
User Behavior Modeling with
Large-Scale Graph Analysis

Alex Beutel
May 2016

CMU-CS-16-105

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee:
Christos Faloutsos, Co-Chair
Alexander J. Smola, Co-Chair

Geoffrey J. Gordon
Philip S. Yu, University of Illinois at Chicago

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2016 Alex Beutel.

This research was sponsored under the National Science Foundation Graduate Research Fellowship Program (Grant no. DGE-
1252522) and a Facebook Fellowship. This research was also supported by the National Science Foundation under grants num-
bered IIS-1017415, CNS-1314632 and IIS-1408924, as well as the Army Research Laboratory under Cooperative Agreement Number
W911NF-09-2-0053. I also would like to thank the CMU Parallel Data Laboratory OpenCloud for providing infrastructure for ex-
periments; this research was funded, in part, by the NSF under award CCF-1019104, and the Gordon and Betty Moore Foundation,
in the eScience project. Also, I would like to thank the Open Cloud Consortium (OCC) and the Open Science Data Cloud (OSDC)
for the use of resources on the OCC-Y Hadoop cluster, which was donated to the OCC by Yahoo!

The views and conclusions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: behavior modeling, graph mining, scalable machine learning, fraud
detection, recommendation systems, clustering, co-clustering, factorization, machine
learning systems, distributed systems

Dedicated to my family.
Jess, Mom, Dad, Stephen, Grandma, Papa, Nanny and Pa—I love you.

iv

Abstract
Can we model how fraudsters work to distinguish them from normal

users? Can we predict not just which movie a person will like, but also why?
How can we find when a student will become confused or where patients in
a hospital system are getting infected? How can we effectively model large
attributed graphs of complex interactions?

In this dissertation we understand user behavior through modeling graphs.
Online, users interact not just with each other in social networks, but also with
the world around them—supporting politicians, watching movies, buying
clothing, searching for restaurants and finding doctors. These interactions
often include insightful contextual information as attributes, such as the time
of the interaction and ratings or reviews about the interaction. The breadth of
interactions and contextual information being stored presents a new frontier
for graph modeling.

To improve our modeling of user behavior, we focus on three broad chal-
lenges: (1) modeling abnormal behavior, (2) modeling normal behavior and
(3) scaling machine learning. To more effectively model and detect abnormal
behavior, we model how fraudsters work, catching previously undetected
fraud on Facebook, Twitter, and Tencent Weibo and improving classification
accuracy by up to 68%. By designing flexible and interpretable models of
normal behavior, we can predict why you will like a particular movie. Last, we
scale modeling of large hypergraphs by designing machine learning systems
that scale to hundreds of gigabytes of data, billions of parameters, and are 26
times faster than previous methods. This dissertation provides a foundation
for making graph modeling useful for many other applications as well as
offers new directions for designing more powerful and flexible models.

vi

Acknowledgements

First and foremost, I want to thank my entire family for fostering my curiosity to get
me to graduate school and then supporting me through it. Thank you Jess, for giving
me such deep love and happiness for the past five years. Thank you Mom and Dad, for
always encouraging me to do my best, not just in my work but as a person, for being
my compass through graduate school, and for always being there, even in my difficult
times. Thank you Stephen, for always being a much-needed grounding force in my life,
consistently providing clarity when I was lost. Thank you Papa and Grandma—it is your
unreasonable confidence in me and combination of intellectual idealism and real-world
perceptiveness that has brought me here and helped me succeed. Nanny and Pa—I think
about you often and deeply wish you were still here. Thank you to my many aunts,
uncles, cousins, and Jess’s entire family, who have all been there for me at key points in
graduate school.

It cannot be overstated the role that my advisors had in my thesis, my time in graduate
school, my career, and my life going forward. I want to thank Christos Faloutsos, for
his patience and persistence with me as a young student, and his support throughout
graduate school. He has taught me how to be an academic, and more broadly, how to
simultaneously be a mentor, colleague and friend. Additionally, I want to thank Alex
Smola, who has, since even before he came to CMU, pushed me and my research forward,
making me learn new concepts and broaden my perspective. From technical insights
to career opportunities, he repeatedly guided me down paths that I didn’t know were
possible. I am forever grateful to you both.

Additionally, I want to thank the rest of my committee: Geoff Gordon and Philip Yu.
Thank you both for your comments, feedback and guidance that significantly shaped
and focused this thesis.

Graduate school has been an exciting experience primarily because of my friends.
They have helped me through courses, been my collaborators, outlet for relaxation, and
general source of support. Everyone in Christos’s database group has become like family.
Vagelis Papalexakis—despite entering graduate school at the same time, you have been
an academic big brother to me, both literally and figuratively. I want to thank Aditya
Prakash, Danai Koutra, Leman Akoglu, Polo Chau, and U Kang for creating a welcoming
environment, mentoring me as a young graduate student and continuing to be be there
for me long after leaving CMU. I also want to thank Neil Shah, Jay-Yoon Lee, Rishi
Chandy, Bryan Hooi, Hemank Lamba, Hyun Ah Song, Dhivya Eswaran and Kijung Shin
for making the database group awesome, being fun to work with, hang out with, and
everything in between.

Beyond those in the database group, I have had many amazing collaborators without
whom this dissertation would not have been possible—Abhimanu Kumar, Meng Jiang,
Amr Ahmed, Chao-Yuan Wu, Kenton Murray, Partha Talukdar, and Stephan Günnemann.
All of the work in this dissertation came from truly collaborative endeavors, and I feel
lucky to have had such great friends to work with in these efforts. Additionally, I would
like to thank Venkat Guruswami, Peng Cui, Eric Xing and Qirong Ho who also offered
their valuable insights at key points in my research.

vii

Last, but certainly not least, I want to thank my friends from outside of my research
life. Thank you Matteus Tanha, Anthony Brooks, David Naylor, Nico Feltman, David Wit-
mer, Richard Wang, John Dickerson, Dougal Sutherland, Elie Krevat, Andrew O’Rourke
and the many, many others that have made me love Pittsburgh and my time here.

I also want to thank Marilyn Walgora and Deborah Cavlovich. You have both been
essential in making my time at Carnegie Mellon go smoothly and pleasantly; I greatly
appreciate all of your help and extra effort, far beyond what is reasonable. Marilyn—
enjoy retirement! You deserve the break one thousand times over.

One of the most exciting parts of my time in graduate school has been my summer
internships. I have been extremely lucky to have had great mentors every summer.
Thank you Wanhong Xu, Chris Palow, Lars Bakstrom, Markus Weimer, Vijay Narayanan,
Ed Chi, and Zhiyuan Cheng for providing such wonderful environments for research,
and for grounding my work back at Carnegie Mellon. In particular, I want to thank
Wanhong Xu, who in my first summer as an intern at Facebook, got me started working
on fraud detection, and for which his intuition on the problem provided the foundation
for much of the rest of my fraud detection research in graduate school. Additionally, I
want to thank Ed Chi, both for making my time at Google interesting, and also for his
selfless support during my job search.

Additionally, I want to thank Tina Eliassi-Rad, who has been indispensable in her
guidance and support throughout my job search, and also always makes conferences far
more fun.

I also do not want to forget how I got to graduate school. Thank you to my many
friends and colleagues at Duke University who helped me get into graduate school and
continued to be sources of support throughout graduate school. In particular, I want
thank Pankaj Agarwal and Thomas Mølhave for making me fall in love with research
and continuing to be mentors long after I left Duke. Additionally, I want to thank all of
my childhood, high school and college friends who have kept me tied to the real world
and worked to keep me grounded despite my esoteric explorations. You all know who
you are.

This is a bittersweet end to a consequential period of my life. Thank you all for
making it so.

viii

Contents

I Introduction and Background 1

1 Introduction 3
1.1 Overview and Contributions . 4

1.1.1 Modeling Abnormal Behavior . 4
1.1.2 Modeling Normal Behavior . 6
1.1.3 Scalable Machine Learning . 8

1.2 Overarching Thesis Statements . 10

2 Preliminaries and Background 11
2.1 Graph Structure . 11
2.2 Mathematical data structures . 13
2.3 Model Structure . 14

2.3.1 Factorization . 14
2.3.2 Clustering . 15

2.4 Learning . 17

II Modeling Abnormal Behavior 19
II.1 Related Work . 22

II.1.1 Spammer and Fraudster Detection 22
II.1.2 Graph-based Anomaly Detection . 22
II.1.3 Subgraph Mining . 23
II.1.4 Co-clustering . 23

3 Detect Fraud in Static Graphs 25
3.1 Introduction . 25
3.2 Synchronized Behavior Detection . 28

3.2.1 Problem Definition . 28
3.2.2 Proposed Approach . 28

3.3 CatchSync Algorithm . 33
3.4 Experiments . 34

3.4.1 Evaluation: Data and Ground Truth 35
3.4.2 Competing Algorithms . 38

ix

3.4.3 Detection Effectiveness on Synthetic Data 38
3.4.4 Detection Effectiveness on Real Data 40
3.4.5 CatchSync Properties . 41
3.4.6 Discovery: A Case Study . 42

3.5 Summary . 45

4 Detect Fraud in Graphs with Time 47
4.1 Introduction . 47
4.2 Relationship to Related Work . 49

4.2.1 Local clustering . 50
4.2.2 MapReduce . 50

4.3 Problem Formulation . 50
4.4 Methodology . 53

4.4.1 Optimization Formulation . 53
4.4.2 A Serial Algorithm . 54
4.4.3 Proof of Convergence . 55

4.5 A MapReduce Implementation . 55
4.5.1 Algorithm . 57
4.5.2 Implementation Optimizations . 58

4.6 An Adversarial Challenge . 60
4.6.1 “Greedy Attacks” . 60
4.6.2 Optimal Strategy: An Open Problem 62

4.7 Experimental Analysis . 63
4.7.1 Experimental Setup . 63
4.7.2 Scalability . 63
4.7.3 Convergence . 64
4.7.4 Discovery . 65
4.7.5 Deployment at Facebook . 67

4.8 Discussion: Applications . 67
4.9 Summary . 67

5 Detect Fraud in Graphs with Multiple Attributes 69
5.1 Introduction . 69
5.2 Proposed Metric Criteria . 73

5.2.1 Problem Formulation . 74
5.2.2 Axioms . 75
5.2.3 Shortcomings of Competitors . 76

5.3 Proposed Suspiciousness Metric . 76
5.3.1 Dense Subvector and Submatrix: 1-Mode and 2-Mode Suspiciousness 77
5.3.2 Dense Subtensor: K-Mode Suspiciousness 78
5.3.3 Proofs: Satisfying the Axioms . 78

5.4 Suspicious Block Detection . 80
5.4.1 Problem Definition . 80
5.4.2 Proposed Algorithm CrossSpot . 81

x

5.5 Experiments . 83
5.5.1 Datasets . 83
5.5.2 Experimental Setup . 84
5.5.3 Synthetic Experiments . 85
5.5.4 Retweeting Boosting . 89
5.5.5 Hashtag Hijacking . 90
5.5.6 Network Traffic . 90

5.6 Summary . 92

III Modeling Normal Behavior 93
III.1 Related Work . 96

III.1.1 Recommender Systems . 96
III.1.2 Co-Clustering . 97
III.1.3 Matrix Approximation . 97

6 Flexible Models for Normal and Abnormal Behavior 99
6.1 Introduction . 99
6.2 Relationship to Related Work . 100

6.2.1 Recommendation Metrics . 101
6.2.2 Rating Spam and Robust Recommendation 101

6.3 Rating Distribution . 101
6.4 Co-Clustering . 103
6.5 Generative Model . 105
6.6 Parameter Inference . 107

6.6.1 Sampling the user and item parameters ui 107
6.6.2 Sampling the cluster membership ai 108
6.6.3 Sampling cluster parameters µa,Σa 109
6.6.4 Inference for hyperparameters µα,Wα, λα 109

6.7 Spam Detection during Recommendation 110
6.8 Experiments . 112

6.8.1 Datasets and Set up . 112
6.8.2 Model fit . 114
6.8.3 Robustness to spam . 114
6.8.4 Natural clusters in real world . 117
6.8.5 Shape of real world data . 118

6.9 Summary . 120

7 Interpretable Recommendations 121
7.1 Introduction . 121

7.1.1 Linear combinations of attributes . 122
7.1.2 Succinct Stencils . 123
7.1.3 Contributions . 124

7.2 Related Work . 124

xi

7.3 Matrix Approximation . 125
7.3.1 Proposed Model . 126
7.3.2 Algorithm . 127
7.3.3 Approximation Guarantees . 129

7.4 Generative Model . 130
7.4.1 Co-Clustering with a Single Stencil 130
7.4.2 Collapsed Gibbs Sampler . 132
7.4.3 Efficient Implementation . 134
7.4.4 Additive Combinations of Stencils 135

7.5 Experiments . 136
7.5.1 Implementation . 136
7.5.2 Experimental Setup . 137
7.5.3 Matrix Completion . 138
7.5.4 Matrix Approximation . 139
7.5.5 Interpretability . 140
7.5.6 Properties of ACCAMS . 142

7.6 Discussion . 143

8 Explaining Recommendations 145
8.1 Introduction . 145
8.2 Related Work . 147
8.3 Poisson Additive Co-Clustering . 148

8.3.1 Modeling Reviews using an Additive Poisson Model 149
8.3.2 The Joint Generative Model . 150

8.4 The Sampling Algorithm . 151
8.4.1 Sampling a Sum of Poisson Distributions 151
8.4.2 Sampling Cluster Assignments . 152
8.4.3 Implementation . 154

8.5 Experiments . 154
8.5.1 Experimental Setup . 155
8.5.2 Quantitative evaluation . 157
8.5.3 Interpretability . 159

8.6 Summary . 163

IV Scalable Machine Learning 165
IV.1 Related Work . 168

IV.1.1 Big Data Processing . 168
IV.1.2 Distributed Learning . 168
IV.1.3 Matrix Factorization . 169
IV.1.4 Tensor Factorization . 169

xii

9 Distributed Modeling of Attributed Hypergraphs 171
9.1 Introduction . 171
9.2 FlexiFaCTApproach . 173

9.2.1 Optimization Objectives . 173
9.2.2 SGD Updates . 175
9.2.3 Blocking for Parallelization . 176

9.3 Proof Sketch . 177
9.4 MapReduce Implementation of FlexiFaCT 179
9.5 Experiments . 181

9.5.1 Performance Evaluation . 181
9.5.2 Scalability . 182
9.5.3 Correctness & Monotone Convergence 184

9.6 Summary . 184

10 Fast in the face of Stragglers 185
10.1 Introduction . 185
10.2 Related Work . 187
10.3 Fugue: Slow-Worker Agnostic Learning . 188

10.3.1 Latent Factor Models . 188
10.3.2 Fugue Approach . 190
10.3.3 Partitioning strategy . 191
10.3.4 Distributed update scheduling . 192

10.4 Proof Sketch . 192
10.5 Experiments . 195

10.5.1 Experimental Setup . 195
10.5.2 Empirical Results . 197
10.5.3 Why Fugue Succeeds . 199

10.6 Generality and Applicability to Bayesian models 201
10.7 Summary . 201

V Concluding Remarks 203

11 Conclusion 205
11.1 Contributions . 205
11.2 Impact . 207

12 Overarching Vision and Future Work 209
12.1 Big Picture—Thesis Statements . 209
12.2 Future Directions . 210

12.2.1 Application Outreach . 211
12.2.2 Modeling and Algorithms . 211
12.2.3 Scalable Machine Learning . 211

xiii

Appendices 211

A CatchSync Proofs 215

B ACCAMS Approximation Guarantee 217

C FlexiFaCT Proof of Convergence 219

D Fugue Proofs 223

Bibliography 233

xiv

List of Figures

1.1 Dependency hierarchy for this dissertation. 5
1.2 Example of modeling abnormal behavior for fraud detection 5

1.2(a) Before CopyCatch . 5
1.2(b) After CopyCatch . 5

1.3 Examples of modeling normal behavior . 7
1.3(a) Netflix’s Gaussian ratings . 7
1.3(b) Bimodal ratings on Amazon . 7
1.3(c) Succinct modeling with ACCAMS 7

1.4 Improvements in distributed machine learning with Fugue 8

3.1 Suspicious followers and their footprints 26
3.1(a) Synchronized behavior in the graph 26
3.1(b) Twitter social graph . 26
3.1(c) Tencent Weibo social graph . 26

3.2 Plots of synchronicity and normality . 29
3.2(a) InF-plot on TWITTERSG . 29
3.2(b) SN-plot on TWITTERSG . 29
3.2(c) InF-plot on WEIBOSG . 29
3.2(d) SN-plot on WEIBOSG . 29

3.3 CatchSync detects attacks despite “camouflage.” 37
3.3(a) SYNTH-3M-RAND . 37
3.3(b) SYNTH-3M-RAND . 37
3.3(c) SYNTH-3M-POP . 37
3.3(d) SYNTH-3M-POP . 37

3.4 CatchSync achieves higher precision and recall. 39
3.4(a) Random camouflage . 39
3.4(b) Popular camouflage . 39

3.5 CatchSync restores the power law . 39
3.5(a) SYNTH-1M . 39
3.5(b) SYNTH-2M . 39
3.5(c) SYNTH-3M . 39

3.6 CATCHSYNC+SPOT is the best at ranking the suspiciousness 41
3.6(a) TWITTERSG . 41
3.6(b) WEIBOSG . 41

xv

3.7 Sources and targets caught by CatchSync are outliers 42
3.7(a) Weibo all sources . 42
3.7(b) Weibo caught sources . 42
3.7(c) Weibo normal sources . 42
3.7(d) Weibo all targets . 42
3.7(e) Weibo caught targets . 42
3.7(f) Weibo normal targets . 42

3.8 CatchSync is not sensitive to α. 43
3.8(a) SYNTH-1M . 43
3.8(b) SYNTH-2M . 43
3.8(c) SYNTH-3M . 43

3.9 CatchSync is fast and scalable . 43
3.10 CatchSync discovers suspicious behavior on Twitter 43

4.1 Toy example of a CopyCatch run on Facebook 48
4.1(a) Without CopyCatch . 48
4.1(b) With CopyCatch . 48
4.1(c) Graphical view of CopyCatch . 48

4.2 Subspace clustering perspective of CopyCatch 52
4.3 Illustration of a greedy attack . 61
4.4 Scalability of CopyCatch . 64

4.4(a) Scaling in graph size . 64
4.4(b) Scaling in number of seeds . 64

4.5 Convergence of CopyCatch . 65
4.6 Effectiveness of CopyCatch in detecting attacks. 65

4.6(a) Total number of users caught after multiple runs on Facebook . . . 65
4.6(b) Success in detecting synthetic attacks 65
4.6(c) Decrease in attacks on Facebook . 65

4.7 Breakdown of attack vectors found on Facebook 66

5.1 Example of suspicious multimodal block detected on Tencent Weibo . . . 70
5.1(a) Dense block . 70
5.1(b) Magnification . 70

5.2 Visual representation of suspiciousness axioms 72
5.2(a) Density Axiom . 72
5.2(b) Contrast Axiom . 72
5.2(c) Size Axiom . 72
5.2(d) Concentration Axiom . 72

5.3 Compare metrics for multimodal data . 80
5.4 CrossSpot detects dense subgraphs . 85
5.5 CrossSpot finds 3-mode blocks with high accuracy 86

5.5(a) Performance of dense block detection 86
5.5(b) Recall with HOSVD seed . 86

5.6 Performance comparisons between different versions of CrossSpot and SVD 87

xvi

5.7 CrossSpot is robust to the number of random seeds 89
5.7(a) Robustness . 89
5.7(b) Convergence . 89

6.1 Modeling ratings for WD15EZRX hard disk 102
6.2 An example of the Chinese Restaurant Process metaphor 105
6.3 CoBaFi Bayesian graphical model . 106
6.4 Distributions of movies over clusters . 114
6.5 Distribution of spammers over clusters . 115

6.5(a) Dumb spammers . 115
6.5(b) Hijacked users . 115
6.5(c) Spammed movies . 115

6.6 Rating distributions from data . 115
6.6(a) Amazon Electronics . 115
6.6(b) Netflix . 115
6.6(c) Amazon Clothing . 115
6.6(d) BeerAdvocate . 115

7.1 Accuracy of ACCAMS on Netflix . 122
7.2 Additive co-clustering example . 123
7.3 bACCAMS Bayesian generative model . 131
7.4 Accuracy by parameter space size . 139

7.4(a) Netflix Prediction Error . 139
7.4(b) Netflix Training Error . 139
7.4(c) Face Approximation . 139
7.4(d) AS Graph Approximation . 139

7.5 Hierarchy of Netflix content from ACCAMS 140
7.6 Image reconstruction with ACCAMS . 142
7.7 bACCAMS properties . 143

7.7(a) Cluster assignment entropy . 143
7.7(b) Cluster stability . 143

8.1 Negative log-likelihood with PACO . 146
8.1(a) Amazon fine foods . 146
8.1(b) RateBeer . 146
8.1(c) Yelp . 146

8.2 PACO Bayesian generative model . 149
8.3 Rating prediction accuracy for PACO . 157

8.3(a) Amazon fine foods . 157
8.3(b) RateBeer . 157
8.3(c) Yelp . 157

8.4 Text prediction log perplexity for PACO . 158
8.4(a) Amazon fine foods . 158
8.4(b) RateBeer . 158

xvii

8.4(c) Yelp . 158
8.5 Improvements on cold-start items . 160

8.5(a) Amazon fine foods . 160
8.5(b) RateBeer . 160
8.5(c) Yelp . 160

8.6 Improvements on cold-start users . 160
8.6(a) Amazon fine foods . 160
8.6(b) RateBeer . 160
8.6(c) Yelp . 160

9.1 Partitioned matrix and tensor for parallelization 176
9.2 Scalability of FlexiFaCT . 182

9.2(a) Time vs. rank . 182
9.2(b) Time vs. dimensions . 182
9.2(c) Time vs. number of observations . 182

9.3 Convergence for FlexiFaCT . 183

10.1 Partitioning strategy . 189
10.2 Time to convergence improvement . 197

10.2(a) Absolute time . 197
10.2(b) Time relative to Fugue . 197

10.3 Convergence comparison . 198
10.3(a) Topic Modeling . 198
10.3(b) Dictionary Learning . 198
10.3(c) Mixed-Membership Network Decomposition 198

10.4 Scalability comparison . 199
10.4(a) Scaling in number of topics . 199
10.4(b) Scaling in number of cores . 199
10.4(c) Scaling in number of documents . 199

10.5 Comparing the number of machines needed 200

xviii

List of Tables

1.1 Full-stack approach to user behavior modeling. 4

3.1 Compare CatchSync with existing approaches 27
3.2 Notation for CatchSync . 30
3.3 Plot types for CatchSync . 31
3.4 Real world social graphs used for testing CatchSync 33
3.5 Synthetic datasets used to test CatchSync 35
3.6 CatchSync has higher accuracy than previous methods. 36
3.7 CATCHSYNC+SPOT achieves best accuracy 40

4.1 Notation for CopyCatch . 51

5.1 CrossSpot compared to state-of-the-art methods and metrics 73
5.2 Notation for CrossSpot . 74
5.3 Real world datasets for testing CrossSpot 82
5.4 CrossSpotdetects blocks in subsets of modes 86
5.5 Big dense blocks with top metric values discovered in the retweeting dataset. 88
5.6 Detected retweet boosting on Tencent Weibo 90
5.7 Dense blocks discovered in hashtag data. 91
5.8 Detected hashtag hijacking on Tencent Weibo 91
5.9 Big dense blocks in LBNL network data . 92

6.1 Datasets used to test CoBaFi . 112
6.2 CoBaFi comparison of predictive log-likelihood 113
6.3 Modeling attacked items on Amazon . 116
6.4 Modeling attacked movies on Netflix . 116
6.5 Clusters on Netflix . 117
6.6 Extreme distributions in data . 118
6.7 Most skewed and Gaussian distributions on Netflix 119

7.1 Notation for ACCAMS . 126
7.2 bACCAMS accuracy and parameter space size comparison 138
7.3 Finding related content with ACCAMS . 141

8.1 Notation for PACO . 148
8.2 Datasets used to test PACO . 155

xix

8.3 Negative log-likelihood for ratings and text 157
8.4 Rating prediction accuracy for PACO . 158
8.5 Text perplexity for PACO . 159
8.6 Learned text in blocks . 161
8.7 Item-specific words . 161
8.8 Discovered clusters of items . 162
8.9 Predicted words on RateBeer . 162

9.1 Comparison of FlexiFaCT with previous methods 172
9.2 Notation for FlexiFaCT . 173
9.3 Objective functions handled by FlexiFaCT 175

10.1 Datasets used to test Fugue . 196
10.2 Synchronization time for each model . 200

xx

List of Algorithms

1 CatchSync algorithm to catch suspicious nodes in static graphs 33

2 Serial CopyCatch . 56
3 MapReduce CopyCatch . 58
4 USERMAPPER for CopyCatch . 58
5 ADJUSTCLUSTER-REDUCER for CopyCatch 59

6 Local Search for CrossSpot . 81
7 ADJUSTMODE for CrossSpot . 82

8 Matrix Approximation with ACCAMS . 127
9 Clustering for ACCAMS . 128
10 bACCAMS Sampler . 135
11 bACCAMS . 136

12 PACO Sampler . 154

13 FlexiFaCT for tensor factorization . 178
14 FlexiFaCT Mapper (for tensor) . 180
15 FlexiFaCTReducer (for tensor) . 180

16 Fugue algorithm . 193

xxi

xxii

Part I

Introduction and Background

1

Chapter 1

Introduction

Can we model how fraudsters work to distinguish them from normal users?
Can we predict not just which movie a person will like, but also why?

How can we effectively model large attributed graphs of complex interactions?

As “Big Data” has become pervasive, organizations in every industry are storing as
many actions and interactions as they can. For both academia and industry these massive
databases have significant untapped potential, with increasing investment in trying to dis-
cover useful patterns. These databases can all be viewed as large hypergraphs—graphs
among entities of different types with many attributes contextualizing their interactions.
Through modeling these interactions, computer science can provide insights beyond
what we can see and understand individually and propel many fields forward. With
more information being stored than ever before, we now have the opportunity to move
beyond only predicting whether two entities have interacted but also understanding the
context of those interactions based on the many meaningful attributes available. This
rapid expansion in the types of interactions and contextual information being stored
presents a new frontier for graph modeling, enabling new applications and presenting
new challenges in data mining and scalable machine learning.

To give some examples: online users interact not just with each other in social
networks, but also with the world around them—supporting politicians, watching
movies, buying clothing, searching for restaurants and even finding doctors. These
interactions often include insightful contextual information as attributes, such as the
time or location of the interaction and ratings or reviews about the interaction. There
are similar hypergraphs in healthcare interactions among patients, doctors, diseases and
treatments, as well as in educational interactions among students, teachers, subjects and
educational resources.

In each of these fields, researchers have been able to extract useful knowledge just
from the graph structure, e.g., predicting what movies a person will like and finding
communities of people with similar interests. However, to provide more insightful
understanding, we need to model not just the interactions but also the context of the
interactions, finding the meaningful attributes within a graph and imbuing our models
of those attributes with our intuition. Making use of all of these data effectively presents

3

many exciting research challenges, ranging from designing models that capture the
relevant patterns in large, attributed hypergraphs to systems for scaling learning of
these complex models. Focusing on where classic techniques do not meet real-world
challenges, we can develop holistic solutions that maximize real-world impact. To do
this, we bridge insights from applications, modeling and scalable machine learning
systems.

Online User Behavior

Modeling Abnormal Behavior (Part II) Modeling Normal Behavior (Part III)

Ch. 3 Detect Fraud in Static Graphs Ch. 6 Flexible Models for Normal and
Ch. 4 Detect Fraud in Graphs with Time Abnormal Behavior
Ch. 5 Detect Fraud in Graphs with Ch. 7 Interpretable Recommendations

Multiple Attributes Ch. 8 Explaining Recommendations

Scalable Machine Learning (Part IV)

Ch. 9 Distributed Modeling of Attributed Hypergraphs
Ch. 10 Fast in the face of Stragglers

Table 1.1: Full-stack approach to user behavior modeling.

1.1 Overview and Contributions

This dissertation focuses on modeling online user behavior, in particular developing new
mathematical and computational techniques where classic techniques fail. An overview
of this dissertation can be seen in Table 1.1, with the dependency hierarchy shown in
Figure 1.1. We give a more detailed outline of the dissertation below.

1.1.1 Modeling Abnormal Behavior

How can we detect fraudulent user behavior?

Fraud on services like Amazon, Facebook and Twitter deceives honest users, disrupts
our models of normal behavior and erodes the value of these services. Therefore, in Part
II, we focus on the crucial problem of detecting and removing fraud.

From a graph perspective, fraud is a set of paid edges; for example, fake Page Likes are
paid edges in the “who-Likes-what” graph of Facebook, and fake reviews are paid edges
in the “who-rates-what” graph of Amazon. Fraud of this type often creates suspiciously
dense subgraphs, leaving a variety of anomalous patterns in the data [108, 111, 112, 174].
In Chapter 3, we offer a novel technique, CatchSync [108] for detecting these anomalous
patterns in static graphs.

4

Part I
Intro & Background

Part II
Modeling

Abnormal Behavior

Ch. 3
Fraud in

Static Graphs

Ch. 4
Fraud in

Temporal Graphs

Ch. 5
Fraud in

Attributed Graphs

Part III
Modeling

Normal Behavior

Ch. 6
Flexible
Model

Ch. 7
Interpretable

Model

Ch. 8
Explainable

Model

Part IV

Scalable ML

Ch. 9
Distributed

Factorization

Ch. 10
Handling
Stragglers

Figure 1.1: Dependency hierarchy for this dissertation.

Pages

U
s
e
rs

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

(a) Before CopyCatch

Reordered Pages

R
e
o

rd
e
re

d
 U

s
e
rs

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

Lockstep Fraudsters

(b) After CopyCatch

Figure 1.2: Modeling abnormal behavior for fraud detection: As shown in this example,
CopyCatch detects suspicious lockstep behavior.

Because honest communities can also create dense subgraphs, they are difficult to
distinguish from fraudulent behavior using only graph structure. Therefore, we turn our
focus to using contextual information that leaves distinguishing patterns that are costly
for fraudsters to avoid [33, 100, 107, 190].

In Chapter 4, we offer the CopyCatch algorithm [33] that detects temporally-coherent
dense subgraphs or lockstep behavior—groups of users who perform the same action at
approximately the same time. A visual demonstration of CopyCatch can be seen in
Figure 1.2. Because fraudsters are obligated to deliver their product (fraud) in a short
timespan, CopyCatch is difficult for adversaries to avoid. Furthermore, CopyCatch

5

has high precision because normal users’ actions are often uncorrelated with time. The
CopyCatch implementation can distribute learning over a thousand machines, searches
over billions of Page Likes and was relied on by Facebook for years to detect Page Like
fraud.

Building on the success of contextual information in CopyCatch, we examine in Chap-
ter 5 how we can easily incorporate multiple types of contextual data simultaneously.
We offer a general suspiciousness metric and matching CrossSpot algorithm [107] to
flexibly incorporate additional costly features, such as IP addresses, for finding spam
and fraud. Our flexible search tool can take many different components of user behavior
and find which components are most indicting for a particular group of users.
Contributions:

• Detect Fraud in Static Graphs: In Chapter 3, we offer a novel algorithm for
detecting fraud in static graphs. Our algorithm, CatchSync, runs on graphs with
billions of edges, improves detection accuracy by up to 36%, and finds previously
undetected fraud on Tencent Weibo and Twitter.

• Detect Fraud in Graphs with Time: In Chapter 4, we make use of the temporal
graph patterns of fraud to detect fake Page Likes on Facebook. Our algorithm,
CopyCatch, is implemented to run on Hadoop over Facebook’s 10 billion edge graph
and was used at Facebook to detect fraud.

• Detect Fraud in Graphs with Multiple Attributes: In Chapter 5, we offer a metric
for suspiciousness over that can combine many different signals. By using graph
structure along with temporal and IP address patterns, our algorithm, CrossSpot,
detects both hashtag hijacking and retweet boosting on Tencent Weibo and im-
proves accuracy by up to 68%.

Impact:
• CatchSync, presented in Chapter 3, was a Best Paper Award finalist at KDD 2014.
• CopyCatch, presented in Chapter 4, was used at Facebook for years, and was

extended for use on Instagram [42] and YouTube [143].
• We were granted a patent for CopyCatch [34], which was assigned to Facebook.
• CopyCatch received an Editor Highlight in the ACM Computing Review.
• CopyCatch has been included in Carnegie Mellon University’s “Multimedia Databases

and Data Mining” course (15-826) and the University of Florida’s “Social Network
Computing” course (CIS 6930).

• These insights were built upon for detecting fraudulent reviews on Flipkart [100].

1.1.2 Modeling Normal Behavior

How can we understand a user’s preferences and predict their future actions?
How can we explain our predictions?

Online, we can interact with each other and the world around us at an unprecedented
scale. Through modeling user behavior, we can understand these interactions and help
sort through the deluge of options available online. In Part III, we examine new models
that enable us to better to understand and predict user behavior.

6

https://www.cs.cmu.edu/~christos/courses/826.F14/proj.html
https://www.cs.cmu.edu/~christos/courses/826.F14/proj.html
http://optnetsci.cise.ufl.edu/class/cis6930fa15/schedule.html
http://optnetsci.cise.ufl.edu/class/cis6930fa15/schedule.html

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

P
ro

b
a

b
il

it
y

Netflix Rating

Data
CoBaFi

(a) Netflix’s Gaussian ratings

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5

P
ro

b
a

b
il

it
y

Amazon Rating

Data
CoBaFi

(b) Amazon’s bimodal ratings

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

0 10 20 30 40 50 60 70 80

Better

4x Smaller Model

R
e

c
o

m
m

e
n

d
a

ti
o

n
 e

rr
o

r
(R

M
S

E
)

Parameter Space Size (megabytes)

SVD++
LLORMA

bACCAMS

(c) ACCAMS

Figure 1.3: Improved recommendations: Examples of modeling normal behavior for
capturing (a) Gaussian and (b) bimodal ratings, as well as (c) predicting ratings with a
significantly smaller model .

