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Abstract
We explore the implementation details and consequences of running a distributed

file system on cloudlets. Using a centralized Samba server VM that exports a Coda
mount point, we allow client VMs within a cloudlet to have a common shared file
system. We use the tenancy system in the cloudlet for access control, meaning that
only VMs owned by the same user or organization share the file system mount.

Along with the discussion of the implementation of the system, we investigate
the effects of our architecture on the cloudlet ecosystem. Particularly, we focus
on its integration with the cloudlet’s VM migration feature. Running a centralized
distributed file system per tenancy allows the file system servers to communicate
with each other across cloudlets for prefetching frequently used files in parallel with
VM migration. Furthermore, we argue that our architecture integrates well with
existing software and we show we can run Hadoop, a widely used distributed data
analysis framework, on top of it.
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Chapter 1

Introduction

1.1 Cloudlets

The cloudlet architecture attempts to bring the cloud closer by providing a cloudlet server closer
to the client that executes minor computations and caches data from the faraway cloud. Within
the current architecture of the cloud computing landscape, there exists no middle ground between
the compute and data intensive cloud and the end user device. Hence, the connection between
the user device and the cloud remains to be limited with low bandwidth and high latency. The
cloudlet architecture, pioneered by professor Satyanarayanan, aims to alleviate this problem by
suggesting a cache-like structure called the cloudlet.

The cloudlet contains more compute power and has better connectivity than the end device.
It resides much closer to the end device than the cloud, thus maintains logical proximity (low
latency, high bandwidth). The cloudlet aims to keep only soft state, leading to less complexity in
the system. Designers can use the cloudlet to cache the working set of the end user to improve
the overall experience of the cloud.

Figure 1.1 shows a diagram from the original cloudlet paper[8]. Several mobile devices
connect to the cloudlet, which in turn is connected to the distant cloud. These end devices
benefit from the strong connection between the cloudlet and themselves while still being able to
communicate with the remote cloud.

Cloudlets become crucial as more and more latency-sensitive mobile applications surface in
the already mobile-dependent computing scene. The mobile ecosystem already depends heavily
on the cloud to provide servers, and adding another layer to the architecture to improve latency
and computing power gives application writers more options. For example, new cognitive assis-
tance applications that help the visually impaired capture information from a built-in camera in
the user’s glasses and offers verbal help can take advantage of the low latency and the computing
power cloudlets provide.
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Figure 1.1: Example setup of the cloudlet architecture

1.2 Distributed File Systems

Distributed file systems provide a way for multiple clients to share files easily. These file systems
generally contain carefully constructed concurrency and consistency logic to provide simple and
familiar interfaces that resemble conventional file systems to its users. Furthermore, most mod-
ern distributed file systems contain performance optimizations such as caches that decrease the
amount of communication between the client and the remote server and batch propagation of
updates which fully utilize the bandwidth of the connection to the server.

For example, AFS caches the entire file from the server to the local client upon open, and
keeps consistency by using a callback system[5]. Coda uses the same mechanism, but also
supports disconnected operations where the user can still use the file system without a network
connection[6].

1.3 Motivation

The current cloud computing landscape frequently involves several VMs that work coherently
with each other on similar working sets. For example, the visual assistant mentioned in chapter
1.1. might have a VM that analyzes the user’s use patterns along with a VM that provides the
actual service. In this case, the two VMs must work together on a similar set of files (the user’s
data) and need to share data between each other naturally. In the current architecture, VMs in the
cloudlet are connected only by the internal network, and there exists no easy way to share files
between VMs both within a single cloudlet and across cloudlets. Hence, we wanted to ease the
sharing of files between VMs both within one cloudlet and across cloudlets.
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Running a distributed file system allows VMs across cloudlets to share files through the
distributed file system without directly contacting each other across WAN. We also wanted to
ease the sharing of files between virtual machines within a single cloudlet that belong to the
same organizational group, such as a group of developers working on the same program or a
team of students working on the same school project. By installing a distributed file system
within the cloudlet for these VMs, we look to increase cohesiveness of the VMs and to broaden
the scope of tasks the VMs in the cloudlet can execute. We also intend to enforce access control
mechanisms to aid these groups organize their development and to protect data from outsiders
who may operate on the same cloudlet.

1.4 Thesis

We explore the benefits of running a distributed file system within an organizational group in the
cloudlet. The virtual machines within the same organizational boundaries will all be connected
to a single distributed file system, and hence will be free to share files with each other.

By running a distributed file system in the cloudlet, we state that we can deliver cohesiveness,
increase the spectrum of tasks that VMs can handle together, and optimize the performance of file
system activities. We demonstrate this with an experiment that shows the benefits of prefetching
upon migration, and by running the widely-used Apache Hadoop on top of our architecture.

1.4.1 Scope of Thesis

The thesis covers the design and implementation of our architecture in the cloudlet and the exper-
iments we performed to validate the benefits of running a distributed file system in the cloudlet.
Additional focus is given to the prefetching feature when migrating VMs across cloudlets and
running Hadoop on our distributed file system. We also cover past related work to our research
and any future work that remains beyond our work.

1.4.2 Approach

We work on top of Openstack++, also known as elijah-openstack, an enhanced version of Open-
stack developed by Kiryong Ha that offers cloudlet support[1]. Furthermore, we use Coda, a
descendant of the Andrew File System, as our distributed file system implementation to integrate
into the cloudlet.

1.4.3 Validation

In order to validate our system, we perform experiments that test the implementation. We first
validate the functionality of our architecture upon migration by ensuring that client VMs can
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access the mount before and after the migration. Furthermore, we test the performance of our
prefetching feature by running an experiment to compare the re-compilation time of the Coda
source with and without prefetching. Lastly, we run Hadoop on our architecture to verify that
our architecture is compatible with existing well-known software such as Hadoop.

1.5 Document Roadmap

Chapter 2 offers commentary on the background of our thesis, introducing basic elements that
act as foundations of our implementation. Chapter 3 dives into our implementation covering ev-
erything starting from the design to the reasoning behind the resulting product. Chapter 4 covers
the experiments performed to verify the functionality of the implementation when VMs migrate
across cloudlets. Chapter 5 extensively covers the prefetching feature, from its implementation
details to experiment results. Chapter 6 deals with running Hadoop in our architecture, and
chapter 7 offers related and future work with the conclusion for the thesis.
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Chapter 2

Background

We will be building on top of the following components for the distributed file system in cloudlets.
The general architecture involves running a Coda client on a single VM and having that VM ex-
port the Coda mount via Samba to other VMs. We also limit this share to an administrative entity,
so that one user’s VM cannot access another user’s Coda mount.

2.1 Openstack

Openstack provides an open-source solution to deploying a public or private cluster. The frame-
work gives administrators fine-grained control of the cluster, including starting and suspend-
ing virtual machines, assigning floating IP addresses, configuring network connections between
the VMs, and managing the VM images. Ever since its beginning as a joint project between
Rackspace and NASA in 2010, Openstack emerged as a major cloud infrastructure software with
over 500 companies supporting its cause.

