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Abstract

As biomedical research advances into more complicated systems, there is an in-
creasing need to model and analyze these systems to better understand them. Formal
specification and analyzing methods, such as model checking techniques, hold great
promise in helping further discovery and innovation for complicated biochemical sys-
tems. Models can be tested and adapted inexpensively in-silico providing new insights.
However, development of accurate and efficient modeling methodologies and analysis
techniques are still open challenges for biochemical systems. This thesis is focused
on designing appropriate modeling formalisms and efficient analyzing algorithms for
various biological systems in three different thrusts:

• Modeling Formalisms: we have designed a multi-scale hybrid rule-based mod-
eling formalism to depict intra- and intercellular dynamics using discrete and
continuous variables respectively. Its hybrid characteristic inherits advantages of
logic and kinetic modeling approaches.

• Formal Analyzing Algorithms: 1) We have developed a LTL model checking
algorithm for Qualitative Networks (QNs). It considers the unique feature of
QNs and combines it with over-approximation to compute decreasing sequences
of reachability set, resulting in a more scalable method. 2) We have developed a
formal analyzing method to handle probabilistic bounded reachability problems
for two kinds of stochastic hybrid systems considering uncertainty parameters
and probabilistic jumps. It combines a SMT-based model checking technique
with statistical tests in a sound manner. Compared to standard simulation-based
methods, it supports non-deterministic branching, increases the coverage of sim-
ulation, and avoids the zero-crossing problem. 3) We have designed a new frame-
work, where formal methods and machine learning techniques take joint efforts
to enhance the understanding of biological and biomedical systems. Within this
framework, statistical model checking is used as a (sub)model selection method.



• Applications: To check the feasibility of our model language and algorithms, we
have 1) constructed Boolean Network models for the signaling network for sin-
gle pancreatic cancer cell, and used symbolical model checking to analyze these
models, 2) built Qualitative Network models describing cellular interactions dur-
ing skin cells’ differentiation, and applied our improved bounded LTL model
checking technique, 3) developed a multi-scale hybrid rule-based model for the
pancreatic cancer micro-environment, and employed statistical model checking,
4) created a nonlinear hybrid model to depict a bacteria-killing process, and
adopted a recently promoted δ-complete decision procedure-based model check-
ing technique, 5) extended hybrid models for atrial fibrillation, prostate cancer
treatment, and our bacteria-killing process into stochastic hybrid models, and ap-
plied our probabilistic bounded reachability analyzer SReach, and 6) carried out
the probabilistic reachability analysis of the tap withdrawal circuit in C. elegans
using SReach.
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Chapter 1

Introduction

Systems biology studies systems of biological components, which may be molecules, cells, organ-
isms or entire species. It aims to better understand the properties of individual parts within com-
plex living systems as well as the dynamics of entire systems. To achieve this, given quantitative
measurements of the behavior of groups of interacting elements, mathematical and computational
models are constructed to reproduce and predict dynamical behaviors. For decades, biologists have
been using diagrammatic models to describe and understand the mechanisms and dynamics behind
their experimental observations. Although these models are simple to be built and understood, they
can only offer a rather static picture of the corresponding biological systems, and scalability is lim-
ited. Then, models expressed mathematically (e.g. using differential equations) have occupied
the leading position. System biologists simply translate such a model into a computer program
simulating that model. As the collaboration between biologists and computer scientists becomes
tighter, researchers have realized that biological systems and (distributed) computer systems share
a lot of features. That is, similar to (distributed) computer systems, biological systems are consist
of various components that communicate with each other and thus influence each other’s behav-
ior. This led to an increasing interest for system biologists and computer scientists in borrowing
existing formal specification and analysis techniques that were designed for computer systems and
in developing biological domain-specific methods, and thus to the success of application of these
techniques to biomedical systems.

As shown in Figure 1.1, with formal executable models and well-founded analysis methods for
them, it offers an excellent means to present knowledge about biological systems, and to reason
about these systems rigorously. Moreover, traditional in-vivo and in-vitro experiments are usually
expensive, and need to take an awfully long time. While, the execution of formal models, provid-
ing in silico numerical evaluation of hypotheses, only takes comparatively little time and effort.
Especially, when considering different experimental configurations, multiple wet-lab experiments
need to be carried out repeatedly. Whereas, for formal models, only trivial modifications on the
initial assignment of system variables and parameters are required.

In the following part of this chapter, we will first review formal modeling formalisms that have
been successfully applied to biological and biomedical systems. We will discuss the main ideas
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Figure 1.1: Experimental biology itself is an iterative process of hypothesis-driven experimentation
of a specific biological system. We can boost this process by using formal executable models,
and formal analysis methods, such as model checking, to provide interesting new hypotheses for
biological experimental design.
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and important features of five specification languages that have fallen on fertile ground in systems
biology. (See [25, 88, 155] for reviews of more classes of formal models that have been used in
systems biology.) Then, we will briefly go over primary model checking techniques, and discuss
its advantages over the mathematical analysis and simulation-based methods.

1.1 Modeling Formalisms for Biological Systems

Boolean Networks
Boolean networks (BNs), as one of the most widely used formal models, were first introduced by
Kauffman [142] in 1969, where BNs were used to model gene regulatory networks. A BN is a
directed graph containing a set of nodes. Nodes are defined as Boolean variables, whose values
represent the dynamic activity and behavior of the involved elements (e.g., genes or proteins). At
each time step, the next value of a variable is determined by a Boolean function of its regulators.
The values of all variables form a global state to be updated synchronously. In this way, the
execution of a BN illuminates the causal and temporal relationships between the involved elements.

The main advantage of this modeling language is that, even with a strongly simplified view of
biological networks, it can still capture the network structure and dynamics, and offer biologically
meaningful predictions and insights. Also, using such a high abstraction, it is possible to model
interactions among large numbers of elements and perform model validation and model-based
prediction. Besides being applied to analyze the robustness and stability of genetic regulatory
networks [12, 72, 152], BNs have also been used to study cell signaling networks and understand
their impacts on distinct cell states [100, 101, 106, 126]. Moreover, BNs can be inferred directly
from experimental time-series data [10, 74, 90, 186].

BNs use a coarse approximation where the status of each modeled element as either active (on)
or inactive (off) by neglecting intermediate states. In real-word biological systems, some elements
may have multiple states. The difference between this binary assumption and biological reality
led researchers to suggest extensions of BNs, such as Qualitative Networks (QNs) [190], Gene
Regulatory Networks [168], and the logical model considering the time delay mechanism THiMED
[165]. In QNs, each variable can have one of a small discrete number of values. Dependencies
between variables become algebraic functions instead of Boolean functions. Dynamically, a state
of the model corresponds to a valuation of variables and changes in values of variables occur
gradually based on these algebraic functions. QNs have been shown to be a suitable formalism
to model some biological systems [31, 61, 190]. For the logical model using THiMED, system
elements are modeled by multi-valued variables. The timing details that capture relative delays
between events are allowed, and implemented by truth tables. Another type of extensions of BNs
copes with the inherent noise and the uncertainty in biological processes, such as Boolean networks
with noise [11] and Probabilistic Boolean networks [193]. These modeling formalisms allow one
to consider the uncertainty in the knowledge of signaling networks as well as stochasticity in
biological systems.
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Petri Nets
Petri nets [172] were created by Carl Adam Petri in 1962 to describe chemical processes, and
then were also intensively employed in computer science to model and analyze concurrent and
distributed systems. A Petri net is a graph with two types of nodes - places and transitions, which
are connected by directed arcs. Places represent the resources of the system; transitions indicates
the events that can change the state of the resources; and directed arcs, connecting places to tran-
sitions and transitions to places, describe which places are pre and/or post-conditions for which
transitions. The data, in Petri nets, are represented as so-called tokens. The state of the system is
represented by places holding tokens. Note that, one place may hold multiple tokens. Given a start
configuration of a Petri net, which assigns tokens to each place, transitions change the state of the
system by moving tokens along edges. For each transition, tokens are consumed from the input
place through the transition and then created in the output place(s). A transition fires whenever
it is enabled by the presence of some tokens in one of the places directly connected to it. In a
given state of the system, there may be more than one transition that can move a token, so that the
execution of a Petri net is non-deterministic.

Petri nets allow for concurrency and nondeterminism, and provide a natural framework in
which both qualitative (given by the static structural topology of the Petri nets) and quantitative
(given by the time evolution of the token distribution) analysis are tightly integrated. Thus, this
modeling language is more general than BNs, and holds a good balance between modeling power
and analyzability. Petri nets are well-suited for modeling the concurrent behavior of biochemical
networks such as genetic regulatory pathways. In detail, the places in a Petri net can represent
genes, protein species and complexes; transitions represent reactions or transfer of a signal; di-
rected arcs represent reaction substrates and products; and a transition firing is execution of a reac-
tion where substrates are consumed and products are created. They have been used to describe the
concurrent behavior of biochemical networks, including metabolic pathways and protein synthesis
[55, 196].

Another good thing about Petri nets is that, there are several successful extensions forming a
very versatile framework providing additional possibilities in modeling and analysis. For instance,
in timed Petri nets, transitions can be timed, which allow for modeling the timing of the system
as well. They have been used to model and analyze signal transductions in an apoptosis pathway
[57]. In colored Petri nets, tokens with different colors denote multiple possible values for each
place, and thus allow for distinct activation levels to be assigned to resources. They have been
used to analyze metabolic pathways [96]. In stochastic Petri nets, probabilities have been added
to the different choices of the transitions to consider the uncertainty of biomedical systems. They
have been used to analyze signaling pathways, where the number of molecules of a given type is
represented by the color of a place and probabilities represent reaction rates [103, 115].

Rule-based Modeling
The combinatorial explosion, which emerges from the complexity of multi-protein assemblies,
poses a major barrier to the development of detailed, mechanistic models of biological systems.
Modeling approaches, such as differential equations, that need manually enumerating all potential
species and reactions in a network are impractical. To alleviate the problem, rule-based modeling
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languages, such as the BioNetGen language (BNGL) [83] and Kappa [71] have been developed.
To address the combinatorial complexity in biochemical systems, the key idea of the rule-based
languages is to represent interacting molecules as structured objects and to use pattern-based rules
to encode their interactions. So that, a rich yet concise description of signaling proteins and their
interactions can be provided. In other words, rule-based modeling specifies only those components
of a biological macromolecule that are directly involved in a biochemical transformation. Also, the
reaction rules are defined as transformations of classes of species, avoiding the need for specifying
one reaction per each possible state of a species.

Due to the similarity to the chemical reaction representation widely used in systems biology,
rule-based languages have harvested a lot of attention among biologists. It has been applied in the
modeling of different cell signaling pathways and networks [26, 27, 35].

Considering that these rule-based languages were designed for describing molecular level dy-
namics, one growing need is to extend them to span multiple biological levels of organization.
ML-Rules [160] is a multi-level rule-based language, which can consider multiple biological levels
by allowing objects to be able to contain collections of other objects. This embedding relationship
can affect the behavior of both container and contents, and allows users to describe both inter-
and intra-cellular processes. Another extension of the BNGL to enable the formal specification of
not only the signaling network within a single cell, but also interactions among multiple cells is
proposed in [219]. Unlike ML-Rules using continuous rate equations to capture the dynamics of
intracellular reactions, this multiscale language models intracellular dynamics using BNs, which
reduces the difficulty of estimating the values of hundreds of unknown parameters often involved
in large models. This has been used to capture the intra- and inter- cellular dynamics involved in
the pancreatic cancer microenvironment [219].

The other increasing need is to take the spatial information into consideration when carrying
out the cell biological modeling. SRSim [105], as one spatial extension of the BNGL, integrates the
BNGL with a three-dimensional coarse-grained simulation building upon the LAMMPS molecular
dynamics simulator [177]. SRSim fills a gap located in between the fine-grained MD simulation
models, which do not allow for the formulation of reaction networks, and 2-D or 3-D graph draw-
ing software tools, which do not include any possibility for dynamic simulation. SRSim has been
used to model and analyze the human mitotic kinetochore [128]. Another spatial extension of the
BNGL is cBNGL [111], in which structures and rules are associated with the concept of compart-
ments and membranes. That is, cBNGL distinguishes between three-dimensional (compartment
volume) and two-dimensional (surface) compartments. ML-Space [34], as a spatial variant of ML-
Rules, considers compartmental dynamics, mesh-based approaches, and individuals moving in the
continuous space. In ML-Space, species can be defined as individual particles that react due to
collisions, or as a population of species residing in a small area. It has been used to study the
dynamics of lipid rafts and their role in receptor co-localization.

Hybrid Systems
Hybrid systems [14] are formal models that combine continuous and discrete dynamics in a piece-
wise manner. In detail, the state space of a hybrid system is defined by a finite set of discrete
modes. In each mode, the system evolves continuously obeying processes, generally ordinary
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differential equations (ODEs) [68]. Transition conditions control the switch from one mode to
another, which can be followed by a ‘reset’ of the involved continuous variables. In general, the
temporal dynamics of a hybrid system is piecewise continuous.

By using ODEs, one of the most powerful techniques in modeling system dynamics, hybrid sys-
tems aim to bridge the gap between mathematical models and computational models by combining
the two. The continuous part of hybrid systems, which are captured by differential equations, bears
the closest relationship to the underlying biochemical rate laws, thus can accurately model complex
biological systems. While, the discrete part of such models is the executable control mechanism
that drives a hybrid system.

Hybrid systems are particularly suitable to model biological systems that exhibit clear switch-
ing characteristics over time (that is, the same system variables need to be regulated by different
processes in distinct discrete states), such as the cell cycle. They have been successfully used to
describe biological systems at distinct levels, including genetic regulatory networks [21], cell sig-
naling pathways [98], the cell cycle control [56], the cardiac cell [228], bacteria-killing procedures
[217], and human ventricular action potentials in tissue [49].

Stochastic Hybrid Models
Stochastic hybrid systems (SHSs) are a class of dynamical systems that involve the interaction of
discrete, continuous, and stochastic dynamics. Due to that generality, SHSs have been widely used
in systems biology, such as modeling subtilin production in bacillus subtilis [125], and person-
alized prostate cancer treatment [218]. To describe stochastic dynamics, uncertainties have been
added to hybrid systems in various ways. A wealth of models has been promoted over the last
decade.

One way expresses random initial values and stochastic dynamical coefficients using random
variables, resulting in hybrid automata (HAs) with parametric uncertainty [218]. When modeling
real-world biological systems using hybrid models, parametric uncertainty arises naturally. Al-
though its cause is multifaceted, two factors are critical. First, probabilistic parameters are needed
when the physics controlling the system is known, but some parameters are either not known
precisely, are expected to vary because of individual differences, or may change by the end of
the system’s operational lifetime. Second, system uncertainty may occur when the model is con-
structed directly from experimental data. Due to imprecise experimental measurements, the values
of system parameters may have ranges of variation with some associated likelihood of occurrence.

Another class of models integrates deterministic flows with probabilistic jumps. When state
changes forced by continuous dynamics involve discrete random events, we refer to such sys-
tems as probabilistic hybrid automata (PHAs) [200]. PHAs extend HAs with discrete probabil-
ity distributions. More precisely, for discrete transitions in a model, instead of making a purely
(non)deterministic choice over the set of currently enabled jumps, a PHA (non)deterministically
chooses among the set of recently enabled discrete probability distributions, each of which is de-
fined over a set of transitions. Although randomness only influences the discrete dynamics of the
model, PHAs are still very useful and have interesting practical applications [201]. One interesting
variation of PHAs [218] allows additional randomness for both transition probabilities and resets
of system variables. In other words, in terms of the additional randomness for jump probabilities,
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for the probabilities attached to probabilistic jumps from one mode, instead of having a discrete
distribution with predefined constant probabilities, they can be expressed by equations involving
random variables whose distributions can be either discrete or continuous. This extension is moti-
vated by the fact that some transition probabilities can vary due to factors such as individual and
environmental differences in real-world systems. When it comes to the randomness of variable re-
sets, a system variable can be reset to a value obtained according to a known discrete or continuous
distribution, instead of being assigned a fixed value. When continuous probabilistic events are also
involved, we call them stochastic hybrid automata (SHAs) [92].

Other models replace deterministic flows with stochastic ones, such as stochastic differential
equations (SDEs) [18] and stochastic hybrid programs (SHPs) [175], where the random perturba-
tion affects the dynamics continuously. When all such ingredients have been covered, there are
models such as the general stochastic hybrid systems (GSHSs) [50, 124]. In the next section, we
will show how to construct a stochastic hybrid model of the effect of estrogen at different levels in
species’ population change in a fresh water ecosystem.

1.2 Model Checking

Model Checking, as a framework consisting of powerful techniques for verifying finite-state sys-
tems, was independently developed by Clarke and Emerson [66] and by Queille and Sifakis [180]
in the early 1980’s. Over the last few decades, it has been successfully applied to numerous theoret-
ical and practical problems [52, 61, 114, 118, 158, 218], such as verification of sequential circuit
designs, communication protocols, software device drivers, security algorithms, cyber-physical
systems, and biological systems. There are several major factors contributing to its success. Pri-
marily, Model Checking is fully automated. Unlike deductive reasoning using theorem provers,
this ‘push-button’ method neither requires proofs nor experts to check whether a finite-state model
satisfies given system specifications. Besides verification of correctness, it permits bug detection
as well. If a property does not hold, a model checker can return a diagnostic counterexample denot-
ing an actual execution of the given system model leading to an error state. Such counterexamples
can then help detect subtle bugs. Finally, from a practical aspect, Model Checking also works
with partial specifications, which allows the separation of system design and development from
verification and debugging.

Typically, a model checker has three basic components: a modeling formalism adopted to
encode a state machine representing the system to be verified, a specification language based on
Temporal Logics [178], and a verification algorithm which employs an exhaustive searching of the
entire state space to determine whether the specification holds or not. Because of the exhaustive
search, when being applied to complex systems, all model checkers face an unavoidable problem
in the worst case. The number of global states of a complex system can be enormous. Given
n processes, each having m states, their asynchronous composition may have mn states which
is exponential in both the number of processes and the number of states per process. In Model
Checking, we refer to this as the State Explosion Problem. Great strides have been made on this
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problem over the past 32 years for various types of real-world systems. In the following, we first
discuss major breakthroughs that have been made during the development of Model Checking for
formal analysis of various types of systems.

Symbolic Model Checking with OBDDs
In the original implementation of the first model checking algorithm [66], the transition system has
an explicit representation using the adjacency lists. Such an enumerative representation is feasible
for concurrent systems with small numbers of processes and states per process, but not adequate
for very large transition systems. In the fall of 1987, McMillan made a fundamental breakthrough.
He realized that by reformulating the original model checking procedure in a symbolic way where
sets of states and sets of transitions are represented rather than individual states and transitions,
Model Checking could be used to verify larger systems with more than 1020 states [53]. The new
symbolic representation was based on Bryant’s ordered binary decision diagrams (OBDDs) [46].
In this symbolic approach, the state graphs, which need to be constructed in the explicit model
checking procedure, are described by Boolean formulas represented by OBDDs. Model Checking
algorithms can then work directly on these OBDDs. Since OBDD-based algorithms are set-based,
they cannot directly implement the depth-first search, and thus the property automaton should also
be represented symbolically.

Since then, various refinements of the OBDD-based algorithms [36, 51, 110, 191] have pushed
the size of state space count up to more than 10120 [51]. The most widely used symbolic model
checkers SMV [162], NuSMV [59], and VIS [39] are based on these ideas.

Partial Order Reduction
As mentioned in Section 1, the size of the parallel composition of n processes in a concurrent sys-
tem may be exponential in n. Verifying a property of such a system requires inspecting all states
of the underlying transition system. That is, n! distinct orderings of the interleaved executions of
n states need to be considered in the setting where there are no synchronizations between the indi-
vidual processes. This is even more serious for software verification than for hardware verification,
as software tends to be less structured than hardware. One of the most successful techniques for
dealing with asynchronous systems is partial order reduction. Since the effect of concurrent ac-
tions is often independent of their ordering, this method aims at decreasing the number of possible
orderings, and thus reducing the state space of the transition system that needs to be analyzed for
checking properties. Intuitively, if executing two events in either order results in the same result,
they are independent of each other. In this case, it is possible to avoid exploring certain paths in
the state transition system.

Partial order reduction crucially relies on two assumptions. One is that all processes are fully
asynchronous. The other is that the property to be checked does not involve the intermediate states.
When coping with realistic systems where the processes may communicate and thus depend on one
another, this approach attempts to identify path fragments of the full transition system, which only
differ in the order of the concurrently executed activities. In this way, the analysis of state space
can be restricted to one (or a few) representatives of every possible interleaving.

Godefroid, Peled, and Valmari have developed the concepts of incorporating partial order re-
duction with Model Checking independently in the early 1990’s. Valmari’s stubborn sets [209],
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Godefroid’s persistent sets [99], and Peled’s ample sets [171] differ on the actual details but contain
many similar ideas. The SPIN model checker, developed by Holzmann [123], uses the ample-set
reduction to great advantage.

Bounded Model Checking
Although Symbolic Model Checking (SMC) with OBDDs has successfully improved the scala-
bility and is still widely used, OBDDs have multiple problems which restrict the size of models
that can be checked with this method. Since the ordering of variables has to be identical for each
path from the root of an OBDD to a leaf node, finding a space-efficient ordering is critical for this
technique. Unfortunately, it is quite difficult, sometimes impossible, to find an order resulting in
a small OBDD. Consider the formula for the middle output bit of a combinational multiplier for
two n-bit numbers. It can be proved that, for all variable orderings, the size of the OBDD for this
formula is exponential in n.

To further conquer the state explosion problem, Biere et al. proposed the Bounded Model
Checking (BMC) using Boolean satisfiability (SAT) solvers [33]. The basic idea for BMC is quite
straightforward. Given a finite-state transition system, a temporal logic property and a bound k
(we assume k ≥ 1), BMC generates a propositional logical formula whose satisfiability implies
the existence of a counterexample of length k, and then passes this formula to a SAT solver. This
formula encodes the constraints on initial states, the transition relations for k steps, and the negation
of the given property. When the formula is unsatisfiable (no counterexample found), we can either
increase the bound k until either a counterexample is found, or k reaches the upper bound on how
much the transition relation would need to be unwound for the completeness, or stop if resource
constraints are exceeded. As an industrial-strength model checking technique, BMC has been
observed to surpass SMC with OBDDs in fast detection of counterexamples of minimal length, in
saving memory, and by avoiding performing costly dynamic reordering. With a fast SAT solver,
BMC can handle designs that are order-of-magnitude larger than those handled by OBDD-based
model checkers.

As an efficient way of detecting subtle counterexamples, BMC is quite useful in debugging.
In order to prove correctness when no counterexamples are found using BMC, an upper bound on
steps to reach all reachable states needs to be determined. It has been shown that the diameter (i.e.,
the longest shortest path between any two states) of the state-transition system could be used as an
upper bound [33]. But, it appears to be computationally difficult to compute the diameter when
the state-transition system is given implicitly. Other ways for making BMC complete are based on
induction [192], cube enlargement [161], Craig interpolants [163], and circuit co-factoring [93].
This problem remains a topic of active research.

An interesting variation of the original BMC is to adopt a Satisfiability Modulo Theories (SMT)
solver instead of a SAT solver [70, 205]. SMT encodings in model checking have several advan-
tages. The SMT encodings offers more powerful specification language. They use (unquantified)
first-order formulas instead of Boolean formulas, and use more natural and compact encodings, as
there is no need to convert high level constraints into Boolean logic formulas. These SMT encod-
ings also make the BMC work the same for finite and infinite state systems. Above all, high level
of automation has not been sacrificed for the above advantages. CBMC is a widely used Bounded
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model checker for ANSI-C and C++ programs [149] , having supports for SMT solvers such as Z3
[73], and Yices [79].

Counterexample-Guided Abstraction Refinement
When the model state space is enormous, or even infinite, it is infeasible to conduct an exhaus-
tive search of the entire space. Another method of coping with the state explosion problem is to
abstract away irrelevant details, according to the property under consideration, from the concrete
state transition system when constructing the model. We call this approach abstraction. This sim-
plification incurs information loss. Depending on the method used to control the information loss,
abstraction techniques can be distinguished into either over-approximation or under-approximation
techniques. The over-approximation methods enrich the behavior of the system by releasing con-
straints. They establish a relationship between the abstract model and the original system so that
the correctness of the former implies the correctness of the latter. The downside is that they ad-
mit false negatives, where there are properties which hold in the original system but fail in the
abstract model. Therefore, a counterexample found in the abstract system may not be a feasible
execution in the original system. These counterexamples are called spurious. Conversely, the
under-approximation techniques, which admit false positives, obtain the abstraction by removing
irrelevant behavior from the system so that a specification violation at the abstract level implies a
violation of the original system.

The counterexample-guided abstraction refinement (CEGAR) technique [63] integrates an over-
approximation technique - existential abstraction [67] - and SMC into a unified, and automatic
framework. It starts verification against universal properties with an imprecise abstraction, and
iteratively refines it according to the returned spurious counterexamples. When a counterexample
is found, its feasibility with regard to the original system needs to be checked first. If the violation
is feasible, this counterexample is reported as a witness for a bug. Otherwise, a proof of infeasi-
bility is used to refine the abstraction. The procedure then repeats these steps until either a real
counterexample is reported, or there is no new counterexamples returned. When the property holds
on the abstract model, by the Property Preservation Theorem [67], it is guaranteed for the property
to be correct in the concrete systems. CEGAR is used in many software model checkers including
the SLAM project [22] at Microsoft.

Model Checking for Stochastic Hybrid Systems
The popularity of SHSs in real-world applications plays an important role as the motivation for
putting a significant research effort into the foundations, analysis and control methods for this
class of systems. Among various problems, one of the elementary questions for the quantitative
analysis of SHSs is the probabilistic reachability problem. There are two main reasons why it
catches researchers’ attention. Primarily, it is motivated by the fact that most temporal properties
can be reduced to reachability problems due to the very expressive hybrid modeling framework.
Moreover, probabilistic state reachability is a hard and challenging problem which is undecidable
in general. Intuitively, this class of problems is to compute the probability of reaching a certain set
of states. The set may represent a set of certain unsafe states which should be avoided or visited
only with some small probability, or dually, a set of good states which should be visited frequently.

Over the last decade, research efforts concerning SHSs are rapidly increasing. At the same
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time, Model Checking methods and tools for probabilistic systems, such as PRISM [150], MRMC
[141], and Ymer [230], have been proposed and designed. Results related to the analysis and
verification of SHSs are still limited. For instance, analysis approaches for GSHSs are often based
on Monte-Carlo simulation [37, 182]. Considering the hardness of dealing with the general class,
efforts have been mainly placed on different subclasses [7, 8, 9, 91, 92, 108, 175, 200, 218, 232,
234].

For a decidable subclass which is called probabilistic initialized rectangular automata (PI-
RAs), Sproston offered a model checking procedure against the probabilistic branching time logic
(PBTL) [200]. The procedure first translates PIRA to a probabilistic timed automaton (PTA), then
constructs a finite-state probabilistic region graph for the PTA, and employs existing PBTL Model
Checking techniques. For probabilistic rectangular automata (PRAs) which are less restricted than
PIRAs, Sproston proposed a semi-decidable model checking procedure via using a forward search
through the reachable state space [201].

For a more expressive class of models - probabilistic hybrid automata (PHAs), Zhang et al.
abstracted the original PHA to a probabilistic automaton (PA), and then used the established Model
Checking methods for the abstracting model [232]. Hahn et al. also discussed an abstraction-based
method where the given PHA was translated into a n-player stochastic game using two different
abstraction techniques [108]. All abstractions obtained by these methods are over-approximations,
which means that the estimated maximum probability for a safety property on the abstracted model
is no less than the one on the original model. Another method proposed is a SMT-based bounded
Model Checking procedure [91].

A similar class of models, which is widely used in the control theory, is called discrete-time
stochastic hybrid systems (DTSHSs) [15]. Akin to PHAs, DTSHSs comprise nondeterministic
as well as discrete probabilistic choices of state transitions. Unlike PHAs, DTSHSs are sampled
at discrete time points, use control inputs to model nondeterminism, do not have an explicit no-
tion of symbolic transition guards, and support a more general concept of randomness which can
describe discretized stochastic differential equations. With regard to the system analysis, the con-
trol problem concerned can be understood as to find an optimal control policy that minimizes the
probability of reaching unsafe states. A backward recursive procedure, which uses dynamic pro-
gramming, was then proposed to solve the problem [7, 15]. Another approach to a very similar
problem as above, where a DTSHS model doesn’t have nondeterministic control inputs, was pre-
sented in [8]. Compared to former method, the latter approach exploits the grid to construct a
discrete-time Markov chain (DTMC), and then employs standard model checking procedures for
it. This approach then had been used in [9] as an analysis procedure for the probabilistic reacha-
bility problems in the product of a DTSHS and a Büchi automaton representing a linear temporal
property. Zuliani et al. also mentioned a simulation-based method for model checking DTSHSs
against bounded temporal properties [234]. We refer to this method as Statistical Model Check-
ing (StatMC). The main idea of StatMC is to generate enough simulations of the system, record
the checking result returned from a trace checker from each simulation, and then use statistical
testing and estimation methods to determine, with a predefined degree of confidence, whether the
system satisfies the property. Although this statistical model checking procedure does not belong
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to the class of exhaustive state-space exploration methods, it usually returns results faster than the
exhaustive search with a predefined arbitrarily small error bound on the estimated probability.

In [92], as an extension of PHAs, stochastic hybrid automata (SHAs) allow continuous prob-
ability distributions in the discrete state transitions. With respect to the verification procedure, a
given SHA is firstly over-approximated by a PHA via discretizing continuous distributions into
discrete ones with the help of additional uncountable nondeterminism. As mentioned, this over-
approximation preserves safety properties. For the second step, the verification procedure intro-
duced in [232] is exploited to model check the over-approximating PHA.

Another interesting work is about stochastic hybrid programs (SHPs) introduced in [175]. This
formalism is quite expressive with regard to randomness: it takes stochastic differential equations,
discrete probabilistic branching, and random assignments to real-valued variables into account. To
specify system properties, Platzer proposed a logic called stochastic differential dynamic logic,
and then suggested a proof calculus to verify logical properties of SHPs.

1.3 Overview of Contributions

In this thesis, we have been focusing on designing appropriate modeling formalisms and efficient
analyzing algorithms for various biological systems in three different thrusts:

• Modeling Formalisms: We design a multi-scale hybrid rule-based modeling formalism, ex-
tended from the traditional rule-based language - BioNetGen. This new language is able to
describe the intracellular reactions and intercellular interactions simultaneously. Further-
more, to depict intracellular reactions, its hybrid characteristic asks for less information
about model parameters, such as reaction rates, than traditional rule-based languages. In
a nutshell, our language can describe both discrete and continuous models using a unified
rule-based representation. This results in a modeling framework that combines the advan-
tages of logic and kinetic modeling approaches. Details can be found in Chapter 6.

