
Minimizing Queries for Active Labeling with
Sequential Analysis

Jack Paparian

CMU-CS-16-130

October 2016

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Christopher James Langmead, Chair

Carl Kingsford, Faculty

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2016 Jack Paparian



Keywords: Cluster-based Active Learning, Sequential Probability Ratio Test, Strong and
Weak Oracles, Binary Space-partitioning Trees



For my family



iv



Abstract
When building datasets for supervised machine learning problems, data is often

labelled manually by human annotators. In domains like medical imaging, acquiring
labels can be prohibitively expensive. Both active learning and crowdsourcing have
emerged as ways to frugally label datasets. In active learning, there has been re-
cent interest in algorithms that exploit the data’s structure to direct querying. When
learning from crowds, one must balance the accuracy and cost of different oracles
when gathering labels; weak oracles are assumed to be most accurate when labeling
samples from label-homogeneous regions of space.

In this thesis, we explore how the data’s structure can be leveraged for both of
these techniques. The sequential probability ratio test (SPRT) provides the backbone
for our contributions. Using the SPRT, we provide a cluster-based active learning al-
gorithm to find a small, homogeneous partitioning of the data. We also use the SPRT
to measure the confidence of a weak oracle’s label by analyzing its estimates on
neighboring labels. The optimality of the SPRT allows the algorithms to inherently
minimize the average number of queries required before their termination.



vi



Acknowledgments
Firstly, this thesis would not have been possible without the guidance of my ad-

visor, Christopher James Langmead. I had the privilege of working with him for the
past two and a half years on a variety of projects. In all of those ventures, he encour-
aged my curiosity and helped shape my nebulous ideas into tangible approaches. I’m
grateful for all the great discussions we had in front of the whiteboard in his office.
I would also like to thank Carl Kingsford for serving on my thesis committee. Spe-
cial thanks goes to Rachel Jue for helping me with the diagrams in this document.
Finally, I would like to thank all my friends at Carnegie Mellon for everything that
they have taught me over the past five years. It’s been a blast!



viii



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Background 5
2.1 Active Learning with Multiple Oracles . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Proactive Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.2 Active Learning from Crowdsourcing . . . . . . . . . . . . . . . . . . . 6

2.2 Related Work on Cluster-based Active Learning . . . . . . . . . . . . . . . . . . 6
2.3 Probabilistic Lipschitzness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4 Sequential Probability Ratio Test . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.4.2 Average Sample Number . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.4.3 Lower bounding the probability that the SPRT will terminate in ≤ k steps 10

3 Sequential PLAL 15
3.1 PLAL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Sequential PLAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.1 Sequential PLAL Algorithm . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2 Error Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2.3 Query Bound . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4 Sequential Learning from Strong and Weak Oracles 31
4.1 UBS Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Sequential UBS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.3 SeqUBS Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.4 Proactive SeqPLAL with SeqUBS . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

ix



5 Conclusion 39
5.1 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.2 Future Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

Bibliography 41

x



List of Figures

2.1 Two clusters satisfying the Lipschitz condition with Lipschitz constant 1/λ. Prob-
abilistic Lipschitzness bounds the amount of points that violate this condition. . . 8

2.2 A sequential probability ratio test example where p0 = 0.1, p1 = 0.3, α = 0.01,
and β = 0.01 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.1 PLAL descending down three levels of the binary space-partitioning tree. . . . . 16
3.2 Number of samples made during the Query functions of PLAL and SeqPLAL.

For SeqPLAL α = β = 0.05. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Percentage of points queried across different dimensions of dataset A for differ-

ent values of ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.4 Percentage of points queried across different dimensions of dataset B for differ-

ent values of ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.5 Percentage of points queried across different synthetic datasets for different val-

ues of ε. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.6 Labeling error across different dimensions of dataset A for different values of ε. . 26
3.7 Labeling error across different dimensions of dataset B for different values of ε. . 27
3.8 Labeling error across different dimensions of dataset C for different values of ε. . 28
3.9 Wisconsin Diagnostic Breast Cancer Dataset . . . . . . . . . . . . . . . . . . . . 29
3.10 UCI Mushroom Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.11 Ringnorm Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.12 20 Newgroups dataset with the atheism and religion categories. . . . . . . . . . . 30

4.1 SeqUBS results on Wisconsin Diagnostic Breast Cancer dataset. α = β = 0.1. . . 35
4.2 SeqUBS results on UCI mushroom dataset. α = β = 0.1. . . . . . . . . . . . . . 36
4.3 SeqUBS results on Ringnorm Dataset. α = β = 0.1. . . . . . . . . . . . . . . . 36
4.4 SeqPLAL with and without SeqUBS on Synthetic Dataset B with 25 dimensions. 37
4.5 SeqPLAL with and without SeqUBS on Wisconsin Diagnostic Breast Cancer

dataset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

xi



xii



List of Tables

1.1 Notation used in this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Five values for Ẽn(n) used to approximate the ASN curve . . . . . . . . . . . . 11

xiii



xiv



Chapter 1

Introduction

1.1 Motivation

With the vast amount of content on the Internet, it is now easier than ever to compile datasets
for various machine learning tasks. Sites hosting images, videos, and documents can be crawled,
and data can be stored inexpensively due to great technological developments in storage systems.
The increase in readily available data makes it easier to train sophisticated machine learning mod-
els. However, most machine learning learning tasks are supervised, meaning that each sample
requires a label to distinguish it from other samples. Ultimately, the challenge in building useful
datasets for supervised machine learning tasks becomes assigning labels to a number of samples
sufficient to train the desired model.

In most cases, labels are acquired by human annotators. This makes labeling every unlabeled
sample an enormous use of time. One strategy to avoid labeling all unlabeled samples is active
learning. Active learning is an interactive framework for iteratively training a machine learning
algorithm in which the algorithm decides whether a sample will be useful enough to label and
incorporate into the training set [13]. A budget is set to place a limit on the amount of samples
that the algorithm can afford to label. This encourages the algorithm to label only the samples
that will be most useful for training the data.

A burgeoning area of active learning research is cluster-based active learning, which lever-
ages the spatial positions of queried samples to infer the labels of unlabeled samples. These
algorithms try to divide the data into label homogeneous regions in order to propagate the major-
ity label in each partition to the unlabeled points. The latest approaches in these algorithms have
been the use of cluster trees or binary space-partitioning trees to represent partitions of the data
and descend down the tree to divide each region of space into smaller sections.

Another area of active learning research is the generalization of the oracle. Though active
learning algorithms are traditionally defined as having access to a single, infallible oracle, this
assumption is often unrealistic in real life [6]. An extension to active learning is to consider
the existence of multiple oracles that the algorithm can query. It is realistic to assume that the
oracles have various levels of experience with working with a domain of data. This means that
some oracles will label samples more accurately than others, and it is common for the oracle
with more experience to cost more for each label than the less experienced oracle. For example,

1



consider the task of labeling medical images with their corresponding diagnosis. A medical
expert is more likely to accurately label these images than medical students, but a medical expert
is likely to be much more expensive and less available than medical students. In these situations,
algorithms should try to leverage all oracles, only querying the strongest oracles in situations
where the weak oracle is not confident.

1.2 Contributions
In this work, we describe two novel algorithms for cluster-based active learning and active learn-
ing with strong and weak oracles, named SeqPLAL and SeqUBS respectively. Both algorithms
are based on sequential hypothesis testing, a framework for testing a null hypothesis against an
alternative hypothesis after analyzing each sample in a stream [21]. At each step, the algorithm
decides whether to reject the null hypothesis, accept it, or look at another sample to gain more
information. It is commonly used on binary labeled data to determine whether a population has
more or less than a certain threshold of samples with the same label.

