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Abstract
How can computers help ordinary people make collective decisions about real-life

dilemmas, like which restaurant to go to with friends, or even how to divide an inher-
itance? This requires the fusion of two fields: economics, which studies how people
derive utility from such decisions and the incentives at play, and computer science,
which informs the design of real-world computing systems that implement economic
solutions. This fusion has already yielded a number of practical applications, from pro-
tection of infrastructure targets to exchange of organs.

We study two fields born of this fusion, namely computational fair division and com-
putational social choice. Both aim to aid people in making optimal social decisions. In
this thesis, we identify principled solution concepts in the two fields, and provide a
comprehensive analysis of their guarantees. Our work underlies the design and imple-
mentation of the deployed service Spliddit.org, which has already been used by tens of
thousands of people, and of the upcoming service RoboVote.org.

We present our results in two parts. In Part I, we focus on fair division, which ad-
dresses the question of fairly dividing a set of resources among a set of people. We
study two principled solution concepts from welfare economics — maximizing Nash
welfare (Chapter 2) and maximizing egalitarian welfare (a.k.a. the leximin mechanism,
Chapter 3), and identify broad fair division domains in which these solutions provide
compelling guarantees. Maximizing Nash welfare has been deployed on Spliddit for
dividing goods (such as jewelry and art), and the leximin mechanism has applications
to allocating unused classrooms in the public school system in California. We also study
a specialized domain in which the leximin mechanism has made significant impact: al-
location of computational resources. We build upon existing work to incorporate prac-
ticalities of real-world systems such as indivisibilities (Chapter 4) and dynamics (Chap-
ter 5), and design mechanisms (often variants of the leximin mechanism) that provide
convincing guarantees.

In Part II, we focus on social choice theory, which addresses the question of aggre-
gating heterogeneous preferences or opinions of a set of people towards a collective
outcome. We study two different paradigms of this theory: aggregation of subjective
preferences towards a social consensus, and aggregation of noisy estimates of an ob-
jective ground truth towards an accurate estimate of the ground truth. In the former
paradigm, we advance the recently advocated implicit utilitarian approach (Chapter 6),
and offer solutions for selecting a set of outcomes; this work has been deployed on
RoboVote. In the latter paradigm, we generalize the prevalent maximum likelihood es-
timation approach, and propose the design of robust voting rules that are not tailored
to restrictive assumptions (Chapter 7). We also design robust voting rules for the case
where the opinions of the individuals are correlated via an underlying social network
(Chapter 8). Finally, taking the robustness approach to the next level, we formulate the
first worst-case approach to aggregating noisy votes (Chapter 9), which has a strong
connection to error-correcting codes, and show that the worst-case optimal rules offer
not only attractive theoretical guarantees, but also superior performance on real data.

www.spliddit.org
www.robovote.org
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Chapter 1

Introduction

The alliance between computer science and economics has recently been making
tremendous societal impact. Algorithms born of this synthesis, usually termed algo-
rithmic economics, are already in use by major organizations for real-world applications;
a few prominent examples are described below.

• Security games model game-theoretic allocation of security resources for protection
of physical targets, used by security agencies such as the US Coast Guard and the
Federal Air Marshall Service for protection of major ports and airports in the US.

• Matching algorithms facilitate matching of individuals or entities with each other
by taking their preferences into account. Two prominent examples are kidney ex-
change algorithms, used at the United Network for Organ Sharing for conducting
nationwide organ exchanges; and the deferred acceptance algorithm, used by the
National Resident Matching Program for matching medical school students with
residency programs in the US.

• Ad auctions facilitate efficient allocation of advertisement slots, and constitute a
major revenue source for many large companies such as Google and Microsoft.
Combinatorial auctions allow participants to bid over collections of items, and are
famously used in the allocation of radio spectrum for wireless communications.

The work presented in this thesis contributes to the transition of two other sub-
fields of algorithmic economics — computational fair division and computational so-
cial choice — from theory to practice. Informally, fair division addresses the question of
fairly splitting a set of scarce resources and/or costs among a group of agents (artificial
or biological); this has numerous commonplace applications such as dividing an inher-
itance, settling a divorce, assigning rooms among roommates and splitting the rent, etc.
On the other hand, social choice theory focuses on eliciting and aggregating individual
preferences or opinions towards a collective decision. It is applicable to a wide range of
everyday scenarios, e.g., a group of friends selecting a restaurant or a movie to go to,
the marketing team in a firm selecting a product prototype to roll out, or the citizens of
a nation electing their president. At a high level, both fields address questions that arise
from the social interaction among a group of people, and aim to help these people make
the optimal social decisions.
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Despite the enormous potential of helping millions of people every day who are al-
ready solving such problems, the real-world applications of both fields have remained
severely limited. To address this, we stand on the shoulders of giants. We observe
that principled economic solution concepts such as the Stackelberg equilibrium, wel-
fare maximization, and the VCG mechanism inspired approaches that led to some of
the aforementioned success stories. Such principled solution concepts have a two-fold
advantage. On the one hand, they are often elegant, making it easy to convey them
to the masses, and on the other hand, they are well-established across a wide range of
domains, making them robust to the intricacies of a real-world setting. One wonders
whether the study and use of such principled solution concepts can help advance fair
division and social choice theory on the practical frontier. To that end, this thesis makes
contributions on three levels.

1. We provide a comprehensive study of fundamental solution concepts from wel-
fare economics, normative economics, and theoretical computer science in broad
fair division and social choice domains, and analyze the properties of such solu-
tions as well as the guarantees they provide.

2. When these solution concepts turn out computationally intractable (NP-hard),
we leverage various techniques from optimization, machine learning, and theo-
retical computer science to devise implementations for them that are sufficiently
fast in practice,1 making these solutions practicable.

3. The culmination of our work is the development of real-world systems that im-
plement such solution concepts to help people freely access them. The next sec-
tion describes, in addition to other applications, the deployment of this work to
our fair division website Spliddit.org and our upcoming social choice website
RoboVote.org, both of which are not-for-profit and freely accessible.

Before moving on, we remark that our work deviates from the aforementioned ap-
plications of algorithmic economics in a key aspect: while the existing applications are
primarily geared towards helping large organizations make optimal decisions, our aim
is to help ordinary people make optimal decisions in their everyday life.2 In summary,
the overarching theme of the research presented in this thesis is

...to develop computer programs that help groups of ordinary people make optimal
social decisions.

1.1 Real-World Impact

Spliddit.org is a not-for-profit fair division website that was launched in Nov 2014; I
have been leading its development since May 2015. Spliddit’s motto is to provide prov-
ably fair solutions. It offers (to date) five applications: dividing goods (which can be used,
e.g., for inheritance division and divorce settlement), dividing chores, splitting taxi fare,

1We intentionally avoid the word efficient as it implies polynomial running time, which is neither
possible nor necessary.

2Requests made to us for public projects, such as the project described in Chapter 3, are exceptions.
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Figure 1.1: Comments from Spliddit’s users

assigning rooms among roommates and splitting the rent, and assigning credit to indi-
viduals in a group project. In less than a year and a half from its launch, Spliddit has
already been used by more than 70,000 people from more than 150 countries. Figure 1.1
shows a selection of comments from these users, indicative of their satisfaction.

Since the launch of Spliddit, its users have constantly been providing us useful feed-
back. While some users have pointed out flaws in the deployed algorithms, creating
the need for us to design better solutions, other users have suggested novel real-world
applications for which new solutions need to be designed. Such feedback has posed in-
teresting and difficult new questions, and led to several serious research projects, some
of which are included in this thesis.

For example, when a Spliddit user reached out to us, mentioned that the allocations
returned by the goods division app did not always match his intuition of fairness, and
presented an example scenario, we started searching for a better, principled solution for
dividing goods. Along the way, we proved that a principled solution concept that we
term the Maximum Nash Welfare (MNW) solution — which, in special settings, is also
known under alternative names such as Competitive Equilibrium from Equal Incomes
(CEEI) and proportional fairness — has compelling fairness and efficiency guarantees
in a broad fair division domain, thereby generalizing classical results such as Varian’s
result about CEEI [195] and Weller’s theorem [201]. We also devised a fast and exact im-
plementation of the MNW solution, which has been deployed on Spliddit for allocating
goods. This work is presented in Chapter 2.

Another example is the work presented in Chapter 3, which originated when a rep-
resentative from the public school system in California reached out to us through Splid-
dit’s feedback system. He asked for our help in designing a solution for the novel
fair division problem of allocating unused classrooms in the public schools to the lo-
cal charter schools. We observed that the literature on fair division offered another
principled solution — the leximin mechanism — for several related settings [30, 44],
but the exact setting of the classroom allocation problem was not previously studied.
In our efforts to design a solution for the classroom allocation problem, we discov-
ered an elegant proof for the compelling fairness, efficiency, and truthfulness guar-
antees of the leximin mechanism in a broad fair division domain that captures the
classroom allocation setting. Our result generalizes a number of results from the lit-
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erature [28, 30, 56, 99, 101, 133, 165, 186, 192, 199, 200]. We also devised an extremely
fast, exact implementation for the leximin mechanism. Our work is currently under
consideration for deployment by the largest school district in California.

Inspired by the success of Spliddit, since May 2015 we have also been working on the
design and implementation of a new not-for-profit social choice website, RoboVote.org,
which is scheduled to launch in the late summer of 2016. Like Spliddit, its aim is
also to provide compelling solutions to everyday problems, albeit in the social choice
realm. On a high level, RoboVote provides solutions for aggregating conflicting pref-
erences/opinions towards a collective decision. In the objective paradigm, where a
ground truth ranking of the alternatives exists (e.g., the order of different stocks by the
relative change in their prices tomorrow), this means aggregation of noisy opinions to-
wards an estimate of the ground truth. In the subjective paradigm — the classic setting
where no ground truth exists, with applications to everyday scenarios such as a group
of friends selecting a movie to watch or a restaurant to go to — this means aggregation
of conflicting subjective preferences towards a collective choice.

The novelty of RoboVote is that it relies on optimization-based social choice ap-
proaches. For the objective paradigm, RoboVote implements voting rules that pinpoint
the most likely best alternative [209], or the set most likely to contain it [179]. For the
subjective paradigm, RoboVote implements the results of Boutilier et al. [35] to select
a single alternative. But, previously, the extension to selecting a subset of alternatives
was unavailable. Investigating this setting led us to the work described in Chapter 6,
in which we established that regret minimization, which is a classic solution concept
studied extensively in machine learning [27, 43], offers compelling theoretical guaran-
tees and empirical performance on real data. We devised an implementation for this
rule, and have deployed it on RoboVote.

We hope that these platforms will increase awareness of the compelling solutions
that exist in both literatures for optimally solving everyday problems, enable their
widespread use, and in time fuel and guide further research in both fields.

1.2 Background

Before diving into the technical details, let us present a brief overview of the basic con-
cepts and related lines of work in fair division and social choice. On a high level, both
fields aim to find “socially desirable outcomes” in settings that involve an interaction
between multiple agents. But, what does socially desirable mean? The answer to that
depends on the specific setting of interest, as we describe below.
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1.2.1 Fair Division

The basic fair division question is: How do we fairly divide a set of resources R among a
set of peopleN ? Following the traditional terminology, we will henceforth use the terms
players and goods3 to refer to people (or other types of agents) and resources, respectively.

Types of goods: In general, R can be a finite, countably infinite, or even uncountably
infinite set. This can model a mixture of divisible goods (which can be split among
players) and indivisible goods (which must be allocated entirely to a single player).

Allocation: An allocation (a.k.a. division, assignment) A = (Ai)i∈N maps each player
i ∈ N to a (mutually exclusive) subset of goods Ai ∈ 2R, which is called the player’s
bundle. Certain settings may impose additional restrictions on feasible allocations. For
instance, in fairly scheduling presentations at a conference, it is required that each pre-
senter be assigned exactly one time slot. Let A denote the set of feasible allocations.

Preferences/valuations: To measure how good an allocation is, we need information
about how much players like their bundles. A common approach is to use cardinal
preferences: the valuation (a.k.a. utility function) of player i, denoted vi : 2R → R, de-
scribes the real-valued utility derived by the player for each possible bundle of goods.4

Pareto [162] advocated the use of ordinal preferences, which compare bundles instead
of assigning them a real-valued utility.5

There is an obvious tradeoff between the use of ordinal versus cardinal preferences.
Ordinal preferences reveal less information than cardinal preferences, but also impose
less cognitive load on the players. The use of ordinal preferences is more prevalent in
fields such as social choice where it is difficult to assign real values to outcomes (e.g., to
the event that one’s preferred candidate becomes the president). In contrast, in many
practical applications of fair division, people can determine the amount of money they
are willing to pay to receive a bundle of goods (e.g., a chair and a desk), and can submit
that as the value. Hence, the fair division literature often uses cardinal preferences.

That said, much of the literature intentionally avoids interpersonal comparisons be-
tween the valuations of two players. Moulin [151, pp. 6-7] provides an excellent account
of the technical as well as moral objections against interpersonal comparisons. In fact,
several fairness and efficiency desiderata only compare bundles from the perspective of
the same player. This makes the assumption of having cardinal valuations unrestrictive
as the only information really used is ordinal information.

Mechanism: A mechanism f takes as input the reported valuations (a.k.a. revelations)
of the players v = (vi)i∈N , and returns an allocation A = (Ai)i∈N . This process can

3We require them to be “goods”, i.e., be valued positively by the players. Fair allocation of “bads” (i.e.,
items with negative utility) is the subject of exciting ongoing research.

4Typically, we assume vi(∅) = 0 and vi(X) 6 vi(Y) for all X ⊆ Y ⊆ R.
5Restrictions on feasible allocations can often be modeled using the valuations of the players. For

instance, in the previous example of scheduling conference presentations, we can modify players’ valu-
ations such that they do not have additional value for receiving multiple time slots. Together with the
mild restriction (called nonwastefulness) that players should not be allocated extraneous resources, this
reconstructs the desired restriction.
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be broken into three stages: eliciting the valuations, setting the fairness and efficiency
desiderata, and finding an allocation that satisfies these desiderata.

Step 1: Eliciting the valuations.

When players are self interested, this can be tricky as a player may misrepresent
her valuation to receive a more preferred bundle. Typically, monetary transfers from
the designer to the players are sufficient to incentivize the players to report truth-
fully [58, 106, 196]. However, numerous settings prohibit the use of money by nor-
mative considerations (see, e.g., the classroom allocation application in Chapter 3). In
such cases, incentivizing truth-telling without the use of money is an often sought-after
property, which is defined below.

Definition 1.1 ((Group) Strategyproofness). A mechanism is called strategyproof if no
player can gain by lying about her valuation, i.e., if truth-telling is a weakly dominant
strategy for every player. In other words, for each player i ∈ N , if A (resp. A′) is the
allocation returned when player i reports her true valuation vi (resp. a false valuation
v′i), then, ceteris paribus, we must have vi(Ai) > vi(A′i). A mechanism is called group
strategyproof if no group of players can simultaneously gain by misreport their valu-
ations. A mechanism is called strongly group strategyproof if no group of players can
simultaneously misreport their valuations in a way such that no group member is worse
off, and at least one group member is strictly better off.

Step 2: Defining fairness and efficiency desiderata.

The next step is to define what “socially desirable” means in the fair division context.
Vaguely, we want our allocation to be both fair and efficient. The standard approach,
derived from normative economics, proposes a scale of fairness and efficiency desider-
ata, which are often defined in a general form, and are applicable to a wide range of
settings.

The most compelling of all fairness notions — perhaps the gold standard — is called
envy freeness, and was originally proposed by Foley [93].

Definition 1.2 (Envy-freeness). An allocation A ∈ A is called envy free if every player
values her bundle at least as much as every other player’s bundle, that is, if

vi(Ai) > vi(Aj), ∀i, j ∈ N .

In some sense, envy-freeness requires everyone to be simultaneously be happy about
the allocation, which is not always possible. For instance, if an indivisible diamond
needs to be allocated between two players, the one receiving it will inevitably be envied
by the other. However, when envy-freeness can be achieved, it is often sufficient, and
implies many other fairness notions. Let us review another popular notion of fairness.

Definition 1.3 (Proportionality). An allocation A ∈ A is called proportional if every
player’s utility is at least 1/|N | fraction of her utility for the set of all resources R, that
is, if

vi(Ai) >
1
|N | · vi(R), ∀i ∈ N .
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Proportionality declares (1/|N |) · vi(R) as the fair share of player i,6 and demands
each player receive at least her fair share. Observe that in the diamond-allocation ex-
ample above, proportionality is also impossible to achieve. Assuming all resources are
allocated, it can be shown that envy-freeness implies proportionality for additive valu-
ations.

Budish [44] (building on concepts introduced by Moulin [150]) presented an alterna-
tive fairness notion. It is based on the classic cut-and-choose procedure for two players,
in which a player divides the resources into two bundles, but gets to pick her bundle
after the other player. With divisible goods, this ensures envy-freeness. Budish general-
ized this to the case of more than two players and possible indivisibilities.

Definition 1.4 (Maximin Share). Let Πk(R) denote the labeled set of partitions ofR into
k bundles. The maximin share (MMS) guarantee of player i ∈ N , denoted MMSi, is the
utility the player can guarantee herself if she divides the set of resources into n bundles,
but picks her bundle last and receives the worst one according to her:

MMSi = max
A∈Π|N |(R)

min
k∈[|N |] vi(Ak).

An allocation A ∈ A is called an α-MMS allocation if

vi(Ai) > α · MMSi, ∀i ∈ N .

One can check that for additive valuations, maximin share is implied by proportion-
ality. Let us now review another relaxation of envy-freeness, which has been studied in
different forms over the years [44, 50, 105, 165].

Definition 1.5 (Envy-freeness up to one good). An allocation A ∈ A is called envy free
up to one good if every player values her bundle at least as much as any other player’s
bundle after removing at most one good from the other player’s bundle, that is, if(

vi(Ai) > vi(Aj)
)
∨
(
∃r ∈ Aj, vi(Ai) > vi(Aj \ {r}

)
, ∀i, j ∈ N .

In addition to fairness, we often desire that resources should not be wasted, i.e., the
allocation should be efficient. Below, we review a popular notion of efficiency.

Definition 1.6 (Pareto Optimality). An allocation A ∈ A is called Pareto optimal if no
alternative allocation can increase the utility to a player without reducing the utility to
another player, that is, if(

∃i ∈ N , vi(A′i) > vi(Ai)
)

=⇒
(
∃j ∈ N , vj(A′j) < vj(Aj)

)
, ∀A′ ∈ A.

Step 3: Computing a fair and efficient allocation.

We now review standard fair division settings, and compelling mechanisms for them.

6This would be her utility ifR is given entirely to a player chosen uniformly at random.
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Additive valuations: Perhaps the most studied class of valuations is additive valua-
tions, in which each player’s value for a bundle of goods is the sum7 of her values for
the individual goods in the bundle. Let us review two special cases of this setting.

Divisible goods: If the goods are divisible (i.e., can be split among players), we can simply
model a single, heterogeneous8 good as one can “embed” all goods in it. Such a good
is traditionally called a cake. Cake cutting studies fair and efficient allocations of a cake;
see the excellent survey and book chapter by Procaccia [169, 170] for a detailed review.

There are two existing results that are particularly relevant for us. Settling a long
standing open question, Aziz and Mackenzie [11] recently presented a bounded time
protocol to compute an envy-free division of the cake (that allocates the entire cake).
However, if we were to relax the computational restriction, Weller [201] had already
shown that a principled solution concept called Competitive Equilibrium from Equal In-
comes (CEEI) [98, 113, 195] finds an allocation that is both envy free and Pareto optimal.

Indivisible goods: Let us now consider the setting where all the goods are indivisible. In-
terestingly, barring computational considerations, this is a strictly more general setting
because partitioning a divisible good into k identical indivisible parts, and taking the
limit of k going to infinity can model the divisible good perfectly. Unfortunately, with
indivisibilities, a CEEI allocation may not exist. Hylland and Zeckhauser [113] showed
that CEEI can still be used to compute a lottery for allocating n players to an equal
number of indivisible “slots” in an envy free and ex-ante Pareto optimal way. Budish
[44] proposed an approximate CEEI that is envy free up to one good and approximately
Pareto optimal.9 A few years later, settling an open question, Procaccia and Wang [175]
showed that, while it is not always possible to find an MMS allocation, one can always
find a (2/3)-MMS allocation. This was the first approach that provided a non-trivial,
provable fairness guarantee for allocating indivisible goods.

Two years later, Caragiannis et al. [50] showed that a much simpler and principled
mechanism, Maximum Nash Welfare, that maximizes the product of the players’ utilities
satisfies a more elegant relaxation of envy-freeness — envy-freeness up to one good
— and Pareto optimality. Given that maximum Nash welfare coincides with CEEI for
divisible goods, it follows that their result generalizes results by Varian [195] and Weller
[201]. Further, maximum Nash welfare is also shown to be (1/Θ(

√
|N |))-MMS.

Non-additive valuations: For dichotomous preferences, under which players have val-
ues 0 or 1 for each feasible allocation, Bogomolnaia and Moulin [30] showed that an-
other principled mechanism called the leximin mechanism has a number of compelling
properties: proportionality, envy freeness, Pareto optimality, and group strategyproof-
ness. Ghodsi et al. [99] studied the leximin mechanism for allocating divisible computa-
tional resources in a cluster, under the name of Dominant Resource Fairness mechanism,
and showed the exact same properties. Later, Kurokawa et al. [126] generalized these

7For divisible goods, sum becomes integration.
8“Heterogeneous” means different parts of the good may be valued differently by the players.
9In addition, it satisfies a weaker version of the maximin share guarantee.
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as well as several other results from the literature, showing that the properties of the
leximin mechanism hold for a much more general class of valuations.

Principled economic solution concepts for fair division.

At its core, fair division aids social decision making, and the goal is to improve over-
all well-being of the group of individuals involved. While the individual well-being is
traditionally defined using a utility function, there is no objective definition of overall
well-being of a group. To that end, a fundamental approach from welfare economics
suggests choosing the decision that optimizes a social welfare function, a monotonic func-
tion of the individual utilities that serves as a measure of overall well-being of the group.
Three principled mechanisms that maximize well-established social welfare functions
are:

• maximizing the utilitarian welfare [31, 94], which measures the sum of the utilities to
the individuals;

• maximizing the Nash welfare [50, 59, 98, 113, 130, 195, 201], which measures the
product of the utilities to the individuals; and

• maximizing the egalitarian welfare, which measures the minimum of the utilities to the
individuals. The well-known leximin mechanism [28, 30, 56, 99, 101, 126, 165, 186]
is a refinement that not only maximizes the minimum utility, but also breaks ties
in favor of allocations with higher second minimum utility, breaks remaining ties
in favor of allocations with higher third minimum utility, and so on.

1.2.2 Social Choice

The basic social choice question is the following: How do select, in a socially desirable fash-
ion, an outcome from a set of possible outcomes given heterogeneous preferences/opinions of a set
of people over the outcomes? Following the traditional notation from social choice theory,
we will use the term voters to denote people, votes to denote their preferences/opinions,
profile to denote the collection of votes, and voting rule to denote the mapping from pro-
files to selected outcomes. As discussed in Section 1.2.1, in many social choice settings,
it is difficult for voters to assign real-valued utilities to alternatives. Hence, the literature
often revolves around ordinal. Unless mentioned otherwise, we will henceforth assume
that each voter provides a ranking (a.k.a. total order) over the set of alternatives. Before
diving into approaches to designing voting rules, let us dip our nib into the history of
social choice theory.

A brief history of social choice theory: The origin of the field dates back to the late
eighteenth century, when Condorcet [60] proposed the majority rule to aggregate ranked
preferences into a collective decision. According to his proposal, the decision between
each pair of alternatives should be made by considering which alternative a majority
of the voters prefer. The collective decision should then be made by following such
pairwise decisions. Unfortunately, a classic paradox shows that the will of the majority
on pairwise decisions can result in cycles.10

10That is, it may happen that for alternatives a, b, and c, a majority prefers a to b, and b to c, but c to a.
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Approximately two centuries later, Arrow [5] gave birth to modern social choice
theory with his classic impossibility result. His approach was inspired from normative
economics. He formulated three axioms that “socially desirable” voting rules should
satisfy, and showed no voting rule satisfies them together. Subsequent research relaxed
the axioms to obtain positive results. An important step in the early days of modern
social choice theory was formalization of Condorcet’s ideas. One formalization was
in the form of Kemeny’s rule [119, 209], which finds minimal changes in the will of
the majority to eliminate such cycles. Another formalization was Dodgson’s rule [77],
which finds minimal changes in the input preferences until one alternative is preferred
to every other alternative by a majority.

The next breakthrough was the birth of computational social choice due to papers
by Bartholdi et al. [19, 20]. They infused the notion of computational hardness from
theoretical computer science into social choice theory, and showed that while it can be
problematic, as determining the winner may sometimes be hard, it can also be a boon,
as one can prevent voters from efficiently manipulating voting rules, thus circumvent-
ing another classic impossibility result by Gibbard [102] and Satterthwaite [189]. Sub-
sequently, research on computational social choice boomed with numerous results on
complexity or computability of winner determination [22, 68, 79, 142], strategic vot-
ing [18, 64, 67, 69, 76, 177], bribery and control [21, 88, 89, 90, 112], etc.

An alternative paradigm and ground truth: While traditionally social choice theory
addresses aggregation of subjective preferences, a new paradigm has come to light with
the recent advent of crowdsourcing platforms. In this alternative paradigm, whose roots
date back to Condorcet [60], there exists an unknown, objective ground truth compari-
son among the alternatives. Voters submit their noisy opinions about this ground truth,
and the goal now is to aggregate these noisy opinions to uncover the ground truth, or
the best estimate thereof.

Although this is a conceptually different question, which does not require a “socially
desirable” aggregation, at its core the technical problem is still the same: aggregating
rankings of the alternatives to find a central ranking, of sorts. In fact, applications in
the subjective and objective domains differ subtly; e.g., in case of multiple candidates
running for president, asking voters to rank candidates according to their preference
falls within the subjective domain, whereas asking voters to rank the candidates by
their likelihood of becoming the president falls within the objective domain.

Approaches to designing voting rules: Currently, there are four prominent approaches
to designing voting rules.

1. The axiomatic approach. In this approach, one defines axiomatic desiderata that
must always be satisfied during the aggregation. Examples of such desiderata
include majority consistency, Condorcet consistency, monotonicity, independence
of irrelevant alternatives, and consistency. Refer to the book chapters by Brandt
et al. [39] and Zwicker [213] for a detailed exposition.

2. The distance rationalizability approach. Instead of defining desiderata that must al-
ways be satisfied, this approach identifies a subset of profiles in which an obvious

10



collective choice exists. Then, given an arbitrary profile, one finds the nearest pro-
file (in a precise sense) in which an obvious collective choice exists, and returns
this choice. Refer to the book chapter by Elkind and Slinko [83] for an overview.

3. The implicit utilitarianism approach. A recent line of papers [35, 51, 171] have put for-
ward a fundamentally different approach. They assume that the expressed ranked
preferences are proxy for underlying cardinal utilities, and attempt to maximize
the (cardinal) utilitarian welfare. Because it is impossible to choose the welfare-
maximizing outcome given the limited ordinal information, they choose the out-
come that provides the best worst-case approximation of welfare.

4. The statistical framework. Inspired by the objective domain, the statistical frame-
work for voting models the generation of noisy opinions given the ground truth,
and uses the observed opinions to predict what the ground truth must have been.
The standard approach in this framework is the maximum likelihood estimation
(MLE) approach [66, 82, 85, 140, 172, 179], which uses a single model of noisy opin-
ion generation to identify and return the collective choice that is most likely to have
generated the observed opinions. Recently, Caragiannis et al. [48, 49] extended
this approach to designing robust voting rules, which identify the collective choice
that is likely to have generated the observed opinions according to a wide fam-
ily of generation models rather than being tailored to a single, often inaccurate
generation model. Procaccia et al. [182] proposed the first worst-case approach
to voting, which is more robust and fundamentally different than the statistical
framework.

In summary, social choice theory has a somewhat different take on what “socially de-
sirable” means, but, unlike fair division, several fundamentally different answers exist:
accuracy in pinpointing the ground truth, satisfaction of axiomatic desiderata, welfare
maximization, etc. We note that computational aspects (e.g., of winner determination)
are important and have been studied in all of the abovementioned approaches.

1.3 Overview of Thesis Structure and Our Results

The thesis presents a selection of my work on fair division and social choice theory.
To keep the thesis succinct, only works that have novel conceptual contributions, sig-
nificantly advance the understanding of an existing concept, and/or have important
real-world implications are included. The content is organized into two parts, each con-
sisting of four chapters: Part I describes the work on fair division, and Part II describes
the work on social choice theory.

Part I: Fair Division

In this part, we present our analysis of two fundamental solution concepts — maxi-
mizing the Nash welfare and maximizing the egalitarian welfare (more specifically, the
leximin mechanism), as well as of solution concepts derived from them.

Chapter 2: Allocating Goods and Maximum Nash Welfare
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This chapter invokes the notion of envy-freeness up to one good (EF1) for allocation of
indivisible goods under additive valuations. This notion was first introduced by Lipton
et al. [134], albeit in a more general context. The algorithm they presented satisfies EF1,
but does not guarantee additional properties such as Pareto optimality (PO). Budish [44]
presented approximate CEEI that satisfies EF1, but is only approximately efficient. Fur-
ther, the guarantees provided by his mechanism are not compelling when the number
of players is small and there is a single copy of each good, which is typical on Spliddit.

The solution concept of our interest, maximizing Nash welfare, is a well-established
solution concept. It was first studied by Nash [154] in the context of his classic bar-
gaining problem. In the networking community, the same solution goes by the name
of proportional fairness, due to another property that it satisfies when goods are divis-
ible [118]. In the context of allocating indivisible goods, Ramezani and Endriss [184]
showed that the problem is NP-hard for additive valuations. Cole and Gkatzelis [59]
gave a constant-factor, polynomial-time approximation algorithm, but such an approx-
imation need not satisfy any of the fairness or efficiency guarantees introduced in Sec-
tion 1.2.1. The APX-hardness result by Lee [130] shows that a constant-factor approxi-
mation is the best one can hope for if we impose the restriction of polynomial running
time.

In this chapter, we establish fairness and efficiency properties of the Maximum Nash
Welfare (MNW) solution for allocating indivisible goods (which, as we saw in Sec-
tion 1.2.1, is strictly more general than allocating divisible goods). Our main result
is that it always outputs an allocation that is both EF1 and PO. And while EF1 and PO
are straightforward to obtain in isolation, the MNW solution is the only known mecha-
nism in the literature to achieve them together, which is a strong argument in its favor.
Further, guarantees such as EF1 and PO are easy to convey to the end users, which is
crucial for the deployment of the solution concept to Spliddit.

Additionally, we also show that the MNW solution gives a tight 2/(1 +
√

4n− 3)
approximation to the maximin share guarantee, and a tight (

√
5 − 1)/2 ≈ 0.618 ap-

proximation to another fairness desideratum that we term the pairwise maximin share
guarantee, where n is the number of players. The approximation ratios are, however,
1 in more than 90% of the instances in our experiments on real data from Spliddit. We
also show that the fairness and efficiency guarantees of the MNW solution extend, to
some extent, to the more general class of submodular valuations.

Our final contribution is a fast implementation for exactly computing the MNW so-
lution for the form of valuations elicited on Spliddit, in which a player is required to
divide 1000 points among the available goods.11 Our algorithm scales very well, solv-
ing relatively large instances with 50 players and 150 goods in less than 30 seconds,
while other candidate algorithms we describe fail to solve even small instances with 5
players and 15 goods in twice as much time.

Chapter 3: Allocating to Strategic Agents and The Leximin Mechanism

11This is still an NP-hard problem due to a result by Nguyen et al. [155].
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In this chapter, we study a real-world fair division setting in which unused classrooms
in the public schools in California are to be allocated fairly to the local charter schools.
More specifically, we have i) public schools (a.k.a. facilities), each of which has a given
number of unused classrooms — its capacity, and ii) charter schools (a.k.a. agents), each
of which requires a certain number of classrooms — its demand, views a subset of fa-
cilities as acceptable, and has dichotomous preferences, i.e., has utility is 1 if it receives
exactly the desired number of classrooms at a single acceptable facility and 0 otherwise.

Previous work fails to provide compelling guarantees in this setting. The pseudo-
market mechanism by Hylland and Zeckhauser [113] and the probabilistic serial mech-
anism by Bogomolnaia and Moulin [29] are not strategyproof, and only work when
the number of agents and goods (i.e., classrooms) are equal. The probabilistic serial
mechanism admits several extensions for multi-unit demands [10, 45, 55, 123, 183], but
they can only allocate at most d classrooms to a charter school demanding d classrooms,
whereas we require the charter school to receive either exactly d classrooms or no class-
rooms at all. Approximate CEEI due to Budish [44] has practical guarantees, but only if
each facility has a large number of unused classrooms, which is not the case in practice.
The mechanism that uniformly randomizes among allocations maximizing the utilitar-
ian welfare is known to be envy free, Pareto optimal, and strategyproof in a setting more
general than the classroom allocation setting [31, 94], but violates proportionality and
suffers from “tyranny of the majority”, making it highly undesirable in our setting; refer
to Chapter 3 for more details.

The closest starting point is the leximin mechanism, which Bogomolnaia and Moulin
[30] studied for a special case of our setting, in which all demands and capacities are 1
and the number of agents and facilities are equal, and showed that it satisfies propor-
tionality, envy-freeness, Pareto optimality, and group strategyproofness. Their tech-
niques, however, do not extend directly to our more general setting.

In Chapter 3, we show that the leximin mechanism remains compelling (i.e., satisfies
all the four properties) in the classroom allocation setting. The beauty of these proper-
ties, as well as of the leximin mechanism itself, is that they are intuitive and can easily
be explained to a layperson; this contributes towards the practicability of the approach.
Importantly, we establish the properties of the leximin mechanism in a setting much
more general than the classroom allocation setting, thereby generalizing results from a
vast number of papers in the literature [28, 30, 56, 99, 101, 165, 186, 192, 199, 200] on
topics including resource allocation, cake cutting, and kidney exchange.

Studying the mechanism from a combinatorial optimization viewpoint, we show
that the expected number of classrooms allocated by the leximin mechanism is always
at least 1/4 of the maximum number of classrooms that can possibly be allocated. We
conjecture that an improved bound of 1/2 is feasible.

Our final contribution is an extremely fast implementation for the NP-hard prob-
lem of exactly computing the leximin allocation. The crux of our implementation is to
modify a naı̈ve approach, which solves a sequence of linear programs with an expo-
nential number of variables, work with the duals that have an exponential number of
constraints, and formulate a separation oracle for them as an integer linear program.
In our experiments based on real data, our implementation solves instances with 300
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charter schools and more than 1000 public schools (which is larger than any real-world
instance) in a few minutes on average. Remarkably, in the experiments, the expected
number of charter schools satisfied and the expected number of classrooms allocated
by the leximin mechanism are, on average, at least 98% of the respective maxima.

Chapter 4: Fair Division of Computational Resources

A prominent application of the leximin mechanism studied in Chapter 3 is for allocating
divisible computational resources, e.g., CPU, RAM, and network bandwidth to agents
(such as jobs and users) in computing systems (such as operating systems and compu-
tational clusters). The traditional approach employed a single resource abstraction, in
which fixed amounts of different resources were bundled into “slots”, and the slots are
then allocated to the agents. However, in a realistic environment where agents have het-
erogeneous demands, such an abstraction inevitably leads to significant inefficiencies.

Ghodsi et al. [99] suggested modeling the heterogeneous demands of the agents
through Leontief preferences that reflect the desire to maintain a fixed proportion be-
tween resource types. For example, if an agent wishes to execute multiple instances of
a job that requires 2 CPUs and 1 GB RAM, it would prefer 3 CPUs and 1.5 GB RAM
over 2 CPUs and 1 GB RAM, but would be indifferent between the former allocation
and 4 CPUs and 1.5 GB RAM, because in both instances, the agent can only run 1.5 in-
stances of its task (allowing divisible tasks). They studied the leximin mechanism, un-
der the name of the Dominant Resource Fairness (DRF) mechanism, and showed that
for Leontief preferences, it satisfies four compelling desiderata: sharing incentives (SI,
a.k.a. proportionality), envy freeness (EF), Pareto optimality (PO), and strategyproof-
ness (SP). However, their work suffers from two unrealistic assumptions — divisible
tasks and strictly positive demands (i.e., each agent requires a positive quantity of each
resource).

In this chapter, we make three key contributions. First, we consider a realistic ex-
tension of the Ghodsi et al. [99] setting that incorporates priorities among agents in
the form of agent weights, and relaxes their restrictive assumption that every agent re-
quires each resource. We show that all four properties of the DRF mechanism hold (and
strategyproofness can in fact be strengthened to group strategyproofness) in this more
general setting. We note that our later work [126] presented in Chapter 3 subsumes this
analysis as part of a more general analysis.

Second, we explore the relation between the aforementioned desirable properties,
and maximization of the social welfare—the sum of utilities of the agents. To study
social welfare we must assume an interpersonal comparison of utilities. Focusing on a
natural utility function, we observe that DRF can produce allocations that only provide
roughly 1/m of the social welfare of the optimal allocation, where m is the number of
resources. However, we vindicate DRF, demonstrating that this poor welfare property
is necessary for any mechanism that satisfies at least one of the three properties SI, EF,
and SP.

Finally, we tackle another realistic extension in which the tasks in the example pre-
sented above are indivisible, that is, an agent’s task would require a minimum, indivis-
ible bundle of resources. For example, if an agent requires 2 CPUs and 1 GB RAM to
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run one instance of its task, allocating 1 CPU and 1/2 GB RAM would be no more pre-
ferred than allocating nothing at all. In this novel setting, we observe that DRF performs
poorly; in fact, envy freeness and Pareto optimality are trivially incompatible. Inspired
by the aforementioned envy-freeness up to one good property, we introduce a similar
property envy-freeness up to one bundle (EF1): an agent i prefers its own allocation to the
allocation of another agent j, given that a single copy of the demanded bundle of i is
removed from the allocation of j. While SP is still incompatible with PO and EF1 (as
well as with PO and SI) in this setting, we design a mechanism, SEQUENTIALMINMAX,
which satisfies PO, SI, and EF1. The mechanism is a variant of the leximin mechanism
that sequentially allocates bundles to minimize the maximum share of a resource that
any agent has after allocation.

In related work, Li and Xue [131] provided a characterization of mechanisms that
satisfy certain desirable properties under Leontief preferences, but their results do not
capture DRF and also suffer from the strictly positive demands assumption. Friedman
et al. [97] introduced a family of weighted DRF mechanisms, but the weights in their
model are internal to the mechanism, and do not reflect agent priorities. Further, they,
too, assume strictly positive demands. Dolev et al. [78] studied an alternative fairness
criterion, no justified complaints, showed existence of allocations satisfying it, and com-
pared them with the DRF allocation. Gutman and Nisan [108] presented polynomial-
time algorithms for computing allocations under a family of mechanisms that includes
DRF, and for computing allocations satisfying no justified complaints.

Chapter 5: Dynamic Fair Division

A major limitation of the existing work on fairly dividing computational resources, and
in fact, of the entire existing literature on fair division, is that they study one-shot fair
allocations in static settings where all the agents and all the resources exist in the system
from the beginning. Most real systems are more dynamic: agents typically arrive and
depart over time, and the system adjusts the allocation of resources accordingly.

The networking community has studied the related problem of fairly allocating a
single homogeneous resource in a queuing model where each agent’s task requires a
given number of time units to be processed. In other words, in these models tasks are
processed over time, but demands stay fixed, and there are no other dynamics such as
agent arrivals and departures. The well-known fair queuing solution [73] allocates one
unit per agent in successive round-robin fashion. This solution has also been analyzed
by economists [152].

In the fair division literature, the only previous attempt to study fairness in a dy-
namic environment was by Walsh [198], who proposed the problem of fair online cake
cutting where agents arrive, take a piece of cake, and immediately depart. He suggested
several desirable properties for cake cutting mechanisms in this setting, and showed
that adaptations of classic mechanisms achieve these properties. However, as Walsh
pointed out, allocating the whole cake to the first agent also achieves the same proper-
ties, making the setting trivial. His notion of forward envy freeness is related to our notion
of dynamic envy freeness.
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In this paper, we extend the model introduced in Chapter 4 to include agent arrivals
over time, thus introducing the first non-trivial model for and initiating the field of
dynamic fair division.

Even on the conceptual level, dynamic settings challenge some of the premises of
fair division theory. For example, if one agent arrives before another, the first agent
should intuitively have priority; what does fairness mean in this context? We introduce
the concepts that are necessary to answer this question, and design novel mechanisms
that satisfy our proposed desiderata.

Specifically, we consider an environment in which agents arrive over time (but do
not depart), and the allocations made to agents are irrevocable, i.e., the mechanism
can allocate more resources to an agent over time, but cannot take resources back. See
Chapter 5 for additional discussion on these assumptions.

We adapt prominent notions of fairness, efficiency, and truthfulness to our dynamic
settings. For fairness, we ask for envy freeness (EF) and sharing incentives (SI) at each
point in time. For truthfulness, we seek strategyproof (SP) mechanisms under which
agents cannot gain (at any point in time) from misreporting their demands. For effi-
ciency, we introduce the notion of dynamic Pareto optimality (DPO): if k agents are enti-
tled to k/n of each resource, the allocation should not be dominated (in a sense that will
be formalized in the chapter) by allocations that divide these entitlements.

Our first result is an impossibility: DPO and EF are incompatible. We proceed by
relaxing each of these properties. First, we relax EF to a new dynamic property, which
we call dynamic EF (DEF), that allows an agent to envy another agent that arrived earlier,
as long as the former agent was not allocated resources after the latter agent’s arrival.
We construct a new mechanism, DYNAMIC DRF, and prove that it satisfies SI, DEF, SP,
and DPO.

Next, we relax the DPO property. Our cautious DPO (CDPO) notion allows alloca-
tions to only compete with allocations that can ultimately guarantee EF, regardless of
the demands of future agents. We design a mechanism called CAUTIOUS LP, and show
that it satisfies SI, EF, SP, and CDPO. In a sense, our theoretical results are tight: EF
and DPO are incompatible, but relaxing only one of these two properties is sufficient to
enable mechanisms that satisfy both, in conjunction with SI and SP.

Despite the assumptions imposed by our theoretical model, we believe that our new
mechanisms are compelling, useful guides for the design of practical resource allocation
mechanisms in realistic settings. Indeed, we test our mechanisms on real data obtained
from a trace of workloads on a Google cluster, and obtain encouraging results.

Part II: Social Choice Theory

In this part, we study voting rules in both the subjective and the objective domains.
Chapter 6 studies a rather modern, implicit utilitarianism approach for the subjective
domain. Chapters 7 and 8 introduce the concept of robust voting rules, and design
them. Chapter 9 takes the robustness approach further by introducing a worst-case
model of voting.

Chapter 6: Subset Selection Using Implicit Utilitarian Voting
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In this chapter, we study the classic social choice problem of aggregating ranked prefer-
ences of a set of voters into a collective decision. While traditional social choice theory
typically takes a normative approach, focusing on the design of voting rules that satisfy
certain desirable axioms, researchers in computational social choice [40] often advocate
quantitative approaches. The high-level idea is to identify a compelling objective func-
tion, and design voting rules that optimize this function.

A recent line of papers [3, 4, 35, 47, 171] advocated an approach in which one as-
sumes that voters have latent cardinal utilities which are consistent with the expressed
ranked preferences, and focuses on maximizing the utilitarian social welfare, i.e., the sum
of voters’ utilities. We refer to this approach as implicit utilitarian voting. In this ap-
proach, the performance of a voting rule can be quantified via a measure called distor-
tion: the worst-case (over utility functions consistent with the reported profile of rank-
ings) ratio between the social welfare of the optimal (welfare-maximizing) alternative,
and the social welfare of the alternative selected by the voting rule.

Procaccia and Rosenschein [171] analyzed the distortion of existing voting rules, and
Boutilier et al. [35] designed voting rules that minimize distortion. The work of Boutilier
et al. [35] provides a compelling solution but only when a single alternative is selected
by the voting rule. Several common applications (e.g., choosing a committee) require
selection of a subset of alternatives. In this paper, we extend the implicit utilitarian
approach to selecting a subset of alternatives, and understand the guarantees they pro-
vide, as well as their performance in practice.

There exist other approaches in the computational social choice literature for sub-
set selection. Under the Chamberlin-Courant method, for example, each voter assigns
a score to a set equal to the highest score of any alternative in the set, and the (com-
putationally hard) objective is to choose a subset of size k that maximizes the sum of
scores [54, 178]. Skowron et al. [191] generalize the way in which the score of a voter for
a subset of alternatives is computed. Aziz et al. [12] propose selecting a subset of alter-
natives in order to satisfy a fairness axiom they term justified representation, and study
whether common voting rules satisfy this axiom. The budgeted social choice frame-
work of Lu and Boutilier [138] is more general in that the number of alternatives to be
selected is not fixed; rather, each alternative has a cost that must be paid to add it to the
selection.

We make four main contributions. First, on a conceptual level, we introduce the
additive notion of regret into the implicit utilitarian voting setting, as an alternative to
the multiplicative notion of distortion. Second, we derive worst-case bounds on the
distortion and regret of optimal deterministic and randomized voting rules. Third, we
empirically compare the worst-case-optimal deterministic voting rules with respect to dis-
tortion and regret — denoted f ∗dist and f ∗reg, respectively — with a slew of well-known
voting rules, in terms of the average-case distortion and regret using synthetic and real
data. We find that f ∗reg outperforms all other rules on average, even when measuring
distortion! Fourth, we develop a scalable implementation for f ∗reg (which, we show,
is NP-hard to compute). We have deployed this rule to our upcoming social choice
website RoboVote.org.
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Chapter 7: Robust Voting Rules

In this chapter, we study the design of voting rules in the objective domain of social
choice, i.e., in the case where a latent ground truth exists. Specifically, we assume that
there exists a true ranking of the alternatives, and we receive ranked opinions which are
noisy estimates of this underlying true ranking. Our goal is to recover the true ranking.

The standard approach in the literature is the maximum likelihood estimation (MLE)
approach [7, 9, 65, 66, 70, 82, 140, 172, 179, 206, 207, 209]. In this approach, one fixes
a “noise model”, which defines the probability of each ranking being generated as a
noisy estimate given each possible ground truth ranking, and uses this noise model to
identify the ranking that has the most likelihood of being the ground truth. A classic
noise model is Mallows’ model [60, 139], under which each voter ranks each pair of
alternatives correctly with probability p > 1/2 and incorrectly with probability 1− p,
and the mistakes are i.i.d.12 The MLE rule for Mallows’ model is known as the Kemeny
rule [119].

As compelling as the MLE approach is, there are many different considerations in
choosing a voting rule, and insisting that the voting rule be an MLE is a tall order (there
is only one MLE per noise model); this is reflected in existing negative results [66, 85].
We relax this requirement by asking: How many votes do prominent voting rules need
to recover the true ranking with high probability? In crowdsourcing tasks, for example,
the required number of votes directly translates to the amount of time and money one
must spend to obtain accurate results. Clearly, the MLE rule requires the least number
of votes. Focusing on Mallows’ model, we show that its MLE rule (the Kemeny rule)
sits within a larger family of voting rules — pairwise-majority consistent (PM-c) rules —
that all require asymptotically optimal number of votes (logarithmic in the number of
alternatives) to pinpoint the ground truth with a desired confidence. We show that sev-
eral other voting rules (e.g., Borda count) require a strictly higher, polynomial number
of samples, while rules such as plurality and veto require an even higher, exponential
number of samples.

Taking one step further and adopting a more normative viewpoint, we seek voting
rules that satisfy accuracy in the limit: given an infinite number of votes, the voting rule
should be guaranteed to return the correct ranking. Again, focusing on Mallows’ model,
we show that two wide families of voting rules — PM-c rules and position-dominance
consistent (PD-c) rules — are accurate in the limit. These families are disjoint and col-
lectively encompass most popular voting rules. Finally, we observe that this approach
still produces voting rules that are tailored to a specific noise model, and thus would
not provide any guarantees if the assumed noise model differs from the one that really
governs the generation of noisy votes in practice. We thus seek voting rules that pro-
vide accuracy in the limit with respect to all noise models within a broad class of noise
models. We pinpoint the exact classes of noise models (of a specific form) for which the
families of PM-c and PD-c rules are accurate in the limit, and show that these are in-
deed broad classes of noise models, as desired. The final result in the chapter identifies
an extremely broad class of noise models, and pinpoints the unique voting rule, which

12Intuitively, if a ranking is not obtained because of cycle formation, the process is restarted.
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we term the modal ranking rule, that is accurate in the limit with respect to every noise
model in this class.

Chapter 8: Robust Voting on Social Networks

Previous work in the statistical framework of voting (including the work described in
Chapter 7) relies on a crucial modeling assumption: the votes are independent (condi-
tional on the truth). This assumption is clearly satisfied in some settings, but in many
other settings — especially when the voters are people — votes are likely to be cor-
related through social interactions. We refer to the structure of these interactions as a
social network, interpreted in the broadest possible sense: any form of interaction quali-
fies for an edge. From this broad viewpoint, the structure of the social network cannot
be known, and, hence, votes are correlated in an unpredictable way. Inspired by the ro-
bustness approach from Chapter 7, our goal in this chapter is to model the generation of
noisy rankings on a social network given a ground truth, and identify voting rules that
are accurate in the limit with respect to any network structure and (almost) any choice
of model parameters.

Our model is inspired from the independent conversations model due to Conitzer [63].
In our model, we assume that each alternative a has a true quality µa. The result of an
independent conversation on an edge is a noisy quality estimate for each alternative a
sampled from a Gaussian distribution with mean µa. Each voter assigns a weight to
each incident edge, and computes an aggregate quality estimate for each alternative a
by taking a weighted average of the noisy quality estimates of a on the incident edges.
The voter submits a ranking of the alternatives by their aggregate quality estimates.

We analyze the performance of PM-c rules, PD-c rules, and the modal ranking rule
introduced in Chapter 7. Under a mild condition on the weights placed by the voters
on their incident edges, we show that all PM-c rules, an important subset of PD-c rules,
and the modal ranking rule are accurate in the limit when all the Gaussian distributions
have equal variance. However, when the Gaussians can have unequal variance, many
PD-c rules and the modal ranking rule are no longer accurate in the limit, whereas all
PM-c rules stay accurate in the limit. Therefore, PM-c rules exhibit qualitatively more
robustness than PD-c rules and the modal ranking rule.

Our work is similar in flavor to the work of Conitzer [62, 63]. However, his latter
work [63] only supports two alternatives, and his former work [62] investigates a model
in which the (known) network structure is essentially irrelevant in that the maximum
likelihood estimator does not depend on it. A bit further afield, there is a large body
of work that studies the diffusion of opinions, votes, technologies, or products (but not
ranked estimates) in a social network. An especially pertinent example is the work
of Mossel et al. [147], where at each time step voters adopt the most popular opinion
among their neighbors, and at some point opinions are aggregated via the plurality rule.
Other popular diffusion models that are similar to our work include the independent
cascade model, the linear threshold model, and the DeGroot model [72].

Chapter 9: A Worst-Case Approach to Voting
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In the statistical framework of voting, the MLE approach is specific to a noise model,
and that noise model — even if it exists for a given setting — may be difficult to pin
down [140]. The robustness approach proposed in Chapters 7 and 8 alleviates this is-
sue, but it may potentially require an infinite amount of information. Further, one lim-
itation that applies to the entire statistical framework itself is that it can only provide
compelling guarantees when the number of votes is large. Intuitively, however, if we
receive a small number of votes that are very close to the ground truth, their aggregation
should be accurate as well.

In this chapter, we propose the first worst-case (in other words, adversarial) ap-
proach to aggregating noisy votes that achieves these desired properties. Instead of as-
suming probabilistic noise, we assume a known upper bound t on the “average noise”
(measured by distance from the ground truth, according to a distance metric d) in the
input votes, and allow the input votes to be adversarial subject to the upper bound. And
because it is not always possible to recover the ground truth, we wish to recover a rank-
ing that is guaranteed to be at distance at most k from the ground truth ranking, and
seek bounds on k in terms of t and the number of votes n.

We emphasize that in potential application domains there is no adversary that ac-
tively inserts errors into the votes; we choose an adversarial error model to be able to
correct errors even in the worst case. This style of worst-case analysis is prevalent in
many branches of computer science, e.g., in the analysis of online algorithms [32], and
in machine learning [26, 117].

Our approach is very closely related to the vast literature on error-correcting codes
that uses permutations [see, e.g., 17, and the references therein], and especially to list
decoding of error-correcting codes [see, e.g., 107]. See Chapter 9 for details. Within
social choice theory, our model is reminiscent of distance rationalizability with strongly
unanimous consensus [143], in which one finds the ranking closest to the profile. In our
approach, however, we look at, not only the closest, but all rankings up to an average
distance of t from the given profile — as they are all plausible ground truths — and
return a single ranking that is at distance at most k from all such rankings.

Our theoretical results are threefold. First, we observe that for any distance metric,
one can always recover a ranking that is at distance at most 2t from the ground truth,
i.e., k 6 2t. Subject to polynomial running time, we show a weaker bound k 6 3t.
Second, we complement the upper bounds by providing a universal lower bound of
(roughly) k > t/2 that holds for every distance metric. By imposing an extremely mild
assumption on the distance metric, we can improve the lower bound to (roughly) k > t.
In addition, we consider the four most popular distance metrics used in the social choice
literature, and, for each, prove a tight lower bound of (roughly) k > 2t. Third, in practice
the upper bound t may not be highly accurate. We provide theoretical performance
guarantees in cases where the upper bound t is an underestimate or overestimate of the
tightest upper bound.

Finally, we also test our worst-case-optimal voting rules against many well-known
voting rules on two real-world datasets [140], and show that the worst-case optimal
rules exhibit superior performance as long as the given error bound t is a reasonable
overestimate of the tightest upper bound.
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1.4 Prerequisites

This thesis requires an undergraduate-level mathematical knowledge of topics such as
discrete mathematics, graph theory, algebra, and probability theory, and a graduate-
level knowledge of the theory of computer science including topics such as basic com-
plexity theory, approximation algorithms, randomized algorithms, and optimization.

In particular, the thesis is self-contained with respect to its economic aspects: all the
required economic concepts are introduced in the relevant chapters.

1.5 Bibliographic Notes

The research presented in this thesis is based on joint work with many co-authors, as
described below. In each work, I am either the primary contributor or one of two equal
contributors.

In Part I (fair division), Chapter 2 is based on joint work with Ioannis Caragiannis,
David Kurokawa, Hervé Moulin, Ariel D. Procaccia, and Junxing Wang [50]. Chapter 3
is based on joint work with David Kurokawa and Ariel D. Procaccia [126]. Chapter 4
is based on joint work with David C. Parkes and Ariel D. Procaccia [165]. Chapter 5 is
based on joint work with Ian Kash and Ariel D. Procaccia [165].

In Part II (social choice theory), Chapter 6 is based on joint work with Ioannis Cara-
giannis, Swaparava Nath, and Ariel D. Procaccia [51]. Chapter 7 is based on joint work
with Ioannis Caragiannis and Ariel D. Procaccia [49, 52]. Chapter 8 is based on joint
work with Ariel D. Procaccia and Eric Sodomka [181]. Finally, Chapter 9 is based on
joint work with Ariel D. Procaccia and Yair Zick [182].

1.5.1 Excluded Research

A significant portion of my work during my PhD studies has been excluded from this
thesis to keep the thesis succinct and easy to read. While some of these works falls in
the fair division and social choice realms, many do not. The excluded research includes:

• Work on computational social choice: uncertainty [173], the maximum likelihood
approach [82, 172, 179], geometry of voting [128], and applications to multi-agent
systems [115].

• Work on security games: multi-defender coordination [114].
• Work on cooperative game theory: agent failures [14, 15, 16] and the structure of

synergies [180].
• Work on recommendation systems: false-name-proof recommendations on social

networks [42].
• Work on machine learning: truthful univariate estimation [53].
• Work on prediction markets: theoretical analysis of long-run wealth and market

price in a closed prediction market [120].

21



22



Part I

Fair Division
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Chapter 2

Allocating Goods and Maximum Nash
Welfare

2.1 Introduction

In this chapter, we are interested in the problem of fairly allocating indivisible goods,
such as jewelry or artworks. But to better understand the context for our work, let us
start with an easier problem: fairly allocating divisible goods. Specifically, let there be
m homogeneous divisible goods, and n players with linear valuations over these goods,
that is, if player i receives an xig fraction of good g, her value is vi(xi) = ∑g xigvi(g),
where vi(g) is her non-negative value for the (entire) good g alone.

The question, of course, is what fraction of each good to allocate to each player; and
it has an elegant answer, given more than four decades ago by Varian [195]. Under his
competitive equilibrium from equal incomes (CEEI) solution, all players are endowed with
an equal budget, say $1 each. The equilibrium is an allocation coupled with (virtual)
prices for the goods, such that each player buys her favorite bundle of goods for the
given prices, and the market clears (all goods are sold). One formal way to argue that
this solution is fair is through the compelling notion of envy freeness [93]: Each player
weakly prefers her own bundle to the bundle of any other player. This property is
obviously satisfied by CEEI, as each player can afford the bundle of any other player,
but instead chose to buy her own bundle.

While the CEEI solution may seem technically unwieldy at first glance, it always
exists, and, in fact, has a very simple structure in the foregoing setting: the CEEI allo-
cations (which are what we care about, as the prices are virtual) exactly coincide with
allocations x that maximize the Nash social welfare ∏i vi(xi) [6, Volume 2, Chapter 14].
Consequently, a CEEI allocation can be computed in polynomial time via the convex
program of Eisenberg and Gale [80].

Let us now revisit our original problem — that of allocating indivisible goods, under
additive valuations: the utility of a player for her bundle of goods is simply the sum of
her values for the individual goods she receives. This is an inhospitable world where
central fairness notions like envy freeness cannot be guaranteed (just think of a single
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indivisible good and two players). Needless to say, the existence of a CEEI allocation is
no longer assured.

Nevertheless, the idea of maximizing the Nash social welfare (that is, the product of
utilities) seems natural in and of itself [59, 184]. Informally, it hits a sweet spot between
Bentham’s utilitarian notion of social welfare — maximize the sum of utilities — and the
egalitarian notion of Rawls — maximize the minimum utility. Moreover, this solution
is scale-free, in the sense that scaling a player’s valuation function would not change the
outcome [151]. But, when the maximum Nash welfare solution is wrenched from the
world of divisible goods, it seems to lose its potency. Or does it?

Our goal in this chapter is to demonstrate the “unreasonable effectiveness” [202] —
or unreasonable fairness, if you will — of the maximum Nash welfare (MNW) solution,
even when the goods are indivisible. We wish to convince the reader that

... the MNW solution exhibits an elusive combination of fairness and efficiency
properties, and can be easily computed in practice. It provides the most practicable
approach to date — arguably, the ultimate solution — for the division of indivisible
goods under additive valuations.

2.1.1 Real-World Connections and Implications

Our quest for fairer algorithms is part of the growing body of work on practical applica-
tions of computational fair division [1, 44, 99, 126, 175]. We are especially excited about
making a real-world impact through Spliddit (www.spliddit.org), a not-for-profit fair
division website [104]. Since its launch in November 2014, the website has attracted
more than 60,000 users. The motto of Spliddit is provably fair solutions, meaning that the
solutions obtained from each of the website’s five applications satisfy guaranteed fair-
ness properties. These properties are carefully explained to users, thereby helping users
understand why the solutions are fair and increasing the likelihood that they would
be adopted (in contrast, trying to explain the algorithms themselves would be much
trickier).

One of Spliddit’s five applications is allocating goods. In our view it is the hardest
problem Spliddit attempts to solve, and the previous solution left something to be de-
sired; here is how it worked. First, to express their preferences, users simply need to
divide 1000 points between the goods. This simple elicitation process relies on the ad-
ditivity assumption, and is the reason why, in our view, it is indispensable in practical
applications. Given these inputs, the algorithm considered three levels of fairness: envy
freeness, proportionality, and maximin share guarantee. The algorithm found the highest
feasible level of fairness, and subject to that, maximized utilitarian social welfare. Im-
portantly, a maximin share allocation may not exist, but a (2/3)-approximation thereof is
always feasible [175]. This allowed Spliddit to provide a provable fairness guarantee for
indivisible goods. That said, a (full) maximin share allocation can always be found in
practice [36, 127].

While the algorithm generally provided good solutions, it was highly discontinuous,
and its direct reliance on the maximin share alone — when envy freeness and propor-
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tionality cannot be obtained — sometimes led to nonintuitive outcomes. For example,
consider this excerpt from an email from sent by a Spliddit user on January 7, 2016:

“Hi! Great app :) We’re 4 brothers that need to divide an inheritance of 30+ furni-
ture items. This will save us a fist fight ;) I played around with the demo app and it
seems there are non-optimal results for at least two cases where everyone distributes
the same amount of value onto the same goods. ... Try 3 people, 5 goods, with every-
one placing 200 on every good. ... [This] case gives 3 to one person and 1 to each of
the others. Why is that?”

The answer to the user’s question is that envy freeness and proportionality are in-
feasible in the example, so the algorithm sought a maximin share allocation. In every
partition of the five goods into three bundles there is a bundle with at most one good
(worth 200 points), hence the maximin share guarantee of each player is 200 points.
Therefore, giving three goods to one player and one good to each of the others indeed
maximizes utilitarian social welfare subject to giving each player her maximin share
guarantee. Note that the MNW solution produces the intuitively fair allocation in this
example (two players receive two goods each, one player receives one good).

Based on the results described in this chapter, we firmly believe that the MNW so-
lution is superior to the incumbent algorithm for allocating goods and to every other
approach we know of. It has been deployed on Spliddit on May 24, 2016.

2.2 The Model

Let [k] , {1, . . . , k}. We wish to divide a set of indivisible goods M (with m = |M|)
among a set of players N = [n]. As we described in Section 1.2.1, this is without loss of
generality because a divisible good can always be modeled as a collection of k indivis-
ible goods, and the model becomes accurate as k goes to infinity. See Section 2.7 for a
discussion on how our methods, its guarantees, and our implementation extend to the
case where some of the goods are divisible (see Section 2.7).

Next, each player i is endowed with a valuation function vi : 2M → R>0 such that
vi(∅) = 0 and vi(X) 6 vi(Y) for X ⊆ Y ⊆ M. Recall from Section 1.2.1 that additive
valuations satisfy vi(S) = ∑g∈S vi({g}) for all S ⊆ M. To simplify notation, we write
vi(g) instead of vi({g}) for a good g ∈ M. While all deployed implementations of
fair division methods for indivisible goods — including Adjusted Winner [37] and the
algorithm implemented on Spliddit (see Section 2.1.1) — rely on additive valuations,
we study more expressive submodular valuations in Section 2.3.1.

For S ⊆M and k ∈N, let Πk(S) denote the set of ordered partitions of S into k bun-
dles. A feasible allocation A = (A1, . . . , An) ∈ Πn(M) is a partition of the goods that
assigns a subset Ai of goods to each player i, and gives player i utility vi(Ai). Finally,
recall from Section 1.2.1 that our goal is to find a feasible allocation that satisfies fairness
desiderata such as envy-freeness (EF), envy-freeness up to one good (EF1), proportion-
ality, and the maximin share guarantee (MMS), and efficiency desiderata such as Pareto
optimality (PO).
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2.3 Maximum Nash Welfare is EF1 and PO

The gold standard of fairness — envy freeness (EF) — cannot be guaranteed in the con-
text of indivisible goods. In contrast, envy freeness up to one good (EF1) is surprisingly
easy to achieve under additive valuations.

Indeed, under the draft mechanism, the goods are allocated in a round-robin fashion:
each of the players 1, . . . , n selects her most preferred good in that order, and we repeat
this process until all the goods have been selected. To see why this allocation is EF1,
consider some player i ∈ N . We can partition the sequence of choices 1, . . . , i− 1, i, i +
1, . . . , n, 1, . . . , i− 1, . . . into phases i, . . . , i− 1, each starting when player i makes a choice,
and ending just before she makes the next choice. In each phase, i receives a good that
she (weakly) prefers to each of the n− 1 goods selected by subsequent players. The only
potential source of envy is the goods selected by players 1, . . . , i− 1 before the beginning
of the first phase (that is, before i ever chose a good); but there is at most one such good
per player j ∈ [i− 1], and removing that good from the bundle of j eliminates any envy
that i might have had towards j.

However, it is clear that the allocation returned by the draft mechanism is not guar-
anteed to be Pareto optimal. One intuitive way to see this is that the draft outcome is
highly constrained, in that all players receive almost the same number of goods; and
mutually beneficial swaps of one good in return for multiple goods are possible.

Is there a different approach for generating allocations that are EF1 and PO? Surpris-
ingly, several natural candidates fail. For example, maximizing the utilitarian welfare
(the sum of utilities to the players) or the egalitarian welfare (the minimum utility to
any player) is not EF1 (see Example A.2 in Appendix A.3). Interestingly, maximizing
these objectives subject to the constraint that the allocation is EF1 violates PO (see Ex-
ample A.3 in Appendix A.3, which was generated through computer simulations).

An especially promising idea — which was our starting point for the research re-
ported herein — is to compute a CEEI allocation assuming the goods are divisible, and
then to come up with an intelligent rounding scheme to allocate each good to one of the
players who received some fraction of it. The hope was that, because the CEEI allocation
is known to be EF for divisible goods [195], some rounding scheme, while inevitably vi-
olating EF, will only create envy up to one good, i.e., will still satisfy EF1. But we found
a counterexample in which every rounding of the “divisible CEEI” allocation violates
EF1; this is presented as Example A.1 in Appendix A.3.

As mentioned earlier, for divisible goods a CEEI allocation maximizes the Nash wel-
fare. And, although a CEEI allocation may not exist for indivisible goods, one can still
maximize the Nash welfare over all feasible allocations. Strikingly, this solution, which
we refer to as the maximum Nash welfare (MNW) solution, achieves both EF1 and PO.

Definition 2.1 (The MNW solution). The Nash welfare of allocation A ∈ Πn(M) is
defined as NW(A) = ∏i∈N vi(Ai). Given valuations {vi}i∈N , the MNW solution selects
an allocation AMNW maximizing the Nash welfare among all feasible allocations, i.e.,

AMNW ∈ arg maxA∈Πn(M) NW(A).
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If it is possible to achieve positive Nash welfare (i.e., provide positive utility to every
player simultaneously), any Nash-welfare-maximizing allocation can be selected. In the
special case that every feasible allocation has zero Nash welfare (i.e., it is impossible to
provide positive utility to every player simultaneously), we find a largest set of players
to which we can simultaneously provide positive utility, and select an allocation to these
players maximizing their product of utilities. While this edge case is highly unlikely to
appear in practice, it must be handled carefully to retain the solution’s attractive fairness
and efficiency properties. We say that an allocation is a maximum Nash welfare (MNW)
allocation if it can be selected by the MNW solution. The MNW solution is formally
specified as Algorithm 9 in Appendix A.1.

We are now ready to state our first result, which is relatively simple yet, we believe,
especially compelling.

Theorem 2.1. Every MNW allocation is envy free up to one good (EF1) and Pareto optimal
(PO) for additive valuations over indivisible goods.

Proof. Let A denote an MNW allocation. First, let us assume NW(A) > 0. Pareto optimal-
ity of A holds trivially because an alternative allocation that increases the utility to some
players without decreasing the utility to any player would increase the Nash welfare,
contradicting the optimality of the Nash welfare under A. Suppose, for contradiction,
that A is not EF1, and that player i envies player j even after removing any single good
from player j’s bundle.

Let g∗ = arg ming∈Aj,vi(g)>0 vj(g)/vi(g). Note that g∗ is well-defined because player
i envying player j implies that player i has a positive value for at least one good in
Aj. Let A′ denote the allocation obtained by moving g∗ from player j to player i in A.
We now show that NW(A′) > NW(A), which gives the desired contradiction as the Nash
welfare is optimal under A. Specifically, we show that NW(A′)/NW(A) > 1. The ratio is
well-defined because we assumed NW(A) > 0.

Note that vk(A′k) = vk(Ak) for all k ∈ N \ {i, j}, vi(A′i) = vi(Ai) + vi(g∗), and
vj(A′j) = vj(Aj)− vj(g∗). Hence,

NW(A′)
NW(A)

> 1⇔
[

1−
vj(g∗)
vj(Aj)

]
·
[

1 +
vi(g∗)
vi(Ai)

]
> 1⇔

vj(g∗)
vi(g∗)

·
[
vi(Ai) + vi(g∗)

]
< vj(Aj), (2.1)

where the last transition follows using simple algebra. Due to our choice of g∗, we have

vj(g∗)
vi(g∗)

6
∑g∈Aj

vj(g)

∑g∈Aj
vi(g)

=
vj(Aj)

vi(Aj)
. (2.2)

Because player i envies player j even after removing g∗ from player j’s bundle, we have

vi(Ai) + vi(g∗) < vi(Aj). (2.3)

Multiplying Equations (2.2) and (2.3) gives us the desired Equation (2.1).
Let us now address the special case where NW(A) = 0. Let S denote the set of players

to which the solution gives positive utility. Then, by the definition of the MNW solution
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(see Algorithm 9), S is a largest set of players to which one can provide positive utility.
Pareto optimality of A now follows easily. An alternative allocation that does not reduce
the utility to any player (and thus gives positive utility to each player in S) cannot give
positive utility to any player in N \ S. It also cannot increase the utility to a player in S
because that would increase the product of utilities to the players in S, which A already
maximizes.

From the proof of the case of NW(A) > 0, we already know that there is no envy up to
one good among players in S because A is an MNW allocation over these players, and
under A the product of utilities to the players in S is positive. Further, because players
in N \ S do not receive any goods, we only need to show that player i ∈ N \ S does
not envy player j ∈ S up to one good. Suppose for contradiction that she does. Choose
gj ∈ Aj such that vj(gj) > 0. Such a good exists because we know vj(Aj) > 0. Because
player i envies player j up to one good, we have vi(Aj \ {gj}) > vi(Ai) = 0. Hence,
there exists a good gi ∈ Aj \ {gj} such that vi(gi) > 0. However, in that case moving
good gi from player j to player i provides positive utility to player i while retaining
positive utility to player j (because player j still has good gj with vj(gj) > 0). This
contradicts the fact that S is a largest set of players to which one can provide positive
utility. Hence, the MNW allocation A is both EF1 and PO. �

2.3.1 General Valuations

Heretofore we have focused on the case of additive valuations. As we argued earlier,
this case is crucial in practice. But it is nevertheless of theoretical interest to understand
whether the guarantees extend to larger classes of combinatorial valuations.

Specifically, Theorem 2.1 states that MNW guarantees EF1 and PO. We ask whether
the same guarantees can be achieved for subadditive, superadditive, submodular (a
special case of subadditive), and supermodular (a special case of superadditive) valua-
tions. The definitions of these valuation classes as well as the proofs of all the results in
this section are provided in Appendix A.4. Unfortunately, we obtain a negative result
for three of the four valuation classes.

Theorem 2.2. For the classes of subadditive and supermodular (and thus superadditive) valua-
tions over indivisible goods, there exist instances that do not admit allocations that are envy free
up to one good and Pareto optimal.

We were unable to settle this question for the class of submodular valuations. And
although there exist examples with submodular valuations (see, e.g., Example A.5) in
which no MNW allocation satisfies EF1, we can show that every MNW allocation satis-
fies a relaxation of EF1 together with PO.

Definition 2.2 (MEF1: Marginal Envy Freeness Up To One Good). We say that an allo-
cation A ∈ Πn(M) satisfies MEF1 if

∀i, j ∈ N , ∃g ∈ Aj, vi(Ai) > vi(Ai ∪ Aj \ {g})− vi(Ai).
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Note that MEF1 is strictly weaker than EF1. However, for additive valuations MEF1
coincides with EF1. Hence, Theorem 2.1 follows directly from the next result (although
our direct proof of Theorem 2.1 is simpler).

Theorem 2.3. Every MNW allocation satisfies marginal envy freeness up to one good (MEF1)
and Pareto optimality (PO) for submodular valuations over indivisible goods.

2.4 Maximum Nash Welfare is Approximately MMS

In this section, we show that the fairness properties of the MNW solution extend to
an alternative fairness notion — the maximin share guarantee (which is a relaxation of
envy-freeness when all goods are allocated and valuations are additive), as well as a
variant thereof — in theory and practice.

2.4.1 Approximate MMS, in Theory

From a technical viewpoint, our most involved result is the following theorem.

Theorem 2.4. Every MNW allocation is πn-maximin share (MMS) for additive valuations over
indivisible goods, where

πn =
2

1 +
√

4n− 3
.

Further, the factor πn is tight, i.e., for every n ∈ N and ε > 0, there exists an instance with n
players having additive valuations in which no MNW allocation is (πn + ε)-MMS.

Before we provide a proof, let us recall that the best known approximation of the
MMS guarantee — to date — is 2/3 + O(1/n) [175], where the bound for n = 3
is 3/4. But the only known way to achieve a good bound is to build the algorithm
around the MMS approximation goal [2, 175]. In contrast, the MNW solution achieves
its πn = Θ(1/

√
n) ratio “organically”, as one of several attractive properties. More-

over, in almost all real-world instances, the number of players n is fairly small. For
example, on Spliddit, the average number of players is very close to 3, for which our
worst-case approximation guarantee is π3 = 1/2 — qualitatively similar to 3/4. That
said, the approximation ratio achieved on real-world instances is significantly better
(see Section 2.4.3).

of Theorem 2.4. We first prove that an MNW allocation is πn-MMS (lower bound), and
later prove tightness of the approximation ratio πn (upper bound).

Proof of the lower bound: Let A be an MNW allocation. As in the proof of Theorem 2.1,
we begin by assuming NW(A) > 0, and handle the case of NW(A) = 0 later. Fix a player
i ∈ N . For a player j ∈ N \ {i}, let g∗j = arg maxg∈Aj

vi(g) denote the good in player j’s
bundle that player i values the most. We need to establish an important lemma.
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Lemma 2.1. It holds that

vi(Aj \ {g∗j }) 6 min

{
vi(Ai),

(vi(Ai))
2

vi(g∗j )

}
,

where the RHS is defined to be vi(Ai) if vi(g∗j ) = 0.

Proof. First, vi(Aj \ {g∗j }) 6 vi(Ai) follows directly from the fact that A is an MNW
allocation, and is therefore EF1 (Theorem 2.1). If vi(g∗j ) = 0, then we are done. Assume
vi(g∗j ) > 0. By the definition of an MNW allocation, moving good g∗j from player j to
player i should not increase the Nash welfare. Thus,

vi(Ai ∪ {g∗j }) · vj(Aj \ {g∗j }) 6 vi(Ai) · vj(Aj) ⇒ vj(g∗j ) > vj(Aj)−
vi(Ai) · vj(Aj)

vi(Ai ∪ {g∗j })
.

(2.4)
Note that the RHS in the above expression is positive because vi(g∗j ) > 0. Hence, we
also have vj(g∗j ) > 0. Similarly, moving all the goods in Aj except g∗j from player j to
player i should also not increase the Nash welfare. Hence,

vi(Ai ∪ Aj \ {g∗j }) · vj(g∗j ) 6 vi(Ai) · vj(Aj).

We conclude that

vi(Aj \ {g∗j }) 6
vi(Ai) · vj(Aj)

vj(g∗j )
− vi(Ai) 6

vi(Ai) · vj(Aj)

vj(Aj)−
vi(Ai)·vj(Aj)

vi(Ai∪{g∗j })

− vi(Ai)

= vi(Ai) ·

 1

1− vi(Ai)
vi(Ai∪{g∗j })

− 1

 = vi(Ai) ·
[

vi(Ai ∪ {g∗j })
vi(g∗j )

− 1

]
=

(vi(Ai))
2

vi(g∗j )
,

where the second transition follows from Equation (2.4). � (Proof of Lemma 2.1)

Now, let us find an upper bound on the MMS guarantee for player i. Recall that MMSi
is the maximum value player i can guarantee herself if she partitions the set of goods
into n bundles but receives her least valued bundle. The key intuition is that indivisibil-
ity of the goods only restricts the player in terms of the partitions she can create. That
is, if some of the goods become divisible, it can only increase the MMS guarantee of the
player as she can still create all the bundles that she could with indivisible goods.

Suppose all the goods except goods in T = {g∗j : j ∈ N \ {i}, vi(g∗j ) > MMSi} become
divisible. It is easy to see that in the following partition, player i’s value for each bundle
must be at least MMSi: put each good in T (entirely) in its own bundle, and divide the rest
of the goods into n− |T| bundles of equal value to player i. Because each of the latter
n− |T| bundles must have value at least MMSi for player i, we get

MMSi 6
vi(Ai) + ∑j∈N\{i}

(
vi(g∗j ) · I

[
vi(g∗j ) 6 MMSi

]
+ vi(Aj \ {g∗j })

)
n−∑j∈N\{i}

[
vi(g∗j ) > MMSi

] , (2.5)
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where I(·) denotes the indicator function.
Next, we use the upper bound on vi(Aj \ {g∗j }) from Lemma 2.1, and divide both

sides of Equation (2.5) by vi(Ai). For simplicity, let us denote xj = vi(g∗j )/vi(Ai), and
β = MMSi/vi(Ai). Note that β is the reciprocal of the bound on the MMS approximation
that we are interested in. Then, we get

β 6
1 + ∑j∈N\{i}

(
xj · I

[
xj 6 β

]
+ min

{
1, 1

xj

})
n−∑j∈N\{i} I

[
xj > β

] .

Let f (x; β) denote the RHS of the inequality above. Then, we can write β 6 f (x; β) 6
maxx f (x; β). Note that if β 6 1 then player i is already receiving her full maximin
share value, which gives a (stronger than) desired MMS approximation. Let us therefore
assume that β > 1. To find the maximum value of f (x; β) over all x, let us take its partial
derivative with respect to xk for k ∈ N \ {i}. Note that the function is differentiable at
all points except xk = 1 and xk = β.

∂ f
∂xk

=



1
n−∑j∈N\{i} I[xj>β]

if 0 6 xk < 1,

1−(xk)
−2

n−∑j∈N\{i} I[xj>β]
if 1 < xk < β,

−(xk)
−2

n−∑j∈N\{i} I[xj>β]
if β < xk.

Note that ∂ f /∂xk > 0 for x ∈ (0, 1) and x ∈ (1, β), and ∂ f /∂xk < 0 for xk > β. Further
note that f is continuous at xk = 1. Hence, the maximum value of f is achieved either at
xk = β or in the limit as xk → β+ (i.e., when xk converges to β from above). Suppose the
maximum is achieved when t of the xk’s are equal to β, and the other n− t− 1 approach
β from above. Then, the value of f is

g(t; β) =
1 + t ·

(
β + 1

β

)
+ (n− t− 1) · 1

β

n− (n− t− 1)
.

We now have that β 6 maxt∈{0,...,n−1} g(t; β). Note that

∂g
∂t

=
β− 1− (n− 1) · 1

β

(t + 1)2 .

If β = MMSi/vi(Ai) 6 1/πn, we already have the desired MMS approximation. Assume
β > 1/πn. It is easy to check that this implies ∂g/∂t > 0. Thus, the maximum value
of g is achieved at t = n− 1, which gives β 6 (1/n) · (1 + (n− 1) · (β + 1/β)), which
simplifies to β 6 1/πn, which is a contradiction as we assumed β > 1/πn.

Recall that for the proof above, we assumed NW(A) > 0. Let us now handle the
special case where an MNW allocation A satisfies NW(A) = 0. Let S denote the set of
players that receive positive utility under A, where |S| < n. Due to the definition of an
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MNW allocation (see Algorithm 9), A is an MNW allocation over the players in S. Thus,
from the proof of the previous case, we know that each player in S in fact achieves at
least a π|S|-fraction of her |S|-player MMS guarantee, which is at least a πn-fraction of
her n-player MMS guarantee. Players in N \ S receive zero utility. We now show that
their (n-player) MMS guarantee is also 0, which yields the required result.

