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Abstract

Convex optimization is one of the most robust tools for automated data analysis.
It has widespread applications in fields such as machine learning, computer vision,
combinatorial optimization and scientific computing. However, the rapidly increasing
volume and complexity of data that needs to be processed often renders general-purpose
algorithms unusable.

This thesis aims to address this issue through development of very fast algorithms
for core convex optimization problems, with a focus on graphs. To this end, we:

• Develop nearly optimal algorithms for the Fermat-Weber (geometric median)
problem, a fundamental task in robust estimation and clustering.

• Investigate how to approximate massive amounts of high-dimensional data in a
restrictive streaming setting, achieving optimal tradeoffs.

• Develop the fastest algorithm for solving linear systems on undirected graphs. This
is achieved through improved clustering algorithms and better understanding of the
interplay between combinatorial and numerical aspects of previous approaches.

• Show the existence of clustering and oblivious routing algorithms for a broad
family of directed graphs, in hopes of advancing the search for faster maximum
flow algorithms.

Most of the presented algorithms work in time nearly linear in the sparsity of the input
data. The unifying theme of these results is careful analysis of optimization algorithms
in high-dimensional spaces, and mixing combinatorial and numerical approaches.
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Chapter 1

Introduction

The amount and complexity of objects subject to automated analysis increases at a rapid pace. Tasks
such as processing satellite imagery in real time, predicting social interactions and semi-automated
medical diagnostics become a reality of everyday computing. In this thesis, we shall explore
multiple facets of the fundamental problem of analyzing such data effectively.

1.1 Dealing with High Dimensional Data

In order to enable rigorous reasoning, we will associate our problems with a space Rd such that all
the features of each object in our problem class can be conveniently represented as d real numbers.
We refer to the integer d as the dimensionality of our problem.

The different dimensions can correspond to pixels in an image; users in a social network;
characteristics of a hospital patient. Often, the complexity of the problems of interest translates
directly to high dimensionality.

1.1.1 Representation

The most common way to describe a d-dimensional problem involving n objects is simply as an
n× d real matrix. In the case of images, the numerical values might describe the colors of pixels.
In a graph, they might be nonzero only for the endpoints of a particular edge (see Figure 1.1). In
machine learning applications, they might be 0-1, describing the presence or absence of binary
features.

1.1.2 Formulating Convex Objectives

Given a dataset, we want to conduct some form of reasoning. Examples of possible questions
include:

• What is the community structure of this social network?

• What does this image look like without the noise?

• What are the characteristics of a typical patient?

1
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Figure 1.1: Social network as graph; corresponding matrix B.

• How likely is this user to like a given movie?

To make these problems concrete, we turn such questions into optimization problems. This amounts
to defining a set S of feasible solutions and an objective function f . For the above examples:

• (Clustering a social network.) S is the possible clusterings of the nodes of the network; f
measures the quality of a clustering.

• (Denoising an image.) S is the set of all images of a given size; f is the similarity of the
image to the original, traded off against its smoothness.

• (Finding a typical patient.) S are the possible characteristics of a patient; f measures the
averaged difference with the patients in the database.

• (Predicting whether a user likes a movie.) S are the possible models for predicting user
preferences; f measures the prediction quality of a model, traded off against its simplicity.

The problem can then be stated succinctly as

minimize f(x )

subject to x ∈ S.
(1.1)

In order to design efficient algorithms for finding the optimal (or otherwise satisfactory) solution
x to the above problem, we need to make further assumptions on f and S. In this thesis, we focus
on the case where f and S are convex. It is useful to note that in some problem domains, non-convex
models such as deep learning yield better results in practice.

The primary reason for restricting ourselves to convex models is the need for solving the
optimization problem (1.1) efficiently, while retaining fairly large expressive power of the model.
There exist general polynomial time methods for optimizing convex functions, see e.g. [LSW15].

In addition to serving as an objective in and of itself, the convex optimization problem can also
serve as a proxy for optimizing a harder, non-convex objective (see e.g. [Can06]).

2



1.1.3 Working with Massive Data

The focus of this thesis is on problems involving large amounts of data. The fundamental idea in
analyzing and reasoning from large datasets is that even fairly simple models perform very well
given enough information. However, given limited computational resources, even polynomial time
algorithms may prove insufficient when processing massive data. This leads to the need for scalable
algorithms: ones working in time nearly linear in the input size1.

We explore multiple approaches to designing such algorithms:

• Through improved analysis of optimization methods (Chapters 2 and 5 and Section 6.5).

• Through improved understanding of the combinatorial structure of the data (Chapters 4 and 6).

• Through subsampling the data (Chapters 3 and 5 and Section 2.5).

• Through operating in a streaming setting (Chapter 3).

1.2 Convex Optimization and Solving Linear Systems

1.2.1 Gradient Descent and Beyond

Gradient descent, or more generally steepest descent, is one of the most basic strategies for
optimizing convex and non-convex objectives alike. It amounts to repeatedly nudging the solution
vector x in the direction in which f decreases most quickly. For some convex functions, it can be
shown to converge quickly. We give specialized analyses of various gradient descent algorithms in
Chapter 5 and Sections 2.5 and 6.5.

Gradient descent is a first order optimization method: it only uses the information about the
first derivative (the gradient) of f . An extremely powerful idea in designing fast algorithms for
optimizing convex function is utilizing information about the second derivative (the Hessian) of f .
This leads to second order methods, such as Newton’s method.

Interior point is a general method for solving constrained convex optimization problems,
utilizing Newton’s method as a subroutine. In Chapter 2, we give the first analysis of this method
that shows it to run in nearly linear time in the input size for a particular natural problem. The
results of Chapters 4 and 5, when utilized as subroutines in interior point methods, lead to the fastest
theoretical runtimes for many fundamental graph problems [Mad13, LS14].

The idea of Newton’s method is to locally approximate the function by a quadratic polynomial
given by the Hessian and the gradient. Each step of the method amounts to minimizing this
approximation and moving towards the minimizer. This requires solving a linear system, which is
typically the bottleneck in the runtime of the entire algorithm. A large part of this thesis focuses on
solving linear systems efficiently (Chapters 3 to 5).

1We say that an algorithm works in nearly linear time in the input size m if it works in O(m logcm) time for some
constant c.
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1.2.2 Spectral Approximation and Row Sampling

The problem of solving a linear system Ax = b is equivalent to the following unconstrained convex
optimization problem, called ’least squares’:

minimize x>A>Ax − 2x>b

=‖x‖2
A>A
− 2x>b.

A useful approach to solving this problem for a very large matrix A is to replace it with a spectral
approximation Ã such that

‖y‖
Ã
>
Ã
≈1+ε ‖y‖A>A

for all y . Chapter 3 deals exclusively with computing such approximations efficiently through row
sampling, that is selecting a random subset of rows of A to form Ã.

Given Ã, a very accurate solution to the original linear system can be obtained by coupling
solving linear systems in Ã with gradient descent; this method is called preconditioned Richardson
iteration. In Chapter 5 we show how to use a method similar to Richardson iteration and subsampling
to solve linear systems accurately, without actually obtaining spectral approximations along the way
(and thus obtaining better running time).

1.3 Structure of This Thesis

1.3.1 Geometric Median

[CLM+16] In Chapter 2, we investigate a fundamental problem in Euclidean space: the geometric
median. It is a basic tool for robust estimation and clustering. While scalable low-dimensional
approximations are known, the general problem has not been efficiently solvable. We give the
fastest known methods, motivated by recent advancements in multiplicative weights, interior point
methods and stochastic gradient descent.

1.3.2 Online Sampling

[CMP15] In Chapter 3, we discuss a new algorithm for subsampling general matrices, allowing us
to deal with amounts of data that do not necessarily fit in memory. We show that it is possible to
perform surprisingly well while subsampling a matrix in a very restrictive streaming setting. We
also show the optimality of our methods.

1.3.3 Laplacian Solvers

[CKM+14, CMP+14, CKP+14] One natural kind of innately high dimensional structure is the graph,
where only pairs of dimensions are directly related. Graphs admit combinatorial analysis, which can
be applied in conjunction with new numerical techniques to obtain very efficient algorithms. The
first nearly linear time solvers for Laplacian systems were developed by Spielman and Teng [ST04a],
starting the field of modern algorithmic spectral graph theory. Their runtime was later improved
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by Koutis, Miller and Peng [KMP10, KMP11], with the fastest iterative algorithm working in time
O(m log n).

In Chapter 4, we study new clustering algorithms for graphs, with the goal of improving linear
system solvers and solving other optimization problems, such as maximum flow.

In Chapter 5, we turn to solving the linear systems themselves. We find tighter connections
between the combinatorial and numerical approaches, leading us to develop the fastest known solver
of Laplacian systems, working in O(m

√
log n) time.

1.3.4 Directed Graphs

[EMPS16] The combinatorial structure of directed graphs remains much less understood from the
spectral viewpoint. It is of great interest to understand it better, and generalize some of the algorithms
fundamental to recent progress on undirected graphs. In Chapter 6, we give new algorithms for
oblivious routings and maximum flow on directed graphs parameterized by their balance.

5
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Chapter 2

Geometric Median

The geometric median of a finite set of points in Euclidean space S = {p1, . . . , pn} ∈ Rd is the
point x ∈ Rd minimizing the sum of distances to the points. Despite its simple statement, the
problem of finding the geometric median for a given S has been a subject of active research for
many years. It is otherwise known as the the Fermat-Weber problem.

The Fermat-Weber problem is equivalent to minimizing fS : Rd → R given as:

fS(x) :=
n∑
i=1

‖x− pi‖2.

Since fS is convex for any S, this problem can be solved in polynomial time using convex optimiza-
tion.

We demonstrate an interior point method that solves the Fermat-Weber problem in
Õ(nd log3(1/ε)) time, which is close to optimal. We also show a stochastic gradient descent
algorithm, working in time Õ(d/ε2), independent of the number of input points.

Some of our ideas are inspired by recent developments in optimization methods for graph
problems [CKM+11]; it is an interesting question for future research whether the tools we construct
can be brought back and applied to graphs.

The results presented in this chapter are joint work with Michael Cohen, Yin-Tat Lee, Gary
Miller and Aaron Sidford [CLM+16].

2.1 Introduction

One of the oldest easily-stated nontrivial problems in computational geometry is the Fermat-Weber
problem: given a set of n points in d dimensions, a(1), . . . , a(n) ∈ Rd, find a point x∗ ∈ Rd that
minimizes the sum of Euclidean distances to them:

x∗ ∈ argminx∈Rdf(x) where f(x)
def
=
∑
i∈[n]

‖x− a(i)‖2

7



This problem, also known as the geometric median problem, is well studied and has numerous
applications. It is often considered over low dimensional spaces in the context of the facility location
problem [Web09] and over higher dimensional spaces it has applications to clustering in machine
learning and data analysis. For example, computing the geometric median is a subroutine in popular
expectation maximization heuristics for k-medians clustering.

The problem is also important to robust estimation, where we seek to find a point representative
of given set of points that is resistant to outliers. The geometric median is a rotation and translation
invariant estimator that achieves the optimal breakdown point of 0.5, i.e. it is a good estimator
even when up to half of the input data is arbitrarily corrupted [LR91]. Moreover, if a large constant
fraction of the points lie in a ball of diameter ε then the geometric median lies within distance
O(ε) of that ball (see Lemma 2.5.1). Consequently, the geometric median can be used to turn
expected results into high probability results: e.g. if the a(i) are drawn independently such that
E‖x − x∗‖2 ≤ ε for some ε > 0 and x ∈ Rd then this fact, Markov bound, and Chernoff Bound,
imply

∥∥x∗ − a(i)
∥∥

2
= O(ε) with high probability in n.

Despite the ancient nature of the Fermat-Weber problem and its many uses there are relatively
few theoretical guarantees for solving it (see Table 2.1). To compute a (1 + ε)-approximate
solution, i.e. x ∈ Rd with f(x) ≤ (1 + ε)f(x∗), the previous fastest running times were either
O(d · n4/3ε−8/3) by [CMMP13], Õ(d exp ε−4 log ε−1) by [BHI02], Õ(nd+ poly(d, ε−1)) by [FL11],
or O((nd)O(1) log 1

ε
) time by [PS01, XY97]. In this work we improve upon these running times

by providing an O(nd log3 n
ε
) time algorithm1 as well as an O(d/ε2) time algorithm, provided

we have an oracle for sampling a random a(i). Picking the faster algorithm for the particular
value of ε improves the running time to O(nd log3 1

ε
). We also extend these results to compute a

(1 + ε)-approximate solution to the more general Weber’s problem, minx∈Rd
∑

i∈[n] wi
∥∥x− a(i)

∥∥
2

for non-negative wi, in time O(nd log3 1
ε
) (see Section 2.6).

Our O(nd log3 n
ε
) time algorithm is a careful modification of standard interior point methods for

solving the geometric median problem. We provide a long step interior point method tailored to the
geometric median problem for which we can implement every iteration in nearly linear time. While
our analysis starts with a simple O((nd)O(1) log 1

ε
) time interior point method and shows how to

improve it, our final algorithm is quite non-standard from the perspective of interior point literature.
Our result is one of very few cases we are aware of that outperforms traditional interior point theory
[Mad13, LS14] and the only one we are aware of using interior point methods to obtain a nearly
linear time algorithm for a canonical optimization problem that traditionally requires superlinear
time. We hope our work leads to further improvements in this line of research.

Our O(dε−2) algorithm is a relatively straightforward application of sampling techniques and
stochastic subgradient descent. Some additional insight is required simply to provide a rigorous
analysis of the robustness of the geometric median and use this to streamline our application of
stochastic subgradient descent. We provide its proof in Section 2.5. The bulk of the work in this
chapter is focused on developing our O(nd log3 n

ε
) time algorithm which we believe uses a set of

techniques of independent interest.

1If z is the total number of nonzero entries in the coordinates of the a(i) then a careful analysis of our algorithm
improves our running time to O(z log3 nε ).

8



2.1.1 Previous Work

The geometric median problem was first formulated for the case of three points in the early 1600s
by Pierre de Fermat [KV97, DKSW02]. A simple elegant ruler and compass construction was given
in the same century by Evangelista Torricelli. Such a construction does not generalize when a larger
number of points is considered: Bajaj has shown the even for five points, the geometric median is
not expressible by radicals over the rationals [Baj88]. Hence, the (1 + ε)-approximate problem has
been studied for larger values of n.

Many authors have proposed algorithms with runtime polynomial in n, d and 1/ε. The most cited
and used algorithm is Weiszfeld’s 1937 algorithm [Wei37]. Unfortunately Weiszfeld’s algorithm
may not converge and if it does it may do so very slowly. There have been many proposed
modifications to Weiszfeld’s algorithm [CK81, PE08, Ost78, BY82, VZ00, Kuh73] that generally
give non-asymptotic runtime guarantees. In light of more modern multiplicative weights methods
his algorithm can be viewed as a re-weighted least squares Chin et al. [CMMP13] considered the
more general L2 embedding problem: placing the vertices of a graph into Rd, where some of the
vertices have fixed positions while the remaining vertices are allowed to float, with the objective
of minimizing the sum of the Euclidean edge lengths. Using the multiplicative weights method,
they obtained a run time of O(d · n4/3ε−8/3) for a broad class of problems, including the geometric
median problem.2

Many authors consider problems that generalize the Fermat-Weber problem, and obtain algo-
rithms for finding the geometric median as a specialization. For example, Badoiu et al. give an
approximate k-median algorithm by sub-sampling with the runtime for k = 1 of Õ(d ·exp(O(ε−4)))
[BHI02]. Parrilo and Sturmfels demonstrated that the problem can be reduced to semidefinite
programming, thus obtaining a runtime of Õ(poly(n, d) log ε−1) [PS01]. Furthermore, Bose et al.
gave a linear time algorithm for fixed d and ε−1, based on low-dimensional data structures [BMM03]
and it has been show how to obtain running times of Õ(nd+ poly(d, ε−1)) for this problem and a
more general class of problems.[HPK05, FL11].

An approach very related to ours was studied by Xue and Ye [XY97]. They give an interior
point method with barrier analysis that runs in time Õ((d3 + d2n)

√
n log ε−1).

2.1.2 Overview of O(nd log3 n
ε
) Time Algorithm

Interior Point Primer

Our algorithm is broadly inspired by interior point methods, a broad class of methods for efficiently
solving convex optimization problems [Ye11, NN94]. Given an instance of the geometric median
problem we first put the problem in a more natural form for applying interior point methods. Rather
than writing the problem as minimizing a convex function over Rd

min
x∈Rd

f(x) where f(x)
def
=
∑
i∈[n]

∥∥x− a(i)
∥∥

2
(2.1)

2The result of [CMMP13] was stated in more general terms than given here. However, it easy to formulate the
geometric median problem in their model.
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Year Authors Runtime Comments
1659 Torricelli [Viv59] - Assuming n = 3
1937 Weiszfeld [Wei37] - Does not always converge
1990 Chandrasekaran and Tamir[CT89] Õ(n · poly(d) log ε−1) Ellipsoid method
1997 Xue and Ye [XY97] Õ((d3 + d2n)

√
n log ε−1) Interior point with barrier method

2000 Indyk [ID00] Õ(dn · ε−2) Optimizes only over x in the input
2001 Parrilo and Sturmfels [PS01] Õ(poly(n, d) log ε−1) Reduction to SDP
2002 Badoiu et al. [BHI02] Õ(d · exp(O(ε−4))) Sampling
2003 Bose et al. [BMM03] Õ(n) Assuming d, ε−1 = O(1)

2005 Har-Peled and Kushal [HPK05] Õ(n+ poly(ε−1)) Assuming d = O(1)

2011 Feldman and Langberg [FL11] Õ(nd+ poly(d, ε−1)) Coreset
2013 Chin et al. [CMMP13] Õ(dn4/3 · ε−8/3) Multiplicative weights

- This work O(nd log3(n/ε)) Interior point with custom analysis
- This work O(dε−2) Stochastic gradient descent

Table 2.1: Selected Previous Results.

we instead write the problem as minimizing a linear function over a larger convex space:

min
{α,x}∈S

1>α where S =
{
α ∈ Rn, x ∈ Rd |

∥∥x− a(i)
∥∥

2
≤ αi for all i ∈ [n]

}
. (2.2)

Clearly, these problems are the same, as at optimality αi =
∥∥x− a(i)

∥∥
2
.

To solve problems of the form (2.2) interior point methods relax the constraint {α, x} ∈ S
through the introduction of a barrier function. In particular they assume that there is a real valued
function p such that as {α, x} moves towards the boundary of S the value of p goes to infinity. A
popular class of interior point methods, known as path following methods [Ren88, Gon92], consider
relaxations of (2.2) of the form min{α,x}∈Rn×Rd t · 1>α + p(α, x). The minimizers of this function
form a path, known as the central path, parameterized by t. The methods then use variants of
Newton’s method to follow the path until t is large enough that a high quality approximate solution
is obtained. The number of iterations of these methods are then typically governed by a property
of p known as its self concordance ν. Given a ν-self concordant barrier, typically interior point
methods require O(

√
ν log 1

ε
) iterations to compute a (1 + ε)-approximate solution.

For our particular convex set, the construction of our barrier function is particularly simple, we
consider each constraint

∥∥x− a(i)
∥∥

2
≤ αi individually. In particular, it is known that the function

p(i)(α, x) = − lnαi − ln
(
α2
i −

∥∥x− a(i)
∥∥

2

)
is a O(1) self-concordant barrier function for the set

S(i) =
{
x ∈ Rd, α ∈ Rn |

∥∥x− a(i)
∥∥

2
≤ αi

}
[Nes03]. Since ∩i∈[n]S

(i) = S we can use the barrier∑
i∈[n] p

(i)(α, x) for p(α, x) and standard self-concordance theory shows that this is an O(n) self
concordant barrier for S. Consequently, this easily yields an interior point method for solving the
geometric median problem in O((nd)O(1) log 1

ε
) time.
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Difficulties

Unfortunately obtaining a nearly linear time algorithm for geometric median using interior point
methods as presented poses numerous difficulties. Particularly troubling is the number of iterations
required by standard interior point algorithms. The approach outlined in the previous section
produced an O(n)-self concordant barrier and even if we use more advanced self concordance
machinery, i.e. the universal barrier [NN94], the best known self concordance of any barrier for the
convex set

∑
i∈[n]

∥∥x− a(i)
∥∥

2
≤ c is O(d). An interesting open question still left open by our work

is to determine what is the minimal self concordance of a barrier for this set.

Consequently, even if we could implement every iteration of an interior point scheme in nearly
linear time it is unclear whether one should hope for a nearly linear time interior point algorithm
for the geometric median. While there are instances of outperforming standard self-concordance
analysis [Mad13, LS14], these instances are few, complex, and to varying degrees specialized to the
problems they solve. Moreover, we are unaware of any interior point scheme providing a provable
nearly linear time for a general nontrivial convex optimization problem.

Beyond Standard Interior Point

Despite these difficulties we do obtain a nearly linear time interior point based algorithm that only
requires O(log n

ε
) iterations, i.e. increases to the path parameter. After choosing the natural penalty

functions p(i) described above, we optimize in closed form over the αi to obtain the following
penalized objective function:3

min
x
ft(x) where ft(x) =

∑
i∈[n]

√
1 + t2

∥∥x− a(i)
∥∥2

2
− ln

[
1 +

√
1 + t2

∥∥x− a(i)
∥∥2

2

]

We then approximately minimize ft(x) for increasing t. We let xt
def
= argminx∈Rdft(x) for x ≥ 0,

and thinking of {xt : t ≥ 0} as a continuous curve known as the central path, we show how to
approximately follow this path. As limt→∞ xt = x∗ this approach yields a (1 + ε)-approximation.

So far our analysis is standard and interior point theory yields an Ω(
√
n) iteration interior point

scheme. To overcome this we take a more detailed look at xt. We note that for any t if there is any
rapid change in xt it must occur in the direction of the smallest eigenvector of52ft(x), denoted
vt, what we henceforth may refer to as the bad direction at xt. Furthermore, we show that this bad
direction is stable in the sense that for all directions d ⊥ vt it is the case that d>(xt − xt′) is small
for t′ ≤ ct for a small constant c.

In fact, we show that this movement over such a long step, i.e. constant multiplicative increase
in t, in the directions orthogonal to the bad direction is small enough that for any movement around
a ball of this size the Hessian of ft only changes by a small multiplicative constant. In short, starting
at xt there exists a point y obtained just by moving from xt in the bad direction, such that y is close

3It is unclear how to extend our proof for the simpler function:
∑
i∈[n]

√
1 + t2

∥∥x− a(i)∥∥2
2
.
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enough to xt′ that standard first order method will converge quickly to xt′! Thus, we might hope to
find such a y, quickly converge to xt′ and repeat. If we increase t by a multiplicative constant in
every such iterations, standard interior point theory suggests that O(log n

ε
) iterations suffices.

Building an Algorithm

To turn the structural result in the previous section into a fast algorithm there are several further
issues we need to address. We need to

(1) Show how to find the point along the bad direction that is close to xt′ .

(2) Show how to solve linear systems in the Hessian to actually converge quickly to xt′ .

(3) Show how to find the bad direction.

(4) Bound the accuracy required by these computations.

Deferring (1) for the moment, our solutions to the rest are relatively straightforward. Careful
inspection of the Hessian of ft reveals that it is well approximated by a multiple of the identity
matrix minus a rank 1 matrix. Consequently, using explicit formulas for the inverse of of matrix
under rank 1 updates, i.e. the Sherman-Morrison formula, we can solve such systems in nearly
linear time thereby addressing (2). For (3), we show that the well known power method carefully
applied to the Hessian yields the bad direction if it exists. Finally, for (4) we show that a constant
approximate geometric median is near enough to the central path for t = Θ( 1

f(x∗)
) and that it suffices

to compute a central path point at t = O( n
f(x∗)ε

) to compute a 1 + ε-geometric median. Moreover,
for these values of t, the precision needed in other operations is clear.

The more difficult operation is (1). Given xt and the bad direction exactly, it is still not clear
how to find the point along the bad direction line from xt that is close to xt′ . Just performing binary
search on the objective function a priori might not yield such a point due to discrepancies between
a ball in Euclidean norm and a ball in hessian norm and the size of the distance from the optimal
point in euclidean norm. To overcome this issue we still line search on the bad direction, however
rather than simply using f(xt + α · vt) as the objective function to line search on, we use the
function g(α) = min∥∥x−xt−α·vt∥∥

2
≤c
f(x) for some constant c, that is given an α we move α in the

bad direction and take the best objective function value in a ball around that point. For appropriate
choice of c the minimizers of α will include the optimal point we are looking for. Moreover, we can
show that g is convex and that it suffices to perform the minimization approximately.

Putting these pieces together yields our result. We perform O(log n
ε
) iterations of interior point

(i.e. increasing t), where in each iteration we spend O(nd log n
ε
) time to compute a high quality

approximation to the bad direction, and then we perform O(log n
ε
) approximate evaluations on

g(α) to binary search on the bad direction line, and then to approximately evaluate g we perform
gradient descent in approximate Hessian norm to high precision which again takes O(nd log n

ε
)

time. Altogether this yields a O(nd log3 n
ε
) time algorithm to compute a 1 + ε geometric median.

Here we made minimal effort to improve the log factors and plan to investigate this further in future
work.
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2.1.3 Overview of O(dε−2) Time Algorithm

In addition to providing a nearly linear time algorithm we provide a stand alone result on quickly
computing a crude (1 + ε)-approximate geometric median in Section 2.5. In particular, given
an oracle for sampling a random a(i) we provide an O(dε−2), i.e. sublinear, time algorithm that
computes such an approximate median. Our algorithm for this result is fairly straightforward.
First, we show that random sampling can be used to obtain some constant approximate information
about the optimal point in constant time. In particular we show how this can be used to deduce
an Euclidean ball which contains the optimal point. Second, we perform stochastic subgradient
descent within this ball to achieve our desired result.

2.1.4 Chapter Organization

The rest of the chapter is structured as follows. After covering preliminaries in Section 2.2, in
Section 2.3 we provide various results about the central path that we use to derive our nearly linear
time algorithm. In Section 2.4 we then provide our nearly linear time algorithm. All the proofs
and supporting lemmas for these sections are deferred to Appendix 2.A and Appendix 2.B. In
Section 2.5 we provide our O(d/ε2) algorithm. In Section 2.6 we show how to extend our results to
Weber’s problem, i.e. weighted geometric median.

In Appendix 2.C we provide the derivation of our penalized objective function and in Ap-
pendix 2.D we provide general technical machinery we use throughout.

2.2 Notation

2.2.1 General Notation

We use boldface letters to denote matrices. For a symmetric positive semidefinite matrix (PSD),
A, we let λ1(A) ≥ ... ≥ λn(A) ≥ 0 denote the eigenvalues of A and let v1(A), ..., vn(A) denote
corresponding eigenvectors. We let

∥∥x∥∥
A

def
=
√
x>Ax and for PSD matrices we use A � B and

A � B to denote the conditions that x>Ax ≤ x>Bx for all x and x>Ax ≥ x>Bx for all x
respectively.

2.2.2 Problem Notation

The central problem of this chapter is as follows: we are given points a(1), ..., a(n) ∈ Rd and we
wish to compute a geometric median, i.e. x∗ ∈ argminxf(x) where f(x) =

∑
i∈[n]

∥∥a(i)− x
∥∥

2
. We

call a point x ∈ Rd an (1 + ε)-approximate geometric median if f(x) ≤ (1 + ε)f(x∗).
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2.2.3 Penalized Objective Notation

To solve this problem we relax the objective function f and instead consider the following family of
penalized objective functions parameterized by t > 0

min
x
ft(x) where ft(x) =

∑
i∈[n]

√
1 + t2

∥∥x− a(i)
∥∥2

2
− ln

[
1 +

√
1 + t2

∥∥x− a(i)
∥∥2

2

]
.

This penalized objective function arises naturally in considering a standard interior point formulation
of the geometric median problem. (See Section 2.C for the derivation.) For all path parameters
t > 0, we let xt

def
= argminxft(x). Our primary goal is to obtain good approximations to elements

of the central path {xt : t > 0} for increasing values of t.

We let g(i)
t (x)

def
=
√

1 + t2
∥∥x− a(i)

∥∥2

2
and f

(i)
t (x)

def
= g

(i)
t (x) − ln(1 + g

(i)
t (x)) so ft(x) =∑

i∈[n] f
(i)
t (x). We refer to the quantity wt(x)

def
=
∑

i∈[n]
1

1+g
(i)
t (x)

as weight as it is a natural measure

of total contribution of the a(i) to the Hessian52ft(x). We let

ḡt(x)
def
= wt(x)

∑
i∈[n]

1

(1 + g
(i)
t (xt))g

(i)
t (xt)

−1

denote a natural term that helps upper bound the rate of change of the central path. Furthermore we
use u(i)(x)

def
= x− a(i)/

∥∥x− a(i)
∥∥

2
for
∥∥x− a(i)

∥∥
2
6= 0 and u(i)(x) = 0 otherwise to denote the unit

vector corresponding to x− a(i). Finally we let µt(x)
def
= λd(52ft(x)), the minimum eigenvalue of

52ft(x), and let vt(x) denote a corresponding eigenvector. To simplify notation we often drop the
(x) in these definitions when x = xt and t is clear from context.

2.3 Properties of the Central Path

Here provide various facts regarding the penalized objective function and the central path. While
we use the lemmas in this section throughout the chapter, the main contribution of this section is
Lemma 2.3.5 in Section 2.3.3. There we prove that with the exception of a single direction, the
change in the central path is small over a constant multiplicative change in the path parameter. In
addition, we show that our penalized objective function is stable under changes in a O(1

t
) Euclidean

ball (Section 2.3.1), and we bound the change in the Hessian over the central path (Section 2.3.2).
Furthermore, in Section 2.3.4, we relate f(xt) to f(x∗).

2.3.1 How Much Does the Hessian Change in General?

Here, we show that the Hessian of the penalized objective function is stable under changes in a
O(1

t
) sized Euclidean ball. This shows that if we have a point which is close to a central path point

in the Euclidean norm, then we can use Newton’s method to find the latter point.
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Lemma 2.3.1 Suppose that
∥∥x− y∥∥

2
≤ ε

t
with ε ≤ 1

20
. Then, we have

(1− 6ε2/3)52 ft(x) � 52ft(y) � (1 + 6ε2/3)52 ft(x).

2.3.2 How Much Does the Hessian Change Along the Path?

Here we bound how much the Hessian of the penalized objective function can change along the
central path. First we provide the following lemma bound several aspects of the penalized objective
function and proving that the weight, wt, only changes by a small amount multiplicatively given
small multiplicative changes in the path parameter, t.

Lemma 2.3.2 For all t ≥ 0 and i ∈ [n], the following inequalities hold:∥∥∥∥ ddtxt
∥∥∥∥

2

≤ 1

t2
ḡt(xt) ,

∣∣∣∣ ddtg(i)
t (xt)

∣∣∣∣ ≤ 1

t

(
g

(i)
t (xt) + ḡt

)
, and

∣∣∣∣ ddtwt
∣∣∣∣ ≤ 2

t
wt.

Consequently, for all t′ ≥ t we have that
(
t
t′

)2
wt ≤ wt′ ≤

(
t′

t

)2
wt.

Next we use this lemma to bound the change in the Hessian with respect to t.

Lemma 2.3.3 For all t ≥ 0, we have

− 12 · t · wtI �
d

dt

[
52ft(xt)

]
� 12 · t · wtI (2.3)

and therefore for all β ∈ [0, 1
8
]

52 f(xt)− 15βt2wtI � 52f(xt(1+β)) � 52f(xt) + 15βt2wtI . (2.4)

2.3.3 Where is the Next Optimal Point?

Here we prove our main result of this section. We prove that over a long step the central path moves
very little in directions orthogonal to the smallest eigenvector of the Hessian. We begin by noting
the Hessian is approximately a scaled identity minus a rank 1 matrix.

Lemma 2.3.4 For all t, we have 1
2

[
t2 · wtI− (t2 · wt − µt)vtv>t

]
� 52ft(xt) � t2 · wtI − (t2 ·

wt − µt)vtv>t .

Using this and the lemmas of the previous section we bound the amount xt can move in every
direction far from vt.

Lemma 2.3.5 (The Central Path is Almost Straight) For all t ≥ 0, β ∈ [0, 1
600

], and any unit
vector y with |〈y, vt〉| ≤ 1

t2·κ where κ = maxδ∈[t,(1+β)t]
wδ
µδ

, we have y>(x(1+β)t − xt) ≤ 6β
t

.
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2.3.4 Where is the End?

In this section, we bound the quality of the central path with respect to the geometric median
objective. In particular, we show that if we can solve the problem for some t = 2n

εf(x∗)
then we can

obtain an (1 + ε)-approximate solution. As we will ultimately derive an algorithm that starting
from initial t = 1/O(f(x∗)) and doubles t in every iteration, this will yield a O(log n

ε
) iteration

algorithm to obtain an (1 + ε)-approximate solution.

Lemma 2.3.6 For all t > 1
400f(x∗)

, we have f(xt)− f(x∗) ≤ 100n
√

f(x∗)
t

.

2.4 Nearly Linear Time Geometric Median

Here we show how to use the results from the previous section to obtain a nearly linear time algorithm
for computing the geometric median. Our algorithm follows a simple structure (See Algorithm 1).
First we use our result from Section 2.5 to compute an (1 + ε0)-approximate median, denoted x(1).
Then for a number of iterations we repeatedly move closer to xt for some path parameter t, compute
the minimum eigenvector of the Hessian, and line search in that direction to find an approximation
to a point further along the central path. Ultimately, this yields a precise enough approximation
to a point along the central path with large enough t that it is a high quality approximation to the
geometric median.

Algorithm 1: AccurateMedian(ε)

// Compute a 2-approximate geometric median and use it to
center

x(0) := ApproximateMedian(2)

Let f̃∗ := f(x(0)), ti = 1

400f̃∗
(1 + 1

600
)i−1

x(1) = LineSearch(x(0), t1, t1, 0, εc) with εc = 1

1015n3t91·f̃3∗
.

// Iteratively improve quality of approximation
for i ∈ [1, 1000 log

(
3000n
ε

)
] do

// Compute εv-approximate minimum eigenvalue and
eigenvector of 52fti(x

(i))

(λ(i), u(i)) = ApproxMinEig(x(i), ti, εv) with εv = 1

108n2t2i ·f̃2∗
.

// Line search to find x(i+1) such that
∥∥x(i+1) − xti+1

∥∥
2
≤ εc

ti+1

x(i+1) = LineSearch(x(i), ti, ti+1, u
(i), εc) with εc = 1

1015n3t3i ·f̃3∗
.

end
Output: ε-approximate geometric median x(k)

We split the remainder of the algorithm specification and its analysis into several parts. First
in Section 2.4.1 we show how to compute an approximate minimum eigenvector and eigenvalue
of the Hessian of the penalized objective function. Then in Section 2.4.2 we show how to use this
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eigenvector to line search for the next central path point. Finally, in Section 2.4.3 we put these
results together to obtain our nearly linear time algorithm. Throughout this section we will want an
upper bound to f(x∗) and will use f̃∗ as this upper bound.

2.4.1 Eigenvector Computation and Hessian Approximation

Here we show how to compute the minimum eigenvector of52ft(x) and thereby obtain a concise
approximation to 52ft(x). Our main algorithmic tool is the well known power method and the
fact that it converges quickly on a matrix with a large eigenvalue gap. We provide and analyze
this method for completeness in Section 2.B.1. Using this tool we estimate the top eigenvector as
follows.

Algorithm 2: ApproxMinEig(x, t, ε)

Input: Point x ∈ Rd, path parameter t, and target accuracy ε.
Let A =

∑
i∈[n]

t4(x−a(i))(x−a(i))>

(1+g
(i)
t (y))2g

(i)
t (y)

Let u := PowerMethod(A,Θ(log
(
d
ε

)
))

Let λ = u>52 ft(x)u
Output: (λ, u)

Lemma 2.4.1 (Hessian Eigenvector Computation and Approximation) For any x ∈ Rd, t > 0,
and ε ∈ (0, 1

4
), The algorithm ApproxMinEig(x, t, ε) outputs (λ, u) in O(nd log d

ε
) time with high

probability in d such that 〈vt(x), u〉2 ≥ 1− ε if µt(x) ≤ 1
4
t2wt(x). Furthermore, if ε ≤ µt(x)

4t2·wt(x)
≤

1

109n2t2·f̃2∗
and Q

def
= t2 · wt(x)− (t2 · wt(x)− λ)uu> then 1

4
Q � 52ft(x) � 4Q.

Furthermore, we show that the v(i) computed by this algorithm is sufficiently close to the bad
direction. Using Lemma 2.D.4, a minor technical lemma regarding the transitivity of large inner
products, yields:

Lemma 2.4.2 Let u = ApproxMinEig(x, t, εv) for some x such that
∥∥x− xt∥∥2

≤ εc
t

for εc ≤ 1
106

.
Suppose that µt ≤ 1

4
t2 ·wt. Then, for all unit vectors y ⊥ u, we have 〈y, vt〉2 ≤ max{500ε

2/3
c , 10εv}.

Note that the lemma above assumed µt is small. For the case µt is large, we show that the next
central path point is close to the current point and hence we do not need to know the bad direction.

Lemma 2.4.3 Suppose that µt ≥ 1
4
t2 · wt. Then, we have

∥∥xs − xt∥∥2
≤ 1

100t
for all s ∈ [1, 1.001t].

2.4.2 Line Searching

Here we show how to line search along the bad direction to find the next point on the central path.
Unfortunately, it is not clear if you can binary search on the objective function directly. It might be

17



the case that if we searched over α to minimize fti+1
(y(i) + αv(i)) we might obtain a point far away

from xt+1 and therefore be unable to move towards xt+1 efficiently.

To overcome this difficulty, we use the fact that over the region
∥∥x− y∥∥

2
= O(1

t
) the Hessian

changes by at most a constant and therefore we can minimize ft(x) over this region extremely
quickly. Therefore, we instead line search on the following function

gt,y,v(α)
def
= min∥∥x−(y+αv)

∥∥
2
≤ 1

100t

ft(x) (2.5)

and use that we can evaluate gt,y,v(α) approximately by using an appropriate centering procedure.
We can show (See Lemma 2.D.6) that gt,y,v(α) is convex and therefore we can minimize it efficiently
just by doing an appropriate binary search. By finding the approximately minimizing α and
outputting the corresponding approximately minimizing x, we can obtain x(i+1) that is close enough
to xti+1

. For notational convenience, we simply write g(α) if t, y, v is clear from the context.

First, we show how we can locally center and provide error analysis for that algorithm.

Algorithm 3: LocalCenter(y, t, ε)

Input: Point y ∈ Rd, path parameter t, target accuracy ε.
Let (λ, v) := ApproxMinEig(x, t, 10−9n−2t−2 · f̃−2

∗ ).
Let Q = t2 · wt(y)I− (t2 · wt(y)− λ) vv>

Let x(0) = y
for i = 1, ..., k = 64 log 1

ε
do

Let x(i) = min∥∥x−y∥∥
2
≤ 1

100t

f(x(i−1)) + 〈5ft(x(i−1)), x− x(i−1)〉+ 4
∥∥x− x(i−1)

∥∥2

Q
.

end
Output: x(k)

Lemma 2.4.4 Given some y ∈ Rd, t > 0 and ε > 0. In O(nd log(nt·f̃∗
ε

)) time with high probability,
LocalCenter(y, t, ε) computes x(k) such that

ft(x
(k))− min∥∥x−y∥∥

2
≤ 1

100t

ft(x) ≤ ε

ft(y)− min∥∥x−y∥∥
2
≤ 1

100t

ft(x)

 .

Using this local centering algorithm as well as a general result for minimizing one dimensional
convex functions using a noisy oracle (See Section 2.D.3) we obtain our line search algorithm.

Lemma 2.4.5 Given x such that
∥∥x − xt

∥∥
2
≤ εc

t
with t ≥ 1

400f(x∗)
and εc ≤ 1

1015n3t3·f̃3∗
.

Let u = ApproxMinEig(x, t, εv) with εv ≤ 1

108n2t2·f̃2∗
. Then, in O(nd log2(nt·f̃∗

ε
)) time,

LineSearch(x, t, t′, u, ε) output y such that
∥∥y − xt′∥∥2

≤ ε
t′

.

18



Algorithm 4: LineSearch(x, t, t′, u, ε)

Input: Point x ∈ Rd, current path parameter t, next path parameter t′, bad direction u, target
accuracy ε
Let εO = ε2

1010t3n3·f̃3∗
, ` = −12f̃∗, u = 12f̃∗.

Define the oracle q : R→ R by q(α) = ft′ (LocalCenter (x+ αu, t′, εO))
Let α′ = OneDimMinimizer(`, u, εO, q, tn)
Output: x′ = LocalCenter (x+ αu, t′, εO)

We also provide the following lemma useful for finding the first center.

Lemma 2.4.6 Given x such that
∥∥x − xt∥∥2

≤ 1
100t

with t ≥ 1
400f(x∗)

. Then, in O(nd log2(nt·f̃∗
ε

))

time, LineSearch(x, t, t, u, ε) output y such that
∥∥y − xt∥∥2

≤ ε
t

for any vector u.

2.4.3 Putting It All Together

Here we show how to put together the results of the previous sections to prove our main theorem.

Theorem 2.4.7 In O(nd log3(n
ε
)) time, Algorithm 1 outputs an (1 + ε)-approximate geometric

median with constant probability.

2.5 Pseudo Polynomial Time Algorithm

Here we provide a self-contained result on computing a 1 + ε approximate geometric median
in O(dε−2) time. Note that it is impossible to achieve such approximation for the mean,
minx∈Rd

∑
i∈[n]

∥∥x− a(i)
∥∥2

2
, because the mean can be changed arbitrarily by changing only 1 point.

However, [LR91] showed that the geometric median is far more stable. In Section 2.5.1, we show
how this stability property allows us to get an constant approximate in O(d) time. In Section 2.5.2,
we show how to use stochastic subgradient descent to then improve the accuracy.

2.5.1 A Constant Approximation of Geometric Median

We first prove that the geometric median is stable even if we are allowed to modify up to half of the
points. The following lemma is a strengthening of the robustness result in [LR91].

Lemma 2.5.1 Let x∗ be a geometric median of {a(i)}i∈[n] and let S ⊆ [n] with
∥∥S∥∥ < n

2
. For all x

∥∥x∗ − x∥∥
2
≤
(

2n− 2|S|
n− 2|S|

)
max
i/∈S

∥∥a(i) − x
∥∥

2
.

Proof For notational convenience let r =
∥∥x∗ − x∥∥

2
and let M = maxi/∈S

∥∥a(i) − x
∥∥

2
.
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For all i /∈ S, we have that
∥∥x− a(i)

∥∥
2
≤M , hence, we have∥∥x∗ − a(i)

∥∥
2
≥ r −

∥∥x− a(i)
∥∥

2

≥ r − 2M +
∥∥x− a(i)

∥∥
2
.

Furthermore, by triangle inequality for all i ∈ S, we have∥∥x∗ − a(i)
∥∥

2
≥
∥∥x− a(i)

∥∥
2
− r .

Hence, we have that∑
i∈[n]

∥∥x∗ − a(i)
∥∥

2
≥
∑
i∈[n]

∥∥x− a(i)
∥∥

2
+ (n− |S|)(r − 2M)− |S|r .

Since x∗ is a minimizer of
∑

i

∥∥x∗ − a(i)
∥∥

2
, we have that

(n− |S|)(r − 2M)− |S|r ≤ 0.

Hence, we have ∥∥x∗ − x∥∥
2

= r ≤ 2n− 2|S|
n− 2|S|

M.

�

Now, we use Lemma 2.5.1 to show that the algorithm CrudeApproximate outputs a constant
approximation of the geometric median with high probability.

Algorithm 5: CrudeApproximateK
Input: a(1), a(2), · · · , a(n) ∈ Rd.
Sample two independent random subset of [n] of size K. Call them S1 and S2.
Let i∗ ∈ argmini∈S2

αi where αi is the 65 percentile of the numbers {
∥∥a(i) − a(j)

∥∥
2
}j∈S1 .

Output: Output a(i∗) and αi∗ .

Lemma 2.5.2 Let x∗ be a geometric median of {a(i)}i∈[n] and (x̃, λ) be the output of
CrudeApproximateK . We define dkT (x) be the k-percentile of

{∥∥x− a(i)
∥∥}

i∈T . Then, we have
that

∥∥x∗ − x̃∥∥
2
≤ 6d60

[n](x̃). Furthermore, with probability 1− e−Θ(K), we have

d60
[n](x̃) ≤ λ = d60

S1
(x̃) ≤ 2d70

[n](x
∗).

Proof Lemma 2.5.1 shows that for all x and T ⊆ [n] with |T | ≤ n
2∥∥x∗ − x∥∥

2
≤
(

2n− 2|T |
n− 2|T |

)
max
i/∈T

∥∥a(i) − x
∥∥

2
.
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Picking T to be the indices of largest 40% of
∥∥a(i) − x̃

∥∥
2
, we have

∥∥x∗ − x̃∥∥
2
≤
(

2n− 0.8n

n− 0.8n

)
d60

[n](x̃) = 6d60
[n](x̃). (2.6)

For any point x, we have that d60
[n](x) ≤ d65

S1
(x) with probability 1 − e−Θ(K) because S1 is a

random subset of [n] with size K. Taking union bound over elements on S2, with probability
1−Ke−Θ(K) = 1− e−Θ(K), for all points x ∈ S2

d60
[n](x) ≤ d65

S1
(x). (2.7)

yielding that d60
[n](x̃) ≤ λ.

Next, for any i ∈ S2, we have∥∥a(i) − a(j)
∥∥

2
≤
∥∥a(i) − x∗

∥∥
2

+
∥∥x∗ − a(j)

∥∥
2
.

and hence
d70

[n](a
(i)) ≤

∥∥a(i) − x∗
∥∥

2
+ d70

[n](x
∗).

Again, since S1 is a random subset of [n] with size K, we have that d65
S1

(a(i)) ≤ d70
[n](a

(i)) with
probability 1−Ke−Θ(K) = 1− e−Θ(K). Therefore,

d65
S1

(a(i)) ≤
∥∥a(i) − x∗

∥∥
2

+ d70
[n](x

∗).

Since S2 is an independent random subset, with probability 1− e−Θ(K), there is i ∈ S2 such that∥∥a(i) − x∗
∥∥

2
≤ d70

[n](x
∗). In this case, we have

d65
S1

(a(i)) ≤ 2d70
[n](x

∗).

Since i∗ minimizes d65
S1

(a(i)) over all i ∈ S2, we have that

λ
def
= d65

S1
(x̃)

def
= d65

S1
(a(i∗)) ≤ d65

S1
(a(i)) ≤ 2d70

[n](x
∗) .

�

2.5.2 A 1 + ε Approximation of Geometric Median

Here we show how to improve the constant approximation in the previous section to a 1 + ε
approximation. Our algorithm is essentially stochastic subgradient where we use the information
from the previous section to bound the domain in which we need to search for a geometric median.