Openstack is organized into several microservices that provide a specific service. These
microservices interact with each other to deliver the full Openstack feature set. Some of the key
microservices include: Keystone, which handles authentication of all services, Nova, which runs
on the compute node to manage virtual machines within the node, Cinder, which provides block
storage, and Glance, which supervises the virtual machine images in Openstack.

Due to its widespread use in academia and industry, Openstack was chosen as the framework
in which to implement the cloudlet architecture.

2.1.1 Openstack Networking

Openstack supports two types of networking. Neutron, the most recent version of its networking
suite, and Nova-networking, its predecessor. Neutron and Nova-networking both provide the ad-
ministrator with the ability to configure the cloud/cloudlets network, including assigning floating

5



Figure 2.1: Organization of Openstack

IPs, creating new subnets, and assigning subnets to tenants. Tenants each represent one admin-
istrative entity within the cloud environment. Openstack uses tenants to isolate separate user
groups. For example, one tenant might be a CMU student running analysis jobs for his school
project while another might be a group of developers from a startup using virtual machines as
scalable servers for their platform. A VM in one tenant cannot reach a VM in another tenant via
the internal network.

While Openstack deprecated Nova in favor of Neutron, Neutrons stability remains in question
by the community. Hence, we decided to use Nova-networking for our implementation.

Nova-networking has three networking modes available: Flat, Flat DHCP, and VLan. Flat
networking mode assigns private IP addresses to VMs on startup from a pre-allocated subnet.
Furthermore, the network administrator must manually create bridges himself on the compute
node. Flat DHCP networking mode addresses this problem by starting a DHCP server (dnsmasq).
This server automatically configures IPs upon VMs startup, removing the need for a manual
setup. However, these two modes do not support any type of isolation between entities, as they
do not differentiate traffic originating from a VM in one tenant from a VM in another.

VLAN networking mode isolates VMs based on tenants. In the compute node, each tenant
will receive its own VLAN and a bridge. Then, Openstack achieves isolation through VLAN
tagging, where any traffic originating from a VM will be tagged according to its tenancy. VMs
that do not live within the same tenant will not be able to communicate.

2.1.2 Devstack

Because of myriad of functionalities and options Openstack provides, it takes much time and
effort to configure and run Openstack its bare state. Devstack is a series of scripts that enables
quick setup of the Openstack environment. While it is not an official installer for Openstack, it is
widely used to deploy Openstack for development purposes. The deployment is ephemeral, but
using utilities such as GNU screen allows the sessions to last.

6



Figure 2.2: Openstack++ interface

2.2 Openstack++

Openstack++ extends the functionality of Openstack to support cloudlets. VM synthesis allows a
VM that originated from one cloudlet to freeze its state and resume in any cloudlet, including the
origin cloudlet. VM handoff allows VMs to migrate between cloudlets. For example, distance
between the user’s device and nearby cloudlets can serve as one such metric. As the cloudlet
user moves away from Carnegie Mellons campus to his home an hour away from the school,
the device will disassociate from CMUs cloudlet and connect to a cloudlet closer to the user’s
home. Another metric could be the load of a cloudlet where regardless of the distance to nearby
cloudlets, the user’s device will connect to the cloudlet with the least load.

2.3 Coda

Coda is a distributed file system based on AFS2. Coda supports disconnected operations, client
side caching, and continued operation in cases of temporary network failures. It provides an
open-close semantics, meaning that Coda will fetch the entire file to the local cache on open and
updates to a file will not be propagated until all local writers have closed the file[6].

Coda implements client operations by running a user-process daemon called Venus. Venus
handles all the client side logic, including controlling the file system operations, managing the
cache, and keeping a persistent log of operations. Venus replays these logs to propagate changes
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to the servers[6].

Coda manages replication in units of volumes, a subtree of the Coda namespace. Servers
replicate these volumes to ensure availability [7]. For better performance, Coda assumes a low
amount of write sharing within the system and uses optimistic concurrency control [6]. Coda also
allows disconnected operations in case the user lacks network connectivity for a certain period of
time [4]. When network connection is restored, Venus replays operations to achieve consistency.
For access control, Coda requires that the user logs in with credentials (username and password)
using the clog command [7]. Also, a single Coda client can hold multiple tokens to multiple
users as long as they authenticate through clog[7].

We chose to run Coda mostly for its familiarity and its capability to operate in WAN environ-
ments (versus say, NFS). Coda also provides considerable security measures including encryp-
tion, which better suits the cloud.

2.4 Samba / CIFS

Samba is an open-source software used to share files, folders, and printers across SMB clients.
SMB, which stands for Server Message Block, is a protocol that operates in the application
layer to allow sharing of resources stated above. SMB protocol was initially used in Windows
platforms.

Common Internet File System, or CIFS, is an enhanced implementation of the SMB protocol.
Unix clients can use the CIFS client in the kernel to mount SMB/CIFS shares located across the
network.

SMB2 and SMB3 are more modern implementations of the SMB protocols that offer signif-
icant advantages over the CIFS protocol. However, for our purposes, we use the CIFS protocol
which is offered as a default in Linux kernels.

Needless to say, although the SMB protocol originated from Windows, Samba ports the pro-
tocol to work in Unix-like systems. Hence, the use of SMB guarantees compatibility with most
widely-used operating systems families.
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Chapter 3

Implementation

3.1 Design Goals

3.1.1 Cohesiveness

We wanted to ease sharing of files between a cohesive group of virtual machines within a single
cloudlet and across cloudlets. The ability to share files easily increases productivity of these VMs
as the distributed file system handles complex issues such as update propagation and conflict
resolution. Integrating a distributed file system with the cloudlet ecosystem also removes the
need for the user to manually setup such an architecture to handle simple sharing.

A set of VMs in a single cloudlet launched by the same user can benefit immensely from a
shared file system, because they naturally tend to have overlapping working sets. For example,
group of developers working on a common source repository on their mobile devices via VMs
in the same cloudlet can use the distributed file system to store their repository.

A set of VMs across cloudlets but launched by a same organizational entity can also benefit
from a distributed file system. Sticking with the group of developers example, a team can setup
a continuous integration server on the cloudlet with their source repository on the distributed file
system to allow developers to work together remotely without requiring them to be on the same
cloudlet.

Also, multiple modern data workloads run on a distributed file system, such as the popular
Mapreduce framework Apache Hadoop. We wanted to run Hadoop using Coda in the cloudlet to
emphasize these benefits.

3.1.2 Small VM Overhead

Running a distributed file system in the cloudlet reduces the number of files that need to be
kept in each of the VMs. Each VM only needs to keep its working set in its storage, not the
entire dataset. Furthermore, reduction of the storage space for each of the VMs implies a smaller
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overlay image. This in turn leads to a faster migration time of the VM between cloudlets.

