
Communities and Anomaly Detection in
Large Edge-Labeled Graphs

Miguel Araujo

CMU-CS-17-110

May 2017

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Computer Science Department
Faculty of Sciences
University of Porto

4169-007 Porto, Portugal

Thesis Committee:
Christos Faloutsos, co-chair

William Cohen
Aarti Singh

Pedro Ribeiro, co-chair, University of Porto
Tina Eliassi-Rad, Northeastern University

Beatriz Santos, University of Aveiro
Alexandre Francisco, University of Lisbon

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2017 Miguel Araujo

This research was sponsored by “Fundação para a Ciência e Tecnologia” (Portuguese Foundation for
Science and Technology) through the Carnegie Mellon Portugal Program under grant BD/52362/2013 and
the Information and Communication Technology Institute at Carnegie Mellon University. The views and
conclusions contained in this document are those of the author and should not be interpreted as representing
the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any
other entity.

Keywords: Graph Mining, Time-Evolving Networks, Community Detection, Anomaly
Detection, Tensor Factorization

To my loving family.

iv

Abstract
The identification of anomalies and communities of nodes in real-world

graphs has applications in widespread domains, from the automatic catego-
rization of wikipedia articles or websites to bank fraud detection. While recent
and ongoing research is supplying tools for the analysis of simple unlabeled
data, it is still a challenge to find patterns and anomalies in large labeled
datasets such as time evolving networks. What do real communities identified
in big networks look like? How can we find sources of infections in bipartite
networks? Can we predict who is most likely to join an online discussion on a
given topic?

We model interaction networks using appropriate matrix and tensor repre-
sentations in order to gain insights into these questions. We incorporate edge
attributes, such as timestamps in phone-call networks or airline codes in flight
networks, and complex node side-information, such as who-retweets-whom in
order to understand who uses a given hashtag on Twitter. We provide three
major contributions:

1. Hyperbolic communities: Our exploration of real communities provides
novel theoretical ideas regarding their structure, and we show how typ-
ical long-tail degree distributions can be leveraged to create efficient
algorithms on problems that seem to suffer from quadratic explosion.

2. Anomaly detection: Novel distributed algorithms that identify problematic
nodes whose influence can only be detected on their neighbors, validated
through the analysis of data breaches in bank transactions.

3. Forecasting: New techniques that forecast network evolution by incor-
porating contextual side-information and the evolution of independent
community structures.

Leveraging these techniques, we explore massive datasets such as networks
with billions of credit card transactions, Twitter graphs with over 300 million
interactions and phone-call networks with over 50 million phone-calls.

vi

Resumo
A identificação de anomalias e comunidades em grafos tem aplicações em

variados domínios, desde a categorização automática de artigos na Wikipedia
à detecção de fraude bancária. Apesar de investigação recente fornecer ferra-
mentas para a análise de dados não-anotados, ainda é um desafio encontrar
padrões e anomalias em grandes volumes de dados anotados, como redes
temporais. Qual é a forma das comunidades identificadas em redes de grande
dimensão? Como podemos encontrar a fonte de infecções em grafos bipar-
tidos? Conseguimos prever que utilizador é mais provável juntar-se a uma
discussão online num determinado tópico?

Obtemos resposta a estas perguntas através da modelação de redes de in-
teração recorrendo a matrizes e tensores. Incorporamos atributos das arestas,
como a data e hora de chamadas em redes telefónicas ou códigos de compa-
nhias aéreas em redes de voos, e informação auxiliar relativa aos nós, tal como
quem-retweeta-quem para compreender quem usar uma determinada hashtag
no Twitter. Apresentamos três contribuições principais:

1. Comunidades hiperbólicas: A exploração de comunidades reais fornece
novas ideias teóricas em relação à sua estrutura, e mostramos como as
típicas distribuições heavy-tail do grau dos nós podem ser usadas para
criar algoritmos eficientes para problemas que tipicamente sofrem de
explosão quadrática na sua computação.

2. Detecção de anomalias: Novos algoritmos distribuídos que identificam nós
problemáticos cuja influência só pode ser detectada nos vizinhos, valida-
dos através da análise de falhas de segurança em transacções bancárias.

3. Previsão: Novas técnicas para a previsão da evolução de redes, incor-
porando informação contextual e a evolução de várias comunidades de
forma independente.

Recorrendo a estas técnicas, explorando conjuntos de dados massivos como
redes com milhares de milhões de transacções de cartões de crédito, grafos
do Twitter com mais de 300 milhões de interacções e redes de chamadas
telefónicas com mais de 50 milhões de chamadas.

Acknowledgements

This 5-years effort would not have been possible without all the strong people in my life
pushing me ahead. Their support, influence and inspiration is part of this thesis and makes
it as much theirs as it is mine. The role my advisors played will shape my personality
and my life going forward. I want to thank Christos Faloutsos, who is simultaneously
the happiest and most hardworking man I know. His advice and pertinent questions
continued regardless of physical proximity. He was never too busy, even if that meant
short-notice skyping on weekends or a midnight push for a deadline. Pedro’s guidance
was different, less formal. He made sure to set up the right opportunities, the summer
internship, the connection with students, the teaching. Finally, I consider Prof. Fernando
Silva my unofficial advisor. He is the person we look up to and his experience improves
those around him.

I would like to thank the members of my committee, Aarti Singh, William Cohen, Tina
Eliassi-Rad, Beatriz Santos and Alexandre Francisco. I appreciate the meaningful feedback
you gave me and the insightful questions during my thesis proposal. In particular, I would
like to thank Alexandre for giving me the opportunity of showcasing my work to his
students in Lisbon.

A relevant part of this dissertation is based on work I did during my internship at
Feedzai. Many companies would not be willing to share their methods and results as
openly as they were, so I’m particularly grateful to Pedro Bizarro for that opportunity.

A fundamental part of graduate school are the bonds you create when you are not
doing research. I want to thank Danai Koutra, Vagelis Papalexakis and Alex Beutel for
showing me the way. I still look up to you. Also, all the younger members of the databases
group: Jay-Yoon Lee (thanks for introducing me to Korean barbecue!), Neil Shah, Dhivya
Eswaran (thanks for that peculiar skype call!), Hyun-Ah Song, Bryan Hooi and Kijung
Shin. Also, the Portuguese gang in Pittsburgh: João and Diana, who lent me their couch
for more than one night, Luis, Hugo Pinto, Hugo Gonçalves, João Semedo and Bruno
Vavala, the undercover Italian. In Portugal, the 1.18 lunch crew and soccer team: David,
Pedro Paredes, Miguel and Catarina, Pedro Ferreira, Chris and Sadiq. Our lunch-time
discussions are now countless and invaluable.

All the administrative support I got from Marilyn Walgora and Deb Cavlovich in
Pittsburgh still amazes me. How can you know all the answers? In Portugal, Alexandra
and Isabel have probably booked me more meeting rooms than for many professors who
have been at the department for decades.

Many others have been directly or indirectly responsible and without whom this
dissertation would not have been possible: San-Chuan Hung, Rosaldo Rossetti, Stephan

viii

Günnemann, Gonzalo Mateos, Spiros Papadimitriou, Prithwish Basu, Ananthram Swami,
Miguel Almeida, João Oliveirinha, Jaime Ferreira, Luis Silva.

Finally, the most important. My family supported me beyond what many would believe
possible. Joana. Who else would travel across the ocean to be my side when it mattered
the most? My parents and my brother, always there, eager to hear the latest news, answer
my skype calls and celebrate my successes. My grandparents. I love you even when you
call me in the middle of the night, not realizing I’m in a different time zone. You believe
I’m the best, even though you don’t understand a thing I do. Lastly, my second family: my
parents-in-law. You treat me as your own and I shall only respond in kind.

Nobody knows what the future holds, but success is all but guaranteed when so many
people look after you.

ix

x

Contents

1 Introduction 1
1.1 Part I: Networks and Matrices . 2
1.2 Part II: Labeled Networks and Tensors . 5
1.3 Overall Impact . 7

2 Background 9
2.1 Networks . 9

2.1.1 Common Definitions . 9
2.1.2 Properties . 10
2.1.3 Sampling . 11

2.2 Learning and Other Techniques . 12
2.2.1 Factorizations and Objective Functions 12
2.2.2 Bayesian Models . 13
2.2.3 Minimum Description Length (MDL) 13

2.3 Matrices and Spectral Methods . 14
2.3.1 Singular Value Decomposition . 15
2.3.2 Non-Negative Matrix Factorization 15
2.3.3 Co-clustering . 16

2.4 Tensors . 16
2.4.1 Tensor Operations . 17
2.4.2 Tensor Factorizations . 18
2.4.3 Rank-1 Decompositions . 19
2.4.4 Coupled Factorizations . 20

2.5 Notation and Common Symbols . 22

I Networks and Matrices 23
I Related Work: Community Detection . 25

xi

I.1 Methods . 26
I.2 Applications . 30
I.3 Challenges: No good cuts . 30

II Related Work: Decomposition of Boolean Matrices 32

3 Hyperbolic Communities 33
3.1 Empirical Observations . 34
3.2 Hyperbolic Community Model . 37

3.2.1 Community Definition . 37
3.2.2 MDL Description Cost. 38

3.3 Proposed Method: HYCOM-FIT . 40
3.3.1 Fast MDL calculation . 43
3.3.2 Complexity analysis . 45

3.4 Experiments on Real Data . 45
3.4.1 Q1 - Model quality . 45
3.4.2 Q2 - Scalability . 46
3.4.3 Q3 - Effectiveness . 47

3.5 Summary . 49

4 Scalable Boolean Matrix Factorization 51
4.1 Problem Definition . 53

4.1.1 Formal Objective . 53
4.1.2 Step Matrix Decomposition . 54

4.2 Naive Approach: FASTSTEPNAIVE . 54
4.2.1 Stopping Criteria . 55
4.2.2 Complexity . 57

4.3 Proposed Method: FastStep . 57
4.3.1 Fast Gradient Calculation . 57
4.3.2 Fast Error Function Evaluation . 58
4.3.3 Complexity . 59
4.3.4 Obtaining clusters from A and B . 60

4.4 Experimental Evaluation . 60
4.4.1 Q1 - Scalability . 61
4.4.2 Q2 - Low Reconstruction Error . 61
4.4.3 Q3 - Discoveries . 63

4.5 Related Work . 65
4.6 Summary . 65

xii

5 Detecting Points-of-Compromise 67
5.1 Problem Definition . 69
5.2 POC-detection Algorithm . 70

5.2.1 A POC Hierarchical Model . 71
5.2.2 From Blames to POC Probabilities 71
5.2.3 From POC Probabilities to Blames 73
5.2.4 An Alternating Algorithm . 73
5.2.5 Convergence . 75

5.3 Distributed POC-detection . 75
5.4 Results . 77

5.4.1 Experimental Setup . 78
5.4.2 Empirical Evidence and Fraud Prevented 78
5.4.3 Accuracy and Early Detection . 79
5.4.4 Scalability . 81
5.4.5 Comparison . 81

5.5 Related Work . 82
5.5.1 Summary . 82
5.5.2 Real-time Fraud Detection . 83
5.5.3 Points-of-Compromise . 83
5.5.4 Guilt-by-association . 84
5.5.5 Vertex Cover . 85

5.6 Summary . 85

II Labeled Networks and Tensors 87
I Related Work: Communities in Edge-labeled Networks 89

I.1 Categorical Edge-labels . 89
I.2 Time-evolving Networks . 90

6 Communities in Labeled Networks 93
6.1 Problem Definition . 95
6.2 Algorithmic solution . 97

6.2.1 Community candidates . 98
6.2.2 Community construction . 99
6.2.3 Tensor deflation . 101
6.2.4 Complexity Analysis . 102
6.2.5 Algorithm parameters . 102

6.3 Experiments . 103

xiii

6.3.1 Q1 - Community Structure . 103
6.3.2 Q2 - Scalability . 105
6.3.3 Q3 - Discoveries on edge-labeled graphs 105
6.3.4 Q3 - Discoveries on time-labeled graphs 106

6.4 Summary . 110

7 Distributed Community Detection 113
7.1 Proposed System . 114

7.1.1 Factorization . 116
7.1.2 Thresholding . 116
7.1.3 Tensor Deflation . 116
7.1.4 Implementation Design . 117

7.2 Experiments . 119
7.2.1 Q1 - Precision . 119
7.2.2 Scalability . 120
7.2.3 Q4 - Discoveries . 124

7.3 Related Work . 125
7.4 Conclusion . 126

8 Forecasting Communities 127
8.1 Proposed Method: TENSORCAST . 128

8.1.1 Overview. 129
8.1.2 Non-negative Coupled Factorization 130
8.1.3 Forecasting . 131
8.1.4 Tensor Top-K elements . 131
8.1.5 Complexity Analysis. 134

8.2 Experiments . 135
8.2.1 Q1 - Scalability . 136
8.2.2 Q2 - Effectiveness and Context-awareness 136
8.2.3 Q3 - Trend Following . 136
8.2.4 Q4 - Precision over Time . 138
8.2.5 Discoveries - TENSORCAST at work 138

8.3 Related Work . 139
8.3.1 Top-K elements in Matrix Products 139
8.3.2 Power-laws as building blocks . 140
8.3.3 Link Prediction . 140

8.4 Summary . 141

xiv

III Conclusions and Future Directions 143

9 Conclusions 145
9.1 Networks and Matrices . 146
9.2 Labeled Networks and Tensors . 147
9.3 Overall Impact . 147

10 Vision and Future Directions 149
10.1 Systems: “Database Factorizations” . 149
10.2 Theory: Adversarial Anomalies . 150

Appendices

A BREACHRADAR - Additional details 153
A.1 Fraud Label Delays . 153
A.2 Multiple Points-of-Compromise . 153

Bibliography 155

xv

xvi

List of Figures

1.1 FASTSTEP agrees with intuition: community of world airports. 3
1.2 BREACHRADAR estimated savings: $2M USD in a 6-weeks period. 4
1.3 TENSORCAST’s precision when forecasting (author, venue) relations in the

DBLP tensor. 6

2.1 An example on minimum description length balance. On the left, a big
model without errors. On the right, a model with many errors to be encoded. 14

2.2 A three-mode tensor of Authors, Keywords and Venues. 16
2.3 A simple Coupled Matrix-Tensor Factorization. 20
2.4 Adjacency matrices of classical community definitions. 26
2.5 Algorithm characteristics: methods can be classified by their ability to find

overlapping or hierarchical communities. 27
2.6 Conductance of ground-truth communities. 31

3.1 Side-by-side: comparing a ground-truth community and one found by
HYCOM-FIT. 34

3.2 Big communities are sparse: number of nodes vs density in the DBLP dataset. 35
3.3 Big ground-truth communities are hyperbolic: community size vs α. 36
3.4 Adjacency Matrix of a synthetic Hyperbolic Community. 38
3.5 HYCOM requires less bits to encode ground-truth communities. 46
3.6 HYCOM-FIT scales linearly with the number of edges. 47
3.7 Example of anomalous community found by HYCOM-FIT. 47
3.8 HYCOM-FIT finds meaningful hyperbolic structures. 48
3.9 HYCOM-FIT finds bipartite cores and cliques. 48

4.1 FASTSTEP finds realistic hyperbolic communities. 52
4.2 FASTSTEP correctly split the airports of the world by geographic region. . . 52
4.3 FASTSTEP’s error function. 54
4.4 A small number of non-zeros approximates the gradient. 58
4.5 A small number of samples approximates the error. 59

xvii

4.6 Scalability: FASTSTEP has a running time linear on the number of non-zeros. 61
4.7 Competitors need to compute the threshold and naively require quadratic

time. 62
4.8 FASTSTEP successfully groups movies by genre. 63
4.9 European airports are intuitively split between major and secondary. . . . 64
4.10 Communities found follow a power-law distribution. 65

5.1 BREACHRADAR’s effectiveness and comparison to other methods. 68
5.2 Example of a bipartite network used as input to BREACHRADAR. 69
5.3 Plate notation of the probabilistic graphical model. 72
5.4 Impact of the prior on the point-of-compromise probability. 73
5.5 BREACHRADAR converges exponentially fast. 75
5.6 BREACHRADAR’s prior. 78
5.7 BREACHRADAR’s accuracy with varying probability of fraud. 80
5.8 BREACHRADAR’s speed-up and scalability. 81

6.1 COM2 detects competing airlines. 94
6.2 COM2: synthetic datasets used. 104
6.3 Experiments on synthetic data. 105
6.4 Regional communities of competing companies found using flight routes. . 107
6.5 Community in Europe. 108
6.6 Communities activity: weekly periodicity 110
6.7 LBNL community: Com2 detects research group collaborations. 111

7.1 Communities detected in flights dataset. 114
7.2 TeraCom: Overview. 115
7.3 Data scalability experiment. 121
7.4 Execution time vs outer-iterations. 122
7.5 Machine scalability. 123
7.6 Two clusters of different European airlines. 124

8.1 TENSORCAST’s effectiveness and scalability. 128
8.2 Overview of TENSORCAST. 130
8.3 TENSORCAST only checks a linear number of elements of the tensor. 134
8.4 Precision when forecasting novel relations in the TWITTER tensor. 137
8.5 Forecasting growth and decay. 137
8.6 TENSORCAST achieves higher precision at every forecasting horizon. . . . 138
8.7 Groups with similar interest on TWITTER. 139
8.8 The evolution and forecast of two example groups. 140

xviii

A.1 BREACHRADAR: label delays over time. 154

xix

xx

List of Tables

1.1 Thesis Overview. 2

2.1 Symbols and Notation used throughout this dissertation. 22

3.1 HYCOM: Summary of real-world networks used. 35

4.1 Datasets used to evaluate FASTSTEP. 60
4.2 Number of non-zeros in segments of the MovieLens10m dataset. 61
4.3 FASTSTEP: comparison of the squared error. 62
4.4 Automatic clustering of movies. 63
4.5 FASTSTEP: Comparison of decomposition methods. 66

5.1 Notation, symbols and definitions . 70
5.2 Several Points-of-Compromise identified in one of the datasets have also

been mentioned in news reports. 77
5.3 Overview of the two datasets used. Specific values masked for privacy. . . 78
5.4 Impact of the infection probability on the number of fraud-cards and possi-

ble Points-of-Compromise. 81
5.5 Comparison of BREACHRADAR with other methods. Properties are described

in section 5.5. 83

6.1 Networks used: two small synthetic networks and three large real networks.103
6.2 Comparison of community detection methods. 111

7.1 Dataset description: 2 synthetic and 3 real-world datasets. 119
7.2 Precision Experiment . 120

8.1 Summary of real-world networks used. 135
8.2 TENSORCAST integrates context and time-awareness. 142

xxi

xxii

List of Algorithms

1 HYCOM-FIT: Community Construction . 42

2 FASTSTEP: Gradient Descent . 56

3 BREACHRADAR . 74
4 Distributed BREACHRADAR . 76

5 COM2: Community Construction . 100

6 TERACOM . 115

7 TENSORCAST: Top-K Elements . 132

xxiii

xxiv

Chapter 1

Introduction

Graphs are widely used representations for modeling relationships between objects, both
concrete and abstract: they model cities and roads, people and their relations, neurons
and their synapses and many other interesting phenomena. These relationships aren’t
random. In real networks, nodes naturally organize into communities exhibiting a degree
of cohesiveness, as reported not only in social graphs [WF94b] but also in the World Wide
Web [FLG00] and in protein-protein interaction networks [SKJ06]. Anomaly detection in
these big graphs often involves the identification of common patterns and the detection
of outliers, i.e. situations in which these patterns don’t hold. In fact, some of the most
interesting patterns and outliers relate to the connections between entities, rather than
to their intrinsic properties: dense bipartite cores in user-reviews graphs might indicate
fraud, and dense bipartite cores in a social graph might indicate that some people are
buying followers. On the other hand, dense subgraphs in protein-protein interaction
networks aid in metabolic function identification, while in networks such as Wikipedia
they tend to represent articles on the same subject. As they help us describe so many rich
scenarios, the detection of domain-specific patterns (e.g., communities) and anomalies
helps us understand, explain and control these complex domains.

As our ability to collect data improves and as graphs grow bigger, making sense and
understanding these big structures requires new methods and tools that help us extract
useful information. In fact, even describing these structures is currently a challenge. What
is the typical structure of groups of nodes we consider useful? What do they look like and
how can we find them? How can we detect anomalous nodes in power-law networks,
such as attackers or sources of infection, when only some of their neighbors show signs
of their presence? How do we do any of this when we take into consideration that our
networks are dynamic and time-evolving? What time-evolving structures can we find?
Can we use this evolution to predict stable relations or to forecast novel interactions?

1

This work has two main directions: a) the focus on groups and communities and their
detection in static and time-evolving networks, using interpretable and scalable methods;
and b) anomaly detection and the forecasting of novel relations. We provide new insights
and techniques on both areas with impact on real-world applications.

This thesis is organized in two main parts: 1) networks and matrices and; 2) labeled
networks and tensors. We summarize the main problems of each part in the form of
questions in Table 1.1.

Table 1.1: Thesis Overview.

Part Research Problem Chapter

I: Networks and Matrices

Community Structure: What is the structure of
real-world communities? How can we find them?

3, 4

Points-of-Compromise: Can we detect sources of
data breaches or infections in billion-sized datasets?

5

II: Labeled Networks
and Tensors

Temporal Communities: What are typical patterns
of temporal communities? How can we find them?

6

Forecasting Relationships: Can we forecast novel
relationships when context is available?

8

1.1 Part I: Networks and Matrices

We analyze local structures and communities in an effort to better understand individual
nodes in a network. What patterns do meaningful groups of nodes follow in static
networks? What should we be looking for when we need to find similarly important
groups in different graphs? Just as importantly: how can we find anomalous nodes whose
influence can only be detected on their neighbors? Our work identifies similarities that
important groups share across a variety of domains. We propose scalable methods for
their identification and show how specific malicious nodes can be found when we can
only detect symptoms on their neighbors.

2

Community Structure

“What is the structure of real-world communities?”
“How can we find them?”

Figure 1.1: FASTSTEP agrees with intu-
ition: communities of world airports.

One way of understanding the structure of
real-world communities is to analyze their
common shape and properties over differ-
ent networks (Chapter 3). Unlike previously
assumed, through the analysis of ground-
truth communities we show that meaningful
structures do not exhibit near-clique behav-
ior. We propose HYCOM - the Hyperbolic
Community Model [AGMF14] - which aims
for a more realistic representation of typi-
cally found communities.

We formalize this problem and present two distinct approaches that identify com-
munities with such structure. Firstly, we pose the problem according to the Minimum
Description Length (MDL) principle: good structures should minimize the compression
length of the graph (Chapter 3). We then propose FASTSTEP [ARF16], a factorization-
based approach which incorporates a binary reconstruction of the data. We show that
hyperbolic communities emerge naturally from this procedure, without ever being im-
posed (Chapter 4).

Contributions:
• Modeling: We provide empirical evidence that communities in large real-world

networks are better modeled using an Hyperbolic Model.

• Scalability: FASTSTEP shows that efficient optimizations can be performed by taking
into consideration the natural heavy tails of the factorization vectors.

• Effectiveness: We show meaningful clusters of movies and users when applying
FASTSTEP to a movie ratings dataset with over 10 million non-zeros.

Impact:
• FASTSTEP [ARF16] is the basis of Miguel Duarte’s currently ongoing Masters thesis

at the University of Lisbon.

3

Points-of-Compromise

“Can we detect sources of data breaches or infections in billion-sized datasets?”

$0.0

$0.5M

$1.0M

$1.5M

$2.0M

$2.5M

1 2 3 4 5 6

U
S
D

 s
a
v
in

g
s

Week

weekly savings
cumulative savings

Figure 1.2: BREACHRADAR estimated
savings (2M USD in a 6-weeks pe-
riod).

In many applications, an anomalous node might
only be detectable through the analysis of its
neighborhood. For instance, detecting infected
files through the analysis of file-machine bipar-
tite graphs and malware symptoms, or detect-
ing a food poisoning source through the analy-
sis of hospital records and who-ate-where data.
We call this problem the detection of Points-
of-Compromise, as some nodes of the graph
are able to compromise their neighbors (Chap-
ter 5).

We study a dataset with over a billion bank
transactions in order to detect data breaches and skimming devices through the analysis
of clients who have been victims of fraud. BREACHRADAR [AAF+17] is a distributed
algorithm that alternatingly optimizes a graphical model that predicts the probability of a
location being the source of a compromise. We show that preemptively reissuing credit
cards who have interacted with high probability locations can prevent losses of millions of
dollars in real fraud.

Contributions:
• Methodology: We formulate a novel an important Point-of-Compromise detection

problem.

• Scalability: We designed BREACHRADAR, a distributed algorithm that can be applied
to billion-sized datasets.

• Effectiveness: BREACHRADAR is able to identify Points-of-Compromise with over 90%
accuracy when only 10% of the stolen cards have been used in fraud.

Impact:
• This work resulted in a worldwide patent submission.

• BREACHRADAR is used to detect data breaches and Points-of-Compromise from bank
transactions at Feedzai, a fraud and risk detection company.

4

1.2 Part II: Labeled Networks and Tensors

While static networks can represent a myriad of interactions, some problems require the
analysis of information that can only be modeled as labels or context of the connections.
How do communities evolve over time? What are the typical patterns that they create
and how can we find them? As we analyze their growth and death and forecast their
evolution, can we predict which connections are more likely to be created? We propose
principled methods for finding temporal communities and for the forecasting problem in
temporal graphs with contextual side information.

Temporal Communities

“What are typical patterns of temporal communities?”
“How can we find them?”

Consider an edge-labeled network, where labels might represent colors, airlines or
days of the week. How can we understand its underlying structure? Are there common
occurrences and patterns that we should look for? What are the most meaningful
communities in a network where edges are labeled? Making sense of a static graph with
millions of nodes is often difficult due visualization or even memory constraints; how can
we understand the structure of edge-labeled graphs (Chapter 6)?

A simple approach would group together nodes that tend to be connected through
a subset of the edge labels. We approach the problem from an information theory
perspective and present a Minimum Description Length (MDL) approach whose goal is
to minimize the total description length (i.e., number of bits) of the labeled network.
Com2 [APG+14] is an effective and scalable algorithm that can be applied to any network
with categorical edge labels.

Contributions:
• Principled formulation: We formulate a MDL problem and a scalable algorithm that

doesn’t require any user-defined parameters.

• Effectiveness: The analysis of a communications dataset with over 50 million non-
zeros shows its effectiveness on finding common patterns.

Impact:
• COM2 was selected as one of the best papers at PAKDD’14 [APG+14].

• COM2 appeared in a special issue of the Knowledge and Information Systems jour-
nal [AGP+15].

5

Forecasting Relationships

“Can we forecast novel relationships when context is available?”

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

P
re

c
is

io
n

Top-K

Ideal

TensorCast

CP Forecasting

Coupled Matrices

Figure 1.3: TENSORCAST’s precision
when forecasting (author, venue) rela-
tions in the DBLP tensor.

Link prediction is a well-studied problem in
social networks. However, most methods only
consider networks where new links are added
and are unable to analyze the networks’ evolu-
tion. Forecasting relations in a network that we
know is time-evolving is important for analyz-
ing churn, designing marketing campaigns and
to produce better recommendations. We study
the problem of forecasting a network when side-
information about the nodes is available, such
as demographics or out-of-network connections.
Can we predict who is likely to join a political
discussion on Twitter or to publish on a given
conference next year (Chapter 8)?

We formalize this problem as forecasting a set of coupled tensor and introduce TEN-
SORCAST, a method that 1) factorizes all the input tensors, 2) forecasts the tensor of
interest and 3) identifies the most relevant new elements of the forecasted network.
Under common network assumptions (i.e., long tails), we show that TENSORCAST doesn’t
suffer from the quadratic explosion problem and analyze datasets with over 300 million
relations.

Contributions:
• Contextual-awareness Forecasting: we show how different data sources can be

included in a principled way.

• Scalable Tensor Top-K: TENSORCAST is able to quickly find the K biggest elements in
a tensor factorization under realistic assumptions.

• Effectiveness: TENSORCAST achieves over 20% higher precision in top-1000 queries
and double the precision when finding new relations than comparable alternatives.

6

1.3 Overall Impact

My thesis work is focused on the development of fast and effective algorithms for the de-
tection of communities and anomalies in multiple settings and applications. We contribute
in the cross product of two common themes: on the one hand, we focus on patterns
and anomalies, while on the other, we study both static and labeled networks, usually
temporal. Hence, this work has broad impact on several domains: recommendation
systems, fraud detection, contextual forecasting and graph understanding, and has been
used in multiple settings:

• Impact in industry: Feedzai detects data breaches and other Points-of-Compromise
using BREACHRADAR [AAF+17], a work which has a patent submitted and early
estimates indicate savings of $1M per month.

• Impact in academia: At the University of Lisbon, FASTSTEP is the basis of a Masters
thesis dissertation.

• Awards: Com2 [APG+14] received one of the best paper awards at PAKDD’14.

In the next chapter, we provide a brief overview of the background in this area,
introducing useful theoretical notions that aid the understanding of the rest of the
dissertation.

7

8

Chapter 2

Background

We start by introducing the most relevant concepts, definitions and notation in graph
theory and linear algebra that are used throughout this dissertation. Please refer to
Table 2.1 at the end of this chapter for an easy-to-reference list of operators and symbols.

As common in the literature, we denote vectors by boldface lowercase letters (e.g.,
v), matrices by boldface uppercase letters (e.g., A) and tensors by boldface calligraphic
letters (e.g., X). For convenience, we refer to the f -th column of A as af and to the
(i, j, k) entry of 3-mode tensor X as X ijk. Sets and other similar entities are denoted by
non-bold calligraphic letters (e.g., V, the set of all nodes).

2.1 Networks

2.1.1 Common Definitions

Graph. A mathematical representation of a set of objects and their relations. We denote
a graph G as an ordered pair G = (V , E) where V represents the set of objects (also
called nodes or vertices) and E represents the set of relations (also called edges, links or
connections).

Node or vertex. Together with edges, vertices form the fundamental unities of a graph.
Each node corresponds to an object in the finite set V, while |V| or N will typically
represent the size of this set.

Edge or connection. Edges represent the relationships between the nodes of a network.
The set of all relations is represented by E , while |E| or E will typically represent the size
of this set.

9

Degree of a node. The degree of node v, dv, corresponds to the number of relationships
in which node v participates. In the case of a directed graph, it can can be divided in dinv
and doutv , the in-degree and out-degree, respectively.

Edge-Labeled Graph. A graph in which edges have labels associated. We will restrict
this definition to categorical edge labels; we call a graph with numerical edge labels a
weighted graph. We represent the set of possible labels by L.

Directed Graph. A graph where each edge has a direction. We can represent a directed
edge e as an ordered pair (u, v), indicating that edge e establishes a connection from node
v to node u.

Bipartite Graph. A graph where nodes can be split into two disjoint sets (U and V) and
where no connections exist between nodes of the same group. In this scenario, nodes
typically represent different entities, such as users and products.

Subgraph. A graph formed from a subset of the nodes and edges of a bigger graph
G. An edge is only consider to be part of a subgraph if both endpoints are included in
the same subgraph. An induced subgraph is one that includes all edges of G whose
endpoints belong to the vertex subset.

(Near-)clique. A clique is a subgraph where every pair of vertices is connected. A
near-clique is an almost complete clique.

(Near-)bipartite core. A complete bipartite subgraph, i.e., a bipartite subgraph where
every two vertices from separate groups are connected. A near-bipartite core is an almost
complete bipartite subgraph.

2.1.2 Properties

Density. Density measures the proportion of the number of existing to the number of
possible edges. It is usually defined as the following ratio:

DG = |E|
|V|2

(2.1)

10

Densification Power-law Standard graph models, such as the intensively studied pref-
erential attachment model [BA99], normally assume constant average degree during
network growth (i.e. they assume that the number of edges is linearly proportional to
the number of nodes). Real networks exhibit a relation closer to a power-law (|E| ∝ |V|α)
where α is between 1 and 2; 1 would imply constant average degree while 2 would
represent a network in which each node has, on average, a degree that is a constant
fraction of all nodes.

Degree power-law. One of the first relationships identified in real graphs was the power-
law distribution of the degree when nodes are sorted in its decreasing order [FFF99].
Lets call rv the position of node v when nodes are sorted by degree; then the degree dv is
proportional to its rank to the power of a constant:

dv ∝ rRv (2.2)

Eigenvalues Power-law The eigenvalues of a graph’s adjacency matrix are known to be
related to its community structure; intuitively, after a eigen-decomposition, one can see
that all the nodes with high score in the same eigenvector will be densely connected to
each other. Several studies have analyzed the spectral properties of graphs with power-law
degrees and found that the eigenvalues λi are proportional to their rank i when sorted in
decreasing order, up to the power of a constant[FFF99, SFFF03]:

λi ∝ iΛ (2.3)

Later, Mihail and Papadimitriou[MP02] showed that this is a consequence of the
degree power-law.

2.1.3 Sampling

Networks are often sampled in order to perform efficient computations or to generate
smaller but realistic graphs. In Chapter 3, we performed snowball sampling [Goo61]
in a social network in order to evaluate the scalability of our algorithm. In snowball
sampling, one starts from a seed node (or set) and new nodes are included if they have
a connection to a node currently in the sample. We used weighted snowball sampling,
where nodes are sampled with a probability proportional to the number of connections to
the current sample, so that community structure could be preserved.

In Chapter 4, two different sampling techniques were included in the algorithm itself.
In one instance, we sampled the adjacency matrix uniformly in order to calculate the

11

reconstruction error, while in another instance we sampled a fixed number of the positions
with highest reconstruction score in order to approximate the gradient. Further details
are included in the appropriate sections.

2.2 Learning and Other Techniques

Understanding the structure of networks and identifying communities and anomalies
requires new models that fit the data available. We highlight some of the techniques used
throughout this dissertation.

2.2.1 Factorizations and Objective Functions

Factorizations are the cornerstone of most models developed in this dissertation; in the
next section, we overview the most commonly used Matrix and Tensor Factorization tech-
niques. At their basis, Factorization models assume that the data available, represented in
matrix or tensor form, can be well approximated using similar but lower-rank matrices or
tensors. Intuitively, a representation with fewer degrees of freedom is more general and
more interpretable.

The process of fitting a model to the data consists of finding the parameters that
optimize some specified criteria. While there are several alternatives, one of the most
common approaches requires minimizing some loss function that evaluates how dissimilar
the original data and the model are; our goal is for a simple model to capture most of the
signal existing in the data. Factorization models are usually fit using least squares, or the
entry-wise `2 norm, which in the matrix or tensor case is called the Frobenius norm.