In Chapter 2 we describe the assumptions we make about structure of data in cluster-based
active learning, explain the assumptions we make about the strong and weak oracles we use, and
define the sequential probability ratio test, the backbone of the algorithms in this thesis. Chap-
ter 3 defines the the SeqPLAL algorithm for augmenting the PLAL cluster-based active learning
algorithm [18] with the sequential probability ratio test to minimize the number of queries. In
Chapter 4, we define the SeqUBS algorithm to minimize the number of queries to the weak ora-
cle and bound the calls to the strong oracle when estimating the confidence in the correctness of
labels assigned by the weak oracle. Finally, in Chapter 5 we summarize our results and provide
future directions for continuing this work.

1.3 Notation
Table 1.1 defines the notation that we use in this thesis.

2



Symbol Definition

d sample dimension

X set of samples from domain [0, 1]d

P distribution over X × {0, 1}

PX marginal distribution of P over X

l
labeling function with domain X and

target {0, 1}

Table 1.1: Notation used in this thesis

3



4



Chapter 2

Background

In this section we explain the fundamentals of the algorithms presented in the following chapters.
In Section 2.1 we discuss some previous work on active learning with multiple, imperfect oracles.
Then in Section 2.2 we explain background work on cluster-based active learning. Next we
explain the notion of Probabilistic Lipschitzness of data in Section 2.3. Finally we discuss in
detail the sequential probability ratio test in Section 2.4.

2.1 Active Learning with Multiple Oracles

In its simplest form, active learning consists of a single, perfectly accurate oracle that labels
samples when queried. In order to make this more realistic, recent work has generalized the
active learning framework to interact with a set of oracles who may have different levels of
accuracy or different costs. With Internet tools such as Amazon’s Mechanical Turk1, it has
become possible for multiple oracles to provide labels to points, though these labels may be less
accurate than those a domain expert would provide. The extensions to active learning’s labeling
model fall into two main camps: proactive learning and crowdsourcing. We give a brief overview
of their ideas in the following sections.

2.1.1 Proactive Learning

Proactive learning describes pool-based active learning with two oracles that have different dis-
tinguishing properties [6]. Generally, proactive learning describes situations where one of the
oracles is more available or accurate than the other; however, this oracle tends to be more expen-
sive. When labeling points, a decision must be made about which oracle to query to minimize
labeling cost without acquiring too many incorrect labels.

At each labeling step, proactive learning chooses a tuple of a point and oracle, denoted
(x∗, k∗), by maximizing a utility function U(x, k), which defines the tradeoff between labeling
value and cost. Formally, this is defined as

1https://www.mturk.com/

5

https://www.mturk.com/


(x∗, k∗) = arg max
x∈X,k∈K

U(x, k) (2.1)

A common choice of utility function is

U(x, k) =
P (ans | x, k) ∗ V (x)

Ck
(2.2)

where P (ans | x, k) is the probability that oracle k will correctly label sample x, V (x) is the
“value” of labeling point x, and Ck is the cost of using oracle k to label a point. The cost of using
an oracle is typically known upfront, and the value of labeling a sample x is usually estimated
with a heuristic such as uncertainty or information density [14]. The challenge then becomes
estimating P (ans | x, k). One approach is to cluster the data as an initial step and test whether
the weak oracle is available or accurate at labeling the cluster exemplars. Then, availability or
accuracy can be propagated to the other points in the clusters by decreasing confidence as a
function of distance from the centroid [6]. Another approach is to select a small batch of points
to have both oracles label and store P (ans | x, k) as a count of correct predictions on the batch
[10].

2.1.2 Active Learning from Crowdsourcing
With the help of services like Amazon’s Mechanical Turk, it is now possible to hire annotators to
label samples in datasets. However, some annotators may be more or less accurate than others,
and there is no a priori knowledge about which annotators will be less accurate. The challenge
then becomes identifying the most accurate annotators from the labels.

Some approaches assume that annotators can be assumed to have a fixed rate of error on any
samples they are asked to label. Under these assumptions, researchers have developed algorithms
for identifying annotators that are too inaccurate to continue querying [7, 11]. Other approaches
have been to learn the parameters than govern an annotator’s probability of labeling a given
sample correctly [23, 24].

2.2 Related Work on Cluster-based Active Learning
While the majority of active learning research has been focused on searching for candidate clas-
sifiers in a hypothesis space, an emerging area of research aims to directly use the structure of the
data to make inferences about the labels or unlabeled points. These methods operate under the
assumption that samples close together in space are likely to have the same label. This paradigm
is known as cluster-based active learning [2, 4].

One of the first efforts to use the structure of data was made by Zhu, Lafferty, and Ghahramani
[26]. They imposed a neighborhood graph on the data and propagate labels from labeled points
to nearby points. At each step of the active learning model, they find the unlabeled points which
when labeled would maximally reduce the estimated risk of the Bayes classifier. However, this

6



method does not correct for the sampling bias that will occur by selecting points only based on
estimated risk.

Combining the ideas of label propagation and avoiding sampling bias, Dasgupta and Hsu de-
veloped an hierarchical sampling algorithm that finds the homogeneous clusters while bounding
label error [5]. Their algorithm, known as the DH algorithm, takes a cluster tree of unlabeled
points as input and maintains a set of active clusters called a pruning from which to sample
points. At each step of the algorithm, a cluster is chosen from the pruning either randomly or
actively based on a heuristic, an unlabeled point is labeled, and a decision is made to split the
cluster if it contains a sufficient number of different labels. Since the cluster tree is fixed be-
fore any labels are assigned, labels from parent clusters can be used in analysis of child clusters
without introducing sampling bias [2]. Since the bound of the number of queries depends on the
depth of the cluster tree, the performance of the algorithm will be dependent on the size of the
cluster tree’s pruning with label homogeneous clusters. We will work with a variation of this
idea developed by Urner et al. [18] that bounds the labeling error without having the depth of the
tree as a factor.

2.3 Probabilistic Lipschitzness

2.3.1 Definition

When designing hierarchical active learning algorithms, one assumes that a hierarchical parti-
tioning of the data will split the data into near-homogeneous regions. The DH algorithm relies
on the assumption that there exists an agglomerative clustering of the data that creates a homo-
geneous pruning of the data. Instead of conditioning on the hierarchical clustering provided to
the algorithm, we will be making assumptions about the data itself.

This clustering assumption we make is called Probabilistic Lipschitzness, and it is a relax-
ation of the standard Lipschitz condition of labeling function. Probabilistic Lipschitzness bounds
the probability that any two points with opposite labels have less than λ distance separating them.
This formalizes a cluster assumption that points which are closer together are likely to have the
same label by bounding the amount of points that violate the Lipschitz condition. A visualization
of this assumption is shown in Figure 2.1.

We formally define Probabilistic Lipschitz as follows:

Definition Probabilistic Lipschitzness Let φ : R→ [0, 1]. We call f : X → R a φ-Probabilistic
Lipschitz function with respect to a PX over X if ∀ λ > 0:

Pr
x∼PX

[
Pr
y∼PX

[
|f(x)− f(y)| > (1/λ)‖x− y‖

]
> 0

]
≤ φ(λ) (2.3)

Probabilistic Lipschitzness [16] allows us to bound the heterogeneity of a given region of
space. For a data distribution PX with labeling function l that is φ-Lipschitz, the weight of points
that have opposite label in a λ-ball around any point x is bounded by φ(λ), where φ is a non-
decreasing function. Examples of φ analyzed in [16] are φ(λ) = λn and φ(λ) = e−1/λ. We later
use φ(λ) to bound the data-diameter of our dataset.

7



Figure 2.1: Two clusters satisfying the Lipschitz condition with Lipschitz constant 1/λ. Proba-
bilistic Lipschitzness bounds the amount of points that violate this condition.

2.4 Sequential Probability Ratio Test

2.4.1 Definition
The sequential probability ratio test (SPRT) is one of the most basic and fundamental tools in
sequential analysis. It allows for the testing of hypotheses by analyzing one sample at a time,
instead of observing a pre-defined number of samples at once [21].

In its most basic form, the sequential probability ratio tests two hypotheses: a null hypothesis
H0 and an alternative hypothesis H1. In our example we will test the mean of the binomial
distribution representing the distribution over the labels of the points where H0 denotes p = p0
and H1 denotes p = p1.