3.1.3 Fast File Access

Fast access to the working set for a task is essential in the cloudlet environment. By running
a Samba server as a separate VM inside the compute node, other VMs communicate with the
nearby Samba server to obtain the necessary files. The speed of access greatly improves as the
working set is cached on the Samba server’s Coda client which caches files from the remote Coda
servers.

3.1.4 File Prefetch Upon Migration

The ability to prefetch working sets and hot files when migration starts allows these files to be
ready to be used by the virtual machines when they arrive at the destination cloudlet. By coor-
dinating the Samba servers across cloudlets, we concurrently start the transfer of these recently
used files with the migration itself to mitigate the performance hit associated with moving VMs
to a cloudlet with a cold cache.

3.1.5 Security

We strived to ensure that the distributed file system does not compromise security in the cloudlet.
Not only should running the distributed file system attain the level of security already existing in
the cloudlet, a user’s data in the file system should only be visible by VMs associated with the
user and nobody else.

3.1.6 Familiarity

We wanted to provide a familiar interface to the client VMs with the distributed file system in the
cloudlet. This is to offer a familiar interface to both software running on top of our architecture
and developers working on new applications within our architecture.

3.2 Design

We present our setup for running Coda in the cloudlet. The cloudlet runs in VLAN networking
mode to support tenants. Each tenant has a VM that runs on a well-known IP address. This
VM, which we call the File System Master VM (FSMVM), runs the Coda client and exports the
mount point to other VMs within the tenancy using Samba. The FSMVM is part of the cloudlet
infrastructure, and should be installed by the cloudlet administrator, not the tenant.
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The Coda client should be authorized according the tenant user’s Coda credentials. Hence,
the FSMVM will only have access to files and directories that the tenant user has access to
Coda, precisely bound to Coda’s ACL. This implies that all VMs within the tenancy will also
be bound to the tenant user’s credentials, since Samba preserves directory and file permissions
when sharing.

Furthermore, the FSMVM runs an OpenVPN server for other client VMs to connect to. All
other client VMs within the tenancy connect to the Samba Server on the FSMVM via OpenVPN.
Once connected, client VMs can access their folder on Coda using the Samba mount point in
their file system tree.

It is crucial for the FSMVMs to run at a well-known address, at least within the tenancy across
cloudlets. For example, Tenant 1’s FSMVM may run at 128.0.1.5 and Tenant 2’s at 128.0.1.6
in cloudlet 1, but in cloudlet 2, Tenant 1’s FSMVM must run at 128.0.1.5 and Tenant 2’s at
128.0.1.6. This is to ensure that when client VMs migrate across cloudlets (but within the same
tenancy), they can discover and reconnect to the FSMVM over the destination cloudlet’s internal
network. After reconnecting, the VM can resume file system activities by communicating with
the destination cloudlet’s FSMVM.

3.2.1 Example Setup

Figure 3.1 shows this setup in an arbitrary cloudlet. Two tenants are shown, T1 and T2, with
each one running its own FSMVM and a number of worker VMs that respectively connect to
their tenancy’s FSMVMs. The FSMVM runs a Coda client which is connected to a Coda server
(or servers) running elsewhere.

The FSMVMs across tenants run at the same well-known private IP address ()10.1.171.5).
They also have the same OpenVPN address so that clients can access them. Furthermore, notice
how VM 1 in Tenant 1 has the same private IP address as VM 2 in Tenant 2. This is possible
since subnets are bounded by tenancy.

As mentioned before, VMs in one tenancy cannot access VMs in another tenancy, and thus
T1 VM X cannot communicate with any of T2 VM Ys. The same applies for FSMVMs in each
of the tenants. Even though they may be connected to the same Coda server, Coda ACL ensures
that files of one tenancy are safe from VMs in another tenancy as long as the two clients have
different credentials.

3.2.2 Design Decisions regarding running Coda

Notice we decided to run Coda in a single VM and export the mount to all other VMs within
the tenancy. There were two other approaches we considered before coming to this decision:
running Coda inside every single VM, and running one FSMVM per cloudlet that would export
the Coda share to the entire cloudlet. The first design, running Coda inside every single VM,
removes the delay involved with transferring files from the FSMVM to the client VM, since
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Figure 3.1: Example cloudlet setup

every client VM runs a Coda client that directly communicates with the Coda server and has its
own cache. However, the overlay size of these VMs would increase since every client has its
own Coda cache, and coherent set of VMs within the same cloudlet performing tasks on similar
files will be subject to open-close semantics.

The second design, running one FSMVM per cloudlet that exports the Coda share to all
the VMs in the cloudlet introduces access control problems. Notice that Coda enforces access
control by having users authenticate and receive tokens, and that a single Coda client can hold
multiple tokens for multiple users. Hence, if we ran one FSMVM that held tokens for all users
within a single cloudlet and exported the mount via Samba, any VM in the cloudlet would be
able to access files of any other user residing in the same cloudlet.

Our design uses the tenancy mechanism in Openstack’s VLan networking mode to enforce
access control. Furthermore, users can use Samba’s share access control features to further fine-
tune access control within the tenancy. For example, a software company might not want interns
to access sensitive user data. Hence, while granting interns access to VMs within the same
cloudlet as full-time employees, the company may create a new Samba user that grants interns
access only to non-sensitive data in the Coda mount.

3.3 Architecture

3.3.1 Migration

Since we run OpenVPN in VLAN networking mode, we have the ability to run each tenant with
the same IP subnets. For example, both the CMU student who runs his project on the cloudlet
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Figure 3.2: Example cloudlet migration

and the group of developers from Intel deploying their service on the same cloudlet can have a
subnet of 10.1.171.0/24. This implies that the FSMVM for both tenants will run at a well-known
address of say, 10.1.171.5.

Users have the ability to move their VMs from one cloudlet to another, whether they choose
to do so manually or through some discovery service mentioned in the Goals section. FSMVMs
do not migrate between cloudlets, but rather are present in each cloudlet per tenant as part of
the cloudlet infrastructure. When these VMs migrate, they disconnect from the source cloudlets
FSMVM and reconnect to the destination cloudlets FSMVM upon arrival. Notice that private IP
address of the migrating VM changes when it wakes up in the destination cloudlet. However,
since the FSMVMs use a well-known address, the OpenVPN client in the migrating VM is
able to identify the OpenVPN server running on the destination FSMVM and reconnect without
significant delay.

Figure 3.2 shows an example of the migration procedure. VM 1 migrates from Cloudlet A
to Cloudlet B. Notice that FSMVM A in Cloudlet A does not migrate along with VM 1, and
that FSMVM A and FSMVM B run at the same private IP address. Once VM 1 arrives at
Cloudlet B, its private IP changes from 10.1.171.29 to 10.1.171.42. However, VM 1’s OpenVPN
client can still find the OpenVPN server on FSMVM B since FSMVM A and FSMVM B have
the same private IP address. Hence, VM 1’s CIFS mount can still locate FSMVM B’s Samba
export, and VM 1 can continue using the file system immediately after its migration.