• Formal Analysis Algorithms:

– We develop a model checking algorithm for Qualitative Networks (QNs), a formalism
for modeling signal transduction networks in biology. One of the unique features of
qualitative networks, due to their lacking initial states, is that of “reducing reachability
sets”. Our method considers this unique features of QNs and combines it with over-
approximation to compute decreasing sequences of reachability set for QN models,
which results in a more scalable model checking algorithm for QNs. Details can be
found in Chapter 3.

– We propose a formal analyzing method to handle probabilistic bounded reachability
problems for two kinds of stochastic hybrid systems - general hybrid systems with
parametric uncertainty and probabilistic hybrid automata with additional randomness.
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Standard approaches to reachability problems for linear hybrid systems require nu-
merical solutions for large optimization problems, and become infeasible for systems
involving both nonlinear dynamics over the reals and stochasticity. Our approach com-
bines a SMT-based model checking technique with statistical tests in a sound man-
ner. Compared to standard simulation-based methods, it supports non-deterministic
branching, increases the coverage of simulation, and avoids the zero-crossing problem.
Details can be found in Chapter 5.

– We design a framework, where formal methods and machine learning techniques take
joint efforts to automate the model construction, analysis, and refinement of biological
and biomedical systems. The creation of models most often relies on intense human
effort. That is, model developers have to read hundreds of published papers and con-
duct numerous discussions with experts to understand the behavior of the system and
to construct the model. This laborious process results in slow development of models,
let alone validating the model and extending it with thousands of other possible com-
ponents that already exist in published literature. Meanwhile, research results are pub-
lished at a high rate, and the published literature is voluminous, but often fragmented,
and sometimes even inconsistent. Our framework offers the automation of information
extraction from literature, smart assembly into models, and model analysis, to enable
researchers to re-use and reason about previously published work, in a comprehensive
and timely manner. Details can be found in Chapter 7.

• Modeling and Applications:

– To investigate whether and how formal modeling and analysis methods can contribute
to the study of biological systems, we construct a Boolean Network model for the sig-
naling network for a single pancreatic cancer cell. Important system dynamics with
respect to cell fate, cell cycle, and oscillating behaviors are formulated into CTL for-
mulas. Then, we used an existing symbolic model checker NuSMV to check against
these CTL properties, and confirmed experimental observations and thus validated our
model. Details can be found in Chapter 2.

– To show the speedup offered by our improved bounded LTL model checking technique
for QNs, we build several QN models describing the cellular interactions during the de-
velopment of the skin differentiation. By comparing our method with an existing model
checking technique for QNs, we showed that our method offered a significant accel-
eration especially when analyzing large and complex models. Details can be found in
Chapter 3.

– We create a nonlinear hybrid model to depict a light-aided bacteria-killing process.
Then, by using a recently promoted δ-complete decision procedure-based model check-
ing technique, we found that 1) the earlier we turn on the light after adding IPTG, the
quicker bacteria cells can be killed; 2) in order to kill bacteria cells, the light has to be
turned on for at least 4 time units; 3) the time difference between removing the light
and removing IPTG has insignificant impact on the cell killing outcome; and 4) the
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range of the necessary concentration of SOX to kill bacteria cells can be broader than
the range indicated by our collaborating biologist. Details can be found in Chapter 4.

– We extend hybrid models for atrial fibrillation, prostate cancer treatment, and our
bacteria-killing process into stochastic hybrid models. We, then, apply our probabilistic
bounded reachability analyzer SReach to demonstrate its feasibility in model falsifica-
tion, parameter estimation, and sensitivity analysis. We also use SReach to perform the
bounded-time reachability analysis on the Tap Withdrawal circuit model of C. elegans
to estimate the probability of various TW responses related to parameter uncertainty,
and thus to derive population percentages that exhibit various behaviors in response to
tap stimuli. It shows that SReach can handle large-scale systems for which traditional
reachability analysis may not scale. Details can be found in Chapter 5.4.

– To study the mechanism underlying the tumor micro-environment during the develop-
ment of the pancreatic cancer, we develop a multi-scale hybrid rule-based model for
the pancreatic cancer micro-environment, and employ statistical model checking to an-
alyze it. The formal analysis results showed that our model could reproduce existing
experimental findings with regard to the mutual promotion between pancreatic cancer
and stellate cells. The results also explained how treatments latching onto different tar-
gets resulted in distinct outcomes. We then used our model to predict possible targets
for drug discovery. Details can be found in Chapter 6.
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Chapter 2

Pancreatic Cancer Single Cell Model as
Boolean Network and Symbolic Model
Checking

Signal transduction is a process for cellular communication where the cell receives (and responds
to) external stimuli from other cells and from the environment. It affects most of the basic cell
control mechanisms such as differentiation and apoptosis. The transduction process begins with
the binding of an extracellular signaling molecule to a cell-surface receptor. The signal is then
propagated and amplified inside the cell through signaling cascades that involve a series of trigger
reactions such as protein phosphorylation. The output of these cascades is connected to gene
regulation in order to control cell function. Signal transduction pathways are able to crosstalk,
forming complex signaling networks.

In this chapter, we have investigated the functionality of six signaling pathways that have been
shown to be 100% genetically mutated during the progression of pancreatic cancer [133], within a
pancreatic cancer cell, and constructed a in-silico Boolean network model considering the crosstalk
among them [100, 101].

Pancreatic cancer (PC) is a highly aggressive malignancy and the 4th leading cause of cancer-
related death in the United States [5]. It arises from intraepithelial neoplasia (PanIN), a progression
of lesions that occur in the pancreatic ducts. It is characterized by a propensity for early local and
distant invasion - rapid growth, early metastasis - and an unresponsiveness to most conventional
treatments - it is highly resistant to chemotherapy and radiation. Vogelstein et al. [133] global
genomic analysis identified 12 cellular signaling pathways that are genetically altered in over 67%
of pancreatic cancers. The study also found that PC contains an average of 63 genetic alterations,
and that the KRAS, apoptosis, TGFβ, Hedgehog, and Wnt/Notch signaling pathways, and the
regulation of G1/S phase transition have genetic alterations in 100% of tumors. A number of
molecular and pathological analyses of evolving pancreatic adenocarcinoma revealed progressive
genetic mutations of KRAS, CDKN2A, TP53, SMAD4, corresponding to the mutations of the
KRAS, INK4a, ARF, P53, and SMAD4 proteins in the above mentioned pathways. Mutations of
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oncoprotein and tumor suppressor proteins result in uncontrolled cell proliferation and evasion of
apoptosis (programmed cell death), eventually leading to cancer. In addition, PC over-expresses
a number of growth factors (GF) and their respective receptors, including the epidermal growth
factor (EGF), sonic hedgehog (SHH), WNT, transforming growth factor (TGFβ ), and Insulin-like
growth factor (IGF1) or Insulin. These growth factors can stimulate pancreatic cancer cell growth
via autocrine and/or paracrine feedback loops. In our model, we have considered three important
cell functions - proliferation, apoptosis, and cell cycle arrest. Given this model, we are interested
in verifying that sequences of signal activation will drive the network to a pre-specified state within
a pre-specified time. Thus, we have applied symbolic model checking (SMC) to it, and shown that
its behaviors are qualitatively consistent with experiments. We have demonstrated that SMC offers
a powerful approach for studying logical models of relevant biological processes.

2.1 Pancreatic Cancer Cell Model

Genomic analyses [133] have identified six cellular signaling pathways that are genetically altered
in 100% of pancreatic cancers: the KRAS, Hedgehog, Wnt/Notch, Apoptosis, TGFβ, and regula-
tion of G1/S phase transition signaling pathways. Also, many in vitro and in vivo experiments with
pancreatic cancer cells have found that several growth factors and cytokines including IGF/Insulin,
EGF, Hedgehog, WNT, Notch ligands, HMGB1, TGFβ, and oncoprotein including RAS, NFκB,
and SMAD7 are overexpressed [19]. We performed an extensive literature search and constructed
a signaling network model composed by the EGF-PI3K-P53, Insulin/IGF-KRAS-ERK, SHH-GLI,
HMGB1-NFκB, RB - E2F, WNTβ - Catenin, Notch, TGFβ - SMAD, and Apoptosis pathway. Our
aim is to study the interplay between tumor growth, cell cycle arrest, and apoptosis in the pancre-
atic cancer cell. In Figure 2.1, we depict the crosstalk model of different signaling pathways in
the pancreatic cancer cell. Here, we will first iterate these pathways, and focus on their association
with apoptosis, cell cycle arrest and tumor proliferation. In the following, the symbol → means
activation (or overexpression), while the symbol a denotes inhibition (or deactivation).

Insulin/IGF-KRAS-ERK pathway
Insulin/IGF→ IR→ KRAS→ RAF→ MEK→ ERK→ AP1,MYC. The overexpressed growth
factors, including Insulin-like growth factor (IGF) and Insulin, could activate the KRAS protein,
resulting in the phosphorylation of its downstream proteins RAF, MEK, and ERK [75]. These can
phosphorylate or activate the transcription factors AP1 and MYC to activate the expression of the
cell cycle regulatory protein Cyclin D, enabling progression of the cell cycle through the G1 phase.
KRAS is mutated in over 90% of pancreatic cancers [23]. This pathway could also upregulate the
expression level of GLI in the sonic hedgehog pathway [133].

EGF-PI3K-P53 pathway
There are two important downstreaming pathways: PI3K → PIP3 → AKT → MDM2 a P53 →
P21,BAX, and P53 → PTEN a PIP3 → AKT → MDM2 a P53. PC overexpresses a number of
mitogenic growth factors and receptor tyrosine kinase (RTK), including EGF(R), IGF(R), which
can activate the PI3K pathway to promote the growth of pancreatic cancer cells. The activation
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Figure 2.1: Schematic view of signal transduction in the pancreatic cancer model. Blue nodes
represent tumor-suppressor proteins, red nodes represent oncoproteins/lipids. Arrow represents
protein activation, circle-headed arrow represents deactivation.
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of PI3K initiates a cascade of reactions including the phosphorylation of PIP2, AKT and MDM2,
leading to the inhibition of P53s transcription activity in the nucleus [113]. The tumor-suppressor
protein P53, expressed in the later stage of PanIN, is mutated in more than 50% of pancreatic
adenocarcinomas [23]. Also, P53 is a transcription factor for many tumor-suppressor proteins
including PTEN and P21, which can negatively regulate the AKT pathway, and induce cell cycle
arrest, respectively.

RB-E2F pathway
CyclinD a RB a E2F→ CyclinE. This pathway regulates the cell cycle progression from phase G1
to phase S, induced by the Cyclin E and CDK2 complex. In the normal cell, the unphosphorylated
RB, a tumor suppressor protein, binds to E2F and inhibits its transcription activity. E2F will be
activated when its inhibitor RB is phosphorylated and inhibited by CyclinD, promoting the tran-
scription of CyclinE [227]. The germline mutations of CDKN2A in this pathway, which encodes
the tumor suppressors INK4a (inhibitor of CyclinD-CDK4/6) and ARF (inhibit MDM2s activity
to stabilize P53), were found in up to 90% of pancreatic cancers [23].

SHH-GLI pathway
It is composed of two main parts: 1) SHH a PTCH a SMO→ GLI→ IGF,WNT,CyclinD,PTCH;
and 2) AKT a PKA a GLI. The Sonic hedgehog (SHH) protein and its receptor Smoothened
(SMO) are activated and overexpressed in later-stage pancreatic carcinomas, and it occurs in over
70% of PCs [203]. In the quiescent cell without SHH, SMO is bound and inhibited by the tumor
suppressor protein patched (PTCH). Once SHH binds to PTCH, SMO is released to activate the
glioma-associated oncogene homologue (GLI1/2/3), leading to an active form of transcription fac-
tor. In the absence of SHH, the protein kinase A (PKA) and CKI (only PKA is shown in Fig. 2.1)
transform GLI into a repressor form which can inhibit GLIs transcriptional activity. The activation
of the SHH-GLI pathway is associated with tumor proliferation and pancreatic cancer-associated
fibroblasts [216]. The expression of GLI could also be up-regulated by the PI3K-AKT and KRAS-
ERK pathways, independently from SHH activation. In particular, SHH signaling alone is suffi-
cient to drive pancreatic neoplasia, but does not form pancreatic adenocarcinomas [203].

WNT pathway
WNT→ FZD→ DVL a GSK3β a β-Catenin→ TCF→ CyclinD. WNT pathway activation and
the overexpression of several pathway components were observed in 65% of pancreatic adenocar-
cinomas [231]. When the WNT protein is absent, β-catenin is localized in the cytoplasm, bound to
and inhibited by the complexes composed of Axin, APC, and GSK3β [225]. The canonical WNT
pathway is activated by the interaction of WNT and Frizzled (FZD) proteins, which can destabi-
lize the Axin-APC-GSK3 complex and translocate β-catenin to the nucleus, where it activates the
TCF-LEF transcription factors [212].

Notch pathway
DLL→ Notch→ NICD→ CyclinD. The Notch pathway is activated after binding of transmem-
brane ligands, including DLL (Delta-like 1, 3, 4) and Jagged 1- 2 with Notch proteins. After
that, Notch will be cleaved and a Notch intracellular domain (NICD) will be released, which will
translocate to the nucleus to induce the expression of several target genes, including the cell regu-
latory protein CyclinD. Recent findings indicate that the Notch pathway is involved in the devel-
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opment of pancreatic cancer [48].

HMGB1-NFκB pathway
signaling→ IKK a IκB a NFκB→ A20,IκB,BclXL,GLI. A recent study [136] has found that the
overexpression of HMGB1 could promote the growth of pancreatic cancer cells by activating the
RAGE pathway. In the resting cell, NFκB is located in the cytoplasm, bound to and inhibited by
IκB. Once activated by HMGB1, the IκB kinase (IKK) will phosphorylate and deactivate Iκ B,
leading to the translocation of NFκB into the nucleus to promote the transcription of a number of
genes, including CyclinD, the anti-apoptotic protein Bcl-XL, its inhibitors A20 and IκB [122, 210],
and HMGB1 [137].

TGFβ-SMAD pathway
it has two main parts: 1) TGFβ → TGFR → SMAD2/3/4 → P21; and 2) TGFβ → TGFR →
PI3K-RAS-pathway. The TGFβ-SMAD signaling pathway can inhibit the growth of normal hu-
man epithelial cells. When the TGFβ ligand binds to type II TGFβ recep tors (TGFR), Type I
receptors will be activated, leading to the phosphorylation of the cytoplasmic SMAD2/3 proteins.
The proteins SMAD2/3 form a complex with SMAD4, and translocate into the nucleus to acti-
vate several transcription factors, upregulating the expression of cyclin-dependent kinase (CDK)
inhibitors, including P21 [76, 80]. SMAD4 was found to be either mutated or deleted in over 50%
of pancreatic cancers which occurred in the later-stage PanINs [131]. In addition to the Smad-
dependent signaling pathway, TGF also activates the PI3K-RAS pathway, leading to the crosstalk
with the WNT and EGF pathways. Impairment of the TGFβ-SMAD pathway promotes cell pro-
liferation and contributes to carcinogenesis.

Apoptosis pathway
P53→ BAD, BAX , Apaf1→ cytochrome-C→ Cas3. The apoptosis pathway is regulated by both
the anti-apoptotic (BclX) and the pro-apoptotic Bcl-2 families of proteins [187]. The activation
of P53 will induce or upregulate the transcription of several pro-apoptotic pro- teins including
BAX, BAD, and Apaf1 (Apoptotic protease activating factor 1). After receiving pro-apoptotic
signals from P53, BAD will inhibit Bcl-XLs pro-apoptotic effects, while this process is inhibited
by the pro-survival signals from AKT. BAX is a protein of the Bcl-2 family which can activate the
apoptosis process by promoting the release of cytochrome C (Cyto-C) from the mitochondrion.
This, in turn, promotes the formation of the apoptosome complex (APC) [183] which contains
Cyto-C and Apaf1. Cas3 is an apoptosis effector caspase (cysteine-dependent aspartate specific
proteases) which can cleave proteins in the execution phase of cell apoptosis [199]. The activation
of Cas3 is promoted by APC and inhibited by the inhibitors of apoptosis (IAP). It has been found
that Cas3 is mutated in many cancer types [199].

2.2 Boolean Network

In this Section, we translate the above signaling pathways into a Boolean network model. The input
signals of the model are different growth factors including SHH, EGF, TGF. The output signals are
Apoptosis, (Cell) Proliferation, and (Cell Cycle) Arrest.
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In the Boolean network model of the pancreatic cancer cell, each node represents a protein/lipid
in the signaling pathway. At any specific time, each node can be in either the ON(1) or OFF(0)
state. The state evolution of a node from time t to t+1 is described by a Boolean transfer function.
This function will in general depend on the state of the neighbor nodes. In this paper we use
several forms of transfer function. In one form, we assume that a node is activated (inhibited) if its
incoming neighbor is active (inhibited). This form is used, for example, for receptor nodes such
as EGFR, which are expressed only if their upstream ligand is present. A dual form assumes that
a node is activated (inhibited) when its incoming neighbor is inhibited (activated). This form is
used, e.g., for SMO, which is bound and inhibited by PTCH (see the description of the SHH-GLI
pathway above).

In another form, we assume that neighboring nodes are classified as activators or inhibitors.
Activators node can change the state of a node n if and only if no inhibitor acting on node n is
in the ON state. Our assumption is motivated by the fact that many tumor-suppressor proteins
including P53, PTEN, SMAD4, INK4a, and ARF, are either lost or mutated in the early or late
stages of PDAC, while oncoproteins such as KRAS, NFκB, and GLI, are continuously activated or
overexpressed. The transfer function for node n can be written as

n(t+ 1) = {n(t) ∨
∨

a∈A(n)

a(t)} ∧ ¬(
∨

i∈I(n)

i(t)), (2.1)

where A(n) and I(n) are the activators and inhibitors of node n, respectively.

In our model, we assume synchronous state update for all the nodes in the network. That is, at
any time step the state of each node in the model is updated according to its transfer function. In the
future we plan to study asynchronous models, to take into account the observation that biological
processes may evolve at different speeds. We remark that our verification approach would still
work, since Model Checking can cope with asynchronous systems.

The Boolean network in Figure 2.1 comprises 61 nodes, including 7 control (input) nodes, and 3
output nodes. We emphasize that the structure depicted in Figure 2.1 is not a state transition graph.
Rather, it represents the wiring diagram of our model. Since each node is a Boolean variable, the
state space of the model has cardinality 261. Is it a correct model to describe the proliferation and
apoptosis of pancreatic cancer cell? To answer this question we use Symbolic Model Checking of
Computational Tree Logic (CTL) properties, which we will introduce next.

2.3 Symbolic Model Checking

Given our pancreatic single cell model, we express its intended behavior as Computation Tree
Logic (CTL) [65] formulas. Then, we apply symbolic model checking against it. Here, we give a
brief introduction to CTL and symbolic model checking.

Kripke structure
A finite state system can be described as a tuple:

20



M =< S, I,R,L >

where S is a finite set of states, I ⊆ S is the set of initial states, and R ⊆ S × S is the
transition relation, specifying the possible transitions from state to state. L is a function that labels
states with the atomic propositions from a given language. Such a tuple is called state transition
system or Kripke structure [148].

Computational Tree Logic
Temporal logics are used to predicate over the behavior defined by Kripke structures. A be-

havior in a Kripke structure is obtained starting from a state s ∈ I, and then repeatedly appending
states reachable through R. We require that the transition relation R be total (that is, a transition
relation R ⊆ S × S is total if and only if for each state s ∈ S there exists a state s′ ∈ S such
that (s, s′) ∈ R). As a consequence all the behaviors of the system are infinite. Since a state can
have more than one successor, the structure can be thought of as unwinding into an infinite tree,
representing all the possible executions of the system starting from the initial states.

Two useful temporal logics are Computation Tree Logic (CTL) and Linear Temporal Logic
(LTL). They differ in how they handle branching in the underlying computation tree. In CTL
temporal operators it is possible to quantify over the paths departing from a given state. In LTL
operators are intended to describe properties of all possible computation paths. For our pancreatic
cancer cell model, we use CTL to describe the corresponding system properties.

The syntax of CTL formulas is given by the following rules:

• any atomic proposition is a CTL formula;

• if α and β are CTL formulas, then α • β and ¬α are CTL formulas, where • is any boolean
connective ( ∧,∨, . . . ); and

• if α and β are CTL formulas, then EXα, EGα, E[αUβ] are CTL formulas.

The intuitive meaning of CTL formulas:

• EXα means that there exists (E) a path starting from a state s0 ∈ S in which in the next ( X)
state α holds.

• EGα means that there exists a path starting from a state s0 in which globally (G) α holds.

• E[αUβ] there exists a path starting from a state s0 in which α holds until (U) β holds.

The other CTL operators (e.g., AFα, meaning for all paths eventually α) can be derived from
these three as follows.

• AXα = ¬EX(¬α) means that, for all paths, in the next state α.
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• EFα = E[>Uα] means that there exists a path in which eventually α.

• AGα = ¬EF(¬α) means invariantly α.

• A[αUβ] = ¬E[¬βU¬α ∧ ¬β] ∧ ¬EG¬β means that, for all paths, α until β.

• AFα = A[>Uα] means that, for all paths, eventually α.

Symbolic CTL Model Checking
The Model Checking algorithm applied to a CTL formula φ works by recursively labeling the

state graph with the sub-formulas of φ, and then parses the graph to compute, for each sub-formula,
its truth value in a state according to the CTL operators and the truth values of its subformulas. In
the original Model Checking algorithm, the state transitions were represented explicitly: this can
lead to state explosion. The main idea behind symbolic model checking is to represent and manip-
ulate a finite state-transition system symbolically as a Boolean function, so as to alleviate the state
explosion problem. In particular, Ordered binary decision diagrams (OBDDs) [46] are a canonical
form for Boolean formulas. OBDDs are often substantially more compact than traditional normal
forms. Moreover, they can be manipulated very efficiently.

We consider Boolean formulas over n variables x1, · · · , xn. A binary decision diagram (BDD)
is a rooted directed acyclic graph with two types of vertices, terminal vertices and nonterminal
vertices. Each nonterminal vertex v is labeled by a variable var(v) and has two successors, low(v)
and high(v). Each terminal vertex v is labeled by either 0 or 1 via a Boolean function value(v).
A BDD with root v determines a Boolean function fv(x1, · · · , xn) in the following manner.

• If v is a terminal vertex then fv(x1, · · · , xn) = value(v).

• If v is a nonterminal vertex with var(v) = xi then fv(x1, · · · , xn) is given by

(¬xi ∧ flow(v)(x1, · · · xn)) ∨ (xi ∧ fhigh(v)(x1, · · ·xn))

In an OBDD there is a strict total ordering of the variables x1, · · · , xn when traversing the
diagram from the root to the terminals. Given an assignment to the variables x1, · · · , xn, the value
of the formula can be decided by traversing the OBDD from the root to the terminals. At each
node, branching is decided by the value assigned to the variable that labels the node.

There exist efficient algorithms for operating on OBDDs. All sixteen two-argument logical
operations can be implemented efficiently on Boolean functions that are represented as OBDDs.
In particular, the complexity of these operations is linear in the product of the size of the argument
OBDDs. The key idea for efficient implementation of these operations is Shannon expansion:
f = (¬x ∧ f |x=0) ∨ (x ∧ f |x=1). In [46], Bryant gave a uniform procedure for computing all 16
logical operations.

McMillan developed the symbolic CTL model checking algorithm using BDDs [162]. This
algorithm can handle much larger concurrent systems than the explicit-state model checking [54].
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State transition systems can be represented with BDDs as follows. First, we must represent the
states in terms of n Boolean state variables v = {v1, v2, · · · , vn}. Then, we express the transition
relation R as a Boolean formula in terms of the state variables:

fR(v1, v2, · · · , vn, v′1, v′2, · · · , v′n) = 1 iff R(v1, v2, · · · , vn, v′1, v′2, · · · , v′n)

where v1, v2, · · · , vn represent the current state and v′1, v
′
2, · · · , v′n represent the next state. Finally,

we convert fR to a BDD.

2.4 Results and Discussion

We used NuSMV [60], a Symbolic Model Checker to determine whether our in silico pancreatic
cancer cell model satisfies certain properties written in a temporal logic. In our model, we set the
initial values of ARF, INK4α, and SMAD4 to be OFF (0), while Cyclin D is set to be ON (1).
These choices are motivated by the following observations. According to the genetic progression
model of pancreatic adenocarcinoma, the malignant transformation from normal duct to pancreatic
adenocarcinomas requires multiple genetic alterations in the progression of neoplastic growth,
represented by Pancreatic intraepithelial neoplasia (PanINs)1A/B, PanIN-2, PanIN-3 [23]. The
loss of the functions of CDKN2A, which encodes two tumor suppressors INK4A and ARF, occurs
in 80 - 95% of sporadic pancreatic adenocarcinomas [185]. SMAD4 is a key component in the
TGFβ pathway which can inhibit most normal epithelial cellular growth by blocking the G1-S
phase transition in the cell cycle; and it is frequently lost or mutated in pancreatic adenocarcinoma
[224]. Furthermore, it has been shown that the loss of SMAD4 can predict decreased survival in
pancreatic adenocarcinoma [116]. Besides the loss of many tumor suppressors, the oncoprotein
Cyclin D is frequently overexpressed in many human pancreatic endocrine tumors [58]. As shown
in Table 2.1, we divide the properties that have been considered into three categories, according to
their relationship with Cell Fate, Cell Cycle, and Oscillations.

Cell Fate
The first properties we verify concern the pancreatic cancer cell’s fate, i.e., survival or death.

In our model, the following two CTL properties are false,

AF Apoptosis, AF Arrest

which mean that the cell does not necessarily have to undergo apoptosis, and that the cell cycle
does not necessarily stop. On the other hand, the property

AF Proliferate

is true, indicating that the cancer cell will necessarily proliferate. Furthermore, since the following
“steady state” property is true,

AF AG Proliferate
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property verification
result

discussion

Cell Fate
AF Apoptosis ∨ AF Arrest False the cell does not necessarily have to

undergo apoptosis, and the cell cycle
does not necessarily stop

AF Proliferate True the cancer cell will necessarily proliferate
AF AG Proliferate True proliferation is eventually both

unavoidable and permanent
AF !Apoptosis ∧ AF !Arrest True it is always possible for the cancer cell to

reach states in which Apoptosis and
Arrest are OFF, thereby making cell

proliferation possible
AF (!Apoptosis ∧ !Arrest ∧

Proliferate)
False the model cannot always eventually

reach a state in which apoptosis and cell
cycle arrest are not inhibited and cell

proliferation is active
AF AG !Apoptosis ∨

AF AG !Arrest
False inhibition of apoptosis and cell cycle

arrest are not unavoidable and permanent
Cell Cycle

A (!Proliferate U CyclinD) True it is always the case that cell proliferation
does not occur until Cyclin D is

expressed (or activated)
AF AG CyclinD False in our model the activation of Cyclin D is

not a steady state
!E (!P53 U Apoptosis) False apoptosis can be activated even when

P53 is not
Oscillations

TGFβ → AG ((!NFκB →
AF NFκB) ∧ (NFκB →

AF !NFκB)

True an initial overexpression of TGFβ always
leads to oscillations in NFκB’s

expression level
PIP3 → AG ((!NFκB →
AF NFκB) ∧ (NFκB →

AF !NFκB))

True PIP3 has the similar impact on NFκB’s
expression level

AG ((P53 → AFMDM2) ∧
(MDM2 → AF !P53))

True overexpression of P53 will always
activate MDM2, which will in turn

inhibit P53

Table 2.1: Model checking results.

we know that proliferation is eventually both unavoidable and permanent. We now ask whether
it is always possible for the cancer cell to reach states in which Apoptosis and Arrest are OFF,
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thereby making cell proliferation possible. The following two properties are true.

AF !Apoptosis, AF !Arrest

However, the property

AF (!Apoptosis ∧ !Arrest ∧ Proliferate)

is false, which means that the model cannot always eventually reach a state in which apoptosis
and cell cycle arrest are not inhibited and cell proliferation is active. We also report that the two
properties

AF AG !Apoptosis, AF AG !Arrest

are false, so that inhibition of apoptosis and cell cycle arrest are not unavoidable and permanent.

Cell Cycle
We study properties involving the cell cycle, in which the protein Cyclin D is a key player. The

next property is true,
A (!Proliferate U CyclinD)

which means that it is always the case that cell proliferation does not occur until Cyclin D is
expressed (or activated). This property agrees with the experimental finding that Cyclin D is fre-
quently overexpressed in pancreatic tumors [58]. This indicates that Cyclin D is potentially good
target for pancreatic cancer treatments. However, in our model the activation of Cyclin D is not a
steady state, since the following property is false.

AF AG CyclinD

Next, we study the role of P53 in apoptosis. It is known that P53 can induce apoptosis through
several signaling pathways [112]. Here, we ask whether in our model it is never the case that P53
is not activated until Apoptosis is activated. This question can be encoded in the following CTL
formula, which is verified to be false.

!E (!P53 U Apoptosis)

Thus, Apoptosis can be activated even when P53 is not.

Oscillations
There have been several experimental demonstrations of oscillations of NFκB signaling [122,

169]. We therefore ask whether our in silico model features oscillations as well. A CTL formula
for encoding oscillations in NFκB is the following,

AG ((!NFκB → AF NFκB) ∧ (NFκB → AF !NFκB))

which turns out to be false. Next, we check whether overexpression of TGFβ can instead induce
NFκB’s oscillations. The formula

TGFβ → AG ((!NFκB → AF NFκB) ∧ (NFκB → AF !NFκB))
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is in fact true, which means that an initial overexpression of TGFβ always leads to oscillations in
NFκB’s expression level. A similar property holds true for PIP3.

PIP3 → AG ((!NFκB → AF NFκB) ∧ (NFκB → AF !NFκB))

This property is actually an invariant of the model, since the following formula is also true.

AG (PIP3 → AG ((!NFκB → AF NFκB) ∧ (NFκB → AF !NFκB)))

It would be interesting to test experimentally the properties regarding TGFβ and PIP3. Finally,
oscillations have also been detected in the expression level of P53 and MDM2. In [97], oscillations
of P53 lasted more than 72 hours after cell damage induced by γ radiation. The next property is
true,

AG ((P53 → AFMDM2) ∧ (MDM2 → AF !P53))

which means that overexpression of P53 will always activate MDM2, which will in turn inhibit
P53.
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Chapter 3

Biological Signaling Networks as
Qualitative Networks and Improved
Bounded Model Checking

The usage of Boolean networks has been one successful approach to the usage of abstraction
in biology. Boolean networks call for abstracting the status of each modeled substance as either
active (on) or inactive (off). Although a very high level abstraction, it has been found useful to gain
better understanding of certain biological systems [188, 193]. The appeal of this discrete approach
along with the shortcomings of the very aggressive abstraction, led researchers to suggest various
formalisms, such as Qualitative Networks [190] and Gene Regulatory Networks [168] that allow
to refine models when compared to the Boolean approach. In these formalisms, every substance
can have one of a small discrete number of levels. Dependencies between substances become
algebraic functions instead of Boolean functions. Dynamically, a state of the model corresponds
to a valuation of each of the substances and changes in values of substances occur gradually based
on these algebraic functions. Qualitative networks and similar formalisms (e.g., genetic regulatory
networks [204]) have proven to be a suitable formalism to model some biological systems [31,
188, 190, 204].