Constraints to the model parameters are sometimes included, non-negativity being
the most common. On the other hand, one might wish to reduce overfitting or to
induce sparsity in order to obtain a model less sensitive to noise. This can be achieved
by modifying the model’s objective function, often through the addition of `2 or `1

regularization terms, respectively. For instance, a simple matrix factorization model in
which `1 penalties are applied to one of the factor matrices and `2 penalties to the other
would be

argmin
A,B

||M −ABT ||2F + λ1||A||1 + λ2||B||2

where || · ||F is the Frobenius Norm defined as

||M ||F =
√√√√ n∑
i=1

m∑
j=1
Mij

2

12

and λ1 and λ2 are meta-parameters. When `1 and `2 regularizations are applied to the
same parameters, we are in the presence of elastic net regularization [ZH05].

2.2.2 Bayesian Models

As an alternative to specifying the model as a minimization of the difference between
it and the data, one can also try to describe the generative process that originated the
data. Bayesian models are one of the most popular statistical modeling techniques. In
a Bayesian Hierarchical Model, we estimate the parameters of the posterior distribution
taking into consideration the prior distribution of these parameters and other dependences
of the joint probability model. We operate under the philosophy a) one can model the
data under appropriate probability distributions and b) the inclusion of prior knowledge,
which is slowly changed as more evidence is considered, creates more robust and natural
models.

In Chapter 5, we use a probabilistic graphical model to model the interaction of
Points-of-Compromise with credit cards in order to detect the most likely compromised
locations.

2.2.3 Minimum Description Length (MDL)

The Minimum Description Length (MDL) principle is a formalization of Occam’s Razor in
which the best hypothesis to explain a given dataset is decided by its ability to compress
the data. It was introduced by Jorma Rissanen in 1978 [Ris83].

According to the MDL principle, the best model for describing a set of data is the one
for which the sum of the description of the model and the description of the data using the
model is minimal; as a consequence, MDL methods naturally avoid overfitting through a
trade-off between between model complexity and complexity of the data given the model.

Figure 2.1 illustrates this principle. Suppose one wishes to compress a boolean matrix
using a set of smaller “rectangles”, i.e. using “rectangles of true regions” as the model.
Firstly, one needs to encode all the elements that are necessary to describe the model: the
size of the list and the list of rectangles itself. Then, one needs to describe the error of
encoding the data this way: some of the rectangles described do not represent only true
values, so we need to encode the list of false values inside them, but also some of the true
values are not in any rectangle and we also need to encode them, i.e., this is the cost of
encoding the data given our model.

Clearly, there are numerous possibilities: at one extreme, you could opt for a rectangle
for each one in the matrix (left figure) leading to a very big model, as you have a rectangle

13

per each one in the matrix, but no zero needs to be described; at the other extreme, you
could use a single rectangle and then describe every zero in the matrix (right figure). The
optimal MDL solution would be the one minimizing the total number of bits required to
describe the data.

Figure 2.1: An example on minimum description length balance. On the left, a big
model without errors. On the right, a model with many errors to be encoded.

In this dissertation, we rely on two relatively simple encoding factoids:

1. Representing a number k in the range of 1 to N requires logN bits, and this is an
optimal code if the probability distribution is uniform.

2. In order to represent an unbounded integer k, Rissanen proposes

log∗(k) = log(k) + log log(k) + log · · · log(k),

a universal code length for integers which assumes that p(i) ≥ p(i+ 1).

2.3 Matrices and Spectral Methods

The analysis of graphs from a linear algebra point-of-view follows naturally from their
commonly used adjacency or Laplacian matrices. We are led to the analysis of the spectrum
of these matrices as it is well understood and does not depend on node orderings or
vertex labels. For instance, due to their symmetry, undirected networks only have real
eigenvalues.

Additionally, spectral methods lead to a clustering or partitioning of the network. They
are related to its community structure, hence increase our understanding of the underlying
graph. In the following, we introduce some of the most common matrix factorization
techniques.

14

2.3.1 Singular Value Decomposition

In the Singular Value Decomposition (SVD)[GK65] of rank k, a n×m real matrix M is
decomposed as

M ' UΣV T

where U and V are real orthogonal n × k and m × k matrices, respectively, and Σ is a
k × k non-negative diagonal matrix. The Eckart-Young theorem[EY36] proves this to be
the best least squares approximation using regular matrix multiplication and real entries,
i.e., this is equivalent to finding:

argmin
U ,Σ,V

||M −UΣV T ||2F

2.3.2 Non-Negative Matrix Factorization

In order to interpret the result of a SVD decomposition, one needs to consider that
some elements of U and V might be negative. Non-negative decompositions have been
shown to be useful in many scenarios such as computer vision and community detection
due to their increased interpretability; it is substantially simpler to analyze a process
when one is limited to additive composition. For non-negative M, Non-Negative Matrix
Factorization (NNMF) methods were developed to overcome this problem. Similarly to
SVD, we approximate M using two non-negative matrices W and H such that

argmin
W ,H

||M −WHT ||2F

W ≥ 0
H ≥ 0

While one could apply projected stochastic gradient descent in order to find a solution
(i.e., an additive update scheme), Lee and Seung [LS01] developed a multiplicative
update method that is proven to converge:

Wik ←Wik
(W TM)ik

(W TWHT)ik

Hjk ←Hjk
(MH)jk

(WHTH)jk

(2.4)

Multiplicative updates for other error functions such as the Kullback-Leibler diver-
gence [KL51] have also been proposed.

15

2.3.3 Co-clustering

Clustering is a well understood problem: in a clustering task, our goal is to group objects
so that instances of the same set are more similar to each other than to instances in other
clusters. This grouping is performed taking into consideration the entirety of the feature
set, i.e., similarity between two objects is measured taking into consideration everything
we know about those two objects.

Co-clustering (also called biclustering [Mir98]) is a similar but less common task.
The goal is not only to group similar objects together, but also to select a subset of the
features which are used to analyze their similarity. Connections to community detection in
bipartite graphs are evident: consider a user × item dataset, we are looking for a group of
users who interact similarly with a given group of items. We are not trying to describe
interactions between these group of users and other items.

It is also worth mentioning the distinction between hard-clustering and soft-clustering.
In the first, (co-)clusters are a partition of our elements or features; each element belongs
to exactly one cluster. On the other hand, in a soft-clustering setting, we allow elements
to belong to multiple clusters and do not impose boolean constraints; we might be look-
ing for a weight between an element and a cluster (e.g., likelihood of belonging to a
cluster) [PM10].

2.4 Tensors

X

au
th

or
s

keywords

ve
nu

es

Figure 2.2: A three-mode ten-
sor of Authors, Keywords and
Venues.

While matrices are appropriate representations for
unlabeled graphs, it is not clear how they can be
used to convey edge-labels. Tensors emerge as a
natural alternative, as they are multidimensional
arrays that generalize the concept of matrices. A N-
mode tensor X ∈ RI1×I2×I3...×IN is a n-dimensional
array used to describe inter-relational data. A one-
mode tensor is a vector, a two-mode tensor is a
matrix, etc. As a consequence, they are a popular
choice when representing time-evolving relations,
such as Facebook interactions [PFS12], sensor net-
works [STF06] or EEG data for detecting the origin
of epilepsy seizures [AABB+07].

We will consider three-mode tensors, unless noted otherwise. In particular, we can
treat an edge-labeled graph G = (V ,L, E), where V is the set of nodes, L is the set of

16

categorical labels and E is the set of edges {(v1, v2, l) ∈ E|v1 ∈ V , v2 ∈ V , l ∈ L} as a
three-mode tensor X ∈ {0, 1}|V|×|V|×|L|.

2.4.1 Tensor Operations

With appropriate modifications, most matrix operations can be extended to the tensor
scenario. For an in-depth exposition, we forward the reader to a review by Tamara
Kolda and Brett Bader [KB09] even though we use slightly different notation. In this
subsection, we will briefly mention the most common operations that are used throughout
this dissertation. We assume a N -mode tensor X ∈ RI1×I2×...×IN .

Frobenius Norm The matrix Frobenius norm can be trivially extended to tensors:

||X ||F =

√√√√ I1∑
i1=1

I2∑
i2=1
· · ·

In∑
in=1
X i1i2···in

2

Outer Product The outer product of a n-mode tensor of size I1 × I2 × · · · × In with a
vector of size In+1 creates a tensor with n+1 modes of size I1 × I2 × · · · × In × In+1. This
notation is typically use to represent rank-1 tensors, so if

X = a ◦ b ◦ c,

then
X ijk = aibjck

Hadamard Product Also known as the entry-wise product. When tensors X and Y
have the same dimensions, then Z = X ∗Y is equivalent to

Z i1i2···in = X i1i2···in ·Y i1i2···in

We use the Hadamard Division operator � analogously.

Tensor Fiber Fibers are the higher-order equivalents to matrix rows or columns and
they are defined by fixing all but one index. We use the terms rows, columns and tubes to
represent mode-1, mode-2 and mode-3 fibers, respectively.

17

Tensor Matricization Matricization is the concept of unfolding a tensor into a matrix.
The mode-k matricization of tensorX is denoted byX (k) and rearranges the mode-k fibers
to be the columns of the resulting matrix, i.e., X (1) is a matrix of size I1 × I2 × · · · × In,
X (2) is a matrix of size I2 × I1I3 · · · In, etc.

Kronecker Product The Kronecker product of two matrices A ∈ RI×J and B ∈ RK×L

results in a matrix of size IK × JL defined as

A⊗B =

A11B · · · A1JB

...
AI1B · · · AIJB

Khatri-Rao Product Given matrices A ∈ RI×K and B ∈ RJ×K with the same number
of columns, their Katri-Rao product is a RIJ×K defined as

A�B =
[
A1 ⊗B1 · · · AK ⊗BK

]

2.4.2 Tensor Factorizations

Tensor factorizations identify the underlying low-dimensional latent structure of the n-
dimensional data. Latent factors are then used to identify anomalies, to estimate missing
values or to understand how the data was generated in the first place.

Among the many tensor factorizations flavors [KB09], the PARAFAC [Har70] (also
called CP) decomposition is one of the most popular as it factorizes a tensor into a sum of
rank-1 tensors. In three modes, the problem is usually framed as finding factor matrices
A , B and C that minimize the squared error between X and the reconstructed tensor
X̂ :

min
X̂

∥∥∥X − X̂ ∥∥∥2

F
= min

A,B,C

∥∥∥∥∥∥X −
∑
f

Af ◦Bf ◦Cf

∥∥∥∥∥∥
2

F

(2.5)

The optimization problem in Equation 2.5 is convex when one considers one of the
factor matrices while keeping the others fixed. It reduces to a linear least-squares problem
whose optimal solution is given by

Â = X (1)
[
(C �B)T

]†
(2.6)

where A† represents the Moore-Penrose pseudoinverse [Pen56].

18

Similarly to Equation 2.4, there are multiplicative updates that enforce non-negativity
constraints [WW01]:

A← A ∗
X (1)(B �C)

A(B �C)T (B �C)

2.4.3 Rank-1 Decompositions

Evidence indicates that, if the factors of the CP/PARAFAC decomposition are sparse, then
doing the decomposition by extracting a rank-one component each time approximates the
batch, full rank decomposition with very high accuracy [PSB13]. This factoid is used in
multiple algorithms of this dissertation (e.g., Com2, FASTSTEP), so we believe it useful to
describe the rank-1 case in more detail.

When a, b and c are vectors, then the CP/PARAFAC decomposition reduces to:

argmin
a,b,c

||X − a ◦ b ◦ c||2F

and, if X is non-negative, then so are a,b and c.

Lemma 1 The Alternating Least Squares method (Equation 2.6) reduces to

ai ←
M,K∑

j=1,k=1
X ijkbjck

bj ←
N,K∑

i=1,k=1
X ijkaick (2.7)

ck ←
N,M∑

i=1,j=1
X ijkaibj

when we ask for rank-1 results.

Proof 1 According to the Alternating Least Squares method, one fixes matrices B and C and
solves for A through the minimization of

min
Â
||X (1) − Â(C�B)T ||F (2.8)

Due to properties of the Moore-Penrose pseudoinverse of the Khatri-Rao Product [KB09]
Â has closed form solution of the form Â = X (1)(C�B)(CTC ∗BTB)†.

When A, B and C are vectors (a, b and c, resp.), the Khatri-Rao product (c � b)
is equivalent to the Kronecker product (c ⊗ b). The inner products cTc and bTb are
scalars and so is (cTc ∗ bTb)†. The product of X (1), the N ×MK matricization of X , and

19

c⊗ b, the MK × 1 column vector, reduces to Equation 2.7. A different proof can be found
in [DLDMV00].

Note that the updates of Equation 2.7 can be performed by iterating over the non-zeros
of tensor X .

2.4.4 Coupled Factorizations

We are often interested in analyzing real-world tensors when additional information is
available from distinct sources. For example, in a simple recommendation task with
user×movie ratings, we might have user demographics data available which we wish to
incorporate when predicting future ratings.

Coupled Matrix-Tensor Factorizations and Coupled Tensor-Tensor Factorizations are
a natural extension to the standard tensor factorization formulation. For instance, the
factorization of a third-order tensor X coupled with a matrix M on its first mode can be
obtained by minimizing

min
A,B,C,D

∥∥∥X − X̂ ∥∥∥2

F
+ α

∥∥∥M − M̂
∥∥∥2

F
(2.9)

where α is a parameter representing the strength of the coupling for this task, i.e., how
important M is to improve the prediction of the new ranking or to improve the quality of
the factors.

X Y A

B
C
◦X̂ ≈ Ŷ ≈

A

D◦

Figure 2.3: A simple Coupled Matrix-Tensor Factorization.

The matrix part of the Coupled Matrix-Tensor Factorization depicted in Figure 2.3 is
useful to model additional static information about one of the modes of the tensor of
interest. Whenever the side information available is dynamic (time-evolving), a model
where two tensors are coupled along (at least) one of the dimensions is more appropriate,
as the time component can be preserved, e.g.:

min
A,B,C,T

∥∥∥X − X̂ ∥∥∥2

F
+ α

∥∥∥Y − Ŷ∥∥∥2

F
(2.10)

20

where:

X̂ =
∑
f

Af ◦Bf ◦ Tf

Ŷ =
∑
f

Af ◦Cf ◦ Tf

Many techniques have been proposed to solve this non-negative optimization problem,
such as projected Stochastic Gradient Descent (SGD) [BTK+14] (i.e., additive update
rules) and multiplicative update rules. Most of this work extends Lee and Seung’s multi-
plicative matrix updates formulae [LS01] for matrices, notably the simple extension for
tensors [WW01] and the many coupled extensions, e.g. Generalized Tensor Factoriza-
tion [Yıl12, ŞECA13]. Update equations for this scenario are also well known:

A ← A ∗
X (1)(B � T) + αY(1)(C � T)

A(B � T)′(B � T) + αA(C � T)′(C � T)

B ← B ∗
X (2)(A� T)

B(A� T)′(A� T)

C ← C ∗
Y(2)(A� T)

C(A� T)′(A� T)

T ← T ∗
X (3)(A�B) + αY(3)(A�C)

T (A�B)′(A�B) + αT (A�C)′(A�C)
The problem is not as well understood when one of the factorizations is symmetric,

e.g., Ŷ =
∑
f

Af ◦Af ◦ Tf , as this is no longer a linear problem.

Welling and Weber [WW01] note the need for a scaling exponent (for the simple,
non-coupled case):

A← A ∗
(
X (1)(A� T)

A(A� T)′(A� T)

)1/d

which should be at least 1/2 for the matrix case, although no proof is provided.
To the best of our knowledge, the best theoretical bound is 1/3 when the matrix is
semi-definite positive [HXZ+11]. Empirical results (for the coupled case) indicate that
removing the exponent (d = 1) might eliminate the convergence guarantees, but even
small perturbations converge (e.g., 0.98 in [ECA13]).

We recommend an exponent of 1/3, as convergence is exponentially fast in any case.

21

2.5 Notation and Common Symbols

Table 2.1 overviews the most common symbols and notation described in this chapter and
used throughout the rest of this dissertation.

Symbol Definition

G a (edge-labeled) graph
V set of nodes
E set of (labeled) edges
L set of labels
M ′ Matrix transpose
MT Matrix transpose
Mk Column k of M
M ≥ 0 M is a non-negative matrix
M � 0 M is positive semi-definite
‖X‖F Frobenius norm of tensor X
X (k) Mode-k matricization
◦ Vector outer product
⊗ Kronecker product
� Khatri-rao product
∗ Hadamard (entrywise) product
� Hadamard (entrywise) division

Table 2.1: Symbols and Notation used throughout this dissertation.

22

Part I

Networks and Matrices

23

Overview and Related Work

Nodes in real-world networks organize into communities or clusters, which tend to exhibit
a higher degree of ‘cohesiveness’ with respect to the underlying relational patterns. Group
formation is natural in social networks as people organize in families, clubs and political
organizations [WF94a]. Communities also emerge in protein-protein interaction or gene-
regulatory networks whereby genes associated to a common metabolic function tend to
be more densely connected [SKJ06], or in the World Wide Web where hyperlinks between
theme-related websites are more prevalent [FLG00].

In Part I, we explore the important problem of identifying these groups from given
(unlabeled) graph data. We start with an overview of the related work in community
detection in static graphs, with an emphasis on factorization methods of binary matrices.
At the end of this overview, we highlight currently unanswered questions, some of which
we tackle in this dissertation.

I Related Work: Community Detection

For an in-depth and thorough discussion of community detection methods, we kindly
refer to the excellent surveys of Santo Fortunato [For10, FH16].

The vast ongoing research in community detection is arguably an indicator of the
problem’s inherent difficulty. As discussed in [YL12b], the challenges faced by community
detection methods are usually threefold:

a) a lack of consensus on the structural definition of network community;

b) the fact that node subset selection overlaid to the combinatorial structure of graphs
typically leads to intractable formulations;

c) the lack of ground-truth to carry out an objective validation on real data.
Nevertheless, the widespread notion of cohesiveness used to group nodes has typ-

ically reflected that community members are well connected among themselves and
relatively well separated from the remaining nodes. The mental image is the cavemen

25

graph [WF94a], where the adjacency matrix is block-diagonal, as shown in Figure 2.4a.
All graph-cut algorithms assume such structure. As an extension to this definition, the
familiar strangers [ATMF12] pattern can be applied to unipartite or bipartite graphs. In
this pattern, one group of people is connected to a second, forming a bipartite-core; people
on each side of the bipartite-core can be grouped together given the similarity of their
connections, although they do not know each other. This results in an off-diagonal block
in the adjacency matrix (see Figure 2.4b), but one can also consider it as an extension of
cavemen graphs to “rectangular” adjacency matrices, e.g. user × products data, where the
result would resemble a block-diagonal rectangular matrix.

(a) Cavemen communities. (b) The “familiar strangers” pattern.

Figure 2.4: Adjacency matrices of classical community definitions.

Recent developments have showed that a realistic picture of the community structure
is not as simple. Therefore, the definition of community we consider is less restrictive:
we consider communities to be sets of nodes that help us compress the graph. Note that
the typical structures of Figure 2.4, when they exist, are very useful from a compression
perspective. In the rest of this section, we first discuss common community detection
approaches, then describe some of the most common evaluation procedures and, at the
end, we discuss key applications of community detection.

I.1 Methods

While multiple classifications can be created, we consider it useful to characterize methods
along two particular dimensions:

26

a) Overlapping communities [YL12a]: methods might acknowledge that one node can
participate in multiple communities. For instance, we have friends from high school,
friends from college, and colleagues from work; the three groups have little overlap,
and few connections between them (see Figure 2.5a);

b) Hierarchical communities: methods might take into consideration that there are “no
good cuts” and that communities can be analyzed at different granularities (see
Figure 2.5b).

(a) Overlapping communities. (b) Hierarchical communities.

Figure 2.5: Algorithm characteristics: methods can be classified by their ability to
find overlapping or hierarchical communities.

Optimization: Community Cohesiveness Metrics While most community detection
methods can be casted as the optimization of some cost function, a number of metrics
used across the literature that are worth describing.

Conductance or Normalized Cut. According to this metric, the best communities are
densely linked and attached to the rest of the network via few edges. The conductance
φ of a set of nodes S ⊂ V is defined as the ratio between the number of edges with one
endpoint in S and one in S̄, and the sum of degrees of the nodes in S. More formally, if A
is the adjacency matrix of graph G:

φ(S) =
∑
i∈S,j /∈SAij∑
i∈S,j∈V Aij

(2.11)

Conductance [SM00] provides a metric for the quality of the cut and lower conduc-

27

tance is used as a proxy for community quality.
Modularity. Introduced by Newman and Girvan[NG04, New06], modularity is based

on the idea that, on expectation, a random graph should not have community structure.
Edge density in subgraphs is then compared to the expected density one would have if
the graph vertices were attached disregarding this structure. In general, the modularity
score Q for a subset of nodes S is given by

Q(S) = 1
2E

∑
i∈S,j∈S

(Aij − Pij) (2.12)

where Pij represents the probability of a connection between nodes i and j according
to the chosen null model. A simple null model could set Pij = 2E

N(N−1) but that is uncommon
as it does not describe real-networks correctly (most notably, it provides a Poissonian
degree distribution). A more common approach is to choose as null model a graph with
the same degree distribution as the original (in expectation), in which case the probability
of an edge between two nodes i and j existing is proportional to their degrees di and dj,
yielding Pij = didj

2E .
Multiple methods have been proposed to optimize these metrics [New04, DA05] and

others, such as Weighted Community Clustering [PPDSBLP12, PPDSLP14], which tries to
maximize the number of triangles closed inside S, and propinquity methods [ZWWZ09],
which slowly modify the graph to better match current estimates of Pij.

Partitioning In graph-partitioning methods, the goal is to split the vertices in groups of
pre-specified size, or to enforce penalties if sizes differ significantly [FC07, Pot97]. The
assumption is that groups are connected by bridge edges and will emerge if we cut them.
While the result is similar to hard-clustering, the approach is different: methods usually
start by defining edge centrality and then removing edges repeatedly to form clusters.
Another typical approach involves bisectioning the graph into two groups and repeated
application to find groups of similar sizes.

METIS [KK95] is the most commonly used software package to find appropriate graph
partitions, as it supports multiple partitioning objectives.

Label propagation methods [Gre10] are also related to graph partitioning, even though
they do not enforce groups to have similar sizes. They assume that each node has a label
which indicates to which group it belongs, and continuously update each node’s label
based on the majority label of neighboring nodes.

In general, graph partitioning methods are not considered to be very good for commu-
nity detection [For10], as they require an explicit definition of the number of groups and
their size. Similar-sized communities tend to be unnatural, as most common community

28

definitions do not require them to be of similar size.

Random-Walk methods Random Walk-based methods group nodes by their score
when doing a Random Walk with Restart [TFP08] (RWR). The idea is similar to PageR-
ank [PBMW99], but instead of computing a global PageRank vector indicating the prob-
ability of landing on a given node during a random walk on the graph, RWR computes
the probability of landing on a given node j when restarts are made to a given node i.
Communities can be obtained from RWR by clustering the Dij matrix created [Zho03].
Modifications have been proposed, such as biasing random walk to nodes closer to the
origin [ZL04], or to consider overlapping communities [CWZW11].

Spectral In Chapter 2, we have seen that the spectral properties of matrices are fre-
quently used to find clusters. Research started with Donath and Hoffman [DH73], who
used eigenvalues to partition a graph, but the whole range of spectral approaches have
been applied, e.g. NNMF for overlapping community detection [PRES11]. Dhillon [Dhi01]
proposed a co-clustering partition of bipartite graphs based on singular vectors of a scaled
word-document matrix. [GMZ03] provided one of the first analysis of the AS graph
through spectral analysis.

This area has been heavily extended, including spectral clustering methods in the
presence of node-attributes [GFBS14, GFRS13].

Generative Models Generative models start by representing the network as a group of
communities, then rely on inference methods to learn the most appropriate parameters to
fit the model to the network. Block modeling [WF94a] is one of the most common of such
approaches. Nodes are decomposed into classes with similar properties, usually a mixture
of intra-class properties (e.g. density) and inter-class properties, describing connections to
nodes in different classes. The reader is referred to [DBF05] for a more detailed analysis.

Yang and Leskovec [YL12a] proposed a community-affiliation model which allows
overlapping and hierarchical community definitions. In this model, nodes can be affiliated
with several groups and overlapping affiliations increase connection probabilities. Gionis
et al. [GMS04] proposed a probabilistic model where hierarchical tiles represent the
boolean adjacency matrix.

Information theory Orthogonally to the previous approaches, methods often try to
incorporate information theory concepts in an effort to avoid overfitting their model to
the data. For instance, methods might use the AIC [Aka74] or BIC [S+78] criteria when
learning the correct number of parameters.

29

On the other hand, some approaches rely on information theory at their core. Rosvall
et al. proposed information-theoretic modules that try to maximize mutual informa-
tion [RB07]. Many methods leverage MDL to find succinct representations of the original
data, such as AUTOPART [Cha04] and CROSS-ASSOCIATIONS [CPMF04] which find minimal
encodings of square and rectangular matrices, respectively. Motivated by understanding
large graphs, VOG [KKVF14] uses MDL to encode easy to understand structures such as
stars, chains, cliques, etc.

I.2 Applications

One of the first applications of community detection methods was image segmenta-
tion [SM00], given its relationship to graph partitioning. Nevertheless, most applica-
tions nowadays focus on understanding network topology, in particular Social Network
analysis [WF94a] in widespread domains, such as the Internet [GMZ03], Wikipedia arti-
cles [KKVF14], citation networks and patents [GFBS14]. Blondel et al. [BGLL08] were
able to recover Belgium’s linguistic split using a phone calls network.

Biological networks have also inspired plenty of applications. Rives and Galitski [RG03]
studied the protein-protein interaction network of the yeast and were able to identify its
modular organization. Gene regulatory networks and gene expression [WH04, GFBS14]
also provide strong motivation: gene co-occurrence is biologically motivated by evolution.

I.3 Challenges: No good cuts

All previous community detection methods and metrics have been either explicitly or
implicitly aimed at extracting areas of high and/or uniform density in the adjacency
matrix, e.g. near cliques in the corresponding graphs. However, analysis by Leskovec et
al.[LLDM08] of what are considered to be ground-truth communities in different datasets1

has shown that these big communities don’t necessarily achieve good “community quality”
scores using metrics such as conductance; they developed the Network Community Profile
(NCP) plot which measures the quality of the best possible community in that network as
a function of the size of the community, i.e. the best conductance for a set of cardinality k
in that network:

Φ(k) = min
S⊂V,|S|=k

φ(S) (2.13)

1Communities that we would be interested in finding automatically, that have been either manually
assessed or self-declared.

30

(a) LIVEJOURNAL (b) DBLP

(c) AMAZON (d) IMDB

Figure 2.6: NCP plots of four different datasets (red). Conductance values for
ground-truth communities (green). Source: [LLDM08]. Note the low community
quality achieved using this metric as communities get bigger.

In Figure 2.6 one can find, in red, the NCP plots of four different datasets. A steady
improvement in the “community score” can be seen up to sizes of 10-100 nodes and then,
as communities get bigger, no subset produces good “community scores”. In green, one can
find the conductance values for the ground-truth communities that, as expected, achieve
worse scores than those in the NCP plot. These results seem to agree with Dunbar[Dun98]
who predicted that 150 is the upper limit on the size of a human community. Leskovec
et al.[LLDM08] questioned whether larger communities even exist given that, as they
grow larger, they become so diverse that they stop existing in the traditional “network
community” sense.

We come to the conclusion that existing models are not appropriate to represent
these structures, whose existence is backed by self-reported big communities in multiple
domains. In Chapter 3, we analyze their shape and provide new definitions that generalize

31

the cavemen model.

II Related Work: Decomposition of Boolean Matrices

In Chapter 4, we develop novel factorization approaches to tackle the community de-
tection problem. In this section, we provide a summary of current alternatives for the
decomposition of boolean matrices. Throughout this section, we consider a n×m boolean
matrix to be factored.

While SVD or NNMF (see Chapter 2) can be applied to boolean matrices, there are no
clear extensions when we need the reconstructed matrix to be boolean. One simple idea
is rounding or thresholding the reconstructed matrix, but no guarantee can be given on
the reconstruction error. Another possibility is thresholding the factor matrices and using
boolean algebra in order to obtain a boolean reconstruction, but selecting the appropriate
threshold is a difficult problem as a clear cut-off might not exist.

In fact, Miettinen [MMG+08] showed that Boolean Matrix Factorizations (BMF) meth-
ods could achieve lower reconstruction error than SVD in boolean data and proposed
an algorithm using association rules (ASSO) which exploits the correlations between
columns, but unfortunately it’s time complexity is O(nm2), i.e., it cannot be applied to
large scale networks.

Zhang et al.[ZLD+10] proposed two approaches for BMF, one using a penalty in the
objective function (BMF-PENALTY) which achieved good results for dense datasets, and an
alternative thresholding method (BMF-THRESH) which by thresholding factor matrices
is better suited for sparse datasets. None of these methods is scalable and they have the
problem of forcing a tiling of the data matrix, as each factor is effectively treated as a
block. In particular, the notion of “importance” inside a cluster, which previously existed
in NNMF, is now lost and the analysis of the resulting factors is limited.

Tao Li [Li05] proposed an extension of the K-means algorithm to the two-sided case
where M is decomposed into AXBT with A and B binary, and an alternating least
squares method when X is the identity matrix.

In Logistic PCA (L-PCA), Schein et al.[SSU03] replace PCA’s Gaussian assumption
with a Bernoulli distribution and fit their new model using an alternating least squares
algorithm that maximizes the log-likelihood. Their alternating algorithm has running time
O(nm) and it is hard to interpret due to the possibility of negative values in the factors.

32

Chapter based on work that appeared at ECML PKDD 2014 [AGMF14].

Chapter 3

Hyperbolic Communities

Given a large social network, what do real communities look like? How does their
size affect their structure, shape, and density of connections? Are the communities’
degree distributions uniform as implied by traditional community detection algorithms
that look for quasi-cliques? One would intuitively expect that larger communities exhibit
similar relational patterns to the whole graph. Accordingly, do the communities’ degree
distributions obey power laws? What is the structure of communities in large, real social
networks and what are suitable models to describe them? Moreover, how can one find
these communities in an effective and scalable way by leveraging this particular structure
and without any user-defined parameters?

We analyze four real-world social networks with ground-truth communities and
provide empirical evidence that communities exhibit power law degree distributions.
As such, they are typically best represented as having a hyperbolic structure in the
adjacency matrix, rather than rectangular (uniform) structure. We detail HYCOM -
the Hyperbolic Community Model - as a better representation of communities and the
relationships between their members, and introduce HYCOM as a scalable algorithm to
detect communities with hyperbolic structure. To illustrate our model and algorithm,
Figure 3.1a represents the adjacency matrix of a real (ground-truth) community externally
provided when nodes are ordered by degree, and Figure 3.1b shows the adjacency matrix
of an exemplary community found by our algorithm. Clearly, both communities do not
show uniform density. In a nutshell, the main contributions of our work are:

• Hyperbolic Community Model: We provide empirical evidence that communities
in large, real social graphs are better modeled using a hyperbolic model.

• Scalability: We develop HYCOM-FIT, an algorithm for the detection of hyperbolic
communities that scales linearly with the number of edges.

• No user-defined parameters: HYCOM-FIT detects communities in a parameter-

33

free fashion, transparent to the end-user.

• Effectiveness: We applied HYCOM-FIT on real data where we discovered commu-
nities that agree with intuition.

• Generality: HYCOM includes uniform block communities used by other algorithms
as a special case.

 0

 100

 200

 300

 400

 500

 600

 0 100 200 300 400 500 600

(a) Motivation for our work: a real ground-
truth community from the YouTube dataset.

 0

 100

 200

 300

 400

 0 100 200 300 400

(b) Result of our work: a community found by
HYCOM-FIT.

Figure 3.1: Side-by-side: comparing a ground-truth community and one found by
HYCOM-FIT.

3.1 Empirical Observations

In this section, we provide empirical evidence that real communities are not blocks
of uniform density and are best represented as hyperbolic structures. We examined a
collection of four real networks (Table 3.1) previously used in the literature [YL12a,
YL12b] with significantly different ground-truth definitions, available in the Stanford
Network Analysis Project (SNAP) collection. In addition to the underlying graph, these
datasets provide externally defined communities, which we consider to be ground-truth.
We only consider communities with a minimum of 15 nodes. How these communities
were defined and their internal structure is totally dependent on the application domain:

• The YOUTUBE and LIVEJOURNAL datasets are standard friendship networks. Each
node represents a user of the website and friendship relations establish links between

34

Networks with ground-truth communities Network with node labels

Dataset AMAZON DBLP YOUTUBE LIVEJOURNAL WIKIPEDIA

Nodes 334 863 317 081 1 134 890 3 997 962 143 508
Edges 1 851 744 2 099 732 5 975 248 34 681 889 3 753 156

Table 3.1: Summary of real-world networks used.

them. In these websites, users are also able to form groups that others can join,
which we consider as a ground-truth communities. Therefore, they tend to represent
common interests.

• The DBLP dataset is a computer science co-authorship network: two authors (nodes)
are connected if they published at least one paper together. Publication venues
(i.e. specific journal or conference series like ECML/PKDD) define ground-truth
communities. Therefore, ground-truth communities roughly correspond to scientific
fields.

• The AMAZON dataset was collected by crawling the Amazon website and is based
on the “customers who bought this item also bought” feature. Each individual
node corresponds to a product and an edge exists if products i and j are frequently
co-purchased. Products are organized hierarchically in categories and we view
products in the same category as forming a ground-truth community. In this scenario,
communities represent product similarity.

Exploring the communities in these networks allows for a better understanding of
common community structures.

0.0001

0.001

0.01

0.1

1

10 100 1000 10000

d
e

n
si

ty

community size

Figure 3.2: Big communities are
sparse: number of nodes vs density in
the DBLP dataset.

Density. Firstly, in Figure 3.2 we see that
community size impacts edge density (here
plotted for the DBLP data). While small com-
munities might have any density, big commu-
nities are consistently less dense. These simple
observations already indicate that blocks of
uniform density are not the appropriate rep-
resentation for a wide range of communities:
small communities might go from small stars
to full-cliques and big communities are usually
not dense enough for a uniform block repre-

35

-2

-1.5

-1

-0.5

 0

 0 50 100 150 200 250 300 350

a
lp

h
a

Community size

Bad t

Good t

(a) AMAZON

-2

-1.5

-1

-0.5

 0

 0 2000 4000 6000 8000

a
lp

h
a

Community size

Bad t

Good t

(b) DBLP

-2

-1.5

-1

-0.5

 0

 0 500 1000 1500 2000 2500

a
lp

h
a

Community size

Bad t

Good t

(c) YOUTUBE

-2

-1.5

-1

-0.5

 0

 0 500 1000 1500 2000

a
lp

h
a

Community size

Bad t

Good t

(d) LIVEJOURNAL

Figure 3.3: Big ground-truth communities are hyperbolic: community size vs power-
law exponent (α). [Good fit: coefficient of determination (r2) above 0.8.]

sentation to be the most suitable. We hypothesize that nodes in big communities might
play different roles and have different characteristics, in a process analogous to the
differences between nodes in the global graph.