Theorem 2.5.3 Let x be the output of ApproximateMedian(ε). With probability 1− e−Θ(1/ε), we
have

E [f(x)] ≤ (1 + ε) min
x∈Rd

f(x).
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Algorithm 6: ApproximateMedian(ε)

Input: a(1), a(2), · · · , a(n) ∈ Rd.

Let T = (120/ε)2 and let η = 6λ
n

√
2
T

.

Let (x(1), λ) = CrudeApproximate√T (a(1), a(2), · · · , a(n)) .
for k ← 1, 2, · · · , T do

Sample ik from [n] and let

g(k) =

{
n(x(k) − a(ik))/

∥∥x(k) − a(ik)
∥∥

2
if x(i) 6= a(ik)

0 otherwise

Let x(k+1) = argmin∥∥x−x(1)∥∥
2
≤6λ

η
〈
g(k), x− x(k)

〉
+ 1

2

∥∥x− x(k)
∥∥2

2
.

end
Output: Output 1

T

∑T
i=1 x

(k).

Furthermore, the algorithm takes O(d/ε2) time.

Proof After computing x(1) and λ the remainder of our algorithm is the stochastic subgradient
descent method applied to f(x). It is routine to check that Ei(k)g(k) is a subgradient of f at x(k) .
Furthermore, since the diameter of the domain,

{
x :

∥∥x− x(1)
∥∥

2
≤ 6λ

}
, is clearly λ and the norm

of sampled gradient, g(k), is at most n, we have that

E

f ( 1

T

T∑
i=1

x(k)

)
− min∥∥x−x(1)∥∥

2
≤6λ

f(x) ≤

 6nλ

√
2

T

(see [Bub14, Thm 6.1]). Lemma 2.5.2 shows that
∥∥x∗ − x(1)

∥∥
2
≤ 6λ and λ ≤ 2d70

[n](x
∗) with

probability 1−
√
Te−Θ(

√
T ). In this case, we have

E

[
f

(
1

T

T∑
i=1

x(k)

)
− f(x∗)

]
≤

12
√

2nd70
[n](x

∗)
√
T

.

Since d70
[n](x

∗) ≤ 1
0.3n

f(x∗), we have

E

[
f

(
1

T

T∑
i=1

x(k)

)]
≤

(
1 +

60√
T

)
f(x∗) ≤

(
1 +

ε

2

)
f(x∗) .

�
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2.6 Weighted Geometric Median

In this section, we show how to extend our results to the weighted geometric median problem, also
known as the Weber problem: given a set of n points in d dimensions, a(1), . . . , a(n) ∈ Rd, with
corresponding weights w(1), . . . , w(n) ∈ R>0, find a point x∗ ∈ Rd that minimizes the weighted
sum of Euclidean distances to them:

x∗ ∈ argminx∈Rdf(x) where f(x)
def
=
∑
i∈[n]

w(i)‖x− a(i)‖2.

As in the unweighted problem, our goal is to compute (1 + ε)-approximate solution, i.e. x ∈ Rd

with f(x) ≤ (1 + ε)f(x∗).

First, we show that it suffices to consider the case where the weights are integers with bounded
sum (Lemma 2.6.1). Then, we show that such an instance of the weighted geometric median
problem can be solved using the algorithms developed for the unweighted problem.

Lemma 2.6.1 Given points a(1), a(2), . . . , a(n) ∈ Rd, weights w(1), w(2), . . . , w(n) ∈ R>0, and
ε ∈ (0, 1), we can compute in linear time weights w(1)

1 , w
(2)
1 , . . . , w

(n)
1 such that:

• Any (1 + ε/5)-approximate weighted geometric median of a(1), . . . , a(n) with the weights
w

(1)
1 , . . . , w

(n)
1 is also a (1 + ε)-approximate weighted geometric median of a(1), . . . , a(n) with

the weights w(1), . . . , w(n), and

• w(1)
1 , . . . , w

(n)
1 are nonnegative integers and

∑n
i=1w

(i)
1 ≤ 5nε−1.

Proof Let
f(x) =

∑
i∈[n]

w(i)
∥∥a(i) − x

∥∥
and W =

∑
i∈[n] w

(i). Furthermore, let ε′ = ε/5 and for each i ∈ [n], define

w
(i)
0 =

n

ε′W
w(i)

w
(i)
1 =

⌊
w

(i)
0

⌋
w

(i)
2 = w

(i)
0 − w

(i)
1

We also define f0, f1, f2,W0,W1,W2 analogously to f and W .

Now, assume f1(x) ≤ (1 + ε′)f1(x∗), where x∗ is the minimizer of f and f0. Then:
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f0(x) = f1(x) + f2(x)

≤ f1(x) + f2(x∗) +W2

∥∥x− x∗∥∥
= f1(x) + f2(x∗) +

W2

W1

∑
w

(i)
1

∥∥x− x∗∥∥
≤ f1(x) + f2(x∗) +

W2

W1

∑
w

(i)
1

(∥∥a(i) − x
∥∥+

∥∥a(i) − x∗
∥∥)

= f1(x) + f2(x∗) +
W2

W1

(f1(x) + f1(x∗))

≤ f1(x) + f2(x∗) +
ε′

1− ε′
(f1(x) + f1(x∗))

≤
(

1 +
ε′

1− ε′

)
(1 + ε′)f1(x∗) +

ε′

1− ε′
f1(x∗) + f2(x∗)

≤ (1 + 5ε′)f0(x∗)

= (1 + ε)f0(x∗).

�

We now proceed to show the main result of this section.

Lemma 2.6.2 A (1+ε)-approximate weighted geometric median of n points in Rd can be computed
in O(nd log3 ε−1) time.

Proof By applying Lemma 2.6.1, we can assume that the weights are integer and their sum
does not exceed nε−1. Note that computing the weighted geometric median with such weights is
equivalent to computing an unweighted geometric median of O(nε−1) points (where each point of
the original input is repeated with the appropriate multiplicity). We now show how to simulate the
behavior of our unweighted geometric median algorithms on such a set of points without computing
it explicitly.

If ε > n−1/2, we will apply the algorithm ApproximateMedian(ε), achieving a runtime of
O(dε−2) = O(nd). It is only necessary to check that we can implement weighted sampling from
our points with O(n) preprocessing and O(1) time per sample. This is achieved by the alias method
[KP79].

Now assume ε < n−1/2. We will employ the algorithm AccurateMedian(ε). Note that the ini-
tialization using ApproximateMedian(2) can be performed as described in the previous paragraph.
It remains to check that we can implement the subroutines LineSearch and ApproxMinEig on the
implicitly represented multiset of O(nε−1) points. It is enough to observe only n of the points are
distinct, and all computations performed by these subroutines are identical for identical points. The
total runtime will thus be O(nd log3(n/ε2)) = O(nd log3 ε−1).

�
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Appendix

2.A Properties of the Central Path (Proofs)

Here we provide proofs of the claims in Section 2.3.

2.A.1 Basic Facts

Here we provide basic facts regarding the central path that we will use throughout our analysis.
First, we compute various derivatives of the penalized objective function.

Lemma 2.A.1 (Path Derivatives) We have

5ft(x) =
∑
i∈[n]

t2(x− a(i))

1 + g
(i)
t (x)

,

52ft(x) =
∑
i∈[n]

t2

1 + g
(i)
t (x)

(
I− t2(x− a(i))(x− a(i))>

g
(i)
t (x)(1 + g

(i)
t (x))

)
, and

d

dt
xt = −

(
52ft(xt)

)−1
∑
i∈[n]

t(xt − a(i))

(1 + g
(i)
t (xt))g

(i)
t (xt)

Proof Direct calculation shows that

5f (i)
t (x) =

t2(x− a(i))√
1 + t2

∥∥x− a(i)
∥∥2

2

− 1

1 +
√

1 + t2
∥∥x− a(i)

∥∥2

2

 t2(x− a(i))√
1 + t2

∥∥x− a(i)
∥∥2

2


=

t2(x− a(i))

1 +
√

1 + t2
∥∥x− a(i)

∥∥2

2

=
t2(x− a(i))

1 + g
(i)
t (x)
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and

52f
(i)
t (x) =

t2

1 +
√

1 + t2
∥∥x− a(i)

∥∥2

2

I−

 1

1 +
√

1 + t2
∥∥x− a(i)

∥∥2

2

2

t2(x− a(i))(x− a(i))>√
1 + t2

∥∥x− a(i)
∥∥2

2

=
t2

1 + g
(i)
t (x)

(
I− t2(x− a(i))(x− a(i))>

g
(i)
t (x)(1 + g

(i)
t (x))

)

and(
d

dt
5 f

(i)
t

)
(x) =

2t(x− a(i))

1 +
√

1 + t2
∥∥x− a(i)

∥∥2

2

−
t2 · (x− a(i)) · t

∥∥x− a(i)
∥∥2

2(
1 +

√
1 + t2

∥∥x− a(i)
∥∥)2√

1 + t2
∥∥x− a(i)

∥∥2

2

=
t · (x− a(i))

1 + g
(i)
t (x)

(
2− g

(i)
t (x)2 − 1

(1 + g
(i)
t (x))g

(i)
t (x)

)

=
t · (x− a(i))

1 + g
(i)
t (x)

(
2g

(i)
t (x)− (g

(i)
t (x)− 1)

g
(i)
t (x)

)
=
t · (x− a(i))

g
(i)
t (x)

Finally, by the optimality of xt we have that5ft(xt) = 0. Consequently,

∇2ft(xt)
d

dt
xt +

(
d

dt
∇ft

)
(xt) = 0.

and solving for d
dt
xt then yields

d

dt
xt = −

(
∇2ft(xt)

)−1
((

d

dt
∇ft

)
(xt)

)
= −

(
∇2ft(xt)

)−1
((

d

dt
∇ft

)
(xt)−

1

t
5 ft(xt)

)

= −
(
∇2ft(xt)

)−1

∑
i∈[n]

[
t

g
(i)
t

− t

1 + g
(i)
t

]
(xt − a(i))

 .

�

Next, in the following lemma we compute simple approximations of the Hessian of the penalized
barrier.
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Lemma 2.A.2 For all t > 0 and x ∈ Rd

52ft(x) =
∑
i∈[n]

t2

1 + g
(i)
t

(
I−

(
1− 1

g
(i)
t (x)

)
u(i)(x)u(i)(x)>

)

and therefore ∑
i∈[n]

t2

(1 + g
(i)
t )g

(i)
t

I � 52ft(x) �
∑
i∈[n]

t2

1 + g
(i)
t (x)

I

Proof We have that

52ft(x) =
∑
i∈[n]

t2

1 + g
(i)
t (x)

(
I− t2(x− a(i))(x− a(i))>

g
(i)
t (x)(1 + g

(i)
t (x))

)

=
∑
i∈[n]

t2

1 + g
(i)
t (x)

(
I−

t2
∥∥x− a(i)

∥∥2

2

(1 + g
(i)
t (x))g

(i)
t (x)

u(i)(x)u(i)(x)>

)

=
∑
i

t2

1 + gi

(
I− u(i)(x)u(i)(x)>

)
Since

g
(i)
t (x)2 − 1

g
(i)
t (x)(1 + g

(i)
t (x))

=
(g

(i)
t (x) + 1)(g

(i)
t (x)− 1)

(1 + g
(i)
t (x))g

(i)
t (x)

= 1− 1

g
(i)
t (x)

,

the result follows.

�

2.A.2 Stability of Hessian

To show that under `2 changes the Hessian does not change by much spectrally, we first show that
under such changes each g(i)

t does not change by too much.

Lemma 2.A.3 (Stability of g) For all x, y ∈ Rd and t > 0 , we have

g
(i)
t (x)− t

∥∥x− y∥∥
2
≤ g

(i)
t (y) ≤ g

(i)
tă (x) + t

∥∥x− y∥∥
2

Proof Direct calculation reveals that

g
(i)
t (y)2 = 1 + t2

∥∥x− a(i) + y − x
∥∥2

2

= 1 + t2
∥∥x− a(i)

∥∥2

2
+ 2t2(x− a(i))>(y − x) + t2

∥∥y − x∥∥2

2

= g
(i)
t (x)2 + 2t2(x− a(i))>(y − x) + t2

∥∥y − x∥∥2

2
.
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Consequently, by the Cauchy-Schwarz inequality,

g
(i)
t (y)2 ≤ g

(i)
t (x)2 + 2t2

∥∥x− a(i)
∥∥

2
·
∥∥y − x∥∥

2
+ t2

∥∥y − x∥∥2

2

≤
(
g

(i)
t (x) + t

∥∥y − x∥∥
2

)2

and

g
(i)
t (y)2 ≥ g

(i)
t (x)2 − 2t2

∥∥x− a(i)
∥∥

2
·
∥∥y − x∥∥

2
+ t2

∥∥y − x∥∥2

2

≥
(
g

(i)
t (x)− t

∥∥y − x∥∥
2

)2

.

�

Lemma 2.3.1 Suppose that
∥∥x− y∥∥

2
≤ ε

t
with ε ≤ 1

20
. Then, we have

(1− 6ε2/3)52 ft(x) � 52ft(y) � (1 + 6ε2/3)52 ft(x).

Proof Write y−x = αivi+βiu
(i)(x) for some vi ⊥ u(i)(x) with

∥∥vi∥∥2
= 1. Since

∥∥x−y∥∥2

2
≤ ε2

t2
,

we see that α2
i , β

2
i ≤ ε2

t2
.

Now, let x̄ = x+ βiu
(i). Clearly, u(i)(x) = u(i)(x̄) and therefore some manipulation reveals that

for all unit vectors z ∈ Rd

∣∣∣[u(i)(x)>z
]2 − [u(i)(y)z

]2∣∣∣
=
∣∣∣[u(i)(x̄)>z

]2 − [u(i)(y)z
]2∣∣∣

=

∣∣∣∣∣∣
[

(x̄− a(i))>z∥∥x̄− a(i)
∥∥

2

]2

−

[
(y − a(i))>z∥∥y − a(i)

∥∥
2

]2
∣∣∣∣∣∣

≤

∣∣∣∣∣∣
[

(x̄− a(i))>z∥∥x̄− a(i)
∥∥

2

]2

−

[
(x̄− a(i))>z∥∥y − a(i)

∥∥
2

]2
∣∣∣∣∣∣+

∣∣∣∣∣∣
[

(x̄− a(i))>z∥∥y − a(i)
∥∥

2

]2

−

[
(y − a(i))>z∥∥y − a(i)

∥∥
2

]2
∣∣∣∣∣∣

≤

∣∣∣∣∣1−
∥∥x̄− a(i)

∥∥2

2∥∥y − a(i)
∥∥2

2

∣∣∣∣∣+

∣∣∣[(x̄− a(i) + (y − x̄))>z
]2 − [(x̄− a(i))>z

]2∣∣∣∥∥y − a(i)
∥∥2

2

=
α2
i +

∣∣∣2 [(x̄− a(i))>z
]
·
[
(y − x̄)>z

]
+
[
(y − x̄)>z

]2∣∣∣∥∥x̄− a(i)
∥∥2

2
+ α2

i

.
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Now, y − x̄ = αivi and
[
(y − x̄)>z

]2 ≤ α2
i ≤ ε2

t2
. Therefore, by the Young and Cauchy-Schwarz

inequalities we have that for all γ > 0∣∣∣[u(i)(x)>z
]2 − [u(i)(y)z

]2∣∣∣ ≤ 2α2
i + 2

∣∣[(x̄− a(i))>z
]
·
[
(y − x̄)>z

]∣∣∥∥x̄− a(i)
∥∥2

2
+ α2

i

≤
2α2

i + γ
[
(x̄− a(i))>z

]2
+ γ−1

[
(y − x̄)>z

]2∥∥x̄− a(i)
∥∥2

2
+ α2

i

≤
α2
i

(
2 + γ−1

(
v>i z

)2
)

∥∥x̄− a(i)
∥∥2

2
+ α2

i

+ γ
[
(u(i)(x))>z

]2
≤ ε2

t2
∥∥x̄− a(i)

∥∥2

2
+ ε2

(
2 +

1

γ

(
v>i z

)2
)

+ γ
[
(u(i)(x))>z

]2
.

Note that

t2
∥∥x̄− a(i)

∥∥2

2
= t2

(∥∥x− a(i)
∥∥2

2
+ 2βi(x− a(i))>u(i)(x) + β2

i

)
=
(
t
∥∥x− a(i)

∥∥
2

+ tβi
)2

≥
(
max

{
t
∥∥x− a(i)

∥∥
2
− ε, 0

})2
.

Consequently, if t
∥∥x − a(i)

∥∥
2
≥ 2ε1/3

√
g

(i)
t (x) then since ε ≤ 1

20
we have that t2

∥∥x̄ − a(i)
∥∥2

2
≥

2ε2/3g
(i)
t (x) and therefore letting γ = ε2/3

g
(i)
t (x)

we have that

∣∣∣∣[u(i)
t (x)>z

]2

−
[
u

(i)
t (y)z

]2
∣∣∣∣ ≤ ε4/3

2g
(i)
t (x)

(
2 +

g
(i)
t (x)

ε2/3
[
v>z

]2)
+

ε2/3

g
(i)
t (x)

[
(u(i)(x))>z

]2
≤ 2ε2/3

[
v>z

]2
+

ε2/3

g
(i)
t (x)

[
(u(i)(x))>z

]2
≤ 2ε2/3

(
1 + g

(i)
t (x)

t2

)∥∥z∥∥2

52f
(i)
t (x)

and therefore if we let

H
(i)
t

def
=

t2

1 + g
(i)
t (x)

(
I−

(
1− 1

g
(i)
t (x)

)
u(i)(y)(u(i)(y))>

)
,

we see that for unit vectors z,∣∣∣z> (H
(i)
t −52f

(i)
t (x)

)
z
∣∣∣ ≤ 2ε2/3

∥∥z∥∥2

52f
(i)
t (x)
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Otherwise, t
∥∥x− a(i)

∥∥
2
< 2ε1/3

√
g

(i)
t (x) and therefore

g
(i)
t (x)2 = 1 + t2

∥∥x− a(i)
∥∥2

2
≤ 1 + 4ε2/3g

(i)
t (x)

Therefore, we have

g
(i)
t (x) ≤ 4ε2/3 +

√
(4ε2/3)2 + 4

2
≤ 1 + 4ε2/3.

Therefore,

1

1 + 4ε2/3
H

(i)
t �

t2

(1 + g
(i)
t (x))g

(i)
t (x)

I � 52f
(i)
t (x) � t2

(1 + g
(i)
t (x))

I �
(
1 + 4ε2/3

)
H

(i)
t .

In either case, we have that∣∣∣z> (H
(i)
t −52f

(i)
t (x)

)
z
∣∣∣ ≤ 4ε2/3

∥∥z∥∥2

52f
(i)
t (x)

.

Now, we note that
∥∥x− y∥∥

2
≤ ε

t
≤ ε · g

(i)
t (x)

t
. Therefore, by Lemma 2.A.3. we have that

(1− ε)g(i)
t (x) ≤ g

(i)
t (y) ≤ (1 + ε)g

(i)
t (x)

Therefore, we have

1− 4ε2/3

(1 + ε)2
52 f

(i)
t (x) � 1

(1 + ε)2
H

(i)
t � 52f

(i)
t (y) � 1

(1− ε)2
H

(i)
t �

1 + 4ε2/3

(1− ε)2
52 f

(i)
t (x)

Since ε < 1
20

, the result follows.

�

Consequently, so long as we have a point within a O(1
t
) sized Euclidean ball of some xt

Newton’s method (or an appropriately transformed first order method) within the ball will converge
quickly.

2.A.3 How Much Does the Hessian Change Along the Path?

Lemma 2.3.2 For all t ≥ 0 and i ∈ [n], the following inequalities hold:∥∥∥∥ ddtxt
∥∥∥∥

2

≤ 1

t2
ḡt(xt) ,

∣∣∣∣ ddtg(i)
t (xt)

∣∣∣∣ ≤ 1

t

(
g

(i)
t (xt) + ḡt

)
, and

∣∣∣∣ ddtwt
∣∣∣∣ ≤ 2

t
wt.
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Consequently, for all t′ ≥ t we have that
(
t
t′

)2
wt ≤ wt′ ≤

(
t′

t

)2
wt.

Proof From Lemma 2.A.1 we know that

d

dt
xt = −

(
52ft(xt)

)−1
∑
i∈[n]

t(xt − a(i))

(1 + g
(i)
t (xt))g

(i)
t (xt)

and by Lemma 2.A.2 we know that

52ft(xt) �
∑
i∈[n]

t2

(1 + g
(i)
t (xt))g

(i)
t (xt)

I =
t2

ḡt(xt)

∑
i∈[n]

1

1 + g
(i)
t (xt)

I .

Using this fact and the fact that t
∥∥xt − a(i)

∥∥
2
≤ g

(i)
t we have∥∥∥∥ ddtxt

∥∥∥∥
2

=

∥∥∥∥− (52ft(xt)
)−1 d

dt
5 ft(xt)

∥∥∥∥
2

≤

 t2

ḡt(xt)

∑
i∈[n]

1

1 + g
(i)
t (xt)

−1 ∑
i∈[n]

∥∥ t

g
(i)
t (xt)(1 + g

(i)
t (xt))

(xt − a(i))
∥∥

2

≤ ḡt(xt)

t2

Next, we have

d

dt
g

(i)
t (xt) =

d

dt

(
1 + t2

∥∥xt − a(i)
∥∥2

2

) 1
2

=
1

2
· g(i)

t (xt)
−1

(
2t
∥∥xt − a(i)

∥∥2

2
+ 2t2(xt − a(i))>

d

dt
xt

)
which by the Cauchy-Schwarz inequality and the fact that t

∥∥xt−a(i)
∥∥

2
≤ g

(i)
t (xt) yields the second

equation. Furthermore,∣∣∣∣ ddtwt
∣∣∣∣ =

∣∣∣∣∣ ddt∑
i

1

1 + g
(i)
t (xt)

∣∣∣∣∣ ≤∑
i

∣∣∣∣∣ ddt 1

1 + g
(i)
t (xt)

∣∣∣∣∣
=
∑
i

∣∣∣∣ 1

(1 + gt(xt))2

d

dt
gt(xt)

∣∣∣∣
≤ 1

t

∑
i

g
(i)
t (xt) + ḡt

(1 + g
(i)
t (xt))g

(i)
t (xt)

≤ 2
wt
t

which yields the third equation.
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Finally, using our earlier results and Jensen’s inequality yields that

|lnwt′ − lnwt| =

∣∣∣∣∣
∫ t′

t

d
dα
wα

wα
dα

∣∣∣∣∣ ≤
∫ t′

t

(
2wα
α

)
wα

dα = 2

∫ t′

t

1

α
dα

= ln

(
t′

t

)2

.

Exponentiating the above inequality yields the final inequality.

�

Lemma 2.3.3 For all t ≥ 0, we have

− 12 · t · wtI �
d

dt

[
52ft(xt)

]
� 12 · t · wtI (2.3)

and therefore for all β ∈ [0, 1
8
]

52 f(xt)− 15βt2wtI � 52f(xt(1+β)) � 52f(xt) + 15βt2wtI . (2.4)

Proof Let

A
(i)
t

def
=
t2(xt − a(i))(xt − a(i))>

(1 + g
(i)
t )g

(i)
t

and recall that52ft(xt) =
∑

i∈[n]
t2

1+g
(i)
t

(
I−A

(i)
t

)
. Consequently,

d

dt
52 ft(xt) =

d

dt

∑
i∈[n]

t2

1 + g
(i)
t

(
I−A

(i)
t

)
= 2t

(
1

t2

)
52 ft(xt) + t2

∑
i

− d
dt
g

(i)
t

(1 + g
(i)
t )2

(
I−A

(i)
t

)
−
∑
i

t2

1 + g
(i)
t

d

dt
A

(i)
t

Now, since 0 � A
(i)
t � I and therefore 0 � 52ft(xt) � t2wtI. For all unit vectors v, using Lemma

2.3.2, we have that

∣∣∣∣v>( d

dt
52 ft(xt)

)
v

∣∣∣∣ ≤ 2t · wt ·
∥∥v∥∥2

2
+ t2

∑
i

∣∣∣ ddtg(i)
t

∣∣∣
(1 + g

(i)
t )2

∥∥v∥∥2

2
+
∑
i

t2

1 + g
(i)
t

∣∣∣∣v>( d

dt
A

(i)
t

)
v

∣∣∣∣
≤ 4t · wt +

∑
i∈[n]

t2

1 + g
(i)
t

∣∣∣∣v>( d

dt
A

(i)
t

)
v

∣∣∣∣ .
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Since

d

dt
A

(i)
t = 2t

(
1

t2

)
A

(i)
t −

(
t

(1 + g
(i)
t )g

(i)
t

)2 [
(1 + g

(i)
t )

d

dt
g

(i)
t + g

(i)
t

d

dt
g

(i)
t

]
(xt − a(i))(xt − a(i))>

+
t2

(1 + g
(i)
t )g

(i)
t

[
(xt − a(i))(

d

dt
xt)
> + (

d

dt
xt)(xt − a(i))>

]
,

we have∣∣∣∣v>( d

dt
A

(i)
t

)
v

∣∣∣∣ ≤
2

t
+

2t2
∣∣∣ ddtg(i)

t

∣∣∣
(1 + g

(i)
t )(g

(i)
t )2

∥∥xt − a(i)
∥∥2

2
+

2t2
∥∥xt − a(i)

∥∥
2

∥∥ d
dt
xt
∥∥

2

(1 + g
(i)
t )g

(i)
t

∥∥v∥∥2

2

≤ 2

t
+

2

t
· g

(i)
t + ḡt

1 + g
(i)
t

+
2

t
· ḡt

1 + g
(i)
t

≤ 4

t
+

4

t

ḡt

1 + g
(i)
t

.

Consequently, we have∣∣∣∣v>( d

dt
52 ft(xt)

)
v

∣∣∣∣ ≤ 8t · wt + 4t
∑
i

ḡt

(1 + g
(i)
t )2

≤ 12t · wt

which completes the proof of (2.3). To prove (2.4), let v be any unit vector and note that

∣∣v> (52ft(1+β)(x)−52ft(x)
)
v
∣∣ =

∣∣∣∣∣
∫ t(1+β)

t

v>
d

dt

[
52fα(xα)

]
v · dα

∣∣∣∣∣
≤ 12

∫ t(1+β)

t

α · wαdα

≤ 12

∫ t(1+β)

t

α
(α
t

)2

wtdα

≤ 12

t2

(
1

4
[t(1 + β)]4 − 1

4
t4
)
wt

= 3t2
[
(1 + β)4 − 1

]
wt

≤ 15t2βwt

where we used 0 ≤ β ≤ 1
8

in the last line.

�
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2.A.4 Where is the next Optimal Point?

Lemma 2.3.4 For all t, we have 1
2

[
t2 · wtI− (t2 · wt − µt)vtv>t

]
� 52ft(xt) � t2 · wtI − (t2 ·

wt − µt)vtv>t .

Proof This follows immediately from Lemma 2.A.2 and Lemma 2.D.1.

�

Lemma 2.3.5 (The Central Path is Almost Straight) For all t ≥ 0, β ∈ [0, 1
600

], and any unit
vector y with |〈y, vt〉| ≤ 1

t2·κ where κ = maxδ∈[t,(1+β)t]
wδ
µδ

, we have y>(x(1+β)t − xt) ≤ 6β
t

.

Proof Clearly,

y>(x(1+β)t − xt) =

∫ (1+β)t

t

y>
d

dα
xαdα ≤

∫ (1+β)t

β

∣∣∣∣y> d

dα
xα

∣∣∣∣ dα
≤
∫ (1+β)t

t

∣∣∣∣∣∣y> (52fα(xα)
)−1

∑
i∈[n]

α

(1 + g
(i)
α )g

(i)
α

(xα − a(i))

∣∣∣∣∣∣ dα
≤
∫ (1+β)t

t

∥∥ (52fα(xα)
)−1

y
∥∥

2
·
∥∥∑
i∈[n]

α

(1 + g
(i)
α )g

(i)
α

(xα − a(i))
∥∥

2
dα

Now since α
∥∥xα − a(i)

∥∥
2
≤ g

(i)
α , invoking Lemma 2.3.2 yields that∥∥∥∥∥∥

∑
i∈[n]

α

(1 + g
(i)
α )g

(i)
α

(xα − a(i))

∥∥∥∥∥∥
2

≤
∑
i∈[n]

1

1 + g
(i)
α

= wα ≤
(α
t

)2

wt.

and invoking Lemma 2.3.3 and the Lemma 2.3.4, we have that

52fα(xα) � 52ft(xt)− 15βt2wtI �
1

2

[
t2 · wtI− (t2 · wt − µt)vtv>t

]
− 15βt2wtI.

Let Hα = 52fα(xα) and Ht = 52ft(xt). Then Lemma 2.3.3 shows that

Hα = Ht + ∆α,

where
∥∥∆α

∥∥
2
≤ 15βt2wt. Now, we note that

H2
α = H2

t + ∆αHt + Ht∆α + ∆2
α .
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Therefore, we have ∥∥H2
α −H2

t

∥∥
2
≤
∥∥∆αHt

∥∥
2

+
∥∥Ht∆α

∥∥
2

+
∥∥∆2

α

∥∥
2

≤ 2
∥∥∆
∥∥

2

∥∥Ht

∥∥
2

+
∥∥∆
∥∥2

2

≤ 40βt4w2
t .

Let S be the subspace orthogonal to vt. Then, Lemma 2.3.4 shows that Ht � 1
2
t2wtI on S and

hence H2
t � 1

4
t4w2

t I on S. Since
∥∥H2

α −H2
t

∥∥
2
≤ 40βt4w2

t , we have that

H2
α �

1

4
t4w2

t − 40βt4w2
t I on S

and hence

H−2
α �

(
1

4
t4w2

t − 40βt4w2
t

)−1

I on S.

Therefore, for any z ∈ S, we have

∥∥ (52fα(xα)
)−1

z
∥∥

2
=
∥∥H−1

α z
∥∥

2
≤

∥∥z∥∥
2√

1
4
t4w2

t − 40βt4w2
t

.

Now, we split y = z + 〈y, vt〉vt where z ∈ S. Then, we have that∥∥ (52fα(xα)
)−1

y
∥∥

2
≤
∥∥ (52fα(xα)

)−1
z
∥∥

2
+ |〈y, vt〉|

∥∥ (52fα(xα)
)−1

vt
∥∥

2

≤ 1√
1
4
t4w2

t − 40βt4w2
t

+
1

t2 · κ
∥∥ (52fα(xα)

)−1
vt
∥∥

2
.

Note that, we also know that λmin(52fα(xα)) ≥ µα and hence λmax(52fα(xα)−2) ≥ µ−2
α . There-

fore, we have ∥∥ (52fα(xα)
)−1

y
∥∥

2
≤ 1√

1
4
− 40βt2wt

+
1

t2
µα
wα

1

µα

≤ 1

t2wt

2 +
1√

1
4
− 40β

 ≤ 5

t2wt
.
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Combining these yields that

y>(x(1+β)t − xt) ≤
∫ (1+β)t

t

5

t2wt

(α
t

)2

wtdα ≤
5

t4

(
1

3
(1 + β)3t3 − 1

3
t3
)

≤ 5

3t

[
(1 + β)3 − 1

]
≤ 6β

t
.

�

2.A.5 Where is the End?

Lemma 2.A.4 For all t > 0, we have that f(xt)− f(x∗) ≤ 2n
t

.

Proof By definition of xt we know that 5ft(xt) = 0. consequently 1
t
5 ft(xt)

>(xt − x∗) = 0
and by Lemma 2.A.1 we have

∑
i∈[n]

t(xt − a(i))>(xt − x∗)
1 + g

(i)
t (x)

= 0

and therefore ∑
i∈[n]

t
∥∥xt − a(i)

∥∥2

2
+ t(xt − a(i))>(a(i) − x∗)
1 + g

(i)
t (xt)

= 0

and therefore, by the Cauchy-Schwarz inequality

∑
i∈[n]

t
∥∥xt − a(i)

∥∥2

2

1 + g
(i)
t (xt)

≤
∑
i∈[n]

t
∥∥xt − a(i)

∥∥
2

∥∥a(i) − x∗
∥∥

2

1 + g
(i)
t (xt)

Consequently, using t
∥∥xt − a(i)

∥∥
2
≤ g

(i)
t (xt) and that 1 + g

(i)
t (xt) ≤ 2 + t

∥∥xt − a(i)
∥∥

2

0 ≤
∑
i∈[n]

t
∥∥xt − a(i)

∥∥
2
(
∥∥x∗ − a(i)

∥∥
2
−
∥∥xt − a(i)

∥∥
2
)

1 + g
(i)
t (xt)

≤
∑
i∈[n]

∥∥x∗ − a(i)
∥∥

2
−
∑
i∈[n]

t
∥∥xt − a(i)

∥∥2

2

1 + g
(i)
t (xt)

≤ f(x∗)−
∑
i∈[n]

t
∥∥xt − a(i)

∥∥
2

+
∑
i∈[n]

2
∥∥xt − a(i)

∥∥
2

1 + g
(i)
t (xt)

≤ f(x∗)− f(xt) +
2n

t

�
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Lemma 2.3.6 For all t > 1
400f(x∗)

, we have f(xt)− f(x∗) ≤ 100n
√

f(x∗)
t

.

Proof Let S = {i such that
∥∥x∗ − xt∥∥2

≤ K
∥∥a(i) − xt

∥∥
2
} for some K > 2. By the convexity,

we have that∑
i∈S

∥∥a(i) − xt
∥∥

2
≤ 1

t

∑
i∈S

√
1 + t2

∥∥a(i) − xt
∥∥2

2

≤ 1

t

∑
i∈S

√
1 + t2

∥∥a(i) − x∗
∥∥2

2
−
∑
i∈S

t
〈
xt − a(i), x∗ − xt

〉√
1 + t2

∥∥xt − a(i)
∥∥2

2

≤
∑
i∈S

∥∥a(i) − x∗
∥∥

2
+
|S|
t
−
∑
i∈S

t
〈
xt − a(i), x∗ − xt

〉√
1 + t2

∥∥xt − a(i)
∥∥2

2

(2.8)

For all i /∈ S, we have∥∥a(i) − x∗
∥∥

2
≥

∥∥x∗ − xt∥∥2
−
∥∥a(i) − xt

∥∥
2

≥ K − 2

K

∥∥x∗ − xt∥∥2
+
∥∥a(i) − xt

∥∥
2
.

Putting it into (2.8), we have that

f(xt)− f(x∗) =
∑
i∈[n]

∥∥a(i) − xt
∥∥

2
−
∑
i∈[n]

∥∥a(i) − x∗
∥∥

2

≤ |S|
t
−
∑
i∈S

t
〈
xt − a(i), x∗ − xt

〉√
1 + t2

∥∥xt − a(i)
∥∥2

2

− K − 2

K
|Sc|

∥∥x∗ − xt∥∥2

Now, we use the optimality condition

∑
i∈[n]

t2(x− a(i))

1 +
√

1 + t2
∥∥x− a(i)

∥∥2

2

= 0

and get

f(xt)− f(x∗) ≤ |S|
t
− K − 2

K
|Sc|

∥∥x∗ − xt∥∥2
+
∑
i∈[n]

〈
v(i), x∗ − xt

〉
1 +

√
1 +

∥∥v(i)
∥∥2

2

−
∑
i∈S

〈
v(i), x∗ − xt

〉√
1 +

∥∥v(i)
∥∥2

2

.
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where v(i) = t(xt − a(i)). For i ∈ S, we have∣∣∣∣∣∣
〈
v(i), x∗ − xt

〉
1 +

√
1 +

∥∥v(i)
∥∥2

2

−
〈
v(i), x∗ − xt

〉√
1 +

∥∥v(i)
∥∥2

2

∣∣∣∣∣∣ ≤
∥∥v(i)

∥∥
2

∥∥x∗ − xt∥∥2√
1 +

∥∥v(i)
∥∥2

2

(
1 +

√
1 +

∥∥v(i)
∥∥2

2

)
≤

∥∥x∗ − xt∥∥2

1 +
√

1 +
∥∥v(i)

∥∥2

2

≤ K

t

where the last line used
∥∥x∗ − xt∥∥2

≤ K
∥∥a(i) − xt

∥∥
2
. Therefore, we have

f(xt)− f(x∗) ≤ |S|
t

+
K |S|
t
− K − 2

K
|Sc|

∥∥x∗ − xt∥∥2
+
∑
i/∈S

〈
v(i), x∗ − xt

〉
1 +

√
1 +

∥∥v(i)
∥∥2

2

≤ |S|
t

+
K |S|
t
− K − 2

K
|Sc|

∥∥x∗ − xt∥∥2
+ |Sc|

∥∥x∗ − xt∥∥2

=
2K |S|
t

+
2

K
|Sc|

∥∥x∗ − xt∥∥2
(2.9)

where the last line used K > 2. If
∥∥x∗ − xt∥∥2

≤ 4
t
, then

f(xt)− f(x∗) ≤ 4n

t
. (2.10)

Otherwise, we put K =
√
t
∥∥x∗ − xt∥∥2

> 2 into (2.9) and have

f(xt)− f(x∗) ≤ 2n

√∥∥x∗ − xt∥∥2

t
.

Now, we use optimality condition and note that xt is a weighted average of a(i) and hence∥∥x∗ − xt∥∥2
≤ max

i∈[n]

∥∥x∗ − a(i)
∥∥

2
≤ f(x∗).

Hence, we have

f(xt)− f(x∗) ≤ 2n

√
f(x∗)

t
. (2.11)

Putting (2.10) and (2.11) together, we have

f(xt)− f(x∗) ≤ max

(
2n

√
f(x∗)

t
,
4n

t

)
.
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Now, the result follows from t ≥ 1
400f(x∗)

.

�

2.A.6 Simple Lemmas

Here we provide various small technical results that we will use to bound the accuracy with which
we need to carry out various operations in our algorithm.

Lemma 2.A.5 For any x, we have that
∥∥x− xt∥∥2

≤ f(x).

Proof Since
∑

i∈[n]

∥∥x − a(i)
∥∥

2
= f(x), we have that

∥∥x − a(i)
∥∥

2
≤ f(x) for all i. By the

optimality condition of xt, xt is a weighted average of a(i) and hence
∥∥x− xt∥∥2

≤ f(x).

�

Lemma 2.A.6 Suppose that
∥∥x−xt∥∥2

≤ 1
100t

and t ≥ 1
400f(x∗)

, then we have f(x) ≤ 3000n ·f(x∗).

Proof Lemma 2.3.6 shows that

f(xt) ≤ f(x∗) + 100n

√
f(x∗)

t
≤ 2001nf(x∗).

Therefore, we have

f(x) ≤ f(xt) + n
∥∥x− xt∥∥2

≤ f(xt) +
n

100t
≤ f(xt) + 4nf(x∗).

�

Lemma 2.A.7 For all t ≥ 0, we have

t2 · wt(x)

µt(x)
≤ ḡt(x) ≤ 1 + t · f(x).

In particular, if
∥∥x− xt∥∥2

≤ 1
100t

and t ≥ 1
400f(x∗)

, we have t2·wt(x)
µt(x)

≤ ḡt(x) ≤ 3100nt · f(x∗).

Proof Note that µt(x) ≥
∑

i∈[n]
t2

g
(i)
t (x)(1+g

(i)
t (x))

yielding the first claim t2·wt(x)
µt(x)

≤ ḡt(x). To obtain
the second, we note that

ḡt(x) ≤ 1 + t ·max
i

∥∥x− a(i)
i

∥∥
≤ 1 + t · f(x).

Now, we use Lemma 2.A.6 to show that t
2·wt(x)
µt(x)

≤ 1+t ·f(x) ≤ 1+3000nt ·f(x∗) ≤ 3100nt ·f(x∗)

�
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Lemma 2.A.8 Suppose that
∥∥x− xt∥∥2

≤ 1
100t

and t ≥ 1
400f(x∗)

, then we have

nt2

2

∥∥x− xt∥∥2

2
+ ft(xt) ≥ ft(x) ≥ ft(xt) +

1

108n2 · f(x∗)2

∥∥x− xt∥∥2

2
.

Proof For the first inequality, note that52ft(x) �
∑

i∈[n]
t2

1+g
(i)
t (x)

I � n · t2I. Consequently, if

we let n · t2I = H in Lemma 2.D.5, we have that

ft(x)− ft(xt) ≤
1

2

∥∥x− xt∥∥2

H
≤ nt2

2

∥∥x− xt∥∥2

2

For the second inequality, Lemma 2.A.2 to show that

∇2ft(x) �
∑
i∈[n]

t2

(1 + g
(i)
t (x))g

(i)
t (x)

I.

Lemma 2.A.7 shows that ḡt(x) ≤ 3100nt · f(x∗). Since ḡt(x) is a weighted harmonic mean of
g

(i)
t (x), there is some i such that g(i)

t (x) ≤ 3100nt · f(x∗). Therefore, we have

∇2ft(x) � 1

3100n · f(x∗)3200n · f(x∗)
I

�
(

1

5000n · f(x∗)

)2

I.

Now, we apply Lemma 2.D.5 and get

ft(x) ≥ ft(xt) +
1

2

(
1

5000n · f(x∗)

)2 ∥∥x− xt∥∥2

2
.

�

2.B Nearly Linear Time Geometric Median (Proofs)

Here we provide proofs, algorithms, and technical lemmas from Section 2.4.

2.B.1 Eigenvector Computation and Hessian Approximation

Lemma 2.B.1 (Power Method) Let A ∈ Rd×d is a symmetric matrix with eigenvalues λ1 ≥
λ2 ≥ ... ≥ λd ≥ 0, corresponding eigenvectors v1, ..., vd ∈ Rd, and g

def
= λ1−λ2

λ1
. For any

ε > 0 and k ≥ α
g

log(d
ε
) for large enough constant α, in time O(nnz(A) · log(d

ε
)), the algorithm

PowerMethod(A, k) outputs a vector u such that

〈v1, u〉2 ≥ 1− ε and u>Au ≥ (1− ε)λ1
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Algorithm 7: PowerMethod(A, k)

Input: a positive definite matrix A ∈ Rd×d, and the number of iterations k.
Let x ∼ N (0, 1) be drawn from a d dimensional normal distribution.
Let y = Akz
Output: u = y/

∥∥y∥∥
2

with high probability in d.

Proof We write u =
∑

i∈[d] αivi. Then, we have

〈v1, u〉2 =

〈
v1,

∑
i∈[d] αiλ

k
i vi√∑

i∈[d] α
2
iλ

2k
i

〉2

=
α2

1

α2
1 +

∑
j 6=1 α

2
j

(
λj
λ1

)2k

≥
α2

1/
∥∥x∥∥2

2

α2
1/
∥∥x∥∥2

2
+ e−2kg

where we used that λ2
λ1

= 1− g ≤ e−g. With high probability in 1− 1
dc

, we have
∥∥x∥∥2

2
≤ 2d and

|α1| ≥ 1
dO(c) . In this case, we have α2

1/
∥∥x∥∥2

2
≥ 1/dO(c).

Using k = Ω
(

1
g

log
(
d
ε

))
, we have 〈v1, u〉2 ≥ 1− ε. Furthermore, this implies that

u>Au = u>

∑
i∈[d]

λiviv
>
i

u ≥ λ1〈v1, u〉2 ≥ (1− ε)λ1.

�

Lemma 2.4.1 (Hessian Eigenvector Computation and Approximation) For any x ∈ Rd, t > 0,
and ε ∈ (0, 1

4
), The algorithm ApproxMinEig(x, t, ε) outputs (λ, u) in O(nd log d

ε
) time with high

probability in d such that 〈vt(x), u〉2 ≥ 1− ε if µt(x) ≤ 1
4
t2wt(x). Furthermore, if ε ≤ µt(x)

4t2·wt(x)
≤

1

109n2t2·f̃2∗
and Q

def
= t2 · wt(x)− (t2 · wt(x)− λ)uu> then 1

4
Q � 52ft(x) � 4Q.

Proof By Lemma 2.3.4 we have that 1
2
Z � ∇2ft(x) � Z for

Z = t2 · wt(x)−
(
t2 · wt(x)− µt(x)

)
vt(x)vt(x)>.

Consequently, if µt(x) ≤ 1
4
t2wt(x), then for all unit vectors w ⊥ vt(x), we have that

w>52 ft(x)w ≥ 1

2
w>Zw ≥ 1

2
t2wt(x).
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Since52ft(x) = t2 · wt(x)−A, this implies that vt(x)>Avt(x) ≥ 3
4
t2 · wt(x) and that w>Aw ≤

1
2
t2wt(x). Therefore, in this case, A has a constant multiplicative gap between its top two eigenvec-

tors and by Theorem 2.B.1 we have that 〈vt(x), u〉2 ≥ 1− ε.
For the second claim, we note that

t2 · wt(x)− µt(x) ≥ u>Au ≥ (1− ε)λ1(A) = (1− ε)(t2 · wt(x)− µt(x))

Therefore, since λ = u>52 ft(x)u = t2 · wt(x)− u>Au, we have

(1− ε)µt(x)− ε · t2wt(x) ≤ λ ≤ µt(x). (2.12)

On the other hand, by Lemma 2.D.2, we have that
√
εI � vt(x)vt(x)> − uu> �

√
εI. (2.13)

Consequently, using (2.12), (2.13), we have that 1
2
Z � Q � 2Z if ε ≤ µt(x)

4t2·wt(x)
and 1

4
Q �

52ft(x) � 4Q follows.

All that remains is to consider the case where µt(x) > 1
4
t2wt(x). However, in this case

1
4
t2 · wt(x)I � 52ft(x) � t2 · wt(x)I and clearly 1

4
t2 · wt(x)I � Q � t2 · wt(x)I again yielding

1
4
Q � 52ft(x) � 4Q.

To simplify the term µt(x)
4t2·wt(x)

, we apply Lemma 2.A.7 to show that

µt(x)

4t2 · wt(x)
≥ 1

15000nt · f(x∗)
≥ 1

15000nt · f̃∗
.

Therefore, ApproxMinEig(x, t, ε) works if ε ≤ 1

109n2t2·f̃2∗
.

�

Lemma 2.4.2 Let u = ApproxMinEig(x, t, εv) for some x such that
∥∥x− xt∥∥2

≤ εc
t

for εc ≤ 1
106

.
Suppose that µt ≤ 1

4
t2 ·wt. Then, for all unit vectors y ⊥ u, we have 〈y, vt〉2 ≤ max{500ε

2/3
c , 10εv}.

Proof First, by Lemma 2.4.1 we know that 〈vt(x), u〉2 ≥ 1 − εv. By assumption, we have that∥∥x− xt∥∥2
≤ εc

t
. Therefore, by Lemma 2.3.1 we have that

(1− 6ε2/3c )52 ft(xt) � 52ft(x) � (1 + 6ε2/3c )52 f
(i)
t (xt).

If µt ≤ 1
4
t2 · wt, we know that the largest eigenvalue of A defined in ApproxMinEig(x, t, ε) is at

least 3
4
t2 · wt while the second largest eigenvalue is at most 1

2
t2 · wt. Hence, the eigengap g defined

in Lemma 2.D.3 is at least 1
3

and hence

〈vt(x), vt〉2 ≥ 1− 54ε2/3c .
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Consequently, by Lemma 2.D.4, we have that 〈u, vt〉2 ≥ 1−max{216ε
2/3
c , 4εv}.