3.3.2 OpenVPN

OpenVPN is a open-source solution to running a private VPN network. It uses SSL for key
exchange and also for encryption of packets between two endpoints. It can also run on top of
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UDP or TCP.

OpenVPN requires a public key infrastructure to run. For the server and each client, both
public and private keys are needed. A master Certificate Authority certificate and key are used
to sign both the servers and clients certificates. These keys must be pre-generated since they
must be verified by the CA. The administrator can generate a limitless number of keys and
using OpenVPN does not limit the number of client VMs that can connect to the FSMVM. The
cloudlet administrator can automate the generation of keys and configuration files associated
with OpenVPN as part of the infrastructure, by either storing them in the VM image or some sort
of file transfer mechanism such as scp.

The FSMVM runs an OpenVPN server and clients connect to the FSMVM via OpenVPN.
Since the FSMVM runs on a well-known IP, client VMs can configure their OpenVPN clients to
connect to the FSMVM.

3.3.3 Why OpenVPN?

The reason that we do not connect clients to the FSMVM directly via the Openstack’s network
is the delay the client VMs suffer when after migration. When we first tested migration on top
of the bare Openstack network, we noticed that access to the local mount point of Samba in the
migrating VM freezes for about 300 seconds when it wakes up on the destination cloudlet.

Upon investigation, we realized that the Samba client code inside the Linux kernel waits
at least 300 seconds before reestablishing the connection to the Samba server. The issue is a
well known one, and several online reports mention the frustration of users with Samba freezing
approximately 5 minutes when switching between wired and wireless connections.

Using OpenVPN provides a simple and elegant solution to this problem. OpenVPN server
has the ability to setup a directory called the client-config-dir where client configuration files
will be kept which are bound to the client key upon creation of the key. The ifconfig-push
option allows the administrator to allocate a range of OpenVPN IPs to assign to the client with a
specific key. By narrowing this range to one IP address, the administrator can effectively assign
a single static address to a client. Now, we set client-config-dir to be a folder in Coda, so that
when the VM boots in one cloudlet with a specific commonName and a specific IP address, the
VM will be bound to that address across all cloudlets.

Furthermore, the keepalive parameter in the server’s tun0.conf configuration file allows ad-
ministrators to control two things: the period of keepalive messages the remote peer sends, and
the time to wait until the server/client assumes the remote peer is down. By keeping these periods
short, we can effectively remove the delay associated with reestablishing the Samba mount when
the VM arrives at the destination cloudlet. Furthermore, both the server and the client check to
see if the other side is down, the source FSMVM can also pickup on the VM’s departure and free
any resources associated with the old connection.

Using OpenVPN also creates another layer of indirection in the stack, thus adding flexibility
without relying on a specific component in the system. For example, if we modify the Samba
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client code inside the Linux kernel to remove this delay, we create a dependency on Samba
development. However, with this approach, we actually have the option to deploy another overlay
network instead of OpenVPN or to even write our own if a better alternative becomes available
or the need arises. We also have the option to disable encryption completely on OpenVPN,
removing the overhead associated with encryption when using OpenVPN.

3.3.4 Design Decisions Regarding the Delay

We considered several alternatives other than running OpenVPN to solve the migration delay
problem. However, none of them provided a workable solution for different reasons.

Changing the kernel code

The first solution consisted of changing the Samba code inside the kernel. The Samba client
code resides inside the Linux kernel as an implementation of the VFS interface. It can be found
in the /fs/cifs directory within the source code tree. In the server unresponsive function in
connect.c, the CIFS code reconnects to the server after 2 * SMB ECHO INTERVAL sec-
onds have passed without any interaction with the server. The value of the SMB ECHO INTERVAL
constant varies by the Linux distribution of the kernel.

Browsing online, we discovered that the long reconnection delay is due to CIFS clients be-
ing careful not to overload the Samba server with reconnection requests. One client’s frequent
reconnect request may not slow the Samba server down, but several of these requests may. Fur-
thermore, Samba servers hold quite a bit of information associated with each client’s session,
so it may be wise to delay resetting the connection in hopes of the server becoming respon-
sive in an enterprise environment. In previous versions of the Linux kernel, a way to change
SMB ECHO INTERVAL existed as a command line option. However, developers of CIFS re-
moved that option as they felt 300 seconds to be an adequate standard. Hence, changing the
constant value inside the kernel source was the only option if we wanted to lower the delay at the
destination cloudlet.

We avoided the approach due to complications involved with directly changing the kernel
source. If we modify SMB ECHO INTERVAL inside the kernel, we would need to modify the
constant in every VM image the users wanted to boot in the cloudlet. Furthermore, this creates
a dependency to the Samba development as well, since SMB ECHO INTERVAL is an internal
constant not exposed to users and developers are free to tinker with it.

Identical private IP upon arrival

The second solution comprised of forcing the migrating VM to have the same IP address on the
destination cloudlet as it did on the source cloudlet. There exists an API to assign a specific
private IP address to a VM via creating a port in the Neutron networking mode. After creation of
the port, the administrator has the option to boot a VM using the port. However, elijah-cloudlet
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uses the Nova networking mode, and in Nova-networking, there is no API to assign a specific
private IP to a VM upon its boot. Furthermore, even with the Neutron networking mode, we
would have to incorporate the port mechanism with the migration feature. This would involve
dealing with a pre-existing VM in the destination cloudlet that may have the same private IP as
the migrating VM, which entails additional complexities.

Agent daemon inside the VM

The last solution consisted of having an agent daemon program inside the VM which would
unmount the Samba mount on start of the migration process and remount it upon arrival. First,
some authority program in the cloudlet gives a signal to the daemon that the VM is about to
migrate. Then, the daemon observes the processes who are currently using the mount point via
the lsof command. If there are no processes in the VM using the mount point, the daemon goes
ahead and unmounts the Samba mount to begin the migration. Otherwise, the daemon performs
a lazy unmount on the mountpoint. In either case, the daemon remounts the Samba mount using
the FSMVM from the destination cloudlet.

The complexities involved with this approach stems from unmounting the mount point. Un-
mounting when no process uses the Samba mountpoint is simple. However, after performing
a lazy unmount and migrating to the destination cloudlet, the mount point still hangs for 300
seconds before reconnecting to the destination FSMVM.

