
Planning in a Quantum System

Guillermo Andres Cidre

CMU-CS-17-103

December 2016

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Geoff Gordon, Advisor

Gary Miller

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2016 Guillermo Andres Cidre

Keywords: Quantum Mechanics, Planning, Quantum Planning

For the end of menial and less impactful work.

iv

Abstract

Can we use quantum mechanics to improve our abitlity to plan approx-
imately in classical systems? To address this question, we develop tools to
model and plan in a quantum system. We review fundamental quantum me-
chanical ideas needed to define a quantum model. We also review classical
planning models and show how to generalize them to our quantum mechani-
cal model (QuaMDP) which can also model quantum systems. Then we show
one way to construct a QuaMDP model for a system given its potential energy.
Using our new tools, we run some experiments and show that our QuaMDP
model can approximately model some low dimensional classical systems well,
qualitatively, and plan in them. However, it is still unclear whether planning
in this model is simpler than in the classical case.

vi

Acknowledgments

I would like to acknowledge my advisor Geoff Gordon for being an all around great guy.
It was a blast working for him.

I would also like to acknowledge Gary Miller for taking the time to be part of my
committee and Tracy Farbacher for being my academic advisor. I am happy to have met
such nice people.

I would also like to acknowledge the people who were part of this program behind the
scenes for making this possible.

vii

viii

Contents

1 Introduction 1

2 Discrete Quantum Mechanics 3

2.1 Density Matrix . 4

2.2 Quantum Measurements . 5

2.3 Transition Matrix . 8

3 Classical Planning 9

3.1 Markov Decision Process . 10

3.1.1 Example . 10

3.2 Planning in MDPs . 11

3.2.1 Policy and Value Functions . 11

3.2.2 Value Iteration in MDPs . 12

3.3 Partially Observable Markov Decision Processes 13

3.3.1 Example . 14

3.4 Planning in POMDPs . 14

3.4.1 Policy . 15

3.4.2 Value function . 15

3.4.3 Value Iteration in POMDPs . 16

3.4.4 Point-based Value Iteration . 18

4 Planning in a Quantum System 19

ix

4.1 Quantum Markov Decision Processes 19

4.2 Value iteration in a Quantum Setting . 20

4.3 Point-based value iteration on QuaMDPs 22

5 Approximating Continuous Classical Systems 23
5.1 Hamiltonian Operator . 24

5.2 Schrodinger Equation . 24

5.3 Gaussian Wavepacket . 25

5.4 Approximating the Integral . 26

5.5 Discretizing the Quantum System . 26

5.5.1 Projecting a Functional . 28

5.5.2 Projecting a Linear Operator . 29

5.5.3 Expressing an Inner Product Using A 29

5.5.4 Getting an Orthonormal Basis 30

5.6 Putting It All Together . 30

6 Experiments 31
6.1 Quantum Spring System . 32

6.1.1 Configuration . 32

6.1.2 No Observations . 34

6.1.3 One Bit Observations . 34

6.1.4 Three Outcome Observations 35

6.1.5 Eight Outcome Observations . 35

6.2 Quantum Hillcar System . 36

6.2.1 Configuration . 38

7 Conclusion 43

Bibliography 45

x

List of Figures

6.1 Value function of spring system using no observations. The colored squares
represent the value function evaluated at a Gaussian wavepacket in that po-
sition and momentum with standard deviation σ = 0.1. 34

6.2 Value function of spring system using one bit observations. The colored
squares represent the value function evaluated at a Gaussian wavepacket
in that position and momentum with standard deviation σ = 0.1. 35

6.3 Value function of spring system using three outcome observations. The
colored squares represent the value function evaluated at a Gaussian wavepacket
in that position and momentum with standard deviation σ = 0.1. 36

6.4 Value function of spring system using eight outcome observations. The
colored squares represent the value function evaluated at a Gaussian wavepacket
in that position and momentum with standard deviation σ = 0.1. 37

6.5 The plot shows what observation is chosen by our policy for the quantum
spring system. The colored squares represent the observation chosen by
the policy evaluated at a Gaussian wavepacket in that position and mo-
mentum with standard deviation σ = 0.1. The red color means that our
policy chose not to observe. The blue color means that our policy chose to
do an eight bit observation. 37

6.6 The plot shows what action is chosen by our policy for the quantum spring
system. The policy chose to move back, stay, or move forward when the
value is−1, 0, and 1 respectively. The colored squares represent the action
chosen by the policy evaluated at a Gaussian wavepacket in that position
and momentum with standard deviation σ = 0.1. 38

6.7 Value function of the quantum hillcar system using no observations. The
colored squares represent the value function evaluated at a Gaussian wavepacket
in that position and momentum with standard deviation σ = 0.1. 40

xi

6.8 Value function of the quantum hillcar system using one bit observations.
The colored squares represent the value function evaluated at a Gaussian
wavepacket in that position and momentum with standard deviation σ = 0.1. 40

6.9 Value function of the quantum hillcar system using three outcome obser-
vations. The colored squares represent the value function evaluated at a
Gaussian wavepacket in that position and momentum with standard devi-
ation σ = 0.1. 41

6.10 Value function of the quantum hillcar system using eight outcome obser-
vations. The colored squares represent the value function evaluated at a
Gaussian wavepacket in that position and momentum with standard devi-
ation σ = 0.1. 41

6.11 The plot shows what observation is chosen by our policy for the quantum
hillcar system. The colored squares represent the observation chosen by
the policy evaluated at a Gaussian wavepacket in that position and mo-
mentum with standard deviation σ = 0.1. The red color means that our
policy chose not to observe. The blue color means that our policy chose to
do an eight bit observation. 42

6.12 The plot shows what action is chosen by our policy for the quantum hillcar
system. The policy chose to move back, stay, or move forward when the
value is−1, 0, and 1 respectively. The colored squares represent the action
chosen by the policy evaluated at a Gaussian wavepacket in that position
and momentum with standard deviation σ = 0.1. 42

xii

List of Tables

xiii

xiv

Chapter 1

Introduction

Planning is a problem in Computer Science with many applications. It can be used to
automate robotic tasks or beat players in games, for example. However, it has been very
difficult coming up with programs that can approximately plan well. Here, we tackle the
problem using a different route. We want to see whether we can improve our ability to
approximately plan by using quantum mechanics to model classical systems.

The idea of planning using quantum systems may have some merit. Quantum systems
make different assumptions than classical systems, so to plan in a quantum system, we
have to make a new model. By making a new model and planning on it, we increase the
scope of problems we can plan on. Also, there is hope that planning in new quantum
models might be simpler than in the classical models, especially when we use a compact
basis to plan approximately.

We formulate a new quantum model for planning and give some planning algorithms.
To formulate a new quantum model and planning algorithms, we review discrete quantum
mechanics to get an understanding about how quantum systems work and classical plan-
ning models (ie., MDPs and POMDPs) to understand how to plan in classical systems.
Then, we derive the QuaMDP planning model and show one way to plan in it. We also
show one way to generate QuaMDP models from a system, given its potential energy func-
tion. Then, we test how well our algorithms can approximately plan on this new model to

1

find inherent weaknesses and strengths.

