
Contention in Structured Concurrency:

Provably Efficient Dynamic Non-Zero

Indicators for Nested Parallelism

Umut A. Acar1,2 Naama Ben-David 1

Mike Rainey 2

January 16, 2017
CMU-CS-16-133

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

A short version of this work appears in the proceedings of the 22nd ACM SIGPLAN

Symposium on Principles and Practice of Parallel Programming 2017 (PPoPP ’17).

1Carnegie Mellon University, Pittsburgh, PA
2Inria-Paris



Keywords: concurrent data structures, non-blocking data structures, contention, nested
parallelism, dependency counters



Abstract

Over the past two decades, many concurrent data structures have been designed and im-
plemented. Nearly all such work analyzes concurrent data structures empirically, omit-
ting asymptotic bounds on their efficiency, partly because of the complexity of the analysis
needed, and partly because of the difficulty of obtaining relevant asymptotic bounds: when
the analysis takes into account important practical factors, such as contention, it is difficult
or even impossible to prove desirable bounds.
In this paper, we show that considering structured concurrency or relaxed concurrency mod-
els can enable establishing strong bounds, also for contention. To this end, we first present
a dynamic relaxed counter data structure that indicates the non-zero status of the counter.
Our data structure extends a recently proposed data structure, called SNZI, allowing our
structure to grow dynamically in response to the increasing degree of concurrency in the
system.
Using the dynamic SNZI data structure, we then present a concurrent data structure for
series-parallel directed acyclic graphs (sp-dags), a key data structure widely used in the
implementation of modern parallel programming languages. The key component of sp-dags
is an in-counter data structure that is an instance of our dynamic SNZI. We analyze the
efficiency of our concurrent sp-dags and in-counter data structures under nested-parallel
computing paradigm. This paradigm offers a structured model for concurrency. Under this
model, we prove that our data structures require amortized O(1) shared memory steps,
including contention. We present an implementation and an experimental evaluation that
suggests that the sp-dags data structure is practical and can perform well in practice.





1 Introduction

Non-blocking data structures are commonly used in practical concurrent systems because
such data structures allow multiple processes to access the structure concurrently while
guaranteeing that the whole system will make progress. As discussed by the survey of Moir
and Shavit [39], many non-blocking data structures have been designed and implemented
for various problems, such as shared counters [22, 44], non-zero indicator counters [14],
stacks [47], queues [38], doubly ended queues [6], and binary search trees [8, 13].

The theoretical efficiency of non-blocking data structures, however, has received relatively
little attention. One reason for this lack of attention is that in a non-blocking data struc-
ture, some processes may get stuck, leading to seemingly infinite execution times. Another
reason is that the common shared-memory models, under which concurrent data structures
are analyzed, usually do not account for an important practical concern: the effects of
memory contention. These effects can be significant especially as the degree of concurrency
increases [12, 39, 45].

We are interested in the design and analysis of provably efficient non-blocking data struc-
tures in realistic models of concurrency that account for the cost of contention. This goal
represents a major challenge, because contention often factors into the running time as a
linear additive factor (e.g., [13, 18, 16, 40]). A series of papers have also established linear-
time lower bounds [28, 31, 16] when contention is taken into account by using models that
allow only one process to access a memory object [10, 12, 4]. For example, Fich, Hendler,
and Shavit [16] show that, when accounting for contention, a number of concurrent data
structures, including counters, stacks, and queues, require Ω(n) time, where n is the number
of processes/threads in the system, a.k.a., the degree of concurrency.

In this paper, we show that a relaxation of the general concurrency model can unlock
the design and analysis of provably efficient concurrent data structures, accounting also for
contention. As a relaxation, we consider a structured concurrent programming paradigm,
nested parallelism, where concurrency is created under the control of programming primi-
tives, such as fork-join and async-finish. Nested parallelism is broadly available in a number
of modern programming languages and language extensions, such as OpenMP, Cilk [19],
Fork/Join Java [35], Habanero Java [29], TPL [36], TBB [30], X10 [9], parallel ML [17], and
parallel Haskell [33]. In these systems, nested-parallel programs can be expressed by using
a primitives such as fork–join (a.k.a., spawn–sync), and async–finish. When executed, a
nested parallel program can create many threads, leading to a high degree of concurrency,
but in a structured fashion: threads may be created by other threads via a async (or fork)
operation and can also terminate and synchronize at known join (or finish) points. The
fork–join primitives allow only two threads to synchronize at a join. In contrast, with
async–finish primitives, any number of threads can terminate and synchronize at a single
finish point. This structured nature of thread creation, termination, and synchronization is
the key difference between nested parallelism and general concurrency.

Our starting point is prior work on relaxed concurrent counters, also called indicators,
that indicate whether a counter is positive or not. Indicators contrast with exact counters
as, for example, those considered by Herlihy, Shavit, and Waarts [28]. In prior work, Ellen et

1



al. [14] present the SNZI (read “snazzy”), short for Scalable Non-Zero Indicator, data struc-
ture, prove it to be linearizable, and evaluate it empirically. They do not, however, provide
any analytical upper bounds. Indeed, SNZI data structure could experience contention as
multiple operations climb up the SNZI tree. In this paper, we present an extension to the
SNZI data structure to allow it to grow dynamically at run time, perhaps in response to
increasing degree of concurrency and thus increasing potential for contention (Section 2).

We then consider an application of our dynamic SNZI data structure to nested parallel
computations, specifically for representing series-parallel directed acyclic graphs or sp-dags
with unbounded in-degree vertices, which arise for example with parallel loops and async–
finish primitives. Variants of dag data structures are used broadly in the implementation
of modern parallel programming systems [19, 35, 29, 36, 30, 9, 17, 33]. These languages
and systems typically represent the computation as a dag where each vertex corresponds to
a fine-grained thread and schedule the vertices of the dag over the processors to minimize
completion time. For efficiency reasons, it is important for the dag data structure to be non-
blocking and low-contention, because a nested parallel program can create a dynamically
varying set of fine-grained threads, consisting of anywhere from several threads to millions
or more, depending on the input size.

The crux of the sp-dags problem is determining when a vertex in the dag becomes ready,
i.e., all of its dependencies have been executed. Such readiness detection requires a con-
current dependency counter, which we call in-counter, that counts the number of incoming
dependencies for each thread. When a dependency between a thread u and v is created, the
in-counter of v is incremented; when u terminates its in-counter is decremented; when its in-
counter reaches zero,vertex v becomes ready and can be executed. We show that in-counters
can be implemented efficiently by using our dynamic SNZI data structure (Section 3). We
prove that by managing carefully the growth of our dynamic SNZI data structure, we can
guarantee that all operations require amortized O(1) time, including also contention (Sec-
tion 4).

Finally, we present an implementation and perform an experimental evaluation in com-
parison to prior work (Section 5). Our results offer empirical evidence for the practicality of
our proposed techniques, showing that our approach can perform well in practice.

Placed in the context of previously proven lower bounds for non-blocking data structures,
the key to our result is the structured concurrency model that we consider. Our contributions
are as follows.

• Dynamic SNZI: an extension to the original SNZI data structure that allows it to grow
varying numbers of threads.

• Non-blocking low-contention sp-dags: a non-blocking data structure for series-parallel
dags that can be used to represent nested-parallel computations provably efficiently
and with low contention.

• Analysis: proofs that our series-parallel dag data structure experiences low contention
under a nested parallel programming model.

• Evaluation: implementation and empirical evaluation that shows that our data struc-
ture is practical and that it can perform well in practice.

2



Some proof details and more experiments are presented in the appendix.

1.1 Model

We consider a standard model of asynchronous shared memory where threads can commu-
nicate through taking atomic read-modify-write steps such as read, write and compare-and-
swap (CAS). Threads can use these primitives to implement high-level operations. We define
the contention experienced by an operation as the maximum number of non-trivial, shared
memory steps that concurrently access the same memory location over all executions. A
non-trivial step is one that might change the value of the memory location to which it is
applied, and a non-trivial operation is an operation that takes at least one non-trivial step.

Our definition of contention is similar to stalls as defined by Fich et al. in [16]. Their
definition, inspired by Dwork et al.’s work on contention models [12], considers a model in
which each non-trivial memory step on a memory location must operate in isolation, and
the rest of the operations stall.

For our bounds, we consider computations that are structured in a nested-parallel fash-
ion, where threads execute independently in parallel or serially and synchronize at their
termination points. A series-parallel computation starts with a single root thread and con-
structs, as it executes, a series-parallel directed acyclic graph (sp-dag) of vertices where each
vertex represents a thread of control, and edges represent dependencies between threads.

2 Dynamic SNZI

Concurrent counters are an important data structure used in many algorithms but can be
challenging to implement efficiently when accounting for contention, as shown by the linear
(in the degree of concurrency) lower bound of Fich et al [16]. Observing that the full strength
of a counter is unnecessary in many applications, Ellen et al proposed non-zero indicators as
relaxed counters that allow querying not the exact value of the counter but its sign or non-
zero status [14]. Their non-zero indicator data structure, called SNZI, achieves low-contention
by using a tree of SNZI nodes, each of which can be used to increment or decrement the
counter. Determining the non-zero status of the counter only requires accessing the root of
the tree. The tree is updated by increment and decrement operations. These operations are
filtered on the way up to the root so that few updates reach the root.