In this chapter, we consider model checking of qualitative networks. One of the unique features
of qualitative networks is that they have no initial states. That is, the set of initial states is the set
of all states. Obviously, when searching for specific executions or when trying to prove a certain
property we may want to restrict attention to certain initial states. However, the general lack of
initial states suggests a unique approach towards model checking. It follows that if a state that is
not visited after i steps will not be visited after i′ steps for every i′ > i. These “decreasing” sets of
reachable states allow to create a more efficient symbolic representation of all the paths of a certain
length.

However, this observation alone is not enough to create an efficient model checking procedure.
Indeed, accurately representing the set of reachable states at a certain time amounts to the original
problem of model checking (for reachability), which does not scale. In order to address this we use
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an over-approximation of the set of states that are reachable by exactly n steps. We represent the
over-approximation as a Cartesian product of the set of values that are reachable for each variable
at every time point. The computation of this over-approximation never requires us to consider more
than two adjacent states of the system. Thus, it can be computed quite efficiently. Then, using this
over-approximation we create a much smaller encoding of the set of possible paths in the system.

We test our method on many of the biological models developed using Qualitative Networks.
Properties expressed by Linear Temporal Logic (LTL) [178] formulas are translated to an addi-
tional set of constraints on the set of paths. Our encoding is based on temporal testers [179]. The
experimental results show that there is significant acceleration when considering the decreasing
reachability property of qualitative networks. In many examples, in particular larger and more
complicated biological models, this technique leads to considerable speedups. The technique
scales well with increase of size of models and with increase in length of paths sought for. In
particular, for an existing model of Leukemia, our approach works at least 5 times faster than the
standard approach and up to 100 times faster in some cases. These results are especially encourag-
ing given the methodology biologists have been using when employing our tools [29]. Typically,
models are constructed and then compared with experimental results. The process of model de-
velopment is a highly iterative process involving trial and error where the biologist compares a
current approach with experimental results and refines the model until it matches current experi-
mental knowledge. In this iterative process it is important to give fast answers to queries of the
biologist. We hope that with the speed ups afforded by this new technique, model checking could
be incorporated into the routine methodology of experimental biologists using our tools.

3.1 Qualitative Networks Example

We start with an example giving some introduction to Qualitative Networks and the usage of LTL
model checking in this context.

Figure 3.1 shows a model representing aspects of cell-fate determination during C. elegans
vulval development [89]. The part shown in the figure includes three cells. Each cell in the model
represents a vulval precursor cell and the elements inside it represent proteins whose level of ac-
tivity influences the decision of the cell as to which part of the vulva the descendants of the cell
should form. All cells execute the same program and it is the communication between the cells
themselves as well as communication between the cells and additional parts of the model (i.e.,
external signals) that determine a different fate for each of the cells. Understanding cell-fate de-
termination is crucial for our understanding of normal development processes as well as occasions
where these go wrong such as disease and cancer. The pictorial view gives rise to a formal model
expressed as a qualitative network [190]. Formal definitions are in the next section.

Each of the cells in the model includes executing components, for example LET-60, that cor-
respond to a single variable. Each variable v holds a value, which is a number in 0, 1, · · · , Nv,
where Nv is the granularity of the variable. Specifically, in Figure 1 all variables range over 0,1,2.
A target function, Tv, defined over the values of variables affecting v (i.e., having incoming arrows
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Figure 3.1: A pictorial view of part of a model describing aspects of cell-fate determination during
C. elegan’s vulval development [89]. The image shows two cells having the “same program”.
Neighboring cells and connections between cells are not shown.

into v),determines how v is updated: if v < Tv and v < Nv then v′ = v + 1, if v > Tv and
v > 0 then v′ = v − 1, else v does not change. In a qualitative network all variables are updated
synchronously in parallel.

Intuitively, the update function of each variable is designed such that the value of the variable
follows its target function, which depends on other variables. In the biological setting, the typical
target of a variable, v, combines the positive influence of variablesw1, w2, · · · , ws with the negative
influence of variables ws+1, ws+2, · · · , ws+r:

Tv(w1, w2, · · · , ws+r) = max(0,

⌊
1

s

s∑
k=1

wk −
1

r

r∑
k=1

ws+k +
1

2

⌋
)

Graphically, this is often represented as an influence graph with→ edges between each of w1, w2,
· · · , ws and v and a edges between each of ws+1, ws+2, · · · , ws+r and v. More complicated target
functions can be defined using algebraic expressions over w1, · · · , ws+r. We refer the reader to
[29, 69] for further details about other modeling options.

Specifically, in the model above, the target of 1st is:

T1st = min(2 − signalact, 1) ∗ lin− 12

This models activation by lin-12 and inhibition by signalact. However, inhibition occurs only when
signalact is at its maximal level (2). When inhibition is not maximal the target follows the value of
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lin-12. The target of SEM-5 is:

TSEM−5 = max(0, 2 − ((2 − signalact) ∗ (max(1st − 1, 0) + 1)))

This function means that lst inhibits SEM-5 and signalact activates it. However, activation takes
precedence: inhibition takes effect only in case that activation is not at its maximum value (2), and
only when inhibition is at its maximum value (2). Otherwise, the target follows the value of its
activator (signalact).

Models are analyzed to ensure that they reproduce behavior that is observed in experiments. A
mismatch between the model and experimental observations signifies that something is wrong with
our understanding of the system. In such a case, further analysis is required in order to understand
whether and how the model needs to be changed. Models are usually analyzed by simulating
them and following the behavior of components. A special property of interest in these types of
models is that of stability: there is a unique state that has a self loop and all executions lead to
that state [69, 190]. When a model does stabilize it is interesting to check the value of variables
in the stabilization point. In addition, regardless of whether the model is stabilizing or not, model
checking is used to prove properties of the model or to search for interesting executions. For the
model in Figure 3.1 the following properties, e.g., are of interest.

• Do there exist executions leading to adjacent primary fates in which increase of LS hap-
pens after down-regulation of lin-12? This property is translated to an LTL formula of the
following format:

θ ∧ FG fi,j ∧ (¬di U li) ∧ (¬dj U li)

where θ is some condition on initial states, fi,j is the property characterizing the states in
which VPCs i and j are both in primary fate, di is the property that lin-12 is low in VPC i, li
is the property that di is high in VPC i, and dj and lj are similar for VPC j. This property is
run in positive mode, i.e., we are searching for execution that satisfies this property.

• Is it true that for runs starting from a given set of states the sequence of occurrences leading
to fate execution follows the pattern: MPK-1 increases to high level then lin-12 is down-
regulated, and then LS is activated. This property is translated to an LTL formula of the
following format:

θ ⇒ F (mi ∧ XF (li ∧ XF di))

where θ is some condition on initial states, mi is the property characterizing states in which
VPC i has a high level of MPK-1, li is the property characterizing states in which VPC i has
a low level of lin-12, and di is the property characterizing states in which VPC i has a high
level of LS. This property is run in negative (model checking) mode, i.e., we are searching
for executions falsifying this property and expecting the search to fail.
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3.2 Qualitative Networks

In this section, we formally introduce the Qualitative Networks (QN) framework and recall the
definition of linear temporal logic (LTL).

A qualitative network (QN), Q(V, T, N), of granularity N + 1 consists of variables: V =
(v1, v2, · · · , vn). (Note that, for simplicity, we assume that all variables have the same range
{0, · · · , N}. The extension to individual ranges is not complicated. Our implementation sup-
ports individual ranges for variables.) A state of the system is a finite map s : V → {0, 1, · · ·N}.
Each variable vi ∈ V has a target function Ti ∈ T associated with it: Ti : {0, 1, · · · , N}n →
{0, 1, · · · , N}. Qualitative networks update the variables using synchronous parallelism.

Target functions in qualitative networks direct the execution of the network: from state s =
(d1, d2, · · · , dn), the next state s′ = (d′1, d

′
2, · · · , d′n) is computed by:

d′i =


di + 1 di < Ti(s) and di < N,

di − 1 di > Ti(s) and di > 0, (1)

di otherwise

A target function of a variable v is typically a simple algebraic function, such as sum, over sev-
eral other variables w1, w2, · · · , wm. We often say that v depends on w1, w2, · · · , wm or that
w1, w2, · · · , wm are inputs of v. In the following, we use the term network to refer to a quali-
tative network.

A QN Q(V, T, N) defines a state space Σ = {s : V → {0, 1, · · · , N}} and a transition
function f : Σ → Σ, where f(s) = s′ such that for every v ∈ V we have s′(v) depends on Tv(s)

as in Equation (1). For a state s ∈ Σ we denote by s(v) also by sv. In particular, fv(s) = f(s)(v)
is the value of v in f(s). We say that a state s is recurring if it is possible to get back to s after a
finite number of applications of f . That is, if for some i > 0 we have f i(s) = s. As the state space
of a qualitative network is finite, the set of recurring states is never empty. We say that a network
is stabilizing if there exists a unique recurring state s. That is, there is a unique state s such that
f(s) = s, and for every other state s′ and every i > 0 we have fi(s′) 6= s′. Intuitively, this means
that starting from an arbitrary state, we always end up in a fixpoint and always the same one. A
run of a QN Q(V, T, N) is an infinite sequence r = s0, s1, · · · such that for every i ≥ 0 we have
si ∈ Σ and si+1 = f(si).

We now define LTL over runs of qualitative networks as follows. For every variable v ∈ V and
every value n ∈ 0, 1, · · · , N , we define an atomic proposition v ∼ n, where ∼∈ >,≥,≤, <. Let
AP denote the set of all atomic propositions (for a network Q). The set of LTL formulas is:

ϕ ::= AP | ϕ ∨ ϕ | ¬ϕ | Xϕ | ϕUϕ

As usual, we introduce ∧,→, F, and G as syntactic sugar.

An LTL formula ϕ is satisfied over a run r = s0, s1, · · · in location i, denoted r, i |= ϕ
according to the following:
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• For ϕ = v ∼ n ∈ AP we have r, i |= ϕ if si(v) ∼ n.

• For ϕ = ¬ψ we have r, i |= ϕ if it is not the case that r, i |= ψ.

• For ϕ = ψ1 ∨ ψ2 we have r, i |= ϕ if either r, i |= ψ1 or r, i |= ψ2.

• For ϕ = Xψ we have r, i |= ϕ if r, i+ 1 |= ψ.

• For ϕ = ψ1Uψ2 we have r, i |= ϕ if there is j ≥ i such that r, j |= ψ2 and for every
i ≤ k < j we have r, k |= ψ1.

We say that a run r satisfies an LTL formula ϕ, denoted r |= ϕ if r, 0 |= ϕ. Given a Qualitative
Network Q, we say that Q satisfies an LTL formula ϕ, denoted Q |= ϕ, if for every run r of Q we
have r |= ϕ. In case that Q 2 ϕ a counterexample is a run r such that r 2 ϕ.

We use bounded model checking [64] for checking whether a qualitative network satisfies a
given LTL formula ϕ. Intuitively, we search for a run of a certain structure (and length) that does
not satisfy the formula by constructing a Boolean formula whose satisfiability corresponds to such
a run. Searching for a counterexample of length l means that we (1) create Boolean variables that
represent the state of the system in l different time points, (2) add constraints that enforce that
the transition of the qualitative network holds between every two consecutive time points, (3) add
constraints that enforce that the transition of the qualitative network holds between the state at time
l − 1 (last state) and some previous state (i.e., that the sequence of states ends in a loop), and (4)
add Boolean variables and constraints that enforce satisfaction of the (negation of) the temporal
property.

In order to create a Boolean encoding of the LTL formula we use a variant of the temporal
testers approach in [179]. Specifically, for every temporal subformula (and every time point in the
trace) we add a Boolean variable that tracks the truth value of the subformula at that time. The
truth value of these variables are connected to the truth values of propositions (encoded through
the state of the model) and truth values of other subformulas. In addition, we add constraints that
enforce satisfaction of eventualities in the loop. In order to search for a trace that satisfies a certain
LTL formula we add the encoding of the formula to the trace. Satisfiability then provides a run
satisfying the formula. To prove that all runs up of a certain length satisfy a formula, we add the
encoding of the negation of the formula to the trace. Unsatisfiability then provides a proof that no
run (of the given length) satisfies the formula.

3.3 Decreasing Reachability Sets

A notable difference between QNs and “normal” transition systems is that QNs do not specify ini-
tial states. For example, for the classical stability analysis all states are considered as initial states.
It follows that if a state s of a QN is not reachable after i steps, it is not reachable after i′ steps for
every i′ > i. Thus, there is a decreasing sequence of sets Σ0 ⊇ Σ1 ⊇ · · · ⊇ Σl such that search-
ing for runs of the network can be restricted to the set of runs of the form Σ0, Σ1, · · · , (Σl)

ω.

32



Here we show how to take advantage of this fact in constructing a more scalable model checking
algorithm for qualitative networks.

Consider a Qualitative Network Q(V, T,N) with set of states Σ : V → {0, · · · , N}. We say
that a state s ∈ Σ is reachable by exactly i steps if there is some run r = s0, s1, · · · such that
s = si. Dually, we say that s is not reachable by exactly i steps if for every run r = s0, s1, · · · we
have si 6= s.

Lemma 3.1. If a state s is not reachable by exactly i steps then it is not reachable by exactly i′

steps for every i′ > i.

The algorithm 1 computes a decreasing sequence Σ0 ⊃ Σ1 ⊃ · · · ⊃ Σj−1 such that all states
that are reachable by exactly i steps are in Σi if i < j and in Σj−1 if i ≥ j. We note that the
definition of Σj+1 in line 5 is equivalent to the standard Σj+1 = f(Σj), where function f(·) is used
to compute the next reachable set. However, we choose to write it as in the algorithm below in order
to stress that only states in Σj are candidates for inclusion in Σj+1. Given the sets Σ0, · · · ,Σj−1,
every run r = s0, s1, · · · of Q satisfies si ∈ Σi for i < j and si ∈ Σj−1 for i ≥ j. In particular, if
Q 2 ϕ for some LTL formula ϕ, then the run witnessing the unsatisfaction of ϕ can be searched
for in this smaller space of runs. Unfortunately, the algorithm 1 is not feasible. Indeed, it amounts
to computing the exact reachability sets of the QN Q, which does not scale well [69].

Algorithm 1 Concrete Decreasing Reachability
1: Σ0 = Σ;
2: Σ−1 = ∅;
3: j = 0;
4: while Σj−1 6= Σj do
5: Σj+1 = Σj \ {s′ ∈ Σ|∀s ∈ Σ · s′ 6= f(s)};
6: j + +;
7: end while
8: return Σ0, · · · ,Σj−1

In order to effectively use Lemma 1 we combine it with over-approximation, which leads to
a scalable algorithm. Specifically, instead of considering the set Σk of states reachable at step k,
we identify for every variable vi ∈ V the domain Di,k of the set of values possible at time k for
variable vi. Just like the general set of states, when we consider the possible values of variable vi
we get that Di,0 ⊇ Di,1 ⊇ · · · ⊇ Di,l. The advantage is that the sets Di,k for all vi ∈ V and k > 0
can be constructed by induction by considering only the knowledge on previous ranges and the
target function of one variable.

Consider the algorithm 2. For each variable, it initializes the set of possible values at time 0 as
the set of all values. Then, based on the possible values at time j, it computes the possible values
at time j + 1. The actual check can be either implemented explicitly if the number of inputs of all
target functions is small (as in most cases) or symbolically. Considering only variables (and values)
that are required to decide the possible values of variable vi at time j makes the problem much
simpler than the general reachability problem. Notice that, again, only values that are possible at
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time j need be considered at time j + 1. That is, Di,j+1 starts as empty (line 6) and only values
from Di,j are added to it (lines 7 - 10). As before, Di,j+1 is the projection of f(D1,j × · · · ×Dm,j)
on vi. The notation used in the algorithm above stresses that only states in Di,j are candidates for
inclusion in Di,j+1.

Algorithm 2 Abstract Decreasing Reachability

1: ∀vi ∈ V ·Di,0 = {0, 1, · · · , N};
2: ∀vi ∈ V ·Di,−1 = ∅;
3: j = 0;
4: while ∃vi ∈ V ·Di,j 6= Di,j−1 do
5: for each vi ∈ V do
6: Di,j+1 = ∅;
7: for each d ∈ Di,j do
8: if ∃(d1, · · · , dm) ∈ D1,j × · · · ×Dm,j · fv(d1, · · · , dm) = d then
9: Di,j+1 = Di,j+1 ∪ {d};

10: end if
11: end for
12: end for
13: end while
14: j + +;
15: return ∀vi ∈ V, ∀j′ ≤ j ·Di,j′

The algorithm produces very compact information that enables to follow with a search for runs
of the QN. Namely, for every variable vi and for every time point 0 ≤ k < j we have a decreasing
sequence of domains

Di,0 ⊇ Di,1 ⊇ · · · ⊇ Di,k.

Consider a Qualitative NetworkQ(V, T,N), where V = {v1, · · · , vn} and a run r = s0, s1, · · · .
As before, every run r = s0, s1, · · · satisfies that for every i and for every t we have st(vi) ∈ Di,t

for t < j and st(vi) ∈ Di,j−1 for t ≥ j.

We look for paths that are in the form of a lasso, as we explain below. We say that r is a
loop of length l if for some 0 < k ≤ l and for all m ≥ 0 we have sl+m = sl+m−k. That is, the
run r is obtained by considering a prefix of length l − k of states and then a loop of k states that
repeats forever. A search for a loop of length l that satisfies an LTL formula ϕ can be encoded as
a bounded model checking query as follows. We encode the existence of l states s0, · · · , sl−1. We
use the decreasing reachability sets Di,t to force state st to be in D0,t × · · · × Dn,t. This leads to
a smaller encoding of the states s0, · · · , sl−1 and to smaller search space. We add constraints that
enforce that for every 0 ≤ t < l − 1 we have st+1 = f(st). Furthermore, we encode the existence
of a time l − k such that sl−k = f(sl−1). We then search for a loop of length l that satisfies ϕ . It
is well known that if there is a run of Q that satisfies ϕ then there is some l and a loop of length
l that satisfies ϕ . We note that sometimes there is a mismatch between the length of loop sought
for and length of sequence of sets (j) produced by the algorithm 2. Suppose that the algorithm
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returns the sets Di,t for vi ∈ V and 0 ≤ t < j. If l > j, we use the sets Di,j−1 to “pad” the
sequence. Thus, states sj, · · · , sl−1 will also be sought in

∏
iDi,j−1. If l < j, we use the sets

Di,0, · · · , Di,l−2, Di,j−1 for vi ∈ V . Thus, only the last state sl−1 is ensured to be in our “best”
approximation

∏
iDi,j−1. A detailed explanation of how we encode the decreasing reachability

sets as a Boolean satisfiability problem is given in [62].

3.4 Results for Various Biological Models

We implemented this technique to work on models defined through our tool BMA [29]. Here, we
present experimental results of running our implementation on a set of different biological models,
including a total of 22 benchmark problems from various sources (skin cells differentiation models
by ourselves, diabetes models from [31], models of cell fate determination during C. elegans vulval
development, a Drosophila embryo development model from [188], Leukemia models constructed
by ourselves, and a few additional examples constructed by ourselves). The number of variables
in the models and the maximal range of variables is reported in Table 3.1.

Model name #Vars Range Model name #Vars Range
2var unstable 2 0..1 Bcr-Abl 57 0..2

Bcr-AblNoFeedbacks 54 0..2 BooleanLoop 2 0..1
NoLoopFound 5 0..4 Skin1D TF 0 75 0..4
Skin1D TF 1 75 0..4 Skin1D 75 0..4

Skin2D 3X2 0 90 0..4 Skin2D 3X2 1 90 0..4
Skin2D 3X2 2 90 0..4 Skin2D 5X2 TF 198 0..4
Skin2D 5X2 198 0..4 SmallTestCase 3 0..4

SSkin1D TF 0 30 0..4 SSkin1D TF 1 31 0..4
SSkin1D 30 0..4 SSkin2D 3X2 40 0..4

VerySmallTest 2 0..4 VPC lin15ko 85 0..2
VPC Non stable 33 0..2 VPC stable 43 0..2

Table 3.1: Number of variables in models and their ranges.

Our experiments compare two encodings. One encoding is explained in algorithm 2, referred
to as “opt” (for optimized). the other considers l states s0, · · · , sl where st(vi) ∈ {0, · · · , N} for
every t and every i. That is, for every variable vi and every time point 0 ≤ t ≤ l we consider the set
Di,t = 0, · · · , N . This encoding is referred to as “naı̈ve”. In both cases we use the same encoding
to a Boolean satisfiability problem. Further details about the exact encoding can be found in [62].

We perform two kinds of experiments. First, we search for loops of length 10, 20, · · · , 50 on
all the models for the optimized and naı̈ve encodings. Second, we search for loops that satisfy a
certain LTL property (either as a counterexample to model checking or as an example run satisfying
a given property). Again, this is performed for both the optimized and the naı̈ve encodings. LTL
properties are considered only for four biological models. The properties were suggested by our
collaborators as interesting properties to check for these models. For both experiments, we report
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separately on the global time and the time spent in the SAT solver. All experiments were run on an
Intel Xeon machine with CPU X7560@2.27GHz running Windows Server 2008 R2 Enterprise.

In Tables 3.2 and 3.3 we include experimental results for the search for loops. We compare
the global run time of the optimized search vs the naı̈ve search. The global run time for the op-
timized search includes the time it takes to compute the sequence of decreasing reachability sets.
Accordingly, in some of the models, especially the smaller ones, the overhead of computing this
additional information makes the optimized computation slower than the naı̈ve one. For informa-
tion we include also the net runtime spent in the SAT solver.

In Table 3.4 we include experimental results for the model checking experiment. As before,
we include the results of running the search for counterexamples of lengths 10, 20, 30, 40, and 50.
We include the total runtime of the optimized vs the naı̈ve approaches as well as the time spent in
the SAT solver. As before, the global runtime for the optimized search includes the computation
of the decreasing reachability sets. The properties in the table are of the following form. Let I ,
a · · · d denote formulas that are Boolean combinations of propositions.

• I → (¬a) U b: we check that the sequence of events when starting from the given initial
states (I) satisfies the order that b happens before a.

• I ∧ FG a ∧ F (b ∧ XF c): we check that the model gets from some states (I) to a loop
that satisfies the condition a and the path leading to the loop satisfies that b happens first and
then c.

• I ∧ FG a ∧ F (b ∧ XF (c ∧ XF d)): we extend the previous property by checking the
sequence a then b then c and then d.

• I ∧ FG a ∧ (¬b) U c: we check that the model gets from some states (I) to a loop that
satisfies the condition a and the path leading to the loop satisfies that b cannot happen before
c.

• GF a ∧ GF b: we check for the existence of loops that exhibit a form of instability by
having states that satisfy both a and b.

When considering the path search, on many of the smaller models the new technique does not
offer a significant advantage. However, on larger models, and in particular the two dimensional
skin model (Skin2D 5X2 from [190]) and the Leukemia model (Bcr Abl) the new technique is an
order of magnitude faster. Furthermore, when increasing the length of the path it scales a lot better
than the naı̈ve approach. When model checking is considered, the combination of the decreasing
reachability sets accelerates model checking considerably. While the naı̈ve search increases con-
siderably to the order of tens of minutes, the optimized search remains within the order of 10s,
which affords a “real-time” response to users.
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Model name Global Time (s) Sat Time (s) Ratio
Naı̈ve Opt Naı̈ve Opt Global Sat

Bcr-Abl1 69.30 9.04 26.67 0.90 7.66 29.61 sat
Bcr-Abl1 188.13 12.21 87.70 1.42 15.40 61.47 sat
Bcr-Abl1 380.24 13.12 292.21 2.01 28.96 145.02 sat
Bcr-Abl1 648.02 12.37 349.70 2.30 52.38 151.87 sat
Bcr-Abl1 1005.37 11.52 588.34 2.17 87.19 270.93 sat
Bcr-Abl2 47.04 10.97 9.94 0.72 4.28 13.76 Unsat
Bcr-Abl2 136.48 8.62 41.04 0.75 15.82 54.66 Unsat
Bcr-Abl2 285.28 11.28 112.35 0.77 25.28 144.58 Unsat
Bcr-Abl2 561.65 9.29 443.91 0.80 60.41 553.83 Unsat
Bcr-Abl2 781.64 12.03 408.55 0.87 64.96 465.55 Unsat
Bcr-Abl3 48.64 8.47 9.54 0.83 5.74 11.45 Unsat
Bcr-Abl3 133.83 9.10 38.68 1.11 14.69 34.81 Unsat
Bcr-Abl3 283.73 9.45 106.61 1.16 30.01 91.28 Unsat
Bcr-Abl3 596.50 9.50 466.01 1.18 62.78 394.48 Unsat
Bcr-Abl3 853.53 10.05 480.77 1.36 84.89 351.99 Unsat
Bcr-Abl4 75.27 9.19 44.50 0.80 8.18 55.31 sat
Bcr-Abl4 202.06 9.95 143.49 1.53 20.30 93.50 sat
Bcr-Abl4 296.02 11.35 116.24 2.54 26.07 45.75 sat
Bcr-Abl4 740.39 11.00 116.24 2.54 26.07 45.74 sat
Bcr-Abl4 975.97 10.42 823.53 1.10 93.63 747.14 sat

Bcr-AblNoFeedbacks1 42.98 6.25 7.94 0.40 6.87 19.51 Unsat
Bcr-AblNoFeedbacks1 163.33 8.18 95.43 0.77 19.95 123.90 Unsat
Bcr-AblNoFeedbacks1 302.17 6.41 122.25 0.46 47.07 260.90 Unsat
Bcr-AblNoFeedbacks1 493.28 6.41 314.24 0.45 76.92 686.28 Unsat
Bcr-AblNoFeedbacks1 809.97 6.45 680.70 0.46 125.51 1461.69 Unsat
Bcr-AblNoFeedbacks2 44.88 6.39 6.59 0.40 7.01 16.27 Unsat
Bcr-AblNoFeedbacks2 117.96 6.34 20.98 0.39 18.58 53.61 Unsat
Bcr-AblNoFeedbacks2 312.73 7.59 231.87 0.46 41.18 500.00 Unsat
Bcr-AblNoFeedbacks2 527.40 6.31 423.61 0.39 83.46 1084.74 Unsat
Bcr-AblNoFeedbacks2 751.45 6.83 362.09 0.44 109.87 806.35 Unsat
Bcr-AblNoFeedbacks3 60.99 6.95 20.45 0.64 8.77 31.64 sat
Bcr-AblNoFeedbacks3 204.66 7.06 144.58 0.61 28.97 233.95 sat
Bcr-AblNoFeedbacks3 356.33 8.81 267.48 0.49 40.42 539.32 sat
Bcr-AblNoFeedbacks3 Time out 7.06 Time out 0.42 N/A N/A sat

VPC non stable1 30.14 10.83 4.83 0.69 2.78 6.93 Unsat
VPC non stable2 17.42 9.85 3.59 1.11 1.76 3.24 sat
VPC non stable3 52.01 11.91 26.69 1.48 4.36 17.93 Unsat
VPC non stable4 19.53 8.31 7.08 0.60 2.34 11.77 Unsat

VPC stable1 3.75 5.11 0.31 0.07 0.73 3.99 Unsat
VPC stable2 5.53 5.32 0.86 0.11 1.04 7.41 sat

Table 3.4: Model checking results.
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Chapter 4

Phage-based Bacteria Killing as A
Nonlinear Hybrid Automaton and
δ-complete Decision-based Bounded Model
Checking

Due to the widespread misuse and overuse of antibiotics, drug resistant bacteria now pose signifi-
cant risks to health, agriculture and the environment. Therefore, we were interested in an alterna-
tive to conventional antibiotics, a phage therapy. Phages, or bacteriophages, are viruses that infect
bacteria and have evolved to manipulate the bacterial cells and genome, making resistance to bac-
teriophages difficult to achieve. However, many phages are temperate, meaning that they can enter
a lysogenic phase and therefore not lyse and kill the host bacteria. The addition of a phototoxic
protein - KillerRed [176] - to the system offers a second method of killing those bacteria targeted
by a lysogenic phage. In this chapter, we constructed a hybrid model of a bacteria killing procedure
that mimics the stages through which bacteria change when phage therapy is adopted. Our model
was designed according to an experimental procedure to engineer a temperate phage, Lambda (λ),
and then kill bacteria via light-activated production of superoxide. We applied δ-complete decision
based bounded model checking [95] to our model and the results show that such an approach can
speed up evaluation of the system, which would be impractical or possibly not even feasible to
study in a wet lab.

4.1 The KillerRed Model

The discovery of antibiotics has been quickly followed by the development of antibiotic resistance.
New medicines are becoming increasingly scarce in tackling this issue. The document released by
CDC (Centers for Disease Control and Prevention), “Antibiotic Resistance Threats in the United
States, 2013” [4], intends to raise public awareness of the problems associated with overuse and
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misuse of antibiotics and to outline the threats to society caused by these organisms. The organisms
have been categorized by hazard level as urgent, serious and concerning. Over 2 million illnesses
and 23, 000 deaths per year are a direct result of antibiotic resistance.

There are multiple mechanisms of antibiotic resistance. First, altered permeability of the an-
timicrobial agent is suggested to be due to the inability of the agent to enter the bacterial cell, or
alternatively, due to the active export of the agent from the cell. Second, resistance is often the
result of the production of an enzyme that is capable of inactivating the antimicrobial agent. Next,
resistance can arise due to alteration of the target site for the antimicrobial agent. Finally, resis-
tance can result from the acquisition of a new enzyme to replace the sensitive one, thus replacing
the pathway that was originally sensitive to antibiotic to another pathway.

The CDC outlines four core actions that will help fight deadly infections [4]: (a) preventing
infections and the spread of resistance; (b) tracking resistant bacteria; (c) improving the use of
today’s antibiotics; and (d) promoting the development of new antibiotics and developing new
diagnostic tests for resistant bacteria. Recently, we have addressed this problem by designing a
new system that relies on phage-based therapy. Phages, or bacteriophages, are viruses that infect
bacteria and have evolved to manipulate the bacterial cells and genome, making resistance to bac-
teriophages difficult to achieve. Bacteriophages are complex and utilize many host pathways such
that they cannot be inactivated or bypassed. Bacteriophages infect only specific hosts and can kill
the host by cytolysis. However, many phages are temperate, meaning that they can enter a lyso-
genic phase and therefore not lyse and kill the host bacteria. The addition of a phototoxic protein
to the system offers a second method of killing those bacteria targeted by a lysogenic phage. Thus,
our system, shown in Figure 4.1, explores the possibility that temperate phages can also be used
for phage therapy and bacteria killing applications. We incorporated several proteins (KillerRed
[176], SuperNova [202]), that have been shown to be phototoxic and that provide another level of
controlled bacteria killing.