2

Chapter 2

Discrete Quantum Mechanics

The goal of this section is to introduce enough discrete quantum mechanics to understand
our new QuaMDP model introduced in section 4. Discrete quantum mechanics is a subset
of quantum mechanics that can be simulated by a computer using linear algebra with only
rounding errors. It deals with the case that our environment has only a finite number of
different states. The three foundamental topics of discrete quantum mechanics are density
matrices (represent a state in a quantum system), quantum measurements (dictate how to
measure outcomes) and transition matrices (dictate how the quantum state changes with
time). We will review all of these topics in this section.

Before we start reviewing, we must make one concept clear. In Quantum Mechanics,
we make a distinction between different kinds of uncertainty that result when we measure
quantities. We define non-classical uncertainty as the uncertainty that results when we
make a measurement and measure its outcome. For example, when we measure the length
of an object by a ruler we are only guided by the ticks in the ruler. If the object’s length falls
between two ticks, we have non-classical uncertainty there because we cannot measure that
part of the length exactly. We define classical uncertainty as the uncertainty that results
when we make a measurement and are unsure of the outcome.

3

2.1 Density Matrix

We will represent the state of a quantum system, that stores the information of all the
objects in the system, as a density matrix, which is a self-adjoint positive semi-definite
matrix with trace 1. The diagonal entries of the density matrix correspond to a probabil-
ity distribution over positions. The off-diagonal entries encode momentum and quantum
weirdness. We can manipulate a density matrix by either performing observations or tran-
sitioning the density matrix forwards or backwards in time.

Because the density matrix is a positve semi-definite matrix with trace 1, all of the
eigenvalues are nonnegative and sum to 1. Thus, we can interpret the eigenvalues as a
probability distribution over the eigenvectors. Each eigenvector is called a wave function,
and corresponds to a rank-1 density matrix (a quantum state that contains no classical
uncertainty). Given a wavefunction ψ, its corresponding rank-1 density matrix is ψψ∗.

For example, consider a quantum system where an object can be in four different
locations. The density matrix

1
2

0 0 0

0 1
2

0 0

0 0 0 0

0 0 0 0

represents a quantum state where the object is in the first or second position with 1

2
prob-

ability each. The wave functions with nonzero eigenvalues are (1, 0, 0, 0) and (0, 1, 0, 0).
Their corresponding rank-1 density matrices are

1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

 and

0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

 ,

respectively. An example of a nontrivial wave function is
(

1√
2
, i 1√

2
, 0, 0

)
, whose corre-

4

sponding rank-1 density matrix is

1
2
−i1

2
0 0

i1
2

1
2

0 0

0 0 0 0

0 0 0 0

 .

This density matrix encodes an object that is either in the first or second position with
probability 1

2
. But unlike the previous example, if we measure the position of the particle,

the resulting expected observation density matrix (defined in the next section) is not the
same as the original density matrix. The way the transition matrix evolves (defined in
section 2.3) over time depends on the density matrix so by measuring the position, we may
have changed how the object in the current example will move in the future. Measuring
a particle in a classical system should not affect how it will move in the future, so this
behavior yields quantum effects.

2.2 Quantum Measurements

To make measurements on the quantum state, we use Born’s rule. In contrast to classical
mechanics, the quantum state changes based on the nature and accuracy of our measure-
ments. The more accurate we make our measurements, the more we change the quantum
state. Hence, we need to trade off between accuracy of our measurements and the damage
we do to the density matrix.

According to Born’s rule, we represent measurements (like position and momentum)
in a discrete quantum system as a self-adjoint measurement matrix. Born’s rule states
that the outcomes of a measurement are the eigenvalues of its corresponding measure-
ment matrix. More concretely, let λi be the ith eigenvalue of a measurement matrix Q.
From a measurement matrix, we can compute an outcome matrix which projects into the
eigenspace of one the measurement matrix’s eigenvalues. Let Pi be the outcome matrix

5

for λi. The probability of measuring outcome λi given density matrix D is

〈Pi, D〉 ≡ Tr (P ∗i D) .

If the outcome of the measurement is i, then the density matrix that results from the mea-
surement is

1

Z
PiDP

∗
i

where

Z = Tr (PiDP
∗
i)

= Tr (PiDPi)

= Tr
(
P 2
i D
)

= Tr (PiD)

= 〈Pi, D〉

is the normalizing constant and probability of observing that eigenvalue. We have to nor-
malize the trace of the next density matrix to 1 so that the probabilities sum up to one.

The expected density matrix after the measurement is∑
i

Pr [measure outcome i]
(

1

Z
PiDP

∗
i

)
=
∑
i

〈Pi, D〉
[

1

Z
PiDP

∗
i

]
=
∑
i

PiDP
∗
i .

Using the identityQ =
∑
i

λiPi, the expected outcome for measurementQ on a density

matrix D via Born’s rule is therefore

〈Q,D〉 =
∑
i

λi〈Pi, D〉.

For example, the measurement matrix for the position is the diagonal matrix A where
Aii = pi and pi is the position that entry i represents. The eigenvalues are every position

6

pi and the eigenvectors are the canonical basis vectors ei. The projection operators are
Pi = eie

∗
i . Thus given density matrix D, the probability that we observe position pi

is 〈Pi, D〉 = Dii and the expected position of our object is 〈A,D〉. Assuming we just
measured the particle to be in position pi, our density matrix becomes eie∗i . The expected
density matrix after measuring is the diagonal matrix we get after zeroing out all of the
off-diagonals in D.

Another example involves one bit measurements. One bit measurements are measure-
ments with only two outcomes. For example, consider an object that can only be in 4

different positions. The density matrix D of the system is a 4 × 4 matrix. An example
of a one bit observation is to measure whether the object is in the first two or second two
positions. The outcome matrices are

P1 =

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

P2 =

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1

 .

The probability that we measure the first outcome is 〈P1, D〉 = D11 +D22. Similarly, the
probability that we measure the second outcome isD33+D44. The expected density matrix
after the observation is the original density matrix D with the off diagonal 2 × 2 blocks
zeroed out. If the corresponding eigenvalues were 0 and 1, then the expected measurement
is 1 · (D33 +D44) + 0 · (D11 +D22) = D33 +D44.

7

2.3 Transition Matrix

A transition matrix is a unitary matrix U that dictates how a quantum state changes with
time. To move density matrix D forward in time, we perform

D ← UDU∗.

For example, consider an object that can only be in 4 positions. At each time step, the
object moves down one coordinate and loops back to the top if it is in the border. The
corresponding transition matrix for this operation is the permutation matrix

U =

0 1 0 0

0 0 1 0

0 0 0 1

1 0 0 0

 .

We review a way to generate transition matrices in section 5 which we use for our
experiments in section 6.

8

Chapter 3

Classical Planning

Now that we have covered discrete quantum mechanics, we review classical planning mod-
els, which inspire the QuaMDP model introduced in section 4. In classical planning, we
have an agent and an environment. The agent can interact with the environment choosing
from a set of prespecified actions. The goal of planning is to develop instructions that the
agent follows to complete a task in the environment.

We review two classical models called the Markov decision process (MDP) and the
partially observable Markov decision process (POMDP). MDPs deal with the case that an
agent knows all of the information of the environment while POMDPs deal with the case
that the agent only knows the state of the environment approximately. For example, Chess
is a game that can be modeled using MDPs because the players know everything about
the environment (ie. the board). However, poker needs a POMDP instead because each
player cannot see the other players’ hands so they do not know the state of the environment
completely. Both models only deal with one agent so in the above games, we assume that
the other players are computers with predetermined strategies.

We cover MDPs first because they naturally extend into POMDPs, a model that is most
similar to our QuaMDP model covered in section 4.