3.4 Security and Access Control

As mentioned before, VMs cannot communicate with other VMs across tenancy. This ensures
isolation between tenants and thus adds a measurable level of security to the system. Further-
more, we ensure that no tenant can access other tenants data through Coda by running one FS-
MVM per tenant. Client VMs within the tenancy can only access folders authorized to the
account logged in on the FSMVMs Coda client. Also, Coda uses authentication secret-keys to
ensure secure connection between the client and the server, which means that any communica-
tion between the FSMVM and the Coda server benefits from Coda’s cryptosystem. On top of
access control provided by Openstack’s tenancy system, users can further enforce fine-grained
access control within the tenancy by using Samba’s access control system.
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Chapter 4

Validation

4.1 Live Migration

We tested our architecture within the Openstack++ environment to ensure that it functions as
expected with the live migration feature. We wanted to test three things. Firstly, we wanted to
test that once the migrating VM arrives at the destination cloudlet, it stops its connection to the
source FSMVM. Secondly, we wanted to test that the migrating VM starts using the destination
FSMVM upon arrival. Lastly, we wanted to test that the Samba mount on the migrating VM
becomes available without significant delay upon arrival.

4.1.1 VM Overlays

VM overlays contain the delta between the client VM and the base image VM. They contain all
the changes needed to rebuild the state of the client VM at the moment of migration including
memory and disk state. Openstack++ deduplicates the data within the overlay file for compres-
sion. Upon migration, Openstack++ transfers the VM overlay over the network from the source
cloudlet to the destination cloudlet. Then, the destination cloudlet synthesizes the client VM by
applying the deltas over the base VM image, which the destination cloudlet already has a copy
of.

4.1.2 Setup

We used two machines, squall and fog, located in our lab’s machine room to serve as two
cloudlets.

We conducted three experiments. The first one consists of manually creating an overlay of a
client VM in squall, and synthesizing the overlay in squall again. Although synthesizing a VM in
the source cloudlet rarely occurs in natural settings, it serves as a quick proof of concept since the
private IP of the VM changes upon synthesis. In the next experiment, we also manually create
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Figure 4.1: Creating a VM overlay

an overlay of a client VM in squall, but synthesize the overlay in fog. This accurately depicts the
scenario where the VM migrates to a different cloudlet, but with the user manually creating the
overlay. Lastly, we migrate the client VM from squall to fog using the live VM handoff feature
in Openstack++.

4.1.3 Manual Synthesis on a Single Cloudlet

We first create a VM overlay of a client VM in squall via Openstack++’s overlay creation as
depicted in figure 4.1. Then, we upload the VM overlay to nginx running in squall since the
Openstack++ requires that an overlay image be served by a web server. As portrayed in figure
4.2, we enter the address of the VM overlay image and we synthesize the VM back in squall. We
confirm that the delay for the client VM to reconnect to the FSMVM and reestablish the Samba
mount is approximately 10 seconds.

4.1.4 Manual Synthesis Across Cloudlets

We create an overlay of a client VM in squall and upload the image to nginx in squall similarly
to the previous experiment. However, this time we synthesize the VM in fog. This simulates
synthesis of a client VM where the source and the destinations cloudlets are different. With this
experiment, we not only observe the reconnection delay but also that the client VM disconnects
from the source FSMVM (in squall) and starts using the destination FSMVM (in fog) upon
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Figure 4.2: Beginning VM synthesis

Figure 4.3: Spy command from both squall and fog FSMVMs
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Figure 4.4: Handing off a VM to another cloudlet

arrival to the destination cloudlet. In order to verify this, we rely on an administrative tool in
Coda called spy. Spy is a commandline tool which creates a trace of recently touched files. We
run Spy on both the squall FSMVM and fog FSMVM to observe both Coda clients’ activities
before and after migration.

We first notice that the delay for the client VM to reestablish the mount is also approximately
10 seconds. Figure 4.3 shows the results of this experiment. The left tmux screen runs spy on
squall’s FSMVM, and the right tmux screen runs spy on fog’s FSMVM. Here, we see that once
the VM migrates, the folders being accessed by the migrated VM on fog does not appear on
squall’s spy command.

4.1.5 VM Handoff Across Cloudlets

We use the VM handoff feature in Openstack++ to perform live migration of a client VM from
squall to fog. Figure 4.4 depicts the VM handoff interface. We can only handoff VMs that have
been synthesized, so we synthesize the client we created in the previous section in squall by
using the existing overlay file. We enter the destination cloudlet’s address with the Keystone port
(fog.elijah.cs.cmu.edu:5000) along with the account and password on the destination cloudlet.
Furthermore, we enter the destination tenant and name of the VM to be used once it arrives at
the destination.

We again notice that the delay for the client VM to reestablish the mount is 10 seconds, and
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that Spy running on both FSMVMs behave as expected similar to figure 4.3
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Chapter 5

Prefetching

5.1 Background

Prefetching allows the destination cloudlet to simultaneously transfer the working set from the
source cloudlet with the VM migration. Once the migrating VMs arrive and wake up at the des-
tination cloudlet, frequently and recently used files will be pre-loaded locally in the destination
FSMVM. Without prefetching, the FSMVM’s Coda client will see a cache miss for the requested
files, and hence will have to first fetch the files from the Coda server. Instead, the destination
FSMVM VMs will have the working set locally cached ready to be served out to the client VMs
upon their arrival.

The weaker the connection between the FSMVM and the Coda servers is, the more prefetch-
ing affects the performance of our architecture. While the client VMs and the FSMVM are
connected by the stable and fast local network within the cloudlet, the FSMVM and the Coda
servers are likely to be connected via WAN. Hence, file transfer between the FSMVM and the
Coda servers is the main bottleneck in serving the necessary files to the client VMs from the file
system.

With prefetching, we look to mitigate this bottleneck by fetching files likely to be used by the
migrating VMs upon arrival as the VMs migrate to the destination cloudlet. Working sets can
be inferred from observing the file system usage by the VMs in the source cloudlet. The files
frequently and recently accessed by the VMs in the source cloudlet are very likely to be accessed
soon by the VMs in the destination cloudlet. Hence, fetching these files before the VMs wake up
in the destination cloudlet in the FSMVM helps increase file access speed upon arrival.

5.2 Implementation

We implement the prefetching feature in two parts. First, we modify Venus, the user-space Coda
client, to dump the list of files in the cache along with the priority for each of the files. Then, we
write a script that takes the dump from Venus and derives a list of files that should be transferred
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to the destination cloudlet.

5.2.1 Priority

Coda uses priority as a metric to measure importance of a file. Coda calculates priority as a
function of two things: short-term priority and medium-term priority. The two priorities are
multiplied by their respective weights and added together to calculate the overall priority.

Medium-term priority is just the hoard priority. Hoarding is a way for users to inform Venus
of important files that should be kept in the cache most of the time. Users can assign relative
priorities to the files and Venus keeps a database of these hoard values. Hoarding priority also
affects how Coda handles disconnected operations, as files with high hoard priority are more
likely to be available offline. However, in our context, hoard priority does not affect the overall
priority as no hoarding is done by the FSMVM.

The short-term priority conveys the recency of the file’s usage. It is calculated by scaling the
difference between the file’s most recent reference and the most recent reference to any file in
the Coda file system and subtracting it from the maximum possible short priority value. Since
no hoarding is done, the overall priority becomes a function of how recently a file was used.