Because recommender systems have been based on general matrix models, they
make many implicit assumptions that do not match the reality of user behavior data. In
particular, they typically assume all users and all items are equally similar and that there
is some “correct” rating for each item, with some slightly personal perturbations. In
Chapter 6, we challenge these assumptions, finding clusters of users and non-Gaussian
rating patterns, as seen in Figure 1.3(a–b). We offer the CoBaFi model [31], which we
find effectively clusters fraudulent users and finds polarizing items.

While recommendation accuracy is important, users are more likely to follow these
recommendations if they are accompanied by an explanation. Thus, in Chapters 7 and 8
we offer simple, interpretable models that can offer explanations for recommendations.
Previous factorization-based approaches create large models that are difficult to explain.
In Chapter 7 we take a radically different approach to recommendation by learning a
small set of discrete latent attributes about users and items, and the predicted ratings that
accompany these attributes. That is, we learn an additive co-clustering model, ACCAMS
[29], of the user and item ratings matrix. As seen in Figure 1.3(c), ACCAMS matches
state-of-the-art prediction accuracy on Netflix with a model 1/4 of the size. We build on
this approach in Chapter 8 to directly offer explanations by predicting what words a
given user would use when describing how he feels about a particular item. We offer an
additive Poisson co-clustering model [229], enabling us to jointly model ratings and text
reviews and to explain our recommendations with words.

Across all of this research, the models are designed to better understand attributes
(ratings and reviews). As a result, these models are both more accurate and help explain
why a user will like a particular item.
Contributions:

• Flexible Models for Normal and Abnormal Behavior: In Chapter 6, we design a
more flexible model of user behavior. Our model, CoBaFi, models both Gaussian
and bimodal ratings as well as clusters spammy users. We demonstrate that CoBaFi
improves predictive accuracy by up to 17% and find that services vary greatly in
their rating patterns.

7

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

TM DL MMND

26-times

faster

T
im

e
 t

o
 C

o
n

v
e
rg

e
 (

s
e
c
o

n
d

s
)

Model

Fugue
B. Fugue

GraphLab
PSGD

Figure 1.4: Fugue is 26 times faster: Improvements in distributed machine learning with
Fugue for topic modeling, dictionary learning, and community detection.

• Interpretable Recommendations: In Chapter 7, a succinct, interpretable recom-
mender system based on co-clustering. We find that our model, ACCAMS, matches
state-of-the-art methods in accuracy while having a 4 times smaller model.

• Explaining Recommendations: In Chapter 8, we build on the additive co-clustering
model of Chapter 7 to explain recommendations to users. We offer PACO, a Pois-
son additive co-clustering model with an efficient sampling algorithm to predict
personalized review words.

Impact:
• ACCAMS (Ch. 7) has been open-sourced at cs.cmu.edu/~abeutel/accams.
• Since it was published in WWW earlier this year, ACCAMS has been accessed over

150 times from 14 universities and over 20 countries.

1.1.3 Scalable Machine Learning

How can we efficiently learn user behavior models over many machines?
How can our learning algorithms adapt to the messy realities of “the cloud,” such as stragglers?

To scale complex behavior models to the high volume and variety of data present online,
it is important to efficiently distribute learning of our models. In Part IV, we exploit
the structure of our models and the stochastic nature of learning [30, 32, 127]. While
some methods above, such as CopyCatch (Ch. 4), include custom implementations that
scale to large graphs, many other methods are based on more common latent factor
structure. Therefore, we focus on effectively learning massive latent factor models: (1)
for attributed hypergraphs, (2) at scale, (3) quickly, and (4) flexibly.

In Chapter 9 we examine how to learn latent factor models for complex datasets
where entities have relations of multiple types, represented as tensors and joined tensors.
In order to scale, we need to handle not just “big data” but also learn a model for many

8

http://cs.cmu.edu/~abeutel/accams

entities with complex interactions. We offer FlexiFaCT [30] to scale learning of huge
models, with billions of parameters, from big datasets. FlexiFaCT scales effectively by
understanding the intrinsic structure and independence assumptions of these models
and thus partitioning both data and model across many machines. As a result, FlexiFaCT
can scale learning to billions of parameters.

Distributed machine learning often relies on unreliable clusters, with concurrent
programs causing slow machines or even high-demand machines being preempted. In
Chapter 10 we offer a novel solution for fast machines to not waste time when waiting
for slower machines, called stragglers. By exploiting the stochastic nature of machine
learning, Fugue [127] is up to 26 times faster than competing methods, as seen in Figure
1.4.

Both of these solutions exploit the particular structure of relational models and the
unique properties of machine learning algorithms to address often frustrating realities
of learning these models in the real world. By focusing on the particular properties of
learning this broad class of models we develop significantly improved solutions.
Contributions:

• Distributed Modeling of Attributed Hypergraphs: In Chapter 9, we offer Flexi-
FaCT, a distributed system for coupled tensor factorization. FlexiFaCT is flexible to
a variety of objectives and scales to billions of parameters.

• Fast in the face of Stragglers: In Chapter 10, we offer a novel technique for
efficient distributed learning, even if some machines are much slower than others,
called stragglers. We demonstrate that our system, Fugue, is faster than competitors
for topic modeling, dictionary learning, and community detection, offering up to
26 times faster speeds.

Impact:
• FlexiFaCT [30] is the most cited paper of SDM 20141.
• FlexiFaCT (Ch. 9) is open-sourced on Github and has been forked seven times.
• FlexiFaCT (Ch. 9) and Fugue (Ch. 10) were taught in Carnegie Mellon’s graduate

course “Machine Learning with Large Datasets” (10-805) both in 2014 and 2015.

1Based on scholar.google.com/scholar?cites=7979229435915048938, as of January 1, 2016.

9

http://curtis.ml.cmu.edu/w/courses/index.php/Machine_Learning_with_Large_Datasets_10-605_in_Spring_2015
https://scholar.google.com/scholar?cites=7979229435915048938

1.2 Overarching Thesis Statements

Across all parts of this dissertation, we follow three primary guiding principles:

Driving Thesis Statements
T1. Making use of Interaction Context: By modeling rich edge attributes in

graphs, we can give greater insight into user behavior.
T2. Normal and Abnormal Behavior—Two Sides of the Same Coin: By uni-

fying fraud detection and recommendation perspectives, we can use the
same user behavior modeling techniques to improve both tasks.

T3. Bridging Models and Scalable Systems: By jointly understanding model
structures, learning algorithms, and distributed systems, we can better
scale learning of user behavior models.

At the end of this dissertation, in Section 12.1, we will review how the models and
algorithms offered support these theses.

10

Chapter 2

Preliminaries and Background

We begin with an overview of the notation and concepts that will be used throughout
this dissertation. In discussing background concepts, we will cite the general related
work, but will go into more depth on these topics in the relevant parts of this thesis.

Unless noted otherwise, we will use the following notation. We will use capital script
characters, e.g., E , to denote sets, capital boldface script characters, e.g., X to denote
a tensor, capital boldface non-script characters, e.g., Y to denote a matrix, lowercase
boldface character, e.g., y, to denote a vector, and non-boldface non-script characters,
e.g., i, to denote scalars. X i,j,k denotes the scalar in the (i, j, k) position of the tensor X ,
Yi,j denotes the scalar in the (i, j) position of matrix Y, and yi denotes the scalar in the
ith position of vector y. We use Yi,∗ to denote the vector of scalars Yi,j for all j. We will
often denote different instances of a matrix or tensor with an exponent, e.g., X (`).

2.1 Graph Structure

As given by the title, this dissertation takes a graph-based perspective to user behavior
modeling. Therefore, we begin by formally defining the types of graphs we will consider.
A graph is broadly defined by a set of nodes (also called vertices) V and a set of edges E
that connect nodes. In many of our examples, nodes are users or items and edges are
interactions between these nodes. By varying the precise definition of V and E we can
describe different graph patterns:

Undirected graphs In undirected graphs an edge describes a symmetric relation be-
tween two nodes. That is, we say that an edge exists between u ∈ V and v ∈ V if
(u, v) ∈ E or (v, u) ∈ E . As such, E ⊆ {(u, v)|u ∈ V , v ∈ V}. Facebook’s and LinkedIn’s
friendship graphs are examples of undirected graphs of this type, where each node is a
person and there is an edge between two users if they are friends.

Bipartite graphs In many of our settings, we observe users interacting with items in the
world around them. In this case, we see that there are two classes of nodes and all edges

11

represent interactions between nodes of opposite classes. For example, users Like pages
on Facebook or users watch movies on Netflix. In these cases, we can consider our nodes
to come from two distinct sets: V = U ∪W and U ∩W = ∅. As such, edges represent
relations between nodes in sets U andW ; formally, E ⊆ {(u, v)|u ∈ U , v ∈ W}. Bipartite
graphs cover a wide variety of applications online, such as Facebook’s “who-Likes-what”
graph, Netflix’s “who-watches-what” graph, Amazon’s “who-buys-what” graph, Yelp’s
“who-reviews-what” graph, and many others.

Directed graphs In some applications, relationships are not symmetric. For example
on Twitter, just because User-A follows User-B does not mean that User-B follows User-
A. In this case, edges are given as ordered sets, where there is an edge from u to v if
(u, v) ∈ E . In this case, just because (u, v) ∈ E does not mean that (v, u) ∈ E . Note, we
can sometimes view directed graphs of this form similar to bipartite graphs, where we
separate a node u into two distinct entities, one performing actions and one receiving
actions. For example, we can consider a user on Twitter either by who he follows or who
follows him.

Hypergraphs In some cases, edges can represent relations between more than two
entities. This is called a hypergraph; most broadly edges can represent relations between
any subset of nodes E ⊆ 2V . In many of the applications considered here, we focus on
a constrained type of hypergraph, where there are multiple types of nodes and edges
represent relations among one node of each type. For example, on YouTube we may
observe the relation User-A watches Video-1 from IP-1. In this case, we have three classes
of nodes: V = V1∪V2∪V3 and edges represent undirected relations among nodes of each
class: E = {(u, v, w)|u ∈ V1, v ∈ V2, w ∈ V3}.

Subgraphs In some cases, we only want to consider part of a graph. To do this, we
focus on subgraphs. Given a subset of nodes V ′ ⊆ V , we can observe the induced subgraph
G′ = (V ′, E ′) ⊆ G where E ′ = {(u, v) ∈ E|u, v ∈ V ′}. That is, a subgraph induced over a
set of nodes is the graph consisting of that set of nodes and the edges among them from
the original graph.

Joined graphs The graph formulations above can describe many types of relationships
observed online, but in most applications there are more than one type of relation. As
such, we will in some cases jointly consider multiple graphs. For example, we could
jointly consider Facebook’s “who-Likes-what” graph G1 = (U ∪W , E1) at the same time
as considering Facebook’s friendship graph G2 = (U , E2). In this case we have two
different sets of edges, but the user nodes U are the same in both graphs.

Attributed nodes While binary edge relations can be very informative, they are not the
only type of data available. In many applications, we may observe one or more attributes
about the nodes in our graph. For example, on many services we may observe the time

12

that an account was created or the latitude and longitude of the account holder’s billing
address. In these cases, we can consider that we observe a function a : V → Rd, where we
observe d real valued attributes for each node. In some cases, our attribute data may be
more complex than a real valued vector. A subtle point is that if the observed attributes
are unordered discrete values, we can consider the node attributes to be a joined graph.

Attributed edges Another type of data of particular importance in this dissertation
are edge attributes. In many applications, interactions between users and the world
around them contain lots of context. For example, we may observe the time at which
a user watches a movie on Netflix or reviews a restaurant on Yelp. We can formulate
this contextual data as observing a function c : E → Rd, where we observe d real-valued
attributes for each edge. In some cases, our contextual data may be more complex than a
real-valued vector.

Here too, we find that if our edge attributes are unordered discrete values then
we can formulate the dataset as a hypergraph. In some cases we will convert real-
valued edge attributes to unordered discrete attributes so as to use hypergraph methods
(and described later tensor methods). This choice highly depends on the underlying
assumptions of the model, and if viewing the attribute as unordered and discrete is
reasonable.

2.2 Mathematical data structures

While thinking about real world interactions as large, attributed hypergraphs is a pow-
erful formalization, it is often useful to refer to these graphs in terms of linear algebra
primitives.

Graphs as matrices One of the most common formulations for graphs is as matrices.
If we have a bipartite graph G = (U ∪W , E) where |U| = n and |W| = m, then we can
observe matrix X ∈ Rn×m, where

Xu,v =

{
1 if (u, v) ∈ E
0 if (u, v) 6∈ E (2.1)

Under this formulation, unipartite undirected graphs are given by symmetric matrices.
If we observe a single attribute, such as the rating in the user-rates-movie graph of

Netflix, then we will often consider the graph to be represented by matrix X ∈ Rn×m,
where

Xu,v =

{
c((u, v)) if (u, v) ∈ E
0 if (u, v) 6∈ E (2.2)

Depending on the semantics of our application, we will consider the cells in the matrix
for which there is no edge to be either 0 or missing. For example, if the attribute is the

13

rating a user gives a movie, then we do not want to consider a user to give a 0 rating to
all movies he hasn’t watched; rather, we will consider those values to be unobserved
and thus missing. However, if the attribute is the number of times that a user visits a
particular website or the amount of time the user has spent on that website, then all
websites that the user has not visited should in fact have an observed value of 0. In
applications where cells have missing values, we will slightly abuse the notation to
iterate over observed cells in the matrix by being able to check if (u, v) ∈X .

Hypergraphs as tensors As described above, many applications contain relations
among more than two types of nodes, thus creating a hypergraph G = (V1 ∪ V2 ∪ V3, E),
where |V1| = n1, |V2| = n2, and |V3| = n3. In these cases, we can represent our hypergraph
as a tensor X ∈ Rn1×n2×n3 , where

X i,j,k =

{
1 if (i, j, k) ∈ E
0 if (i, j, k) 6∈ E (2.3)

Additionally, similar to the attributed graphs above, the tensor syntax can be used to
encode an attribute on the edges of the hypergraph.

Joined graphs In cases where we have joined graphs with overlapping nodes, we can
view each graph as a separate matrix or tensor and then define models that include
multiple data sources.

2.3 Model Structure

To effectively model graphs of user behavior, we will build on a couple common model
structures. We begin now by outlining these models.

2.3.1 Factorization

One of the most prevalent techniques to model graph data is based on decomposing
or approximating a matrix or tensor by a product of component parts, called matrix or
tensor factorization. Likely, the oldest technique in this class of models is the singular
value decomposition (SVD), where a matrix X ∈ Rn×m can be decomposed into matrices
U ∈ Rn×k, V ∈ Rm×k, and Σ is a diagonal k × k matrix, such that UΣV > = X [203].
The size of the model is given by k, which is often referred to as the rank of the matrix,
or if the model is truncated, as the rank of the model. The SVD has many interesting
properties, but most are outside the scope of this dissertation.

The generalization of the SVD to tensors is called the PARAFAC or Canonical Polyadic
(CP) decomposition [93]. In the PARAFAC decomposition, a tensor X ∈ Rn1×n2×n3 is
decomposed into component matrices U ∈ Rn1×k, V ∈ Rn2×k, and W ∈ Rn3×k, such
that X = U ⊗ V ⊗W . Here, ⊗ represents the outer product, and as a result, a given

14

entry X u,v,w =
∑k

r=1 Uu,rVv,rWw,r. Like the SVD, the PARAFAC decomposition has been
well studied and has many interesting properties, but is not a primary focus of this
dissertation.

Both the SVD and the PARAFAC decomposition are precise algorithms for learning
a decomposition, requiring certain properties of the underlying data (e.g., that there
are no missing values) and offering certain guarantees of the resulting decompositions.
However, we can loosen these guarantees and examine the broader class of factorizations.
(We will focus here on matrix factorizations, but the explanation can be easily generalized
to tensor factorizations.) Broadly speaking, matrix factorization approximates a matrix
X by UV >. We can view our model, U and V , from different perspectives. One way to
view the model is as a sum of rank-1 models:

X ≈
K∑
k=1

U∗,kV
>
∗,k (2.4)

In an SVD, each rank-1 model captures an eigenvector of your matrix (or graph). These
eigenvectors have been used to find trusted communities [118]. More broadly, each rank-
1 factorization can be thought of as capturing a block of common behavior or cluster
in the matrix [134, 177]. These groups of common behavior have been found to match
genres in movie-ratings matrices, topics in document-by-word matrices [36], functional
regions in the brain [175], and many other interesting patterns.

An alternative perspective on factorizations is to view them as latent factor models
finding latent representations or embeddings of nodes in the graph. That is, if our matrix
contains the user-rates-movie graph, then Ui,∗ is the latent representation of user i and
Vj,∗ is the latent representation of movie j; we will often use ui and vj for shorthand for
these per-user and per-item embeddings (note, indices i and j here don’t return the scalar
in the vector but instead denote which vector we are using). Under this perspective, each
value in the matrix Xi,j is approximated by ui · vj . Because of this representation, matrix
factorization is often referred to as learning a bilinear model. (Tensor factorization, as
defined above, is a tri-linear model.)

Joining both perspectives, we can view the latent representations as offering the
nodes “membership” or “preferences” across the different communities/topics/genres
in the factorization.

A wide variety of factorization models have been proposed, adding different con-
straints or components to match different application concerns. We will discuss the
specific relevant related work in each part of this dissertation.

2.3.2 Clustering

Aside from factorization models, we also build on clustering algorithms to understand
and model graphs. Broadly speaking, clustering finds subsets of items in the data or
nodes in the graph that are similar.

One view of clustering comes from the matrix perspective of our data. Given data
matrix X , we can consider each row to be a data point xi and find groups of data points

15

that are close together under a particular distance metric. Typically, we try to find a
cluster center v such that many points are close to the center. While there are many
different clustering variants, we will focus on a few different perspectives and design
decisions in using clustering for user behavior modeling.

Global vs. local clustering Depending on our application, we may want all points to
be assigned to clusters or we may want to just find certain types of well distinguished
clusters. For example, if we want to cluster movies to discover genres, then we would
want all movies to fall into a genre, and thus would perform a global clustering. Alterna-
tively, if we want to find groups of fraudulent users, then we do not expect most users to
fall into any fraudulent cluster and instead can focus on finding locally dense clusters.

Hard vs. soft clustering Another important distinction between different clustering
techniques is if cluster membership is “hard” or “soft.” Hard cluster membership means
that a data point either belongs or does not belong to a cluster; for example, a movie is is
either rated “PG-13” or its not. In contrast, soft cluster membership allows for data points
to partially belong to a given cluster; for example, a movie can be considered a little scary.
Mathematically, hard cluster membership is defined by binary assignment to clusters,
and soft cluster membership is defined by real-valued, non-negative membership to
clusters. K-means clustering is an example of hard clustering [22, 151]; non-negative
matrix factorization [134] or topic modeling [36] can be interpreted as soft clustering.

Subspace clustering Many clustering techniques are based on a predefined distance
metric between two points d(x,y). In some applications, we do not care that a cluster
of points are similar in all dimensions, but rather that they are similar in a subset of
dimensions. For example, a group of people can be considered similar if they like similar
music, independent of their religious beliefs.

In subspace clustering, the algorithm must find both the set of data points that are
similar as well as the set of features over which they are similar [126]. For example, if we
define m ∈ {0, 1}f and our metric to be Euclidean distance in a subspace

dm(x,y) =

f∑
i=1

mi(xi − yi)
2,

then subspace learning must learn both cluster centers as well as the subspace m. For a
broad survey see [126].

Co-clustering Subspace clustering requires that sets of rows are similar over a set
of columns. We can generalize these clustering ideas to co-clustering (also called bi-
clustering), where we simultaneously cluster both the rows and columns of the data
matrix [27]. In co-clustering, each row i is assigned to cluster ci ∈ {1 . . . k} and each
column j is assigned to cluster dj ∈ {1 . . . k}. We can then consider cluster assignments
to be good if we can find a model T ∈ Rk×k such that Xi,j is approximated well by Tci,dj .

16

Co-clustering can be viewed as a matrix factorization in which X ≈ UTV >, where
U and V store the cluster assignments for the rows and columns respectively [198]. The
technique was originally used for understanding the clustering of rows and columns of
a matrix in biology [94]. However, many algorithms and applications have since been
proposed for co-clustering, which we will discuss in more detail in the relevant sections
of this dissertation.

Graph clustering The above clustering concepts can also be mapped to clustering over
graphs. For example, clustering on the adjacency matrix can be viewed as clustering
nodes based on who they connect to. Co-clustering can be viewed as jointly clustering
both classes of nodes in a bipartite graph.

A significant amount of research in the graph mining community has also focused on
graph clustering, with the goal of finding subgraphs that meet a pre-specified criteria.
For example, one common challenging problem is to find the subgraph with the largest
average degree [47]. A survey of graph clustering methods can be found [138].

2.4 Learning

So far we have focused on the types of data we will encounter as well as the types of
models we will use to describe that data. However, how to learn the model parameters
that best match the given data has not yet been described. For matrix factorization,
we observe the data X but need to find the values of the model parameters U ,V ; for
co-clustering, we need to find values of T as well as the cluster assignments c,d. We will
now give a high-level overview of the way learning problems are framed.

Objective functions In order to learn the model parameters, we need to specify goals
for a “good” setting of the model parameters. Generally speaking, as described above,
we want our model to approximate our data well. To be more precise, we provide a
loss function between the data and our model. For example, the SVD minimizes the
Frobenius norm between our data and our model:

arg min
U ,Σ,V

‖X −UΣV >‖2
F

Particularly common in this dissertation is the use of squared error for real-valued
prediction on matrices with missing values:

arg min
U ,V

∑
(i,j)∈X

(Xi,j −Ui,∗ ·Vj,∗)
2

Note, here we use the earlier specified notation that we can iterate over only the observed
values in our matrix X . In all cases, our goal is learn the values of our parameters so as
to minimize the given objective.

17

Regularization and constraints In many cases, we would like to restrict the parameter
search to meet certain application criteria. For example, it can be useful to have a
non-negative matrix factorization, U ,V ≥ 0. In other cases, we may want part of the
parameter space to be sparse, with only a few non-zero values. This can be encouraged
through including the `1 norm over the parameters as regularization in the objective
function:

arg min
U ,V

∑
(i,j)∈X

(Xi,j −Ui,∗ ·Vj,∗)
2 + ‖V ‖1

A wide variety of different constraints and regularizations have been proposed through
machine learning.

Optimization The field of optimization studies how to efficiently learn parameters that
minimize the given objective. While there are many different optimization algorithms,
we will primarily focus on those that match our data, model and application constraints.
Of particular note are stochastic gradient descent [37] and alternating least squares
[93, 104]. We will give a more in-depth explanation of the approaches in the relevant
sections.

Bayesian models Apart from specifying our model by the approximation loss, we
can also specify it as a generative Bayesian model. That is, we can describe a Bayesian
model by which we believe our data was generated, and then learn the parameters of
our Bayesian model that make the maximize the likelihood of our data being generated.
We can use as an example Probabilistic Matrix Factorization [159]. Under this model, we
believe that a particular rating Xi,j is generated by the Gaussian N (Ui,∗ ·Vj,∗, σ

2). We
want to learn the parameters that maximize the likelihood of the data, or alternatively
framed, minimize the negative log-likelihood of the data:

arg min
U ,V

∑
(i,j)∈X

− logN (Xi,j|Ui,∗ ·Vj,∗, σ
2)

= arg min
U ,V

∑
(i,j)∈X

1

2σ2
(Xi,j −Ui,∗ ·Vj,∗)

2

As we see above, this is equivalent to minimizing the squared error.
Under this Bayesian framework, the model [159] believes that each user’s and each

item’s latent representation is generated from a spherical Gaussian distribution, e.g.,
ui ∼ N (0, σ2

uI). These terms also contribute to the objective, as we try to minimize the
entire negative log likelihood, but can be viewed as analogous to the regularization
described previously.

By framing our model as a generative Bayesian model, we can make use of the broad
set of literature on Bayesian learning, such as sampling and belief propagation. We will
describe the relevant techniques at the corresponding parts of the dissertation.

18

Part II

Modeling Abnormal Behavior

Based on work previously published in
TKDD [111], WWW 2013 [33], and ICDM 2015 [107].

19

Introduction

How can we detect fraudulent user behavior?

In many domains, it is valuable to detect and understand anomalous behavior. Online,
this challenge is even more important; as web services have increasingly relied on social
data to provide information to their users, fraudulent behavior has increasingly become a
threat. For just a few dollars, anyone can buy popularity, promote their own products or
opinions, or in some cases slander a competitor. Fraudsters sell followers on Twitter, fake
Page Likes on Facebook, upvotes on Reddit, ratings on mobile app stores, or reviews on
Yelp and Amazon. This sort of fraudulent behavior deceives honest users and distorts our
models of normal behavior, corroding the usefulness of these online services. The risks
posed by fraud online are significant. In S-1 filings to the U.S. Securities and Exchange
Commission, both Facebook and Twitter list deceptive behavior as risks that “may harm
our reputation and negatively affect our business” and even state that 5% of their users
are likely fake [70]. Because of the damaging effects of fraud, it is crucial that we detect
and remove fraudulent behavior.

In all of the examples above, fraud is a group of purchased edges in a graph. Fake
followers on Twitter are purchased edges in the “who-follows-whom” graph, illegitimate
Page Likes are purchased edges in the “who-Likes-what” graph, and fake ratings on
Netflix are edges in the “who-rates-what” graph. Because the attacks only require
adding edges to the graph, previous content-based approaches for finding spam, such as
analyzing users’ tweets and profiles [11, 41, 180], will often miss this dubious behavior.

Instead, in the following chapters, we attack the fraudsters at their critical weakness.
To be successful they need to add many edges. We therefore focus on modeling suspicious
graph patterns and structures to detect and limit fraudsters. In pursuit of this goal, we
offer the following contributions:

• Detect Fraud in Static Graphs: Central to all of the attacks above is that fraudsters
are selling many edges. Therefore, in Chapter 3 we offer CatchSync, an algorithm to
detect suspicious behavior based purely on graph structure. CatchSync has detected
fraud on both Twitter and Tencent Weibo, improving over previous methods by up
to 36%.

• Detect Fraud in Graphs with Time: In many applications, the temporal patterns
of edges can be very insightful. We describe in Chapter 4 CopyCatch, a fraud de-
tection system that makes use of temporal graph patterns to detect purchased Page
Likes on Facebook. We offer a theoretical analysis of this graph based approach

21

and demonstrate the success of CopyCatch at Facebook.
• Detect Fraud in Graphs with Multiple Attributes: Interactions online often in-

clude rich contextual data, such as the IP address on which it took place as well
as the time. To make use of the full variety of data, we design in Chapter 5 a
novel metric of suspiciousness and fraud detection algorithm that makes use of
all data available, while ignoring noisy data. Our algorithm, CrossSpot, meets all
theoretical requirements and detects purchased retweets and hashtag boosting on
Tencent Weibo.

II.1 Related Work

We begin with a brief survey of the related work in fraud and anomaly detection. In each
of the following chapters we will discuss in more detail their relationship to the most
relevant pieces of related work.

II.1.1 Spammer and Fraudster Detection

Detecting fraudsters and spammers online has been a central research focus in multiple
communities and for many companies. In this effort, there have been a few different
approaches taken to find the unique patterns left by fraudsters.

One branch of recent research to detect spammers has focused on content-based
methods, primarily finding useful features about the users or the items [11, 28, 103, 114].
For example, Jindal et al. analyzed Amazon reviews, examining product, reviewer, rating,
date, review title/body and feedbacks, to catch opinion spam [114]. Perez et al. proposed
SPOT to catch suspicious Twitter profiles, by modeling text and malicious URLs in tweets
and scoring their suspiciousness [180]. Our work in the following chapters is orthogonal
to these approaches because we primarily focus on graph structure and group attacks.

A second branch of research has focused on directly exploiting the social and web
linkage patterns to detect fraudsters. Many methods have been proposed based on belief
propagation (BP) [15, 48, 171] or PageRank-like scores [41, 79, 90, 227]. For example,
NetProbe [171] uses a small list of known fraudsters to blame all the fraudulent nodes
on the graph.

II.1.2 Graph-based Anomaly Detection

Many algorithms have been developed for finding general anomalies in graphs [12, 45,
193], including discovering structural anomalies [66, 168] and propagating beliefs for
surprising nodes [160, 204]. For example, AUTOPART [43] finds outlier edges across node
groups, ODDBALL [17] finds near-cliques and stars, and [154, 179] focus on finding novel
subgraphs in large networks.

SVD-based Methods: Decomposition methods have been widely used to understand
graphs, including subspace clustering [105], community detection [49, 183], and pattern

22

discovery [85, 119, 120, 206]. Implicitly, the SVD focuses on dense regions of a matrix.
Prakash et al. proposed EigenSpokes which reads scatter plots of pairs of singular vectors
to find patterns and communities [183]. These ideas were extended in [109, 110, 190]
for finding other anomalous patterns based on SVD embeddings. Chen et al. extracted
dense subgraphs using a spectral cluster framework [49]. For multimodal data, tensor
decompositions have been applied in many applications [119, 206]. For example, high-
order singular value can be thought to represent the importance of the cluster [105].

II.1.3 Subgraph Mining

One common approach to finding interesting patterns in graphs is to find interesting
subgraphs. A number of subgraph mining algorithms have been investigated [55],
such as mining frequent subgraph patterns [147, 231, 244], mining dense subgraphs
[49, 80, 128, 222] and finding quasi-cliques [179, 213]. In addition, some variants of
community detection algorithms have been proposed to discover dense clusters [74]
and well-connected communities, such as the SVD-based methods described above, e.g.,
[183].

Of particular noteworthiness, significant work has focused on looking for dense
subgraphs with high average degree [20, 23, 26, 138]. Charikar gave simple greedy
approximation algorithms to find highly connected subgraphs of large average degree
[47].

II.1.4 Co-clustering

As described in Section 2.3.2, we can sometimes view graph clustering as co-clustering
over the adjacency matrix or similar matrices. As described previously, co-clustering is
NP-hard, so many approaches use an approximation of the problem. There has been
extensive research on co-clustering including [18, 27, 44, 63, 176], with applications to
anomaly and intrusion detection [174]. Papadimitriou et al. [173] offer an iterative
distributed algorithm for performing co-clustering with MapReduce.

23

24

Chapter 3

Detect Fraud in Static Graphs

Given a directed graph of millions of nodes, how can we automatically spot anomalous,
suspicious nodes, judging only from their connectivity patterns? Suspicious graph
patterns show up in many applications, from Twitter users who buy fake followers,
manipulating the social network, to botnet members performing distributed denial of
service attacks, disturbing the network traffic graph. We propose a fast and effective
method, CatchSync, which exploits two of the tell-tale signs left in graphs by fraudsters:
(a) synchronized behavior: suspicious nodes have extremely similar behavior pattern,
because they are often required to perform some task together (such as follow the same
user); and (b) rare behavior: their connectivity patterns are very different from the
majority. We introduce novel measures to quantify both concepts (“synchronicity” and
“normality”) and we propose a parameter-free algorithm that works on the resulting
synchronicity-normality plots. Thanks to careful design, CatchSync has the following
desirable properties: (a) it is scalable to large datasets, being linear on the graph size; (b)
it is parameter free; and (c) it is side-information-oblivious: it can operate using only the
topology, without needing labeled data or profile information. We applied CatchSync on
two large, real datasets 1-billion-edge Twitter social graph and 3-billion-edge Tencent Weibo
social graph, and several synthetic ones; CatchSync consistently outperforms existing
competitors, both in detection accuracy by 36% on Twitter and 20% on Tencent Weibo, as
well as in speed.

3.1 Introduction

Given a directed graph within millions of nodes, can we tell which nodes are suspicious
just based on the graph structure? For many applications, fraudsters try to manipulate
networks for personal gain. For example, in social networks, like Twitter’s “who-follows-
whom” graph, fraudsters are paid to make certain accounts seem more legitimate or
famous through giving them many additional followers. The spammers deliver these
purchases through either generating fake accounts or controlling real accounts through
malware and using them to follow their “customers” [1, 2].

25

In this case, the attack is strictly manipulating the Twitter graph to give certain
accounts undue credibility. As described above and will be demonstrated in Section
3.4, content-based approaches analyzing users’ tweets and profiles [11, 41, 180] often
miss these purchased followers. Rather, we take a strictly graph mining approach, using
exclusively the graph structure to find nodes that are suspicious because of their position
in the graph.

By abstracting the attack to a graph mining problem, we find that it covers a wide
variety of suspicious behavior found in the real world. For example, botnets often control
hundreds of thousands of machines and use them to perform distributed denial of service
(DDoS) attacks on websites, creating a similar pattern in the “who-visits-whom” web
traffic graph. Online, on sites like Amazon or Yelp, spammers will create accounts to
skew ratings for certain products or places, manipulating edges in the “who-rates-what”
graph.

(a) Synchronized behavior (b) TWITTERSG (c) WEIBOSG

Figure 3.1: Suspicious followers and their footprints: (a) We spot synchronized behav-
ior that millions of Twitter accounts follow the same group of followees. (b) Synchronized
behavior causes spikes at out-degree distribution and the distribution becomes smoother
after the removal of our suspects. (c) We have the same result on Tencent Weibo.

In this chapter, we focus on the Twitter attack, looking for groups of accounts used to
unfairly bolster the popularity of their customers. Figure 3.1(a) illustrates the scenario:
it shows a set of suspicious followers and their followees. The followers, all 3 million
of them, follow exactly 20 users from the same group of followees, creating a strange,
rare connectivity structure. The side information, like the similarity of the login-names
(@Buy_AB22, @Buy_BT27, @Buy_BT68), is an extra reason to suspect that they were
created by a script.

Our main viewpoint: In more detail, suspicious nodes including suspicious followers
and botnets exhibit behavior that is (a) synchronized (cause to occur at the same rate):
they often connect to the very same 10, 100 or 500 targets and (b) abnormal/rare: their
behavior pattern is very different from the majority of nodes. In this chapter, we offer a
fast and effective method, CatchSync, to measure the two properties (synchronicity and
the normality) of a group of nodes; we spot the suspicious nodes and efficiently catch

26

http://twitter.com/Buy_AB22
http://twitter.com/Buy_BT27
http://twitter.com/Buy_BT68

Synchronized Parameter No side
behaviors? free? information?

