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Abstract
Transfer learning algorithms are used when one has sufficient training data for

one supervised learning task (the source task) but only very limited training data
for a second task (the target task) that is similar but not identical to the first. These
algorithms use varying assumptions about the similarity between the tasks to carry
information from the source to the target task. Common assumptions are that only
certain specific marginal or conditional distributions have changed while all else
remains the same. Moreover, not much work on transfer learning has considered the
case when a few labels in the test domain are available. Alternatively, if one has
only the target task, but also has the ability to choose a limited amount of additional
training data to collect, then active learning algorithms are used to make choices
which will most improve performance on the target task. These algorithms may be
combined into active transfer learning, but previous efforts have had to apply the two
methods in sequence or use restrictive transfer assumptions.

This thesis focuses on active transfer learning under the model shift assumption.
We start by proposing two transfer learning algorithms that allow changes in all
marginal and conditional distributions but assume the changes are smooth in order
to achieve transfer between the tasks. We then propose an active learning algorithm
for the second method that yields a combined active transfer learning algorithm.
By analyzing the risk bounds for the proposed transfer learning algorithms, we show
that when the conditional distribution changes, we are able to obtain a generalization
error bound of O( 1

λ∗
√
nl

) with respect to the labeled target sample size nl, modified
by the smoothness of the change (λ∗) across domains. Our analysis also sheds light
on conditions when transfer learning works better than no-transfer learning (learning
by labeled target data only). Furthermore, we consider a general case where both the
support and the model change across domains. We transform both X (features) and
Y (labels) by a parameterized-location-scale shift to achieve transfer between tasks.

On the other hand, multi-task learning attempts to simultaneously leverage data
from multiple domains in order to estimate related functions on each domain. Simi-
lar to transfer learning, multi-task problems are also solved by imposing some kind
of “smooth” relationship among/between tasks. We study how different smoothness
assumptions on task relations affect the upper bounds of algorithms proposed for
these problems under different settings.

Finally, we propose methods to predict the entire distribution P (Y ) and P (Y |X)
by transfer, while allowing both marginal and conditional distributions to change.
Moreover, we extend this framework to multi-source distribution transfer.

We demonstrate the effectiveness of our methods on both synthetic examples and
real-world applications, including yield estimation on the grape image dataset, pre-
dicting air-quality from Weibo posts for cities, predicting whether a robot success-
fully climbs over an obstacle, examination score prediction for schools, and location
prediction for taxis.
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Chapter 1

Introduction

1.1 Transfer Learning and Active Learning

As machine learning is applied to a growing number of domains, many researchers have looked
to exploit similarities in machine learning tasks in order to increase performance. For example,
one may suspect that data for the classification of one commodity as profitable or not may help
in classifying a different commodity. Similarly, it is likely that data for spam classification in
one language can help spam classification in another language. Transfer learning is a common
technique for leveraging data from different domains for machine learning tasks.

Let X denote the features and Y denote the labels. In a classical transfer learning setting, we
have sufficient fully labeled data from the source domain (also denoted as the training domain),
(Xs, Y s), where the data points, Xs, are fully observed and all corresponding labels, Y s, are
also known. We are given data points, X t, from the target domain (also denoted as the test
domain), but few or none of the corresponding labels, Y t, are given. The source domain and the
target domain are related but not identical, thus the joint distributions, P (Xs, Y s) and P (X t, Y t),
are different across the two domains. Without any transfer learning, a statistical model learned
from the source domain does not directly apply to the target domain. However, it may still
be possible to avoid the cost of collecting an entire new labeled training data set. The goal of
transfer learning is to reduce the amount of new labeled data needed in the target domain. It
learns and transfers a model based on the labeled data from the source domain and the unlabeled
data from the target domain. Some real-world applications of transfer learning include adapting a
classification model that is trained on some products to help learn classification models for some
other products [51], and learning a model on the medical data for one disease and transferring it
to another disease.

Alternatively, if one has only the target task but also has the ability to choose a limited
amount of additional training data to collect, then active learning algorithms are used to make
choices which will most improve performance on the target task. Common active learning criteria
include: (1) Active Learning which reduces total predictive covariance [35, 61]; and (2) Active
Surveying [22, 41, 72] where the objective is the sum of all the labels in the test domain. These
algorithms can be combined into active transfer learning, but previous efforts have had to apply
the two methods in sequence ([54, 62]) or use restrictive transfer assumptions ([13, 59]).
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1.2 Motivation and Applications
We are motivated by an autonomous agriculture application where we want to manage the growth
of grapes in a vineyard [48]. A robot can easily take images of the crop throughout the growing
season. At the end of the season the yield will be known for every vine because the product
is weighed after harvest. This data can be used to learn a model that predicts yield from im-
ages. However, decisions about selling the produce and nurturing the growth must be made
mid-season. Acquiring training labels at that time is very expensive because it requires a human
to go out and manually estimate yield. Ideally, a model learned from previous years and/or on
other grape varieties can be used with a transfer learning algorithm to minimize this manual yield
estimation. Furthermore, we would like a simultaneously applied active learning algorithm to tell
us which vines to assess manually. Finally, there are two different objectives of interest. A robot
that needs to decide which vines to water needs an accurate estimate of the current yield of each
vine. However, a farmer that wants to know how big his crop will be this fall so he can pre-sell
an appropriate amount of it only needs an estimate of the sum of the vine yields. We call these
problems active learning and active surveying respectively and they lead to different selection
criteria.

Figure 1.1: A part of one image from each grape dataset (riesling and traminette)

To better illustrate the problem, a part of one image from two real-world grape datasets (ries-
ling and traminette) is shown in Figure 1.1. The goal is to transfer the model learned from
one kind of grape dataset to another kind of grape dataset. On the traminette dataset we have
achieved a cross-validated R-squared correlation of 0.754. Previously specifically designed im-
age processing methods have achieved an R-squared correlation 0.73 [48]. This grape-detection
method takes lots of manual labeling work and cannot be directly applied across different vari-
eties of grapes (due to differences in size and color). Our proposed approach for transfer learning,
however, can be directly used for different varieties of grapes or even different kinds of crops.

The second real-world example is learning to climb over obstacles with a snake robot (Fig-
ure 1.2). The task is to predict whether the robot successfully climbs over an obstacle with
different heights. The parameters for the robot controller are closely connected for the climbing
tasks with similar heights. Hence we can transfer the model we learned from the data of a robot
snake climbing over an obstacle with a lower height to assist the learning of success rate when
the robot tries to climb over a higher obstacle.

The third real-world example is predicting the Air Quality Index (AQI) for Chinese cities.
The dataset is from [45] and for each city, the input feature xi is a bag-of-words vector extracted
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Figure 1.2: Learning to climb over obstacles with a snake robot, obstacle height: 3.5” (left) and
11”(right) [69]

from Weibo posts of each day, with 100, 395 dimensions as the dictionary size. The output label
yi is a real number which is the AQI of that day. Figure 1.3 shows an example of the Weibo posts
and the corresponding AQI for that day, for two major cities in China. First we observe from
the data that there exist certain words (e.g., the underlined words in the example) which have
positive correlations to the AQI. Second, we also discover that, for different cities, even people
use the same words to describe bad air qualities, the actual AQI could still be quite different. For
example, assume a city A has an overall better air quality than the other city B. On a certain day,
if the air quality of city A becomes slightly worse than before, people might start complaining
a lot on Weibo posts. However the AQI for city A which people consider as “hazardous” might
just be “moderate” for people in city B. In this thesis, we will show how we use our proposed
transfer learning methods to resolve this issue.

杭州的雾霾真的有点严重
The haze in Hangzhou is a bit serious

厚重的雾霾渐渐褪去午夜的月色悄悄探出
头来
The heavy haze has gradually faded and 
the moon starts to show

Hangzhou: 135

天气今天朝阳空气质量指数381严重污染
Today’s air quality index is 381 in Chaoyang 
district, which indicates heavy pollution

周六的北京, 直接空气指数247的重度污染, 老天
用雾霾告诫我们一定要保护环境
On Saturday, Beijing has an air quality index of 
247 (heavy pollution). The haze is a lesson that 
teaches us to protect the environment

Beijing: 201

Figure 1.3: Predicting Air Quality Index from Text posts

The fourth real-world example is predicting the examination scores for schools. The dataset
come from the Inner London Education Authority (ILEA), consisting of examination records
from 139 secondary schools in years 1985, 1986 and 1987 1 [4, 6]. It is a random 50% sample
with 15362 students. The data have been used to study the effectiveness of schools. Table 1.1
shows an example of the school features. If we regard each school as one task, how to jointly

1http://cvn.ecp.fr/personnel/andreas/code/mtl/index.html
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leverage the information we learned from all the tasks is an interesting multi-task problem which
we would like to address in this thesis.

Description Coding
Year 1985=1; 1986=2; 1987=3
% FSM Percent of students eligible for free school meals
% VR1 band Percent of students in school in VR band 1
Gender Male=0; Female=1
VR band of student VR1=2; VR2=3; VR3=1
Ethnic group of student ESWI=1 (Students born in England, Scotland, Wales or Ireland);

African=2; Arab=3; Bangladeshi=4; Caribbean=5; Greek=6; In-
dian=7; Pakistani=8; S.E.Asian=9; Turkish=10; Other=11

School gender Mixed=1; Male=2; Female=3
School denomination Maintained=1; Church of England=2; Roman Catholic=3

Table 1.1: School Features

Figure 1.4: Distributions of drop-off locations for taxi data with the same pick-up location around
Time Square, New York city: 8-9am (left) and 9-10pm (right)

4



Another real-world example is predicting the distributions of drop-off locations for taxis. We
have the NYC dataset2 which consists of pickup time, pickup location and dropoff location for
taxis in New York city during the year of 2013. Each location is represented by a real-valued
pair: (longitude, latitude). In Figure 1.4, we plot the drop-off locations (shown by red dots) for
taxies for two different time periods: 8-9am in the morning (left), and 9-10pm in the evening
(right), given the start location within a certain radius of (−73.985, 40.758), which is near Time
Square, New York city. We can see that the distributions for these two time periods are quite
different: in the morning the drop-off locations are mainly concentrated around the business
districts for work, while in the evening the drop-off locations are more scattered as people take
taxies to restaurants or residential areas. Here lies an interesting transfer problem: given the data
from previous time frames/certain geographical regions, how can we transfer the knowledge to
predict the drop-off locations for the future/for a different region? In this thesis, we will propose
methods to solve this problem of distribution transfer.

1.3 Notations and Acronyms
In Table 1.2 we show a list of common symbols used in this thesis. In Table 1.3 we show a list
of acronyms used in this thesis.

1.4 Thesis Overview

1.4.1 Active Transfer Learning under Model Shift
In the first part of this thesis, we propose two algorithms for transfer learning under model shift.
Model shift means we allow P (Y |X) to change across domains. We analyze the risk bounds for
both algorithms and show that we achieve favorable convergence rate compared to no-transfer
learning. In addition, we propose a flexible transfer learning algorithm that allow both support
and model to change across domains. Specifically,
• In chapter 3, we propose two transfer algorithms that allow both P (X) and P (Y |X) to

change across the source and target tasks. We assume only that the change is smooth as
a function of X . The first approach builds on the kernel mean matching (KMM) idea
[25, 33] to match the conditional distributions, P (Y |X), between the tasks. The second
approach uses Gaussian Processes to model the source task, the target task, and the offset
between. The assumption here is that although the offset may be a nonlinear function
over the input domain, there is some smoothness in that offset over the input domain. If
that is not true, we suspect there is little hope for transferring between domains at all.
The GP-based approach naturally lends itself to the active learning setting where we can
sequentially choose query points from the target dataset (Figure 1.5). Its final predictive
covariance, which combines the uncertainty in the transfer function and the uncertainty in
the target label prediction, can be plugged into various GP based active query selection
criteria. The content of this chapter has been published in [73].

2http://www.andresmh.com/nyctaxitrips/
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Table 1.2: Notations
Symbol Definition
X feature matrix
Y label vector
Xs, Y s data from the source domain
X t, Y t data from the target domain
X tL, Y tL labeled data in the target domain
X tU , Y tU unlabeled data in the target domain
m source sample size
nl number of labeled target samples
w scale vector
b offset vector
� elementwise product
U conditional embedding operator
µ[P (X)] kernel mean embedding on distribution P (X)
φ(x) feature map on x
ψ(y) feature map on y
KXX′ kernel matrix between feature matrix X and X ′

λ regularization parameters
h hypothesis
l loss function
Λ reweighting matrix representing task relationships
κ upper bound on the kernel values k(x, x′)

Table 1.3: Acronyms

Acronym Definition
AQI Air Quality Index
KMM Kernel Mean Matching [26, 33]
SMS Support and Model Shift
TL Transfer Learning
AL Active Learning
AS Active Surveying
GP Gaussian Process
KRR Kernel Ridge Regression
CDM Conditional Distribution Matching
T/C Shift Target/Conditional Shift
MT-KRR Multi-Task Kernel Ridge Regression
MMD Maximum Mean Discrepancy [26, 33]
CDT Conditional Distribution Transfer
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Figure 1.5: Active Learning in the Transfer Learning Framework
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Figure 1.6: Larger λ∗ (smoother change)

X

-5 0 5

Y

-1

0

1

2

X

-5 0 5

Y

-2

0

2

X

-5 0 5

Y

-2

0

2

Figure 1.7: Smaller λ∗ (less smooth change)

• In chapter 4, we develop theoretical analysis for transfer learning algorithms under the
model shift assumption. Our analysis sheds light on conditions when transfer learning
works better than no-transfer learning. We show that under certain smoothness assump-
tions it is possible to obtain a favorable convergence rate with transfer learning compared
to no transfer at all. Specifically, our main result is that even when the conditional dis-
tributions are allowed to change across domains, we are still able to obtain a general-
ization bound of O( 1

λ∗
√
nl

) with respect to the labeled target sample size nl, modified by
the smoothness of the transformation parameters (λ∗, examples are shown in Fig. 1.6 and
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Fig. 1.7) across domains. In Fig. 1.6 we have a larger λ∗ which corresponds to a smoother
change (the offset between the target and the source is a very smooth function w.r.t. X),
then we obtain favorable bounds for transfer learning than no-transfer at all. In Fig. 1.7 we
have a smaller λ∗ which corresponds to a less smooth change (the offset function changes
rapidly w.r.t. X), then the bound of transfer learning is similar to the bound of learning
by labeled-target samples only, which means we do not benefit much from transfer learn-
ing. Furthermore, using the generalization bounds we derived, we are able to extend the
transfer learning algorithm from a single source to multiple sources, where each source is
assigned a weight that indicates how helpful it is for transferring to the target. The content
of this chapter has been published in [71].

• In chapter 5, we propose a transfer learning algorithm that allows both the support on
X and Y , and the model P (Y |X) to change across the source and target domains. We
assume only that the change is smooth as a function of X . In this way, more flexible
transformations are allowed than mean-centering and variance-scaling. Specifically, we
build a Gaussian Process to model the prediction on the transformedX , then the prediction
is matched with a few observed labels Y (also properly transformed) available in the target
domain such that both transformations on X and on Y can be learned. As an illustration,
we show a toy problem in Fig. 1.8. As we can see, the support of P (X) in the training
domain (red stars) and the support of P (X) in the test domain (blue line) do not overlap,
neither do the support of Y across the two domains. The goal is to learn a model on
the training data, with a few labeled test data (the filled blue circles), such that we can
successfully recover the target function (the blue line). In Fig. 1.9, we show the labels (the
yield) of each grape image dataset, along with the 3rd dimension of its feature space. We
can see that the real-world problem is quite similar to the toy problem, which indicates that
the algorithm we propose in this work will be both useful and practical for real applications.
The content of this chapter has also been published in [70].
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Figure 1.8: Toy problem
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1.4.2 Stability Analysis for Multi-Task Learning Problems
In the second part of the thesis, we focus on multi-task learning problems. Similar to transfer
learning where one uses data (or an estimator) from a well understood source domain with plenti-
ful data to aid the learning of a target domain with scarce data, multi-task learning pools multiple
domains together and couples the learning of several tasks by regularizing separate estimators
jointly and dependently (Figure 1.10). Although multi-task learning algorithms are becoming
prevalent in machine learning, there are gaps in our understanding of their properties, especially
in nonparametric settings. This part of the thesis looks to increase our understanding of funda-
mental questions such as: What can one say about the true risk of a multi-task estimator given
its empirical risk? How do relative sample sizes affect learning among different domains?

0 0.5 1
−5

0

5

X

Y

 

 

task 1

task 1 data

task 2

task 2 data

task 3

task 3 data 0 0.5 1
−2

0

2

4

6

X

Y

 

 

source f

source data

offset

target f

target data

Figure 1.10: Toy example illustrating multi-task learning (left) and transfer learning (right).

Although there are many regularization techniques proposed for multi-task learning, there are
very few studies on how the learning bounds change under different parameter regularizations.
• In chapter 6, we analyze the stability bounds under a general framework of multi-task

learning using kernel ridge regression. Our formulation places a reweighting matrix Λ on
task weights to capture the relationship among tasks. Our analysis shows that most ex-
isting work can be cast into this framework by changing the reweighting matrix Λ. More
importantly, we show that the stability bounds under this framework depend on the diag-
onal blocks of Λ−1, thus providing insights on how much we can gain from regularizing
the relationship among tasks by using different reweighting matrices. The content of this
chapter has been published in [74].

1.4.3 Estimating Distributions in the Transfer Learning Setting
All the above work deals with predictions on the labels Y with real-valued outputs (regression)
or categorical outputs (classification). In many real-world applications, a distributional output
P (Y ) is desired. In addition, in many scenarios the output distribution is multi-modal, and a
fixed real-valued prediction (e.g. the mean or some variation of the mean) might be inaccurate.
As a more concrete example, on a traffic dataset that consists of pickup/dropoff locations for
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taxis, given a certain pickup location, instead of predicting a fixed dropoff location, it is more
beneficial to predict the distribution of dropoff locations such that a taxi driver can optimize
his/her future actions.
• In chapter 7, we propose methods for estimating distributions in a transfer learning set-

ting. We first propose an approach for distribution transfer on P (Y ) in a nonparametric
setting, i.e., estimating P (Y ) in the target domain by transferring P (Y ) from the source
domain. Then we propose an approach for conditional distribution transfer, i.e., es-
timating P (Y |X = x∗) in the target domain by transferring from the source distribution.
Finally we extend the algorithm to multi-source distribution transfer, where we estimate
P (Y ) or P (Y |X = x∗) in the target domain by combining multiple source distributions.

1.4.4 Experiments on Real-world Applications
We evaluate our methods on both synthetic data and real-world data. The real-world datasets
include:
• Yield estimation based on images across grape varieties
• Air-quality prediction from Weibo posts for different cities
• Predict whether a robot successfully climbs over an obstacle
• Predict examination scores for students to study the effectiveness of schools
• Estimate the distribution of drop-off locations for taxis on the traffic data

In all applications, we show that our proposed methods lead to improved prediction performance
compared to state-of-the-art methods.
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Chapter 2

Related Work

2.1 Transfer Learning

Traditional methods for transfer learning usually assume that specific parts of the model can be
carried over between tasks. [46] uses Markov logic networks to transfer relational knowledge
across domains. [47] learns Bayes Net structures by biasing learning toward similar structures
for each task. [18, 55] achieves transfer learning by assuming that models for related tasks share
some parameters or prior distributions of hyperparameters.

Recently, a large part of transfer learning work has focused on the problem of covariate
shift [25, 33, 64]. They consider the case where the marginal distributions on X are differ-
ent across domains, i.e., P (Xs) differs from P (X t), while making the assumption that the
conditional distributions P (Y s|Xs) and P (Y t|X t) are the same. The kernel mean matching
(KMM) method [25, 33], is one of the algorithms that deal with covariate shift. It minimizes
||µ(Pt)− Ex∼Ps(x)[β(x)φ(x)]|| (here µ is the kernel mean embedding of distributions, and φ(x)
is the feature map on x) over a re-weighting vector β on training data points such that distri-
butions on X are matched with each other. They then incorporate the learned weights β̂ into
the training procedure, e.g., training an SVM with re-weighted source data points, to obtain a
model that generalizes well on the target data. The advantage of using kernel mean matching is
to avoid density estimation, which is difficult in high dimensions. It has been proved [67] that
even if we use the empirical version of mean embeddings we can still achieve a fast convergence
rate of O(m−1/2), where m is the sample size. However, this work suffers two major problems.
First, the conditional distribution P (Y |X) is assumed to be the same, which might not be true
under many real-world cases. The algorithm we propose will allow more than just the marginal
on X to shift. Second, the KMM method requires that the support of P (X t) is contained in
the support of P (Xs), i.e., the training set is richer than the test set. This is not necessarily
true in many real cases either. Consider the task of transferring yield prediction using images
taken from different vineyards. If the images are taken from different grape varieties or during
different times of the year, the texture/color could be very different across transferring tasks. In
these cases one might mean-center (and possibly also variance-scale) the data to ensure that the
support of P (X t) is contained in (or at least largely overlapped with) P (Xs). We provide an
alternative way to solve the support shift problem that allows more flexible transformations than
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mean-centering and variance-scaling.
Some more recent research [80] has focused on modeling target shift (P (Y ) changes), con-

ditional shift (P (X|Y ) changes), and a combination of both. The assumption on target shift is
that X depends causally on Y , thus P (Y ) can be re-weighted to match the distributions on X
across domains. In conditional shift, the authors apply a parameterized-location-scale transfor-
mation on P (X|Y ) to match P (X). However, the authors still assume that the support of P (Y t)
is contained in the support of P (Y s), which is not necessarily true in many cases. Further for
transfer learning under model shift, there could be a difference in P (Y |X) that can not simply
be captured by the differences in P (X), hence neither covariate shift nor target/conditional shift
will work well under the model shift assumption.