To prove the final claim, we write u = αvt+βw for an unit vector w ⊥ vt. Since y ⊥ u, we have
that 0 = α〈vt, y〉+β〈w, y〉. Then, either 〈vt, y〉 = 0 and the result follows or α2〈vt, y〉2 = β2〈w, y〉2.
Since α2 + β2 = 1, we have

〈vt, y〉2 ≤
β2〈w, y〉2

α2
≤ 1

α2
− 1.

Noting that α2 ≥ 1−max
(

216ε
2/3
c , 4εv

)
then yields the claim.

�

Lemma 2.4.3 Suppose that µt ≥ 1
4
t2 · wt. Then, we have

∥∥xs − xt∥∥2
≤ 1

100t
for all s ∈ [1, 1.001t].

Proof Let t′ be the supremum over all s such that
∥∥xs − xt∥∥2

≤ 1
100t

for all s ∈ [t, t′]. Hence, for
all s ∈ [t, t′], Lemma 2.3.1 shows that

∇2fs(xs) �
1

2
∇2ft(xt) �

1

8
t2 · wtI.

Now, we use Lemma 2.A.1 to show that

∥∥xt′ − xt∥∥2
=

∫ t′

t

∥∥ d
ds
xs
∥∥

2
ds

≤
∫ t′

t

∥∥ (52fs(xs)
)−1

∑
i∈[n]

s

(1 + g
(i)
s )g

(i)
s

(xs − a(i))
∥∥

2
ds

≤ 8

t2wt

∫ t′

t

∥∥∑
i∈[n]

s

(1 + g
(i)
s )g

(i)
s

(xs − a(i))
∥∥

2
ds.

Now since clearly s
∥∥xs − a(i)

∥∥
2
≤ g

(i)
s , invoking Lemma 2.3.2 yields that

∥∥∑
i∈[n]

s

(1 + g
(i)
s )g

(i)
s

(xs − a(i))
∥∥

2
≤
∑
i∈[n]

1

1 + g
(i)
s

= ws ≤
(s
t

)2

wt.

Therefore, we have

∥∥xt′ − xt∥∥2
≤ 8

t2wt

∫ t′

t

(s
t

)2

wtds

≤ 8

3t4
(
t′3 − t3

)
Hence, if t′ < 1.001t, then we have

∥∥xt′ − xt∥∥2
≤ 1

101t
, which is a contradiction because

∥∥xt′ −
xt
∥∥

2
= 1

100t
. Therefore, t′ ≥ 1.001t and

∥∥xs − xt∥∥2
≤ 1

100t
for all s ≤ 1.001t.
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�

2.B.2 Line Searching

Lemma 2.4.4 Given some y ∈ Rd, t > 0 and ε > 0. In O(nd log(nt·f̃∗
ε

)) time with high probability,
LocalCenter(y, t, ε) computes x(k) such that

ft(x
(k))− min∥∥x−y∥∥

2
≤ 1

100t

ft(x) ≤ ε

ft(y)− min∥∥x−y∥∥
2
≤ 1

100t

ft(x)

 .

Proof Note that by Lemma 2.4.1 we have that 1
4
Q � 52ft(y) � 4Q. For any x such that∥∥x− y∥∥

2
≤ 1

100t
and hence Lemma 2.3.1 shows that

1

2
52 ft(x) � 52ft(y) � 252 ft(x).

Hence, we have that
1

8
Q � 52ft(x) � 8Q

for all
∥∥x− y∥∥

2
≤ 1

100t
. Therefore, Lemma 2.D.5 shows that

ft(x
(k))− min∥∥x−y∥∥

2
≤ 1

100t

ft(x) ≤
(

1− 1

64

)kft(x(0))− min∥∥x−y∥∥
2
≤ 1

100t

ft(x)

 .

The guarantee follows from our choice of k.

For the running time, Lemma 2.4.1 showed the cost of ApproxMinEig is O
(
nd log

(
nt · f̃∗

))
.

It is easy to show that the cost per iteration is O(nd) and therefore, the total cost of the k iterations
is O(nd log(1/ε)).

�

Lemma 2.4.5 Given x such that
∥∥x − xt

∥∥
2
≤ εc

t
with t ≥ 1

400f(x∗)
and εc ≤ 1

1015n3t3·f̃3∗
.

Let u = ApproxMinEig(x, t, εv) with εv ≤ 1

108n2t2·f̃2∗
. Then, in O(nd log2(nt·f̃∗

ε
)) time,

LineSearch(x, t, t′, u, ε) output y such that
∥∥y − xt′∥∥2

≤ ε
t′

.

Proof To use OneDimMinimizer, we need to prove the function g is nt-Lipschitz convex
function such that min g = min ft′ and the minimizer of g lies in [−12f̃∗, 12f̃∗]

(Lipschitzness) Note that the function φt(s) =
√

1 + t2s2 − ln
[
1 +
√

1 + t2s2
]

is a t-Lipschitz
function. Hence, ft is a nt-Lipschitz function. Therefore, g is a nt-Lipschitz function.
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(Convexity) Consider the function

h(α, x) = ft(x) +∞1∥∥x−(y+αv)

∥∥
2
> 1

100t

.

Note that h is convex and

g(α) = min∥∥x−y∥∥
2
≤ 1

100t

ft(x) = min
x
h(α, x).

Hence by Lemma 2.D.6, g(α) is convex.

(Validity) If µt ≤ 1
4
t2 · wt, using Lemma 2.4.2, εc ≤ 1

1015n3t3·f3(x∗)
and εv ≤ 1

108n2t2·f2(x∗)
and

shows that

〈y, vt〉2 ≤ max
(
500ε2/3c , 10εv

)
≤ 1

107n2t2 · f 2(x∗)

for all unit vectors y ⊥ u. Lemma 2.A.7 shows that t2κ ≤ 3100nt · f(x∗) and hence for such y, we
have

〈y, vt〉2 ≤
1

t4 · κ2
.

Therefore, we can apply Lemma 2.3.5 to show that

y>(xt′ − xt) ≤
1

100t
.

In particular, we let α∗ be the minimizer of
∥∥x − α∗u − xt′∥∥2

and consider y = x − xt′ − α∗u.
Since y ⊥ u, this shows that

∥∥x− α∗u− xt′∥∥2
≤ 1

100t
.

If µt ≥ 1
4
t2 · wt, then Lemma 2.4.3 shows that

∥∥x− α∗u− xt′∥∥2
≤ 1

100t
with α∗ = 0.

Consequently, in both case, we have minα g(α) ≤ g(α∗) = ft′(xt′).

(Domain Size) Lemma 2.A.5 showed that
∥∥xt′ − x∗∥∥ ≤ f(x∗) and

∥∥xt − x∗∥∥ ≤ f(x∗). Since
t ≥ 1

400f(x∗)
and

∥∥x− xt∥∥2
≤ 1

100t
, we have∥∥x− xt′∥∥2

≤ 12f(x∗) ≤ 12f̃∗.

Therefore, we know the minimum α∗ ∈ [−12f̃∗, 12f̃∗].

Now, we can use invoke Lemma 2.D.8 and shows that the function OneDimMinimizer
outputs α such that g(α) ≤ min g(α) + 4εO. By the guarantee of LocalCenter, we find a point
z such that

ft′(z) ≤ ft′(xt′) + 5εO (ft′(x+ αv)− ft′(xt′)) .
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Since ft is a nt-Lipschitz function and
∥∥x− α∗u− xt′∥∥2

≤ 1
100t

, we apply Lemma 2.A.8 and get
that

ft′(x+ αv) ≤ ft′(x+ α∗v) + 12nt′ · f̃∗
≤ ft′(xt′) +

n

1002
+ 12nt′ · f̃∗

≤ ft′(xt′) + 13nt′ · f̃∗.

Therefore, we have
ft′(z) ≤ ft′(xt′) + 100nt · f̃∗ · εO.

Lemma 2.A.8 shows that

ft′(z) ≥ ft′(xt′) +
1

108n2 · f̃ 2
∗

∥∥z − xt′∥∥2

2
.

Therefore, we have that
1

108n2 · f̃ 2
∗

∥∥z − xt′∥∥2

2
≤ 100nt · f̃∗ · εO.

Hence, we have
∥∥z−xt′∥∥2

2
≤ 1010n3t · f̃ 3

∗ · εO. Since εO = ε2

1010t3n3·f̃3∗
, we have that LocalCenter

works as desired.

All that remains is to bound the running time. We have by Lemma 2.D.8 that we
call q only O

(
log tnf̃∗

εO

)
= O

(
log tn·f̃∗

ε

)
times. So all that is left is to bound the cost of

q, i.e. each LocalCenter computation. By Lemma 2.4.4 the cost of each of these is
O
(
nd log

(
nt·f̃∗
ε

))
.Therefore, the total running time is O

(
nd log2

(
nt·f̃∗
ε

))
.

�

Lemma 2.4.6 Given x such that
∥∥x − xt∥∥2

≤ 1
100t

with t ≥ 1
400f(x∗)

. Then, in O(nd log2(nt·f̃∗
ε

))

time, LineSearch(x, t, t, u, ε) output y such that
∥∥y − xt∥∥2

≤ ε
t

for any vector u.

Proof The proof is the same as that of Lemma 2.4.5, except for the fact that
∥∥x−α∗u−xt∥∥2

≤ 1
100t

is satisfied automatically for α∗ = 0. Note that this lemma places weaker conditions on the initial
point.

�

2.B.3 Putting It All Together

Theorem 2.4.7 In O(nd log3(n
ε
)) time, Algorithm 1 outputs an (1 + ε)-approximate geometric

median with constant probability.
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Proof Theorem 2.5.3 shows that x(0) is a 2 approximate median with constant probability. Now,
Lemma 2.A.5 shows that ∥∥x(0) − xt

∥∥
2
≤ f(x(0)) = f̃∗

for all t > 0. In particular for t1 = 1

400f̃∗
, we have that

∥∥x(0) − xt1
∥∥

2
≤ 1

100t1
. Hence, by Lemma

2.4.6, we have
∥∥x(1) − xt1

∥∥
2
≤ εc

t1
. Now, we can use Lemma 2.4.5 to prove

∥∥x(k) − xtk
∥∥

2
≤ εc

tk
for

all k.

Lemma 2.3.6 shows that

f(xtk)− f(x∗) ≤ 100n

√
f(x∗)

tk

and since
∥∥x(k) − xtk

∥∥
2
≤ 1

t
, we have f(x(k)) − f(x∗) ≤ 10Givenx0n

√
f(x∗)
tk

+ n
tk
. Since tk =

1

400f̃∗
(1 + 1

600
)k−1, we have

f(x(k))− f(x∗) ≤ 3000nf̃∗(1 +
1

600
)−

k−1
2 .

By our choice of k, we have f(x(k))− f(x∗) ≤ ε
2
f̃∗ ≤ εf(x∗).

For the running time, Lemma 2.4.1 shows ApproxMinEvec takes O(nd log(n/εv)) per itera-
tion and Lemma 2.4.5 shows LineSearch takes O

(
nd log2

(
nt·f̃∗
εc

))
time per iteration. Since

both εv and εc are Ω
(

1

nO(1)(t·f̃∗)O(1)

)
. Since tf̃∗ = O(n

ε
), we have that both subroutines take

O
(
nd log2

(
n
ε

))
time. Since there are O(log(n

ε
)) iterations, the total running time is O(nd log3(n

ε
)).

�

2.C Derivation of Penalty Function

Here we derive our penalized objective function. Consider the following optimization problem:

min
x∈Rd,α≥0∈Rn

ft(x, α) where t · 1Tα +
∑
i∈[n]

− ln
(
α2
i −

∥∥x− a(i)
∥∥2

2

)
.

As, − ln
(
α2
i −

∥∥x− a(i)
∥∥2

2

)
is a natural barrier function for the set α2

i ≥
∥∥x− a(i)

∥∥2

2
we see that

as we minimize this function for increasing values of t the x values converge to a solution to the
geometric median problem.

The penalty function we use ft(x) is simply this function after we solve for the optimal αi
explicitly. To see this fix and x and t. Note that for all j ∈ [n] we have

∂

∂αj
f(x, α) = t−

(
1

α2
j −

∥∥x− a(i)
∥∥2

2

)
2αj
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and therefore, as f(x, α) is convex in α, the minimum α∗j must satisfy

t
((
α∗j
)2 −

∥∥x− a(i)
∥∥2

2

)
− 2α∗j = 0 .

Solving for such α∗j we get

α∗j =
2 +

√
4 + 4t2

∥∥x− a(i)
∥∥2

2

2t
=

1

t

[
1 +

√
1 + t2

∥∥x− a(i)
∥∥2

2

]
.

and consequently

(
α∗j
)2

=
1

t2

[
1 + 2

√
1 + t2

∥∥x− a(i)
∥∥2

2
+ 1 + t2

∥∥x− a(i)
∥∥2

2

]
=

2

t2

[
1 +

√
1 + t2

∥∥x− a(i)
∥∥2

2

]
+
∥∥x− a(i)

∥∥2

2
.

Thus we can write the problem as

min
x∈Rd

∑
i∈[n]

[
1 +

√
1 + t2

∥∥x− a(i)
∥∥2

2
− ln

[
2

t2

(
1 +

√
1 + t2

∥∥x− a(i)
∥∥2

2

)]]
.

If we drop the constants, we get our penalty function ft :

min
x∈Rd

∑
i∈[n]

[√
1 + t2

∥∥x− a(i)
∥∥2

2
− ln

(
1 +

√
1 + t2

∥∥x− a(i)
∥∥2

2

)]
.

2.D Technical Facts

Here we provide various technical lemmas we use through the chapter.

2.D.1 General Math

The following lemma shows that given any matrix obtained as a convex combination of the identity
minus a rank 1 matrix less than the identity results in a matrix that is well approximation spectrally
by the identity minus a rank 1 matrix. We use this Lemma to characterize the Hessian of our
penalized objective function and thereby imply that it is possible to apply the inverse of the Hessian
to a vector with high precision.

Lemma 2.D.1 Given any matrix A =
∑

i

(
αiI− βiaia>i

)
∈ Rd×d where ai are unit vectors and

0 ≤ βi ≤ αi for all i. We have that

1

2

(∑
i

αiI− λvv>
)
� A �

∑
i

αiI− λvv>
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where v is a unit vector that is the maximum eigenvector of
∑

i βiaia
>
i and λ is the corresponding

eigenvalue.

Proof Let λ1 ≥ ... ≥ λd denote the eigenvalues of
∑

i βiaia
>
i . Clearly tr(A) =

∑
i λi =

d
∑

i αi −
∑

i βi ≥ (d− 1)
∑

i αi. Also clearly, v>Av = v>
(∑

i αiI− λvv>
)
v, and therefore it

simply remains to show that λj ∈ [1
2

∑
i αi,

∑
i αi] for all j > 1. Since, λj ≤

∑
i αi for all j, we

have that

(d− 1)
∑
i

αi ≤ tr(A) =
∑
i

λi < 2λ2 +
∑
j≥3

λi ≤ 2λ2 + (d− 1)
∑
i

αi.

Therefore, λj ≥ λ2 ≥ 1
2

∑
i αi for all j > 1.

�

Next we show how to bound the difference between the outer product of two unit vectors by
their inner product. We use this lemma to bound the amount of precision required in our eigenvector
computations.

Lemma 2.D.2 For unit vectors u1 and u2 we have∥∥u1u
>
1 − u2u

>
2

∥∥2

2
= 1− (u>1 u2)2 (2.14)

Consequently if
(
u>1 u2

)2 ≥ 1− ε for ε ≤ 1 we have that

−
√
εI � u1u

>
1 − u2u

>
2 �
√
εI

Proof Note that u1u
>
1 − u2u

>
2 is a symmetric matrix and all eigenvectors are either orthogonal

to both u1 and u2 (with eigenvalue 0) or are of the form v = αu1 + βu2 where α and β are real
numbers that are not both 0. Thus, if v is an eigenvector of eigenvalue λ it must be that

γ (αu1 + βu2) =
(
u1u

>
1 − u2u

>
2

)
(αu1 + βu2)

= (α + β(u>1 u2))u1 − (α(u>1 u2) + β)u2

Consequently (
(1− γ) u>1 u2

−(u>1 u2) −(1 + γ)

)(
α
β

)
=

(
0
0

)
By computing the determinant we see this has a solution only when

−(1− γ2) + (u>1 u2)2 = 0

Solving for γ then yields (2.14) and completes the proof.

�
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Next we show how the top eigenvectors of two spectrally similar matrices are related. We
use this to bound the amount of spectral approximation we need to obtain accurate eigenvector
approximations.

Lemma 2.D.3 Let A be a PSD matrix such that (1− ε)A � B � (1 + ε)A. Let g def
= λ1(A)−λ2(A)

λ1(A)

where λ1(A) and λ2(A) are the largest and second largest eigenvalue of A. Then, we have(
v1(A)>v1(B)

)2 ≥ 1− 3
ε

g
.

Proof Without loss of generality v1(B) = αv1(A) + βv for some unit vector v ⊥ v1(A) and
α, β ∈ R such that α2 + β2 = 1. Now we know that

v1(B)>Bv1(B) ≤ (1 + ε)v1(B)>Av1(B) ≤ (1 + ε)
[
α2λ1(A) + β2λ2(A)

]
Furthermore, by the optimality of v1(B) we have that

v1(B)>Bv1(B) ≥ (1− ε)v1(A)>Av1(A) ≥ (1− ε)λ1(A) .

Now since β2 = 1− α2 we have that

(1− ε)λ1(A) ≤ (1 + ε)α2 (λ1(A)− λ2(A) + (1 + ε)λ2(A) .

Thus we have that

α2 ≥ λ1(A)− λ2(A)− ε(λ1(A) + λ2(A))

(1 + ε)(λ1(A)− λ2(A))

Since 1
1+ε
≥ 1− ε, λ2(A) ≤ λ1(A), and g ≤ 1 we have

α2 ≥
(

1− 2ε

(
λ1(A)

λ1(A)− λ2(A)

))
(1− ε) = 1− 2

ε

g
− ε+ 2

ε2

g
≥ 1− 3

ε

g
.

�

Here we prove a an approximate transitivity lemma for inner products of vectors. We use this to
bound the accuracy need for certain eigenvector computations.

Lemma 2.D.4 Suppose that we have vectors v1, v2, v3 ∈ Rn such that 〈v1, v2〉2 ≥ 1 − ε and
〈v2, v3〉2 ≥ 1− ε for 0 < ε ≤ 1

4
then 〈v1, v3〉2 ≥ 1− 4ε.

Proof Without loss of generality, we can write v1 = α1v2 + β1w1 for α2
1 + β2

1 = 1 and unit vector
w1 ⊥ v2. Similarly we can write v3 = α3v2 + β3w3 for α2

3 + β2
3 = 1 and unit vector w3 ⊥ v2.
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Now, by the inner products we know that α2
1 ≥ 1− ε and α2

3 ≥ 1− ε and therefore |β1| ≤
√
ε and

|β3| ≤
√
ε. Consequently, since ε ≤ 1

4
, we have that

〈v1, v3〉2 ≥ 〈α1v2 + β1w1, α3v2 + β3w3〉2 ≥ (α1α3 − |β1β3|)2

≥ (1− ε− ε)2 ≥ (1− 2ε)2 ≥ 1− 4ε.

�

2.D.2 First Order Optimization

Here we provide a single general lemma about first order methods for convex optimization. We use
this lemma for multiple purposes including bounding errors and quickly compute approximations to
the central path.

Lemma 2.D.5 [Nes03]Let f : Rn → R be a twice differentiable function that obtains its minimum
value at a point x∗ contained in some convex set B ⊆ R. Further suppose that for some symmetric
positive definite matrix H ∈ Rn×n we have that for all x ∈ B

µH � 52f(y) � LH .

Then for all x ∈ B we have

1

2L

∥∥5 f(x)
∥∥2

H−1 ≤ f(x)− f(x∗) ≤
L

2

∥∥x− x∗∥∥2

H

and
µ

2

∥∥x− x∗∥∥2

H
≤ f(x)− f(x∗) ≤

1

2µ

∥∥5 f(x)
∥∥2

H−1

Furthermore, if

x1 = argminx∈B

[
f(x0) + 〈5f(x0), x− x0〉+

L

2

∥∥x0 − x
∥∥2

H

]
then

f(x1)− f(x∗) ≤
(

1− µ

L

)
(f(x0)− f(x∗)) . (2.15)

Next we provide a short technical lemma about the convexity of functions that arises naturally
in our line searching procedure.

Lemma 2.D.6 Let f : Rn → R∪{∞} be a convex function and and let g(α)
def
= minx∈S f(x+αd)

for any convex set S and d ∈ Rn. Then g is convex.
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Proof Let α, β ∈ R and define xα = argminx∈Sf(x+ αd) and xβ = argminx∈Sf(x+ βd). For
any t ∈ [0, 1] we have

g (tα + (1− t)β) = min
x∈S

f (x+ (tα + (1− t)β)

≤ f(txα + (1− t)xβ + (tα + (1− t)β)d) (Convexity of S)
≤ t · f(xα + αd) + (1− t) · f(xβ + β · d) (Convexity of f )
= t · g(α) + (1− t) · g(β)

�

Lemma 2.D.7 For any vectors y, z, v ∈ Rd and scalar α, we can minimize min∥∥x−y∥∥2

2
≤α

∥∥x −
z
∥∥2

I−vv> exactly in time O(d).

Proof Let x∗ be the solution of this problem. If
∥∥x∗ − y∥∥

2
< α, then x∗ = z. Otherwise, there is

λ > 0 such that x∗ is the minimizer of

min
x

∥∥x− z∥∥2

I−vv> + λ
∥∥x− y∥∥2

.

Let Q = I − vv>. Then, the optimality condition shows that

Q(x− z) + λ(x− y) = 0.

Therefore, we have
x = (Q+ λI)−1(Qz + λy). (2.16)

Hence, we have
α =

∥∥x− y∥∥2

2
= (z − y)>Q(Q+ λI)−2Q(z − y).

Let η = 1 + λ, then we have (Q+ λI) = ηI − vv>and hence Sherman–Morrison formula shows
that

(Q+ λI)−1 = η−1I +
η−2vv>

1−
∥∥v∥∥2

η−1

= η−1

(
I +

vv>

η −
∥∥v∥∥2

)
.
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Hence, we have

(Q+ λI)−2 = η−2

I +
2vv>

η −
∥∥v∥∥2 +

vv>
∥∥v∥∥2(

η −
∥∥v∥∥2

)2


= η−2

I +
2η −

∥∥v∥∥2(
η −

∥∥v∥∥2
)2vv

>


Let c1 =

∥∥Q(z − y)
∥∥2

2
and c2 =

(
v>Q(z − y)

)2, then we have

α = η−2

c1 +
2η −

∥∥v∥∥2(
η −

∥∥v∥∥2
)2 c2

 .

Hence, we have

αη2
(
η −

∥∥v∥∥2
)2

= c1

(
η −

∥∥v∥∥2
)2

+ c2

(
2η −

∥∥v∥∥2
)
.

Note that this is a polynomial of degree 4 in η and all coefficients can be computed in O(d) time.
Solving this by explicit formula, one can test all 4 possible η’s into the formula (2.16) of x. Together
with trivial case x∗ = z, we simply need to check among 5 cases to check which is the solution.

�

2.D.3 Noisy One Dimensional Convex Optimization

Here we show how to minimize an one dimensional convex function giving a noisy oracle for evalu-
ating the function. While this could possibly be done using general results on convex optimization
using a membership oracle, the proof in one dimension is much simpler and we include it here for
completeness .

Lemma 2.D.8 Given a L-Lipschitz convex function defined in [`, u] interval. Suppose that we
have an oracle g such that |g(y)− f(y)| ≤ ε for all y. In O(log(L(u−`)

ε
)) time and and with

O(log(L(u−`)
ε

)) calls to g, the algorithm OneDimMinimizer(`, u, ε, g, L) outputs a point x such
that

f(x)− min
y∈[`,u]

f(y) ≤ 4ε.

Proof First, note that for any y, y′, if f(y) < f(y′)− 2ε,g(y) < g(y′). This directly follows from
the error guarantee on g.

Now, the output of the algorithm, x, is simply the point queried by the algorithm (i.e. ` and the
zi` and ziu) with the smallest value of g. This implies that f(x) is within 2ε of the minimum value of
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Algorithm 8: OneDimMinimizer(`, u, ε, g, L)

Input: Interval [`, u] ⊆ R, target additive error ε, noisy additive evaluation oracle g, Lipschitz
bound L
Let x(0) = `, y

(0)
` = `, y

(0)
u = u

for i = 1, ...,
⌈
log3/2(L(u−`)

ε
)
⌉

do

Let z(i)
` =

2y
(i−1)
` +y

(i−1)
u

3
, z

(i)
u =

y
(i−1)
` +2y

(i−1)
u

3
...

if g(z
(i)
` ) ≤ g(z

(i)
u ) then

Let (y
(i)
` , y

(i)
u ) = (y

(i−1)
` , z

(i)
u ).

Let x(i) = z
(i)
` if g(z

(i)
` ) ≤ g(x(i−1)) and x(i−1) otherwise.

if g(z
(i)
` ) > g(z

(i)
u ) then

Let (y
(i)
` , y

(i)
u ) = (z

(i)
` , y

(i−1)
u ).

Let x(i) = z
(i)
u if g(z

(i)
u ) ≤ g(x(i−1)) and x(i−1) otherwise.

end
Output: x

f among the points queried. It thus suffices to show that the algorithm queries some point within 2ε
of optimal.

To do this, we break into two cases. One is where the intervals [yi`, y
i
u] all contain an optimum

of f . In this case, the final interval contains an optimum, and is of size at most ε
L

. Thus, by the
Lipschitz property, all points in the interval are within ε ≤ 2ε of optimal, and at least one endpoint
of the interval must have been queried by the algorithm.

For the other case, we consider the last i for which this interval does contain an optimum of f .
This means that g(z

(i)
` ) ≤ g(z

(i)
u ) while the optimum x∗ is to the right of z(i)

u , or the symmetric case
with the optimum to the left of g(z

(i)
` ). Without loss of generality, we will assume the former. We

then have z(i)
` ≤ z

(i)
u ≤ x∗, while x∗ − z(i)

u ≤ z
(i)
u − z(i)

` . By the convexity of f , we therefore have
that f(z

(i)
u )− f(x∗) ≤ f(z

(i)
` )− f(z

(i)
u ). But f(z

(i)
` )− f(z

(i)
u ) ≤ 2ε since g(z

(i)
` ) ≤ g(z

(i)
u ). Thus,

f(z
(i)
u )− f(x∗) ≤ 2ε, and z(i)

u is queried by the algorithm, as desired.

�
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Chapter 3

Online Row Sampling

Finding a small spectral approximation for a tall n × d matrix A is a fundamental numerical
primitive. For a number of reasons, one often seeks an approximation whose rows are sampled from
those of A. Row sampling improves interpretability, saves space when A is sparse, and preserves
row structure, which is especially important, for example, when A represents a graph.

However, correctly sampling rows from A can be costly when the matrix is large and cannot be
stored and processed in memory. Hence, a number of recent publications focus on row sampling
in the streaming setting, using little more space than what is required to store the outputted
approximation [KL13, KLMS14].

Inspired by a growing body of work on online algorithms for machine learning and data analysis,
we extend this work to a more restrictive online setting: we read rows of A one by one and
immediately decide whether each row should be kept in the spectral approximation or discarded,
without ever retracting these decisions. We present an extremely simple algorithm (Figure 3.1) that
approximates A up to multiplicative error ε and additive error δ using O(d log d log(ε

∥∥A∥∥2

2
/δ)/ε2)

online samples, with memory overhead proportional to the cost of storing the spectral approximation.
We also present an algorithm that uses O(d2) memory but only requires O(d log(ε

∥∥A∥∥2

2
/δ)/ε2)

samples, which we show is optimal.

Our methods are clean and intuitive, allow for lower memory usage than prior work, and expose
new theoretical properties of leverage score based matrix approximation.

The results presented in this chapter are joint work with Michael Cohen and Cameron Musco
[CMP15].

3.1 Introduction

3.1.1 Background

A spectral approximation to a tall n×d matrix A is a smaller, typically Õ(d)×d matrix Ã such that∥∥Ãx
∥∥

2
≈
∥∥Ax

∥∥
2

for all x. Typically one asks for a multiplicative approximation, which guarantees
that (1− ε)

∥∥Ax
∥∥2

2
≤
∥∥Ãx

∥∥2

2
≤ (1 + ε)

∥∥Ax
∥∥2

2
. In other notation, (1− ε)A � Ã � (1 + ε)A.
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Such approximations have many applications, most notably for solving least squares regression
over A. If A is the vertex edge incidence matrix of a graph, Ã is a spectral sparsifier [ST04b]. It
can be used to approximate effective resistances, spectral clustering, mixing time and random walk
properties, and many other computations.

A number of recent papers focus on fast algorithms for spectral approximation. Using sparse
random subspace embeddings [CW13, NN13, MM13], it is possible to find Ã in input sparsity
time, essentially by randomly recombining the rows of A into a smaller number of rows. In some
cases these embeddings are not very useful, as it is desirable for the rows of Ã to be a subset of
rows sampled from A. If A is sparse, this ensures that Ã is also sparse. If A represents a graph, it
ensures that Ã is also a graph, specifically a weighted subgraph of the original.

It is well known that sampling O(d log d/ε2) rows of A with probabilities proportional to their
leverage scores yields a (1 + ε) multiplicative factor spectral approximation to A. Further, this sam-
pling can be done in input sparsity time, either using subspace embeddings to approximate leverage
scores, or using iterative sampling techniques [LMP13], some that only work with subsampled
versions of the original matrix [CLM+15].

3.1.2 Streaming and Online Row Sampling

When A is very large, input sparsity runtimes are not enough – memory restrictions also become
important. Hence, recent work has tackled row sampling in a streaming model of computation.
[KL13] presents a simple algorithm for sampling rows from an insertion only stream, using space
approximately proportional to the size of the final approximation. [KLMS14] gives a sparse-
recovery based algorithm that works in dynamic streams with row insertions and deletions and also
uses nearly optimal space. Unfortunately, in order to handle dynamic streams, the algorithm in
[KLMS14] is complex, requires additional restrictions on the input matrix, and uses significantly
suboptimal runtime to recover a spectral approximation from its low memory representation of the
input stream.

In this work we initiate the study of row sampling in an online setting. As in an insertion only
stream, we read rows of A one by one. However, upon seeing a row, we must immediately decide
whether it should be kept in the spectral approximation or discarded, without ever retracting these
decisions.

We present a similar algorithm to [KL13], however, since we never prune previously sampled
rows, the probability of sampling a row only depends on whether previous rows in the stream
were sampled. This limited dependency structure allows us to rigorously argue that a spectral
approximation is obtained.

In addition to addressing gaps in the literature on streaming spectral approximation, our restricted
model extends work on online algorithms for a variety of other machine learning and data analysis
problems, including principal component analysis [BGKL15], clustering [LSS14], classification
[BB05, CDK+06], and regression [CDK+06]. In practice, online algorithms are beneficial since
they can be highly computationally and memory efficient. Further, they can be applied in scenarios
in which data is produced in a continuous stream and intermediate results must be output as the
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stream is processed. Spectral approximation is a widely applicable primitive for approximate
learning and computation, so studying its implementation through online row sampling is a natural
direction.

3.1.3 Our Results

Our primary contribution is a very simple algorithm for leverage score sampling in an online manner.
The main difficulty with row sampling using leverage scores is that leverage scores themselves
are not easy to compute. They are given by li = aTi (ATA)−1ai,1 and so require solving systems
in ATA if computed naively. This is not only expensive, but also impossible in an online setting,
where we do not have access to all of A.

A critical observation is that it always suffices to sample rows by overestimates of their true
leverage scores. The number of rows that must be sampled is proportional to the sum of these
overestimates. Since the leverage score of a row can only go up when we remove rows from the
matrix, a simple way to obtain an overestimate is to compute leverage score using just a subset of
the other rows of A. That is, letting Aj contain just j of A’s n rows, we can overestimate li by
l̃i = aTi (AT

j Aj)
−1ai

[CLM+15] shows that if Aj is a subset of rows sampled uniformly at random, then the expected
leverage score of ai is d/j. This simple fact immediately gives a result for online sampling from a
randomly ordered stream. If we compute the leverage score of the current row ai against all previ-
ously seen rows (or some approximation to these rows), then the expected sum of our overestimates
will be bounded by d+ d/2 + ...+ ...+ d/n = O(d log n). So, sampling O(d log d log n/ε2) rows
will be enough obtain a (1 + ε) multiplicative factor spectral approximation.

What if we cannot guarantee a randomly ordered input stream? Is there any hope of being able
to compute good leverage score estimates in an online manner? Surprisingly the answer to this is
yes - we can in fact run nearly the exact same algorithm and be guaranteed that the sum of estimated
leverage scores is low, regardless of stream order. Roughly, each time we receive a row which has
high leverage score with respect to the previous rows, it must compose a significant part of A’s
spectrum. If A does not continue to grow unboundedly, there simply cannot be too many of these
significant rows.

Specifically, we show that if we sample by the ridge leverage scores [AM14] over all previously
seen rows, which are the leverage scores computed over AT

i Ai + λI for some small regularizing
factor λ, then with just O(d log d log(ε

∥∥A∥∥2

2
/δ)/ε2) samples we obtain a (1 + ε) multiplicative, δ

additive error spectral approximation. That is, with high probability we sample a matrix Ã with
(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI.

To gain intuition behind this bound, note that we can convert it into a multiplicative one by
setting δ = εσmin(A)2 (as long as we have some estimate of σmin(A)). This setting of δ will require
taking O(d log d log(κ(A))/ε2) samples. If we have a polynomial bound on the condition number
of A, as we do, for instance, for graphs with polynomially bounded edges weights, this becomes
O(d log2 d/ε2) – nearly matching the O(d log d/ε2) achievable if sampling by true leverage scores.

1Throughout this chapter, ai are the column vectors corresponding to the rows of A.

57



Our online sampling algorithm is extremely simple. When each row comes in, we compute
the online ridge leverage score, or an estimate of it, and then irrevocably either add the row to
our approximation or remove it. As mentioned, it is similar in form to the streaming algorithm
of [KL13], except that it does not require pruning previously sampled rows. This allows us to
avoid difficult dependency issues. Additionally, without pruning, we do not even need to store all
previously sampled rows. As long as we store a constant factor spectral approximation our previous
samples, we can compute good approximations to the online ridge leverage scores. In this way, we
can store just O(d log d log(ε

∥∥A∥∥2

2
/δ)) rows in working memory (O(d log2 d) if we want a spectral

graph sparsifier), filtering our input stream into an O(d log d log(κ(A))/ε2) sized output stream.
Note that this memory bound in fact improves as ε decreases, and regardless, can be significantly
smaller than the output size of the algorithm.

In additional to our main sampling result, we use our bounds on online ridge leverage score
approximations to show that an algorithm in the style of [BSS12] allows us to remove a log d factor
and sample just O(d log(ε

∥∥A∥∥2

2
/δ)/ε2) (Theorem 3.4.1). This algorithm is more complex and can

require O(d2) working memory. However, in Theorem 3.5.1 we show that it is asymptotically
optimal. The log(ε

∥∥A∥∥2

2
/δ) factor is not an artifact of our analysis, but is truly the cost of restricting

ourselves to online sampling. No algorithm can obtain a multiplicative (1 + ε) additive δ spectral
approximation taking fewer than Ω(d log(ε

∥∥A∥∥2

2
/δ)/ε2) rows in an online manner.

3.2 Overview

Let A be an n × d matrix with rows a1, . . . , an. A natural approach to row sampling from A is
picking an a priori probability with which each row is kept, and then deciding whether to keep each
row independently. A common choice is for the sampling probabilities to be proportional to the
leverage scores of the rows. The leverage score of the i-th row of A is defined to be

aTi (ATA)†ai,

where the dagger symbol denotes the pseudoinverse. In this work, we will be interested in approxi-
mating ATA with some (very) small multiple of the identity added. Hence, we will be interested in
the λ-ridge leverage scores [AM14]:

aTi (ATA + λI)−1ai,

for a parameter λ > 0.

In many applications, obtaining the (nearly) exact values of aTi (ATA + λI)−1ai for sampling
is difficult or outright impossible. A key idea is that as long as we have a sequence l1, . . . , ln of
overestimates of the λ-ridge leverage scores, that is for i = 1, . . . , n

li ≥ aTi (ATA + λI)−1ai,

we can sample by these overestimates and obtain rigorous guarantees on the quality of the obtained
spectral approximation. This notion is formalized in Theorem 3.2.1.
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Theorem 3.2.1 Let A be an n×dmatrix with rows a1, . . . , an. Let ε ∈ (0, 1), δ > 0, λ := δ/ε, c :=
8 log d/ε2. Assume we are given l1, . . . , ln such that for all i = 1, . . . , n,

li ≥ aTi (ATA + λI)−1ai.

For i = 1, . . . , n, let

pi := min(cli, 1).

Construct Ã by independently sampling each row ai of A with probability pi, and rescaling it
by 1/

√
pi if it is included in the sample. Then, with high probability,

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI,

and the number of rows in Ã is O ((
∑n

i=1 li) log d/ε2).

Proof This sort of guarantee for leverage score sampling is well known. See for example Lemma
4 of [CLM+15]. If we sampled both the rows of A and the rows of

√
λI with the leverage

scores over (ATA + λI), we would have (1 − ε)(ATA + λI) � ÃT Ã � (1 + ε)(ATA + λI).
However, we do not sample the rows of the identity. Since we could have sampled them each
with probability 1, we can simply subtract λI = (δ/ε)I from the multiplicative bound and have:
(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI.

�

The idea of using overestimates of leverage scores to perform row sampling has been applied
successfully to various problems (see e.g. [KMP10, CLM+15]). However, in these applications,
access to the entire matrix is required beforehand. In the streaming and online settings, we have to
rely on partial data to approximate the true leverage scores. The most natural idea is to just use the
portion of the matrix seen thus far as an approximation to A. This leads us to introduce the online
λ-ridge leverage scores:

li := min(aTi (AT
i−1Ai−1 + λI)−1ai, 1),

where Ai (i = 0, . . . , n) is defined as the matrix consisting of the first i rows of A2.

Since clearly AT
i Ai � ATA for all i, it is not hard to see that li does overestimate the true

λ-ridge leverage score for row ai. A more complex question, however, is establishing an upper
bound on

∑n
i=1 li so that we can bound the number of samples needed by Theorem 3.2.1.

2We note that the following, perhaps more natural, definition of online leverage scores would also be effective:

l′i := aTi (A
T
i Ai + λI)−1ai.

However, we opt to use the proposed scores li for simplicity.
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A core result of this work, stated in Theorem 3.2.2, is establishing an upper bound on the sum
of λ-ridge leverage scores; in fact, this bound is shown to be tight up to constants (Theorem 3.5.1)
and is nearly-linear in most cases.

Theorem 3.2.2 Let A be an n× d matrix with rows a1, . . . , an. Let Ai for i ∈ {0, . . . , n} be the
matrix consisting of the first i rows of A. For λ > 0, let

li := min(aTi (AT
i−1Ai−1 + λI)−1ai, 1).

be the online λ-ridge leverage score of the ith row of A. Then

n∑
i=1

li = O(d log(
∥∥A∥∥2

2
/λ)).

Theorems 3.2.1 and 3.2.2 suggest a simple algorithm for online row sampling: simply use
the online λ-ridge leverage scores, for λ := δ/ε. This produces a spectral approximation with
only O(d log d log(ε

∥∥A∥∥2

2
/δ)/ε2) rows in an online manner. Unfortunately, computing li exactly

requires us to store all the rows we have seen in memory (or alternatively to store the sum of their
outer products, AT

i Ai). In many cases, such a requirement would defeat the purpose of streaming
row sampling.

A natural idea is to use the sample we have kept thus far as an approximation to Ai when
computing li. It turns out that the approximate online ridge leverage scores l̃i computed in this way
will not necessarily be good approximations to li; however, we can still prove that they satisfy the
requisite bounds and yield the same row sample size! We formalize these results in the algorithm
ONLINE-SAMPLE (Figure 3.1) and Theorem 3.2.3.

Theorem 3.2.3 Let Ã be the matrix returned by ONLINE-SAMPLE(A, ε, δ). Then, with high
probability,

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI,

and the number of rows in Ã is O(d log d log(ε
∥∥A∥∥2

2
/δ)/ε2).

To save computation, we note that, with a small modification to our analysis, we can run
ONLINE-SAMPLE with batch processing of rows. Specifically, say we start from the ith position
in the stream. we can store the next b = O(d) rows. We can then compute sampling probabilities
for these rows all at once using a system solver for (ÃT

i+bÃi+b + λI). Using a trick introduced in
[SS11], by applying a Johnson-Lindenstrauss random projection to the rows whose scores we are
computing, we need just O(log(1/δ)) system solves to compute constant factor approximations to
the ridge scores with probability 1− δ. If we set δ = 1/poly(n) then we can union bound over our
whole stream, using this trick with each batch of O(d) input rows. The batch probabilities will only
be closer to the true ridge leverage scores than the non-batch probabilities and we will enjoy the
same guarantees as ONLINE-SAMPLE.
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Ã = ONLINE-SAMPLE(A, ε, δ), where A is an n × d matrix with rows a1, . . . , an, ε ∈
(0, 1), δ > 0.

1. Set λ := δ/ε, c := 8 log d/ε2.

2. Let Ã0 be a 0× d matrix.

3. For i = 1, . . . , n:

(a) Let l̃i := min((1 + ε)aTi (ÃT
i−1Ãi−1 + λI)−1ai, 1).

(b) Let pi := min(cl̃i, 1).

(c) Set Ãi :=


[

Ãi−1

ai/
√
pi

]
with probability pi,

Ãi−1 otherwise.

4. Return Ã := Ãn.

Figure 3.1: The basic online sampling algorithm

Additionally, it turns out that with a simple trick, it is possible to reduce the memory usage
of the algorithm by a factor of ε−2, bringing it down to O(d log d log(ε

∥∥A∥∥2

2
/δ)) (assuming the

sparsifier is output to an output stream). Note that this expression gets smaller with ε; hence we
obtain a row sampling algorithm with memory complexity independent of desired multiplicative
precision. The basic idea is that, instead of keeping all previously sampled rows in memory, we
store a smaller set of edges that give a constant factor spectral approximation, still enough to give
good estimates of the online ridge leverage scores.

This result is presented in the algorithm SLIM-SAMPLE (Figure 3.1) and Lemma 3.3.5. A
particularly interesting consequence for graphs with polynomially bounded edge weights is stated
in Corollary 3.2.4.

Corollary 3.2.4 Let G be a simple graph on d vertices, and ε ∈ (0, 1). We can construct a
(1 + ε)-sparsifier of G of size O(d log2 d/ε2), using only O(d log2 d) working memory in the online
model.

Proof This follows simply from applying Theorem 3.2.3 with δ = ε/σ2
min(A) and noting that the

condition number of a graph on d vertices whose edge weights are within a multiplicative poly(d)

of each other is polynomial in d. So log(ε
∥∥A∥∥2

2
/δ) = log(κ2(A)) = O(log d).

�

We remark that the algorithm of Corollary 3.2.4 can be made to run in nearly linear time in the
stream size. We combine SLIM-SAMPLE with the batch processing idea described above. Because
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A is a graph, our matrix approximation is always a symmetric diagonally dominant matrix, with
O(d) nonzero entries. We can solve systems in it in time Õ(d). Using the Johnson-Lindenstrauss
random projection trick of [SS11], we can compute approximate ridge leverage scores for a batch
of O(d) rows with failure probability polynomially small in n in Õ(d log n) time. Union bounding
over the whole stream, we obtain nearly linear runtime.

To complement the row sampling results discussed above, we explore the limits of the proposed
online setting. In Section 3.4 we present the algorithm ONLINE-BSS, which obtains sparsifiers
with O(d log(ε

∥∥A∥∥2

2
/δ)/ε2) rows in the online setting (with larger memory requirements than the

simpler sampling algorithms). Its analysis is given in Theorem 3.4.1. In Section 6.4, we show that
this number of samples is in fact the best achievable, up to constant factors (Theorem 3.5.1). The
log(ε

∥∥A∥∥2

2
/δ) factor is truly the cost of requiring rows to be selected in an online manner.

3.3 Analysis of sampling schemes

We begin by establishing a bound on the sum of online λ-ridge leverage scores. The intuition behind
the proof of Theorem 3.2.2 is that whenever we append a row with a large online leverage score to a
matrix, we increase its determinant significantly, as follows from the matrix determinant lemma
(Lemma 3.3.1). Thus we can reduce upper bounding the online leverage scores of rows of the matrix
to bounding its determinant.

Lemma 3.3.1 (Matrix determinant lemma) Assume S is an invertible square matrix and u is a
vector. Then

det(S + uuT ) = (det S)(1 + uTS−1u).

Proof of Theorem 3.2.2: By Lemma 3.3.1, we have

det(AT
i+1Ai+1 + λI) = det(AT

i Ai + λI) ·
(
1 + aTi+1(AT

i Ai + λI)−1ai+1

)
≥ det(AT

i Ai + λI) · (1 + li+1)

≥ det(AT
i Ai + λI) · eli+1/2.

Hence,

det(ATA + λI) = det(AT
nAn + λI)

≥ det(λI) · e
∑
li/2

= λde
∑
li/2.

We have det(ATA + λI) ≤ (‖A‖2
2 + λ)d. Therefore

(‖A‖2
2 + λ)d ≥ λde

∑
li/2.
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Taking logarithms of both sides, we obtain

d log(‖A‖2
2 + λ) ≥ d log λ+

∑
li/2,∑

li ≤ 2d log(1 + ‖A‖2
2/λ).

�

We now turn to analyzing the algorithm ONLINE-SAMPLE. Because the samples taken by the
algorithm are not independent, we are not able to use a standard matrix Chernoff bound like the
one in Theorem 3.2.1. However, we do know that whether we take row i does not depend on later
rows; thus, we are able to analyze the process as a martingale. We will use a matrix version of the
Freedman inequality given by Tropp.

Theorem 3.3.2 (Matrix Freedman inequality [Tro11]) Let Y0,Y1, . . . ,Yn be a matrix martin-
gale whose values are self-adjoint matrices with dimension d, and let X1, . . . ,Xn be the difference
sequence. Assume that the difference sequence is uniformly bounded in the sense that∥∥Xk

∥∥
2
≤ R almost surely, for k = 1, . . . , n.

Define the predictable quadratic variation process of the martingale:

Wk :=
k∑
j=1

Ej−1

[
X2
j

]
, for k = 1, . . . , n.

Then, for all ε > 0 and σ2 > 0,

P
[∥∥Yn

∥∥
2
≥ ε and

∥∥Wn

∥∥
2
≤ σ2

]
≤ d · exp

(
− −ε2/2
σ2 +Rε/3

)

We begin by showing that the output of ONLINE-SAMPLE is in fact an approximation of A, and
that the approximate online leverage scores are lower bounded by the actual online leverage scores.