Proposed CatchSync
√ √ √

Graph- AUTOPART [43] ×, edges across groups
√ √

based OUTRANK [160] ×, high scoring nodes
√ √

Anomaly ODDBALL [17] ×, cliques or stars
√ √

NETPROBE [171] ×, fraudulent nodes ×, prop. matrix ×, committed fraud

Subgraph SPOKEN [183] ×, dense communities × √

Mining DSE [49] ×, dG-dense subgraphs ×, density dG
√

Spammer SPOT [180] ×, twitter spammers
√ ×, tweet text & URLs

Detection SYBILRANK [41] ×, social sybils
√ ×, early non-Sybils

Table 3.1: Compare CatchSync with existing approaches. It does not require any pa-
rameter or side information.

them in the synchronicity-normality plot. We study two real social graphs from Twitter
and Tencent Weibo (denoted by TWITTERSG and WEIBOSG for abbreviation) and use
them for evaluations. Note that both have millions of nodes and billions of edges.

Figure 3.1 gives an elaborate illustration on the effectiveness of CatchSync. As
we mentioned earlier, the distributions of the social network data have been seriously
distorted by the volume of suspicious followers. Here we plot the out-degree distribution
of TWITTERSG and WEIBOSG in log-log scale, which should have smooth, power-
law-like distributions. However, several spikes appear, which are presumably caused
by suspicious followers [38]. For example, as shown in Figure 3.1(a), the 3 million
followers on Twitter who connect to exactly 20 users create a spike at out-degree 20
on the distribution in Figure 3.1(b). After removing the nodes that CatchSync flags as
suspicious (blue points), the distributions become much smoother and closer to a power
law (red points).

Main contributions: In short, our method CatchSync has the following desirable
properties:

• Effectiveness: It indeed spots groups of source-target groups, with suspicious
behavior (see Section 3.4).

• Scalability: It is linear in the number of edges, and thus applicable to internet-scale
graphs.

• Parameter free: The operator does not need to specify any parameters such as the
density, the number of groups and the scale of each group.

• Side information oblivious: It needs no side information. It is solely based
on topology, and it requires neither a training set, nor labeled nodes, nor node
attributes.

27

Relationship to Related Work In Section II.1, we have given a general overview of
the related work. As shown in Table 3.1, most of the previously proposed methods are
orthogonal to our approach. Unlike most of the other graph-based anomaly detection
methods, we focus here on labeling suspicious nodes based on finding suspiciously
synchronized and strange behavior in static graphs. Methodologically, our algorithm
follows a similar intuition to that of two-sample tests; [86] gives a good overview of
such algorithms. However, as two-sample tests are more loosely defined than the
synchronized and abnormal patterns detected by CatchSync, it is unclear if using a two-
sample testing algorithm would give equivalent results or find non-fraudulent anomalies;
this is an interesting direction for future exploration. We compare CatchSync to previous
spam detection methods for finding fraud on Twitter, we do not make use of any content-
based data, such as profile information or tweets [11, 103, 180]. In Section 3.4 we combine
our results with the content-based method of [180], and demonstrate that these methods
are complimentary, achieving better results by combining the methods.

3.2 Synchronized Behavior Detection

In this section, we first propose the problem of synchronized behavior detection and
then present a fast and effective solution.

3.2.1 Problem Definition

Our goal is to find suspicious nodes on a directed graph and thus the problem is defined
as:
Given: a directed graph of N nodes in the node set U
Find: a set of suspicious source nodes (fake followers, botnets, etc.) Usync, and a set
of suspicious target nodes (followees, target hosts, etc.) Vsync that the source nodes
have synchronized and abnormal behaviors connecting to the target nodes. The word
“synchronized” means that the source nodes have very similar behavior pattern, and
“abnormal” means that their behavior pattern is very different from the majority of nodes.
Table 3.2 gives a list of the symbols we use throughout the chapter.

3.2.2 Proposed Approach

In this section, we introduce our approach towards the above problem. First, we give
a feature space for target nodes. Second, we show the definitions of synchronicity and
normality that measure the nodes’ behavior patterns. Then we provide a general theorem
of the normal shape of the synchronicity-normality plot. Next, we detect the outliers on
the plot, which are suspicious nodes with synchronize behavior on the graph.

28

(a) InF-plot on TWITTERSG (b) SN-plot on TWITTERSG

(c) InF-plot on WEIBOSG (d) SN-plot on WEIBOSG

Figure 3.2: Synchronicity-normality plot: the source nodes X have synchronized and
abnormal behaviors that their targets are coherent in the InF-plots (a) and (c), while Y’s
targets are not. X has big synchronicity and small normality in the SN-plots (b) and (d)
while Y is near the parabolic, theoretical lower limit.

29

Symbol Definition and Description

U The set of nodes
N=|U| The number of node
I(u) The set of node u’s sources
O(u) The set of node u’s targets
di(u)=|I(u)| In-degree of node u (number of sources)
do(u)=|O(u)| Out-degree of node u (number of targets)
hub(u), aut(u) “Hubness” and “authoritativeness” of u
sync(u) “Synchronicity” of node u’s targets
norm(u) “Normality” of node u’s targets
p(u) k-dimensional feature vector of node u
c(u,v) Closeness of u and v in feature space

Table 3.2: Symbols and Definitions

Feature space

It has been established by past works that many data mining approaches on graphs
benefit from exploiting the features from the nodes’ behavior patterns, including (a) out-
degree and in-degree, (b) HITS score (hubness and authoritativeness), (c) betweenness
centrality, (e) node in-weight and out-weight, if the graph is weighted, (f) the score of the
node in the i-th left or right singular vector, and many more. We denote k-dimensional
feature vector of node u by p(u) ∈ Rk. We extract the feature vector from graph structure
that somewhat reflects the node’s behavior pattern. The features could be any from the
above and the vector could have any dimensionality. In this chapter, we choose the degree
values and HITS score. We denote a set of u’s source nodes by I(u) and a set of u’s target
nodes by O(u). The in-degree di(u) of node u is the number of its sources, i.e. the size
of I(u). The out-degree do(u) of node u is the number of its targets, i.e. the size of O(u).
Also we denote by hub(u) the hubness of node u and by aut(u) the authoritativeness of u,
according to Kleinberg’s famous work [118]. We choose these features for two reasons:
they are fast to compute, as well as easy to plot. As our experiments show, they work well
in pin-pointing suspicious nodes. Note that if the side information is available, it could
be regarded as additional features that would be easily incorporated, and hopefully, the
performance could be better.

Here we present some plots of the feature spaces. For a source node u, we plot a
heat map of the 2-D feature space of out-degree do(u) vs hubness hub(u) in log-log scale,
called “OutF-plot”. Similarly, for a target node u, the heat map of the feature space of
in-degree di(u) vs authoritativeness aut(u) in log-log scale is called “InF-plot”. Table 3.3
summarizes the description of all the plots.

Specifically, Figure 3.2(a) and 3.2(c) are InF-plots of TWITTERSG and WEIBOSG.

30

Plot Description

OutF-plot A heat map of source nodes in feature space:
typically, out-degree vs hubness

InF-plot A heat map of target nodes in feature space:
typically, in-degree vs authoritativeness

SN-plot A heat map of source nodes in
synchronicity vs normality of their targets

Table 3.3: Plots and Descriptions

On TWITTERSG, we denote by X one of the suspicious followers we mentioned in
Figure 3.1(a) and by Y an ordinary user whose out-degree is the same as X’s. We tag their
targets (followees) in the Figure 3.2(a) and find out that X’s targets are coherent in the
InF-plot, while Y’s targets are not. In other words, X’s target nodes have similar in-degree
and authoritativeness, but Y’s targets are diverse in the feature space, ranging from top
popular to ordinary users just like Y. Similar thing happens on WEIBOSG. Figure 3.2(c)
shows that X’s targets are located at a micro-cluster which is away from the majority of
followee nodes. They have large in-degree values from 1,000 to 100,000 but they are not
as authoritative as the ones who are followed by Y and of the same in-degree.

Synchronicity and normality

We propose two novel concepts to investigate the behavior patterns of the source nodes:
(a) “synchronicity” sync(u) to qualify how synchronized the node u’s targets are in the
feature space (in-degree vs authoritativeness); and (b) “normality” norm(u) to qualify
how normal u’s targets are relative to the rest of the data. These two measures consider
the relative position of u’s target nodes in the feature space. We denote by c(v,v′) the
closeness (similarity) between two target nodes v and v′ in the feature space (InF-plot).
For fast computing the closeness of each pair of nodes, we divide the feature space into
G grid cells and map each node to a specific grid cell. If two nodes are in the same grid
cell, they have similar feature vectors, and they are close in the feature space. Thus, we
have

c(v, v
′
) =

{
1 if nodes v and v

′ are in the same grid cell
0 otherwise

Then we have the definition of synchronicity and normality.
Definition 1 Synchronicity and Normality
We define synchronicity of node u as the average closeness between each pair of u’s targets (v,v′):

sync(u) =

∑
(v,v′)∈O(u)×O(u) c(v, v

′
)

do(u)× do(u)
(3.1)

31

We define normality of node u as the average closeness between each pair of u’s targets and other
nodes (v,v′):

norm(u) =

∑
(v,v′)∈O(u)×U c(v, v

′
)

do(u)×N (3.2)

Both values of synchronicity and normality range from 0 to 1. We know that a
suspicious source node u has uncommonly large sync(u) and abnormally small norm(u).
For a source node u, we name u’s target nodes in the InF-plot as foreground points and
name all the nodes in the plot as background points. We provide a theorem of the normal
shape of SN-plot, which could be the basis for catching suspicious nodes
Theorem 1 For any foreground/background distribution, there is a parabolic lower limit in the
synchronicity-normality plot.
Proof 1 The complete proof can be found in Appendix A. It is based on Lagrange multipliers.
The parabolic low limit is

smin = (−Mn2 + 2n− sb)/(1−Msb)

where M is the total number of grid cells, smin is the minimum value of synchronicity of
foreground points, sb is the synchronicity of background points, and n is a given normality value.

Figure 3.2(b) and 3.2(d) show the SN-plots of source nodes in TWITTERSG and
WEIBOSG. Note that the source node X has synchronized and abnormal behavior and
Y does not, as shown in Figure 3.2(a) and 3.2(c). X has much bigger synchronicity and
smaller normality than Y. The red parabola is the theoretical lower limit of synchronicity
with a given normality, which has been given in the proof. Y is close to the parabola,
while X is far away from the lower bound. The next step to find the suspicious nodes
like X is to detect the outliers in the SN-plots.

Outliers in SN-plot

Here we introduce how to catch the outliers in the SN-plot based on Theorem 1. In-
formally, we want the nodes that are too far away from the lower limit. Formally, we
denote by rsource(u) the residual score of a source node u’s synchronicity which indicates
how suspicious it is. The set of suspicious source nodes Usync includes the nodes whose
suspiciousness is α = 3.0 standard deviations away from the mean:

Usync ← {u : rsource(u) > µ[rsource] + α× σ[rsource]} (3.3)

Similarly, we denote by rtarget(v) the suspiciousness of a target node v, which is the
proportion of v’s sources that are reported in Usync. Then we could have the set of
suspicious targets Vsync:

Vsync ← {v : rtarget(v) > µ[rtarget] + α× σ[rtarget]} (3.4)

The default value of α is chosen according to Tax’s classical outlier detection work in
[208]. In the experimental section, we will validate that the performance of our method
does not depend much on α.

32

3.3 CatchSync Algorithm

In this section, we present the implementation of CatchSync and analyze the complexity.

Implementation The approach is outlined below in Algorithm 1. We first derive a
feature space for target nodes. We then compute synchronicity and normality of the
source nodes’ behaviors, according to the relative positions of their target nodes in the
feature space. Finally, we use a distance-based outlier detection method to detect the
outliers in the synchronicity-normality plot.

Algorithm 1: CatchSync: Catch suspicious nodes with synchronized behaviors in a
large, directed graph.

Input: A directed graph of N nodes in the set U .
Output: A set of source nodes Usync who have synchronized and abnormal

behaviors and a set of targets in Vsync .
Step 1: plot a (2-D) feature space of target nodes.
foreach node v as a target do

Compute in-degree di(v) and authoritativeness aut(v).
Give InF-plot di(v) vs aut(v) (see Figure 3.2(a) and 3.2(c)).
Step 2: plot synchronicity-normality of source nodes.
Divide the InF-plot into grids.
foreach node u as a source do

Compute synchronicity sync(u) and normality norm(u) with Eq. (3.1) and (3.2).
Give SN-plot sync(u) vs norm(u) (see Figure 3.2(b) and 3.2(d)).
Step 3:
Adapt a distance-based method to report suspicious sources Usync and targets Vsync.

Nodes Edges Description Labeled suspicious nodes

TWITTERSG 41,652,230 1,468,365,182 Twitter graph in 7/2009 [130] 173 / 1,000

WEIBOSG 117,288,075 3,134,074,580 Weibo graph in 1/2011 237 / 1,000

Table 3.4: The real world graphs we study are complete social graphs with multimillion
nodes and billion edges. We have used human labor to label a small piece of both of
them for ground truth.

In detail, we choose 2-dimensional feature spaces and specifically out-degree vs
hubness, for each source node, and in-degree vs authoritativeness, for each target node.
The out-degree (in-degree) is the size of set of a source’s targets (a target’s sources).
The hubness (authoritativeness) is the first left- (right-) singular vector of the graph’s

33

adjacency matrix. The algorithm to compute these values is omitted for saving space.
When we divide the InF-plot into grids in Step 2, the length of each side of a grid is log2,
that is, the grid lines at degree and HITS score are on powers of 2.

Complexity analysis We now examine CatchSync’s complexity. We first compute
degree and HITS score of each node. This process is linear in the number of edges E.
Second, the process of computing synchronicity and normality is linear in the number of
nodes N . We denote by G the number of grids that we divided the InF-plot into. Thus,
the total time complexity is O(E+NG). CatchSync is a scalable algorithm and able to
process huge, directed graphs.

3.4 Experiments

In this section we present an empirical evaluation of CatchSync, demonstrating its
effectiveness in spotting suspicious behavior. Although much of the research on anomaly
detection frames the problem as a labelling task, in real world anomaly detection is a
combination of machine learning, manual verification, and discovering new types of
attacks as they arise. Here, we provide evidence that CatchSync is effective at both the
classic problem of labelling suspicious behavior, as well as surfacing new patterns of
unusual group behavior:

• Detection effectiveness: We demonstrate CatchSync’s ability to accurately label
suspicious behavior and remove anomalies through three techniques.

1. Injected attacks: We begin by testing the accuracy, precision, and recall on
synthetic graphs with injected group attacks. We compare our algorithm
against state-of-the-art methods and show that CatchSync performs the best.

2. Labelling task: We also test our accuracy, precision, and recall on two real
datasets, where we use the labeled data from random sampling of TWITTERSG
and WEIBOSG as ground truth of suspicious and normal nodes.

3. Restore normal patterns: For all of these cases we show that removing the
suspicious nodes restores the power law properties of the graph’s edge degree,
which when distorted is a common sign of spam, and remove anomalous
patterns in the feature spaces (OutF-plots and InF-plots).

• CatchSync properties: We test a number of properties of CatchSync, including the
robustness with respect to α, the speed and the scalability.

• Discovery: We demonstrate the effectiveness of CatchSync as a discovery tool. We
discuss a number of the unusual accounts caught and patterns detected in the
TWITTERSG and WEIBOSG datasets.

34

3.4.1 Evaluation: Data and Ground Truth

We carry out experiments on synthetic and real datasets to evaluate the performance of
CatchSync. The synthetic datasets are described in Table 3.5, while the real datasets are
in Table 3.4.

Number of Number of Camouflage
Nodes Injected sources

SYNTH-1M 1,034,100 31,000 -
SYNTH-2M 2,034,100 =16K -
SYNTH-3M 3,034,100 +8K+4K -
SYNTH-3M-RAND 3,034,100 +2K+1K +10% Random
SYNTH-3M-POP 3,034,100 +50% Popular

Table 3.5: Synthetic data: we inject 5 different sizes of group attacks on random power
law graphs of 1-3M nodes.

Synthetic data

Description We generate random power-law graphs, following the Chung-Lu model 1

[53], and with a power-law exponent −1.5 since most real-world networks have been
shown to have this value [72]. Next we inject groups of source and target nodes.

To demonstrate the effectiveness, we vary the following properties of the synthetic
graphs:

• Size of graph: The random power-law graphs we generate contain approximately
1M, 2M, or 3M nodes, named as SYNTH-1M, SYNTH-2M and SYNTH-3M.

• Size of injection: We inject 5 source and target nodes groups of different sizes. The
smallest group has 1,000 new sources, connecting to 20 of 100 new targets, because
of the real case that the smallest number of fake followers a user can buy is often
1,000 [1]. The size of the injected group doubles one by one and thus the largest
group has 16,000 sources and 1,600 targets. The total number of injected sources is
31,000.

• Camouflage: The injected source nodes may try to use “camouflage” to evade the
detection, for example, the fake accounts can follow Barack Obama, Taylor Swift,
or some random users, though they connect to tens or hundreds of customers.
Inspired by this, we try two different techniques on SYNTH-3M: for each injected
node, let it connect to (a) some “random”, ordinary targets; (b) some from the top
100 “popular” targets. We also vary the weights of camouflage dcamou: (a) dcamou

1Following the model, we assign out-degrees do(u) and in-degrees di(v) to each node u and v respec-
tively; we then create edge (u, v) with probability proportional to do(v)di(u).

35

= 10%, 18 injected targets and 2 for camouflage; (b) dcamou = 50%, 10 injected ones
and 10 for camouflage. Specifically, we denote by SYNTH-3M-RAND the injected
graph with 10% random camouflage, and by SYNTH-3M-POP the graph with 50%
popular camouflage.

With different settings of the above, we have the 5 synthetic datasets.

Evaluation If we denote the injected nodes by positive samples, and the others by
negative samples, we can record the true positive (TP), true negative (TN), false positive
(FP), and false negative (FN) rates, which we use the standard definition [73] to calculate
the three popular metrics: accuracy, precision and recall. High accuracy, precision and
recall will be a better method.

Real data

Description We also use our two real world datasets, TWITTERSG and WEIBOSG, both
of which are complete graphs of popular online social networks with billions of edges.
Thanks to the public download links 2, CatchSync is reproducible. As the webpage
says, due to Twitter’s new Terms of Services, academic researchers cannot access the
side information like the tweet data. Fortunately, we can usually get the who-follows-
whom data, or directed graphs from different applications. Then we can operate our
side-information oblivious method CatchSync.

Synthetic graph SYNTH-1M SYNTH-2M SYNTH-3M SYNTH-3M-RAND SYNTH-3M-POP

Camouflage (dcamou) None (0) None (0) None (0) 10% 50% 10% 50%

CatchSync 0.998 0.987 0.956 0.910 0.764 0.885 0.792
ODDBALL 0.827 0.796 0.755 0.702 0.525 0.657 0.433
OUTRANK 0.805 0.777 0.725 0.678 0.516 0.694 0.392
SPOKEN 0.695 0.682 0.677 0.586 0.470 0.553 0.351

Table 3.6: CatchSync consistently wins, despite of “camouflage”: it reaches higher
accuracy on detecting injected nodes.

WEIBOSG was crawled in January 2011 from Tencent Weibo, one of the biggest
microblogging services in China. For each dataset CatchSync only uses the graph
structure, but we also have user id and name associated with the nodes, so that we can
provide real links to check the users’ profile information.

Evaluation For WEIBOSG and TWITTERSG, we sample 1,000 nodes and conduct user
study to label them as suspicious or normal accounts. Half of the nodes are randomly
selected from the set Usync and half are not. Although the average suspiciousness of

2http://an.kaist.ac.kr/traces/WWW2010.html

36

http://an.kaist.ac.kr/traces/WWW2010.html

(a) SYNTH-3M-RAND (b) SYNTH-3M-RAND

(c) SYNTH-3M-POP (d) SYNTH-3M-POP

Figure 3.3: Our CatchSync catches injections, despite of “camouflage”: camouflage
can hide the injected nodes in or put them close to dominating parts in (a) and (c), but
SN-plots can catch them with big synchronicity and small normality in (b) and (d).

samples is higher than that of the entire dataset, it is fair for all the algorithms in our
experiments. The 5 volunteers are all 20 to 25-year-old college students who have been
social network users for at least 3 years. They are provided URL links directed to the
1000 users’ Twitter or Tencent Weibo pages, and read their tweets and profile information.
A user is labeled as a suspicious one if the volunteer finds he or she matches too many of
the following clues:

• Disabled account: It has been disabled by the services. For example, Weibo
user @marra_xiao_bai had 9 followers and 36 followees in 2011. Twitter user
@wYWvk0310 had 666 followers and 926 followees in 2010. But both of them have
been disabled now.

• Suspicious user name: They have strange self-declared information that follows a
narrow pattern such as Twitter names in the form of “@Buy_XX##” (@Buy_AB22,
@Buy_BT47), Weibo names in the form of “a#####” (@a58444, @a70054).

37

http://t.qq.com/marra_xiao_bai
http://twitter.com/wYWvk0310
http://twitter.com/Buy_AB22
http://twitter.com/Buy_BT47
http://t.qq.com/a58444
http://t.qq.com/a70054

• Many followees but few or zero tweets: It has hundreds of followees but it never
posts a single tweet. Twitter user @P8igBg801 had 923 followees in 2010 and
@AjaurNYj2 had 869 followees, but both of them post nothing.

• Malicious tweet content: The account posts duplicated tweets or malicious links
for monetary purposes. For example, Twitter user @Buy_BT66 posts only 3 mes-
sages but all of them are about “bed flat for sale”. Weibo account @aa52011 posts
hundreds of similar messages about online games.

Finally, we give a user a “suspicious” label if 3 (more than a half) of the volunteers
think it is suspicious. Our task here is to detect the users with the “suspicious” labels.
Similarly with the evaluation method on synthetic data, we also use accuracy, precision
and recall to evaluate the effectiveness. A good detection algorithm will have high values
of accuracy, precision and recall.

3.4.2 Competing Algorithms

We carefully implement the following state-of-the-art methods as competing algorithms:
(a) ODDBALL [17], looking for near-cliques and stars that are suspected as strange nodes
in the graph; (b) OUTRANK [160], using random walk model across the similarity mea-
sure to give the outlierness of each node; (c) SPOKEN [183], using pairs of eigenvectors
to find well-connected communities. When operating on the labeled real data, we imple-
ment a content-based spammer detection method SPOT [180], which learns the words
and the number of malicious links in the accounts’ tweets.

As mentioned before, our CatchSync is orthogonal to the text-based methods like
SPOT. Thus, we develop a hybrid method, CATCHSYNC+SPOT, that suspects the nodes
detected by either CatchSync or SPOT. It learns from both the graph structure and
text-based features from tweets.

All the algorithms are implemented with JAVA, and all experiments are performed on
a single machine with Intel Xeon CPU at 2.40GHz and 32GB RAM.

3.4.3 Detection Effectiveness on Synthetic Data

Injected group attacks shown in feature space and SN-plot We plot the feature space
(InF-plots) and SN-plots of two synthetic graphs with camouflage SYNTH-3M-RAND
and SYNTH-3M-POP in Figure 3.3. When the weight of camouflage is small (dcamou=10%
in SYNTH-3M-RAND), the InF-plot in Figure 3.3(a) shows the injected node groups
as outliers from the majority. With the SN-plot in Figure 3.3(c), CatchSync can easily
catch them since they fall along the synchronicity axis. When dcamou is as big as 50%,
Figure 3.3(c) shows that the camouflage can hide the injected nodes in the dominating
part. Our SN-plot in Figure 3.3(c) can catch them for their big synchronicity and small
normality values.

Accuracy, precision and recall on injected node detection Table 3.6 shows the accu-
racy on detecting the injected nodes from all the 5 synthetic datasets. When there is

38

http://twitter.com/P8igBg801
http://twitter.com/AjaurNYj2
http://twitter.com/Buy_BT66
http://t.qq.com/aa52011

(a) SYNTH-3M-RAND (b) SYNTH-3M-POP

Figure 3.4: CatchSync achieves higher precision and recall.

no “camouflage”, CatchSync reaches greater than 95% accuracy. When the nodes have
camouflage, it can still outperforms the best of the other methods by 29.6% accuracy
on SYNTH-3M-RAND and 27.5% accuracy on SYNTH-3M-POP. Figure 3.4 plots the
precision-recall curves to test the performance of ranking the suspiciousness of nodes.
Our method CatchSync (the red filled triangle) can achieve both higher precision and
higher recall.

Restoring the power law The injected source nodes connect to 20 from the same set of
targets. Due to this anomalous behavior pattern, the out-degree distribution has a spike
at degree 20. Figure 3.5 plots the out-degree distributions before and after we operate
CatchSync on the synthetic graphs of different sizes. The spike on the distribution shrinks
with the size of the graph increasing. No matter how big the spike is, our method can
detect the injected nodes and we see if we remove them and their out-going edges, then
the power-law degree distribution is restored.

(a) SYNTH-1M (b) SYNTH-2M (c) SYNTH-3M

Figure 3.5: CatchSync restores the power law: the degree distribution is recovered after
the removal of suspicious nodes.

39

3.4.4 Detection Effectiveness on Real Data

Accuracy, precision and recall on real data Table 3.7 shows the accuracy on detecting
the labeled suspicious nodes from the two real social graphs. Also in Figure 3.6, we plot
the precision-recall curves of CatchSync, OUTRANK, SPOT and the hybrid algorithm
CATCHSYNC+SPOT. We examine the results and give the following observations and
explanations.

• CatchSync outperforms OUTRANK. CatchSync learns graph-based features of
synchronized behavior that OUTRANK cannot capture using a random walk model
with a data dedicated threshold.

• CatchSync outperforms SPOT. CatchSync learns graph-based features from the
structural information, and SPOT learns text-based features from users’ tweets.
Since the main characteristics of the suspicious users are group attacks, CatchSync
has high accuracy, precision and recall than SPOT.

Actually, CatchSync is complementary to SPOT: combining the flagged nodes, we get even
better performance (purple line on Figure 3.6). The hybrid algorithm uses both of them
to catch the different types of attackers. CATCHSYNC+SPOT consistently outperforms
the competitors in detection accuracy by 36% on TWITTERSG and 20% on WEIBOSG. We
suggest the social network applications to operate our CatchSync on their who-follows-
whom graphs, while they have used methods like SPOT that learns text-based features
from their tweets and profiles.

TWITTERSG WEIBOSG

CatchSync 0.751 0.694
OUTRANK 0.412 0.377
SPOT 0.597 0.653
CATCHSYNC+SPOT 0.813 0.785

Table 3.7: CATCHSYNC+SPOT outperforms each part: CatchSync is better than OUT-
RANK at learning the structure, while SPOT learns the text; the combination wins the
last.

Restoring the power law While in the synthetic datasets the recovery of the power
law followed directly from our high recall, this is not necessarily the case on real world
data sets because we can only measure our accuracy on the subset of nodes we label.
Looking at the out-degree distribution of TWITTERSG in Figure 3.1(b) and WEIBOSG
in Figure 3.1(c), we see that removing the millions of caught suspicious nodes from the
graph does leave only a smooth power law distribution on the remaining part of the
graph. Because a power law distribution has been found to be typical of social networks
and because the original distribution is not directly used in CatchSync, this is strong
evidence that our recall on the full datasets is high and that CatchSync is effective.

40

(a) TWITTERSG (b) WEIBOSG

Figure 3.6: CATCHSYNC+SPOT is the best at ranking the suspiciousness: it reaches
the highest precision and recall.

Observations in the feature space We provide interesting observations from the change
of feature space before and after we operate CatchSync on WEIBOSG. Figure 3.7(a), 3.7(b)
and 3.7(c) are OutF-plots arranged as an equation: all nodes minus suspicious nodes
with synchronized behaviors equals normal nodes. Figure 3.7(b) shows the suspicious
source nodes look synchronized and abnormal in the OutF-plot: they are coherent in red
clusters or on blue stripes that deviate from the majority. The red clusters and blue stripes
disappear in Figure 3.7(c) after we remove them from the graph. Figure 3.7(d), 3.7(e)
and 3.7(f) show a similar equation of InF-plots. Figure 3.7(e) shows that the suspicious
targets are in a purple cluster in Figure 3.7(f) the cluster disappears after we remove
them. The above observations provide evidence of the suspiciousness of the nodes who
have synchronized behaviors. Our method CatchSync can remove the strange patterns
in the feature space.

3.4.5 CatchSync Properties

Robustness with respect to α Within the synthetic data, we conduct experiments on
the robustness to changes in α, the number of standard deviations from the mean for a
node to be labelled as suspicious. In short, α=3.0 gives either the best result, or very close
to it, and so do nearby values of α. In more detail, we test the sensitivity of precision
and recall with respect to α, on the synthetic graphs of 3 different sizes. Figure 3.8 plots
precision-recall curves: the ideal point is, of course, (1.0, 1.0); although α changes from
0.5 to 5.0, both precision and recall are still over 0.8. The performance of our algorithm is
rather robust on α. We set α = 3.0 as the default value for all of our other experiments.
Note that approximately 99.7% of the observations fall within 3 standard deviations of
the mean in the normal distribution. The suspicious nodes take the small percentage
(0.3%) but still a big number since the graphs often contain millions of nodes, which
makes this detection problem rather challenging.

Speed and scalability We measure the run time on synthetic graphs with 1-3 million
nodes. Figure 3.9 plots processor time vs graph size, showing that CatchSync (the red

41

(a) All sources

–

(b) Caught sources

=

(c) Normal sources

(d) All targets

–

(e) Caught targets

=

(f) Normal targets

Figure 3.7: Sources and targets caught by CatchSync are outliers: (a,b,c) and (d,e,f)
form two equations of OutF-/InF-plots. (a) minus (b) equals (c); (d) minus (e) equals (f),
where (a,d) show all nodes, (b,e) show suspicious nodes and (c,f) show normal ones.

filled triangles) scales linearly with the graph size and runs faster than alternatives. The
measures, synchronicity and normality, could be computed very fast, taking only 10%
time of the features (degree and HITS score), while the features can be previously chosen
and calculated. Therefore, CatchSync performs fast online for large graphs.

3.4.6 Discovery: A Case Study

As was mentioned earlier, detecting suspicious behavior is not merely a labeling problem.
In the real world there are always new types of attacks that arise and distort the service
being provided. While we have demonstrated that CatchSync is successful at detecting
classic spammy behavior, it also discovers more subtle types of suspicious behavior that
a simpler labeling analysis would miss.

Looking online, it is easy to see that fraud on Twitter is much more complex than
individual users posting tweets for money. In general users can get paid to tweet and the
amount is based on how many followers they have [1, 2]. As a result, this has created
marketplaces for buying Twitter followers, which besides providing politicians the
appearance of popularity, also raises the value of the “Tweeter.” Additionally there are

42

(a) SYNTH-1M (b) SYNTH-2M (c) SYNTH-3M

Figure 3.8: Robustness is perfect: the performance of CatchSync is rather insensitive.
We suggest α = 3.0 as default.

Figure 3.9: CatchSync is fast and scalable: run time to detect injected nodes as the graph
grows.

Figure 3.10: CatchSync at work: using only structure information, we illustrate the
biggest group that CatchSync flagged (91,035 followers, 667 followees); we show 3 of the
former and 4 of the latter. Side information corroborates our findings, raising several red
flags: (a) the 3 shown followers have ∼0 tweets, and near-identical counts of followers
and followees, (b) the 4 shown followees mainly tweet URLs, one of which is flagged by
Twitter as unsafe.

43

marketplaces, e.g., buytwitteraccounts.org [2] and socialsellouts.com [3] to buy and sell
Twitter accounts, again with the number of followers being the primary value. Because
the market is complex, labeling accounts can be difficult with only a subtle red flags
raising eyebrows. Here we examine closer some of the Twitter accounts we caught
and we use side information to explain the range of suspicious behavior detected by
CatchSync.

Figure 3.10 shows a tiny subset (3 followers and 4 followees), from a large, suspicious
group of 91K followers and about 700 followees), that was caught by CatchSync. We see
3 accounts on the left that follow the 4 accounts on the right (and many others). Overall,
each account, on its own, raises a few small suspicions, but our point is that, collectively,
these accounts raise many more suspicions. Below we break down the types of accounts
we find:

Dedicated Followers Looking in Figure 3.10, we see on the left three followers: @AjaQwX1Z3,
@AjaurNYj2 and @mastertwitlist. All three accounts have a slightly unusual name, few
or no tweets, follow approximately 700 other accounts, and are surprisingly followed by
approximately 400 accounts. Alone, each account may look slightly unusual but none of
this evidence looks truly incriminating. As a group, however, the accounts are clearly
suspicious because, along with them all having the same red flags, they all follow the
same group of slightly unusual people.

Surprising Followees On the right side of Figure 3.10 we see four of the accounts being
followed. Within the group of followees, we find a few common patterns of obviously
spam accounts, “SEO experts” tweeting suspicious content, and small business owners
with an unusual number of followers. In the first case, @AaronMartirano is slightly
suspicious with a most recent gibberish tweet (with words “auto follower”, “follback”)
linking to an empty Blogger that had been labeled “Unsafe” by Twitter. Slightly different
to the right we see @aaronseal, whose profile offers the GPS coordinates of a Bell Credit
Union in Kansas and tweets to free Wordpress themes or asks users to “Like our Facebook
Page” for a restaurant. Similarly we observe @biz2day, a self described “webmaster in
the advertising and SEO business,” who does not tweet “Unsafe” content, but links to
other suspicious content like get-rich-quick schemes. For both @aaronseal and @biz2day,
the consistent odd linking raises a red flag, and paired with the synchronized followers
suggests that these are possibly purchased tweets and followers were bought to inflate
the price. Last we see @HousingReporter a real estate agent with 164,700 followers—
more than Massachusetts Senator Elizabeth Warren. A small red flag, but of course it
is possible for a small business owner to want to appear more popular and thus buy
followers.

In all of these cases it is of course impossible to know for sure how their followers
were obtained or why they tweet the way they do. However, given that CatchSync
found these very different accounts based only on the graph structure, all of these other
contextual red flags provide strong additional evidence that the followees caught are in
fact very suspicious and that CatchSync is effective at catching even subtle or hidden

44

http://buytwitteraccounts.org
http://socialsellouts.com
http://twitter.com/AjaQwX1Z3
http://twitter.com/AjaurNYj2
http://twitter.com/mastertwitlist
http://twitter.com/AaronMartirano
http://twitter.com/aaronseal
http://twitter.com/biz2day
http://twitter.com/aaronseal
http://twitter.com/biz2day
http://twitter.com/HousingReporter

suspicious behavior.