There also have been a few papers dealing with differences in P (Y |X). Jiang and Zhai.
[36] designed specific methods (change of representation, adaptation through prior, and instance
pruning) to solve the label adaptation problem. Liao et al. [39] relaxed the requirement that
the training and testing examples be drawn from the same source distribution in the context of
logistic regression. They also proposed an active learning approach using the Fisher information
matrix, which is a lower bound of the exact covariance matrix. Sun et al. [68] weighted the
samples from the source domain to handle the domain adaptation. These settings are relatively
restricted while we consider a more general case that there is a smooth transformation from the
source domain to the target domain, hence all source data will be used with the advantage that
the part of source data which do not help prediction in the target domain will automatically be
corrected via the transformation model.

2.1.1 Theory on Transfer Learning
A number of theoretical analyses on transfer learning have also been developed. [58] presented
VC-dimension-based generalization bounds for transferring classification tasks. Later [8] ex-
tended the work with a bound on the error rate under a weighted combination of the source data.
[43] introduced a discrepancy distance suitable for arbitrary loss functions and derived new gen-
eralization bounds for domain adaptation for a wide family of loss functions. However, most
of the work mentioned above deals with transfer learning under the covariate shift assumption,
i.e., they still assume the conditional distribution stays the same across domains, or the labeling
functions in the two domains share strong proximity in order for adaptation to be possible. For
example, one of the bounds derived in [43] has a term L(h∗Q, h

∗
P ) (here h∗Q, h∗P are the hypotheses

that minimize the objective in the source domain and target domain, respectively) related to the
average loss between the minimizer h∗Q in the source domain and the minimizer h∗P in the target
domain, which could be fairly large when there exists a constant offset between the two labeling
functions.

Similarly, most work in transfer learning with multiple sources focuses only on P (X). For
example, [42] proposed a distribution weighted combining rule of source hypotheses using the
distribution P (X) for both source and target. This approach requires estimating the distribution
Pi(x) of source i on a target point x from large amounts of unlabeled points from the source,
which might be difficult in real applications with high-dimensional features. Other existing work
focuses on finding the set of sources that are closely related to the target [16], or a reweighting
of sources based on prediction errors [76]. [12] proposed a conditional probability based weight-
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ing scheme under a joint optimization framework, which leads to a reweighting of sources that
prefers more consistent predictions on the target. However, these existing approaches do not
consider the problem that there might exist shifts in the conditional distribution from source to
the target, and how the smoothness of this shift can help learn the target.

2.2 Active Learning
A research area we draw from is active learning with Gaussian Processes, for which many se-
lection criteria have been proposed, such as choosing the test point with the highest variance (or
entropy). We can also utilize mutual information [28], which the same authors further improve
by considering both parameter (kernel width) uncertainty reduction (exploration) and model un-
certainty reduction under current parameter setting (exploitation) [37]. Another popular criterion
is minimizing the total variance conditioned on the point to be selected [35, 61], which can be
done using the trace of the covariance matrix, Tr{σ2

y|A}, where A is the set of labeled data points
and the candidate query points. Active surveying [22, 41, 72], uses an estimation objective that
is the sum of all the labels in the test set. The corresponding myopic active selection criteria is
minimizing the sum of all elements in the covariance matrix conditioned on the selected point,
1>σ2

y|A1. We adopt these last two selection criteria for our active transfer algorithms.

2.3 Combining Transfer and Active Learning
The idea of combining transfer learning and active learning has also been studied recently. Both
[62] and [54] perform transfer and active learning in multiple stages. The first work uses the
source data without any domain adaptation. The second work performs domain adaptation at
the beginning without further refinement. [59] and [13] consider active learning under covariate
shift and still assume P (Y |X) stays the same. In Chapter 3, we propose a combined active
transfer learning algorithm to handle the general case where P (Y |X) changes smoothly across
domains. However, covariate shift algorithms are still needed to solve the problem that P (X)
might differ across domains, which follows the assumption covariate shift made on the support of
P (X). In Chapter 5, we further propose an algorithm that allows more flexible transformations
(parameterized-location-scale1 transform on bothX and Y ). Our experiments on real-data shows
this additional flexibility pays off in real applications.

2.4 Multi-task Learning
A closely related area to transfer learning is multi-task learning, where people try to learn mul-
tiple related tasks jointly. A large part of work on multi-task learning focuses on learning a
common feature representation shared by tasks [1, 2, 3, 14, 79], and directly inferring the relat-
edness of tasks [6, 34, 75, 78]. Also people have achieved multi-task learning by transferring

1we use “parameterized” to indicate that the transform is a function w.r.t to X , in order to distinguish from the
usual term “location-scale” family which people use for probability distributions.
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knowledge of parameters. Both [10, 38] handle multiple-task learning in the context of Gaussian
Process by using some GP prior to induce correlations between tasks. [19, 60] use a hierarchical
Bayesian framework for multi-task learning in the context of GP and SVM, respectively.

A large part of multi-task learning work is formulated using kernel ridge regression (KRR)
with various regularizations on task relations. The `2 penalty is used on a shared mean function
and on the variations specific to each task [19, 20]. In [66] a pairwise `2 penalty is placed
between each pair of tasks. In [84] an `2 penalty is proposed on each pair of consecutive tasks
that controls the temporal smoothness. By regularizing the shared clustering structure among
task parameters, task clusters are constructed for different features [83]. A multi-linear multi-
task learning algorithm is proposed in [56] by placing a trace norm penalty. However, there
are very few literature dealing with the stability of multi-task KRR algorithms. The stability
bounds for transductive regression algorithms are analyzed in [15]. In [5], the authors study the
stability properties of multi-task KRR by considering each single task separately, thus failing to
reveal the advantage of regularizing task relations. In [44], a regularized trace-norm multi-task
learning algorithm is studied where the task relations are modeled implicitly, while we study a
general family of multi-task learning algorithms where the task relations are modeled explicitly,
reflected by a reweighting matrix Λ on task weights. More recently, the algorithmic stability for
multi-task algorithms with linear models f(x) = w>x (w is the weight vector on x) is studied
in [82]. While in this thesis we consider the more challenging nonlinear models with feature
map φ(x), where the new multi-task kernel between xi, xj is defined as φ(xi)Λ

−1φ>(xj) (Λ is a
reweighting matrix representing the relationship among all the tasks) by absorbing Λ. Our theory
is also developed on the more general nonlinear models.

2.5 Distribution Learning
Techniques for distribution regression are also becoming increasingly popular in machine learn-
ing. For example, Poczos et al. [52] focuses on distribution to real-value regression, and Oliva
et al. [49] studies distribution to distribution regression in a nonparametric setting. Both authors
assume that the learner is given multiple sets of input/output samples that one can estimate the
distribution from, and the goal is to learn the correspondence from the input distribution to the
output distribution. Unlike these approaches, we focus on the transfer learning setting, where
we are only given one set of source/target samples, and we recover the target distribution based
on the source distribution and a few target labels, assuming that the source and the target are
somewhat similar.

One area close to distribution transfer is distribution estimation with priors. Most of these
methods focus on the parametric setting, for example, Bayesian posterior estimation. Hjort and
Glad [30] develops semiparametric methods for density estimation by using a parametric start.
In this thesis, we focus on the nonparametric setting, i.e., we would like to transfer between
general distributions, rather than a certain family of distributions that can be represented by
some parameters. On the other hand, there has been some work in the area of conditional density
estimation [24, 32, 57]. In this thesis, when estimating the conditional density we adopt a similar
technique except that the source samples are reweighted according to the distribution transfer
objective.
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Specifically, we focus on transfer learning on the distribution P (Y ) and conditional distri-
bution P (Y |X = x∗) while allowing both distributions to change across domains. This is very
different from most existing work on covariate shift [27, 33, 64], which assumes that only the
marginal distribution P (X) changes across domains, while the conditional distribution P (Y |X)
remains the same.

2.6 Deep Learning Meets Transfer Learning
Recently there also have been a few papers dealing with transfer learning in deep neural net-
works. The basic idea is to have the lower-layer features fixed while re-training the higher-layer
features specific for each task (Figure 2.1). In [77], the authors have shown that deep features
transition from general to specific along the deep network, thus the transferability drops for a
different task. In the same paper, the authors also show that, as the source and target tasks be-
come more dissimilar, the performance benefits of transferring features decreases. Hence it is
necessary to reduce the dataset bias and enhance the transferability across tasks for the higher
layers. [40] proposes a Deep Adaptation Network, which adds task-specific layers to match
the distribution embeddings of the hidden representations for different domains. [21] proposes
a deep architecture that promotes deep features that are discriminative for the source task and
also invariant with respect to the shift between the domains. The domain-invariant features are
achieved by adding a domain classifier with a gradient reversal layer that ensures the feature
distributions over the two domains are made similar, i.e., as indistinguishable as possible for the
domain classifier.

Fixed Layers 
for all tasks

Specific for 
each task

Figure 2.1: Transfer Learning in deep networks: deep features transition from generic to specific
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Chapter 3

Active Transfer Learning under Model
Shift

3.1 Overview

In this chapter, we propose two transfer learning algorithms under model shift. Here model shift
means we allow conditional distributions P (Y |X) to change across domains. We only assume
that the change is a smooth function with respect to the features X . The two algorithms are:
• Conditional Distribution Matching:

we match the conditional distributions between the tasks by using the idea of kernel em-
bedding of conditional distributions

• Modeling the offset/difference between source and target functions by Gaussian Processes:
we build Gaussian Processes to model the source task, the target task, and the offset be-
tween. This approach also lends itself to an active learning algorithm where we can se-
quentially select data points for query.

3.2 Problem Formulation

Assume we are given a set of m labeled training data points, (Xs, Y s), from the source domain
where each Xs

i ∈ <dx and each Y s
i ∈ <dy . Assume we are also given a set of n test data points,

X t, from the target domain. Some of these will have corresponding labels, Y tL. When necessary
we will separately denote the subset of X t that has labels as X tL, and the subset that does not as
X tU .

For static transfer learning, the goal is to learn a predictive model using all the given data
that minimizes the squared prediction error on the test data, Σn

i=1(Ŷ t
i − Y t

i )2 where Ŷi and Yi are
the predicted and true labels for the ith test data point. We will evaluate the transfer learning
algorithms by including a subset of labeled test data chosen uniformly at random.

For active transfer learning the performance metric is the same. The difference is that the
active learning algorithm chooses the test points for labeling rather than being given a randomly
chosen set.
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The surveying metric is to minimize the error on the sum of the predictions: (Σn
i=1Ŷ

t
i −

Σn
i=1Y

t
i )2. Again, this is evaluated using a randomly chosen set of test labels for static transfer

surveying or a set chosen by the algorithm for active transfer surveying.
To illustrate the problem, we show a toy example in Figure 3.1. The left figure shows data

in the source domain, drawn from a sine function. The right figure shows data in the target do-
main, drawn from the same sin function adding a positive offset function which is exponentially
increasing (the middle figure of Fig. 3.1). The goal is, given the data from the source function
(shown as the red stars in Fig. 3.1, left), and a few data points to query (blue dots in Fig. 3.1,
right), to recover the target function (the blue line in Fig. 3.1) in the least number of queries.
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1

2
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Y

Target Function

Figure 3.1: Toy example showing the transfer/active learning problem

3.3 Transfer Learning

3.3.1 Conditional Distribution Matching Approach (CDM)
First we propose a distribution matching approach for transfer learning. The basic idea is, we
want to
• Match the conditional distributions

P (Y new|Xs) and P (Y t|X t),

P(Ys|Xs)

P(YtL|XtL)

P(Ynew|Xs)

P(Ys|Xs)

P(YtL|XtL)≈

Figure 3.2: Conditional Distribution Matching by transforming the source labels Y s to Y new
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Figure 3.3: Illustration of the smooth transformations w,b w.r.t. X (left); Prediction results of
CDM after transforming the source labels

as shown by Figure 3.2, where Y new is under a parameterized-location-scale transform of
Y s:

Y new = Y s �w(Xs) + b(Xs).

Here w is a scale vector on Xs and b is an offset vector on Xs. The � is the elementwise
product, which means we allow nonlinear transformations on Y s. If the conditional dis-
tributions are matched with each other, and P (Xs) = P (X t) (which can be achieved by
various methods dealing with covariate shift, hence it is not the focus of this work), then
a model learned from the source data will generalize well on the target data because the
joint distribution is also matched with each other, i.e., P (Xs, Y s) = P (X t, Y t).

• The transform function is smooth, i.e., w and b should be smooth w.r.t X (Figure 3.3,
left). Figure 3.3 (right) shows an example of the prediction result by using CDM.

To achieve the first goal, similar to the kernel mean matching idea, we can directly minimize
the discrepancy (Hilbert-Schmidt norm) between the conditional embedding operators [67] of
the two distributions with a regularization term:

min
w,b

L+ Lreg,where L = ||Û [PY new|Xs ]− Û [PY t|Xt ]||2HS, Lreg = λreg(||w − 1||2 + ||b||2).

(3.1)

Here U is the conditional embedding operator [67], where its empirical estimate Û is given by:

Û [PY |X ] = Ψ(Y )(KXX + λI)−1Φ>(X).

To obtain the derivative of L w.r.t. w,b, we simplify L by:

L = ||ψ(Y new)(KXsXs + λI)−1φ>(Xs)− ψ(Y t)(KXtXt + λI)−1φ>(X t)||2F
= C + Tr{φ(Xs)(Ls + λI)−1K̃(Ls + λI)−1φ>(Xs)}
− 2 Tr{φ(Xs)(Ls + λI)−1K̃c(Lt + λI)−1φ>(X t)}

= C + Tr{(Ls + λI)−1K̃(Ls + λI)−1Ls} − 2 Tr{(Ls + λI)−1K̃c(Lt + λI)−1KXtXs},
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where C is some constant, K̃ = KY newY new , K̃
c = KY newY t , L

s = KXsXs , Lt = KXtXt . KXX′

is the Gram matrix defined as KXX′(i, j) = k(xi, x
′
j) with kernel k. λ is the regularization

parameter to ensure the kernel matrix is invertible.
Hence the derivative of L w.r.t w,b is given by:

∂L

∂K̃
= (KXX + λI)−1K>XX(KXX + λI)−1,

∂L

∂K̃c

= 2(KXX + λI)−1K>XtLX(KtL
XX + λI)−1,

∂L

∂wp

= Tr[(
∂L

∂K̃
)>(

∂K̃

∂wp

)]− Tr[(
∂L

∂K̃c

)>(
∂K̃c

∂wp

)]

= Tr[(
∂L

∂K̃
)>(K̃ �Dp)]− Tr[(

∂L

∂K̃c

)>(K̃c � Ep)],

∂L

∂bp
= Tr[(

∂L

∂K̃
)>(

∂K̃

∂bp
)]− Tr[(

∂L

∂K̃c

)>(
∂K̃c

∂bp
)]

= Tr[(
∂L

∂K̃
)>(K̃ � D̃p)]− Tr[(

∂L

∂K̃c

)>(K̃c � Ẽp)],

where

[Dp]ij = − 1

σ2
(Y new

i − Y new
j )(Y s

i I(i = p)− Y s
j I(j = p)),

[Ep]ij = − 1

σ2
(Y new

i − Y tL
j )Y s

i I(i = p),

[D̃p]ij = − 1

σ2
(Y new

i − Y new
j )(I(i = p)− I(j = p)),

[Ẽp]ij = − 1

σ2
(Y new

i − Y tL
j )I(i = p).

To make the transformation smooth w.r.t. X , we parameterized w,b in this way [80]: w =
Rg,b = Rh, where R = Ls(Ls + λI)−1. Then the new parametrization results in:

[Dp]ij = − 1

σ2
(Y new

i − Y new
j )(Y s

i Rip − Y s
j Rjp),

[Ep]ij = − 1

σ2
(Y new

i − Y tL
j )Y s

i Rip,

[D̃p]ij = − 1

σ2
(Y new

i − Y new
j )(Rip −Rjp),

[Ẽp]ij = − 1

σ2
(Y new

i − Y tL
j )Rip.

Similarly, the regularization term is:

λreg(||Rg − 1||2 + ||Rh||2).

Then we apply gradient descent to minimize the objective function.
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Figure 3.4: Illustration of the Offset Approach

When matching the conditional distributions, if we only useX tL, Y tL in the empirical version
of the conditional operator Û [PY t|Xt ], it will be unstable due to the small size of the observed
labeled test points, especially in the early stage of active learning. However, using both X tL, Y tL

and X tU , Y tU would require knowing the values Y tU , which are not obtained before querying.
We replace Y tU with the prediction Ŷ tU based on {Xs, Y new} ∪ {X tL, Y tL}, where Y new are
under transformation using current w,b, while {X tL, Y tL} are the labeled test data selected up
to the present. After obtaining Ŷ tU we minimize the objective function Eq 3.1. We iterate over
the two steps until convergence.

3.3.2 Offset Approach
In the second proposed method, we use Gaussian Processes to model the source task, the target
task, and the offset between, described as follows (K in the following equations stands for the
Gaussian kernel, and λ is the regularization parameter to ensure the kernel matrix is invertible):
• We build a GP from the source domain and predict on X tL, then compute the offset Z

between the prediction and the true labels Y tL:

ẐtL = Y tL − Ŷ tL.

Using the property of GP it follows:

P (ẐtL|Xs, Y s, X tL, Y tL) ∼ N (µs,Σs),

where

µs = Y tL −KXtLXs(KXsXs + λI)−1Y s,

Σs = KXtLXtL −KXtLXs(KXsXs + λI)−1KXsXtL .

• We transform Y s to Y new by
Y new = Y s + Ẑs,

where Ẑs is the predicted mean of the offset on Xs using the GP built from {X tL, ẐtL}
(Figure 3.4, middle), i.e.,

P (Ẑs|ẐtL, Xs, X tL) ∼ N (µ0,Σ0),
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where

µ0 = KXsXtL(KXtLXtL + λI)−1ẐtL,

Σ0 = KXsXs −KXsXtL(KXtLXtL + λI)−1KXtLXs .

• Train a model on the merged data {Xs, Y new} ∪ {X tL, Y tL} (Figure 3.4, right), and we
use the model to make predictions on X tU .

Computational Complexity. In the offset approach, building a GP on the source data with m
samples has a complexity of O(m3) because of the kernel matrix inverse. The complexity can be
reduced to O(d3 + d2m) by using random Fourier features [53] with d-dimension features.

3.4 Active Learning

We consider two active learning goals and apply a myopic selection criterion to each:
• Active learning which tries to reduce the total predictive variance [35, 61]. The goal is to

minimize the risk (here ŷ denotes the estimation on y):

E
∑
i∈tU

(yi − ŷi)2 = E[E[
∑
i∈tU

(yi − ŷi)2|Y s, Y tL]]

An optimal myopic selection is achieved by choosing the point which minimizes the trace
of the predictive covariance matrix conditioned on that selection: Tr{σ2

y|A}.
• Active surveying which tries to predict

∑
i Y

t
i . The goal is to minimize the risk:

E(
∑
i∈tU

yi −
∑
i∈tU

ŷi)
2 = E[E[(1>ytU − 1>ŷtU)2|Y s, Y tL]]

An optimal myopic selection is achieved by choosing the point which minimizes the sum
over all elements of the covariance matrix conditioned on that selection [22], which is also
denoted Σ-optimality in [41]: 1>σ2

y|A1.
Note that the predictive covariances for a Gaussian process are computed without using the

observed labels. This means that conditioning on hypothetical point selections can be done
quickly without needing to marginalize out the unknown label. All that is needed to create an
integrated active transfer algorithm using the offset approach from the previous section is to
determine the corresponding predictive covariance matrices so the active selection criteria can
be applied. We now derive these.

3.4.1 Uncertainty for Offset

Note that the transformation on the training labels is given by

Y new = Y s + Ẑs,
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Figure 3.5: Illustration of the uncertainty computed at each step: Uncertainty for offset (left),
Uncertainty for prediction given the true offset (middle), The combined uncertainty (right)

in this part we first estimate the distribution of Ẑs, i.e., P (Ẑs|Xs, Y s, X tL, Y tL). Given

P (ẐtL|Xs, Y s, X tL, Y tL) ∼ N (µs,Σs),

P (Ẑs|ẐtL, Xs, X tL) ∼ N (µ0,Σ0),

from the Offset approach, we can estimate P (Ẑs|Xs, Y s, X tL, Y tL) by integrating over ẐtL, i.e.,

P (Ẑs|Xs, Y s, X tL, Y tL) =

∫
ẐtL

P (Ẑs, ẐtL|Xs, Y s, X tL, Y tL)d(ẐtL)

=

∫
ẐtL

P (Ẑs|ẐtL, Xs, X tL)P (ẐtL|Xs, Y s, X tL, Y tL)d(ẐtL).

DenoteK1 = KXsXtL(KXtLXtL+λI)−1, we can derive that P (Ẑs|Xs, Y s, X tL, Y tL) ∼ N (µ1,Σ1),
where

µ1 = Σ1Σ−1
0 K1(K>1 Σ−1

0 K1 + Σ−1
s )−1Σ−1

s µs,

Σ1 = Σ0 +K1ΣsK
>
1 .

In Figure 3.5 (left), we show an example of the offset uncertainty, and we can see that in the
places where we do not have any target labels, we have high uncertainty for the offset prediction.