At the each stage of the test we observe the label of a new sample. For each step m of the
test we calculate:

p1m
p0m

=
m∏
i=1

Pr(Xi = xi | p = p1)

Pr(Xi = xi | p = p0)
=
pdm1 (1− p1)m−dm

pdm0 (1− p0)m−dm
(2.4)

where dm is the number of 1s seen. Analyzing the ratio of the two likelihood functions allows
us to compute which value of p is more likely given the observations. We choose two positive
constantsA andB, whereB < A, as boundaries for stopping the test. HypothesisH0 is accepted
if

p1m
p0m
≤ B (2.5)

and hypothesis H1 is accepted if

8



p1m
p0m
≥ A . (2.6)

In practice, we compute log
(
p1m
p0m

)
and test if it is≤ log (B) or≥ log (A) after each observed

sample.
We choose the boundaries A and B as functions of the false positive rate α and the false

negative rate β. The tuple (α, β) is called the strength of the test. In order to construct a test with
strength (α, β), we set

A =
1− β
α

(2.7)

and

B =
β

1− α
. (2.8)

Let us interpret the sequential probability ratio test geometrically. Let fm represent the log-
likelihood function after m samples. The test accepts H0 if fm ≤ log( β

1−α) and accepts H1

if fm ≥ log(1−β
α

). We can draw the regions of acceptance of H0 and H1 by expressing the
termination criteria as dm ≥ h0 + ms and dm ≤ h1 + ms respectively, where h0, h1, and s are
defined as:

h0 =
log

β

1− α

log
p1(1− p0)
p0(1− p1)

h1 =
log

1− β
α

log
p1(1− p0)
p0(1− p1)

s =

log
1− p0
1− p1

log
p1(1− p0)
p0(1− p1)

(2.9)

The line dm = h0 + ms is the H0 acceptance line, and dm = h1 + ms is the H1 acceptance
line. The different acceptance regions are shown in Figure 2.2, where the black curve is an
example trajectory where enough 1s have been seen to accept H1.

Despite its simplicity, the sequential probability ratio test is optimal in the sense that it re-
quires the average fewest observations of all tests with the same power [22]. This property allows
the sequential probability ratio test to be the foundation of our results in the following chapters.

2.4.2 Average Sample Number
In the context of sequential analysis, the SPRT’s expected sample sizeEp(n) is called the average
sample number. An approximate formula for the ASN in the binomial case is:

Ẽp(n) =
L(p) log

β

1− α
+ (1− L(p)) log

1− β
α

p log
p1
p0

+ (1− p) log
1− p1
1− p0

(2.10)

9



Figure 2.2: A sequential probability ratio test example where p0 = 0.1, p1 = 0.3, α = 0.01, and
β = 0.01

where L(p) is the operating characteristic (OC) curve (the probability that the null hypothesis
will be accepted). L(p) is approximated as follows:

L̃(p) =

(
1− β
α

)h
− 1(

1− β
α

)h
−
(

β

1− α

)h (2.11)

where h is determined by:

p =

1−
(

1− p1
1− p0

)h
(
p1
p0

)h
−
(

1− p1
1− p0

)h . (2.12)

This formulation of L̃(p) makes the computation of Ẽp(n) nontrivial for arbitrary values of
p. However, we can approximate Ẽp(n) by computing its value at five specific values of p and
fitting a function to those points. Those five points are listed in Table 2.1.

2.4.3 Lower bounding the probability that the SPRT will terminate in ≤ k
steps

Though the sequential probability ratio test is guaranteed to eventually terminate, there is no
guarantee it will terminate after k steps for some k ∈ N. However, we can easily bound the

10



p L̃(p) Ẽp(n)

0 1
log

β

1− α
log

1− p1
1− p0

p0 1− α
(1− α) log

β

1− α
+ α log

1− β
α

p0 log
p1
p0

+ (1− p0) log
1− p1
1− p0

s
log

1− β
α

log
1− β
α
− log

β

1− α

− log
β

1− α
log

1− β
α

log
p1
p0

log
1− p0
1− p1

p1 β
β log

β

1− α
+ (1− β) log

1− β
α

p1 log
p1
p0

+ (1− p1) log
1− p1
1− p0

1 0
log

1− β
α

log
p1
p0

Table 2.1: Five values for Ẽn(n) used to approximate the ASN curve

11



probability that an SPRT will terminate in ≤ k steps. We walk through the proof provided in
[21].

Let n be the random variable for the number of samples required by the sequential ratio
probability test. For any positive integer k, let P0(n ≤ k) be the probability that n ≤ k when H0

is true, and let let P1(n ≤ k) be the probability that n ≤ k when H1 is true.

Let us define z = log
f(x; θ1)

f(x; θ0)
, and let zi = log

f(xi; θ1)

f(xi; θ0)
for the ith sample xi.

If
k∑
i=1

zi ≥ logA, then n ≤ k. Likewise, If
k∑
i=1

zi ≤ logB, then n ≤ k. It follows that

P1(
k∑
i=1

zi ≥ A) ≤ P1(n ≤ k) (2.13)

and

P0(
k∑
i=1

zi ≤ B) ≤ P0(n ≤ k) (2.14)

With a simple application of the Central Limit Theorem, we find that

P1(
k∑
i=1

zi ≥ A) = 1− Φ

(
logA− kE1(z)√

kσ1(z)

)
(2.15)

where σ1(z) is the standard deviation of z whenH1 is true and Φ is the cumulative distribution
function of the standard Normal distribution. From Equation 2.13 and Equation 2.15 we arrive
at the lower bound

1− Φ

(
logA− kE1(z)√

kσ1(z)

)
≤ P1(n ≤ k) (2.16)

Similarly, we find that

P0(
k∑
i=1

zi ≤ B) = Φ

(
logB − kE0(z)√

kσ0(z)

)
(2.17)

where σ0(z) is the standard deviation of z when H0 is true. From Equation 2.14 and Equa-
tion 2.17 we arrive at the lower bound

Φ

(
logA− kE0(z)√

kσ0(z)

)
≤ P0(n ≤ k) (2.18)

12



These two inequalities provide tight lower bounds for the probability that the SPRT will
terminate after k steps.

For direct calculation, we note that

Eθ(z) = Eθ

(
log

f(x; θ1)

f(x; θ0)

)
= θ log

θ1
θ0

+ (1− θ) log
1− θ1
1− θ0

(2.19)

and

σθ(z) =
√
V arθ(z)

=
√
Eθ(z2)− E2

θ (z)

=

√
θ log2 θ1

θ0
+ (1− θ) log2 1− θ1

1− θ0
−
(
θ log

θ1
θ0

+ (1− θ) log
1− θ1
1− θ0

)2

=

√
θ(1− θ)

(
log2 θ1

θ2
+ log2 1− θ1

1− θ0
− 2 log

θ1
θ0

log
1− θ1
1− θ0

)
(2.20)

13



14



Chapter 3

Sequential PLAL

In this chapter we introduce the PLAL algorithm proposed by Urner et al. [18] and modify it
with the sequential probability ratio test to query fewer labels while achieving the same error
bound. In Section 3.1 we describe the PLAL algorithm and its properties. Then in Section 3.2
we introduce the SeqPLAL algorithm and explain how the modification of PLAL changes its
expected number of queries. We compare PLAL with SeqPLAL with experiments in Section 3.3
that demonstrate the savings achieved with SeqPLAL while meeting the same PAC bounds.

3.1 PLAL Algorithm

The PLAL algorithm is similar in spirit to the DH algorithm in that it descends down a binary
space-partitioning tree to identify a homogeneous partitioning of the data. The algorithm starts
at the root of the tree (which represents the entire dataset) and proceeds down to the leaves of
the tree (individual samples). At each node of the tree, the algorithm queries randomly selected
nodes and asks an oracle for their labels. If all the labels are the same, then that node is de-
clared homogeneous, and all unlabeled points in that node are assigned the majority label. If
the randomly selected points have a mixture of labels, then the node is declared heterogeneous,
and the algorithm will split that node and analyze its children. PLAL pseudocode is provided in
Algorithm 1, and the algorithm is illustrated in Figure 3.1.