3.5 Summary

We propose a novel method called CatchSync that exploits two signs of artificial and
non-organic behavior, synchronicity and normality, to automatically report and catch
suspicious nodes on large directed graphs. CatchSync has desirable properties:

• Effectiveness: It spots synchronized behavior and indeed catches suspicious
source-target groups.

• Scalability: its complexity is linear in the number of edges.
• Parameter free: The operator can easily implement the algorithm without specify-

ing any parameters such as the density, the number and scale of groups.
• Side information oblivious: It is solely based on graph structure, and it requires

neither labeled nodes nor profile information.
Experimental results using both real and synthetic datasets demonstrated that CatchSync
can catch the suspicious behavior patterns that previous approaches cannot capture.

45

46

Chapter 4

Detect Fraud in Graphs with Time

What temporal patterns do fraudsters leave? How can we use edge creation time to better
detect and stop fraudsters? In this chapter we focus on the social network Facebook and
the problem of discerning ill-gotten Page Likes, made by spammers hoping to turn a
profit, from legitimate Page Likes. Our method, CopyCatch, detects lockstep Page Like
patterns on Facebook by analyzing only the social graph between users and Pages and
the times at which the edges in the graph (the Likes) were created. We offer the following
contributions: (1) We give a novel problem formulation, with a simple concrete definition
of suspicious behavior in terms of graph structure and edge constraints. (2) We offer
two algorithms to find such suspicious lockstep behavior - one provably-convergent
iterative algorithm and one approximate, scalable MapReduce implementation. (3) We
show that our method severely limits “greedy attacks” and analyze the bounds from
the application of the Zarankiewicz problem to our setting. Finally, we demonstrate
and discuss the effectiveness of CopyCatch at Facebook and on synthetic data, as well
as potential extensions to anomaly detection problems in other domains. CopyCatch is
actively in use at Facebook, searching for attacks on Facebook’s social graph of over a
billion users, many millions of Pages, and billions of Page Likes.

4.1 Introduction

As we found in the previous chapter, graph structure provides valuable signal for
detecting fraudulent behavior, such as fake followers on Twitter and Tencent Weibo.
While insightful, graph structure only provides part of the picture—how can we use
other data collected online to stop fraudsters? How can we improve our accuracy and
make it even more difficult for fraudsters to add fraud without being caught? In this
chapter we analyze the fraud detection problem through the lens of detecting purchased
Page Likes on Facebook.

On Facebook, Pages are used by organizations to interact with their fans. Users can
“Like” a Page to let their friends know about their interests and to receive content from
that Page in their News Feed, the primary distribution channel on Facebook. Other users

47

Pages

U
s
e
rs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

T
im

e

(a) Without CopyCatch

B CD A E

Reordered Pages

 4

 3

 2
 1

R
e
o
rd

e
re

d
 U

s
e
rs

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

T
im

e

(b) With CopyCatch

Users Pages

A

B

C

D

E

1

2

3

4

40 Z

(c) Graphical view

Figure 4.1: A toy example of Page Likes over time with a subset of users and Pages
organized to clearly show two detected attempts to inflate Page Like counts.

may interpret a high Like count as a Page being popular and also will see their friends’
Page Likes in their News Feeds.

Because of its utility as a distribution channel, attackers frequently attempt to boost
Page Like counts to get increased distribution for their content. At Facebook, we have
found that attackers have attempted to inflate Like counts through a variety of deceitful
methods, including malware, credential stealing, social engineering, and fake accounts.
We define an ill-gotten Like, including those from the methods named previously, as “a
Like that doesn’t come from someone truly interested in connecting with a Page” [71].
As Facebook Security recently posted:

Real identity, for both users and brands on Facebook, is important to not
only Facebook’s mission of helping the world share, but also the need for
people and customers to authentically connect to the Pages they care about.
When a Page and fan connect on Facebook, we want to ensure that connection
involves a real person interested in hearing from a specific Page and engaging
with that brand’s content. [71]

From Page Likes to ratings and reviews throughout the web, the mission Facebook
describes above holds—user generated content must be honest and legitimate if users
are to trust and get value out of that web service.

To attack this problem, we build on our success with CatchSync and focus explicitly
on the many fraudulent accounts needed to add many edges for attacks to be impactful
and thus successful. However, Facebook already has many anti-phishing [69] and anti-
malware [67, 68] mechanisms making it difficult for real accounts to be compromised,
and many algorithms to detect fake accounts [201]. As a result, it is hard for an adversary
to control many accounts, and instead they need to use the same few to Like many Pages.

48

Additionally, if fraudsters want to add many edges, they need to do so relatively quickly.
Therefore, we look for lockstep behavior - groups of users acting together, generally Liking
the same Pages at around the same time. We call our algorithm to detect such behavior
CopyCatch and describe a process of multi-user rate limiting where, because of our
constraint on Like times, we limit the rate at which a group of users can perform actions
together (much stricter than you can limit individual users). Figure 4.1 demonstrates the
challenge and the strength of CopyCatch in detecting such behavior.

To detect attackers attempting to deceive users, we again take a graph based approach
to the problem. As we see in Figure 4.1(c), in the case of Facebook Page Likes, we have a
bipartite graph between users and Pages, with the time at which each edge (Page Like)
was created. Our algorithm searches for near-bipartite cores, where the same set of users
Like the same set of Pages, and add constraints on the relationship between the edge
properties (Like times) in this core. This can be extended to the bipartite graph of users to
products where edges represent product reviews, or to general graphs such as the user to
user connections of Instagram followers. We will discuss such extensions in Section 4.8.

In this chapter we offer a number of contributions, which build toward solving this
problem:

1. Problem Formulation: We offer a novel problem formulation to a relevant, real-
world challenge realized at Facebook and relevant in many online settings. We call
our approach CopyCatch.

2. Algorithm: Pulling from work in one-class clustering and subspace clustering,
we offer two algorithms to spot lockstep behavior: a provably-convergent serial
iterative algorithm, and an approximate, scalable MapReduce implementation.

3. Theoretical Analysis: We show that catching anomalous behavior, as we have
defined and as our algorithms detect, severely limits the damage an adversary
can do when following a “greedy attack” strategy. We then apply research on the
Zarankiewicz problem to our setting, showing that it is hard to find an optimal
strategy against CopyCatch.

In Section 4.3 we give our problem formulation. In Section 4.4 we formulate the
problem as an optimization problem, describe our serial algorithm, and prove that it
converges. In Section 4.5 we describe our MapReduce algorithm and implementation.
Finally in Section 4.6 we discuss the worst case damage an adversary could inflict, in
Section 4.7 we offer experiments demonstrating the usefulness of our implementation at
Facebook and on synthetic data, and in Section 4.8 we discuss the applicability of our
approach to problems in other domains.

4.2 Relationship to Related Work

Our work in this chapter pulls from many different fields of research. Much of the related
work on anomaly detection and fraud detection was previously outlined in Section II.1.
Our problem formulation in this chapter differs from such prior work in our novel use of
edge constraints, in this case based on time, to discern normal behavior from suspicious

49

behavior. Since publication [33], further research has found temporal patterns to be an
important signal in finding fraudulent behavior [234].

Algorithmically, we approach the problem similar to the co-clustering [27, 44, 63] and
subspace clustering [126] literature. In order to scale effectively, we make use of local
clustering and MapReduce, outlined below.

4.2.1 Local clustering

Clustering is one of the classic problems in both machine learning and data mining, with
a wide range of methods still being developed. In this research, we build off Crammer et
al.’s work on local one-class optimization and related work [57, 89], which focuses on
finding dense clusters in noisy data through local search. Our algorithm also operates
similarly to mean-shift clustering with a flat kernel [50].

4.2.2 MapReduce

To make our algorithm scale to large, web-scale data, we implement our algorithm in
the MapReduce framework [61]. Hadoop [75] is an open source implementation of the
MapReduce framework that is widely used. Facebook has a large Hadoop installation
on which we built our implementation. In general, Hadoop and the Hadoop file system
(HDFS) offer a distributed platform to store data and run parallel algorithms over a
cluster of computers. We will give more details about the data flow and capabilities of
Hadoop relevant for this Chapter in Section 4.5 and a more in-depth explanation of
distributed machine learning on Hadoop in Part IV.

4.3 Problem Formulation

We now describe the mathematical details of our problem. Table 4.1 gives a list of the
different symbols we will use throughout the chapter.

As we previously described, Facebook has the challenge of preventing adversaries
from artificially inflating a Page’s “Like count” in an effort to try to improve the Page’s
legitimacy and get distribution through the site. Since each user can only Like each Page
once, a Page’s Like count can only be increased through many users Liking the same
Page.

Unfortunately, there is no ground truth to whether any individual Page Like is legiti-
mate or not. Therefore, we take an unsupervised approach and only define suspicious
behavior in terms of graph structure and edge creation times. Although our methods
can be easily extended to many other settings, we will often describe the work in terms
of Facebook users, Pages, and Likes for simplicity and clarity.

Before defining suspicious lockstep activity, we must give some notation surrounding
our problem. We assume we have a set of users indexed from 1 to N , U = {i}Ni=1 and
a set of M pages P = {j}Mj=1 similarly indexed. We define E as the set of edges in the

50

Symbol Definition and Description

N and M Number of nodes on either side of the bipartite graph (users and Pages)
L N ×M data matrix of edge data (Like times)
I N ×M adjacency matrix
U and P Set of indices of rows and columns (indexed users and Pages)

n and m Bipartite core size threshold for suspiciousness
P ′ Subset of columns (Pages) that are suspicious
c Vector of times for each column around which there are suspicious rows (users)
2∆t Width of time window
ρ Percent of P ′ for which an suspicious user must be within the time window
φ Thresholding function to compare two data points

s Number of clusters being search for in parallel
P Set of P ′ for multiple clusters
C Set of c for multiple clusters

Table 4.1: Symbols and Definitions

graph, where (i, j) ∈ E is user i has Liked Page j. We also define an indicator matrix I
such that Ii,j = 1 if (i, j) ∈ E , and Ii,j = 0 otherwise. Last, we define our data matrix L
such that Li,j = ti,j for all (i, j) ∈ E , where ti,j is the time at which user i Liked Page j.

We can now broadly define our problem as:
Given: A graph of Likes between users and Pages I and the edge creation times L
Find: Suspicious lockstep behavior - Bipartite cores of at least size (n,m) such that for
each of the m Pages, all n users Liked that Page in a 2∆t time window. We call this an
[n,m,∆t]-temporally coherent bipartite core (TBC).

We define suspicious lockstep behavior precisely below.
Definition 2 We define an [n,m,∆t]-temporally coherent bipartite core (TBC) as a set of users
U ′ ⊆ U and a set of Pages P ′ ⊆ P such that

|U ′| ≥ n Size (4.1)

|P ′| ≥ m (4.2)

(i, j) ∈ E ∀i ∈ U ′, j ∈ P ′ Complete (4.3)

∃tj ∈ Rs.t.|tj − Li,j|≤∆t ∀i ∈ U ′, j ∈ P ′ Temporal (4.4)

We consider users in an [n,m,∆t]-TBC to be in lockstep behavior and thus suspicious.
This can be interpreted a number of different ways, each of which we will use later in

the chapter. From the graphical perspective, our indicator matrix I is an adjacency matrix
for the bipartite graph between users and Pages, and our data matrix L contains the edge

51

Figure 4.2: Subspace clustering perspective: An example of a subspace in which we
find a clear clustering of Page Likes in time. Blue dots are normal users and black dots
are suspicious users part of a [8, 3,∆t]-TBC.

creation time. A depiction of L pointing out clusters of users in near temporally coherent
bipartite cores can be seen in Figure 4.1(a–b). In terms of the graph, we have defined
suspicious behavior to be bipartite cores of size greater than (n,m) in the Facebook graph
where all edges going into the same Page were created in a small time window. This
graphical view of the data and anomalous behavior is shown on a subset of the nodes in
Figure 4.1(c).

A second interpretation can be of L as a data matrix where each user represents a
point in M dimensional space, Li,∗ ∈ RM . (Because users do not necessarily Like all
Pages, they would often fall in a subspace of theM dimensional space, but thinking about
each user as a point in the M dimensional space can provide good intuition.) We then
consider a group of users to be part of an [n,m,∆t]-TBC and suspicious if there exists a
hypercube of width 2∆t in at least m dimensions such that at least n users fall within
that hypercube. Framing the problem this way is more similar to the standard clustering
literature in machine learning and the subspace clustering problem. A depiction of a
3-dimensional subspace of the M dimensional space is shown in Figure 4.2, where a
cluster of users are all found in the same small hypercube.

Later, we will show experimentally that, for appropriate values of n, m, and ∆t, such
behavior is extremely uncommon and thus in fact suspicious. We additionally will show
the advantage of defining it this particular way as compared to other formulations, such
as only looking for bipartite cores where all edges come from one time window. This
particular formulation, with constraints on the inbound edges of each node, is novel in
the literature, includes these other formulations as special cases, and provides a number
of advantages for preventing fraudulent behavior.

52

4.4 Methodology

With Definition 2 of suspicious lockstep behavior, the challenge remains to detect when
it occurs. As shown in [178], finding bipartite cores in a graph is NP-hard. To create an
algorithm to find clusters of this type, we define the problem as an optimization problem.
From here we offer an iterative algorithm, which monotonically improves our results,
and in Section 4.5 we offer an approximate MapReduce implementation that searches for
many bipartite cores in parallel.

4.4.1 Optimization Formulation

To formulate the problem succinctly we must add additional notation. We define c ∈ RM

to be a vector for the center of our cluster, such that cj = tj where tj comes from Definition
2.

We also relax our definition of suspicious lockstep behavior to include users that are
part of temporally-coherent near bipartite cores (TNBC). We introduce the term ρ ∈ [0, 1],
which broadly describes how many of the Page Likes a user must match (in time) to be
considered suspicious. More precisely, we say that a user is suspicious if he Likes at least
ρ|P ′| of the Pages in P ′ in the designated time window. This is clearly a relaxation since
all of the users in any [n,m,∆t]-TBC would also be in a [n,m,∆t, ρ]-TNBC. We give the
formal definition of [n,m,∆t, ρ]-TNBC below.
Definition 3 A set of users U ′ ⊆ U and a set of Pages P ′ ⊆ P comprise an [n,m,∆t, ρ]-
temporally coherent near bipartite core (TNBC) if there exists P ′i ⊆ P ′ for all i ∈ U ′ such
that:

|U ′| ≥ n Size (4.5)

|P ′| ≥ m (4.6)

|P ′i| ≥ ρ|P ′| ∀i ∈ U ′ Near (4.7)

(i, j) ∈ E ∀i ∈ U ′, j ∈ P ′i Complete (4.8)

∃tj ∈ Rs.t.|tj − Li,j|≤∆t ∀i ∈ U ′, j ∈ P ′i Temporal (4.9)

Given these definitions our goal broadly is to maximize the number of suspicious
users and the number of Page Likes of suspicious users that are suspicious (fall within
the designated time window). Since we are ultimately trying to catch as many suspicious
users as possible, we set |P ′| = m and only try to grow U ′.

The optimization problem is given specifically below:

max
c,P ′:|P ′|=m

∑
i

q(Li,∗|c,P ′) (4.10)

53

where

q(u|c,P ′) =

{
σ if σ =

∑
j∈P ′ Ii,jφ(cj,uj) ≥ ρm

0 otherwise
(4.11)

φ(tc, tu) =

{
1 if |tc − tu| ≤ ∆t

0 otherwise
(4.12)

This is a simple formulation of the problem described previously. The difference is under
this formulation we are trying to find c and P ′ to maximize the number of users and
their Likes inside the cluster centered at c in subspace P ′.

Additionally, because we expect most users to not be engaging in fraudulent Liking,
we frame the problem similar to one-class clustering literature or to a flat kernel, where
our optimization only focuses on data points in the cluster, and there is no penalty for
data points outside the cluster.

4.4.2 A Serial Algorithm

To optimize this objective function, we must set both c and P ′. Placing c is similar
to many density-seeking clustering problems in machine learning and data mining.
Likewise, selecting P ′ from P is similar to subspace clustering. Therefore, we offer an
iterative algorithm that in each step alternates between updating the center c and the
subspace choice P ′, while holding the other variable constant. Note, given c and P ′,
the users that fall within the cluster are fully determined. The algorithm can be seen in
Algorithm 2.

In the step UPDATECENTER we keep P ′ constant and update c. This update is
performed iteratively over each dimension j ∈ P ′. For each such dimension, we find
all users U ′ that fall within the cluster but loosen the width to β∆t for the current
dimension we are adjusting, where β > 1 thus including users who are just outside of
the time window in dimension j. Given these users we find a new center in dimension j
with subroutine FINDCENTER. We can sort the points in U ′ based on their position in
dimension j, and then in one pass, weighting users by the number of Likes from P ′ they
have, find the 2∆t span for which we capture the most users and the most Likes. We use
this span to update cj . We note that UPDATECENTER runs in O(m(mN + log(n))) where
we assume clusters are on the order of O(n) in size.

In the step UPDATESUBSPACE we keep c constant and update P ′. Given the previous
values of c and P ′ we can find the users currently in the cluster and attempt to improve
our choice of P ′, such that more Likes are included for the same current set of users in
the clusters. Here we take an incremental approach. For each j ∈ P ′ we search among
all j′ ∈ P . We say a user i is covered by a column j if Ii,jφ(cj,Li,j) = 1. We only consider
those columns j′ for which every user covered by column j is also covered by column j′. We can
then replace column j by column j′ that has the most users covered. As such, any user
that was covered previously will still be covered, but we can also be adding additional
coverage (for more Likes) to other users. This is not necessarily the optimal choice, but it
does improve our objective and runs in O(nmM) time.

54

We repeatedly update c and P ′ until neither change and the algorithm has converged,
or simply for some fixed number of rounds.

4.4.3 Proof of Convergence

We now prove that our algorithm converges. It should be clear that our objective function
is bounded, as there are a limited number of users and Page Likes, and therefore there
is a maximum or set of local maxima. Therefore, we must merely show that both
UPDATECENTER and UPDATESUBSPACE monotonically improve our objective function.
Lemma 1 UPDATECENTER, as defined in Algorithm 2, monotonically improves our objective
function in (4.10).

Proof 2 UPDATECENTER works by updating each dimension’s center one at a time, holding
the others constant. For each update in each dimension, we take all the points within β∆t of the
previous center and find the center that will most improve our objective. Of course, all points
previously covered will be included in this width of β∆t since β > 1. Since we find the location
for which we cover the most points weighted by the number of Likes for each point, we will
only move the center if we find a location that covers more points with more Likes than before.
Therefore, if our center moves the objective function must increase, and if it does not move then
the objective function stays constant.

Lemma 2 UPDATESUBSPACE, as defined in Algorithm 2, monotonically improves our objective
function in (4.10).

Proof 3 As was described previously, UPDATESUBSPACE only replaces a j ∈ P ′ with a j′ if all
Likes covered by Page j are also covered by Page j′. Therefore, we can only improve our objective
function or stay constant. Therefore UPDATESUBSPACE monotonically improves our objective.

Because UPDATECENTER and UPDATESUBSPACE monotonically improve our objec-
tive, the algorithm converges.

4.5 A MapReduce Implementation

Although Algorithm 2 works well theoretically, it has inefficiencies in both speed and
convergence. To address these issues we offer here a new algorithm similar to the
serial algorithm, which operates in the MapReduce framework. This implementation
operates under the trade-off of making the algorithm scalable to massive data sets and
trivially parallelizable, such that we can search for many clusters simultaneously, with
the cost of the algorithm not provably converging. However, the heuristics used here
have performed well in practice on real world data and converge quickly, as will be
demonstrated in Section 4.7.

Unlike many optimization problems, where the goal is to find the global maximum,
here we want to find all local maxima that meet our criteria (as there could be many
attacks happening simultaneously with different users on different Pages). Therefore,

55

Algorithm 2: Serial CopyCatch

function S-CopyCatch(x, j):
Require: Preset parameters ∆t, n, m, and ρ
Initialize c = x, P ′ = {j}
repeat
P ′` = P ′
c` = c

c = UPDATECENTER(c,P ′)
P ′ = UPDATESUBSPACE(c,P ′)

until c = c` and P ′ = P ′` // Run to
convergence
return [c,P]

function UpdateCenter(c,P ′):
U ′ = FINDUSERS(U , c,P ′) // Get current
users
Set c′ to the average of Li,∗ for all i ∈ U ′
// Update center for each Page
for j ∈ P ′ do

[U ′,w] = FINDUSERS(U , c,P ′, j, β∆t)

[U ′′, tj] = FINDCENTER(U ′,w, j)
c′j = tj

end for
return c′

function UpdateSubspace(c,P ′`):
P ′ = P ′`
U ′ = FINDUSERS(U , c,P ′`) // Get current
users
for j′ ∈ P ′` do
j′′ = j′

U ′j′′ = FINDUSERS(U ′, cj′′ , {j′′})
// See if another Page is better
for j ∈ P \ P ′ do
U ′j = FINDUSERS(U ′, cj , {j})
if U ′j′′ ⊂ U ′j then
j′′ = j, U ′j′′ = U ′j

end if
end for
P ′ = (P ′ \ {j′}) ∪ {j′′}

end for
return P ′

// Find weighted center of U in dimension
jc
function FindCenter(U ,w, jc):
Sort U by Li,jc for i ∈ U
Scan sorted U for 2∆t-width subset U ′

s.t.
∑

i∈U ′ wi is maximized
Set cj to the center of this subset U ′
return [U ′, cj]
// Find users from U based on c and P ′
function FindUsers(U , c,P ′, jc,∆t′):
U ′ = {}, w = 0

for i ∈ U do
for j ∈ P ′ do

if Ii,j = 1 ∧ (|cj ,Li,j |<∆t ∨
(j=jc ∧ |cj ,Li,j |<∆t′)) then
wi = wi + 1

end if
end for
if wi ≥ ρm then
U ′ = U ′ ∪ {i}

end if
end for
return [U ′,w]

56

the ability to run the algorithm from many starting points in parallel is both useful and
more efficient than running from different starting points serially.

4.5.1 Algorithm

Because we now would like to run the algorithm for multiple clusters in parallel, we
must introduce some additional notation. We define s to be the number of clusters being
run simultaneously. Each cluster has a center c(k) ∈ RM and a set of currently selected
columns P ′k ⊆ P (each defined as before). We define C to be the set of all c(k) and P to be
the set of all P ′k, both for k = 1 . . . s.

Like the serial algorithm, the MapReduce CopyCatch algorithm operates by updating
c and P ′ iteratively. The core of the algorithm can be seen in Algorithm 3, where we note
that we run one MapReduce job per iteration, each time updating C and P. As in the
serial algorithm, we can keep iteratively updating C and P until no changes are made. In
practice, we will merely run a fixed number of iterations.

MapReduce It is worth taking a moment to note the data flow in a MapReduce job
before describing the details of our algorithm. In the Map step, our input is split among
many mappers. Each mapper gets a pair of data of the form 〈KEYmap,VALUE〉 and can
output zero or more results of the form 〈KEYreduce,VALUE〉. In the reducer step, for each
unique KEYreduce a reducer is formed which takes as an input 〈KEYreduce,VALUES〉, where
VALUES is a set of the VALUE outputs from the mapper step which correspond to that
reducer’s particular KEYreduce. The reducer can then output data to disk. Aside from this
data flow, we make use of Hadoop’s Distributed Cache, which lets us store data as global
read-only data. For more information on MapReduce and Hadoop see [61, 75].

In our implementation, the mapper for the MapReduce job USERMAPPER is shown
in Procedure 4, the reducer ADJUSTCLUSTER-REDUCER is shown in Procedure 5, and C`
and P` are stored in the Distributed Cache.

USERMAPPER finds which users are currently in which clusters based on C and P

and maps those users to a reducer based on which cluster it is within. More specifically,
the Map step takes as input L and I, where each (Li,∗, Ii,∗) for all i ∈ U is input to a
mapper. Each mapper checks the Li,∗ across all s clusters to see if it falls within that
cluster following the definition given in our optimization objective (4.10). If it does,
it emits an output where the key is the cluster ID k, and the value is the row (user)
information Li,∗ and Ii,∗. Each mapper runs in O(sm) time, and since this is being run
over all data the entire step takes O(smN) not taking into account parallelization.

AdjustCluster-Reducer takes in all of the users currently in a given cluster k and
updates c(k) and P ′k. Each reducer takes as an input 〈k,U ′〉, where U ′ here contains
pairs (Li,∗, Ii,∗) for all users in the cluster (as was output by the mappers). As shown in
Procedure 5, we must be careful to only use values from each user in the dimensions
for which it falls within the cluster. However, beyond this, the update generally works
fairly simply. The center c is updated by merely taking an average of the points in the
cluster, similar to a mean-shift algorithm with a flat kernel [50]. The selected columns

57

are chosen based on which columns cover the most users from the previous cluster
parameters, and then by which columns have the lowest variance among these users.
By using the previous centers for this update, we can do the calculation online, passing
over each user only once. Because we assume each cluster is O(n) in size, each reducer
takes O(nM) time, and the reduce step as a whole takes O(snM) when not considering
parallelization. The reducers output the updated C and P to be placed in the Distributed
Cache in subsequent iterations.

Algorithm 3: MapReduce CopyCatch
1: Require: Preset parameters ∆t, m, and ρ

2: C,P = INITIALIZE()

3: repeat
4: C` = C, P` = P

5: C,P = MAPREDUCEJOB(C`,P`)

6: until C` = C ∧ P` = P

7: return [C,P]

Algorithm 4: USERMAPPER(〈NULL, (Li,∗, Ii,∗)〉)
1: Globals: C,P
2: for k = 1 . . . s do
3: σ =

∑
j∈P ′k

Ii,j · φ(c
(k)
j ,Li,j)

4: if σ ≥ ρ|P ′k| then
5: emit 〈k, (Li,∗, Ii,∗)〉
6: end if
7: end for

4.5.2 Implementation Optimizations

While the description above gives the general overview of the algorithm, there are a
number of implementation details that make the algorithm run efficiently on huge data
sets.

Data Format Because L is expected to be very large and sparse, we do not want to, nor
need to, store the full data matrix. Instead, we store the matrix as an adjacency list. For
each user i ∈ U , we store on one line the user ID i, a list of page IDs j where Ii,j = 1, and
the value Li,j . As a result, NULL values were Ii,j = 0 do not take up space or time.

C and P are stored similarly where each line of a data file is indexed by the cluster ID
k, and then contains the Page IDs j, the times c

(k)
j and a 1 if j ∈ P ′k.

58

Algorithm 5: ADJUSTCLUSTER-REDUCER(k,U ′)
1: Globals: C,P
2: Initialize c = 0, p = 0, v = 0

3: for all map values (Li,∗, Ii,∗) ∈ U ′ do
4: for j = 1 . . .M do
5: if Ii,j = 1 ∧ φ(c

(k)
j ,Li,j) = 1 then

6: cj = cj + Li,j

7: pj = pj + 1

8: vj = vj + (c
(k)
j − Li,j)

2

9: end if
10: end for
11: end for
12: c(k) = c/p

13: v = v/p

14: Sort {j}M1 by p (decreasing), then v (increasing)
15: Set P ′k to top m columns from previous sort
16: return Updated c(k) and P ′k

Seeds and Initial Iterations Figuring out where to start the clusters can be very difficult.
To avoid any bias, we sample seeds randomly from the list of all edges in the graph,
using the edge’s Page and Like time to initialize both P ′ and c. (While we could use
suspicious users from one of Facebook’s many other security mechanisms, this would
introduce prior assumptions about attackers that are unnecessary and could make it
easier for an adversary to hide.)

As a result, in the initial iterations users only need to have Liked a single Page at
around the same time, which is not uncommon. There are often so many users found in
these initial iterations that we sample a small percentage of them at random to keep the
algorithm efficient. Even with the sampling, this method lets us quickly find lots of users
that Liked one Page around the same time, and then see what else they have in common.
This sampling is performed in the first two iterations until |P ′| = m.

Page sampling Because C and P are stored in the Distributed Cache, they are passed to
every MapReduce node. This communication time slows the algorithm down if the data
becomes too large. To avoid this we limit the length of c(k) by including only Pages from
P ′k, Pages that were close to being in P ′k in the last iteration, and a random sampling of
the other Pages. With this method we can still find users that are similar, but without the
risk of becoming too slow.

59

4.6 An Adversarial Challenge

Given our definition of suspicious lockstep behavior and our approach to detecting spam,
how much damage could an adversary do without appearing suspicious? We will again
discuss this in the context of Facebook, although it can be extended to other applications.

To be more concrete, we can frame the question as follows: If an adversary controls
N ′ accounts and wants to Like M ′ Pages, for N � N ′ � n and M �M ′ � m, how long
would it take the adversary to Like all M ′ Pages with all N ′ accounts without creating
an [n,m,∆t, ρ]-TNBC? (For this analysis we assume that we catch all lockstep behavior
meeting Definition 3.) It turns out this is an extension of an old open problem in extremal
graph theory. We analyze below a couple different approaches to this problem.

4.6.1 “Greedy Attacks”

We first analyze the consequences of an adversary performing a naïve greedy attack,
particularly because it matches a common business model for adversaries, demonstrates
the difficulties for an adversary, and shows the strength of our security approach.

In this initial example, we assume that the adversary has from the start the set of
M ′ Pages he wants to Like, and we analyze the effect if he iteratively Likes each Page
with as many accounts as he can without getting caught. That is, for the first Page the
adversary will Like the Page using as many accounts as possible without getting caught.
He will then move onto the second Page and do the same thing, etc. In this case, we
are unconcerned with the time component of our bipartite core definition because we
assume the adversary will add all of the Likes instantaneously. Therefore, an adversary
will be caught if he creates an (n,m) complete bipartite core in the graph. If we look
at the N ′ ×M ′ adjacency matrix of Likes added by the adversary, this is equivalent to
creating an n,m submatrix filled with ones. We will call this N ′ ×M ′ adjacency matrix I′.
Lemma 3 We assume there is an adversary with N ′ accounts performing a greedy attack on
M ′ Pages. Catching and preventing all behavior meeting Definition 2 limits the adversary to
obtaining (m−1)N ′ + (n−1)M ′ − (n−1)(m−1) Likes at a rate greater than n−1

2∆t
per Page per

unit time.

Proof 4 A simple pattern created by following the greedy approach can be seen in Figure 4.3. We
see here for the first m− 1 pages, the adversary can Like the Page with all N ′ accounts. This is
because we will only detect the accounts if at least m pages have been Liked, so there is no harm in
Liking the first m− 1 Pages with as many accounts as possible. However, for the mth Page, if any
n users Like that page in a 2∆t time window, then he will have created an n×m full submatrix.
This is true for all Pages ≥ m. As a result, following this greedy approach we can only Like each
Page an average of (m−1)N ′+(n−1)M ′−(n−1)(m−1)

M ′
times.

While not a complex example, the results are quite interesting. First, we see that as
an adversary adds more accounts, the average number of Likes added by each account
asymptotically approaches m−1. Similarly, as the accounts Like more Pages, the average
number of Likes per Page asymptotically approaches n− 1.

60

n− 1

m− 1

M ′ Pages

N ′ Users

Figure 4.3: Illustration of a greedy attack: N ′×M ′ adjacency matrix I′ of all Likes, where
grey cells denote I′i,j = 1, and white cells denote I′i,j = 0.

We have so far focused on how many Likes can an adversary add instantaneously,
but it is worth looking at the effect of our time constraint. To illustrate the impact of our
temporal coherence restriction, we look at the case where an adversary sells Likes on
eBay, promising to add the Page Likes within some time period (as some adversaries are
known to do). As new orders come in, the adversary must add those Page Likes within
the requested amount of time. Because we have a distinct time window for each Page
j (centered around cj), waiting to add Likes to a new Page does not help an adversary
avoid being caught. That is, if an adversary gets m− 1 orders in January and adds all
N ′ Likes as the greedy attack suggests, then even if he does not get any more orders
until July he still cannot add more than n− 1 Likes in a 2∆t time window without being
caught.

This is in contrast to previous research, which could set a time window for the entire
bipartite core (through limiting the input), and thus merely waiting out that time window
gave accounts a clean slate. As a result of our construction, once the greedy attack has
been run, the adversary can only continue to add Page Likes to each Page at a rate slower
than n

2∆t
. We call this effect multi-user rate limiting.

To make the effect of these restrictions clear and concrete, let’s look at the example
limits n = 20 accounts, m = 5 Pages, and 2∆t = one week. (Note, for security reasons
these are not the actual limits used at Facebook.) Any adversary performing a greedy
attack with N ′ = 1000 accounts can on average only like up to 5 Pages per account for
980 of his accounts. Similarly, if the adversary wants to boost the Like counts for more
than 5 Pages, he can on average only Like the Pages 20 times. To add additional likes to
any given Page can only be done at a rate slower than 20 accounts

1 week
≈ 3 Likes per Page per

day. This is clearly much harsher rate-limiting than we could enforce on a single user,
but when looking at the group acting together makes sense.

61

4.6.2 Optimal Strategy: An Open Problem

It should be clear from the previous analysis that greedy attacks do not work well for
spammers. Ideally, we would like to find an upper bound for the amount of damage an
adversary could inflict. However, this turns out to be an old, open problem in extremal
graph theory. In 1951 Kazimierz Zarankiewicz posed the following problem [239]: how
many edges can there be in a bipartite graph G of size N ′ × M ′ without creating a
complete bipartite core of size n×m? This is known as the Zarankiewicz problem, and
the maximum number of edges is denoted as z(N ′,M ′, n,m).

Although the problem is old, little progress has been made in solving it for the general
case. Füredi [76] is currently known to have the best general upper bound

z(N ′,M ′, n,m)≤(n−m+ 1)
1
mN ′M ′1− 1

m +M ′m+mN ′2−
2
m

for n > m. However, this is only known to be asymptotically optimal for m = 2 and
n = m = 3. If we use larger values of n and m and reasonable values of N ′ and M ′, then
z > N ′M ′ and thus offers us no information.

