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Abstract

Recent computer systems research has proposed using redundant requests to reduce latency. The
idea is to replicate a request so that it joins the queue at multiple servers. The request is considered
complete as soon as any one copy of the request completes.

Redundancy is beneficial because it allows us to overcome server-side variability – the fact that
the server we choose might be temporarily slow, due to factors such as background load, network
interrupts, and garbage collection. When there is significant server-side variability, replicating re-
quests can greatly reduce response times.

In the past few years, queueing theorists have begun to study redundancy, first via approximations,
and, more recently, via exact analysis. Unfortunately, for analytical tractability, most existing the-
oretical analysis has assumed models with independent service times. This is unrealistic because a
job with large size should actually remain large at all servers, rather than getting a new independent
size at each server. The unrealistic independence assumption has led to theoretical results which
can be at odds with computer systems implementation results.

This paper introduces a much more realistic model of redundancy. Our model allows us to de-
couple the inherent job size (X) from the server-side slowdown (S), where we track both S and X
for each job. Analysis within the S&X model is, of course, much more difficult. Nevertheless, we
design a policy, Redundant-on-Idle-Queue (RIQ) which is both analytically tractable within the
S&X model and has provably excellent performance.





1 Introduction
As cloud computing and resource sharing become more prevalent, we are faced with greater de-
grees of server variability. Recent computer systems studies have shown that the same job can take
12X longer on one machine than another [1], or even 27X longer [22]. This is due to varying back-
ground load, temporary garbage collection, networking interrupts, and other transient events. This
server variability is exacerbated by multiplexing of applications and by our increased reliance on
virtual machines (VMs), where multiple VMs share the same host resources, affecting each other
in unpredictable ways.

In an effort to reduce overall latency, and particularly tail latency, the computer systems com-
munity has proposed using redundancy (see for example [1, 5, 15, 19, 2, 16]). Redundancy, also
known as job replication, is the idea of dispatching the same job to multiple servers, where the job
is considered “done” as soon as it completes service on any one server.1 Redundancy provides two
key advantages: First, a job that is dispatched to d servers gets to experience the queue with the
least work. This is true even though jobs are immediately dispatched to servers via the front-end
load balancer (no central queue), where this front-end load balancer doesn’t require any knowledge
of the number of jobs in the queues, or their sizes. Second, under redundancy, each job experiences
the minimum slowdown of the servers on which it runs. Both of these advantages are important
when server-side variability is high.

As redundancy has become more popular in computer systems, a raft of theory papers have
attempted to analyze the response time benefits of redundancy, see [12, 10, 19, 17, 18, 11, 8, 7,
9, 13, 4]. All of these papers rely on a key assumption: A job’s runtime at different servers is
independent. In many papers, the job’s runtime at different servers is an independent exponential
distribution. In some it is an independent distribution with higher variability than an exponential.
Either way, this independence assumption leads to the conclusion that (barring cancellation costs)
“more redundancy is always better.”

But this independence assumption can be problematic. Consider for example a job that is very
large, in the sense that it comprises a large volume of computation. That job should appear to be
a large job on all servers, possibly slowed down more on some servers than others. Under the in-
dependence assumption, this does not happen: the job is assigned a different, independent, service
time on different servers. When the job runs on multiple servers, it experiences the minimum ser-
vice time of all those servers’ independent service times. Thus an inherently large job can become
arbitrarily small under the independence assumption. There is no concept of an inherently large
job which remains large at every server.2

In this paper we remedy the unrealistic independence assumption that has been used in analyz-
ing redundancy by introducing a new model, called the S&X model. The S&X model explicitly
decouples the server slowdown (represented by the random variable S) from the inherent job size

1There are many versions of redundancy. For instance, a “job” might be composed of many tasks. Some tasks
might be replicated, while others are not, and the decision to replicate might be made after the initial dispatch. For
the purposes of this paper, however, we stick to the simple model where a job is an atomic unit, and the decision to
replicate a job or not is made at the moment that the job is dispatched.

2In applications where the inherent work associated with a job is small and server slowdown dominates, the inde-
pendence assumption is not problematic.
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(represented by the random variable X). The S&X model marks a departure from traditional
queueing theory, which uses a single “service time” variable to jointly represent the server speed
and job size. A single random variable is insufficient in the context of redundancy. We need to
decouple the variables so that a job with a large X component (large job size) will have a large X
component on every server.

The S&X model sheds light, however, on some sad truths: redundancy is not always a win and
can in fact be dangerous. Consider, for example, a policy like Redundancy-d that replicates every
arriving job to d queues [8]. Under the original analysis in [8], which assumes independent service
times, mean response time only decreases as we increase d. By contrast, under the S&X model,
we show that the mean response time under Redundancy-d can improve as we increase d for a
while, but the system will eventually become unstable because of the increased load of replication,
sending mean response time to infinity. Unfortunately, we are at a loss to figure out which values
of d will cause problems because providing a performance analysis of policies like Redundancy-d
in the S&X model is an open problem that is likely very difficult (analyzing Redundancy-d even
within the independence model requires a very complex state space, since one needs to track all
the copies of every job in every queue, see [8]).

The deficiencies of Redundancy-d in the S&X model motivate us to look for other redundancy
policies. We seek policies which are robust in that they provably will not go into overload, which
are less sensitive to d, and which are analytically tractable within the S&X model.

We introduce a new redundancy policy, called Redundant-to-Idle-Queue (RIQ). This policy is
similar to Redundancy-d in that every arrival queries d servers. However replicas are only made
to those servers which are idle. If no server is idle, then the job is sent to a random one of the d
servers (with no additonal replicas). We are able to approximately analyze RIQ within the S&X
model, for any distribution of S, any distribution of X , and any cancellation cost. We derive both
mean response time as a function of d and also the full response time distribution. We show that
our analysis matches simulation very well, provided that d is small relative to the total number of
servers, which is certainly typical in practice. Most importantly, our analysis shows us that RIQ
is extremely robust. In fact we derive an analytical upper bound on the response time of RIQ
under any S and X for any d. Thus RIQ represents a provably robust and analytically understood
replication policy, which is also simple enough to be appealing to practitioners.