Power-law degrees. One well documented relationship in real networks is the power-
law between the degree of a node and its rank (i.e. position in decreasing order of degree)
[FFF99], which means the degree of a node i can be approximated as di = K · pαi , where
α is the power-law exponent, K is the scaling factor correlated with the number of edges
and pi is the rank of node i.

Our first hypothesis is that big communities follow a similar degree distribution.
Figure 3.3 shows the calculated α values for different ground-truth communities in the 4
datasets. Communities have been marked according to their coefficient of determination
(r2) when we approximate the degree distribution within each community with a power-

36

law. The power-law was approximated using a linear-regression in the log-log data and
the coefficient was calculated using the same transformation. It can be seen, agreeing
with intuition, that power-law degree distributions represent big communities fairly well.
In fact, most of the ground-truth communities do not show uniform degree distribution
(which imply α = 0) but strongly skewed ones. Interestingly, α appears to decrease
with community size (note the differences in the x-axis) and to be between -0.6 and
-1.5 for communities with thousands of elements. Furthermore, as the frequently used
uniform block model for communities indirectly assumes a uniform degree distribution,
the power-law model necessarily achieves a better fit – the uniform model is a special
case of the power-law model where α = 0.

Some variations between the datasets are yet to be explained but can most likely be
attributed to the different community definitions. For example, some communities with
uniform degree distribution in the DBLP dataset are due to anomalies such as venues with
a single paper creating artificial cliques (e.g. recording errors, conference proceedings
with a single entry, workshops, etc.).

Again, we want to highlight that the observations made above are based on the com-
munities which were externally provided for these datasets (“ground-truth communities”)
– not based on the results of a specific algorithm.

3.2 Hyperbolic Community Model

The previous analysis shows that, in order to detect big communities with realistic
properties, models must be able to represent non-uniform degree distributions. In this
section, we first propose HYCOM, a community model that assumes communities to have
a power-law degree distribution. We then detail the MDL-based formalization that will
guide the community discovery process and that is used as a metric for community quality.

3.2.1 Community Definition

We are given an undirected network consisting of nodes N and edges E . We represent this
network as an adjacency matrix M ∈ {0, 1}|N |×|N |. As an abbreviation, we use N = |N |.
The goal is to detect Hyperbolic Communities:

Definition 1. Hyperbolic Community
A hyperbolic community is a triplet C = (S, α, τ) with S = [S1, .., S|S|], Si ∈ N and
Si 6= Sj if i 6= j, representing an ordered list of nodes, α ≤ 0 being the exponent when
the degree distribution of the nodes is approximated by a power-law, and 0 ≤ τ ≤ 1 a
threshold that determines the number of edges represented by the community.

37

0

10

20

30

40

50

0 10 20 30 40 50

α = -0.5, τ = 0.1, 380 edges

Figure 3.4: Adjacency Matrix of a
synthetic Hyperbolic Community.

Given the above triplet, and knowing that the
nodes in S are sorted by degree in the community,
the degree of a node is di ∝ iα. If we assume condi-
tional independence given the community (i.e. we
assume edge independence when we know both
nodes belong to the current community), then the
probability pi,j that the edge between nodes i and
j is part of the community is also proportional to
iα · jα. Therefore, we can define the edges of a hy-
perbolic community to be the most probable edges
given exponent α and threshold τ :

E(C) = {(Si, Sj) ∈ S × S : iα · jα > τ}.

Figure 3.4 illustrates the adjacency matrix induced by the set E(C) given a certain
degree distribution and value of τ . Its characteristic shape, a hyperbola, gave name to
this model.

We propose to measure the importance of a community via the principle of compres-
sion, i.e. by its ability to compress the matrix M: if most edges of E(C) are in fact part of
M, then we can compress this community easily. Finding the most important communities
will lead to the best compression of M.

More specifically, we use the MDL principle [Grü07]. We aim to minimize the number
of bits required to simultaneously encode the communities (i.e. the model) and the data
(effects not captured by the model, e.g. missing edges), in a trade off between model
complexity and goodness of fit. In the following, we provide details on how to compute
the description cost in this setting.

3.2.2 MDL Description Cost.

The first part of the description cost accounts for encoding the detected communities
C = {C1, . . . , Cn} (where n is part of the optimization and not a priori given). Each
community Ci = (Si, αi, τi) can be described by the list Si, the number of bits used for αi,
denoted as kαi

1, and by the number of edges |E(C)| in the community. Please note that
we actually do not need to encode the real-valued variable τ , but it is sufficient to encode

1The number of bits does not affect the results as the previous term is significantly bigger. We use 32 bits
in our experiments.

38

the natural number |E(C)|. The coding cost for a pattern Ci is

L1(Ci) = logN + |Si| · logN + kαi + log(|Si|2).

The first two terms encode the list of nodes: there are up to N elements in the
community and we can encode each element using logN bits. The third term encodes
αi and the last term encodes the number of edges in the community. Since the number
of edges is bounded by |Si|2, we can encode it with log(|Si|2) bits. Similarly, the set of
patterns C = {C1, . . . , Cl} can be encoded by the following number of bits:

L2(C) = log∗ |C|+
∑
C∈C

L1(C).

Since the cardinality of C is not known a priori, we encode it via the function log∗

using the universal code length for integers (see Chapter 2 for more details).
The second part of the description cost accounts for encoding the actual data given the

detected communities. Since one might expect to find overlapping communities, we refer
to the principle of Boolean Algebra and patterns are combined by a logical disjunction: if
an edge occurs in at least one of the patterns, it is also present in the reconstructed data.
More formally, we reconstruct the given matrix by:

Definition 2. Matrix reconstruction
Given a community C, we define an indicator matrix IC ∈ {0, 1}N×N (using the same
ordering of nodes as imposed by M) that represents the edges of the graph encoded by
community C, i.e.

ICx,y = 1⇔ (x, y) ∈ E(C).

Given a set of communities C, the reconstructed network MC is defined as MC = ∨
C∈C IC

where ∨ denotes element-wise disjunction.

Since MDL requires a lossless reconstruction of the network and given that the matrix
MC likely does not perfectly reconstruct the data, the second part of the description cost
encodes the data given this model. Here, an ‘error’ might be either an edge appearing
in MC but not in M or vice versa. As we are considering binary matrices, the number of
errors can be computed based on the squared Frobenius norm of the residual matrix, i.e.∥∥∥M−MC

∥∥∥2

F
.

Finally, as ‘errors’ correspond to edges in the graph, the description cost of the data
can be computed as

L3(M|C) = log∗
∥∥∥M−MC

∥∥∥2

F
+ 2 ·

∥∥∥M−MC
∥∥∥2

F
· logN.

39

Overall model. Given functions L2 and L3, we are now able to define the communities
that minimize the overall number of bits required to describe the model and the data:
PROBLEM DEFINITION 1. Finding hyperbolic communities

• Given a matrix M ∈ {0, 1}N×N .

• Find hyperbolic communities, a set of patterns C∗ ⊆ (P(N) × R × R)|C∗| that
minimize

min
C

[L2(C) + L3(M|C)].

Computing the optimal solution to this problem is NP-hard, given that the column
reordering problem in two dimensions is known to be NP-hard as well [JKC+04]. In
the next section, we present an approximate but scalable solution based on an iterative
processing scheme.

3.3 Proposed Method: HYCOM-FIT

We introduce HYCOM-FIT, a scalable and efficient algorithm that fits hyperbolic commu-
nities by approximating the optimal solution using an iterative method of sequentially
detecting important communities. The general idea is to find in each step a single com-
munity Ci that contributes the most to the MDL-compression based on local evaluation.
That is, given the already detected communities Ci−1 = {C1, . . . , Ci−1}, we are interested
in finding a novel community Ci which minimizes L2({Ci} ∪ Ci−1) + L3(M|{Ci} ∪ Ci−1).
Since Ci−1 is given, this is equivalent to minimizing

L1(Ci) + L3(M|{Ci} ∪ Ci−1). (3.1)

Obviously, enumerating all possible communities is infeasible. Therefore, we perform
the following steps in order to detect a single community Ci:

1. Community candidates: We spot candidate nodes by performing a rank-1 approxi-
mation of the matrix M. This step provides a normalized vector with the score of
each node.

2. Community construction: The scores from the previous step are used in a hill
climbing search as a bias for connectivity, while minimizing the MDL costs is used
as the objective function for determining the correct community size.

3. Matrix deflation: Based on the current community detected, we deflate the matrix
so that the rank-1 approximation is steered to find novel communities in later
iterations.

In the following, we detail each step of the iterative procedure.

40

Community candidates. As mentioned, exhaustively enumerating all possible
communities is infeasible. Therefore we propose to iteratively let the communities grow.
The challenge, however, is how to spot nodes which should be added to a community.
For this purpose, we refer to the idea of matrix decomposition. Given the matrix M (or
as we will explain in step 3, the deflated matrix M(i)), we compute a vector a such that
a · aT ≈M. The vector a reflects the community structure in the data and we treat the
elements ai as an indication of the importance of node i to this community.

Community construction. Given vector a, Algorithm 1 overviews how a new
community is built. We start by selecting an initial seed S = {v1, v2} of two connected
nodes with high score in a.2 We then let the community grow incrementally: We randomly
select a neighbor vi that is not currently part of the community, where the score vector a
is used as the sampling bias. That is, given the current nodes S, we sample according to

vi ∝

ai vi /∈ S ∧ ∃v′ ∈ S : (vi, v′) ∈ E
0 else

.

If the MDL score (cf. Equation 3.1) of the new community, i.e. using the vertices
S ∪ {vi}, is smaller than the MDL score using the previous community definition, vertex
vi is accepted. Otherwise, a new sample is generated. This process is repeated until
∆ consecutive rejections have been observed. Since the probability that an element
that should have been included in the community but which was not sampled, i.e.
P (“i not selected”|“i should have been selected”) decreases exponentially as a function of
∆ and of its initial score, i.e. it can be bounded by a∆

i , a small value of ∆ is sufficient. In
our experimental analysis, a value of ∆ = 50 gave good results for many settings and we
recommend it as the default.

After the community growth stage, we try to remove elements from the community,
once again minimizing the description cost. This alternating process is repeated until the
community stabilizes. This process is guaranteed to converge as the description cost of
matrix M is strictly decreasing.

Matrix deflation. While the first two steps build a single community Ci, the objective
of this step is to transform the matrix so that the process can be iterated in such a way
that we don’t get the same community repeatedly. In particular, we aim at steering the
rank-1 decomposition to novel solutions.

To solve this problem we propose the principle of matrix deflation. Starting with the
original matrix M(1) := M, after each iteration, we remove those edges which are already

2We tested different methods with no significant differences found in the results. Selecting the edge
(i, j) with highest min(ai, aj) provides a good initial seed.

41

input :a - score vector obtained from the decomposition
output :S - set of nodes of the community

1 S ← initialSeed(a)
2 repeat
3 t← 0
4 while t < ∆ do
5 vi ← newBiasedNode(S,a)
6 if MDL(S ∪ {vi}) < MDL(S) then
7 S ← S ∪ {vi}
8 t← 0
9 else

10 t← t+ 1
11 end
12 end
13 foreach node n in S do
14 if MDL(S\{n}) < MDL(S) then
15 S ← S\{n}
16 end
17 end
18 until S has converged

19 return S

Algorithm 1: HYCOM-FIT: Community Construction

42

described by the detected community. That is, we obtain the recursion

M(i+1) := M(i) − ICi ◦M(i) [= M−MCi ◦M]

where ◦ denotes the Hadamard product. As seen, matrix M(i+1) incorporates all
communities detected so far. Using the deflated matrix, our objective in Equation 3.1 is
replaced by

L1(Ci) + L3(M(i)|{Ci}). (3.2)

Overall, the algorithm might either terminate when the matrix is fully deflated, or
when a pre-defined number of communities has been found, or when some other measure
of community quality (i.e. size) has not been achieved in the most recent communities.

3.3.1 Fast MDL calculation

The key task of Algorithm 1 is to compute the MDL score (Equation 3.2) based on the
current set of nodes S. Besides set S, estimating the number of bits requires determining
the value of α, a specific value for τ (or, equivalently, |E(C)|), and to count the number
of errors made by the model. Since the MDL score is computed several times, we propose
an efficient approximation for these tasks:

Approximating the exponent of the degree distribution. Exhaustive test of differ-
ent approximation methods is beyond the scope of this work; for an in-depth analysis on
power-law exponent estimation from empirical data we refer the reader to the review by
Aaron Clauset et al. [CSN09]. The method chosen needs to be both robust in degenerate
situations (e.g. uniform distributions) and efficient. We opted for a linear regression of
the log-log data, as it not only respects both requirements, but also because it is known to
over fit to the tail of the distribution and edges between high degree nodes are already
expected under the independence assumption anyway.

Number of edges and the value of τ . The value of |E(C)| is defined as the number
of edges between the nodes in S, i.e. |(S × S) ∩ E|, since this value can efficiently be
obtained by an incremental computation each time a node is added or removed from the
current community. Efficiency is ensured by indexing the edges in M by node.

Fixing the value of |E(C)|, we need to derive the value of τ leading to the desired
cardinality. For efficiency, we exploit the following approximation:

Lemma 2 The value of |E(C)| can be approximated by

|E(C)| ≈ (istart − 1) · |S|+ τ
1
α · (log(iend)− log(istart)),

43

where istart := max{dτ 1
α · |S|−1e, 1} and iend := min{bτ 1

α c, |S|+ 1}.

Proof 2 Instead of exactly counting the number of elements iα · jα > τ (cf. Figure 3.4), we
do a continuous approximation by computing the area under the τ -isoline (intuitively: the
area shaded in Figure 3.4). More precisely, given a specific τ (and assuming α 6= 0), we use
the isoline derived by

iα · jα = τ ⇔ j = τ
1
α · i−1 =: f(i).

Considering the integral
∫ |S|+1

1 f(i) di leads to an approximation of |E(C)|. To achieve a
more accurate approximation, we consider two further improvements:
(a) For each i with f(i) < 1, no edges are generated. Thus, we also don’t need to consider the
area under this part of the curve. It holds

f(i) ≥ 1⇒ i ≤ τ
1
α ⇒ iend := min{bτ 1

α c, |S|+ 1}.

The integration interval can end at iend.
(b) The number of edges for each node is bounded by |S|. Thus, for each i with f(i) > S, we
can restrict the function value to |S|. It holds

f(i) ≤ |S| ⇒ i ≥ τ
1
α · |S|−1 ⇒ istart := max{dτ 1

α · |S|−1e, 1}.

Thus, overall, given a specific τ , the value of |E(C)| can be approximated by

∫ istart

1
|S| di+

∫ iend

istart
f(i) di = (istart − 1) · |S|+ τ

1
α · (log(iend)− log(istart)).

�

Based on Lemma 2, we find the appropriate τ by performing a binary search on the
value of log τ until the given value of |E(C)| is (approximately) obtained. This step can
be done in time O(log |S|2).

Calculating the number of errors. Determining the number of errors can be reduced
to the problem of counting the number of existing edges in IC . In other words, the goal
is to determine how many edges (Si, Sj) ∈ (S × S) ∩ E fulfill iα · jα > τ . Knowing this
number, e.g. denoted as x, the number of errors is given by

(M(i) − x) + (|E(C)| − x).

We have to encode all edges of M(i) as errors which are not covered by C (i.e. M(i) − x
many) and we additionally have to encode all non-existing edges which are unnecessarily
included in C (i.e. |E(C)| − x many).

44

Obviously, the value of x can be determined by simply iterating over all edges (S×S)∩E
of the community, i.e. linear in the number of edges.

3.3.2 Complexity analysis

Lemma 3 HYCOM-FIT has a runtime complexity of O(K · (|E|+ |S| · (log |S|2 +E))), where
K is the number of communities we obtain, |E| is the number of edges in the network, |S| is
the average size of a community and E is the number of edges between the elements of S.

Proof 3 Steps 1 to 3 are repeated K times, the number of communities to be obtained. Step
1, the rank-1 approximation, requires O(|E|) time. Step 2, the core of the algorithm, can
be executed using O(|S|) additions and removals to the community, each with complexity
O(log |S|2 + E) as detailed in the previous sub-section. Finally, step 3, the matrix deflation,
can be done in O(E) with a single pass over the edges of the community. �

3.4 Experiments on Real Data

In this section, we start by evaluating the quality of the Hyperbolic Community Model
using the datasets of Table 3.1. We subsequently evaluate HYCOM-FIT by studying its
scalability and its ability to obtain empirically correct communities through the use of the
node-labeled dataset.

We focus on three quality metrics: Q1) Model quality, Q2) HYCOM-FIT scalability and
Q3) Effectiveness.

3.4.1 Q1 - Model quality

While Section 3.2 describes how to encode hyperbolic communities, it does not show
whether this model is preferable over simpler models such as edge lists when encoding
real communities. This aspect is not immediately clear because, even though block
communities of uniform density are a special case (α = 0) of hyperbolic, HYCOM explicitly
encodes missing edges (i.e. errors made by the model). This observation implies that
HYCOM must create dense hyperbolas to ensure that the overall cost of encoding the
errors and the model is not higher than the cost of simply encoding all the edges in
the graph. Since big communities are usually very sparse, it is not immediately obvious
whether better compression can be achieved by this model.

Figure 3.5 shows the number of bits required to encode the ground-truth communities
using the hyperbolic model and the edge-list format. In this scenario, the cost of each

45

100

1000

10000

100000

100 1000 10000 100000

H
yC

o
M

 b
it

s

Edge List bits

HyCoM wins

(a) AMAZON

100

1000

10000

100000

1000000

10000000

H
yC

o
M

 b
it

s

Edge List bits

HyCoM wins

(b) DBLP

100

1000

10000

100000

1000000

100 1000 10000 100000 1000000

H
yC

o
M

 b
it

s

Edge List bits

HyCoM wins

(c) YOUTUBE

100

1000

10000

100000

1000000

10000000

H
yC

o
M

 b
it

s

Edge List bits

HyCoM wins

(d) LIVEJOURNAL

Figure 3.5: Number of bits required to encode ground-truth communities: HYCOM
consistently requires less bits

community using HYCOM can be obtained using the cost function of Problem 1 when
setting |C| = 1. As seen, the hyperbolic model consistently requires less bits to represent
ground-truth communities. While savings are substantial for the datasets shown in (a)-(c),
savings on the LIVEJOURNAL are less strong. In any case, though, compression based on
hyperbolic structures is preferable.

3.4.2 Q2 - Scalability

We compared HYCOM-FIT to several popular community detection methods found in the
literature: the community affiliation graph model [YL12a], clique percolation [APF+06]
and cross-associations [CPMF04]. We obtained realistic graphs of different sizes by doing
a weighted-snowball sampling3 in the LIVEJOURNAL dataset.

3In this weighted-snowball sampling, weights correspond to the number of connections from a node to
the current sample. This was done in an effort to preserve community structure.

46

1

10

100

1000

10000

100000

100 10000 1000000

Se
co

n
d

s

Edges

HyCoM-fit

CrossAssociations

Cfinder

agmfit

Figure 3.6: HYCOM-FIT scales lin-
early with the number of edges.

100 200 300 400 500 600 700 800 900 1000

100

200

300

400

500

600

700

800

900

1000

Figure 3.7: Anomalous community found
by HYCOM-FIT in the LIVEJOURNAL data.

Figure 3.6 shows the run-time of the different algorithms using their default parame-
ters. Clique percolation ran out of memory on a graph with 100 000 edges. HYCOM-FIT
was run without any special stopping criteria (i.e. until the deflation was complete); as a
consequence, bigger graphs required more communities to be fully deflated. HYCOM-FIT
shows a fully linear run-time when the required number of communities is constant.

3.4.3 Q3 - Effectiveness

In addition to the datasets with ground-truth communities previously used, we also
applied HYCOM-FIT to a copy of the simple-english Wikipedia pages from March 8,
2014. In this dataset, nodes represent articles and edges represent hyperlinks between
them. Unlike previous datasets, we don’t consider any ground-truth communities in
the Wikipedia data; however, as nodes are labeled, this dataset allows us to assert the
effectiveness of HYCOM-FIT.

Detecting Hyperbolic Communities. Figure 3.1a and Figure 3.1b presented in
the introduction illustrate both a ground-truth community and a community found by
HYCOM-FIT in the YOUTUBE dataset. They show not only the existence of hyperbolic
communities in real data, but also the ability of our method to successfully find them.
Note the similarity in the shape of both communities, which existing methods trying to
find communities of uniform density would fail to detect.

Anomaly Detection. HYCOM-FIT is also able to detect anomalous structures in
data. Figure 3.7 shows a detected community from the LIVEJOURNAL dataset. We

47

0

50

100

150

200

250

300

350

0 50 100 150 200 250 300 350

Figure 3.8: Meaningful hyperbolic
structures: community of dates in
WIKIPEDIA.

0

20

40

60

80

100

120

0 20 40 60 80 100 120

Figure 3.9: HYCOM-FIT also finds bi-
partite cores and cliques: community
of countries in WIKIPEDIA.

can see the adjacency matrix (here represented as an heatmap) of suspiciously highly
connected accounts. Approximately 1 000 users established over 300 000 friendship
relations forming a very dense community (compared to a common distribution as shown
in Figure 3.2). Nevertheless, this anomalous community also shows the characteristic
shape of a hyperbola.

Communities in WIKIPEDIA. Figure 3.8 and Figure 3.9 show two communities
detected in the WIKIPEDIA dataset. Figure 3.8 illustrates a hyperbolic community mostly
consisting of temporal articles. The first 6 articles correspond to countries heavily men-
tioned in events (e.g. United States, France, Germany, etc.), we then have WIKIPEDIA

articles corresponding to months (e.g. April, July), then articles representing individ-
ual years (e.g. 2002, 1973) and finally articles corresponding to particular dates (e.g.
November 25, May 13).

Figure 3.9 shows HYCOM-FIT’s generality and its ability to detect bipartite cores given
their close resemblance to hyperbolas. In this community, the approximately 20 articles
of highest degree represent articles with lists (e.g. “Country”, “List of countries by area”,
“Members of the United Nations”) while the remaining 140 articles are all individual
countries.

48

3.5 Summary

We focused on the problem of representing communities in real graph data, and specifi-
cally on the resemblance between the structure of the full graph and the structure of big
communities. We highlight our main contributions:

• Hyperbolic Community Model: We provide empirical evidence that communities
in real data are better modeled using a hyperbolic model, termed HYCOM. Our
model includes communities of uniform density as used by other approaches as a
special case. We also show that this model is better from a compression perspective
than previous models.

• Scalability: HYCOM-FIT is a scalable algorithm for the detection of communities
fitting the HYCOM model. We leverage rank-1 decompositions and the MDL principle
to guide the search process.

• No user-defined parameters: HYCOM-FIT detects communities in a parameter-
free fashion, transparent to the end-user.

• Effectiveness: We applied HYCOM-FIT on various real datasets, where we discov-
ered communities that agree with intuition.

HYCOM is available at http://cs.cmu.edu/~maraujo/hycom/.

49

http://cs.cmu.edu/~maraujo/hycom/

50

Chapter based on work that appeared at PAKDD 2016 [ARF16].

Chapter 4

Scalable Boolean Matrix Factorization

Given a boolean who-watched-what matrix, with rows representing users and columns
representing movies, how can we find an interpretation of the data with low error? How
can we find its underlying structure, helpful for compression, prediction and denoising?
Boolean matrices appear naturally in many domains (e.g. user-reviews [BK07] or user-
item purchases [VFM+14], graphs, word-document co-occurrences [DMM03] or gene-
expression datasets [ZLD+10]) and describing the underlying structure of these datasets
is the fundamental problem of community detection [For10] and co-clustering [TSS05]
techniques.

We address the problem of finding a low-rank representation of a given n×m boolean
matrix M , with small reconstruction error while easily describing M ’s latent structure.
We propose FASTSTEP, a method for finding a non-negative factorization that, unlike
commonly used decomposition methods, yields the best interpretability by combining a
boolean reconstruction with non-negative factors. This combination allows FASTSTEP

to find structures that go beyond blocks, providing more realistic representations. Fig-
ure 4.1a showcases three communities (representing 3 venues) in the DBLP dataset that
illustrate the important hyperbolic structures found in real data; compare them to the
community found by FASTSTEP in Figure 4.1b representing the American community in
the Airports dataset.

Using our scalable method, we analyze two datasets of movie ratings and airports
flights and show FASTSTEP’s interpretability power with intuitively clear and surprising de-
compositions. As an additional example, Figure 4.2 illustrates an application of FASTSTEP

to the task of community detection. Using route information alone, the world airports are
decomposed in 10 factors that clearly illustrate geographical proximity. As we explain in
more detail in Section 4.4.3, the communities we find have an arbitrary marginal and do
not need to follow a block shape.

51

(a) DBLP real communities - PAKDD, KDD and
VLDB.

 20

 40

 60

 80

 100

 20 40 60 80 100

(b) FASTSTEP community - American airports.

Figure 4.1: Realistic hyperbolic structure - Adjacency Matrices of real communities
in DBLP and a community found by FASTSTEP.

Figure 4.2: Intuitive non-block communities - Communities automatically found in
the Airports dataset from flight records. (best viewed in color)

52

4.1 Problem Definition

There are two aspects for a strong interpretability of a boolean matrix decomposition:
boolean reconstruction allows clear predictions and explanations of the non-zeros, while
the existence non-negative factors establishes the importance of elements and enable the
representation of beyond-block structures. In this section, we introduce a new formulation
using a step operator that achieves both goals.

4.1.1 Formal Objective

PROBLEM DEFINITION 2. Step decomposition
• Given a N ×M boolean matrix M .

• Find a N ×R non-negative matrix A and a M ×R non-negative matrix B,
so that the product ABT is a good approximation of M after thresholding:

min
A,B
||M − uτ (ABT)||2F =

∑
i,j

(
Mij − uτ (ABT)ij

)2
(4.1)

where || · ||F is the Frobenius norm and uτ (X) simply applies the standard step
function to each element Xij:

[uτ (X)]ij =

1 if Xij ≥ τ

0 otherwise
(4.2)

where τ is a threshold parameter.

As matrices A and B can always be scaled accordingly, note that the choice of τ does
not affect the decomposition.

53

4.1.2 Step Matrix Decomposition

 2

 4

 6

-4 -2 0 2 4

log(1+exp(-x))

Figure 4.3: Error function
used: the error decreases
quickly when non-zeros are
correctly represented.

The thresholding operator renders the objective func-
tion non-differentiable and akin to a binary program-
ming problem. In order to solve it, we will approximate
the objective function of Equation 4.1 by a function
with similar objective:

min
A,B

F (A,B) =

= min
A,B

∑
i,j

log

1 + e
−Mij∗

(r∑
k=1
AikBjk − τ

)
(4.3)

where M was transformed so that it has values in {−1, 1} by replacing all zeros with -1.
Note that log(1 + e−x) will tend to zero when x is positive and it will increase when x

is negative; the intuition is that this error function will be approximately zero when Mij

and (∑r
k=1AikBjk − τ) have the same sign and a linear penalty is in place whenever their

signs differ.

4.2 Naive Approach: FASTSTEPNAIVE

Given the above formulation, there are several methods for finding A and B and one
possibility is using gradient descent. The gradient is given by

Lemma 4 Let Sij =
r∑

k=1
AikBjk, then the gradient of the objective function in Equation 4.3

is given by:
∂F

∂Aik

=
m∑
j=1

Bjk

1 + eτ−Sij
−
∑
j∈Mi

Bjk (4.4)

Proof 4

∂F

∂Aik

=
∂
(∑

j log
(
1 + e−Mij∗(Sij−τ)

))
∂Aik

= −
∑
j

MijBjk

1 + eMij(Sij−τ) =

=
∑
j 6∈Mi

Bjk

1 + eτ−Sij
−
∑
j∈Mi

Bjk

1 + eSij−τ
=

m∑
j=1

Bjk

1 + eτ−Sij
−
∑
j∈Mi

Bjk

�

54

The update rules for B are similar, given the symmetry of the problem.
Due to the non-negativity requirement, matrices A and B are projected after each

iteration - this projection is made to a small value ε instead of directly to 0, as A = B = 0
would become stationary point of the objective function and the algorithm wouldn’t
improve.

Different gradient descent algorithms and small variations can now be tried. Algo-
rithm 2 illustrates what our experiments indicate provides the quickest convergence:
stochastic gradient descent with batches corresponding to factors, with an adaptive step
size. Our results also indicate that initializingA andB to small random numbers provides
the best results.

It should also be noted that, since the introduction of the approximation in Equa-

tion 4.3, τ now impacts the gradient, as the relative error
(

log(1 + eτ)
log(1 + e0)

)
of misrepresent-

ing an element increases. However, it is clear that it should be chosen to be the highest
possible value in order to improve convergence and to get a sharper decomposition, as
long as numerical stability is not compromised. Our implementation uses τ = 20 and our
experiments showed that the outcome is not sensitive to the exact value.

4.2.1 Stopping Criteria

Intuition about the error function helps in order to decide which stopping criteria to use.
With the suggested initialization, the initial error F (A(0),B(0)) is approximately τE, as
each non-zero not represented in the reconstruction matrix (i.e. Sij ≈ 0 when Mij = 1)
corresponds to an error of approximately τ .

Therefore, the absolute stopping criteria ∆ is related to τ , as ∆ = cτ corresponds to
representing correctly c new positions of the reconstructed matrix. On the other hand,
the relative stopping criteria β is well understood: β ∈ [0, 1] represents the percentage of
improvement and it can be shown that after t successful iterations

F (A(t),B(t)) ≤ βtF (A(0),B(0)) (4.5)

Finally, it is trivial to set the parameters in such a way that only one of them acts
as a true stopping criteria. The appropriate value for ∆ must depend on the number of
non-zeros in M while a value of β ≤ 0.01 provides a good measure of whether a plateau
has been reached. In our experiments, less than 50 iterations are sufficient when very
good approximations are required, while less than 20 iterations usually guarantees a
relative improvement smaller than 1%.

55

input :M - N ×M input matrix.
input : r - Rank of the decomposition.
input : ∆ - Absolute improvement threshold.
input :β - Relative improvement threshold.
output :A - N ×R factor matrix.
output :B - M ×R factor matrix.

1 A : N ×R← RandomReals(0, 0.1)
2 B : M ×R← RandomReals(0, 0.1)
3 step : R× 1← 1
4 repeat
5 oldF ← F (A,B)
6 for k = 1 to R do
7 gradA← GradientA(M , A, B, k)
8 gradB ← GradientB(M , A, B, k)
9 tries← 0

10 repeat
11 tries← tries+ 1
12 A′ ← A
13 B′ ← B
14 for i = 1 to N do
15 A′ik ← max(Aik− step[k]*gradA[i], ε)
16 end
17 for j = 1 to M do
18 B′jk ← max(Bjk− step[k]*gradB[j], ε)
19 end
20 newF ← F (A,B)
21 if newF ≥ oldF then
22 stepk ← stepk/2
23 end
24 until (newF < oldF) ∨ (tries ≥ 10)
25 A← A′

26 B ← B′

27 stepk ← stepk ∗ 2
28 end

29 until (oldF − newF < ∆) ∨
(
oldF − newF

oldF
< β

)
30 return A,B

Algorithm 2: FASTSTEP: Gradient Descent

56

4.2.2 Complexity

A straightforward implementation would take O(TNMR2) time where T is the number
of iterations, N and M are the dimensions of the matrix and R is the rank of the
decomposition. However, by using additional O(NM) memory, caching and updating S
in each iteration, it can be reduced to O(TNMR).

4.3 Proposed Method: FastStep

Unfortunately, the previous algorithm is not adequate for many datasets given its quadratic
nature; it grows linearly in O(NM). In many scenarios such as community detection
and recommender systems, M is extremely sparse and algorithms must be linear (or
quasilinear) in the number of non-zeros (E). In the following, we describe how to quickly
approximate F (A,B) and the respective gradients of the sparse matrix.

4.3.1 Fast Gradient Calculation

As shown in Equation 4.4, calculating the gradient exactly requires O(NM) operations
per factor because each Aik requires a summation over all elements Bjk. Furthermore,
there is a AikBjk term in Sij, which means that this loop cannot be easily unrolled or
reused between elements of A. The goal of this subsection is to approximate the gradient
of the factor using a number of operations in the order of O(E), the number of non-zeros
in the matrix.

Careful analysis of the structure of this summation in the gradient allows us to quickly
approximate it. The impact of position (i, j) in factor k is a sigmoid function, scaled by
Bjk and with parameter Sij. This means that only positions with simultaneously high
Sij and Bjk have a significant impact on the gradient, which implies that we should first
consider pairs (i, j) with high AikBjk, as that correlates well with both metrics.

Hence, Equation 4.4 can be approximated as

∂F

∂Aik

'
∑

(i,j)∈P (t)

Bjk

1 + eτ−Sij
−
∑
j∈Mi

Bjk (4.6)

where P (t) is the set of elements of M that the decomposition “believes” should be
reconstructed, i.e. with high AikBjk for some k. We define R sets of elements Pk(t) that
each factor k would like to reconstruct and P (t) = ⋃

Pk(t). The intuition is that, initially,
only non-zeros contribute to the gradient so we can quickly calculate it with no error using
the second summand of Equation 4.6. As we iterate, the error will gradually move from

57

 0

 10000

 20000

 30000

 40000

2RE 4RE 6RE 8RE 10RE
E
rr

o
r

Number of non-zeros selected

Figure 4.4: A small number of non-zeros approximates the gradient – quick conver-
gence in the Airports dataset.

the non-zeros of M to some of the zeros. However, given M ’s sparsity and the symmetry
of the error function – the error of misrepresenting a one is the same as misrepresenting a
zero – |P (t)| can be kept small and in the order of O(RE); Figure 4.4 shows the error as
the size of P (t) increases in the AIRPORTS dataset.

In order to quickly find the top-T pairs (i, j) with highest AikBjk, let ak and bk be
columns k of matrices A and B, respectively. After sorting ak and bk, the biggest AikBjk

not currently in Pk can be selected from a very small set of elements along one sort of
“diagonal” in the matrix. In particular, it can be shown that element (x, y) should not be
added to Pk before both (x−1, y) and (x, y−1) are added, as they would necessarily be at
least as big. Therefore, one can keep a priority queue with O(min(N,M)) elements and it
is possible to select a set of t non-zeros and approximate the gradient of all elements in
factor k in O(T +N logN +M logM) operations. In Chapter 8, we describe and provide
additional theoretic guarantees using a similar algorithm that works in tensors.

4.3.2 Fast Error Function Evaluation

Given the method currently used to quickly calculate the gradient, one could consider
evaluating the error function at positions E + P (t). Although fast, some positions of the
matrix would never be considered and the algorithm would over-fit, thus it cannot be
used to detect convergence.