Suppose a player i ∈ N \ S has a positive value for at least n goods in M. Now,
because these goods are allocated to at most n− 1 players in S, at least one player j ∈ S
must have received at least two goods g1 and g2, both of which player i values positively.
Because player j receives positive utility under A (i.e., vj(Aj) > 0), it is easy to check
that there exists a good g ∈ {g1, g2} such that vj(Aj \ {g}) > 0. Thus, moving good g to
player i provides positive utility to player i while retaining positive utility to player j,
which violates the fact that S is a largest set of players to which one can simultaneously
provide positive utility. This shows that player i has positive utility for at most n − 1
goods inM, which immediately implies MMSi = 0, as required.

Proof of the upper bound (tightness): We now show that for every n ∈ N and ε > 0, there
exists an instance with n players in which no MNW allocation is (πn + ε)-MMS. For
n = 1, this is trivial because π1 = 1. Hence, assume n > 2.

Let the set of players be N = {1, . . . , n}, and the set of goods be M = {x} ∪⋃
i∈{2,...,n}{hi, li}. Thus, we have m = 2n − 1 goods. We refer to hi’s as the “heavy”

goods and li’s as the “light” goods. Let the valuations of the players for the goods be
as follows. Choose a sufficiently small ε′ > 0 (an upper bound on ε′ will be determined
later in the proof).

Player 1: v1(x) = 1, and ∀j ∈ {2, . . . , n}, v1(hj) =
1

πn
− ε′ and v1(lj) = πn − ε′.

Player i, for i > 2: vi(hi) =
1

πn + 1
, vi(li) =

πn

πn + 1
, and ∀g ∈ M\ {hi, li}, vi(g) = 0.

In particular, note that player 1 has a positive value for every good (for ε′ < πn), while
for i > 2, player i has a positive value for only two goods: hi and li. Consider the
allocation A∗ that assigns good x to player 1, and for every i ∈ N \ {1}, allocates goods
hi and li to player i. We claim that A∗ is the unique MNW allocation but is not (πn + ε)-
MMS.

First, note that an MNW allocation is Pareto optimal, and therefore it must allocate
good x to player 1 because no other player has a positive value for x. Further, NW(A∗) >
0, which implies that every MNW allocation must also have a positive Nash welfare.
This in turn implies that an MNW allocation must assign to each player in N \ {1} at
least one of hi and li. Subject to these constraints, consider a candidate allocation A.

Let p (resp. q) denote the number of players i ∈ N \ {1} that only receive good hi
(resp. li), and have utility 1/(πn + 1) (resp. πn/(πn + 1)). Hence, exactly n− 1− p− q
players i ∈ N \ {1} receive both hi and li, and have utility 1. Player 1 receives good x, q
heavy goods, and p light goods, and has utility 1 + q · (1/πn − ε′) + p · (πn − ε′). Thus,
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the Nash welfare of A is given by

(
1 + q ·

(
1

πn
− ε′

)
+ p ·

(
πn − ε′

))( 1
πn + 1

)p ( πn

πn + 1

)q

=
1 + q ·

(
1

πn
− ε′

)
+ p · (πn − ε′)

(1 + πn)
p ·
(

1 + 1
πn

)q .

Using binomial expansion, it is easy to show that the denominator in the final expres-
sion above is at least 1 + p · πn + q/πn, which is never less than the numerator, and is
equal to the numerator if and only if p = q = 0. Note that p = q = 0 indeed gives our
desired allocation A∗. Hence, the maximum Nash welfare of 1 is uniquely achieved by
the allocation A∗.

Next, let us analyze the MMS guarantee for player 1. In particular, consider the
partition of the set of goods into n bundles B1, . . . , Bn such that B1 = {x, l2, . . . , ln} and
Bi = {hi} for all i ∈ {2, . . . , n}. Note that for all i ∈ {2, . . . , n}, v1(Bi) = 1/πn− ε′. Also,

v1(B1) = 1 + (n− 1) · (πn − ε′) = 1 + (n− 1) · πn − (n− 1) · ε′ = 1
πn
− (n− 1) · ε′,

where the final equality holds because πn is chosen precisely to satisfy the equation
1 + (n − 1) · πn = 1/πn. As the MMS guarantee of player 1 is at least her minimum
value for any bundle in {B1, . . . , Bn}, we have MMS1 > 1/πn − (n− 1) · ε′. In contrast,
under the MNW allocation A∗we have v1(A1) = 1. Thus, the MMS approximation ratio
on this instance is at most 1/(1/πn− (n− 1) · ε′). It is easy to check that for driving this
ratio below πn + ε, it is sufficient to set

ε′ < min
{

πn,
ε

(n− 1) · πn · (πn + ε)

}
.

This completes the entire proof. � (Proof of Theorem 2.4)

A striking aspect of the proof of Theorem 2.4 is that, at first glance, the lower bound
of πn seems very loose. For example, key steps in the proof involve the derivation of an
upper bound on the MMS guarantee of player i by assuming that some of the goods are
divisible, and the maximization of the function f (·) over an unrestricted domain. Yet
the ratio πn turns out to be completely tight.

2.4.2 Approximate Pairwise MMS, in Theory

Adding to the conceptual arguments in favor of Theorem 2.4 (see the discussion just
after the theorem statement), we note that it also has interesting implications. Let us
first define a novel fairness property:

Definition 2.3 (α-Pairwise Maximin Share Guarantee). We say that an allocation A ∈
Πn(M) is an α-pairwise maximin share (MMS) allocation if

∀i, j ∈ N , vi(Ai) > α · max
B∈Π2(Ai∪Aj)

min{vi(B1), vi(B2)}.
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We simply say that A is pairwise MMS if it is 1-pairwise MMS. Note that the pairwise
MMS guarantee is similar to the MMS guarantee, but instead of player i partitioning
the set of all items into n bundles, she partitions the combined bundle of herself and
another player into two bundles, and receives the one she values less. Although neither
the pairwise MMS guarantee nor the MMS guarantee imply the other, it can be shown
that a pairwise MMS allocation is (1/2)-MMS (see Theorem A.2 in Appendix A.5).

We do not know whether a pairwise MMS allocation always exists (under the con-
straint that all goods must be allocated). In fact, there is an even more tantalizing and
elusive fairness notion that is strictly weaker than pairwise MMS, but strictly stronger
than EF1 (see Theorem A.2 in Appendix A.5, which, in particular, implies that pairwise
MMS is stronger than EF1).

Definition 2.4 (EFX: Envy freeness up to the Least Valued Good). We say that an allo-
cation A ∈ Πn(M) is envy free up to the least (positively) valued good if

∀i, j ∈ N , ∀g ∈ Aj : vi(g) > 0, vi(Ai) > vi(Aj \ {g}).

While EF1 requires that player i not envy player j after the removal of player i’s most
valued good from player j’s bundle, EFX requires that this no-envy condition would
hold even after the removal of player i’s least positively valued good from player j’s bun-
dle. Despite significant effort, we were not able to settle the question of whether an
EFX allocation always exists (assuming all goods must be allocated), and leave it as an
enigmatic open question.

Given this motivation for the pairwise MMS notion, it is interesting that our next
result directly translates the MMS approximation bound of Theorem 2.4 into a pairwise
MMS approximation. The proof of the result is in Appendix A.5.

Corollary 2.1. Every MNW allocation is Φ-pairwise MMS, where Φ is the golden ratio conju-
gate, i.e., Φ = (

√
5− 1)/2 ≈ 0.618. Further, the factor Φ is tight, i.e., for every n ∈ N and

ε > 0, there exists an instance with n players having additive valuations in which no MNW
allocation is (Φ + ε)-pairwise MMS.

2.4.3 Approximate MMS and Pairwise MMS, in Practice

Theorem 2.4 and Corollary 2.1 show that the MNW solution is guaranteed to be πn-MMS
and Φ-pairwise MMS. We now evaluate it on these benchmarks (which, we reiterate, it
is not designed to optimize) using real-world data. Specifically, we use 1281 instances
created so far through Spliddit’s “divide goods” application. The number of players
in these instances ranges from 2 to 10, and the number of goods ranges from 3 to 93.
Figures 2.1(a) and 2.1(b) show the histograms of the MMS and pairwise MMS approxi-
mation ratios, respectively, achieved by the MNW solution on these instances.

Most importantly, observe that the MNW solution provides every player her full
MMS (resp. pairwise MMS) guarantee, i.e., achieves the ideal 1-approximation, in more
than 95% (resp. 90%) of the instances. Further, in contrast to the tight worst-case ratios
of πn = Θ(1/

√
n) and Φ ≈ 0.618, the MNW solution achieves a ratio of at least 3/4 for

both properties on all the real-world instances in our dataset.
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Figure 2.1: MMS and Pairwise MMS approximation of the MNW solution on real-world
data from Spliddit.

2.5 Implementation

It is known that computing an exact MNW allocation is NP-hard even for 2 players
with identical additive valuations, due to a simple reduction from the NP-hard prob-
lem PARTITION [155, 184] (in fact, as we later describe, the problem is strongly NP-
hard). Our goal in this section is to develop a fast implementation of the MNW solution,
despite this obstacle. An existing approach to maximizing the Nash welfare [157] itera-
tively modifies an initial allocation to improve the Nash welfare at each step, but may
return a local maximum that does not provide any fairness or efficiency guarantees. In-
stead, we use integer programming to find the global optimum in a scalable way. Note
that most real-world instances are relatively small, but response time can be crucial. For
example, Spliddit has a demo mode, where users expect almost instantaneous results.
Moreover, some instances are actually very large, as we discuss below.

Let us begin by recalling that the first step in computing an MNW allocation is to
find a largest set of players S that can be given positive utility simultaneously. In Ap-
pendix A.1, we show that S can be computed easily by finding a maximum cardinality
matching in an appropriate bipartite graph. The problem then reduces to computing
an MNW allocation to the players in S. Hereinafter, we focus on this reduced problem.
Thus, without loss of generality we can assume that for the given set of players N , an
MNW allocation will achieve positive Nash welfare.

Figure 2.2 shows a simple mathematical program for computing an MNW allocation.
The binary variable xi,g denotes whether player i receives good g. Subject to feasibility
constraints, the program maximizes the sum of log of players’ utilities, or, equivalently,
the Nash welfare. Note that this is a discrete optimization program with a nonlinear
objective, which is typically very hard to solve.

Fortunately, we can leverage some additional properties of the problem that arise
in practice. Specifically, on Spliddit, users are required to submit integral additive val-
uations by dividing 1000 points among the goods. This in turn ensures that the util-
ities to the players will also be integral, and not more than 1000. In theory, this does
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Maximize ∑i∈N log
(

∑g∈M xi,g · vi(g)
)

subject to ∑i∈N xi,g = 1, ∀g ∈ M
xi,g ∈ {0, 1}, ∀i ∈ N , g ∈ M.

Figure 2.2: Nonlinear discrete optimiza-
tion program
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imations

Maximize ∑i∈N Wi

subject to Wi 6 log k +
[

log(k + 1)− log k
]

×
[
∑g∈M xi,g · vi(g)− k

]
,

∀i ∈ N , k ∈ {1, 3, . . . , 999}
∑g∈M xi,g · vi(g) > 1, ∀i ∈ N
∑i∈N xi,g = 1, ∀g ∈ M
xi,g ∈ {0, 1}, ∀i ∈ N , g ∈ M.

Figure 2.4: MILP using segments on the log
curve
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Figure 2.5: Running time of our MNW im-
plementation

not help us: due to a known reduction from a strongly NP-complete problem — Ex-
act Cover by 3-Sets (X3C) — to the problem of computing an MNW allocation [155],
we cannot hope for a pseudopolynomial-time algorithm (i.e., a polynomial-time al-
gorithm for Spliddit-like valuations). In practice, however, this structure of the val-
uations can be leveraged to convert the non-linear objective into a linear objective:
∑i∈N ∑1000

t=2 (log t − log(t − 1)) · Ui,t, where Ui,t = I[∑g∈M xi,g · vi(g) > t] for player
i ∈ N and t ∈ [1000] is an additional variable that can be encoded using two linear con-
straints. However, the introduction of 1000 · n additional binary variables makes this
approach impractical even for fairly small instances.

We therefore propose an alternative approach that introduces merely n continuous
variables and, crucially, no integral variables. The trick is to use a continuous variable
Wi denoting the log of the utility to player i, and bound it from above using a set of
linear constraints such that the tightest bound at every integral point k is exactly log k.
This essentially replaces the log by a piecewise linear approximation thereof that has
zero error at integral points. Figure 2.3 shows two such approximations of the log func-
tion (the red line): one that uses the tangent to the log curve at the point (k, log k) for
each k ∈ [1000] (the blue lines), and one that uses segments connecting points (k, log k)
and (k + 1, log(k + 1)) for each k ∈ {1, 3, . . . , 999} (the green line). Each tangent and
each segment is guaranteed to be an upper bound on the log function at every integral
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point due to the concavity of log.1 Importantly, note that the tightest upper bound at
each positive integral point k is log k. These transformations do not work at k = 0, i.e.,
they do not ensure Wi = −∞ if player i gets zero utility. However, recall that in our
subproblem each player can achieve a positive utility. Hence, we eliminate this concern
by adding the constraints that each player must receive value at least 1. We employ
the transformation that uses segments as it requires half as many constraints (and, in-
cidentally, runs nearly twice as fast). Figure 2.4 shows the final mixed-integer linear
program (MILP) with only n continuous and n ·m binary variables, which is key to the
practicability of this approach.

To assess how scalable our implementation is, we measure its running time on uni-
formly random Spliddit-like valuations, that is, uniformly random integral valuations
that sum to 1000. We vary the number of players n from 5 to 50 in increments of 5, and
keep the number of goods at m = 3 · n to match data from Spliddit, in which m/n ≈ 3
on average. The experiments were performed on a 2.9 GHz quad-core computer with
32 GB RAM, using CPLEX to solve the MILPs. The indicator-variables-based approach
failed to run within our time limit (60 seconds) even for 5 players. Figure 2.5 shows the
running time (averaged over 100 simulations, with the 5th and 95th percentiles) of the
MILP formulation from Figure 2.4. Satisfyingly, we can solve instances with 50 players
in less than 30 seconds (whereas even the largest of the 1281 instances on Spliddit has
10 players). In fact, the algorithm solves every Spliddit instance in less than 3 seconds.

The largest real-world instance we have seen was actually reported offline by a
Spliddit user. He needed to split an inheritance of roughly 1400 goods with his 9 sib-
lings. Our implementation solves an instance of this size in roughly 15 seconds.

2.5.1 Precision Requirements

As our optimization program involves real-valued quantities (e.g., the logarithms), we
must carefully set the precision level such that the optimal allocation computed up to
the precision is guaranteed to be an MNW allocation. This is because an allocation that
only approximately maximizes the Nash welfare may fail to satisfy the theoretical guar-
antees of an MNW allocation (Theorems 2.1 and 2.4, and Corollary 2.1).

Recall that our objective function is the log of the Nash welfare. Hence, the difference
between the objective values of an (optimal) MNW allocation and any suboptimal allo-
cation is at least log(1000n)− log(1000n − 1) > 1/1000n − (1/2)/10002n, which can be
captured using O(n) bits of precision. This simple observation can be easily formalized
to show that there exists p ∈ O(n) such that if all the coefficients in the optimization
program are computed up to p bits, and if the program is solved with p bits of precision
(i.e., with an absolute error of at most 2−p in the objective function), then the solution
returned will indeed correspond to an MNW allocation. Crucially, p is independent of
the number of goods. We expect the number of players n to be fairly small in everyday

1In fact, this transformation is useful in maximizing any concave function, or minimizing any convex
function, and thus may be of independent interest.
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fair division problems. For example, as previously mentioned, on Spliddit more than
95% of the instances for allocating indivisible goods have n 6 3.

Nonetheless, if one’s goal is solely to find an allocation that is EF1 and PO, a con-
stant number of bits of precision would suffice. This is because capturing differences
in objective values that are at least log(10002)− log(10002 − 1) — a constant — ensures
that the resulting allocation is EF1 and PO, as we show below.

1. EF1: Suppose the allocation is not EF1, and player i envies player j even after
the removal of any single good from player j’s bundle. Then, our proof of Theo-
rem 2.1 shows that we can increase the Nash welfare by moving a specific good
from player j to player i. Because this operation does not alter the utilities to all
but two players, it must increase the logarithm of the Nash welfare by at least
log(10002)− log(10002− 1), which is a contradiction because our sensitivity level
is sufficient to find this improvement.

2. PO: Suppose the allocation is not PO. Then there exists an alternative allocation
that increases the utility to at least one player without decreasing the utility to
any player. This must increase the logarithm of the Nash welfare by at least
log(1000) − log(1000− 1) > log(10002) − log(10002 − 1), which is again a con-
tradiction because our sensitivity level is sufficient to find this improvement.

2.6 Related Work

The concept of envy freeness up to one good originates in the work of Lipton et al. [134].
They deal with general combinatorial valuations, and give a polynomial-time algorithm
that guarantees that the maximum envy is bounded by the maximum marginal value of
any player for any good; this guarantee reduces to EF1 in the case of additive valuations.
However, in the additive case, EF1 alone can be achieved by simply allocating the goods
to players in a round-robin fashion, as we discuss below. The algorithm of Lipton et al.
[134] does not guarantee additional properties.

Budish [44] introduces the concept of approximate CEEI, which is an adaptation of
CEEI to the setting of indivisible goods (among other contributions in this beautiful
paper, he also introduces the notion of maximin share guarantee). He shows that an
approximate CEEI exists and (approximately) guarantees certain properties. The ap-
proximation error goes to zero when the number of goods is fixed, whereas the number
of players, as well as the number of copies of each good, go to infinity. His approach
is practicable in the MBA course allocation setting, which motivates his work — there
are many students, many seats in each course, and relatively few courses. But it does
not give useful guarantees for the type of instances we encounter on Spliddit, where the
number of players is small, and there is typically one copy of each good.

From an algorithmic perspective, Ramezani and Endriss [184] show that maximizing
Nash welfare is NP-hard under certain combinatorial bidding languages (including,
under additive valuations). Cole and Gkatzelis [59] give a constant-factor, polynomial-
time approximation under additive valuations (to be precise, their objective function is
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the geometric mean of the utilities).2 Lee [130] shows that the problem is APX-hard,
that is, a constant-factor approximation is the best one can hope for.

When there are only two players, compelling approaches for allocating goods are
available. In fact, Spliddit currently handles this case separately, via the Adjusted Win-
ner algorithm [37]. The shortcoming of Adjusted Winner is that it usually has to split
one of the goods between the two players. Adjusted Winner can be interpreted as a
special case of the Egalitarian Equivalent rule of Pazner and Schmeidler [166], which is
defined for any number of players. For n > 2 players, it may need to split all the goods,
that is, it is impractical to apply it to indivisible goods.

Let us briefly mention two additional models for the division of indivisible goods.
First, some papers assume that the players express ordinal preferences (i.e., a ranking)
over the goods [13, 38]. This assumption (arguably) does not lead to crisp fairness guar-
antees — the goal is typically to design algorithms that compute fair allocations if they
exist. Second, it is possible to allow randomized allocations [29, 30, 45]; this is hardly
appropriate for the cases we find on Spliddit in which the outcome is used only once.

Finally, it is worth noting that the idea of maximizing the product of utilities was
studied by Nash [154], in the context of his classic bargaining problem. This is why
this notion of social welfare is named after him. In the networking community, the
same solution goes by the name of proportional fairness, due to another property that
it satisfies when goods are divisible [118]: when switching to any other allocation, the
total percentage gains for players whose utilities increased sum to at most the total
percentage losses for players whose utilities decreased; thus, in some sense, no such
switch would be socially preferable.

2.7 Discussion

The goal of this chapter is to advocate the Maximum Nash Welfare (MNW) solution for
the fair allocation of goods. While it is justified by elegant fairness (EF1) and efficiency
(PO) properties, these properties are not “sufficient” in and of themselves — they may
allow undesirable outcomes (see Example A.4 in Appendix A.3). What makes the MNW
solution compelling is that it provides intuitively fair outcomes, yet organically satisfies
these formal fairness properties. Moreover, the MNW solution provides a Θ(1/

√
n)-

approximation to the MMS guarantee (Theorem 2.4), whereas an arbitrary EF1 and PO
allocation only provides a 1/n-approximation (Theorem A.1 in Appendix A.3).

Throughout the chapter we assumed that the goods are indivisible, but our results
directly extend to the case where we have a mix of divisible and indivisible goods.
The MNW solution in this case can be seen as the limit of the MNW solution on the
instance where each divisible good is partitioned into k indivisible goods, as k goes to
infinity. Theorem 2.1 therefore implies that the MNW solution is envy free up to one
indivisible good, that is, player i would not envy player j (who may have both divisible

2However, a constant-factor approximation need not satisfy any of the theoretical guarantees we es-
tablish in this chapter for the MNW solution.
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and indivisible goods) if one indivisible good is removed from the bundle of j. This
provides an alternative proof for envy-freeness of the MNW/CEEI solution when all
goods are divisible. The results of Section 2.4 also directly go through — in fact, the
proof of the MMS approximation result (Theorem 2.4) already “liquidates” some of the
goods as a technical tool. Appendix A.2 outlines the modified and scalable version of
the implementation described in Section 2.5, which we have deployed on Spliddit, that
can allocate a mix of divisible and indivisible goods.

It is remarkable that when all goods are divisible, three seemingly distinct solution
concepts — the MNW solution, the CEEI solution, and proportional fairness (PF) —
coincide. This is certainly not the case for indivisible goods: while a CEEI solution
and a PF solution may not exist, the MNW solution always does. Nonetheless, our
investigation revealed that even for indivisible goods, the PF solution and the MNW
solution are closely related via a spectrum of solutions, which offers two advantages.
First, it allows us to view the MNW solution as the optimal solution among those that
lie on this spectrum and are guaranteed to exist. Second, it also gives a way to break
ties — possibly even choose a unique allocation — among all MNW allocations. See
Appendix A.6 for a detailed analysis. This connection between MNW and PF raises
an interesting question: Is it possible to relate the MNW solution to the CEEI solution
when the goods are indivisible?

Finally, we have not addressed game-theoretic questions regarding the manipulabil-
ity of the MNW solution. The reason is twofold. First, there are strong impossibility
results that rule out reasonable strategyproof solutions. For example, Schummer [190]
shows that the only strategyproof and Pareto optimal solutions are dictatorial — which
means they are maximally unfair, if you will — even when there are only two players
with linear utilities over divisible goods; clearly a similar result holds for indivisible
goods (at least in an approximate sense).3 Second, we do not view manipulation as a
major issue on Spliddit, because users are not fully aware of each other’s preferences
(they submit their evaluations in private), and — presumably, in most cases — have a
very partial understanding of how the algorithm works.

3In theory, one can hope to circumvent this result by making manipulation computationally hard [19].
This is almost surely true (in the worst-case sense of hardness) for the MNW solution, where even com-
puting the outcome is hard.

42



Chapter 3

Allocating to Strategic Agents and The
Leximin Mechanism

3.1 Introduction

Our not-for-profit website Spliddit.org — which offers provably fair solutions for a
range of everyday problems — has already been used by tens of thousands of peo-
ple [104]. As a beautiful consequence, users are reaching out to us with questions and
suggestions that have been incredibly helpful. For example, some of the users pointed
out flaws in the previously deployed solution for allocating goods. As we describe in
Chapter 2, this helped us design a significantly improved solution, Maximum Nash
Welfare, for the case where players have additive valuations. More interestingly, some
users are also asking for our help with specialized real-world domains that do not ad-
mit additive valuations. Designing compelling solutions for these domains has led us
to investigate many interesting and difficult new questions.

This chapter presents a solution to one such question, posed by a representative
of one of the largest school districts in California. Since the details are confidential,
we will refer to the school district as the Pentos Unified School District (PUSD), and
to the representative as Illyrio Mopatis. Mr. Mopatis contacted us in May 2014 after
learning about Spliddit (and fair division, more generally) from an article in the New
York Times.1 He is tasked with the allocation of unused space (most importantly, class-
rooms) in PUSD’s public schools to the district’s charter schools, according to Califor-
nia’s Proposition 39, which states that “public school facilities should be shared fairly
among all public school pupils, including those in charter schools”.2 While the law
does not elaborate on what “fairly” means, Mr. Mopatis was motivated by the belief
that a provably fair solution would certainly fit the bill. He asked us to design an auto-
mated allocation method that would be evaluated by PUSD, and potentially replace the
existing manual system.

1http://goo.gl/Xp3omV
2http://goo.gl/bGH6dT
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To be a bit more specific, the setting consists of charter schools and facilities (public
schools). Each facility has a given number of unused classrooms — its capacity, and
each charter school has a number of required classrooms — its demand. In principle the
classrooms required by a charter school could be split across multiple facilities, but such
offers have always been declined in the past, so we assume that an agent’s demand must
be satisfied in a single facility (if it is satisfied at all). Other details are less important
and can be abstracted away. For example, classroom size turns out to be a nonissue, and
the division of time in shared space (such as the school gym or cafeteria) can be handled
ad hoc.

Of course, to talk of fairness we must also take into account the preferences of charter
schools, but preference representation is a modeling choice, intimately related to the
design and guarantees of the allocation mechanism. Moreover, fairness is not our only
concern: to be used in practice, the mechanism must be relatively intuitive (so it can be
explained to decision makers) and computationally feasible. The challenge we address
is therefore to

... design and implement a classroom allocation mechanism that is provably fair as
well as practicable.

3.2 Our Approach

We model the preferences of charter schools as being dichotomous: charter schools think
of each facility as either acceptable or unacceptable. This choice is motivated by current
practice: Under the 2015/2016 request form issued by PUSD, charter schools are es-
sentially asked to indicate acceptable facilities (specifically, they are asked to “provide
a description of the district school site and/or general geographic area in which the
charter school wishes to locate” using free-form text). In other words, formally eliciting
dichotomous preferences — by having charter schools select acceptable facilities from
the list of all facilities — is similar to the status quo, a fact that increases the practicability
of the approach.

Formally, let N = {1, . . . , n} denote the set of charter schools (hereinafter, agents),
and let M = {1, . . . , m} denote the set of public schools (hereinafter, facilities). We want
to design a mechanism for assigning the agents to the facilities. Each facility f has a
capacity c f , which is the number of units available at the facility (in our motivating ex-
ample, each unit is a classroom). The preferences of agent i are given by a pair (di, Fi),
where di ∈ N denotes the number of units demanded by agent i — or, simply, the de-
mand of agent i — and Fi ⊆ M denotes the set of facilities acceptable to agent i. Crucially,
we assume that agent i’s preferences are dichotomous in nature: the agent has utility 1
if it receives di units from any single facility f ∈ Fi (in this case, we say agent i is assigned
to facility f ), and 0 otherwise. Without loss of generality, we assume that every agent
i has an acceptable facility f ∈ Fi that has sufficient capacity to meet its demand (i.e.,
c f > di).3

3Agents violating this requirement cannot achieve positive utility, and can effectively be disregarded.
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A deterministic allocation is a mapping A : N → M ∪ {0}, where Ai = A(i) denotes
the facility to which agent i is assigned (and Ai = 0 means agent i is not assigned to any
facility). A is feasible if it respects the capacity constraint at each facility:

∀ f ∈ M, ∑
i∈N:Ai= f

di 6 c f .

Let A denote the space of all feasible deterministic allocations. Formally, the utility to
agent i under a feasible deterministic allocation A ∈ A is given by

ui(Ai) =

{
1 if Ai ∈ Fi
0 otherwise.

A feasible randomized allocation is simply a distribution over feasible deterministic
allocations, and the utility to an agent is its expected utility under the randomized allo-
cation. Let ∆(A) be the space of all feasible randomized allocations. Crucially, note that
∆(A) is a convex set, i.e., given randomized allocations A, A′ ∈ ∆(A) and 0 6 λ 6 1,
we can construct another randomized allocation A′′ = λ · A + (1− λ) · A′ ∈ ∆(A) that
executes A with probability λ and A′ with probability 1− λ. Hereinafter, an allocation
is possibly randomized, unless explicitly specified otherwise.

As mentioned in Section 3.1, our setting deals with fair allocation of indivisible
goods, and generalizes the classic setting of random assignment under dichotomous
preferences studied by Bogomolnaia and Moulin [30]. In particular, their setting can be
recovered by setting all the demands and capacities to 1 (i.e., di = 1 and c f = 1 for all
i ∈ N, f ∈ M), with an equal number of agents and facilities (m = n).

Desiderata. The fair division literature offers a slew of desirable properties. We are
especially interested in four classic desiderata that have proved to be widely appli-
cable (with applications ranging from cake cutting [169] to the division of computa-
tional resources in clusters [99, 165]), often satisfiable, and yet effective in leading to
compelling mechanisms: proportionality, envy-freeness, Pareto optimality, and (group)
strategyproofness. See Section 1.2.1 for their formal definitions. We use these desiderata
to guide the search for a good mechanism in our setting.

Let us first consider an example illustrating the desiderata of our interest.

Example 3.1. First, let us consider a simple randomized mechanism that allocates all
available units at all facilities to each agent with probability 1/n. Clearly, the mecha-
nism satisfies proportionality because it gives each agent utility 1/n. The mechanism
is also envy-free because each agent has an identical allocation, and thus no reason to
envy any other agent. Since the mechanism operates independently of the reported
preferences of the agents, the mechanism is obviously (group) strategyproof. However,
the mechanism is not Pareto optimal. The reason is that the mechanism allocates all
available units to an agent (with probability 1/n) even if the agent does not require all
the units. In this case, it may be possible to simultaneously satisfy another agent, thus
obtaining a Pareto improvement.

Next, consider a different mechanism that always returns a deterministic allocation
maximizing the number of units allocated. While this mechanism is very intuitive, we
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can show that it violates all the desiderata except Pareto optimality. Suppose there is
a single facility with 4 available units, and two agents — namely, agents 1 and 2 —
that demand 3 and 2 units, respectively. Maximizing the number of units allocated
would require allocating 3 units to agent 1 and no units to agent 2. This already violates
both proportionality and envy-freeness with respect to agent 2. Further, agent 2 would
have a strict incentive to report a false demand of 4 units, which would lead to agent 2
receiving all 4 units from the facility. Thus, strategyproofness is also violated.

3.3 The Leximin Mechanism

A natural starting point is the seminal paper of Bogomolnaia and Moulin [30], who
study the special case of our setting with unit demands and capacities, under dichoto-
mous preferences. They propose the leximin mechanism, which returns a random al-
location with the following intuitive property: it maximizes the lowest probability of
any charter school having its demand satisfied in an acceptable facility; subject to this
constraint, it maximizes the second lowest probability; and so on.

Formally, let (u1, u2, . . . , un) denote the vector of utilities sorted in non-descending
order. The leximin mechanism returns the allocation that maximizes this vector in the
lexicographic order; we say that this allocation is leximin-optimal. The mechanism is
presented as Algorithm 1.

ALGORITHM 1: The Leximin Mechanism
Data: Demands {(di, Fi)}i∈N , Capacities {c f } f∈M
Result: The Leximin-Optimal Allocation A
For k ∈ {1, . . . , n}, let uk denote the kth lowest utility under an allocation;
for k = 1 to n do

ūk ←Max uk subject to uj = ūj for all j < k;
end
return an allocation where uk = ūk for all k ∈ {1, . . . , n};

In a sense, the leximin mechanism is an extension of the egalitarian equivalence prin-
ciple put forward by Pazner and Schmeidler [166], in which one attempts to equalize all
agent utilities (and maximize this utility value). This is what the leximin mechanism
attempts in its first step of maximizing the minimum utility. However, sometimes the
solution obtained is not Pareto optimal. The subsequent steps amend this solution to
make it Pareto optimal, and eliminate any waste of resources. Without loss of generality,
assume that the leximin mechanism chooses a non-wasteful allocation, i.e., under every
deterministic assignment in its support agent i either receives di units from a facility in
Fi or does not receive any units. Let us illustrate how the leximin mechanism works
through an example.

Example 3.2. Suppose there are two facilities a and b with capacities ca = 1 and cb = 2,
respectively, and four agents with demands d1 = 1, d2 = 1, d3 = 2, and d4 = 1.
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Suppose agent 1 only accepts facility a (F1 = {a}), agents 2 and 3 only accept facility b
(F2 = F3 = {b}), and agent 4 accepts both facilities (F4 = {a, b}).

It is clear that the minimum utility cannot be greater than 1/2 because agents 2 and
3 must be assigned to facility b separately. Further, the randomized allocation 1/2 · (a :
{1}, b : {3}) + 1/2 · (a : {4}, b : {2}) (meaning that with probability 1/2, agents 1 and 2
are assigned to facilities a and b, respectively, and with the remaining probability agents
4 and 3 are assigned to facilities a and b, respectively) gives utility 1/2 to all agents.
However, this is not sufficient for the allocation to be leximin-optimal. For instance, the
allocation 1/2 · (a : {1}, b : {2, 4}) + 1/2 · (a : {4}, b : {3}) increases the utility of agent
4 to 1 while keeping the utilities of the other agents at 1/2, and is therefore better than
the previous allocation in a lexicographic comparison of the sorted utility vector. While
this new allocation is Pareto optimal, it is still not the leximin allocation. The leximin
allocation in this example is 1/2 · (a : {1}, b : {2, 4}) + 1/4 · (a : {1}, b : {3}) + 1/4 · (a :
{4}, b : {3}), which gives utility 1/2 to agents 2 and 3, and utility 3/4 to agents 1 and
4. Note that it achieves the same lowest and 2nd lowest utilities as the previous two
allocations, but a greater 3rd lowest utility than both previous allocations.

3.3.1 Properties of The Leximin Mechanism

Bogomolnaia and Moulin [30] show that the leximin mechanism satisfies all four
desiderata proposed above in their classic setting with one-to-one matchings, and unit
demands and capacities. We now show that these properties continue to hold in our
setting with many-to-one matchings, and arbitrary demands and capacities. In fact, in
Section 3.3.2 we argue that they hold in an even more general setting.

Theorem 3.1. The leximin mechanism satisfies proportionality, envy-freeness, Pareto optimal-
ity, and group strategyproofness.

Proof. We first formally establish an intuitive property of leximin allocations: The allo-
cation received by agent i is valued the most under the preferences of agent i compared
to any other possible preferences. Formally, we show the following.

Lemma 3.1. Let A denote the allocation returned by the leximin mechanism. Then for utility
function u induced by any preferences, we have ui(Ai) > u(Ai).

Proof. First, let A be deterministic. If Ai 6= 0, then due to the non-wastefulness of the
leximin allocation, we must have ui(Ai) = 1 > u(Ai) for any utility function u. On
the other hand, Ai = 0 implies ui(Ai) = u(Ai) = 0 for all utility functions u. Hence,
the lemma holds for all deterministic allocations. For randomized allocations, taking
expectation on both sides yields that the lemma still holds. � (Proof of Lemma 3.1)

Proportionality. Consider the mechanism that allocates all available units to each agent
with probability 1/n, which gives each agent utility 1/n.4 Since the leximin mechanism
maximizes the minimum utility that any agent receives, it must also give each agent at
least 1/n utility. Hence, the leximin mechanism is proportional.

4This is because we assumed that the demand of every agent can be satisfied given all available units.
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Envy-freeness. Suppose for contradiction that under an allocation A returned by the
leximin mechanism, agent i envies agent j. That is, ui(Aj) > ui(Ai). Now, Lemma 3.1
implies uj(Aj) > ui(Aj) > ui(Ai) > 0. Let 0 < ε < (uj(Aj)− ui(Ai))/uj(Aj).

Construct another allocation A′ such that A′k = Ak for all k ∈ N \ {i, j}, A′i = Aj, and
A′j = 0. Since agent i envied agent j, we have di 6 dj, implying that A′ is feasible. Note
that agent i now has higher utility because ui(A′i) = ui(Aj) > ui(Ai).

Construct an allocation A′′ that realizes A with probability 1− ε and A′ with prob-
ability ε. Due to our construction of A′′, we have that for every agent k ∈ N \ {i, j},
uk(A′′) = uk(A′) = uk(A). Further, for agent i we have ui(A′′i ) > ui(Ai). Also, for
agent j we have

uj(A′′j ) = (1− ε)uj(Aj) > ui(Ai).

Hence, switching from A to A′′ preserves the utility achieved by every agent ex-
cept agents i and j, and both agents i and j receive utility strictly greater than ui(Ai) =
min(ui(Ai), uj(Aj)). That is, allocation A′′ is strictly better than allocation A in the lex-
imin ordering, which contradicts the leximin-optimality of A.

Pareto optimality. This follows trivially from the definition of leximin-optimality. Note
that increasing the utility of an agent i without decreasing the utility of any other agent
would improve the allocation in the leximin ordering. Since the allocation returned by
the leximin mechanism is already leximin-optimal, it does not admit any Pareto im-
provements. Hence, the leximin mechanism is Pareto optimal.

Group Strategyproofness. This is the most non-trivial property to establish among
the four desired properties. Under the true reports (dk, Fk)k∈N, let A denote the allo-
cation returned by the leximin mechanism. Suppose a subset of agents S ⊆ N, whom
we call manipulators, report false preferences (d′i, F′i )i∈S; let (u′i)i∈S denote the utility
functions induced by the false preferences of the manipulators. Let A′ denote the al-
location returned by the leximin mechanism when agents in S misreport. Suppose for
contradiction that every agent in S is strictly better off (under their true utility func-
tions) by misreporting, i.e., ui(A′i) > ui(Ai) for every i ∈ S. Now, Lemma 3.1 implies
that u′i(A′i) > ui(A′i); thus, we have u′i(A′i) > ui(Ai) for every i ∈ S.

Before we derive a contradiction, we first observe that the leximin-optimality of
an allocation implies Pareto optimality of any prefix of its sorted utility vector. Let
prefA(i) = {j ∈ N | uj(Aj) 6 ui(Ai)} denote the prefix of agent i in allocation A.

Lemma 3.2 (Prefix Optimality). For an allocation X returned by the leximin mechanism and
an agent i ∈ N, there does not exist an allocation X′ such that some agent in prefX(i) is strictly
better off under X′ and no agent in prefX(i) is worse off.

Proof. Assume without loss of generality that ui(Xi) < maxj∈N uj(Xj), otherwise the
statement coincides with Pareto optimality. Suppose for contradiction that an allocation
X′ as in the statement of the lemma exists. Choose ε such that

0 < ε <
1− ui(Xi)

min{uj(Xj) | uj(Xj) > ui(Xi)}
.
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Consider the allocation X′′ = (1− ε) · X + ε · X′. Due to our choice of ε, we can see
that for every agent j /∈ prefX(i), we have uj(X′′j ) > (1− ε)uj(Xj) > ui(Xi). Further,
we have uj(X′′j ) > uj(Xj) for every agent j ∈ prefX(i) and uj(X′′j ) > uj(Xj) for some
j ∈ prefX(i).

We now show that X′′ is strictly better than X in the leximin ordering. Choose
agent j∗ ∈ arg minj∈prefX(i):uj(X′′j )>uj(Xj)

uj(Xj). Break ties by choosing an agent with

the smallest value of uj(X′′j ), and if there are still ties, break them arbitrarily. Let
t = |{k ∈ prefX(i)|uk(Xk) < uj∗(Xj∗)}|+ |{k ∈ prefX(i)|uk(X′′k ) = uk(Xk) = uj(Xj)}|.
Then, one can check that allocations X and X′′ match in the t lowest utilities, and alloca-
tion X′′ has a strictly greater (t + 1)st lowest utility. Thus, X′′ is strictly better than X in
the leximin ordering, which contradicts leximin-optimality of X.� (Proof of Lemma 3.2)

Fix a manipulator i ∈ S that minimizes ui(Ai) among all i ∈ S (break ties arbitrarily).
Let us look at the set of all agents that are strictly better off under A′ compared to A,
and among these agents, choose an agent j that minimizes uj(Aj) (again, break ties
arbitrarily). Now, agent i is also strictly better off under A′. Hence, by the definition
of agent j, we have uj(Aj) 6 ui(Ai). Since agent j is strictly better off under A′, by
prefix optimality of A (Lemma 3.2) we know there must exist an agent in prefA(j) that
is strictly worse off under A′. Among all agents in prefA(j) that are worse off under A′,
choose an agent k that minimizes uk(A′k) (again, break ties arbitrarily).

Now, we derive our contradiction by showing that prefix optimality of A′ is violated.
More precisely, we know that agent k is strictly better off under A compared to A′. We
show that no agent in prefA′(k) is worse off under A compared to A′.

First, note that for any manipulator l ∈ S, we have ul′(A′l) > ul(A′l) > ul(Al) >
ui(Ai) > uj(Aj) > uk(Ak) > uk(A′k), where the third, fourth, and fifth transitions
hold due to our choice of agents i, j, and k, respectively. Thus, no manipulator belongs
to prefA′(k). In other words, for every agent l ∈ prefA′(k) we can denote its utility
function (which is common between A and A′) by ul. Take an agent l ∈ prefA′(k). If
ul(Al) < ul(A′l), then we have ul(Al) < ul(A′l) 6 uk(A′k) < uk(Ak) 6 uj(Aj). Thus,
agent l satisfies ul(Al) < uj(Aj), and is still better off under A′ compared to A, which
contradicts our choice of agent j. Therefore, ul(Al) > ul(A′l) for every l ∈ prefA′(k),
and uk(Ak) > uk(A′k), contradicting prefix optimality of A′. � (Proof of Theorem 3.1)

While group strategyproofness is a strong game-theoretic requirement, an even
stronger requirement has been studied in the literature. Under this stronger require-
ment, a group of manipulators should not be able to report false preferences that would
lead to all manipulators being weakly happier and at least one manipulator being
strictly happier. Bogomolnaia and Moulin [30] show that in the classical random as-
signment setting under dichotomous preferences, the leximin mechanism is group strat-
egyproof according to this stronger requirement.5 Unfortunately, the following example
shows that this does not hold in our more general setting.

5While the strategyproofness result of Bogomolnaia and Moulin [30] more generally applies to strate-
gic manipulations from both sides of the market, this is captured by our generalized results in Sec-
tion 3.3.2.
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Example 3.3. Suppose there are 9 agents with demands

(d1, d2, d3, d4, d5, d6, d7, d8, d9) = (2, 4, 4, 4, 2, 2, 2, 1, 1),

and 3 facilities with capacities (c1, c2, c3) = (4, 2, 1). Let the dichotomous preferences
of the agents be as follows: Fi = {1} for i ∈ {1, 2, 3, 4}, F5 = {1, 2}, F6 = F7 = {2},
F8 = {2, 3}, and F9 = {3}.

In this case, it can be checked that under the leximin allocation, the utilities of the
agents are as follows: ui = 1/4 for i ∈ {1, 2, 3, 4}, u5 = u6 = u7 = 5/12, and u8 = u9 =
1/2.

Suppose agent 1 manipulates, and increases its demand to d′1 = 3 units. Then, it
can be checked that under the new leximin allocation, the utility of agent 1 through 4
remains 1/4, the utility of agents 5 through 7 drops to 1/3, and the utility of agents 8
and 9 increases to 5/8. Thus, agent 1 and agent 9 form a successful group manipulation
in which no agent is worse off, but agent 9 is strictly better off.

Similarly, Bogomolnaia and Moulin [30] also show that a leximin-optimal allocation
always Lorenz-dominates any other allocation in their classic setting. Let us first define
Lorenz dominance among allocations.

Lorenz dominance. For k ∈ {1, . . . , n}, let uk and vk denote the kth lowest utility in
allocations A and B, respectively. We say that allocation A (weakly) Lorenz-dominates
allocation B if ∑k

i=1 ui > ∑k
i=1 vi for k ∈ {1, . . . , n}.

We now show that in our setting there may not exist an allocation that weakly
Lorenz-dominates every other allocation.

Example 3.4. Suppose there is a single facility with 3 available units, and there are four
agents — namely, agents 1 through 4 — such that agent 1 demands all 3 units from the
facility, while the remaining agents demand a single unit each. Suppose there exists
an allocation A that weakly Lorenz-dominates every other feasible allocation. Then,
in particular, it must achieve the maximum possible lowest utility. Hence, allocation
A must assign agent 1 to the facility with probability 0.5, and assign the remaining
agents to the facility simultaneously with the remaining probability 0.5. Thus, the sum
of first three lowest utilities under A is 1.5. However, for the allocation that assigns
agents 2 through 4 to the facility with probability 1, the sum of the three lowest utilities
is 2, violating our assumption that A weakly Lorenz-dominates every other feasible
allocation. Thus, in this case there does not exist any allocation that Lorenz-dominates
every other allocation.

In general, the leximin allocation may not be unique, but all leximin allocations are
equivalent in a sense formalized in the next result.

Theorem 3.2. The utility of an agent is identical under all leximin allocations.

Proof. Suppose for contradiction that there exist leximin-optimal allocations A and B
such that the utilities of some agents do not match in the two allocations. Choose agent
i ∈ arg mini∈N:ui(Ai) 6=ui(Bi)

ui(Ai), and break ties by choosing an agent with the smallest
ui(Bi) (further ties can be broken arbitrarily). First, prefix optimality of A (Lemma 3.2)
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implies that agent i must be worse off under B, i.e., ui(Bi) < ui(Ai). This is because
otherwise there would exist an agent j ∈ prefA(i) that is strictly worse off under B.
Agent j would satisfy uj(Bj) < uj(Aj) 6 ui(Ai) < ui(Bi), and thus contradict our
choice of agent i. Hence, we have ui(Bi) < ui(Ai).

Now, consider the prefix of agent i in B, i.e., prefB(i). For every agent j ∈ prefB(i),
either agent j has identical utility under A and B (i.e., uj(Aj) = uj(Bj)), or its utility
changes in which case we must have uj(Aj) > ui(Ai) > ui(Bi) > uj(Bj), where the first
transition holds due to our choice of agent i. Hence, no agent in prefB(i) is worse off
under A compared to B, and agent i is strictly better off under A compared to B. This
violates prefix-optimality of B, which is a contradiction. Hence, the utility of each agent
must be identical under all leximin-optimal allocations. �

Crucially, this also implies that all leximin-optimal allocations satisfy equal number
of agents in expectation, and allocate equal number of units in expectation.

3.3.2 A General Framework for Leximin

Theorem 3.1 established that the leximin mechanism satisfies four compelling desider-
ata in our classroom allocation setting. We observe that the proof of Theorem 3.1 only
uses four characteristics of the classroom allocation setting (which are listed below).
That is, the leximin mechanism (Algorithm 1) satisfies proportionality, envy-freeness,
Pareto optimality, and group strategyproofness in all domains of fair division and mech-
anism design without money — with divisible or indivisible (or both types of) resources,
and with deterministic or randomized allocations — that satisfy these four require-
ments.

We briefly describe a general framework in which our result holds. Let N denote
the set of agents. There is a set of resources X, which may contain divisible resources,
indivisible resources, or both. An allocation A assigns a disjoint subset of resources Ai
to each agent i.6 Denote the set of all feasible allocations by A. Note that the use of
randomized allocations may or may not be permitted in the domain; it does not affect
our result. There is a set P of possible preferences that the agents may have over subsets
of resources. Fix a mapping from each preference P ∈ P to a utility function uP consis-
tent with P, and let U = {uP|P ∈ P} denote the corresponding set of possible utility
functions. Then, our four requirements can be formalized as follows.

1. Convexity. The space of feasible allocations must be convex. That is, given two
allocations A, A′ ∈ A, and 0 6 λ 6 1, it should be possible to construct another
feasible allocation A′′ ∈ A such that ui(A′′i ) = λ · ui(Ai) + (1− λ)ui(A′i) for all
agents i ∈ N. This typically holds if randomized allocations are allowed, or if
resources are divisible.

2. Equality. The maximum utility achievable by each agent must be identical. Thus,
for two agents i, j ∈ N, we require maxA∈A ui(Ai) = maxA∈A uj(Aj). This prop-

6Obviously, only divisible resources can be split among multiple agents.
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erty is required for proportionality, and is usually taken care of when translating
the ordinal preferences of agents into cardinal utility functions.

3. Shifting Allocations. Given a feasible allocation A ∈ A and agents i, j ∈ N, it
should be possible to construct another feasible allocation A′ ∈ A where we take
the resources allocated to agent j, and allocate them to agent i. That is, we must
have uk(A′k) = uk(Ak) for all agents k ∈ N \ {i, j}, and ui(A′i) > ui(Aj). This
property is required for envy-freeness.

4. Optimal utilization. Under a non-wasteful allocation A ∈ A, an agent must derive
the maximum possible utility from the allocation it receives. That is, we require
ui(Ai) > u(Ai) for all possible utility functions u ∈ U . Lemma 3.1 proves that
this is satisfied in the classroom allocation setting. This assumption is perhaps the
strongest, and is required for both envy-freeness and group strategyproofness.

Many papers study the leximin mechanism and establish (at least a subset of) the
properties listed in Theorem 3.1 in a variety of domains, including resource alloca-
tion [28, 30, 99, 101, 133, 165, 192, 199, 200], cake cutting [56], and kidney exchange [186].
It can be checked that these domains satisfy our four requirements, and hence the fore-
going framework captures results from all of these papers.

In addition, any general dichotomous preference setting — where each agent “ac-
cepts” a subset of feasible allocations for which it has utility 1, and “rejects” the rest for
which it has utility 0 — is also captured under our general framework; and when agents
have ordinal preferences over allocations, we only need to establish one translation to
consistent cardinal utilities that satisfies the four requirements above.

Below, we briefly describe one special case of the general framework: fair re-
source allocation under Leontief preferences [99, 165], which is the focus of Chap-
ter 4. Suppose there are m divisible resources, and each agent i demands them in
fixed proportions given by a (normalized) demand vector d = (di,1, . . . , di,m) where
maxr∈{1,...,m} di,r = 1. Thus, given an allocation Ai = (Ai,1, . . . , Ai,m) (where Ai,r ∈ [0, 1]
denotes the fraction of resource r allocated to agent i), the utility to agent i is given by
ui(Ai) = minr∈{1,...,m} Ai,r/di,r. To see that our four requirements are met, note that the
space of feasible allocations is convex due to divisibility of resources, every agent can
achieve a maximum utility of 1, and shifting allocations is permitted. Finally, a non-
wasteful allocation always allocates resources in the demanded proportion. Thus, the
utility to agent i is simply Ai,r/di,r (which is identical for all r). Under any other nor-
malized demand vector d′ = (d′1, . . . , d′m) with d′r∗ = 1, the utility achieved would be at
most Ai,r∗ 6 Ai,r∗/di,r∗ . Hence, the requirement of optimal utilization also holds.

Ghodsi et al. [99] prove that the leximin mechanism satisfies proportionality, envy-
freeness, Pareto optimality, and strategyproofness in the foregoing setting, and in Chap-
ter 4 (which is based on work that preceded the work presented in this chapter), we
establish group strategyproofness. These results now directly follow from Theorem 3.1.
Further, in Chapter 4, we study the variant where agents only derive utility for integral
multiples of their required resource bundle, and show that no deterministic mechanism
satisfies all four desiderata. Indeed, in our framework the convexity requirement is vio-
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lated for deterministic allocations, but it is satisfied for randomized allocations. Hence,
the randomized leximin mechanism would still satisfy all four desiderata.

3.4 Quantitative Efficiency of the Leximin Allocation

Theorem 3.1 establishes the leximin mechanism as a compelling solution, which simul-
taneously guarantees fairness, efficiency, and truthfulness. The fairness (proportionality
and envy-freeness) and truthfulness guarantees are strong. But the notion of Pareto op-
timality is a relatively weak, qualitative notion of efficiency.

In our setting, there are two natural quantitative metrics of efficiency: the (expected)
number of agents whose demands are met, and the (expected) number of total units
allocated. Optimizing the former metric is clearly desirable as it represents the social
welfare achieved by the mechanism. The latter metric is important when the units being
allocated are valuable and scarce (this is clearly the case when the units in question
are classrooms). Furthermore, in the classroom allocation setting, the number of units
allocated is proportional to the number of students served.

Indeed, in our setting it is not unnatural to consider directly optimizing either metric.
In particular, such an optimization would always lead to a Pareto optimal allocation.
However, it is easy to observe that directly optimizing either metric fails to achieve one
or more of our four desired properties. Recall Example 3.1, which already showed that
maximizing the number of allocated units violates proportionality, envy-freeness, and
strategyproofness; the next example deals with the other metric.

Example 3.5 (Maximizing the number of satisfied agents). Suppose there is a single
facility with 2 available units, and there are four agents, namely, agents 1 through 4.
Agents 1 through 3 each demand a single unit from the facility, while agent 4 demands
both units. In order to maximize the number of satisfied agents we must allocate a
single unit to two of the agents in {1, 2, 3}, while leaving agent 4 unallocated. It is easy
to see that both proportionality (with respect to agent 4) and envy-freeness (with respect
to the unallocated agent in {1, 2, 3}) are violated.

In the above example, proportionality is clearly violated, but it seems that the vio-
lation of envy-freeness is the result of tie-breaking. Indeed, as previously mentioned,
the utilitarian mechanism [31, 94] that uniformly randomizes over all deterministic al-
locations maximizing the number of satisfied agents achieves envy-freeness along with
strategyproofness. We note that strategyproofness would also hold if ties were broken
according to a lexicographic order over the agents. Here, we provide a short proof of
these results for curious readers.

Observation 3.1. The mechanism that returns an allocation maximizing the number of satis-
fied agents and breaks ties according to a lexicographic preference over agents is strategyproof.
Breaking ties uniformly at random preserves strategyproofness, and simultaneously achieves
envy-freeness.

Proof. Let A denote the allocation returned by the mechanism under consideration with
lexicographic tie-breaking.
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Strategyproofness. Suppose agent i ∈ N is not satisfied under A. Suppose agent i
manipulates, which results in allocation A′ satisfying agent i. Let k and k′ denote the
number of agents satisfied in A and A′, respectively. Since agent i cannot decrease its
demanded number of units, any subset of agents satisfiable after the manipulation is
also satisfiable before the manipulation. Hence, k > k′. However, allocation A does
not assign agent i to any facility, and therefore must be feasible after the manipulation.
Thus, k′ > k, implying k = k′. Finally, note that the subset of agents satisfied by A′ was
feasible before manipulation, but was not chosen because the subset of agents satisfied
under A was better in the lexicographic preference. Since A is a feasible allocation after
manipulation, it would still be preferred to A′ under the same lexicographic preference,
thus establishing a contradiction.

Suppose the mechanism returns an allocation A that uniformly randomizes over all
allocations maximizing the number of satisfied agents. Let A′ denote the corresponding
(uniformly randomizing) allocation when agent i manipulates. If agent i is satisfied
with probability 1 under A, then it has no incentive to manipulate. Otherwise, there
exists an allocation in the support of A that does not satisfy agent i. Observing that this
allocation is feasible after manipulation, and that every subset of agents satisfiable after
manipulation is also satisfiable before manipulation, we again get k = k′. Moreover,
since agent i cannot decrease its demand, the number of allocations in the support of A′

in which agent i is satisfied is at most the number of such allocations in A. Since both
A and A′ uniformly randomize over allocations in their support, it is clear that agent i
cannot increase its utility by manipulating.

Envy-freeness. Consider agents i, j ∈ N. Suppose for contradiction that agent i envies
agent j. Let I denote the set of deterministic allocations in the support of A in which
agent i is assigned to a facility, while agent j is unassigned. Let J denote the set of
deterministic allocations in the support of A in which agent j is assigned to a facility that
is acceptable to agent i, while agent i is unassigned. Let pI and pJ denote the probabilities
by which A executes an assignment from I and J, respectively. Then, we must have
pJ > pI . However, since agent i envies agent j, we must have dj > di. Thus, taking
an allocation from J, and replacing agent j with agent i must form a feasible allocation.
Thus, |I| > |J|. Due to uniform randomization over all allocations in the support, we
get pI > pJ , which is a contradiction. � (Proof of Observation 3.1)

While the utilitarian mechanism seems intriguing, recall that in Example 3.5 the de-
mand of agent 4 was met with zero probability, suggesting that the mechanism is biased
against agents with larger demands. Bogomolnaia et al. call this effect the “tyranny of
the majority”. While such a bias may be acceptable in some settings, in other settings —
classroom allocation, in particular — it is problematic. The bias is formally captured by
noting that the utilitarian mechanism violates proportionality.

The discussion above leads us to a natural question: How well does the leximin mech-
anism perform with respect to the two quantitative notions of efficiency, namely the number of
satisfied agents and the number of allocated units? We are interested in the worst case over
problem instances, but since the leximin mechanism is randomized, we can consider
the performance under the worst deterministic allocation in the support of the random-
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ized leximin allocation, and the performance in expectation. Unsurprisingly, the worst
allocation in the support can be simultaneously bad in terms of both metrics; in the
following example, both metrics achieve arbitrarily low fractions of their respective op-
timums.

Example 3.6 (Efficiency of allocations in the support of the leximin allocation). Suppose
there are k + 4 agents and two facilities. The capacities of the two facilities are c1 = k
and c2 = k2. The preferences of the agents are as follows.

(di, Fi) =


(1, {1}) if i ∈ {1, . . . , k},
(k, {1}) if i = k + 1 or k + 2,
(1, {2}) if i = k + 3,
(k2, {2}) if i = k + 4.

Clearly, a maximum of k + 1 agents can be satisfied, and a maximum of k + k2 units
can be allocated. It is easy to check that under the leximin allocation, agents 1 through
k + 2 should be assigned to facility 1 with probability 1/3 each, while agents k + 3 and
k + 4 should be assigned to facility 2 with probability 1/2 each. However, this im-
plies that the support of the leximin allocation must include a deterministic allocation
in which agent k + 3 is assigned to facility 2 while one of agents k + 1 and k + 2 is as-
signed to facility 1 (and the remaining agents are unassigned). In this allocation, the
number of agents satisfied is a mere 2/(k + 1) fraction of the optimum, and the number
of units allocated is also a mere (k + 1)/(k + k2) = 1/k fraction of the optimum. Thus,
both approximation ratios converge to 0 as k goes to infinity.

Let us therefore consider the worst-case (over instances) performance of the leximin
mechanism in expectation (over the randomness of the mechanism). We can show that
approximating (in expectation) the maximum number of satisfied agents is directly at
odds with proportionality — recall that this is exactly the property that the utilitarian
mechanism [31, 94] fails to achieve.

Example 3.7 (Proportionality and maximizing the number of satisfied agents). Suppose
there is a single facility with k units available, and there are k + k2 agents, k of which
require 1 unit each while the other k2 agents require all k units each. Any proportional
mechanism must allocate the k units to each of the k2 agents demanding them with
probability at least 1/(k + k2). Hence, such a mechanism satisfies a single agent with
probability at least k2/(k + k2), and at most k agents with the remaining probability.
Therefore, the expected number of satisfied agents is at most k2/(k + k2) + k · k/(k +
k2) 6 2. However, a maximum of k agents could be satisfied simultaneously. Hence, any
proportional mechanism (including the leximin mechanism) achieves an approximation
ratio of at most 2/k for the number of satisfied agents. This ratio goes to 0 as k goes to
infinity.

In contrast, we make the following conjecture for the expected number of units allo-
cated by the leximin mechanism:
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Conjecture 3.1. The expected number of units allocated by the leximin mechanism 2-
approximates the maximum number of units that can be allocated simultaneously by any non-
wasteful allocation (in the worst case over instances).

The conjecture is based on millions of randomly generated instances. In all of these
instances, the leximin mechanism allocated, in expectation, at least half of the optimal
number of units. While the conjecture is still open, we are able to prove a slightly weaker
4-approximation result.

Theorem 3.3. The expected number of units allocated by the leximin mechanism 4-approximates
the maximum number of units that can be allocated simultaneously by any non-wasteful alloca-
tion (in the worst case over instances).

Proof. Let us first prove a 2-approximation in the case of a single facility to gain some
intuition. Let c denote the capacity of the facility, and D denote the maximum number
of units allocated by a non-wasteful allocation. If all the deterministic assignments in
the support of the leximin allocation allocate at least D/2 units, then the result follows
trivially. Suppose a deterministic assignment allocates t < D/2 6 c/2 units to agents in
S ⊆ N, and is realized with probability p. Hence, it is clear that N \S 6= ∅. Due to Pareto
optimality of the leximin allocation, an allocation that does not assign any agent in N \ S
to the facility must assign all agents in S to the facility. That is, there is a unique such
allocation, which is realized with probability p. Further, due to the nature of the leximin
allocation, every agent in N \ S must also be assigned to the facility with probability at
least p, implying that p 6 1/2. Thus, with probability p 6 1/2 the mechanism allocates
t units, and with the remaining probability 1 − p the mechanism assigns at least one
agent in N \ S to the facility, thus allocating more than c− t units. Hence, the expected
number of units allocated is at least t · 1/2 + (c− t) · 1/2 = c/2 > D/2.

However, generalizing this proof to achieve a “per facility” constant approximation
is difficult. Instead, our proof below works in three steps.

1. We fix an arbitrary (deterministic) allocation A∗ that maximizes the number of
units allocated.

2. Next, after adding certain “virtual allocated units” to each site (derived based
on A∗), the expected number of units allocated by the leximin mechanism 2-
approximates the number of units allocated under A∗ on each facility individually.

3. Finally, we show that the expected number of virtual units added overall is no
more than the expected number of units allocated by the leximin mechanism, thus
establishing the 4-approximation result.

Let A∗ denote an arbitrary deterministic allocation that maximizes the number of
units allocated. For a facility f ∈ M, let Z( f ) = {i ∈ N|A∗i = f } denote the set
of agents assigned to facility f under A∗. Let L denote the leximin allocation, which
executes deterministic allocation Lk with probability pk for k ∈ {1, . . . , T}. We are now
ready for our main lemma. For a facility f ∈ M, the number of “virtual units” we
add is the expected number of units allocated by the leximin mechanism to the agents
in Z( f ) (at any facility). We show that the expected number of units allocated by the
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leximin mechanism at facility f and the number of virtual units for facility f together
2-approximate the number of units allocated by A∗ at facility f , for each f ∈ M.

Lemma 3.3. For a facility f ∈ M we have:

T

∑
k=1

pk

 ∑
i∈N:Lk

i = f

di + ∑
i∈Z( f ):Lk

i 6=0

di

 > 1
2 ∑

i∈Z( f )
di.

Proof. Let us consider two cases.

Case 1: For every i ∈ Z( f ), di 6 c f /2. In this case we can show that

∑
i∈N:Lk

i = f

di + ∑
i∈Z( f ):Lk

i 6=0

di >
1
2 ∑

i∈Z( f )
di (3.1)

for each k ∈ {1, . . . , T}. If Lk
i 6= 0 for every i ∈ Z( f ), then the second term in the LHS of

Equation (3.1) is at least ∑i∈Z( f ) di. Otherwise, let Lk(γ) = 0 for some γ ∈ Z( f ). By the
Pareto optimality of Lk, we know that the demand of agent γ must be greater than the
number of unallocated units at facility f in Lk, i.e.,

dγ > c f − ∑
i∈N:Lk

i = f

di.

Using dγ < c f /2, we get that the first term in the LHS of Equation (3.1) greater than the
RHS. Hence, in either case Equation (3.1) holds.

Case 2: There exists an agent γ ∈ Z( f ) such that dγ > c f /2. Let us define two sets.

1. I = {k ∈ {1, . . . , T} | Lk
γ 6= 0}

2. J = {k ∈ {1, . . . , T} | Lk
γ = 0 and ∑i∈N:Lk

i = f di < c f /2}

Furthermore, let pI = ∑k∈I pk and pJ = ∑k∈J pk. We claim that pI > pJ . Note that pI is
precisely the probability that agent γ is satisfied under the leximin allocation.

Suppose for contradiction that pI < pJ . Take some ` ∈ J, and let W = {i ∈ N | L`
i =

f }. From the definition of J, we know that each agent i ∈ W must satisfy di < c f /2.
Further, for each k ∈ J facility f has more than c f /2 units unallocated in Lk. Hence, by
the Pareto optimality of the leximin allocation, every agent in W must be assigned to
some facility in Lk for every k ∈ J. Importantly, this implies that every agent in W has
probability at least pJ > pI of being assigned to a facility under the leximin allocation.

Now, fix a small ε > 0, and consider a new randomized allocation L̃ that exe-
cutes deterministic allocations L1, . . . , Lk−1, Lk, Lk+1, . . . , LT, and LT+1 with probabilities
p1, . . . , pk−1, (1− ε)pk, pk+1, . . . , pT, and εpk, respectively, where

LT+1
i =


Lk

i if Lk
i 6= f

0 if Lk
i = f and i 6= γ

1 otherwise.
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Note that f must be an acceptable site to agent γ because γ ∈ Z( f ). Hence, allocation
LT+1

i respects the preferences of the agents. It is easy to check that the capacity con-
straint at each facility (including facility f ) is also respected. Essentially, we replace all
the agents assigned at facility f in Lk by a single agent γ. For a sufficiently small ε > 0,
we can see that:

1. Agent γ has a strictly higher probability of being assigned to a facility under L̃
than under L (under L, it is assigned to a facility with probability exactly pI).

2. An agent i 6= γ that is assigned to a facility with probability p 6 pI (thus, from the
above argument Lk

i 6= f ) has the same probability of being assigned to a facility
under L̃ as under L.

3. All the remaining agents were assigned to a facility with probability strictly more
than pI under L, and their probabilities remain strictly greater than pI under L̃.

However, this contradicts the fact that L is a leximin-optimal allocation. This is essen-
tially a consequence of the prefix optimality of L (Lemma 3.2). Hence, we have pI > pJ ,
as claimed.

With this claim in hand, we can show the required inequality. Let us consider the
sum in the LHS.

T

∑
k=1

pk

 ∑
i∈N:Lk

i = f

di + ∑
i∈Z( f ):Lk

i 6=0

di

 .

We break the summation over k ∈ I, k ∈ J, and k ∈ {1, . . . , T} \ (I ∪ J). For each
k ∈ I, we have Lk

γ 6= 0. Hence, the term inside the brackets is at least dγ. For each
k ∈ J, we have Lk

γ = 0. Hence, the term inside the brackets, which is no less than
the number of units allocated at facility f in Lk, must be at least c f − dγ. Finally, from
definitions of I and J, it follows that the term inside the brackets is at least c f /2 for every
k ∈ {1, . . . , T} \ (I ∪ J). Hence, we have that the LHS is at least

∑
k∈I

pk · dγ + ∑
k∈J

pk · (c f − dγ) + ∑
k∈{1,...,T}\(I∪J)

pk ·
c f

2

= pI · dγ + pJ · (c f − dγ) + (1− pI − pJ) ·
c f

2

= (pI − pJ) · dγ + (1− pI + pJ) ·
c f

2

> (pI − pJ) ·
c f

2
+ (1− pI + pJ) ·

c f

2
=

c f

2
>

1
2 ∑

i∈Z( f )
di,

where the third transition holds because pI > pJ and dγ > c f /2. Thus, we have proved
that the lemma holds in both the cases we considered. � (Proof of Lemma 3.3)

Lemma 3.3 holds for every facility individually. Summing over all facilities, we get:

∑
f∈M

T

∑
k=1

pk

 ∑
i∈N:Lk

i = f

di + ∑
i∈Z( f ):Lk

i 6=0

di

 > 1
2 ∑

f∈M
∑

i∈Z( f )
di. (3.2)
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In Equation (3.2), we have

LHS =
T

∑
k=1

pk ·

 ∑
f∈M

∑
i∈N:Lk

i = f

di + ∑
f∈M

∑
i∈Z( f ):Lk

i 6=0

di


=

T

∑
k=1

pk ·

 ∑
i∈N:Lk

i 6=0

di + ∑
i∈N:A∗i 6=0,Lk

i 6=0

di


6 2 ·

T

∑
k=1

pk

 ∑
i∈N:Lk

i 6=0

di

 ,

RHS =
1
2 ∑

f∈M
∑

i∈Z( f )
di =

1
2 ∑

i∈N:A∗i 6=0
di.

Note that LHS is at most twice the expected number of units allocated by the leximin
mechanism, and RHS is half the number of units allocated by A∗. Hence, the expected
number of units allocated by the leximin mechanism 4-approximates the maximum
number of units allocated by a non-wasteful allocation. �

While we strongly believe that the approximation ratio of Theorem 3.3 can be im-
proved from 4 to 2, it can easily be seen that a proportional or envy-free mechanism
(including the leximin mechanism) cannot achieve an approximation ratio better than
2. Consider the case of a single facility with 2k units, and k + 1 agents, one of which
requires all 2k units while the rest require k + 1 units each. Clearly any proportional or
envy-free mechanism must assign each agent demanding k + 1 units alone to the facil-
ity with probability at least 1/(k + 1). Hence, the expected number of allocated units
cannot be more than (k + 1) · k/(k + 1) + 2k · 1/(k + 1) 6 k + 2, while a maximum of
2k units can be allocated simultaneously. This lower bound on the approximation ratio
tends to 2 as k tends to infinity.

3.5 Complexity and Implementation

Recall that our classroom allocation setting is a generalization of the classic setting
of random assignment under dichotomous preferences studied by Bogomolnaia and
Moulin [30] (which can be viewed in our model as restricting agents to have unit de-
mands and facilities to have unit capacities). In the classic setting, leximin allocations
can be computed in polynomial time by leveraging the Birkhoff von-Neumann theo-
rem [25, 197].

In contrast, an immediate reduction from PARTITION shows that computing the lex-
imin allocation is NP-hard in our generalized setting. Indeed, consider an instance of
PARTITION: given a set S of n integers that sum to 2T for T ∈ N, one needs to decide
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if there exists a subset S′ ⊆ S whose elements sum to T. Construct an instance of our
problem in which a single facility has T available units and there are n agents whose de-
mands correspond to the elements of S. Then, the leximin allocation would assign each
agent to the facility with probability at least 1/2 if and only if there exists a partition of
S.

The standard approach to computing the leximin allocation (see, e.g., [153]) is to
successively solve linear programs (LPs) in order to maximize the lowest utility, subject
to that maximize the second lowest utility, and so on. While previous work focused
on establishing polynomial running time of this approach in various domains, in our
domain this task is NP-complete. Hence, in the remainder of the section, we focus on
designing optimized heuristics for computing the leximin allocation in the classroom
allocation setting. We use a variable pi to denote the probability that agent i is satisfied,
for every i ∈ N. In a naı̈ve implementation, we can include a variable xA for every
possible deterministic assignment A ∈ A that represents the probability of executing A,
and write pi = ∑A∈A:Ai 6=0 xA. However, the number of feasible deterministic allocations
can be roughly (m+ 1)n, which makes the LPs extremely large even for moderately large
values of m and n.

Crucially, note that we only care about whether a given agent is satisfied in a de-
terministic allocation, and not about the facility to which the agent is assigned. In
other words, two deterministic allocations that satisfy identical subsets of agents are,
in some sense, equivalent. This is due to the dichotomous nature of the preferences of
agents over facilities. This observation leads us to our first algorithm, presented as Al-
gorithm LEXIMINPRIMAL, which works as follows. First, we compute the collection of
“feasible subsets” of agents, i.e., subsets of agents that can be satisfied simultaneously.
Let S = {S ⊆ N | ∃A ∈ A s.t. ∀i ∈ S, Ai 6= 0}. Checking feasibility of a given subset
of agents S can be encoded as an integer linear program (ILP), presented as FEASIBIL-
ITYILP in the algorithm, which checks if agents in S can be assigned to one of their
acceptable facilities while respecting the capacity constraints. Note that a feasible solu-
tion to FEASIBILITYILP also provides an assignment AS that satisfies S.

Finally, we form an LP, which we call PRIMALLP, in which variable xS denotes the
probability by which S ⊆ N is satisfied, and express the individual agent utilities as
pi = ∑S⊆N:i∈S xS for i ∈ N. The algorithm maintains a set of agents R whose utilities in
the leximin allocation it has not yet found, and stores the utility of each agent i ∈ N \ R
as p∗i . In each iteration, the algorithm maximizes the (next) minimum utility of agents
in R while keeping the utilities of agents in N \ R intact, stores the utilities of agents that
have the next minimum utility, and removes them from R.

The algorithm clearly terminates because any optimal solution to PRIMALLP must
set pi = M for at least one i ∈ R. Hence, |R| decreases by at least 1 in every iteration.
Further, if M is the optimal objective value of PRIMALLP, then an observation from the
convex optimization literature states that there must exist at least one j ∈ R that has
utility M in all optimal solutions to PRIMALLP, and in particular, in the actual leximin
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ALGORITHM 2: LEXIMINPRIMAL

Data: Demands {(di, Fi)}i∈N , Capacities {cj}j∈M
Result: The Leximin Allocation A
Solve FEASIBILITYILP for each S ⊆ N, and let S ← the set of maximal feasible subsets of N;
For each S ∈ S , AS ← the assignment returned by FEASIBILITYILP on S;
R = N;
p∗i = 0, ∀i ∈ N;
do

(M, {pi}i∈R, {xS}S∈S )← Strictly complementary solution to PRIMALLP in the box below;
p∗i = M, ∀i ∈ R : pi = M;
R = R \ {i ∈ N|pi = M};
if R = ∅ then

return the randomized allocation where AS is executed with probability xS for each
S ∈ S ;

end
while R 6= ∅;

PRIMALLP:

Maximize M
subject to
pi > M, ∀i ∈ R
pi = p∗i , ∀i ∈ N \ R
pi = ∑S∈S ,i∈S xS, ∀i ∈ N
∑S∈S xS = 1
xS > 0, ∀S ∈ S

FEASIBILITYILP:

∑ f∈Fi
yi, f > 1, ∀i ∈ S

∑i∈S: f∈Fi
di · yi, f 6 c f , ∀ f ∈ M

yi, f ∈ {0, 1}, ∀i ∈ S, f ∈ Fi

allocation too.7 Our use of a strictly complementary solution to PRIMALLP ensures that
we have pj = M only if it holds in all optimal solutions.8 Thus, Algorithm LEXIMIN-
PRIMAL always makes “safe” choices, and correctly returns a leximin allocation. Finally,
note that the values of p∗i from one iteration are used to compute p∗i in the next iteration.
While this may lead to an exponential blowup in the length of their binary representa-
tion, it does not affect the running time of our algorithm due to a result by Tardos [193].9

Interestingly, note that the choices made by the algorithm do not affect agent utilities in
the returned leximin allocation due to Theorem 3.2.

7If for every j ∈ R there exists a solution to PRIMALLP with pj > M, a positive convex combination of
these solutions would be a feasible solution with a strictly greater objective value, which is a contradic-
tion.

8Strictly complementary solutions can be found by using any interior point method based on the
central trajectory [95], by using a trick due to Freund et al. [96] which requires solving a single LP using
any off-the-shelf solver, or by solving one LP for each i ∈ R to check if pi can be made greater than M in
some optimal solution to PRIMALLP.

9This result shows that the running time of an interior point method is independent of the bit length
of values on the right hand side of an LP, which is where the p∗i are used in PRIMALLP.
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We employ two further optimizations to reduce the running time of LEXIMINPRI-
MAL: i) solving FEASIBILITYILP on different subsets of agents in the decreasing order
of their sizes, and only solving it for S ⊆ N if none of its strict supersets are already
found to be feasible, and ii) only using maximal feasible subsets in S because Pareto
optimality prevents the leximin allocation from using any non-maximal subset.

ALGORITHM 3: LEXIMINDUAL

Data: Demands {(di, Fi)}i∈N , Capacities {cj}j∈M
Result: The Leximin Allocation A
R = N;
p∗i = 0, ∀i ∈ N;
do

(M, {αi}i∈R)← Strictly complementary solution to DUALLP in the box below;
p∗i = M, ∀i ∈ R : αi > 0;
R = R \ {i ∈ N|pi = M};

while R 6= ∅;
Ŝ ← {S ⊆ N| oracle of DUALLP was called on S in the last iteration of the loop};
For each S ∈ Ŝ , AS ← the assignment returned by the oracle when it was called on S;
{xS}S∈Ŝ ← Solution to FINALLP in the box below;
return the randomized allocation where AS is executed with probability xS for each S ∈ Ŝ ;

DUALLP:

Min. M = δ− ∑
i∈N\R

p∗i · βi

subject to
∑i∈R αi = 1
−αi − γi = 0, ∀i ∈ R
−βi − γi = 0, ∀i ∈ N \ R
δ + ∑i∈S γi > 0, ∀S ∈ S
αi > 0, ∀i ∈ R

Oracle for DUALLP:

Max. ∑
i∈N

γi ·
(

∑
j∈Fi

yi,j

)
subject to the constraints of
FEASIBILITYILP

FINALLP:

Find a feasible solution to
pi = p∗i , ∀i ∈ N
pi = ∑S∈Ŝ ,i∈S xS, ∀i ∈ N
∑S∈Ŝ xS = 1
xS > 0, ∀S ∈ Ŝ

Next, we present another algorithm that, instead of solving PRIMALLP, solves its
dual. This is presented as Algorithm LEXIMINDUAL. Note that PRIMALLP has polyno-
mially many constraints and exponentially many variables. Correspondingly, its dual
(DUALLP) has polynomially many variables and exponentially many constraints (in
particular, one constraint for each S ∈ S). We can identify the tight primal constraints
(pi = M for i ∈ R) by simply checking if the corresponding dual variable is strictly
positive (αi > 0) due to the strict complementary slackness conditions. We solve DU-
ALLP using the Ellipsoid algorithm [121], which makes polynomially many calls to an
“oracle” for finding a violated constraint (if one exists) given any values of the vari-
ables. Crucially, we observe that finding S ∈ S that corresponds to the most violated
constraint can be encoded as an ILP, presented along with the algorithm. We use Ŝ to
denote the polynomial-size collection of subsets of agents on which the oracle is called
by the Ellipsoid algorithm. There are three special advantages of the oracle:
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1. Since the oracle includes feasibility constraints, we can avoid the initial (computa-
tionally expensive) stage of LEXIMINPRIMAL solving FEASIBILITYILP for 2n sub-
sets of agents, and instead solve only polynomially many ILPs for subsets in Ŝ .

2. Since LEXIMINDUAL makes only polynomially many calls to the oracle, the over-
all space complexity is polynomial. In particular, the returned leximin allocation
randomizes over polynomially many subsets of agents (i.e., it is sparse), making it
more feasible to store and implement the allocation in practice.

3. In special cases such as the case of unit demands and capacities (i.e., the classic
random assignment setting studied by Bogomolnaia and Moulin [30]), the oracle
can be encoded as a polynomial-size LP by leveraging the Birkhoff von-Neumann
theorem [25, 197], which would automatically make the overall running time of
LEXIMINDUAL polynomial.

In the next section, we show that LEXIMINDUAL is actually drastically superior to
LEXIMINPRIMAL in terms of running time.

3.6 Experiments

Our goal in this section is to empirically compare algorithms LEXIMINPRIMAL and LEX-
IMINDUAL, as well as evaluate the performance of the leximin allocation in terms of the
number of satisfied agents and the number of allocated units.

In our experiments, we vary the number of agents n from 5 to 300.10 Note that the
largest school district in the US (by the number of charter schools) is the Los Angeles
Unified School District (LAUSD) which has 241 charter schools.11 We observe that in
practice the number of facilities varies from about 5n (for LAUSD) to about 20n (for
PUSD). Thus, we select m uniformly at random from the interval [5n, 20n]. Next, we fit
Poisson distributions to the real-world demands and capacities data from PUSD, and
use them to generate demands and capacities in our experiments. For the dichotomous
preferences of agents over facilities, we observe that in the PUSD data certain facilities
were inherently more desirable than others, and were accordingly accepted by many
charter schools. We thus generate a “quality parameter” for each facility in [0, 1] from
the beta distribution with both parameters equal to 5, and have each agent accept the
facilities (which have sufficient capacity to meet its demand) with probabilities propor-
tional to their qualities. For each value of n, the values in all our graphs are averaged
over 500 simulations. We use MATLAB to obtain strictly complementary solutions to
linear programs, and CPLEX to solve integer linear programs. Our experiments are
performed on an Intel PC with dual core, 3.10 GHz processors, and 8 GB RAM.

Figure 3.1 compares the running time of algorithms LEXIMINPRIMAL and LEXIMIN-
DUAL. Note that the running time of LEXIMINPRIMAL increases extremely quickly as

10We use n = 5, 10, 15 for LEXIMINPRIMAL as it fails to run beyond that, and evaluate LEXIMINDUAL
further on n = 50, 100, 150, 200, 250, 300.