The remainder of this paper is outlined in Figure 1.

2 Prior Work: The Gap Between Theory and Systems
In the past several years there has been a growing interest in the theoretical community in analyz-
ing systems with redundancy in which a job requires one or more copies to complete service, with
the goal of understanding how the number of copies per job affects response time. All of this theo-
retical work makes crucial simplifying assumptions for analytical tractability, most commonly that
the same job’s service times are independent across servers and that running times are exponen-
tially distributed. When these assumptions are relaxed others are adopted instead, including that
the system has no queueing (i.e., it is an M/G/∞) or that all jobs replicate to all servers. As we will
see below, these assumptions lead to results that are qualitatively different from those produced by
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Figure 1: Outline of the remainder of this paper.

empirical systems studies.
In [12, 18] it was shown that when service times are i.i.d. across servers and follow a dis-

tribution with decreasing failure rate, it is optimal to replicate jobs at all servers. However these
papers do not provide any analysis quantifying response time in redundancy systems. In a redun-
dancy model called the (n, k) system, each job sends copies of itself to all n servers and waits for
k ≤ n copies to complete service. Bounds and approximations for mean response time in the (n, k)
system are derived in [17, 10, 11, 20], assuming each job’s service times are independent across
servers. The results suggest that as n increases (i.e., each job makes more copies) mean response
time decreases [11]. While [10] does consider a model in which a job’s service time consists of a
deterministic component that is the same on all servers and an exponential component that is inde-
pendent across servers, this model is only analyzed in a system where there is no queueing (i.e., an
M/G/∞). In a variation called the (n, k, r) system, in which each job sends copies to r ≤ n of the
servers and waits for k ≤ r of these copies to complete, increasing the value of r decreases mean
response time [17, 11]. In the case where k = 1 and service times are exponentially distributed
and independent across servers, the full distribution of response time is analyzed in [7, 8]. The
analysis presented in [8] shows that as the number of copies per job increases, mean response time
decreases.

The story told by empirical systems work is a bit more cautious than the theoretical results
lauding the benefits of redundancy. Theoretical results suggest that the more copies created, the
lower mean response time will be, but practical studies have shown that creating too many copies
can lead to unacceptably high response times and even instability [19]. This gap emerges because
the strong assumptions required for the theoretical analysis described above do not hold in prac-
tice. Specifically, a large job remains large when replicated; hence, more redundancy can lead to
overload rather than always improving performance. Working in a more realistic setting, systems
researchers have observed that they need to design more sophisticated dispatching and scheduling
policies in order to leverage the potential benefits of redundancy. One idea is to replicate only
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Figure 2: The S&X model. The system has k servers and jobs arrive as a Poisson process with
rate λk. Each job has an inherent size X . A job that runs on server j is slowed down by a factor
Sj . A job’s running time on a single server is R(1) = X · S; if the job enters service at i > 1
servers simultaneously it experiences running time R(i) = X ·min{S1, . . . , Si}.

small jobs to limit the amount of load added to the system; this leads to a 46% reduction in mean
response time [1]. Many systems designed to reduce latency in MapReduce systems begin running
replicated copies of jobs only after waiting for some delay to identify which jobs are experienc-
ing significant slowdown [3, 23]. More recently, [16, 2] build on this idea by combining delayed
execution of replicas with scheduling policies that reserve a set of servers on which to run these
replicas (this assumes that jobs are non-preemptible).

Our goal in this paper is to bring the theoretical models of redundancy systems closer to the
real systems that the theoretical work endeavors to analyze. To this end, we introduce a new
model called the S&X model that removes some of the problematic assumptions made in earlier
theoretical work on redundancy. We revisit the redundancy policies used in real computer systems
in Section 8, where we discuss these policies in the context of the S&X model.

3 The S&X Model
We consider a system with k homogeneous servers (see Figure 2). Each server has its own queue
and works on the jobs in its queue in first-come first-served order. Jobs arrive to the system as a
Poisson process with rate kλ, where λ is a constant, and are dispatched immediately upon arrival.

In classical queueing theory, a job’s service time is denoted by a single random variable Y .
The meaning of Y can be interpreted in one of two mutually exclusive ways. First, Y could
mean the job’s inherent size. That is, no matter which server the job runs on, it will always
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Table 1: The Dolly(1,12) empirical slowdown distribution [1]. The server slowdown ranges from
1 to 12.

S Probability
1 0.23
2 0.14
3 0.09
4 0.03
5 0.08
6 0.10
7 0.04
8 014
9 0.12
10 0.021
11 0.007
12 0.002

take the same amount of time to run. Alternatively, Y could mean the job’s running time on a
particular server. That is, Y is server-dependent; if the same job were to run on a different server,
it would experience a completely different running time. The first interpretation implies that there
is no variability in an individual server’s speed: the implication is that factors such as network
congestion, caching effects, and background load have absolutely no effect on a job’s running
time. The second interpretation implies that the server’s speed is so unpredictable that it makes
job-dependent factors such as the amount of computation required totally irrelevant in determining
how long it will take for the job to run. Neither of these interpretations is sufficient to model the
behavior of real systems.