Lemma 3.3.3 After running ONLINE-SAMPLE, it holds with high probability that

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI,

and also

l̃i ≥ aTi (ATA + λI)−1ai

for i = 1, . . . , n.
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Proof Let

ui := (ATA + λI)−1/2ai.

We construct a matrix martingale Y0,Y1, . . . ,Yn ∈ Rd×d with the difference sequence X1, . . . ,Xn.
Set Y0 = 0. If

∥∥Yi−1

∥∥
2
≥ ε, we set Xi := 0. Otherwise, let

Xi :=

{
(1/pi − 1)uiu

T
i if ai is sampled in Ã,

−uiu
T
i otherwise.

Note that in this case we have

Yi−1 = (ATA + λI)−1/2(ÃT
i−1Ãi−1 −AT

i−1Ai−1)(ATA + λI)−1/2.

Hence, since
∥∥Yi−1

∥∥
2
< ε, we have

l̃i = min((1 + ε)aTi (ÃT
i−1Ãi−1 + λI)−1ai, 1)

≥ min((1 + ε)aTi (AT
i−1Ai−1 + λI + ε(ATA + λI))−1ai, 1)

≥ min((1 + ε)aTi ((1 + ε)(ATA + λI))−1ai, 1)

= aTi (ATA + λI)−1ai

= uTi ui,

and so

pi ≥ min(cuTi ui, 1).

Note that if pi = 1, then Xi = 0. Otherwise, we have pi ≥ cuTi ui and so

‖Xi‖2 ≤ 1/c

and

Ei−1

[
X2
i

]
� pi · (1/pi − 1)2(uiu

T
i )2 + (1− pi) · (uiuTi )2

= (uiu
T
i )2/pi

� uiu
T
i /c.

And so, for the predictable quadratic variation process of the martingale {Yi}:

Wi :=
i∑

k=1

Ek−1

[
X2
k

]
,
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we have

∥∥Wi

∥∥
2
≤

∣∣∣∣∣
∣∣∣∣∣

i∑
k=1

uiu
T
i /c

∣∣∣∣∣
∣∣∣∣∣
2

≤ 1/c.

Therefore by, Theorem 3.3.2, we have

P
[∥∥Yn

∥∥
2
≥ ε
]
≤ d · exp

(
−ε2/2

1/c+ ε/(3c)

)
≤ d · exp(−cε2/4)

= 1/d.

This implies that with high probability∥∥(ATA + λI)−1/2(ÃT Ã + λI)(ATA + λI)−1/2 − I
∥∥

2
≤ ε

and so

(1− ε)(ATA + λI) � ÃT Ã + λI � (1 + ε)(ATA + λI).

Subtracting λI = (δ/ε)I from all sides, we get

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI.

�

If we set c in ONLINE-SAMPLE to be proportional to log n rather than log d, we would be able
to take a union bound over all the rows and guarantee that with high probability all the approximate
online leverage scores l̃i are close to true online leverage scores li. Thus Theorem 3.2.2 would imply
that ONLINE-SAMPLE only selects O(d log n log(‖A‖2

2/λ)/ε2) rows with high probability.

In order to remove the dependency on n, we have to sacrifice achieving close approximations to
li at every step. Instead, we show that the sum of the computed approximate online leverage scores
is still small with high probability, using a custom Chernoff bound.

Lemma 3.3.4 After running ONLINE-SAMPLE, it holds with high probability that

n∑
i=1

l̃i = O(d log(‖A‖2
2/λ)).

Proof Define

δi := log det(ÃT
i Ãi + λI)− log det(ÃT

i−1Ãi−1 + λI).
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The proof closely follows the idea from the proof of Theorem 3.2.2. We will aim to show that large
values of l̃i correlate with large values of δi. However, the sum of δi can be bounded by the logarithm
of the ratio of the determinants of ÃT Ã+λI and λI. First, we will show that Ei−1

[
exp(l̃i/8− δi)

]
is always at most 1. We begin by an application of Lemma 3.3.1.

Ei−1

[
exp(l̃i/8− δi)

]
= pi · eli/8(1 + aTi (ÃT

i−1Ãi−1 + λI)−1ai/pi)
−1 + (1− pi)eli/8

≤ pi · (1 + li/4)(1 + aTi (ÃT
i−1Ãi−1 + λI)−1ai/pi)

−1 + (1− pi)(1 + li/4).

If cl̃i < 1, we have pi = cl̃i and l̃i = (1 + ε)aTi (ÃT
i−1Ãi−1 + λI)−1ai, and so:

Ei−1

[
exp(l̃i/8− δi)

]
≤ cl̃i · (1 + li/4)(1 + 1/((1 + ε)c))−1 + (1− cl̃i)(1 + li/4)

= (1 + li/4)(cli(1 + 1/((1 + ε)c))−1 + 1− cli)
≤ (1 + li/4)(1 + cli(1− 1/(4c)− 1))

= (1 + li/4)(1− li/4)

≤ 1.

Otherwise, we have pi = 1 and so:

Ei−1

[
exp(l̃i/8− δi)

]
≤ (1 + li/4)(1 + aTi (ÃT

i−1Ãi−1 + λI)−1ai)
−1

≤ (1 + li/4)(1 + li)
−1

≤ 1.

We will now analyze the expected product of exp(l̃i/8 − δi) over the first k steps. We group the
expectation over the first k steps into one over the first k − 1 steps, aggregating the expectation for
the last step by using one-way independence. For k ≥ 1 we have

E

[
exp

(
k∑
i=1

l̃i/8− δi

)]
= E

first k − 1 steps

[
exp

(
k−1∑
i=1

l̃i/8− δi

)
Ek−1

[
exp(l̃k/8− δk)

]]

≤ E

[
exp

(
k−1∑
i=1

l̃i/8− δi

)]
,

and so by induction on k

E

[
exp

(
n∑
i=1

l̃i/8− δi

)]
≤ 1.
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Hence by Markov’s inequality

P

[
n∑
i=1

l̃i > 8d+ 8
n∑
i=1

δi

]
≤ e−d.

By Lemma 3.3.3, with high probability we have

ÃT Ã + λI � (1 + ε)(ATA + λI).

We also have with high probability

det(ÃT Ã + λI) ≤ (1 + ε)d(
∥∥A∥∥2

2
+ λ)d,

log det(ÃT Ã + λI) ≤ d(1 + log(
∥∥A∥∥2

2
+ λ)).

Hence, with high probability it holds that

n∑
i=1

δi = log det(ÃT Ã + λI)− d log(λ)

≤ d(1 + log(
∥∥A∥∥2

2
+ λ)− log(λ))

= d(1 + log(1 +
∥∥A∥∥2

2
/λ)).

And so, with high probability,

n∑
i=1

l̃i ≤ 8d+ 8
n∑
i=1

δi

≤ 9d+ 8d log(1 +
∥∥A∥∥2

2
/λ)

= O(d log(
∥∥A∥∥2

2
/λ)).

�

Proof of Theorem 3.2.3: The thesis follows immediately from Lemmas 3.3.3 and 3.3.4.

�

We now consider a simple modification of ONLINE-SAMPLE that removes dependency on ε
from the working memory usage with no additional cost.

Lemma 3.3.5 Let Ã be the matrix returned by SLIM-SAMPLE(A, ε, δ). Then, with high probabil-
ity,

(1− ε)ATA− δI � ÃT Ã � (1 + ε)ATA + δI,
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Ã = SLIM-SAMPLE(A, ε, δ), where A is an n× d matrix with rows a1, . . . , an, ε ∈ (0, 1),
δ > 0.

1. Set λ := δ/ε, c := 8 log d/ε2.

2. Let Ã0 be a 0× d matrix.

3. Let l̃1, . . . , l̃n be the approximate online leverage scores computed by an independent
instance of ONLINE-SAMPLE(A, 1/2, δ/(2ε)).

4. For i = 1, . . . , n:

(a) Let pi := min(cl̃i, 1).

(b) Set Ãi :=


[

Ãi−1

ai/
√
pi

]
with probability pi,

Ãi−1 otherwise.

5. Return Ã := Ãn.

Figure 3.1: The low-memory online sampling algorithm

and the number of rows in Ã is O(d log d log(ε
∥∥A∥∥2

2
/δ)/ε2).

Moreover, with high probability the algorithm SLIM-SAMPLE’s memory requirement is domi-
nated by storing O(d log d log(ε

∥∥A∥∥2

2
/δ)) rows of A.

Proof As the samples are independent, the thesis follows from Theorem 3.2.1 and Lemmas 3.3.3
and 3.3.4.

�

3.4 Asymptotically optimal algorithm

In addition to sampling by online leverage scores, there is also a variant of the “BSS” method
[BSS12] that applies in our setting. Like the original [BSS12], this approach removes the log d
factor from the row count of the output sparsifier, matching the lower bound for online sampling
given in Theorem 3.5.1.

Unlike [BSS12] itself, our algorithm is randomized – it is similar to, and inspired by, the
randomized version of BSS from [LS15] (which unfortunately is not yet available online), especially
the simple version contained in the appendix of that paper (the main difference from that is
considering each row separately). In fact, this algorithm is of the same form as the basic sampling
algorithm, in that when each row comes in, a probability pi is assigned to it, and it is kept (and
rescaled) with probability pi and rejected otherwise. The key difference is the definition of the pi.
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There are also some differences in the nature of the algorithm and its guarantees. Notably, the
pi cannot be computed solely based on the row sample output so far–it is necessary to “remember”
the entire matrix given so far. This means that the BSS method is not very memory efficient, using
O(d2) space. Additionally, the online leverage score method gives bounds on both the size of the
sparsifier and its accuracy with high probability. In contrast, this method only gives an expected
bound on the sparsifier size, while it never fails to output a correct sparsifier. Note that these
guarantees are essentially the same as those in the appendix of [LS15].

One may, however, improve the memory dependence in some cases simply by running it on the
output stream of the online leverage score sampling method. This reduces the storage cost to the
size of that sparsifier. The BSS method still does not produce an actual space savings (in particular,
there is a still a log d factor in space), but it does reduce the number of rows in the output stream
while only blowing up the space usage by O(1/ε2) (due to requiring the storage of an ε-quality
sparsifier rather than only O(1)).

The BSS method maintains two matrices, BU
i and BL

i , acting as upper and lower “barriers”.
The current sparsifier will always fall between them:

BL
i ≺ ÃT

i ÃT
i ≺ BU

i .

This guarantee, at the end of the algorithm, will ensure that Ã is a valid approximation.

Below, we give the actual BSS algorithm.

Ã = ONLINE-BSS(A, ε, δ), where A is an n× d matrix with rows a1, . . . , an, ε ∈ (0, 1),
δ > 0.

1. Set cU = 2
ε

+ 1 and cL = 2
ε
− 1.

2. Let Ã0 be a 0× d matrix, BU
0 = δI, BL

0 = −δI.

3. For i = 1, . . . , n:

(a) Let XU
i−1 = (BU

i−1 − ÃT
i−1Ãi−1), XL

i−1 = (ÃT
i−1Ãi−1 −BL

i−1).

(b) Let pi := min(cUaTi (XU
i−1)−1ai + cLaTi (XL

i−1)−1ai, 1).

(c) Set Ãi :=


[

Ãi−1

ai/
√
pi

]
with probability pi,

Ãi−1 otherwise.

(d) Set BU
i = BU

i−1 + (1 + ε)aia
T
i , BL

i = BL
i−1 + (1− ε)aiaTi .

4. Return Ã := Ãn.

Figure 3.1: The Online BSS Algorithm
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Theorem 3.4.1

1. The online BSS algorithm always outputs Ã such that

(1− ε)ATA− δI ≺ ÃT ÃT ≺ (1 + ε)ATA + δI

2. The probability that a row ai is included in Ã is at most 8
ε2
li, where li is the online 2δ

ε
-ridge

leverage score of ai. That is li = min(aTi
(
AT
i Ai + 2δ

ε
I
)−1

ai, 1). The expected number of
rows in Ã is thus at most 8

ε2

∑n
i=1 li = O(d log(ε

∥∥A∥∥2

2
/δ)/ε2).

Proof of Theorem 3.4.1 part 1: We first note the basic invariant that XU
i and XL

i always remain
positive definite–or equivalently,

BL
i ≺ ÃT

i ÃT
i ≺ BU

i .

We may prove this by induction on i. The base case follows from the initialization of Ã0, BU
0

and BL
0 . For each successive step, we consider two possibilities.

The first is that pi = 1. In that case, ÃT Ã always increases by exactly aia
T
i , BU by (1 + ε)aia

T
i

and BL by (1− ε)aiaTi . Thus XU and XL increase by exactly εaiaTi , which is positive semidefinite,
and so remain positive definite.

In the other case, pi < 1. Now, XU decreases by at most the increase in ÃT
i ÃT

i , or

Mi =
aia

T
i

p
.

Since cU > 1, p > aTi (XU
i−1)−1ai, so aia

T
i ≺ pXU

i−1 and Mi ≺ XU
i−1. Subtracting this then

must leave XU positive definite. Similarly, XL decreases by at most the increase in BL, which is
(1− ε)aiaTi ≺ aia

T
i . Since cL > 1 and p < 1, aTi (XL

i−1)−1ai < 1, and aia
T
i ≺ XL

i−1. Subtracting
this similarly leaves XL positive definite.

Finally, we note that

BU
n = (1 + ε)ATA + δI

BL
n = (1− ε)ATA− δI.

This gives the desired result.

�

To prove part 2, we will use quantities of the form vTX−1v. We will need a lemma describing
how this behaves under a random rank-1 update:
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Lemma 3.4.2 Given a positive definite matrix X, two vectors u and v, two multipliers a and b and
a probability p, define the random variable X′ to be X − auuT with probability p and X − buuT

otherwise. Then if uTX−1u = 1,

E
[
vTX′−1v − vTX−1v

]
= (vTX−1u)2pa+ (1− p)b− ab

(1− a)(1− b)
.

Proof We apply the Sherman-Morrison formula to each of the two possibilities (subtracting auuT

and buuT respectively). These give X′ values of respectively

X−1 + a
X−1uuTX−1

1− auTX−1u
= X−1 +

a

1− a
X−1uuTX−1

and

X−1 + b
X−1uuTX−1

1− buTX−1u
= X−1 +

b

1− b
X−1uuTX−1.

The values of vTX′−1v − vTX−1v are then respectively

a

1− a
vTX−1uuTX−1v = (vTX−1u)2 a

1− a

and
b

1− b
vTX−1uuTX−1v = (vTX−1u)2 b

1− b
.

Combining these gives the stated result.

�

Proof of Theorem 3.4.1 part 2: First, we introduce some new matrices to help in the analysis:

CU
i,j = δI +

ε

2
AT
i Ai +

(
1 +

ε

2

)
AT
j Aj

CL
i,j = −δI− ε

2
AT
i Ai +

(
1− ε

2

)
AT
j Aj.

Note that CU
i,i = BU

i , CL
i,i = BL

i , and for j ≤ i, CU
i,j � BU

j and CL
i,j � BL

j .

We can then define

YU
i,j = CU

i,j − ÃT
j Ãj

YL
i,j = ÃT

j Ãj −CL
i,j.

We then have, similarly, YU
i,i = XU

i , YL
i,i = XL

i , and for j ≤ i, YU
i,j � XU

j and YL
i,j � XL

j .
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We will assume that li < 1, since otherwise the claim is immediate (as probabilities cannot
exceed 1). Now, note that

aTi (YU
i,0)−1ai = aTi (YL

i,0)−1ai

= aTi

( ε
2
AT
i Ai + δI

)−1

ai

=
2

ε

(
AT
i Ai +

2δ

ε
I

)−1

ai

=
2

ε
li.

Next, we will aim to show that for j < i− 1,

E
[
aTi YU

i−1,j+1ai
]
≤ E

[
aTi YU

i−1,jai
]

E
[
aTi YL

i−1,j+1ai
]
≤ E

[
aTi YL

i−1,jai
]

In particular, we will simply show that conditioned on any choices for the first j edges, the
expected value of aTi YU

i−1,j+1ai is no larger than aTi YU
i−1,jai, and analogously for YL.

Similar to the proof of part 1, we separately consider the case where pj+1 = 1. In that case, the
positive semidefinite matrix ε

2
aja

T
j is simply added to YU and YL. Adding this can only decrease

the values of aTi YUai and aTi YLai.

The pj+1 < 1 case is more tricky. Here, we define the vector wj+1 =
aj+1√
pj+1

. Importantly

pj+1 ≥ cUaTj+1(XU
j )−1aj+1 ≥ cUaTj+1(YU

i−1,j)
−1aj+1

pj+1 ≥ cLaTj+1(XL
j )−1aj+1 ≥ cLaTj+1(YL

i−1,j)
−1aj+1.

This means that

wT
j+1(YU

i−1,j)
−1wT

j+1 ≤
1

cU

wT
j+1(YL

i−1,j)
−1wT

j+1 ≤
1

cL
.
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Now, we additionally define

sUj+1 = wT
j+1(YU

i−1,j)
−1wT

j+1

sLj+1 = wT
j+1(YL

i−1,j)
−1wT

j+1

uUj+1 =
wj+1√
sUj+1

uLj+1 =
wj+1√
sLj+1

.

We then deploy Lemma 3.4.2 to compute the expectations. For the contribution from the
upper barrier, we use X = YU

i−1,j , u = uUj+1, v = aTi , a = −sUj+1(1 − pj+1(1 + ε/2)), b =
sUj+1pj+1(1 + ε/2), p = pj+1. For the lower barrier, we use X = YL

i−1,j , u = uLj+1, v = aTi ,
a = sLj+1(1− pj+1(1− ε/2)), b = −sLj+1pj+1(1− ε/2), p = pj+1. In both cases we can see that the
numerator of the expected change is nonpositive.

Finally, this implies that the probability that row i is sampled is

E [pi] = cU E
[
aTi (XU

i−1)−1ai
]

+ cL E
[
aTi (XL

i−1)−1ai
]

= cU E
[
aTi (YU

i−1,i−1)−1ai
]

+ cL E
[
aTi (YL

i−1,i−1)−1ai
]

≤ cU E
[
aTi (YU

i−1,0)−1ai
]

+ cL E
[
aTi (YL

i−1,0)−1ai
]

=
2

ε
(cU + cL)li

=
8

ε2
li

as desired.

�

3.5 Matching Lower Bound

Here we show that the row count obtained by Theorem 3.4.1 is in fact optimal. While it is possible
to obtain a spectral approximation with O(d/ε2) rows in the offline setting, online sampling always

incurs a loss of Ω
(

log(ε
∥∥A∥∥2

2
/δ)
)

and must sample Ω

(
d log(ε

∥∥A

∥∥2

2
/δ)

ε2

)
rows.

Theorem 3.5.1 Assume that ε
∥∥A∥∥2

2
≥ c1δ and ε ≥ c2/

√
d, for fixed constants c1 and c2. Then any

algorithm that selects rows in an online manner and outputs a spectral approximation to ATA
with (1 + ε) multiplicative error and δ additive error with probability at least 1/2 must sample

Ω

(
d log(ε

∥∥A

∥∥2

2
/δ)

ε2

)
rows of A in expectation.
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Note that the assumptions we make lower bounding ε
∥∥A∥∥2

2
and ε are very minor. They are just

ensuring that log(ε
∥∥A∥∥2

2
/δ) ≥ 1 and that ε is not so small that we can essentially just sample all

rows of A.

Proof We apply Yao’s minimax principle, constructing, for any large enough M , a distribution on
inputs A with

∥∥A∥∥2

2
≤M for which any deterministic online row selection algorithm that succeeds

with probability at least 1/2 must output Ω
(
d log(εM/δ)

ε2

)
rows in expectation. The best randomized

algorithm that works with probability 1/2 on any input matrix with
∥∥A∥∥2

2
≤ M therefore must

select at least Ω
(
d log(εM/δ)

ε2

)
rows in expectation on the worst case input, giving us the lower bound.

Our distribution is as follows. We select an integer N uniformly at random from [1, log(Mε/δ)].
We then stream in the vertex edge incidence matrices of N complete graphs on d vertices. We
double the weight of each successive graph. Intuitively, spectrally approximating a complete graph
requires selecting Ω(d/ε2) edges [BSS12] (as long as ε ≥ c2/

√
d for some fixed constant c2). Each

time we stream in a new graph with double the weight, we force the algorithm to add Ω(d/ε2)
more edges to its output, eventually forcing it to output Ω(d/ε2 ·N) edges – Ω(d log(Mε/δ)/ε2) in
expectation.

Specifically, let Kd be the
(
d
2

)
× d vertex edge incidence matrix of the complete graph on

d vertices. KT
dKd is the Laplacian matrix of the complete graph on d vertices. We weight

the first graph so that its Laplacian has all its nonzero eigenvalues equal to δ/ε. (That is, each
edge has weight δ

dε
). In this way, even if we select N = blog(Mε/δ)c we will have overall∥∥A∥∥2

2
≤ δ/ε+ 2δ/ε+ ...2blog(Mε/δ)c−1δ/ε ≤M .

Even if N = 1, all nonzero eigenvalues of ATA are at least δ/ε, so achieving (1 + ε) multiplica-
tive error and δI additive error is equivalent to achieving (1 + 2ε) multiplicative error. ATA is a
graph Laplacian so has a null space. However, as all rows are orthogonal to the null space, achieving
additive error δI is equivalent to achieving additive error δIr where Ir is the identity projected to
the span of ATA. δIr � εATA which is why we must achieve (1 + 2ε) multiplicative error.

In order for a deterministic algorithm to be correct with probability 1/2 on our distribution, it
must be correct for at least 1/2 of our blog(Mε/δ)c possible choices of N .

Let i be the lowest choice of N for which the algorithm is correct. By the lower bound of
[BSS12], the algorithm must output Ω(d/ε2) rows of Ai to achieve a (1 + 2ε) multiplicative factor
spectral approximation. Here Ai is the input consisting of the vertex edge incidence matrices of i
increasingly weighted complete graphs. Call the output on this input Ãi. Now let j be the second
lowest choice of N on which the algorithm is correct. Since the algorithm was correct on Ai to
within a multiplicative (1 + 2ε), to be correct on Aj , it must output a set of edges Ãj such that

(AT
j Aj −AT

i Ai)− 4εAT
j Aj � ÃT

j Ãj − ÃT
i Ãi � (AT

j Aj −AT
i Ai) + 4εAT

j Aj.

Since we double each successive copy of the complete graph, AT
j Aj � 2(AT

j Aj −AT
i Ai). So,

ÃT
j Ãj − ÃT

i Ãi must be a 1 + 8ε spectral approximation to the true difference AT
j Aj − AT

i Ai.
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Noting that this difference is itself just a weighting of the complete graph, by the lower bound in
[BSS12] the algorithm must select Ω(d/ε2) additional edges between the ith and jth input graphs.
Iterating this argument over all blog(Mε/δ)c/2 inputs on which the algorithm must be correct, it
must select a total of Ω(d log(Mε/δ)/ε2) edges in expectation over all inputs.

�
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Chapter 4

Faster SDD Solvers I: Graph Clustering Algorithms

In the next two chapters, we present the fastest sequential algorithm for solving linear systems on
graphs, and more generally symmetric diagonally dominant systems.

The Laplacian of a graph is defined to be BTB, where B is the signed edge-vertex incidence
matrix of the graph (cf. Figure 1.1). For an n-vertex graph, it is an n × n matrix containing the
degrees of the vertices on the diagonal, and −1 in any row u and column v such that u and v are
connected by an edge.

Spielman and Teng [ST04a] were the first to demonstrate that Laplacian systems can be solved
in nearly linear time. After that, many approaches were developed in an attempt to bring the running
time of the algorithms closer to linear. The approach we base on, of combinatorial preconditioning,
was introduced by Koutis, Miller and Peng. The idea is to approximate the graph by a tree, and
recursively make it sparser and more tree-like, while utilizing numerical preconditioning between
levels of recursion. There are two bottlenecks that keep this algorithm from achieving runtime better
than O(m log n):

• Finding low stretch trees. The algorithm given by Abraham and Neiman [AN12] runs in
O(m log n) time.

• The iterative method in between recursive levels. The condition number between the graph
and subsampled approximation is O(log2 n): O(log n) factor comes from the stretch of the
tree used, and one comes from the necessity to over-sample to handle the coupon collector
problem.

In this and the following chapter, we show how to overcome both obstacles, leading to Theorem 5.1.1
[CKM+14].

Theorem 5.1.1 Given a graph G with m edges, a vector b = LGx, and any error ε > 0, we can
find w.h.p. a vector x such that

‖x̄− x‖LG ≤ ε ‖x̄‖LG ,

in expected O(m log1/2 n log log3+δ n log(1
ε
)) time for any constant δ > 0.
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4.0.1 Graph Clustering Algorithms

Low stretch trees are a fundamental construct for many spectral graph theoretic algorithms. The
total stretch of a graph G = (V,E) with respect to a tree T is defined as∑

(u,v)∈E

dT (u, v),

where dT (u, v) is the distance in T between vertices u and v. The average stretch is the total
stretch divided by m = |E|. We can think of the average stretch as a measure of the quality of
approximation of G by T .

The first algorithm for constructing low stretch trees was given by Alon, Karp, Peleg and West
[AKPW95]. Another approach was proposed by Bartal [Bar96]. The output of that algorithm is not
necessarily a subtree of the original graph, but is still dominated by it in a metric sense.

It turns out that every graph contains a spanning subtree with average stretch O(log n log log n),
as shown by Abraham and Neiman.

All of the aforementioned algorithms can be thought of as hierarchical clustering schemes,
with various clustering algorithms being the main tool of the approach. The most prevalent one
is low-diameter clustering. An extremely elegant randomized low-diameter clustering algorithm
was given by Miller, Peng and Xu [MPX13]. In Chapter 6 we discuss generalizing it to a class of
directed graphs.

In order to obtain a running time closer to linear, we will output trees that are embeddable into
the original graph G; that is, the Steiner vertices of the tree can be mapped to vertices of G so that
the result is a subgraph of the G. This is a slightly stronger condition that that provided by Bartal’s
algorithm. We also provide a slightly weaker guarantee on the stretch, namely, we produce trees for
which the average `p-stretch is O(logp n), for a parameter p ∈ (0, 1). The `p-stretch of a graph with
respect to a tree is defined as: ∑

(u,v)∈E

dT (u, v)p.

Despite these relaxations, the produced trees are suitable for use in the iterative methods described
in the next section.

We base our approach toward obtaining a faster low stretch tree construction algorithm on the
top-down scheme proposed by Bartal. In order to increase the efficiency of our algorithm, we do
not treat all the vertices as separate entities for each stage of the clustering; instead, we first find a
coarse clustering using the bottom-up AKPW algorithm, which is then subject to refinement. The
scheme can be summarized as follows:

1. Let S0 = V . Compute the partitions S1, . . . , Sk, |Sk| = 1. Si is computed by clustering the
elements of Si−1 using a low-diameter decomposition algorithm.
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2. Let d be the diameter of the graph. Cluster V into clusters of diameter d/2 using a low-
diameter decomposition scheme. To improve runtime, use Si as an initial partition, where i is
chosen so that its clusters have diameter ≤ d/c (c = Õ(1)). Recurse on the obtained clusters.

3. To compute the output tree, embed parts of the tree given by S0, . . . , Sk into the decomposition
computed in the previous step.

The guarantees of the algorithm are formalized in Theorem 4.1.1 below [CMP+14]:

Theorem 4.1.1 Let G = (V,E, d) be a weighted graph with n vertices and m edges. For any pa-
rameter p strictly between 0 and 1, we can construct a distribution over trees embeddable in G such
that for any edge e its expected `p-stretch in a tree picked from this distribution is O(( 1

1−p)2 logp n).
Furthermore, a tree from this distribution can be picked in expected O( 1

1−pm log log n) time in the
RAM model.

The results of this section are joint work with Michael Cohen, Gary Miller, Richard Peng and
Shen Chen Xu [CMP+14, CKM+14].

4.1 Introduction

Over the last few years substantial progress has been made on a large class of graph theoretic
optimization problems. We now know substantially better asymptotic running time bounds and par-
allelizations for approximate undirected maximum flow/minimum cut [Mad10, CKM+11, LRS13,
KLOS14, She13], bipartite matching [Mad13], minimum cost maximum flow [DS08], minimum
energy flows [ST04a, KMP11, KOSZ13, CFM+14], and graph partitioning [She09, OSV12]. One
commonality of all these new algorithms is that they either explicitly find low-stretch spanning trees
or call an algorithm that at least at present uses these trees.

The fastest known algorithm for generating these trees, due to Abraham and Neiman runs in
O(m log n log log n) time [AN12]. Among the problems listed above, this running time is only
the bottleneck for the minimum energy flow problem and its dual, solving symmetric diagonally
dominant linear systems. However, there is optimism that all of the above problems can be solved in
o(m log n) time, in which case finding these trees becomes a bottleneck as well. The main question
we address in this chapter is finding algorithms for constructing even better trees in O(m) time.
Unfortunately, this remains an open question.

The results presented remove the tree construction obstacle from o(m log n) time algorithms for
solving SDD systems, as well as other graph optimization problems. We give two modifications
to the definition of low stretch spanning trees that can simplify and speed up their construction.
Firstly, we allow additional vertices in the tree, leading to a Steiner tree. This avoids the need for the
complex graph decomposition scheme of [AN12]. Secondly, we discount the cost of high-stretch
edges in ways that more accurately reflect how these trees are used. This allows the algorithm to be
more “forgetful,” and is crucial to our speedup.
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Throughout this chapter we let G = (V,E, l) be a graph with edge lengths l(e), and T =
(VT , ET , lT ) denote the trees that we consider. In previous works on low stretch spanning trees, T
was required to be a subgraph of G in the weighted sense. In other words, ET ⊆ E, and lT (e) = l(e)
for all e ∈ ET . We relax this condition by only requiring edge lengths in T to be not too short with
respect to G through the notion of embeddability, which we formalize in Section 4.2.

For a tree T = (VT , ET , lT ), the stretch of an edge e = uv with respect to T is

STRT (e)
def
=
lT (u, v)

l(e)
,

where lT (u, v) is the length of the unique path between u and v in T . Previous tree embedding
algorithms aim to pick a T such that the total stretch of all edges e in G is small [AKPW95, AN12].
A popular alternate goal is to show that the expected stretch of any edge is small, and these two
definitions are closely related [AKPW95, CCG+98] . Our other crucial definition is the discounting
of high stretches by adopting the notion of `p-stretch:

STRp
T (e)

def
= (STRT (e))p .

These two definitional changes greatly simplify the construction of low stretch embeddings. It
also allows the combination of existing algorithms in a robust manner. Our algorithm is based on
the bottom-up clustering algorithm used to generate AKPW low-stretch spanning trees [AKPW95],
combined with the top-down decompositions common in recent algorithms [Bar96, EEST08,
ABN08, AN12]. Its guarantees can be stated as follows:

Theorem 4.1.1 Let G = (V,E, d) be a weighted graph with n vertices and m edges. For any pa-
rameter p strictly between 0 and 1, we can construct a distribution over trees embeddable in G such
that for any edge e its expected `p-stretch in a tree picked from this distribution is O(( 1

1−p)2 logp n).
Furthermore, a tree from this distribution can be picked in expected O( 1

1−pm log log n) time in the
RAM model.

We will formally define embeddability, as well as other notations, in Section 4.2. An overview
of our algorithm for generating low `p-stretch embeddable trees is in Section 6.2. We expand on it
using existing low-stretch embedding algorithms in mostly black-box manners in Section 4.4. Then
in Section 4.5 we show a two-stage algorithm that combines bottom-up and top-down routines that
gives our main result.

Although our algorithm runs in O(m log log n) time, the running time is in the RAM model,
and our algorithm calls a sorting subroutine. As sorting is used to approximately bucket the edge
weights, this dependency is rather mild. If all edge lengths are between 1 and ∆, this process can
be done in O(m log(log ∆)) time in the pointer machine model, which is O(m log logm) when
∆ ≤ mpoly(logm). We suspect that there are pointer machine algorithms without even this mild
dependence on ∆, and perhaps even algorithms that improve on the runtime ofO(m log log n). Less
speculatively, we also believe that our two-stage approach of combining bottom-up and top-down
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schemes can be applied with the decomposition scheme of [AN12] to generate actual spanning trees
(as opposed to merely embeddable Steiner trees) with low `p-stretch. However, we do not have a
rigorous analysis of this approach, which would presumably require a careful interplay with the
radius-bounding arguments in that paper.

4.1.1 Related Works

Alon et al. [AKPW95] first proposed the notion of low stretch embeddings and gave a routine for
constructing such trees. They showed that for any graph, there is a distribution over spanning trees
such that the expected stretch of an edge is exp(O(

√
log n log log n)). Subsequently, results with

improved expected stretch were obtained by returning an arbitrary tree metric instead of a spanning
tree. The only requirement on requirement on these tree metrics is that they don’t shorten distances
from the original graph, and they may also include extra vertices. However, in contrast to the objects
constructed in this chapter, they do not necessarily fulfill the embeddability property. Bartal gave
trees with expected stretch of O(log2 n) [Bar96], and O(log n log log n) [Bar98]. Optimal trees
with O(log n) stretches are given by Fakcharoenphol et al. [FRT04], and are known as the FRT
trees. This guarantee can be written formally as

ET [STRT (e)] ≤ O(log n).

Recent applications to SDD linear system solvers has led to renewed interest in finding spanning
trees with improved stretch over AKPW trees. The first LSSTs with poly(log n) stretch were given
by Elkin et al. [EEST08]. Their algorithm returns a tree such that the expected stretch of an edge is
O(log2 n log log n), which has subsequently been improved to O(log n log log n(log log log n)3) by
Abraham et al. [ABN08] and to O(log n log log n) by Abraham and Neiman [AN12].

Notationally our guarantee is almost identical to the expected stretch above when p is a constant
strictly less than 1:

ET [STRp
T (e)] ≤ O(logp n).

The power mean inequality implies that our embedding is weaker than those with `1-stretch bounds.
However, at present, O(log n) guarantees for `1-stretch are not known–the closest is the result by
Abraham and Neiman [AN12], which is off by a factor of log log n.

Structurally, the AKPW low-stretch spanning trees are constructed in a bottom-up manner based
on repeated clusterings [AKPW95]. Subsequent methods are based on top down decompositions
starting with the entire graph [Bar96]. Although clusterings are used implicitly in these algorithms,
our result is the first that combines these bottom-up and top-down schemes.

4.1.2 Applications

The `p-stretch embeddable trees constructed in this chapter can be used in all existing frameworks
that reduce the size of graphs using low-stretch spanning trees. In Appendix 4.A, we check that the
larger graph with Steiner trees can lead to linear operators close to the graph Laplacian of the original
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graph. It allows us to use these trees in algorithms for solving linear systems in graph Laplacians,
and in turn SDD linear systems. This analysis also generalizes to other convex norms, which
means that our trees can be used in approximate flow [LS13, She13] and minimum cut [Mad10]
algorithms.

Combining our algorithm with the recursive preconditioning framework by Koutis et
al. [KMP11] leads to an algorithm that runs solves such a system to constant accuracy inO(m log n)
time. They are also crucial for the recent faster solver by Cohen et al. [CKP+14], which runs in
about m log1/2 n time. Parallelizations of it can be used can also lead to work-efficient parallel
algorithms for solving SDD linear systems with depth of about m1/3 [BGK+13], and in turn for
spectral sparsification [SS08, KLP12]. For these parallel applications, ignoring a suitable fraction
of the edges leads to a simpler algorithm with lower depth. This variant is discussed in Section
4.5.3. On the other hand, these applications can be further improved by incorporating the recent
polylog depth, nearly-linear work parallel solver by Peng and Spielman [PS13]. Consequently, we
omit discussing the best bounds possible with the hope of a more refined parallel algorithm.

4.2 Background

Before we describe our algorithm, we need to formally specify the simple embeddability property
that our trees satisfy. The notion used here is the same as the congestion/dilation definition
widely used in routing [Lei92, LMR94]. It was used explicitly in earlier works on combinatorial
preconditioning [Vai91, Gre96], and is implicit in the more recent algorithms.

Informally, an embedding generalizes the notion of a weighted subgraph in two ways. First,
in an embedding of H into G, edges in H may correspond to paths in G, rather than just edges.
Second, H may contain Steiner vertices that can be seen as “shadow copies” of vertices in G. Edges
in G can be apportioned between different paths and connect to different Steiner vertices, but their
weight must be reduced proportionally.

Formally, an embedding can be viewed as a weighted mapping from one graph to another.
Splitting an edge will make it lighter, and therefore easier to embed. However, it will also make it
harder to traverse, and therefore longer. As a result, for embeddings it is convenient to view an edge
e by both its length l(e) and weight w(e), which is the reciprocal of its length:

w(e)
def
=

1

l(e)
.

A path embedding is then a weighted mapping from the edges of a graph to paths in another.
Such a mapping from a graph H = (VH , EH , lH) to a graph G = (VG, EG, lG) is given by the
following three functions:

1. A mapping from vertices of H to those in G, π : VH → VG.

2. A function from each edge eH ∈ EH to a weighted path of G, denoted by Path(eH = xGyG)
that goes from π(xG) to π(yG).
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3. We let WPath(eH , eG) denote the weight of the edge eG on path Path(eH). This value is zero
if eG 6∈ Path(eH).

The congestion-dilation notion of embeddability can then be formalized as follows:

Definition 4.2.1 A graph H is path embeddable, or simply embeddable, into a graph G, if there
exists a path embedding (π,Path) of H into G such that:

• for all edges e ∈ EG,
∑

eH∈EH WPath(eH , eG) ≤ wG(eG): congestion is at most one, and

• for all edges eH ∈ EH ,
∑

eG∈Path(eH)
1

WPath (eH ,eG)
≤ lH(e) = 1

wH(e)
: dilation is at most one.

Note that since G has no self-loops, the definition precludes mapping both endpoints of an edge in
H to the same point in G. Also note that if H is a subgraph of G such that lH(e) ≥ lG(e), setting
π to be the identity function and Path(e) = e and WPath(e, e) = wH(e) is one way to certify
embeddability.

4.3 Overview

We now give an overview of our main results. Our algorithm follows the decomposition scheme
taken by Bartal for generating low stretch embeddings [Bar96]. This scheme partitions the graph
repeatedly to form a laminar decomposition, and then constructs a tree from the laminar decomposi-
tion. However, our algorithm also makes use of spanning trees of the decomposition itself. As a
result we start with the following alternate definition of Bartal decompositions where these trees are
clearly indicated.

Definition 4.3.1 Let G = (V,E, l) be a connected multigraph. We say that a sequence of forests B,
where

B = (B0, B1, . . . , Bt),

is a Bartal decomposition of G if all of the following conditions are satisfied:

1. B0 is a spanning tree of G and Bt is an empty graph.

2. For any i ≤ t, Bi is a subgraph of G in the weighted sense.

3. For any pair of vertices u, v and level i < t, if u and v are in the same connected component
of Bi+1, then they are in the same connected component of Bi.

Condition 2 implies that each of the Bis is embeddable into G. A strengthening of this condition
would require the union of all the Bis to be embeddable into G. We will term such decompositions
embeddable Bartal decompositions.
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Bartal decompositions correspond to laminar decompositions of the graphs: if any two vertices
u and v are separated by the decomposition in level i, then they are also separated in all levels j > i.
If u and v are in the same partition in some level i, but are separated in level i+ 1, we say that u
and v are first cut at level i. This definition is useful because if the diameters are decreasing, the
stretch of an edge can be bounded using only information related to level at which it is first cut.

We will work with bounds on diameters, d = (d0, . . . dt). We say that such a sequence is
geometrically decreasing if there exists some constant 0 < c < 1 such that di+1 ≤ cdi. Below
we formalize a condition when such sequences can be used as diameter bounds for a Bartal
decomposition.

Definition 4.3.2 A geometrically decreasing sequence d = (d0 . . . dt) bounds the diameter of a
Bartal decomposition B if for all 0 ≤ i ≤ t,

1. The diameter of any connected component of Bi is at most di, and

2. any edge e ∈ Bi has length l(e) ≤ di
logn

.

Given such a sequence, the bound di for the level where an edge is first cut dominates its final
stretch. This motivates us to define the `p-stretch of an edge w.r.t. a Bartal decomposition as follows:

Definition 4.3.3 Let B be a Bartal decomposition with diameter bounds bounds d , and p a param-
eter such that p > 0. The `p-stretch with respect to B,d of an edge e with length l(e) that is first cut
at level i is

STRp
B,d(e)

def
=

(
di
l(e)

)p
.

In Section 4.4, we will check rigorously that it suffices to generate (not necessarily embeddable)
Bartal decompositions for which edges are expected to have small `p-stretch. We will give more
details on these transformations later in the overview as well.

The decomposition itself will be generated using repeated calls to variants of probabilistic
low-diameter decomposition routines [Bar96]. Such routines allow one to partition a graph into
pieces of diameter d such that the probability of an edge being cut is at most O(log n/d). At a
high level, our algorithm first fixes a geometrically decreasing sequence of diameter bounds, then
repeatedly decomposes all the pieces of the graph. With regular (`1) stretch, such routines can be
shown to give expected stretch of about log2 n per edge [Bar96], and most of the follow-up works
focused on reducing this factor. With `p-stretch on the other hand, such a trade-off is sufficient for
the optimum bounds when p is a constant bounded away from 1.

Lemma 4.3.4 Let B be a distribution over Bartal decompositions. If d is a geometrically decreas-
ing sequence that bounds the diameter of any B ∈ B, and the probability of an edge with length l(e)
being cut on level i of some B ∈ B is

O
((

l(e) log n

di

)q)
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for some 0 < q < 1. Then for any p such that 0 < p < q, we have

EB∈B
[
STRp

B,d(e)
]
≤ O

(
1

q − p
logp n

)
Its proof relies on the following fact about geometric series, which plays a crucial role in all of

our analyses.

Fact 4.3.5 There is an absolute constant cgeo such that if c and ε are parameters such that c ∈ [e, e2]
and ε > 0

∞∑
i=0

c−iε = cgeoε
−1.

Proof Since 0 < c−1 < 1, the sum converges, and equals

1

1− c−ε
=

1

1− exp(−ε ln c)
.

Therefore it remains to lower bound the denominator. If ε ≥ 1/4, then the denominator can be
bounded by a constant. Otherwise, ε ln c ≤ 1/2, and we can invoke the fact that exp(−t) ≤ 1− t/2
when t ≤ 1/2 to obtain

1− exp(−ε ln c) ≥ ε ln c.

Substituting in the bound on c and this lower bound into the denominator then gives the result.

�

Proof of Lemma 4.3.4: If an edge is cut at a level with di ≤ l(e) log n, its stretch is at most log n,
giving an `p-stretch of at most logp n. It remains only to consider the levels with di ≥ l(e) log n.
Substituting the bounds of an edge cut on level i and the probability of it being cut into the definition
of `p-stretch gives:

EB
[
STRp

B,d (e)
]
≤

∑
i,di≥lognl(e)

(
di
l(e)

)p
O
((

l(e) log n

di

)q)

= O

logp n
∑

i,di≥lognl(e)

(
l(e) log n

di

)q−p .

Since an edge e is only cut in levels where di ≥ l(e) log n and the dis are geometrically increasing,
this can be bounded by

O

(
logp n

∑
i=0

c−i(q−p)

)

Invoking Fact 4.3.5 then gives a bound of O
(

1
q−p logp n

)
.
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Figure 4.1: Bartal decomposition and final tree produced

�

This is our approach for showing that a Bartal decomposition has small `p-stretch, and it remains
to convert them into embeddable trees. This conversion is done in two steps: we first show how
to obtain a decomposition such that all of the Bis are embeddable into G, and then we give an
algorithm for converting such a decomposition into a Steiner tree. To accomplish the former,
we first ensure that each Bi is embeddable by choosing them to be subgraphs. Then we present
pre-processing and post-processing procedures that converts such a guarantee into embeddability of
all the Bis simultaneously.

In order to obtain a tree from the decomposition, we treat each cluster in the laminar decomposi-
tion as a Steiner vertex, and join them using parts of Bis. This step is similar to Bartal trees in that
it identifies centers for each of the Bis, and connects the centers between one level and the next.
However, the need for the final tree to be embeddable means that we cannot use the star-topology
from Bartal trees [Bar96]. Instead, we must use part of the Bis between the centers. As each Bi

is a forest with up to n edges, a tree obtained as such may have a much larger number of Steiner
vertices. As a result, the final step involves reducing the size of this tree by contracting the paths
connecting the centers. This process is illustrated in Figure 4.1.

In Section 4.4, we give the details on these steps that converts Bartal decompositions to embed-
dable trees. Furthermore, we check that Bartal’s algorithm for generating such trees meets the good
cutting probability requirements of Lemma 4.3.4. This then gives the following result:
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Lemma 4.3.6 Given a graphG with weights are between [1,∆], for the diameter sequence d where
d0 = 2n∆, d1 = 2−1n∆, . . . dt < 1, we can create a distribution over Bartal decompositions with
diameters bounded by d such that for any edge e and any parameter 0 < p < 1,

EB
[
STRp

B,d (e)
]
≤ O

(
1

1− p
logp n

)
.

Furthermore, a random decomposition from this distribution can be sampled with high probability
in O(m log(n∆) log n) time in the RAM model.

This routine plus the transformations gives a simple algorithm for constructing low `p-stretch
embeddable trees. with expected stretch matching the bound stated our main result, Theorem 4.1.1.
However, the running time of O(m log(n∆) log n) is more than the current best for finding low-
stretch spanning trees [AN12], as well as the O(m log2 n) running time for finding Bartal trees.

Our starting point towards a faster algorithm is the difference between our simplified routine
and Bartal’s algorithm. Bartal’s algorithm, as well as subsequent algorithms [EEST08] ensure that
an edge participates in only O(log n) partitions. At each step, they work on a graph obtained by
contracting all edges whose lengths are less than di/poly(n). This coupled with the upper bound of
edge lengths from Definition 4.3.2, Part 2 and the geometric decrease in diameter bounds gives that
each edge is involved in O(log(poly(n))) = O(log n) steps of the partition.

As a path in the tree has at most n edges, the additive increase in stretch caused by these shrunken
edges is negligible. Furthermore, the fact that the diameter that we partition upon decreases means
that once we uncontract an edge, it remains uncontracted in all future steps. Therefore, these
algorithms can start from the initial contraction for d0, and maintain all contractions in work
proportional to their total sizes.

When viewed by itself, this contraction scheme is almost identical to Kruskal’s algorithm for
building minimum spanning trees (MSTs). This suggests that the contraction sequence can be
viewed as another tree underlying the top-down decomposition algorithm. This view also leads
to the question of whether other trees can be used in place of the MST. In Section 4.5, we show
that if the AKPW low-stretch spanning tree is used instead, each edge is expected to participate in
O(log log n) levels of the top-down decomposition scheme. Combining this with a O(m log log n)
time routine in the RAM model for finding the AKPW low-stretch spanning tree and a faster
decomposition routine then leads to our faster algorithm.