9

3.1 Markov Decision Process

A Markov decision process (MDP) is a 6-tuple (S, A, T , R, γ, s0) where:

(a) S is the set of states of the environment.

(b) A is the set of actions the agent may make.

(c) T : S × A × S → R is a function that encodes transition probabilities. T (s, a, s′)

returns the probabilty of ending up at state s′ given that the agent observed the
environment was at state s and took action a.

(d) R : S → R, called the reward function, measures how good it is to be in a state.

(e) γ is called the discount factor.

(f) s0 is the initial state of the system.

In this model, the agent acts in discrete time steps. At each time step, the agent ob-
serves that the environment is in some state s ∈ S (in the first time step, the agent observes
state s0) and experiences a reward R(s). Then, the agent chooses an action a ∈ A to per-
form. Then, we use the probability distribution T (s, a, ·) to determine what state s′ the
environment ends up at.

We will assume that S and A are finite in this thesis. Notice that an MDP assumes that
the transition probabilities are the same in every step (although this assumption is easy to
relax at the cost of more notation).

3.1.1 Example

Let’s go over an example and see how we can write it as an MDP. Consider an agent in a
one dimensional grid starting at position zero. The grid has borders at position zero and
position three. Let’s say we have three actions: move left one unit, move right one unit or
stand still. At the borders we loop around so going left on position zero results in being in
position three and vice-versa. Let’s assume the goal of the agent is to get to state 2.

10

We define our set of states to be the positions {0, 1, 2, 3} and the set of actions to be
{−1, 0, 1} where −1 means go left, 0 means stay, and 1 means go right. For each s ∈ S
and a ∈ A, we set

T (s, a, (s+ a) mod 4) = 1.

We set the rest of the transition probabilities to zero.

We can define the reward as

R(b) =

{
1 b = 2

0 b 6= 2

and the discount factor as any γ ∈ (0, 1).

3.2 Planning in MDPs

We have rigorously defined an environment, so now we want to define agent strategies
and assign a score or value to them. We can then define the goal of planning as finding
the strategy with the highest score or value. We conclude this section by reviewing an
algorithm that will yield the policy with the highest value assuming it is computationally
feasible to enumerate all of the states.

3.2.1 Policy and Value Functions

In general, a strategy maps experience to an action. This strategy does not need to be
deterministic. However, in this thesis we focus on a subset of general strategies called
deterministic policies. a (deterministic) policy is a mapping π : S → A that determines
what action an agent performs at each state. This class is small and contains an optimal
policy that we can find [Bertsekas and Tsitsiklis, 1989].

Now we need to define a way to assign a value to a strategy by using long term rewards.
In this thesis we will focus on discounted returns. Given a policy π and an arbitrary state

11

s0 (not necessarily the same s0 from the MDP definition in section 3.1), we can generate a
random trajectory s0, s1, . . . , st, . . . by performing action π(si) at state si. We can get the
corresponding rewards ri = R(si). We combine these rewards to get the value function

V π(s0) = E
[
r0 + γr1 + . . .+ γtrt + . . .

]
where 0 ≤ γ < 1 is the discount factor specified in the MDP. Since we are dealing with
finite states, the value function is defined for all states.

We can define the optimal value function

V ∗(s) = max
π

V π(s).

and the optimal policy

π∗(s) = arg max
a
R(s) + γEs′∼T (s,a,·) [V ∗(s′)]

= arg max
a
R(s) + γ

∑
s′∈S

T (s, a, s′)V ∗(s′)

by picking the action with the highest expected value.

It can be shown that the optimal value function follows Bellman’s equation [Bertsekas
and Tsitsiklis, 1989]:

V ∗(s) = R(s) + γmax
a∈A

∑
s′∈S

T (s, a, s′)V ∗(s′).

3.2.2 Value Iteration in MDPs

To generate the optimal policy, it suffices to compute the optimal value function and pick
the action with the highest expected value as shown previously. We review the value
iteration algorithm, a method to compute the optimal value function, here. The value
iteration algorithm is an iterative method that converges exponentially to the optimal value
function by using the Bellman equation.

Since we assume that we can enumerate the states and actions, we represent the value
and reward functions as vectors where the ith component represents the value at si for

12

some enumeration of the states. We can define matrix Ta via

(Ta)ss′ = T (s, a, s′)

Thus, the Bellman equation becomes

V ∗(s) = R(s) + γmax
a

(TaV
∗)s

which is

V ∗ = R + γmax
a∈A

TaV
∗

where max takes a component-wise max of a set of vectors. Thus, V ∗ is a fixed point of
the Bellman operator:

T [v] = R + γmax
a∈A

Tav.

The main idea of the value iteration algorithm is that the Bellman operator is a sup-
norm contraction [Bertsekas and Tsitsiklis, 1989]. Thus, there is only one fixed point to
the Bellman operator, the value function, and we can find this fixed point by repeatedly
applying the Bellman operator on an arbitrary starting vector. Thus, we compute the re-
currence where v0 is arbitrary and vt+1 = T [vt]. When we set v0 = R, vt is the optimal
value function when we look ahead t steps.

The optimal value function corresponds to lim
t→∞

vt. Thus, the algorithm computes vT
for some T and uses that as an approximation. The error between vT and V ∗ decreases
exponentially in T so vT is a good approximation of V ∗ for big enough T .

3.3 Partially Observable Markov Decision Processes

In many practical applications we don’t know the state of the environment exactly. Instead,
we have noisy observations about the environment that may come from a camera, for
example. In these settings, it is inadequate to model the environment and agent using a
Markov decision process because we can’t measure the environment exactly — it could

13

be that multiple states of the environment may lead to the same observation by the agent.
Instead, we will model the environment and agent using a partially observable Markov
decision process.

A partially observable Markov decision process (POMDP) is a 8-tuple (S,A, P,R,Ω, O, γ, s0).
A POMDP extends an MDP by adding:

(a) Ω, the set of possible observations the agent can see.

(b) O, a probability measure over observations given the current state. O(o, s′, a) is the
probability of obseving o given that the environment ended up at state s′ after the
agent chose action a.

In this model, the agent acts in discrete time steps like in the MDP setting. At each
time step, the environment is at a state s ∈ S which the agent doesn’t observe. The agent
chooses an action a ∈ A to perform based on past observations and actions. Then, the new
state s′ ∈ S of the environment is determined via the probability distribution T (s, a, ·).
From the new state s′ and the action a chosen by the agent, we determine the observation
the agent receives via the probability distribution O(·, s′, a).

3.3.1 Example

Let’s repeat the example is section 3.1.1 and turn it into a POMDP with the additional
assumption that an agent can only observe whether a state is even or odd. The sets S,A and
the transition, reward and discount factor remain the same. The set O = {Even,Odd}.
We can define O(Even, s, a) = 1 if s is even and O(Odd, s, a) = 1 if s is odd for any
a ∈ A and 0 otherwise.

3.4 Planning in POMDPs

Planning in POMDPs is harder than in MDPs. We don’t have complete access to the state
of the system so we need to take into account the history of observations and actions taken,

14

not just our current observation.

3.4.1 Policy

There are two ways to represent a policy in a POMDP: using a history of observations and
actions, or using a belief, a distribution over states.

History formulation A policy is a function π : (Ω × A)∗ → A that chooses an action
based on the history of observations and actions.