11Refer to leximin:http://goo.gl/Bu0pz9 and leximin:http://goo.gl/ILJupc
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Figure 3.1: Running time of LEXIMIN-
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Figure 3.2: Performance of the leximin
allocation as a fraction of the optimum.

n grows, making it infeasible to run the algorithm beyond n = 15. In contrast, LEXI-
MINDUAL solves instances with n = 300 (recall that this is larger than any real-world
instance) in just a little over 3 minutes. This is a direct result of the fact that LEXIMIND-
UAL ends up solving less than 1% of the ILPs solved by LEXIMINPRIMAL, and solving
ILPs is the bottleneck in both algorithms. Another interesting fact is that the number of
times the loop in LEXIMINDUAL (or in LEXIMINPRIMAL) runs is equal to the number
of distinct utility values in the leximin solution, because all agents with identical utili-
ties are removed in a single iteration. The number of iterations required is less than 3
on average in our simulations. We also remark that even if the Proposition 39 process
scaled to the state level, California has approximately 1130 charter schools overall,11

and LEXIMINDUAL can also solve such huge instances in less than 2 hours (this result
is averaged over 10 simulations).

Next, in Figure 3.2 we show the ratios of the expected number of agents satisfied and
the expected number of units allocated by the leximin mechanism to the maximum pos-
sible values of the respective metrics. Remarkably, both ratios stay above a whopping
0.98 on average, which is significantly better than the upper bounds on the worst-case
(over possible instances) performance of the leximin mechanism (almost 0 for the ex-
pected number of agents satisfied and 1/2 for the expected number of units allocated).
The error bars show confidence intervals for the performance of the deterministic allo-
cations in the support of the leximin allocation. Specifically, we remove the best (resp.
the worst) deterministic allocations with an aggregate probability of at most 0.1 from
the support, and then measure the best (resp. the worst) performance of any deter-
ministic allocation in the support. A final remark is that the size of the support of the
leximin allocation is less than 8 on average in our simulations. A randomization over
at most 8 deterministic allocations can easily be stored and implemented in practice,
which further supports the practicability of the leximin mechanism.
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3.7 Related Work

The problem of fairly dividing a set of indivisible goods has been studied extensively.
As an early, seminal example, Hylland and Zeckhauser [113] propose a compelling
pseudo-market mechanism to compute a lottery over deterministic assignments, given
cardinal preferences. Their mechanism satisfies proportionality, envy-freeness, and ex-
ante efficiency, but fails to provide strategyproofness. A more serious objection to their
mechanism is that they elicit cardinal utilities from agents — a difficult task in practice.
A market approach also drives the work of Budish [44] on approximate competitive
equilibrium from equal incomes. His approximation guarantees are practical as long
as the supply of each good is relatively large, which is not the case in the classroom
allocation setting (where the number of available classrooms in a facility is typically
small).

Bogomolnaia and Moulin [29] study random assignment under ordinal preferences.
They introduce the probabilistic serial (PS) mechanism, which satisfies ex-ante efficiency
as well as ordinal fairness. Informally, the probabilistic serial mechanism allows agents
to “eat” (at identical speeds) their shares of different goods one by one in the order in
which they rank the goods. However, similarly to the pseudo-market mechanism of
Hylland and Zeckhauser [113], the probabilistic serial mechanism pertains to the basic
setting of assigning n indivisible goods to n agents.

Budish et al. [45] propose a general framework, which, by generalizing the classic
Birkhoff von-Neumann theorem [25, 197], extends both mechanisms to handle real-
world combinatorial domains, e.g., with group quotas, endogenous capacities, multi-
unit non-additive demands, scheduling constraints, etc. Their extension of the proba-
bilistic serial mechanism would be a potential starting point in our setting, if we wished
to elicit ordinal preferences from the agents. However, note that in our setting a charter
school demanding d classrooms must either receive all d classrooms at a single facility
or no classrooms at all — this restriction is incompatible with the framework of Bud-
ish et al. [45]. There are other extensions of the probabilistic serial mechanism with
multi-unit demands [10, 55, 123, 183], but all of them leverage the standard Birkhoff
von-Neumann theorem to allocate at most d goods to an agent, and cannot ensure that
the agent receives exactly d goods (or no goods at all). We consider it an interesting
open problem to extend the probabilistic serial mechanism to the classroom allocation
setting with ordinal preferences.

3.8 Epilogue and Discussion of Practical Aspects

In January 2015, PUSD asked charter schools to formally report dichotomous prefer-
ences, in addition to the free-text preferences submitted through the usual request form.
The plan was to evaluate our approach by comparing its output on the collected explicit
dichotomous preferences against human-generated allocations based on the free-text
preferences. Despite the promising outlook, sadly, in April 2015 the collaboration was
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terminated by PUSD, for reasons unknown to us. Nonetheless, we were informed that
this initiative helped PUSD build a good rapport with local charter schools.

Meanwhile, Mr. Mopatis put us in touch with representatives of the Los Angeles
Unified School District (LAUSD) — the largest school district in California, which in-
cludes 274 charter schools and over 900 public schools. The possibility of applying our
mechanism at such a large scale is particularly exciting, because the advantages over
human-generated allocations are likely to be quite stark. Having faced large lawsuits in
the recent past, LAUSD expressed enthusiasm about exploring our approach, and as of
June 2016, our approach is currently under consideration by LAUSD for deployment.

More generally, the simplicity of the leximin mechanism, and the intuitiveness of the
properties of proportionality, envy-freeness, Pareto optimality, and strategyproofness,
have made the approach more likely to be adopted. On the other hand, the use of
randomization, though absolutely necessary in order to guarantee fairness in allocating
indivisible goods such as classrooms, has been a somewhat harder sell. Ironically, this
seems to be the result of presenting the mechanism as a “lottery”, which makes it easier
to comprehend on the one hand, but on the other hand raises negative connotations and
legal objections — even though many charter schools use a (straightforward) lottery
system to admit students. In terms of lessons learned, it actually seems better to use
more technical terms in this context.

In conclusion, redesigning the way California’s school districts allocate classrooms
to charter schools is a major project with clear societal impact. This chapter presents a
detailed technical approach, but deployment of this approach is still in its infancy; we
hope to continue working with school districts for years to come.
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Chapter 4

Fair Division of Computational
Resources

4.1 Introduction

In the previous chapter, motivated by a real-world setting in which limited resources
(unused classrooms) needed to be split fairly, we studied the leximin mechanism and
provided a comprehensive analysis. Another prominent application of the leximin
mechanism is in computing systems, where resource allocation is a fundamental is-
sue because such systems are naturally constrained in terms of CPU time, memory,
communication links, and other resources. Often, these resources must be allocated
to multiple agents with different requirements. Such situations arise, e.g., in operating
systems (where the agents can be jobs) or in cloud computing and data centers (where
the agents can be users, companies, or software programs representing them). To take
one example, federated clouds [185] involve multiple agents that contribute resources;
the redistribution of these resources gives rise to delicate issues, including fairness as
well as incentives for participation and revelation of private information, which must
be carefully considered.

Despite the growing need for resource allocation policies that can address these
requirements, state-of-the-art systems employ simple abstractions that fall short. For
example, as pointed out by Ghodsi et al. [99], Hadoop and Dryad—two of the most
widely-used cluster computing frameworks—employ a single resource abstraction for re-
source allocation. Specifically, these frameworks partition the resources into bundles—
known as slots—that contain fixed amounts of different resources. The slots are then
treated as the system’s single resource type, and at this point the allocation can be han-
dled using standard techniques that were developed by the systems community. How-
ever, in a realistic environment where agents have heterogeneous demands, the single
resource abstraction inevitably leads to significant inefficiencies.

Ghodsi et al. [99] suggest a compelling alternative. Their key insight is that even
though agents may have heterogeneous demands for resources, their demands can be
plausibly assumed to be highly structured, in maintaining a fixed proportion between
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resource types. For example, if an agent wishes to execute multiple instances of a job
that requires 2 CPUs and 1 GB RAM, its demand for these two resources has a fixed
ratio of 2. Given 5 CPUs and 1.8 GB RAM, the agent can run only 1.8 instances of its
task (note that Ghodsi et al. allow divisible tasks) despite the additional CPU, hence
the agent would be indifferent between this allocation and receiving only 3.6 CPUs and
1.8 GB RAM. Preferences over resource bundles that exhibit this proportional structure
are known as Leontief preferences in the economics literature. There are some positive
results on resource allocation under Leontief preferences [156], but more often than not
Leontief preferences are drawn upon for negative examples.

In this model, Ghodsi et al. [99] study the leximin mechanism, albeit under a differ-
ent name: the dominant resource fairness (DRF) mechanism. To be consistent with the lit-
erature, we also refer to the mechanism as DRF in this chapter. Ghodsi et al. show that
DRF satisfies four key desiderata: sharing incentives (SI),1 envy-freeness (EF), Pareto
optimality (PO), and strategyproofness (SP). One can easily check that Leontief prefer-
ences satisfy the four conditions from Section 3.3.2. Hence, this result by Ghodsi et al.
is in fact implied by our more general analysis from Chapter 3.

Despite the significant step forward made by Ghodsi et al. [99], there are still many
key issues that need to be addressed. Is it possible to rigorously extend the DRF
paradigm to more expressive settings where agents are weighted? How can we for-
mally tackle settings where agents’ demands are indivisible? How does DRF compare
to alternative mechanisms when social welfare is a concern? We provide answers to
these questions in this chapter.

4.2 The Model

We begin with an intuitive exposition based on an example from Ghodsi et al. [99], and
provide a different perspective on this example. Subsequently, we formulate a simple
mathematical model, and more rigorously introduce our notations and assumptions.

Intuition and an alternative interpretation of DRF: Consider a system with 9 CPUs, 18
GB RAM, and two agents. Agent 1 wishes to execute a (divisible) task with the demand
vector 〈1 CPU, 4 GB〉, and agent 2 has a (divisible) task that requires 〈3 CPU, 1 GB〉.
Note that each instance of the task of agent 1 demands 1/9 of the total CPU and 2/9 of
the total RAM; the task of agent 2 requires 1/3 of the total CPU and 1/18 of the total
RAM.

The dominant resource fairness (DRF) mechanism [99] works as follows. The dominant
resource of an agent is the resource for which the agent’s task requires the largest fraction
of total availability. In the example, the dominant resource of agent 1 is RAM, and
the dominant resource of agent 2 is CPU. The DRF mechanism seeks to maximize the
number of allocated tasks, under the constraint that the fractions of dominant resource
that are allocated—called dominant shares—are equalized.

1This is simply a different name for proportionality. Again, to be consistent with the literature, we also
use the term sharing incentives in this chapter.
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Returning to the running example, let y and z be the (possibly fractional) quantities
of tasks allocated by DRF to agents 1 and 2, respectively; then overall y + 3z CPUs
and 4y + z GB are allocated, and these quantities are constrained by the availability of
resources. The dominant shares are 2y/9 for agent 1 and z/3 for agent 2. The values of
y and z can be computed as follows:

max (y, z)
subject to y + 3z 6 9

4y + z 6 18
2y
9 = z

3
Due to the equality 2y/9 = z/3 it is sufficient to maximize either y or z; we maximize
the pair (y, z) for consistency with [99]. The solution is y = 3 and z = 2, i.e., agent 1 is
allocated 3 CPUs and 12 GB RAM, and agent 2 is allocated 6 CPUs and 2 GB RAM.

We next introduce a novel, somewhat different way of thinking about DRF, which
greatly simplifies the analysis of its properties. Let Dir be the ratio between the demand
of agent i for resource r, and the availability of that resource. In our example, when
CPU is resource 1 and RAM is resource 2, D11 = 1/9, D12 = 2/9, D21 = 1/3, and
D22 = 1/18. For all agents i and resources r, denote dir = Dir/(maxr′Dir′); we refer
to these demands as normalized demands. In the example, d11 = 1/2, d12 = 1, d21 = 1,
d22 = 1/6.

We propose a linear program whose solution x is the dominant share of each agent.
Observing the fixed proportion between an agent’s demands for different resources,
agent i is allocated an (x · dir)-fraction of resource r.

max x
subject to ∑i x · dir 6 1, ∀r

Allocations are bounded from above by 1 because the program allocates fractions of
the total availability of resources. Clearly this linear program can be rewritten as:

x =
1

maxr ∑i dir
. (4.1)

In the example, x = 1/(1/2 + 1) = 2/3. That is, the allocation to agent 1 is 1/3 of the
total CPU, and 2/3 of the total RAM, which is equivalent to 3 CPUs and 12 GB RAM,
as before. Similarly, agent 2 is allocated 2/3 of the total CPU and 1/9 of the total RAM,
which is equivalent to 6 CPUs and 2 GB RAM, as before.

Rigorous model: Denote the set of agents by N = {1, . . . , n}, and the set of resources
by R, |R| = m. As above, we denote the normalized demand vector of agent i ∈ N by
di = 〈di1, . . . , dim〉, where 0 6 dir 6 1 for all r ∈ R. An allocation A allocates a fraction
Air of resource r to agent i, subject to the feasibility condition ∑i∈N Air 6 1 for all r ∈ R.
A resource allocation mechanism is a function that receives normalized demand vectors
as input, and outputs an allocation.

Throughout the chapter we assume that resources (e.g., CPU, RAM) are divisible.
Up to (but excluding) Section 4.5, our model for preferences coincides with the domain
of Leontief preferences. Let the utility of an agent for its allocation vector Ai be

ui(Ai) = max{y ∈ R+ : ∀r ∈ R, Air > y · dir}.
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In words, the utility of an agent is the fraction of its dominant resource that it can ac-
tually use, given its proportional demands and its allocation of the various resources.
Note that this definition makes the implicit assumption that agents’ tasks are divisible; we re-
lax this assumption in Section 4.5. Unless explicitly mentioned otherwise, we do not rely
on an interpersonal comparison of utilities. Put another way, with the exception of Sec-
tion 4.4, an agent’s utility function simply induces ordinal preferences over allocations,
and its exact value is irrelevant.

An allocation A is called non-wasteful if for every agent i ∈ N there exists y ∈ R+

such that for all r ∈ R, Air = y · dir. Note that if A is a non-wasteful allocation then for
all i ∈ N,

ui(A′i) > ui(Ai)⇒ ∀r ∈ R s.t. dir > 0, A′ir > Air. (4.2)

4.3 Extensions: Weights, Zero Demands, and Group Strat-
egyproofness

In this section we depart from the framework of Ghodsi et al. [99] in three ways. First,
we allow agents to be weighted, based on their contribution to the system. Second,
we explicitly model the case where agents may have zero demands and therefore DRF
needs to allocate in multiple rounds (these first two issues were informally considered
by Ghodsi et al., as we discussed in Section 4.1). Third, we study stronger game theoretic
properties such as group strategyproofness. We show that DRF can be modified to
address these realistic extensions, although the analysis of its game theoretic properties
becomes more intricate.

For (contribution) weights, we assume that each agent i ∈ N has a publicly known
weight wir for resource r ∈ R, which reflects the agent’s endowment of that resource
(think of this as the amount of the resource contributed by the agent to the resource
pool or the equivalent monetary contribution made by the agent for the resource). We
assume without loss of generality that for all resources r ∈ R, ∑i∈N wir = 1. PO and
SP are defined identically, but the weighted setting does require modifications to the
notions of SI and EF, which are redefined as follows. SI now means that an agent i ∈ N
receives as much value as it would get from the allocation that assigns it a wir-fraction
of each resource r ∈ R, i.e., ui(Ai) > ui(〈wi1, . . . , wim〉). EF requires that agent i does not
envy agent j when the allocation of j is scaled by wir/wjr on each resource r. Formally,

ui(Ai) > ui(〈(wi1/wj1) · Aj1, . . . , (wim/wjm) · Ajm〉).

An alternative definition for the weighted version of EF might simply require that in the
special case where agents have a uniform weight wi = wir for all r ∈ R, agent i does not
prefer the allocation of agent j scaled by wi/wj. However, note that the above definition
is stronger, and, as we shall demonstrate, the stronger version is feasible. We also note
that setting wir = 1/n for all agents i ∈ N and resources r ∈ R recovers the unweighted
case.
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Our second contribution in this section is explicitly modeling the case where agents
may not demand every resource. At first glance the assumption of positive demands,
which implies that DRF can be simulated via a single allocation according to Equa-
tion (4.1), seems very mild. After all, it may seem that the allocation when an agent has
zero demand for a resource would be very similar to the allocation when that agent has
almost zero demand for the same resource.

To see why this is not the case, let the normalized demand vector of agent 1 be 〈1, ε〉
(i.e., d11 = 1 and d12 = ε), and let agents 2 and 3 have the demand vector 〈ε, 1〉. DRF
allocates roughly 1/2 of resource 1 to agent 1, and roughly 1/2 of resource 2 to each
of agents 2 and 3. If the ε demands are replaced by zero, the first-round allocation
(using Equation (4.1)) would be similar. However, then a second round would take
place; participation is restricted to agents that only demand non-saturated resources. In
this second round agent 1 would receive the unallocated half of resource 1, hence agent
1 would ultimately be allocated all, instead of just half, of resource 1. Crucially, note
that agent 1 ends up receiving all of its dominant resource while agents 2 and 3 receive
1/2 of their dominant resources. Thus, agents might receive unequal shares of their
dominant resources at the end of such a multi-round DRF allocation in the presence of
zero demands, unlike the single-round DRF allocation in the case of non-zero demands.

In dealing with both weights and zero demands, we extend DRF as follows.
Let r∗i be the weighted dominant resource of agent i ∈ N, defined by r∗i ∈
arg minr∈R: dir>0(wir/dir). Informally, an agent’s demand is now scaled by its weight
on each resource. Next, we let ρi = wir∗i

/dir∗i
be the ratio of weight to demand on the

weighted dominant resource of agent i ∈ N; for now we assume, for ease of exposition,
that dir > 0 implies wir > 0 (we explain how to drop this assumption later). The ex-
tended DRF mechanism proceeds in rounds; let srt be the surplus fraction of resource
r ∈ R left unallocated at the beginning of round t (so sr1 = 1 for all r ∈ R). The frac-
tion of resource r allocated to agent i in round t is denoted by Airt. We remark that
agent weights and demands do not change during the execution of the mechanism,
but an agent’s dominant resource might change depending on the surpluses of various
resources available in each round.

We present our mechanism EXTENDEDDRF as Algorithm 4. It deviates from the
unweighted mechanism in a couple of ways. Instead of using x = 1/(maxr ∑i dir) as in
Equation (4.1), it defines xt in round t using the ρi’s of the agents. Thus, each agent i is
now allocated an (xt · ρi · dir)-fraction of resource r in round t, and hence an (xt · wir∗i

)-
fraction of its dominant resource, instead of being allocated an x-fraction of its dominant
resource and other resources in proportion, as in the unweighted case.

Our main result of this section is that EXTENDEDDRF satisfies the four desirable
properties introduced above. In fact, the mechanism satisfies an even stronger game-
theoretic property known as group strategyproofness (GSP): whenever a coalition of
agents misreports demands, there is a member of the coalition that does not strictly gain.
An interested reader can check that EXTENDEDDRF is the deterministic and weighted
version of the leximin mechanism in the Leontief preference domain. Chapter 3 pro-
vides a general analysis for the randomized and unweighted version of the leximin
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ALGORITHM 4: EXTENDEDDRF
Data: Demands d, weights w
Result: An allocation A
t← 1;
∀r, sr1 ← 1;
S1 ← N;
while St 6= ∅ do

xt ← minr∈R

(
srt

∑i∈St ρi ·dir

)
;

∀i ∈ St, r ∈ R, Airt ← xt · ρi · dir;
∀i ∈ N \ St, r ∈ R, Airt ← 0;
∀r ∈ R, sr,t+1 ← srt −∑i∈St

Airt;
t← t + 1;
St ← {i ∈ St−1 : ∀r ∈ R, dir > 0⇒ srt > 0}; /* St demand unsaturated resources */

end
∀i ∈ N, r ∈ R, Air ← ∑t−1

k=1 Airk

mechanism. First, note that divisibility of resources makes the Leontief preferences do-
main convex. Hence, the deterministic and the randomized versions of the leximin
mechanism provide identical utilities to the agents. Next, we remark that the analysis
in Chapter 3 can easily be extended to the weighted version of the leximin mechanism.
Nonetheless, we provide the original proof for EXTENDEDDRF in the Leontief prefer-
ences domain published in the conference version of this work [164] for the sake of
completeness.

Theorem 4.1. EXTENDEDDRF is PO, SI, EF, and GSP.
It is trivial that the mechanism is PO, because resources are allocated in the correct

proportions, i.e., it is non-wasteful, and moreover it allocates resources as long as play-
ers can derive value from them. Establishing SI is also a simple matter. Indeed, for
every r ∈ R,

∑
i∈N

ρi · dir 6 ∑
i∈N: dir>0

(
wir

dir
· dir

)
= ∑

i∈N: dir>0
wir 6 1

and therefore x1 > 1. Thus, each agent i receives x1 · ρi · dir∗i
= x1 · wir∗i

> wir∗i
of

resource r∗i already in round 1. We need to show that each agent i ∈ N values its
allocation as much as the allocation 〈wi1, . . . , wim〉, and this now follows from the fact
that the mechanism is non-wasteful and from Equation (4.2).

For EF, let i, j ∈ N; we argue that agent i does not envy j. Indeed, let ti and tj,
respectively, be the last rounds in which these agents were allocated resources. If tj > ti,
agent j does not demand some resource that i does and hence is not allocated a share of
that resource. We can therefore assume that tj 6 ti. If djr∗i

> 0 then

Ajr∗i
=

( tj

∑
t=1

xt

)
· ρj · djr∗i

6

( tj

∑
t=1

xt

)
·

wjr∗i
djr∗i
· djr∗i

=

( tj

∑
t=1

xt

)
· wjr∗i

,
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and otherwise Ajr∗i
= 0. Moreover,

Air∗i
=

(
ti

∑
t=1

xt

)
· ρi · dir∗i

=

(
ti

∑
t=1

xt

)
· wir∗i

>

( tj

∑
t=1

xt

)
· wir∗i

.

Scaling Ajr∗i
by (wir∗i

/wjr∗i
), we get at most Air∗i

; EF is then implied by Equation (4.2).
The challenge is to show that EXTENDEDDRF is GSP. To gain some insight, let us con-

centrate first on a very special case: strictly positive demands (one round), no weights
(ρi = 1 for all i ∈ N), and SP rather than GSP. For this, assume that agent i ∈ N re-
ports the demand vector d′i instead of di; this leads to the solution x′ to Equation (4.1)
instead of x, which induces the allocation A′ir = x′ · d′ir. If x′ 6 x then agent i receives
x′ · d′iri

6 x · 1 = x · diri of its dominant resource ri, so its utility cannot increase by Equa-
tion (4.2). If x′ > x, consider a resource r that was saturated when reporting di. It holds
that

Air = 1−∑
j 6=i

Ajr = 1−∑
j 6=i

x · djr > 1−∑
j 6=i

x′ · djr = 1−∑
j 6=i

A′jr > A′ir,

hence, once again, the utility of agent i cannot increase by Equation (4.2).
The next lemma extends the above argument to the case of possibly zero demands

and weighted agents, and strengthens SP to get GSP, thereby completing the proof of
Theorem 4.1.

Lemma 4.1. EXTENDEDDRF is GSP.

Proof. Assume, without loss of generality, that the set of manipulating agents is M ⊆ N
and they report untruthful normalized demand vectors d′M = 〈d′i〉i∈M (which induce
ratios ρ′i); let d′ be the collection of normalized demand vectors where d′i = di for all
i ∈ N \M.

Let t∗ be the first round when a demanded resource of some i ∈ M becomes satu-
rated, under truthful or untruthful demands (i.e., the minimum of the two rounds). Let
isSaturated be a Boolean variable that is true if and only if a demanded resource of a
manipulator becomes saturated at the end of round t∗ under the truthful reports, and
define isSaturated′ similarly for the untruthful reports. As before, denote by Airt (resp.,
A′irt) the share of resource r ∈ R allocated to agent i ∈ N in round t, and let Air = ∑t Airt
(resp., A′ir) be the total fraction of resource r ∈ R allocated to agent i ∈ N under d (resp.,
d′). In addition, St (resp., S′t) is the set of agents that demand only unsaturated resources
in round t under d (resp., d′).

Claim 4.1. 1. For all t 6 t∗ and r ∈ R such that dir = d′ir = 0 for all i ∈ M, srt = s′rt.
2. For all t 6 t∗, St = S′t.
3. For all t < t∗, xt = x′t.

Proof. We prove the claim by induction on t. The base of the induction is trivial, as
sr1 = s′r1 = 1 for all r ∈ R, and S1 = S′1 = N. We can also let x0 = x′0 as a formality.

For the induction step, consider round t < t∗. We assume statements (1) and (2) are
true for all t′ 6 t, and that statement (3) is true for all t′ < t. We prove statement (3) for
round t and then we prove statements (1) and (2) for round t + 1.
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In round t, no agent i ∈ M has saturated resources under d or d′, hence there are
resources r, r′ ∈ R such that for all i ∈ M, dir = d′ir = 0 and dir′ = d′ir′ = 0, which
become saturated at round t under the two demand vectors, i.e.,

xt =
srt

∑i∈St ρi · dir
,

and

x′t =
s′r′t

∑i∈S′t
ρ′i · d′ir′

.

By the induction assumption, srt = s′rt, sr′t = s′r′t, and St = S′t. Moreover, ∑i∈St ρi · dir =
∑i∈S′t

ρ′i · d′ir and ∑i∈St ρi · dir′ = ∑i∈S′t
ρ′id
′
ir′ , where last two equalities hold because every

i ∈ M does not demand either r or r′ under d or d′ (and hence the summations include
zero terms for these agents). It follows that

xt =
srt

∑i∈St ρi · dir
=

s′rt
∑i∈S′t

ρ′i · d′ir
> x′t,

and similarly x′t > xt. We conclude that xt = x′t.
To establish statement (1) for round t + 1, let r ∈ R such that dir = d′ir = 0 for all

i ∈ M. Using the induction assumption we conclude that

sr,t+1 = srt − xt ∑
i∈St

ρidir = s′rt − x′t ∑
i∈S′t

ρ′id
′
ir = s′r,t+1.

Finally, the assertion that St+1 = S′t+1 follows from the fact that all resources not
demanded by members of the coalition have the same surplus under both d and d′, and
resources that are demanded by at least one member of the coalition are not saturated
under d nor under d′. �

Having established Claim 4.1, we proceed with the lemma’s proof by distinguishing
between four cases.

Case 1: x′t∗ > xt∗ and isSaturated is true. Let r be a resource that is saturated under d in
round t∗, and is demanded by some manipulator, i.e., there is i ∈ M such that dir > 0.
Note that such a resource exists by the definition of the variable isSaturated. Using
Claim 4.1, we have that for every t < t∗ and every i ∈ N \M,

Airt = xt · ρi · dir = x′t · ρ′i · d′ir = A′irt,

and similarly Airt∗ 6 A′irt∗ by the assumption that xt∗ 6 x′t∗ . It follows that for all
i ∈ N \M,

Air =
t∗

∑
t=1

Airt 6
t∗

∑
t=1

A′irt 6 A′ir.
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Consider the set of agents M′ = {i ∈ M|dir > 0}. From the definition of r, M′ is
nonempty. In addition, for all i ∈ M\M′, Air = 0 6 A′ir. We conclude that for any
i ∈ N \M′, Air 6 A′ir. It follows that

∑
i∈M′

A′ir 6 1− ∑
i∈N\M′

A′ir 6 1− ∑
i∈N\M′

Air = ∑
i∈M′

Air,

where the equality holds because r is saturated under d. In other words, the overall
allocation of resource r to the set of manipulating agents in M′ does not grow larger as
a result of manipulation, so there must be i ∈ M′ such that A′ir 6 Air. Since dir > 0, this
implies by Equation (4.2) that the utility to agent i does not increase, as required.

Case 2: x′t∗ 6 xt∗ and isSaturated’ is true. Consider an agent i ∈ M that demands a
resource that becomes saturated in round t∗ under d′. Let r∗i be a weighted dominant
resource of agent i. We have that ρi = wir∗i

/dir∗i
and ρ′i 6 wir∗i

/d′ir∗i . It follows that
ρi · dir∗i

= wir∗i
and ρ′i · d′ir∗i 6 wir∗i

. From Claim 4.1, we know that for all t < t∗, xt = x′t,
and our assumption is that x′t∗ 6 xt∗ . Therefore, for every t 6 t∗,

A′ir∗i t = x′t · ρ′i · d′ir∗i 6 x′t · wir∗i
6 xt · wir∗i

= xt · ρi · dir∗i
= Air∗i t.

Next we notice that under d′, agent i is not allocated more resources after round t∗. We
conclude that

A′ir∗i =
t∗

∑
t=1

A′ir∗i t 6
t∗

∑
t=1

Air∗i t 6 Air∗i
.

Thus, there exists an agent i ∈ M who does not receive an increased share of weighted
dominant resource under d′, and hence its utility under d′ does not increase.

Case 3: x′t∗ > xt∗ and isSaturated is false (and hence isSaturated′ is true). We argue that
this case is impossible. Let r be a resource that is saturated under d in round t∗. Since
isSaturated is false, it must hold that for all i ∈ M, dir = 0. Thus for all t 6 t∗ (using
St = S′t by Claim 4.1), ∑i∈S′t

ρ′i · d′ir > ∑i∈St ρi · dir. Claim 4.1 further states that xt = x′t
for all t < t∗, and therefore

srt∗ = 1−
t∗−1

∑
t=1

(
xt · ∑

i∈St

ρi · dir

)
> 1−

t∗−1

∑
t=1

x′t · ∑
i∈S′t

ρ′i · d′ir

 = s′rt∗ .

We conclude that

xt∗ =
srt∗

∑i∈St∗
ρi · dir

>
s′rt∗

∑i∈S′t∗
ρ′i · d′ir

> x′t∗ ,

Which contradicts our assumption that x′t∗ > xt∗ .

Case 4: x′t∗ < xt∗ and isSaturated’ is false (and hence isSaturated is true). This case is sym-
metric to case 3, by replacing the roles of d and d′.

It may not be immediately apparent that the above four cases are exhaustive, but
note that it is never the case that both isSaturated and isSaturated′ are false. Therefore,
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the three possible combinations of values for isSaturated and isSaturated′ are covered
by cases 1 and 3 when x′t∗ > xt∗ ; by cases 2 and 4 when x′t∗ < xt∗ ; and by cases 1 and 2
when x′t∗ = xt∗ . This completes the proof of Lemma 4.1. �

While GSP is a strong game-theoretic axiom, an even stronger version has been stud-
ied in the literature. Under the stronger notion, it cannot be the case that the value of
all manipulators is at least as high, and the value of at least one manipulator is strictly
higher under the false reported demands. Under the assumption of strictly positive
demands, it is easy to verify that EXTENDEDDRF also satisfies the stronger notion (the
allocation is made in a single round).

However, it turns out that when there are multiple rounds, one agent can help an-
other by causing a third agent to drop out early without losing value itself. To see this,
consider the following setting with 5 agents with wir = 1/5 for each i ∈ N and r ∈ R,
and,

d1 = 〈0, 1, 0〉, d2 = 〈1, 0, 0〉, d3 = 〈1, 0, 1/4〉, d4 = 〈0, 1, 1〉, d5 = 〈0, 1, 1〉.

It can be seen that x1 = 1/3. The surplus at the beginning of the second round is
s12 = 1/3, s22 = 0, and s32 = 1/4. Resource 2 is saturated and S2 = {2, 3}. In the
second round, x2 = 1/6. Therefore, the utilities of agents 1 and 2 in this setting are
u1 = 1/3 and u2 = 1/3 + 1/6 = 1/2.

Now, assume that agents 1 and 2 collude, and report demand vectors d′1 =
{0, 1, 3/4} and d′2 = d2. In this case x′1 = 1/3 as before, but the surplus at the be-
ginning of the second round is s′12 = 1/3, s′22 = 0, and s′32 = 0. Hence, both resources
2 and 3 are saturated and S2 = {2}. In round 2 agent 2 receives the remaining surplus
of resource 1. Hence, under the false demands, u′1 = 1/3 and u′2 = 1/3 + 1/3 = 2/3;
agent 1 is not worse off and agent 2 is better off.

We conclude with two remarks. First, note that in each round, the mechanism ex-
hausts a resource that at least one agent demanded. This gives an immediate upper
bound of min(|N| = n, |R| = m) on the number of rounds. Since each round takes
O(n · m) time to execute, it follows that the running time of the mechanism is polyno-
mial in the number of agents and the number of resources.

Second, recall that we have assumed for ease of exposition that dir > 0 implies wir >
0. We now briefly explain how to drop this assumption. Observe that if there exist i ∈ N
and r ∈ R such that dir > 0 but wir = 0, agent i is not entitled to anything according to
EF or SI, i.e., any allocation would satisfy these two properties with respect to i. Hence,
we can initially remove such agents, and proceed as before with the remaining agents.
We then add a second stage where the remaining resources are allocated to the agents
that were initially removed, e.g., via unweighted DRF. Using Theorem 4.1, it is easy to
verify that this two-stage mechanism is PO, EF, SI, and GSP.
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4.4 Limitations: Strategyproof Mechanisms and Welfare
Maximization

In Section 4.3 we have established that the DRF paradigm is robust to perturbations of
the model, maintaining its many highly desirable properties. In this section we examine
some of the limitations of DRF, and ask whether these limitations can be circumvented.

Throughout this section we assume that an agent’s utility is exactly ui(Ai) =
max{y ∈ R+ : ∀r ∈ R, Air > y · dir}. In particular, if the mechanism is non-wasteful, an
agent’s utility is the allocated fraction of its dominant resource. In addition, we assume
an interpersonal comparison of utilities; i.e., the utility function is not merely a formal-
ism for comparing allocations ordinally. Therefore, given an allocation A, we define its
(utilitarian) social welfare as ∑i∈N ui(Ai). The results of this section, which are negative
in nature, hold under this assumption specifically, but similar results hold under pertur-
bations of the utility functions such as linear affine sums of utility. Because the negative
results hold even when players are unweighted in terms of their resource contributions,
we adopt the model and definitions of Section 4.2.

Our basic observation is that DRF may provide very low social welfare compared to
a welfare-maximizing allocation. For example, consider a setting with m resources. For
each resource r there is an agent ir such that dir,r = 1, and dir,r′ = 0 for all r′ ∈ R \ {r}.
Moreover, there is a large number of agents with normalized demands dir = 1 for all
r ∈ R. The optimal allocation would give all of resource r to agent ir, for a social
welfare of m. In contrast, under DRF each agent would receive a (1/(n − m + 1))-
fraction of its dominant resource. As n grows larger, the social welfare of n/(n− m +
1) approaches 1. The ratio between these two values is arbitrarily close to m. More
formally, letting the approximation ratio of a mechanism be the worst-case ratio between
the optimal solution and the mechanism’s solution, we say that for every δ > 0, DRF
cannot have an approximation ratio better than m− δ for the social welfare.

In some sense it is not surprising that DRF provides poor guarantees with respect to
social welfare. After all, the DRF paradigm focuses on egalitarian welfare by equalizing
the dominant shares across the agents, rather than aiming for utilitarian welfare. So,
can other mechanisms do better?

Let us first examine mechanisms that satisfy SI. It is immediately apparent that the
above example provides a similar lower bound. Indeed, any SI mechanism would have
to allocate at least 1/n of each resource to each of the n − m agents with an all-ones
normalized demand vector. Intuitively, an SI mechanism must allocate almost εm of
the various resources in order to obtain ε social welfare. That is, for any δ > 0, any SI
mechanism cannot have an approximation ratio better than m− δ for the social welfare.
A similar (though slightly more elaborate) argument works for EF, by replacing the
demand vectors of the m agents ir with dir,r = 1 (as before) and dir,r′ = ε for all r′ ∈
R \ {r} and an arbitrarily small ε > 0.

These observations are disappointing, but not entirely unexpected. SI and EF are
properties that place significant constraints on allocations. SP is an altogether different
matter. A priori the constraints imposed by SP seem less obstructive to welfare maxi-
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mization than SI or EF, and indeed in some settings SP mechanisms (even without the
use of payments) provide optimal, or nearly optimal, social welfare [174]. Nevertheless,
the main result of this section is a similar lower bound for SP mechanisms.

Theorem 4.2. For any δ > 0 there exists a sufficiently large number of agents n such that no
SP mechanism can provide an approximation ratio smaller than m− δ for the social welfare.

Proof. We first introduce some notation. Given an allocation A, define the index set of
A as IA = {i ∈ N | minr∈R Air 6 1/

√
n}. In words, IA denotes the set of agents who

have at most a (1/
√

n)-fraction of some resource allocated to them. We argue that for
any allocation A,

|IA| > n−
√

n. (4.3)

Indeed, for any i ∈ N\IA and r ∈ R, Air > 1/
√

n. Hence, there cannot be more than
√

n
such agents, otherwise their total allocation for every resource would be more than 1.

Let 1 = (1, 1, . . . , 1) be a the all-ones demand vector. Let εi be the demand vector
that has 1 in ith position and ε everywhere else. We are interested in settings where the
agents in a subset X ⊆ N, |X| = m, have the demand vectors ε1, ε2, . . . , εm and the
remaining agents have demand vectors 1. We show that if the resulting allocation A is
such that for all i ∈ X, i ∈ IA, then the theorem follows.

Claim 4.2. Suppose that for any sufficiently large n ∈ N, for any SP mechanism for n agents
and m resources, and for any ε > 0, there exists X ⊆ N such that |X| = m and when the
agents in X report the demand vectors ε1, . . . , εm, and the agents in N \ X report the demand
vector 1, the mechanism returns an allocation A such that X ⊆ IA. Then for any δ > 0, no SP
mechanism for m resources can provide an approximation ratio smaller than m− δ.

Proof. Given n, an SP mechanism, and ε, let X ⊆ N as in the claim’s statement. For all
i ∈ X, ui(Ai) 6 1/(

√
n · ε). Clearly it also holds that

∑
i∈N\X

ui(Ai) 6 1.

Hence, the social welfare of an SP mechanism on this instance can be at most m/(
√

n ·
ε) + 1.

In contrast, maximum social welfare is obtained by dividing the resources among the
m agents in X, with everyone getting equal shares of their dominant resources. Under
this allocation, every agent i ∈ X receives a (1/(1+(m− 1) · ε))-fraction of its dominant
resource, which is its utility. Hence, the optimal social welfare is m/(1 + (m− 1) · ε).

It follows that the approximation ratio of the SP mechanism cannot be smaller than

m
1 + (m− 1) · ε ·

1
m√
n·ε + 1

. (4.4)

To prove the claim it remains to show that for any δ > 0, we can choose n and ε such
that the expression in Equation (4.4) is greater than m− δ. Indeed, choose

ε <
δ

3 ·m · (m− 1)
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and

n > max

((
3 ·m2 · (m− 1)

δ

)2

,
(

3 ·m2

ε · δ

)2)
.

Then (m2 · (m− 1))/
√

n < δ/3, m · (m− 1) · ε < δ/3, and m2/(
√

n · ε) < δ/3. It follows
that

δ >
m2 · (m− 1)√

n
+ m · (m− 1) · ε + m2

√
n · ε

,

and in particular

1 +
δ

m
> (1 + (m− 1) · ε) ·

(
m√
n · ε

+ 1
)

.

Therefore, using the fact that 1/(1− δ
m ) > 1 + δ/m,

m
m− δ

> (1 + (m− 1) · ε) ·
(

m√
n · ε

+ 1
)

,

and finally

m− δ <
m

1 + (m− 1) · ε ·
1

m√
n·ε + 1

,

as required. � (Claim 4.2)

Our goal is therefore to prove the hypothesis made in the statement of Claim 4.2. In
the remainder of the proof ε is arbitrary and fixed, and we vary the number of agents
n. Since we are dealing with an arbitrarily large n, we can assume that m divides n for
ease of exposition. We start from a setting where the demand vector is di = 1 for all
i ∈ N. We partition the set of n agents into m buckets, B1, B2, . . . , Bm, each with n/m
agents. For consistency we impose the following restriction: an agent in Bi can only
change its demand from 1 to εi. In future references, we omit the unambiguous initial
and final demands when we say that an agent changes its demand. We show not only
that a set X ⊆ N of m agents exists as in the statement of Claim 4.2, but one such set
exists that consists of one agent from each bucket, such that after these m agents change
their demands, they all belong to the index set of the resulting allocation.

Call an m-tuple (i1, . . . , im) diverse if ik ∈ Bk for every k ∈ {1, . . . , m}, that is, if it
consists of one agent from each bucket. Let Tn,m denote the set of all diverse m-tuples.
Let Ln,m ⊆ Tn,m be the set of diverse m-tuples such that when they all change their
demands, at least one of them is not in the index set. We want to show that |Tn,m \
Ln,m| > 0. We prove the following claim.

Claim 4.3. For any n, m ∈N, |Tn,m| = (n/m)m and |Ln,m| 6 m · (n/m)m−1 ·
√

n.

Proof. Since Tn,m is the set of all diverse m-tuples where one agent is selected from each
of m buckets with each bucket containing n/m agents, it is easy to see that |Tn,m| =
(n/m)m. Recall that Ln,m denotes the set of all diverse m-tuples such that when they
change their demands, at least one of them is not in the index set. For any k ∈ {1, . . . , m},
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define Lk
n,m ⊆ Ln,m to be the set of m-tuples in Ln,m such that when they change their

demands, the agent from bucket Bk is not in the index set. Clearly |Ln,m| 6 ∑m
k=1 |Lk

n,m|.
Fix any k ∈ {1, . . . , m}. We upper-bound |Lk

n,m| as follows. Take any tuple t =

(i1, . . . , im) ∈ Lk
n,m. Let t−k = (i1, . . . , ik−1, ik+1, . . . , im). If all agents in t change their

demands, agent ik is not in the index set and gets more than a (1/
√

n)-fraction of every
resource. Consider the case when only agents in t−k change their demands. If agent ik
is in the index set, then it receives at most a (1/

√
n)-fraction of some resource. Thus, its

utility under the demand vector 1 is at most 1/
√

n and it has strict incentive to misreport
its demand vector (to εk) and be outside the index set. This is impossible since the
mechanism is SP. Thus, ik must not be in the index set when the agents in t−k change
their demands.

Now, for any fixed t−k, the number of possible agents ik that are not in the index set
when the agents in t−k change their demands is at most

√
n (from Equation (4.3)). Thus,

for each possible t−k, there are at most
√

n tuples in Lk
n,m. Since the number of ways of

choosing t−k is at most (n/m)m−1, we have that |Lk
n,m| 6 (n/m)m−1 ·

√
n. Hence,

|Ln,m| 6
m

∑
k=1
|Lk

n,m| 6 m ·
( n

m

)m−1
·
√

n,

as required. � (Claim 4.3)

Using Claim 4.3, we see that

|Tn,m \ Ln,m| >
( n

m

)m
−m ·

( n
m

)m−1
·
√

n =
( n

m

)m−1
·
√

n ·
(√

n
m
−m

)
.

Thus, for n > m4, we have that |Tn,m \ Ln,m| > 0, as required. � (Theorem 4.2)

Despite their negative flavor, the results of this section can be seen as vindicating
DRF as far as social welfare maximization is concerned. Indeed, asking for just one
of the three properties (SI, EF, or SP) seems like a minimal requirement, but already
leads to an approximation ratio that is as bad as the one provided by DRF itself (or
EXTENDEDDRF, for that matter).

4.5 Indivisible Tasks

So far, our theoretical analysis treated agents’ tasks as divisible: if to run a task an agent
needs 2 CPUs and 2 GB RAM, but it is allocated 1 CPU and 1 GB RAM, then it can run
half a task. This assumption, which coincides with Leontief preferences, is the driving
force behind the results of Section 4.3 as well as earlier and related results [97, 99, 131].

However, in practice agents’ tasks would usually be indivisible. Indeed, this is the
case in the implementation and simulations carried out by Ghodsi et al. [99]. In other
words, a more realistic domain model is a setting with divisible goods but indivisible
tasks: an agent can only derive utility from tasks that are allocated enough resources
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to run.2 Hence, informally, an agent’s utility function is a step function that increases
with every additional instance of its task that it can run. In this section we will not
require interpersonal comparison of utilities; i.e., as in Section 4.3, a utility function is
used only to induce ordinal preferences over allocations. However, for ease of exposition
we do assume here that agents are unweighted (or, equivalently, all agents have equal
weights).

More formally, each agent i ∈ N now reports a demand bundle bi, where bir denotes
the fraction of resource r ∈ R that agent i requires to complete one instance of its task.
Given an allocation A, the utility function of agent i ∈ N is given by

ui(Ai) = max{t ∈N∪ {0} : ∀r ∈ R, Air > t · bir},

that is, an agent’s utility increases linearly with the number of complete instantiations of
its task that it can run.

Our positive results focus, as before, on non-wasteful mechanisms that do not al-
locate resources to agents that cannot use them (our negative results do not make this
assumption). For a non-wasteful mechanism we can simply denote by xA

i = xi the
number of bundles allocated to agent i ∈ N under the allocation A, in which case the
utility of agent i is ui(A) = xA

i . As a last piece of new notation, we define inequalities
between two vectors as follows. We write v > w if the inequality is satisfied pointwise.
Furthermore, v > w if v > w and there is at least one coordinate k such that vk > wk.

4.5.1 Impossibility results

Observe that the definitions of PO, SI, EF, and SP are identical to the ones given in
Section 4.2. Interestingly, DRF still satisfies SI, EF, and SP under the new “truncated”
utilities. However, DRF is no longer PO. For example, say that there are two agents
and one resource, and b11 = 1/10, b21 = 2/5. DRF would allocate 1/2 of the resource
to each agent, but allocating 3/5 of the resource to agent 1 and 2/5 of the resource to
agent 2 would be better for agent 1 and equally good for agent 2. An implementation
of DRF that allocates tasks sequentially to agents with currently minimum dominant
share [99] also suffers from several theoretical flaws when analyzed carefully, e.g., it
does not satisfy SI. Note that it is trivial to satisfy SI, EF, and SP without PO, by giving
each agent exactly its proportional share of each resource.

The next few results imply that we cannot hope to tweak DRF to achieve all four
desirable properties (PO, SI, EF, and SP) under indivisibilities.

Theorem 4.3. Under indivisibilities there is no mechanism that satisfies PO, SI, and SP.

Proof. Consider a setting with two agents and a single resource. Both agents have bun-
dles b11 = b21 = 1/2 + ε, for a small ε > 0. Assume for contradiction that there exists
a mechanism that satisfies PO, SI, and SP. By PO, the mechanism allocates one bundle
to exactly one of the two agents, without loss of generality agent 1. Now suppose that

2The combination of divisible goods and indivisible tasks may lead to an additional, practical issue,
in regard to resource fragmentation, which we discuss in Section 4.7.
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agent 2 reports b′21 = 1/2; then any SI allocation must allocate at least 1/2 of the re-
source to agent 2, hence the only allocation that is both PO and SI allocates all of the
resource to agent 2. This is a contradiction to SP. �

An even more fundamental issue is that PO and EF are trivially incompatible under
indivisibilities. For example, when two agents have a task that requires all available
resources, the only (two) Pareto optimal allocations give everything to one of the agents,
but these allocations are not EF.

Fortunately there is precedent to studying relaxed notions of EF in related settings.
A recent example is given by the work of Budish [44] on the combinatorial assignment
problem. Budish deals with a related resource allocation setting that models allocations
of seats in university courses. Each resource (seats in course) has an integer availability,
and agents have preferences over bundles of resources. Budish proposes an approxi-
mate version of the notion of competitive equilibrium from equal incomes [195].3 An inter-
esting notion of approximate fairness satisfied by his solution is envy bounded by a single
good: there exists some good in the allocation of agent j ∈ N such that i ∈ N does not
envy j when that good is removed.4 This notion has a natural equivalent in our setting,
which we formalize below.

Definition 4.1. A mechanism is envy-free up to one bundle (EF1) if for every vector of
reported bundles b it outputs an allocation A such that for all i, j ∈ N, ui(Ai) > ui(Aj −
bi).

Subtraction between vectors is pointwise. In words, a mechanism is EF1 if each agent
i ∈ N does not envy agent j ∈ N if one instance of the task of agent i is removed from
the allocation of j. For non-wasteful mechanisms, this is equivalent to xjbj � (xi + 2)bi
for all i, j ∈ N. Unlike the strict notion of EF, we shall see that the relaxed notion is
compatible with PO. However, the following straightforward result implies that the
latter notion is incompatible with PO and SP.

Theorem 4.4. Under indivisibilities there is no mechanism that satisfies PO, EF1, and SP.

Proof. As above, consider a setting with two agents and one resource. Both agents have
bundles b11 = b21 = 1/3. The only feasible allocations that are EF1 and PO allocate 2/3
of the resource to one agent and 1/3 to the other. Assume without loss of generality
that agent 1 receives two bundles. If agent 2 reports b′21 = 1/6 then the only PO and
EF1 allocation gives 2/3 of the resource to agent 2 and 1/3 to agent 1, violating SP. �

We remark that Theorems 4.3 and 4.4 can easily be extended to multiple resources
by having every agent demand all the resources equally. To summarize, the combina-
tion SP+SI+EF1 is trivial, but if we add PO and insist on SP we immediately run into
impossibilities with either SI or EF1. Unfortunately, SP seems to preclude reasonable

3Specifically, he allows the market to clear with an error, and also slightly perturbs the initially equal
budgets of agents.

4Related notions appear in earlier work, for example the approximate notion of equal treatment of
equals of Moulin and Stong [152] and an approximate notion of envy-freeness studied by Lipton et al.
[134].
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mechanisms when tasks are indivisible. We therefore focus on the other three proper-
ties in the context of task indivisibilities, namely PO, SI, and EF1, which, as we shall see,
induce a rich axiomatic framework and lead to the design of practical mechanisms.

4.5.2 Sequential Minmax

To design a mechanism that is PO, SI, and EF1 under indivisible tasks, we first in-
troduce a few notations. Given a non-wasteful allocation A, let MaxDom(A) =
maxi∈N maxr∈R Air be the maximum dominant share allocated to an agent. We also
let A ↑ i be the allocation obtained by starting from the allocation A and giving agent
i ∈ N another bundle bi.

We are now ready to present our mechanism, SEQUENTIALMINMAX, which is for-
mally given as Algorithm 5. The mechanism sequentially allocates one bundle at each
step to an agent that minimizes the maximum dominant share after allocation.

ALGORITHM 5: SEQUENTIALMINMAX

Data: Bundles b
Result: An allocation A
k← 1; A0 ← 0; T1 ← N;
while Tk 6= ∅ do

Mk ← {i ∈ Tk | ∀j ∈ Tk, MaxDom(Ak−1 ↑ i) 6MaxDom(Ak−1 ↑ j)};
i← any agent in Mk;
Ak ← Ak−1 ↑ i;
Tk+1 ← {i ∈ Tk | Ak ↑ i is feasible};
k← k + 1;

end
return Ak−1;

Our main result of this section is the following theorem.

Theorem 4.5. SEQUENTIALMINMAX satisfies PO, SI, and EF1.
Note that the more intuitive alternative of maximizing the minimum dominant share

does not achieve the same properties, nor do variations that consider dominant shares
before rather than after allocation.

To establish PO we need to prove that we are allocating a bundle to some agent
as long as there exists an agent to which we can allocate; this follows trivially from the
mechanism itself since Tk 6= ∅ implies Mk 6= ∅. We establish SI and EF1 in the following
two lemmas.

Lemma 4.2. SEQUENTIALMINMAX satisfies SI.

Proof. Let ASI be the minimal SI allocation that is obtained by giving each agent 1/n
of each resource, and then taking back resources that agents cannot use. We show that
ASI = Ak for some k during the execution of SEQUENTIALMINMAX. This is sufficient
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because subsequent allocations can only increase the shares of resources that agents
obtain.

We prove, by induction, that Ak 6 ASI (where allocations are treated as vectors and
the inequality is pointwise) until it becomes equal to ASI for the first time. Note that
initially A0 6 ASI. We will show that until Ak = ASI, the mechanism would only
allocate a bundle to an agent that is also allocated in ASI, and therefore after finitely
many iterations Ak = ASI. Formally, we want to prove that if Ak 6 ASI and Ak 6= ASI

then Ak+1 6 ASI.
Indeed, assume that Ak 6 ASI and Ak 6= ASI. Let i ∈ N be the agent that is given a

bundle in iteration k + 1 of the mechanism. Since Ak 6= ASI, there exists an agent j who
has a strictly smaller number of bundles in Ak than in ASI. Note that ASI is a feasible
allocation, hence the mechanism does have enough resources to allocate a bundle to j in
iteration k + 1, i.e., j ∈ Tk+1. It follows that

MaxDom(Ak+1) = MaxDom(Ak ↑ i) 6MaxDom(Ak ↑ j) 6MaxDom(ASI) 6
1
n

.

Therefore, Ak+1 6 ASI. �

The next lemma shows that the mechanism maintains EF1 at every step.

Lemma 4.3. SEQUENTIALMINMAX satisfies EF1.

Proof. For consistency, we say that the mechanism has an iteration 0 at the end of which
the allocation is A0 = 0. Note that the allocation 0 is EF1. Suppose for contradiction
that the allocation returned by the mechanism at the end is not EF1.

Iteration k1: Let k1 be the first iteration such that Ak1 is not EF1. Thus, k1 > 0. Let
i ∈ N be the agent that is allocated a bundle in iteration k1. There exists an agent j ∈ N
who envies i up to one bundle under Ak1 , otherwise the allocation after iteration k1 − 1
would not be EF1 as well, contradicting the fact that k1 is the first such iteration. Since
j envies i, it must hold that i has positive demand for every resource for which j has
positive demand. That is,

∀r ∈ R, bjr > 0⇒ bir > 0. (4.5)

Let xi and xj denote the number of bundles of i and j, respectively, in Ak1 . It holds
that xi · bi > (xj + 2) · bj, and therefore

∀r ∈ R, xi · bir > (xj + 2) · bjr. (4.6)

For every r ∈ R such that bir > 0, Equation (4.6) implies that xi > (xj + 2) · (bjr/bir).
Let r̂ ∈ arg maxDRF:r:bir>0(bjr/bir). Then, we have

xi > (xj + 2) ·
bjr̂

bir̂
. (4.7)

Iteration k2: Consider the iteration k2 in which j was allocated its xj-th bundle. Since
i was allocated a bundle in iteration k1, we have k2 6= k1. Hence, 0 6 k2 < k1. Since
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allocations are monotonic, j has xj bundles at the end of iteration k for every k2 6 k 6 k1.
If k2 = 0, then j clearly does not envy i at the end of iteration k2. If k2 > 0 and j envies i at
the end of iteration k2, then j envied i up to one bundle at the end of iteration k2− 1 < k1
since j had xj− 1 bundles after iteration k2− 1. But this contradicts our assumption that
k1 is the first iteration such that Ak1 is not EF1. Hence, it must be the case that j does not
envy i at the end of iteration k2. However, j envies i (even up to one bundle) at the end
of iteration k1.

Iteration k3: Take the smallest k3 such that k2 < k3 6 k1 and j envies i at the end of
iteration k3. Clearly, the mechanism must have allocated one bundle to i in iteration k3.
Let x′i be the number of bundles allocated to i at the end of iteration k3 (hence x′i > 1).
Note that j must have exactly xj bundles at the end of iteration k3 since k2 < k3 6 k1.
Further, since j does not envy i at the end of iteration k3 − 1, there exists r1 ∈ R such
that (x′i − 1) · bir1 < (xj + 1) · bjr1 . First, this implies that bjr1 > 0. Hence, we also
have bir1 > 0 from Equation (4.5). Thus, we have x′i − 1 < (xj + 1) · bjr1/bir1 . Since
r̂ ∈ arg maxDRF:r:bir>0(bjr/bir), we have

x′i − 1 < (xj + 1) ·
bjr̂

bir̂
. (4.8)

Subtracting Equation (4.8) from Equation (4.7), we obtain xi− x′i + 1 > bjr̂/bir̂. Thus,
xi − x′i + 1 > bjr/bir for every r ∈ R such that bir > 0. This implies that (xi − x′i +
1) · bir > bjr for every r ∈ R such that bir > 0. Moreover, if bir = 0 then we have
bjr = 0 from Equation (4.5), and (xi − x′i + 1) · bir = bjr = 0. Thus, for every r ∈ R,
(xi − x′i + 1) · bir > bjr, i.e., (xi − x′i + 1) · bi > bj. Note that at least (xi − x′i + 1) · bi
resources were available at the beginning of iteration k3 since the mechanism allocated
(xi − x′i + 1) bundles to i from iteration k3 until k1. In particular, the mechanism had
enough resources to allocate a bundle to j at the beginning of iteration k3, i.e., j ∈ Tk3 .

Next, since j envies i at the end of iteration k3, we have

∀r ∈ R, x′i · bir > (xj + 1) · bjr. (4.9)

Let r∗i and r∗j be dominant resources of agents i and j respectively. Then Equa-
tion (4.9) implies that

x′i · bir∗i
> x′i · bir∗j

> (xj + 1) · bjr∗j
. (4.10)

Since the mechanism allocated a bundle to i in iteration k3, it must be the case that
i ∈ Mk3 . Using our conclusion that j ∈ Tk3 , we have x′i · bir∗i

6 (xj + 1) · bjr∗j
. Therefore,

Equation (4.10) holds with equalities. It follows that for every r ∈ R such that bir > 0,

bjr

bir
6

x′i
xj + 1

=
bjr∗j

bir∗j
, (4.11)

where the first transition is due to Equation (4.9). Note that bjr∗j
> 0, hence Equation (4.5)

implies bir∗j
> 0. From Equation (4.11), we can see that x′i · bir∗j

< (xj + 2) · bjr∗j
. Thus, j
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does not envy i up to one bundle at the end of iteration k3. This implies that k3 < k1.
Since i was allocated a bundle in iteration k1, we also have x′i < xi.

Iteration k4: Consider the iteration k4, k3 < k4 6 k1, in which i is allocated its (x′i + 1)-th
bundle. From Equation (4.6), we know that xi · bir∗j

> (xj + 2) · bjr∗j
. Subtracting x′i · bir∗j

=

(xj + 1) · bjr∗j
(equality holds due to Equation (4.11)), we get (xi − x′i) · bir∗j

> bjr∗j
. Again

using Equation (4.11), we conclude that for every r ∈ R such that bir > 0,

xi − x′i >
bjr∗j

bir∗j
>

bjr

bir
.

Thus, (xi − x′i) · bir > bjr if bir > 0. Also, if bir = 0 then Equation (4.5) implies
bjr = 0 and we have (xi − x′i) · bir = bjr = 0. Hence, (xi − x′i) · bi > bj. Note that at
least (xi − x′i) · bi resources were available at the beginning of iteration k4 since xi − x′i
bundles were allocated to i from iteration k4 till k1. Hence, there were enough resources
to allocate a bundle to j at the beginning of iteration k4, i.e., j ∈ Tk4 . Equation (4.10)
implies that (xj + 1) · bjr∗j

< (x′i + 1) · bir∗i
6 MaxDom(Ak4). Note that this is still not a

contradiction because allocating to j may not decrease MaxDom(Ak4).

Iteration k5: Consider the first iteration k5, k5 6 k4, such that MaxDom(Ak5) > (xj + 1) ·
bjr∗j

. Hence, we have

MaxDom(Ak5−1) 6 (xj + 1) · bjr∗j
. (4.12)

Let l be the agent that is allocated a bundle in iteration k5. Thus, Ak5 = Ak5−1 ↑
l. As j has at most xj bundles at the end of iteration k5 − 1, Equation (4.12) implies
MaxDom(Ak5−1 ↑ j) 6 (xj + 1) · bjr∗j

< MaxDom(Ak5) = MaxDom(Ak5−1 ↑ l). Also,
j ∈ Tk4 and k5 6 k4, hence j ∈ Tk5 . It follows that l /∈ Mk5 , which is a contradiction since
the mechanism allocated a bundle to l in iteration k5. Thus, our original assumption
that there exists an iteration where the allocation is not EF1 is false. �

Crucially, as a special case of Theorem 4.5 we find that an allocation that is PO, SI,
and EF1 always exists for indivisible tasks; this is not a priori clear, and in fact, we are
not aware of a more direct proof of existence. Once we know such an allocation exists
though, we can consider alternative methods of finding it. For example, the computa-
tion of such an allocation can be carried out using a mixed integer program (MIP). Us-
ing a MIP approach one can also optimize an objective subject to the three constraints;
e.g., maximize the minimum dominant share to achieve the most egalitarian allocation
among allocations that are PO, SI, and EF1.

Another potential approach is to use the properties of competitive equilibrium from
equal incomes (CEEI). In the setting of Section 4.2 a competitive equilibrium exists and
satisfies PO, SI, and EF [99]. While indivisibilities preclude the existence of a CEEI
(obviously, as PO and EF are incompatible), conceivably it may be possible to prove the
existence of an approximate version that is EF1 using an approach similar to Budish
[44]. Even if such an approximate CEEI exists, its computation can be challenging [160].
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In any case, as an algorithm for finding PO+SI+EF1 allocations, SEQUENTIALMIN-
MAX has several major advantages over other potential approaches. First, since
the mechanism allocates a bundle to some agent in each execution of the while
loop, it can be seen that the mechanism terminates in time O(n2m/b∗), where b∗ =
mini∈N maxr∈R bir; i.e., 1/b∗ is an upper bound on the number of bundles that can be
allocated to an agent. Second, it can be implemented dynamically. Indeed, even in a real-
istic setting where agents change their demands over time, or arrive and depart, we can
still carry out the policy of allocating to an agent minimizing the maximum dominant
share. Specifically, at the beginning of iteration t we can compute the sets Tk and Mk
regardless of the currently present agents and their current demands.

4.6 Related Work

The work of Ghodsi et al. [99] has quickly attracted significant attention from the al-
gorithmic economics community. Consequently, during the process of preparing the
conference version of this work, several independent (from our work and each other)
related papers have become available. While none of these papers study social welfare
maximization (our Section 4.4) or indivisibilities (our Section 4.5), there is a partial over-
lap with our results on extending DRF (Section 4.3). In the following, we discuss each
of these papers in detail, starting from the original DRF paper.

Ghodsi et al. [99] focus on the theoretical comparison of DRF to other potential mech-
anisms, and provide a systematic empirical study of the computational properties of
DRF. Ghodsi et al. also mention that one can extend DRF to take into account weighted
agents. However, the discussion of this extension is informal, and it is unclear whether
DRF maintains its properties. In addition, although Ghodsi et al. do not assume that
agents have strictly positive demands for every resource, this issue is addressed rather
informally. Specifically, their proof of SP relies on a loose simulation argument that, we
believe, may be insufficient when some agents do not demand every resource. We in-
troduce an alternative technical framework that allows us (in Section 4.3) to rigorously
establish stronger properties (GSP instead of SP) while simultaneously tackling agent
weights and zero demands on some resources.

A manuscript by Li and Xue [131] provides a characterization of mechanisms that
satisfy desirable properties under Leontief preferences. As a consequence of their re-
sults, one obtains a formal proof of GSP for certain mechanisms, even when agents
are weighted. Curiously, their results do not capture DRF itself due to a technical as-
sumption. More importantly, Li and Xue assume strictly positive demands; we argue in
Section 4.3 that the case of zero demands is important, and our results suggest that it is
also technically challenging.

Another manuscript by Friedman et al. [97] explores the relations between resource
allocation under Leontief preferences and bargaining theory. Among other results, they
introduce a family of weighted DRF mechanisms. It is important to recognize that here
the weights are not exogenously given, but are a way to induce different variations of
DRF as mechanisms for allocating to unweighted agents. In addition, Friedman et al.
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explicitly assume strictly positive demands for simplicity. Under this assumption, they
show that every weighted DRF mechanism satisfying additional technical properties is
GSP.

We mention two additional related papers that are disjoint from ours in terms of
results. Dolev et al. [78] also study resource allocation under Leontief preferences. They
consider an alternative fairness criterion, which they call no justified complaints. They
compare allocations that satisfy this criterion with DRF allocations. Their main result
is the existence of allocations that satisfy no justified complaints. Gutman and Nisan
[108] present polynomial time algorithms for computing allocations under a family of
mechanisms that includes DRF. Moreover, they show that a competitive equilibrium
(discussed in passing below) achieves the notion of fairness of Dolev et al. [78], thereby
leading to a polynomial time algorithm for computing allocations with this property.
The two new mechanisms that we present are both polynomial time.

4.7 Discussion

This chapter enhances our understanding of resource allocation in settings with multi-
ple resources. First, we assumed that tasks are divisible and showed that EXTENDED-
DRF is PO, SI, EF, and GSP even when the agents have initial endowments and may not
demand every resource. Second, we observed that no SI or EF mechanism can provide
an approximation ratio smaller than m for the social welfare, and proved that the same
property holds when one requires SP. Third, under indivisible tasks, we showed that
SEQUENTIALMINMAX is PO, SI, and EF1. Nevertheless, several key challenges remain
unresolved.

Our model of Section 4.5 relaxes the assumption that tasks are divisible, but we do
make the assumption that there is one pool of divisible resources. As discussed in pass-
ing by Ghodsi et al. [99], in practice clusters consist of many small machines. This issue
of resource fragmentation complicates matters further, and requires careful attention.

In addition, we spent some time studying a setting where each agent has multiple
divisible tasks. We focused on a specific utility function: an agent’s utility is the sum
of dominant shares of its tasks, under the optimal division of its allocated resources
between its tasks. Such a utility function can be motivated by routing settings where
resources are links and tasks correspond to different paths from a source to a sink. It is
possible to show that a competitive equilibrium exists in this setting, and the resulting
allocation satisfies PO, SI, and EF. However, we were unable to settle the existence of a
mechanism satisfying PO, SI, EF, and SP, even under restricted utility functions.

Finally, our analysis is restricted to a static setting where demands are revealed and
a single allocation is made. Above we touched on the issue of dynamic implementation,
and indeed in practice agents may arrive and depart, or change their demands over time
(cf. [163, 212] for analogous settings with money). What theoretical guarantees would
we look for in such a setting? In particular, what would be the appropriate notion of
fairness in a dynamic resource allocation setting? Some answers are in Chapter 5, but
many fundamental questions remain open.
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Chapter 5

Dynamic Fair Division

5.1 Introduction

In the previous chapters, we studied a variety of fair division settings involving addi-
tive utilities, dichotomous utilities, and Leontief preferences. In fact, the fair division
literature offers a wide spectrum of other possibilities that apply to different real-world
domains. Nevertheless, some aspects of such domains are beyond the current scope of
fair division theory. Perhaps most importantly, the literature fails to capture the dynam-
ics of the system. In other words, for centuries fair division theory has addressed the
static problem of finding a one-shot fair allocation of a known set of resources among a
known set of agents. In many real-world systems, it is typically not the case that all the
agents are present in the system at any given time; agents may arrive and depart, and
the system must be able to adjust the allocation of resources. Even on the conceptual
level, dynamic settings challenge some of the premises of fair division theory. For exam-
ple, if one agent arrives before another, the first agent should intuitively have priority;
what does fairness mean in this context?

Focusing on the setting from the previous chapter involving the allocation of compu-
tational resources in computing systems, we introduce the concepts necessary to answer
this question, and design novel mechanisms that satisfy our proposed desiderata. Our
contribution is therefore twofold: we design more realistic resource allocation mechanisms
for multiagent systems that provide theoretical guarantees, and at the same time we ex-
pand the scope of fair division theory to capture dynamic settings.

5.2 Dynamic Resource Allocation: A New Model

Let us first briefly review the static model studied in the previous chapter. In this model,
a set of agents N = {1, . . . , n} have Leontief preferences over a set of resources R (where
|R| = m). We represent the (normalized) demand vector of agent i by di = 〈di1, . . . , dim〉,
and the set of all possible normalized demand vectors by D. Let d6k = 〈d1, . . . , dk〉
denote the demand vectors of agents 1 through k. Similarly, let d>k = 〈dk+1, . . . , dn〉
denote the demand vectors of agents k + 1 through n.
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Recall that an allocation A allocates a fraction Air of resource r to agent i, subject to
the feasibility condition ∑i∈N Air 6 1 for all r ∈ R, and that the utility of agent i under
this allocation is given by

ui(Ai) = max{y ∈ R+ : ∀r ∈ R, Air > y · dir}.

An allocation A is called non-wasteful if for every agent i there exists y ∈ R+ such that
for all r ∈ R, Air = y · dir. For a non-wasteful allocation, the utility of an agent is the
share of its dominant resource allocated to the agent. If A is a non-wasteful allocation
then for all i ∈ N,

ui(A′i) > ui(Ai)⇒ ∀r ∈ R, A′ir > Air. (5.1)

For allocations A over agents in S ⊆ N and A′ over agents in T ⊆ N such that S ⊆ T,
we say that A′ is an extension of A to T if A′ir > Air for every agent i ∈ S and every
resource r. When S = T, we simply say that A′ is an extension of A.

We now introduce our dynamic resource allocation model. In our model, agents ar-
rive at different times and do not depart (see Section 5.7 for a discussion of this point).
We assume that agent 1 arrives first, then agent 2, and in general agent k arrives after
agents 1, . . . , k − 1; we say that agent k arrives in step k. An agent reports its demand
when it arrives and the demand does not change over time. Thus, at step k, demand
vectors d6k are known, and demand vectors d>k are unknown. A dynamic resource al-
location mechanism operates as follows. At each step k, the mechanism takes as input
the reported demand vectors d6k and outputs an allocation Ak over the agents present
in the system. Crucially, we assume that allocations are irrevocable, i.e., Ak

ir > Ak−1
ir for

every step k > 2, every agent i 6 k− 1, and every resource r. We also assume that the
mechanism knows the total number of agents n in advance.

Irrevocability can be justified in various settings, e.g., in cases where resources are
committed to long-term projects. One example is that of a research cluster shared be-
tween faculty members at a university. In such a cluster, the total number of faculty
members who can access the cluster (denoted n in our setting) is known to the mecha-
nism in advance — as we assume in our model.

Previous work on static resource allocation [see, e.g., 99, 165] focused on designing
mechanisms that satisfy four prominent desiderata. Three of these — two fairness prop-
erties and one game-theoretic property — immediately extend to the dynamic setting.

1. Sharing Incentives (SI). We say that a dynamic allocation mechanism satisfies SI
if ui(Ak

i ) > ui(〈1/n, . . . , 1/n〉) for all steps k and all agents i 6 k. In words,
when an agent arrives it receives an allocation that it likes at least as much as an
equal split of the resources. This models a setting where agents have made equal
contributions to the system and hence have equal entitlements. In such cases, the
contributions are typically recorded, which allows the mechanism to know the
total number of agents n in advance, as assumed in our setting.

2. Envy Freeness (EF). A dynamic allocation mechanism is EF if ui(Ak
i ) > ui(Ak

j ) for
all steps k and all agents i, j 6 k, that is, an agent that is present would never prefer
the allocation of another agent.
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3. Strategyproofness (SP). A dynamic allocation mechanism is SP if no agent can mis-
report its demand vector and be strictly better off at any step k, regardless of the
reported demands of other agents. Formally, a dynamic allocation mechanism is
SP if for any agent i ∈ N and any step k, if Ak

i is the allocation to agent i at step
k when agent i reports its true demand vector and Bk

i is the allocation to agent
i at step k when agent i reports a different demand vector (in both cases all the
other agents report their true demand vectors), then ui(Ak

i ) > ui(Bk
i ). We avoid

introducing additional notations that will not be required later.
In the static setting, the fourth prominent axiom, Pareto optimality (PO), means that

the mechanism’s allocation is not Pareto dominated by any other allocation. Of course,
in the dynamic setting it is unreasonable to expect the allocation in early stages to be
Pareto undominated, because we need to save resources for future arrivals (recall that
allocations are irrevocable). We believe though that the following definition naturally
extends PO to our dynamic setting.

4. Dynamic Pareto Optimality (DPO). A dynamic allocation mechanism is DPO if at
each step k, the allocation Ak returned by the mechanism is not Pareto dominated
by any other allocation Bk that allocates up to a (k/n)-fraction of each resource
among the k agents present in the system. Put another way, at each step the al-
location should not be Pareto dominated by any other allocation that only redis-
tributes the collective entitlements of the agents present in the system among those
agents.

It is straightforward to verify that a non-wasteful mechanism (a mechanism return-
ing a non-wasteful allocation at each step) satisfies DPO if and only if the allocation
returned by the mechanism at each step k uses at least a (k/n)-fraction of at least one
resource (the assumption of strictly positive demands plays a role here).

Before moving on to possibility and impossibility results, we give examples that
illustrate how various combinations of the properties constrain the allocation of re-
sources.

Example 5.1 (Satisfying Sharing Incentives (SI) and Dynamic Pareto Optimality (DPO)).
In this chapter, we only consider non-wasteful allocations. Hence, as described above,
DPO is equivalent to allocating at least a (k/n)-fraction of at least one resource in every
step k, when allocations are proportional. On the other hand, if a mechanism seeks
to satisfy SI, it cannot allocate more than a (k/n)-fraction of any resource in step k.
Indeed, if more than a (k/n)-fraction of resource r is allocated at step k, and every
agent arriving after step k reports r as its dominant resource, the mechanism would
not have enough of resource r left to allocate each of them at least a (1/n)-fraction of
r, as required by SI. Thus, a non-wasteful mechanism satisfying both SI and DPO must
allocate, in every step k, exactly a (k/n)-fraction of some resource and at most a (k/n)-
fraction of every other resource. In other words, in every step k, the mechanism has a
pool of available resources — which contains a (k/n)-fraction of each resource, minus
the fraction already allocated — to be allocated to the k agents that are currently present.
The mechanism can only allocate from this pool, and must exhaust at least one resource
from the pool.
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Example 5.2 (Understanding Strategyproofness (SP)). In this example, we take a mech-
anism that may seem SP at first glance, and show that it violates our definition of
SP. For simplicity, we will allow the agents to have possibly zero demands for some
of the resources in this example. This allows beneficial manipulations for the fol-
lowing simple mechanism, which we call DYNAMIC DICTATORSHIP. (We note that
DYNAMIC DICTATORSHIP is otherwise strategyproof for strictly positive demands —
see the discussion following Theorem 5.1.) At each step k, the mechanism allocates a
1/n share of each resource to agent k, takes back the shares of different resources that
the agent cannot use, and then allocates resources to the k present agents in the order of
their arrival using serial dictatorship, that is, it allocates to each agent as many resources
as the agent can use, and then proceeds to the next agent. The mechanism keeps allo-
cating until a k/n share of at least one resource is allocated. Note that the mechanism
trivially satisfies SI because it allocates resources as valuable as an equal split to each
agent as soon as it arrives. The mechanism would satisfy DPO in our standard setting
with non-zero demands, because it is non-wasteful and at every step k it allocates a k/n
fraction of at least one resource. Intuitively, it seems that the first agent should not gain
by reporting a false demand vector because in each round it gets to pick first and is al-
lowed to take as much as it can use from the available pool of resources. We show that
this intuition is incorrect. Let us denote the pool of resources available to the mecha-
nism in any step by a vector of the fraction of each available resource. Consider the case
of four agents (agents 1, 2, 3, and 4), and three resources (R1, R2, and R3). Let the true
demand vectors of the agents be as follows:

d1 = 〈1, 0.5, 0.5〉, d2 = 〈0, 1, 1〉, d3 = 〈1, 0.5, 0〉, d4 = 〈0, 1, 0.5〉.

Figure 5.1 shows the allocations returned by DYNAMIC DICTATORSHIP in various
steps when all agents report their true demand vectors. Now, suppose agent 1 raises its
demand for R3 by reporting a false demand vector 〈1, 0.5, 1〉. In this case the allocations
returned by the mechanism in various steps are shown in Figure 5.2. We can see that
the manipulation makes agent 1 strictly worse off in step 2, but strictly better off in the
final step. Our definition of SP requires that an agent should not be able to benefit in
any step of the process by lying — thus DYNAMIC DICTATORSHIP is not SP.

5.2.1 Impossibility Result

Ideally, we would like to design a dynamic allocation mechanism that is SI, EF, SP, and
DPO. However, we show that even satisfying EF and DPO simultaneously is impossi-
ble.

Theorem 5.1. Let n > 3 and m > 2. Then no dynamic resource allocation mechanism satisfies
EF and DPO.

Proof. Consider a setting with three agents and two resources. Agents 1 and 2 have
demand vectors 〈1, 1/9〉 and 〈1/9, 1〉, respectively (i.e., d11 = 1, d12 = 1/9, etc.). At
step 2 (after the second agent arrives), at least one of the two agents must be allocated at
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Figure 5.1: Allocations returned by DYNAMIC DICTATORSHIP when agent 1 reports its true
demand vector.
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Figure 5.2: Allocations returned by DYNAMIC DICTATORSHIP when agent 1 manipulates.

least an x = 3/5 share of its dominant resource. Suppose for contradiction that the two
agents are allocated x′ and x′′ shares of their dominant resources where 0 < x′, x′′ < x.
Then, the total fractions of the two resources allocated at step 2 would be x′+ x′′ · (1/9)
and x′′ + x′ · (1/9), both less than x + x · (1/9) = 2/3, violating DPO. Without loss of
generality, assume that agent 1 is allocated at least an x = 3/5 share of its dominant
resource (resource 1) at step 2. If agent 3 reports the demand vector 〈1, 1/9〉— identical
to that of agent 1 — then it can be allocated at most a 2/5 share of its dominant resource
(resource 1), and would envy agent 1.

It is easy to extend this argument to the case of n > 3, by adding n− 3 agents with
demand vectors that are identical to the demand vector of agent 3. Once again, it can
be verified that at the end of step 2, at least one of the first two agents (w.l.o.g., agent
1) must be allocated at least a 9/(5n) share of its dominant resource. If we take the
remaining resources (in particular, at most a 1− 9/(5n) share of resource 1), and divide
them among the remaining n− 2 agents that have demand vectors identical to that of
agent 1, at least one of them will get at most a (1− 9/(5n))/(n− 2) < 9/(5n) share of its
dominant resource, and will envy agent 1. To extend to the case of m > 2, let all agents
have negligibly small demands for the additional resources. � (Proof of Theorem 5.1)

It is interesting to note that if either EF or DPO is dropped, the remaining three
axioms can be easily satisfied. For example, the trivial mechanism EQUAL SPLIT
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that just gives every agent a 1/n share of each resource when it arrives satis-
fies SI, EF and SP. Achieving SI, DPO, and SP is also simple. Indeed, con-
sider the DYNAMIC DICTATORSHIP mechanism from Example 5.2. The example
explains why DYNAMIC DICTATORSHIP satisfies both SI and DPO. Even though
DYNAMIC DICTATORSHIP is not SP under possibly zero demands (as shown in the ex-
ample), it is clearly SP for strictly positive demands (as assumed throughout this chap-
ter). When agent k arrives in step k, it is allocated a 1/n share of its dominant resource
(and other resources in proportion), and subsequently agent 1 is allocated resources
until a k/n share of at least one resource is exhausted. Since every agent requires the ex-
hausted resource due to strictly positive demands, the allocation stops. In summary, all
agents except agent 1 receive exactly a 1/n share of their dominant resource when they
arrive, and do not receive any resources later on; hence, they cannot gain by reporting
a false demand vector. In step k, agent 1 receives as much resources as it can from the
pool of resources that remain after allocating to agents 2 through k a 1/n share of their
dominant resource from an original pool that contains a k/n share of each resource.
Therefore, agent 1 also cannot gain from manipulation.

While both EQUAL SPLIT and DYNAMIC DICTATORSHIP satisfy maximal subsets of
our proposed desiderata, neither is a compelling mechanism. Since these mechanisms
are permitted by dropping EF or DPO entirely, we instead explore relaxations of EF and
DPO that rule these mechanisms out and guide us towards more compelling mecha-
nisms.

5.3 Relaxing Envy Freeness

Recall that DPO requires a mechanism to allocate at least a k/n fraction of at least one
resource at step k, for every k ∈ {1, . . . , n}. Thus the mechanism sometimes needs
to allocate a large amount of resources to agents arriving early, potentially making it
impossible for the mechanism to prevent the late agents from envying the early agents.
In other words, when an agent i enters the system it may envy some agent j that arrived
before i did; this is inevitable in order to be able to satisfy DPO. However, it would be
unfair to agent i if agent j were allocated more resources since agent i arrived while i
still envied j. To distill this intuition, we introduce the following dynamic version of EF.