Therefore, in order to detect convergence, after each iteration of the gradient descent
procedure (i.e. after all the factor updates are completed), we estimate the error F̃ (A,B)
by considering all the non-zeros and a uniform sample of the zeros of the matrix, and
then scale the error accordingly. Additionally, in order to decrease the probability of
underestimating F (A,B) and compromising future iterations of the gradient descent, we

58

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 10000 100000 1e+06 1e+07
re

la
ti

v
e
 e

rr
o
r

sample size

ideal

Airports

MovieLens

Figure 4.5: Using less than 1% of the samples produces a very good approximation.

take the median of 9 simulations.
Note that E[F̃ (A,B)] = E[F (A,B)], as F̃ (A,B) is a simple uniform sampling of

terms of the error function. It is known that the variance V ar[F̃ (A,B)] decreases linearly
with the number of samples. Figure 4.5 shows the impact of the sample size when
approximating F (A,B) in the AIRPORTS and MOVIELENS10M_1980 datasets (more
details about the datasets in the next section) after decomposing each matrix in 10 factors.
Note that, while the second dataset has 41× more non-zeros and its matrix is 12× bigger,
the accuracy in respect to the number of samples does not change significantly. This can
also be attributed to the fact that the error function is upper-bounded at each position by
log(1 + eτ) ≈ τ , so the variance is small.

4.3.3 Complexity

Lemma 5 FASTSTEP has a time complexity bounded by the number of nonzeros,

O(TR(E + P log(min(N,M)) +N logN +M logM + S)),

where, as before, T represents the number of iterations, N and M are the dimensions of
the matrix and R is the rank of the decomposition. P = |P (t)|, which as we showed can be
O(RE), and S represents the number of samples used to check for convergence.

Proof 5 The gradient descent loop iterates T times. On each iteration, we check for conver-
gence and calculate the gradients:

• We check for convergence in O(R(S + E)) time, as we evaluate the error function at S
distinct zero locations.

• We calculate the gradient by, firstly, sorting each factor ofA andB in timeO(RN logN)
andO(RM logM), respectively. Then, we update the gradients using theO(RP) biggest

59

Table 4.1: Datasets used to evaluate FASTSTEP.

Name Size Non-zeros Description

MovieLens100k 945×1 684 100 000 User-movie ratings.
MovieLens10m 71 568×10 681 10 000 055 User-movie ratings.

Airports 7 733×7 733 34 660 Airport to airport flight information.

elements of the reconstruction and each one can be obtained in O(min(M,N)) time.
Summing the above-mentioned big-O bounds, we get the desired complexity. �

Using the same notation as before, the time complexity is now bounded by the number
of non-zeros, P = |P (t)| (which as we showed can beO(rE)) and the number of samples S
to check for convergence. The complexity is now O(TR(E+P log(min(N,M))+N logN+
M logM + S)).

4.3.4 Obtaining clusters from A and B

When a binary answer on whether a given element “belongs” to a factor is desired (e.g.
community detection), a clear interpretation exists solely based on the principles of the
decomposition:

Definition 3. Part of a factor
A row element i belongs to a factor k if there is a non-zero in the reconstructed matrix
at row i and if this factor contributed with a weight above τ

r
, i.e.:

Aik ≥
τ

Rmax(bk)
and Si,arg max(bk) ≥ τ.

We show that this method generates empirically correct clusters in the next section.

4.4 Experimental Evaluation

FASTSTEP was tested on 2 fairly different real-world datasets, see Table 4.1 for details.
MovieLens100k and MovieLens10m are user-movie ratings datasets made available by
MovieLens and the Airports dataset is a graph made available by OpenFlights. Unless
otherwise specified, FASTSTEP was run using the default parameters defined in the
previous section and 1 000 000 samples.

We answer the following questions:

60

Q1. How scalable is FASTSTEP?
Q2. How does the reconstruction error compare to other methods?
Q3. How effective and interpretable is the FASTSTEP decomposition?

4.4.1 Q1 - Scalability

Table 4.2: Number of non-zeros in the MovieLens10m dataset when only considering
movies released before a given decade.

Year 1930 1940 1950 1960 1970 1980 1990

Non-zeros 14 673 110 206 258 253 498 451 850 362 1 447 301 3 077 991

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 10000 100000 1e+06 1e+07

T
im

e
 (

s
)

Non-zeros

linear
quadratic

Figure 4.6: Scalability: the FASTSTEP de-
composition has linear running time on
the number of non-zeros.

The fast approximation of the gradient
has a runtime proportional to the number
of non-zeros of the matrix. For the runtime
to be reproducible, we took different sub-
sets of the MovieLens10m dataset by remov-
ing all the ratings of movies produced after
a given decade. Please note that the matrix
was not resized, resulting in columns (and
possibly rows) full of zeros.

Figure 4.6 shows the execution time
of the decomposition for these different
matrices. Notice the sub-quadratic running
time.

4.4.2 Q2 - Low Reconstruction Error

When considering the same number of factors, a lower reconstruction error implies better
compression and potentially enables lower-rank representations of the data. Given the
boolean nature of M , the error function is intuitively easy to represent. Let M represent
the original dataset and R represent the reconstructed matrix, then the error E is given
by E = ||M −R||2F .

We compare FASTSTEP to other methods that are quasilinear in the number of non-
zeros. Table 4.3 compares the squared error of FASTSTEP, SVD, NNMF and HYCOM in
the MovieLens100k and Airports datasets when using 10 factors. For SVD and NNMF, as

61

Table 4.3: Reconstructions using the FASTSTEP decomposition achieve lower
squared error than popular scalable methods.

Dataset FASTSTEP SVD NNMF HYCOM

Airports 21 206 26 061 27 235 29 117
MovieLens100k 68 863 70 627 74 040 86 964

arbitrary values such as 0.5 do not guarantee the lowest error, we tried all thresholds and
considered the optimal (Figure 4.7 illustrates this process). For FASTSTEP, we selected
the lowest error from Figure 4.4 and its equivalent in the MovieLens100k data (which
converged after considering only 2rE non-zeros). For HYCOM, we considered as error the
sum of the edges not represented and the mistakes made inside each community. Among
the state of the art methods, we did not compare with non scalable algorithms (L-PCA,
ASSO, BMF-THRESHOLD).

 20000

 25000

 30000

 35000

 40000

 0.2 0.3 0.4 0.5 0.6 0.7 0.8

E
rr

o
r

Threshold

SVD
NNMF

Figure 4.7: Competitors need to com-
pute the threshold and naively require
quadratic time.

However, while comparing the recon-
struction error of these methods might
be appropriate given the same number
of parameters, their expressiveness is not
the same given their different character-
istics. In this regard, by allowing neg-
ative numbers, SVD is at an advantage
when compared to the rest of the meth-
ods. Please note that common techniques
such as the Bayesian Information Criterion
(BIC) [S+78] or the Akaike Information Cri-
terion (AIC) [Aka74] would not provide a
fairer comparison, as all methods would
keep the same relative rank given that the number of parameters is the same. Techniques
such as Minimum Description Length (MDL) [Grü07] measure the number of bits required
to encode both the error and the model, but it is not clear which method should be used
to represent real numbers, especially given that the importance of the bits is not the same
- as a result, methods such as HyCoM that rely on integer values would greatly benefit.

We can see that FASTSTEP is able to simultaneously achieve a lower reconstruction
error while maintaining higher interpretability.

62

Table 4.4: FASTSTEP is able to automatically group similar movies in the MovieLens
dataset. Groups manually labeled according to their highest scoring movies.

“Action” “Romance” “Drama”

Raiders of the Lost Ark Picture Perfect Titanic
The Empire Strikes Back Addicted to Love Wag the Dog
Terminator 2: Judgment Day Bed of Roses L.A. Confidential
The Terminator My Best Friend’s Wedding Jackie Brown
Star Trek 3: The Search for Spock Fly Away Home Replacement Killers

4.4.3 Q3 - Discoveries

MovieLens

Figure 4.8: FASTSTEP successfully groups
movies by genre.

The MovieLens100k user-movie dataset
was decomposed using a rank-10 decom-
position and the factors were clustered as
described. Table 4.4 illustrates the top-5
movies (ranked by score) in three of the fac-
tors and shows a grouping by movie theme.

Figure 4.8 shows 3 clusters and the per-
centage of movies in each cluster that cor-
respond to a given genre (movies might
have more than one tag, so genres do not
sum to 1). We labeled group A as teenagers
due to the clear prevalence of Action and
Adventure movies. In group B, most of the movies rated were in categories of Comedy,
Children’s, Animation and Adventure; we hypothesize that users rating these movies are
parents and labeled the group accordingly. Finally, we labeled group C as adults due to
the Drama, Comedy and Romance movie genres.

Airports

The Airports dataset is an undirected graph where nodes represent airports and edges
represent flights connecting them. As both dimensions represent the same entity, we
decided to search for communities by enforcing B = A. Both the minimization problem(

min
A
||M − u(AAT)||2F

)
and the gradient are similar.

Figure 4.2 shows a geographical plot of the airports in the different communities;

63

some big hubs, such as Frankfurt and Heathrow, appear in multiple communities and
were coded with a single color to simplify visualization. Even though no geographical
information was used to perform this task, there is a very clear distinction between north
American airports, Brazilian airports, European airports, previous French colonies in
Africa, Russian airports, Middle-Eastern airports and south-east Asia airports. Additionally,
in order to illustrate one of the surprising findings, Figure 4.9 highlights the two European
communities (in blue and yellow) along with the overlapping airports (in green). While
it would initially seem that all these airports should be considered the same community,
a quick overview makes us realize that they are in fact divided by “major airports” and
“secondary airports”, usually operated by low-cost companies. The airports with the
highest score in the “major airports” community are Barcelona, Munich and Amsterdam,
while the airports with the highest score in the “low-cost” group are Girona (85km from
Barcelona), Weeze (70km from Dusseldorf) and Frankfurt-Hahn (120km from Frankfurt).
We consider these and other surprising findings to be very strong empirical evidence on
FASTSTEP’s usefulness for these tasks.

Figure 4.9: Intuitive split of European airports - FASTSTEP identifies 2 European
communities, one with the major international airports (in blue) and the other
with secondary (low price) airports (in yellow). Airports that belong to both groups
appear in green.

Another important improvement of the FASTSTEP decomposition is its ability to re-
construct non-block clusters in the data. Figure 4.1b shows the adjacency matrix of the
American community found in the previous decomposition. As we have non-negative

64

factors, lets explore the additional information available in matrix A. The airports with
the highest score correspond to central airports in continental United States with hubs
from big airlines: Minneapolis, Denver, Chicago, Dallas, Detroit, Houston, etc. Therefore,
using this decomposition alone, measures of centrality can be directly obtained.

 1

 10

 1 10 100

A
i

i

Figure 4.10: Scores of the airports in
the American community - the power-
law shape matches ground-truth commu-
nities.

Finally, when analyzing the scores of
the elements in the communities, we can
see that they closely follow a power-law
when sorted in decreasing order. The hy-
perbolic shape of ground-truth communi-
ties has been dully described in the pre-
vious chapter; nevertheless, note that no
power-law bias was introduced in FAST-
STEP. We consider this a strong indicator
of its ability to detect realistic structures in
graph data.

4.5 Related Work

An important aspect of fast decomposition methods is their ability to evaluate the re-
construction error ||M − R||2F in less than quadratic time. Leskovec et al. [LCK+10]
approximated the log-likelihood of the fit by exploiting the Kronecker nature of their gen-
erator. In the Compact Matrix Decomposition [SXZF07], Jimeng Sun et al. approximated
the sum-square-error (SSE) by sampling a set of rows and columns and scaling the error
in the submatrix accordingly.

Table 4.5 provides a quick comparison of some of the methods discussed in this section.
We characterize as Beyond-blocks methods who do not force a rectangular tiling of the
data. Methods with the Boolean Reconstruction characteristic do not force post-processing
of the reconstructed matrix in order to decide whether a non-zero should be considered.
Arbitrary Marginals refers to a method’s ability to represent any marginal in the data (e.g.
rectangles, but also triangles or hyperbolic structures). We define interpretability as the
ability to easily select a subset of elements representing a factor.

4.6 Summary

FASTSTEP carefully combines a non-negative decomposition and a boolean reconstruction
for the best interpretability of the data. We have shown that it achieves lower recon-

65

Table 4.5: Comparison of decomposition methods - FASTSTEP combines inter-
pretability and beyond-block structures for large datasets.

FASTSTEP SVD NNMF ASSO THRESH HYCOM L-PCA

Scalability " ! ! !

Overlapping " ! ! ! ! ! !

Beyond-blocks " ! ! ! !

Boolean Rec. " ! ! ! !

Arbitrary Marginals " ! ! !

Interpretability " ! ! !

struction error than similar methods and have provided strong empirical evidence of its
ability to find structural patterns in the data. The main contributions of this work are the
following:

1. New formulation and tractable approximation: We introduce a novel FASTSTEP

Decomposition which exploits thresholding of the reconstructed data in order to
minimize the reconstruction error.

2. Scalable: A very efficient approximation enables a runtime linear in the number of
non-zeros.

3. Low reconstruction error when compared to standard methods.

4. Realistic representation which relates to nodes in clusters or degree inside com-
munities.

5. Meaningful and interesting discoveries in real-world datasets.

Reproducibility Available at http://cs.cmu.edu/~maraujo/faststep/.

66

http://cs.cmu.edu/~maraujo/faststep/

Chapter based on work that appeared at SDM 2017 [AAF+17].

Chapter 5

Detecting Points-of-Compromise

As society turns away from cash as form of payment, the possibility for payment
data to be compromised in a transaction increases. A recent Bank of Canada survey
using data from 2013 reports that cash transactions comprise only 43.9% by volume and
23.1% by value out of all transactions [BFS15]; Bagnall et al. report similar results for
other countries [BBH+14]. FICO estimates European losses to fraud at e1.6 billion in
2014 [Cor15] and global fraud in 2013 was estimated at $13.9 billion [Res15]. If the
cost of lost merchandise as well as redistribution costs are included, fraud is estimated to
account for 1.32% of the revenue for the average merchant in the US and it’s higher if the
merchant operates globally [Sol15].

A Point-of-Compromise (POC) is a (physical or virtual) location of the payment
network, such as an ATM or a point-of-sales terminal, that processed or collected payment
information and that was compromised by fraudsters. In a classical scenario, the victim’s
card is swiped in a small rogue device (possibly installed in an ATM or vending machine,
or used by malicious employees whenever the card leaves the owners’ sight at a bar,
restaurant or gas station) that reads and stores the magnetic stripe data which is then,
e.g., sold and written on a new cloned card. However, this is not the only scenario: data
breaches are also common POCs which might occur at the merchant or even payment-
processor level.

Given the increase in both the number of data breaches and in the number of cards
affected (Target’s 2013 data breach alone exposed an estimate of 40 million cards [Kre14]),
early and accurate detection of POCs is not only vital for fraud prevention, but could also
lead to a decrease in the expected loss from these breaches, reducing their frequency. The
timely discovery of a Point-of-Compromise could prevent the fraudulent use of other cards
compromised at the same location and early detection could prevent thousands of fraud
cases.

67

As an example, Figure 5.1a illustrates the weekly savings when the proposed BREACHRADAR

algorithm is applied to one of the two real datasets we explore. By automatically canceling
cards that were used in locations marked as potentially compromised, and even after
assuming a $10 reissue cost per card, our system would be able to prevent over $2 million
USD in credit-card fraud in a period of just 6 weeks.

$0.0

$0.5M

$1.0M

$1.5M

$2.0M

$2.5M

$3.0M

1 2 3 4 5 6

U
S
D

 s
a
v
in

g
s

Week

weekly savings
cumulative savings

net savings

(a) Significant estimated savings, over a period
of 6 weeks (red), even assuming a $10 reissue
cost per card (green).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1
P
re

c
is

io
n

Recall

Ideal

BreachRadar
(Fast) Belief Propagation

Ratio
Ratio + Prior
Vertex Cover

(b) Almost perfect precision and recall, signifi-
cantly higher than competing methods.

Figure 5.1: BREACHRADAR’s effectiveness and comparison to other methods.

The main contributions of this chapter can be summarized as follows:

1. Point-of-Compromise Problem. We formulate a novel and important POC detec-
tion problem.

2. Effectiveness. BREACHRADAR accurately identifies Points-of-Compromise, achieving
over 90% precision and recall when only 10% of the stolen cards have been used in
fraud (see Figure 5.1b).

3. Distributed POC-Detection algorithm. We provide a scalable distributed algorithm
for POC detection in big datasets.

Further Applications. While we focus on the identification of Points-of-Compromise
in bank transactions, there are other domains where BREACHRADAR could help identify
malicious or abnormal activity. We invite the reader to consider any situation where
individual nodes might trigger abnormal behavior in their neighbors. Consider anti-virus
applications and machine-file bipartite graphs: given malware symptoms in some of
the machines, a small set of files that exist in common could be formulated as Point-of-
Compromise detection problem. Similarly, quick identification of food-poisoning sources
or of faulty parts in the car industry can be formulated under this setting.

68

c1

c2

c3

c4

c5

b1

b2

b3

b4

Cards
Buckets

Figure 5.2: Example of a bipartite network used as input to BREACHRADAR. Cards
in red have been victim of fraud.

5.1 Problem Definition

We assume the point-of-view of a payment network or card issuer who has visibility over
the majority of the transactions of a set of cards, some of which have been identified as
fraud-cards (these are typically canceled and reissued). Loosely speaking, our goal is to
automatically identify a small set of locations that many fraud-cards have in common.

We represent the set of transactions as a bipartite graph with cards on one side and
possible Points-of-Compromise on the other.

A possible Point-of-Compromise is a feature that a subset of transactions have in
common, such as a specific point-of-sale terminal, a store identifier or a merchant name
(i.e. all the stores from a corporation). In practice, we would also like to incorporate time
as a feature as data breaches and skimming devices temporally correlate transactions: in
Section 5.4, we consider terminal-week pairs as possible Points-of-Compromise, but many
other options (or combinations thereof) are admissible. For simplicity, we use the terms
possible Point-of-Compromise and location interchangeably. Edges connect two nodes if
there is a transaction between a given card and a given location.

Let’s consider C to be the set of all cards and L to be the set of all locations. G =
(C ∪ L, E) is the bipartite graph and for every edge (i, j) ∈ E ⇒ i ∈ C and j ∈ L.

We will always use index i to represent cards and index j to represent locations. Li is
the set of neighboring locations of card i and Nj is the set of neighboring cards of location
j.

f : C → {0, 1}, part of our input, is a function indicating whether a given card c ∈ C
was a victim of fraud or not.

69

Table 5.1: Notation, symbols and definitions

Symbol Definition
C Set of all cards
L Set of locations (possible POCs)
G Graph of cards and locations
Li Set of locations neighboring card i
Nj Set of cards neighboring location j
fi Boolean indicating if i is a fraud-card
θ Vector of POC probabilities.
B Blame matrix
bi A row of matrix B
bij A cell of matrix B

B is a |C| × |L| matrix where bij is the probability that j is the location responsible for
i being a fraud-card, or the blame which card i attributes to possible POC j.

Using this notation (summarized in Table 5.1), the POC detection problem can be
formulated as:

PROBLEM DEFINITION 3. Spotting Points-of-Compromise
• Given: A graph G = (C ∪ L, E) and fraud labels f : C → {0, 1}.
• Find:

θ : L → [0, 1], where θj is the probability that location j is a Point-of-
Compromise;

B : C × L → [0, 1], where bij is the blame that card i assigns to location j.

that maximize precision at specific false positive rates.

5.2 POC-detection Algorithm

We describe a novel algorithm for the identification of Points-of-Compromise following a
simple Bayesian inference approach. We adopt the principle that predictions are inherently
uncertain and require more evidence in order to increase their confidence, and assume
that cards are compromised at a single location and should influence each other towards
agreeing on the (locally) most likely mutual Point(s)-of-Compromise.

70

5.2.1 A POC Hierarchical Model

We start by assuming that whether a location has been compromised is represented by pj,
a Bernoulli random variable whose success probability θj is taken from a Beta prior.

From the card perspective, we assume that each fraud-card has an associated variable
ri taken from a categorical distribution of size |Li| and probability vector bi, where each
element bij of bi is linearly proportional to the respective θj compromise probability. This
means we are implicitly assuming that the probability of a card blaming a location is
linearly proportional to the probability of it being a POC.

This model can be formally defined as follows:

θj ∼ Beta(α, β) (5.1)

bij =

θj∑

k∈Ni
θk

if fi = 1 and j ∈ Li

0 otherwise
(5.2)

ri ∼ Categorical(|Li|,bi) (5.3)

whose corresponding graphical model in plate notation can be seen in Figure 5.3. The
only hyper-parameter of this formulation is the Beta distribution which is encoded using
α and β. Intuitively, α and β control how much evidence we need to be confident that a
location has really been compromised.

The inputs of this model are the sets Ni (the locations with which each card interacted)
and the boolean indicators fi on whether a card has been a victim. Note the direct
relationship between the problem definition and this formulation: the probability that
a location j has been compromised can be obtained directly from the expected value
of pj (E[pj] = θj) and the blames attributed by the different cards are encoded in the
row-normalized matrix B.

In the following, we will describe an alternating algorithm to simultaneously find θ
and B.

5.2.2 From Blames to POC Probabilities

Let’s suppose that we knew B, i.e., we knew how much blame each card attributes to
each possible POC. Ideally, we would then like to find θ that maximizes P [θ|B], as our
model relates the probability of being compromised with the blames attributed.

We defined that θj comes from a Beta(α, β) distribution, therefore we know that:

71

α β

θ

n

r f

|B|

|C|

Figure 5.3: Plate notation of the probabilistic graphical model. Blames bij are a
direct function of θ and f and are omitted for clarity.

P [θj;α, β] =
θα−1
j (1− θj)β−1

B(α, β) , (5.4)

where the beta function B(α, β) is simply the normalization constant that ensures that
the total probability integrates to 1.

Let zj = ∑
i bij be the sum of all the blames assigned to possible POC j. zj follows a

Beta-Binomial distribution and we know that

P [zj|θj; |Nj|] ∝ θ
zj
j (1− θj)|Nj |−zj (5.5)

and, from Bayes’ theorem, the posterior distribution equals

P [θj|zj;α, β, |Nj|] ∝ P [zj|θj; |Nj|]P [θj;α, β] ∝
∝ θ

zj+α−1
j (1− θj)|Nj |+β−zj−1 (5.6)

This means that the posterior probability distribution of θj is defined as another Beta
distribution that can be parametrized as Beta(zj + α, |Nj| − zj + β) and with expected
value

E[θj] = zj + α

|Nj|+ α + β
(5.7)

We can think of this expected value as a ratio of the blames (zj) to the total number
of cards that used this location (|Nj|), with additional terms α and β that represent,
respectively, “virtual” fraud-cards that used this location (α) and “virtual” non-fraud-cards
that used this location (β). Depending on the prior chosen (Beta(α, β)), two possible

72

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 0.2 0.4 0.6 0.8 1
p

(x
)

θ

Beta(3,6)
Beta(2,4)
Beta(4,2)

Figure 5.4: Impact of the prior on the point-of-compromise probability: note how
different hyper-parameters place distinct assumptions regarding an unknown loca-
tion.

POCs with the same fraud-cards ratio will have their probability adjusted to match
our confidence on how far away from the prior distribution they are. The ratio

α

α + β
represents the expected probability that a random location is compromised, while the
magnitude of α and β encode our confidence on this prior.

5.2.3 From POC Probabilities to Blames

Following a similar line of reasoning, let’s suppose that we knew θ and that we would like
to find B, i.e. we would like to know the probability that a card will blame each location,
given their respective compromise probabilities.

As mentioned in Section 5.2.1, we assume that blaming probabilities are linearly
proportional to compromise probabilities. Therefore, the blames matrix B can be found
by directly applying Equation 5.2.

5.2.4 An Alternating Algorithm

We previously defined the probability that a location was compromised based on the
blames assigned to it, and defined the blame assigned by a card to a possible POC given
the compromise probabilities of all the locations in Equation 5.2. This tight coupling
suggests an alternating algorithm in which one updates blames and POC probabilities in
succession until convergence.

We initialize blames as uniformly distributed across all neighboring possible POCs,
and proceed by updating the POC probabilities and blames in sequence. We check for

73

convergence using the l1 norm of the difference of successive POC probability estimations.
Algorithm 3 describes this procedure and, as we will see in Section 5.3, one of its
advantages is being easily parallelizable.

input :N (|C| × |L|) - neighbors of each card
input :n (|L| × 1) - number of cards on each possible POC
input : ε - convergence threshold
input :α, β - prior hyperparameters
output :θ (|L| × 1) - POC probabilities
output :B (|C| × |L|) - blames matrix

1 B ← UniformBlames()
2 θ ← UpdatePOCProbabilities(B, n, α, β)
3 repeat
4 B ← UpdateBlames(θ, N)
5 θprev ← θ
6 θ ← UpdatePOCProbabilities(B, n, α, β)
7 until ||θ − θprev||1 < ε
8 return θ, B

9 Function UpdateBlames(θ, N)
10 foreach card i do
11 sum←

∑
k∈Ni

θk

12 foreach location j ∈Ni do
13 Bij ← θj

sum

14 end
15 end
16 return B
17 Function UpdatePOCProbabilities(B, n, α, β)
18 foreach location j do
19 zj ←

∑
iBij

20 θj ← zj+α
nj+α+β

21 end
22 return θ

Algorithm 3: BREACHRADAR

74

5.2.5 Convergence

Given its many applications, such as k-means clustering or expectation-maximization
methods, the convergence of alternating optimization algorithms is a well studied problem
and it is known to work well in a surprising number of cases [BH02a]. In general, one
cannot guarantee global convergence but local convergence tends to be very fast. By
using the dataset and hyper-parameters described in Section 5.4, we show empirically
that our implementation of Algorithm 3 converges exponentially fast in Figure 5.5.

 1

 10

 100

 1000

 10000

 100000

 0 1 2 3 4 5 6 7

θ
 l
1

 n
o

rm
 d

if
fe

re
n

c
e

Iterations

Figure 5.5: Exponentially fast convergence - notice the log scale in the y-axis.

5.3 Distributed POC-detection

Both stages of the alternating optimization algorithm are parallelizable if we assume a
message-passing model of computation, as used in Pregel [MAB+10] and other large-scale
graph processing systems. We assume that both nodes and edges can store information
which is shared and updated until the whole system converges; in our case, edges contain
information relative to blames (B) while location nodes contain their respective Point-of-
Compromise probability.

Under this new model of computation, the differences to Algorithm 3 can be sum-
marized in Algorithm 4. Succinctly, blames can be updated using a round of message
passing from each potential Point-of-Compromise to each neighboring card, followed by a
mapping of the edges that only requires the data stored in their adjacent nodes. Point-of-
Compromise probabilities can be updated in a similar fashion: blames can be propagated
to the adjacent potential POC which update their internal variables.

In order to obtain an efficient parallel solution, this procedure was implemented
using Apache Spark [ZCF+10], a MapReduce engine that enables in-memory computation.

75

input :N (|C| × |L|) - neighbors of each card
input :n (|L| × 1) - number of cards on each possible POC
input : ε - convergence threshold
input :α, β - prior hyperparameters
output :θ (|L| × 1) - POC probabilities
output :B (|C| × |L|) - blames matrix

1 On G.POCs.NewMessage(blame)
2 z = z + blame
3 θ = z+α

nj+α+β
4 On G.Cards.NewMessage(θ)
5 sum = sum+ θ

6 Function UpdateBlames(θ, N)
7 foreach POC j in G in parallel do
8 foreach Card i in Nj in parallel do
9 j.sendMessage(i, θ)

10 end
11 end

/* After all messages are aggregated. */
12 foreach Edge e in G in parallel do
13 e.blame = e.POC.θ

e.card.sum

14 end
15 Function UpdatePOCProbabilities(B, n, α, β)
16 foreach Edge e in G in parallel do
17 e.sendMessage(e.POC, e.blame)
18 end

Algorithm 4: Distributed BREACHRADAR

76

Table 5.2: Several Points-of-Compromise identified in one of the datasets have also
been mentioned in news reports.

Merchant Source Summary

Schnucks ComputerWorld [Vij15] A supermarket chain where a breach ex-
posed 2.4M cards.

NoMoreRack.com Reuters [Roy13] An online retailer with over $340 mil-
lion in sales annually, probes likely card
breach.

Jetro Cash &
Carry

DataBreaches [jet11] A data breach allowed attackers to ac-
cess private data in cards used over a
one month period in this chain.

Bashah’s Family
of Stores

BankInfoSecurity [Kit13] A supermarket chain tied to the compro-
mise of hundreds of cards.

Buy.com Yahoo Finance - Money
Talks [Bal13]

Hundreds of online shoppers reported
fraudulent charges on their credit cards
after making a purchase at this online
marketplace.

Spark is well suited for machine learning algorithms as its in-memory model doesn’t
force sequential stages to synchronize data to disk. In particular, we rely on Spark’s
GraphX [XGFS13] module which overlays an abstraction for graph-parallel computation
that allows message passing and aggregation.

5.4 Results

We answer the following questions:

Q1. Effectiveness - How accurately and how early can we detect Points-of-Compromise
in reality? What are the trade-offs between number of fraud-cards and accuracy?

Q2. Scalability - How does our method scale in terms of the size of the network and in
terms of the number of machines available?

Q3. Fraud-cards precision and recall - How much of the fraud that is reported can be
explained through the identification of Points-of-Compromise?

Q4. Discoveries - Can we identify real and validated Points-of-Compromise in real data?

77

5.4.1 Experimental Setup

 0

 2

 4

 6

 8

 10

 12

 14

 0 0.2 0.4 0.6 0.8 1

p
(x

)

θ

Beta(0.2,15)

Figure 5.6: The prior used is biased
against considering a location compro-
mised.

BREACHRADAR was applied to two datasets
provided by different sources, each with over
one billion transactions, 0.4 million cards and
2 million fraudulent transactions that cover
more than one year. The data is very unbal-
anced with the percentage of transaction fraud
in accordance with industry averages, between
0.01% and 0.1% [Eur15]. Due to privacy con-
cerns, results in this section do not indicate the
corresponding dataset.

We created possible POCs corresponding to
terminal-week pairs and removed multi-edges
and all possible POCs that interacted with less
than 5 fraud-cards, as they could not be confidently labeled Points-of-Compromise under
any circumstance. After this pre-processing stage, there were at least 1.5 million terminal-
week pairs that had to be considered in each dataset. Results here reported correspond
to a α = 0.2 and β = 15 prior (see Figure 5.6) which provides a significant assumption
that a random terminal-week is not compromised. Results did not differ significantly with
other values of α and β we tested.

Table 5.3: Overview of the two datasets used. Specific values masked for privacy.

#cards #transactions #locations #fraud transactions

Dataset 1 > 105 > 109 > 106 > 106

Dataset 2 > 105 > 109 > 106 > 106

Reproducibility. The dataset used in the comparison experiments described in Sec-
tion 5.4.3 is available upon request.

5.4.2 Empirical Evidence and Fraud Prevented

We collected significant empirical evidence demonstrating our ability to find real POCs,
both data breaches and terminals that we suspect were victims of skimming, through
manual analysis of the POCs reported. The list includes tobacco machines equipped

78

with credit card readers and other general vending machines where the percentage of
fraud-cards is as high as 80%.

Data breaches are easier to validate as they are often reported in the news; a non-
exhaustive list of POCs we automatically detected along with a sample news report can be
found in Table 5.2. We were also able to identify POCs whose first report occurred more
than 6 months after the last transaction have available in the dataset.

We evaluated the amount of fraud that could be prevented if cards of likely-compromised
POCs were automatically reissued. Figure 5.1a shows the gains obtained when BREACHRADAR

is evaluated in a 6 weeks period. Over $2 million USD in savings would be possible when
reissuing all cards that interacted with POCs with an expected compromise probability
above 10%, even if we assume a $10 reissue cost per card. 17% of the cards reissued
would have been victims of fraud and 95% of these would be first-time victims.

5.4.3 Accuracy and Early Detection

Due to the lack of ground-truth regarding which locations are effectively Points-of-
Compromise, we evaluate the precision and recall of BREACHRADAR through the injection
of synthetic POCs in real data. We evaluate BREACHRADAR along two dimensions:

1. Probability that a card is a victim of fraud after using a compromised location
(p). This can be viewed as a proxy for how early our method is able to detect
compromised cards, as detection gets naturally easier as the number of victims
increases.

2. Presence of noise in the set of fraud-cards, i.e., we randomly mark additional cards
as victims, although fraud cannot be attributed to any of the POCs.

In each experiment, we define a set of POCs and vary a probability (p) that their
transactions will steal the corresponding card. Based on this new fraud-cards list, we
then obtain a new list of possible Points-of-Compromise. Table 5.4 shows the number of
fraud-cards and possible Points-of-Compromise as the probability of the card being stolen
increases, when no noise is included.

An increase in the probability of a card being compromised corresponds to an obvious
increase in the total number fraud-cards and, as a consequence, of the total number of
possible Points-of-Compromise that must be considered. However, we will see that the
increased probability more than offsets the larger search space and higher accuracy can
be achieved. Figure 5.7a and Figure 5.7b show the receiver operating characteristic
(ROC) and “precision vs recall” curves for the different compromise probabilities. Note
that we are able to simultaneously achieve high precision and recall for relatively small

79

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.001 0.002 0.003 0.004 0.005

T
ru

e
 P

o
s
it

iv
e
 R

a
te

False Positive Rate

p = 50%
p = 25%
p = 20%
p = 15%
p = 10%
p = 5%

(a) Receiver Operating Curve: notice the very
low false positive rate.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

p = 50%
p = 25%
p = 20%
p = 15%
p = 10%
p = 5%

(b) High precision and recall, even with low
stealing probability (p).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.005 0.01 0.015 0.02

T
ru

e
 P

o
s
it

iv
e
 R

a
te

False Positive Rate

p = 25%
p = 20%
p = 15%
p = 10%
p = 5%

(c) Receiver Operating Curve: low false posi-
tive rate, with 100% noise.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
re

c
is

io
n

Recall

p = 25%
p = 20%
p = 15%
p = 10%
p = 5%

(d) Even with 100% added noise, high preci-
sion and recall.

Figure 5.7: Accuracy with varying probability of a card being a fraud victim.
(Top row: without noise. Bottom row: 100% additional fraud-cards as noise.)

compromise probabilities; we achieve over 90% precision and recall even when only 10%
of the cards have been victims of fraud.

We also analyze the impact of noise in the effectiveness of our method: we double the
number of fraud-cards by randomly selecting additional cards. These are cards that do
not have a corresponding POC in the data, even though they were marked as victims. As
before, Figure 5.7c and Figure 5.7d show the ROC and “precision vs recall” curves for
the different compromise probabilities. Using the same scenario of a 10% probability of
cards being compromised as example, note that we are still able to achieve about 75%
recall maintaining 50% precision, even though we are simultaneously considering very
aggressive levels of cards mislabeled as fraud-cards and early detection.