3.4.2 Uncertainty for target label prediction given the true offset

The prediction onX tU is based on the Gaussian Process built from the merged data {Xs, Y new}∪
{X tL, Y tL}, hence it also follows a Gaussian distribution:

P (Ŷ tU |X tU , Xs, Y new, X tL, Y tL) ∼ N (µ,Σ),

where

µ = KXtUX(KXX + λI)−1Y = [Ω1 Ω2][Y new Y tL]>,

Σ = KXtUXtU −KXtUX(KXX + λI)−1KXXtU .
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Here X, Y represent the merged data, i.e., X = Xs ∪ X tL, Y = Y new ∪ Y tL. Ω1 is the matrix
consisting of the first m columns of KXtUX(KXX + λI)−1, where m is the number of training
data points. Ω2 consists of the remaining l columns, where l is the size of labeled test points.

In Figure 3.5 (middle), we show an example of the prediction uncertainty, and we can see
that in the places where we do not have any source data or target labels, we have high uncertainty
for the label prediction.

3.4.3 The combined uncertainty for final prediction

Due to the uncertainty for the transformed labels Y new, to model the uncertainty for the final
prediction again we need to integrate over Y new , i.e.:

P (Y tU |X tU , Xs, Y s, X tL, Y tL)

=

∫
Y new

P (Y tU , Y new|X tU , Xs, Y s, X tL, Y tL)dY new

=

∫
Y new

P (Y tU |X tU , Xs, Y new, X tL, Y tL)P (Y new|Xs, Y s, X tL, Y tL)dY new

=C

∫
Y new

exp{−1

2
(Y tU − µ)>Σ−1(Y tU − µ)}

exp{−1

2
(Y new − Y s − µ1)>Σ−1

1 (Y new − Y s − µ1)}dY new

=C

∫
Y new

exp{−1

2
(Y∗ − Ω1Y

new)>Σ−1(Y∗ − Ω1Y
new)}

exp{−1

2
(Y new − Y s − µ1)>Σ−1

1 (Y new − Y s − µ1)}dY new

=C ′
∫
Y new

exp{−1

2
(Y∗ − Ω1Y

new)>Σ−1(Y∗ − Ω1Y
new)}

exp{−1

2
(Y new − µ1)>Σ−1

1 (Y new − µ1)}dY new

where Y∗ = Y tU − Ω2Y
tL.

Combining the terms related to Y new, we would have∫
Y new

exp{−1

2
[(Y new)>(Ω>1 Σ−1Ω1 + Σ−1

1 )Y new − 2(Y >∗ Σ−1Ω1 + µ>1 Σ−1
1 )Y new]}dY new

= C ′ exp{1

2
(Y >∗ Σ−1Ω1 + µ>1 Σ−1

1 )(Ω>1 Σ−1Ω1 + Σ−1
1 )−1(Y >∗ Σ−1Ω1 + µ>1 Σ−1

1 )>}

Combining the term related to Y∗, we have Y∗ also following a Gaussian distribution with the
quadratic term as the following:

Y >∗ (Σ−1 − Σ−1Ω1(Ω>1 Σ−1Ω1 + Σ−1
1 )−1Ω>1 Σ−1)Y∗
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which implies that Y∗, or Y tU has a covariance matrix of:

Σ2 = (Σ−1 − Σ−1Ω1(Ω>1 Σ−1Ω1 + Σ−1
1 )−1Ω>1 Σ−1)−1

= Σ + Ω1Σ1Ω>1 (matrix inversion lemma)

= Σ + Ω1(Σ0 +K1ΣsK
>
1 )Ω>1

In conclusion, we have P (Ŷ tU |X tU , Xs, Y s, X tL, Y tL) ∼ N (µ2,Σ2), where

µ2 = Σ2Σ−1Ω1(Ω>1 Σ−1Ω1 + Σ−1
1 )−1Σ−1

1 (µ1 + Y s),

Σ2 = Σ + Ω1Σ1Ω>1 = Σ + Ω1(Σ0 +K1ΣsK
>
1 )Ω>1 .

Hence we get µ(Ŷ tU) = Ω2Y
tL + Σ2Σ−1Ω1(Ω>1 Σ−1Ω1 + Σ−1

1 )−1Σ−1
1 (µ1 + Y s).

In Figure 3.5 (right), we show an example of the final prediction uncertainty, and we can see
that it is a combination of the previous two kinds of uncertainty we computed.

3.5 Experiments

3.5.1 Synthetic Experiments
Data Description

We generate two synthetic datasets. The first one has a constant shift between the labels Y s

and Y t. The second one has a shift in both the data points Xs, X t and their labels Y s and Y t.
Illustrations for the two datasets are shown as in Figure 3.6.
• Synthetic Dataset 1 (using matlab notation):

Source: Xs = [-3:0.2:-1 -0.5:0.5:0 3:0.2:5]; Y s = sin(Xs);
Target: X t = [-5:0.35:5]; Y t = sin(X t) + 1.

• Synthetic Dataset 2 (using matlab notation):
Source: Xs = [-5:0.2:-1 -0.5:0.5:0.5 1:0.2:5]; Y s = sin(Xs);
Target: X t = [-5:0.35:5]; Y t = sin(X t + 1).

Transfer Learning on Synthetic Dataset

We compare the following methods:
• Distribution Matching approach, described in section 3.2.1.
• Offset approach, described in section 3.2.2.
• Use only test x. GP Prediction using only labeled test points (i.e. no transfer learning).
• Use both x. GP Prediction using both training points and labeled test points, without any

transfer learning.
• KMM for covariate shift [33].
• Target/Conditional shift, proposed by [80], code is from http://people.tuebingen.mpg.de/

kzhang/Code-TarS.zip.
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Figure 3.6: Illustration of two synthetic datasets

The evaluation metric is the mean squared error of predictions on the unlabeled test points
with different numbers of observed test points with labels. The results are averaged over 10
experiments. Parameters (kernel width, regularization term, etc.) are set using cross validation.
In the test domain initially there is not much data for tuning parameters using cross validation,
we assume the same smoothness constraint (same kernel width and λ) as in the source domain.
The selection of which test points to label is done uniformly at random. Results for the synthetic
datasets are shown in Figures 3.7. From the results we can see that for observed test points with
labels fewer than 10, our proposed methods can greatly reduce the prediction error by transferring
the model learned from the source domain. With more points the errors tend to converge to the
error of prediction using only X tL, Y tL because the number of labeled points in the test domain
is large enough for learning a good model by itself. KMM and Target/Conditional shift methods
do not utilize the possible label information Y tL, hence the error is much larger compared to
other methods which use a few Y t’s.

Active Learning/Surveying on Synthetic Dataset

We consider two active learning goals:
• Active Learning which reduces the total predictive variance (shortened to Active Learning,

or AL in the following description)
• Active Surveying (AS in the following description)

We compare the following uncertainty measures for each goal:
• combined. AL/AS using the combined covariance matrix (Σ2 in section 3.4.3).
• source. AL/AS using the covariance matrix based only on the source domain, i.e.,

KXtUXtU −KXtUXs(KXsXs + λI)−1KXsXtU .

• target. AL/AS using the covariance matrix based only on the target domain, i.e.,

KXtUXtU −KXtUXtL(KXtLXtL + λI)−1KXtLXtU .
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Figure 3.7: MSE for transfer learning on synthetic dataset 1 and 2

• both. AL/AS using the covariance matrix based on both source and target domain, i.e.,

KXtUXtU −KXtU X̃(KX̃X̃ + λI)−1KX̃XtU , where X̃ = Xs ∪X tL.
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• random. Points selected uniformly at random.
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Figure 3.8: The comparison of different covariance matrices.

To better illustrate how the combined covariance matrix compares to other covariance matri-
ces, we show a comparison by plotting the diagonal elements of each covariance matrix, as the
uncertainty for prediction on the unlabeled points (with two points labeled) in the test domain,
as shown in Figure 3.8. The red stars show the data from the source domain, and the blue circles
show the data from the target domain. The black bars show the error bar/uncertainty (diagonal
elements of the covariance matrix) on the prediction of unlabeled test points. The two labeled
test points are shown in filled blue circles (x1 = −4.3, x2 = 3.05). Based on what covariance
matrix is used for active learning, the most likely selection for the unlabeled test points are:
• source: points far away from the source data;
• target: points far away from the labeled test points;
• both: points far away from both the source data and the labeled test points;
• combined: the uncertainty of unlabeled test points will be approximately ranked as (from
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highest to lowest), (1) points far away from both the source data and the labeled test points,
(2) points far away from the labeled test points but close to the source data, and points far
away from the source data but close to the labeled test points, (3) points close to both the
source data and the labeled test points.

We consider the mean squared error (for Active Learning) and absolute error (for Active
Surveying) with respect to different number of observed test points with labels (in the order
being selected by the corresponding active selection criteria). We averaged the results over 29
experiments, each one initiated with a test point chosen uniformly at random. On Synthetic
Dataset 1, Active Learning results are shown in Figure 3.9 (left), and Active Surveying Results
are shown in Figure 3.9 (right). On Synthetic Dataset 2, Active Learning results are shown
in Figure 3.10 (left), and Active Surveying Results are shown in Figure 3.10 (right). From the
results we can see that, on Synthetic Dataset 1, for both Active Learning and Active Surveying our
proposed combined covariance matrix (Σ2 in section 3.3) clearly outperforms all other baselines.
On Synthetic Dataset 2, our gain of using combined covariance matrix is smaller because Y t

differs from Y s at almost every location of X . Hence choosing a point corresponding to a
larger transfer learning gain becomes very similar to choosing the point uniformly, which is the
selection strategy of using covariance matrix merely based on the target domain.
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Figure 3.9: MSE for Active Learning/Active Surveying on Synthetic Dataset 1

3.5.2 Real-world Experiments

Grape Yield Estimation

We have two datasets with grape images and the number of grapes on them as labels, one is
riesling (128 labeled images), another is traminette (96 labeled images), as shown in Figure 1.1.
The goal is to transfer the model learned from one grape dataset to another grape dataset. The
total number of grapes for these two datasets are 19, 253 and 30, 360, respectively.
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Figure 3.10: MSE for Active Learning/Active Surveying on Synthetic Dataset 2

We extract raw-pixel features from the images, and use the methods in [50] to get the coeffi-
cients as feature vectors, resulting in 2177 features. We compare to the same baselines for both
transfer learning and active learning goals as in the synthetic experiments. For transfer learning
the results are shown in Figure 3.11, averaged over 10 experiments. We can see with labeled
test points fewer than 25, our proposed approaches (both distribution matching approach and
the offset approach) can reduce the error by transferring the model learned from the source do-
main. The Active Learning result is shown in Figure 3.12 (left), and the Active Surveying result
is shown in Figure 3.12 (right). From the results we can see that our proposed method can well
achieve both goals.

AQI Prediction

The dataset is the Air Quality Index (AQI) dataset [45]. We extract bag-of-words vectors (feature
X with dimension d = 100, 395) from social media posts to predict the AQI (label Y ) across
cities. Fig. 3.13 shows the prediction error using the proposed transfer method, compared with
state-of-the-art baselines. The transfer method benefits from modeling a smoother offset across
domains compared to optDA [12] with single-source, and it also outperforms KMM [33] by
allowing changes in P (Y |X).

3.6 Conclusion
In this chapter we propose algorithms for transfer learning under the model shift assumption. Un-
like most existing work that only handles marginal distribution change, our proposed algorithms
allow the conditional distributions to change across domains, which is a more challenging case.
In addition we propose active learning algorithms under this transfer learning framework, which
significantly improves the performance at a small cost of additional label requests. We demon-
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Figure 3.11: RMSE for transfer learning on the real grape data
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Figure 3.12: RMSE for Active Learning/Active Surveying on the real data
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Figure 3.13: Results of transfer learning on the AQI data

strate the effectiveness of our active transfer learning algorithms on both synthetic examples and
a real-world grape yield prediction application.
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Chapter 4

Generalization Bounds for Transfer
Learning under Model Shift

4.1 Overview

As mentioned in the introduction, most transfer learning work is focused on the problem of
covariate shift [26, 33, 64]. Theoretical analyses on covariate shift have also been developed in
the past, e.g., for sample size m in the source domain and sample size n in the target domain, the
analysis of [43] achieves a rate of O(m−1/2 + n−1/2) for the difference between empirical risk
and true risk, and [33] achieves a rate of O((1/m + 1/n)1/2) for the convergence of reweighted
means in the feature space.

In this chapter, we develop theoretical analysis for transfer learning algorithms under the
model shift assumption (an example is shown in Figure 4.1). Specifically, we analyze the Con-
ditional Distribution Matching approach (both scale and location shift) and the Offset approach
(location shift) proposed in Section 3.

Our analysis shows that even when the conditional distributions are allowed to change across
domains, we are still able to obtain a generalization bound ofO( 1

λ∗
√
nl

) with respect to the labeled
target sample size nl, modified by the smoothness of the transformation parameters (λ∗) across
domains. Our analysis also sheds light on conditions when transfer learning works better than
no-transfer learning. We show that under certain smoothness assumptions it is possible to obtain
a favorable convergence rate with transfer learning compared to no transfer at all. Furthermore,
using the generalization bounds we derived in this section, we are able to extend the transfer
learning algorithm from a single source to multiple sources, where each source is assigned a
weight that indicates how helpful it is for transferring to the target.

We illustrate our theoretical results by empirical comparisons on both synthetic data and real-
world data. Our results demonstrate cases where we obtain the same rate as no-transfer learning,
and cases where we obtain a favorable rate with transfer learning under certain smoothness as-
sumptions, which coincide with our theoretical analysis. In addition, experiments on the real
data show that our algorithm for reweighting multiple sources yields better results than existing
state-of-the-art algorithms.
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Figure 4.1: Transfer learning example: m source data points {Xs, Y s} (red), n target data points
{X t, Y t} (blue), and nl labeled target points (solid blue circles). Here X denotes the input
features and Y denotes the output labels.

4.2 Transfer Learning under Model Shift: Notations and A
Brief Review of the Algorithms

Notation: Let X ∈ Rd and Y ∈ R be the input and output space for both the source and the
target domain. We are given a set of m labeled data points, (xsi , y

s
i ) ∈ (Xs, Y s), i = 1, . . . ,m,

from the source domain. We are also given a set of n target data points, X t, from the target do-
main. Among these we have nl labeled target data points, denoted as (X tL, Y tL). The unlabeled
part of X t is denoted as X tU , with unknown labels Y tU . For simplicity let z ∈ Z = X × Y
denote the pair of (x, y), and we use zs, zt, ztL for the source, target, and labeled target, corre-
spondingly. We assume Xs, X t are drawn from the same P (X) throughout the section since we
focus more on P (Y |X)1. If necessary P (X) can be easily matched by various methods dealing
with covariate shift (e.g. Kernel Mean Matching) without the use of Y .

LetH be a reproducing kernel Hilbert space with kernel K such that K(x, x) ≤ κ2 <∞ for
all x ∈ X . Let ||.||k denote the corresponding RKHS norm. Let φ denote the feature mapping on
x associated with kernel K, and Φ(X) denote the matrix where the i-th column is φ(xi). Denote
KXX′ as the kernel computed between matrix X and X ′, i.e., Kij = k(xi, x

′
j). When necessary,

we use ψ to denote the feature map on y, and the corresponding matrix as Ψ(Y ). For a hypothesis
h ∈ H, assume that |h(x)| ≤ M for some M > 0. Also assume bounded label set |y| ≤ M . We
use `2 loss as the loss function l(h(x), y) throughout this section, which is σ-admissible, i.e.,

∀x, y,∀h, h′, |l(h(x), y)− l(h′(x), y)| ≤ σ|h(x)− h′(x)|. (4.1)

It is easy to see that σ = 4M for bounded h(x) and y. Note the loss function is also bounded,
l(h(x), y) ≤ 4M2.

1This assumption is only required in our analysis for simplicity. It can be relaxed when applying the algorithms.
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Next we will briefly summarize the two algorithms introduced in the previous section that
handle transfer learning under model shift: the first is conditional distribution matching, and the
second is two-stage offset estimation.

4.2.1 Conditional Distribution Matching (CDM)

P(Ynew|Xs)

P(Ys|Xs)

P(YtL|XtL)≈

Figure 4.2: Illustration of the conditional distribution matching: red (source), blue (target).

The basic idea of CDM is to match the conditional distributions P (Y |X) for the source and
the target domain. Since there is a difference in P (Y |X) across domains, these two condi-
tional distributions cannot be matched directly. Therefore, we propose to make a parameterized-
location-scale transform on the source labels Y s:

Y new = Y s �w(Xs) + b(Xs),

where w denotes the scale transform, b denotes the location transform, and � denotes the
Hadamard (elementwise) product. w and b are non-linear functions of X which allows a non-
linear transform from Y s to Y new.

The objective is to use the transformed conditional distribution in the source domain P (Y new|Xs),
to match the conditional distribution in the target domain, P (Y tL|X tL), such that the transfor-
mation parameter w and b can be learned through optimization. The matching on P (Y |X) is
achieved by minimizing the discrepancy of the conditional embedding operator for P (Y |X) with
a regularization term:

min
w,b

L+ Lreg,where

L = ||Û [PY new|Xs ]− Û [PY tL|XtL ]||2k,
Lreg = λreg(||w − 1||2 + ||b||2),

(4.2)

where U [PY |X ] is the conditional embedding operator for P (Y |X) [67], and Û [PY |X ] is the em-
pirical estimation of U [PY |X ] based on samplesX, Y . Further we make a smoothness assumption
on the transformation, i.e., w,b are parameterized using:
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w = Rg,b = Rh, where R = KXsXs(KXsXs + λRI)−1, and g,h ∈ Rm×1 are the new
parameters to optimize in the objective. After obtaining g,h (or equivalently w,b), Y new is
computed based on the transformation. Finally the prediction on X tU is based on the merged
data: (Xs, Y new) ∪ (X tL, Y tL).

Fig 4.2 shows an illustration of the conditional distribution matching algorithm. As we can
see from the figure, Y s is transformed to Y new such that P (Y new|Xs) and P (Y tL|X tL) can be
approximately matched together.

Remark. Here we analyze what happens when the smoothness assumption is relaxed. It is easy
to derive that, when setting w = 1,b = 0, we can directly solve for Y new by taking the derivative
of L with respect to Y new, and we get:

KXsXs(KXsXs + λI)−1Y new = KXsXtL(KXtLXtL + λI)−1Y tL, (4.3)

where λ is some regularization parameter to make sure the kernel matrix is invertible. In other
words, the smoothed Y new is given by the prediction on the source using only labeled target data.
Hence Y new provides no extra information for prediction on the target, compared with using the
labeled target data alone.

4.2.2 Two-stage Offset Estimation (Offset)

The idea of Offset is to model the target function f t using the source function f s and an offset,
f o = f t − f s, while assuming that the offset function is smoother than the target function.
Specifically, using kernel ridge regression (KRR) to estimate all three functions, the algorithm
works as follows:
(1) Model the source function using the source data, i.e.,

f s(x) = KxXs(KXsXs + λI)−1Y s.

(2) Model the offset function by the difference between the true target labels and the predicted
target labels, i.e.,

f o(X tL) = Y tL − f s(X tL).

(3) Transform Y s to Y new by adding the offset, i.e.,

Y new = Y s + f o(Xs),

where
f o(Xs) = KXsXtL(KXtLXtL + λI)−1f o(X tL).

(4) Train a model on {Xs, Y new} ∪ {X tL, Y tL}, and use the model to make predictions on X tU .

We would like to answer: under what conditions these transfer learning algorithms will work
better than no-transfer learning, and how the smoothness assumption affects the generalization
bounds for these algorithms.
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4.3 Analysis of Conditional Distribution Matching
In this section, we analyze the generalization bound for the conditional distribution matching
(CDM) approach.

4.3.1 Risk Estimates for CDM
We use stability analysis on the algorithm to estimate the generalization error. First we have:
Theorem 4.3.1. ([11], Theorem 12 and Example 3) Consider a training set

S = {z1 = (x1, y1), ..., zm = (xm, ym)}
drawn i.i.d. from an unknown distribution D. Let l be the `2 loss function which is σ-admissible
with respect toH, and l ≤ 4M2. The Kernel Ridge Regression algorithm defined by:

AS = arg min
h∈H

1

m

m∑
i=1

l(h, zi) + λ||h||2k

has uniform stability β with respect to l with

β ≤ σ2κ2

2λm
.

In addition, let R = Ez[l(AS, z)] be the generalization error, and Remp = 1
m

∑m
i=1 l(AS, zi) be

the empirical error, then the following holds with probability at least 1− δ,

R ≤ Remp +
σ2κ2

λm
+ (

2σ2κ2

λ
+ 4M2)

√
ln(1/δ)

2m
.

In CDM, the prediction on the unlabeled target data points is given by merging the trans-
formed source data and the labeled target data, i.e., (Xs, Y new) ∪ (X tL, Y tL). Hence we need to
bound the difference between the empirical error on the merged data and the generalization error
(risk) in the target domain.

Denote z̃i = (x̃i, ỹi) ∈ (X̃, Ỹ ), where X̃, Ỹ represents the merged data: X̃ = Xs∪X tL, Ỹ =
Y new ∪ Y tL. Let h∗ ∈ H be the minimizer on the merged data, i.e.,

h∗ = arg min
h∈H

1

m+ nl

m+nl∑
i=1

l(h, z̃i) + λ||h||2k.

Then the following theorem holds:
Theorem 4.3.2. Assume the conditions in Theorem 4.3.1 hold. Also assume ||Û [PY new|Xs ] −
Û [PY tL|XtL ]||k ≤ ε after we optimize objective Eq. 4.2. The following holds with probability at
least 1− δ:

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)− Ezt [l(h∗, zt)]|

≤ 4M(εκ+ C(λ1/2
c + (nlλc)

−1/2))+

σ2κ2

λt(m+ nl)
+ (

2σ2κ2

λt
+ 4M2)

√
ln(1/δ)

2(m+ nl)
,
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where λc is the regularization parameter used in estimating Û [PY tL|XtL ] = Ψ(Y tL)(KXtLXtL +
λcnlI)−1Φ>(X tL), and λt is the regularization parameter when estimating the target function.
C > 0 is some constant.