The SNZI data structure is flexible. Each SNZI node interacts with its parent and its
children, and will retain its correctness regardless of how many children it has. Thus, a
SNZI tree can have any shape but it can be difficult to know the optimal shape of the tree
a priori. In this section, we present a simple extension to SNZI that allows the tree to be
grown dynamically, and show that our extension preserves correctness. In Section 3, we
demonstrate how to use dynamic SNZI in a specific application—namely, to keep track of
dependencies in an sp-dag efficiently.

Figure 1 illustrates the interface for the SNZI data structure and pseudo-code for the SNZI
node struct snzi_node, the basic building block of the data structure from [14]. A SNZI

3



1 type snzi_node =

2 struct {

3 (∗ counter ∗)
4 c : N ∪ {1

2
}; initially 0

5 (∗ version number ∗)
6 v : N; initially 0
7 children : array of 2 snzi nodes; initially [null, null]
8 parent : snzi_node

9 }

10

11 void fun snzi_arrive (snzi_node a) = ...

12 void fun snzi_depart (snzi_node a) = ...

13 bool fun snzi_query (snzi_node a) = ...

Figure 1: Partial pseudocode for the SNZI data structure; full description can be found in
original SNZI paper [14].

node contains a counter c, a version number v, an array of children (two in our example),
and a parent. The value at the counter indicates the surplus of arrivals with respect to the
departures. The arrive and depart operations increment and decrement the value of the
counter at the specified SNZI node a respectively, and query, which must be called at the
root of the tree, indicates whether the number of arrive operations in the whole tree is
greater than number of depart operations since creation of the tree.

To ensure efficiency and low contention, the SNZI implementation carefully controls the
propagation of an arrival or departure at a node up the tree. The basic idea is to propagate
a change to a node’s parent only if the surplus at that node flips from zero to positive or
vice versa. More specifically, an arrive at node a is called on a’s parent if and only if a had
surplus 0 at the beginning of the operation. Similarly, a depart at a node a is recursively
called on a’s parent if and only if a’s surplus became 0 due to this depart. We say that
node a has surplus due to its child if there was an arrive operation on a that started in a’s
child’s subtree.

The correctness and linearizability of the SNZI data structure as proven relies on two
important invariants [14]: (1) a node has surplus due to its child if and only if its child
has surplus, and (2) surplus due to a child is never negative. Together, these properties
guarantee that the root has surplus if and only if there have been more arrive than depart

operations on the tree.
The SNZI data structure does not specify the shape of the tree that should be used,

instead allowing the application to determine its structure. For example, if the counter is
being used by p threads concurrently, then we may use a perfectly balanced tree with p
nodes, each of which is assigned to a thread to perform its arrive and depart operations.
This approach, however, only supports a static SNZI tree, i.e., unchanging over time. While
a static SNZI tree may be sufficient for some computations, where a small numbers of coarse-

4



1 (snzi_node, snzi_node)

2 fun grow (a: snzi_node, p: probability) =

3 heads ← flip(p) (∗ flip a p−biased coin. ∗)
4 if heads then

5 left ← new snzi_node(0)

6 right ← new snzi_node(0)

7 CAS(a.children, null, [left, right])
8 children ← a.children
9 if children = null then

10 return (a, a)
11 return children

Figure 2: Pseudo-code for the probabilistic SNZI grow.

grained threads are created, it is not sufficient for nested parallel computations, where the
number of fine-grained threads vary dynamically over a wide range from just a few to very
large numbers, such as millions or even billions, depending on the input size. The problem
is that, with a fixed-sized tree, it is impossible to ensure low contention when the number of
threads increase because many threads would have to share the same SNZI node. Conversely,
it is impossible to ensure efficiency when the number of threads is small, because there may
be many more nodes than necessary.

To support re-sizing the tree dynamically, we extend the SNZI data structure with a
simple operation called grow, whose code is shown in Figure 2. The operation takes a SNZI
node as argument, determines whether to extend the node (if the node has no children),
and returns the (possibly newly created) children of the node. If the node already has
children, pointers to them are returned, but they are left unchanged. If the node does not
have children, then they are locally allocated, and then the process tries to atomically link
them to the tree. They are initialized with surplus 0 so that their addition to the tree does
not affect the surplus of their parent. The grow operation also takes a probability p, which
dictates how likely it is to create new children for the node. The operation only attempts
to create new children if the node does not already have children and it flipped heads in a
coin toss with probability p for heads. The idea is that this probabilistic growing allows an
application to control the rate at which a SNZI tree grows without changing the protocol for
some of the threads using it. Such probabilistic growing is useful when one wants a balance
between low contention and frequent memory allocation. The right probability threshold to
use, however, may depend not only on the application, but also on the system.

If node a does not have any children at the end of a grow operation, we have the operation
return two pointers to a itself. This return value is convenient for the in-counter application
that we present in the rest of the paper. Other applications using dynamic SNZI may return
anything else in that case.

The grow operation may be called at any time on any SNZI node. To keep the flexible
structure of the SNZI data structure, we do not specify when to use the grow operation on the

5



tree, instead leaving it to the application to specify how to do so. For example, in Section 3.3,
we show how to use the grow operation to implement a low-contention dependency counter
for dags. It is easy to see that the operation does not break the linearizability of the
SNZI structure; it is completely independent from the count, version number, and parent
fields of nodes already in the tree, which are the only fields that affect the correctness and
linearizability.

We note a key property of the grow operation. We would like to ensure that, given a
probability p, when grow is called on a childless node, only 1/p such calls will return no
children in expectation, regardless of the timing of the calls. That is, even if all calls to grow

are concurrent, we want only 1/p of them to return no children. This property is ensured by
having the coin flip happen before reading the value of the children array to be returned.
This guarantees that any adversary that does not know the result of local coin flips cannot
cause more than 1/p calls to return no children in expectation.

Dynamically shrinking the SNZI tree is more difficult, because we need to be sure that
no operation could access a deallocated node. In general, one may easily and safely delete
a SNZI node from the tree if the following two conditions hold: (1) its surplus is 0, and (2)
no thread other than the one deleting the node can reach it. The second condition is much
trickier to ensure. In Section 4 we show how to deallocate nodes in our dependency counter
data structure.

3 Series-Parallel Dags

A nested-parallel program can be represented as a series-parallel dag, or an sp-dag, of threads,
where vertices are pieces of computation, and edges represent dependencies between them.
In fact, to execute such a program, modern programming languages construct an sp-dag
and schedule it on parallel hardware. We present a provably low-contention sp-dag data
structure that can be used to execute nested-parallel programs. After defining sp-dags, we
present in Section 3.1 a data structure for sp-dags by assuming an in-counter data structure
that enables keeping track of the dependencies of a dag vertex (thread). We then present
our data structure for in-counters in Section 3.3.

A serial-parallel dag, or an sp-dag for short, is a directed-acyclic graph (dag) that has a
unique source vertex, which has indegree 0, and a unique terminal vertex, which has out-
degree 0 and that can be defined iteratively. In the base case, an sp-dag consists of a source
vertex u, a terminal vertex v, and the edge (u, v). In the iterative case, an sp-dag G = (V,E)
with source s and terminal t is defined by serial or parallel composition of two disjoint sp-
dags G1 and G2, where G1 = (V1, E1) with source s1 and terminal t1 and G2 = (V2, E2) with
source s2 and terminal t2, and V1 ∩ V2 = ∅:

• serial composition: s = s1, t = t2, V = V1 ∪ V2, E = E1 ∪ E2 ∪ (t1, s2).

• parallel composition: s, t 6∈ (V1 ∪ V2), V = V1 ∪ V2 ∪ {s, t}, and E = E1 ∪ E2 ∪
{(s, s1), (s, s2), (t1, t), (t2, t)}.

For any vertex v in an sp-dag, there is a path from s to t that passes through v. We thus

6



define the finish vertex of v as the vertex u which is the closest proper descendant of v such
that every path from v to the terminal t passes through u.

3.1 The sp-dag data structure

Figure 3 shows our data structure for sp-dags. We represent an sp-dag as a graph G consisting
of a set of vertices V and a set of edges E. The data structure assigns to each vertex of
the dag an in-counter data structure, which counts the number of (unsatisfied) dependencies
of the vertex. As the code for a dag vertex executes, it may dynamically insert and delete
dependencies by using several handles. These handles can be thought of, in the abstract,
as in-counters, but they are implemented as pointers to specific parts of an in-counter data
structure.

More precisely, a vertex consists of

• a query handle (query), an increment handle (inc), and a decrement handle (dec),

• a flag first_dec indicating whether the first or the second decrement handle should
be used,

• a flag dead indicating whether vertex has been executed,

• the finish vertex fin of the vertex, and

• a body, which is a piece of code that will be run when the scheduler executes the vertex.