80

Table 5.4: Impact of the infection probability on the number of fraud-cards and
possible Points-of-Compromise.

Probability (p) #fraud-cards #possible POCs

5% 29 326 104 185
10% 57 593 263 115
15% 84 833 450 609
20% 110 955 662 967
25% 136 896 892 119
50% 257 609 2 168 733

5.4.4 Scalability

Scalability experiments are performed using the data described in Table 5.4. We show
BREACHRADAR linear scalability on the number of possible POCs (Figure 5.8b) and analyze
the runtime of its Spark implementation when changing the number of machines available
in a small cluster of 6 quad-core machines (Figure 5.8a). The number of cores in each
machine does not provide any advantage, as disk input-output is the bottleneck of our
system, not processing power.

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6

S
p
e
e
d
-u

p

Number of Machines
(a) Good distributed speed-up.

 0

 20

 40

 60

 80

 100

 120

 140

 160

0.0 M 0.5 M 1.0 M 1.5 M

T
im

e
 (

s
e
c
o
n
d
s
)

Possible POCs

(b) Linear speed-up with number of possible
Points-of-Compromise.

Figure 5.8: BREACHRADAR’s speed-up and scalability.

5.4.5 Comparison

We compare the precision and recall of our method to (1) FABP - Fast Belief Propaga-
tion [KKK+11]; (2) a greedy approximation of Vertex Cover described in Section 5.5; (3)

81

the ratio as proxy for POC probability, as commonly used by previous methods and (4)
the ratio metric combined with the best prior found for BREACHRADAR, in order to reduce
its false positive rate.

FABP [KKK+11] is a fast approximation to Belief Propagation with low sensitivity to
input parameters. We assigned a high prior belief (0.5) to fraud-card nodes, a low prior
belief (-0.1) to non-fraud-card nodes and a neutral belief (0.0) to possible POC nodes. We
then decreasingly sort the possible POCs by their final belief, creating the corresponding
precision vs recall curve. The curve for the other methods was created similarly, based on
the ordering of the possible POCs that they explicitly define.

We compare all methods on the non-noise dataset when considering a stealing proba-
bility of 10%.

As can be seen in Figure 5.1b, our method significantly improves over all alternatives.
Reasons have been detailed in previous sections, but can be summarized as a combination
of appropriate priors and the focused blame of the fraud-cards. Vertex Cover’s result
shows that focused blames are not sufficient, while the ratio with prior’s result shows that
removing false positives with a small amount of fraud-cards is not enough either.

5.5 Related Work

While apparently a simple problem, several reasons compound to make the automatic
detection of POCs a challenge to naive approaches: a) the variety of Points-of-Compromise,
e.g., database breaches, card skimming devices, etc; b) the variety of time granularities,
e.g. database breaches compromise months of transactions, while an employee skimming
cards might do it for a single day; c) the lack of ground-truth labels, as fraudulent charge
reports do not identify the origin of the compromise and d) the scale of the problem, as
datasets with billions of transactions with millions of possible Points-of-Compromise are
common.

5.5.1 Summary

Table 5.5 characterizes the most relevant methods described in this section. We analyze
a method’s ability to find Points-of-Compromise and to scale at least quasilinearly with
the number of transactions that need to be processed. We consider that a method has
proper risk assessment if it doesn’t believe that more transactions to safe merchants reduce
the probability that the card might have been stolen at a single compromised location.
We consider methods to be Blame-aware if they acknowledge that cards are likely stolen
only once, so they should not significantly contribute to an increased POC likelihood

82

Table 5.5: Comparison of BREACHRADAR with other methods. Properties are de-
scribed in Section 5.5.

BREACHRADAR

Ra
tio

Ra
tio

+
Pr

io
r

Be
lie

f
Pr

op
ag

at
io

n

Ve
rt

ex
Co

ve
r

Re
al

-ti
m

e
D

et
ec

tio
n

Finds POCs " ! ! ! !

Scalability " ! ! ! !

Risk assessment " ! ! !

Blame-aware " !

Confidence-aware " !

Early Detection "

of multiple locations. We consider a method to be Confidence-aware if it incorporates
the idea that more evidence improves the confidence of a POC label1. Finally, a method
is capable of Early Detection if it shows high recall even when only a small percentage
(e.g., 10%) of the cards at a location are fraud-cards (a card with at least one fraudulent
transaction).

5.5.2 Real-time Fraud Detection

While not able to identify Points-of-Compromise, state-of-the-art fraud detection solutions
merge statistical, machine learning and data mining tools in order to create models
that estimate the fraud probability of individual transactions in real-time. For further
information on this orthogonal problem, we refer the reader to specific literature [BH02b,
DPCLB+14].

5.5.3 Points-of-Compromise

Simple metrics are unable to provide an appropriate measure for the likelihood of a point
being the origin of a compromise. Ranking locations by the number of fraud-cards with
which they interacted does not work, as many merchants process many transactions and
thus interact with a high number of fraud-cards. The ratio of fraud-cards shouldn’t be used

1As an example, we are more confident that a location has been compromised if 200 out of 600 cards
who transacted there were victims, than if 3 out of 6 were.

83

either, as the majority of the locations have small numbers of transactions and high ratios
(by chance) do not imply a compromised location.

Current systems for Point-of-Compromise detection are typically hindered by these
issues. Absolute number of fraud-cards and fraud-card ratios are commonly used [Kle09,
SPG+ne], perhaps coupled with time-windows [Yan13] to restrict the set of transactions
considered. Arbitrary thresholds that indicate whether a merchant was compromised need
to be defined, but suggestions have been made that supervised classification algorithms
could also be trained, after information about which merchants were in fact compromised
is obtained [For05]. A different approach suggests comparing recent fraud-rates at each
merchant with their historical fraud-rate and flagging outlier deviations [ZWSW10].

5.5.4 Guilt-by-association

The aforementioned problem definition can be framed as a Bayesian Network [Pea85] -
a graphical model that represents random variables and their conditional dependencies
through directed acyclic graphs. Belief Propagation [Pea82] is one of the most common
approaches for performing inference on graphical models. By passing local messages
between the connected nodes in the Bayesian Network, it manages to approximate the
marginal distribution for each unobserved node, conditional on any observed nodes.

Semi-supervised learning techniques, in particular graph-based methods such as
Label Propagation, could be used to label nodes as compromised or not-compromised
in the network; labeled nodes influence neighbors according to an Homophily Matrix
which establishes whether nearby nodes tend to have similar or opposite labels. Some
variations extend Label Propagation to incorporate label confidence and prior information,
which could be used when only positive labels (fraud) are observed [YFK15]. Koutra
et al. [KKK+11] showed that Belief Propagation and Semi-Supervised Learning are very
closely related (but not identical) and could be understood under the same framework
when viewed as linear systems.

However, both methods have the underlying assumption that more connections to
innocent nodes imply a smaller likelihood that the node has been compromised; this
idea is at the core of guilt-by-association algorithms: similarly to how connections to
fraudulent nodes increase the probability of a node being fraudulent, then connections to
safe locations decrease this probability. For this problem, we know that the opposite is true:
connections to innocent merchants do not compensate for the fact that a connection to a
compromised location exists. Our results showing Belief Propagation’s low performance
corroborate this intuition.

84

5.5.5 Vertex Cover

This problem can also be formulated as a vertex cover problem in bipartite graphs: given
a set of cards who were victim of fraud, we would like to identify the smallest subset S
of adjacent nodes (i.e., merchants) so that every card who has been a victim has at least
one adjacent location in S. Unfortunately, this formulation is NP-hard2. Nevertheless,
in Section 5.4.5 we evaluate a greedy approximation: on each iteration, we consider as
compromised the location with the highest number of adjacent fraud-cards, remove them
from the bipartite graph and repeat.

5.6 Summary

We present, as far as the authors know, the first distributed procedure for the automatic
detection of Points-of-Compromise in transaction networks. We achieve highly accurate
results through the implementation of an in-memory algorithm that updates POC proba-
bilities and blame scores alternatingly, and we have demonstrated surprising empirical
evidence in a real dataset. Our main contributions are the following:

1. Point-of-Compromise Problem. We formulate a novel and important POC detec-
tion problem.

2. Effectiveness. BREACHRADAR accurately identifies Points-of-Compromise, achieving
over 90% precision and recall when only 10% of the stolen cards have been used in
fraud (Figure 5.1b).

3. Distributed POC-Detection algorithm. We provide a scalable distributed algorithm
for POC detection in big datasets (Figure 5.8b).

2This can be easily shown through reduction to Minimum Set Cover, one of Karp’s 21 NP-complete
problems [Kar72].

85

86

Part II

Labeled Networks and Tensors

87

Overview and Related Work

Part I explored communities and anomalies in unlabeled networks. We analyzed the
structure of real communities in multiple settings, devised algorithms in which this
structure emerged, and studied the particular scenario of anomalous Point-of-Compromise
nodes.

However, in reality, interactions are not all the same and we are able to characterize
them along different vectors: when they took place, the medium of communication used,
the duration of the conversation or the content of the interaction are just a few examples.
Incorporating this additional information in community and anomaly detection methods
would improve both our understanding of the existing patterns and community quality.
In Part II, we start by finding communities in labeled networks, with a particular focus
on time-evolving graphs. We present novel algorithms for this problem, one of which is
easily distributed. Then, we dig deeper on the time-evolving graphs theme and present
new methods for the forecasting of novel relations in datasets where context is available.

I Related Work: Communities in Edge-labeled Networks

I.1 Categorical Edge-labels

The detection of communities using categorical edge-labels has not been studied exten-
sively in the literature, but the general consensus is that methods should try to simulta-
neously co-cluster nodes and labels. Most solutions are motivated by heterogeneous or
multi-layered data, where nodes are connected through different kinds of relations.

MUTURANK and GMM-NK [WYC+13] start by determining weights of various relation
types and objects that are then use to create a single-level network by combining the
different probability distributions. They evaluate their approach on a DBLP dataset where
each layer corresponds to a research field.

PMM [TWL09] is a spectral method that starts by calculating the eigen-decomposition
of the individual adjacency matrices (i.e. considering labels independently), and then

89

clusters the feature vectors of the different nodes together using k-means. This way, they
find nodes that have a similar “profile” along different edge-labels, but the method is
severely penalized as the number of labels increases. Boden [BGHS12, BGHS13] extends
the quasi-clique definitions that have been introduced to detect communities where nodes
show similarity in subsets of the edge labels.

Other approaches rely on sparsifying the dense and real-valued PARAFAC decomposi-
tion in order to identify communities. Possibilities include thresholding the values in the
component vectors after the initial decomposition, or modifying the decomposition itself
by imposing sparsity using `1 penalty terms. Details have been provided in Chapter 2. As
an example, GRAPHFUSE [PAI13] starts by calculating a sparse PARAFAC decomposition
of the tensor and then assigning each node to the cluster in which it has the highest
weight in the decomposition, effectively partitioning the nodes. Because it creates a hard
clustering (with no overlapping), GRAPHFUSE is more closely related to graph partitioning
than to community detection.

I.2 Time-evolving Networks

Graph evolution has been a topic of interest for some time, particularly in the context
of web data [KNRT03, LKF07]. [AS14] published a very recent survey on evolutionary
network analysis, in which they classify evolutionary clustering methods in eight cate-
gories (spectral, probabilistic, density-based, matrix factorization, modularity, information
theoretic, pattern mining and others). We refer the reader to this survey for a more
detailed analysis.

[LYK+08] studies the problem of detecting changing communities, but require selec-
tion of a small number of parameters. Furthermore, broadly related work uses tensor-
based methods for analysis and prediction of time-evolving “multi-aspect” structures, e.g.
[STF06, DKA11].

More related to the work discussed in this dissertation, MDL-based approaches for
detecting non-overlapping communities in time-evolving graphs have been previously
proposed, such as GRAPHSCOPE [SFPY07]. However, this work focuses on incremental,
streaming community discovery, imposing segmentation constraints over time, rather
than on discovering communities that might appear intermittently. Another alternative is
TimeCrunch [SKZ+15], a community detection algorithms for edge-labeled graphs. They
find patterns that minimize the description length (MDL) of the tensor, i.e. a cost for
encoding both patterns and errors, with a focus on explainable time-evolving patterns. It
first slices the time-evolving graph into static graphs with different time stamps and then
uses VoG [KKVF14] to mine patterns in these static graphs. It then stitch the patterns in

90

different time periods, building a pattern-node matrix, and uses matrix factorization to
cluster the patterns in different time steps.

Probabilistic Approaches. Many models [TY11, YCZ+11, XH13, GZC+16, Pei15] de-
tect hidden structures (e.g. community assignments [TY11], group evolving paths [YCZ+11],
or hidden class interactions in different time periods [XH13]) inside dynamic graphs
through variations of the Dynamic Stochastic Block Model: they extend it by adding
different hidden structural assumptions with varying probability distributions, and then
use the available data to infer the most likely parameters.

91

92

Chapter based on work that appeared at PAKDD 2014 [APG+14] and KAIS 2015 [AGP+15].

Chapter 6

Communities in Labeled Networks

In Part I, we saw how communities are part of the natural structure of many different
networks and analyzed their shape and properties. For instance, we saw that communities
appear as the interaction between users and products and between airports. However,
in reality, interactions are not all the same and we are able to characterize them along
different vectors: when they take place, the means of communication used, the duration
of the communication or the content of the interaction are just a few examples. Incor-
porating this additional information in community detection methods would allow us to
characterize communities on these dimensions and we would be able to detect commu-
nities whose nodes have similar interactions, improving community quality. In a social
network, for example, we observe nodes corresponding to users and edges correspond to
phone calls, emails or text messages. By classifying these interactions in simple categories
such as “work”, “school”, “leisure” and “family”, and then grouping people with similar
interactions, we are able to significantly increase community quality. Standard techniques
would ignore this extra information and mix, e.g., work and family relations.

Here we focus on exactly this problem: how to find communities in an edge-labeled
network, in a scalable way without user-defined parameters. We analyze a large, million-
node graph, from an anonymous (and anonymized) dataset of mobile customers of a large
population and a bipartite computer network with hundreds of thousands of connections,
available to the public, to detect time-varying communities. We also analyze flights data
(where nodes correspond to airports and edges are labeled with the company operating
the flight) to find which companies are the biggest competitors in different regions.
Figure 6.1 illustrates a sample community, in which 3 big airlines (Lufthansa, Delta and
United Airlines) heavily compete in 16 worldwide airports; we illustrate other specific
regional competitors in Section 6.3. We shall refer to the communities we discover as
comet communities, because they are only active over some labels; when labels represent
time, then they (may) come and go, like comets.

93

 Delta
 United Airlines
 Lufthansa

Figure 6.1: Worldwide flights community: COM2 is able to detect situations of com-
petition in flight records without user-defined parameters. Lufthansa, Delta and
United Airlines compete in the 16 biggest world airports flying 37% of the valid
routes with significant overlap. In this figure, we only show the flights in this com-
munity connected to Charles de Gaule airport, France.

We seek to answer the following informal problem:

PROBLEM DEFINITION 4. Finding Labeled Communities
• Given a labeled graph represented as a tensor X .

• Find a set of possibly overlapping communities that best represent the labeled
network.

We propose COM2, an effective approach to summarize large labeled networks. Simi-
larly to the work described in Chapter 3, we formalize this problem as the minimization
of the Minimum Description Length (MDL) required to describe the graph. Our main
contributions are the following:

• Scalability: COM2 is linear on the input size, thanks to a careful, incremental
tensor-analysis method, based on fast, iterated rank-1 decompositions.

• No user-defined parameters: COM2 uses a novel Minimum Description Length
(MDL) based formulation of the problem, to automatically guide the community
discovery process.

• Effectiveness: We applied COM2 on real and synthetic data, discovering edge-
labeled communities that agree with intuition.

• Generality: COM2 can be easily extended to handle higher-mode tensors.

94

In the rest of this chapter, we first formalize the objective our method and then present
the algorithmic solution in Section 6.2. We evaluate our solution in Section 6.3.

6.1 Problem Definition

In this section, we formalize our problem through the description of a MDL-based opti-
mization problem which will guide the community discovery process. While our method
generalizes to tensors with an arbitrary number of modes, we illustrate our method using
3-mode tensors to simplify its understanding.

We are given a (possibly directed) network consisting of sources S, destinations D and
edge-labels L. We represent this network via a 3-mode tensor X ∈ {0, 1}|S|×|D|×|L| where
Xijl = 1 if source i is connected to destination j via an edge with label l. As abbreviations
we use N = |S|, M = |D|, and K = |L|. In many practical scenarios, the set of sources S
equals the set of destinations D.

The goal is to automatically detect the set of communities C = {C1, ..., Ck} that best
describes tensor X , where k is part of the optimization and not known a priori.

Definition 4. Community
A community is a triplet C = (S,D,L) with S ⊆ S, D ⊆ D, and L ⊆ L such that
elements in S are well connected to elements in D using edges with labels in L. An
edge is part of the community if both nodes and the corresponding label are part of the
community, i.e. E(C)(i,j,l) = 1⇔ i ∈ S, j ∈ D, l ∈ L.

We propose to measure the ‘importance’ of a community via the principle of compres-
sion, i.e. by the community’s ability to help us compress the 3-mode tensor: if most of the
sources are connected to most of the destinations using most of the indicated labels, then
we can compress this ‘comet-community’ easily. By finding the set of communities leading
to the best compression of the tensor, we get the overall most important communities.

More specifically, we use the MDL (Minimum Description Length) principle [Grü07].
That is, we aim to minimize the number of bits required to encode the detected patterns
(i.e. the model) and to describe the data given these patterns (corresponding to the effects
of the data which are not captured by the model). Thus, the overall description cost
automatically trades off the model’s complexity and its goodness of fit. In the following,
we provide more details about the description cost:

Description cost. The first part of the description cost accounts for encoding the
detected patterns C = {C1, . . . , Ck}. Each pattern Ci = (Si, Di, Li) can be completely

95

described by the cardinalities of the three included sets and by the information of which
nodes and labels belong to these sets. Thus, the coding cost for a pattern Ci is

L1(Ci) = LN(|Si|) + LN(|Di|) + LN(|Li|) + |Si| · logN + |Di| · logM + |Li| · logK (6.1)

The first three terms encode the cardinalities of the sets using the MDL optimal
universal codelength LN for integers [Ris83]. The last three terms encode the actual
membership information of the sets using block-encoding: e.g., since the original graph
contains N sources, each source included in the pattern can be encoded by logN bits,
which overall leads to |Si| · logN bits to encode all sources included in the pattern.

Correspondingly, a set of patterns C = {C1, . . . , Ck} can be encoded by the following
number of bits:

L2(C) = LN(|C|) +
∑
C∈C

L1(C) (6.2)

That is, we encode the number of patterns and sum up the bits required to encode
each individual pattern.

Since in real world data we expect to find overlapping communities, our model should
not be restricted to disjoint patterns. But how to reconstruct the data based on overlapping
patterns? As an approach, we refer to the principle of Boolean algebra: multiple patterns
are combined by a logical disjunction. That is, if an edge occurs in at least one of the
patterns, it is also present in the reconstructed data. This idea is related to the paradigm
of Boolean Tensor Factorization [Mie11]. More formally, the reconstructed tensor is given
by:

Definition 5. Tensor reconstruction
Given a community C, we define the indicator tensor IC ∈ {0, 1}N×M×K to be the
3-mode tensor with ICijl = 1⇔ (i, j, l) ∈ E(C).
Given a set of patterns C, the reconstructed tensor X C is defined as X C = ∨

C∈C IC where
∨ denotes element-wise disjunction.

The second part of the description cost encodes the data given the model. Given that
the MDL principle requires a lossless reconstruction of the data and since the reconstructed
tensor, X C, unlikely reconstructs the data perfectly, we also have to encode the ‘errors’
made by the model. Here, an error might either be an edge appearing in X but not in X C,
or vice versa. Since we consider a binary tensor, the number of errors can be computed
based on the squared Frobenius norm of the residual tensor, i.e.

∥∥∥X −X C∥∥∥2

F
.

96

Finally, as ‘errors’ correspond to edges in the graph, the description cost of the data
can now be computed as

L3(X |C) = LN

(∥∥∥X −X C∥∥∥2

F

)
+
∥∥∥X −X C∥∥∥2

F
· (logN + logM + logK) (6.3)

Technically, we also have to encode the cardinalities of the set S, D, and L (i.e. the
size of the original tensor). Given a specific dataset, however, these values are constant
and thus do not influence the detection of the optimal solution.

Overall model

Given the functions L2 and L3, we are now able to define the communities that minimize
the overall number of bits required to describe the model and the data:

Definition 6. Community model
Given a tensor X ∈ {0, 1}|S|×|D|×|L|, the set of communities is defined as the set of

patterns C∗ ⊆ (P(S)× P(D)× P(L)) fulfilling

C∗ = arg min
C

[L2(C) + L3(X |C)] (6.4)

Again, it is worth mentioning that the patterns detected based on this definition are
not necessarily disjoint, thus better representing the properties of real data.

6.2 Algorithmic solution

We now describe a novel, fast, and efficient search strategy, based on iterated rank-1
tensor decompositions which can discover communities in edge-labeled networks in a fast
and effective manner.

Computing the optimal solution of Equation 6.4 is infeasible as it is NP-hard 1. There-
fore, in the following, we introduce a scalable and efficient algorithm that approximates
the optimal solution via an iterative method of sequentially detecting important commu-
nities. The general idea is to find in each step a single community Ci that contributes
the most to the MDL-compression based on local evaluation. That is, given the already
detected communities Ci−1 = {C1, . . . , Ci−1}, we are interested in finding a novel commu-
nity Ci which minimizes L2({Ci} ∪ Ci−1) + L3(X |{Ci} ∪ Ci−1). Since Ci−1 is given, this is

1It is known that the column reordering problem in two dimensions is NP-hard as well [JKC+04]

97

equivalent to minimizing
L1(Ci) + L3(X |{Ci} ∪ Ci−1). (6.5)

Obviously, enumerating all possible communities is infeasible. Therefore, to detect a
single community Ci, the following steps are performed:

• Step 1: Community candidates: We spot candidate nodes and labels by performing
a rank-1 approximation of the tensor X . This step provides a normalized vector for
each dimension with the score of each element.

• Step 2: Community construction: The scores from the previous step are used in a
hill climbing search as a bias for connectivity, while minimizing the MDL costs is
used as the objective function for determining the correct community size.

• Step 3: Tensor deflation: Based on the current community detected, we deflate
the tensor so that the rank-1 approximation is steered to find novel communities in
later iterations.

In the following, we discuss each step of the method. Note the differences to the work
described in Section 3.3: most operations are now higher-dimensional and cost functions
were modified according to our new setting.

6.2.1 Community candidates

As mentioned, exhaustively enumerating all possible communities is infeasible. Therefore
we propose to iteratively let the communities grow. The challenge, however, is how to
spot nodes and/or labels that should be added to a community. For this purpose, we
refer to the idea of tensor decomposition. Given the tensor X (or as we will explain
in step 3, the deflated tensor X (i)), we compute vectors a ∈ RN , b ∈ RM , and c ∈ RK

providing a low rank approximation of the community. Intuitively, sources connected to
highly-connected destinations at highly active labels get a higher score in vector a and
similarly for the other two vectors.

Specifically, to find these vectors, a scalable extension of the matrix-power-method
only needs to iterate over these equations, which are defined in Chapter 2 and repeated
here for convenience:

ai ←
M,K∑

j=1,k=1
Xijkbjck

bj ←
N,K∑

i=1,k=1
Xijkaick (6.6)

ck ←
N,M∑

i=1,j=1
Xijkaibj

98

where ai, bj and ck are the scores of source i, destination j and label k. These vectors are
then normalized and the process is repeated until convergence. Initial values are assigned
randomly from the range 0 to 1.

Notice that the complexity is linear in the size of the input tensor: Let E be the number
of non zeros in the tensor, we can easily show that each iteration has complexity O(E) as
we only need to consider the non zero Xijk values. In practice, we select an ε and compare
two consecutive iterations in order to stop the method when convergence is achieved. In
our experimental analysis in Section 6.3 (using networks with millions of nodes) we saw
that a relatively small number of iterations (about 10) is sufficient to provide reasonable
convergence.

6.2.2 Community construction

Since the tensor decomposition provides numerical values for each node/label, its result
cannot be directly used to specify communities. Additionally, there might be no clear
threshold to distinguish those nodes/labels belonging to the community and the rest.
Algorithm 5 illustrates the construction process in pseudo-code. We exploit vectors a, b
and c as bias in a hill climbing search, with the goal of minimizing the MDL cost. We start
by selecting a highly connected entry (a0, b0, c0) in the tensor as the initial seed Sa = {a0},
Sb = {b0}, Sc = {c0}2. We then let the community grow incrementally: we randomly
select nodes va, vb and label vc that are not currently part of the community but connected
to it, using the score vectors a, b and c as sampling bias. That is, given the current nodes
Sa, Sb and labels Sc, we sample according to

P (va = i) ∝

ai i /∈ Sa ∧ ∃y ∈ Sb, z ∈ Sc : Xi,y,z = 1
0 else

P (vb = j) ∝

bj j /∈ Sb ∧ ∃x ∈ Sa, z ∈ Sc : Xx,j,z = 1
0 else

(6.7)

P (vc = k) ∝

ck k /∈ Sc ∧ ∃x ∈ Sa, y ∈ Sb : Xx,y,k = 1
0 else

For each of these elements, we calculate the description length considering that we
would add the element to the community. That is, we calculate MDLa, MDLb and MDLc

2We tested different methods with no significant differences found in the results since the subsequent
steps of growing and shrinking lead to the selection of the most relevant edges and the removal of irrelevant
ones. Selecting the edge (i, j, k) with highest min(ai, bj , ck) provides a good initial seed.

99

input :a - scores of the first mode
input :b - scores of the second mode
input :c - scores of the labels
output :Sa - set of first-mode nodes
output :Sb - set of first-mode nodes
output :Sc - set of labels

1 [Sa,Sb,Sc]← initialSeed(a,b,c)
2 repeat
3 t← 0
4 while t < ∆ do // try to grow the community
5 va ← newBiasedNode([Sa,Sb,Sc], a)
6 vb ← newBiasedNode([Sa,Sb,Sc], b)
7 vc ← newBiasedNode([Sa,Sb,Sc], c)
8 MDLa ← L3(Sa ∪ {va},Sb,Sc)
9 MDLb ← L3(Sa,Sb ∪ {vb},Sc)

10 MDLc ← L3(Sa,Sb,Sc ∪ {vc})
11 [value, index] = min(MDLa,MDLb,MDLc)
12 if value < L3(Sa,Sb,Sc) then
13 Sindex ← Sindex ∪ {vindex}
14 t← 0
15 else
16 t← t+ 1
17 end

// try to shrink the community
18 foreach element n in Sa do
19 if L3(Sa\{n}, Sb, Sc) < L3(Sa, Sb, Sc) then Sa ← Sa\{n}
20 end
21 foreach element n in Sb do
22 if L3(Sa, Sb\{n}, Sc) < L3(Sa, Sb, Sc) then Sb ← Sb\{n}
23 end
24 foreach element n in Sc do
25 if L3(Sa, Sb, Sc\{n}) < L3(Sa, Sb, Sc) then Sc ← Sc\{n}
26 end
27 end
28 until [Sa,Sb,Sc] has converged
29 return [Sa,Sb,Sc]

Algorithm 5: COM2: Community Construction

100

based on the sets Sa ∪ {va}, Sb ∪ {vb} and Sc ∪ {vc}, respectively. If the smallest of these
MDL scores is smaller than the score of the community detected so far, the corresponding
element is accepted and the next round of sampling is performed. This process is repeated
until ∆ consecutive rejections have been observed. We can show that a small number of
rejections ∆ is sufficient:

Lemma 6 Let i be an element that was not included in the community when it should have
been included. Let u be the vector corresponding to i’s mode (i.e. u is one of the vectors a, b,
or c). Then the probability that i does not belong to this community decreases exponentially
with ∆.

P (“i not selected”|“i should have been selected”) ≤ (1− ui)∆. (6.8)

Proof 6 Given that vector u is normalized (see step 1), at each iteration, the probability that
the element i is not chosen is given by (1− ui). After ∆ iterations, the probability that the
element has not been chosen is upper-bounded by (1− ui)∆. The exact probability is actually
lower as the sampling is done without replacement, ignoring the elements currently in the
community. �

In our experimental analysis, a value of ∆ = 50 has proven to be sufficient; we
consider this parameter to be general and it does not need to be defined by the user of
the algorithm.

After growing the community (i.e. after ∆ rejections), we try to improve its description
cost by removing elements. Intuitively, it is possible that one of the nodes initially selected
to be part of the community (when it was small) is not that well connected to the nodes
that have since been added. Instead of penalizing the current MDL score and “blocking”
the addition of new nodes, we check whether the removal of any node/label currently
in the community improves the description cost. This growing/shrinking alternating
process is repeated until the community stabilizes, and it is guaranteed to converge as the
description cost is strictly decreasing.

6.2.3 Tensor deflation

While the output of the previous two steps is a single community, the goal of this step
is to transform the tensor so that novel communities can be found in future iterations.
The challenge of such an iterative processing is to avoid generating the same community
repeatedly: we have to explore different regions of the search space.

Note that [PSB13] indicates that extracting one rank (i.e. community) at a time
approximates the full-rank decomposition with very high accuracy when the factors are

101

sparse. Therefore, we propose the principle of tensor deflation. Starting with the original
tensor X (1) := X , after each iteration, we remove the community Ci whose edges were
already described. We obtain the recursion

X (i+1) := X (i) − ICi ∗X (i) [= X −X Ci ∗X] (6.9)

where ∗ denotes the Hadamard product (see Chapter 2).
The method might terminate when the tensor is fully deflated (if possible), or when a

pre-defined number of communities has been found, or when some other measure of com-
munity quality (e.g. community size) was not achieved in the most recent communities.

6.2.4 Complexity Analysis

Lemma 7 Our algorithm has a runtime complexity of

O(C · (E + |P | · logN · log |P |)),

where C is the number of communities we obtain, E is the number of non-zeros of the tensor,
N is the length of the biggest mode, and |P | is the size of the biggest community. Thus, our
method scales linearly w.r.t. the input E.

Proof 7 Steps 1 to 3 are repeated C times, the number of communities to be obtained. Step
1, the rank-1 approximation, requires O(E) time. Step 2, the core of the algorithm, can be
executed using O(|P |) addition and removals, each with the complexity required to calculate
the new Minimum Description Length of the community: O(logN · log |P |). Finally, step 3,
the matrix deflation, can be done in O(E) with a single pass over the edges of the community.
�

6.2.5 Algorithm parameters

Despite the existence of two parameters in the algorithm, their variation has no significant
impact when analyzing specific networks.

The first parameter, ε, impacts the number of iterations in the rank-1 approximation
in step 1. In practice, a fixed value of 10 iterations provides very good results regardless
of the network under consideration, an effect that can be explained due to two reasons:
firstly, vectors a, b and c are only used as approximations for community candidates
and don’t require high precision. Secondly, since real graphs are scale-free having small
diameter, changes in these vectors propagate very quickly through the network.

102

Name #Nodes #Non-zeros #Labels Description

OLB 10-20 1 000 - 2 000 100 Overlapping blocks.
DJB 1 000 50 000 500 Disjoint blocks.

LBNL 1 647 + 13 782 113 030 30 Internet traces from LBNL.
PHONE 3 952 632 51 119 177 14 Phone call network.

FLIGHTS 7 733 67 663 5 995 Flights network.

Table 6.1: Networks used: two small synthetic networks and three large real net-
works.

The impact of the second parameter, ∆, has been analyzed in Lemma Lemma 6. The
exponential decrease in a node’s probability to be wrongly left out of the community
implies that a relatively small and fixed value for ∆ can be used.

Therefore, we conclude that these parameters do not need to be defined by the user.

6.3 Experiments

COM2 was tested on a variety of real and synthetic tensors in order to assess it’s effective-
ness, robustness and scalability. Table 6.1 summarizes the networks used, a more detailed
description of each dataset is provided later in this section.

In the three fairly different real-world datasets, COM2 was run using the default pa-
rameters (cf. Section 6.2.5), showing that it can be applied without any user intervention.

Q1. Community structure: How relevant are the communities found? How are they
reported when they overlap? How does their density impacts COM2?

Q2. Scalability: How fast is COM2?

Q3. Discoveries: How capable is COM2 of detecting meaningful labeled communities?

6.3.1 Q1 - Community Structure

Characterizing the quality and robustness of the communities identified by the method
is important. In particular, we want to answer the following questions: How are “over-
lapping blocks” identified? How much overlapping can occur so that different rank-1
decompositions can identify them separately? How “dense” are the communities found?

We rely on synthetic datasets with ground-truth information to answer these questions.

103

(a) Tensor with overlapping blocks:
Illustration of the tensors used in
the first experiment, the number
of overlapping edges of the two
blocks was variable.

(b) Communities with dif-
ferent densities: Illustra-
tion of the tensors used
in the second experiment.
Opacity indicates the non-
zeros density in the blocks.

Figure 6.2: Synthetic datasets.

Overlapping communities

Analyzing the impact of overlap helps us predict when two distinct communities will be
reported as a single entity and, equivalently, how connected internally a community needs
to be so that it will not be split in two separate communities by the algorithm.

A tensor with two disjoint and cubic communities was constructed and, iteratively,
elements from each of the modes of one of the communities were replaced with elements
of the other (see Figure 6.2a). Our tests show that the communities are reported as
independent until there is an overlap of about 70% of the elements in each mode, in
which case they start being reported as a single community. This corresponds to an
overlap of slightly over 20% of the non-zero values of the two communities and the global
community formed has 63% of non-zeros. This clearly demonstrates that COM2 has high
discriminative power: it can detect the existence of communities that share some of their
members and it is able to report them independently, regardless of their size. Note that,
due to the 3-dimensional nature of our data, a relatively high overlap of the modes does
not immediately correspond to an high overlap of the non-zeros.

104

0

20

40

60

80

100

0 50 100

a
cc
u
ra
cy

density

(a) Tensor with disjoint blocks - COM2 iden-
tifies communities even at low densities.

f(x) = 8E!05x + 1.0516

R² = 0.9918

0

20

40

60

80

100

0 500,000 1,000,000

ru
n
ti
m
e

 [
se
c]

number of non!zeros

(b) COM2 scales linearly with input size:
Running time versus number of non-zeros
for random tensors.

Figure 6.3: Experiments on synthetic data.

Impact of block density

We also performed experiments to determine how density impacts the number of commu-
nities found (see Figure 6.2b). Fifty disjoint communities were created in a tensor with
random noise and non-zeros were sampled without repetition from each community with
different probabilities. We then analyzed the first fifty communities reported by COM2

in order to calculate its accuracy. As we show in Figure 6.3a, the discriminative power
remains high, even with respect to varying density.