2′. Dynamic Envy Freeness (DEF). A dynamic allocation mechanism is DEF if at any
step an agent i envies an agent j only if j arrived before i did and j has not been
allocated any resources since i arrived. Formally, for every k ∈ {1, . . . , n}, if
ui(Ak

j ) > ui(Ak
i ) then j < i and Ak

j = Ai−1
j .

Walsh [198] studied a dynamic cake cutting setting and proposed forward EF, which
requires that an agent not envy any agent that arrived later. This notion is weaker than
DEF because it does not rule out the case where an agent i envies an agent j that arrived
earlier and j received resources since i arrived. In our setting, even the trivial mechanism
DYNAMIC DICTATORSHIP (see Section 5.2.1) satisfies forward EF, but fails to satisfy our
stronger notion of DEF.
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We next construct a dynamic resource allocation mechanism — DYNAMIC DRF —
that achieves the relaxed fairness notion of DEF, together with SI, DPO, and SP. The
mechanism is given as Algorithm 6.

ALGORITHM 6: DYNAMIC DRF
Data: Demands d
Result: Allocation Ak at each step k
k← 1;
while k 6 n do
{xk

i }k
i=1 ← Solution of the LP in the box below;

Ak
ir ← xk

i · dir, ∀i 6 k;
k← k + 1;

end

Maximize Mk

subject to
xk

i > Mk, ∀i 6 k
xk

i > xk−1
i , ∀i 6 k− 1

∑k
i=1 xk

i · dir 6 k/n, ∀r ∈ R

Intuitively, at each step k the mechanism starts from the current allocation among
the present agents and keeps allocating resources to agents that have the minimum
dominant share at the same rate, until a k/n fraction of at least one resource is allocated.
Always allocating to agents that have the minimum dominant share ensures that agents
are not allocated any resources while they are envied. This water-filling mechanism is a
dynamic adaptation of the dominant resource fairness (DRF) mechanism proposed by
Ghodsi et al. [99]. See Figure 5.3 for an example.

1/3 1/6 1/4

R1 R2 R3

0

1
3

2
3

1

(a) Step 1

4/9

2/9

1/3

2/9

4/9

1/3

R1 R2 R3

0

1
3

2
3

1

(b) Step 2

4/9

2/9
1/3

2/9

4/9

1/31/6 1/6

1/3

R1 R2 R3

0

1
3

2
3

1
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Figure 5.3: Allocations returned by DYNAMIC DRF at various steps for 3 agents with demands
d1 = 〈1, 1/2, 3/4〉, d2 = 〈1/2, 1, 3/4〉, and d3 = 〈1/2, 1/2, 1〉, and three resources R1, R2, and
R3. Agent 1 receives a 1/3 share of its dominant resource at step 1. At step 2, water-filling drives
the dominant shares of agents 1 and 2 up to 4/9. At step 3, however, agent 3 can only receive a
1/3 dominant share and the allocations of agents 1 and 2 remain unchanged.

Theorem 5.2. DYNAMIC DRF satisfies SI, DEF, DPO, and SP, and can be implemented in
polynomial time.
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Proof. First we show that DYNAMIC DRF satisfies SI. We need to prove that xk
i > 1/n

for all agents i 6 k at every step k ∈ {1, . . . , n}. We prove this by induction on k. For the
base case k = 1, it is easy to see that x1

1 = 1/n and M1 = 1/n is a solution of the LP of
DYNAMIC DRF and hence the optimal solution satisfies x1

1 > M1 > 1/n (in fact, there is
an equality). Assume that this is true at step k− 1 and let us prove the claim for step k,
where k ∈ {2, . . . , n}. At step k, one feasible solution of the LP is given by xk

i = xk−1
i for

agents i 6 k− 1, xk
k = 1/n and Mk = 1/n. To see this, note that it trivially satisfies the

first two constraints of the LP, because by the induction hypothesis we have xk−1
i > 1/n

for i 6 k− 1. Furthermore, in the proposed feasible solution, for any r ∈ R we have

k

∑
i=1

xk
i · dir =

k−1

∑
i=1

xk−1
i · dir +

1
n
· dkr 6

k− 1
n

+
1
n
6

k
n

,

where the first transition follows from the construction of the feasible solution and the
second transition holds because {xk−1

i }k−1
i=1 satisfies the LP of step k− 1, and in particular

the third constraint of the LP. Since a feasible solution achieves Mk = 1/n, the optimal
solution achieves Mk > 1/n. Thus in the optimal solution xk

i > Mk > 1/n for all i 6 k,
which is the requirement for SI.

Next we show that DYNAMIC DRF satisfies DPO. Observe that at any step k, the
third constraint of the LP must be tight for at least one resource in the optimal solution
(otherwise every xk

i along with Mk can be increased by a sufficiently small quantity,
contradicting the optimality of Mk). Thus, at each step k the (non-wasteful) mechanism
allocates a k/n fraction of at least one resource, which implies that the mechanism sat-
isfies DPO.

To prove that the mechanism satisfies DEF and SP, we first prove several useful lem-
mas about the allocations returned by the mechanism. In the proof below, Mk and xk

i
refer to the optimal solution of the LP in step k. Furthermore, we assume that xk

i = 0 for
agents i > k (i.e., agents not present in the system are not allocated any resources). We
begin with the following lemma, which essentially shows that if an agent is allocated
some resources in a step using water-filling, then the agent’s dominant share after the
step will be the minimum among the present agents.

Lemma 5.1. At every step k ∈ {1, . . . , n}, it holds that xk
i = max(Mk, xk−1

i ) for all agents
i 6 k.

Proof. Consider any step k ∈ {1, . . . , n}. From the first and the second constraints
of the LP it is evident that xk

i > Mk and xk
i > xk−1

i (note that xk−1
k = 0), thus

xk
i > max(Mk, xk−1

i ) for all i 6 k. Suppose for contradiction that xk
i > max(Mk, xk−1

i )

for some i 6 k. Then xk
i can be reduced by a sufficiently small ε > 0 without violating

any constraints. This makes the third constraint of the LP loose by at least ε · dir, for
every resource r ∈ R. Consequently, the values of xk

j for j 6= i and Mk can be increased
by a sufficiently small δ > 0 without violating the third constraint of the LP. Finally, ε
(and correspondingly δ) can be chosen to be small enough so that xk

i > Mk is not vio-
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lated. It follows that the value of Mk can be increased, contradicting the optimality of
Mk. � (Proof of Lemma 5.1)

Next we show that at each step k, the dominant shares of agents 1 through k are
monotonically non-increasing with their time of arrival. This is intuitive because at
every step k, agent k enters with zero dominant share and subsequently we perform
water-filling, hence monotonicity is preserved.

Lemma 5.2. For all agents i, j ∈ N such that i < j, we have xk
i > xk

j at every step k ∈
{1, . . . , n}.

Proof. Fix any two agents i, j ∈ N such that i < j. We prove the lemma by induction
on k. The result trivially holds for k < j since xk

j = 0. Assume that xk−1
i > xk−1

j where

k ∈ {j, . . . , n}. At step k, we have xk
i = max(Mk, xk−1

i ) > max(Mk, xk−1
j ) = xk

j , where
the first and the last transition follow from Lemma 5.1 and the second transition follows
from our induction hypothesis. � (Proof of Lemma 5.2)

The following lemma shows that if agent j has a greater dominant share than agent
i at some step, then j must have arrived before i and j must not have been allocated any
resources since i arrived. Observe that this is very close to the requirement of DEF.

Lemma 5.3. At any step k ∈ {1, . . . , n}, if xk
j > xk

i for some agents i, j 6 k, then j < i and

xk
j = xi−1

j .

Proof. First, note that j < i trivially follows from Lemma 5.2. Suppose for contradiction
that xk

j > xi−1
j (it cannot be smaller because allocations are irrevocable). Then there

exists a step t ∈ {i, . . . , k} such that xt
j > xt−1

j . Now Lemma 5.1 implies that xt
j = Mt 6

xt
i , where the last transition follows because xt

i satisfies the second constraint of the LP
at step t (note that i 6 t). However, xt

j > xt
i due to Lemma 5.2. Thus, xt

j = xt
i . Now using

Lemma 5.1, xt+1
j = max(Mt+1, xt

j) = max(Mt+1, xt
i) = xt+1

i . Extending this argument

using a simple induction shows that xt′
j = xt′

i for every step t′ > t, in particular, xk
j = xk

i ,
contradicting our assumption. � (Proof of Lemma 5.3)

We proceed to show that DYNAMIC DRF satisfies DEF. We need to prove that for
any step k ∈ {1, . . . , n} and any agents i, j 6 k, if agent i envies agent j in step k (i.e.,
ui(Ak

j ) > ui(Ak
i )), then j < i and xk

j = xi−1
j . First, note that ui(Ak

j ) > ui(Ak
i ) trivially

implies that xk
j > xk

i , otherwise for the dominant resource r∗i of agent i, we would have

Ak
ir∗i

= xk
i > xk

j > xk
j · djr∗i

= Ak
jr∗i

and agent i would not envy agent j. Now DEF follows
from Lemma 5.3.

To prove that DYNAMIC DRF is SP, suppose for contradiction that an agent i ∈ N
can report an untruthful demand vector d′i such that the agent is strictly better off in at
least one step. Let k be the first such step. Denote by x̂t

j the dominant share of an agent j
at step t with manipulation (for agent i, this is the share of the dominant resource of the
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untruthful demand vector) and similarly, denote by M̂t the value of Mt in the optimal
solution of the LP of step t with manipulation.

Lemma 5.4. x̂k
j > xk

j for every agent j 6 k.

Proof. For any agent j such that xk
j > xk

i , we have

xk
j = xi−1

j = x̂i−1
j 6 x̂k

j .

Here, the first transition follows from Lemma 5.3, the second transition holds because
manipulation by agent i does not affect the allocation at step i− 1, and the third transi-
tion follows from the LP. For any agent j with xk

j 6 xk
i , we have

xk
j 6 xk

i < x̂k
i = M̂k 6 x̂k

j .

The second transition is true because if x̂k
i 6 xk

i then agent i could not be better off as the
true dominant share it receives with manipulation would be no more than it received
without manipulation. To justify the third transition, note that agent i must be allocated
some resources at step k with manipulation. If k = i, this is trivial, and if k > i, this
follows because otherwise k would not be the first step when agent i is strictly better
off as we would have ui(Âk−1

i ) = ui(Âk
i ) > ui(Ak

i ) > ui(Ak−1
i ), where Âk

i denotes
the allocation to agent i at step k with manipulation. Thus, x̂k

i > x̂k−1
i , and the third

transition now follows from Lemma 5.1. The last transition holds because x̂k
j satisfies

the first constraint of the LP of step k. Thus, we conclude that x̂k
j > xk

j for all agents
j 6 k. � (Proof of Lemma 5.4)

Now, the mechanism satisfies DPO and thus allocates at least a k/n fraction of at
least one resource at step k without manipulation. Let r be such a resource. Then the
fraction of resource r allocated at step k with manipulation is

x̂k
i · d′ir + ∑

j6k
s.t.j 6=i

x̂k
j · djr > xk

i · dir + ∑
j6k

s.t.j 6=i

xk
j · djr > k/n.

To justify the inequality, note that x̂k
i · d′ir > xk

i · dir by Equation (5.1) (as agent i is strictly
better off), and in addition x̂k

j > xk
j for every j 6 k. However, this shows that more

than a k/n fraction of resource r must be allocated at step k with manipulation, which
is impossible due to the third constraint of the LP. Hence, a successful manipulation is
impossible, that is, DYNAMIC DRF is SP.

Finally, note that the LP has a linear number of variables and constraints, therefore
the mechanism can be implemented in polynomial time. � (Proof of Theorem 5.2)
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5.4 Relaxing Dynamic Pareto Optimality

We saw (Theorem 5.1) that satisfying EF and DPO is impossible. We then explored an
intuitive relaxation of EF. Despite the positive result (Theorem 5.2), the idea of achieving
absolute fairness — as conceptualized by EF — in our dynamic setting is compelling.

As a straw man, consider waiting for all the agents to arrive and then using any EF
static allocation mechanism. However, this scheme is highly inefficient, e.g., it is easy to
see that one can always allocate each agent at least a 1/n share of its dominant resource
(and other resources in proportion) as soon as it arrives and still maintain EF at every
step. How much more can be allocated at each step? We put forward a general answer
to this question using a relaxed notion of DPO that requires a mechanism to allocate as
many resources as possible while ensuring that EF can be achieved in the future, but first
we require the following definition. Given a step k ∈ {1, . . . , n}, define an allocation A
over the k present agents with demands d6k to be EF-extensible if it can be extended to
an EF allocation over all n agents with demands d = (d6k, d>k), for all possible future
demand vectors d>k ∈ Dn−k.

4′. Cautious Dynamic Pareto optimality (CDPO). A dynamic allocation mechanism sat-
isfies CDPO if at every step k, the allocation Ak returned by the mechanism is
not Pareto dominated by any other allocation A′ over the same k agents that is
EF-extensible.

In other words, a mechanism satisfies CDPO if at every step it selects an allocation
that is at least as generous as any allocation that can ultimately guarantee EF, irrespec-
tive of future demands.

At first glance, it may not be obvious that CDPO is indeed a relaxation of DPO (i.e.,
that CDPO is implied by DPO). However, note that DPO requires a mechanism to allo-
cate at least a k/n fraction of at least one resource r∗ in the allocation Ak at any step k,
and thus to allocate at least a 1/n fraction of that resource to some agent i. Any alterna-
tive allocation that Pareto dominates Ak must also allocate at least a 1/n fraction of r∗ to
agent i. Consequently, in order to ensure an EF extension over all n agents when all the
future demands are identical to the demand of agent i, the alternative allocation must
allocate at most a k/n fraction of r∗, as each future agent may also require at least a 1/n
fraction of r∗ to avoid envying agent i. It follows that the alternative allocation cannot
Pareto dominate Ak. Thus, the mechanism satisfies CDPO.

Recall that DYNAMIC DRF extends the water-filling idea of the static DRF mecha-
nism [99] to our dynamic setting. DYNAMIC DRF is unable to satisfy the original EF,
because — to satisfy DPO — at every step k it needs to allocate resources until a k/n
fraction of some resource is allocated. We wish to modify DYNAMIC DRF to focus only
on competing with EF-extensible allocations, in a way that achieves CDPO and EF (as
well as other properties).

The main technical challenge is checking when an allocation at step k violates EF-
extensibility. Indeed, there are uncountably many possibilities for the future demands
d>k over which an EF extension needs to be guaranteed by an EF-extensible allocation!
Of course, checking all the possibilities explicitly is not feasible. Ideally, we would like
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to check only a small number of possibilities. The following lemma establishes that it
is sufficient to verify that an EF extension exists under the assumption that all future
agents will have the same demand vector that is moreover identical to the demand
vector of one of the present agents.

Lemma 5.5. Let k be the number of present agents, d6k be the demands reported by the present
agents, and A be an EF allocation over the k present agents. Then A is EF-extensible if and only
if there exists an EF extension of A over all n agents with demands d = (d6k, d>k) for all future
demands d>k ∈ D′, where D′ = {〈d1〉n−k , 〈d2〉n−k , . . . , 〈dk〉n−k}.

To prove this lemma, we first introduce the notion of the minimum EF extension. In-
tuitively, the minimum EF extension is the “smallest” EF extension (allocating the least
resources) of a given EF allocation to a larger set of agents. Formally, let A be an EF
allocation over a set of agents S ⊆ N and A∗ be an EF extension of A to a set of agents
T ⊆ N (S ⊆ T). Then A∗ is called the minimum EF extension of A to T if for any EF ex-
tension A′ of A to T, we have that A′ is an extension of A∗. We show that the minimum
EF extension exists and exhibits a simple structure.

Lemma 5.6. Let A be an EF allocation over a set of agents S ⊆ N and let xi be the dominant
share of agent i ∈ S in A. Let T be such that S ⊆ T ⊆ N and let A∗ be an allocation over T
with x∗i as the dominant share of agent i ∈ T. Let x∗i = xi for all i ∈ S, and x∗i = maxj∈S yj

i for

all i ∈ T \ S, where yj
i = xj ·minr∈R djr/dir. Then A∗ is a minimum EF extension of A to T.

Proof. For agent i with dominant share xi to avoid envying agent j with dominant share
xj, there must exist r ∈ R such that xi · dir > xj · djr, that is, xi > xj · djr/dir. It follows

that xi > xj ·minr∈R djr/dir, and thus the minimum dominant share is given by yj
i =

xj ·minr∈R djr/dir. Now it is easy to argue that any EF extension A′ of A over T must
allocate at least an x∗i dominant share to any agent i ∈ T, for both i ∈ S and i ∈ T \ S,
and thus A′ must be an extension of A∗.

It remains to prove that A∗ is EF. First we prove an intuitive result regarding the
minimum dominant share agent i needs to avoid envying agent j, namely yj

i . We claim
that for every r ∈ R,

yj
i · dir 6 xj · djr. (5.2)

Formally, for any r ∈ R,

yj
i · dir = xj ·min

r′∈R

djr′

dir′
· dir 6 xj ·

djr

dir
· dir = xj · djr.

Therefore, to prevent agent i from envying agent j, we need to allocate at least an
xj · djr fraction of resource r to agent i for some r ∈ R. Next we show that A∗ is EF, i.e.,
no agent i envies any agent j in A∗. We consider four cases.

Case 1: i ∈ S and j ∈ S. This case is trivial as A∗ is identical to A over S and A is EF.
Case 2: i ∈ T \ S and j ∈ S. This case is also trivial because i receives at least a yj

i
fraction of its dominant resource.
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Case 3: i ∈ S and j ∈ T \ S. We must have xj = yt
j for some t ∈ S. Agent i does

not envy agent t in A, and hence in A∗. Thus, there exists a resource r ∈ R such that
A∗ir > A∗tr > A∗jr, where the last step follows from Equation (5.2). Thus, agent i does not
envy agent j.

Case 4: i ∈ T \ S and j ∈ T \ S. Similarly to Case 3, let xj = yt
j for some t ∈ S. Now

xi > yt
i , so agent i does not envy agent t in A∗. Thus, there exists a resource r such that

A∗ir > A∗tr > A∗jr, where again the last step follows from Equation (5.2).
Therefore, A∗ is an EF extension of A over T and we have already established that

any EF extension of A over T must be an extension of A∗. We conclude that A∗ is a
minimum EF extension of A over T. � (Proof of Lemma 5.6)

It is not hard to see from the construction of the minimum EF extension that it not
only exists, it is unique. We are now ready to prove Lemma 5.5.

Proof of Lemma 5.5. The “only if” direction of the proof is trivial. To prove the “if” part,
we prove its contrapositive. Assume that there exist future demand vectors d̂>k ∈ Dn−k

such that there does not exist any EF extension of A to N with demands d̂ = (d6k, d̂>k).
We want to show that there exists d′>k ∈ D′ for which there is no EF extension as well.

Let K = {1, . . . , k} and N \ K = {k + 1, . . . , n}. Denote the minimum EF extension
of A to N with demands d̂ by A∗. Let the dominant share of agent i ∈ K in A be xi and
the dominant share of agent j ∈ N in A∗ be x∗j .

No EF extension of A over N with demands d̂ is feasible, hence A∗must be infeasible
too. Therefore, there exists a resource r such that ∑n

i=1 x∗i · dir > 1. Note that for every
agent j ∈ N \ K, there exists an agent i ∈ K such that x∗j = xi ·minr′∈R dir′/djr′ , and
hence x∗j · djr 6 xi · dir by Equation (5.2). Taking the maximum over i ∈ K, we get that
x∗j · djr 6 maxi∈K (xi · dir) for every agent j ∈ N \ K. Taking t ∈ arg maxi∈K (xi · dir),

1 <
n

∑
i=1

x∗i · dir =
k

∑
i=1

x∗i · dir +
n

∑
i=k+1

x∗i · dir

6
k

∑
i=1

xi · dir + (n− k) · xt · dtr.

Consider the case where d′>k = 〈dt〉n−k ∈ D′. The minimum EF extension A′ of
A to N with demands d′ =

〈
d6k, d′>k

〉
allocates an xi dominant share to every i ∈ K

(same as A) and allocates exactly an xt dominant share to every j ∈ N \ K. Thus, the
fraction of resource r allocated in A′ is ∑k

i=1 xi · dir + (n− k) · xt · dtr > 1, implying that
the minimum EF extension of d′>k is infeasible. We conclude that there is no feasible EF
extension for d′>k, as required. � (Proof of Lemma 5.5)

The equivalent condition of Lemma 5.5 provides us with k ·m linear constraints that
can be checked to determine whether an allocation over k agents is EF-extensible. Using
this machinery, we can write down a “small” linear program (LP) that begins with the
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allocation chosen in the previous step (recall that the allocations are irrevocable), gives
agent k a jump start so that it does not envy agents 1 through k− 1, and then uses water-
filling to allocate resources similarly to DYNAMIC DRF, but subject to the constraint
that the allocation stays EF-extensible. This intuition is formalized via the mechanism
CAUTIOUS LP, which is given as Algorithm 7.

ALGORITHM 7: CAUTIOUS LP
Data: Demands d
Result: Allocation Ak at each step k
k← 1;
while k 6 n do
{xk

i }k
i=1 ← Solution of the LP in the box below;

Ak
ir ← xk

i · dir, ∀i 6 k;
k← k + 1

end

Maximize Mk

subject to
xk

i > Mk, ∀i 6 k
xk

i > xk−1
i , ∀i 6 k− 1

xk
k > maxi6k−1

(
xk−1

i ·minr∈R dir/dkr

)
∑k

i=1 xk
i · dir + (n− k) · xk

t · dtr 6 1, ∀t 6 k, r ∈ R

The mechanism’s third LP constraint jump-starts agent k to a level where it does not
envy earlier agents, and the fourth LP constraint is derived from Lemma 5.5. To see why
the mechanism satisfies CDPO, observe that if at any step k there is an EF-extensible al-
location A′ that Pareto dominates the allocation Ak returned by the mechanism, then
(by Lemma 5.5) A′ must also satisfy the LP at step k. However, it can be shown that
no allocation from the feasible region of the LP can Pareto dominate Ak. Indeed, if
an allocation from the feasible region did dominate Ak, we could redistribute some of
the resources of the agent that is strictly better off to obtain a feasible allocation with a
value of Mk that is higher than the optimal solution. It is also easy to see why intuitively
CAUTIOUS LP is EF: the initial allocation to agent k achieves an EF allocation over the
k agents, and water-filling preserves EF because it always allocates to agents with min-
imum dominant share. It is equally straightforward to show that CAUTIOUS LP also
satisfies SI. Establishing SP requires some work, but the proof is mainly a modification
of the proof of Theorem 5.2. We are therefore able to establish the following theorem,
which formalizes the guarantees given by CAUTIOUS LP.

Theorem 5.3. CAUTIOUS LP satisfies SI, EF, CDPO, and SP, and can be implemented in
polynomial time.

Proof. The proof is along the lines of the proof of Theorem 5.2. For now, assume that
the LP is feasible at each step and thus the mechanism does return an allocation at each
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step (we show this below). In the LP at step k, let

Ek = max
i6k−1

(
xk−1

i ·min
r∈R

dir/dkr

)
.

Intuitively, Ek is the jump start that agent k requires at the beginning of step k to be envy
free of the allocations of agents 1 through k− 1 from step k− 1.

Proof of CDPO: First we show that CAUTIOUS LP satisfies CDPO. Assume for contra-
diction, that at some step k ∈ {1, . . . , n}, an alternative EF-extensible allocation A′ over
the k present agents Pareto dominates the allocation Ak returned by the mechanism. Let
x′i be the dominant share of agent i in A′, for i 6 k. Since A′ Pareto dominates Ak, we
have that x′i > xk

i for every i 6 k. This trivially implies that A′ also satisfies the first three
constraints of the LP at step k. Moreover, since A′ is EF-extensible, it also satisfies the
fourth constraint of the LP at step k as the fourth constraint only requires EF extension
to exist in specific cases (in particular, it requires the minimum EF extension and thus
any EF extension over all n agents to exist when all future demand vectors are identical
to the demand vector of some present agent). Thus, A′ is in the feasible region of the
LP and Pareto dominates an optimal solution Ak. Now, taking back the extra resources
that A′ allocates to agents compared to Ak shows that the fourth constraint is not tight
in Ak for any value of t and r (the assumption of strictly positive demands is crucial
here). However, this implies that in the allocation Ak, every xk

i and correspondingly Mk

can be increased by a sufficiently small quantity while still satisfying the LP at step k,
which contradicts the optimality of Ak. Thus, no alternative EF-extensible allocation can
Pareto dominate the allocation given by the mechanism at any step, i.e., CAUTIOUS LP
satisfies CDPO.

Proof of SI: Next, we show that CAUTIOUS LP satisfies SI. We show this by induction
over step k. For the base case k = 1, it is easy to show that setting x1

1 = 1/n and
Mk = 1/n satisfies the LP at step 1; it trivially satisfies the first three constraints of the
LP and for the fourth constraint, observe that

1
n
· dir + (n− 1) · 1

n
· dir = dir 6 1, ∀r ∈ R.

Therefore, in the optimal solution, M1 > 1/n and thus x1
1 > 1/n (in fact, equality holds).

Now consider any step k ∈ {2, . . . , n}. As our induction hypothesis, we assume that
xt

i > 1/n for all agents i 6 t, at every step t 6 k− 1. We want to show that xk
i > 1/n for

all agents i 6 k. Consider two cases.

1. Ek > 1/n. Observe that xk−1
i > 1/n for all i 6 k− 1 due to the induction hypoth-

esis. Thus, using the second and the third constraints of the LP at step k, we have
xk

i > 1/n for all i 6 k.
2. Ek < 1/n. We first show that xk

i = xk−1
i for i 6 k− 1, xk

k = 1/n and Mk = 1/n is in
the feasible region of the LP at step k. Note that this assignment trivially satisfies
the first three constraints of the LP.

103



For the fourth constraint, fix any r ∈ R. Define Tr = maxi6k−1 xk−1
i · dir. First, we

show that ∑k−1
i=1 xk−1

i · dir 6 1− (n − k + 1) ·max(Tr, 1/n). To see this, note that
{xk−1

i }k−1
i=1 satisfies the LP at step k− 1 and, in particular, the fourth constraint of

the LP. Therefore,

k−1

∑
i=1

xk−1
i · dir + (n− k + 1) · Tr 6 1 =⇒

k−1

∑
i=1

xk−1
i · dir 6 1− (n− k + 1) · Tr.

Now we prove that

k−1

∑
i=1

xk−1
i · dir 6 1− (n− k + 1) · 1/n = (k− 1)/n. (5.3)

Suppose for contradiction that the left hand side is more than (k− 1)/n. Then, by
the pigeonhole principle, there exists some agent i 6 k − 1 such that xk−1

i · dir >
1/n, and thus Tr > 1/n. But we have already shown that

k−1

∑
i=1

xk−1
i · dir 6 1− (n− k + 1) · Tr 6 1− (n− k + 1) · 1/n = (k− 1)/n,

contradicting our assumption; this establishes (5.3). Thus, we have that

k−1

∑
i=1

xk−1
i · dir 6 1− (n− k + 1) ·max

(
Tr,

1
n

)
.

Finally, we show that in the fourth constraint of the LP, xk
t · dtr 6 max(Tr, 1/n).

To see this, observe that for t 6 k − 1, xk
t · dtr = xk−1

t · dtr 6 Tr and for t = k,
xk

t · dtr = 1/n · dkr 6 1/n. Thus, the fourth constraint of the LP is satisfied for
every t 6 k and every r ∈ R.

We have established that CAUTIOUS LP satisfies SI. Our next goal is to prove that the
mechanism also satisfies EF and SP. As in the proof of Theorem 5.2, we first establish
several useful lemmas about the allocations returned by CAUTIOUS LP. In the proof
below, Mk and xk

i refer to the optimal solution of the LP in step k.
We begin with the following lemma (similar to Lemma 5.1), which essentially shows

that if an agent is allocated some resources in step k using water-filling (in addition to
the jump-start to Ek for agent k), then the agent’s dominant share after the step would
be the minimum among the present agents.

Lemma 5.7. At every step k ∈ {1, . . . , n}, it holds that xk
i = max(Mk, xk−1

i ) for all agents
i 6 k− 1, and xk

k = max(Mk, Ek).

Proof. Consider any step k ∈ {1, . . . , n}. From the first three constraints of the LP, it is
evident that xk

i > Mk for all i 6 k, xk
i > xk−1

i for all i 6 k − 1 and xk
k > Ek. Thus,

xk
i > max(Mk, xk−1

i ) for all i 6 k− 1 and xk
k > max(Mk, Ek).
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Suppose for contradiction that a strict inequality holds for some agent i 6 k. Then
xk

i can be reduced by a sufficiently small ε > 0 without violating any constraints. This
makes the third constraint of the LP loose by at least ε · dir, for every resource r ∈ R. Con-
sequently, the values of xk

j for j 6= i and Mk can be increased by a sufficiently small δ > 0
without violating the third constraint of the LP. Finally, ε (and correspondingly δ) can
be chosen to be small enough so that xk

i > Mk is not violated. It follows that the value
of Mk can be increased, contradicting the optimality of Mk. � (Proof of Lemma 5.7)

Next, we formulate the equivalent of Lemma 5.2 as two separate lemmas. First we
show that if an agent has greater or equal dominant share than another agent in some
step (where both are present), then the order is preserved in future steps. Next we
show that at each step k, the dominant shares of agents 1 through k are monotonically
non-increasing with their time of arrival, except for agents that have not received any
resources apart from their jump-start.

Lemma 5.8. For any agents i, j ∈ N and any step k > max(i, j) (i.e., both agents are present
at step k), xk

i > xk
j implies that xt

i > xt
j for all t > k.

Proof. Fix any two agents i, j ∈ N and step k > max(i, j) such that xk
i > xk

j . We use
induction on t. The result trivially holds for t = k. Consider any t > k and as-
sume the result holds for step t − 1. Then, since t > k > max(i, j) we know that
xt

i = max(xt−1
i , Mt) > max(xt−1

j , Mt) = xt
j , where the first and the last transitions

follow from Lemma 5.7 and the second transition follows from our induction hypothe-
sis. � (Proof of Lemma 5.8)

Lemma 5.9. For all agents i, j ∈ N such that i < j and any step k > j, we have that either i)
xk

i > xk
j or ii) xk

j = xj
j = Ej.

Proof. Fix any two agents i, j ∈ N such that i < j and any step k > j. Note that xk
j > xj

j >

Ej, where the first inequality is due to irrevocability of resources and the last inequality
is due to Lemma 5.7. If xk

j = Ej, then the lemma trivially holds. Assume xk
j > Ej.

Consider the first step t where xt
j > Ej (thus j 6 t 6 k). If t = j, then we have xj

j > Ej.

If t > j, then we have xt
j > xt−1

j since xt−1
j = Ej by the definition of t. In any case,

Lemma 5.7 implies that xt
j = Mt 6 xt

i . Thus we have xt
j 6 xt

i and now Lemma 5.8

implies that xk
j 6 xk

i . � (Proof of Lemma 5.9)

We now consider the equivalent of Lemma 5.3 from the proof of Theorem 5.2, and
observe that there are two cases. If agent j has greater dominant share than agent i
at some step, then either j arrived before i and j has not been allocated any resources
since i arrived (as we had previously), or j arrived after i and has not been allocated any
resources apart from its jump-start.

Lemma 5.10. For any agents i, j ∈ N and any step k > max(i, j) (i.e., both agents are present),
xk

j > xk
i implies that either i) j < i and xk

j = xi−1
j , or ii) j > i and xk

j = xj
j = Ej.
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Proof. Fix any two agents i, j ∈ N and any step k > max(i, j) such that xk
j > xk

i . Note

that if j > i then Lemma 5.9 implies that xk
j = xj

j = Ej and the result holds trivially.
Now assume j < i.

Suppose for contradiction that xk
j > xi−1

j (it cannot be smaller because allocations

are irrevocable). Then there exists a step t ∈ {i, . . . , k} such that xt
j > xt−1

j . Therefore,

Lemma 5.7 implies that xt
j = Mt 6 xt

i . Using Lemma 5.8 this shows that xk
j 6 xk

i ,

which is a contradiction to the assumption that xk
j > xk

i . Thus we have xk
j = xi−1

j , as
required. � (Proof of Lemma 5.10)

Finally, we establish an additional lemma which will be helpful in proving SP. For
agents i, j such that j > i, if the jump-start Ej for agent j requires allocating agent j
greater dominant share than agent i had in step j− 1, then clearly the jump-start must
have been due to agent j envying some agent l 6= i, and l must have greater dominant
share than i in step j− 1. But then using Lemma 5.9 and extending the argument, we
can eventually trace this back to an agent t < i. We show that we can find such t < i
such that the jump-start of the original agent j was actually due to agent j envying agent
t.

Lemma 5.11. For any agents i, j ∈ N such that j > i, Ej > xj
i implies that Ej = xj−1

t ·
minr∈R dtr/djr, for some agent t < i.

Proof. Fix any agent i ∈ N. We use induction over j ∈ {i + 1, . . . , n}. First, we prove
several implications that hold for any agent j > i. Recall that Ej = maxp<j(xj−1

p ·
minr∈R dpr/djr). Thus, we have Ej = xj−1

l ·minr∈R dlr/djr for some agent l < j. But
it does not follow from the definition that we can take l < i. Observe that

xj−1
l > xj−1

l ·min
r∈R

dtr/djr = Ej > xj
i > xj−1

i , (5.4)

where the first transition holds since minr∈R dtr/djr is at most 1 (consider the dominant
resource of agent j), the third transition is the assumption of the lemma and the last
transition holds since allocations are irrevocable.

Now we have three cases. If l < i, then we are done. Further, l 6= i since Equa-
tion (5.4) shows that xj−1

l > xj−1
i . Now assume that l > i. Note that this case cannot ap-

pear in the base case j = i + 1 since l < j. Therefore, the argument given above already
shows that the lemma holds for the base case j = i + 1. By our induction hypothesis,
we assume that the lemma holds for agent l < j. Now since l > i and xj−1

l > xj−1
i ,

Lemma 5.10 implies that xj−1
l = xl

l = El and thus El > xj−1
i > xl

i where xj−1
i > xl

i
because l < j and allocations are irrevocable. Due to our induction hypothesis, there
exists t < i such that El = xl−1

t ·minr∈R dtr/dlr. We prove that Ej = xj−1
t ·minr∈R dtr/djr.

Indeed,

Ej = xj−1
l ·min

r∈R
dlr/djr
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= El ·min
r∈R

dlr/djr

= xl−1
t ·min

r∈R
dtr/dlr ·min

r∈R
dlr/djr

6 xl−1
t ·min

r∈R
dtr/djr

6 xj−1
t ·min

r∈R
dtr/djr 6 Ej.

Here, the fourth transition is true because for any r′ ∈ R,

dtr′

djr′
=

dtr′

dlr′
· dlr′

djr′
> min

r∈R

dtr

dlr
·min

r∈R

dlr
djr

.

Taking minimum over all r′ ∈ R, we get that minr∈R dtr/djr > minr∈R dtr/dlr ·
minr∈R dlr/djr. The last transition holds due to the definition of Ej. Now it is trivial

to see that we must have equality at every step, so Ej = xj−1
t ·minr∈R dtr/djr for t < i,

as required. � (Proof of Lemma 5.11)

Proof of LP Feasibility and EF: Now we use an inductive argument to simultaneously
show that the LP of CAUTIOUS LP is feasible at every step and that CAUTIOUS LP satis-
fies EF. Consider the following induction hypothesis: the LP at step t is feasible and the
allocation At returned by the mechanism at step t is EF. For the base case t = 1, the LP
is trivially feasible and the allocation A1 is also trivially EF. Assume that the hypothesis
holds for t = k− 1 for some step k ∈ {2, . . . , n}. We want to show that the hypothesis
holds for step k.

For feasibility, we show that the allocation A∗ given by xk
i = xk−1

i for i 6 k− 1 and
xk

k = Ek along with Mk = 0 satisfies the LP at step k. Clearly, it satisfies the first three
constraints of the LP. To see why it satisfies the fourth constraint, note that Ak−1 is an EF
allocation due to our induction hypothesis. Moreover, it satisfies the LP at step k− 1, in
particular, the fourth constraint of the LP. Hence Lemma 5.5 implies that Ak−1 must be
an EF-extensible allocation. Let dk denote the demand reported by agent k in step k and
let d>k ∈ Dn−k. Then any EF extension of Ak−1 over all n agents with future demands
(dk, d>k) is an EF extension of A∗ over all n agents with future demands d>k. Since this
holds for any d>k ∈ Dn−k, A∗ is EF-extensible and hence satisfies the fourth constraint
of the LP. We conclude that the LP is feasible at step k.

Now we want to show that the allocation Ak is an EF allocation. Intuitively, we can
see that the mechanism starts from A∗ which is EF (it is a minimum EF extension), and
then uses water-filling to allocate more resources in a way that preserves EF. Formally,
note that the dominant shares allocated to agents in Ak are given by Lemma 5.7. Take
any two agents i, j 6 k. We want to show that agent i does not envy agent j in step k.
Denote the dominant share of an agent l in A∗ by x∗l , i.e., x∗l = xk−1

l for l 6 k− 1 and
x∗k = Ek. It holds that

xk
i = max

(
x∗i , Mk

)
> max

(
x∗j ·min

r∈R

djr

dir
, Mk

)
> max

(
x∗j , Mk

)
·min

r∈R

djr

dir
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= xk
j ·min

r∈R
djr/dir,

where the first and the last transitions follow from Lemma 5.7, the second transition
holds since the allocation A∗ is EF, and the third transition holds since the quan-
tity minr∈R djr/dir is at most 1. Thus, Ak is EF. By induction, it holds that the LP of
CAUTIOUS LP is feasible at every step and CAUTIOUS LP is EF.

Proof of SP: Our last task is to prove that CAUTIOUS LP is SP. Suppose for contradic-
tion that an agent i ∈ N can report an untruthful demand vector d′i such that the agent
is strictly better off in at least one step. Let k be the first such step. Denote by x̂t

j the
dominant share of an agent j at step t with manipulation (for agent i, this is the share of
the dominant resource of the untruthful demand vector) and, similarly, denote by M̂t

the value of Mt in the optimal solution of the LP of step t with manipulation.

Lemma 5.12. x̂k
j > xk

j for every agent j 6 k.

Proof. Fix any agent j 6 k. We provide a case by case analysis and show that the lemma
holds in each case.

1. xk
j 6 xk

i . In this case, we have

xk
j 6 xk

i < x̂k
i = M̂k 6 x̂k

j .

The second transition holds because if x̂k
i 6 xk

i then agent i could not be better
off as the share of the dominant resource of its true demand vector that it receives
with manipulation would be no more than it received without manipulation. To
justify the third transition, note that agent i must be allocated some resources at
step k with manipulation. If k = i, then note that since Ei only depends on the
allocation at step i − 1 which is not affected due to manipulation by agent i, we
have Êi = Ei 6 xi

i < x̂i
i and Lemma 5.7 implies that x̂i

i = M̂i. If k > i and x̂k
i 6= M̂k,

then Lemma 5.7 implies that x̂k
i = x̂k−1

i , but then ui(Âk−1
i ) = ui(Âk

i ) > ui(Ak
i ) >

ui(Ak−1
i ), where Âk

i is the allocation to agent i at step k with manipulation. That
is, agent i would have been better off with manipulation in step k − 1, which is
a contradiction since k is the first such step. The last transition holds because x̂k

j
satisfies the first constraint of the LP of step k with manipulation.

2. xk
j > xk

i . For this, we have three sub-cases.

(a) j < i. Then we have xk
j = xi−1

j = x̂i−1
j 6 x̂k

j , where the first transition
follows due to Lemma 5.10, the second transition holds because manipulation
by agent i does not affect the allocations at step i− 1, and the third transition
follows since allocations are irrevocable.

(b) j = i. This cannot happen since we have assumed xk
j > xk

i in this case.

(c) j > i. Since xk
j > xk

i , Lemma 5.10 implies that xk
j = xj

j = Ej, so Ej > xk
i . Now

using Lemma 5.11, Ej = xj−1
t ·minr∈R dtr/djr for some t < i. Then, xj−1

t >

xj−1
t ·minr∈R dtr/djr = Ej > xk

i > xj−1
i , where the first transition follows since
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minr∈R dtr/djr is at most 1 and the last transition follows since allocations are

irrevocable. Now Lemma 5.10 implies that xj−1
t = xi−1

t . Putting all the pieces
together,

xk
j = Ej = xj−1

t ·min
r∈R

dtr/djr = xi−1
t ·min

r∈R
dtr/djr = xj−1

t ·min
r∈R

dtr/djr

6 x̂j−1
t ·min

r∈R
dtr/djr 6 Êj 6 x̂j

j 6 x̂k
j ,

where the fifth transition follows since manipulation by agent i does not
change the allocation at step i− 1, the sixth transition follows due to the def-
inition of Êj (which is the value of Ej after manipulation), the seventh transi-
tion follows due to the third constraint of the LP at step j after manipulation,
and the last transition follows since allocations are irrevocable.

Thus, we conclude that x̂k
j > xk

j for all agents j 6 k. � (Proof of Lemma 5.12)

Now, in the optimal solution of the LP at step k without manipulation (i.e., in Ak),
the fourth constraint must be tight for some t 6 k and r ∈ R (otherwise xk

j for every

j 6 k and Mk can be increased, contradicting the optimality of Mk). Thus,

k

∑
j=1

xk
j · djr + (n− k) · xk

t · dtr = 1.

Now consider the fourth constraint of the LP at step k after manipulation for the
same values of t and r. For simplicity of notation, let d′jr = djr for j 6= i. Then,

k

∑
j=1

x̂k
j · d′jr + (n− k) · x̂k

t · d′tr >
k

∑
j=1

xk
j · djr + (n− k) · xk

t · dtr = 1.

To justify the inequality, note that x̂k
i · d′ir > xk

i · dir by Equation (5.1) (as agent i is strictly
better off), and for any j 6 k such that j 6= i, x̂k

j · d′jr = x̂k
j · djr > xk

j · djr by Lemma 5.12.
However, this shows that the allocation at step k with manipulation violates the fourth
constraint of the LP, which is impossible. Hence, a successful manipulation is impossi-
ble, that is, CAUTIOUS LP is SP.

Finally, note that at every step the LP has O(n) variables and O(n · m) constraints,
and there are n such steps. Hence, the mechanism can be implemented in polynomial
time. � (Proof of Theorem 5.3)

5.5 Experiments

We presented two potentially useful mechanisms, DYNAMIC DRF and CAUTIOUS LP,
each with its own theoretical guarantees. Our next goal is to analyze the performance
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of both mechanisms on real data, for two natural objectives: the sum of dominant shares
(the maxsum objective) and the minimum dominant share (the maxmin objective) of the
agents present in the system.1

We compare the objective function values achieved by the two mechanisms with
certain lower and upper bounds. Since both mechanisms satisfy SI, their maxsum and
maxmin objective values are provably lower bounded by k/n and 1/n, respectively, at
step k.

For upper bounds, we consider the omniscient (hence unrealistic) mechanisms that
maximize the objectives in an offline setting where the mechanisms have complete
knowledge of future demands. These mechanisms need to guarantee an EF exten-
sion only on the real future demands rather than on all possible future demands.
The comparison of CAUTIOUS LP with these offline mechanisms demonstrates the loss
CAUTIOUS LP (an online mechanism) suffers due to the absence of information regard-
ing the future demands, that is, due to its cautiousness. Because DYNAMIC DRF is
not required to have an EF extension, the offline mechanisms are not theoretical upper
bounds for DYNAMIC DRF, but our experiments show that they provide upper bounds
in practice.

As our data we use traces of real workloads2 on a Google compute cell, from a 7 hour
period in 2011 [111]. The workload consists of tasks, where each task ran on a single ma-
chine, and consumed memory and one or more cores; the demands fit our model with
two resources assuming both memory and computing power are perfectly divisible re-
sources. For various values of n, we sampled n random positive demand vectors from
the traces and analyzed the value of the two objective functions under DYNAMIC DRF
and CAUTIOUS LP along with the corresponding lower and upper bounds. We aver-
aged over 1000 such simulations to obtain data points.

Figures 5.4(a) and 5.4(b) show the maxsum values achieved by the different mech-
anisms, for 20 agents and 100 agents respectively. The performance of our two mecha-
nisms is nearly identical.

Figures 5.4(c) and 5.4(d) show the maxmin values achieved for 20 agents and 100
agents, respectively. Observe that DYNAMIC DRF performs better than CAUTIOUS LP
for lower values of k, but performs worse for higher values of k. Intuitively, DYNAMIC
DRF allocates more resources in early stages to satisfy DPO while CAUTIOUS LP cau-
tiously waits. This results in the superior performance of DYNAMIC DRF in initial steps
but it has fewer resources available and thus lesser flexibility for optimization in later
steps, resulting in inferior performance near the end. In contrast, CAUTIOUS LP is later
able to make up for its loss in early steps. Encouragingly, by the last step CAUTIOUS LP
achieves near optimal maxmin value. For the same reason, unlike DYNAMIC DRF the
maxmin objective value for CAUTIOUS LP monotonically increases as k increases in our
experiments (although it is easy to show that this is not always the case).

1Under a cardinal notion of utility where the dominant share of an agent is its utility, the sum of
dominant shares is the utilitarian social welfare and the minimum dominant share is the egalitarian social
welfare.

2These are the reported workloads, and may not be truthful revelations in the absence of a strate-
gyproof mechanism.
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Figure 5.4: The maxsum and maxmin objectives as a function of the time step k, for
n = 20 and n = 100.

5.6 Related Work

Walsh [198] proposed the problem of fair cake cutting where agents arrive, take a piece
of cake, and immediately depart. The cake cutting setting deals with the allocation of a
single, heterogeneous divisible resource; contrast with our setting, which deals with mul-
tiple, homogeneous divisible resources. Walsh suggested several desirable properties for
cake cutting mechanisms in this setting, and showed that adaptations of classic mech-
anisms achieve these properties (Walsh also pointed out that allocating the whole cake
to the first agent achieves the same properties). As we note in Section 5.3, his notion of
forward envy freeness is related to our notion of dynamic envy freeness.

The networking community has studied the problem of fairly allocating a single
homogeneous resource in a queuing model where each agent’s task requires a given
number of time units to be processed. In other words, in these models tasks are pro-
cessed over time, but demands stay fixed, and there are no other dynamics such as
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agent arrivals and departures. The well-known fair queuing solution [73] allocates one
unit per agent in successive round-robin fashion. This solution has also been analyzed
by economists [152].

Previous papers on the allocation of multiple resources study a static setting. For
example, Ghodsi et al. [99] proposed the dominant resource fairness (DRF) mechanism,
which guarantees a number of desirable theoretical properties. Li and Xue [132] pre-
sented characterizations of mechanisms satisfying various desiderata while Joe-Wong
et al. [116] analyzed the classic tradeoff between fairness and efficiency, both in generic
frameworks that capture DRF as a special case. Parkes et al. [165] extended DRF in
several ways, and in particular studied the case of indivisible tasks. Finally, DRF has
also been extended to the queuing domain [100] and to incorporate job placement con-
siderations [101], but these generalizations also use a static setting. Recently, Zahedi
and Lee [211] applied the concept of Competitive Equilibrium from Equal Outcomes
(CEEI) in the case of Cobb-Douglas utilities to achieve properties similar to DRF. They
empirically show that these utilities are well suited for modeling user preferences over
hardware resources such as cache capacity and memory bandwidth. Dolev et al. [78]
defined a notion of fairness that is different from the one considered in DRF. They also
proved that a fair allocation according to this new notion is always guaranteed to exist
in a static setting. Gutman and Nisan [108] gave a polynomial time algorithm to find
such an allocation, and also considered generalizations of DRF in a more general model
of utilities.

5.7 Discussion

We have presented a new model for resource allocation with multiple resources in dy-
namic environments that, we believe, can spark the study of dynamic fair division more
generally. The model is directly applicable to data centers, clusters, and cloud comput-
ing, where the allocation of multiple resources is a key issue, and it significantly extends
the previously studied static models. That said, the model also gives rise to technical
challenges that need to be tackled to capture more realistic settings.

First, our model assumes positive demands, that is, each agent requires every re-
source. To see how the positive demands assumption plays a role, recall that achieving
EF and DPO is impossible. We established that dropping DPO leads to the trivial mech-
anism EQUAL SPLIT, which satisfies the remaining three properties; this is also true for
possibly zero demands. When we dropped EF, we observed that the trivial mechanism
DYNAMIC DICTATORSHIP satisfies SI, DPO and SP, and we subsequently suggested the
improved mechanism DYNAMIC DRF that satisfies DEF in addition to SI, DPO and SP.
Surprisingly though, it can be shown that neither DYNAMIC DICTATORSHIP (see Ex-
ample 5.2) nor DYNAMIC DRF are SP under possibly zero demands.3 In fact, despite
significant effort, we were unable to settle the question of the existence of a mechanism
that satisfies SI, DPO and SP under possibly zero demands.

3Under possibly zero demands, we modify DYNAMIC DICTATORSHIP and DYNAMIC DRF to continue
allocating even when some resources become saturated so that they satisfy DPO.
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Second, our analysis is restricted to the setting of divisible tasks, where agents value
fractional quantities of their tasks. Parkes et al. [165] consider the indivisible tasks set-
ting, where only integral quantities of an agent’s task are executed, albeit in a static
environment. It can be shown that even forward EF — the weakest of all EF relaxations
considered in this chapter — is impossible to achieve along with DPO under indivisi-
ble tasks. It remains open to determine which relaxations of EF are feasible in dynamic
resource allocation settings with indivisible tasks. While we restrict our attention to
Leontief utilities, it should be noted that the desiderata we propose are well-defined in
our dynamic setting with any utility function.

Third, while our model of fair division extends the classical model by introducing
dynamics, and our results can directly inform the design of practical mechanisms, we
do make the assumption that agents arrive over time but do not depart. In reality, agents
may arrive and depart multiple times, and their preferences may also change over time
(note that changing preferences can be modeled as a departure and simultaneous re-
arrival with a different demand vector). Departures without re-arrivals are easy to han-
dle; one can allocate the resources that become free in a similar way to allocations of
entitlements, e.g., using DYNAMIC DRF (this scheme would clearly satisfy SI, DEF, and
DPO, and it would be interesting to check whether it is also strategyproof). However,
departures with re-arrivals immediately lead to daunting impossibilities. Note though
that mechanisms that were designed for static settings performed well in realistic (fully
dynamic) environments [99], and it is quite likely that our mechanisms — which do pro-
vide theoretical guarantees for restricted dynamic settings — would yield even better
performance in reality.
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Part II

Social Choice Theory

115





Chapter 6

Subset Selection Using Implicit
Utilitarian Voting

6.1 Introduction

In this chapter, we study the classic social choice problem of aggregating the preferences
of a set of voters — represented as rankings over a set of alternatives — into a collective
decision. While traditional social choice theory takes a normative approach, by specify-
ing desirable axioms that the aggregation method (also known as a voting rule) should
satisfy [5], we take a quantitative approach in which one identifies and optimizes a com-
pelling objective function.

Procaccia and Rosenschein [171] propose optimizing the utilitarian social welfare.
Specifically, they assume that each voter has a cardinal utility for each possible out-
come, but expresses only ordinal preferences (a ranking) that reflects the order of the
outcomes by their cardinal utilities. The goal is to select the socially optimal outcome
that maximizes the sum of the latent cardinal utilities. The performance of a voting rule
— which can only access the submitted rankings, not the implicit utility functions —
can then be quantified via a measure called distortion: the worst-case (over utility func-
tions consistent with the reported profile of rankings) ratio between the social welfare of
the optimal (welfare-maximizing) alternative, and the social welfare of the alternative
selected by the voting rule. While Procaccia and Rosenschein [171] focus on analyzing
the distortion of existing voting rules, Boutilier et al. [35] design voting rules that min-
imize distortion. In particular, they bound the worst-case distortion, and show that the
distortion-minimizing (randomized) voting rule can be implemented inf polynomial
time. We refer to this approach as implicit utilitarian voting.1

The work of Boutilier et al. [35] provides a good understanding of optimized aggre-
gation of rankings from the utilitarian viewpoint — but only when a single alternative
is selected by the voting rule. Indeed, this understanding does not extend to common
applications that require selection of a subset of alternatives, such as choosing a com-

1Cf. utilitarian voting, which has sporadically been used to refer to both approval voting and range
voting.
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mittee, or selecting restaurants for the next four group lunches. In this chapter, our goal
is therefore to

. . . build on the utilitarian approach to design optimal voting rules for selecting a
subset of alternatives, and understand the guarantees they provide, as well as their
performance in practice.

6.1.1 Direct Real-World Implications

Research in computational social choice has frequently been justified by potential appli-
cations in multiagent systems. But recently researchers have begun to realize that, ar-
guably, the most exciting products of this research are computer programs that help hu-
mans make decisions via AI-driven algorithms. One example is our aforementioned fair
division website Spliddit.org [104]. In the voting space, existing examples include Whale
(whale3.noiraudes.net/whale3/) and Pnyx (pnyx.dss.in.tum.de) — but these websites
generally adopt the axiomatic viewpoint.

Since May 2015, some of us have been working on the design and implementation of
a new not-for-profit social choice website, RoboVote.org, which is scheduled to launch
in the fall of 2016. The novelty of RoboVote is that it relies on optimization-based ap-
proaches. For the case of objective votes — when a ground truth ranking of the alter-
natives exists (e.g., the order of different stocks by the relative change in their prices
tomorrow) — RoboVote implements voting rules that pinpoint the most likely best al-
ternative [209], or the set most likely to contain it [179]. For the case of subjective votes
— the classic setting which is the focus of this chapter, with applications to everyday
scenarios such as a group of friends selecting a movie to watch or a restaurant to go to
— we use the results of Boutilier et al. [35] to select a single alternative. But, previously,
the extension to subset selection was unavailable — this is precisely the motivation for
the work described herein. Based on the results of Sections 6.4 and 6.5, we have imple-
mented the deterministic regret minimization rule on RoboVote.

6.2 The Model

Let [t] = {1, . . . , t}. Let A be the set of alternatives, and denote m = |A|. Let N = [n]
be the set of voters. Let L = L(A) denote the set of rankings over the alternatives. Each
voter i ∈ [n] submits a ranking σi ∈ L over the alternatives, and which can alternatively
be seen as a permutation of A. Therefore, σi(a) is the position in which voter i ranks
alternative a (1 is best, m is worst). Moreover, a �σi b denotes that voter i prefers
alternative a to alternative b. The collection of voters’ (submitted) rankings is called the
preference profile, and denoted by~σ ∈ Ln.

We assume the rankings are induced by comparisons between the voters’ underlying
utilities. For i ∈ N and a ∈ A, let ui(a) ∈ [0, 1] be the utility of voter i for alternative
a. As in previous papers [35, 47], we assume that the utilities are normalized such that
∑a∈A ui(a) = 1 for all i ∈ N. The collection of voter utilities, denoted ~u, is called
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the utility profile. We say that utility profile ~u is consistent with preference profile ~σ —
denoted ~u .~σ — if for all a, b ∈ A and i ∈ N, a �σi b implies ui(a) > ui(b).

Next we need to define the utility of a voter for a set of alternatives. For S ⊆ A, we
define ui(S) = maxa∈S ui(a), that is, each voter derives utility for his favorite alternative
in the set; this is in the same spirit as previous papers on set selection [54, 138, 144, 178].
Then, the (utilitarian) social welfare of S given the utility profile~u is sw(S,~u) = ∑n

i=1 ui(S).
We are interested in voting rules that, given a preference profile, select a subset of

given cardinality k.2 Therefore, it will be useful to denote Ak = {S ⊆ A : |S| = k}.
In order to unify notation, we directly define a randomized voting rule as a function
f : Ln → ∆(Ak), that is, the rule is allowed to select alternatives randomly, and for-
mally f (~σ) is a probability distribution over Ak. A deterministic voting rule simply gives
probability 1 to a specific subset.

A voting rule can only access the preference profile ~σ, yet the goal is to maximize
social welfare with respect to the latent utility function ~u .~σ. We study two notions that
quantify how well a rule achieves this goal: distortion and regret.

The distortion [171] of a (randomized) voting rule f on a preference profile~σ is

dist( f ,~σ) = sup
~u .~σ

maxS∈Ak sw(S,~u)
E[sw( f (~σ),~u)]

.

In words, it is the worst-case — over utility profiles consistent with the given preference
profile — ratio between the social welfare of the best subset, and the expected social
welfare of the subset selected by the voting rule. We define the distortion of a voting
rule f by taking the worst case over preference profiles: dist( f ) = max~σ∈Ln dist( f ,~σ).

The second measure is regret. While it has not been studied as part of the agenda of
implicit utilitarian voting, it has been explored in other social choice settings, especially
partial preferences [136]; similar measures have been extensively studied in decision
theory and machine learning [27, 43]. The regret of a (randomized) voting rule f on a
preference profile~σ is given by

reg( f ,~σ) =
1
n
· sup
~u .~σ

(
max
S∈Ak

sw(S,~u)−E[sw( f (~σ),~u)]
)

.

As before, define the regret of a rule f to be reg( f ) = max~σ∈Ln reg( f ,~σ). We divide by
n because the total (worst-case) regret of any voting rule f is provably linear in n (so
this is per vote regret). Note that distortion is a multiplicative measure of loss, whereas
regret is its additive version.

6.3 Worst-Case Bounds

In this section we provide bounds on worst-case distortion and regret, for both deter-
ministic and randomized voting rules. Boutilier et al. [35] show that for selecting a sin-
gle winner (k = 1), we can achieve O(

√
m · log∗m) distortion using a randomized rule,

2Formally, this is a special case of social choice correspondences with fixed output cardinality [46].
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where log∗m is the iterated logarithm of m (the number of alternatives). This bound
is asymptotically almost tight: they also show that the worst-case distortion is always
Ω(
√

m).
For a large k, though, one can hope for a better bound. Clearly, when k = m

there is only one voting rule (which selects every alternative), and its distortion is 1.
More generally, it is easy to show that the voting rule f that selects a subset from Ak
uniformly at random has dist( f ) 6 m/k. However, since we can already achieve
O(
√

m · log∗m) distortion for k = 1, a bound of m/k provides an improvement only
for k = Ω(

√
m/ log∗m). Can we achieve better distortion for smaller values of k as

well? It is not even clear whether the optimal worst-case distortion should monotoni-
cally decrease in k, because as our flexibility grows with k, so does the flexibility of the
welfare-maximizing solution. In fact, a part of our main result shows that the worst-case
distortion remains Ω(

√
m) for all values of k up to Θ(

√
m).

Theorem 6.1. Let m = |A|, and let k be the number of alternatives to be selected.
1. Distortion, deterministic rules: There exists a deterministic voting rule f ∗ with
dist( f ∗) 6 1 + m (m− k)/k. Moreover, for every deterministic voting rule f ,

dist( f ) >


1 + m(m−3k)

6k if k 6 m
9 ,

1 + m if m
9 < k 6 m

2 ,
1 + m(m−k)

k otherwise.

These bounds are tight up to a constant factor of 8.
2. Distortion, randomized rules: There exists a randomized voting rule f ∗ such that

dist( f ∗) 6


2
√

m · Hm if k 6 2·m·Hm
m+Hm

,

4
√

m · k if 2·m·Hm
m+Hm

< k 6
(m

4

) 1
3 ,

m
k otherwise,

where Hm = Θ(log m) is the mth harmonic number. Moreover, for every randomized
voting rule f ,

dist( f ) >

{ √
m

2 if k 6 m·(
√

m−1)
m−1 ≈

√
m,

m
k+m/k otherwise.

These bounds are tight up to a factor of 6.35 ·m1/6.
3. Regret, deterministic rules: There exists a deterministic voting rule f ∗ such that

reg( f ∗) 6

{
1
2 if k 6 m

2 ,
1− k

m otherwise,

and this upper bound is completely tight.
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Figure 6.1: The upper and lower bounds on worst-case distortion and regret for m =
100.

4. Regret, randomized rules: There exists a randomized voting rule f ∗ such that

reg( f ∗) 6
1
2
·
(

1− k2

m2

)
.

Moreover, for every randomized voting rule f ,

reg( f ) >


1
4 if k 6 m/2

1
2 ·

k
m

(
1− k

m

)
otherwise.

These bounds are tight up to a constant factor of 2.
All the upper bounds above can be achieved via polynomial-time algorithms.

The bounds presented above are simplified forms of the exact bounds that we derive.
Figure 6.1 shows our exact bounds for m = 100.3

Before we dive into the proof, we simplify the formulae for the distortion and regret
of deterministic voting rules.

Definition 6.1 (Comparing Sets). Given a ranking σ ∈ L and an alternative a ∈ A,
recall that σ(a) denotes the position of a in σ. More generally, for a set S ⊆ A let
σ(S) = mina∈S σ(a). For sets S, T ⊆ A, we say T �σ S if σ(T) < σ(S), i.e., if there exists
an alternative in T that is preferred to every alternative in S in σ.

Definition 6.2 (Plurality Score). The plurality score of an alternative a ∈ A in a prefer-
ence profile~σ is the number of votes in which a appears first, i.e.,

plu(a,~σ) =
n

∑
i=1

I[σi(1) = a],

3The second upper bound in part 2 of Theorem 6.1 (which increases with k) does not play a role unless
m is very large.
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where I is the indicator function. More generally, we define the plurality score of a set
S ⊆ A to be the number of votes in which an alternative in S is ranked first, i.e.,

plu(S,~σ) =
n

∑
i=1

I[σi(S) = 1] = ∑
a∈S
plu(a,~σ).

Lemma 6.1. For a deterministic voting rule f and a preference profile~σ, the regret of f on~σ is
given by

reg( f ,~σ) = max
S∈Ak

1
n
·

n

∑
i=1

I[S �σi f (~σ)]
σi(S)

, (6.1)

and the distortion of f on~σ is given by

dist( f ,~σ) = 1 + m · n · reg( f ,~σ)
plu( f (~σ),~σ)

. (6.2)

Proof. First, note that reg( f ,~σ) and dist( f ,~σ) can be rewritten as follows.

reg( f ,~σ) =
1
n
· sup
~u .~σ

[
max
S∈Ak

sw(S,~u)− sw( f (~σ),~u)

]
=

1
n
·
[

max
S∈Ak

sup
~u .~σ

sw(S,~u)− sw( f (~σ),~u)

]
,

(6.3)
and similarly,

dist( f ,~σ) = sup
~u .~σ

maxS∈Ak
sw(S,~u)

sw( f (~σ),~u)
= max

S∈Ak

sup
~u .~σ

sw(S,~u)
sw( f (~σ),~u)

. (6.4)

If S = f (~σ), then the regret term is 0 and the distortion term is 1. Fix S ∈ Ak \ { f (~σ)}.
To maximize the regret (resp. distortion) term, we want to find the utility profile ~u that
maximizes the difference (resp. ratio) of sw(S,~u) and sw( f (~σ),~u) subject to ~u .~σ. Let
us construct a specific utility profile ~u ∗ where the utility function of voter i is given as
follows. For each voter i,

1. If σi( f (~σ)) = 1, let ui(a) = 1/m for all a ∈ A.
2. If S �i f (~σ), let ui(a) = 1/σi(S) if σi(a) ∈ [σi(S)], and ui(a) = 0 otherwise.
3. If S 6�i f (~σ) and σi( f (~σ)) 6= 1, let ui(a) = 1 if σi(a) = 1, and ui(a) = 0 otherwise.

First, it is easy to check that ~u ∗ .~σ. Also, note that this utility profile maximizes
ui(S) − ui( f (~σ)) subject to ui . σi, for each voter i in each of the three cases above.
Hence, it maximizes the regret term sw(S,~u)− sw( f (~σ),~u). Further, we have

sw( f (~σ),~u ∗) =
1
m
· plu( f (~σ),~σ),

sw(S,~u ∗) =
1
m
· plu( f (~σ),~σ) +

n

∑
i=1

I[S �i f (~σ)]
σi(S)

.
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This immediately gives us Equation (6.1) for the regret of f on~σ. Now, the distortion of
f on~σ under the utility profile ~u ∗ is

sw(S,~u ∗)
sw( f (~σ),~u ∗)

= 1 + m · ∑n
i=1 I[S �i f (~σ)]/σi(S)
plu( f (~σ),~σ)

= 1 + m · n · reg( f ,~σ)
plu( f (~σ),~σ)

> 1. (6.5)

Finally, take a utility profile ~u satisfying ~u .~σ. We want to show that the distortion
under ~u, i.e., sw(S,~u)/sw( f (~σ),~u) is no more than the distortion under ~u ∗. Note that
f (~σ) has the least possible welfare under ~u ∗. Hence, sw( f (~σ),~u) > sw( f (~σ),~u ∗). To
achieve a greater distortion, we must have sw(S,~u) > sw(S,~u ∗), i.e., the voters must
assign a greater utility to S under ~u than under ~u ∗.

Let us revisit the three cases in the construction of ~u ∗. All the voters covered under
case 2 already assign S the highest possible utility. For all the other voters, the top-
ranked alternative of f (~σ) is at least as high as the top-ranked alternative of S. Hence,
an increase of δ in the utility for S would require an increase of at least δ in the utility
for f (~σ).

In other words, for any δ > 0, sw(S,~u) = sw(S,~u ∗) + δ implies sw( f (~σ),~u) >
sw( f (~σ),~u ∗) + δ. Finally,

sw(S,~u ∗)
sw( f (~σ),~u ∗)

> 1⇒ sw(S,~u)
sw( f (~σ),~u)

6
sw(S,~u ∗) + δ

sw( f (~σ),~u ∗) + δ
6
sw(S,~u ∗)
sw( f (~σ),~u ∗)

.

Hence, the worst-case distortion is indeed 1 + m · reg( f ,~σ)/plu( f (~σ),~σ), as re-
quired. Note that in finding the worst-case distortion, the distortion of 1 achieved with
S = f (~σ) is ignored because the distortion achieved by every S 6= f (~σ) is at least 1. �

One interesting consequence of Lemma 6.1 is that selecting a set of alternatives, none
of which appear at the top position in any vote, results in an unbounded distortion.
Hence, the rule that optimizes distortion would never select such a set. We are now
ready for the proof of our main result.

Proof of Theorem 6.1. Below, we provide a proof for the upper and the lower bound in
each of the four cases.

Distortion, deterministic rules:

Upper bound: Inspired by the denominator plu( f (~σ),~σ) = ∑a∈ f (~σ) plu(a,~σ) in the for-
mula for the distortion of f on~σ from Lemma 6.1, let us analyze the rule f ∗ that selects
the k alternatives with the highest plurality scores. We show that f ∗ achieves the re-
quired upper bound on the optimal distortion.

Since the sum of plurality scores of all the alternatives is n, the sum of top k plurality
scores is at least n · k/m. Hence, plu( f ∗(~σ),~σ) > n · k/m. Next, for S ∈ Ak \ { f ∗(~σ)},
note that the number of voters i for which S �i f ∗(~σ) is at most n− plu( f ∗(~σ),~σ). Using
Lemma 6.1, it follows that the distortion of f ∗ on~σ is at most

1 + m · n− plu( f ∗(~σ),~σ)
plu( f ∗(~σ),~σ)

= 1 + m ·
(

n
plu( f ∗(~σ),~σ)

− 1
)
6 1 + m ·

(m
k
− 1
)

,
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which is the required upper bound.

Lower bound: Next, we establish three different lower bounds on the distortion of deter-
ministic rules.

1. For k 6 m/6, dist( f ) > 1 + m · (m− 3k)/(6k) for every deterministic rule f .
2. For k 6 m/2, dist( f ) > 1 + m for every deterministic rule f .
3. For k > m/2, dist( f ) > 1 + m · (m− k)/k for every deterministic rule f .

It is easy to check that for k 6 m/9, the first bound is the strongest; for k ∈
[m/9, m/2], the second bound is the strongest; and, for k > m/2, the third bound is
the strongest. Hence, the optimal combination of these three bounds gives us the de-
sired result.

Let the set of alternatives be A = {a1, . . . , am}. Let us begin by proving the first
bound. Fix a value of k 6 m/6, and partition A into two sets: X = {a1, . . . , am−3k} and
Y = A \ X. Let Y = {b1, . . . , b3k}. Note that m > 6k implies |X| > |Y|. Construct a
ranked profile~σ as follows.

• For each alternative aj ∈ X (thus j 6 m− 3k), let aj be ranked first in the votes of
voters i ∈ [(j− 1) · n/(m− 3k) + 1, j · n/(m− 3k)]. That is, we partition the set of
voters into |X| = m− 3k contiguous blocks, and have each alternative of X ranked
first in one of the blocks.

• For each alternative bj ∈ Y (thus j 6 3k), let bj be ranked second in the votes of
voters i ∈ [(j− 1) · n/3k + 1, j · n/3k]. That is, we partition the set of voters into
|Y| = 3k contiguous blocks, and have each alternative of Y ranked second in one
of the blocks.

Since we chose the blocks of voters to be contiguous in both cases, it follows that
for every aj ∈ X, the set of voters ranking aj first can have at most two distinct alter-
natives in Y in their second position. Take a deterministic rule f for selecting a set of k
alternatives. Let | f (~σ) ∩ X| = t 6 k. Then, we have plu( f (~σ),~σ) = t · n/(m− 3k).

Consider the voters who rank an alternative of f (~σ) first. Let Y′ denote the set of
alternatives appearing in the second position in the votes of such voters. From the
argument above, we have |Y′| 6 2t 6 2k. Hence, |Y \ Y′| > 3k − 2k = k. Choose an
arbitrary set S ⊆ Y \ Y′ such that |S| = k. Now, there are (n/3k) · k = n/3 voters that
rank an alternative in S in their second position. Hence,

dist( f ) > dist( f ,~σ) > 1 + m · ∑n
i=1 I[S �i f (~σ)]/σi(S)
plu( f (~σ),~σ)

> 1 + m · (n/3) · (1/2)
t · n/(m− 3k)

> 1 + m · m− 3k
6k

,

where the second transition uses Lemma 6.1, and the final transition uses t 6 k.
For the second and the third lower bound, we simply construct a profile~σ in which

each alternative in A appears first in n/m votes, and the remaining positions in the votes
are filled arbitrarily. Fix a deterministic rule f with | f (~σ)| = k. Note that plu( f (~σ),~σ) =
(n/m) · k.
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If k 6 m/2, choose a set S ⊆ A \ f (~σ) such that |S| = k. Note that S ∩ f (~σ) = ∅, and
an alternative in S is ranked first in (n/m) · k votes. Hence, by Lemma 6.1,

dist( f ) > dist( f ,~σ) > 1 + m · ∑n
i=1 I[S �i f (~σ)]/σi(S)
plu( f (~σ),~σ)

> 1 + m · (n/m) · k
(n/m) · k = 1 + m.

If k > m/2, choose S ⊇ A \ f (~σ) such that |S| = k. In this case, an alternative in
S \ f (~σ) is ranked first in (n/m) · (m− k) votes. Hence, by Lemma 6.1,

dist( f ) > dist( f ,~σ) > 1 + m · ∑n
i=1 I[S �i f (~σ)]/σi(S)
plu( f (~σ),~σ)

> 1 + m · (n/m) · (m− k)
(n/m) · k

= 1 + m · m− k
k

,

as required.

Gap between upper and lower bounds: Note that the gap between the upper and the lower
bounds is max(G1, G2, G3), where

G1 = maxk∈[1, m
9 ]

1+m(m−k)/k
1+m(m−3k)/(6k) , G2 = maxk∈[m

9 , m
2 ]

1+m(m−k)/k
1+m , and G3 = 1.

For G1, it can be checked that the ratio of the upper and lower bounds is an increasing
function of k for m > 3. Hence, the maximum is achieved at k = m/9, and is equal to
1 + 8 ·m/(1 + m) 6 8.

For G2, the ratio of the upper and the lower bounds is clearly a decreasing function
of k. Hence, the maximum is achieved at k = m/9, and is equal to G1 6 8.

Hence, the upper and the lower bounds are tight up to a constant factor of 8.

Distortion, randomized rules:

Upper bound: In our opinion, the proof of this part is the most non-trivial. It uses a
construction that builds on the one used by Boutilier et al. [35] for k = 1, but requires
additional tools and introduces novel techniques. As mentioned at the beginning of
this section, choosing a set uniformly at random from Ak (under which the marginal
probability of every alternative being chosen is k/m) has distortion at most m/k. How-
ever, this approach does not work well if some alternatives are significantly better than
others.

In that case, one may wish to choose the alternatives with probabilities proportional
to their “quality”. For a ∈ A, let us define its quality by its harmonic score har(a,~σ) =
∑i∈[n] 1/σi(a). Then, we wish to choose alternative a with marginal “probability” k ·
har(a,~σ)/ ∑b∈A har(b,~σ). Note that this quantity may be greater than 1. Moreover, this
approach fails when all sets are almost equally good. Hence, we employ a combination
of the two approaches.

Fix 0 6 α 6 1, and for an alternative a ∈ A define

pa = α · k
m

+ (1− α) · k · har(a,~σ)
∑b∈A har(b,~σ)

. (6.6)
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Using the bihierarchy extension [45] of the Birkhoff-von Neumann theorem [25, 197], we
can show that there exists a distribution overAk under which the marginal probabilities
of selected alternatives are consistent with Equation (6.6) if and only if

∀a ∈ A, 0 6 pa 6 1 and ∑
a∈A

pa = k.

Note that pa > 0 and ∑a∈A pa = k hold by definition. The constraint pa 6 1 will be
applied later to restrict the feasible values of α.

For now, suppose such a distribution D exists. Consider a preference profile~σ and a
utility profile ~u .~σ. Let S∗ ∈ arg maxS∈Ak

sw(S,~u). Define

X =

√
Hm

m
· α

1− α
,

where Hm = ∑m
t=1 1/t is the mth harmonic number. Note that ∑a∈A har(a,~σ) = n · Hm.

Now, consider two cases.

Case 1: Suppose sw(S∗,~u) 6 n · X. Then,

ES∼D[sw(S,~u)] = ∑
S∈Ak

PrD[S] ·
(

n

∑
i=1

max
a∈S

ui(a)

)
>

n

∑
i=1

(
∑

S∈Ak

PrD[S] ·
∑a∈S ui(a)

k

)

=
1
k

n

∑
i=1

∑
a∈A

ui(a) · PrS∼D[a ∈ S] >
1
k

n

∑
i=1

∑
a∈A

ui(a) · α · k
m

= α · n
m

.

Hence, the distortion is

sw(S∗,~u)
ES∼D[sw(S,~u)]

6
n · X

α · n/m
=

X ·m
α

=

√
m · Hm

α · (1− α)
.

Case 2: Suppose sw(S∗,~u) > n · X. Then, for each alternative a ∈ S∗, let Na denote the
subset of voters who rank a above any other alternative of S∗, i.e.,

Na = {i ∈ [n] : ∀b ∈ S∗ \ {a}, a �σi b, }.

Let swNa(S,~u) denote the welfare of the voters in Na for the set of alternatives S under
the utility profile ~u. Let Ta denote the total utility that agents in Na have for alternative
a, i.e., Ta = ∑i∈Na ui(a). It can be shown (although it is nontrivial) that har(a,~σ) > Ta
for all a ∈ A. Because {Na}a∈S∗ is a partition of the set of voters, we have

ES∼D[sw(S,~u)] = ES∼D

[
∑

a∈S∗
swNa(S,~u)

]
> ∑

a∈S∗
Ta · PrS∼D[a ∈ S]

> ∑
a∈S∗

Ta · (1− α) · k · har(a,~σ)
∑b∈A har(b,~σ)

>
(1− α) · k

n · Hm
· ∑

a∈S∗
(Ta)

2
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>
1− α

n · Hm
·
(

∑
a∈S∗

Ta

)2

=
1− α

n · Hm
· (sw(S∗,~u))2 .

Here, the fourth transition uses har(a,~σ) > Ta, the fifth transition uses the power-mean
inequality, and the final transition uses sw(S∗,~u) = ∑a∈S∗ Ta. Now, the distortion is

sw(S∗,~u)
ES∼D[sw(S,~u)]

6
n · Hm

(1− α) · sw(S∗,~u) <

√
m · Hm

α · (1− α)
,

where the final transition uses our assumption sw(S∗,~u) > n · X along with the defini-
tion of X.

Combined analysis: In both cases, the distortion is at most
√

mHm/(α(1− α)). The final
step involves choosing the optimal value of α by minimizing this quantity subject to our
constraints: pa 6 1 for all a ∈ A. This translates to

α · k
m

+ (1− α) · k · har(a,~σ)
∑b∈A har(b,~σ)

6 1, ∀a ∈ A.

Note that har(a,~σ) 6 n, and ∑b∈A har(b,~σ) = n · Hm. Hence, we can safely replace
these constraints by the following constraint:

α · k
m

+ (1− α) · k
Hm
6 1.

Minimizing the value of
√

mHm/(α(1− α)) subject to this constraint, we get that:

• For k 6 2mHm/(m + Hm), the optimal distortion is achieved at α = 1/2, and is
equal to 2

√
m · Hm;

• For k > 2mHm/(m + Hm), the optimal distortion is achieved at α = m · (k −
Hm)/(k · (m− Hm)), and is equal to

k · (m− Hm)√
(m− k) · (k− Hm)

.

Note that Hm 6 (7/8) · k. Further, let k 6 m/2 (as this bound will anyway be
replaced by a better bound for k > m/2). Hence, m− k > m/2. Substituting these,
we get that the optimal distortion in this case is at most 4

√
m · k.

Finally, recall that we have a universal upper bound of m/k, achieved by choosing
from Ak uniformly at random. One can check that m/k < 4

√
m · k for k > (m/4)1/3.

Hence, combining the upper bounds from the analysis above with this universal upper
bound gives us the desired result.

Lower bound: Fix a set of alternatives T = {a1, . . . , at}, where t > k (the exact value
of t will be determined later). Partition the set of voters into t buckets; each bucket
i, denoted by Ni, consists of n/t voters. Construct a ranked profile ~σ in which for all
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i ∈ [t], all voters in bucket Ni rank alternative ai first, and the remaining alternatives
arbitrarily.

Let us analyze the output of a randomized rule f on this profile. For each alternative
a ∈ A, define pa = PrS∼ f (~σ)[a ∈ S]. Let X ⊆ [t] be the indices corresponding to the
lowest k values in the sequence (pai)i∈[t]; in other words, let X be such that {ai : i ∈ X}
is the set of k alternatives from T with the lowest values of p. Now, construct a utility
profile ~u as follows.

1. For each i ∈ [t] \ X, every voter in bucket Ni has utility 1/m for each alternative.
2. For each i ∈ X, every voter in bucket Ni has utility 1 for the alternative it ranks

first (i.e., ai), and utility 0 for the remaining alternatives.

Note that this construction is a modification of the one used in the lower bound for
the deterministic case; instead of letting voters have high utility for alternatives that are
not selected, here we let voters have high utility for alternatives that are selected with the
lowest probabilities.

First, note that ~u .~σ. Further, under ~u the optimal set of k alternatives is clearly
{ai : i ∈ X}, and its corresponding welfare is(

n− n
t
· k
)
· 1

m
+

n
t
· k · 1,

because it provides utility 1/m to every voter in bucket Ni for i ∈ [t] \ X, and utility 1
to every voter in bucket Ni for i ∈ X. In contrast, the expected welfare under f is(

n− n
t
· k
)
· 1

m
+

n
t
· ∑

i∈X
pai . (6.7)

Next, note that ∑a∈T pa 6 ∑a∈A pa = k, where the last equality follows because
f always returns a set of size k. Hence, the sum of the lowest k values from {pa :
a ∈ T} (i.e., ∑i∈X pai , by the definition of X) is at most (k/t) · k. Substituting this in
Equation (6.7), we obtain that the worst-case distortion is bounded from below by(

n− n
t · k

)
· 1

m + n
t · k(

n− n
t · k

)
· 1

m + n
t ·

k2

t

=

(
1− k

t

)
· 1

m + k
t(

1− k
t

)
· 1

m +
(

k
t

)2 .

Finally, minimizing this with respect to t, we get that

dist( f ) > dist( f ,~σ) >


(
√

m+1)2

1+2
√

m if k 6 m(
√

m−1)
m−1 ,

m+k(m−1)
m+k(k−1) otherwise.