Proof. Let z̄i = (x̄i, ȳi) ∈ (X̄, Ȳ ), where X̄, Ȳ are the auxiliary samples with X̄ = Xs ∪
X tL, Ȳ = Ȳ t

s ∪ Y tL, where Ȳ t
s are pseudo labels in the target domain for the source data points

Xs. Using triangle inequality we can decompose the LHS by:

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)− Ezt [l(h∗, zt)]|

≤ | 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)−
1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)|

+ | 1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)− Ezt [l(h∗, zt)]|

The second term is easy to bound since it is simply the difference between the empirical error
and the generalization error in the target domain with effective sample size nl + m, thus using
Theorem 4.3.1, we have

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)− Ezt [l(h, zt)]|

≤ σ2κ2

λt(m+ nl)
+ (

2σ2κ2

λt
+ 4M2)

√
ln(1/δ)

2(m+ nl)
.

(4.4)

To bound the first term, we have

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)−
1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)|

≤ 1

m+ nl

m+nl∑
i=1

|l(h∗, z̃i)− l(h∗, z̄i)|

≤ 1

m+ nl

m∑
i=1

4M |ynewi − U [PY t|Xt ]φ(xsi )|

≤ 4M

m+ nl

m∑
i=1

(|Û [PY new|Xs ]φ(xsi )− Û [PY tL|XtL ]φ(xsi )|

+ |Û [PY tL|XtL ]φ(xsi )− U [PY t|Xt ]φ(xsi )|)

≤ 4M

m+ nl

m∑
i=1

(||Û [PY new|Xs ]− Û [PY tL|XtL ]||k
√
k(x, x)

+ |Û [PY tL|XtL ]φ(xsi )− U [PY t|Xt ]φ(xsi )|)
≤ 4M(εκ+ C(λ1/2

c + (nlλc)
−1/2)),

(4.5)
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where in the last inequality, the second term is bounded using Theorem 6, [67].
Now combining Eq. 4.5 and Eq. 4.4 concludes the proof.

4.3.2 Tighter Bounds under Smooth Parameterization
Theorem 4.3.2 suggests that using CDM, the empirical risk converges to the expected risk at a
rate of

O(λ1/2
c + (nlλc)

−1/2 + λ−1
t (m+ nl)

−1/2). (4.6)

In the following, we show how the smoothness parameterization in CDM helps us obtain faster
convergence rates.

Under the smoothness assumption on the transformation, w,b are parameterized using: w =
Rg,b = Rh, where R = KXsXs(KXsXs + λRI)−1. For simplicity we assume the same λR for
both w and b. Similar to the derivation in Eq. 4.5, we have

|ynewi − U [PY t|Xt ]φ(xsi )|
= |Û [PY new|Xs ]φ(xsi )− Û [PY tL|XtL ]φ(xsi )|+ |Û [PY tL|XtL ]φ(xsi )− U [PY t|Xt ]φ(xsi )|)
≤ εκ+ |Û [PwtL|XtL ]φ(xsi )− U [Pwt|Xt ]φ(xsi )| · |ysi |+ |Û [PbtL|XtL ]φ(xsi )− U [Pbt|Xt ]φ(xsi )|
≤ εκ+ C1(λ

1/2
R + (nlλR)−1/2)M + C2(λ

1/2
R + (nlλR)−1/2)

≤ εκ+ C ′(λ
1/2
R + (nlλR)−1/2).

(4.7)

Hence we can update the bound in Eq. 4.5 by:

| 1

m+ nl

m+nl∑
i=1

l(h∗, z̃i)−
1

m+ nl

m+nl∑
i=1

l(h∗, z̄i)| ≤ 4M(εκ+ C ′(λ
1/2
R + (nlλR)−1/2)). (4.8)

It is easy to see that Eq. 4.4 remains the same. Hence, the rate for CDM under the smooth
parametrization is:

O(λ
1/2
R + (nlλR)−1/2 + λ−1

t (m+ nl)
−1/2). (4.9)

In transfer learning we usually assume the number of source data is sufficient, i.e., m → ∞.
Comparing Eq. 4.9 with Eq. 4.6 we can see that, when the number of labeled points nl is small,
the term (nlλc)

−1/2 in Eq. 4.6 and the term (nlλR)−1/2 in Eq. 4.9 take over. If we further assume
that the transformation w and b are smoother functions with respect toX than the target function
with respect to X , i.e., λR > λc, then Eq. 4.9 is more favorable. On the other hand, when the
number of labeled target points nl is large enough for the first term λ

1/2
c in Eq. 4.6 and the first

term λ
1/2
R in Eq. 4.9 to take over, then it is reasonable to use a λR closer to λc to get a similar

convergence rate as in Eq. 4.6. Intuitively, when the number of labeled target points is large
enough, it is not very helpful to transfer from the source for target prediction.

Remark. Note that in Eq. 4.6 and Eq. 4.9, an ideal choice of λ close to 1/
√
nl can minimize

λ1/2 + (nlλ)−1/2. However, note that the generalization bound is the difference between the
expected risk R and the empirical risk Remp, and a λ that minimizes the generalization bound
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does not necessarily minimize the expected risk R, since the empirical risk Remp (which is also
affected by λ) can still be large. To obtain a relatively small empirical risk, λ should be deter-
mined by the smoothness of the offset/target function, since it is the regularization parameter
when estimating the offset/target. In practice λ is chosen by cross validation on the labeled data,
and is not necessarily close to 1/

√
nl. For example, on real data we find that λ is usually chosen

to be in the range of 1e − 2 to 1e − 4 to accommodate a fairly wide range of functions, which
makes the second term 1/

√
nlλ dominate the risk if nl is much smaller than 1e4.

Connection with Domain Adaptation Learning Bounds

In [43], the authors provided several bounds on the pointwise difference of the loss for two differ-
ent hypothesis (Theorem 11, 12 and 13). It is worth noting that in order to bound the pointwise
loss, the authors make the following assumptions when the labeling function fS (source) and fT
(target) are potentially different:

δ2 = LŜ(fS(x), fT (x))� 1,

where LŜ(fS(x), fT (x)) = EŜ(x)l(fS(x), fT (x)). This condition is easily violated under the
model shift assumption, where the two labeling functions can differ by a large margin. However,
with our transformation from Y s to Y new, we can translate the above assumption to the following
equivalent condition:

δ2 = LŜ(Y new, fT (x)) =
1

m

m∑
i=1

(ynewi − U [PY t|Xt ]φ(xsi ))
2

≤ (εκ+ C ′(λ
1/2
R + (nlλR)−1/2))2,

using the results in Eq. 4.7. Hence we can bound δ2 to be small under reasonable assumptions
on nl and λR.

Comparing with No-transfer Learning

Without transfer, which means we predict on the unlabeled target set based merely on the labeled
target set, the generalization error bound is simply: | 1

nl

∑nl
i=1 l(h

tL, ztLi ) − Ezt [l(h
tL, zt)]| ≤

σ2κ2

λtnl
+ (2σ2κ2

λt
+ 4M2)

√
ln(1/δ)

2nl
, where htL is the KRR minimizer on {X tL, Y tL}. Then

Ezt [l(h
tL, zt)]− 1

nl

nl∑
i=1

l(htL, ztLi ) = O(
1

λt
√
nl

). (4.10)

We can see that with transfer learning, first we obtain a faster rate O(λ−1
t (m+nl)

−1/2) in Eq. 4.9
with effective sample size nl + m than O(λ−1

t n
−1/2
l ) in Eq. 4.10 with effective sample size

nl. However, the transfer-rate Eq. 4.9 comes with a penalty term O(λ
1/2
R + (nlλR)−1/2) which

captures the estimation error between the transformed labels and the true target labels. Again,
in transfer learning usually we assume m → ∞, and nl is relatively small, then the transfer-
rate becomes O((nlλR)−1/2). Further if we assume that the smoothness parameter λR for the
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transformation is larger than the smoothness parameter λt for the target function (λR > λt will
be sufficient if λR < 1, otherwise we need to set λR > λ2

t if λR ≥ 1), then we obtain a faster
convergence rate with transfer than no-transfer. We will further illustrate the results by empirical
comparisons on synthetic and real data in the experimental section.

4.4 Analysis of the Offset Method
In this section, we analyze the generalization error on the two-stage offset estimation (Offset)
approach. Interestingly, our analysis shows that the generalization bounds for offset and CDM
have the same dependency on nl.

4.4.1 Risk Estimates for Offset
First, we learn a model from the source domain by minimizing the squared loss on the source
data, i.e.,

hs = arg min
h∈H

1

m

m∑
i=1

l(h, zsi ) + λs||h||2k.

Using Theorem 4.3.1, we have with probability at least 1− δ,

Rs ≤ Rs
emp +

σ2κ2

λsm
+ (

2σ2κ2

λs
+ 4M2)

√
ln(1/δ)

2m
,

where Rs = Ezs [l(h
s, zs)], Rs

emp = 1
m

∑m
i=1 l(h

s, zsi ). Hence

Rs −Rs
emp = O(

1

λs
√
m

), (4.11)

Second, we learn the offset by KRR on {X tL, ŷo}, where ŷo = Y tL − f s(X tL), i.e., ŷo is the
estimated offset on labeled target points X tL, and f s(X tL) is the prediction on X tL using source
data.

Denote ĥo as the minimizer on ẑo = {X tL, ŷo}, i.e.,

ĥo = arg min
h∈H

1

nl

nl∑
i=1

l(h, ẑoi ) + λo||h||2k

= arg min
h∈H

R(h) +N(h).

(4.12)

Denote ho as the minimizer on zo = {X tL, yo}, where yo is the unknown true offset:

ho = arg min
h∈H

1

nl

nl∑
i=1

l(h, zoi ) + λo||h||2k

= arg min
h∈H

R′(h) +N(h),

(4.13)
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Using Theorem 4.3.1, we have with probability at least 1− δ,

Ro ≤ Ro
emp +

σ2κ2

λonl
+ (

2σ2κ2

λo
+ 4M2)

√
ln(1/δ)

2nl
(4.14)

where Ro = Ezo [l(h
o, zo)], Ro

emp = 1
nl

∑nl
i=1 l(h

o, zoi ). In our estimation we use ŷo instead of yo,
hence we need to account for this estimation error.
Lemma 4.4.1. The generalization error Ro is bounded by:

Ro = R̄o
emp +O(

1

λo
√
nl

), (4.15)

as m → ∞. Here R̄o
emp = 1

nl

∑nl
i=1 l(ĥ

o, ẑoi ) is the empirical error of our estimator ĥo on
{X tL, ŷo}.

Proof. Define the Bregman Divergence associated to F of f to g by BF (f ||g) = F (f) −
F (g)− < f − g,∇F (g) >.
Let F (h) = R(h) +N(h), F ′(h) = R′(h) +N(h). Since ho, ĥo are the minimizers, we have

BF ′(ĥ
o||ho) +BF (ho||ĥo)

=F ′(ĥo)− F ′(ho) + F (ho)− F (ĥo)

=R′(ĥo)−R′(ho) +R(ho)−R(ĥo).

In addition, using the nonnegativity of B and

BF = BR +BN , BF ′ = BR′ +BN ,

we have
BN(ĥo||ho) +BN(ho||ĥo) ≤ BF (ho||ĥo) +BF ′(ĥ

o||ho).

Combining the two we have

BN(ĥo||ho) +BN(ho||ĥo) ≤ R′(ĥo)−R′(ho) +R(ho)−R(ĥo)

=
1

nl

nl∑
i=1

l(ĥo, zoi )−
1

nl

nl∑
i=1

l(ho, zoi ) +
1

nl

nl∑
i=1

l(ho, ẑoi )−
1

nl

nl∑
i=1

l(ĥo, ẑoi )

≤ 2

nl

nl∑
i=1

σ|yoi − ŷoi |,

using |l(ĥo, zoi )− l(ĥo, ẑoi )| ≤ |2ĥo(xi)− yoi − ŷoi | · |yoi − ŷoi | ≤ σ|yoi − ŷoi |, σ = 4M .
Since for RKHS norm BN(f ||g) = ||f − g||2k, we have

BN(ĥo||ho) +BN(ho||ĥo) = 2||ho − ĥo||2k.

44



Combined with the above inequality, we have 2||ho − ĥo||2k ≤ 2
nl

∑nl
i=1 σ|yoi − ŷoi |.

Then we have

|l(ho, zoi )− l(ĥo, zoi )| ≤ σ|ho(xi)− ĥo(xi)| ≤ σ||ho − ĥo||kκ ≤ σκ

√√√√ 1

nl

nl∑
i=1

σ|yoi − ŷoi |.

Hence

| 1
nl

nl∑
i=1

l(ho, zoi )−
1

nl

nl∑
i=1

l(ĥo, ẑoi )|

≤ 1

nl

nl∑
i=1

[|l(ho, zoi )− l(ĥo, zoi )|+ |l(ĥo, zoi )− l(ĥo, ẑoi )|]

≤σκ

√√√√ 1

nl

nl∑
i=1

σ|yoi − ŷoi |+
1

nl

nl∑
i=1

σ|yoi − ŷoi |.

Now we can conclude that

Ro
emp =

1

nl

nl∑
i=1

l(ho, zoi ) ≤ R̄o
emp + P, (4.16)

where R̄o
emp = 1

nl

∑nl
i=1 l(ĥ

o, ẑoi ), and P = σκ
√

1
nl

∑nl
i=1 σ|yoi − ŷoi |+

1
nl

∑nl
i=1 σ|yoi − ŷoi |.

To bound P , first we have

1

nl

nl∑
i=1

|yoi − ŷoi | =
1

nl

nl∑
i=1

|(ytLi − ysi )− (ytLi − ŷsi )|

=
1

nl

nl∑
i=1

|ysi − ŷsi |

≤

√√√√ 1

nl

nl∑
i=1

(ysi − ŷsi )2.

Using Eq. 4.11, 1
nl

∑nl
i=1(ysi − ŷsi )2 is bounded by Rs

emp +O( 1
λs
√
m

). We can see that the penalty
term P diminishes as m→∞. Plugging Eq. 4.16 into Eq. 4.14 concludes the proof.

Now we analyze the generalization error in the target domain. Using the assumption that the
target labels yt can also be decomposed by yo + ys, we have:

Ezt [l(h, zt)] = Ezt [(h(xt)− yt)2]

= E[(ho(xt) + hs(xt)− yo − ys)2]

≤ 2E(ho(xt)− yo)2 + 2E(hs(xt)− ys)2.

(4.17)
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Plugging in Eq. 4.11 and Eq. 4.15, we have

Rt = Ezt [l(h, zt)] = 2Rs
emp + 2R̄o

emp +O(
1

λo
√
nl

+
1

λs
√
m

)

In transfer learning usually we assume that the number of source data is sufficient, i.e., m→
∞, hence

Rt − 2(Rs
emp + R̄o

emp) = O(
1

λo
√
nl

). (4.18)

Comparing with No-transfer Learning

As with the no-transfer-rate in Sec. 4.3.2, we have

Rt −RtL
emp = O(

1

λt
√
nl

), (4.19)

where λt is the regularization parameter when estimating the target function. Comparing this rate
with Eq. 4.18, and using our assumption that we have a smoother offset than the target function,
i.e., λo > λt, we can see that we obtain a faster convergence rate with transfer than no-transfer.

4.5 Multi-Source Transfer Learning
In this section, we show that we can easily adapt the transfer learning algorithm from a single
source to transfer learning with multiple-sources, by utilizing the generalization bounds we de-
rived in earlier sections. Transfer learning with multiple sources is similar to multi-task learning,
where we learn the target and multiple sources jointly.

A closer look at Eq. 4.9 for CDM, and Eq. 4.18 for Offset reveals that, when nl is small
and m → ∞, we have a convergence rate of O( 1

λ∗
√
nl

) for both algorithms, where λ∗ is some
parameter that controls the smoothness of the source-to-target transfer (for Eq. 4.9 we can set
λR = λ2

∗). This observation motivates our reweighting scheme on the source hypotheses to
achieve transfer learning under multiple sources, described as the following.

Assume we have S sources and a target. First, we apply the transfer learning algorithm from
a single source to obtain a model Ms from each source s to target t, where the parameter λs∗ is
determined by cross-validation, s = 1, ..., S. Second, we compute the weight for each source s
by:

ws = p(D|Ms)p(Ms), where

p(D|Ms) = exp{−
ms∑
i=1

(ytLi − f̂ s(xtLi ))2},

p(Ms) ∝ exp{−α 1

λs∗
},

where f̂ s(xtLi ) is the prediction given by Ms.
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The idea is similar to Bayesian Model Averaging [31], where the first term p(D|Ms) serves
as the data likelihood of the predictive modelMs from source s, and the second term p(Ms) is the
prior probability on model Ms. In our case, p(Ms) is chosen to indicate how similar each source
to the target is, where the similarity is measured by how smooth the change is from source s to
target t. It is easy to see that, the weights coincide with our analysis of the generalization bounds
for transfer learning, and the choice of α should be in the order of O(1/

√
nl). Intuitively, when

the number of labeled target points nl is small, p(Ms) has a larger effect on ws, which means
we prefer the source that has a smoother change (larger λs∗) for the transfer. On the other hand,
when nl is large, then p(D|Ms) takes over, i.e., we prefer the source that results in a larger data
likelihood (smaller prediction errors). Finally, we combine the predictions by:

f̂(xtUi ) =
S∑
s=1

ws∑S
s=1ws

f̂ s(xtUi )

This weighted combination of source hypotheses gives us the following generalization bound
in the target domain:

Ezt [l(h, zt)] = Ezt [(
∑
s

ws∑S
s=1ws

hs(x
t)− yt)2]

= Ezt [(
∑
s

ws∑S
s=1ws

(hs(x
t)− yt))2]

≤
∑
s

ws∑S
s=1 ws

Ezt [(hs(xt)− yt)2]

=
∑
s

ws∑S
s=1 ws

[R̃s
emp +O(

1

λs
√
nl

)],

where the third inequality uses Jensen’s inequality, and the last equality uses the bounds we
derived. Here R̃s

emp refers to the empirical error for source s when transferring from s to t
(Thm. 4.3.2 for CDM and Eq. 4.18 for Offset).

4.6 Experiments

4.6.1 Synthetic Experiments
In this section, we empirically compare the generalization error of transfer learning algorithms to
that of no-transfer learning (learning by labeled target data only), on synthetic datasets simulating
different conditions.

We generate the synthetic dataset in this way: Xs, X t are drawn uniformly at random from
[0, 4], Y s = sin(2Xs) + sin(3Xs) with additive Gaussian noise. Y t is the same function with a
smoother location-scale transformation/offset. In each of the following comparisons, we plot the
mean squared error (MSE) on the unlabeled target points (as an estimation of the generalization
error) with respect to different number of labeled target points. The labeled target points are
chosen uniformly at random, and we average the error over 10 experiments. The parameters are
chosen using cross validation.
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In Fig. 4.3, we compare transfer learning using CDM with no-transfer learning. The results
show that with the additional smoothness assumption, we are able to achieve a much lower gen-
eralization error for transfer learning than no-transfer learning. In Fig. 4.4 and 4.5, we compare
transfer learning using the Offset approach with no-transfer learning. The two figures show dif-
ferent generalization error curves when the smoothness of the offset is different. We can see that
with a smoother offset (Fig. 4.4) we are able to achieve a much lower generalization error than
no-transfer learning. With a less smooth offset (Fig. 4.5) we can still achieve a lower general-
ization error than no-transfer learning, but the rate is slower compared to Fig. 4.4. Further we
analyze the case when the smoothness assumption does not hold, by setting the source function
to be sin(Xs)+ε such that the target changes faster than the source. In this case, transfer learning
with CDM/Offset yield almost the same generalization error as no-transfer learning (Fig. 4.6),
i.e., the source data does not help in learning the target.
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Figure 4.3: No-transfer learning vs. transfer learning (CDM)
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Figure 4.4: No-transfer learning vs. transfer learning using the Offset approach (smoother offset,
λR = 0.1)
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Figure 4.5: No-transfer learning vs. transfer learning using the Offset approach (less smooth
offset, λR = 0.001)
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Figure 4.6: No-transfer learning vs. transfer learning, when the smoothness assumption does not
hold

4.6.2 Experiments on the Real Data

Comparing Transfer Learning to No-transfer Learning, Using Different Sources

The real-world dataset is an Air Quality Index (AQI) dataset [45] during a 31-day period from
Chinese cities. For each city, the input feature xi is a bag-of-words vector extracted from Weibo
posts of each day, with 100, 395 dimensions as the dictionary size. The output label yi is a real
number which is the AQI of that day.

Fig. 4.7 shows a comparison of MSE on the unlabeled target points, with respect to different
number of labeled target points, when transferring from a nearby city (Ningbo) and a faraway
city (Xi’an), to a target city (Hangzhou). The data is shown in the left figure of Fig. 4.7, where
the x-axis is each day. The results are averaged over 20 experiments with uniformly randomly
chosen labeled target points. First we observe that we obtain a lower generalization error by
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transferring from other cities than learning by the target city data alone (no-transfer). In addition,
the generalization error are much lower if we transfer from nearby cities where the difference
between source and target is smoother.
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Figure 4.7: Comparison of MSE on unlabeled target points

Transfer Learning with Multiple Sources

The results in Sec. 4.6.2 indicate that, when transferring from multiple sources to a target, it is
important to choose which source to transfer, in order to obtain a larger gain. In this section, we
show the results on the same air quality index data by reweighting different sources (Sec. 4.5).