The sp-dag uses an in-counter data structure Incounter, whose implementation is de-
scribed in the Section 3.3. The in-counter data structure supplies the following operations:

• make: takes an integer n, creates an in-counter with n as the initial count and returns
a handle to the in-counter;

• increment: takes a vertex v, increments its in-counter, and returns two decrement and
two increment handles;

• decrement: takes a vertex v and decrements its in-counter;

• is_zero: takes a vertex v and returns true iff that in-counter of v is zero.

Inspired by recent work on formulating a calculus for expressing a broad range of parallel
computations [2], our dag data structure provides several operations to construct and sched-
ule dags dynamically at run time. The operation new_vertex creates a vertex. It takes as
arguments a finish vertex u, an increment handle i, a decrement handle d, and a number n
indicating the number of dependencies it starts with. It allocates a fresh vertex, sets its dead
and first_dec flags to false, and sets the body for the vertex to be a dummy placeholder.
It then creates an in-counter and a handle to it. The operation returns the new vertex along
with the handle to its in-counter. The handle becomes the query handle. The operation
make creates an sp-dag consisting of a root u and its finish vertex z and returns the root
u. As can be seen in the function make, the increment and decrement handles of a vertex v
always belong to the in-counter of v’s finish vertex.

A vertex u and its finish vertex z can be thought as a computation in which u executes
the code specified by its body and then returns to z. This constraint implies that z serially

7



module Incounter = ... (∗ As defined in Figure 5 ∗)
module Dag =

G = (V,E)
type handle = Incounter.handle

struct {

handle query, inc, dec[2];

boolean first_dec, dead;

vertex fin;

(void → void) body;

} vertex;

(vertex, handle) fun new_vertex (vertex u, handle i, handle d, int n) =

V ← V ∪ {v}, v 6∈ V
(v.firstDec, v.dead) ← (false, false)

v.body ← { return }

v.query ← Incounter.make (n)
(v.fin, v.inc, v.dec) ← (u, i, d)
return (v, v.query)

(vertex,vertex) fun make ()

V ← {v}
E ← ∅
(v.firstDec, v.dead) ← (false, false)

v.body ← { return }

v.query ← Incounter.make (1)
u ← new_vertex (u, v.query, v.query, 0)
return (u, v)

(vertex, vertex) fun new_vertex (u.fin, u.inc, u.dec, 1)

(v, h) ← new_vertex (w, h, [h, h], 0)

E ← E ∪ {(u, v)}
u.dead ← true

return (v, w)

(vertex, vertex) fun spawn (vertex u) =

(d, i, j) ← Incounter.increment (u.fin)
(v, _) ← new_vertex (u.fin, i, d, 0)

(w, _) ← new_vertex (u.fin, j, d, 0)

E ← E ∪ {(u, v), (u,w)}
u.dead ← true

return (v, w)

void fun signal (u: vertex) =

Incounter.decrement (u.fin)
E ← E ∪ {(u,u.f in)}

Figure 3: The pseudo-code for our sp-dag data structure.

8



depends on u because z can only be executed after u. As it executes, a vertex u can
use the functions chain and spawn to “nest” another sequential or parallel computation
(respectively) within the current computation.

The chain operation, which corresponds to serial composition of sp-dags, nests a se-
quential computation within the current computation. When a vertex u calls chain, the
call creates two vertices v and w such that w serially depends on v. Furthermore, v serially
depends on u, and z serially depends on w. After calling chain, u terminates and thus dies.
The initial in-counters of v and w are set to 0 and 1 respectively (to indicate that v is ready
for execution, but w is waiting on one other vertex). The edge (u, v) is inserted to the dag
to indicate a satisfied dependency between u and v.

The spawn operation, which corresponds to parallel composition of sp-dags, nests a
parallel computation with the current computation. When a vertex u calls spawn, the
call creates two vertices, v and w, which depend serially on u, but are themselves parallel.
The operation increments the in-counter of u’s finish node, to indicate a serial dependency
between u’s finish vertex and the new vertices v and w. Even though two new vertices are
created, the in-counter is incremented once, because one of the vertices can be thought of
as a continuation of u. The increment operation returns two new increment handles i and
j and a decrement-handle pair d. The spawn operation then creates the two vertices v
and w using the two increment handles, one for each, and the decrement-handle pair d as a
shared argument. Assigning each of v and w their own separate increment handles enables
controlling contention at the in-counter of u’s finish node. As described in Section 3.3,
sharing of the decrement handles by the new vertices (v, w) is critical to the efficiency. As
with the chain operation, spawn must be the last operation performed by u. It therefore
completes by creating the edges from u to v and w, and marking u dead.

The operation signal indicates the completion of its argument vertex u by decrementing
the in-counter for its finish vertex v, and inserting the edge (u, v).

In terms of efficiency, apart from calls to Incounter, the operations of sp-dags involve
several simple, constant time, operations. The asymptotic complexity of the sp-dags is thus
determined by the complexity of the in-counter data structure.

3.2 An Example

Although simple, the sp-dag data structure can be used to create any nested-parallel com-
putation. As an example, we consider the classic parallel Fibonacci program, which com-
putes nth Fibonacci number by recursively and in parallel computing the (n − 1)th and
(n− 2)nd numbers. Figure 4 illustrates the code for this example based on the sp-dag data
structure and a Scheduler module that implements a standard parallel scheduler, such as
work stealing [7, 1]. The function fib_main initializes the system by calling the function
Scheduler.initialize and then creates the root and the final vertex of the dag. It then
sets the body of the root to run fib, passing the arguments n and result. The vertices root
and final are then given to the scheduler to be executed. The scheduler returns when the
computation is finished, which leads to the return of the result.

The function fib implements the parallel Fibonacci function. The function start by

9



fib (n: int, dest: int ref) =

if n <= 1 then

dest ← n
else

res1 = alloc ()
res2 = alloc ()
(u, v) ← Dag.chain (this_vertex)

u.body ← lambda (). {

(w1, w2) = Dag.spawn (this_vertex)
w1.body ← lambda ().fib (n− 1, res1)
w2.body ← lambda ().fib (n− 2, res2)
Scheduler.add (w1, w2)

}

v.body ← lambda (). ∗dest ← ∗res1 + ∗res2
Scheduler.add (u, v)

fib_main (n: int) =

int result;

Scheduler.initialize ()
(root, final) ← Dag.make ()

root.body ← lambda ().fib (d,&result)
Scheduler.add (root, final)
return result

Figure 4: Fibonnacci example. The parallel recursive function at the top and the main
function, where execution starts, at the bottom.

creating a chain (u, v), passing this_vertex, which is the variable indicating the currently
executing vertex, as the parent to the root of the chain. The body of u is set to spawn
the two recursive calls and the body of v is set to compute the final result by summing the
return values of the recursive calls. Note that when spawning vertices the body of u uses
this_vertex as a parent for the vertices created. Since the body is executed when u is
executed, at the point of execution this_vertex is equal to u.

3.3 Incounters

We present the in-counter: a time and space efficient low-contention data structure for
keeping track of pending dependencies in sp-dags. When a new dependency for vertex v
is created in the dag, its in-counter is incremented. When a dependency vertex in the dag
terminates, v’s in-counter is decremented.

Our goal is to ensure that the increment and decrement operations are quick; that is, that
they access few memory locations and encounter little contention. These goals could seem

10



1 module Incounter =

2 type handle = snzi_node (∗ A handle is a snzi node ∗)
3

4 (∗ Growth probability: architecture specific constant. ∗)
5 p ← . . .
6

7 (∗ Make a new counter with surplus n. ∗)
8 handle

9 fun make (n) = snzi_make (n)
10

11 (∗ Auxiliary function: select decrement handle. ∗)
12 handle fun claim_dec (vertex u) =

13 if CAS (u.firstDec, false, true) then u.dec[0]
14 else u.dec[1]
15

16 (∗ Increment u’s target dependency counter. ∗)
17 (handle[2], handle, handle) fun increment (vertex u) =

18 (a, b) ← grow (u.inc, p)
19 (i1,i2) ← (a, b)
20 if u is a left child then d2 ← a
21 else d2 ← b
22 snzi_arrive (d2)
23 d1 ← claim_dec (u)
24 return [[d1,d2],i1,i2]
25

26 (∗ Decrement u’s counter. ∗)
27 void fun decrement (vertex u) =

28 d ← claim_dec (u)
29 snzi_depart (d)
30

31 (∗ Check that u’s counter is zero. ∗)
32 boolean fun is_zero (u) = return snzi_isZero(u.query)

Figure 5: The pseudo-code for the in-counter data structure.

11



contradictory at first—if operations access few memory locations then they would conflict
often. Our in-counter data structure circumvents this issue by ensuring that each operation
accesses few memory locations that are mostly disjoint from those of others.

