 2, . . . ). Assume that it is (4, 2, 2, 2, . . . ). Let v be the vertex with degree 4.
There is a sequence of t + 2 vertices (v, . . . , v, . . . , v) representing an Eulerian tour (not
necessarily unique). The number of such sequences is bounded by nt∆t−1

∗ (n for guessing
v, t for guessing where v occurs in the middle of the sequence, ∆t−1

∗ for the other vertices).

Assume that the degree sequence is (3, 3, 2, 2, . . . ), and u, v be the vertices of degree
3. Take a sequence of t + 2 vertices representing an Eulerian path from u to v (either
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(u, . . . , u, . . . , v, . . . , v) or (u, . . . , v, . . . , u, . . . , v)). The number of such sequences is
bounded by nt2∆t−1

∗ (n for guessing u, t2 for guessing positions of u and v in the middle
of the sequence, ∆t−1

∗ for the other vertices including v).

Therefore, the probability that there exists a subgraph of G with t vertices and t + 1
edges for 4 ≤ t ≤ 1/η = 3l is

3l∑
t=4

2nt2∆t−1
∗ pt+1 =

3l∑
t=4

2nt2∆t+1

∆2
∗

≤ n

∆2
∗
(9l)2∆3l+1 ≤ n−0.1

for l = O(log n/ log ∆), since n
∆2
∗

= O(n−
1
3 ).

For t > 1/η = 3l, we count the number of subgraphs ofG∗ with t vertices and (1+η)t
edges. It is upper bounded by (the number of connected subtrees on t vertices) * (the
number of possibilities to choose other ηt + 1 edges out of

(
t
2

)
pairs). The number of

unlabeled rooted trees on t vertices is Cαt for some constants C and α [Ott48], so the
number of connected subtrees on t vertices is bounded by Cnαt∆t−1

∗ . Therefore, the total
number of such subgraphs is

Cnαt∆t−1
∗

( t(t+1)
2

ηt+ 1

)
≤ Cnαt∆t−1

∗

(
t2

2ηt

)
≤ Cnαt∆t−1

∗ (
et

2η
)2ηt.

The probability that such a graph exists in G is at most

Cnαt∆t−1
∗ (

et

2η
)2ηt(

∆

∆∗
)(1+η)t ≤ n

∆∗
(C1∆2)t(C2

l2t2

∆∗
)t/3l.

Let A = C1∆2 and B = C2
l2t2

∆∗
. The above quantity is at most

n

∆∗
AtBt/3l = (

n

∆∗
A3lB)(AB1/3l)t−3l.

Assume t ≤ nΓ for some Γ ∈ (0, 0.1) and l = O( logn
log ∆

) be such that n
∆∗
A3lB =

C2l2t2n(C1∆2)3l

∆2
∗

≤ n−0.1, which also implies AB1/3l ≤ 1. Summing over t = 3l, . . . , nΓ,
the probability that such a graph exists is bounded by o(1).

Putting Them Together. In Section 7.5.1, we mentioned that the resulting graph should
be amenable to have a Sherali-Adams solution with a large value, and introduced the no-
tion of path-decomposability to measure it. The following lemma of Arora et al. [ABLT06]
shows that our construction satisfies that every subgraph of G induced on at most t ≤ nΓ

vertices is l-path decomposable.
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Lemma 7.5.5 ([ABLT06]). Let l ≥ 1 be an integer and 0 < η < 1
3l−1

, and let H be a
2-connected graph with t vertices and at most (1 + η)t edges. Then H contains a path of
length at least l + 1 whose internal vertices have degree 2 in H .

Finally, δ and l are fixed based on the other parameters to satisfy the requirements of
the theorem.

Lemma 7.5.6. There exists δ > 0 and l (depending on T , ε, ∆, µ, Γ) such that for any
k ≤ nδ, the following holds.

1. (1− µ)
l

10 ≤ µ
5k

.

2. Every induced subgraph of G on (2∆)lk vertices is l-path decomposable.

Proof. The first condition is implied by l ≥ Cδ log n for some constant C depending on
µ. The second condition is implied by (2∆)lk ≤ nΓ ⇔ l ≤ C ′(Γ − δ) log n for another
constant C ′ depending on ∆. When we control girth and local sparsity, l is required to be
O( logn

log ∆
). Therefore, by taking δ a small enough constant depending on T, ε,∆, µ, and Γ

(all of which depend on T, ε), we can ensure that such l exists.

Therefore, there exist constants ∆, δ and l = Θ(log n) (all constants depending on T, ε, µ)
that satisfy all the requirements given in the theorem.

7.5.2 Constructing (Inconsistent) Local Distributions

Let D = (V,A), lA, and G = (V,E) be the instance of GENERALIZED MAX DICUT(T )
and its underlying undirected graph constructed as above. In this subsection, given a set
of k ≤ nδ vertices S = {v1, . . . , vk} we give a distribution on events

{lV (v1) = x1, . . . , lV (vk) = xk}x1,...,xk∈[T ]0 .

The local distributions we construct in this subsection are not consistent; for different
sets S and S ′, the marginal distribution on S∩S ′ from the distribution on S can be different
from the same marginal from the distribution on S ′ (albeit they are close). This problem
is fixed in the next subsection.

Let d(u, v) be the shortest distance between u and v in G and V ′ ⊆ V be the set of
vertices whose shortest distance to S is at most l. Let G′ and D′ be the subgraph of G
and D induced on V ′, respectively. Since |V ′| ≤ (2∆)lk, G′ is l-path decomposable by
Theorem 7.5.2. Note that if d(u, v) < l, d(u, v) is also the shortest distance between u and
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v in G′. By the definition, a l-path decomposable graph does not have a cycle of length l,
so if d(u, v) < l

2
, the shortest path between u and v must be unique.

We begin by establishing a fact that when G′ is path-decomposable (intuitively looks
similar to a tree), there is a distribution on the partitions of V (i.e. multicuts) such that
close vertices are unlikely to be separated but far vertices are likely to be separated. If G′

is a tree, it is obtained by deleting each edge independently with probability µ. The noise
parameter µ will be fixed later depending only on T and ε, so is asymptotically greater
than 1

l
= O( 1

logn
).

Theorem 7.5.7 ([CMM10]). Suppose G′ = (V,E) is an l-path decomposable graph. Let
L = bl/9c;µ ∈ [1/L, 1]. Then there exists a probabilistic distribution of multicuts of G′

(or in other words random partition of G′ in pieces) such that the following properties
hold. For every two vertices u and v,

1. If d(u, v) ≤ L, then the probability that u and v are separated by the multicut (i.e.
lie in different parts) equals 1 − (1 − µ)d(u,v); moreover, if u and v lie in the same
part, then the unique shortest path between u and v also lies in that part.

2. If d(u, v) > L, then the probability that u and v are separated by the multicut is at
least 1− (1− µ)L.

3. Every piece of the multicut partition is a tree.

Based on this random partitioning, we define the distribution on the vertices in S (ac-
tually in V ′). For each piece which is a tree, pick an arbitrary vertex v in the tree, choose
lV (v) uniformly at random, and propagate this label to weakly satisfy every edge in the tree
— an undirected edge (u′, v′) ∈ E (swap u′ and v′ if necessary to assume (u′, v′) ∈ A) is
weakly satisfied when lV (v′) − lV (u′) = lA(u′, v′) over ZT+1. Note that this definition is
necessary for the original definition of satisfaction, but not sufficient.

It is clear that the choice of root in each tree does not matter, and the marginal distri-
bution of each lV (v) is uniform on [T ]0. For vertices u and v with d(u, v) ≤ L, we say
that label i for u and i′ for v match if lV (u) = i, lV (v) = i′ can be extended to weakly
satisfy every edge on the unique shortest path between u and v (there are T +1 such pairs).
If u and v are close, lV (u) and lV (v) will be correlated in a sense that if i and i′ match,
lV (u) = i almost implies lV (v) = i′, while it is not the case when u and v are far apart.
The following corollary formalizes this intuition.

Corollary 7.5.8. SupposeG′ = (V ′, E ′) is an l-path decomposable graph. Let L = bl/9c;
µ ∈ [1/L, 1]. Then there exists a random mapping r : V ′ → [T ]0 such that
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1. If d := d(u, v) ≤ L then

Pr[r(u) = i, r(v) = i′] =

{
(1−µ)d

(T+1)
+ 1−(1−µ)d

(T+1)2 if i and i′ match
1−(1−µ)d

(T+1)2 otherwise

2. If d > L then 1−(1−µ)L

(T+1)2 ≤ Pr[r(u) = i, r(v) = i′] ≤ 1−(1−µ)L

(T+1)2 + (1−µ)L

T+1
for any

i, i′ ∈ [T ]0.

Proof. r is defined by the following process: sample a distribution of multicuts as Theo-
rem 7.5.7. Each piece is a tree, so we can pick an arbitrary vertex w and give a value lV (w)
uniformly from [T ]0 and propagate along the tree to weakly satisfy every edge. Note that
the distribution does not depend on the choice of the initial vertex.

Suppose d(u, v) ≤ L, which ensures that if u and v are in the same piece, the only path
connecting u and v in the piece is the shortest path in G. If i and i′ are match labels,

Pr[r(u) = i, r(v) = i′] = Pr[u, v in the same piece]· 1

T + 1
+Pr[u, v separated]· 1

(T + 1)2
.

If i and i′ are nonmatching labels,

Pr[r(u) = i, r(v) = i′] = Pr[u, v in the same piece] · 0 + Pr[u, v separated] · 1

(T + 1)2
.

If d(u, v) > L, Pr[r(u) = i, r(v) = i′] is lower bounded by Pr[u and v are separated]

(T+1)2 ,

and upper bounded by Pr[u and v are separated]

(T+1)2 +
Pr[u and v are not separated]

T+1
. The sepa-

ration guarantee in Theorem 7.5.7 proves the lemma.

Definition 7.5.9. For any vertices u 6= v and i, i′ ∈ [T ]0, let ρ(u(i), v(i′)) := Pr[r(u) =
i, r(v) = i′] if d(u, v) ≤ L, or 1

(T+1)2 otherwise. ρ(v(i), v(i)) := 1
T+1

and ρ(v(i), v(i′)) :=

0 for i 6= i′. Since the shortest path between u and v is unique when d(u, v) ≤ L, ρ is
uniquely defined given G, D, lA and does not depend on S, V ′, G′, D′ which induce a
local distribution.

Definition 7.5.10. Fix a set of k vertices S = {v1, . . . , vk}. For any vertex u, v ∈ S and
i, j ∈ [T ]0, let νS(u(i), v(i′)) := Pr[x(u) = i, x(v) = i′] in the local distribution on S
defined by r in Corollary 7.5.8.
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7.5.3 Geometric Embedding and Rounding

In this subsection, we still fix a set of k vertices S = {v1, . . . , vk} and produce a distribu-
tion on the events {lV (v1) = x1, . . . , lV (vk) = xk}x1,...,xk∈[T ]0 . The difference from the last
subsection is that the resulting distributions become consistent — the marginal distribution
on S ∩ S ′ does not depend on the choice of its superset (S or S ′) that is used to obtain a
larger local distribution.

Embedding. Consider ρ and νS defined in the last subsection. ρ and νS both capture the
pairwise distribution between the events {lV (v) = x}v∈S,x∈[T ]0 , but each of them has its
own defects. νS depends on the choice of S, so does not yield consistent local distributions.
ρ does not depend on S, but for far vertices, Corollary 7.5.8 does not guarantee any local
distribution consistent with it. However, they are close in a sense — they are identical
when d(u, v) ≤ L and differ by at most (1−µ)L

T+1
otherwise.

The main idea of Charikar et al. [CMM09] is to interpret ρ and νS as pairwise distances
between events and embed ρ to l2 with small error. It is based on the fact that ρ and νS are
close for any S and νS is readily embeddable to l2. Since the embedding into l2 is uniquely
defined by the pairwise distances and ρ does not depend on the choice of S, geometric
rounding schemes based on the embedding yield consistent local distributions. Let v(i) be
the vector corresponding to the event lV (v) = i. Our goal is to construct k(T + 1) vectors
{v(i)}v∈S,i∈[T ]0 such that u(i) · v(i′) ≈ ρ(u(i), v(i′)). Following the above intuition, the
following lemma says that this embedding is possible with error depending on µ.

Lemma 7.5.11. There exist k(T + 1) vectors {v(i)}v∈S,i∈[T ]0 such that ‖v(i)‖2
2 = µ+ 1

T+1

and u(i) · v(i′) = µ
2

+ ρ(u(i), v(i′)).

Proof. For each u(i), we construct two vectors u(i)1 and u(i)2 and finally merge them by
u(i) := u(i)1⊕u(i)2. u(i)2 is the indicator random variable for the event lV (u) = i, where
the distribution follows νS . Since νS is based on an actual distribution on the events, the
vectors {v(i)2}v∈V,i∈[T ]0 are embeddable into l2 with ‖v(i)2‖2

2 = Pr[lV (v) = i] = 1
T+1

and
u(i)2 · v(i′)2 = νS(u(i), v(i′)). The first group of vectors {v(i)1}v∈V,i∈[T ]0 convert these
inner products from νS to ρ with small error.

The following lemma says that a metric space can be isometrically embeddable into l2
if all pairwise distances are similar.

Lemma 7.5.12 ([CMM10]). Consider a metric space (Y, α) on t points. If for every two
distinct points u and v: |α(u, v) − β| ≤ β

2t
for some β > 0, then (Y, α) is isometrically

embeddable into l2.
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We add a vectorO (so that we have k(T+1)+1 vectors) and set the following distance
requirements.

1. ‖v(i)1 −O‖2 =
√
µ for all ui.

2. ‖u(i)1 − v(i′)1‖2 =
√
µ− 2ρ(u(i), v(i′)) + 2νS(u(i), v(i′)) for all u(i), v(i′).

Note that |ρ(u(i), v(i′))−νS(u(i), v(i′))| ≤ (1−µ)L

T+1
≤ µ

5(T+1)k
, where the last inequality

follows from Theorem 7.5.2. This implies

|‖u(i)1 − v(i′)1‖2 −
√
µ| ≤ √µ(1−

√
1− 1

2.5(T + 1)k
) ≤ √µ · 1

2((T + 1)k + 1)
.

By Lemma 7.5.12, there are vectors {u(i)1, v(i)1}i and O that meet the above distance
requirements. Without loss of generality, assume that O is the origin. Defining u(i) :=
u(i)1 ⊕ u(i)2 satisfies

1. ‖u(i)‖2
2 = µ+ 1

T+1
.

2. u(i) · v(i′) = u(i)1 · v(i′)1 + u(i)2 · v(i′)2 =
2µ−‖u(i)1−v(i′)1‖22

2
+ νS(u(i), v(i′)) =

µ
2

+ ρ(u(i), v(i′)).

Rounding and Analyzing adjacent vertices. Given k(T + 1) vectors {v(i)}v∈S,i∈[T ]0 ,
our rounding scheme is one of the most natural ways to choose one out of (T + 1) vectors
— take a random Gaussian vector g and for each vertex v, set lV (v) = i such that v(i) ·g is
the maximum over all i. Since the inner products of these vectors depend only on ρ (which
does not depend on the choice of S), it gives a consistent local distribution.

Fix adjacent vertices v and u (without loss of generality assume (u, v) ∈ A). It only
remains to show that Pr[lV (u) = 0, lV (v) = lA(u, v)] ≈ 1

T+1
. For any pair of adjacent ver-

tices, we can write 2(T +1) vectors explicitly. They are just two sets of T +1 orthonormal
vectors, very closely correlated — there are T + 1 pairs (u(i), v(i′)), i′ − i = lA(u, v) in
ZT+1, such that u(i) ≈ v(i′). With this symmetric structure and a suitable choice of the
noise parameter µ, we can analyze the performance of our rounding.

Lemma 7.5.13. There exists µ depending on T and ε such that, in the above rounding
scheme, the probability that lV (u) = 0 and lV (v) = lA(u, v) is at most 1−12ε

T+1
.
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Proof. For notational simplicity, assume lA(u, v) = 0 — which is not allowed in actual
instances. Then u(i) and v(i) become matching vectors — ρ(u(i), v(i)) = 1−µ

T+1
+ µ

(T+1)2

and ρ(u(i), v(j)) = µ
(T+1)2 for i 6= j. The following is the list of all possible inner products

between 2(T + 1) vectors.

1. ‖u(i)‖2
2 = µ+ 1

T+1
.

2. u(i) · u(j) = µ
2

for i 6= j.

3. u(i) · v(i) = µ
2

+ 1−µ
T+1

+ µ
(T+1)2 .

4. u(i) · v(j) = µ
2

+ µ
(T+1)2 for i 6= j.

Even though we used Lemma 7.5.12 as a black-box to obtain the current embedding,
we can explicitly represent u(i), v(i)’s in the Euclidean space. They can be represented
as a linear combination of (T + 1) + (T + 1)2 + 2(T + 1) + 1 orthogonal vectors (with
different lengths), which can be classified into the following four categories:

• a(i) for i ∈ [T ]0: Length
√

1−µ
T+1

. Denotes the event that (u, v) is not deleted and
lV (u) = lV (v) = i.

• b(i, j) for i, j ∈ [T ]0: Length
√

µ
(T+1)2 . Denotes the event that (u, v) is deleted and

lV (u) = i, lV (v) = j.

• c(i), c′(i) for i ∈ [T ]0: Length
√

µ
2
. One of them is assigned for each of 2(T + 1)

vectors.

• d: Length
√

µ
2
. Common for all vectors.

Let

u(i) := a(i) +
∑
j

b(i, j) + c(i) + d

v(i) := a(i) +
∑
j

b(j, i) + c′(i) + d.

It is straightforward to check that the following representation of u(i) and v(i) satisfy all
the inner product requirements.
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For each vector u(i), we denote the random variable equal to the inner product of u(i)
and g by U(i). Similarly, define V (i), A(i), B(i, j), C(i), C ′(i), D(i) for v(i), a(i), b(i, j),
c(i), c′(i), d(i) respectively. Each random variable follows the Gaussian distribution with
mean 0 and standard deviation same with the length of the corresponding vector. Further-
more, the inner products of two vectors is the same with the covariance of corresponding
random variables. The following lemma shows that our consistent local distributions ac-
tually satisfy each edge with probability close to 1

T+1
, proving Theorem 7.1.4.

Lemma 7.5.14. Fix i ∈ [T ]0 and 0 < ε < 1/24. If µ ≤ ε2

256(T+1) log2(T+1
ε

)
,

Pr[lV (u) = i, lV (v) = i] ≥ 1− 12ε

T + 1
.

Proof. We compute the probability that u and v are assigned the same label i. Let

M := max

[
max
j

[
∑
k

B(j, k)],max
j

[
∑
k

B(k, j)],max
j

[C(j)],max
j

[C ′(j)]

]
.

Then,

Pr[lV (u) = i, lV (v) = i]

≥ Pr[A(i) = max
j

[A(j)]] · Pr

[
M ≤ A(i)−maxj 6=i[A(j)]

4

∣∣∣∣A(i) = max
j

[A(j)]

]
≥ 1

T + 1
Pr

[
M ≤ maxj[A(j)]−max2j[A(j)]

4

]
We argue that the above quantity is close to 1

T+1
by showing that each of 4 quantities

max
j

[
∑
k

B(j, k)],max
j

[
∑
k

B(k, j)],max
j

[C(j)],max
j

[C ′(j)]

is greater than maxj [A(j)]−max2j [A(j)]

4
with small probability. Note that

∑
k B(j, k) follows

the Gaussian distribution with mean 0 and variance µ
T+1

, which is much less than that
of C(j). Since C(j) and C ′(j) follow the same distribution, it is enough to show that
maxj[C(j)] >

maxj [A(j)]−max2j [A(j)]

4
with small probability. The following claim proves

the lemma.

Claim 7.5.15. Let 0 < ε < 1/4. If µ ≤ ε2

256(T+1) log2(T+1
ε

)
,

Pr[max
j

[C(j)] >
maxj[A(j)]−max2j[A(j)]

4
] < 3ε.
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Proof. The above probability can be rewritten as

Pr[

√
µ

2
max
j

[gj] >

√
1− µ
T + 1

maxj[g
′
j]−max2j[g

′
j]

4
]

where g0, . . . , gT , g
′
0, . . . , g

′
T are independent standard Gaussian random variables.

Let x ≥
√
µ log T+1

ε
. By Lemma 7.5.16,

Pr[

√
µ

2
max
j

[gj] > x] < ε.

Let x ≤ ε

8
√

log T+1
ε

√
1−µ
T+1

. By Lemma 7.5.17,

Pr[

√
1− µ
T + 1

maxj[g
′
j]−max2j[g

′
j]

4
< x] < 2ε.

The fact that µ ≤ ε2

256(T+1) log2(T+1
ε

)
ensures that there is x that satisfies the both Lemma 7.5.16

and 7.5.17. Taking union bound proves the lemma.

It remains to prove the following two lemmas about Gaussians. We prove them in
Section 7.7 using some basic properties of Gaussians.

Lemma 7.5.16. Let g1, . . . , gn (n ≥ 2) be independent standard Gaussian random vari-
ables and 0 < ε < 1. If x ≥

√
2 log n

ε
,

Pr[max
j

[gj] ≤ x] ≥ 1− ε.

Lemma 7.5.17. Let g1, . . . , gn (n ≥ 2) be independent standard Gaussian random vari-
ables and 0 < ε < 1/4. If x ≤ ε

2
√

log n
ε

,

Pr[max
j

[gj]−max2
j

[gj] ≥ x] ≥ (1− 2ε).

This finishes the construction of a solution to the nδ-rounds of the Sherali-Adams hier-
archy with value 1−12ε

T+1
. Since Opt(V, lA) ≤ 1+ε

4T
by Theorem 7.5.2, it proves Theorem 7.1.4

and Theorem 7.1.2.
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7.6 (1
4 + Ω( 1

T ))-Approximation Algorithm for GENERAL-
IZED MAX DICUT

In this section, we propose an approximation algorithm for GENERALIZED MAX DI-
CUT(T ) that guarantees (1

4
+ 1

16T
) fraction of the optimal solution, proving Theorem 7.4.1.

It is based on the 2-rounds of the Sherali-Adams hierarchy (also known as the standard
LP), defined as the following:

maximize
∑

(u,v)∈A x(u,v)(0, lA(u, v))

subject to
∑

α∈([T ]0)S xS(α) = 1 for all S ⊆ V, |S| ≤ 2∑
j∈[T ]0 x(u,v)(i, j) = xu(i) for all u 6= v, i ∈ [T ]0

The algorithm is almost identical to the simple 1
4
-approximation algorithm. For each

vertex v, independently set lV (v) = 0 with probability 1+xv(0)
2

, and lV (v) = i (i 6= 0) with
probability xv(i)

2
. Equivalently, we assign each vertex 0 with probability half and follow its

marginal xv with probability half.

For each edge (u, v) ∈ A, let c = c(u, v) := x(u,v)(0, lA(u, v)) so that the value the
solution {xS(α)} to the LP is E(u,v)[c(u, v)] ≥ Opt. The probability that (u, v) is satisfied
is

(
1 + xu(0)

2
)(
xv(lA(u, v))

2
) ≥ c

4
+
c2

4

since xu(0), xv(lA(u, v)) ≥ c. Therefore, the expected fraction of satisfied edges is at least

E(u,v)∈A[
c(u, v)

4
+
c(u, v)2

4
] ≥ Opt

4
+

Opt2

4
≥ Opt

4
+

Opt

16T

since Opt ≥ 1
4T

(focusing on the label with the most edges and finding the maximum dicut
with respect to the edges with this label guarantees to satisfy 1

4T
fraction of edges).

7.7 Proofs of Lemmas about Gaussians

Let φ(x) and Φ(x) be the probability density function (PDF) and the cumulative distribu-
tion function (CDF) of the standard Gaussian, respectively. Let Φ̃(x) = 1 − Φ(x). We
begin with the following simple fact about the tail of Φ.

Lemma 7.7.1 ([CMM06]). For any t > 0, t√
2π(t2+1)

e−
t2

2 < Φ̃(t) < 1√
2πt
e−

t2

2 .
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Lemma 7.7.2 (Restatement of Lemma 7.5.16). Let g1, . . . , gn (n ≥ 2) be independent
standard Gaussian random variables and 0 < ε < 1. If x ≥

√
2 log n

ε
,

Pr[max
j

[gj] ≤ x] ≥ 1− ε.

Proof. Note that x ≥
√

2 log 2, so 1√
2πx
≤ 1.

x ≥
√

2 log
n

ε

⇒ 1√
2πx

exp(−x
2

2
) ≤ ε

n

⇒ 1− Φ(x) ≤ ε

n
,

where the last inequality follows from Lemma 7.7.1. We can conclude that

Pr[max
j

[C(j)] ≤ x] = Φ(x)n ≥ (1− ε

n
)n ≥ 1− ε.

Lemma 7.7.3 (Restatement of Lemma 7.5.17). Let g1, . . . , gn (n ≥ 2) be independent
standard Gaussian random variables and 0 < ε < 1/4. If x ≤ ε

2
√

log n
ε

,

Pr[max
j

[gj]−max2
j

[gj] ≥ x] ≥ (1− 2ε).

Proof.

Pr[max
j

[gj]−max2
j

[gj] ≥ x] ≥ n

∫ ∞
−∞

Φ[y − x]n−1φ(y)dy

≥ n

∫ b

−∞
Φ[y − x]n−1φ(y)dy for some b fixed later

= n

∫ b

−∞
Φ[y − x]n−1φ(y − x)

φ(y)

φ(y − x)
dy

≥ ( inf
y∈[−∞,b]

φ(y)

φ(y − x)
)

∫ b

−∞
nΦ[y − x]n−1φ(y − x)dy

= ( inf
y∈[−∞,b]

φ(y)

φ(y − x)
)

∫ b

−∞
(Φ[y − x]n)′dy

= ( inf
y∈[−∞,b]

φ(y)

φ(y − x)
)Φ[b− x]n
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Let b = x+
√

2 log n
ε
. By the same argument with Lemma 7.5.16, we have

1− Φ[b− x] ≤ ε

n

⇒ Φ[b− x] ≥ 1− ε

n
⇒ Φ[b− x] ≥ (1− ε)1/n

Now we bound

inf
y∈[−∞,b]

φ(y)

φ(y − x)
= inf

y∈[−∞,b]
exp(−y

2

2
+

(y − x)2

2
) = inf

y∈[−∞,b]
exp(
−2xy + x2

2
)

= exp(
−2bx+ x2

2
)

where the last inequality holds since it is monotonically decreasing in y. x ≤ ε

2
√

log n
ε

implies

x(x+

√
2 log

n

ε
) ≤ ε

⇒ bx ≤ ε

⇒ −2bx+ x2

2
≥ −ε

⇒ exp(
−2bx+ x2

2
) ≥ exp(−ε) ≥ 1− ε

Since both infy∈[−∞,b]
φ(y)

φ(y−x)
and Φ[b− x]n are at least 1− ε, the lemma follows.

Lemma 7.7.4 (Restatement of Lemma 7.4.6). Fix ρ, α ∈ (0, 1). The function f(x) :=
Γρ(α, x) is concave.

Proof. Let Y, Z be independent Gaussians andX := ρY +
√

1− ρ2Z. Fix 0 ≤ a ≤ b. We
will show that f(a)+f(b) ≥ f(a+b). Let x = Φ̃−1(a+b), y = Φ̃−1(b), z = Φ̃−1(a), w =
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Φ̃−1(α). Note that x ≤ y ≤ z.

f(a) + f(b)− f(a+ b)

= Pr[Y ≥ y and X ≥ w] + Pr[Y ≥ z and X ≥ w]− Pr[Y ≥ x and X ≥ w]

= Pr[Y ≥ z and X ≥ w]− Pr[x ≤ Y ≤ y and X ≥ w]

≥Pr[Y ≥ z and Z ≥ w − ρz√
1− ρ2

]− Pr[x ≤ Y ≤ y and Z ≥ w − ρy√
1− ρ2

]

=a(Pr[Z ≥ w − ρz√
1− ρ2

]− Pr[Z ≥ w − ρy√
1− ρ2

])

≥0

Lemma 7.7.5 (Restatement of Lemma 7.4.7). For large enough T and δ = 1
T 1/4 , the

following holds. For any a ∈ [0, 1], b ∈ [0, 1
T

] and ρ ∈ (0,
√

2
Tδ

), Γρ(a, b) ≤ ab+ 2
T 5/4 .

Proof. Let Y, Z be independent Gaussians and X := ρY +
√

1− ρ2Z. Let x = Φ̃−1(a)

and y = Φ̃−1(b). By taking T > 2, we can assume b < 1
2

and y > 0, while we do not put
any assumption on a and x.

Γρ(a, b) = Pr[X ≥ x and Y ≥ y]

≤ Pr[Z ≥ x− 2ρy√
1− ρ2

and y ≤ Y ≤ 2y] + Pr[Y ≥ 2y]

≤ Pr[Z ≥ x− 2ρy√
1− ρ2

and Y ≥ y] + Pr[Y ≥ 2y]

≤ b · Φ̃(
x− 2ρy√

1− ρ2
) + Φ̃(2y). (7.1)

By Lemma 7.7.1, Φ̃(2y) < 1
2
√

2πy
exp(−2y2) < b3 < 1

T 5/4 .

• a ≥ 1− 1
T 1/4 : (7.1) is bounded by b+ 1

T 5/4 ≤ (a+ 1
T 1/4 )b+ 1

T 5/4 ≤ ab+ 2
T 5/4 .

• b ≤ 1
T 5/4 : (7.1) is bounded by b+ 1

T 5/4 ≤ 2
T 5/4 .
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• a ≤ 1 − 1
T 1/4 and b ≥ 1

T 5/4 : Note that x ≥ −10
√

log T and y ≤ 10
√

log T . Since

ρ ≤
√

2
Tδ

=
√

2
T 3/8 ,

(x−2ρy)−
√

1− ρ2(x− 1

T 1/4
) ≥

{
−2ρy + 1

2T 1/4 ≥ 0 if x ≥ 0

ρ2x− 2ρy + 1
2T 1/4 ≥ 0 if − 10

√
log T ≤ x ≤ 0,

which shows that x−2ρy√
1−ρ2
≥ x− 1

T 1/4 . Therefore,

(7.1) ≤ b · Φ̃(x− 1

T 1/4
) +

1

T 5/4
≤ b(a+

1

T 1/4
) +

1

T 5/4
≤ ab+

2

T 5/4
,

where the second inequality follows from φ(x) ≤ 1 for all x ∈ R.
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Chapter 8

LDPC Decoding

8.1 Introduction

Low-density parity-check (LDPC) codes are a class of linear error correcting codes orig-
inally introduced by Gallager [Gal62] and that have been extensively studied in the last
decades. A (dv, dc)-LDPC code of block length n is described by a parity-check matrix
H ∈ Fm×n2 (with m ≤ n) having dv ones in each column and dc ones in each row. It
can be also represented by its bipartite parity-check graph (L ∪ R,E) where L corre-
sponds to the columns of H , R corresponds to the rows of H , and (u, v) ∈ E if and
only if Hv,u = 1. For a comprehensive treatment of LDPC codes, we refer the reader
to the book of Richardson and Urbanke [RU08]. In many studies of LDPC codes, ran-
dom LDPC codes have been considered. For instance, Gallager studied in his thesis the
distance and decoding-error probability of an ensemble of random (dv, dc)-LDPC codes.
Random (dv, dc)-LDPC codes were further studied in several works (e.g., [SS94, Mac99,
RU01, MB01, DPT+02, LS02, KRU12]). The reasons why random (dv, dc)-LDPC codes
have been of significant interest are their nice properties, their tendency to simplify the
analysis of the decoding algorithms and the potential lack of known explicit constructions
for properties satisfied by random codes.

One such nice property that is exhibited by random (dv, dc)-LDPC codes is the ex-
pansion of the underlying parity-check graph. Sipser and Spielman [SS94] exploited this
expansion in order to give a linear-time decoding algorithm correcting a constant fraction
of errors (for dv, dc = O(1)). More precisely, they showed that if the underlying graph
has the property that every subset of at most δn variable nodes expands by at least a factor
of 3dv/4, then their decoding algorithm can correct an Ω(δ) fraction of errors in linear-
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time. Since, with high probability, a random (dv, dc)-LDPC code satisfies this expan-
sion property for some δ = Ω(1/dc), this implies that the linear-time decoding algorithm
of Sipser-Spileman corrects an Ω(1/dc) fraction of errors on a random (dv, dc)-LDPC
code. A few years after the work of Sipser-Spielman, Feldman, Karger and Wainwright
[FWK05, Fel03] introduced a decoding algorithm that is based on a simple linear program-
ming (LP) relaxation, and a later paper by Feldman, Malkin, Servedio, Stein and Wain-
wright [FMS+07] showed that when the underlying parity-check graph has the property
that every subset of at most δn variable nodes expands by a factor of at least 2dv/3+Ω(1),
the linear program of Feldman-Karger-Wainwright corrects an Ω(δ) fraction of errors.
Again, since with high probability, a random (dv, dc)-LDPC code satisfies this expansion
property for some δ = Ω(1/dc), this means that the LP of [FWK05] corrects an Ω(1/dc)
fraction of errors on a random (dv, dc)-LDPC code.

However, the fraction of errors that is corrected by the Sipser-Spielman algorithm and
the LP relaxation of [FWK05] (which is O(1/dc)) can be much smaller than the best
possible: in fact, [Gal62] (as well as [MB01]) showed that for a random (dv, dc)-LDPC
code, the exponential-time nearest-neighbor Maximum Likelihood (ML) algorithm cor-
rects close to a H−1

b (dv/dc) fraction of probabilistic errors, which by Shannon’s channel
coding theorem is the best possible1. Note that, for example, if we set the ratio dv/dc to be
a small constant and let dc grow, then the fraction of errors that is corrected by the Sipser-
Spielman algorithm and the LP relaxation of Feldman et al. decays to 0 with increasing
dc, whereas the maximum information-theoretically possible fraction is a fixed absolute
constant!2 The belief propagation (BP) algorithm also suffers from the same limitation
[BM02, KRU12]. In fact, there is no known polynomial-time algorithm that approaches
the information-theoretic limit for random (dv, dc)-regular LDPC codes. 3

In the areas of combinatorial optimization and approximation algorithms, hierarchies
of linear and semidefinite programs such as the Sherali-Adams [SA90] and the Lasserre
[Las01] hierarchies recently gained significant interest4. Given a base LP relaxation, such

1More precisely, the fraction of errors corrected by the ML decoder is bounded below H−1b (dv/dc) for
fixed dc but gets arbitrarily close to H−1b (dv/dc) as dc gets larger.

2In fact, not only is the fraction of probabilistic errors that is corrected by the ML decoder an absolute
constant, but so is the fraction of adversarial errors [Gal62, BM04]. More precisely, for say dv = 0.1dc,
Theorem 11 of [BM04] implies that the minimum distance of a random (dv, dc)-regular LDPC code is at
least an absolute constant and it approaches the Gilbert-Varshamov bound for rate R = 1− dv/dc = 0.9 as
dc gets larger.

3We point out that for some ensembles of irregular LPDC codes [RSU01] as well as for the recently
studied spatially-coupled codes [KRU12], belief propagation is known to have better properties. In this
paper, our treatment is focused on random regular LDPC codes.

4We point out that the Lasserre hierarchy is also referred to as the “Sum of Squares” hierarchy in the
literature.
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hierarchies tighten it into sequences of convex programs where the convex program corre-
sponding to the rth round in the sequence can be solved in time nO(r) and yields a solution
that is “at least as good” as those obtained from previous rounds in the sequence. For an
introduction and comparison of those LP and SDP hierarchies, we refer the reader to the
work of Laurent [Lau03] where it is also shown that the Lasserre hierarchy is at least as
strong as the Sherali-Adams hierarchy.

Inspired by the Sherali-Adams hierarchy, Arora, Daskalakis and Steurer [ADS12] im-
proved the best known fraction of correctable probabilistic errors by the LP decoder (which
was previously achieved by Daskalakis et al. [DDKW08]) for some range of values of dv
and dc. Both Arora et al. [ADS12] and the original work of Feldman et al. [FWK05, Fel03]
asked whether tightening the base LP using linear or semidefinite hierarchies can improve
its performance, potentially approching the information-theoretic limit. More precisely,
in all previous work on LP decoding of error-correcting codes, the base LP decoder of
Feldman et al. succeeds in the decoding task if and only if the transmitted codeword is the
unique optimum of the relaxed polytope with the objective function being the (normalized)
l1 distance between the received vector and a point in the polytope. On the other hand, the
decoder is considered to fail whenever there is an optimal non-integral vector5. The hope
is that adding linear and semidefinite constraints will help “prune” non-integral optima,
thereby improving the fraction of probabilistic errors that can be corrected.

In this paper, we prove the first lower bounds on the performance of the Sherali-Adams
and Lasserre hierarchies when applied to the problem of decoding random (dv, dc)-LDPC
codes. Throughout this paper, by a random (dv, dc)-LDPC code, we mean one whose
parity-check graph is drawn from the following ensemble that was studied in numerous
previous works (e.g., [SS94, RU01, MB01, LS02, BM04, KRU12]) and is very close to
the ensemble that was originally suggested by Gallager [Gal62]. Set M := ndv = mdc
where n is the block length and m is the number of constraints. Assign dv (resp. dc)
sockets to each of n (resp. m) vertices on the left (resp. right) and number them 1, . . . ,M
on each side. Sample a permutation π : {1, . . . ,M} → {1, . . . ,M} uniformly at random,
and connect the i-th socket on the left to the π(i)-th socket on the right. Place an edge
betwen variable i and constraint j if and only if there is an odd number of edges between
the sockets corresponding to i and those corresponding to j. Our main results can be stated
as follows:

Theorem 8.1.1 (Lower bounds in the Sherali-Adams hierarchy). For any dv and dc ≥ 5,
there exists η > 0 (depending on dc) such that a random (dv, dc)-LDPC code satisfies the
following with high probability: for any received vector, there is a fractional solution to the
ηn rounds of the Sherali-Adams hierarchy of value 1/(dc − 3) (for odd dc) or 1/(dc − 4)

5Such an optimal non-integral vector is called a “pseudocodeword” in the LP-decoding literature.
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(for even dc). Consequently, ηn rounds cannot decode more than a ≈ 1/dc fraction of
errors.

Theorem 8.1.2 (Lower bounds in the Lasserre hierarchy). For any dv and dc = 3 · 2i + 3
with i ≥ 1, there exists η > 0 (depending on dc) such that a random (dv, dc)-LDPC code
satisfies the following with high probability: for any received vector, there is a fractional
solution to the ηn rounds of the Lasserre hierarchy of value 3/(dc − 3). Consequently, ηn
rounds cannot decode more than a ≈ 3/dc fraction of errors.

We note that Theorems 8.1.1 and 8.1.2 hold, in particular, for random errors. We point
out that as in all previous work on LP decoding of error-correcting codes, Theorems 8.1.1
and 8.1.2 assume that a decoder based on a particular convex relaxation succeeds in the
decoding task if and only if the transmitted codeword is the unique optimum of the convex
relaxation. Thus, if an ε fraction of errors occurs, then any fractional solution of value
less than ε results in a decoding error. Note that the decoder based on the LP (resp. SDP)
corresponding to n rounds of the Sherali-Adams (resp. Lasserre) hierarchy is the nearest-
neighbor maximum likelihood (ML) decoder.

We note that our LP/SDP hierarchy O(1/dc) lower bounds for random LDPC codes
hold, in particular, for any check-regular code with good check-to-variable expansion.
Moreover, the fact that the base LP corrects Ω(1/dc) errors follows from the (variable-to-
check) expansion of random LDPC codes6. In that respect, it is intriguing that expansion
constitutes both the strength and the weakness of random LDPC codes.

Some of our techniques are more generally applicable to a large class of Boolean Con-
straint Satisfaction Problems (CSPs) called MIN ONES where the goal is to satisfy each
of a collection of constraints while minimizing the number of variables that are set to
1. In particular, we obtain improved integrality gaps in the Lasserre hierarchy for the
k-HYPERGRAPH VERTEX COVER problem. The k-HYPERGRAPH VERTEX COVER is
known to be NP-hard to approximate within a factor of k− 1− ε [DGKR05]. This reduc-
tion would give the same integrality gap only for some sublinear number of rounds of the
Lasserre hierarchy, whereas the best integrality gap for a linear number of rounds remains
at 2 − ε [Sch08]. We prove that an integrality gap of k − 1 − ε still holds after a linear
number of rounds, for any k = q + 1 with q an arbitrary prime power.

6We note that Feldman et al. [FMS+07] first proved that LP decoding corrects Ω(1/dc) on expanding
graphs. Their proof was recently simplified by Viderman [Vid13] who also slightly relaxed the expansion
requirements. Both works assumed that all variable nodes have the same degree but the proof readily extends
to the case where variable nodes can have degree either dv or dv − 2, which is the typical case for random
(dv, dc)-LDPC codes.
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Theorem 8.1.3. Let k = q + 1 where q is any prime power. For any ε > 0, there exist
β, η > 0 (depending on k) such that a random k-uniform hypergraph with n vertices and
m = βn edges, simultaneously satisfies the following two conditions with high probability.

• The integral optimum of k-HYPERGRAPH VERTEX COVER is at least (1− ε)n.

• There is a solution to the ηn rounds of the Lasserre hierarchy of value 1
k−1

n.

8.1.1 Proof Techniques

The LP of Feldman et al. [FWK05, Fel03] is a relaxation of the NEAREST CODEWORD

problem, where given a binary linear code (represented by its parity-check matrix or graph)
and a received vector, the goal is to find the codeword that is closest to it in Hamming
distance. The NEAREST CODEWORD problem can be viewed as a particular case of a
variant of Constraint Satisfaction Problems (CSPs) called MIN ONES, where the goal is
to find an assignment that satisfies all constraints while minimizing the number of ones
in the assignment (see [KSTW01] for more on MIN ONES problems). In this MIN ONES

view, each codeword bit corresponds to a binary variable that the decoder should decide
whether to flip or not.

Recently, there has been a significant progress in understanding the limitations of LP
and SDP hierarchies for CSPs (e.g., [GMT09, Sch08, Tul09, Cha13]); in these works,
the focus was on a different variant of CSPs called MAX CSP, where the goal is to find
an assignment maximizing the number of satisfied constraints. These results construct
fractional solutions satisfying all constraints and that are typically balanced in that any
coordinate of the assignment is set to 1 with probability 1/2 in the case of a binary alpha-
bet. Therefore, they yield a fractional solution where half the variables are fractionally
flipped.

In order to construct a fractional solution with a smaller number of (fractionally)
flipped variables, we introduce the technique of stretching and collapsing the domain.
Given an instance of the NEAREST CODEWORD problem, we stretch the domain into a
finite set G via a map φ : G → {0, 1}. The new CSP instance has the same set V of
variables but each variable now takes values in G (as opposed to {0, 1}). A constraint in
the new instance on variables (v1, . . . , vk) is satisfied by an assignment f : V → G if
and only if it is satisfied in the original instance by the assignment φ ◦ f : V → {0, 1}.
Assume that the map φ satisfies |φ−1(1)| = 1 and that the previous results for MAX CSP
yield a fractional solution over alphabet G such that each variable v takes any particular
value g ∈ G with probability 1/|G|. If we can transform this fractional solution into one
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for the original instance by collapsing φ−1(i) back to i for every i ∈ {0, 1}, we would
get a fractional solution to the original (binary) instance of the NEAREST CODEWORD

problem with value 1/|G|. In Section 8.3, we show that this stretching and collapsing
idea indeed works. This technique can be generalized to any MIN ONES problem (e.g.,
k-HYPERGRAPH VERTEX COVER).

To apply the known constructions for MAX CSP between our stretching and collapsing
steps, we need to construct special structures that are required by those results. For the
Sherali-Adams hierarchy in the case of the NEAREST CODEWORD problem, we need to
construct two balanced pairwise independent distributions on Gk: one supported only on
vectors with an even number of 0 coordinates and the other supported only on vectors
with an odd number of 0 coordinates.7 For the Lasserre hierarchy, we need to construct
two cosets of balanced pairwise independent subgroups: one supported only on vectors
with an even number of 0 coordinates and the other supported only on vectors with an odd
number of 0 coordinates.

Constructing the desired balanced pairwise independent distributions in the Sherali-
Adams hierarchy can be done by setting up systems of linear equations (one variable
for each allowed vector (x1, . . . , xk) modulo symmetry) and checking that the resulting
solution yields a valid probability distribution (see Section 8.4.1 for more details). Con-
structing the desired cosets of balanced pairwise independent subgroups in the Lasserre
hierarchy is more involved and our algebraic construction is based on designing sets of
points in Fdq (for q any power of two and d = 2, 3) with special hyperplane-incidence
properties. One example is the construction (for every power q of 2) of a subset E of q+ 2
points in F2

q containing the origin and such that every line in the F2
q-plane contains either

0 or 2 points in E. See Section 8.4.2 for more details.

Finally, random (dv, dc)-LDPC codes typically have check nodes with slightly differ-
ent degrees whereas in the CSP literature, it is common to assume that all the constraints
contain the same number of variables. Since our algebraic constructions of cosets of bal-
anced pairwise independent subgroups for Lasserre hold only for specific arity values, we
need an additional technique to obtain the required predicates for both arity dc and ar-
ity dc − 2 (which are with high probability the two possible check-degrees in a random
(dv, dc)-LDPC code). We construct such predicates by taking the direct-sums of pairs and
triples of previously constructed cosets, at the expense of multiplying the value of the
fractional solution by an absolute constant.

7Here, we are assuming WLOG that 0 ∈ G. In fact, we can consider any fixed element of the set G.
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8.1.2 Organization

Section 8.2 provides background on the problems and hierarchies that we study in this
paper. Section 8.3 introduces the stretching and collapsing technique and shows how to
leverage previous results for MAX CSP to reduce our problem to the construction of spe-
cial distributions and cosets. This general result holds for any MIN ONES problem. Sec-
tion 8.4 provides the desired constructions for the problem of decoding random (dv, dc)-
LDPC codes, proving Theorem 8.1.1 in Section 8.4.1 and Theorem 8.1.2 in Section 8.4.2.
The proof of Theorem 8.1.3 about k-HYPERGRAPH VERTEX COVER can be found in
Section 8.5.

8.2 Preliminaries

Constraint Satisfaction Problems (CSPs) and MIN ONES. Fix a finite set G. Let
P = {P1, . . . , Pl} be such that each Pi is a subset of Gki where ki is called the arity
of Pi. Note that unlike the usual definition of CSPs, we do not allow shifts, namely:
for b1, . . . , bki ∈ G, Pi + (b1, . . . , bki) is not necessarily in P . Furthermore, predicates
are allowed to have different arities. Let kmax := maxi ki and kmin := mini ki. An
instance of CSP(P) is denoted by (V, C) where V is a set of n variables taking values in
G. C = {C1, . . . , Cm} is a set of m constraints such that each Ci is defined by its type ti ∈
{1, 2, . . . , l} (which represents the predicate corresponding to this constraint) and a tuple
of kti variables Ei = (ei,1, . . . , ei,kti ) ∈ V

kti . In all instances in the paper, each variable
appears at most once in each constraint. We sometimes abuse notation and regard Ei as
a subset of V with cardinality kti . We say that (V, C) is (s, α)-expanding if for any set of
s′ ≤ s constraints {Ci1 , . . . , Cis′} ⊆ C, |

⋃
1≤j≤s′ Eij | ≥ (

∑
1≤j≤s′ |Eij |)−α·s′. It is said to

be (s, α)-boundary expanding if for any set of s′ ≤ s constraints {Ci1 , . . . , Cis′} ⊆ C, the
number of variables appearing in exactly one constraint is at least (

∑
1≤j≤s′ |Eij |)−α · s′.

Note that in both definitions, a smaller value of α corresponds to a better expansion. It
is easy to see that (s, α)-expansion implies (s, 2α)-boundary expansion. An assignment
f : V → G satisfies constraint Ci if and only if (f(ei,1), . . . , f(ei,kti )) ∈ Pti . When G =
{0, 1}, any instance of CSP(P) is an instance of MIN ONES(P), where the goal is to find
an assignment f that satisfies every constraint and minimizes |f−1(1)|. k-HYPERGRAPH

VERTEX COVER problem corresponds to MIN ONES({P∨}) where P∨(x1, . . . , xk) = 1 if
and only if there is at least one 1 ≤ i ≤ k with xi = 1.
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Balanced Pairwise Independent Subsets and Distributions. Let G be a finite set with
|G| = q and k be a positive integer. Let P be a subset of Gk and µ be a distribution
supported on P . The distribution µ is said to be balanced if for all i = 1, 2, . . . , k and
g ∈ G, Pr(x1,...,xk)∼µ[xi = g] = 1

q
. It is called balanced pairwise independent if for all

i 6= j and g, g′ ∈ G, Pr(x1,...,xk)∼µ[xi = g and xj = g′] = 1
q2 . The predicate P is called

balanced (resp. balanced pairwise independent) if the uniform distribution on P induces a
balanced (resp. balanced pairwise independent) distribution on P k.

NEAREST CODEWORD. Fix the domain to be {0, 1}. The NEAREST CODEWORD

problem is defined as MIN ONES({Podd, Peven}), where x = (x1, . . . , xk) ∈ {0, 1}k be-
longs to Podd (resp. Peven) if and only if |{i ∈ [k] : xi = 1}| is an odd (resp. even) integer.
We slightly abuse the notation and let Podd (resp. Peven) represent the odd (resp. even)
predicates for all values of k. Let B = (L ∪ R,EB) be the parity-check graph of some
binary linear code with |L| = n and |R| = m. Let s ∈ {0, 1}n be the received vector (i.e.,
the codeword which is corrupted by the noisy channel). Denote R := {1, . . . ,m}. The
instance of the NEAREST CODEWORD problem given s is given by V = L and for each
1 ≤ i ≤ m, Ei = {v ∈ L : (v, i) ∈ EB}, and ti = odd if

∑
v:(v,i)∈EB sv = 1 (summation

over F2) and ti = even otherwise. In an integral assignment f : L → {0, 1}, f(v) = 1
means that the v-th bit is flipped. So if all the constraints are satisfied, (sv + f(v))v∈L
is a valid codeword and |f−1(1)| is its Hamming distance to s. We say that B is (s, α)-
expanding or (s, α)-boundary expanding if the corresponding NEAREST CODEWORD in-
stance is so.

Sherali-Adams Hierarchy. Given an instance (V, C) of CSP(P) and a positive integer
t ≤ |V |, we define a t-local distribution to be a collection {XS(α) ∈ [0, 1]}S⊆V,|S|≤t,α:S→G
satisfying X∅ = 1 and for any S ⊆ T ⊆ V with |T | ≤ t and for any α : S → G∑

β:T\S→G

XT (α ◦ β) = XS(α),

where α ◦ β denotes an assignment T → G whose projections on S and T \ S are α
and β respectively. Given t ≥ kmax, a solution to the t rounds of the Sherali-Adams
hierarchy is a t-local distribution. It is said to satisfy a constraint Ci if for any α : Ei → G,
(α(ei,1), . . . , α(ei,kti )) /∈ Pi implies that XEi(α) = 0 (i.e., the local distribution is only
supported on the satisfying partial assignments). The solution is balanced if for any v ∈ V
and g ∈ G, Xv(g) := X{v}(v 7→ g) = 1

|G| . If G = {0, 1}, we say that the solution is p-
biased if for any v ∈ V , Xv(1) = p.
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Given an LDPC code, let dmaxc be the largest degree of any check node. Fix a code
represented by its parity-check graph G = ([n] ∪ [m], E), and let N(j) be the set of all
neighbors of check node j. The LP relaxation of Feldman et al. is given by:

min
1

n

n∑
i=1

fi

subject to:

∀j ∈ [m],
∑
S∈Ej

wj,S = 1

∀(i, j) ∈ E,
∑

S∈Ej ,S3i

wj,S = fi

∀i ∈ [n], 0 ≤ fi ≤ 1

∀j ∈ [m], ∀S ∈ Ej, wj,S ≥ 0

where Ej is the set of all subsets of N(j) of even (resp. odd) cardinality depending on
whether the received vector has an even (resp. odd) number of 1’s in N(j). The following
claim shows that a small number of rounds of the Sherali-Adams hierarchy is at least as
strong as the basic LP of Feldman et al.

Claim 8.2.1. The LP corresponding to dmaxc rounds of the Sherali-Adams hierarchy is at
least as strong as the LP of Feldman et al.

Proof. To prove this claim, it is enough to map any feasible solution to the LP corre-
sponding to dmaxc rounds of the Sherali-Adams hierarchy into a feasible solution to the LP
of Feldman et al. with the same objective value. The map is the following:

• For every i ∈ [n], let fi = X{i}(1).

• For every j ∈ [m] and every S ⊆ N(j), let wj,S = XN(j)(α
S) where αS ∈

{0, 1}N(j) is the partial assignment defined by αSi = 1 if i ∈ S and αSi = 0 if
i ∈ N(j) \ S.
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Lasserre Hierarchy. Given an instance (V, C) of CSP(P) and an integer t ≤ |V |, a
solution to the t rounds of the Lasserre hierarchy is a set of vectors {VS(α)}S⊆V,|S|≤t,α:S→G,
such that there exists a 2t-local distribution {XS(α)} with the property: for any S, T ⊆ V
with |S|, |T | ≤ t and any α : S → G and β : T → G, we have that

〈VS(α), VT (α)〉 = XS∪T (α ◦ β),

if α and β are consistent on S ∩ T , and 〈VS(α), VT (α)〉 = 0 otherwise. The solution
satisfies a constraint or is balanced if the corresponding local distribution is so.

8.3 Solutions from Desired Structures

In this section, we show how to construct solutions to the Sherali-Adams / Lasserre hi-
erarchy for MIN ONES(P) from desired structures. Given an instance of MIN ONES(P)
where P = {P1, . . . , Pl} is a collection of predicates with Pi ⊆ {0, 1}ki , we want to con-
struct a solution to the Sherali-Adams / Lasserre hierarchy with small bias. However, in
order to obtain a solution to the Sherali-Adams / Lasserre hierarchy for general CSPs, most
current techniques [Sch08, GMT09, Tul09, Cha13] need a balanced pairwise independent
distribution, and the resulting solution is typically balanced as well. Since the domain G
is fixed to {0, 1}, a 1

2
-biased solution seems to be the best we can hope for; in fact, this

is what Schoenebeck [Sch08] does for k-HYPERGRAPH VERTEX COVER in the Lasserre
hierarchy thereby proving a gap of 2 (for any k ≥ 3).

To bypass this barrier, we introduce the technique of stretching and collapsing the
domain. Let G′ be a new domain with |G′| = q and fix a mapping φ : G′ → {0, 1}
(in every stretching in this paper, |φ−1(1)| = 1). For each predicate Pi, let P ′i be the
corresponding new predicate P ′i := {(g1, . . . , gki) ∈ (G′)ki : (φ(g1), . . . , φ(gki)) ∈ Pi}.
Let P ′ = {P ′1, . . . , P ′l }. Any instance (V, C) of MIN ONES(P) can be transformed to
the instance (V, C ′) of CSP(P ′) where variables in V can take a value from G′ and each
predicate Pi is replaced by the predicate P ′i . The next lemma shows that any solution to the
Sherali-Adams / Lasserre hierarchy for the new instance can be transformed to a solution
for the old instance by collapsing back the domain. For β : S → {0, 1}, let φ−1(β) be
{α : S → G′, φ(α(v)) = β(v) for all v ∈ S}.

Lemma 8.3.1. Suppose that {X ′S(α)} (resp. {V ′S(α)}) is a solution to the LP (resp. SDP)
corresponding to t rounds of the Sherali-Adams (resp. Lasserre) hiearchy for (V, C ′) and
that satisfies every constraint. Then, {XS(β)}|S|≤t,β:S→{0,1} (resp. {VS(β)}|S|≤t,β:S→{0,1})
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defined by

XS(β) =
∑

α∈φ−1(β)

X ′S(α)

(
resp. VS(β) =

∑
α∈φ−1(β)

V ′S(α)

)

is a valid solution to the t rounds of the Sherali-Adams (resp. Lasserre) hiearchy for (V, C)
that satisfies every constraint. Furthermore, if the solution to the new instance is balanced,
the obtained solution to the old instance is 1

q
-biased.

Proof. First, we prove the statment for the Sherali-Adams hierarchy.

Sherali-Adams. By definition, we have that X∅ = X ′∅ = 1, and XS(α) ≥ 0. Moreover,
for any S ⊆ T ⊆ V with |T | ≤ t and for any β : S → {0, 1}, we have that∑

γ:T\S→{0,1}

XT (β ◦ γ)

=
∑

γ:T\S→{0,1}

∑
α∈φ−1(β◦γ)

X ′T (α)

=
∑

β′∈φ−1(β)

∑
γ:T\S→{0,1}

∑
γ′∈φ−1(γ)

X ′T (β′ ◦ γ′)

=
∑

β′∈φ−1(β)

∑
γ:T\S→G′

X ′T (β′ ◦ γ′)

=
∑

β′∈φ−1(β)

X ′S(β′)

= XS(β).

Furthermore, if {X ′S(α)} is balanced, then for any v, Xv(1) =
∑

g∈φ−1(1) X
′
v(g) =

|φ−1(1)|
q

= 1
q
. This concludes the proof for the Sherali-Adams hierarchy.

Lasserre. Given a solution {V ′S(α)}|S|≤t,α:S→G to the t rounds of the Lasserre hierarchy,
let {X ′S(α)}|S|≤2t,α:S→G be the 2t-local distribution associated with {V ′S(α)}. Let the 2t-
local distribution {XS(β)}|S|≤2t,β:S→{0,1} be obtained from {X ′S(α)} as as done above for
the Sherali-Adams hierarchy. It is a valid 2t-local distribution. We claim that {XS(β)} is
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the local distribution associated with {VS(β)}. Fix S, T such that |S|, |T | ≤ t, β : S →
{0, 1} and γ : T → {0, 1}. By the definition of VS(β) and VT (γ), we have that

〈VS(β), VT (γ)〉 = 〈
∑

β′∈φ−1(β)

V ′S(β′),
∑

γ′∈φ−1(γ)

V ′T (γ′)〉

=
∑

β′∈φ−1(β)

∑
γ′∈φ−1(γ)

〈V ′S(β′), V ′T (γ′)〉.

If β and γ are inconsistent, then any β′ ∈ φ−1(β) and γ′ ∈ φ−1(γ) are inconsistent, and
hence the RHS is 0 as desired. If they are consistent, then the RHS is equal to∑

β′∈φ−1(β),γ′∈φ−1(γ) consistent
〈V ′S(β′), V ′T (γ′)〉

=
∑

α′∈φ−1(β◦γ)

X ′S∪T (α′) = XS∪T (β ◦ γ).

If {V ′S(α)} is balanced, by definition {X ′S(α)} is balanced, so the same proof for the
Sherali-Adams hierarchy shows that {VS(α)} and {XS(α)} are 1

q
-biased.

By Lemma 8.3.1 above, it suffices to construct a solution to the stretched instance.
Theorems 8.3.1 and 8.3.2 below show that if the predicates P1, . . . , Pl satisfy certain de-
sired properties and the instance is sufficiently expanding, there exists a balanced solution
to the Sherali-Adams / Lasserre hierarchy. The proof is close to [GMT09] for the Sherali-
Adams hierarchy and to [Sch08, Tul09, Cha13] for the Lasserre hierarchy. Compared
to their proofs for MAX CSP, we have to deal with 2 more issues. The first is that un-
like usual CSPs, our definition of MIN ONES(P) allows to use more than one predicate,
and predicates can have different arities. The second is that for our purposes, the solution
needs to be balanced (i.e.,Xv(g) = 1

|G| for all v, g). We handle those differences by natural
extensions of their techniques.

Theorem 8.3.1. Let G be a finite set, kmin ≥ 3, and P = {P1, . . . , Pl} be a collection of
predicates such that each Pi ⊆ Gki supports a balanced pairwise independent distribution
µi. Let (V, C) be an instance of CSP(P) such that C is (s, 2 + δ)-boundary expanding for
some 0 < δ ≤ 1

4
. Then, there exists a balanced solution to the δs

6kmax
rounds of the Sherali-

Adams hierarchy that satisfies every constraint in C.

We point out that the updated version [BGMT12] of [GMT09] shows that their con-
struction also works in the Sherali-Adams SDP hierarchy which is stronger than the origi-
nal Sherali-Adams hierarchy but weaker than Lasserre. Both Theorems 8.3.1 and 8.1.1
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hold for the Sherali-Adams SDP hierarchy as well. In the proofs of Theorems 8.3.1
and 8.1.1, we focus on the original Sherali-Adams hierarchy to make the presentations
simple.

Proof. The proof closely follows Theorem 4.3 of Georgiou, Magen, and Tulsiani [GMT09].
Their result, as a black-box, gives a solution to the Sherali-Adams hierarchy that satisfies
all the constraints. There are two additional things that we need to check:

• More than one predicate: Unlike usual CSPs, our definition of MIN ONES(P) allows
to use more than one predicate, and predicates can have different arities.

• Balanced solution: For our purposes, we need the solution to be balanced (i.e.,
Xv(g) = 1

|G| for all v and g).

The main part of their proof (Lemma 3.2) is robust to the two issues described above.
As many technical parts of the proof can be used as a black-box, we sketch the high-level
ideas of the proof and highlight the reason why it is robust to the two issues discussed
above. We give the following additional definitions for a CSP-instance after removing
some variables: Given an instance (V, C) of CSP(P) and a subset S ⊆ V , let C(S) denote
the set of all constraints that are entirely contained in S, namely: C(S) := {Ci : Ei ⊆ S}).
Let (V \S, C \C(S)) be the instance after removing S, namely: for each Ci ∈ C\C(S), the
set Ei is replaced by Ei ∩ (V \ S) and its predicate becomes the corresponding projection
of Pti on G|Ei∩(V \S)|.

Expansion Correction. Let S be a subset of V and C(S) = {Ci = (Ei, ti)}i=1,...,mS be
the constraints induced by S. Each predicate Pti is associated with a balanced pairwise
independent distribution µti . Perhaps the most natural way to combine these distributions
to define a local distribution on the assignments {α : S → G} is to take the (normalized)
product of all the distributions, i.e.,

Pr
S

[α] = (

mS∏
i=1

µti(α(ei,1), . . . , α(ei,kti )))/ZS,

ZS =
∑

α:S→G

mS∏
i=1

µti(α(ei,1), . . . , α(ei,kti )).

Call this distribution canonical for S. Clearly, any assignment α that has a positive prob-
ability will satisfy all constraints in C(S).
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For any subset S, we can define the canonical local distribution. But generally the
distributions will not be consistent (i.e., for some S ⊆ S ′, the canonical distribution on
S might be different from the marginal distribution on S obtained from the canonical
distribution on S ′). Since the canonical distribution on S ′ induces a local distribution on
any S ⊆ S ′, it might be possible that the canonical distributions of carefully chosen sets
are consistent and induce a local distribution for every set we are interested in.

Georgiou et al. [GMT09] define the canonical distribution on some family S̄ of sets
that satisfies the following conditions:

• Any S̄ ∈ S̄ satisfies |S̄| ≤ s
4
.

• For any set S ⊆ V with |S| ≤ δs/(6kmax), there is an S̄ ∈ S̄ such that S ⊆ S̄.

• For any S̄ ∈ S̄, the instance (V \ S̄, C \ C(S̄)), obtained by removing S̄ and its
induced constraints, is (3

4
s, 8

3
+δ)-boundary expanding. Recall that (V \ S̄, C\C(S̄))

is different from the induced instance (V \ S̄, C(V \ S̄)).

The existence of such an S̄ is shown in Theorem 3.1 of [BGMT12].8

Consistent Distributions. The final local distributions {XS(α)} are defined as follows:
for each S, find S̄ ∈ S̄ that contains S, and use the canonical distribution defined on S̄. It
only remains to show that for any S̄, S̄ ′ ∈ S̄, their canonical distributions are consistent.
The following lemma is the crucial part of [GMT09].

Lemma 8.3.2. [Lemma 3.2 of [GMT09]] Let (V, C) be a CSP-instance as above and S1 ⊆
S2 be two sets of variables such that both (V, C) and (V \ S1, C \ C(S1)) are (t, 2 + δ)-
boundary expanding for some δ ∈ (0, 1) and |C(S2)| ≤ t. Then for any α1 ∈ GS1 ,∑

α2∈GS2 ,α2(S2)=α1

Pr
S2

[α2] = Pr
S1

[α1].

Applying Lemma 8.3.2 two times (once with (S1, S2) ← (S̄, S̄ ∪ S̄ ′) and once with
(S1, S2) ← (S̄ ′, S̄ ∪ S̄ ′)), we conclude that both PrS̄ and PrS̄′ are marginal distributions
of PrS̄∪S̄′ , and hence should be consistent.

We check the two issues which are not explicitly dealt in their paper. First, we note
that PrS is defined as long as we have a distribution µi for each predicate Pi. The proof

8The corresponding theorem in the original version [GMT09] seems to have a minor error, so we here
follow the final version of their work.
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of Lemma 8.3.2 only depends on the fact that each µi is balanced pairwise independent
and not on any further structure of the predicates. Furthermore, predicates having different
arities are naturally handled as long as we have (t, 2+δ)-boundary expansion and pairwise
independent distributions. Therefore, having more than one predicate with different arities
does not affect the statement. Finally, we check that the resulting local distribution is bal-
anced. Fix any variable v ∈ V and let S̄ ∈ S̄ be a set containing v. Applying Lemma 8.3.2
with S1 ← {v} and S2 ← S̄ (Pr{v} is the uniform distribution on G since {v} does not
contain any constraint), we get that the canonical distribution on S̄ induces the uniform
distribution on G for v.

Theorem 8.3.2. Let G be a finite abelian group, kmin ≥ 3 and P = {P1, . . . , Pl} be a
collection of predicates such that each Pi is a coset of a balanced pairwise independent
subgroup of Gki . Let (V, C) be an instance of CSP(P) such that C is (s, 1 + δ)-expanding
for δ ≤ 1

4
. Then, there exists a balanced solution to the s

16
rounds of the Lasserre hierarchy

that satisfies every constraint in C.

Proof. The proof closely follows Theorem D.9 of Chan [Cha13], which generalizes the
work of Schoenebeck [Sch08] and Tulsiani [Tul09]. His result, as a black-box, gives a
solution to the Lasserre hierarchy that satisfies all the constraints. There are two additional
things that we need to check:

• More than one predicate: Unlike usual CSPs, our definition of MIN ONES(P) allows
to use more than one predicate, and predicates can have different arities.

• Balanced solution: For our purposes, we need the solution to be balanced (i.e.,
||Vv(g)||22 = 1

|G| for all v and g).

Since these are immediate consequences of the previous results, instead of proving
them in details, we describe the high-level ideas of the construction while focusing on the
points that we need to check.

Describing Each Predicate by Linear Equations. Let T be the unit circle in the com-
plex plane. Given a finite abelian group G, let Ĝ be the set of characters (homomorphisms
from G to T). Ĝ is again an abelian group (under pointwise multiplication) with the same
cardinality as G. The identity is the all-ones function 1, and the inverse of χ is 1

χ
= χ̄,

where ·̄ indicates the complex conjugate.

Consider ĜV which is isomorphic to ĜV . A character χ = (χv)v∈V ∈ ĜV is said to be
v-relevant if χv ∈ Ĝ is not the trivial character. The support of a character χ is defined to
be supp(χ) := {v ∈ V : χ is v-relevant}, and the weight of χ is |χ| := |supp(χ)|.
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A linear equation is a pair (χ, z) ∈ ĜV × T, and an assignment f : V → G satisfies
(χ, z) if and only if χ(f) :=

∏
v χv(f(v)) = z. Given a constraint Ci = (Ei, ti) where

the predicate Pti is a coset of a subgroup of Gki , there is a set of linear equations Li such
that an assignment f satisfies Ci if and only if it satisfies all the linear equations in Li. See
Section D.1 of Chan [Cha13] for technical details. Since each predicate is equivalently
formulated by a set of linear equations, having different predicates will not matter, as long
as the linear equations have the desired properties.

Resolution Complexity. Given an instance of MIN ONES (V, C) and the set L := ∪iLi
of linear equations describing all the predicates, its width-t resolution Lt is the smallest
set satisfying the following:

• L ⊆ Lt.

• (χ, z), (ψ, y) ∈ Lt and |χψ̄| ≤ t ⇒ (χψ̄, zȳ) ∈ Lt. Say (χψ̄, zȳ) is derived from
(χ, z) and (ψ, y).

Lt is said to refute L if (1, z) ∈ Lt with z 6= 1, and Lt is said to fix v ∈ V if there
exists (χ, z) ∈ Lt with supp(χ) = {v}.

Lemma 8.3.3. If (V, C) is (s, 1 + δ)-expanding for δ ≤ 1/4 and each predicate is a coset
of a balanced pairwise independent subgroup, then Ls/8 can neither refute L nor fix a
variable.

Proof. The proof is identical to that of Theorem 4.3 of Tulsiani, which Theorem D.8 of
Chan follows, except that they only prove the lemma for refutation. We give the high-level
ideas of the proof, pointing out that fixing a variable is also impossible.

Assume towards contradiction thatLt refutesL or fixes a variable, and let (χ∗, z∗) ∈ Lt
with |χ∗| ∈ {0, 1}. Without loss of generality, we can assume that (χ∗, z∗) is derived from
{(χi, zi)|1 ≤ i ≤ m}, where each (χi, zi) is derived only from Li. Let S∗ := {i : χi 6= 1}
and s∗ := |S∗|. The crucial property they use is that χi with i ∈ S∗ has weight at least 3,
which follows from the condition on predicates: Tulsiani requires a predicate to be a linear
code of dual distance at least 3, and Chan requires it to be a balanced pairwise independent
subgroup, which are indeed equivalent when G is a finite field.