We have modeled synthesis and action of KillerRed that occurs over three main phases of a
typical photobleaching experiment: induction at 37◦C, storage at 4◦C to allow for protein matura-
tion, and photobleaching at room temperature. Within these phases, we identify several stages of
interest in KillerRed synthesis and activity as follows.
- mRNA synthesis and degradation
- KillerRed synthesis, maturation, and degradation
- KillerRed states: singlet (S), singlet excited (S∗), triplet excited (T ∗), and deactivated (Da)
- Superoxide production (by KillerRed)
- Superoxide elimination (by superoxide dismutase)

We implemented these system stages with distinct model states, and outlined them in Figure
4.3, together with state variables (values are included if variables are fixed within a state), transi-
tions between states, and events that trigger state transitions. In Table 4.1 we list the model states
that are used to describe the stages of the system. In the following, we detail our implementation
of system stages within the model. We also list equations that we derived for each stage.

Cell exposure to light
In [206], the authors describe a method for determining the rate coefficient of activation from
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Figure 4.1: Interactions between phage and bacteria used in our model

Figure 4.2: Energy diagram for a generic fluorochrome [198]
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the ground state ka: ka = σI . In detail, σ is the optical cross-section per molecule and I is
the excitation intensity in photons per unit area. The lamp used for photobleaching gave I =
1 × 1027 photons/cm2s (about 1W ). σ is given by σ = ε(1000cm3/L)(ln10)NA, where ε is
the extinction coefficient and NA is Avogadro’s number. We calculated ka = 1.72 × 1011s−1

for KillerRed for our photobleaching experiments. The rate constant for returning to the ground
state is kf = ln2/τ , where τ is the half-life for KillerRed in the excited state. τ for KillerRed is
assumed to be similar to τ for dsRed (about 3.0ns [38]), since their chromophores are identical.
Thus, by assuming that KillerRed is always in the excited state (if it has not been deactivated)
during photobleaching, we have that kf = 2.3× 108s−1 and F = ka/(ka + kf ) = 0.9987.

Production of superoxide
Production of the superoxide radical is governed by several reactions. Fluorescein is used as a
model chromophore. S, S∗, T ∗, and Da are the singlet, excited singlet, excited triplet, and deac-
tivated states, respectively, of the chromophore. Figure 4.2 outlines transitions between different
forms of the chromophore. In detail, fluorochrome molecules absorb photon energy at a rate ka
and go from the ground singlet state S up to the excited singlet state S∗. Then they may return
to the ground state by radiative (fluorescence) or non-radiative (internal conversion) pathway at a
combined rate kd. They may also undergo non-radiative intersystem crossing, at a rate kisc, to T ∗,
where they may return to the ground state at a rate k1. Photobleaching may take place from both S∗

and T ∗ at rates kbs and kbt, respectively. Those photobleached molecules can no longer participate
in the excitation-emission cycle.

Superoxide dismutase
Superoxide dismutase is E. coli′s main defense against superoxide. Its action was incorporated
using Michaelis-Menten kinetics:
−d[O·−2 ]

dt
=

Vmax[O·−2 ]

Km+[O·−2 ]
,

where Vmax estimated using kcat from [138], and Km was estimated using km and kcat/km from
[84, 138].

Cell without λ-phage genome
The first system stage that we model is a bacteria cell that does not have phage genome injected,
and gene transcription is not induced. Thus, all of the model elements are at their initial level,
assumed to be 0. In the model, we assume that λ-phage genome is injected into bacteria cell with
rate k1, or t1 time units after the start of time counting. When analyzing individual cells this does
not have an effect, but is important to take into account when analyzing cell population.

Cell with injected λ-phage genome
After the injection of phage genome into the cell, the genome will be inserted into the bacterial
DNA with rate k2. Or, in terms of counting time units, it will take t2 time units to integrate the
phage genome into bacterial plasmid once it is inside the cell. However, since IPTG is still not
added to the cell, we assume that gene transcription is not induced yet. Therefore, similar to
previous two states, initial state and the state of phage genome injected, this state is assumed to be
static.
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Figure 4.3: Hybrid automaton for our KillerRed model

Addition of IPTG
When IPTG is added to the system, the transcription starts. Measure of transcriptional efficiency is
the rate of mRNA synthesis, kRNAsyn. Our construct uses a wild-type lac promoter, so we assume
that its transcription rates are similar to the lac operon. Next, mRNA transforms into immature
KillerRed molecules with translational efficiency, kKRsyn. The maximum translation rate in the
model is three orders of magnitude lower to reflect the presents of several rare codons. This
adjustment is suggested by comparisons of our fluorescence data for KillerRed and mRFP, which
have nearly identical brightness.

Immature synthesized KillerRed (KRim) requires additional time to become mature KillerRed
form (KRm), and to fold and create a dimer (KRmd). These two events together occur with
the overall rate of kKRm . This folded and dimerized form of KillerRed that can be activated by
light is called singlet form (KRmdS). Degradations of synthesized mRNA and KillerRed in both
modeled forms are included in equations with rates kmRNAdeg (characteristic half-life), kKRimdeg,
and kmdSdeg, respectively. In this model state, resulting from addition of IPTG and ending with
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either removal of IPTG or addition of light, we use the following ordinary differential equations
(ODEs) to describe the continuous dynamics.

d[mRNA]

dt
= kRNAsyn · [DNA]− kRNAdeg · [mRNA]

d[KRim]

dt
= kKRimsyn · [mRNA]− (kKRm + kKRimdeg)

·[KRim]

d[KRmdS]

dt
= kKRm · [KRim]− kKRmdSdeg · [KRmdS]

State State description Input Next
state(s)

S0 Initial system state, bacteria cell, without phage n/a S1 (ex.)
S1 Phage genome injected λ-phage genome S2 (in.),

S3 (in.)
S2 Phage genome replication (lytic cycle) Genome replication n/a
S3 Phage genome within bacterial DNA (lysogenic

cycle)
Genome insertion S4 (ex.)

S4 Gene transcription, translation Addition of IPTG S5 (ex.),
S6 (ex.)

S5 Gene transcription decrease Removal of IPTG S3 (in.)
S6 Activation of KillerRed Light turned ON S7 (ex.),

S8 (ex.),
S11 (in.)

S7 Mixture of KillerRed forms, no activation Light turned OFF S9 (ex.),
S11 (in.)

S8 Mixture of KillerRed forms, transcription decrease Removal of IPTG S10 (ex.),
S11 (in.)

S9 Mixture of KillerRed forms, no activation,
transcription decrease

Removal of IPTG S11 (in.)

S10 Mixture of KillerRed forms, transcription
decrease, no activation

Light turned OFF S11 (in.)

S11 Cell death SOX>threshold n/a

Table 4.1: List of modeled system states, their description, inputs and next state(s) with indication whether transition was triggered by external input
(ex.) or by internal variable (in.) reaching some specified value.

Addition of light
Addition of light results in moving from the state with KillerRed synthesis into the state of activat-
ing KillerRed, S. In the state that assumes system’s exposure to light, other forms of KillerRed are
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present, including excited singlet state S∗, (KRmdS∗) and triplet state T ∗, (KRmdT ∗). Transitions
between different forms of KillerRed can occur and therefore, in this state, we include the above
model equations and modified equation, and add equations for other forms of KillerRed (KRmdS∗ ,
KRmdT ∗), as well as equations for produced superoxide (SOX) and for the effect of superoxide
dismutase (SOXsod).

d[KRmdS]

dt
= kKRm · [KRim] + kKRf

· [KRmdS∗ ]

+kKRic
· [KRmdS∗ ] + kKRnrd

· [KRmdT ∗ ]

+kKRSOXd1
· [KRmdT ∗ ]− kKRex · [KRmdS]

−kKRmdSdeg · [KRmdS]

d[KRmdS∗ ]

dt
= kKRex · [KRmdS]− kKRf

· [KRmdS∗ ]

−kKRic
· [KRmdS∗ ]− kKRisc

· [KRmdS∗ ]

−kKRmdS∗deg · [KRmdS∗ ]

d[KRmdT ∗ ]

dt
= kKRisc

· [KRmdS∗ ]− kKRnrd
· [KRmdT ∗ ]

−kKRSOXd1
· [KRmdT ∗ ]

−kKRSOXd2
· [KRmdT ∗ ]

−kKRmdT∗deg · [KRmdT ∗ ]

d[SOX]

dt
= kKRSOXd1

· [KRmdT ∗ ] + kKRSOXd2

·[KRmdT ∗ ]−
d[SOXsod]

dt
d[SOXsod]

dt
= kSOD · VmaxSOD ·

[SOX]

Km + [SOX]

Rates of KillerRed transitioning from state S∗ to state S, through fluorescence or internal con-
version are denoted with kKRf

and kKRic
, respectively. Rates of KillerRed transitioning from state

T ∗ to state S, through non-radiative deactivation or by production of SOX with deactivation are
denoted with kKRnrd

and kKRSOXd1
, respectively. The excited form of KillerRed, S∗, is formed

at rate kKRex , and is reduced in several ways: (a) by fluorescence with rate kKRf
, (b) by inter-

nal conversion with rate kKRic
, (c) by inter-system crossing kKRisc

, and (d) by degradation with
rate kKRmdS∗deg. The triplet form, T ∗, is formed through intersystem crossing with rate kKRisc

,
and is reduced in several ways, by non-radiative deactivation with rate kKRnrd

, by superoxide
(ROS) production with deactivation to state S with rate kKRSOXd1

, by superoxide (ROS) produc-
tion with photobleaching with rate kKRSOXd2

, and by degradation with rate kKRmdS∗deg. In addition,
kKRSOXd1

and kKRSOXd2
can be computed taking into account relative propensity for KillerRed to

generate superoxide without becoming deactivated (c), photo-bleaching rate obtained from exper-
iments (kKRpb

), and quantum yield (Φ) as follows.

kKRSOXd1
= c ·

kKRpb

Φ
kKRSOXd2

=
kKRpb

Φ
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4.2 δ-Decisions for Hybrid Models

To validate the correctness, estimate parameters, and conduct sensitivity analysis of our model, we
constructed a hybrid model for the system, and used delta-complete decision procedures [94, 95]
to find solutions to these formulae. Before going over the delta-complete decision procedures, we
first give the formal definition of hybrid automata.

Definition 4.2.1 (Hybrid Automaton) A hybrid automaton H consists of the following compo-
nents.

• Variables. A finite set X = {x1, · · · , xn} of real-numbered variables, where n is the di-
mension of H . We write Ẋ for the set {ẋ1, · · · , ẋn} to represent first derivatives of variables
during the continuous change, and write X ′ for the set {x′1, · · · , x′n} to denote values of
variables at the conclusion of the discrete change.

• Control graph. A finite directed multigraph (V,E). The vertices in V are called control
modes, and edges in E are control switches.

• Initial, invariant, and flow conditions. As vertex labeling functions over each control
mode v ∈ V , the initial condition init(v) is predicate whose free variables are from V ,
the invariant condition inv(v) is a predicate whose free variables are from X , and the flow
condition flow(v) is a predicate whose free variables are from X ∪ Ẋ .

• Jump conditions. An edge labeling function jump that assigns to each control switch e ∈ E
a predicate whose free variables are from X ∪X ′.

• Events. A finite set Σ of events, and an edge labeling function event : E → Σ that assigns
to each control switch an event.

Formal verification of hybrid systems is crucially very important and challenging. Systems
combining nonlinear dynamics and nontrivial discrete control can hardly be handled. In order
to overcome the undecidability of reasoning about hybrid systems, Gao et al. recently defined
the concept of δ-satisfiability over the reals, and presented a corresponding δ-complete decision
procedure [94, 95]. The main idea is to decide correctly whether slightly relaxed sentences over
the reals are satisfiable or not. The following definitions are from [95].

Definition 4.2.2 (Bounded Quantifier) A bounded quantifier is one of the following:

∃[a,b]x = ∃x : (a ≤ x ∧ x ≤ b)

∀[a,b]x = ∀x : (a ≤ x ∧ x ≤ b)

Definition 4.2.3 (Bounded Σ1 Sentence) A bounded Σ1 sentence is an expression of the form:

∃I1x1, ...,∃I1xn : ψ(x1, ..., xn)
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where Ii = [ai, bi] are intervals, ψ(x1, ..., xn) is a Boolean combination of atomic formulas of the
form g(x1, ..., xn)op 0, where g is a composition of Type 2-computable functions and op ∈ {<,≤
, >,≥,=, 6=}.

Note that any bounded Σ1 sentence is equivalent to a Σ1 sentence in which all the atoms are
of the form f(x1, ..., xn) = 0 (i.e., the only op needed is ‘=’). Essentially, Type 2-computable
functions can be approximated arbitrarily well by finite computations of a special kind of Turing
machines (Type 2 machines); most ‘useful’ functions over the reals are Type 2-computable. The
notion of δ-weakening of a bounded sentence is central to δ-satisfiability.

Definition 4.2.4 (δ-Weakening) Let δ ∈ Q+ ∪ {0} be a constant and φ a bounded Σ1-sentence in
the standard form

φ = ∃I1x1, ...,∃Inxn :
m∧
i=1

(

ki∨
j=1

fij(x1, ..., xn) = 0) (4.1)

where fij(x1, ..., xn) = 0 are atomic formulas. The δ-weakening of φ is the formula:

φδ = ∃I1x1, ...,∃Inxn :
m∧
i=1

(

ki∨
j=1

|fij(x1, ..., xn)| ≤ δ) (4.2)

Note that φ implies φδ, while the converse is obviously not true. The bounded δ-satisfiability
problem asks for the following: given a sentence of the form (4.1) and δ ∈ Q+, correctly decide
whether unsat (φ is false), or δ-sat (φδ is true). If the two cases overlap either decision can be
returned: such a scenario reveals that the formula is fragile - a small perturbation (i.e., a small δ)
can change the formula’s truth value.

A qualitative property of hybrid systems that can be checked is bounded δ-reachability. It asks
whether the system reaches the unsafe region after k ∈ N discrete transitions.

Definition 4.2.5 (Bounded k-Step δ-Reachability) Bounded k step δ-reachability in hybrid sys-
tems can be encoded as a bounded Σ1-sentence

∃x0
0,q0
,∃xt0,q0 , ...,∃x

0
0,qm ,∃x

t
0,qm , ...,∃x

0
k,qm ,∃x

t
k,qm :

(
∨
q∈Q

(initq(x0
0,q) ∧ flowq(x0

0,q, x
t
0,q)))

∧(
k−1∧
i=0

(
∨

q,q′∈Q

(jumpq→q′(xti,q, x
0
i+1,q′)

∧(flowq′(x0
i+1,q′ , x

t
i+1,q′))) ∧ (

∨
q∈Q

unsafeq(xtk,q))))

(4.3)

where x0
i,q and xi,q represent the continuous state in the mode q at the depth i, and q′ is a successor

mode.
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Intuitively, the formula above can be understood as follows: the first conjunction is asking for
a set of continuous variables which satisfy the initial condition in one of the modes and the flow in
that mode; the second conjunction is looking for a set of vectors which satisfy any k discrete jumps
and flows in each successor mode defined by the jumps; the third conjunction is verifying whether
the state of the system (the mode and the set of continuous variables in the mode after k jumps)
belongs to the unsafe region. Note that the previous definition asks for reachability in exactly k
steps. One can build a disjunction of formula (4.3) for all values from 1 to k, thereby obtaining
reachability within k steps.

The δ-reachability problem can be solved using the described δ-complete decision procedure,
which will correctly return one of the following answers:
- unsat: the system never reaches the bad region U ,
- δ-sat: the δ-perturbation of (4.3) is true, and a witness, i.e., an assignment for all the variables, is
returned.

We now show that this δ-decisions technique for hybrid models can be used to handle problems
such as model falsification, parameter estimation, and parametric sensitivity analysis.

Model Falsification. The model falsification problem with existing experimental observations
is basically a bounded reachability question: Expressing each experimental observation as a goal
region, is there any number of steps k in which the model reaches the goal region? If none exists,
the model is incorrect regarding the given observation. If, for each observation, a witness is re-
turned, we can conclude that the model is correct with regard to a given set of experimental results.
This is a bounded Model Checking problem, where all experimental observations can be expressed
as reachability properties.

Parameter Estimation. The parameter estimation problem can also be encoded as a k-step
reachability problem: Does it exist a parameter combination for which the model reaches the given
goal region in k steps? Considering an assignment of a certain set of system parameters, if a
witness is returned, this assignment is potentially a good estimation for those parameters. The goal
here is to find an assignment with which all the given goal regions can be reached in bounded steps.

Parametric Sensitivity Analysis. The sensitivity analysis can be conducted by a set of bounded
reachability queries as well. For different possible values of a certain system parameter, are the
results of reachability analysis the same? If so, the model is insensitive to this parameter with
regard to the given experimental observations.

4.3 Results and Discussion

Effect of delay in turning light ON
First, we have studied the relation between the time to turn ON the light after adding IPTG

that is a molecular biology reagent used to induce protein expression (tlightON ), and the total time
needed until the bacteria cells being killed (ttotal). We fixed the values of several other parameters
as follows.
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- SOXthres = 5e-4m - threshold for the concentration level of SOX which is sufficient to kill the
bacteria cells
- tlightOFF1 = 2 hours (hrs) - time to turn the light OFF after turning it ON
- tlightOFF2 = 2 hrs - time to turn the light OFF after removing IPTG
- t1 = 1 hr - time to inject genome
- t2 = 1 hr - time to insert genome into DNA after injecting it into bacteria cell
- taddIPTG3 = 1 hr - time to add IPTG after inserting phage genome into bacteria DNA
As shown in the first two rows of Table 4.2, the earlier we turn on the light after adding IPTG, the
quicker the bacteria cells will be killed.

Lower bound for the duration of exposure to light
The δ-decisions technique has also been adopted to analyze the impact of the time duration

that the cells are exposed to light (tlightOFF1) on the system, and estimate an appropriate range for
tlightOFF1 which leads to the successful killing of bacteria cells by KillerRed. By setting SOXthres,
tlightOFF2 , t1, t2, and taddIPTG3 with the same values in Section 4.3, and assigning 2 hr to tlightON
(time to turn the light OFF after turning it ON), we have found that, in order to kill bacteria cells,
the system has to keep the light ON for at least 4 hours (see row 3-4 of Table 4.2).In addition, we
have also found that the bacteria cells can be killed within 100 hours when light is ON for 4 hours.

tlightON (hr) 1 2 3 4 5 6 7 8 9 10
ttotal (hr) 16 17.2 18.5 20 21.3 22.7 23.5 24.1 25 30

tlightOFF1 (hr) 1 2 3 4 5 6 7 8 9 10
killed bacteria cells failed failed failed succ succ succ succ succ succ succ

trmIPTG3 (hr) 1 2 3 4 5 6 7 8 9 10
killed bacteria cells succ succ succ succ succ succ succ succ succ succ
SOXthres (M) 1e-4 2e-4 3e-4 4e-4 5e-4 6e-4 7e-4 8e-4 9e-4 1e-3
ttotal (hr) 5.1 5.2 5.4 17 19 48 61 71 36 42

Table 4.2: Formal analysis results for our KillerRed hybrid model

Time to remove IPTG as an insensitive role
The sensitivity of the time difference between removing the light and removing IPTG (trmIPTG3)

with regard to the successful killing of bacteria cells has also been studied. We have noticed that
trmIPTG3 has insignificant impacts on the cell killing outcome (see row 5-6 of Table 4.2). This
is in accordance with our understanding of this system, since any additional KillerRed that will
be synthesized will not be activated in the absence of light. Note that, for other involved system
parameters, we used the same values for SOXthres, tlightON , tlightOFF2 , t1, t2, and taddIPTG3 as in
Section 4.3, and set tlightOFF1 as 4 hours.
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Necessary level of superoxide
Finally, we have used the δ-decisions to discuss the correctness of our hybrid model by con-

sidering various values of SOXthres within the suggested range - [100uM, 1mM]. We have used
the same values for variables SOXthres, tlightON , tlightOFF1 , tlightOFF2 , t1, t2, and taddIPTG3 as in
Section 4.3. As we can see from row 7-8 of Table 4.2, the bacteria cells can be killed in reasonable
time for all 10 point values of SOXthres, which was uniformly chosen from [100uM, 1mM]. Fur-
thermore, we have also found a broader range for SOXthres up to 0.6667M, with which bacteria
cells can be killed by KillerRed.
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Chapter 5

Biological Systems as Stochastic Hybrid
Models and SReach

As mentioned in the introduction chapter, stochastic hybrid systems (SHSs) are formal models
that tightly combine discrete, continuous, and stochastic components. One important question for
the quantitative analysis of SHSs is the probabilistic reachability problem, considering that many
verification problems can be reduced to reachability problems. It is to compute the probability of
reaching a certain set of states. This problem is no longer a decision problem, as it generalizes that
by asking what is the probability that the system reaches the target region. For SHSs with both
stochastic and non-deterministic behavior, the problem results in general in a range of probabilities,
thereby becoming an optimization problem.

In this chapter, we describe our tool SReach which supports probabilistic bounded δ-reachability
analysis for two model classes: hybrid automata (HAs) [117] with parametric uncertainty, and
probabilistic hybrid automata (PHAs) [200] with additional randomness. (Note that, in the follow-
ing, we use notations - HAp and PHAr - for these two model classes respectively.) Our method
combines the recently proposed δ-complete bounded reachability analysis technique [147] with
statistical testing techniques. SReach saves the virtues of the Satisfiability Modulo Theories (SMT)
based Bounded Model Checking (BMC) for HAs [70, 205], namely the fully symbolic treatment
of hybrid state spaces, while advancing the reasoning power to probabilistic models. Furthermore,
by utilizing the δ-complete analysis method, the full non-determinism of models will be consid-
ered. The coverage of simulation will be increased, as the δ-complete analysis method results in an
over-approximation of the reachable set, whereas simulation is only an under-approximation of it.
The zero-crossing problem can be avoided as, if a zero-crossing point exists, it will always return
an interval containing it. By using statistical tests, SReach can place controllable error bounds
on the estimated probabilities. We discuss three biological models - an atrial fibrillation model,
a prostate cancer treatment model, and our synthesized Killerred biological model - to show that
SReach can answer questions including model validation/falsification, parameter synthesis, and
sensitivity analysis.
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5.1 Stochastic Hybrid Models

Before introducing the algorithm implemented by SReach and the problems that it can handle, we
first define two model classes that SReach considers formally. For HAps, we follow the definition
of HAs in [117], and extend it to consider probabilistic parameters in the following way.

Definition 5.1.1 (HAp) A hybrid automaton with parametric uncertainty is a tupleHp = 〈(Q,E),
V, RV, Init, Flow, Inv, Jump, Σ〉, where

• The vertices Q = {q1, · · · , qm} is a finite set of discrete modes, and edges in E are control
switches.

• V = {v1, · · · , vn} denotes a finite set of real-valued system variables. We write V̇ to repre-
sent the first derivatives of variables during the continuous change, and write V ′ to denote
values of variables at the conclusion of the discrete change.

• RV = {w1, · · · , wk} is a finite set of independent random variables, where the distribution
of wi is denoted by Pi.

• Init, Flow, and Inv are labeling functions over Q. For each mode q ∈ Q, the initial condition
Init(q) and invariant condition Inv(q) are predicates whose free variables are from V ∪RV ,
and the flow condition Flow(q) is a predicate whose free variables are from V ∪ V̇ ∪RV .

• Jump is a transition labeling function that assigns to each transition e ∈ E a predicate
whose free variables are from V ∪ V ′ ∪RV .

• Σ is a finite set of events, and an edge labeling function event : E → Σ assigns to each
control switch an event.

Another class is PHArs, which extend HAs with discrete probability transitions and additional
randomness for transition probabilities and variable resets. In detail, for discrete transitions, instead
of making a purely (non)deterministic choice over the set of currently enabled jumps, a PHAr

(non)deterministically chooses among the set of recently enabled discrete probability distributions,
each of which is defined over a set of transitions whose probabilities can be uncertain.

Definition 5.1.2 (PHAr) A probabilistic hybrid automaton with additional randomness Hr con-
sists of Q, E, V, RV, Init, Flow, Inv, Σ as in Definition 5.1.1, and Cmds , which is a finite set of
probabilistic guarded commands of the form:
g → p1 : u1 + · · · + pm : um,
where g is a predicate representing a transition guard with free variables from V , pi is the tran-
sition probability for the ith probabilistic choice which can be expressed by an equation involving
random variable(s) in RV and the pi’s satisfy

∑m
i=1 pi = 1, and ui is the corresponding transition

updating function for the ith probabilistic choice, whose free variables are from V ∪ V ′ ∪RV .
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To illustrate the additional randomness allowed for transition probabilities and variable resets,
an example probabilistic guarded command is x ≥ 5 → p1 : (x′ = sin(x))+(1−p1) : (x′ = px),
where x is a system variable, p1 has a Uniform distribution U(0.2, 0.9), and px has a Bernoulli
distribution B(0.85). This means that, the probability to choose the first transition is not a fixed
value, but a random one having a Uniform distribution. Also, after taking the second transition,
x can be assigned to either 1 with probability 0.85, or 0 with 0.15. In general, for an individual
probabilistic guarded command, the transition probabilities can be expressed by equations of one
or more new random variables, as long as values of all transition probabilities are within [0, 1],
and their sum is 1. Currently, all four primary arithmetic operations are supported. Note that, to
preserve the Markov property, only unused random variables can be used, so that no dependence
between the current probabilistic jump and previous transitions will be introduced.

5.2 The SReach Algorithm

A recently proposed δ-complete decision procedure [94] relaxes the reachability problem for HAs
in a sound manner: it verifies a conservative approximation of the system behavior, so that bugs
will always be detected. The over-approximation can be tight (tunable by an arbitrarily small
rational parameter δ), and a false alarm with a small δ may indicate that the system is fragile,
thereby providing valuable information to the system designer. (See Chapter 4.2 for more details
about the δ-complete decision procedure.) We now define the probabilistic bounded δ-reachability
problem based on the bounded δ-reachability problem defined in [147] .

Definition 5.2.1 The probabilistic bounded k step δ-reachability for a HAp Hp is to compute the
probability that Hp reaches the target region T in k steps. Given the set of independent random
variables r, Pr(r) a probability measure over r, and Ω the sample space of r, the reachability
probability is

∫
Ω
IT (r)dPr(r), where IT (r) is the indicator function which is 1 ifHp with r reaches

T in k steps.

Definition 5.2.2 For a PHAr Hr, the probabilistic bounded k step δ-reachability estimated by
SReach is the maximal probability that Hr reaches the target region T in k steps:
maxσ∈EPr

k
Hr,σ,T

(i), where E is the set of possible executions of H starting from the initial state i,
and σ is an execution in the set E.

As shown in Figure 5.1, given a stochastic hybrid system, after encoding uncertainties using
random variables, SReach samples them according to the given distributions. For each sample,
a corresponding intermediate HA is generated by replacing random variables with their assigned
values. Then, the δ-complete analyzer dReach is utilized to analyze each intermediate HA Mi,
together with the desired precision δ and unfolding depth k. The analyzer returns either unsat or δ-
sat forMi. This information is then used by a chosen statistical testing procedure to decide whether
to stop or to repeat the procedure, and to return the estimated probability. The full procedure
is illustrated in Algorithm 3, where MP is a given stochastic model, and ST indicates which
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Algorithm 3 SReach
1: function SREACH(MP , ST , δ, k)
2: if MP is a HAp then
3: MP ← EncRM1(MP ) . encode uncertain system parameters
4: else . otherwise a PHAr

5: MP ← EncRM2(MP ) . encode probabilistic jumps and extra randomness
6: end if
7: Succ,N ← 0 . number of δ-sat samples and total samples
8: Assgn← ∅ . record unique sampling assignments and dReach results
9: RV ← ExtractRV(MP ) . get the RVs from the probabilistic model

10: repeat in parallel
11: Si ← Sim(RV ) . sample the parameters
12: if Si ∈ Assgn.sample then
13: Res← Assgn(Si).res . no need to call dReach
14: else
15: Mi ← Gen(MP,Si) . generate a dReach model
16: Res← dReach(Mi, δ, k) . call dReach to solve k-step δ-reachability
17: end if
18: if Res = δ-sat then Succ← Succ+ 1
19: end if
20: N ← N + 1
21: until ST.done(Succ,N) . perform statistical test
22: return ST.output
23: end function
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Figure 5.1: The framework of SReach algorithm
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statistical testing method will be used. Succ andN are used to record the number of δ-sat instances
and total samples generated so far respectively, and are then the inputs of ST . Note that, for a
PHAr, sampling and fixing the choices of all the probabilistic transitions in advance results in an
over-approximation of the original PHAr, where safety properties are preserved. To promise a tight
over-approximation and correctness of estimated probabilities, SReach supports PHArs with no or
subtle non-determinism. That is, in order to offer a reasonable estimation, for PHArs, SReach is
supposed to be used on models with no or few non-deterministic transitions, or where dynamic
interleaving between non-deterministic and probabilistic choices are not important.

To improve the performance of SReach, each sampled assignment and its corresponding dReach
result are recorded for avoiding redundant calls to dReach. This significantly reduces the total calls
for PHArs, as the size of the sample space involving random variables describing probabilistic
jumps is comparatively small. For the example PHA (as shown in Figure 5.2), with this heuristic,
the total checking time has been decreased from 11291.31s for 658 samples (17.16s per sample) to
3295.82s (5.01s per sample). Furthermore, a parallel version of SReach has been implemented us-
ing OpenMP, where multiple samples and corresponding HAs are generated, and passed to dReach
simultaneously. Using this parallel SReach on a 4-core machine, the running time for the example
PHA has been further decreased to 2119.55s for 660 samples (3.33s per sample).

Currently, SReach supports a number of hypothesis testing methods - Lai’s test [151], Bayes
factor test [139], Bayes factor test with indifference region [229], and Sequential probability
ratio test (SPRT)[215], and statistical estimation techniques - Chernoff-Hoeffding bound [121],
Bayesian Interval Estimation with Beta prior[234], and Direct Sampling. All methods, as listed in
the following, produce answers that are correct up to a precision that can be set arbitrarily by the
user.

Lai’s test [151]. As a simple class of sequential tests, it tests the one-sided composite hypothe-
ses H0 : θ ≤ θ0 versus H1 : θ ≥ θ1 for the natural parameter θ of an exponential family of
distributions under the 0 − 1 loss and cost c per observation. [151] shows that these tests have
nearly optimal frequentist properties and also provide approximate Bayes solutions with respect to
a large class of priors.