We introduce the S&X model, which captures the effects of both job-dependent and server-
dependent factors on a job’s running time. Here S is a random variable denoting the slowdown
that a job experiences at a server and X is the job’s inherent size. When a job is run on one server,
we say that its runtime is R(1) = S · X . (S is assumed to be ≥ 1 and can be thought of as the
amount by which the inherent size, X , is “stretched.”) If a job of inherent size X begins running
on i servers simultaneously, it sees an independent instance of S on each server. Its runtime is then
R(i) = X ·min{S1, . . . , Si}. We assume that every time a server begins working on a job, it draws
a new instance of S. Thus consecutive jobs running on the same server may see different server
slowdowns. This reflects the fact that the server slowdown changes over time (due to factors such
as garbage collection, background load, network interference, etc.) and is not fixed for a particular
server.

In much of the remainder of this paper, we focus on one particular S distribution, called the
Dolly(1,12) distribution, which was measured empirically in [1] and is shown in Table 1.3

3The full distribution does not appear in the paper; we obtained this from personal communication with the authors.
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Figure 3: Mean response time as a function of d under Redundancy-d when k = 1000 servers, job
sizes are X ∼ Exp (1), and server slowdowns are S = 1. Under the Independence model (where
a job’s runtimes are i.i.d. across servers) (dashed red line), E [T ] always decreases as a function of
d. In the S&X model (solid blue line), the system becomes unstable when d gets high.

We use ρ to denote the system load. Unlike in a traditional queueing system, in the S&X
model the system load and stability region depend not only on the arrival rate and mean runtime,
but also on the particular dispatching and scheduling policies. Hence we defer a more detailed
discussion of load and stability to Sections 4 and 5, in which we introduce the Redundancy-d and
Redundant-to-Idle-Queue dispatching policies respectively.

4 The Redundancy-d Policy
A natural dispatching policy for systems with redundancy is Redundancy-d [8]. Under Redundancy-
d, each job that arrives to the system creates d copies of itself and sends these copies to d different
servers chosen uniformly at random. The job is complete as soon as its first copy completes service,
at which time all remaining copies are cancelled.

Response time under the Redundancy-d policy has been analyzed in the “Independence model,”
where a job’s runtimes are i.i.d. across servers [8]. Note that the Independence model differs from
the S&X model, where a job’s runtimes on different servers are the product of the job’s inherent
size X , which is the same on all servers, and the server slowdown S, which is i.i.d. across servers.
Figure 3 compares mean response time under Redundancy-d in the Independence model to that
in the S&X model in the simple setting where the server slowdown is S = 1 and inherent job
size X is exponentially distributed (in the Independence model, this simply means that runtimes
are exponentially distributed and i.i.d. across servers). In the Independence model, as d increases
mean response time always decreases. This is very different from what happens under the S&X
model: while at first E [T ] decreases as a function of d, as d becomes higher E [T ] starts to increase
and ultimately the system becomes unstable. The value of d at which the system becomes unstable
depends on λ; as λ gets higher instability occurs at lower and lower d. While Figure 3 shows
results for exponentially distributed X and deterministic S, we observe the same trends in the
S&X model under more realistic distributions where X has higher variability and S follows the
Dolly(1,12) distribution from Table 1 (see Figure 4).
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Figure 4: Redundancy-d in the S&X model when k = 1000 servers, job sizes are X ∼
Hyperexponential with C2

X = 10, and server slowdowns are S ∼ Dolly(1, 12) from Table 1.
As d increases, E [T ] decreases at first but eventually the system becomes unstable.

While Figures 3 and 4 show that Redundancy-d can become unstable in the S&X model if
d is too high, it is difficult to prove this result analytically. Typically a system is stable as long
as the system load, ρ, is less than 1. We can think of ρ as being the arrival rate λ multiplied by
the expected server capacity used per job. But in the S&X model, deriving the expected server
capacity used per job is not straightforward because it involves knowing the average number of
servers on which a job runs; this is not d because some copies may be cancelled while still in
the queue. Furthermore, since jobs can enter service at different times on different servers, even
knowing the number of servers on which a job runs is not enough to determine the duration of time
for which the job occupies each server.

Figure 3 highlights the importance of making the right modeling assumptions. In the unrealistic
Independence model, the lessons learned about the benefits of redundancy are overly optimistic
and misleading: we are led to believe that more redundancy is always better. The results under the
S&X model tell a very different story. Redundancy-d is not robust to the choice of d; choosing
the wrong value of d can lead to unacceptably poor performance or even instability. Unfortunately,
the analysis of Redundancy-d in the S&X model remains an open problem, meaning that it is very
difficult to know how to choose a good d.

The lack of robustness, difficulty in tuning, and potentially poor performance of Redundancy-d
motivate the need for a better dispatching policy for the S&X model. In designing such a policy,
it is important to avoid the factors that cause poor performance for Redundancy-d. In particular,
Redundancy-d is oblivious to the system state. It creates copies of jobs even when the system has
no extra capacity with which to run these copies. By having all jobs create copies without regard
to the system state, Redundancy-d is prone to adding too much load to the system, causing queue
lengths to build up. An important consideration when designing dispatching policies for the S&X
model therefore is to ensure that we do not add excessive load.
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5 Redundant-to-Idle-Queue
In this section we introduce a new dispatching policy, Redundant-to-Idle-Queue (RIQ).4 The RIQ
policy, which we described in detail in Section 5.1, is motivated by the fact that in the S&X model
it is important to avoid creating a large number of extra copies when the system does not have
sufficient capacity with which to run these copies.

The rest of this section is devoted to analyzing the performance of RIQ. We begin by approx-
imately analyzing mean response time (Section 5.2) under RIQ. We then build on this analysis
to derive an approximation for the transform of response time under RIQ; in a few special cases,
we are able to approximate the full distribution of response time (Section 5.3). In Section 5.4 we
extend our analysis to the case where cancelling the extra copies takes some amount of time. In
Section 5.5 we evaluate the quality of our approximations by comparing our analytical results to
simulation.

5.1 The Redundant-to-Idle-Queue Dispatching Policy
Under Redundant-to-Idle-Queue (RIQ), each arriving job queries d servers chosen uniformly at
random without replacement. If all d of the queried servers are busy, the job chooses one of the d
servers at random and joins the queue at that server. If 0 < i ≤ d of the d servers are idle, the job
enters service at all i idle servers.