If s∗ ≤ s, since the instance is (s, 1 + δ)-expanding, out of
∑

i∈S∗ |Ei| constraint-
variable pairs (i, ei,j)i∈S∗,1≤j≤kti , at most (2 + 2δ)s∗ pairs have another pair with the same
variable. Since each χi with i ∈ S∗ has |χi| ≥ 3 and contributes 3 such pairs, at least
3s∗ − (2 + 2δ)s∗ = (1 − 2δ)s∗ variables are covered exactly once by {supp(χi)}i∈S∗ ,
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making it impossible to derive any (χ, z) with |χ| < (1− 2δ)s∗. It shows that s∗ > s. The
original argument (Claim 4.4 of [Tul09]) assumed that every predicate is of the same arity,
but the above argument naturally adapted it to irregular arities.

Backtracking the derivations, we must have (χ∗, z∗) ∈ Ls/8, which is derived from
s
2
≤ s∗ ≤ s nontrivial characters from Li’s (Claim 4.5 of Tulsiani). Similar expansion /

minimum weight arguments again ensure that |χ∗| > s
8
, which results in a contradiction.

Solution and Balance. Given that Ls/8 does not refute L, Theorem D.5 of [Cha13] en-
sures that there exists a solution {VS(α)}|S|≤s/16,α:S→G to the s/16 rounds of the Lasserre
hierarchy that satisfies every constraint. Furthermore, one of his lemmas also proves that
for every v ∈ V and g ∈ G, ||Vv(g)||22 = 1

|G| using the fact that Ls/8 does not fix any
variable.

Lemma 8.3.4 (Proposition D.7 of [Cha13]). For S ⊆ V with |S| ≤ s/16, let

HS :=

{
β|β : S → G and β satisfies every

(χ, z) ∈ Ls/8 with supp(χ) ⊆ S

}
.

For any α : S → G,

||VS(α)||22 =
I[α ∈ HS]

|HS|
,

where I[·] is the indicator function.

Combining all three parts above, we have a balanced solution to the s
16

rounds of the
Lasserre hierarchy that satisfies every constraint.

8.4 Decoding Random (dv, dc)-LDPC Codes

In this section, we apply Theorems 8.3.1 and 8.3.2 to random (dv, dc)-LDPC codes. In
Section 8.4.1, we construct balanced pairwise independent distributions supported on even
and odd predicates for different arity values and complete the proof of Theorem 8.1.1 for
Sherali-Adams. In Section 8.4.2, we show that both even and odd predicates contain cosets
of balanced pairwise independent subgroups and introduce an additional technique based
on taking the direct-sum of cosets of subgroups to conclude the proof of Theorem 8.1.2
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for Lasserre. We will need the next two lemmas which show that with high probability, a
random (dv, dc)-LDPC code is almost regular and expanding.

Lemma 8.4.1. Consider the parity-check graph of a random (dv, dc)-LDPC code. With
high probability, every vertex on the left (resp. right) will have degree either dv or dv − 2
(resp. dc or dc − 2).

Proof. Let M := ndv = mdc. Fix a vertex v on the left. In order to have at most
dv − 2 neighbors, v needs to either have a neighbor with triple edges or two neighbors
with double edges. The probability of the first event is at most by m ·

(
dv
3

)
·
(
dc
3

)
· 3! ·

1
M(M−1)(M−2)

= O( 1
n2 ). The probability of the second event is at most bym2 ·

(
dv
4

)
·(
(
dc
2

)
)2 ·

4! · 1
M(M−1)(M−2)(M−3)

= O( 1
n2 ). By taking a union bound over all v, the probability that

there exists a vertex with at most dv − 2 different neighbors is O( 1
n
). The proof for the

right side is similar.

Lemma 8.4.2. Given any 0 < δ < 1/2, there exists η > 0 (depending on dc) such that the
parity-check graph of a random (dv, dc)-LDPC code is (ηn, 1 + δ)-expanding with high
probability.

Proof. Let k := dc. Fix a set S of s ≤ ηm vertices on the right for some η > 0 chosen
later. Suppose that the degree of each vertex in S is given. By the above lemma, with high
probability, each degree is either k or k−2. Let k̄ be the average degree of these s vertices,
and c̄ = k̄ − 1− δ. Fix a set Γ of c̄s vertices on the left.

For a vertex v ∈ S with degree k′, the probability that it has all k′ neighbors from
Γ is at most (2c̄s

n
)k
′ . If we condition that other vertices in S have neighbors in Γ, this

estimate only decreases. Therefore, the probability that the vertices in S have neighbors
only from the Γ is at most (2c̄s

n
)k̄s. Taking a union bound over

(
n
c̄s

)
≤ (ne

c̄s
)c̄s choices of

Γ, conditioned on any degrees of S, the probability of the bad event conditioned on any
sequence of degrees of S is at most

(
2c̄s

n
)k̄s · (ne

c̄s
)c̄s ≤ n(−1−δ)s(ks)(1+δ)s(2e)ks.

Taking a union bound over
(
m
s

)
≤
(
n
s

)
≤ ( en

s
)s choices for S, the probability that some

set S of size s becomes bad is at most ( s
n
)δs(k1+δ(2e)k+1)s. Let β = k1+δ(2e)k+1 so that

the above quantity becomes ( s
n
)δsβs = ( sβ

1/δ

n
)s. When we sum this probability over all
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s ≤ ηn, we have

ηn∑
s=1

(
sβ1/δ

n
)δs =

ln2 n∑
s=1

(
sβ1/δ

n
)δs +

∑
s=ln2 n+1

(
sβ1/δ

n
)δs

≤ O(
β1

nδ
ln2 n) +O((η · β1/δ)δ ln2 n).

The first term is o(1) for large n. The second term is also o(1) for η < 1/(β1/δ).

8.4.1 Distributions for Sherali-Adams

To construct a solution for the Sherali-Adams hierarchy using Theorem 8.3.1, we need
each P ′i ⊆ (G′)ki to support a balanced pairwise independent distribution. For any q ≥ 2
and k = q + 1, let G′ := {0, 1, . . . , q − 1} and φ : G′ → {0, 1} be defined by φ(0) = 1
and φ(g) = 0 for every g 6= 0. The odd and even predicates P ′odd and P ′even are defined by:
y ∈ P ′odd (resp. P ′even) if and only if |{i ∈ [k] : yi = 0}| is an odd (resp. even) integer.
The choice of k = q + 1 is optimal since, as shown in the following lemma, if k = q,
there is no balanced pairwise independent distribution that is supported on the even larger
predicate {y ∈ (G′)k : yi = 0 for some i} which contains P ′odd.

Lemma 8.4.3. Let G = {0, . . . , k − 1} be a finite set. There is no balanced pairwise
independent distribution ν on Gk where every atom (x1, . . . , xk) in the support has at
least one 0 coordinate.

Proof. Given x = (x1, . . . , xk) ∈ Gk, let |x| be the number of 0’s among x1, . . . , xk. The
fact that µ is balanced implies Ex∼µ[|x|] = 1, but the other requirement implies |x| ≥ 1
for any x in the support. Therefore, any x in the support satisfies |x| = 1. Fix any i 6= j.
If xi = 0, xj cannot be 0 and xi and xj are not pairwise independent.

Set p := 1/q. To construct a distribution on y ∈ (G′)k, we will show how to sample
x ∈ {0, 1}k. Given x, each yi is set to 0 if xi = 0 and uniformly sampled from {1, . . . , q−
1} otherwise. It is easy to see that when this distribution on x is (1 − p)-biased (i.e.
Pr[xi = 0] = p for all i) and pairwise independent (i.e. Pr[xi = xj = 0] = p2) for all
i 6= j), y becomes balanced pairwise independent. Furthermore, x and y have the same
number of 0’s. Therefore, it suffices to show how to sample a (1 − p)-biased pairwise
independent vector x.
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Odd predicate, Odd k ≥ 3, q = k−1. Let 0 := (0, . . . , 0), 1 = (1, . . . , 1) and ei be the
i-th unit vector. Sample x ∈ (G′)k from the distribution with probability mass function:
Pr[x = 0] = p2 and Pr[x = 1−ei] = 1−p2

k
for each i. Each support-vector has an odd

number of 0’s. For any i, Pr[xi = 0] = Pr[x = 1−ei] + Pr[x = 0] = 1−p2

k
+ p2 = p.

For any i 6= j, Pr[xi = xj = 0] = Pr[x = 0] = p2. This simple construction is optimal:
If k = q + 1 is even, the following lemma shows that there is no such balanced pairwise
independent distribution supported in P ′odd.

Lemma 8.4.4. Let G = {0, . . . , k − 2} be a finite set for even k. There is no balanced
pairwise independent distribution ν on Gk where every atom (x1, . . . , xk) in the support
has an odd number of zeros.

Proof. Assume for contradiction that such a µ exists. For odd 1 ≤ i ≤ k − 1, let ai be
the probability that the (x1, . . . , xk) sampled from µ has exactly i zeros. From balanced
pairwise independence, they should satisfy the following set of inequalities:

• Valid probability distribution: ∑
1≤i≤k−1,i odd

ai = 1.

• Balance: ∑
1≤i≤k−1,i odd

ai ·
i

k
=

1

k − 1

⇐⇒
∑

1≤i≤k−1,i odd
iai =

k

k − 1
.

• Pairwise independence: ∑
3≤i≤k−1,i odd

ai ·
i(i− 1)

k(k − 1)
=

1

(k − 1)2

⇐⇒
∑

3≤i≤k−1,i odd
i(i− 1)ai =

k

k − 1
.

Subtracting the first equation from the second, we get that∑
3≤i≤k−1,i odd

(i− 1)ai =
1

k − 1
.
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Subtracting k times this equation from the third equation above, we get that∑
3≤i≤k−1,i odd

(i− 1)(i− k)ai = 0,

which is contradiction since all ai ≥ 0.

Even Predicate, k ≥ 3, q = k − 1. Sample x ∈ (G′)k from the distribution with
probability mass function: Pr[x = 1−ei − ej] = p2 for each i 6= j and Pr[x = 1] =
1− p2

(
k
2

)
= 1−p

2
. Each support-vector has an even number of 0’s. For any i, Pr[xi = 0] =

Pr[∃j 6= i : x = 1−ei − ej] = p2(k − 1) = p. For i 6= j, Pr[xi = xj = 0] = Pr[x =
1−ei − ej] = p2.

Other values of k and q. If k ≥ 4 is an even integer, By Lemma , there is no balanced
pairwise independent distribution that is supported in the odd predicate when q = k − 1.
However, it is still possible to have such a distribution when q = k − 2 for both odd and
even predicates. In Lemma 8.4.5 below, we prove the existence of pairwise independent
distributions supported in the odd and even predicates for slightly smaller values of q (in
terms of k). These distributions will be used to handle instances where the constraints
have different arities.

Lemma 8.4.5. Let G = {0, 1, . . . , q−1} be a finite set. For the following combinations of
arity values k and alphabet size values q, each of the odd predicate and the even predicate
supports a balanced pairwise independent distribution on Gk: (i) Any even integer k ≥ 4
with q = k− 2, (ii) Any odd integer k ≥ 5 with q = k− 3 and (iii) Any even integer k ≥ 6
with q = k − 4.

Proof. We again construct each distribution by sampling x ∈ {0, 1}k first. y = (y1, . . . , yk) ∈
Gk is given

• For each i, if xi = 0, yi ← 0.

• If xi 6= 0, yi is chosen uniformly from {1, . . . , q − 1}. independently.

If x is q−1
q

-biased and pairwise independent on {0, 1}k, it is easy to check that y is balanced
pairwise indepedent on Gk. From now on, we show how to sample the vector x and prove
that it satisfies the desired properties.
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Even k ≥ 4, q = k− 2. We first deal with the odd predicate. Our strategy to sample x is
the following. Sample r ∈ {1, 3, k − 1} with probabilty a1, a3, ak−1 respectively. Sample
a set R uniformly from

({1,2,...,k}
r

)
and fix xi = 1 if and only if i ∈ R. The probabilities

a1, a3, ak−1 should satisfy the following three equations.

• Valid probability distribution:

a1 + a3 + ak−1 = 1.

•
(
q−1
q

)
-biased:

1

k
a1 +

(
k−1

2

)(
k
3

) a3 +
k − 1

k
ak−1 =

1

k − 2

⇐⇒ a1 + 3a3 + (k − 1)ak−1 =
k

k − 2
.

• Pairwise Independence:(
k−2

1

)(
k
3

) a3 +
k − 2

k
ak−1 = (

1

k − 2
)2

⇐⇒ 6a3 + (k − 1)(k − 2)ak−1 =
k(k − 1)

(k − 2)2
.

We have that

a1 =
2k3 − 13k2 + 25k − 12

2k3 − 12k2 + 24k − 16
,

a3 =
k − 1

2k2 − 8k + 8
,

and
ak−1 =

k − 3

k3 − 6k2 + 12k − 8

is the solution to the above system. They are well-defined and nonnegative for k ≥ 4.

For the even predicate, we can choose x as above, using r ∈ {0, 2, 4}.

• Valid probability distribution:

a0 + a2 + a4 = 1.
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•
(
q−1
q

)
-biased: (

k−1
1

)(
k
2

) a2 +

(
k−1

3

)(
k
4

) a4 =
1

k − 2

⇐⇒ 2a2 + 4a4 =
k

k − 2
.

• Pairwise Independence:

1(
k
2

)a2 +

(
k−2

2

)(
k
4

) a4 = (
1

k − 2
)2

⇐⇒ 2a2 + 12a4 =
k(k − 1)

(k − 2)2
.

We have that

a0 =
4k2 − 23k + 32

8k2 − 32k + 32
,

a2 =
2k2 − 5k

4k2 − 16k + 16
,

and

a4 =
k

8k2 − 32k + 32

is the solution to the above system. They are well-defined and nonnegative for k ≥ 4.

Odd k ≥ 5, q = k − 3. We can use the same framework as above, except that in every
equation, the denominator of the RHS is changed from k − 2 to k − 3.

For the even predicate,

a0 =
2k2 − 17k + 36

4k2 − 24k + 36
,

a2 =
k2 − 4k

2k2 − 12k + 18
,

and

a4 =
k

4k2 − 24k + 36
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is the solution to

a0 + a2 + a4 = 1

2a2 + 4a4 =
k

k − 3

2a2 + 12a4 =
k(k − 1)

(k − 3)2
.

They are well-defined and nonnegative for k ≥ 5.

For the odd predicate, we have that

a1 =
k3 − 8k2 + 16k

k3 − 7k2 + 15k − 9
,

a3 =
k2 − 4k

k3 − 9k2 + 27k − 27
,

and

ak =
k2 − 10k + 27

k4 − 10k3 + 36k2 − 54k + 27

is the solution to

a1 + a3 + ak = 1

a1 + 3a3 + kak =
k

k − 3

6a3 + k(k − 1)ak =
k(k − 1)

(k − 3)2
.

They are well-defined and nonnegative for k ≥ 5.

Even k ≥ 6, q = k − 4. We can use the same framework as above, except that in every
equation, the denominator of the RHS is changed from k − 3 to k − 4.

For the even predicate,

a0 =
4k2 − 45k + 128

8k2 − 64k + 128
,

a2 =
2k2 − 11k

4k2 − 32k + 64
,

and
a4 =

3k

8k2 − 64k + 128
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is the solution to

a0 + a2 + a4 = 1

2a2 + 4a4 =
k

k − 4

2a2 + 12a4 =
k(k − 1)

(k − 4)2
.

They are well-defined and nonnegative for k ≥ 6.

For the odd predicate, we have that

a1 =
2k3 − 23k2 + 75k − 48

2k3 − 20k2 + 64k − 64
,

a3 =
3k2 − 19k + 16

2k3 − 24k2 + 96k − 128
,

and

ak−1 =
k2 − 13k + 48

k4 − 14k3 + 72k2 − 160k + 128

is the solution to

a1 + a3 + ak = 1

a1 + 3a3 + (k − 1)ak =
k

k − 4

6a3 + (k − 1)(k − 2)ak =
k(k − 1)

(k − 4)2
.

They are well-defined and nonnegative for k ≥ 6.

The constructed distributions for the Sherali-Adams hierarchy are summarized in Ta-
ble 8.1.

Proof of Theorem 8.1.1. Consider a random (dv, dc)-LDPC code and fix δ = 1/8.
Lemma 8.4.1 and Lemma 8.4.2 ensure that with high probability, the degree of each check
node is either dc or dc−2 and there exists η > 0 such that the code is (ηn, 1+δ)-expanding,
and hence (ηn, 2+2δ)-boundary expanding. For any received vector, let (V, C) be the cor-
responding instance of NEAREST CODEWORD. Let q = dc − 3 (resp. dc − 4) if dc is odd
(resp. even). Stretch the domain from {0, 1} toG′ := {0, 1, . . . q−1}. The above construc-
tions show that for any k ∈ {dc, dc − 2} and type ∈ {even, odd}, Ptype ⊆ (G′)k supports
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Type
Arity dc odd (q = dc − 3) dc even (q = dc − 4)

k = dc k = dc − 2 k = dc k = dc − 2
Odd Lemma 8.4.5 (ii) Section 8.4.1 Lemma 8.4.5 (iii) Lemma 8.4.5 (i)
Even Lemma 8.4.5 (ii) Section 8.4.1 Lemma 8.4.5 (iii) Lemma 8.4.5 (i)

Table 8.1: Distributions for Sherali-Adams

a balanced pairwise independent distribution. Theorem 8.3.1 gives a balanced solution to
the 2δηn

6dc
= ηn

24dc
rounds of the Sherali-Adams hierarchy that satisfies every constraint in

the stretched instance. Lemma 8.3.1 transforms this solution to a 1
q
-biased solution to the

same number of rounds for the original NEAREST CODEWORD instance.

8.4.2 Subgroups for Lasserre

As in the Sherali-Adams hierarchy, to find a good solution in the Lasserre hierarchy, it
suffices to construct a stretched instance. To construct a solution in the Lasserre hierarchy
via Theorem 8.3.2, we need the stretched domain G′ to be a finite abelian group and each
stretched predicate P ′i to be a coset of a balanced pairwise independent subgroup of (G′)k.
We will first construct such predicates for q being any power of 2 and k = q+ 1. For such
q and k, let G′ := Fq and φ : G′ → {0, 1} be defined by φ(0) = 1 and φ(g) = 0 for every
g 6= 0. As for Sherali-Adams, the predicates P ′odd and P ′even are defined in the natural way,
namely: (x1, . . . , xk) ∈ P ′odd (resp. P ′even) if and only if |{i ∈ [k] : xi = 0}| is an odd
(resp. even) integer. We show that each of P ′odd and P ′even contains a coset of a balanced
pairwise independent subgroup of (G′)k.

Odd Predicate, k = 2i+1, q = k−1. For the odd predicate P ′odd, we actually show that
it contains a balanced pairwise independent subgroup of (G′)k. Let {αx+βy}α,β∈Fq be the
set of all q2 bivariate linear functions over Fq. LetE := {(0, 1)}∪{(1, a)}a∈Fq be the set of
q + 1 = k evaluation points. Our subgroup is defined by H ′ := {(αx+ βy)(x,y)∈E}α,β∈Fq .
Note that H ′ is a subgroup of (G′)k. In general, there are q + 1 distinct lines passing
through the origin in the F2

q-plane; our set E contains exactly one point from each of those
lines. The balanced pairwise independence of H ′ follows from Lemma 8.4.6.

Lemma 8.4.6. Let d ∈ N and E ⊆ Fdq \ {0} contain at most one point from each line
passing the origin. Then, the subgroup {(

∑d
i=1 αixi)(x1,...,xd)∈E}α1,...,αd∈Fq is balanced

pairwise independent.
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Proof. Let (b1, . . . , bd) 6= (c1, . . . , cd) ∈ E be two points not on the same line passing
through the origin. For balanced pairwise independence, we need (

∑
i αibi,

∑
i αici)α1,...,αd∈Fq

to be the uniform distribution on F2
q . Since there are exactly qd choices for the tuple

(α1, . . . , αd), for any β, γ ∈ Fq, it suffices to show that there exists qd−2 choices of the
tuple (α1, . . . , αd) ∈ Fq such that

∑
i αibi = β,

∑
i αici = γ. Since the two points are not

on the same line through the origin, there must be two indices i 6= j such that bicj 6= bjci.
Without loss of generality, assume that i = 1 and j = 2. For any choice of (α3, . . . , αd),
there is exactly one solution (α1, α2) to the system:

α1b1 + α2b2 = β −
d∑
i=3

αibi

α1c1 + α2c2 = γ −
d∑
i=3

αici

The next lemma concludes the analysis of the odd predicate.

Lemma 8.4.7. Each element of H ′ has an odd number of 0 coordinates.

Proof. Recall that k = q + 1 with q a power of 2 and G′ := Fq. Our set of evaluation
points is defined by

E := {(0, 1)} ∪ {(1, a)}a∈Fq
and our subgroup H ′ of (G′)k is defined by

H ′ := {(αx+ βy)(x,y)∈E}α,β∈Fq

Let hα,β := (αx + βy)(x,y)∈E be any element of H ′ (where α, β ∈ Fq). The fact that
hα,β has an odd number of 0 coordinates can be seen by distinguishing the following three
cases:

• For α = β = 0: hα,β = (0, 0, . . . , 0), which has k 0 coordinates, and k is set to be
an odd integer.

• For β = 0 and α 6= 0: (0, 1) is the unique zero of the function αx+ βy in E.

• For β 6= 0: (1, α/β) is the unique zero of the function αx+βy inE.

183



Even Predicate, k = 2i + 1, q = k − 1. Dealing with P ′even is more difficult, since
P ′even will not contain any subgroup: this can be seen by observing that the zero element
(0, 0, . . . , 0) ∈ (G′)k has an odd number of 0 coordinates and should be in any subgroup.
Instead, we show that P ′even will contain a coset of a balanced pairwise independent sub-
group. As in the above case of the odd predicate, our subgroup H ′ will be of the form
{(αx + βy)(x,y)∈E′}α,β∈Fq , for some subset E ′ ⊆ F2

q of q + 1 = k evaluation points. As
before, the set E ′ will contain exactly one non-zero point on each line passing through the
origin and hence balanced pairwise independence will follow from Lemma 8.4.6. More-
over, the setE ′ will have the property thatH ′−(1, 1, . . . , 1) ⊆ P ′even; i.e, for any α, β ∈ Fq,
there is an even number of points (x, y) ∈ E ′ satisfying the equation αx + βy = 1. For
example, if α = β = 0, no point satisfies this equation. If at least one of α, β is nonzero,
then {αx+βy = 1}(α,β)∈F2

q\{(0,0)} consists of all (q2−1) distinct lines not passing through
the origin. Thus, we set E ′ := E \ {0} where E is the set which is guaranteed to exist by
Lemma 8.4.8.

Lemma 8.4.8. For every q that is a power of 2, there is a subset E ⊆ F2
q containing the

origin (0, 0) such that |E| = q + 2 and every line in the F2
q-plane contains either 0 or 2

points in E.

Proof. Consider the map h : Fq → Fq given by h(a) = a2 + a. Since h(a) = h(a + 1)
for all a ∈ Fq, we can see that h is two-to-one. Hence, there exists η ∈ Fq such that the
polynomial g(a) = a2+a+η has no roots in Fq. Fix such an η. Define the map f : Fq → Fq
by f(a) = (g(a))−1 for all a ∈ Fq. Note that since g has no roots in Fq, f is well defined
and non-zero on Fq. Now let E := {(0, 0)} ∪ {(0, 1)} ∪ {f(a)(1, a) : a ∈ Fq}. We next
argue that every line l in F2

q contains either 0 or 2 points in E. We distingish several cases:

• l contains the origin (0, 0): If l is a vertical line, then it has the form l : (x = 0)
and (0, 1) is the only other point of E that lies on l. Henceforth, assume that l is
non-vertical. Then, it has the form l : (y = αx) for some α ∈ Fq. In this case, the
unique other point of E that lies on l is f(α)(1, α).

• l doesn’t contain (0, 0) but contains (0, 1): Thus, it is of the form l : (y = αx + 1)
for some α ∈ Fq. Then, a point f(a)(1, a) lies on l if and only if af(a) = αf(a) + 1
which is equivalent to a = α + g(a). This means that a is a root of the polynomial
g(a) + α − a = a2 + η + α. By Lemma 8.4.9 below, this polynomial has a unique
root (of multiplicity 2) in Fq. So l contains exactly 2 points in E.

• l contains neither (0, 0) nor (0, 1): If l is a vertical line, then it has the form l :
(x = β) for some β ∈ Fq \ {0}. Then, a point f(a)(1, a) lies on l if and only
if f(a) = β, which is equivalent to g(a) = β−1 (since β 6= 0). This means that
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a is a root of the polynomial g(a) − β−1 = a2 + a + η − β−1. By Lemma 8.4.9
below, this polynomial has either 0 or 2 roots in Fq. Hence, l contains either 0 or
2 points in E. Henceforth, assume that l is non-vertical. Then, it has the form
l : (y = αx+ β) for some α ∈ Fq and β ∈ Fq \ {0, 1}. Then, a point f(a)(1, a) lies
on l if and only if af(a) = αf(a) + β, which is equivalent to a = α + βg(a). This
is equivalent to g(a) = a/β − α/β. This means that a is a root of the polynomial
g(a)− a/β+α/β = a2 + a(1− 1/β) + η+α/β. By Lemma 8.4.9 below and since
β 6= 1, this polynomial has either 0 or 2 roots in Fq. So l contains either 0 or 2 points
in E.

Lemma 8.4.9. Let q be a power of 2. Then, a quadratic polynomial p(a) = a2 + c1a+ c0

over Fq has a unique root (of multiplicity 2) if and only if c1 = 0.

Proof. If p(a) has a unique root λ ∈ Fq, then (a − λ) divides p(a) and hence p(a) =
(a−λ)2 = a2−2λa+λ2. Since Fq has characteristic 2, we get that p(a) = a2 +λ2 and we
conclude that c1 = 0. Conversely, assume that p(a) = a2 + c0 for some c0 ∈ Fq. Since Fq
has characteristic 2, the map κ : Fq → Fq given by κ(a) = a2 is a bijection. Hence, there
exists λ ∈ Fq such that κ(λ) = λ2 = c0. Using again the fact that Fq has characteristic
2 , we conclude that p(a) = a2 − λ2 = (a − λ)2 and hence p(a) has a unique root (of
multiplicity 2) in Fq.

Even Predicate, q = 2i, k = 2q. Since a check node in a random (dv, dc)-LDPC code
has degree dc or dc − 2, we need to construct even and odd predicates for both arities dc
and dc−2 and over the same alphabet. We first construct an additional even predicate with
arity k = 2q based on trivariate linear forms.

Lemma 8.4.10. Let q be a power of 2 and k = 2q. There exists a subgroup of Fkq such that
every element in the subgroup contains an even number of 0 coordinates.

Proof. Our subgroup H ′ will be of the form {(αx + βy + γz)(x,y,z)∈E}α,β,γ∈Fq , for some
subset E ⊆ F3

q of 2q = k evaluation points. The set E ⊆ F3
q is given by

E := {(1, a, a) : a ∈ Fq} ∪ {(0, b, b+ 1) : b ∈ Fq}.

Clearly, |E| = 2q. The lemma follows from Claim 8.4.11 and Claim 8.4.12 below.

Claim 8.4.11. Every trivariate linear form (αx + βy + γz) has either 0, 2, q or 2q roots
in E (which are all even integers).
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Proof. Let ψα,β,γ be a fixed trivariate Fq-linear form, for some α, β, γ ∈ Fq. Let E1 :=
{(1, a, a) : a ∈ Fq} and E2 := {(0, b, b+ 1) : b ∈ Fq}. We distinguish two cases:

• Case 1: β + γ 6= 0 in Fq. Then, ψα,β,γ(1, a, a) = 0 if and only if a(β + γ) = −α,
which is equivalent to a = −(β + γ)−1α. Hence, ψα,β,γ has exactly one root in E1.
Moreover, ψα,β,γ(0, b, b+ 1) = 0 if and only if b(β + γ) = −γ, which is equivalent
to b = −(β + γ)−1α3. Hence, ψα,β,γ has exactly one root in E2. So we conclude
that in this case ψα,β,γ has exactly 2 roots in E = E1 ∪ E2.

• Case 2: β + γ = 0 in Fq. Then, ψα,β,γ(1, a, a) = 0 if and only if a(β + γ) = −α,
which is equivalent to α1 = 0. Hence, ψα,β,γ has either 0 roots in E1 (if α 6= 0) or q
roots inE1 (if α = 0). Moreover, ψα,β,γ(0, b, b+1) = 0 if and only if b(β+γ) = −γ,
which is equivalent to γ = 0. Hence, ψα,β,γ has either 0 roots in E2 (if γ 6= 0) or q
roots in E2 (if γ = 0). So we conclude that in this case ψα,β,γ has either 0, q or 2q
roots in E = E1 ∪ E2.

Claim 8.4.12. H ′ is a balanced pairwise independent subgroup of Fkq .

Proof. Applying Lemma 8.4.6 with d = 3, it is enough to show that any two distinct
vectors in E are linearly-independent over Fq. To show this, assume for the sake of con-
tradiction that there exist v1 6= v2 ∈ Fq and a scalar β ∈ Fq such that v2 = βv1. We
distinguish three cases:

• v1, v2 ∈ E1. Then, v1 = (1, a1, a1 + 1) and v2 = (1, a2, a2 + 1) for some a1 6= a2 ∈
Fq. Then, v2 = βv1 implies that β = 1 and hence a2 = a1, a contradiction.

• v1, v2 ∈ E2. Then, v1 = (0, b1, b1+1) and v2 = (0, b2, b2+1) for some b1 6= b2 ∈ Fq.
Then, v2 = βv1 implies that β = 1 and b1 = b2, a contradiction.

• v1 ∈ E1 and v2 ∈ E2. Then, v1 = (1, a, a) and v2 = (0, b, b+ 1) for some a, b ∈ Fq.
Then, v2 = βv1 implies that β = 0 and hence that both b = 0 and b + 1 = 0, a
contradiction.
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Type
Arity

q + 1 2q dc − 2 = 3q + 1 dc = 3q + 3

Odd Lem. 8.4.7 (H1) H1 ⊕H3 H1 ⊕H1 ⊕H1

Even Lem. 8.4.8 (H2) Lem. 8.4.10 (H3) H2 ⊕H3 H1 ⊕H1 ⊕H2

Table 8.2: Subgroups for Lasserre

Direct sums of cosets of subgroups. For any q = 2i, we constructed 3 cosets of sub-
groups: H1 ⊆ Fq+1

q contained in the odd predicate, H2 ⊆ Fq+1
q contained in the even

predicate, H3 ⊆ F2q
q contained in the even predicate. Any direct sum of them gives a coset

of a subgroup of Fkq with k being the sum of the individual arities. If we add one coset
contained in the even predicate and one contained in the odd predicate, the direct sum
will be contained in the odd predicate. On the other hand, if we add two cosets that are
contained in the same (even or odd) predicate, the direct sum will be contained in the even
predicate. For dc = 3q + 3, we use such direct sums to construct the desired even and odd
predicates for arities dc and dc − 2 as follows:

• H1 ⊕H1 ⊕H1: A coset of a subgroup of F3q+3
q , contained in the odd predicate.

• H1 ⊕H1 ⊕H2: A coset of a subgroup of F3q+3
q , contained in the even predicate.

• H1 ⊕H3: A coset of a subgroup of F3q+1
q , contained in the odd predicate.

• H2 ⊕H3: A coset of a subgroup of F3q+1
q , contained in the even predicate.

The constructed subgroups for the Lasserre hierarchy are summarized in Table 8.2.

Proof of Theorem 8.1.2. Consider a random (dv, dc)-LDPC code when dc = 3 · 2i + 3
and fix δ = 1/8, q = 2i = dc−3

3
. Lemmas 8.4.1 and 8.4.2 ensure that with high probability,

each check-degree is either dc or dc − 2 and the code is (ηn, 1 + δ)-expanding for some
η > 0. For any received vector, let (V, C) be the corresponding instance of NEAREST

CODEWORD. Stretch the domain from {0, 1} to G′ := Fq. The above constructions show
that for any k ∈ {dc, dc − 2} and type ∈ {even, odd}, Ptype ⊆ (G′)k is a coset of a
balanced pairwise independent subgroup. Theorem 8.3.2 gives a balanced solution to the
ηn
16

rounds of the Lasserre hierarchy that satisfies every constraint in the stretched instance.
Lemma 8.3.1 transforms this solution to a 1

q
-biased solution to the same number of rounds

for the original NEAREST CODEWORD instance.
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8.5 Hypergraph Vertex Cover

The result for k-HYPERGRAPH VERTEX COVER will follow from the machinery and pred-
icates that we constructed in Sections 8.3 and 8.4. We first restate Theorem 8.1.3.

Theorem 8.5.1 (Restatement of Theorem 8.1.3). Let k = q + 1 where q is any prime
power. For any ε > 0, there exist β, η > 0 (depending on k) such that a random k-uniform
hypergraph with n vertices and m = βn edges, simultaneously satisfies the following two
conditions with high probability.

• The integral optimum of k-HYPERGRAPH VERTEX COVER is at least (1− ε)n.

• There is a solution to the ηn rounds of the Lasserre hierarchy of value 1
k−1

n.

In the rest of this section, we prove Theorem 8.5.1. Fix k such that q = k−1 is a prime
power. Given an instance of k-HYPERGRAPH VERTEX COVER, which is an instance of
MIN ONES({P∨}), we stretch the domain from {0, 1} to Fq by the map φ : Fq → {0, 1}
with φ(0) = 1, φ(g) = 0 for g 6= 0. Then the corresponding predicate P ′∨ ⊆ Fkq is
a tuple of k elements from Fkq that has at least one zero. We show that P ′∨ contains a
pairwise independent subgroup H ′ of Fkq . Indeed, we use the same H ′ that was used for
the odd predicate for random LDPC codes, i.e., H ′ := {(αx + βy)(x,y)∈E}α,β∈Fq where
E := {(0, 1)} ∪ {(1, a)}a∈Fq . In Section 8.4.2, we proved that H ′ is balanced pairwise
independent and always has an odd number of zeros when k is odd. Here we allow k to
be even so this is not true, but we still have that any element of H ′ has at least one zero
(indeed, the only element in H that does not have exactly one zero is (0, 0, . . . , 0), which
has k zeros). This constructs the desired predicate for P ′∨. Given this predicate, the same
technique of stretching the domain, constructing a Lasserre solution by Theorem 8.3.2,
and collapsing back the domain using Lemma 8.3.1 gives a solution to the Lasserre hi-
erarchy that is 1

k−1
-biased. Lemma 8.5.1 below, which ensures that random k-uniform

hypergraphs have a large integral optimum and are highly expanding for some fixed num-
ber of hyperedges, concludes the proof of Theorem 8.5.1.

Lemma 8.5.1. Let k ≥ 3 be a positive integer and ε, δ > 0. There exists η ≤ β (depending
on k) such that a random k-uniform hypergraph (V,E) with βn edges, where each edge ei
is sampled from

(
V
k

)
with replacement, has the following properties with high probability.

• It is (ηn, k − 1− δ)-expanding.

• Every subset of εn vertices contains a hyperedge. Therefore, the optimum of k-
HYPERGRAPH VERTEX COVER is at least (1− ε)n.
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Proof. The proof uses standard probabilistic arguments and can be found in previous
works [ACG+10, Tul09]. Fix a subset S ⊆ V of size εn. The probability that one hy-
peredge is contained in S is (

εn
k

)(
n
k

) ≥ (εn/k)k

(en/k)k
= (ε/e)k.

The probability that S does not contain any edge is at most

(1− (ε/e)k)βn ≤ exp(−(ε/e)kβn).

Since there are
(
n
εn

)
≤ (e/ε)εn = exp(εn(1 + log(1/ε))) choices for S, if β > (e/ε)k, with

high probability, every subset of εn vertices contains a hyperedge.

Now we consider the probability that a set of s hyperedges contains at most cs vari-
ables, where c = k − 1− δ. This is upper bounded by(

n

cs

)
·
((cs

k

)
s

)
· s!
(
βn

s

)
·
(
n

k

)−s
,

(
(
n
cs

)
for fixing variables to be covered,

((csk )
s

)
for assigning them to s hyperedges, s!

(
βn
s

)
for a set of s hyperedges) which is at most

(s/n)δs(e2k+1−δk1+δβ)s ≤ (s/n)δsβ5s = (
sβ5/δ

n
)δs.

By summing the probability over s = 1, . . . , ηn, the probability that it is not (ηn, k−1−δ)-
expanding is

ηn∑
s=1

(
sβ5/δ

n
)δs =

ln2 n∑
s=1

(
sβ5/δ

n
)δs +

∑
s=ln2 n+1

(
sβ5/δ

n
)δs

≤ O(
β5

nδ
ln2 n) +O((η · β5/δ)δ ln2 n).

The first term is o(1) for large n. The second term is also o(1) for η < 1/(β5/δ).

8.6 Discussion

In this chapter, we showed that fairly powerful extensions of LP decoding, based on the
Sherali-Adams and Lasserre hierarchies, fail to correct much more errors than the basic
LP-decoder.
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It would be interesting to prove analogous lower bound for LDPC codes whose adja-
cency graph has large girth. Such codes have been studied in some previous works on
LP decoding, e.g., [Fel03] and [ADS12]. Note that the adjacency graph of random LDPC
codes has small girth with high probability.

Finally, it would be very interesting to understand whether LP/SDP hierarchies can
come close to capacity on irregular ensembles [RSU01] or on spatially-coupled codes
[KRU12]. For the latter, some limitations of the base LP have been shown in [BGU14],
but the performance of LP/SDP hierarchies remains open.
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Part III

Coloring
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Chapter 9

Coloring Overview

9.1 Introduction

Coloring (hyper)graphs is one of the most important and well-studied tasks in discrete
mathematics and theoretical computer science. A K-uniform hypergraph G = (V,E) is
said to be χ-colorable if there exists a coloring c : V 7→ {1, . . . , χ} such that no hyperedge
is monochromatic, and such a coloring c is referred to as a proper χ-coloring. Graph and
hypergraph coloring has been the focus of active research in both fields, and has served as
the benchmark for new research paradigms such as the probabilistic method (Lovász local
lemma [EL75]) and semidefinite programming (Lovász theta function [Lov79]).

While such structural results are targeted towards special classes of hypergraphs, given
a general χ-colorable K-uniform hypergraph, the problem of reconstructing a χ-coloring
is known to be a hard task. Even assuming 2-colorability, reconstructing a proper 2-
coloring is a classic NP-hard problem for K ≥ 3. Given the intractability of proper
2-coloring, two notions of approximate coloring of 2-colorable hypergraphs have been
studied in the literature of approximation algorithms. The first notion, called MIN COL-
ORING, is to minimize the number of colors while still requiring that every hyperedge be
non-monochromatic. The second notion, called MAX 2-COLORING allows only 2 colors,
but the objective is to maximize the number of non-monochromatic hyperedges.1

Even with these relaxed objectives, the promise that the input hypergraph is 2-colorable
seems grossly inadequate for polynomial time algorithms to exploit in a significant way.
For MIN COLORING, given a 2-colorable K-uniform hypergraph, the best known algo-

1The maximization version is also known as MAX-SET-SPLITTING, or more specifically MAX k-SET-
SPLITTING when considering K-uniform hypegraphs, in the literature.
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rithm uses O(n1− 1
K ) colors [CF96, AKMH96], which tends to the trivial upper bound n

as K increases. This problem has been actively studied from the hardness side, motivating
many new developments in constructions of probabilistically checkable proofs. Coloring
2-colorable hypergraphs withO(1) colors was shown to be NP-hard forK ≥ 4 in [GHS02]
and K = 3 in [DRS05]. An exciting body of recent work has pushed the hardness beyond
poly-logarithmic colors [DG13, GHH+14, KS14b, Hua15]. In particular, [KS14b] shows
quasi-NP-hardness of 2(logn)Ω(1)-coloring a 2-colorable hypergraph (very recently the ex-
ponent was shown to approach 1/10 in [Hua15]). This situation contrasts with graphs
(K = 2) where it is not known to be hard to color 3-colorable graphs with just 5 colors
unless we assume much stronger conjectures [DMR09].

The hardness results for MAX 2-COLORING show an even more pessimistic picture,
wherein the naive random assignment (randomly give one of two colors to each ver-
tex independently to leave a (1

2
)K−1 fraction of hyperedges monochromatic in expecta-

tion), is shown to have the best guarantee for a polynomial time algorithm when K ≥ 4
(see [Hås01]).

Given these strong intractability results, it is natural to consider what further relax-
ations of the objectives could lead to efficient algorithms. For maximization versions,
Austrin and Håstad [AH13] proved that (almost2) 2-colorability is useless (in a formal
sense that they define) for any Constraint Satisfaction Problem (CSP) that is a relaxation
of 2-coloring [Wen14]. Therefore, it seems more natural to find a stronger promise on the
hypergraph than mere 2-colorability that can be significantly exploited by polynomial time
coloring algorithms for the objectives of MIN COLORING and MAX 2-COLORING. This
motivates our main question “how strong a promise on the input hypergraph is required
for polynomial time algorithms to perform significantly better than naive algorithms for
MIN COLORING and MAX 2-COLORING?”

There is a very strong promise on K-uniform hypergraphs which makes the task of
proper 2-coloring easy. If a hypergraph is K-partite (i.e., there is a K-coloring such that
each hyperedge has each color exactly once), then one can properly 2-color the hypergraph
in polynomial time. The same algorithm can be generalized to hypergraphs which admit
a c-balanced coloring (i.e., c divides K and there is a K-coloring such that each hyper-
edge has each color exactly K

c
times). This can be seen by random hyperplane rounding

of a simple SDP, or even simpler by solving a homogeneous linear system and iterat-
ing [Alo14], or by a random recoloring method analyzed using random walks [McD93].
In fact, a proper 2-coloring can be efficiently achieved assuming that the hypergraph ad-
mits a fair partial 2-coloring, namely a pair of disjoint subsetsA andB of the vertices such

2We say a hypergraph is almost χ-colorable for a small constant ε > 0, there is a χ-coloring that leaves
at most ε fraction of hyperedges monochromatic.
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that for every hyperedge e, |e ∩ A| = |e ∩B| > 0 [McD93].

The promises on structured colorings that we consider in this part are natural relax-
ations of the above strong promise of a perfectly balanced (partial) coloring.

• A hypergraph is said to have discrepancy ` when there is a 2-coloring such that in
each hyperedge, the difference between the number of vertices of each color is at
most `.

• A χ-coloring (χ ≤ K) is called rainbow if every hyperedge contains each color at
least once.

• A χ-coloring (χ ≥ K) is called strong if every hyperedge contains K different
colors.

These three notions are interesting in their own right, and have been independently
studied. Discrepancy minimization has recently seen different algorithmic ideas [Ban10,
LM12, Rot14] to give constructive proofs of the classic six standard deviations result of
Spencer [Spe85]. Rainbow coloring admits a natural interpretation as a partition of V
into the maximum number of disjoint vertex covers, and has been actively studied for
geometric hypergraphs due to its applications in sensor networks [BPRS13]. Strong col-
oring is closely related to graph coloring by definition, and is known to capture various
other notions of coloring [AH05]. It is easy to see that `-discrepancy (` < K), χ-rainbow
colorability (2 ≤ χ ≤ K), and χ-strong colorability (K ≤ χ ≤ 2K − 2) all imply 2-
colorability. For odd K, both (K + 1)-strong colorability and (K − 1)-rainbow colorabil-
ity imply discrepancy-1, so strong colorability and rainbow colorability seem stronger than
low discrepancy.

9.2 Our Results

We study both algorithmic and hardness results for MIN COLORING and MAX 2-COLORING

under these strong promises.

9.2.1 MIN COLORING

For MIN COLORING, we show that all three promises lead to a better coloring.
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Theorem 9.2.1. Consider any K-uniform hypergraph H = (V,E) with n vertices and
m edges. For any ` < O(

√
K), If H has discrepancy-`, (K − `)-rainbow colorable, or

(K + `)-strong colorable, one can color H with Õ((m
n

)
`2

K2 ) ≤ Õ(n
`2

K ) colors.

These results significantly improve the current best Õ(n1− 1
K ) colors that assumes only

2-colorability. Our techniques give slightly better results depending on the promise —
see Theorem 11.3.1.

We also show strong hardness results. Given a hypergraph H = (V,E) and a subset
I ⊆ V , we say that I induces a hyperedge e when e ⊆ I . The hypergraph induced by
I is (I, EI) where EI is the set of hyperedges induced by I . The following is our main
theorem. Note that in any result in this section that guarantees a coloring with some desired
properties in the completeness case, each color contains the same fraction of vertices.

Theorem 9.2.1. For any ε > 0 and Q, k ≥ 2, given a Qk-uniform hypergraph H =
(V,E), it is NP-hard to distinguish the following cases.

• Completeness: There is a k-coloring c : V → [k] such that for every hyperedge
e ∈ E and color i ∈ [k], e has at least Q− 1 vertices of color i.

• Soundness: Every I ⊆ V of measure ε induces at least a fraction εOQ,k(1) of hy-
peredges. In particular, there is no independent set of measure ε, and every b1

ε
c-

coloring of H induces a monochromatic hyperedge.

Fixing Q = 2 gives a hardness of rainbow coloring with K optimized to be 2k.

Corollary 9.2.2. For all integers c, k ≥ 2, given a 2k-uniform hypergraphH , it is NP-hard
to distinguish whether H is rainbow k-colorable or is not even c-colorable.

On the other hand, fixing k = 2 gives a strong hardness result of discrepancy minimiza-
tion (with 2 colors). A coloring is said to have discrepancy ∆ when in each hyperedge,
the difference between the maximum and the minimum number of occurrences of a single
color is at most ∆.

Corollary 9.2.3. For any c,Q ≥ 2, given a 2Q-uniform hypergraph H = (V,E), it is NP-
hard to distinguish whetherH is 2-colorable with discrepancy 2 or is not even c-colorable.

The above result strengthens the result of Austrin et al [AGH14] that shows hardness
of 2-coloring in the soundness case. However, their result also holds in (2Q+ 1)-uniform
hypergraphs with discrepancy 1, which is not covered by the results in this thesis.
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The algorithmic and hardness results of highly structured hypergraphs are summarized
in Table 9.1. It is worth emphasizing that prior to this work, even hardness of 2-coloring a
rainbow 3-colorable hypergraph was not known. Indeed such a result seemed out of reach
of the sort of Fourier-based PCP techniques used for hardness of hypergraph coloring in
[GHS02] and follow-ups. In this part we leverage invariance principle based techniques
to analyze test distributions that ensure balanced rainbow colorability.One of our contri-
butions is to distill a general recipe for combining test distributions with suitable outer
PCPs (various forms of smooth LABEL COVER) to establish such inapproximability re-
sults. This makes our approach quite flexible and can also be readily applied to several
other problems as described in Section 9.2.1.

Promised Coloring Structure Algorithm Hardness
K-partite 2-colorable Not rainbow K-colorable

(Almost/UG) Not weak O(1)-colorable
Rainbow (K − 1)-colorable Õ(n1/K)-colorable (Almost) Not weak O(1)-colorable

Rainbow K
2 -colorable Not weak O(1)-colorable

2-colorable with perfect balance 2-colorable
2-colorable with discrepancy 1 Õ(n1/K)-colorable Not 2-colorable
2-colorable with discrepancy 2 Õ(n4/K)-colorable Not weak O(1)-colorable

Table 9.1: Summary of algorithmic and hardness results for MIN COLORING a highly
structured K-uniform hypergraph. Almost means that ε > 0 fraction of vertices and
incident hyperedges must be deleted to have the structure. UG indicates that the result is
based on the Unique Games Conjecture. The results of this thesis are in boldface.

HYPERGRAPH VERTEX COVER. Rainbow k-coloring has a tight connection to HY-
PERGRAPH VERTEX COVER, because it partitions the set of vertices into k disjoint vertex
covers. In particular, Corollary 9.2.2 implies that K-HYPERGRAPH VERTEX COVER is
NP-hard to approximate within a factor of (K

2
− ε), but the better inapproximability factor

of (K − 1− ε) is already established by the classical result of Dinur et al [DGKR05]. We
give the first analytic proof of the same theorem, with two slight improvements: the size
of the minimum vertex cover in the completeness case is improved to 1

K−1
from ( 1

K−1
+ε),

and in the soundness case every set of measure ε induces εOK(1) fraction of hyperedges.

Theorem 9.2.4. For any ε > 0 and K ≥ 3, given a K-uniform hypergraph H = (V,E),
it is NP-hard to distinguish the following cases.

• Completeness: There is a vertex cover of measure 1
K−1

.
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• Soundness: Every I ⊆ V of measure ε induces at least a fraction εOK(1) of hyper-
edges.

Bansal and Khot [BK10] and Sachdeva and Saket [SS13] focused on almost rainbow
k-colorable hypergraphs (where one is allowed to remove a small fraction of vertices and
all incident hyperedges to ensure rainbow colorability) to show hardness of scheduling
problems. This notion allows us to prove the following more structured hardness as well
as (K−1−ε)-inapproximability for HYPERGRAPH VERTEX COVER. It improves [SS13]
in the number of colors used, and almost matches [BK10] which is based on the Unique
Games Conjecture.

Theorem 9.2.5. For any ε > 0 and K ≥ 3, given a K-uniform hypergraph H = (V,E),
it is NP-hard to distinguish the following cases.

• Completeness: There exists V ∗ ⊆ V of measure ε and a coloring c : [V \ V ∗] →
[K − 1] such that for every hyperedge of the induced hypergraph on V \ V ∗, K − 2
colors appear once and the other color twice. Therefore, H has a vertex cover of
size at most 1

K−1
+ ε.

• Soundness: There is no independent set of measure ε.

MAX Q-OUT-OF-(2Q+1)-SAT. MAX Q-OUT-OF-(2Q+1)-SAT refers to the problem
of finding a satisfying assignment in a (2Q+1)-CNF formula, given the promise that some
assignment makes each clause have at least Q true literals. We give an analytic proof
following our recipe of the following result, which was first established based on simpler
combinatorial techniques in Austrin et al [AGH14].

Theorem 9.2.6. ForQ ≥ 2, there exists ε > 0 depending onQ such that given a (2Q+1)-
CNF formula, it is NP-hard to distinguish the following cases.

• Completeness: There is an assignment such that each clause has at least Q true
literals.

• Soundness: No assignment can satisfy more than a fraction (1− ε) of clauses.3

3An explicit value of ε as a function of Q in the soundness is exp(−O(Q logQ)), which is better than
the value exp(−O(Qc)) for some large absolute constant c implicit in the proof of [AGH14].
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9.2.2 MAX 2-COLORING

Our algorithmic result for MAX 2-COLORING proves that our three promises, unlike mere
2-colorability, give enough structure for polynomial time algorithms to perform signifi-
cantly better than naive algorithms. We also study these promises from a hardness per-
spective to understand the asymptotic threshold at which beating naive algorithms goes
from easy to UG/NP-Hard. In particular assuming the UGC, for MAX 2-COLORING un-
der `-discrepancy or (K − `)-rainbow colorability, this threshold is ` = Θ(

√
K).

Theorem 9.2.2. There is a randomized polynomial time algorithm that produces a 2-
coloring of a K-uniform hypergraph H with the following guarantee. For any 0 < ε < 1

2

(let ` = Kε), there exists a constant η > 0 such that if H is (K − `)-rainbow colorable or
(K+ `)-strong colorable, the fraction of monochromatic edges in the produced 2-coloring
is O(( 1

K
)ηK) in expectation.

Our results indeed show that this algorithm significantly outperforms the random as-
signment even when ` approaches

√
K asymptotically. See Theorem 11.2.2 and Theo-

rem 11.2.3 for the precise statements.

For the `-discrepancy case, note that our results on SYMMETRIC CSP (Theorem 5.1.1
and (5.1)) show that when ` <

√
K, there exists an approximation algorithm that marginally

(by an additive factor much less than 2−K) outperforms the random assignment.

The following hardness results suggest that this gap between low-discrepancy and rain-
bow/strong colorability might be intrinsic.

Theorem 9.2.3. For sufficiently large oddK, given aK-uniform hypergraph which admits
a 2-coloring with at most a (1

2
)6K fraction of edges of discrepancy larger than 1, it is UG-

hard to find a 2-coloring with a (1
2
)5K fraction of monochromatic edges.

Theorem 9.2.4. For even K ≥ 4, given a K-uniform hypergraph which admits a 2-
coloring with no edge of discrepancy larger than 2, it is NP-hard to find a 2-coloring with
a K−O(K) fraction of monochromatic edges.

Theorem 9.2.5. For K sufficiently large, given a K-uniform hypergraph which admits
a 2-coloring with no edge of discrepancy larger than O(logK), it is NP-hard to find a
2-coloring with a 2−O(K) fraction of monochromatic edges.

Theorem 9.2.6. ForK such that χ := K−
√
K is an integer greater than 1, and any ε > 0,

given a K-uniform hypergraph which admits a χ-coloring with at most ε fraction of non-
rainbow edges, it is UG-hard to find a 2-coloring with a (1

2
)K−1 fraction of monochromatic

edges.

Table 9.2 summarizes our results for MAX 2-COLORING.
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Promises Algorithm Hardness

`-Discrepancy 1− (1/2)K−1 + δ, ` <
√
K UG: 1− (1/2)5K , ` = 1

NP: 1− (1/K)O(K), ` = 2

NP: 1− (1/2)O(K), ` = Ω(logK)

UG: 1− (1/2)K−1, ` ≥
√
K

(K − `)-Rainbow 1− (1/K)Ω(K), ` = o(K) UG: 1− (1/2)K−1, ` ≥
√
K

(K + `)-Strong 1− (1/K)Ω(K), ` = o(K).

Table 9.2: Summary of our algorithmic and hardness results for MAX 2-COLORING with
valid ranges of `.

9.3 Related Work

The work of Austrin et al. [AGH14] shows NP-hardness of finding a proper 2-coloring
under the discrepancy-1 promise. The work of Bansal and Khot [BK10] shows hardness of
O(1)-coloring even when the input hypergraph is promised to be almost K-partite (under
the Unique Games Conjecture). Our work is inspired by recent developments concerning
the inapproximability of HYPERGRAPH VERTEX COVER and the Constraint Satisfaction
Problem (CSP). At a high level, Theorem 9.2.1 looks similar to the result of Sachdeva
and Saket [SS13] who proved almost the same statement without perfect completeness —
we need to delete ε > 0 fraction of vertices and all incident hyperedges to have a similar
guarantee in the completeness case. Achieving perfect completeness is a nontrivial task,
as manifested in K-CSP — approximating a (1− ε)-satisfiable instance of K-CSP is NP-
hard within a factor of 2K

2K
[Cha13], while the best inapproximability factor for perfectly

satisfiable K-CSP is 2O(K1/3)

2K
[Hua13].

In CSP, significant research efforts have been made for proving every predicate strictly
dominating parity is approximation resistant (i.e., no efficient algorithm can beat the ratio
achieved by simply picking a random assignment) even on satisfiable instances. O’donnell
and Wu [OW09] proved this assuming the d-to-1 conjecture for K = 3, and recently
this was proven to be true assuming only P 6= NP by Håstad (K = 3, [Hås14]) and
Wenner (K ≥ 4, [Wen13]). Many of these works are based on invariance principle based
techniques, and it is natural to ask whether they let us to achieve perfect completeness in
Hypergraph Coloring as well. To the best of our knowledge, our work is the first to apply
invariance based techniques to prove NP-hardness of Hypergraph Coloring / Vertex Cover
problems (Khot and Saket [KS14a] used them to prove hardness of finding an independent
set in 2-colorable 3-uniform hypergraphs, assuming the d-to-1 conjecture).

Fourier-analytic proofs of harndess of K-HYPERGRAPH VERTEX COVER are known

200



for small K [GHS02, Hol02, Kho02a, Sak14]. Even though they cannot be easily gen-
eralized to large K, the recent work of Saket [Sak14] for K = 4 uses general reverse
hypercontractivity studied by Mossel et al. [Mos10], and we extend his result to present a
framework to study general K-uniform hypergraphs. This generalized reverse hypercon-
tractivity might have other applications in hardness of approximation or in other areas of
theoretical computer science. In the rest of the section, for simplicity of illustration we fix
Q = k = 2 (so that the test distribution becomes that of [Sak14]) and give a high level
glimpse into our proof strategy.

9.4 Organization

Chapter 10 presents our hardness results for MIN COLORING and MAX 2-COLORING.
Section 10.1 introduces our recipe and hardness techniques in a simpler setting. Sec-
tion 10.2 contains mathematical tools in that chapter, including Fourier analysis for blocked
functions and variants of LABEL COVER. Our main technical tool, generalized reverse
hypercontractivity, is introduced in Section 10.3. Section 10.4 proves the main Theo-
rem 9.2.1. In Section 10.6, we show the versatility of our approach by proving Theo-
rem 9.2.4, and 9.2.6, using the same procedure. Section 10.7 proves Theorem 9.2.3, The-
orem 9.2.4, Theorem 9.2.5, and Theorem 9.2.6 for MAX 2-COLORING.

Chapter 11 presents our algorithmic results for MIN COLORING and MAX 2-COLORING.
Section 11.1 introduces our techniques, and Section 11.2 and Section 11.3 study MAX 2-
COLORING and MIN COLORING respectively.
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Chapter 10

Hardness of Coloring

10.1 Techniques

We illustrate our main ideas and general recipe in a simple setting.

10.1.1 Techniques

We reduce LABEL COVER to 4-uniform hypergraph coloring. Given a LABEL COVER

instance based on a bipartite graph G = (U ∪ V,E) with projections πe : [R] → [L]
(see Section 10.2 for the formal definition), let U be the small side and V be the big side.
Let Ω = {1, 2}. Our hypergraph H = (V ′, E ′) is defined by V ′ := V × ΩR, and E ′ is
described by the following procedure to sample a hyperedge.

• Sample u ∈ U and its neighbors v, w ∈ V .

• Sample x1, x2, y1, y2 ∈ ΩR as the following: for 1 ≤ i ≤ L,

– With probability half, (x1)π−1
(u,v)

(i), (x2)π−1
(u,v)

(i), (y1)π−1
(u,w)

(i) are sampled i.i.d.,

but (y2)j = 3− (y1)j for every j ∈ π−1
(u,w)(i).

– With probability half, (y1)π−1
(u,w)

(i), (y2)π−1
(u,w)

(i), (x1)π−1
(u,v)

(i) are sampled i.i.d.,

but (x2)j = 3− (x1)j for every j ∈ π−1
(u,v)(i).

• Output a hyperedge containing four vertices (v, x1), (v, x2), (w, y1), (w, y2).
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Completeness is obvious from the above distribution. For each block that corresponds
to π−1

(u,v)(i) or π−1
(u,w)(i), one of (x1, x2) and (y1, y2) is allowed to be sampled independently,

but the other pair has to satisfy that two points are different in every coordinate in that
block.

For soundness, let I be a large independent set, let fv : ΩR → {0, 1} be the indicator
function of I ∩ ({v} × [k]R). Then I satisfies the following two properties.

Ev,x1 [fv(x1)]� 0, Eu,v,wEx1,x2,y1,y2 [fv(x1)fv(x2)fw(y1)fw(y2)] = 0.

These two properties seem to be contrary for randomly chosen I , so I with the above two
properties should exploit some structure of the reduction. We prove that the existence of
such I leads to a good decoding strategy to the LABEL COVER instance. This implies that
there is no large independent set if the LABEL COVER does not admit a good labeling.

Dealing with noise and influences. Before proceeding to the analysis, we discuss two
issues that highlight technical difficulties in proving NP-hardness (as opposed to Unique
Games-hardness) of coloring with perfect completeness (as opposed to imperfect com-
pleteness) in terms of noise.

Strong vs Weak Noise. Given a function f : ΩR → [0, 1], consider the noise operator
T1−γ defined by T1−γf(x) = Ey[f(y)|x] where y resamples each coordinate of x with
probability γ. It is central to most decoding strategies that we actually analyze noised
functions T1−γfv and T1−γfw instead of the original functions. We call the step of pass-
ing from the original functions to the noised functions strong noise. The easiest way to
give strong noise is to explicitly include it in the test distribution, independently for all
points. However, such explicit and strong noise breaks perfect completeness, since all
points might be noised together and we cannot control the behavior.

To deal with this issue, we call weak noise to be a property inherent in the test distri-
bution, bounding the correlation between the points we sample. In the test distribution we
gave above, it refers to sampling exactly one of (x1, x2) or (y1, y2) completely indepen-
dently (for each block). The fact that only one pair is noised is not strong enough to be
directly applicable to decoding, but the bounded correlation allows us to apply the result of
Mossel [Mos10] to show that the expected value of the product does not change much we
replace each f by the noised version only for the sake of analysis. This idea of smoothing
a function in the analysis allows us maintain perfect completeness.

Block Noise, Block Influence. Consider the projections π(u,v), π(u,w) : [R] → [L]. Let
d > 1 be the degree of the projections. d coordinates of x1, x2 and d coordinates of y1, y2

must be treated in the same block which is often regarded as one coordinate.
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The aforementioned result of Mossel in fact shows that we can replace f by T 1−γf ,
where T 1−γ is the block noise operator when we view each block as one coordinate. This
is not strong enough for our decoding strategy, but the idea of Wenner [Wen13] lets us
to replace T 1−γf by the individually noised function T1−γf if f almost depends on only
shattered parts (roughly, shattered parts of a function under a projection do not distinguish
whether the projection is 1-to-1 or not). This shattering behavior can be achieved by
Smooth LABEL COVER defined by Khot [Kho02a].

At the end of analysis, our invariance principle will show that∑
1≤i≤L

Infi[T1−γfv]Infi[T1−γfw]

is large where Inf indicates the influence when we view each block as one coordinate. It
turns out to suffice to deal with these block noises, since they appear only in the analysis
of the decoding; our decoding procedure itself does not depend on the projections, and the
goal of the decoding is to have two vertices output the coordinates in the same block. To
summarize, we put an effort to pass from block noise to individual noise in the beginning
of our analysis, but we keep block influence to the end of analysis where it is naturally
integrated with the decoding.

Recipe. We briefly discuss the five main steps in the soundness analysis and how they
relate to each other. We view distilling and clearly articulating this recipe and highlighting
its versatility also as one of the contributions of this thesis.

1. Fixing a good pair: Given an independent set I of measure ε, using smoothness of
LABEL COVER, we show that in the original instance of LABEL COVER, there is a large
fraction u ∈ U and its neighbors v, w ∈ V with the following properties. E[fv],E[fw] ≥ ε

2
,

and they almost depend on shattered parts. In the subsequent steps, we fix such u, v, w and
analyze the probability that either (u, v) or (u,w) is satisfied by our decoding strategy.

2. Lower bounding in each hypercube: In Theorem 10.3.8, we show

E[fv(x1)fv(x2)],E[fw(y1)fw(y2)] ≥ ζ(ε) > 0.

It uses reverse hypercontractivity [MOR+06, MOS13], which is discussed in Section 10.3.
Roughly, it says the noise operator Tρ increases q-norm ‖Tρf‖q when q < 1, so that
‖Tf‖q ≥ ‖f‖p for some q < p < 1 depending on ρ (note that ‖f‖q ≤ ‖f‖p). The case
k = 2 follows directly from the previous result, but for larger k we generalize the reverse
hypercontractivity to more general operators, even between different spaces. This step
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does not depend on noise or the degree of projections (e.g. the same ζ works for T1−γf
and T 1−γf ).

3. Smoothing functions (based on 1.): Based on the bounded correlation of the test
distribution, we use the result of Mossel [Mos10] to pass from f to T 1−γf . The fact that
fv, fw almost depend on shattered parts allows us to use Theorem 10.4.5 to pass from
T 1−γf to T1−γf . Therefore we have

Ex1,x2,y1,y2 [fv(x1)fv(x2)fw(y1)fw(y2)]

≈ Ex1,x2,y1,y2 [T1−γfv(x1)T1−γfv(x2)T1−γfw(y1)T1−γfw(y2)].

For simplicity, let f ′ = T1−γf .

4. Invariance (based on 2. and 3.): Since I is independent, the above results imply

0 ≈ Ex1,x2,y1,y2 [f ′v(x1)f ′v(x2)f ′w(y1)f ′w(y2)]� ζ2

≤ Ex1,x2 [f ′v(x1)f ′v(x2)]Ey1,y2 [f ′w(y1)f ′w(y2)].

In Theorem 10.4.7, we use an invariance principle inspired by that of Wenner [Wen13]
and Chan [Cha13] to conclude that

∑
1≤i≤L Infi[f

′
v]Infi[f

′
w] ≥ τ , which implies that there

are matching (blocks of) influential coordinates. The crucial property we used is that xi is
independent of (y1, y2) — one point is independent of the joint distribution of the points
not in the same hypercube.

5. Decoding Strategy (based on 3. and 4.): The standard decoding strategy based
on Fourier coefficients of f shows that either (u, v) or (u,w) will be satisfied with good
probability. As previously discussed,

∑
1≤i≤L Infi[f

′
v]Infi[f

′
w] ≥ τ gives large common

block influences of individually noised functions, and they are sufficient for the decoding.

10.2 Preliminaries

For a positive integer k, let [k] := {1, 2, . . . , k}. Let Sk be the set of k-permutations —
(x1, . . . , xk) ∈ [k]k such that xi 6= xj for all i 6= j. For a vector x ∈ Rm and S ⊆ [m], xS
denotes the projection of x onto the coordinates in S. Definitions and simple properties
introduced from Section 10.2.1 to Section 10.2.4 are from Mossel [Mos10].

10.2.1 Correlated Spaces

Given a probability space (Ω, µ) (we always consider finite probability spaces), letL(Ω) be
the set of functions {f : Ω→ R} and for an interval I ⊆ R, LI(Ω) be the set of functions
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{f : Ω→ I}. A collection of probability spaces are said to be correlated if there is a joint
probability distribution on them. We will denote k correlated spaces Ω1, . . . ,Ωk with a
joint distribution µ as (Ω1 × · · · × Ωk;µ). Note that the definition of correlated spaces
includes the joint distribution. Two instantiations of correlated spaces, even though they
are defined on the same underlying sets, are considered different when their distributions
are not the same.

Given two correlated spaces (Ω1 × Ω2, µ), we define the correlation between Ω1 and
Ω2 by

ρ(Ω1,Ω2;µ) := sup {Cov[f, g] : f ∈ L(Ω1), g ∈ L(Ω2),Var[f ] = Var[g] = 1} .

The following lemma of Wenner [Wen13] gives a convenient way to bound the correlation.

Lemma 10.2.1 (Corollary 2.18 of [Wen13]). Let (Ω1 × Ω2, µ) and (Ω1 × Ω2, µ
′) be two

distinct instantiations of correlated spaces such that the marginal distribution of at least
one of Ω1 and Ω2 is identical on µ and µ′. For any 0 ≤ δ ≤ 1, consider another correlated
spaces (Ω1 × Ω2, δµ+ (1− δ)µ′). Then,

ρ(Ω1,Ω2; δµ+ (1− δ)µ′) ≤
√
δ · ρ(Ω1,Ω2;µ)2 + (1− δ) · ρ(Ω1,Ω2;µ′)2.

Given k correlated spaces (Ω1× · · · ×Ωk, µ), we define the correlation of these spaces by

ρ(Ω1, . . . ,Ωk;µ) := max
1≤i≤k

ρ(
∏

1≤j≤i−1

Ωj ×
∏

i+1≤j≤k

Ωj,Ωi;µ).

10.2.2 Operators

Let (Ω1 × Ω2, µ) be two correlated spaces. The Markov operator associated with them is
the operator mapping f ∈ L(Ω1) to Tf ∈ L(Ω2) by

(Tf)(y′) = E(x,y)∼µ[f(x)|y = y′].

The noise operator or Bonami-Beckner operator Tρ (0 ≤ ρ ≤ 1) associated with a sin-
gle probability space (Ω, µ) is the Markov operator associated with (Ω × Ω, ν), where
ν(x, y) = (1− ρ)µ(x)µ(y) + ρI[x = y]µ(x) and I[·] is the indicator function — ν samples
(x, y) independently with probability 1 − ρ, and samples x = y with probability ρ. Note
that Tρf(y) = ρf(y) + (1− ρ)Eµ[f(x)].
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10.2.3 Functions and Influences

Let (Ω, µ) be a probability space. Given a function f ∈ L(Ω) and p ∈ R, let ‖f‖p :=
Ex∼µ[|f(x)|p]1/p. We also use ‖f‖p,µ for the same quantity if it is instructive to emphasize
µ. We note that ‖f‖p for p < 0 is also used throughout the paper, but in this case we
ensure that f > 0. For f, g ∈ L(Ω), 〈f, g〉 := Ex∼µ[f(x)g(x)].

Consider a product space (ΩR, µ⊗R) and f ∈ L(ΩR). The Efron-Stein decomposition
of f is given by

f(x1, . . . , xR) =
∑
S⊆[R]

fS(xS)

where (1) fS depends only on xS and (2) for all S 6⊆ S ′ and all xS′ , Ex′∼µ⊗R [fS(x′)|x′S′ =
xS′ ] = 0.

The influence of the jth coordinate on f is defined by

Infj[f ] := Ex1,...,xj−1,xj+1,...,xR [Varxj [f(x1, . . . , xR)].

Given the noise operator Tρ for (Ω, µ), we let T⊗Rρ be the noise operator for (ΩR, µ⊗R)
(i.e. noising each coordinate independently) and call it Tρ. The noise operator and the
influence has a convenient expression in terms of the Efron-Stein decomposition.