Additionally, the proof offered by Füredi [76], as well as most work surrounding
the Zarankiewicz problem, uses non-constructive methods. That is, although the proof
finds an upper bound for z(N ′,M ′, n,m), it does not give any information about how to
actually add edges to reach that bound without being caught. It would therefore be a
challenge for an adversary to optimally add edges (and would be interesting for the field
of extremal graph theory if solved).

It is worth noting that our problem deviates from the classic Zarankiewicz problem in
two regards: (1) we look for near-bipartite cores, and (2) we require temporal coherence.
With respect to the first point, by looking for near bipartite cores and not just complete
bipartite cores, we would also catch cases where certain 1’s were missing from the n×m
submatrix of I′. We call this the approximate Zarankiewicz problem. While any upper bound
for the Zarankiewicz problem is also an upper bound to this approximate Zarankiewicz
problem, the maximum number of edges added without creating a [n,m,∆t, ρ]-TNBC
would be lower, and thus this is an even harder problem for an adversary.

Second, we require temporal coherence in our bipartite cores for the behavior to
be considered suspicious. This helps us more accurately and flexibly discern normal
behavior from illegitimate behavior and effectively rate limits an adversary, forcing them
to add Likes very slowly if they do not want to be caught. As we saw in our analysis of a
greedy attack, this multi-user rate limiting is significantly stricter than a rate limit we
could enforce on individual users. When generalizing this concept to the Zarankiewicz
problem, the constraint adds complexity to an already challenging problem. While we
cannot find a precise optimal rate at which adversaries can add edges without knowing
an optimal strategy for the Zarankiewicz problem, it should be clear that the multi-user
rate limiting principle holds. Setting 2∆t = ∞ restricts an adversary to solving the
Zarankiewicz problem; decreasing ∆t allows an adversary to exceed the maximum
solution to the Zarankiewicz problem but at a slow rate.

62

4.7 Experimental Analysis

4.7.1 Experimental Setup

CopyCatch was written in Java 1.6.0_14 with Hadoop 0.20.1, generally matching the
algorithm outlined in Section 4.5. The experiments were run on one of Facebook’s
Hadoop clusters, running Hadoop, Hive, and HDFS on over 1000 machines. More
information about Facebook’s infrastructure can be found in [211]. Our MapReduce
jobs ran with 3000 mappers and 500 reducers. We ran the algorithm on a few different
datasets from Facebook as well as synthetic data to demonstrate a number of different
properties.

The Facebook datasets used come from real Likes between users and Pages on the
site. We pull data from periods of time ranging from weeks to multiple months, where
the data has not already had Likes removed by this particular method (although of
course many other security measures already keep malicious users and fake Likes off the
site). For our scalability tests, data ranged from approximately 760 million Page Likes
(25 gigabytes on HDFS) to 10.4 billion Page Likes (294 gigabytes on HDFS). When not
testing scalability over data size, we used an intermediate dataset of 3.3 billion Likes (100
gigabytes on HDFS). Our parameter choices for n, m, and ∆t are those used currently on
Facebook systems, but can not be given for security reasons.

We also ran our discoverability experiments on synthetic data so that results could be
replicated by other researchers. Our synthetic data was generated following the RTM
method [16], where the time evolving graph is generated with a repeated Kronecker
product. The code used to generate the time evolving graph, including our initial
generator/tensor, can be found online at cs.cmu.edu/~abeutel/www2013. The generated
graph is a bipartite graph between 38 million and 10 million nodes with 410 million
edges. After our data formatting, the graph is 10 gigabytes on HDFS.

4.7.2 Scalability

Facebook now has over a billion users and is continuing to grow. Therefore, it is important
that our algorithm scales well to large datasets. We test this a few different ways.

A necessary preprocessing step to keep our algorithm efficient is to format the data
similar to an adjacency list as described in Section 4.5.2. This takes approximately 45
minutes for our 100GB Facebook dataset. Because this is merely formatting and not
required each time we run the algorithm, we do not consider this time in future tests.

For each of our timing experiments, we run our algorithm on the on the 100GB
Facebook dataset and time the first 3 iterations, which includes the initial iterations of
starting with individual Likes as seeds. We chose to run these tests on the Facebook data
because run time is heavily influenced by the size of the data and the size of clusters.
Since we do not know a-priori where large clusters are, we sample our seeds randomly
so that we get the same distribution of small and large clusters that we would get in our
real runs.

63

http://cs.cmu.edu/~abeutel/www2013

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 1 2 3 4 5 6 7 8 9 10 11

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Number of Edges (Billions)

Experimental values
Linear fit

(a) Scaling in graph size

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 1000 2000 3000 4000 5000

R
u

n
 t

im
e

 (
s
e

c
o

n
d

s
)

Number of Seeds

Experimental values
Linear fit

(b) Scaling in number of seeds

Figure 4.4: Scalability experiments: (a) shows the linear increase in computation time
as the graph grows into the billions of Page Likes, (b) shows the increase in computation
time as the number of seeds increases. Running time for is based on the total time for the
first three iterations of CopyCatch.

Even with large Hadoop clusters, it is important that the algorithm can scale as
the data scales. We test this by running our implementation over Page Likes from
increasingly large periods of time. As we explained previously, this data ranges from
25GB with 760 million Page Likes to 294GB with 10.4 billion Page Likes. We ran the
algorithm with 100 seeds, 3000 mappers, and 500 reducers. The run time for the first
3 iterations can be seen in Figure 4.4(a). As seen in the plot, the run time increases
approximately linearly with the number of edges (Page Likes). However, we note that
only after a greater than 10 times increases in data size does our running time double.
Therefore as our data grows, the running time of CopyCatch grows at a much slower
rate.

As the data scales, we also face the challenge of having to use more seeds to sufficiently
sample the space. Therefore, we also tested how the run time increases as the number
of clusters being run in parallel increases. We time the first 3 iterations for running the
algorithm on the 100GB Facebook dataset with 3000 mappers and 500 reducers. We vary
the number of seeds used from 100 to 5000. As can be seen in Figure 4.4(b), we find a
similar linear relationship between number of seeds and run time. We note that 50 times
increase from 100 clusters to 5000 clusters takes only a little over twice as much time.
This is again reassuring that our implementation exploits the parallelism of the problem
and can continue to scale as the data scales.

4.7.3 Convergence

Because our MapReduce implementation is not provably convergent, we also test our
algorithm’s convergence. We ran the algorithm on the 100GB Facebook dataset, starting
with 1000 seeds and tracked the sum of the values of the objective functions per iteration,

64

0
 3 4 5 6 7 8 9 10

S
u
m

 o
f
o
b
je

c
ti
v
e
 f
o
r

a
ll

c
lu

s
te

rs

Number of Iterations

Figure 4.5: The convergence of the CopyCatch MapReduce implementation over 10
iterations on Facebook data.

0

 0 5 10 15 20

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

T
o
ta

l
N

u
m

b
e
r

o
f
U

n
iq

u
e
 U

s
e
rs

 C
a
u
g
h
t

P
e
rc

e
n
t
o
f
U

s
e
rs

 C
a
u
g
h
t
th

a
t
a
re

 N
e
w

Number of Runs

Total Number
Percent

(a) Facebook

 0

 20

 40

 60

 80

 100

(50,25) (250,125) (500,250) (750,375) (1000,500)

P
e
rc

e
n
t
o
f
A

tt
a
c
k
in

g
 U

s
e
rs

 C
a
u
g
h
t

Attack size (Number of Users, Number of Pages)

(b) Synthetic

08/25 09/08 09/22 10/06 10/20 11/03 11/17 12/01

N
u
m

b
e
r

o
f
u
s
e
rs

 c
a
u
g
h
t

Date of CopyCatch run

(c) Facebook live runs

Figure 4.6: Plots demonstrating the effectiveness of CopyCatch in discovering attacks.
(a) shows the total number of users caught after multiple runs of CopyCatch. (b) shows
the success in finding planted attacks in synthetic data after one run. (c) shows the
decrease in attacks on Facebook over the last 3 months.

starting at the third iteration when |P ′| = m. As can be seen in Figure 4.5, the algorithm
quickly converges in only a few iterations as desired.

4.7.4 Discovery

The effectiveness of the algorithm is measured by its ability to detect fraudulent behavior.
This is difficult to gauge in the real world where there isn’t labelled data, and it can be
impossible to know if a user intentionally, honestly Liked a given Page. Here we take
two different approaches to evaluate our method.

First, we analyze the success of the algorithm in finding suspicious groups of users
on Facebook. Our goal is for the algorithm to find as many of the [n,m,∆t, ρ]-TNBC’s
in the Facebook data as possible. To test CopyCatch’s success, we run the algorithm
repeatedly and check that we eventually are mostly finding users we had caught in
previous runs. In our experiment we run the algorithm 20 times for 5 iterations, each
run starting from 1000 seeds on the 100GB data set. In Figure 4.6(a) we see that over the

65

course of 20 runs we quickly decrease to finding mostly the same users repeatedly, and
only catching a small percentage of new users with each successive run. More precisely,
after the eleventh run, the average percent of caught users that are new is only 13%
percent. Because we use random independently drawn seeds for each run, this test
suggests that the algorithm has found most of the attacks in the dataset.

For a more precise analysis we use our synthetic dataset to test the algorithm’s ability
to find attacks in the graph. We set n = 50, m = 25, ∆t = 50, and ρ = 0.9. For our tests we
add 20 randomly-placed attacks to the graph, and test the ability of the algorithm to find
the attacks after one run starting with 5000 randomly chosen seeds. We vary our attack
size as a multiple of our defined suspicious lockstep behavior, ranging from 50 users and
25 Pages to 1000 users and 500 Pages. In each case the time of the attack for each Page is
chosen at random, and each user’s Likes falls within the 2∆t time window for 95% of the
Pages being attacked. The percent of attackers caught after 1 run for each attack size are
plotted in Figure 4.6(b). Also we note that 0% of our caught users were false positives.
As we see in the plot, small attacks exactly at our threshold size were hard to spot, but
as attacks grow in size in just one run we catch nearly all of the attackers. It is worth
noting that because we choose seeds randomly, running the algorithm again should
catch an independent set of the attackers, and thus merely running the algorithm a few
times should catch a high percentage of the attackers even in cases where 1 run does not.
Overall, this experiment shows the algorithm is generally successful in detecting a few
relatively small attacks in large graphs.

23%

59%

4.5%

9%

4.5%

Fake Accounts
Browser Malware
OS Malware
Credential Stealing
Social Engineering

Figure 4.7: Breakdown of attack vectors found on Facebook. Note, most attacks are
from real but compromised users.

66

4.7.5 Deployment at Facebook

CopyCatch is run regularly at Facebook, searching for new attacks. Parameters have
been chosen to significantly distinguish natural user behavior from ill-gotten Page Likes.
In practice at Facebook, false positives are very rare due to the sparsity of the Page Like
matrix. In particular, we labelled 22 randomly selected clusters caught in February 2013.
After intensive manual investigation, we found that 100% of the clusters were caught
due to Likes generated through deceitful means. As can be seen in Figure 4.7, of the
attacks, 5 were from fake accounts, 13 from malicious browser extensions, 1 from OS
malware, 2 from credential stealing, and 1 from social engineering. Note, this means
that most attacks were from real users who were compromised, and not Sybil accounts.
When caught, users that have contributed to ill-gotten Page Likes have a portion of their
past month’s Likes removed and are prevented from Liking pages for the next month.
This removal of Page Likes are reflected in the Like counts of the Pages that benefited.
As shown in Figure 4.6(c), we have seen a general decrease in ill-gotten Page Likes
since the start of this method. Overall, this method, in combination with the numerous
other measures at Facebook mentioned in Section 4.1, has proved effective in decreasing
ill-gotten Page Likes.

4.8 Discussion: Applications

As mentioned previously, the algorithm can be used in a number of settings including
Twitter followers and Amazon product reviews. The use case at Twitter demonstrates
the ability of the algorithm to be applied to non-bipartite graphs. However, in this case,
the general structure of the algorithm is the same—we look for some set of users that
follow another set of users at around the same time.

In this case of product reviews, we again have a bipartite graph between users and
products where edges represent a review that was given to the product. Although we
have described the edge constraints in terms of time, the algorithm only requires some
center c and a comparison function φ. Therefore, we could hypothetically extend the
formulation as applied to Page Likes to use multiple linguistic and behavioral cues when
attempting to find near bipartite cores in settings with more metadata.

Since the CopyCatch method was published in [33], the ideas have been extended to
detect fraud on Instagram [42] as well as on YouTube [143].

4.9 Summary

In this chapter we have attacked the problem of detecting fraudulent user feedback
through the context of catching lockstep behavior in Facebook Page Likes. Our main
contributions are:

1. Problem Formulation: We offer a novel definition of suspicious behavior based
only on graph structure and edge constraints.

67

2. Algorithm: We describe two new algorithms to find lockstep behavior ([n,m,∆t, ρ]-
TNBC’s) - one provably convergent serial algorithm and one scalable, efficient
MapReduce implementation.

3. Theoretical analysis: We show that catching lockstep behavior limits the damage
an adversary can do. By analyzing the effect of a “greedy attack” and by applying
the 60 year old Zarankiewicz problem to our setting, we show that finding an
optimal adversarial attack is very hard.

Finally, we experimentally demonstrate on Facebook and synthetic data that CopyCatch
is scalable, generally converges, and effective in catching lockstep behavior.

68

Chapter 5

Detect Fraud in Graphs with Multiple
Attributes

Which seems more suspicious: 5,000 tweets from 200 users on 5 IP addresses, or 10,000
tweets from 500 users on 500 IP addresses but all with the same hashtag and all in
10 minutes? Building on the effectiveness of incorporating time in fraud detection in
Chapter 4, we focus now on scoring suspiciousness in multimodal data. The literature
has many methods that try to find dense blocks in matrices, and, recently, tensors, but no
method gives a principled way to score the suspiciousness of dense blocks with different
numbers of modes and rank them to draw human attention accordingly. Our main
contribution is that we show how to unify these methods and how to give a principled
answer to questions like the above. Specifically, (a) we give a list of axioms that any
metric of suspiciousness should satisfy; (b) we propose an intuitive, principled metric
that satisfies the axioms, and is fast to compute; (c) we propose CrossSpot, an algorithm
to spot dense regions, and sort them in importance (“suspiciousness”) order. Finally, we
apply CrossSpot to real data, where it improves the F1 score over previous techniques by
68% and finds retweet-boosting and hashtag-hijacking in social datasets spanning 0.3
billion posts.

5.1 Introduction

Imagine your job at Twitter is to detect when fraudsters are trying to manipulate the
most popular tweets for a given trending topic. Given time pressure, which is more
worthy of your investigation: 2,000 Twitter users, all retweeting the same 20 tweets, 4 to
6 times each; or 225 Twitter users, retweeting the same 1 tweet, 10 to 15 times each? Now,
what if the latter batch of activity happened within 3 hours, while the former spanned 10
hours? What if all 225 users of the latter group used the same 2 IP addresses?

Figure 5.1 shows an example of these patterns from Tencent Weibo, one of the largest
microblogging platforms in China; our method CrossSpot detected a block of 225 users,
using 2 IP addresses (“blue circle” and “red cross”), retweeting the same tweet 27,313

69

200 Minutes

2
2
5
U
se
rs

27,313
Retweets

...

· · ·

(a) Dense block

10
:0
9

10
:1
4

10
:1
9

10
:2
4

10
:3
2

10
:3
7

11
:0
4

15
:3
7

21
:1
3

. . .
“John123” l : : l l l
“Joe456” l : l : : : :
“Job789” l : l : l l l
“Jack135” : l : : : l : l
“Jill246” : l l l :

“Jane314” : : l l l l l
“Jay357” l l l l : l

...

(b) Magnification

Figure 5.1: Dense blocks in multiple modes are suspicious. Left: A dense block of
225 users on Tencent Weibo (Chinese Twitter) retweeting one tweet 27,313 times from
2 IP addresses over 200 minutes. Right: magnification of a subset of this block. l and
: indicate the two IP addresses used. Notice how synchronized the behavior is, across
several modes (IP-address, user-id, timestamp).

times, within 200 minutes. Further, manual inspection shows that several of these users
get activated every 5 minutes. This type of lockstep behavior is suspicious (say, due
to automated scripts), and it leads to dense blocks, as in Figure 5.1. These blocks may
span several modes (user-id, timestamp, hashtag, etc.). Although our main motivation is
fraud detection in a Twitter-like setting, our proposed approach is suitable for numerous
other settings, like distributed-denial-of-service (DDoS) attacks, link fraud, click fraud,
even health-insurance fraud, as we discuss next.

Thus, the core question we ask in this chapter is: what is the right way to compare
the severity, suspiciousness, or surprise of two dense blocks, that span 2 or more modes?
Informally, the problem is:
Informal Problem 1 (Suspiciousness score) Given aK-mode dataset (tensor)X , with counts
of events (that are non-negative integer values), and two subtensors Y1 and Y2, which is more
suspicious and worthy of further investigation?

Why multimodal data (tensor): Graphs and social networks have attracted huge
interest, and they are often modeled as K=2 mode datasets, that is, matrices. With K=2
modes we can model Twitter’s “who-follows-whom” network (Ch. 3), Facebook’s “who-
friends-whom” and “who-Likes-what” graphs (Ch. 4), eBay’s “who-buys-from-whom”
graph [171], financial activities of “who-trades-what-stocks”, and scientific relations of
“who-cites-whom”. Several high-impact datasets make use of higher mode relations.
With K=3 modes, we can consider how all of the above graphs change over time, as in
Chapter 4, or what words are used in product reviews on eBay or Amazon. With K=4
modes, we can analyze network traces for intrusion detection and distributed denial of
service (DDoS) attacks by looking for patterns in the source IP, destination IP, destination
port, and timestamp [153, 154]. Health-insurance fraud detection is another example,

70

with (patient-id, doctor-id, prescription-id, timestamp) where corrupt doctors prescribe
fake, expensive medicine to senile or corrupt patients [101, 184].

Why are dense regions worth inspecting: Dense regions are surprising in all of the
examples above.1 Past work has repeatedly found that dense regions in these tensors
correspond to suspicious, lockstep behavior: Purchased Page Likes on Facebook result in
a few users “Liking” the same “Pages” always at the same time (when the order for the
Page Likes is placed) (Ch. 4). Spammers paid to write deceptively high (or low) reviews
for restaurants or hotels will reuse the same accounts and often even the same text
[15, 161]. Zombie followers, botnets who are set up to build social links, will inflate the
number of followers to make their customers seem more popular than they actually are
(Ch. 3). This high-density outcome has a reason: Spammers have constrained resources
(users, IP addresses, time, etc.) and they want to add as many edges to the graph/tensor
as possible, to maximize their profit while minimizing their costs. Intuitively, the more
synchronized the data is, in higher number of modes, the more worthy it is of further
inspection.

Our new perspective: There are numerous papers on finding dense subgraphs [26,
49, 179, 213], blocks and communities [20, 65, 138], including matrix algebra methods
like singular value decompositions (SVD) [40, 59], tensor decompositions like multi-way
decomposition methods (CANDECOMP/PARAFAC) and high-order SVD (HOSVD)
[105, 119], and PageRank/TrustRank [169, 204]; several more papers apply such methods
for anomaly and fraud detection [90, 154, 183]. These methods do effectively find
suspicious behavior, nearly always related to dense subgraphs. However, none of them
answers the problem of interest (Problem 1). The features that set this work apart are the
following (also presented in Table 5.1):

• Block score: How would you label an individual Like on Facebook or follower on
Twitter? These actions are impossible to evaluate in isolation but can be understood
in the aggregate. Therefore, we focus on finding and measuring the suspiciousness
of blocks of data. Other methods either return no score (like SVD/EigenSpokes,
and PARAFAC/Tucker tensor decomposition) or they return a score for each node
(like PageRank, TrustRank, and belief propagation), but not for the whole group.
These prior methods are harder to interpret and are more easily deceived through
adversarial noise.

• Cross modes: We look for suspicious density in all K modes, as well as any subset
of the modes. In contrast, SVD and dense subgraph mining methods work only for
K=2 modes; (sparse) PARAFAC, HOSVD and related tensor analysis return blocks
in all modes, which we will show in Sections 5.2.3 and 5.5 has limitations.

It is worthwhile to highlight our contributions in this chapter as follows:
1. Metric criteria: We propose a set of basic axioms that a good metric must meet

to detect dense subregions in sparse multimodal data (e.g., if two blocks are the
same size, the denser one is more surprising). We demonstrate that while simple,
meeting all of the criteria is non-trivial.

1 Extremely sparse regions are also surprising and worthy of inspection, but fraud cannot be the result
of inaction and as such sparse regions are not the focus here.

71

ρ > ρ/10

(a) Density Axiom

ρ/10

p

> ρ/10

5p

(b) Contrast Axiom

ρ >
ρ

(c) Size Axiom

c

>
c

(d) Concentration Axiom

Figure 5.2: A visual representation of the axioms: Density, Contrast, Size and Concen-
tration. The blocks on the left are more suspicious (of higher “suspiciousness”) than
those on the right. (ρ = 0.1, c = 1000, p = 0.0008)

2. Novel metric: We introduce a novel suspiciousness metric to evaluate how suspi-
cious a subvector, a submatrix or a subtensor is in multimodal data. Our metric is
derived from basic probability and meets the specified criteria.

3. The CrossSpot algorithm: We design a scalable search algorithm to find suspicious
regions of a tensor. The time complexity is quasi-linear in the number of nodes and
linear in the number of non-zero entries.

4. Validation: Extensive experiments have demonstrated the effectiveness in catching
trending-hashtag manipulation and detecting tweet promotion through retweets.
We find that directly optimizing our metric significantly improves the results over
just applying computationally-convenient methods like the SVD.

The remainder of this chapter is organized as follows. In Section 5.2 we propose a
set of basic axioms as metric criteria and Section 5.3 presents our novel suspiciousness
metric which meets all of the criteria. In Section 5.4 we develop a scalable algorithm
to detect multimodal blocks with the suspiciousness metric. In Section 5.5 we report
empirical results on synthetic and real-world datasets.

72

Axioms

D
en

si
ty

Si
ze

C
on

ce
nt

ra
ti

on

C
on

tr
as

t

M
ul

ti
m

od
al

Method
Scores
Blocks 1 2 3 4 5

M
et

ri
cs

SUSPICIOUSNESS 4 4 4 4 4 4

Mass X X 7 7 7 X

Density X X 7 X 7 7

Average Degree [47] X X 7 7 7 N/A
Singular Value [49] X X X X 7 7

M
et

ho
ds

CrossSpot 4 4 4 4 4 4

Subgraph [49, 179, 213] X X X X 7 N/A
CopyCatch (Ch. 4) X X X X 7 N/A
CatchSync (Ch. 3) 7 N/A
EigenSpokes [183] 7 N/A
fBox [190] 7 N/A
TrustRank [90][228] 7 N/A
SybilRank [41] 7 N/A
CollusionRank [79] 7 N/A
BP [15, 171] 7 N/A

Table 5.1: Comparison of state-of-the-art metrics and methods. While the methods
have been successful in particular applications, they do not meet the general goals set
out here.

5.2 Proposed Metric Criteria

Having given the high level intuition behind our perspective and its relation to prior
work, we now give a precise definition of the problem. We focus on tensors where each
cell contains a non-negative integer, typically representing counts of events. We consider
the mass of a subtensor to be the sum of entries in that subtensor, and the density to be
the mass divided by the volume of the subtensor. A full list of our notation can be found
in Table 5.2.

73

Symbol Definition

K Number of modes in our dataset
X K-mode tensor dataset
Y Subtensor within X
N K-length vector for the size of each mode of X
C The mass of X (summing the entries of X)
n K-length vector for the size of each mode of Y
c The mass of Y
p The density, C/

∏
kNk of X

ρ The density, c/
∏

k nk, of Y
f Suspiciousness metric, parameterized by the masses
f̂ Suspiciousness metric, parameterized by the densities

DKL(ρ‖p) Directed KL-divergence of Poisson(p) & Poisson(ρ)

p− ρ+ ρ log ρ
p

Table 5.2: The notation used throughout this chapter.

5.2.1 Problem Formulation

Now we can formally give the definition of the problem of evaluating the suspiciousness
of suspicious behaviors - mathematically, giving a suspiciousness score of dense blocks
in multimodal data.

Formal Problem 1 (Suspiciousness score) Given a K-mode tensor X with non-negative
entries, of size N = [Nk]

K
k=1 and with mass C (describing C events by summing entries of the

tensor), define a score function f(n, c,N, C) for how suspicious a subtensorY of size n = [nk]
K
k=1

with mass c.

We consider an alternative parameterization using density. Here ρ is the density of Y
and p is the density of X :

f̂(n, ρ,N, p) = f

(
n, ρ

K∏
k=1

nk,N, p
K∏
k=1

Nk

)

In the rare case that the number of modes being considered is unclear, we will refer to
the functions by fK and f̂K .

Note that we restrict f to only focus on blocks for which ρ > p, that is the density
inside the block is greater than the density in the general tensor. While extremely sparse
regions are also unusual, they are not the focus of this work.

74

5.2.2 Axioms

We now list five basic axioms that any suspiciousness metric f must meet. A pictorial
representation can be found in Figure 5.2.
Axiom 1 Density If there are two blocks of the same size in the same number of modes, the
block of bigger mass is more suspicious than the block of less mass. Formally,

c1 > c2 ⇐⇒ f(n, c1,N, C) > f(n, c2,N, C)

Axiom 2 Size If there are two blocks of the same density in the same number of modes, the
bigger block is more suspicious than smaller block. Formally,

nj>n
′
j ∧ nk≥n′k ∀k =⇒ f̂ (n, ρ,N, p)>f̂ (n′, ρ,N, p)

Axiom 3 Concentration If there are two blocks of the same mass in the same number of modes,
the smaller block is more suspicious than bigger block. Formally,

nj<n
′
j ∧ nk≤n′k ∀k =⇒ f(n, c,N, C)>f(n′, c,N, C)

Axiom 4 Contrast If two identical blocks lie in two tensors each of the same size but one is
sparser, then the block in the sparser tensor is more suspicious. Formally,

p1 < p2 ⇐⇒ f̂(n, ρ,N, p1) > f̂(n, ρ,N, p2)

Axiom 5 Multimodal A block which contains all possible values within a mode is just as
suspicious as if that mode was ignored (was collapsed2 into the remaining modes). Formally,

fK−1

(
[nk]

K−1
k=1, c, [Nk]

K−1
k=1, C

)
= fK

(
([nk]

K−1
k=1, NK), c, [Nk]

K
k=1, C

)
Lemma 4 Cross-mode comparisons Learning of a new mode about our data can only make
blocks in that data more suspicious. Formally,

fK−1

(
[nk]

K−1
k=1, c, [Nk]

K−1
k=1, C

)
≤ fK

(
[nk]

K
k=1, c, [Nk]

K
k=1, C

)
Proof 5

fK−1

(
[nk]

K−1
k=1 , c, [Nk]

K−1
k=1 , C

)
= fK

(
([nk]

k−1
k=1, NK), c, [Nk]

K
k=1, C

)
≤ fK

(
([nk]

k−1
k=1, nK), c, [Nk]

K
k=1, C

)
Above we find that the first equality is given by Axiom 5 and the second by Axiom 3.

2Collapsing a tensor X on mode K sums the values of X across all indices in mode K [106], e.g.,
collapsing a tensor to a matrix: Xi,j =

∑
k Xi,j,k.

75

5.2.3 Shortcomings of Competitors

While these axioms are simple and intuitive, they are non-trivial to meet. As shown in
Table 5.1, simple metrics fail a number of the axioms.

Mass: One possible metric is the mass f(n, c,N, C) = c. This does not change if the
same mass is concentrated in a smaller region, and hence fails Axiom 3 (Concentration);
it does not consider the background density p, and so fails Axiom 4 (Contrast) as well.

Density: Another possible metric is the density of the block f̂(n, ρ,N, p) = ρ. How-
ever, this does not consider the size of the dense block, and hence fails Axiom 2 (Size).
It also does not consider the background density, and fails Axiom 4 (Contrast). Since
density in general decreases with more modes, Axiom 5 (Multimodal) is also broken.

Average degree: Much of the research on finding dense subgraphs focuses on the
average degree of the subgraph [23][20], f(n, c,N, C) = c/n1. This metric breaks both
Axioms 2 and 3 by not considering n2 and breaks Axiom 4 by not considering C and N.
Additionally it is unclear how we would define the average degree for K > 2, making it
unsuitable for multimodal data.

Singular value (in SVD): The SVD of a matrix A is a factorization of the form
A = UΣV>. The singular values of A correspond to Σr,r, and U,V are the singular
vectors. The top singular values and vectors indicate big, dense blocks/clusters in
the multimodal data and have been used to find suspicious behavior [105][183]. As
shown in [190], an independent block of size n1 × n2 with mass c has a singular value
σ corresponding to that block of σ = c√

n1n2
=
√
ρc. Given the SVD prioritizes the parts

of the data with higher singular values, we can view this as a competing metric of
suspiciousness. While this metric now meets Axioms 1 through 3, it has a challenge
generalizing. First, it is clear that this metric ignores the density of the background
data. As a result, Axiom 4 is broken. Second, how can we extend this metric to more
modes? HOSVD does not have the same provable guarantees as SVD and thus does
not necessarily find the largest, densest blocks. Even if we consider density in higher
modes, what we find is that with each additional mode added, the volume of a block
becomes greater and thus the density lower. This breaks Axiom 5 and would make
an algorithm collapse all data down to one mode rather than consider the correlation
across all K modes. Later, we will observe in proposed metric definition (Section 5.3)
and experiments (Section 5.5) the drawbacks of the singular value in higher modes.

From the above, we see that methods building on average degree and SVD meet the
requirements for many cases, but break down on certain corner cases, limiting their path
toward a general approach to finding surprising/suspicious behavior. We now offer our
approach and demonstrate its effectiveness across all of these challenges.

5.3 Proposed Suspiciousness Metric

Our metric is based on a model of the data in which theC events are randomly distributed
across the tensor data X . For binary data this corresponds to a multimodal Erdös-Rényi
model [166], where the value in each cell follows a binomial distribution. Because

76

each cell in the tensor can contain more than one occurrence, we instead use a Poisson
distribution, resulting in the Erdös-Rényi-Poisson model:
Definition 4 Erdös-Rényi-Poisson (ERP) model A tensor X generated by the ERP model,
has each value in the tensor sampled from a Poisson distribution parameterized by p.

Xi ∼ Poisson(p)

In general, we set p to be the density of the overall tensor. Using this model we define
our metric:
Definition 5 The suspiciousness metric The suspiciousness score of a multimodal block is the
negative log likelihood of block’s mass under an Erdös-Rényi-Poisson model. Mathematically,
given an n1× · · ·×nK block of mass c in N1× · · ·×NK data of total mass C, the suspiciousness
score is

f(n, c,N, C)=− log [Pr(Yn = c)] (5.1)

where Yn is the sum of entries in the block.

5.3.1 Dense Subvector and Submatrix: 1-Mode and 2-Mode Suspi-
ciousness

Consider an N -length vector X, which we believe to be generated by the ERP model
defined above. We can think of this vector as the number of tweets per IP address. If
there are C tweets total, then the density is p=C

N
and each Xi has a Poisson distribution:

Pr(Xi|p) =
pXi

Xi!
e−p

We are searching for an n-length subvector Xi1 , . . . , Xin that is unlikely and hence has
a high suspiciousness score.
Lemma 5 The suspiciousness of an n-length subvector [Xi1 , . . . , Xin] in the N -length vector
data [X1, . . . , XN] is

f(n, c,N,C)= c
(
log c

C
− 1
)

+ C n
N
− c log n

N

f̂(n, ρ,N, p)= n
(
p− ρ+ ρ log ρ

p

)
= nDKL(ρ||p)

Here c =
∑n

j=1 Xij andDKL(ρ||p) is the Kullback-Leibler (KL) divergence of Poisson(p)

from Poisson(ρ).
Proof 6 We denote the sum of n variables by Yn =

∑n
j=1 Xij . From the Poisson property, we

know Yn ∼ Poisson(pn). The probability that Yn equals a given number of retweets c is

Pr(Yn = c) =
(pn)ce−pn

c!
=
Cc

c!

(n
N

)c
e−

Cn
N

77

Since the approximation for factorials (Stirling’s formula) is

log (c!) = c log c− c+O(log c),

we obtain the suspiciousness score:

f(n, c,N,C) = − log [Pr(Yn = c)] = − log

[
Cc

c!

(n
N

)c
e−

Cn
N

]
≈ c
(

log
c

C
− 1
)

+ C
n

N
− c log

n

N
.

We now extend suspiciousness to a 2-mode matrix.
Lemma 6 The suspiciousness of an n1 × n2 block of mass c in N1 ×N2 data of total mass C is:

f([n1, n2], c, [N1, N2], C)= c
(
log c

C
−1
)
+C n1n2

N1N2
−c log n1n2

N1N2

f̂([n1, n2], ρ, [N1, N2], p)= n1n2DKL(ρ||p)

5.3.2 Dense Subtensor: K-Mode Suspiciousness

We now extend suspiciousness to a K-mode tensors.
Lemma 7 Given an n1 × · · · × nK block of mass c in N1 × · · · ×NK data of total mass C, the
suspiciousness function is

f(n, c,N, C)=c(log
c

C
− 1)+C

K∏
i=1

ni
Ni

−c
K∑
i=1

log
ni
Ni

(5.2)

Using ρ as the block’s density and p is the data’s density, we have the simpler formulation

f̂(n, ρ,N, p) =

(
K∏
i=1

ni

)
DKL(ρ||p) (5.3)

From the non-negativity of KL divergence, we have f = f̂ ≥ 0.

5.3.3 Proofs: Satisfying the Axioms

Now that we have defined our suspiciousness metric, we prove that it meets all of the
desired axioms proposed in Section 5.2.

Axiom 1: Density

78

Proof 7 Using Eq. (5.2), the derivative of the suspiciousness function with respect to the block’s
mass c is3

df̂

dc
= log

c

C
+ log

(
K∏
i=1

Ni

ni

)
= log

ρ

p

since p = C∏K
i=1 Ni

and ρ = c∏K
i=1 ni

. We are only considering blocks with higher density than the

overall data, i.e. ρ > p, so df̂
dc
> 0, i.e. suspiciousness increases with density.