PLAL takes in user-defined ε and δ parameters to specify the amount of error they are willing
to incur. By choosing smaller values for ε and δ, more points are queried by the oracle. Since ε
and δ control the amount of queries made, the parameters define the budget for the algorithm.

For data drawn from any data-generating distribution with m samples, PLAL labels at least
(1− ε)m samples correctly with probability at least (1− δ). The bound on the number of queries
assumes that the data satisfies a Probabilistic Lipschitz condition and requires an upper bound on
the data-diameter of the points at each tree level to bound the number of samples. The authors
prove more specific query bounds for various data-diameter bounds on a dyadic spatial tree in
[18].

In contrast to the DH algorithm, which descends down a hierarchical clustering of the data,
PLAL uses a spatial tree to descend down different regions of the input space. Though the authors
focused on dyadic trees, the PLAL algorithm can use any spatial tree, including those that are

15



Figure 3.1: PLAL descending down three levels of the binary space-partitioning tree.

16



adaptive to intrinsic dimension such as a random projection tree or a PCA-tree [20].

Algorithm 1 PLAL
Input: unlabeled sample SX = (x1, . . . , xm), spatial tree T , parameters ε, δ
level = 0
active cells[0].append(Root(T ))
while active cells[level] not empty do

q level = level·2·ln (2)+ln (1/δ)
ε

for all C in active cells[level] do
C.query(m)
if all labels in C are the same then

label all points in C ∩ S with that label and mark C inactive
else

if there are unqueried points in C ∩ S then
active cells[level + 1].append(Left(C), Right(C))

end if
end if

end for
level = level + 1

end while

3.2 Sequential PLAL
PLAL’s appeal comes from its bounds on error and queries. However, PLAL frequently queries
large percentages of the data in order to estimate whether or not a region of space is homoge-
neous. By introducing sequential hypothesis testing, PLAL can be altered to query less points
while providing the same bounds on error and better average bounds on number of queries. We
demonstrate this melding of ideas in our SeqPLAL algorithm.

3.2.1 Sequential PLAL Algorithm
The Sequential PLAL algorithm, shortened as SeqPLAL, follows the same framework as PLAL.
We formulate the problem of homogeneity testing as one of hypothesis testing. We provide pseu-
docode for the SeqPLAL algorithm in Algorithm 2 and its querying procedure in Algorithm 3.

At each run of the algorithm, we run two sequential probability ratio tests in parallel: one
tests whether the cell is homogeneous 0s or has more than an ε-fraction of 1s, and the other tests
whether the cell is homogeneous 1s or has more than an ε-fraction of 0s. Each SPRTs test the
mean of the binomial distribution, where p represents the probability of a point having label 1.

For the first SPRT we set H0 : p = 0 and H1 : p = ε. This setup establishes an indifference
region, a range of values for p for which we cannot make a decision, at (0, ε). We terminate the
SPRT the first time a 1 is seen, as this is not possible under H0, or when a sufficient number of
0s have been seen. Similarly, for the second SPRT we set H2 : p = 1 − ε and H3 : p = 1. This

17



SPRT terminates the first time a 0 is seen, or when a sufficient number of 1s have been seen. Let
us define

test0 = log
f(x; p1)

f(x; p0)
(3.1)

and

test1 = log
f(x; p3)

f(x; p2)
(3.2)

where pi corresponds to the value of p for hypothesis Hi.
The user defines α and β parameters that determine the stopping boundaries A and B, which

we use to stop both SPRTs. There are four ways for the querying procedure to terminate.
1. We declare the cell inactive and label all the unlabeled points in it with 0s if

test0 ≤ logB ∧ test1 ≤ logB. (3.3)

2. We declare the cell inactive and label all the unlabeled points in it with 1s if

test0 ≥ logA ∧ test1 ≥ logA. (3.4)

3. We declare the cell heterogeneous and split it if

test0 ≥ logA ∧ test1 ≤ logB. (3.5)

4. We have queried up to q level points, at which point declare the cell heterogeneous and
split it.

It is common in sequential analysis to enforce a limit on the number of samples to observe
before making a decision, as we do in option 4. This is because there is no guarantee that the
sequential probability ratio test will terminate after k samples, even though it is guaranteed to
terminate eventually. Unlike traditional truncated SPRTs, we do not incur any additional error
by forcing an early decision. This is because no error is incurred by splitting a cell and querying
points from its children [21].

This parallel SPRT model is similar to the hierarchical hypothesis testing proposed in [25].
We test whether the cell has some 0s or some 1s, and after making that decision we test whether
the cell is homogeneous or heterogeneous. However, this parallel model allows us to test all
hypotheses simultaneously. This scheme is also similar to the Armitage method for sequentially
testing multiple hypotheses [1], except we avoid making unnecessary comparisons between hy-
potheses.

18



Algorithm 2 SeqPLAL
procedure SEQPLAL(T, α, β)

Input: unlabeled sample SX = (x1, . . . , xm), spatial tree T , parameters ε, α, β
level = 0
active cells[0].append(Root(T ))
while active cells[level] not empty do

q level = level·2·ln (2)+ln (1/δ)
ε

for all C in active cells[level] do
(isHomogeneous, label) = QUERY(C,m)
if isHomogeneous then

label all points in C ∩ S with label and mark C inactive
else

if there are unqueried points in C ∩ S then
active cells[level + 1].append(Left(C), Right(C))

end if
end if

end for
level = level + 1

end while
end procedure

3.2.2 Error Bound

Our proof for the bound on the error of SeqPLAL follows the format of the proof of the PLAL
error bound from [18].
Theorem 3.2.1. With probability at least 1 − δ, where δ = α + β, SeqPLAL labels at least
(1− ε)m many points from SX correctly.

Proof Consider a cell C in the spatial tree that is marked inactive by SeqPLAL. C was either
marked inactive because all points in the cell had been labeled by the oracle, in which case all the
labels assigned are correct, or SeqPLAL marked C homogeneous when the hypothesis testing
procedure terminated. In the latter case, we show that Sequential PLAL mislabeled at most an
ε-fraction of the points in C. Let us assume that min{Pr[l = 1 | C], Pr[l = 0 | C]} ≥ ε, meaning
that a label is assigned with probability at most 1 − ε. Let us consider the sequential querying
procedure for C. In the previous section we considered the four possible ways that the Query
function could terminate.

The first termination possibility is when C is declared homogeneous with 0 labels. Since the
indifference region of test0 is (0, ε), we accept the mislabeling of at most ε-fraction of points in
C when we choose H0. By the definition of the SPRT, H0 will be accepted when H1 is true with
probability at most β. Since test0 will make an ε-bad decision with probability at most β, it will
make an ε-good decision with probability at least 1− β.

Similarly, the second termination possibility is when C is declared homogeneous with 1
labels. Since the indifference region of test1 is (1 − ε, 1), we accept the mislabeling of at most
ε-fraction of points in C when we choose H3. With probability α, H3 will be accepted when H2

19



Algorithm 3 SeqPLAL
procedure QUERY(C, numPoints, α, β, ε)

A = log((1− β)/α), B = log(β/(1− α))
Z1 = 0, Z2 = 0
p0 = 0, p1 = ε, p2 = 1− ε, p3 = 1
labels =[]
points = randomSample(C, numPoints)
for point p ∈ points do

l = queryLabel(p)
labels.append(l)
if l == 1 then

Z1 = Z1 + log(p1/p0)
Z2 = Z2 + log(p3/p2)

else
Z1 = Z1 + log((1− p1)/(1− p0))
Z2 = Z2 + log((1− p3)/(1− p2))

end if
if Z1 ≤ B ∧ Z2 ≤ B then return (True, 0)
else if Z1 ≥ A ∧ Z2 ≥ A then return (True, 1)
else if Z1 ≥ A ∧ Z2 ≤ B then return (False,None)
end if

end for
return (False,None)

end procedure

20



is true. Just as in the previous case, test1 will make an ε-bad decision with probability at most
α, so it will make a good decision with probability 1− α.