Tρ[f ] =
∑
S

ρ|S|fS ; Infj[f ] = ‖
∑
S:j∈S

fS‖2
2 =

∑
S:j∈S

‖fS‖2
2

The following lemma lets us to reason about the influences of the product of functions.

Lemma 10.2.2 ([ST09]). Let (Ω1 × · · · × Ωk, µ) be k probability spaces and (ΩL
1 ×

· · · × ΩL
k , µ

⊗L) be the corresponding product spaces. Let fi ∈ L[−1,1](Ω
L
i ), and F ∈

L[−1,1](Ω
L
1 × · · · × ΩL

k ) such that F (x1, . . . , xk) =
∏

1≤i≤k fi(xi). Then for 1 ≤ j ≤ L,
Infj(F ) ≤ k

∑k
i=1 Infj(fi).
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Proof. We use (xi)−j ∈ (Ωi)
L−1 to denote xi except the jth coordinate.

Infj(F ) =E[(x1)−j ,...,(xk)−j ]E[(x1)j ,...,(xk)j ,(x′1)j ,...,(x′k)j ][(F (x1, . . . , xk)− F (x′1, . . . , x
′
k))

2]

=E[(x1)−j ,...,(xk)−j ]E[(x1)j ,...,(xk)j ,(x′1)j ,...,(x′k)j ][(
∏
i

fi(xi)−
∏
i

fi(x
′
i))

2]

≤ k
∑
i

E[(x1)−j ,...,(xk)−j ]E[(x1)j ,...,(xk)j ,(x′1)j ,...,(x′k)j ][(fi(xi)− fi(x′i))2]

= k
∑
i

E[(xi)−j ]E[(xi)j ,(x′i)j ]
[(fi(xi)− fi(x′i))2]

= k
∑
i

Infj(fi)

where the inequality follows from the fact that

∀a1, . . . , ak, b1, . . . , bk ∈ [−1, 1] : (
∏
i

ai −
∏
i

bi)
2 ≤ k ·

∑
i

(ai − bi)2

proven in Lemma 4 of Samorodnitsky and Trevisan [ST09].

10.2.4 Blocks

Let R,L, d be positive integers satisfying R = dL. Let (ΩR, µ⊗R) be a product space and
π : [R] → [L] be a projection such that |π−1(j)| = d for 1 ≤ j ≤ L. Define Ω := Ωd.
Given x ∈ ΩR, we block x to have x ∈ (Ω)L defined by

xj := (xj′)π(j′)=j.

Given f ∈ L(ΩR), its blocked version f ∈ L(Ω
L
) is defined by f(x) := f(x) for any

x ∈ ΩR. These blocked versions of functions and arguments depend on the projection π.
For each function f , the associated projection will be clear from the context, and the same
projection is used to block its argument x. The influence Infj[f ] and the noise operator
Tρf are naturally defined. Define

Infj[f ] := Infj[f ], ∀j ∈ [L] ; (T ρf)(x) := (Tρf)(x), ∀x ∈ ΩR ,

and call them block influence and block noise operator respectively. They also have the
following nice expressions in terms of f ’s Efron-Stein decomposition.

T ρf =
∑
S

ρ|π(S)|fS ; Infj[f ] =
∑

S:S∩π−1(j)6=∅

‖fS‖2
2 .
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A subset S ⊆ [R] is said to be shattered by π if |S| = |π(S)|. For a positive integer J ,
define the bad part of fv under π and J as

fbad =
∑

S:not shattered and |π(S)|<J

fS.

10.2.5 Q-HYPERGRAPH LABEL COVER

An instance of Q-HYPERGRAPH LABEL COVER is based on a Q-uniform hypergraph
H = (V,E). Each hyperedge-vertex pair (e, v) such that v ∈ e is associated with a
projection πe,v : [R] → [L] for some positive integers R and L. A labeling l : V → [R]
strongly satisfies e = {v1, . . . , vQ} when πe,v1(l(v1)) = · · · = πe,vQ(l(vQ)). It weakly
satisfies e when πe,vi(l(vi)) = πe,vj(l(vj)) for some i 6= j. The following are two desired
properties of instances of Q-HYPERGRAPH LABEL COVER.

• ε-weakly dense: any subset of V of measure at least ε′ ≥ ε induces at least (ε′)Q

2Q+1

fraction of hyperedges.

• T -smooth: for all v ∈ V and i 6= j ∈ [R], Pre∈E:e3v[πe,v(i) = πe,v(j)] ≤ 1
T

.

The following theorem asserts that it is NP-hard to find a good labeling in such in-
stances.

Theorem 10.2.3. For anyQ ≥ 2, T ≥ 1 and η, ε > 0, given an instance of Q-HYPERGRAPH

LABEL COVER that is ε-weakly-dense and T -smooth, it is NP-hard to distinguish

• Completeness: There exists a labeling l that strongly satisfies every hyperedge.

• Soundness: No labeling l can weakly satisfy a fraction η of hyperedges.

Proof. We reduce from T -smooth LABEL COVER first defined in Khot [Kho02a] to T -
smooth Q-HYPERGRAPH LABEL COVER using the technique of Gopalan et al. [GKS10].

An instance of LABEL COVER consists of a biregular bipartite graph G = (U ∪ V,E)
where each edge e = (u, v) is associated with a projection πe : [R] → [L] for some
positive integers R and L. A labeling l : U ∪ V → [R] satisfies e when πe(l(v)) = l(u). It
is called T -smooth when for any i 6= j, Pre[πe(i) = πe(j)] ≤ 1

T
. The following theorem

shows hardness of T -smooth LABEL COVER.
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Theorem 10.2.4 ([Kho02a]). For any T ≥ 1 and η′ > 0, given an instance of LABEL

COVER that is T -smooth, it is NP-hard to distinguish

• Completeness: There exists a labeling l that satisfies edge.

• Soundness: No labeling l can satisfy a fraction η′ of hyperedges.

We first claim that in Theorem [Kho02a], without loss of generality, we can assume
that the degree d of u ∈ U is large enough as a function of Q and ε, such that for any
ε′ ≥ ε

2
, (

dε′

Q

)(
d
Q

) =

Q−1∏
i=0

(dε′ − i)
d− i

≥ (ε′)Q

2
. (10.1)

This is possible because in the construction of [Kho02a], the operations to increase T and
reduce η′ both increase the degree, so we can increase the degree while making T and η′

even stronger for our purpose.

Given such an instance of LABEL COVER G = (UG ∪ VG, EG), the corresponding
instance of H = (VH , EH) is produced by

• VH = VG

• For u ∈ UG and Q distinct neighbors v1, . . . , vQ ∈ VG, we add a hyperedge e =
{v1, . . . , vQ} ∈ EH with the associated projections πe,vi := π(u,vi). Say this hyper-
edge is formed from u. We can have the same hyperedges formed from different
vertices.

Fix v ∈ VH and i 6= j ∈ [R].

Pr
e∈EH :v∈e

[πe,v(i) = πe,v(j)] = Pr
e=(u,v)∈EG

[πe(i) = πe(j)] ≤
1

T
,

so the resulting instance is also T -smooth.

For weak density, fix I ⊆ VH of measure ε, and for u ∈ UG, let ε(u) be the fraction of
neighbors of u contained in I . Biregularity of G implies ε = Eu[ε(u)]. Let ε′(u) = ε(u)
if ε(u) ≥ ε

2
and ε′(u) = 0 otherwise. An averaging argument shows that Eu[ε′(u)] ≥

Eu[ε(u)]
2

= ε
2
. For any u ∈ UG, whether ε′(u) = ε(u) ≥ ε

2
or ε′(u) = 0, by (10.1), the

fraction of hyperedges induced by I , out of the hyperedges formed from u, is at least(
dε′(u)
Q

)(
d
Q

) ≥ (ε′(u))Q

2
.
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Then the fraction of hyperedges induced by I is at least

Eu∈UG [
(ε′(u))Q

2
] =

1

2
Eu∈UG [(ε′(u))Q] ≥ 1

2
(Eu∈UG [ε′(u)])Q ≥ εQ

2Q+1
.

For completeness, given a labeling l : UG ∪ VG → [R] that satisfies every edge of G,
its projection to VG = VH will strongly satisfy every hyperedge of H .

For soundness, let l : VH → [R] be a labeling that weakly satisfies η fraction of
hyperedges for some η > 0. Let η(u) be the fraction of hyperedges satisfied by l formed
from u, out of all hyperedges formed from u. Consider the following randomized strategy
for G: VG is labelled by l, and each u ∈ UG independently samples one of its neighbors
v and set l(u) ← π(u,v)(l(v)). The expected fraction of edges incident on u satisfied by
this decoding strategy is (let N(u) be the set of neighbors of u and (N(u)PQ) be the set of
Q-tuples of the neighbors where Q vertices are pairwise distinct)

Ev1∈N(u)[ Pr
v2∈N(u)

[π(u,v1)(l(v1)) = π(u,v2)(v2)]]

= Pr
(v1,...,vQ)∈N(u)Q

[π(u,v1)(l(v1)) = π(u,v2)(v2)]

≥ Pr
(v1,...,vQ)∈(N(u)PQ)

[π(u,v1)(l(v1)) = π(u,v2)(v2)]

≥ 1(
Q
2

) Pr
(v1,...,vQ)∈(N(u)PQ)

[e := {v1, . . . , vQ} is weakly satisfied]

=
1(
Q
2

) Pr
{v1,...,vQ}∈(N(u)

Q )
[e := {v1, . . . , vQ} is weakly satisfied]

=
η(u)(
Q
2

) .
Overall, the strategy satisfies η

(Q2)
fraction of edges of G in expectation. Setting η′ < η

(Q2)
,

we have contradiction, completing the proof of soundness.

10.2.6 (Q+ 1)-BIPARTITE HYPERGRAPH LABEL COVER

(Q+1)-BIPARTITE HYPERGRAPH LABEL COVER is used in Theorem 9.2.6 forQ-out-of-
(2Q+1)-SAT. An instance of (Q+1)-BIPARTITE HYPERGRAPH LABEL COVER is based
on a (Q+ 1)-uniform bipartite hypergraph H = (U ∪V,E), where each hyperedge e con-
tains one vertex from U and Q vertices from V . For every hyperedge e = {u, v1, . . . , vQ}
such that u ∈ U and vq ∈ V , each vq is associated with a projection πe,vq : [R] → [L]
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for some positive integers R and L. A labeling l : U ∪ V → [R] strongly satisfies
e = {v1, . . . , vQ} when l(u) = πe,v1(l(v1)) = · · · = πe,vQ(l(vQ)) (we can imagine that
πe,u is also defined as the identity). It weakly satisfies e when πe,vi(l(vi)) = πe,vj(l(vj))
for some i 6= j or πe,vi(l(vi)) = l(u) for some i. As usual, the instance is T -smooth if for
any v ∈ V and i 6= j,

Pr
e∈E:v∈e

[πe,v(i) = πe,v(j)] ≤
1

T
.

Note that we do not need weak density for Q-out-of-(2Q+ 1)-SAT.

Theorem 10.2.5. For any Q ≥ 2, T ≥ 1 and η > 0, given an instance of (Q + 1)-
BIPARTITE HYPERGRAPH LABEL COVER that is T -smooth, it is NP-hard to distinguish

• Completeness: There exists a labeling l that strongly satisfies every hyperedge.

• Soundness: No labeling l can weakly satisfy a fraction η of hyperedges.

Proof. As in Theorem 10.2.3, we reduce from T -smooth LABEL COVER.

Given an instance of LABEL COVER G = (UG ∪ VG, EG), the corresponding instance
of H = (UH ∪ VH , EH) is produced by

• UH = UG, VH = VG

• For u ∈ UG and Q distinct neighbors v1, . . . , vQ ∈ VG, we add a hyperedge e =
{u, v1, . . . , vQ} ∈ EH with the associated projections πe,vi := π(u,vi). Say this
hyperedge is formed from u.

Fix v ∈ VH and i 6= j ∈ [R].

Pr
e∈EH :v∈e

[πe,v(i) = πe,v(j)] = Pr
e=(u,v)∈EG

[πe(i) = πe(j)] ≤
1

T
,

so the resulting instance is also T -smooth.

For completeness, given a labeling l : UG ∪ VG → [R] that satisfies every edge of G, it
is easy to check that the same l will strongly satisfy every hyperedge of H .

For soundness, let l : VH → [R] be a labeling that weakly satisfies η fraction of
hyperedges for some η > 0. Let η(u) be the fraction of hyperedges satisfied by l formed
from u, out of all hyperedges formed from u. Consider the following randomized strategy
for G:
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• VG is labeled by l.

• Each u ∈ UG is assigned l(u) with probability half. With the remaining 1/2 proba-
bility, it independently samples one of its neighbors v and sets l(u)← π(u,v)(l(v)).

Let N(u) be the set of neighbors of u and (N(u)PQ) be the set of Q-tuples of the neigh-
bors where Q vertices are pairwise distinct. The expected fraction of edges incident on u
satisfied by this decoding strategy is

1

2
Ev1∈N(u)[ Pr

v2∈N(u)
[π(u,v1)(l(v1)) = π(u,v2)(l(v2))]] +

1

2
Pr

v∈N(u)
[π(u,v)(l(v)) = l(u)]

=
1

2
Pr

(v1,...,vQ)∈N(u)Q
[π(u,v1)(l(v1)) = π(u,v2)(l(v2)) or π(u,v1)(l(v1)) = l(u)]

≥ 1

2
Pr

(v1,...,vQ)∈(N(u)PQ)
[π(u,v1)(l(v1)) = π(u,v2)(l(v2)) or π(u,v1)(l(v1)) = l(u)]

≥ 1

2
(
Q
2

) Pr
(v1,...,vQ)∈(N(u)PQ)

[e := {v1, . . . , vQ} is weakly satisfied]

=
1

2
(
Q
2

) Pr
{v1,...,vQ}∈(N(u)

Q )
[e := {v1, . . . , vQ} is weakly satisfied]

=
η(u)

2
(
Q
2

) .
Overall, the strategy satisfies η

2(Q2)
fraction of edges of G in expectation. Setting η′ <

η

2(Q2)
, we have contradiction, completing the proof of soundness.

10.2.7 MULTILAYERED LABEL COVER

We reduce MULTILAYERED LABEL COVER defined by Dinur et al. [DGKR05] with the
smoothness property to K-HYPERGRAPH VERTEX COVER. An instance of MULTI-
LAYERED LABEL COVER with A layers is based on a graph G = (V,E) where V =
V1 ∪ · · · ∪ VA and E = ∪1≤i<j≤AEi,j . Let [Ri] be the label set of the variables in the Vi
such that Ri divides Rj for all i < j. Any edge e ∈ Ei,j is between u ∈ Vi and v ∈ Vj ,
and associated with a projection πe : [Rj]→ [Ri]. Given a labeling l : V → [RA], an edge
e = (u, v) with u ∈ Vi and v ∈ Vj (i < j) is satisfied when πe(l(v)) = l(u). The following
are desired properties of an instance. Note that the definition of weak density here is not
parameterized by ε.
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• Weakly dense: for any ε > 0 satisfying d4
ε
e ≤ A, given m = d4

ε
e layers i1 < · · · <

im and given any sets Iij ⊆ Vij with |Iij | ≥ ε|Vij |, there exist j < j′ such that at
least ε3

16
fraction of the edges between Vij and Vij′ are indeed between Iij and Iij′ .

• T -smooth: for any 1 ≤ i < j ≤ A, v ∈ Vj and a 6= b ∈ [Rj],

Pr
u∈Vi:(u,v)∈Ei,j

[πu,v(a) = πu,v(b)] ≤
1

T
.

Theorem 10.2.6 ([Kho02a]). For every η > 0, A ≥ 2 and T ≥ 1, given an instance of
MULTILAYERED LABEL COVER with A layers that is weakly dense and T -smooth, it is
NP-hard to distinguish the following cases:

• Completeness: There exists a labeling l that satisfies every edge.

• Soundness: No labeling l can satisfy a fraction η of any Ei,j .

10.3 Reverse Hypercontractivity

The version of reverse hypercontractivity we use is stated below.

Theorem 10.3.1 ([MOS13]). Let (Ω, µ) be a probability space. Fix 0 ≤ ρ < 1. There
exist q < 0 < p < 1 such that for any f ∈ L[0,∞)(Ω),

‖Tρf‖q ≥ ‖f‖p.

We now generalize the above reverse hypercontractivity result to more general opera-
tors, extending the noise operator Tρ in two ways.

• Between two difference spaces: while Tρ is the Markov operator associated with two
correlated copies of the same probability space (Ω1 × Ω1, ν), we are interested in
the Markov operator T associated with two correlated spaces (Ω1×Ω2, ν

′), possibly
Ω1 6= Ω2.

• Arbitrary distribution instead of diagonal distribution: ν samples x, y independently
according to the marginal and output (x, x) with probability ρ and (x, y) with prob-
ability 1 − ρ. Since Ω1 6= Ω2, the former does not make sense. Instead, with prob-
ability ρ, ν ′ samples (x, y) according to another arbitrary distribution ν ′′, as long as
the marginals of x and y are preserved.
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This extension is based on simple observation that such an operator T can be expressed
as T = PTρ for some Markov operator P : L(Ω1) → L(Ω2) which shares the marginals
with T . The idea of decomposition in terms of Tρ was also used in [MOS13] when ana-
lyzing general operators on the same space. The following lemma shows that any Markov
operator does not decrease q-norm when q ≤ 1.

Lemma 10.3.2. Let (Ω1×Ω2, µ) be two correlated spaces, with the marginal distribution
µi of Ωi. Let P be the Markov operator associated with it. For any q ≤ 1 and f ∈
L(0,∞)(Ω1),

‖Pf‖q ≥ ‖f‖q.

Proof. Since x 7→ xq is concave,

‖Pf‖qq = Ey∼µ2 [(Tf(y))q] = Ey∼µ2 [(Ex∼µ1 [f(x)|y])q]

≥ Ey∼µ2 [Ex∼µ1 [f(x)q|y])] = Ex∼µ1 [f(x)q] = ‖f‖qq .

The following main lemma says that whenever Tρ exhibits the reverse hypercontractive
behavior for some p, q, the same conclusion holds for Markov operators with the same
parameters.

Lemma 10.3.3 (Reverse Hypercontractivity of two correlated spaces). Let (Ω1×Ω2, µ) be
two correlated spaces, and with the marginal distribution µi of Ωi. Let T be the Markov
operator associated with it. Suppose that T = ρP + (1− ρ)J1,2 for 0 ≤ ρ < 1, where J1,2

is the Markov operator associated with (Ω1 ×Ω2, µ1 ⊗ µ2) and P is the Markov operator
associated with (Ω1 × Ω2, ν) for some ν with the same marginals as µ. Let q < p < 1 be
such that ‖Tρf‖q ≥ ‖f‖p for any f ∈ L[0,∞)(Ω1). Then,

‖Tf‖q ≥ ‖f‖p.

Proof. Note that Tρ = ρI1 + (1 − ρ)J1, where I1 is the identity operator, and J1 is the
Markov operator associated with (Ω2

1, µ
⊗2
1 ). The following simple relationship holds be-

tween T and Tρ.

PTρ = ρPI1 + (1− ρ)PJ1 = ρP + (1− ρ)J1,2 = T

The fact that T = PTρ implies

‖Tf‖q = ‖PTρf‖q ≥ ‖Tρf‖q ≥ ‖f‖p,

where the first inequality follows from Lemma 10.3.2.
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Along the way to apply the above result to our setting, we introduce a basic intermedi-
ate problem which may be of independent interest.

Question 10.3.4. Let (Ω1 × Ω2, µ) be two correlated spaces. Given two (biased, not
necessarily Boolean) hypercubes ΩL

1 and ΩL
2 , their subsets S ⊆ ΩL

1 , S
′ ⊆ ΩL

2 , and two
random points x ∈ ΩL

1 , y ∈ ΩL
2 such that each (xi, yi) is sampled from µ independently,

what is the probability that x ∈ S and y ∈ S ′?

To answer this question, we use the following reverse Hölder inequality in a similar
way to [MOR+06].

Theorem 10.3.5. [HLP52] Let f and g be nonnegative functions and supplse 1
p

+ 1
p′

= 1,
where p < 1. Then

E[fg] = ||fg||1 ≥ ||f ||p||g||p′ .

Using the above inequality and the standard two-function hypercontractivity induc-
tion [O’D14], the following lemma shows that as long as µ contains nonzero copy of
product distributions (equivalent to T = ρP + (1 − ρ)J1,2 for ρ < 1), the above proba-
bility is at least a positive number depending only on the measure of S and S ′, and ρ (but
crucially it does not depend on L). Note that when f is an indicator function whose value
is either 0 or 1, for any p > 0, ||f ||p = (Ex[f(x)p])1/p = (E[f ])1/p.

Lemma 10.3.6. Let (Ω1,Ω2, µ), ρ, T, P be defined as Lemma 10.3.3. There exist 0 <
p, q < 1 such that for any f ∈ L[0,∞)(Ω

L
1 ) and g ∈ L[0,∞)(Ω

L
2 ),

E(x,y)∼µ⊗L [f(x)g(y)] = Ey∼µ⊗L2
[g(y)T⊗Lf(y)] ≥ ‖f‖p‖g‖q

Proof. The equality holds by definition, so it only remains to prove the inequality. We first
prove it for L = 1, and do the induction on L. Invoke Theorem 10.3.1 to get q′ < 0 < p <
1 such that ‖Tρf‖q′ ≥ ‖f‖p. Let 0 < q < 1 be such that 1

q
+ 1

q′
= 1. By the reverse Hölder

inequality and Lemma 10.3.3,

E(x,y)∼µ[f(x)g(y)] = Ey∼µ2 [g(y)Tf(y)] ≥ ‖Tf‖q′‖g‖q ≥ ‖f‖p‖g‖q
as desired.

For L > 1, we use the notation x = (x′, xL) where x′ = (x1, . . . , xL−1), and similar
notation for y. Note that (x′, y′) ∼ µ⊗L−1 and (xL, yL) ∼ µ. We also write fxL for the
restriction of f in which the last coordinate is fixed to value xL, and similarly for g.

E(x,y)∼µ⊗L [f(x)g(y)] = E(xL,yL)∼µE(x′,y′)∼µ⊗L−1 [fxL(x′)gyL(y′)]

≥ E(xL,yL)∼µ[‖fxL‖p,µ⊗L−1
1
‖gyL‖q,µ⊗L−1

2
]
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by induction. Let F,G be the function defined by F (xL) = ‖fxL‖p, G(yL) = ‖gyL‖q.

E(xL,yL)∼µ[F (xL)G(yL)] ≥ ‖F‖p,µ1‖G‖q,µ2

by the base case. Finally,

‖F‖p,µ1 = ExL∼µ1 [|F (xL)|p]1/p = (ExL∼µ1Ex′∼µ⊗L−1
1

[|fxL|p])1/p = ‖f‖p,µ⊗L1

and similarly ‖G‖q,µ2 = ‖g‖q,µ⊗L2
. The induction is complete.

By another induction on the number of functions, we can extend the answer to the
previous question to k > 2.

Question 10.3.7. Let (Ωk, µ) be k correlated copies of the same space. Given a hyper-
cube ΩL, its subsets S ⊆ ΩL, and k random points x1, . . . , xk ∈ ΩL such that each
((x1)i, . . . , (xk)i) is sampled from µ independently for i ∈ [L], what is the probability that
xj ∈ S for all j ∈ [k]?

Theorem 10.3.8. Let (Ωk, ν) be k correlated spaces with the same marginal σ for each
copy of Ω. Suppose that ν is described by the following procedure to sample from Ωk.

• With probability ρ (0 ≤ ρ < 1), it samples from an arbitrary distribution on Ωk,
which has the marginal σ for each copy of Ω.

• With probability 1− ρ, it samples from σ⊗k.

Let F1, . . . , Fk ∈ L[0,1](Ω
L) such that E[Fi] ≥ ε > 0 for all i. Then there exists ζ :=

ζ(ρ, ε, k) = εOρ,k(1) > 0 (independent of L) such that

Ex1,...,xk [
∏

1≤i≤k

Fi(xi)] ≥ ζ

where for each 1 ≤ j ≤ L, ((x1)j, . . . , (xk)j) is sampled according to ν.

Proof. We proceed by the induction on k. For k = 1, ζ = ε works.

For k > 1, consider two correlated spaces (Ω×Ωk−1, ν) where the marginal of Ω is σ
and the marginal of Ωk−1 is ν ′. Note that the marginal of ν ′ on each copy of Ω is still σ.
Invoke Lemma 10.3.6 to obtain 0 < p, q < 1 be such that

E(x,y)∼ν⊗L [F (x)G(y)] ≥ ‖F‖p,σ⊗L‖G‖q,ν′⊗L
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for any F ∈ L[0,∞)(Ω
L) and G ∈ L[0,∞)(Ω

k−1)L.

Ex1,...,xk [
∏

1≤i≤k

Fi(xi)] ≥ ‖F1‖p,σ⊗L‖
k∏
i=2

Fi(xi)‖q,ν′⊗L

Since Fi ∈ L[0,1](Ω
L), ‖Fi‖p ≥ ε1/p. Since ν ′ can be also described by the procedure in

the statement of the theorem (except that it is on Ωk−1), we obtain ζ(ρ, ε, k − 1) such that

‖
k∏
i=2

Fi(xi)‖q,ν′⊗L ≥
(
Ex2,...,xk [

k∏
i=2

Fi(xi)]
)1/q

≥ ζ(ρ, ε, k − 1)1/q

Therefore, ζ(ρ, ε, k) = ζ(ρ, ε, k − 1)1/qε1/p completes the induction. Since p, q depend
only on ρ, ζ(ρ, ε, k) = εOρ,k(1) in every step of induction.

Remark 10.3.9. The same statement holds even when we replace Ωk by the product of k
different spaces Ω1 × · · · × Ωk.

10.4 Hardness of Rainbow Coloring

Fix Q, k ≥ 2. In this section, we show a reduction from Q-HYPERGRAPH LABEL COVER

to coloring a Qk-uniform hypergraph, proving Theorem 9.2.1.

10.4.1 Distributions

We first define the distribution for each block. Qk points xq,i ∈ [k]d for 1 ≤ q ≤ Q and
1 ≤ i ≤ k are sampled by the following procedure.

• Sample q′ ∈ [Q] uniformly at random.

• Sample xq′,1, . . . , xq′,k ∈ [k]d i.i.d.

• For q 6= q′, 1 ≤ j ≤ d, sample a permutation ((xq,1)j, . . . , (xq,k)j) ∈ Sk uniformly
at random.

There are several distributions involved.

Let Ω := [k] and ω be the uniform distribution on Ω. For any 1 ≤ q ≤ Q, 1 ≤ i ≤ k
and 1 ≤ j ≤ d, the marginal of (xq,i)j follows (Ω, ω).
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For any 1 ≤ q ≤ Q and 1 ≤ i ≤ k, the marginal of (xq,i) follows (Ωd, ω⊗d). Let
Ω := Ωd.

Let (Ωk, µ) be the marginal distribution of ((xq,1)j, . . . , (xq,k)j), which is the same for
all q and i. Note that µ is not uniform — with probability 1

Q
it is uniform on [k]k, but with

probability Q−1
Q

it samples from k! permutations.

1 3 2 2 

2 1 3 1 

3 2 1 3 

2 1 3 1 

2 3 2 3 

1 3 2 2 

3 2 1 1 

2 1 3 3 

1 3 2 2 

Ω𝑘, 𝜇  

Ω,𝜔  

Ωd = Ω,𝜔⊗𝑑  

Ω𝑘𝑑 , 𝜇 = 𝜇⊗𝑑  

Ω𝑄𝑘𝑑 , 𝜇′  

Figure 10.1: An example for Q = k = 3,
d = 4. q′ = 2 so that all columns of the first
and third block are permutations.

Let (Ωdk, µ) be the marginal distribu-
tion of (xq,1, . . . , xq,k), which is the same
for all q.

Finally, let (ΩQkd, µ′) be the entire dis-
tribution of (xq,i)q∈[Q],i∈[k].

We first consider (ΩQkd, µ′) as Qk

correlated spaces (Ω
Qk
, µ′), and bound

ρ(Ω
Qk

;µ′). Let Ωq,i denote the copy of Ω

associated with xq,i, and Ω
′
q,i be the product

of the other Qk − 1 copies.

Fix some q and i. Note that µ′ =
1
Q
αq + Q−1

Q
βq where αq denotes the dis-

tribution given q′ = q (so that each en-
try of xq,1, . . . , xq,k is sampled i.i.d.), and
βq denotes the distribution given q′ 6= q.
Since each entry of xq,i is sampled i.i.d. in
αq, ρ(Ωq,i,Ω

′
q,i;αq) = 0. Observed that,

in both αq and βq, the marginal of xq,i is
ω⊗d. By Lemma 10.2.1, we conclude that
ρ(Ωq,i,Ω

′
q,i;µ

′) ≤
√

Q−1
Q

. Therefore we
have

ρ((Ωq,i)q,i;µ
′) = max

q,i
ρ(Ωq,i,Ω

′
q,i;µ

′) ≤

√
Q− 1

Q
.

10.4.2 Reduction and Completeness

We now describe the reduction from Q-HYPERGRAPH LABEL COVER. Given a Q-
uniform hypergraph H = (V,E) with Q projections from [R] to [L] for each hyperedge
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(without loss of generality1, we assume each projection is d-to-1 where d = R/L), the
resulting instance of Qk-hypergraph coloring is H ′ = (V ′, E ′) where V ′ = V × [k]R. Let
Cloud(v) := {v} × [k]R. The set E ′ consists of hyperedges generated by the following
procedure.

• Sample a random hyperedge e = (v1, . . . , vQ) ∈ E with associated projections
πe,v1 , . . . , πe,vQ from E.

• Sample (xq,i)1≤q≤Q,1≤i≤k ∈ ΩR in the following way. For each 1 ≤ j ≤ L, inde-
pendently sample ((xq,i)π−1

e,vq (j))q,i from (ΩQkd, µ′).

• Add a hyperedge between Qk vertices {(vq, xq,i)}q,i to E ′. We say this hyperedge is
formed from e ∈ E.

Given the reduction, completeness is easy to show.

Lemma 10.4.1. If an instance of Q-HYPERGRAPH LABEL COVER admits a labeling that
strongly satisfies every hyperedge e ∈ E, there is a coloring c : V ′ → [k] such that every
hyperedge e′ ∈ E ′ has at least (Q− 1) vertices of each color.

Proof. Let l : V → [R] be a labeling that strongly satisfies every hyperedge e ∈ E.
For any v ∈ V, x ∈ [k]R, let c(v, x) = xl(v). For any hyperedge e′ = {(vq, xq,i)}q,i ∈
E ′, c(vq, xq,i) = (xq,i)l(vq), and all but one q satisfies

{
(xq,1)l(vq), . . . , (xq,k)l(vq)

}
= [k].

Therefore, the above strategy ensures that every hyperedge of E ′ contains at least (Q− 1)
vertices of each color.

10.4.3 Soundness

Lemma 10.4.2. For any ε > 0, there exists η := η(ε, Q, k) such that if I ⊆ V ′ of mea-
sure ε induces less than εOQ,k(1) fraction of hyperedges, the corresponding instance of
Q-HYPERGRAPH LABEL COVER admits a labeling that weakly satisfies a fraction η of
hyperedges.

As introduced in Section 10.1, the proof of soundness consists of the following five
steps.

1We can assume that the number of labels from [R] that project to a fixed label in [L] is the same for
all projections, since original LABEL COVER is also hard to approximate with this condition as shown in
Theorem 1.17 of [Wen13].
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STEP 1. Fixing a Good Hyperedge. Let I ⊆ V ′ be of measure ε. For each vertex v ∈ V ,
let fv : [k]R → {0, 1} be the indicator function of I∩Cloud(v). Call a vertex v heavy when
E[fv] ≥ ε

2
. By averaging, at least ε

2
fraction of vertices are heavy. By Theorem 10.2.3, we

can assume that the originalQ-HYPERGRAPH LABEL COVER instance is ε
2
-weakly-dense.

At least δ :=
( ε

2
)Q

2Q+1 fraction of hyperedges are induced by the heavy vertices.

Recall that we can require the original Q-HYPERGRAPH LABEL COVER instance to
be T -smooth for T that can be chosen arbitrarily large. Let J be a positive integer. The
parameters J and T will be determined later as large constants depending on Q, k, and ε.

Fix fv and S ⊆ [R]. Over a random hyperedge e containing v and the associated
projection πe,v, we bound the probability that |S| is not shattered and |πe,v(S)| < J . If
|S| ≤ J , by union bound over all pairs i 6= j, the probability that S is not shattered is at
most J

2

T
. If |S| > J , the probability that |πe,v(S)| < J is at most the probabilty that a fixed

J-subset of S is not shattered, which is at most J2

T
. Since

∑
S ‖(fv)S‖2

2 = ‖fv‖2
2 ≤ 1, we

have

Ee[‖fbad
v ‖2

2] ≤ J2

T
.

where fbad
v denotes the bad part of fv under πe,v and J (we suppress the dependence on the

projection πe,v and J for notational convenience). Therefore, Ee[‖fbad
v ‖2] ≤ (J

2

T
)1/2 and

at least 1 − (J
2

T
)1/4 fraction of hyperedges containing v satisfy ‖fbad

v ‖2 ≤ (J
2

T
)1/4. Call

such hyperedges good for v.

By union bound, at least 1−Q(J
2

T
)1/4 fraction of hyperedges are good for every vertex

they contain. By setting Q(J
2

T
)1/4 ≤ δ

2
, we can conclude that at least a fraction δ

2
of

hyperedges are induced by the heavy vertices and good for every vertex they contain.

Throughout the rest of the section, fix such a hyperedge e = (v1, . . . , vQ) and the
associated projections πe,v1 , . . . , πe,vQ . For simplicity, let fq := fvq and πq := πe,vq for
q ∈ [Q]. We now measure the fraction of hyperedges formed from e that are wholly
contained within I . The fraction such hyperedges is

Exq,i [
∏

1≤q≤Q,1≤i≤k

fq(xq,i)] . (10.2)

STEP 2. Lower Bounding in Each Hypercube. Fix any q ∈ [Q]. We prove that
E[
∏

1≤i≤k T1−γfq(xq,i)] ≥ ζ for some ζ > 0 and every γ ∈ [0, 1]. The main tool in this
part is a generalization of reverse hypercontractivity, which is discussed in Section 10.3.
The final result is the following.
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Theorem 10.4.3 (Restatement of Theorem 10.3.8). Let (Ωk, ν) be k correlated spaces
with the same marginal σ for each copy of Ω. Suppose that ν is described by the following
procedure to sample from Ωk.

• With probability ρ (0 ≤ ρ < 1), it samples from an arbitrary distribution on Ωk,
which has the same marginal σ for each copy of Ω.

• With probability 1− ρ, it samples from σ⊗k.

Let F1, . . . , Fk ∈ L[0,1](Ω
L) such that E[Fi] ≥ ε > 0 for all i. Then there exists ζ :=

ζ(ρ, ε, k) = εOρ,k(1) > 0 (independent of L) such that

Ex1,...,xk [
∏

1≤i≤k

Fi(xi)] ≥ ζ

where for each 1 ≤ j ≤ L, ((x1)j, . . . , (xk)j) is sampled according to ν.

For each 1 ≤ j ≤ L, ((xq,1)j, . . . , (xq,k)j) is sampled according to (Ω
k
, µ). µ satisfies

the requirement of Theorem 10.3.8 — with probability 1
Q

, it samples from ω⊗kd, and
with probability Q−1

Q
, it samples from d permutations from Sk independently so that the

marginal of each (xq,i)j is ω⊗d for all i and j.

Therefore, we can apply Theorem 10.3.8 (setting Ω ← Ω, k ← k, σ ← ω⊗d, ν ← µ,
ρ← Q−1

Q
, F1 = · · · = Fk ← fq, ε← ε

2
) to conclude that there exists ζ := ζ(Q−1

Q
, ε

2
, k) =

εOQ,k(1) > 0 such that

Exq,1,...,xq,k [
∏

1≤i≤k

fq(xq,i)] = Exq,1,...,xq,k [
∏

1≤i≤k

fq(xq,i)] ≥ ζ.

The only properties of fq used were E[fq] ≥ ε
2

and fq ∈ L[0,1](L
R). For any 0 ≤ γ ≤ 1,

T1−γfq have the same properties, so we have the following lower bound for every q ∈ [Q]

E[
∏

1≤i≤k

T1−γfq(xq,i)] ≥ ζ . (10.3)

STEP 3. Smoothing Functions. From unnoised functions to block noised functions, we
use the following theorem from Mossel [Mos10].

Theorem 10.4.4 ([Mos10]). Let (Ω1 × · · · × ΩK , ν) be K correlated spaces such that
ρ(Ω1, . . . ,ΩK ; ν) ≤ ρ < 1. Consider K product spaces ((Ω1)L × · · · × (ΩK)L, ν⊗L),
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and Fi ∈ L((Ωi)
L) for i ∈ [K] such that Var[Fi] ≤ 1. For every ε > 0, there exists

γ := γ(ε, ρ) > 0 such that∣∣∣E[
∏

1≤i≤K

Fi]− E[
∏

1≤i≤K

T1−γFi]
∣∣∣ ≤ Kε.

Since ρ(Ω
Qk
, µ′) ≤

√
Q−1
Q

, we can apply the above theorem (K ← Qk, Ω1 = · · · =

ΩK ← Ω, ν ← µ′, ε ← ζQ

4K
, Fk(q−1)+i ← fq for q ∈ [Q] and i ∈ [k]) to have γ :=

γ(Q, k, ζ) ∈ (0, 1) such that∣∣∣Exq,i [ ∏
1≤q≤Q,1≤i≤k

fq(xq,i)]− Exq,i [
∏

1≤q≤Q,1≤i≤k

T 1−γfq(xq,i)]
∣∣∣ ≤ ζQ

4
. (10.4)

From block noised functions to individual noised functions, we state the following
general theorem inspired by Wenner [Wen13].

Theorem 10.4.5. Let (Ωd1
1 ×· · ·×ΩdK

K , ν) be joint probability spaces such that the marginal
of each copy of Ωi is νi, and the marginal of Ωdi

i is ν⊗dii . Fix Fi : (Ωdi
i )L → R for each

i = 1, . . . , K with an associated projection πi : [diL] → [L] such that |π−1
i (j)| = di for

1 ≤ j ≤ L. For any 0 ≤ ρ ≤ 1, the noise operator TρFi and the block noise operator
T ρFi under πi is defined as in Section 10.2. Fix a positive integer J and consider F bad

i

under πi and J . Suppose max1≤i≤K ‖Fi‖2 ≤ 1 and ξ := max1≤i≤K ‖F bad
i ‖2. Then we

have,∣∣∣E(x1,...,xK)∼ν⊗L [
∏

1≤i≤K

T 1−γFi(xi)]−E(x1,...,xK)∼ν⊗L [
∏

1≤i≤K

T1−γFi(xi)]
∣∣∣ ≤ 2·3K((1−γ)J+ξ).

Proof. For each 1 ≤ i ≤ K, we decompose Fi as the follows:

F shattered
i =

∑
S⊆[diL]:S shattered under πi

(Fi)S

F large
i =

∑
S⊆[diL]:S not shattered and |πi(S)|≥J

(Fi)S

F bad
i =

∑
S⊆[diL]:S not shattered and |πi(S)|<J

(Fi)S .

224



Consider C := {shattered, large, bad}K . Expanding Fi = (F shattered
i + F large

i + F bad
i ), we

have ∏
1≤i≤K

T 1−γFi =
∑
c∈C

∏
1≤i≤K

T 1−γF
ci
i

and ∏
1≤i≤K

T1−γFi =
∑
c∈C

∏
1≤i≤K

T1−γF
ci
i

The quantity we want to bound can be also decomposable as∣∣∣∑
c∈C

E[
∏

1≤i≤K

T 1−γF
ci
i −

∏
1≤i≤K

T1−γF
ci
i ]
∣∣∣.

Since T 1−γF
shattered
i = T1−γF

shattered
i , the contribution of the case c = {shattered}K is 0.

We bound the other two cases of c.

• ci′ = large for some i′:

|E[
∏

1≤i≤K

T 1−γF
ci
i ]| ≤ ‖T 1−γF

large
i′ ‖2‖

∏
i 6=i′

T 1−γF
ci
i ‖2

≤ (1− γ)J‖F large
i′ ‖2 ≤ (1− γ)J .

Similarly, |E[
∏

1≤i≤K T1−γF
ci
i ]| ≤ (1 − γ)J and the contribution from such c is at

most 2(1− γ)J .

• ci′ = bad for some i′:

|E[
∏

1≤i≤K

T 1−γF
ci
i ]| ≤ ‖T 1−γF

bad
i′ ‖2‖

∏
i 6=i′

T 1−γF
ci
i ‖2 ≤ ξ .

Similarly, |E[
∏

1≤i≤K T1−γF
ci
i ]| ≤ ξ and the contribution from such c is at most 2ξ.

Since there are at most 3K choices for c, the total error is bounded by 2 · 3K((1 − γ)J +
ξ).

By applying the above theorem withK ← Qk, L← L, Ω1, . . . ,ΩK ← Ω, d1, . . . , dK ←
d, ν ← µ′, Fk(q−1)+1 = · · · = Fk(q−1)+k ← fq, πk(q−1)+1 = · · · = πk(q−1)+k ← πq,
ξ ← (J

2

T
)1/4, we have∣∣∣Exq,i [ ∏

1≤q≤Q,1≤i≤k

T 1−γfq(xq,i)]−Exq,i [
∏

1≤q≤Q,1≤i≤k

T1−γfq(xq,i)]
∣∣∣ ≤ 2·3Qk((1−γ)J+(

J2

T
)1/4).
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Fixing J and T to satisfy 2 · 3Qk((1 − γ)J + (J
2

T
)1/4) ≤ ζQ

4
as well as the previous

constraint, and combining with (10.4), we can conclude that∣∣∣Exq,i [ ∏
1≤q≤Q,1≤i≤k

fq(xq,i)]− Exq,i [
∏

1≤q≤Q,1≤i≤k

T1−γfq(xq,i)]
∣∣∣ ≤ ζQ

2
. (10.5)

In particular, if I induces less than ζQ

4
fraction of hyperedges formed from e, from (10.5),

we have

Exq,i [
∏

1≤q≤Q,1≤i≤k

T1−γfq(xq,i)] ≤
3ζQ

4
. (10.6)

STEP 4. Invariance. We now want to show

Exq,i [
∏

1≤q≤Q,1≤i≤k

T1−γfq(xq,i)] ≈
∏

1≤q≤Q

Exq,i [
∏

1≤i≤k

T1−γfq(xq,i)]|,

unless fq’s share influential coordinates. Our invariance principle is similar to ones used
in Wenner [Wen13] and Chan [Cha13]. With the goal of showing

Ex1,...,xK [
∏

1≤i≤K

Fi(xi)] ≈ Ex1 [F1(x1)]E[
∏

2≤i≤K

Fi(xi)],

one crucial property they used is that x1 is independent of xi for each i = 2, . . . , K (even
though any three xi’s are dependent).

Our (xq,i) do not have such a property (any xq,i is dependent on xq,i′ for i 6= i′),
but it satisfies another property that any xq,i is independent of the joint distribution of
(xq′,i′)q′ 6=q,i′∈[k] — everything not in the same hypercube. This property allows us to
achieve the goal stated above.

The following lemma is the basic building block that enables the induction used in
proof of the main invariance principle (Theorem 10.4.7) used in our framework. It is
essentially implied by a theorem stated in a more general setup by Wenner [Wen13, Theo-
rem 3.12]. For completeness, we present a proof below in simpler notation that fits for our
purposes.

Lemma 10.4.6. Let (Ωk
1 × Ω2, ν) be (k + 1) correlated spaces (k ≥ 2) such that each

copy of Ω1 has the same marginal, and any one copy of Ω1 and Ω2 are independent. Let
F ∈ L[0,1](Ω

L
1 ), and G ∈ L(ΩL

2 ). Suppose that
∑

1≤j≤L Infj[F ] ≤ Γ and∑
1≤j≤L

Infj[F ]Infj[G] ≤ τ.
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Then, ∣∣∣Ex1,...,xk,y[
∏

1≤i≤k

F (xi)G(y)]− Ex1,...,xk,y[
∏

1≤i≤k

F (xi)]Ey[G(y)]
∣∣∣ ≤ 2k+1

√
Γτ .

Proof. Let ν ′ be the distribution where the marginals of Ωk
1 and Ω2 are the same as those

of ν, but Ωk
1 and Ω2 are independent. Fix j ∈ [L]. Let (x1, . . . , xk, y) be sampled such that

((x1)j′ , . . . , (xk)j′ , yj′) ∼ ν for j′ < j and ((x1)j′ , . . . , (xk)j′ , yj′) ∼ ν ′ for j′ ≥ j. Let
(x′1, . . . , x

′
k, y
′) be the same except that ((x′1)j, . . . , (x

′
k)j, yj) ∼ ν. We want to bound

∣∣∣Ex1,...,xk,y[
∏

1≤i≤k

F (xi)G(y)]− Ex′1,...,x′k,y′ [
∏

1≤i≤k

F (x′i)G(y′)]
∣∣∣,

since the LHS with j = 1 and the RHS with j = L are the two expectations we are
interested in.

Decompose F into the following two parts.

F relevant =
∑
S:j∈S

FS

F not =
∑
S:j 6∈S

FS

Note that ‖F relevant‖2
2 = Infj[F ]. Decompose G = Grelevant + Gnot in the same way. Let

C = {relevant, not}k+1. The term we wanted to bound now becomes∣∣∣∣∑
c∈C

(
Ex1,...,xk,y[

∏
1≤i≤k

F ci(xi)G
ck+1(y)]− Ex′1,...,x′k,y′ [

∏
1≤i≤k

F ci(x′i)G
ck+1(y′)]

) ∣∣∣∣ . (10.7)

If ck+1 = not or c1 = · · · = ck = not, the contribution from c is zero because the
marginals of ((x1)j, · · · , (xk)j) and yj are the same with those of ((x′1)j, . . . , (x

′
k)j) and

y′j respectively. Furthermore, the same conclusion holds when ck+1 = relevant and exactly
one of c1, . . . , ck is relevant, since one copy of Ω1 and Ω2 are independent and ((xi)j, yj)
and ((x′i)j, y

′
j) have the same distribution. Thus a c ∈ C with nonzero contribution to
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(10.7) must satisfy ci1 = ci2 = ck+1 = relevant for some i1 6= i2. For such c,∣∣Ex1,...,xk,y[
∏

1≤i≤k

F ci(xi)G
ck+1(y)]

∣∣
≤ ‖F relevant(xi1)Grelevant(y)‖2‖F relevant(xi2)‖2‖

∏
i 6=i1,i2

F ci‖∞ By Hölder inequality

= ‖F relevant‖2‖Grelevant‖2‖F relevant‖2‖
∏
i 6=i1,i2

F ci‖∞ By independence

≤
√
Infj[F ]2Infj[G],

where the last inequality used the fact that F not(x) = Ex′ [F (x′)|x′[L]\j = x[L]\j] ∈ [0, 1]

and F relevant(x) = F (x)− F not(x) ∈ [−1, 1]. There are at most 2k choices for such c and∣∣∣Ex′1,...,x′k,y[ ∏
1≤i≤k

F ci(x′i)G
ck+1(y′)]

∣∣∣ ≤√Infj[F ]2Infj[G]

can be shown similarly, so∣∣∣Ex1,...,xk,y[
∏

1≤i≤k

F (xi)G(y)]− Ex′1,...,x′k,y′ [
∏

1≤i≤k

F (x′i)G(y′)]
∣∣∣ ≤ 2k+1

√
Infj[F ]2Infj[G].

Summing over all 1 ≤ j ≤ J , we conclude that∣∣∣Ex1,...,xk,y[
∏

1≤i≤k

F (xi)G(y)]− Ex1,...,xk [
∏

1≤i≤k

F (xi)]Ey[G(y)]
∣∣∣

≤ 2k+1
∑

1≤j≤L

√
Infj[F ]2Infj[G]

≤ 2k+1

√ ∑
1≤j≤L

Infj[F ]Infj[G]

√ ∑
1≤j≤L

Infj[F ] (by Cauchy-Schwartz)

≤ 2k+1
√

Γτ .

Given the lemma, we formalize our intuition and prove the following general theorem,
which will also be used in our other results.

Theorem 10.4.7. Let (Ωk1
1 ×· · ·×Ω

kQ
Q , ν) be correlated spaces (k1, . . . , kQ−1 ≥ 2, kQ ≥ 1)

where each copy of Ωq has the same marginal and independent of
∏

q′ 6=q Ω
kq
q′ . Let kmax =
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maxq kq and ksum =
∑

q kq. For 1 ≤ q ≤ Q, let Fq ∈ L[0,1](Ω
L
q ). Suppose that for all

1 ≤ q < Q,
∑

1≤j≤L Infj[Fq] ≤ Γ and∑
1≤j≤L

Infj[Fq](Infj[Fq+1] + · · ·+ Infj[FQ]) ≤ τ.

Then,∣∣∣Exq,i [ ∏
1≤q≤Q,1≤i≤kq

Fq(xq,i)]−
∏

1≤q≤Q

Exq,i [
∏

1≤i≤kq

Fq(xq,i)]
∣∣∣ ≤ Q · 2kmax+1

√
Γk2

sumτ .

Proof. . We use induction on Q. When Q = 2, the application of Lemma 10.4.6 (setting
F ← F1, k ← k1, Ω2 ← Ωk2

2 , G(x2,1, . . . , x2,k2) ←
∏

1≤i≤k2
F2(x2,i)) and applying

Lemma 10.2.2 to have Infj[G] ≤ k2
2Infj[F2]) implies the theorem.

Assuming the theorem holds for Q− 1, the application of Lemma 10.4.6 with

• F ← F1, k ← k1, Ω2 ← Ωk2
2 × · · · × Ω

kQ
Q , G(xq,i)←

∏
2≤q≤Q,1≤i≤k2

Fq(xq,i)

• Infj[G] ≤ k2
sum(Infj[F2] + · · ·+ Infj[FQ]) by Lemma 10.2.2

gives ∣∣∣Exq,i [ ∏
1≤q≤Q,1≤i≤kq

Fq(xq,i)]−
∏

1≤q≤Q

Exq,i [
∏

1≤i≤kq

Fq(xq,i)]
∣∣∣

≤
∣∣∣Exq,i [ ∏

1≤q≤Q,1≤i≤kq

Fq(xq,i)]− Ex1,i
[
∏

1≤i≤k1

F1(x1,i)]Exq,i [
∏

2≤q≤Q,1≤i≤kq

Fq(xq,i)]
∣∣∣

+
∣∣∣ ∏

1≤q≤Q

Exq,i [
∏

1≤i≤kq

Fq(xq,i)]− Ex1,i
[
∏

1≤i≤k1

F1(x1,i)]Exq,i [
∏

2≤q≤Q,1≤i≤kq

Fq(xq,i)]
∣∣∣

≤2kmax+1
√

Γk2
sumτ + (Q− 1)2kmax+1

√
Γk2

sumτ

=Q · 2kmax+1
√

Γk2
sumτ .

By Lemma 1.13 of Wenner [Wen13], there exists Γ = O( 1
γ
) such that∑

1≤j≤L

Infj[T1−γfq] ≤
∑

1≤j≤R

Infj[T1−γfq] ≤ Γ.
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Fix τ to satisfy Q · 2k+1
√

Γ(Qk)2τ < ζQ

4
. We have∣∣∣Exq,i [ ∏

1≤q≤Q,1≤i≤k

T1−γfq(xq,i)]−
∏

1≤q≤Q

Exq,i [
∏

1≤i≤k

T1−γfq(xq,i)]
∣∣∣

≥
∣∣∣ ∏
1≤q≤Q

Exq,i [
∏

1≤i≤k

T1−γfq(xq,i)]
∣∣∣− ∣∣∣Exq,i [ ∏

1≤q≤Q,1≤i≤k

T1−γfq(xq,i)]
∣∣∣

≥ ζQ

4
by (10.3) and (10.6) .

Thus, applying Theorem 10.4.7 with Q ← Q, k1 = · · · = kQ ← k,Ω1 = · · · = ΩQ = Ω,
ν ← µ′, L ← L, Fq ← T1−γfq, Infj[Fq] ← Infj[T1−γfq], there exists q ∈ {1, . . . , Q− 1}
such that ∑

1≤j≤L

Infj[T1−γfq](Infj[T1−γfq+1] + · · ·+ Infj[T1−γfQ]) > τ. (10.8)

STEP 5. Decoding Strategy. We use the standard strategy — each vq samples a set S ⊆
[R] according to ‖(fq)S‖2

2, and chooses a random element from S. For each 1 ≤ j ≤ L,
the probability that v chooses a label in π−1(j) is∑

S:S∩π−1(j)6=∅

‖(fq)S‖2
2

|S ∩ π−1(j)|
|S|

≥
∑

S:S∩π−1(j) 6=∅

‖(fq)S‖2
2 · γ(1− γ)

|S|
|S∩π(j)|

≥ γ
∑

S:S∩π−1(j)6=∅

‖(fq)S‖2
2 · (1− γ)|S|

= γInfj[T1−γfq]

where the first inequality follows from the fact that α ≥ γ(1 − γ)1/α for α > 0 and
0 < γ < 1. Fix q to be the one obtained in Step 4 that satisfies (10.8). The probability that
πq(l(vq)) = πq′(l(vq′)) for some q < q′ ≤ Q is at least

γ2
∑

1≤j≤L

Infj[T1−γfq] max
q<q′≤Q

Infj[T1−γfq′ ]

≥ γ2

Q

∑
1≤j≤L

Infj[T1−γfq](Infj[T1−γfq+1] + · · ·+ Infj[T1−γfQ])

≥ γ2τ

Q
.

Suppose that the total fraction of hyperedges (of E ′) wholly contained within I is less than
δ
4
· ζQ

4
= εOQ,k(1). Since δ

2
fraction of hyperedges (of E) are good, for at least δ

2
− δ

4
= δ

4
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fraction of hyperedges the above analysis works, and these edges are weakly satisfied by
the above randomized strategy with probability γ2τ

Q
. Setting the soundness parameter in

Theorem 10.2.3 η := δ
4
· γ2τ

Q
completes the proof of the soundness Lemma 10.7.2, and

therefore also Theorem 9.2.1.

Dependencies between Constants The above proof involves several constants that de-
pend on each other. We summarize them in Table 10.1, in the order they are fixed in the
proof.

Constants How it is fixed When it is fixed
Q, k, ε Arbitrary Q, k ≥ 2, ε > 0

δ δ :=
( ε

2
)Q

2Q+1 STEP 1.
ζ ζ := ζ(Q, ε, k) (by Theorem 10.3.8) STEP 2.
γ γ := γ(Q, k, ζ) (by Theorem 10.4.4) STEP 3.

Large enough to satisfy
J, T Q(J

2

T )1/4 ≤ δ
2 STEP 3.

2 · 3Qk((1− γ)J + (J
2

T )1/4) ≤ ζQ

4

Γ Γ := O( 1
γ ) (by [Wen13]) STEP 4.

τ Small enough to satisfy STEP 4.
Q · 2k+1

√
Γ(Qk)2τ < ζQ

4

η η := δ
4 ·

γ2τ
Q STEP 5.

Table 10.1: List of the constants in the proof.

Requirements for Distributions. In the proof, we used the following three properties
of the test distribution. We qualitatively describe them and how they are used in the proof.
All the distributions in this part satisfy all the properties. Let (Ω1 × · · · × ΩK , ν) be the
test distribution for K points.

1. Let Ωi1 , . . . ,Ωik correspond to k points queried in the same hypercube. We re-
quire the marginal distribution on Ωi1 × · · · × Ωik to have the full support — any
(xi1 , . . . , xik) ∈ Ωi1 × · · · ×Ωik is sampled with nonzero probability. It is crucial in
our application of the reverse hypercontractivity used in STEP 2.

2. When (x1, . . . , xK) is sampled from ν, we require that for any i ∈ [K], xi is not al-
ways determined by the otherK−1 points. This is used when bounding correlations
and smoothing functions in STEP 3.
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3. When (x1, . . . , xK) is sampled from ν, we require that for any i ∈ [K], xi is com-
pletely independent from all the points not in the same hypercube. It is used in the
application of the invariance principle in STEP 4.

10.5 k-HYPERGRAPH VERTEX COVER

In this section, we prove the following two theorems, both implying that it is NP-hard to
approximate k-HYPERGRAPH VERTEX COVER with in a factor of K − 1− ε.

Theorem 10.5.1 (Restatement of Theorem 9.2.4). For any ε > 0 and K ≥ 3, given a
K-uniform hypergraph H = (V,E), it is NP-hard to distinguish the following cases.

• Completeness: There is a vertex cover of measure 1
K−1

.

• Soundness: Every I ⊆ V of measure ε induces at least a fraction εOK(1) of hyper-
edges.

Theorem 10.5.2 (Restatement of Theorem 9.2.5). For any ε > 0 and K ≥ 3, given a
K-uniform hypergraph H = (V,E), it is NP-hard to distinguish the following cases.

• Completeness: There exist V ∗ ⊆ V of measure ε and a coloring c : [V \ V ∗] →
[K − 1] such that for every hyperedge of the induced hypergraph on V \ V ∗, K − 2
colors appear once and the other color twice. Therefore, H has a vertex cover of
size at most 1

K−1
+ ε.

• Soundness: There is no independent set of measure ε.

The above two theorems are not comparable to each other. In the completeness case,
Theorem 9.2.4 ensures a smaller vertex cover, while Theorem 9.2.5 guarantees richer
structure. In the soundness case, Theorem 9.2.4 gives a stronger density. Since they
differ only in the test distribution, we prove Theorem 9.2.5 in details and introduce the
distribution for Theorem 9.2.4 at the end of this section.

10.5.1 Distribution

We first define the distribution of K points, one in a single cell and the other K − 1 in a
block of size d. Let Ω = {∗, 1, . . . , K − 1} and Ω = Ωd. Let ω be the distribution on
Ω such that ω(∗) = ε and ω(1) = · · · = ω(K − 1) = 1−ε

K−1
. The K points x ∈ Ω and

y1, . . . , yK−1 ∈ Ω are sampled by the following procedure.
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• Sample x ∼ ω.

• If x = ∗, sample y1, . . . , yK−1 ∼ ω⊗d independently.

• If x 6= ∗, for each 1 ≤ j ≤ d, sample (y1)j, . . . , (yK−1)j ∼ SK−1 uniformly, and
independently noise (yi)j ← ∗ with probability ε.

It is easy to see that the marginal distribution of each yi is ω⊗d. Let (Ω × Ω
K−1

, µ′)
denote the K correlated spaces corresponding to the above distribution, and let µ denote
the marginal distribution of (y1, . . . , yK−1). Let Ωi (1 ≤ i ≤ K − 1) denote the copy of
Ω associated with yi, and Ω

′
i be the product of the other K − 1 spaces. With probability ε

(when x = ∗), yi is completely independent of the others. Even when x 6= ∗, yi’s marginal
is ω⊗d. By Lemma 10.2.1, we conclude that ρ(Ωi,Ω

′
i;µ
′) ≤
√

1− ε.

However, bounding ρ(Ω,Ω
K−1

;µ′) (as the correlation between two spaces Ω and Ω
K−1

)
cannot be done in the same way. To get around this, we define the distribution µ′β be the
same as µ′, but at the end each yi is independently resampled with probability 1−β. While
we still use µ′ in the reduction, the fact that ρ(Ωi,Ω

′
i;µ
′) ≤

√
1− ε implies that our anal-

ysis, without much loss, can assume that each yi is resampled as in µ′β . In µ′β , the same

technique yields ρ(Ω,Ω
K−1

;µ′β) ≤
√

1− (1− β)K−1, which allows the usual analysis to
proceed.

10.5.2 Reduction and Completeness

We now describe the reduction from MULTILAYERED LABEL COVER with A layers.
Given a G = (∪1≤i≤AVi,∪i<jEi,j) with a projection πe : [Rj] → [Ri] for each hyper-
edge e = (u, v) (u ∈ Vi, v ∈ Vj), the resulting instance for k-HYPERGRAPH VER-
TEX COVER is (V ′, E ′), where V ′ = ∪1≤i≤AVi × ΩRi . The weight of (v, x) (v ∈ Vi)
is
∏

1≤j≤Ri ω(xj), so that the sum of the weights of the vertices in Cloud(v) is 1. For
v ∈ Vi, let Cloud(v) := {v}×ΩRi . The set of hyperedges E ′ is described by the following
procedure.

• Sample 1 ≤ a < b ≤ A uniformly and e = (u, v) ∈ Ei,j such that u ∈ Vi, v ∈ Vj .

• Sample x ∈ ΩRa , y1, . . . , yK−1 ∈ ΩRb in the following way. For each 1 ≤ j ≤ Ra,
sample xj, ((yi)π−1

e (j))i∈[K−1] from (Ω× Ω
K−1

, µ′).
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• Add a hyperedge ((u, x), (v, y1), . . . , (v, yK−1)) to E ′. We say that this hyperedge is
formed from e, and the weight of this hyperedge is the probability that it is sampled
given that e is sampled in the first step.

Given the reduction, completeness is easy to show.

Lemma 10.5.3. If there is a labeling that satisfies every e ∈ E, there exist V ∗ ⊆ V ′ of
measure ε and c : V ′ \ V ∗ → [K − 1] with the same measure for each color, such that in
each hyperedge induced by V ′\V ∗, K−1 colors appear once and the other color appears
twice.

Proof. Let l : V → [RA] be a labeling that satisfies every edge in E. Let V ∗ :={
(v, x) : (x)l(v) = ∗

}
, and c(v, x) = (x)l(v). In each Cloud(v), V ∗ contains measure

ω(∗) = ε and c(i) contains ω(i) = 1−ε
K−1

. For each hyperedge ((u, x), (v, y1), . . . , (v, yK−1))

induced by V ′ \ V ∗,
{

(v, y1)l(v), . . . , (v, yK−1)l(v)

}
= [K − 1].

10.5.3 Soundness

Unlike the previous reductions, the resulting instance is weighted — vertices and hyper-
edges can have different weights. The only reason is that (1) we used MULTILAYERED

LABEL COVER and (2) and ω is not the uniform distribution. Once we fix an edge e of G,
our hyperedge weights correspond to the above probability distribution and vertex weights
correspond to its marginals. Therefore all the following probabilistic analysis works as in
previous reductions.

Lemma 10.5.4. For any ε > 0, there exists η := η(ε,K) such that if I ⊆ V ′ of measure
ε induces less than εOQ,k(1) fraction of hyperedges, the corresponding instance of MUL-
TILAYERED LABEL COVER admits a labeling that satisfies η fraction of edges in Ea,b for
some 1 ≤ a < b ≤ A.

The proof is almost identical to the one presented in Section 10.7.2, with slightly more
technical details dealing with noise.

STEP 1. Fixing a Good Hyperedge. Let I ⊆ V ′ be of measure ε. Let fv be the indicator
function of I ∩ Cloud(v). By averaging, ε

2
fraction of vertices has E[fv] ≥ ε

2
— call these

vertices heavy. Let Wi ⊆ Vi be the set of heavy vertices in the ith layer.
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By averaging, at least ε
4

fraction of layers satisfy |Wi| ≥ ε
4
|Vi|. Take A = d ε

16
e. By

weak density, there exist 1 ≤ a < b ≤ A such that the fraction of edges in Ei,j induced by
Wa and Wb is at least ε3

1024
. Let L = Ra and R = Rb.

By the same argument as in Section 10.7.2, by adjusting the smoothness paramter T
and an integer J , we can ensure that ε3

2048
fraction of edge (u, v) ∈ Ea,b is good — both u

and v are heavy and,

‖fbad
v ‖2 ≤ (

J2

T
)1/4

under πe and J .

Throughout the rest of the section, fix such an edge e = (u, v) and the associated
projections π := πe. For simplicity, let f := fu and g := fv. We now measure the weight
of hyperedges induced by I , which is

Ex,y1,...,yK−1
[f(x)

∏
1≤i≤K−1

g(yi)] (10.9)

STEP 2. Lower Bounding in Each Hypercube. For each 1 ≤ j ≤ L, with probability
ε, (yi)π−1(j) are sampled completely independently from Ω. By Theorem 10.3.8 (setting
Ω← Ω, k ← K − 1, σ ← ω⊗d, ν ← µ, ρ← 1− ε, F1 = · · · = FK−1 ← g, ε← ε

2
), there

exists ζ = ζ(ε,K) > 0 such that for every γ ∈ [0, 1],

Ey1,...,yK∼µ⊗L [
∏

1≤i≤K−1

T1−γg(yi)] ≥ ζ.

Note that µβ also satisfies the requirement of Theorem 10.3.8, so

Ey1,...,yK∼(µβ)⊗L [
∏

1≤i≤K−1

T1−γg(yi)] ≥ ζ. (10.10)

Let θ := εζ
2

be the lower bound of E[f(x)]E[
∏

i g(yi)], which also holds for any noised
versions of f, g and noised distributions.

STEP 3. Smoothing Functions. Due to the fact that ρ(Ω,Ω
K−1

;µ′) is not easily bounded,
we insert the noise operator for g(y1), . . . , g(yK−1) first using ρ(Ωi,Ω

′
i;µ
′) ≤

√
1− ε for

1 ≤ i ≤ K − 1. This follows from the following lemma from Mossel [Mos10], which is
indeed the main lemma for Theorem 10.4.4.
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Lemma 10.5.5 ([Mos10]). Let (Ω1×Ω2, ν) be two correlated spaces with ρ(Ω1,Ω2; ν) ≤
ρ < 1, and the corresponding product spaces ((Ω1)L × (Ω2)L, ν⊗L), and Fi ∈ L((Ωi)

L)
for i = 1, 2 such that Var[Fi] ≤ 1. For any ε > 0, there exists γ := γ(ε, ρ) > 0 such that

|E[F1F2]− E[F1T1−γF2] ≤ ε.

Applying the above lemma to (Ωi,Ω
′
i;µ
′) iteratively for i = 1, . . . , K − 1, we have

γ1 := γ1(ε,K, θ) such that∣∣∣Ex,yi∼µ′⊗L [f(x)
∏

1≤i≤K−1

g(yi)]− Ex,yi∼µ′⊗L [f(x)
∏

1≤i≤K−1

T 1−γ1T 1−γ1g(yi)]
∣∣∣

=
∣∣∣Ex,yi∼µ′⊗L [f(x)

∏
1≤i≤K−1

g(yi)]− Ex,yi∼(µ′1−γ1
)⊗L [f(x)

∏
1≤i≤K−1

T 1−γ1g(yi)]
∣∣∣

≤θ
8
.

Let β := 1 − γ1, and use E to denote the expectation over (x, y1, . . . , yK) ∼ (µ′β)⊗L

while E still denotes the expectation over (x, y1, . . . , yK) ∼ µ′⊗L. This implies

E[f(x)
∏

1≤i≤K−1

T 1−γ1T 1−γ1g(yi)] = E[f(x)
∏

1≤i≤K−1

T 1−γ1g(yi)].

Since ρ(Ω,Ω
K−1

;µ′β) ≤
√

1− (1− β)K−1, another application of Lemma 10.5.5 will
give γ2 such that∣∣∣E[f(x)

∏
1≤i≤K−1

T 1−γ1g(yi)]− E[T1−γ2f(x)
∏

1≤i≤K−1

T 1−γ1g(yi)]
∣∣∣ ≤ θ

8
.

By applying Theorem 10.4.5 (K ← K, L ← L, Ω1, . . . ,ΩK ← Ω, ΩK = Ω,
d1, . . . , dK−1 ← d, dK = 1, ν ← µ′β , F1 = · · · = FK−1 ← g, FK ← f , π1 = · · · =

πK−1 = π, πK ← the identity, ξ ← (J
2

T
)1/4), we have∣∣∣E[T1−γ2f(x)

∏
1≤i≤K−1

T1−γ1g(yi)]− E[T1−γ2f(x)
∏

1≤i≤K−1

T 1−γ1g(yi)]
∣∣∣

≤2 · 3K((1− γ1)J + (
J2

T
)1/4).
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Fixing J and T to satisfy 2 · 3K((1 − γ1)J + (J
2

T
)1/4) ≤ θ

8
as well as the previous

constraint, we can conclude that∣∣∣E[f(x)
∏

1≤i≤K−1

g(yi)]− E[T1−γ2f(x)
∏

1≤i≤K−1

T1−γ1g(yi)]
∣∣∣ ≤ 3θ

8
. (10.11)

In particular, if I is independent, from (10.9) and (10.11)

E[T1−γ2f(x)
∏

1≤i≤K−1

T1−γ1g(yi)] ≤
θ

2
. (10.12)

STEP 4. Invariance. The marginal of yi (resp. x) is ω⊗R (resp. ω⊗L) on both µ′⊗L and
µ⊗L. Therefore, the Efron-Stein decomposition of f and g as well as the notion of (block)
influence remain the same between µ′ and µ′β . Since g is noised, there exists Γ = O( 1

γ1
)

such that ∑
1≤j≤L

Infj[T1−γ1g] ≤ Γ.

Fix τ to satisfy Q · 2K+1
√

ΓK2τ < θ
4
. From (10.10) and (10.12),∣∣∣E[T1−γ2f(x)

∏
1≤i≤K−1

T1−γ1g(yi)]− E[T1−γ2f(x)]E[
∏

1≤i≤K−1

T1−γ1g(yi)]
∣∣∣

≥E[T1−γ2f(x)]E[
∏

1≤i≤K−1

T1−γ1g(yi)]| − E[T1−γ2f(x)
∏

1≤i≤K−1

T1−γ1g(yi)]

≥θ
2
.