Using these spanning trees to contract parts of the graph leads to additional difficulties in the
post-processing steps where we return embeddable Steiner trees. A single vertex in the contracted
graph may correspond to a large cluster in the original graph. As a result, edges incident to it in the
decomposition may need to be connected by long paths. Furthermore, the total size of these paths
may be large, which means that they need to be treated implicitly. In Section 4.5.5, we leverage the
tree structure of the contraction to implicitly compute the reduced tree. Combining it with the faster
algorithm for generating Bartal decompositions leads to our final result as stated in Theorem 4.1.1.
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4.4 From Bartal Decompositions to Embeddable Trees

In this section, we show that embeddable trees can be obtained from Bartal decompositions using
the process illustrated in Figure 4.1. We do this in three steps: exhibiting Bartal’s algorithm in
Section 4.4.1, showing that a decomposition routine that makes each Bi embeddable leads to a
routine that generates embeddable decompositions in Section 4.4.2, and giving an algorithm for
finding a tree from the decomposition in Section 4.4.3. We start by formally describing Bartal’s
algorithm for decomposing the graph.

4.4.1 Bartal’s Algorithm

Bartal’s algorithm in its simplest form can be viewed as repeatedly decomposing the graph so
the pieces have the diameter guarantees specified by d . At each step, it calls a low-diameter
probabilistic decomposition routine with the following guarantees.

Lemma 4.4.1 (Probabilistic Decomposition) There is an algorithm PARTITION that given a
graph G with n vertices and m edges, and a diameter parameter d, returns a partition of V into
V1 ·∪V2 ·∪ . . . ·∪Vk such that:

1. The diameter of the subgraph induced on each Vi is at most d with high probability, certified
by a shortest path tree on Vi with diameter d, and

2. for any edge e = uv with length l(e), the probability that u and v belong to different pieces is
at most O( l(e) logn

d
).

Furthermore, PARTITION can be implemented using one call to finding a single source shortest
path tree on the same graph with all vertices connected to a super-source by edges of length between
0 and d.

This routine was first introduced by Bartal to construct these decompositions. It and the low
diameter decompositions that it’s based on constructed each Vi in an iterative fashion. Miller et
al. [MPX13] showed that a similar procedure can be viewed globally, leading to the implementation-
independent view described above. Dijkstra’s algorithm (Chapter 24 of [CSRL01]) then allows
one to obtain a running time of O((m + n) log n). It can be further sped up to O(m + n log n)
using Fibonacci heaps due to Fredman and Tarjan [FT87], and to O(m) in the RAM model by
Thorup [Tho00]. In this setting where approximate answers suffice, a running time of O(m +
n log log ∆) was also obtained by Koutis et al. [KMP11]. As our faster algorithm only relies on the
shortest paths algorithm in a more restricted setting, we will use the most basic O(m log n) bound
for simplicity.

We can then obtain Bartal decompositions by invoking this routine recursively. Pseudocode of
the algorithm is given in Figure 4.1. The output of this algorithm for a suitable diameter sequence
gives us the decomposition stated in Lemma 4.3.6.
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B = DECOMPOSESIMPLE(G,d), where G is a multigraph, and d are diameter bounds.

1. Initialize B by setting B0 to a shortest path tree from an arbitrary vertex in VG.

2. For i = 1 . . . t do

(a) Initialize Bi to empty.

(b) Remove all edges e with l(e) ≥ di
logn

from G.

(c) For each subgraph H of G induced by a connected component of Bi−1 do

i. G1 . . . Gk ← PARTITION(H, di).
ii. Add shortest path trees in each Gj to Bi.

3. Return B.

Figure 4.1: Bartal’s Decomposition Algorithm

Proof of Lemma 4.3.6: Consider the distribution produced by DECOMPOSESIMPLE(G,d). With
high probability it returns a decomposition B. We first check that B is a Bartal decomposition. Each
tree in Bis is a shortest path tree on a cluster of vertices formed by the partition. As these clusters
are disjoint, Bi is a subgraph in the weighted sense. Since the algorithm only refines partitions,
once two vertices are separated, they remain separated for any further partitions. Also, the fact that
B0 is spanning follows from the initialization step, and Bt cannot contain any edge since any edge
has length at least 1 and dt < 1.

We now show that d are valid diameter bounds for any decomposition produced with high prob-
ability. The diameter bounds on di follow from the guarantees of PARTITION and the initialization
step. The initialization of d0 = 2n∆ also ensures that no edge’s length is more than d

logn
, and this

invariant is kept by discarding all edges longer than d
c logn

before each call to PARTITION.

The running time of the algorithm follows from t ≤ O(log(n∆)) and the cost of the shortest
path computations at all the steps. It remains to bound the expected `p-stretch of an edge e w.r.t. the
decomposition. When l(e) ≥ di

c logn
, a suitable choice of constants allows us to bound the probability

of e being cut by 1. Otherwise, e will not be removed unless it is already cut. In case that it is in the
graph passed onto PARTITION, the probability then follows from Lemma 4.4.1. Hence the cutting
probability of edges satisfies Lemma 4.3.4, which gives us the bound on stretch.

�

4.4.2 Embeddability by Switching Moments

We now describe how to construct embeddable Bartal decomposition by using a routine that returns
Bartal decompositions. This is done in three steps: pre-processing the graph to transform the edge
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lengths of G to form G′, running the decomposition routine on G′ for a different parameter q, and
post-processing its output.

Pseudocode of this conversation procedure is given in Figure 4.2. Both the pre-processing and
post-processing steps are deterministic, linear mappings. As a result, we can focus on bounding the
expected stretch of an edge in the decomposition given by DECOMPOSE.

B,d = EMBEDDABLEDECOMPOSE(G, p, q,DECOMPOSEq) where G is a graph, p, q are
exponents for stretch, and DECOMPOSE is a routine that generates a decomposition B′ along
with diameter bounds d ′.

1. Create graph G′ with edge lengths l′(e) = l(e)
p
q .

2. B′,d ′ ← DECOMPOSEq(G
′).

3. Create decomposition B and diameter bounds d scaling lengths in B′i and di by

cgeo
q − p

(
d′i

log n

) q−p
p

where cgeo is the constant given by Fact 4.3.5.

4. Return B,d .

Figure 4.2: Using a generic decomposition routine to generate an embeddable decomposition

We first verify that d is a geometrically decreasing sequence bounding the diameters of B.

Lemma 4.4.2 If B′ is a Bartal decomposition of G′ whose diameters are bounded by d ′, then d is
geometrically decreasing sequence that bound the diameter of B.

Proof

The post-processing step scales the difference between adjacent d′is by an exponent of q
p
, which

is at least 1 since q > p. Therefore d is also a geometrically decreasing sequence. As the lengths in
B′i and d′i are scaled by the same factor, di remains an upper bound for the diameter of Bi. Also,
since d′i ≥ l′(e) log n = l(e)

p
q log n, we have

di =
cgeo
q − p

(
d′i

log n

) q−p
p

d′i ≥ l(e) log n.

Therefore d upper bounds the diameters of B as well.

�

We now check that B is a subgraph in the weighted case, which makes it an embeddable Bartal
decomposition.
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Lemma 4.4.3 For any edge e we have∑
i

wBi(e) ≤ w(e).

Proof Combining the pre-processing and post-processing steps gives that the total weight of e in
all the layers is:

∑
i

wBi(e) =
∑
i,e∈Bi

1

lBi(e)
=
p− q
cgeo

∑
i,e∈Bi

(
log n

d′i

) q−p
p

w(e)
p
q .

Showing that this is at most w(e) is therefore equivalent to showing

p− q
cgeo

∑
i,e∈Bi

(
log n

d′iw(e)
p
q

) q−p
p

≤ 1.

Here we make use of the condition that the levels in which edge e appears have d′i ≥ l′(e) log n.
Substituting in l′(e) = w(e)−

p
q into this bound on d′i gives:

d′i ≥ w(e)−
p
q log n

d′iw(e)
p
q ≥ log n.

As d′is are decreasing geometrically, this means that these terms are a geometrically decreasing
sequence whose first term can be bounded by 1. Fact 4.3.5 then gives that the summation is bounded
by cgeop

q−p ≤
cgeo
q−p , which cancels with the coefficient in front of it.

�

We can also check that the stretch of an edge e w.r.t. B,d is comparable to its stretch in B′,d ′.

Lemma 4.4.4 For parameters 0 < p < q < 1, the `p-stretch of an edge e in G w.r.t. B,d and its
`q-stretch in G′ w.r.t. B′,d ′ are related by

STRp
B,d(e) = O

(
1

q − p
logp−q n · STRq

B′,d ′(e)

)
.

Proof Rearranging scaling on d′i used to obtain di gives

di =
cgeo
q − p

(
d′i

log n

) q−p
p

d′i =
cgeo
q − p

log
p−q
p n · d′i

q
p .
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We can then relate the stretch of an edge in the new decomposition with that of its `q-stretch in G′.
For an edge cut at level i, we have

STRB,d(e) =
di
l(e)

=
cgeo
q − p

log
p−q
p n

d′i
q
p

l′(e)
q
p

. =
cgeo
q − p

log
p−q
p n

(
STRq

B′,d ′(e)
) 1
p
.

Taking both sides to the p-th power, and using the fact that p < 1, then gives the desired bound.

�

It’s worth noting that when p and q are bounded away from 1 by constants, this procedure is
likely optimal up to constants. This is because the best `p-stretch that one could obtain in these
settings are O(logp n) and O(logq n) respectively.

4.4.3 From Decompositions to Trees

It remains to show that an embeddable decomposition can be converted into an embeddable tree.
Our conversion routine is based on the laminar-decomposition view of the decomposition. From the
bottommost level upwards, we iteratively reduce the interaction of each cluster with other clusters
to a single vertex in it, which we term the centers. Centers can be picked arbitrarily, but to enforce
the laminar decomposition view, we require that if a vertex u is a center on level i, it is also a center
on level i+ 1 and therefore all levels j > i. Once the centers are picked, we can connect the clusters
starting at the bottom level, by connecting all centers of level i+ 1 to the center of the connected
component they belong to at level i. This is done by taking the part of Bi involving these centers.
We first show that the tree needed to connect them has size at most twice the number of centers.

Fact 4.4.5 Given a tree T and a set of k vertices S, there is a tree TS on 2k − 1 vertices including
these k leaves such that:

• The distances between vertices in S are the same in T and TS .

• TS is embeddable into T .

Proof The proof is by induction on the number of vertices in T . The base case is when T has
fewer than 2k− 1 vertices, where it suffices to set TS = T . For the inductive case suppose the result
is true for all trees with n vertices, and T has n+ 1 vertices. We will show that there is a tree T ′ on
n vertices that preserves all distances between vertices in S, and is embeddable into T .

If T has a leaf that’s not in S, removing it and the edge incident to it does not affect the distances
between the vertices in S, and the resulting tree T ′ is a subgraph and therefore embeddable into T .
Otherwise, we can check via a counting argument that there is a vertex u of degree 2 that’s not in S.
Let this vertex and its two neighbors be u and v1, v2 respectively. Removing u and adding an edge
between v1v2 with weight l(uv1) + l(uv2) preserves distances. This new tree T ′ is embeddable in T
by mapping v1v2 to the path v1 − u− v2 with weights equaling the weights of the two edges.

Since T ′ has n vertices, the inductive hypothesis gives the existence of a tree TS meeting the
requirements. As T ′ is embeddable into T , TS is embeddable into T as well.
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Invoking this routine repeatedly on the clusters then leads to the overall tree. Pseudocode of this
tree construction algorithm is given in Figure 4.3.

T = BUILDTREE(G,B) where B is a Bartal decomposition of G.

1. Designate a center vertex for each connected component of each level of B such that
if u is a center vertex on level i, it is also a center vertex on level i+ 1.

2. For each connected component on level i.

(a) Find all center vertices in level i+ 1 contained in this piece.

(b) Connect these vertices using the small sized equivalent of Bi given by Fact 4.4.5.

3. Return T .

Figure 4.3: Constructing a Steiner tree from a Bartal decomposition

Lemma 4.4.6 Given a graph G and an embeddable Bartal decomposition B, BUILDTREE gives
an embeddable tree T with O(n) vertices containing V such that for any geometrically decreasing
sequence d that bounds the diameters of B and any edge e we have

STRT (e) = O(STRB,d(e)).

Proof We first bound the total size of T . Note that the number of vertices added is proportional
to the decrease in number of components. Since the initial number of clusters is n, T has at most
2n− 1 vertices.

Fact 4.4.5 gives that the trees used to connect the level i+ 1 clusters are embeddable into the
corresponding connected component of Bi. Since the vertices in these clusters are disjoint and ∪iBi

is embeddable into G, T is also embeddable into G.

It remains to bound the stretch of edges w.r.t. T . For an edge e = uv that’s cut at level i, consider
the the path from u to the centers of the clusters levels t, t− 1, . . . i. The diameter bounds give that
the distance traversed on level j is bounded by dj . As d is a geometrically decreasing sequence, the
total length of this path is bounded by O(di). A similar argument can be applied to v, and since u
and v is cut at level i, the centers on level i are the same. Therefore, the distance between u and v in
the tree can be bounded by O(di), giving the bound on stretch.

�

Combining these pieces leads to an algorithm generating low `p-stretch embeddable trees.

Lemma 4.4.7 Let G = (V,E,w) be a weighted graph with n vertices and m edges and weights
w : E → [1,∆], and p be any parameter strictly between 0 and 1. We can construct a distribution
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over Bartal decompositions such that for any edge e, its expected `p-stretch in a decomposition
picked from this distribution is O(( 1

1−p)2 logp n).

Proof

Consider running EMBEDDABLEDECOMPOSE with q = 1+p
2

, and DECOMPOSESIMPLE with
the parameters given by Lemma 4.3.6 as the decomposition procedure. By Lemmas 4.3.6 and 4.4.4,
the expected stretch of an edge e in the post-processed decomposition B w.r.t. diameter bounds d is:

O
(

1

q − p
logp−q

1

1− q
logq n

)
= O

((
1

1− p

)2

logp n

)
.

Running BUILDTREE on this decomposition then gives a tree where the expected stretch of edges
are the same. The embeddability of this tree also follows from the embeddability of B given by
Lemma 4.4.3.

To bound the running time, note that as 0 ≤ p
q
< 1, the lengths of edges in the pre-processed

graph G′ are also between 1 and ∆. Both the pre and post processing steps consist of only rescaling
edge weights, and therefore take linear time. The total running time then follows from Lemma 4.3.6.

�

4.5 Two-Stage Tree Construction

We now give a faster algorithm for constructing Bartal decompositions. The algorithm proceeds
in two stages. We first quickly build a lower quality decomposition using the same scheme as
the AKPW low stretch spanning tree [AKPW95]. Then we proceed in the same way as Bartal’s
algorithm and refine the decompositions in a top-down manner. However, with the first stage
decomposition, we are able to construct a Bartal decomposition much faster.

Both the AKPW decomposition and the way that our Bartal decomposition routine uses it
relies on repeated clustering of vertices. Of course, in an implementation, such clusterings will
be represented using various linked-list structures. However, from an analysis perspective, it is
helpful to view them as quotient graphs. For a graph G and a subset of edges A, we let the quotient
graph G/A be the graph formed by the connected components of A. Each of these components
corresponding to subsets of vertices becomes a single vertex in G/A, and the edges have their
vertices relabeled accordingly. For our algorithms, it is essential for us to keep multi-edges as
separate copies. As a result, all the graphs that we deal with in this section are potentially multi-
graphs, and we will omit this distinction for simplicity.

The main advantages offered by the AKPW decomposition are

• it is a bottom-up routine that can be performed in linear time, and

• each edge only participates in O(log log n) steps of the refinement process in expectation,
and
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• all partition routines are done on graphs with diameter poly(log n).

The interaction between the bottom-up AKPW decomposition scheme and the top-down Bartal
decomposition leads to some distortions. The rest of this section can be viewed as analyzing
this distortion, and the algorithmic gains from having it. We will show that for an appropriately
constructed AKPW decomposition, the probability of an edge being cut can be related to a quantity
in the `q norm for some p < q < 1. The difference between these two norms then allows us to
absorb distortions of size up to poly(log n), and therefore not affecting the quality of the resulting
tree. Thus we will work mostly with a different exponent q in this section, and only bring things
back to an exponent in p at the very end.

Both the AKPW and the top-down routines will issue multiple calls to PARTITION. In both
cases the granularity of the edge weights will be poly(log n). As stated in Section 3, PARTITION

can be implemented in linear time in the RAM model, using the rather involved algorithm presented
in [Tho00]. In practice, it is also possible to use the low granularity of edge weights and use
Dial’s algorithm [Dia69], worsening the total running time of our algorithm to O(m log log n +
log ∆ poly(log n)) when all edge lengths are in the range [1,∆]. Alternatively, we can use the
weight-sensitive shortest path algorithm from [KMP11], which works in the pointer machine model,
but would be slower by a factor of O(log log log n).

4.5.1 The AKPW Decomposition Routine

We first describe the AKPW algorithm for generating decomposition. The decomposition produced
is similar to Bartal decompositions, although we will not impose the strict conditions on diameters
in our definition.

Definition 4.5.1 Let G = (V,E, l) be a connected multigraph. We say that a sequence of forests
A, where

A = (A0, A1, . . . , As),

is an AKPW decomposition of G with parameter δ if:

1. As is a spanning tree of G.

2. For any i < t, Ai ⊆ Ai+1.

3. The diameter of each connected component in Ai is at most δi+1.

Pseudocode for generating this decomposition is given in Figure 4.1. We first bound the diameters
of each piece, and the probability of an edge being cut in Ai.

Lemma 4.5.2 AKPW(G, δ) generates with high probability an AKPW decomposition A such that
for an edge e = uv with l(e) ∈ [δi, δi+1) and some j ≥ i, the probability that u and v are not
connected in Aj is at most (

cPartition log n

δ

)j−i
,
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A = AKPW(G, δ), where G is a connected multigraph.

1. Bucket the edges by length into E0, E1, . . ., where Ei contains all edges of length in
[δi, δi+1)

2. Initialize A0 := ∅, s := 0.

3. While As is not a spanning tree of G:

(a) Let E ′ be the set of all edges from E0, . . . , Es that connect different components
of As.

(b) Set Gs := (V,E ′,~1)/As, where ~1 is a constant function that assigns all edges
length 1.

(c) Decompose G by calling PARTITION(Gs, δ/3); let T1, T2, . . . , Tk be the edge
sets of the corresponding low diameter spanning trees.

(d) Set As+1 := As ∪ T1 ∪ . . . ∪ Tk
(e) Set s := s+ 1.

4. Return A := (A0, . . . , As).

Figure 4.1: The routine for generating AKPW decompositions

where cPartition is a constant associated with the partition routine. Furthermore, if
δ ≥ 2cPartition log n, it runs in expected O(m log log1/2 n) time in the RAM model,

Proof The termination condition on Line 3 implies that As is a spanning tree, and the fact that
we generate Ai+1 by adding edges to Ai gives Ai ⊆ Ai+1. The bound on diameter can be proven
inductively on i.

The base case of i = 0 follows from the vertices being singletons, and as a result having diameter
0. For the inductive case, suppose the result is true for i. Then with high probability each connected
component in Ai+1 corresponds to a tree with diameter δ/3 connecting connected components in
Ai. The definition of Ei gives that each of these edges have length at most δi+1, and the inductive
hypothesis gives that the diameter of each connected component in Ai is also at most δi+1. This
allows us to bound the diameter of Ai+1 by (δ/3) · δi+1 +(δ/3+1)δi+1 ≤ δi+2. Hence the inductive
hypothesis holds for i+ 1 as well.

The guarantees of the probabilistic decomposition routine from Lemma 4.4.1 gives that on any
level, an edge has its two endpoints separated with probability cP logn

δ
. The assumption of the length

of e means that it is in Ei. So by the time Aj is formed, it has gone through j− i rounds of partition,
and is present iff its endpoints are separated in each of these steps. Multiplying the probabilities
then gives the bound.

If δ ≥ 2cP log n, then the probability of an edge in Ei appearing in subsequent levels decrease
geometrically. This means that the total expected sizes of Gt processed is O(m). Combining
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this with the linear running time of PARTITION gives the expected running time once we have
the buckets E0, E1, etc. Under the RAM model of computation, these buckets can be formed in
O(m log log1/2 n) time using the sorting algorithm by Han and Thorup [Han04]. Incorporating this
cost gives the overall running time.

�

Combining the bound on diameter and probability of an edge being cut leads to the bound on
the expected `1-stretch of an edge shown by Alon et al. [AKPW95]. For an edge on the ith level, the
ratio between its length and the diameter of the j th level can be bounded by δj−i+1. As j increases,
the expected stretch of e then increases by factors of

δ · O
(

log n

δ

)
= O (log n) ,

which leads to the more than logarithmic bound on the expected `1-stretch. With `p-stretch however,
the pth power of the diameter-length ratio only increases by factors of δp. This means that, as long
as the probabilities of an edge being cut increases by factors of less than δp, a better bound can be
obtained.

4.5.2 AKPW meets Bartal

In this section, we describe how we combine the AKPW decomposition and Bartal’s scheme into a
two-pass algorithm. At a high level, Bartal’s scheme repeatedly partitions the graph in a top-down
fashion, and the choice of having geometrically decreasing diameters translates to a O(m log n)
running time. The way our algorithm achieves a speedup is by contracting vertices that are close
to each other, in a way that does not affect the top-down partition scheme. More specifically, we
precompute an appropriate AKPW decomposition, and only expose a limited number of layers while
running the top-down partition. This way we ensure that each edge only appears in O(log log n)
calls to the partition routine.

Let A = (A0, A1, · · · , As) be an AKPW decomposition with parameter δ, so that G/Ai is the
quotient graph where each vertex corresponds to a cluster of diameter at most δi+1 in the original
graph. While trying to partition the graph G into pieces of diameter d, where under some notion d
is relatively large compared to δi+1, we observe that the partition can be done on the quotient graph
G/Ai instead. As the complexity of our partition routine is linear in the number of edges, there
might be some potential gain. We use the term scope to denote the point at which lower levels of
the AKPW decomposition are handled at a coarser granularity. When the top-down algorithm is
reaches diameter di in the diameter sequence d , this cutoff point in the AKPW decomposition is
denoted by scope(i). The algorithm is formalized in Figure 4.2.

We first show that the increase in edge lengths to δscope(i)+1 still allows us to bound the diameter
of the connected components of Bi.

Lemma 4.5.3 The diameter of each connected component in Bi is bounded by di with high proba-
bility.
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B = DECOMPOSETWOSTAGE(G,d ,A), where G is a graph, d = d0, d1, . . . , dt is a
decreasing diameter sequence and A = (A0, A1, . . . As) is a fixed AKPW decomposition.

1. Initialize B by setting B0 to As

2. For i = 1 . . . t do

(a) If necessary, increase i so that G′ = Bi−1/Ascope(i) is not singletons.

(b) Initialize Bi to empty.

(c) Increase all edge lengths to at least δscope(i)+1 and remove all edges e with
l(e) ≥ di

logn
from G′.

(d) For each connected component H of G′ do

i. G1 . . . Gk ← PARTITION(H, di/3).
ii. Add the edges in the shortest path tree in each Gj , plus the intermediate

edges from Ascope(i), to Bi.

3. Return B.

Figure 4.2: Pseudocode of two pass algorithm for finding a Bartal decomposition

Proof By the guarantee of the partition routine, the diameter of each Gi is at most di
3

with high
probability. However, since we are measuring diameter of the components in G, we also need
to account for the diameter of the components that were shrunken into vertices when forming
G′. These components corresponds to connected pieces in Ascope(i), therefore the diameters of the
corresponding trees are bounded by δscope(i)+1 with high probability. Our increase of edge lengths in
G′, on the other hand, ensures that the length of any edge is more than the diameter of its endpoints.
Hence the total increase in diameter from these pieces is at most twice the length of a path in G′,
and the diameter of these components in G can be bounded by di.

�

Once we established that the diameters of our decomposition is indeed geometrically decreasing,
it remains to bound the probability of an edge being cut at each level of the decomposition. In
the subsequent sections, we give two different analyses of the algorithm DECOMPOSETWOSTAGE

with different choices of scope. We first present a simple version of our algorithm which ignores a
1/poly(log n) fraction of the edges, but guarantees an expected `1-stretch close to O(log n) for rest
of the edges. Then we present a more involved analysis with a careful choice of scope which leads
to a tree with small `p-stretch.

4.5.3 Decompositions that Ignore 1
k

of the Edges

In this section, we give a simplified algorithm that ignoresO( 1
k
) fraction of the edges, but guarantees

for other edges an expected `1-stretch of close to O(log n). We also discuss how this relates to the
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problem of generating low-stretch subgraphs in parallel and its application to parallel SDD linear
system solvers.

In this simplified algorithm, we use a naive choice of scope, reaching a small power of k log n
into the AKPW decomposition.

Let d = (d0, d1, . . . , dt) be a diameter sequence and let A = (A0, A1, . . . , As) be an AKPW
decomposition constructed with parameter δ = k log n. We let scope(i) = max{j | δj+3 ≤ di}.
Note that δscope(i) is always between di

δ4
and di

δ3
. We say an edge e ∈ Ei is AKPW-cut if e is cut in

Ai+1. Furthermore, we say an edge e is floating in level i if it exists in Bi−1/Ascope(i) and has length
less than δscope(i)+1. Note that the floating edges are precisely the edges whose length is increased
before running the Bartal decomposition. We say that an edge is floating-cut if it is not AKPW-cut,
but is cut by the Bartal decomposition at any level in which it is floating.

The simplification of our analysis over bounding overall `p stretch is that we can ignore all
AKPW-cut or floating-cut edges. We start by bounding the expected number of edges ignored in
these two ways separately.

Lemma 4.5.4 Let A = AKPW(G, δ) where δ = k log n. The expected number of AKPW-cut edges
in A is at most O(m

k
).

Proof For an edge e ∈ Ei, the probability that e is cut in Ai+1 is at most

cPartition log n

δ
=
cPartition

k

by Lemma 4.5.2, where cPartition is the constant associated with the partition routine. Linearity of
expectation then gives that the expected number of AKPW-cut edges is at most O(m

k
).

�

We now bound the total number of floating-cut edges:

Lemma 4.5.5 The expected number of floating-cut edges is O(m
k

).

Proof First, we note that only edges whose length is at least di
δ4

may be floating-cut at level i:
any edge smaller than that length that is not AKPW-cut will not be contained in Bi−1/Ascope(i).
Furthermore, by the definition of floating, only edges of lengths at most di

δ2
may be floating.

Therefore, each edge may only be floating-cut for levels with di between δ2 and δ4 times the length
of the edge. Since the di increase geometrically, there are at most log(δ) such levels.

Furthermore, at any given level, the probability that a given edge is floating-cut at the level is
at most O( logn

δ2
), since any floating edge is passed to the decomposition with length di

δ2
. Taking a

union bound over all levels with di between δ2 and δ4 times the length of the edge, each edge has at
most a O( logn log δ

δ2
) probability of being cut. Since log δ

δ
= O(1), this is O( logn

δ
) = O( 1

k
).

Again, applying linearity of expectation implies that the expected number of floating-cut edges
is O(m

k
).
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�

Combining these two bounds gives that the expected number of ignored edges so far is bounded
by O(m

k
). We can also check that conditioned on an edge being not ignored, its probability of being

cut on some level is the same as before.

Lemma 4.5.6 Assume A = AKPW(G, δ). We may associate with the output of the algorithm a
set of edges S, with expected size O(m

k
), such that for any edge e with length l(e), conditioned on

e /∈ S, is cut on the ith level of the Bartal decomposition B with probability at most

O
(
l(e) log n

di

)
.

Proof We set S to the union of the sets of AKPW-cut and floating-cut edges.

Fix a level i of the Bartal decomposition: if an edge e that is not AKPW-cut or floating-cut
appears in Bi−1/Ascope(i), then its length is unchanged. If e is removed from G′ due to l(e) ≥
di/ log n, the bound becomes trivial. Otherwise, the guarantees of PARTITION then give the cut
probability.

�

Lemma 4.5.7 The simplified algorithm produces with high probability an embeddable Bartal
decomposition with diameters bounded by d where all but (in expectation) O(m

k
) edges satisfy

EB[STRB,d(e)] ≤ O(log n(log(k log n))2).

Proof Let p = 1−1/ log(k log n) and q = (1+p)/2. Applying Lemma 4.5.6 and Lemma 4.3.4 we
get that for edges not in S, EB[STRq

B,d(e)] = O(logq n log(k log n)). Then using EMBEDDABLEDE-
COMPOSE as a black box we obtain an embeddable decomposition with expected lp-stretches of
O(logp n(log(k log n))2) for non-removed edges.

By repeatedly running this algorithm, in an expected constant number of iterations, we obtain
an embeddable decomposition B with diameters bounded by d such that for a set of edges E ′ ⊆ E
and |E ′| ≥ m−O(m

k
) we have:∑
e∈E′

EB[STRq
B,d(e)] = O(m logq n(log(k log n))2).

By Markov’s inequality, no more than a 1/k fraction of the edges in E ′ can have STRq
B,d(e) ≥

O(k logq n(log(k log n))2). This gives a set of edges E ′′ with size at least m−O(m
k

) such that any
edge e ∈ E ′′ satisfies STRq

B,d(e) ≤ O(k logq n(log(k log n))2) ≤ O((k log n)2).

100



But for each of these edges

STRB,d(e) = (STRq
B,d(e))1/q

≤ (STRq
B,d(e))1+2/ log(k logn)

≤ STRq
B,d(e) · O

(
(k log n)4/ log(k logn)

)
= O(STRq

B,d(e)).

Excluding these high-stretch edges, the `1 stretch is thus at most a constant factor worse than
the `q stretch, and can be bounded by O(log n(log(k log n))2).

�

The total running time of DECOMPOSETWOSTAGE is dominated by the calls to PARTITION.
The total cost of these calls can be bounded by the expected number of calls that an edge participates
in.

Lemma 4.5.8 For any edge e, the expected number of iterations in which e appears is bounded by
O(log(k log n)).

Proof As pointed out in the proof of 4.5.5, an edge that is not AKPW-cut only appears in level i of
the Bartal decomposition if l(e) ∈ [ di

δ5
, di

logn
). Since the diameters decrease geometrically, there are

at most O(log(k log n)) such levels. AKPW-cut edges can appear sooner than other edges from the
same weight bucket, but using an argument similar to the proof of Lemma 4.5.4 we observe that the
edge propagates up j levels in the AKPW decomposition with probability at most ( 1

k
)j . Therefore

the expected number of such appearances by an APKW-cut edge is at most
∑

i(
1
k
)i = O(1).

�

Combining all of the above we obtain the following result about our simplified algorithm. The
complete analysis of its running time is deferred to Section 4.5.5.

Lemma 4.5.9 For any k, given an AKPW decomposition A with δ = k log n, we can find in
O(m log(k log n)) time an embeddable Bartal decomposition such that all but expected O(m

k
)

edges have expected total `1-stretch of at most O(m log n(log(k log n))2).

Parallelization

If we relax the requirement of asking for a tree, the above analysis shows that we can obtain low
stretch subgraphs edges and total stretch of O(log n(log(k log n))2) for all but O(m

k
) edges. As

our algorithmic primitive PARTITION admits parallelization [MPX13], we also obtain a parallel
algorithm for constructing low stretch subgraphs. These subgraphs are used in the parallel SDD
linear system solver by [BGK+13]. By observing that PARTITION is run on graphs with edge
weights within δ of each other and hop diameter at most polynomial in δ = k log n, and invoking
tree-contraction routines to extract the final tree [MR89], we can obtain the following result.
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Lemma 4.5.10 For any graph G with polynomially bounded edge weights and k ≤ poly(log n), in
O(k log2 n log log n) depth and O(m log n) work we can generate an embeddable tree of size O(n)
such that the total `1-stretch of all but O(m

k
) edges of G is O(m log n(log(k log n))2).

4.5.4 Bounding Expected `p-Stretch of Any Edge

In this section we present our full algorithm and bound the expected `p-stretch of all edges Since
we can no longer ignore edges whose lengths we increase while performing the top-down partition,
we need to choose the scope carefully in order to control their probability of being cut during the
second stage of the algorithm. We start off by choosing a different δ when computing the AKPW
decomposition.

Lemma 4.5.11 If A is generated by a call to AKPW(G, δ) with δ ≥ (cP log n)
1

1−q , then the
probability of an edge e ∈ Ei being cut in level j is at most δ−q(j−i).

Proof Manipulating the condition gives cP log n ≤ δ1−q, and therefore using Lemma 4.5.2 we
can bound the probability by(

cP log n

δ

)j−i
≤
(
δ1−q

δ

)j−i
= δ−q(j−i).

�

Since δ is poly(log n), we can use this bound to show that expected `p-stretch of an edge in an
AKPW-decomposition can be bounded by poly(log n). The exponent here can be optimized by
taking into account the trade-offs given in Lemma 4.3.4.

This extra factor of δ can also be absorbed into the analysis of Bartal decompositions. When
l(e) is significantly less than d, the difference between l(e) logn

d
and

(
l(e) logn

d

)q
is more than δ.

This means that for an floating edge that originated much lower in the bucket of the AKPW
decomposition, we can afford to increase its probability of being cut by a factor of δ.

From the perspective of the low-diameter decomposition routine, this step corresponds to
increasing the length of an edge. This increase in length can then be used to bound the diameter of
a cluster in the Bartal decomposition, and also ensures that all edges that we consider have lengths
close to the diameter that we partition into. On the other hand, in order to control this increase in
lengths, and in turn to control the increase in the cut probabilities, we need to use a different scope
when performing the top-down decomposition.

Definition 4.5.12 For an exponent q and a parameter δ ≥ log n, we let the scope of a diameter d
be

scope(i) := max
i

{
δi+

1
1−q+1 ≤ di

}
.
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Note that for small d, scope(i) may be negative. As we will refer to Ascope(i), we assume that
Ai = ∅ for i < 0. Our full algorithm can then be viewed as only processing the edges within the
scope using Bartal’s top-down algorithm. Its pseudocode is given in Figure 4.2.

Note that it is not necessary to perform explicit contraction and expansion of the AKPW clusters
in every recursive call. In an effective implementation, they can be expanded gradually, as scope(i)
is monotonic in di.

The increase in edge lengths leads to increases in the probabilities of edges being cut. We next
show that because the AKPW decomposition is computed using a higher norm, this increase can be
absorbed, giving a probability that is still closely related to the pth power of the ratio between the
current diameter and the length of the edge.

Lemma 4.5.13 Assume A = AKPW(G, δ) with parameter specified as above. For
any edge e with length l(e) and any level i, the probability that e is cut at level i of
B = DECOMPOSETWOSTAGE(G,d ,A) is

O
((

l(e) log n

di

)q)
.

Proof There are two cases to consider based whether the length of the edge is more than δscope(i)+1.
If it is and it appears in G′, then its length is retained. The guarantees of PARTITION then gives that
it is cut with probability

O
(
l(e) log n

di

)
≤ O

((
l(e) log n

di

)q)
,

where the inequality follows from l(e) log n ≤ di.

Otherwise, since we contracted the connected components in Ascope(i), the edge is only cut
at level i if it is both cut in Ascope(i) and cut by the partition routine. Lemma 4.5.11 gives that
if the edge is from Ej , its probability of being cut in Ascope(i) can be bounded by δ−q(scope(i)−j).
Combining with the fact that δj ≤ l(e) allows us to bound this probability by(

l(e)

δscope(i)

)q
.

Also, since the weight of the edge is set to δscope(i)+1 inG′, its probability of being cut by PARTITION

is

O
(
δscope(i)+1 log n

di

)
.
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As the partition routine is independent of the AKPW decomposition routine, the overall probability
can be bounded by

O
(
δscope(i)+1 log n

di
·
(

l(e)

δscope(i)

)q)
= O

((
l(e) log n

di

)q
· δ log1−q n ·

(
δscope(i)

di

)1−q)
.

Recall from Definition 4.5.12 that scope(i) is chosen to satisfy δscope(i)+
1

1−q+1 ≤ di. This along
with the assumption that δ ≥ log n gives

δ log1−q n ·
(
δscope(i)

di

)1−q

≤ δ2−q
(
δ−

2−q
1−q

)1−q
≤ 1.

Therefore, in this case the probability of e being cut can also be bounded by O
((

l(e) logn
di

)q)
.

�

Combining this bound with Lemma 4.3.4 and setting q = 1+p
2

gives the bound on `p-stretch.

Corollary 4.5.14 If q is set to 1+p
2

, we have for any edge e EB[STRB,d(e)] ≤ O( 1
1−p logp n).

Therefore, we can still obtain the properties of a good Bartal decomposition by only considering
edges in the scope during the top-down partition process. On the other hand, this shrinking
drastically improves the performance of our algorithm.

Lemma 4.5.15 Assume A = AKPW(G, δ). For any edge e, the expected number of iterations of
DECOMPOSETWOSTAGE in which e is included in the graph given to PARTITION can be bounded
by O( 1

1−p log log n).

Proof Note that for any level i it holds that

δscope(i) ≥ diδ
− 1

1−q−2.

Since the diameters of the levels decrease geometrically, there are at most O( 1
1−q log log n) levels i

such that l(e) ∈ [diδ
− 1

1−q−2, di
logn

).

The expected number of occurrences of e in lower levels can be bounded using Lemma 4.5.11
in a way similar to the proof of the above Lemma. Summing over all the levels i where e is in a
lower level gives: ∑

i:l(e)<diδ
− 1

1−q−2

(
l(e)

δscope(i)

)q
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Substituting in the bound on δscope(i) from above and rearranging then gives:

≤
∑

i:l(e)≤diδ
− 1

1−q−2

(
l(e)

di
δ

1
1−q+2

)q
.

As di increase geometrically, this is a geometric sum with the first term at most 1. Therefore the
expected number of times that e appears on some level i while being out of scope is O(1).

�

Recall that each call to PARTITION runs in time linear in the number of edges. This then implies
a total cost of O(m log log n) for all the partition steps. We can now proceed to extract a tree from
this decomposition, and analyze the overall running time.

4.5.5 Returning a Tree

We now give the overall algorithm and analyze its performance. Introducing the notion of scope in
the recursive algorithm limits each edge to appear in at mostO(log log n) levels. Each of these calls
partitions G′ in time linear in its size, which should give a total of O(m log log n). However, the
goal of the algorithm as stated is to produce a Bartal decomposition, which has a spanning tree at
each level. Explicitly generating this gives a total size of Ω(nt), where t is the number of recursive
calls. As a result, we will circumvent this by storing only an implicit representation of the Bartal
decomposition to find the final tree.

This smaller implicit representation stems from the observation that large parts of the Bis are
trees from the AKPW decomposition, Ai. As a result, such succinct representations are possible if
we have pointers to the connected components of Ai. We first analyze the quality and size of this
implicit decomposition, and the running time for producing it.

B,d = DECOMPOSE(G, p), where G is a graph, p is an exponent

1. Set q = 1+p
2

, δ = (c log n)
1
q−p .

2. Compute an AKPW decomposition of G, A = AKPW(G, δ).

3. Let d = (d0, d1, · · · , dt) be a geometrically decreasing sequence diameters where d0

is the diameter of As.

4. Set B := DECOMPOSETWOSTAGE(G,d ,A).

5. Set B0 to As.

6. Return B,d .

Figure 4.3: Overall decomposition algorithm
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Lemma 4.5.16 There is a routine that for any graph G and and parameter p < 1, produces
in expected O( 1

1−pm log log n) time an implicit representation of a Bartal decomposition B with
expected size O( 1

1−pm log log n) and diameter bounds d such that with high probability:

• B is embeddable into G, and

• for any edge e, EB(STRp
B,d(e)) ≤ O(( 1

1−p)2 logp n).

• B consist of edges and weighted connected components of an AKPW decomposition

Proof Consider calling EMBEDDABLEDECOMPOSE from Section 4.4.2 with the routine given
in Figure 4.3. The properties of B and the bounds on stretch follows from Lemma 4.4.4 and
Corollary 4.5.14.

Since the number of AKPW components implicitly referred to at each level of the recursive call
is bounded by the total number of vertices, and in turn the number of edges, the total number of
such references is bounded by the size of the G′s as well. This gives the bound on the size of the
implicit representation.

We now bound the runnign time. In the RAM model, bucketing the edges and computing
the AKPW decomposition can be done in O(m log log n) time. The resulting tree can be viewed
as a laminar decomposition of the graph. This is crucial for making the adjustment in DECOM-
POSETWOSTAGE in O(1) time to ensure that Ascope(i) is disconnected. As we set q to 1+p

2
, by

Lemma 4.5.15, each edge is expected to participate in O( 1
1−p log log n) recursive calls, which gives

a bound on the expected total.

The transformation of the edge weights consists of a linear-time pre-processing, and scaling
each level by a fixed parameter in the post-post processing step. This process affects the implicit
decomposition by changing the weights of the AKPW pieces, which is can be done implicitly in
O(1) time by attaching extra ‘flags’ to the clusters.

�

It remains to show that an embeddable tree can be generated efficiently from this implicit
representation. To do this, we define the notion of a contracted tree with respect to a subset of
vertices, obtained by repeating the two combinatorial steps that preserve embeddability described in
Section 4.2.

Definition 4.5.17 We define the contraction of a tree T to a subset of its vertices S as the unique
tree arising from repeating the following operations while possible:

• removal of a degree 1 vertex not in S, and

• contraction of a degree 2 vertex not in S.

We note that it is enough to find contractions of the trees from the AKPW decomposition to the
corresponding sets of connecting endpoints in the implicit representation. Here we use the fact that
the AKPW decomposition is in fact a single tree.
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Fact 4.5.18 Let A = A0, . . . , As be an AKPW decomposition of G. Let S be a subset of vertices
of G. For any i in {0, . . . , s}, if S is contained in a single connected component of Ai, then the
contraction of Ai to S is equal to the contraction of As to S.

This allows us to use data structures to find the contractions of the AKPW trees to the respective
vertex sets more efficiently.

Lemma 4.5.19 Given a tree As on the vertex set V (with |V | = n) and subsets S1, . . . , Sk of V of
total size O(n), we can generate the contractions of As to each of the sets Si in time O(n) in the
RAM model and O(nα(n)) in the pointer machine model.

Proof Root As arbitrarily. Note that the only explicit vertices required in the contraction of As to
a set S ⊆ V are

Γ(S)
def
= S ∪ {LCA(u, v) : u, v ∈ S}

where LCA(u, v) denotes the lowest common ancestor of u and v in As. Moreover, it is easily
verified that if we sort the vertices v1, . . . , v|S| of S according to the depth first search pre-ordering,
then

Γ(S) = S ∪ {LCA(vi, vi+1) : 1 ≤ i < |S|}.

We can therefore find Γ(Si) for each i simultaneously in the following steps:

1. Sort the elements of each Si according to the pre-ordering, using a single depth-first search
traversal of As.

2. Prepare a list of lowest common ancestor queries for each pair of vertices adjacent in the
sorted order in each set Si.

3. Answer all the queries simultaneously using an off-line lowest common ancestor finding
algorithm.

Since the total number of queries in the last step isO(n), its running time isO(nα(n)) in the pointer
machine model using disjoint union [Tar79], and O(n) in the RAM model [GT83].

Once we find the sets Γ(Si) for each i, we can reconstruct the contractions of As as follows:

1. Find the full traversal of the vertices in Γ(Si) for each i, using a single depth first search
traversal of As.

2. Use this information to reconstruct the trees [Vui80].
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Applying this procedure to the implicit decomposition then leads to the final embeddable tree.

Proof of Theorem 4.1.1: Consider the distribution over Bartal decompositions given by
Lemma 4.5.16. We will apply the construction given in Lemma 4.4.6, albeit in a highly efficient
manner.

For the parts of the decomposition that are explicitly given, the routine runs in linear time.
The more intricate part is to extract the smaller contractions from the AKPW components that are
referenced to implicitly. Since all levels of the AKPW decomposition are subtrees of As, these are
equivalent to finding contractions of As for several sets of vertices, as stated in Fact 4.5.18. The
algorithm given in Lemma 4.5.19 performs this operation in linear time. Concatenating these trees
with the one generated from the explicit part of the decomposition gives the final result.

�
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Appendix

4.A Sufficiency of Embeddability

In the construction of our trees, we made a crucial relaxation of only requiring embeddability, rather
than restricting to subgraphs. In this section, we show that linear operators on the resulting graph
can be related to linear operators on the original graph. Our analysis is applicable to `∞ flows as
well.

The spectral approximation of two graphs can be defined in terms of their Laplacians. As we
will interpret these objects combinatorially, we omit their definition and refer the reader to Doyle
and Snell [DS84]. For matrices, we can define a partial ordering � where A � B if B − A is
positive semidefinite. That is, for any vector x we have

xTAx ≤ xTBb.

If we let the graph formed by adding the tree to G be H , then our goal is to bound LG and LH

with each other. Instead of doing this directly, it is easier to relate their pseudoinverses. This will be
done by interpreting xTL†x in terms of the energy of electrical flows. The energy of an electrical
flow is defined as the sum of squares of the flows on the edges multiplied by their resistances, which
in our case are equal to the lengths of the edges. Given a flow f ∈ <E , we will denote its electrical
energy using

EG(f)
def
=
∑
e

lef(e)2.

The residue of a flow f is the net in/out flow at each vertex. This give a vector on all vertices,
and finding the minimum energy of flows that meet a given residue is equivalent to computing
xTL†x. The following fact plays a central role in the monograph by Doyle and Snell [DS84]:

Fact 4.A.1 Let G be a connected graph. For any vector x orthogonal to the all ones vector, xTL†Gx
equals the minimum electrical energy of a flow with residue x.

Lemma 4.A.2 LetG = (VG, EG, wG) andH = (VH , EH , wH) be graphs such thatG is a subgraph
of H in the weighted sense and H \G is embeddable in G. Furthermore, let the graph Laplacians
of G and H be LG and LH respectively. Also, let Π be the |VG| × |VH | matrix with one 1 in each
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row at the position that vertex corresponds to in H and 0 everywhere else, and Π1 the orthogonal
projection operator onto the part of <VG that’s orthogonal to the all-ones vector. Then we have:

1

2
L†G � Π1ΠL†HΠTΠT

1 � L†G.

Proof Since ΠT
1 = Π1 projects out any part space spanned by the all ones vector, and is this

precisely the null space of LG, it suffices to show the result for all vectors xG orthogonal to the
all-1s vector. These vectors are in turn valid demand vectors for electrical flows. Therefore, the
statement is equivalent to relating the minimum energies of electrical flows routing xG on G and
ΠTxG on H .

We first show that flows on H take less energy than the ones in G. Let xG be any vector
orthogonal to the all ones vector, and f ∗G be the flow of minimum energy in G that meets demand
xG. Setting the same flow on the edges of E(G) in H and 0 on all other edges yields a flow fH .
The residue of this flow is the same residue in VG, and 0 everywhere else, and therefore equal to
ΠTxG. Since G is a subgraph of H in the weighted sense, the lengths of these edges can only be
less. Therefore the energy of fH is at most the energy of fG and we have

xTGΠL†HΠTxG ≤ EH(fH) ≤ EG(f ∗G) = xTGL†GxG.