The last two ways resulted in C being declared heterogeneous and C’s children are passed to
the next level of the algorithm. Since the majority label is not assigned to the unlabeled points in
C, no error is incurred when C is declared heterogeneous.

We can convert the strength of the tests (α, β) to PAC bounds as long as α+β = δ (due to the
union bound), since this will bound the probability that we accept the result of a test that makes
an ε-bad decision. For situations where we have no prior knowledge of the distribution of 0s and
1s in the data, it makes the most sense to set α = β = δ/2. The connection between the strength
of an SPRT to PAC bounds has previously used to reduce the number of samples observed before
returning a hypothesis [12].

Thus, with probability at least 1− δ (and test strength (δ/2, δ/2)), the SeqPLAL will label at
least (1− ε)m points correctly.

3.2.3 Query Bound

Our proof of the query bound follows that format of the PLAL query bound proof in [18]. For
our bound on the number of queries, we define spread of the samples points at level k of the
spatial tree as the data diameter. We denote λSk as the maximum data-diameter in a cell at
the kth level of the tree. Formally, λSk = max{diam(C, S) : C is a cell at level k}, where
diam(C, S) = max

x,y∈C∩S
‖x− y‖.

Theorem 3.2.2. Let X = [0, 1]d be the domain, PX a distribution over X , l : X → {0, 1} a
labeling function that is φ-Lipschitz for some function φ, let qi = i∗2∗ln (2)+ln (1/δ)

ε
denote the

query number of SeqPLAL for level i and let (λi)i∈N be a decreasing sequence with λi ∈ [0,
√
d].

Then the expected maximum number of queries that SeqPLAL makes on an unlabeled i.i.d
sample S from PX of size m, given that the data diameter of S at level k satisfies λSk ≤ λk ∀k, is
bounded by min

k∈N
(qk2

k + φ(λk) ·m).

Proof The Probabilistic Lipschitzness property of the data PX allows us to bound the number
of points that lie in heterogeneous cells at any level k of the spatial tree T . First, let’s consider
the number of unlabeled points at the beginning of round k + 1. For any sample point x that
lies in a label heterogeneous cluster at level k, there is a sample point y in the cluster such
that the labeling function l on x and y violates the standard Lipschitz condition for Lipschitz
constant 1/λkS . Since λSk ≤ λk, the labeling function l on x and y violates the standard Lipschitz
condition for Lipschitz constant 1/λk as well. By the Probabilistic Lipschitz assumption of the
data, we can bound the total weight of points that violate the standard Lipschitz condition by
φ(λk). Since λk was fixed before drawing the sample, the expected number of sample points that
lie in heterogeneous clusters at level k is bounded by φ(λk) · m. This means that the expected
number of points that are unlabeled at the beginning of round k + 1 is bounded by φ(λk) ·m.

Now we will bound the number of queries made up to level k. Let’s consider the partition
of the space that SeqPLAL returned at the start of round k, which consists of cells declared
homogeneous in earlier rounds and cells that are active in round k. The sequential probability
ratio test terminates after a maximum of qk steps, so qk is an upper bound on the number of label-

21



queries the algorithm has made so far on each cell in the partition. Since the sequence (qi)i∈N
is non-decreasing and there are at most 2k cells in the partition, it follows that qk2k is an upper
bound on the number of queries made up to level k.

Combining these two bounds, it follows that the number of queries made by SeqPLAL is
bounded by qk + φ(λk) ·m for any k.

In practice, the amount of queries that SeqPLAL makes for each cell will usually be less
than qk. Similar to the role of the ε and δ parameters in PLAL, α, β, and ε control the amount
of queries made in SeqPLAL. In order to show that the number of queries made by SeqPLAL
will usually be less than qk, let us bound the number of samples in the two general termination
conditions for SPRTs: when H0 is accepted and when H1 is accepted. The average samples
numbers of the sequential probability ratio tests are compared with the value of m for different
values of k in Figure 3.2. Though the average sample number may be larger than m at the
top levels of the tree, the value of m increased as the algorithm descends down the tree while
the average sample number of the SPRT stays constant. This means that in practice SeqPLAL
should query less points than PLAL while guaranteed to never query more points than PLAL.

Figure 3.2: Number of samples made during the Query functions of PLAL and SeqPLAL. For
SeqPLAL α = β = 0.05.

3.3 Experiments

To compare the performance of SeqPLAL with PLAL, we first run the two algorithms on syn-
thetic datasets. Following the examples in [18], we create three datasets by sampling 2000 points
from a Gaussian Mixture Model.

22



Each data distribution consisted of four dense Gaussians and four sparse Gaussians, all of
which had diagonal covariance matrices. 80% of the points were sampled from the dense Gaus-
sians, and 20% were sampled from the sparse Gaussians. The clusters are assigned binary labels.
Each of the three datasets has a different variance assigned to the dense and sparse Gaussians.
Dataset A has dense clusters with variance 0.1 and sparse clusters with unit variance. Dataset
B has dense clusters with variance 0.01 and sparse clusters with variance 0.1. Dataset C has
dense clusters with variance 0.001 and sparse clusters with variance 0.1. This makes dataset C
the easiest to cluster and dataset A the hardest to cluster.

(a) Synthetic data A with 5 dimensions averaged
over 30 trials.

(b) Synthetic data A with 15 dimensions averaged
over 30 trials.

(c) Synthetic data A with 25 dimensions averaged
over 30 trials.

Figure 3.3: Percentage of points queried across different dimensions of dataset A for different
values of ε.

The number of queries made on the synthetic datasets is shown in Figures 3.3, 3.4, and 3.5.
Across synthetic datasets A, B, and C, SeqPLAL consistently queries less points than PLAL
across values of ε ranging from 0.01 to 0.30. The number of queries made did not vary as the

23



(a) Synthetic data B with 5 dimensions averaged
over 30 trials.

(b) Synthetic data B with 15 dimensions averaged
over 30 trials.

(c) Synthetic data B with 25 dimensions averaged
over 30 trials.

Figure 3.4: Percentage of points queried across different dimensions of dataset B for different
values of ε.

dimension of each dataset increased from 5 to 15 to 25 dimensions.
After testing SeqPLAL on synthetic data, we tested it on real world datasets. Figure 3.9

compares SeqPLAL and PLAL performance on the Wisconsin Diagnostic Breast Cancer dataset
[15]. The number of queries on the data was similar between the two algorithms for small
values of ε. As the value of ε increased, SeqPLAL queried less points while incurred about the
same error. On the UCI mushroom dataset SeqPLAL outperformed PLAL for all values of ε,
while incurring slightly more error than PLAL. The performance of the two algorithms on the
mushroom dataset is shown in Figure 3.10.

While the error and query bounds hold for all datasets, both SeqPLAL and PLAL will have
the best performance on datasets that are Probabilistic Lipschitz for a sufficiently small Lipschitz
constant. We next discuss two datasets on which both SeqPLAL and PLAL have difficulty:

24



(a) Synthetic data C with 5 dimensions averaged
over 30 trials.

(b) Synthetic data C with 15 dimensions averaged
over 30 trials.

(c) Synthetic data C with 25 dimensions averaged
over 30 trials.

Figure 3.5: Percentage of points queried across different synthetic datasets for different values
of ε.

Ringnorm and 20 Newsgroups. The Ringnorm dataset [3] was designed as an adversarial dataset
to test decision tree algorithms. The 20 Newsgroups dataset is a collection of news articles
spanning 20 different categories [9]; for our experiments we compared the religion and atheism
categories and constructed feature vectors using bag-of-words from the top 200 words. Since
these datasets are not as well clusterable as the previous ones, neither PLAL nor SeqPLAL were
able to significantly reduce the number of queries made when labeling the dataset. However,
for values of ε greater than 0.15, SeqPLAL tended to query less points than PLAL without
significantly increasing the empirical error. This shows even on datasets for which cluster-based
active learning may not work well, SeqPLAL will still have practical advantages over PLAL
while guaranteeing the same PAC bounds.