Bayes factor test [139]. The use of Bayes factors is a Bayesian alternative to classical hypothe-
sis testing. It is based on the Bayes theorem. Hypothesis testing with Bayes factors is more robust
than frequentist hypothesis testing, as the Bayesian form avoids model selection bias, evaluates ev-
idence in favor of the null hypothesis, includes model uncertainty, and allows non-nested models
to be compared. Also, frequentist significance tests become biased in favor of rejecting the null
hypothesis with sufficiently large sample size.

Bayes factor test with indifference region. A hypothesis test has ideal performance if the proba-
bility of the Type-I error (respectively, Type-II error) is exactly α (respectively, β). However, these
requirements make it impossible to ensure a low probability for both types of errors simultane-
ously (see [229] for details). A solution is to use an indifference region. The indifference region
indicates the distance between two hypotheses, which is set to separate the two hypotheses.

Sequential probability ratio test (SPRT) [215]. The SPRT considers a simple hypothesis H0 :
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Mode 1

d/dt[x] = x * y;
d/dt[y] = 3 * x - y;

invt:
 (x <= 2);
 (x >= 0);
 (y <= 7.7);
 (y >= -3);

Mode 2

d/dt[x] = x;
d/dt[y] = 3 * x - y ^ 2;

invt:
 (x <= 200);
 (x >= -2.2);
 (y <= 85.1);
 (y >= 2)

(0.1<= x <= 1.4)  
(y = 1.1) abs(y) * x ^ 2 <= x / 2

cos(x) <= 0

0.5

0.5

(x' >= sin(y))
 (y' <= 4 * y)

(x' <= 3.1) 
(y' = 2 * x)

(x' = x) (y' = y)

(x <= 1000)
(x >= -1000) 
(y <= 1000) 
(y >= -1000)

1

0.5

0.5

(x' = x)
(y' = y)

(x' = x)
(y' = y)

Figure 5.2: An example probabilistic hybrid automaton

θ = θ0 against a simple alternative H1 : θ = θ1. With the critical region Λn and two thresholds
A, and B, SPRT decides that H0 is true and stops when Λn < A. It decides that H1 is true and
terminates if Λn > B. If A < Λn < B, it will collect another observation to obtain a new critical
region Λn+1. The SPRT is optimal, among all sequential tests, in the sense that it minimizes the
average sample size.

Chernoff-Hoeffding bound [121]. To estimate the mean p of a (bounded) random variable,
given a precision δ′ and coverage probability α, the Chernoff-Hoeffding bound computes a value
p′ such that |p′ − p| ≤ δ′ with probability at least α.

Bayesian Interval Estimation with Beta prior [234]. This method estimates p, the unknown
probability that a random sampled model satisfies a specified reachability property. The estimate
will be in the form of a confidence interval, containing p with an arbitrary high probability. [234]
assumes that the unknown p is given by a random variable, whose density is called the prior density,
and focuses on Beta priors.

Direct sampling. GivenN as the number of samples to be sampled, the direct sampling method
estimates the mean of p of a (bounded) random variable. According to the central limit theorem
[78], the error ε with a confidence c between the real probability p and the estimated p̂ is bounded:

ε = φ−1
(
c+1

2

)√p(1−p)
N

where φ(x) = 1√
2π

∫ x
−x e

−t2/2dt. That is, as N goes to∞, the estimated probability approaches to
the real one.

With these hypothesis testing methods, SReach can answer qualitative questions, such as “Does
the model satisfy a given reachability property in k steps with probability greater than a certain
threshold?” With the above statistical estimation techniques, SReach can offer answers to quanti-
tative problems. For instance, “What is the probability that the model satisfies a given reachability
property in k steps?” SReach can also handle additional types of interesting problems by encoding
them as probabilistic bounded reachability problems. The model validation/falsification problem
with prior knowledge can be encoded as a probabilistic bounded reachability question. After ex-
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pressing prior knowledge about the given model as reachability properties, is there any number of
steps k in which the model satisfies a given property with a desirable probability? If none exists,
the model is incorrect regarding the given prior knowledge. The parameter synthesis problem
can also be encoded as a probabilistic k-step reachability problem. Does there exist a parameter
combination for which the model reaches the given goal region in k steps with a desirable probabil-
ity? If so, this parameter combination is potentially a good estimation for the system parameters.
The goal here is to find a combination with which all the given goal regions can be reached in a
bounded number of steps. Moreover, sensitivity analysis can be conducted by a set of probabilistic
bounded reachability queries as well: Are the results of reachability analysis the same for different
possible values of a certain system parameter? If so, the model is insensitive to this parameter with
regard to the given prior knowledge.

5.3 The SReach Tool

Input Format
The inputs to our SReach tool are descriptions of (probabilistic) hybrid automata with ran-

dom variables (representing the probabilistic system parameters, and probabilistic jumps), and the
reachability property to be checked. Following roughly the same format as the above definition of
(probabilistic) hybrid automata, and adding the declarations of random variables, the description
of an automaton is as follows.

Preprocessor. We can use the C language syntax to define constants and macros.

Variable declaration. For a random variable, the declaration specifies its distribution and
name. Variables that are not random variables are required to be declared within bounds.

(Probabilistic) Hybrid automaton. A (probabilistic) hybrid automaton is represented by a
set of modes. Within each mode declaration, we can specify statements for the mode invariant(s),
flow function(s), and (probabilistic) jump condition(s). For a mode invariant, we can give any logic
formula of the variables. A flow function is expressed by an ODE. As for a nonprobabilistic jump
condition, it is written as

<logic_formula1> ==> @<target_mode> <logic_formula2>,

where the first logic formula is given as the guard of the jump, and the second one specifies the reset
condition after the jump. While for a probabilistic jump condition, we need an extra constraint to
express the stochastic choice, which is of the following form

(and <logic_formula1> <stochastic choice>) ==>
@<target_mode> <logic_formula2>,

where the stochastic choice is a formula indicating which probabilistic transition will be chosen
for this jump.
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Initial conditions and Goals. Following the declaration of modes, we can declare one initial
mode with corresponding conditions, and the reachability properties in the end.

Example 5.1. The following is an example input file for a hybrid automaton with parametric un-
certainty. Currently, users can specify random variables (representing certain system parameters)
with Bernoulli distribution (B), Uniform distribution (U), Gaussian distribution (N), Exponential
distribution (E), and general Discrete distribution with given possible values and corresponding
probabilities (DD).

1 #define pi 3.1416
2 N(1,0.1) mu1;
3 U(10,15) thro;
4 E(0.49) theta1;
5 B(0.75) xinit;
6 DD(0:0.7, 1:0.3) mu2;
7 [0,5] x;
8 [0,3] time;
9 { mode 1;

10 invt:
11 (x<=1.5);
12 (x>=0);
13 flow:
14 d/dt[x]=thro*(1/(theta1*sqrt(2*pi)))
15 *exp(0-((x-mu1+mu2)ˆ2)/(2*theta1ˆ2));
16 jump:
17 (x>=(thre1+5))==>@2(x’=x);
18 }
19 init:
20 @1 (x=xinit);
21 goal:
22 @4 (x>=50);

Example 5.2. This example demonstrates the format of the input file for a probabilistic hybrid
automaton with additional randomness for transition probabilities. Note that, unlike the notations
of declarations of random variables representing system parameters and probabilistic transitions,
declarations of random variables used to express the additional randomness for jump probabilities
start with a prefix j.

1 jU(0.7, 0.9) pjumprv;
2 DD(1:pjumprv, 2:(1 - pjumprv)) pjump1;
3 DD(1:0.3, 2:0.7) pjump2;
4 [-1000, 1000] x;
5 [-1000, 1000] y;
6 [0, 3] time;
7
8 { mode 1;
9
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10 invt:
11 (x <= 2);
12 (x >= 0);
13 (y <= 7.7);
14 (y >= -3);
15 flow:
16 d/dt[x] = x * y;
17 d/dt[y] = 3 * x - y;
18 jump:
19 (and (abs(y) * x ˆ 2 <= x / 2) (pjump1 = 1)) ==> @1 (and (x’ >=

sin(y)) (y’ <= 4 * y));
20 (and (abs(y) * x ˆ 2 <= x / 2) (pjump1 = 2)) ==> @2 (and (x’ <=

3.1) (y’ = 2 * x));
21 (and (cos(x) <= 0) (pjump2 = 1)) ==> @2 (and (x’ = x) (y’ = y))

;
22 (and (cos(x) <= 0) (pjump2 = 2)) ==> @1 (and (x’ = x) (y’ = y))

;
23 }
24
25 {
26 mode 2;
27 invt:
28 (x <= 200);
29 (x >= -2.2);
30 (y <= 85.1);
31 (y >= 2);
32 flow:
33 d/dt[x] = x;
34 d/dt[y] = 3 * x - y ˆ 2;
35 jump:
36 (and (x <= 1000) (x >= -1000) (y <= 1000) (y >= -1000)) ==> @2

(and (x’ = x) (y’ = y));
37 }
38 init:
39 @1 (and (x >= 0.1) (x <= 1.4) (y = 1.1));
40
41 goal:
42 @2 (and (x >= -10) (y >= -10));

Command Line
SReach offers two choices. It can be run sequentially by typing

sreach_sq <statistical_testing_option> <filename>
<dReach> <k> <delta>,
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or in parallel by

sreach_para <statistical_testing_option> <filename>
<dReach> <k> <delta>,

where:

• statistical_testing_option is a text file containing a sequence of test specifica-
tions. We will introduce the usages of statistical testing options in the following part;

• filename is a .pdrh file describing the model of a hybrid system with probabilistic system
parameters. It is of the input format described in last sub-section;

• dReach is a tool for bounded reachability analysis of hybrid systems based on dReal;

• k is the number of steps of the model that the tool will explore; and

• delta is the precision for the δ-decision problem.

Statistical Testing Options
SReach can be used with different statistical testing methods through the following specifica-

tions.

Lai’s test: Lai <theta> <cost_per_sample>, where theta indicates the probability
threshold.

Bayes factor test: BFT <theta> <T> <alpha> <beta>, where theta is a probability
threshold satisfying 0 < theta < 1, T is a ratio threshold satisfying T > 1, and alpha, and
beta are beta prior parameters.

BFT with indifference region: BFTI <theta> <T> <alpha> <beta> <delta>,
where, besides the parameters used in the above Bayes factor test, delta is given to create the
indifference region - [p0, p1], where p0 = theta - delta and p1 = theta + delta. Now, it
tests H0 : p ≥ p0 against H1 : p ≤ p1 .

Sequential probability ratio test (SPRT): SPRT <theta> <T> <delta>.

Chernoff-Hoeffding bound: CHB <delta1> <coverage_probability>, where
delta1 is the given precision, and coverage_probability indicates the confidence.

Bayesian Interval Estimation with Beta prior:
BEST <delta1> <coverage_probability> <alpha> <beta>.

Direct/Naı̈ve Sampling: NSAM <num_of_samples>.

Both sequential and parallel versions of SReach are available on https://github.com/
dreal/SReach.
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5.4 Case Studies

5.4.1 Atrial Fibrillation

The heart rhythm is enabled by the electrical activity of cardiac muscle cells, which make up the
atria and ventricles. The electrical dynamics of cardiac cells is governed by the organized opening
and closing of ion channel gates on the cell membrane. Improper functioning of the cardiac cell
ionic channels can cause the cells to lose excitability, which disorders electric wave propagation
and leads to cardiac abnormalities such as ventricular tachycardia or fibrillation. Mathematical
modeling the dynamics of cardiac cells is important in understanding the mechanisms of cardiac
disorders. [49] has developed an extremely versatile electrical model for cardiac cells, referred
as minimum resistor model (MRM), which reproduces experimentally measured characteristics of
human ventricular cell dynamics.

MRM (see Figure 5.3) contains 4 state variables and 26 parameters. An action potential (AP)
is a change in the cells transmembrane potential u, as a response to an external stimulus (current)
ε. The flow of total currents is controlled by a fast channel gate v and two slow gates w and s.
In Mode 1, gates v and w are open and gate s is closed. The transmembrane potassium current
causes the decay of u. The cell is resting and waiting for stimulation. We assume external stimulus
ε equals to 1 and lasts for 1 millisecond. The stimulation causes u increase which may trigger
jump1→2 : u ≥ θo. In Mode 2, v starts closing. The decay rate of u changes. The systems will
jump to Mode 3 if u ≥ θw. In Mode 3, w is also closing. u is governed by the potassium current
and the calcium current. When u ≥ θv, Mode 4 can be reached which means a successful AP
initiation. In Mode 4, u reaches its peak due to the fast opening of sodium channel. The cardiac
muscle contracts and u starts decreasing.

MRM reduces the complexity of existing models by representing channel gates of different
ions with one fast channel and two slow gates. Identifying the parameter ranges for which the
MRM accurately reproduces cardiac abnormalities will benefit the development of the treatment
of cardiac disorders. However, due to the simplification, for most model parameters, it becomes
impossible to obtain their values through measurements. After adding parametric uncertainty into
the original hybrid model, we show that SReach can be adapted to synthesize parameters for this
stochastic model, i.e., identifying appropriate ranges and distributions for model parameters. We
chose two system parameters - EPI TO1 and EPI TO2, and varied their distributions to see which
ones allow the model to present the desired patterns. As in Table 5.1, whenEPI TO1 is either close
to 400, or between 0.0061 and 0.007, and EPI TO2 is close to 6, the model can satisfy the given
bounded reachability property with a probability very close to 1. The analysis for this model was
conducted on a server with 2* AMD Opteron(tm) Processor 6172 and 32GB RAM (12 cores were
used), running on Ubuntu 14.04.1 LTS. In our experiments, we used 0.001 as the precision for the
δ-decision problem, and Bayesian sequential estimation with 0.01 as the estimation error bound,
coverage probability 0.99, and a uniform prior (α = β = 1).

64



Figure 5.3: The minimal resistor model of cardiac cells

Model #RVs EPI TO1 EPI TO2 #S S #T S Est P A T(s) T T(s)
Cd to1 s 1 U(6.1e-3, 7e-3) 6 240 240 0.996 0.270 64.80

Cd to1 uns 1 U(5.5e-3, 5.9e-3) 6 0 240 0.004 0.042 10.08
Cd to2 s 1 400 U(0.131, 6) 240 240 0.996 0.231 55.36

Cd to2 uns 1 400 U(0.1, 0.129) 0 240 0.004 0.038 9.15
Cd to12 s 2 N(400, 1e-4) N(6, 1e-4) 240 240 0.996 0.091 21.87

Cd to12 uns 2 N(5.5e-3, 10e-6) N(0.11, 10e-5) 0 240 0.004 0.037 8.90

Table 5.1: Results for the 4-mode atrial fibrillation model (k = 3). For each sample generated, SReach analyzed systems with 62 variables and 24
ODEs in the unfolded SMT formulae. #RVs = number of random variables in the model, #S S = number of δ-sat samples, #T S = total number
of samples, Est P = estimated probability of property, A T(s) = average CPU time of each sample in seconds, and T T(s) = total CPU time for all
samples in seconds. Note that, we use the same notations in the remaining tables.

5.4.2 Prostate Cancer Treatment

Prostate cancer is the second leading cause of cancer-related deaths among men in United States
[195]. Hormone therapy in the form of androgen deprivation has been a cornerstone of the man-
agement of advanced prostate cancer for several decades. However, controversy remains regarding
its optimum application [47]. Continuous androgen suppression (CAS) therapy has many side ef-
fects including anemia, osteoporosis, impotence, etc. Further, most patients experience a relapse
after a median duration of 18-24 months of CAS treatment, due to the proliferation of castration
resistant cancer cells (CRCs).

In order to reduce side effects of CAS and to delay the time to relapse, intermittent andro-
gen suppression (IAS) was proposed aiming to limit the duration of androgen-poor conditions and
avoid emergence of AI cells [41]. In details, IAS therapy switches between on-treatment and off-
treatment modes by monitoring the serum level of a tumor marker called prostate-specific antigen
(PSA): (i) when the PSA level decreases and reaches a lower threshold value r0, androgen sup-
pression is suspended; (ii) when the PSA level increases and reaches a upper threshold value r1,
androgen suppression is resumed by the administration of medical agents.

Recent clinical phase II and III trials confirm that IAS has significant advantages in terms of
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quality of life and cost. However, with respect to time to relapse and cancer-specific survival, the
clinical trials suggest that to what extent IAS is superior to CAS depends on the individual patient
and the on- and off-treatment scheme [42, 43, 109]. Thus, a crucial unsolved problem is how
to design a personalized treatment scheme for each individual to achieve maximum therapeutic
efficacy.

In [154], Liu et al. recently proposed a nonlinear hybrid model to reproduce the clinical obser-
vations [42, 43] of prostate cancer cell dynamics in response to the IAS therapy. It is known that the
proliferation and survival of prostate cancer cells depend on the levels of androgens, specifically
testosterone and 5α-dihydrotestosterone (DHT). This model considers two distinct subpopulations
of prostate cancer cells: hormone sensitive cells (HSCs) and castration resistant cells (CRCs).
Androgen deprivation can lead to remarkable decreases of the proliferation and survival rates of
HSCs, but also up-regulates the conversion from HSCs to CRCs, which will keep proliferating
under low androgen level.

The model has two modes which are shown in Figure 5.4. x(t), y(t), and z(t) represent the
population of AD cells, the population of AI cells, and the serum androgen concentration, respec-
tively. The growth dynamics of AD and AI cells are governed by their proliferation rate, apoptosis
rate and mutation rate from AD to AI phenotype, depending on androgen concentration z(t). The
PSA level v (ng ml−1) is defined as v(t) = x(t) + y(t). The treatment is suspended or restarted
according to the value of v and dv/dt. In mode 2 (off-treatment), the androgen concentration
is maintained at the normal level z0 by homeostasis. In mode 1 (on-treatment), the androgen is
cleared at a rate 1/τ .

This two-mode model captures the intermittent androgen suppression (IAS) therapy that switches
between treatment ON and OFF according to the serum level thresholds of prostate-specific anti-
gen, namely r0 and r1. As suggested by the clinical trials [44], an effective IAS therapy highly
depends on the individual patient. Thus, we modified this two-mode model by taking paramet-
ric variation caused by personalized differences into account. In detail, according to clinical data
from hundreds of patients [45], we replaced six system parameters with random variables having
appropriate (continuous) distributions, including αx (the proliferation rate of androgen-dependent
(AD) cells), αy (the proliferation rate of androgen-independent (AI) cells), βx (the apoptosis rate
of AD cells), βy (the apoptosis rate of AI cells), m1 (the mutation rate from AD to AI cells), and
z0 (the normal androgen level). To describe the variations due to individual differences, we as-
signed αx to be U(0.0193, 0.0214), αy to be U(0.0230, 0.0254), βx to be U(0.0072, 0.0079), βy to
be U(0.0160, 0.0176), m1 to be U(0.0000475, 0.0000525), and z0 to be N(30.0, 0.001). We used
SReach to estimate the probabilities of preventing the relapse of prostate cancer with three distinct
pairs of treatment thresholds (i.e., combinations of r0 and r1). As shown in Table 5.2, the model
with thresholds r0 = 10 and r1 = 15 has a maximum posterior probability that approaches 1,
indicating that these thresholds may be considered for the general treatment. The experiment for
this stochastic model was conducted on a server with 2* AMD Opteron(tm) Processor 6172 and
32GB RAM (12 cores were used), running on Ubuntu 14.04.1 LTS. In our experiments we used
0.001 as the precision for the δ-decision problem, and Bayesian sequential estimation with 0.01 as
the estimation error bound, coverage probability 0.99, and a uniform prior (α = β = 1).
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Figure 5.4: A hybrid automaton model for prostate cancer hormone therapy

Model #RVs r0 r1 Est P #S S #T S A T(s) T T(s)
PCT1 6 5.0 10.0 0.496 8226 16584 0.596 9892
PCT2 6 7.0 11.0 0.994 335 336 54.307 18247
PCT3 6 10.0 15.0 0.996 240 240 506.5 121560

Table 5.2: Results for the 2-mode prostate cancer treatment model (k = 2). For each sample generated, SReach analyzed systems with 41 variables
and 10 ODEs in the unfolded SMT formulae.

5.4.3 Tap Withdrawal Circuit in C. elegans

Note. This case study is led by Md. Ariful Islam.
Due to the simplicity of its nervous system (302 neurons, ∼5,000 synapses) and the breadth of

research on the animal, C. elegans, the common roundworm, is a model system for neuroscience.
The complete connectome of the worm is documented [40, 221], and a number of interesting
experiments have been carried out on its locomotory neural circuits connecting sensory neurons
to motor neurons [17, 102, 140, 233]. Of particular interest is the Tap Withdrawal (TW) neuronal
circuit that governs the reactionary motion of the animal when the petri dish in which it swims is
subjected to a mechanical tap [134]. (A related circuit, touch sensitivity, controls the reaction of
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the worm when a stimulus is applied to a single point on the body.) The term ”tap withdrawal”
refers to the fact that worms swimming in a petri dish tend to withdraw (turn around and swim in
the opposite direction) when subjected to a tap stimulus. Presumably, this is because the tap causes
them to sense danger in their surrounding environment. The worms, however, can be conditioned
or habituated to ignore this stimulus [184].

Studies of the TW circuit have traditionally involved using lasers to ablate different neurons
in the circuit of multiple animals, and then measuring the response behavior when tap stimuli
are applied [24]. Such is the case for [222]; see also Fig. 5.6. Such behaviors are logged with
the percentage of the experimental population to display that behavior. Moreover, with the aim
of predicting synaptic polarities (unknown parameters) of the TW circuit, the dynamics of the
membrane potential of different neurons has been mathematically modeled [223]. This model
is in the form of a system of nonlinear ODEs with an indication of the polarity (inhibitory or
excitatory) of each neuron in the circuit. The Wicks et al. circuit model has a significant number of
parameters, including gap-junction conductance, membrane capacitance and leakage current, that
decisively affect the circuit’s behavior. Fixed values for these parameters have been provided based
on the measurements performed on single in-vitro neurons [223]. The model therefore produces the
predominant behavior in most ablation groups with a few exceptions. While the experimental work
and the model presented in were by no means insubstantial, the exploration of the model is vastly
incomplete. Fixed parameter values fit through experimentation cause the model to replicate the
predominant behavior seen in the mentioned experiments, but little can be gained beyond that. All
such animals are not created equal owing to genetic variation, and, during their lifetime, they are
exposed to stimuli of varying intensity, duration, and frequency. Carefully and (semi-)exhaustively
varying the circuit parameters of the [223] model should provide us with insights underlying these
processes, and ultimately help us to understand the learning process in neural circuits.

Towards this end, we use SReach to perform the bounded-time reachability analysis on the TW
circuit model of Wicks et al. (1996) to estimate the probability of various TW responses related
to parameter uncertainty, and thus to derive population percentages that exhibit various behaviors
in response to tap stimuli. This case study shows that SReach can handle large-scale systems for
which traditional reachability analysis may not scale.

Tap Withdrawal Neuronal Circuit in C. elegans
In C. elegans, there are three classes of neurons: sensory, inter, and motor. For the TW circuit,

the sensory neurons are PLM, PVD, ALM, and AVM, and the inter-neurons are AVD, DVA, PVC,
AVA, and AVB. The model we are using abstracts away the motor neurons as simply forward and re-
verse movement. Neurons are connected in two ways: electrically via bi-directional gap junctions,
and chemically via uni-directional chemical synapses. Each connection has varying degrees of
throughput, and each neuron can be excitatory or inhibitory, governing the polarity of transmitted
signals. These polarities were experimentally determined in [223], and used to produce the circuit
shown in Fig. 5.5. In [222], Wicks et al. performed a series of laser ablation experiments in which
they knocked out neurons in a group of animals (worms), subjected them to a tapped surface, and
recorded the magnitude and direction of the resulting behavior. Fig. 5.6 shows the response types
for each of their experiments.
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Figure 5.6: Effect of ablation on Tap Withdrawal reflex (experimental results). The length of the bars indicate the fraction of the population
demonstrating the particular behavior. [222]

Mathematical Model of Tap Withdrawal Neuronal Circuit
The dynamics of a neuron’s membrane potential, V, is determined by the internal state of the

neuron together with sum of all input currents [145], written as:

dV

dt
=

1

CR
(V leak − V ) +

1

C

∑
(Igap + Isyn + Istim)

where V represents the membrane potential, C is the membrane capacitance, R is the membrane
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resistance, V leak is the leakage potential, Igap and Isyn are gap-junction and the chemical synapse
currents, respectively, and Istim is the applied external stimulus current. The summations are over
all neurons with which this neuron has a (gap-junction or synaptic) connection.

The current flows between neuron i and j via nij gap-junctions can be seen as the current
passing through n parallel resistors. Therefore, based on the Ohm’s law, one can derive the gap-
junction current equation as follows:

Igapij = nijg
gap
m (Vj − Vi)

where the constant ggapm is the maximum conductance of the gap junction, and nij is the number of
gap-junctions between neurons i and j. The conductance ggapm defines the strength of a connection
between two neurons. As a consequence, it sets the amount of shared information of the two
neurons. This key parameter significantly affects the behavior of the neural circuits.

Chemical synapses transfer information by releasing neurotransmitters [135]. Inspired by
Hodgkin-Huxley model of ionic channels [120], one can model such behavior as a synaptic current
flowing from presynaptic neuron j to post-synaptic neuron i as below:

Isynij = nsynij gsynij (t)(Ej − Vi)

where gsynij (t) is the voltage-dependent synaptic conductance of neuron i, nsynij is the number of
synaptic connections from neuron j to neuron i, and Ej is the reversal potential of neuron j for
the synaptic conductance.

The chemical synapse is characterized by a synaptic sign, or polarity, specifying if said synapse
is excitatory or inhibitory. The value of Ej is assumed to be constant for the same synaptic sign.

For a neuron of C. elegans at equilibrium, the membrane potential on average is around -30mV.
According to the Eq. 5.4.3, by setting the reversal potential value to a higher values than the resting
potential of a neuron, the synaptic current increases and therefore an excitatory behavior is realized.
On the contrary, an inhibitory synapse is developed by placing the value of the reversal potential
less than the equilibrium potential of the neuron.

Dynamics of the Synaptic conductance depends on the membrane potential state of the presy-
naptic neuron Vj . For the sake of simplicity, Wicks et al. model such dynamics by the steady-state
response of the synapse as follows

gsynij (t) = gsyn∞ (Vj)

where the conductance at steady-state is given by:

gsyn∞ (Vj) =
gsynm

1 + exp (k
Vj−V eq

j

VRange
)

gsynm presents the maximum synaptic conductance, V eq
j is the pre-synaptic equilibrium potential,

and VRange is the pre-synaptic voltage range over which the synapse is activated. k is an experi-
mentally derived constant, valued at -4.3944.

70



Combining all of the above pieces, the mathematical model of the TW circuit is a system of
nonlinear ODEs, with each state variable defined as the membrane potential of a neuron in the
neural circuit. Consider a circuit with N neurons. The dynamics of the ith neuron of the circuit is
given by:

dVi
dt

=
Vli − Vi
CiRi

+
N∑
j=1

(Igapij + Isynij + Istimi ) (5.1)

Igapij = ngapij g
gap
m (Vj − Vi) (5.2)

Isynij = nsynij gsynij (Ej − Vi) (5.3)

gsynij =
gsynm

1 + exp (k
Vj−V eq

j

VRange
)
. (5.4)

The equilibrium potentials (V eq ) of the neurons are computed by setting the left-hand side of
Eq. (5.1) to zero [223]. This leads to a system of linear equations, that can be solved as follows:

V eq = A−1b (5.5)

where matrix A is given by:

Aij =

{
−Rin

gap
ij g

gap
m if i 6= j

1 +Ri

∑N
j=1 n

gap
ij g

gap
ij gsynm /2 if i = j

and vector b is written as:

bi = Vli +Rmi

N∑
j=1

Ejn
syn
ij gsynm /2.

Tap Withdrawal Response Patterns
The Wicks et al. model does not explicitly incorporate nematode locomotion. It simply defines

the relationship between the animals locomotion and activation of the TW circuit that controls the
behavior.

Wicks et al. assumes that the output of the TW circuit controls locomotory behavior primarily
through the action of the inter-neurons AVB and AVA. The AVA interneurons make gap junctions
and chemical synapses with motor neurons AS, VA, and DA that excite backward locomotion,
whereas the the AVB interneurons form gap junctions with the motor neurons VB and DB that ex-
cite forward locomotion. Thus, Wicks et al. simply assume that the degree of backward (forward)
locomotion is proportional to the depolarization of the AVA (AVB) interneuron and inversely pro-
portional to the depolarization of the AVB (AVA) interneuron. Recently, Kawano et al. present a
study in [143] that supports the assumptions made by Wicks et al. on directional movement of
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C. elegans. Through in-vivo calcium imaging, electrophysiology and behavioral analyses of wild-
type animals and innexin mutants, they show that the initiation of reversal movement is directly
correlated with a increased calcium level in AVA. In contrast, the initiation of forward movement
is associated with an increased calcium level in AVB and a decrease of the calcium transient cor-
related with either a reduced forward velocity or reversals.

Under standard laboratory culture conditions, the animal predominantly generates continuous
forward movement without any tap stimulation [104, 174]. In [222], Wicks et al. experienced,
through in vivo experiment, only three tap withdrawal responses: reversal, acceleration and no
response. The simulation of the Wicks et al. model for certain ablation group (e.g., AVM,PVC-
ablation group), however, shows the animal can also predominantly generates continuous backward
movement without any tap stimulation. Additionally, the study of Kawano et al. supports the
evidence of new type of response like deceleration (reduced forward velocity). These lead us to
believe that, at least in theory, it is possible to have few more tap withdrawal responses as compared
to what Wicks et al. experienced in their wet-lab experiments.

Similar to [143, 223], we consider the directional movement can be inferred based on the
voltage difference between AVA and AVB interneurons:

• Forward movement: vAVB > vAVA

• Backward movement: vAVB < vAVA

• No movement: vAVB ∼ vAVA

Assume that σi = viAVB − viAVA, i ∈ {1, 2} be the voltage differences between AVB and AVA
interneurons during non-stimulation and stimulation period, respectively, as shown in Fig. 5.7 and
ε is some small positive number. Based σ1, we categorize the TW responses into two subgroups:

• When σ1 >= 0:

1. Reversal: σ2 <= −ε
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Figure 5.8: Different tap withdrawal responses when, before the applying tap stimulation, the
animal moves in forward direction.
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2. No response: |σ2| <= ε

3. Forward acceleration: (σ2 >= ε) ∧ (σ2 >= σ1)

4. Forward deceleration: (σ2 >= ε) ∧ (σ2 < σ1)

• When σ1 < 0:

1. Forward: σ2 >= ε

2. No response: |σ2| <= ε

3. Backward acceleration: (σ2 <= −ε) ∧ (σ2 <= σ1)

4. Backward deceleration: (σ2 >= ε) ∧ (σ2 > σ1)

Fig. 5.8 shows all four response patterns for the first subgroup. The response patterns for the
second subgroup, however, will have the similar structures, if we interchange AVB with AVA in
the figure.