The RIQ policy is motivated by the fact that redundancy can add too much load to the system,
causing unacceptable increases in response time and even instability. By only allowing jobs to
create redundant copies when there are idle servers, we ensure that we are only adding load to the
system when we have server capacity to spare.

Under RIQ, the system load is ρ = λ · E [I ·R(I)], where I is a random variable denoting
the number of servers on which a job runs. Here ρ is the average arrival rate multiplied by the
average service capacity used per job. Writing down an expression for load under RIQ is more
straightforward than for Redundancy-d because under RIQ, any job that runs on multiple servers
occupies all of its servers for the same duration. Nonetheless, it is not immediately obvious how
to compute E [I ·R(I)]; we address this in Section 5.2.1.

Throughout the remainder of this section we rely on two assumptions:

1. Asymptotically Independent Idleness assumption: we assume that the servers are idle d-
wise independently; that is, Pr{server sd idle | servers s1, . . . , sd−1 idle} = Pr{server sd idle}
for all sets of d distinct servers s1, . . . , sd.

2. Small d assumption: We assume that d� k.
4The name “RIQ” is influenced by the Join-Idle-Queue (JIQ) policy, under which each arrival is dispatched to a

single idle queue, if one exists [14].
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5.2 Analysis: Mean Response Time
Our goal in this section is to derive mean response time under RIQ. We begin by conditioning on
whether an arrival to the system finds any idle servers:

E [T ] = P {job finds idle servers} · E [T | job finds idle servers]

+ P {job finds no idle servers}E [T | job finds no idle servers]

= (1− ρd)E [T | job finds idle servers] + ρdE [T | job finds no idle servers] , (1)

where the second line is due to the asymptotically independent idleness assumption. We defer our
derivation of ρ to the end of the section.

We first find E [T | job finds idle servers] by conditioning on the number of idle servers a job
finds, given that it finds at least one idle server:

E [T | job finds idle servers] =
d∑
i=1

P {job finds i idle servers | job finds idle servers} · E [R(i)]

=
d∑
i=1

(1− ρ)iρd−i
(
d
i

)
1− ρd

E [R(i)] . (2)

To find E [T | job finds no idle servers], we observe that when a job finds no idle servers it
joins the queue at a single server. That server has the following properties:

1. When the system is idle, arrivals occur as a Poisson process with rate λd. This is because
jobs arrive to the system as a whole with rate λk, each arriving job polls our particular server
with probability d

k
, and each job that polls our server while it is idle runs on our server.

2. When the system is busy, arrivals occur as a Poisson process with rate λ′ = λρd−1. This
is because jobs arrive to the system as a whole with rate λk, each arriving job polls our
particular server with probability d

k
, and each job that polls our server while it is busy runs

on our server if all d − 1 other servers that the job polls are also busy (probability ρd) and
then the job chooses our server (probability 1

d
).

3. All jobs that find our server idle experience runtime R0, where

R0 = R(i) w.p. (1− ρ)i−1ρd−i
(
d− 1

i− 1

)
, 1 ≤ i ≤ d. (3)

Note that the probability used here is not the same as the probability that a job finds i idle
servers in equation (2). This is because equation (2) looks at the system from the job’s
perspective, while equation (3) looks at the system from the server’s perspective.

4. All jobs that find our server busy experience runtime R(1).
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We call the system described above an M*/G/1/efs. Here M* denotes that the arrival rate
depends on whether the system is idle, and “efs” indicates that the system has an exceptional first
service. (In a system with exceptional first service, the first job served during a busy period has a
different service time distribution than all other jobs served during the busy period.)

We want to find E [T | job finds no idle servers]. To do this, we first observe that

E [T | job finds no idle servers] = E [R(1)] + E [TQ | queueing]M
∗/G/1/efs (4)

E [TQ | queueing]M
∗/G/1/efs =

E [TQ]M
∗/G/1/efs

P
M∗/G/1/efs
Q

, (5)

where PM∗/G/1/efs
Q is the probability that an arrival has to wait in the queue in an M*/G/1/efs.

Lemma 1. The mean queueing time in an M*/G/1/efs where the first job experiences service time
R0, all remaining jobs experience service time R(1), and the arrival rate while the system is busy
is λ′, is

E [TQ]M
∗/G/1/efs = E [TQ]M/G/1/efs = E [T ]M/G/1/efs − E [S]M/G/1/efs , (6)

where

E [T ]M/G/1/efs =
(1− λ′E [R(1)])(2E [R0] + λ′E [R2

0]) + λ′2E [R0]E [R(1)2]

2(1− λ′E [R(1)] + λ′E [R0])(1− λ′E [R(1)])

is derived in [21] and

E [S]M
∗/G/1/efs =

1

E [NB] + 1
· E [R0] +

E [NB]

E [NB] + 1
· E [R(1)] ,

where E [NB] = λ′ · E[R0]
1−λ′E[R(1)]

is the expected number of arrivals during a busy period with
exceptional first service.

Proof. To find E [T ]M
∗/G/1/efs, we would like to be able to follow the same derivation that one

usually uses to find the transform of response time in an M/G/1/efs. Unfortunately, the analysis
does not apply because of our state-dependent arrival rate: the derivation of the transform of re-
sponse time in an M/G/1/efs relies on PASTA, which does not apply in the M*/G/1/efs. However,
we observe that from a job’s perspective, the arrival rate while the system is idle does not affect
response time. The arrival rate while the system is idle affects how close together busy periods
occur, but does not affect any of the jobs during the busy period. Hence to derive response time,
we can view the system as being an M/G/1/efs, the response time of which is derived in [21].