A policy can be visually represented via a policy tree. A policy tree is a rooted tree
where the nodes are actions and the edges represent different observations. We interpret
the root node as the action we would take for the empty history. For other histories, we
use the sequence of actions and observations to follow a path from the root of the tree and
pick the action at the resulting node.

Belief formulation Alternatively, we can represent our history as a probability distri-
bution over all environment states, called a belief. In this setting, π : R|S| → A maps
a probability distribution to an action. An advantage of using beliefs instead of histories
is that we can summarize our experience using a finite amount of memory, assuming it
is computationally feasible to enumerate all of the states. The algorithms covered in this
thesis will use the belief representation.

3.4.2 Value function

There are an infinite number of beliefs so we can’t represent the value function as a finite
dimensional vector as we did in section 3.2.2.

In the following sections, we will define the value set v to be a set {α1, . . . , αk} where
αi is a vector with the same dimensions as the belief. Given a belief b and value set v, we

15

define the value function to be

v(b) = max
α∈v
〈α, b〉.

This is a reasonable definition because the value function is convex and we can ap-
proximate any convex function arbitrarily well in this form [Pineau et al., 2003].

3.4.3 Value Iteration in POMDPs

We can interpret a POMDP as a continuous MDP, where the beliefs are the states of the
MDP. Thus given vt, the value function at time step t, the Bellman equation becomes

vt+1(b) = max
a∈A
〈R, b〉+ γ

∑
b′

T (b, a, b′)vt(b
′)

where T is the transition function between beliefs. By rewriting the equation to sum over
states and observations, we get [Pineau et al., 2003]

vt+1(b) = max
a∈A

∑
s∈S

R(s)b(s) + γ
∑
o∈O

max
α∈vt

∑
s∈S

∑
s′∈S

T (s, a, s′)O(o, s′, a)α(s′)b(s).

We can implement this value iteration by doing the following steps as highlighted by
[Pineau et al., 2003]:

• Define the set Γ∗ = {R}.

• Let αa,o(s) = γ
∑
s′∈S

T (s, a, s′)O(o, s′, a)α(s′) and define the sets Γa,o = {αa,o | α ∈

vt}.

• Define the sets Γa = Γ∗ ⊕ [⊕o∈OΓa,o] where A⊕B = {a+ b | a ∈ A ∧ b ∈ B}.

• Let vt+1 = ∪a∈AΓa.

16

Each of these sets corresponds to a convex function of b. The Γ∗ singleton set evaluates to

Γ∗(b) = max
α∈Γ∗
〈α, b〉

= 〈R, b〉

=
∑
s∈S

R(s)b(s).

Each Γa,o set evaluates to

Γa,o(b) = max
αa,o∈Γa,o

〈αa,o, b〉

= max
αa,o∈Γa,o

∑
s∈S

αa,o(s)b(s)

= max
α∈vt

γ
∑
s∈S

∑
s′∈S

T (s, a, s′)O(o, s′, a)α(s′)b(s).

Each Γa set evaluates to

Γa(b) = [Γ∗ ⊕ (⊕o∈OΓa,o)] (b)

= Γ∗(b) +
∑
o∈O

Γa,o(b)

=
∑
s∈S

R(s)b(s) + γ
∑
o∈O

max
α∈vt

∑
s∈S

∑
s′∈S

T (s, a, s′)O(o, s′, a)α(s′)b(s).

So vt+1 evaluates to

vt+1(b) = max
a∈A

Γa(b)

= max
a∈A

∑
s∈S

R(s)b(s) + γ
∑
o∈O

max
α∈vt

∑
s∈S

∑
s′∈S

T (s, a, s′)O(o, s′, a)α(s′)b(s).

Thus, the value function updates appropriately. We set v0 = R so that we compute the
optimal value function looking a certain number of steps ahead.

After performing an update on the value function vt, the new value set vt+1 will have
|A||v||O| elements. This fact leads to an doubly exponential growth of |vt| in t. Thus, this
algorithm is computationally infeasible even with a small number of iterations.

17

3.4.4 Point-based Value Iteration

Point-based value iteration [Pineau et al., 2003] is an approximate value iteration algorithm
with the goal of being computationally efficient. The main idea of the algorithm is to keep
a set of belief points B. These belief points are used to prune the vectors in ∪a∈AΓa. For
each b ∈ B, pick αb = arg maxα∈∪a∈AΓa〈α, b〉 and let vt+1 = {αb | b ∈ B}. The result of
this approximation will keep |v| fixed, resulting in a polynomial time algorithm.

Now we need to worry how to pick these belief points. Other than preselecting belief
points, heuristics have been employed. The idea is to selectively add beliefs we encounter
as we run the policy generated from the point based value iteration algorithm. The perfor-
mance of the algorithm improves every time we rerun the algorithm with an expanded set
of belief points. Therefore, we repeatedly run the point based value algorithm and expand
the set of points. Since we are trying to compute the infinite horizon value function, we
also can initialize our initial value function v0 in the next step as the value function we
ended up with in the current step to get a better approximate value function.

One interesting heuristic is the Stochastic Simulation with Greedy Action (SSGA)
[Pineau et al., 2003]. After we compute our optimal policy with a set of points, we ran-
domly pick a point, simulate it forward a certain number of steps using the action outputted
by the policy or a random action with ε probability and add the output to the set of points.
We repeat this step a number of times and then recompute the optimal policy.

18

Chapter 4

Planning in a Quantum System

We have reviewed discrete quantum mechanics and classical planning so now we have the
tools to build our quantum planning model and planning algorithm.

The classical planning models are incompatible with quantum mechanics. For exam-
ple, when we observe a quantity in quantum mechanics, we change the state as a result.
Also, the state and state update equations are different in quantum mechanics. Thus, we
must create a new model, which we will call a QuaMDP, to plan in these settings.

4.1 Quantum Markov Decision Processes

A quantum Markov decision process (QuaMDP) is a 7-tuple (S, A, U , M , R, γ, D0)
where:

(a) S is the set of states of the environment.

(b) A is the set of actions an agent can choose at each time step.

(c) U = {Ua | a ∈ A} where Ua, a quantum transition matrix, specifies how we update
a density matrix when we choose action a.

19

(d) M is a set of observations our agent can make. Each observation m ∈ M is a set
of projection matrices where each element in m represents a possible outcome of an
observation.

(e) R is the reward matrix that is used to assign a reward to a density matrix. To get the
reward of density matrix D, we compute 〈R,D〉.

(f) γ is the discount factor.

(g) D0 is the initial quantum state.

In contrast to classical planning models, our agent chooses a measurement to make in
addition to an action in each step. An example of a measurement that fits this description
is the one bit measurement mentioned in section 2.2.

The agent starts out with a density matrix D0 describing the initial state of the system.
At each time step, the agent chooses an action a ∈ A and measurement m ∈ M to
perform based on past observations, actions and measurements. Then, the agent receives
an observation and updates the quantum state accordingly.

4.2 Value iteration in a Quantum Setting

The value iteration algorithm I present here is very similar to the one used in POMDPs.
The density function takes the role of a belief, intuitively. The proof that the value function
is convex function is analogous to the proof in the POMDP case (namely, the update below
preserves convexity). Thus, we can represent the value function similarly. We represent
the value set v as {Λ1, . . . ,Λn} where Λi is a matrix. Given a density matrix D, its value
is

v(D) = max
Λ∈v
〈Λ, D〉.