25



(a) Synthetic data A with 5 dimensions averaged
over 30 trials.

(b) Synthetic data A with 15 dimensions averaged
over 30 trials.

(c) Synthetic data A with 25 dimensions averaged
over 30 trials.

Figure 3.6: Labeling error across different dimensions of dataset A for different values of ε.

3.4 Conclusion
In this section we explained how the sequential probability ratio test can augment the PLAL algo-
rithm that query less points while achieving the same PAC bounds on error. Our experiments val-
idate our theoretical results, as SeqPLAL never queries more than PLAL and frequently queries
less than PLAL on datasets from a variety of domains.

26



(a) Synthetic data B with 5 dimensions averaged
over 30 trials.

(b) Synthetic data B with 15 dimensions averaged
over 30 trials.

(c) Synthetic data B with 25 dimensions averaged
over 30 trials.

Figure 3.7: Labeling error across different dimensions of dataset B for different values of ε.

27



(a) Synthetic data C with 5 dimensions averaged
over 30 trials.

(b) Synthetic data B with 15 dimensions averaged
over 30 trials.

(c) Synthetic data C with 25 dimensions averaged
over 30 trials.

Figure 3.8: Labeling error across different dimensions of dataset C for different values of ε.

28



(a) Percent of data queried on breast cancer dataset. (b) Labeling error on breast cancer dataset.

Figure 3.9: Wisconsin Diagnostic Breast Cancer Dataset

(a) Percent of data queried on mushroom dataset. (b) Labeling error on mushroom dataset.

Figure 3.10: UCI Mushroom Dataset

29



(a) Percentage of queries made on Ringnorm
dataset.

(b) Labeled error on Ringnorm dataset.

Figure 3.11: Ringnorm Dataset

(a) Percentage of queries made on 20 Newsgroups
dataset.

(b) Labeled error on 20 Newsgroups dataset.

Figure 3.12: 20 Newgroups dataset with the atheism and religion categories.

30



Chapter 4

Sequential Learning from Strong and
Weak Oracles

In this chapter we explain different approaches to labeling samples when both a strong and weak
oracle are available. The weak oracle is assumed to be significantly cheaper to query than the
strong oracle. In Section 4.1 we discuss the UBS algorithm introduced in [17] and discuss why
it is not feasible to implement directly. We modify the UBS algorithm with the sequential proba-
bility ratio test in a more practical algorithm we call SeqUBS. SeqUBS is defined is Section 4.2.
We explore simulations of SeqUBS on different datasets in Section 4.3. We then combine Seq-
PLAL and SeqUBS into a proactive learning algorithm and compare its performance to that of
SeqPLAL.

4.1 UBS Algorithm

As discussed in the overview in Chapter 2, there have been many approaches to working with
multiple oracles or crowd workers. However, the errors made are typically modeled as random
noise. In reality, the types of errors that a oracle makes are unlikely to be random. Urner et
al. [17] instead models weak oracles as making correct labels when points lie in homogeneous
regions and making errors when points lie in heterogeneous regions. This assumption is more
realistic than the assumption that a weak oracle will make random mistakes. The authors also
assume that the labeling function l is Lipschitz with a constant 1/L.

In their paper, Urner et al. define an s-smoothed labeling function πs(x) as a measure of
neighborhood heterogeneity around a point x, where s is a similarity function such as Euclidean
distance. They denote w : X → [0, 1] as the probability that the weak oracle will assign the label
1 to a x ∈ X , and they assume that the w(x) should closely match πs(x). In their algorithm, they
try to estimate the probability that a weak oracle’ estimates are correct based on the homogeneity
of the neighborhood around points. We denote this algorithm as UBS, after the surnames of the
authors.

UBS assumes that the algorithm has access to a pool of samples PX that can be labeled by
a weak or strong oracle. It also assumes the labels are binary. From the set of unlabeled points,
we wish to label a subset of points T ⊂ PX to pass to an agnostic learner. The UBS algorithm

31



pseudocode is shown in Algorithm 4.

Algorithm 4 UBS Algorithm
Input: unlabeled sample X , weak oracle w, strong oracle s, ball radius β, threshold η
(S, T ) = drawRandomSamples(X )
Sxy = {}
for s ∈ S do

y = w.label(s)
Sxy = Sxy ∪ (s, y)

end for
Txy = {}
for t ∈ T do

B = Sxy.getPointsInBall(t, β)
w = mean(labels(B ∩ S))
if w < η then

L = L ∪ (t, 0)
else

if w > 1− η then
L = L ∪ (t, 1)

else
y = s.label(t)
L = L ∪ (t, y)

end if
end if

end for

First, two random samples of domain points, S and T , are sampled i.i.d. from the marginal
distribution PX . All the points in S are labeled by the weak oracle. For each point x ∈ T , we
estimate the confidence in the correctness of the label that the weak oracle would be assign to x.
This is calculated by centering a ball of radius β at each x ∈ T . We then calculate the average
label of all the points in S contained in the ball:

wS,β(x) =
1

|S|
∑

(z,y)∈Bβ(x)∩S

y (4.1)

where Bβ(x) = {y ∈ X | d(x, y) ≤ β} for some distance function d.
The user sets a confidence threshold η to determine when to query the strong oracle. If

min{wS,β(x), 1 − wS,β(x)} then the algorithm calls the strong oracle. Otherwise the algorithm
labels the point as 1 if min{wS,β(x), 1− wS,β(x)} > 1/2 and 0 if min{wS,β(x), 1− wS,β(x)} <
1/2.

This algorithm only works if there are a sufficient number of points in Bβ(x) ∩ S; without a
sufficiently large sample, the confidence estimate this provides will be weak. The authors prove
that there will exist a |S| such that the difference between πs(x) and wS,β(x) is small. However,

32



their proof is nonconstructive in that they do not provide a way to calculate a sufficient size for S.
Additionally, their proof sets the value of the ball’s radius β to ε/L, where ε is the error between
πs(x) and wS,β(x) and L. Generally, it is not known what the Lipschitz constant of the labeling
function will be, since the labels are unknown. Alas, though this algorithm is simple, bounds
the error made in the confidence estimates, and bounds the calls to the strong oracle, it does not
explain how to choose the proper variable values to make the algorithm work in real life. In the
next section, we discuss our modifications to UBS to make their algorithm practical.

4.2 Sequential UBS

Thought the UBS algorithm is simple and intuitive, it requires an unknown number of points to
be labeled by the weak oracle. Additionally, it is not known how to practically set the radius β
since the Lipschitz constant of the labeling function is not known. Since there is no general way
to find satisfactory values, we propose the following alterations to the UBS algorithm.

Though we cannot use the same β value used in the UBS algorithm, it is still desirable to
estimate the labels for each x ∈ T from the points within the neighborhoods of x. In their task of
finding the size of neighborhoods that each weak oracle can accurately label, the authors of [19]
estimate the radius by finding the smallest distance that minimizes the disagreement that different
weak oracles make when labeling the same points. Since we assume access to only one weak
oracle, we cannot estimate the “range” of the weak oracle by optimizing over its disagreement
with other weak oracles.

Since we do not know the appropriate size of S to set to bound the error that wS,β(x) makes,
we instead propose randomly choosing a set of points T to pass to the agnostic learner. For each
x ∈ T , we get the nearest neighboring points to x, and we randomly select neighbors for the
weak oracle to label. Using the same joint sequential probability ratio test defined in Section 3.2,
we can decide whether the points inside the neighborhood are η-homogeneous or heterogeneous.
If the sample is η-homogeneous, then we assign the majority label to the point; otherwise, we
query the strong oracle to label the point. This method uses the same idea of labeling T by
sampling points in their neighborhood, but it has the advantage that the sequential probability
ratio test will require a minimal number of samples before making a decision. The algorithm
pseudocode is provided in Algorithms 5 and 6.