Fig. 4.8 shows a comparison of MSE on the unlabeled target data (data shown in the left
figure) with respect to different number of labeled target points (nl ∈ {2, 5, 10, 15, 20}), where
the prediction is based on each source independently (labeled as source i, i ∈ {1, 2, 3}), and
based on multiple sources (labeled as posterior). Since CDM and Offset give similar bounds,
we use two-stage offset estimation as the prediction algorithm from each source s to target t.
The weighting on the sources is as described in Sec. 4.5. As can be seen from the results, using
posterior reweighting on different sources, we obtain results that are very close to the results
using the best source.

Further in Figure. 4.9, we show a comparison of MSE on the unlabeled target data between
the proposed approach and two baselines, with respect to different number of labeled target
points. The results are averaged over 20 experiments. The first baseline wDA is a weighted multi-
source domain adaptation approach proposed in [42], where the distribution Di(x) for source i
on a target point x is estimated using kernel density estimation with a Gaussian kernel. Note
that the original algorithm proposed in [42] does not assume the existence of a few labeled target
points, thus the hypothesis hi(x) from each source i is computed by using the source data only.
To ensure a fair comparison, we augment hi(x) by using the prediction of the Offset approach
given nl labeled target points. The second baseline optDA is a multi-source domain adaptation
algorithm under an optimization framework, as proposed in [12], where the parameters γA, γI are
set as described in the section, and θ is chosen using cross-validation on the set {0.1, 0.2, ..., 0.9}
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Figure 4.8: Comparison of MSE on unlabeled target points, with multiple sources

(the final choice of θ is 0.1). Note that our proposed algorithm gives the best performance. In
addition, our algorithm does not require density estimation as in wDA, which can be difficult
in real-world applications with high-dimensional features. Further note posterior considers the
change in P (Y |X) while wDA focuses on the change of P (X). A potential improvement can
be achieved by combining these two in the reweighting scheme, which should be an interesting
future direction.
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Figure 4.9: Multi-source transfer learning: comparison of MSE on the proposed approach
(posterior) and baselines
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4.7 Conclusion and Discussion
In this chapter, we provide theoretical analysis for algorithms proposed for transfer learning
under the model shift assumption. Unlike previous work on covariate shift, the model shift
poses a harder problem for transfer learning, and our analysis shows that we are still able to
achieve a similar rate as in covariate shift/domain adaptation, modified by the smoothness of the
transformation parameters. We also show conditions when transfer learning works better than
no-transfer learning. Finally we extend the algorithms to transfer learning with multiple sources.

The choice of λ∗ is determined by cross validation on the training data. One might think we
are able to choose the best λ∗ by minimizing the generalization bound, but the problem is that
λ∗ also affects the empirical error, hence the best λ∗ that minimizes the generalization bound
R−Remp might not minimize the generalization error R.

Note that although CDM has both location and scale shift and Offset has only location shift,
the two methods are comparable because the scale shift can be translated into location shift.
On the other hand, since CDM has both shifts one might think we need more samples to learn
the transformations due to the increase of the number of parameters, compared to the Offset
approach. Indeed CDM takes relatively longer time to optimize than Offset in our real-data
experiments, but the results of these two approaches are comparable with the same number of
samples. This is because we introduced the smoothness constraints for CDM, thus reducing the
effective number of parameters for both location and scale shift.
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Chapter 5

Flexible Transfer Learning under Support
and Model Shift

5.1 Overview
In this chapter, we propose a flexible algorithm that allows both the support on X and Y , and
the model P (Y |X) to change across the source and target domains. We assume only that the
change is smooth as a function of X . In this way, more flexible transformations are allowed than
mean-centering and variance-scaling.

Specifically, we build a Gaussian Process to model the prediction on the transformed X , then
the prediction is matched with a few observed labels Y (also properly transformed) available in
the target domain such that both transformations on X and on Y can be learned.

5.2 Transfer Learning

5.2.1 Proposed Algorithm
Our strategy is to simultaneously learn a nonlinear mapping X t → Xnew and Y t → Y ∗. This
allows flexible transformations on bothX and Y , and our smoothness assumption using GP prior
makes the estimation stable. We call this method Support and Model Shift (SMS).

We apply the following steps (K in the following represents the Gaussian kernel, and KXY

represents the kernel between matrices X and Y , λ ensures invertible kernel matrix):
• Transform X tL to Xnew(L) by a parameterized-location-scale shift (Fig. 5.1, left):

Xnew(L) = WtL �X tL + BtL,

such that the support of P (Xnew(L)) is contained in the support of P (Xs). Here � is the
elementwise product to allow nonlinear transformations.

• Build a Gaussian Process on (Xs, Y s) and predict on Xnew(L) to get Y new(L);
• Transform Y tL to Y ∗ by a parameterized-location-scale shift (Fig. 5.1, right):

Y ∗ = wtL � Y tL + btL,
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then we optimize the following empirical loss:

arg min
WtL,BtL,wtL,btL,wt

||Y ∗ − Y new(L)||2 + λreg||wt − 1||2, (5.1)

where WtL,BtL are matrices with the same size as X tL, wtL,btL are vectors with the same size
as Y tL, and wt is the scale vector on all Y t. λreg is a regularization parameter.
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Figure 5.1: Illustration of the SMS method

Smoothness Constraint. To ensure the smoothness of the transformation w.r.t. X , we parame-
terize WtL,BtL,wtL,btL using:

WtL = RtLG,BtL = RtLH,wtL = RtLg,btL = RtLh,

where RtL = LtL(LtL + λI)−1, LtL = KXtLXtL .
Following the same smoothness constraint we also have:

wt = Rtg,

where Rt = KXteXtL(LtL + λI)−1.
This parametrization results in the new objective function:

arg min
G,H,g,h

||(RtLg � Y tL +RtLh)− Y new(L)||2 + λreg||Rtg − 1||2. (5.2)

Note in the objective function, although we minimize the discrepancy between the trans-
formed labels and the predicted labels for only the labeled points in the test domain, we put a
regularization term on the transformation for all X t to ensure an overall smoothness in the test
domain.
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5.2.2 Optimization Method
We use a Metropolis-Hasting algorithm to optimize the objective function (Eq. 5.2) which is
multi-modal due to the use of the Gaussian kernel. The proposal distribution is given by

θt ∼ N (θt−1,Σ),

where Σ is a diagonal matrix with diagonal elements determined by the magnitude of θ ∈
{G,H,g,h}.

In addition, the transformation on X requires that the support of P (Xnew) is contained in the
support of P (Xs), which might be hard to achieve on real data, especially when X has a high-
dimensional feature space. To ensure that the training data can be better utilized, we relax the
support-containing condition by enforcing an overlapping ratio between the transformed Xnew

and Xs, i.e., we reject those proposal distributions which do not lead to a transformation that
exceeds this ratio.

5.2.3 Recover the Prediction
After obtaining G,H,g,h, we make predictions on X tU by:
• Transform X tU to Xnew(U) with the optimized G,H:

Xnew(U) = WtU �X tU + BtU = RtUG�X tU +RtUH;

• Build a Gaussian Process on (Xs, Y s) and predict on Xnew(U) to get Y new(U);
• Predict using optimized g,h:

Ŷ tU = (Y new(U) − btU)./wtU = (Y new(U) −RtUh)./RtUg,

where RtU = KXtUXtL(LtL + λI)−1.
With the use of W = RG,B = RH,w = Rg,b = Rh, we allow more flexible transfor-

mations than mean-centering and variance-scaling while assuming that the transformations are
smooth w.r.t X . We will illustrate the advantage of the proposed method in the experimental
section.

5.3 Active Learning
We consider two active learning goals and apply a myopic selection criteria to each:
• Active Learning which reduces total predictive covariance [35, 61]. An optimal myopic

selection is achieved by choosing the point which minimizes the trace of the predictive
covariance matrix conditioned on that selection.

• Active Surveying [22, 41, 72] which uses an estimation objective that is the sum of all
the labels in the test set. An optimal myopic selection is achieved by choosing the point
which minimizes the sum over all elements of the predictive covariance conditioned on
that selection.
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Now we derive the predictive covariance of the SMS approach. Note the transformation
between Ŷ tU and Y new(U) is given by:

Ŷ tU = (Y new(U) − btU)./wtU .

Hence we have

Cov[Ŷ tU ] = diag{1./wtU} · Cov(Y new(U)) · diag{1./wtU}.

As for Y new(U), since we build on Gaussian Processes for the prediction from Xnew(U) to
Y new(U), it follows:

Y new(U)|Xnew(U) ∼ N (µ,Σ),

where

µ = KXnew(U)Xs(KXtrXs + λI)−1Y s,

Σ = KXnew(U)Xnew(U) −KXnew(U)Xs(KXtrXs + λI)−1KXtrXnew(U) .

Note the transformation betweenXnew(U) andX tU is given by: Xnew(U) = WtU�X tU+BtU .
Integrating over Xnew(U), i.e.,

P (Ŷ new(U)|X tU , D) =

∫
Xnew(U)

P (Ŷ new(U)|Xnew(U), D)P (Xnew(U)|X tU)dXnew(U),

with D = {Xs, Y s, X tL, Y tL}.
Using the empirical form of P (Xnew(U)|X tU) which has probability 1/|X tU | for each sample,

we get:
Cov[Ŷ new(U)|X tU , Xs, Y s, X tL, Y tL] = Σ.

Plugging the covariance of Y new(U) into Cov[Ŷ tU ] we can get the final predictive covariance:

Cov(Ŷ tU) = diag{1./wtU} · Σ · diag{1./wtU} (5.3)

5.4 Experiments

5.4.1 Synthetic Dataset
Data Description

We generate the synthetic data with (using matlab notation):
Xs = randn(80, 1);Y s = sin(αXs + 1) + 0.1 ∗ randn(80, 1);
X t = [w ∗min(Xs) + b : 0.03 : w ∗max(Xs)/3 + b];Y t = sin(α(revw ∗X t + revb) + 1) + 2;
In words, Xs is drawn from a standard normal distribution, and Y s is a sine function with Gaus-
sian noise. X t is drawn from a uniform distribution with a parameterized-location-scale trans-
form on a subset ofXs. Y t is the same sine function plus a constant offset of 2. w, b can be tuned
to determine how X t is transformed from Xs. revw, revb are the reverse transformation from X t

to Xs. α can be tuned to determine how complicated the function is. The synthetic dataset used
is with α = 2;w = 0.5; b = 5; revw = 2; revb = −10, as shown in Fig. 1.8.
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Results

We compare the SMS approach with the following approaches:
• Only test x: prediction using labeled test data only;
• Both x: prediction using both training and labeled test data without transformation;
• Offset: the offset approach [73];
• DM: the distribution matching approach [73];
• KMM: Kernel mean matching [33];
• T/C shift: Target/Conditional shift [80], code is from http://people.tuebingen.mpg.de/kzhang/

Code-TarS.zip.

To ensure the fairness of comparison, we apply (3) to (6) using: the original data, the mean-
centered data, and the mean-centered + variance-scaled data.

A detailed comparison with different number of observed test points are shown in Fig. 5.2,
averaged over 10 experiments. The selection of which test points to label is done uniformly at
random for each experiment. The parameters are chosen by cross-validation. Since KMM and
Target/Conditional shift do not utilize the labeled test points, the Mean Squared Error of these
two approaches are constants as shown in the text box. As we can see from the results, our
proposed approach performs better than all other approaches.

As an example, the results for transfer learning with 5 labeled test points on the synthetic
dataset are shown in Fig. 5.3. The 5 labeled test points are shown as filled blue circles. First, our
proposed model, SMS, can successfully learn both the transformation on X and the transforma-
tion on Y , thus resulting in almost a perfect fit on unlabeled test points. Using only labeled test
points results in a poor fit towards the right part of the function because there are no observed
test labels in that part. Using both training and labeled test points results in a similar fit as using
the labeled test points only, because the support of training and test domain do not overlap. The
offset approach with mean-centered+variance-scaled data, also results in a poor fit because the
training model is not true any more. It would have performed well if the variances are similar
across domains. The support of the test data we generated, however, only consists of part of the
support of the training data and hence simple variance-scaling does not yield a good match on
P (Y |X). The distribution matching approach suffers the same problem. The KMM approach,
as mentioned before, applies the same conditional model P (Y |X) across domains, hence it does
not perform well. The Target/Conditional Shift approach does not perform well either since it
does not utilize any of the labeled test points. Its predicted support of P (Y t), is constrained in
the support of P (Y s), which results in a poor prediction of Y t once there exists an offset between
the Y ’s.

5.4.2 Real-world Dataset
The data and features are the same as described in section 3.5.2. The results for transfer learn-
ing are shown in Table 5.1. We compare the SMS approach with the same baselines as in the
synthetic experiments. For {DM, offset, KMM, T/C shift}, we only show their best results after
applying them on the original data, the mean-centered data, and the mean-centered+variance-
scaled data. In each row the result in bold indicates the result with the best RMSE. The result
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Figure 5.2: Comparison of MSE on the synthetic dataset with {2, 5, 10} labeled test points

with a star mark indicates that the best result is statistically significant at a p = 0.05 level with
unpaired t-tests. From the results we can see that our proposed algorithm yields better results
under most cases, especially when the number of labeled test points is small. This means our
proposed algorithm can better utilize the source data and will be particularly useful in the early
stage of learning model transfer, when only a small number of labels in the target domain is
available/required.

The Active Learning/Active Surveying results are as shown in Fig. 5.4. We compare the SMS
approach (covariance matrix in Eq. 5.3 for test point selection, and SMS for prediction) with:
• combined+SMS: combined covariance [73] for selection, and SMS for prediction;
• random+SMS: random selection, and SMS for prediction;
• combined+offset: the Active Learning/Surveying algorithm proposed in [73], using com-

bined covariance for selection, and the corresponding offset approach for prediction.
From the results we can see that SMS is the best model overall. SMS is better than the Ac-

tive Learning/Surveying approach proposed in [73] (combined+offset), especially in the Active

59



−4 −2 0 2 4 6
−2

−1

0

1

2

3

4

X

Y

 

 

SMS

source data

target

selected test x

prediction

−4 −2 0 2 4 6
−2

0

2

4

6

X

Y

 

 

use only labeled test x

source data

target

selected test x

prediction

−2 −1 0 1 2 3
−2

−1

0

1

2

3

X

Y

offset (mean−var−centered data)

 

 

source data

target

selected test x

prediction (w=1)

prediction (w=5)

−2 −1 0 1 2 3
−2

−1

0

1

2

3

X

Y

DM (mean−var−centered data)

 

 

source data

target

selected test x

prediction (p=1e−3)

prediction (p=0.1)

−2 −1 0 1 2 3
−2

−1

0

1

2

3

X

Y

KMM/TC Shift (mean−centered data)

 

 

source data

target

selected test x

prediction (KMM)

prediction (T/C shift)

−2 −1 0 1 2 3
−2

−1

0

1

2

3

X

Y

KMM/TC Shift (mean−var−centered data)

 

 

source data

target

selected test x

prediction (KMM)

prediction (T/C shift)

Figure 5.3: Comparison of results on the synthetic dataset: An example

Surveying result. Moreover, the combined+SMS result is better than combined+offset, which
also indicates that the SMS model is better for prediction than the offset approach in [73]. Also,
given the better model that SMS has, there is not much difference in which active learning al-
gorithm we use. However, SMS with active selection is better than SMS with random selection,
especially in the Active Learning result.
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Table 5.1: RMSE for transfer learning on real data
# X tL SMS DM Offset Only test x Both x KMM T/C Shift

5 1197±23∗ 1359±54 1303±39 1479±69 2094±60 2127 2330
10 1046±35∗ 1196±59 1234±53 1323±91 1939±41 2127 2330
15 993±28 1055±27 1063±30 1104±46 1916±36 2127 2330
20 985±13 1056±54 1024±20 1086±74 1832±46 2127 2330
25 982±14 1030±29 1040 ±27 1039±31 1839±41 2127 2330
30 960±19 921±29 961±30 937±29 1663±31 2127 2330
40 890±26 898±30 938±30 901±31 1621±34 2127 2330
50 893±16 925±59 935±59 926±64 1558±51 2127 2330
70 860±40 805±38 819±40 804±37 1399±63 2127 2330
90 791±98 838±102 863±99 838±104 1288±117 2127 2330
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Figure 5.4: Active Learning/Surveying results on the real dataset (legend: selection+prediction).

5.5 Conclusion
In this chapter we proposed transfer learning algorithms under a more general case where both
the support and the model change across domains. We show that by allowing smooth transforma-
tions for both features and labels across domains we are able to obtain better results than simple
mean-centering and variance scaling, which is a common technique people use today. In addition
we proposed active learning algorithms under this transfer learning framework, and we show that
the performance is further improved after a few queries on a real-world grape yield prediction
application.
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Chapter 6

Nonparametric Stability Analysis for
Multi-Task Learning Problems

6.1 Overview

A closely related problem of transfer learning is multi-task learning, where multiple domains
are coupled together in the learning process to improve the overall performance. Similar to
transfer learning where smoothness relationship between the source domain and target domain
is enforced, multi-task learning imposes some kind of smooth relationship among the tasks, e.g.,
by assuming the function for each task consists of a shared central function and an independent
offset function, or by assuming pairwise smoothness between each pair of tasks.

In this chapter, we propose a general framework for a family of multi-task learning algorithms
that use kernel ridge regression, by placing a reweighting matrix on the task weights to capture
the relationship among tasks. We study the stability bounds under this framework and show that
the stability bounds mainly depend on the diagonal blocks of the inversed reweighting matrix.
This analysis provide insight on how much we can gain from regularizing the relationship among
tasks under different smoothness assumptions.

6.2 Stability Analysis on Multi-Task Kernel Ridge Regression

In this section, we formulate the problem of multi-task kernel ridge regression (MT-KRR) and
then we analyze the stability bounds for the MT-KRR algorithm. Our analysis shows that, MT-
KRR achieves tighter stability bounds than independent task learning by regularizing task re-
lations. In addition, different regularization techniques yield different stability bounds that are
closely related to the diagonal blocks of the inversed reweighting matrix.

Remark. For multi-task learning, the usual assumption is that we have T moderately labeled
tasks (i.e., comparable number of samples for each task). Hence this section focuses on how
the risk bound is affected by the reweighting matrix on task weights (i.e., different smoothness
parameters for each task and among tasks), which is less affected by the number of samples for
each task. This is different from the analysis for transfer learning, where the usual assumption is

63



that we have a sufficiently labeled source task and a very limited labeled target task, and the risk
bound is affected by the smoothness parameter for the offset, the sample size for the source task
and the sample size for the target task.

6.2.1 Multi-task KRR Algorithm: Formulation and Objective
Notations. Assume we have T tasks, each task t has data matrix Xt ∈ Rnt×d, Yt ∈ Rnt , where
xt,i ∈ X is the i-th row of Xt, and yt,i ∈ Y is the i-th scalar of Yt. nt is the number of data
points for each task, and d is the dimension of features. Denote the total number of data points
as m =

∑T
t=1 nt.

Let φ be the feature mapping on x associated to kernel k with dimension q, and Φ(Xt)
denote the matrix in Rnt×q whose rows are the vectors φ(xt,i). Let Φ(X) ∈ Rm×Tq represent
the diagonalized data matrix Φ(X) = diag[Φ(X1) Φ(X2) · · · Φ(XT )] for all tasks as following,
Y ∈ Rm×1 be the stacked label vector, and w ∈ RTq×1 be the stacked weight vector for all tasks:

Φ(X) =


Φ(X1) 0 · · · 0

0 Φ(X2) · · · 0
...

... . . . ...
0 0 · · · Φ(XT )

 ,

Y = [Y1 Y2 . . . YT ]>, w = [w1 w2 . . . wT ]>.

Throughout the section we use `2 loss as the loss function for a hypothesis h, i.e., l(h(x), y) =
(h(x)− y)2. Note that l(h(x), y) is a σ-admissible loss function, i.e.,

∀x, y,∀h, h′, |l(h(x), y)− l(h′(x), y)| ≤ σ|h(x)− h′(x)|.

For `2 loss σ = 4B, assuming |h(x)| ≤ B, |y| ≤ B for some B > 0.

Objective. Define the MT-KRR objective as:

min
w

1

m
||Y − Φ(X)w||2F + w>Λw,

where Λ is a Tq × Tq reweighting matrix on task weights w.
Let φ̃(xt,j) = [0 · · · 0 φ(xt,j) 0 · · · 0] be a row of Φ(X) for task t. Let H be a reproducing

kernel Hilbert space with kernel

kΛ−1(xs,i, xt,j) = φ̃(xs,i)Λ
−1φ̃>(xt,j)

where s, t are indices for tasks, the objective becomes:

min
g∈H

1

m

T∑
t=1

nt∑
j=1

(yt,j − g(xt,j))
2 + ||g||2kΛ−1

(6.1)

where g(x) = 〈g, kΛ−1(x, .)〉H, and ||.||KΛ−1 is the norm inH. This generalizes to the case where
q =∞. The solution to MT-KRR is (assuming nonsingular Λ):

w = Λ−1Φ>(X)[Φ(X)Λ−1Φ>(X) +mI]−1Y.
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Note in multi-task learning setting, we assume Λ = Ω ⊗ Iq (for some Ω ∈ RT×T ), where Iq
is the q × q identity matrix and ⊗ is the Kronecker product. By the property of the inverse
of a Kronecker product, Λ−1 = M ⊗ Iq where M = Ω−1, and it can be easily shown that
kΛ−1(xs,i, xt,j) = Ms,tk(xs,i, xt,j).