The in-counter is fundamentally a dynamic SNZI tree. To ensure disjointness of memory
accesses, the data structure assigns different handles to different dag vertices. These handles
are pointers to SNZI nodes within the in-counter, dictating where in the tree an operation
should begin. Thus, if two threads have different handles, their operations will access different
memory locations.

The in-counter data structure ensures the invariant that only the leaves have a surplus
of zero. This allow us to exploit an important property of SNZI: operations complete when
they visit a node with positive surplus, effectively stopping propagation of the change up
the tree. Specifically, an increment that starts at a leaf completes quickly when it visits
the parent. To maintain this invariant, we have to be careful about which SNZI nodes are
decremented.

Figure 5 shows the pseudo-code for the in-counter data structure. The in-counter’s
interface is similar to the original SNZI data structure: the operation make creates an instance
of the data structure and returns a handle to it. The operation increment is meant to be
used when a dag vertex spawns. It takes in a dag vertex, and uses its increment handle to
increment the SNZI node’s surplus. Before doing so, it calls the grow operation. Intuitively,
this growth request notifies the tree of possible contention in the future and gives it a chance
to grow to accommodate a higher load. The increment operation returns handles to other
nodes in the SNZI tree, that is, two decrement handles and two increment handles, indicating
where the newly spawned children of the dag vertex should perform their increment or
decrement. The operation decrement is meant to be used when a dag vertex signals the end
of its computation. It takes in dag vertex, and uses its decrement handle to decrement the
surplus of a previously incremented node.

Since the increment operation is the only thing that can cause growth in the SNZI
tree, the structure of the tree is determined by the operations performed on the in-counter
structure. The tree is therefore not necessarily balanced. However, as we establish in Section
4, the operations’ running time does not depend on the depth of the tree. In fact, we show
that the operations complete in constant amortized time and also lead to constant amortized
contention.

To understand the implementation, it is helpful to consider the way the sp-dag structure
uses the in-counter operations. The increment operation is called by a dag vertex when
the vertex calls the spawn operation, which uses the vertex’s increment handle to determine
the node in the SNZI tree, where an arrive operation will start. To find the place, the
increment operation first uses a grow operation to check whether the SNZI node pointed
at by the handle has children. Additionally, the operation creates new children if necessary
(line 18). Intuitively, we create new SNZI nodes to reduce contention by using more space.
Thus, if the increment handle has children, we should make use of them and start our arrive
operation there. This is exactly what the increment operation does (line 22). Note that, in
case the grow operation does not return new children, we simply have the arrive operation

12



start at the increment handle. The increment operation returns two increment handles and
two decrement handles; one of each for each of the dag vertex’s new children.

The in-counter algorithm makes use of an important SNZI property: decrements at the
top of the tree do not affect any node below them. Furthermore, if there is a depart operation
at SNZI node a, it cannot cause a to phase change as long there is surplus anywhere in a’s
subtree. These observations lead to the following intuition: to minimize phase changes in
the SNZI tree, priority should be given to decrementing nodes closer to the root.

Thus, each dag vertex stores two decrement handles rather than just one. These two
decrement handles are shared with the vertex’s sibling, and they are ordered: the first handle
always points to a SNZI node that is higher in the tree than the second. Decrement handle
is needed by the decrement operation (line 28) and the increment operation. Recall that an
increment always returns two decrement handles. One of these decrement handles always
points to the SNZI node on which the increment operation started its arrive. However, the
other one is inherited from the parent dag vertex (the one that invoked the increment). To
preserve the invariant, the incrementing vertex needs to claim a decrement handle (line 23).
The two decrement handles returned are always ordered as follows: first, the one inherited
from the parent, and, then, the one pointing at the freshly incremented SNZI node. In this
way, we guarantee that the first decrement handle in any pair points higher in the tree than
its counterpart. When a decrement handle is needed, the two dag vertices determine which
handle to use through a test-and-set. The first of the two to make use of a decrement handle
will take the first handle, thus ensuring that higher SNZI nodes are decremented earlier. We
rely on this property to prove our bounds in Lemma 4.6.

Note that, in an increment operation, the decrement handle is claimed only after the
arrive has completed. This key invariant helps to ensure that phase changes rarely occur
in the SNZI tree, thus leading to fast operations.

4 Correctness and Analysis

We first prove that our in-counter data structure is linearizable and then establish its time
and space efficiency. Due to lack of space, we only present the proof for the case where the
probability used for the grow operation is 1, i.e., the SNZI tree grows on every increment

operation. The proof for different growth probabilities is similar (and leads to contention
that depends on the probability given) but more intricate, and is therefore left for the journal
version of this paper.

We say that the in-counter is correct if any is_zero operation at the root of the tree
correctly indicates whether there is a surplus of increment operations over decrement oper-
ations. To prove correctness, we establish a symmetry with the original SNZI data structure.
Note that each increment, decrement, and is_zero operation calls the corresponding SNZI
operation (i.e., arrive, depart, query respectively) exactly once. We define the linearization
points of each operation as that of the corresponding SNZI operation.

Since the correctness condition for the in-counter and for SNZI are the same, we have
the following observation.

13



Observation 1. An execution of the in-counter is linearizable if the corresponding SNZI
execution is linearizable.

At this point, we recall that any SNZI run is linearizable if there are never more departs
than arrives on any node, i.e., surplus at any node is never negative [14]. We show that this
invariant indeed holds for any valid execution of the in-counter data structure, and therefore
that any valid execution is linearizable. We define a valid execution as follows.

Definition 1. An in-counter execution is valid if any handle passed as argument to the
decrement operation was returned by a prior increment operation. Furthermore, that han-
dle is passed to at most one decrement operation.

Lemma 4.1. Any valid in-counter execution is linearizable.

Proof. Observe that every increment operation generates one new decrement handle, and
that handle points to the node at which this increment’s arrive operation was called. Thus,
in valid executions, any depart on the underlying SNZI data structure (which is always
called by the decrement operation) has a corresponding arrive at an earlier point in time.
Therefore, there are never more departs than arrives at any SNZI node, and the corresponding
SNZI execution is linearizable. From Observation 1, the in-counter execution is linearizable
as well.

It is easy to see that any execution of the in-counter that only accesses the object as
prescribed by the sp-dag algorithm is valid. From this observation, the main theorem follows
immediately.

Theorem 4.2. Any execution of the in-counter through sp-dag accesses is linearizable.

4.1 Running Time

To prove that the in-counter is efficient, we analyze shared-memory steps and contention
separately: we first show that every operation takes an amortized constant number of shared
memory steps, and then we show that each shared memory location experiences constant
amortized contention at any time. In our analysis, we do not consider is_zero, since it does
not do any non-trivial shared memory steps.

For the analysis, consider an execution on an sp-dag, starting with a dag, consisting of a
single root vertex and its corresponding finish vertex. Further, observe that this finish vertex
has a single SNZI node as the root of its in-counter. Note that all shared memory steps in
the execution are on the in-counter. We begin by making an important observation.

Lemma 4.3. There exist at most one increment and one decrement handle pointing to any
given SNZI node.

To prove this lemma, note that every increment operation creates new children for the
SNZI node whose handle is used, and thus does not produce another handle to that node.

14



A simple induction, starting with the fact that the root node only has one handle pointing
to it, yields the result.

We now want to show that every operation on the in-counter performs an amortized
constant number of shared memory steps. First, note that the only calls in the in-counter
operations that might result in more than a constant number of steps are their corresponding
SNZI operations. The SNZI operations do a constant number of shared memory steps per
node they reach, but they can be recursively called up an arbitrarily long path in the tree,
as long as nodes in that path phase change due to the operation. That is, frequent phase
changing in the SNZI nodes will cause operations on the data structure to be slower. In fact,
we show that on average, the length of the path traversed by an arrive or depart operation
is constant, when those SNZI operations are called only through the in-counter operations.

We say that a dag vertex is live if it is not marked dead and a handle is live if it is owned
by a live vertex. We have the following lemma about live vertices.

Lemma 4.4. If dag vertex v is live, then it has not used claim_dec to claim a decrement
handle.

Keeping track of live vertices in the dag is important in the analysis, since by Lemma 4.4,
these are the vertices that can use their handles and potentially cause more contention.

To show that operations on SNZI nodes are fast, we begin by considering executions in
which only increment operations are allowed, and no decrements happen on the in-counter.
Our goal is to show that the in-counter’s SNZI tree is relatively saturated, so that arrive

operations that are called within a increment only access a constant number of nodes. After
we establish that increment operations are fast when decrements are not allowed, we bring
back the decrement operations and see that they cannot slow down the increments.

Lemma 4.5. Without any decrement operations, when there are no increments mid-execution,
only leaves of the in-counter’s SNZI tree can have surplus 0.

Proof. The proof is by induction on the number of increment operations called on the in-
counter. The tree is initialized with one node with surplus 1. Thus, when there have been 0
increments, no node has surplus 0. Assume that the lemma holds for in-counters that have
had up to k increments on them. Consider an in-counter that has had k increments, and
consider a new increment operation invoked on node a in the tree. If a is not a leaf, the
grow operation does not create new children for a, and the tree does not grow. Thus, the
lemma still holds. If a is a leaf, the increment operation creates two children for a and
starts an arrive operation on one of the children. As a consequence of the SNZI invariant,
we know that the surplus of a increased by 1. After the increment, regardless of what its
surplus was before this operation, a cannot have surplus 0, and the lemma still holds.