5.2.2 Modification to Venus source

Venus uses a class called fsobj as a representation of files and directories within the file system.
It is declared in /venus/fso.h header file. The fsobj can be either a file or a directory, with
parent and child relationships defined as expected. The fsobj already has a priority value in its
class declaration, which is used by Venus to manage cache eviction and hoarding.

Venus also has a function to list the fsobjs in the cache currently by printing a dump of the
cache to stdout. The function is aptly called listCache, and the user can invoke it by running
cfs lc on the command line. Venus walks the cache from the root directory and dumps the
validity and the path of the fsobj. An fsobj is deemed valid when its data is valid, status is
valid, and it is not dirty.

We modified the ListCache function for an fsobj in the /venus/fso1.cc file to
dump the priority of the fsobj as well as the path and the validity. Figure 5.1 demonstrates the
modified ListCache function. Next to the path of each user directory in the /coda/coda.
cs.cmu.edu/usr directory, the ListCache function displays the calculated priority of the
child directories.

5.2.3 Coda Migrator

We wrote a Python script named the Coda Migrator to implement the actual transfer of high pri-
ority files from the source cloudlet to the destination cloudlet. The Coda Migrator is a daemon
that runs in the FSMVM of each tenant in the cloudlet. Once the Coda Migrator is notified of the
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Figure 5.1: Example dump of Coda cache from modified Venus
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migration of VMs, it takes the dump of the cfs lc command and parses it. From the parsed list of
fsobjs, the Coda Migrator determines at most MAX MIGRATION NUM, a preset constant, many
files with the highest priority. Then, it contacts the Coda Migrator in the destination cloudlet,
and sends the list of high priority files that should be prefetched from the Coda server to the des-
tination cloudlet’s FSMVM. Since Coda has open-close semantics, the Coda Migrator uses the
open system call to fetch the file from the Coda server. Once the open call returns, it immediately
closes the file, and moves to open the next file in the list until there are no more files to prefetch.

The timing of the notification of migration to the Coda Migrator is crucial. If the daemon is
notified of the migration before the VM itself is suspended, then the Coda Migrator’s dump of
the cache (i.e. the output from cfs lc) can be stale as the VM can access files between cfs
lc and the creation of the overlay file. On the other hand, as the time elapsed between the start
of the creation of the overlay file and the notification to the Coda Migrator increases, we have
less time to transfer files to the destination FSMVM hence missing the opportunity to prefetch
more files before the migrating VM wakes up on the destination cloudlet.

5.2.4 Notification of Migration

As of now, there exists no mechanism in the cloudlet ecosystem to notify the migration of VMs
to the Coda Migrator. The users must manually inform the daemon of a VM migration and the
address of its destination FSMVM. This also implies that FSMVMs must have their own public
IPs so that the Coda Migrator in the source cloudlet can transfer the list of files that must be
prefetched over the network to the destination FSMVM. In the future, we hope to integrate the
cloudlet discovery feature with prefetching to remove these constraints.

To remove the need for the FSMVMs to have public IPs, we can devise an architecture
where the cloudlet discovery component contacts the source cloudlet, which in turn contacts the
corresponding FSMVM. The FSMVM directly transfers the list of files to be prefetched to the
cloudlet discovery component. The same applies for the destination cloudlet, in that the cloudlet
discovery component contacts the destination cloudlet which in turn contacts the destination
FSMVM with the list of files to prefetch.

Another approach we can take involves sharing the list of files to prefetch on Coda itself.
This involves a naming scheme in Coda for each cloudlet (i.e. its IP) so that the source cloudlet
can identify where to place the list of files, and so that the destination cloudlet can identify which
files to fetch.

5.3 Example: Pause and resume analysis

Figure 5.2 shows an example of the prefetching feature. Tenant 1 has one VM running on
Cloudlet A and is running a Python program that analyzes a series of ratings on movies made
by one person for future recommendations. The Python program writes the results out in the
results.data file. In the midst of running the program, tenant 1 migrates VM 1 to Cloudlet B.
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Figure 5.2: Example of prefetching important files

The priorities of the csv files and the result file are very high in the Coda client running in FS-
MVM A, since the Python program used them until the point of disassociation from Cloudlet A.
Furthermore, the Python program itself has high priority in FSMVM A.

Now, as described in the Notification of Migration section, FSMVM A receives a signal from
a migration control authority that VM 1 is moving to Cloudlet B. Noticing that the Python pro-
gram, the csv files, and the results file all have high priorities, the Coda Migrator in FSMVM A
sends the list of files to FSMVM B. The prefetching of these files occurs simultaneously with the
migration of VM 1. More specifically, as cloudlet A creates the VM overlay file and transfers the
overlay file to the destination cloudlet, cloudlet B resumes the VM using the overlay file, these
high-priority files are transferred in parallel.

Now, upon waking up, VM 1 continues running the analyze.py Python program. FSMVM B
also has the csv datasets and the result.data files locally, and VM 1 can fetch them through the
LAN again which is a significant speedup over fetching these files on demand from the Coda
servers potentially located far away from cloudlet B.

5.3.1 Migration with an Open File

Notice that VMs can migrate without suspending a program. If a client VM has a program that
is holding a reference to a file in the distributed file system and migrates to another cloudlet
without suspending the program, our distributed file system exhibits a defined behavior, albeit a
confusing one. Since Coda provides open-close semantics, when the lease on the files that the
migrating VM is holding expires, the source FSMVM will close these files. Upon closure, the
updates on the FSMVM will propagate globally. However, it is not guaranteed that these updates
will be propagated before the VM wakes up in the destination cloudlet. If not, the file will have
conflicts that needs to be solved if the VM continues to update the file after it arrives on the
destination.
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5.4 Prefetching Experiment

5.4.1 Separate Compilation

Continuous Integration

Continuous integration looks to frequently unify developers’ working copies in a mainline build,
trying to maintain a single stable source build at all times. With CI, the development team
keeps a single source that reflects the most recent functional version of its code. As a developer
looks to modify the program, he checks out the source from this mainline repository to his local
development machine. He makes the necessary changes, including writing new tests, and builds
and tests his changed source on his local machine. When the developer is ready to commit his
code, he first checks the main repository for changes. If there are no changes, he is free to
commit his code to the mainline. If there are changes made by others, the developer first pulls
those changes in locally and rebuilds to check for conflicts. After solving any possible conflicts,
the developer finally pushes his changes into th e mainline repository. However, with CI, the
mainline code on the committed repository is built again on an integration machine. This is done
to check for any missed changes on the developer’s last local build and test. Furthermore, many
modern tech companies run a large number of tests that include unit tests, feature tests, and end-
to-end tests, that the developer’s local machine might not be able to handle with its spec. These
tests can be scheduled to run on the more powerful integration machine at a frequency of the
team’s desire (for example, once a day).