When we pick action a ∈ A and observationm ∈M and observe P ∈ m, our resulting

20

density matrix becomes

1

Z(D,P,a)

PUaDU
∗
aP
∗

where Z(D,P,a) = 〈P,UaDU∗a 〉 is the probability of seeing the outcome above. Since this
is a transition between beliefs, our quantum Bellman equation becomes

vt+1(D) = max
a,m
〈R,D〉+ γ

∑
P∈m

Z(D,P,a)vt

(
1

Z(D,P,a)

PUaDU
∗
aP
∗
)
.

Using the value representation above, we can rewrite the equation as

vt+1(D) = max
a,m
〈R,D〉+ γ

∑
P∈m

Z(D,P,a) max
Λ∈vt
〈Λ, 1

Z(D,P,a)

PUaDU
∗
aP
∗〉

= max
a,m
〈R,D〉+ γ

∑
P∈m

max
Λ∈vt
〈Λ, PUaDU∗aP ∗〉

= max
a,m
〈R,D〉+ γ

∑
P∈m

max
Λ∈vt
〈U∗aP ∗ΛPUa, D〉.

To compute one iteration of the value iteration algorithm, we do the following:

• Define the set Γ∗ ← R.

• Define the sets Γa,m,P ← γU∗aP
∗ΛPUa, ∀Λ ∈ vt where P ∈ m.

• Define the sets Γa,m = Γ∗ ⊕
[
⊕P∈mΓa,m,P

]
.

• Let vt+1 = ∪(a,m)∈A×MΓa,m.

Each of the sets above represent a convex function of D. The Γ∗ singleton set evaluates to

Γ∗(D) = max
Λ∈Γ∗
〈Λ, D〉

= 〈R,D〉.

Each Γa,m,P set evaluates to

Γa,m,P (D) = max
∆∈Γa,m,P

〈∆, D〉

= max
Λ∈vt

γ〈U∗aP ∗ΛPUa, D〉.

21

Each Γa,m set evaluates to

Γa,m(D) =
[
Γ∗ ⊕

(
⊕P∈mΓa,m,P

)]
(D)

= Γ∗(D) +
∑
P∈m

Γa,m,P (D)

= 〈R,D〉+ γ
∑
P∈m

max
Λ∈vt
〈U∗aP ∗ΛPUa, D〉.

So vt+1 evaluates to

vt+1(D) = max
a,m

Γa,m(D)

= max
a,m
〈R,D〉+ γ

∑
P∈m

max
Λ∈vt
〈U∗aP ∗ΛPUa, D〉.

Thus, the value function updates appropriately. We set v0 = R so that we compute the
optimal value function looking a certain number of steps ahead.

After one iteration on the value function vt our new value vt+1 function will have size
|A||M ||vt|k where k is the maximum number of outcomes for every observation. Thus as
in the POMDP case, the value set increases doubly exponentially in t.

4.3 Point-based value iteration on QuaMDPs

As in the POMDP case, the algorithm runs too slowly because the value set grows too fast.
One possible solution is to adapt the point based value iteration method to QuaMDPs. The
points D in our algorithm are now density matrices representing different quantum states.
Like in the POMDP case, for each density matrix d ∈ D, pick Λd = arg maxΛ∈∪a∈AΓa〈Λ, b〉
and let vt+1 = {Λd | d ∈ D}. By fixing the number of points, we fix the size of our value
set so the runtime of the algorithm is polynomial. We can apply heuristics like the SSGA
method in section 3.4.4.

22

Chapter 5

Approximating Continuous Classical
Systems

Now that we have defined the QuaMDP framework, we want to generate models of real-
world systems in this framework. One way to accomplish this is to turn a continuous
quantum system into a discrete one. We can use the continuous quantum system to ap-
proximate any classical system with a known potential energy function.

In continuous systems, we deal with linear operators and functionals instead of ma-
trices and vectors, respectively. A functional maps from a hyperrectangle of the reals (or
a subset) into the complex numbers. We focus on the case where the domain is a hyper-
rectangle B of the reals. The linear operators map functionals to other functionals and
preserve linearity. We also define an inner product on this space via

〈f, g〉 =

∫
B

f(x)g(x)dx.

We start by reviewing the continuous analogs of the matrices covered in section 2.
Then we show one way to transform a classical state into a wavepacket. Finally, we show
how to approximate the operators and functionals by matrices and vectors.

23

5.1 Hamiltonian Operator

The Hamiltonian is a linear operator that encodes the total energy of the quantum system.
For example, the Hamiltonian for a single particle in a potential well is

H = − ~2

2m
∇2 + V

where ∇2 is the Laplacian operator, V is a potential energy operator, m is the mass of the
particle and ~ is the angular Planck’s constant. The potential energy operator performs
(V f)(x) = V (x)f(x). Thus,

(Hf)(x) = − ~2

2m

(
∇2f

)
(x) + V (x)f(x).

In the case where we deal with periodic functionals on the hyperrectangle, the Hamil-
tonian is a self-adjoint operator. The potential energy operator is self-adjoint because the
potential energy is a real quantity. When we are considering only periodic functionals, we
can show that the partial derivative operator is skew-symmetric using integration by parts.
Thus, every second partial derivative operator is self-adjoint. Since the Laplacian operator
is a sum of second partial derivative operators, the Laplacian operator is self-adjoint. The
Hamiltonian is a sum of self-adjoint operators so it is self-adjoint.

5.2 Schrodinger Equation

The Schrodinger differential equation determines how the quantum system changes over
time. The equation takes in the Hamiltonian operator of the system and spews out the time
derivative of the density operator. The solution to the Schrodinger differential equation is
the transition operator

U = e−i
1
~Ht

where the variable t is the seconds we want to move the quantum system forward by and
H is the Hamiltonian operator of the system. When H is self-adjoint, U is unitary.

24

Quantum dynamics approaches classical dynamics as ~ → 0 [Landau et al., 1958] so
we let Planck’s constant be small to approximate a classical system well, but not too small
to cause numerical problems or a break down of the approximation techniques we employ.
To pick a reasonable ~, we manually search for an ~ that makes the system perform as
expected, qualitatively.

5.3 Gaussian Wavepacket

Now that we got operators out of the way, we want to turn a classical state (position
and momentum) into a quantum state (density operator). Instead of defining the density
operator, we instead turn a classical state into a wavefunction, discretize this wavefunction
into a vector, and then get our density matrix following section 2.1.

We represent a position and momentum by a wavepacket. There are many differ-
ent types of wavepackets but we will focus on the Gaussian wavepacket. The Gaussian
wavepacket is a Gaussian with a complex part expressing its momentum. A Gaussian
wavepacket centered at position µ with standard deviation σ and momentum p is the func-
tion

f(x) = e−
1
2(x−µσ)

2
+i p~x.

In addition to a position and momemtum, the Gaussian wavepacket encodes the uncer-
tainty in position and momentum through the standard deviation parameter. The uncer-
tainty in position is a Gaussian with standard deviation σ. The uncertainty in momentum
is a Gaussian with standard deviation σp = ~

σ
.

Notice that a very low uncertainty in position may lead to a very high uncertainty in
momentum. Thus, we want to set the uncertainty of a wavepacket so that neither un-
certainty is too high. This fact is an example of a global quantum phenomenon called
Heisenberg’s uncertainty principle, discussed in Landau et al. [1958].

25

5.4 Approximating the Integral

Now that we have turned a classical system into a quantum system, we want to discretize
the system. The first step in discretizing the system is finding a way to compute the inner
product between any two functionals. We outline one way to approximate it.