6.3.2 Q2 - Scalability

As previously detailed, COM2’s running time is linear on the number of communities
and in the number of non-zero values in the tensor. We constructed a tensor of size
10000×10000×10000 and randomly created connections between sources and destinations
using random labels. Figure 6.3b shows the runtime versus the number of non-zeros in
the tensor when calculating the first 200 communities of the tensor. In addition to its
almost linear runtime, COM2 is also easily parallelizable. By selecting different random
seeds in the tensor decomposition step, different communities can be found in parallel.

6.3.3 Q3 - Discoveries on edge-labeled graphs

COM2 was applied to a dataset of flight routes from 2012 available at http://openflights.
org/data.html (cf. Table 6.1, FLIGHTS). In this setting, nodes correspond to airports and

105

http://openflights.org/data.html
http://openflights.org/data.html

edges are labeled with the airline company performing the route (i.e. there might be
more than one edge between each pair of nodes). Our goal is to find a set of companies
flying several routes between a set of airports, a strong indicator of local competition.
Even though the underlying graph is directed, we chose to work with a single set of
airports instead of separating origin and destination sets. For this purpose, we adapted
the previously described algorithm so that the sampled vertex is added to both modes:
the origin and destination set.

Figure 6.1, depicted in the introduction, illustrates the most international of these
communities, with 16 worldwide airports and 3 companies well known for intercontinental
travel: Lufthansa, Delta and United Airlines. In order to show COM2’s effectiveness, we
showcase three regional communities of competing companies:

• Figure 6.4a and Figure 6.4b represent the major competing companies in the United
States of America and China, along with their respective airports. The community
pictured in Figure 6.4a corresponds to 26 American airports; US Airways, United
and American Airlines operate 915 different routes between these 26 airports.
Figure 6.4b shows 25 Chinese airports; Hanan Airlines, Air China, China Southern
Airlines and China Eastern Airlines operate 1,150 routes between these airports.
These two examples show COM2’s effectiveness in identifying dense subgraphs
sharing similar edge-labels.

• Figure 6.5 shows that COM2 is also able to find single-label communities. Ryanair
alone operates 988 different routes between 47 European airports. This community
can be seen as a dense subsection of the tensor, which is the equivalent to a big star
in the unlabeled case (i.e. a dense row/column in a matrix).

Please note that neither standard community detection algorithms operating on the
unlabeled graph, nor multiple runs considering each company independently, could
possibly find the competing companies scenario as it requires interaction between several
different edge-labels.

6.3.4 Q3 - Discoveries on time-labeled graphs

To characterize communities found in real phone-call data, we applied COM2 to a dataset
from an anonymous European mobile carrier. We considered the network formed by calls
between clients of this company over a period of 14 days. During this period, 3,952,632
unique clients made 210,237,095 phone calls, 51,119,177 of which formed unique (caller,
callee, day) triplets (cf. Table 6.1, PHONE). Here, each label corresponds to a specific day.
The tensor is very sparse, with density in the order of 10−7. We extracted 900 communities
using COM2. These communities contain a total of 229,287 unique non-zeros. 293 unique

106

(a) Community in the United States: US Airways, United and American Airlines
operate 915 different routes (47%) between these 26 airports.

(b) Community in China: Hanan Airlines, Air China, China Southern Airlines and
China Eastern Airlines operate 1,150 routes (48%) between these 25 airports.

Figure 6.4: Regional communities of competing companies found using flight
routes.

107

Figure 6.5: Community in Europe: Ryanair creates near-cliques on its own. It
operates 988 unique routes (46% of total possible) between these 47 airports.

108

callers and 97,677 unique callees are represented, so the first observation is that the
temporal communities are usually heavy on one side with large outgoing stars.

We also applied COM2 to a public computer network dataset captured in 1993, made
available by the Lawrence Berkeley National Laboratory [PF95]. 30 days (i.e. edge labels)
of TCP connections between 1,647 IP addresses inside the laboratory and 13,782 external
IP addresses were recorded (cf. Table 6.1, LBNL). This tensor was completely deflated and
a total of 19,046 communities were found (1,930 of them having more than 9 non-zeros).

Observation 1. Community Activity
The biggest communities are more active during weekdays.

Figure 6.6 shows the number of active communities per day of the week on both
datasets and we can see that most communities are significantly more active during
weekdays. In the phone call data, we are led to believe that these are mostly companies
with reduced activity during weekends, while the reduced activity during the weekends
in the research laboratory is to be expected.

Observation 2. Flickering stars
A typical pattern is the “Flickering stars”, subgraphs whose temporal activity is not
constant over time.

When analyzing a phone call network, a pattern to be expected is the marketeer
pattern in which a single number calls many others a very small number of times (1 or 2).
Surprisingly, the stars reported by COM2 were not of this type. Two callers stand out in an
analysis of the communities reported: one participated in 78,279 (source, destination,
time) triplets as a caller but only in 10 triplets as a receiver, while the other participated
in 8,909 triplets as a caller and in none as a receiver. These two nodes are centers of two
distinct outgoing stars and were detected by the algorithm. However, the time component
of these stars was not a single day but rather spanned almost all the weekdays. This
behavior does not seem typical of a marketeer, so we hypothesize that it is a big company
communicating with employees. Many of the reported communities are stars of this
type: a caller calling a few hundred people in a subset of the weekdays - we call them
flickering because, even though there is some activity during the rest of the weekdays, it
is significantly reduced and those days are not reported as part of the community.

In the LBNL dataset, one star was particularly surprising. It received connections
from over 750 different IP addresses inside the laboratory but only on a single day.
One of the other big stars corresponded to 40 connections on a single day to an IP
address attributed to the Stanford Research Institute, which is not surprising given the
geographical proximity.

We define Flickering stars as a common temporal-community that has a varying number
of receivers. These communities are active on different days, not necessarily consecutive.

109

0

200

400

600

800

0 2 4 6 8 10 12 14

a
ct
iv
e

 c
o
m
m
u
n
it
ie
s

days

(a) Weekly periodicity phone call data.

200

400

600

800

1000

0 5 10 15 20 25 30

a
ct
iv
e

 c
o
m
m
u
n
it
ie
s

days

(b) Weekend activity computer network data.

Figure 6.6: Weekly periodicity: number of active communities vs time. Notice the
weekend dives on a) days 4, 5 and 11, 12 and b) days 3, 4, 10, 11, 17, 18, 24, 25.

Stars active on many days (e.g. every weekday) are more common than single day stars.

Observation 3. Temporal Bipartite Cores
Another typical pattern is the “Temporal Bipartite Core”: dense subgraphs whose temporal
activity is not constant over time.

Several near-bipartite cores were detected as communities in the phone call dataset.
These are communities with about 5 callers and receivers that are active on nearly each
day under analysis, and each represents between 75 and 150 of the non-zeros of the
original tensor, with a block density of around 40%.

An example of such communities can also be shown for the LBNL data (Figure 6.7). 7
machines of the laboratory communicated with 6 external IP addresses on every weekday
of the month. After analyzing their IP addresses, the outside machines were found to be
part of the Stanford National Accelerator Laboratory, the University of California in San
Francisco, the UC Davis, the John Hopkins University, and the U.S. Dept. of Energy. COM2

was able to detect this research group (possibly in particle physics) using communications
data alone.

6.4 Summary

Table 6.2 compares some of the most common static and label-aware community detection
methods.

COM2 carefully combines a fast and efficient iterated rank-1 tensor decomposition to
guide the search for nodes and labels that participate in communities, and a principled

110

Stanford National Accelerator Laboratory

University of California - SF

University of California - Davis

John Hopkins University

U.S. Dept. of Energy

Figure 6.7: LBNL community: COM2 detects research group collaborations using
computer communications data.

COM2

Ei
ge

ns
po

ke
s

[P
SS

+ 10
]

M
ET

IS
[K

K9
5]

G
ra

ph
sc

op
e

[S
FP

Y0
7]

PA
R

A
FA

C
[H

ar
70

]
SD

P
+

Ro
un

di
ng

[T
BW

11
]

G
M

M
-N

K
[W

YC
+ 13

]
PM

M
[T

W
L0

9]
G

ra
ph

Fu
se

[P
A

I1
3]

Scalability " ! ! ! ! !

Label-awareness " ! ! ! ! ! !

Label subsets∗ " N/A N/A ! ! ! !

No parameters " ! ! ! !

Interpretability‡ " ! ! ! !

Overlapping " ! ! !

∗ Communities found in subsets of labels; temporal communities do not need to be contiguous.
‡ Results are easy to interpret; elements of the community can be identified easily.

Table 6.2: Comparison of community detection methods.

111

MDL-based model selection criterion that guides the expansion of communities and pro-
vides a stopping mechanism. We have focused on binary tensors, which reveal structural
(connectivity) community patterns over edge-labeled graphs, and have demonstrated
interesting findings in a variety of real-world datasets. The main contributions are the
following:

• Scalability: Our method, COM2, is linear on the input size; instead of relying on
a complete tensor factorization, we carefully leverage rank-1 decompositions to
incrementally guide the search process for community detection.

• No user-defined parameters: In addition to the above, efficient, incremental
search process, we also proposed a novel MDL-based stopping criterion, which finds
communities in a parameter-free fashion.

• Effectiveness: We applied COM2 on real and synthetic data, where it discovered
communities that agree with intuition.

• Generality: COM2 can be easily extended to handle higher-mode tensors.
COM2 is available at http://www.cs.cmu.edu/~maraujo/comdet/com2.html.

Discussion and Future Work. Our current methods requires categorical edge labels.
Extending MDL to handle real numbers, as opposed to integer values, is a challeng-
ing problem. Furthermore, real-valued (possibly continuous, but non-categorical in
general) edge labels render tensor representations impossible (i.e. we can’t represent
non-categorical indices). However, tensor decompositions can be applied to weighted
tensors (e.g. representing the strength of connections), potentially enabling interesting
findings.

Future work can also focus on expanding our principle to coupled tensor-matrix data,
in order to exploit node-related side information such as demographic data. This research
direction would provide unified tools to find communities in networks with both edge
labels and node attributes. We explore a scenario in which coupled information is used
for forecasting in Chapter 8.

112

http://www.cs.cmu.edu/~maraujo/comdet/com2.html

Chapter based on work that appeared at MLG 2016 [HAF16].

Chapter 7

Distributed Community Detection

In the previous Chapter, we saw how MDL could be used to select nodes and labels to
be part of labeled communities. In this Chapter, we follow a similar approach but focus on
creating a distributed algorithm instead, exploring simper heuristics. Note that processing
billion-sized graphs introduces significant memory and time burdens for conventional
algorithms; we consider it relevant to evaluate how methods and heuristics that can be
trivially distributed impacts their performance.

We provide a scalable and fast solution for this problem by developing TERACOM, a
system based on the Spark framework. We carefully design an algorithm that is able to
iteratively reduce the problem size in order to speed-up each subsequent iteration and,
according to our experiments, our system is able to find communities in larger graphs
while keeping a competitive accuracy when compared to standard tensor decomposition
methods.

Figure 7.1 illustrates our method’s ability to find meaningful communities in a real
airports dataset. Edge-labels correspond to airlines and have been omitted for clarity.

Our main contributions can be summarized as follows:

• Scalability. Our system is able to detect communities in edge-labeled graphs 10x
bigger when compared to non-distributed existing tools. Furthermore, our system
speeds-up near linearly when enough machines are provided.

• Effective Algorithm. We carefully reorder operations in order to reduce the problem
size after each iteration, enabling faster computation.

• Discoveries. Our system discovers spatially affine groups in an airline network,
shown in Figure 7.1. For example, our system is able to distinguish low-cost airlines
and standard airlines in Europe.

113

Figure 7.1: Communities detected in flights dataset: (1) America, (2) Brazil, (3)
India, (4) Latin America. Each red dot represents an airport.

7.1 Proposed System

Similarly to the work previously presented, we start from a rank-1 standard PARAFAC [Har70]
model. Instead of simultaneously decomposing the tensor into R factors like PARAFAC,
we propose a distributed algorithm based on consecutive rank-1 decompositions that
extracts communities one by one.

As shown in Figure 7.2, each round of our method is composed of three steps:

• Step 1: Factorization: We use a rank-1 decomposition to extract one set of factor
vectors a, b, and c.

• Step 2: Thresholding: We establish which elements belong to the current commu-
nity by thresholding the previously obtained score vectors.

• Step 3: Tensor deflation: We save the marked entries as a community and remove
the non-zero elements corresponding to this community from the tensor.

114

Figure 7.2: Community detection with our system

input :E - edge list
input :R - rank of the decomposition
output :S - list of communities

1 for r = 1 to R do
2 a, b, c← rank1decomposition(E)
3 foreach e in E do
4 if ae.i ≥ 1/|a| and be.j ≥ 1/|b| and ce.k ≥ 1/|c| then
5 Add e to sr
6 Remove e from E

7 end
8 end
9 end

10 return S

Algorithm 6: TERACOM

115

7.1.1 Factorization

Further information about rank-1 factorizations and a detailed proof can be found in
Chapter 2, so we won’t go into much detail. Succinctly, given a three mode tensor X , we
want to find vectors a, b, c which approximate tensor X with minimal error

a, b, c = argmin
a,b,c

∑
i

∑
j

∑
k

(X i,j,k − λ · ai · bj · ck)2 (7.1)

Using Alternating Least Squares (ALS), the updates of vectors a, b, c are given by:

ai = 1
Za

∑
j

∑
k

bj · ck · xi,j,k (7.2)

bj = 1
Zb

∑
j

∑
k

ai · ck · xi,j,k (7.3)

ck = 1
Zc

∑
j

∑
k

ai · bj · xi,j,k (7.4)

where Za, Zb and Zc are normalization constants that guarantee unit-norm, and
λ = Za · Zb · Zc.

7.1.2 Thresholding

When building a community, one needs to decide how it is being defined. Is a community
a set of nodes and labels or is it a set of labeled edges? This will impact algorithm design
as node and label selection is different than edge selection. We opted for edge selection
and the most simple and easy to distribute mechanism is thresholding. The goal is to
select an appropriate threshold to be applied to the score vectors above which edges are
deemed to belong to the community.

We opted for considering the average score as the threshold parameter. We marks an
entry eijk to be part of the r-th community if its corresponding factor scores ai, bj, and ck
are larger than the average score of the respective factor vectors.

7.1.3 Tensor Deflation

The advantage of this detection-removal process is that its shrinks the tensor after each
iteration, speeding up subsequent rounds. As the tensor is sparsely encoded (only the
non-zero elements take physical memory), after each iteration some non-zero elements
are marked as part of the currently detected community and removed. Therefore, the

116

number of non-zeros of the tensor decreases after each iteration and less data needs to be
processed in later stages.

This process runs multiple times until we achieve convergence. Parameter T decides
the number of inner-rounds of the rank-1 decomposition: more inner-rounds provide
higher precision at the cost of a longer execution time.

7.1.4 Implementation Design

We implement the algorithm based on Spark framework. Spark is a distributed framework
can utilize multiple machines to make algorithm running in parallel and help us handle
complex situations in distributed computation environment (like fault-tolerance). Also,
it stores intermediate computation result in memory, which reduces slow Disk I/O and
performs efficiently. Our implementation is carefully designed to obtain the best speed-up
and scalability:

• We limit the number of groupBy operations by partitioning the data among
machines so that edges of the same element are available at the same physical
location, minimizing data shuffling.

• We cache reused RDD in memory, minimizing disk accesses between consecutive
iterations, which would not be possible if using a system like HADOOP to distribute
the computation.

• We encode shared state using broadcast variables. For each inner-iteration,
we broadcast the latest version of vectors a, b and c (which are small) to all
machines. For each dimension, non-zeros are then mapped to the respective product
of Equation 7.2, aggregated and normalized.

Listing 7.1 provides lower-level details to the interested reader.

117

Listing 7.1 The Snippet of Rank-1 Decomposition Code
def r1_decomposition(

sc:SparkContext,
E:RDD[Array[Int]]) :

(Map[Int, Float], Map[Int, Float], Map[Int, Float]) = {

var A = genNormalizedSparseVector(E, 0)
...

val A_E = E.groupBy(x => x(0))
A_E.cache()
...

for (dr <- 0 until kDecomposedRound) {
val bA = sc.broadcast(A)
...

val newA = A_E
.mapValues(entries =>

entries.map(e => bB.value(e(1)) * bC.value(e(2))).sum)
...

val sumA:Float = newA.map(x => x._2).sum().toFloat
A = newA.mapValues(v => v / sumA).collectAsMap()
...

}

(A, B, C)
}

118

7.2 Experiments

Our system is evaluated by answering the following questions:
Q1: How accurately does our system detect communities in edge-labeled graph

comparing to other tensor decomposition methods?
Q2: How does our system scale with graph size? Can we solve larger problems than

other tools?
Q3: How does our system scale with the number of machines? Does it scale linearly?
Q4: What can our system discover in real world edge-labeled graphs?

Table 7.1: Dataset description: 2 synthetic and 3 real-world datasets.

Name |V| |E| |L| #communities

10-cubes 130 33 786 150 10
5-disjointed-subgraph 1K – 1M 100K – 100M 1K – 1M 5

DBLP-top100 2 244 5 054 45 100
Airline 3 162 58 443 532 N/A
NELL 74M 144M 26M N/A

7.2.1 Q1 - Precision

We are interested in analyzing precision in a community detection setting where hard
membership constraints are in place: an element either belongs to a community or it
doesn’t. Therefore, we compare our system with modified versions of standard [Har70]
and non-negative [WW01] PARAFAC.

Baseline Methods. We consider three distinct baseline approaches which we call
thresholded PARAFAC (PARAFAC-THRESH), absolute-valued PARAFAC (PARAFAC-ABS) and
thresholded Non-Negative PARAFAC (NN-PARAFAC-THRESH). In all baselines, we start
by applying the respective standard PARAFAC or Non-Negative PARAFAC decompositions
and then select elements as being part of the community if their score in the factor vector
is greater than the average value of the vector. In absolute-valued PARAFAC, we take the
absolute value of the score before thresholding instead, as it is possible that negative
scores in standard PARAFAC affect the community definitions.

We use Matlab’s Tensor Toolbox [BKo15] as the default implementation of PARAFAC
and Non-Negative PARAFAC.

Data Description. We use three datasets with ground-truth communities to evaluate
accuracy: two synthetic datasets with artificial communities and the DBLP dataset [Ley02],

119

where venue names act as community ground-truth labels.
In the first synthetic dataset (Small Cubes), we generated 10 disjoint highly dense

cubes in a tensor to form an edge-labeled graph. Each cube represents a trivial community
with multiple edge-labels connecting its nodes. For the second dataset, we generated
5 disjoint random-subgraphs (5-DRS). A 5-DRS graph contains 5 different-size random-
subgraphs, whose nodes are randomly connected. There are no links between different
subgraphs. As each subgraph represents a community, there are 5 trivial communities in
the data. Each sub-graph contains twice the number of edges as the previous, with the
total numbers of edges of the graphs ranging from 100K to 100M.

The DBLP dataset is a standard co-authorship network with edges labeled with the
year(s) in which the authors collaborated. We only use data from the top-100 journals to
form the graph.

Experimental Results. We measured Normalized Mutual Information (NMI1) [YL12b]
in order to create a confusion matrix between each factor and each community. We then
assign each community to one factor, and calculate the average NMI score. Table 7.2
shows that our system has better accuracy than competing baselines, achieving 0.9995
NMI in the small cubes dataset and 0.5908 in the DBLP-100 dataset.

Table 7.2: Precision Experiment

Name Small Cubes DBLP-100

our system 0.9995 0.5908
PARAFAC-THRESH 0.9779 0.5209
NN-PARAFAC-THRESH 0.8445 0.5404
PARAFAC-ABS 0.9893 0.4292

7.2.2 Scalability

Q2 - Data Scalability. We are interested in analyzing the speed-up of our system compared
to single machine tools. As a baseline, we consider the Matlab’s Tensor Toolbox [BKo15]
- a tensor decomposition tool which is the state of the art tensor computation package
designed for a single machine [JPKF15].

The number of inner-round iterations of the Tensor Toolbox and of our system affect
both their speed and accuracy. In order to perform a fair comparison, we first fix the
precision of the Tensor Toolbox, then find the required number of inner-iterations for our

1NMI values range from 0 to 1 and higher NMI values are better.

120

Figure 7.3: Data Scalability Experiment: Tensor Toolbox (1 machine) v.s. Our Sys-
tem (3 machines)

system to achieve a lower error, and finally compare their running time at this precision
level.

We run the Tensor Toolbox on a single machine with 15GB of memory and 12
Intel R© Xeon R© 3.20GHz CPUs. We built a Spark cluster on 3 AWS m3.xlarge instances;
each instance has 15GB memory and 4 Intel Xeon E5-2670 2.6GHz CPUs. We run each
experiment three times to compute the average and the deviation of wall-clock time.

Figure 7.3 shows the experimental results: our system can be applied to 10X larger
graphs, while still running faster in most scenarios. Note that the Tensor Toolbox cannot be
executed on the the fourth graph (108 edges) because it runs out of memory. Furthermore,
please note the logarithmic axis in this figure. For example, in order to evaluate the third
graph which has 107 edges, the Tensor Toolbox requires 1679.89 seconds on average
while our system only needs 107.40 seconds - a 15.64X improvement.

The speedup comes from two aspects:
1. The Spark framework contributes to the speedup, as it dispatches the tasks to

multiple machines and executes the computation in parallel.

2. Our algorithm shrinks the problem size after each outer-iteration: it saves the
detected community into a file and removes the edges from the graph.

Figure 7.4 shows the wall-clock time of each outer-iteration as our system processes

121

Figure 7.4: Execution time decreases in each outer-iteration.

the fourth graph (108 edges). Note the significant decrease in running time. Furthermore,
note that the Tensor Toolbox is faster on small datasets (105 edges) than our system, as
the Spark framework adds overhead of coordinating jobs and resources across machines.

Q3 - Machine Scalability. The machine scalability experiment tests the speed-up of
our system when we increase the number of machines. As the execution time will be
determined by the number of inner-rounds of the rank-1 decomposition, we focus on
measuring the time of a single iteration.

We test our system on the NELL dataset. NELL is a subject-object network: each node
represents a subject or an object, and there is a link between a subject and an object if a
valid subject-verb-object concept exists. Therefore, edges are labeled with verbs of the
English language.

The size of the Spark cluster ranges from 3 to 20 AWS r3.xlarge instances. One
r3.xlarge instance contains 30GB of memory and 4 Intel Xeon E5-2670 2.60 GHz CPUs. As
before, we execute each experiment three times to acquire the average and the deviation
of the wall-clock time. We consider the 5-machines wall-clock time (T5) as the baseline
and show relative speedup ratios Tm/T5 in Figure 7.5.

We note the following: (1) nearly linear speedup from 5 to 10 machines. Our system
is 166.71% faster with 8 machines and 193.13% faster with 10 machines, compared to a
5 machines cluster. (2) The 3-machines cluster does not performs as well as expected;

122

Figure 7.5: Machine Scalability (Base: 5 machines)

although it has more than half of 5 machines, its relative speedup is only 30.95%. The
reason is that the small cluster does not have sufficient memory to store the working set of
RDDs, causing the JVM to start the garbage collection (GC) often - it spends 91.29% of the
running time running the GC. (3) the improvement in speed-up becomes negligible when
the number of machines increases from 10 to 15 or 20. Although a 10-machines cluster
shows a 193.13% speed-up, it only shows a 209.34% improvement for 15 machines and
210.02% for 20 machines.

Three main reasons explain this last result. Firstly, the default number of tasks assigned
by the Spark system is not large enough to fully leverage parallelism - Spark creates 33
tasks, while the 15 machine cluster has 48 cores available. Secondly, NELL is a NLP
dataset: common words contain more links compared to unpopular words, leading to
a skewed workload. When we increase the size of the cluster, although the average
execution time of each task decreases on average, outlier tasks do not have a proportional
speed-up to the increased number of cores. Finally, increasing the number of machines
also increases network overhead.

The result shows that our system can provide nearly linear speedup if the cluster has
enough memory to load working set RDDs into memory, and if Spark if configured to
provide an adequate number of tasks for machines to utilize parallelism fully.

123

7.2.3 Q4 - Discoveries

We apply our system to an Airlines dataset previously described in Chapter 4. Each node
corresponds to an airport and a link represents an air route. Edge labels correspond to
airlines hosting these routes. We set the number of communities to 10, and the number of
inner decomposition rounds to 20.

Our system can find spatially affine communities - the decomposed groups correspond
to countries or regions. For example, our system detects the airline cluster of the USA,
China, Europe, India, Brazil, Australia, South East Asia, Russia, and Latin America; some
examples are shown in Figure 7.1.

Figure 7.6: Two clusters of different European airlines. The air routes in EU1 are
mainly hosted by low-cost airlines, while routes in EU2 are hosted by regular air-
lines.

124

More interestingly, our system is able to use the edge labels to distinguish two airline
clusters in Europe, EU1 and EU2 shown in Figure 7.6. In EU1, we can see air routes
mainly hosted by low-cost airlines, such as Ryanair and easyJet - 74.15% of the flights
are hosted by companies on the low-cost airline list [lis]. In contrast, only 16.74% of
the routes in EU2 are hosted by companies on this list. This result is similar to what was
achieved in Chapter 4, but TERACOM incorporates airline information in edge labels.

7.3 Related Work

We provide an overview of the relevant related work in distributed tensor decompositions.
Tensor Analysis and Tools Multiple tensor analysis toolboxes implementing PARAFAC

have been developed. While these systems implement the standard PARAFAC [Bro97]
decomposition, our work is focused on binary tensors and we use iterated rank-1 decom-
positions to speed-up the algorithm. Besides, while some of these systems are distributed
on Hadoop, our system is based on Spark [ZCF+10] which allows efficient memory-based
operations, not requiring data to be spilled to disk.

Tensor Toolbox [BKo15] is a well-known MATLAB implementation of many tensor
decomposition algorithms, such as non-negative PARAFAC with alternative Poisson re-
gression [HPK15] and PARAFAC via optimization [ADK11]. ParCube [PFS12] introduced
a sampling process before the tensor decomposition algorithm so that bigger problems
could be tackled.

The difference between our system and these two tools is that (1) these tools are
designed for single machine use, while our system runs on a distributed framework and
(2) our system is able to cluster the most relevant elements on each mode, instead of
scoring elements individually.

GigaTensor [KPHF12] developed a large-scale PARAFAC [KB09] algorithm for tensor
decomposition based on Hadoop. Their idea is that by decoupling the product terms they
are able to avoid the data explosion known to be generated by intermediate matrices, and
by storing the small matrices in the distributed cache they are able to speedup matrix
multiplication. HaTen2 [JPKF15] is also a Hadoop-based PARAFAC system from the same
authors. Similar to GigaTensor, they both aim to avoid the intermediate data explosion
problem. The authors claims that HaTen2 is an improvement over GigaTensor.

Apache Spark Spark [ZCF+10] is an in-memory MAPREDUCE-like general-purpose
distributed computation platform which provide a high-level interface for users to build
applications. Unlike previous MAPREDUCE frameworks like Hadoop, Spark mainly stores
intermediate data in memory, effectively reducing the number of disk Input/Output
operations. The main abstraction in Spark is called a Resilient Distributed Dataset (RDD),

125

which represents a collection of read-only objects. RDDs can be constructed from files,
vectors or derived from other RDDs, in which case the operation is called a transformation
(typical transformations are map, reduce, flatmap of filter). RDDs aren’t always saved to
disk and they are computed only when needed.

Spark allows us to use multiple machines and multiple cores. Perhaps more importantly,
our algorithms are able to manipulate more memory, which means that our system can be
applied to larger datasets.

7.4 Conclusion

This paper proposes a Spark-based distributed system for finding communities in edge-
labeled graphs. Our contribution are summarized as follows:

• Scalability. Our system is able to detect communities in edge-labeled graphs 10X
bigger when compared to existing tools. Furthermore, our system speeds-up near
linearly when enough machines are provided.

• Effective Algorithm. We carefully reorder operations in order to reduce the problem
size after each iteration, enabling faster computation.

• Discoveries. Our system discovers spatially affine groups in an airline network,
shown in Figure 7.1. For example, our system is able to distinguish low-cost airlines
and standard airlines in Europe.

126

Chapter 8

Forecasting Communities

If a group has been discussing the #elections on Twitter, with interest steadily increasing
as election day comes, can we predict who is going to join the discussion next week?
Intuitively, our forecast should take into account other hashtags (#) that have been used,
but also user-user interactions such as followers and retweets.

Similarly, can we predict who is going to publish on a given conference next year?
We should be able to make use of, not only the data about where each author previously
published, but also co-authorship data and keywords that might indicate a shift in interests
and research focus.

Today’s data sources are often heterogeneous, characterized by different types of
entities and relations that we should leverage in order to enrich our datasets. In order to
predict the evolution of some of these interactions, we propose to model these heteroge-
neous graphs as Coupled Tensors that, when forecasted jointly, generate better predictions
than when considered independently.

In particular, we will show how the evolution of user to user connections can be used
to forecast user to entity relations, e.g. information about who retweets whom improves
the prediction of who is going to use a given hashtag, and co-authorship information
improves the prediction of who is going to publish at a given venue.

INFORMAL PROBLEM 1. Forecasting Interactions
• Given historical interaction records between different users and between users

and entities.

• Find the most likely interactions in the future.

Using a naive approach, one would have to individually forecast every pair of users
and entities - a prohibitively big number that quadratically explodes. How can one
avoid quadratic explosion during forecasting? How can we obtain the top-K most likely
interactions without iterating through them all?

127

As a summary of our results, Figure 8.1a shows that our proposed TENSORCAST

method is able to achieve 20% more precision than competing methods on the task of
predicting who is going to publish on which venue in 2015 using DBLP data. Figure 8.1b
shows TENSORCAST scaling to hundreds of millions of non-zeros on TWITTER data.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000

P
re

c
is

io
n

Top-K

Ideal

TensorCast

CP Forecasting

Coupled Matrices

(a) Higher precision when forecasting
(author, venue) relations in the DBLP tensor.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

0 M 75 M 150 M 225 M 300 M

T
im

e
 (

s
e
c
)

Input size (non-zeros)

linear

(b) TENSORCAST scales linearly with the num-
ber of non-zeros.

Figure 8.1: TENSORCAST is effective and scalable.

We underline our main contributions:
1. Effectiveness: TENSORCAST achieves over 20% higher precision in top-1000 queries

and double the precision when finding new relations than comparable alternatives.

2. Scalability : TENSORCAST scales well (E+N logN) with the input size and is tested
in datasets with over 300M interactions.

3. Context-awareness: we show how different data sources can be included in a
principled way.

4. Tensor Top-K: we show how to quickly find the K biggest elements of sums of
three-way vector outer products under realistic assumptions.

8.1 Proposed Method: TENSORCAST

We assume a coupled-tensors setting where multiple tensors, possibly with different
dimensions, are related by common modes. We will assume that at least one of these
tensors is our tensor of interest: it is a 3-dimensional binary tensor and one of the modes
corresponds to a time component which we would like to forecast.

There are many scenarios that can be instantiated under this setting: imagine the
existence of membership records of the form (user, topic, time), with N unique users and
M unique topics (or communities) over T unique time intervals encoded in a 3rd-order

128

tensor X ∈ {0, 1}N×M×T . Maybe we also have available an additional collection of user
interaction records of the form (user, user, time), similarly encoded in a 3rd-order tensor
Y ∈ {0, 1}N×N×T . One possible forecasting problem could be framed as predicting which
users will interact with which topics in the future, taking advantage of the information
from both sources1.

We are interested in the following general problem:

PROBLEM DEFINITION 5. Forecasting Tensor Evolution
• Given two coupled tensors (X and Y), a number of K relations and S time-steps.

• Forecast, for the next S time-steps, the ranked list of the K most likely non-zero
elements of X , maximizing precision.

While Problem 5 is interesting by itself, accurate top-K predictions can often be made
by identifying which non-zeros constantly appear in the tensor of interest. In the previous
example, these would correspond to users that have constantly discussed the same topics
over time. Therefore, we define the following related problem:

SUBPROBLEM 1. Forecasting Novel Relations
• Given two coupled tensors (X and Y), a number of K relations and S time-steps.

• Forecast, for the next S time-steps, the ranked list of the K most likely new
relations of X .

We define a new or novel relation as a non-zero that does not exist in the tensor of
interest when the time component is collapsed. This is very related to a very well-known
and important problem [NGK+06]:

Observation 4. Predicting Churn
Identifying novel relations is akin to identifying churn, i.e., finding which customers will
first lose interest on a given service.

This highlights the importance of forecasting novel relations. We argue that Subprob-
lem 1 is more useful in many realistic scenarios where predicting who is joining or leaving
a community is more relevant than predicting who is staying. For instance, in the elections
example, members who recently joined the discussion are probably easier to influence,
while forecasting clients likely to stop doing business with a company is one of the key
problems in customer relations.

8.1.1 Overview.

TENSORCAST is comprised of three successive steps, described in more detail in the
following subsections:

1One of the experiments in Section 8.2 deals with this scenario.

129

1. Non-negative Coupled Factorization: the factorization will tie together the various
input tensors and identify their rank-1 components.

2. Forecasting: given the low dimensional space identified, we use standard tech-
niques to forecast the time component.

3. Top-K elements: we exploit the factorization structure and identify the top elements
without having to reconstruct the prohibitively big future tensor.

Figure 8.2 illustrates the intuition of our method.

X

us
er

s

users

tim
e

Y

us
er

s

topics

tim
e

Factorize arbitrary set of
coupled input tensors.

T

fu
tu

re

factors

ti
m

e

Forecast
time factors.

Y

us
er

s

topics

tim
e

Future tensor is

never reconstructed.

Top-K values.

Figure 8.2: Overview of TENSORCAST.

8.1.2 Non-negative Coupled Factorization

Consider that the tensor of interest, X , is a 3-dimensional N ×M × T dataset and that
the time component corresponds to the last index of the tensor. Then, naively, the number
of elements to be forecasted (S ×N ×M) is a prohibitive number when we consider X
to be big and sparse.

Therefore, factorizing the input data achieves a two-fold objective: not only does
it reduces the number of elements to be forecasted, but perhaps more importantly, it
co-clusters similar elements together enabling generalization. A careful factorization will
allow the forecast of previously unseen relations. We opted for a non-negative coupled
factorization in order to improve the interpretability of the model; the importance of this
feature will be clear when analyzing empirical evidence in Section 8.2.

We explore how user interactions can be leveraged to improve forecasts of future
user-entity relations. Under this assumption, the problem is better modeled as two
coupled tensors where tensor Y is a N ×N × T symmetric tensor. In order to guarantee

130

convergence, we modify the update of the symmetric factor matrix to

A← A ∗ 3

√√√√ X (1)(B � T) + αY(1)(A� T)
A(B � T)′(B � T) + αA(A� T)′(A� T) (8.1)

See Chapter 2 for further details.