Applying Theorem 10.4.7 (Q ← 2, k1 ← K − 1, k2 = 1, Ω1 = Ω, Ω2 ← Ω, ν ← µ′β ,
L← L, F1 ← T1−γ1g, F2 ← T1−γ2f , Infj[F1]← Infj[T1−γ1g]),∑

1≤j≤L

Infj[T1−γ1g]Infj[T1−γ2f ] > τ.

STEP 5. Decoding Strategy. We use the following standard strategy — v samples a set
S ⊆ [R] according to ‖gS‖2

2, and chooses a random element from S. u also samples a
set S ⊆ [L] according to ‖fS‖2

2, and chooses a random element from S. As shown in
Section 10.7.2, for each 1 ≤ j ≤ L, the probability that v chooses a label in π−1(j) is at
least γ1Infj[T1−γ1g], and the probability that u chooses j is at least γ2Inf[T1−γ2f ].
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The probability that πe(l(v)) = π(l(u)) is at least

γ1γ2

∑
1≤j≤L

Infj[T1−γ1g]Infj[T1−γ2f ] ≥ γ1γ2τ.

Suppose that I is indepenent. For at least ε3

2048
fraction of edges (of Ea,b) the above

analysis works, and these edges are satisfied by the above randomized strategy with prob-
ability γ1γ2τ . Setting η := ε3

2048
· γ1γ2τ completes the proof of soundness.

10.5.4 Distribution for Theorem 9.2.4

For Theorem 9.2.4, we again define the distribution of K points, one in a single cell and
the other K − 1 in a block of size d. Let Ω = {0, 1} and Ω = Ωd. Let ω be the (1− 1

K−1
)-

biased distribution on Ω — ω(0) = 1
K−1

and ω(1) = 1 − 1
K−1

. The K points x ∈ Ω and
y1, . . . , yK−1 ∈ Ω are sampled by the following procedure.

• Sample x ∼ ω.

• If x = 0, sample y1, . . . , yK−1 ∼ ω⊗d independently.

• If x = 1, for each 1 ≤ j ≤ d, sample (y1)j, . . . , (yK−1)j ∼ µ, where µ is the
uniform distribution on K − 1 bit strings with exactly (K − 2) 1’s.

Pr[(yi)j = 1] = 1
K−1
·(1− 1

K−1
)+(1− 1

K−1
)(K−2
K−1

) = (1− 1
K−1

) for all i ∈ [K−1] and

j ∈ [d], and (yi)1, . . . , (yi)d are independent. Let (Ω× Ω
K−1

, µ′) denote the K correlated
spaces corresponding to the above distribution, and let µ denote the marginal distribution
of (y1, . . . , yK−1). Let Ωi (1 ≤ i ≤ K − 1) denote the copy of Ω associated with yi,
and Ω

′
i be the product of the other K − 1 spaces. With probability 1

K−1
(when x = 0),

yi is completely independent of the others. Even when x = 1, yi’s marginal is ω⊗d. By
Lemma 10.2.1, we conclude that ρ(Ωi,Ω

′
i;µ
′) ≤

√
K−2
K−1

. Bounding ρ(Ω,Ω
K−1

;µ′) (as the

correlation between two spaces Ω and Ω
K−1

) can be done in the same way as the proof of
Theorem 9.2.4 in this section: (1) define the distribution µ′β for the sake of analysis where
each yi is independently resampled with probability 1 − β after sampled according to µ′,
(2) show that analyzing µ′β instead of µ′ incurs little extra error, and (3) use the standard

technique to prove ρ(Ω,Ω
K−1

;µ′β) ≤
√

1− (1− β)K−1.
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The fact that for each 1 ≤ j ≤ d, at least one of x, (y1)j, ..., (yK)j is 1 ensures
completeness, and the bounded correlation ensures soundness. Furthermore, the fact that
y1, ..., yK−1 become completely independent with probability 1

K−1
(previously this was ε)

implies ζ := εOK(1) and the same argument in Theorem 9.2.1 shows density in soundness.

10.6 Q-out-of-(2Q + 1)-SAT

An instance of (2Q + 1)-SAT is a tuple (V,Φ) consisting of the set of variables V and
the set of clauses Φ. Each clause φ is described by ((v1, z1), . . . , (v2Q+1, z2Q+1)) where
vq ∈ V and zq ∈ {0, 1}. To be consistent with the notation we used for hypergraph
coloring, we use the unconventional notation where 0 denotes True and 1 denotes False.
Let f : V → {0, 1} be an assignment to variables. The number of literals of φ set to True
by f is | {q : f(vq)⊕ zq = 0} | where ⊕ denotes the sum over Z2.

10.6.1 Distribution

We first define the distribution of 2Q + 1 points, one in a single cell and the other 2Q in
a block of size d. Let Ω = {0, 1} and Ω = Ωd. Let ω be the uniform distribution on Ω.
2Q + 1 points x0 ∈ Ω and xq,i ∈ Ω for 1 ≤ q ≤ Q and 1 ≤ i ≤ k are sampled by the
following procedure.

• Sample q′ ∈ {0, . . . , Q} uniformly at random.

• If q′ = 0,

– Sample x0 ∈ Ω uniformly independently.

– For all q ∈ [Q], sample xq,1 ∈ Ωd independently and set xq,2 = 1d−xq,1,
where 1d ∈ Ωd := (1, 1, . . . , 1).

• If q′ > 0,

– For all q ∈ [Q]\{q′}, sample xq,1 ∈ Ωd independently and set xq,2 = 1d−xq,1.

– Sample x0 ∈ Ω independently. If x0 = 0, sample xq,1, xq,2 ∈ Ωd indepen-
dently. If x0 = 1, sample xq,1 ∈ Ωd independently and set xq,2 = 1d−xq,1.
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Let (Ω × Ω
2Q
, µ′) denote 2Q + 1 correlated spaces corresponding to the above dis-

tribution, and µ denote the marginal distribution of (xq,1, xq,2), which is the same for all
q ∈ [Q]. We bound ρ(Ω,Ω

2Q
;µ′).

Fix some 1 ≤ q ≤ Q and 1 ≤ i ≤ 2. Let Ωq,i denote the copy of Ω associated with xq,i,
and Ω

′
q,i be the product of the other 2Q copies. We have µ′ = 1

2(Q+1)
αq + (1 − 1

2(Q+1)
)βq

where αq denotes the distribution given q′ = q and x0 = 0 (so that xq,1, xq,2 are sampled
i.i.d.), and βq denotes the distribution q′ 6= q or x0 = 1. Since each entry of xq,i is
sampled i.i.d. in αq, ρ(Ωq,i,Ω

′
q,i;αq) = 0. In both αq and βq, the marginal of xq,i is

ω⊗d. By Lemma 10.2.1, we conclude that ρ(Ωq,i,Ω
′
q,i;µ

′) ≤
√

1− 1
2(Q+1)

. Similarly,

ρ(Ω,Ω
2Q

;µ′) ≤
√

1− 1
Q+1

. Therefore we have

ρ(Ω, (Ωq,i)q,i;µ
′) ≤

√
1− 1

2(Q+ 1)
.

10.6.2 Reduction and Completeness

We now describe the reduction from (Q+ 1)-BIPARTITE HYPERGRAPH LABEL COVER.
Given a (Q + 1)-uniform hypergraph H = (U ∪ V,E) with Q projections from [R] to
[L] for each hyperedge, the resulting instance for (2Q + 1)-SAT is (U ′ ∪ V ′,Φ) where
U ′ := (U × ΩL) and V ′ := (V × ΩR). For u ∈ U and v ∈ V , let Cloud(u) := {u} × ΩL

and Cloud(v) := {v} × ΩR. The clauses in Φ are described by the following procedure.

• Sample a random hyperedge e = (u, v1, . . . , vQ) with the associated projections
πe,v1 , . . . , πe,vQ from E.

• Sample x0 ∈ ΩL, (xq,i)1≤q≤Q,1≤i≤2 ∈ ΩR in the following way. For each 1 ≤ j ≤ L,
sample (x0)j, ((xq,i)π−1

e,vq (j))q,i from (Ω× Ω
2Q
, µ′).

• Sample z0, (zq,i)1≤q≤Q,1≤i≤2 ∈ Ω i.i.d.

• Add a clause

((u, x0 ⊕ z0 1L), z0)× ((vq, xq,i ⊕ zq,i 1R), zq,i)1≤q≤Q,1≤i≤2

to Φ. We say this clause is formed from e ∈ E.

Given the reduction, completeness is easy to show.
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Lemma 10.6.1. If an instance of (Q + 1)-BIPARTITE HYPERGRAPH LABEL COVER

admits a labeling that strongly satisfies every hyperedge e ∈ E, there is an assignment
f : U ′ ∪ V ′ → Ω that sets at least Q literals to 0 (which denotes True in our convention)
in every clause of Φ.

Proof. Let l : U ∪ V → [R] be a labeling that strongly satisfies every hyperedge e ∈ E.
For any u ∈ U, x ∈ ΩL, let f(u, x) = xl(u). For any v ∈ V, x ∈ ΩR, let f(v, x) = xl(v).
For any clause

((u, x0 ⊕ z0 1L), z0)× ((vq, xq,i ⊕ zq,i 1R), zq,i)1≤q≤Q,1≤i≤2,

one of the following is true. Note that f(u, x0 ⊕ z0 1L) ⊕ z0 = (x0)l(u) and f(vq, xq,i ⊕
zq,i 1R)⊕ zq,i = (xq,i)l(vq).

• Each q ∈ [Q] satisfies (xq,1)l(vq) 6= (xq,2)l(vq).

• For some q ∈ [Q], all q′ ∈ [Q]\{q} satisfy (xq′,1)l(v′q) 6= (xq′,2)l(v′q), and if (x0)l(u) =
1, q also satisfies (xq,1)l(vq) 6= (xq,2)l(vq).

In any case, (2Q + 1)-tuple ((x0)l(u)) × ((xq,i)l(vq))q,i contains at least Q zeros, which
means that any clause has at least Q literals set True.

10.6.3 Soundness

Lemma 10.6.2. There exist ε, η > 0, only depending on Q, such that if there is an assign-
ment that satisfies more than (1 − ε) fraction of hyperedges, the corresponding instance
of Q-HYPERGRAPH LABEL COVER admits a labeling that weakly satisfies η fraction of
hyperedges.

The proof is almost identical to the one presented in Section 10.7.2. Let g : U ′ ∪V ′ →
Ω be any assignment. The fraction of clauses whose literals are all set to False is

Eu,v1,...,vQEx0,(xq ,i)Ez0,(zq,i)[(g(u, x0 ⊕ 1L z0)⊕ z0)
∏

1≤q≤Q,1≤i≤2

(g(vq, xq,i ⊕ 1R zq,i)⊕ (z0))]

=Eu,v1,...,vQEx0,(xq ,i)[Ez0 [(g(u, x0 ⊕ 1L z0)⊕ z0)]
∏

1≤q≤Q,1≤i≤2

Ezq,i [g(vq, xq,i ⊕ 1R zq,i)⊕ zq,i]]

=Eu,v1,...,vQEx0,(xq ,i)[f(u, x0)
∏

1≤q≤Q,1≤i≤2

f(v, xq,i)]
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where we define

f(u, x) := Ez∈Ω[f(u, x⊕ 1L z)⊕ z)] u ∈ U
f(v, x) := Ez∈Ω[f(v, x⊕ 1R z)⊕ z)] v ∈ V.

For u ∈ U , let fu ∈ L[0,1](Ω
L) be the restriction of f to {u} × ΩL, and define fv ∈

L[0,1](Ω
R) similarly for v ∈ V . Note that E[fu] = E[fv] = 1

2
.

STEP 1. Fixing a Good Hyperedge. Since E[fu] = E[fv] = 1
2

for all u ∈ U , and v ∈ V ,
we do not need to define heavy vertices. By the same argument as in Section 10.7.2,
by adjusting the smoothness paramter T and the integer J , we can ensure that δ := 1

2

fraction of hyperedges are good for every vertex they contain, i.e., the hyperedge e =
(u, v1, . . . , vQ) satisfies for each q ∈ [Q],

‖fbad
vq ‖2 ≤ (

J2

T
)1/4

under πe,vq and J .

Throughout the rest of the section, fix such a hyperedge e = (u, v1, . . . , vQ) and the
associated projections πe,v1 , . . . , πe,vQ . For simplicity, let fq := fvq and πq := πe,vq for
q ∈ [Q], and fq+1 = fu. We now measure the fraction of clauses formed from e that are
unsatisfied, which is

Exq,i [fu(x0)
∏

1≤q≤Q,1≤i≤2

fq(xq,i)] (10.13)

STEP 2. Lower Bounding in Each Hypercube. Fix any q ∈ [Q]. For each 1 ≤ j ≤ L,
with probability 1

2(Q+1)
, (xq,1)π−1

q (j) and (xq,2)π−1
q (j) are sampled completely independently

from Ω. By Theorem 10.3.8 (setting Ω ← Ω, k ← 2, σ ← ω⊗d, ν ← µ, ρ ←
√

2Q+1
2(Q+1)

,

F1 = F2 ← fq, ε← 1
2
), there exists ζ = ζ(Q) > 0 such that for every γ ∈ [0, 1],

Exq,1,xq,2
[
T1−γfq(xq,1) T1−γfq(xq,2)

]
≥ ζ . (10.14)

STEP 3. Smoothing Functions. Since ρ(Ω, (Ωq,i)q,i;µ
′) ≤

√
1− 1

2(Q+1)
, we can apply

Theorem 10.4.4 (K ← 2Q + 1, Ω1 = · · · = ΩK−1 ← Ω, ΩK ← Ω, ν ← µ′, ε ← ζQ

8K
,
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F2q−1 = F2q ← fq, FK ← fu) to have γ := γ(Q, ζ) ∈ (0, 1) such that∣∣∣Exq,i [fu(x0)
∏

1≤q≤Q,1≤i≤2

fq(xq,i)]− Exq,i [T1−γfu(x0)
∏

1≤q≤Q,1≤i≤2

T 1−γfq(xq,i)]
∣∣∣ ≤ ζQ

8
.

(10.15)

By applying Theorem 10.4.5 (K ← 2Q+1, L← L, Ω1, . . . ,ΩK ← Ω, d1, . . . , dK−1 ←
d, dK = 1, ν ← µ′, F2q−1 = F2q ← fq, FK ← fu, π2q−1 = π2q ← πq, πK ← the identity,
ξ ← (J

2

T
)1/4), we have∣∣∣Exq,i [T1−γfu(x0)

∏
1≤q≤Q,1≤i≤2

T 1−γfq(xq,i)]− Exq,i [T1−γfu(x0)
∏

1≤q≤Q,1≤i≤2

T1−γfq(xq,i)]
∣∣∣

≤ 2 · 32Q+1((1− γ)J + (
J2

T
)1/4) . (10.16)

Fixing J and T to satisfy 2 · 32Q+1((1 − γ)J + (J
2

T
)1/4) ≤ ζQ

8
as well as the previous

constraint, we can conclude from (10.15) and (10.16) that∣∣∣Exq,i [fu(x0)
∏

1≤q≤Q,1≤i≤2

fq(xq,i)]− Exq,i [T1−γfu(x0)
∏

1≤q≤Q,1≤i≤2

T1−γfq(xq,i)]
∣∣∣ ≤ ζQ

4
.

In particular, if among the clauses formed from e, less than ζQ

8
fraction of them are unsat-

isfied, from (10.13),

Exq,i
[
T1−γfu(x0)

∏
1≤q≤Q,1≤i≤2

T1−γfq(xq,i)
]
≤ 3ζQ

8
. (10.17)

STEP 4. Invariance. Since our functions are noised, there exists Γ = O( 1
γ
) such that∑

1≤j≤L

Infj[T1−γfq] ≤ Γ.

Fix τ to satisfy 8Q ·
√

Γ(2Q+ 1)2τ < ζQ

8
. We have∣∣∣Exq,i [T1−γfu(x0)

∏
1≤q≤Q,1≤i≤2

T1−γfq(xq,i)]− E[T1−γfu]
∏

1≤q≤Q

Exq,i [
∏

1≤i≤2

T1−γfq(xq,i)]
∣∣∣

≥E[T1−γfu] ·
∏

1≤q≤Q

Exq,i [
∏

1≤i≤2

T1−γfq(xq,i)]− Exq,i [T1−γfu(x0)
∏

1≤q≤Q,1≤i≤2

T1−γfq(xq,i)]

≥1

2
ζQ − 3ζQ

8
=
ζQ

8
(using (10.14) and (10.17)) .
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Now, applying Theorem 10.4.7 (Q ← Q + 1, k1 = · · · = kQ ← k, kQ+1 ← 1, Ω1 =
· · · = ΩQ = Ω, ΩQ+1 ← Ω, ν ← µ′, L← L, Fq ← T1−γfq for q ∈ [Q], FQ+1 ← T1−γfu,
Infj[Fq]← Infj[T1−γfq] for q ∈ [Q]), there exists q ∈ {1, . . . , Q} such that

∑
1≤j≤L

Infj[T1−γfq](Infj[T1−γfq+1] + · · ·+ Infj[T1−γfQ] + Infj[fu]) > τ.

STEP 5. Decoding Strategy. We use the standard strategy — each vq samples a set
S ⊆ [R] according to ‖(fq)S‖2

2, and chooses a random element from S. u also samples a
set S ⊆ [L] according to ‖(fu)S‖2

2, and chooses a random element from S. As shown in
Section 10.7.2, for each 1 ≤ j ≤ L, the probability that v chooses a label in π−1(j) is at
least γInfj[T1−γfq], and the probability that u chooses j is at least γInfj[T1−γfu].

Fix q to be the one obtained from Theorem 10.4.7. The probability that πq(l(vq)) =
πq′(l(vq′)) for some q < q′ ≤ Q or πq(l(vq)) = l(u) is at least

γ2
∑

1≤j≤L

Infj[T1−γfq] max[ max
q<q′≤Q

Infj[T1−γfq′ ], Infj[T1−γfu]]

≥ γ2

Q+ 1

∑
1≤j≤L

Infj[T1−γfq](Infj[T1−γfq+1] + · · ·+ Infj[T1−γfQ] + Infj[T1−γfu])

≥ γ2τ

Q+ 1
.

If the total fraction of unsatisfied clauses is at most ε := 1
4
· ζQ

8
, since at least 1

2
fraction of

hyperedges are good, at least 1
4

fraction of hyperedges are weakly satisfied by the above
randomized strategy with probability γ2τ

Q+1
. Setting η := 1

4
· γ2τ
Q+1

completes the proof of
soundness.

10.7 Hardness of MAX 2-COLORING under Low Discrep-
ancy

In this section we consider the hardness of MAX 2-COLORING when promised discrep-
ancy as low as one.
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10.7.1 Reduction from MAX CUT

Let K = 2t + 1. Let G = (V,E) be an instance of MAX CUT, where each edge has
weight 1. Let n = |V | and m = |E|. We produce a hypergraph H = (V ′, E ′) where
V ′ = V × [K]. For each u ∈ V , let cloud(u) := {u} × [K]. For each edge (u, v) ∈ E, we
add N := 2

(
K
t

)(
K
t+1

)
hyperedges

{U ∪ V : U ⊆ cloud(u), V ⊆ cloud(v), |U |+ |V | = K, ||U | − |V || = 1},

each with weight 1
N

. Call these hyperedges created by (u, v). The sum of weights is m for
both G and H .

Completeness. Given a coloring C : V 7→ {B,W} that cuts at least (1− α)m edges of
G, we color H so that for every v ∈ V , each vertex in cloud(v) is given the same color as
v. If (u, v) ∈ E is cut, all hyperedges created by (u, v) will have discrepancy 1. Therefore,
the total weight of hyperedges with discrepancy 1 is at least (1− α)m.

Soundness. Given a coloring C ′ : V ′ 7→ {B,W} such that the total weight of non-
monochromatic hyperedges is (1− β)m, v ∈ V is given the color that appears the most in
its cloud (K is odd, so it is well-defined). Consider (u, v) ∈ E. If no hyperedge created
by (u, v) is monochromatic, it means that u and v should be given different colors by the
above majority algorithm (if they are given the same color, say white, then there are at least
t+ 1 white vertices in both clouds, so we have at least one monochromatic hyperedge).

This means that for each (u, v) ∈ E that is uncut by the above algorithm (lost weight 1
for MAX CUT objective), at least one hyperedge created by (u, v) is monochromatic, and
we lost weight at least 1

N
there for our problem. This means that the total weight of cut

edges for MAX CUT is at least (1− βN)m.

The Result. The following theorem shows hardness of MAX CUT.

Theorem 10.7.1 ([KKMO07]). Let G = (V,E) be a graph with m = |E|. For sufficiently
small ε > 0, it is UG-hard to distinguish the following cases.

• There is a 2-coloring that cuts at least (1− ε)|E| edges.

• Every 2-coloring cuts at most (1− (2/π)
√
ε)|E| edges.

Our reduction proves the following.
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Theorem 10.7.2. Given a hypergraph H = (V,E), it is UG-hard to distinguish the fol-
lowing cases.

• There is a 2-coloring where at least (1− ε) fraction of hyperedges have discrepancy
1.

• Every 2-coloring cuts (in a standard sense) at most (1− (2/π)
√
ε

N
) fraction of hyper-

edges.

Note that N = 2
(
K
t

)(
K
t+1

)
≤ (2/π)2K · 2K ≤ (2/π)22K . If we take ε = 2−6K for large

enough K, we cannot distinguish the following two cases:

• There is a 2-coloring where at least (1− 2−6K) fraction of hyperedges have discrep-
ancy 1.

• Every 2-coloring cuts (in a standard sense) at most (1 − 2−5K) fraction of hyper-
edges.

This proves Theorem 9.2.3.

10.7.2 NP-Hardness

In this subsection, we show that given a hypergraph which admits a 2-coloring with dis-
crepancy at most 2, it is NP-hard to find a 2-coloring that has less than K−O(K) fraction
of monochromatic hyperedges. Note that while the inapproximability factor is worse than
the previous subsection, we get NP-hardness and it holds when the input hypergraph is
promised to have all hyperedges have discrepancy at most 2.

Distributions. We first define the distribution µ′ for each block. 2Q points xq,i ∈ {1, 2}d
for 1 ≤ q ≤ Q and 1 ≤ i ≤ 2 are sampled by the following procedure.

• Sample q′ ∈ [Q] uniformly at random.

• Sample xq′,1, xq′,2 ∈ {1, 2}d i.i.d.

• For q 6= q′, 1 ≤ j ≤ d, sample a permutation ((xq,1)j, (xq,2)j) ∈ {(1, 2), (2, 1)}
uniformly at random.
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Reduction and Completeness. We now describe the reduction from Q-HYPERGRAPH

LABEL COVER. Given a Q-uniform hypergraph H = (V,E) with Q projections from [R]
to [L] for each hyperedge (let d = R/L), the resulting instance of 2Q-hypergraph coloring
is H ′ = (V ′, E ′) where V ′ = V × {1, 2}R. Let cloud(v) := {v} × {1, 2}R. The set E ′

consists of hyperedges generated by the following procedure.

• Sample a random hyperedge e = (v1, . . . , vQ) ∈ E with associated projections
πe,v1 , . . . , πe,vQ from E.

• Sample (xq,i)1≤q≤Q,1≤i≤2 ∈ {1, 2}R in the following way. For each 1 ≤ j ≤ L,
independently sample ((xq,i)π−1

e,vq (j))q,i from (({1, 2}d)2Q,µ′).

• Add a hyperedge between 2Q vertices {(vq, xq,i)}q,i to E ′. We say this hyperedge is
formed from e ∈ E.

Given the reduction, completeness is easy to show.

Lemma 10.7.1. If an instance of Q-HYPERGRAPH LABEL COVER admits a labeling that
strongly satisfies every hyperedge e ∈ E, there is a coloring c : V ′ → {1, 2} of the vertices
of H ′ such that every hyperedge e′ ∈ E ′ has at least (Q− 1) vertices of each color.

Proof. Let l : V → [R] be a labeling that strongly satisfies every hyperedge e ∈ E. For
any v ∈ V, x ∈ {1, 2}R, let c(v, x) = xl(v). For any hyperedge e′ = {(vq, xq,i)}q,i ∈
E ′, c(vq, xq,i) = (xq,i)l(vq), and all but one q satisfies

{
(xq,1)l(vq), (xq,2)l(vq)

}
= {1, 2}.

Therefore, the above strategy ensures that every hyperedge of E ′ contains at least (Q− 1)
vertices of each color.

Soundness. The following lemma establishes the soundness of our reduction.

Lemma 10.7.2. There exists η := η(Q) such that if I ⊆ V ′ of measure 1
2

induces less than
Q−O(Q) fraction of hyperedges in H ′, the corresponding instance of Q-HYPERGRAPH

LABEL COVER admits a labeling that weakly satisfies a fraction η of hyperedges.

Proof. Consider a vertex v and hyperedge e ∈ E that contains v with a permutation
π = πe,v. Let f : {1, 2}R 7→ [0, 1] be a noised indicator function of I ∩ cloud(v) with
Ex∈{1,2}R [f(x)] ≥ 1

2
− ε for small ε > 0 that will be determined later. We define the inner

product
〈f, g〉 = Ex∈{1,2}R [f(x)g(x)].
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f admits the Fourier expansion ∑
S⊆[R]

f̂(S)χS

where
χS(x1, . . . , xK) =

∏
i∈S

(−1)xi , f̂(S) = 〈f, χS〉.

In particular, f̂(∅) = E[f(x)], and∑
S

f̂(S)2 = E[f(x)2] ≤ E[f(x)] (10.18)

A subset S ⊆ [R] is said to be shattered by π if |S| = |π(S)|. For a positive integer J , we
decompose f as the following:

f good =
∑

S: shattered
f̂(S)χS

fbad = f − f good.

By adding a suitable noise and using smoothness of LABEL COVER, for any δ > 0, we
can assume that ||fbad||2 ≤ δ. See [GL15d] for the details.

Each time a 2Q-hyperedge is sampled is formed from e, two points are sampled from
each cloud. Let x, y be the points in cloud(v). Recall that they are sampled such that for
each 1 ≤ j ≤ L,

• With probability 1
Q

, for each i ∈ π−1(j), xi and yi are independently sampled from
{1, 2}.

• With probability Q−1
Q

, for each i ∈ π−1(j), (xi, yi) are sampled from {(1, 2), (2, 1)}.

We can deduce the following simple properties.

1. Ex,y[χ{i}(x)χ{i}(y)] = −Q−1
Q

. Let ρ := −Q−1
Q

.

2. Ex,y[χ{i}(x)χ{j}(y)] = 0 if i 6= j.

3. Ex,y[χS(x)χT (y)] = 0 unless π(S) = π(T ) = π(S ∩ T ).
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We are interested in lower bounding

Ex,y[f(x)f(y)] ≥ E[f good(x)f good(y)]− 3‖fbad(x)‖2‖f‖2 ≥ E[f good(x)f good(y)]− 3δ.

By the property 3.,

E[f good(x)f good(y)] =
∑

S: shattered
f̂(S)2ρ|S|

= E[f ]2 +
∑

S: shattered
f̂(S)2ρ|S|

≥ E[f ]2 + ρ(
∑
|S|>1

f̂(S)2) since ρ is negative

≥ E[f ]2 + ρ(E[f ]− E[f ]2) by (10.18)

≥ E[f ]2(1 + ρ)− ε since E[f ] ≥ 1

2
− ε⇒ E[f ]− E[f ]2 ≤ E[f ]2 + ε

≥ E[f ]2

Q
− ε.

By taking ε and δ small enough, we can ensure that

E[f(x)f(y)] ≥ ζ :=
1

5Q
. (10.19)

The soundness analysis of Guruswami and Lee [GL15d] ensures ((10.19) replaces their
Step 2) that there exists η := η(Q) such that if the fraction of hyperedges induced by I is
less than Q−O(Q), the LABEL COVER instance admits a solution that satisfies η fraction of
constraints. We omit the details.

Corollary to MAX 2-COLORING under discrepancyO(logK). The above NP-hardness,
combined with the reduction techinque from MAX CUT in Section 10.7.1, shows that given
a K-uniform hypergraph, it is NP-hard to distinguish whether it has discrepancy at most
O(logK) or any 2-coloring leaves at least 2−O(K) fraction of hyperedges monochromatic.
Even though the direction reduction from MAX CUT results in a similar inapproximability
factor with discrepancy even 1, this result does not rely on the UGC and hold even all
edges (compared to almost in Section 10.7.1) have discrepancy O(logK).

Let r = Θ( K
logK

) so that s = K
r

= Θ(logK) is an integer. Given a r-uniform hyper-
graph, it is NP-hard to distinguish whether it has discrepancy at most 2 or any 2-coloring
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leaves at least r−O(r) fraction of hyperedges monochromatic. Given a r-uniform hyper-
graph, the reduction replaces each vertex v with cloud(v) that contains (2s − 1) new ver-
tices. Each hyperedge (v1, . . . , vr) is replaced by d := (

(
2s−1
s

)
)r ≤ (2s)r = 2K hyperedges

{∪ri=1Vi : Vi ⊂ cloud(vi), |Vi| = s}.

If the given r-uniform hypergraph has discrepancy at most 2, the resulting K-uniform
hypergraph has discrepancy at most 2s = O(logK).

If the resulting K-uniform hypergraph admits a coloring that leaves α fraction of
hyperedges monochromatic, giving v the color that appears more in cloud(v) is guar-
anteed to leaves at most dα fraction of hyperedges monochromatic. Therefore, if any
2-coloring of the input r-uniform hypergraph leaves at least r−O(r) fraction of hyper-
edges monochromatic, any 2-coloring of the resulting K-uniform hypergraph leaves at
least r

−O(r)

d
= 2−O(K) fraction of hyperedges.

10.7.3 Hardness under Almost Colorability

Let K be such that ` :=
√
K be an integer and let χ := K − `. We prove the following

hardness result for any ε > 0 assuming the Unique Games Conjecture: given a K-uniform
hypergraph such that there is a χ-coloring that have at least (1 − ε) fraction of hyper-
edges rainbow, it is NP-hard to find a 2-coloring that leaves at most (1

2
)K−1 fraction of

hyperedges monochromatic.

The main technique for this result is to show the existence of a balanced pairwise
independence distribution with the desired support. Let µ be a distribution on [χ]K . µ is
called balanced pairwise independent if for any i 6= j ∈ [K] and a, b ∈ [χ],

Pr
(x1,...,xK)∼µ

[xi = a, xj = b] =
1

χ2
.

For example, the uniform distribution on [χ]K is a balanced pairwise distribution. We now
consider the following distribution µ to sample (x1, . . . , xK) ∈ [χ]K .

• Sample S ⊆ [K] with |S| = χ uniformly at random. Let S = {s1 < · · · < sχ}.

• Sample a permutation π : [χ] 7→ [χ].

• Sample y ∈ [χ].

• For each i ∈ [K], if i = sj for some j ∈ [χ], output xi = π(χ). Otherwise, output
xi = y.
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Note that for any supported by (x1, . . . , xK), we have {x1, . . . , xK} = [χ]. Therefore, µ
is supported on rainbow strings. We now verify pairwise independence. Fix i 6= j ∈ [K]
and a, b ∈ [χ].

• If a = b, by conditioning on wheter i, j are in S or not,

Pr
µ

[xi = a, xj = b] = Pr[xi = a, xj = b|i, j ∈ S] Pr[i, j ∈ S]+

Pr[xi = a, xj = b|i ∈ S, j /∈ S] Pr[i ∈ S, j /∈ S]+

Pr[xi = a, xj = b|i /∈, j ∈ S] Pr[i /∈, j ∈ S]+

Pr[xi = a, xj = b|i, j /∈ S] Pr[i, j /∈ S]

=0 · ( χ(χ− 1)

K(K − 1)
) + 2 · ( 1

χ2
) · ( lχ

K(K − 1)
) + (

1

χ
) · ( `(`− 1)

K(K − 1)
)

=
2`χ+ χ(`2 − `)
χ2K(K − 1)

=
χK + χ

√
K

χ2K(K − 1)
=

√
K(
√
K + 1)

χK(
√
K + 1)(

√
K − 1)

=
1

χ(K −
√
K)

=
1

χ2
.

• If a 6= b, by the same conditioning,

Pr
µ

[xi = a, xj = b]

=(
1

χ(χ− 1)
) · ( χ(χ− 1)

K(K − 1)
) + 2 · ( 1

χ2
) · ( `χ

K(K − 1)
) + 0 · ( `(`− 1)

K(K − 1)
)

=
χ2 + 2lχ

χ2K(K − 1)
=

χ+ 2`

χK(K − 1)
=

K +
√
K

χK(K − 1)
=

1

χ2
.

Given such a balanced pairwise independent distribution supported on rainbow strings, a
standard procedure following the work of Austrin and Mossel [AM09] shows that it is
UG-hard to outperform the random 2-coloring. We omit the details.
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Chapter 11

Algorithms for Coloring

11.1 Algorithmic Techniques

Our algorithms for MAX 2-COLORING are straightforward applications of semidefinite
programming, namely, we use natural vector relaxations of the promised properties, and
round using a random hyperplane. The analysis however, is highly non-trivial and boils
down to approximating a multivariate Gaussian integral. In particular, we show a (to
our knowledge, new) upper bound on the Gaussian measure of simplicial cones in terms
of simple properties of these cones. We should note that this upper bound is sensible
only for simplicial cones that are well behaved with respect to the these properties. (The
cones we are interested in are those given by the intersection of hyperplanes whose normal
vectors constitute a solution to our vector relaxations). We believe our analysis to be of
independent interest as similar approaches may work for other K-CSPs.

Gaussian Measure of Simplicial Cones. As can be seen via an observation of Kneser
[Kne36], the Gaussian measure of a simplicial cone is equal to the fraction of spherical
volume taken up by a spherical simplex (a spherical simplex is the intersection of a sim-
plicial cone with a ball centered at the apex of the cone). This however, is a very old
problem in spherical geometry, and while some things are known, like a nice differential
formula due to Schlafli (see [Sch58]), closed forms upto four dimensions (see [MY05]),
and a complicated power series expansion due to Aomoto [Aom77], it is likely hopeless
to achieve a closed form solution or even an asymptotic formula for the volume of general
spherical simplices.

Zwick [Zwi98a] considered the performance of hyperplane rounding in various 3-CSP
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formulations, and this involved analyzing the volume of a 4-dimensional spherical sim-
plex. Due to the complexity of this volume function, the analysis was tedious, and non-
analytic for many of the formulations. His techniques were based on the Schlafli differ-
ential formula, which relates the volume differential of a spherical simplex to the volume
functions of its codimension-2 faces and dihedral angles. However, to our knowledge not
much is known about the general volume function in even 6 dimensions. This suggests
that Zwick’s techniques are unlikely to be scalable to higher dimensions.

On the positive side, an asymptotic expression is known in the case of symmetric
spherical simplices, due to H. E. Daniels [Rog64] who gave the analysis for regular cones
of angle cos−1(1/2). His techniques were extended by Rogers [Rog61] and Boeroeczky
and Henk [BJH99] to the whole class of regular cones.

We combine the complex analysis techniques employed by Daniels with a lower bound
on quadratic forms in the positive orthant, to give an upper bound on the Gaussian measure
of a much larger class of simplicial cones.

Column Subset Selection. Informally, the cones for which our upper bound is relevant
are those that are high dimensional in a strong sense, i.e. the normal vectors whose corre-
sponding hyperplanes form the cone, must be such that no vector is too close to the linear
span of any subset of the remaining vectors.

When the normal vectors are solutions to our rainbow colorability SDP relaxation,
this need not be true. However, this can be remedied. We consider the column matrix of
these normal vectors, and using spectral techniques, we show that there is a reasonably
large subset of columns (vectors) that are well behaved with respect to condition number.
We are then able to apply our Gaussian Measure bound to the cone given by this subset,
admittedly in a slightly lower dimensional space.

11.2 Approximate MAX 2-COLORING

In this section we show how the properties of (K + `)-strong colorability and (K − `)-
rainbow colorability in K-uniform hypergraphs allow one to 2-color the hypergraph, such
that the respective fractions of monochromatic edges are small. For ` = o(

√
K), these

guarantees handsomely beat the naive random algorithm (color every vertex blue or red
uniformly and independently at random), wherein the expected fraction of monochromatic
edges is 1/2K−1.

Our algorithms are straightforward applications of semidefinite programming, namely,
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we use natural vector relaxations of the above properties, and round using a random hy-
perplane. The analysis however, is quite involved.

11.2.1 Semidefinite Relaxations

Our SDP relaxations for low-discrepancy, rainbow-colorability, and strong-colorability
are the following. Given that 〈vi, vj〉 = −1

χ−1
when unit vectors v1, . . . , vχ form a χ-regular

simplex centered at the origin, it is easy to show that they are valid relaxations.

Discrepancy `. ∣∣∣∣∣
∣∣∣∣∣∑
i∈e

ui

∣∣∣∣∣
∣∣∣∣∣
2

≤ ` ∀ e ∈ E (11.1)

||ui||2 = 1 ∀ i ∈ [n]

ui ∈ Rn ∀ i ∈ [n]

Feasibility. ForK, ` such that (K−`) mod 2 ≡ 0, consider anyK-uniform hypergraph
H = (V = [n], E), and any 2-coloring of H of discrepancy `. Pick any unit vector
w ∈ Rn. For each vertex of the first color in the coloring, assign the vector w, and for each
vertex of the second color assign the vector −w. This is a feasible assignment, and hence
Relaxation 11.1 is a feasible relaxation for any hypergraph of discrepancy `.

(K − `)-Rainbow Colorability.∣∣∣∣∣
∣∣∣∣∣∑
i∈e

ui

∣∣∣∣∣
∣∣∣∣∣
2

≤ ` ∀ e ∈ E (11.2)

〈ui, uj〉 ≥
−1

K − `− 1
∀ e ∈ E, ∀ i < j ∈ e

||ui||2 = 1 ∀ i ∈ [n]

ui ∈ Rn ∀ i ∈ [n]

Feasibility. Consider any K-uniform hypergraph H = (V = [n], E ⊆
(
V
K

)
), and any

(K − `)-rainbow coloring of H . As testified by the vertices of the (K − `)-simplex, we
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can always choose unit vectors w1 . . . wK−` ∈ Rn satisfying,

∀ i < j ∈ [K − `], 〈wi, wj〉 =
−1

K − `− 1
,

It is not hard to verify that consequently,

∀ a1, . . . , aK−` ∈ [l],
∑

i∈[K−`]

ai = K, we have,

∣∣∣∣∣
∣∣∣∣∣∑
i∈e

aiwi

∣∣∣∣∣
∣∣∣∣∣
2

≤ `

For each vertex of the color i, assign the vector wi. This is a feasible assignment, and
hence Relaxation 11.2 is a feasible relaxation for any hypergraph of rainbow colorability
K − `.

(K + `)-Strong Colorability.

〈ui, uj〉 =
−1

K + `− 1
∀ e ∈ E, ∀ i < j ∈ e (11.3)

||ui||2 = 1 ∀ i ∈ [n]

ui ∈ Rn ∀ i ∈ [n]

Feasibility. Consider any K-uniform hypergraph H = (V = [n], E ⊆
(
V
K

)
), and any

(K + `)-strong coloring of H . As testified by the vertices of the (K + `)-simplex, we can
always choose unit vectors w1 . . . wK+` ∈ Rn satisfying,

∀ i < j ∈ [K − `], 〈wi, wj〉 = − 1

K + `− 1
,

It is not hard to verify that consequently,

∀ J ⊂ [K + `], |J | = K,

∣∣∣∣∣
∣∣∣∣∣∑
i∈J

wi

∣∣∣∣∣
∣∣∣∣∣
2

= `

For each vertex of the color i, assign the vector wi. This is a feasible assignment, and
hence the Relaxation 11.3 is a feasible relaxation for any hypergraph of strong colorability
K + `.

Our rounding scheme is the same for all the above relaxations.
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Rounding Scheme. Pick a standard n-dimensional Gaussian random vector r. For any
i ∈ [n], if 〈vi, r〉 ≥ 0, then vertex i is colored blue, and otherwise it is colored red.

11.2.2 Setup of Analysis

We now setup the framework for analyzing all the above relaxations.

Consider a standard n-dimensional Gaussian random vector r, i.e. each coordinate is
independently picked from the standard normal distribution N (0, 1). The following are
well known facts (the latter being due to Renyi),

Lemma 11.2.1. r/ ||r||2 is uniformly distributed over the unit sphere in Rn.

Note. Lemma 11.2.1 establishes that our rounding scheme is equivalent to random hy-
perplane rounding.

Lemma 11.2.2. Consider any j < n. The projections of r onto the pairwise orthogonal
unit vectors e1, . . . , ej are independent and have distribution N (0, 1).

Next, consider any K-uniform hypergraph H = (V = [n], E ⊆
(
V
K

)
) that is feasible

for any of the aforementioned formulations. Our goal now, is to analyze the expected num-
ber of monochromatic edges. To obtain this expected fraction with high probability, we
need only repeat the rounding scheme polynomially many times, and the high probability
of a successful round follows by Markov’s inequality. Thus we are only left with bounding
the probability that a particular edge is monochromatic.

To this end, consider any edge e ∈ E and let the vectors corresponding to the vertices
in e be u′1, . . . , u

′
K . Consider a K-flat F (subspace of Rn congruent to RK), containing

u′1, . . . , u
′
K . Applying Lemma 11.2.2 to the standard basis ofF , implies that the projection

of r into F has the standard K-dimensional Gaussian distribution. Now since projecting
r onto Span(u′1, . . . u

′
K) preserves the inner products {〈r, u′i〉}i , we may assume without

loss of generality that u′1, . . . , u
′
K are vectors in RK , and the rounding scheme corresponds

to picking a random K-dimensional Gaussian vector r, and proceeding as before.

Let U be the K×K matrix whose columns are the vectors u′1, . . . , u
′
K and µ represent the

Gaussian measure in RK . Then the probability of e being monochromatic in the rounding
is given by,

µ
({
x ∈ RK

∣∣UTx ≥ 0
})

+ µ
({
x ∈ RK

∣∣UTx < 0
})

= 2µ
({
x ∈ RK

∣∣UTx ≥ 0
})

(11.4)
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In other words, this boils down to analyzing the Gaussian measure of the cone given by
UTx ≥ 0. We thus take a necessary detour.

11.2.3 Gaussian Measure of Simplicial Cones

In this section we show how to bound the Gaussian measure of a special class of simplicial
cones. This is one of the primary tools in our analysis of the previously introduced SDP
relaxations. We first state some preliminaries.

Simplicial Cones and Equivalent Representations. A simplicial cone in RK , is given
by the intersection of a set of K linearly independent halfspaces. For any simplicial cone
with apex at position vector p, there is a unique set (upto changes in lengths), ofK linearly
independent vectors, such that the direct sum of {p} with their positive span produces the
cone. Conversely, a simplicial cone given by the direct sum of {p} and the positive span
of K linearly independent vectors, can be expressed as the intersection of a unique set of
K halfspaces with apex at p. We shall refer to the normal vectors of the halfspaces above,
as simply normal vectors of the cone, and we shall refer to the spanning vectors above, as
simplicial vectors. We represent a simplicial cone C with apex at p, as (p, U, V ) where U
is a column matrix of unit vectors u1, . . . , uK (normal vectors), V is a column matrix of
unit vectors v1, . . . , vK (simplicial vectors) and

C =
{
x ∈ RK

∣∣uT1 x ≥ p1, . . . , u
T
Kx ≥ pK

}
=
{
p+ x1v1 + · · ·+ xKvK

∣∣x ≥ 0, x ∈ RK
}

Switching Between Representations. Let C ≡ (0, U, V ) be a simplicial cone with apex
at the origin. It is not hard to see that any vi is in the intersection of exactly K−1 of the K
halfspaces determined by U , and it is thus orthogonal to exactly K− 1 vectors of the form
uj . We may assume without loss of generality that for any vi, the only column vector of U
not orthogonal to it, is ui. Thus clearly V TU = D where D is some non-singular diagonal
matrix. Let AU = UTU and AV = V TV , be the gram matrices of the vectors. AU and AV
are positive definite symmetric matrices with diagonal entries equal to one (they comprise
of the pairwise inner products of the normal and simplicial vectors respectively). Also,
clearly,

V = U−TD, AV = DA−1
U D (11.5)

One then immediately obtains: (AV )ij =
aij√
aiiajj

, and (AU)ij =
−a′ij√
a′iia

′
jj

. where aij and a′ij

are the cofactors of the (i, j)th entries of AU and AV respectively.
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Formulating the Integral. Let C ≡ (0, U, V ) be a simplicial cone with apex at the
origin, and for x ∈ RK , let dx denote the differential of the standard K-dimensional
Lebesgue measure. Then the Gaussian measure of C is given by,

1

πK/2

∫
UT x≥0

e−||x||
2
2 dx

=
det(V )

πK/2

∫
RK+

e−||V x||
2
2 dx Subst. x← V x

=
det(V )

πK/2

∫
RK+

e−||U
−TDx||2

2 dx By Eq. (11.5)

=
det(V )

πK/2 det(D)

∫
RK+

e−||U
−T x||2

2 dx Subst. x← Dx

=
1

πK/2 det(U)

∫
RK+

e−||U
−T x||2

2 dx (11.6)

=
1

πK/2
√

det(AU)

∫
RK+

e−x
TA−1

U x dx (11.7)

For future ease of use, we give a name to some properties.

Definition 11.2.3. The para-volume of a set of vectors (resp. a matrix U ), is the volume of
the parallelotope determined by the set of vectors (resp. the column vectors of U ).

Definition 11.2.4. The sum-norm of a set of vectors (resp. a matrix U ), is the length of the
sum of the vectors (resp. the sum of the column vectors of U ).

Walkthrough of Symmetric Case Analysis. We next state some simple identities that
can be found in say, [Rog64], some of which were originally used by Daniels to show that
the Gaussian measure of a symmetric cone in RK of angle cos−1(1/2) (between any two
simplicial vectors) is (1+o(1)) eK/2−1

√
2
K+1√

K
K−1√

π
K . We state these identities, while loosely describing

the analysis of the symmetric case, to give the reader an idea of their purpose.

First note that the gram matrices SU and SV , of the symmetric cone of angle cos−1(1/2)
are given by:

SU = (1 + 1/K)I− 11T /K SV = (I + 11T )/2
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Thus xTS−1
U x is of the form,

α ||x||21 + β ||x||22 (11.8)

The key step is in linearizing the ||x||21 term in the exponent, which allows us to separate
the terms in the multivariate integral into a product of univariate integrals, and this is easier
to analyze.

Lemma 11.2.5 (Linearization).
√
πe−s

2
=
∫∞
−∞ e

−t2+2its dt

Observation 11.2.6. Let f : (−∞,∞) 7→ C be a continuous complex function. Then,∣∣∣∣ ∞∫
−∞

f(t) dt

∣∣∣∣ ≤ ∞∫
−∞
|f(t)| dt.

On applying Lemma 11.2.5 to Eq. (11.6) in the symmetric case, one obtains a prod-
uct of identical univariate complex integrals. Specifically, by Eq. (11.6), Eq. (11.8), and
Lemma 11.2.5, we have the expression,∫

RK+

e−β||x||
2
2−α||x||

2
1 dx =

∞∫
−∞

e−t
2

∫
RK+

e−β(x2
1+... x2

K) + 2it
√
α(x1+... xK) dx dt

=

∞∫
−∞

e−t
2

 ∞∫
0

e−βs
2+2it

√
αs ds

K

The inner univariate complex integral is not readily evaluable. To circumvent this, one
can change the line of integration so as to shift mass form the inner integral to the outer
integral. Then we can apply the crude upper bound of Observation 11.2.6 to the inner
integral, and by design, the error in our estimate is small.

Lemma 11.2.7 (Changing line of integration). Let g(t) be a real valued function for real
t. If, when interpreted as a complex function in the variable t = a + ib, g(a + ib) is
an entire function, and furthermore, lim

a→∞
g(a + ib) = 0 for some fixed b, then we have,∫∞

−∞ g(t) dt =
∫∞
−∞ g(a+ ib) da.

Squared L1 Inequality. Motivated by the above linearization technique, we prove the
following lower bound on quadratic forms in the positive orthant:

Lemma 11.2.8. Consider any K ×K matrix A, and x ∈ RK
+ , such that x is in the column

space ofA. LetA† denote the Moore-Penrose pseudo-inverse ofA. Then, xTA†x ≥ ||x||21
sum(A)

.
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Proof. Consider any x in the positive orthant and column space of A. Let v1, . . . , vq be
the eigenvectors of A corresponding to it’s non-zero eigenvalues. We may express x in the
form x =

∑
i βivi, so that

||x||1 = 〈1, x〉 =
∑
i∈[q]

βi〈1, vi〉 ⇒ ||x||21 = (
∑
i∈[q]

βi〈1, vi〉)2.

We also have
xTA†x = xT (

∑
i∈[q]

λ−1
i viv

T
i )x =

∑
i∈[q]

λ−1
i β2

i .

Now by Cauchy-Schwartz,(∑
i

λi〈1, vi〉2
)∑

i∈[q]

λ−1
i β2

i

 ≥ ||x||21 .
Therefore, we have

xTA†x ≥ ||x||21∑
i∈[q] λi〈1, vi〉2

=
||x||21
1T A1

=
||x||21

sum(A)
.

Equipped with all necessary tools, we may now prove our result.

Our Gaussian Measure Bound. Let C ≡ (0, U, V ) be a simplicial cone with apex at
the origin. We now show an upper bound on the Gaussian measure of C that depends
surprisingly on only the para-volume and sum-norm of U . Since Gaussian measure is at
most 1, it is evident when viewing our bound that it can only be useful for simplicial cones
wherein the sum-norm of their normal vectors is O(

√
K), and the para-volume of their

normal vectors is not too small.

Theorem 11.2.1. Let C ≡ (0, U, V ) be a simplicial cone with apex at the origin. Let
` = ||

∑
i ui||2 (i.e. sum-norm of the normal vectors), then the Gaussian measure of C is

at most
(

e
2πK

)K/2 `K√
det(AU )

Proof. By the sum-norm property, the sum of entries of AU is `2. Also by the definition
of a simplicial cone, U , and cosequently AU , must have full rank. Thus we may apply
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Lemma 11.2.8 over the entire positive orthant. We proceed to analyze the multivariate
integral in Eq. (11.6), by first applying Lemma 11.2.8 and then linearizing the exponent
using Lemma 11.2.5. Post-linearization, our approach is similar to the presentation of
Boeroeczky and Henk [BJH99]. We have,

I ←
∫
RK+

e−x
TA−1

U x dx ≤
∫
RK+

e−||x||
2
1/`

2

dx by Lemma 11.2.8

= `K
∫
RK+

e−||y||
2
1 dy Subst. y ← x/`

=
`K√
π

∫
RK+

∞∫
−∞

e
− t2 + 2it

∑
i∈[K]

yi

dt dy by Lemma 11.2.5

=
`K√
π

∞∫
−∞

e−t
2
∏
i∈[K]

 ∞∫
0

e2ityi dyi

 dt

=
`K√
π

∞∫
−∞

e−t
2

(∫ ∞
0

e2its ds

)K
dt

=
`K√
π

∞∫
−∞

e−a
2+b2−2abi

(∫ ∞
0

e−2bs+2asi ds

)K
da by Lemma 11.2.7

=
eK/2 `K√
π(2K)K/2

∞∫
−∞

e−a
2

(
2be−ia/b

∫ ∞
0

e−2bs+2asi ds

)K
da Fixing b =

√
K/2

=
eK/2 `K√
π(2K)K/2

∣∣∣∣∣∣
∞∫

−∞

e−a
2

(
2be−ia/b

∫ ∞
0

e−2bs+2asi ds

)K
da

∣∣∣∣∣∣ Since expr. is positive

≤ eK/2 `K√
π(2K)K/2

∞∫
−∞

e−a
2

(
2b

∫ ∞
0

e−2bs ds

)K
da By Observation 11.2.6

=
eK/2 `K√
π(2K)K/2

∞∫
−∞

e−a
2

da =
eK/2 `K

(2K)K/2

Lastly, the claim follows by substituting the above in Eq. (11.6).

262



11.2.4 Analysis of Hyperplane Rounding given Strong Colorability

In this section we analyze the performance of random hyperplane rounding on K-uniform
hypergraphs that are (K + `)-strongly colorable.

Theorem 11.2.2. Consider any (K + `)-strongly colorable K-uniform hypergraph H =
(V,E). The expected fraction of monochromatic edges obtained by performing random
hyperplane rounding on the solution of Relaxation 11.3, is O

(
`K−1/2

(
e

2π

)K/2 1
K(K−1)/2

)
.

Proof. Let U be anyK×K matrix whose columns are unit vectors u1, . . . , uK ∈ ReK that
satisfy the edge constraints in Relaxation 11.3. Recall from Section 11.2.2, that to bound
the probability of a monochromatic edge we need only bound the expression in Eq. (11.4)
for U of the above form. By Relaxation 11.3, the gram matrix AU = UTU , is exactly,
AU = (1 + α)I − α 11T where α = 1

K+`−1
. By matrix determinant lemma (determinant

formula for rank one updates), we know

det(AU) = (1 + α)K
(

1− Kα

1 + α

)
≥
(

`

K + `

)
= Ω

(
`

K

)
Further, Relaxation 11.3 implies the length of

∑
i ui, is at most `. The claim then follows

by combining Eq. (11.4) with Theorem 11.2.1.

Note. Being that any edge in the solution to the strong colorability relaxation corre-
sponds to a symmetric cone, Theorem 11.2.2 is directly implied by prior work on the
volume of symmetric spherical simplices. It is in the next section, where the true power of
Theorem 11.2.1 is realized.

Remark. As can be seen from the asymptotic volume formula of symmetric spherical
simplices,

√
πK/(2e) is a sharp threshold for `, i.e. when ` > (1 + o(1))

√
πK/(2e),

hyperplane rounding does worse than the naive random algorithm, and when ` < (1 −
o(1))

√
πK/(2e), hyperplane rounding beats the naive random algorithm.

11.2.5 Analysis of Hyperplane Rounding given Rainbow Colorability

In this section we analyze the performance of random hyperplane rounding on K-uniform
hypergraphs that are (K − `)-rainbow colorable.
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LetU be theK×K matrix whose columns are unit vectors u1, . . . , uK ∈ RK satisfying
the edge constraints in Relaxation 11.2. We need to bound the expression in Eq. (11.4) for
U of the above form. While we’d like to proceed just as in Section 11.2.4, we are limited by
the possibility of U being singular or the parallelotope determined by U having arbitrarily
low volume (as u1 can be chosen arbitrarily close to the span of u2, . . . , uK while still
satisfying ||

∑
i ui||2 ≤ `).

While U can be bad with respect to our properties of interest, we will show that some
subset of the vectors in U are reasonably well behaved with respect to para-volume and
sum-norm.

Finding a Well Behaved Subset. We’d like to find a subset of U with high para-volume,
or equivalently, a principal sub-matrix of AU with reasonably large determinant. To this
end, we express the gram matrix AU = UTU as the sum of a symmetric skeleton matrix
BU and a residue matrix EU . Formally, EU = AU − BU and BU = (1 + β)I − β 11T
where β = 1

K−`−1
. We have (assuming ` = o(K)), sum(AU) ≤ `2 and sum(BU) = K −

K(K − 1)β = −`
1−o(1)

. Let s← sum(EU) ≤ `2 − sum(BU) = `2 + `
1−o(1)

.

We further observe that EU is symmetric, with all diagonal entries zero. Also since
u1, . . . , uK satisfy Relaxation 11.2, all entries of EU are non-negative.

By an averaging argument, at most cKδ columns ofEU have column sums greater than
s/(cKδ) for some parameters δ, c to be determined later. Let S ⊆ [K] be the set of indices
of the columns having the lowest K − cKδ column sums. Let K̃ ← |S| = K − cKδ, and
let AS, BS, ES be the corresponding matrices restricted to S (in both columns and rows).

Spectrum of BS and ES .

Observation 11.2.9. For a square matrix X , let λmin(X) denote its minimum eigenvalue.
The eigenvalues of BS are exactly (1 + β) with multiplicity (K̃ − 1), and (1 + β − K̃β)
with multiplicity 1. Thus λmin(BS) = 1 + β − K̃β. This is true since BS merely shifts all
eigenvalues of −β 11T by 1 + β.

While we don’t know as much about the spectrum of ES , we can still say some useful
things.

Observation 11.2.10. SinceES is non-negative, by Perron-Frobenius theorem, its spectral
radius is equal to its max column sum, which is at most s/(cKδ). Thus λmin(ES) ≥
−s/(cKδ).
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Now that we know some information about the spectra of BS and ES , the next natural
step is to consider the behaviour of spectra under matrix sums.

Spectral properties of Matrix sums. The following identity is well known.

Observation 11.2.11. If X and Y are symmetric matrices with eigenvalues x1 > x2 >
· · · > xm and y1 > y2 > · · · > ym and the eigenvalues of A+B are z1 > z2 > · · · > zm,
then

∀ 0 ≤ i+ j ≤ m, zm−i−j ≥ xm−i + ym−j.

In particular, this implies λmin(X + Y ) ≥ λmin(X) + λmin(Y ).

We may finally analyze the spectrum of AS .

Properties of AS .

Observation 11.2.12 (Para-Volume). Let the eigenvalues of AS be a1 > a2 > · · · > aK̃
By Observation 11.2.9, Observation 11.2.10, and Observation 11.2.11 we have (Assuming
` < cKδ/2),

λmin(AS) = aK̃ ≥ 1 + β − K̃β − s

cKδ
=

c

K1−δ −
`2

cKδ
− o(1)

a2, a3, . . . , aK̃−1 ≥ 1 + β − s

cKδ
= 1− `2

cKδ
− o(1)

Consequently,

det(AS) ≥
(

c

K1−δ −
`2

cKδ
− o(1)

)(
1− `2

cKδ
− o(1)

)K̃
≥
(

c

K1−δ −
`2

cKδ
− o(1)

)
e−K

In particular, note that AS is non-singular and has non-negligible para-volume when

`2

cKδ
=

c

2K1−δ , i.e. ` ≈ cKδ−1/2 or, δ ≈ 1

2

log(`/c)

logK

Observation 11.2.13 (Sum-Norm). SinceEU is non-negative, sum(ES) ≤ sum(EU) = s.
Also we know that the sum of entries of AS is

sum(BS) + sum(ES) = K̃(1 + β)− K̃(K̃ − 1)β + s ≤ cKδ + s (11.9)
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The Result. We are now equipped to prove our result.

Theorem 11.2.3. For ` <
√
K/100, consider any (K − `)-rainbow colorable K-uniform

hypergraph H = (V,E). Let θ = 1/2 + log(`)/ log(K) and η = 19(1 − θ)/40. The
expected fraction of monochromatic edges obtained by performing random hyperplane
rounding on the solution of Relaxation 11.2, is at most

1

2.1K KηK

Proof. Let U be any K×K matrix whose columns are unit vectors u1, . . . , uK ∈ RK that
satisfy the edge constraints in Relaxation 11.3. Recall from Section 11.2.2, that to bound
the probability of a monochromatic edge we need only bound the expression in Eq. (11.4)
for U of the above form.

By Section 11.2.5, we can always choose a matrix US whose columns ũ1, . . . , ũK̃ are
from the set {u1, . . . , uK}, such that the gram matrix AS = UT

S US satisfies Eq. (11.9) and
Observation 11.2.12. Clearly the probability of all vectors in U being monochromatic is
at most the probability of all vectors in US being monochromatic.

Thus just as in Section 11.2.2, to find the probability of US being monochromatic,
we may assume without loss of generality that we are performing random hyperplane
rounding in RK̃ on any K̃-dimensional vectors ũ1, . . . , ũK̃ whose gram (pairwise inner-
product) matrix is the aforementioned AS .

Specifically, by combining Eq. (11.9) and Observation 11.2.12 with Theorem 11.2.1,
our expression is at most:

( e

2π

)K̃/2(cKδ + s

K

)K̃/2
1√

det(AU)
≤ 3.2K̃/2

(
(1− o(1))c

K1−δ

)K̃/2
≤ 1

2.1K K(1−c)(1−δ)K

assuming c = 1/20, δ ≥ 1/2 and ` <
√
K/100 (constraint on ` ensures that non-

singularity conditions of Observation 11.2.12 are satisfied). The claim follows.

Remark. Yet again we see a threshold for `, namely, when ` <
√
K/100, hyperplane

rounding beats the naive random algorithm, and for ` = Ω(
√
K), it fails to do better. In

fact, as we’ll see in the next section, assuming the UGC, we show a hardness result when
` = Ω(

√
K).
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11.3 Approximate MIN COLORING

In this section, we provide approximation algorithms for the MIN COLORING problem
under strong colorability, rainbow colorability, and low discrepancy assumptions. Our
approach is standard, namely, we first apply degree reduction algorithms followed by
the usual paradigm pioneered by Karger, Motwani and Sudan [KMS98b], for coloring
bounded degree (hyper)graphs. Consequently, our exposition will be brief and non-linear.

In the interest of clarity, all results henceforth assume the special cases of Discrepancy
1, or (K−1)-rainbow colorability, or (K+1)-strong colorability. All arguments generalize
easily to the cases parameterized by l.

11.3.1 Approximate MIN COLORING in Bounded Degree Hypergraphs

The Algorithm. INPUT:K-uniform hypergraphH = ([n], E) with max-degree t andm
edges, having Discrepancy 1, or being (K−1)-rainbow colorable, or being (K+1)-strong
colorable.

1. Let u1, . . . , un be a solution to the SDP relaxation from Section 11.2.1 correspond-
ing to the assumption on the hypergraph.

2. Let H1 be a copy of H , and let γ, τ be parameters to be determined shortly.

3. Until no vertex remains in the hypergraph, Repeat:
Find an independent set I in the residual hypergraph, of size at least γn by
repeating the below process until |I| ≥ γn:

(A) Pick a random vector r from the standard multivariate normal dis-
tribution.

(B) For all i, if 〈ui, r〉 ≥ τ , add vertex i to I.
(C) For every edge e completely contained in I, delete any single vertex

in e, from I.

Color I with a new color and remove I and all edges involving vertices in I,
from H1.
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Analysis. First note that by Lemma 11.2.2, for any fixed vector a, 〈a, r〉 has the distri-
bution N (0, 1). Note that all SDP formulations in Section 11.2.1 satisfy,∣∣∣∣∣∣

∣∣∣∣∣∣
∑
j∈[K]

uij

∣∣∣∣∣∣
∣∣∣∣∣∣
2

≤ 1 (11.10)

Now consider any edge e = (i1, . . . , iK). In any fixed iteration of the inner loop, the
probability of e being contained in I at Step (B), is at most the probability of

〈r,
∑
j∈[K]

uij〉 ≥ Kτ

However, by Lemma 11.2.2 and Eq. (11.10), the inner product above is dominated by the
distribution N (0, 1). Thus in any fixed iteration of the inner loop, let H1 have n1 vertices
and m1 edges, we have

E[I] ≥ n1Φ(τ)−m1Φ(Kτ)

≥ n1e
−τ2/2 − n1t

K
e−K

2τ2/2

= Ω(γn1) setting, τ 2 =
2 log t

K2 − 1
, and γ = t−1/(K2−1)

Now by applying Markov’s inequality to the vertices not in I, we have, Pr[|I| < γn1] ≤
1−Ω(γ). Thus for a fixed iteration of the outer loop, with high probability, the inner loop
doesn’t repeat more than O(log n1/γ) times.

Lastly, the outermost loop repeats O(log n/γ) times, using one color at each iteration.
Thus with high probability, in polynomial time, the algorithm colors H with

t
1

K2−1 log n colors.

Important Note. We can be more careful in the above analysis for the rainbow and
strong colorability cases. Specifically, the crux boils down to finding the gaussian measure
of the cone given by

{
x
∣∣UTx ≥ τ

}
instead of zero. Indeed, on closely following the

proof of Theorem 11.2.1 we obtain for strong and rainbow coloring respectively (assuming
max-degree nK),

n
1
K(1− 3β

2 ) log n and n
1
K(1− 5β

4 ) log n, where β =
logK

log n

While these improvements are negligible for small K, they are significant when K is
reasonably large with respect to n.
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11.3.2 Main MIN COLORING Result

Combining results from Section 11.3.1 with our degree reduction approximation schemes
from the forthcoming sections, we obtain the following.

Theorem 11.3.1. Consider any K-uniform hypergraph H = (V,E) with n vertices. In
nc+O(1) time, one can color H with

min

{(
n

c log n

)α
, n

1
K(1− 3β

2 ),
(m
n

) 1
K2

}
log n colors, if H is (K + 1)-strongly colorable.

min

{(n
c

)α
, n

1
K(1− 5β

4 ),
(m
n

) 1
K2

}
log n colors, if H is (K − 1)-rainbow colorable.

min

{(n
c

)α
,
(m
n

) 1
K2

}
log n colors, if H has discrepancy 1.

where, α =
1

K + 2− o(1)
, β =

logK

log n

Remark. In all three promise cases the general polytime min-coloring guarantee pa-
rameterized by `, is roughly n`2/K . Thus, the threshold value of `, for which standard
min-coloring techniques improve with K, is o(

√
K).

Degree Reduction Schemes under Promise. Wigderson [Wig83] and Alon et al. [AKMH96]
studied degree reduction in the cases of 3-colorable graphs and 2-colorable hypergraphs,
respectively. Assuming our proposed structures, we are able to combine some simple
combinatorial ideas with counterparts of the observations made by Wigderson and Alon
et al., to obtain degree reduction approximation schemes. Such approximation schemes
are likely not possible assuming only 2-colorability.

11.3.3 Degree Redution under Strong Colorability

Let H =
(
V,E ⊆

(
V
K

))
be a K-uniform (K + 1)-strongly colorable hypergraph with n

vertices and m edges. In this section, we give an algorithm that in nc+O(1) time, partially
colors H with 3n(K + 1) logK/(t1/(K−1)c log n) colors, such that no edge in the colored
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subgraph is monochromatic, and furthermore, the subgraph induced by the the uncolored
vertices has max-degree t.

The following observations motivate the structure of our algorithm.

Observation 11.3.1. For any (K + 1)-strong coloring f : V 7→ [K + 1], of a K-uniform
hypergraph H , and any subset of vertices V satisfying, ∀u, v ∈ V , f(u) = f(v) = j (all
of the same color), the subgraph F of H , induced by N(V ), is K-uniform and K-strongly
colorable. This is because f is a strong coloring of F , and moreover, ∀ v ∈ N(V ), f(v) 6=
j, since v has a neighbor in V with color j. Thus we can 2-color such a subgraph F in
polynomial time.

Observation 11.3.2. By Observation 11.3.1, in order to 3(K + 1)-color the subgraph
induced by V ∪N(V ) for an arbitrary subset V of vertices, we need only search through
all possible (K+ 1)-colorings of V , and then attempt to 2-color the neighborhood of each
color class with two new colors. This process will always terminate with some proper
coloring of V ∪N(V ).

We are now prepared to state the algorithm.

The Algorithm SCDegreeReduce.
1. Let H1 be a copy of H .

2. While H1 contains a vertex of degree greater than t:

(A) Let H2 be a copy of H1.

(B) Sequentially pick arbitrary vertices V = {v1, v2 . . . vs} of degree at least
t from H2, wherein we remove from H2 the vertices {vi} ∪N(vi) and all
involved edges, after picking vi and before picking vi+1. We only stop
when we have either picked c log n/ logK vertices, or H2 has max-degree
t.

(C) For every possible assignment of K + 1 new colors {c1, . . . cK+1} to the
vertices in V :

(C1) Let Ci =
{
u
∣∣ v ∈ V , color(v) = ci, u ∈ NH1(v)

}
. Then for

each i ∈ [K + 1], 2-color the subgraph ofH1 induced byNH1(Ci)
using two new colors and the proper 2-coloring algorithm for r-
uniform, r-strongly colorable graphs.
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(C2) If no edge is monochromatic:
Stick with this 3(K+1)-coloring of V ∪NH1(V ), remove
V ∪ NH1(V ) and all edges containing any of these ver-
tices, from H1, and stop iterating through assignments of
V .

(C3) If some edge is monochromatic:
Discard the coloring and continue iterating through as-
signments of V .

End While

3. Output the partial coloring of H and the residual graph H1 of max-degree t.

The Result.

Theorem 11.3.2. Let H =
(
V,E ⊆

(
V
K

))
be a K-uniform (K + 1)-strongly colorable

hypergraph with n vertices. Algorithm 11.3.4 partially colors H in nc+O(1) time, with at
most 3n(K+1) logK

t1/(K−1)c logn
colors, such that:

1. The subgraph of H induced by the colored vertices has no monochromatic vertices.

2. The subgraph of H induced by the uncolored vertices has maximum degree t.

Proof. Observation 11.3.1 combined with the fact that step (C1) uses two new colors for
each Ci, establishes that step (C) of Algorithm 11.3.4 will always terminate with some
proper coloring of V ∪ NH1(V ). Furthermore, any edge intersecting V1 ∪ NH1(V1) and
V2 ∪ NH1(V2) for V1 and V2 taken from different iterations of Algorithm 11.3.4, cannot
be monochromatic since we use new colors in each iteration. Thus the partial coloring is
proper.

For the claim on number of colors, observe that a vertex of degree at least t, must have
at least (K − 1)t1/(K−1) distinct neighbors. Thus step (C) can be run at most n/t1/(K−1)

times, using 3(K + 1) new colors each time.