We can impose a grid of points G uniformly spaced on the domain and represent a
functional as a vector of point-wise evaluations on the points on the grid. We can approx-
imate the integral inner product in this space as

〈f, g〉 =
|B|
|G|

∑
x∈G

f(x)g(x)

where |B| is the area of the domain. In addition to approximating the inner product, we
need to approximate the Laplacian operator in the Hamiltonian. We can accomplish this
by using a finite difference approximation of the derivative. Given the points xi−1, xi, xi+1

on the grid from left to right for some i and the distance between to grid points as ∆x, we
can approximate the Laplacian operator at that point as

∇2f(xi) =
f(xi+1) + f(xi−1)− 2f(xi)

∆x2
.

When we consider the points at the left and right end of the grid, we wrap the indices
around. Thus for the left edge and right edges x0, xn, x0−1 = xn and xn+1 = x0. Using
this approximation, the Laplacian can be represented by a self-adjoint matrix in this inner
product space. Thus, the resulting transition matrix is unitary.

5.5 Discretizing the Quantum System

Now that we can compute inner products between functionals, we can discretize the quan-
tum system by using an orthonormal basis of functionals. One obvious candidate for an
orthonormal basis is to use an indicator functional for each point on the grid. The problem
with this approach is that we need a lot of points to approximate the discrete derivative
well so there might be too many features to keep track of.

26

Instead, we are going to show how to take any linearly independent set of functionals,
project functionals and operators into that set, and turn the linearly independent set into an
orthonormal basis. We are going to accomplish the above by using the normal equations
and the Gram-Schmidt process. Readers that already know how to do this may safely skip
to section 5.6. To avoid confusion, we define the following terms:

• Let 〈v, w〉2 = v∗w be the standard vector inner product.

• Let 〈·, ·〉 be a complex inner product over functionals.

• Let {φ1, . . . , φn} be a linearly independent set of functionals.

• Let A be the matrix where Aij = 〈φi, φj〉.

• Let

φ(x) =

φ1(x)

...
φn(x)

 .
• Let

φf =

〈φ1, f〉

...
〈φn, f〉

where f is a functional.

• Let f be a vector representing the coefficients in the linearly independent set. Thus,
f(x) = f1φ1(x) + . . .+ fnφn(x) = fTφ(x).

• Let T̃ be the matrix T̃ij = 〈φi, Tφj〉 where T is a linear operator.

• Let f̂ be a vector representing the coefficients in an orthonormal basis. More on this
later.

27

5.5.1 Projecting a Functional

Given a functional f , we want to project it by interact with it by computing inner products.
In the case where f(x) = f1φ1(x) + . . .+ fnφn(x), we can expand φf to get:

(φf)i = 〈φi, f〉

=
∑
j

fj〈φi, φj〉

=
∑
j

fjAi,j

= Ai,:f.

From this, we get the equation

φf = Af

⇒ f = A−1φf .

In the case that f is not a linear combination of the linearly independent set, we turn
the equation (φf = Af) into an optimization problem:

min
f∈C
‖Af − φf‖2

2 .

A is invertible, so the solution is f = A−1φf which is the solution to the normal equations.
We can prove this claim using a proof of contradiction. Assume for the sake of contradic-
tion that A is not invertible. Then, we can pick vector v 6= 0 so that Av = 0. The ith row
of this equation states that 〈φi, v1φ1 + . . .+ vnφn〉 = 0. We can construct an orthonormal
basis ei from the set and we still have 〈ei, v1φ1 + . . . + vnφn〉 = 0. This implies that
v1φ1 + . . .+ vnφn = 0 which contradicts our linear independence assumption.

28

5.5.2 Projecting a Linear Operator

Now that we can project a functional into this space, we need to project a linear operator.
Assuming that f is a linear combination of the linearly independent set, we can deduce

(φTf)i = 〈φi, T f〉

=
∑
j

fj〈φi, Tφj〉

=
∑
j

fjT̃i,j

= T̃ f.

From the previous section, we can conclude that A−1T̃ f is the coefficient vector of Tf .

5.5.3 Expressing an Inner Product Using A

Now that we can project functionals and operators into this linearly independent set, we
want to turn our set into an orthonormal basis and work in that instead. Before we delve in
to the orthonormalization, we need to note that we can rewrite the inner product between
any two functions (f and g) in the linearly independent set as

〈f, g〉 =
∑
ij

f̄igj〈φi, φj〉

= f ∗Ag.

This fact implies that for an operator T , we can also deduce

〈f, Tg〉 = f ∗AA−1T̃ g

= f ∗T̃ g.

29

5.5.4 Getting an Orthonormal Basis

To get an orthonormal basis, we decompose A−1 = E∗E. We can set f̂ = Eφf because

〈f̂ , ĝ〉2 = φ∗fA
−1φg

= φ∗fA
−1AA−1φg

= f ∗Ag

= 〈f, g〉.

We set T̂ = ET̃E∗ because

〈f̂ , T̂ ĝ〉2 = φ∗fA
−1T̃A−1φg

= f ∗T̃ g

= 〈f, Tg〉.

5.6 Putting It All Together

The above tools are all that is needed to construct a QuaMDP. The states of the QuaMDP
are the postions in our discretized space. We can project the Hamiltonian and exponentiate
to get our transition matrices. We can define measurement operators by an indicator oper-
ator over positions. We can project these measurement operators to get our measurement
matrices. Given a reward function over positions, we can define the reward operator as
multiplying the input by that function. We project that operator to get the reward matrix.
We can turn a classical state into a density matrix by using a Gaussian wavepacket.

Another thing to note is that the diagonal entries of the density matrix encode a prob-
ability distribution over the orthonormal basis functions, which are not neccessarily posi-
tions. We assumed that that the orthonormal basis functions were the indicator functions
over each position when describing concepts in chapter 2.

30

Chapter 6

Experiments

Now that we have explained our new QuaMDP model, planning algorithm, and feature
approximation, we want to show them in action through experiments. We detail two ex-
periments: A quantum spring system and a quantum hillcar system. The quantum spring
system illustrates how well our QuaMDP planning algorithm works on a simple planning
problem. The quantum hillcar system showcases how well our planning algorithm works
on a somewhat more realistic planning problem.

On both experiments, we use the grid inner product and the discrete Laplacian operator
explained in section 5.4. The grid on each experiment will use 200 different points equally
spaced between −1 and 1. Thus, the sampling frequency of the position is 100. We let
~ = 0.01.

When generating our transition matrices, we advance time by t = 0.3 seconds. After
computing the value function, we evaluate it on a bunch of Gaussian wavepackets localized
at different positions and momentums to get our value function pictures.

31

6.1 Quantum Spring System

The quantum spring system is a very simple planning problem. We have a particle attached
to a spring that starts out oscillating at a certain frequency and we want the agent to get
the particle to stand still at the spring’s equilibrium length.

In a classical spring system, we expect particles with positions close to the equilibrium
and low speeds to have high values. As particles get further away from the equilibrium
point, we expect the ones moving towards the equilibrium point to have higher values.
Also as in any classical system, we expect the value function to reach higher values the
more accurate observations we allow. We investigate whether we can see these classical
effects in the quantum spring system.