By Lemma 4.5, we know that, ignoring any effect that decrements may have, the tree
has surplus in all non-leaf nodes. Recall that an arrive operation that reaches a node with
positive surplus will terminate at that node. Thus, any arrive operation invoked on this
tree will only climb up a path until it reaches the first node that was not a leaf before this

15



increment started. That is, since each increment only expands the tree by at most one
level, any arrive operation will reach at most 3 nodes.

We now bring back the decrement operations. The danger with decrements is that they
could potentially cause non-leaf nodes to phase change back to 0 surplus, meaning that an
arrive operation in that node’s subtree might have to traverse a long path up the SNZI
tree. Our main lemma shows that traversal of a long path can never happen; if a decrement
causes a vertex’s surplus to go back to 0, then no subsequent increment operation will start
in that node’s subtree. We present the proof in the appendix.

Lemma 4.6. If an in-counter node a at any point had a surplus and then phase changed to
0 surplus, then no live vertices in the dag point anywhere in its subtree.

Note that Lemma 4.5 and Lemma 4.6 immediately give us the following important prop-
erty.

Corollary 4.7. No increment operation can invoke more than 3 arrive operations on the
SNZI tree.

Proof. We already saw that by Lemma 4.5, if no decrements happen, then each increment

operation can invoke at most 3 arrive operations.
Now consider decrements as well. Note that if a non-leaf node has surplus 0 and there is

no increment mid-operation at that node, then it must have previously had surplus (again
by Lemma 4.5). By Lemma 4.6, no new increment operations can happen on that node’s
subtree. Thus, even allowing for decrement operations, no increment operation can invoke
more than 3 arrives on the SNZI tree.

To finish the proof, we amortize the number of departs invoked by decrements against
the arrives invoked by increments. Recall that the number of departs invoked on a SNZI
tree is at most the number of arrives invoked on it. We get the following theorem:

Theorem 4.8. Any operation performed on the in-counter itself calls an amortized O(1)
operations on the SNZI tree.

We now move on to analyzing the amount of contention a process experiences when
executing an operation on the in-counter. Note that there have been several models suggested
to account for contention, as discussed in Section 6. In our contention analysis, we say that
an operation contends with a shared memory step if that step is non-trivial, and it could, in
any execution, be concurrent with the operation at the same memory location. Our results
are valid in any contention model in which trivial operations do not affect contention (i.e.
such as stalls [16], the CRQW model [21], etc.).

Theorem 4.9. Any operation executed on the in-counter experiences O(1) amortized con-
tention.

16



Proof. We show something stronger: the maximum number of operations that access a single
SNZI node over the course of an entire dag computation (other than is_zero operations on
the root) is constant.

Consider a node a in the SNZI tree. By Lemma 4.3, only one increment operation ever
starts its arrive at a. That increment has exactly one corresponding decrement whose
depart starts at a. By the SNZI algorithm, an arrive at a’s child only propagates up to
a if that child’s surplus was 0 before the arrive. By Lemma 4.6, this situation can only
happen once; if a’s child’s surplus returns to 0 after being higher, the counter will never be
incremented again. Thus, each of a’s children can only ever be responsible for at most two
operations that access a; the initial arrive and the final depart from that subtree.

In total, we get a maximum of 6 operations that access a over the course of the computa-
tion. Note also that the first arrive at a node always strictly precedes any other operation
in that node’s subtree. Thus, concurrent arrive operations are not an issue. Therefore,
any operation on the in-counter can be concurrent with at most 4 other operations per SNZI
node it accesses. By Theorem 4.8, every operation on the in-counter accesses amortized O(1)
nodes. Therefore, any such operation experiences amortized O(1) contention.

4.2 Space bounds

Shrinking the tree by removing unnecessary nodes is tricky because, in its most general form,
an ideal solution likely requires knowing the future of the computation. Knowing where in
the tree to shrink requires knowing which nodes are not likey to be incremented in the future.
For the specific case of the grow probability of 1, we establish a safety property that makes
it possible to keep the data structure compact by removing SNZI nodes that correspond to
deleted sub-graphs of the sp-dag. We present the details in the appendix.

5 Experimental evaluation

We report an empirical comparison between our in-counter algorithm, the simple fetch-and-
add counter, and an algorithm using fixed-size SNZI trees. Our implementation consists
of a small, C++ a library that uses a state-of-the-art, implementation of a work-stealing
scheduler [1]. Overall, our results show that the simple, fetch-and-add counter performs
well only when there is one core, the fixed-size SNZI trees scale better, but our in-counter
algorithm outperforms the others when the core count is two or more.

Implementation. Our implementation of core SNZI operations snzi arrive and snzi depart

follows closely the algorithm presented in the original SNZI paper, except for two differences.
First, we do not need snzi query because readiness detection is performed via the return re-
sult of snzi depart. This method suffices because only the caller of snzi depart can bring
the count to zero. Second, our snzi depart returns true if the call brought the counter
to zero. To control the grain of contention, we use the probabilistic technique presented in
Section 2, with probability p := 1

25c
, where c is the number of cores. The idea of using c is

17



to try to keep contention the same as the number of cores increase. We chose the constant
factor 25, because it yields good results, but as our Threshold study, described below, shows
many other constants also yield good results, e.g., any constant in the range 2.5c ≤ p ≤ 25c
yields qualitatively the same results. The implementation of the sp-dags and in-counter data
structures (Section 3) build on the SNZI data structure. The sp-dags interface enables writ-
ing nested-parallel programs, using various constructs, such as fork-join and async-finish; we
use the latter in our experiments.

We compare our in-counter with an atomic, fetch-and-add counter because the fetch-
and-add counter is optimal for very small numbers of cores. For higher number of cores, we
designed a different, SNZI-based algorithm that uses a fixed-depth SNZI tree. This algorithm
gives us another point of comparison, by offering a data structure that uses the existing state
of the art more directly. The fixed-depth SNZI algorithm allocates for each finish block a
SNZI tree of 2d+1−1 nodes, for a given depth d. To maintain the critical SNZI invariant that
the surplus of a SNZI node never becomes negative, the fixed-depth SNZI algorithm ensures
that every snzi depart call targets the same SNZI node that was targeted by a matching
snzi arrive call. To determine which SNZI node to be targeted by a snzi arrive call, we
map DAG vertices to SNZI nodes using a hash function to ensure that operations are spread
evenly across the SNZI tree.

Experimental setup. We compiled the code using GCC -O2 -march=native (version
5.2). Our machine has four Intel E7-4870 chips and 1Tb of RAM and runs Ubuntu Linux
kernel v3.13.0-66-generic. Each chip has ten cores (40 total) and shares a 30Mb L3 cache.
Each core runs at 2.4Ghz and has 256Kb of L2 cache and 32Kb of L1 cache. The machine
has a non-uniform memory architecture (NUMA), whereby RAM is partitioned into four
banks. Pages are, by default in our Linux distribution, allocated to banks according to the
first-touch policy, which assigns a freshly allocated page to the bank of the processor that
first accesses the page. An alternative policy assigns pages to banks in a round-robin fashion.
We determined that, for the purposes of our experiments, the choice of NUMA policy has no
significant impact on our main results. The experiment we performed to back this claim is
described in more detail in the appendix. For all other experiments, we used the round-robin
policy.

fun fanin_rec(n)

if n >= 2

async fanin_rec(n/2)

async fanin_rec(n/2)

fun fanin(n)

finish {fanin_rec(n)}

Figure 6: Fan-in benchmark.

fun indegree2(n)

if n >= 2

finish {

async indegree2(n/2)

async indegree2(n/2)

}

Figure 7: Indegree-2 benchmark.

18



0 10 20 30 40

0
e
+

0
0

1
e
+

0
6

2
e
+

0
6

3
e
+

0
6

4
e
+

0
6

Number of cores

N
u
m

b
e
r 

o
f 
o
p
e
ra

ti
o
n
s
 p

e
r 

s
e
c
o
n
d
 p

e
r 

c
o
re

Fetch & Add

SNZI depth=1

SNZI depth=2

SNZI depth=3

SNZI depth=4

SNZI depth=5

SNZI depth=6

SNZI depth=7

SNZI depth=8

SNZI depth=9

in−counter

Figure 8: Fanin benchmark with n = 8
million, & varying number of processors.
Higher is better.

0e+00 1e+08 2e+08 3e+08 4e+08 5e+08

0
.0

e
+

0
0

1
.0

e
+

0
6

2
.0

e
+

0
6

3
.0

e
+

0
6

n

N
u
m

b
e
r 

o
f 
o
p
e
ra

ti
o
n
s
 p

e
r 

s
e
c
o
n
d
 p

e
r 

c
o
re

in−counter, nb. cores 1

in−counter, nb. cores 10

in−counter, nb. cores 20

in−counter, nb. cores 30

in−counter, nb. cores 40

Figure 9: Fanin benchmark, varying the
number of operations n. Higher is better.