For the reverse direction, we use the embedding of H \G into G to transfer the flow from H
into G. Let xG be any vector orthogonal to the all ones vector, and f ∗H the flow of minimum energy
in H that has residue ΠTxG. This flow can be transformed into one in G that has residue xG using
the embedding. Let vertex/edge mapping of this embedding be πV and πE respectively.

If an edge e ∈ EH is also in EG, we keep its flow value in G. Otherwise, we route its flow along
the path that the edge is mapped to. Formally, if the edge is from u to v, fH(e) units of flow is
routed from πV (u) to πV (v) along path(e). We first check that the resulting flow, fG has residue
xG. The net amount of flow into a vertex u ∈ VG is

∑
uv∈EG

f ∗H(e) +
∑

u′v′∈EH\EG,πV (u′)=u

f ∗H(e) =
∑
uv∈EG

f ∗H(e) +
∑

u′∈VH ,πV (u′)=u

 ∑
u′v′∈EH\EG

f ∗H(e)

 .

Reordering the summations and noting that Π(u) = u gives

=
∑

u′∈VH ,πV (u′)=u

∑
u′v′∈EH

fH(e) =
∑

u′∈VH ,πV (u′)=u

(
ΠTxG

)
(e) = xG(u).

The last equality is because πV (u) = u, and all vertices not in VG having residue 0 in ΠTxG.

To bound the energy of this flow, the property of the embedding gives that if split the edges
of G into the paths that form the embedding, each edge is used at most once. Therefore, if we
double the weights of G, we can use one copy to support G, and one copy to support the embedding.
The energy of this flow is then the same. Hence there is an electrical flow fG in G such that
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EG(fG) ≤ 2EH(f ∗H). Fact 4.A.1 then gives that it is an upper bound for xTGL†GxG, completing the
proof.

�
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Chapter 5

Faster SDD Solvers II: Iterative Methods

The preconditioning step of the Koutis-Miller-Peng algorithm [KMP11] depends crucially on the
following lemma:

Lemma 5.0.1 Assume that a tree T satisfies LT � LG. Let s be the total stretch of G w.r.t. T .
Then, via sampling, we can efficiently construct a graph H with O(s log n) edges that is a constant
approximation to G.

The log n factor in the above lemma comes from the coupon collector problem encountered
during sampling. The algorithm given in the previous chapter lets us efficiently find a tree such that
s = O(m log n). Applying Lemma 5.0.1 directly to it would yield a graph with O(m log2 n) edges,
which is of no use. However, we can simply add LT · log2 n to LG, obtaining a κ = O(log2 n)
approximation G′ to G. In turn, G′ can be sparsified using Lemma 5.0.1. The gap between G′ and
G can be bridged using Chebyshev iteration, converging in O(

√
κ) steps, which yields O(log n)

steps here.

How to improve this procedure? We do not yet know how to improve the quality of trees used
to find the preconditioners; hence, we focus on the O(log n) factor introduced by sampling in the
result of Lemma 5.0.1.

The core idea is to forego the requirement for H to be a spectral approximation to G. Say we
use H in a Richardson iteration preconditioning the system LGx = b. We can resample H in every
step of the iteration, and all we need for our algorithm to work is for the error ‖L†Gb − x‖LG to
reduce in expectation.

Of course, this necessitates for H to never be a very bad, say, disconnected, approximation to G.
To ensure that, we always add a copy of T to H . Then, a sampling scheme mirroring that of KMP is
employed. The analysis of the random graph obtained in this fashion is rather nontrivial, and builds
on ideas introduced by Kelner, Orecchia, Sidford and Zhu [KOSZ13] in their combinatorial solver
of Laplacian systems.

The results of this section are joint work with Michael Cohen, Rasmus Kyng, Richard Peng and
Anup Rao [CKP+14, CKM+14].
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5.1 Introduction

Randomized constructions of algebraically similar objects are widely used in the design of efficient
algorithms. Sampling allows one to reduce the size of a problem while preserving its structure,
and then solve the problem on a smaller instance. It is a core component in randomized matrix
algorithms [Mah11], stochastic gradient descent [Bot04], and graph algorithms.

Smaller equivalents of graphs are known as sparsifiers, and the study of sampling methods for
generating them led to the cut sparsifiers by Benczur and Karger [BK96], and spectral sparsifiers
by Spielman and Teng [ST11]. Spectral sparsifiers are key routines in the first nearly-linear time
solver by Spielman and Teng [ST04a], as well as in the subsequent improvements by Koutis et
al. [KMP10, KMP11]. These solvers, in turn, have many applications which are described in detail
in surveys by Spielman [Spi10] and Teng [Ten10].

At the core of the Spielman and Teng solver is a recursive preconditioning framework which
transfers solutions between a sequence of sparsifiers known as a solver chain. Improvements to this
framework led to algorithms that run in about m log n time under exact arithmetic [KMP11]. The
existence of an algorithm that solves a given system in about m log1/2 n time after preprocessing
can be derived from the nearly-optimal ultra-sparsifiers by Kolla et al. [KMST10]. These ultra-
sparsifiers build upon the nearly-optimal spectral sparsifiers by Batson et al. [BSS09], and gain
a factor of log1/2 n over randomized constructions. However, the current fastest algorithm for
constructing these objects by Zouzias [Zou12] takes cubic time. As a result, finding nearly-linear
time algorithms for constructing nearly-optimal sparsifiers and ultra-sparsifiers were posed as an
important open question in the article by Batson et al. [BSST13].

Recently, a new approach to solving SDD linear systems was proposed by Kelner et
al. [KOSZ13], and extended by Lee and Sidford [LS13]. Instead of constructing spectral sparsifiers,
they show that fixing single cycles chosen from an appropriate distribution leads to sufficient
decreases in errors in expectation. In this chapter, we extend this approach to more general
subgraphs, and show that this achieves the same improvement per iteration as the optimal
ultra-sparsifiers, in expectation. Our results can therefore be viewed as an algorithmic answer to the
open question by Batson et al. [BSST13] on efficiently generating nearly-optimal sparsifiers.

Similar to the spectral sparsifiers by Batson et al. [BSS09], our results are applicable to general
matrices. Instead of aiming to show that the sampled matrix is a good spectral approximation,
our analysis is geared towards the intended application of the sample: use as a preconditioner
for iterative methods for solving linear systems. We discuss these iterative methods and the
statistical bounds needed for their convergence in Section 6.2. This randomized iterative method
resembles to the randomized block Kaczmarz method by Needell and Tropp [NT13]. However,
our convergence guarantees are more akin to those of standard iterative methods such as the ones
presented in [Axe94].

For linear systems in Laplacians of graphs, our randomized iterative methods can be incorporated
into existing solver frameworks. In Section 5.4, we use the recursive preconditioning framework by
Koutis et al. [KMP11] to obtain the following result:

114



Theorem 5.1.1 Given a graph G with m edges, a vector b = LGx, and any error ε > 0, we can
find w.h.p. a vector x such that

‖x̄− x‖LG ≤ ε ‖x̄‖LG ,

in expected O(m log1/2 n log log3+δ n log(1
ε
)) time for any constant δ > 0.

In Appendix 5.B, we show that this solver can also be used to generate electrical flows with
approximate minimum energy in similar time. This problem is dual to solving linear systems, and is
the core problem addressed by previous solvers that reduce distance in expectation [KOSZ13, LS13].

Our presentation of the solver in Section 5.4 aims for simplicity, and we do not optimize for
the exponent on log log n. This allows us to reduce to situations where errors of poly(log n) can be
tolerated. Here we can use existing algorithms that are guaranteed to return good answers with high
probability. We believe that this algorithmic dependency is removable, and that the exponent on
log log n can be reduced, or even entirely removed by a more refined analysis.

We also assume that all arithmetic operations are exact in this chapter. The iterative methods
used in our algorithm, namely the preconditioned Chebyshev iteration in Appendix 5.A, are stated
with robust bounds that can absorb large absolute error. Therefore, only the Gaussian elimination
stages need to be checked to show the numerical stability of our algorithm in the setting of fixed-
point arithmetic. Such an analysis of the recursive preconditioning framework can be found in
Section 2.6 of [Pen13], and should be readily applicable to our algorithm as well.

5.2 Overview

Our starting point is the simplest iterative method, known as Richardson iteration. In the setting
that we use it in, it can also be viewed as iterative refinement. If our goal is to solve a linear system
Yx = b , and we have a matrix Z that’s similar to Y , this method generates a new x ′ using the step

x ′ = x − αZ−1 (Yx − b) . (5.1)

Here α is a parameter that we can choose based on the approximation factor between Z and Y .
When Z is an exact approximation, i.e. Z = Y , we can set α = 1 and obtain

x ′ = x −Y −1 (Yx − b) = x − x + Y −1b = Y −1b.

Of course, in this situation we are simply solving Zx = b directly. In general, iterative methods
are used when Z is an approximation of Y . The quality of this approximation can be measured
using relative condition numbers, which are defined using spectral orderings. While our main
algorithm relies on a weaker notion of approximation, this view nonetheless plays a crucial role
in its intermediate steps, as well as its analysis. Given two matrices A and B, we say A � B if
B−A is positive semidefinite. Using this ordering, matrix approximations can then be defined by
giving both upper and lower bounds. The guarantees of Richardson iteration under this notion of
approximation is a fundamental result in iterative methods [Axe94].
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Fact 5.2.1 If Y � Z � κY for some parameter κ, and x is the exact solution satisfying Yx = b ,
then taking the step in Equation 5.1 with α = κ gives:

∥∥x ′ − x
∥∥
Y
≤
(

1− 1

κ

)∥∥x − x
∥∥
Y
,

Here
∥∥ · ∥∥

Y
is the matrix norm of Y ,

∥∥ · ∥∥
Y

=
√
x TYx . It is the standard norm for measuring the

convergence of iterative methods.

As Equation 5.1 requires us to solve a linear system involving Z , it is desirable for Z to be
smaller than Y . One way to do this is to write Y as a sum of matrices, Y =

∑m
i=1 Yi, and pick

a subset of these. This in turn can be done via random sampling. Here a crucial quantity is the
statistical leverage score. For a matrix X , the leverage score of Y i w.r.t. X is

τ i
def
= tr

[
X−1Y i

]
.

For some X and Y = Y 1 + . . .+Y m, we can generate a preconditioner Z by sampling a number
of Yis with probabilities proportional to τ i. We can also use upper bounds on the actual leverage
scores, τ i. The pseudocode for a variant of this routine is given in Figure 5.1.

Z = SAMPLE({Y1, . . . , Ym}, X, τ , δ), where Yi = vivTi are rank one matrices, τ i are upper
bounds of leverage scores, τ i ≥ τ i for all i, and δ < 1 is an arbitrary parameter.

1. Initialize Z to X .

2. Let s be
∑m

i=1 τ i and t = δ−1s.

3. Pick an integer r uniformly at random in the interval [t, 2t− 1].

4. For j = 1 . . . r

(a) Sample entry ij with probability proportional to τ ij .

(b) Z ← Z + δ
τ ij
Yij .

5. Return Z.

Figure 5.1: Sampling Algorithm

By applying matrix Chernoff bounds such as the ones by Tropp [Tro12], it can be shown that
1
2
Y � Z � 2Y when δ is set to 1

O(logn)
. We will formalize this connection in Appendix 5.C.

Scaling the resulting Z by a factor of 2 then gives a preconditioner that can be used to make the
step given in Equation 5.1. The preconditioner produced contains X plus O(s log n) of the matrices
Y is. The Kolla et al. [KMST10] result can be viewed as finding Z consisting of only O(s) of the
matrices, and Y � Z � O(1)Y , albeit in cubic time.
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Our main result is showing that if we generate Z using SAMPLE with δ set to a constant, the
step given in Equation 5.1 still makes a constant factor progress in expectation, for an appropriate
constant α. We do so by bounding the first and second moments of Z−1 w.r.t. Y . These bounds are
at the core of our result. They are summarized in the following Lemma, and proven in Section 5.3.

Lemma 5.2.2 Suppose Yi = vivTi are rank one matrices with sum Y , X is a positive semidefinite
matrix satisfying X � Y , τ 1 . . . τm are values that satisfy τ i ≥ tr [X−1Y ], and δ < 1

3
is an

arbitrary parameter. Then the matrix Z = SAMPLE(Y1 . . . Ym, X, τ 1 . . . τm, δ) satisfies:

1. Er,i1...ir [Z−1] � 1
1−2δ

Y −1, and

2. Er,i1...ir [Z−1] � 1
3
Y −1, and

3. Er,i1...ir [Z−1Y Z−1] � 1
1−3δ

Y −1.

Using these bounds, we can show that an iteration similar to Richardson iteration reduces errors,
in expectation, by a constant factor each step.

Lemma 5.2.3 Suppose X and Y are invertible matrices such that X � Y , b = Yx , and x is
an arbitrary vector. If Z = SAMPLE(Y1 . . . Ym, X, τ 1 . . . τm,

1
10

), and x ′ is generated using

x ′ = x− 1

10
Z−1 (Yx − b) .

Then

Er,i1,i2,...ir
[∥∥x − x ′

∥∥2

Y

]
≤
(

1− 1

40

)
‖x − x‖2

Y

Proof We first rearrange both sides by substituting in b = Y x, and letting y = x̄− x. The term in
the LHS becomes

x̄−
(

x− 1

10
Z−1 (Y x− b)

)
=

(
I − 1

10
Z−1Y

)
y,

while the RHS becomes
(
1− 1

40

)
‖y‖2

Y .

Expanding the expression on the LHS and applying linearity of expectation gives

Er,i1,i2,...ir

[∥∥∥∥(I − 1

10
Z−1Y

)
y
∥∥∥∥2

Y

]

= Er,i1,i2,...ir
[

yTY y− 2

10
yTY Z−1Y +

1

100
yTY Z−1Y Z−1Y y

]
= yTY y− 2

10
Er,i1,i2,...ir

[
yTY Z−1Y y

]
+

1

100
Er,i1,i2,...ir

[
yTY Z−1Y Z−1Y y

]
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Since Y y is a fixed vector, we can apply Lemma 5.2.2 with it as v. The lower bound on first moment
in Part 1 allows us to upper bound the first term at

Er,i1,i2,...ir
[
yTY Z−1Y y

]
≥ 1

3
yTY Y −1Y y

=
1

3
yTY y.

The second term can be upper bounded using Part 3 with the same substitution.

Er,i1,i2,...ir
[
yTY Z−1Y Z−1Y y

]
≤ 1

1− 3δ
yTY Y −1Y y

=
1

1− 3δ
yTY y

≤ 2yTY y,

where the last inequality follows from the choice of δ = 1
10

. Combining these then gives the bound
on the expected energy:

Er,i1,i2,...ir

[∥∥∥∥x̄−
(

x− 1

10
Z−1 (Y x− b)

)∥∥∥∥2

Y

]
≤ ‖y‖2

Y −
2

30
yTY y +

2

100
yTY y

≤
(

1− 1

40

)
yTY y

�

When X and Y are lower rank, we have that Z also acts on the same range space since X
is added to it. Therefore, the same bound applies to the case where X and Y have the same
null-space. Here it can be checked that the leverage score of Y i becomes tr

[
X †Y i

]
, and the step

is made based on pseudoinverse of Z , Z †. Also, note that for any nonnegative random variable
x and moment 0 < p < 1, we have E [xp] ≤ E [x]p. Incorporating these conditions leads to the
following:

Corollary 5.2.4 Suppose X and Y are matrices with the same null space such that X � Y ,
b = Yx , and x is an arbitrary vector. If Z = SAMPLE(Y1 . . . Ym, X, τ 1 . . . τm,

1
10

), and x ′

generated using

x ′ = x− 1

10
Z † (Yx − b) .

Then

Er,i1,i2,...ir
[∥∥∥∥x̄−

(
x− 1

10
Z† (Y x− b)

)∥∥∥∥
Y

]
≤
(

1− 1

80

)
‖x̄− x‖Y
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5.3 Expected Inverse Moments

We now prove the bounds on Z−1 and Z−1YZ−1 stated in Lemma 5.2.2. For simplicity, we define
uj := Y

−1
2 vj , and S := Y

−1
2 XY

−1
2 . Note that,

∑m
j=1 ujuTj = I , while

uTi S
−1ui = vTi X

−1vi
= tr

[
X−1vivTi

]
= τ i.

The following lemma is then equivalent to Lemma 5.2.2.

Lemma 5.3.1 Suppose Ri = uiuTi are rank one matrices with
∑m

j=1 ujuTj = I , S is a positive
definite matrix satisfying S � I and τ 1 . . . τm are values that satisfy τ i ≥ tr [S−1Ri], and 0 < δ < 1
is an arbitrary parameter. Then the matrix W = SAMPLE(R1 . . . Rm, S, τ 1 . . . τm, δ) satisfies:

1. Er,i1...ir
[
xTW−1x

]
≥ 1

3
xTx, and

2. Er,i1...ir
[
xTW−1x

]
≤ 1

1−2δ
xTx, and

3. Er,i1...ir
[
xTW−2x

]
≤ 1

1−3δ
xTx.

In remainder of this section, we prove the above lemma. To analyze the SAMPLE algorithm, it
will be helpful to keep track of its intermediate steps. Hence, we define W0 to be the initial value
of the sample sum matrix W . This corresponds to the initial value of Z from Line 5.2 in the
pseudocode of Figure 5.1, and W0 = S. We define Wj to be the value of W after j samples. Thus
Wj+1 = Wj + δ

τ ij+1
uij+1

uTij+1
where ij+1 is chosen with probability proportional to τ j+1.

Throughout this section, we use δ to refer to the constant as defined in lemma 5.3.1 and let

t := δ−1

m∑
i=1

τ i.

The following easily verifiable fact will be useful in our proofs.

Fact 5.3.2 With variables as defined in lemma 5.3.1, each sample δ
τ ij

uijuTij obeys

Eij
[
δ

τ ij
uiju

T
ij

]
=

1

t
I

As we will often prove spectral bounds on the inverse of matrices, the following simple statement
about positive definite matrices is very useful to us.
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Fact 5.3.3 Given positive definite matrices A and B where A � B,

B−1 � A−1.

The lower bound on W −1 can be proven using these two facts, and a generalization of the
arithmetic mean (AM) - harmonic mean (HM) inequality for matrices by Sagae and Tanabe [ST94].

Lemma 5.3.4 (matrix AM-HM inequality, part of Theorem 1 of [ST94]) If w 1, . . . ,w r are
positive numbers such that w 1 + . . .+ w r = 1, and let M 1, . . . ,M r be positive definite matrices.
Then (

w 1M
−1
1 + . . .+ w rM

−1
r

)−1 � w 1M 1 + . . .+ w rM r.

Proof of Lemma 5.3.1, Part 1: For all j, the matrix ujuTj is positive semidefinite. Hence, using
the fact 5.3.2,

Er,i1,...,ir [W ] � Ei1,...,ir [W |r = 2t]

= S +
2t∑
j=1

Eij
[
δ

τ ij
uiju

T
ij

]
� 3I

Consequently, by the AM-HM bound from Lemma 5.3.4 gives

Er,i1,...,ir
[
W−1

]−1 � (3I)−1 .

Inverting both sides using Fact 5.3.3 gives the result.

�

We can now focus on proving the two upper bounds. One of the key concepts in our analysis is
the harmonic sum, named after the harmonic mean,

HrmSum (x, y)
def
=

1

1/x+ 1/y
. (5.2)

The following property of the harmonic sum plays a crucial role in our proof:

Fact 5.3.5 If X is a positive random variable and α > 0 is a constant, then

E [HrmSum (X,α)] ≤ HrmSum (E [X] , α).

Proof Follows from Jensen’s inequality since

HrmSum (X,α) =
1

1
X

+ 1
α

= α

(
1− α

X + α

)
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is a concave function in α when α > 0.

�

We will also use a matrix version of this:

Fact 5.3.6 For any unit vector v, positive definite matrix A, and scalar α > 0

vT (A+ αI)−1 v ≤ HrmSum
(
vTA−1v, 1/α

)
Proof By a change of basis if necessary, we can assume A is a diagonal matrix with positive
entries (a1, ..., an) on its diagonal. Then vT (A+ αI)−1 v =

∑n
i=1

v2i
ai+α

= E [HrmSum (X,α)]

where X is a random variable which satisfying X = 1
ai

with probability v2
i . Then by Fact 5.3.5 we

have
n∑
i=1

v2
i

ai + α
= E

[
HrmSum

(
X,

1

α

)]
≤ HrmSum

(
E [X] ,

1

α

)
= HrmSum

(
vTA−1v,

1

α

)

because E [X] =
∑

i
v2i
ai

= vTA−1v.

�

Fact 5.3.7 The function fH,v(x) defined by

fH,v(x) := vT
(
H +

x

t
I
)−1

v

is convex in x for any fixed choices of vector v and positive definite matrix H .

Proof By a change of basis, we can assume H to be diagonal matrix without loss of generality.
Let its diagonal entries be (a1, ..., an). Since H is positive definite, ai > 0. The result then follows
from

fH,v(x) =
∑
i

v2
i

ai + x
t

which is a convex function in x.

�

This implies that

vTW−1
i v + f ′Wj ,v(0) = fWj ,v(0) + (1− 0)f ′Wj ,v(0)

≤ fWj ,v(1).

Also, when v is a unit vector, we have by Fact 5.3.6:

fWj ,v(1) ≤ HrmSum(vTW−1
j v, t),
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which rearranges to

f ′Wj ,v(0) ≤ HrmSum(vTW−1
j v, t)− vTW−1

j v.

Also, note that:

f ′Wj ,v(x) = −1

t
vT (Wj + (x/t)I)−2v

f ′Wj ,v(0) = −1

t
vTW−2

j v.

So

−1

t
vTW−2

j v ≤ HrmSum(vTW−1
j v, t)− vTW−1

j v. (5.3)

We can also obtain a spectral lower bound W−1
j+1 in terms of W−1

j and W−2
j . using the Sherman-

Morrison formula.

Lemma 5.3.8 Eij+1

[
W−1
j+1|Wj

]
� W−1

j −
(1−δ)
t
W−2
j

Proof

The Sherman-Morrison formula says that adding a single sample zjzTj := δ
τ ij+1

uij+1
uTij+1

to Wj

gives:

(Wj + zjzTj )−1 = W−1
j −

W−1
j zjzTjW

−1
j

1 + zTjW
−1
j zj

.

We then have

(Wj + zjzTj )−1 = W−1
j −

W−1
j zjzTjW

−1
j

1 + zTjW
−1
j zj

� W−1
j −

W−1
j zjzTjW

−1
j

1 + δ

� W−1
j − (1− δ)W−1

j zjzTjW
−1
j .

Hence,

Eij
[
(Wj + zjzTj )−1|Wj

]
� W−1

j − (1− δ)W−1
j Eij

[
zjzTj

]
W−1
j

� W−1
j −

(1− δ)
t

W−1
j IW−1

j

� W−1
j −

(1− δ)
t

W−2
j .
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�

Combining these two bounds leads us to an upper bound for E
[
W−1
j

]
.

Proof of Lemma 5.3.1, Part 2: Combining Lemma 5.3.8 and Equation 5.3, we have

vTEij+1

[
(Wj + zj+1zTj+1)−1|Wj

]
v ≤ vTW−1

j v− 1− δ
t

vTW−2
j v

≤ vTW−1
j v− (1− δ)

(
vTW−1

j v− HrmSum
(
vTW−1

j v, t
))

= δvTW−1
j v + (1− δ) HrmSum

(
vTW−1

j v, t
)

If we now include the choice of Wj in the expectation:

Ei1,...,ij+1

[
vTW−1

j+1v
]
≤ Ei1,...,ij

[
δvTW−1

j v + (1− δ) HrmSum
(
vTW−1

j v, t
)]

= δEi1,...,ij
[
vTW−1

j v
]

+ (1− δ)Ei1,...,ij
[
HrmSum

(
vTW−1

j v, t
)]
.

Applying Fact 5.3.5 with X = vTW−1
j v and a = t gives

Ei1,...,ij+1

[
vTW−1

j+1v
]
≤ δEi1,...,ij

[
vTW−1

j v
]

+ (1− δ) HrmSum
(
Ei1,...,ij

[
vTW−1

j v
]
, t
)
. (5.4)

For convenience, we define Ej := Ei1,...,ij
[
vTW−1

j v
]
. So inequality 5.4 can be written as

Ei+1 ≤ δEi + (1− δ) HrmSum (Ei, t)

Also, since we start with W0 = Y
−1
2 XY

−1
2 , we have Wj � Y

−1
2 XY

−1
2 . Thus, by fact 5.3.3

W−1
j � (Y

−1
2 XY

−1
2 )−1 = Y

1
2X−1Y

1
2 .

So tr
[
W−1
j

]
≤ tr

[
Y

1
2X−1Y

1
2

]
≤
∑m

i=1 τ i = tδ, and we have vTW−1
j v ≤

∥∥W−1
j

∥∥ ≤ tδ, so
Ej ≤ tδ < t. This lets us write:

Ej+1 = δEj +
1− δ
1
Ej

+ 1
t

=
1 +

δEj
t

1
Ej

+ 1
t

≤ 1(
1
Ej

+ 1
t

)(
1− δEj

t

)
=

1
1
Ej

+ 1
t
− δ

t
− δEj

t2

≤ 1

1/Ej + (1− 2δ)/t
.
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So

1

Ej+1

≥ 1

Ej
+ (1− 2δ) /t

Then it follows by induction that after t steps

1

Ej
≥ (1− 2δ) .

Thus we have proved

Ei1,...,it
[
vTW−1

t v
]
≤ 1

1− 2δ
. (5.5)

Additionally, for any integer r ≥ t, Wr � Wt, so fact 5.3.3 gives W−1
r � W−1

t . This means that
with r chosen uniformly at random in the interval [t, 2t− 1], we have

Er,i1,...,ir
[
vTW−1

r v
]
≤ 1

1− 2δ
.

�

It remains to upper bound W−2
r . Here we use the same proof technique in reverse, by showing

that the increase inW−1
r is related toW−2

r . Lemma 5.3.1, Part 2 gives that the total increase between
t and 2t− 1 is not too big. Combining this with the fact that we chose r randomly gives that the
expected increase at each step, and in turn the expected value of W−2

r is not too big as well.

Proof of Lemma 5.3.1, Part 3: Recall that the expected value of vTW−1
j+1v−vTW−1

j v, conditional
on Wj , was at most

vTW−1
j+1v− vTW−1

j v ≤(1− δ)f ′(0) =
−(1− δ)

t
vTW−2

j v

Taking expectation over everything gives:

Ei1,...,ij+1

[
vTW−1

j+1v
]
− Ei1,...,ij

[
vTW−1

j v
]
≤ Ei1,...,ij

[
−(1− δ)

t
vTW−2

j v
]

Telescoping this gives

Ei1,...,i2t
[
vTW−1

2t−1v
]
− Ei1,...,it

[
vTWt

−1v
]
≤

2t−1∑
j=t

Ei1,...,ij
[
−(1− δ)

t
vTW−2

j v
]

1

t

2t−1∑
j=t

Ei1,...,ij
[
vTW−2

j v
]
≤ 1

1− δ
Ei1,...,it

[
vTW−1

t v
]
≤ 1

(1− 2δ)(1− δ)
,
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where the last inequality follows from equation 5.5. This implies that for an integer r chosen
uniformly at random in the interval [t, 2t− 1], we have

Er,i1,...,ir
[
vTW−2

r v
]
≤ 1

(1− 2δ)(1− δ)
<

1

1− 3δ
.

�

5.4 Application to Solving SDD linear systems

We now describe a faster algorithm for solving SDD linear systems that relies on preconditioners
that make progress in expectation. The reduction from solving these systems to solving graph
Laplacians of doubled size was first shown by Gremban and Miller [Gre96]. This reduction is
also well-understood for approximate solvers [ST06], and in the presence of fixed point round-off
errors [KOSZ13]. As a result, we only address solving graph Laplacians in our presentation.

The Laplacian of a weighted graph G is an n× n matrix containing the negated weights in the
off-diagonal entries and weighted degrees in the diagonal entries:

Definition 5.4.1 The graph Laplacian LG of a weighted graph G = (V,E,w) with n vertices is an
n× n matrix whose entries are:

LG,uv =

{∑
v 6=uwuv if u = v,

−wuv otherwise.

The recursive preconditioning framework due to Spielman and Teng extends the ideas pioneered
by Vaidya [Vai91]. It generates graph preconditioners, called ultra-sparsifiers, by sampling a
number of edges to supplement a carefully chosen spanning tree. Using the notation introduced
in Section 6.2, this corresponds to setting X to the graph Laplacian of the tree and the Y is to the
graph Laplacians of the off-tree edges.

The key connection between the statistical leverage score of a tree and combinatorial stretch of
an edge was observed by Spielman and Woo [SW09].

Fact 5.4.2 The statistical leverage score of the rank-1 matrix corresponding to an edge w.r.t. a tree
is equal to its combinatorial stretch w.r.t. that tree.

The reason that it is crucial to pick X to be a tree is that then the sizes of the recursive
subproblems only depend on the number of Y i’s considered within. Similar to previous solvers,
our algorithm is recursive. However, it chooses a different graph at each iteration, so that many
distinct graphs are given in calls at the same level of the recursion. As a result, we will define an
abstract Laplacian solver routine for our analyses.

Definition 5.4.3 A routine SOLVER(·) is said to be a Laplacian solver when it takes as input a tuple
(G, T, τ , b, ε), where G is a graph, T a spanning tree of this graph, and τ upper bounds on the
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combinatorial stretch of the off-tree edges of G wrt. T , and the routine returns as output a vector x
such that ∥∥x − L†Gb

∥∥
LG
≤ ε
∥∥L†Gb∥∥LG .

The following lemma about size reduction can be derived from partial Cholesky factorization.
A detailed proof of it can be found in Appendix C of [Pen13].

Lemma 5.4.4 Given a graph-tree tuple (H,T, τ ) with n vertices and m′ off-tree edges, and and a
Laplacian solver SOLVER, there is a routine ELIMINATE&SOLVE(H,T, τ , SOLVER, b, ε) that for
any input b = LH x̄, performs O(n + m′) operations plus one call to SOLVER with a graph-tree
tuple (H ′, T ′, τ ′) with O(m′) vertices and edges, the same bounds for the stretch of off-tree edges,
and accuracy ε and returns a vector x such that

‖x̄− x‖LH ≤ ε ‖x̄‖LH .

With this in mind, one way to view the recursive preconditioning framework is that it gradually
reduces the number of edges using the statistical leverage scores obtained from a tree. For this,
Koutis et al. [KMP11] used the low-stretch spanning tree algorithms [AKPW95, EEST08, ABN08,
AN12]. However, the state of art result due to Abraham and embeddings takes O(m log n log log n)
time to construct.

Instead, we will use the low-stretch embeddings given by Cohen et al. [CMP+14]. Their result
can be summarized as follows:

Lemma 5.4.5 Given a graph Ĝ with n vertices, m edges, and any constant 0 < p < 1, we can
construct in O(m log log n log log log n) time in the RAM model a graph-tree tuple (G, T, τ ) and
associated bounds on stretches of edges τ such that

1. G has at most 2n vertices and n+m edges, and

2. ‖τ‖pp ≤ O(m logp n), and

3. there is a |VĜ| × |VG| matrix Π with one 1 in each row and zeros everywhere else such that:

1

2
L†
Ĝ
� Π1ΠL†GΠTΠT

1 � L†
Ĝ
.

Note that Π maps some vertices of G to unique vertices of Ĝ, and ΠT maps each vertex of Ĝ
to a unique vertex in G.

The spectral guarantees given in Part 3 allow the solver for LG to be converted to a solver for
LĜ while preserving the error quality.
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(H,T ′) = RANDPRECON(G, T, τ , δ), where G is a graph, T is a tree, τ are upper bounds
of the stretches of edges in G w.r.t. T , and δ < 1 is an arbitrary parameter.

1. Let X = LT , Y = LG, Yi be the rank-1 matrix corresponding to each edge.

2. Set τ̂ to be the same as τ for non tree-edges, and 1 for all tree edges.

3. Repeat

(a) Z = SAMPLE
(
Y,X, τ̂ , 1

10

)
.

(b) Set

i. H be the edges corresponding to Z, and
ii. T ′ be the edges corresponding to the combinatorial components in T , and

iii. τ ′ to be δ times the number of times each off-tree edge is sample.

4. Until the number of off-tree edges in H is at most 4800 ‖τ‖pp, and ‖τ ′‖pp ≤ 480 ‖τ‖pp.

5. Return (H,T ′, τ ′).

Figure 5.1: Generation of a Randomized Preconditioner

Fact 5.4.6 Let Π and Π1 be the two projection matrices defined in Lemma 5.4.5 Part 3. For a
vector b̂ , if x is a vector such that∥∥x − L†GΠTΠT

1 b̂
∥∥
LG
≤ ε
∥∥L†GΠTΠT

1 b̂
∥∥
LG
,

for some ε > 0. Then the vector x̂ = Π1Πx satisfies∥∥x̂ −Π1ΠL†GΠTΠT
1 b̂
∥∥

(Π1ΠL†GΠTΠT
1 )
† ≤ ε

∥∥Π1ΠL†GΠTΠT
1 b̂
∥∥

(Π1ΠL†GΠTΠT
1 )
† .

Therefore, a good solution to LGx = ΠT b̂ also leads to a good solution to LĜx̂ = b̂ . The
constant relative error can in turn be corrected using preconditioned Richardson iteration described
in Section 6.2. For the rest of our presentation, we will focus on solving linear systems in settings
where we know small bounds to ‖τ‖pp.

As SAMPLE will sample edges with high stretch, as well as tree edges, we need to modify
its construction bounding both the number of off-tree edges, and the total off-tree `p-stretch.
Pseudocode of this modified algorithm for generating a preconditioner is given in Figure 5.1.

We start by proving some crude guarantees of this algorithm.

Lemma 5.4.7 RANDPRECON(G, T, τ , 1
10

) runs in expected O(m + ‖τ‖pp) time and produces a
graph-tree tuple (H,T, τ ′) such that
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1. the number of off-tree edges in H is at most O(‖τ‖pp), and

2. ‖τ ′‖pp ≤ O(‖τ‖pp), and

3. for any pair of vectors x and b = LGx̄, we have

EH

[∥∥∥∥x̄−
(

x− 1

10
L†H (LGx− b)

)∥∥∥∥
LG

]
≤
(

1− 1

160

)
‖x̄− x‖LG

Proof For an edge e, let Xe be a random variable indicating the number of times that e is sampled.
The call to SAMPLE samples s

δ
edges where s is the total stretch of all edges. In each of these

iterations, e is sampled with probability τ e
s

where τ e = tr
[
χT
e L†Tχe

]
. This means the expected

value of Xe is

E [Xe] ≤
3

2

s

δ

τ e
s

=
3

2
δ−1τ e = 15τ e.

For an edge e, if τ e ≥ 1, then τ pe ≥ 1; otherwise, τ e ≤ τ pe. Therefore we have that the expected
number of distinct edges added to the tree is less than 15 ‖τ‖pp. Markov’s inequality then gives that
we sample more than 4800 ‖τ‖pp edges with probability at most 1

320
.

For the expected stretch, note that as T is added to H , the stretch of an edge can only decrease.
Combined with the fact that each sampled edge has stretch δ with respect to T :

E [(τ ′e)
p] ≤ E [(δXe)

p] ≤ E [δXe]
p ≤ 3

2
τ pe.

So the expected total `p-stretch of all off-tree edges is at most 3
2
τ pe. Applying Markov’s inequality

once again gives that the probability of ‖τ ′‖pp ≤ 480 ‖τ‖pp is also at most 1
320

.

Taking a union bound gives that each sample H fails the conditions with probability at most
1

160
. This means that the loop is expected to terminate in O(1) iterations. Also, this means that the

expected deviation in H only increases by a constant factor, giving

EH

[∥∥∥∥x̄−
(

x− 1

10
L†H (LGx− b)

)∥∥∥∥
LG

]
≤ 1

1− 1
160

(
1− 1

80

)
‖x̄− x‖LG

≤
(

1− 1

160

)
‖x̄− x‖LG .

�

We can then apply the elimination routine from Lemma 5.4.4 to obtain a high-quality solution
to a linear system by solving a small number of systems whose edge count is O(‖τ‖pp).
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However, note that the error is in the LH-norm. To relate this to the LG-norm, we can use a
spectral bound derived from matrix concentration bounds. Such a bound is central in operator based
solvers by Koutis et al. [KMP10, KMP11], while we feel our use of it here is more tangential.

Lemma 5.4.8 There exists a constant c such that for any graph-tree tuple G, T , τ ,
H = RANDPRECON(G, T, τ , 1

10
) satisfies

1

c log n
LG � LH � c log nLG

with high probability.

We prove this bound in Appendix 5.C. It means that the decrease in energy can still be guaranteed
if we set ε = O( 1

cs logn
) in our bounds. We can also check whether we have reached such an error

using coarser solvers.

Lemma 5.4.9 There exist a constant cZ such that given a graph-tree tupleG, T , τ , we can construct
with high probability a linear operator Z such that under exact arithmetic

1. L†G � Z � cZ log4 nL†G, and

2. given any vector b, Zb can be evaluated inO(m+ ‖τ‖pp) time where p is any constant > 1/2.

Proof Consider scaling up the tree by a factor of log2 n and scaling down the bounds on leverage
scores accordingly to obtain G′, T ′, τ ′. Then LG � LG′ � log2 nLG and Lemma 5.4.7 gives that
H = RANDPRECON(G′, T ′, τ ′) has O(‖τ ′‖pp) = O(log−2p n ‖τ‖pp) off-tree edges, and

1

c log n
LG′ � LH � c log nLG′ .

Applying partial Cholesky factorization on H and then the solver algorithm by Koutis et
al. [KMP11] then gives an operator Z such that

1

2
L†H � Z � 2L†H ,

and Zb can be evaluated in O(m+ log−2p n ‖τ‖pp log n log log1/2 n) ≤ O(m+ ‖τ‖pp) time. Propa-
gating the error guarantees then gives

Z � 2L†H � 2c log nL†G′ � 2c log nL†G,

for the upper bound, and

Z � 1

2
L†H �

1

2c log n
L†G′ �

1

2c log3 n
L†G,

129



x = RANDRICHARDSON(G, T, τ , SOLVER,b, ε), where G is a graph, T is a tree, τ are
upper bounds of the stretches of edges of G w.r.t. T , b is the vector to be solved, and ε is the
target error.

1. Set ε1 = 1
320cs logn

and t = O (log (ε−1 log n)).

2. Let Z be the linear operator corresponding to the solver given in Lemma 5.4.9

3. Repeat

(a) x0 = 0.

(b) For i = 1 . . . t

i. (Hi, Ti, τ i) = RANDPRECON(G, T, τ , δ).
ii. ri = LGxi−1 − b.

iii. yi = ELIMINATE&SOLVE (Hi, Ti, τ i, SOLVER, ri, ε1).
iv. xi = xi−1 − 1

10
yi.

4. Until ‖Z (LGxt − b)‖LG ≤
ε

cZ log4 n
‖Zb‖LG .

5. Return xt

Figure 5.2: Randomized Richardson Iteration

for the lower bound. Scaling Z by a factor of 2c log3 n then gives the required operator.

�

Using this routine allows us to convert the expected convergence to one that involves expected
running time, but converges with high probability. This is mostly to simplify our presentation and
we believe such a dependency can be removed. Using this routine leads us to our randomized
preconditioned Richardson iteration routine, whose pseudocode is given in Figure 5.2.

The guarantees of this routine is as follows.

Lemma 5.4.10 Given a Laplacian solver SOLVER, any graph-tree pair (G, T ), bounds on stretch
τ , vector b = LGx̄ and error ε > 0, RANDRICHARDSON(G, T, τ , SOLVER, b, ε) returns with high
probability a vector x such that

‖x− x̄‖LG ≤ ε ‖x̄‖LG , (5.6)

and the algorithm takes an expected O(log(ε−1) + log log n)) iterations. Each iteration consists
of one call to SOLVER on a graph with O(‖τ‖pp) edges and error 1

O(logn)
, plus an overhead of

O(m+ ‖τ‖pp) operations.
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Proof Consider each iteration step using the preconditioner Hi generated by RANDPRECON. The
error reduction given in Lemma 5.4.7 gives:

EH

[∥∥∥∥x̄−
(

xi−1 −
1

10
L†Hri

)∥∥∥∥
LG

]
≤
(

1− 1

160

)
‖x̄− xi−1‖LG .

On the other hand, the guarantee for SOLVER gives∥∥∥yi − L†Hri
∥∥∥

LH
≤ ε1

∥∥∥L†Hri
∥∥∥

LH
.

Substituting in the spectral bound between LG and LH given by Lemma 5.4.8 in turn gives:∥∥∥yi − L†Hri
∥∥∥

LG
≤
√
cs log nε1 ‖LG (x̄− xi−1)‖L†H

≤ cs log nε1 ‖x̄− xi−1‖LG

≤ 1

320
‖x̄− xi−1‖LG .

Combining this with the above bound via the triangle inequality then gives

EH

[∥∥∥∥x̄−
(

xi−1 −
1

10
L†Hri

)∥∥∥∥
LG

]
≤
(

1− 1

160

)
‖x̄− xi−1‖LG +

1

320
‖x̄− xi−1‖LG

≤
(

1− 1

320

)
‖x̄− xi−1‖LG .

Hence the expected error ‖x̄− xi‖ decreases by a constant factor per iteration. After
O(log(ε−1 log n)) iterations the expected error is less than 1

2
ε

cZ log4 n
, where cZ is the constant from

Lemma 5.4.9. Markov’s inequality gives that

‖xt − x̄‖LG ≤
ε

cZ log4 n
‖x̄‖LG (5.7)

with probability at least 1
2
. By lemma 5.4.9 we have w.h.p

L†G � Z � cZ log4 nL†G.

If this equation holds, then the termination criterion is satisfied whenever equation 5.7 holds, because

‖Z (LGxt − b)‖LG ≤ cz log4 n ‖xt − x̄‖LG

≤ ε ‖x̄‖LG

≤ ε ‖Zb‖LG .
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On the other hand, when the termination criterion holds,

‖x̄− xt‖LG ≤ ‖LG (x̄− xt)‖Z
≤ ‖Z (LGxt − b)‖LG

≤ ε

cZ log4 n
‖Zb‖LG

≤ ε ‖x̄‖LG .

This means that w.h.p. equation 5.6 is satisfied when the algorithm terminates, and the algorithm
terminates with probability at least 1

2
on each iteration. So the expected number of iterations of the

outer loop is O(1).

�

It remains to give use this routine recursively. We correct for the errors of introducing scaling
factors into the tree using preconditioned Chebyshev iteration.

Lemma 5.4.11 (Preconditioned Chebyshev Iteration) Given a matrix A and a matrix B such
that A � B � κA for some constant κ > 0, along with error ε > 0 and a routine SOLVEB such
that for any vector b we have

∥∥SOLVEB(b)−B†b
∥∥
B
≤ ε4

30κ4
‖b‖B† ;

the preconditioned Chebyshev iteration routine SOLVEA(·) = PRECONCHEBY (A,B, SOLVEB, ·)
is such that in the exact arithmetic model, for any vector b,

• ∥∥SOLVEA(b)− A†b
∥∥
A
≤ ε ‖b‖A† ,

and

• SOLVEA(b) takes O(
√
κ log(1/ε)) iterations, each consisting of one call to SOLVEB and a

matrix-vector multiplication using A.

The pseudocode of our algorithm is given in Figure 5.3. Below we prove its guarantee.

Lemma 5.4.12 Given a parameter 1/2 < p < 1 and a graph-tree tuple (G, T, τ ) with m edges
such that ‖τ‖pp ≤ m logp n. For any vector b = LGx̄, SOLVE(G, T, τ , b, 1

320cs logn
) returns w.h.p. a

vector x such that

‖x̄− x‖LG ≤
1

320cs log n
‖x‖LG ,
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x = SOLVE(G, T, τ ,b, ε), where G is a graph, T is a tree, τ are upper bounds of the
stretches of edges in G w.r.t. T , b is the vector to be solved, and ε is the goal error.

1. Set κ = c(log log n)4/(2p−1)
(
‖τ‖pp
m

)1/p

for an appropriate constant c (dependent on p).

2. Let (H,T ′, τ ′) be the graph-tree tuple with T scaled up by a factor of κ, τ scaled
down by a factor of κ.

3. x = PRECONCHEBY (G,H,RANDRICHARDSON(H,T ′, τ ′, SOLVE, ε4κ−4),b).

4. Return x

Figure 5.3: Recursive Solver

and its expected running time is

O

m(‖τ‖pp
m

) 1
2p

log log2+ 2
2p−1 n

 .

Proof The proof is by induction on graph size. As our induction hypothesis, we assume the
lemma to be true for all graphs of size m′ < m. The choice of κ gives

‖τ ′‖pp ≤
m

cp log log2+ 2
2p−1 n

.

The guarantees of randomized Richardson iteration from Lemma 5.4.10 gives that all the random-
ized preconditioners have both off-tree edge count and off-tree stretch bounded by O(‖τ ′‖pp) =

O
(

m

cp log log
2+ 2

2p−1 n

)
.

An appropriate choice of c makes both of these values strictly less than m, and this allows us
to apply the inductive hypothesis on the graphs obtained from the randomized preconditioners by
ELIMINATE&SOLVE.

As κ is bounded by c log2 n and ε is set to 1
320cs logn

, the expected cost of the recursive calls
made by RANDRICHARDSON is

O(m log log n).

Combining this with the iteration count in PRECONCHEBY of

O(
√
κ log(1/ε)) = O

(log log n)
2

2p−1

(
‖τ‖pp
m

) 1
2p

log log n
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gives the inductive hypothesis.

�

To prove theorem 5.1.1, we first invoke SOLVE with ε set to a constant. Following an analysis
identical to the proof of lemma 5.4.12, at the top level each iteration of PRECONCHEBY will require
O(m log log n) time, but now only

O(
√
κ log(1/ε)) = O

(log log n)
2

2p−1

(
‖τ‖pp
m

) 1
2p


iterations are necessary. Setting p arbitrarily close to 1 means that for any constant δ > 0 and
relative error ε, there is a solver for LG that runs in O(m log1/2 n log log3+δ n) time. This error can
be reduced using Richardson iteration as stated below.

Lemma 5.4.13 If A, B are matrices such that A � B � 2A and SOLVEB is a routine such
that for any vector b, we have

∥∥SOLVEB(b)− B†b
∥∥

B ≤
1
5

∥∥B†b
∥∥

B, then there is a routine
SOLVEA,ε which runs in O(cα log(1

ε
)) iterations with the guarantee that for any vector b we have∥∥SOLVEA,ε(b)− A†b

∥∥
A
≤ ε

∥∥A†b∥∥
A

. Each iteration involves one call to SOLVEB, a matrix-vector
multiplication involving A and O(1) arithmetic operations on vectors.

We will use Richardson iteration as the outer loop, while transferring solutions and errors to the
original graph using the guarantees of the embeddable tree given in Lemma 5.4.5.