6.1.1 Configuration

The potential energy of the system is

1

2
kx2 − Fex

where x is the position of the particle and Fe is an external force added by the agent. From
the potential energy, the equilibrium point is at 0. We let k = 0.4 in our experiment. The
external force is −0.05, 0, or 0.05 depending on whether the agent chooses to move left,
stand still, or move right, respectively.

One thing we have to keep in mind when applying an external force on a particle is
edge effects. There are two different edge effects we have to keep in mind. The first effect
is that we note is that the particle wraps around at the boundaries of the grid. Thus, if a
particle is going leftward on the left side of the grid and want to get the right side, the
agent may not want to slow down. Another issue we note is that when we apply a constant
force, there is a huge difference in the potential energy at both edges of the grid. Because
we are using the discrete approximation of the Laplacian, applying a constant force to
a wavepacket on the border results in huge accelerations. Thus the value function will
output inaccurate values near the border, but we will still get accurate values away from

32

the borders.

The goal of the system is to keep the particle still at the equilibrium point. We model
that goal using the reward function

R(x) = −x2.

To compute the value function, we use point based value iteration with sample points
that are Gaussian wavepackets centered at each point in {−1.0,−0.75,−0.5, . . . , 1.0},
with momentums in {−1.0

~ , −0.75
~ , . . . , 1

~}, and with standard deviation 0.25
3

. We run the
point based value iteration algorithm for 15 steps using discount factor γ = 0.9.

We will focus on three classes of features: delta features, Fourier features, and Gabor
features. Below, we show how we setup each feature set.

Delta Features Delta features are indicator functions signaling a point on the grid. We
use delta features to model every point on the grid so our feature set has size 200.

Fourier Features Fourier features are functions of the form eiθx for some θ ∈ R. Our
feature set is the Fourier features with the angle θ in {−30π,−29π, . . . , 30π}. Our feature
set size is 61. The maximum frequency we can represent is 30π

2π
= 15 Hz which is less than

50 Hz, the Nyquist frequency.

Gabor Features Gabor features are functions of the form e−
(x−µ)2

2v
+iθx for some µ, v, θ ∈

R, which is a Gaussian function multiplied by a complex exponential. Gaussian features
encode a wavepacket that is localized in both position and momentum. Our feature set
consists of every Gabor feature formed from the position µ ∈ {−1,−0.75, . . . , 1}, mo-
mentum p ∈ {−1

~ ,
−0.75

~ , . . . , 1
~}, and variance v = 0.12. Our feature set size is 81. The

highest frequency we can represent here is 1
2π~ ≈ 15.9 Hz which is smaller than 50 Hz, the

Nyquist frequency.

33

(a) Delta features (b) Fourier features (c) Gabor features

Figure 6.1: Value function of spring system using no observations. The colored squares
represent the value function evaluated at a Gaussian wavepacket in that position and mo-
mentum with standard deviation σ = 0.1.

6.1.2 No Observations

In this setup, the agent can only make one measurement that has one outcome. The cor-
responding measurement matrix is the identity. Thus, the agent is blind in this setup. The
approximate value function in this setup is shown in figure 6.1 under different feature
functions.

6.1.3 One Bit Observations

In this setup, the agent can choose among four measurements. It can measure whether the
particle is left or right of the −0.5 mark, 0.0 mark, or 0.5 mark. The agent can also choose
to not to measure at that time step. The value function is shown in figure 6.2.

When we compare the value function to the no observation setup in figure 6.1, the tails
of the value function get bigger and the value generally goes up everywhere. We expect
this behavior in a classical system because we are observing more accurately.

34

(a) Fourier features (b) Gabor features

Figure 6.2: Value function of spring system using one bit observations. The colored
squares represent the value function evaluated at a Gaussian wavepacket in that position
and momentum with standard deviation σ = 0.1.

6.1.4 Three Outcome Observations

In this setup, the agent can choose among four measurements at each time step. It can
measure whether the particle is left of the position −0.5, between positions −0.5 and 0.0,
or right of the position 0.0. It can also measure whether the particle is left of the position
0.0, between positions 0.0 and 0.5, or right of the position 0.5. It can also measure whether
the particle is left of the position −0.5, between positions −0.5 and 0.5, or right of the
position 0.5. The agent can also choose to not to measure at that time step. The value
function is shown in figure 6.3.

When we compare this value function to the one bit observation setup in figure 6.2,
the tails of the value function get higher. We expect this behavior in a classical system
because we are observing more accurately.

6.1.5 Eight Outcome Observations

In this setup, the agent can choose among two measurements at each time step. The agent
can choose to not to measure at that time step or measure whether it is in one of eight
intervals of equal length covering the domain [−1, 1]. The value function is shown in
figure 6.4. We also plotted what measurements and actions our resulting policy makes in

35

(a) Fourier features (b) Gabor features

Figure 6.3: Value function of spring system using three outcome observations. The colored
squares represent the value function evaluated at a Gaussian wavepacket in that position
and momentum with standard deviation σ = 0.1.

figure 6.5 and figure 6.6 using Fourier features, respectively.

Figure 6.4 shows what we expect in a classical spring system. The value function
outputs higher values than the ones that make less accurate measurements, shown in fig-
ure 6.3, figure 6.2, and figure 6.1.

Figure 6.5 shows that our policy doesn’t observe roughly in areas that have low mo-
mentum or that have high value.

Figure 6.6 shows that in the region with low velocities and positions away from the
borders, the agent works to steer the particle towards the center. This is exactly what we
expect in the classical hillcar system. In regions of very high velocity or of positions very
close to the borders, our particle is going to hit the border no matter what, so our agent
takes advantage of edge effects. Thus, the actions in these regions don’t reflect what we
expect but can be explained through edge effects.

6.2 Quantum Hillcar System

In a quantum hillcar system, the agent controls a particle that moves in a valley with a hill
on the left and right. The particle starts sliding back and forth in the valley. The agent can
apply a small leftward or rightward force on the particle. The goal of the agent is to climb

36

(a) Fourier features (b) Gabor features

Figure 6.4: Value function of spring system using eight outcome observations. The colored
squares represent the value function evaluated at a Gaussian wavepacket in that position
and momentum with standard deviation σ = 0.1.

Figure 6.5: The plot shows what observation is chosen by our policy for the quantum
spring system. The colored squares represent the observation chosen by the policy eval-
uated at a Gaussian wavepacket in that position and momentum with standard deviation
σ = 0.1. The red color means that our policy chose not to observe. The blue color means
that our policy chose to do an eight bit observation.

37

Figure 6.6: The plot shows what action is chosen by our policy for the quantum spring
system. The policy chose to move back, stay, or move forward when the value is −1, 0,
and 1 respectively. The colored squares represent the action chosen by the policy evaluated
at a Gaussian wavepacket in that position and momentum with standard deviation σ = 0.1.

the right hill.

The agent doesn’t have enough force to climb a hill by going in a constant direction.
Instead, the agent has to swing back and forth to escape.

In a classical hillcar system, we expect the value to be high for particles with low speed
located on top of the right hill. We also expect that the value degrades in an arc shape
because a particle not at the top of the hill needs more speed to reach it. We investigate
whether we see this behavior in the quantum hillcar system.

6.2.1 Configuration

The potential energy of the system is

−m cos
(π

0.5
x
)
− Fex

where x is the position of the particle, Fe is an external force added by the agent, and
m = 0.1 is a constant. From the potential energy, the bottom of the valley is at position
zero and the top of the two hills are at −0.5 and 0.5. The external force is −0.01, 0,
or 0.01 depending on whether the agent chooses to move left, stand still, or move right,
respectively.