Finally, note that

(
√

m + 1)2

1 + 2
√

m
>

(
√

m + 1)2

2 · (1 +
√

m)
=

√
m + 1

2
>

√
m

2
,
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and
m + k(m− 1)
m + k(k− 1)

=
m · k + m− k

k2 + m− k
>

m · k
k2 + m

=
m

k + m/k
,

which are the required bounds.

Gap between upper and lower bounds: In this case, the gap between the upper and the
lower bounds is max(G1, G2, G3, G4), where

G1 = max
k∈[1, 2mHm

m+Hm ]

2
√

m · Hm√
m/2

6 4
√

Hm,

G2 = max
k∈
[

2mHm
m+Hm ,(m

4 )
1
3
] 4
√

m · k√
m/2

6 max
k∈
[

2mHm
m+Hm ,(m

4 )
1
3
] 8 ·
√

k 6 28/3 ·m1/6,

G3 = max
k∈
[
(m

4 )
1
3 , m(

√
m−1)

m−1

] m/k√
m/2

6 max
k∈
[
(m

4 )
1
3 , m(

√
m−1)

m−1

] 2 ·
√

m
k
6 2 ·

√
m

(m/4)1/3 = 25/3 ·m1/6,

G4 = max
k>m(

√
m−1)

m−1

m/k
m/(k + m/k)

= max
k>m(

√
m−1)

m−1

1 +
m
k2 = 1 +

m · (m− 1)2

m2 · (
√

m− 1)2 = 1 +
(
√

m + 1)2

m

6 5.

It is easy to check that 28/3 ·m1/6 6 6.35 ·m1/6 is the highest among all four factors, for
all values of m. Hence, the upper and the lower bounds are tight by a factor of at most
6.35 · (m/4)1/6.

Regret, deterministic rules:

Upper bound: We show that the upper bound in this case is achieved by the rule f ∗ that
selects the k alternatives with the highest plurality scores. Fix a profile ~σ and a set of
alternatives T ∈ Ak \ { f ∗(~σ)}. Let us calculate the worst-case regret due to T in the
simplified regret formula from Lemma 6.1.

Recall that there are plu( f ∗(~σ),~σ) votes i in which σi( f ∗(~σ)) = 1, and thus we cannot
have T �i f ∗(~σ). Further, there are exactly plu(T \ f ∗(~σ),~σ) votes i in which T �i f ∗(~σ)
and σi(T) = 1. Hence, there are at most n− plu(T \ f ∗(~σ),~σ)− plu( f ∗(~σ),~σ) votes i in
which T �i f ∗(~σ) and σi(T) > 2. Substituting these into the formula from Lemma 6.1,
we get that the worst-case regret due to T is at most

1
n
·
(
plu(T \ f ∗(~σ),~σ)

1
+

n− plu(T \ f ∗(~σ),~σ)− plu( f ∗(~σ),~σ)
2

)
(6.8)

=
n + plu(T \ f ∗(~σ),~σ)− plu( f ∗(~σ),~σ)

2n
. (6.9)

Next, note that plu(T \ f ∗(~σ),~σ) 6 plu(T,~σ) 6 plu( f ∗(~σ),~σ), where the last equa-
tion follows due to the definition of f ∗. Substituting this into Equation (6.9), we get that
the regret is at most 1/2, as desired.
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For k > m/2, we can derive a better bound because we know T ∩ f ∗(~σ) 6= ∅. Note
that T \ f ∗(~σ) ⊆ A \ f ∗(~σ). Because f ∗(~σ) consists of the k alternatives with the highest
plurality scores, and the plurality scores sum to n, we have

plu( f ∗(~σ),~σ) >
k
m
· n. (6.10)

Similarly, A \ f ∗(~σ) consists of the m− k alternatives with the lowest plurality scores.
Hence, we have plu(A \ f ∗(~σ),~σ) 6 (m− k) · n/m. Hence, we have

plu(T \ f ∗(~σ),~σ) 6 plu(A \ f ∗(~σ),~σ) 6
m− k

m
· n (6.11)

Substituting Equations (6.10) and (6.11) into Equation (6.9), we get that the worst-
case regret caused by T is at most

n + m−k
m · n− k

m · n
2n

= 1− k
m

.

Since the choices of T and~σ were arbitrary, we have that reg( f ∗) 6 1− k/m, as required.

Lower bound: Next, we prove the matching lower bound. For k 6 m/2, fix a set X ⊆ A
of 2k alternatives. Construct a profile ~σ in which every alternative in X appears first
in n/(2k) votes. In this case, for any deterministic rule f with | f (~σ)| = k, one can
find a set T ⊆ X \ f (~σ) with |T| = k. Note that T ∩ f (~σ) = ∅, and there are exactly
k · n/(2k) = n/2 votes in which T �i f (~σ) and σi(T) = 1. Hence, due to Lemma 6.1, we
have reg( f ) > reg( f ,~σ) > (1/n) · (n/2) = 1/2, as required.

For k > m/2, we construct a profile ~σ in which every alternative appears first in
exactly n/m votes. Once again, for any deterministic rule f with | f (~σ)| = k, we can
choose a set T ⊇ A \ f (~σ) with |T| = k. Note that |T \ f (~σ)| = m− k. Hence, there are
(m− k) · n/m votes in which T �i f (~σ), and σi(T) = 1. Thus, due to Lemma 6.1, we
have that reg( f ) > reg( f ,~σ) > (1/n) · (m− k) · n/m = 1− k/m, as required.

Regret, randomized rules:

Upper bound: We explicitly construct the randomized rule f ∗ that provides the required
upper bound. Fix a preference profile~σ. Without loss of generality, let us relabel the set
of alternatives as A = {a1, a2, . . . , am} such that plu(ai,~σ) > plu(ai+1,~σ) for i ∈ [m− 1].
Further, define Ai , {a1, a2, . . . , ai} for i ∈ [m].

Next, let t be the smallest positive integer such that

t > k + plu(a,~σ) · ∑
b∈At

1
plu(b,~σ)

, ∀a ∈ At.

Next, define

pa =

1− t−k
plu(a,~σ)·∑b∈At 1/plu(b,~σ)

if a ∈ At,

0 otherwise.
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Observe that 0 6 pa 6 1 for each a ∈ A, and ∑a∈A pa = k. Hence, due to the bihierarchy
extension [44] of the Birkhoff-von Neumann theorem [25, 197], there exists a distribution
over Ak (which can be computed in polynomial time) under which the probability of
each alternative a ∈ A being selected is pa. We let our rule f ∗ return this distribution.

Next, we bound reg( f ∗). Fix T ∈ Ak. Using Lemma 6.1, the worst-case regret due
to T is 1 from each voter that ranks an alternative from T \ f ∗(~σ) first, and at most 1/2
from each voter that ranks an alternative from A \ ( f ∗(~σ)∪ T) first. Hence, the expected
regret is at most

1
n
·E

 ∑
a∈T\ f ∗(~σ)

plu(a,~σ) +
1
2 ∑

a∈A\( f ∗(~σ)∪T)
plu(a,~σ)


=

1
2n
·E

 ∑
a∈T\ f ∗(~σ)

plu(a,~σ)

+
1

2n
·E

 ∑
a∈A\ f ∗(~σ)

plu(a,~σ)


=

1
2n
· ∑

a∈T
(1− pa) · plu(a,~σ) +

1
2
− 1

2n
· ∑

a∈At

pa · plu(a,~σ)

6
k · (t− k)

2n ·∑a∈At 1/plu(a,~σ)
+

1
2
− 1

2n
· ∑

a∈At

plu(a,~σ) +
t · (t− k)

2n ·∑a∈At 1/plu(a,~σ)

=
1
2
+

t2 − k2

2n ·∑a∈At 1/plu(a,~σ)
− 1

2n
· ∑

a∈At

plu(a,~σ)

6
1
2
− k2

2n
· ∑

a∈At

plu(a,~σ) 6
1
2
− k2

2n · t · (m/n)
6

1
2
·
(

1− k2

m2

)
,

as desired. The first two equalities follow from the definitions of f ∗, T, At, and pa. The
first inequality follows because our definitions guarantee

(1− pa) · plu(a,~σ) 6
t− k

∑b∈At 1/plu(b,~σ)

for every a ∈ A. The second inequality follows by the power mean inequality, the
third inequality follows because the t alternatives in At have the highest plurality scores
(hence, ∑a∈At plu(a,~σ) > t · n/m), and the final inequality follows because t 6 m.

Lower bound: This proof is very similar to the proof of the deterministic case.
For k 6 m/2, fix a set of alternatives X ⊆ A such that |X| = 2k. Construct a profile~σ

in which every alternative in X appears first in n/(2k) votes. Now, let us consider a ran-
domized rule f that returns a distribution overAk. Let T denote the set of k alternatives
from X with the least probability of being picked in S . Because ∑a∈X Pr[a ∈ f (~σ)] 6 k,
we have ∑a∈T Pr[a ∈ f (~σ)] 6 k/2. Hence, ∑a∈T Pr[a /∈ f (~σ)] > k/2. Now, from
Lemma 6.1, the expected regret of f due to T is at least

1
n
·E
[

∑
a∈T

I[a /∈ f (~σ)] · n
2k

]
=

1
2k
· ∑

a∈T
Pr[a /∈ f (~σ)] >

1
4

,
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as required.
Similarly, for k > m/2, once again construct a profile ~σ in which every alternative

appears first in n/m votes. Consider a randomized rule f that returns a distribution
over Ak. Let T be the set of k alternatives with the least probability of being picked in
f (~σ). Because ∑a∈A Pr[a ∈ f (~σ)] 6 k, we have ∑a∈T Pr[a ∈ f (~σ)] 6 k · k/m. Hence,
∑a∈T Pr[a /∈ f (~σ)] > k · (1− k/m). Once again, from Lemma 6.1, the expected regret of
f due to T is at least

1
n
·E
[

∑
a∈T

I[a /∈ f (~σ)] · n
m

]
=

1
m
· ∑

a∈T
Pr[a /∈ f (~σ)] >

k
m
·
(

1− k
m

)
,

as required.

Gap between upper and lower bounds: Note that for k 6 m/2, the ratio between the upper
and the lower bounds is

(1/2) · (1− k2/m2)

1/4
= 2 ·

(
1− k2

m2

)
6 2.

For k > m/2, the ratio between the upper and the lower bounds is

(1/2) · (1− k2/m2)

(1/2) · (k/m) · (1− k/m)
.

It can be checked easily that this is a decreasing function of k. Hence, the maximum
ratio is achieved at k = m/2, and is equal to 2.

Thus, in both cases, the upper and the lower bounds in this case are tight up to a
constant factor of 2.

Running time: Note that rules from our upper bounds only require calculating the
plurality scores and finding a decomposition according to (the bihierarchy extension of)
the Birkhoff-von Neumann theorem, both of which can be accomplished in polynomial
time. �

6.4 Empirical Comparisons

In Section 6.3 we provided analytical results for both deterministic and randomized
rules. In our view, randomized rules are especially practicable when the output distri-
bution is sampled multiple times, or when the voters are well-informed, or when the
voters are indifferent about the outcome (e.g., they are software agents). Moreover, we
believe that the results for randomized rules are of substantial theoretical interest. But
our work is partly driven by its direct applications in RoboVote (see Section 6.1.1), which
does not satisfy the above conditions. This leads us to use deterministic voting rules,
which is what we focus on hereinafter.

Let f ∗dist and f ∗reg be the deterministic rules that minimize the worst-case distortion
and regret, respectively, on every given preference profile. The deterministic results of
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Figure 6.2: Uniformly random utility pro-
files.
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Figure 6.3: Utility profiles from the Jester
dataset.

Section 6.3 establish upper and lower bounds on their worst-case distortion/regret. In
this section, we evaluate their average-case performance on simulated as well as real data,
and compare them against nine well-known voting rules: plurality, approval voting,
Borda count, STV, Kemeny’s rule, the maximin rule, Copeland’s rule, Bucklin’s rule,
and Tideman’s rule.4

We perform three experiments: (i) choosing a utility profile uniformly at random
from the simplex of all utility profiles, (ii) drawing a real-world utility profile from the
Jester datasets [103], and (iii) drawing a real-world preference profile from the PrefLib
datasets [141], and choosing a consistent utility profile uniformly at random. For each

4For the score-based rules, the k-subset is selected by picking the top k alternatives based on their
scores.
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Figure 6.4: Preference profiles from Sushi and T-Shirt datasets, uniformly random con-
sistent utility profiles.

experiment, we have 8 voters and 10 alternatives, and test for k ∈ [4].5 For each setting,
we perform 10 000 random simulations, and measure both distortion and regret for the
actual utility profile, as opposed to the worst-case utility profile. The figures show the
average performance with 95% confidence intervals.

In all of our simulations, we observed that three of the classical voting rules stand
out: Borda count performs well for choosing a single alternative (but not for choosing
larger subsets) whereas plurality and STV perform well for choosing larger subsets (but
not for choosing a single alternative). Hence, all of our graphs specifically distinguish
these three rules in addition to f ∗dist and f ∗reg.

5In RoboVote, we expect typical instances to have few voters and alternatives.
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Figure 6.2 shows the results for the first experiment where we choose the utility
profile uniformly at random. Figure 6.3 shows the results for the second experiment
where real-world utility profiles are drawn from one of the Jester datasets, in which
more than 50 000 voters rated 150 jokes on a real-valued scale; the results from the other
Jester dataset are almost identical. Finally, Figure 6.4 shows the results for the third
experiment where real-world preference profiles are drawn from the Sushi dataset (5 000
voters ranking 100 different kinds of sushi) and the T-Shirt dataset (30 voters ranking
11 T-shirt designs) from PrefLib. Experiments on other datasets from PrefLib (AGH
Course Selection, Netflix, Skate, and Web Search) yielded similar results.

Right off the bat, one can observe that the average-case distortion and regret values
are much lower than their worst-case counterparts. For example, average regret is gen-
erally lower than 0.1 — compare with the tight worst-case deterministic bound of 1/2
for k 6 m/2.

Much to our surprise, in all of our experiments, f ∗reg outperforms f ∗dist in terms of
both average-case distortion (multiplicative loss) and regret (additive loss). While both
measures of loss have been studied extensively in the literature, we are not aware of any
previous work that compares the two approaches. At least in our social choice domain,
the regret-based approach is clearly better on average.

Moreover, in all cases but one (k = 1 in the Jester experiment), f ∗reg also outperforms
all the classical voting rules under consideration. We therefore conclude that, on ran-
dom as well as on real-world instances, f ∗reg provides superior performance in terms of
social welfare maximization.

6.5 Computation and Implementation

In this section, we analyze and compare the two deterministic optimal rules — f ∗dist
and f ∗reg — from a computational viewpoint. Selecting optimal subsets turns out to be
challenging, as both rules are NP-hard to compute.

Theorem 6.2. Given a preference profile~σ and an integer k, computing a k-subset of alternatives
that has the minimum distortion or the minimum regret on~σ is NP-hard.

Proof. We present a polynomial-time reduction from the minimum dominating set prob-
lem, which is known to be NP-hard (in fact, APX-hard) even in 3-regular graphs (e.g.,
see [161]). A set of nodes S is called a dominating set in a graph G = (V, E) if any node
in V \ S is adjacent to a node in S, and is called a minimum dominating set if it is a
dominating set of the minimum possible size.

Let V = {v1, . . . , vn} (thus, n = |V|). Observe that 3-regularity of G implies |E| =
3n/2. Let c and d be positive integers such that c is a multiple of 12n, c > 96n2Hd (where
Hd is the dth harmonic number), and d = 3nc+ 3c+∑3n/2

i=2

(
5c− c·i

3n

)
. Clearly, there exist

such values of c and d satisfying c = O(n2 ln n) and d = O(n3 ln n), and they can be
computed in polynomial time.
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Now, set k = 1 + b3n/4c, and construct a profile~σ as follows. The set of alternatives
is the union of three sets:

• A = {a1, . . . , an} (each ai corresponds to the node vi ∈ V);
• B = {b1, . . . , b3n/2} (each bi corresponds to an edge in E);
• D = { f1, . . . , fd}.
The set of voters N is the union of the following sets:

• Ne, which consists of 2c “edge voters”
{

nj
e

}
j∈{0,1,...,2c−1}

for each edge e ∈ E;

• N1, which consists of 3c voters;
• Ni consisting of 14c

3 −
c·i

12n voters, for each i = 2, . . . , 3n/2.

The reader may check that the total number of voters is exactly d. Next, the votes in
~σ are as follows:

• For each edge e = (vi1 , vi2) ∈ E with i1 < i2, voter nj
e ranks alternatives ai1 and ai2

at positions 2 and 3, respectively, when j is even, and at positions 3 and 2, respec-
tively, when j is odd. Alternatives in A \ {ai1 , ai2} ∪ B are ranked at the bottom, in
arbitrary order. Positions 1 and 4 through d + 2 are reserved for alternatives in D
(see below for the way the alternatives in D are placed in these positions).

• Voters in N1 rank alternative b1 in the first position, and alternatives in A∪ B \ {b1}
in the last positions, in arbitrary order. Positions 2 through d + 1 are reserved for
alternatives in D.

• For i = 2, . . . , 3n/2, voters in Ni rank alternative bi in the second position, and
alternatives in A ∪ B \ {bi} in the last positions, in arbitrary order. Positions 1 and
3 through d + 1 are reserved for alternatives in D.

• Alternatives in D are shuffled in a cyclic fashion in the votes within the positions
reserved for them. More specifically, fix an order among the votes. Then, for
i, j ∈ [d], let t = 1 + (i + j− 2 mod d). Alternative fi appears in the tth reserved
position of the jth vote.

Given this construction, the next lemma establishes a strong relation between the
k-sized set of alternatives with the minimum regret or distortion in ~σ, and the mini-
mum dominating set in graph G. Theorem 6.2 then follows immediately because our
reduction is polynomial time.

Lemma 6.2. A k-sized set of alternatives has the minimum regret or the minimum distortion
on~σ if and only if it consists of the alternatives in A corresponding to the nodes of a minimum
dominating set S∗ of G and the alternatives b1, b2, . . . , bk−|S∗|.

Proof. Let K∗ denote the k-sized set of alternatives that consists of the alternatives in A
corresponding to the nodes of a minimum dominating set S∗ of G, and the alternatives
b1, b2, . . . , bk−|S∗|. We prove an upper and a lower bound on the regret of K∗ on~σ, which
establishes that it is the unique k-sized set of alternatives with the minimum regret. We
later provide the argument that shows it is also the unique k-sized set of alternatives
with the minimum distortion.
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Upper bound: Let K′ be a k-sized set of alternatives that is disjoint from K∗.6. We now
show that the regret of K∗ on~σ due to K′ is at most

reg(K∗,~σ) 6 T ,
2k−|S∗|

∑
i=k−|S∗|+1

(
7c
3
− c · i

24n
+ 1
)

. (6.12)

Since T is independent of K′ itself, it would follow that the worst-case regret of K∗ is
also upper bounded by T.

Consider an alternative ai ∈ A \ K∗. Recall that this corresponds to the node vi ∈ V.
Let v` be a node in S∗ that is adjacent to vi. From Equation 6.1, the contribution of
alternative ai to the regret is

• 0 in the c edge voters nj
e corresponding to edge e = (vi, v`) that have alternative ai

ranked third;
• at most 1/3 in each of the remaining 2c edge voters that have alternative ai ranked

third;
• at most 1/2 in each of the 3c edge voters that have alternative ai ranked second;
• smaller than 1/d in any other voter (because it is ranked below all alternatives in

D in these voters).

Thus, the total contribution of ai to the regret is at most 2c/3 + 3c/2 + 1 = 13c/6 + 1.
Because of the cyclic shuffling, the contribution of an alternative in D to the regret is

at most Hd.
For i > k + 1− |S∗|, the contribution of alternative bi to the regret is at most 1/2

from the voters in Ni, and at most 1/d in any other voter. In total, this contribution
is in [7c/3− c·i

24n , 7c/3− c·i
24n + 1], and therefore is higher than the contribution of any

alternative in (A ∪ D) \ K∗.
Hence, the k alternatives that contribute the highest regret are bk+1−|S∗|, . . . , b2k−|S∗|,

and their total contribution to the regret is at most ∑2k−|S∗|
i=k+1−|S∗|

(
7c
3 −

c·i
24n + 1

)
as desired.

Lower bound: Next, let K be a k-sized set of alternatives that does not follow the character-
ization of the lemma (i.e., does not consist of exactly the alternatives in A corresponding
to the nodes of a minimum dominating set S∗ of G and the alternatives b1, . . . , bk−|S∗|).
We show that reg(K,~σ) > T. This would establish that K∗ is the unique k-sized alterna-
tive with the minimum regret.

Let S be the set of nodes of G corresponding to the alternatives in K ∩ A. Let I(S)
denote an independent set of nodes of G (i.e., no two nodes in I(S) are connected to
each other) such that no node in I(S) is adjacent to any node in S. Construct a k-sized
set K′ that consists of the alternatives in A corresponding to the nodes of I(S) (if any),
and the k − |I(S)| alternatives from B \ K with the smallest indices. We show that the
regret of K on~σ due to K′ is more than T.

6If K′ shares alternatives with K∗, such alternatives do not cause any regret in the simplified regret
formula from Equation (6.1). Hence, to compute the worst-case regret, it is sufficient to focus on sets K′

that are disjoint from K∗.
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We do so by considering the contribution of the alternatives of K′ to the regret only
from the votes in which they appear among the first three positions. For now, let us ig-
nore the alternatives in D that appear in K; we will later the regret calculated to account
for such alternatives.

Let X = I[(B \ K) ∩ {b1, . . . , bk−|S|−|K∩D|} 6= ∅]. Consider an alternative ai corre-
sponding to the node vi ∈ I(S). Because the nodes in I(S) are mutually non-adjacent
and non-adjacent to any node in S, ai ∈ K′ is ranked above all alternatives in K \ D in
the edge voters nj

e for j = 0, 1, . . . , 2c− 1 and each edge e adjacent to node vi. Ignoring
the alternatives in K ∩ D (that may be ranked in the first position of these voters), the
contribution of ai to the regret is 1/2 from each of the 3c edge voters that rank ai in the
second position, and 1/3 from each of the 3c edge voters that rank ai in the third posi-
tion. Thus, the total contribution of the alternatives that correspond to the nodes in I(S)
is 5c

2 .
Next, consider the k − |I(S)| alternatives from B \ K that have the smallest indices.

If K contains all of the alternatives b1, . . . , bk−|S|−|K∩D|, then K′ contains the alternatives
bi for i = k − |S| − |K ∩ D| + 1, . . . , 2k − |S| − |K ∩ D| − |I(S)|. Again, ignoring the
alternatives in K ∩ D (that may be ranked in the first position in the votes of the voters
in Ni), the contribution of bi to the regret of K is 1/2 from each of the 14c

3 −
c·i

12n voters in
Ni that rank bi in the second position.

If X = 1, we know that K does not use the alternatives of B with the smallest indices,
and the contribution of the alternatives of B to the regret increases by at least c·X

24n .
Finally, let us consider the fact that K may include some alternatives from D. Each

such alternative may be ranked first by a voter, for which we have incorrectly added a
regret of at most 1/2. Hence, the actual regret may be (1/2) · |K ∩ D| lower than our
calculated regret.

Combining the entire analysis, and observing that the regret due to K′ is a lower
bound on the worst-case regret of K on σ, we get that

reg(K,~σ)

>
5c
2
· |I(S)|+

2k−|S|−|K∩D|−|I(S)|
∑

i=k−|S|−|K∩D|+1

(
7c
3
− c · i

24n

)
+

c · X
24n
− 1

2
· |K ∩ D|

>
c
6
· |I(S)|+

2k−|S|−|K∩D|

∑
i=k−|S|−|K∩D|+1

(
7c
3
− c · i

24n

)
+

c · X
24n
− 1

2
· |K ∩ D|

=
2k−|S∗|

∑
i=k−|S∗|+1

(
7c
3
− c · i

24n
+ 1
)
+

c
6
· |I(S)| − c · k

24n
· (|S∗| − |S|)

+

(
c · k
24n
− 1

2

)
· |K ∩ D| − k +

c · X
24n

> reg(K∗,~σ) +
c
6
· |I(S)| − c · k

24n
· (|S∗| − |S|) +

(
c · k
24n
− 1

2

)
· |K ∩ D| − k +

c · X
24n

(6.13)

138



Finally, we analyze the quantities on the RHS of Equation (6.13) to derive that

reg(K,~σ)− reg(K∗,~σ) > 7k
9
· |K ∩ D|, (6.14)

which implies that reg(K,~σ) > reg(K∗,~σ), as required.
We now perform a case-by-case analysis to establish Equation (6.14). First, suppose

S is a dominating set of G.

• If S is a minimum dominating set of G (i.e., |S| = |S∗|), we must have X = 1 or
|K ∩ D| > 0.

* If X = 1, Equation (6.13) yields

reg(K,~σ)− reg(K∗,~σ) >
(

c · k
24n
− 1

2

)
· |K ∩ D| − k +

c
24n

,

which in turn implies Equation (6.14) because the definition of c and the fact
that k > 1 imply c

24n > k and (c · k)/(24n)− (1/2) > (7k)/9.

* If X = 0 and |K ∩ D| > 0, Equation (6.13) yields

reg(K,~σ)− reg(K∗,~σ) >
(

c · k
24n
− 1

2

)
· |K ∩ D| − k

>
(

c
24n
− 3

2

)
· k · |K ∩ D| > 7k

9
· |K ∩ D|,

where the last inequality follows from the definition of c.
• If |S| > |S∗|, Equation (6.13) yields

reg(K,~σ)− reg(K∗,~σ) >
( c

24n
− 1
)
· k +

(
c · k
24n
− 1

2

)
· |K ∩ D| > 7k

9
· |K ∩ D|,

where the last inequality follows from the definition of c.

Next, suppose S is not a dominating set of G. Here, we distinguish between two
cases.

• If |S| > |S∗|, using |I(S)| > 1, Equation (6.13) yields

reg(K,~σ)− reg(K∗,~σ) > c
6
+

(
c · k
24n
− 1
)
· |K ∩ D| − k.

Equation (6.14) now follows because the definition of c implies (c/6) > k and
(c · k)/(24n)− 1 > (7k)/9.

• If |S| < |S∗|, then we claim that |I(S)| > (|S∗| − |S|)/4. Indeed, because the
minimum dominating set of G has size |S∗|, the set of nodes S must leave |S∗| − |S|
nodes of G undominated. Because G is 3-regular, any independent set I(S) among
these nodes should have size at least (|S∗| − |S|)/4. Hence,

reg(K,~σ)− reg(K∗,~σ) >
(

c
24
− c · k

24n

)
· (|S∗| − |S|) +

(
c · k
6n
− 1
)
· |K ∩ D| − k
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>
c

24
− c · k

24n
− k +

(
c

24n
− 3

2

)
· k · |K ∩ D|,

which implies Equation (6.14) because the definition of c implies (c/24) − (c ·
k)/(24n) > k and c/(24n)− (3/2) > (7/9).

This completes the proof of Equation (6.14) in all cases, and hence, concludes the
proof of the regret part of the lemma.

Let us now prove the distortion part of the lemma. Again, consider a k-sized set K
that does not follow the characterization of the lemma (i.e., does not consist of exactly
alternatives in A corresponding to the nodes of a minimum dominating set S∗ of G and
the alternatives b1, . . . , bk−|S∗|).

If K ∩ D = ∅, then we have plu(K,~σ) 6 plu(K∗,~σ). Hence,

dist(K,~σ) = 1 + m · reg(K,~σ)
plu(K,~σ)

> 1 + m · reg(K
∗,~σ)

3c
= dist(K∗),

where the second transition uses Equation (6.14).
If K ∩ D 6= ∅, we have plu(K,~σ) 6 3c + |K ∩ D|, which, together with Equa-

tion (6.14), implies

dist(K,~σ) = 1 + m · reg(K,~σ)
plu(K,~σ)

> 1 + m ·
reg(K∗,~σ) + 7k

9 · |K ∩ D|
3c + |K ∩ D| > 1 + m · reg(K

∗)

3c
= dist(K∗,~σ),

where the final transition holds due to Equation (6.12), which implies 7k/9 >
reg(K∗,~σ)/(3c). � (Proof of Lemma 6.2)

This concludes the entire proof. � (Proof of Theorem 6.2)

Given that f ∗reg outperforms f ∗dist in the experiments of Section 6.4, and that both
rules are computationally hard, f ∗reg stands out as the clear choice for implementation
in our website RoboVote. We therefore devoted our efforts to developing a scalable
implementation for f ∗reg.

First, let us note the simplified formula for f ∗reg that follows from Lemma 6.1:

f ∗reg,k(~σ) = arg min
T∈Ak

max
S∈Ak

n

∑
i=1

I[S �σi T]
σi(S)

. (6.15)

To better understand this formula, we consider the special case of k = 1. In this case,

f ∗reg(~σ) ∈ arg min
a∈A

max
b∈A

n

∑
i=1

I[b �σi a]
σi(b)

.

Note that this voting rule is very similar to the classical maximin rule: replacing σi(b)
with 1 in the denominator would yield the maximin rule. Thus, in some sense, this is
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Figure 6.5: Running times of six approaches to computing f ∗reg.

a smooth version of the maximin rule, where the “victory” of b over a in voter i’s vote
is weighted by the strength of b in this vote (measured by 1/σi(b)). In our view, this
intuitive structure makes f ∗reg even more compelling.

We now briefly describe six approaches we have developed for computing f ∗reg:

1. Naı̈ve: This uses Equation (6.15), and requires Ω(n · (m
k )

2) operations, which is
prohibitive even for small m.

2. Submodular: The regret for set S in choosing set T, i.e., ∑i∈[n]:S�σi T 1/σi(S), is
submodular in S. Hence, for each T ∈ Ak we can optimize over S ∈ Ak using
any algorithm for the submodular maximization subject to cardinality constraint
(SMCC) problem. We use the SFO toolbox for Matlab [125].

3. Submodular+Greedy: This improves the previous approach by first computing a
1− 1/e greedy approximation to the SMCC instance for set T, and pruning T if
this is already greater than the best regret found so far.

4. MultiILP: Instead of using SMCC, for each T ∈ Ak we optimize over S ∈ Ak by
solving an integer linear program (ILP) with roughly n · m variables and n · m2

constraints. Note that (m
k ) such ILPs need to be solved.

5. MultiILP+Greedy: This improves the MultiILP approach by using a greedy prun-
ing procedure as before.

6. SingleILP: This approach solves a single but huge ILP with (m
k ) additional con-

straints.
Figure 6.5 shows the average running times of these approaches (and 95% confidence

intervals) over 10 000 instances with n = 15, k = 3, and m varying from 10 to 50.7 The
experiments were performed on a single machine with quad-core 2.9 GHz CPU and 32
GB RAM. A time limit of 2 minutes was set because a running time greater than this

7The running time scales linearly in n, and increases with (m
k ).
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would not be helpful for our website, where the results need to be delivered quickly
to the users. While the greedy pruning procedure does help reduce the running time
of both the Submodular and MultiILP approaches, SingleILP still computes f ∗reg much
faster than any other approach, solving instances with 50 alternatives in less than 10
seconds. We have therefore implemented SingleILP on RoboVote.

6.6 Related Work

In addition to the work of Procaccia and Rosenschein [171] and Boutilier et al. [35],
several other papers employ the notion of distortion to quantify how close one can get
to maximizing utilitarian social welfare when only ordinal preferences are available [3,
4, 47]. In particular, Anshelevich et al. [4] study the same setting as Boutilier et al.
[35], but in addition assume the preferences of voters are consistent with distances in
a metric space. We refer the reader to the paper by Boutilier et al. [35, Section 1.2]
for a thorough discussion of work (in philosophy, economics, and social choice theory)
related to implicit utilitarian voting more broadly.

There is quite a bit of work in computational social choice on voting rules that select
subsets of alternatives. Typically it is assumed that ordinal preferences are translated
into a position-based score for each alternative (in contrast to our work). Just to give
a few examples, under the Chamberlin-Courant method, each voter assigns a score to
a set equal to the highest score of any alternative in the set, and the (computationally
hard) objective is to choose a subset of size k that maximizes the sum of scores [54, 178].
Skowron et al. [191] generalize the way in which the score of a voter for a subset of
alternatives is computed. Aziz et al. [12] propose selecting a subset of alternatives in
order to satisfy a fairness axiom they term justified representation, and study whether
common voting rules satisfy this axiom. The budgeted social choice framework of Lu and
Boutilier [138] is more general in that the number of alternatives to be selected is not
fixed; rather, each alternative has a cost that must be paid to add it to the selection.

6.7 Discussion

We find it exciting that new theoretical questions in computational social choice are
driven by concrete real-world applications. And while research in the field is often
motivated by potential applications to multiagent systems, we focus on helping people
— not software agents — make joint decisions.

We also remark that we consider the empirical dominance of f ∗reg, in terms of both
regret and (surprisingly) distortion, to be especially significant. It would be interesting
to understand, on a theoretical level, why this happens. A promising starting point
is to derive analytical bounds on the average-case distortion of f ∗dist and f ∗reg under
uniformly random utility profiles.
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Chapter 7

Robust Voting Rules

7.1 Introduction

In the previous chapter, we studied the classic paradigm of social choice theory in which
subjective preferences of individuals are aggregated towards a collective outcome. A
different — in a sense competing — paradigm views voting rules as estimators.

From this viewpoint, there exists an underlying objective ground truth ranking that
compares the alternatives, and the input votes are simply noisy estimates of this true
ranking. Under this paradigm, one voting rule is better than another if it is more likely
to output the true ranking. The prevalent approach in this paradigm is the maximum
likelihood estimator (MLE) approach, which assumes a statistical model for the generation
of noisy votes given the true ranking (called the noise model), and uses this model to
pinpoint the ranking that is most likely to have generated the observed votes. This
approach dates back to Marquis de Condorcet, who proposed a compellingly simple
noise model: each voter ranks each pair of alternatives correctly with probability p >
1/2 and incorrectly with probability 1 − p, and the mistakes are i.i.d. Intuitively, if
a ranking is not obtained because of cycle formation, the process is restarted. Today
this noise model is typically named after Mallows [139]. Probability theory was still
in its infancy in the 18th century (in fact Condorcet was one of its pioneers), so the
maximum likelihood estimator in Mallows’ model — the Kemeny rule [119] — had to
wait another two centuries to receive due recognition [209]. More recently, the MLE
approach has received some attention in computer science [66, 83, 85, 140, 179], in part
because its main prerequisite (underlying true ranking) is naturally satisfied by some of
the crowdsourcing and human computation domains, where voting is in fact commonly
used [140, 179].

As compelling as the MLE approach is, it has two significant drawbacks. First, it
insists that the voting rule be the MLE, which is a tall order given that there is a unique
MLE for the assumed noise model, and statistical accuracy may not be the only consid-
eration in choosing a voting rule. This is reflected in existing negative results [66, 85].
To that end, we relax the requirement by asking: How many votes do prominent voting
rules need to recover the true ranking with high probability? In crowdsourcing tasks,
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for example, the number of votes required directly translates to the amount of time and
money one must spend to obtain accurate results. Taking one step further and adopting
a more normative viewpoint, we ask: Which voting rules are accurate in the limit, i.e., are
guaranteed to return the correct ranking given an infinite number of samples?

A second, important shortcoming of the MLE approach is that it relies on a specific
noise model. In practice, it is extremely difficult, if not impossible, to pinpoint the exact
noise model that generates votes, and classical noise models propose in the literature
fall short of explaining noisy votes in the real world [140]. When the assumed noise
models differs from the one generating the votes, even if there is one, the MLE rule
we design would provide no guarantees. To alleviate this issue, we propose the design
of robust voting rules, which provide guarantees with respect to a wide family of noise
models, thus providing guarantees as long as the true noise model belongs to this wide
family. As we cannot expect a single voting rule to be MLE for multiple noise models,
we only ask the voting rule to be accurate in the limit.

7.2 Preliminaries

As this chapter focuses on a fundamentally different paradigm of social choice theory
than the paradigm studied in the previous chapter, we need additional terminology.
For the sake of completeness, we provide below a complete set of notations, which may
have repetitions or redefinitions of some of the notations previously introduced.

We consider a set A of m alternatives. Let L(A) be the set of votes (which we may
think of as rankings or permutations), and D(L(A)) be the set of probability distribu-
tions over L(A). Each vote σ ∈ L(A) is a bijection σ : A → {1, 2, . . . , m}. Hence, σ(a)
is the position of alternative a in σ. In particular, σ(a) < σ(b) denotes that a is preferred
to b under σ; we alternatively denote this by a �σ b. A vote profile (or simply profile)
π ∈ L(A)n consists of a set of n votes for some n ∈N.

7.2.1 Voting rules

A deterministic voting rule is a function r : ∪n>1L(A)n → L(A) which operates on a
vote profile and outputs a ranking. First, note that we define the voting rule to output a
ranking over alternatives rather than a single alternative; such functions are also known
as social welfare functions (SWFs) in the literature.1 Second, in contrast to the traditional
notation, we define a voting rule to operate on any number of votes, which is required to
analyze its asymptotic properties as the number of votes grows. We consider randomized
voting rules which are denoted by r : ∪n>1L(A)n → D(L(A)) where D(·) denotes
the set of all distributions over an outcome space. We use Pr[r(π) = σ] to denote the
probability of rule r returning ranking σ given profile π. Next, we define (families of)
voting rules that play a key role in the chapter.

1In contrast, functions that map a vote profile to a single alternative (or a distribution over alternatives,
if randomized) are known as social choice functions (SCFs).
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GSRs [204]: We say that two vectors y, z ∈ Rk are equivalent (denoted y ∼ z) if for every
i, j ∈ [k] we have yi > yj ⇔ zi > zj. We say that a function g : Rk → D(L(A)) is
compatible if y ∼ z implies g(y) = g(z). A generalized scoring rule (GSR) is given by a pair
of functions ( f , g), where f : L(A)→ Rk maps every ranking to a k-dimensional vector
and g : Rk → D(L(A)) is a compatible function that maps every k-dimensional vector
to a distribution over rankings, and the output of the rule on a profile π = (σ1, . . . , σn) is
given by g (∑n

i=1 f (σi)). GSRs are characterized by two social choice axioms [205], and
have interesting connections to machine learning [203]. While GSRs were originally
introduced as deterministic SCFs, the definition naturally extends to (possibly random-
ized) SWFs.

Popular SWFs. Let us define some popular SWFs that are captured by the families
of SWFs defined above. First, define the weighted pairwise majority (PM) graph of
a profile as the graph where the alternatives are the vertices and there is an edge from
every alternative a to every other alternative b with weight equal to the fraction of voters
that prefer a to b. Its main difference from the unweighted PM graph defined above is
that the latter has at most one unweighted directed edge between two alternatives a and
b, indicating which alternative is preferred by the (strict) majority of the voters.

• The Kemeny rule: Given a profile π, the Kemeny score of a ranking is the total
weight of the edges of the weighted PM graph of π in its direction. The Kemeny
rule selects the ranking with the highest Kemeny score. Tie-breaking is used to
choose among all the rankings with identical highest Kemeny score.
Alternatively, given a profile π = (σ1, . . . , σn) ∈ L(A)n, the Kemeny rule selects
a ranking σ ∈ L(A) that minimizes ∑n

i=1 dKT(σ, σi), where dKT is the Kendall tau
(KT) distance defined as

dKT(σ1, σ2) = |{(a, b)| ((a �σ1 b) ∧ (b �σ2 a)) ∨ ((b �σ1 a) ∧ (a �σ2 b))}|.

In words, the KT distance between two rankings is their number of disagreements
over pairs of alternatives, and informally it is equal to the minimum number
of adjacent swaps required to convert one ranking into the other. We give spe-
cial attention to the Kemeny rule with uniform tie-breaking — the randomized ver-
sion of the Kemeny rule where ties are broken uniformly, i.e., each ranking in
arg minσ∈L(A) ∑n

i=1 dKT(σ, σi) is returned with equal probability.

• (Positional) Scoring Rules A scoring rule is given by a scoring vector α =
(α1, . . . , αm) where αi > αi+1 for all i ∈ {1, . . . , m} and α1 > αm. Under this rule
for each vote σ and i ∈ {1, . . . , m}, αi points are awarded to the alternative σ−1(i),
that is, α1 points to the first alternative, α2 points to the second alternative, and so
on. The alternative with the most points overall is selected as the winner. We nat-
urally extend this rule to output the ranking where alternatives are sorted in the
descending order of their total points. Our results on positional scoring rules hold
irrespective of the tie-breaking rule used. Special scoring rules include plurality
with α = (1, 0, 0, . . . , 0), Borda count with α = (m, m− 1, . . . , 1), the veto rule with
α = (1, 1, . . . , 1, 0), and the harmonic rule [34] with α = (1, 1/2, . . . , 1/m).
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• Single transferable vote (STV): STV proceeds in rounds, where in each round the
alternative with lowest plurality score is eliminated, until only one alternative re-
mains. The rule ranks the alternatives in the reverse order of their elimination.
At each stage, tie-breaking is used to choose among the alternatives with identical
plurality score in that stage.

• Copeland’s method: The Copeland score of an alternative a in a profile π, de-
noted PWπ(a), is the number of outgoing edges from a in the unweighted PM
graph of π, i.e., the number of other alternatives that a defeats in a pairwise
election. Copeland’s method ranks the alternative in non-increasing order of
their Copeland scores. Tie-breaking is used for sorting alternatives with identi-
cal Copeland scores.

• The maximin rule: Given a profile π, the maximin score of an alternative a is the
minimum of the weights of the alternative’s outgoing edges in the weighted PM
graph of π. The maximin rule returns the alternatives in descending order of their
maximin score. Tie-breaking is used to sort alternatives with identical maximin
scores.

• The Slater rule: Given a profile π, the Slater rule selects the ranking which min-
imizes the number of pairs of alternatives on which it disagrees with the un-
weighted PM graph of π. Note that this is, in some sense, the unweighted version
of the Kemeny rule, which, as defined above, minimizes disagreement with the
weighted PM graph of π. Tie-breaking is used to choose among rankings having
equal disagreement with the unweighted PM graph of π.

• The Bucklin rule: The Bucklin score of an alternative a is the minimum k such that a
is ranked among the first k positions by a majority of the voters. The Bucklin rule
sorts the alternatives in a non-decreasing order according to their Bucklin scores.
Tie-breaking is used to sort alternatives with identical Bucklin scores.2

• The ranked pairs method: Under the ranked pairs method, given a profile π, all or-
dered pairs of alternatives (a, a′) are sorted in a non-increasing order of the weight
of the edge from a to a′ in the weighted PM graph of π. Then, starting with the
first pair in the list, the method “locks in” the outcome using the result of the pair-
wise comparison. It proceeds with subsequent pairs and locks in every pairwise
result that does not contradict (by forming a cycle) the partial ordering established
so far. Finally, the method outputs the total order obtained. Tie-breaking is used
initially to sort ordered pairs of alternatives with identical weight in the weighted
PM graph of π.

2Sometimes, a deterministic scheme is used to break ties by the number of votes that rank an alterna-
tive among the first k positions, where k is the Bucklin score of the alternative. However, we cling to our
assumption of an inclusive tie-breaking scheme for uniformity.
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7.2.2 Noise models and distances

We assume that there exists a true hidden order σ∗ ∈ L(A) over the alternatives. We
denote the alternative at position i in σ∗ by ai, i.e., σ∗(ai) = i. A noise model G is a
collection of probability distributions over rankings. For every σ ∈ L(A), G(σ) denotes
the distribution from which noisy estimates are generated when the ground truth is σ.
The probability of sampling σ′ ∈ L(A) from this distribution is denoted by PrG[σ

′; σ].
Our noise models are parametrized by distance functions over rankings. A distance

metric (or distance function) over L(A) is a function d(·, ·) that satisfies the following
properties for all σ, σ′, σ′′ ∈ L(A):

• d(σ, σ′) > 0, and d(σ, σ′) = 0 if and only if σ = σ′.
• d(σ, σ′) = d(σ′, σ).
• d(σ, σ′′) + d(σ′′, σ′) > d(σ, σ′).

We assume that our distance functions are right-invariant: the distance between any
two rankings does not change if the alternatives are relabeled, which is a standard as-
sumption. A right-invariant distance function is fully specified by the distances of all
rankings from any single base ranking.

We consider three popular distance functions in this chapter: the Kendall tau (KT)
distance (which we have defined above), the footrule distance, and the maximum dis-
placement distance. We investigate the KT distance (which we already defined above) in
detail in Section 7.3. Definitions of the other two distance functions are given below.

The Footrule Distance The footrule distance measures the total displacements of the
alternatives between two rankings. Formally, dFR(σ1, σ2) = ∑a∈A |σ1(a)− σ2(a)|.

The Maximum Displacement Distance The maximum displacement distance mea-
sures the maximum displacement of any alternative between two rankings. Formally,
dMD(σ1, σ2) = maxa∈A |σ1(a)− σ2(a)|.

A noise model defines the probability of observing a ranking given an underlying
true ranking, i.e., Pr[σ|σ∗] for all σ, σ∗ ∈ L(A). In Section 7.3, we focus on a particu-
lar noise model, known as the Mallows model [139], which is widely used in machine
learning and statistics. In this model, a ranking is generated given the true ranking σ∗

as follows. When two alternatives a and b with a �σ∗ b are compared, the outcome
is consistent with the true ranking, i.e., a � b, with a fixed probability 1/2 < p < 1.
Every two alternatives are compared in this manner, and the process is restarted if the
generated vote has a cycle (e.g., a � b � c � a). It is easy to check that the probability
of drawing a ranking σ, given that the true order is σ∗, is proportional to

p(
m
2 )−dKT(σ,σ∗) · (1− p)dKT(σ,σ∗),

which upon normalization gives

Pr[σ|σ∗] = ϕdKT(σ,σ∗)

Zm
ϕ

,
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where ϕ = (1− p)/p < 1 and Zm
ϕ is the normalization factor which is independent of

the true ranking σ∗ (see, e.g., [137]). Let pi,j denote the probability that the alternative
at position i in the true ranking (ai) appears in position j in a random vote, so

pi,j = ∑
σ∈L(A)|σ(ai)=j

Pr[σ|σ∗].

Let qi,k = ∑k
j=1 pi,j. Votes are sampled independently, so the probability of observing a

profile π = (σ1, . . . , σn) ∈ L(A)n is Pr[π|σ∗] = ∏n
i=1 Pr[σi|σ∗]. We note that this model

is equivalent to the Condorcet noise model.

7.3 Sample Complexity in Mallows’ Model

We first consider Mallows’ model and analyze the number of samples needed by dif-
ferent voting rules to determine the true ranking with high probability; we use this
sample complexity as a criterion to distinguish among voting rules or families of vot-
ing rules. For any (randomized) voting rule r, integer k ∈ N and ranking σ ∈ L(A),
let Accr(k, σ) = ∑π∈L(A)k Pr[π|σ] · Pr[r(π) = σ] denote the accuracy of rule r with k
samples and true ranking σ, that is, the probability that rule r returns σ given k sam-
ples from Mallows’ model with true ranking σ. We overload the notation by letting
Accr(k) = minσ∈L(A) Accr(k, σ). In words, given k samples from Mallows’ model, rule
r returns the underlying true ranking with probability at least Accr(k) irrespective of
what the true ranking is. Finally, we denote Nr(ε) = min{k | Accr(k) > 1− ε}, which is
the number of samples required by rule r to return the true ranking with probability at
least 1− ε . Informally, we call Nr(ε) the sample complexity of rule r.

We begin by showing that for any number of alternatives m and any accuracy level ε,
the Kemeny rule (with uniform tie-breaking) requires the minimum number of samples
from Mallows’ model to determine the true ranking with probability at least 1− ε. It
is already known that the Kemeny rule is the maximum likelihood estimator (MLE)
for the true ranking given samples from Mallows’ model. Formally, given a profile
π = (σ1, . . . , σn) from Mallows’ model, the MLE estimator of the true ranking is

arg max
σ∈L(A)

Pr[π|σ] = arg max
σ∈L(A)

n

∏
i=1

ϕdKT(σi,σ)

Zm
ϕ

= arg min
σ∈L(A)

n

∑
i=1

dKT(σi, σ),

where the expression on the right hand side is a Kemeny ranking. While at first glance it
may seem that this directly implies optimal sample complexity of the Kemeny rule, we
give an example in Appendix B.1 of a noise model where the MLE rule does not have
optimal sample complexity. However, we show that for Mallows’ model, the Kemeny
rule is optimal in terms of sample complexity.

Let KEM denote the Kemeny rule where ties are broken uniformly at ran-
dom. That is, for any profile π = (σ1, . . . , σn) ∈ L(A)n, let TIE-KEM(π) =
arg minσ∈L(A) ∑n

i=1 dKT(σi, σ) denote the set of Kemeny rankings. Then for every σ ∈
TIE-KEM(π), we have Pr[KEM(π) = σ] = 1/|TIE-KEM(π)|.
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Theorem 7.1. The Kemeny rule with uniform tie-breaking has the optimal sample complexity
in Mallows’ model, that is, for any number of alternatives m and any ε > 0, NKEM(ε) 6 Nr(ε)
for every (randomized) voting rule r.

Proof. Note that by definition of Nr(ε), it is sufficient to show that the Kemeny rule
has the greatest accuracy among all voting rules for any number of samples, that is,
AccKEM(k) > Accr(k) for all rules r and all k > 0. To show that KEM has the greatest
accuracy, we need two lemmas. Define TotAccr(k) = ∑σ∈L(A) Accr(k, σ).

Lemma 7.1. AccKEM(k, σ) = AccKEM(k, σ′), ∀σ, σ′ ∈ L(A), ∀k ∈N.

Lemma 7.2. TotAccKEM(k) > TotAccr(k), ∀ rule r, ∀k ∈N.
First, it is easy to derive the final result using Lemmas 7.1 and 7.2. Fix any ε > 0 and

let NKEM(ε) = k. Then, there exists σ̂ ∈ L(A) such that AccKEM(k− 1, σ̂) < 1− ε, hence
AccKEM(k− 1, σ) < 1− ε for every σ ∈ L(A) due to Lemma 7.1. Hence, TotAccKEM(k−
1) < m! · (1 − ε). Now for any voting rule r, Lemma 7.2 implies TotAccr(k − 1) 6
TotAccKEM(k − 1) < m! · (1− ε), and hence by pigeonhole principle, there exists σ ∈
L(A) such that Accr(k − 1, σ) < 1− ε. Therefore, Nr(ε) > k = NKEM(ε), as required.
Now we prove Lemmas 7.1 and 7.2.

of Lemma 7.1. Take any k ∈N and σ, σ′ ∈ L(A). Let ω : A→ A be the (unique) bijection
that when applied on σ gives σ′. That is, ω(σ(i)) = σ′(i) for all 1 6 i 6 m. We abuse
the notation and extend ω to a bijection ω : L(A) → L(A) where for any τ ∈ L(A),
we have (ω(τ))(i) = ω(τ(i)). Essentially, we apply ω on each element of a ranking.
So ω(σ) = σ′. Finally, we further extend ω to operate on profiles where we apply ω to
each ranking in the profile individually. Then,

AccKEM(k, σ′) = ∑
π∈L(A)k

Pr[π|σ′] · Pr[KEM(π) = σ′]

= ∑
ω(π)∈L(A)k

Pr[ω(π)|σ′] · Pr[KEM(ω(π)) = σ′]

= ∑
π∈L(A)k

Pr[π|ω−1(σ′)] · Pr[KEM(π) = ω−1(σ′)]

= ∑
π∈L(A)k

Pr[π|σ] · Pr[KEM(π) = σ] = AccKEM(k, σ).

The second transition follows since ω is a bijection, the third transition follows since
Mallows’ model and Kemeny rule with uniform tie-breaking are anonymous with re-
spect to the alternatives (note that uniform tie-breaking plays an important role), and
the fourth transition follows since ω−1(σ′) = σ. � (Lemma 7.1)

of Lemma 7.2. For any rule r and any k ∈N,

TotAccr(k) = ∑
σ∈L(A)

∑
π∈L(A)k

Pr[π|σ] · Pr[r(π) = σ]
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= ∑
π∈L(A)k

∑
σ∈L(A)

Pr[π|σ] · Pr[r(π) = σ]

6 ∑
π∈L(A)k

∑
σ∈L(A)

Pr[r(π) = σ] ·
(

max
σ′∈L(A)

Pr[π|σ′)
)

= ∑
π∈L(A)k

max
σ′∈L(A)

Pr[π|σ′]

= ∑
π∈L(A)k

max
σ′∈L(A)

Pr[π|σ′] · ∑
σ∈TIE-KEM(π)

1
|TIE-KEM(π)|

= ∑
π∈L(A)k

∑
σ∈TIE-KEM(π)

Pr[π|σ] · Pr[KEM(π) = σ]

= TotAccKEM(k),

where the sixth transition holds because the Kemeny rule is an MLE for Mallows’
model, hence maxσ′∈L(A) Pr[π|σ′] = Pr[π|σ] for every σ ∈ TIE-KEM(π). Also,
under uniform tie-breaking Pr[KEM(π) = σ] = 1/|TIE-KEM(π)| for every σ ∈
TIE-KEM(π). � (Lemma 7.2)

Thus, we have established that to output the true underlying ranking with any given
probability, the Kemeny rule with uniform tie-breaking requires the minimum number
of samples from Mallows’ model among all voting rules. � (Theorem 7.1)

Now that we know that the Kemeny rule has the optimal sample complexity, a nat-
ural question is to determine how many samples it really requires. Instead of analyzing
the sample complexity of the Kemeny rule particularly, we consider a family of voting
rules (which includes the Kemeny rule itself) such that each rule in this family has the
same asymptotic sample complexity as that of the Kemeny rule.

7.3.1 The family of PM-c rules

Our family of voting rules crucially relies on the standard concept of pairwise-majority
graph (PM graph). Given a profile π ∈ L(A)n, the PM graph of π is the directed graph
G = (V, E), where the alternatives are the vertices (V = A) and there is an edge from
alternative a to alternative a′ if a is preferred to a′ in a (strong) majority of the rankings
of π. Formally, (a, a′) ∈ E if |{σ ∈ π|a �σ a′}| > |{σ ∈ π|a′ �σ a}|. Note that there may
be pairs of alternatives such that there is no edge in the PM graph in either direction (if
they are tied), but there can never be an edge in both directions. A PM graph can also
have directed cycles. When a PM graph is complete (i.e., there is an edge between every
pair of alternatives) and acyclic, there exists a unique σ ∈ L(A) such that there is an
edge from a to a′ if and only if a �σ a′. In this case, we say that the PM graph reduces
to σ.
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Definition 7.1 (Pairwise-Majority Consistent Rules). A deterministic voting rule r is
called pairwise-majority consistent (PM-c) if r(π) = σ whenever the PM graph of π
reduces to σ.3 For randomized voting rules, we require that Pr[r(π) = σ] = 1.

To the best of our knowledge this family of rules is novel. Note though that an
acyclic and complete PM graph is similar to — and in some sense an extension of —
having a Condorcet winner. A Condorcet winner is an alternative that beats every other
alternative in a pairwise election. It is easy to check that if such an alternative exists,
then it is unique and it is a source in the PM graph with m− 1 outgoing edges and no
incoming edges. Thus, profiles where the PM graph reduces to a ranking necessarily
have a Condorcet winner. In addition, they have a second alternative with m− 2 outgo-
ing edges and only 1 incoming edge, a third alternative with m− 3 outgoing edges and
2 incoming edges, and so on.

Theorem 7.2. The Kemeny rule, the Slater rule, the ranked pairs method, Copeland’s method,
and Schulze’s method are PM-c.

The definitions of these rules and the proof of the theorem appear in Appendix B.2.
Note that all the rules in Theorem 7.2 are Condorcet consistent4 when they output a
single alternative. If we take any Condorcet consistent method, apply it on a profile, re-
move the winner from every vote in the profile, apply the method again on the reduced
profile, and keep repeating this process, then the extended rule that outputs the alter-
natives in the order of removal is always a PM-c rule. However, Copeland’s method in
Theorem 7.2 is extended by sorting the alternatives by their Copeland scores.

We now proceed to prove that any PM-c rule requires at most a logarithmic number
of samples in m (the number of alternatives) and 1/ε to determine the true ranking
with probability at least 1− ε. First, we introduce a property of distance functions that
will be used throughout the chapter. For any σ ∈ L(A) and a, b ∈ A, define σa↔b to
be the ranking obtained by swapping a and b in σ. That is, σa↔b(c) = σ(c) for any
c ∈ A \ {a, b}, σa↔b(a) = σ(b) and σa↔b(b) = σ(a).

Definition 7.2 (Swap-Increasing Distance Functions). An integer-valued distance func-
tion d is called swap-increasing if for any σ∗, σ ∈ L(A) and alternatives a, b ∈ A such
that a �σ∗ b and a �σ b, we have d(σa↔b, σ∗) > d(σ, σ∗) + 1, and if σ∗(b) = σ∗(a) + 1 (a
and b are adjacent in σ∗) then d(σa↔b, σ∗) = d(σ, σ∗) + 1.

The following lemma is a folklore result; we reconstruct its proof for the sake of
completeness.

Lemma 7.3. The Kendall tau (KT) distance is swap-increasing.

Proof. Let σ∗, σ ∈ L(A) and a, b ∈ A with a �σ∗ b and a �σ b. Let σ(a) = i and
σ(b) = j, so i < j. Define Y = {y ∈ A|i < σ(y) < j}. Since σ∗(a) < σ∗(b), the following
properties hold:

3In this case, ranking σ is sometimes called the “Condorcet order” of profile π.
4Given a profile, an alternative is called Condorcet winner if it defeats every other alternative in a pair-

wise election. A Condorcet winner, if one exists, is unique. A voting rule that returns a single alternative
is called Condorcet consistent if it returns the Condorcet winner on every profile that admits one.
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1. For every y ∈ Y, σ∗(y) < σ∗(a) implies that σ∗(y) < σ∗(b). Hence,

∑
y∈Y

1[σ∗(y) < σ∗(a)] 6 ∑
y∈Y

1[σ∗(y) < σ∗(b)].

2. For every y ∈ Y, σ∗(b) < σ∗(y) implies that σ∗(a) < σ∗(y). Hence,

∑
y∈Y

1[σ∗(b) < σ∗(y)] 6 ∑
y∈Y

1[σ∗(a) < σ∗(y)].

3. 1[σ∗(a) < σ∗(b)] = 1.
4. 1[σ∗(b) < σ∗(a)] = 0.

Now, we can express dKT(σa↔b, σ∗)− dKT(σ, σ∗) as

dKT(σa↔b, σ∗)− dKT(σ, σ∗)

= ∑
y∈Y

1[σ∗(y) < σ∗(b)] + ∑
y∈Y

1[σ∗(a) < σ∗(y)] + 1[σ∗(a) < σ∗(b)]

− ∑
y∈Y

1[σ∗(y) < σ∗(a)]− ∑
y∈Y

1[σ∗(b) < σ∗(y)]− 1[σ∗(b) < σ∗(a)]

> 1,

as desired. When a and b are adjacent in σ∗ (i.e., σ∗(b) = σ∗(a) + 1), we show that
equality holds. In this case, observe that the implications in properties (1) and (2) are
actually equivalences and the inequalities can be replaced by equalities. Then, the sums
in the above derivation cancel out, and it can be seen that the distance increases by
exactly 1. � (Lemma 7.3)

We are now ready to analyze the sample complexity of PM-c rules.

Theorem 7.3. For any given ε > 0, any PM-c rule determines the true ranking with probability
at least 1− ε given O(ln(m/ε)) samples from Mallows’ model.

Proof. Let σ∗ denote the true underlying ranking. We show that the PM graph of a
profile of O(ln(m/ε)) votes from Mallows’ model reduces to σ∗ with probability at least
1− ε. It follows that any PM-c rule would output σ∗ with probability at least 1− ε.

Let π ∈ L(A)n denote a profile of n samples from Mallows’ model. For any a, b ∈ A,
let nab denote the number of rankings σ ∈ π such that a �σ b. Hence, nab + nba = n for
every a, b ∈ A. The PM graph of π reduces to σ∗ if and only if for every a, b ∈ A such
that a �σ∗ b, we have nab − nba > 1. Hence, we want an upper bound on n such that

Pr [∀a, b ∈ A, a �σ∗ b⇒ nab − nba > 1] > 1− ε.

For any a, b ∈ A with a �σ∗ b, define δab = E[(nab − nba)/n]. Let pa�b denote the
probability that a �σ b in a random sample σ. Then, by linearity of expectation, we
have δab = pa�b − pb�a. Thus,

Pr [nab − nba 6 0] = Pr
[

nab − nba
n

6 0
]
6 Pr

[∣∣∣∣nab − nba
n

−E

[
nab − nba

n

]∣∣∣∣ > δab

]
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6 2 · e−2·δ2
ab·n 6 2 · e−2·δ2

min·n,

where the third transition is due to Hoeffding’s inequality and in the last transition
δmin = mina,b∈A:a�σ∗b δab. Applying the union bound, we get

Pr [∃a, b ∈ A, {(a �σ∗ b) ∧ (nab − nba 6 0)}] 6
(

m
2

)
· 2 · e−2·δ2

min·n 6 m2 · e−2·δ2
min·n.

It is easy to check that the right-most quantity above is at most ε when n > 1
2·δ2

min
·

ln
(

m2

ε

)
. To complete the proof we need to show that δmin = Ω(1), that is, it is lower

bounded by a constant independent of m. This is quite intuitive since the process of
generating a sample from Mallows’ model maintains the order between every pair of
alternatives with a constant probability p > 1/2. However, the fact that we restart the
process if a cycle is formed makes the probabilities as well as this analysis a bit more
involved. For any a, b ∈ A such that a �σ∗ b, we have

δab = pa�b − pb�a

= ∑
σ∈L(A)|a�σb

Pr[σ|σ∗]− ∑
σ∈L(A)|b�σa

Pr[σ|σ∗]

= ∑
σ∈L(A)|a�σb

(Pr[σ|σ∗]− Pr[σa↔b|σ∗])

= ∑
σ∈L(A)|a�σb

ϕdKT(σ,σ∗) − ϕdKT(σa↔b,σ∗)

Zm
ϕ

> ∑
σ∈L(A)|a�σb

ϕdKT(σ,σ∗) · (1− ϕ)

Zm
ϕ

= (1− ϕ) · pa�b = (1− ϕ) ·
(

1 + δab
2

)
, (7.1)

where the third transition holds because σ ↔ σa↔b is a bijection between all rankings
where a � b and all rankings where b � a, the fifth transition follows by using ϕ < 1
and Lemma 7.3, and the last transition follows from the equalities pa�b− pb�a = δab and
pa�b + pb�a = 1. Solving Equation (7.1), we get δab > (1− ϕ)/(1 + ϕ) for all a, b ∈ A
with a �σ∗ b. Hence, δmin > (1− ϕ)/(1 + ϕ), as required.5 � (Theorem 7.3)

We have seen that PM-c rules have logarithmic sample complexity; it turns out that
no rule can do better, i.e., we prove a matching lower bound that holds for any random-
ized voting rule.

Theorem 7.4. For any ε ∈ (0, 1/2], any (randomized) voting rule requires Ω(ln(m/ε)) sam-
ples from Mallows’ model to determine the true ranking with probability at least 1− ε.

5Recall that ϕ = (1− p)/p, where p > 1/2 is the pairwise comparison probability under Mallows’
model. Hence, we have proved δmin > 2 · p− 1.
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Proof. Consider any voting rule r. Assume Accr(n) > 1− ε for some n ∈ N. We want
to show that n = Ω(ln(m/ε)). For any σ ∈ L(A), we have Accr(n, σ) > 1− ε. Consider
an arbitrary σ ∈ L(A), and let N (σ) = {σ′ ∈ L(A)|dKT(σ

′, σ) = 1} denote the set
of all rankings at distance 1 from σ. Then, for any ranking σ′ ∈ N (σ) and any profile
π = (σ1, . . . , σn) ∈ L(A)n, we have

Pr[π|σ] =
n

∏
i=1

ϕdKT(σi,σ)

Zm
ϕ

>
n

∏
i=1

ϕdKT(σi,σ′)+1

Zm
ϕ

= ϕn · Pr[π|σ′], (7.2)

where the second transition holds since for any τ ∈ L(A) the triangle inequality implies

dKT(τ, σ) 6 dKT(τ, σ′) + dKT(σ, σ′) = dKT(τ, σ′) + 1.

Now,

Accr(n, σ) = ∑
π∈L(A)n

Pr[π|σ] · Pr[r(π) = σ]

= ∑
π∈L(A)n

Pr[π|σ] · (1− Pr[r(π) 6= σ])

= 1− ∑
π∈L(A)n

Pr[π|σ] · Pr[r(π) 6= σ]

6 1− ∑
π∈L(A)n

Pr[π|σ] ·

 ∑
σ′∈N (σ)

Pr[r(π) = σ′]


6 1− ∑

σ′∈N (σ)
∑

π∈L(A)n

ϕn · Pr[π|σ′] · Pr[r(π) = σ′]

= 1− ϕn · ∑
σ′∈N (σ)

Accr(n, σ′)

6 1− ϕn · (m− 1) · (1− ε),

where the fifth transition follows by changing the order of summation and Equa-
tion (7.2), and the last transition holds since Accr(n) > 1 − ε and |N (σ)| = m − 1.
Thus, to achieve an accuracy of at least 1− ε, we need ϕn · (m− 1) · (1− ε) 6 ε, and the
theorem follows by solving for n. � (Theorem 7.4)

7.3.2 Scoring rules may require exponentially many samples

While Theorems 7.3 and 7.4 show that every PM-c rule requires an asymptotically op-
timal (and in particular, logarithmic) number of samples to determine the true ranking
with high probability, some classical voting rules such as plurality fall short. In par-
ticular, we establish that plurality requires at least exponentially many samples to de-
termine the true ranking with high probability. Since plurality relies on the number of
appearances of various alternatives in the first position, our analysis crucially relies on
the probability of different alternatives coming first in a random vote, i.e., pi,1.
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Lemma 7.4. pi,1 = ϕi−1/
(

∑m
j=1 ϕj−1

)
for all i ∈ {1, . . . , m}.

Proof. Recall that ai denotes the alternative at position i in the true ranking σ∗. First we
prove that for any i ∈ {1, . . . , m− 1}, we have pi+1,1 = ϕ · pi,1. To see this,

pi,1 − pi+1,1 =
∑σ∈L(A)|σ(ai)=1 ϕdKT(σ,σ∗) −∑σ∈L(A)|σ(ai+1)=1 ϕdKT(σ,σ∗)

Zm
ϕ

=
∑σ∈L(A)|σ(ai)=1

(
ϕdKT(σ,σ∗) − ϕdKT(σai↔ai+1 ,σ∗)

)
Zm

ϕ

= ∑
σ∈L(A)|σ(ai)=1

ϕdKT(σ,σ∗) · (1− ϕ)

Zm
ϕ

= (1− ϕ) · pi,1,

where the second transition follows since σ ↔ σai↔ai+1 is a bijection between the set of
all rankings where ai is first and the set of all rankings where ai+1 is first, and the third
transition follows due to Lemma 7.3. Hence, pi,1 − pi+1,1 = (1− ϕ) · pi,1, which implies
that pi+1,1 = ϕ · pi,1. Applying this repeatedly, we have that pi,1 = p1,1 · ϕi−1, for every
i ∈ {1, . . . , m}. Summing over 1 6 i 6 m and observing that ∑m

i=1 pi,1 = 1, we get the
desired result. �(Lemma 7.4)�

Lemma 7.4 directly implies that the probability of sampling votes in which am−1 or
am (the two alternatives that are ranked at the bottom of σ∗) are at the top is exponen-
tially small, hence plurality requires an exponential number of samples to “see” these
alternatives and distinguish between them. What makes the proof more difficult is that
in theory the tie-breaking scheme may help plurality return the true ranking; indeed
it is known that the choice of tie breaking scheme can significantly affect a rule’s per-
formance [158]. However, we show that here this is not the case, i.e., our lower bound
works for any natural (randomized) tie-breaking scheme.

Theorem 7.5. For any ε ∈ (0, 1/4], plurality (with any possibly randomized tie-breaking
scheme that depends on the top-ranked alternatives of the input votes) requires Ω((1/ϕ)m)
samples from Mallows’ model to output the true ranking with probability at least 1− ε.

Proof. We first note that instead of operating on a profile π ∈ L(A)n, plurality (and
its tie-breaking scheme) operates on the vector of its plurality votes v ∈ An (we call
it a top-vote) which consists of the top-ranked alternatives of the different votes of π.
The probability of observing a top-vote v given a true ranking σ∗ is the sum of the
probabilities of observing profiles whose top-vote is v; we denote this by Pr[v|σ∗]. The
accuracy of the plurality rule (denoted PL) with n samples on a true ranking σ can now
equivalently be written as

AccPL(n, σ) = ∑
v∈An

Pr[v|σ] · Pr[PL(v) = σ]. (7.3)

Fix ε ∈ (0, 1/4] and suppose we have AccPL(n) > 1− ε, i.e., AccPL(n, σ) > 1− ε
for all σ ∈ L(A). We want to show that n = Ω((1/ϕ)m). Let the set of alternatives be

155



A = {a1, . . . , am}. Consider two distinct rankings: σ1 = (a1 � . . . � am−2 � am−1 � am)
and σ2 = (a1 � . . . � am−2 � am � am−1) (where the last two alternatives are swapped
compared to σ1). Let Â = A \ {am−1, am}. We can decompose Equation (7.3) into two
parts: (i) a summation over v ∈ Ân (when plurality does not “see” alternatives am−1
and am); denote this by f (σ), and (ii) a summation over v ∈ An \ Ân (when plurality
“sees” at least one of them); denote this by g(σ).

For any v ∈ Ân, we have Pr[v|σ1] = Pr[v|σ2]. To see this, observe that in any pro-
file π with top-vote v we can swap alternatives am−1 and am in all the votes to obtain
(the unique) profile π′ which importantly also has top-vote v and Pr[π|σ1] = Pr[π′|σ2].
Summing over all profiles with top-vote v, this yields Pr[v|σ1] = Pr[v|σ2]. Therefore, we
have

f (σ1) + f (σ2) = ∑
v∈Ân

Pr[v|σ1] · (Pr[PL(v) = σ1] + Pr[PL(v) = σ2]) 6 ∑
v∈Ân

Pr[v|σ1] 6 1.

Further,
g(σ1) = ∑

v∈An\Ân

Pr[v|σ1] · Pr[PL(v) = σ1] 6 ∑
v∈An\Ân

Pr[v|σ1],

where the right hand side is the probability that at least one of the two alternatives am−1
and am comes first in at least one vote. Let ti,j denote the number of votes in which
alternative ai appears in position j. Then we have

g(σ1) 6 Pr[(tm−1,1 > 0) ∨ (tm,1 > 0)] 6 Pr[tm−1,1 > 0] + Pr[tm,1 > 0],

where the last transition is due to the union bound.
The probability that alternative am−1 appears first in a vote is pm−1,1. Therefore, the

probability that it appears first in at least one vote is at most n · pm−1,1 by the union
bound. Similarly, Pr[tm,1 > 0] 6 n · pm,1. Therefore, g(σ1) 6 n · (pm−1,1 + pm,1). In the
same way, we can obtain g(σ2) 6 n · (pm−1,1 + pm,1). Finally, using the bounds obtained
on f and g, we have

AccPL(n, σ1)+AccPL(n, σ2) = ( f (σ1)+ f (σ2))+ g(σ1)+ g(σ2) 6 1+ 2 ·n · (pm−1,1 + pm,1).

We assumed that AccPL(n, σ) > 1− ε for every σ ∈ L(A). Therefore, we need 1 + 2 · n ·
(pm−1,1 + pm,1) > 2 · (1− ε), i.e.,

n >
1− 2 · ε

2 · (pm−1,1 + pm,1)
>

1
8 · pm−1,1

=
∑m−1

j=0 ϕj

8 · ϕm−2 >
1

8 · ϕm−2 ,

where the second transition follows since ε ∈ (0, 1/4] and pm,1 < pm−1,1, and the third
transition follows by Lemma 7.4. Thus, plurality requires Ω((1/ϕ)m) samples to output
the true ranking with high probability. � (Theorem 7.5)

Since the exponential lower bound for plurality in Theorem 7.5 is missing a depen-
dence on ε, it is in general incomparable to the logarithmic upper bound of PM-c rules
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in Theorem 7.3. However, the current bounds do show that plurality requires doubly
exponentially more samples (asymptotically in m) compared to PM-c rules for any fixed
ε ∈ (0, 1/4]. Plurality has terrible performance because it ranks alternatives by just ob-
serving their number of appearances in the first positions of the input votes. Similarly,
consider the veto rule that essentially ranks alternatives in the ascending order of their
number of appearances at the bottom of input votes. By symmetry we have pm,m = p1,1
and pm−1,m = p2,1, both of which are lower bounded by constants due to Lemma 7.4.
Hence, veto requires only constantly many samples to distinguish between am−1 and
am. Nevertheless, it is difficult for both plurality and veto to distinguish between al-
ternatives am/2 and am/2+1 that are far from both ends. Certain scoring rules, such as
the Borda count or the harmonic scoring rule, take into consideration the number of ap-
pearances of an alternative at all positions. We show that a positional scoring rule that
gives different weights to all positions and does not give some position exponentially
higher weight than any other position would require only polynomially many samples.

Theorem 7.6. Consider a positional scoring rule r with scoring vector (α1, . . . , αm). For i ∈
{1, . . . , m − 1}, define βi = αi − αi+1. Let βmax = maxi<m βi and βmin = mini<m βi.
Assume βmin > 0 and let β∗ = βmax/βmin. Then for any ε > 0, rule r requires O((β∗)2 ·
m2 · ln(m/ε)) samples from Mallows’ model to output the true ranking with probability at least
1− ε.

Proof. Recall that ai denotes the ith alternative in the true ranking σ∗. Consider a profile
π consisting of n samples from Mallows’ model. Let ti,j denote the number of times ai

appears in position j, and let si,k = ∑k
j=1 ti,j. First, we note that for any i ∈ {1, . . . , m},

m−1

∑
k=1

βk · si,k =
m−1

∑
k=1

βk ·
(

k

∑
j=1

ti,j

)
=

m−1

∑
j=1

(
m−1

∑
k=j

βk

)
· ti,j =

m−1

∑
j=1

(αj − αm) · ti,j

=
m−1

∑
j=1

αj · ti,j − αm · (n− ti,m) =
m

∑
j=1

αj · ti,j − n · αm,

where the second transition follows by switching the order of summation and the fourth
transition holds because ∑m

j=1 ti,j = n as the total number of appearances of ai equals
the number of votes. Since n · αm is independent of the alternative, we can equivalently
consider ∑m−1

k=1 βk · si,k as the score of alternative ai. Hence, for rule r to output σ∗ with
high probability we require Pr[∀i ∈ {1, . . . , m}, ∑m−1

k=1 βk · (si,k − si+1,k) > 0] > 1− ε. If
we had Pr[∑m−1

k=1 βk · (si,k − si+1,k) 6 0] 6 ε/m for every i ∈ {1, . . . , m}, then we would
obtain (using the union bound) that r outputs σ∗ with probability at least 1− ε. Observe
that

Pr

[
m−1

∑
k=1

βk(si,k − si+1,k) 6 0

]
6 e
−

2n(∑m−1
k=1 βj(qi,k−qi+1,k))

2

4m2β2
max 6 e

−
nβ2

min(∑m−1
k=1 (qi,k−qi+1,k))

2

2m2β2
max ,
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where qi,k = ∑k
j=1 pi,j and the first transition follows from Hoeffding’s inequality. There-

fore, for this probability to be at most ε/m, it is sufficient to have

n >
2 ·m2 · β2

max

β2
min ·

(
∑m−1

k=1 (qi,k − qi+1,k)
)2 ln(m/ε).

Now we only need to prove that the term ∑m−1
k=1 (qi,k − qi+1,k) in the denominator

is lower-bounded by a constant independent of m and ε. Note that ∑m−1
k=1 qi,k =

∑m
k=1 qi,k − 1 = ∑m

k=1 ∑k
j=1 pi,j − 1 = ∑m

j=1(m− j + 1) · pi,j − 1 = E[Borda(ai)]− 1, where
E[Borda(ai)] denotes the expected Borda score of alternative ai under one random sam-
ple from Mallows’ model. Similarly, ∑m−1

k=1 qi+1,k = E[Borda(ai+1)]− 1. Therefore,

m−1

∑
k=1

(qi,k − qi+1,k)

= E[Borda(ai)]−E[Borda(ai+1)] = E[Borda(ai)− Borda(ai+1)]

= ∑
σ∈L(A)

Pr[σ|σ∗] · ((m + 1− σ(ai))− (m + 1− σ(ai+1)))

= ∑
σ∈L(A)

s.t. ai�σai+1

Pr[σ|σ∗] · (σ(ai+1)− σ(ai)) + ∑
σ∈L(A)

s.t. ai+1�σai

Pr[σ|σ∗] · (σ(ai+1)− σ(ai))

= ∑
σ∈L(A)

s.t. ai�σai+1

(Pr[σ|σ∗]− Pr[σai↔ai+1 |σ
∗]) · (σ(ai+1)− σ(ai))

> ∑
σ∈L(A)

s.t. ai�σai+1

(1− ϕ) · Pr[σ|σ∗] · 1 = (1− ϕ) · Pr[ai � ai+1|σ∗] > 0.5 · (1− ϕ).

The second transition follows from the linearity of expectation. The fifth transition is
true because under the bijective mapping σ ↔ σai↔ai+1 , we have σai↔ai+1(ai) = σ(ai+1)
and σai↔ai+1(ai+1) = σ(ai). For the sixth transition, note that in any σ where ai �σ ai+1,
σ(ai+1) > σ(ai) + 1. Also, Lemma 7.3 implies that dKT(σai↔ai+1 , σ∗) = dKT(σ, σ∗) + 1, so

Pr[σ|σ∗]− Pr[σai↔ai+1 |σ∗] = (ϕdKT(σ,σ∗) − ϕdKT(σai↔ai+1 ,σ∗))/Zm
ϕ = (1− ϕ) · ϕdKT(σ,σ∗)/Zm

ϕ

= (1− ϕ) · Pr[σ|σ∗].

The last transition holds trivially (see the proof of Theorem 7.3 for a tighter bound).
Thus, we have the desired result. � (Theorem 7.6)

While Theorem 7.6 shows that scoring rules such as the Borda count and the har-
monic scoring rule have polynomial sample complexity, it does not apply to scoring
rules such as plurality and veto since they have βmin = 0. Note that in Borda count all
βi’s are equal, hence it is the rule with the lowest possible β∗ = 1.
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7.4 Moving Towards Generalizations

Section 7.3 focused on Mallows’ model and sample complexity. In Section 7.5 we will
consider a much higher level of abstraction, including much more general noise models
and infinitely many samples. This section serves as a mostly conceptual interlude where
we gradually introduce some new ideas.

7.4.1 From finite to infinitely many samples and the family of PD-c
rules

While the exact or asymptotic sample complexity — as analyzed in Section 7.3 — can
help us distinguish between various voting rules, here we take a normative point of
view and argue that voting rules need to meet a basic requirement: given infinitely many
samples, the rule should be able to reproduce the true ranking with probability 1. For-
mally, a voting rule r is accurate in the limit for a noise model G if given votes from G,
limn→∞ Accr(n) = 1.

For Mallows’ model, achieving accuracy-in-the-limit is very easy. Theorem 7.3
shows that given O(ln(m/ε)) samples, every PM-c rule outputs the true ranking with
probability at least 1− ε. Thus, every PM-c rule is accurate in the limit for Mallows’
model. While plurality requires at least exponentially many samples to determine the
true ranking with high probability (Theorem 7.5), a matching upper bound (up to loga-
rithmic factors) can trivially be established showing that plurality is accurate in the limit
for Mallows’ model as well. In fact, it can be argued that all scoring rules are accurate
in the limit for Mallows’ model. We prove a more general statement by introducing a
novel family of voting rules that generalizes scoring rules and showing that all rules in
this family are accurate in the limit for Mallows’ model.