Normalization of the Wicks et al. Model
SReach internally uses dReach [147], which relies on numerical computation. As the the values

of the parameters in the Wicks et al. model are in the order of 10−9 to 10−12, the computation
often suffers from numerical instability. To take into account this issue, we normalize the Wicks
et al. model with respect to the capacitance, which is a common practice in modeling biological
systems [87]. The values of the parameter in this normalized model are in the order of 10 t0 103.

To normalize, we combine Eqs.(5.1) to (5.4):

V̇i =
Vli − Vi
RiCi

+
ggapm

Ci

N∑
j=1

ngapij (Vj − Vi) +
gsynm

Ci

N∑
j=1

nsynij (Ej − Vi)

1 + exp (k
Vj−V EQ

j

VRange
)

+
1

Ci
Istimi

Now letting gleaki = 1
RiCi

, ggapi = ggapm

Ci
, gsyni = gsynm

Ci
and Iexti =

Istimi

Ci
the normalized system

dynamics can be written as:

V̇i = gleaki (Vli − Vi) + ggapi

N∑
j=1

ngapij (Vj − Vi) + gsyni

N∑
j=1

nsynij (Ej − Vi)

1 + exp (k
Vj−V eq

j

VRange
)

+ Iexti (5.6)

Hybrid automaton for TW circuit MTW :
For the TW circuit, Wicks et al. model the tap stimulus as a phasic current that is applied

to sensory neurons (AVM, ALM and PLM) simultaneously. The phasic current is, typically, a
square-wave signal with a fixed duration. Due to the piece-wise continuous nature of this signal,
we represent Wicks et al. model as a hybrid automaton by dividing the dynamics into stimulus
and non-stimulus modes. Additionally, when a tap is applied to the worm, it is assumed that the
worm is operating in a stable condition. To take this into account, we apply the stimulation after a
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Figure 5.9: The 3-mode hybrid automaton MTW for the Wicks et al. model

transition period. Assume that [0, τi] is the transition period, [τi, τf ] is the stimulation period and
[0, τs] is the total simulation duration. Fig. 5.9 shows the hybrid automaton MTW for the Wicks
et al. model. The subscript i and j in the figure are used to denote the sensory neurons and the
interneurons, respectively. We add an additional variable τ to support time-triggered jump from
one mode to another.

TW response as Hybrid Automaton, Mφ:
In above, we enumerated all possible TW responses and formalized them in terms of σ1 and σ2,

the steady-state voltage difference between AVB and AVA interneurons during non-stimulus and
stimulation period. Hence, to encode a TW response φ as hybrid automatonMφ, we augmentMTW

by adding two additional state variables σ1 and σ2. As these two variables measure the steady-state
voltage differences, which are constant in time, the vector-fields for them are set to zero. However,
as shown in Fig. 5.10, both σ1 and σ2 are reset to vAV B − vAV A during the jump from “Mode 1” to
“Mode 2” and “Mode 2” to “Mode 3”, respectively. This ensures the correct values of σ1 and σ2 in
“Mode 3”.
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Figure 5.10: The 3-mode hybrid automaton Mφ for response φ of the TW circuit

Parameter Uncertainty
C. elegans nervous system has been used for the study of fundamental problems in the function

of neurons and neuronal circuits for many years. Due to its small size, the technique to record
electrophysiological data, however, was simply not developed during the time when Wicks et al.
derived the mathematical model for the TW circuit.

For this model, Wicks et al. extrapolated the electrophysiological data from Ascaris, a larger
nematode related to C. elegans. Based on [181], they first assumed a standard membrane proper-
ties of each neuron in the TW circuit, such as, membrane capacitance, resistance etc., for a unit
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area. They then estimated the area based on the process lengths and cell diameter, measured using
electron micrographs and branching morphology [220, 221, 226].

However, the diameter of the cell varies from 0.2 to 1.0 µm and the soma diameters of the
process lengths, assuming the worm length of 1 mm, vary between 2 to 10 µm [226]. As a result,
the surface area greatly varies, which, in turns, causes variability in membrane properties. Like the
membrane properties, the gap-junction and synaptic conductance varied among the population of
the worms [170]. Both variability causes parameter uncertainty in the mathematical model of the
TW circuit.

Due to this parameter uncertainty, we consider each parameter p of the Wicks et al. model as a
random variable. As a result, Mφ becomes a stochastic hybrid automaton. Now for each response
φ, we formulate a probabilistic reachability problem as to estimate the probability such that “Mode
3” ∧ φ is reachable in Mφ. We solve this problem using SReach.

Model Analysis
As we discussed above, the values of the parameters are determined based on the size of surface

area of neurons, gap-junctions and synapses. But these surface areas vary among population.
According to [170], the area of gap-junction vary between 1 to 10 ncm2 and standard gap-junction
conductance per unit area (1 cm2) is 1 S (Siemens) [28]. We use this information as the basis to
consider 1 to 10 nS as the biologically relevant range for gap-junction conductance and ggapi is
chosen by dividing capacitance of the corresponding neuron. However, as we could not able to
find any biologically relevant ranges for synaptic and leakage conductance from the literature, we
considered those parameters as constants according to the Table 5.3 from [223].

We performed our analysis on the control and five ablation groups. In each analysis, we con-
sider Bayesian sequential estimation with 0.05 as the estimation error bound, 0.95 as the coverage
probability, and a uniform prior ( α = β = 1). For initial condition, we first simulated the Wicks
et al. model without applying any stimulation and then considered the steady state values from
simulation as the initial conditions. We set the initial value of σ1 and σ2 to zero, stimulus current
as 100 pA/pF and ε to 10−4 (0.1 mV). For computation, we used parallel version of SReach on a
32-core machine.

Table 5.3 shows the estimated probability of each TW response for all six groups, where we
considered ggapi as a uniform random variable in the given range described above. In contrast, Table
5.4 shows the results where we considered them as a normal random variables. For the random
distribution, we considered the values of ggapi chosen by Wicks et al. in [223] as mean. But we
chose the variance in such a way so that the normal distribution cover 99% of the range of ggapi . In
all cases, the predominant response in each group are highlighted in bold on both tables.

The predominant responses that we determined from our analysis for the four groups conform
with the predominant responses that Wicks et al. obtained based on their ablation experiments on
actual worm in [222]. Note that Wicks et al. did not differentiate the acceleration and deceleration
responses in both forward and backward directions. As a result, their distributions on the TW
responses have only three responses, as opposed to the seven responses in our distributions. In
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Group
REV NR F-ACC F-DEC FWD B-ACC B-DEC

Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s)

Control 0.95 801.78 0.030 87.45 0.015 16.48 0.038 282.67 0.015 16.48 0.015 16.48 0.015 16.48

PLM 0.95 639.06 0.015 10.49 0.015 10.49 0.04 164.72 0.015 10.48 0.015 10.48 0.015 10.48

ALM-AVM 0.015 8.57 0.015 8.57 0.861 973.60 0.158 728.97 0.015 8.57 0.015 8.57 0.015 8.57

ALM-DVA 0.433 1399.37 0.062 286.47 0.015 15.325 0.585 1518.54 0.015 16.48 0.015 16.48 0.015 16.48

AVM-PVC 0.015 3.33 0.015 3.33 0.015 3.33 0.015 3.33 0.015 3.33 0.984 255.21 0.015 3.33

AVM-PLM 0.015 19.27 0.015 19.27 0.015 19.27 0.984 458.66 0.015 19.27 0.015 19.27 0.015 19.27

Table 5.3: Estimated probability and runtime for all response patterns by considering all ggapi as
normal random variables

Group
REV NR F-ACC F-DEC FWD B-ACC B-DEC

Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s) Pr RT (s)

Control 0.83 2343.87 0.039 252.58 0.015 26.37 0.121 897.47 0.015 26.37 0.015 26.37 0.015 26.37

PLM 0.83 1309.73 0.015 11.33 0.015 11.33 0.127 862.53 0.015 11.33 0.015 11.33 0.015 11.33

ALM-AVM 0.015 9.57 0.015 9.57 0.689 1578.83 0.33 1442.56 0.015 9.57 0.015 9.57 0.015 9.57

ALM-DVA 0.414 1406.31 0.0303 41.04 0.015 15.70 0.547 1766.48 0.015 15.70 0.015 15.70 0.015 15.70

AVM-PVC 0.015 3.33 0.015 3.33 0.015 3.33 0.015 3.33 0.015 3.33 0.984 255.21 0.015 3.33

AVM-PLM 0.03 72.02 0.015 16.49 0.015 16.49 0.97 419.39 0.015 16.49 0.015 16.49 0.015 16.49

Table 5.4: Estimated probability and runtime for all response patterns by considering all ggapi as
uniform random variables

77



addition to these four groups, we performed analysis on two new ablation groups: AVM,PLM- and
AVM,PVC-.

By comparing Table 5.3 with Table 5.4, we notice that the estimated probability of predominant
response, computed by considering the parameters as normal random variables, is closer to the
value obtained by Wicks et al. This indicates that the parameters are more likely to follow normal
distribution over uniform distribution.

5.4.4 Additional Benchmarks

Benchmark #Ms K #ODEs #Vs #RVs δ Est P #S S #T S A T(s) T T(s)
BBK1 1 1 2 14 3 0.001 0.754 5372 7126 0.086 612.836
BBK5 1 5 2 38 3 0.001 0.059 209 3628 0.253 917.884

BBwDv1 2 2 4 20 4 0.001 0.208 2206 10919 0.080 873.522
BBwDv2K2 2 2 4 20 3 0.001 0.845 7330 8669 0.209 1811.821
BBwDv2K8 2 8 4 56 3 0.001 0.207 2259 10901 0.858 9353.058

Tld 2 7 2 33 4 0.001 0.996 227 227 0.213 48.351
Ted 2 7 4 50 4 0.001 0.996 227 227 12.839 2914.448

DTldK3 2 3 4 26 2 0.001 0.996 227 227 0.382 86.714
DTldK5 2 5 4 38 2 0.001 0.161 1442 8961 0.280 2509.078
W4mv1 4 3 8 26 6 0.001 0.381 5953 15639 0.238 3722.082

W4mv2K3 4 3 8 26 6 0.001 0.996 227 227 0.673 152.771
W4mv2K7 4 7 8 50 6 0.001 0.004 0 227 0.120 27.240

DWK1 2 1 4 14 5 0.001 0.996 227 227 0.171 38.817
DWK3 2 3 4 26 5 0.001 0.996 227 227 0.215 48.806
DWK9 2 9 4 62 5 0.001 0.996 227 227 5.144 1167.688

Que 3 2 3 13 4 0.001 0.228 2662 11677 0.095 1109.315
3dOsc 3 2 18 48 2 0.001 0.996 227 227 8.273 1877.969
QuadC 1 0 14 44 6 0.001 0.996 227 227 825.641 187420.507

exPHA01 2 2 4 20 2 0.001 0.524 345 658 5.01 3295.82
exPHA02 2 3 2 17 1 0.001 0.900 5361 5953 0.0004 2.35

KRk5 6 5 84 194 2 0.001 0.544 8946 16457 0.122 2015.64
KRk6 8 6 112 224 6 0.001 0.246 2032 8263 1.385 11444.22
KRk7 10 7 150 271 6 0.001 0.096 558 5795 16.275 94311.18
KRk8 7 8 105 303 6 0.001 0.004 0 227 0.003 0.58
KRk9 9 9 135 335 6 0.001 0.004 0 227 0.015 3.43
KRk10 11 10 165 367 6 0.001 0.004 0 227 0.026 5.92

Table 5.5: #Ms = number of modes, K indicates the unfolding steps, #ODEs = number of ODEs in the unfolded formulae, #Vs = number of total
variables in the unfolded formulae, #RVs = number of random variables in the model, δ = precision used in dReach.

To further demonstrate SReach’s applicability, we also applied it to additional benchmarks
including HAps, PHAs, and PHArs with subtle non-determinism. Table 5.5 shows the results of
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these experiments. These experiments were conducted with the sequential version of SReach on
a machine with 2.9GHz Intel Core i7 processor and 8GB RAM, running OS X 10.9.2. In our
experiments we used 0.001 as the precision for the δ-decision problem; and Bayesian sequential
estimation with 0.01 half-interval width, coverage probability 0.99, and uniform prior (α = β =
1). In the following table, “BB” refers to the bouncing ball models, “Tld” the thermostat model
with linear temperature decrease, “Ted” the thermostat model with exponential decrease, “DT”
the dual thermostat models, “W” the watertank models, “DW” the dual watertank models, “Que”
the model for queuing system which has both nonlinear functions and nondeterministic jumps,
“3dOsc” the model for 3d oscillator, and “QuadC” the model for quadcopter stabilization control.
Following these hybrid systems with parametric uncertainty, we also consider two example PHAs
- “exPHA01” and “exPHA02”, and PHArs with trivial non-determinism - “KR” (the stochastic
version of our killerred models).

Model description
Synthesized Killerred Model. The ODEs missing in Figure 5.11 are as follows.

d[mRNA]

dt
= kRNAsyn · [DNA]− kRNAdeg · [mRNA]

d[KRim]

dt
= kKRimsyn · [mRNA]− (kKRm + kKRimdeg) · [KRim]

d[KRmdS]

dt
= kKRm · [KRim]− kKRmdSdeg · [KRmdS] (before turning on the light)

d[KRmdS]

dt
= kKRm · [KRim] + kKRf

· [KRmdS∗ ] + kKRic
· [KRmdS∗ ] + kKRnrd

·[KRmdT ∗ ] + kKRSOXd1
· [KRmdT ∗ ]− kKRex · [KRmdS]− kKRmdSdeg

·[KRmdS] (after adding light)

d[KRmdS∗ ]

dt
= kKRex · [KRmdS]− kKRf

· [KRmdS∗ ]− kKRic
· [KRmdS∗ ]

−kKRisc
· [KRmdS∗ ]− kKRmdS∗deg · [KRmdS∗ ]

d[KRmdT ∗ ]

dt
= kKRisc

· [KRmdS∗ ]− kKRnrd
· [KRmdT ∗ ]− kKRSOXd1

· [KRmdT ∗ ]

−kKRSOXd2
· [KRmdT ∗ ]− kKRmdT∗deg · [KRmdT ∗ ]

d[SOX]

dt
= kKRSOXd1

· [KRmdT ∗ ] + kKRSOXd2
· [KRmdT ∗ ]−

d[SOXsod]

dt
d[SOXsod]

dt
= kSOD · VmaxSOD ·

[SOX]

Km + [SOX]

Atrial Fibrillation. The model has four discrete control locations, four state variables, and non-
linear ODEs. A typical set of ODEs in the model is as follows. The exponential term on the
right-hand side of the ODE is the sigmoid function, which often appears in modeling biological
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switches.

du

dt
= e+ (u− θv)(uu − u)vgfi + wsgsi − gso(u)

ds

dt
=

gs2
(1 + exp(−2k(u− us)))

− gs2s

dv

dt
= −g+

v · v
dw

dt
= −g+

w · w

Prostate Cancer Treatment. The nonlinear ODEs in the Prostate-Cancer-Treatment model are as
follows.

dx

dt
= (αx(k1 + (1− k1)

z

z + k2

− βx((1− k3)
z

z + k4

+ k3))−m1(1− z

z0

))x+ c1x

dy

dt
= m1(1− z

z0

)x+ (αy(1− d
z

z0

)− βy)y + c2y

dz

dt
=
−z
τ

+ c3z

dv

dt
= (αx(k1 + (1− k1)

z

z + k2

− βx(k3 + (1− k3)
z

z + k4

))−m1(1− z

z0

))x+ c1x

+m1(1− z

z0

)x+ (αy(1− d
z

z0

)− βy)y + c2y

Electronic Oscillator. The 3dOsc model represents an electronic oscillator model that contains
nonlinear ODEs such as the following.

dx

dt
= −ax · sin(ω1 · τ)

dy

dt
= −ay · sin((ω1 + c1) · τ) · sin(ω2) · 2

dz

dt
= −az · sin((ω2 + c2) · τ) · cos(ω1) · 2

ω1

dt
= −c3 · ω1

ω2

dt
= −c4 · ω2

dτ

dt
= 1

Quadcopter Control. We developed a model that contains the full dynamics of a quadcopter. We
use the model to solve control problems by answering reachability questions. A typical set of the
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differential equations are the following.

dωx
dt

= L · k · (ω2
1 − ω2

3)(1/Ixx)− (Iyy − Izz)ωyωz/Ixx
dωy
dt

= L · k · (ω2
2 − ω2

4)(1/Iyy)− (Izz − Ixx)ωxωz/Iyy
dωz
dt

= b · (ω2
1 − ω2

2 + ω2
3 − ω2

4)(1/Izz)− (Ixx − Iyy)ωxωy/Izz
dφ

dt
= ωx +

sin (φ) sin (θ)(
sin(φ)2 cos(θ)

cos(φ)
+ cos (φ) cos (θ)

)
cos (φ)

ωy

+
sin (θ)

sin(φ)2 cos(θ)
cos(φ)

+ cos (φ) cos (θ)
ωz

dθ

dt
= −(

sin (φ)2 cos (θ)(
sin(φ)2 cos(θ)

cos(φ)
ωy + cos (φ) cos (θ)

)
cos (φ)2

+
1

cos (φ)
)ωy −

sin (φ) cos (θ)(
sin(φ)2 cos(θ)

cos(φ)
+ cos (φ) cos (θ)
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1 + ω2
2 + ω2
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dyp

dt
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4)− k · d · yp)

dzp
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1 + ω2
2 + ω2

3 + ω2
4)− k · d · zp

dx

dt
= xp,

dy

dt
= yp,

dz

dt
= zp

The full descriptions of all the models that mentioned in this paper can be found on the tool
website.
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Chapter 6

Pancreatic Cancer Microenvironment
Model as A Multiscale Hybrid Rule-based
Model and Statistical Model Checking

As mentioned in chapter 2, pancreatic cancer (PC), as an extremely aggressive disease, is the
fourth leading cause of cancer death in United States [5], and the seventh cause globally [6]. It
is anticipated to become the second by 2020. For years, extensive efforts have been placed on
understanding the functionality of pancreatic cancer cells (PCCs), and on developing effective
therapies solely targeting at them. However, the poor prognosis for PC remains largely unchanged.
To turn this tide, the research focus of pancreatic cancer has been shifted from solely looking
into pancreatic cancer cells towards investigating the microenvironment of the pancreatic cancer.
Biologists have recently noticed that one contributing factor to the failure of systemic therapies may
be the abundant tumor micro-environment. As a characteristic feature of PC, the microenvironment
includes pancreatic stellate cells (PSCs), endothelial cells, nerve cells, immune cells, lymphocytes,
dendritic cells, the extracellular matrix, and other molecules surrounding PCCs [144]. Over the
past decade, evidence has been accumulated to demonstrate the potentially critical functions of
these cells in regulating the growth, invasion, and metastasis of PC [81, 85, 86, 144]. Among these
cells, PSCs and cancer-associated macrophages play primary roles during the development of PC
[144]. Studies have confirmed that PSCs are the primary cells producing the stromal reaction [16,
20]. In a healthy pancreas, PSCs exist quiescently in the periacinar, perivascular, and periductal
space. While, in the diseased state, PSCs will be activated by growth factors, cytokines, and
oxidant stress secreted or induced by PCCs. Activated PSCs will then transform from the quiescent
state to the myofibroblast phenotype. This results in their losinlipid droplets, actively proliferating,
migrating, producing large amounts of extracellular matrix, and expressing cytokines, chemokines,
and cell adhesion molecules. In return, the activated PSCs promote the growth of PCCs.

In this chapter, to quantitatively understand the microenvironment of PC, we construct a mul-
ticellular model. This model consists of intracellular signaling networks of pancreatic cancer cells
and stellate cells respectively, and intercellular interactions among them as well. To formally
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describe our multicellular and multiscale model and perform formal analysis, we extend the rule-
based language BioNetGen [83] to enable the formal specification of not only the signaling network
within a single cell, but also interactions among multiple cells. Specifically, we represent the in-
tercellular level dynamics using rules with continuous variables and use Boolean Networks (BNs)
to capture the dynamics of intracellular signaling networks, considering the fact that a large num-
ber of reaction rate constants are not available in the literature and difficult to be experimentally
determined. Our extension saves the virtues of both BNs and rule-based kinetic modeling, while
advancing the specification power to multicellular and multiscale models. We employ stochas-
tic simulation NFsim [197] and statistical model checking (StatMC) [132] to analyze the systems
properties. The formal analysis results show that our model reproduces existing experimental
findings with regard to the mutual promotion between pancreatic cancer and stellate cells. The
model also provides insights into how treatments latching onto different targets could lead to dis-
tinct outcomes. Using the validated model, we predict novel (poly)pharmacological strategies for
improving PC treatment.

6.1 Signalling Networks within Pancreatic Cancer Microenvi-
ronment

We construct a multicellular model for pancreatic cancer microenvironment based on a comprehen-
sive literature search. The reaction network of the model is summarized in Figure 6.1. It consists
of three parts that are colored with green, blue, and purple respectively: (i) the intracellular sig-
naling network of PCCs, (ii) the intracellular signaling network of PSCs, and (iii) the signaling
molecules (such as growth factors and cytokines) in the extracellular space of the microenviron-
ment, which are ligands of the receptors expressed in PCCs and PSCs. Note that → denotes
activation/promotion/up-regulation, and –• represents inhibition/suppression/down-regulation.

Intracellular signaling network of PCCs
Pathways regulating proliferation

KRas mutation enhances proliferation [23]. Mutations of the KRas oncogene occur in the
precancerous stages with a mutational frequency over 90%. It can lead to the continuous activation
of the RAS protein, which then constantly triggers the RAF→MEK cascade, and promotes PCCs’
proliferation through the activation of ERK and JNK.

EGF activates and enhances proliferation [167]. Epidermal growth factor (EGF) and its cor-
responding receptor (EGFR) are expressed in ∼95% of PCs. EGF promotes proliferation through
the RAS→RAF→MEK→JNK cascade. It can also trigger the RAS→RAF→MEK→
ERK→cJUN cascade to secrete EGF molecules, which can then quickly bind to overexpressed
EGFR again to promote the proliferation of PCCs, which is believed to confer the devastating
nature on PCs.

HER2/neu mutation also intensifies proliferation [23]. HER2/neu is another oncogene fre-
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quently mutated in the initial PC formation. Mutant HER2 can bind to EGFR to form a het-
erodimer, which can activate the downstream signaling pathways of EGFR.

bFGF promotes proliferation [30]. As a mitogenic polypeptide, bFGF can promote pro-
liferation through both RAF→MEK→ERK and RAF→MEK→JNK cascades. In addition, bFGF
molecules are released through RAF→MEK→ERK pathway to trigger another autocrine signaling
pathway in the PC development.

Pathways regulating apoptosis

Apoptosis is the most common mode of programmed cell death. It is executed by caspase
proteases that are activated by death receptors or mitochondrial pathways.

TGFβ1 initiates apoptosis [194]. In PCCs, transforming growth factor β 1 (TGFβ1) binds to
and activates its receptor (TGFR), which in turn activates receptor-regulated SAMDs that hetero-
oligomerize with the common SAMD3 and SAMD4. After translocating to the nucleus, the com-
plex initiates apoptosis in the early stage of the PC development.

Mutated oncogenes inhibit apoptosis. Mutated KRas and HER2/neu can inhibit apoptosis
by downregulating caspases (CASP) through PI3K→AKT→NFκB cascade and by inhibiting Bax
(and indirectly CASP) via the PI3K→PIP3→AKT→· · ·→BCL-XL pathway.

Pathways regulating autophagy

Autophagy is a catabolic process involving the degradation of a cell’s own components through
the lysosomal machinery. This pro-survival process enables a starving cell to reallocate nutrients
from unnecessary processes to essential processes. Recent studies indicate that autophagy is im-
portant in the regulation of cancer development and progression and also affects the response of
cancer cells to anticancer therapy [119, 146].

mTOR regulates autophagy [166]. The mammalian target of rapamycin (mTOR) is a criti-
cal regulator of autophagy. In PCCs, the upstream pathway PI3K→PIP3→AKT activates mTOR
and inhibits autophagy. The MEK→ERK cascade downregulates mTOR via cJUN and enhances
autophagy.

Overexpression of anti-apoptotic factors promotes autophagy [157]. Apoptosis and au-
tophagy can mutually inhibit each other due to their crosstalks. In the initial stage of PC, the
upregulation of apoptosis leads to the inhibition of autophagy. Along with the progression of can-
cer, when apoptosis is suppressed by the highly expressed anti-apoptotic factors (e.g. NFκB and
Beclin1), autophagy gradually takes the dominant role and promotes PCC survival.

Intracellular signaling network of PSCs
Pathways regulating activation

PCCs can activate the surrounding inactive PSCs by cancer-cell-induced release of mitogenic
and fibrogenic factors, such as PDGFBB and TGFβ1. As a major growth factor regulating cell
functions of PSCs, PDGFBB activates PSCs [107] through the downstream ERK→AP1 signal-
ing pathway. The activation of PSCs is also mediated by TGFβ1 [107] via TGFR→SAMD
pathway. The autocrine signaling of TGFβ1 maintains the sustained activation of PSCs. Further-
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more, the cytokine TNFα, which is a major secretion of tumor-associated macrophages (TAMs)
in the microenvironment, is also involved in activating PSCs [159] through binding to TNFR,
which indirectly activates NFκB.

Pathways regulating migration

Migration is another characteristic cell function of PSCs. Activated PSCs move towards PCCs,
and form a cocoon around tumor cells, which could protect the tumor from therapies’ attacks
[16, 86].

Growth factors promote migration. Growth factors existing in the microenvironment, in-
cluding EGF, bFGF, and VEGF, can bind to their receptors on PSCs and activate the migration
through the MAPK pathway.

PDGFBB contributes to the migration [173]. PDGFBB regulates the migration of PSCs
mainly through two downstream pathways: (i) the PI3K→PIP3→AKT pathway, which mediates
PDGF-induced PSCs’ migration, but not proliferation, and (ii) the ERK→AP1 pathway that regu-
lates activation, migration, and proliferation of PSCs.

Pathways regulating proliferation

Growth factors activate proliferation. In PSCs, as key downstream components for several
signaling pathways initiated by distinct growth factors, such as EGF and bFGF, the ERK→AP1
cascade activates the proliferation of PSCs. Compared to inactive PSCs, active ones proliferate
more rapidly.

Tumor suppressers repress proliferation. Similar to PCCs, P53, P21, and PTEN act as
suppressers for PSCs’ proliferation.

Pathways regulating apoptosis

P53 upregulates modulator of apoptosis [130]. The apoptosis of PSCs can be initiated by
P53, whose expression is regulated by the MAPK pathway.

Interactions between PCCs and PSCs
The mechanism underlying the interplay between PCCs and PSCs is complex. In a healthy

pancreas, PSCs exist quiescently in the periacinar, perivascular, and periductal space. However, in
the diseased state, PSCs will be activated by growth factors, cytokines, and oxidant stress secreted
or induced by PCCs, including EGF, bFGF, VEGF, TGFβ1, PDGF, sonic hedgehog, galectin 3,
endothelin 1 and serine protease inhibitor nexin 2 [77]. Activated PSCs will then transform from
the quiescent state to the myofibroblast phenotype. This results in their losinlipid droplets, ac-
tively proliferating, migrating, producing large amounts of extracellular matrix, and expressing
cytokines, chemokines, and cell adhesion molecules. In return, the activated PSCs promote the
growth of PCCs by secreting various factors, including stromal-derived factor 1, FGF, secreted
protein acidic and rich in cysteine, matrix metalloproteinases, small leucine-rich proteoglycans,
periostin and collagen type I that mediate effects on tumor growth, invasion, metastasis and resis-
tance to chemotherapy [77]. Among them, EGF, bFGF, VEGF, TGFβ1, and PDGFBB are essential
mediators of the interplay between PCCs and PSCs that have been considered in our model.
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Autocrine and paracrine involving EGF/bFGF [156]. EGF and bFGF can be secreted by
both PCCs and PSCs. In turn, they will bind to EGFR and FGFR respectively on both PCCs and
PSCs to activate their proliferation and further secretion of EGF and FGF.

Interplay through VEGF [214]. As a proangiogenic factor, VEGF is found to be of great
importance in the activation of PSCs and angiogenesis during the progression of PCs. VEGF,
secreted by PCCs, can bind with VEGFR on PSCs to activate the PI3K pathway. It further promotes
the migration of PSCs through PIP3→AKT, and suppresses the transcription activity of P53 via
MDM2.

Autocrine and paracrine involving TGFβ1 [156]. PSCs by themselves are capable of syn-
thesizing TGFβ1, suggesting the existence of an autocrine loop that may contribute to the perpet-
uation of PSC activation after an initial exogenous signal, thereby promoting the development of
pancreatic fibrosis.

Interplay through PDGFBB [77]. PDGFBB exists in the secretion of PCCs, whose produc-
tion is regulated by TGFβ1 signaling pathway. PDGFBB can activate PSCs and initiate migration
and proliferation as well.

6.2 The Modeling Language

Rule-based modeling languages are often used to specify protein-to-protein reactions within cells
and to capture the evolution of protein concentrations. BioNetGen language is a representative
rule-based modeling formalism [83], which consists of three components: basic building blocks,
patterns, and rules. In our setting, in order to simultaneously simulate the dynamics of multiple
cells, interactions among cells, and intracellular reactions, we advance the specifying power of
BioNetGen by redefining basic building blocks and introducing new types of rules for cellular
behaviors as follows.

Basic building blocks. In BioNetGen, basic building blocks are molecules that may be assem-
bled into complexes through bonds linking components of different molecules. To handle multi-
scale dynamics (i.e. cellular and molecular levels), we allow the fundamental blocks to be also
cells or extracellular molecules. Specifically, a cell is treated as a fundamental block with subunits
corresponding to the components of its intracellular signaling network. Furthermore, extracellular
molecules (e.g. EGF) are treated as fundamental blocks without subunits.

As we use BNs to model intracellular signaling networks, each subunit of a cell takes binary
values (it is straightforward to extend BNs to discrete models). The Boolean values - “True (T)”
and “False (F)” - can have different biological meanings for distinct types of components within
the cell. For example, for a subunit representing cellular process (e.g. apoptosis), “T” means
the cellular process is triggered, and “F” means it is not triggered. For a receptor, “T” means
the receptor is bound, and “F” means it is free. For a protein, “T” indicates this protein has a
high concentration, and “F” indicates that its concentration level is below the value to regulate
downstream targets.
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Patterns. As defined in BioNetGen, patterns are used to identify a set of species that share
features. For instance, the pattern C(c1) matches both C(c1, c2 ∼ T ) and C(c1, c2 ∼ F ). Using
patterns offers a rich yet concise description in specifying components.