Lastly for the runtime, note that for each run of step (C), there are at most (K+1)c logn/ logK =
nc+O(1) assignments to try, and the rest of the work takes nO(1) time.
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Remark. We contrast Theorem 11.3.2 with the results of Alon et al. [AKMH96], who
give a polynomial time algorithm for degree reduction in 2-colorable K-uniform hyper-
graphs using O(n/t1/(K−1)) colors. The strong coloring property, gives us additional
power, namely, we obtain an approximation scheme, and furthermore, for constant c,
Theorem 11.3.2 uses fewer colors than the result of Alon et al., by a factor of about
K log n/ logK.

The arguments in this section and the next are readily generalizable - One can modify the
degree reduction algorithm, such that the bound on colors used, would be a function of the
strong colorability parameter of the hypergraph.

11.3.4 Degree Reduction under Low Discrepancy

For odd K, let H = (V,E) be a K-uniform hypergraph with n vertices, that admits a
discrepancy 1 coloring. In this section, we give an algorithm that in nc+O(1) time, partially
colors H with 3n(K + 1)/(t

1
K−1 c log n) colors, such that no edge in the induced colored

subgraph is monochromatic, and furthermore, the subgraph induced by the the uncolored
vertices has max-degree t.

First, we present a warmup algorithm that exposes the key ideas. The following observa-
tions motivate the structure of our algorithm.

Observation 11.3.3. For any discrepancy 1 coloring f : V 7→ {−1, 1}, of a K-uniform
hypergraph H , and any size K − 1 subset of vertices S, we have:

(A) If N(S) is an independent set, we can properly 2-color the subgraph induced by
S ∪N(S).

(B) If N(S) contains an edge, then the set S has discrepancy 0 in the coloring f . This is
because, an edge cannot be monochromatic in the coloring f , and by assumption, S
must be have a neighbor with color −1 and a neighbor with color +1.

Though Observation 11.3.3 and Observation 11.3.1 are functionally similar, the two-
pronged nature of Observation 11.3.3 almost wholly accounts for the gap in power between
the respective degree reduction algorithms. Intuitively, the primary weakness comes from
the fact that N(S) being an independent set tells us nothing about the discrepancy of S.

Nevertheless, we may still exploit some aspects of this observation.
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Observation 11.3.4. Consider any discrepancy 1 coloring f : V 7→ {−1, 1}, of a K-
uniform hypergraphH , and any set of subsets S1, . . . Sm each of size (K−1) and discrep-
ancy 0 in the coloring f . The (K − 1)-uniform hypergraph F with vertex set

⋃
i Si and

edge set {S1, . . . Sm}, has a discrepancy 0 coloring (f ). Thus we can properly 2-color F
in polynomial time.

We are now ready to state the warmup algorithm, whose correctness is evident from Ob-
servation 11.3.3 and Observation 11.3.4

Warmup Algorithm.
1. Let H1 be a copy of H , and set MARKED← φ

2. While H1 contains a size (K − 1) subset S such that NH1(S) > t:

(A) If NH1(S) contains an edge:
Delete from H1 all edges that completely contain S. Also, add S to
MARKED.

(B) If NH1(S) is an independent set:
Use 2 new colors, color S one color and NH1(S) the other, remove
S ∪NH1(S) and all edges containing any of these vertices from H1.

End While

3. Let F be the (K − 1)-uniform hypergraph whose vertex set is the union of the sets
in MARKED, and whose edge set is MARKED. Using 2 new colors, properly 2-
color the vertices of F using the 2-coloring algorithm for discrepancy 0 hypergraphs.
Remove these vertices and all involved edges, from H1.

4. Output the partial coloring of H and the residual graph H1 of max-degree t.

The Algorithm LDDegreeReduce.
1. Let H1 and H2 be copies of H , MARKED← φ and T ← φ.

2. While H2 contains a size (K − 1) subset S of vertices, such that |NH2(S)| > t:

(A) Delete NH2(S) and all edges involving these vertices, from H2.

(B) If NH1(S) contains an edge:
Delete from H1 all edges that completely contain S. Also, add S to
MARKED.
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(C) If NH1(S) is an independent set:
Add S to T .

(D) For every size c subset V = {S ′1, . . . , S ′c} of T :

Fix two new colors c1, c2.
For every possible assignment of c1, c2 to V , such that each S ′i has discrep-
ancy 2, (We define bias(S ′i) = c1 (resp. c2) for coloring bias towards c1

(resp. c2)):

(D1) For i = 1, 2, letCi =
{
u
∣∣S ′ ∈ V , bias(S ′) = ci, u ∈ NH1(S ′)

}
.

Then color NH1(C1) with just c2 and NH1(C2) with just c1.

(D2) If no edge is monochromatic:
Stick with this proper 2-coloring of the vertices in V ,NH1(V ).
Remove V from T , i.e. T ← T \ V
Remove

⋃
i(S
′
i ∪ NH1(S ′i)) and all edges containing any

of these vertices, from H1 and H2, and stop iterating
through assignments of V .

(D3) If some edge is monochromatic:
Discard the coloring and continue iterating through as-
signments of V .

End While

3. For every subset B of T of size less than c:
(1) Let A← T \B.

(2) Using two new colors, run the proper 2-coloring algorithm for discrepany
zero hypergraphs on the (K− 1)-uniform hypergraph whose edge set is A.

(3) Using two new colors, iterate through all assignments of B, and attempt to
2-color NH1(B) just as in Step (D1).

(4) If both colorings succeed:
Stick with this proper 2-coloring of the vertices in T,NH1(B).

Remove from H1 the vertices
⋃
S′∈A S

′ and
⋃
S′∈B(S ′ ∪NH1(S ′))

and all edges involving any of these vertices, and stop iterating through
subsets of T .

(5) If either coloring fails:
Discard the coloring and continue iterating through subsets of T .
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4. Output the proper partial coloring of H and the residual graph H1 of max-degree(
n−1
K−2

)
t.

The Result.

Theorem 11.3.3. For oddK, letH =
(
V,E ⊆

(
V
K

))
be aK-uniform discrepancy 1 hyper-

graph with n vertices. Algorithm 11.3.4 partially colors H in nc+O(1) time, with at most
2n/ct colors, such that:

1. The subgraph of H induced by the colored vertices has no monochromatic vertices.

2. The subgraph of H induced by the uncolored vertices has maximum degree
(
n−1
K−2

)
t.

Proof. The proof goes very similarly to that of Theorem 11.3.2, thus we just state the key
observations required to complete the proof.

(A) In any discrepancy 1 coloring of H , any size K − 1 set S ′ either has discrepancy 2,
or discrepancy 0.

(B) Consider any discrepancy 1 coloring of H . If a size K − 1 set S ′ has discrepancy 2,
then N(S ′) is monochromatic.

(C) At the end of any iteration of Step 2., there is no size c subset of T such that every set
in the subset has discrepancy 2 in any discrepancy 1 coloring of H .

(D) When we reach Step 3., at least |T | − c sets in T , all have discrepancy 0 in EVERY
discrepancy 1 coloring of H .

11.3.5 Degree Reduction under Rainbow Colorability

Now, the equivalent algorithm in the case of rainbow colorability is virtually identical to
that of Section 11.3.4. Thus we merely state the result.

Theorem 11.3.4. Let H =
(
V,E ⊆

(
V
K

))
be a K-uniform (K − 1)-rainbow colorable

hypergraph with n vertices. Algorithm 11.3.4 partially colors H in nc+O(1) time, with at
most (K − 1)n/ct colors, such that:

1. The subgraph of H induced by the colored vertices has no monochromatic vertices.

2. The subgraph of H induced by the uncolored vertices has maximum degree
(
n−1
K−2

)
t.
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Part IV

Subgraph Transversal and Graph
Partitioning
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Chapter 12

Subgraph Transversal Overview

12.1 Introduction

Given a collection of subsets S1, ..., Sm of the underlying set U , the SET TRANSVER-
SAL problem asks to find the smallest subset of U that intersects every Si, and the SET

PACKING problem asks to find the largest subcollection Si1 , ..., Sim′ which are pairwise
disjoint.1 It is clear that optimum of the former is always at least that of the latter (i.e.
weak duality holds). Studying the (approximate) reverse direction of the inequality (i.e.
strong duality) as well as the complexity of both problems for many interesting classes of
set systems is arguably the most studied paradigm in combinatorial optimization.

This work focuses on set systems where the size of each set is bounded by a constant
k. With this restriction, MINIMUM SET TRANSVERSAL and MAXIMUM SET PACKING

are known as HYPERGRAPH VERTEX COVER and k-SET PACKING, respectively. This
assumption significantly simplifies the problem since there are at most nk sets. While
there is a simple factor k-approximation algorithm for both problems, it is NP-hard to
approximate k-HYPERGRAPH VERTEX COVER and k-SET PACKING within a factor less
than k − 1 [DGKR05] and O( k

log k
) [HSS06] respectively.

Given a large graph G = (VG, EG) and a fixed graph H = (VH , EH) with k vertices,
one of the natural attempts to further restrict set systems is to set U = VG, and take the col-
lection of subsets to be all copies ofH inG (formally defined in the next subsection). This

1These problems are called many different names in the literature. SET TRANSVERSAL is also called
HYPERGRAPH VERTEX COVER, SET COVER (of the dual set system), and HITTING SET. SET PACKING
is also called HYPERGRAPH MATCHING. We try to use TRANSVERSAL / PACKING unless another name is
established in the literature (e.g. k-HYPERGRAPH VERTEX COVER).
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natural representation in graphs often results in a deeper understanding of the underlying
structure and better algorithms, with MAXIMUM MATCHING (H = K2) being the most
well-known example. Kirkpatrick and Hell [KH83] proved that MAXIMUM MATCHING

is essentially the only case where H -PACKING can be solved exactly in polynomial time
— unless H is the union of isolated vertices and edges, it is NP-hard to decide whether
VG can be partitioned into k-subsets each inducing a subgraph containing H . A similar
characterization for the edge version (i.e. U = EG) was obtained much later by Dor and
Tarsi [DT97].

We extend these results by studying the approximability of H -TRANSVERSAL and
H -PACKING. We use the term strong inapproximability to denote NP-hardness of ap-
proximation within a factor Ω(k/polylog(k)). We give a simple sufficient condition that
implies strong inapproximability — if H is 2-vertex connected, H -TRANSVERSAL and
H -PACKING are almost as hard to approximate as k-HYPERGRAPH VERTEX COVER and
k-SET PACKING. We also show that there is a 1-connected H where H -TRANSVERSAL

admits an O(log k)-approximation algorithm, so 1-connectivity is not sufficient for strong
inapproximability for H -TRANSVERSAL. It is an interesting open problem whether 1-
connectivity is enough to imply strong inapproximability of H -PACKING, or there is a
class of connected graphs where H -PACKING admits a significantly nontrivial approxi-
mation algorithm (e.g. factor kε for some ε < 1).

One of our algorithms introduces another natural problem called k-VERTEX SEPARA-
TOR, where given a graph G = (V,E), we want remove the fewest number of vertices
such that every connected component has strictly less than k verticese. k-VERTEX SEP-
ARATOR can be regarded as a special case of a more general class of problems where we
are given a graph G and a set of pattern graphs H with k vertices and asked to remove
the minimum number of vertices to ensure G does not have any graph in H as a subgraph
(in this case H is the set of all connected graphs with k vertices). Note that it is still a
special case of k-HYPERGRAPH VERTEX COVER and admits a simple k-approximation
algorithm. k-VERTEX SEPARATOR also can be considered as a special case of graph par-
titioning problems, and our algorithm exploits this connection between graph partitioning
and H -TRANSVERSAL.

Our results give a unified answer to questions left open in many independent works
studying a special cases. In the subsequent sections, we state our main results, review
related work, and state potential future directions.
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12.2 Problems and Our Results

12.2.1 H -TRANSVERSAL and H -PACKING

Hardness. Given an undirected graphs G = (VG, EG) and H = (VH , EH) with |VH | =
k, we define the following problems.

• H -TRANSVERSAL asks to find the smallest F ⊆ VG such that the subgraph of G
induced by VG \ F does not have H as a subgraph.

• H -PACKING asks to find the maximum number of pairwise disjoint k-subsets of
S1, ..., Sm of VG such that the subgraph induced by each Si has H as a subgraph.

Our main result states that 2-connectivity ofH is sufficient to makeH -TRANSVERSAL

and H -PACKING hard to approximate.

Theorem 12.2.1. If H is a 2-vertex connected with k vertices, unless NP ⊆ BPP, no
polynomial time algorithm approximates H -TRANSVERSAL within a factor better than
k − 1, and H -PACKING within a factor better than Ω( k

log7 k
).

Our hardness results for transversal problems rely on hardness of k-HYPERGRAPH

VERTEX COVER which is NP-hard to approximate within a factor better than k − 1
[DGKR05]. Our hardness results for packing problems rely on hardness of MAXIMUM

INDEPENDENT SET on graphs with maximum degree k and girth strictly greater than g
(MIS-k-g). Almost tight inapproximability of MAXIMUM INDEPENDENT SET on graphs
with maximum degree k (MIS-k) is recently proved in Chan [Cha13], which rules out an
approximation algorithm with ratio better than Ω( k

log4 k
). We are able to extend his result

to MIS-k-g with losing only a polylogarithmic factor. All applications in this part require
g = Θ(k).

Theorem 12.2.2. For any constants k and g, unless NP ⊆ BPP, no polynomial time
algorithm approximates MIS-k-g within a factor of Ω( k

log7 k
).

We remark that assuming the Unique Games Conjecture (UGC) slightly improves our
hardness ratios through better hardness of k-HYPERGRAPH VERTEX COVER [KR08]
and MIS-k [AKS09], and even simplifies the proof for some problems (e.g. k-Clique
Transversal) through structured hardness of k-HYPERGRAPH VERTEX COVER [BK10].
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Algorithms. Let k-Star denote K1,k−1, the complete bipartite graph with 1 and k − 1
vertices on each side. The following theorem shows that k-STAR TRANSVERSAL admits
a good approximation algorithm, so the assumption of 2-connectedness in Theorem 12.2.1
is required for strong inapproximability of H -TRANSVERSAL.

Theorem 12.2.3. k-STAR TRANSVERSAL can be approximated within a factor ofO(log k)
in time poly(n, k).

This algorithmic result matches Ω(log k)-hardness of k-STAR TRANSVERSAL via a
simple reduction from MINIMUM DOMINATING SET on degree-k graphs [CC08]. This
problem has the following equivalent but more natural interpretation: given a graph G =
(VG, EG), find the smallest F ⊆ VG such that the subgraph induced by VG \ F has maxi-
mum degree at most k − 2. Our algorithm, which uses iterative roundings of 2-rounds of
Sherali-Adams hierarchy of linear programming (LP) followed by a simple greedy algo-
rithm for Constrained Set Cover, is also interesting in its own right.

We also obtain a positive result for k-PATH TRANSVERSAL. Let l(G) be the length of
the longest path of G including both endpoints (e.g., length of a single edge is 2). Given
a graph G = (V,E) and k ∈ N, k-PATH TRANSVERSAL asks to find the smallest subset
S ⊆ V such that l(G|V \S) < k. Finding a path of length k has played a central role in
devopment of FPT algorithms — it is NP-hard to do for general k, but there are various
algorithms that run in time 2O(k)nO(1) using color coding or algebraic algorithms.

k-PATH TRANSVERSAL is motivated by applications in transportation / wireless sensor
networks, and has also been actively studied as k-PATH VERTEX COVER or Pk-HITTING

SET [TZ11, BKKS11, BJK+13, Cam15, Kat16] in terms of their approximability and
fixed parameter tractability. Tu and Zhou [TZ11] gave a 2-approximation algorithm for
3-PATH TRANSVERSAL. Camby [Cam15] recently gave a 3-approximation algorithm for
4-PATH TRANSVERSAL. In the same doctoral thesis, Camby [Cam15] asked whether we
can get (1−δ)k-approximation for k-PATH TRANSVERSAL for a general k and a universal
constant δ > 0. We show that it admitsO(log k)-approximation in FPT time. Note that the
superpolynomial dependence on k is necessary for any approximation from NP-hardness
of finding a k-path.

Theorem 12.2.1. There is anO(log k)-approximation algorithm for k-PATH TRANSVER-
SAL that runs in time 2O(k3 log k)nO(1).

Table 12.1 summarizes our results.
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Promises H -TRANSVERSAL H -PACKING

2-connected Hard to approximate within k − 1 Hard to approximate within Ω( k
polylog(k))

k-Star Admits O(log k)-approximation Hard to approximate within Ω( k
polylog(k))

k-Path Admits O(log k)-approximation ?

Table 12.1: Summary of our algorithmic and hardness results for H -TRANSVERSAL and
H -PACKING for different H .

12.2.2 Graph Partitioning

Our main result for graph partitioning is the following algorithm for k-VERTEX SEPARA-
TOR. For fixed constants b, c > 1, an algorithm for k-VERTEX SEPARATOR is called an
(b, c)-bicriteria approximation algorithm if given an instance G = (V,E) and k ∈ N, it
outputs S ⊆ V such that (1) each connected component of G|S\V has at most bk vertices
and (2) |S| is at most c times the optimum of k-VERTEX SEPARATOR.

Theorem 12.2.2. For any ε ∈ (0, 1/2), there is a polynomial time ( 1
1−2ε

, O( log k
ε

))-bicriteria
approximation algorithm for k-VERTEX SEPARATOR.

Setting ε = 1
4

and running the algorithm yields S ⊆ V with |S| ≤ O(log k) ·Opt such
that each component in G|V \S has at most 2k vertices. Performing an exhaustive search
in each connected component yields the following true approximation algorithm whose
running time depends exponentially only on k.

Corollary 12.2.3. There is an O(log k)-approximation algorithm for k-VERTEX SEPA-
RATOR that runs in time nO(1) + 2O(k)n.

This gives an FPT approximation algorithm when parameterized by only k, and its ap-
proximation ratioO(log k) improves the simple (k+1)-approximation from k-HYPERGRAPH

VERTEX COVER. When Opt� k, it runs even faster than the time lower bound kΩ(Opt)nΩ(1)

for the exact algorithm assuming the Exponential Time Hypothesis [DDvH14].

The natural question is whether superpolynomial dependence on k is necessary to
achieve trueO(log k)-approximation. The following theorem proves hardness of k-VERTEX

SEPARATOR based on Densest k-Subgraph. In particular, a polynomial time O(log k)-
approximation algorithm for k-VERTEX SEPARATOR will implyO(log2 n)-approximation
algorithm for Densest k-Subgraph. Given that the best approximation algorithm achieves
≈ O(n1/4)-approximation [BCC+10] and nΩ(1)-rounds of the Sum-of-Squares hierarchy
have a gap at least nΩ(1) [BCV+12], such a result seems unlikely or will be considered as
a breakthrough.
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Theorem 12.2.4. If there is a polynomial time f -approximation algorithm for k-VERTEX

SEPARATOR, then there is a polynomial time 2f 2-approximation algorithm for Densest
k-Subgraph.

k-EDGE SEPARATOR is the edge deletion version of k-VERTEX SEPARATOR where
given a graph G = (V,E), we want to remove the fewest number of edges to make each
connected component have strictly less than k vertices. For k-EDGE SEPARATOR, we
prove that the true O(log k)-approximation can be achieved in polynomial time. This
shows a stark difference between the vertex version and the edge version.

Theorem 12.2.5. There is anO(log k)-approximation algorithm for k-EDGE SEPARATOR

that runs in time nO(1).

When k = no(1) so that ρ = n−(1−o(1)), our algorithm outperforms the previous best
approximation algorithm for ρ-separator [KNS09, ENRS99].2

While most of graph partitioning algorithms deal with the edge version, we focus on
the vertex version because (1) it exhibits richer connections to k-HYPERGRAPH VERTEX

COVERand FPT as mentioned, (2) usually the vertex version is considered to be harder
in the graph partitioning literature. We present the algorithm for the edge version in Ap-
pendix 15.5.

12.3 Related Work and Special Cases

After the aforementioned work characterizing those pattern graphs H admitting the ex-
istence of a polynomial-time exact algorithm for H -PACKING [KH83, DT97], Lund and
Yannakakis [LY93] studied the maximization version of H -TRANSVERSAL (i.e. find the
largest V ′ ⊆ VG such that the subgraph induced by V ′ does not have H as a subgraph),
and showed it is hard to approximate within factor 2log1/2−ε n for any ε > 0. They also
mentioned the minimization version of two extensions of H -TRANSVERSAL. The most
general node-deletion problem is APX-hard for every nontrivial hereditary (i.e. closed
under node deletion) property, and the special case where the property is characterized by
a finite number of forbidden subgraphs (i.e. {H1, ..., Hl}-TRANSVERSAL in our terminol-
ogy) can be approximated with a constant ratio. They did not provide explicit constants
(one trivial approximation ratio for {H1, ..., Hl}-TRANSVERSAL is max(|VH1|, ..., |VHl |)),

2Both papers only present a bicriteria approximation algorithm, but they can be combined with our
final cleanup step to achieve true approximation by adding O(log k) to the approximation ratio. See Ap-
pendix 15.5.
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and our result can be viewed as a quantitative extension of their inapproximability results
for the special case of H -TRANSVERSAL.

H -TRANSVERSAL / H -PACKING has been also studied outside the approximation
algorithms community. The duality between our H -TRANSVERSAL and H -PACKING is
closely related to the famous Erdős-Pósa property actively studied in combinatorics. The
recent work of Jansen and Marx [JM15] considered problems similar to our H -PACKING

with respect to fixed-parameter tractability (FPT).

Many other works on H -TRANSVERSAL / H -PACKING focus on a special case where
H is a cycle or clique. We define k-Cycle (resp. k-Clique) to be the cycle (resp. clique)
on k vertices.

Cycles. The initial motivation for our work was to prove a super-constant factor inap-
proximability for the FEEDBACK VERTEX SET (FVS) problem without relying on the
Unique Games Conjecture. Given a (directed) graph G, the FVS problem asks to find a
subset F of vertices with the minimum cardinality that intersects every cycle in the graph
(equivalently, the induced subgraph G \ F is acyclic). One of Karp’s 21 NP-complete
problems, FVS has been a subject of active research for many years in terms of approx-
imation algorithms and fixed-parameter tractability (FPT). For FPT results, see [Bod94,
CLL+08, CPPW11, CCHM12] and references therein.

FVS on undirected graphs has a 2-approximation algorithm [BBF95, BG96, CGHW98],
but the same problem is not well-understood in directed graphs. The best approximation
algorithm [Sey95, ENSS98, ENRS00] achieves an approximation factor ofO(log n log log n).
The best hardness result follows from a simple approximation preserving reduction from
VERTEX COVER, which implies that it is NP-hard to approximate FEEDBACK VERTEX

SET within a factor of 1.36 [DS05]. Assuming UGC [Kho02b], it is NP-hard to approx-
imate FVS in directed graphs within any constant factor [GMR08, Sve13] (we give a
simpler proof in [GL16c]). The main challenge is to bypass the UGC and to show a super-
constant inapproximability result for FVS assuming only P 6= NP or NP 6⊆ BPP.

By Theorem 12.2.1, we prove that k-CYCLE TRANSVERSAL is hard to approximate
within factor Ω(k). The following theorem improves the result of Theorem 12.2.1 in the
sense that in the completeness case, a small number of vertices not only intersect cycles of
length exactly k, but intersect every cycle of length 3, 4, ..., O( logn

log logn
).

Theorem 12.3.1. Fix an integer k ≥ 3 and ε ∈ (0, 1). Given a graph G = (VG, EG)
(directed or undirected), unless NP ⊆ BPP, there is no polynomial time algorithm to tell
apart the following two cases.
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• Completeness: There exists F ⊆ VG with 1
k−1

+ ε fraction of vertices that intersects
every cycle of at most length O( logn

log logn
) (hidden constant in O depends on k and ε).

• Soundness: Every subset F with less than 1−ε fraction of vertices does not intersect
at least one cycle of length k. Equivalently, any subset with more than ε fraction of
vertices has a cycle of length exactly k in the induced subgraph.

This can be viewed as some (modest) progress towards showing inapproximability of
FVS in the following sense. Consider the following standard linear programming (LP)
relaxation for FVS.

min
∑
v∈VG

xv subject to
∑
v∈C

xv ≥ 1 ∀ cycle C , and 0 ≤ xv ≤ 1 ∀v ∈ VG

The integrality gap of the above LP is upper bounded by O(log n) for undirected graphs
[BYGNR98] and O(log n log log n) for directed graphs [ENSS98]. Suppose in the com-
pleteness case, there exist c fraction of vertices that intersect every cycle of length at
most log1.1 n (or any number bigger than the known integrality gaps). If we remove
these vertices and consider the above LP on the remaining subgraphs, since every cy-
cle is of length at least log1.1 n, setting xv = 1/ log1.1 n is a feasible solution, implying
that the optimal solution to the LP is at most n/ log1.1 n. Since the integrality gap is at
most O(log n log log n), we can conclude that the remaining cycles can be hit by at most
O(n log log n/ log0.1 n) = o(n) vertices, extending the completeness result to every cycle.
Thus, improving our result to hit cycles of length ω(log n log log n) in the completeness
case will prove a factor-ω(1) inapproximability of FVS.

Another interesting aspect about Theorem 12.3.1 is that it also holds for undirected
graphs. This should be contrasted with the fact that undirected graphs admit a 2-approximation
algorithm for FVS, suggesting that to overcome log n-cycle barrier mentioned above, some
properties of directed graphs must be exploited. Section B.2 and B.3 of the arXiv version
of this work [GL15b] present a directed graph specific approach using a different reduc-
tion technique called labeling gadget to prove a similar result only on directed graphs. It
has an additional advantage of being derandomized and assumes only P 6= NP.

For cycles of bounded length, Kortsarz et al. [KLN10] studied k-CYCLE EDGE TRANSVER-
SAL, and suggested a (k − 1)-approximation algorithm as well as proved that improving
the ratio 2 for K3 will have the same impact on VERTEX COVER, refuting the Unique
Games Conjecture [KR08].

For the dual problem of packing cycles of any length, called VERTEX-DISJOINT CY-
CLE PACKING (VDCP), the results of [KNS+07, FS07] imply that the best approxima-
tion factor by any polynomial time algorithm lies between Ω(

√
log n) and O(log n). In
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a closely related problem EDGE-DISJOINT CYCLE PACKING (EDCP), the same papers
showed that Θ(log n) is the best possible. In directed graphs the vertex and edge version
have the same approximability, the best known algorithms achievesO(

√
n)-approximation

while the best hardness result remains Ω(log n).

Variants of k-CYCLE PACKING have also been considered in the literature. Rauten-
bach and Regen [RR09] studied k-CYCLE EDGE PACKING on graphs with girth k and
small degree. Chalermsook et al. [CLN14] studied a variant of k-CYCLE PACKING on
directed graphs for k ≥ n1/2 where we want to pack as many disjoint cycles of length at
most k as possible, and proved that it is NP-hard to approximate within a factor of n1/2−ε.
This matches the algorithm implied by [KNS+07].

Cliques. MINIMUM MAXIMAL (RESP. MAXIMUM) CLIQUE TRANSVERSAL asks to
find the smallest subset of vertices that intersects every maximal (resp. maximum) clique
in the graph. In mathematics, Tuza [Tuz91] and Erdős et al. [EGT92] started to estimate
the size of the smallest such set depending on structure of graphs. See the recent work of
Shan et al. [SLK14] and references therein. In computer science, exactly computing the
smallest set on special classes of graphs appears in many works [GPR00, LCS02, CKL01,
DLMS08, Lee12].

Both the edge and vertex version of k-CLIQUE PACKING also have been studied ac-
tively both in mathematics and computer science. In mathematics, the main focus of re-
search is lower bounding the maximum number of edge or vertex-disjoint copies of Kk

in very dense graphs (note that even K3 does not exist in Kn,n which has 2n vertices
and n2 edges). See the recent paper [Yus14] or the survey [Yus07] of Yuster. The latter
survey also mentions approximation algorithms, including APX-hardness and the general
approximation algorithm for k-SET PACKING which now achieves k+1+ε

3
for the vertex

version and (k2)+1+ε

3
for the edge version [Cyg13]. Feder and Subi [FS12] considered H -

EDGE PACKING and showed APX-hardness when H is k-cycle or k-clique. Chataigner
et al. [CMWY09] considered an interesting variant where we want to pack vertex-disjoint
cliques of any size to maximize the total number of edges of the packed cliques, and proved
APX-hardness and a 2-approximation algorithm. Exact algorithms for special classes of
graphs have been considered in [BCD97, GPRC+01, HKNP05, Klo12].

Graph Partitioning. Graph partitioning is a general task of removing a small number
of edges or vertices to make the resulting graph consist of smaller connected components.
In this context, the edge versions have received more attention.

One of the most well-studied formulations is called l-Balanced Partitioning. Given
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a graph G = (V,E) and l ∈ N, the goal is to remove the smallest number of edges
so that the resulting graph has l (l ≥ 2) connected components with (roughly) the same
number n

l
of vertices. 3 The case l = 2 has been studied extensively and produced elegant

approximation algorithms. The best results are O(log n)-true approximation (i.e., each
component must have n

2
vertices) [Rac08] and O(

√
log n)-bicriteria approximation (i.e.,

each component must have at most 2n
3

vertices) [ARV09]. The extension to l ≥ 3 has been
studied more recently. While it is NP-hard to achieve any nontrivial true approximation
for general l [AR06], Krauthgamer et al. [KNS09] presented an O(

√
log n log l)-bicriteria

approximation where the resulting graph is guaranteed to have each connected component
with at most 2n

l
vertices.

The true approximation for l-Balanced Partitioning is ruled out by encoding the Integer
3-Partition problem in graphs, and hard instances contain disjoint cliques of size at most n

l
.

Even et al. [ENRS99] defined a similar problem called ρ-Separator, which is exactly our
k-EDGE SEPARATOR with ρ = k

n
. They “believe that the definition of ρ-Separator cap-

tures type of partitioning that is actually required in applications”, since “instead of lim-
iting the number of resulting parts, which is not always important for divide-and-conquer
applications or for parallelism, it limits only the sizes or weights of each part.” They pro-
vided a bicriteria approximation algorithm that removes at most O(1+ε

ε
log n) · Opt edges

to make sure that each component has size (1 + ε)ρn for any ε > 0, which is improved to
O(1+ε

ε

√
log(1/ερ) log n) · Opt by Krauthgamer et al. [KNS09]. The previous algorithms’

primary focus is when ρ is a constant (so that k = Ω(n)), and their performance deterio-
rates when k is small. In particular, when k = O(n1−ε) and ρ = O(n−ε) for some ε > 0,
the best guarantee from the above line of work gives an O(log n)-bicriteria approximation
algorithm.

Some of the ideas can be used for the analogous vertex versions, but they have not
received the same amount of attention. Often additional algorithmic ideas were required
to achieve the same guarantee [FHL08], or matching the same guarantee is proved to be
NP-hard under some complexity assumptions [LRV13].

Fixed Parameter Tractability. Given a graph G and an integer k, the optimum of k-
VERTEX SEPARATOR has been known as k-Component Order Connectivity in mathemat-
ics. We refer to the survey by Gross et al. [GHI+13] for more background.

Let Opt be the optimal value. For small values of k and Opt, the complexity of exact
algorithms has been studied in terms of their fixed parameter tractability (FPT). While the

3In the literature it is called k-Balanced Partitioning. We use l in order to avoid confusion between
l-Balanced Partitioning and k-Edge Separator (l = n

k ).
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trivial algorithm takes nO(Opt) time to find the exact solution for k-VERTEX SEPARATOR,
Drange et al. [DDvH14] presented an exact algorithm that runs in time kO(Opt)n, so the
problem is in FPT when parameterized by both k and Opt. They complemented their result
by showing that the problem is W[1]-hard when parameterized by Opt or k. They also
showed that any exact algorithm that runs in time ko(Opt)nO(1) will refute the Exponential
Time Hypothesis.

Given an instance of a problem with a parameter κ, an approximation algorithm is said
to be an FPT c-approximation algorithm if it runs in time f(κ) · nO(1) for some function
f and achieves c-approximation. See the survey of Marx [Mar08] and the recent work of
Chitnis et al. [CHK13]. For k-VERTEX SEPARATOR, the simple (k + 1)-approximation
runs in polynomial time regardless of Opt and k, but any exact algorithm requires both
Opt and k to be parameterized. It is an interesting question whether significantly improved
approximation is possible when only one of them is parameterized.

12.3.1 Organization

Chapter 13 presents our hardness results. Section 13.1 recalls and extends previous hard-
ness results for the problems we reduce from. Section 13.2 and Section 13.3 prove hard-
ness of H -TRANSVERSAL and H -PACKING respectively. Section 13.4 proves Theo-
rem 12.3.1 to illustrate the connection to FVS.

Chapter 14 gives an O(log k)-approximation algorithm for k-STAR TRANSVERSAL,
proving Theorem 12.2.3. Chapter 15 gives an O(log k)-approximation algorithm for k-
PATH TRANSVERSAL, proving Theorem 12.2.1.
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Chapter 13

Hardness of H-Transversal / Packing

13.1 Preliminaries

Notation. A k-uniform hypergraph is denoted by P = (VP , EP ) such that each e ∈ EP
is a k-subset of VP . We denote e as an ordered k-tuple e = (v1, . . . , vk). The ordering can
be chosen arbitrarily given P , but should be fixed throughout. If v indicates a vertex of
some graph, we use a superscript vi to denote another vertex of the same graph, and ei to
denote the ith (hyper)edge. For an integer m, let [m] = {1, 2, . . . ,m}. Unless otherwise
stated, the measure of F ⊆ V is obtained under the uniform measure on V , which is
simply |F ||V | .

k-HYPERGRAPH VERTEX COVER. An instance of k-HYPERGRAPH VERTEX COVER

consists of a k-uniform hypergraph P , where the goal is to find a set C ⊆ VP with the min-
imum cardinality such that it intersects every hyperedge. The result of Dinur, Guruswami,
Khot and Regev [DGKR05] states that

Theorem 13.1.1 ([DGKR05]). Given a k-uniform hypergraph (k ≥ 3) and ε > 0, it is
NP-hard to tell apart the following cases:

• Completeness: There exists a vertex cover of measure 1+ε
k−1

.

• Soundness: Every vertex cover has measure at least 1− ε.

Therefore, it is NP-hard to approximate k-HYPERGRAPH VERTEX COVER within a factor
k − 1 + 2ε.
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MIS-k. Given a graph G = (VG, EG), a subset S ⊆ VG is independent if the sub-
graph induced by S does not contain any edge. The MAXIMUM INDEPENDENT SET

(MIS) problem asks to find the largest independent set, and MIS-k indicates the same
problem where G is promised to have maximum degree at most k. The recent result of
Chan [Cha13] implies

Theorem 13.1.2 ([Cha13]). Given a graph G with maximum degree at most k, it is NP-
hard to tell apart the following cases:

• Completeness: There exists an independent set of measure Ω(1/(log k)).

• Soundness: Every subset of vertices of measure O( log3 k
k

) contains an edge.

Therefore, it is NP-hard to approximate MIS-k within a factor Ω( k
log4 k

).

13.2 H -TRANSVERSAL

In this section, given a 2-connected graph H = (VH , EH) with k vertices, we give a
reduction from k-HYPERGRAPH VERTEX COVER to H -TRANSVERSAL. The simplest
try will be, given a hypergraph P = (VP , EP ) (let n = |VP |,m = |EP |), to produce a
graph G = (VG, EG) where VG = VP , and for each hyperedge e = (v1, . . . , vk) add |EH |
edges that form a canonical copy of H to EG. While the soundness follows directly (if
F ⊆ VP contains a hyperedge, the subgraph induced by F contains H), the completeness
property does not hold since edges that belong to different canonical copies may form
an unintended non-canonical copy. To prevent this, a natural strategy is to replace each
vertex by a set of many vertices (call it a cloud), and for each hyperedge (v1, . . . , vk),
add many canonical copies on the k clouds (each copy consists of one vertex from each
cloud). If we have too many canonical copies, soundness works easily but completeness
is hard to show due to the risk posed by non-canonical copies, and in the other extreme,
having too few canonical copies could result in the violation of the soundness property.
Therefore, it is important to control the structure (number) of canonical copies that ensure
both completeness and soundness at the same time.

Our technique, which we call random matching, proceeds by creating a carefully cho-
sen number of random copies of H for each hyperedge to ensure both completeness and
soundness. We remark that properties of random matchings are also used to bound the
number of short non-canonical paths in inapproximability results for edge-disjoint paths
on undirected graphs [AZ06, ACG+10]. The details in our case are different as we create
many copies of H based on a hypergraph.

292



Fix ε > 0, apply Theorem 13.1.1, let c := 1+ε
k−1

, s := 1 − ε be the measure of the
minimum vertex cover in the completeness and soundness case respectively, and d :=
d(k, ε) be the maximum degree of hard instances. Let a and B be integer constants greater
than 1, which will be determined later. Lemma 13.2.1 and Lemma 13.2.4 with these
parameters imply the first half of Theorem 12.2.1.

Reduction. Without loss of generality, assume that VH = [k]. Given a hypergraph P =
(VP , EP ), construct an undirected graph G = (VG, EG) such that

• VG = VP × [B]. Let n = |VP | and N = |VG| = nB. For v ∈ VP , let cloud(v) :=
{v} × [B] be the copy of [B] associated with v.

• For each hyperedge e = (v1, . . . , vk), for aB times, take l1, . . . , lk independently
and uniformly from [B]. For each edge (i, j) ∈ H (1 ≤ i < j ≤ k), add
((vi, li), (vj, lj)) to EG. Each time we add |EH | edges isomorphic to H , and we
have aB of such copies of H per each hyperedge. Call such copies canonical.

Completeness. The next lemma shows that if P has a small vertex cover, G also has a
small H -TRANSVERSAL.

Lemma 13.2.1. Suppose P has a vertex cover C of measure c. For any ε > 0, with
probability at least 3/4, there exists a subset F ⊆ VG of measure at most c + ε such that
the subgraph induced by VG \ F has no copy of H .

Proof. Let F = C × [B]. We consider the expected number of copies of H that avoid F
and argue that a small fraction of additional vertices intersect all of these copies. Choose
k vertices (v1, l1), . . . , (vk, lk) which satisfy

• v1 ∈ VP can be any vertex.

• l1, . . . , lk ∈ B can be arbitrary labels.

• For each (i, j) ∈ EH , there must be a hyperedge of P containing both i and j.

There are n possible choices for v1, B choices for each li, and at most kd choices for each
vi (i > 1). The number of possibilities to choose such (v1, l1), . . . , (vk, lk) is bounded by
n(dk)kBk. Note that no other k-tuple of vertices induce a connected graph and contain a
copy of H . Further discard the tuple when two vertices are the same.

We calculate the probability that the subgraph induced by ((v1, l1), . . . , (vk, lk)) con-
tains a copy in this order — formally, for all (i, j) ∈ EH , ((vi, li), (vj, lj)) ∈ EG. For
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Figure 13.1: Two examples where k = 4 and H is a 4-cycle. On the left, purported edges
are divided into two groups (dashed and solid edges). Each copy of canonical cycle should
match the labels of three vertices to ensure it covers 2 designated edges (6 labels total).
On the right, one canonical copy can cover all the edges, and it only needs to match the
labels of four vertices (4 labels total).

each (i, j) ∈ EH , we call a pair ((vi, li), (vj, lj)) ∈
(
VG
2

)
a purported edge. For a set of

purported edges, we say that this set can be covered by a single canonical copy if one
copy of canonical copy of H can contain all purported edges with nonzero probability.
Suppose that all |EH | purported edges can be covered by a single canonical copy of H .
It is only possible when there is a hyperedge whose k vertices are exactly {v1, . . . , vk}.
In this case, ((v1, l1), . . . , (vk, lk)) intersects F . (right case of Figure 13.1). When |EH |
purported edges have to be covered by more than one canonical copy, some vertices must
be covered by more than one canonical copy, and each canonical copy covering the same
vertex should give the same label to that vertex. This redundancy makes it unlikely to have
all k edges exist at the same time. (left case of Figure 13.1). The below claim formalizes
this intuition.

Claim 13.2.2. Suppose that ((v1, l1), . . . , (vk, lk)) cannot be covered by a single canonical

copy. Then the probability that it forms a copy of H is at most (adk)k
2

Bk
.

Proof. Fix 2 ≤ p ≤ |EH |. Partition |EH | purported edges into p nonempty groups
I1, . . . , Ip such that each group can be covered by a single canonical copy of H . There
are at most p|EH | possibilities to partition. For each v ∈ VP , there are at most d hyperedges
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containing v and at most aBd canonical copies intersecting cloud(v). Therefore, all edges
in one group can be covered simultaneously by at most aBd canonical copies. There are
at most (aBd)p possibilities to assign a canonical copy to each group. Assume that one
canonical copy is responsible for exactly one group. This is without loss of generality
since if one canonical copy is responsible for many groups, we can merge them and this
case can be dealt with smaller p.

Focus on one group I of purported edges, and one canonical copy L = (VL, EL)
which is supposed to cover them. Let I ′ ⊆ VG be the set of vertices which are inci-
dent on the edges in I . Suppose VL = {(u1, l′1), . . . , (uk, l′k)}, which is created by a
hyperedge f = (u1, . . . , uk) ∈ EP . We calculate the probability that L contains all
edges in I over the choice of labels l′1, . . . , l′k for L. One necessary condition is that
{v|(v, l) ∈ I ′ for some l ∈ [B]} (i.e. the set I ′ projected to VP ) is contained in f . Other-
wise, some vertices of I ′ cannot be covered by L. Another necessary condition is vi 6= vj

for any (vi, li) 6= (vj, lj) ∈ I ′. Otherwise (i.e. (v, li), (v, lj) ∈ I ′ for li 6= lj), since L
gives only one label to each vertex in f ⊆ VP , (v, li) and (v, lj) cannot be contained in L
simultaneously. Therefore, we have a nice characterization of I ′: It consists of at most one
vertex from the cloud of each vertex in f .

The probability that L contains I is at most the probability that for each (vi, li) ∈ I ′,
li is equal to the label L assigns to vi, which is B−|I′|. Now we need the following lemma
saying that the sum of |I ′| is large, which relies on 2-connectivity of H .

Lemma 13.2.3. Fix p ≥ 2. For any partition I1, ..., Ip of purported edges into p non-empty
groups,

∑p
i=1 |I ′i| ≥ k + p.

Proof. Let t be the number of vertices contained in at least two I ′is. Call them boundary
vertices. Note that exactly k − t vertices belongs to exactly one I ′i. For i = 1, ..., p, let
bi be the number of boundary vertices in |I ′i|. Since (I ′i, Ii) is a proper subgraph of H
and H is 2-vertex connected, bi ≥ 2 for each i, which implies

∑
i bi ≥ 2p. Furthermore,

each boundary vertex contributes to at least two bi’s, so
∑

i bi ≥ 2t. Therefore,
∑

i bi ≥
max(2p, 2t) and

p∑
i=1

|I ′i| = (k − t) +

p∑
i=1

bi ≥ (k − t) + max(2p, 2t) ≥ k + p.

We conclude that for each partition, the probability of having all the edges is at most

(aBd)p
p∏
q=1

B−|I
′
q | =

(aBd)p

Bk+p
=

(ad)p

Bk
.
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The probability that ((v1, l1), . . . , (vk, lk)) forms a copy is therefore bounded by

|EH |∑
p=2

p|EH |
(ad)p

Bk
≤ (adk)k

2

Bk
.

Therefore, the expected number of copies that avoid F is bounded by n(kd)kBk ·
(adk)k

2

Bk
. With probability at least 3/4, the number of such copies is at most 4n(adk)2k2 . Let

B ≥ 4(adk)2k2

ε
. Then these copies of H can be covered by at most εnB = εN vertices.

Soundness. The soundness claim above is easier to establish. By an averaging argument,
a subset I of VG of measure 2ε must contain εB vertices from the clouds corresponding to
a subset S of measure ε in VP . There must be a hyperedge e contained within S, and the
chosen parameters ensure that one of the canonical copies corresponding to e is likely to
lie within I .

Lemma 13.2.4. For a = a(k, ε) and B = Ω(log |EP |), if every subset of VP of measure at
least ε contains a hyperedge in the induced subgraph, with probability at least 3/4, every
subset of VG with measure 2ε contains a canonical copy of H .

Proof. We want to show that the following property holds for every hyperedge e =
(v1, . . . , vk): if a subset of vertices I ⊆ VG has at least ε fraction of vertices from
each cloud(vi), then I will contain a canonical copy. Fix A1 ⊆ cloud(v1), . . . , Ak ⊆
cloud(vk) be such that for each i, |Ai| ≥ εB. There are at most 2kB ways to choose
such A’s. The probability that one canonical copy associated with e is not contained in
(v1, A1) × · · · × (vk, Ak) is at most 1 − εk. The probability that none of canonical copy
associated with e is contained in (v1, A1)× · · · × (vk, Ak) is (1− εk)aB ≤ exp(−aBεk).

By union bound over all A1, . . . , Ak, the probability that there exists A1, . . . , Ak con-
taining no canonical copy is at most exp(kB − aBεk) = exp(−B) ≤ 1

4|EP |
by taking

a large enough constant depending on k and ε, and B = Ω(log |EP |). Therefore, with
probability at least 3/4, the desired property holds for all hyperedges.

Let I be a subset of VG of measure at least 2ε. By an averaging argument, at least
ε fraction of good vertices v ∈ VP satisfy that |cloud(vi) ∩ I| ≥ εB. By the soundness
property of P , there is a hyperedge e contained in the subgraph induced by the good
vertices, and the above property for e ensures that I contains a canonical copy.
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13.3 H -PACKING and MIS-k-g

Given a 2-connected graph H , the reduction from MIS-k-k to H -PACKING is relatively
straightforward. Here we assume that hard instances of MIS-k-k are indeed k-regular for
simplicity. Given an instance M = (VM , EM) of MIS-k-k, we take G = (VG, EG) to
be its line graph — VG = EM , and e, f ∈ VG are adjacent if and only if they share an
endpoint as edges of M .

For each vertex v ∈ VM , let star(v) := {e ∈ VG : v ∈ e}. star(v) induces a k-clique,
and for v, u ∈ VM , star(v) and star(u) share one vertex if u and v are adjacent, and share
no vertex otherwise. Given an independent set S of M , we can find |S| pairwise disjoint
stars in G, which gives |S| vertex-disjoint copies of H . On the other hand, 2-connectivity
of H and large girth of M implies that any copy of H must be entirely contained in one
star, proving that many disjoint copies of H in G also give a large independent set of M
with the same cardinality, completing the reduction from MIS-k-k to H -PACKING. The
following theorem formalizes the above intuition.

Lemma 13.3.1. For a 2-connected graph H with k vertices, there is an approximation-
preserving reduction from MIS-k-k to H -PACKING.

Proof. Let M = (VM , EM) be an instance of MIS-k-k M with maximum degree k and
girth greater than k. First, let G = (VG = EM , EG) be the line graph of M . For each
vertex v ∈ VM with degree strictly less than k, we add k − deg(v) new vertices to VG. Let
star(v) ⊆ VG be the union of the edges of M incident on v and the newly added vertices
for v. Note that | star(v)| = k for all v ∈ VM . Add edges to G to ensure that every star(v)
induces a k-clique. For two vertices u and v of M , star(u) and star(v) share exactly one
vertex if u and v are adjacent in M , and share no vertex otherwise.

Let S be an independent set of M . The |S| stars {star(v)}v∈S are pairwise disjoint and
each induces a k-clique, so G contains at least |S| disjoint copies of H .

We claim that any k-subset of VG that induces a 2-connected subgraph must be star(v)
for some v. Assume towards contradiction, let T be a k-subset inducing a 2-connected
subgraph of G that cannot be contained in a single star. We first show T must contain two
disjoint edges of M . Take any (u, v) ∈ T . Since T 6⊆ star(u), T contains an edge of M
not incident on u. If it is not incident on v either, we are done. Otherwise, let (w, v) be this
edge. The same argument from T 6⊆ star(v) gives another edge (w′, u) in T . If w 6= w′,
(w, v) and (w′, u) are disjoint. Otherwise, w, u, v form a triangle in M , contradicting a
large girth. Let (u, v), (w, x) be two disjoint edges of M in contained in T .

Since the subgraph of G vertex-induced by T is 2-connected, there are two internally
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vertex-disjoint paths P1, P2 in G from (u, v) to (w, x). The sum of the two lengths is at
most k, where the length of a path is defined to be the number of edges. By considering
the internal vertices of Pi (edges of M ) and deleting unnecessary portions, we have two
edge-disjoint paths P ′1, P ′2 in M where each P ′i connects {u, v} and {w, x}, with length at
most the length of Pi minus one. There is a cycle in M consists only of the edges of P ′1,
P ′2 together with (u, v), (w, x). Since |P ′1| + |P ′2| + 2 ≤ k, it contradicts that M has girth
strictly greater than k.

We prove that MIS-k-g is also hard to approximate by a reduction from MIS-d (d =
Ω̃(k)), using a slightly different random matching idea. Given a degree-d graph with
possibly small girth, we replace each vertex by a cloud of B vertices, and replace each
edge by a copies of random matching between the two clouds. While maintaining the
soundness guarantee, we show that there are only a few small cycles, and by deleting a
vertex from each of them and sparsifying the graph we obtain a hard instance for MIS-
k-g. Note that g does not affect the inapproximability factor but only the runtime of the
reduction.

Theorem 13.3.1 (Restatement of Theorem 12.2.2). For any constants k and g, unless
NP ⊆ BPP, no polynomial time algorithm approximates MIS-k-g within a factor of
Ω( k

log7 k
).

Proof. We reduce from MIS-d to MIS-k-g where k = O(d log2 d). Given an instance
G0 = (VG0 , EG0) of MIS-d, we construct G = (VG, EG) and G′ = (VG′ , EG′) by the
following procedure:

• VG = VG0 × [B]. As usual, let cloud(v) = {v} × [B].

• For each edge (u, v) ∈ EG0 , for a times, add a random matching as follows.

– Take a random permutation π : [B]→ [B].

– Add an edge ((u, i), (v, π(i)) for all i ∈ [B].

• Call the resulting graph G. To get the final graph G′,

– For any cycle of length at most g, delete an arbitrary vertex from the cycle.
Repeat until there is no cycle of length at most g.

Note that the step of eliminating the small cycles can be implemented trivially in time
O(ng). Let n = |VG0|,m = |EG0|, N = nB = |VG| ≥ |VG′|,M = m · aB = |EG| ≥
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|EG′|. The maximum degree of G and G′ is at most ad. By construction, girth of G′ is at
least g + 1.

Girth Control. We calculate the expected number of small cycles in G, and argue that
the number of these cycles is much smaller than the total number of vertices, so that |VG|
and |VG′| are almost the same. Fix 1 ≤ k′ ≤ g. We bound the number of cycles of
length k′. Let each pair ((v1, l1), (v2, l2)) of vertices a purported edge and each k′-tuple
((v1, l1), . . . , (vk

′
, lk
′
)) a purported cycle. A purported cycle has nonzero probability of

being a real cycle in G if

• v1 ∈ VG0 can be any vertex.

• For each 1 ≤ i < k′, (vi, vi+1) ∈ EG0 .

• l1, . . . , lk′ ∈ B can be arbitrary labels.

There are n possible choices for v1,B choices for each li, and d choices for each vi (i > 1).
The number of possibilities to choose such (v1, l1), . . . , (vk

′
, lk
′
) is bounded by ndk′−1Bk′ .

Without loss of generality, assume that no vertices appear more than once.

For each edge e = (u,w) ∈ G0, consider the intersection of the purported cycle
((v1, l1), ..., (vk

′
, lk
′
)) and the subgraph induced by cloud(u) ∪ cloud(w). It is a bipartite

graph with the maximum degree 2. Suppose there are q purported edges e1, . . . , eq (ordered
arbitrarily) in this bipartite graph. By slightly abusing notation, let ei also denote the event
that ei exists in G. The following claim upper bounds Pr[ei|e1, . . . , ei−1] for each ei.

Claim 13.3.2. Pr[ei|e1, . . . , ei−1] ≤ a
B−i .

Proof. There are a random matchings between cloud(u) and cloud(w), and for each j < i,
there is at least one random matching including ej . We calculate the probability ei is
contained by a random matching, conditioned on the fact that it already contains some of
e1, . . . , ei−1.

If there is ej (j < i) that shares a vertex with ei, ei cannot be covered by the same
random matching with ej . If a random matching covers p of e1, . . . , ei−1 which are disjoint
from ei, the probability that ei is covered by that random matching is 1

B−p , and this is
maximized when p = i− 1.

By a union bound over the a random matchings, Pr[ei|e1, . . . , ei−1] ≤ a
B−i .
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The probability that all of e1, . . . , eq exist is at most

q∏
i=1

a

B − i
≤
(

a

B − q

)q
≤
(

a

B − k′

)q
.

Since edges of G0 are processed independently, the probability of success for one fixed
purported cycle is ( a

B−k′ )
k′ . The expected number of cycles of length k′ is

ndk
′−1Bk′ ·

( a

B − k′
)k′

= ndk
′−1ak

′
(

1 +
k′

B − k′

)k′
≤ ndk

′−1ak
′
exp
( k′2

B − k′
)

≤ en(ad)k
′

by taking B − k′ ≥ k′2. Summing over k′ = 1, . . . , g, the expected number of cycles of
length up to g, is bounded by eg(ad)gn. Take B ≥ 4d2 · eg(ad)g. Then with probability at
least 3/4, the number of cycles of length at most g is at most Bn

d2 . By taking 1/d2 fraction
of vertices away (one for each short cycle), we have a girth at least g + 1, which implies(

1− 1
d2

)
|VG| ≤ |VG′ | ≤ |VG|.

Hardness of MIS-d states that it is NP-hard to distinguish the case G0 has an indepen-
dent set of measure c := Ω( 1

log d
) and the case where the maximum independent set has

measure at most s := O( log3 d
d

).

Completeness. Let I0 be an independent set of G0 of measure c. Then I = I0 × [B] is
also an independent set of G of measure c. Let I ′ = I ∩ VG′ . I ′ is independent in both
G and G′, and the measure of I ′ in G′ is at least the measure of I ′ in G, which is at least
c− 1/d2 = Ω( 1

log d
).

Soundness. Suppose that every subset of VG0 of measure at least s contains an edge. Say
a graph is (β, α)-dense if we take β fraction of vertices, at least α fraction of edges lie
within the induced subgraph. We also say a bipartite graph is (β, α)-bipartite dense if we
take β fraction of vertices from each side, at least α fraction of edges lie within the induced
subgraph.

Claim 13.3.3. For a = O( log(1/s)
s

) and B = O( logm
s

) the following holds with probability
at least 3/4: For every (u,w) ∈ EG0 , the bipartite graph between cloud(u) and cloud(w)
is (ε, ε2/8)-bipartite dense for all ε ≥ s.
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Proof. Fix (u,w), and ε ∈ [s, 1], and X ⊆ cloud(u) and Y ⊆ cloud(w) be such that
|X| = |Y | = εB. The possibilities of choosing X and Y is(

B

εB

)2

≤ exp(O(ε log(1/ε)B))

Without loss of generality, let X = {u} × [εB] and Y = {v} × [εB]. In one random
matching, let Xi (i ∈ [εB]) be the random variable indicating whether vertex (u, i) ∈ X is
matched with a vertex in Y or not. Pr[X1 = 1] = ε, and Pr[Xi = 1|X1, . . . , Xi−1] ≥ ε/2
for i ∈ [εB/2] and anyX1, . . . , Xi−1. Therefore, the expected number of edges betweenX
and Y is at least ε2B/4. With a random matchings, the expected number is at least aε2B/4.
By Chernoff bound, the probability that it is less than aε2B/8 is at most exp(aε

2B
32

). By
union bound over all possibilities of choosing X and Y , the probability that the bipartite
graph is not (ε, ε2/8)-bipartite dense is

exp(ε log(1/ε)B) · exp
(
−aε

2B

32

)
≤ 1

4mB

by taking a = O( log(1/s)
s

) and B = O
(

logm
s

)
. A union bound over all possible choices of

ε (B possibilities) and m edges of E0 implies the claim.

Claim 13.3.4. With the parameters a and B above, G is (4s log(1/s),Ω( s
d
))-dense.

Proof. Fix a subset S of measure 4s log(1/s). For a vertex v ofG0, let µ(v) := |cloud(v)∩S|
B

.
Note that Ev[µ(v)] = 4s log(1/s). Partition VG0 into t + 1 buckets B0, . . . , Bt (t :=
dlog2(1/s)e), such that B0 contains v such that µ(v) ≤ s, and for i ≥ 1, Bi contains v
such that µ(v) ∈ (2i−1s, 2is]. Denote

µ(Bi) :=

∑
v∈Bi µ(v)

|VG0|
.

Clearly µ(B0) ≤ s. Pick i ∈ {1, . . . , t} with the largest µ(Bi). We have µ(Bi) ≥ 2s
since Ev[µ(v)] ≥ 4s log(1/s). Let γ = 2i−1s. All vertices of Bi has µ(v) ∈ [γ, 2γ], so
|Bi| ≥ (s/γ)n. We use Turán’s Theorem.

Theorem 13.3.2 ([Tur41]). Let G be any graph with n vertices such that G is Kr+1-free.
Then the number of edges in G is at most r−1

r
· n2

2
.

Since G0 has no independent set with more than ns vertices, we can apply Turán’s
Theorem to the complement of the subgraph of G0 induced by Bi, so that the subgraph of
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G0 induced by Bi has at least |Bi|(|Bi|−1)
2

− ns−1
ns
· |Bi|

2

2
= |Bi|

2
( |Bi|
ns
− 1) = Ω( s

γ2n) edges.
This is at least Ω( s

dγ2 ) fraction of the total number of edges.

For each of these edges, by Claim 13.3.3, at least γ2/8 fraction of the edges from the
bipartite graph connecting the clouds of its two endpoints, lie in the subgraph induced by
S (since γ ≥ s). Overall, we conclude that there are at least Ω( s

dγ2 ) · γ2

8
= Ω( s

d
) fraction

of edges inside the subgraph induced by S.

Sparsification. Recall thatG′ is obtained fromG by deleting at most 1
d2 fraction of vertices

to have girth greater than g. In the completeness case,G′ has an independent set of measure
at least c− 1/d2 = Ω( 1

log d
). In the soundness case, G is (4s log(1/s),Ω( s

d
))-dense, so G′

is (β, α)-dense where β := Ω( log4 d
d

), α := Ω( log3 d
d2 ). Using density of G′, we sparsify G′

again — keep each edge of G′ by probability kn
|EG′ |

so that the expected total number of
edges is kn.

Fix a subset S ⊆ VG′ of measure β. Since there are at least α fraction of edges
in the subgraph induced by S, the expected number of picked edges in this subgraph
is at least αkn. By Chernoff bound, the probability that it is less than αkn

8
is at most

exp(−αkn
32

). By union bound over all sets of measure exactly β (there are at most
(
n
nβ

)
≤

exp(2β log(1/β)n) of them), and over all possible values of β (there are at most n possible
sizes), the desired property fails with probability at most

n · max
β∈[β0,1]

{
exp(−αkn/32) · exp(2β log(1/β)n)

}
≤ n · e−n

when k = O(β log(1/β)
α

) = O(d log2 d). In the last step we remove all the vertices of degree
more than 10k. Since the expected degree of each vertex is at most 2k, the expected
fraction of deleted vertices is exp(−Ω(k))� β.

Combining all these results, we have a graph with small degree 10k = O(d log2 d) and
girth strictly greater than g, where it is NP-hard to approximate MIS within a factor of
c− 1

d2

β
= Ω( d

log5 d
) = Ω( k

log7 k
). Therefore, it is NP-hard to approximate MIS-k-g within a

factor of Ω( k
log7 k

).

13.4 Hardness for Longer Cycles and Connection to FVS

We prove Theorem 12.3.1, which improves Theorem 12.2.1 in the sense that in the com-
pleteness case, a small subset F ⊆ VG intersects not only cycles of length exactly k, but
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also all cycles of length 3, 4, ..., O( logn
log logn

). The reduction and the soundness analysis are
exactly the same. We show the following lemma for the completeness case which is again
almost identical to Lemma 13.2.1, but carefully keeps track of parameters to consider
cycles of increasing length.

Lemma 13.4.1. Suppose P has a vertex cover C of measure c. For any ε > 0, with
probability at least 3/4, there exists a subset F ⊆ VG of measure at most c + ε such that
the induced subgraph VG \ F has no cycle of length O( logn

log logn
). The constant hidden in O

depends on k, ε and the degree d of P .

Proof. Following the proof of Lemma 13.2.1, the expected number of cycles of length
k′ that avoid F is bounded by n(2d)k

′
Bk′ · k′(adk′

B
)k
′ ≤ n(Rk′)k

′ where R is a constant
depending only on a and d (both are independent of k′). Compared to the general bound

n(kd)kBk · (adk)k
2

Bk
for any 2-connected graph with k vertices, (kd) is improved to 2d since

every vertex has degree 2, and (adk)k
2 is improved to k′(adk′)k′ since a cycle has exactly

k′ edges.

With probability at least 3/4, the number of such cycles of length up to k′ is at most

4n(Rk′)k
′+1. Let B ≥ 4(Rk′)k

′+1

ε
. Then these cycles can be covered by at most εnB = εN

vertices. If k′ = logn
log logn

, then k′k′ = exp(k′ log k′) is also o(n), we can take B linear in n
and k′ ≥ Ω( logN

log logN
).

13.5 Hardness of k-VERTEX SEPARATOR

In this section, we prove that an f -true approximation algorithm for k-VERTEX SEPARA-
TOR that runs in time poly(n, k) will result in 2f 2-approximation algorithm for the DENS-
EST k-SUBGRAPH, proving Theorem 12.2.4. In particular, O(log k)-true approximation
for k-VERTEX SEPARATOR in time poly(n, k) will lead to O(log2 n)-approximation for
DENSEST k-SUBGRAPH.

Given an undirected graph G = (V,E) and an integer k, DENSEST k-SUBGRAPH

asks to find S ⊆ V with |S| = k to maximize the number of edges of G|S . It is one
of the notorious problems in approximation algorithms. The current best approximation
algorithm achieves ≈ O(n1/4)-approximation [BCC+10]. While only PTAS is ruled out
assuming NP 6⊆ ∩ε>0BPTIME(2n

ε
) [Kho06], there are strong gap instances for Sum-

of-Squares hierarchies of convex relaxations (nΩ(1) gap for nΩ(1) rounds) [BCV+12], so
having a polylog(n)-approximation algorithm for DENSEST k-SUBGRAPH seems unlikely
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or will lead to a breakthrough. Therefore, it may be the case that achieving O(log k)-
approximation for k-VERTEX SEPARATOR requires superpolynomial dependence on k in
the running time.

Our reduction is close to that of Drange et al. [DDvH14] who reduced Clique to k-
VERTEX SEPARATOR to prove W[1]-hardness. Formally, we introduce another problem
called MINIMUM k-EDGE COVERAGE. Given an undirected graph G and an integer k,
the problem asks to find the minimum number of vertices whose induced subgraph has
at least k edges. This problem can be thought as a dual of DENSEST k-SUBGRAPH in a
sense that given the same input graph, the optimum of DENSEST a-SUBGRAPH is at least
b if and only if the optimum of MINIMUM b-EDGE COVERAGE is at most a. Hajiaghayi
and Jain [HJ06] proved the following theorem, relating their approximation ratios.

Theorem 13.5.1 ([HJ06]). If there is a polynomial time f -approximation algorithm for
MINIMUM k-EDGE COVERAGE, then there is a polynomial time 2f 2-approximation al-
gorithm for DENSEST k-SUBGRAPH.

We introduce a reduction from MINIMUM k-EDGE COVERAGE to k-VERTEX SEP-
ARATOR. Given an instance G = (V,E) and k for MINIMUM k-EDGE COVERAGE,
the instance of k-VERTEX SEPARATOR G′ = (V ′, E ′) and k′ is created as follows. Let
n = |V |, m = |E|, and M = n+ 1.

• V ′ = V ∪ {ei : e ∈ E, i ∈ [M ]}. Note that |V ′| = n+Mm.

• E ′ =
(
V
2

)
∪ {(u, ei) : u ∈ V, e ∈ E, u ∈ e, i ∈ [M ]}. Intuitively, the subgraph

induced by V ⊆ V ′ forms a clique, and for each e = (u, v) ∈ E and i ∈ [M ], ei is
connected to u and v in G′.

• k′ = |V ′| −Mk.

Lemma 13.5.2. Every instance of k-VERTEX SEPARATOR produced by the above reduc-
tion has an optimal solution S ⊆ V ′ such that indeed S ⊆ V .

Proof. Take an optimal solution S such that G′V ′\S has each connected component with at
most k vertices. Suppose S contains ei for some e = (u, v) ∈ E and i ∈ [M ]. There are
three cases.

• u, v /∈ S: Since there is an edge (u, v) ∈ E ′, u and v are in the same connected
component in G′|V ′\S . Removing ei from S and adding u to S still results in an
optimal solution.
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• u ∈ S, v /∈ S: Removing ei from S and adding u to S decreases the size of the
connected component of u by 1, and creates a new singleton component consisting
ei. It is still an optimal solution.

• u, v ∈ S: Removing ei from S just creates a new singleton component consisting
ei. It is a strictly better solution.

We can repeatedly apply one of these three operations until S is an optimal solution con-
tained in V .

When S ⊆ V , G′|V ′\S has the following connected components.

• One component (V \ S) ∪ {ei : e = (u, v) ∈ E, {u, v} 6⊆ S, i ∈ [M ]}. Call it the
giant component.

• For each e = (u, v) ∈ E with u, v ∈ S and i ∈ [M ], a singleton component {ei}.
Call them singleton components.

Suppose that the instance of MINIMUM k-EDGE COVERAGE admits a solution T ⊆ V
such that the induced subgraph G|T has l ≥ k edges. Let S = T . Since |V \ S| = n− |T |
and |{(u, v) ∈ E : {u, v} 6⊆ T}| = m − l, In G′|V ′\S , the giant component will have
cardinality

n− |T |+M(m− l) ≤ n− |T |+M(m− k) ≤ n+M(m− k) = |V ′| −Mk = k′.

On the other hand, suppose that the instance of k-VERTEX SEPARATOR has a solution
S. By Lemma 13.5.2, assume that S ⊆ V . Let l be the number of edges in G|S . The size
of the giant component is at least n− |S|+M(m− l) ≥M(m− l− 1) + 1 since M > n.
Since S is a feasible solution of the k′-VERTEX SEPARATOR, we must have

M(m− l − 1) + 1 ≤ k′ = M −mk
⇒ l ≥ k.

Therefore, S is also a solution to MINIMUM k-EDGE COVERAGE. This proves that the
above reduction is an approximation preserving reduction from MINIMUM k-EDGE COV-
ERAGE to k-VERTEX SEPARATOR, proving Theorem 12.2.4.
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Chapter 14

Algorithms for k-STAR TRANSVERSAL

14.1 Approximation Algorithm for k-STAR TRANSVER-
SAL

In this section, we show that k-STAR TRANSVERSAL admits an O(log k)-approximation
algorithm, matching the Ω(log k)-hardness obtained via a simple reduction from MINI-
MUM DOMINATING SET on degree-(k − 1) graphs [CC08], and proving Theorem 12.2.3.
Let G = (VG, EG) be the instance of k-STAR TRANSVERSAL. This problem has a natural
interpretation that it is equivalent to finding the smallest F ⊆ VG such that the subgraph
induced by VG \ F has maximum degree at most k − 2. Our algorithm consists of two
phases.

1. Iteratively solve 2-rounds of Sherali-Adams linear programming (LP) hierarchy and
put vertices with a large fractional value in the transversal. If this phase terminates
with a partial transversal F , the remaining subgraph induced by VG \ F has small
degree (at most 2k) and the LP solution to the last iteration is highly fractional.

2. We reduce the remaining problem to Constrained Set Multicover and use the stan-
dard greedy algorithm. While the analysis of the greedy algorithm for Constrained
Set Multicover is used as a black-box, low degree of the remaining graph and high
fractionality of the LP solution imply that the analysis is almost tight for our problem
as well.

Iterative Sherali-Adams. Given G, 2-rounds of Sherali-Adams hierarchy of LP relax-
ation has variables {xv}v∈VG ∪ {xu,v}u,v∈VG . An integral solution y : VG 7→ {0, 1}, where
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y(v) = 1 indicates that v is picked in the transversal, naturally gives a feasible solution
to the hierarchy by xv = yv, xu,v = yuyv. Consider the following relaxation for k-STAR

TRANSVERSAL.

minimize
∑
v∈VG

xv

subject to 0 ≤ xu,v, xv ≤ 1 ∀u, v ∈ VG
xu,v ≤ xu ∀u, v ∈ VG
xu + xv − xu,v ≤ 1 ∀u, v ∈ VG∑
v:(u,v)∈EG

(xv − xu,v) ≥ (deg(u)− k + 2)(1− xu) ∀u ∈ VG

The first three constraints are common to any 2-rounds of Sherali-Adams hierarchy,
and ensure that for any u, v ∈ VG, the local distribution on four assignments α : {u, v} 7→
{0, 1} forms a valid distribution. In other words, the following four numbers are nonneg-
ative and sum to 1: Pr[α(u) = α(v) = 1] := xu,v, Pr[α(u) = 0, α(v) = 1] := xv − xu,v,
Pr[α(u) = 1, α(v) = 0] := xu − xu,v, Pr[α(u) = α(v) = 0] := 1− xu − xv + xu,v.