8.1.3 Forecasting

Let T be the T × F factor matrix obtained from the previous step that corresponds to
the time component. It consists of a small set of F dense factor vectors, hence easy to
forecast, that will provide an approximation X̂ of the next time-step.

The most appropriate forecasting mechanism is data-dependent. We forecast using
basic exponential smoothing (Holt’s method), but other methods can be applied, e.g.
Holt-Winters double exponential smoothing when seasonality is present.

8.1.4 Tensor Top-K elements

The forecast of the next time-step is a N ×M × S tensor represented as
∑
f

af ◦ bf ◦ sf

where A is N × F , B is M × F and S is S × F .
We extend the literature on the retrieval of maximum entries in a matrix product to

the tensor case, leveraging the fact that the factorization was not performed on random
data but on a graph that follows typical properties. The goal is to identify the K (i, j, k)
positions with highest value ∑

f

AifBjfSkf

We’ll start by showing how this could be achieved if the X̂ tensor was rank-1 and
how multiple factors can be combined while preserving performance guarantees. We
assume that the number of forecasted time-steps is significantly smaller than the number
of users or topics (i.e., S � N,M) and that the number of topics is of the same order of
magnitude but smaller than the number of users (i.e., M < N).

Single factor Top-K. We start by creating a data structure that lets us obtain the next
biggest element in O(log(SM)) time, with only O(S logS + M logM + N logN + SM)
preprocessing.

Firstly, we sort the three vectors (s, a and b) in decreasing order. Note that, now, not
only do we know that the biggest element is given by a1b1s1, but also that an element
aibjsk only needs to be considered after ai−1bjsk, aibj−1sk and aibjsk−1 have all been

131

identified as one of the biggest K2. Hence, we can create a priority queue which only
holds, at most, O(SM) elements at a time.

Combining multiple factors. The major hurdle is handling the interaction between
the multiple factors. We propose a greedy Top-K selection algorithm that, under realistic
scenarios, efficiently achieves this goal. Algorithm 7 illustrates the pseudo code of this
procedure.

We keep a list (R) of the K biggest positions evaluated so far and Fi.next represents
the next element not yet considered in factor’s i priority queue, as described in the
previous section. In each iteration, we consider the element with the highest score in one
of the factors and add it to the list after evaluating it across all the factors. We terminate
when the sum of the next best scores on each factor becomes smaller than the Kth biggest
element in R.

input :F - priority queues of factors
input :K - number of elements
output :R - set of biggest elements

1 while
∑
i Fi.next.factorScore ≤ R.last.Score do

2 f← arg maxi(Fi.next.factorScore)
3 element← Ff .next
4 Ff .pop
5 R← R ∪ element.fullScore
6 if R.size > K then
7 R← R− arg min(R)
8 end
9 end

10 return R

Algorithm 7: TENSORCAST: Top-K Elements

In the following, we prove the correctness and upper bounds on the overall number of
elements that need to be evaluated.

Theorem 1 Algorithm 7 always returns the correct set of Top-k elements.

Proof 8 Consider an element x that should be included inR but was never considered. As the
algorithm has terminated, it follows that x’s score is lower than the sum of all the individual
factor scores of elements at the top of each priority queue. However, we know that the smallest
element in R is bigger than this, so this is a contradiction and x cannot exist. �

2For instance, we know that the second biggest element is one of a2b1s1, a1b2s1 or a1b1s2.

132

Theorem 1 proves that Algorithm 7 always finds the correct set of elements. We now
show that the set of elements that need to be considered is small when factors follow
common power-law distributions. We assume a and b follow power-laws of the form
(α− 1)x−α for x ≥ 1 and α > 1.

Lemma 8 If factor vectors a and b follow power-laws with exponents αa and αb, then a
randomly drawn element from any rank-1 frontal slice created as Ckf = a ◦b asymptotically
follows a power-law

pC(z) = (α− 1)z−α

where α = min(αa, αb).

Proof 9 Let X and Y follow power-law distributions of the form

pX(x) = (αa − 1)x−αa

pY (y) = (αb − 1)y−αb

Then Z = XY has probability distribution [GS01, p. 109]:

pZ(z) =
∫ z

1
pX(w)pY

(
z

w

) 1
w
dw =

= (αa − 1)(αb − 1)
αa − αb

(z−αa − z−αb)

which tends to a power-law with exponent −min(αa, αb). �

Theorem 2 Algorithm 7 needs to check at most KSF 1+ 1
α elements if every frontal slice

af ◦ bf follows a power-law.

Proof 10 We’ll consider the frontal slices one at a time and show that one only needs to
check KF 1+ 1

α elements to find the K biggest values of each slice. Let α1..F be the exponents
of the power-law distribution of each of the F factor matrices af ◦ bf of a given frontal slice
and let αm = minα. The K-th biggest element of

∑
f af ◦ bf is at least K−αm, as that is the

Kth biggest value of the slowest decreasing power-law3.
Given the iterative nature of Algorithm 7, we will prove an upper-bound for the maximum

position (i.e., how deep in one of the factors) an element can be, while still having a
reconstruction value greater than K−αm.

3Remember that A and B are non-negative matrices. In the worst-case, the score of the Kth biggest
element is taken from a single power-law and the contribution of the rest of the factors is 0, hence K−αm is
a lower-bound for the Kth biggest value.

133

Let x be the position of such element4, then

K−αm ≤
∑
f

x−αf ≤ Fx−αm =⇒ x ≤ KF
1
αm

This means that any top-k element needs to be in a position smaller than KF
1
αm in at

least one of the factors, which implies that, in the worst case, Algorithm 7 only needs to check
KF

1
αmF = KF 1+ 1

αm elements to find the K biggest elements on each frontal slice. Therefore,
we can upper-bound the total number of elements checked by KSF 1+ 1

α . �

Note that TENSORCAST is linear on the number of elements we want to obtain times the
number of time-steps forecasted. Furthermore, note that this result agrees with intuition:
sharper (i.e., quickly decreasing, higher exponent) power-laws require less elements to
be checked, while near-clique factors imply lower exponents and more elements to be
analyzed.

Figure 8.3 provides further empirical evidence of the linear growth on the number of
values we need to check. We plot the number of positions evaluated as K is increased, on
a synthetic network, when forecasting one time-step (S = 1), using 8 factors and varying
the power-law exponents from 1.5 to 2.2.

 100

 1000

 10000

 100000

 1e+06

 1e+07

 10 100 1000 10000 100000

P
o
s
it

io
n
s
 E

v
a
lu

a
te

d

K

Thm 2 (Upperbound)

Measured

Figure 8.3: TENSORCAST only checks a linear number of elements of the tensor.

8.1.5 Complexity Analysis.

Observation 5.
TENSORCAST requires time linearithmic on the number of non-zeros of its input tensors.

4In the worst case scenario, this element is at position x in every of the factors.

134

Table 8.1: Summary of real-world networks used.

Users Groups Timesteps Memberships Interactions Description

1 734 902 5 476 79 8 049 559 21 423 244 DBLP - venues
and co-authorships.

12 426 133 2 326 843 31 30 281 817 282 280 158 TWITTER - hashtags
and retweets.

Rationale. TENSORCAST’s time complexity is a sum of its three stages:
1. The coupled-factorization requires linearithmic time on the number of non-zeros.

2. Forecasting is typically linear on the number of timesteps, although it depends on
the algorithm selected.

3. As shown in the previous section, identifying the top-K elements is linear on K and
sub-quadratic on the number of factors.

8.2 Experiments

We report experiments to answer the following questions:
Q1. Scalability: How fast is TENSORCAST?

Q2. Effectiveness: and Context-awareness: How does TENSORCAST’s precision com-
pare with its alternatives? How much improvement does contextual data bring?

Q3. Trend Following: How capable is TENSORCAST of detecting and following trends?

Q4. Precision over Time: How does TENSORCAST’s precision decrease as we forecast
farther to the future?

TENSORCAST is tested on two big datasets detailed in Table 8.1. In the DBLP dataset,
the tensor to be forecasted consists of authors and venues in which they published from
1970 to 2014, while the co-authorship tensor is used as contextual information. Evaluation
is performed on the 2015 author × venue data. In the TWITTER dataset, the tensor of
interest relates users and hashtags (#) they used from June to December 2009, while the
auxiliary tensor represents user interactions through re-tweets. Tweets are grouped by
week and evaluation is performed on week 51.

Unless otherwise specified, every factorization approach uses 10 factors. On the
TWITTER dataset, we weighted the reconstruction of the tensor of interest as 20 times
more relevant that the context tensor. On DBLP, we weighted non-zeros of the tensor
of interest 2.66 times higher than in the tensor of interest (so that both tensors have the

135

same reconstruction error when considering empty factors).

8.2.1 Q1 - Scalability

We start by evaluating our method’s scalability when changing the number of non-zeros
in the TWITTER dataset5. By changing the number of weeks under consideration, we
create a sequence of pairs of tensors that increase in size. For each pair, we measure
wall-clock time when performing a rank-4 coupled tensor factorization, forecasting and
identification of the top-1000 forecasted non-zeros. Figure 8.1b shows TENSORCAST’s
linear scalability.

8.2.2 Q2 - Effectiveness and Context-awareness

Figure 8.1a and Figure 8.4 showcase TENSORCAST’s accuracy on the task of predicting
relations on future time steps. While Figure 8.1a shows TENSORCAST’s superior precision
as we increase K on the DBLP dataset, Figure 8.4 focus particularly on forecasting novel
relations on TWITTER. We would like to highlight the difficulty of this task, as we are
predicting whether a given user is going to start using a new hashtag on the next week.
Nevertheless, TENSORCAST achieves double the precision of competing methods6.

Furthermore, note the importance of TENSORCAST’s ability of being simultaneously
contextual and time-aware, as the precision of the current state-of-the-art is limited due
to ignoring either one of these aspects.

The competing CP Forecasting [DKA11] method was run using Holt forecasting, given
the lack of seasonality of the data. The results of the other competitor, Coupled Matrices,
were obtained by finding non-negative factors that minimize the reconstruction error of
the collapsed tensors, weighted for the same importance. For fairness, all appropriate
methods use 10 as the number of factors.

8.2.3 Q3 - Trend Following

We evaluate TENSORCAST’s ability of predicting an increase or decrease in the activity
around a given topic or between a group of users over time. We created a synthetic dataset
with 5 “hyperbolic” communities (i.e., with power-law internal degree distribution) of
100 users over 11 days (10 days are used for the factorization and 1 for evaluation). The

5We consider the sum of the non-zeros of both tensors.
6Note that the quality of absolute precision numbers is affected by 1) how imbalanced the two classes

are and 2) the cost of false positives. An improvement from 2% to 5% precision might imply that 1 out of
20 phone-calls we make target a potential customer versus every 1 in 50.

136

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0 2000 4000 6000 8000 10000

P
re

c
is

io
n

Top-K

2x

Coupled Matrices

CP Forecasting

TensorCast

Figure 8.4: Double precision when forecasting novel (user, hashtag) relations in the
TWITTER tensor.

average density over the first 10 days equals 15% for all communities, but their density
changes differently over time: two communities have their densities increasing at 1% and
2% per day, one has constant density and the other have their density decreasing by 1%
and 2% per day.

Figure 8.5 shows the scores of the 5 columns of the T matrix after factorization, one
per line. We can see that linear changes in density correspond to linear changes of the
scores and that TENSORCAST correctly forecasts a similar change in the future.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0 2 4 6 8 10 12

T
(d

a
y
,f

a
c
to

r)

Days

Past Forecast

Figure 8.5: TENSORCAST correctly forecasts growth and decay of groups in synthetic
data. [dashed - forecast; solid - real]

137

8.2.4 Q4 - Precision over Time

We evaluate TENSORCAST’s precision as the forecasting horizon is increased. We use the
DBLP dataset, doing five runs with each method when considering different “training”
periods (i.e., the first run considered every publication before 2010, while the last run
considered every publication before 2015). For each run, we obtained the 1000 most
likely non-zeros for each of the next 5 years and calculated the precision of the method,
when applicable. Figure 8.6 shows, for each method, the average precision for each
forecasting horizon.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

P
re

c
is

io
n

N-Years Forecast

Ideal

TensorCast

CP Forecasting

Coupled Matrices

Figure 8.6: TENSORCAST achieves higher precision at every forecasting horizon.

8.2.5 Discoveries - TENSORCAST at work

In addition to the forecast of new relations, groups found by TENSORCAST are interpretable
due to the non-negativeness of the factors. We highlight two groups we identified on the
TWITTER dataset with their most used hashtags (#) on Figure 8.7 (word size corresponds
to importance on factor). The first group corresponds to a group of users who typically
use hashtags that show a conservative political orientation: references to the tea party
and critics of the healthcare reform. Users in the second group use hashtags related to the
Iranian election and human-rights protests, such as #iranelection or #neda, the name of a
student who was killed during the protests.

Figure 8.8 shows TENSORCAST’s ability to predict user interactions based on current
interest on a topic. Note that, on the Iranian group, the factorization highlights the week
of the elections and the protests (in June), but interest clearly fades in the second-half
of the year. On the other hand, we can see that political tags are still used by the same
group of users for several months.

138

(a) Political group. Hashtags related to “top
conservatives on Twitter” (#tcot) and, respec-
tively, “liberals” (#tlot), #obama, #health-
care (#hcr), “smart girl politics” (#sgp), etc..

(b) Iranian elections group. Hashtags related
to the Iranian elections and human rights
protests.

Figure 8.7: TENSORCAST finds and forecasts groups with similar interests on TWIT-
TER.

Implementation details and Reproducibility. Similarly to its logical steps, TENSOR-
CAST was implemented as three different modules run in succession:

1. The non-negative coupled factorization was implemented on Matlab using its Tensor
Toolbox [BKo15].

2. Forecasts were done using Gnu’s Regression, Econometrics and Time-series Library
(GNU gretl) [BD03].

3. Tensor top-K elements’ algorithm was implemented in Scala as a stand-alone tool.
TENSORCAST can be obtained at http://www.cs.cmu.edu/~maraujo/tensorcast.

8.3 Related Work

8.3.1 Top-K elements in Matrix Products

Given the widespread applications of matrix factorizations, finding the top-K elements of
a matrix product is an important problem with several use cases, from personalized user
recommendations to document retrieval.

The problem can be stated as, given matrices A and B of sizes N × F and M × F ,
respectively, find the top K (i, j) pairs of the ABT matrix product. Note that the naive
solution requires O(NMF) operations, iterating over the (originally) implicitly defined
reconstruction matrix. Some attention has been given to this problem, since Ram and
Gray [RG12] proposed the use of Cone Trees to speed-up this search. Other approaches
map this problem into smaller sets of cosine-similarity searches [TGM15], a related

139

http://www.cs.cmu.edu/~maraujo/tensorcast

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 5 10 15 20 25 30 35

T
(w

e
e
k
,f

a
c
to

r)

Weeks

Past Forecast

A

B

C

Iranian group

Political group

Figure 8.8: Increased precision is achieved by grouping interactions. [A-Start of
2009 election protests; B-President Obama references Neda Soltan, killed in the
protests; C-Taxpayer March in Washington]

but easier problem given the unit-length of the vectors. Approximate methods have
also been tried, such as transforming the problem in a near-neighbor search and using
locality sensitive hashing (LSH) [SL14, NS14]. However, this is a non-convex optimization
problem in general.

8.3.2 Power-laws as building blocks

When factorizing real-life graph data, the scores of the non-negative factors are not
uniformly distributed but decrease sharply. We’ve shown in Chapter 3 that the internal
degree distribution of big communities can be well approximated by a power-law across
several domains. It has also been shown that eigenvectors of Kronecker graphs exhibit a
multinomial distribution [LCKF05, theorem 3]. TENSORCAST leverages this property in
order to speed-up its computation of Top-K elements without reconstructing the forecasted
tensor.

8.3.3 Link Prediction

A large body of literature on link prediction has been created since its introduction [LNK07].
In structural link prediction, the original problem, the goal is to predict which links are
more likely to appear in the future given a current snapshot of the network under analysis.
This setting, where it is typical to assume that links are never or seldom removed, has
found multiple applications in predicting interactions in protein-protein networks, social

140

networks (e.g., friendship relations) and recommendation problems. The Netflix chal-
lenge sprung the creation of several latent factor models with differing structure and/or
regularization terms for this task [Kor08, ME11], but there were also several approaches
which showed that using the age of the link could lead to improved predictions [Kor10].

On the other hand, given the increased availability of dynamic or time-evolving graphs
(frequently used to model evolving relationships between entities over time), temporal
link prediction methods have been developed to predict future snapshots. In this setting
where links are not guaranteed to persist over time, we distinguish methods that rely on
collapsing (matricizing) the input data (e.g., exponential decay of edge weights [SN08,
GDG11]) from methods that deal directly with the increased dimensionality, such as
tensor-based methods. CP Forecasting [DKA11] finds a low-rank PARAFAC factorization
and forecasts the time-component in order to incorporate seasonality. TriMine [MSF+12]
similarly factorizes the input tensor, but then applies probabilistic inference in order to
identify hidden topics that connect users and entities, which it then draws from in order
to generate realistic sequences of future events. These methods are not able to integrate
contextual information on their predictions. Other approaches integrate structure and
content in the same prediction task, e.g. Gao et al [GDG11] suggest a coupled matrix
factorizations and graph regularization technique to obtain the latent factors after an
exponential decay of the temporal network.

However, none of these methods fulfills all the requirements for forecasting when
contextual information is considered. Table 8.2 contrasts TENSORCAST against the state
of the art competitors on key specs:

a) linear scalability with sparse data;

b) interpretability of the underlying model;

c) time-awareness for forecasting periodic, growing and/or decaying relations;

d) ability to deal with additional contextual information;

e) the ability to forecast the disappearance of existing relations;

f) the ability of providing an ordered ranking of future events by likelihood of occur-
rence.

8.4 Summary

We presented TENSORCAST, a method which addresses the forecasting problem on big
time-evolving datasets when contextual information is available. We leverage typical
graph properties in order to create a linearithmic algorithm that can find novel relations

141

T
E

N
S

O
R
C

A
S

T

Tr
un

ca
te

d
SV

D

Tr
un

ca
te

d
Ka

tz

C
ou

pl
ed

M
at

ri
ce

s
(e

.g
.,

[G
D

G
11

])

VA
R

[Z
el

62
],

A
R

IM
A

[B
P7

0]
, e

tc
.

C
P

Fo
re

ca
st

in
g

[D
KA

11
]

Tr
iM

in
e

[M
SF

+
12

]

Scalability " ! ! ! ! !

Interpretability " ! ! ! ! !

Time-awareness " ! ! !

Context-awareness " !

Forecasting " ! ! !

Ordered Forecasting " ! !

Table 8.2: TENSORCAST integrates context and time-awareness.

in very big datasets efficiently.
The main advantages of our method are:

1. Generality: by using generalized tensors, TENSORCAST can be applied to a multitude
of data sources with different structure, including coupled tensors and coupled
matrix-tensor scenarios.

2. Scalability : TENSORCAST scales linearithmically with the input size and is tested
in datasets with over three hundred million non-zeros.

3. Effectiveness: TENSORCAST achieves 20% higher precision in top-1000 queries
than comparable alternatives.

4. Context-awareness: we show how different data sources can be included in a
principled way.

142

Part III

Conclusions and Future Directions

143

Chapter 9

Conclusions

In this dissertation, we study common patterns and groups in multiple networks: phone
calls, flights, co-authorships, “purchased together” items or movie ratings are just a few
examples of real-world processes that have achieved or might grow to billions of relations.
Given their scale and ubiquity, crucial issues arise when trying to interpret or distill
insights from these processes.

We focus on algorithms and models that effectively and scalably analyze simple or
labeled networks, in two related areas:

• Communities and Pattern Detection: We aim to understand the structure of
groups of users in large networks, according to commonly used community defini-
tions, and to understand their evolution across time or other edge labels.

• Anomalies and Novel Relations Discovery: The goal is to discover anomalous
nodes or connections. To that end, at the node level, we study the detection of
Points-of-Compromise in bank transactions and, at the relation level, we forecast
group evolution and the creation of never-before-seen connections.

As networks grow bigger, we explore the most appropriate representations for their
understanding, the most fitting patterns and building blocks, and the best methods to
detect anomalous behavior or structure. In order to create efficient near linear time algo-
rithms, we explore and leverage known properties of real-world networks and subgraphs.
By exploring edge labels and other contextual information, our methods can be applied to
most graph analytics settings.

145

9.1 Networks and Matrices

As hinted in the Introduction, Part I is focused on specific questions regarding the commu-
nity structure and specific anomalies of unlabeled networks. Solutions to these questions
leverage linear algebra, graph theory, information theory and machine learning concepts.

• “What is the structure of real-world communities?”: Through the analysis of
externally provided communities, we developed the Hyperbolic Community Model, a
model that better represents meaningful subgraphs in big networks: we showed that
edges are not uniformly distributed, but rather skewed - patterns that previously
were only attributed to the full network. We showed that big communities fit power-
law degree distributions fairly well and side-by-side comparison of the adjacency
matrix of the theoretical and real communities shows their similarity.

• “How can we find them?”: We contribute two distinct approaches for finding
realistic communities. HYCOM-FIT uses the Minimum Description Length principle
to find communities that are modeled as having a power-law degree distribution.
We also contribute a fast algorithm, FASTSTEP, which uses a novel binary matrix
factorization approach that is able to obtain non-block but binary reconstructions.
Applications in a recommendation systems setting and in clustering nodes of a
flights’ network illustrate FASTSTEP’s power.

• “Can we detect sources of data breaches or infections in billion-sized datasets?”
We introduce BREACHRADAR, a method that is able to detect anomalous nodes whose
erroneous behavior is only detected in some of their neighbors. BREACHRADAR’s
key idea is the alternating optimization of two conflicting aspects: while infected
nodes want to increase the blame of their neighbors, they know that they were likely
infected by a single source. Therefore, they converge to an agreement after a few
rounds of message passing that only requires local information stored in their neigh-
bors. This approach leads to an easy to parallelize probabilistic graphical model that
is used in billion-sized transaction networks to detect real Points-of-Compromise.
Application to real transaction networks shows fraud prevention of over one million
US dollars per month.

146

9.2 Labeled Networks and Tensors

Part II focused on labeled networks, with significant importance given to temporal net-
works. We propose algorithmic solutions that rely on tensor algebra, information theory
and graph theory, in order to tackle two important questions.

• “What are typical patterns of temporal communities? How can we find them?”:
We contribute COM2, a method that combines tensor algebra and information theory
in order to find a succinct description of the labeled network. Similarly to HYCOM-
FIT, COM2 also leverages the Minimum Description Length principle in order to find
relevant sets of nodes and labels that represent interesting concepts. When labels
represent timesteps, we analyzed a phonecalls and a computer communications
datasets and found that typical groups are not constant but rather tend to appear
over non-consecutive timesteps.

• “Can we forecast novel relationships when context is available?”: We con-
tribute TENSORCAST, a three stage method that is able to incorporate contextual
information in the forecast of future edges in time-evolving networks. The key
idea behind TENSORCAST is a three steps process: a coupled tensor factorization is
used to reduce the dimensionality of the problem, a time series forecasting method
extends the time component, and a novel tensor top-k method is able to efficiently
obtain the most likely future connections avoiding the quadratic explosion prob-
lem. We report double precision in identifying novel relations when compared to
state-of-the-art approaches.

9.3 Overall Impact

This work contributes in the cross product of two common themes: on the one hand, we
focus on patterns and anomalies, while on the other, we study both static and labeled
networks, usually temporal. Hence, it has broad impact on several domains: recommen-
dation systems, fraud detection, contextual forecasting and graph understanding, and has
been used in multiple settings:

• Impact in industry: Feedzai detects data breaches and other Points-of-Compromise
using BREACHRADAR [AAF+17], a work who has a patent submitted.

• Impact in academia: At the University of Lisbon, FASTSTEP is the basis of a Masters
thesis dissertation.

• Awards: COM2 [APG+14] received one of the best paper awards at PAKDD’14.

147

Reproducibility. HYCOM-FIT, FASTSTEP, COM2 and TENSORCAST are made available
for the research community.

148

Chapter 10

Vision and Future Directions

This research was focused on the development of scalable algorithms for finding patterns
and anomalies in static and labeled networks. Some of the research directions we envision
as extending our work are outlined below.

10.1 Systems: “Database Factorizations”

Finding patterns, anomalies, recommendations and forecasting while integrating context
are some of the most relevant current problems. In Chapter 8, we explored how coupled
tensors could be leveraged to improve forecasts using context cues. However, collecting the
data and deciding on the specific decomposition to be applied is cumbersome and requires
both domain and technical knowledge. Fortunately, most of these domain relations
have already been systematized: they are encoded as primary key relations in most
relational database management systems (RDBMS). Can we leverage this information to
lift the technical burden from the end-users and to create systems that are able to answer
domain-specific questions easily? Can we forecast sales growth by automatically taking
into consideration the relations between quarters and orders and between orders and
customers and products? Can fraudsters be identified from telecommunication records?

Not only is RDBMS data easy to access and already connected, one could perform most
operations directly with SQL, leveraging RDBMS’es key features: on-disk and distributed
capabilities, transactions, checkpointing and recovery, integrity constraints, etc. . Other
relevant methods that target single SQL tables have already been implemented in SQL,
such as PCA [NO09] and K-step neighbors, cores and induced subgraphs [KTS+11]. Other
systems such as Vertexica [JRW+14] translate vertex-centric graph operations into SQL.
It is only natural to extend these graph analytics capabilities to the complete relational
database.

149

10.2 Theory: Adversarial Anomalies

We’ve been looking at groups (communities) and anomalies (fraudsters, strange groups)
in networks. Most examples and success stories involve malicious intent - points-of-
compromise, fake reviews, etc. What guarantees do factorization methods provide against
these adversarial attacks? Assuming typical network characteristics, can we identify
bounds regarding the size and density of the maximal near-clique that won’t be reported
in a factorization? What is the relevance of camouflage techniques typically used (i.e.,
fraudsters will follow celebrities in addition to customers)? Answering these questions
requires incorporating the known properties of large scale networks and the typical fraud
patterns into the theoretical bounds of spectral theory.

150

Appendices

151

Appendix A

BREACHRADAR - Additional details

A.1 Fraud Label Delays

The availability of fraud labels is an obvious requirement of the procedure described in
this work. Without fraud labels, or with a significant delay between the transaction date
and the date in which the fraud label was added, our ability to minimize eventual losses is
severely restricted. Therefore, we present a preliminary analysis on whether these labels
are available in a reasonable time frame.

Figure A.1 shows the distribution that relates the number of fraudulent transactions
and the number of days the respective label was assigned. We can see that the number of
days that a typical label is delayed is very small; while it might be initially surprising, the
reality is that several systems try to detect whether a transaction is fraudulent in real-time.
Financial institutions then either abort the transaction or call the card owner in order to
validate the purchase.

Furthermore, note that once a card has been cloned and is successfully used in a
fraudulent transaction, fraudsters will typically use that opportunity to spend all the
available funds as fast as possible, before the rightful owners are able to communicate the
unauthorized transactions to their bank. As a consequence, with a nearly empty or even
over-drafted account, customers are quick to report these transactions to their banking
institution.

A.2 Multiple Points-of-Compromise

While assuming that fraud-cards were stolen at a single possible Point-of-Compromise agrees
with intuition (a rare event shouldn’t affect the same card multiple times), we realized

153

 0 2 4 6 8 10 12 14 16

C
o
u
n
t

Label Delay (days)

Figure A.1: Most labels are available shortly after the transaction. (actual counts
removed for privacy)

that this assumption does not hold when these possible POCs have a fine granularity,
such as “terminal-week” pairs. Database breaches often imply that multiple transactions
(hence possibly multiple buckets) in the same merchant might be Points-of-Compromise,
so Equation 5.2 needs to be modified for the algorithm to work in this scenario. In order
to do so, we replace the l1 normalization at the POC level with a normalization at the
merchant level. The equation is updated as follows:

Bij =

θj∑

k∈Ni and m(j)6=m(k)
θk

if fi = 1 and j ∈ Ni

0 otherwise

(A.1)

where m(j) is the merchant associated with bucket j. In scenarios with such bucket
definitions, the UpdateBlames function in Algorithm 3 is also changed accordingly.

Bij = pj

pj +
∑

k∈Ni and merch(j) 6= merch(k)

pk
(A.2)

154

Bibliography

[AABB+07] Evrim Acar, Canan Aykut-Bingol, Haluk Bingol, Rasmus Bro, and Bülent
Yener. Multiway analysis of epilepsy tensors. In ISMB/ECCB Supplement of
Bioinformatics, pages 10–18, 2007. 16

[AAF+17] Miguel Araujo, Miguel Almeida, Jaime Ferreira, Luis Silva, and Pedro
Bizarro. Breachradar: Automatic detection of points-of-compromise. In
Proceedings of the 17th SIAM International Conference on Data Mining
(SDM), Houston, USA, 2017. 4, 7, 67, 147

[ADK11] Evrim Acar, Daniel M Dunlavy, and Tamara G Kolda. A scalable opti-
mization approach for fitting canonical tensor decompositions. Journal of
Chemometrics, 25(2):67–86, Jan 2011. 125

[AGMF14] Miguel Araujo, Stephan Günnemann, Gonzalo Mateos, and Christos Falout-
sos. Beyond blocks: Hyperbolic community detection. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD), pages 50–65. Springer Berlin Heidelberg, 2014. 3, 33

[AGP+15] Miguel Araujo, Stephan Günnemann, Spiros Papadimitriou, Christos Falout-
sos, Prithwish Basu, Ananthram Swami, Evangelos E Papalexakis, and
Danai Koutra. Discovery of “comet” communities in temporal and labeled
graphs Com2. Knowledge and Information Systems, pages 1–21, 2015. 5,
93

[Aka74] Hirotugu Akaike. A new look at the statistical model identification. Trans-
actions on Automatic Control, 19(6):716–723, 1974. 29, 62

[APF+06] Balázs Adamcsek, Gergely Palla, Illés J. Farkas, Imre Derényi, and Tamás
Vicsek. Cfinder: locating cliques and overlapping modules in biological
networks. Bioinformatics, 22(8):1021–1023, 2006. 46

[APG+14] Miguel Araujo, Spiros Papadimitriou, Stephan Günnemann, Christos Falout-
sos, Prithwish Basu, Ananthram Swami, Evangelos E. Papalexakis, and
Danai Koutra. Com2: Fast automatic discovery of temporal (’comet’) com-

155

munities. In Proceedings of the 18th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD), pages 271–283, Tainan, Taiwan, 2014.
5, 7, 93, 147

[ARF16] Miguel Araujo, Pedro Ribeiro, and Christos Faloutsos. Faststep: Scalable
boolean matrix decomposition. In Proceedings of the 20th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), Auckland,
New Zealand, 2016. 3, 51

[AS14] Charu Aggarwal and Karthik Subbian. Evolutionary network analysis: A
survey. ACM Computing Survey, 47(1):10:1–10:36, May 2014. 90

[ATMF12] Leman Akoglu, Hanghang Tong, Brendan Meeder, and Christos Faloutsos.
Pics: Parameter-free identification of cohesive subgroups in large attributed
graphs. In Proceedings of the 12th SIAM International Conference on Data
Mining (SDM), pages 439–450. SIAM, 2012. 26

[BA99] Albert-László Barabási and Réka Albert. Emergence of scaling in random
networks. Science, 286(5439):509–512, 1999. 11

[Bal13] Brandon Ballenger. Rakuten.com customers reporting credit card fraud.
finance.yahoo.com, June 2013. 77

[BBH+14] John Bagnall, David Bounie, Kim P. Huynh, Anneke Kosse, Tobias Schmidt,
Scott Schuh, and Helmut Stix. Consumer cash usage: A cross-country
comparison with payment diary survey data. ECB Working Paper Series,
2014. 67

[BD03] Giovanni Baiocchi and Walter Distaso. Gretl: Econometric software for the
gnu generation. Journal of Applied Econometrics, 18(1):105–110, 2003.
139

[BFS15] Kim P. Huynh Ben Fung and Gerald Stuber. The use of cash in canada.
Bank of Canada review, 2015. 67

[BGHS12] Brigitte Boden, Stephan Günnemann, Holger Hoffmann, and Thomas Seidl.
Mining coherent subgraphs in multi-layer graphs with edge labels. In
Proceedings of the 18th International Conference on Knowledge Discovery
and Data Mining (KDD), pages 1258–1266. ACM, 2012. 90

[BGHS13] Brigitte Boden, Stephan Günnemann, Holger Hoffmann, and Thomas
Seidl. RMiCS: a robust approach for mining coherent subgraphs in edge-
labeled multi-layer graphs. In Proceedings of the International Conference
on Scientific and Statistical Database Management (SSDBM), pages 1–23,
2013. 90

156

[BGLL08] Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne
Lefebvre. Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(10):P10008, 2008. 30

[BH02a] James C Bezdek and Richard J Hathaway. Some notes on alternating
optimization. In Advances in Soft Computing—AFSS 2002, pages 288–300.
Springer, 2002. 75

[BH02b] Richard J Bolton and David J Hand. Statistical fraud detection: A review.
Statistical science, pages 235–249, 2002. 83

[BK07] Robert M Bell and Yehuda Koren. Lessons from the netflix prize challenge.
SIGKDD Explorations Newsletter, 9(2):75–79, 2007. 51

[BKo15] Brett W Bader, Tamara G Kolda, and others. MATLAB Tensor Toolbox
Version 2.6. Feb 2015. 119, 120, 125, 139

[BP70] George EP Box and David A Pierce. Distribution of residual autocorrelations
in autoregressive-integrated moving average time series models. Journal
of the American Statistical Association, 65(332):1509–1526, 1970. 142

[Bro97] R Bro. PARAFAC. Tutorial and applications. Chemometrics and Intelligent
Laboratory Systems, 38(2):149–171, 1997. 125

[BTK+14] Alex Beutel, Partha Pratim Talukdar, Abhimanu Kumar, Christos Faloutsos,
Evangelos E Papalexakis, and Eric P Xing. Flexifact: Scalable flexible
factorization of coupled tensors on hadoop. In Proceedings of the 14th
SIAM International Conference on Data Mining (SDM), pages 109–117.
SIAM, 2014. 21

[Cha04] Deepayan Chakrabarti. Autopart: Parameter-free graph partitioning and
outlier detection. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML-PKDD), pages 112–124. Springer,
2004. 30

[Cor15] Fair Isaac Corporation. How europe’s card fraud is evolving. Insights White
Paper, 2015. 67

[CPMF04] Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra S. Modha, and
Christos Faloutsos. Fully automatic cross-associations. In Proceedings of
the 10th International Conference on Knowledge Discovery and Data Mining
(KDD), Seattle, United States, 2004. ACM. 30, 46

[CSN09] A. Clauset, C. Shalizi, and M. Newman. Power-law distributions in empiri-
cal data. SIAM Review, 51(4):661–703, 2009. 43