Rules. In BioNetGen, three types of rules are used to specified: binding/unbinding, phospho-
rylation, and dephosphorylation. Here we introduce nine rules in order to describe the cellular
processes in our model and the potential therapeutic interventions. For each type of rules, we
present its formal syntax followed by examples that demonstrate how it is used in our model.

Rule 1: Ligand-receptor binding

< Lig > + < Cell > (< Rec >∼ F )→< Cell > (< Rec >∼ T ) < binding rate >

Remark: On the left-hand side, the “F” value of a receptor < Rec > indicates that the receptor
is free. When a ligand < Lig > binds to it, the reduction of number of extracellular ligand is
represented by its elimination. In the meanwhile, “< Rec >∼ T ”, on the right-hand side, indicates
that the receptor is not free any more. Note that, the multiple receptors on the surface of a cell can
be modeled by setting a relatively high rate on the following downstream regulating rules, which
indicates the rapid “releasing” of bound receptors. An example in our microenvironment model is
the binding between EGF and EGFR for PCCs: “EGF+PCC(EGFR ∼ F )→ PCC(EGFR ∼
T ) 1”.

Rule 2: Mutated receptors form a heterodimer

< Cell > (< Rec1 >∼ F,< Rec2 >∼ F )→

< Cell > (< Rec1 >∼ T,< Rec2 >∼ T ) < mutated binding rate >

Remark: Unbound receptors can bind together and form a heterodimer. For example, in our model,
the mutated HER2 can activate downstream pathways of EGFR by binding with it and forming a
heterodimer: “’PCC(EGFR ∼ F,HER2 ∼ F )→ PCC(EGFR ∼ T,HER2 ∼ T ) 10”.

Rule 3: Downstream signaling transduction
Rule 3.1 (Single parent) upregulation (activation, phosphorylation, etc.)

< Cell > (< Act >∼ T,< Tar >∼ F )→

< Cell > (< Act >∼ T,< Tar >∼ T ) < trate >

Rule 3.2 (Single parent) downregulation (inhibition, dephosphorylation, etc.)

< Cell > (< Inh >∼ T,< Tar >∼ T )→

< Cell > (< Inh >∼ T,< Tar >∼ F ) < trate >

Rule 3.3 (Multiple parents) Downstream regulation

< Cell > (< Inh >∼ F,< Act >∼ T,< Tar >∼ F )→
< Cell > (< Inh >∼ F,< Act >∼ T,< Tar >∼ T ) < trate >
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< Cell > (< Inh >∼ T,< Tar >∼ T )→
< Cell > (< Inh >∼ T,< Tar >∼ F ) < trate >

Remark: Instead of using kinetic rules (such as in ML-Rules), our language use logical rules of
BNs to describe intracellular signal cascades. Downsteam signal transduction rules are used to
describe the logical updating functions for all intracellular molecules constructing the signaling
cascades. For instance, Rule 3.3 presents the updating function < Tar >(t+1)= ¬ < Inh >(t)

×(< Act >(t)+ < Tar >(t)), where “< Inh >” is the inhibitor, and “< Act >” is the activator.
In this manner, concise rules can be devised to handle complex cases, where there exists multiple
regulatory parents. Note that our model follows the biological assumption that inhibitors hold
higher priorities than activators with respect to their impacts on the target. “+” and “×” in logical
functions represent logical “OR” and “AND” respectively. An example in our model is that, in
PCCs, STAT can be activated by JAK1: “PCC(JAK1 ∼ T, STAT ∼ T ) → PCC(JAK1 ∼
F, STAT ∼ T ) 0.012” and “PCC(JAK1 ∼ T, STAT ∼ F ) → PCC(JAK1 ∼ F, STAT ∼
T ) 0.012”.

Rule 4: Cellular processes
Rule 4.1 Proliferation

< Cell > (Pro ∼ T )→
< Cell > (Pro ∼ F )+ < Cell > (Pro ∼ F, · · · ) < pro rate >

Remark: When a cell proliferates, we keep the current values of subunits for the cell that initiates
the proliferation, and assume the new cell to have the default values of subunits. The “· · · ” in the
rule denotes the remaining subunits with their default values.

Rule 4.2 Apoptosis

< Cell > (Apo ∼ T )→ Null() < apop rate >

Remark: A type “Null()” is declared to represent dead cells or degraded molecules. In our model,
the apoptosis of PSCs is described as “PSC(Apo ∼ T )→ Null()
5e− 4”.

Rule 4.3 Autophagy

< Cell > (Aut ∼ T )→< Mol > + · · · < auto rate >

Remark: The molecules on the right-hand side of this type of rules will be released into the mi-
croenvironment due to autophagy. They are the existing molecules expressed inside this cell when
autophagy is triggered.

Rule 5: Secretion
< Cell > (< secMol >∼ T )→

< Cell > (< secMol >∼ F )+ < Mol > < sec rate >

Remark: When the secretion of “< Mol >” has been triggered, its amount in the microenvi-
ronment will be added by 1. Note that, we can differentiate the endogenous and exogenous
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molecules by labeling the secreted “< Mol >” with the cell name. In our model, we have
“PCC(secEGF ∼ T )→ PCC(secEGF ∼ F ) + EGF 2.7e− 4”.

Rule 6: Mutation
< Cell > (< Mol >∼< unmutated >)→

< Cell > (< Mol >∼< mutated >) < mrate >

Remark: For mutant proteins that are constitutively active, we set a very high value to the muta-
tion rate “mrate”. In this way, we can almost keep the value of the mutated molecule as what it
should be. For example, in our model, the mutation of oncoprotein Ras in PCCs is captured by
“PCC(RAS ∼ F )→ PCC(RAS ∼ T ) 10000”.

Rule 7: Constantly over-expressed extracellular molecules

CancerEvn→ CancerEvn+ < Mol > < sec rate >

Remark: We use this type of rules to mimic the situation that the concentration of an over-expressed
extracellular molecule stays in a high level constantly.

Rule 8: Degradation of extracellular molecules

< Mol >→ Null() < deg rate >

Remark: Here, “Null()” is used to represent dead cells or degraded molecules. For instance, bFGF
in the microenvironment will be degraded via “bFGF → Null() 0.05”.

Rule 9: Therapeutic intervention
< Cell > (< Mol >∼< untreated >)→

< Cell > (< Mol >∼< treated >) < treat rate >

Remark: Given a validated model, intervention rules allow us to evaluate the effectiveness of a
therapy targeting at certain molecule(s). Also, the well-tuned value of the intervention rate could,
more or less, give indications when deciding the dose of medicine used in this therapy, based on
the Law of Mass Action.

Our extension allows the BioNetGen language to be able to model not only the signaling net-
work within a single cell, but also interactions among multiple cells. It also allows one to simulate
the dynamics of cell populations, which is crucial to cancer study. Moreover, describing the intra-
cellular dynamics using the style of BNs improves the scalability of our method by overcoming the
difficulty of obtaining values of a large amount of model parameters from wet laboratory, which
is a common bottleneck of conventional rule-based languages and ML-Rules. Note that, similar to
other rule-based languages, our extended one allows different methods for model analysis, since
more than one semantics can be defined for the same syntax.

6.3 Statistical Model Checking

Simulation can recapitulate a number of experimental observations and provide new insights into
the system. However, it is not easy to manually analyze a significant amount of simulation trajecto-
ries, especially when there is a large set of system properties to be tested. Thus, for our model, we
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employ statistical model checking (StatMC), which is a fully automated formal analysis technique.
In this section, we provide an intuitive and brief description of StatMC. The interested reader can
find more details in [132].

In general, given a system property expressed as a Bounded Linear Temporal Logic (BLTL)
[132] formula and the set of simulation trajectories generated by applying the network-free stochas-
tic simulation (NFsim) [197] to our rule-based model, StatMC estimates the probability of the
model satisfying the property.

Bounded Linear Temporal Logic
Before looking into the main ideas of StatMC, we first introduce BLTL formally. As mentioned in
Chapter 3.2, linear temporal logic (LTL) [178], as a modal temporal logic with modalities referring
to time, is widely used to formally encode formulae about the future of paths, such as a condition
will eventually be true or a condition will be true until another fact becomes true. BLTL extends
LTL with time bounds on temporal operators. For example, the following BLTL formula can be
used to express the specification it is not the case that within 5 seconds, variable v0 will keep the
value 1 and variable v1 will keep the value 0 for 10 seconds.

¬F 5G10(v0 = 1 ∧ v1 = 0)

where the F 5 operator encodes future 5 seconds, G10 expresses globally for 10 seconds, and v0

and v1 are state variables of the model.

The syntax of BLTL is given by:

ψ ::= x ∼ v|¬ψ|ψ1 ∨ ψ2|ψ1U
tψ2

where x ∈ SV (the finite set of state variables), ∼∈ {<,≤,=,≥, >}, v ∈ Q, and t ∈ Q≥0. Note
that the operators ∧, F t, and Gt referenced above can be defined as follows: F tψ = True U tψ,
Gtψ = ¬F t¬ψ, and ψ1 ∧ ψ2 = ¬(¬ψ1 ∨ ¬ψ2)

The semantics of BLTL is defined with respect to traces (or executions) of the model. For this
work, a trace will be a simulation trajectory of our multiscale hybrid rule-based model. Formally, a
trace is a sequence of time-stamped state transitions of the form σ = (s0, t0), (s1, t1), · · · , indicat-
ing that the system moved to state si+1 after duration ti in state si. The fact that a trace σ satisfies
the BLTL property ψ is denoted by s |= ψ. We denote the execution trace starting at state i by σi.
The value of the state variable x in σ at the state i is denoted by V (σ, i, x). The semantics of BLTL
for a trace σk starting at the kth state (k ∈ N ) is defined as follows.

• σk |= x ∼ v if and only if V (σ, k, x) ∼ v;

• σk |= ¬ψ if and only if σk |= ψ does not hold;

• σk |= ψ1 ∨ ψ2 if and only if σk |= ψ1 or σk |= ψ2;

• σk |= ψ1U
tψ2 if and only if there exists i ∈ N+ such that (a)

∑k+i−1
j=k tj ≤ t, (b) σk+i |= ψ2,

and (c) for each 0 ≤ j < i, σk+j |= ψ1.
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Statistical Model Checking
In this work, we use StatMC to estimate the probability with which a model satisfies a given
bounded LTL property. Essentially, given our model M , we first run NFsim on it. For each
generated trajectory with a predefined small length, we run the trace checker on it against the given
bounded LTL formula. The trace checker will decide whether to stop the simulation for this certain
trajectory and pass the checking result to the statistical tester, or to continue the simulation for this
trace by another k steps. Checking results of multiple trajectories will be used by the statistical
tester to estimate the probability. The tester will decide when to stop the whole simulation, and
return the final estimated probability with a preset small error bound. The whole checking process
is illustrated in Figure 6.2.

In detail, since the underlying semantic model of the stochastic simulation method NFsim that
we used for our model is essentially a discrete-time Markov chain, we need to verify stochastic
models. StatMC treats the verification problem for stochastic models as a statistical inference
problem, using randomized sampling to generate traces (or simulation trajectories) from the system
model, and then performing model checking and statistical analysis on those traces. For a (closed)
stochastic model and a BLTL property ψ, the probability p that the model satisfies ψ is well defined
(but unknown in general). For a fixed 0 < θ < 1, we ask whether p ≤ θ, or what the value of
p is. In StatMC, the first question is solved via hypothesis testing methods, while the second
via estimation techniques. Intuitively, hypothesis tests are probabilistic decision procedures, i.e.,
algorithms with a yes/no reply, and which may give wrong answers. Estimation techniques instead
compute (probabilistic) approximations of the unknown probability p. The main assumption of
StatMC is that, given a BLTL property ψ, the behavior of a (closed) stochastic model can be
described by a Bernoulli random variable of parameter p, where p is the probability that the system
satisfies ψ. It is known that discrete-time Markov chains satisfy this requirement [211]. Therefore
StatMC can be applied to our setting. More specifically, given σ is a system execution and ψ a
BLTL formula, we have that Prob{σ|σ |= ψ} = p, and the Bernoulli random variable mentioned
above is the following function M defined as follows: M(σ) = 1 if σ |= ψ, or M(σ) = 0
otherwise. Therefore, M will be 1 with probability p and 0 with probability 1 − p. In general,
StatMC works by first obtaining samples of M , and then by applying statistical techniques to such
samples to solve the verification problem.

6.4 Results and Discussion

In this section, we present and discuss formal analysis results for our pancreatic cancer microenvi-
ronment model. The model file is available at http://www.cs.cmu.edu/˜qinsiw/mpc_
model.bngl. All the experiments reported below were conducted on a machine with a 1.7 GHz
Intel Core i7 processor and 8GBRAM, running on Ubuntu 14.04.1 LTS. In our experiments, we
use Bayesian sequential estimation with 0.01 as the estimation error bound, coverage probability
0.99, and a uniform prior (α = β = 1). The time bounds and thresholds given in following prop-
erties are determined by considering the model’s simulation results. The parameters in our model
include initial state (e.g. abundance of extracellular molecules) and reaction rate constants. The
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initial state was provided by biologists based on wet-lab measurements. The rate constants were
estimated based on the general ones in the textbook [13]. The results in scenario I & II demon-
strate that using these parameters the model is able to reproduce key observations reported in the
literature. We also performed a sensitivity analysis and the results show that the system behavior
is robust to most of the parameters (the two sensitive parameters have been labeled in our model
file).

Scenario I: mutated PCCs with no treatments
In scenario I, we validate our model by studying the role of PSCs in the PC development.

Property 1: This property aims to estimate the probability that the population of PCCs will even-
tually reach and maintain in a high level.

Prob=? {(PCCtot = 10) ∧ F 1200 G100 (PCCtot > 200)}

First, we take a look at the impact from the presence of PSCs on the dynamics of PCC population.
As shown in Table 6.1, with PSCs, the probability of the number of PCCs reaching and keeping in
a high level (Pr = 0.9961) is much higher than the one when PSCs are absent (Pr = 0.405). This
indicates that PSCs promote PCCs proliferation during the progression of PC. This is consistent
with experimental findings [16, 77, 214].

Property 2: This property aims to estimate the probability that the number of migrated PSCs will
eventually reach and maintain in a high amount.

Prob=? {(MigPSC = 0) ∧ F 1200 G100 (MigPSC > 40)}

We then study the impacts from PCCs on PSCs. As shown in Table 6.1, without PCCs, it is quite
unlikely ((Pr = 0.1191) for quiescent PSCs to be activated. While, when PCCs exist, the chance of
PSCs becoming active ((Pr = 0.9961) approaches to 1. This confirms the observation [107] that,
during the development of PC, PSCs will be activated by growth factors, cytokines, and oxidant
stress secreted or induced by PCCs.

Property 3: This property aims to estimate the probability that the number of PCCs entering the
apoptosis phase will be larger than the number of PCCs starting the autophagy process and this
situation will be reversed eventually.

Prob=? {F 400 (G300 (ApoPCC > 50 ∧ AutoPCC < 50)

∧F 700 G300 (ApoPCC < 50 ∧ AutoPCC > 50))}
We are also interested in the mutually exclusive relationship between apoptosis and autophagy
for PCCs reported in [119, 157]. In detail, as PC progresses, apoptosis firstly overwhelms au-
tophagy, and then autophagy takes the leading place after a certain amount of time. This situation
is described as property 3 and its estimated probability is close to 1 (see Table 6.1).

Property 4: This property aims to estimate the probability that, it is always the case that, once the
population of activated PSCs reaches a high level, the number of migrated PSCs will also increase.

Prob=? {G1600 (ActPSC > 10→ F 100 (MigPSC > 10))}
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Property Estimated Prob # Succ # Sample Time (s) Note
Scenario I: mutated PCCs with no treatments

1 0.4053 10585 26112 208.91 w.o. PSCs
0.9961 256 256 1.83 w. PSCs

2 0.1191 830 6976 49.69 w.o. PCCs
0.9961 256 256 1.75 w. PCCs

3 0.9961 256 256 5.21 -
4 0.9961 256 256 4.38 -

Scenario II: mutated PCCs with different exsiting treatments
5 0.0004 0 2304 17.13 cetuximab and erlotinib

0.0012 10 9152 68.67 gemcitabine
0.7810 8873 11360 114.25 nab-paclitaxel
0.8004 7753 9686 73.83 ruxolitinib

Scenario III: mutated PCCs with blocking out on possible target(s)
6 0.0792 38363 484128 3727.99 w.o. inhibiting ERK in

PSCs
0.9822 2201 2240 17.37 w. inhibiting ERK in

PSCs
7 0.1979 3409 17232 136.39 w.o. inhibiting ERK in

PSCs
0.9961 256 256 2.01 w. inhibiting ERK in

PSCs
8 0.2029 2181 10752 92.57 w.o. inhibiting MDM2 in

PSCs
0.9961 256 256 2.18 w. inhibiting MDM2 in

PSCs
9 0.0004 0 2304 15.77 w.o. inhibiting RAS in

PCCs and ERK in PSCs
0.9961 256 256 3.15 w. inhibiting RAS in

PCCs and ERK in PSCs
10 0.9797 1349 1376 11.98 w.o. inhibiting STAT in

PCCs and NFκB in PSCs
0.1631 1476 9056 81.61 w. inhibiting STAT in

PCCs and NFκB in PSCs

Table 6.1: Statistical model checking results for properties under different scenarios

One reason why PC is hard to be cured is that activated PSCs will move towards mutated PCCs, and
form a cocoon for the tumor cells, which can protect tumor from attacks caused by therapies [16,
86]. We investigate this by checking property 4, and obtain an estimated probability approaching
to 1 (see Table 6.1).
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Scenario II: mutated PCCs with different existing treatments
Property 5: This property aims to estimate the probability that the population of PCCs will even-
tually drop to and maintain in a low amount.

Prob=? {(PCCtot = 10) ∧ F 1200 G400 (PCCtot < 100)}

Property 5 means that, after some time, the population of PCCs can be maintained in a compara-
tively low amount, implying that PC is under control. We now consider 5 different drugs that are
widely used in PC treatments - cetuximab, erlotinib, gemcitabine, nab-paclitaxel, and ruxolitinib,
and estimate the probabilities for them to satisfy property 5. As shown in Table 6.1, monoclonal
antibody targeting EGFR (cetuximab), as well as direct inhibition of EGFR (erlotinib) broadly do
not provide a survival benefit in PCs. Inhibition of MAPK pathway (gemcitabine) has also not
been promising. These results are consistent with clinical feedbacks from patients [3]. While,
strategies aiming at depleting the PSCs in PCs (i.e. nab-paclitaxel) can be successful (with an es-
timated probability 0.7810). Also, inhibition of Jak/Stat can be very promising (with an estimated
probability 0.8004). These results are supported by [213] and [127], respectively.

Scenario III: mutated PCCs with blocking out on possible target(s)
Scenario I and II have demonstrated the descriptive and predictive power of our model. In

scenario III, we use the validated model to identify new therapeutic strategies targeting molecules
in PSCs. Here we report 4 potential target(s) of interest from our screening.

Property 6: This property aims to estimate the probability that the number of PSCs will eventually
drop to and maintain in a low level.

Prob=? {(PSCtot = 5) ∧ F 1200 G400 (PSCtot < 30)}

Property 7: This property aims to estimate the probability that the population of migrated PSCs
will eventually stay in a low amount.

Prob=? {(MigPSC = 0) ∧ F 1200 G100 (MigPSC < 30)}

The verification results of these two properties (Table 6.1) suggest that inhibiting ERK in PSCs
not only lowers the population of PSCs, but also inhibits PSC migration. The former function can
reduce the assistance from PSCs in the progression of PCs indirectly. The later one can prevent
PSCs from moving towards PCCs and forming a cocoon to protect PCCs against cancer treatments.

Property 8: This property aims to estimate the probability that the number of PSCs entering
the proliferation phase will eventually be less than the number of PSCs starting the apoptosis
programme and this situation will maintain.

Prob=? {F 1200 G400 ((PSCPro− PSCApop) < 0)}

The increased probability (from 0.2029 to 0.9961 as shown in Table 6.1) indicates that inhibiting
MDM2 in PSCs may reduce the number of PSCs by inhibiting PSCs’ proliferation and/or promot-
ing their apoptosis. Similar to the former role of inhibiting ERK in PSCs, it can help to treat PCs
by alleviating the burden caused by PSCs.
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Property 9: This property aims to estimate the probability that the number of bFGF will eventually
stay in such a low level.

Prob=? {F 1200 G400 (bFGF < 100)}

As mentioned in property 5, 6, and 7, inhibiting RAS in PCCs can lower the number of PCCs,
and downregulating ERK in PSCs can inhibit their proliferation and migration. Besides these, we
find that, when inhibiting RAS in PCCs and ERK in PSCs simultaneously, the concentration of
bFGF in the microenvironment drops (see Table 6.1). As bFGF is a key molecule that induces
proliferation of both cell types, targeting RAS in PCCs and ERK in PSCs at the same time could
synergistically improve PC treatment.

Property 10: This property aims to estimate the probability that the concentration of VEGF will
eventually reach and keep in a high level.

Prob=? {F 400 G100 (V EGF > 200)}

Furthermore, inhibiting STAT in PCCs and NFκB in PSCs simultaneously postpones and lowers
the secretion of VEGF (see Table 6.1). VEGF plays an important role in the angiogenesis and
metastasis of pancreatic tumors. Thus, the combinatory inhibition of STAT in PCCs and NFκB in
PSCs may be another potential strategy for PC therapies.
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Chapter 7

Joint Efforts of Formal Methods and
Machine Learning to Automate Biological
Model Design

The works discussed in previous chapters have demonstrated that constructing and analyzing ap-
propriate models can help in explaining biological systems that we are studying via presenting
their core dynamics, so as to allow us to discover new questions and challenge existing theories.
However, the creation of models often requires intense human effort. For example, to construct
the multicellular and multiscale model of pancreatic cancer environment, I had read about 300 re-
lated papers, and had weekly meetings with experts to understand the behavior of the system and
to handle conflicting statements found in distinct publications. This laborious process results in a
slow development of models, let alone validating and extending them with recently reported find-
ings in newly published literature. To order to allow researchers to re-use existing findings about a
certain biological system in a comprehensive and timely manner, we really need a framework that
provides functionalities for the automation of information extraction from existing literature, for
the correct and smart information assembly, and for the accurate and efficient model analysis.

Over the last decade, several automated reading engines have been developed and successfully
adopted to extract interactions among biological entities from literature (e.g. [208]). These auto-
readers are quite efficient. That is, they are capable of finding hundreds of thousands of interactions
from thousands of papers in a few hours [208]. The existence of these auto-readers, together with a
given set of keywords, can promise to offer a vast amount of related system information extracted
from published papers, which will be used for the later model assembly.

However, in order to accurately and efficiently incorporate these pieces of knowledge into a
model, selection methods are needed to choose correct and useful ones from the given huge amount
of extracted information. The integrated model should satisfy important system properties. When a
baseline model is used as the initial model, the extended model should retain system properties that
are satisfied by the baseline model, or even reflect other system properties that the baseline model
fails to satisfy. Moreover, it is also useful to detect extended models where minimal interventions
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in the model can lead to significant changes in outcomes.

To achieve this, in this chapter, we propose and implement a pipeline framework LEaRn, as il-
lustrated in Figure 7.1. As the first step, given related papers and a set of keywords, the auto-reader
REACH [208] is used to extract casual relations with regards to biological entities of interest.
Then, together with a baseline model, the extracted relations are preselected using different heuris-
tics that will be discussed in detail in the later section. A set of extended models will be generated
through this preselection phase. Afterwards, these generated models will be checked against a set
of system properties as the final selection standard. This pipeline offers a platform to utilize pre-
viously reported findings about a certain system, to validate existing knowledge, and to test new
hypotheses. To demonstrate the feasibility of this proposed framework, we have looked into a case
study with regards to the pancreatic cancer microenvironment.

Figure 7.1: The framework of LEaRn

7.1 Outputs from Auto-reading

Auto-reading output and data structure
For the current version of our pipeline framework LEaRn, the biological systems that we are study-
ing are cellular signaling networks. Cell signaling is part of a complex system of communication
that governs basic activities of cells and coordinates cell actions. Signal transduction along a path-
way occurs when an extracellular molecule activates a specific receptor located on the cell surface
or sometimes inside the cell. This receptor then triggers a chain of events within the cell, creating
a response. Multiple pathways interact with one another to form a network.

Within published papers, descriptions of interactions forming a signaling network can be clas-
sified into three groups according to how complete the information about a certain interaction can
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be found in papers. The first group contains qualitative relations. One example can be “the signal-
ing enzymes encoded by PIK3CA and BRAF are, in part, regulated by direct binding to activated
forms of the Ras protein” in [189]. From this type of relations, we can only obtain information
indicating that one biological entity places either positive or negative impact on another entity.
Relations belonging to the second group, named as semi-quantitative relations, also provide rough
information about the amounts of involved entities, the extent of a certain impact, location where
a certain interaction takes place, and so on. For instance, we found “we treated CHO-KI cells
expressing EGFR T669A with HRG ligand to induce maximal ERBB3 phosphorylation” in [207].
The last group, quantitative relations, offers complete and precise information about all the details
of a certain interaction. This kind of relations are the ones that we are expecting from the auto-
reading. But, unfortunately, in reality, only a small part of auto-reading outputs can be grouped as
quantitative relations.

The automated reading engine REACH [208] that is adopted in our pipeline framework can ex-
tract events in the form of frames that contain an interaction with two biological entities. Consider-
ing that only a very small amount of extracted interactions have complete quantitative information,
in LEaRn, we choose to use a triple < P,Q,+/− > to represent individual interactions. Within a
triple, P and Q are biological entities, such as genes, proteins, and cell functions. “+” means that
P places a positive impact on Q, which can be activating, phosphorylating, and so on. While, “-”
indicates that the impact from P to Q is negative, including inhibition, dephosphorylation, etc. We
use this data structure to capture the discrete structure of signaling networks.

Modeling formalism for baseline and extended models
To be consistent with of the modeling format used to represent extracted relations, in LEaRn,
Boolean Networks (BNs) is used to describe both the baseline model and extended models. As
discussed in Chapter 2.2, when using BNs to capture the dynamics of signaling networks, each
node in a BN represents a biological entity in a corresponding signaling network, and can have
binary values. The state evolution of a node from discrete time point t to t + 1 is described by a
Boolean updating function involving this certain node and its parent nodes. To recall how BNs can
be used to model signaling networks, we provide the following simple example. In this example
pathway see Figure 7.2a, v1 is activated by v2, v2 is activated by both v1 and v3, and v3 is inhibited
by v1. By describing it as a boolean network, v1, v2, and v3 are treated as boolean variables whose
next time values can be computed by using boolean functions listed in Figure 7.2d.

7.2 Preselection on Causal Relations and Model Generation

Classification of causal relations
Given a set of well formatted causal relations, to carry out the model assembly, one can start with or
without a baseline model. When there is no baseline model, extracted relations are usually needed
to be scored via counting the occurrence of a certain relation learned from multiple papers, total
citation of papers reporting this relation, and so on. After filtering out incomplete or duplicated
relations, and handling conflicting ones, a set of relations can be chosen, according to their scores,
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Figure 7.2: Boolean network model of a simple signaling network

their relationships with biological entities of interest, and their connectivity, to construct the final
model(s). In the current version of LEaRn, we consider the situation where there is a validated
baseline model.

Then, given a baseline model, extracted relations can be first classified into three types accord-
ing to their relationship to a given model as following.

• Corroborations: an interaction extracted from papers confirms one interaction existing in the
baseline model.

• Extensions: a relation learned from literature adds new information into the baseline model.
According to the type of newly added information, relations in the “Extension” category can
be further classified into the following three groups.

– When the new information is a new connection between two biological entities within
the baseline model, it means that both elements within this certain relation are already
in the baseline model. Adding this kind of extension usually causes a direct influence
on the behavior of the resulting model, as structural changes of a signaling network
may lead to a significant difference in the regulatory behavior.

– When the new information is a relation between a biological entity in the baseline
model and a new entity, there are two cases. In cases where the regulated element is
not in the baseline model, the regulated element will just hang from a pathway without
having direct influence on the model. While, in cases where the regulator is outside the
baseline model, the regulator can act as a new model input, allowing for the additional
network control.
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– When the new information is a relation between two biological entities not mentioned
in the baseline model, adding such an interaction alone into the baseline model will
not affect the behavior of the model. However, when we are considering multiple ex-
tensions connecting this interaction with elements in the baseline model concurrently,
additional regulatory pathways will be constructed to place impacts on the model be-
havior.

• Contradictions: an interaction from auto-reading suggests a conflicting mechanism men-
tioned in the baseline model. For example, in the baseline model, entity A can activate B.
While, an extracted relation says the opposite, i.e. A inhibits B in this system.

In this work, we only consider relations belonging to the “Extension” group, that is, new interac-
tions that can be added to the model. Using the information of corroborations to add weights /
scores to relations, and handling contradictions are parts of our future work.

Heuristics for model generation
Although we only consider extracted relations belonging to the “Extension” group, there are still
a vast amount of interactions. Given n newly learned causal relations, there will be 2n possible
extended models if we enumerate all configurations of whether or not to add a new relation. This
exponentially growing number is impossible to handle, therefore, we need heuristic methods to
search for suitable configurations of model extensions. Note that, there are several ways to design
selection heuristic, such as using scoring functions, considering the connectivity of the extended
models, and so on. In here, we introduce four heuristics by considering whether and how selected
relation will influence the satisfiability of the resulting model against a given set of important
system properties.

Since the given set of system properties is key to our selection heuristics, we define all the
biological entities mentioned in this given set of properties as “elements of interest”. Note that, in
general, the set of “elements of interest” can also be defined by user, depending on the questions
asked or hypotheses tested. Then, a concept “layer” is introduced for individual biological entities
mentioned either in the baseline model or in extracted interactions. The value of “layer” for each
entity is the length of the shortest path connecting this certain entity with any element in the set
of “elements of interest”, and can be computed iteratively. That is, elements within “elements of
interest” are in layer 0. Layer 1 contains direct regulators of elements in layer 0, which are not
listed in layer 0. Similarly, layer i + 1 includes direct regulators of elements in layer i, which
are not listed in layer {0, 1, · · · , i}. With these two concepts, we propose four heuristics to select
extension configurations.

• Cumulative parent-set with direct extensions (CD(n)): using this heuristic, given a layer
n, we select all extracted interactions that contains any element from layer 0 up to layer n,
and add the selected relations into the baseline model. For each different n, one extended
model can be generated until the set of selected relations cannot be extended anymore.