The last constraint is specific to k-STAR TRANSVERSAL, and it is easy to see that it is
a valid relaxation: Given a feasible integral solution y : VG 7→ {0, 1}, the last constraint is
vacuously satisfied when yu = xu = 1, and if not, it requires that at least deg(u) − k + 2
vertices should be picked in the transversal so that there is no copy of k-Star in the induced
subgraph centered on u. The first phase proceeds as the following.

• Let S ← ∅.

• Repeat the following until the size of S does not increase in one iteration.

– Solve the above Sherali-Adams hierarchy for VG \ S — it means to solve the
above LP with additional constraints xv = 1 for all v ∈ S, which also implies
xu,v = xu for v ∈ S, u ∈ VG. Denote this LP by SA(S).

– S ← {v : xv ≥ 1
α
}, where α := 10.

We need to establish three properties from the first phase:

• The size of S is close to that of the optimal k-STAR TRANSVERSAL.
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• Maximum degree of the subgraph induced by VG \ S is small.

• The remaining solution has small fractional values — xv <
1
α

for all v ∈ VG \ S.

The final property is satisfied by the procedure. The following two lemmas establish
the other two properties.

Lemma 14.1.1. Let Frac be the optimal value of SA(∅). When the above procedure termi-
nates, |S| ≤ α Frac.

Proof. Assume that the above loop iterated l times, and for i = 0, ..., l, let Si be S after the
ith loop such that S0 = ∅, ..., Sl = S. Let Opti be the optimal value of the program SA(Si)
(which is run in the (i+ 1)th iteration of the loop), and let Fraci := Opti − |Si|. Note that
Frac = Frac0. We will prove |S| = |Sl| ≤ α Frac0 = α Frac, using induction from the
last iteration. For the base case, note that |Sl| = |Sl−1| by the termination condition of the
loop.

For i = l − 2, l − 1, ..., 0, we show that |Sl| − |Si| ≤ α Fraci. Let x be the optimal
fraction solution to SA(Si) used to compute Si+1. In particular, Si+1 := {v : xv ≥ 1

α
},

and Fraci =
∑

v∈Si+1\Si xv +
∑

v:xv<
1
α
xv. Let x′ be the solution obtained by partially

rounding x in the following way.

• x′v = 1 if v ∈ Si+1. Otherwise, x′v = xv.

• x′u,v = x′u (v ∈ Si+1), x′v (u ∈ Si+1), or xu,v otherwise.

Its value is |Si+1| +
∑

v:xv<
1
α
xv, and it is easy to check that it is a feasible solution to

SA(Si+1) (intuitively, rounding up only helps feasibility). Therefore,

|Si+1|+
∑

v:xv<
1
α

xv ≥ Opti+1 = |Si+1|+ Fraci+1,

which implies
∑

v:xv<
1
α
xv ≥ Fraci+1. Therefore,

Fraci =
∑

v∈Si+1\Si

xv +
∑

v:xv<
1
α

xv ≥
1

α
(|Si+1| − |Si|) + Fraci+1 .

Finally, we have

|Sl| − |Si|
= (|Sl| − |Si+1|) + (|Si+1| − |Si|)
≤ α Fraci+1 +(|Si+1| − |Si|)
≤ α Fraci,
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where the first inequality follows from the induction hypothesis. This completes the in-
duction.

Lemma 14.1.2. After the termination, every vertex has degree at most 2k in the subgraph
induced by VG \ S.

Proof. We prove that whenever G \ S has a vertex of degree more than 2k, then SA(S)
contains a vertex v /∈ S with xv ≥ (1/α), which implies the lemma. Let G′ := G \ S,
Nbr(u) and Nbr′(u) be the set of neighbors of u in G and G′ respectively, and deg(u) =
|Nbr(u)|, deg′(u) = |Nbr′(u)|. Finally, x be the optimal solution of SA(S).

Suppose that deg′(u) > 2k for some vertex u /∈ S. If xu ≥ 1
α

, we are done. Otherwise,
consider the constraint∑

v∈Nbr(u)

(xv − xu,v) ≥ (deg(u)− k + 2)(1− xu).

For v ∈ S, xv = 1 and xu,v = xu, so the above constraint is equivalent to∑
v∈Nbr′(u)

(xv − xu,v) ≥ (deg′(u)− k + 2)(1− xu).

Finally, using the fact that xu < 1
α

, we conclude that∑
v∈Nbr′(u)

(xv − xu,v) ≥ (1− 1

α
) deg′(u)(1− k

deg′(u)
) ≥ 1

α
· deg′(u).

Therefore, there exists v ∈ Nbr′(u) such that xv ≥ 1
α

.

Constrained Set Multicover. The first phase returns a set S whose size is at most α times
the optimal solution and the subgraph induced by VG \S has maximum degree at most 2k.
As above, let G′ be the subgraph induced by VG \ S, Nbr(u),Nbr′(u) be the neighbors of
u in G and G′ respectively, and deg(u) = |Nbr(u)|, deg′(u) = |Nbr′(u)|. The remaining
task is to find a small subset F ⊆ VG \ S such that the subgraph of G′ (and G) induced by
VG \ (S ∪ F ) has no vertex of degree at least k − 1. We reduce the remaining problem to
the Constrained Set Multicover problem defined below.

Definition 14.1.3. Given an set system U = {e1, ..., en}, a collection of subsets C =
{C1, ..., Cm}, and a positive integer re for each e ∈ U , the Constrained Set Multicover
problem asks to find the smallest subcollection (each set must be used at most once) such
that each element e is covered by at least re times.
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Probably the most natural greedy algorithm does the following:

• Pick a set C with the largest cardinality (ties broken arbitrarily).

• Set re ← re − 1 for e ∈ C. If re = 0, remove it from U . For each C ∈ C, let
C ← C ∩ U .

• Repeat while U is nonempty.

Constrained Set Cover has the following standard LP relaxation, and Rajagopalan and
Vazirani [RV98] showed that the greedy algorithm gives an integral solution whose value
is at most Hd (i.e. the dth harmonic number) times the optimal solution to the LP, where d
is the maximum set size.

minimize
∑
C∈C

zC

subject to
∑
C:e∈C

zC ≥ re e ∈ U

0 ≤ zC ≤ 1 C ∈ C

Our remaining problem, k-STAR TRANSVERSAL on G′, can be thought as an instance
of Constrained Set Cover in the following way: U := {u ∈ VG \ S : deg′(u) ≥ k − 1}
with ru := deg′(u) − k + 2, and for each v ∈ VG \ S, add Nbr′(v) ∩ U to C. Intuitively,
this formulation requires at least ru neighbors be picked in the transversal whether u is
picked or not. This is not a valid reduction because the optimal solution of the above
formulation can be much more than the optimal solution of our problem. However, at least
one direction is clear (any feasible solution to the above formulation is feasible for our
problem), and it suffices to show that the above LP admits a solution whose value is close
to the optimum of our problem. The LP relaxation of the above special case of Constrained
Set Cover is the following:

minimize
∑

v∈VG\S

zv

subject to
∑

v:v∈Nbr′(u)

zv ≥ deg′(u)− k + 2 u ∈ U

0 ≤ zv ≤ 1 v ∈ VG \ S

Consider the last iteration of the first phase where we solved SA(S). Let x be the
optimal solution to SA(S) and Frac :=

∑
v xv − |S|. Note that xv < 1

α
when v /∈ S.

Define {yv}v∈V \S such that yv := 2xv.
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Lemma 14.1.4. {yv} is a feasible solution to the above LP for Constrained Set Cover.

Proof. By construction 0 ≤ yv <
2
α

, so it suffices to check for each u ∈ U ,∑
v:v∈Nbr′(u)

yv ≥ deg′(u)− k + 2.

Fix u ∈ U . Recall that Sherali-Adams constraints on x imply that∑
v:Nbr′(u)

(xv − xu,v) ≥ (deg′(u)− k + 2)(1− xu)

⇒
∑

v:Nbr′(u)

xv ≥ (deg′(u)− k + 2)(1− xu)

⇒
∑

v:Nbr′(u)

2xv ≥ deg′(u)− k + 2,

where the last line follows from the fact that 1− 1
α
> 1

2
.

Therefore, Constrained Set Cover LP admits a feasible solution of value 2Frac, and
the greedy algorithm gives a k-STAR TRANSVERSAL F with |F | ≤ 2 · Frac ·H2k. Since
Frac is at most the size of the optimal k-STAR TRANSVERSAL for G′ (and clearly G),
|S ∪ F | is at most O(log k) times the size of the smallest k-STAR TRANSVERSAL of G.
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Chapter 15

Algorithms for k-VERTEX SEPARATOR
and k-PATH TRANSVERSAL

15.1 Techniques

Our algorithms for k-VERTEX SEPARATOR and k-EDGE SEPARATOR consist of the fol-
lowing three steps. We give a simple overview of our techniques for k-VERTEX SEPARA-
TOR.

1. Spreading Metrics. Spreading metrics were introduced in Even et al. [ENRS00]
and subsequently used for ρ-separator [ENRS99].1 They assign lengths to vertices such
that any subset S of vertices with |S| ≥ k that induce a single connected component are
spread apart.

Given lengths xv to each vertex v ∈ V , define du,v to be the length of the shortest path
from u to v, including the lengths of both u and v (so that du,u = xu). Given a feasible
solution S ⊆ V for k-VERTEX SEPARATOR, let xv = 1 if v ∈ S, and xv = 0 if v /∈ S. It
is easy to see that two vertices u and v lie on the same component of G|V \S if and only if
du,v = 0. Otherwise, du,v ≥ 1. Therefore, for every vertex v, the number of vertices that
have distance strictly less than 1 from v must be at most k.

Spreading metrics are a continuous relaxation of the above integer program. We relax
each distance xv to have value in [0, 1], and let du,v still be the length of the shortest
path from u to v. Let fu,v = max(1− du,v, 0). In the integral solution, it indicates whether

1The conference version of [ENRS00] precedes that of [ENRS99].
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du,v < 1 or not. The constraint
∑

u fv,u ≤ k for all v ∈ V is a relaxation of the requirement
that the number of vertices that have distance strictly less than 1 from v must be at most k.

Even though this relaxation does not exactly capture the integer problem, one crucial
property of this relaxation is that for every v ∈ V and ε ∈ (0, 1

2
), the number of vertices

that have distance at most ε from v can be at most k
1−ε . This can proved via a simple

averaging argument.

2. Low-Diameter Decomposition. Before we introduce our rounding algorithm, we
briefly discuss why the previous algorithms based on the same (or stronger) relaxation has
the approximation ratio depending on n.

The current best algorithm by Krauthgamer et al. [KNS09] further strengthened the
above spreading metrics by requiring that they also form an `2

2 metric, and transformed
them to an `2 metric. This black-box transformation of an n-points `2

2 metric incurs distor-
tion of Ω(

√
log n), so the approximation ratio must depend on n.

The older work of Even et al. [ENRS99] used the rounding algorithm of Garg et
al. [GVY96] that iterative takes a ball of small radius from the graph. More specifically,
they defined vol(v, r) to be the total sum of lengths in the ball of radius r centered at v,
and grow r until the boundary-volume ratio becomes O(log(

vol(v, 1
2

)

vol(v,0)
)). To make vol(v, 0)

nonzero, a seed value of ε · Opt must be added to the the definition of vol(v, r). But when
k = O(1) so that the number of balls we need to remove from the graph is Ω(n), this
incurs extra cost of Ω(εnOpt), forcing ε to depend on n.

We apply another standard technique for the low-diameter decomposition to our spread-
ing metrics. In particular, our algorithm is similar to that of Carlinescu et al. [CKR05],
preceded by a simple rounding algorithm that removes every vertex with large xv. One
simple but crucial observation is that the performance of this algorithm only depends on
the size of the ball around each vertex, which is exactly what spreading metrics is designed
for! Since the size of each ball of radius 1

2
is at most O(k), we can guarantee that we can

delete at most O(log k) ·Opt vertices so that each connected component has at most O(k)
vertices.

When k = O(1), to the best of our knowledge, this is a rare example where the number
of partitions (i.e., the number of balls taken) is Ω(n) but the approximation ratio is much
smaller than that. The original rounding algorithm of Carlinescu et al. [CKR05] is applied
to 0-Extension with k terminals to achieveO(log k)-approximation, where only k balls are
needed to be taken. The famous O(log k)-approximation for Multicut with k source-sink
pairs [GVY96] also required only k partitions.
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3. Cleanup. After running the bicriteria approximation algorithm to make sure that
each connected component has size at most O(k), for k-VERTEX SEPARATOR, we run
the exhaustive search for each component to have the true approximation. This incurs
the extra running time of 2O(k)n, but our hardness result implies that the superpolynomial
dependence on k may be necessary.

For k-EDGE SEPARATOR, essentially the same bicriteria approximation algorithm
works. After that, for each component, we use (a variant of) Racke’s O(log n)-true ap-
proximation algorithm for MINIMUM BISECTION to each component to make sure that
each component has at most k vertices. The existence of true approximation for MIN-
IMUM BISECTION is a key difference between the vertex version and the edge version.
Even O(

√
log n)-bicriteria approximation is known for the vertex version of MINIMUM

BISECTION [FHL08], but our hardness result for the vertex version suggests that this al-
gorithm is not likely to be applicable. While MINIMUM BISECTION asks to partition
the graph into two pieces while k-EDGE SEPARATOR may need to partition it into many
pieces, we prove that as long as each connected component has size at most 3k

2
, a simple

trick makes the two problems equivalent.

15.2 Algorithm for k-VERTEX SEPARATOR

15.2.1 Spreading Metrics

Our relaxation is close to spreading metrics used for ρ-separator [ENRS99]. While their
relaxation involves an exponential number of constraints and is solved by the ellipsoid
algorithm, we present a simpler relaxation where the total number of variables and con-
straints is polynomial. Our relaxation has the following variables.

• xv for v ∈ V : It indicates whether v is removed or not.

• du,v for (u, v) ∈ V × V : Given {xv}v∈V as lengths on vertices, du,v is supposed to
be the minimum distance between u and v. Let Pu,v be the set of simple paths from
u to v, and given P = (u0 := u, u1, . . . , up := v) ∈ Pu,v, let d(P ) = xu0 + · · ·+xup .
Formally, we want

du,v = min
P∈Pu,v

d(P ).

Note that du,v = dv,u and du,u = xu.

• fu,v for all (u, v) ∈ V ×V : It indicates whether u and v belong to the same connected
component or not.
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Our LP is written as follows.

minimize
∑
v∈V

xv

subject to du,v ≤ min
P∈Pu,v

d(P ) ∀(u, v) ∈ V × V (15.1)

fu,v ≥ 1− du,v ∀(u, v) ∈ V × V
fu,v ≥ 0 ∀(u, v) ∈ V × V∑
u∈V

fv,u ≤ k − 1 ∀v ∈ V (15.2)

xv ≥ 0 ∀v ∈ V (15.3)

(15.1) can be formally written as

du,u = xu ∀u ∈ V
du,w ≤ du,v + xw ∀(u, v) ∈ V × V, (v, w) ∈ E

Therefore, the size of our LP is polynomial in n. It is easy to verify that our LP is a
relaxation — given a subset S ⊆ V such that each connected component of G|V \S has at
most k − 1 vertices, the following is a feasible solution with

∑
v xv = |S|.

• xv = 1 if v ∈ S. xv = 0 if v /∈ S.

• du,v = minP∈Pu,v d(P ).

• fu,v = 1 if u and v are in the same component of G|V \S . Otherwise fu,v = 0.

Fix an optimal solution {xv}v, {du,v, fu,v}u,v for the above LP. It only ensures that
du,v ≤ minP∈Pu,v d(P ), so a priori du,v can be strictly less than minP∈Pu,v d(P ). However,
in that case increasing du,v still maintains feasibility, since larger du,v provides a looser
lower bound of fu,v and lower fu,v helps to satisfy (15.2). For the subsequent sections, we
assume that du,v = minP∈Pu,v d(P ), and fu,v = max(1− du,v, 0) for all u, v.

15.2.2 Low-diameter Decomposition

Given the above spreading metrics, we show how to decompose a graph such that each
connected component has small number of vertices. Our algorithm is based on that of
Calinescu et al. [CKR05]. One major difference is to bound the size of each ball by O(k)
in the analysis, and simple algorithmic steps to ensure this fact.
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Fix ε ∈ (0, 1
2
). Given an optimal solution {xv}v∈V , the first step of the rounding

algorithm is to remove every vertex v ∈ V with xv ≥ ε. This simple step is crucial in
bounding the size of the ball around each vertex. It removes at most Opt

ε
vertices. Let

V ′ := V \ {v : xv ≥ ε}, and G′ = (V ′, E ′) be the subgraph of G induced by V ′. Let
d′u,v be the minimum distance between u and v in G′, and let f ′u,v := max(1 − d′u,v, 0).
Since removing vertices only increases distances, d′u,v ≥ du,v and f ′u,v ≤ fu,v for all
(u, v) ∈ V ′ × V ′.

Our low-diameter decomposition removes at most O( log k
ε

) ·
∑

v∈V ′ xv vertices so that
each resulting connected component has at most k

1−2ε
vertices. It proceeds as follows.

• Pick X ∈ [ε/2, ε] uniformly at random.

• Choose a random permutation π : V ′ 7→ V ′ uniformly at random.

• Consider the vertices one by one, in the order given by π. Let w be the considered
vertex (we consider every vertex whether it was previously disconnected, removed
or not).

– For each vertex v ∈ V ′ with d′w,v − xv ≤ X ≤ d′w,v, we remove v when it was
neither removed nor disconnected previously.

– The vertices in {v : d′w,v < X} are now disconnected from the rest of the
graph. Say these vertices are disconnected.

For each vertex w, let B(w) := {v ∈ V ′ : d′w,v ≤ 2ε}. A simple averaging argument
bounds |B(w)|.

Lemma 15.2.1. For each vertex w, |B(w)| ≤ k
1−2ε

.

Proof. Assume towards contradiction that |B(w)| > k
1−2ε

. For all u ∈ B(w),

fw,u ≥ f ′w,u ≥ 1− d′w,u ≥ 1− 2ε.

Furthermore, even for u /∈ B(w), our LP ensures that fw,u ≥ 0. Therefore,∑
u∈V

fw,u ≥
∑

u∈B(w)

fw,u ≥ (1− 2ε)|B(w)| > k,

contradicting (15.2) of our LP.
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Note that at the end of the algorithm, every vertex is removed or disconnected, since
every w ∈ V ′ becomes removed or disconnected after being considered. Moreover, each
connected component is a subset of {v : d′w,v < X} for some w ∈ V ′ and X ≤ ε, which
is a subset of B(w). Therefore, each connected component has at most k

1−2ε
vertices. We

finally analyze the probability that a vertex v is removed.

Lemma 15.2.2. The probability that v ∈ V ′ is removed is at most O( log k
ε

) · xv.

Proof. Fix a vertex v ∈ V ′. When w ∈ V ′ is considered, v can be possibly removed only
if

d′v,w − xv ≤ ε

⇒ d′v,w ≤ 2ε (since xv ≤ ε)

⇒ w ∈ B(v).

Let W = {w1, . . . , wp} be such vertices such that d′v,w1
≤ · · · ≤ d′v,wp ≤ 2ε. By

Lemma 15.2.1, p ≤ k
1−2ε

.

Fix i and consider the event that v is removed when wi is considered. This happens
only if d′v,wi − xv ≤ X ≤ d′v,wi . For fixed such X , a crucial observation is that if wj
with j < i is considered before wi, since d′v,wj − xv ≤ X , v will be either removed or
disconnected when wj is considered. In particular, v will not be removed by wi. Given
these observations, the probability that v is removed is bounded by

Pr[v is removed] =

p∑
i=1

Pr[v is removed when wi is considered]

=

p∑
i=1

Pr[X ∈ [d′v,wi − xv, d
′
v,wi

] and wi comes before w1, . . . , wi−1 in π]

≤
p∑
i=1

2xv
εi

= xv ·O(
log p

ε
) = xv ·O(

log k

ε
).

Therefore, the low-diameter decomposition removes at mostO( log k
ε

)·
∑

v xv ≤ O( log k
ε

)·
Opt vertices so that each resulting connected component has at most k

1−2ε
vertices. This

gives a bicriteria approximation algorithm that runs in time poly(n, k), proving Theo-
rem 12.2.2.
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15.3 k-PATH TRANSVERSAL

Let G = (V,E) and k ∈ N be an instance of k-PATH TRANSVERSAL, where we want
to find the smallest S ⊆ V such that the length of the longest path in G|V \S (denoted by
l(G|V \S)) is strictly less than k. Recall that the length here denotes the number of vertices
in a path. Call a path l-path if it has l vertices.

Let Pk be the set of all simple paths of length k. Our algorithm starts by solving the
following naive LP.

minimize
∑
v∈V

xv

subject to
k∑
i=1

xvi ≥ 1 ∀P = (v1, . . . , vk) ∈ Pk (15.4)

x ≥ 0 ∀v ∈ V × V

WhenG is a clique with n vertices, any feasible solution needs to remove at least n−k+1
vertices while the above LP has the optimum at most n

k
by giving 1

k
to every xv. Therefore,

it has an integrality gap close to k, but our algorithm bypasses this gap.

Lemma 15.3.1. The above LP can be solved in time kO(k)nO(1).

Proof. Given the current solution {xv}v, we show how to check (15.4) in FPT time, so
that the LP can be solved efficiently via the ellipsoid algorithm. In particular, it suffices to
compute

min
P=(v1,...,vk)∈Pk

k∑
i=1

xvi .

Our algorithm is a simple variant of an algorithm for the k-Path problem. Our presentation
follows Williams [Wil13].

Call a set of functions F = {fi}i with fi : [n] 7→ [k] a k-perfect hash family if for
any subset S ⊆ [n] with |S| = k, there exists fi ∈ F such that fi(S) = [k]. Naor et
al. [NSS95] show that efficiently computable such F exists with |F | = 2O(k) log n.

For each fi ∈ F and a permutation π ∈ Sk, we construct a directed acyclic graph
(DAG) Dfi,π, where for each edge (u, v) ∈ E, we add an arc from u to v if π(fi(u)) <

π(fi(v)). Finding the k-directed path that minimizes
∑k

i=1 xvi in a DAG can be done via
dynamic programming. For v ∈ V and l ∈ [k], let T [v, l] be the minimum weighted length
of l-path that ends at v, and compute T in topological order.
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Let P ∗ = (v∗1, . . . , v
∗
k) be the path that minimizes minP=(v1,...,vk)∈P

∑k
i=1 xvi . There

must be fi ∈ F and π ∈ Sk such that π(fi(v
∗
i )) < π(fi(v

∗
i+1)) and arc (v∗i , v

∗
i+1) exists for

1 ≤ i < k. For this fi and π, the above dynamic programming algorithm for Dfi,π finds
P ∗.

The dynamic programming takes nO(1) time, and we try 2O(k)k! log n = kO(k) log n
different pairs (fi, π), so the separation oracle runs in time kO(k)nO(1). Our LP has only n
variables, so the total LP runs in time kO(k)nO(1).

Solve the above LP to get an optimal solution {xv}v∈V . Let FRAC :=
∑

v xv. Call
a vertex v ∈ V red if xv ≥ 1

k
. Let R be the set of red vertices. One simple but crucial

observation is that every k-path must contain at least one red vertices, since all non-red
vertices have xv < 1

k
.

Let S∗ be the optimal solution of k-PATH TRANSVERSAL. Let V ∗ := V \ S∗, R∗ :=
R \ S∗ and G∗ = G|V \S∗ . The result for k-PATH TRANSVERSAL requires the following
lemma.

Lemma 15.3.2. There exists S ′ ⊆ V ∗ with |S ′| ≤ |R∗|
k

vertices so that in the induced
subgraph G∗V ∗\S′ , each connected component has at most k3 red vertices.

Proof. We prove the lemma by the following (possibly exponential time) algorithm: For
each connected component C that has more than k3 red vertices, take an arbitrary longest
path, remove all vertices in it (i.e., add them to S ′) and charge its cost to all red vertices
in C uniformly. Since the length of any longest path should not exceed k and C has more
than k3 red vertices, each red vertex in C gets charged at most 1

k2 in each iteration.

We argue that each vertex in G∗ is charged at most k times. This is based on the
following simple observation.

Fact 15.3.3. In a connected component C, any two longest paths should intersect.

Proof. Let P1 = (v1, . . . , vp) and P2 = (u1, . . . , up) be two vertex-disjoint longest paths
in the same connected component. Since they are in the same component, there exist
i, j ∈ [k] and another path P3 = (vi, w1, . . . , wq, uj) such that w1, . . . , wq are disjoint from
v’s and u’s (q may be 0). By reversing the order of P1 or P2, we can assume that i, j ≥ p+1

2
.

Then (v1, . . . , vi, w1, . . . , wq, uj, . . . , u1) is a path with length at least p+ 1, contradicting
the fact that P1 and P2 are longest paths.

Therefore, if we remove one longest path from C, whether the remaining graph is still
connected or divided into several connected components, the length of the longest path in
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each resulting connected component should be strictly less than the length of the longest
path in C. Therefore, each vertex in G∗ can be charged at most k times, and the total
amount of charge is k · 1

k2 = 1
k
.

Consider S∗ ∪ S ′. Its size is at most Opt + |R∗|
k
≤ Opt + FRAC ≤ 2Opt, since every

red vertex has xv ≥ 1
k
, and each component of GS∗∪S′ has at most k3 red vertices. We

formally define the following generalization of k-VERTEX SEPARATOR.

k-SUBSET VERTEX SEPARATOR

Input: An undirected graph G = (V,E), a subset R ⊆ V and k ∈ N.

Output: Subset S ⊆ V such that in the subgraph induced on V \ S (denoted by
G|V \S), each connected component has strictly less than k vertices from R.

Goal: Minimize |S|.

Even though it seems a nontrivial generalization of k-VERTEX SEPARATOR, the anal-
ogous bicriteria approximation algorithm also exists. It is proved in Section 15.4.

Theorem 15.3.4. For any ε ∈ (0, 1/2), there is a polynomial time ( 1
1−2ε

, O( log k
ε

))-bicriteria
approximation algorithm for k-SUBSET VERTEX SEPARATOR.

For k-PATH TRANSVERSAL, run the above bicriteria approximation algorithm for k-
SUBSET VERTEX SEPARATOR with k ← k3 and ε ← 1

4
. This returns a subset S ⊆ V

such that |S| ≤ O(log k) · Opt and each connected component of GV \S has at most 2k3

red vertices.

Now we solve for each connected component C. Since every k-path has to have at
least one red vertex, removing every red vertex destroys every k-path. In particular, the
optimal solution has at most 2k3 vertices in C. We run the following simple recursive
algorithm.

• Find a k-path P = (v1, . . . , vk) if exists.

– Otherwise, we found a solution — compare with the current best one and re-
turn.

• If the depth of the recursion is more than 2k3, return.

• For each 1 ≤ i ≤ k,
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– Remove vi from the graph and recurse.

Finding a path takes time 2O(k)nO(1). In each stage the algorithm makes k branches, but
the depth of the recursion is at most 2k3 and the algorithm is guaranteed to find the opti-
mal solution. Therefore, it runs in time 2O(k)nO(1) · k2k3

= 2O(k3 log k)nO(1). This proves
Theorem 12.2.1.

15.4 k-SUBSET VERTEX SEPARATOR

Given a graph G = (V,E) and k ∈ N. There is a subset R ⊆ V of red vertices. Our
relaxation has the following variables.

• xv for v ∈ V : It indicates whether v is removed or not.

• du,v for (u, v) ∈ V × V : Given {xv}v∈V as lengths on vertices, du,v is supposed to
be the minimum distance between u and v. Let Pu,v be the set of simple paths from
u to v, and given P = (u0 := u, u1, . . . , up := v) ∈ Pu,v, let d(P ) = xu0 + · · ·+xup .
Formally, we want

du,v = min
P∈Pu,v

d(P ).

Note that du,v = dv,u and du,u = xu.

• fu,v for all (u, v) ∈ V ×V : It indicates whether u and v belong to the same connected
component or not.

Our LP is written as follows.

minimize
∑
v∈V

xv

subject to du,v ≤ min
P∈Pu,v

d(P ) ∀(u, v) ∈ V × V (15.5)

fu,v ≥ 1− du,v ∀(u, v) ∈ V × V
fu,v ≥ 0 ∀(u, v) ∈ V × V∑
u∈R

fv,u ≤ k − 1 ∀v ∈ V (15.6)
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(15.5) can be formally written as

du,u = xu ∀u ∈ V
du,w ≤ du,v + xw ∀(u, v) ∈ V × V, (v, w) ∈ E

The only change is that in (15.6), fv,u is summed over u ∈ R instead of u ∈ V . It is clearly
a relaxation.

Fix an optimal solution {xv}v, {du,v, fu,v}u,v for the above LP. As usual, assume with-
out loss of generality that du,v = minP∈Pu,v d(P ), and fu,v = max(1 − du,v, 0) for all
u, v.

15.4.1 Low-diameter Decomposition

Fix ε ∈ (0, 1
2
). Given an optimal solution {xv}v∈V , the first step of the rounding algorithm

is to remove every vertex v ∈ V with xv ≥ ε. It removes at most Opt
ε

vertices.

Let V ′ := V \ {v : xv ≥ ε}, and G′ = (V ′, E ′) be the subgraph of G induced by
V ′. Let R′ = V ′ ∩ R. Let d′u,v be the minimum distance between u and v in G′, and let
f ′u,v := max(1 − d′u,v, 0). Since removing vertices only increases distances, d′u,v ≥ du,v
and f ′u,v ≤ fu,v for all (u, v) ∈ V ′ × V ′.

Our low-diameter decomposition removes at most O( log k
ε

) ·
∑

v∈V ′ xv vertices so that
each resulting connected component has at most k

1−2ε
red vertices. It proceeds as follows.

• Pick X ∈ [ε/2, ε] uniformly at random.

• Choose a random permutation π : R′ 7→ R′ uniformly at random.

• Consider the red vertices one by one, in the order given by π. Letw be the considered
vertex (we consider every vertex whether it was previously disconnected, removed
or not).

– For each vertex v ∈ V ′ with d′w,v − xv ≤ X ≤ d′w,v, we remove v when it was
neither removed nor disconnected previously.

– The vertices in {v : d′w,v < X} are now disconnected from the rest of the
graph. Say these vertices are disconnected.

For each vertex w ∈ V ′, let B(w) := {v ∈ R′ : d′w,v ≤ 2ε}. A simple averaging
argument bounds |B(w)|.
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Lemma 15.4.1. For each vertex w ∈ V ′, |B(w)| ≤ k
1−2ε

.

Proof. Assume towards contradiction that |B(w)| > k
1−2ε

. For all u ∈ B(w),

fw,u ≥ f ′w,u ≥ 1− d′w,u ≥ 1− 2ε.

Furthermore, even for u /∈ B(w), our LP ensures that fw,u ≥ 0. Therefore,∑
u∈R

fw,u ≥
∑

u∈B(w)

fw,u ≥ (1− 2ε)|B(w)| > k,

contradicting (15.6) of our LP.

Note that at the end of the algorithm, every red vertex is removed or disconnected,
since every w ∈ V ′ becomes removed or disconnected after being considered. Moreover,
each connected component is a subset of {v : d′w,v < X} for some w ∈ V ′ and X ≤ ε,
which is a subset of B(w). Therefore, each connected component has at most k

1−2ε
red

vertices. We finally analyze the probability that a vertex v ∈ V ′ is removed.

Lemma 15.4.2. The probability that v ∈ V ′ is removed is at most O( log k
ε

) · xv.

Proof. Fix a vertex v ∈ V ′. When w ∈ R′ is considered, v can be possibly removed only
if

d′v,w − xv ≤ ε

⇒ d′v,w ≤ 2ε (since xv ≤ ε)

⇒ w ∈ B(v).

Let W = {w1, . . . , wp} be such vertices such that d′v,w1
≤ · · · ≤ d′v,wp ≤ 2ε. By

Lemma 15.4.1, p ≤ k
1−2ε

.

Fix i and consider the event that v is removed when wi is considered. This happens
only if d′v,wi − xv ≤ X ≤ d′v,wi . For fixed such X , a crucial observation is that if wj
with j < i is considered before wi, since d′v,wj − xv ≤ X , v will be either removed or
disconnected when wj is considered. In particular, v will not be removed by wi. Given
these observations, the probability that v is removed is bounded by
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Pr[v is removed] =

p∑
i=1

Pr[v is removed when wi is considered]

=

p∑
i=1

Pr[X ∈ [d′v,wi − xv, d
′
v,wi

] and wi comes before w1, . . . , wi−1 in π]

≤
p∑
i=1

2xv
εi

= xv ·O(
log p

ε
) = xv ·O(

log k

ε
).

Therefore, the low-diameter decomposition removes at mostO( log k
ε

)·
∑

v xv ≤ O( log k
ε

)·
Opt vertices so that each resulting connected component has at most k

1−2ε
red vertices.

This gives a bicriteria approximation algorithm that runs in time poly(n, k), proving The-
orem 15.3.4.

15.5 Algorithm for k-EDGE SEPARATOR

We present an O(log k)-true approximation algorithm for k-EDGE SEPARATOR, proving
Theorem 12.2.5. Except the cleanup step, the algorithm is almost identical to that of k-
VERTEX SEPARATOR.

15.5.1 Spreading Metrics

Our relaxation for the edge version is very close to that of the vertex version. It has the
following variables.

• xe for e ∈ E: It indicates whether e is removed or not.

• du,v for (u, v) ∈ V × V : Given {xe}e∈E as lengths on vertices, du,v is supposed to
be the minimum distance between u and v. Let Pu,v be the set of simple paths from
u to v, and given P = (u0 := u, u1, . . . , up := v) ∈ Pu,v, let d(P ) = xu0,u1 + · · ·+
xup−1,up . Formally, we want

du,v = min
P∈Pu,v

d(P ).

Note that du,v = dv,u and du,u = 0.
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• fu,v for all (u, v) ∈ V ×V : It indicates whether u and v belong to the same connected
component or not.

Our LP is written as follows.

minimize
∑
e∈E

xe

subject to du,v ≤ min
P∈Pu,v

d(P ) ∀(u, v) ∈ V × V (15.7)

fu,v ≥ 1− du,v ∀(u, v) ∈ V × V
fu,v ≥ 0 ∀(u, v) ∈ V × V∑
u∈V

fv,u ≤ k − 1 ∀v ∈ V (15.8)

xe ≥ 0 ∀e ∈ E (15.9)

(15.7) can be formally written as

du,u = 0 ∀u ∈ V
du,w ≤ du,v + xv,w ∀(u, v) ∈ V × V, (v, w) ∈ E

Therefore, the size of our LP is polynomial in n. It is easy to verify that our LP is a
relaxation — given a subset S ⊆ E such that each connected component of (V,E \S) has
at most k vertices, the following is a feasible solution with

∑
e xe = |S|.

• xe = 1 if e ∈ S. xe = 0 if v /∈ S.

• du,v = minP∈Pu,v d(P ).

• fu,v = 1 if u and v are in the same component of (V,E \ S). Otherwise fu,v = 0.

Fix an optimal solution {xe}e, {du,v, fu,v}u,v for the above LP. It only ensures that
du,v ≤ minP∈Pu,v d(P ), so a priori du,v can be strictly less than minP∈Pu,v d(P ). However,
in that case increasing du,v still maintains feasibility, since larger du,v provides a looser
lower bound of fu,v. For the subsequent sections, we assume that du,v = minP∈Pu,v d(P )
for all u, v.

15.5.2 Low-diameter Decomposition

Fix ε ∈ (0, 1
2
]. Given an optimal solution {xe}e∈E and {du,v}u,v∈V×V to the above LP, our

low-diameter decomposition removes at most O( log k
ε

) ·
∑

e xe edges so that each resulting
connected component has at most k

1−ε vertices. It proceeds as follows.
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• Pick X ∈ [ε/2, ε] uniformly at random.

• Choose a random permutation π : V 7→ V uniformly at random.

• Consider the vertices one by one, in the order given by π. Let w be the considered
vertex (we consider every vertex whether it was previously disconnected or not).

– Let W ← ∅.
– For each vertex v ∈ V with dw,v ≤ X , if it is not disconnected yet, add it to
W .

– Disconnect W from the rest of the graph (i.e., remove every edge that has
exactly one endpoint in W ).

For each vertex w, let B(w) := {v : dw,v ≤ ε}. A simple averaging argument bounds
|B(w)|.

Lemma 15.5.1. For each vertex w, |B(w)| ≤ k
1−ε .

Proof. Assume towards contradiction that |B(w)| > k
1−ε . For all u ∈ B(w), fw,u ≥

1 − dw,u ≥ 1 − ε. Furthermore, even for u /∈ B(w), our LP ensures that fw,u ≥ 0.
Therefore, ∑

u∈V

fw,u ≥
∑

u∈B(w)

fw,u ≥ (1− ε)|B(w)| > k,

contradicting (15.8) of our LP.

Note that at the end of the algorithm, every vertex is disconnected, since every w ∈ V
becomes disconnected after being considered. Moreover, each connected component is
a subset of {v : dw,v ≤ X} for some w ∈ V and X ≤ ε, which is a subset of B(w).
Therefore, each connected component has at most k

1−ε vertices. We finally analyze the
probability that an edge e is removed.

Lemma 15.5.2. The probability that e ∈ E is removed is at most O( log k
ε

) · xe.

Proof. Fix an edge e = (u, v) ∈ E. For a vertex v ∈ W , let dnearw,e = min(dw,u, dw,v)
and dfarw,e = max(dw,u, dw,v). When w ∈ V is considered, e can be possibly removed only
if dnearw,e ≤ ε ⇒ w ∈ B(v) ∪ B(u). Let W = {w1, . . . , wp} be such vertices such that
dnearw1,e

≤ · · · ≤ dnearwp,e ≤ ε. By Lemma 15.5.1, p ≤ 2 · k
1−ε .

Fix i and consider the event that e is removed when wi is considered. This happens
only if dnearwi,e

≤ X ≤ dfarwi,e. For fixed such X , a crucial observation is that if wj with j < i
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is considered before wi, since dnearwj ,e
≤ X , e will be either removed (exactly one of u and v

is disconnected) or disconnected (both u and v are disconnected) when wj is considered.
In particular, e will not be removed by wi. Given these observations, the probability that e
is removed is bounded by

Pr[e is removed] =

p∑
i=1

Pr[e is removed when wi is considered]

=

p∑
i=1

Pr[X ∈ [dnearv,wi
, dfarv,wi ] and wi comes before w1, . . . , wi−1 in π]

≤
p∑
i=1

2xe
εi

= xe ·O(
log p

ε
) = xv ·O(

log k

ε
).

Therefore, the low-diameter decomposition removes at mostO( log k
ε

)·
∑

v xv ≤ O( log k
ε

)·
Opt edges so that each resulting connected component has at most k

1−ε vertices.

To get true approximation, we use the algorithm for BALANCED b-CUT. For an undi-
rected graph G = (V,E) with n vertices and a real b ∈ (0, 1/2], the BALANCED b-CUT

problem asks to find a subset S ⊆ V with bn ≤ |S| ≤ (1 − b)n such that the num-
ber of edges that have exactly one endpoint in S is minimized. Racke [Rac08] gave an
O(log n)-true approximation algorithm for BALANCED b-CUT.2

We set ε = 1
3

such that each connected component after the low-diameter decompo-
sition, each connected component has at most 3k

2
vertices. Fix a component of size k′. If

k′ ≤ k, we are done. Otherwise, we use the O(log k′) = O(log k)-approximation algo-
rithm for BALANCED b-CUTg within the component. Usually k-EDGE SEPARATOR (re-
quires many connected components) and BALANCED b-CUT (requires 2 connected com-
ponents) behave very differently, but given k′ ≤ 3k

2
, we show that they are equivalent.

Lemma 15.5.3. In a graph G = (V,E) with at most k′ ∈ (k, 2
3
k] vertices, the optimum

solution of k-EDGE SEPARATOR and b-BALANCED CUT with b = k′−k
k′

are the same.
2His algorithm is originally stated for MINIMUM BISECTION, the special case with b = 1

2 . For any
c ∈ [0, 1 − 2b], adding a disjoint clique with cn vertices and infinite-weight edges (his algorithm works in
weighted version), forces the MINIMUM BISECTION algorithm to output a cut in the original graph where
the smaller side contains exactly (1−c)n

2 ∈ [bn, n2 ] vertices. Trying every value of c ∈ [0, 1− 2b] that makes
cn an integer and taking the best cut gives the desired O(log n)-true approximation for BALANCED b-CUT.
We thank Anupam Gupta for this idea.
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Proof. Any cut (S, V \ S) feasible for b-BALANCED CUT ensures that max(|S|, |V \ S|)
is at most (1− b)k′ = k, so it is feasible for k-EDGE SEPARATOR.

For the other direction, given a feasible solution of k-EDGE SEPARATOR where V is
partitioned into S1, . . . , Sl (assume k ≥ |S1| ≥ · · · ≥ |Sl|), if l = 2, (S1, S2) is a feasible
solution for b-BALANCED CUT and we are done. If l ≥ 3, merge Sl−1, Sl into one set
(one Si may contain multiple connected components). This reduces l by 1, and since
|Sl−1| + |Sl| ≤ 2

l
· k′ ≤ 2

3
k′ ≤ k, maintains the invariant that |Si| ≤ k for all i. Iterating

until l = 2 gives a feasible solution for b-BALANCED CUT with the same number of edges
cut.

Therefore, running the approximation algorithm b-BALANCED CUT for each compo-
nent guarantees that we remove O(log k) · Opt additional edges and each component has
at most k vertices. This proves Theorem 12.2.5.
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Part V

Cut Problems
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Chapter 16

Cut Problems Overview

16.1 Introduction

One of the most important implications of the Unique Games Conjecture (UGC, [Kho02b])
is the results of Khot et al. [KKMO07] and Raghavendra [Rag08], which say that for any
maximum constraint satisfaction problem (MAX CSP), an integrality gap instance of the
standard semidefinite programming (SDP) relaxation can be converted to the NP-hardness
result with the same gap. These results initiated the study of beautiful connections be-
tween power of convex relaxations and hardness of approximation, from which surprising
results for both subjects have been discovered.

While their results hold for problems in MAX CSP, the framework of converting an in-
tegrality gap instance to hardness has been successfully applied to covering and graph cut
problems. For graph cut problems, Manokaran et al. [MNRS08] showed that for UNDI-
RECTED MULITWAY CUT and its generalizations, an integrality gap of the standard linear
programming (LP) relaxation implies the hardness result assuming the UGC. Their result
is further generalized by Ene et al. [EVW13] by formulating them as MIN CSP. In addi-
tion, Kumar et al. [KMTV11] studied STRICT CSP and showed the same phenomenon for
the standard LP relaxation.

One of the limitations of the previous CSP-based transformations from LP gap in-
stances to hard instances is based on the fact that they do not usually preserve the desired
structure of the constraint hypergraph.1 For example, consider the LENGTH-BOUNDED

1One of notable exceptions we are aware is the result of Guruswami et al. [GSS15], using Kumar et
al. [KMTV11] to show that k-Uniform k-Partite Hypergraph Vertex Cover is hard to approximate within a
factor k2 − ε for any ε > 0.
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EDGE CUT problem where the input consists of a graphG = (V,E), two vertices s, t ∈ V ,
and a constant l ∈ N, and the goal is to remove the fewest edges to ensure there is no path
from s to t of length less than l. This problem can be viewed as a special case of HY-
PERGRAPH VERTEX COVER (HVC) by viewing each edge as a vertex of a hypergraph
and creating a hyperedge for every s-t path of length less than l. While HVC is in turn
a STRICT CSP, its integrality gap instance cannot be converted to hardness using Kumar
et al. [KMTV11] as a black-box, since the set of hyperedges created in the resulting hard
instance is not guaranteed to correspond to the set of short s-t paths of some graph.

For UNDIRECTED MULITWAY CUT, Manokaran et al. [MNRS08] bypassed this dif-
ficulty by using 2-ary constraints so that the resulting constraint hypergraph becomes a
graph again. For UNDIRECTED NODE-WEIGHTED MULTIWAY CUT, Ene et al. [EVW13]
used the equivalence to HYPERGRAPH MULTIWAY CUT [OFN12] so that the resulting
hypergraph does not need to satisfy additional structure. These problems are then for-
mulated as a MIN CSP by using many labels which are supposed to represent different
connected components. However, these MIN CSP based techniques often require non-
trivial problem-specific ideas and do not seem to be easily generalized to many other cut
problems.

We study variants of the classical s-t cut problem in both directed and undirected
graphs that have been actively studied. We prove the optimal hardness or the first super-
constant hardness for them. See Section 16.2 for the definitions of the problems and our
results. All our results are based on the general framework of converting an integrality gap
instance to a length-control dictatorship test. The structure of our length-control dictator-
ship tests allows us to naturally convert an integrality gap instance for the basic LP for
various cut problems to hardness based on the UGC. Section 16.3 provides more detailed
intuition of this framework. We believe that our framework is general and will be useful
to prove tight inapproximability of other cut problems.

16.2 Problems and Results

DIRECTED MULTICUT and DIRECTED MULTIWAY CUT. Given a directed graph and
two vertices s and t, one of the most natural variants of s-t cut is to remove the fewest
edges to ensure that there is no directed path from s to t and no directed path from t to s.
This problem is known as s-t BICUT and admits the trivial 2-approximation algorithm by
computing the minimum s-t cut and t-s cut.

DIRECTED MULTIWAY CUT is a generalization of s-t BICUT that has been actively
studied. Given a directed graph with k terminals s1, . . . , sk, the goal is to remove the
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fewest number of edges such that there is no path from si to sj for any i 6= j. DIRECTED

MULTIWAY CUT also admits 2-approximation [NZ01, CM16]. If k is allowed to increase
polynomially with n, there is a simple reduction from Vertex Cover that shows (2 − ε)-
approximation is hard under the UGC [GVY94, KR08].

DIRECTED MULTIWAY CUT can be further generalized to DIRECTED MULTICUT.
Given a directed graph with k source-sink pairs (s1, t1), . . . , (sk, tk), the goal is to re-
move the fewest number of edges such that there is no path from si to ti for any i.
Computing the minimum si-ti cut for all i separately gives the trivial k-approximation
algorithm. Chuzhoy and Khanna [CK09] showed DIRECTED MULTICUT is hard to ap-
proximate within a factor 2Ω(log1−ε n) = 2Ω(log1−ε k) when k is polynomially growing with
n. Agarwal et al. [AAC07] showed Õ(n

11
23 )-approximation algorithm, which improves the

trivial k-approximation when k is large.

Very recently, Chekuri and Madan [CM16] showed simple approximation-preserving
reductions from DIRECTED MULTICUT with k = 2 to s-t BICUT (the other direction is
trivially true), and (UNDIRECTED) NODE-WEIGHTED MULTIWAY CUT with k = 4 to
s-t BICUT. Since NODE-WEIGHTED MULTIWAY CUT with k = 4 is hard to approximate
within a factor 1.5 − ε under the UGC [EVW13] (matching the algorithm of Garg et
al. [GVY94]), the same hardness holds for s-t BICUT, DIRECTED MULTIWAY CUT, and
DIRECTED MULTICUT for constant k. To the best of our knowledge, 1.5 − ε is the best
hardness factor for constant k even assuming the UGC. In the same paper, Chekuri and
Madan [CM16] asked whether a factor 2−ε hardness holds for s-t BICUT under the UGC.

We prove that for any constant k ≥ 2, the trivial k-approximation for DIRECTED

MULTICUT might be optimal. Our result for k = 2 gives the optimal hardness result for
s-t BICUT, answering the question of Chekuri and Madan.

Theorem 16.2.1. Assuming the Unique Games Conjecture, for every k ≥ 2 and ε > 0,
DIRECTED MULTICUT with k source-sink pairs is NP-hard to approximate within a factor
k − ε.

Corollary 16.2.2. Assuming the Unique Games Conjecture, for any ε > 0, s-t BICUT is
hard to approximate within a factor 2− ε.

Remark 16.2.3. Chekuri and Madan [CM17] obtained an independent and different proof
of Theorem 16.2.1. Indeed, they studied the approximability of DIRECTED MULTICUT(H)
for a fixed demand graph H , and proved that when H is directed bipartite, an LP gap
instance implies hardness based on the UGC, which proves Theorem 16.2.1 as a corollary.
While their ideas are specialized for DIRECTED MULTICUT as the previous CSP-based
approaches, our length-control dictatorship framework can be directly applied to their
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more general setting and give a simpler proof of their result. Section 17.2.1 proves their
main result, Theorem 17.2.4.

Bicuts. The hardness of s-t BICUT suggests that it may be hard to outperform a simple
approximation algorithm that outputs the union of the min s-t cut and the min t-s cut. This
strong hardness result also motivates the following question: Can an algorithm do better
if it can choose s and t? Formally, in the global version of bicut, denoted EDGE BICUT,
the goal is to find the smallest number of edges whose deletion ensures that there exist
two distinct nodes s and t such that s cannot reach t and t cannot reach s in the resulting
digraph.

The dichotomy between global cut problems and fixed-terminal cut problems in undi-
rected graphs is well-known. For concreteness, recall EDGE 3-CUT and EDGE 3-WAY

CUT. In EDGE 3-CUT, the input is an undirected graph and the goal is to find the smallest
number of edges to delete so that the resulting graph has at least 3 connected components.
In EDGE 3-WAY CUT, the input is an undirected graph with 3 specified nodes and the
goal is to find the smallest number of edges to delete so that the resulting graph has at
least 3 connected components with at most one of the 3 specified nodes in each compo-
nent. While EDGE 3-WAY CUT is NP-hard [DJP+94], EDGE 3-CUT is solvable efficiently
[GH94]. Similarly, while s-t BICUT is inapproximable to a factor better than 2 assuming
UGC, EDGE BICUT is approximable within a factor of 2− 1/448 [BCK+17].

We also consider the problem between s-t BICUT and EDGE BICUT, denoted s-∗
EDGE BICUT: Given a directed graph with a specified node s, find the smallest number
of edges to delete so that there exists a node t such that s cannot reach t and t cannot
reach s in the resulting graph. s-∗ EDGE BICUT admits a 2-approximation by guessing
the terminal t and then using the 2-approximation for s-t BICUT. We show the following
inapproximability results for s-∗ EDGE BICUT:

Theorem 16.2.1. s-∗ EDGE BICUT has no efficient (4/3−ε)-approximation for any ε > 0
assuming the Unique Games Conjecture.

Furthermore, we consider the node-weighted variant of bicut, denoted NODE BICUT:
Given a directed graph, find the smallest number of nodes whose deletion ensures that
there exist nodes s and t such that s cannot reach t and t cannot reach s in the resulting
graph. Every directed graph that is not a tournament has a feasible solution to NODE

BICUT. NODE BICUT admits a 2-approximation by a simple reduction to s-t BICUT. We
show the following inapproximability results.

Theorem 16.2.2. NODE BICUT has no efficient (3/2 − ε)-approximation for any ε > 0
assuming the Unique Games Conjecture.
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Double Cuts. Recall that an arborescence in a directed graph D = (V,E) is a minimal
subset F ⊆ E of arcs such that there exists a node r ∈ V with every node u ∈ V having a
unique path from r to u in the subgraph (V, F ) (e.g., see [Sch03]).

The input to the NODE DOUBLE CUT problem is a directed graph and the goal is
to find the smallest number of nodes whose deletion ensures that the remaining graph
has no arborescence. This problem is key to understanding fault tolerant consensus in
networks [TV15].

A directed graphD = (V,E) has no arborescence if and only if there exist two distinct
nodes s, t ∈ V such that every node u ∈ V can reach at most one node in {s, t} [BP13]. By
this characterization, every directed graph that is not a tournament has a feasible solution
to NODE DOUBLE CUT. This characterization motivates the following fixed-terminal ver-
sion, denoted s-t NODE DOUBLE CUT: Given a directed graph with two specified nodes s
and t, find the smallest number of nodes whose deletion ensures that every remaining node
u can reach at most one node in {s, t} in the resulting graph. An instance of s-t NODE

DOUBLE CUT has a feasible solution provided that the instance has no edge between s
and t. An efficient algorithm to solve/approximate s-t NODE DOUBLE CUT immediately
gives an efficient algorithm to solve/approximate NODE DOUBLE CUT.

In the edge-weighted variation of two-terminal double cut, namely s-t EDGE DOUBLE

CUT, the goal is to delete the smallest number of edges to ensure that every node in the
graph can reach at most one node in {s, t}. Similarly, in the global variant, denoted EDGE

DOUBLE CUT, the goal is to delete the smallest number of edges to ensure that there
exist nodes s, t such that every node u can reach at most one node in {s, t}. Thus, EDGE

DOUBLE CUT is equivalent to deleting the smallest number of edges to ensure that the
graph has no arborescence. The fixed-terminal variant s-t EDGE DOUBLE CUT is solvable
in polynomial time using maximum flow and, consequently, EDGE DOUBLE CUT is also
solvable in polynomial time [BP13].

We show the following inapproximability results for s-t NODE DOUBLE CUT.

Theorem 16.2.3. s-t NODE DOUBLE CUT has no efficient (2− ε)-approximation for any
ε > 0 assuming the Unique Games Conjecture.

This matches a 2-approximation algorithm for s-t NODE DOUBLE CUT [BCK+17],
which also leads to a 2-approximation for NODE DOUBLE CUT. Note that the inapprox-
imability results for s-t NODE DOUBLE CUT do not imply the hardness of NODE DOUBLE

CUT. We also have the following inapproximability of NODE DOUBLE CUT.

Theorem 16.2.4. NODE DOUBLE CUT has no efficient (3/2 − ε)-approximation for any
ε > 0 assuming the Unique Games Conjecture.
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NODE k-CUT and VERTEX COVER ON k-PARTITE GRAPHS. Another way to show
hardness of NODE DOUBLE CUT is a reduction from the node-weighted 3-cut problem in
undirected graphs, though Theorem 16.2.4 shows a better hardness using length-control
dictatorship tests and we do not show this reduction in this thesis ([BCK+17] presents this
reduction to show an inapproximability result only assuming P 6= NP).

In the node weighted k-cut problem, denoted NODE 3-CUT, the input is an undirected
graph and the goal is to find the smallest subset of nodes whose deletion leads to at least
k connected components in the remaining graph. A classic result of Goldschmidt and
Hochbaum [GH94] showed that the edge-weighted variant, denoted EDGE k-CUT (more
commonly known as k-CUT)—namely find a smallest subset of edges of a given undirected
graph whose deletion leads to at least k connected components—is solvable in polynomial
time when k is a constant. Surprisingly, the complexity of NODE k-CUT for k = 3 is
open. NODE k-CUT admits a 2(k − 1)/k-approximation algorithm [GVY04], and there
is a simple approximation preserving reduction from VERTEX COVER ON k-PARTITE

GRAPHS to NODE k-CUT. We prove that VERTEX COVER ON k-PARTITE GRAPHS is
hard to approximate within a factor 2(k−1)/k assuming the UGC, so that 2(k−1)/k may
be the optimal approximation factor for both VERTEX COVER ON k-PARTITE GRAPHS

and NODE k-CUT.

Theorem 16.2.5. VERTEX COVER ON k-PARTITE GRAPHS has no efficient (2(k−1)/k−
ε)-approximation algorithm for any ε > 0 assuming the Unique Games Conjecture.

Theorem 16.2.1 for s-∗ EDGE BICUT and Theorem 16.2.2 for NODE BICUT follow
from the above theorem as they are as hard to approximate as VERTEX COVER ON k-
PARTITE GRAPHS for k = 3 and k = 4 respectively (see Section 16.5). We finally note
that Theorem 16.2.5 is the only UG-hardness result in this part that does not require a
length-control dictatorship test.

LENGTH-BOUNDED CUT and SHORTEST PATH INTERDICTION. The LENGTH-BOUNDED

CUT problem is a natural variant of s-t cut, where given a graph (directed or undirected),
s, t ∈ V , and an integer l, we only want to cut s-t paths of length strictly less than l.2

Its practical motivation is based on the fact that in most communication / transportation
networks, short paths are preferred to be used to long paths [MM10].

Lovász et al. [LNLP78] gave an exact algorithm for LENGTH-BOUNDED VERTEX

CUT (l ≤ 5) in undirected graphs. Mahjoub and McCormick [MM10] proved that LENGTH-

2It is more conventional to cut s-t paths of length at most l. We use this slightly nonconventional way to
be more consistent with SHORTEST PATH INTERDICTION.
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BOUNDED EDGE CUT admits an exact polynomial time algorithm for l ≤ 4 in undi-
rected graphs. Baier et al. [BEH+10] showed that both LENGTH-BOUNDED VERTEX

CUT (l > 5) and LENGTH-BOUNDED EDGE CUT (l > 4) are NP-hard to approx-
imate within a factor 1.1377. They presented O(min(l, n

l
)) = O(

√
n)-approximation

algorithm for LENGTH-BOUNDED VERTEX CUT and O(min(l, n
2

l2
,
√
m)) = O(n2/3)-

approximation algorithm for LENGTH-BOUNDED EDGE CUT, with matching LP gaps.
LENGTH-BOUNDED CUT problems have been also actively studied in terms of their fixed
parameter tractability [GT11, DK15, BNN15, FHNN15].

If we exchange the roles of the objective k and the length bound l, the problem becomes
SHORTEST PATH INTERDICTION, where we want to maximize the length of the shortest
s-t path after removing at most k vertices or edges. It is also one of the central problems
in a broader class of interdiction problems, where an attacker tries to remove some edges
or vertices to destroy a desirable property (e.g., short s-t distance, large s-t flow, cheap
MST) of a network (see the survey of [SPG13]). The study of SHORTEST PATH INTER-
DICTION started in 1980’s when the problem was called as the k MOST VITAL ARCS

problem [CD82, MMG89, BGV89] and proved to be NP-hard [BGV89]. Khachiyan et
al. [KBB+07] proved that it is NP-hard to approximate within a factor less than 2. While
many heuristic algorithms were proposed [IW02, BB08, Mor11] and hardness in planar
graphs [PS13] was shown, whether the general version admits a constant factor approxi-
mation was still unknown.

Given a graph G = (V,E) and s, t ∈ V , let dist(G) be the length of the shortest s-t
path. For V ′ ⊆ V , let G \ V ′ be the subgraph induced by V \ V ′. For E ′ ⊆ E, we use the
same notation G \ E ′ to denote the subgraph (V,E \ E ′). We primarily study undirected
graphs. We first present our results for the vertex version of both problems (collectively
called as SHORT PATH VERTEX CUT onwards).

Theorem 16.2.4. Assuming the Unique Games Conjecture, for infinitely many values of
constant l ∈ N, the following three tasks are NP-hard: Given an undirected graph G =
(V,E) and s, t ∈ V where there exists C∗ ⊆ V \ {s, t} such that dist(G \ C∗) ≥ l,

1. Find C ⊆ V \ {s, t} such that |C| ≤ Ω(l) · |C∗| and dist(G \ C) ≥ l.

2. Find C ⊆ V \ {s, t} such that |C| ≤ |C∗| and dist(G \ C) ≥ O(
√
l).

3. Find C ⊆ V \ {s, t} such that |C| ≤ Ω(l
ε
2 ) · |C∗| and dist(G \ C) ≥ O(l

1+ε
2 ) for

some 0 < ε < 1.

The first result shows that LENGTH-BOUNDED VERTEX CUT is hard to approximate
within a factor Ω(l). This matches the best O(l)-approximation [BEH+10] when l is a
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constant. The second result shows that SHORTEST PATH VERTEX INTERDICTION is hard
to approximate with in a factor Ω(

√
Opt), and the third result rules out bicriteria approx-

imation — for any constant c, it is hard to approximate both l and |C∗| within a factor of
c.

The above results hold for directed graphs by definition. Our hard instances will have a
natural layered structure, so it can be easily checked that the same results (up to a constant)
hold for directed acyclic graphs. Since one vertex can be split as one directed edge, the
same results hold for the edge version in directed acyclic graphs.

For LENGTH-BOUNDED EDGE CUT and SHORTEST PATH EDGE INTERDICTION in
undirected graphs (collectively called SHORTEST PATH EDGE CUT onwards), we prove
the following theorems.

Theorem 16.2.5. Assuming the Unique Games Conjecture, for infinitely many values of
constant l ∈ N, the following three tasks are NP-hard: Given an undirected graph G =
(V,E) and s, t ∈ V where there exists C∗ ⊆ E such that dist(V \ C∗) ≥ l,

1. Find C ⊆ E such that |C| ≤ Ω(
√
l) · |C∗| and dist(G \ C) ≥ l.

2. Find C ⊆ E such that |C| ≤ |C∗| and dist(G \ C) ≥ l
2
3 .

3. Find C ⊆ E such that |C| ≤ Ω(l
2ε
3 ) · |C∗| and dist(G \ C) ≥ O(l

2+2ε
3 ) for some

0 < ε < 1
2
.

Our hardness factors for the undirected edge versions, Ω(
√
l) for LENGTH-BOUNDED

EDGE CUT and Ω( 3
√
Opt) for SHORTEST PATH EDGE INTERDICTION, are slightly weaker

than those for their vertex counterparts, but we are not aware of any approximation al-
gorithm specialized for the undirected edge versions. It is an interesting open problem
whether there exist better approximation algorithms for the undirected edge versions.

RMFC. RESOURCE MINIMIZATION FOR FIRE CONTAINMENT (RMFC) is a problem
closely related to LENGTH-BOUNDED CUT with the additional notion of time. Given a
graph G, a vertex s, and a subset T of vertices, consider the situation where fire starts at s
on Day 0. For each Day i (i ≥ 1), we can save at most k vertices, and the fire spreads from
currently burning vertices to its unsaved neighbors. Once a vertex is burning or saved, it
remains so from then onwards. The process is terminated when the fire cannot spread any-
more. RMFC asks to find a strategy to save k vertices each day with the minimum k so that
no vertex in T is burnt. These problems model the spread of epidemics or ideas through a
social network, and have been actively studied recently [CC10, ACHS12, ABZ16, CV16].
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RMFC, along with other variants, is first introduced by Hartnell [Har95]. Another
well-studied variant is called the FIREFIGHTER problem, where we are only given s ∈ V
and want to maximize the number of vertices that are not burnt at the end. It is known
to be NP-hard to approximate within a factor n1−ε for any ε > 0 [ACHS12]. King
and MacGillivray [KM10] proved that RMFC is hard to approximate within a factor
less than 2. Anshelevich et al. [ACHS12] presented an O(

√
n)-approximation algorithm

for general graphs, and Chalermsook and Chuzhoy [CC10] showed that RMFC admits
O(log∗ n)-approximation in trees. Very recently, the approximation ratio in trees has
been improved to O(1) [ABZ16]. Both Anshelevich et al. [ACHS12] and Chalermsook
and Chuzhoy [CC10] independently studied directed layer graphs with b layers, showing
O(log b)-approximation.

Our final result on RMFC assumes Conjecture 3.2.4, a variant of the Unique Games
Conjecture which is not known to be equivalent to the original UGC. Given a bipartite
graph as an instance of Unique Games, it states that in the completeness case, all con-
straints incident on (1−ε) fraction of vertices in one side are satisfied, and in the soundness
case, in addition to having a low value, every 1

10
fraction of vertices on one side have at

least a 9
10

fraction of vertices on the other side as neighbors. Our conjecture is implied by
the conjecture of Bansal and Khot [BK09] that is used to prove the hardness of MINIMIZ-
ING WEIGHTED COMPLETION TIME WITH PRECEDENCE CONSTRAINTS and requires a
more strict expansion condition.

Theorem 16.2.6. Assuming Conjecture 3.2.4, it is NP-hard to approximate RMFC in
undirected graphs within any constant factor.

Again, our reduction has a natural layered structure and the result holds for directed
layered graphs. With b layers, we prove that it is hard to approximate with in a factor
Ω(log b), matching the best approximation algorithms [CC10, ACHS12].

Table 16.1 summarizes our results.

16.3 Techniques

All our results are based on a general method of converting an integrality gap instance to
a dictatorship test. This method has been successfully applied by Raghavendra [Rag08]
for MAX CSP, Manokaran et al. [MNRS08] and Ene et al. [EVW13] for Multiway Cut
and MIN CSP, and Kumar et al. [KMTV11] for STRICT CSP, and by Guruswami et
al. [GSS15] for k-uniform k-partite HYPERGRAPH VERTEX COVER, and Chekuri and
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Promises Algorithm Hardness
DIRECTED MULTICUT k k − ε

s-t BICUT 2 2− ε
s-∗ EDGE BICUT 2 4/3− ε

NODE BICUT 2 3/2− ε
s-t NODE DOUBLE CUT 2 2− ε

NODE DOUBLE CUT 2 3/2− ε
LENGTH-BOUNDED VERTEX CUT O(l) Ω(l)

SHORTEST PATH VERTEX INTERDICTION Ω(
√
Opt)

LENGTH-BOUNDED EDGE CUT O(l) Ω(
√
l)

SHORTEST PATH EDGE INTERDICTION Ω( 3
√
Opt)

NODE k-CUT/ 2(k − 1)/k 2(k − 1)/k − ε
VERTEX COVER ON k-PARTITE GRAPHS

RMFC
√
n ω(1)

Table 16.1: Summary of our hardness results for various cut problems.

Madan [CM17] for DIRECTED MULTICUT. As mentioned in the introduction, the previ-
ous CSP-based results do not generally preserve the structure of constraint hypergraphs or
use ingenious and specialized tricks to reduce the problem to a CSP.

We bypass this difficulty by constructing a special class of dictatorship tests that we call
length-control dictatorship tests. Consider a meta-problem where given a directed graph
G = (V,E), some terminal vertices, and a set P of desired paths between terminals, we
want to remove the fewest number of non-terminal vertices to cut every path in P . The
integrality gap instances we use in this part [SSZ04, BEH+10, MM10, CC10] share the
common feature that every p ∈ P is of length at least r, and the fractional solution cuts
1
r

fraction of each non-terminal vertex so that each path p ∈ P is cut. This gives a good
LP value, and additional arguments are required to ensure that there is no efficient integral
cut.

Given such an integrality gap instance, we construct our dictatorship test instance as
follows. We replace every non-terminal vertex by a hypercube ZRr and put edges such
that for two vertices (v, x) and (w, y) where v, w ∈ V and x, y ∈ ZRr , there is an edge
from (v, x) to (w, y) if (1) (v, w) ∈ E and (2) yj = xj + 1 for all j ∈ [R]. The set of
desired paths P ′ is defined to be {(s, (v1, x1), . . . , (vl, xl), t) : (s, v1, . . . , vl, t) ∈ P} (s, t
denote some terminals). Note that each path in P ′ is also of length at least r. We want
to ensure that in the completeness case (i.e., every hypercube reveals the same influential
coordinate), there is a very efficient cut, while in the soundness case (i.e., no hypercube
reveals an influential coordinate), there is no such efficient cut.
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In the completeness case, let q ∈ [R] be an influential coordinate. For each vertex
(v, x) where v ∈ V, x ∈ ZRr , remove (v, x) if xq = 0. Consider a desired path p =
(s, (v1, x1), . . . , (vl, xl), t) ∈ P ′ for some terminals s, t and some vj ∈ V, xj ∈ ZRr (1 ≤
j ≤ l), and let yj = (xj)q. By our construction, yj+1 = yj + 1 for 0 ≤ j < l. Since p is
desirable, l ≥ r, so there exists j such that yj = (xj)q = 0, but (vj, xj) is already removed
by our previous definition. Therefore, every desired path is cut by this vertex cut. Note that
this cut is integral and cuts exactly 1

r
fraction of non-terminal vertices. This corresponds

to the fractional solution to the gap instance that cuts 1
r

fraction of every vertex.

For the soundness analysis, our final dictatorship test has additional noise vertices and
edges to the test defined above. If no hypercube reveals an influential coordinate, the
standard application of the invariance principle [Mos10] proves that we can always take
an edge between two hypercubes unless we almost completely cut one hypercube. We can
then invoke the proof for the integrality gap instance to show that there is no efficient cut.

This idea is implicitly introduced by the work of Svensson [Sve13] for Feedback Ver-
tex Set (FVS) and DAG Vertex Deletion (DVD) by applying the It ain’t over till it’s over
theorem to ingeniously constructed dictatorship tests with auxiliary vertices. Guruswami
and Lee [GL16c] gave a simpler construction and a new proof using the invariance princi-
ple instead of the It ain’t over till it’s over theorem. Our results are based on the observation
that length-control dictatorship tests and LP gap instances fool algorithms in a similar way
for various cut problems as mentioned above, so that the previous LP gap instances can be
plugged into our framework to prove matching hardness results.

This method for the above meta-problem can be almost directly applied to DIRECTED

MULTICUT. For LENGTH-BOUNDED CUT and RMFC in undirected graphs, we use the
fact that the known integrality gap instances have a natural layered structure with s in
the first layer and t in the last layer. Every edge is given a natural orientation, and the
similar analysis can be applied. For LENGTH-BOUNDED CUT, another set of edges called
long edges are added to the dictatorship test. More technical work is required for edge cut
versions in undirected graphs (SHORT PATH EDGE CUT), and the notion of time (RMFC).

Our framework seems general enough so that they can be applied to integrality gap
instances to give strong hardness results. It would be interesting to further abstract this
method of converting integrality gap instances to length-bounded dictatorship tests, as
well as to apply it to other problems whose approximability is not well-understood.
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16.4 Organization.

Section 16.5 shows that s-∗ EDGE BICUT and NODE BICUT are as hard to approximate
as VERTEX COVER ON k-PARTITE GRAPHS with k = 3 and k = 4 respectively. Chap-
ter 17 presents our dictatorship tests for the problem mentioned in this overview. Except
for VERTEX COVER ON k-PARTITE GRAPHS, all dictatorship tests are length-control dic-
tatorship tests. Chapter 18 shows how to use these tests to prove hardness results based on
the UGC.