Axiom 2: Size
Proof 8 Using Eq. (5.3), fixing nk for k 6= j, the derivative of the suspiciousness function with
respect to nj is:

df̂

dnj
=

(∏
k 6=j

nk

)
DKL(ρ‖p) > 0

Thus, for fixed density ρ, as we increase any one dimension of the block with the remaining
dimensions kept fixed, suspiciousness increases.

Axiom 3: Concentration
Proof 9 Using Eq. (5.2), fixing nk for k 6= j, the derivative of the suspiciousness function with
respect to nj is:

df̂

dnj
=
C

nj

K∏
i=1

ni
Ni

− c

nj
=

c

nj

(
p

ρ
− 1

)
The last expression is negative since ρ > p. Thus, for a fixed mass, larger blocks are less suspicious.

Axiom 4: Contrast
Proof 10 Using Eq. (5.3), the derivative of suspiciousness with respect to the data density p is

df̂

dp
=

(
K∏
k=1

ni

)(
1− ρ

p

)
Since ρ > p, we have df̂

dp
< 0, so as the overall matrix gets denser, the block gets less suspicious.

Axiom 5: Multimodal
Proof 11 Using Eq. (5.2):

fK
(
([nk]

K−1
k=1, NK), c, [Nk]

K
k=1, C

)
= c

(
log c

C
− 1
)

+ C NK
NK

∏K−1
i=1

ni
Ni
− c

(
log NK

NK
+
∑K−1

i=1 log ni
Ni

)
= c

(
log c

C
− 1
)

+ C
∏K−1

i=1
ni
Ni
− c∑K−1

i=1 log ni
Ni

= fK−1

(
[nk]

K−1
k=1 , c, [Nk]

K−1
k=1 , C

)
3Formally, to take derivatives with respect to a discrete variable such as c, we extend Eq. (5.2) to take in

c as real numbered input, then differentiate it with respect to c to show the desired monotonicity property.
Then, the original, integer version of Eq. (5.2) agrees with the real numbered version whenever c is an
integer, proving the desired monotonicity property for Eq. (5.2).

79

M
et

ric
 s

co
re

5*2*x block of mass 500 in 1,000*1,000*1,000 data: x
200 400 600 800 1000

3000

4000

5000

S
in

gu
la

r
va

lu
e

200 400 600 800 1000

0

100

200

Suspiciousness: 5*2*x block
Suspiciousness: 5*2 block
Singular value: 5*2*x block
Singular value: 5*2 block

Figure 5.3: Cross-mode comparisons: Our suspiciousness metric obeys all the axioms,
but the singular value breaks Axiom 5 (Multimodal).

After the extensive proofs, we give an example to highlight the advantages of our
“suspiciousness” over the singular value.
Example 1 Given a 3-mode tensor data of mass 10,000 and size 1,000×1,000×1,000, suppose
that we spot a 3-mode dense block of mass 500 and size 5×2×x; collapsing the 3rd mode of the
3-mode tensor, or directly given a 2-mode data of mass 10,000 and size 1,000×1,000, suppose that
we spot a 2-mode dense block of mass 500 and size 5×2. Figure 5.3 compares the suspiciousness
scores and singular values of these dense blocks. Two observations are as follows.

• With the value of x decreasing, both metric scores of the 3-mode blocks increase. So, both
the “suspiciousness” and the singular value obey Axiom 3 (Concentration).

• When x<1,000, the suspiciousness of the higher-mode block is bigger than the lower-mode
one, however, the singular value of the lower-mode block is bigger. So, the “suspiciousness”
obeys Axiom 5 (Multimodal) and the singular value breaks it.

5.4 Suspicious Block Detection

Having defined a metric for measuring the suspiciousness of a block, in this section we
formally define the problem of detecting suspicious blocks across modes, and give a
scalable algorithm based on our proposed metric to identify the blocks.

5.4.1 Problem Definition

Now we can formally give the definition of the problem of detecting suspicious behaviors
- mathematically, detecting dense blocks in multimodal data.

80

Problem 1 (Suspicious block detection) Given dataset X which is a N1 × · · · ×NK tensor
of mass C, find a list of blocks in X , in any subset of modes, with high suspiciousness scores, in
descending order, based on Eq. (5.2) and (5.4).

As before, we have a K-mode tensor X and a k-mode subtensor Y to represent the
suspicious block. Mode j of the tensor has Nj possible values: Pj = {p(j)

1 , . . . , p
(j)
Nj
}.

Subtensor Y covers a subset of values in each mode: P̃j ⊆ Pj, ∀j. Define P̃ = {P̃j}Kj=1.
Let c(P̃) be the number of events in the subtensor defined by P̃ .

The dimensions of our block n are nj = |P̃j|. If a mode j is not included, we
consider P̃j = Pj , based on Axiom 5 and the properties of collapse operation. For the
sake of notational simplicity we define one last alternative parameterization for our
suspiciousness function

f̃(P̃ ,D) = f([|P̃j|]Kj=1, c(P̃), [|Pj|]Kj=1, |X |) (5.4)

5.4.2 Proposed Algorithm CrossSpot

We define here a local search algorithm to search for suspicious blocks in the dataset. We
start with a seed suspicious block, then perform an iterative alternating optimization,
where we find the optimal set of values in mode j while holding constant the included
values in all other modes. We run this sequence of updates until convergence. The
complete algorithm is shown in Algorithm 6.

Algorithm 6: Local Search

Require: Data X , seed region Y with P̃ = {P̃j}Kj=1

1: while not converged do
2: for j = 1 . . . K do
3: P̃j ← ADJUSTMODE(j)

4: end for
5: end while
6: return P̃

Adjusting a Mode: During each iteration of ADJUSTMODE, we optimally choose a
subset of values from Pj holding constant the values in other modes, i.e. fixing P̃j′ for
j′ 6= j. Denote ∆c

p
(j)
i

as the number of events in the intersection of row i (in mode j) and

the currently fixed values in the other modes, i.e. P̃j′ for j′ 6= j. We refer to ∆c
p

(j)
i

as the

“benefit” of p(j)
i . In Algorithm 7 we use these benefit scores to order the values in Pj , from

greatest to least benefit. We will refer to this ordered list as Pj .
Lemma 8 Holding constant P̃j′ for all j′ 6= j, the optimal choice of values P̃j ⊆ Pj is the first
nj values in Pj for some nj ≤ Nj .

81

Algorithm 7: ADJUSTMODE(j)

1: P̃ ′j ← {};
2: Pj ← {p(j)

i }
Nj
i=1 sorted in descending order by ∆c

p
(j)
i

3: for p(j)
i ∈ Pj do

4: P̃ ′j ← P̃ ′j ∪ p(j)
i

5: P̃ ′ ← {P̃j′}j′ 6=j ∪ P̃ ′j
6: if f̃(P̃ ,D) ≤ f̃(P̃ ′,D) then
7: P̃j ← P̃ ′j
8: end if
9: end for

10: return P̃j

Dataset Mode #1 Mode #2 Mode #3 Mode # 4 Mass

Retweeting
User id Tweet id IP address Time (min.) Retweet

29,468,040 19,755,875 27,817,611 56,943 221,719,535

Tweeting
hashtag

User id Hashtag IP address Time (min.) Tweet
81,186,369 1,580,042 47,717,882 56,943 276,944,456

Network
traffic

Source IP Destination IP Port number Time (sec.) Packet
2,345 2,355 6,055 3,610 230,836

Table 5.3: Data statistics: multimodal datasets from social networks and network traffic.

Proof 12 We prove this by contradiction. Assume there is a subset P̃j ⊆ Pj that we believe to be
the optimal choice of values but that P̃j is not the first |P̃j| values of Pj . Therefore, there must
exist a pair of values p(j)

i , p
(j)
i′ where p(j)

i ∈ P̃j and p(j)
i′ 6∈ P̃j but ∆c

p
(j)

i′
> ∆c

p
(j)
i

. By Axiom 1, it

is clear that removing p(j)
i and adding p(j)

i′ to P̃j results in a block with a higher suspiciousness
score than the original, supposedly optimal block. From this contradiction, the optimal set of
values for P̃j must come from the top of Pj .

Theorem 1 Holding constant P̃j′ for all j′ 6=j, the P̃j that maximizes f(n, c,N, C) is found by
ADJUSTMODE(j) in Algorithm 6.

Proof 13 Because ADJUSTMODE sortsPj and checks all possible values of nj for mode j, Lemma
8 implies that ADJUSTMODE makes the optimal choice of values in each step.

Seeds: In Algorithm 6, we start from a seed subtensor Y . In the simplest case, we
start from a randomly chosen seed, containing an individual cell of the tensor or a larger
randomly chosen block. As we will show in Section 5.5, even using randomly chosen
seeds does well.

82

This starting point offers significant flexibility for CrossSpot to benefit from the
findings of previous data mining work and side information. For example, we can use as
a seed the dense regions found in each rank of a singular value decomposition. Searching
with multiple seeds is trivially parallelizable, so with more computational resources we
can always choose additional random seeds or use additional prior methods as starting
points for CrossSpot.

Complexity: The time complexity of Algorithm 6 isO(T ×K× (E+N logN)), where
T is the number of iterations, K is the number of modes, E is the number of non-zero
entries in the data, and N = maxj Nj is the maximum size of any mode. Because T and
K are often set to constant values, the complexity is quasi-linear in N and linear in the
number of non-zero entries. Thus, Algorithm 6 is scalable for real applications to catch
suspicious behavior.

Convergence Guarantees: Our algorithm converges to a local optimum: by Theo-
rem 1, we find that each time ADJUSTMODE is run, the value of f̃(P̃ ,X) improves or
stays constant. As such, since there are a finite number of possible subtensors and hence
a finite number of possible (non-infinite) values of the objective, the algorithm must
converge.

5.5 Experiments

In this section, we conduct experiments to answer the following questions: (1) How effec-
tive is the proposed method CrossSpot in finding suspicious blocks? (2) Can CrossSpot
discover suspicious behavioral patterns in real datasets? (3) How efficient is CrossSpot?
The experimental results show that CrossSpot detects suspicious blocks more accurately
and is more computationally efficient than competing baselines. We also use CrossSpot
to identify large, dense blocks in a retweeting dataset, a hashtag promoting dataset and
a network traffic dataset, and use side information to show that suspicious behavior is
indeed identified.

5.5.1 Datasets

In our experiments we used extensive datasets including synthetically generated datasets,
two large, new social networking datasets and a public network traffic dataset. A
summary of the datasets can be found in Table 5.3.

Synthetic data: We adapt the Erdös-Rényi-Poisson model to generate multimodal data.
The synthetic data is generated as a K-mode tensor of size N1 × · · · ×NK with mass C.
Within the tensor we inject b dense blocks. Each block is assigned a size n1 × · · · × nK
and mass c. When an injected block falls in only a subset of modes I, we set ni = Ni.

Retweeting data: We use retweeting data from Tencent Weibo, one of the largest social
networking platforms in China. These retweets consist of user id, tweet id, IP address,

83

timestamp (from November 9 to December 20 in 2011) and retweeting comment. On
Weibo, retweet boosting is common, where retweets can be purchased to make a par-
ticular tweet seem more popular than it actually is. This results in a distorted user
experience.

Tweeting hashtag data: As well as retweeting data, we use original tweets from Ten-
cent Weibo that include hashtags in their content. The dataset consists of tuples of user id,
hashtag, IP address, timestamp and tweet content. This dataset is interesting for hashtag
hijacking and hashtag promotion, where purchased tweets will use popular hashtags to
promote their own content or will tweet many times using a hashtag in an attempt to
make it trend. By searching for dense, multimodal behavior, we hope to spot suspicious
patterns evident of hashtag hijacking.

Network traffic data: The network traffic log is public through a research effort to study
internet traffic of enterprises [172]. The data of thousands of packets was collected on
servers within the Lawrence Berkeley National Lab (LBNL). Each packet trace includes
source IP, destination IP, port number and a timestamp in seconds. We look for dense
structures.

5.5.2 Experimental Setup

In this subsection, we introduce how we set up our experiments: baseline methods,
parameter settings and evaluation methods.

Baselines: We compare our proposed method CrossSpot with the following baseline
methods. All the methods utilize structured behavioral information in different ways.

• SVD and HOSVD (Higher-Order SVD) [59][183] compute the orthonormal spaces
associated with the different modes of a tensor. The threshold value for partitioning
the decomposition vector is adaptively determined [183].

• MAF (MultiAspectForensics) [154] looks for spikes indicating the high-order sub-
tensor (representing dense bipartite-core pattern) with eigenscore histogram vector
and threshold parameters.

• AVGDEG (Dense Graph Components) [47] defines average degree as a metric of
dense subgraph and develops a greedy algorithm to find the dense components.

Parameter settings: We look for the best performance of every method. When running
CrossSpot, we generate 1,000 random seeds to find their final blocks. We randomly
decide the modes of a seed block and the set of values on each mode. We implement
CrossSpot in Python. For the sake of efficiency in Algorithm 7 we prune out sparse
values in each mode by stopping early if line 6 returns false. For SVD and HOSVD, we
compare with different decomposition ranks such as 5, 10 and 20. We vary the threshold
from 0 to 1 for every singular vector, considering rows (or columns) to be included in

84

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

CrossSpot
SVD (r = 20)
SVD (r = 10)
SVD (r = 5)
MAF
AvgDeg

CrossSpot

Figure 5.4: Finding dense subgraphs: CrossSpot has nearly perfect performance on
catching injected 2-mode blocks.

the block if their value in the singular vector is greater than the threshold. For other
baselines, we use their standard implementations. We perform the experiments on a
2.40GHz×8 Intel Xeon CPU with 64GB RAM, running Windows Server 2008-64 bit.

Evaluation methods: To assess the effectiveness of our detection strategy in classifying
suspicious and normal behaviors we use the standard information retrieval metrics of
recall, precision and F1 score [233]. The recall is the ratio of the number of behaviors
correctly classified to the number of suspicious behaviors. The precision is the ratio of
the number of behaviors classified correctly to the total predicted suspicious behaviors.
The F1 score is the harmonic mean of precision and recall.

5.5.3 Synthetic Experiments

We first evaluate CrossSpot on synthetic datasets. Overall, CrossSpot is effective: it
detects dense subgraphs in 2-mode data, dense k-mode blocks in k-mode tensor data,
and even dense k′-mode blocks in k-mode tensor data (k′ < k) with very high precision
and recall. It is also efficient: it has faster execution time than complex traditional
methods.

Effectiveness evaluations: We test the effectiveness of our proposed method CrossSpot
in three tasks of finding suspicious behaviors in synthetic datasets represented by big,
dense blocks in multimodal generated data, as well as the robustness of random seed
number.

Finding dense subgraphs (2-mode blocks): We generate a random matrix under the
ERP model with parameters as (1) the number of modes k=2, (2) the size of dataN1 =1000
and N2 =1000, and (3) the mass of data C=10,000. We inject b=6 blocks of k′=2 modes
into the random data, so, I={1, 2}. The size of every block is 30×30 and the block’s mass

85

Recall Overall Evaluation
Block #1 Block #2 Block #3 Block #4 Precision Recall F1 score

HOSVD (r=20) 93.7% 29.5% 23.7% 21.3% 0.983 0.407 0.576
HOSVD (r=10) 91.3% 24.4% 18.5% 19.2% 0.972 0.317 0.478
HOSVD (r=5) 85.7% 10.0% 9.5% 11.4% 0.952 0.195 0.324
CrossSpot 100% 99.9% 94.9% 95.4% 0.978 0.967 0.972

Table 5.4: CrossSpot catches more lower-mode blocks: CrossSpot has high accuracy in
finding the injected 4 blocks: (1) 30×30×30, (2) 30×30×1,000, (3) 30×1,000×30, and (4)
1,000×30×30, each of which has mass 1,000.

Recall
0 0.5 1

Pr
ec

is
io

n

0

0.2

0.4

0.6

0.8

1

CrossSpot
HOSVD (r = 20)
HOSVD (r = 10)
HOSVD (r = 5)
MAF

CrossSpot

(a) Performance of dense block detection

Mass of injected 30*30*30 blocks
512 256 128 64 32 16

R
ec

al
l

0

0.2

0.4

0.6

0.8

1

HOSVD
CrossSpot (HOSVD seed)

CrossSpot

HOSVD

(b) Recall with HOSVD seed

Figure 5.5: Finding dense blocks: CrossSpot outperforms baselines in finding 3-mode
blocks, and directly method improves the recall on top of HOSVD.

c ∈ {16, 32, 64, 128, 256, 512}. The task is to classify all the data entries into suspicious
(injected) and normal classes. Figure 5.4 reports the classification performances of our
proposed CrossSpot and the baselines of finding dense subgraphs. We observe that

• CrossSpot has nearly perfect precision: it only includes the entries that increase the
suspiciousness because they belong to the dense blocks. It also has perfect recall:
the local search does not miss any values in the block’s modes. The highest F1 of
CrossSpot is 0.967, while the highest F1 scores of SVD, MAF, AVGDEG are 0.634,
0.439, and 0.511. MAF catches a big number of similar objects on some mode and
thus it can catch very large blocks. AVGDEG catches very dense blocks but it will
miss larger, less dense blocks.

• SVD has small recall but high precision. However, the SVD can hardy catch small,
sparse injected blocks such as 30×30 submatrices of mass 16 and 32, even though
they are denser than the background. Higher decomposition rank brings higher
classification accuracy.

86

Block size n*n*n of mass 1,000: n

F
1

sc
or

e

0 50 100 150
0

0.2

0.4

0.6

0.8

1

Singular value
Suspiciousness + SVD seed
Suspiciousness + best rand. seed
Suspiciousness + avg. rand. seed

Figure 5.6: Performance comparisons between different versions of CrossSpot and SVD.
CrossSpot performs the best with SVD seeds.

Finding dense high-order blocks in multimodal data: We generate random tensor
data with parameters as (1) the number of modes k=3, (2) the size of data N1=1,000,
N2=1,000 and N3=1,000 and (3) the mass of data C=10,000. We inject b=6 blocks of
k′=3 modes into the random data, so, I = {1, 2, 3}. Each block has size 30×30×30 and
mass c ∈ {16, 32, 64, 128, 256, 512}. The task is again to classify the tensor entries into
suspicious and normal classes. Figure 5.5(a) reports the performances of CrossSpot
and baselines. We observe that in order to find all the six 3-mode injected blocks, our
proposed CrossSpot has better performance in precision and recall than baselines. The
best F1 score CrossSpot gives is 0.891, which is 46.0% higher than the F1 score given by
the best of HOSVD (0.610). If we use the results of HOSVD as seeds to CrossSpot, the
best F1 score of CrossSpot reaches 0.979. Figure 5.5(b) gives the recall value of every
injected block. We observe that CrossSpot improves the recall over HOSVD, especially
on slightly sparser blocks.

Figure 5.6 shows the performances of dense block detection: The different versions of
CrossSpot include the performance with SVD seeds, the best performance with random
seeds, and the average performance with random seeds. We inject a 3-mode dense block
of mass 1,000 and size n×n×n into the random tensor data of mass 10,000 and size
1,000×1,000×1,000. We observe that

• CrossSpot performs better than high-order SVD when it uses SVD seeds or the best
of random seeds.

• When the blocks become bigger, the F1 scores decrease, because the density of the
dense blocks are smaller.

• CrossSpot with SVD seeds can perform almost perfectly: F1 scores are consistently
more than 0.90.

Finding dense low-order blocks in multimodal data: We generate random tensor
data with parameters as (1) the number of modes k=3, (2) the size of data N1=1,000,

87

Rank # User×Tweet×IP×Minute Mass c Suspiciousness score

CrossSpot
1 14×1×2×1,114 41,396 1,239,865
2 225×1×2×200 27,313 777,781
3 8×2×4×1,872 17,701 491,323

HOSVD
1 24×6×11×439 3,582 131,113
2 18×4×5×223 1,942 74,087
3 14×2×1×265 9,061 381,211

Table 5.5: Big dense blocks with top metric values discovered in the retweeting dataset.

N2=1,000 and N3=1,000 and (3) the mass of data C=10,000. We inject b=4 blocks into the
random data:

• Block #1: The number of modes is k′1=3 and I1={1,2,3}. The size is 30×30×30 and
the block’s mass is c1=512.

• Block #2: The number of modes is k′2=2 and I2={1,2}. The size is 30×30×1,000 and
the block’s mass is c2=512.

• Block #3: The number of modes is k′3=2 and I3={1,3}. The size is 30×1,000×30 and
the block’s mass is c3=512.

• Block #4: The number of modes is k′4=2 and I4={2,3}. The size is 1,000×30×30 and
the block’s mass is c4=512.

Note, blocks 2–4 are dense in only 2 modes and random in the third mode. Table 5.4
reports the classification performances of CrossSpot and baselines. We show the overall
evaluations (precision, recall and F1 score) and recall value of every block. We observe
that CrossSpot has 100% recall in catching the 3-mode block #1, while the baselines have
85%–95% recall. More impressively, CrossSpot successfully catches the 2-mode blocks,
where HOSVD has difficulty and low recall. The F1 score of overall evaluation is as
large as 0.972 with 68.8% improvement.

Testing robustness of the random seed number: We test how the performance of our
CrossSpot improves when we use more seed blocks in the low-order block detection
experiments. Figure 5.7(a) shows the best F1 score for different numbers of random
seeds. We find that when we use 41 random seeds, the best F1 score is close to the results
when we use as many as 1,000 random seeds. Thus, once we exceed a moderate number
of random seeds, the performance is fairly robust to the number of random seeds.

Efficiency analysis: CrossSpot can be parallelized into multiple machines to search
dense blocks with different sets of random seeds. The time cost of every iteration is linear
in the number of non-zero entries in the multimodal data as we have discussed in Section
5.4. Figure 5.7(b) reports the counts of iterations in the procedure of 1000 random seeds.

88

Number of random seeds
0 50 100

T
h

e
 B

e
s
t

F
1

 s
c
o

re

0.2

0.4

0.6

0.8

1

(a) Robustness

Number of iterations
0 1 2 3 4 5 7 8 9R

a
n

d
o

m
 s

e
e

d
 c

o
u

n
t

0

100

200

300

400

500

(b) Convergence

Figure 5.7: CrossSpot is robust to the number of random seeds. In detecting the 4
low-order blocks, when we use 41 seeds, the best F1 score has reported the final result of
as many as 1,000 seeds. CrossSpot converges very fast: the average number of iterations
is 2.87.

We observe that usually CrossSpot takes 2 or 3 iterations to finish the local search. Each
iteration takes only 5.6 seconds. Tensor decompositions such as HOSVD and PARAFAC
used in MAF often take more time. On the same machine, HOSVD methods of rank r=5,
10 and 20 take 280, 1750, 34,510 seconds respectively. From Table 5.4 and Figure 5.7(a),
even without parallelization, we know that CrossSpot takes only 230 seconds to have the
best F1 score 0.972, while HOSVD needs more time (280 seconds if r=5) to have a much
smaller F1 score 0.324.

5.5.4 Retweeting Boosting

Table 5.5 shows big, dense block patterns of Tencent Weibo retweeting dataset. CrossSpot
reports blocks of high mass and high density. For example, we spot that 14 users retweet
the same content for 41,396 times on 2 IP addresses in 19 hours. Their coordinated,
suspicious behaviors result in a few tweets that seem extremely popular. We observe
that CrossSpot catches more suspicious (bigger and denser) blocks than HOSVD does:
HOSVD evaluates the number of retweets per user, item, IP, or minute, but does not
consider the block’s density, mass nor the background.

Table 5.6 shows an example of retweeting boosting from the big, dense 225×1×2×200
block reported by our proposed CrossSpot. A group of users (e.g., A, B, C) retweet
the same message “Galaxy note dream project: Happy happy life travelling the world” in
lockstep every 5 minutes on the same two IP addresses in the same city. We spot that
their retweet comments are generated from some literature or art books. The periodicity
of the retweets and the nonsensical comments are strong independent evidence that the
suspicious behavior found by CrossSpot is actually fraudulent.

89

User ID Time IP address Retweet comment (Google translator)

USER-A 11-26 10:08:54 IP-1 Qi Xiao Qi: “unspoken rules count ass ah. . .
USER-B 11-26 10:08:54 IP-1 You gave me a promise, I will give you a result...
USER-C 11-26 10:09:07 IP-2 Clouds have dispersed, the horse is already. . .

USER-A 11-26 10:13:55 IP-1 People always disgust smelly socks, it remains. . .
USER-B 11-26 10:13:57 IP-2 Next life do koalas sleep 20 hours a day. . .
USER-C 11-26 10:14:03 IP-1 all we really need to survive is one person. . .

USER-A 11-26 10:18:57 IP-1 Coins and flowers after the same amount. . .
USER-C 11-26 10:19:18 IP-2 My computer is blue screen
USER-B 11-26 10:19:31 IP-1 Finally believe that in real life there is no. . .

USER-A 11-26 10:23:50 IP-1 Do not be obsessed brother, only a prop.
USER-B 11-26 10:24:04 IP-2 Life is like stationery, every day we loaded pen
USER-C 11-26 10:24:19 IP-1 “The sentence: the annual party 1.25 Hidetoshi. . .

Table 5.6: Retweeting boosting: We spot a group of users retweet “Galaxy note dream
project: Happy happy life travelling the world” in lockstep (every 5 minutes) on the same
group of IP addresses from Liaocheng Shandong. (Block 225×1×2×200 in Table 5.5)

5.5.5 Hashtag Hijacking

Big, dense block patterns of tweeting hashtag data are illustrated in Table 5.7. CrossSpot
reports blocks of high mass and high density. We spot (1) continuous attacks: 582 users
post as many as 5,941,821 tweets of the same 3 hashtags on 294 IP addresses for almost
every minute in 43 days; (2) extensive attacks: 75 users post 689,179 tweets of the same
hashtag on only 2 IPs in 35 hours. The top 2 big dense blocks discovered by our CrossSpot
take almost all the values of the time mode. HOSVD does not consider cross-mode
scenarios. We observe that it cannot catch continuous attacks. The blocks that CrossSpot
reports are more suspicious than those HOSVD does.

Table 5.8 shows an example of hashtag hijacking from the big, dense 582×3×294×56,940
block. A group of users (e.g., D, E, F) post tweets of advertising hashtags (e.g., #Snow#,
#Li Ning - a weapon with a hero# and #Toshiba Bright Daren#) on multiple IP addresses
of two cities in the same Province. This demonstrates that CrossSpot catches the use of
advertising hashtags to inflate popularity.

5.5.6 Network Traffic

We illustrate big, dense block patterns of LBNL network traffic dataset in Table 5.9,
comparing our proposed CrossSpot and HOSVD. CrossSpot reports blocks of high mass
and high density. We spot (1) very big and dense blocks: 411 source IP addresses send a
total of 47,449 packets (≥100 from each) to 9 destination IPs on 6 ports, or 533 source IPs
send 30,476 packets to 6 destination IPs on the same port; (2) small but very dense blocks:

90

Rank # User×Hashtag×IP×Minute Mass c Suspiciousness score

CrossSpot
1 582×3×294×56,940 5,941,821 111,799,948
2 188×1×313×56,943 2,344,614 47,013,868
3 75×1×2×2,061 689,179 19,378,403

HOSVD
1 2,001×1×4×135 77,084 2,931,982
2 327×1×2×401 212,519 8,599,843
3 851×2×4×337 103,873 3,903,703

Table 5.7: Dense blocks discovered in hashtag data.

User ID Time IP address Tweet text with hashtag

USER-D 11-18 12:12:51 IP-1 #Snow# the Samsung GALAXY SII QQ Service . . .
USER-E 11-18 12:12:53 IP-1 #Snow# the Samsung GALAXY SII QQ Service . . .
USER-F 11-18 12:12:54 IP-2 #Snow# the Samsung GALAXY SII QQ Service . . .

USER-E 11-18 12:17:55 IP-1 #Li Ning - a weapon with a hero# good support activities!
USER-F 11-18 12:17:56 IP-2 #Li Ning - a weapon with a hero# good support activities!
USER-D 11-18 12:18:40 IP-1 #Toshiba Bright Daren# color personality test to find out . . .

USER-E 11-18 17:00:31 IP-2 #Snow# the Samsung GALAXY SII QQ Service . . .
USER-D 11-18 17:00:49 IP-2 #Toshiba Bright Daren# color personality test to find out . . .
USER-F 11-18 17:00:56 IP-2 #Li Ning - a weapon with a hero# good support activities!

Table 5.8: Hashtag hijacking: We spot a group of users post tweets of multiple hashtags
continuously on the same two IP addresses from Zaozhuang and Deyang, Shandong.
(Block 582×3×294×56,940 in Table 5.7)

5 source IPs send 18,881 packets (≥3,600 from each,≥1 for every second) to 5 destinations
on 2 ports, or 11 source IPs send 20,382 packets to 7 destination IPs on 7 different port
numbers. These subsets of events are extremely suspicious: the probability of their
occurrence is smaller than 10−106 . We observe that the top four blocks that CrossSpot
catches are all due to continuous attacks. HOSVD cannot catch these 3-mode blocks
(collapsing the time mode). Therefore, it only catches extensive attacks that are less
suspicious than the continuous attacks.

These subsets of events take all the values in time mode, forming 3-mode dense blocks
in 4-mode data. The cross-mode results indicate that a group of source IP addresses
continuously send packets to multiple destination servers with the same group of ports
in every second of one hour.

91

Rank # Source IP×Dest. IP×Port×Second Mass c Suspiciousness score

CrossSpot
1 411×9×6×3,610 47,449 552,465
2 533×6×1×3,610 30,476 400,391
3 5×5×2×3,610 18,881 317,529
4 11×7×7×3,610 20,382 295,869

HOSVD
1 15×1×1×1,336 4,579 80,585
2 1×2×2×1,035 1,035 18,308
3 1×1×1×1,825 1,825 34,812
4 1×13×6×181 1,722 29,224

Table 5.9: Big dense blocks in LBNL network data. The final suspicious blocks take all
the time values indicating that suspicious traffic continuously happens in the hour.

5.6 Summary

In this chapter, we propose a general metric of surprise/suspiciousness for a dense block,
in arbitrary number of modes. The main motivation was fraud detection, and more
generally, attention routing—among two or more dense blocks, which ones are worth
most of the human attention. The specific contributions are the following:

• Metric criteria: We propose a set of axioms that any metric of suspicious dense
behavior should meet.

• Novel metric: We propose a suspiciousness metric, that is based on a principled,
probabilistic model; and we prove that it obeys our axioms.

• CrossSpot algorithm: We propose a scalable algorithm to find dense, suspicious
blocks in multimodal data.

• Empirical results: We demonstrate the effectiveness of our approach on synthetic
as well as on real world data, spanning 0.3 billion entries. CrossSpot consistently
improves the F1 score, up to 68.8%.

92

Part III

Modeling Normal Behavior

Based on work previously published in
WWW 2014 [31], WWW 2015 [29], and WWW 2016 [229].

93

Introduction

How can we understand a user’s preferences and predict their future actions?
How can we explain our predictions?

Given users’ ratings of movies or products, how can we understand a user’s preferences
for different types of items and recommend other items that the user will like? This
problem was popularized by the Netflix Prize competition, in which Netflix released
a dataset of 100 million ratings and offered 1 million dollars to anyone who could
design a recommender system that gave a 10% improvement in prediction accuracy. The
competition generated a flurry of research in collaborative filtering, with a variety of
proposed matrix factorization models and inference methods [123]. Today, recommender
systems are pervasive on the web—Facebook predicts what stories you will like for your
News Feed, Amazon predicts what products you may want to buy, and Yelp predicts
what restaurants you will like. Offering these recommendations is a core component of
all of these services.

Much of the research in this area focuses on designing models that take in a database
of user ratings of items and predicting the ratings for unobserved user and item com-
binations. The gold standard, set by the Netflix competition, was to have low average
squared error.

However, while much of the research focus has been on having on-average high
prediction accuracy, accuracy is only a small part of what makes recommender systems
practically useful. In the following chapters, we move beyond average accuracy and
focus on designing models that let us better understand users and their preferences. We
make the following contributions:

• Flexible Models for Normal and Abnormal Behavior: In Chapter 6, we give a
flexible model of user behavior that can capture both Gaussian and bimodal rating
distributions, allowing us to detect polarizing content, as well as cluster fraudsters
for detection. Our model, CoBaFi, improves accuracy by up to 17%.

• Interpretable Recommendations: In Chapter 7 we offer ACCAMS, a succinct,
interpretable recommendation model that is 4 times smaller than previous methods
while maintaining high accuracy.

• Explaining Recommendations: In Chapter 8 we offer PACO to directly give text
descriptions of our model as well as personalized predictions for how a given user
would describe why she likes a particular item. PACO does this by jointly modeling

95

both ratings and reviews.

III.1 Related Work

We will begin with a survey of research in modeling user behavior and recommender
systems in particular. Given the breadth of this field, we will discuss the uniquely related
work to each contribution in the relevant chapters that follow.

III.1.1 Recommender Systems

Collaborative filtering algorithms have been some of the best performing methods for
recommender systems. Koren et al. [123] presents an overview of various methods for
collaborative filtering. One of the simplest and most effective methods for collaborative
filtering is low-rank matrix factorization. The intuition behind factor-based approaches
is that preferences for users are determined by small numbers of unobserved factors.
Linear factor models make use of two factor vectors—a user factor vector and an item
factor vector —with the inner product representing a user’s rating for an item. These
vectors can be appended to form User Factor and Item Factor Matrices [200]. A variety
of factorization models have bee proposed to capture different patterns or application
goals, such as SVD++ for neighborhood effects [121], temporal effects in [122], implicit
feedback [104], ranking [225] and others [207, 240]. Several works consider alternative
distributions over attribute vectors, e.g., sparse non-negative factors [133], jointly sparse
factorizations [99], cluster aggregation [10], or discrete factorizations [181].

Bayesian recommendation A variety of papers have adapted frequentist intuition on
factorization to Bayesian models [159, 188, 202]. Of particular note are Probabilistic
Matrix Factorization (PMF) [159] and Bayesian Probabilistic Matrix Factorization (BPMF)
[188]. Other research in behavior modeling has built on Bayesian non-parametric ap-
proaches. For instance, [84, 87] use the Indian Buffet Process (IBP) for recommendation.
In doing so they assume that each user (and movie) has certain preferential binary at-
tributes. [181] proposed a factorization model based on a Dirichlet process over users
and columns. All these models are closely related to the mixed-membership stochastic
blockmodels of [14].