Benchmarks:fanin and indegree2. To study scalability, we use the two small bench-
marks shown in Figures 6 and 7. The fanin benchmark performs n async calls, all of which
synchronize at a single finish block, making the finish block a potential source of contention.
The fanin benchmark implements a common pattern, such as a parallel-for, where a number
of independent computations are forked to execute in parallel and synchronize at termina-
tion. Our second benchmark, indegree2 implements the same pattern as in fanin but by
using binary fork join. This program yields a computation dag in which each finish vertex
has indegree 2.

Scalability study. Figure 8 shows the scalability of the fanin benchmark using different
counter data structures. With one core, the Fetch & Add counter performs best because
there is no contention, but with more, Fetch & Add gives worst performance for all core
counts (this pattern is occluded by the other curves). For more than one core, our in-counter
performs the best. The fixed-depth SNZI algorithm scales poorly when depth is small, doing
best at the tree depth of 8, where there are enough nodes to deal with contention among 40
cores. Increasing the depth further does not improve the performance, however.

Size-invariance study. Theorem 4.9 shows that the amortized contention of our in-
counter is constant. We test this result empirically by measuring the running time of the
fanin benchmark for different input parameters n. As shown in Figure 9, for all input sizes
considered and for all core counts, the throughput is within a factor 2 of the single-core
(no-contention) Fetch & Add counter. The throughput suffers a bit for the smaller values

19



0 10 20 30 40

5
.0

e
+

0
5

1
.0

e
+

0
6

1
.5

e
+

0
6

2
.0

e
+

0
6

2
.5

e
+

0
6

Number of cores

N
u
m

b
e
r 

o
f 
o
p
e
ra

ti
o
n
s
 p

e
r 

s
e
c
o
n
d
 p

e
r 

c
o
re

Fetch & Add

SNZI depth=2

SNZI depth=4

in−counter

Figure 10: Indegree-2 benchmark, using number of operations n = 8 million. Higher is
better.

of n because, at these values, there is not enough useful parallelism to feed the available
cores.

Low-indegree study. Our next experiment examines the overhead imposed by the in-
counter by using the indegree2 benchmark shown in Figure 7. The results, illustrated in
Figure 10, show that our in-counter data structure is within a factor 2 of the best performer,
the fetch-and-add counter. For SNZI, we only considered small-depths, since larger ones
took too long to run. With the fixed-depth SNZI, the benchmark creates many finish blocks
and thus many SNZI trees, becoming inefficient for large trees.

Threshold study. In Section 2, we presented a technique to control the grain of contention
by expanding the SNZI tree dynamically. Here, we report, using the fanin benchmark, the
results of varying the range of probabilities p = 1

threshold
for different settings of threshold. As

shown in Figure 11, essentially any threshold between 50 and 1000 works well. We separately
checked that on our test machine using a constant threshold such as 100 or 1000 yields good
results when using any number of cores. On a machine, perhaps with many more cores, the
best setting might be different or might also depend on the number of cores used.

6 Related Work

Upper bounds for several non-blocking data structures, accounting also for contention, have
been proven for several tree- and list-based search structures [13, 18, 40]. In these upper

20



1
0

5
0

1
0
0

5
0
0

1
0
0
0

5
0
0
0

1
0
0
0
0

5
0
0
0
0

1
0
0
0
0
0
0

in−counter

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

2.5e+06

N
u
m

b
e
r 

o
f 
o
p
e
ra

ti
o
n
s
 p

e
r 

s
e
c
o
n
d
 p

e
r 

c
o
re

Figure 11: Threshold experiment. Each bar represents a different setting for p = 1
threshold

.
All runs were performed using 40 cores. Higher is better.

bounds, contention factors in as a linear additive term, which is consistent with established
lower bounds for many problems in the general concurrency model [28, 31, 15, 16]. For
example, Ellen et al [13] prove that an operation on binary search trees can be completed
in O(h + c) time where h is the height of the tree during the operation and c is the amount
of point contention encountered during that operation, which is the maximum number of
operation accessing the tree at any one time during the operation. Thus, if contention does
arise, these data structures can suffer significantly. In contrast, for relaxed counters, we show
that contention for series-parallel programs can be upper bounded by a constant.

Complexity models for analyzing contention and techniques for designing algorithms for
reducing contention has also been important subject of study [37, 32, 12, 20, 21] Contention
has also been identified as an important practical performance issue in multiprocessor sys-
tems. Techniques that reduce contention by detecting and introducing wait periods or using
tokens to be passed between threads proved to be essential for reducing detrimental effects
of contention [3, 5]. Managing contention in software-transactional memory may require
contention managers that schedule transactions carefully to minimize aborted transactions
[43, 23, 27, 41].

Complexity models for analyzing contention and techniques for designing algorithms
for reducing contention has also been important subject of study. Gibbons, Matias, and
Ramachandran [21] proposed a variant of the PRAM model where concurrent accesses to
memory locations are allowed but are queued. Following up on this work they also designed
and analyzed low-contention algorithms in their proposed model [20]. There are several other
complexity models for accounting for contention [37, 32, 12]. Blumofe and Leiserson used
the atomic-access model [37] to analyze contention in work stealing due to steals [7]. Our
approach to analyzing contention is basen on more recent work of Fich et al. in [16].

In this paper, we consider non-blocking, or lock-free algorithms. Since our upper bounds

21



are quite good, O(1), our algorithms guarantee that each operation completes quickly in our
relaxed concurrency model. Wait-free data structures could guarantee similar properties in
the general concurrency model [25, 26]. Such data structures were traditionally considered
to be impractical, though recent results show that they might also be practical [34, 46].

At a high level of abstraction, our in-counter data structure can be viewed as a form
of a barrier, where the participating threads or processes wait for all to arrive and then
continue [11, 42, 24]. There are, however, important differences. In barriers, participating
processes cannot perform other work until all processes arrive at the barrier. In contrast, in
nested-parallel programs, parallelism far exceeds the number of processes and thus when a
thread reaches a synchronization point, the process running it seeks other threads to run.
Furthermore, synchronization points (barriers) are dynamic and can involve essentially any
number of threads.

7 Conclusion

The design and analysis of provably efficient non-blocking data structures has been a chal-
lenging problem. One reason is the complexity of the concurrency models. Another reason
is the difficulty of accounting for important practical concerns, such as contention, that
can significantly impact performance. In this paper, we show that it is possible to design
provably efficient data structures under a slightly more restrictive but still important concur-
rency model: nested-parallel computations. Our results take advantage of certain structural
invariants in nested parallel computations, specifically those that concern the creation, ter-
mination, and synchronization of threads. Interesting future research directions include the
design and analysis of other concurrent data structures for the nested-parallel concurrency
model and consideration of more general, but still restricted, models of concurrency, such as
those based on futures.

Acknowledgments

This research is partially supported by the a fellowship from Natural Sciences and Engineer-
ing Research Council of Canada (NSERC), and grants from National Science Foundation
(CCF-1320563 and CCF-1408940) and European Research Council (grant ERC-2012-StG-
308246). We are grateful to Doug Lea for his feedback on the paper.

References

[1] Umut A. Acar, Arthur Charguéraud, and Mike Rainey. Scheduling parallel programs
by work stealing with private deques. In PPoPP ’13, 2013.

[2] Umut A. Acar, Arthur Charguéraud, Mike Rainey, and Filip Sieczkowski. Dag-calculus:

22



A calculus for parallel computation. In Proceedings of the 21st ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP 2016, pages 18–32, 2016.

[3] A. Agarwal and M. Cherian. Adaptive backoff synchronization techniques. In Proceed-
ings of the 16th Annual International Symposium on Computer Architecture, ISCA ’89,
pages 396–406, 1989.

[4] James H. Anderson and Yong-Jik Kim. An improved lower bound for the time com-
plexity of mutual exclusion. Distrib. Comput., 15(4):221–253, December 2002.

[5] T. E. Anderson. The performance of spin lock alternatives for shared-memory multi-
processors. IEEE Trans. Parallel Distrib. Syst., 1(1):6–16, January 1990.

[6] Nimar S. Arora, Robert D. Blumofe, and C. Greg Plaxton. Thread scheduling for
multiprogrammed multiprocessors. In Proceedings of the tenth annual ACM symposium
on Parallel algorithms and architectures, SPAA ’98, pages 119–129. ACM Press, 1998.

[7] Robert D. Blumofe and Charles E. Leiserson. Scheduling multithreaded computations
by work stealing. J. ACM, 46:720–748, September 1999.

[8] Trevor Brown, Faith Ellen, and Eric Ruppert. A general technique for non-blocking
trees. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and Practice
of Parallel Programming, PPoPP ’14, pages 329–342, 2014.