Proof of Theorem 5.1.1: Using Fact 5.4.6 on the solver described above for LG gives a solver
for (Π1ΠL†GΠTΠT

1 )† with relative error 1
5
. This condition and Lemma 5.4.5 Part 3 then allows us

to invoke the above Lemma with A = LĜ and B = Π1ΠL†GΠTΠT
1 . Incorporating the O(log(1

ε
))

iteration count and the reduction from SDD linear systems then gives the overall result.

�
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Appendix

5.A Chebyshev Iteration with Errors

We now check that preconditioned Chebyshev iteration can tolerate a reasonable amount of error in
each of the calls to the preconditioner. A more detailed treatment of iterative methods can be found
in the book by Trefethen and Bau [TB97]. Our presentation in this section is geared to proving the
following guarantee.

Lemma 5.A.1 (Preconditioned Chebyshev Iteration) Given a matrix A and a matrix B such
that A � B � κA for some constant κ > 0, along with error ε > 0 and a routine SOLVEB such
that for any vector b we have

∥∥SOLVEB(b)−B†b
∥∥
B
≤ ε4

30κ4
‖b‖B† ;

the preconditioned Chebyshev iteration routine SOLVEA(·) = PRECONCHEBY (A,B, SOLVEB, ·)
is such that in the exact arithmetic model, for any vector b,

• ∥∥SOLVEA(b)− A†b
∥∥
A
≤ ε ‖b‖A† ,

and

• SOLVEA(b) takes O(
√
κ log(1/ε)) iterations, each consisting of one call to SOLVEB and a

matrix-vector multiplication using A.

As the name suggests, Chebyshev iteration is closely related with Chebyshev Polynomials. There
are two kinds of Chebyshev Polynomials, both defined by recurrences. Chebyshev polynomials of
the first kind, Tn(x) can be defined as:

T0(x) = 1,

T1(x) = x,

Ti+1(x) = 2xTi(x)− Ti−1(x).

Preconditioned Chebyshev iteration is given by the following recurrence with δ set to 1 + 1
κ

:
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Base case:

x0 = 0

x1 = SOLVEB(b)

Iteration:

yi+1 = SOLVEB (Axi − b)

xi+1 =
2δTi (δ)

Ti+1 (δ)

(
xi − yi+1

)
− Ti−1 (δ)

Ti+1 (δ)
xi−1

Figure 5.A.1: Preconditioned Chebyshev Iteration

To bound the convergence of this iteration, it is helpful to use the following closed form for
Ti(x):

Ti(x) =

(
x−
√
x2 − 1

)i
+
(
x+
√
x2 − 1

)i
2

.

The following facts about Chebyshev polynomials of the first kind will be used to bound convergence.

Fact 5.A.2 If x = cos(θ), then

Ti(x) = cos(iθ).

This implies that if |x| ≤ 1, |Ti(x)| ≤ 1, and we will pass the error of the algorithm through it. For
convergence, we also need the opposite statement for lower bounding Tn(x) when x is large.

Fact 5.A.3 If x = 1 + 1
κ

, then:

Ti(x) ≥ 1

2

(
x+
√
x2 − 1

)i
,

≥ 1

2

(
1 +

√
1 +

2

κ
− 1

)i

,

≥ 1

2

(
1 +

1√
κ

)i
.

We can also show that these terms are steadily increasing:

Fact 5.A.4 If i ≤ j and x ≥ 1, then Ti(x) ≥ 1
2
Tj(x).
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Proof x ≥ 1 implies 0 ≤ x−
√
x2 − 1 ≤ 1 and 1 ≤ x+

√
x2 − 1. Therefore

Ti+1 (x) ≥
(
x+
√
x2 − 1

)i+1

2
,

≥
(
x+
√
x2 − 1

)i
2

,

≥ Ti (x)− 1

2
.

Fact 5.A.3 also gives Ti+1(x) ≥ 1
2
. Combining these gives Ti(δ) ≥ 1

2
Tj(δ).

�

The errors given by SOLVEB will accumulate over the iterations. To bound them, we need
Chebyshev polynomials of the second kind. These polynomials, Un(x), follow the same recurrence
but have a different base case:

U−1(x) = 0,

U0(x) = 1,

Ui+1(x) = 2xTi(x)− Ti−1(x).

Chebyshev polynomials of the second kind are related to Chebyshev polynomials of the first kind
by the following identity:

Fact 5.A.5

Ui(x) =

{
2
∑

j≤i odd Tj(x) If i is odd, and(
2
∑

j≤i even Tj(x)
)
− 1 If i is even.

Since T0 = 1, and |Tj(x)| ≤ 1 whenever x ≤ 1, this implies

Fact 5.A.6 For all x satisfying |x| ≤ 1,

|Ui(x)| ≤ i+ 1

We will let the deviation caused by SOLVEB at iteration i to be erri, giving

yi+1 = B† (Axi − b) + erri

where ‖erri‖B ≤ ‖Axi − b‖B† . To analyze the recurrence, it is crucial to consider the matrix

X = δ
(
I − A1/2B†A1/2

)
.
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The given condition of A � B � κA gives

1

κ
I � A1/2B†A1/2 � I,

which when combined with the setting of δ = 1 + 1
κ

gives

0 � X � I.

Fact 5.A.2 then gives that Ti(X) has all eigenvalues between [−1, 1]. This ‘shrinkage’ property is
key to our analysis.

We can show that the deviation between xi and x̄ = A†b behaves according to Chebyshev
polynomials of the first kind in X while the errors accumulate according to Chebyshev polynomials
of the second kind in X .

Lemma 5.A.7 If X̄ = A†b, then at iteration i we have

Ti (δ) (xi − x̄) = A†1/2Ti (X)A1/2x̄ + 2δ
i∑

j=1

Tj−1 (δ)A†1/2Ui−j (X)A1/2errj,

where X = δ
(
I − A1/2B†A1/2

)
and Ti(X) and Ui(x) are Chebyshev polynomials of the first and

second kind respectively

Proof The proof is by induction.

The base case can be checked as follows:

x̄− x0 = x̄,
= A†1/2A1/2x̄;

x̄− x1 = x̄−B†b + err1,

= x̄−B†Ax̄,
= A†1/2

(
I − A1/2B†A1/2

)
A1/2x̄ + A†1/2A1/2err1.

For the inductive case, the recurrence can be rearranged to give:

Ti+1 (δ) xi+1 = 2δTi (δ)
(
xi − yi+1

)
− Ti−1 (δ) (δ) xi−1

Recall from the definition of Chebyshev polynomials of the first kind that:

Ti+1 (δ) = 2 (δ)Ti (δ)− Ti−1 (δ)
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So we can subtract both sides from Ti+1 (δ) x̄ to get:

Ti+1 (δ) (x̄− xi+1) = 2δTi (δ) (x̄i − xi + yi)− Ti−1 (δ) (x̄− xi−1)

The change, yi, can be viewed as computed by multiplying the difference at iteration i by B−1A,
plus the error vector erri:

yi+1 = B† (Axi − b) + erri+1

= B† (Axi − Ax̄) + erri+1

= B†A (xi − x̄) + erri+1

Combining this gives

Ti+1 (δ) (x̄− xi+1) = 2δTi (δ)
(
I −B†A

)
(x̄− xi)− Ti−1 (δ) (x̄− xi−1) + 2δTi (δ) erri+1

= 2A†1/2XA1/2Ti (δ) (x̄− xi)− Ti−1 (δ) (x̄− xi−1) + 2δTi (δ) erri+1.

From this, we can then show the inductive case by collecting all the terms and checking that
the coefficients satisfy the recurrences for Chebyshev polynomials. Substituting in the inductive
hypothesis gives:

Ti+1 (δ) (x̄− xi) = 2A†1/2XA1/2

(
A†1/2Ti (X)A1/2x̄ + 2δ

i∑
j=1

Tj−1 (δ)A†1/2Ui−j (X)A1/2errj

)
+ A†1/2Ti−1 (X)A1/2x̄

+ 2δ
i−1∑
j=1

Tj−1 (δ)A†1/2Ui−1−j (X)A1/2errj

+ 2δTi (δ) erri+1

Since A, B and X share the same null space and the first term is left-multiplied by A†1/2, the A1/2

and A†1/2 terms cancel with each other. Collecting the terms according to x̄ and errj then gives

Ti+1 (δ) (x̄− xi) = A†1/2 (2XTi (X)− Ti−1 (X))A1/2x̄

+ 2δ
i∑

j=1

Tj−1 (δ)A†1/2 (2XUi−j (X)− Ui−1−j (X))A1/2errj

+ 2δTi (δ) erri+1

= A†1/2Ti+1 (X)A1/2x̄ + 2δ
i∑

j=1

Tj−1 (δ)Ui+1−j (X)A1/2errj + 2δTi (δ) erri+1
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As U−1(x) = 0, we can also include in the j = i term in the summation of error terms. So the
inductive hypothesis holds for i+ 1 as well.

�

The bound on Chebyshev polynomials of the second kind (Fact 5.A.6) then allows us to bound
the error in the A-norm.

Lemma 5.A.8 The accumulation of errors after i iterations can be bounded by:

‖x̄− xi‖A ≤
1

Ti (δ)
‖x̄‖A +

i∑
j=1

6i ‖errj‖A

Proof By the identity proven in Lemma 5.A.7 above, and the property of norms, we have:

‖x̄− xi‖A =

∥∥∥∥∥A†1/2Ti+1 (X)A1/2x̄ + 2δ
i−1∑
j=1

Tj−1 (δ)Ui+1−j (X)A1/2errj + 2δTi (δ) erri+1

∥∥∥∥∥
A

=
1

Ti (δ)

∥∥∥∥∥Ti+1 (X)A1/2x̄ + 2δ
i∑

j=1

Tj−1 (δ)Ui+1−j (X)A1/2errj

∥∥∥∥∥
2

,

on which triangle inequality gives:

‖x̄− xi‖A ≤
1

Ti (δ)

∥∥Ti+1 (X)A1/2x̄
∥∥

2
+

2δTj−1 (δ)

Ti (δ)

i∑
j=1

∥∥Ui−j (X)A1/2errj
∥∥

2

The upper bound on T implies that the eigenvalues of Ti(X) all have absolute value at most
1; similarly the upper bound on U given in Fact 5.A.6 implies that all eigenvalues of Uk(X)
have absolute value at most k + 1. This implies that for any vector x, ‖Ti(X)x‖2 ≤ ‖x‖2 and
‖Uk(X)x‖2 ≤ (k + 1) ‖x‖2. Furthermore, by Fact 5.A.3, 2δTj−1(δ)

<
6. Applying these bounds, and

the definition of A-norm, gives

‖x̄− xi‖A ≤
1

Ti (δ)
‖x̄‖A + 6

i∑
j=1

(i− j + 1) ‖errj‖A

≤≤ 1

Ti (δ)
‖x̄‖A + 6

i∑
j=1

i ‖errj‖A

�

As the error bound guarantee of SOLVERB is relative, we need to inductively show that the total
error is small. This then leads to the final error bound.
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Proof of Lemma 5.A.1: The proof is by induction. We show that as long as i < κε−1, we have

‖x̄− xi‖A ≤
(

1

Ti (δ)
+
ε2i

2κ

)
‖x̄‖A ,

and ‖errj‖A ≤
ε3

24κ2
‖x̄‖A for all j ≤ i.

The base case of i = 0 follows from T0(δ) = 0. For the inductive case, suppose the result is true
for i− 1. Then as i < κε−1 and Ti(δ) ≥ 1, we have ‖x̄− xi−1‖A ≤ 2 ‖x̄‖A. As the vector passed
to SOLVEB is Axi−1 − b = A(xi−1 − x̄) and B† � A†, we have

‖A (xi−1 − x̄)‖B† =

√
(xi−1 − x̄)T AB†A (xi−1 − x̄) (5.8)

≤
√

(xi−1 − x̄)T A (xi−1 − x̄) (5.9)

= ‖xi−1 − x̄‖A (5.10)
≤ 2 ‖x̄‖A . (5.11)

Therefore the guarantees of SOLVERB gives ‖erri‖B ≤
ε3

48κ2
. Combining this with A � B gives

the bound on erri.
Substituting these bounds into Lemma 5.A.8 in turn gives the inductive hypothesis for i. The

lower bound on Ti(δ) gives that when i = O(
√
κ log(1/ε)), the first term is less than ε

2
. As

log(1/ε) ≤ 1
ε
, the second term can be bounded by ε

2
as well. Combining these two error terms gives

the overall error.

�

We remark that the exponent on κ and ε in this analysis are not tight, and will be improved in a
future version.

5.B Finding Electrical Flows

We now show that the solver given in Theorem 5.1.1 can also be used to find electrical flows in
similar time. This problem can be viewed as the dual of computing vertex potentials, and is the core
problem solved in the flow energy reduction based algorithms by Kelner et al. [KOSZ13] and Lee
and Sidford [LS13]. As flows to defined on the edges of graphs instead of vertices, it is helpful to
define the edge vertex incidence matrix.

Definition 5.B.1 The edge-vertex incidence matrix of a weighted graph G = (V,E) is given by

Be,u =


1 if u is the head of e
−1 if u is the tail of e
0 otherwise

141



It can be checked that if R is the diagonal matrix containing all the resistances, the graph Laplacian
is given by L = BTRB.

Given a flow f , its residual at vertices is given by BT f . Also, the energy of the flow is given by
ER(f ) =

∥∥f ∥∥
R

. The electrical flow problem is finding the minimum energy flow whose residue
meets a set of demands d . It can be characterized as follows.

Fact 5.B.2 For a demand d , the minimum energy electrical flow f̄ is given by

f̄ = R−1BL†d ,

and its energy, ER(f̄ ) equals to
∥∥d∥∥

L†
.

As a result, a natural algorithm for computing a flow that approximately minimizes electrical
energy is to solve for approximate potentials L†d . Previous reductions between these problems
such as the one by Christiano et al. [CKM+11] ran the solver to high accuracy to recover these
potentials. Then any difference between the residue and demands are fixed combinatorially. Here
we show that this exchange can happen with low error in a gradual fashion. The following lemma is
the key to our algorithm.

Lemma 5.B.3 If x is a vector such
∥∥x − L†d

∥∥
L
≤ ε
∥∥d∥∥

L†
, then f = R−1Bx is a flow such that

ER(f ) ≤ (1 + ε)
∥∥d∥∥

L†
, and the energy required to send the flow d − Bf is at most ε

∥∥d∥∥
L†

.

Proof

Both steps can be checked algebraically. For the energy of the flow, we have

ER(f )2 = (R−1Bx )TR(R−1Bx ) = x TLx =
∥∥x∥∥2

L
.

Combining this with the error guarantees gives

ER(f ) =
∥∥x∥∥

L
≤
∥∥L†d∥∥

L
+
∥∥x − L†d

∥∥
L
≤ (1 + ε)

∥∥d∥∥
L†
.

For the energy needed to reroute the demands, note that Bf = Lx . Substituting this in gives:∥∥Bf − d
∥∥
L†

=
∥∥Lx − d

∥∥
L†

=
∥∥x − L†d

∥∥
L

= ε
∥∥d∥∥

L†
.

�

This means that we can solve the resulting re-routing problem to a much lower accuracy. This
decrease in accuracy in turn allows us to change our graph, leading to a faster running time for this
correction step.

Claim 5.B.4 Given a graph G = (V,E, r), a set of demands d , and any error parameter ε > 0
we can find in expected O(m log1/2 npoly(log log n) log(ε−1)) time a flow f such that with high
probability f meets the demands, and ER(f ) ≤ (1 + ε)

∥∥d∥∥
L†

.
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Proof Consider running the solver given Theorem 5.1.1 to an accuracy of ε
log3 n

, and using the
resulting flow f . Lemma 5.B.3 then gives that it suffices to find another flow with a set of demands
d ′ such that

∥∥d ′∥∥
L†
≤ ε

log3 n

∥∥d∥∥
L†

. As the energy of f is at most (1 + ε
log3 n

)
∥∥d∥∥

L†
, it suffices to

find a flow f ′ meeting demands d ′ such that ER(f ′) ≤ ε
2

∥∥d∥∥
L†

.

The fact that we can tolerate a log3 n
2

factor increase in energy in f ′ allows us to find this flow
on a graph with some resistances increased by the same factor. This allows us to reduce the value
of ‖τ‖pp in Lemma 5.4.5 by a factor of about log3p n. It can also be checked that it suffices to find
electrical flows a sparsified version of this graph. Therefore, the solve can be ran to an accuracy of

1
poly(n)

on this smaller graph without being a bottleneck in the running time.

Adding this flow in means that we in turn need to find a flow for some demand d ′′ with energy
at most poly(n)

∥∥d ′′∥∥
L†

. As the relative condition number of the minimum spanning tree with the
graph can be bounded by poly(n), using it to reroute the flow allows us to arrive at the final flow.

�

5.C Relation to Matrix Chernoff Bounds

We now show a matrix Chernoff bounds based analysis of our sampling routine which gives bounds
that are off by log factors on each side with high probability. The matrix Chernoff bound that we
will use is as follows:

Lemma 5.C.1 (Matrix Chernoff, Theorem 1.1 from [Tro12]) Let M k be a sequence of indepen-
dent, random, self-adjoint matrices with dimension n. Assume that each random matrix satisfies
0 �M k and λmax(M k) ≤ R. Define µmin = λmin (

∑
k E [M k]) and µmax = λmax (

∑
k E [M k]).

Then

P

[
λmin

(∑
k

E [M k]

)
≤ (1− δ)µmin

]
≤ n ·

[
e−δ

(1− δ)1−δ

]µmin/R

for δ ∈ [0, 1],

and

P

[
λmin

(∑
k

E [M k]

)
≤ (1 + δ)µmax

]
≤ n ·

[
e−δ

(1− δ)1−δ

]µmax/R

for δ ≥ 0.

As this bound is tailored for low error, we need an additional smoothing step. Here the fact that
we add X to the resulting sample is crucial for our analysis. It allows us to analyze the deviation
between Z + κX and Y + κX for a parameter κ that we will pick. We will actually prove a
generalization of both the δ = 1

O(logn)
case and the δ = O(1) case.

Lemma 5.C.2 There exists a constant c such that Z = SAMPLE({Y1, . . . , Ym}, X, τ , δ) satisfies
with high probability

1

cδ log n
·Y � Z � cδ log n ·Y .

143



Proof Note that our sampling algorithm also picks the number of samples, r, randomly between t
and 2t− 1. However, as we can double c, it suffices to show the result of taking t samples is tightly
concentrated.

Let κ > 0 be a parameter that we set later to about δ log n, and consider the approximation
between Z + κX and Y + κX . We let M 1 . . .M t be the matrices corresponding to the samples,
normalized by Y + κX :

M i
def
=

δ

τ ij
(Y + κX )−1/2 Y ij (Y + κX )−1/2 .

As all Y is are positive semidefinite, this random matrix is also positive semidefinite. Its maximum
eigenvalue can be bounded via its trace

tr [M i] =
δ

τ ij
tr
[
(Y + κX )−1/2 Y ij (Y + κX )−1/2

]
= δ

tr
[
(Y + κX )−1 Y ij

]
tr
[
X−1Y ij

]
≤ δ

κ
.

Where the last inequality follows from (Y + κX )−1 � (κX )−1 = 1
κ
X−1. It can also be checked

that Eij
[

δ
τ ij

]
Y ij = δ

s
Y , therefore

Ei1...it

[
t∑

j=1

M j

]
= (Y + κX )−1/2 Y (Y + κX )−1/2 .

This gives µmax = 1, but µmin can still be as low as 1
1+κ

. Note however that Z is formed by adding
X to the result. Therefore, to improve the bounds we introduce δ−1κ more matrices each equaling
to δ (Y + κX )−1/2 X (Y + κX )−1/2. As (Y + κX )−1/2 � 1

κ
X−1, the maximum eigenvalue

in each of these is also at most δ
κ
. They on the other hand gives E [

∑
kM k] = I , and therefore

µmin = µmax = 1.

Invoking Lemma 5.C.1 with R = δ−1κ then gives that when κ def
= cδ log n, we have that the

eigenvalues of
∑

kM k are between 1
2

and 2 with high probability. Rearranging using the fact that
the samples taken equals to Z + (κ− 1)X gives

1

2
(Y + κX ) � Z + (κ− 1)X � 2 (Y + κX ) .

The X terms can then be removed using the fact that 0 � X � Y , giving

1

2
Y � 1

2
(Y + κX ) � Z + (κ− 1)X � κZ ,
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for the lower bound, and

Z � Z + (κ− 1)X � 2 (Y + κX ) � 2(κ+ 1)Y ,

for the upper bound. Recalling that κ = cδ log n then gives the bound.

�

Invoking this lemma with δ = O(1), and analyzing the amplification of error caused by sampling
too many off-tree edges in the same way as Lemma 5.4.7 then gives Lemma 5.4.8.

5.D Propagation and Removal of Errors

As all intermediate solutions in our algorithms contain errors, we need to check that these errors
propagate in a natural way across the various combinatorial transformations. We do this by
adapting known analyses of the recursive preconditioning framework [ST06] and Steiner tree
preconditioners [MMP+05, Kou07] to a vector convergence setting. We also check that it suffices
to perform all intermediate computations to a constant factor relative errors by showing an outer
loop that reduces this error to ε in O(log(1/ε)) iterations.

5.D.1 Partial Cholesky Factorization

Lemma 5.4.4 Given a graph-tree tuple (H,T, τ ) with n vertices and m′ off-tree edges, and and a
Laplacian solver SOLVER, there is a routine ELIMINATE&SOLVE(H,T, τ , SOLVER, b, ε) that for
any input b = LH x̄, performs O(n + m′) operations plus one call to SOLVER with a graph-tree
tuple (H ′, T ′, τ ′) with O(m′) vertices and edges, the same bounds for the stretch of off-tree edges,
and accuracy ε and returns a vector x such that

‖x̄− x‖LH ≤ ε ‖x̄‖LH .

Proof The greedy elimination procedure from Section 4.1. of [ST06] gives a factorization of LH
into

LH = U T

(
I 0
0 LH′

)
U ,

where LH′ has O(m′) vertices and edges and for any vector y , both U −Ty and U −1y can be
evaluated in O(n) time. It can also be checked that this elimination routine preserves the stretch of
off-tree edges, giving a tree T ′ as well.

For notational simplicity, we will denote the block-diagonal matrix with I and LH′ as P . Note
that I and LH′ act on orthogonal subspaces since their support are disjoint and solving a linear
system in I is trivial. This means that making one call to SOLVE with (H ′, T ′, τ ′) plus O(n)
overhead gives solver routine for P . More specifically, we have access to a routine SOLVEP such
that for any vector b ′, x ′ = SOLVEP(b ′, ε) obeys:∥∥x ′ −P †b ′

∥∥
P
≤ ε

∥∥P †b ′∥∥
P
.
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We can then check incorporating U −1 and U −T the natural way preserves errors. Given a
vector b , we call SOLVEP with the vector b ′ = U −Tb , and return x = U −1x ′. Substituting the
error guarantees above gives∥∥Ux −P †U −Tb

∥∥
P
≤ ε

∥∥P †U −Tb
∥∥
P
.

Incorporating L†H = U −1P †U −T then gives∥∥∥U (
x − L†H

)
b
∥∥∥
P
≤ ε ‖b‖L†H ,

which simplifies to ∥∥∥x − L†Hb
∥∥∥
LH
≤ ε

∥∥∥L†Hb∥∥∥
LH
.

�

5.D.2 Transfer of Errors

Fact 5.4.6 Let Π and Π1 be the two projection matrices defined in Lemma 5.4.5 Part 3. For a
vector b̂ , if x is a vector such that∥∥x − L†GΠTΠT

1 b̂
∥∥
LG
≤ ε
∥∥L†GΠTΠT

1 b̂
∥∥
LG
,

for some ε > 0. Then the vector x̂ = Π1Πx satisfies∥∥x̂ −Π1ΠL†GΠTΠT
1 b̂
∥∥

(Π1ΠL†GΠTΠT
1 )
† ≤ ε

∥∥Π1ΠL†GΠTΠT
1 b̂
∥∥

(Π1ΠL†GΠTΠT
1 )
† .

Proof We first check that the RHS terms are equal to each other by switching the matrix norms.∥∥L†GΠTΠT
1 b̂
∥∥
LG

=
∥∥ΠTΠT

1 b̂
∥∥
L†G

=
∥∥b̂∥∥

Π1ΠL†GΠTΠT
1

=
∥∥Π1ΠL†GΠTΠT

1 b̂
∥∥

(Π1ΠL†GΠTΠT
1 )
† .

A similar manipulation of the LHS gives:∥∥x̂ −Π1ΠL†GΠTΠT
1 b̂
∥∥

(Π1ΠL†GΠTΠT
1 )
† =

∥∥Π1Π
(
x − L†GΠTΠT

1 b̂
)∥∥

(Π1ΠL†GΠTΠT
1 )
† .

Note that
(
Π1ΠL†GΠTΠT

1

)†
is the Schur complement of LG on its rank space onto the column

space of Π1Π. As the Schur complement quadratic form gives the minimum energy over all
extensions of the vector w.r.t. the original quadratic form, we have:∥∥Π1Π

(
x − L†GΠTΠT

1 b̂
)∥∥

(Π1ΠL†GΠTΠT
1 )
† ≤

∥∥x − L†GΠTΠT
1 b̂
∥∥
LG
.

which when combined with the equality for the RHS completes the result.
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1. x = SOLVEB (b)

2. Let t = logα(1
ε
). For i = 0...t

y = SOLVEA (b− Ax)
x = x + y

3. Return x

Figure 5.D.1: Preconditioned Richardson Iteration

5.D.3 Preconditioned Richardson Iteration

Lemma 5.D.1 If A, B are matrices such that A � B � 2A and SOLVEB is a routine such
that for any vector b we have

∥∥SOLVEB(b)− A†b
∥∥

B ≤
1
5

∥∥A†b∥∥B. There is a routine SOLVEA,ε

which runs in O(cα log(1
ε
)) iterations with the guarantee that for any vector b we have∥∥SOLVEA,ε(b)− A†b

∥∥
A
≤ ε

∥∥A†b∥∥
A

. Each iteration involves one call to SOLVEB, a matrix-vector
multiplication involving A and operations on vectors.

Proof A pseudocode of the routine SOLVEB is given in Figure 5.D.1. It suffices to show that each
iteration,

∥∥x− A†b
∥∥
A

decreases by a constant factor.

We will use x ′ to denote the solution vector produced for the next iteration. As our convergence
is in terms of distance to the exact solution, it is convenient to denote the current error using
r = x− A†b.

Applying the triangle inequality to the new error gives:∥∥x ′ −A†b
∥∥
A

=
∥∥x + y −A†b

∥∥
A
≤
∥∥x −A†b + B† (b −Ax )

∥∥
A

+
∥∥y − b† (b −Ax ) r

∥∥
A
.

If b is in the column space of A and B, b −Ax = A(A†b − x ) = −Ar . As the error is measured
in the A-norm, we can make this substitution, giving:∥∥x ′ −A†b

∥∥
A
≤
∥∥(I − B†A

)
r
∥∥
A

+
∥∥y − B†Ar

∥∥
A
.

The first term equals to √
rTA1/2

(
I −A1/2B†A1/2

)2

A1/2r

Rearranging A � B � 2A gives 0 � I −A1/2B†A1/2 � 1
2
I , which means the first term can be

bounded by 1
2
‖r‖A.

The second term can be bounded using the guarantees of SOLVEA and the bounds between A
and B: ∥∥y − B†Ar

∥∥
A
≤
∥∥y − B†Ar

∥∥
B ≤ α ‖r‖B ≤ 2α ‖r‖A .
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Summing these two terms gives
∥∥x ′ −A†b

∥∥
A
≤ 9

10

∥∥x −A†b
∥∥
A

, and therefore the convergence
rate.

�
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Chapter 6

Clustering and Routing for Directed Graphs

An outstanding open problem in spectral graph theory is the search for fast algorithms for maximum
flow problems. The recent breakthroughs in the area [Mad13, LS14, KLOS14, She13] combine the
combinatorial algorithms for undirected graphs with improved analysis of interior point methods for
directed graphs. The combinatorial methods include fast Laplacian solvers and oblivious routings,
both of which can be derived from low stretch trees and low diameter clustering algorithms.

Our goal is to initiate a study of combinatorial properties of directed graphs in the context of
spectral approaches to flow problems. In particular, we focus our attention on balanced graphs.
This class generalizes residual graphs (graphs that can be obtained as the residual of an approximate
maximum s-t flow through an undirected graph) and Eulerian graphs.

We show and analyze a nearly-linear time low diameter clustering algorithm for balanced
graphs, and show how to obtained a low-stretch arborescence for such graphs. In particular, this
implies the existence of Õ(1)-competitive single-source oblivious routings for balanced graphs.
Currently, our algorithm for constructing these routings works in time Õ(mn). Similar algorithms
for undirected graphs have been sped up in the past using various approaches [Mad10, RST14].
Bringing the runtime down is an open problem, and would immediately translate to faster maximum
flow algorithms.

We also give new lower bounds for oblivious routing in directed graphs and a fast algorithm for
computing maximum flow in balanced graphs.

The results presented in this chapter are joint work with Alina Ene, Gary Miller and Aaron
Sidford [EMPS16].

6.1 Introduction

In this chapter, we study several fundamental routing questions in directed graphs that are nearly
Eulerian. We introduce the notion of balance for directed graphs that quantifies how far away a
graph is from being Eulerian1: a weighted directed graph is α-balanced if for every cut S ⊆ V , the

1A directed graph is Eulerian if, for each vertex, the total weight of its incoming edges is equal to the total weight of
its outgoing edges. An equivalent definition is that for each cut S ⊆ V , the total weight of edges from S to V \ S is
equal to the total weight of edges from V \ S to S.

149



total weight of edges going from S to V \ S is within factor α of the total weight of edges going
from V \ S to S. Several important families of graphs are nearly balanced, in particular, Eulerian
graphs (with α = 1) and residual graphs of (1 + ε)-approximate undirected maximum flows (with
α = O(1/ε)).

We use the notion of balance to give a more fine-grained understanding of several well-studied
routing questions that are considerably harder in directed graphs. The first question that we address
is that of designing oblivious routing schemes for directed graphs. Oblivious routing schemes were
introduced in the seminal work of Räcke [Räc02]. They are motivated by practical applications in
routing traffic in massive networks such as the Internet, where it is necessary to route each request
independently of the other requests and the current traffic in the network. Oblivious routing schemes
were developed in a sequence of works [Räc02, ACF+03, BKR03, HKLR05, HKLR06, HKRL07,
Räc08, ER09]. In particular, if the graph is undirected, there exist oblivious routing schemes that
achieve competitive ratio O(log n) [Räc08], where n is the number of nodes, and this result is
optimal [BL99, MMVW97, MMVW97]. In contrast, Hajiaghayi et al. [HKRL07] show a strong
lower bound of Ω(

√
n) on the competitive ratio of routing obliviously in directed graphs. This lower

bound holds even for single-source instances of bounded degree graphs, as well as for instances
with symmetric demands.

In this chapter, we revisit oblivious routing in directed graphs, and we show that balanced graphs
bridge the gap between directed and undirected graphs (see Section 6.3). Our main algorithmic result
is an oblivious routing scheme for single-source instances that achieve an O(α · log3 n/ log log n)
competitive ratio. In the process, we make several technical contributions which may be of indepen-
dent interest. In particular, we give an efficient algorithm for computing low-radius decompositions
of directed graphs parameterized by balance. We also define and construct low-stretch arbores-
cences, a new concept generalizing low-stretch spanning trees to directed graphs. Given the
far-reaching implications of low-diameter decompositions and low-stretch spanning trees, we hope
that our techniques may find other applications.

Our result is a generalization to directed graphs of Räcke’s influential work [Räc08] that
established a remarkable connection between oblivious routing in undirected graphs and metric
embeddings into trees.

On the negative side, we present new lower bounds for oblivious routing problems on directed
graphs. We show that the competitive ratio of oblivious routing algorithms for directed graphs
has to be Ω(n) in general; this result improves upon the long-standing best known lower bound
of Ω(

√
n) [HKRL07]. We also show that the restriction to single-source instances is necessary by

showing an Ω(
√
n) lower bound for multiple-source oblivious routing in Eulerian graphs.

The second question that we study is that of finding an approximate maximum flow in balanced
graphs. The maximum flow problem has received considerable attention in recent years, leading
to several breakthrough results. This line of work has led to the development of almost linear
time algorithms for approximate maximum flows in undirected graphs [KLOS14, She13] and the
subsequent improvement of [Pen14, RST14]. In contrast, progress on directed graphs has been
comparatively more modest, and the only improvements are the breakthrough results of Madry,
yielding an Õ(m10/7)-time algorithm for unit-capacity directed graphs with m edges [Mad13] and
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of Lee and Sidford, obtaining a running time of Õ(m
√
n) for arbitrary directed graphs [LS14].

These improve over the long-standing best running time of Õ(mmin(
√
m,n2/3)) given by Goldberg

and Rao [GR98].

In this chapter, we study the maximum flow problem in balanced directed graphs with arbitrary
capacities (see Section 6.5). We develop an efficient algorithm that finds an (1 + ε)-approximate
maximum flows in α-balanced graphs in time Õ(mα2/ε2). Our algorithm builds on the work of
Sherman [She13] and it can be viewed as an analogue of his result for directed graphs. The running
time of our algorithm degrades gracefully with the imbalance of the graph and thus it suggests that
balanced graphs provide a meaningful bridge between undirected and directed graphs.

We show that, using our approximate maximum flow algorithm, we can efficiently determine
whether a given directed graph is α-balanced (see Section 6.5.2). Additionally, we give an applica-
tion to the directed sparsest cut problem (see Section 6.5.3).

6.1.1 Related Work

Oblivious Routing. Oblivious routing schemes are well-studied and several results are known;
we refer the reader to [Räc09] for a comprehensive survey of results for undirected graphs. As
mentioned previously, in edge-weighted undirected graphs one can achieve a competitive ratio
of O(log n) [Räc08], and it is the best possible [BL99, MMVW97, MMVW97]. Hajiaghayi et al.
[HKRL07] studied oblivious routing schemes in node-weighted undirected graphs and directed
graphs. Their work gives an Ω(

√
n) lower bound on the competitive ratio for both node-capacitated

undirected graphs and directed graphs. They also show that these lower bounds still hold in more
restricted settings, such as single-source instances. On the positive side, they give oblivious routing
scheme with competitive ratios of O(

√
n log n) for single-source instances in bounded-degree

directed graphs, and O(
√
kn1/4 log n) for general instances in directed graphs, where k is the

number of commodities and in the worst case k = Θ(n2).

Maximum s-t Flows. The maximum flow problem is one of the most central problems in combina-
torial optimization and has been studied extensively over the past several decades. Until recently,
most approaches have been based on combinatorial methods such as augmenting paths, blocking
flows, push-relabel, etc. This line of work culminated in the seminal algorithm of Goldberg and Rao
[GR98] that computes a maximum flow in time O(min(n2/3,m1/2) log(n2/m) logU) in directed
graphs with integer weights that are at most U .

Over the past decade, a new approach emerged based on techniques drawn from several areas
such as continuous optimization, numerical linear algebra, and spectral graph theory. These
approaches led to a nearly-linear time algorithm for approximate maximum flows in undirected
graphs [She13, KLOS14, Pen14], an Õ(m10/7)-time algorithm for maximum flows in unit-capacity
directed graphs [Mad13] and an Õ(m

√
n)-time algorithm for arbitrary directed graphs [LS14].

6.1.2 Organization

The rest of this chapter is organized as follows. In Section 6.2, we give an overview of our main
results and introduce the definitions and notation we use throughout the chapter. In Section 6.3, we
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give our oblivious routing scheme for single-source instances. In Section 6.4, we state our lower
bounds for oblivious routing. In Section 6.5 we give our approximate maximum flow algorithm and
applications.

6.2 Overview

6.2.1 Basic Definitions

We study directed graphs G = (V,E,w, l) with edge set E ⊆ V × V , edge weights w : E → R+

and edge lengths l : E → R+. Throughout this chapter, we assume that G is strongly connected. In
several applications we deal with graphs without weights or lengths. For graphs with edge lengths,
we let d(u, v) denote the shortest path distance from u to v.

We associate the following matrices with the graph G. The matrix of edge weights is defined
as C

def
= diag(w) and the vertex-edge incidence matrix B ∈ RV×E is defined as Bs,(u,v)

def
= −1 if

s = u, 1 if s = v and 0 otherwise. We are interested in finding flows that route demands with low
congestion. The congestion incurred by a flow f is

∥∥C−1f
∥∥
∞, and we say f routes demands b if

Bf = b. The problem of finding a minimum congestion flow for a given demand vector, and its
dual, the maximum congested cut, can be formulated as follows:

min.
f

‖C−1f‖∞ s.t. Bf = d, f ≥ 0.

max.
v

b>v s.t. ‖C max(B>v, 0)‖1 ≤ 1.

We let OPTb denote the optimum value of these problems. Throughout this chapter, we let
bS =

∑
u∈S bu and w(S, T ) denote the total weight of edges from S to T . It is well-known that for

the second problem, one of the threshold cuts with respect to v achieves bS/w(S, V − S) ≥ b>v.

6.2.2 Balance

We parameterize strongly connected directed graphs by their imbalance:

Definition 6.2.1 (Imbalance) Let G = (V,E,w) be a strongly connected directed graph. We
define its imbalance, bal(G), as the minimum α such that w(S, V \ S) ≤ α · w(V \ S, S) for every
S ⊆ V .

Two canonical families of balanced graphs are Eulerian graphs. and residual graphs of approxi-
mate undirected maximum flows.

Fact 6.2.2 A strongly connected directed graph G is Eulerian if and only if bal(G) = 1. If G is the
residual graph of a (1 + ε)-approximate undirected maximum flow, then bal(G) = O(ε−1).

Theorem 6.2.3 (Equivalent definitions of balance) Let G = (V,E,w) be a directed graph. The
following statements are equivalent:
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1. bal(G) ≤ α.

2. There exists a circulation f on G with all edge congestions in [1, α].

3. Let d = B~1 be the residual degrees in G. Then −d can be routed with congestion α− 1.

6.2.3 Oblivious Routing Schemes

An oblivious routing scheme is a linear operator that, for each source-destination pair (s, t) ∈ V ×V ,
specifies how to route one unit of flow from s to t independently of the other pairs. Given a demand
vector ~d : D → R+ on a set D ⊆ V × V of source-sink pairs, one can produce a multi-commodity
flow that meets these demands by routing each demand pair using the (pre-specified) operator,
independently of the other demands. The competitive ratio of an oblivious routing scheme is the
worst ratio among all possible demand vectors between the congestion of the multi-commodity flow
given by the scheme and the congestion of the minimum congestion multi-commodity flow for the
given demand vector.

Our main positive result concerning oblivious routings, given in Section 6.3, is the existence of
good single-source oblivious routings for balanced graphs. A single-source oblivious routing with
source s ∈ V has D = {s} × V .

Theorem 6.2.4 (Single Source Oblivious Routings) Every strongly connected graph G ad-
mits a single-source oblivious routing, from any source, with competitive ratio O(bal(G) ·
log3 n/ log log n).

We achieve this result by generalizing an algorithm for undirected graphs given by Racke
[Räc08]. The core difficulty that we need overcome is to find a good way to cluster the vertices of a
directed balanced graph. We define the radius of a cluster C ⊆ V as minu∈C maxv∈C d(u, v).. The
volume vol(G) of G is defined as vol(G)

def
=
∑

e∈E l(e)w(e). Our clustering algorithm is presented
in Section 6.3.1, and its guarantees can be formalized as follows:

Theorem 6.2.5 (Balanced Graph Clustering) Let G = (V,E,w, l) be a directed graph. Then for
every r > 0, V can be partitioned into clusters such that every cluster has radius at most r, and the
total weight of edges going between different clusters is O(bal(G)vol(G) log n/r). Moreover, such
a partition can be found in expected linear time.

The guarantees of Theorem 6.2.5 for undirected graphs match those given by prior work
[Awe85, AKPW95, Bar96, MPX13]. Extending the statement to directed graphs is nontrivial, as it
requires making the notion of cluster radii directed.

In Section 6.4 we give a new lower bound for all-pairs oblivious routings in directed graphs.

Theorem 6.2.6 No oblivious routing algorithm for directed graphs can guarantee competitive ratio
better than Ω(n).
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We also show that restricting ourselves to single-source oblivious routings is necessary to
achieve a small competitive ratio even when bal(G) = 1.

Theorem 6.2.7 No oblivious routing algorithm for Eulerian graphs can guarantee competitive
ratio better than Ω(

√
n).

6.2.4 Maximum Flows

Finally, we consider the maximum s-t flow problem in directed graphs parameterized by balance.
Given a source s and a destination t, the maximum s-t flow problem asks us to find a flow f that
routes as much flow as possible from s to t while sending at most we units of flow along each edge
e. In Section 6.5 we show the following result.

Theorem 6.2.8 (Approximate Maximum Flow) Given a strongly connected directed graph G, a
source s, and a sink t there is an algorithm that finds a (1 + ε)-approximate maximum s-t flow and
a (1− ε)-approximate minimum s-t cut in G in time Õ(m · bal(G)2/ε2).

To achieve quadratic dependency on ε, in Section 6.5.4 we provide a general analysis of gradient
descent for composite function minimization under non-Euclidean norms.

We also show applications of this result to computing the sparsest cut (Section 6.5.3) and we
prove the following result on computing the imbalance of a graph (Section 6.5.2).

Lemma 6.2.9 There is an algorithm that either certifies that bal(G) ≤ α or shows that bal(G) >
(1− ε)α in time Õ(mα2/ε2).

6.3 Oblivious Routing on Balanced Graphs

6.3.1 Low-radius Decompositions

Our algorithm for clustering directed graphs, presented in Figure 6.1, is based on the scheme
given by Miller, Peng and Xu [MPX13]. We first pick a start time xv for every vertex v from an
exponential distribution, and then explore the graph, starting the search from v at time xv and
proceeding at unit speed. Each vertex u is assigned to the vertex v that reached it first.

Our goal is to show that this procedure cuts few edges, i.e. assigns the endpoints of few edges to
different clusters. The original analysis of [MPX13] shows that for undirected graphs, this approach
guarantees cutting each edge e with low probability, namely O(l(e) log n/r). It turns out that even
in the case of unweighted Eulerian graphs such a guarantee no longer holds; there may exist edges
that are cut with very high probability. Consider for instance (Figure 6.2) a directed cycle of length
3k, with an undirected star of 2k

2 leaves attached to one of its vertices, v. Set r := 2k. Let u be
the vertex preceding v on the cycle. It is now easy to verify by calculation that the edge (u, v) is
cut with probability arbitrarily close to 1 for a large enough k. With high probability, v will be
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(V1, V2, . . .) = CLUSTER-DIRECTED(G, r), where G = (V,E, l) is a directed graph and
r > 0.

1. Set β := log n/(10r).

2. For every vertex v ∈ V pick xv ∼ Exp(β).2

3. For each vertex u ∈ V , assign u to the cluster rooted at the vertex v ∈ V which
minimizes −xv + d(v, u).

4. If any of the clusters has radius greater than r, return to step 2. Otherwise, return the
clusters.

Figure 6.1: The low-radius decomposition algorithm for directed graphs.

u

v

. . .

...

Figure 6.2: An unweighted Eulerian graph where a particular edge is very likely to be cut by the
scheme of [MPX13].

contained in a cluster rooted at one of the 2k
2 leaves attached to it; also with high probability, no

such cluster will contain u.

This issue requires us to find a new way to guarantee that the total weight of cut edges is low.
Our key idea is to show that, for any fixed cycle, the expected number of edges in the cycle that are
cut is small. The desired guarantees then follow by noting that any graph G can be approximated up
to a factor bal(G) by a sum of cycles (Theorem 6.2.3).

Lemma 6.3.1 Let P be the partition returned by CLUSTER-DIRECTED(G, r). For any simple
cycle C in G, the expected number of edges in C that go between different clusters in P is an
O(log n/r) fraction of the length of C.

As the above example demonstrates, we cannot base the proof of Lemma 6.3.1 on the location
of the cuts, as it might depend strongly on the input graph. However, we can prove that, intuitively,
cuts occur infrequently as the graph is explored. This is the crucial idea of the proof: we analyze the
occurrence of cuts over time rather than bounding the probabilities of particular cuts. Then we use

2Exp(β) is the exponential distribution with parameter β, with p.d.f. f(x) = βe−βx on x ≥ 0.
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the fact that a cycle of length L is fully explored within L time steps after the time it is visited for
the first time. The analysis is presented in Appendix 6.B.

6.3.2 Low-stretch Arborescences

Let G be a directed graph and let s be a vertex in G. We say that a directed graph T is an
arborescence rooted at s for every vertex v, there is a unique directed path in T from s to v. In
this section, we define and construct low-stretch arborescences, which are a key intermediate step
between low-radius decompositions and oblivious routings.

Definition 6.3.2 Let G = (V,E,w, l) be a directed graph. We define the stretch of an edge
(u, v) ∈ E with respect to an arborescence T on the vertex set V as w(u, v) · dT (u, v), where
dT (u, v) is the distance between u and v in the undirected tree corresponding to T .

Following the notation of [Räc08], we define the load, loadT (e), of an edge e ∈ T as the sum of
the weights of edges (u, v) ∈ E(G) such that e is on the path between u and v in the undirected
tree corresponding to T . Note that the total load of the edges in T is equal to the total stretch of the
edges in G.

In order to construct low-stretch arborescences, we will recursively cluster V using the algorithm
from the previous section. The algorithm FIND-ARBORESCENCE is presented in Figure 6.3. It is
similar to the scheme given by Bartal [Bar96]. One major difficulty is that the clusters returned by
CLUSTER-DIRECTED may be very imbalanced; in particular, they need not be strongly connected.
In order to resolve this issue, we introduce the notion of additive imbalance and prove that our
clustering algorithms still give good guarantees for graphs with low additive imbalance.

Definition 6.3.3 We define the additive imbalance abal(G) of a directed graph G as the minimum
ι such that it is possible to add edges of total weight ι to G to make it Eulerian.

In order to make the running time of our algorithm independent of the diameter of the graph,
we will attempt to collapse very short edges in the upper levels of the recursion, that is, contract
their endpoints into a single vertex. This is similar to the scheme proposed in [CMP+14, CKM+14].
However, this operation is not always feasible in directed graphs; thus, we will only perform the
contraction if both endpoints of the edge can reach each other by following only very short edges.

Definition 6.3.4 Let G = (V,E,w, l) be a directed graph and xL, xR ∈ R be such that 0 < xL <
xR. We construct G collapsed to [xL, xR] by:

• merging any vertices that can reach each other while following only arcs of length at most xL,
and

• reducing the length of all arcs longer than xR to xR.
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T = FIND-ARBORESCENCE(G, s), where G = (V,E, l) is a directed graph and s ∈ V is
such that all vertices in G are reachable from s.