Definition 7.3 (Position-Dominance). Given a profile π = (σ1, . . . , σn) ∈ L(A)n, alter-
native a ∈ A and j ∈ {1, . . . , m− 1}, define sj(a) = |{i : σi(a) 6 j}|, i.e., the number
of votes in which alternative a is among the first j positions. For a, b ∈ A, we say that
a position-dominates b if sj(a) > sj(b) for all j ∈ {1, . . . , m− 1}. The position-dominance
graph (PD graph) of π is defined as the directed graph G = (V, E) where alternatives
are vertices (V = A) and there is an edge from alternative a to alternative b if a position-
dominates b.

The concept of position-dominance is reminiscent of the notion of first-order stochas-
tic dominance in probability theory: informally, a random variable (first-order) stochas-
tically dominates another random variable over the same domain if for any value in
the domain the former random variable has higher probability of being above the value
than the latter random variable. Also note that position-dominance is a transitive re-
lation; for alternatives a, b, c ∈ A if a position-dominates b and b position-dominates c,
then a position-dominates c. However, it is possible that for some alternatives a, b ∈ A,
neither a position-dominates b nor b position-dominates a. Thus, the PD graph is al-
ways acyclic, but not always complete. When the PD graph is complete, it reduces to a
ranking, similarly to the case of the PM graph.
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Definition 7.4 (Position-Dominance Consistent Rules). A deterministic voting rule r is
called position-dominance consistent (PD-c) if r(π) = σ whenever the PD graph of profile
π reduces to ranking σ. For randomized voting rules, we require that Pr[r(π) = σ] = 1.

This novel family of rules captures voting rules that give higher preference to alter-
natives that appear at earlier positions. It is quite intuitive that all positional scoring
rules are PD-c because they score alternatives purely based on their positions in the
rankings and give higher weight to alternatives at earlier positions (a similar obser-
vation has been made in [81] in a slightly different context). PD-c rules also capture
another classical voting rule — the Bucklin rule. The definition of the Bucklin rule and
the proof of Theorem 7.7 appear in Appendix B.3.

Theorem 7.7. All positional scoring rules and the Bucklin rule are PD-c rules.
It is easy to argue that all PD-c rules are accurate in the limit for Mallows’ model.

Let σ∗ be the true ranking and ai be the alternative at position i in σ∗. If we construct
a profile by sampling n votes from Mallows’ model, then E[sj(ai)] = n · qi,j. Recall that
qi,j is the probability of alternative ai appearing among the first j positions in a random
vote. Clearly in Mallows’ model, qi,j > ql,j for any i < l. Therefore, as n → ∞, we will
have Pr[sj(ai) > sj(al)] = 1 for all j ∈ {1, . . . , m− 1} and i < l. Hence, the PD graph
of the profile would reduce to σ∗ (so any PD-c rule will output σ∗) with probability 1 as
n→ ∞. We conclude that all PD-c rules are accurate in the limit for Mallows’ model.

7.4.2 PM-c rules are disjoint from PD-c rules

In Theorem 7.2 we saw various classical voting rules that are PM-c, and Theorem 7.7
describes well-known voting rules that are PD-c. At first glance, the definitions of PM-c
and PD-c may seem unrelated. However, it turns out that no voting rule can be both
PM-c and PD-c. To show this we give a carefully constructed profile where both the PM
graph and the PD graph are acyclic and complete, but they reduce to different rank-
ings. Hence, a rule that is both PM-c and PD-c must output two different rankings
with probability 1, which is impossible. For our example, let A = {a, b, c} be the set of
alternatives. The profile π consisting of 11 votes is given below.

4 votes 2 votes 3 votes 2 votes
a b b c
b a c a
c c a b

It is easy to check that the PM graph of π reduces to a � b � c and the PD graph of
π reduces to b � a � c. Thus, we have the following result.

Theorem 7.8. No (randomized) voting rule can be both PM-c and PD-c.
The theorem is not entirely surprising, as it is known that there is no positional

scoring rule that is Condorcet consistent [91]. Note that in addition to PM-c rules and
PD-c rules, we can construct numerous simple rules that are also accurate in the limit for
Mallows’ model, such as the rule that ranks alternatives according to their most frequent
position in the input votes and the rule that outputs the most frequent ranking.

160



7.4.3 Generalizing the noise model

While being accurate in the limit for Mallows’ model can be seen as a necessity for
voting rules, the assumption that the noise observed in practice would perfectly (or
even approximately) fit Mallows’ model is unrealistic. For example, Mao et al. [140]
show that, in certain real-world scenarios, the noise observed is far from what Mallows
predicts. While voting rules cannot be expected to have low sample complexity in all
types of noise models that arise in practice, it is reasonable to expect them to be at least
accurate in the limit for such noise models.

Unfortunately, it is not clear what noise models can be expected to arise in prac-
tice and little attention has been given to characterizing reasonable noise models in the
literature. To address this issue we impose a structure, parametrized by distance func-
tions, on the noise models to make them well-behaved. As noted in Section 7.9, this
approach is related to the work of Fligner and Verducci [92], but we further generalize
the structure of the noise model by removing their assumption of exponentially decreas-
ing probabilities.

Definition 7.5 (d-Monotonic Noise Models). Let σ∗ denote the true underlying rank-
ing. Let d : L(A) × L(A) → R>0 be a distance function over rankings. A noise
model is called monotonic with respect to d (or d-monotonic) if for any σ, σ′ ∈ L(A),
d(σ, σ∗) < d(σ′, σ∗) implies Pr[σ|σ∗] > Pr[σ′|σ∗] and d(σ, σ∗) = d(σ′, σ∗) implies
Pr[σ|σ∗] = Pr[σ′|σ∗].

In words, given a distance function d we expect that rankings closer to the true rank-
ing would have higher probability of being observed. Note that Mallows’ model is
monotonic with respect to the KT distance. Fix a distance function d. A noise model
that arises in practice can be expected to be monotonic; consequently, we require that a
voting rule be accurate in the limit for every d-monotonic noise model.

Definition 7.6. A voting rule r is called monotone-robust with respect to distance function
d (or d-monotone-robust) if r is accurate in the limit for all d-monotonic noise models.

We saw that all PM-c and PD-c rules are accurate in the limit for Mallows’ model.
In fact, it can be shown that they are accurate in the limit for all dKT-monotonic noise
models, i.e., they are dKT-monotone-robust. However, we omit the proof as the theorem
will follow from the even more general results of Section 7.5.

Theorem 7.9. All PM-c and PD-c rules are dKT-monotone-robust.

7.5 General Characterizations

For any given distance function d, we proposed d-monotonic noise models in an attempt
to capture noise models that may arise in practice. However, until now we only focused
on one specific distance function — the KT distance. Noise models parametrized by
other distance functions have been studied in the literature starting with Mallows [139]
himself. In fact, all our previous proofs relied only on the fact that the KT distance is
swap-increasing and Theorem 7.9 can also be shown to hold when the KT distance is
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replaced by any swap-increasing distance. Alas, among the three most popular distance
functions that we consider, only the KT distance is swap-increasing, as shown by the
example below.

Example 7.1. Let the set of alternatives be A = {a, b, c}. Let σ∗ = (a � b � c) and
σ = (b � c � a). Note that b �σ c and b �σ∗ c. Now consider the ranking σb↔c =
(c � b � a). It is easy to verify that dFR(σ, σ∗) = dFR(σb↔c, σ∗) = 4 and dMD(σ, σ∗) =
dMD(σb↔c, σ∗) = 2. Thus, the distance does not increase by swapping two alternatives
that were in the correct order, which shows that neither the footrule distance nor the
maximum displacement distance is swap-increasing.

In this section we ask whether the families of PM-c and PD-c rules are monotone-
robust with respect to distance functions other than swap-increasing distances. We fully
characterize all distance functions with respect to which all PM-c and/or all PD-c rules
are monotone-robust. Given any distance function d, it is easy to construct an equivalent
integer-valued distance function d′ such that properties like d-monotone-robustness,
MC and PC (the latter two are yet to be introduced) are preserved. Thus, without loss
of generality we henceforth restrict our distance functions to be integer-valued.

7.5.1 Distances for which all PM-c rules are monotone-robust

We first characterize the distance functions for which all PM-c rules are monotone-
robust. This leads us to the definition of a rather natural family of distance functions,
which may be of independent interest.

Definition 7.7 (Majority-Concentric (MC) Distances). For any distance function d, rank-
ing σ ∈ L(A) and integer k ∈ N ∪ {0}, let N k(σ) = {τ ∈ L(A)|d(τ, σ) 6 k} be the set
of all rankings at distance at most k from σ. Furthermore, for any alternatives a, b ∈ A,
let N k

a�b(σ) = {τ ∈ N k(σ)|a �τ b}. A distance function d is called majority-concentric
(MC) if for any σ ∈ L(A) and a, b ∈ A such that a �σ b, |N k

a�b(σ)| > |N
k
b�a(σ)| for

every k ∈N∪ {0}.
Consider a ranking σ and imagine concentric circles around σ where the kth cir-

cle from the center represents the neighborhood N k(σ). Then, the MC criterion re-
quires that for every pair of alternatives, a (weak) majority of rankings in each neigh-
borhood (which can be viewed as a set of votes) agree with σ, hence the name majority-
concentric.

There is an alternative and perhaps more intuitive characterization of MC distances.
Fix any MC distance d, base ranking σ and alternatives a, b ∈ A such that a �σ b. Let
La�b(A) = {τ ∈ L(A)|a �τ b} denote the set of all rankings where a � b and let
Lb�a(A) = L(A) \ La�b(A). Let us sort all rankings in both sets in the non-decreasing
order of their distance from σ, and map the ith ranking (in the sorted order) in La�b(A)
to the ith ranking in Lb�a(A). We can show that this mapping takes every ranking to
a ranking at equal or greater distance from σ. We call such a mapping weakly-distance-
increasing with respect to σ. To see this, suppose for contradiction that (say) the ith
ranking of La�b(A) at distance k from σ is mapped to the ith ranking of Lb�a(A) at
distance k′ < k from σ. Then clearly, |N k′

a�b(σ)| < i and |N k′
b�a(σ)| > i, which is a
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contradiction since we assumed the distance to be MC. In the other direction, again fix
a distance d, σ ∈ L(A) and a, b ∈ A such that a �σ b. Suppose there exists a bijection
f : La�b(A) → Lb�a(A) that is weakly-distance-increasing with respect to σ. Then for
any k ∈ N ∪ {0} we have N k

b�a(σ) ⊆ { f (τ)|τ ∈ N k
a�b(σ)}, so |N k

a�b(σ)| > |N
k
b�a(σ)|.

If this holds for every σ ∈ L(A) and a, b ∈ A such that a �σ b, then the distance is MC.
In conclusion, we have proved the following lemma.

Lemma 7.5. A distance function d is MC if and only if for every σ ∈ L(A) and every a, b ∈ A
such that a �σ b, there exists a bijection f : La�b(A) → Lb�a(A) that is weakly-distance-
increasing with respect to σ.

We are now ready to prove our first main result of this section: the distance functions
with respect to which all PM-c rules are monotone-robust are exactly MC distances.

Theorem 7.10. All PM-c rules are d-monotone-robust for a distance function d if and only if d
is MC.

Proof. First, we assume that d is MC and show that all PM-c rules are d-monotone-
robust. Specifically, consider any d-monotonic noise model G; we wish to show that
all PM-c rules are accurate in the limit for G. Let σ∗ be an arbitrary true ranking and
a, b ∈ A be two arbitrary alternatives with a �σ∗ b.

Using Lemma 7.5, there exists an injection f : La�b(A) → Lb�a(A) that is weakly-
distance-increasing with respect to σ∗. Hence, for every σ ∈ La�b(A), d(σ, σ∗) 6
d( f (σ), σ∗), so Pr[σ|σ∗] > Pr[ f (σ)|σ∗] since G is d-monotonic. Crucially, σ∗ ∈ La�b(A)
and d(σ∗, σ∗) = 0 < d( f (σ∗), σ∗), so Pr[σ∗|σ∗] > Pr[ f (σ∗)|σ∗]. Recall that f is a bijec-
tion, hence its range is the whole of Lb�a(A). By summing over all σ ∈ La�b(A), we
get

Pr[a � b|σ∗] = ∑
σ∈La�b(A)

Pr[σ|σ∗] > ∑
σ∈La�b(A)

Pr[ f (σ)|σ∗]

= ∑
σ∈Lb�a(A)

Pr[σ|σ∗] = Pr[b � a|σ∗].

It follows that given infinitely many samples from G, there would be an edge from a to
b in the PM graph with probability 1. Since this holds for all a, b ∈ A, the PM graph
would reduce to σ∗ with probability 1. Therefore, any PM-c rule would output σ∗ with
probability 1, as required.

In the other direction, consider any distance function d that is not MC. We show
that there exists a PM-c rule that is not accurate in the limit for some d-monotonic noise
model G. Since d is not MC, there exists a σ∗ ∈ L(A), an integer k and alternatives
a, b ∈ A with a �σ∗ b such that |N k

a�b(σ
∗)| < |N k

b�a(σ
∗)|. Now we construct the noise

model G as follows. Let M = maxσ∈L(A) d(σ, σ∗) and let T > M (we will set T later).
Define a weight wσ for each ranking σ as follows: if d(σ, σ∗) 6 k (i.e., σ ∈ N k(σ∗)), then
wσ = T − d(σ, σ∗) else wσ = M− d(σ, σ∗). Now construct G by assigning probabilities
to rankings proportionally to their weights, i.e., Pr[σ|σ∗] = wσ/ ∑τ∈L(A) wτ. First, by
the definition of M and the fact that T > M, it is easy to check that G is indeed a
probability distribution and that G is d-monotone.
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Next, we set T such that Pr[a � b|σ∗] < Pr[b � a|σ∗]. Since the probabilities are
proportional to the weights, we want to obtain: ∑σ∈L(A)|a�σb wσ < ∑σ∈L(A)|b�σa wσ. Let
|N k

a�b(σ
∗)| = l, hence |N k

b�a(σ
∗)| > l + 1. Now, on the one hand,

∑
σ∈La�b(A)

wσ 6 ∑
σ∈N k

a�b(σ
∗)

T + ∑
σ∈La�b(A)\N k

a�b(σ
∗)

M 6 l · T + m! ·M.

On the other hand,

∑
σ∈Lb�a(A)

wσ > ∑
σ∈N k

b�a(σ
∗)

(T − k) + ∑
σ∈Lb�a(A)\N k

b�a(σ
∗)

0 > (l + 1) · (T − k).

Now we set T such that (l + 1) · (T − k) > l · T + m! ·M, i.e., T > (l + 1) · k + m! ·M.
Noting that l + 1 6 m! and k 6 M, we can achieve this by simply setting T = 2 ·m! ·M.

Since we have obtained Pr[a � b|σ∗] < Pr[b � a|σ∗] under G, given infinitely many
samples there would be an edge from b to a in the PM graph with probability 1. There-
fore, with probability 1 the PM graph would not reduce to σ∗. We can easily construct a
PM-c rule r that outputs a ranking σ whenever the PM graph reduces to σ, and outputs
an arbitrary ranking with b � a when the PM graph does not reduce to any ranking.
With probability 1, such a rule would output a ranking where b � a. Hence, r is not
accurate in the limit for G, as required. � (Theorem 7.10)

7.5.2 Distances for which all PD-c rules are monotone-robust

We next characterize the distance functions for which all PD-c rules are monotone-
robust. This leads us to define another natural family of distance functions.

Definition 7.8 (Position-Concentric (PC) Distances). For any ranking σ ∈ L(A), integer
k ∈ N ∪ {0}, integer j ∈ {1, . . . , m − 1} and alternative a ∈ A, let Sk

j (σ, a) = {τ ∈
N k(σ)|τ(a) 6 j} be the set of rankings at distance at most k from σ where alternative
a is ranked in the first j positions. A distance function d is called position-concentric
(PC) if for any σ ∈ L(A), j ∈ {1, . . . , m− 1}, and a, b ∈ A such that a �σ b, we have
that |Sk

j (σ, a)| > |Sk
j (σ, b)| for all k ∈ N ∪ {0}, and strict inequality holds for some

k ∈N∪ {0}.
While MC distances are defined by matching aggregate pairwise comparisons of al-

ternatives in every circle that is centered on the base ranking, PC distances focus on
matching pairwise comparisons of aggregate positions of alternatives in every concen-
tric circle. Similarly to Lemma 7.5 for MC distances, PC distances also admit an equiv-
alent characterization. We use this equivalence and show that PC distances are exactly
the distance functions with respect to which all PD-c rules are monotone-robust.

Let Sj(a) = {σ ∈ L(A)|σ(a) 6 j} denote the set of all rankings where alternative
a is ranked among the first j positions. Call a distance function d : X → Y distance-
increasing with respect to a ranking σ if d( f (τ), σ) > d(τ, σ) for every τ ∈ X (i.e., d is
weakly-distance-increasing) and strict inequality holds for at least one τ ∈ X.
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Lemma 7.6. A distance function d is PC if and only if for every σ ∈ L(A), every a, b ∈ A
such that a �σ b and every j ∈ {1, . . . , m− 1}, there exists a bijection f : Sj(a) → Sj(b) that
is distance-increasing with respect to σ.

Proof. For the forward direction, fix any PC distance d, base ranking σ, alternatives
a, b ∈ A such that a �σ b and j ∈ {1, . . . , m− 1}. Let us sort all rankings in Sj(a) and
Sj(b) in the non-decreasing order of their distance from σ, and map the ith ranking (in
the sorted order) in Sj(a) to the ith ranking in Sj(b). First, we show that this mapping
is weakly-distance-increasing with respect to σ. Suppose for contradiction that (say) the
ith ranking of Sj(a) at distance k from σ is mapped to the ith ranking of Sj(b) at distance
k′ < k from σ. Then clearly, |Sk′

j (σ, a)| < i and |Sk′
j (σ, b)| > i, so |Sk′

j (σ, b)| > |Sk′
j (σ, a)|,

which is a contradiction since we assumed the distance to be PC. Now we show that
this mapping takes at least one ranking to a ranking at strictly greater distance from
σ. Since d is PC, there exists some k∗ ∈ N ∪ {0} such that |Sk∗

j (σ, a)| > |Sk∗
j (σ, b)|.

Consider the largest i such that ith ranking of Sj(a) is at distance at most k∗ from σ.
If this ranking is mapped to a ranking at equal distance (at most k∗) from σ, then we
would have |Sk∗

j (σ, b)| > |Sk∗
j (σ, a)|, which is a contradiction. Hence, this ranking is

mapped to a ranking at strictly greater distance from σ.
In the other direction, take any distance function d. Suppose for every σ ∈ L(A),

a, b ∈ A such that a �σ b and j ∈ {1, . . . , m− 1}, there exists a bijection f : Sj(a)→ Sj(b)
that is weakly-distance-increasing with respect to σ and maps at least one ranking to a
ranking at strictly greater distance from σ. Fix any particular σ ∈ L(A), a, b ∈ A such
that a �σ b and j ∈ {1, . . . , m− 1}. First, for any k ∈ N we have Sk

j (b) ⊆ { f (τ)|τ ∈
Sk

j (a)}, so |Sk
j (a)| > |Sk

j (b)|. Further, take the ranking τ ∈ Sj(a) for which d( f (τ), σ) >

d(τ, σ). Let k∗ = d(τ, σ). Then, f (τ) ∈ { f (γ)|γ ∈ Sk∗
j (a)} but f (τ) /∈ Sk∗

j (b). Also note

that Sk∗
j (b) ⊆ { f (γ)|γ ∈ Sk∗

j (a)}. Hence, |Sk∗
j (b)| < |{ f (γ)|γ ∈ Sk∗

j (a)}| = |Sk∗
j (a)|,

as required. Since this holds for every σ ∈ L(A), a, b ∈ A such that a �σ b and j ∈
{1, . . . , m− 1}, the distance is PC. � (Lemma 7.6)

We are now ready to prove our characterization result, which is analogous to Theo-
rem 7.10.

Theorem 7.11. All PD-c rules are d-monotone-robust for a distance function d if and only if d
is PC.

Proof. First, we assume that d is PC and show that all PD-c rules are d-monotone-robust.
Consider any d-monotonic noise model G; we wish to show that all PD-c rules are accu-
rate in the limit for G. Fix any true ranking σ∗ ∈ L(A), a, b ∈ A such that a �σ∗ b, and
j ∈ {1, . . . , m− 1}.

Since d is PC, Lemma 7.6 implies that there exists a bijection f : Sj(a) → Sj(b) such
that (i) for every σ ∈ Sj(a), d( f (σ), σ∗) > d(σ, σ∗), hence Pr[σ|σ∗] > Pr[ f (σ)|σ∗]; and
(ii) for some σ ∈ Sj(a), d( f (σ), σ∗) > d(σ, σ∗), hence Pr[σ|σ∗] > Pr[ f (σ)|σ∗]. Recall that
f is a bijection, hence its range is the whole of Sj(b). Now we sum over all σ ∈ Sj(a)
(similarly to the proof of Theorem 7.10) and get that the probability that a appears in
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the first j positions is strictly greater than the probability that b appears in the first j
positions in a random vote. It follows that given infinitely many samples from G, a
would appear in the first j positions in more votes than b does. Since this holds for all
j ∈ {1, . . . , m− 1}, there would be an edge from a to b in the PD graph with probability
1. Further, since this holds for all a, b ∈ A, the PD graph would reduce to σ∗ with
probability 1. Hence, any PD-c rule would output σ∗ with probability 1, as required.

In the other direction, consider any distance function d that is not PC. We show
that there exists a PD-c rule that is not accurate in the limit for some d-monotonic
noise model G. Since d is not PC, there exist σ∗ ∈ L(A), a, b ∈ A with a �σ∗ b and
j ∈ {1, . . . , m − 1} such that either (i) there exists k∗ ∈ N ∪ {0} with |Sk∗

j (σ∗, a)| <
|Sk∗

j (σ∗, b)|, or (ii) for every k ∈N∪ {0}, |Sk
j (σ
∗, a)| = |Sk

j (σ
∗, b)|.

In case (i), we construct the noise model G exactly as in the proof of Theorem 7.10.
We define M = maxσ∈L(A) d(σ, σ∗) and T = 2 · m! · M. Assign weights wσ = T −
d(σ, σ∗) if d(σ, σ∗) 6 k∗ and wσ = M− d(σ, σ∗) otherwise. The noise model G would
consequently assign Pr[σ|σ∗] = wσ/ ∑τ∈L(A) wτ. It follows that under G, the probability
of a appearing in the first j positions of a random vote, i.e., ∑σ∈Sj(a) Pr[σ|σ∗], would
be strictly less than the probability of b appearing in the first j positions in a random
vote, i.e., ∑σ∈Sj(b) Pr[σ|σ∗]. Thus, given infinitely many samples, b would appear more
times in the first j positions than a. This implies that with probability 1, there would
be no edge from a to b in the PD graph. Therefore, with probability 1 the PD graph
would not reduce to σ∗. We can easily construct a PD-c rule similarly to the proof
of Theorem 7.10 that outputs a ranking σ whenever the PD graph reduces to σ, and
outputs an arbitrary ranking with b � a when the PM graph does not reduce to any
ranking. With probability 1, such a rule would output a ranking where b � a. Hence, r
is not accurate in the limit for G, as required.

Consider case (ii). Since |Sk
j (σ
∗, a)| = |Sk

j (σ
∗, b)| for every k ∈N, we also have

|Sk
j (σ
∗, a)| − |Sk−1

j (σ∗, a)| = |Sk
j (σ
∗, b)| − |Sk−1

j (σ∗, b)|.

That is, the number of rankings at distance exactly k in which a is in the first j positions
is equal to the number of rankings at distance exactly k where b is in the first j positions.
Now consider any d-monotonic noise model G. Since it assigns equal probabilities to
rankings at equal distances, we see that the probability of a appearing in the first j posi-
tions of a random vote, i.e., ∑σ∈Sj(a) Pr[σ|σ∗], would be exactly equal to the probability
of b appearing in the first j positions in a random vote, i.e., ∑σ∈Sj(b) Pr[σ|σ∗]. Therefore,
with probability 1/2, a would not appear in the first j positions more times than b, in
which case there would be no edge from a to b in the PD graph and the PD graph would
not reduce to σ∗. Now we can easily construct a PD-c rule r such that r outputs σ when-
ever the PD graph reduces to σ and outputs a fixed ranking σ′ 6= σ∗ whenever the PD
graph does not reduce to any ranking. Since the PD graph does not reduce to σ∗ with
probability at least 1/2, r is clearly not accurate in the limit under such a noise model.
Hence, r is not d-monotone-robust, as required. � (Theorem 7.11)
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We proved that MC and PC are exactly the distance functions with respect to which
all PM-c rules and all PD-c rules, respectively, are monotone-robust. If a distance func-
tion d is both MC and PC, then it follows that all PM-c as well as all PD-c rules are
d-monotone-robust. On the other hand, if d is not MC (resp., not PC), then there exists
a PM-c rule (resp., a PD-c rule) that is not d-monotone-robust. We therefore have the
following corollary.

Corollary 7.1. All rules in the union of PM-c rules and PD-c rules are d-monotone-robust for
a distance function d if and only if d is both MC and PC.

Fix any true ranking σ∗ ∈ L(A) and alternatives a, b ∈ A such that a �σ∗ b. Consider
any swap-increasing distance function d. By definition, the mapping which maps every
ranking σ with a �σ b to the ranking σa↔b increases the distance by at least 1. Therefore
it is clearly weakly-distance-increasing with respect to σ∗. Such a mapping is also a
bijection from La�b(A) to Lb�a(A). Using Lemma 7.5, it follows that d is MC. While the
mapping is also a bijection from Sj(a) to Sj(b), it may decrease the distance on σ ∈ Sj(a)
where b � a. Using additional arguments, however, it is possible to show that d is PC
as well. The proof of the following lemma is given in Appendix B.4.

Lemma 7.7. Any swap-increasing distance function is both MC and PC.
Corollary 7.1 and Lemma 7.7 imply that all PM-c rules and all PD-c rules are d-

monotone-robust for any swap-increasing distance d, which implies Theorem 7.9.

7.5.3 Did we generalize the distance functions enough?

How strong are the characterization results of this section? We saw that all PM-c and
PD-c rules are d-monotone-robust for any swap-increasing distance d. However, we
remarked at the beginning of this section that we need to widen our family of distances
as two of the three popular distances that we study are not swap-increasing. We went
ahead and characterized all distance functions for which all PM-c rules or all PD-c rules
or both are monotone-robust; respectively, these are all MC distances, all PC distances,
and their intersection. Are these families wide enough or do we need to search for better
voting rules that work for a bigger family of distance functions? Fortunately, we show
that even the intersection of the families of MC and PC distances is sufficiently general
to include all three popular distance functions.

Theorem 7.12. The KT distance, the footrule distance, and the maximum displacement distance
are both MC and PC.

The proof of Theorem 7.12 appears in Appendix B.4. Together with Corollary 7.1,
it implies that all PM-c rules and all PD-c rules are monotone-robust with respect to
all three popular distance functions that we study. We have established that our new
families of distance functions are wide enough; this further justifies our focus on PM-
c rules and PD-c rules, as they are monotone-robust with respect to all MC and PC
distances, respectively.

That said, it is interesting to consider even wider families of distance functions,
which is what we do in the next section.
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7.6 Modal Ranking is Unique Within GSRs

In this section, we characterize the modal ranking rule — which selects the most com-
mon ranking in a given profile — as the unique rule that is monotone-robust with re-
spect to all distance metrics, among a wide sub-family of GSRs. For this, we use a geo-
metric equivalent of GSRs introduced by Mossel et al. [146] called “hyperplane rules”.
Like GSRs, hyperplane rules were also originally defined as deterministic SCFs. Below,
we give the natural extension of the definition to (possibly randomized) SWFs.

Given a profile π, let xπ
σ denote the fraction of times the ranking σ ∈ L(A) appears

in π. Hence, the point xπ = (xπ
σ )σ∈L(A) lies in a probability simplex ∆m!. This allows us

to use rankings from L(A) to index the m! dimensions of every point in ∆m!. Formally,

∆m! =

x ⊆ Qm!

∣∣∣∣∣∣ ∑
σ∈L(A)

xσ = 1

 .

Importantly, note that ∆m! contains only points with rational coordinates. Weights wσ ∈
R for all σ ∈ L(A) define a hyperplane H where H(x) = ∑σ∈L(A) wσ · xσ for all x ∈ ∆m!.
This hyperplane divides the simplex into three regions; the set of points on each side of
the hyperplane, and the set of points on the hyperplane.

Definition 7.9 (Hyperplane Rules). A hyperplane rule is given by r = (H, g), where H =
{Hi}l

i=1 is a finite set of hyperplanes, and g : {+, 0,−}l → D(L(A)) is a function that takes
as input the signs of all the hyperplanes at a point and returns a distribution over rankings.
Thus, r(π) = g(sgn(H(xπ))), where

sgn(H(xπ)) = (sgn(H1(xπ)), . . . , sgn(Hl(xπ))),

and sgn : R→ {+, 0,−} is the signum function given by

sgn(x) =


+ x > 0
0 x = 0
− x < 0

Next, we state the equivalence between hyperplane rules and GSRs in the case of
randomized SWFs. This equivalence was established by Mossel et al. [146] for deter-
ministic SCFs; it uses the output of a given GSR for each set of compatible vectors to
construct the output of its corresponding hyperplane rule in each region, and vice-versa.
Simply changing the output of the g functions of both the GSR and the hyperplane rule
from a winning alternative (for deterministic SCFs) to a distribution over rankings (for
randomized SWFs) and keeping the rest of the proof intact shows the equivalence for
randomized SWFs.

Lemma 7.8. [146] For randomized social welfare functions, the class of generalized scoring
rules coincides with the class of hyperplane rules.

168



We impose a technical restriction on GSRs that has a clear interpretation under the
geometric hyperplane equivalence. Intuitively, it states that if the rule outputs the same
ranking (without ties) almost everywhere around a point xπ in the simplex, then the
rule must output the same ranking (without ties) on π as well. More formally, consider
the regions in which the simplex is divided by a set of hyperplanes H. We say that a
region is interior if none of its points lie on any of the hyperplanes in H, that is, if for
every point x in the region, sgn(H(x)) does not contain any zeros. For x ∈ ∆m!, let

S(x) =
{

y ∈ ∆m!
∣∣∣ ∀σ ∈ L(A), xσ = 0⇒ yσ = 0

}
denote the subspace of points that are zero in every coordinate where x is zero. We
say that an interior region is adjacent to x if its intersection with S(x) contains points
arbitrarily close to x.

Definition 7.10 (No Holes Property). We say that a hyperplane rule (generalized scoring
rule) has no holes if it outputs a ranking σ with probability 1 on a profile π whenever it outputs
σ with probability 1 in all interior regions adjacent to xπ.

When this property is violated, we have a point xπ such that the output of the rule
on xπ is different from the output of the rule almost everywhere around xπ, creating a
hole at xπ. We later show (in Section 7.7; see Theorem 7.14) that the no holes property
is a very mild restriction on GSRs. We are now ready to formally state our main result.

Theorem 7.13. Let r be a (possibly randomized) generalized scoring rule with no holes. Then,
r is monotone-robust with respect to all distance metrics if and only if r coincides with the
modal ranking rule on every profile with no ties (i.e., r outputs the most frequent ranking with
probability 1 on every profile where it is unique).

Before proving the theorem, we wish to point out three subtleties. First, our assump-
tion of accuracy in the limit imposes a condition on the rule as the number of votes goes
to infinity. This has to be translated into a condition on all finite profiles; we do this by
leveraging the structure of generalized scoring rules.

Second, if there are several rankings that appear the same number of times, a
monotone-robust rule can actually output any ranking with impunity, because in the
limit this event happens with probability zero.

Third, every noise model G that is monotone with respect to some distance metric
satisfies PrG[σ

∗; σ∗] > PrG[σ; σ∗] for all pairs of different rankings σ, σ∗ ∈ L(A). It
seems intuitive that the converse holds, i.e., if a noise model satisfies PrG[σ

∗; σ∗] >
PrG[σ; σ∗] for all σ 6= σ∗ then there exists a distance metric d such that G is monotone
with respect to d — but this is false. Hence, our condition asks for accuracy in the
limit for noise models that are monotone with respect to some metric, instead of just
assuming accuracy in the limit with respect to all noise models where the ground truth
is the unique mode.

Proof of Theorem 7.13. Let r be a (possibly) randomized generalized scoring rule with no
holes. Using Lemma 7.8, we represent r as a hyperplane rule (H, g) whereH = {Hi}l

i=1
is the set of hyperplanes.
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First, we show the simpler forward direction. Let r output the most frequent rank-
ing with probability 1 on every profile where it is unique. We want to show that r is
monotone-robust with respect to all distance metrics. Take a distance metric d, a d-
monotonic noise model G, and a true ranking σ∗. We need to show that r outputs σ∗

with probability 1 given infinitely many samples from G(σ∗).
Note that d satisfies d(σ∗, σ∗) = 0 < d(σ, σ∗) for all σ 6= σ∗. Hence, G must satisfy

PrG[σ
∗; σ∗] > PrG[σ; σ∗] for all σ 6= σ∗. Now, given infinite samples from G(σ∗), σ∗

becomes the unique most frequent ranking with probability 1. Thus, r outputs σ∗ with
probability 1 in the limit, as required.

For the reverse direction, let r be d-monotone-robust for all distance metrics d. Take
a profile π∗ with a unique most frequent ranking σ∗. Recall that xπ∗

σ denotes the fraction
of times σ appears in π∗ and note that xπ∗

σ∗ > xπ∗
σ for all σ 6= σ∗. We also denote by Xπ∗

σ

the number of times σ appears in π∗.
The rest of the proof is organized in three steps. First, we define a distance metric d,

a d-monotonic noise model G, and a true ranking. Second, we show that given samples
from G(σ∗), in the limit r outputs σ∗ with probability 1 in every interior region adjacent
to xπ∗ . Finally, we use the no holes property of r to argue that Pr[r(π∗) = σ∗] = 1.

Step 1: We define d as

d(σ, σ′) =

{
max(1, |Xπ∗

σ − Xπ∗
σ′ |) if σ 6= σ′,

0 otherwise.

We claim that d is a distance metric. Indeed, the first two axioms are easy to verify. The
triangle inequality d(σ, σ′) 6 d(σ, σ′′) + d(σ′′, σ′) holds trivially if any two of the three
rankings are equal. When all three rankings are distinct,

d(σ, σ′′) + d(σ′′, σ′) = max(1, |Xπ∗
σ − Xπ∗

σ′′ |) + max(1, |Xπ∗
σ′′ − Xπ∗

σ′ |)
> max(1 + 1, |Xπ∗

σ − Xπ∗
σ′′ |+ |X

π∗
σ′′ − Xπ∗

σ′ |)
> max(1, |Xπ∗

σ − Xπ∗
σ′ |) = d(σ, σ′).

Now, define the noise model G where

PrG[σ; σ′] =
1/(1 + d(σ, σ′))

∑τ∈L(A) 1/(1 + d(τ, σ′))
for σ′ 6= σ∗.

and PrG[σ; σ∗] = xπ∗
σ . Note that G is trivially d-monotone for true rankings other than

σ∗. Denoting the number of votes in π∗ by n∗, since σ∗ is the unique most frequent
ranking, we have that d(σ, σ∗) = n∗(xπ∗

σ∗ − xπ∗
σ ) for all σ 6= σ∗. Hence, PrG[σ1; σ∗] >

PrG[σ2; σ∗] if and only if d(σ1, σ∗) 6 d(σ2, σ∗) and G is also d-monotone for the true
ranking σ∗. We conclude that G is a d-monotonic noise model.

Step 2: Let πn denote a profile consisting of n i.i.d. samples from G(σ∗). Since r is
monotone-robust for every distance metric, we have

lim
n→∞

Pr[r(πn) = σ∗] = 1. (7.4)
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If π∗ has only one ranking, then only that ranking will ever be sampled. Hence, we
will have Pr[xπn = xπ∗ ] = 1, and Equation (7.4) would imply that the rule must output
σ∗ with probability 1 on π∗.

Assume that π∗ has at least two distinct votes. We want to show that r outputs σ∗

with probability 1 in every interior region adjacent to xπ∗ . As n → ∞, the distribution
of xπn tends to a Gaussian with mean xπ∗ and concentrated on the hyperplane

∑
σ∈L(A)|xπ∗

σ >0

xπn
σ = 1.

This follows from the multivariate central limit theorem; see [146] for a detailed expla-
nation. Note that the sum ranges only over the rankings that appear in π∗ because in
the distribution G(σ∗), the probability of sampling a ranking σ that does not appear in
π∗ is zero.

Since the Gaussian lies in the subspace S(xπ∗), we set the coordinates corresponding
to rankings that do not appear in π∗ to zero in all the hyperplanes, and remove the hy-
perplanes that become trivial. Hereinafter we only consider the rest of the hyperplanes,
and the regions they form around xπ∗ , all in the subspace S(xπ∗).

If none of the hyperplanes pass through xπ∗ , then there is a unique interior region
K which actually contains xπ∗ as its interior point. In this case, the limiting probability
of xπn falling in K will be 1, as the Gaussian becomes concentrated around xπ∗ . Thus,
Equation (7.4) implies that r outputs σ∗ with probability 1 in K, and therefore on π∗.

If there exists a hyperplane passing through xπ∗ , then each interior region K adjacent
to xπ∗ is the intersection of finitely many halfspaces whose hyperplanes pass through
xπ∗ . Let K and S(xπ∗) denote the closures of K and S(xπ∗) in Rm!, respectively.6 Thus,
K is a pointed convex cone with its apex at xπ∗ , and must subtend a positive solid angle
(in S(xπ∗)) at its apex since the hyperplanes are distinct. By definition, the solid angle
that K forms at xπ∗ is the fraction of volume (the Lebesgue measure in S(xπ∗)) covered
by K in a ball of radius ρ (again in S(xπ∗)) centered at xπ∗ , as ρ → 0 [see, e.g., Section 2
in 74].

Since the Gaussian is symmetric in S(xπ∗) around xπ∗ , and the limiting distribution
of xπn converges to the Gaussian, the limiting probability of xπn lying in K is positive.
This holds for every interior region K adjacent to xπ∗ . Thus, Equation (7.4) again implies
that r outputs σ∗ with probability 1 in every interior region adjacent to xπ∗ .

Step 3: Finally, since r has no holes and it outputs σ∗ with probability 1 in every interior
region adjacent to xπ∗ , we conclude that r must also output σ∗ with probability 1 on
π∗. �(Proof of Theorem 7.13)

6We remark that considering the closures is necessary since ∆m! contains only points with rational
coordinates; hence it (as well as any subset of it) has measure zero.
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7.7 How Restrictive is the No Holes Property?

To complete the picture, we wish to show that the no holes condition that Theorem 7.13
imposes on GSRs is indeed unrestrictive, by establishing that many prominent voting
rules (in the sense of receiving attention in the computational social choice literature) are
GSRs with no holes. One issue that must be formally addressed is that the definitions
of prominent voting rules (see Section 7.2) typically do not address how ties are broken.
For example, the plurality rule ranks the alternatives by their number of voters who
rank them first; but what should we do in case of a tie? A common practice is to adopt
uniformly random tie-breaking; this is almost always used in political elections (e.g., by
throwing dice or drawing cards in small municipal elections where ties are not unlikely
to occur). From a theoretical point of view, randomized tie-breaking is necessary in
order to achieve neutrality with respect to the alternatives [149].

We show that prominent voting rules are GSRs with no holes under a wide family
of randomized tie-breaking schemes, which we call inclusive tie-breaking.

Definition 7.11 (Inclusive tie-breaking). A tie-breaking scheme is called inclusive if it
assigns a positive probability to each of the tied decisions at every stage.

Such tied decisions could vary for different rules. For rules that assign scores to alter-
natives and order them according to their scores, the decisions correspond to choosing
the order of alternatives with identical scores. For rules that assign scores to rankings
and choose the ranking with the highest score, the decisions correspond to breaking ties
among rankings with identical highest scores. While most voting rules use tie-breaking
only once (either initially or in the end), multi-stage protocols such as single transferable
vote (STV) use tie-breaking in each stage.

We note that uniformly random tie-breaking, which assigns equal probability to
every decision, is a special case of inclusive tie-breaking. Admittedly, inclusive tie-
breaking does not capture deterministic tie-breaking schemes (such as lexicographic
tie-breaking). However, we strongly believe that prominent voting rules other than the
modal ranking rule are not monotone-robust with respect to all distance metrics even if
a deterministic tie-breaking scheme were used.

Before we demonstrate that prominent voting rules are GSRs with no holes, we show
that the no holes condition is implied by a property well-known in the social choice liter-
ature as consistency. This yields a way of leveraging known results from the literature to
easily establish that all positional scoring rules, the Kemeny rule, and single transferable
vote (STV) are GSRs with no holes. Intuitively, consistency means that if the output of a
rule is identical on two profiles, then taking their union should not change the output.
For deterministic SWFs, consistency was first studied by Young and Levenglick [210],
who observed that it is incomparable to, but usually much weaker than, consistency of
winning alternative in the case of SCFs. Later, Conitzer and Sandholm [66] showed that
consistency (whether in rankings or in winning alternatives) is a necessary condition
for a voting rule to be a maximum likelihood estimator under i.i.d. votes. We formalize
a related, but weaker notion of consistency for randomized SWFs.
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Definition 7.12 (Weak consistency for rankings). A randomized SWF r is said to satisfy
weak consistency for rankings if Pr[r(π1) = σ] = 1 and Pr[r(π2) = σ] = 1 implies
Pr[r(π1 ∪ π2) = σ] = 1 for all profiles π1 and π2, and all rankings σ ∈ L(A). Here,
π1 ∪ π2 denotes the profile representing the union of π1 and π2.

For hyperplane rules (generalized scoring rules), weak consistency for rankings is
equivalent to convexity of the region where the rule outputs σ with probability 1, for
every σ ∈ L(A). Now, we are ready to prove the following implication.

Lemma 7.9. Any generalized scoring rule satisfying weak consistency for rankings has no holes.

Proof. Take a GSR r that satisfies weak consistency for rankings. Suppose for contradic-
tion that r has a hole at xπ for some profile π. Let r output σ with probability 1 in all
interior regions adjacent to xπ, but not on π. Let k be the number of distinct rankings
that appear in π. Hence, S(xπ) is a k-dimensional subspace of ∆m!.

If k = 1, then π has only one distinct ranking σ. Thus, xπ
σ = 1 and xπ

σ′ = 0 for all
σ′ 6= σ. By the definition of S(xπ), for every y ∈ S(xπ) we have yσ′ = 0 for all σ′ 6= σ.
Thus, yσ = 1, implying that S(xπ) = {xπ}. Hence, trivially, xπ cannot be a hole.

Let k > 1. Define

V =
{

v ∈ {−1, 0, 1}m!
∣∣∣ ∀σ ∈ L(A), vσ = 0⇔ xπ

σ = 0

∧ ∃σ ∈ L(A), vσ = 1 ∧ ∃σ ∈ L(A), vσ = −1
}

.

Now, for every v ∈ V, define the orthant

Ov =
{

y ∈ S(xπ)
∣∣∣ ∀σ ∈ L(A), (vσ = 1⇒ yσ > xπ

σ ) ∧ (vσ = −1⇒ yσ < xπ
σ )
}

.

Note that we do not consider the orthants where all the k coordinates are higher
(respectively, lower) than those of xπ because such orthants do not have any points in
S(xπ) as the sum of those k coordinates must be equal to 1. The rest 3k − 2 orthants
have non-empty intersection with S(xπ). Further, since the interior regions adjacent to
xπ surround it in the space S(xπ) and so do the 3k − 2 orthants, each orthant Ov must
have a point xv in some interior region adjacent to xπ, where the output is σ. Now, a
convexity lemma (Lemma B.1 in the appendix) shows that we can get xπ as a convex
combination of points in {xv|v ∈ V},7 on all of which r outputs σ with probability 1.
Hence, due to weak consistency for rankings, r must also output σ with probability 1
on xπ, a contradiction. Hence, r has no holes. �(Proof of Lemma 7.9)

Finally, we are ready to prove that prominent voting rules are GSRs with no holes un-
der all inclusive tie-breaking schemes (which contain uniformly random tie-breaking).

Theorem 7.14. Under any inclusive tie-breaking scheme, all positional scoring rules, the Ke-
meny rule, STV, Copeland’s method, Bucklin’s rule, the maximin rule, Slater’s rule, and the
ranked pairs method are generalized scoring rules with no holes.

7In Lemma B.1, take FIX = {σ ∈ L(A)|xπ
σ = 0}.
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Proof. It can easily be checked that the f functions of the GSR constructions given by
Xia and Conitzer [204] and the hyperplanes for the hyperplane rule constructions given
by Mossel et al. [146] encode enough information (including all the ties) in their input to
the g functions such that it is possible to change the output of g from a winning alterna-
tive (for deterministic SCFs) to any desired distribution over rankings (for randomized
SWFs) for the rules mentioned in the statement of the theorem. In particular, these rules
can be implemented with any inclusive tie-breaking scheme as GSRs.

It is well-known and easy to check that all positional scoring rules are consistent
for rankings [see 66, 70]. Young and Levenglick [210] showed that the Kemeny rule is
also consistent for rankings. Conitzer and Sandholm [66] showed that STV is consistent
for rankings; later it was shown that STV is consistent for rankings only in the absence
of tie-breaking, if another mild condition called continuity is required [70]. It can be
checked that under inclusive tie-breaking, STV returns a single ranking with probability
1 if and only if there are no ties. Hence, consistency in the absence of tie-breaking
implies weak consistency for rankings. Thus, we have the following.

Lemma 7.10. Under any inclusive tie-breaking scheme, all positional scoring rules, the Kemeny
rule, and single transferable vote (STV) satisfy weak consistency for rankings.

Hence, the no holes property of all positional scoring rules, the Kemeny rule, and
single transferable vote (STV) follows by Lemmas 7.9 and 7.10. Conitzer and Sandholm
[66] showed that other rules such as Bucklin’s rule, Copeland’s method, the maximin
rule, and the ranked pairs method are not consistent for rankings even in the absence of
ties. Hence, these rules do not satisfy weak consistency for rankings. Still, we will show
that they satisfy the no holes property as well, albeit using a different (and significantly
more involved) approach.

Take a hyperplane rule r. We want to show that r does not have a hole at a profile
π. Let k = |{σ ∈ L(A)|xπ

σ > 0}| be the number of distinct rankings in π. If k = 1, then
as shown in the proof of Lemma 7.9, S(xπ) = {xπ}, and there cannot be a hole at π.
Assume k > 2. For a set of profiles P, let xP = {xπ′ |π′ ∈ P}.

Let dim(·) denote the Hausdorff dimension of a given subset of Rm!. For any set
C ⊆ ∆m!, let C denote its closure in Rm!. Hence, we have that dim(S(xπ)) = k − 1,
because S(xπ) has k− 1 free variables.

Lemma 7.11. Let T denote the set of points in S(xπ) that lie on at least one of the hyperplanes
of r. Then, dim(T) 6 k− 2.

Proof. Take a hyperplane ∑σ∈L(A) wσxσ = 0 of r. Consider its intersection with S(xπ).
First, we notice that all but k of the xσ’s must be set to zero. Among the remaining k, if
we substitute values for k − 2 of the variables, we get two equations in two variables,
which can be seen to be independent since the one obtained from the hyperplane has
the RHS zero, while the one obtained from S(xπ) has the RHS one. Hence, there is at
most one solution of the pair of equations.

That is, every combination of values of k− 2 free variables lead to at most one solu-
tion for the remaining variables. Thus, the dimension of the intersection of the hyper-
plane with S(xπ) is at most k − 2. Taking union over finitely many hyperplanes does
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not increase the Hausdorff dimension. Hence, we have dim(T) 6 k − 2. �(Proof of
Lemma 7.11)

Next, we describe an outline that we follow in order to prove that the no holes prop-
erty is satisfied by many prominent voting rules. We consider rules that assign a score
to every alternative, and then order them in a non-increasing or non-decreasing order
of their scores, breaking ties among alternatives with identical scores. This applies to
Copeland’s method, the maximin rule, and Bucklin’s rule.8 Such rules return a single
ranking with probability 1 if and only if the scores of the alternatives are strictly ordered
according to that ranking. Let us denote the score of alternative c in profile π by SCπ(c).

1. For the sake of contradiction, we assume that the rule under consideration, say
r, has a hole at a profile π. Hence, r outputs a ranking τ with probability 1 in
every interior region adjacent to xπ, but there exists a ranking τ′ 6= τ such that
Pr[r(π) = τ′] > 0.

2. Since τ′ 6= τ, there must exist alternatives a and b such that a �τ b, but b �τ′ a.
Due to the inclusive tie-breaking scheme, we must have that

• SCπ(b) > SCπ(a), and
• SC(a) > SC(b) in every interior region adjacent to xπ.

3. Finally, we find a neighborhood of π where we also have SC(b) > SC(a). For-
mally, we find a set of profiles P such that

• for every profile π′ ∈ P, SCπ′(b) > SCπ′(a), and xπ′ either lies in an interior
region adjacent to xπ or on one of the hyperplanes of r, and

• dim(xP) = k− 1.

Given this, we argue that a contradiction can be reached. Recall that T is the in-
tersection of the hyperplanes of r with S(xπ). Suppose that xP ⊆ T. Then, xP ⊆ T,
which is impossible because dim(xP) > dim(T) (Lemma 7.11). Hence, there must exist
a profile π′ such that xπ′ ∈ xP \ T lies in an interior region adjacent to xπ. However
SCπ′(b) > SCπ′(a), which is the desired contradiction.

Note that the first two steps are common to all voting rules. All we need to do is to
find a set of profiles P satisfying the stated conditions. For many of the voting rules, P
is obtained by increasing xπ

σ∗ for some σ∗ ∈ π, and decreasing xπ
σ for all σ 6= σ∗ that

appear in π. Formally,

P =

{
π′

∣∣∣∣∣ ∀σ ∈ L(A),

xπ′
σ =


0, if xπ

σ = 0,
xπ

σ∗ + δ, if σ = σ∗,
xπ

σ − δσ, otherwise,
where 0 < δ 6 δmax ∧ ∑

σ 6=σ∗,xπ
σ >0

δσ = δ

}
,

8We will see that Slater’s rule, which assigns a score to every ranking, can also be handled in this
outline.
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By the construction, for every profile π′ ∈ P, the weights of the edges of the
weighted PM graph of π increase in the direction of σ∗, and decrease in the direction
opposite to σ∗ (except the edges with weights 1 and 0 do not change). If δmax is cho-
sen to be small enough, this change does not alter the direction of any existing edge in
the unweighted PM graph, but breaks all existing ties between pairs of alternatives in
one direction or the other. Clearly, dim(xP) = k− 1 since decreasing the fractions of all
rankings σ 6= σ∗ with xπ

σ > 0 so that the decrements sum up to δ gives k− 2 degrees of
freedom choosing δ gives another degree of freedom. This observation is very crucial to
the proofs for many of the voting rules.

Below, we describe appropriate choices of σ∗ and δmax for various prominent voting
rules, namely for Copeland’s method, Bucklin’s rule, the maximin rule, and Slater’s
rule. We also provide a proof for the ranked pairs method in which we use completely
different arguments.

(a) Copeland’s method.
Recall that for Copeland’s method, SCπ(c) is the number of outgoing edges from c

in the unweighted PM graph of π. If there are no ties in the unweighted PM graph of π,
then choosing any σ∗ ∈ π and a small enough δmax ensures that the set P obtained fits
the requirements of step 3 of the outline and preserves all the edges in the unweighted
PM graph. Hence, SC(b) > SC(a) is preserved, as required.

In case of ties, let TIEπ(c) be the set of alternatives with which c is tied in the un-
weighted PM graph of π.9 For σ ∈ L(A), let

s(σ) = ∑
c∈TIEπ(b)

I[b �σ c]− ∑
c∈TIEπ(b)

I[c �σ b]− ∑
c∈TIEπ(a)

I[a �σ c] + ∑
c∈TIEπ(a)

I[c �σ a].

Let nπ
x�y denote the number of rankings that prefer alternative x to alternative y in

π. Summing over all rankings in π and changing the order of the summation in each
term, we get

n

∑
i=1

s(σi) = ∑
c∈TIEπ(b)

(
nπ

b�c − nπ
c�b

)
− ∑

c∈TIEπ(a)

(
nπ

a�c − nπ
c�a

)
= 0,

where the last equality holds due to the definitions of TIEπ(b) and TIEπ(a). Also, note
that the sum evaluates to zero even if either TIEπ(b) or TIEπ(a) or both are empty sets.

Hence, there exists a ranking σ∗ ∈ π such that s(σ∗) > 0. There exists a δmax > 0
such that increasing xπ

σ∗ by at most δmax and decreasing the fractions of other rankings
that appear in π would not change the non-tied edges of the PM graph, and among
the ties, b would defeat at least as many previously tied alternatives as a does. Hence,
such a change preserves SC(b) > SC(a). Further, δmax is chosen to be small enough so
that for the new profile π′, xπ′ does not fall in an interior region that is not adjacent to
xπ, i.e., it either lies in an interior region adjacent to xπ or on one of the hyperplanes of
Copeland’s method. Thus, the set of profiles P obtained in this way fits the requirements
of step 3 of the outline.

9We add zero to the Copeland score of an alternative for its tied edges; this is also known as Copeland0.
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(b) Bucklin’s rule.
Let SCπ(a) = k. We know that SCπ(b) 6 SCπ(a) = k.10 Let Tπ(j, c) denote the

fraction of rankings where c is ranked in the first j positions. Then, by the definition of
the Bucklin score,

Tπ(k, b) > 1/2 and Tπ(k− 1, a) 6 1/2. (7.5)

If we find σ∗ such that the set P defined in the outline preserves the two inequalities
in Equation (7.5), then we will have SC(a) > k and SC(b) 6 k, i.e., SC(b) 6 SC(a) will
be preserved.

Let Tπ(k, b) = 1/2+γ. Then, it is easy to check that if the fractions of all the rankings
in π are altered by less than γ/m!, then we would still have T(k, b) > 1/2. Now, we
simply observe that since Tπ(k − 1, a) 6 1/2, more than half of the rankings in π, in
particular, at least one ranking ranks a not in the first k− 1 positions. Choosing this as
σ∗ and taking δmax < γ/m! (and also small enough so that the new profile does not lie in
an interior region not adjacent to xπ) would preserve both inequalities in Equation (7.5).

(c) The maximin rule.
Here, SCπ(c) is the minimum of the weights of the outgoing edges from c in the

weighted PM graph of π. Let MINWπ(c) denote the set of alternatives to which c has
an outgoing edge with the minimum weight in the weighted PM graph of π. Now, take
an alternative c ∈ MINWπ(a). Let w be the weight of the edge from a to c. First, we
note that w 6= 1, because w = 1 would imply that a has an outgoing edge with weight 1
to every other alternative, i.e., a is ranked first in all votes in π. This would contradict
SCπ(b) > SCπ(a). Next, if w = 0, then c beats a in every vote in π. Now, all profiles
in S(xπ) have the same set of rankings as π, and hence have zero maximin score of a.
Thus, SC(b) > SC(a) is trivially satisfied in any point of S(xπ) and, subsequently, we
can define P so that xP is the union of the interior regions adjacent to xπ.

Let us assume w ∈ (0, 1). Let Rc�a(π) be the set of rankings in π where c � a, and
define Ra�c to be the set of rankings in π where a � c. Since w ∈ (0, 1), Ra�c 6= ∅ and
Rc�a 6= ∅. To obtain P, we do not choose one σ∗ ∈ π, increase its fraction and decrease
the fractions of the rest of the rankings in π. Rather, we increase the fractions of all
rankings in Rc�a by a total of δ, and decrease the fractions of all rankings in Ra�c by a
total of δ, where 0 < δ 6 δmax. Once again, we choose δmax > 0 small enough so that xP

does not intersect with interior regions not adjacent to xπ. Increasing the fractions of all
rankings Rc�a so that the increments add up to δ gives |Rc�a| − 1 degrees of freedom.
Similarly, decreasing the fractions of all rankings in Ra�c so that the decrements add
up to δ gives another |Ra�c| − 1 degrees of freedom. Finally, choosing δ itself gives one
degree of freedom. Hence, the set of profiles P obtained satisfy dim(xP) = k− 1.

Further, note that by construction, the weight of the edge from a to c drops by δ.
Hence, the maximin score of a also drops by at least (in fact, by exactly) δ. To show
that the rest of the proof follows from the outline, we need to show that the maximin
score of b drops by at most δ. For each d ∈ A \ {b}, the weight of the edge from b to
d is the sum of fractions of a subset Rd of rankings in π. Now, the collective weight

10Recall that the Bucklin score is to be minimized.
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of rankings in Rd ∩ Ra�c drops by at most δ, and the collective weight of rankings in
Rd ∩ Rc�a can only increase. Hence, the weight of each outgoing edge from b drops by
at most δ, which means that the maximin score of b also drops by at most δ, as required.

(d) Slater’s rule.
Recall that Slater’s rule associates a score to every ranking, and then chooses the

ranking with the lowest Slater score,11 breaking ties to choose among all rankings with
the lowest Slater score. Even though Slater’s rule does not associate scores to alterna-
tives, we show that it fits our framework with a little modification. First, if there are
no ties in the unweighted PM graph of a profile π, then similarly to Bucklin’s rule, its
unweighted PM graph and therefore the Slater scores of all rankings can be preserved
in a small enough neighborhood of π, eliminating the possibility of π being a hole. In
the general case, we slightly abuse the notation, and use SCπ(σ) to denote the Slater
score of ranking σ in profile π.

As in the step 1 of the outline, assume that π is a hole for Slater’s rule; the rule returns
τ with probability 1 in all interior regions adjacent to xπ, but returns a different rank-
ing τ′ with a positive probability on π. Then, due to all-inclusivity of the tie-breaking
scheme, we must have SCπ(τ′) 6 SCπ(τ).12 We again need to find a σ∗ and its associ-
ated set of profiles P. P must satisfy all the conditions in the third step of the outline,
except we replace the inequality in the scores of alternatives by the inequality in the
scores of rankings, namely SC(τ′) 6 SC(τ).

Since SCπ(σ) counts the number of pairwise disagreements of σ with the un-
weighted PM graph of π, and since small deviations in the fractions xπ

σ would not
change the edges that are not tied, we concentrate on the edges of the PM graph of
π that are tied. Formally, let TIE(π) denote the set of ordered pairs of alternatives that
are tied in the PM graph of π. For σ ∈ L(A), define

s(σ) = ∑
(c,d)∈TIE(π)

s.t. c�τ′d

I[c �σ d]− ∑
(c,d)∈TIE(π)

s.t. c�τd

I[c �σ d].

It is clear that taking σ∗ ∈ π such that s(σ) > 0 would ensure that in every profile
in P, at least as much will be added to the Slater score of τ as to the Slater score of τ′

compared to π, ensuring SC(τ′) 6 SC(τ). To see why such a ranking exists, we sum
s(σi) over all votes σi in π and, by interchanging the order of summations, we get

n

∑
i=1

s(σi) = ∑
(c,d)∈TIE(π)

s.t. c�τ′d

nπ
c�d − ∑

(c,d)∈TIE(π)
s.t. c�τd

nπ
c�d

=
n
2
·
(∣∣{(c, d) ∈ TIE(π) s.t. c �τ′ d}

∣∣− ∣∣{(c, d) ∈ TIE(π) s.t. c �τ d}
∣∣)
(7.6)

11Recall that Slater’s score is the disagreement of a ranking from a profile, which must be minimized.
12As with Bucklin’s rule, the sign of the inequality is reversed because the Slater ranking minimizes the

Slater score.
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= 0,

where the last step follows since both terms inside the brackets in Equation (7.6) are the
number of unordered pairs of alternatives that are tied in the PM graph of π. Hence,
there exists a ranking σ∗ ∈ π with s(σ∗) > 0, as required. Finally, δmax is chosen so that
the non-tied pairs in the PM graph stay non-tied, and the new profile does not fall in an
interior region that is not adjacent to xπ.

(e) The ranked pairs method.
This proof does not follow the general outline given above. For an ordered pair of

alternatives (c, d), let wπ(c, d) denote the weight of the edge from c to d in the weighted
PM graph of π. Suppose r outputs a ranking τ with probability 1 in every interior region
adjacent to xπ, but does not output τ with probability 1 on π.

Let L denote the list in the ranked pairs process in π where ordered pairs of alterna-
tives are sorted by their weight. Let ∆ denote the minimum positive difference between
the weights of any two pairs in L. Let (a, b) be the first pair in the list that is chosen with
a positive probability and is inconsistent with τ (such a pair exists because r does not
output τ with probability 1 on π).

Lemma 7.12. Let PRE denote the set of pairs in L that have weight strictly greater than the
weight of (a, b). Then, each pair in PRE must be chosen with probability 1 or 0 in the ranked
pairs process on π, and the subset that is chosen with probability 1 must be consistent with τ.

Proof. Let Lp be the largest prefix of L such that such that every pair in Lp is chosen with
probability 1 or 0 in the ranked pairs process under an inclusive tie-breaking scheme.13

Let Cp ⊆ Lp be the set of pairs in Lp that are chosen with probability 1.
First, we argue that all pairs in Cp are consistent with τ. Let P denote the space of

profiles obtained by changing the fractions of all the rankings by at most ∆/(2m!). Note
that this may only break ties in L, but cannot invert the order of two pairs that were
strictly ordered by their weight in L. Similarly to the general outline, P has Hausdorff
dimension k− 1, and hence contains a point in an interior region adjacent to xπ. Further,
since ties do not matter for pairs in P, all pairs in P chosen with probability 1 in π would
also be chosen with probability 1 in all profiles in P. Hence, all pairs in Cp must be
consistent with τ.

Since r does not output τ with probability 1 on π, Lp 6= L. Consider the group G of
pairs with equal weight that follows Lp. First, G cannot be consistent with Cp, otherwise
it would have been part of Lp. Therefore, there must exist a pair p ∈ G that is chosen
with a probability strictly in (0, 1) (i.e., not equal to 0 or 1). Thus, there must exist a
feasible subset of G such that when it is chosen in the ranked pairs process along with
Cp to produce a partial order l, l is inconsistent with p. If l is consistent with τ, then p
must be inconsistent with τ. If l is inconsistent with τ, then since Cp is consistent with
τ, there must exist a pair in G that is inconsistent with τ.

13Note that if Lp has a group of pairs with equal weight, they will all be chosen with probability 1 or
all be chosen with probability 0 irrespective of the tie-breaking.
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In either case, all pairs in Cp are consistent with τ, and the group G of pairs with
equal weight that follows Cp has a pair that is inconsistent with τ. Thus, (a, b) ∈ G, and
PRE = Lp. �(Proof of Lemma 7.12)

Next, we argue that 0 < wπ(a, b) < 1. If wπ(a, b) = 0, then wπ(b, a) = 1. An
ordered pair with weight 1 is consistent with all rankings in the profile. Hence, the set
of ordered pairs in π with weight 1 do not contain a cycle. Thus, they are all selected
with probability 1 in the ranked pairs process, which is a contradiction as we assumed
(a, b) is chosen with a positive probability on π.

On the other hand, if wπ(a, b) = 1, then all rankings in π must prefer a to b. How-
ever, all profiles in S(xπ) have the same set of rankings as π. Hence, the weight of (a, b)
is 1 everywhere in S(xπ). Due to the argument presented in the previous paragraph,
this implies that in an interior region K adjacent to xπ, a is preferred to b with probabil-
ity 1. This is a contradiction because r outputs τ with probability 1 in K that prefers b to
a.

Hence, indeed 0 < wπ(a, b) < 1. Let Ra�b be the set of rankings in π that prefer a to
b, and let Rb�a be the set of rankings in π that prefer b to a. Since 0 < wπ(a, b) < 1, we
have Ra�b 6= ∅ and Rb�a 6= ∅.

Recall that ∆ is the minimum positive difference between the weights of any two
pairs in L. Choose δmax = ∆/2. Let P denote the set of profiles obtained by increas-
ing the fractions of rankings in Ra�b by a total of δ and decreasing the fractions of the
rankings in Rb�a by a total of δ, for 0 < δ < δmax. This increases the weight of (a, b) by
exactly δ and changes the weight of every other pair by at most δ. Due to the choice of
δmax, it is clear that the set of pairs with weight greater than that of (a, b) must be PRE
for every profile in P.

Further, the changes in the fractions can only break ties among pairs in PRE, but
cannot invert the order of two pairs with different weight in π. Since ties do not matter
for pairs in PRE,14 we see that the same subset of pairs in PRE are chosen in every
profile in P. This would imply that under an inclusive tie-breaking scheme, (a, b) has
a positive probability of being selected in each profile in P. However, P has Hausdorff
dimension k− 1, and therefore must contain a point in an interior region K adjacent to
xπ. This contradicts the fact that r outputs τ that prefers b to a with probability 1 in K.
Hence, π cannot be a hole. �(Proof of Theorem 7.14)

The comprehensive list of GSRs with no holes includes all prominent rules that are
known to be GSRs [146, 204] — suggesting that the no holes property does not impose
a significant restriction beyond the assumption that the rule is a GSR. One prominent
rule is conspicuously missing — the fascinating but peculiar Dodgson rule [77], which
is indeed not a GSR [204].

14The pairs in P that were chosen with probability 1 and 0 in π would still be chosen with probability
1 and 0, respectively.
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7.8 Impossibility for PM-c and PD-c Rules

Theorem 7.13 establishes the uniqueness of the modal ranking rule within a large fam-
ily of voting rules (GSRs with no holes). Next we further expand this result by showing
that no PM-c or PD-c rule is monotone-robust with respect to all distance metrics. Thus,
the modal ranking rule is the unique rule that is monotone-robust with respect to all dis-
tance metrics in the union of GSRs with no holes, PM-c rules, and PD-c rules. Crucially,
as shown in Figure 7.1, the families of PM-c and PD-c rules are disjoint, and neither one
is a strict subset of GSRs.

Theorem 7.15. For m > 3 alternatives, no PM-c rule or PD-c rule is monotone-robust with
respect to all distance metrics.

Proof. In both parts of this proof (for PM-c rules and PD-c rules), we use an intuitive,
but somewhat technical lemma, which is given as Lemma B.2 in the appendix. Let
A = {a1, . . . , am} be the set of alternatives. We use a4...m as shorthand for a4 � . . . � am.
Fix τ = a1 � . . . � am, and σ∗ = a2 � a1 � a3 � a4...m.

First, we prove that no PM-c rule is monotone-robust with respect to all distance
metrics. In particular, using Lemma B.2, we will construct a distance metric d and a
d-monotonic noise model G such that no PM-c rule is accurate in the limit for G.

Consider the distribution D over L(A) defined as follows:

PrD[a2 � a1 � a3 � a4...m] =
4
9 ,

PrD[a1 � a2 � a3 � a4...m] =
3
9 ,

PrD[a1 � a3 � a2 � a4...m] =
2
9 ,

PrD[σ] = 0, for all σ not covered above.

By Lemma B.2, we know that there exist a distance metric d and a d-monotonic noise
model G such that PrG[σ; σ∗] = PrD[σ] for every σ ∈ L(A).

Given infinite samples from G(σ∗), a 5/9 fraction — a majority — of the votes have
a1 in the top position. A 7/9 fraction of the votes prefer a2 to a3, while all votes prefer a2
and a3 to any other alternative besides a1. Clearly, ai is preferred to ai+1 for i > 4. Hence,
in the PM graph, the alternatives are ordered according to τ = a1 � a2 � a3 � a4...m.
Thus, every PM-c rule outputs τ in the limit, which is not the ground truth. Thus, no
PM-c rule is accurate in the limit for G.

The construction for PD-c rules is more complex. Here, we will show that there is a
noise model such that, given infinite samples for a specific ground truth, the PD graph
of the profile induces a ranking that is different from the ground truth. The distribution
D above is not sufficient for our purposes since there are pairs of alternatives (e.g., a2
and a3) that have the same probability of appearing in the first three positions of the
outcome; hence, the PD graph of profiles with infinite samples may not be complete.
Instead, we will use a distribution D′ so that all probability values of this kind are dif-
ferent.

Let 0 = δ1 < δ2 < ... < δm so that ∑m
i=1 δi = 1. Define the probability distribution

D′′ as follows. Pick one out of the m alternatives so that alternative ai is picked with
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probability δi. Rank alternative ai last and complete the ranking by a uniformly random
permutation of the alternatives in L(A) \ {ai}. Now, the distribution D′ is defined as
follows: With probability 9/10 (resp., 1/10), the output ranking is sampled from the
distribution D (resp., D′′).

The important property of distribution D′′ is that for every k ∈ [m− 1], the proba-
bility that alternative ai is ranked in the first k positions is exactly (1−δi)k

m−1 , i.e., strictly
decreasing in i. On the other hand, distribution D has the property that for every
k ∈ [m− 1], the probability that alternative ai is ranked in the first k positions is non-
increasing in i. Hence, their linear combination D′ has the property that for every
k ∈ [m− 1], the probability that alternative ai is ranked in the first k positions is strictly
decreasing in i. Additionally,

arg max
τ∈L(A)

PrD′ [τ] = {σ∗}.

Hence, we can apply Lemma B.2 to obtain a distance metric d′ and a d′-monotonic noise
model G′ so that an infinite number of samples from G′(σ∗) induce a complete PD graph
corresponding to the ranking τ = a1 � a2 � a3 � a4...m, which is different from the
ground truth σ∗. Thus, no PD-c rule is accurate in the limit for G′.

We conclude that no PM-c rule or PD-c rule is monotone-robust with respect to all
distance metrics. � (Proof of Theorem 7.15)

The restriction on the number of alternatives in Theorem 7.15 is indeed necessary.
For two alternatives, L(A) contains only two rankings, and all reasonable voting rules
coincide with the majority rule that outputs the more frequent of the two rankings. It
can be shown that, in this case, the majority rule is monotone-robust with respect to all
distance metrics.

We have shown that the union of PM-c and PD-c rules includes all positional scoring
rules, Bucklin’s rule, the Kemeny rule, ranked pairs, Copeland’s method, and Slater’s
rule. Two prominent SWFs that are neither PM-c nor PD-c are the maximin rule and
STV. In the example given in the proof of Theorem 7.15, the maximin rule and STV
would also rank the wrong alternative (a1) in the first position with probability 1 in
the limit. Thus, Theorem 7.15 gives another proof that prominent voting rules are not
monotone-robust with respect to all distance metrics.

7.9 Related work

The theme of quantifying the number of samples that are required to uncover the truth
plays a central role in a recent paper by Chierichetti and Kleinberg [57]. They study a
setting with a single correct alternative and noisy signals about its identity. Focusing on
a single voting rule — the plurality rule — they give an upper bound on the number of
votes that are required to pinpoint the correct winner. They also prove a lower bound
that applies to any voting rule and suggests that plurality is not far from optimal. Inter-
estingly, under Mallows’ model we show that plurality is far worse than all PM-c rules,
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but note that we consider rules that output a ranking while Chierichetti and Kleinberg
[57] study rules that output a single winner.

Our initial results regarding the Kemeny rule are related to the work of Braverman
and Mossel [41]. Given samples from Mallows’ model, they aim to compute the Kemeny
ranking; this problem is known to be NP-hard [20]. They focus on circumventing the
complexity barrier by giving an efficient algorithm that computes the Kemeny ranking
with arbitrarily high probability. In contrast, we ask: How many samples do PM-c rules
(including Kemeny) need to reconstruct the true ranking?

There is a significant body of literature on MLEs and parameter estimation for noise
models over rankings that generalize Mallows’ model [71, 92, 129, 137]. In particular, the
classic paper by Fligner and Verducci [92] analyzes extensions of Mallows’ model with
distance functions from two families: those that are based on discordant pairs (includ-
ing the KT distance) and those that are based on cyclic structure. Critchlow et al. [71]
introduce four categories of noise models; they also define desirable axiomatic prop-
erties that noise models should satisfy, and determine which properties are satisfied
by the different categories. Many papers analyze other random models of preferences,
e.g., the Plackett-Luce model [135], the Thurstone-Mosteller model [167], or the random
utility model [7].

Somewhat further afield, a recent line of work in computational social choice studies
the distance rationalizability of voting rules [33, 83, 84, 85, 143]. Voting rules are said to be
distance rationalizable if they always select an alternative or a ranking that is “closest”
to being a consensus winner, under some notion of distance and some notion of consen-
sus. Among these papers, the one by Elkind et al. [85] is the most closely related to our
work; they observe that the Kemeny rule is both an MLE and distance rationalizable via
the same distance, and ask whether at least one of several other common rules has the
same property (the answer is “no”).

Observe that, unlike common voting rules, our modal ranking rule always returns
a ranking from the given profile. Endriss and Grandi [87] investigated a similar idea
in the context of aggregation of binary opinions where each voter provides a yes/no
opinion for a number of issues. In contrast to the modal ranking rule which (in our
context) chooses the most frequent vote in the input profile, they investigated rules that
return the input vote that is closest to the average or the majority vote.

In our analysis of the modal ranking rule, we technically view the input profile (vec-
tor of rankings) as a point in Qm! (m! is the number of possible rankings), where each
coordinate represents the fraction of times a ranking appears in the input profile. This
geometric approach to the analysis of voting rules was initiated by Young [208], and
was later used by various other authors [70, 146, 159, 187, 188, 205].

7.10 Discussion

While we study three popular distance functions over rankings, we exclude some other
distances such as the Cayley distance and the Hamming distance; even the most promi-
nent voting rules such as plurality are not accurate in the limit for any noise model
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that is monotonic with respect to these distances (see Appendix B.4). On the one hand,
this motivates a study of distance functions over rankings that are more appropriate
in the social choice context. On the other hand, one may ask: Which voting rules are
monotone-robust even with respect to such distance functions?

Furthermore, we have seen that all PM-c rules and all PD-c rules are accurate in the
limit for Mallows’ model. We later argued that being accurate in the limit for Mallows’
model is a very mild requirement, and there are numerous other voting rules that sat-
isfy it. Is it possible to define a much wider class (possibly within the framework of
generalized scoring rules [204]) that is accurate in the limit for Mallows’ model?

On the conceptual level, we analyze the sample complexity of voting rules as the
number of alternatives grows, but our analysis assumes (as is traditionally the case in
the literature) that the input to the voting rule is total orders over alternatives. As ar-
gued in the introduction, the issue of sample complexity of voting rules directly trans-
lates to the problem of estimating the required budget in crowdsourcing tasks. When
the number of alternatives is large, obtaining total orders is unrealistic, and inputs with
partial information such as pairwise comparisons, partial orders or top-k-lists are em-
ployed in practice. Several noise models have been proposed in the literature for the
generation of such partial information (see, e.g., [206]). Going one step further, Pro-
caccia et al. [179] proposed a noise model that can incorporate multiple input formats
simultaneously given a true underlying ranking. It would be of great practical interest
to extend our sample complexity analysis to such noise models.

We mentioned several points of view on the comparison of voting rules: social choice
axioms, maximum likelihood estimators, and the distance rationalizability framework.
Elkind et al. [85] point out the weakness of the connection between the MLE framework
and the DR framework by showing that the Kemeny rule is the only rule that is both
MLE and distance rationalizable. We argued that asking for a voting rule to be the
maximum likelihood estimator is too restrictive, and proposed quantifying the sample
complexity instead. This begs the question: How does the relaxed framework of sample
complexity relate to the DR framework?

An important conceptual contribution of this chapter is the realization that the
modal ranking rule — a natural voting rule that was previously disregarded — is
uniquely robust among the union of three large families of voting rules. Figure 7.1
shows a Venn diagram illustrating the relation between these three families. We claim
that the modal ranking rule can be exceptionally useful in crowdsourcing settings. In-
terestingly, from a classic social choice viewpoint the modal ranking rule would appear
to be a poor choice. It does satisfy some axiomatic properties, such as Pareto efficiency
— if all voters rank x above y, the output ranking places x above y (indeed, the rule
always outputs one of the input rankings). But the modal ranking rule fails to satisfy
many other basic desiderata, such as monotonicity — if a voter pushes an alternative
upwards, and everything else stays the same, that alternative’s position in the output
should only improve. So our uniqueness result implies an impossibility: a voting rule
that is monotone-robust with respect to any distance metric d and is a GSR with no
holes, PD-c rule, or PM-c rule, cannot satisfy the monotonicity property. A similar state-
ment is true for any social choice axiom not satisfied by the modal ranking rule. That
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Figure 7.1: The modal ranking rule is uniquely robust within the union of three families
of rules.

said, social choice axioms like monotonicity were designed with subjective opinions and
notions of social justice in mind. These axioms are incompatible with the settings that
motivate our work on a conceptual level, and — as our results show — on a technical
level.
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Chapter 8

Robust Voting on Social Networks

8.1 Introduction

In the previous chapter, we extended the popular maximum likelihood estimation ap-
proach to voting by breaking two of its most restrictive requirements. First, we relaxed
the assumption that we know the exact noise model that governs the generation of noisy
votes given the ground truth, and instead sought robust voting rules that provide guar-
antees with respect to much wider families of noise models. Second, we relaxed the
stringent requirement that the voting rule be an MLE by simply requiring the voting
rule to be accurate in the limit as the number of votes grows.

While this allowed us to obtain promising results, our robust voting framework still
carries an unrealistic assumption that is prevalent in most prior work in social choice
theory: votes are independent. This assumption is clearly satisfied in some settings, but
in many other settings — especially when the voters are people — votes are likely to
be correlated through social interactions. We refer to the structure of these interactions
as a social network, interpreted in the broadest possible sense: any form of interaction
qualifies for an edge. From this broad viewpoint, the structure of the social network
cannot be known, and, hence, votes are correlated in an unpredictable way. Extending
the robustness approach from the previous chapter, we aim to

... model the generation of noisy rankings on a social network given a ground truth,
and identify voting rules that are accurate in the limit with respect to any network
structure and (almost) any choice of model parameters.

8.2 Our Model

Our starting point is the recently-introduced independent conversations model [63]. In this
model, there are only two alternatives: one is “correct” (stronger) and one is “incorrect”
(weaker). Each edge of the social network is an independent conversation between
two voters, whose result (which is independent of the results on other edges — hence
the name of the model) is the correct alternative with probability p > 1/2, and the
incorrect alternative with probability 1− p. Then, each voter aggregates the results on
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the incident edges using the majority rule, and submits the resulting alternative (i.e., the
final vote) to the voting rule. Note that if two voters are neighbors in the network, their
votes are not independent. The voting rule only observes the final votes submitted by
the voters (and not the results of conversations on the edges), and must aggregate these
votes to find the correct alternative. Conitzer acknowledges that his goal is to “give a
simple model that helps to illustrate which phenomena we are likely to encounter as we
move to more complex models” [63, p. 1483]. We are indeed interested in a more realistic
model that supports multiple alternatives and rests on richer probabilistic foundations.

In our extended model, there is a set of (arbitrarily many) alternatives A. We assume
that the voters are connected via an underlying social network structure, represented as
an undirected graph G = (V, E) (here, V is the set of voters). We use the notation e ↓ v
to denote that edge e is incident on voter v. Let E(v) = {e ∈ E | e ↓ v} denote the set of
edges incident on v, and let dv = |E(v)| denote the degree of v in the network G. As we
explain in Section 8.1, the social network structure may be unknown to us. Our model
has four key components.

• Ground truth. We assume that each alternative a ∈ A has a “true quality” denoted
by µa. The ground truth ranking of the alternatives σ∗ ranks the alternatives by
their true qualities. We assume that for some constant ∆ > 0, we have |µa − µb| 6
∆ for all distinct a, b ∈ A.

• Quality estimates. When voters v and v′ share an edge, they have an independent
discussion. We represent the result of this discussion as a quality estimate for each
alternative. Specifically, we associate a random variable Xe,a to each edge e for the
quality estimate of each alternative a. Crucially, we assume that all {Xe,a}e∈E,a∈A
are mutually independent.

• Aggregation rules. We assume that voter v uses an aggregation rule gv : Rdv → R

to derive an aggregate quality estimate Yv,a = g({Xe,a}e∈E(v)) for each alternative
a ∈ A. In the tradition of the random utility theory, his submitted vote σv is a
ranking of the alternatives by their aggregate quality estimates.