16.5 Combinatorial Reductions

Lemma 16.5.1. There is an approximation-preserving reduction from VERTEX COVER

ON 4-PARTITE GRAPHS to NODE BICUT.

Proof. Given a 4-partite graph G = (V1 ∪ V2 ∪ V3 ∪ V4, E), we construct an instance
D = (VD, AD) for NODE BICUT as follows: Let VD := V1 ∪ V2 ∪ V3 ∪ V4 ∪ {s, t}. The
set of arcs AD are obtained as follows:

1. For every u, v ∈ Vi for some i ∈ [4], we add a bidirected arc between u and v.

2. For every (u, v) ∈ E, we add a bidirected arc between u and v.

3. For every u ∈ V1, we add a bidirected arc between s and u.

4. For every u ∈ V2, we add an arc from s to u and an arc from t to u.

5. For every u ∈ V3, we add an arc from u to s and an arc from u to t.

6. For every u ∈ V4, we add a bidirected arc between t and u.

We now show the completeness of the reduction. Suppose R ⊆ V1 ∪ V2 ∪ V3 ∪ V4 is a
vertex cover in G. Then D − R has no s → t path, since s can only reach vertices in V1

and V2, only vertices in V3 and V4 can reach t, and there is no arc between Vi and Vj for
any i 6= j. Similarly, there is no t → s path. Therefore, R is a feasible solution to NODE

BICUT in D.

Next we show soundness of the reduction. Suppose R ⊆ V1∪V2∪V3∪V4 is a feasible
solution to NODE BICUT in D. There exists two vertices u, v ∈ VD \ R such that there is
no u→ v path and no v → u path in the subgraph of D induced by VD \ R. We note that
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v and u cannot be in the same Vi since Vi is a clique in VD. We also rule out the following
cases:

1. If v ∈ V1, u ∈ V2, then (v, s, u) is a path from v to u, a contradiction.

2. If v ∈ V1, u ∈ V3, then (u, s, v) is a path from u to v, a contradiction.

3. If v ∈ V2, u ∈ V3, then (u, s, v) is a path from u to v, a contradiction.

4. If v ∈ V2, u ∈ V4, then (u, t, v) is a path from u to v, a contradiction.

5. If v ∈ V3, u ∈ V4, then (v, t, u) is a path from v to u, a contradiction.

Thus, v ∈ V1 and u ∈ V4. We will show that if R is not a vertex cover, then there is a
v → u path or u → v path, a contradiction. Suppose there exists {a, b} ∈ E such that
a, b /∈ R.

1. If a ∈ V1, b ∈ V2, then (u, t, b, a, v) is a path from u to v, a contradiction.

2. If a ∈ V1, b ∈ V3, then (v, a, b, t, u) is a path from v to u, a contradiction.

3. If a ∈ V1, b ∈ V4, then (v, a, b, u) is a path from v to u, a contradiction.

4. If a ∈ V2, b ∈ V3, then (v, s, a, b, t, u) is a path from v to u, a contradiction.

5. If a ∈ V2, b ∈ V4, then (v, s, a, b, u) is a path from v to u, a contradiction.

6. If a ∈ V3, b ∈ V4, then (u, b, a, s, v) is a path from u to v, a contradiction.

Therefore, R must be a vertex cover. This establishes the soundness of the reduction and
completes the proof.

Lemma 16.5.2. There is an approximation-preserving reduction from VERTEX COVER

ON 3-PARTITE GRAPHS to s-∗ EDGE BICUT.

Proof. Given a 3-partite graph G = (A ∪ B ∪ C,E), we construct an instance D =
(VD, AD) for s-∗ EDGE BICUT as follows: Let VD := A1∪A2∪B1∪B2∪C1∪C2∪{s, t}.
For a vertex v ∈ A ∪ B ∪ C and i ∈ {1, 2}, let vi denote the corresponding vertex in V
(e.g., if v ∈ A, then v1 ∈ A1 and v2 ∈ A2). We introduce three types of arcs in AD.

1. Vertex arcs: For every v ∈ A ∪B ∪ C, create an arc (v1, v2) with weight 1.
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2. Forward arcs: Create arcs with weight∞

(a) (s, a1) for all a ∈ A, (s, b1) for all b ∈ B, (b2, s) for all b ∈ B, (c2, s) for all
c ∈ C.

(b) (t, a1) for all a ∈ A, (c2, t) for all c ∈ C.

(c) (a2, b1) for every {a, b} ∈ E, a ∈ A, b ∈ B (call them AB arcs), (a2, c1)
for every {a, c} ∈ E, a ∈ A, c ∈ C (call them AC arcs), (b2, c1) for every
{b, c} ∈ E, b ∈ B, c ∈ C (call them BC arcs).

3. Backward arcs: Create arcs with weight∞

(a) (v2, u1) for all u, v ∈ A (call them AA arcs), (v2, u1) for all u, v ∈ C (call
them CC arcs), (c1, a1) for all a ∈ A, c ∈ C (call them CA1 arcs), (c2, a2) for
all a ∈ A, c ∈ C (call them CA2 arcs).

We first show completeness of the reduction. Suppose R ⊆ A ∪ B ∪ C is a vertex
cover in G. Let F = {(v1, v2) : v ∈ R}. We will show that there is no s→ t path and no
t→ s path in D − F .

1. Suppose there is a t→ s path in D − F . Fix the shortest such t→ s path P . Then,
the path P has the following properties:

(a) Path P does not containAA arcs or CA1 arcs, since t has direct arcs to vertices
in A1. Similarly, P does not contain CC arcs or CA2 arcs, since vertices in C2

have direct arcs to s. So, P does not contain any backward arcs.

(b) Path P does not contain BC arcs, since vertices in B2 have direct arcs to s.

Thus, the only possibility for the path P is P = (t, a1, a2, v1, v2, s) for a ∈ A,
v ∈ B ∪ C, and {a, v} ∈ E. This contradicts that R is a vertex cover.

2. Suppose there is a s→ t path in D − F . Fix the shortest such t→ s path P . Then,
the path P has the following properties:

(a) Path P does not containAA arcs orCA1 arcs, since s has direct arcs to vertices
in A1. Similarly, P does not contain CC arcs or CA2 arcs since vertices in C2

have direct arcs t. So, P does not contain any backward arcs.

(b) Path P does not contain AB arcs, since s has direct arcs to vertices in B1.

Thus, the only possibility for the path P is P = (t, v1, v2, c1, c2, s) for v ∈ A ∪ B,
c ∈ C, and {v, c} ∈ E. This contradicts that R is a vertex cover.
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Therefore, s and t cannot reach each other in D − F . Consequently, the existence of a
vertex cover R in G implies the existence of a feasible solution to s-∗ EDGE BICUT in D
of the same size.

Next we show soundness of the reduction. Suppose F ⊆ ED is a feasible solution to
s-∗ EDGE BICUT in D. Let R ⊆ A∪B ∪C be the set of vertices whose vertex arcs are in
F . We will show that if R is not a vertex cover in G, then every vertex v ∈ VD has either
a path to s or a path from s. Since vertices in A1, B1, B2, C2 have a direct arc either from
or to s, we only need to check vertices in A2, C1 and t. We verify these cases below:

1. Suppose there exist a ∈ A \R, b ∈ B \R such that {a, b} ∈ E.

(i) Considering t, we have (t, a1, a2, b1, b2, s) as a path from t to s.

(ii) For every a′ ∈ A2, we have (a′, a1, a2, b1, b2, s) as a path from a′ to s.

(iii) For every c′ ∈ C1, we have (c′, a1, a2, b1, b2, s) as a path from c′ to s.

2. Suppose there exist a ∈ A \R, c ∈ C \R such that {a, c} ∈ E.

(i) Considering t, we have (t, a1, a2, c1, c2, s) as a path from t to s.

(ii) For every a′ ∈ A2, we have (a′, a1, a2, c1, c2, s) as a path from a′ to s.

(iii) For every c′ ∈ C1, we have (c′, a1, a2, c1, c2, s) as a path from c′ to s.

3. Suppose there exist b ∈ B \R, c ∈ C \R such that {b, c} ∈ E.

(i) Considering t, we have (s, b1, b2, c1, c2, t) as a path from s to t.

(ii) For every a′ ∈ A2, we have (s, b1, b2, c1, c2, a
′) as a path from s to a′.

(iii) For every c′ ∈ C1, we have (s, b1, b2, c1, c2, c
′) as a path from s to c′.

Therefore, the existence of a feasible solution to s-∗ EDGE BICUT in D implies the ex-
istence of a vertex cover in G of the same size. This establishes the soundness of the
reduction, and proves the lemma.
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Chapter 17

Dictatorship Tests for Cut Problems

17.1 Preliminaries

Graph Terminologies. Depending on whether we cut vertices or edges, we introduce
weight wt(v) for each vertex v, or weight wt(e) for each edge e. Some weights can be
∞, which means that some vertices or edges cannot be cut. For vertex-weighted graphs,
we naturally have wt(s) = wt(t) = ∞. To reduce the vertex-weighted version to the
unweighted version, we duplicate each vertex according to its weight and replace each
edge by a complete bipartite graph between corresponding copies. To reduce the edge-
weighted version to the unweighted version, we replace a single edge with parallel edges
according to its weight. To reduce to simple graphs, we split each parallel into two edges
by introducing a new vertex.

For the LENGTH-BOUNDED CUT problems, we also introduce length len(e) for each
edge e. It can be also dealt with serially splitting an edge according to its weight. We
allow weights to be rational numbers, but as our hardness results are stated in terms of the
length, all lengths in this chapter will be a positive integer.

For a path p, depending on the context, we abuse notation and interpret it as a set of
edges or a set of vertices. The length of p is always defined to be the number of edges.

17.2 DIRECTED MULTICUT

We propose our dictatorship test for DIRECTED VERTEX MULTICUT that will be used
for proving Unique Games hardness. Note that hardness of DIRECTED EDGE MULTICUT
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easily follows from that of the vertex version by splitting each vertex. Our dictatorship test
is inspired by the integrality gap for the standard LP constructed by Saks et al. [SSZ04],
and parameterized by positive integers r, k, R and small ε > 0, where k in this section
denotes the number of (si, ti) pairs for DIRECTED MULTICUT. All graphs in this section
are directed.

For positive integers r, k, R, and ε > 0, define DM
r,k,R,ε = (V,E) be the graph defined

as follows. Consider the probability space (Ω, µ) where Ω := {0, . . . , r − 1, ∗}, and
µ : Ω 7→ [0, 1] with µ(∗) = ε and µ(x) = 1−ε

r
for x 6= ∗.

• V = {si, ti}1≤i≤k ∪ {vαx}α∈[r]k,x∈ΩR . Let vα denote the set of vertices {vαx}x∈ΩR .

• For α ∈ [r]k and x ∈ ΩR, wt(vαx ) = µ⊗R(x). Note that the sum of weights is rk.

• For any i ∈ [k], there are edges from si to {vαx : α ∈ [r]k, αi = 1, x ∈ ΩR}, and
edges from {vαx : α ∈ [r]k, αi = r, x ∈ ΩR} to ti.

• For α, β ∈ [r]k and x, y ∈ ΩR, we have an edge from vαx to vβy if α 6= β and

– For any 1 ≤ i ≤ r: αi − βi ∈ {−1, 0,+1}.
– For any 1 ≤ j ≤ R: [yj = (xj + 1) mod r] or [yj = ∗] or [xj = ∗].

Completeness. We first prove that vertex cuts that correspond to dictators behave the
same as the fractional solution that gives 1

r
to every vertex. For any q ∈ [R], let Vq := {vαx :

α ∈ [r]k, xq = ∗ or 0}. Note that the total weight of Vq is rk(ε+ 1−ε
r

) ≤ rk−1(1 + εr).

Lemma 17.2.1. After removing vertices in Vq, there is no path from si to ti for any i.

Proof. Fix i and let p = (si, v
α1

x1 , . . . , v
αz
xz , ti) be a path from si to ti where αj ∈ [r]k and

xj ∈ ΩR for each 1 ≤ j ≤ z. Let yj := (xj)q for each 1 ≤ j ≤ z. The construction
ensures that yj+1 = (yj + 1) mod r, so after removing vertices in Vq, z must be strictly
less than r. Since any path from si to ti must contain at least r non-terminal vertices, there
must be no path from si to ti.

Soundness. To analyze soundness, we define a correlated probability space (Ω1 ×
Ω2, ν) where both Ω1,Ω2 are copies of Ω = {0, . . . , r−1, ∗}. It is defined by the following
process to sample (x, y) ∈ Ω2.

• Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.

• Change x to ∗ with probability ε. Do the same for y independently.
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Note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1
2r

, the
minimum probability of any atom in Ω1 × Ω2 is ε2. In our correlated space, the bipartite
graph on Ω1 ∪ Ω2 is connected since every x ∈ Ω1 is connected to ∗ ∈ Ω2 and vice versa.
Therefore, we can apply Lemma 3.3.3 to conclude that ρ(Ω1,Ω2; ν) ≤ ρ := 1− ε4

2
.

Apply Theorem 3.3.10 (ρ ← ρ, α ← ε2, ε ← Γρ( ε
3
, ε
3

)

2
) to get τ and d. We will later

apply this theorem with the parameters obtained here. Fix an arbitrary subset C ⊆ V , and
let Cα := C ∩ vα. For α ∈ [r]k, call vα blocked if µ⊗R(Cα) ≥ 1 − ε. The number of
blocked vα’s is at most wt(C)

1−ε .

Consider the following graph D = (VD, ED), which is the original integrality gap
instance constructed by Saks et al. [SSZ04].

• VD = {si, ti}i∈[k] ∪ {vα}α∈[r]k .

• For any i ∈ [k], there are edges from si to {vα : α ∈ [r]k, αi = 1}, and edges from
{vα : α ∈ [r]k, αi = r} to ti.

• For α, β ∈ [r]k, we have an edge from vα to vβ if α 6= β and 1 ≤ i ≤ r: αi − βi ∈
{−1, 0,+1}.

Saks et al. [SSZ04] proved the following theorem in their analysis of their integrality gap.

Theorem 17.2.2. Let C ′ be a set of less than k(r − 1)k−1 vertices. There exists a path
(si, v

α1 , . . . , vαz , ti) for some i that does not intersect C ′.

SettingC ′ := {vα ∈ VD : vα is not blocked.}, and applying Theorem 17.2.2 concludes
that unless wt(C) ≥ (1− ε) · k · (r− 1)k−1, there exists a path (si, v

α1 , . . . , vαz , ti) where
each vαi is unblocked for each i ∈ [k].

For 1 ≤ j ≤ z, let Sj ⊆ vαj be such that x ∈ Sj if there exists a path (si, v
α1

x1 , . . . , v
αj−1

xj−1 , v
αj
x )

for some x1, . . . , xj−1. For 1 ≤ j ≤ z, let fj : ΩR 7→ {0, 1} be the indicator function of
Sj . We prove that if none of fj reveals any influential coordinate, µ⊗R(Sz) > 0, which
shows that there exists a si-ti path even after removing vertices in C.

Lemma 17.2.3. Suppose that for any 1 ≤ j ≤ z and 1 ≤ i ≤ R, Inf≤di [fj] ≤ τ . Then
µ⊗R(Sz) > 0.

Proof. We prove by induction that µ⊗R(Sj) ≥ ε
3
. It holds when j = 1 since vα1 is

unblocked. Assuming µ⊗R(Sj) ≥ ε
3
, since Sj does not reveal any influential coordinate,

Theorem 3.3.10 shows that for any subset Tj+1 ⊆ vαj+1 with µ⊗R(Tj+1) ≥ ε
3
, there exists
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an edge from Sj and Tj+1. If S ′j+1 ⊆ vαj+1 is the set of out-neighbors of Sj , we have
µ⊗R(S ′j+1) ≥ 1 − ε

3
. Since vαj+1 is unblocked, µ⊗R(S ′j+1 \ C) ≥ 2ε

3
, completing the

induction.

In summary, in the completeness case, if we cut vertices of total weight rk−1(1 + εr),
we cut every si-ti pair. In the soundness case, unless we cut vertices of total weight at least
(1− ε) · k · (r− 1)k−1, we cannot cut every si-ti pair. The gap is k(1−ε)(r−1)k−1

(1+εr)rk−1 . For a fixed
k, increasing r and decreasing ε faster makes the gap arbitrarily close to k.

17.2.1 DIRECTED MULTICUT with a Fixed Demand Graph

Let H = (VH , EH) a fixed directed graph. In DIRECTED MULTICUT(H), we are given
directed supply graph G = (VG, EG) and an injective map h : VH → VG, and the goal is
to remove the smallest number of edges in EG such that for every (u, v) ∈ EH , there is no
path from h(u) to h(v) inG. Chekuri and Madan [CM17] studied the relationship between
approximation algorithms and the LP gaps of DIRECTED MULTICUT(H) for each fixed
graph H . Their main result is the following theorem. Let αH be the worst LP gap over all
instances with demand graph H .

Theorem 17.2.4 ([CM17]). Assuming the UGC, for any fixed directed bipartite graph H ,
and for any fixed ε > 0, there is no polynomial-time (αH−ε) approximation for DIRECTED

MULTICUT(H).

Since every directed graph on k vertices can be decomposed into the union of at most
2dlog ke directed bipartite graphs, they also showed that for every fixed demand graph H
with k vertices, DIRECTED MULTICUT(H) does not admit ( αH

2dlog ke − ε)-approximation
under the UGC.

We provide a simpler proof of Theorem 17.2.4 using our length-control dictatorship
framework. Let H = (VH , EH) be a fixed directed bipartite graph. Let V S

H and V T
H

be the set of source vertices and sink vertices respectively (VH = V S
H ∪ V T

H ). Let DI-
RECTED VERTEX MULTICUT(H) be the problem where given G = (VG, EG) and injec-
tive h : VH → VG with the promise that all vertices in h(V S

H ) (resp. h(V T
H )) are source

(resp. sink) vertices in G, the goal is to remove the smallest number of non-terminal
vertices (i.e., vertices in VG \ h(VH)) such that for every (u, v) ∈ EH , there is no path
from h(u) to h(v) in G. We prove the following two lemmas, based on well-known re-
ductions between the edge and vertex versions of DIRECTED MULTICUT, to show that
Theorem 17.2.4 for DIRECTED VERTEX MULTICUT(H) implies Theorem 17.2.4 for DI-
RECTED MULTICUT(H).
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Lemma 17.2.5. An LP gap of α for DIRECTED MULTICUT(H) implies that an LP gap of
DIRECTED VERTEX MULTICUT(H) is at least α.

Proof. Let G = (VG, EG) and h : VH → VG be an LP gap instance for DIRECTED MUL-
TICUT(H), and Opt and FRAC be the integral and fractional optimal value respectively
for the instance (G, h). We construct an instance G′ = (V ′G, E

′
G) and h′ : VH → V ′G of

DIRECTED VERTEX MULTICUT(H) as follows.

• V ′G := h(VH) ∪ EG and h′ := h.

• For each edge (u, v) ∈ G and (v, w) ∈ G with u 6= w, add an edge from (u, v) to
(v, w) in G′.

• For each s ∈ h(V S
H ) and an edge (s, u), we add an edge from s to (s, u) in G′.

• For each t ∈ h(V T
H ) and an edge (u, t), we add an edge from (u, t) to t in G′.

Let Opt′ and FRAC′ be the integral and fractional optimal value respectively for the re-
duced instance (G′, h′) of DIRECTED VERTEX MULTICUT(H). Note that in G′, vertices
in h′(V S

H ) are sources and vertices in h′(V T
H ) are sinks. There is an one-to-one correspon-

dence between edges of G and non-terminal vertices of G′.

We first claim Opt′ ≤ Opt. Let F ⊆ EG be the optimal solution for (G, h). Then F
as a subset of V ′G is a feasible solution for (G′, h′), since for every edge (u, v) ∈ EH and
a path (u,w1, . . . , wp, v) in G′, each of w1, . . . , wp corresponds to an edge of G (i.e., none
of them is in h′(VH) since all vertices in h′(VH) is either a source or a sink), and at least
one of them must be in F .

We finally claim FRAC′ ≥ FRAC, finishing the proof of the lemma. Let ` : V ′G \
h′(VH) → [0, 1] be a feasible fractional solution for (G′, h′): for every edge (u, v) ∈ EH
and a path (u,w1, . . . , wp, v) in G′, all `(w1) + · · ·+ `(wp) ≥ 1. Since V ′G \ h′(VH) = EG,
` can be considered as a function from EG to [0, 1]. Then ` is a feasible fractional solution
for (G, h) as well, since for every edge (u, v) ∈ EH and a path (u,w1, . . . , wp, v) in
G, (u, (u,w1), (w1, w2), . . . , (wp, v), v) is a path in G′, implying that `(u,w1) + · · · +
`(wp, v) ≥ 1.

Lemma 17.2.6. There is an approximation-preserving reduction from DIRECTED VER-
TEX MULTICUT(H) to DIRECTED MULTICUT(H).

Proof. Given an instance G = (VG, EG) and h : VH → VG of DIRECTED VERTEX

MULTICUT(H), let Opt be the integral optimal value for the instance (G, h) as follows.
We construct an instanceG′ = (V ′G, E

′
G) and h′ : VH → V ′G of DIRECTED MULTICUT(H).
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• V ′G := h(VH) ∪ {vin : v ∈ VG \ h(VH)} ∪ {vout : v ∈ VG \ h(VH)}. Let h′ := h.

• For each v ∈ VG \ h(VH), add an edge (vin, vout) of weight 1 to G′.

• For each (u, v) ∈ EG, add an edge (uout, vin) of weight∞ to G′ (when v ∈ h(VH),
let vin = vout = v).

There is a natural one-to-one correspondence between non-terminal vertices of G and
edges of G of weight 1. It is easy to see that F ⊆ VG \h(VH) is a feasible integral solution
of (G′, h′) if and only if it is feasible in (G, h), proving the lemma.

Therefore, it suffices to prove Theorem 17.2.4 for DIRECTED VERTEX MULTICUT(H).
For the rest of the paper, we use DIRECTED MULTICUT(H) to denote this version. We
propose our dictatorship test for DIRECTED MULTICUT(H) that will be used for prov-
ing Unique Games hardness. Let G = (VG, EG) and h : VH → VG be an instance of
DIRECTED MULTICUT(H) such that

• The optimal value of DIRECTED MULTICUT(H) is Opt.

• LP value of the instance is FRAC: there exists a map ` : VG → [0, 1] such that

– `(v) = 0 if v ∈ h(VH).

–
∑

v∈VG `(v) = FRAC.

– For each (u, v) ∈ EH and every path (h(u), w1, . . . , wp, h(v)) inG,
∑p

i=1 `(h(wi)) ≥
1.

Our dictatorship test is a directed generalization of the previous section, and parame-
terized by G,H, h, `, and R ∈ N, and small ε > 0. All graphs in this section are directed.

Take r to be a large integer to be determined later, and assume that for every v ∈
VG, `(v) is an integer multiple of 1

r
. This assumption still satisfies the property that∑

v∈VG `(v) ≤ FRAC+ |VG|
r

. Define DM
G,H,h,`,R,ε = (V,E) be the graph defined as follows.

Consider the probability space (Ω, µ) where Ω := {0, . . . , r − 1, ∗}, and µ : Ω 7→ [0, 1]
with µ(∗) = ε and µ(x) = 1−ε

r
for x 6= ∗. Let V N

G := VG\h(VH) be the set of non-terminal
vertices of G.

• V = h(VH) ∪ {vαx}α∈V NG ,x∈ΩR . Let vα denote the set of vertices {vαx}x∈ΩR .

• For α ∈ V N
G and x ∈ ΩR, wt(vαx ) = µ⊗R(x). Note that the sum of weights is |V N

G |.
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• For each (s, α) ∈ EG with s ∈ h(V S
H ) and α ∈ V N

G , add edges from s to every
vertex in vαx .

• For each (α, t) ∈ EG with t ∈ h(V T
H ) and α ∈ V N

G , add edges from every vertex in
vαx to t.

• For (α, β) ∈ EG with α, β ∈ V N
G and x, y ∈ ΩR, we have an edge from vαx to vβy if

– For any 1 ≤ j ≤ R: [yj = (xj + r · `(β)) mod r] or [yj = ∗] or [xj = ∗].

Completeness. We first prove that vertex cuts that correspond to dictators behave the
same as `. For any q ∈ [R], let Vq := {vαx : α ∈ V N

G , xq = ∗ or xq < r`(α)}. Note that the
total weight of Vq is

∑
α∈V NG

(ε+
r`(α)(1− ε)

r
) =

∑
α∈V NG

(`(α) + ε) ≤ FRAC +
|V N
G |
r

+ ε|V N
G |.

Lemma 17.2.7. After removing vertices in Vq, for each (s, t) ∈ EH , there is no path from
h(s) to h(t).

Proof. Fix i and let p = (h(s), vα1

x1 , . . . , v
αz
xz , h(t)) be a path from h(s) to h(t) where

αj ∈ V N
G and xj ∈ ΩR for each 1 ≤ j ≤ z. Let yj := (xj)q for each 1 ≤ j ≤ z. The

construction ensures that yj+1 = (yj + r`(αj+1)) mod r. Since we removed vertces from
vαj+1 whose qth coordinate is less than r`(αj+1), it means that yj < r − r`(αj+1) and
yj+1 = (yj +r`(αj+1)). Moreover, y1 ≥ r`(α1). Since any path from h(s) to h(t) satisfies∑z

i=1 r`(αi) ≥ r, there must be no path from h(s) to h(t).

Soundness. To analyze soundness, we define a correlated probability space (Ω1 ×
Ω2, ν) where both Ω1,Ω2 are copies of Ω = {0, . . . , r−1, ∗}. It is defined by the following
process to sample (x, y) ∈ Ω2.

• Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.

• Change x to ∗ with probability ε. Do the same for y independently.

Note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1
2r

,
the minimum probability of any atom in Ω1 × Ω2 is ε2. For any (x, y) ∈ Ω2 with nonzero
probability, (∗, y) and (∗, ∗) also have nonzero probabilities, so we can apply Lemma 3.3.3
to have ρ(Ω1,Ω2; ν) ≤ ρ := 1− ε4/2.
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Apply Theorem 3.3.10 (ρ ← ρ, α ← ε2, ε ← Γρ( ε
3
, ε
3

)

2
) to get τ and d. We will later

apply this theorem with the parameters obtained here. Fix an arbitrary subset C ⊆ V , and
let Cα := C ∩ vα. For α ∈ V N

G , call vα blocked if µ⊗R(Cα) ≥ 1 − ε. The number of
blocked vα’s is at most wt(C)

1−ε .

SettingC ′ := {vα ∈ VD : vα is not blocked.}, and applying Theorem 17.2.2 concludes
that unless wt(C) > (1−ε)Opt, there exists (s, t) ∈ EH and a path (h(s), α1, . . . , αz, h(t))
in G where each vαi is unblocked for each i ∈ [k].

For 1 ≤ j ≤ z, let Sj ⊆ vαj be such that x ∈ Sj if there exists a path (s, vα1

x1 , . . . , v
αj−1

xj−1 , v
αj
x )

for some x1, . . . , xj−1. For 1 ≤ j ≤ z, let fj : ΩR 7→ {0, 1} be the indicator function of
Sj . We prove that if none of fj reveals any influential coordinate, µ⊗R(Sz) > 0, which
shows that there exists a path from h(s) to h(t) even after removing vertices in C.

Lemma 17.2.8. Suppose that for any 1 ≤ j ≤ z and 1 ≤ i ≤ R, Inf≤di [fj] ≤ τ . Then
µ⊗R(Sz) > 0.

Proof. We prove by induction that µ⊗R(Sj) ≥ ε
3
. It holds when j = 1 since vα1 is

unblocked. Assuming µ⊗R(Sj) ≥ ε
3
, since Sj does not reveal any influential coordinate,

Theorem 3.3.10 shows that for any subset Tj+1 ⊆ vαj+1 with µ⊗R(Tj+1) ≥ ε
3
, there exists

an edge from Sj and Tj+1. If S ′j+1 ⊆ vαj+1 is the set of out-neighbors of Sj , we have
µ⊗R(S ′j+1) ≥ 1 − ε

3
. Since vαj+1 is unblocked, µ⊗R(S ′j+1 \ C) ≥ 2ε

3
, completing the

induction.

In summary, in the completeness case, if we cut vertices of total weight FRAC+ε|V N
G |,

we cut every (h(s), h(t)) pair for each (s, t) ∈ EH . In the soundness case, unless we cut
vertices of total weight larger than (1 − ε)Opt, some (h(s), h(t)) wih (s, t) ∈ EH) is not
cut. The gap is Opt(1−ε)

FRAC+|V NG |/r+ε|V
N
G |

. For fixed G and H , increasing r and decreasing ε faster

makes the gap arbitrarily close to Opt
FRAC

.

17.3 s-t NODE DOUBLE CUT

17.3.1 LP Gap

This section studies s-tNODE DOUBLE CUT. Bérczi et al. [BCK+17] gave a 2-approximation
algorithm for s-t NODE DOUBLE CUT. It is based on the following natural LP relaxation,
where we have a variable du for every node u ∈ V :
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Figure 17.1: Da,b in the proof of Lemma 17.3.1 and (2−ε)-inapproximability of s-t NODE

DOUBLE CUT.

min
∑

v∈V \{s,t}

cvdv (Path-Blocking-LP)

∑
v∈P

dv +
∑
v∈Q

dv − du ≥ 1 ∀ P ∈ Pu→s, Q ∈ Pu→t, ∀ u ∈ V

ds, dt = 0

dv ≥ 0 ∀ v ∈ V

The integrality gap of this LP is at most 2 as proved in [BCK+17]. We prove that it is
at least 2 − o(1). Consider the following graph in Figure 17.1. Our next lemma shows a
lower bound on the integrality gap that nearly matches the approximation factor achieved
by our rounding algorithm.

Lemma 17.3.1. The integrality gap of the Path-Blocking-LP for directed graphs contain-
ing n nodes is at least 2− 7/n1/3.

For two integers a, b ∈ N, consider the directed graph Da,b = (VD, AD) obtained as
follows (see Figure 17.1): Let VD := {s, t} ∪ ([a] × [b]). There are ab + 2 nodes. Let
ID := [a]× [b] and call them as the internal nodes. The set of arcs AD are as follows:

1. For each 1 ≤ i ≤ a, there is a bidirected arc between s and (i, 1), and a bidirected
arc between (i, b) and t.
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2. For each 1 ≤ i ≤ a and 1 ≤ j < b, there is a bidirected arc between (i, j) and
(i, j + 1).

3. For each 1 ≤ i < a and 2 ≤ j ≤ b − 1, there is an arc from (i, j) to (i + 1, j − 2),
and an arc from (i, j) to (i+ 1, j + 2) (let (i, 0) := s and (i, b+ 1) := t for every i).
Call them jumping arcs.

Lemma 17.3.2. Da,b has the following properties:

1. For each internal node α = (α1, α2) ∈ ID, each α → s path has at least α2 − a
internal nodes other than α. Similarly, each α→ t path has at least b− α2 − a+ 1
internal nodes other than α.

2. If S ⊆ ID is such that the subgraph induced by VD \ S has no node v that has paths
to both s and t, then |S| ≥ 2a− 1.

Proof. 1. Jumping arcs are the only arcs that change α2 by 2 while all other arcs change
α2 by 1. However, a path to s can use at most a−1 jumping arcs because they strictly
increase α1. The first property follows from these observations.

2. Suppose that S ⊆ ID is such that the subgraph induced by VD \S has no node v that
has paths to both s and t. For i = 1, . . . , a, let si := |S ∩ {{i} × [b]}|. We note that
si ≥ 1 for each i, otherwise s can reach t and t can reach s.

Suppose si = 1 for some 1 < i ≤ a and let j be such that S ∩ {{i} × [b]} = (i, j).
If j = 1, then (i, 2) ∈ VD \ S and (i, 2) can reach both s and t. If j = b, then
(i, b − 1) ∈ VD \ S and (i, b − 1) can reach both s and t. Therefore, we have
1 < j < b. Then si−1 ≥ 3 because (i− 1, j − 1), (i− 1, j), (i− 1, j + 1) can reach
both s and t using one jumping arc followed by regular arcs in the ith row.

Therefore, |S| =
∑a

i=1 si ≥ 1 + 2(a− 1) = 2a− 1.

Proof of Lemma 17.3.1. The integer optimum of Path-Blocking-LP onDa,b is at least 2a−
1 by the second property of Lemma 17.3.2. Let r := b−2a+1. We set dv := 1/r for every
internal node v. The resulting solution is feasible to Path-Blocking-LP: Indeed, consider
α = (α1, α2). By the first property of Lemma 17.3.2, any α → s path and α → t path
have to together traverse at least α2 − a+ (b− α2 − a+ 1) = r internal nodes.

Setting b = a2, the integrality gap is at least (2a−1)/(a3/r) = 2−1/a3+4/a2−5/a ≥
2 − 6/a for a ≥ 2. Using the fact that a = (|V (Da,b)| − 2)1/3, we get the desired bound
on the integrality gap.
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17.3.2 Dictatorship Test

Consider the digraphDa,b introduced in Section 17.3.1. Let r = b−2a+1. Based onDa,b,
we define the dictatorship test graph Dst

a,b,R,ε = (V,A) as follows, for a positive integer R
and ε > 0. It will be used to show hardness results under the Unique Games Conjecture
in Chapter 18. Consider the probability space (Ω, µ) where Ω := {0, . . . , r − 1, ∗}, and
µ : Ω 7→ [0, 1] with µ(∗) = ε and µ(x) = (1− ε)/r for x 6= ∗.

1. V = {s, t} ∪ {vαx}α∈ID,x∈ΩR . Let vα denote the set of vertices {vαx}x∈ΩR .

2. For α ∈ ID and x ∈ ΩR, define the weight as wt(vαx ) = µ⊗R(x). We note that the
sum of weights is ab. The terminals s and t have infinite weight.

3. For each arc between s and α ∈ ID, for each x ∈ ΩR, add an arc with the same
direction betweem s and vαx . Do the same for each arc between t and α ∈ ID.

4. For each arc (α, β) ∈ AD with α = (α1, α2), β = (β1, β2) ∈ ID and x, y ∈ ΩR, we
have an arc from vαx to vβy according to the following rule (note that α2 6= β2).

(a) α2 < β2: add an arc if for any 1 ≤ j ≤ R: [yj = (xj + 1) mod r] or [yj = ∗]
or [xj = ∗]. Call them forward arcs.

(b) α2 > β2: add an arc if for any 1 ≤ j ≤ R: [yj = (xj − 1) mod r] or [yj = ∗]
or [xj = ∗]. Call them backward arcs.

(c) If (α, β) ∈ AD is a jumping arc, call (vαx , v
β
y ) also a jumping arc.

Completeness. We first prove that removing a set of vertices that correspond to dictators
behaves the same as the fractional solution that gives 1/r to every vertex. For any q ∈ [R],
let Vq := {vαx : α ∈ ID, xq = ∗ or 0}. We note that the total weight of Vq is

ab

(
ε+

1− ε
r

)
≤ abε+

ab

b− 2a
.

Lemma 17.3.3. After removing vertices in Vq, no vertex in V can reach both s and t.

Proof. Suppose towards contradiction that there exists a vertex that can reach both s and
t. First, assume that this vertex is vα0

x0
for some α0 = ((α0)1, (α0)2) ∈ ID and x0 ∈ ΩR.

Let p1 = (vα0
x0
, vβ1
y1
, . . . , vβlyl , s) be a vα0

x0
→ s path and p2 = (vα0

x0
, vα1
x1
, . . . , vαkxk , t) be a

vα0
x0
→ t path in Dst

R,ε − Vq for some k, l ∈ N, and α1, . . . , αk, β1, . . . , βl ∈ ID, and
x1, . . . , xk, y1, . . . , yl ∈ ΩR.
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Proposition 17.3.4. (xk)q ≥ (x0)q + b− (α0)2 − a+ 1.

Proof. Consider the two sequences (α0)q, . . . , (αk)q and (x0)q, . . . , (xk)q. Since we re-
moved Vq, (αi+1)2 > (αi)2 if and only if (xi+1)q > (xi)q. Let njf , njb, nrf , nrb be the
number forward jumping arcs, backward jumping arcs, forward non-jumping arcs, back-
ward non-jumping arcs in p2 respectively. Jumping forward arcs, jumping backward arcs,
non-jumping forward arcs, and non-jumping backward arcs change (αi)2 by +2,−2,+1,
and −1 respectively. By considering (α0)q, . . . , (αk)q,

2njf + nrf − 2njb − nrb = (b+ 1)− (α0)2.

Since using a jumping arc increases (αi)1 by 1,

njf + njb ≤ a− 1.

Forward arcs (whether they are jumping or not) increase (xi)q by 1 and backward arc
decrease it by 1. Consider (x0)q, . . . , (xk)q,

(xk)q − (x0)q ≥ njf + nrf − njb − nrb − 1

≥ (2njf + nrf − 2njb − 2nrb)− (njf − njb)− 1

≥ b− (α0)2 − a+ 1,

as claimed.

The same proof for p1 shows that (x0)q ≥ (yl)q + (α0)2 − a. Therefore, (xk)q ≥
(yl)q + b − 2a + 1 and (yl)q ≥ 1. This implies (xk)q > b − 2a + 1 = r, leading to
contradiction.

Soundness. Suppose that we removed some vertices C such that no vertex w ∈ V \ C
can reach both s and t. We show this happens only if C reveals an influential coordinate
or wt(C) ≥ 2a(1− ε).

To analyze soundness, we define a correlated probability space (Ω1 × Ω2, ν) where
both Ω1,Ω2 are copies of Ω = {0, . . . , r − 1, ∗}. It is defined by the following process to
sample (x, y) ∈ Ω2.

1. Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.

2. Change x to ∗ with probability ε. Do the same for y independently.
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We note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1/2r,
the minimum probability of any atom in Ω1 × Ω2 is ε2. For any (x, y) ∈ Ω2 with nonzero
probability, (∗, y) and (∗, ∗) also have nonzero probabilities, so we can apply Lemma 3.3.3
to have ρ(Ω1,Ω2; ν) ≤ ρ := 1− ε4/2.

Apply Theorem 3.3.10 ρ ← ρ, α ← ε2, ε ← Γρ(ε/3, ε/3)/2 to get τ and d. We will
later apply this theorem with the parameters obtained here. Fix an arbitrary subset C ⊆ V ,
and let Cα := C ∩ vα. For α ∈ ID, call vα blocked if µ⊗R(Cα) ≥ 1 − ε. The number of
blocked vα’s is at most wt(C)/(1− ε).

By Property 2. of Lemma 17.3.2, unless wt(C) ≥ (2a − 1)(1 − ε) (i.e., unless
2a − 1 vertices are blocked), there exists α0 ∈ ID and a path (vα0 , vα−1 , . . . , vα−k , s)
and (vα0 , vα1 , . . . , vαl , t) where each vαi is unblocked for −k ≤ i ≤ l.

For −k ≤ j ≤ −1, let Sj ⊆ vαj be such that x ∈ Sj if there exists a path (v
αj
x ,

v
αj−1

xj−1 , . . . , vα−k
x−k

, s) for some xj−1, . . . , x−k. Similarly, For 1 ≤ j ≤ l, let Sj ⊆ vαj be
such that x ∈ Sj if there exists a path (v

αj
x , v

αj+1

xj+1 , . . . , v
αl
xl
, t) for some xj+1, . . . , xl. Let

fj : ΩR 7→ {0, 1} be the indicator function of Sj . We prove that if none of fj reveals any
influential coordinate, that there exists a x0 ∈ ΩR such that vα0

x0 can reach both s and t
even after removing vertices in C.

Lemma 17.3.5. Suppose that for any j ∈ {−k, . . . ,−1} ∪ {1, . . . , l} and 1 ≤ i ≤ R,
Inf≤di [fj] ≤ τ . Then there exists a x0 ∈ ΩR such that vα0

x0 can reach both s and t

Proof. We prove that µ⊗R(S1) ≥ ε/3 by induction on j = l, . . . , 1. It holds when j = l
since vαl is unblocked. Assuming µ⊗R(Sj) ≥ ε/3, since Sj does not reveal any influential
coordinate, Theorem 3.3.10 shows that for any subset Tj−1 ⊆ vαj−1 with µ⊗R(Tj−1) ≥
ε/3, there exists an arc from Sj and Tj−1. If S ′j−1 ⊆ vαj−1 is the set of in-neighbors of
Sj , we have µ⊗R(S ′j−1) ≥ 1 − ε/3. Since vαj−1 is unblocked, µ⊗R(S ′j−1 \ C) ≥ 2ε/3,
completing the induction.

The same argument also proves that µ⊗R(S−1) ≥ ε/3 by induction on j = −k, . . . ,−1.
The total weight of the in-neighbors of S−1 in vα0 is at least 1− ε/3, and the total weight
of the in-neighbors of S1 in vα0 is at least 1−ε/3. Therefore, the total weight of vertices in
vα0 that has outgoing arcs to both S−1 and S1 is at least 1− 2ε/3. Since α0 is not blocked,
there exists a vertex vα0

x0 that has outgoing arcs to both S1 and S−1, and is not contained C.
This vertex can reach both s and t.

In summary, in the completeness case, if we remove vertices of total weight at most
abε+ab/(b−2a), no vertex can reach both s and t. In the soundness case, unless we reveal
an influential coordinate or we remove vertices of total weight at least (2a − 1)(1 − ε),
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Figure 17.2: D in the proof of (3/2− ε)-inapproximability of NODE DOUBLE CUT.

there exists a vertex that can reach both s and t. The gap between the two cases is at least

(2a− 1)(1− ε)
abε+ ab/(b− 2a)

,

which approaches to 2 as a increases, b = a2 and ε = 1/a4.

17.4 NODE DOUBLE CUT

Consider the directed graph D = (VD, AD) (see Fig. 17.2) defined by

VD := {s, t, a, b, c, d},
AD := {(a, s), (s, a), (s, c), (c, a), (a, b), (b, c), (c, b), (d, c), (b, d), (d, t), (t, d), (t, b)}.

Let ID := {a, b, c, d} be the set of internal vertices.

We summarize the properties of D that can be verified easily.

Proposition 17.4.1. D has the following three properties.

(i) For any vertex v ∈ V , there exists a vertex u ∈ {s, t} such that every v → u path
has at least three internal vertices.

(ii) Every v ∈ ID has an incoming arc from either s or t.

(iii) Even after deleting one vertex from ID, there exists a s → t path or a t → s path
with exactly three remaining internal vertices.
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Based on D, we define the dictatorship test graph Dglobal
R,ε = (V,A) as follows, for a

positive integer R and ε > 0. It will be used to show hardness results under the Unique
Games Conjecture in Chapter 18. Let r = 3. Consider the probability space (Ω, µ) where
Ω := {0, . . . , r− 1, ∗}, and µ : Ω 7→ [0, 1] with µ(∗) = ε and µ(x) = (1− ε)/r for x 6= ∗.

1. We take V := {s, t} ∪ {vαx}α∈ID,x∈ΩR . Let vα denote the set of vertices {vαx}x∈ΩR .

2. For α ∈ ID and x ∈ ΩR, we define the weight as wt(vαx ) := µ⊗R(x). We note that
the sum of weights is 4. The terminals s and t have infinite weight.

3. There are arcs from s to all vertices in vc, from va to s, s to va, from vd to t, from t
to vd, from t to vb.

4. For each (α, β) ∈ {(c, a), (a, b), (b, c), (c, b), (d, c), (b, d)} and x, y ∈ ΩR, we have
an arc from vαx to vβy if there exists 1 ≤ j ≤ R such that yj = (xj + 1) mod r or
yj = ∗ or xj = ∗.

Completeness. We first prove that removing a set of vertices that correspond to dictators
behaves the same as the fractional solution that gives 1/r to every internal vertex. For any
q ∈ [R], let Vq := {vαx : α ∈ ID, xq = ∗ or 0}. We note that the total weight of Vq is
4(ε+ (1− ε)/r) ≤ 4(1 + ε)/3

Lemma 17.4.2. After removing vertices in Vq, no vertex in V can reach both s and t.

Proof. Suppose towards contradiction that there exists a vertex that can reach both s and
t. First, assume that this vertex is vα0

x0
for some α0 ∈ ID and x0 ∈ ΩR. By Property (i) of

Proposition 17.4.1, there exists u ∈ {s, t} such that every α0 → u path has at least three
internal vertices in D. Let (vα0

x0
, vα1
x1
, . . . , vαkxk , u) be a path from vαx to u in Dglobal

R,ε − Vq.
Note that k ≥ 2.

Consider the sequence ((x0)q, (x1)q, . . . , (xk)q). Recall that vαx has an arc to vβy for
some α, β, x, y only if yq = (xq + 1) mod r or yq = ∗ or xq = ∗. Since we removed Vq,
(xi)q /∈ {0, ∗}, (xi)q = (xi−1)q + 1. This forces k ≤ 1, leading to contradiction.

Finally, assume that s can reach t, and let (s, vα0
x0
, vα1
x1
, . . . , vαkxk , t) be a s → t path for

some αi ∈ ID, xi ∈ ΩR. Every s→ t path in D has to have at least three internal vertices,
which forces k ≥ 2, but considering the sequence ((x0)q, (x1)q, . . . , (xk)q) forces k ≤ 1,
which leads to contradiction. Paths from t to s can be ruled out in the same way.
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Soundness. Suppose that we removed some vertices C such that there exist two vertices
u, v ∈ V \ C where no vertex w ∈ V \ C can reach both u and v. This implies that no
vertex w ∈ V \ C can reach both s and t, since both u and v have an incoming arc from
either s or t. Therefore, it suffices to show that unless C reveals an influential coordinate
or wt(C) ≥ 2(1− ε), either s can reach t or t can reach s.

To analyze soundness, we define a correlated probability space (Ω1 × Ω2, ν) where
both Ω1,Ω2 are copies of Ω = {0, . . . , r − 1, ∗}. It is defined by the following process to
sample (x, y) ∈ Ω2.

1. Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.

2. Change x to ∗ with probability ε. Do the same for y independently.

We note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1/2r,
the minimum probability of any atom in Ω1 × Ω2 is ε2. We use the following lemma
to bound the correlation ρ(Ω1,Ω2; ν). For any (x, y) ∈ Ω2 with nonzero probability,
(∗, y) and (∗, ∗) also have nonzero probabilities, so we can apply Lemma 3.3.3 to have
ρ(Ω1,Ω2; ν) ≤ ρ := 1− ε4/2.

Apply Theorem 3.3.10 by setting ρ ← ρ, α ← ε2, ε ← Γρ(ε/3, ε/3)/2 to get τ and d.
We will later apply this theorem with the parameters obtained here. Fix an arbitrary subset
C ⊆ V , and let Cα := C ∩ vα. For α ∈ ID, call vα blocked if µ⊗R(Cα) ≥ 1 − ε. The
number of blocked vα’s is at most wt(C)/(1− ε).

By Property (iii) of Proposition 17.4.1, unless wt(C) ≥ 2(1− ε) (i.e., unless two ver-
tices are blocked), there exists a path (s, vα1 , vα2 , vα3 , t) or (t, vα1 , vα2 , vα3 , s) where each
vαi is unblocked. Without loss of generality, suppose we have a path (s, vα1 , vα2 , vα3 , t).

For 1 ≤ j ≤ 3, let Sj ⊆ vαj be such that x ∈ Sj if there exists a path (v
αj
x , v

αj+1

xj+1 , . . . , v
α3

x3 ,
t) for some xj+1, . . . , x3. For 1 ≤ j ≤ 3, let fj : ΩR 7→ {0, 1} be the indicator function
of Sj . We prove that if none of fj reveals any influential coordinate, then µ⊗R(S1) > 0,
which shows that there exists a s→ t path even after removing vertices in C.

Lemma 17.4.3. Suppose that for any 1 ≤ j ≤ 3 and 1 ≤ i ≤ R, Inf≤di [fj] ≤ τ . Then
µ⊗R(S1) > 0.

Proof. We prove by induction that µ⊗R(Sj) ≥ ε/3 for j = 3, 2, 1. It holds when j = 3
since vα3 is unblocked. Assuming µ⊗R(Sj) ≥ ε/3, since Sj does not reveal any influential
coordinate, Theorem 3.3.10 shows that for any subset Tj−1 ⊆ vαj−1 with µ⊗R(Tj−1) ≥
ε/3, there exists an arc from Sj and Tj−1. If S ′j−1 ⊆ vαj−1 is the set of in-neighbors of
Sj , we have µ⊗R(S ′j−1) ≥ 1 − ε/3. Since vαj−1 is unblocked, µ⊗R(S ′j−1 \ C) ≥ 2ε/3,
completing the induction.
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In summary, in the completeness case, if we remove vertices of total weight≤ 4(1 + ε)/3,
no vertex can reach both s and t. In the soundness case, unless we reveal an influential
coordinate or we remove vertices of total weight at least 2(1− ε), there is a s→ t path or
t → s path, which means that either s or t can reach every vertex. The gap between the
two cases is at least

2(1− ε)
4(1 + ε)/3

,

which approaches to 3/2 as ε→ 0.

17.5 VERTEX COVER ON k-PARTITE GRAPHS

Fix k ≥ 3 and ε > 0. Let Ω := {∗, 0, 1}. Let R ∈ N be another parameter. Our
dictatorship test Dvc

k,R,ε = ([k] × ΩR, E) is defined as follows. Each vertex is represented
by vix where i ∈ [k] and x ∈ ΩR is a R-dimensional vector. Let vi := {vix}x∈ΩR . There
will be no edge within each vi, so Dvc

k,R,ε will be k-partite. Consider the probability space
(Ω, µ) where Ω := {0, 1, ∗}, and µ : Ω 7→ [0, 1] with µ(∗) = ε and µ(x) = (1 − ε)/2 for
x 6= ∗. We define the weight wt(vix) := µ⊗R(x) =

∏R
i=1 µ(xi). The sum of weights is k.

The edges are constructed as follows.

1. There is an edge between vix with x = (x1, . . . , xR) and vjy with y = (y1, . . . , yR) if
and only if

(a) i 6= j.

(b) For any 1 ≤ l ≤ R: [xl 6= yl] or [yl = ∗] or [xl = ∗].

Completeness. Fix q ∈ [R] and let Uq := {vix : xq = 0 or ∗}. The weight of Uq is
wt(Uq) = k(1 + ε)/2.

Lemma 17.5.1. Uq is a vertex cover.

Proof. Let {vix, vjy} be an edge of Dvc
k,R,ε. If both endpoints do not belong to Uq, it implies

xq = yq = 1. It contradicts our construction.

Soundness. To analyze soundness, we define a correlated probability space (Ω1×Ω2, ν)
where both Ω1,Ω2 are copies of Ω. It is defined by the following process to sample (x, y) ∈
Ω2.
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1. Sample x ∈ {0, 1} uniformly at random. Let y = 1− x.

2. Change x to ∗ with probability ε. Do the same for y independently.

We note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1/3,
the minimum probability of any atom in Ω1 × Ω2 is ε2. For any (x, y) ∈ Ω2 with nonzero
probability, (∗, y) and (∗, ∗) also have nonzero probabilities, so we can apply Lemma 3.3.3
to have ρ(Ω1,Ω2; ν) ≤ ρ := 1 − ε4/2. Apply Theorem 3.3.10 (ρ ← ρ, α ← ε2, ε ←
Γρ(ε, ε)/2) to get τ and d. We will later apply this theorem with the parameters obtained
here.

Fix an arbitrary vertex cover U ⊆ V , and let Ui := U ∩ vi for i ∈ [k]. Let fi : ΩR 7→
{0, 1} be the indicator function of Ui. Call vi blocked if E[fi] = µ⊗R(Ui) ≥ 1 − ε. The
number of blocked vi’s is at most wt(U)/(1 − ε). We prove that if none of fi reveals any
influential coordinate, all but one vi’s must be blocked.

Lemma 17.5.2. Suppose that for any 1 ≤ i ≤ k and 1 ≤ j ≤ R, Inf≤dj [fi] ≤ τ . Then at
least k − 1 vi’s must be blocked.

Proof. Assume towards contradiction that there exist i1 6= i2 ∈ [k] such that vi1 and vi2 are
unblocked. Since both fi1 and fi2 do not reveal influential coordinates and E[fi1 ],E[fi2 ] ≤
1− ε, Theorem 3.3.10 (f ← 1− f1, g ← 1− f2) shows that E(x,y)∼ν⊗R [(1− f1)(x) · (1−
f2)(y)] is strictly greater than 0. This implies that there exists x, y such that there is an
edge between vi1x and vi2y but neither vi1x nor vi2y is contained in U . This contradicts that U
is a vertex cover.

Therefore, if U does not reveal any influential coordinate, then wt(U) ≥ (k−1)(1−ε).
In summary, in the completeness case, there exists a vertex cover of weight k(1 + ε)/2.
In the soundness case, unless we reveal an influential coordinate, every vertex cover has
weight at least (k − 1)(1− ε). The gap between the two cases is at least

2(k − 1)(1− ε)
k(1 + ε)

,

which approaches to 2(k − 1)/k as ε→ 0.

17.6 SHORTEST PATH EDGE CUT

We propose our dictatorship test for SHORT PATH EDGE CUT that will be used for prov-
ing Unique Games hardness. It is parameterized by positive integers a, b, r, R. It is in-
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spired by the integrality gap instances by Baier et al. [BEH+10] Mahjoub and and Mc-
Cormick [MM10], and made such that the edge cuts that correspond to dictators behave
the same as the fractional solution that cuts 1

r
fraction of every edge. All graphs in this

section are undirected.

For positive integers a, b, r, R, we constructDE
a,b,r,R = (V,E). Let Ω = {0, . . . , r−1},

and µ : Ω 7→ [0, 1] with µ(x) = 1
r

for each x ∈ Ω. We also define a correlated probability
space (Ω1 × Ω2, ν) where both Ω1,Ω2 are copies of Ω. It is defined by the following
process to sample (x, y) ∈ Ω2.

• Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.

• With probability 1 − 1
r
, output (x, y). Otherwise, resample x, y ∈ Ω independently

and output (x, y).

Note that the marginal distribution of both x and y is equal to µ. Given x = (x1, . . . , xR) ∈
ΩR and y = (y1, . . . , yR) ∈ ΩR, let ν⊗R(x, y) =

∏R
i=1 ν(xi, yi). We define DE

a,b,r,R =
(V,E) as follows.

• V = {s, t} ∪ {vix}0≤i≤b,x∈ΩR . Let vi denote the set of vertices {vix}x∈ΩR .

• For any x ∈ ΩR, there is an edge from s to v0
x and an edge from vbx to t, both with

weight∞ and length 1.

• For 0 ≤ i < b, x ∈ ΩR, there is an edge (vix, v
i+1
x ) of length a and weight∞. Call it

a long edge.

• For any 0 ≤ i < b x, y ∈ ΩR, there is an edge (vix, v
i+1
y ) of length 1 and weight

ν⊗R(x, y). Note that ν⊗R(x, y) > 0 for any x, y ∈ ΩR. Call it a short edge. The
sum of finite weights is b.

Completeness. We first prove that edge cuts that correspond to dictators behave the
same as the fractional solution that gives 1

r
to every short edge. Fix q ∈ [R] and let Eq be

the set of short edges defined by

Eq := {(vix, vi+1
y ) : 0 ≤ i < b, yq 6= xq + 1 mod R or (xq, yq) = (0, 1)}.

When (x, y) ∈ Ω1 × Ω2 is sampled according to ν, the probability that yq 6= xq + 1
mod R or (xq, yq) = (0, 1) is at most 2

r
. The total weight of Eq is 2b

r
.
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Lemma 17.6.1. After removing edges in Eq, the length of the shortest path is at least
a(b− r + 1).

Proof. Let p = (s, vi1x1 , . . . , v
iz
xz , t) be a path from s to twhere ij ∈ {0, . . . , b} and xj ∈ ΩR

for each 1 ≤ j ≤ z. Let yj := (xj)q ∈ {0, . . . , r − 1} for each 1 ≤ j ≤ z.

For each 1 ≤ j < z, the edge (pj, pj+1) is either a long edge or a short edge, and
either taken forward (i.e., ij < ij+1) or backward (i.e., ij > ij+1). Let zLF, zSF, zLB, zSB
be the number of long edges taken forward, short edges taken forward, long edges taken
backward, and shot edges taken backward, respectively (zLF + zSF + zLB + zSB = z − 1).
By considering how ij changes,

zLF + zSF − zLB − zSB = b. (17.1)

Consider how yj changes. Taking a long edge does not change yj . Taking a short edge
forward increases yj by 1 mod r, taking a short edge backward decreases yj by 1 mod r.
Since Eq is cut, yj can never change from 0 to 1. This implies

zSF − zSB ≤ r − 1. (17.2)

(17.1) − (17.2) yields zLF − zLB ≥ b − r + 1. The total length of p is at least a · zLF ≥
a(b− r + 1).

Soundness. We first bound the correlation ρ(Ω1,Ω2; ν). The following lemma of
Wenner [Wen13] gives a convenient way to bound the correlation.

Lemma 17.6.2 (Corollary 2.18 of [Wen13]). Let (Ω1×Ω2, δµ+(1−δ)µ′) be two correlated
spaces such that the marginal distribution of at least one of Ω1 and Ω2 is identical on µ
and µ′. Then,

ρ(Ω1,Ω2; δµ+ (1− δ)µ′) ≤
√
δ · ρ(Ω1,Ω2;µ)2 + (1− δ) · ρ(Ω1,Ω2;µ′)2.

When (x, y) is sampled from ν, they are completely independent with probability 1
r
.

Therefore, we have ρ := ρ(Ω1,Ω2; ν) ≤
√

1− 1
r
. By Sheppard’s Formula,

Γρ(
1

2
,
1

2
) =

1

4
+

1

2π
arcsin(−ρ) ≥ 1

4
− 1

2π
arccos(

1√
r

)

=
∞∑
n=0

(2n)!

4n(n!)2(2n+ 1)
(

1√
r

)2n+1 ≥ 1√
r
.
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Apply Theorem 3.3.10 (ρ ← ρ, α ← 1
r3 , ε ←

Γρ( 1
2
, 1
2

)

3
) to get τ and d. We will later

apply this theorem with the parameters obtained here.

Fix an arbitrary subset C ⊆ E of short edges. For 0 ≤ i < b, let Ci = C ∩ (vi× vi+1).

Call a pair (i, i+ 1) as the ith layer, and say it is blocked when ν⊗R(Ci) ≥
Γρ( 1

2
, 1
2

)

2
. Let b′

be the number of blocked layers. For 0 ≤ i ≤ b, let Si ⊆ vi be such that x ∈ Si if there
exists a path (s, p0, . . . , pi = vix) such that

• For 0 ≤ i′ ≤ i, pi′ ∈ vi
′ .

• For 0 ≤ i′ < i, (pi′ , pi′+1) is short if and only if the i′th layer is unblocked.

Let fi : ΩR 7→ [0, 1] be the indicator function of Si. We prove that if none of fi reveals
any influential coordinate, Sb is nonempty, implying that there exists a path using b′ long
edges and b − b′ short edges. . Therefore, even after removing edges in C, the length of
the shortest path is at most 2 + ab′ + (b− b′).

Lemma 17.6.3. Suppose that for any 0 ≤ i ≤ b and 1 ≤ j ≤ R, Inf≤dj [fi] ≤ τ . Then
Sb 6= ∅.

Proof. Assume towards contradiction that Sb = ∅. Since S0 = ΩR and Si = Si+1 if the
ith layer is blocked (and we use long edges), there must exist i such that the ith layer is
unblocked and µ⊗R(Si) ≥ 1

2
, µ⊗R(Si+1) < 1

2
. All short edges between Si and vi+1 \ Si+1

are in Ci. Theorem 3.3.10 implies that ν⊗R(Ci) >
2
3
Γρ(

1
2
, 1

2
). This contradicts the fact that

the ith layer is unblocked.

In summary, in the completeness case, if we cut edges of total weight k := k(a, b, r) =
2b
r

, the length of the shortest path is at least l := l(a, b, r) = a(b− r+ 1). In the soundness
case, even after cutting edges of total weight k′, at most 2k′

Γρ( 1
2
, 1
2

)
≤ 2k′

√
r layers are

blocked, the length of the shortest path is at most l′ = 2 + (b− 2k′
√
r) + 2ak′

√
r.

• Let a = 4, b = 2r− 1 so that k ≤ 4, l = 4r. Requiring l′ ≥ l results in k′ = Ω(
√
r),

giving a gap of Ω(
√
r) = Ω(

√
l) between the completeness case and the soundness

case for LENGTH-BOUNDED EDGE CUT.

• Let a =
√
r, b = 2r−1 so that k ≤ 4, l = r1.5. Requiring k′ ≤ 4 results in l′ = O(r),

giving a gap of Ω(
√
r) = Ω(l1/3) for SHORTEST PATH EDGE INTERDICTION. Gen-

erally, k′ ≤ O(rε) results in l′ ≤ O(r1+ε), giving an (O(rε), O(r1/2−ε))-bicriteria
gap for any ε ∈ (0, 1

2
).
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17.7 SHORT PATH VERTEX CUT

We propose our dictatorship test for SHORT PATH VERTEX CUT that will be used for
proving Unique Games hardness. It is parameterized by positive integers a, b, r, R and
small ε > 0. It is inspired by the integrality gap instances by Baier et al. [BEH+10]
Mahjoub and and McCormick [MM10], and made such that the vertex cuts that correspond
to dictators behave the same as the fractional solution that cuts 1

r
fraction of every vertex.

All graphs in this section are undirected.

For positive integers a, b, r, R, and ε > 0, define DV
a,b,r,R,ε = (V,E) be the graph

defined as follows. Consider the probability space (Ω, µ) where Ω := {0, . . . , r − 1, ∗},
and µ : Ω 7→ [0, 1] with µ(∗) = ε and µ(x) = 1−ε

r
for x 6= ∗.

• V = {s, t} ∪ {vix}0≤i≤b,x∈ΩR . Let vi denote the set of vertices {vix}x.

• For 0 ≤ i ≤ b and x ∈ ΩR, wt(vix) = µ⊗R(x). Note that the sum of weights is b+ 1.

• For any 0 ≤ i ≤ b, there are edges from s to each vertex in vi with length ai+ 1 and
edges from each vertex in vi to t with length (b− i)a+ 1.

• For x, y ∈ ΩR, we call that x and y are compatible if

– For any 1 ≤ j ≤ R: [yj = (xj + 1) mod r] or [yj = ∗] or [xj = ∗].

• For any 0 ≤ i < b and compatible x, y ∈ ΩR, we have an edge (vix, v
i+1
y ) of length

1 (called a short edge).

• For any i, j such that 0 ≤ i < j− 1 < b and compatible x, y ∈ ΩR, we have an edge
(vix, v

j
y) of length (j − i)a (called a long edge).

Completeness. We first prove that vertex cuts that correspond to dictators behave
the same as the fractional solution that gives 1

r
to every vertex. For any q ∈ [R], let

Vq := {vix : 0 ≤ i ≤ b, xq = ∗ or 0}. Note that the total weight of Vq is (b+ 1)(ε+ 1−ε
r

).

Lemma 17.7.1. After removing vertices in Vq, the length of the shortest path is at least
a(b− r + 2).

Proof. Let p = (s, vi1x1 , . . . , v
iz
xz , t) be a path from s to twhere ij ∈ {0, . . . , b} and xj ∈ ΩR

for each 1 ≤ j ≤ z. Let yj := (xj)q ∈ {0, . . . , r − 1} for each 1 ≤ j ≤ z.

For each 1 ≤ j < z, the edge (v
ij
xj
, v

ij+1

xj+1) is either a long edge or a short edge, and
either taken forward (i.e., ij < ij+1) or backward (i.e., ij > ij+1). Let zLF, zSF, zLB, zSB

370



be the number of long edges taken forward, short edges taken forward, long edges taken
backward, and shot edges taken backward, respectively (zLF + zSF + zLB + zSB = z − 1).
For 1 ≤ j ≤ zLF (resp. zLB), consider the jth long edge taken forward (resp. backward)
— it is (v

ij′

xj′
, v

ij′+1

xj′+1) for some j′. Let sFj (resp. sBj ) be |ij′ − ij′+1|. The following equality
holds by observing how ij changes.

i1+

zLF∑
j=1

sFj +zSF−
zLB∑
j=1

sBj −zSB = iz ⇒ i1+

zLF∑
j=1

sFj +zSF−zLB−zSB−iz ≥ 0. (17.3)

Consider how yj changes. Taking any edge forward increases yj , and taking any edge
backward decreases yj . Since yj can never be 0 or ∗, we can conclude that

zLF + zSF − zLB − zSB ≤ r − 2. (17.4)

(17.3)− (17.4) yields

i1 − iz +

zLF∑
j=1

(sFj − 1) ≥ 2− r ⇒ i1 − iz +

zLF∑
j=1

sFj ≥ 2− r. (17.5)

The total length of p is

2 + a
(
i1 + b− iz +

zLF∑
j=1

sFj +

zLB∑
j=1

sBj ) + zSF + zSB

≥ a
(
i1 + b− iz +

zLF∑
j=1

sFj )

≥ a(b− r + 2).

Soundness. To analyze soundness, we define a correlated probability space (Ω1 ×
Ω2, ν) where both Ω1,Ω2 are copies of Ω = {0, . . . , r−1, ∗}. It is defined by the following
process to sample (x, y) ∈ Ω2.

• Sample x ∈ {0, . . . , r − 1}. Let y = (x+ 1) mod r.

• Change x to ∗ with probability ε. Do the same for y independently.
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Note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1
2r

,
the minimum probability of any atom in Ω1 × Ω2 is ε2. For any (x, y) ∈ Ω2 with nonzero
probability, (∗, y) and (∗, ∗) also have nonzero probabilities, so we can apply Lemma 3.3.3
to have ρ(Ω1,Ω2; ν) ≤ ρ := 1− ε4/2.

Apply Theorem 3.3.10 (ρ ← ρ, α ← ε2, ε ← Γρ( ε
3
, ε
3

)

2
) to get τ and d. We will later

apply this theorem with the parameters obtained here. Fix an arbitrary subset C ⊆ V , and
Ci := C ∩ vi. For 0 ≤ i ≤ b, call vi blocked if µ⊗R[Ci(x)] ≥ 1− ε. At most bwt(C)

1−ε c v
i’s

can be blocked. Let k′ be the number of blocked vi’s, and z = b+ 1− k′ be the number of
unblocked vi’s. Let {vi1 , . . . , viz} be the set of unblocked vi’s with i1 < i2 < · · · < iz.

For 1 ≤ j ≤ z, let Sj ⊆ vij be such that x ∈ Sj if there exists a path (p0 =

s, p1, . . . , pj−1, v
ij
x ) such that each pj′ ∈ vij′ \ C (1 ≤ j′ < j). For 1 ≤ j ≤ z, let

fj : ΩR 7→ [0, 1] be the indicator function of Sj .

We prove that if none of fj reveals any influential coordinate, µ⊗R(Sz) > 0. Since any
path passing vi1 , . . . , viz (bypassing only blocked vi’s) uses short edges at least b − 2k′

times, so the length of the shortest path after removing C is at most 2 + (b− 2k′) + 2ak′.

Lemma 17.7.2. Suppose that for any 1 ≤ j ≤ z and 1 ≤ i ≤ R, Inf≤di [fj] ≤ τ . Then
µ⊗R(Sz) > 0.

Proof. We prove by induction that µ⊗R(Sj) ≥ ε
3
. It holds when j = 1 since vi1 is un-

blocked. Assuming µ⊗R(Sj) ≥ ε
3
, since Sj does not reveal any influential coordinate,

Theorem 3.3.10 shows that for any subset Tj+1 ⊆ vij+1 with µ⊗R(Tj+1) ≥ ε
3
, there exists

an edge between Sj and Tj+1. If S ′j+1 ⊆ vij+1 is the set of neighbors of Sj , we have
µ⊗R(S ′j+1) ≥ 1 − ε

3
. Since vij+1 is unblocked, µ⊗R(S ′j+1 \ C) ≥ 2ε

3
, completing the

induction.

In summary, in the completeness case, if we cut vertices of total weight k := k(a, b, r, ε) =
(b+1)(ε+ 1−ε

r
), the length of the shortest path is at least l := l(a, b, r, ε) = a(b−r+2). In

the soundness case, even after cutting vertices of total weight k′, the length of the shortest
path is at most 2 + (b− k′

1−ε) + 2a( k′

1−ε).

• Let a = 4, b = 2r − 2 and ε small enough so that k ≤ 2, l = 4r. Requiring l′ ≥ l
results in k′ = Ω(r), giving a gap of Ω(r) = Ω(l) for LENGTH-BOUNDED VERTEX

CUT.

• Let a = r, b = 2r − 2 and ε small enough so that k ≤ 2, l = r2. Requiring
k′ ≤ 2 results in l′ = O(r), giving a gap of Ω(r) = Ω(

√
l) for SHORTEST PATH
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VERTEX INTERDICTION. Generally, k′ ≤ O(rε) results in l′ ≤ O(r1+ε), giving an
(O(rε), O(r1−ε))-bicriteria gap for any ε ∈ (0, 1).

17.8 RMFC

We present our dictatorship test for the RMFC problem. Our test is inspired by the inte-
grality gap example in Chalermsook and Chuzhoy [CC10], which is suggested by Khanna
and Olver. This test will be used in Chapter 18 to prove the hardness result based on Con-
jecture 3.2.4. All graphs in this section are undirected. We will prove hardness of RMFC
where T = {t} for a single vertex t.

Given positive integers b andR, letB = (b!)·(
∑b

i=1
b!
i
), Ω = {∗, 1, . . . , B}R. Consider

the probability space (Ω, µ) where µ : Ω 7→ [0, 1] with µ(∗) = ε and µ(x) = 1−ε
B

for x 6= ∗.
We define DF

b,R,ε = (V,E) as follows.