One challenge is that we need to choose a value for k, the number of neighbors. Our solution
is to choose k based on the maximum cost a user is willing to incur for a single point. If all of
the neighbors have been labeled by the weak oracle and the sequential probability ratio test has
not terminated, then we will label x with the strong oracle. In this case, for each x ∈ T that
maximal cost incurred will be k · cw + cs, where cw is the cost of the weak oracle and cs is the
cost of the strong oracle. For our experiments, we set k = cs/cw to bound the maximal cost for
a given point by 2cs.

For any k that we choose, we can lower bound the probability that the sequential probability
ratio test will terminate after k samples using the bound from Section 2.4.3. This bound will
provide a conservative estimate of whether the strong oracle will be queried.

33



Algorithm 5 SeqUBS Algorithm
Input: unlabeled sample set X , weak oracle wt, strong oracle st, sample size m, threshold η,
number of neighbors k
(S, T ) = drawRandomSamples(X )
L = {}
for t ∈ T do

N = S.getNeighbors(t, k)
(isHomogeneous, label) = GETCONFIDENCE(N,α, β, η, wt)
if isHomogeneous then

L = L ∪ (t, label)
else

y = st.label(t)
L = L ∪ (t, y)

end if
end for
return L

Algorithm 6 getConfidence Function
procedure GETCONFIDENCE(N,α, β, η)

A = log((1− β)/α), B = log(β/(1− α))
Z1 = 0, Z2 = 0
p0 = 0, p1 = η, p2 = 1− η, p3 = 1
labels = []
neighbors = randomShuffle(N)
for point p ∈ neighbors do

l = wt.label(p)
labels.append(l)
if l == 1 then

Z1 = Z1 + log(p1/p0)
Z2 = Z2 + log(p3/p2)

else
Z1 = Z1 + log((1− p1)/(1− p0))
Z2 = Z2 + log((1− p3)/(1− p2))

end if
if Z1 ≤ B ∧ Z2 ≤ B then return (True, 0)
else if Z1 ≥ A ∧ Z2 ≥ A then return (True, 1)
else if Z1 ≥ A ∧ Z2 ≤ B then return (False,None)
end if

end for
return (False,None)

end procedure

34



4.3 SeqUBS Experiments
We simulated SeqUBS in order to assess its feasibility. Since UBS was presented as a mathemat-
ical proof of concept, the authors of [17] did not provide any simulation on any dataset on which
to test. Even though we cannot compare SeqUBS, we present our simulated SeqUBS below.

Following the definition of the weak oracle in [17], we simulate a weak oracle by using a
k-nearest neighbor classifier trained on points from dense regions of the dataset. To find these
points, a kernel density estimator with Gaussian kernel is fitted to the data, and a small number
of points are sampled from the model. This allows us to pick points that are representative of the
dataset, which a weak oracle would be likely to know. For our experiments, we set k = 3 so the
weak oracle’s estimate would be locally restricted.

In our experiments we set the cost of the strong oracle to 10 and the cost of the weak oracle
to 1. For each experiment trial we selected 50 random samples to form T , and using SeqUBS we
labeled the points in T . In Figure 4.1 we show SeqUBS’s accuracy and cost on the breast cancer
dataset. Figure 4.1a shows that the accuracy is high across all thresholds η, and Figure 4.1b
shows that for values of η ≥ 0.36 the cost of labeling drops to less than 50. With only the
strong oracle available for labeling, the cost would have been 500, so SeqUBS’s leveraging of the
weak oracle shows clear savings. Figure 4.2 demonstrates similar results on the UCI mushroom
dataset. In Figure 4.3, we see that SeqUBS always calls the strong oracle for small values of η;
when η increases, SeqUBS relies more on the estimates from the weak oracle, and cost drops
significantly while accuracy drops modestly.

(a) SeqUBS accuracy on breast cancer dataset. (b) SeqUBS cost on breast cancer dataset.

Figure 4.1: SeqUBS results on Wisconsin Diagnostic Breast Cancer dataset. α = β = 0.1.

4.4 Proactive SeqPLAL with SeqUBS
In addition to being used as a practical algorithm for the same problem setting as UBS, SeqUBS
can be used as a proactive subroutine for cluster-based active learning algorithms when both a
strong and a weak oracle can be queried. We can easily combine SeqPLAL and SeqUBS by

35



(a) SeqUBS accuracy on mushroom dataset. (b) SeqUBS cost on mushroom dataset.

Figure 4.2: SeqUBS results on UCI mushroom dataset. α = β = 0.1.

(a) SeqUBS accuracy on Ringnorm dataset. (b) SeqUBS cost on Ringnorm Dataset.

Figure 4.3: SeqUBS results on Ringnorm Dataset. α = β = 0.1.

calling the getConfidence subroutine from Algorithm 6 in place of the queryLabel function in
Algorithm 3. We call this algorithm Proactive SeqPLAL.

We compare the performance of SeqPLAL without UBS and Proactive SeqPLAL on dataset
B with dimension 25 from Section 3.3 and the breast cancer data. For our experiments we set the
cost of the strong oracle as 10 and the cost of the weak oracle as 1. We compare the respective
costs and labeling errors of both algorithms on dataset B with dimension 25 in Figure 4.4. Access
to the weak oracle clearly allows Proactive SeqPLAL to incur less cost, and calling the weak
oracle doesn’t increase its error beyond SeqPLAL’s error. In Figure 4.5 we observe a similar
decrease in cost while maintaining the same level of error on the breast cancer dataset.

36



(a) Cost of labeling Synthetic Dataset B with 25 di-
mensions.

(b) Labeling error on Synthetic Dataset B with 25
dimensions.

Figure 4.4: SeqPLAL with and without SeqUBS on Synthetic Dataset B with 25 dimensions.

(a) Cost of labeling breast cancer dataset. (b) Labeling error on breast cancer dataset.

Figure 4.5: SeqPLAL with and without SeqUBS on Wisconsin Diagnostic Breast Cancer dataset.

4.5 Conclusion

SeqUBS is a practical modification to the UBS algorithm. It captures the same idea as UBS
that the confidence of a weak oracle’s label can be estimated by the consistency of the labels of
neighboring points. Using the sequential probability ratio test, SeqUBS minimizes the number
of points that need to be seen before making a decision about inferring the weak label or calling
the strong oracle. The probability that the SPRT will terminate in a given number of steps can
be lower bounded, and the maximum number of neighboring points that SeqUBS observes can
be set by the user, who can condition on the ratio between the cost of the strong oracle and weak
oracle. Additionally, SeqUBS can be used as a proactive subroutine to SeqPLAL when a weak
oracle is available in addition to the strong oracle. Using SeqUBS, Proactive SeqPLAL incurs

37



significantly less cost than SeqPLAL without increasing the amount of labeling error.

38



Chapter 5

Conclusion

5.1 Discussion
We have introduced two algorithms, SeqPLAL and SeqUBS, that can save cost when labeling
samples in datasets. SeqPLAL finds a small, label-homogeneous partitioning of the data and
infers the labels of unlabeled points based on the majority label of each cell. SeqUBS measures
the confidence of a weak oracle’s labels by assessing whether the point is in a majority region;
the strong oracle is only called when the sample is from a heterogeneous region. Both of these
algorithms are built upon the concept of region homogeneity, and the sequential probability ratio
test is an efficient way to test whether a region is sufficiently homogeneous or heterogeneous.
The SPRT is truncated to enforce a limit on the maximal cost of each step.

In our experiments in Chapter 3, we show that SeqPLAL labels much fewer samples than the
original PLAL algorithm both empirically and theoretically. The sequential probability ratio test
parameters are set so SeqPLAL achieves the same PAC bounds on error as PLAL. Since UBS
is a mathematical explanation of the validity behind the idea of measuring weak oracle labeling
confidence, we do not provide a side-by-side comparison of UBS with SeqUBS in Chapter 4.
Instead we provide simulations of the improvements that SeqUBS achieves over the baseline of
access to a single strong oracle. Finally, we show that SeqUBS can be used as a subroutine to
SeqPLAL when the algorithm has access to both a strong and weak oracle in an algorithm we
call Proactive SeqPLAL. Access to a weak oracle allows Proactive SeqPLAL to incur less cost
than SeqPLAL without losing accuracy.