• Voting rule. The only information we observe is the set of rankings (votes) submit-
ted by the voters. In particular, we are unaware of the quality estimates sampled
on the edges (i.e., values of Xe,a), or the aggregate quality estimates derived by
the voters (i.e., values of Yv,a). Moreover, we assume that the distributions of the
independent conversations on the edges, the aggregation rules used by the voters,
the identities of the voters, and their social network structure are also unknown to
us. We use an anonymous voting rule f : L(A)n → L(A) to aggregate the submit-
ted ranked votes into a final ranking of the alternatives. Our goal is to be accurate
in the limit, i.e., produce the ground truth ranking σ∗ with probability 1 as the
number of voters n goes to infinity.

In the next two sections, we instantiate this general model by considering specific
distributions of the quality estimates on the edges (Xe,a) and specific choices of the ag-
gregation rules used by the voters.
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8.3 Equal Variance

Let us focus on the following model of independent conversations and aggregation
rules.

Quality estimates. Our choice is inspired by the classic Thurstone-Mosteller model [148,
194], in which a quality estimate is derived by taking a sample from a Gaussian distri-
bution centered around the true quality. This model is member of the more general class
of random utility models (see [7] for their use in social choice) in which the distribution
need not be Gaussian. In our setting, for each edge e ∈ E and alternative a ∈ A we
assume Xe,a ∼ N (µa, ν2), which is a Gaussian distribution with mean µa, variance ν2,
and probability density function

p(x) =
1√

2πν2
e−

(x−µa)2

2ν2 .

Crucially, we assume that the variance of all the Gaussians is equal, i.e., the noise present
in the quality estimates is random noise that is not dependent on the voters or on the
alternatives. This is not a weak assumption; we relax it in Section 8.4.

Aggregation rules. We assume that voters aggregate the quality estimates of the al-
ternatives on their incident edges by computing a weighted mean. Specifically, assume
that each voter v places a weight wv(e) ∈ R>0 on each incident edge e = (v, v′) ∈ E(v),
which represents how much the voter weights or believes in the conversation with voter
v′. Without loss of generality, let the weights be normalized such that ∑e∈E(v) wv(e) = 1
for all v ∈ V. Then, the aggregate quality estimate derived by voter v for alternative a
is given by Yv,a = ∑e∈E(v) wv(e)Xe,a.

We aim to find voting rules that provide accuracy in the limit for any social network
structure G, and for a wide range of choices of the unknown parameters: the true qual-
ities of the alternatives {µa}a∈A, the variance of the Gaussian distributions ν2, and the
weights assigned by voters to their incident edges {wv(e)}v∈V,e∈E(v). The main diffi-
culty is that the votes of two voters may be correlated when they share an edge in the
social network, but the network is unknown to the voting rule. To this end, we first
prove a result that shows that under certain conditions, the correlation has negligible
effect on the final outcome. We later leverage this result to identify anonymous voting
rules that are accurate in the limit.

Lemma 8.1. Let Z1
v, Z2

v ∈ [−ξ, ξ] be two bounded random variables associated with each voter
v ∈ V, where ξ > 0 is a constant. For i, j ∈ {1, 2} and v, v′ ∈ V, assume Zi

v and Zj
v′ are

independent unless v = v′ or (v, v′) ∈ E. If there exist positive constants C, γ, δ, and ε such
that for all v ∈ V,

1. E[Z1
v]−E[Z2

v] > γ, and
2. Pr[Z1

v 6 Z2
v + δ] 6 C/(dv)1+ε,

then limn→∞ Pr[∑v∈V Z1
v > ∑v∈V Z2

v] = 1.
Before we dive into the proof, note that if the random variables were independent,

condition 1 and Hoeffding’s inequality would have implied the required result. For
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correlated variables, the intuition is as follows. If dv is small, then Z1
v and Z2

v are corre-
lated with only a few other random variables. If dv is large, then Z1

v > Z2
v holds with

high probability anyway. As we later see in Theorem 8.1, this is because voters with
large degrees produce accurate votes by assimilating a large amount of independent
information from incident edges.

Proof. Partition the set of voters V into two subsets:

V1 =
{

v ∈ V
∣∣∣ dv 6 n

1+0.5·ε
1+ε

}
and V2 = V \V1.

Define Zj
Vi

= ∑v∈Vi
Zj

v and Zj
V = Zj

V1
+ Zj

V2
for i, j ∈ {1, 2}. We wish to prove that

Z1
V > Z2

V holds with high probability. We focus on the relations between Z1
V1

and Z2
V1

,
and between Z1

V2
and Z2

V2
separately, and later combine the two results to prove the

required result.

Voters in V1. Observe that E[Z1
V1
− Z2

V1
] = ∑v∈V1

E[Z1
v]−E[Z2

v] > |V1| · γ. As previously
mentioned, we cannot simply use Hoeffding’s inequality because the indicator random
variables are correlated. We instead use Chebyshev’s inequality.

Pr[Z1
V1
6 Z2

V1
] 6 Pr[|(Z1

V1
− Z2

V1
)−E[Z1

V1
− Z2

V1
]| > |V1| · γ]

6
Var
(
Z1

V1
− Z2

V1

)
|V1|2 · γ2 . (8.1)

Here, Var(·) denotes the variance of a random variable. To derive an upper bound
on Var

(
Z1

V1
− Z2

V1

)
, we use the fact that for i, j ∈ {1, 2} and v, v′ ∈ V1, indicator ran-

dom variables Zi
v and Zj

v′ are only correlated if v = v′ or v and v′ share an edge (i.e.,
(v, v′) ∈ E). Thus, the random variables corresponding to voter v can be correlated with
the random variables corresponding to at most 1 + dv voters. Further, when they are

correlated, their covariance satisfies Cov(Zi
v, Zj

v′) 6
√

Var(Zi
v) ·Var(Zj

v′) 6 ξ2, where
the last transition holds because the variance of a [−ξ, ξ]-bounded random variable is
at most ξ2 due to Popoviciu’s inequality. Hence,

Var
(
Z1

V1
− Z2

V1

)
= ∑

i,j∈{1,2}
∑

v∈V1

∑
v′∈V1:

[v′=v]∨[(v,v′)∈E]

Cov(Zi
v, Zj

v′)

6 ξ2 · ∑
v∈V1

4 · (1 + dv) 6 4 · ξ2 · |V1| ·
(

1 + n
1+0.5·ε

1+ε

)
,

where the last transition holds because dv 6 n
1+0.5·ε

1+ε for all v ∈ V1. Substituting this into
Equation (8.1),

Pr
[

Z1
V1
6 Z2

V1

]
6 4 · ξ2 · 1 + n

1+0.5·ε
1+ε

|V1| · γ2 (8.2)

Note that this probability could be high when |V1| is small.
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Voters in V2. Fix v ∈ V2. Then, dv > n
1+0.5·ε

1+ε by the definition of V2. Hence,

Pr[Z1
v 6 Z2

v + δ] 6
C

(dv)1+ε
6

C
n1+0.5·ε , (8.3)

where the first transition follows from the second condition assumed in the lemma.
Now,

Pr[Z1
V2
6 Z2

V2
+ |V2| · δ] 6 ∑

v∈V2

Pr[Z1
v 6 Z2

v + δ]

6
C · |V2|
n1+0.5·ε 6

C
n0.5·ε , (8.4)

where the first transition follows from the Pigeonhole principle, the second transition
follows from Equation (8.3), and the last transition holds because |V2| 6 n. Note that
this probability must go to 0 as n→ ∞, unlike Pr[Z1

V1
6 Z2

V1
].

We now consider two cases to combine our results.

1. Suppose |V2| > n · 2ξ/(2ξ + δ). Then, |V1| 6 n · δ/(2ξ + δ). Observe that we
always have Z1

V1
− Z2

V1
> −|V1| · 2ξ. If it holds that Z1

V2
− Z2

V2
> |V2| · δ, then

Z1
V > Z2

V follows by adding the two inequalities and substituting the bounds of
|V1| and |V2|. Hence, Pr[Z1

V 6 Z2
V ] 6 Pr[Z1

V2
6 Z2

V2
+ |V2| · δ], which goes to 0 as n

goes to infinity due to Equation (8.4).
2. Suppose |V2| 6 n · 2ξ/(2ξ + δ). Then, |V1| > n · δ/(2ξ + δ). Substituting this into

Equation (8.2), we see that Pr[Z1
V1
6 Z2

V1
] approaches 0 as n goes to infinity. Equa-

tion (8.4) already shows that Pr[Z1
V2
6 Z2

V2
] 6 Pr[Z1

V2
6 Z2

V2
+ |V2| · δ] approaches

0 as n goes to infinity. Hence, Pr[Z1
V 6 Z2

V ] 6 Pr[Z1
V1
6 Z2

V1
] + Pr[Z1

V2
6 Z2

V2
] goes

to 0 as n goes to infinity.

Thus, in both cases we have the desired result. �

We now use Lemma 8.1 to derive our main result.

Theorem 8.1. If there exists a universal constant D ∈ N such that ∑e∈E(v)[wv(e)]2 6
∆2/(8 ν2 ln dv) for all voters v with degree dv > D, then all PM-c rules, the modal rank-
ing rule, and all strict positional scoring rules are accurate in the limit irrespective of the choices
of the unknown parameters: the social network structure G, the true qualities {µa}a∈A, the
variance ν2, and the weights {wv(e)}v∈V,e∈E(v).

Before we prove the result, we remark that the bound on ∑e∈E(v)[wv(e)]2 is a mild re-

striction. In our setting with normalized weights
(

∑e∈E(v) wv(e) = 1
)

, the unweighted

mean has ∑e∈E(v)[wv(e)]2 = 1/dv which is much smaller than our required bound. More
generally, the condition is satisfied if no voter v places an excessive weight — specifi-
cally, a weight greater than ∆/(4ν

√
dv ln dv) — on any single incident edge.
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Proof of Theorem 8.1. Let us begin with PM-c rules.

PM-c Rules. Recall that PM-c rules are guaranteed to return the ground truth ranking σ∗

if the pairwise majority graph is consistent with σ∗. We wish to use Lemma 8.1 to show
that for every pair of alternatives a, b ∈ A such that a �σ∗ b, there would be an edge
from a to b in the pairwise majority graph of the profile consisting of the votes submitted
by the voters with probability 1 as n goes to infinity. Applying the union bound over all
pairs of alternatives implies that the entire pairwise majority graph would be consistent
with σ∗ with probability 1 as n goes to infinity.

Now, for voter v ∈ V and alternative a ∈ A, the aggregate quality estimate Yv,a =
∑e∈E(v) wv(e)Xe,a follows the distributionN (µa, ν2 ∑e∈E(v)[wv(e)]2) because each Xe,a ∼
N (µa, ν2). Let (Wv)2 = ∑e∈E(v)[wv(e)]2.

Fix alternatives a, b ∈ A such that a �σ∗ b (thus, µa > µb). Note that Yv,a − Yv,b ∼
N (µa − µb, 2 ν2 (Wv)2). Now, recall that there is an edge from a to b in the pairwise
majority graph if a strict majority of the voters prefer a to b, i.e., if ∑v∈V I[Yv,a > Yv,b] >
n/2 (where I is the indicator random variable). Hence, in Lemma 8.1 we take Z1

v =
I[Yv,a > Yv,b] and Z2

v = I[Yv,a 6 Yv,b]. Finally, we complete the proof by showing that
the two conditions required by Lemma 8.1 hold.

Condition 1: E[Z1
v] − E[Z2

v] > γ, where γ > 0 is a constant. Note that E[Z1
v] −

E[Z2
v] = 2 · Pr[Yv,a > Yv,b]− 1. Since Yv,a −Yv,b ∼ N (µa − µb, 2 ν2 (Wv)2), we have that

Pr[Yv,a −Yv,b > 0] = Φ
(

µa − µb√
2 ν Wv

)
> Φ

(
∆√
2 ν

)
>

1
2
+ γ′,

where γ′ > 0 is a constant. Here, the second transition holds because Wv 6 1 and
µa− µb > ∆, and the final transition is a standard property of the Gaussian distribution.
Hence, condition 1 holds with γ = 2γ′.

Condition 2: Pr[Z1
v 6 Z2

v + δ] = O(1/(dv)1+ε), where ε, δ > 0 are constants. Take
δ = 0.5, and recall that Z1

v and Z2
v are indicator random variables. Then,

Pr[Z1
v 6 Z2

v + δ] = Pr[Z1
v = 0∨ Z2

v = 1] = Pr[Yv,a 6 Yv,b].

Since Yv,a −Yv,b ∼ N (µa − µb, 2 ν2 (Wv)2), we have

Pr[Yv,a −Yv,b 6 0] = 1−Φ(λ) 6
1√

2π · λ
e−λ2/2,

where λ = (µa − µb)/(
√

2 ν Wv), and the last transition is a standard upper bound for
Gaussian distributions. Substituting our assumption that (Wv)2 6 ∆2/(8 ν2 ln dv) and
simplifying, we obtain that the probability is O(1/(dv)2). Hence, condition 2 holds with
ε = 1.

Since both conditions are satisfied, Lemma 8.1 implies that every PM-c rule is accu-
rate in the limit.

Modal Ranking Rule. Recall that the modal ranking rule chooses the most frequent rank-
ing in the profile. Thus, we need to show that the ground truth ranking appears more
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frequently than any other ranking. Fix a ranking σ 6= σ∗, and define Z1
v = I[σv = σ∗]

and Z2
v = I[σv = σ]. Then, we wish to use Lemma 8.1 to show that the number of occur-

rences of σ∗ in the profile is larger than the number of occurrences of σ with probability
1 as n goes to infinity. Applying the union bound over all rankings σ 6= σ∗ would imply
that σ∗ would be the most frequent ranking in the profile with probability 1 as n goes to
infinity. Thus, the modal ranking rule would be accurate in the limit.

Next, we show that the two conditions of Lemma 8.1 hold.

Condition 1: E[Z1
v]−E[Z2

v] > γ, where γ > 0 is a constant. To derive this, we lever-
age a result by Jiang et al. [115]. Using techniques from the proof of their Theorem 2,
it can be shown that if we obtain a ranking σ by sampling utilities from Gaussians and
ordering the alternatives by their sampled utilities, then for any ranking τ ∈ L(A) and
alternatives a, b ∈ A such that a �σ∗ b and a �τ b, we have Pr[σ = τ]− Pr[σ = τa↔b]
is at least a positive constant, where τa↔b denotes the ranking obtained by swapping
alternatives a and b in τ. That is, swapping two alternatives to match their order as in
σ∗ increases the probability of the ranking being sampled by at least a positive constant.
However, this result uses a lower bound on the variances of the Gaussian distributions
from which quality estimates are sampled. In our case, no such lower bound may exist
for vertices with high degree. However, in the absence of such a lower bound one can
still show that for the ranking σv of voter v, we have that Pr[σv = τ] − Pr[σv = τa↔b]
is non-negative for every τ ∈ L(A) (with a �τ b), and is at least a positive constant γ′

when τ = σ∗. This is presented as Lemma C.1 in Appendix C.1.
Finally, to show that Pr[σv = σ∗]− Pr[σv = σ] > γ (where γ > 0 is a constant), we

start from ranking σ and perform “bubble sort” to convert it into σ∗. That is, in each
iteration we find a pair that is ordered differently than in σ∗, and swap the pair. Note
that this process converges to σ∗ in at most m2 iterations, and the probability of the
ranking never decreases, and increases by at least γ′ in the last iteration. This proves
that condition 1 holds with γ = γ′.

Condition 2: Pr[Z1
v 6 Z2

v + δ] = O(1/(dv)1+ε) for constants δ, ε > 0. This condition is
very easy to establish. Again, take δ = 0.5. Then,

Pr[Z1
v 6 Z2

v + δ] = Pr[Z1
v = 0∨ Z2

v = 1] = Pr[σv 6= σ∗]

6 ∑
a,b∈A : a�σ∗b

Pr[Yv,a 6 Yv,b],

where the last transition holds because if σv does not match σ∗, then there exist alterna-
tives a and b such that a �σ∗ b but b �σv a (thus, Yv,a 6 Yv,b). However, note that this
probability is at most m2 times the probability obtained in condition 2 for PM-c rules,
which was O(1/(dv)2). Because the number of alternatives m is a constant in our model,
multiplying by m2 does not increase the order in terms of dv. Hence, condition 2 also
holds with ε = 1.

In conclusion, Lemma 8.1 implies that the modal ranking rule is accurate in the limit,
as required.

PD-c Rules. We want to show that strict scoring rules are accurate in the limit. Take
a strict scoring rule with score vector (α1, . . . , αm). Recall that αi > αi+1 for all i ∈
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{1, . . . , m− 1}. We use Lemma 8.1 to show that for every pair of alternatives a, b ∈ A
with a �σ∗ b, the score of a is greater than the score of b with probability 1 in the limit
as the number of voters goes to infinity. Then, applying the union bound over all pairs
of alternatives would yield the desired result.

Fix a, b ∈ A with a �σ∗ b. Let Z1
v and Z2

v denote the scores given by voter v to
alternatives a and b, respectively. Note that Z1

v and Z2
v are bounded random variables.

Then, Z1
V and Z2

V denote the overall scores of a and b, respectively. Next, we show that
the two conditions of Lemma 8.1 hold.

Condition 1: E[Z1
v]−E[Z2

v] > γ, where γ > 0 is a constant. Note that

E[Z1
v]−E[Z2

v]

=
m

∑
i=1

αi · (Pr[σv(a) = i]− Pr[σv(b) = i])

=
m−1

∑
j=1

(αj − αj+1) ·
j

∑
i=1

(Pr[σv(a) = i]− Pr[σv(b) = i]) (8.5)

Let us denote {1, . . . , j} by [j]. Then, E[Z1
v] − E[Z2

v] = ∑m−1
j=1 (αj − αj+1) · (Pr[σv(a) ∈

[j]]− Pr[σv(b) ∈ [j]]).
Jiang et al. [115] showed that Pr[σv(a) ∈ [j]]− Pr[σv(b) ∈ [j]] is at least a constant for

every j ∈ {1, . . . , m− 1}. However, they assume a constant lower and upper bound on
the variance. When the variance can be arbitrarily low, σv(a) and σv(b) would coincide
with σ∗(a) and σ∗(b), respectively, with very high probability. Thus, we cannot expect
Pr[σv(a) ∈ [j]] − Pr[σv(b) ∈ [j]] to be at least a constant for every j ∈ {1, . . . , m − 1}.
Instead, we can show that in our case with only a constant upper bound on the variance,
the difference is non-negative for every j ∈ {1, . . . , m − 1}, and at least a constant for
some j ∈ {1, . . . , m− 1}. This is presented as Lemma C.2 in Appendix C.1. Note that this
is sufficient to show that in Equation (8.5), E[Z1

v]−E[Z2
v] is at least a positive constant

because αj − αj+1 is at least a positive constant for every j ∈ {1, . . . , m− 1}.
Condition 2: Pr[Z1

v 6 Z2
v + δ] = O(1/(dv)1+ε) for constants δ, ε > 0. While establish-

ing condition 2 for the modal ranking rule, we proved that Pr[σv 6= σ∗] = O(1/(dv)2).
When σv = σ∗, then Z1

v = ασ∗(a) and Z2
v = ασ∗(b). Hence, Z1

v > Z2
v + δ for constant δ =

(1/2) ·minj∈{1,...,m−1} αj − αj+1. Thus, Pr[Z1
v 6 Z2

v + δ] 6 Pr[σv 6= σ∗] = O(1/(dv)1+ε)
is satisfied with ε = 1. �

While all strict positional scoring rules are accurate in the limit irrespective of the so-
cial network structure, one can show that other positional scoring rules such as plurality
are not always accurate in the limit; an example is presented in Appendix C.2.

8.4 Unequal Variance

In the previous section we showed that PM-c rules, the modal ranking rule, and strict
scoring rules are accurate in the limit when the independent conversations on the edges
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produce quality estimates from Gaussian distributions (with equal variance) and voters
aggregate them using a weighted mean. The equal variance assumption is perhaps the
most restrictive assumption in the model of Section 8.3. In this section, we analyze a
more general model, which is identical to the model of Section 8.3, except for allowing
Gaussians with different variance. Formally, we instantiate our general model using the
following model of quality estimates.

Quality estimates. For each edge e ∈ E and alternative a ∈ A, assume Xe,a ∼
N (µa, (νe,a)2). Crucially, we assume that all (νe,a)2 are upper bounded by a global con-
stant. For notational convenience, denote this constant by ν2. Hence, (νe,a)2 6 ν2 for all
e ∈ E and a ∈ A.

Computer-based simulations provided non-trivial counterexamples (presented in
Appendix C.3) showing that unequal variance invalidates Theorem 8.1 with respect to
strict positional scoring rules and the modal ranking rule.

Theorem 8.2. There exist a social network graph G = (V, E), true qualities of alternatives
{µa}a∈A, and Gaussian random variables Xe,a for each edge e ∈ E and alternative a ∈ A whose
variances depend on the alternative a, for which the modal ranking rule is not accurate in the
limit, and there exists a strict scoring rule (in particular, Borda count) which is not accurate in
the limit.

In a nutshell, the key insight is that we find a Gaussian distribution for each alter-
native a ∈ A such that ranking the alternatives based on a quality estimate sampled
from their Gaussian distribution leads to: (i) a ranking other than the true ranking is
returned with a probability higher than that of the true ranking itself, which causes the
modal ranking rule to fail to achieve accuracy in the limit, and (ii) the probabilities of
different alternatives being placed in various positions is such that between two alter-
natives, the less preferred alternative in the true ranking has greater expected Borda
score than the more preferred alternative, causing Borda count to violate accuracy in
the limit. Despite these counterintuitive phenomena, it holds that the top alternative in
the true ranking is ranked higher than the alternative ranked second in the true ranking
with probability strictly greater than 1/2, and a similar statement also holds for all other
pairs of alternatives, thereby ensuring that PM-c rules are accurate in the limit.

Happily, the success of PM-c rules is not a coincidence. Indeed, note that in our
proof of Theorem 8.1 we leverage the results of Jiang et al. [115] to prove condition 1
of Lemma 8.1 for PD-c rules and the modal ranking rule. Jiang et al. crucially assume
that all distributions have equal variance, and their results break down when this as-
sumption is violated. On the other hand, our proof for the accuracy in the limit of PM-c
rules does not rely on their results, and, in fact, does not make use of the equal vari-
ance assumption. Specifically, with unequal variance we have that Yv,a − Yv,b follows
the Gaussian distribution N (µa − µb, ∑e∈E(v)[wv(e)]2 · ((νe,a)2 + (νe,b)

2)). Note that our
proof only uses an upper bound on the variance of this Gaussian distribution, and the
variance is still upper bounded by 2 ν2 (Wv)2. Hence, for PM-c rules, the proof of The-
orem 8.1 goes through even with unequal variance, and shows that all PM-c rules are
accurate in the limit.
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Theorem 8.3. Assume that there exists a constant ν such that (νe,a)2 6 ν2 for all e ∈ E and
a ∈ A, and a universal constant D ∈ N such that ∑e∈E(v)[wv(e)]2 6 ∆2/(8 ν2 ln dv) for all
voters v with degree dv > D. Then, all PM-c rules are accurate in the limit irrespective of the
choices of the unknown parameters: the true qualities {µa}a∈A, the variances {(νe,a)2}e∈E,a∈A,
and the weights {wv(e)}v∈V,e∈E(v).

Theorem 8.3 establishes that PM-c rules are qualitatively more robust than PD-c rules and
the modal ranking rule in our setting: While PD-c rules and the modal ranking rule lose
their accuracy in the limit when relaxing the equal variance assumption, PM-c rules still
guarantee accuracy in the limit irrespective of all unknown parameters. In fact, observe
that in our proof for PM-c rules, we only require that for every pair of alternatives
a, b ∈ A with a �σ∗ b, we have (i) Pr[Yv,a > Yv,b] > 1/2, and (ii) both Yv,a and Yv,b are
sufficiently concentrated around their respective means µa and µb so that Pr[Yv,a 6 Yv,b] =
o(1/dv). Using this observation, we can extend the robustness of PM-c rules beyond the
restrictions imposed by Theorem 8.3 in both dimensions: the possible distributions on
the edges and the possible aggregation rules used by the voters.

For example, leveraging an elegant extension of the classic McDiarmid inequality
by Kontorovich [124], we can show that PM-c rules are accurate in the limit when the
distributions on the edges have finite “subgaussian diameter” (this includes all distri-
butions with bounded support and all Gaussian distributions) and voters use weighted
mean aggregation. On the other hand, using a concentration inequality for medians,
one can show that when the distributions on the edges are Gaussians with bounded
variance, then the voters could also use weighted median (instead of weighted mean)
aggregation, and PM-c rules would remain accurate in the limit.

8.5 Related Work

The work presented in this chapter is closely related to two papers by Conitzer [62,
63]. The independent conversations model of the latter paper was discussed above.
Importantly, the challenge Conitzer [63] addresses is quite different from ours: he is
interested in finding the maximum likelihood estimator (MLE) for the ground truth, i.e.,
he wants to know which of the two alternatives is more likely to be correct, given the
observed (binary) votes. The answer strongly depends on social network structure,
and his main result is that, in fact, the problem is #P-hard. In an earlier, brief note,
Conitzer [62] is also interested in the maximum likelihood approach to noisy voting
on a social network. While the model he introduces also extends to the case of more
than two alternatives, the assumptions of the model are such that the (known) network
structure is essentially irrelevant, that is, the maximum likelihood estimator is invariant
to network structure.

While the above papers are, to our knowledge, the only papers that deal with the
MLE approach to voting on a social network, there is a substantial body of work on
the MLE approach to voting more generally [7, 8, 9, 65, 70, 86, 136, 179, 206, 207, 209].
However, all of these papers assume that votes are drawn i.i.d. (conditional on the true
ranking) from a noise model.

196



A bit further afield, there is a large body of work that studies the diffusion of opin-
ions, votes, technologies, or products (but not ranked estimates) in a social network.
An especially pertinent example is the work of Mossel et al. [147], where at each time
step voters adopt the most popular opinion among their neighbors, and at some point
opinions are aggregated via the plurality rule. Other popular diffusion models include
the independent cascade model, the linear threshold model, and the DeGroot model [72]; see
the survey by Kleinberg [122] for a fascinating overview.

8.6 Discussion

Let us briefly discuss several pertinent issues.

Temporal dimension. While in our model each voter performs a one-time, synchronous
aggregation of information from its incident edges, in general voters may perform mul-
tiple and/or asynchronous updates. After k updates, the information possessed by a
voter would be a weighted aggregation of the information from all nodes up to dis-
tance k from the voter, although the weight associated with another voter at distance
k would presumably be exponentially small in k. Deriving positive robustness results
in this model seems to require making our simple covariance bounds more sensitive to
weights. We believe that Gaussian hypercontractivity results [145] may be helpful in
this context.

Opinions on vertices. The independence part of our extension of the independent con-
versations model seems to be a restrictive assumption because the conversations of a
voter with two other voters are likely to be positively correlated through the (prior) be-
liefs of the voter. In this sense, it seems more natural to consider a model where the
opinions are attached to vertices rather than edges. Specifically, one might consider a
model where the prior opinion of each voter is first drawn from a distribution, and then
voters are allowed to aggregate opinions from their neighbors. This leads to immedi-
ate impossibilities. Indeed, consider a star network where all peripheral voters give
weight 1 to the central voter and 0 to themselves (this does not violate the conditions of
Theorem 8.1). At the end, all peripheral voters would have perfectly correlated votes,
coinciding with the prior opinion of the central voter which is inaccurate with a signif-
icant probability. It follows that any reasonable anonymous voting rule, which would
output this opinion, would not be accurate in the limit. Interestingly, we can circumvent
this impossibility easily if we know the social network structure: We can simply return
the vote submitted by the central voter, which is guaranteed to be accurate as the central
voter assimilates information from many sources.

Ground truth and opinion formats. Finally, we assume that the ground truth is a true
quality for each alternative, which leads us to a random utility based model. Another
compelling alternative is to assume that the ground truth is only an ordinal ranking
of the alternatives. In this case, the samples on the edges would also be rankings (in-
stead of noisy quality estimates), and voters would aggregate rankings on their incident
edges using their own local voting rules. This model gives rise to many counterintuitive
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phenomena. For example, using Borda count to aggregate two rankings sampled from
the popular Mallows’ model [139] with noise parameters ϕ = 0.1 and ϕ = 0.9 leads to
a ranking that is not the ground truth being returned with higher probability than the
ground truth itself, ultimately showing that Borda count would not be accurate in the
limit. Remarkably, popular PM-c rules seem to be robust against such examples, hinting
at the possibility that PM-c rules may also possess compelling robustness properties in
this model.
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Chapter 9

A Worst-Case Approach to Voting

9.1 Introduction and Our Approach

In Chapters 7 and 8, we developed the robustness approach to voting, which strength-
ens the traditional MLE approach by designing voting rules that provide guarantees
with respect to not just a single noise model, but a wide family of noise models. This
required us to ask for weaker guarantees such as accuracy in the limit. While the rules
designed are relevant for large-scale applications, they may not be appropriate when
the number of votes is not large. In fact, even when the number of votes is extremely
small, one should be able to find a good estimate of the ground truth given that each
vote is highly accurate. However, the statistical framework of voting (including both
the robustness approach and the MLE approach) fail to provide guarantees in this case.

In this chapter, we propose a fundamentally different approach to aggregating noisy
votes, which alleviates all of the aforementioned concerns. Instead of assuming proba-
bilistic noise, we assume a known upper bound on the “total noise” in the input votes,
and allow the input votes to be adversarial subject to the upper bound. We emphasize
that in potential application domains there is no adversary that actively inserts errors
into the votes; we choose an adversarial error model to be able to correct errors even in
the worst case. This style of worst-case analysis — where the worst case is assumed to be
generated by an adversary — is prevalent in many branches of computer science, e.g.,
in the analysis of online algorithms [32], and in machine learning [26, 117].

We wish to design voting rules that do well in this worst-case scenario. From this
viewpoint, our approach is closely related to the extensive literature on error-correcting
codes. One can think of the votes as a repetition code: each vote is a transmitted noisy
version of a “message” (the ground truth). The task of the “decoder” is to correct ad-
versarial noise and recover the ground truth, given an upper bound on the total error.
The question is: how much total error can this “code” allow while still being able to
recover the ground truth?

In more detail, let d be a distance metric on the space of rankings. As an example,
recall that the Kendall tau (KT) distance between two rankings measures the number
of pairs of alternatives on which the two rankings disagree. Suppose that we receive
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n votes over the set of alternatives {a, b, c, d}, for an even n, and we know that the
average KT distance between the votes and the ground truth is at most 1/2. Can we
always recover the ground truth? No: in the worst-case, exactly n/2 agents swap the
two highest-ranked alternatives and the rest report the ground truth. In this case, we
observe two distinct rankings (each n/2 times) that only disagree on the order of the top
two alternatives. Both rankings have an average distance of 1/2 from the input votes,
making it impossible to determine which of them is the ground truth.

Let us, therefore, cast a larger net. Inspired by list decoding of error-correcting codes
(see, e.g., [107]), our main research question is:

Fix a distance metric d. Suppose that we are given n noisy rankings, and that the
average distance between these rankings and the ground truth is at most t. We wish
to recover a ranking that is guaranteed to be at distance at most k from the ground
truth. How small can k be, as a function of n and t?

9.2 Preliminaries

As in the previous chapters, let A be the set of alternatives (m = |A|), and L(A) be the
set of rankings over A. A profile π ∈ L(A)n is a collection of n votes (rankings). We are
interested in voting rules (technically, social welfare functions) f : L(A)n → L(A) that
map every profile to a ranking. Once again, following the notations from the previous
chapters, we assume that there exists an underlying ground truth ranking σ∗ ∈ L(A) of
the alternatives.

We use a distance metric d over L(A) to measure errors; the error of a vote σ
with respect to σ∗ is d(σ, σ∗), and the average error of a profile π with respect to σ∗

is d(π, σ∗) = (1/n) · ∑σ∈π d(σ, σ∗). We consider four popular distance metrics over
rankings in this chapter: the Kendall tau (KT) distance dKT, the (Spearman’s) footrule
(FR) distance dFR, the maximum displacement (MD) distance dMD, and the Cayley (CY)
distance dCY. The first three distance metrics are defined in Chapter 7. We define the
Cayley distance below.

• The Cayley (CY) distance, denoted dCY, measures the minimum number of swaps
(not necessarily of adjacent alternatives) required to convert one ranking into an-
other.

All four metrics described above are neutral: A distance metric is called neutral if the
distance between two rankings is independent of the labels of the alternatives; in other
words, choosing a relabeling of the alternatives and applying it to two rankings keeps
the distance between them invariant.

9.3 Worst-Case Optimal Rules

Suppose we are given a profile π of n noisy rankings that are estimates of an underlying
true ranking σ∗. In the absence of any additional information, any ranking could po-
tentially be the true ranking. However, because essentially all crowdsourcing methods
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draw their power from the often-observed fact that individual opinions are accurate on
average, we can plausibly assume that while some agents may make many mistakes,
the average error is fairly small. An upper bound on the average error may be inferred
by observing the collected votes, or from historical data (but see the next section for the
case where this bound is inaccurate).

Formally, suppose we are guaranteed that the average distance between the votes in
π and the ground truth σ∗ is at most t according to a metric d, i.e., d(π, σ∗) 6 t. With this
guarantee, the set of possible ground truths is given by the “ball” of radius t around π.

Bd
t (π) = {σ ∈ L(A) | d(π, σ) 6 t}.

Note that we have σ∗ ∈ Bd
t (π) given our assumption; hence, Bd

t (π) 6= ∅. We wish
to find a ranking that is as close to the ground truth as possible. Since our approach
is worst case in nature, our goal is to find the ranking that minimizes the maximum
distance from the possible ground truths in Bd

t (π). For a set of rankings S ⊆ L(A), let
its minimax ranking, denoted MINIMAXd(S), be defined as follows.1

MINIMAXd(S) = arg min
σ∈L(A)

max
σ′∈S

d(σ, σ′).

Let the minimax distance of S, denoted kd(S), be the maximum distance of MINIMAXd(S)
from the rankings in S according to d. Thus, given a profile π and the guarantee that
d(π, σ∗) 6 t, the worst-case optimal voting rule OPTd returns the minimax ranking of
the set of possible ground truths Bd

t (π). That is, for all profiles π ∈ L(A)n and t > 0,

OPTd(t, π) = MINIMAXd
(
Bd

t (π)
)

.

Furthermore, the output ranking is guaranteed to be at distance at most kd(Bd
t (π)) from

the ground truth. We overload notation, and denote kd(t, π) = kd(Bd
t (π)), and

kd(t) = max
π∈L(A)n

kd(t, π).

While kd is explicitly a function of t, it is also implicitly a function of n. Hereinafter, we
omit the superscript d whenever the metric is clear from context. Let us illustrate our
terminology with a simple example.

Example 9.1. Let A = {a, b, c}. We are given profile π consisting of 5 votes: π =
{2× (a � b � c), a � c � b, b � a � c, c � a � b}.

The maximum distances between rankings in L(A) allowed by dKT, dFR, dMD, and
dCY are 3, 4, 2, and 2, respectively; let us assume that the average error limit is half the
maximum distance for all four metrics.2

Consider the Kendall tau distance with t = 1.5. The average distances of all 6 rank-
ings from π are given below.

1We use MINIMAXd(S) to denote a single ranking. Ties among multiple minimizers can be broken
arbitrarily; our results are independent of the tie-breaking scheme.

2Scaling by the maximum distance is not a good way of comparing distance metrics; we do so for the
sake of illustration only.
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dKT(π, a � b � c) = 0.8 dKT(π, a � c � b) = 1.0
dKT(π, b � a � c) = 1.4 dKT(π, b � c � a) = 2.0
dKT(π, c � a � b) = 1.6 dKT(π, c � b � a) = 2.2

Thus, the set of possible ground truths is BdKT
1.5 (π) = {a � b � c, a � c � b, b � a �

c}. This set has a unique minimax ranking OPTdKT(1.5, π) = a � b � c, which gives
kdKT(1.5, π) = 1. Table 9.1 lists the sets of possible ground truths and their minimax
rankings3 under different distance metrics.

Voting Rule
Possible Ground

Truths Bd
t (π)

Output Ranking

OPTdKT(1.5, π),
OPTdCY(1, π)

{ a � b � c,
a � c � b,
b � a � c

}
a � b � c

OPTdFR(2, π),
OPTdMD(1, π)

{ a � b � c,
a � c � b

} {a � b � c,
a � c � b

}
Table 9.1: Application of the optimal voting rules on π.

Note that even with identical (scaled) error bounds, different distance metrics lead
to different sets of possible ground truths as well as different optimal rankings. This
demonstrates that the choice of the distance metric is important.

9.3.1 Upper Bound

Given a distance metric d, a profile π, and that d(π, σ∗) 6 t, we can bound k(t, π) using
the diameter of the set of possible ground truths Bt(π). For a set of rankings S ⊆ L(A),
denote its diameter by D(S) = maxσ,σ′∈S d(σ, σ′).

Lemma 9.1. 1
2 · D(Bt(π)) 6 k(t, π) 6 D(Bt(π)) 6 2t.

Proof. Let σ̂ = MINIMAX(Bt(π)). For rankings σ, σ′ ∈ Bt(π), we have
d(σ, σ̂), d(σ′, σ̂) 6 k(t, π) by definition of σ̂. By the triangle inequality, d(σ, σ′) 6 2k(t, π)
for all σ, σ′ ∈ Bt(π). Thus, D(Bt(π)) 6 2k(t, π).

Next, the maximum distance of σ ∈ Bt(π) from all rankings in Bt(π) is at most
D(Bt(π)). Hence, the minimax distance k(t, π) = k(Bt(π)) cannot be greater than
D(Bt(π)).

Finally, let π = {σ1, . . . , σn}. For rankings σ, σ′ ∈ Bt(π), the triangle inequality
implies d(σ, σ′) 6 d(σ, σi) + d(σi, σ′) for every i ∈ {1, . . . , n}. Averaging over these
inequalities, we get d(σ, σ′) 6 t + t = 2t, for all σ, σ′ ∈ Bt(π). Thus, we have
D(Bt(π)) 6 2t, as required. �

Lemma 9.1 implies that k(t) = maxπ∈L(A)n k(t, π) 6 2t for all distance metrics and
t > 0. In words:

3Multiple rankings indicate a tie that can be broken arbitrarily.
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Theorem 9.1. Given n noisy rankings at an average distance of at most t from an unknown true
ranking σ∗ according to a distance metric d, it is always possible to find a ranking at distance at
most 2t from σ∗ according to d.

Importantly, the bound of Theorem 9.1 is independent of the number of votes n.
Most statistical models of social choice restrict profiles in two ways: i) the average error
should be low because the probability of generating high-error votes is typically low,
and ii) the errors should be distributed almost evenly (in different directions from the
ground truth), which is why aggregating the votes works well. These assumptions are
mainly helpful when n is large, that is, performance may be poor for small n (see, e.g.,
Chapter 7). In contrast, our model restricts profiles only by making the first assumption
(explicitly), allowing voting rules to perform well as long as the votes are accurate on
average, independently of the number of votes n.

We also remark that Theorem 9.1 admits a simple proof, but the bound is nontrivial:
while the average error of the profile is at most t (hence, the profile contains a ranking
with error at most t), it is generally impossible to pinpoint a single ranking within the
profile that has error at most 2t with respect to the ground truth in the worst-case (i.e.,
with respect to every possible ground truth in Bt(π)). That said, it can be shown that
there exists a ranking in the profile that always has distance at most 3t from the ground
truth. Further, one can pick such a ranking in polynomial time, which stands in sharp
contrast to the usual hardness of finding the optimal ranking (see the discussion on the
computational complexity of our approach in Section 9.7).

Theorem 9.2. Given n noisy rankings at an average distance of at most t from an unknown
true ranking σ∗ according to a distance metric d, it is always possible to pick, in polynomial
time, one of the n given rankings that has distance at most 3t from σ∗ according to d.

Proof. Consider a profile π consisting of n rankings such that d(σ∗, π) 6 t. Let x =
minσ∈L(A) d(σ, π) be the minimum distance any ranking has from the profile. Then,
x 6 d(σ∗, π) 6 t. Let σ̂ = arg minσ∈π d(σ, π) be the ranking in π which minimizes the
distance from π among all rankings in π. An easy-to-verify folklore theorem says that
d(σ̂, π) 6 2x. To see this, assume that ranking τ has the minimum distance from the
profile (i.e., d(τ, π) = x). Now, the average distance of all rankings in π from π is

1
n ∑

σ∈π

d(σ, π) =
1
n2 ∑

σ∈π
∑

σ′∈π

d(σ, σ′) 6
1
n2 ∑

σ∈π
∑

σ′∈π

(d(τ, σ) + d(τ, σ′))

=
2
n ∑

σ∈π

d(τ, σ) = 2x 6 2t,

where the second transition uses the triangle inequality. Now, σ̂ has the smallest dis-
tance from π among all rankings in π, which cannot be greater than the average distance
(1/n)∑σ∈π d(σ, π). Hence, d(σ̂, π) 6 2t. Finally,

d(σ̂, σ∗) 6
1
n ∑

σ∈π

(
d(σ̂, σ) + d(σ, σ∗)

)
6 2t + t = 3t,
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where the first transition uses the triangle inequality and the second transition uses the
fact that d(σ̂, π) 6 2t and d(π, σ∗) 6 t. It is easy to see that σ̂ can be computed in O(n2)
time. �

9.3.2 Lower Bounds

The upper bound of 2t (Theorem 9.1) is intuitively loose — we cannot expect it to be
tight for every distance metric. However, we can complement it with a lower bound of
(roughly speaking) t/2 for all distance metrics. Formally, let d↓(r) denote the greatest
feasible distance under distance metric d that is less than or equal to r. Next, we prove
a lower bound of d↓(t)/2.

Theorem 9.3. For a distance metric d, k(t) > d↓(t)/2.

Proof. If d↓(t) = 0, then the result trivially holds. Assume d↓(t) > 0. Let σ and σ′ be
two rankings at distance d↓(t). Consider profile π consisting of only a single instance
of ranking σ. Then, σ′ ∈ Bt(π). Hence, D(Bt(π)) > d↓(t). Now, it follows from
Lemma 9.1 that k(t) > D(Bt(π))/2 > d↓(t)/2. �

Recall that Theorem 9.1 shows that k(t) 6 2t. However, k(t) is the minimax distance
under some profile, and hence must be a feasible distance under d. Thus, Theorem 9.1
actually implies a possibly better upper bound of d↓(2t). Together with Theorem 9.3,
this implies d↓(t)/2 6 k(t) 6 d↓(2t). Next, we show that imposing a mild assumption
on the distance metric allows us to improve the lower bound by a factor of 2, thus
reducing the gap between the lower and upper bounds.

Theorem 9.4. For a neutral distance metric d, k(t) > d↓(t).

Proof. For a ranking σ ∈ L(A) and r > 0, let Br(σ) denote the set of rankings at distance
at most r from σ. Neutrality of the distance metric d implies |Br(σ)| = |Br(σ′)| for all
σ, σ′ ∈ L(A) and r > 0. In particular, d↓(t) being a feasible distance under d implies
that for every σ ∈ L(A), there exists some ranking at distance exactly d↓(t) from σ.

Fix σ ∈ L(A). Consider the profile π consisting of n instances of σ. It holds that
Bt(π) = Bt(σ). We want to show that the minimax distance k(Bt(σ)) > d↓(t). Suppose
for contradiction that there exists some σ′ ∈ L(A) such that all rankings in Bt(σ) are at
distance at most t′ from σ′, i.e., Bt(σ) ⊆ Bt′(σ

′), with t′ < d↓(t). Since there exists some
ranking at distance d↓(t) > t′ from σ′, we have Bt(σ) ⊆ Bt′(σ

′) ( Bt(σ′), which is a
contradiction because |Bt(σ)| = |Bt(σ′)|. Therefore, k(t) > k(t, π) > d↓(t). �

The bound of Theorem 9.4 holds for all n, m > 0 and all t ∈ [0, D], where D is the
maximum possible distance under d. It can be checked easily that the bound is tight
given the neutrality assumption, which is an extremely mild — and in fact, a highly
desirable — assumption for distance metrics over rankings.

Theorem 9.4 improves the bounds on k(t) to d↓(t) 6 k(t) 6 d↓(2t) for a variety of
distance metrics d. However, for the four special distance metrics considered in this
chapter, the next result, which is our main theoretical result, closes this gap by estab-
lishing a tight lower bound of d↓(2t), for a wide range of values of n and t.
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Theorem 9.5. If d ∈ {dKT, dFR, dMD, dCY}, and the maximum distance allowed by the metric
is D ∈ Θ(mα), then there exists T ∈ Θ(mα) such that:

1. For all t 6 T and even n, we have k(t) > d↓(2t).
2. For all L > 2, t 6 T with {2t} ∈ (1/L, 1− 1/L), and odd n > Θ(L · D), we have

k(t) > d↓(2t). Here, {x} = x− bxc denotes the fractional part of x ∈ R.
The impossibility result of Theorem 9.5 is weaker for odd values of n (in particular,

covering more values of t requires larger n), which is reminiscent of the fact that repe-
tition (error-correcting) codes achieve greater efficiency with an odd number of repeti-
tions; this is not merely a coincidence. Indeed, an extra repetition allows differentiating
between tied possibilities for the ground truth; likewise, an extra vote in the profile
prevents us from constructing a symmetric profile that admits a diverse set of possible
ground truths.

Proof of Theorem 9.5. We denote {1, . . . , r} by [r] in this proof. We use σ(a) to denote the
rank (position) of alternative a in ranking σ. First, we prove the case of even n for all
four distance metrics. We later provide a generic argument to prove the case of large
odd n. First, we need a simple observation.

Observation 9.1. If (r
2) 6 b2tc and t > 0.5, then r 6 4

√
t.

Proof. Note that (r − 1)2 6 r · (r − 1) 6 2 · b2tc 6 4t. Hence, r 6 2
√

t + 1. We also
have t > 0.5, i.e., 1 6 2t. This implies 1 6

√
2t. Thus, we have r 6 2

√
t +
√

2t =

(2 +
√

2)
√

t 6 4
√

t. �

The Kendall Tau Distance: Let d be the Kendall tau distance; thus, D = (m
2 ) and α = 2.

Let n be even. For a ranking τ ∈ L(A), let τrev be its reverse. Assume t = (1/2) · (m
2 ),

and fix a ranking σ ∈ L(A). Every ranking must agree with exactly one of σ and σrev
on a given pair of alternatives. Hence, every ρ ∈ L(A) satisfies d(ρ, σ) + d(ρ, σrev) =
(m

2 ). Consider the profile π consisting of n/2 instances of σ and n/2 instances of σrev.
Then, the average distance of every ranking from rankings in π would be exactly t, i.e.,
Bt(π) = L(A). It is easy to check that k(L(A)) = (m

2 ) = 2t = d↓(2t) because every
ranking has its reverse ranking in L(A) at distance exactly 2t.

Now, let us extend the proof to t 6 (m/12)2. If t < 0.5, then d↓KT(2t) = 0, which is
a trivial lower bound. Hence, assume t > 0.5. Thus, d↓(2t) = b2tc. We use Fermat’s
Polygonal Number Theorem (see, e.g., [110]). A special case of this remarkable theorem
states that every natural number can be expressed as the sum of at most three “triangu-
lar” numbers, i.e., numbers of the form (k

2). Let b2tc = ∑3
i=1 (

mi
2 ). From Observation 9.1,

it follows that 0 6 mi 6 4
√

t for all i ∈ {1, 2, 3}. Hence, ∑3
i=1 mi 6 12

√
t 6 m.

Partition the set of alternatives A into four disjoint groups A1, A2, A3, and A4 such
that |Ai| = mi for i ∈ {1, 2, 3}, and |A4| = m−∑3

i=1 mi. Let σA4 be an arbitrary ranking
of the alternatives in A4; consider the partial order PA = A1 � A2 � A3 � σA4 over al-
ternatives in A. Note that a ranking ρ is an extension of PA iff it ranks all alternatives in
Ai before any alternative in Ai+1 for i ∈ {1, 2, 3}, and ranks alternatives in A4 according
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to σA4 . Choose arbitrary σAi ∈ L(Ai) for i ∈ {1, 2, 3} and define

σ = σA1 � σA2 � σA3 � σA4 ,

σ′ = σA1
rev � σA2

rev � σA3
rev � σA4 .

Note that both σ and σ′ are extensions of PA. Once again, take the profile π con-
sisting of n/2 instances of σ and n/2 instances of σ′. It is easy to check that a ranking
disagrees with exactly one of σ and σ′ on every pair of alternatives that belong to the
same group in {A1, A2, A3}. Hence, every ranking ρ ∈ L(A) satisfies

d(ρ, σ) + d(ρ, σ′) >
3

∑
i=1

(
mi

2

)
= b2tc . (9.1)

Clearly an equality is achieved in Equation (9.1) if and only if ρ is an extension of PA.
Thus, every extension of PA has an average distance of b2tc /2 6 t from π. Every
ranking ρ that is not an extension of PA achieves a strict inequality in Equation (9.1);
thus, d(ρ, π) > (b2tc+ 1)/2 > t. Hence, Bt(π) is the set of extensions of PA.

Given a ranking ρ ∈ L(A), consider the ranking in Bt(π) that reverses the partial
orders over A1, A2, and A3 induced by ρ. The distance of this ranking from ρ would
be at least ∑3

i=1 (
mi
2 ) = b2tc, implying k(Bt(π)) > b2tc. (In fact, it can be checked that

k(Bt(π)) = D(Bt(π)) = b2tc.)
We now proceed to prove the case of an even number of agents for the other three

distance metrics. First, if M is the minimum distance between two distinct rankings
under a distance metric d and t < M/2, then we have d↓(2t) = 0, which is a trivial
lower bound. Hence, we assume t > M/2.

The Footrule Distance: Let dFR denote the footrule distance; recall that given σ, σ′ ∈
L(A), dFR(σ, σ′) = ∑a∈A |σ(a)− σ′(a)|. The proof is along the same lines as the proof
for the Kendall tau distance, but uses a few additional clever ideas. It is known that the
maximum footrule distance between two rankings over m alternatives is D =

⌊
m2/2

⌋
,

and is achieved by two rankings that are reverse of each other [75]. Hence, we have
α = 2; thus, we wish to find T ∈ Θ(m2) for which the claim will hold. Formally writing
the distance between a ranking and its reverse, we get

dFR(σ, σrev) =
m

∑
i=1
|m + 1− 2i| =

⌊
m2

2

⌋
. (9.2)

Observation 9.2. The footrule distance between two rankings is always an even integer.

Proof. Take rankings σ, τ ∈ L(A). Note that dFR(σ, τ) = ∑a∈A |σ(a) − τ(a)|. Now,
|σ(a) − τ(a)| is odd if and only if the positions of a in σ and τ have different parity.
Since the number of odd (as well as even) positions is identical in σ and τ, the number
of alternatives that leave an even position in σ to go to an odd position in τ equals the
number of alternatives that leave an odd position in σ to go to an even position in τ.
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Thus, the number of alternatives for which the parity of the position changes is even.
Equivalently, the number of odd terms in the sum defining the footrule distance is even.
Hence, the footrule distance is an even integer. �

Hence, Equation (9.2) implies that d↓FR(2t) equals b2tc if b2tc is even, and equals
b2tc − 1 otherwise. Let r = d↓FR(2t). Hence, r is an even integer. We prove the result
for t 6 (m/8)2. In this case, we invoke the 4-gonal special case of Fermat’s Polygonal
Number Theorem (instead of the 3-gonal case invoked in the proof for the Kendall tau
distance): Every positive integer can be written as the sum of at most four squares. Let r/2 =
m2

1 + m2
2 + m2

3 + m2
4. Hence,

r =
(2m1)

2

2
+

(2m2)
2

2
+

(2m3)
2

2
+

(2m4)
2

2
. (9.3)

It is easy to check that mi 6
√

r/2 for i ∈ [4]. Thus, ∑4
i=1 2mi 6 8

√
r/2 6 8

√
t 6 m.

Let us partition the set of alternatives A into {Ai}i∈[5] such that |Ai| = 2mi for i ∈ [4]
and |A5| = m5 = m−∑4

i=1 2mi.
Fix σA5 ∈ L(A5) and consider the partial order PA = A1 � A2 � A3 � A4 � σA5 .

Choose arbitrary σAi ∈ L(Ai) for i ∈ [4], and let

σ = (σA1 � σA2 � σA3 � σA4 � σA5),

σ′ = (σA1
rev � σA2

rev � σA3
rev � σA4

rev � σA5).

Note that both σ and σ′ are extensions of PA. Consider the profile π consisting of n/2
instances of σ and σ′ each. Unlike the Kendall tau distance, Bt(π) is not the set of
extensions of PA . Still, we show that it satisfies k(Bt(π)) = D(Bt(π)) = d↓FR(2t) = r.

Denote by aj
i the alternative ranked j in σAi . Take a ranking ρ ∈ L(A). Consider

dFR(ρ, σ) + dFR(ρ, σ′). We have the following inequalities regarding the sum of dis-
placement of different alternatives between ρ and σ, and between ρ and σ′. For i ∈ [4]
and j ∈ [2mi],∣∣∣ρ(aj

i)− σ(aj
i)
∣∣∣+ ∣∣∣ρ(aj

i)− σ′(aj
i)
∣∣∣ > ∣∣∣σ(aj

i)− σ′(aj
i)
∣∣∣ = |j− (2mi + 1− j)|. (9.4)

Summing all the inequalities, we get

dFR(ρ, σ) + dFR(ρ, σ′) >
4

∑
i=1

2mi

∑
j=1
|2j− 2mi − 1| =

4

∑
i=1

(2mi)
2

2
= r, (9.5)

where the second transition follows from Equation (9.2), and the third transition follows
from Equation (9.3).

First, we show that ρ ∈ Bt(π) only if equality in Equation (9.5) holds. To see why,
note that the footrule distance is always even and r = d↓FR(2t) > b2tc − 1. Hence, if
equality is not achieved, then dFR(ρ, σ) + dFR(ρ, σ′) > r + 2 > b2tc − 1 + 1 > 2t. Hence,
the average distance of ρ from votes in π would be greater than t.
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On the contrary, if equality is indeed achieved in Equation (9.5), then the average
distance of ρ from votes in π is r/2 6 t. Hence, we have established that Bt(π) is the
set of rankings ρ for which equality is achieved in Equation (9.5).

For ρ to achieve equality in Equation (9.5), it must achieve equality in Equation (9.4)
for every i ∈ [4] and j ∈ [2mi], and it must agree with both σ and σ′ on the positions of
alternatives in A5 (i.e., σA5 must be a suffix of ρ). For the former to hold, the position of
aj

i in ρ must be between σ(aj
i) and σ′(aj

i) = σ(a2mi+1−j
i ) (both inclusive), for every i ∈ [4]

and j ∈ [2mi].
We claim that the set of rankings satisfying these conditions are characterized as

follows.

Bt(π) =
{

ρ ∈ L(A)
∣∣∣ {ρ(aj

i), ρ(a2mi+1−j
i )} = {σ(aj

i), σ(a2mi+1−j
i )}

for i ∈ [4], j ∈ [2mi], and

ρ(aj
5) = σ(aj

5) = σ′(aj
5) for j ∈ [m5]

}
. (9.6)

Note that instead of ρ(aj
i) and ρ(a2mi+1−j

i ) both being in the interval
[σ(aj

i), σ(a2mi+1−j
i )], we are claiming that they must be the two endpoints. First, con-

sider the middle alternatives in each Ai (i ∈ [4]), namely ami
i and ami+1

i . Both must be
placed between σ(ami

i ) = σ′(ami+1
i ) and σ(ami+1

i ) = σ′(ami
i ); but these two numbers

differ by exactly 1. Hence,{
ρ(ami

i ), ρ(ami+1
i )

}
=
{

σ(ami
i ), σ(ami+1

i )
}

.

Consider the two adjacent alternatives, namely ami−1
i and ami+2

i . Given that the middle
alternatives ami

i and ami+1
i occupy their respective positions in σ or σ′, the only posi-

tions available to ρ for placing the two adjacent alternatives are the endpoints of their
common feasible interval [σ(ami−1

i ), σ(ami+2
i )]. Continuing this argument, each pair of

alternatives (aj
i , a2mi+1−j

i ) must occupy the two positions {σ(aj
i), σ(a2mi+1−j

i )} for every
i ∈ [4] and j ∈ [mi].

That is, ρ can either keep the alternatives aj
i and a2mi+1−j

i as they are in σ, or place
them according to σ′ (equivalently, swapping them in σ) for every i ∈ [4] and j ∈ [2mi].
Note that these choices are independent of each other. We established that a ranking ρ
is in Bt(π) only if it is obtained in this manner and has σA5 as its suffix.

Further, it can be seen that each of these choices (keeping or swapping the pair in σ)
maintain dFR(ρ, σ) + dFR(ρ, σ′) invariant. Hence, all such rankings ρ satisfy dFR(ρ, σ) +
dFR(ρ, σ′) = r, and thus belong to Bt(π). This reaffirms our original claim that Bt(π) is
given by Equation (9.6).

In summary, all rankings in Bt(π) can be obtained by taking σ, and arbitrarily choos-
ing whether to swap the pair of alternatives aj

i and a2mi+1−j
i for each i ∈ [4] and j ∈ [2mi].

Note that σ, σ′ ∈ Bt(π) and dFR(σ, σ′) = r (this distance is given by the summation
in Equation (9.5)). Hence, D(Bt(π)) > r. Now, we prove that its minimax distance is
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at least r as well. Take a ranking ρ ∈ L(A). We need to show that there exists some
τ ∈ Bt(π) such that dFR(ρ, τ) > r.

Consider alternatives aj
i and a2mi+1−j

i for i ∈ [4] and j ∈ [2mi]. We know that τ must
satisfy {τ(aj

i), τ(a2mi+1−j
i )} = {σ(aj

i), σ(a2mi+1−j
i )} in order to belong to Bt(π). This

allows two possible ways for placing the pair of alternatives. Let τ pick the optimal
positions that maximize

τi,j(ρ) = |τ(aj
i)− ρ(aj

i)|+ |τ(a2mi+1−j
i )− ρ(a2mi+1−j

i )|.

That is, τi,j(ρ) should equal Mi,j(ρ), which we define as

max
{
|σ(aj

i)− ρ(aj
i)|+ |σ(a2mi+1−j

i )− ρ(a2mi+1−j
i )|,

|σ(a2mi+1−j
i )− ρ(aj

i)|+ |σ(aj
i)− ρ(a2mi+1−j

i )|
}

.

Note that the choice for each pair of alternatives (aj
i , a2mi+1−j

i ) can be made indepen-
dently of every other pair. Further, making the optimal choice for each pair guarantees
that dFR(ρ, τ) is at least

4

∑
i=1

2mi

∑
j=1

τi,j(ρ) =
4

∑
i=1

2mi

∑
j=1

Mi,j(ρ),

which we will now show to be at least r.
Algorithm 8 describes how to find the optimal ranking τ ∈ Bt(π) mentioned above,

which satisfies τi,j(ρ) = Mi,j(ρ) for every i ∈ [4] and j ∈ [2mi]. It starts with an arbitrary

τ ∈ Bt(π), and swaps every sub-optimally placed pair (aj
i , a2mi+1−j

i ) for i ∈ [4] and
j ∈ [2mi]. In the algorithm, τa↔b denotes the ranking obtained by swapping alternatives
a and b in τ.

Finally, we show that dFR(ρ, τ) > r. First, we establish the following lower bound
on Mi,j(ρ).

Mi,j(ρ) >
1
2

(
|σ(aj

i)− ρ(aj
i)|+ |σ(a2mi+1−j

i )− ρ(a2mi+1−j
i )|

+ |σ(a2mi+1−j
i )− ρ(aj

i)|+ |σ(aj
i)− ρ(a2mi+1−j

i )|
)

>|σ(a2mi+1−j
i )− σ(aj

i)|
=|2mi + 1− 2j|,

where the first transition holds because the maximum of two terms is at least as much
as their average, and the second transition uses the triangle inequality on appropriately
paired terms. Now, we have

dFR(τ, ρ) >
4

∑
i=1

2mi

∑
j=1

Mi,j(ρ) >
4

∑
i=1

2mi

∑
j=1
|2mi + 1− 2j| =

4

∑
i=1

(2mi)
2

2
= r,
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ALGORITHM 8: Finds a ranking in Bt(π) at footrule distance at least b2tc from a given ranking.
Data: Ranking ρ ∈ L(A)
Result: Ranking τ ∈ Bt(π) such that dFR(τ, ρ) > b2tc
τ ← an arbitrary ranking from Bt(π);
for i ∈ [4] do

for j ∈ [2mi] do
dj

i ← |ρ(aj
i)− τ(aj

i)|;
d2mi+1−j

i ← |ρ(a2mi+1−j
i )− τ(a2mi+1−j

i )|;
if dj

i + d2mi+1−j
i < Mi,j(ρ) then

τ ← τ
aj

i↔a
2mi+1−j
i

;

end
end

end
return τ;

where the third transition holds due to Equation (9.2), and the fourth transition holds
due to Equation (9.3). Hence, the minimax distance of Bt(π) is at least r = d↓FR(2t), as
required.

The Cayley Distance: Next, let dCY denote the Cayley distance. Recall that dCY(σ, τ)
equals the minimal number of swaps (of possibly non-adjacent alternatives) required in
order to transform σ to τ. It is easy to check that the maximum Cayley distance is D =

m− 1; hence, it has α = 1. We prove the result for t 6 m/4. Note that d↓CY(2t) = b2tc.
Define rankings σ, σ′ ∈ L(A) as follows.

σ = (a1 � . . . � a2b2tc︸ ︷︷ ︸ � a2b2tc+1 � . . . � am),

σ′ = (a2b2tc � . . . � a1︸ ︷︷ ︸ � a2b2tc+1 � . . . � am).

Let profile π consist of n/2 instances of σ and σ′ each. We claim that Bt(π) has the
following structure, which is very similar to the ball for the footrule distance.

Bt(π) =
{

ρ ∈ L(A)
∣∣∣ {ρ(ai), ρ(a2b2tc+1−i)} = {i, 2 b2tc+ 1− i} for i ∈ [b2tc],

and ρ(ai) = i for i > 2 b2tc
}

. (9.7)

First, we observe the following simple fact: If rankings τ and ρ mismatch (i.e., place
different alternatives) in r different positions, then dCY(τ, ρ) > r/2. Indeed, consider
the number of swaps required to convert τ into ρ. Since each swap can make τ and ρ
consistent in at most two more positions, it would take at least r/2 swaps to convert τ
into ρ, i.e., dCY(τ, ρ) > r/2.

Now, note that σ and σ′ mismatch in each of first 2 b2tc positions. Hence, every
ranking ρ ∈ L(A) must mismatch with at least one of σ and σ′ in each of first 2 b2tc
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positions. Together with the previous observation, this implies

dCY(ρ, σ) + dCY(ρ, σ′) > b2tc . (9.8)

Every ranking ρ that achieves equality in Equation (9.8) is clearly in Bt(π) because
its average distance from the votes in π is b2tc /2 6 t. Further, every ranking ρ that
achieves a strict inequality in Equation (9.8) is outside Bt(π) because its average dis-
tance from the votes in π is at least (b2tc+ 1)/2 > t. Hence, Bt(π) consists of rankings
that satisfy dCY(ρ, σ) + dCY(ρ, σ′) = b2tc.

Now, any ranking ρ satisfying equality in Equation (9.8) must be consistent with
exactly one of σ and σ′ in each of first 2 b2tc positions, and with both σ and σ′ in the
later positions. The former condition implies that for every i ∈ b2tc, ρ must place the
pair of alternatives (ai, a2b2tc+1−i) in positions i and 2 b2tc+ 1− i, either according to σ

or according to σ′. This confirms our claim that Bt(π) is given by Equation (9.7).
We now show that k(Bt(π)) > b2tc. Take a ranking ρ ∈ L(A). We construct a rank-

ing τ ∈ Bt(π) such that τ mismatches with ρ in each of first 2 b2tc positions. Together
with our observation that the Cayley distance is at least half of the number of positional
mismatches, this would imply that the minimax distance of Bt(π) is at least b2tc, as
required.

We construct τ by choosing the placement of the pair of alternatives (ai, a2b2tc+1−i),
independently for each i ∈ b2tc, in a way that τ mismatches with ρ in positions i and
2 b2tc+ 1− i both. Let I(X) denote the indicator variable that is 1 if statement X holds,
and 0 otherwise. Let r = I (ρ(ai) = i) + I

(
ρ(a2b2tc+1−i) = 2 b2tc+ 1− i

)
. Consider the

following three cases.

r = 0: Set τ(ai) = i and τ(a2b2tc+1−i) = 2 b2tc+ 1− i.
r = 1: Without loss of generality, assume ρ(ai) = i. Set τ(ai) = 2 b2tc + 1 − i and

τ(a2b2tc+1−i) = i.
r = 2: Set τ(ai) = 2 b2tc+ 1− i and τ(a2b2tc+1−i) = i.

Finally, set τ(ai) = i for all i > 2 b2tc. This yields a ranking τ that is in Bt(π), and
mismatches ρ in each of first 2 b2tc positions; hence, dCY(ρ, τ) > b2tc, as required.

The Maximum Displacement Distance: Finally, let dMD denote the maximum displace-
ment distance. Note that it can be at most D = m− 1; hence, it also has α = 1. How-
ever, this distance metric requires an entirely different technique than the ones used for
previous distances. For example, taking any two rankings at maximum distance from
each other does not work. We prove this result for t 6 m/4. Once again, note that
d↓MD(2t) = b2tc.

Consider rankings σ and σ′ defined as follows.

σ = (a1 � . . . � ab2tc︸ ︷︷ ︸ � ab2tc+1 � . . . � a2b2tc︸ ︷︷ ︸ � arest),

σ′ = (ab2tc+1 � . . . � a2b2tc︸ ︷︷ ︸ � a1 � . . . � ab2tc︸ ︷︷ ︸ � arest),
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where arest is shorthand for a2b2tc+1 � . . . � am. Note that the blocks of alternatives a1
through ab2tc and ab2tc+1 through a2b2tc are shifted to each other’s positions in the two
rankings. Thus, each of a1 through a2b2tc have a displacement of exactly b2tc between
the two rankings. Thus, dMD(σ, σ′) = b2tc.

Consider the profile π consisting of n/2 instances of σ and σ′ each. Clearly, σ and
σ′ have an average distance of b2tc /2 6 t from rankings in π. Hence, {σ, σ′} ∈ Bt(π).
Surprisingly, in this case we can show that the minimax distance of Bt(π) without any
additional information regarding the structure of Bt(π).

Take a ranking ρ ∈ L(A). The alternative placed first in ρ must be ranked at a
position b2tc or below in at least one of σ and σ′. Hence, max(dMD(ρ, σ), dMD(ρ, σ′)) >
b2tc. Thus, there exists a ranking in Bt(π) at distance at least b2tc from ρ, i.e., the
minimax distance of Bt(π) is at least b2tc, as desired.

This completes the proof of the special case of even n for all four distance metrics.
Now, consider the case of odd n.

Odd n: To extend the proof to odd values of n, we simply add one more instance of
σ than σ′. The key insight is that with large n, the distance from the additional vote
would have little effect on the average distance of a ranking from the profile. Thus,
Bt(π) would be preserved, and the proof would follow.

Formally, let L > 2 and t ∈ (1/L, 1− 1/L). For the case of even n, the proofs for all
four distance metrics proceeded as follows: Given the feasible distance r = d↓(2t), we
constructed two rankings σ and σ′ at distance r from each other such that Bt(π) is the
set of rankings at minimal total distance from the two rankings, i.e.,

Bt(π) =
{

ρ ∈ L(A) | d(ρ, σ) + d(ρ, σ′) = r
}

.

Let n > 3 be odd. Consider the profile π that has (n − 1)/2 instances of σ and σ′

each, and an additional instance of an arbitrary ranking. In our generic proof for all
four distance metrics, we obtain conditions under which Bt(π) = Bt(π′) where π′ is
obtained by removing the arbitrary ranking from π (and hence has an even number of
votes). We already proved that k(Bt(π′)) > d↓(2t). Hence, obtaining Bt(π) = Bt(π′)
would also show the lower bound d↓(2t) for odd n.

In more detail, our objective is that every ranking ρ with d(ρ, σ)+ d(ρ, σ′) = r (which
may have a worst-case distance of D from the additional arbitrary ranking) should be
in Bt(π), and every ranking ρ with d(ρ, σ) + d(ρ, σ′) > r should be outside Bt(π).

First, let d ∈ {dKT, dCY, dMD}. If d(ρ, σ) + d(ρ, σ′) > r, then d(ρ, σ) + d(ρ, σ′) > r + 1.
The total error incurred by rankings of distance r from π is n−1

2 · r, and a distance of D
from the additional ranking. This means that

t >
n−1

2 · r + D
n

.

For rankings with an error greater than r to be outside Bt(π), we must have

t <
n−1

2 · (r + 1)
n

.
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Combining the inequalities, we obtain that
n−1

2 · r + D
n

6 t <
n−1

2 · (r + 1)
n

⇔n− 1
2
· r + D 6 n · t < n− 1

2
· (r + 1)

⇔r +
2D

n− 1
6

2n
n− 1

· t < r + 1

⇔r 6 2t− 2D− 2t
n− 1

< r +
(

1− 2D
n− 1

)
. (9.9)

Choose n > 2LD + 1. Then, 2D/(n− 1) 6 1/L < {2t}. Note that⌊
2t− 2D− 2t

n− 1

⌋
=

⌊
b2tc+ {2t} − 2D− 2t

n− 1

⌋
= b2tc ,

where the last equality holds because we showed (2D− 2t)/(n− 1) < {2t}.
In all three distance metrics considered thus far, we had b2tc = d↓(2t). Let r =

b2tc. We show that r = b2tc satisfies Equation (9.9), thus yielding Bt(π) with minimax
distance at least r = d↓(2t), as required. Note that

r 6 2t− 2D− 2t
n− 1

is satisfied by definition from Equation (9.9). We also have(
2t− 2D− 2t

n− 1

)
−
(

r + 1− 2D
n− 1

)
= 2t +

2t
n− 1

− b2tc − 1

= {2t}+ 2t
n− 1

− 1

< 1− 1
L
+

1
L
− 1 = 0.

Hence, we have k(t) > d↓(2t) for n > 2LD + 1.
Next, consider the footrule distance. If b2tc is even (i.e., if b2tc = d↓(2t)), then the

above proof works because r = b2tc is a feasible distance. If b2tc is odd, then we must
choose r = b2tc − 1. However, we have an advantage: since the footrule distance is
always even, every ranking ρ with d(ρ, σ) + d(ρ, σ′) > r must have d(ρ, σ) + d(ρ, σ′) >
r + 2. Hence, we only need

n−1
2 · r + D

n
6 t <

n−1
2 · (r + 2)

n

⇔ r 6 2t− 2D− 2t
n− 1

< r +
(

2− 2D
n− 1

)
. (9.10)

Note that r = b2tc − 1 clearly satisfies the first inequality in Equation (9.10). For the
second inequality, note that r decreased by 1 compared to earlier but 1− 2D/(n − 1)
increased to 2− 2D/(n− 1) instead. Hence, the second inequality is still satisfied, and
we get Bt(π) with minimax distance at least r = b2tc − 1 = d↓(2t), as required. �
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9.4 Approximations for Unknown Average Error

In the previous sections we derived the optimal rules when the upper bound t on the
average error is given to us. In practice, the given bound may be inaccurate. We know
that using an estimate t̂ that is still an upper bound (t̂ > t) yields a ranking at distance
at most 2t̂ from the ground truth in the worst case. What happens if it turns out that
t̂ < t? We show that the output ranking is still at distance at most 4t from the ground
truth in the worst case.

Theorem 9.6. For a distance metric d, a profile π consisting of n noisy rankings at an average
distance of at most t from the true ranking σ∗, and t̂ < t, d(OPTd(t̂, π), σ∗) 6 4t.

To prove the theorem, we make a detour through minisum rules. For a distance met-
ric d, let MINISUMd, be the voting rule that always returns the ranking minimizing the
sum of distances (equivalently, average distance) from the rankings in the given profile
according to d. Two popular minisum rules are the Kemeny rule for the Kendall tau
distance (MINISUMdKT) and the minisum rule for the footrule distance (MINISUMdFR),
which approximates the Kemeny rule [79].4 For a distance metric d (dropped from the
superscripts), let d(π, σ∗) 6 t. We claim that the minisum ranking MINISUM(π) is at
distance at most min(2t, 2k(t, π)) from σ∗. This is true because the minisum ranking
and the true ranking are both in Bt(π), and Lemma 9.1 shows that its diameter is at
most min(2t, 2k(t, π)).

Returning to the theorem, if we provide an underestimate t̂ of the true worst-case
average error t, then using Lemma 9.1,

d
(
MINIMAX(Bt̂(π)), MINISUM(π

)
) 6 2t̂ 6 2t,

d (MINISUM(π), σ∗) 6 D(Bt(π)) 6 2t.

By the triangle inequality, d
(
MINIMAX(Bt̂(π)), σ∗

)
6 4t.

9.5 Experimental Results

We compare our worst-case optimal voting rules OPTd against a plethora of voting rules
used in the literature: plurality, Borda count, veto, the Kemeny rule, single transferable
vote (STV), Copeland’s rule, Bucklin’s rule, the maximin rule, Slater’s rule, Tideman’s
rule, and the modal ranking rule (for definitions see Chapter 7).

Our performance measure is the distance of the output ranking from the actual
ground truth. In contrast, for a given d, OPTd is designed to optimize the worst-case
distance to any possible ground truth. Hence, crucially, OPTd is not guaranteed to outper-
form other rules in our experiments.

4Minisum rules such as the Kemeny rule are also compelling because they often satisfy attractive social
choice axioms. However, it is unclear whether such axioms contribute to the overall goal of effectively
recovering the ground truth.
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We use two real-world datasets containing ranked preferences in domains where
ground truth rankings exist. Mao et al. [140] collected these datasets — dots and puzzle
— via Amazon Mechanical Turk. For dataset dots (resp., puzzle), human workers were
asked to rank four images that contain a different number of dots (resp., different states
of an 8-Puzzle) according to the number of dots (resp., the distances of the states from
the goal state). Each dataset has four different noise levels (i.e., levels of task difficulty),
represented using a single noise parameter: for dots (resp., puzzle), higher noise corre-
sponds to ranking images with a smaller difference between their number of dots (resp.,
ranking states that are all farther away from the goal state). Each dataset has 40 profiles
with approximately 20 votes each, for each of the 4 noise levels. Points in our graphs
are averaged over the 40 profiles in a single noise level of a dataset.

First, as a sanity check, we verified (Figure 9.1) that the noise parameter in the
datasets positively correlates with our notion of noise — the average error in the profile,
denoted t∗ (averaged over all profiles in a noise level). Notably, the results from the two
datasets are almost identical!
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Figure 9.1: Positive correlation of t∗ with the noise parameter

Next, we compare OPTd and MINISUMd against the voting rules listed above, with
distance d as the measure of error. We use the average error in a profile as the bound t
given to OPTd, i.e., we compute OPTd(t∗, π) on profile π where t∗ = d(π, σ∗). While
this is somewhat optimistic, note that t∗may not be the (optimal) value of t that achieves
the lowest error. Also, the experiments below show that a reasonable estimate of t∗ also
suffices.

Figures 9.2(a) and 9.2(b) show the results for the dots and puzzle datasets, respec-
tively, under the Kendall tau distance. It can be seen that OPTdKT (solid red line) signif-
icantly outperforms all other voting rules. The three other distance metrics considered
in this chapter generate similar results; the corresponding graphs are presented in the
appendix.

Finally, we test OPTd in the more demanding setting where only an estimate t̂ of
t∗ is provided. To synchronize the results across different profiles, we use r = (t̂ −
MAD)/(t∗ −MAD), where MAD is the minimum average distance of any ranking from
the votes in a profile, that is, the average distance of the ranking returned by MINISUMd

from the input votes. For all profiles, r = 0 implies t̂ = MAD (the smallest value that
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Figure 9.2: Performance of different voting rules (Figures 9.2(a) and 9.2(b)), and of OPT
with varying t̂ (Figures 9.2(c) and 9.2(d)).

admits a possible ground truth) and r = 1 implies t̂ = t∗ (the true average error). In our
experiments we use r ∈ [0, 2]; here, t̂ is an overestimate of t∗ for r ∈ (1, 2] (a valid upper
bound on t∗), but an underestimate of t∗ for r ∈ [0, 1) (an invalid upper bound on t∗).

Figures 9.2(c) and 9.2(d) show the results for the dots and puzzle datasets, respec-
tively, for a representative noise level (level 3 in previous experiments) and the Kendall
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tau distance. We can see that OPTdKT (solid red line) outperforms all other voting rules
as long as t̂ is a reasonable overestimate of t∗ (r ∈ [1, 2]), but may or may not outperform
them if t̂ is an underestimate of t∗. Again, other distance metrics generate similar results
(see the appendix for details).

Comments on the empirical results. It is genuinely surprising that on real-world
datasets, OPTd (a rule designed to work well in the worst-case) provides a significantly
superior average-case performance compared to most prominent voting rules by uti-
lizing minimal additional information — an approximate upper bound on the average
error in the input votes.

The inferior performance of methods based on probabilistic models of error is also
thought provoking. After all, these models assume independent errors in the input
votes, which is a plausible assumption in crowdsourcing settings. But such probabilistic
models typically assume a specific structure on the distribution of the noise, e.g., the
exponential distribution in Mallows’ model [139], and it is almost impossible that noise
in practice would follow this exact structure. In contrast, our approach only requires a
loose upper bound on the average error in the input votes. In crowdsourcing settings
where the noise is highly unpredictable, it can be argued that the principal may not be
able to judge the exact distribution of errors, but may be able to provide an approximate
bound on the average error.

9.6 Related Work

Our work is related to the extensive literature on error-correcting codes that use per-
mutations (see, e.g., [17], and the references therein), but differs in one crucial aspect.
In designing error-correcting codes, the focus is on two choices: i) the codewords, a sub-
set of rankings which represent the “possible ground truths”, and ii) the code, which
converts every codeword into the message to be sent. These choices are optimized to
achieve the best tradeoff between the number of errors corrected and the rate of the
code (efficiency), while allowing unique identification of the ground truth. In contrast,
our setting has fixed choices: i) every ranking is a possible ground truth, and ii) in
coding theory terms, our setting constrains us to the repetition code. Both restrictions
(inevitable in our setting) lead to significant inefficiencies, as well as the impossibility
of unique identification of the ground truth (as illustrated in the introduction). Our re-
search question is reminiscent of coding theory settings where a bound on adversarial
noise is given, and a code is chosen with the bound on the noise as an input to maximize
efficiency (see, e.g., [109]).

List decoding (see, e.g., [107]) relaxes classic error correction by guaranteeing that
the number of possible messages does not exceed a small quota; then, the decoder sim-
ply lists all possible messages. The motivation is that one can simply scan the list and
find the correct message, as all other messages on the list are likely to be gibberish. In
the voting context, one cannot simply disregard some potential ground truths as non-
sensical; we therefore select a ranking that is close to every possible ground truth.
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Our model is also reminiscent of the distance rationalizability framework from the
social choice literature [143]. In this framework, there is a fixed set of “consensus pro-
files” that admit an obvious output. Given a profile of votes, one finds the closest con-
sensus profile (according to some metric), and returns the obvious output for that pro-
file. Our model closely resembles the case where the consensus profiles are strongly
unanimous, i.e., they consist of repetitions of a single ranking (which is also the ideal
output). The key difference in our model is that instead of focusing solely on the closest
ranking (strongly unanimous profile), we need to consider all rankings up to an aver-
age distance of t from the given profile — as they are all plausible ground truths — and
return a single ranking that is at distance at most k from all such rankings.

A bit further afield, Procaccia et al. [176] study a probabilistic noisy voting setting,
and quantify the robustness of voting rules to random errors. Their results focus on
the probability that the outcome would change, under a random transposition of two
adjacent alternatives in a single vote from a submitted profile, in the worst-case over
profiles. Their work is different from ours in many ways, but perhaps most importantly,
they are interested in how frequently common voting rules make mistakes, whereas we
are interested in the guarantees of optimal voting rules that avoid mistakes.