The goal of the agent is to escape the valley via the right hill. We model that goal using

38

the reward function

R(x) = e−
1
2(x−0.5

0.05)
2

To compute the value function, we use point based value iteration with sample points
that are Gaussian wavepackets centered at each point in {−0.5,−0.4, . . . , 0.5}, with mo-
mentums in {−1.0

~ , −0.8
~ , . . . , 1.0

~ }, and with standard deviation 0.1. As before, we run the
point based value iteration algorithm for 15 steps using discount factor γ = 0.9.

We will focus on three classes of features (as before): delta features, Fourier features,
and Gabor features. Below we show how we setup each feature set.

Delta Features Delta features are indicator functions signaling a point on the grid. We
use delta features to model every point on the grid so our feature set has size 200.

Fourier Features Fourier features are functions of the form eiθx for some θ ∈ R. Our
feature set is the Fourier features with the angle θ ∈ {−35π,−29π, . . . , 35π}. Our feature
set size is 71. The highest frequency we can represent under these features is 35π

2π
= 17.5

Hz which is less than 50 Hz, the Nyquist frequency.

Gabor Features Gabor features are functions of the form e−
(x−µ)2

2v
+iθx for some µ, v, θ ∈

R, which is a Gabor function multiplied by a complex exponential. Gabor features encode
a wavepacket that is localized in both position and momentum. Our feature set consists
of every gabor feature formed from the position µ ∈ {−1,−0.75, . . . , 1}, momentum
p ∈ {−1

~ ,
−0.75

~ , . . . , 1
~}, and variance v = 0.12. Our feature set size is 81. As in the

quantum spring setup, the highest frequency we can represent with Gabor features is less
than the Nyquist frequency.

We perform the same measurement setups as in section 6.1. The resulting value func-
tions are shown in figure 6.7, figure 6.8, figure 6.9, figure 6.10, figure 6.11, and figure 6.12.

The value functions in figure 6.7, figure 6.8, figure 6.9, figure 6.10 show what we ex-
pect the shape of our value function to look like in the classical hillcar system. Figure 6.11

39

(a) Delta features (b) Fourier features (c) Gabor features

Figure 6.7: Value function of the quantum hillcar system using no observations. The
colored squares represent the value function evaluated at a Gaussian wavepacket in that
position and momentum with standard deviation σ = 0.1.

(a) Fourier features (b) Gabor features

Figure 6.8: Value function of the quantum hillcar system using one bit observations. The
colored squares represent the value function evaluated at a Gaussian wavepacket in that
position and momentum with standard deviation σ = 0.1.

suggests that our policy chooses not to observe in states that have good value. Figure 6.12
shows that in areas of low momentum and positions away from the borders of the grid,
the agent moves the particle in the direction of its momentum. This is exactly what we
expect in the classical hillcar system. In other regions, we can explain bizarre behavior
using edge effects.

40

(a) Fourier features (b) Gabor features

Figure 6.9: Value function of the quantum hillcar system using three outcome observa-
tions. The colored squares represent the value function evaluated at a Gaussian wavepacket
in that position and momentum with standard deviation σ = 0.1.

(a) Fourier features (b) Gabor features

Figure 6.10: Value function of the quantum hillcar system using eight outcome observa-
tions. The colored squares represent the value function evaluated at a Gaussian wavepacket
in that position and momentum with standard deviation σ = 0.1.

41

Figure 6.11: The plot shows what observation is chosen by our policy for the quantum
hillcar system. The colored squares represent the observation chosen by the policy eval-
uated at a Gaussian wavepacket in that position and momentum with standard deviation
σ = 0.1. The red color means that our policy chose not to observe. The blue color means
that our policy chose to do an eight bit observation.

Figure 6.12: The plot shows what action is chosen by our policy for the quantum hillcar
system. The policy chose to move back, stay, or move forward when the value is −1, 0,
and 1 respectively. The colored squares represent the action chosen by the policy evaluated
at a Gaussian wavepacket in that position and momentum with standard deviation σ = 0.1.

42

Chapter 7

Conclusion

We introduced the QuaMDP model to formalize quantum systems for planning. We
showed how to perform value iteration on a QuaMDP to generate an optimal policy
and how to adapt point based value iteration, an approximate planning technique from
POMDPs, to QuaMDPs.

We set up and ran experiments that approximated a continuous classical system with a
discrete quantum system and computed value functions. These results agree with what we
expect, qualitatively, if we were simulating the classical system directly. At the very least,
we have shown that there are low dimensional classical systems that can be modeled well,
qualitatively, using a quantum system.

We have expanded the set of problems we can plan in but it is still unclear whether
approximate planning is easier in this model than in classical models.

There are a couple of things we leave for future work. One thing is to figure out how to
build quantum models directly from data and not from the potential energy function. This
way we can gather useful statistics about how well our quantum approximation performs
and model quantum systems where we don’t really know the potential energy. Another
thing is to gauge how well our planning algorithm works on quantum systems with very
pronounced quantum effects like entanglement and interference.

43

44

Bibliography

Dimitri P Bertsekas and John N Tsitsiklis. Parallel and distributed computation: numeri-

cal methods, volume 23. Prentice Hall Englewood Cliffs, NJ, 1989. 3.2.1, 3.2.2

Lev Davidovich Landau, Evgenii Mikhailovich Lifshitz, JB Sykes, John Stewart Bell, and
ME Rose. Quantum mechanics, non-relativistic theory. Physics Today, 11:56, 1958.
5.2, 5.3

Joelle Pineau, Geoff Gordon, Sebastian Thrun, et al. Point-based value iteration: An
anytime algorithm for pomdps. In IJCAI, volume 3, pages 1025–1032, 2003. 3.4.2,
3.4.3, 3.4.4

45

	1 Introduction
	2 Discrete Quantum Mechanics
	2.1 Density Matrix
	2.2 Quantum Measurements
	2.3 Transition Matrix

	3 Classical Planning
	3.1 Markov Decision Process
	3.1.1 Example

	3.2 Planning in MDPs
	3.2.1 Policy and Value Functions
	3.2.2 Value Iteration in MDPs

	3.3 Partially Observable Markov Decision Processes
	3.3.1 Example

	3.4 Planning in POMDPs
	3.4.1 Policy
	3.4.2 Value function
	3.4.3 Value Iteration in POMDPs
	3.4.4 Point-based Value Iteration

	4 Planning in a Quantum System
	4.1 Quantum Markov Decision Processes
	4.2 Value iteration in a Quantum Setting
	4.3 Point-based value iteration on QuaMDPs

	5 Approximating Continuous Classical Systems
	5.1 Hamiltonian Operator
	5.2 Schrodinger Equation
	5.3 Gaussian Wavepacket
	5.4 Approximating the Integral
	5.5 Discretizing the Quantum System
	5.5.1 Projecting a Functional
	5.5.2 Projecting a Linear Operator
	5.5.3 Expressing an Inner Product Using A
	5.5.4 Getting an Orthonormal Basis

	5.6 Putting It All Together

	6 Experiments
	6.1 Quantum Spring System
	6.1.1 Configuration
	6.1.2 No Observations
	6.1.3 One Bit Observations
	6.1.4 Three Outcome Observations
	6.1.5 Eight Outcome Observations

	6.2 Quantum Hillcar System
	6.2.1 Configuration

	7 Conclusion
	Bibliography