CI in the Cloudlet

Running CI in the cloudlet allows a team of developers to share the FSMVM cache and to re-
duce compilation time because of common object files. We imagine a scenario where a devel-
oper writes code on his mobile device, and has a CI server running in one of the VMs in the
cloudlet. He finishes making changes in the source repository, and builds the updated source in
one cloudlet. Afterwards, he moves locations and his VM migrates to another cloudlet. Now,
notice that the FSMVM in the cloudlet he just moved to has none of the files needed for com-
pilation locally without prefetching. However, with prefetching, the destination FSMVM would
have fetched the files needed for building simultaneously with the migration of the client VM,
and hence would have the necessary files when the client VM requests another build in the new
cloudlet.

Separate Compilation for Development

Lots of modern IDEs perform partial compiling to aid developers. For example, Eclipse displays
the available methods for an object in Java when requested by the developer. The same applies for
other languages such as C++ and Python. However, most of the time, the machine the developer
uses to develop code is not the machine the code will run upon deployment. Hence, partial
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compilation may not work in the developer’s local machine due to many reasons, including
missing modules and incompatible operating systems.

Separate Compilation in the Cloudlet

We suggest a scenario where the developer merely edits code on his mobile device, and leaves
compilation to a more compatible and powerful VM in the cloudlet. The developer could be
using his Surface tablet to develop a Linux program, or even on an iOS mobile phone. Using
a cloudlet for separate compilation greatly aids the developer in that he will be able to receive
feedback from the IDE quickly because of the low-latency communication between his device
and the cloudlet. Furthermore, the developing platform can be OS-agnostic, in that one can use
separate compilation to compile code on one operating system while editing code on another.

5.4.2 Experiment

Setup

The setup for our CI experiment exactly the same as the one mentioned in the Evaluation section.
Squall and Fog remain as our two cloudlets, with Squall being the source and Fog being the
destination cloudlets regarding migration. Also notice that the two Coda servers, mahler and
vivaldi, are within CMU as well.

We use the Coda File System source to simulate continuous integration in a cloudlet environ-
ment. The source repository is located in squall’s FSMVM, so that it is shared through Samba to
all the client VMs. We run configure in one of the client VMs, so that we create the files needed
for compilation, including makefiles, in the client VM’s local file system. Then, we run make in
the client VM, so that it fetches the source from the FSMVM and builds the Coda binary on the
client VM. Afterwards, we migrate the client VM to fog once with prefetching and once without
it, and rebuild. We compare the resulting two times against each other.

Results

Tables 5.1 illustrate the results from our experiments. Notice that running make on the cached
FSMVM runs about 10% faster than on the uncached FSMVM. The results clearly highlight the
advantages of the prefetching feature. Furthermore, as mentioned in the setup section of this
experiment, two Coda servers mahler and vivaldi are located within CMU and the Coda source
code tree is about 25M. As the DFS’ servers move away from the cloudlets and as the source tree
increases in size, we expect to see more speedup with prefetching.

We also ran the experiment on a freshly booted VM without any prior runs of the compilation
and obtained similar results. This shows that the results are not affected by the page cache.
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Run 1 Run 2 Run 3 Run 4 Run 5 Average
Prefetch enabled 2m29.660s 2m30.108s 2m28.906s 2m29.853s 2m30.017s 2m29.710s
Prefetch disabled 2m44.982s 2m45.091s 2m47.827s 2m42.127s 2m49.819s 2m45.969s

Table 5.1: Results from 5 runs of make for migration with and without prefetching enabled
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Chapter 6

Hadoop

In this section, we run Hadoop on top of our architecture to demonstrate that pre-existing and
widely used applications can run within our system without modifications to their source.

6.1 Hadoop

Hadoop is an open-source framework which aids developers in processing large data with dis-
tributed computing. It usually runs on a cluster of commodity hardware. Hadoop is modeled on
Google’s MapReduce[2], and runs on Hadoop Distributed File System, which in turn is modeled
on Google’s GFS[3].

Hadoop’s processing model derives from functional languages, where the user applies oper-
ations such as maps and reduces on data to generate a new set of data. The transformations are
applied in separate chunks, where a single process, called the worker process, handles one chunk
of the operation. One node in the cluster can have several worker processes. The original data is
stored in HDFS, and worker processes fetch their respective chunks out of HDFS at the start of
the map phase.

First, the map phase applies a user defined map transformation to the original data, usually
to a list of key value pairs. Then, Hadoop relocates all the key value pairs with the same key into
the same reduce process. Notice that one reduce process can handle key value pairs for more
than one key. Then, each reduce worker reduces the values with the same keys to (usually) a
single value, and outputs the list of keys back to the user.

6.2 Experiment

As mentioned in the previous section, Hadoop normally runs on HDFS. However, we run Hadoop
on top of our distributed file system on the cloudlet to demonstrate that our architecture can
handle a preexisting and widely-used application without modifications to our architecture.
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Figure 6.1: Illustration of Hadoop’s mechanism

6.2.1 Setup

We use Hadoop 1.1.2 for our experiment. This version provides the functionality necessary
to change the default file system from HDFS to a distributed file system. First, we boot up
two VMs. One VM will act as a hadoop-master and one will act as hadoop-slave. We set up
our VMs and mount the distributed file system by connecting them to the FSMVM. Then we
install Hadoop 1.1.2 on both VM’s local file system, and configure the basic setup involving
establishing passwordless ssh and setting the right environment variables such as JAVA HOME.
Then, we make the necessary changes in Hadoop’s config files to use our distributed file system
instead of HDFS.

In core-site.xml on both master and slave, we add

<configuration>
<property>

<name>fs.default.name</name>
<value>file:///</value>

</property>

<property>
<name>hadoop.tmp.dir</name>
<value>/home/cloudlet/coda/coda.cs.cmu.edu/usr/shan1/hadoop</value>

</property>
</configuration>

Changing the fs.default.name configuration allows us to notify Hadoop that we wish to use our

32



own file system rather than HDFS. The hadoop.tmp.dir option sets the root folder for all tmp
directories that Hadoop uses. This is usually the folder that HDFS uses, but since we use our
own DFS here, we enter a folder within our Samba mountpoint for the tenant’s user. We also add

<property>
<name>mapred.job.tracker</name>
<value>master:8021</value>

</property>

<property>
<name>mapred.local.dir</name>
<value>/tmp/mapred-local</value>

</property>

We point the mapred.local.dir to the local tmp directory for the outputs of our intermediate files
after the map phase. Since the Hadoop community recommends that we use a local directory for
the option, we point it to the local /tmp directory.

6.2.2 Results

To run Hadoop, we first start the jobtracker and the tasktracker processes on the master and
the tasktracker process on the slave by running ./bin/start-mapred.sh. We run a word count
mapreduce application on the cloudlet to demonstrate the functionality of the Hadoop setup.
We enter the command

bin/hadoop jar hadoop-examples-1.1.2.jar wordcount
../coda/coda.cs.cmu.edu/usr/shan/input
../coda/coda.cs.cmu.edu/usr/shan1/hadoop/res

where both the input and the output files are located in our Samba mount in the cloudlet.