Side Information A separate line of research in recommender systems has focused on
using side information to improve prediction quality. This is particularly important when
parts of the data are extremely sparse, i.e. the cold start problem. Content-based filtering
is a popular approach to alleviate this problem. Regression based latent factor models
(RLFM) [8] address cold-start problem by utilizing user and item features. Cold-start
users and items are able to share statistical strength with other users and items through
similarity in features space. fLDA [9] uses text associated with items and user features to
regularize item and user factors, but does not make use of review text.

96

Ensembles Recent models have achieved improved accuracy through ensembling
multiple recommendation models. For example, DFC [150] and LLORMA [135, 136]
have focused on using ensembles of factorizations that exploit local structure.

III.1.2 Co-Clustering

While co-clustering was originally used for understanding row and column clusters in
biology [94], it has evolved to cover a wider variety of objectives [27]. [177] defined a soft
co-clustering objective akin to a factorization model. Recent work has defined a Bayesian
model for co-clustering focused on matrix modeling [191]. [221] focuses on exploiting
co-clustering ensembles to find a single consensus co-clustering.

Prior to our research, co-clustering had been applied to user behavior modeling to a
limited extent [78, 191, 192]. More recently, since the publication of our results, other pa-
pers have followed this direction of making use of co-clustering during recommendation
[230].

III.1.3 Matrix Approximation

There exists a large body of work on matrix approximation in the theoretical computer
science community (TCS). They focus mainly on efficient low-rank approximations, e.g.,
by projection or by interpolation [81, 92]. Essentially one aims to find a general low-rank
approximation of the matrix, similar to recommender models.

A more parsimonious strategy is to seek interpolative decompositions, approximating
columns of a matrix by a linear combination of a subset of other columns [142]. Nonethe-
less this requires us to store at least one, possibly more scaling coefficients per column.
Also note the focus on column interpolations—this can easily be extended to row and
column interpolations.

97

98

Chapter 6

Flexible Models for Normal and
Abnormal Behavior

Given a large dataset of users’ ratings of movies, how can we accurately model users’
ratings? And how can we prevent spammers from tricking our algorithms into suggesting
a bad movie? Is it possible to infer structure between movies simultaneously?

In this chapter we describe a unified Bayesian approach to Collaborative Filtering that
accomplishes all of these goals. It models the discrete structure of ratings and is flexible
to the often non-Gaussian shape of the distribution. Additionally, our method finds a
co-clustering of the users and items, which improves the model’s accuracy and lets the
model detect fraud. We offer three main contributions: (1) We provide a novel model and
Gibbs sampling algorithm that accurately models the quirks of real world ratings, such
as convex ratings distributions. (2) We provide proof of our model’s ability to handle
spam and anomalous behavior. (3) We use several real world datasets to demonstrate the
model’s effectiveness in accurately predicting user’s ratings, avoiding prediction skew
in the face of injected spam, and finding interesting patterns in real world ratings data.

6.1 Introduction

As described above, collaborative filtering is one of the key tools for providing relevant
content and for driving successful electronic commerce. Of late, Bayesian approaches
have demonstrated good performance, when applied to collaborative filtering [186, 188].
Here we make the following contributions to the recommender problem:
Rating Model: Many collaborative filtering models simply minimize the squared error

between prediction and observed rating. Alternatively, others make the assumption
of a Gaussian noise model, assuming that the observed rating is given by the latent
rating plus a small perturbation. Unfortunately this assumption is not realistic
since the observed ratings are discrete, typically ranging from 1 to 5. Moreover, they
need not be unimodal—some products are quite polarizing, attracting a significant
number of 1 and 5 ratings with very little in between. We address this by modeling

99

such dependencies explicitly.
Profile Distribution: A common approach to modeling user and item profiles is to draw

them independently and identically (i.i.d.) from a distribution that is essentially
normal around a common mean [188, 198]. However, often the objects we would
like to recommend form clear clusters (e.g., romantic comedies, summer action
movies). Hence, sharing of statistical strength even within the same object cate-
gory is likely to improve accuracy. This extends work of [10, 14, 181] on dyadic
factorization models.
Our motivation is that we have rather different amounts of information for different
movies (and users). That is, some movies are very popular and using only a small
number of latent factors amounts to considerable underfitting; as a result, using a
larger number of parameters would be greatly beneficial. On the other hand, many
movies have few ratings and it would be good if we could aggregate similar ones
into a larger cluster for estimation purposes.

Inference: We propose an efficient sampling algorithm that can be parallelized with
relative ease. It combines collapsed inference for discrete variables, uncollapsed
inference for cluster parameters, and a Metropolis-Hastings iteration for non-
conjugate terms arising from the recommender distribution.1

Spam Detection: A useful side-effect of the clustering approach is that similar users
and items are grouped into the same cluster. This means that users who exhibit
consistently abnormal behavior are likely to aggregate into the same clusters, thus
limiting their impact on other recommendations and making it easier to detect and
remove them.

Outline: We begin discussing our model for addressing the discrete nature of the rating
distribution in Section 6.3. This is followed in Section 6.4 by a description of a nonpara-
metric mixture of Gaussians akin to [165]. We then give an overview of the statistical
model used for collaborative filtering in Section 6.5, and we subsequently give an in-
depth description of statistical inference techniques in Section 6.6. We then in Section 6.7
analyze the model’s ability to limit the impact of fraud. Last, we do an in depth analysis
of our model on a variety of datasets in Section 6.8.

6.2 Relationship to Related Work

In addition to the related work described in Section III.1, we also build on and improve
on previous research for alternative loss functions and robust recommendation. We
discuss the relevant research in these areas below.

1 It is over two orders of magnitude faster than the sampling algorithms carried out in Stan mc-stan.org
using Hamiltonian Monte-Carlo [98].

100

http://www.mc-stan.org

6.2.1 Recommendation Metrics

The least mean squares loss is a mainstay in collaborative filtering, not the least due
to the Netflix contest. Nonetheless, there are many other and better objectives that
one could strive to optimize for. For instance, [225, 232] study preference ranking
instead of estimating scores directly. In fact, research on ranking teems with alternative
formulations of preferences [39, 218]. There are variants using distance similarity [226].
However, we do not know of any previous work that directly considered the skewed
nature of ratings during modeling and recommendation.

6.2.2 Rating Spam and Robust Recommendation

As we observed in Part II, spam detection for online reviews is a significant problem,
due to the financial incentives for malicious behavior. There are of course specialized
approaches for detecting online spam, including the techniques in Part II as well as
text mining approaches for detecting review fraud [114, 144]. However, given that our
recommender systems consider all user behavior, it makes sense for them to capture
the difference between normal and abnormal behavior. A small amount of research has
approached this goal [157]; for example, [217] propose an algorithm with very good
theoretical guarantees of robustness, albeit without the explicit ability to detect spammers.
More related to our work is [196] who use Bayesian mixture models for detecting outliers.
Most similar to our work in this chapter is the previously discussed fraud and anomaly
detection research that finds fraud by analyzing the latent user and item embeddings
from the SVD [110, 183, 190].

In this chapter we use a factorization model for recommendation where the factors
are derived from a Gaussian mixture model. Moreover, we model the score distribution
over ratings directly to deal with the often-observed bimodality of the reviews. This is
all jointly addressed by a Metropolis-Hastings sampler for a unified Bayesian treatment.
The advantage of our approach is that we only need to build one model to perform
recommendation, spam detection, to model the distribution and confidence of a rating
distribution explicitly, and to group users and movies.

6.3 Rating Distribution

One of the key components of our approach is to provide a model that captures the
bimodality in many of the reviews found on rating sites. For instance, consider the
example of ratings for a WD15EZRX hard disk (newegg.com, April 27, 2013) as shown
in Figure 6.1. It clearly shows a very polarized view of the product, with significant
numbers of users rating it very poorly whereas others rate it as excellent.

This type of rating distribution has been commonly ignored in collaborative filtering.
In fact, when aiming for a least mean squares fit the optimal rating would be 2.5319
stars, the mean of the reviews. Such a score would be very misleading since only a small
minority of reviews, namely only 7% of them actually assume such a value. Moreover,

101

http://www.newegg.com

? ?? ? ? ? ? ? ?? ? ? ? ? ?

0.1

0.2

0.3

0.4

0.5

Data Recommender distribution Gaussian

Figure 6.1: Modeling ratings for WD15EZRX hard disk (newegg.com, April 27, 2013).

while an RMSE of 2.85 would indicate that the data is a poor fit, it would tell us precious
little about the actual distribution. The distribution itself in many cases is just as important
as the predicted rating: suggesting an item with a bimodal review distribution, be it an
unreliable hard drive or a polarizing film, may be undesirable for a risk-avoiding user.

Note that this is not an isolated case. We have observed many such examples in both
product reviews and movies. However, not all items are equally polarizing and, in fact,
the majority of reviews follow a more conventional unimodal distribution. Hence it is
desirable to design a likelihood model that takes such nonstandard settings into account.

For this purpose we employ an exponential families model of a discrete distribution
over the set X = {1, . . . R}, where typically we have R = 5. In the following we will refer
to this distribution as the recommender distribution. Define

φ(x) =
((
x− R

2

)
,
(
x− R

2

)2
)

(6.1)

to be the sufficient statistic of the data on X . In this case we have with θ ∈ R2 the model

p(x|θ) = e〈φ(x),θ〉−g(θ) where g(θ) = log
R∑
j=1

e〈φ(j),θ〉. (6.2)

The above generalizes normal distributions to a discrete finite domain. Like the Gaussian,
we can adjust mean and variance by modifying the first and second coordinate of θ
accordingly. However, quite unlike in a Gaussian, we can also choose coefficients θ2 ≥ 0.
Such a choice would amount to no variance or negative variance respectively, which
is clearly impossible (with correspondingly diverging integrals). On a finite countable
domain, however, normalization is easy. As common in exponential families, we have

−∂θ log p(x|θ) =
∑
x′

φ(x′)p(x′|θ)− φ(x) (6.3)

−∂2
θ log p(x|θ) = Cov

x′∼p(x′|θ)
[φ(x′)] (6.4)

102

http://www.newegg.com

Note that the covariance is independent of x since it depends only on the log-partition
function g(θ). We will exploit this property in the context of a Metropolis-Hastings
sampler to infer user and movie dependent parameters.

To illustrate the model we fitted the recommender distribution to the rating data for
the WD15EZRX hard disk. This yielded θ = (−0.157, 0.391) as shown in Figure 6.1. For
comparison we also display the fit obtained by a Gaussian distribution when discretized
over the domain {1, . . . 5} and using the mean and variances inherent in the data. It is
clear that the Gaussian thoroughly misrepresents the data whereas the recommender
distribution is an excellent fit.

The attraction of (6.2) is that it allows us infer the parameter θ efficiently, e.g., by
means of simple convex optimization problem: as all exponential family models, the
negative log-likelihood − log p(x|θ) is convex in θ. The major difference is that we now
need to fit two parameters: one for what effectively amounts to the mean, and one that
amounts to the skew of the distribution. In summary the recommender distribution has
the following properties:

• Negative values of θ2 it will yield a unimodal distribution, as the log-likelihood
mimics a discretized Gaussian. The magnitude of θ2 determines how peaked the
distribution is. Large values of θ1 in this context imply that the popularity is fairly
uncontested. This is nontrivial to achieve in a Gaussian fit of the data.

• Positive values of θ2 can lead to a bimodal distribution. The extent of bimodality is
determined by the value of θ1. If it is very large (or very small), it leads to what is
essentially a single mode at either one of the extremes.

• Large (small) values of θ1 correspond to an object that is rather more (less) popular.
This can be seen in our example where we inferred θ1 = −0.157, i.e. the disk was
rather unpopular.

In our model we will assume that the amount of polarization, i.e. the value of θ2, is
determined in an additive fashion between users and items. That is, the distribution is
bimodal if the item encourages such ratings (e.g., an unreliable hard disk) and if the user
is prone to praise and condemnation. For the linear term we use an inner product model.

To assess this new rating model we need to evaluate its predictive log-likelihood,
since a least mean squares fit clearly obscures the properties of the data. Hence, in our
experiments we will compute

∑
x− log p(x|θ). By basic facts from information theory

[56], this is bounded from above by the entropy of the uniform distribution, i.e. log 5 for
5 different outcomes. The lower bound is naturally the conditional entropy H(R|U,M),
where we conditioned on the user and item pairs. By definition, it is impossible to
compute this lower bound explicitly, short of solving the recommendation problem
optimally.

6.4 Co-Clustering

Collaborative filtering is nontrivial whenever the number of ratings is nonuniform over
items and users. Like much other natural data, the number of ratings often follows a
power-law distribution on a per row and per column basis. For instance, blockbuster big-

103

budget Hollywood movies will attract many more ratings than independent productions,
regardless of their quality. Likewise, a small number of enthusiasts can generate an
enormous amount of ratings when compared to more casual users.

Conventional collaborative filtering models assume that all users (and items respec-
tively) are parameterized by a fixed dimensional model. In fact, many experiments show
that the accuracy of the models plateaus (or even decreases) once a fairly modest number
of parameters has been reached. Part of this effect is due to the fact that we have compar-
atively little data per row (or column) of the recommendation matrix. Furthermore, data
scarcity is different, when viewed on a per-column or per-row basis. For instance, we
might have millions of users but only thousands of movies.

This suggests that it would be very much desirable to have a mechanism for assigning
capacity dynamically. That is, users who generate significant amounts of ratings are
sufficiently well-specified to afford a ‘personal’ parameter vector for them. On the
other hand, users who generate very little data are probably best modeled as unspecific
members of a much larger pool of similar participants. Such a model can be obtained by
clustering users, e.g., as mixture of Gaussians.

To accomplish this, we use co-clustering of the rows and columns of the recommen-
dation matrix to allow for dynamic allocation of statistical capacity between sets of users.
This allows us to increase dimensionality beyond what is optimal when treating all
users/items equally. Hence we need to introduce a statistical model for partitioning. We
resort to the Dirichlet Process for this purpose. This yields a nonparametric mixture of
Gaussians. To keep the presentation self-contained we give a brief overview of the model
below.

One of the prototypical tools for nonparametric modeling is the Dirichlet Process
DP (H, γ). It allows for a discrete distribution of observations drawn from an arbitrary
base measure H over the domain X in such a way as that the marginals match draws
from H , while simultaneously obtaining a countable set of distinct items. Denote by Xi a
partition of X and let ci := µH(Xi) be the measure of Xi under H . Then the discretization
of draws from G0 with G0 ∼ DP (H, γ) onto the sets Xi behaves as if it had been drawn
from a multinomial distribution θ with θ ∼ Dir(γc).

A useful view of the Dirichlet Process is the Chinese Restaurant metaphor. In it,
each data point is considered as a customer in a restaurant with an infinite number of
tables.Initially all tables are empty. As the tables fill up, customers pick existing tables in
proportion to their popularity, resulting in a “rich get richer” scenario. The probability
for customer i to pick table j is given by

Pr {zi = j} =

{
Nj∑
k Nk+γ

for an existing table
γ∑

k Nk+γ
for a new table.

(6.5)

Here zi encodes the choice of customer i. Nj denotes the current number of customers
sitting at table j and

∑
kNk is the total number of customers so far. This makes the

Chinese Restaurant Process a single parameter distribution over partitions of the integers.
Figure 6.2 provides a pictographical representation of the process. One may show that

104

x1 1

5
8

9

x2

3 10

x3

2
4

6

7 x4 . . .

Figure 6.2: An example of the Chinese Restaurant Process metaphor. Here we observe
10 customers who have so far occupied tables 1 (customers 1, 5, 8, 9), 2 (customers 3,
10) and 3 (customers 2, 4, 6, 7). A new customer will pick the first three tables with
probabilities 4

10+γ
, 2

10+γ
and 4

10+γ
respectively, or a new table with probability γ

10+γ
.

the distribution over partitions is invariant in the order in which customers arrive, i.e. it
is exchangeable.

A benefit of (6.5) is that it affords for collapsed Gibbs sampling inference by simply
drawing from

zi ∼ Pr(zi|rest) where Pr(zi|rest) ∝ p(zi|z\zi)p(ratings|z)

Inference proceeds by traversing users (or items) and resampling their cluster assign-
ments in sequence.

6.5 Generative Model

We describe a model for obtaining collaborative filtering estimates in a pure rating
setting rather than a recommendation setting [232]. That is, we assume that for a subset
of (user,item) pairs (i, j) we are given ratings rij ∈ {1, . . . R}. It is our goal to infer user
and item specific parameters ui, vj such that we are able to estimate the distribution of
rij|i, j efficiently. For this purpose we employ a directed graphical model, as depicted in
Figure 6.3.

This model extends existing recommendation algorithms such as [188, 198] by as-
suming a more complex structure for the latent user and item attributes. We assume
that the ratings rij are drawn from the recommender distribution. The parameters
〈ui, vj〉 + u

(1)
i + v

(1)
j , u

(2)
i + v

(2)
j , as associated with parts of the user and item specific

vectors, account for preference and skew explicitly:

rij ∼ Recommender
(
〈ui, vj〉+ u

(1)
i + v

(1)
j , u

(2)
i + v

(2)
j

)
From this we have for each user a d− 2 length vector ui and scalars u(1)

i , u
(2)
i giving us

d latent parameters per user (and item). For simplicity, we will often refer to this set of
parameters as a single vector ui.

We assume that the user and item parameter distributions are described by a mixture
of Gaussians, where

ui ∼ N (µai ,Σai) and vj ∼ N (µbj ,Σbj).

105

for all a for all b

observed (i, j) pairs

user blocks users ratings movies movie blocks

A γ δ B

α θ η β

µa,Σa ai bj µb,Σb

ui rij vj

Figure 6.3: Factorized rating model. Note the symmetry between users and items. In
both cases we use a mixture of Gaussians to represent the latent parameter distribution.

Here ai and bj are the clusters that user i and item j belong to respectively. The cluster
means and variances µa,Σa are drawn from a Gauss-Wishart distribution with ν0 degrees
of freedom and parameters {µα,Wα, λα} and {µβ,Wβ, λβ}, respectively:

(µa,Σa) ∼ GW(λα,Wα, µα) and (µb,Σb) ∼ GW(λβ,Wβ, µβ)

This is convenient since in this case the priors are conjugate and we are able to draw
from µa,Σa|α, u, a exactly without the need for approximation.

The common parameters Wα, µα (and Wβ, µβ) allow us to share information about
variance and means between clusters via the conjugate Wishart distribution. Finally,
we impose an inverse Gauss-Wishart hyperprior on Wα, µα,Wβ, µβ respectively. For
computational convenience we will maximize the likelihood with regard to those hyper-
parameters.

Finally, the cluster indicators, ai and bj , allow us to assign users (and items respec-
tively) to particular groups. To sample cluster assignments, we draw

ai ∼ Mult(θ) and bj ∼ Mult(η) (6.6)

In turn, we assume that the distribution over clusters follows a Dirichlet distribution
conjugate to the multinomials governing cluster membership. Likewise in the nonpara-
metric case (where the number of clusters itself is unbounded), we assume that it is given
by a draw from a Dirichlet process.

θ ∼ Dir(γ) and η ∼ Dir(δ) (6.7)

Therefore, in a nutshell, we assume that the interaction between users ui and items
vj can model ratings rij similarly to many other collaborative filtering methods. Unlike
[188] who assume one common mean and variance for all users (and items respectively),
clustering provides the ability to better model what is a similar user.

106

6.6 Parameter Inference

Inference in the statistical model introduced previously requires sampling and (or)
optimization. Matters are simple whenever the distributions are conjugate since the
associated parameters can either be integrated out (collapsed) or, alternatively, it is easy
to draw from them. The non-conjugate parts do not admit a closed-form treatment. In
the following we discuss in detail how to sample the various parameters and variables
for the sampler’s Markov chain, subject to these constraints. Since user and item-related
parameters are entirely identical, we only discuss users.

6.6.1 Sampling the user and item parameters ui

We omit details for the case where rij is Gaussian, as it is almost identical to [188]. Since
the recommender distribution does not have conjugacy, sampling the user and item
parameters ui and vj is challenging and we resort to a Metropolis-Hastings procedure [21].
In its simplest form the idea is that rather than sampling from some difficult distribution
p(x) we draw x̄ from an approximation q(x) and accept the move x→ x̄ with probability
min(1, p(x̄)q(x)/p(x)q(x̄)).

In our case the distribution p is given by the log-concave distribution p(ui|rest) and
we obtain q by performing a Laplace approximation of p. In other words, we perform a
second order Taylor approximation of log p(ui|rest) at its mode, which yields a Gaussian.
This is possible since log-concave distributions have a global mode and the second
derivative of the negative log-posterior is positive semidefinite.

− log p(ui|rest)− const.

=
1

2
(ui − µa)>Σ−1

a (ui − µa)+∑
j∈ratings(i)

g(u
(1)
i + v

(1)
j + 〈ui, vi〉 , u(2)

i + v
(2)
j)−

∑
j∈ratings(i)

〈
φ(rij), (u

(1)
i + v

(1)
j + 〈ui, vi〉 , u(2)

i + v
(2)
j)
〉

As before ui, u
(1)
i , u

(2)
i denote the latent parameterization, the linear biases and the

quadratic biases for the user, with corresponding terms for item parameters v. The
log-partition function g is as defined in (6.2) with appropriate derivatives given by (6.3)
and (6.4).

Convex minimization of − log p(ui|rest) yields the mode µ̄. By first order conditions
and since the objective is analytic, we know that at µ̄ the gradient vanishes and we may
compute the ‘variance’ of q(ui) via

Σ̄−1 = σ−1
a +

∑
j∈ratings(i)

∂2
ui
g(u

(1)
i + v

(1)
j + 〈ui, vi〉 , u(2)

i + v
(2)
j).

107

Using ū ∼ N (µ̄, Σ̄) we accept the MH proposal with

min

(
1,
p(ū|rest)N (ui(t)|µ̄, Σ̄)

p(ui(t)|rest)N (ū|µ̄, Σ̄)

)
(6.8)

Otherwise we set ui(t + 1) ← ui(t). The advantage of this strategy is that we need to
compute µ̄ and Σ̄ only once per resample of ui. Multiple MH steps ensure proper mixing.

The computational cost of this step is O(d3 + d2ni,ratings) per user, i.e. for the purpose
of the Taylor approximation we need to aggregate all ratings (ni,ratings) of a given user
and subsequently draw from it. Hence the total cost is O(d3|V |+ d2|E|), when viewing
the set of (user,item) pairs as a graph with V vertices and |E| edges.

6.6.2 Sampling the cluster membership ai

Our generative model represents cluster assignments of users and items as draws of
indicator variables ai and bj from multinomial distributions, parameterized by θ and η.
These multinomials are in turn drawn from their conjugate, the Dirichlet distribution.
We take advantage of a collapsed Gibbs sampler to deal with the Dirichlet process in a
(and b respectively) [88, 165]. More specifically, we may integrate out θ, η such that we
are left with an exchangeable distribution over {ai} |γ (and corresponding terms in b, δ).
This leaves us with (6.5), i.e.

p(ai = ā|a\ {ai}) =

{
n−iā

n+γ−1
for existing cluster

γ
n+γ−1

for new cluster
(6.9)

Analogous values can be obtained if we want to use the Pitman-Yor process [113].
Secondly, we need to evaluate the likelihood of ui|ai, as given by N (µai ,Σai). This
governs how well ui fits to an existing cluster. Whenever we instantiate a new cluster,
matters are slightly more involved—the acceptance probability of drawing a new random
set of parameters µ,Σ from the associated Gaussian-Wishart distribution would be very
low. Instead, we integrate out µ,Σ and evaluate directly p(ui|µα,Wα, λα). However, to
do this we must integrate and collapse out the intermediate cluster parameters, see e.g.,
[91]. Thus the collapsed probability of ui is

p(ui|µα,Wα, λα)

=T
(
ν0 − d+ 2,

λαµα + ui
λα + 1

,
λα + 2

(λα + 1)(ν0 − d+ 2)
Σm

)
where Σm = W−1

α +
λα

λα + 1
(ui − µα)(ui − µα)>. Here T is the student-t distribution, ν0 is

a user specified parameter and d is the rank of the decomposition. Ultimately, this gives
us an estimate of the likelihood of a new cluster for ui:

p(ai = ā|rest) ∝
{

n−iā
n+γ−1

N (ui|µā,Σā) if cluster exists
γ

n+γ−1
p(ui|µα,Wα, λα) for new cluster

108

Lastly, if we draw a new cluster, we need to instantiate the values of µa,Σa. Since this is
no different for clusters of size 1 or larger, we describe the general case below.

Resampling the cluster membership for a user requires us to evaluate the cluster likeli-
hood for each existing (and one new) cluster. Each of these steps cost O(d2) computation.
Given k clusters this amounts to O(kd2|V |) CPU cost for one sampling pass.

6.6.3 Sampling cluster parameters µa,Σa

Since the Gauss-Wishart distribution is conjugate to the Gaussian, it follows that the con-
ditional posterior p(µa,Σa|rest) is also a Gauss-Wishart. Moreover, the update equations
for a cluster are particularly simple: draw µa,Σa from a Gauss-Wishart distribution with
parameters

λ̄a = λα +Na (6.10a)

λ̄aµ̄a = λαµα +
∑
i:ai=a

ui (6.10b)

λ̄aW̄
−1
a = λαW

−1
α + λαµαµ

>
α +

∑
i:ai=a

uiu
>
i (6.10c)

ν̄ = ν0 +Na (6.10d)

Here Na =
∑

i:ai=a
1 is the size of the cluster a and µ̄a is the mean of the ui vectors for

the user in cluster a. See e.g., [163] for extended details and how to sample from it via a
multivariate Student-t distribution.

The cost for sampling the cluster means and variances is O(Nad
2 + d3) per cluster,

hence the total cost is O(|V |d2 + kd3) to sample all clusters in the algorithm.

6.6.4 Inference for hyperparameters µα,Wα, λα

The last remaining step for inference is to estimate a suitable value for the parameters of
the Gauss-Wishart distribution. Choosing these terms appropriately is important since
they provide the default (prior) for the cluster specific factors. We resort to maximization
rather than sampling, since the number of clusters is large relative to the number of
parameters involved in determining µα,Wα, λα, hence we expect the posterior to be
rather peaked. For the sake of completeness, we give the full derivation below. In a
nutshell we compute the parameters using a conjugate to the Gauss-Wishart distribution.
While this is not available in closed form, it is easily constructed implicitly by adding
an additional spurious normal distribution. We choose one with unit variance and zero
mean. For notational convenience, we will include such a ‘prior’ in the set of (µa,Σa, λa)
terms. The Gauss-Wishart distribution is given by

p(µ,Σ|µ0, λ,W, ν) = N (µ|µ0, λ
−1Σ)W(Σ−1|W, ν) (6.11)

W(Σ−1|W, ν) = 2−
νd
2 |Σ| ν2 Γ−1

d

(ν
2

)
|W | ν−d−1

2 e−
1
2

tr ΣW

109

HereW denotes the Wishart distribution with ν degrees of freedom and covariance scale
W . Moreover, Γd denotes the multivariate Gamma function. The negative log-likelihood
given k normal distributions is given (up to constants independent of µ0,W, λ) by

− log p({µa,Σa} |µ0, λ,W, ν)

=
kd

2
log λ+

1

2λ

k∑
a=1

(µa − µ0)>Σ−1
a (µa − µ0) +

ν

2

k∑
a=1

log |Σa|

+ k log Γd
(
ν
2

)
+ k(ν−d−1)

2
log |W |+ 1

2
trW

k∑
a=1

Σa + const.

Taking derivatives with respect to µ0, W , and λ respectively yields that the log-likelihood
is maximized for

µ0 =

[
k∑
a=1

Σ−1
a

]−1 k∑
a=1

Σ−1
a µa (6.12)

W = k(ν − d− 1)

[
k∑
a=1

Σa

]−1

(6.13)

λ =
1

kd

k∑
a=1

(µa − µ0)>Σ−1
a (µa − µ0) (6.14)

That is, the mean µ0 is given by what amounts to Gaussian posterior averaging; the prior
on covariances W is given by the average covariance, suitably normalized by dimensions
and degrees of freedom; the variance scale λ is given by an average over clusters and
dimensions. The degrees of freedom ν > d− 1 control the effective dimensionality of the
space. Large values of ν encourage a larger volume of the associated covariance matrices,
whereas a values emphasize low-dimensional per-cluster distributions. We set ν = 3

2
d.

Computing W,µ0 and λ costs O(kd3) work since we need to aggregate over all cluster
centers. In summary, we have the following runtime properties:
Remark 1 Per iteration the algorithm requires O(kd3 + |V |d3 + |V |d2k + |E|d2) computation.
That is, it is cubic in the number of latent parameters, linear in the number of clusters, and linear
in the amount of data given.
Furthermore, if needed, these steps could be parallelized efficiently, since most work is
specific per user (or per item) with communication required only once for each round of
sampling and optimization.

6.7 Spam Detection during Recommendation

Fraud detection is a persistent challenge and requires a multi-tiered approach. By default,
most recommender systems are not very resilient, allowing any spam that is not caught

110

ahead of time to skew recommendations significantly. To illustrate this, consider Bayesian
matrix factorization [188, 198]. In this case the influence of a malicious user cannot be
bounded: the sufficient statistic governing the normal distribution over users is a linear
combination of the statistics of all constituents. Hence it follows that each individual
contribution can assume arbitrary amounts, provided that the associated statistic is also
unbounded. Moreover, even for bounded sufficient statistics, the aggregate influence
can be arbitrarily high, provided that a sufficiently large number of malicious users
contributes. In other words, if a sufficiently high number of fraudulent likes for an
objectionable movie is received, this will lead to the movie being rated very highly. The
example below quantifies this effect.
Example 2 (Spam and sufficient statistics) Denote by φ(x) the sufficient statistic of x ∈ X .
Moreover, let X := {x1, . . . , xm} and X ′ := {x′1, . . . x′m′} be regular and malicious observations
respectively. Let m0, µ0 be sufficient statistics arising from a conjugate prior. Then the posterior
mean yields

µ̂ :=
1

m0 +m+m′

[
m0µ0 +

m∑
i=1

φ(xi)︸ ︷︷ ︸
=:m·µ[X]

+
m′∑
i=1

φ(x′i′)︸ ︷︷ ︸
=:m′·µ[X′]

]
(6.15)

Hence parameter estimates will be influenced O(m′

m0+m+m′
) by outliers whenever we have bounded

sufficient statistics and by an unbounded amount whenever the statistics are unbounded, even for
m′ = 1.
Several researchers, such as [217], have attempted to address this problem. However,
[217] deals primarily with robustness in the nearest neighbor case, and the extension to
other estimators is highly nontrivial. Our approach borrows from [196] which investi-
gates mixture models for outlier-robust density estimation. The key difference is that we
perform co-clustering of pairs of conditioning attributes. Moreover, we use clustering as
latent information in an estimation problem.

Our analysis relies on the idea that when generating multiple clusters, malicious
users can typically only affect a real users very little. Whenever spammers are very different
from regular users they will be aggregated into clusters of their own. Alternatively, whenever
they are very similar to regular users, they cannot do much damage. It exploits the fact that
whenever a user is rather different, (6.9) suggests that it should be assigned to a new
cluster.

Denote by X and X ′ two sets of m and m′ observations respectively. In a Dirichlet
process, the probability of two vs. one cluster is given by mm′

(n+α)2 vs. m+m′

n+α
. Hence, if the

data likelihood for two separate clusters exceeds that of a single joint cluster via

pcluster(X)pcluster(X
′)

mm′

(n+ α)2
> pcluster(X ∪X ′)

m+m′

(n+ α)

then there is benefit in splitting observations. From this we see that a split is likely

111

wheneverm′ is large, i.e. whenever we have a large number of spammers, or alternatively,
whenever their behavior deviates substantially from regular users.

On the other hand, if the spammers try being subtle (to avoid detection), then their
presence will improve overall parameter estimates. As a result, egregious spammers are
clustered together, limiting their impact on others’ recommendations and making them
easier to directly spot, through analyzing the clusters or testing users within the clusters.

6.8 Experiments

The model described above is particularly interesting because of the insight it gives into
the many common datasets used throughout data mining. Here we demonstrate its
effectiveness accurately modeling real world data, both matching some expectations of
reviews and breaking others.

Users Items Ratings

Netflix-48k 48,090 17,770 10,015,137
Netflix-24k 24,047 17,770 5,038,411
BeerAdvocate 12,652 5000 112,981
Amazon Electronics 29,294 2000 30,378
Amazon Clothing 16,017 5000 51,438

Table 6.1: Review datasets used in our experiments

6.8.1 Datasets and Set up

Various ratings systems and datasets have very different characteristics. We look at a
few real-world datasets with varying distributional properties. As some domains may
be more polarizing than others, the simple assumption that ratings will look the same
across domains does not hold. We looked at four different sets of review data comprising
movies, beer, clothing, and electronics. A summary of the datasets can be found in Table
6.1.

In analyzing movies data, we used the Netflix Prize dataset. We create two subsets of
the data by randomly sampling users but keeping all movies. This creates one dataset of
48,090 users and 17,770 movies, which we will refer to as Netflix-48k, and one dataset of
24,047 users and 17,770 movies, which we will refer to as Netflix-24k. The Netflix-48k
dataset has a total of 10,015,137 ratings and the Netflix-24k dataset has 5,038,411 ratings.

Second, we use user reviews of beers from BeerAdvocate.com, as was scraped in
[156]. Here we again take a subset of the data, comprising 5000 beers and their associated
reviews from 12,652 users. This makes for a total of 112,981 reviews.

112

http://beeradvocate.com

Uniform BPMF CoBaFi

Netflix-24k 1.6904 1.2525 1.1827
BeerAdvocate 2.1972 1.9855 1.6741

Table 6.2: Comparison of predictive log-likelihood on Netflix-24k and BeerAdvocate
data.

We also use two datasets of Amazon reviews [155]. We first use reviews of a subset
of products from Amazon’s Electronics category. This includes 2000 products and all of
their associated from 29,294 users. The total number of reviews in the dataset is 30,378.
We note that this is just over 1 review per user on average, making this dataset much
sparser than the rest. Last, we use the reviews from a subset of the products in Amazon’s
Clothing & Accessories category. This is 51,348 reviews on 5000 products from 16,017
users.