Finally, in equation (5) we need to know the probability that a job has to queue in an M*/G/1/efs:

P
M∗/G/1/efs
Q =

E [NB]

E [NB] + 1
, (7)

where E [NB] is the expected number of arrivals during an M*/G/1/efs busy period as in Lemma 1.
Combining equations (1)-(7) gives a closed-form expression for mean response time under

RIQ, modulo a closed-form expression for ρ.

10



5.2.1 Deriving ρ

Our last step is to derive ρ, the probability that a server is busy. In Section 3 we defined ρ =
λ · E [I ·R(I)], where I is the number of servers on which a job runs. Using the asymptotically
independent idleness assumption, we can write

ρ = λ

(
d∑
i=1

i · (1− ρ)iρd−i
(
d

i

)
E [R(i)] + ρd · E [R(1)]

)
. (8)

It is not immediately obvious that this expression gives the probability that a server is busy,
hence we provide an alternative derivation using renewal-reward theory. We define a cycle as the
moment from when a server becomes idle until it is next idle. We have

ρ =
E [B]

E [B] + 1
λd

, (9)

where E [B] = E[R0]
1−λ′E[R(1)]

is the expected duration of a busy period in an M*/G/1/efs and 1
λd

is the
mean interarrival time in the M*/G/1/efs.

Noting that E [R0] is defined in terms of ρ, equation (9) gives us an expression for ρ in terms
of itself. It is easy to verify algebraically that equations (8) and (9) are equivalent. When d = 2,
the equation is of degree 2 and can be solved exactly; for higher d we can solve for ρ numerically.

The system is stable as long as ρ < 1. However, since we do not have a closed-form expression
for ρ, it is difficult to understand intuitively what this stability condition means. In Section 7 we
derive an upper bound on mean response time under RIQ which gives us an alternative condition:
the system is stable when λ · E [R(1)] < 1.

5.3 Analysis: Transform of Response Time
Our approach in Section 5.2 allows us to find the transform of response time as well as mean
response time.

As before, we begin by conditioning on whether an arrival to the system finds any idle servers:

T̃ (s) = (1− ρd)T̃ (s | job finds idle servers) + ρdT̃ (s | job finds no idle servers), (10)

where ρ is the probability that a server is busy, derived in Section 5.2.1.
We first find T̃ (s | job finds idle servers) by conditioning on the number of idle servers a job

finds, given that it finds at least one idle server:

T̃ (s | job finds idle servers) =
d∑
i=1

(1− ρ)iρd−i
(
d
i

)
1− ρd

R̃(i)(s). (11)

Next we need to find T̃ (s | job finds no idle server). We do this using the M*/G/1/efs defined
in Section 5.2:

T̃ (s | job finds no idle servers) = R̃(1)(s) · T̃Q(s | queueing)M
∗/G/1/efs (12)
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T̃Q(s | queueing)M
∗/G/1/efs =

T̃Q(s)M
∗/G/1/efs

P {queueing}M∗/G/1/efs
, (13)

where PM∗/G/1/efs
Q is given in (7).

Lemma 2. The transform of queueing time in an M*/G/1/efs where the first job experiences service
time R0, all remaining jobs experience service time R(1), and the arrival rate while the server is
busy is λ′ is

T̃Q(s)M
∗/G/1/efs = T̃Q(s)M

∗/G/1/efs

=
1− λ′E [R(1)]

1− λ′E [R(1)] + λ′E [R0]
· (λ′ − s)R̃0(s)− λ′R̃(1)(s)

λ′ − s− λ′R̃(1)(s)
· 1

S̃(s)M∗/G/1/efs
,

as derived in [21], where

S̃(s)M
∗/G/1/efs =

1

E [NB] + 1
· R̃0(s) +

E [NB]

E [NB] + 1
· R̃(1)(s) (14)

and E [NB] is as in Lemma 1.

In a few special cases, we can use the transform of response time to find an approximation
for the distribution of response time under RIQ. We begin by conditioning on the number of idle
servers an arrival to the system finds:

P {T > t} =
d∑
i=1

P {job found i idle servers} ·P {R(i) > t}

+ P {job found no idle servers} ·
∞∑
n=1

P {n jobs in queue} ·P

{
R(1)e +

n∑
i=1

R(1) > t

}

=
d∑
i=1

(1− ρ)iρd−i ·P {R(i) > t}+ ρd ·
∞∑
n=1

P {n jobs in queue} ·P

{
R(1)e +

n∑
i=1

R(1) > t

}
.

(15)

Note that the term R(1)e term is an approximation because here we assume that all jobs, including
the first job served in the busy period, experience runtime R(1). In reality, the first job experiences
runtime R(i), where 1 ≤ i ≤ d.

To find P {n jobs in queue}, we use Distributional Little’s Law to find the transform of the
number of jobs in system in an M/G/1/efs:

N̂(z) = T̃ (λ(1− z)) =
1− λ′E [R(1)]

1− λ′E [R(1)] + λ′E [R0]
· zR̃0(λ

′(1− z))− R̃(1)(λ′(1− z))

z − R̃(1)(λ′(1− z))
.

Then we find P {n jobs in queue} as:

P {n jobs in queue} =
1

j!
· N̂ (j)(z) |z=0 .
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While the form in equation (15) holds for any S and X , computing the convolution to find
P {
∑n

i=1R(1) > t} is not always easy. In a few special cases, for example, ifR(1) is deterministic
or exponential, the convolution is straightforward. In such cases, (15) gives an approximation for
the distribution of response time which we can evaluate numerically. For generally distributed
R(1) (i.e., generally distributed X and S), finding the distribution of response time is challenging.

5.4 Cancellation Costs
When job that is running on multiple servers completes service on one of these servers, all of
its remaining copies must be cancelled. We model the time it takes to cancel a copy as taking
deterministic time z. In practice, if a job is running on i servers then only i − 1 of these servers
need to incur a cancellation cost. To simplify the analysis slightly, we assume that all i servers
incur the cancellation cost; this slightly increases our approximation for mean response time.