Remark. Eq. 6.1 assumes same weight 1/m on the loss for (xt,j, yt,j) for all tasks. Alternatively,
we can put different weights on the loss for different tasks, i.e,

min
w

T∑
t=1

1

nt

nt∑
j=1

(φ(xt,j)wt − yt,j)2 + w>Λw.

The solution becomes

w = Λ−1Φ>(X)(Φ(X)Λ−1Φ>(X) + C−1I)−1Y,

where C is the loss-reweighting matrix with 1/nt’s as the diagonal elements. As C is the same
under different Λ’s, it is not the focus of this section. A study on the effect of C can be found in
[15].

6.2.2 Examples
Much existing multi-task algorithms can be cast into the above framework, with different Λ’s for
the penalty. In the following, we show a few examples (see Table 6.1 for a summary), where
P = w>Λw is the penalty term.

Independent tasks

If we consider each task independently, the algorithm is the same as regular KRR. Hence

P = λ
T∑
t=1

||wt||2, and Λ = λIT ⊗ Iq.

Hence for Λ = Ω⊗ Iq, we have

Ω =


λs 0 · · · 0
0 λs · · · 0
...

... . . . ...
0 0 · · · λs

 .

Central/mean function+offset

This algorithm is described in [19]. The basic assumption is that, for each task the hypothesis is
given by h(xt) = xt(wc + wt), and

P = λc||wc||2 + λo

T∑
t=1

||wt||2,
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where λc is regularizing the central/mean function, and λo is regularizing the offset function. In
the same paper the authors proved an equivalent version of the penalty term:

P = λs

T∑
t=1

||wt||2 + λp

T∑
t=1

||wt −
1

T

T∑
s=1

ws||2,

hence for Λ = Ω⊗ Iq, we have

Ω =


λs + λp(1− 1

T
) −λp

T
· · · −λp

T

−λp
T

λs + λp(1− 1
T

) · · · −λp
T

...
... . . . ...

−λp
T

−λp
T

· · · λs + λp(1− 1
T

)

 .

Pairwise penalty

This algorithm is mentioned in [66]. Let λp be the regularization parameter for the pairwise
penalty and λs be the regularization parameter for each single task.

P = λp
∑

s,t∈{1...T},s 6=t

||ws − wt||2 + λs

T∑
t=1

||wt||2,

for Λ = Ω⊗ Iq, we have

Ω =


λp(T − 1) + λs −λp · · · −λp

−λp λp(T − 1) + λs · · · −λp
...

... . . . ...
−λp −λp · · · λp(T − 1) + λs

 .

Remark. Note the equivalence of regularizing using a pairwise penalty and using central+offset,
if we set λp/T in central+offset to be λp in pairwise penalty.

Temporal penalty

The algorithm is described in [84], where there is a penalty on parameters for each pair of con-
secutive tasks, and an extra penalty on the parameter for each task.

P = λp
∑

t=1,...,T−1

||wt − wt+1||2 + λs

T∑
t=1

||wt||2,

for Λ = Ω⊗ Iq, we have

Ω =


λp + λs −λp 0 · · · 0
−λp 2λp + λs −λp · · · 0

...
... . . . ...

...

0
... −λp 2λp + λs −λp

0 0 · · · −λp λp + λs

 .
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Methods Penalty P = w>Λw Λ = Ω⊗ Iq
Independent tasks λs

∑T
t=1 ||wt||2 Ω = λsIT

Central+offset [19]
λs
∑T

t=1 ||wt||2+

λp
∑T

t=1 ||wt −
1
T

∑T
s=1ws||2

{
Ωt,t = λs + λp(1− 1

T )

Ωs,t = −λp
T , s 6= t

Pairwise [66]
λp
∑

s 6=t ||ws − wt||2

+λs
∑T

t=1 ||wt||2

{
Ωt,t = λp(T − 1) + λs

Ωs,t = −λp, s 6= t

Temporal [84]
λp
∑T−1

t=1 ||wt − wt+1||2
+λs

∑T
t=1 ||wt||2


Ωt,t = 2λp + λs, t = 2, . . . , T − 1;

Ωt,t+1 = Ωt+1,t = −λp, t = 1, . . . , T − 1;
Ω1,1 = ΩT,T = λp + λs; zero otherwise.

Table 6.1: Examples of multi-task learning algorithms with different Λ’s as penalty

6.2.3 Uniform Stability for MT-KRR
We study the uniform stability [11], which is usually used to bound true risk in terms of empirical
risk, for the MT-KRR algorithm.
Definition 6.2.1. ([11]). The uniform stability β for an algorithm A w.r.t. the loss function l is
defined as: ∀S ∈ Zm,∀i ∈ {1, ...,m},

||l(AS, .)− l(AS\i, .)||∞ ≤ β,

where Z = X ×Y drawn i.i.d from an unknown distribution D, and S \ i is formed by removing
the i-th element.
Definition 6.2.2. (Uniform stability w.r.t a task t). Let i be a data index for task t. The uniform
stability βt of a learning algorithm A w.r.t a task t, w.r.t. loss l is: ∀S ∈ Zm,∀i ∈ {1, ..., nt},

||l(AS, .)− l(AS\i, .)||∞ ≤ βt.

Let the risk or generalization error be defined as R(A, S) = Ez[l(AS, z)], z ∈ Z , and the
empirical error be defined as Remp = 1

m

∑m
i=1 l(AS, zi), zi ∈ Zm. Then we have the following

generalization error bound (Theorem 12, [11]) with probability at least 1− δ:

R ≤ Remp + 2β + (4mβ + 4B2)

√
ln 1/δ

2m
.

This theorem gives tight bounds when the stability β scales as 1/m. For the MT-KRR algo-
rithm, we have the following theorem hold with respect to the uniform stability:
Theorem 6.2.3. Denote Λ−1 = M ⊗ Iq, and M1, . . . ,MT are the diagonal elements of M .
Assuming the kernel values are bounded: ∀x ∈ X , k(x, x) ≤ κ2 < ∞. The learning algorithm
defined by the minimizer of Eq. 6.1 has uniform stability β w.r.t. σ-admissible loss l with:

β ≤ σ2κ2

2m
max
t
Mt.

Proof. Denote h ∈ H as the minimizer of Eq. 6.1, i.e.,

F (g) =
1

m

T∑
s=1

ns∑
j=1

(ys,j − g(xs,j))
2 + ||g||2kΛ−1

= R(g) +N(g),
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and h′ ∈ H as the minimizer of Eq. 6.1 on the same data except with the element xt,i, yt,i
removed:

F ′(g) =
1

m

T∑
s=1

∑
j 6=i if s=t

(ys,j − g(xs,j))
2 + ||g||2kΛ−1

= R′(g) +N(g).

Define the Bregman Divergence associated to F of f to g by

BF (f ||g) = F (f)− F (g)− < f − g,∇F (g) > .

Since h, h′ are the minimizers, we have

BF ′(h||h′) +BF (h′||h) = F ′(h)− F ′(h′) + F (h′)− F (h)

= R′(h)−R′(h′) +R(h′)−R(h)
(6.2)

Using the nonnegativity of B and BF = BR +BN , BF ′ = BR′ +BN , we have

BN(h||h′) +BN(h′||h) ≤ BF (h′||h) +BF ′(h||h′) (6.3)

Combining Eq. 6.2 and Eq. 6.3 we have

BN(h||h′) +BN(h′||h)

≤ R′(h)−R′(h′) +R(h′)−R(h)

=
1

m
[
T∑
s=1

∑
j 6=i if s=t

l(h(xs,j), ys,j)−
T∑
s=1

∑
j 6=i if s=t

l(h′(xs,j), ys,j)

+
T∑
s=1

ns∑
j=1

l(h′(xs,j), ys,j)−
T∑
s=1

ns∑
j=1

l(h(xs,j), ys,j)]

=
1

m
[l(h′(xt,i), yt,i)− l(h(xt,i), yt,i)]

≤ 1

m
σ||∆h||kΛ−1

√
φ̃(xt,i)Λ−1φ̃>(xt,i),

(6.4)

using the fact that l is a σ-admissible loss function.
Since for RKHS norm BN(f ||g) = ||f − g||2kΛ−1

, we have BN(h||h′) + BN(h′||h) = 2||h −
h′||2kΛ−1

. Using Eq. 6.4, we have

2||h− h′||2kΛ−1
= 2||∆h||2kΛ−1

≤ 1

m
σ||∆h||kΛ−1

√
φ̃(xt,i)Λ−1φ̃>(xt,i).

We get

||∆h||kΛ−1 = ||h− h′||kΛ−1 ≤
σ
√
φ̃(xt,i)Λ−1φ̃>(xt,i)

2m
. (6.5)
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Note φ̃(xt,i) is in the form of [0 · · · 0 φ(xt,i) 0 · · · 0]. By the standard bounds for Rayleigh
quotient, we have

φ̃(xt,i)Λ
−1φ̃>(xt,i) ≤ κ2λmax(MtIq) = κ2Mt. (6.6)

Combining Eq. 6.5 and Eq. 6.6, and generalizing to ∀t we have

||∆h||kΛ−1 ≤
σ
√
κ2 maxtMt

2m
(6.7)

Now we obtain the uniform stability by ∀x, y,

|l(h(x), y)− l(h′(x), y)| ≤ σ||∆h||kΛ−1 [φ̃(x)Λ−1φ̃>(x)]

≤ σ||∆h||kΛ−1

√
κ2 max

t
Mt

≤ σ2κ2

2m
max
t
Mt,

using Eq. 6.6 and Eq. 6.7.

Remark. The above theorem provides a more direct stability bound by taking the maximum
over the diagonal elements of M , instead of computing the largest eigenvalue as in [82]. Also,
for a specific task t, if Mt < maxs{Ms}, then it is possible to obtain tighter stability βt using
only Mt, which yields tighter bounds than the one in [82] where they consider the worst case for
all tasks.
Lemma 6.2.4. The learning algorithm defined by the minimizer of Eq. 6.1 has uniform stability
βt w.r.t a task t, w.r.t. σ-admissible loss l with:

βt ≤
σ2κ2

2nt
Mt.

The proof is a straightforward adaptation of proof of Thm 6.2.3, with x constrained to be xt,i.
The reason we care about βt is that, it leads to a tighter generalization error bound for a task t,
given βt < β. We have, with probability at least 1− δ,

Rt ≤ Rt
emp + 2βt + (4ntβt + 4B2)

√
ln 1/δ

2nt
,

where Rt = Ez[l(AS(xt,i), yt,i)], Rt
emp = 1

nt

∑nt
i=1 l(AS(xt,i), yt,i).

In the following section, we study the stability bounds under a few special cases (Table 6.1),
where it can be shown that we have tighter stability bounds for MT-KRR than learning each task
independently.
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6.2.4 Stability Bounds under Different Penalties
(a) Independent tasks. It is easy to derive that ∀t,Mt = 1/λs, and

βind ≤
σ2κ2

2λsm
.

Remark. In [5], the stability of multi-task KRR is analyzed by considering each task sepa-
rately, which corresponds to the above analysis. In the following, we will show that different
regularizations on task relations help tighten the stability bounds of MTL algorithms.

(b) Central function+offset. Applying blockwise matrix inversion we have

∀t,Mt =
λp/T + λs
λs(λp + λs)

.

Hence we achieve tighter stability bounds than βind for T ≥ 2 and λp > 0:

max
t
Mt =

λp/T + λs
λs(λp + λs)

<
1

λs
. (6.8)

(c) Pairwise penalty. Similarly to (b), we can derive that

Mt =
λp + λs

λs(λpT + λs)
.

For T ≥ 2 and λp > 0, again we obtain tighter bounds than βind:

max
t
Mt =

λp + λs
λs(λpT + λs)

<
1

λs
. (6.9)

(d) Temporal penalty. We have the following lemma:
Lemma 6.2.5. Let Λ be defined as in Table 6.1 under temporal penalty and M be defined as in
theorem 6.2.3. Let Mtmid be the middle element(s) of M1,M2, . . . ,MT , i.e., tmid = T/2, T/2 + 1
if T is even, and tmid = (T + 1)/2 if T is odd. Then the following hold:

Mt < Mt−1, t = 2, . . . , tmid;Mt < Mt+1, t = tmid, . . . , T ;

max
t
Mt = M1 = MT <

1

λs
; min

t
Mt = Mtmid ≥

λp + λs
λs(λpT + λs)

.

Proof. Using blockwise matrix inversion we can obtain the following recurrence equations for
the diagonal elements of M = Λ−1:

M1 = 1/λ1,

Mt = 1/λt + λ2
p/λ

2
tMt−1, t = 2, . . . , T

(6.10)

where {
λt = (2λp + λs)− λ2

p/λt+1 t = 2, . . . , T − 1
λt = (λp + λs)− λ2

p/λt+1 t = 1
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with initial condition λT = λp + λs.
First using induction we have λt ≥ λp+λs, t = 2, . . . , T and λt > λt+1, t = 2, . . . , T −1. Hence

λt − λt+1 ≤
λpλs
λp + λs

Applying the initial condition we get

λt ≤ (T − t) λpλs
λp + λs

+ (λp + λs), t ≥ 2 (6.11)

Second, it can be shown that Mt = MT+1−t, t = 1, . . . , T by applying blockwise inversion
Lemma in two ways, one is starting from the top-left element of the matrix, another is starting
from the right-bottom element of the matrix.
Third, rewriting the recurrence equation for Mt we get

Mt −
λt

λ2
t − λ2

p

=
λ2
p

λ2
t

(Mt−1 −
λt

λ2
t − λ2

p

)

Since λt ≥ λp + λs, we have {
Mt < Mt−1, if Mt >

λt
λ2
t−λ2

p

Mt > Mt−1, if Mt <
λt

λ2
t−λ2

p

It is easy to see that λt
λ2
t−λ2

p
= 1

λt+λt−1−(2λp+λs)
is a monotonically increasing sequence. Hence we

have Mt < Mt−1 for t = 2, . . . , tmid, and Mt < Mt+1 for t = tmid, . . . , T , where tmid is(are) the
middle element(s) of 1, . . . , T .
Now it is easy to see the mintMt = Mtmid ,maxtMt = M1 = MT .
If T is even, then tmid = T/2 or T/2 + 1, and MT/2 = MT/2+1. We have the following equation
hold:

1/λT/2 + λ2
p/λ

2
T/2MT/2 = MT/2+1 = MT/2

We can solve for MT/2 and get

MT/2 =
1

λT/2+1 − λ2
p/λ

2
T/2+1

=
1

λT/2+1 + λT/2 − (2λp + λs)
≥ λp + λs
Tλpλs + λ2

s

by applying inequality 6.11.
If T is odd, then tmid = (T + 1)/2, and M(T−1)/2 = M(T+3)/2. Again we can solve for M(T+1)/2

and get

M(T+1)/2 =
1

2λt − (2λp + λs)
≥ λp + λs
Tλpλs + λ2

s

again by applying inequality 6.11. Moreover, using induction it can be shown that when T = 3,
the bound is tight, i.e., Mtmid = λp+λs

Tλpλs+λ2
s
; and for T > 3, Mtmid >

λp+λs
Tλpλs+λ2

s
. Finally,

M1 = MT = 1/λ1 ≤
λp + λs

λs(2λp + λs)
<

1

λs
.
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Combining Lemma 6.2.5 and Lemma 6.2.4 we can see that, with temporal penalty we have
tightest stability bounds βt for t = tmid. Also, we achieve tighter stability bounds βt for the tth
task than the t − 1th task, if t < tmid; and tighter βt for the tth task than the t + 1th task, if
t > tmid. However, since

Mtmid ≥ (λp + λs)/(λs(λpT + λs)),

we achieve a looser bound with temporal penalty than Eq. 6.8 or Eq. 6.9. It indicates that we
might lose some algorithmic stability due to the relatively restricted temporal smoothness as-
sumption, compared to assuming pairwise smoothness. Nonetheless, the stability bound with
temporal penalty is tighter than learning each task independently: maxtMt < 1/λs, for T ≥ 2.

6.3 Extension to Classification
For a multi-task classification problem, we are given T tasks, each task t has data matrix Xt with
dimension nt × d, and Yt with dimension nt × 1, where xt,i ∈ R is the i-th row of Xt, and
yt,i ∈ {0, 1} is the i-th entry of Yt.

To extend the previous multi-task regression algorithm to classification, we assume a logistic
function from a latent continuous variable zt,i ∈ R to the binary label yt,i ∈ {0, 1}:

p(yt,i|zt,i) =
1

1 + e−zt,iyt,i

Let Zt be an nt × 1 vector with ith entry being zt,i, and Z be the stacked vector:

Z = [Z1 Z2 . . . ZT ]>.

The goal is to maximize the likelihood with respect to X̃ , which is the transformed X under the
multi-task assumption with task correlation matrix Λ:

p(Z|Y, X̃) ∝ p(Z|X̃)P (Y |Z)

∝ p(Z|X̃)
∏
t,i

p(yt,i|zt,i)

∝ exp{−1

2
Z>K−1

XΛ−1XZ}
∏
t,i

1

1 + e−zt,iyt,i
,

where KXΛ−1X = Φ(X)Λ−1Φ>(X).
Equivalently we maximize:

log p(Z|Y,X) = −1

2
Z>K−1

XΛ−1XZ −
∑
t,i

log(1 + e−zt,iyt,i) + C,

where C is some constant. Hence the objective is:

min
Z

1

2
Z>K−1

XΛ−1XZ +
∑
t,i

log(1 + e−zt,iyt,i).
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After optimization we obtain Z, which is continuous. For a new data matrix X∗, since[
Z
Z∗

]
∼ N (0,

[
KXΛ−1X KXΛ−1X∗

KX∗Λ−1X KX∗Λ−1X∗

]
),

we get

Z∗|Z ∼ N (KX∗Λ−1XK
−1
XΛ−1XZ,KX∗Λ−1X∗ −KX∗Λ−1XKXΛ−1XKXΛ−1X∗)

For each scalar z∗ ∈ Z∗, we can predict the corresponding y∗ using

p(y∗|z∗) =
1

1 + e−z∗y∗
,

By thresholding we predict y∗ = 1 if p(y∗|z∗) ≥ 0.5, and y∗ = 0 otherwise.

6.4 Estimating the Penalty Matrix Λ

In many real applications the task-relation is unknown to us beforehand, thus we need to estimate
the penalty matrix Λ to correctly identify the relationship among all the tasks.

The Bayesian interpretation of estimating the task weightw using MT-KRR is by maximizing
the posterior distribution of w:

max
w

p(w|X, Y ) ∝ p(X, Y |w) ∗ p(w),

where Y = Xw + ε with Gaussian noise ε, and we assume a Gaussian prior distribution on w:

w ∼ N (0,Λ−1), p(w) ∝ exp{−w>Λw}.

If we maximize the log likelihood of the posterior distribution with kernelization on feature X ,
we have the MT-KRR objective:

min
w

1

m
||Y − Φ(X)w||2F + w>Λw.

Hence, the inversed penalty matrix Λ−1 acts as a covariance matrix for the weight vector w.
After estimating w using the initial value of Λ−1, we can use the sample covariance matrix of w
to re-estimate Λ−1.

Denote the q×T matrixW = [w1w2 . . .wT ], the sample covariance matrix ofW is estimated
as:

Cov(W ) =
1

q − 1
(W − W̄ )>(W − W̄ ),

where W̄ is 1/q of the sum of all the rows in W . Note this is the MLE estimate the of the
covariance matrix. When the number of tasks T is large, we can have an MAP estimate of the
covariance matrix by adding regularizations on Λ−1 (e.g., nuclear norm or `1 norm).

For a feature map x → φ(x) and φ(x) ∈ Rq where q is a finite number, we can directly
estimate the sample covariance matrix of w. For a feature map x→ φ(x) and φ(x) ∈ Rq where
q = ∞, e.g., using the Gaussian kernel, then we can approximate the sample covariance matrix
of w by using random Fourier features [53].
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Figure 6.1: Example data with T = 3, nt = 20

6.5 Active Multi-Task Learning
We can regard the multi-task learning with penalty matrix Λ as one Gaussian Process where the
kernel matrix incorporated Λ−1, hence the covariance matrix for a new data matrix X∗ can be
written as:

Σ(f ∗|X, Y,X∗) = KX∗Λ−1X∗ −KX∗Λ−1X(KXΛ−1X + λI)−1KXΛ−1X∗ ,

where KX∗Λ−1X = Φ(X)Λ−1Φ>(X∗), and λ is a constant to make sure the kernel matrix is
invertible.

Given the covariance matrix, we can adopt the active learning strategy which minimizes the
total uncertainty:

arg min
XA

Tr[Σ(fU |X ∪XA, Y ∪ YA, XU)],

where XA is the selected set of points for query, and XU are the data points remained.
Alternatively, we can adopt the active surveying strategy where the goal is to predict the sum

of all the labels, and the corresponding objective is:

arg min
XA

1>Σ(fU |X ∪XA, Y ∪ YA, XU)1.

6.6 Experiments

6.6.1 Synthetic Data
Multi-Task Learning Stability

To show the stability bounds under different penalties, we simulate data with T tasks. Each task
t has {Xt, Yt} : Yt = fc + fo + 0.1ε, where fc = sin(20x) + sin(10x) is the central function,
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Figure 6.2: Left: R−Remp w.r.t # tasks (fixed nt = 10 points per task); Right: R−Remp w.r.t #
points per task (fixed T = 5 tasks)

and fo = sin 5(1 + ti)x is a smoother additive function, with ti ∼ Unif(0, 1), plus ε ∈ N (0, 1).
Fig.6.1 shows an example of the data with T = 3 and nt = 20 per task.