• V = {s, t} ∪ ({vix}1≤i≤b,x∈ΩR). Let vi := {vix}x∈ΩR . The weight a vertex vix is
i · µ⊗R(x).

• There is an edge from s to each vertex in vi, from each vertex in vb to t.

• For x, y ∈ ΩR, we call that x and y are compatible if

– For any 1 ≤ j ≤ R: [yj = xj] or [yj = ∗] or [xj = ∗].

• For any 0 ≤ i < b and compatible x, y ∈ ΩR, we have an edge (vix, v
i+1
y ).

Completeness. We first prove that vertex cuts that correspond to dictators are efficient.

Let Hi = 1 + 1
2

+ · · · + 1
i

=
∑i
j=1

i!
j

i!
be the ith harmonic number. For 1 ≤ i ≤ b,

let Bi = Hi
Hb
B and B0 = 0. Each Bi is an integer since B = (b!) · (

∑b
i=1

b!
i
), and∑b

i=1(Bi −Bi−1) = B.

For any q ∈ [R], we consider the solution where on Day i (1 ≤ i ≤ b), we save

V i
q := {vix : xq = ∗ or Bi−1 + 1 ≤ xq ≤ Bi}.

Note each day the total weight that the total weight of Vq is i(ε+ 1
i·Hb

) ≤ bε+ 1
Hb

.

Lemma 17.8.1. In above solution, t is never burnt.
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Proof. Fix an arbitrary p = (s, vi1x1 , . . . , v
iz
xz , t) from s to t, and let yj = (xj)q (1 ≤ j ≤ z).

Since ij ≤ j for any j, V i
q is saved before we arrive vij

xj
. Therefore y1 = y2 = · · · = yz.

There exists r ∈ {1, . . . , b} such that y1 ∈ {Br−1 + 1, . . . , Br}. Then p intersects V r
q .

Soundness. To analyze soundness, we define a correlated probability space (Ω1 ×
Ω2, ν) where both Ω1,Ω2 are copies of Ω = {∗, 1, . . . , B}. It is defined by the following
process to sample (x, y) ∈ Ω2.

• Sample x ∈ {1, . . . , B}. Let y = x.

• Change x to ∗ with probability ε. Do the same for y independently.

Note that the marginal distribution of both x and y is equal to µ. Assuming ε < 1
2B

,
the minimum probability of any atom in Ω1 × Ω2 is ε2. Furthermore, in our correlated
space, ν(x, ∗) > 0 for all x ∈ Ω1 and ν(∗, x) > 0 for all x ∈ Ω2. Therefore, we can
apply Lemma 3.3.3 to conclude that ρ(Ω1,Ω2; ν) ≤ ρ := 1 − ε4

2
. Apply Theorem 3.3.10

(ρ ← ρ, α ← ε2, ε ← Γρ( 1
3
, 1
3

)

2
) to get τ and d. We will later apply this theorem with the

parameters obtained here.

Fix an arbitrary solution where we save Ci ⊆ V on Day i with wt(Ci) ≤ k′. Let
Si ⊆ vi be the set of vertices of vi burnt at the end of Day i. Let fi : ΩR 7→ [0, 1] be the
indicator function of Si (1 ≤ i ≤ b). We prove that if none of fi reveals any influential
coordinate, unless k′ is large, µ⊗R(Si) is large for all i, so t will be burnt on Day b+ 1.

Lemma 17.8.2. Suppose that for any 1 ≤ i ≤ b and 1 ≤ j ≤ R, Inf≤dj [fi] ≤ τ . If k′ ≤ 1
3
,

µ⊗R(Si) ≥ 1
3

for all 1 ≤ i ≤ b.

Proof. We prove by induction on i. It is easy to see µ⊗R(S1) ≥ 1
3

since the wt(v1) = 1 but
k′ ≤ 1

3
. Suppose that the claim holds for i. For any T ⊆ vi+1 with µ⊗R(T ) ≤ 1

3
, since Si

does not reveal any influential coordinate, Theorem 3.3.10 shows that there exists an edge
between Si and T . It implies that µ⊗R(N(Si)) ≥ 2

3
, where N(Si) ⊆ vi+1 denotes the set

of neighbors of Si in vi+1. The total weight of saved vertices up to Day i is at most ik′ ≤ i
3
.

Since wt(vi) = i, even if all saved vertices are in vi, µ⊗R(vi ∩ (C1 ∪ · · · ∪Ci)) ≤ 1
3
. Since

Si+1 = N(Si) \ (C1 ∪ · · · ∪ Ci), µ⊗R(Si+1) ≥ 1
3
, the induction is complete.

In summary, in the completeness case, we save vertices of total weight at most bε+ 1
Hb

and save t. In the soundness case, we fail to save t unless we spend total weight at least 1
3

each day. By taking ε small enough, the gap becomes Ω(log b).
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Chapter 18

Reduction from UNIQUE GAMES to Cut
Problems

18.1 General Reduction

We now introduce our reduction from UNIQUE GAMES to our problems. Recall that we
constructed the following dictatorship tests.

• DM
r,k,R,ε for DIRECTED MULTICUT, DM

G′,H,h,`,R,ε for DIRECTED MULTICUT(H) (let
H ′, H, h, ` be a LP gap instance).

• Dglobal
R,ε for NODE DOUBLE CUT, Dst

a,b,R,ε for s-t NODE DOUBLE CUT.

• Dvc
k,R,ε for VERTEX COVER ON k-PARTITE GRAPHS.

• DE
a,b,r,R for SHORTEST PATH EDGE CUT, DV

a,b,r,R,ε for SHORT PATH VERTEX CUT.

• DF
b,R,ε for RMFC.

Fix a problem, and let D = (VD, ED) be the dictatorship test for the problem with
the chosen parameters. DE is edge-weighted and all others are vertex-weighted, and our
reduction will take care of this difference whenever relevant.

Given an instance L(B(UB ∪WB, EB), [R], {π(u,w)}(u,w)∈EB) of UNIQUE GAMES,
we describe how to reduce it to a graph G = (VG, EG). We assign to each vertex w ∈ WB

a copy of VD and for each terminal of VD, merge all |WB| copies into one. The merged
terminals are
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• {s, t}: NODE DOUBLE CUT, s-t NODE DOUBLE CUT, SHORT PATH EDGE CUT,
SHORT PATH VERTEX CUT, and RMFC.

• {si, ti}i∈[k]: DIRECTED MULTICUT.

• h(VH): DIRECTED MULTICUT(H).

• VERTEX COVER has no terminal.

For any w ∈ WB, v ∈ VD, the vertex weight of (w, v) is wt(v)
|WB |

, so that the sum of vertex

weights (except terminals) is b+ 1 for SHORT PATH VERTEX CUT and b(b+1)
2

for RMFC,
and rk for DIRECTED MULTICUT, 4 for NODE DOUBLE CUT, ab for s-t NODE DOUBLE

CUT, k for VERTEX COVER ON k-PARTITE GRAPHS.

For a permutation σ : [R] → [R], let x ◦ σ := (xσ(1), . . . , xσ(R)). To describe the set
of edges, consider the random process where u ∈ UB is sampled uniformly at random,
and its two neighbors w1, w2 are independently sampled. For each edge (vi1x1 , v

i2
x2) ∈ ED,

we create an edge ((w1, v
i1
x1◦π(u,w1)), (w2, v

i2
x2◦π(u,w2))). Call this edge is created by u. For

SHORT PATH EDGE CUT, the weight of each edge is the weight inDE times the probability
that (u,w1, w2) are sampled. The sum of weights is b. For each edge incident on a terminal
(i.e., (X, vix) or (vix, X) where X ∈ {s, t} ∪ {si, ti}i), we add the corresponding edge
(X, (w, vix)) or ((w, vix), X) for eachw ∈ WB. For SHORT PATH EDGE CUT, their wegiths
are∞ as in DE.

18.2 Completeness

Suppose there exists a labeling l and a subset W ′ ⊆ WB with |W ′| ≥ (1 − η)|WB| such
that l satisfy every edge incident on W ′.

DIRECTED MULTICUT. For every w ∈ W ′, we cut the following vertices.

{(w, vαx ) : α ∈ [r]k, xl(w) = ∗ or 0}.

For w /∈ W ′, we cut every vertex in {w}×D. The total cost is at most (ε+ 1−ε
r

)rk+ηrk ≤
rk−1(1 + rε + rη). The completeness analysis for the dictatorship test, Lemma 17.2.1,
ensures that there is no path from si to ti for any i.
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DIRECTED MULTICUT(H). For every w ∈ W ′, we cut the following vertices.

{(w, vαx ) : α ∈ [r]k, xl(w) = ∗ or xl(w) < `(α)}.

For w /∈ W ′, we cut every vertex in {w}×D. The total cost is at most FRAC+ (1/r+ ε+
η)|V N

G′ |. The completeness analysis for the dictatorship test, Lemma 17.2.7, ensures that
there is no path from h(s) to h(t) for any (s, t) ∈ EH .

s-t NODE DOUBLE CUT. Let D = (VD, AD) be the graph constructed in Section 17.3
and ID be VD \ {s, t}. For every w ∈ W ′, we remove the following vertices.

{(w, vαx ) : α ∈ ID, xl(w) = ∗ or 0}.

For w /∈ W ′, we remove every vertex in {w} × ID. The total weight is at most ab/(b −
2a) + abε+ abη. The completeness analysis for the dictatorship test ensures that no vertex
in VG can reach both s and t. The proof of Lemma 17.3.3 works verbatim — for each
vertex (wj, v

αj
xj ) with xj ∈ ΩR, consider (xj)l(wj) in place of (xj)q.

NODE DOUBLE CUT. Let D = (VD, AD) be the graph constructed in Section 17.4 and
ID be VD \ {s, t}. For every w ∈ W ′, we remove the following vertices.

{(w, vαx ) : α ∈ ID, xl(w) = ∗ or 0}.

For w /∈ W ′, we remove every vertex in {w} × ID. The total weight is at most 4(1 +
ε)/3 + 4η. The completeness analysis for the dictatorship test ensures that no vertex in
VG can reach both s and t. The proof of Lemma 17.4.2 works verbatim — for each vertex
(wj, v

αj
xj ) with xj ∈ ΩR, consider (xj)l(wj) in place of (xj)q.

VERTEX COVER ON k-PARTITE GRAPHS. For every w ∈ W ′, we remove the follow-
ing vertices.

{(w, vαx ) : α ∈ [k], xl(w) = ∗ or 0}.

For w /∈ W ′, we remove every vertex in {w} × VD. The total weight is at most k(1 +
ε)/2+kη. The completeness analysis for the dictatorship test, Lemma 17.5.1, ensures that
every edge of G is covered — for each edge {(w, vix), (w′, vjy)}, consider xl(w) and yl(w′)
in place of xq and yq.
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SHORT PATH EDGE CUT. For every triple (u,w1, w2) such that u ∈ UB and (u,w1),
(u,w2) ∈ EB, we cut the following edges.

{((w1, v
i
x), (w2, v

i+1
y ) : 0 ≤ i < b, yl(w2) 6= xl(w1)+1 mod R or (xl(w1), yl(w2)) = (0, 1)}.

For w /∈ W ′, we additionally cut every edge incident on {w} × D. The total cost is at
most 2b

r
+ 2ηb. The completeness analysis for the dictatorship test ensures that the length

of the shortest path is at least a(b− r + 1). The proof of Lemma 17.6.1 works if we have
yj = xjl(wj).

SHORT PATH VERTEX CUT. For every w ∈ W ′, we cut the following vertices.

{(w, vix) : 0 ≤ i ≤ b, xl(w) = ∗ or 0}.

For w /∈ W ′, we cut every vertex in {w}×D. The total cost is (b+ 1)(ε+ 1−ε
r

) + η(b+ 1).
The completeness analysis for the dictatorship test ensures that the length of the shortest
path is at least a(b− r + 2). The proof of Lemma 17.7.1 works if we have yj = xjl(wj).

RMFC. For w ∈ W ′, on Day i(1 ≤ i ≤ b), we save every vertex in

{(w, vix) : xl(w) = ∗ or Bi−1 ≤ xl(w) ≤ Bi},

where Bi = Hi
Hb
B. For w /∈ W ′, on Day i (1 ≤ i ≤ b), we save every vertex in (w, vi).

This ensures that fire never spreads to vertices associated with w /∈ W ′. Each day, the
total cost of saved vertices is at most bε + 1

Hb
+ bη. The completeness analysis for the

dictatorship test ensures that t is saved in this case. The proof of Lemma 17.8.1 works if
we have yj = xjl(wj).

18.3 Soundness for Cut / Interdiction Problems

We present the soundness analysis for DIRECTED MULTICUT, s-t NODE DOUBLE CUT,
NODE DOUBLE CUT, k-HYPERGRAPH VERTEX COVER, SHORT PATH EDGE CUT, and
SHORT PATH VERTEX CUT. The soundness analysis of RMFC is in Section 18.3.1. We
first discuss how to extract an influential coordinate for each u ∈ UB.
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DIRECTED MULTICUT. Fix an arbitraryC ⊆ VG with the total cost k′, and consider the
graph after cutting vertices in C. Let β > 0 be another small parameter to be determined
later. If k′ ≤ k(1−ε)(1−β)(r−1)k−1, we prove that we can decode influential coordinates
for many vertices of the UNIQUE GAMES instance.

For each w ∈ WB, i ∈ [k], 1 ≤ j ≤ rk, and a sequence α = (α1, . . . , αj) ∈
([r]k)j , let gw,i,j,α : ΩR 7→ {0, 1} such that gw,i,j,α(x) = 1 if and only if there exists
a path p = (si, (w1, v

α1

x1 ), . . . , (wj−1, v
αj−1

xj−1 ), (w, v
αj
x )) for some w1, . . . , wj−1 ∈ WB and

x1, . . . , xj−1 ∈ ΩR.

For u ∈ UB, 0 ≤ j ≤ b, and α ∈ ([r]k)j , let fu,i,j,α : ΩR 7→ [0, 1] be such that

fu,i,j,α(x) = Ew∈N(u)[gw,i,j,α(x ◦ π−1(u,w))],

where N(u) is the set of neighbors of u in the UNIQUE GAMES instance.

Let Γ(u) be the expected weight of C ∩ ({w} × D), where w is a random neighbor
of u. Eu[Γ(u)] = k′ ≤ k(1 − ε)(1 − β)(r − 1)k−1, so at least β fraction of u’s have
Eu[Γ(u)] ≤ k(1 − ε)(r − 1)k−1. For such u, since any si-ti pair is disconnected, the
soundness analysis for the dictatorship test shows that there exists q ∈ [R], 1 ≤ j ≤ rk, α
such that Inf≤dq [fu,i,j,α] ≥ τ (d and τ do not depend on u).

DIRECTED MULTICUT(H). Fix an arbitrary C ⊆ VG with the total cost k′, and con-
sider the graph after cutting vertices in C. Let β > 0 be another small parameter to be
determined later. If k′ ≤ Opt(1 − ε)(1 − β), we prove that we can decode influential
coordinates for many vertices of the UNIQUE GAMES instance.

For each w ∈ WB, s ∈ V S
H , i ∈ [k], 1 ≤ j ≤ |V N

G′ |, and a sequence α = (α1, . . . , αj) ∈
(V N

G′ )
j , let gw,s,j,α : ΩR 7→ {0, 1} such that gw,s,j,α(x) = 1 if and only if there exists a

path p = (h(s), (w1, v
α1

x1 ), . . . , (wj−1, v
αj−1

xj−1 ), (w, v
αj
x )) for some w1, . . . , wj−1 ∈ WB and

x1, . . . , xj−1 ∈ ΩR.

For u ∈ UB, 0 ≤ j ≤ b, and α ∈ (V N
G′ )

j , let fu,s,j,α : ΩR 7→ [0, 1] be such that

fu,s,j,α(x) = Ew∈N(u)[gw,s,j,α(x ◦ π−1(u,w))],

where N(u) is the set of neighbors of u in the UNIQUE GAMES instance.

Let Γ(u) be the expected weight of C ∩ ({w} × D), where w is a random neighbor
of u. Eu[Γ(u)] = k′ ≤ Opt(1 − ε)(1 − β), so at least β fraction of u’s have Eu[Γ(u)] ≤
Opt(1 − ε). For such u, since any (h(s), h(t)) pair is disconnected for each s, t ∈ EH ,
the soundness analysis for the dictatorship test shows that there exists q ∈ [R], 1 ≤ j ≤
|V N
G′ |, α such that Inf≤dq [fu,s,j,α] ≥ τ (d and τ do not depend on u).
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NODE DOUBLE CUT and s-t NODE DOUBLE CUT. Fix an arbitrary C ⊆ VG \ {s, t},
and consider the graph after removing vertices in C. We will show that if wt(C) is small
and no vertex can reach both s and t, we can decode influential coordinates for many
vertices of the UNIQUE GAMES instance. For NODE DOUBLE CUT, since every vertex in
VG has an incoming arc from either s or t, it implies that any solution to NODE DOUBLE

CUT must reveal influential coordinates or wt(C) must be large. Recall the graph D =
(VD, AD) constructed in Section 17.4 (for NODE DOUBLE CUT) or Section 17.3 (for s-t
NODE DOUBLE CUT), and ID = VD \ {s, t}.

For eachw ∈ WB, r ∈ {s, t}, 1 ≤ j ≤ |ID|, and a sequence α = (α1, . . . , αj) ∈ (ID)j ,
let gw,r,j,α : ΩR → {0, 1} such that gw,i,j,α(x) = 1 if and only if there exists a path p =
((w, vα1

x ), (w2, v
α2

x2 ), . . . , (wj, v
αj
xj

), r) for some w2, . . . , wj ∈ WB and x2, . . . , xj ∈ ΩR.

For u ∈ UB, 1 ≤ j ≤ |ID|, and α ∈ (ID)j , let fu,r,j,α : ΩR → [0, 1] be such that

fu,r,j,α(x) = Ew∈N(u)[gw,r,j,α(x ◦ π−1(u,w))],

where N(u) is the set of neighbors of u in the UNIQUE GAMES instance.

Let S := 2(1 − ε) (for NODE DOUBLE CUT) or S := (2a − 1)(1 − ε) (for s-t
NODE DOUBLE CUT) be the lower bound on the weight in the soundness analysis of the
respective dictatorship tests. Let S ′ := (1 − β)S for some β > 0 that will be determined
later, and assume that the total weight of removed vertices is at most S ′. Let γ(u) be the
expected weight of C∩({w}×ID), where w is a random neighbor of u. Since the instance
of UNIQUE GAMES is biregular,

Eu∈UB [γ(u)] = Eu∈UB [Ew∈N(u)[wt(C ∩ ({w} × ID))]]

= Ew∈WB
[wt(C ∩ ({w} × ID))] ≤ S ′ = (1− β)S.

Therefore, at least β fraction of u’s have γ(u) ≤ S. For such u, since no vertex can
reach both s and t, the soundness analysis for the dictatorship test shows that there exists
q ∈ [R], r ∈ {s, t}, 1 ≤ j ≤ |ID|, α such that Inf≤dq [fu,r,j,α] ≥ τ (d and τ do not depend
on u).

VERTEX COVER ON k-PARTITE GRAPHS. Fix an arbitrary C ⊆ VG, and consider the
graph after removing vertices in C. We will show that if wt(C) is small and every edge is
removed, we can decode influential coordinates for many vertices of the UNIQUE GAMES

instance.

For each w ∈ WB and j ∈ [k], let gw,j : ΩR → {0, 1} such that gw,j(x) = 1 if and only
if (w, vjx) /∈ C. For u ∈ UB and 1 ≤ j ≤ [k], let fu,j : ΩR → [0, 1] be such that

fu,j(x) = Ew∈N(u)[gw,j(x ◦ π−1(u,w))],
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where N(u) is the set of neighbors of u in the UNIQUE GAMES instance.

Let S := (1− ε)(k− 1) be the lower bound on the weight in the soundness analysis of
the dictatorship test. Let S ′ := (1− β)S for some β > 0 that will be determined later, and
assume that the total weight of removed vertices is at most S ′. Let γ(u) be the expected
weight of C ∩ ({w} × VD), where w is a random neighbor of u. Since the instance of
UNIQUE GAMES is biregular,

Eu∈UB [γ(u)] = Eu∈UB [Ew∈N(u)[wt(C ∩ ({w} × ID))]]

= Ew∈WB
[wt(C ∩ ({w} × ID))] ≤ S ′ = (1− β)S.

Therefore, at least β fraction of u’s have γ(u) ≤ S. For such u, since every edge is re-
moved, the soundness analysis for the dictatorship test shows that there exists q ∈ [R], 1 ≤
j ≤ [k] such that Inf≤dq [fu,j] ≥ τ (d and τ do not depend on u).

SHORT PATH EDGE CUT. Fix an arbitrary C ⊆ EG with the total cost k′, and consider
the graph after cutting edges in C. We will show that if the length of the shortest path is
greater than l′ = 2 + b−4k′

√
r+ 4ak′

√
r, we can decode influential coordinates for many

vertices of the UNIQUE GAMES instance.

For each w ∈ WB, 0 ≤ j ≤ b, and a sequence c = (c1, . . . , cj) ∈ {L, S}j , let
gw,j,c : ΩR 7→ {0, 1} such that gw,j,c(x) = 1 if and only if there exists a path p = (s, p0 =
(w0, v

0
x0), . . . , pj−1 = (wj−1, v

j−1
xj−1), pj = (w, vjx)) for some w0, . . . , wj−1 ∈ WB and

x0, . . . , xj−1 ∈ ΩR such that (pj′−1, pj′) is long if and only if cj′ = L for 1 ≤ j′ ≤ j.

For u ∈ UB, 0 ≤ j ≤ b, and c ∈ {L, S}j , let fu,j,c : ΩR 7→ [0, 1] be such that

fu,j,c(x) = Ew∈N(u)[gw,j,c(x ◦ π−1(u,w))],

where N(u) is the set of neighbors of u in the UNIQUE GAMES instance.

Let Γ(u) be the sum of weights of the edges created by u in C. Eu[Γ(u)] = k′, so at
least 1

2
fraction of u’s have Eu[Γ(u)] ≤ 2k′. For such u, since the length of the shortest

path is greater than l′ = 2+b−4k′
√
r+4ak′

√
r, the soundness analysis for the dictatorship

test shows that there exist j ∈ {0, . . . , b}, q ∈ [R], c such that Inf≤dq [fu,j,c] ≥ τ (d and τ do
not depend on u).

SHORT PATH VERTEX CUT. Fix an arbitrary C ⊆ VG with the total cost k′, and con-
sider the graph after cutting vertices in C. We will show that if the length of the shortest
path is greater than l′ = 2 + (b − 4k′) + 8ak′, we can decode influential coordinates for
many vertices of the UNIQUE GAMES instance.
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For each w ∈ WB, 1 ≤ j ≤ b, and a sequence i = (i1 < · · · < ij) ∈ {0, . . . , b}j ,
let gw,j,i : ΩR 7→ {0, 1} such that gw,j,i(x) = 1 if and only if there exists a path p =

(s, (w1, v
i1
x1), . . . , (wj−1, v

ij−1

xj−1), (w, v
ij
x )) for some w1, . . . , wj−1 ∈ WB and x1, . . . , xj−1 ∈

ΩR.

For u ∈ UB, 0 ≤ j ≤ b, and i ∈ {0, . . . , b}i, let fu,j,i : ΩR 7→ [0, 1] be such that

fu,j,i(x) = Ew∈N(u)[gw,j,i(x ◦ π−1(u,w))],

where N(u) is the set of neighbors of u in the UNIQUE GAMES instance.

Let Γ(u) be the expected weight of C ∩ ({w} × D), where w is a random neighbor
of u. Eu[Γ(u)] = k′, so at least 1

2
fraction of u’s have Eu[Γ(u)] ≤ 2k′. For such u, Since

the length of the shortest path is greater than l′ = 2 + (b − 4k′) + 8ak′, the soundness
analysis for the dictatorship test shows that there exists q ∈ [R], 1 ≤ j ≤ b, i such that
Inf≤dq [fu,j,i] ≥ τ (d and τ do not depend on u).

Finishing Up. The above analyses for DIRECTED MULTICUT, DIRECTED MULTICUT(H),
s-tNODE DOUBLE CUT, NODE DOUBLE CUT, k-HYPERGRAPH VERTEX COVER, SHORT

PATH EDGE CUT, and SHORT PATH VERTEX CUTcan be abstracted as follows. Each ver-
tex u ∈ UB is associated with {fu,h : ΩR 7→ [0, 1]}h∈I for some index set I (|I| is upper
bounded by some function of b for SHORT PATH EDGE CUT and SHORT PATH VERTEX

CUT, some function of r and k for DIRECTED MULTICUT, some absolute constant for
NODE DOUBLE CUT, some function of a and b for s-t NODE DOUBLE CUT, some func-
tion on k on VERTEX COVER ON k-PARTITE GRAPHS). For at least β fraction of u ∈ UB
(β = 1

2
for SHORT PATH EDGE CUT and SHORT PATH VERTEX CUT), there exist i ∈ I

and q ∈ [R] such that Inf≤dq [fu,i] ≥ τ . Set l(u) = q for those vertices. Since

Inf≤dq (fu,i) =
∑

αq 6=0,|α|≤d

f̂u,i(α)2 =
∑

αq 6=0,|α|≤d

(Ew[f̂w,i(π(u,w)−1(α))]2)

≤
∑

αq 6=0,|α|≤d

Ew[f̂w,i(π(u,w)−1(α))2] = Ew[Inf≤dπ(u,w)−1(q)(fw,i)],

at least τ/2 fraction of u’s neighbors satisfy Inf≤dπ(u,w)−1(q)(fw,i) ≥ τ/2. There are at most
2d/τ coordinates with degree-d influence at least τ/2 for a fixed h, so their union over
i ∈ I yields at most 2d·|I|

τ
coordinates. Choose l(w) uniformly at random among those

coordinates (if there is none, set it arbitrarily). The above probabilistic strategy satisfies
at least β( τ

2
)( τ

2d·|I|) fraction of all edges. Taking η smaller than this quantity proves the
soundness of the reductions.
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18.3.1 Soundness for RMFC

Fix an arbitrary solution C1, . . . , Cb ⊆ V such that Ci is saved on Day i and the weight
of each Ci is at most k′ = 1

10
. Suppose that t is saved. We will prove that the UNIQUE

GAMES instance admits a good labeling.

For each w ∈ WB, 1 ≤ i ≤ b, let gw,i : ΩR 7→ {0, 1} such that gw,i(x) = 1 if and only
if (w, vix) is burning on Day i. Let Day i∗ be the first day where Ew,x[gw,i∗(x)] ≥ 1

2
and

Ew,x[gw,i∗+1(x)] ≤ 1
2
. Such i∗ must exist since Ew,x[gw,1] ≥ 1−k′ ≥ 1

2
but Ew,x[gw,b] = 0.

For each w ∈ WB, let gw := gw,i∗ and let fw : ΩR 7→ {0, 1} be such that fw(x) = 1 if
and only if there exists (w′, x′) such that the vertex (w′, vi

∗

x′) is burning on Day i and there
exists an edge ((w′, vi

∗

x′), (w, v
i∗+1
x )). We must have Ew,x[fw(x)] ≤ 1

2
+ 1

10
= 3

5
, since we

can save at most k′ = 1
10

fraction of {gw,i∗+1}w before Day i∗ + 1.

By an averaging argument, at least 1
4

fraction of w ∈ WB satisfies Ex[gw,i∗ ] ≥ 1
4
.

Call them heavy vertices. By the expansion of the UNIQUE GAMES instance, at least 9
10

fraction of u ∈ UB has a heavy neighbor, and at least 9
10

fraction of w ∈ WB has a heavy
w′ ∈ WB such that (u,w), (u,w′) ∈ EB for some u ∈ UB (say w is reachable from w′).

By Theorem 3.3.10, there exist τ and d such that for each heavy w′, if Inf≤dj [gw′ ] ≤ τ

for all j ∈ [R], all w reachable from w′ should satisfy Ex[fw(x)] ≥ 9
10

(say w′ reveals an
influential coordinate if such j exists). At least 1

4
− 1

10
= 0.15 fraction of w′ are heavy and

reveal an influential coordinate, since otherwise by the expansion Ew,x[fw(x)] ≥ ( 9
10

)2 >
3
5
.

Another expansion argument ensures that at least 9
10

fraction of u ∈ UB is a neighbor
of heavy w with an influential coordinate. Call such u good and let hu : ΩR 7→ {0, 1}
such that hu(x) = gw(x ◦ π−1(u,w)). Finally, call w ∈ WB good if Ex[fw(x)] ≤ 9

10
.

Since Ew,x[fw(x)] ≤ 3
5
, the fraction of good w is at least 1

3
. Theorem 3.3.10 ensures that

if there is (u,w) ∈ EB where both u and w are good, there exists j ∈ [R] such that
min(Inf≤dj [hu], Inf

≤d
π(u,w)−1(j)[fw]) ≥ τ .

Our labeling strategy for UNIQUE GAMES is as follows. Each good uwill get a random
label from {j : Inf≤dj [hu] ≥ τ}, and each good w will get a random label from {j :

Inf≤dj [fw] ≥ τ}. Other vertices get an arbitrary label. Since at least 9
10

fraction of u ∈ UB
are good, 1

3
fraction of w ∈ WB are good, and the UNIQUE GAMES instance is biregular,

at least 9
10
− 2

3
≥ 1

5
fraction of edges are between good vertices. For each fw or hu, the

number of coordinates j with degree-d influence at least τ is at most d
τ
. Therefore, this

strategy satisfies at least 1
5
· ( d

τ
)2 fraction of edges in expectation. Taking η smaller than

this quantity proves the soundness of the reduction.
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18.4 Final Results

Combining our completeness and soundness analyses and taking ε and η small enough, we
prove our main results.

DIRECTED MULTICUT. It is hard to distinguish the following cases.

• Completeness: There is a cut of weight at most rk−1(1 + rε + rη) that separates
every si and ti.

• Soundness: Every multicut must have weight at least k(1− ε)(1− β)(r − 1)k−1.

This immediately implies Theorem 16.2.1 by taking large r and small ε, β, η.

DIRECTED MULTICUT(H). It is hard to distinguish the following cases.

• Completeness: There is a cut of weight at most FRAC + (1/r + ε + η)|V N
G′ | that

separates h(s) and h(t) for every (s, t) ∈ EH .

• Soundness: Every multicut must have weight at least Opt(1− ε)(1− β).

This immediately implies Theorem 17.2.4 by taking large r and small ε, β, η.

s-t NODE DOUBLE CUT. It is hard to distinguish the following cases.

1. Completeness: There is a {s, t}-double cut of weight at most ab/(b−2a)+abε+abη.

2. Soundness: There is no {s, t}-double cut of weight less than (2a−1)(1− ε)(1−β).

The gap is
(2a− 1)(1− ε)(1− β)

ab
b−2a

+ abε+ abη
,

which approaches to 2 by taking a large, b larger, and ε, η, β small. This proves Theo-
rem 16.2.3.
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NODE DOUBLE CUT. It is hard to distinguish the following cases.

1. Completeness: There is a {s, t}-double cut of weight at most 4(1 + ε)/3 + 4η.

2. Soundness: There is no global double cut of weight less than 2(1− ε)(1− β).

The gap is
2(1− ε)(1− β)

4(1+ε)
3

+ 4η
,

which approaches to 1.5 by taking ε, η, β small. This proves Theorem 16.2.4.

VERTEX COVER ON k-PARTITE GRAPHS. It is hard to distinguish the following cases.

1. Completeness: There is a vertex cover of weight at most k(1 + ε)/2 + kη.

2. Soundness: There is no vertex cover of weight less than (k − 1)(1− ε)(1− β).

The gap is
(k − 1)(1− ε)(1− β)

k(1+ε)
2

+ kη
,

which approaches to 2(k− 1)/k by taking ε, η, β small. In particular, it approahces to 4/3
for k = 3 and 3/2 for k = 4. Take large r and small ε, β, η.

SHORT PATH EDGE CUT. It is hard to distinguish the following cases.

• Completeness: There is a cut of weight at most k := 2b
r

+ 2ηb such that the length
of the shortest path after the cut is at least l := a(b− r + 1).

• Soundness: For every cut of weight k′, the length of the shortest path is at most
l′ := 2 + b− 4k′

√
r + 4ak′

√
r.

Setting a = 4, b = 2r− 1 yields k ≤ 4 and l = 4r. Since l′ ≥ 4r implies k′ = Ω(
√
r), we

prove the first case of Theorem 16.2.5. Setting a =
√
r and b = 2r − 1 yields k ≤ 4 and

l = r1.5. Since l′ = O(k′r), we prove the last two cases of Theorem 16.2.5.
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SHORT PATH VERTEX CUT. It is hard to distinguish the following cases.

• Completeness: There is a cut of weight at most k := (b + 1)(ε + 1−ε
r

) + η(b + 1)
such that the length of the shortest path after the cut is at least l := a(b− r + 2).

• Soundness: For every cut of weight k′, the length of the shortest path is at most
l′ := 2 + (b− 4k′) + 8ak′.

Setting a = 4, b = 2r − 2 yields k ≤ 2 and l = 4r. Since l′ ≥ 4r implies k′ = Ω(r), we
prove the first case of Theorem 16.2.4. Setting a = r and b = 2r − 2 yields k ≤ 2 and
l = r2. Since l′ = O(k′r), we prove the last two cases of Theorem 16.2.4.

RMFC. It is hard to distinguish the following cases.

• Completeness: There is a solution where we save vertices of cost bε + 1
Hb

+ bη =

O( 1
log b

) each day to eventually save t.

• Soundness: Saving vertices of 1
10

each day cannot save t.

This immediately implies Theorem 16.2.6 by taking small ε and η.
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Chapter 19

Concluding Remarks: What Now?

19.1 Yet Another Summary

At the risk of being redundant, we briefly summarize the results of this thesis here, with
the personal opinions on their contribution in the approximation algorithms literature and
future directions.

Part I. In Part I, we studied Constraint Satisfaction Problems. One of the nicest fea-
tures of CSPs is that each problem in the class is formally defined by simply specifying
a predicate P ⊆ Dk for some domain D, so each problem is denoted by CSP(P ) for
some predicate P .1 Given a property T for optimization problems (e.g., NP-hardness to
compute the exact optimal solution), this formal and simple description of each problem
in the class often allows us to give a characterization on P in order for CSP(P ) to have
the property T . Most notably, the famous CSP dichotomy conjecture [FV98] states that
for every CSP(P ), deciding whether every constraint can be simultaneously satisfied or
not is either in P or NP-hard. Our results in this part can be interpreted as characterizing
CSPs with respect to other natural properties related to approximation algorithms.

• HARD CSP and BALANCE CSP (Chapter 4): We studied two variants of MAX

CSP that allow only some assignments to be feasible. Among Boolean CSPs, it was
known that only MAX 2-SAT and MAX HORN-SAT admit a robust algorithm. For

1We note that in the exact CSP literature, it is more general and typical to define a CSP by specifying
a set of predicates instead of one predicate. Also, there is another way to define problems by specifying
constraint hypergraphs.
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each of HARD CSP and BALANCE CSP on the Boolean domain, our results gave a
characterization on the predicates that admit a robust algorithm.

• SYMMETRIC CSP (Chapter 5): We revisited the notion of approximation resistance
introduced by Austrin and Håstad [AH13]. For general MAX CSP, it was known
that the simple necessary conditions to be approximation resistant were not suffi-
cient, and the complete characterization is currently unknown and likely to be tech-
nically complicated [KTW14]. We show that modulo a simple analytic conjecture,
there is a very simple characterization of approximation resistance if we consider a
natural subclass of MAX CSP called SYMMETRIC CSP.

Historically, many previous results on such characterizations studied the exact solv-
ability and used algebraic techniques, but recently there are many approximability results
that combine techniques from algebra and convex relaxations [BK12, DKM14, DKK+17].
This synergy between algebra and convex relaxations may broaden our understanding of
CSPs.

Part II. In Part II, we studied variants of CSPs, mainly motivated by the intersection of
computer science with other fields. These problems can be captured as a CSP, but addi-
tional conceptual insights were required in order to apply the traditional tools developed
for MAX CSP.

• UNIQUE COVERAGE (Chapter 6): Besides resolving the approximability of a funda-
mental and practical optimization problem, one of the main messages of this chap-
ter is to bypass conjectures to prove optimal hardness results. This work is one
of few examples where nontrivial hardness results were proved first assuming the
Unique Games Conjecture and the Feige’s Random 3SAT Hypothesis, and these as-
sumptions were removed later. While there are not many technical evidences for or
against these conjectures, removing these assumptions from their important known
consequences will be valuable contribution.

• GRAPH PRICING (Chapter 7): It is one of the problems in this thesis that could have
gone either way. The simplicity of the current best approximation algorithm [BB07,
LBA+07] motivated many researchers to try to improve the current best approxi-
mation algorithm, but we finally proved that it is optimal under the Unique Games
Conjecture. While we are allowed to give a real value to each vertex, we introduced
an intermediate problem that bridges this somewhat continuous problem and the
tools developed for the discrete problems.
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• LDPC decoding (Chapter 8): While decoding a given message is equivalent to find-
ing the closest codeword and can be captured as an optimization problem, error
correcting codes have been studied somewhat separately from other combinatorial
optimization problems partially due to their differences in techniques; the design of
many error correcting codes involves algebraic or information theoretic tools, while
algorithms for other combinatorial optimization problems typically rely on their
convex relaxations. There is a decoding algorithm using an LP relaxation [Fel03]
known in the literature, and this LP relaxation can be systematically strengthened to
the Sherali-Adams or Sum-of-Squares hierarchies. Unfortunately our results prove
that these hierarchies will not improve the decoding performance greatly, but another
interesting question is to study the relationship between the convex relaxation based
algorithms and other classes of algorithms. For example, can the Sum-of-Square hi-
erarchies capture iterative message-passing algorithms used to decode LDPC codes?
Could our results on the limitation of the convex hierarchies give insights for proving
general hardness of the problem?

Part III. Part III studied the complexity of coloring a hypergraph under the promise
that the input hypergraph admits one of the three strong notions of coloring, namely low-
discrepancy, rainbow, and strong coloring. While we present nontrivial approximation
algorithms that exploit the structure of such colorings, our main contribution in this part
is hardness results, showing that under these strong promises, it is still NP-hard to weakly
color the hypergraph.

As we emphasized, we unified almost all previous coloring hardness techniques in our
recipe to prove our results. However, there are many open problems remaining in this
direction of coloring a hypergraph with very strong structures. This may suggest that we
need a new set of tools to close this gap. For example, for K-uniform hypergraphs, we
show that coloring a (K/2)-rainbow colorable graph will be hard, but it is still consistent
with our knowledge that (K − 1)-rainbow colorable graph is still hard to color. For strong
coloring, Brakensiek and Guruswami [BG16] showed that for t = d3k/2e, it is NP-hard
to find a 2-weak coloring of a hypergraph that admits t-strong coloring, and conjectured
that the same conclusion holds even when t = K + 1. Can we close this gap?

More ambitiously, given a computational task that is NP-hard without the restriction
on its instances (e.g., weak coloring in this thesis), can we characterize which promises on
instances make the task tractable in polynomial time or still NP-hard? See another work of
Brakensiek and Guruswami [BG17a] that formalizes this question in the CSP perspective.
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Part IV. Part IV mainly studied H -TRANSVERSAL, and gave some characterization on
its approximability depending onH . Even though we showed that it is hard to approximate
all 2-connected H , and gave efficient approximation algorithms for k-Star and k-Path,
there are some obvious open problems in this direction.

• Can we get O(log k)-approximation whenever H is a tree with k vertices?

• The notion of vertex connectivity is local and does not exactly capture the approx-
imability of H -TRANSVERSAL. For example, when H is one large cycle and a
single edge glued at one vertex, H is 1-vertex connected by definition, but the ap-
proximability of H -TRANSVERSAL should be closer to that of a large cycle. Can
we find or define a natural property of H that captures the approximability of H -
TRANSVERSAL more accurately?

Besides the vertex deletion version of H -TRANSVERSAL, there is the edge deletion
version where the best approximation ratio O(k2) and the best hardness ratio Ω(k) do
not match even when H is a clique. Also the packing version of H -TRANSVERSAL, H -
PACKING, is less understood that the covering counterpart. It would be interesting to study
these equally natural variants in the future.

Part V. Part V proved the improved hardness results for numerous cut problems includ-
ing DIRECTED MULTICUT, LENGTH-BOUNDED CUT, SHORTEST PATH INTERDICTION,
RMFC, bicuts, and double cuts. One notable feature of this part is that all results were
achieved by the common framework called length-control dictatorship tests that convert
LP gap instances to computational hardness results. This leaves many conceptual open
questions.

• Are there any other well-studied cut problems whose hardness can be proved via
this framework?

• Is there a way to characterize the subclass of cut problems where LP gap instances
imply hardness results (perhaps assuming the UGC)? The work of Chekuri and
Madan [CM17] shows that the are some cut problems where the best known ap-
proximation ratio is even better than the integrality gap of the standard LP relax-
ation, so not all known cut problems can belong to this subclass. Unlike CSPs, it
seems hard to formally capture all known cut problems in one definition, but giving
a sufficient condition that captures most known hardness results would advance our
understanding on the approximability of cut problems.
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• Computational hardness results based on integrality gaps were proved by Raghaven-
dra [Rag08], Kumar et al. [KMTV11], and Ene et al. [EVW13] for variants of CSPs,
but the results in this part is the first of this kind that concerns more structured prob-
lems on graphs. Could we hope a similar result for other natural classes of structured
graph problems such as connectivity (network design) problems?

19.2 Future Directions Beyond This Thesis

This thesis, like every other thesis in science, only contains the successful results, but there
are numerous failed attempts to prove optimal approximabilities during the author’s Ph.D.
study, and even more problems and techniques that have not been explored. Among them,
we collect a few future directions that may be interesting to pursue.

19.2.1 Bypassing the Unique Games Conjecture

As there is not much evidence for the Unique Games Conjecture, it is natural to consider
the results based on the Unique Games Conjecture and try to prove them without it. The
following is the list of problems where the goal is to prove NP-hardness of approximation,
since the corresponding UG-hardness is already known or the UGC is not applicable due
to the technical nature of problems.

• MAX k-CSP with perfect completeness: By the result of Chan [Cha13], it is known
that MAX k-CSP is NP-hard to approximate within a factor better than Θ( k

2k
),

matching the current best algorithm of Charikar et al. [CMM07], and the previ-
ous UG-hardness result of Samorodnitsky and Treivsan [ST09, AM09]. However,
when the instance is promised to admit an assignment that satisfies every con-
straint (also known as perfect completeness), the best algorithm still achieves Ω( k

2k
)-

approximation while the best hardness remains at Õ(2k
1/3
/2k) [Hua13]. Closing this

gap remains an outstanding open question in the approximability of MAX CSP. Very
recently Brakensiek and Guruswami [BG17b] proved a hardness ratio of O(k2/2k)
assuming the V-Label Cover Conjecture.

• MAX HORN-SAT: Guruswami and Zhou [GZ12] proved that given an (1 − ε)-
satisfiable instance of MAX HORN-3-SAT, it is UG-hard to find an assignment sat-
isfying more than (1− 1

O(log(1/ε))
) of the constraints. Proving the same hardness with-

out relying on the UGC will be interesting. Guruswami and Zhou’s result is achieved
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by constructing a SDP gap instance and applying Raghavendra’s result [Rag08] to
convert it to UG-hardness. We hope that a more direct and combinatorial reduction
from LABEL COVER may bypass the dependence on the UGC. This approach was
successful on UNIQUE COVERAGE , which was another result of Guruswami and
Zhou that we converted to NP-hardness.

• FEEDBACK VERTEX SET: Under the UGC, there are two different proofs showing
that FEEDBACK VERTEX SET does not admit a constant factor approximation al-
gorithm. The first one is given by Guruswami et al. [GMR08] based on the tools
for MAX CSP, and the other is given by Svensson [Sve13]. This thesis contains the
further simplification of Svensson’s proof that inspires length-control dictatorship
tests for other problems. We believe that proof of the same statement without the
UGC will reveal many applications beyond FEEDBACK VERTEX SET.

19.2.2 Packing and Assignment Problems

Other than CSPs, coloring, covering, and cut problems mainly studied in this thesis, pack-
ing problems and assignment (scheduling) problems form other major classes of combi-
natorial optimization problems that have been actively studied. The following problems
are outstanding open problems in these classes where the best approximation ratio and the
hardness ratio are far apart. For these problems, tight hardness even assuming the UGC is
not known.

• Min-Max and Max-Min Allocation: MINMAX ALLOCATION and MAXMIN ALLO-
CATION are also fundamental optimization problems that have resisted attempts to
understand their approximability. MAXMIN ALLOCATION admit anO(nε)-approximation
algorithm while the best hardness remains at 2 [BCG09, CCK09]. MINMAX ALLO-
CATION is also known as SCHEDULING UNRELATED PARALLEL MACHINES, and
the optimal approximation ratio is between 1.5 and 2 [LST90]. The best hardness
results are achieved via a simple reduction from 3-SAT. It would be interesting to
see the modern theory of hardness of approximation is applicable to these problems.

• k-SET PACKING and disjoint path problems: Our results for cut and interdiction
problems are based on the solid understanding of k-HYPERGRAPH VERTEX COVER,
which is UG-hard to approximate within a factor k− ε and NP-hard to approximate
within a factor k − 1 − ε. k-SET PACKING has a larger gap between algorithms
and hardness, where the best algorithm achieves k+1

3
[Cyg13] and the best hard-

ness remains at Ω( k
log k

) [HSS06]. MAXIMUM INDEPENDENT SET ON k-REGULAR
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GRAPHS is an important special case that is also hard to approximate within a fac-
tor Ω( k

polylog(k)
) [AKS09, Cha13]. These hardness results use different techniques.

We believe that more unified understanding of k-SET PACKING and its special cases
will lead to tighter results for k-SET PACKING itself as well as its important variants.

One special case is the following natural disjoint paths problems: Given an undi-
rected graph G and two pairs of terminals (s1, t1), (s2, t2), how can we find one path
from s1 to t1 and as many paths from s2 to t2, where all paths must be internally
vertex disjoint? What if we want to find the same number of s1-t1 paths and s2-t2
paths?

19.2.3 FPT Approximation

Like the notion of approximation algorithms, fixed parameter tractable (FPT) algorithms
are another natural notion that is designed to cope with NP-hardness of numerous combi-
natorial optimization problems. While the size of the input n is the only parameter in the
traditional combinatorial optimization, a parameterized optimization problem comes with
another natural parameter k, and an algorithm is called FPT if it runs in time f(k) · nO(1)

for some computable function f . While the FPT literature has mainly focused on the exact
optimization, there are many interesting parameterized optimization problems that can be
studied using the lens of approximation algorithms. Our results for k-PATH TRANSVER-
SAL and k-VERTEX SEPARATOR indeed give FPT approximation algorithms parameter-
ized by k. Another interesting problem in this direction is the following fundamental
problem discussed in Vazirani’s textbook [Vaz01].

EDGE k-CUT

Input: A graph G = (V,E).

Output: F ⊆ E such that the subgraph (V,E \ F ) has at least k connected compo-
nents.

Goal: Minimize |F |.

When k is a constant, this problem admits nΘ(k)-time algorithm that computes an op-
timal F [GH94, KS96]. It also admits an exact FPT algorithm whose running time is
f(Opt) ·nO(1) [KT11], where Opt denotes the size of the optimal k-cut. In the approxima-
tion algorithms literature, there is a 2-approximation algorithm [GBH00] whose running
time is nO(1) even for large values of k. Assuming the Small Set Expansion Hypothesis,
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it is NP-hard to have a (2− ε)-approximation algorithm for any ε > 0 [Man17]. It would
be interesting to study whether (2 − ε)-approximation for some ε > 0 is fixed parame-
ter tractable when parameterized by only k; a simple reduction from CLIQUE shows that
it is W[1]-hard to find the exact optimum when parameterized by k, but computing an
(1 + ε)-approximate solution for any ε > 0 may be in FPT.

19.2.4 Continuous Problems

Optimization problems are studied in a wide range of academic fields outside theoretical
computer science such as machine learning and economics. While the notion of approxi-
mation algorithms in the theory community have been mainly associated with combinato-
rial optimization problems, these fields other motivate numerous continuous optimization
problems, where the domain of feasible solutions is an inherently continuous set. Some
problems, including clustering problems in the Euclidean space, have both continuous and
combinatorial flavors. GRAPH PRICING is another example.

Often the approximabilities of these problems are not well understood and the tech-
niques for the combinatorial problems are not easily applicable to these continuous prob-
lems. We believe that these continuous optimization problems enrich the field of approx-
imation algorithms not only by giving new, practically relevant problems but also by re-
vealing fundamental algorithmic and complexity-theoretic aspects of optimization that are
not easily observable in combinatorial problems. We elaborate on three of my results on
these problems that were not included in the thesis.

• Polynomial Optimization: In a recent work with Bhattiprolu, Guruswami, Ghosh
and Tulsiani [BGG+16], we studied the problem of maximizing an n-variate degree-
d homogeneous polynomial f over the unit sphere. Besides being a natural and
fundamental problem in its own right, it has connections to widely studied questions
in many other areas including quantum information theory (via Quantum Merlin-
Arthur games [BH13, BKS14]), Small Set Expansion Hypothesis and the Unique
Games Conjecture (via 2→ 4 norm [BBH+12, BKS14]), and tensor decomposition
and PCA [BKS15, GM15, MR14, HSS15, MSS16].

Our results include Õ((n
q
)d/2−1)-approximation algorithms for general polynomials,

and Õ((n
q
)d/4−1/2)-approximation algorithms for polynomials with nonnegative co-

efficients and random polynomials. Our lower bounds do not currently match the
upper bounds, and it is an interesting open problem to close this gap.

• Clustering: k-MEANS is one of the most fundamental clustering problems, but its op-
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timal approximation ratio is still not well understood. While the best approximation
algorithm achieves 6.357-approximation [ANFSW16], we proved the current best
NP-hardness ratio 1.0013, improving over Awasthi et al. [ACKS15]. The bottleneck
of proving stronger hardness result is that the problem is defined in the Euclidean
space Rn, which makes it difficult to embed hard combinatorial problems without
much loss. Indeed, our hard instances are based on VERTEX COVER in 3-regular
graphs and extremely sparse — each point is in the hypercube {0, 1}d and has 1 in
exactly two coordinates, and each coordinate has exactly three points with 1 there.
This sparsity prevents loss incurred by embedding VERTEX COVER to k-MEANS,
even though VERTEX COVER in 3-regular graphs has a good approximation algo-
rithm. We believe that a carefully designed special case of hypergraph vertex cover
problem, with lossless embedding technique would yield a better inapproximability
result for k-MEANS.

• Sparse Birkhoff-Von Neuman Decomposition: With Janardhan Kulkarni and Mo-
hit Singh [KLS17], we studied the following problem. Given a bipartite graph
G = (V,E), and a point x ∈ [0, 1]E in its matching polytope, find the convex decom-
position x =

∑k
i=1 λiMi, with minimum k such that λi ≥ 0 for each i,

∑
i λi = 1,

and each Mi is an integral matching. We proved that an O(log k)-approximation is
possible when the optimal sparsity k is constant, and also showed that the problem
remains NP-hard in that case.

This problem has applications in routing and switch scheduling. Indeed, the ques-
tion of writing the given point as a sparse convex combination of vertices can be
asked in any polytope. When the polytope is [0, 1]n, we can recover the optimal
decomposition when k is constant, but approximabilities for large k is open. We
believe that this question is worth further research effort.
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[EGT92] Paul Erdős, Tibor Gallai, and Zsolt Tuza. Covering the cliques of a graph
with vertices. Discrete Mathematics, 108(1):279–289, 1992. 12.3
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[RU01] Thomas J Richardson and Rüdiger L Urbanke. The capacity of low-density
parity-check codes under message-passing decoding. IEEE Transactions on
Information Theory, 47(2):599–618, 2001. 2.2.2, 8.1

[RU08] Tom Richardson and Ruediger Urbanke. Modern coding theory. Cambridge
University Press, 2008. 8.1

[RV98] Sridhar Rajagopalan and Vijay V Vazirani. Primal-dual rnc approximation
algorithms for set cover and covering integer programs. SIAM Journal on
Computing, 28(2):525–540, 1998. 14.1

[SA90] H. Sherali and W. Adams. A hierarchy of relaxations between the contin-
uous and convex hull representations for zero-one programming problems.
SIAM Journal on Discrete Mathematics, 3(3):411–430, 1990. 1.2, 2.2.3,
3.4.1, 7.1, 8.1

[Sak14] Rishi Saket. Hardness of finding independent sets in 2-colorable hyper-
graphs and of satisfiable csps. In Proceedings of the 29th annual IEEE
Conference on Computational Complexity, CCC ’14, pages 78–89, 2014.
9.3

[Sch58] Ludwig Schläfli. On the multiple integral
∫
· · ·
∫

dx dy... dz, whose limits are
p1 = a1x+b1y+· · ·+h1z > 0, p2 > 0, ..., pn > 0, and x2+y2+· · ·+z2 <
1. Quart. J. Math, 2(1858):269–300, 1858. 11.1

[Sch78] Thomas Schaefer. The complexity of satisfiability problems. In Proceedings
of the 10th annual ACM Symposium on Theory of Computing, STOC ’78,
pages 216–226, 1978. 2.1.1, 4.1, 5.1.1

[Sch03] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency,
volume 24. Springer, 2003. 1.1, 2.5.3, 16.2

427



[Sch05] Alexander Schrijver. On the history of combinatorial optimization (till
1960). In G.L. Nemhauser K. Aardal and R. Weismantel, editors, Discrete
Optimization, volume 12 of Handbooks in Operations Research and Man-
agement Science, pages 1 – 68. Elsevier, 2005. 1.1

[Sch08] G. Schoenebeck. Linear level Lasserre lower bounds for certain k-CSPs. In
Proceedings of the 49th annual IEEE symposium on Foundations of Com-
puter Science, FOCS ’08, pages 593–602, Oct 2008. Newer version avail-
able at the author’s homepage. 1.2, 8.1, 8.1.1, 8.3, 8.3, 8.3

[Sey95] P. D. Seymour. Packing directed circuits fractionally. Combinatorica,
15(2):281–288, 1995. 12.3

[SLK14] Erfang Shan, Zuosong Liang, and Liying Kang. Clique-transversal sets
and clique-coloring in planar graphs. European Journal of Combinatorics,
36:367–376, 2014. 12.3

[Spe85] Joel Spencer. Six standard deviations suffice. Transactions of the American
Mathematical Society, 289(2):679–706, 1985. 9.1

[SPG13] J Cole Smith, Mike Prince, and Joseph Geunes. Modern network interdic-
tion problems and algorithms. In Handbook of Combinatorial Optimization,
pages 1949–1987. Springer, 2013. 16.2

[SS94] Michael Sipser and Daniel A Spielman. Expander codes. In Proceedings
of the 35th annual IEEE symposium on Foundations of Computer Science,
FOCS 1994, pages 566–576, 1994. 2.2.2, 8.1

[SS13] S. Sachdeva and R. Saket. Optimal inapproximability for scheduling prob-
lems via structural hardness for hypergraph vertex cover. In Proceedings of
the 28th annual IEEE Conference on Computational Complexity, CCC ’13,
pages 219–229, 2013. 9.2.1, 9.3

[SSZ04] Michael Saks, Alex Samorodnitsky, and Leonid Zosin. A lower bound on
the integrality gap for minimum multicut in directed networks. Combina-
torica, 24(3):525–530, 2004. 16.3, 17.2, 17.2

[ST09] Alex Samorodnitsky and Luca Trevisan. Gowers uniformity, influence of
variables, and PCPs. SIAM Journal on Computing, 39(1):323–360, 2009.
10.2.2, 10.2.3, 19.2.1

428



[Sti08] Henning Stichtenoth. Algebraic function fields and codes. GMT 254,
Springer-Varlg, Berlin, 2008. 3

[STT07] Grant Schoenebeck, Luca Trevisan, and Madhur Tulsiani. Tight integrality
gaps for Lovasz-Schrijver LP relaxations of vertex cover and max cut. In
Proceedings of the 39th annual ACM Symposium on Theory of Computing,
STOC ’07, pages 302–310, 2007. 7.5.1

[Sve13] Ola Svensson. Hardness of vertex deletion and project scheduling. Theory
of Computing, 9(24):759–781, 2013. Preliminary version in APPROX ’12.
2, 4.4, 4.4.1, 7.1.2, 12.3, 16.3, 19.2.1

[Tod12] Michael J. Todd. Cornell ORIE6327: Semidefinite programming. Lecture
8-10, 2012. 3.4.3

[Tre05] Luca Trevisan. Inapproximability of combinatorial optimization problems.
Paradigms of Combinatorial Optimization, 2nd Edition, pages 381–434,
2005. 3.1

[Tre12] Luca Trevisan. On khots unique games conjecture. Bull. Amer. Math.
Soc.(NS), 49(1):91–111, 2012. 3.2

[TSSW00] Luca Trevisan, Gregory B Sorkin, Madhu Sudan, and David P Williamson.
Gadgets, approximation, and linear programming. SIAM Journal on Com-
puting, 29(6):2074–2097, 2000. 1.2.1

[Tul09] Madhur Tulsiani. CSP gaps and reductions in the Lasserre hierarchy. In
Proceedings of the 41st annual ACM Symposium on Theory of Computing,
STOC ’09, pages 303–312, 2009. 1.2, 5.1.1, 8.1.1, 8.3, 8.3, 8.3, 8.3, 8.5

[Tur41] Paul Turán. On an extremal problem in graph theory. Mat. Fiz. Lapok,
48(436-452):137, 1941. 13.3.2

[Tuz91] Zsolt Tuza. Covering all cliques of a graph. In S.T. Hedetniemi, editor,
Topics on Domination, volume 48 of Annals of Discrete Mathematics, pages
117 – 126. Elsevier, 1991. 12.3

[TV15] L. Tseng and N. Vaidya. Fault-Tolerant Consensus in Directed Graphs. In
Proceedings of the 2015 ACM Symposium on Principles of Distributed Com-
puting (PODC 2015), pages 451–460, 2015. 2.5.3, 16.2

429



[TZ11] Jianhua Tu and Wenli Zhou. A factor 2 approximation algorithm for the
vertex cover p3 problem. Information Processing Letters, 111(14):683–686,
2011. 12.2.1

[Vaz01] Vijay V. Vazirani. Approximation algorithms. Springer, 2001. 1.2.1, 3.1,
19.2.3

[Vid13] Michael Viderman. LP decoding of codes with expansion parameter above
2/3. Information Processing Letters, 113(7):225–228, 2013. 6

[Wen13] Cenny Wenner. Circumventing d-to-1 for approximation resistance of sat-
isfiable predicates strictly containing parity of width four. Theory of Com-
puting, 9(23):703–757, 2013. 3.1, 1, 9.3, 10.1.1, 10.1.1, 10.2.1, 10.2.1, 1,
10.4.3, 10.4.3, 10.4.3, 10.4.3, 17.6, 17.6.2

[Wen14] Cenny Wenner. Parity is positively useless. In Approximation, Random-
ization, and Combinatorial Optimization. Algorithms and Techniques: The
17th. International Workshop on Approximation Algorithms for Combinato-
rial Optimization Problems, pages 433–448. Schloss Dagstuhl, 2014. 9.1

[Wig83] Avi Wigderson. Improving the performance guarantee for approximate
graph coloring. Journal of the ACM (JACM), 30(4):729–735, 1983. 1.2.1,
11.3.2

[Wil13] Ryan Williams. Stanford CS266: Parameterized algorithms and complexity.
Lecture 4, 2013. 15.3

[WS11] David P Williamson and David B Shmoys. The design of approximation
algorithms. Cambridge university press, 2011. 1.2.1, 3.1

[Ye01] Yinyu Ye. A .699-approximation algorithm for Max-Bisection. Mathemati-
cal Programming, 90(1):101–111, 2001. 4.3.2

[Yus07] Raphael Yuster. Combinatorial and computational aspects of graph packing
and graph decomposition. Computer Science Review, 1(1):12 – 26, 2007.
12.3

[Yus14] R. Yuster. Edge-disjoint cliques in graphs with high minimum degree. SIAM
Journal on Discrete Mathematics, 28(2):893–910, 2014. 12.3

430



[YZ14] Yuichi Yoshida and Yuan Zhou. Approximation schemes via sherali-adams
hierarchy for dense constraint satisfaction problems and assignment prob-
lems. In Proceedings of the 5th conference on Innovations in Theoretical
Computer Science, pages 423–438. ACM, 2014. 2.2.3, 7.1

[Zwi98a] Uri Zwick. Approximation algorithms for constraint satisfaction problems
involving at most three variables per constraint. In Proceedings of the 9th
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA ’98, pages
201–210, 1998. 5.1.1, 11.1

[Zwi98b] Uri Zwick. Finding almost-satisfying assignments. In Proceedings of the
30th annual ACM Symposium on Theory of Computing, STOC ’98, pages
551–560, 1998. 4.1, 4.2.2

431


	1 Introduction
	1.1 Combinatorial Optimization
	1.2 Approximation Algorithms
	1.2.1 Three Examples

	1.3 This Thesis
	1.3.1 Expanding the Range of Problems
	1.3.2 Methods and Tools

	1.4 Previous Versions and Credits

	2 Problems and Summary of Results
	2.1 Constraint Satisfaction Problems
	2.1.1 Hard / Balanced CSPs
	2.1.2 Symmetric CSPs

	2.2 Applied CSPs
	2.2.1 Unique Coverage
	2.2.2 Decoding LDPC Codes
	2.2.3 Graph Pricing

	2.3 Hypergraph Coloring
	2.3.1 Min Coloring
	2.3.2 Max 2-Coloring

	2.4 Subgraph Transversal and Graph Partitioning
	2.4.1 H-Transversal / Packing
	2.4.2 Partitioning a Graph into Small Pieces

	2.5 Cut Problems
	2.5.1 Directed Multicut
	2.5.2 Bicuts
	2.5.3 Double Cuts
	2.5.4 Node k-Cut and Vertex Cover on k-partite Graphs
	2.5.5 Length-Bounded Cut/ Shortest Path Interdiction
	2.5.6 RMFC


	3 Preliminaries
	3.1 Label Cover
	3.2 Unique Games
	3.3 Fourier Analysis
	3.3.1 Dictatorship Tests for Vertex Cover

	3.4 LP/SDP and Integrality Gaps
	3.4.1 Relaxations for CSP and Hierarchies
	3.4.2 Relaxations for Covering
	3.4.3 Relaxations for Coloring


	I Constraint Satisfaction Problems
	4 Balance / Hard CSP
	4.1 Introduction
	4.1.1 Our Results
	4.1.2 Organization

	4.2 CSP with hard constraints
	4.2.1 Hard 2-SAT
	4.2.2 Hard Horn SAT

	4.3 Balance Constraints
	4.3.1 Hardness Results
	4.3.2 Algorithmic Results

	4.4 Ordering with Hard Constraints
	4.5 Discussion

	5 Symmetric CSP
	5.1 Introduction
	5.1.1 Related Work
	5.1.2 Our Results
	5.1.3 Techniques
	5.1.4 Organization

	5.2 Symmetric CSPs without Negation
	5.2.1 A 2-dimensional Characterization
	5.2.2 Algorithm
	5.2.3 Case of Interval S
	5.2.4 Case of Even S

	5.3 Approximability of Symmetric CSPs with Negation
	5.4 Austrin-Håstad Condition for Symmetric CSPs


	II Applied CSPs
	6 Unique Coverage
	6.1 Introduction
	6.1.1 Techniques
	6.1.2 Preliminaries

	6.2 Reduction from Label Cover
	6.2.1 Completeness
	6.2.2 Soundness

	6.3 Main Results
	6.3.1 1-in-k Hitting Set for Constant k
	6.3.2 Unique Coverage


	7 Graph Pricing
	7.1 Introduction
	7.1.1 Our Results
	7.1.2 Related Work and Our Techniques
	7.1.3 Organization

	7.2 Preliminaries
	7.3 Reduction from Generalized Max Dicut to Graph Pricing
	7.4 Approximability of Generalized Max Dicut
	7.4.1 Dictatorship Test
	7.4.2 Completeness and Soundness
	7.4.3 Reduction from Unique Games

	7.5 Integrality Gaps for Generalized Max Dicut
	7.5.1 Obtaining a Good Instance
	7.5.2 Constructing (Inconsistent) Local Distributions
	7.5.3 Geometric Embedding and Rounding

	7.6 (14 + (1T))-Approximation Algorithm for Generalized Max Dicut
	7.7 Proofs of Lemmas about Gaussians

	8 LDPC Decoding
	8.1 Introduction
	8.1.1 Proof Techniques
	8.1.2 Organization

	8.2 Preliminaries
	8.3 Solutions from Desired Structures
	8.4 Decoding Random (dv,dc)-LDPC Codes
	8.4.1 Distributions for Sherali-Adams
	8.4.2 Subgroups for Lasserre

	8.5 Hypergraph Vertex Cover
	8.6 Discussion


	III Coloring
	9 Coloring Overview
	9.1 Introduction
	9.2 Our Results
	9.2.1 Min Coloring
	9.2.2 Max 2-Coloring

	9.3 Related Work
	9.4 Organization

	10 Hardness of Coloring
	10.1 Techniques
	10.1.1 Techniques

	10.2 Preliminaries
	10.2.1 Correlated Spaces
	10.2.2 Operators
	10.2.3 Functions and Influences
	10.2.4 Blocks
	10.2.5 Q-Hypergraph Label Cover
	10.2.6 (Q+1)-Bipartite Hypergraph Label Cover
	10.2.7 Multilayered Label Cover

	10.3 Reverse Hypercontractivity
	10.4 Hardness of Rainbow Coloring
	10.4.1 Distributions
	10.4.2 Reduction and Completeness
	10.4.3 Soundness

	10.5 k-Hypergraph Vertex Cover
	10.5.1 Distribution
	10.5.2 Reduction and Completeness
	10.5.3 Soundness
	10.5.4 Distribution for Theorem 9.2.4

	10.6 Q-out-of-(2Q+1)-SAT 
	10.6.1 Distribution
	10.6.2 Reduction and Completeness
	10.6.3 Soundness

	10.7 Hardness of Max 2-Coloring under Low Discrepancy
	10.7.1 Reduction from Max Cut
	10.7.2 NP-Hardness
	10.7.3 Hardness under Almost Colorability


	11 Algorithms for Coloring
	11.1 Algorithmic Techniques
	11.2 Approximate Max 2-Coloring
	11.2.1 Semidefinite Relaxations
	11.2.2 Setup of Analysis
	11.2.3 Gaussian Measure of Simplicial Cones
	11.2.4 Analysis of Hyperplane Rounding given Strong Colorability
	11.2.5 Analysis of Hyperplane Rounding given Rainbow Colorability

	11.3 Approximate Min Coloring
	11.3.1 Approximate Min Coloring in Bounded Degree Hypergraphs
	11.3.2 Main Min Coloring Result
	11.3.3 Degree Redution under Strong Colorability
	11.3.4 Degree Reduction under Low Discrepancy
	11.3.5 Degree Reduction under Rainbow Colorability



	IV Subgraph Transversal and Graph Partitioning
	12 Subgraph Transversal Overview
	12.1 Introduction
	12.2 Problems and Our Results
	12.2.1 H-Transversal and H-Packing
	12.2.2 Graph Partitioning

	12.3 Related Work and Special Cases
	12.3.1 Organization


	13 Hardness of H-Transversal / Packing
	13.1 Preliminaries
	13.2 H-Transversal
	13.3 H-Packing and MIS-k-g
	13.4 Hardness for Longer Cycles and Connection to FVS
	13.5 Hardness of k-Vertex Separator 

	14 Algorithms for k-Star Transversal
	14.1 Approximation Algorithm for k-Star Transversal

	15 Algorithms for k-Vertex Separator and k-Path Transversal
	15.1 Techniques
	15.2 Algorithm for k-Vertex Separator 
	15.2.1 Spreading Metrics
	15.2.2 Low-diameter Decomposition

	15.3 k-Path Transversal
	15.4 k-Subset Vertex Separator 
	15.4.1 Low-diameter Decomposition

	15.5 Algorithm for k-Edge Separator 
	15.5.1 Spreading Metrics
	15.5.2 Low-diameter Decomposition



	V Cut Problems
	16 Cut Problems Overview
	16.1 Introduction
	16.2 Problems and Results
	16.3 Techniques
	16.4 Organization.
	16.5 Combinatorial Reductions

	17 Dictatorship Tests for Cut Problems
	17.1 Preliminaries
	17.2 Directed Multicut
	17.2.1 Directed Multicut with a Fixed Demand Graph

	17.3 s-t Node Double Cut
	17.3.1 LP Gap
	17.3.2 Dictatorship Test

	17.4 Node Double Cut
	17.5 Vertex Cover on k-partite Graphs
	17.6 Shortest Path Edge Cut
	17.7 Short Path Vertex Cut
	17.8 RMFC

	18 Reduction from Unique Games to Cut Problems
	18.1 General Reduction
	18.2 Completeness
	18.3 Soundness for Cut / Interdiction Problems
	18.3.1 Soundness for RMFC

	18.4 Final Results

	19 Concluding Remarks: What Now?
	19.1 Yet Another Summary
	19.2 Future Directions Beyond This Thesis
	19.2.1 Bypassing the Unique Games Conjecture
	19.2.2 Packing and Assignment Problems
	19.2.3 FPT Approximation
	19.2.4 Continuous Problems


	Bibliography