When we include the cancellation time, the analysis changes in only one place. We modify
Equation (3) to define

R0 =

{
R(1) w.p. ρd−1

R(i) + z w.p. (1− ρ)i−1ρd−1
(
d−1
i−1

)
, 1 < i ≤ d.

(16)

The rest of the analysis remains the same as above. Clearly it is easy to make z a random variable
rather than a constant if desired.

5.5 Quality of Approximation
Our analysis relies on the assumption that the servers are idle independently. This assumption is
not true in general: when a server is busy, the arrival rate to that server depends on whether other
servers are busy or idle, since a job can only join the queue at a busy server if all of the servers it
queried were busy. Furthermore, if d is very close to k then a single job can cause nearly all of the
servers to become busy.

Nonetheless, by comparing our analytical approximation to simulation results, we observe that
our approximation matches simulation quite well provided d is sufficiently small relative to k.
Figure 5 compares mean response time obtained from our analysis to that obtained via simulation
in a system where d = 20, λ = 0.7, inherent job sizes are highly variable, and S follows the
Dolly(1,12) server slowdown distribution. As k increases, our analysis becomes more and more
accurate; by the time k = 500 the analysis and simulation results are indistinguishable. While we
only show results for one set of parameters, when d and λ are lower the simulation results converge
to the analytical results even more quickly.

6 Results: d� k

Our goal in this section is to evaluate the performance of RIQ using our analysis from Section 5.
Throughout the section we set R(1) = 1, k = 1000 servers, and we only consider d � k. In
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Figure 5: Comparing analytical (dashed blue line) and simulated (solid red line) mean response
time under RIQ when λ = 0.7, d = 20, X ∼ Hyperexponential with C2

X = 10, and S ∼
Dolly(1, 12). As k increases, our analytical result becomes a very good approximation for mean
response time.

the d � k regime our analysis provides a good approximation for performance under RIQ – see
Section 5.5. Later, in Section 7 we study what happens when d is close to k.

In Figure 6 we compare RIQ to Redundancy-d at different values of C2
X and at both low (λ =

0.3) and high (λ = 0.7) arrival rate. We assume that the server slowdown distribution follows the
Dolly(1,12) empirical distribution shown in Table 1. The results for RIQ are from our analysis
in Section 5; Redundancy-d is simulated. At low load RIQ and Redundancy-d perform similarly,
which is unsurprising since under both policies jobs tend to find idle servers. Redundancy-d is
perhaps a bit better since it allows all jobs to run multiple copies, not just jobs finding multiple
idle servers; the arrival rate is low enough that the benefit that each job receives from running
multiple copies outweighs any additional queueing that time later arrivals experience due to these
extra copies. At high load, Redundancy-d becomes unstable at high values of d, whereas mean
response time under RIQ continues to decrease as a function of d.

So far we have assumed that when one copy of a job completes, the other copies are cancelled
instantaneously. Our analysis of RIQ also allows for non-zero cancellation times. In Figure 7 we
see that under both RIQ and Redundancy-d, E [T ] increases as the cancellation time z increases.
Under Redundancy-d, as z increases the value of d at which the system becomes unstable de-
creases. Under RIQ, the system does not become unstable as a function of the cancellation time,
indicating that RIQ is more robust than Redundancy-d.

Thus far we have only considered mean response time, but in Section 5.3 we analyze the dis-
tribution of response time under RIQ. Figure 8 compares response time under RIQ (from analysis)
to that under Redundancy-d (simulated) at both the mean and the 95th percentile. Here λ = 0.7
and we assume that both X and S are deterministic; this enables us to compute the convolution
required to find the response time distribution (see Section 5.3). Under both RIQ and Redundancy-
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Figure 6: E [T ] vs. d under Redundancy-d (simulated with k = 1000 servers) and RIQ forX ∼ H2
with C2

X = 1 (top row), C2
X = 10 (middle row), and C2

X = 100 (bottom row), where E [R] =
E [X] · E [S] = 1 and S ∼ Dolly(1,12), under low arrival rate (λ = 0.3, left) and high arrival rate
(λ = 0.7, right). At low arrival rate, RIQ and Redundancy-d perform similarly, but at high arrival
rate Redundancy-d becomes unstable when d is large, whereas RIQ continues to achieve low mean
response time.
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Figure 7: Mean response time as a function of d under RIQ (top) and Redundancy-d (bottom) when
k = 1000 servers, job sizes are X ∼ Hyperexponential with C2

X = 10, and server slowdowns
are S ∼ Dolly(1, 12), under low (λ = 0.3, left) and high (λ = 0.7, right) arrival rate for different
cancellation times z. As the cancellation time increases, mean response time increases under both
RIQ and Redundancy-d. Under Redundancy-d, this leads to the system becoming unstable at lower
values of d, whereas RIQ remains stable for all values of z.
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Figure 8: Comparing RIQ (from analysis) and Redundancy-d (simulated) when k = 1000 servers
and R = X · S = 1 is deterministic. (a) Mean response time, (b) 95th percentile of response time.
As d increases both the mean and the 95th percentile of response time greatly decreases under RIQ,
whereas after an initial improvement both increase as d further increases under Redundancy-d.

d, the improvement achieved in going from d = 1 to d = 2 is much greater at the 95th percentile
of response time than at the mean. However, while Redundancy-d quickly becomes unstable, the
95th percentile of response time under RIQ continues to decrease as d increases. When d = 10, the
95th percentile of response time under RIQ is 2.32; this is only 7% higher than the mean response
time when d = 1, indicating that RIQ is extremely effective at reducing the tail of response time.
This is important given that in computer systems, the tail of response time is often a more critical
metric than the mean.