In Fig.6.2, we plot the risk difference R − Remp (Sec. 6.2.3) w.r.t different number of tasks
(fixed 10 points per task), and different number of points per task (with fixed 5 tasks), aver-
aged over 50 experiments. We also plot the theoretical bounds (fitted to the actual curve using
regression) for each case. We see that the results are consistent with our analysis. Using cen-
tral+offset (Eq. 6.8), pairwise-penalty (Eq. 6.9), or temporal-penalty (Lemma 6.2.5) we achieve
tighter bounds than learning each task independently (denoted as Separate). In addition, cen-
tral+offset and pairwise-penalty result in the same curve (red and blue) when we set λp/T in
central+offset equal to λp in pairwise-penalty, which shows the equivalence of these two meth-
ods. Further we observe that temporal-penalty gives slightly larger R−Remp than central+offset
and pairwise-penalty, which coincides with our analysis.

Active Multi-Task Learning

To show the results for active multi-task learning, we simulated T tasks with each task consisting
of {Xt, Yt} which satisfies: Yt = fc + fo + 0.1ε, where fc = sin(20x) + sin(10x) acts as the
central function, and fo = sin 5(1 + ti)x is a smoother additive function, with ti ∼ Unif(0, 1),
plus Gaussian noise ε ∈ N (0, 1). Figure 6.3 (left) shows an example of the data with T = 3 and
nt = 20 per task. Figure 6.3 (right) shows the mean squared error w.r.t. number of iterations,
with random selection and active selection. The results are averaged over 30 experiments. Each
experiment is randomly initialized with 1 labeled point per task, and in each iteration one test
point is selected and its label is acquired. We can see that our active selection yields a much
lower MSE compared to random selection.
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Figure 6.3: Example of the multi-task dataset used in the experiments, with T = 3 tasks and
nt = 20 data points per task(left); MSE w.r.t. number of iterations in active learning (right)
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Figure 6.4: Results for multi-task learning on the AQI data

6.6.2 Real Data

Multi-Task Learning Stability

AQI data. The first real dataset is the Air Quality Index (AQI) dataset [45]. We extract bag-
of-words vectors (feature X with dimension d = 100, 395) from social media posts to predict
the AQI (label Y ) across cities. The results are averaged over 20 experiments. In Fig. 6.4, we
show the prediction error of MT-KRR using pairwise penalty (or equivalently the central+offset
penalty) with 4 cities as 4 different tasks. We see that the MT-KRR algorithm (mtl) outper-
forms independent-task-learning (single). In addition, we plot the leave-one-out error for each

76



task (loo-1 through 4), and the prediction error by MT-KRR for the best task (mtl-min), which
outperforms learning that task by itself (loo-3).

Extension to Multi-Task Classification

Robot Data. The second dataset is a robotics dataset where the task is to predict whether it is
successful for a robot snake to climb over obstacles with different heights. The data was taken
by first trying to get the snake to climb over a 3.5” beam, then a 5.5” beam, then 7”, 9”, 11”, and
12.5”. Each task corresponds to a different beam height. The features include the beam height
and three control parameters, and the label is a binary ”success/failure” outcome from each ex-
periment. Since it is a classification task, we apply the proposed multi-task classification method
as described in Sec. 6.3. In Figure 6.5 we show the results of the proposed multi-task learning
algorithm with pairwise penalty (mtl) compared with merged (pooling all tasks together) and
single (learning each task independently). We can see that our method gives the best results,
which demonstrates the effectiveness of coupling tasks together for better learning results.
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Figure 6.5: Results for multi-task learning on the Robot data (classification)

Multi-Task Learning with updated penalty matrix Λ

School Data. The dataset is a school dataset1 [4, 6] where the task is to predict the examination
scores based on school features (e.g., percentage of students eligible for free school meals, school
gender, school denomination) and student features (e.g., year, gender, VR band, ethnic group) to
test the effectiveness of schools. It consists of examination records from 139 secondary schools
in years 1985, 1986 and 1987, with a random 50% sample with 15362 students. We regard each

1http://cvn.ecp.fr/personnel/andreas/code/mtl/index.html
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school as a different task. In Figure. 6.6, we show the results of our proposed multi-task learning
method with updated penalty matrix Λ (mtl-rand-feat), and the multi-task learning method with
a fixed penalty matrix Λ by using the pair-wise penalty (mtl-fixed), compared with the merged
algorithm (merged, by pooling all tasks together), single-task learning (single, learning each
school independently), and the multi-task learning algorithm using sparse penalty (mtl-sparse,
[81]). We can see that our proposed algorithm with updated penalty matrix gives the best results,
which shows the effectiveness of updating the task-relation matrix learned from the task weights.
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Figure 6.6: Results for multi-task learning on the School data with updated penalty matrix Λ

Active Multi-Task Learning

In Figure 6.7, we show the results of active learning on the AQI data. In the left figure we show an
example of the AQI w.r.t. different days, for three cities as our three tasks. In the right figure we
compare our active learning result with random selection. We can observe that again our active
selection criteria yields a much lower error on the real data, which shows we can effectively
predict the AQI for a certain city by querying a few labels from other related cities.

6.7 Conclusion
In this chapter we provide theory that connects the risk bounds for multi-task learning to the rela-
tion of tasks. We show that, by imposing a smooth relationship between/among tasks, we obtain
favorable learning rates for multi-task learning, compared to learning tasks independently. In
addition, we have shown the stability bounds for several existing multi-task learning algorithms,
and we prove that certain assumptions imposed on task relations can yield tighter stability bounds
than other assumptions. Further we proposed an algorithm which can automatically update the
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Figure 6.7: AQI dataset, with T = 3 tasks and nt = 31 data points per task (left); MSE w.r.t.
number of iterations in active learning (right)

task correlation matrix, thus capturing both positive and negative relations among different tasks.
Finally, we proposed a combined active multi-task learning framework which outperforms ran-
dom selection by querying a few most informative data points.
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Chapter 7

Transfer Learning with Distributions

7.1 Overview

In this chapter, we propose method for estimating distributions in a transfer learning setting:
• In Section 7.2.1, we propose an approach for distribution transfer on the label distribution
P (Y ) in a nonparametric setting, i.e., estimating P (Y ) in the target domain by transferring
P (Y ) from the source domain.

• In Section 7.2.2, we propose an approach for conditional distribution transfer, i.e., esti-
mating P (Y |X = x∗) for features X in the target domain by transferring from the source
distribution.

• In Section 7.3, we extend the algorithm to multi-source distribution transfer, where
we estimate P (Y ) or P (Y |X = x∗) in the target domain by combining multiple source
distributions.

7.2 Single-Source Distribution Transfer

Notations. Let y ∈ R denote the labels and x ∈ Rd denote the d-dimensional features/observations.
Throughout the section we use superscript s to indicate the variables for the source domain, and
t to indicate the variables for the target domain. For example, the variables ys and yt refer to the
variables for source labels and target labels.

Let H be a reproducing kernel Hilbert space with kernel K such that k(y, y) ≤ κ2 < ∞ for
all y ∈ Y . Let ||.|| denote the corresponding RKHS norm. Let ψ denote the feature mapping on
y associated with kernel K, and Ψ(Y ) denote the matrix where the i-th column is ψ(yi). Denote
KY Y ′ = Ψ>(Y )Ψ(Y ′) as the kernel computed between Y and Y ′, i.e., KY Y ′(i, j) = k(yi, y

′
j).

Similarly, we use φ to denote the feature map on x, and the corresponding matrix as Φ(X).
Denote KXX′ = Φ>(X)Φ(X ′) as the kernel computed between feature matrix X and X ′, i.e.,
KXX′(i, j) = l(xi, x

′
j). Again we assume l(x, x) ≤ κ2 <∞ for all x ∈ X .
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7.2.1 Distribution Transfer on P (y)

In this section, we propose a method for distribution transfer on P (y), without using the infor-
mation from x. Formally, assume we have m source samples Y s = {Y s

1 , . . . , Y
s
m} drawn from

the source distribution P (ys). In addition, we have nl target samples Y tl = {Y t
1 , . . . , Y

t
nl
} drawn

from the target distribution P (yt). We would like to predict P (yt) based on the source samples
Y s and the few target samples Y tl (Fig. 7.1).
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Figure 7.1: Example distribution transfer on P (y)

The usual assumption for transfer learning is that m� nl, i.e., the number of source samples
is sufficient but the number of labeled target samples is very limited. As a result, we will not
have a very accurate estimation of P (yt) based on a few labeled target samples only. Hence the
idea for transfer is that, the prediction on the target distribution should have some dependency
on the source distribution P (ys), and a better estimation on P (yt) can be achieved if P (ys) and
P (yt) are somewhat similar.

Specifically, we propose a reweighting w on the source Y s to trade-off between
• Source dependency: the difference between the weighted source distribution and the orig-

inal source distribution (characterized by the symmetrised KL divergence),
• Matching target: the weighted source distribution should be close to the target distribution

based on the observed target samples.

For Matching target we minimize the MMD [26, 27, 33] between them (here we prefer using
MMD instead of KL divergence because KL requires estimating both densities, and the density
based on the observed target samples could be very inaccurate due to the small sample size nl.
This is not a problem for the source dependency part because both weighted source distribution
and the original source distribution are estimated based on sufficient source samples).

Let q represent the weighted source distribution with weights w ∈ Rm×1, and p represent the
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estimated source distribution based on the source samples, the objective is:

min
w

1

2
KL(p(ys)||q(ys)) +

1

2
KL(q(ys)||p(ys)),

subject to ||Ψ(Y s)w − 1

nl
Ψ(Y tl)1nl || ≤ ε,

and ∀i, wi ≥ 0,w>1m = 1,

(7.1)

where 1nl ,1m are vectors of 1’s with size nl × 1, and m × 1, respectively. ε controls the de-
pendency on the source domain. Here p(ysj ) = 1

m

∑m
i=1 Kh(y

s
j − Y s

i ) is the estimated density
based on the source data, and q(ysj ) =

∑m
i=1

wi∑
i wi
Kh(y

s
j − Y s

i ) is the weighted density estima-
tion based on the source data (here we omit the normalizing constant h since it does not affect
the optimization). Kh represents the smoothing kernel used for density estimation with kernel
width h. Using matrix notations we can further simplify the objective and get (note here the KL
divergence is being measured only on the samples):

1

2
KL(p(ys)||q(ys)) +

1

2
KL(q(ys)||p(ys))

=C − 1

2

∑
j

p(ysj ) log q(ysj )−
1

2

∑
j

q(ysj ) log p(ysj ) +
1

2

∑
j

q(ysj ) log q(ysj )

=C − 1

2m
1>mKs log(Ksw)− 1

2
w>Ks log(Ks1m/m) +

1

2
w>Ks log(Ksw),

where Ks is the m×m kernel matrix on the source data, i.e., Ks(i, j) = k(ysi , y
s
j ).

Alternatively, we can minimize the MMD between the weighted source distribution and the
original source distribution, i.e.,

min
w
||Ψ(Y s)w − 1

m
Ψ(Y s)1m||2,

subject to ||Ψ(Y s)w − 1

nl
Ψ(Y tl)1nl || ≤ ε,

and ∀i, wi ≥ 0,w>1m = 1.

(7.2)

Choice of ε: the lower bound. To ensure that we have non-empty solutions for both optimization
problems Eq. 7.1 and Eq. 7.2, we first work out a lower bound of ε by minimizing the left hand
side of the constraint, i.e.,

min
w
||Ψ(Y s)w − 1

nl
Ψ(Y tl)1nl ||,

subject to ∀i, wi ≥ 0,w>1m = 1.

(7.3)

Denote the solution to Eq. 7.3 as w̄, and the minimized objective function as ε̄. As long as we
choose an ε larger than ε̄, we have non-empty solutions to the original optimization problem.
With a PSD kernel matrix, the above minimization Eq. 7.3 is a convex quadratic programming
problem. The solution w̄ reweights the source to match the target without any dependence on the
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Figure 7.2: Illustration of the distribution transfer algorithm: the example reweights

source distribution. With a small number of target labels this can lead to distribution estimation
on the target with high variance. By increasing ε and adding the objective for source dependence
(i.e., objective Eq. 7.1 and Eq. 7.2), we can have a better estimation on the target distribution by
assuming the source and target distributions are similar.

We use interior point methods to solve the optimization problems. After obtaining the
weights w on the source data, we can estimate P (yt) by:

P̂ (yt) =
1

h(
∑

iwi + nl)
[
m∑
i=1

wiKh(y
t − Y s

i ) +

nl∑
i=1

Kh(y
t − Y tl

i )],

where Kh is the smoothing kernel with width h.
In Figure 7.2, we show an example of transferring the source distribution (red) to the target

distribution (blue). The right figure shows an example of the reweights w after we optimize the
objective. We can see that the reweights can correctly up-weight the source samples around the
two peaks, and down-weight the source samples in the middle, to make the source distribution
match the target distribution.

Convergence Analysis. We analyze the convergence of the reweighted source distribution to
the true target distribution. In kernel mean matching (KMM) [26, 27, 33], the discrepancy min-
imization is between P (xs) and P (xt), by assuming sufficient samples Xs and X t. As a result,
the authors assume that replacing one ysi by y changes only one term with βi, because β’s are
computed on x only and P (Y |X) stays the same. Since we allow P (Y |X) to change, replacing
yi can lead to changes in the whole vector β. Hence we give a general upper bound on β in our
analysis.

Denote the mean map of a distribution Py as µ[Py] := Ey[k(y, ·)], and its empirical estimate
µ̂Y = 1

m

∑m
i=1 k(yi, ·), based on the samples Y = {y1, ..., ym} drawn i.i.d from Py [65]. De-

note λmax(A), λmin(A) as the largest/smallest eigenvalue of a symmetric matrix A. We have the
following theorem:
Theorem 7.2.1. Let β be the solution to objective Eq. 7.1 or Eq. 7.2. Denote the risk R as
the difference between the reweighted mean embedding and the mean map of PY t , i.e., R =
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||Ψ(Y s)β−µ[PY t ]||, and the empirical risk as R̂ = ||Ψ(Y s)β− 1
nl

Ψ(Y tl)1nl ||. With probability
1− δ, we have

R ≤ R̂ + n
−1/2
l (C + (

2λ
1/2
max(KY sY s)(εnl + κ)

λ
1/2
min(KY sY s)

+ κ)
√

2 log 2/δ),

where C > 0 is some constant.

Proof. Let Y tl and (Y tl)′ differ by exactly one data point. Let β be the solution to objective
Eq. 7.1 or 7.2 with Y tl, and β′ be the solution to the same objective with (Y tl)′. Since β and β′

satisfy the constraints, using triangle inequality we have

||Ψ(Y s)β −Ψ(Y s)β′|| ≤ ||Ψ(Y s)β − 1

nl
Ψ(Y tl)1nl ||

+ ||Ψ(Y s)β′ − 1

nl
Ψ[(Y tl)′]1nl ||+ ||

1

nl
Ψ[(Y tl)′]1nl −

1

nl
Ψ(Y tl)1nl||

≤ 2ε+
2κ

nl
,

since || 1
nl

Ψ[(Y tl)′]1nl − 1
nl

Ψ(Y tl)1nl || is bounded by 1
nl
||ψ(ytli )− ψ[(ytli )′]|| ≤ 2

nl
κ.

By the standard property of the Rayleigh quotient for PDS matrices, i.e., λ1/2
min(A)||z||2 ≤ ||Az||2 ≤

λ
1/2
max(A)||z||2 for any z ∈ Rn×1 and symmetric matrix A ∈ Rn×n, the left hand side

||Ψ(Y s)β −Ψ(Y s)β′|| ≥ λ
1/2
min(KY sY s)||β − β′||.

Hence
||β − β′|| ≤ 1

λ
1/2
min(KY sY s)

(2ε+
2κ

nl
).

Let R̂′ = || 1
m

Ψ(Y s)β′ − 1
nl

Ψ(Y tl)′1nl ||, we have

|R̂− R̂′| ≤ || 1
m

Ψ(Y s)β − 1

m
Ψ(Y s)β′||+ || 1

nl
Ψ(Y tl)1nl −

1

nl
Ψ(Y tl)′1nl ||

≤ 1

m
λ1/2

max(KY sY s)||β − β′||+
2

nl
κ,

since ||ψ(y)|| ≤
√
K(y, y) ≤ κ.

Similarly, let R′ = || 1
m

Ψ(Y s)β′ − µ[PY t ]||, we have

|R−R′| ≤ || 1
m

Ψ(Y s)β′ − 1

m
Ψ(Y s)β||

≤ 1

m
λ1/2

max(KY sY s)||β − β′||.

Hence, with one element replaced in R− R̂, we have the difference bounded by:

ci ≤ |R̂− R̂′|+ |R−R′|

≤ 2

m
λ1/2

max(KY sY s)||β − β′||+
2

nl
κ

≤
4λ

1/2
max(KY sY s)(ε+ κ

nl
)

mλ
1/2
min(KY sY s)

+
2κ

nl
,
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and
nl∑
i=1

c2
i =

1

nl
(
4λ

1/2
max(KY sY s)(εnl + κ)

mλ
1/2
min(KY sY s)

+ 2κ)2.

Using Mcdiarmid’s inequality and plugging in the bound ci, we have with probability 1− δ,

|(R− R̂)− EY tl [R− R̂]|

≤ 1
√
nl

(
2λ

1/2
max(KY sY s)(εnl + κ)

λ
1/2
min(KY sY s)

+ κ)

√
2 log

2

δ
.

(7.4)

Now we bound on the expectation (Thm. 2, [65]):

EY tl [R− R̂] ≤ EY tl||
1

nl
Ψ(Y tl)1nl − µ[PY t ]|| = O(n

−1/2
l ). (7.5)

Combining Eq 7.4 and Eq 7.5 concludes the proof.

Remark. The above analysis suggests that a good choice of ε should be in the order of O(n−1
l )

for good convergence properties. On the other hand, a possible tighter bound can be achieved by
using ||Ψ(Y s)β − µ[PY t ]|| ≤ ||Ψ(Y s)β − 1

m
Ψ(Y s)1m||+ || 1

m
Ψ(Y s)1m− µ[PY s ]||+ ||µ[PY s ]−

µ[PY t ]|| ≤ ε1 +C1m
−1/2 + ||µ[PY s ]−µ[PY t ]|| where ε1 is the minimized objective in Eq. 7.2 and

C1 > 0 is some constant. Since m� nl, and at the early stage of transfer nl is small, we should
choose a relatively larger ε such that ε1 = ||Ψ(Y s)β − 1

m
Ψ(Y s)1m|| is small. In this case, when

the source distribution is close to the true target distribution, which means ||µ(P s
Y )−µ(P t

Y )|| can
be much smaller than C/nl, then we get a tighter bound on the difference of risks, which is the
benefit we get from transfer.

7.2.2 Conditional Distribution Transfer
If we further have the information on x, we can predict the distribution of yt given a certain x∗,
i.e., P (yt|X t = x∗) (Fig. 7.3).

Let (Xs, Y s) = {(Xs
1 , Y

s
1 ), . . . , (Xs

m, Y
s
m)} denote m labeled source samples and (X tl, Y tl)

denote nl labeled target samples. First we have the embedding of conditional distribution P (y|X =
x∗) given x∗[67]:

µ̂(Y |X = x∗) = Ψ(Y )(KXX + λI)−1KXx∗

= Ψ(Y )w∗ =
∑
i

wiψ(yi),

where w∗ = (KXX + λI)−1KXx∗ is a |Y | × 1 vector. It is easy to see that the weighting wi on
ψ(yi) effectively measures the closeness of x∗ to each xi.

The key idea here for transfer is that, we want to modify the weighting wi on the source data,
such that the conditional distribution P (y|X = x∗) can be matched between the source and the
target domain. More specifically, we minimize the discrepancy between a reweighted source
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P(y|X=x*) p(y|X=x*)

Figure 7.3: Distribution transfer on P (y|X = x∗)

distribution with reweights β ∈ Rm×1 and the original source distribution, while keeping the
discrepancy between the reweighted µ̂(Y s|Xs = x∗) and µ̂(Y tl|X tl = x∗) small, i.e.,

min
β
||Ψ(Y s)β −Ψ(Y s)ws||2,

subject to ||Ψ(Y s)β −Ψ(Y tl)wtl|| ≤ ε,

and ∀i, βi ≥ 0, β>1m = 1,

(7.6)

where wtl = (KXtlXtl + λI)−1KXtlx∗ is the weighting on Ψ(Y tl) based on X tl, and ws =
(KXsXs+λI)−1KXsx∗ is the weighting on Ψ(Y s) based onXs. Again ε controls the dependency
on the source. Similarly, after obtaining β we estimate P (yt|X = x∗) by [24, 57]:

P̂ (yt|X = x∗) =
1

h(
∑

i βi +
∑

iw
tl
i )

[
m∑
i=1

βiKh(y
t − Y s

i ) +

nl∑
i=1

wtli Kh(y
t − Y tl

i )].

It is easy to see that when the kernel width for X goes to infinity, all the data points will have
the same similarity to x∗, i.e., each data point is assigned a weight of 1/m in the source domain,
and 1/nl in the target domain, respectively. Then the above objective Eq. 7.6 becomes equivalent
to Eq. 7.2, i.e., for distribution prediction without information on x, we simply set wsi = 1

m
and

wtli = 1
nl

.

7.3 Multi-Source Distribution Transfer
In this section, we extend the previous algorithm to multi-source distribution transfer on P (y),
and multi-source conditional distribution transfer on P (y|X = x∗).