157

[CWZW11] Bingjing Cai, Haiying Wang, Huiru Zheng, and Hui Wang. An improved
random walk based clustering algorithm for community detection in com-
plex networks. In International Conference on Systems, Man, and Cybernetics
(SMC), pages 2162–2167. IEEE, 2011. 29

[DA05] J Duch and A Arenas. Community detection in complex networks using
Extremal Optimization. arXiv.org, (2):027104, Jan 2005. 28

[DBF05] Patrick Doreian, Vladimir Batagelj, and Anuska Ferligoj. Generalized block-
modeling, volume 25. Cambridge university press, 2005. 29

[DH73] William E Donath and Alan J Hoffman. Lower bounds for the partitioning
of graphs. IBM Journal of Research and Development, 17(5):420–425, 1973.
29

[Dhi01] Inderjit S Dhillon. Co-clustering documents and words using bipartite spec-
tral graph partitioning. In Proceedings of the 7th International Conference
on Knowledge Discovery and Data Mining (KDD), pages 269–274. ACM,
2001. 29

[DKA11] Daniel M. Dunlavy, Tamara G. Kolda, and Evrim Acar. Temporal link
prediction using matrix and tensor factorization. Transactions on Knowledge
Discovery from Data (TKDD), 2011. 90, 136, 141, 142

[DLDMV00] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. On the best
rank-1 and rank-(r1, r2,..., rn) approximation of higher-order tensors.
SIAM Journal on Matrix Analysis and Applications, 21(4):1324–1342, 2000.
20

[DMM03] Inderjit S Dhillon, Subramanyam Mallela, and Dharmendra S Modha.
Information-theoretic co-clustering. In Proceedings of the 9th International
Conference on Knowledge Discovery and Data Mining (KDD), pages 89–98.
ACM, 2003. 51

[DPCLB+14] Andrea Dal Pozzolo, Olivier Caelen, Yann-Ael Le Borgne, Serge Water-
schoot, and Gianluca Bontempi. Learned lessons in credit card fraud
detection from a practitioner perspective. Expert systems with applications,
41(10):4915–4928, 2014. 83

[Dun98] Robin Dunbar. Grooming, Gossip, and the Evolution of Language. Harvard
University Press, 1998. 31

[ECA13] Beyza Ermi̧s, A Taylan Cemgil, and Evrim Acar. Generalized coupled
symmetric tensor factorization for link prediction. In Signal Processing and
Communications Applications Conference (SIU), pages 1–4. IEEE, 2013. 21

158

[Eur15] European Central Bank. Fourth report on card fraud. Technical report,
European Central Bank, 2015. 78

[EY36] Carl Eckart and Gale Young. The approximation of one matrix by another
of lower rank. Psychometrika, 1(3):211–218, 1936. 15

[FC07] Santo Fortunato and Claudio Castellano. Community Structure in Graphs.
arXiv.org, Dec 2007. 28

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. Proceedings of the Conference of the
Special Interest Group on Data Communication (SIGCOMM), pages 251–262,
1999. 11, 36

[FH16] Santo Fortunato and Darko Hric. Community detection in networks: A
user guide. Physics Reports, 659:1–44, 2016. 25

[FLG00] G.W. Flake, S. Lawrence, and C.L. Giles. Efficient identification of web
communities. In Proceedings of the 6th International Conference on Knowl-
edge Discovery and Data Mining (KDD), pages 150–160. ACM, 2000. 1,
25

[For05] George Forman. Determining point-of-compromise. US Patent US
20050055373 A1, March 2005. 84

[For10] Santo Fortunato. Community detection in graphs. Physics Reports,
486(3–5):75 – 174, 2010. 25, 28, 51

[GDG11] Sheng Gao, Ludovic Denoyer, and Patrick Gallinari. Temporal link predic-
tion by integrating content and structure information. In Proceedings of the
20th International Conference on Information and Knowledge Management,
pages 1169–1174. ACM, 2011. 141, 142

[GFBS14] Stephan Günnemann, Ines Färber, Brigitte Boden, and Thomas Seidl.
Gamer: a synthesis of subspace clustering and dense subgraph mining.
Knowledge and Information Systems (KAIS), 40(2):243–278, 2014. 29, 30

[GFRS13] Stephan Günnemann, Ines Färber, Sebastian Raubach, and Thomas Seidl.
Spectral subspace clustering for graphs with feature vectors. In Proceedings
of the International Conference on Data Mining (ICDM), pages 231–240,
Dallas, United States, 2013. IEEE. 29

[GK65] G. Golub and W. Kahan. Calculating the singular values and pseudo-inverse
of a matrix. Journal of the Society for Industrial and Applied Mathematics
Series B Numerical Analysis, 2(2):205–224, 1965. 15

159

[GMS04] Aristides Gionis, Heikki Mannila, and Jouni K. Seppänen. Geometric
and combinatorial tiles in 0-1 data. In Proceedings of the 8th European
Conference on Principles and Practice of Knowledge Discovery in Databases
(PKDD), pages 173–184, Pisa, Italy, 2004. 29

[GMZ03] Christos Gkantsidis, Milena Mihail, and Ellen W. Zegura. Spectral analysis
of internet topologies. In Proceedings of the 22nd joint Conference of the
Computer and Communications Societies (INFOCOM), pages 364–374, San
Francisco, United States, 2003. IEEE. 29, 30

[Goo61] Leo A Goodman. Snowball sampling. The annals of mathematical statistics,
pages 148–170, 1961. 11

[Gre10] Steve Gregory. Finding overlapping communities in networks by label
propagation. New Journal of Physics, 12(10):103018, 2010. 28

[Grü07] Peter D Grünwald. The minimum description length principle. The MIT
Press, 2007. 38, 62, 95

[GS01] Geoffrey Grimmett and David Stirzaker. Probability and random processes.
Oxford university press, 2001. 133

[GZC+16] Amir Ghasemian, Pan Zhang, Aaron Clauset, Cristopher Moore, and Leto
Peel. Detectability thresholds and optimal algorithms for community
structure in dynamic networks. Physical Review X, 6(3):031005, 2016. 91

[HAF16] San-Chuan Hung, Miguel Araujo, and Christos Faloutsos. Distributed com-
munity detection on edge-labeled graphs using spark. In 12th International
Workshop on Mining and Learning with Graphs (MLG), San Francisco, USA,
2016. 113

[Har70] R.A. Harshman. Foundations of the PARAFAC procedure: Models and
conditions for an "explanatory" multimodal factor analysis. UCLA Working
Papers in Phonetics, 16:1–84, 1970. 18, 111, 114, 119

[HPK15] Samantha Hansen, Todd Plantenga, and Tamara G Kolda. Newton-based
optimization for Kullback-Leibler nonnegative tensor factorizations. Opti-
mization Methods and Software, 30(5):1002–1029, 2015. 125

[HXZ+11] Zhaoshui He, Shengli Xie, Rafal Zdunek, Guoxu Zhou, and Andrzej Ci-
chocki. Symmetric nonnegative matrix factorization: Algorithms and
applications to probabilistic clustering. Transactions on Neural Networks,
22(12):2117–2131, 2011. 21

[jet11] Restaurant depot/jetro cash & carry customers’ credit cards hacked.

160

DataBreaches.net, December 2011. 77

[JKC+04] D. S. Johnson, S. Krishnan, J. Chhugani, S. Kumar, and S. Venkatasubra-
manian. Compressing large boolean matrices using reordering techniques.
In Very Large Data Bases (VLDB), 2004. 40, 97

[JPKF15] Inah Jeon, Evangelos E Papalexakis, U Kang, and Christos Faloutsos.
HaTen2: Billion-scale tensor decompositions. Proceedings of the Inter-
national Conference on Data Engineering (ICDE), pages 1047–1058, 2015.
120, 125

[JRW+14] Alekh Jindal, Praynaa Rawlani, Eugene Wu, Samuel Madden, Amol Desh-
pande, and Mike Stonebraker. Vertexica: your relational friend for graph
analytics! Proceedings of the VLDB Endowment, 7(13):1669–1672, 2014.
149

[Kar72] Richard M Karp. Reducibility among combinatorial problems. Springer,
1972. 85

[KB09] T.G. Kolda and B.W. Bader. Tensor decompositions and applications. SIAM
Review, 51(3), 2009. 17, 18, 19, 125

[Kit13] Tracy Kitten. Bashas’ breach exposes security flaws. BankInfoSecurity.com
- The Fraud Blog, February 2013. 77

[KK95] George Karypis and Vipin Kumar. Metis - unstructured graph partitioning
and sparse matrix ordering system, version 2.0. Technical report, 1995.
28, 111

[KKK+11] Danai Koutra, Tai-You Ke, U Kang, Duen Horng Polo Chau, Hsing-Kuo Ken-
neth Pao, and Christos Faloutsos. Unifying guilt-by-association approaches:
Theorems and fast algorithms. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML-PKDD), pages 245–
260. Springer, 2011. 81, 82, 84

[KKVF14] Danai Koutra, U Kang, Jilles Vreeken, and Christos Faloutsos. VoG: Sum-
marizing and understanding large graphs. In Proceedings of the 14th SIAM
International Conference on Data Mining (SDM), 2014. 30, 90

[KL51] Solomon Kullback and Richard A Leibler. On information and sufficiency.
The annals of mathematical statistics, 22(1):79–86, 1951. 15

[Kle09] Victor Franklin Klebanoff. Method and system for assisting in the identifi-
cation of merchants at which payment accounts have been compromised.
US Patent US 8473415 B2, August 2009. 84

161

[KNRT03] Ravi Kumar, Jasmine Novak, Prabhakar Raghavan, and Andrew Tomkins.
On the bursty evolution of blogspace. In Proceedings of the 12nd Inter-
national World Wide Web Conference (WWW), Budapest, Hungary, 2003.
90

[Kor08] Yehuda Koren. Factorization meets the neighborhood: a multifaceted
collaborative filtering model. In Proceedings of the 14th International
Conference on Knowledge Discovery and Data Mining (KDD), pages 426–434.
ACM, 2008. 141

[Kor10] Yehuda Koren. Collaborative filtering with temporal dynamics. Communi-
cations of the ACM, 53(4):89–97, 2010. 141

[KPHF12] U Kang, Evangelos Papalexakis, Abhay Harpale, and Christos Faloutsos.
Gigatensor: scaling tensor analysis up by 100 times-algorithms and dis-
coveries. In Proceedings of the 18th International Conference on Knowledge
Discovery and Data Mining (KDD), pages 316–324. ACM, 2012. 125

[Kre14] Brian Krebs. The target breach, by the numbers. KrebsOnSecurity.com,
May 2014. 67

[KTS+11] U Kang, Hanghang Tong, Jimeng Sun, Ching-Yung Lin, and Christos Falout-
sos. Gbase: a scalable and general graph management system. In Proceed-
ings of the 17th International Conference on Knowledge Discovery and Data
Mining (KDD), pages 1091–1099. ACM, 2011. 149

[LCK+10] Jure Leskovec, Deepayan Chakrabarti, Jon Kleinberg, Christos Faloutsos,
and Zoubin Ghahramani. Kronecker graphs: An approach to modeling
networks. The Journal of Machine Learning Research (JMLR), 11:985–1042,
2010. 65

[LCKF05] Jurij Leskovec, Deepayan Chakrabarti, Jon Kleinberg, and Christos Falout-
sos. Realistic, mathematically tractable graph generation and evolution,
using kronecker multiplication. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases (ECML-PKDD), pages 133–
145. Springer, 2005. 140

[Ley02] Michael Ley. The DBLP Computer Science Bibliography: Evolution, Re-
search Issues, Perspectives. SPIRE, pages 1–10, 2002. 119

[Li05] Tao Li. A general model for clustering binary data. In Proceedings of the
11th International Conference on Knowledge Discovery and Data Mining
(KDD), pages 188–197. ACM, 2005. 32

[lis] List of low-cost airlines. https://en.wikipedia.org/wiki/List_of_low-

162

cost_airlines. 125

[LKF07] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. Graph evolution:
Densification and shrinking diameters. Transactions on Knowledge Discovery
from Data (TKDD), 2007. 90

[LLDM08] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney.
Statistical properties of community structure in large social and informa-
tion networks. In Proceedings of the 17th International World Wide Web
Conference (WWW), pages 695–704, Beijing, China, 2008. 30, 31

[LNK07] David Liben-Nowell and Jon Kleinberg. The link-prediction problem for
social networks. Journal of the American Society for Information Science
and Technology, 58(7):1019–1031, 2007. 140

[LS01] Daniel D Lee and H Sebastian Seung. Algorithms for non-negative matrix
factorization. In Advances in neural information processing systems, pages
556–562, 2001. 15, 21

[LYK+08] Zheng Liu, J.X. Yu, Yiping Ke, Xuemin Lin, and Lei Chen. Spotting sig-
nificant changing subgraphs in evolving graphs. In Proceedings of the
International Conference on Data Mining (ICDM), Pisa, Italy, 2008. IEEE.
90

[MAB+10] Grzegorz Malewicz, Matthew H Austern, Aart JC Bik, James C Dehnert,
Ilan Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: a system for
large-scale graph processing. In Proceedings of the International Conference
on Management of Data (SIGMOD), pages 135–146. ACM, 2010. 75

[ME11] Aditya Krishna Menon and Charles Elkan. Link prediction via matrix
factorization. In Joint European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML-PKDD), pages 437–452. Springer,
2011. 141

[Mie11] Pauli Miettinen. Boolean tensor factorizations. In Proceedings of the
International Conference on Data Mining (ICDM), pages 447–456. IEEE,
2011. 96

[Mir98] Boris Mirkin. Mathematical classification and clustering: From how to
what and why. In Classification, data analysis, and data highways, pages
172–181. Springer, 1998. 16

[MMG+08] Pauli Miettinen, Taneli Mielikäinen, Aristides Gionis, Gautam Das, and
Heikki Mannila. The discrete basis problem. Transactions on Knowledge
and Data Engineering (TDKE), 20(10):1348–1362, 2008. 32

163

[MP02] Milena Mihail and Christos Papadimitriou. On the eigenvalue power law.
In International Workshop on Randomization and Approximation Techniques
in Computer Science, pages 254–262. Springer, 2002. 11

[MSF+12] Yasuko Matsubara, Yasushi Sakurai, Christos Faloutsos, Tomoharu Iwata,
and Masatoshi Yoshikawa. Fast mining and forecasting of complex time-
stamped events. In Proceedings of the 18th International Conference on
Knowledge Discovery and Data Mining (KDD), pages 271–279. ACM, 2012.
141, 142

[New04] Mark EJ Newman. Fast algorithm for detecting community structure in
networks. Physical review E, 69(6):066133, 2004. 28

[New06] M. Newman. Modularity and community structure in networks. Proceedings
of the National Academy of Sciences (PNAS), 103(23):8577–8582, 2006. 28

[NG04] M. Newman and M. Girvan. Finding and evaluating community structure
in networks. Physical Review E, 69:026113, 2004. 28

[NGK+06] Scott A Neslin, Sunil Gupta, Wagner Kamakura, Junxiang Lu, and Char-
lotte H Mason. Defection detection: Measuring and understanding the
predictive accuracy of customer churn models. Journal of Marketing Re-
search, 43(2):204–211, 2006. 129

[NO09] Mario Navas and Carlos Ordonez. Efficient computation of pca with svd in
sql. In Proceedings of the 2nd Workshop on Data Mining using Matrices and
Tensors, page 5. ACM, 2009. 149

[NS14] Behnam Neyshabur and Nathan Srebro. On symmetric and asymmetric lshs
for inner product search. Proceedings of the 32nd International Conference
on Machine Learning, 2014. 140

[PAI13] Evangelos E. Papalexakis, Leman Akoglu, and Dino Ience. Do more views
of a graph help? Community detection and clustering in multi-graphs. In
Proceedings of the 16th International Conference on Information FUSION,
pages 899–905, Istanbul, Turkey, 2013. 90, 111

[PBMW99] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The
pagerank citation ranking: Bringing order to the web. Technical report,
Stanford InfoLab, 1999. 29

[Pea82] Judea Pearl. Reverend bayes on inference engines: A distributed hierarchi-
cal approach. In AAAI, pages 133–136, 1982. 84

[Pea85] Judea Pearl. Bayesian networks: A model of self-activated memory for

164

evidential reasoning. 1985. 84

[Pei15] Tiago P Peixoto. Inferring the mesoscale structure of layered, edge-valued,
and time-varying networks. Physical Review E, 92(4):042807, 2015. 91

[Pen56] Roger Penrose. On best approximate solutions of linear matrix equations. In
Mathematical Proceedings of the Cambridge Philosophical Society, volume 52,
pages 17–19. Cambridge Univ Press, 1956. 18

[PF95] V. Paxson and S. Floyd. Wide-area traffic: The failure of poisson modeling.
Transactions on Networking, 3:226–244, 1995. 109

[PFS12] Evangelos E Papalexakis, Christos Faloutsos, and Nicholas D Sidiropoulos.
Parcube: Sparse parallelizable tensor decompositions. In Joint European
Conference on Machine Learning and Knowledge Discovery in Databases
(ECML-PKDD), pages 521–536. Springer, 2012. 16, 125

[PM10] David L Poole and Alan K Mackworth. Artificial Intelligence: foundations of
computational agents. Cambridge University Press, 2010. 16

[Pot97] Alex Pothen. Graph partitioning algorithms with applications to scientific
computing. In Parallel Numerical Algorithms, pages 323–368. Springer,
1997. 28

[PPDSBLP12] Arnau Prat-Pérez, David Dominguez-Sal, Josep M Brunat, and Josep-Lluis
Larriba-Pey. Shaping communities out of triangles. In Proceedings of the
21st International Conference on Information and Knowledge Management,
pages 1677–1681. ACM, 2012. 28

[PPDSLP14] Arnau Prat-Pérez, David Dominguez-Sal, and Josep-Lluis Larriba-Pey. High
quality, scalable and parallel community detection for large real graphs.
In Proceedings of the 23rd International Conference on World Wide Web
(WWW), pages 225–236. ACM, 2014. 28

[PRES11] Ioannis Psorakis, Stephen Roberts, Mark Ebden, and Ben Sheldon. Over-
lapping community detection using bayesian non-negative matrix factor-
ization. Physical Review E, 83(6):066114, 2011. 29

[PSB13] Evangelos E. Papalexakis, Nicholaos D. Sidiropoulos, and Rasmus Bro.
From k -means to higher-way co-clustering: Multilinear decomposition
with sparse latent factors. Transactions on Signal Processing, pages 493–506,
2013. 19, 101

[PSS+10] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju,
and Christos Faloutsos. Eigenspokes: Surprising patterns and scalable

165

community chipping in large graphs. In Proceedings of the 14th Pacific-Asia
Conference on Knowledge Discovery and Data Mining (PAKDD), 2010. 111

[RB07] Martin Rosvall and Carl T. Bergstrom. An information-theoretic framework
for resolving community structure in complex networks. Proceedings of the
National Academy of Sciences (PNAS), 104(18):7327–7331, 2007. 30

[Res15] Financial Technology Partners Research. Transaction security at the nexus
of e-commerce, payment market structure complexity and fraud, August
2015. 67

[RG03] Alexander W Rives and Timothy Galitski. Modular organization of cel-
lular networks. Proceedings of the National Academy of Sciences (PNAS),
100(3):1128–1133, 2003. 30

[RG12] Parikshit Ram and Alexander G Gray. Maximum inner-product search
using cone trees. In Proceedings of the 18th International Conference on
Knowledge Discovery and Data Mining (KDD), pages 931–939. ACM, 2012.
139

[Ris83] Jorma Rissanen. A universal prior for integers and estimation by minimum
description length. The Annals of Statistics, pages 416–431, 1983. 13, 96

[Roy13] Abhirup Roy. Online retailer nomorerack.com probes likely card breach-
report. Reuters, March 2013. 77

[S+78] Gideon Schwarz et al. Estimating the dimension of a model. The annals of
Statistics, 6(2):461–464, 1978. 29, 62

[ŞECA13] Umut Şimşekli, Beyza Ermi̧s, A Taylan Cemgil, and Evrim Acar. Optimal
weight learning for coupled tensor factorization with mixed divergences.
In Proceedings of the 21st European Signal Processing Conference (EUSIPCO),
pages 1–5. IEEE, 2013. 21

[SFFF03] Georgos Siganos, Michalis Faloutsos, Petros Faloutsos, and Christos Falout-
sos. Power-laws and the AS-level internet topology. Transactions on
Networking, 11(4):514–524, 2003. 11

[SFPY07] Jimeng Sun, Christos Faloutsos, Spiros Papadimitriou, and Philip S. Yu.
Graphscope: parameter-free mining of large time-evolving graphs. In
Proceedings of the 13th International Conference on Knowledge Discovery
and Data Mining (KDD), pages 687–696, San Jose, United States, 2007.
ACM. 90, 111

[SKJ06] T. Sen, A. Kloczkowski, and R. Jernigan. Functional clustering of yeast

166

proteins from the protein-protein interaction network. BMC Bioinformatics,
7:355–367, 2006. 1, 25

[SKZ+15] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos
Faloutsos. TimeCrunch: Interpretable Dynamic Graph Summarization.
Proceedings of the 21th International Conference on Knowledge Discovery
and Data Mining (KDD), pages 1055–1064, 2015. 90

[SL14] Anshumali Shrivastava and Ping Li. Improved asymmetric locality sensitive
hashing (alsh) for maximum inner product search (mips). arXiv preprint
arXiv:1410.5410, 2014. 140

[SM00] J. Shi and J. Malik. Normalized cuts and image segmentation. Transactions
on Pattern Analysis and Machine Intelligence (PAMI), 22(8):888–905, 2000.
27, 30

[SN08] Umang Sharan and Jennifer Neville. Temporal-relational classifiers for pre-
diction in evolving domains. In Proceedings of the International Conference
on Data Mining (ICDM), pages 540–549. IEEE, 2008. 141

[Sol15] LexisNexis Risk Solutions. Merchants contend with increasing fraud losses
as remote channels prove especially challenging. LexisNexis True Cost of
Fraud Study, September 2015. 67

[SPG+ne] Kevin Paul Siegel, Randi Annette Paynter, Robert L. Grossman, Christopher
Brown, Charles Raymond Byce, Thomas Dwyer, and Aoyu Chen. System
and method for identifying a point of compromise in a payment transaction
processing system. US Patent US 8473415 B2, 2013 June. 84

[SSU03] Andrew I Schein, Lawrence K Saul, and Lyle H Ungar. A generalized linear
model for principal component analysis of binary data. In Proceedings of
the 9th international workshop on artificial intelligence and statistics, pages
14–21, 2003. 32

[STF06] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and
graphs: dynamic tensor analysis. In Proceedings of the 12th International
Conference on Knowledge Discovery and Data Mining (KDD), pages 374–383,
Philadelphia, United States, 2006. ACM. 16, 90

[SXZF07] Jimeng Sun, Yinglian Xie, Hui Zhang, and Christos Faloutsos. Less is more:
Compact matrix decomposition for large sparse graphs. In Proceedings of
the 7th SIAM International Conference on Data Mining (SDM), volume 127,
page 366. SIAM, 2007. 65

[TBW11] C. Tantipathananandh and T. Y. Berger-Wolf. Finding communities in

167

dynamic social networks. In Proceedings of the International Conference on
Data Mining (ICDM). IEEE, 2011. 111

[TFP08] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. Random walk with
restart: fast solutions and applications. Knowledge and Information Systems
(KAIS), 14(3):327–346, 2008. 29

[TGM15] Christina Teflioudi, Rainer Gemulla, and Olga Mykytiuk. Lemp: Fast
retrieval of large entries in a matrix product. In Proceedings of the Interna-
tional Conference on Management of Data (SIGMOD), pages 107–122. ACM,
2015. 139

[TSS05] Amos Tanay, Roded Sharan, and Ron Shamir. Biclustering algorithms: A
survey. Handbook of computational molecular biology, 9(1-20):122–124,
2005. 51

[TWL09] Lei Tang, Xufei Wang, and Huan Liu. Uncovering groups via heterogeneous
interaction analysis. In Proceedings of the International Conference on Data
Mining (ICDM), pages 503–512, Miami, United States, 2009. IEEE. 89,
111

[TY11] Xuning Tang and Christopher C Yang. Dynamic community detection
with temporal dirichlet process. In 3rd International Conference on Privacy,
Security, Risk and Trust (PASSAT) and 3rd International Conference on Social
Computing (SocialCom), pages 603–608. IEEE, 2011. 91

[VFM+14] Michail Vlachos, Francesco Fusco, Charalambos Mavroforakis, Anastasios
Kyrillidis, and Vassilios G Vassiliadis. Improving co-cluster quality with
application to product recommendations. In Proceedings of the 23rd Con-
ference on Information and Knowledge Management, pages 679–688. ACM,
2014. 51

[Vij15] Jaikumar Vijayan. Schnucks supermarket chain struggled to find breach
that exposed 2.4m cards. ComputerWorld, April 2015. 77

[WF94a] S. Wasserman and K. Faust. Social Network Analysis: Methods and Applica-
tions. Cambridge University Press, 1994. 25, 26, 29, 30

[WF94b] Stanley Wasserman and Katherine Faust. Social Network Analysis: Methods
and Applications. Cambridge University Press, Cambridge, UK, 1994. 1

[WH04] Dennis M Wilkinson and Bernardo A Huberman. A method for finding
communities of related genes. Proceedings of the National Academy of
Sciences (PNAS), 101(suppl 1):5241–5248, 2004. 30

168

[WW01] Max Welling and Markus Weber. Positive tensor factorization. Pattern
Recognition Letters, 22(12):1255–1261, 2001. 19, 21, 119

[WYC+13] Zhiang Wu, Wenpeng Yin, Jie Cao, Guandong Xu, and Alfredo Cuzzocrea.
Community detection in multi-relational social networks. Web Information
Systems Engineering (WISE), pages 43–56, 2013. 89, 111

[XGFS13] Reynold S. Xin, Joseph E. Gonzalez, Michael J. Franklin, and Ion Stoica.
Graphx: A resilient distributed graph system on spark. In First International
Workshop on Graph Data Management Experiences and Systems, GRADES
’13, pages 2:1–2:6, New York, NY, USA, 2013. ACM. 77

[XH13] Kevin S Xu and Alfred O Hero. Dynamic Stochastic Blockmodels: Statisti-
cal Models for Time-Evolving Networks. In Social Computing, Behavioral-
Cultural Modeling and Prediction, pages 201–210. Springer Berlin Heidel-
berg, Berlin, Heidelberg, 2013. 91

[Yan13] Shuo Yan. System and method for detecting account compromises. US
Patent US 8600872 B1, December 2013. 84

[YCZ+11] Tianbao Yang, Yun Chi, Shenghuo Zhu, Yihong Gong, and Rong Jin. De-
tecting communities and their evolutions in dynamic social networks–a
bayesian approach. Machine Learning, 82(2):157–189, feb 2011. 91

[YFK15] Yuto Yamaguchi, Christos Faloutsos, and Hiroyuki Kitagawa. Socnl:
Bayesian label propagation with confidence. In Advances in Knowledge
Discovery and Data Mining, pages 633–645. Springer, 2015. 84

[Yıl12] Yusuf Kenan Yılmaz. Generalized tensor factorization. PhD thesis, Bogaziçi
University, 2012. 21

[YL12a] Jaewon Yang and Jure Leskovec. Community-affiliation graph model for
overlapping network community detection. In Proceedings of the Interna-
tional Conference on Data Mining (ICDM), pages 1170–1175. IEEE, 2012.
27, 29, 34, 46

[YL12b] Jaewon Yang and Jure Leskovec. Defining and evaluating network commu-
nities based on ground-truth. In Proceedings of the International Conference
on Data Mining (ICDM), pages 745–754. IEEE, 2012. 25, 34, 120

[ZCF+10] Matei Zaharia, Mosharaf Chowdhury, Michael J Franklin, Scott Shenker,
and Ion Stoica. Spark: Cluster Computing with Working Sets. HotCloud
2010, 2010. 75, 125

[Zel62] Arnold Zellner. An efficient method of estimating seemingly unrelated re-

169

gressions and tests for aggregation bias. Journal of the American Statistical
Association, 57(298):348–368, 1962. 142

[ZH05] Hui Zou and Trevor Hastie. Regularization and variable selection via the
elastic net. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 67(2):301–320, 2005. 13

[Zho03] Haijun Zhou. Distance, dissimilarity index, and network community struc-
ture. Physical Review E, 67:061901, Jun 2003. 29

[ZL04] Haijun Zhou and Reinhard Lipowsky. Network brownian motion: A new
method to measure vertex-vertex proximity and to identify communities
and subcommunities. In Proceedings of the International Conference on
Computational Science, pages 1062–1069. Springer, 2004. 29

[ZLD+10] Zhong-Yuan Zhang, Tao Li, Chris Ding, Xian-Wen Ren, and Xiang-Sun
Zhang. Binary matrix factorization for analyzing gene expression data.
Data Mining and Knowledge Discovery (DMKD), 20(1):28–52, 2010. 32, 51

[ZWSW10] Scott M. Zoldi, Liang Wang, Li Sun, and Steven G. Wu. Mass compromise/-
point of compromise analytic detection and compromised card portfolio
management system. US Patent 7761379 B2, July 2010. 84

[ZWWZ09] Yuzhou Zhang, Jianyong Wang, Yi Wang, and Lizhu Zhou. Parallel commu-
nity detection on large networks with propinquity dynamics. In Proceedings
of the 15th International Conference on Knowledge Discovery and Data Min-
ing (KDD), pages 997–1006. ACM, 2009. 28

170

	1 Introduction
	1.1 Part I: Networks and Matrices
	1.2 Part II: Labeled Networks and Tensors
	1.3 Overall Impact

	2 Background
	2.1 Networks
	2.1.1 Common Definitions
	2.1.2 Properties
	2.1.3 Sampling

	2.2 Learning and Other Techniques
	2.2.1 Factorizations and Objective Functions
	2.2.2 Bayesian Models
	2.2.3 Minimum Description Length (MDL)

	2.3 Matrices and Spectral Methods
	2.3.1 Singular Value Decomposition
	2.3.2 Non-Negative Matrix Factorization
	2.3.3 Co-clustering

	2.4 Tensors
	2.4.1 Tensor Operations
	2.4.2 Tensor Factorizations
	2.4.3 Rank-1 Decompositions
	2.4.4 Coupled Factorizations

	2.5 Notation and Common Symbols

	I Networks and Matrices
	I Related Work: Community Detection
	I.1 Methods
	I.2 Applications
	I.3 Challenges: No good cuts

	II Related Work: Decomposition of Boolean Matrices

	3 Hyperbolic Communities
	3.1 Empirical Observations
	3.2 Hyperbolic Community Model
	3.2.1 Community Definition
	3.2.2 MDL Description Cost.

	3.3 Proposed Method: HyCoM-FIT
	3.3.1 Fast MDL calculation
	3.3.2 Complexity analysis

	3.4 Experiments on Real Data
	3.4.1 Q1 - Model quality
	3.4.2 Q2 - Scalability
	3.4.3 Q3 - Effectiveness

	3.5 Summary

	4 Scalable Boolean Matrix Factorization
	4.1 Problem Definition
	4.1.1 Formal Objective
	4.1.2 Step Matrix Decomposition

	4.2 Naive Approach: FastStepNaive
	4.2.1 Stopping Criteria
	4.2.2 Complexity

	4.3 Proposed Method: FastStep
	4.3.1 Fast Gradient Calculation
	4.3.2 Fast Error Function Evaluation
	4.3.3 Complexity
	4.3.4 Obtaining clusters from A and B

	4.4 Experimental Evaluation
	4.4.1 Q1 - Scalability
	4.4.2 Q2 - Low Reconstruction Error
	4.4.3 Q3 - Discoveries

	4.5 Related Work
	4.6 Summary

	5 Detecting Points-of-Compromise
	5.1 Problem Definition
	5.2 POC-detection Algorithm
	5.2.1 A POC Hierarchical Model
	5.2.2 From Blames to POC Probabilities
	5.2.3 From POC Probabilities to Blames
	5.2.4 An Alternating Algorithm
	5.2.5 Convergence

	5.3 Distributed POC-detection
	5.4 Results
	5.4.1 Experimental Setup
	5.4.2 Empirical Evidence and Fraud Prevented
	5.4.3 Accuracy and Early Detection
	5.4.4 Scalability
	5.4.5 Comparison

	5.5 Related Work
	5.5.1 Summary
	5.5.2 Real-time Fraud Detection
	5.5.3 Points-of-Compromise
	5.5.4 Guilt-by-association
	5.5.5 Vertex Cover

	5.6 Summary

	II Labeled Networks and Tensors
	I Related Work: Communities in Edge-labeled Networks
	I.1 Categorical Edge-labels
	I.2 Time-evolving Networks

	6 Communities in Labeled Networks
	6.1 Problem Definition
	6.2 Algorithmic solution
	6.2.1 Community candidates
	6.2.2 Community construction
	6.2.3 Tensor deflation
	6.2.4 Complexity Analysis
	6.2.5 Algorithm parameters

	6.3 Experiments
	6.3.1 Q1 - Community Structure
	6.3.2 Q2 - Scalability
	6.3.3 Q3 - Discoveries on edge-labeled graphs
	6.3.4 Q3 - Discoveries on time-labeled graphs

	6.4 Summary

	7 Distributed Community Detection
	7.1 Proposed System
	7.1.1 Factorization
	7.1.2 Thresholding
	7.1.3 Tensor Deflation
	7.1.4 Implementation Design

	7.2 Experiments
	7.2.1 Q1 - Precision
	7.2.2 Scalability
	7.2.3 Q4 - Discoveries

	7.3 Related Work
	7.4 Conclusion

	8 Forecasting Communities
	8.1 Proposed Method: TensorCast
	8.1.1 Overview.
	8.1.2 Non-negative Coupled Factorization
	8.1.3 Forecasting
	8.1.4 Tensor Top-K elements
	8.1.5 Complexity Analysis.

	8.2 Experiments
	8.2.1 Q1 - Scalability
	8.2.2 Q2 - Effectiveness and Context-awareness
	8.2.3 Q3 - Trend Following
	8.2.4 Q4 - Precision over Time
	8.2.5 Discoveries - TensorCast at work

	8.3 Related Work
	8.3.1 Top-K elements in Matrix Products
	8.3.2 Power-laws as building blocks
	8.3.3 Link Prediction

	8.4 Summary

	III Conclusions and Future Directions
	9 Conclusions
	9.1 Networks and Matrices
	9.2 Labeled Networks and Tensors
	9.3 Overall Impact

	10 Vision and Future Directions
	10.1 Systems: ``Database Factorizations''
	10.2 Theory: Adversarial Anomalies

	A BreachRadar - Additional details
	A.1 Fraud Label Delays
	A.2 Multiple Points-of-Compromise

	Bibliography