[9] Philippe Charles, Christian Grothoff, Vijay Saraswat, Christopher Donawa, Allan Kiel-
stra, Kemal Ebcioglu, Christoph von Praun, and Vivek Sarkar. X10: an object-oriented
approach to non-uniform cluster computing. In Proceedings of the 20th annual ACM
SIGPLAN conference on Object-oriented programming, systems, languages, and appli-
cations, OOPSLA ’05, pages 519–538. ACM, 2005.

[10] Robert Cypher. The communication requirements of mutual exclusion. In Proceedings of
the Seventh Annual ACM Symposium on Parallel Algorithms and Architectures, SPAA
’95, pages 147–156, 1995.

[11] Edsger W Dijkstra and Carel S. Scholten. Termination detection for diffusing compu-
tations. Information Processing Letters, 11(1):1–4, 1980.

[12] Cynthia Dwork, Maurice Herlihy, and Orli Waarts. Contention in shared memory algo-
rithms. Journal of the ACM (JACM), 44(6):779–805, 1997.

[13] Faith Ellen, Panagiota Fatourou, Joanna Helga, and Eric Ruppert. The amortized com-
plexity of non-blocking binary search trees. In Proceedings of the 2014 ACM Symposium
on Principles of Distributed Computing, PODC ’14, pages 332–340, 2014.

[14] Faith Ellen, Yossi Lev, Victor Luchangco, and Mark Moir. Snzi: Scalable nonzero
indicators. In Proceedings of the Twenty-sixth Annual ACM Symposium on Principles
of Distributed Computing, PODC ’07, pages 13–22, 2007.

23



[15] Faith Fich and Eric Ruppert. Hundreds of impossibility results for distributed comput-
ing. Distrib. Comput., 16(2-3):121–163, September 2003.

[16] Faith Ellen Fich, Danny Hendler, and Nir Shavit. Linear lower bounds on real-world
implementations of concurrent objects. In Foundations of Computer Science, 2005.
FOCS 2005. 46th Annual IEEE Symposium on, pages 165–173. IEEE, 2005.

[17] Matthew Fluet, Mike Rainey, John Reppy, and Adam Shaw. Implicitly threaded paral-
lelism in Manticore. Journal of Functional Programming, 20(5-6):1–40, 2011.

[18] Mikhail Fomitchev and Eric Ruppert. Lock-free linked lists and skip lists. In Proceedings
of the Twenty-third Annual ACM Symposium on Principles of Distributed Computing,
PODC ’04, pages 50–59, 2004.

[19] Matteo Frigo, Charles E. Leiserson, and Keith H. Randall. The implementation of the
Cilk-5 multithreaded language. In PLDI, pages 212–223, 1998.

[20] Phillip B Gibbons, Yossi Matias, and Vijaya Ramachandran. Efficient low-contention
parallel algorithms. In Proceedings of the sixth annual ACM symposium on Parallel
algorithms and architectures, pages 236–247. ACM, 1994.

[21] Phillip B Gibbons, Yossi Matias, Vijaya Ramachandran, et al. The queue-read queue-
write pram model: Accounting for contention in parallel algorithms. SIAM Journal on
Computing, pages 638–648, 1997.

[22] James R. Goodman, Mary K. Vernon, and Philip J. Woest. Efficient synchronization
primitives for large-scale cache-coherent multiprocessors. In Proceedings of the Third
International Conference on Architectural Support for Programming Languages and Op-
erating Systems, ASPLOS III, pages 64–75, 1989.

[23] Tim Harris and Keir Fraser. Language support for lightweight transactions. In Proceed-
ings of the 18th Annual ACM SIGPLAN Conference on Object-oriented Programing,
Systems, Languages, and Applications, OOPSLA ’03, pages 388–402, 2003.

[24] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for barrier synchro-
nization. Int. J. Parallel Program., 17(1):1–17, February 1988.

[25] Maurice Herlihy. Wait-free synchronization. ACM Trans. Program. Lang. Syst., 13:124–
149, January 1991.

[26] Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM
Trans. Program. Lang. Syst., 15(5):745–770, November 1993.

[27] Maurice Herlihy, Victor Luchangco, Mark Moir, and William N Scherer III. Software
transactional memory for dynamic-sized data structures. In Proceedings of the twenty-
second annual symposium on Principles of distributed computing, pages 92–101. ACM,
2003.

24



[28] Maurice Herlihy, Nir Shavit, and Orli Waarts. Linearizable counting networks. Dis-
tributed Computing, 9(4):193–203, 1996.

[29] Shams Mahmood Imam and Vivek Sarkay. Habanero-java library: a java 8 framework for
multicore programming. In 2014 International Conference on Principles and Practices
of Programming on the Java Platform Virtual Machines, Languages and Tools, PPPJ
’14, Cracow, Poland, September 23-26, 2014, pages 75–86, 2014.

[30] Intel. Intel threading building blocks. 2011. https://www.threadingbuildingblocks.
org/.

[31] Prasad Jayanti, King Tan, and Sam Toueg. Time and space lower bounds for nonblock-
ing implementations. SIAM Journal on Computing, 30(2):438–456, 2000.

[32] Richard M Karp and Yanjun Zhang. Randomized parallel algorithms for backtrack
search and branch-and-bound computation. Journal of the ACM (JACM), 40(3):765–
789, 1993.

[33] Gabriele Keller, Manuel M.T. Chakravarty, Roman Leshchinskiy, Simon Peyton Jones,
and Ben Lippmeier. Regular, shape-polymorphic, parallel arrays in haskell. In Proceed-
ings of the 15th ACM SIGPLAN international conference on Functional programming,
ICFP ’10, pages 261–272, 2010.

[34] Alex Kogan and Erez Petrank. A methodology for creating fast wait-free data structures.
In Proceedings of the 17th ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming, PPoPP ’12, pages 141–150, 2012.

[35] Doug Lea. A java fork/join framework. In Proceedings of the ACM 2000 conference on
Java Grande, JAVA ’00, pages 36–43, 2000.

[36] Daan Leijen, Wolfram Schulte, and Sebastian Burckhardt. The design of a task par-
allel library. In Proceedings of the 24th ACM SIGPLAN conference on Object oriented
programming systems languages and applications, OOPSLA ’09, pages 227–242, 2009.

[37] Pangfeng Liu, William Aiello, and Sandeep Bhatt. An atomic model for message-
passing. In Proceedings of the fifth annual ACM symposium on Parallel algorithms and
architectures, pages 154–163. ACM, 1993.

[38] Maged M. Michael and Michael L. Scott. Nonblocking algorithms and preemption-
safe locking on multiprogrammed shared memory multiprocessors. J. Parallel Distrib.
Comput., 51(1):1–26, May 1998.

[39] Mark Moir and Nir Shavit. Concurrent data structures. Handbook of Data Structures
and Applications, pages 47–14, 2007.

25



[40] Rotem Oshman and Nir Shavit. The skiptrie: Low-depth concurrent search without
rebalancing. In Proceedings of the 2013 ACM Symposium on Principles of Distributed
Computing, PODC ’13, pages 23–32, 2013.

[41] William N. Scherer, III and Michael L. Scott. Advanced contention management for
dynamic software transactional memory. In Proceedings of the Twenty-fourth Annual
ACM Symposium on Principles of Distributed Computing, PODC ’05, pages 240–248,
2005.

[42] M. L. Scott and J. M. Mellor-Crummey. Fast, contention-free combining tree barriers.
Technical report, 1992.

[43] Nir Shavit and Dan Touitou. Software transactional memory. In Proceedings of the
Fourteenth Annual ACM Symposium on Principles of Distributed Computing, PODC
’95, pages 204–213, 1995.

[44] Nir Shavit and Asaph Zemach. Combining funnels. J. Parallel Distrib. Comput.,
60(11):1355–1387, November 2000.

[45] Julian Shun, Guy E. Blelloch, Jeremy T. Fineman, and Phillip B. Gibbons. Reducing
contention through priority updates. In Proceedings of the Twenty-fifth Annual ACM
Symposium on Parallelism in Algorithms and Architectures, SPAA ’13, pages 152–163,
2013.

[46] Shahar Timnat and Erez Petrank. A practical wait-free simulation for lock-free data
structures. In Proceedings of the 19th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, PPoPP ’14, pages 357–368, 2014.

[47] R Kent Treiber. Systems programming: Coping with parallelism. Technical report,
International Business Machines Incorporated, Thomas J. Watson Research Center,
1986.

26



A Running Time

Lemma A.1. If an in-counter node a at any point had a surplus and then phase changed to
0 surplus, then no live vertices in the dag point to a or its subtree.

Proof. We prove this by induction on the size of a’s subtree. Assume that node a in the
in-counter has a surplus at time t, and consider the decrement operation that caused a’s
surplus to become 0.

If a has no children, we only need to consider the handles that point directly at a, since it
has no subtree. Note that it must be the case that a was incremented by an arrive operation
that started there, in a increment operation that had an increment handle to a’s parent.
During that operation, a decrement handle to a was created, and placed as the second of
the pair of decrement handles returned. If a was now decremented, both dag vertices that
shared these decrement handles must have claimed them, and thus, by Lemma 4.4, neither
of them is now live. In particular, this means that the dag vertex that owned the increment
handle to a is dead. So, no live dag vertex has a handle to a.