9.7 Discussion

Uniformly accurate votes. Motivated by crowdsourcing settings, we considered the
case where the average error in the input votes is guaranteed to be low. Instead, suppose
we know that every vote in the input profile π is at distance at most t from the ground
truth σ∗, i.e., maxσ∈π d(σ, σ∗) 6 t. If t is small, this is a stronger assumption because
it means that there are no outliers, which is implausible in crowdsourcing settings but
plausible if the input votes are expert opinions. In this setting, it is immediate that any
vote in the given profile is at distance at most d↓(t) from the ground truth. Moreover,
the proof of Theorem 9.4 goes through, so this bound is tight in the worst case; however,
returning a ranking from the profile is not optimal for every profile.

Randomization. We did not consider randomized rules, which may return a distribu-
tion over rankings. If we take the error of a randomized rule to be the expected distance
of the returned ranking from the ground truth, it is easy to obtain an upper bound of
t. Again, the proof of Theorem 9.4 can be extended to yield an almost matching lower
bound of d↓(t). While randomized rules provide better guarantees, they are often im-
practical: low error is only guaranteed when rankings are repeatedly selected from the
output distribution of the randomized rule on the same profile; however, most social
choice settings see only a single outcome realized.5

Complexity. A potential drawback of the proposed approach is computational com-
plexity. For example, consider the Kendall tau distance. When t is small enough, only
the Kemeny ranking would be a possible ground truth, and OPTdKT or any finite ap-
proximation thereof must return the Kemeny ranking, if it is unique. TheNP-hardness

5Exceptions include cases where randomization is used for circumventing impossibilities [34, 61, 168].
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of computing the Kemeny ranking [20] therefore suggests that computing or approxi-
mating OPTdKT is NP-hard.

One way to circumvent this computational obstacle is picking a ranking from the
given profile, which provides a weaker bound of 3t instead of 2t on the distance from
the unknown ground truth (see Theorem 9.2). However, in practice the optimal rank-
ing can also be computed using various fixed-parameter tractable algorithms, integer
programming solutions, and other heuristics, which are known to provide good perfor-
mance for these types of computational problems (see, e.g., [23, 24]). More importantly,
the crowdsourcing settings that motivate our work inherently restrict the number of al-
ternatives to a relatively small constant: a human would find it difficult to effectively
rank more than, say, 10 alternatives. With a constant number of alternatives, we can
simply enumerate all possible rankings in polynomial time, making each and every
computational problem considered in this chapter tractable. In fact, this is what we did
in our experiments. Therefore, we do not view computational complexity as an insur-
mountable obstacle.
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Appendix A

Omitted Proofs and Results for
Chapter 2

A.1 The MNW Solution

The MNW solution is formally described in Algorithm 9. Computing an MNW solution
consists of two stages: i) finding a largest set of players S to which one can simultane-
ously provide a positive utility, and ii) finding an allocation of the goods to players in
S that maximizes their product of utilities. The implementation of the latter stage is
described in detail in Section 2.5. For the former stage, S can be computed as follows.

Create a bipartite graph G with the players on one side and the goods on the other,
and add an edge from player i to good g iff vi(g) > 0.1 For additive valuations —
and more generally, for submodular valuations — it holds that if a player has a positive
value for a bundle of goods, there must exist a good g in the bundle such that the player
has a positive value for the singleton set {g}. Thus, at least for submodular valuations,
to provide a positive utility to the maximum number of players it is sufficient to restrict
our attention to allocations that assign at most one good to each player, i.e., represent a
matching in the graph G. Our desired set S can now be computed as the set of players
satisfied under a maximum cardinality matching in G. There are many popular poly-
nomial time algorithms that one can use to find a maximum cardinality matching in a
bipartite graph, e.g., the Hopcroft-Karp method.

Finally, we remark that while the set S can be computed in polynomial time for
submodular (and thus for additive) valuations, this may be a computationally hard task
for other classes of valuation functions.

A.2 Implementation on Spliddit

Section 2.5 outlines an implementation of the MNW solution when all the goods are
indivisible. In contrast, our fair division website Spliddit allows an arbitrary mix of

1Recall that vi(g) is shorthand for vi({g}).
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ALGORITHM 9: The MNW solution
Input: The set of players N , the set of indivisible goodsM, and players’ valuations {vi}i∈N
Output: An MNW allocation ~AMNW

S ∈ arg max
T⊆N such that

∃~A∈Πn(M), ∀i∈T, vi(Ai)>0

|T|; // a largest set of players that can be

simultaneously given a positive utility

~A∗ ← arg max~A∈Π|S|(M) ∏i∈S vi(Ai); // The MNW allocation to players in S
~AMNW

i ← A∗i , ∀i ∈ S;
~AMNW

i ← ∅, ∀i ∈ N \ S; // Players in N \ S do not receive goods

divisible and indivisible goods, for which we designed an implementation that builds
on the implementation of Section 2.5.
Splitting divisible goods:

As described in Section 2.7, one approach is to split each divisible good into k iden-
tical indivisible goods, and apply the MNW solution on the resulting set of indivisible
goods. When k goes to infinity, this approach perfectly simulates the divisible goods,
and gives the following relaxation of EF in addition to Pareto optimality (PO):

For every pair of players i and j, there exists an indivisible good in player
j’s bundle such that player i does not envy player j after removing it from
player j’s bundle.

However, splitting each divisible good into infinitely many indivisible goods is com-
putationally not feasible. In practice, it suffices to split each divisible good into 100
indivisible goods, which provides the following relaxation of EF in addition to PO:

For every pair of players i and j, there exists either an indivisible good or
1% of a divisible good in player j’s bundle such that player i does not envy
player j after removing it from player j’s bundle.

Final implementation:

Explicitly splitting each divisible good into 100 identical indivisible goods results in
two computational challenges:

1. The number of goods, and, as a result, the number of decision variables in the
resulting MILP increase significantly.

2. The number of constraints required to encode the piecewise-linear approximation
of the logarithm function (in the form of segments or tangents on the log curve)
is proportional to the number of possible utility levels that a player can achieve,
which also increases from 1000 to 1000× 100.

The former can be alleviated almost completely. Recall that the first step to comput-
ing the MNW solution is to find a largest set of players that can simultaneously derive
a positive utility. This requires computing a maximum-cardinality matching, for which
we use the MatlabBGL library.2 Since the maximum-cardinality algorithm works on

2https://www.cs.purdue.edu/homes/dgleich/packages/matlab bgl
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sparse graphs and is extremely fast in practice, the increased number of goods is not an
issue in this step.

The next step is to compute the MNW solution for the reduced set of players using
the MILP of Figure 2.4. Here, the increased number of goods could affect the running
time significantly. However, note that the indivisible goods created from a divisible
good g are identical. Hence, we can retain the original decision variables xi,g, but use
them to denote the number of parts (out of 100) of good g that player i receives, rather
than denoting whether player i receives good g entirely. In particular, for each divisible
good g and each player i, we replace all the occurrences of xi,g in the MILP of Figure 2.4
with xi,g/100, and replace xi,g ∈ {0, 1} with xi,g ∈ {0, 1, . . . , 100}. The resulting MILP
still has n ·m integer (though, not binary) variables and n continuous variables, and we
solve it using CPLEX.

Finally, for the latter challenge, note that although the number of possible utility
levels that a player can achieve could, in the worst case, be 105, in practice it is signif-
icantly smaller. We use a preprocessing step to identify the possible utility levels for
each player using a variant of the standard dynamic programming algorithm for the
Knapsack problem, implemented efficiently in MATLAB through vectorization.

A.3 The Elusive Combination of EF1 and PO

In this section, we provide examples of several candidate solutions that fail to achieve
EF1 and PO together for additive valuations — two properties that are fairly easy to
achieve individually. This serves as a backdrop to our argument that it is compelling —
even surprising — that the MNW solution achieves the two properties together (Theo-
rem 2.1).

Example A.1 (Rounding any MNW allocation for divisible goods violates EF1). The
example we provide requires only 3 players but 31 goods. Let the set of players be
N = {1, 2, 3}. Suppose we have four types of goods: a single good of type a, and 10
goods each of types b, c, and d. Each player identically values all goods of the same
type. Let the valuations of the players (specified only as a function of the type of the
good) be as follows:

Type a Type b Type c Type d

Player 1 20 1 1.3 1.3
Player 2 15 0 1 1.3
Player 3 10 0 0 1

Using the KKT conditions, one can check that the unique MNW allocation when all
goods are divisible is as follows. All the goods of type b, c, and d are allocated entirely
to players 1, 2, and 3, respectively. The single good of type a is divided between the
players such that players 1, 2, and 3 receive a 10/18, 7/18, and 1/18 fraction of the
good, respectively.

Let us now find an allocation for indivisible goods by rounding this MNW allocation
for divisible goods. Because the allocation for divisible goods does not divide goods of
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types b, c, and d, no rounding scheme can alter the allocation of these goods. However,
we now show that subject to this constraint, allocating the single good of type a entirely
to any single player violates EF1. Indeed, if we allocate the good to player 1 (resp.
player 2), player 2 (resp. player 1) envies player 3 even after removing any single good
from player 3’s bundle. If we allocate the good to player 3, player 1 envies player 2 even
after removing any single good from player 2’s bundle.

This shows that in this example, no rounding scheme applied to the unique MNW
allocation for divisible goods can produce an EF1 allocation of indivisible goods. Be-
cause Theorem 2.1 asserts that an MNW allocation of indivisible goods is guaranteed
to be EF1 and PO, this is also a fascinating example in which no way of rounding the
MNW allocation for divisible goods produces an MNW allocation for indivisible goods.
In other words, an MNW allocation for indivisible goods inevitably gives at least one
good to a player that receives a zero fraction of that good under the MNW solution for
divisible goods.

In the economics literature, three popular notions of welfare — utilitarian, Nash, and
egalitarian — are often arranged on a spectrum in which maximizing the utilitarian wel-
fare is considered the most efficient, maximizing the egalitarian welfare is considered
the fairest, and maximizing the Nash welfare is considered a good tradeoff between
efficiency and fairness. While at first glance this interpretation may seem true in our
setting as well — maximizing the Nash welfare does achieve both fairness (EF1) and
efficiency (PO) — note that there is no “tradeoff” because, as the next example shows,
maximizing either of the two other welfare notions does not guarantee EF1. From this
axiomatic viewpoint, maximizing the Nash welfare in fact leads to a fairer outcome than
maximizing either one of the other notions.

Example A.2 (Maximizing the utilitarian or the egalitarian welfare violates EF1). The
fact that maximizing the utilitarian welfare violates EF1 is very easy to see. Let the
set of players be N = {1, 2}, the set of goods be M = {g1, g2, g3}, and the additive
valuations of the players be as follows:

g1 g2 g3

Player 1 1/2 1/2 0
Player 2 2/5 2/5 1/5

Note that the unique allocation that maximizes the utilitarian welfare allocates goods g1
and g2 to player 1, and good g3 to player 2, causing player 2 to envy player 1 even after
removal of any single good from player 1’s bundle.

To show that maximizing the egalitarian welfare violates EF1, we use a slightly more
involved example. Let the set of players be N = {1, 2, 3}, the set of goods be M =
{g1, g2, g3, g4}, and the additive valuations of the players be as follows:

g1 g2 g3 g4

Player 1 1 0 0 0
Player 2 2/3 0 1/6 1/6
Player 3 0 1/5 2/5 2/5
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First, to achieve a positive egalitarian welfare we must allocate good 1 to player 1. Sub-
ject to this, the egalitarian welfare is uniquely maximized when good g2 is allocated to
player 3, and both goods g3 and g4 are allocated to player 2. However, this causes player
3 to envy player 2 even after removal of any single good from player 2’s bundle.

Example A.3 (Maximizing the utilitarian/egalitarian welfare subject to EF1). The fol-
lowing counterexample shows that maximizing the utilitarian welfare subject to EF1
violates PO. This example was discovered using computer simulations. Let the set of
players be N = {1, 2, 3, 4}, the set of goods beM = {gi}i∈[10], and the additive valua-
tions of the players be as follows:

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10

1 0.0426 0.0004 0.1019 0.1503 0.0541 0.1782 0.1212 0.0259 0.1574 0.1681
2 0.0365 0.0004 0.2311 0.1479 0.0649 0.1150 0.1501 0.1894 0.0285 0.0362
3 0.1124 0.0972 0.0574 0.0956 0.1441 0.1461 0.0674 0.1272 0.0254 0.1273
4 0.0368 0.0582 0.0242 0.0784 0.1844 0.1260 0.1124 0.1121 0.1610 0.1064

It can be checked that maximizing the utilitarian welfare subject to the EF1 constraint
results in the following allocation ~A:

A1 = {g6, g7, g10}, A2 = {g3, g4, g8}, A3 = {g1, g2}, and A4 = {g5, g9}.

However, this allocation is not Pareto optimal. An alternative allocation in which
players 1 and 2 exchange goods g7 and g4 improves the utility to both players 1 and 2
while keeping the utility to both players 3 and 4 unaltered. This alternative allocation is
not selected in the first place because it violates EF1 (player 3 now envies player 1 even
after the removal of any single good from player 1’s bundle).

It is easy to see why maximizing the egalitarian welfare subject to EF1 violates PO.
Suppose the set of players isN = {1, 2, 3}, and the set of goods isM = {g1, g2, g3}. Let
the valuations of the players be as follows:

g1 g2 g3

Player 1 2/3 1/3 0
Player 2 1/3 2/3 0
Player 3 1/3 1/3 1/3

Clearly the optimal egalitarian welfare is 1/3 in this example. An EF1 allocation ~A
that achieves this optimal welfare is given by A1 = {g2}, A2 = {g1}, and A3 = {g3}.
However, this is clearly not PO: if players 1 and 2 exchange their bundles, they can both
be better off without reducing the utility to player 3. Hence, maximizing the egalitarian
welfare (at least naı̈vely) subject to EF1 is not PO.

While EF1 and PO are both mild properties by themselves, their combination is sur-
prisingly elusive, which provides a justification for the MNW solution. However, EF1
and PO by themselves are not sufficient to always guarantee a desirable outcome. The
following observations illustrate why.

Example A.4. Imagine we have a set of two players N = {1, 2}, and a set of two goods
M = {g1, g2}. Suppose player 1 values both goods equally, and player 2 only values
good g2.
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In this case, the only intuitively fair outcome (which is also the outcome that the
MNW solution selects) assigns good g1 to player 1, and good g2 to player 2. However,
note that assigning both goods to player 1 also satisfies EF1 and PO, but is clearly un-
desirable.

More formally, we can argue that, while the MNW solution provides πn =
1/Θ(

√
n)-approximation of the MMS guarantee, simply restricting the allocation to be

EF1 and PO gives a worse 1/n-approximation of MMS.

Theorem A.1. Every allocation that is envy free up to one good (EF1) and Pareto optimal (PO)
is 1/n-maximin share (MMS) for additive valuations over indivisible goods. Further, the factor
1/n is tight, i.e., for every n ∈ N and ε > 0, there exists an instance with n players having
additive valuations and an allocation satisfying EF1 and PO that is not (1/n + ε)-MMS.

Proof. We first prove that every allocation satisfying EF1 and PO is 1/n-MMS, and later
prove tightness of the approximation ratio (upper bound).

Proof of the lower bound: Let ~A be an allocation satisfying EF1 and PO. Fix a player i ∈ N .
Because ~A is EF1, for every player j ∈ N \ {i} there exists a good gij ∈ Aj such that

vi(Ai) > vi(Aj)− vi(gij). (A.1)

Let Ti = ∑g∈M vi(g), and let Ei = ∑j∈N\{i} vi(gij). Then, summing Equation (A.1)
over all j ∈ N \ {i}, we get

(n− 1) · vi(Ai) > ∑j∈N\{i} vi(Aj)− Ei ⇒ n · vi(Ai) > Ti − Ei. (A.2)

On the other hand, consider any partition of the set of goods M into n bundles.
Due to the pigeonhole principle, there must exist a bundle that does not contain good
gij for any j ∈ N \ {i}. Since the value of this bundle according to player i can be at
most Ti − Ei, the MMS guarantee of player i is also at most Ti − Ei. Equation (A.2) now
implies that under ~A, each player i receives at least 1/n of her MMS guarantee, i.e., ~A is
1/n-MMS.

Proof of the upper bound: We now show that for every n ∈ N and ε > 0, there exists an
instance with n players for which some allocation satisfying EF1 and PO is not (1/n +
ε)-MMS.

Construct an instance with n players and 2n − 1 goods. Let there be n − 1 “high”
goods that each player values at n, and n “low” goods that each player values at 1. The
MMS guarantee of each player is n: the player can put each “high” good in its own
bundle, and all “low” goods in a single bundle.

However, one can check that giving n− 1 of the players a high and a low good each,
and giving the remaining player the remaining single low good also satisfies EF1 and
PO, but gives the last player exactly 1/n of her MMS guarantee. �
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A.4 General Valuations

In this section, we provide the definitions of the families of valuation functions men-
tioned in Section 2.3.1, and provide the missing proofs and examples. Let us begin by
formally defining subadditive, superadditive, submodular, and supermodular valua-
tions.

Definition A.1 (Subadditive and Superadditive Valuations). A valuation function v :
2M → R>0 is called subadditive (resp. superadditive) if for every pair of disjoint sets
S, T ⊆M, we have v(S ∪ T) 6 v(S) + v(T) (resp. v(S ∪ T) > v(S) + v(T)).

Definition A.2 (Submodular and Supermodular Valuations). A valuation function v :
2M → R>0 is called submodular (resp. supermodular) if for every pair S, T ⊆ M, we
have v(S ∪ T) 6 v(S) + v(T)− v(S ∩ T) (resp. v(S ∪ T) > v(S) + v(T)− v(S ∩ T)).

It is clear that submodular (resp. supermodular) valuations are a special case of
subadditive (resp. superadditive) valuations. We now provide a proof of Theorem 2.2,
which asserts that for supermodular (and thus superadditive) valuations and subaddi-
tive valuations, EF1 and PO are incompatible.

of Theorem 2.2. Let the set of players be N = {1, 2}, and the set of goods be
M = {a, b, c, d}. We use a common valuation for both players. Figures A.2 and A.1
define the supermodular (thus superadditive) valuation vsup and the subadditive
valuation vsub, respectively, through their value for a set S ⊆M.

vsub(S) =



10 if |S| = 4,
7 if |S| = 3,
6 if |S| = 2 and a /∈ S,
4 if |S| = 2 and a ∈ S,
4 if S = {a},
3 if S = {b}, {c}, or {d},
0 if S = ∅.

Figure A.1: Subadditive valuation

vsup(S) =



4 if |S| = 4,
3 if |S| = 3,
2 if |S| = 2 and a /∈ S,
1 if |S| = 2 and a ∈ S,
1 if S = {a},
0 if S = {b}, {c}, {d}, or ∅.

Figure A.2: Supermodular (thus superaddi-
tive) valuation

In each case, under a PO allocation, player 1 receives one of the following sets of
goods: ∅, {a}, {b, c, d}, andM; and player 2 receives the set of remaining goods. It is
easy to check that these are the only four PO allocation. Note that EF1 is violated in the
first two allocations due to player 1 envying player 2 (and in last two allocations due
to player 2 envying player 1) even after removal of any single good from the envied
player’s bundle. �

We now focus on the interesting case of submodular valuations Submodular valua-
tions are characteristic of substitute goods, and are alternatively defined via diminishing
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marginal utility. Examples of submodular valuations include unit demand valuations,
strong valuations with no complementarities, and gross substitutes.

As mentioned in Section 2.3.1, we were unable to settle the question of the compat-
ibility of EF1 and PO for submodular valuations. We know that an MNW allocation
does not guarantee EF1 and PO for submodular valuations, but we can show that it
guarantees MEF1 (a relaxation of EF1 that coincides with EF1 for additive valuations)
and PO.

Example A.5 (MNW is not EF1 and PO for submodular valuations). Let the set of play-
ers be N = {1, 2}, and the set of goods beM = {a, b, c, d}. The submodular valuations
v1 and v2 of players 1 and 2, respectively, are as follows:
Player 1: First, let us define the value of the player for individual goods.

v1(a) = 1, v1(b) = 1, v1(c) = 0, and v1(d) = 0.

For S ⊆ M with |S| > 2, define v1(S) to be the sum of the values of the two goods in
S that are the most valuable to the player. It is easy to check that this is a submodular
valuation.
Player 2: Let the value of the player for individual goods be as follows.

v2(a) = 2.5, v2(b) = 2.5, v2(c) = 1, and v2(d) = 1.

Once again, for S ⊆ M with |S| > 2, define v2(S) to be the sum of the values of the
two goods in S that are the most valuable to the player. Similarly to v1, v2 is also a
submodular valuation.

Note that an MNW allocation must allocate at least one of the two goods a or b to
player 1 to achieve positive Nash welfare. If player 1 receives only one of these two
goods, the Nash welfare can be at most 1 · 3.5 = 3.5. In contrast, the allocation that
gives goods a and b to player 1, and goods c and d to player 2, achieves Nash welfare of
2 · 2 = 4. Hence, this allocation is the unique MNW allocation. However, player 2 then
envies player 1 even after removal of any single good from player 1’s bundle.

We end this section with a proof of Theorem 2.3, which asserts that every MNW
allocation is MEF1 and PO for submodular valuations.

of Theorem 2.3. Let ~A be an MNW allocation. First, let us prove the result for the case
of NW(~A) > 0. In this case, the Pareto optimality of ~A is obvious due to the fact that
~A maximizes the Nash welfare. Suppose, for contradiction, that ~A is not MEF1. Then,
there exist players i, j ∈ N such that

∀g ∈ Aj, vi(Ai ∪ Aj \ {g})− vi(Ai) > vi(Ai). (A.3)

Next, for every r ∈ Aj, let us define

δi(g) = vi(Ai ∪ {g})− vi(Ai), and δj(g) = vj(Aj)− vj(Aj \ {g}).

Note that δi(g) and δj(g) are generalizations of vi(g) and vj(g) from additive valuations
to submodular valuations. Also, observe that they are defined a bit differently for i and
j.

We now derive two key results.
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Lemma A.1. For every g∗ ∈ Aj, we have ∑g∈Aj
δi(g) > vi(Ai ∪ {g∗}).

Proof. Fix g∗ ∈ Aj. Let us enumerate the elements of Aj as g1, . . . , gk where k = |Aj| and
gk = g∗. Also, for t ∈ [k] define At

j = {g1, . . . , gt}, and A0
j = ∅. Then,

∑
g∈Aj\{g∗}

δi(g) =
k−1

∑
t=1

vi(Ai ∪ {gt})− vi(Ai) >
k−1

∑
t=1

vi(Ai ∪ At
j)− vi(Ai ∪ At−1

j )

= vi(Ai ∪ Aj \ {g∗})− vi(Ai) > vi(Ai),

where the second transition holds due to submodularity of vi and the final transition
follows from Equation (A.3). Adding δi(g∗) = vi(Ai ∪ {g∗}) − vi(Ai) on both sides
yields the desired result. � (Proof of Lemma A.1)

Lemma A.2. We have ∑g∈Aj
δj(g) 6 vj(Aj).

Proof. Once again, let Aj = {g1, . . . , gk}, where k = |Aj|, At
j = {g1, . . . , gt} for t ∈ [k],

and A0
j = ∅. Then,

∑
g∈Aj

δj(g) =
k

∑
t=1

vj(Aj)− vj(Aj \ {gt}) 6
k

∑
t=1

vj(At
j)− vj(At−1

j ) = vj(Aj),

where the inequality follows from the submodularity of vj. � (Proof of Lemma A.2)

From Lemma A.1, it is clear that ∑g∈Aj
δi(g) > 0. Thus, there exists g ∈ Aj such

that δi(g) > 0. Fix g∗ = arg ming∈Aj :δi(g)>0 δj(g)/δi(g). We now take the ratio of the
inequality in Lemma A.2 to the inequality in Lemma A.1 applied to our chosen g∗.
This is well-defined because we already showed ∑g∈Aj

δi(g) > 0, and we also have
vi(Ai ∪ {g∗}) > vi(Ai) > 0.

vj(Aj)

vi(Ai ∪ {g∗})
>

∑g∈Aj
δj(g)

∑g∈Aj
δi(g)

>
δj(g∗)
δi(g∗)

=
vj(Aj)− vj(Aj \ {g∗})
vi(Ai ∪ {g∗})− vi(Ai)

,

where the second transition holds due to our choice of g∗. Upon rearranging the terms,
we get

vi(Ai ∪ {g∗}) · vj(Aj \ {g∗}) > vi(Ai) · vj(Aj),

which is a contradiction because it implies that shifting g∗ from player j to player i
would increase the Nash welfare, which is in direct violation of the optimality of the
Nash welfare under the MNW allocation ~A.

Let us now handle the case of NW(~A) = 0. Let S denote the set of players that receive
positive utility under ~A. The proof of Pareto optimality of ~A for submodular valua-
tions is identical to the proof of Pareto optimality of an MNW allocation for additive
valuations, which does not use additivity of the valuations. We now show that ~A is
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MEF1. Note that MEF1 holds among players in S due to the proof of the previous case,
and holds trivially among players in N \ S. Hence, the only case we need to address is
when a player i ∈ N \ S (with Ai = ∅) marginally envies player j ∈ S (with vj(Aj) > 0)
up to one good. Then, by the definition of MEF1, we have

∀g ∈ Aj, vi(Aj \ {g}) > 0. (A.4)

Submodularity of vj implies that ∑g∈Aj
vj({gj}) > vj(Aj) > 0. Hence, there exists a

good ĝ ∈ Aj such that vj({ĝ}) > 0. Applying Equation (A.4) to ĝ, we get vi(Aj \ {ĝ}) >
0. But then moving all goods in Aj except ĝ from player j to player i gives positive
utility to player i while still giving positive utility to player j, which violates the fact
that ~A provides positive utility to the maximum number of players. Hence, ~A must be
MEF1. � (Proof of Theorem 2.3)

A.5 Pairwise Maximin Share Guarantee

In this section, we prove several results about our novel fairness concept — the pairwise
maximin share guarantee.

Theorem A.2. The pairwise maximin share guarantee is implied by envy-freeness (EF), and
implies 1/2-maximin share guarantee, envy freeness up to the least valued good (EFX), and as a
direct consequence, envy-freeness up to one good (EF1).

Proof. Let ~A be an EF allocation, i.e., vi(Ai) > vi(Aj) for all pairs of players i, j ∈ N . Let
PMMSi denote the pairwise MMS guarantee of player i:

PMMSi = max
j∈N\{i}

max
~B∈Π2(Ai∪Aj)

min{vi(B1), vi(B2)}.

Then, we have

PMMSi 6 max
j∈N\{i}

vi(Ai), vi(Aj)

2
6 vi(Ai),

where the first transition holds because its right hand side is the pairwise MMS guar-
antee that player i would have if all goods were divisible, which is an upper bound
on PMMSi because divisible goods offer the player a greater flexibility in partitioning the
goods. The second transition follows directly from the envy-freeness of ~A.

Next, let ~A be a pairwise MMS allocation. It is easy to show that ~A must also be
EFX: if player i envies player j after the removal of player i’s least positively valued
good g∗ from Aj, then it follows that player i’s pairwise MMS guarantee is at least
vi(Ai ∪{g∗}) > vi(Ai) due to the partition (Ai ∪{g∗}, Aj \ {g∗}). However, this implies
that ~A is not pairwise MMS, which is a contradiction. Hence, ~A is also EFX. It is trivial
to check that EFX implies EF1 by definition; hence, ~A is also EF1.

Finally, we show that a pairwise MMS allocation ~A is also 1/2-MMS. Consider players
i and j. There are only two possible cases: (i) Aj has at most one good that player i
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values positively, i.e., |Aj ∩ {g ∈ M | vi(g) > 0}| 6 1, or (ii) vi(Aj) 6 2 · vi(Ai). Indeed,
if Aj has at least two goods that player i values positively, and vi(Aj) > 2 · vi(Ai),
then consider the good g∗ that is the least valuable among player i’s positively valued
goods in Aj. In that case, player i could partition Ai ∪ Aj into (Ai ∪ {g∗}, Aj \ {g∗}) and
ensure that her pairwise MMS value is strictly more than vi(Ai), which is a contradiction
because ~A is pairwise MMS.

Now, if no player in N \ {i} falls into case (ii), then it is easy to see that the MMS
guarantee of player i is at most vi(Ai). If a non-empty subset S ⊆ N \ {i} of players
fall into case (ii), then we can bound the MMS guarantee of player i from above by
assuming that all goods allocated to players S ∪ {i} are divisible. However, this still
gives an MMS guarantee of at most 2 · vi(Ai), because each player in j ∈ S∪ {i} satisfies
vi(Aj) 6 2 · vi(Ai). Thus, the MMS guarantee of player i is at most 2 · vi(Ai), which
implies that ~A is 1/2-MMS. �

Finally, we give a proof of Corollary 2.1 that uses the MMS approximation guarantee
of the MNW solution (Theorem 2.4) to prove a pairwise MMS approximation guarantee.

of Corollary 2.1. An MNW allocation ~A has the following interesting property: Take the
goods allocated to players i and j, i.e.,M′ = Ai ∪ Aj, and take the set of players N ′ =
{i, j}. Then the allocation given by Ai and Aj is also an MNW allocation for the reduced
instance of allocating the set of goodsM′ to the set of players N ′. This fact is easy to
see when either vi(Ai) > 0 and vj(Aj) > 0 (otherwise we could achieve higher Nash
welfare), or vi(Ai) = vj(Aj) = 0. When vi(Ai) = 0 but vj(Aj) > 0 (without loss of
generality), every allocation ofM′ to players {i, j} must provide zero utility to at least
one player, otherwise this part of the allocation could be used in the original instance to
increase the number of players that receive positive utility, contradicting the fact that an
MNW allocation provides positive utility to the maximum number of players. Hence,
the allocation in the reduced instance that provides all the goods in M′ to player j
(which is exactly allocation ~A restricted to the reduced instance) is indeed an MNW
allocation, and is π2-MMS in the reduced instance (Theorem 2.4).

We therefore conclude that the MNW allocation ~A is Φ-pairwise MMS in the original
instance as π2 = Φ. To establish tightness of the factor Φ, for a given n ∈ N and ε > 0,
we simply use the example from the proof of the upper bound in Theorem 2.4 after
replacing πn by π2 = Φ in the valuations of the players. In the new example, now
the pairwise MMS approximation ratio (instead of the MMS approximation ratio in the
original example) can be driven below π2 + ε for a value of ε′ less than min(π2, ε/(π2 ·
(π2 + ε))), which is a bound obtained by substituting n = 2 in the upper bound on ε′

from the proof of Theorem 2.4. �

A.6 A Spectrum of Fair and Efficient Solutions

In this work we focused on the MNW solution that maximizes the Nash welfare, i.e., se-
lects an allocation ~A that maximizes ∏i∈N vi(Ai). For simplicity, let us assumeN = [n].
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Another popular solution concept for fair allocation, originally used in the networking
literature, is proportional fairness [118].

Definition A.3 (Proportional Fairness). An allocation ~A is said to satisfy proportional
fairness if for any alternative allocation ~A′, it holds that

n

∑
i=1

vi(A′i)− vi(Ai)

vi(Ai)
6 0.

In words, an allocation is proportionally fair if the total percentage change in the play-
ers’ utilities is non-positive when switching to any alternative allocation. This, in some
sense, indicates that ~A is socially preferred over any alternative allocation.

Note that the proportional fairness requirement can equivalently be written as

n

∑
i=1

vi(A′i)
vi(Ai)

6 n⇔ n

∑n
i=1

(
vi(Ai)
vi(A′i)

)−1 > 1.

That is, proportional fairness requires that the Harmonic mean of the set of quantities
{vi(Ai)/vi(A′i)}i∈[n] be at least 1. Interestingly, the requirement for an allocation ~A to
be an MNW allocation can be formulated in a similar manner, by requiring that the
Nash welfare should not increase when switching to any alternative allocation ~A′.

n

∏
i=1

vi(Ai) >
n

∏
i=1

vi(A′i)⇔ n

√
n

∏
i=1

vi(Ai)

vi(A′i)
> 1.

That is, the MNW solution requires that the geometric mean of the same set of quantities
{vi(Ai)/vi(A′i)}i∈[n] be at least 1.

This inspired us to define a spectrum of properties for the allocation of indivisible
goods which require that the p-th power mean of the same set of quantities be at least 1.
Recall that the p-th power mean of a set of non-negative numbers {xi}i∈[n] is defined as(

1
n ∑n

i=1 xp
i

)1/p
. The Harmonic mean corresponds to p = −1, and the geometric mean

corresponds to p = 0. To be symmetric, we define the property up to p = 1.

Definition A.4. For p ∈ [−1, 1], we say that an allocation ~A ∈ Πn(M) satisfies Γ(p) if
for every other allocation ~A′ ∈ Πn(M), we have(

1
n

n

∑
i=1

(
vi(Ai)

vi(A′i)

)p
)1/p

> 1.

We now make several interesting observations about the properties of the allocations
that satisfy Γ(p). First, the power-mean inequality states that for p < p′, the p-th power
mean is no more than the p′-th power mean. This directly yields that Γ(p) implies Γ(p′).
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Theorem A.3 (Decreasing Power). For p, p′ ∈ [−1, 1] with p′ > p, every allocation satisfy-
ing Γ(p) also satisfies Γ(p′).

We know that there always exists an allocation (any MNW allocation) that satisfies
Γ(0), and therefore Γ(p) for all p > 0. In contrast, there exist instances in which no
allocation satisfies Γ(p) for any p < 0; simply consider a single good and two players
having value 1 for the good.

Theorem A.4 (Existence). For p ∈ [−1, 1], an allocation satisfying Γ(p) always exists if and
only if p > 0.

We now show that Γ(p) implies important efficiency and fairness properties.

Theorem A.5 (Efficiency). For p ∈ [−1, 1], every allocation satisfying Γ(p) is Pareto optimal
(PO).

Proof. Indeed, assume that an allocation ~A ∈ Πn(M) satisfying Γ(p) is not PO. Let
~A′ ∈ Πn(M) be another allocation that satisfies vi(A′i) > vi(Ai) for all i ∈ N , and
vi∗(A′i∗) > vi∗(Ai∗) for some i∗ ∈ N . Then, we would have

n

∑
i=1

(
vi(Ai)

vi(A′i)

)p

< n,

which is a contradiction because ~A satisfies Γ(p). �

We studied a relaxation of the ideal fairness notion envy-freeness (EF), called envy-
freeness up to one good (EF1). One can similarly define envy-freeness up to k goods: An
allocation ~A is envy-free up to k goods if

∀i, j ∈ N , ∃S ⊆ Aj with |S| 6 k, vi(Ai) > vi(Aj \ S).

Theorem A.6 (Fairness). For p ∈ [−1, 1], every allocation satisfying Γ(p) is envy free up to
1 + dpe goods, where d·e is the ceiling function.

Proof. Due to Theorem A.3, we only need to prove this theorem for p ∈ {−1, 0, 1}. For
p = 0, we already showed that every MNW allocation is EF1 (Theorem 2.1).

Let us now consider p = −1. Let allocation ~A ∈ Πn(M) satisfy Γ(−1). Consider
a pair of players j, j′. For every good t ∈ Aj′ , we apply the inequality in the definition
of Γ(−1) using the allocation ~A and the allocation ~A′ obtained by moving good t from
player j′ to player j. We have

n >
n

∑
i=1

vi(A′i)
vi(Ai)

=

(
∑

i 6=j,j′

vi(Ai)

vi(Ai)

)
+

vj(Aj ∪ {t})
vj(Aj)

+
vj′(Aj′ \ {t})

vj′(Aj′)
= n +

vj(t)
vj(Aj)

−
vj′(t)

vj′(Aj′)

which implies that vj(t) 6 vj′(t) · vj(Aj)/vj′(Aj′). Summing over all t ∈ Aj′ , we get

vj(Aj′) = ∑
t∈Aj′

vj(t) 6 ∑
t∈Aj′

vj′(t)
vj(Aj)

vj′(Aj′)
= vj(Aj),
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i.e., player j is not envious for player j′.
Let us now consider p = 1. Consider an allocation ~A ∈ Πn(M) that satisfies Γ(1).

Consider players i and j. We want to show that player i would not envy j if we are
allowed to remove (up to) two goods from player j’s bundle. If |Aj| 6 2, we are done.
Assume |Aj| > 3. We now show that there are goods t1, t2 ∈ Aj such that vi(Ai) >
vi(Aj \ {t1, t2}.

Consider a good t ∈ Aj, and define the allocation ~A′ obtained by moving good t
from player j to player i in ~A. By the definition of Γ(1), we get

vi(Ai)

vi(Ai) + vi(k)
+

vj(Aj)

vj(Aj)− vj(t)
> 2.

Setting xt =
vi(t)

vi(Ai)
and yt =

vj(t)
vj(Aj)

, this inequality can be expressed as

1
1 + xt

+
1

1− yt
> 2

which implies that

xt 6
yt

1− 2yt
(A.5)

whenever yt 6 1/3. Now let t1 and t2 be the goods in Aj for which player j has the
highest and second highest value, respectively. Hence, for every good t ∈ Aj \ {t1, t2},
we have yt 6 1/3. Using Equation (A.5), we obtain that the value of player i for the
goods in Aj \ {t1, t2} is

vi(Aj \ {t1, t2}) = vi(Ai) ∑
t∈Aj\{t1,t2}

vi(t)
vi(Ai)

= vi(Ai) ∑
t∈Aj\{t1,t2}

xt

6 vi(Ai) ∑
t∈Aj\{t1,t2}

yt

1− 2yt
6 vi(Ai) ∑

t∈Aj\{t1,t2}

yt

1− 2yt2

6 vi(Ai),

where the second inequality holds because yt 6 yt2 for t ∈ Aj \ {t1, t2}, and the final
transition follows due to the definitions of y, t1, and t2. We thus have that ~A is EF2. �

From Theorems A.4 and A.3, we know that the MNW solution, which satisfies Γ(0),
is the optimal solution on the spectrum that is guaranteed to exist as its fairness guar-
antee (EF1) is strictly better than the fairness guarantee provided by Γ(p) for any p > 0.
One may question whether the weaker Γ(p) with p > 0 has a computational advantage
over the MNW solution, which we know isNP-hard [155]. Interestingly, a polynomial-
time Turing reduction from the popularNP-hard PARTITION problem shows that com-
puting an allocation satisfying Γ(p) is NP-hard for p ∈ (0, 1]. Note that it is the search
problem (of actually finding the allocation) that is NP-hard rather than the decision
problem of determining the existence of such an allocation (which is a trivial problem
as such an allocation always exists).
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Theorem A.7 (Computational Hardness). For p ∈ [0, 1], computing an allocation that sat-
isfies property Γ(p) is NP-hard.

Proof. Due to Theorem A.3, we only need to show the hardness for p = 1. We show
that a polynomial-time algorithm to compute an allocation that is Γ(1) can be used to
decide the PARTITION problem in polynomial time. The input in an instance of the
PARTITION problem is a set of m positive integers S = {x1, . . . , xm}, and our goal is to
decide whether there exists a perfect partition of S, i.e., a partition of S into two exclusive
and exhaustive subsets whose sum of elements is equal. Let T = ∑i∈[m] xi. We say that
a partition of S is a minimum-difference partition if the difference between the sums of the
two subsets is the least possible among all partitions of S into two subsets.

Let us first construct a new set of m′ = m + 2 positive integers S′ = {x′i}i∈[m′] where
x′i = 5xi for i ∈ [m], xm+1 = 1, and xm+2 = 2. Let T′ = ∑i∈[m′] x′i = 5T + 3. Note
that S′ does not have a perfect partition. Further, it has a minimum-difference partition
with difference 1 if and only if S has a perfect partition. Note that a partition of S′ with
difference 1 can only be created by taking a perfect partition of S, replacing the elements
of S by the corresponding elements of S′, and then adding x′m+1 and x′m+2 in different
subsets.

Next, we construct an instance of our fair allocation problem as follows. We have
two players with the identical valuation v over the set of goodsM = [m′] under which
v(i) = x′i for each good i ∈ M. We can interpret an allocation ~A of this instance as a
partition of S′, in which each subset is formed by taking the elements of S′ correspond-
ing to the goods in a player’s bundle. Thus, the sums of the two subsets in the partition
are exactly v(A1) and v(A2), and v(A1) + v(A2) = T′.

We now show that every allocation satisfying Γ(1) produces a minimum-difference
partition of S′. To see this, consider an allocation ~A satisfying Γ(1), and without loss
of generality, assume v(A1)− v(A2) = δ > 0. Thus, v(A1) = (T′ + δ)/2 and v(A2) =

(T′− δ)/2. Now, suppose for contradiction that there exists another allocation ~A′ under
which |v(A′1)− v(A′2)| = ε < δ. Because S′ does not admit a perfect partition, we have
ε > 0. Without loss of generality, let v(A′1) − v(A′2) = ε (otherwise we can switch
the bundles of the two players). Hence, v(A′1) = (T + ε)/2 and v(A′2) = (T − ε)/2.
However, in this case

v(A1)

v(A′1)
+

v(A2)

v(A′2)
− 2

=
T′ + δ

T′ + ε
+

T′ − δ

T′ − ε
− 2

= (δ− ε) ·
[

1
T′ + ε

− 1
T′ − ε

]
< 0,

which contradicts the fact that ~A is an allocation satisfying Γ(1). Hence, ~A must produce
a minimum-difference partition of S′.
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To solve the original PARTITION instance, we first compute an allocation satisfying
Γ(1), use it to produce a minimum-difference partition of S′, and then check if its differ-
ence is 1. �

Thus, proportional fairness and the MNW solution, which coincide for allocation of
divisible goods, are connected on a spectrum in the case of indivisible goods. Propor-
tional fairness is now strictly stronger, but, unlike the MNW solution, not guaranteed
to exist. The spectrum allows us to view the MNW solution as the optimal solution
that is guaranteed to exist. Further, among all the solutions on the spectrum that are
guaranteed to exist, it is optimally fair, and yet not qualitatively harder in terms of com-
putational complexity.

An interesting potential application of the spectrum framework is to break ties
among the set of all MNW allocations. In particular, given an instance of the fair di-
vision problem, we can compute the minimum p for which an allocation satisfying Γ(p)
exists, and compute such an allocation. This approach is guaranteed to select an MNW
allocation (Theorem A.3), and can be viewed as the optimal tie-breaking rule. Needless
to say, the key challenge will be to develop a scalable implementation of this approach.
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Appendix B

Omitted Proofs and Results for
Chapter 7

B.1 The MLE rule may not always have the optimal sam-
ple complexity

Here, we demonstrate via an example that the MLE rule for a noise model need not
always be the rule with the optimal sample complexity in general.

Example B.1. Consider a scenario where there are 3 possible underlying ground truths
— σ1, σ2 and σ3. These map to underlying true ranking in the voting context. Let there
be 4 possible outcomes — π1 through π4. The outcomes map to samples from Mallows’
model in our voting context. In the table below, the entry in row i and column j gives
the probability of observing outcome πj given that the ground truth is σi, i.e., Pr[πj|σi].

π1 π2 π3 π4
σ1

1/5
1/5

1/5
2/5

σ2
1/6

1/6
1/6

1/2

σ3
1/4

1/4
1/4

1/4

Take ε = 4/5, so the accuracy requirement is 1− ε = 1/5. Given just one sample
from the noise model, the circled entries in the table show the ground truth returned
by the MLE rule for various outcomes. It is clear that the MLE rule never returns σ1,
thus it does not achieve the minimum (over all ground truths) accuracy of 1/5. In
contrast, consider the rule which is identical to the MLE rule except that it returns σ1
when observing π3. It is clear that given one sample, this rule returns the ground truth
with probability at least 1/5 no matter what the ground truth is. Hence, the sample
complexity of the new rule is strictly less than that of the MLE rule for ε = 4/5. This
shows that the MLE rule need not always be optimal in terms of its sample complexity.
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B.2 Several classical voting rules are PM-c

In this section, we prove that the Kemeny rule, the Slater rule, the ranked pairs method,
Copeland’s method and Schulze’s method are PM-c (Theorem 7.2). The definition of the
Kemeny rule is given in Section 7.2. We define the remaining methods below.

The Slater rule Given any profile π, the Slater rule selects a ranking that minimizes
the number of pairs of alternatives on which it disagrees with the PM graph of π. Note
that this is very similar to the Kemeny rule which, instead of minimizing the number
of pairwise disagreements with the PM graph, minimizes the weighted pairwise dis-
agreements, where the weight of a pair is the number of votes by which the stronger
alternative beats the weaker alternative.

Copeland’s method We say that alternative a beats alternative a′ in a profile π if |{σ ∈
π|a �σ a′}| > |{σ ∈ π|a′ �σ a}|, i.e., if there is an edge from a to a′ in the PM graph of
π. The Copeland score of an alternative a is the number of alternatives it beats in π and
Copeland’s method ranks the alternatives in the non-increasing order of their Copeland
scores.

The ranked pairs method Under the ranked pairs method, all ordered pairs of alter-
natives (a, a′) are sorted by the number of rankings in the profile in which alternative
a is preferred to a′ (in non-increasing order). Then, starting with the first pair in the
list, the method “locks in” the outcome with the result of the pairwise comparison. It
proceeds with the next pairs and locks in every pairwise result that does not contradict
the partial ordering established so far (by forming a cycle). Finally, the method outputs
the total order obtained.

Schulze’s method Given any profile π, define w(a, a′) = |{σ ∈ π|a �σ a′}| for any
a, a′ ∈ A. Consider the (directed) weighted pairwise comparison graph G = (V, E)
where the alternatives are the vertices (V = A) and there is an edge from every a ∈ A
to every other a′ ∈ A with weight w(a, a′). A path of strength t from a ∈ A to a′ ∈
A is a sequence of vertices v0 = a, v1, . . . , vk−1, vk = a′ where w(vi, vi+1) > t for all
i ∈ {0, . . . , k − 1}, and w(vi, vi+1) = t for some i ∈ {0, . . . , k − 1}. Define the strength
of alternative a over alternative a′, denoted s[a, a′], to be the maximum strength of any
path from a to a′. Schulze’s method ranks a � a′ if s[a, a′] > s[a′, a]. A tie-breaking
scheme is used when s[a, a′] = s[a′, a].

of Theorem 7.2. Take any ranking σ∗ = (a1 � . . . � am) ∈ L(A). We show that for each
of the four rules, whenever the PM graph of a profile reduces to σ∗, the rule outputs σ∗

with probability 1. Consider any profile π with n votes such that its PM graph reduces
to σ∗.

First, note that the Kemeny rule returns a ranking that minimizes the total pairwise
disagreements with the input votes. If we consider the (directed) weighted pairwise
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comparison graph described in the definition of Schulze’s method above, then the Ke-
meny score of a ranking σ, denoted KemSc(σ), measures the total pairwise disagree-
ments of σ with the input votes, i.e., KemSc(σ) = ∑a,a′∈A|a�σa′ w(a′, a). In this summa-
tion, exactly one edge of the two edges between any pair of alternatives is added. In our
profile π, for any a, a′ ∈ A with a �σ a′, w(a, a′) > n/2 > w(a′, a). Hence, KemSc(σ∗)
adds the smaller-weight edge of the two edges between any pair of alternatives. There-
fore, σ∗ has the minimum Kemeny score, and the Kemeny rule returns σ∗.

The argument for the Slater rule is even easier. Since the PM graph of π reduces to
σ∗, σ∗ agrees with the PM graph on all pairs of alternatives (and disagrees on none).
Therefore, the Slater ranking of π, the ranking that minimizes the number of disagree-
ments with the PM graph on pairs of alternatives, is clearly σ∗. Interestingly, the fact
that the Slater rule is PM-c also follows from the distance rationalization of the rule
according to the transitivity consensus [143].

When the ranked pairs method is applied to a profile that reduces to σ∗, every or-
dered pair (a, a′) with a �σ∗ a′ will be placed before every ordered pair (b, b′) with
b′ �σ∗ b. This is because the former pair would be consistent with more than half of the
rankings in the profile, while the latter pair would be consistent with less than half of
the rankings in the profile. Hence, the ranked pairs method would lock every pair (a, a′)
where a �σ∗ a′ (and obtain the total order σ∗) before reaching any pair of the opposite
direction. Therefore, the ranked pairs method would also output σ∗.

For Copeland’s method, note that when the PM graph reduces to σ∗, then alternative
ai has Copeland score m − i, for every i ∈ {1, . . . , m}. Therefore, Copeland’s method
outputs exactly the ranking σ∗.

Finally, for Schulze’s method, note that for any a, a′ ∈ A with a �σ∗ a′, s[a, a′] >
n/2 (because the edge a to a′ itself has weight more than n/2). On the other hand,
s[a′, a] 6 n/2, because otherwise there would be a cycle in the PM graph that consists
of the strongest path from a′ to a and the edge from a to a′. Hence, Schulze’s method
ranks a � a′ for every a, a′ ∈ A with a �σ∗ a′. We conclude that Schulze’s method also
outputs σ∗.

We have thus established that the Kemeny rule, the Slater rule, the ranked pairs
method, Copeland’s method and Schulze’s method are all PM-c. � (Theorem 7.2)

B.3 Several classical voting rules are PD-c

We first define the Bucklin rule and then prove Theorem 7.7.

The Bucklin rule The Bucklin score of an alternative a is the minimum k such that a
is among the first k positions in the majority of input votes. The Bucklin rule sorts the
alternatives in non-decreasing order according to their Bucklin score, and breaks ties
among alternatives with the same Bucklin score ` by the number of rankings that have
the alternative in the first ` positions, with the remaining ties broken arbitrarily.
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of Theorem 7.7. Consider a profile π with n rankings such that its PD graph reduces to
the ranking σ∗, and let ai denote the alternative at position i in σ∗. We show that any
positional scoring rule as well as the Bucklin rule outputs σ∗ on π.

For the Bucklin rule, consider any two alternatives a, a′ ∈ A such that a �σ∗ a′. For
any j ∈ {1, . . . , m− 1}, let sj(c) denote the number of votes where alternative c is among
the first j positions. Let k denote the Bucklin score of a and k′ denote the Bucklin score
of a′. If k > k′, then sk′(a′) > n/2 and sk′(a) 6 sk−1(a) 6 n/2, which is impossible
since the PD graph reduces to σ∗. If k < k′, then the Bucklin rule ranks a � a′, as
required. If k = k′ and k 6= m, then again since the PD graph reduces to σ∗, we have that
sk(a) > sk(a′), so the tie is broken in favor of a. Lastly, we note that k = k′ = m is not
possible since then it would imply that the total number of appearances of a and a′ in
the last position is n− sm−1(a) + n− sm−1(a′) > 2 · n− 2 · sm−1(a) > n. Thus, for every
a �σ∗ a′, the Bucklin rule ranks a above a′. We conclude that the Bucklin rule outputs
σ∗.

For positional scoring rules, we can follow the reasoning of the proof of Theorem 7.6
and express the score of alternative ai as ∑m−1

j=1 (β j · sj(ai)) + nαm. Then, the desired fact
that the score of ai is higher than that of ak when 1 6 i < j 6 m holds since sj(ai) > sj(ak)
for every j ∈ {1, ..., m− 1}. � (Theorem 7.7)

B.4 Distance Functions

In this section, we prove various properties of the three popular distance functions stud-
ied in Chapter 7.

B.4.1 All three of our popular distance functions are both MC and PC

First we give a proof of Lemma 7.7, showing that any swap-increasing distance is both
MC and PD. Lemma 7.3 would then imply that the KT distance is both MC and PC.

of Lemma 7.7. In Section 7.5.2, we already argued that any swap-increasing distance is
MC. Take any σ∗ ∈ L(A) and a, b ∈ A such that a �σ∗ b. The mapping from every
σ to σa↔b is a bijection from La�b(A) to Lb�a(A) and it increases the distance by at
least 1 (since any ranking in the domain La�b(A) follows a � b). Hence, the mapping
is weakly-distance-increasing with respect to σ∗. It follows from Lemma 7.5 that any
swap-increasing distance is MC.

To show that it is also PC, fix any σ∗ ∈ L(A), a, b ∈ A such that a �σ∗ b and
j ∈ {1, . . . , m − 1}. We wish to show that there exists a bijection f : Sj(a) → Sj(b)
which is distance-increasing. Note that we cannot use the mapping from every σ to
σa↔b as before, since not every ranking in the domain Sj(a) follows a � b and therefore
such a mapping would not be guaranteed to increase distance. Instead, we decompose
the domain into three parts: T = Sj(a) ∩ Sj(b), D1 = {σ ∈ Sj(a)|σ(b) > j}, and
D2 = {σ ∈ Sj(b)|σ(a) > j}. Therefore, Sj(a) = T ∪ D1 and Sj(b) = T ∪ D2.
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σ∗(b)

σ∗(a)
σ(a)

σ(b)
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y

(b) Case 2

σ∗(b)

σ∗(a)
σ(a)

σ(b)
x

(c) Case 3

Figure B.1: Exchanges under the footrule and the maximum displacement distances.

Consider the identity bijection I : T → T which maps every ranking to itself. Clearly,
I is weakly-distance-increasing with respect to σ∗ since it does not change the distance
of any ranking from σ∗. Note that for any σ ∈ D1, σ(a) 6 j and σ(b) > j, so a �σ b.
Further, σa↔b(a) > j and σa↔b(b) 6 j. Thus, σa↔b ∈ D2 and d(σa↔b, σ∗) > d(σ, σ∗) + 1
(by definition). Therefore, the mapping E : D1 → D2 where E(σ) = σa↔b is distance-
increasing with respect to σ∗. Combining the two, the joint bijection F : Sj(a) → Sj(b)
naturally given by F(σ) = I(σ) when σ ∈ T and F(σ) = E(σ) when σ ∈ D1 is weakly-
distance-increasing with respect to σ∗. Further, it is easy to verify that D1 6= ∅, and F
increases the distance on any ranking from D1. Therefore, F is distance-increasing, as
required. � (Lemma 7.7)

of Theorem 7.12. Lemma 7.7 and Lemma 7.3 already imply that the KT distance is both
MC and PC. Now we show that the same holds for the footrule distance (dFR) and the
maximum displacement distance (dMD) as well.

Fix any σ∗ ∈ L(A) and a, b ∈ A such that a �σ∗ b. First, we show that for both
dFR and dMD, the mapping from every ranking σ with a �σ b to σa↔b is weakly-
distance-increasing with respect to σ∗. Fix any ranking σ with a �σ b. We have
σ∗(a) < σ∗(b) and σ(a) < σ(b). Let σ′ = σa↔b. Recall that σ′(a) = σ(b) and
σ′(b) = σ(a). For any c ∈ A, let f (c) = |σ(c) − σ∗(c)| and f ′(c) = |σ′(c) − σ∗(c)|
be the displacements of c in σ and σ′ respectively. Therefore, dFR(σ, σ∗) = ∑c∈A f (c),
dFR(σ

′, σ∗) = ∑c∈A f ′(c), dMD(σ, σ∗) = maxc∈A f (c), dMD(σ
′, σ∗) = maxc∈A f ′(c). We

want to show that dFR(σ
′, σ∗) > dFR(σ, σ∗) and dMD(σ

′, σ∗) > dMD(σ, σ∗). Note that
f (c) = f ′(c) for any c ∈ A \ {a, b} since exchanging a and b does not change the posi-
tions of the other alternatives. Thus, for the footrule distance it is sufficient to show that
f ′(a) + f ′(b) > f (a) + f (b), and for the maximum displacement distance it is sufficient
to show that max( f ′(a), f ′(b)) > max( f (a), f (b)). We consider three cases.

Case 1. Let σ(a) 6 σ∗(a) and σ(a) < σ(b) 6 σ∗(b) as shown in Figure B.1(a). Let
x = σ(b)− σ(a). From the figure, it is easy to verify that by exchanging a and b in σ, b
moves farther from σ∗(b) by exactly x and a may move closer to σ∗(a) but by at most x.
Formally,

f ′(b)− f (b) = (σ∗(b)− σ′(b))− (σ∗(b)− σ(b)) = σ(b)− σ(a) = x, (B.1)
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where the second transition holds because σ′(b) = σ(a). Similarly,

f ′(a)− f (a) = |σ′(a)−σ∗(a)|− |σ∗(a)−σ(a)| > −|σ′(a)−σ(a)| = −(σ(b)−σ(a)) = −x,
(B.2)

where the second transition is due to triangle inequality and the third transition holds
because σ′(a) = σ(b). Adding Equations (B.1) and (B.2), we get that f ′(a) + f ′(b) >
f (a) + f (b). For the maximum displacement distance, note that the displacement of b
in σ′ is σ∗(b)− σ(a), which is clearly at least as much as the displacements of a and b in
σ. Formally,

max( f ′(a), f ′(b)) = max(|σ(b)− σ∗(a)|, σ∗(b)− σ(a)) = σ∗(b)− σ(a),

where the second transition holds because σ(a) < σ(b) 6 σ∗(b) and σ(a) 6 σ∗(a) <
σ∗(b). Also, σ∗(b) > σ∗(a) implies σ∗(b)− σ(a) > σ∗(a)− σ(a) = f (a) and σ(a) < σ(b)
implies σ∗(b) − σ(a) > σ∗(b) − σ(b) = f (b). Hence, max( f ′(a), f ′(b)) > f (a) and
max( f ′(a), f ′(b)) > f (b), so max( f ′(a), f ′(b)) > max( f (a), f (b)), as required.

Case 2. Let σ(a) 6 σ∗(a) and σ∗(b) < σ(b) as shown in Figure B.1(b). Let x = σ∗(a)−
σ(a), y = σ(b)− σ∗(b) and z = σ∗(b)− σ∗(a). Then, it is clear that f (a) = x, f (b) = y,
f ′(a) = z + y, and f ′(b) = z + x. It is trivial to check that f ′(a) + f ′(b) > f (a) + f (b)
and max( f ′(a), f ′(b)) > max( f (a), f (b)).

Case 3. Let σ(a) > σ∗(a) and σ(b) > σ(a) as shown in Figure B.1(c). This case is
very similar to Case 1. For the footrule distance, alternative a (rather than b) moves
away by exactly x = σ(b)− σ(a) and alternative b (rather than a) may move closer by
at most x. Similarly, for the maximum displacement distance, alternative a (rather than
b) has greater displacement after the exchange compared to the displacements of both
alternatives before the exchange. Hence, we again have f ′(a) + f ′(b) > f (a) + f (b) and
max( f ′(a), f ′(b)) > max( f (a), f (b)).

From the above three cases, it follows that the mapping which exchanges a and b in
a ranking σ with a �σ b is weakly-distance-increasing with respect to σ∗ for both the
footrule distance and the maximum displacement distance. Similarly to the proof of
Theorem 7.12, this mapping is a weakly-distance-increasing bijection from La�b(A) to
Lb�a(A), which shows that both distances are MC (using the equivalent representation
of MC distances given in Lemma 7.5).

To prove that both distances are PC, we use the same technique that we used in the
proof of Theorem 7.12. We want to give a bijection from Sj(a) to Sj(b) that is distance-
increasing. We map every ranking where both a and b are in the first j positions to itself,
which does not change the distance of the ranking from σ∗. We map any ranking σ
where σ(a) 6 j and σ(b) > j to the ranking where alternatives a and b are swapped,
which does not decrease the distance from σ∗ as shown in the three cases above. There-
fore, this mapping is at least weakly-distance-increasing. We need to show that it is
distance-increasing. That is, the distance must increase for some σ ∈ Sj(a). Clearly, the
identity map does not change the distance. Thus, it is sufficient to show that for any
σ∗ ∈ L(A), a, b ∈ A such that a �σ∗ b and j ∈ {1, . . . , m− 1}, there exists a ranking σ
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such that σ(a) 6 j, σ(b) > j and d(σa↔b, σ∗) > d(σ, σ∗) for both d = dFR and d = dMD
(note that we can in principle show different rankings for dFR and dMD, but we give a
stronger example that works for both distances). For this, we again consider two cases.
Let a1 and am denote the first and the last alternatives in σ∗.

Case 1. If 1 6 j < σ∗(b), then consider the ranking σ where σ(a) = σ∗(a1) = 1,
σ(a1) = σ∗(a) and σ(c) = σ∗(c) for every c ∈ A \ {a1, a}. In particular, σ(b) = σ∗(b).
First, note that σ(a) = 1 6 j and σ(b) = σ∗(b) > j. Now, it is easy to verify that
f (a) = σ∗(a)− 1, f (b) = 0, f ′(a) = σ∗(b)− σ∗(a), and f ′(b) = σ∗(b)− 1. Therefore,

f ′(a) + f ′(b) = 2 · σ∗(b)− σ∗(a)− 1 > 2 · (σ∗(a) + 1)− σ∗(a)− 1
= σ∗(a) + 1 > σ∗(a)− 1 = f (a) + f (b).

Therefore, the footrule distance strictly increases. For the maximum displacement dis-
tance, note that in the original ranking, only alternatives a and a1 are displaced, hence
dMD(σ, σ∗) = f (a). Also, in the final ranking, only alternatives a1, a and b are dis-
placed, and b has the highest displacement. Thus, dMD(σ

′, σ∗) = f ′(b). Finally, note
that f ′(b) = σ∗(b)− 1 > σ∗(a)− 1 = f (a). We conclude that the maximum displace-
ment distance also strictly increases.

Case 2. If σ∗(b) 6 j < m, then consider the ranking σ where σ(b) = σ∗(am) = m,
σ(am) = σ∗(b) and σ(c) = σ∗(c) for every c ∈ A \ {am, b}. In particular, σ(a) = σ∗(a).
Again note that σ(a) = σ∗(a) < σ∗(b) 6 j and σ(b) = m > j. Now, it is easy to
verify that f (a) = 0, f (b) = m− σ∗(b), f ′(a) = m− σ∗(a), and f ′(b) = σ∗(b)− σ∗(a).
Therefore,

f ′(a)+ f ′(b) = m+σ∗(b)− 2 ·σ∗(a) > m+σ∗(b)− 2 ·σ∗(b) = m−σ∗(b) = f (a)+ f (b).

It follows that the footrule distance strictly increases. For the maximum displacement
distance, note that in the original ranking, only alternatives b and am are displaced,
hence dMD(σ, σ∗) = f (b). Also, in the final ranking, only alternatives am, a and b are
displaced, and a has the highest displacement. Thus, dMD(σ

′, σ∗) = f ′(a). Finally,
note that f ′(a) = m− σ∗(a) > m− σ∗(b) = f (b). Hence, the maximum displacement
distance also strictly increases.

From both cases, it is clear that for any σ∗ ∈ L(A), a, b ∈ A such that a �σ∗ b and j ∈
{1, . . . , m− 1}, the bijection we constructed from Sj(a) to Sj(b) is distance-increasing.
Hence, using the equivalent representation of PC distances given in Lemma 7.6, it fol-
lows that both the footrule distance and the maximum displacement distance are PC, as
required. � (Theorem 7.12)

B.4.2 The curious case of the Cayley distance and the Hamming dis-
tance

In the discussion, we mentioned that we exclude distances such as the Cayley distance
and the Hamming distance from our analysis because even the most prominent voting
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rules such as plurality are not accurate in the limit for any noise models that are mono-
tonic with respect to these distances. We show that this is indeed the case. First, let us
define these two distances.

The Cayley Distance The Cayley distance between two rankings measures the mini-
mum number of (possibly non-adjacent) swaps of alternatives required to convert one
ranking into the other. Let us denote it by dCY.

The Hamming Distance The hamming distance between two rankings is defined
as the number of positions in which the rankings differ. Formally, dHM(σ1, σ2) =
∑a∈A 1[σ1(a) 6= σ2(a)].

Let A = {a, b, c} be the set of alternatives. Let σ∗ = (a � b � c) be the true ranking.
The following table describes the various possible rankings over these three alternatives
and their Cayley distances as well as Hamming distances from σ∗.

σ1 σ2 σ3 σ4 σ5 σ6
a a b c b c
b c a b c a
c b c a a b

dHM 0 2 3
dCY 0 1 2

Recall that for any d-monotonic noise model, d(σ, σ∗) = d(τ, σ∗) implies Pr[σ|σ∗] =
Pr[τ|σ∗]. Therefore, any noise model that is monotonic with respect to the Hamming
distance or the Cayley distance would assign equal probabilities to rankings σ3 and σ4,
and to rankings σ5 and σ6, making the probabilities of alternatives b and c appearing
first in a random vote equal. It follows that with probability 1/2, alternative c would be
ranked higher than alternative b by plurality. Thus, plurality is not accurate in the limit
with respect to any noise model that is monotonic with respect to either the Hamming
distance or the Cayley distance.

B.5 Two Useful Lemmas

Lemma B.1 (Convexity Lemma). Consider a point x ∈ ∆m!. Let FIX ⊆ L(A), and VARY =
L(A) \ FIX. Further, assume that {σ ∈ L(A)|xσ = 0} ⊆ FIX, and let k = |VARY| > 2.
Define

V =
{

v ∈ {−1, 0, 1}m!
∣∣∣ ∀σ ∈ L(A), vσ = 0⇔ σ ∈ FIX

∧ ∃σ ∈ L(A), vσ = 1∧ ∃σ ∈ L(A), vσ = −1
}

.

For every v ∈ V, define the orthant

Ov =
{

y ∈ ∆m!
∣∣∣ ∀σ ∈ L(A), (vσ = 0⇒ yσ = xσ) ∧ (vσ = 1⇒ yσ > xσ)
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∧ (vσ = −1⇒ yσ < xσ)
}

.

Given points xv ∈ Ov for all v ∈ V, x ∈ co{xv|v ∈ V}, where co denotes the convex hull.

Proof. We prove this by induction on k.
For k = 2, let VARY = {σ1, σ2}. Thus, Ov contains two orthants: one consisting of

y’s where yσ1 < xσ1 and yσ2 > xσ2 , and another consisting of y’s where yσ1 > xσ1 and
yσ2 < xσ2 . We are given a point x1 in the former orthant and a point x2 in the latter
orthant. For both points, the values of coordinates other than σ1 and σ2 match those for
x. Hence, it is easy to check that x = λx1 +(1− λ)x2, where λ = (xσ1 − x2

σ1
)/(x1

σ1
− x2

σ1
).

It is further easy to check that 0 < λ < 1. Hence, x ∈ co{x1, x2}.
Suppose that the theorem holds for all FIX, VARY with k = |VARY| = d − 1, for

some d 6 m!. Let us consider FIX, VARY with k = |VARY| = d. Define V and Ov for
every v ∈ V from FIX. Take any τ ∈ VARY, construct F̂IX = FIX ∪ {τ}, and define V̂
and Ôv for every v ∈ V̂ according to F̂IX.

If we can find a point x̂v ∈ Ôv for each v ∈ V̂ which is also in co{xv|v ∈ V}, then by
the induction hypothesis, we have x ∈ co{x̂v|v ∈ V̂} ⊆ co{xv|v ∈ V}. Take any v ∈ V̂.
We construct v+1, v−1 ∈ V as follows: v+τ = +, v−τ = −, and v+σ v−σ = vσ for all σ 6= τ.
We show that we can find x̂v ∈ Ôv as a convex combination of xv+ and xv− . It is easy
to check that taking x̂v = λxv+ + (1− λ)xv− works, where λ = (xτ − xv−

τ )/(xv+
τ − xv−

τ ).
It is easy to check that 0 < λ < 1. Further, we have x̂v

τ = xτ by construction, which is
desired because τ ∈ F̂IX. For every σ 6= τ, v+σ v−σ = vσ. Hence,

vσ = +⇒
(

xv+
σ > xσ ∧ xv−

σ > xσ

)
⇒ x̂v

σ > xσ,

and
vσ = − ⇒

(
xv+

σ < xσ ∧ xv−
σ < xσ

)
⇒ x̂v

σ < xσ.

For arbitrary v ∈ V̂, we found x̂v ∈ Ôv, which is also in co{xv|v ∈ V} as desired. Thus,
x ∈ co{xv|v ∈ V}. �(Proof of Lemma B.1)

Lemma B.2. Given a specific ranking σ∗ ∈ L(A) and a probability distribution D over the
rankings in L(A) such that

arg max
τ∈L(A)

PrD[τ] = {σ∗},

there exists a distance metric d over L(A) and a d-monotonic noise model G with PrG[σ; σ∗] =
PrD[σ] for every σ ∈ L(A).

Proof. First, let V = {PrD[σ]|σ ∈ L(A)} be the set of distinct probability values in D.
Now, we construct the distance metric d as follows. For all σ ∈ L(A), set d(σ, σ∗) =
d(σ∗, σ) = |{v ∈ V|v > PrD[σ]}| for every σ ∈ L(A). For every pair of rankings σ, σ′

different than σ∗, we set d(σ, σ′) = 0 if σ = σ′ and d(σ, σ′) = d(σ, σ∗) + d(σ′, σ∗).
We can easily show that the function d is indeed a distance metric. The first two

properties are preserved by definition. For the triangle inequality, we wish to prove
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that d(σ, σ′) + d(σ′, σ′′) > d(σ, σ′′) for all σ, σ′, σ′′ ∈ L(A). The inequality clearly holds
when any two of the three rankings are identical. If all three rankings are distinct, we
take two cases.

1. Suppose either σ = σ∗ or σ′′ = σ∗. Without loss of generality, let us assume σ =
σ∗. Then, the above inequality is obvious since, by the definition of d, d(σ′, σ′′) >
d(σ∗, σ′′) = d(σ, σ′′).

2. Suppose that neither σ nor σ′′ is equal to σ∗. Then, again by the definition of d, the
LHS of the above inequality becomes

d(σ∗, σ) + 2d(σ∗, σ′) + d(σ∗, σ′′) > d(σ∗, σ) + d(σ∗, σ′′) = d(σ, σ′′).

We now define the noise model G as PrG[σ; σ∗] = PrD[σ] for every σ ∈ L(A) and

PrG[σ; σ′] =
1/(1 + d(σ, σ′))

∑τ∈L(A) 1/(1 + d(τ, σ′))

for σ′ 6= σ∗. The property PrG[σ; σ′] > Pr[σ′′; σ′] iff d(σ; σ′) 6 d(σ′′, σ′) is obvious if
σ′ 6= σ∗. Otherwise, recall that PrG[σ; σ∗] = PrD[σ] and, clearly, PrG[σ; σ∗] > PrG[σ

′; σ∗]
iff |{v ∈ V|v > PrD[σ]}| 6 |{v ∈ V|v > PrD[σ

′]}|, i.e., d(σ, σ∗) 6 d(σ′, σ∗). � (Proof of
Lemma B.2)
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Appendix C

Omitted Proofs and Results for
Chapter 8

C.1 Proof of Lemmas

Lemma C.1. Let σ∗ denote the true ranking of the alternatives, and let σ denote a sample rank-
ing obtained from the Thurstone-Mosteller model where all Gaussians have identical variance ν2,
which is upper bounded by a constant M2. Let a, b ∈ A be two alternatives such that a �σ∗ b.
Take a ranking τ ∈ L(A) with a �τ b, and let τa↔b denote the ranking obtained by swapping
a and b in τ. Then, we have that Pr[σ = τ]− Pr[σ = τa↔b] is non-negative, and is at least a
positive constant when τ = σ∗.

Proof. Jiang et al. [115] show (in the proof of their Theorem 2, and under the assumption
of a constant upper and lower bound on the variance) that for i < j, the difference

Ωa,b,i,j = Pr[σ(a) = i ∧ σ(b) = j]− Pr[σ(a) = j ∧ σ(b) = i]

is at least a positive constant. Note that Ωa,b,i,j can also be expressed as follows. Let
Ωτ = Pr[σ = τ]− Pr[σ = τa↔b]. Then,

Ωa,b,i,j = ∑
τ∈L(A):τ(a)=i∧τ(b)=j

Ωτ.

Take i = σ∗(a) and j = σ∗(b). We are interested in the value of Ωτ for a particular
ranking τ, and in the value of Ωa,b,i,j.

Let {Yc}c∈A be the random variables denoting the sampled utilities of the alterna-
tives. Crucially, we observe that Jiang et al. express Ωa,b,i,j as an integral of a certain
density function — which is lower bounded by a positive constant — over the full range
of values of {Yc}c∈A\{a,b}. They show that this integral is over a region with at least a
constant probability, thus yielding a positive constant lower bound on Ωa,b,i,j.

Instead of integrating over the full range of values, we integrate only over values of
{Yc}c∈A\{a,b} that are consistent with the ordering of the alternatives of A \ {a, b} in τ
(or equivalently, in τa↔b). This integral yields Ωτ. It is easy to check that the density
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function (which may not be lower bounded by a positive constant in the absence of
a lower bound on the variance) is still positive. Thus, Ωτ > 0 for every τ ∈ L(A).
However, it is easy to see that for every τ 6= σ∗, both Pr[σ = τ] and Pr[σ = τa↔b] go to
0 as ν2 goes to 0. Hence, Ωτ also approaches 0 as ν2 goes to 0.

Finally, in the case of τ = σ∗, we want to show that infν2∈(0,M2] Ωσ∗ is lower bounded
by a positive constant. Note that when ν2 = M2, we know that Ωσ∗ is lower bounded by
a positive constant due to the result of Jiang et al. [115]. When ν2 = 0, we have Pr[σ =
σ∗] = 1 and Pr[σ = σ∗a↔b] = 0. Hence, Ωσ∗ = 1. By the extreme value theorem, Ωσ∗

must achieve its minimum value when ν2 ∈ [0, M2]. However, we already established
that Ωτ > 0 for every τ ∈ L(A) and every value of ν2. Hence, this minimum value
must be at least a positive constant, as required. �

Lemma C.2. Let σ∗ denote the true ranking of the alternatives, and let σ denote a sample rank-
ing obtained from the Thurstone-Mosteller model where all Gaussians have identical variance ν2,
which is upper bounded by a constant M2. Let a, b ∈ A be two alternatives such that a �σ∗ b.
Then, we have that Pr[σ(a) ∈ [j]]−Pr[σ(b) ∈ [j]] is non-negative for every j ∈ {1, . . . , m− 1}
and at least a positive constant for some j = σ∗(a).

Proof. In this case,
Ωa,b,j = Pr[σ(a) ∈ [j]]− Pr[σ(b) ∈ [j]],

for a �σ∗ b and j ∈ {1, . . . , m− 1}. Jiang et al. [115] show (in the proof of their Theo-
rem 2) that Ωa,b,j is at least a positive constant for every j ∈ {1, . . . , m− 1}. However,
they use an upper and a lower bound on the variance. Clearly, Ωa,b,j can approach 0 as
the variance ν2 approaches 0, e.g., if j < min(σ∗(a), σ∗(b)).

As in the proof of Lemma C.1, we observe that Jiang et al. express Ωa,b,j as an integral
of a certain density function — which, in their case, is lower bounded by a positive
constant — over a region with probability lower bounded by a positive constant. It is
easy to check that even in the absence of a lower bound on the variance, the density
function is still positive, yielding Ωa,b,j > 0 for all a �σ∗ b and j ∈ {1, . . . , m− 1}.

Further, take j = σ∗(a). Due to the results of Jiang et al., we have that Ωa,b,j is at
least a positive constant when ν2 = M2. When ν2 = 0, we have that Pr[σ(a) ∈ [j]] = 1
and Pr[σ(b) ∈ [j]] = 0. Hence, Ωa,b,j = 1. By the extreme value theorem, as ν2 varies
in the interval [0, M2], Ωa,b,j achieves its minimum value. Further, since Ωa,b,j is always
positive, this minimum value must be a positive constant, as required. �

C.2 Plurality Fails With Equal Variance

Let us consider the social network structure which consists of n vertices {v1, . . . , vn},
where v1 is only connected to v2, and {v2, . . . , vn} form an (n − 1)-clique. Vertices v2
through vn place equal weights on all their incident edges, and vertex v1 places weight
1 on its unique incident edge. Note that this satisfies the assumptions of Theorem 8.1.

Next, let the set of alternatives be A = {a, b, c}, and let their true qualities be µa = 3,
µb = 2, and µc = 1. Fix ν2 = 1. Note that under the distribution where the noisy quality
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estimate of each alternative is sampled from a Gaussian with its true quality being the
mean and variance ν2, every ranking has a positive probability of being sampled. Let
these Gaussians be associated with each edge in the network.

Then, we see that the Gaussians at vertices v2 through vn have variance at most
2ν2/(n− 1), which goes to 0 as n→ ∞. Hence, in the limit, each of v2 through vn would
report the true ranking with probability 1. However, vertex v1 can report each ranking
with a constant positive probability. Hence, there is a constant positive probability that
vertices v2 through vn report the true ranking (a � b � c), and vertex v1 reports the
ranking (c � a � b). Thus, plurality would return the ranking (a � c � b) with a
positive probability in the limit as n→ ∞, which is violation of accuracy in the limit.

C.3 Borda Count And The Modal Ranking Rule Fail With
Unequal Variance

Let there be three alternatives: a, b, and c. Hence, in this example m = 3. Let their
true qualities be µa = 9, µb = 7, and µc = 3. Hence, the ground truth ranking is
σ∗ = (a � b � c). Associate a standard deviation with each alternative as follows:
νa = 17, νb = 2, and νc = 1. Imagine a noise model where a noisy quality estimate
is sampled for each alternative x ∈ {a, b, c} from the Gaussian N (µx, (νx)2), and the
alternatives are then ranked according to their noisy quality estimates. Let BDx denote
the expected Borda score of alternative x ∈ {a, b, c} in a ranking sampled from this noise
model. Then, it can be verified that BDb > BDa > BDc.

Next, construct a “star” social network structure among n voters. That is, voter v1
is connected to every other voter, and there are no other edges in the network. Let the
aforementioned noise model be associated with each of the n− 1 edges in the network.
Then, the votes of voters v2 through vn are simply n − 1 independent samples from
the aforementioned noise model. Hence, the expected Borda score of b is greater than
the expected Borda score of a in each of these n− 1 votes. It follows that as n goes to
infinity, the overall Borda score of b would be greater than the overall Borda score of
a with probability 1. Thus, Borda count would not be able to return the ground truth
ranking a � b � c with high probability, violating accuracy in the limit.

Similarly, for the modal ranking rule, let the true qualities be µa = 9, µb = 6, and
µc = 5, and the standard deviations be νa = 18, νb = 20, and νc = 10. Then, it can be
verified that for a ranking σ sampled from the associated noise model, Pr[σ = (a � c �
b)] > Pr[σ = (a � b � c)]. Once again, for the “star” social network structure described
above, voters v2 through vn are more likely to submit ranking (a � c � b) than the true
ranking (a � b � c). Hence, as n goes to infinity, ranking (a � c � b) would appear
more number of times than the true ranking (a � b � c) with probability 1. Thus, the
modal ranking rule would not be able to return the true ranking with high probability,
violating accuracy in the limit.
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Appendix D

Omitted Proofs and Results for
Chapter 9

D.1 Additional Experiments

In Chapter 9, we presented experiments (Figure 9.2) that compare our proposed worst-
case optimal rule against other voting rules when: i) it receives the true error of a profile
t∗ = d(π, σ∗) as an argument (Figures 9.2(a) and 9.2(b)), and ii) when it receives an es-
timate t̂ of t∗ (Figures 9.2(c) and 9.2(d)). In these experiments, we used the Kendall tau
distance as the measure of error. In this section we present additional experiments in an
essentially identical setting but using the other three distance metrics considered in this
paper as the measure of error. These experiments affirm that our proposed rules are su-
perior to other voting rules independent of the error measure chosen. Figures D.1, D.2,
and D.3 show the experiments for the footrule distance, the Cayley distance, and the
maximum displacement distance, respectively.
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Figure D.1: Results for the footrule distance (dFR): Figures D.1(a) and D.1(b) show that
OPTdFR outperforms other rules given the true parameter, and Figures D.1(c) and D.1(d)
(for a representative noise level 3) show that it also outperforms the other rules with a
reasonable estimate.
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Figure D.2: Results for the Cayley distance (dCY): Figures D.2(a) and D.2(b) show that
OPTdCY outperforms other rules given the true parameter, and Figures D.2(c) and D.2(d)
(for a representative noise level 3) show that it also outperforms the other rules with a
reasonable estimate.
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Figure D.3: Results for the maximum displacement distance (dMD): Figures D.3(a)
and D.3(b) show that OPTdMD outperforms other rules given the true parameter, and
Figures D.3(c) and D.3(d) (for a representative noise level 3) show that it also outper-
forms the other rules with a reasonable estimate.
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