1. If n = 1, return a single-vertex graph.

2. Let r := maxv∈V dG(s, v).

3. Let r′ := r/(c · log n).

4. Let G′ be the graph G collapsed to [r′/n, 2r′]. Let s′ be the vertex in G′ corresponding
to s.

5. Let V ′1 , V
′

2 , . . . , V
′
k := CLUSTER-DIRECTED-ROOTED(G′, s′, r′).

6. Expand the clusters V ′1 , . . . , V
′
k back into G, obtaining V1, . . . , Vk.

7. Let Gi be the graph induced by Vi, for i = 1, . . . k, and ui denote the center of cluster
Vi (with u1 = s1).

8. Let T ′ :=
⋃k
i=1 FIND-ARBORESCENCE(Gi, ui).

9. Let T be T ′ with the arcs (s, ui) of length dG(s, ui) added for each i = 2, . . . , k.

10. Return T .

Figure 6.3: The low-stretch arborescence finding algorithm.

Lemma 6.3.5 Let s ∈ V, r > 0. Let V1, . . . , Vk = CLUSTER-DIRECTED-ROOTED(G, s, r). Then:

• each cluster Vi has radius at most r,

• the cluster V1 containing s has radius at most r from s,

• the expected total weight of edges going between different clusters is O(vol(G) log n/r +
abal(G) log n), and

• the expected total additive imbalance of the clusters is O(vol(G) log n/r + abal(G) log n).

Moreover, the algorithm works in expected linear time.

Proof First, note that the expected total weight of edges between V1 and V − V1 is O(vol(G)/r).
Hence the expected additive imbalances of the cluster on V1 and that of G′ are both O(abal(G) +
vol(G)/r).

By the definition of additive imbalance, we can add edges of expected total weightO(abal(G) +
vol(G)/r) to G′ to make it Eulerian. We obtain the graph G′′ by adding such edges, each with
length 2r. The expected volume of G′′ is O(vol(G)) +O(abal(G) + vol(G)/r) · 2r = O(vol(G) +
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(V1, V2, . . .) = CLUSTER-DIRECTED-ROOTED(G, s, r), where G = (V,E, l) is a directed
graph, s ∈ V and r > 0.

1. Choose r′ uniformly at random from [0, r].

2. Let V1 be the set of vertices at distance at most r′ from s.

3. Let G′ be the induced graph on V − V1.

4. Let V2, V3, . . . Vk := CLUSTER-DIRECTED(G′, r).

5. Return V1, V2, . . . , Vk.

Figure 6.4: The decomposition algorithm with a specified root.

abal(G) · r). Now by Theorem 6.2.5 we can partition G′′ into clusters of radius at most r, with the
expected total weight of edges going between clusters O(vol(G′′) log n/r) = O(vol(G) log n/r +
abal(G) log n). Note that if we remove the added edges, the radii of these clusters cannot change,
as the edges have length greater than r; at the same time, their total additive imbalance can increase
by at most O(abal(G) + vol(G)/r) in expectation. To complete the analysis, observe that in fact
the edges added in the above reasoning are ignored by the decomposition algorithm. Hence, they
are only necessary for the analysis.

�

Lemma 6.3.6 Let G = (V,E,w, l) be a directed Eulerian graph and xL, xR ∈ R be such that
0 < xL < xR. Let G′ = (V ′, E ′, w′, l′) be G collapsed to [xL, xR]. Then vol(G′) is at most

2 ·
∑

e∈E:l(e)>xL/n

w(e) min(l(e), xR).

Proof Since G′ is Eulerian, it can be represented as a sum of simple cycles of uniform weight.
Consider any such decomposition and take any cycle C in it. Then C must contain an edge of length
at least xL, and it contains at most n edges of length not exceeding xL/n. Hence, the length of C is
at most two times greater than the sum of its edge lengths greater than xL/n. Summing over all the
cycles yields the desired bound.

�

Theorem 6.3.7 Let G = (V,E,w, l) be a strongly connected directed graph. Let s ∈ V . Let
T = FIND-ARBORESCENCE(G, s). Then:

• T has vertex set V and is rooted at s,

• every arc (u, v) in T can be mapped to a path from u to v in G of equal length, and
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• the expected total stretch of G with respect to T is O(bal(G)vol(G) log3 n/ log log n).

Moreover, the algorithm works in expected O(m log n) time.

Proof First, note that by Theorem 6.2.3 the edge weights in G can be increased to obtain an
Eulerian graph with volume at most bal(G)vol(G). Since the algorithm is oblivious to weights, it is
enough to consider Eulerian graphs in the proof; from now on we assume bal(G) = 1.

Properties 1 and 2 are easy to verify. Assume the constants hidden in the big-oh notation in
Lemma 6.3.5 are bounded by c0. We set c := 2c0 + 4.

Consider the i-th level (i ≥ 0) of the tree of recursive calls of FIND-ARBORESCENCE(G, s).
Let ri = r/(c log n)i. It can easily be shown by induction that the radii of the graphs in the i-th
level are at most ri, and the radii of the returned arborescences are at most 2ri, since c ≥ 4. Let νi
be the total volume of the collapsed graphs at level i.

By Lemma 6.3.5 the additive imbalance of the graphs in the i-th level can be bounded by

(c0 log n)i · ν0/r1

+(c0 log n)i−1 · ν1/r2

+(c0 log n)i−2 · ν2/r3

+ . . .

+(c0 log n)1 · νi−1/ri.

Since c > 2c0, the above sum is bounded by

(c log n)i+1
∑
j<i

(
νj/2

i−j) .
Hence, the total weight of edges cut at level i is at most

(c0 log n)

(
νi/ri+1 + (c log n)i+1

∑
j<i

(
νj/2

i−j)) ≤ (c log n)i+2/2 ·
∑
j≤i

(
νj/2

i−j) .
Since the radius of the arborescence returned at level i is at most 2ri, we have that the total stretch
incurred at level i is at most

2ri · (c log n)i+2/2 ·
∑
j≤i

(
νj/2

i−j) . ≤ (c log n)2 ·
∑
j≤i

(
νj/2

i−j) .
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Hence the total stretch is at most

(c log n)2 ·
∑
i

∑
j≤i

(
νj/2

i−j) = (c log n)2 ·
∑
j

(
νj2

j
∑
i≥j

2−i

)
≤ 2(c log n)2 ·

∑
j

νj.

Observe that all the collapsed graphs at level j are subgraphs of G collapsed to [rj+1/n, 2rj+1].
Hence, by Lemma 6.3.6, we have

νj ≤ 2 ·
∑

e∈E:l(e)>rj+1/n2

w(e) min(l(e), 2rj+1).

Hence ∑
j

νj ≤ 2 ·
∑
e∈E

∑
j:rj+1<l(e)·n2

w(e) min(l(e), 2rj+1)

= O(vol(G) log n/ log log n).

Combining this with the previous bound yields the thesis.

�

6.3.3 Constructing the Routing

Given an algorithm for constructing low-stretch arborescences, we can use it to compute a good
oblivious routings using the approach proposed by [Räc08]. The oblivious routing that we construct
for a given source s will be a convex combination of arborescences rooted at s, with the flow for
demand (s, u) being defined as the convex combination of the corresponding paths. The algorithm
is given in Figure 6.5.

The key idea we employ to extend the analysis of the algorithm to a directed graph G is to prove
that the routing scheme we construct is competitive even for the undirected graph underlying G.

Lemma 6.3.8 ([Räc08], adapted) Let G be a strongly connected directed graph and s be a
vertex in G. Let ((T1, λ1), . . . , (Tk, λk)) := FIND-ROUTING(G, s). Then with high probabil-
ity ((T ′1, λ1), . . . , (T ′k, λk)) is an O(bal(G) log3 n/ log log n)-competitive oblivious routing for G′,
where T ′1, . . . , T

′
k, G

′ are the undirected counterparts of T1, . . . , Tk and G, respectively, that we
obtain by ignoring the directions.

Proof It is enough to note that in step 2c) of Figure 6.5, with high probability, T ′k is a tree with
total stretch O(bal(G) log3 n/ log log n) in G′k, where T ′k and G′k are undirected counterparts of Tk
and Gk, respectively. Hence, the analysis of [Räc08] can be applied to complete the proof.

�
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((T1, λ1), . . . , (Tk, λk)) = FIND-ROUTING(G, s) where G = (V,E,w) is a strongly con-
nected directed graph and s ∈ V .

1. Set k := 0 and p(0)
e := 1 for all e ∈ E.

2. While
∑k

i=1 λi < 1:

(a) k := k + 1.

(b) Let Gk = (V,E, lk) be a copy G with edge lengths

lk(e) := p(k−1)
e /

(
w(e)

∑
e′

p
(k−1)
e′

)
.

(c) Tk := FIND-ARBORESCENCE(G, s) (pick the minimum-stretch arborescence
out of O(log n) runs).

(d) `k := maxe{loadTk(e)/w(e)}.

(e) λk := min
(

1/`k, 1−
∑k−1

i=1 λi

)
.

(f) For all edges e set:

p(k)
e := p(k−1)

e · exp(λk · loadTk(e)/w(e)).

3. Return ((T1, λ1), . . . , (Tk, λk)).

Figure 6.5: The algorithm for finding single-source oblivious routings on balanced graphs (adapted
from [Räc08]).

In order to finish the analysis, we only need to note that ((T1, λ1), . . . , (Tk, λk)) is an oblivious
routing for G.

Proof of Theorem 6.2.4: We prove that for any s, the output of FIND-ROUTING(G, s) satisfies
the criteria stated in the theorem statement. It follows from Lemma 6.3.8 that with high proba-
bility, ((T ′1, λ1), . . . , (T ′k, λk)) is an O(bal(G) log3 n/ log log n)-competitive oblivious routing for
G′, where T ′1, . . . , T

′
k, G

′ are undirected counterparts of T1, . . . , Tk, G, respectively. In particular,
it is also an O(bal(G) log3 n/ log log n)-competitive oblivious routing from s. Now it is enough
to observe that since T1, . . . , Tk are directed away from s, ((T1, λ1), . . . , (Tk, λk)) is an oblivious
routing from s in G. Since it is O(bal(G) log3 n/ log log n)-competitive in G′, it must also be
O(bal(G) log3 n/ log log n)-competitive in G.

�

6.4 Lower Bounds

We prove new lower bounds for oblivious routings in directed graphs.
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s

...

t

...

Figure 6.1: The example from Theorem 6.2.6. The thick edges have weight n, the other edges have
weight 1. Any oblivious routing must put too much flow on the edge (s, t) when routing between
the vertices of the biclique.

Theorem 6.2.6 No oblivious routing algorithm for directed graphs can guarantee competitive ratio
better than Ω(n).

Proof of Theorem 6.2.6: Let k ≥ 1. Let G be a directed graph on the vertex set

V = S ∪ T ∪ {s} ∪ {t}, where |S| = |T | = k

and edge set

E = S × T with weight 1

∪ S × {s} with weight k
∪ {(s, t)} with weight k
∪ {t} × T with weight k.

Assume some oblivious routing A achieves competitive ratio c on G. Let u ∈ S and v ∈ T . The
optimal congestion for the unit flow from u to v is at most 1/k, which can be achieved by routing
the flow through s and t. Therefore, A must achieve congestion at most c/k, hence putting at least
1− c/k units of flow on the edge (s, t).

The optimal congestion for the multicommodity flow with unit demand between every pair in
S × T is clearly at most 1. Simultaneously, by the above argument, A must put at least k(k − c)
flow on the edge (s, t). Hence we have c ≥ k − c, implying c ≥ k/2. As n = 2k + 2 we have
c = Ω(n).

�

Theorem 6.2.7 No oblivious routing algorithm for Eulerian graphs can guarantee competitive
ratio better than Ω(

√
n).
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. . .

Figure 6.2: The example from Theorem 6.2.7. The thick edges have weight
√
n, the other edges

have weight 1. Any oblivious routing must put too much flow on the outer cycle when routing
between consecutive vertices of the inner cycle.

Proof of Theorem 6.2.7: Let n ≥ 2. Let G be a directed graph on the vertex set

V = {v1, . . . , vn}

and edge set

E = C1 ∪ C2, where
C1 = {(v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1)} with weight 1, and
C2 = {(vn, vn−1), (vn−1, vn−2), . . . , (v2, v1), (v1, vn)} with weight

√
n.

Note that G is Eulerian. Assume some oblivious routing A achieves competitive ratio c on G. Let
i < n. The optimal congestion for the unit flow from vi to vi+1 is at most 1/

√
n, which can be

achieved by routing the flow through C2. Therefore, A must achieve congestion at most c/
√
n,

hence putting at least 1− c/
√
n units of flow on the edge (vn, 1).

The optimal congestion for the multicommodity flow with unit demand between every such
pair (vi, vi+1) is clearly at most 1. Simultaneously, by the above argument, A must put at least
(n − 1)(1 − c/

√
n) flow on the edge (vn, 1). Hence we have c ≥ (n − 1)/

√
n − c, implying

2c ≥
√
n− 1. Therefore c = Ω(

√
n).

�

6.5 Maximum Flow and Applications

6.5.1 Directed Maximum Flow

In this subsection we show how to efficiently compute an (1 + ε)-approximate maximum flow in
directed graphs given a good congestion-approximator.

Definition 6.5.1 An α-congestion-approximator for G is a matrix R such that for any demand
vector b,

∥∥Rb∥∥∞ ≤ OPTb ≤ α
∥∥Rb∥∥∞.
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Since
∥∥Rb∥∥∞ =

∥∥−Rb
∥∥
∞, only well-balanced graphs admit good congestion approximators:

Fact 6.5.2 If G admits an α-congestion approximator, bal(G) ≤ α.

For undirected graphs, Õ(1)-congestion-approximators can be computed in nearly linear time
[Mad10, She13, KLOS14, Pen14]. This implies that for directed G we can compute Õ(bal(G))-
congestion-approximators in nearly linear time by the following fact:

Fact 6.5.3 Let G be a directed graph and G′ be its undirected copy. Then for any demand vector b
OPTb(G

′) ≤ OPTb(G) ≤ (1 + bal(G))OPTb(G
′).

Our main result is the following:

Theorem 6.5.4 Let G be a directed graph. Given an α-congestion-approximator R, we can
compute an (1 + ε)-approximate maximum flow and minimum congested cut for any demand vector
in time Õ(mα2/ε2), assuming multiplication by R and R> can be done in Õ(m) time.

Our algorithm is based very heavily on the approach for undirected graphs given by Sherman
[She13]. The main difference is the implementation of the key optimization procedure, presented
in Figure 6.1. In this section we only outline the main changes needed to extend the algorithm of
[She13] to balanced graphs.

Let G be a directed graph and b be a demand vector. Assume we are given an α-congestion-
approximator R. Let lmax(x)

def
= ln

∑
i(e

xi + e−xi) and define

µ(f)
def
= lmax(2αR(b−Bf))

φ(f)
def
=
∥∥C−1f

∥∥
∞ + µ(f)

Lemma 6.5.5 After ALMOST-ROUTE-DIRECTED(b, ε, f0) terminates, we have

φ(f) ≤ (1 + ε)
b>v

‖C max(B>v, 0)‖1

,

assuming ε ≤ 1/2.

Proof

We have

5µ(f) = −2αB>v.
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(f, v) = ALMOST-ROUTE-DIRECTED(b, ε, f0)

1. Initialize f := f0, δ := ε
10α2 .

2. Scale f and b so that
∥∥C−1f

∥∥
∞ + 2α

∥∥R(b−Bf)
∥∥
∞ = 20ε−1 lnn.

3. Repeat while any of the following conditions is satisfied:

(a) if φ(f) < 16ε−1 lnn, scale f and b up by 17/16 and restart step 3.

(b) let s be w(e) on the coordinates e where∇µ(f) is negative and 0 elsewhere. If
−∇µ(f)>s > 1 + ε

4
, set f := f + δs and restart step 3.

(c) if
∥∥C−1f

∥∥
∞ +∇µ(f)>f > ε

4
, set f := f − δf and restart step 3.

4. Set x := 2αR(b−Bf).

5. Set p := ∇lmax(x).

6. Set v := R>p.

Figure 6.1: The algorithm for computing the maximum flow and minimum congested cut.

Therefore

2α · ‖C max(B>v, 0)‖1 ≤ 1 +
ε

4
.

It also holds that ∥∥C−1f
∥∥
∞ + 2αv>(b−Bf) =

∥∥C−1f
∥∥
∞ + pTx

≥ φ(f)− 4 lnn

≥
(

1− ε

4

)
φ(f).

Simultaneously, we have

ε

4
φ(f) ≥ ε

4
≥
∥∥C−1f

∥∥
∞ +5µ(f)Tf

=
∥∥C−1f

∥∥
∞ − 2αfTB>v.

Hence

2αvT b ≥
(

1− ε

2

)
φ(f),
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and so

bTv

‖C max(B>v, 0)‖1

≥ φ(f)

1 + ε
.

�

Lemma 6.5.6 ALMOST-ROUTE-DIRECTED(b, ε, f0) terminates within Õ(log(1 + ε0)α2/ε3) itera-
tions, where ε0 = max(φ(f0)/OPTb − 1, ε), assuming ε ≤ 1/2.

Proof Let us call the iterations between each scaling in step 2a) a phase. Since the initial scaling
gives us the correct scale to within factor 1 + ε0, we will scale at most O(log(1 + ε0)) times.
Moreover, if ε0 < 1/10, step 2a) will never be executed.

If step 2b) is about to be executed, then

φ(f + δs) ≤ φ(f) + δ + δ5 µ(f)>s+ 2α2δ2

≤ φ(f)− εδ

4
+ 2α2δ2.

If step 2c) is about to be executed, then

φ(f − δf) ≤ φ(f)− δ
∥∥C−1f

∥∥
∞ − δ5 µ(f)>f + 2α2δ2

≤ φ(f)− εδ

4
+ 2α2δ2.

In both cases we have

εδ

4
− 2α2δ2 ≥ ε2

40α2
− ε2

50α2

=
ε2

200α2
.

Hence each iteration of steps 2b) and 2c) decreases φ(f) by at least Ω(ε2α−2).

For ε0 ≥ 1/10, every scaling in step 2a) increases φ(f) by at most ε−1 lnn. Hence, for such ε0
there can be at most Õ(log(1 + ε0)α2ε−3) iterations in total.

For ε0 < 1/10, step 2a) will never be executed. Moreover, the φ(f) after the initial scaling must
be at most OPTb + Õ(ε0ε

−1). Hence steps 2b) and 2c) can be executed at most Õ(ε0α
2ε−3) =

Õ(log(1 + ε0)α2ε−3) times.

�

Note that Lemma 6.5.5 implies that v is a potential vector for a (1 + ε)-approximate minimum
congested cut. In order to recover the corresponding flow, we can employ the recursion described
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in [She13]. The only additional component necessary for directed graphs is an O(poly(n, α))-
competitive oblivious routing. Since by Fact 6.5.2 it must be that α ≥ bal(G), this can be obtained
easily by taking the maximum spanning in- and out-arborescences from any fixed vertex.

If we run ALMOST-ROUTE-DIRECTED with f0 = ~0, we can find (1 + ε)-approximate solutions
in time Õ(mα2/ε3). In order to improve the dependency on ε, we can employ a general form of
composite function minimization, introduced in Section 6.5.4. Define

ψ(f)
def
=

{
∞ if for some e, fe/w(e) /∈ [0, 50 lnn/ε]∥∥C−1f

∥∥
∞ otherwise.

The faster algorithm is presented in Figure 6.2.

(f, v) = FAST-ALMOST-ROUTE(b, ε)

1. Set f0 using ALMOST-ROUTE-DIRECTED
(
b, 1

2
,~0
)

, keeping the rescaling.

2. Set K := dα2/ε2e.

3. For k = 0, . . . , K − 1 let

fk+1 := argminf∈RE
(
∇µ(fk)

>f +
α2

2

∥∥C−1(f − fk)
∥∥2

∞ + ψ(f)
)
.

4. Return ALMOST-ROUTE-DIRECTED(b, ε, fK).

Figure 6.2: Faster algorithm for computing the maximum flow and minimum congested cut.

If we apply the analysis from Section 6.5.4 (encapsulated in Theorem 6.5.9), we obtain the
following.

Lemma 6.5.7 FAST-ALMOST-ROUTE(b, ε) terminates in Õ(mα2/ε2) time, assuming ε ≤ 1/2.

Proof As φ(~0) = Õ(OPTbα), step 1. works in Õ(mα2) time by Lemma 6.5.6.

Now note that we can apply Theorem 6.5.9 to ψ′(x) + g(x) with ψ′(x) = ψ(Cx), g(x) =
µ(Cx), L = α2, D = 50ε−1 lnn. This yields that φ(fK) ≤ (1 + Õ(ε))OPTb. Hence by
Lemma 6.5.6, step 4. runs in Õ(mα2ε−2) time.

The only remaining thing to show is that we can solve the optimization problem in step 3. in
Õ(m) time. It can be reformulated by introducing an auxiliary variable z:

minimize
f,z

5 µ(fk)
>f +

1

2
α2z2 + ψ(f)

subject to
∥∥C−1(f − fk)

∥∥
∞ ≤ z.
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For a fixed z, the problem can easily be solved in O(m logm) time by sorting. Hence we can
employ ternary search over z to achieve Õ(m) runtime.

�

6.5.2 Computing Imbalance

As verifying balance can be reduced to a maximum flow computation by Theorem 6.2.3, we obtain
the following result:

Lemma 6.2.9 There is an algorithm that either certifies that bal(G) ≤ α or shows that bal(G) >
(1− ε)α in time Õ(mα2/ε2).

Proof Construct G′ by adding the reverse of G multiplied by 1
4α

to G. Note that bal(G′) ≤ 4α.
Let b′ be the residual degrees in G′. Now by Theorem 6.2.8 we can compute a 2-overestimate c′ to
the minimum congestion to route −b′ in G′, in time Õ(mα2). Note that we have

bal(G′) ≤ c′ − 1 ≤ 2bal(G′) ≤ 2bal(G).

Hence if c′ − 1 > 2α we can conclude that bal(G) > α and return the corresponding cut.

Otherwise, we must have bal(G) ≤ 2α. Hence we can compute a (1 + ε)-overestimate c to the
minimum congestion to route −b in G, in time Õ(mα2ε−2), where b are the residual degrees in G.
Now we have

bal(G) ≤ c− 1 ≤ (1 + ε)bal(G),

and so if c − 1 ≤ α then bal(G) ≤ α, and otherwise we can return a cut proving that bal(G) >
(1− ε)α.

�

6.5.3 Application to Directed Sparsest Cut

In this subsection, assume G = (V,E) is a directed graph that is unweighted, strongly connected,
simple, and with an even number of vertices. We define the sparsity of a cut (S, V \ S) as w(S,V \S)

|S|·|V \S| ,

where w(S, V \ S) is the number of edges going from S to V \ S. Note that under this definition,
no cut can have sparsity greater than one.

As a second application of our maximum flow algorithm, we get the following sparsest cut
algorithm. While blocking flows could also possibly be used for our purpose, our approach is clean
and may easily generalize to weighted graphs.

Lemma 6.5.8 Given φ ≤ 1, we can find a cut of sparsity φ in G or determine that all cuts in G
have sparsity Ω(φ/ log2 n) in time Õ(m/φ2).
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Proof First, we can use Lemma 6.2.9 to check whether bal(G) ≤ φ−1. If it is not, we can
return the smaller direction of the imbalanced cut as the result. Otherwise, we use can apply the
cut-matching game algorithm given by Louis [Lou10] for φ′ = nφ

4
3 and reduce the problem to a

sequence of Õ(1) maximum flow queries. Each of the queries fixes some S ⊆ V with |S| = n/2
and asks for a flow inGwith demands−φ′ on S and φ′ on V \S. We can compute the 2-approximate
minimum congestion flow for such a query. If the returned congestion is at most 1, we return the
flow. Otherwise, we have a set T ⊆ V which achieves

bT/w(T, V \ T ) ≥ 1

2
,

w(T, V − T ) ≤ 2bT

≤ 2φ′min(|T |, |V \ T |)

≤ n

2
φmin(|T |, |V \ T |)

≤ φ|T | · |V \ T |.

�

6.5.4 Composite Function Minimization

In this section, we provide a non-Euclidean gradient descent method for minimizing a composite
function f(x)

def
= g(x) + ψ(x), where g and ψ have specific properties. The algorithm and its

convergence guarantee are encapsulated in the following theorem, and they build on several works
in convex optimization, such as [Nes13, RT14].

Theorem 6.5.9 Let f : Rn → R be a convex function given by f(x)
def
= g(x) + ψ(x) where g is

convex and L-smooth4 with respect to some norm
∥∥ · ∥∥. Moreover, assume that f(x) is only finite on

some region of diameter D in
∥∥ · ∥∥. Starting with some x0 ∈ Rn for all k let

xk+1 := argminx∈Rn
(〈
5 g(xk), x

〉
+
L

2

∥∥x− xk∥∥2
+ ψ(x)

)
.

Then for all k ≥ 1 we have

εk ≤ max

{
2 · L ·D2

bk−1
2
c+ 4

,

(
1

2

)b k−1
2
c

ε0

}

where εk = f(xk)−minx f(x).

Note that the norm we use is arbitrary and we get a gradient descent analysis without appealing to
the dual norm. Also we do not require convex ψ we only require convex f .

3The rescaling by n is used due to a slightly different definition of sparsity in [Lou10].
4A function is L-smooth with respect to the norm ‖ · ‖ if, for all ~x and ~y, ‖∇f(~x)−∇f(~y)‖ ≤ L‖~x− ~y‖.
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We break the proof into 2 parts, first we prove a lemma about the progress of each gradient step
and then we use this to prove the theorem. Let X∗ be the set of all optimal solutions to minx f(x).

Lemma 6.5.10 (Gradient Descent Progress) For all k ≥ 0 we have that for all x∗ ∈ X∗

f(xk+1) ≤ f(xk)−min

 1

2L

(
εk∥∥xk − x∗∥∥

)2

,
f(xk)− f(x∗)

2



Proof By the smoothness of g we know that for all x ∈ Rn we have

f(x) ≤ g(xk) +
〈
∇g(xk), x− xk

〉
+
L

2

∥∥x− xk∥∥2
+ ψ(x) .

By definition of xk+1 we then have that

f(xk+1) ≤ min
x

(
g(xk) +

〈
∇g(xk), x− xk

〉
+
L

2

∥∥x− xk∥∥2
+ ψ(x)

)
.

Now it follows from the convexity of g that

g(x) ≥ g(xk) +
〈
∇g(xk), x− xk

〉
,

and combining these yields that

f(xk+1) ≤ min
x∈Rn

(
f(x) +

L

2

∥∥x− xk∥∥2
)

(6.1)

Since f is convex, for all α ∈ [0, 1] and x∗ ∈ X∗ we have

f(αx∗ + (1− α)xk) ≤ αf(x∗) + (1− α)f(xk) = f(xk)− α(f(xk)− f(x∗)).

Consequently

min
x∈Rn

(
f(x) +

L

2

∥∥x− xk∥∥) ≤ min
α∈[0,1]

(
f(xk)− α(f(xk)− f(x∗)) +

Lα2

2

∥∥xk − x∗∥∥2
)
.

By taking the derivative with respect to α of the expression on the right hand side above and setting
it to zero, we see that the optimal α satisfies

−(f(xk)− f(x∗)) + αL
∥∥xk − x∗∥∥2

= 0
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and thus using α = min

{
f(xk)−f(x∗)

L

∥∥y−x∗∥∥2 , 1

}
yields the result, since f(xk) − f(x∗) ≥ 0, and when

f(xk)− f(x∗) ≥ L
∥∥xk − x∗∥∥2, we have

min
x∈Rn

(
f(x) +

L

2

∥∥xk − x∥∥2
)
≤ f(x∗) +

L

2

∥∥xk − x∗∥∥ ≤ f(x∗) +
f(xk)− f(x∗)

2
.

�

Using the lemma, we can complete the proof of the theorem as follows.

Proof of Theorem 6.5.9: By Lemma 6.5.10 we have that εk+1 ≤ εk for all k and

εk+1 ≤ max

{
εk −

1

2L

(εk
D

)2

,
εk
2

}
Consequently for k ≥ 1 such that εk − 1

2L

(
εk
D

)2 ≥ εk
2

we have

1

εk
− 1

εk+1

≤ εk+1 − εk
εkεk+1

≤ − 1

2L
· 1

D2
· εk
εk+1

≤ − 1

2LD2

Summing yields that
1

ε1
− 1

εk
≤ − Nk

2LD2

where Nk is the number of steps k ≥ 1 for which εk − 1
2L

(
εk
D

)2 ≥ εk
2

. Furthermore, clearly by
6.5.10 we have that

ε1 ≤
L

2
D2

and thus

εk ≤
2LD2

Nk + 4

On the other hand we have that

εk+1 ≤
(

1

2

)k−1−Nk

and noting that either Nk ≥ bk−1
2
c or k − 1−Nk ≥ bk−1

2
c then yields the result.

�
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Appendix

6.A Missing proofs from Section 6.2

Lemma 6.A.1 Let G be a strongly connected directed graph. If demand vector d can be routed in
G with congestion c, then −d can be routed in G with congestion at most bal(G) · c.

Proof

Note that for any v ∈ Rn

‖U max(Bv, 0)‖1 ≤ bal(G)‖U max(−Bv, 0)‖1

follows from the definition of balance.

Hence it is easily seen that the optimum value for the dual problem is within a factor bal(G) for
demands d and −d. Our theorem now follows from strong duality to the original problem.

�

Lemma 6.A.2 Let l, r ∈ R with l ≤ r. Let C ⊆ Rm be a convex set such that for any S ⊆
{1, 2, . . . ,m} there exists a point x ∈ C such that xi is at least l for i ∈ S and xi is at most r for
i /∈ S. Then there exists a point in C with all coordinates in [l, r].

Proof Let Pi(S), for i ∈ {0, . . . ,m}, S ⊆ {1, . . . ,m} be the subset of points x ∈ C that satisfy

• xj ∈ [l, r] for j ≤ i and

• xj ≥ l for j ∈ S and

• xj ≤ r for j /∈ S.

We prove that Pi(S) is nonempty for every i and S by induction on i. The base case i = 0
follows from the assumption on C. Assume i ∈ {0, . . . ,m− 1} and the thesis holds for i. Let S
be any subset of {1, . . . ,m}. Let SL := S ∪ {i + 1}, SR = S \ {i + 1}. Pick any xL ∈ Pi(SL)
and xR ∈ Pi(SR). Then a convex combination of xL and xR must belong to Pi+1(S). Since S was
arbitrary, this concludes the proof.
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�

Proof of Theorem 6.2.3: The implication (2. → 1.) and the equivalence (2. ↔ 3.) are easy to
check (note that the circulation of 2. is the sum of ~1 and a routing of −d.). We now prove that if
bal(G) ≤ α there exists a circulation in G with each congestion in [1, α].

Note that for any subset S of edges of G we can route the residual degree dS induced by these
edges with congestion 1. Hence by Lemma 6.A.1 we can route −dS with congestion at most α.
Adding these flows yields a circulation with congestion in [1, α+ 1] on edges in S and in [0, α] on
the other edges. Since the choice of S was arbitrary, the thesis follows by Lemma 6.A.2.

�

We now prove the following lemma, implying Fact 6.2.2.

Lemma 6.A.3 Let G = (V,E,w) be an undirected graph and s, t ∈ V . Let d be a demand
vector that can be routed in G with congestion at most 1. Let f be a flow from s to t in G with
congestion not exceeding 1 satisfying demands (1 − ε)d. Let H be the residual graph of f in G.
Then bal(H) ≤ (2ε−1 − 1).

Proof We use the third equivalent definition of balance from Theorem 6.2.3. The residual degrees
in H are 2(ε− 1)d. Since there exists a flow satisfying demands εd with congestion 1, 2(1− ε)d
can be routed in H with congestion 2(1− ε)ε−1 = 2ε−1 − 2.

�

6.B Analysis of the clustering algorithm

Before we prove Lemma 6.3.1, we shall study the properties of a class of two-way infinite sequences.

For better understanding, we now attempt to provide the intuition on how the sequences defined
below are used in the proof. For simplicity, assume we are trying to analyze the clustering of a path
rather than a cycle. Imagine that every vertex v in the graph sends a runner of unit speed to every
vertex of the path, starting at time −xv. After reaching the path, the runner keeps running on it until
they reach the end. We will call a runner a local leader if they were the first one to reach the end of
the path out of all the runners that entered the path at a no later position. It is easy to see that the
sequence of origins of local leaders in the order they reach the end of the path is the same as the
sequence of roots of clusters into which the path is partitioned by the algorithm. Therefore, it is
enough to observe the local leaders as they reach the end of the path. It can be shown that in any
time interval [y, y + ε] the probability of the origin of the last local leader to reach the end of the
path changing is O(βε). Unfortunately, the entire process could take an arbitrary amount of time in
the case of a path.

To apply the above reasoning to a cycle, we will ’unroll’ it into a two-way infinite path. We will
set the ’finish line’ at an arbitrary vertex (at position 0) and observe the local leaders for any period
of time [y, y + L].

Assume the length of the cycle is L and it has l vertices. Let i ∈ {0, . . . , l − 1}, i ∈ Z. Then,
the i · n+ j-th element of the sequence s will intuitively be equal to the time the runner sent from

174



the j-th vertex of the graph to the i-th vertex of the unrolled cycle reaches vertex 0 of the unrolled
cycle. The sequence a will simply label the origin of the runner relevant to the current index (and
so ai = (i mod n)). The sequence c will label the cluster to which the relevant vertex of the cycle
is assigned (the origin of the first runner to reach it). The function f(y) will give the origin of the
runner that reached vertex 0 before time y and entered the cycle at the earliest position. Since only
such runners will correspond to clusters, our goal will be to bound the frequency with which f may
change.

6.B.1 Periodically Decreasing Sequences

Let k, n ∈ N and L ∈ R+.

Let si be a two-way infinite sequence of real numbers indexed by i ∈ Z with the property

∀i si+k = si − L.

Let ai be a two-way infinite sequence of integers in {0, . . . , n− 1} indexed by i ∈ Z, periodic
with period k, that is

∀i ai+k = ai.

We construct the sequence ci by defining

ci = aj,

where j is the minimum q that minimizes the value of sq among q ≤ i.

We can similarly construct f : R→ {0, . . . , n− 1} by setting for every real number y

f(y) = aj,

where j is the minimum q that satisfies sq ≤ y.

Fact 6.B.1 The sequence ci is periodic with period k.

Fact 6.B.2 The function f is periodic with period L.

Fact 6.B.3 For any i ∈ Z and y ∈ R, the number of times the sequence ci, ci+1, . . . , ci+k changes
values is equal to the number of times f changes values on the interval [y, y + L].

6.B.2 Random Periodically Decreasing Sequences

Let k, n ∈ N, L ∈ R+.

Let ti be a two-way infinite sequence of real numbers indexed by i ∈ Z with the property

∀i ti+k = ti − L.
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Let ai be a two-way infinite sequence of integers in {0, . . . , n− 1} indexed by i ∈ Z, periodic
with period k, that is

∀i ai+k = ai.

Let x0, x1, . . . , xn−1 be independent random variables drawn from the exponential distribution with
parameter β.

We define for every i ∈ Z:

si = ti − xai

We define the function f : R→ {0, . . . , n− 1} as in the previous section, that is

f(y) = aj,

where j is the minimum q that satisfies sq ≤ y.

In the following lemmas, our goal will be to bound the expected number of times the value of f
changes on any interval.

Lemma 6.B.4 For any y ∈ R, ε ∈ R+, the probability that f is not constant on the interval [y, y+ε]
is bounded by O(βε).

Proof Fix y and ε. We condition on the value of f(y + ε); assume it is k. We also condition on xi
for all i 6= k. Now the condition f(y + ε) = k is equivalent to assuming xk ≥ c for some constant
c. Because we have no more information about xk, the conditional probability that xk ≥ c+ ε is
1−O(βε). This implies the thesis.

�

In order to exploit Lemma 6.B.4 to bound the expected number of changes in f we will attempt
to condition on the event Dε.

Definition 6.B.5 Let ε ∈ R+. The event Dε occurs iff for all pairs i, j ∈ Z such that ai 6= aj or
ti 6= tj it holds that

|si − sj| > ε.

Fact 6.B.6

lim
ε→0

P (Dε) = 1.

Using Fact 6.B.6, we pick an ε > 0 that satisfies

P (Dε) ≥ 1−min

(
1

2
,
βL

k

)
and

L

ε
∈ N .
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Lemma 6.B.7 Assume ε is chosen as above. Conditioning on Dε, for any y ∈ R, the probability
that f is not constant on the interval [y, y + ε] is bounded by O(βε).

Proof Because P (Dε) ≥ 1
2
, the conditional probability is at most two times larger than in the case

where we do not condition on Dε. The thesis follows from Lemma 6.B.4.

�

Lemma 6.B.8 Assume ε is chosen as above. Conditioning on Dε, for any y ∈ R, the expected
number of times f changes values in [y, y + L] is bounded by O(βL).

Proof Because we assume Dε, we know that f can change at most once on any interval of length
ε. Hence it follows from Lemma 6.B.7 that the expected number of time f changes on any interval
of length ε is bounded by O(βε). Because L/ε ∈ N, we can cover the interval [y, y + L] with L/ε
intervals of length ε. Because of linearity of expectation, the expected number of times f changes
values on [y, y + L] is therefore bounded by O(βL).

�

Lemma 6.B.9 For any y ∈ R, the expected number of times f changes values in [y, y + L] is
bounded by O(βL).

Proof It follows from Fact 6.B.3 that f cannot change values more than k times on an interval of
length L. For ε chosen as above, we can apply this observation together with Lemma 6.B.8 to see
that the expected number of changes is bounded by

P (Dε)O(βL) + (1− P (Dε))k = O(βL) +
βL

k
· k = O(βL)

�

6.B.3 Low-radius Decompositions

Recall that we are considering the clustering algorithm CLUSTER-DIRECTED applied to a directed
graph G = (V,E). Consider a cycle C in G. Assume the length of C is L and the number of
vertices on C is l. Let the vertices on the cycle be u0, . . . , ul−1, in order, with u0 chosen arbitrarily.

For i ∈ {0, . . . , l − 1}, define pi to be the distance from u0 to ui when going along the cycle.

Let k = l · n. We now define the two-way infinite sequence t as follows, for z ∈ Z, i ∈
{0, . . . ,m− 1}, j ∈ {0, . . . , n− 1}:

tz·k+i·n+j = d(vj, ui)− zL− pi.

We define the two-way infinite sequence a for z ∈ Z, j ∈ {0, . . . , n− 1}:

az·n+j = j.
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Fact 6.B.10 Let i ∈ {0, . . . , l − 1}. Assume j is a (possibly negative) integer such that j ≤
i · n+ n− 1. Then there exists a path from vaj to ui of length tj + pi.

Fact 6.B.11 Let i ∈ {0, . . . , l − 1}, q ∈ {0, . . . , n− 1}. There exists an integer j ≤ i · n+ n− 1
such that aj = q and

tj + pi = d(vq, ui).

Recall that in CLUSTER-DIRECTED we associate with each vertex vi an independent random
variable xi drawn from the exponential distribution with parameter β. We now define the two-way
infinite sequence s as

si = ti − xai .

As in Section 6.B.1 we construct the sequence ci by defining

ci = aj,

where j is the minimum q that minimizes the value of sq among q ≤ i.

Lemma 6.B.12 For i ∈ {0, . . . , l − 1}, ci·n+n−1 is the index of the vertex to whose cluster ui is
assigned by CLUSTER-DIRECTED.

Proof This follows from Facts 6.B.10 and 6.B.11.

�

We are now ready to prove the main theorem.

Proof of Lemma 6.3.1: By Lemma 6.B.12, it is enough to bound the number of times c0, . . . , ck
changes values. By Fact 6.B.3 this reduces to bounding the number of times the associated function
f : R→ {0, . . . , n− 1} changes values on any interval of length L. This is shown to be O(βL) in
expectation in Lemma 6.B.9.

�

Proof of Theorem 6.2.5: First note that with high probability max(x1, . . . , xn) ≤ r, and so the
radius of the computed clusters is at most r. To bound the number of cut edges, it is enough to note
that by Theorem 6.2.3, we can find a set of simple cycles C1, . . . , Ck such that their total volume
is at most bal(G)vol(G) and has weight at least w(e) on every edge e ∈ E. The thesis follows by
applying Lemma 6.3.1.

�
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time, Proceedings of the twenty-eighth annual ACM symposium on Theory of com-
puting (New York, NY, USA), STOC ’96, ACM, 1996, pp. 47–55. 5.1

[BKR03] Marcin Bienkowski, Miroslaw Korzeniowski, and Harald Räcke, A practical algo-
rithm for constructing oblivious routing schemes, SPAA 2003: Proceedings of the
Fifteenth Annual ACM Symposium on Parallelism in Algorithms and Architectures,
June 7-9, 2003, San Diego, California, USA (part of FCRC 2003), ACM, 2003,
pp. 24–33. 6.1

[BL99] Yair Bartal and Stefano Leonardi, On-line routing in all-optical networks, Theoretical
Computer Science 221 (1999), no. 1-2, 19–39. 6.1, 6.1.1

[BMM03] Prosenjit Bose, Anil Maheshwari, and Pat Morin, Fast approximations for sums of
distances, clustering and the Fermat-Weber problem, Computational Geometry 24
(2003), no. 3, 135 – 146. 2.1.1

[Bot04] Léon Bottou, Stochastic learning, Advanced Lectures on Machine Learning (Olivier
Bousquet and Ulrike von Luxburg, eds.), Lecture Notes in Artificial Intelligence,
LNAI 3176, Springer Verlag, Berlin, 2004, pp. 146–168. 5.1

[BSS09] Joshua D. Batson, Daniel A. Spielman, and Nikhil Srivastava, Twice-ramanujan
sparsifiers, Proceedings of the 41st annual ACM symposium on Theory of computing
(New York, NY, USA), STOC ’09, ACM, 2009, pp. 255–262. 5.1

[BSS12] Joshua Batson, Daniel A Spielman, and Nikhil Srivastava, Twice-ramanujan sparsi-
fiers, SIAM Journal on Computing 41 (2012), no. 6, 1704–1721. 3.1.3, 3.4, 3.5

[BSST13] Joshua Batson, Daniel A. Spielman, Nikhil Srivastava, and Shang-Hua Teng, Spectral
sparsification of graphs: theory and algorithms, Commun. ACM 56 (2013), no. 8,
87–94. 5.1

180



[Bub14] Sébastien Bubeck, Theory of convex optimization for machine learning, arXiv preprint
arXiv:1405.4980 (2014). 2.5.2

[BY82] Egon Balas and Chang-Sung Yu, A note on the weiszfeld-kuhn algorithm for the
general fermat problem, Managme Sci Res Report (1982), no. 484, 1–6. 2.1.1

[Can06] J. Candés, E, Compressive sampling, Proceedings of the International Congress of
Mathematicians (2006). 1.1.2

[CCG+98] Moses Charikar, Chandra Chekuri, Ashish Goel, Sudipto Guha, and Serge Plotkin,
Approximating a finite metric by a small number of tree metrics, Proceedings of the
39th Annual Symposium on Foundations of Computer Science (Washington, DC,
USA), FOCS ’98, IEEE Computer Society, 1998, pp. 379–388. 4.1

[CDK+06] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Singer,
Online passive-aggressive algorithms, The Journal of Machine Learning Research 7
(2006), 551–585. 3.1.2

[CFM+14] Michael Cohen, Brittany Terese Fasy, Gary L. Miller, Amir Nayyeri, Richard Peng,
and Noel Walkington, Solving 1-laplacians of convex simplicial complexes in nearly
linear time: Collapsing and expanding a topological ball, 2014. 4.1

[CK81] Leon Cooper and I.Norman Katz, The weber problem revisited, Computers and
Mathematics with Applications 7 (1981), no. 3, 225 – 234. 2.1.1

[CKM+11] Paul Christiano, Jonathan A. Kelner, Aleksander Madry, Daniel A. Spielman, and
Shang-Hua Teng, Electrical flows, laplacian systems, and faster approximation of
maximum flow in undirected graphs, Proceedings of the 43rd annual ACM symposium
on Theory of computing (New York, NY, USA), STOC ’11, ACM, 2011, pp. 273–282.
2, 4.1, 5.B

[CKM+14] Michael B. Cohen, Rasmus Kyng, Gary L. Miller, Jakub W. Pachocki, Richard Peng,
Anup Rao, and Shen Chen Xu, Solving sdd linear systems in nearly mlog1/2n time,
STOC, 2014, pp. 343–352. 1.3.3, 4, 4.0.1, 5, 6.3.2

[CKP+14] Michael B. Cohen, Rasmus Kyng, Jakub W. Pachocki, Richard Peng, and Anup Rao,
Preconditioning in expectation, CoRR abs/1401.6236 (2014). 1.3.3, 4.1.2, 5

[CLM+15] Michael B Cohen, Yin Tat Lee, Cameron Musco, Christopher Musco, Richard Peng,
and Aaron Sidford, Uniform sampling for matrix approximation, Proceedings of
the 2015 Conference on Innovations in Theoretical Computer Science, ACM, 2015,
pp. 181–190. 3.1.1, 3.1.3, 3.2

[CLM+16] Michael Cohen, Yin-Tat Lee, Gary Miller, Jakub Pachocki, and Aaron Sidford,
Geometric median in nearly linear time, to appear in STOC 2016, 2016. 1.3.1, 2

181



[CMMP13] Hui Han Chin, Aleksander Madry, Gary L. Miller, and Richard Peng, Runtime
guarantees for regression problems, Proceedings of the 4th conference on Innovations
in Theoretical Computer Science (New York, NY, USA), ITCS ’13, ACM, 2013,
pp. 269–282. 2.1, 2.1.1, 2

[CMP+14] Michael B. Cohen, Gary L. Miller, Jakub W. Pachocki, Richard Peng, and Shen Chen
Xu, Stretching stretch, CoRR abs/1401.2454 (2014). 1.3.3, 4.0.1, 4.0.1, 5.4, 6.3.2

[CMP15] M. Cohen, C. Musco, and J. Pachocki, Online row sampling, Unpublished manuscript,
2015. 1.3.2, 3

[CSRL01] Thomas H. Cormen, Clifford Stein, Ronald L. Rivest, and Charles E. Leiserson,
Introduction to algorithms, 2nd ed., McGraw-Hill Higher Education, 2001. 4.4.1

[CT89] R. Chandrasekaran and A. Tamir, Open questions concerning weiszfeld’s algorithm
for the fermat-weber location problem, Mathematical Programming 44 (1989), no. 1-
3, 293–295 (English). 2.1.1

[CW13] Kenneth L. Clarkson and David P. Woodruff, Low rank approximation and regression
in input sparsity time, Proceedings of the 45th Annual ACM Symposium on Theory
of Computing (STOC), 2013, pp. 81–90. 3.1.1

[Dia69] Robert B. Dial, Algorithm 360: shortest-path forest with topological ordering [h],
Commun. ACM 12 (1969), no. 11, 632–633. 4.5

[DKSW02] Zvi Drezner, Kathrin Klamroth, Anita SchÃűbel, and George Wesolowsky, Facility
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