Assume that the lemma holds for nodes with subtrees of size at most k. Now consider
a SNZI node a which has a subtree of size k + 1. Consider the decrement operation that
caused a’s surplus to change to 0. There are two possible cases: either (1) this decrement’s
first depart is at a, or (2) it started at one of a’s descendants.

Case 1. This decrement started at a. Note that a has children, but neither of them
has a surplus at the time this decrement operation starts, since otherwise, a would have a
surplus due to its children, and would not phase change. Note that for a to have children,
an increment operation must have started at a and used touch to create a’s children. This
same increment then arrived at one of a’s children. So at least one of a’s children must
have had surplus at some point, and now neither of them do. By the induction hypothesis,
if both of them had surplus at some point, then no live dag handles point anywhere in a’s
childrens’ subtrees now. Furthermore, since by Lemma 4.3 only one increment handle and
one decrement handle are ever created for a, no handle in the dag points anywhere in a’s
subtree (including a itself).

If only one of a’s children ever had surplus, by the induction hypothesis, that child now
has no handles pointing to it or its subtree. Furthermore, for that child’s surplus to become
0, both of the dag vertices that were created in the spawn operation that created a’s children
must have used their decrement handles. Note that this includes the only dag vertex that
had an increment handle to a’s other child. Thus, neither of a’s children have any live
handles pointing to them, and since a’s handles have been used, no live handles now point
to anywhere in a’s subtree.

Case 2. The decrement that caused a’s phase change started in a’s subtree, but not at
a itself. Let ar denote a’s right child and al denote its left child. Without loss of generality,
assume that the decrement started in ar’s subtree.

First note that ar must have had surplus before this decrement started, since no node
can have a negative surplus. We also know that after this decrement, ar has a surplus of 0,

27



since it must have phase changed in order for a depart to reach a. Thus, by the induction
hypothesis, no live handles point to ar.

We now only have to consider al to see whether there are still live handles pointing to that
subtree. We know that al does not have surplus, since otherwise a would not phase change
due to this decrement. Assume by contradiction that there is a live handle pointing to al.
Then by the induction hypothesis, al has never had a surplus, and there is a live increment
handle to it. Note that, by the algorithm, the dag vertex that has the increment handle to
al must have a decrement handle pointing to ar. By Lemma 4.4, this decrement pointer has
never been used, thus contradicting our earlier conclusion that ar has 0 surplus.

B Space bounds

We show that our in-counter data structure is compact by establishing a safety property
that makes it possible to remove SNZI nodes that correspond to deleted sub-graphs of the
sp-dag. Due to “space” constraints, we present the details in the appendix.

We would like to show that our in-counter data structure does not take much more space
than the dag computation uses on its own. To do so, we will show when it is safe to delete
SNZI nodes in relation to the state of the dag vertices that have handles to them. First,
however, we note that even without the dynamic shrinking of the SNZI tree, there are never
more nodes in the in-counter than the total number of dag vertices created in an execution.
This is because whenever a dag vertex spawns to create two more children, the SNZI tree
also grows by two nodes.

However, we can do better than that by deleting SNZI nodes that will never be used
again. For this, we begin with the following lemma:

Lemma B.1. Any node whose surplus was positive and then returned to 0 may be deleted
safely from the SNZI tree.

This lemma is a direct consequence of Lemma 4.6. Any node whose surplus goes back to
0 has no live handles pointing to it, and is thus safe for deletion.

Using this knowledge, we can shrink the SNZI tree as the computation progresses. To be
able to express the next theorem, we need to define when a vertex u in the dag has finished.
This is a recursive definition:

• Base Case. If u has no children, then it is finished when it signals the end of its
computation.

• Iterative Case. If u has children, then is is finished when both of its children have
finished.

We note the following important lemma which relates finished vertices to the state of the
execution in an sp-dag that uses in-counters.

Lemma B.2. If a vertex u has finished, then the decrement handle that it claimed has been
used.

28



Proof. We prove this by induction on the number of descendants u has. If u doesn’t have
any descendants, then we know it had to use its claimed decrement handle before it finished,
since by definition, it finishes when it signals, and to signal, it needs to call the decrement

operation on the in-counter.
Assume the lemma holds for any dag vertex u with up to k descendants. Let u be a dag

vertex with k + 1 descendants. By the induction hypothesis, both of its children have used
their claimed decrement handles. Note that of those two handles, one was claimed by u and
passed down to its children. Thus, u’s decrement handle has been used.

Now, we can relate finished vertices to deallocation.

Theorem B.3. Consider a dag vertex u and its increment handle, pointing to SNZI node a.
If u has finished, then any node in a’s subtree, excluding a itself, can be safely deleted from
the SNZI tree.

Proof. We prove this by induction on the size of a’s subtree. If a doesn’t have children, then
we are done - no nodes are deleted when u finishes.

Assume that if u is finished, and has an increment handle to SNZI node a, which has a
subtree of size at most k, then a’s entire subtree, excluding a itself, can be deleted. Let u
be a finished vertex whose increment handle points to a node a with a subtree of size k + 1.

Note that by definition, if u is finished, then both of its children are finished as well.
Note that, by the algorithm, u’s children’s increment handles must point to a’s children in
the SNZI tree. Thus, by the induction hypothesis, a’s entire subtree, excluding itself and
its children, can be deleted safely. In particular, it means that neither of a’s children have
surplus due to their children. Note that only one of a’s two children had an arrive operation
start on it (this was done by u’s increment operation, which created a’s children). Thus, if
neither of them has surplus due to their children, at most one of them has surplus. Note
that the decrement handle to that child was owned by one of u’s children. By Lemma B.2,
since both of u’s children have finished, they have both used their decrement handles. Thus,
a’s child has been decremented, and now has surplus 0. Furthermore, even if a’s other child
never had surplus, the dag vertex that owned its increment handle has used its decrement
handle, so a’s other child can never grow. Thus, both of a’s children can be safely deleted.

C Supplementary experiments

C.1 SNZI reproduction study

For our experiments, we implemented the SNZI algorithm for the increment and decrement
operations as described in the original SNZI paper [14]. To gain confidence in this implemen-
tation and check that it performs as expected, we first performed a reproduction study. The
reproduction study reproduces the results shown in Figure 10 of the original SNZI paper [14],
but uses our own implementation and our 40-core test machine, which is slightly smaller than
the machine used in the original paper, and also has quite a different architecture. Ours is a

29



0 10 20 30 40

1e
+

06
5e

+
06

2e
+

07
5e

+
07

Number of cores

N
um

be
r 

of
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d 

pe
r 

co
re

●

SNZI depth=1
SNZI depth=2
SNZI depth=3
SNZI depth=4
SNZI depth=5
Fetch & Add

●

●

●
●

●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

Figure 12: Reproduction of the original SNZI experiment that is presented by Figure 10 of
the original SNZI paper [14].

4 node, 10 core Intel x86 machine, whereas the machine from the original paper is a 24-node,
dual core Sun Sparc.

The plot in Figure 12 shows the results. We see that the best setting for the SNZI tree
height is 4, whereas in the original SNZI study, on the authors’ 48-core test machine, the best
setting is 5. This difference is consistent with the different processor counts of the machines.
Our fetch-and-add scales significantly better than theirs, which can be attributed to the dif-
ference between the more tightly coupled nature of our machine (4 nodes versus 24 nodes).
Our best setting achieves almost the same throughput as the original: approximately 1000
operations per millisecond (note that the Figure reports throughput in seconds). Further-
more, the trends for varying numbers of cores/processors are similar. For example, in both
studies the worst performer after just four cores is the single-cell, fetch-and-add algorithm
and that, on 40/48 cores, the best performing setting of SNZI outperforms the single-cell,
fetch-and-add algorithm by at least an order of magnitude.

C.2 Disabling NUMA

To determine whether NUMA has a significant effect on the performance of the counter
structures, we ran the experiment shown in Figure 8, but this time with NUMA disabled.
The result of this experiment shown in Figure 13. What this experiment demonstrates is
that the NUMA configuration has no significant effect on performance.

30



0 10 20 30 40

0e
+

00
1e

+
06

2e
+

06
3e

+
06

4e
+

06

proc

N
um

be
r 

of
 o

pe
ra

tio
ns

 p
er

 s
ec

on
d 

pe
r 

co
re

●

●

Fetch & Add
SNZI depth=1
SNZI depth=2
SNZI depth=3
SNZI depth=4
SNZI depth=5
SNZI depth=6
SNZI depth=7
SNZI depth=8
SNZI depth=9
in−counter

●

●

●

●

●
●

●
● ● ●

●
● ●

●

●

●

● ● ●

●
●

●
●

●
● ●

Figure 13: Same experiment as shown in Figure 8, except with NUMA first-touch policy
used instead of round-robin interleaving.

31