7 Results: high d
Our analysis and results from Section 6 suggest that under RIQ E [T ] decreases as a function of
d, which means that setting d = k should lead to the lowest mean response time. However, this
intuitively does not make sense. As a job runs on more and more servers, it achieves decreasing
marginal runtime benefit from querying one more server (both with respect to minimizing server
slowdown and with respect to increasing the likelihood of finding an idle server). Eventually, the
job is getting no runtime benefit from increasing d, and instead is only adding load to the system.
Hence as d gets high, we would expect to see a turning point at which mean response time will
begin to increase because the extremely small service time benefit to the replicated job is not
enough to overcome the pain caused by the extra load.

In this section, we ask whether, as d becomes closer to k, RIQ is subject to the same pitfalls as
Redundancy-d. In Sections 5 and 6 we only considered cases in which d� k, which allowed us to
derive approximate expressions for response time under RIQ. When d becomes high our analysis
no longer applies, and the dependencies between different servers make it extremely difficult to
approximate response time. Nonetheless, in this section we will see that, unlike Redundancy-d,
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Figure 9: Mean response time under RIQ as a function of d when k = 1000, service times are
deterministic with R = X · S = 1, and (a) λ = 0.3, (b) λ = 0.7. When d is low, increasing d
causes mean response time to decrease, as predicted by the analysis. When d is high (close to k),
mean response time increases.

RIQ does not become unstable even as d gets large (we omit Redundancy-d from our graphs in
this section because we have already seen that Redundancy-d becomes unstable at relatively low
d). We begin by discussing simulation results that show the worst-case behavior of RIQ. We then
derive an analytical upper bound on mean response time under RIQ for any k, d, S, X , and z,
which allows us to prove that RIQ does not become unstable as d gets large.

Figure 9 shows mean response time as a function of d when k = 1000 and running times
are deterministically equal to 1. We consider deterministic running times because, intuitively,
this shows the worst possible case for redundancy: with no server slowdown variability, there is no
possible benefit from running the same job on multiple servers. The only benefit to RIQ is therefore
that it help jobs find idle servers on which to run. While increasing d increases the probability that
a job finds an idle server if there is one, having a high d also means that when a job does find
idle servers, it makes many copies that only add load to the system without providing any benefit.
Hence deterministic slowdown represents the case in which we would expect redundancy to yield
the worst performance as d increases.

Two surprising observations are evident in Figure 9. First, we see that the system is never
unstable, even when d = k. Second, at low λ mean response time is higher when d = k than when
d = 1, but at high λ mean response time is actually lower when d = k than when d = 1. We
discuss the second observation below. In Section 7.1 we explain intuitively why the system does
not become unstable, and we formalize the stability conditions under RIQ in Section 7.2.

In Figure 9(a) we see that at low arrival rate (λ = 0.3), when d is small mean response time
decreases as a function of d; this is consistent with our results in Section 6. The minimum E [T ]
occurs around d = 30, above which E [T ] increases with d. At d = k = 1000, E [T ] is even higher
than at d = 1. To understand why this happens, consider the two opposing effects of increasing d.
As d increases, each job gets to poll more and more servers, increasing the probability that the job
finds an idle server if there is one. On the other hand, when d is high a job that finds multiple idle
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Figure 10: Mean response time under RIQ as a function of d when k = 1000, X ∼
Hyperexponential with C2

X = 10, S ∼ Dolly(1, 12), and (a) λ = 0.3, (b) λ = 0.7. While
mean response time increases as d gets close to k, even when d = k mean response time is lower
than when d = 1. The lines are annotated with the values of ρ and E [I] (the expected number of
copies per job) at several different values of d.

servers can block many subsequent arrivals from finding an idle server (the total arrival rate to the
system is λk, so with high probability many new jobs will arrive while a single job occupies most
of the servers). When λ is low, the benefit obtained from polling many servers is small, since most
jobs find idle servers even when dispatched randomly (d = 1). Likewise, the pain caused to those
jobs that arrive while a single job occupies most of the servers is large, since these jobs were likely
to find idle servers when d = 1.

As λ gets higher, this trend reverses and d = 1000 becomes better than d = 1. This is because
at high λ only a small fraction of jobs find idle servers when d = 1. Almost all jobs that find
idle servers at d = 1000 benefit greatly because they would not have found idle servers at d = 1.
Furthermore, these jobs do not tend to find very many idle servers: when d = 1000 and λ = 0.7, the
expected number of copies per job is only 3.34. This means that the jobs that replicate themselves
do not waste too much server capacity; the primary benefit of high d is in finding idle servers
rather than in running many copies. The jobs that do not find idle servers at d = 1000 are not
hurt because with high probability they would not have found idle servers at d = 1 anyway.
Figure 9(b) illustrates this; when λ = 0.7 mean response time is lower at d = 1000 than at d = 1.
We observe similar trends under the more realistic Dolly(1,12) server slowdown distribution with
hyperexponential inherent job sizes (see Figure 10).

7.1 Intuition for why RIQ is Stable
In Figures 9 and 10 we see that even as d gets high, the system does not become unstable. This
is surprising: one might think that as each job queries more servers and makes more copies, the
added work causes the servers to be always busy, thereby driving queue lengths to infinity. Indeed,
we see in Figure 10 that ρ does approach 1 as d approaches k. Nonetheless, this does not cause the
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system to become unstable because RIQ only allows jobs to replicate when there are idle servers.
Effectively, whenever a server goes idle we can think of it as being given some extra work to do,
where this extra work is some job’s replicated copy. The extra work causes the server to be always
busy – sending ρ to 1 – but it affects the queue length like a vacation time, which cannot cause
instability. We formalize this intuition in Section 7.2, in which we derive an upper bound on mean
response time under RIQ.