7.3.1 Multi-Source Distribution Transfer on P (y)

Assume we have S sources, where each source si has mi samples Y si = {Y si
1 , . . . , Y si

mi
}. The

goal is to estimate P (yt) by combining P (ysi) from S sources.
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We assume a convex combination of the source distribution and let α ∈ RS×1 be the weight-
ing on the sources, the objective we would like to minimize is:

min
α
||
∑
i

αi[Ψ(Y si)βsi ]− 1

nl
Ψ(Y tl)1nl ||2,

subject to ∀i, αi ≥ 0,
∑
i

αi = 1.
(7.7)

Here βsi is the optimized reweight of objective Eq. 7.1 or Eq. 7.2 for source si.

7.3.2 Multi-Source Conditional Distribution Transfer
Similarly, for multi-source conditional distribution transfer, we have S sources, where each
source si has mi labeled samples (Xsi , Y si) = {(Xsi

1 , Y
si

1 ), . . . , (Xsi
mi
, Y si

mi
)}. We have n tar-

get samples X t = {X t
1, . . . , X

t
n}, but only nl of them are labeled, denoted as (X tl, Y tl). The

goal is, given a query point x∗ in the target domain, we would like to estimate P (yt|X t = x∗) by
combining S sources. Using the taxi example, consider each source/target as data (pickup and
dropoff location pairs) from different time frames (different hour or day). Assume we are given
a pickup location x∗ in the current time frame, we would like to estimate the distribution of the
dropoff locations P (yt|X t = x∗) by combining the data from previous time frames. Intuitively,
we should favor the sources with P (Y |X) closer to the P (Y |X) of the target. For example,
given the target data from 8-9am on a Monday, we should favor the sources from adjacent time
frames, and sources from weekdays rather than weekends.

Similar to Eq. 7.7, the objective for multi-source conditional distribution transfer is:

min
α
||
∑
i

αi[Ψ(Y si)βsi ]−Ψ(Y tl)wtl||2,

subject to ∀i, αi ≥ 0,
∑
i

αi = 1.
(7.8)

Here βsi is the optimized reweight of Eq. 7.6 for source si.

A Reweighted Set-Kernel Point of View. We analyze why this objective yields the desired
property on the weights α for each source. Denote Ỹ si = Ψ(Y si)βsi , and Ỹ tl = 1

nl
Ψ(Y tl)1nl for

distribution transfer or Ỹ tl = Ψ(Y tl)wtl for conditional distribution transfer. Using Lagrange
multipliers Eq. 7.7 or Eq. 7.8 can be written as:

L = α>K̄Ỹ sỸ sα− 2α>K̄Ỹ sỸ tl − 2α>u + 2λ(α>1S − 1),

where K̄Ỹ sỸ s is an S × S matrix with

K̄Ỹ sỸ s(i, j) = (βsi)>KY siY sjβ
sj ,

K̄Ỹ sỸ tl is an S × 1 vector with

K̄Ỹ sỸ tl(i) = (βsi)>KY siY tl(
1

nl
1nl) or (βsi)>KY siY tl(w

tl),
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and u is an S × 1 vector with ui ≥ 0, λ > 0. By the KKT stationarity conditions we have:

α = (K̄Ỹ sỸ s)
−1(K̄Ỹ sỸ tl + u− λ1S).

Note here K̄Ỹ sỸ tl measures the discrepancy between two distributions, the source distribution
reweighted by βsi , and the target distribution (or conditional distribution). In other words, it mea-
sures how “good” each source is when transferring to the target. We can think of (βsi)>KY siY tl

as a reweighted set kernel [9, 23] between Ψ(Y si)βsi and Ψ(Y tl), which effectively measures
the similarity between two sets of labels: the reweighted source labels and the target labels.

7.3.3 Regions with Different P (X)’s: Combining Both P (Y ) and P (X)

In this section, we extend to the case when we are interested in regions with varying P (X),
instead of a single location x∗. Again using the taxi example, consider each source as data from
different pickup regions, i.e., different P (X)’s. As a result, we should favor the sources with both
P (X) and P (Y ) closer to the target. For example, given target data from a certain pickup region,
the source data from nearby pickup regions (more similar P (X)) should be more favorable. In
addition, among those sources, the one(s) with similar types (e.g., residential or business, thus
are more likely to yield a similar P (Y )) to the target should be assigned with larger weights than
the rest.

Formally, let γ ∈ RS×1 be the weighting on the sources, the objective is:

min
γ
||
∑
i

γi[
1

mi

Φ(Xsi)1mi ][(β
si)>Ψ>(Y si)]−

[
1

n
Φ(X t)1n][(1nl)

>Ψ>(Y tl)]||2,

subject to ∀i, γi ≥ 0,
∑
i

γi = 1.

(7.9)

Here 1
|X|Φ(X)1 is the empirical estimator of µ[Px], and βsi is the optimized reweight of Eq. 7.1

or Eq. 7.2 for source si (assume normalized). Note we use all target observations X t to estimate
µ[PXt ], while the estimation on P (Y ) is done on Y tl since we only have access to nl target labels.

In the following we analyze why this objective yields the desired property on the weights γ
for each source. Similar to Sec. 7.3, using Lagrange multipliers the objective can be written as:

L = γ>Aγ − 2γ>b− 2γ>u + 2λ(γ>1S − 1),

where A is an S × S matrix with

Aij =
1

mimj

[(1mi)
>KXsiXsj1mj ][(β

sj)>KY sjY siβ
si ],

b is an S × 1 vector with

bi =
1

min
[(1mi)

>KXsiXt1n][
1

nl
1nlKY tlY siβ

si ].
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u is an S × 1 vector with ui ≥ 0, λ > 0. mi,mj represent the number of data points in source si
and sj , respectively. By the KKT stationarity conditions we have:

γ = A−1(b + u− λ1S).

Note here b acts as a key term that affects the relative value of γ. We obtain larger bi if both
(Φ(Xsi), Φ(X t)), and (Ψ(Y tl)1nl , Ψ(Y si)βsi) are more similar. Again we can think of both
terms as the reweighted set kernel [9, 23], which effectively measures the similarity between the
source and the target distributions for both X and Y .

7.4 Experiments

7.4.1 Synthetic Data
Distribution Transfer on P (y) (Sec. 7.2.1). We consider the source distribution 1/2 ·N (0, 1) +
1/2 · N (5, 1) with 400 samples, and the target distribution 1/2 · N (0, 1) + 1/2 · N (4.5, 1) with
varying number of labeled samples. We solve Eq. 7.1 (denoted as “DT-KL” in blue, distribu-
tion transfer using KL) and Eq. 7.2 (denoted as “DT-MMD” in black, distribution transfer using
MMD). Figure 7.4 (left) shows an example where “source” (red) represents the source distribu-
tion, and “true target” (green) represents the true target distribution. “label-target” (blue) refers
to the estimated density based on a few labeled target samples. “weighted” (black) shows the
reweighted source distribution by the proposed approaches.

Figure 7.4 (right) shows a comparison between the two proposed approaches (DT-KL and
DT-MMD) and the baselines: (1) “source”, which estimates p(y) based on the source sam-
ples only; (2) “target”, which estimates p(y) based on the labeled target samples only; (3)
“merged”, which estimates p(y) based on merged source samples and labeled target samples.
The error metric (y-axis) is the L2 error between the estimated density and the true density

1
|Y t|
∑

yt∈Y t(p̂(y
t) − p(yt))2. The results are averaged over 20 experiments. We plot the mean

and the standard error of the mean in all figures with empirical results in the following. For
density estimation we use Gaussian kernel as the smoothing kernel Kh. The parameters (kernel
width, λ to ensure that the kernel matrix is invertible) are chosen by cross-validation. We see that
the proposed approaches effectively solve the distribution transfer problem, which yield a much
smaller error than all the baselines.

Multi-Source Distribution Transfer on P (y) (Sec. 7.3.1). We consider the following 3 source
distributions (1000 samples each): (1) 1/2 · N (0, 1) + 1/2 · N (4, 1); (2) N (2, 22); (3) 1/2 ·
N (0, 1.52) + 1/2 · N (4.5, 1.52). The target distribution is 1/2 · N (0, 1) + 1/2 · N (4.5, 1),
with 30 observed labels. The source distributions are shown in Figure 7.5 (red). In the same
figure, we show the estimated density based only on the labeled target (blue), and the true target
distribution (green). We see that the proposed method (black) with 30 target labels can correct
the source distribution (red) by shifting certain probability mass towards the distribution of the
few labeled targets (blue).

In Fig. 7.6 (left), we observe that based on different sources we have different learning curves
(L2 error w.r.t. different number of labeled targets), which justifies the need for multi-source
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Figure 7.4: Distribution Transfer: an example with 30 target labels (top); comparison between
the proposed algorithm and baselines (bottom)
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Figure 7.5: Example of source distributions and the weighted correction of target distributions
under each source

distribution transfer. In Figure 7.6 (right), we show that the proposed multi-source distribution
transfer (multi-s, Eq. 7.7) yields results that are very close to the results using the best source
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Figure 7.6: Single-source distribution transfer (top); Multi-source distribution transfer (bottom)

(min), which is unknown to the learner. The proposed method also yields much better results
than the averaged combination of the sources (avg, i.e., αi = 1/S, while each source is still
weighted by βsi).

7.4.2 Real Data
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Figure 7.7: Distribution transfer: Example of source/target distributions on the AQI data (top);
Comparison with baselines (bottom)

Predicting AQI distribution for Cities

Dataset Description. The dataset is an Air Quality Index (AQI) dataset [45] during a 31-day
period from 107 cities. We aggregate the data by regions to form AQI distributions, and the
task is to predict the AQI distribution for a target region based on the data from other regions
(sources).
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Figure 7.8: Multi-source distribution transfer: An example of multiple source distributions on
the AQI dataset (left); Comparison with baselines (right)

Distribution Transfer on P (y) (Sec. 7.2.1). Figure 7.7 shows the results on the AQI dataset.
The left figure shows an example of the source and the target distribution. From the right figure
we can see that the proposed approaches (DT-KL or DT-MMD) effectively recover the target
distribution, while outperforming all the baselines.

Multi-source Distribution Transfer on P (y) (Sec. 7.3.1). Figure 7.8 shows the comparison
with baselines when transferring from multiple sources. The left figure shows an example of
3 source distributions and a target distribution (blue). The right figure shows the multi-source
approach (black) outperforms average prediction and is again very close to the best prediction
(min, unknown to the learner).

Predicting Drop-off Locations for Taxis

Dataset Description. The NYC taxi data1 consists of pickup time, pickup location and dropoff
location for taxis in New York city during the year of 2013. Each location is represented by a
real-valued pair: (longitude, latitude).

Conditional Distribution Transfer (Sec. 7.2.2). The source/target are data from different time
of the day, with pickup locations within a 0.008 radius of x∗ = (−73.985, 40.758) (longitude
and latitude, which is near Time Square, New York city). The desired output distribution is the
distribution of dropoff longitudes given the pickup location x∗.

Fig. 7.9 (left) shows an example of distribution transfer with 100 labeled target samples
(source: 6-7am; target: 8-9am). The red line is the source distribution P (ys|X = x∗), and
the green solid line approximates the true target distribution P (yt|X = x∗) by estimating from
1370 target samples. We observe that given the limited labeled target samples, P (ytl|X = x∗)
(blue) is not a very good estimator of the true target distribution P (yt|X = x∗) (green). Using
the conditional distribution transfer algorithm (Eq. 7.6), we obtain a more accurate estimation
(black solid line) of the target distribution by utilizing a similar source distribution.

1http://www.andresmh.com/nyctaxitrips/
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Figure 7.9: Example distributions on the taxi data (left); Single-source conditional distribution
transfer (right)

Figure 7.9 (right) shows a comparison of the proposed approach (CDT, Eq. 7.6) with three
baselines (source, target, and merged), averaged over 20 experiments. We observe that when the
number of labeled target samples is small, prediction using the labeled target only is highly inac-
curate, and utilizing the source clearly helps the prediction. When the number of labeled target
gets larger, prediction using the source does not perform well due to the difference between the
source and the target, and our proposed algorithm can effectively recover the target distribution
by reweighting the source distribution.

Multi-source Conditional Distribution Transfer (Sec. 7.3.2). For multi-source distribution
transfer with a fixed x∗, we use data samples (X, Y ) with pickup locations within a 0.008 radius
of x∗ = (−73.985, 40.758). Among those, the sources are data from different time frames of the
day except 8-9am, and the target is the data within 8-9am. As we can see from Fig. 7.11 (left), the
proposed multi-source prediction (black, Eq. 7.8) yields a smarter weighting than averaging over
different sources (avg, blue), and it is very close to the optimal prediction (min, the minimum
over all the sources in each iteration, shown in red), which is unknown to the learner.
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Figure 7.10: Example of sources P (ys) (left); target P (yt) (right)
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Multi-Source distribution transfer for regions with different P (X)’s (Sec. 7.3.3). We use
data from different pickup regions as different sources. The target (Fig. 7.10 (right)), consists
of data samples within a 0.008 radius of x∗ = (−73.985, 40.758). In Fig. 7.10 (left), we plot
examples of p(ys) from 4 pickup regions, each is within a 0.008 radius of xsi (the center xsi for
each region is indicated by the title of each figure) which is close to x∗ in different directions.
Note that each source has almost the same distance to x∗, but the distribution P (ysi) varies.
This suggests that combining multiple sources using only P (X) (as in most previous work) is
not sufficient for distribution transfer. In Fig. 7.11 (right), we compare the proposed method
(combined, Eq. 7.9) with avg (average prediction). We also compare with wDA, a distribution
weighted domain adaptation method [43], which considers only P (X) and assume there is no
shift in P (Y |X). We optimize Dα(P (X t)||

∑
i λiP (Xsi)) as suggested in Mansour et al. [43].

Since the original algorithm focuses on predicting the labels rather than distributions, we aug-
ment the weighted prediction hλ =

∑
i
λiQi
Qλ

hi using the distribution predicted by each source
si as hi. Further we compare with a recently proposed multi-source domain adaptation method
ms-DA [12], with parameters θ, γA, γI chosen as described in their paper. We observe that the
proposed method (black) yields the best results, which indicates that it is necessary to accommo-
date both the change in P (X) and the distribution shift in P (Y ).
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Figure 7.11: Multi-source conditional distribution transfer (left); multi-source transfer for re-
gions with different P (X)’s (right)

7.5 Conclusion
In this chapter we propose methods for distribution transfer, which is an important problem in
many real-world applications when a distributional output is desired. We show that a trade-
off between source dependency and matching target yields good results on predicting the target
distribution. In addition, we extend the framework to multi-source distribution transfer, and show
that the discrepancy between each source and the target can affect the weighting for each source.
Experiments on both synthetic and real data confirm the effectiveness of our proposed methods.
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Chapter 8

Conclusion and Future Directions

8.1 Conclusion

This thesis focuses on active transfer learning under the model shift assumption. While the
majority of previous work handles transfer learning by assuming only the marginal distribution
changes across domains, we propose several algorithms for transfer learning in a much broader
context, where the conditional distribution can change across domains, which is useful in many
real-world applications with label-feature relation changing across datasets. We also show that
the learning rate of these algorithms closely relates to the smoothness of change between the
domains. In addition, for transfer learning with more than two domains, i.e., multi-task learning,
we analyzed the algorithmic stability which again connects the learning rate of the algorithm to
the smoothness of task relations. Further we extend the algorithm to learning on distributions.

Specifically, our main contributions include:
• We propose two transfer learning algorithms that allow changes in all marginal and condi-

tional distributions with the additional assumption that the changes are smooth as a func-
tion ofX . The first approach is based on conditional distribution matching, and the second
is based on modeling the source/target task and the offset between using Gaussian Pro-
cesses. We then propose an active learning method which yields a combined active trans-
fer algorithm. Results on both synthetic datasets and a real-world dataset demonstrate the
effectiveness of our proposed methods.

• We provide theoretical analysis for the propose algorithms for transfer learning under
model shift. Unlike previous work on covariate shift, the model shift poses a harder prob-
lem for transfer learning, and our analysis shows that we are still able to achieve a similar
rate as in covariate shift/domain adaptation, modified by the smoothness of the transfor-
mation parameters. We also show conditions when transfer learning works better than
no-transfer learning.

• We extend the transfer learning algorithm so that it handles both support and model shift
across domains. The algorithm transforms both X and Y by a parameterized-location-
scale shift across domains, then the labels in these two domains are matched such that both
transformations can be learned. Since we allow more flexible transformations than mean-
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centering and variance-scaling, the proposed method yields better results than traditional
methods. Results show that this additional flexibility pays off in real applications.

• For multi-task learning problems,we analyzed the stability of a family of multi-task learn-
ing algorithms which has many instantiations in the existing literature. We provide theory
that connects the risk bounds for multi-task learning to the relation of tasks. We show
that, by imposing a smooth relationship among tasks, we obtain favorable learning rates
compared to learning tasks independently.

• We extend the transfer learning framework to distribution transfer. We propose a simple
algorithm for transferring the distribution on the labels, and then we propose an algorithm
for transferring the conditional distributions. We further extend the algorithm to multi-
source distribution transfer.

• Experimental results on the synthetic data, as well as several real-world datasets, demon-
strate the effectiveness of our proposed methods.

8.2 Future Directions

The number of algorithmic models people proposed is increasing and algorithms are becoming
cheaper, while the cost of manual-labeling the data remains the same/decreases much slower, so
it is becoming more and more important to design techniques that utilize/adapt existing models
on new, scarcely-labeled datasets. We believe in the future transfer learning will remain an inter-
esting direction to pursue, and how to relate existing models to the datasets that are best suited
for that certain model remains an open question to answer. Specifically, for transfer learning, we
believe these following directions are worth pursuing.

8.2.1 Transferability

We would like to answer fundamental questions like “when to transfer” and “what to transfer”.
For example, if we are given any two datasets, there is no guarantee that we would benefit from
transferring knowledge from one dataset to another. In the future we would like to develop
algorithms that can automatically detect whether it is beneficial to transfer (e.g., we can test
whether the marginal/conditional distributions in the two domains are similar if the datasets have
the same feature/label space), and thus help make the “transfer or not” decision. In some cases it
might be beneficial to transfer part of the knowledge from one dataset to another, and we would
like to develop algorithms that can tell us which part to transfer.

The examples/real-datasets in this thesis are chosen to have some similarity across domains
based on our domain knowledge, and we show that under certain conditions transfer learning
achieves a favorable generalization bound than no-transfer at all. However, given two arbitrary
datasets on which we do not have any domain knowledge, determining whether one dataset can
be transferred to another requires additional computational cost, hence it is still unknown to us
whether transfer learning helps reduce the total computational complexity in this case.
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8.2.2 Transfer across different feature spaces

We would like to develop algorithms that allow any kind of transfer, even across different feature
spaces. For example, if we have an image dataset and a text dataset, how to we handle the
transfer between them when they have very different feature representations? One idea is to
learn transitions for different feature representations (e.g., [17] models the path of linkage across
feature spaces by a Markov chain and risk minimization), but how to achieve this automatically
and robustly is still an open problem. Another idea is to project both feature representations into
a shared latent space (e.g., [63] achieves transfer across feature spaces via spectral embedding),
and how to find the best latent representation for both domains is still an interesting direction to
pursue.

8.2.3 Transfer in deep networks

There has been an increasing interest in transfer learning/domain adaptation using deep neural
networks. The main idea to increase transferability for the higher layers in the network is to
match the distributions of the hidden representations in the higher layers [40], or to add extra
layers to make the feature distributions more similar [21]. These methods, similar to the al-
gorithms proposed for covariate shift, only focus on marginal distributions of the features (or
higher-level features). With a few additional labels in the target domain, we can imagine using
our proposed methods for conditional distribution matching (or even more flexible matching on
both features and labels), thus potentially achieving a larger gain on deep networks.

8.2.4 Generalization bounds for active transfer

The generalization bounds we provided in this thesis is for transfer learning only, so it is possible
to combine the generalization bounds for active learning with the transfer learning bound. Exist-
ing work [29] analyzes the bound on the label complexity of agnostic active learning but requires
a finite VC dimension d for the hypothesis space, and [7] proposed an importance weighted ac-
tive learning algorithm for binary classifiers, with sample complexity bounds related to ln |H|
where H is the hypothesis space. It would be an interesting future direction to carry out stability
analysis on the combined active transfer learning framework.

8.3 Discussions

8.3.1 Extension on SMS

In the SMS approach, it is possible to further relax the support containing constraint by only
requiring a sub region of the source support to match a sub region of the target support, and we
can add a penalty to prefer larger overlaps on the support. For the non-overlap part of the target
support, we can rely on the smoothness of the target function space and the labeled target data.
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8.3.2 Multi-source transfer combined with active learning
We can further combine active learning in the multi-source distribution transfer. After we ob-
tained the initial reweights α on the source distributions, we have a prediction over the target
data with the corresponding predictive covariance. Using this predictive covariance we can ap-
ply various active selection criteria to choose the next x∗ and observe a sample yt ∼ P (yt|x∗).
This new sample (x∗, yt) allows the reweights α to be updated on the source distributions.

8.3.3 Connection with MDL
The minimum description length (MDL) principle is to find the best hypothesis for a given set
of data that leads to the best compression of the data. In transfer learning, we can change the
objective to be finding a transformation from the source to the target such that it has the minimum
description length, which means we prefer a simpler model on the transformation.

8.3.4 Elastic deformations in distribution transfer
It is possible to apply elastic deformation (e.g., Terzopoulos’ snakes) model in transfer learning
on distributions. When transfer the distributions, the main objective is to keep the transferred
distribution close to the target distribution, while not deviating too much from the source distri-
bution. In this thesis we use KL divergence and MMD to measure the distance between distribu-
tions, but it is possible to plug in any other distance measure on the distributions to achieve this
objective.
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