We observe the Hadoop logs to confirm that the wordcount job completes. Furthermore, we
notice the result file in our DFS directory consists of word number pairs that inform how often a
word has appeared in the input file as evident in figure 6.2.
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Figure 6.2: Result file of our Hadoop run
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Chapter 7

Future Improvements

In this chapter, we discuss the future improvements towards the architecture that we could not
implement due to time constraints. For each improvement, we state the benefits it brings and
suggest a possible implementation roadmap.

7.1 Launching the FSMVM with a specific IP

As mentioned before, all the FSMVMs need to have a well-known private IP address that remains
static across cloudlets. However, nova-networking does not provide the functionality to assign
a specific private IP address to a VM. Currently, we launch the FSMVM first to ensure that it
gets assigned the first private IP address available in the IP pool. For example, for the pool
10.1.171.0/24, the FSMVM will have the IP address 10.1.171.3 since it is the first IP from the
pool.

Since the FSMVM is part of the cloudlet infrastructure, we can give it the first IP in the pool
when a user requests a tenancy in the cloudlet. However, a problem occurs when the FSMVM
fails and has to be restarted. Since the administrator cannot specifically assign the same IP
the FSMVM held before the VM’s failure (ie 10.1.171.3) when he restarts the FSMVM, the
distributed file system within the cloudlet collapses as a result. Hence, the FSMVM is a single
point of failure within the architecture, and even worse, one that cannot be recovered on failure.

We suggest two ways to overcoming this problem. The first way consists of having an agent
within the guest to deal with the failure of an FSMVM. When the FSMVM restarts, either by
the administrator or automatically by some daemon program that tracks failures and respawns
FSMVMs, these agents are informed through the local network by a central figure. Then, these
agents will stop the OpenVPN client in their client VMs, modify the OpenVPN tun0.conf config-
uration file to point to the FSMVM’s new private IP address, and restart the OpenVPN client. The
Samba client will reconnect to the new FSMVM once the OpenVPN connection resets, leading
to a smooth transition.

However, the above strategy exposes the client VM to security vulnerabilities. Installing an
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agent inside a client VM itself leads to potential security flaws. Furthermore, the agent requires
privileges since it needs to modify the tun0.conf file located in /etc/openvpn, worsening the
situation.

The second way consists of changing the cloudlet’s network setup to neutron instead of nova-
networking. Neutron allows the administrator to assign a specific IP address to an instance in the
means of Neutron ports. A port is a network abstraction in neutron which contains fields such
as MAC address, fixed IPs and VM identifier. Through this abstraction, the administrator can
assign the previous private IP to the rebooted FSMVM. The client VMs can reconnect to this
FSMVM without any modifications to their configuration files, since the FSMVM has the same
IP as before.

7.2 Automating the infrastructure setup

Currently, setting up our distributed file system in the cloudlet requires 3 steps.

1. Booting up the FSMVM with a well-known private IP address

2. Running the FSMVM setup shell script on the FSMVM

3. Running the client VM setup shell script on the client VM

Booting up the FSMVM is covered in the previous section. The FSMVM setup shell script does
the following things:

1. Install the Coda client, Samba, and OpenVPN on the FSMVM

2. Authenticate the Coda client using clog

3. Configure Samba to export the Coda client folder

4. Configure OpenVPN and launch the OpenVPN server

The client VM setup shell script does the following things:

1. Install the Samba client and OpenVPN on the client VM

2. Copying the pre-generated OpenVPN keys to the /etc/openvpn directory

3. Starting OpenVPN and connecting to the FSMVM

4. Mounting the Coda mountpoint via Samba

Since the FSMVM is part of the infrastructure, the cloudlet administrator can initialize it when
a new tenant is created. However, every time the user launches a new VM, the client VM setup
shell script needs to run in order to connect the newly booted VM to the FSMVM. We can use
Openstack’s cloud-init feature to automate this process. Cloud-init allows the cloudlet adminis-
trator to register a script that will run upon a VM’s startup. With cloud-init, the VM user does
not have to run the script manually to connect to the FSMVM, and the VM will be ready to use
the distributed file system upon startup.
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7.3 Reducing the VM Overlay Size

One of our original goals was to reduce the VM overlay file size by using a distributed file system.
It is true that since the entire library of the user’s files is stored on the Coda server and only the
working set of the VM is stored locally, the VM overlay file size decreases.

We conducted an experiment where we compared the VM overlay sizes of one VM in our
architecture and one without a distributed file system. These two VMs used the same 10mb text
file, so that the VM without the distributed file system opened the file using vim from the local
file system, and the VM with the distributed file system opened the file using vim via Samba
and the FSMVM. We noticed that the overlay file of the VM with the distributed file system
was the same size as the overlay file of the Vm without the distributed file system. In the VM
using the distributed file system, we conjecture that the file is stored twice in the memory once
on the network buffer, and again on the allocated memory of vim. This mitigates the benefits of
not having the file stored in local disk, and hence the same size of the two overlay files. Since
Openstack++ does not use rolling window deduplication with the VM’s memory, if two identical
stream of bytes are not aligned, they will not be deduplicated.

In the future, we should look to investigate if this is indeed the cause of the bigger overlay
file size, and to implement rolling-window deduplication to reduce the overlay size.
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Chapter 8

Conclusion

We implemented a distributed file system in the cloudlet to allow easy sharing of files between
VMs both within and across cloudlets. Integrating the distributed file system with the cloudlet
ecosystem, we implemented prefetching to fetch frequently used files from the source FSMVM
to the destination FSMVM. This allows migrating VMs to avoid cache misses upon arrival at
the destination cloudlet. We also explored the semantics offered by our distributed file system,
both within and across cloudlets. Within a single cloudlet, we ran Hadoop to demonstrate that our
architecture supports pre-existing and widely-used software without involving core modifications
to the program.

8.1 Contributions

The main contribution of our work is the implementation of our distributed file system architec-
ture on the cloudlet that features prefetching and offers a familiar interface to users and devel-
opers. VMs in the cloudlet can now share files easily across and within cloudlets. Furthermore,
because of the familiar interface we offer, pre-existing software can run on top of our distributed
file system without modifications.

We also offer technical details and analysis of our architecture in this thesis. We outline the
implementation and analyze key decisions we made to make our system more transparent and
approachable to administrators. We also suggest improvements that can be made in the future
and provide a roadmap for each one to guide development.

8.2 Final Thoughts

Our architecture eases sharing of files between VMs in the cloudlet significantly. This provides
great advantages to the users of the cloudlet architecture, especially as computation becomes
more and more distributed. The fact that our architecture offers sharing both within and across
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cloudlets greatly increases the utility of VMs in the cloudlet, as any VM can now access any
file in the distributed file system (within the same tenancy) and share updates made to the file
without any setup or intervention by the user. The current setup also has the potential to improve
as distributed file systems advance, as our layered implementation allows swapping and replacing
components without a complete overhaul of the architecture.
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