7.2 Formal Upper Bound on Mean Response Time under RIQ
Consider a system with k servers (unlike in the analysis in Section 5, here we do not need to assume
k is large). Our dispatching policy is RIQ, where d is anything (in particular d may be close to k).
We allow S and X to follow any distribution with finite first and second moments. As defined in
Section 3, a job’s runtime on a single server is R(1) = S · X . The arrival rate λ can be anything
such that λ · E [R(1)] < 1.

Theorem 1. The response time under RIQ is upper bounded by the response time in an M/G/1/vacation
queue [6] with arrival rate λ, where G = R(1) = S ·X , and where the vacation time is R(1) + z:

E [T ]RIQ ≤ E [T ]M/G/1/vacation = E [T ]M/G/1 + E [(R(1) + z)e] .

Proof. Consider the analysis of mean response time under RIQ presented in Section 5.2. The only
part of the analysis that is not exact is the asymptotically independent idleness assumption (see
Section 5.1). We will upper bound response time under RIQ by upper bounding each component
of the analysis that uses the asymptotically independent idleness assumption.

We begin by conditioning on whether an arrival finds any idle servers:

E [T ] = P {job finds idle servers} · E [T | job finds idle servers]

+ P {job finds no idle servers}E [T | job finds no idle servers] .

In the analysis in Section 5.2, we approximated P {job finds idle servers} using the asymptotically
independent idleness. We can upper bound response time by instead assuming that no job ever finds
an idle server:

E [T ] ≤ E [T | job finds no idle servers]

= E [R(1)] + E [T | queueing]M
∗/G/1/efs , (17)

where the second line follows from the same reasoning as in Section 5.2.
In Section 5.2, we further used the asymptotically independent idleness assumption in two

places when analyzing the M*/G/1/efs. First, we said that when the server is busy arrivals occur
with rate λρd−1. We will upper bound this by saying that arrivals occur with rate λ.

Second, we said that the first job served during a busy period experiences service time R0,
defined in (3). We will upper bound this by saying that the first job experiences runtimeR(1). This
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Figure 11: Upper bound on mean response time under RIQ when R = S ·X = 1 is deterministic
for both (a) low arrival rate (λ = 0.3) and (b) high arrival rate (λ = 0.7). While the bound is not
tight, it shows that mean response time under RIQ cannot become extremely high. In particular,
the upper bound tells us that RIQ does not become unstable as d grows large.

is an upper bound because the first job actually experiences runtimeR(i) = X ·min{S1, . . . , Si} ≤
X · S = R(1). Note that since (17) forces all jobs to experience a non-zero queueing time, we
can think of the first job in the busy period as being a “dummy” job rather than a real job that
contributes to response time. Every time a server goes idle, we cause it to become busy working
on a “dummy” job of size R(1), so that the server is always busy no matter when the next real job
arrives to the server. This is exactly an M/G/1/vacation queue, where the vacation time isR(1).

Figure 11 compares our upper bound to simulation results when k = 1000 and runtimes are
deterministically equal to 1 and there is no cancellation cost (z = 0). The difference between
the exact mean response time and the upper bound at d = 1 (which is equivalent to random
dispatching; all jobs see an M/G/1 queue) is exactly the mean excess of R(1). This indicates that
RIQ can never perform more than an additive constant worse than random dispatching. We observe
from simulation that RIQ actually does much better than at d = 1 for nearly all parameter settings.

Theorem 2. Under RIQ, the system is stable if λ · E [R(1)] < 1.

Proof. The stability region for the M/G/1/vacation is the same as that for the M/G/1: the system
is stable as long as λ · E [R(1)] < 1. If the M/G/1/vacation is stable, then RIQ is stable since the
M/G/1/vacation gives an upper bound on RIQ.

8 Conclusion
In this paper we introduced the S&X model, a new, more realistic model for computer systems
with redundancy. The model is very general, allowing for any inherent job size distribution X ,
any server slowdown distribution S, and any cancellation time z. This model was motivated by
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a common weakness of the existing theoretical work on redundancy: the assumption that a job’s
running times are independent across servers. This Independence model is unrealistic because
in practice, each job consists of a certain inherent amount of work, X , that must be completed
regardless of the particular server on which the job runs. In the Independence model, a job’s
running time becomes arbitrarily small as it runs on more and more servers; this cannot happen in
practice.

In our new S&X model, the dispatching policies previously studied in the theory literature
perform much worse than the existing theoretical analysis in the Independence model predicts.
This motivates the development of new dispatching policies designed to perform well in the S&X
model. We introduce the Redundant-to-Idle-Queue policy, under which each arriving job creates
redundant copies only when the job finds idle servers on which to run these copies. We derive an
approximate analysis of both the mean and the distribution of response time under RIQ. Further-
more, we derive an upper bound on mean response time under RIQ that shows that RIQ cannot
become unstable even as the maximum number of copies per job becomes large. Our results
demonstrate that RIQ is extremely robust to the system parameters, including the inherent job size
distribution, the server slowdown distribution, and the redundancy degree d.

RIQ is able to achieve such good performance because it takes into account the system state
when deciding whether to run redundant copies of a job. Awareness of system state is an im-
portant feature of many dispatching and scheduling policies used in redundancy systems in prac-
tice. Other system-aware redundancy policies proposed by practitioners include replicating only
small jobs [1], delaying replication so as to only replicate jobs that are experiencing a long slow-
down [3, 23], and reserving some servers on which to run replicas [16, 2]. We hope that the
S&X model will provide a setting in which to analyze these policies in theory, leading to a better
understanding of how to tune such policies to optimize performance.

The S&X model represents an important first step in bridging the gap between theoretical
models of redundancy and the practical characteristics of real systems that use redundancy. How-
ever, our model does not incorporate every aspect of such systems. For example, in practice server
slowdowns may be time-dependent or correlated between jobs that are processed consecutively on
the same server. We leave incorporating such features into a theoretical model of redundancy open
for future work.
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