5.2 Future Direction
We hope our work inspires interest in the use of sequential analysis for efficient region homo-
geneity testing for problems in active learning and crowdsourcing. There are a few areas we see
for immediate future work.

An improvement to the SeqUBS algorithm could be to observe the samples in order of in-
creasing distance away from the point being estimated. As in nearest neighbors methods, we
assume the labels of the neighbors points closest to any given point will be most indicative of its
label. However, observing samples in an order of increasing distance from a point would not be

39



observing them independently, so the standard guarantees of the sequential probability ratio test
may no longer apply. Previous work has shown that for certain probability mass functions of a
label value observation, the average sample number of the sequential probability ratio test can
be upper and lower bounded even when the samples are not observed independently [8]. Though
this is valid for statistical models in item response theory, it remains unclear whether these results
can be generalized to our conditions.

Another improvement could be an evaluation of asymmetric choices of values for the α and β
parameters in the sequential probability ratio test. In some domains there may be prior knowledge
that the classes are imbalanced, in which case it may be much more critical to accurately discover
points from one class more than another. Since α and β control the false positive and false
negative rates respectively, their tuning could allow the sequential probability ratio test to be
more sensitive to a given class.

40



Bibliography

[1] P Armitage. Sequential analysis with more than two alternative hypotheses, and its rela-
tion to discriminant function analysis. Journal of the Royal Statistical Society. Series B
(Methodological), 12(1):137–144, 1950. 3.2.1

[2] Maria-Florina Balcan and Ruth Urner. Active learning–modern learning theory. Encyclo-
pedia of Algorithms, pages 8–13, 2016. 2.2

[3] Leo Breiman. Bias, variance, and arcing classifiers. 1996. 3.3

[4] Sanjoy Dasgupta. Two faces of active learning. Theoretical computer science, 412(19):
1767–1781, 2011. 2.2

[5] Sanjoy Dasgupta and Daniel Hsu. Hierarchical sampling for active learning. In Proceedings
of the 25th international conference on Machine learning, pages 208–215. ACM, 2008. 2.2

[6] Pinar Donmez and Jaime G Carbonell. Proactive learning: cost-sensitive active learning
with multiple imperfect oracles. In Proceedings of the 17th ACM conference on Information
and knowledge management, pages 619–628. ACM, 2008. 1.1, 2.1.1, 2.1.1

[7] Pinar Donmez, Jaime G Carbonell, and Jeff Schneider. Efficiently learning the accuracy of
labeling sources for selective sampling. In Proceedings of the 15th ACM SIGKDD interna-
tional conference on Knowledge discovery and data mining, pages 259–268. ACM, 2009.
2.1.2

[8] Yuan-chin Ivan Chang. Application of sequential probability ratio test to computerized
criterion-referenced testing. Sequential Analysis, 23(1), 2004. 5.2

[9] Ken Lang. Newsweeder: Learning to filter netnews. In Proceedings of the 12th interna-
tional conference on machine learning, pages 331–339, 1995. 3.3

[10] Seungwhan Moon and Jaime G. Carbonell. Proactive learning with multiple class-sensitive
labelers. In Data Science and Advanced Analytics (DSAA), 2014 International Conference
on, pages 32–38, Oct 2014. doi: 10.1109/DSAA.2014.7058048. 2.1.1

[11] Vikas C Raykar and Shipeng Yu. Eliminating spammers and ranking annotators for crowd-
sourced labeling tasks. Journal of Machine Learning Research, 13(Feb):491–518, 2012.
2.1.2

[12] Dale Schuurmans and Russell Greiner. Sequential pac learning. In Proceedings of the
eighth annual conference on Computational learning theory, pages 377–384. ACM, 1995.
3.2.2

[13] Burr Settles. Active learning. Synthesis Lectures on Artificial Intelligence and Machine

41



Learning, 6(1):1–114, 2012. 1.1

[14] Burr Settles and Mark Craven. An analysis of active learning strategies for sequence la-
beling tasks. In Proceedings of the conference on empirical methods in natural language
processing, pages 1070–1079. Association for Computational Linguistics, 2008. 2.1.1

[15] W Nick Street, William H Wolberg, and Olvi L Mangasarian. Nuclear feature extraction
for breast tumor diagnosis. In IS&T/SPIE’s Symposium on Electronic Imaging: Science
and Technology, pages 861–870. International Society for Optics and Photonics, 1993. 3.3

[16] Ruth Urner and Shai Ben-David. Probabilistic lipschitzness a niceness assumption for
deterministic labels. In Learning Faster from Easy Data-Workshop@ NIPS, 2013. 2.3.1

[17] Ruth Urner, Shai Ben-David, and Ohad Shamir. Learning from weak teachers. In AISTATS,
2012. 4, 4.1, 4.3

[18] Ruth Urner, Sharon Wulff, and Shai Ben-David. Plal: Cluster-based active learning. In
COLT, pages 376–397, 2013. 1.2, 2.2, 3, 3.1, 3.2.2, 3.2.3, 3.3

[19] Shankar Vembu and Sandra Zilles. Interactive learning from multiple noisy labels. CoRR,
abs/1607.06988, 2016. 4.2

[20] Nakul Verma, Samory Kpotufe, and Sanjoy Dasgupta. Which spatial partition trees are
adaptive to intrinsic dimension? In Proceedings of the twenty-fifth conference on uncer-
tainty in artificial intelligence, pages 565–574. AUAI Press, 2009. 3.1

[21] Abraham Wald. Sequential Analysis. Wiley, New York, 1947. 1.2, 2.4.1, 2.4.3, 3.2.1

[22] Abraham Wald and Jacob Wolfowitz. Optimum character of the sequential probability ratio
test. The Annals of Mathematical Statistics, 1948. 2.4.1

[23] Yan Yan, Glenn M Fung, Rómer Rosales, and Jennifer G Dy. Active learning from crowds.
In Proceedings of the 28th international conference on machine learning (ICML-11), pages
1161–1168, 2011. 2.1.2

[24] Yan Yan, Rómer Rosales, Glenn Fung, Faisal Farooq, Bharat Rao, Jennifer G Dy, and
PA Malvern. Active learning from multiple knowledge sources. In AISTATS, volume 2,
page 6, 2012. 2.1.2

[25] Daniel Yekutieli. Hierarchical false discovery rate–controlling methodology. Journal of the
American Statistical Association, 103(481):309–316, 2008. 3.2.1

[26] Xiaojin Zhu, John Lafferty, and Zoubin Ghahramani. Combining active learning and semi-
supervised learning using gaussian fields and harmonic functions. In ICML Workshop on
the Continuum from Labeled to Unlabeled Data in Machine Learning and Data Mining,
volume 3, 2003. 2.2

42


	1 Introduction
	1.1 Motivation
	1.2 Contributions
	1.3 Notation

	2 Background
	2.1 Active Learning with Multiple Oracles
	2.1.1 Proactive Learning
	2.1.2 Active Learning from Crowdsourcing

	2.2 Related Work on Cluster-based Active Learning
	2.3 Probabilistic Lipschitzness
	2.3.1 Definition

	2.4 Sequential Probability Ratio Test
	2.4.1 Definition
	2.4.2 Average Sample Number
	2.4.3 Lower bounding the probability that the SPRT will terminate in k steps


	3 Sequential PLAL
	3.1 PLAL Algorithm
	3.2 Sequential PLAL
	3.2.1 Sequential PLAL Algorithm
	3.2.2 Error Bound
	3.2.3 Query Bound

	3.3 Experiments
	3.4 Conclusion

	4 Sequential Learning from Strong and Weak Oracles
	4.1 UBS Algorithm
	4.2 Sequential UBS
	4.3 SeqUBS Experiments
	4.4 Proactive SeqPLAL with SeqUBS
	4.5 Conclusion

	5 Conclusion
	5.1 Discussion
	5.2 Future Direction

	Bibliography