• Non-cumulative parent-set with direct extensions (ND(n)): given a layer n, unlike CD,
ND only chooses relations containing elements in layer n. One reason to use this heuristic
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is that, sometimes it is interesting to the influence only from the nth layer to the resulting
model, so as to identify individual extension layers that may cause significant changes to
the performance considering different properties. The other reason is that, biological enti-
ties mentioned in extracted interactions sometimes impact “elements of interest” indirectly
through long interacting paths.

• Cumulative parent-set with indirect extensions (CI(n)): for the previous two heuristics,
we find biological entities in each layer only by looking for direct regulators of elements in
the previous layer. While, when using CI, we look for indirect regulators as well. In detail,
given a layer n, we select all extracted relations that place either direct or indirect impact
on elements in layer n. This heuristic usually includes pathways outside the baseline model
more often then the other methods.

• Non-cumulative parent-set with indirect extensions (NI(n,m)): this method is the com-
bination of CI and ND. The goal of this heuristic is to provide information about the in-
fluence caused by relations belonging to m layers containing indirect edges, starting from
the nth layer. In other words, we first find biological entities in the nth layer using the ND
heuristic, and perform the operation of CI for m times to find all interactions we are inter-
ested in. The reason why we propose this heuristic is that, it is important to consider the
impacts from interactions happening in the nearby cells on the signaling network consisting
of biological entities in “elements of interest”.

7.3 Selection using Statistical Model Checking

After obtaining a set of extended models using the above heuristics, the final model selection is car-
ried out by applying statistical model checking to each generated model against a set of important
system properties for a certain biological system. Given the BN representations of these extended
models, although simulating these logical models is known to be able to recapitulate certain exper-
imental observations [164], verifying simulation results against the given properties manually is
tedious and error-prone, especially when the number of models or properties are large. A feasible
way to tackle this problem is to use formal methods. In our pipeline framework, statistical model
checking (StatMC) is adopted. As discussed in Chapter 6.3, StatMC, as a fully automated formal
analysis technique, can be used to estimate the probability with which a model satisfies a given
bounded LTL property. As illustrated in Figure 6.2 in Chapter 6.3, StatMC starts with carrying out
the stochastic simulation on the given model. In this work, a publicly available stochastic simulator
[1, 165] is used on our extended BN models. In the simulator, there are several distinct simulation
schemes that can be used to consider different timing and element update approaches occurring in
biological systems. The simulation scheme that we use for this work is called “Random Sequential
Step-Based Uniform”. That is, in each discrete simulation step, one element in the given model
is chosen randomly. Then, its Boolean updating function is applied to compute the new value of
this chosen element. Before starting the stochastic simulation, the upper bound of sequential steps
is defined. In the case using the uniform updating approach, all model elements have the same
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probability of being chosen. Values of variable in each step, starting from the initial state till the
given upper bound, are recorded for the later trace checking against a given bounded LTL property.

Since the underlying semantic model of the stochastic simulation method that we use for the
extended BN models is essentially a discrete-time Markov chain, the verification problem is to
compute the probability with which a given temporal logic formula is satisfied by the system. For
large and complex models, numerical methods aiming at computing the exact probability suffer
from the state explosion problem. While, StatMC, instead of searching the entire state space, uses
statistical testing methods to provide an efficient way to estimate the probability with a preset small
error bound.

7.4 Result and Discussion

The framework is implemented in Python. The simulator described in Chapter 7.3 is implemented
in Java [1]. We use PRISM [150] as our statistical model checker, which is a C++ tool for formal
modeling and analysis of stochastic systems. Evaluating a model against one property, including
running the simulations, takes about 10 minutes on a regular laptop. The other components in the
framework take less than 1 minute.

Baseline model
The system that we studied is pancreatic cancer microenvironment, especially the interplay be-
tween pancreatic cancer cells (PCCs) and pancreatic stellate cells (PSCs). We use the BN repre-
sentation of our microenvironment model (see Figure 6.1 in Chapter 6.1) as the baseline model.
This model contains three parts - intracellular signaling networks of PCC and PSC, and the their in-
terplay supported by extracellular molecules in the tumor microenvironment. In this model, several
cellular functions, such as autophagy, apoptosis, proliferation, migration, are also implemented as
variables inside the model, which allows for better understanding of the system’s behavior. In de-
tail, there are 30 variables encoding intracellular molecules in PCC and 3 variables encoding the
cell functions of PCC. For PSC, there are 24 variables for intracellular molecules and 4 variables
for its cell functions. In extracellular microenvironment, there are 8 variables encoding extracellu-
lar growth factors, and 1 environmental function variable. In total, there are 70 variables and 114
interactions in the baseline model. The interaction rules of this model are summarized in Table 1
in the Supplementary material (http://ppt.cc/XlWF7).

System properties as the selection standard
To demonstrate the feasibility of our framework, we apply the proposed pipeline framework to
the study of the interplay between PCCs and PSCs in the pancreatic cancer microenvironment.
We identify a set of system properties according to the experimental observations reported with
regards to this biological system, and extract the set of “elements of interest” from the given set
of properties. As listed in Table 7.1, we are interested in observing the changes with respect to
important growth factors in the tumor microenvironment, oncoproteins in both PCCs and PSCs,
tumor suppressors in PCCs, and cell functions of PCCs and PSCs.
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Auto-reading outputs and extended models
We used the REACH automated reading engine [2] output produced from 13,000 papers in publicly
available domain. This output consists of 500,000 event files, with 170,000 possible extensions of
our model (other events are corroborations or contradictions). Although there are 170,000 model
extensions produced by reading, many of them are repetitions, and some of the reading outputs
were missing one of the interaction participants. Therefore, in this work we used overall 1232
different interactions from reading output, which could lead to 21232 possible models. Studying
all possible model versions is impractical, and therefore, we used the four extension methods
described in Chapter 7.2, to generate 46 different models. Using the CD method, we generated 2
models by having 1 or 2 layers. For ND, the number of layers we considered varied between 1
and 10, which resulted in 10 models. With CI, we used either 0, 1, 2 or 3 layers, which led to 4
different models. Finally, for NI, we have n ranges from 1 layer to 10 layer, and m ranges from 1
to 3, resulting in 30 models. We also test the model with all extensions being added to the baseline
model.

Fig. 7.3(a) summarizes results of our extension methods on 1232 interactions with respect to
new node connections to the model: (i) number of new nodes regulating baseline model elements,
not regulated by baseline model elements (dark blue); (ii) number of new nodes regulating baseline
model elements, not regulated by any element, baseline or new (red); (iii) number of new nodes
regulated by baseline model elements, not regulating any elements in the baseline model (yellow);
(iv) number of new nodes regulated by baseline model elements, not regulating any element, base-
line or new (purple); (v) number of new nodes inserted into existing pathway - new regulators of
baseline model elements that are also regulated by baseline model elements (green); (vi) number
of new nodes as intermediate elements of new pathways when multiple extensions are connected
(light blue); (vii) total number of all elements used in the extension method (dark red). In Fig.
7.3(a), four different sections can be observed, and each section corresponds to one of the exten-
sion methods. Each method has its unique feature. For example, the ND method only includes
relationships relevant to one layer, and this makes the number of new elements added to the model
significantly smaller than other methods. Also, the light blue nodes tell us the number of newly
added elements that are in a newly formed pathway. Since CD and ND do not include indirect
parent interactions, we can see that the number of elements in new pathway is 0. While in CI
and NI, we can tell that indirect interactions are included. The numbers within one method show
higher similarity, but we can still observe some patterns. For example, the cumulative parent-set
methods, CD and CI show an increase in the number of new nodes when more layers are consid-
ered. Furthermore, since NI has cumulative parents when they finish the noncumulative part, they
also experience an increase when the step of noncumulative part is fixed. The numbers saturate at
around 600, which is due to the limited size of baseline model and extensions we have. This is also
the reason we choose to perform cumulative steps for at most 3 steps.

In general, choosing the method to extend the model depends on the scenario a user is interested
in. For example, if the focus is on the regulation of a specific element, one can track down each
layer of parents using ND, and see the change of the model after modifying that specific layer. On
the other hand, if the goal is to include as many new stimuli as possible with a fewer number of
layers, cumulative methods such as CI or CD will fit better. We selected 20 elements as part of the
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base layer, since these elements appear in properties that we are testing, leading to relatively large
base layer given the size of the baseline model. Therefore, by incorporating elements related to
more than one layer, we capture almost all extensions related to the baseline model. Thus, the ’All
In’ method, which adds all extension interactions to the baseline model at once, does not change
the counts shown in Fig. 7.3(a), when compared to many cases of CD, CI and NI methods.

Figure 7.3: (a) Counts for newly added elements with certain structure (Reg. - regulator, Tgt. -
regulated element, Orig. - baseline model elements, New - newly added element). All models
studied are listed on x-axis, and y-axis is the count of new elements having certain structure. (b)
Results of statistical model checking of 20 properties in 68 different models. Each entity in x-axis
is a model, and each row is the estimated probability for the corresponding property. (c) The Max
and min difference from the baseline model of each property [153]

Impact of model extension on system properties
Fig. 7.3(b) shows the results of testing 48 models (baseline + All-In + 46 extended models) with
different extension method (AND/OR) and different initialization of the newly added elements
(True/False) against the 20 properties in Table 7.1. The values displayed are the estimated prob-
abilities of each property. Just like the basic numbers of each model, different extension methods
lead to different results of the properties. For example, we can see that the results from ND are dif-
ferent from other methods. The reason is that each ND method only deals with one layer at a time,
and it will not insert new edges between elements mentioned in the properties. This leads to a more
conservative extension. Also, for example, there are differences between OR-based ND models in
properties 9 to 13 or property 4 in AND-based ND models, which are related to Inhibition of tu-
mor suppressors and autophagy in PCCs. By comparing the extension interactions added to those
models, we found that the EGF (Epidermal Growth Factor) pathway plays the most important role.
The p21 (regulator of cell cycle progression) pathway also influences the difference.

If we compare the models with different initialization of newly added nodes, we can see the
results are actually quite similar. This means that the model is mostly influenced by the input
elements in the baseline model, and to some degree, it tells the robustness of the original model.
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On the other hand, if we compare extending the models with OR operations and those with AND
operations, there is a huge difference. But the interesting part is that the behavior of models with
the two types of extensions is opposite. They behave similarly only in properties 9, 13, 16, 19
and 20, while differently in all other 15 properties. This shows a drastic difference between AND-
based and OR-based extension, and can be further designed according to the property we want to
fit. Fig. 7.3(c) shows the maximum / minimum difference compared to baseline that each model
can achieve for each property. If a property probability is low in both max and min difference, it
is relatively conservative to the extension interaction. An example is property 16, which depicts
the relationship between p53 and Apoptosis. On the other hand, if a property probability is high in
both max and min difference, it is a property susceptible to change value with extensions.
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#	 Property	 Description	
Growth	factors	in	the	tumor	microenvironment	
1	 F[1000]	(G[10000]	VEGF)	 Within	1000	time	units,	the	concentration	of	

VEGF	(/	bFGF	/	PDGFBB	/	TGFβ1)	in	the	tumor	
microenvironment	will	eventually	reach	a	high	
amount,	and	stay	in	this	high	level	for	at	least	
another	10000	time	units.	

2	 F[1000]	(G[10000]	bFGF)	
3	 F[1000]	(G[10000]	PDGFBB)	
4	 F[1000]	(G[10000]	TGFβ1)	

Oncoproteins	in	pancreatic	cancer	and	stellate	cells	
5	 F[1400]	(G[10000]	PCCHER2)	 Within	1400	time	units,	the	concentration	of	

HER2	in	PCCs	(/	RAS	in	PCCs	/	VEGFR	in	PSCs	/	
ERK	in	PCCs)	will	eventually	reach	a	high	
amount,	and	stay	in	this	high	level	for	at	least	
another	10000	time	units.	

6	 F[1400]	(G[10000]	PCCRAS)	
7	 F[1400]	(G[10000]	PSCVEGFR)	
8	 F[1400]	(G[10000]	PCCERK)	

Tumor	suppressors	in	pancreatic	cancer	cells	
9	 F[1000]	(PCCP21	∧	F[2000]	(G[10000]	(!	PCCP21)))	 The	concentration	of	P21	(/	PTEN	/	RB	/	P53)	

in	PCCs	will	reach	a	high	level	and	act	as	a	
tumor	suppressor	within	the	first	1000	time	
units.	Then,	after	at	most	2000	time	units,	its	
concentration	will	eventually	drop	to	a	low	
level,	and	stay	in	this	low	level	for	at	least	
another	10000	time	units.	

10	 F[1000]	(PCCPTEN	∧	F[2000]	(G[10000]	(!	PCCPTEN)))	
11	 F[1000]	(PCCRB1	∧	F[2000]	(G[10000]	(!	PCCRB)))	
12	 F[1000]	(PCCP53	∧	F[2000]	(G[10000]	(!	PCCP53)))	

Cell	functions	of	pancreatic	cancer	cells	
13	 F[1000]	((!	PCCAutophagy)	∧		

F[2000](G[10000]	PCCAutophagy))	
In	the	development	of	pancreatic	cancer,	
apoptosis	firstly	overwhelms	autophagy,	and	
then	autophagy	takes	the	leading	place	after	a	
certain	time	point.	

14	 F[1000]	(PCCApoptosis	∧		
F[2000]	(G[10000]	(!	PCCApoptosis)))	

15	 F[1000]	(G[10000]	PCCProliferation)	 Within	1000	time	units,	PCCs’	proliferation	will	
eventually	be	activated,	and	becomes	a	steady	
state	for	at	least	another	10000	time	units.	

16	 !(!	PCCP53	U[12000]	PCCApoptosis)	 It	is	not	the	case	that,	within	12000	steps,	P53	
in	PCCs	has	to	have	a	low	concentration	level	
until	PCCs’	Apoptosis	being	triggered.	

Cell	functions	of	pancreatic	stellate	cells	
17	 F[1000]	(G[10000]	PSCActivation)	 Within	1000	time	units,	PSCs’	activation	(/	

migration)	will	eventually	be	activated,	and	
becomes	a	steady	state	for	at	least	another	
10000	time	units.	

18	 F[1000]	(G[10000]	PSCMigration)	

19	 F[1000]	(PSCApoptosis	∧		
F[1000]	(G[10000]	(!	PSCApoptosis)))	

Within	1000	time	units,	PSCs’	apoptosis	will	be	
triggered.	Then,	after	at	most	1000	time	units,	
the	initially	functional	apoptosis	in	PSCs	will	be	
inhibited	and	stay	in	inactive	status	for	at	least	
10000	time	units.	

20	 F[12000]	PSCProliferation	 Within	12000	steps,	PSCs’	proliferation	will	
eventually	be	triggered.	

!:	logical	not,	∧:	logical	and,	F:	eventually,	G:	always,	U:	until	

Table 7.1: System properties used for the model selection using statistical model checking
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Chapter 8

Conclusion and Future Work

In computer science, formal specification and analysis methods are used to design and prove prop-
erties of computer systems. If a desired property of a computer system turns out to fail, then we
can in principle adapt and refine the system at hand. Orthogonal to this usage in computer science,
for biology as an empirical science, where biological systems are a fact of life, formal methods
serve to better understand the inner workings and emergent properties of such systems. This thesis
developed new modeling language, formal analysis methods, and models for biological systems
at different levels - the molecular, cellular, tissue, organ, and whole organism levels. It show how
the study of biological and biomedical systems considering nonlinearity, nondeterminism, and
stochasticity can benefit from formal modeling formalisms with different abstraction levels and
model checking techniques.

The works presented in this thesis can be classified into three groups according to three research
motivations. The first group is motivated by the study of pancreatic cancer, including the single
cell analysis of pancreatic cancer cells, the study of the interplay between pancreatic cancer and
stellate cells, and the development of a framework where formal methods and machine learning
algorithms are used to automate the model construction and refinement for pancreatic cancer.

In Chapter 2, we have presented and formally checked an in silico model for a single cell of
pancreatic cancer. The model incorporates important signaling pathways which are implicated with
high frequency in pancreatic cancer. We have verified temporal logic properties encoding behavior
related to cell fate, cell cycle, and oscillation of expression level in key proteins. As shown above,
the model agrees well qualitatively with experiments. We have also suggested several properties
which could be tested by future experiments.

Considering that, for these years, due to the poor treatment results for the pancreatic cancer, the
research focus has been shifted from solely looking into pancreatic cancer cells towards investigat-
ing the pancreatic cancer microenvironment. So, it is of great importance and interest to understand
the microenvironment. In Chapter 6, we have presented a multicellular and multiscale model of
the PC microenvironment. The model is formally described using the extended BioNetGen lan-
guage, which can capture the dynamics of multiscale biological systems using a combination of
continuous and discrete rules. We have carried out stochastic simulation and StatMC to analyze
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system behaviors under distinct conditions. Our verification results have confirmed the experimen-
tal findings with regard to the mutual promotion between PCCs and PSCs. We have also gained
insights on how existing treatments latching onto different targets can lead to distinct outcomes.
These results have demonstrated that our model might be used as a prognostic platform to identify
new drug targets. We have then identified four potentially (poly)pharmacological strategies for
depleting PSCs and inhibiting the PC development. We plan to test our predictions empirically.
Another interesting direction is to extend the model by considering spatial information [82] and
TAMs in the PC microenvironment.

From the above two works, we can tell that constructing and analyzing biological models can
help to explain systems that we are studying, discover new questions, and even challenge existing
findings. However, the creation of models often relies on intense human effort. This results in a
slow development of models, let alone extending them with thousands of other possible compo-
nent interactions that reported in newly published literature. Considering this situation, there is
an urgent need for the automation of information extraction from literature, smart integration into
models, and efficient and correct analysis of models, so as to allow researchers to re-use previously
published work, in a comprehensive and timely manner. In Chapter 7, we have proposed a frame-
work that utilizes published work to collect extensions for existing models, and then analyzes these
extensions using stochastic simulation and statistical model checking. With biological properties
being formulated as temporal logic, model checker can use the trace generated by the simulator to
estimate the probability that a certain property holds. This gives us an efficient approach (speed-up
from decades to hours) to re-use previously published results and observations for the purpose of
conducting hundreds of in silico experiments with different setups (models). Our methods and the
framework that we have developed comprise a promising new approach to comprehensively utilize
published work. Moreover, this framework can also be used to search for pathways or interactions
that are vital to certain functions, and to suggest targets for drug development. For example, using
the ND models and statistical model checker, we can study closely how each layer of elements
influences the elements we are interested in. Then, we can pin-point the models that satisfy several
properties that we desire, and we should be able to identify a few candidates that play important
roles in the regulation. Or, by using NI method, we can further observe whether there is actually an
upstream network that controls the behavior of the elements. This gives us a deeper understanding
of the network and helps us in further model development.

The second group is looking into the bounded reachability problems for hybrid systems and
stochastic hybrid systems that are widely used to model biological systems. In detail, in Chapter
4, we have studied a novel method of killing bacteria using bacteriophage instead of antibiotics.
A bacteriophage can be engineered to include code for proteins, which when inside bacteria can
get activated and result in bacteria killing. Specifically, in this work we studied photosensitizing
proteins, those that produce reactive oxygen species (ROS) when exposed to light. Excess amounts
of ROS result in cell death. We created a hybrid model expressing both continuous and discrete
dynamics. We defined this model within each of the stages that bacteria can go through, and used
our tool (implemented the δ-decisions technique) for hybrid system reachability analysis to define
parameters of the model that are otherwise hard or not possible to be found in experiments. We
were especially interested in the timing effects, when the cells should be exposed to light, how long
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the light exposure should be, and how long it takes photosensitized proteins to kill bacteria cells
after exposure to light. Our analysis shows that the timing will be critical if this treatment, using
bacteriophage and photosensitized proteins, is used for killing bacteria: the delay in exposure to
light can significantly delay bacteria killing and could potentially lead to complications such as
sepsis; and the duration of exposure to light is critical - turning light off too early may also not
result in killing. Interestingly, we found that a broader range of SOX could kill bacteria, although
the time to reach this effect may again be too long for practical purposes. We noticed that very
low levels of SOX are efficient in bacteria killing, while medium levels result in the longest time
to killing, and we are further investigating these results, as they point to potential improvements in
our model. The results that we obtained will offer hints for the design of wet lab experiments.

Randomness happens naturally in real-world systems. So, To be able to analyze biological sys-
tems with uncertainties, in Chapter 5, we have developed and implemented the SReach algorithm,
which solves probabilistic bounded reachability problems for two classes of models of stochastic
hybrid systems. The first one is (nonlinear) hybrid automata with parametric uncertainty. The
second one is probabilistic hybrid automata with additional randomness for both transition proba-
bilities and variable resets. Standard approaches to reachability problems for linear hybrid systems
require numerical solutions for large optimization problems, and become infeasible for systems
involving both nonlinear dynamics over the reals and stochasticity. SReach encodes stochastic
information by using a set of introduced random variables, and combines δ-complete decision
procedures and statistical tests to solve δ-reachability problems in a sound manner. Compared to
standard simulation-based methods, it supports non-deterministic branching, increases the cover-
age of simulation, and avoids the zero-crossing problem. To demonstrate SReach’s applicability,
it has been used to analyze three representative examples - a prostate cancer treatment model, a
cardiac model, and a model of the tap withdrawal circuit in C. elegans - and other benchmarks,
which are currently out of the reach of other formal tools.

In the third thread, as discussed in Chapter 3, we have developed and implemented an effi-
cient LTL bounded model checking algorithm for Qualitative Networks, which extend Boolean
networks by using discrete variables and algebraic functions as updating functions. Our technique
utilizes the unique structure of Qualitative Networks to construct “decreasing reachability sets”.
These sets form part of a compact representation of paths in the QN and lead to significant accel-
eration in an implementation of bounded model checking. We find the experimental results very
encouraging especially given the iterative development methodology biologists have been using
when employing our tool BMA. As mentioned, our users “try out” several options and refine them
according to results of simulation and verification. In this iterative process it is most important to
be able to give fast answers to queries of the user. Considering the speed-ups afforded by this new
technique, we have shown that model checking can be incorporated into the workflow of using our
tools.

The work we have presented in this thesis suggests several ideas for future works.

Stochastic Hybrid Systems with Stochastic Differential Equations (SDEs). In Chapter 5, we
have proposed and implemented a probabilistic reachability analysis method for two classes of
stochastic hybrid systems, where randomness is introduced by system parameters and discrete
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transitions. However, in real-world biological systems, many processes are stochastic intrinsically,
such as species’ population changes in ecosystems. Their dynamics are usually modeled by SDEs.
Thus, one future topic is to design a model checking technique for general stochastic hybrid sys-
tems (GSHSs) where, besides probabilistic transitions, stochastic differential equations are used
to capture continuous dynamics. One approach may be to introduce a new quantifier symbol for
random variables and SDE constraints for stochastic processes, where a new SDE solver, which
make use of numerical solutions to SDEs and simulation-based methods estimating distributions
of hitting times for stochastic processes, can be integrated into existing nonlinear SMT solvers.

Considering Multiple Types of Existing Knowledge for the Automated Model Construction
Framework. Following our work in Chapter 7, several works can done to make the framework
more general and robust, including designing the way to consider the contradictions, implementing
the detection of causal relations causing the failure of satisfying a certain system property, and
adding more information into the extended model, for example, the probability for a relation to
exist. Besides these, one future topic is to integrate more types of existing knowledge, such as
time series datasets, small models published by others, and images describing related models. To
achieve this, appropriate machine learning algorithms will be needed to learn model (fragments)
from distinct types of biological knowledge. Figure 8.1 offers a schematic view of a more general
framework where formal methods and machine learning can take joint efforts to automate the
model design for biological models.

Formal Analysis Framework for Models using Various Modeling Languages. In reality, exe-
cutable models are constructed with different levels of details. Which abstraction level to choose is
mainly decided considering how much we know about a certain system. For example, since a large
amount of work has been carried out to study the Ras signaling pathway in pancreatic cancer cells
due to its importance in the cancer development, rule-based models are usually used to capture the
reactions among involved proteins in detail. While, for the signaling interactions between pancre-
atic stellate cells and tumor-associated macrophages, there has not yet been as much work so far
as people recently realized their interactions may be critical during the cancer progress and one
reason for the poor prognosis of pancreatic cancer. Thus, logical models are used to only describe
the structure of the interacting network. Currently, different analysis frameworks are adopted for
distinct types of models that are used to describe different parts of a biological system. While, to
throughly study a biological system, it is important to be able to analyze the system as a whole. So,
we really need a formal analysis framework which allows to put models using various modeling
languages together and offer a general way to analyze them.
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Figure 8.1: Schematic view of how formal methods and machine learning can take joint efforts to
automate the model design for biological models.
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cation with BLAST. In Model Checking Software, pages 235–239. Springer, 2003. 1.2

[119] Melanie M Hippert, Patrick S O’Toole, and Andrew Thorburn. Autophagy in cancer: good,
bad, or both? Cancer Research, 66(19):9349–9351, 2006. 6.1, 6.4

[120] Alan L Hodgkin and Andrew F Huxley. A quantitative description of membrane current and
its application to conduction and excitation in nerve. The Journal of Physiology, 117(4):
500, 1952. 5.4.3

[121] Wassily Hoeffding. Probability inequalities for sums of bounded random variables. J Amer-
ican Statistical Association, 58(301):13–30, 1963. 5.2

[122] Alexander Hoffmann, Andre Levchenko, Martin L Scott, and David Baltimore. The IκB-
NF-κB signaling module: temporal control and selective gene activation. Science, 298
(5596):1241–1245, 2002. 2.1, 2.4

[123] Gerard J Holzmann. The model checker SPIN. IEEE Transactions on Software Engineering,
23(5):279–295, 1997. 1.2

[124] Jianghai Hu, John Lygeros, and Shankar Sastry. Towards a theory of stochastic hybrid
systems. In Hybrid Systems: Computation and Control, pages 160–173. Springer, 2000. 1.1

[125] Jianghai Hu, Wei-Chung Wu, and Shankar Sastry. Modeling subtilin production in bacillus
subtilis using stochastic hybrid systems. In International Workshop on Hybrid Systems:
Computation and Control, pages 417–431. Springer, 2004. 1.1

126



[126] Sui Huang and Donald E Ingber. Shape-dependent control of cell growth, differentiation,
and apoptosis: switching between attractors in cell regulatory networks. Experimental Cell
Research, 261(1):91–103, 2000. 1.1

[127] H Hurwitz, N Uppal, SA Wagner, JC Bendell, JT Beck, S Wade, JJ Nemunaitis, PJ Stella,
JM Pipas, ZA Wainberg, et al. A randomized double-blind phase 2 study of ruxolitinib
(RUX) or placebo (PBO) with capecitabine (CAPE) as second-line therapy in patients (pts)
with metastatic pancreatic cancer (mPC). Journal of Clinical Oncology, 32:55, 2014. 6.4

[128] Bashar Ibrahim, Richard Henze, Gerd Gruenert, Matthew Egbert, Jan Huwald, and Peter
Dittrich. Spatial rule-based modeling: a method and its application to the human mitotic
kinetochore. Cells, 2(3):506–544, 2013. 1.1

[129] Md. Ariful Islam, Qinsi Wang, Edmund Clarke, Scott Smolka, Ramin Hasani, Radu Grosu,
and Ondrej Balun. Probabilistic reachability analysis of the tap withdrawal circuit in
Caenorhabditis elegans. In 18th IEEE International High-Level Design Validation and Test
Workshop. IEEE, 2016. (document)

[130] Robert Jaster. Molecular regulation of pancreatic stellate cell function. Molecular Cancer,
3(1):26, 2004. 6.1

[131] Amarsanaa Jazag, Hideaki Ijichi, Fumihiko Kanai, Takaaki Imamura, Bayasi Guleng, Miki
Ohta, Jun Imamura, Yasuo Tanaka, Keisuke Tateishi, Tsuneo Ikenoue, et al. Smad4 si-
lencing in pancreatic cancer cell lines using stable RNA interference and gene expression
profiles induced by transforming growth factor-β. Oncogene, 24(4):662–671, 2005. 2.1

[132] Sumit K Jha, Edmund M Clarke, Christopher J Langmead, Axel Legay, André Platzer, and
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[175] André Platzer. Stochastic differential dynamic logic for stochastic hybrid programs. In
Automated Deduction–CADE-23, pages 446–460. Springer, 2011. 1.1, 1.2

130



[176] Sergei Pletnev, Nadya G Gurskaya, Nadya V Pletneva, Konstantin A Lukyanov, Dmitri M
Chudakov, Vladimir I Martynov, et al. Structural basis for phototoxicity of the geneti-
cally encoded photosensitizer KillerRed. Journal of Biological Chemistry, 284(46):32028–
32039, 2009. 4, 4.1

[177] Steve Plimpton. Fast parallel algorithms for short-range molecular dynamics. Journal of
Computational Physics, 117(1):1–19, 1995. 1.1

[178] Amir Pnueli. The temporal logic of programs. In 18th Annual Symposium on Foundations
of Computer Science, pages 46–57. IEEE, 1977. 1.2, 3, 6.3

[179] Amir Pnueli and Aleksandr Zaks. On the merits of temporal testers. In 25 Years of Model
Checking, pages 172–195. Springer, 2008. 3, 3.2

[180] Jean-Pierre Queille and Joseph Sifakis. Specification and verification of concurrent systems
in CESAR. In International Symposium on Programming, pages 337–351. Springer, 1982.
1.2

[181] Wilfrid Rall. Cable theory for dendritic neurons. In Methods in Neuronal Modeling, pages
9–92. MIT press, 1989. 5.4.3

[182] Derek Riley, Xenofon Koutsoukos, and Kasandra Riley. Modeling and simulation of bio-
chemical processes using stochastic hybrid systems: The sugar cataract development pro-
cess. In Hybrid Systems: Computation and Control, pages 429–442. Springer, 2008. 1.2

[183] Joe Rodriguez and Yuri Lazebnik. Caspase-9 and APAF-1 form an active holoenzyme.
Genes & Development, 13(24):3179–3184, 1999. 2.1

[184] Jacqueline K Rose and Catharine H Rankin. Analyses of habituation in Caenorhabditis
elegans. Learning & Memory, 8(2):63–69, 2001. 5.4.3

[185] Ester Rozenblum, Mieke Schutte, Michael Goggins, Stephan A Hahn, Shawn Panzer, Mar-
ianna Zahurak, Steven N Goodman, Taylor A Sohn, Ralph H Hruban, Charles J Yeo, et al.
Tumor-suppressive pathways in pancreatic carcinoma. Cancer Research, 57(9):1731–1734,
1997. 2.4

[186] Karen Sachs, Omar Perez, Dana Pe’er, Douglas A Lauffenburger, and Garry P Nolan.
Causal protein-signaling networks derived from multiparameter single-cell data. Science,
308(5721):523–529, 2005. 1.1

[187] Nicole Samm, Kristin Werner, Felix Rückert, Hans Detlev Saeger, Robert Grützmann, and
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