Implementation: We implement our model and Gibbs sampling procedure in Matlab
along with its parallel toolbox for speed. For simplicity and efficiency purposes we set a
maximum number of clusters for users and items in each run, which we will specify for
the experiments below. In all cases we use the PMF solution from [188] as our starting
point. For all experiments below we set the rank (the length of ui and vj) d = 30 and
ν0 = 3

2
d.

Comparing on predictive probability: To measure our model’s fit, we use the pre-
dictive probability (PP):

PP =
1

N

∑
rij

− log p(rij|ui, vj)

In order to make this a fair comparison with non-discrete distributions such as the
typical Gaussian distribution, we discretize it first before any comparison. Because our
recommender model can also act like a Gaussian, we can convert a Gaussian model
N (〈ui, vj〉 , σ2) to a recommender model Recommender(〈ûi, v̂j〉 , û(2)

i + v̂
(2)
j) as follows:

ûi = σ · ui v̂j = σ · vj
û

(1)
i = v̂

(1)
j = 0 û

(2)
i = v̂

(2)
j = − 1

4σ2

As a result, no weight of the distribution is wasted on regions for which there couldn’t be
a rating. We tested many different values of σ2 that gave the best predictive probability
for a Gaussian and ultimately chose to use σ2 = 1.0 because it generally produced the
best results. Additionally, to compare against BPMF we run our code with a maximum
of 1 cluster and fitting a normal as was done in their model.

113

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

1 2 3 4 5 6 11 12 22 23 24 25 26 27 28 29 30 31 39 40 42 48 49 50

All Groups
Star Trek

Veggie Tales
Scooby Doo

Southpark
Simpsons

Family Guy

Figure 6.4: Distribution of movies from TV series over clusters. Movies from the same
series are highly concentrated. Viewing series as ground truth, we see that the accuracy is
fairly high. Note that movies within the same series are not necessarily uniform (different
seasons, directors, script writers).

6.8.2 Model fit

We run our model on the Netflix-24k and BeerAdvocate datasets to verify that it better
models the data. We compare the results of running BPMF [188] to that from our model
with a maximum of 50 clusters. As explained before, we want to measure the fit of our
model so we use average predictive probability. As seen in Table 6.2 (where smaller
predictive probability is better), CoBaFi fits the data much better than BPMF for both
Netflix-24k and BeerAdvocate.

Sampling from the recommender distribution: As was mentioned earlier, one of
the challenges of fitting such a model correctly is approximating our recommender distri-
bution to perform the Metropolis-Hastings sampling. To verify that our approximation
was working well, we recorded the average acceptance rate for a couple of our datasets.
In the Netflix-24k dataset we see an average acceptance rate of 77.77%. In the robustness
tests below on the Amazon Electronics dataset, we see a 99.12% acceptance rate.

6.8.3 Robustness to spam

One of the benefits of incorporating clusters into a model is that similar users will get
clustered together, whether it be users who have similar tastes, or anomalous users who
may try to manipulate ratings for their own gain. Spammers are an issue in any large,
community driven rating system as there is frequently a financial incentive for positive
ratings and an incentive for negative ratings for competitors. By modeling the latent
clusters of users, we are able to group similar users together. This means that anomalous
users, such as spammers, may get grouped together, and thus have a smaller impact
overall on ratings outside of their collective group or groups. To do this we ran two
experiments. In each we take one of the datasets above and inject spammers who are
trying to manipulate the ratings for a subset of items. We then measure how much these
spammers effect the fit of our model on these items.

114

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

6 20 23 30 33 39 43 46

P
e

rc
e

n
t

o
f

S
p

a
m

m
e

rs

Cluster Number

(a) Dumb spammers

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

14 18 22 26 41 49

P
e

rc
e

n
t

o
f

S
p

a
m

m
e

rs

Cluster Number

(b) Hijacked users

 0.25
 0.3

 0.35
 0.4

 0.45
 0.5

 0.55
 0.6

 0.65
 0.7

 0.75

3 45

P
e

rc
e

n
t

o
f

S
p

a
m

m
e

rs

Cluster Number

(c) Spammed movies

Figure 6.5: Distribution of spammers over clusters; Left: Dumb spammers on the elec-
tronics dataset; Middle: Hijacked users on the electronics dataset; Right: Spammed movies
on the Netflix-24k spam dataset. In all three cases the spammers congregate tightly in a
very small number of clusters.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

1 2 3 4 5

P
ro

b
a
b
ili

ty

Amazon Rating

Data
CoBaFi

(a) Amazon Electronics

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 2 3 4 5

P
ro

b
a
b
ili

ty

Netflix Rating

Data
CoBaFi

(b) Netflix

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

1 2 3 4 5

P
ro

b
a
b
ili

ty

Amazon Rating

Data
CoBaFi

(c) Amazon Clothing

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

1 1.5 2 2.5 3 3.5 4 4.5 5

P
ro

b
a
b
ili

ty

BeerAdvocate Rating

Data
CoBaFi

(d) BeerAdvocate

Figure 6.6: Rating distributions from the data and as estimated by CoBaFi. From left
to right: Sony 50CDQ80RS 80 Minute 700 MB 48x CD-R 50 Pack Spindle on Amazon
Electronics (the most skewed distribution); The Rookie on Netflix (the most Gaussian
distribution); Vanity Fair Women’s My Favorite Illumination String Bikini Panty on Amazon
Clothing; Ovila Abbey Saison, Sierra Nevada Brewing Co. on BeerAdvocate.

Dumb spammers: For the first experiment we model spammers who are quite fla-
grant in how they try to manipulate certain reviews and do not camouflage their behavior
by also providing typical ratings. To do this we use the Amazon Electronics dataset
and see if we can take generally well-liked products and bring their ratings down (as a
competitor would want). We select 31 products with a high average rating and at least

115

PP Before PP After

BPMF 1.7047 1.8146
CoBaFi 1.0549 1.7042

Table 6.3: Predictive probability on “attacked items” in the Amazon Electronics dataset
before and after adding spammers.

PP Before PP After

BPMF 1.2375 1.3057
CoBaFi 0.9670 1.2935

Table 6.4: Predictive probability on “attacked movies” in the Netflix-24k dataset before
and after add spam from hijacked accounts.

100 reviews. These products include Logitech speakers, an HDMI cable, a TiVo USB
Network Adapter, and an HP LaserJet Printer, among many others. For these products
we randomly select 100 ratings for each project to be included in the training dataset and
the rest to be held out for the test dataset. We subsequently create 100 new accounts, and
for all of these products our spam accounts give a rating of 1.0. As such, each product
being manipulated now has half real reviews and half fake. As can be seen in Table 6.3,
the predictive probability of our model is better than that for BPMF before and after we
add the spam. Additionally, while the model is clearly effected by the spammers as it
shifts to cover both the 1 star and 5 star reviews, it does an even better job of clustering
spammers and the products they attack. As can be seen in Figure 6.5(a), most of the
spammers (83%) are placed in the same clustered. Additionally, not graphed due to
its simplicity, the attacked products are all placed into the same cluster. In an industry
setting, this sort of interpretability and ability to understand group behavior would be
valuable for investigating suspicious behavior.

Spammers with hijacked accounts: Second we test the model’s robustness to more
clever spammers—those who hijack real accounts. In this case we take real users and
assume their account has been hijacked and begin providing misleading dubious reviews.
This is a common issue in online systems and is the worst-case form of spammers who
add realistic-looking reviews to try to camouflage their fraudulent behavior. To test our
model in this setting we use the Netflix-24k dataset. Here we choose 85 movies with an
average rating over 4.3 and with at least 200 reviews. Additionally we select 99 users
at random (their average number of ratings is approximately 209). As before, for each
of the movies selected to be attacked we include 100 of their ratings at random in the
training set and use the rest for the test set. For the hijacked accounts we merely add
1 star reviews to all of the movies attacked. Again, we see in Table 6.4 that our model
has a better predictive probability than BPMF both before and after we add the spam.

116

More impressively, CoBaFi is still successful in clustering together the hijacked users and
the attacked movies, as seen in Figures 6.5(b–c). Note, this is particularly surprising for
the hijacked users since they may have hundreds or thousands of legitimate reviews
along with the only 85 fake reviews that contribute to their profile. From this we
see that CoBaFi naturally handles spammers in a way that minimizes their impact on
collaborative filtering and groups them together.

6.8.4 Natural clusters in real world

As mentioned earlier, being able to understand your data and interpret your latent
parameters is useful in many applications and industry settings. Besides clustering
anomalous behavior, our model provides interesting insight into the natural clusters of
items based on their latent preferences in vj .

We analyze the clusters produced from the Netflix-48k dataset. In fitting our model,
we set the maximum number of clusters to 50, which given the number of movies/beers
being rated leaves a still fairly coarse clustering. In order to isolate the effects of the
clustering mechanism and not the flexible distribution, we use a Normal as our recom-
mender distribution so that clusters are based only on vj . In the Netflix-48k dataset we
analyzed the clustering in two different ways. In Figure 6.4, we look at the distribution of
different series across different clusters. We see that for most of the series nearly all of the
seasons or films in that series are clustered together. Additionally, we see in Table 6.5 that
clusters often contain movies within the same genre, with Cluster 28 containing generally
comedies, Cluster 30 containing material for children, and Cluster 48 including science
fiction. This sort of interpretable model is of course useful in practice to understand your
data and user preferences.

Cluster 28 Cluster 30 Cluster 48

Simpsons Scooby Doo Star Trek
Family Guy Spy Kids Back to the Future
Monty Python Stuart Little Southpark
Curb your Enthusiasm Dr. Dolittle Lord of the Rings
The Twilight Zone Lion King Harry Potter
Arrested Development Agent Cody Banks The X-Files
Chappelle Show
Monty Python
Seinfeld

Table 6.5: Clusters of movies and shows from Netflix. Series are only included if there
are at least 2 items from that show or series in the cluster.

117

Amazon Clothing Bra Disc Nipple covers
Vanity Fair Women’s String Bikini Panty
Lee Men’s Relaxed Fit Tapered Jean
Carhartt Men’s Dungaree Jean
Wrangler Men’s Cowboy Cut Slim Fit Jean

Amazon Electronics Sony CD-R 50 Pack Spindle
Olympus Stylus Epic Zoom Camera
Sony AC Adapter Laptop Charger
Apricorn Hard Drive Upgrade Kit
Corsair 1GB Desktop Memory

BeerAdvocate Weizenbock (Sierra Nevada)
Ovila Abbey Saison (Sierra Nevada)
Stoudt’s Abbey Double Ale
Stoudt’s Fat Dog Stout
Juniper Black Ale

Table 6.6: Extreme distributions in data: Items for Amazon Clothing and Amazon Elec-
tronics are those with the largest amount of skew, i.e. large positive θ2 in the recommender
distribution. This occurs for items that are universally liked, universally despised, or
items that polarize. Alternatively, the beers from BeerAdvocate are those that are least
skewed and have the largest negative θ2.

6.8.5 Shape of real world data

The most interesting interpretable parameter of our model is understanding the wide
range of distributions. In analyzing our results, we quickly see the world is not so normal.
For each of our datasets we calculate the convexity of each item, θ̂(2)

j :

θ̂
(2)
j = v

(2)
j +

1

|ratings(j)|
∑

i∈ratings(j)

u
(2)
i

With this term, we can generally see how convex (“U”-shaped) or concave (Gaussian)
our item ratings actually are.

Beer Ratings: The simplest of the results, though surprising given the others, was
with the BeerAdvocate ratings. For all beers we found θ̂

(2)
j < 0, meaning that the

distribution was always Gaussian. Additionally, the distributions were not overly
skewed as in other datasets; the items with the smallest values of θ̂(2)

j and thus the
least variance were typically centered at 4.0 or less as seen in Figure 6.6(d). Looking at
the distribution of variances θ̂(2)

j we see a fairly wide range of variances across the beers.
This explains why our model has such an improved predictive probability than BPMF

118

Most skewed Most Gaussian

The O.C. Season 2 The Rookie
Samurai X: Trust and Betrayal The Fan
Aqua Teen Hunger Force, Vol. 2 Cadet Kelly
Sealab 2001: Season 1 Money Train
Aqua Teen Hunger Force: Vol. 1 Alice Doesn’t Live Here
Gilmore Girls: Season 3 Sea of Love
Felicity: Season 4 Boiling Point
The O.C.: Season 1 True Believer
The Shield: Season 3 Stakeout
Queer as Folk: Season 4 The Package

Table 6.7: A list of the most skewed and most Gaussian rating distributions on Netflix.
Note that the skewed movies are all exclusively TV shows whereas the tightly peaked
‘Gaussian’ ratings all correspond to blockbuster movies.

as shown above and demonstrates the importance of fitting the variance as well as the
mean.

Netflix Ratings: Within the Netflix dataset, the results were not nearly as simple.
Here we found that, possibly to the surprise of many data-miners, for most items on
Netflix, θ̂(2)

2 < 0 and thus the distribution is Gaussian. Taking a closer look at the skews,
we find some interesting patterns. In particular, as seen in Table 6.7, television shows
were the most convex. For nearly all of these cases, we see that the shows produce
highly polarized results that are usually heavily skewed in one direction. Alternatively,
the items that were fitted to be the most Gaussian were mediocre movies such as “The
Rookie.” A comparison of the distributions can be seen in Figure 6.6(b). Intuitively, this
makes sense. Watching a full television series is a lot more time consuming than viewing
an individual movie, and users are probably more likely to self select, especially before
rating a later season.

Amazon Ratings: For both the Amazon Electronics and Amazon Clothing datasets,
we found that they exhibited very skewed distributions that were not Gaussian. Items
were frequently viewed as very good, or very bad, with variances that were not well
approximated by a normal distribution. Deviations were less likely to occur naturally.
Furthermore, this makes sense as users often do not go online and rate an item they
bought previously unless they have a strong reason for wanting to do so, e.g., the product
is defective. In Figures 6.6(a,c) we see that our model handles the skew and bimodal
distribution well. Additionally in Table 6.6 we list the most skewed distributions within
both the Amazon Clothing and Amazon Electronics datasets.

Possible Explanations: We can hypothesize that such a difference in behavior can be
attributed to a number of biases. For example, it is likely that only fans of a TV series will
rate a later season of the show. Additionally, in rating the show is the rating a statement

119

of (a) “This was a good/bad season of this show,” (b) “This was a good/bad season of
TV,” or (c) “This was a good/bad piece of video entertainment?” Similarly, the selection
bias arising from the additional effort to watch a full season of a show may also arise
in the additional effort to go online and rate a product on Amazon. Additionally, we
may only be able to compare quality against highly similar items as has been found in
pricing studies in behavioral economics. From this we see polarized views from items
that are difficult to evaluate or we have fewer instances to compare against, e.g., printers,
seasons of a TV show, jeans, and more Gaussian ratings from items that we can compare
against a wide variety of past experiences, e.g., comedy movies, action movies, beers.

While there is no definitive explanation for why these patterns emerge, it is clear
that ratings have complex meaning. While our model is effective at fitting the wide
range of distributions generated from such varied motives, we believe these discovered
discrepancies demonstrate the need to further understand online ratings and better
understand the latent factors that contribute to rating decision.

6.9 Summary

In this chapter we demonstrated that a single model suffices to provide both good
recommendation performance, the ability to capture nontrivial bimodal and skewed
distributions, the ability to analyze and group users and movies, and a mechanism
for detecting spammers. Often these four problems are addressed by separate tools,
often even by separate teams in commercial contexts. Our research shows that this is
not needed. Instead, it is likely better to jointly model all these effects in a moderately
detailed statistical generative process. While this may be costlier than each individual
specialized solution, the overall engineering cost of a joint model is considerably less
than maintaining these specialized methods. Furthermore, additional data can help
improve all aspects simultaneously. We anticipate that large integrated data modeling
will become a pervasive trend for recommendation, ranking and content analysis.

120

Chapter 7

Interpretable Recommendations

Matrix completion and approximation are popular tools to capture a user’s preferences
for recommendation and to approximate missing data. Instead of using low-rank fac-
torization we take a drastically different approach, based on the simple insight that an
additive model of co-clusterings allows one to approximate matrices efficiently. This
allows us to build a concise model that, per bit of model learned, significantly beats all
factorization approaches in matrix completion. Even more surprisingly, we find that
summing over small co-clusterings is more effective in modeling matrices than classic
co-clustering, which uses just one large partitioning of the matrix.

We provide our model ACCAMS, which stands for Additive Co-Clustering to Ap-
proximate Matrices Succinctly, along with an iterative minimization algorithm. We also
offer a generative Bayesian form of our model, bACCAMS, for which we provide a
collapsed Gibbs sampler. For both models we provide excellent empirical evidence for
the efficacy of our approach. We match state-of-the-art results for matrix completion on
Netflix at a fraction of the model complexity. Following Occam’s razor principle, the fact
that our model is more concise and yet just as accurate as more complex models suggests
that it better captures the latent preferences and decision making processes present in
the real world.

7.1 Introduction

As described previously, a wide variety of collaborative filtering approaches have been
proposed to improve recommendation quality. Top recommender systems have used
thousands of factors per item and per user, as was the case in the winning submissions in
the Netflix prize [123]. Recent state-of-the-art methods have relied on learning even larger,
more complex factorization models, often taking nontrivial combinations of multiple
submodels [136, 150]. Such complex models are increasingly difficult to interpret, use
large amounts of memory, and are often difficult integrate into larger systems.

121

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

0 10 20 30 40 50 60 70 80
R

e
c
o

m
m

e
n

d
a

ti
o

n
 e

rr
o

r
(R

M
S

E
)

Parameter Space Size (megabytes)

Better

SVD++
LLORMA

bACCAMS

Figure 7.1: Accuracy of bACCAMS on Netflix, compared to [123] and [136]. Note that
our model matches state of the art accuracy at a fraction of the model size.

7.1.1 Linear combinations of attributes

Our approach is drastically different from previous collaborative filtering research.
Rather than start with the assumptions of a matrix factorization model, we make co-
clustering effective for high quality matrix completion and approximation. Co-clustering
finds a clustering of the rows and columns of a matrix R so as to partition R into blocks
that are highly similar. It has been well studied [27, 191] but was not previously competi-
tive in large behavior modeling and matrix completion problems. To achieve state of the
art results, we use an additive model of simple co-clusterings that we call stencils, rather than
building a large single co-clustering. The result is a model that is conceptually simple,
has a small parameter space, has interpretable structure, and still matches the accuracy
of other state-of-the-art methods for matrix completion on Netflix, as seen in Figure 7.1.

Using a linear combination of co-clusterings corresponds to a rather different inter-
pretation of user preferences and movie properties. Matrix factorization assumes that a
movie preference is based on a weighted sum of preferences for different genres, with
the movie properties being represented in vector form. Therefore, even if a movie is a
comedy and the user likes comedies, the model still also offsets by how scary the movie
is and does the user like scary movies.

Co-clustering on the other hand assumes there exists some “correct” partitioning of
movies (and users). For instance, a user might be part of a group that likes all comedies
but does not like romantic movies. Correspondingly, all romantic comedies might be
split out into a separate cluster. If a group of users likes new movies but not old ones then
each genre may be further partitioned by decade. This quickly leads to a combinatorial
explosion.

By taking a linear combination of co-clusterings we benefit from both perspectives:
by modeling the discrete nature of attributes we can avoid the cost of high-dimensional
factorization models, and by adding the preferences for different attributes we can avoid
the large models necessary to cover all combinations of attributes. Rather, through
backfitting, we create a more powerful, hierarchical representation. For instance, a movie

122

may be {funny, scary, sad}, it was made in some era, it has a certain age rating, it may
contain a certain group of actors or be shot in a certain visual style. However, if a user
likes comedies but doesn’t like scary movies, it is generally unlikely that this preference
will suddenly flip depending on the decade the movie was produced. Therefore, by
taking linear combinations of co-clusterings we can efficiently take all of these attributes
into account.

7.1.2 Succinct Stencils

The mathematical challenge that motivated this work is, how can we make a succinct
model of user behavior that still provides high quality predictions? Designing a succinct
model is difficult because it requires making assumptions and restrictions while not
decreasing the model’s accuracy. Factorization models are very flexible. In order to
encode a rank-k matrix by a factorization, we need k numbers per row (and column)
respectively. Rather, consider a stencil - a small k × k template of a matrix and its
mapping to the row and column vectors respectively. We only need log2 k bits per row
(and column) plus O(k2) floating point numbers regardless of the size of the matrix.

Taking a linear combination of stencils we can model quite complex matrices. This
is best understood by the example below: assume that we have two simple stencils
containing 3 × 2 and 2 × 3 co-clusterings. Their linear combination yields a rather
nontrivial 9 × 8 matrix of rank 5. Alternatively, classic co-clustering would require a
(3 · 2)× (2 · 3) partitioning to match this structure. When we have S stencils of size k × k,
this would require a single co-clustering of size kS × kS .

+ =

Movies TV

Fe
m
al
e

M
al
e

O
ld

Yo
un

g
M
id
dl
e-
Ag

ed

1990s1980s 2000s

Figure 7.2: Additive co-clustering example

By design our model has a parameter space that is an order of magnitude smaller than
competing methods, requiring only S log2 k bits per user and per movie and Sk2 floating
point numbers, where k is generally quite small. While ACCAMS is more restrictive
than classic factorization, we demonstrate that our assumptions do not increase the
generalization error, achieving even better prediction accuracy than more complex
models.

Finding succinct models for binary matrices, e.g., by minimizing the minimum
description (MDL), has been the focus of significant research and valuable results in the

123

data mining community [124, 216]. That said, these models are quite different. To the
best of our knowledge, ours is the first work aimed at finding a parsimonious model for
general (real-valued) matrix completion and approximation.

7.1.3 Contributions

We make a number of contributions to the problem of finding succinct representations of
matrices.

• Optimization algorithm: In Section 7.3, we present ACCAMS, an iterative k-means
style algorithm that minimizes the approximation error by backfitting the residuals
of previous approximations.

• Bayesian model: In Section 7.4, we present a generative Bayesian non-parametric
model and devise a collapsed Gibbs sampling algorithm, bACCAMS, for efficient
inference.

• State-of-the-art results: Experiments confirm the efficacy of our approach, offering
high accuracy matrix completion on Netflix, an interpretable hierarchy of content,
and succinct matrix approximations for ratings, image, and network data.

We believe that these contributions offer a promising new direction for behavior modeling
and matrix approximation.

Outline. We begin by discussing related work from recommender systems, non-
parametric Bayesian models, co-clustering, and minimum description length. We subse-
quently introduce the simple k-means style additive co-clustering in Section 7.3. Subse-
quently, in Section 7.4.1 we define our Bayesian co-clustering model and collapsed Gibbs
sampler for a single stencil. In Section 7.4.4 we extend our Bayesian model to multiple
stencils. Section 7.5 reports our experimental results and we conclude with a discussion
of future directions for the work.

7.2 Related Work

In this chapter, we build on the intuition from many different strands of the recommender
systems literature, outlined in Section III.1. Most significantly, we build on the co-
clustering intuition of CoBaFi in the previous chapter. However, while the co-clustering
improved modeling accuracy, it did not reduce the model complexity of the underlying
factorization.

As was previously mentioned, ensemble approaches to recommender systems have
recently been found to work well [136, 150]. Our work in this chapter could be viewed
as an ensemble of multiple co-clusterings. [221] also exploits co-clustering ensembles,
but does so by finding a single consensus co-clustering. As far as we know, ours is the
first work to use an additive combination of co-clusterings.

Methodologically, our model also follows the Bayesian non-parametric literature.
[84, 87], which use an IBP for recommendation, can be seen as an extreme case of
ACCAMS where the cluster size k = 2, while using a somewhat different strategy to

124

handle cluster assignment and overall similarity within a cluster. Following a similar
intuition as ACCAMS but different perspective and focus, [170] extended the IBP to
handle k > 2 for link prediction tasks on binary graphs. Our work differs in its focus
on general, real-valued matrices, its application of co-clustering, and its significantly
simpler parameterization.

Succinct modeling The data mining community has focused on finding succinct mod-
els of data, often directly optimizing the model size described by the minimum descrip-
tion length (MDL) [187]. This approach has led to valuable results in pattern and item-set
mining [216, 219] as well as graph summarization [124]. While we follow the intuition
of this literature, these previous approaches typically focus on modeling databases of
discrete items rather than real-valued datasets with missing values.

Additive Clustering Our model, built on additive co-clustering, takes a different ap-
proach from classic collaborative filtering literature. Our approach is conceptually similar
to older literature from psychology on additive clustering [137, 164, 194, 210]. ADCLUS
[194] argues that similarity between objects should be based on similarity on a subset of
discrete properties. This perspective reinforces our belief that additive co-clustering is a
good fit for user behavior modeling.

7.3 Matrix Approximation

We begin by defining our notation and the problem. A full list of the symbols used can
be found in Table 7.1.

We consider now the problem of matrix approximation:
Problem Definition 1 (Matrix Approximation)
Given: a sparse matrix R ∈ RN×M with indicator matrix I

Find: a model M with parameters θ, such that the size of θ is small, |θ| � R, and M(θ)

approximates R well:

minimize
θ

N∑
u=1

M∑
m=1

Iu,m(Ru,m −M(θ)u,m)2 (7.1)

As stated above, we assume R is a sparse matrix where there is no data for many values
in the matrix. The indicator matrix I denotes this information, where Ii,j = 1 when there
is an observed value for Ri,j and Ii,j = 0 otherwise. Without loss of generality we assume
that our data matrix, R, has more rows than columns, i.e. R ∈ RN×M with N ≥M .

The concept of a small model in the context of behavior modeling has typically been
captured by the rank of a factorization. We generalize this concept and define a small
model by the number of bits required to store it, more commonly known as the minimum
description length (MDL).

125

Symbol Definition

N,M Number of rows (users) and columns (movies)
R Data matrix ∈ RN×M (with missing values)
I Indicator matrix ∈ {0, 1}N×M for R

S Number of stencils
k

(`)
n , k

(`)
m Number of user and movie clusters in stencil `

T(`) Matrix ∈ Rk
(`)
n ×k

(`)
m for stencil `

c(`) Vector of user assignments ∈ {1, . . . , k(`)
n }N

d(`) Vector of movie assignments ∈ {1, . . . , k(`)
m }M

S(T, c,d) ∈ RN×M defined by S(T, c,d)u,m = Tcu,dm

nc Number of users in cluster c
n

(−u)
c Number of users in cluster c, ignoring user u

Nc,d Number of observations in block (c, d)

rc,d Vector of observed ratings in block (c, d)

Table 7.1: Symbols used throughout this chapter.

7.3.1 Proposed Model

A stencil assigns each user u to a user cluster c, each movie to a movie cluster d, and for
each (user cluster c, movie cluster d) combination there is a block of ratings which are
predicted to have value Tc,d. Formally:

Definition 6 (Stencil) A stencil S (T, c,d) is a matrix S ∈ RN×M with the property that
S (T, c,d)u,m = Tcu,dm for a template T ∈ Rkn×km and discrete index vectors c ∈ {1, . . . , kn}N
and d ∈ {1, . . . , km}M respectively.

Therefore, our goal is to find a stencil S (T, c,d) with a small approximation error
R− S (T, c,d) and small cost for storing θ = {T, c,d}.
Lemma 9 (Compression) Stencil S(T, c,d) can be stored with N log2 kn bits for row cluster
assignments c, M log2 km bits for column cluster assignments d and 32knkm bits to store a 32-bit
floating point number for each block in T:

Bits({T, c,d}) = N log2 kn +M log2 km + 32knkm (7.2)

Note, it is trivial to get zero approximation error by setting kn = N and km = M , but this
creates a very large model (the size of the original data) that is not useful.

As mentioned above, we can efficiently improve the approximation accuracy by using

126

Algorithm 8: Matrix Approximation with ACCAMS
Require: matrix R, indicator matrix I, clusters kn, km, max stencils S

1: R̂← R

2: for ` = 1 to S do
3: (c(`),V(row),L)← CLUSTER(R̂, kn, I) {Rows}
4: (d(`), ·, ·)← CLUSTER([V(row)]>, km,L

>) {Columns}
5: for all a, b ∈ {1, . . . kn} × {1, . . . km} do
6: T

(`)
a,b ← mean

{
R̂u,m|c(`)

u = a and d
(`)
m = b

}
7: end for
8: R̂← R̂− S(T(`), c(`),d(`)) {Backfit on residuals}
9: end for

10: return {T(`), c(`),d(`)}S`=1

multiple stencils:

minimize
{T(`),c(`),d(`)}

N∑
u=1

M∑
m=1

Iu,m

(
Ru,m −

S∑
`=1

S
(
T(`), c(`),d(`)

)
u,m

)2

That is, we would like to find an additive model of S stencils that minimizes the approxi-
mation error to R.

Given R, it is our goal to find such stencils S(T(`), c(`),d(`)) with good approximation
properties. Unfortunately, finding linear combinations of co-clusterings is NP-hard.
It is easy to see this by reducing co-clustering, which is NP-hard, to our problem by
setting S = 1. We describe below two algorithms to learn our stencils that offer good
approximation guarantees and work well in practice.

7.3.2 Algorithm

We consider a simple iterative procedure to learn stencils to approximate our data R.
Algorithm 8 gives the high level algorithm of learning each stencil one at a time. In
learning each stencil we use the CLUSTER algorithm, similar to k-means, as given in
Algorithm 9.

Row clustering We first perform k-means clustering of the rows. That is, we aim to find
an approximation of R that replaces all rows by a small subset thereof. Algorithm 9 is
essentially a generalization of k-means clustering. By calling the algorithm with M = R,
k = kn, and W = 1N×M , we find that the algorithm simplifies significantly to classic
k-means. The cluster assignment in Line 5 is simply

cu ← argmin
c
‖Ru,: − vc‖2

2 (7.3)

and L stores the number of rows in each row cluster.

127

Algorithm 9: CLUSTER(M, k,W)

Require: matrix M ∈ RN1×N2 , weights W ∈ RN1×N2 , number of clusters k
1: Draw k rows from M at random without replacement and copy them to

V = {v1, . . . ,vk} ∈ Rk×N2 .
2: while not converged do
3: L← 0 ∈ Rk×N2 and Y ← 0 ∈ Rk×N2

4: for i = 1 to N1 do
5: ci ← argminc

∑
j Wi,j(Mi,j −Vc,j)

2

6: Yci,: ← Yci,: + Mi,: {Increment statistics}
7: Lci,: ← Lci,: + Ii,: {Increment counts}
8: end for
9: for c = 1 to k do

10: Vc,: ← Yc,:/Lc,: {New cluster center}
11: end for
12: end while
13: return cluster assignments c, clusters V, counts L

Column clustering Once we have run the clustering algorithm on the rows, we now
cluster the columns of previously learned row clusters, V(row). In this case, we need to
weight each row of V(row) (corresponding to a row cluster) by the number of rows it
represents (the number of rows in that cluster). As a result, rather than choose a column
cluster assignment by the Euclidean distance, we use the Mahalanobis distance. Still,
Algorithm 9 is a generalization of this concept. We use the assignment (for Line 5):

dm ← argmin
d

(
V(row)

:,m −V:,d

)>
D
(
V(row)

:,m −V:,d

)
(7.4)

where V ∈ Rkn×km is the matrix obtained by stacking V:,d = v>d and D would be the
diagonal matrix of counts, i.e. Dcc is the number of rows of R in cluster c.

Missing entries In many cases, however, R itself is incomplete. This is addressed quite
easily by using the assignment shown in Line 5 of Algorithm 9, where W can be set to
the adjacency matrix to ignore missing entries. Therefore, in finding a good cluster for
the row Ru,: we restrict ourselves to the coordinates in Vc,: where Ru,m exists (and also
where Vc,m has been initialized).

For the purpose of obtaining the column clusters, we now need to weight each
coordinate in V(row) by how many elements in R contributed to it. Correspondingly
denote by Lc,m :=

∑
(u,m)∈R:cu=c 1 the number of entries mapped into coordinate V

(row)
c,m .

Then the assignment for column clusters is obtained via

dm ← argmin
d

∑
c

Lc,m

(
V(row)
c,m −Vc,d

)2
(7.5)

128

We observe that Algorithm 9 handles both row and column clustering correctly, by calling
it appropriately as shown in Algorithm 8.

Backfitting The outcome of running the row and column clustering described above
on R is a single stencil S(T, c,d) consisting of the clusters obtained by first row and then
column clustering. It may be desirable to alternate between row and column clustering
for further refinement.

However, as noted above, additional stencils only reduce the objective function
further—convergence to a local minimum is assured, with the same caveat on solution
quality as in k-means clustering. Therefore, we take the residual R̂ = R− S(T, c,d) and
use it as the starting point to learn a new stencil. By repeatedly learning new stencils on
the residuals of the previous stencils, as shown in Algorithm 8, we obtain an additive
model of co-clusterings that minimizes the approximation error to R.

7.3.3 Approximation Guarantees

A key question is how well any given matrix R can be approximated by an appropriate
stencil. For the sake of simplicity we limit ourselves to the case where all entries of
the matrix are observed. Using covering numbers and the spectral properties of R, we
can obtain approximation guarantees for co-clustering. Previous results have offered
guarantees for how well k-means co-clustering, similar to Algorithm 9, can approximate
the optimal co-clustering [18]. We offer below a theorem bounding the approximation
error between a matrix and a stencil approximating it, based on the singular values of
the particular data matrix.

Denote by Σ = diag(σ1, . . . σn) the singular values of R.
Theorem 2 (Approximation Guarantees) Using k clusters for both rows and columns, the
matrix R can be approximated with error at most

‖R−R′‖∞ ≤ 2 ‖R‖ 1
2 εk

(
Σ

1
2

)
‖R−R′‖2 ≤ (

√
N +

√
M) ‖R‖ 1

2 εk

(
Σ

1
2

)
where

εk(Σ) ≤ 6 sup
j∈N

(
1

k

j∏
i=1

σi

) 1
j

≤ 6εk(Σ)

The proof for Theorem 2 can be found in Appendix B.
Note that the above is a statement of existence rather than a constructive prescription.

However, because ACCAMS is more restrictive than matrix factorization, the above
theorem, connecting co-clustering to singular values, bounds the error induced by co-
clustering. In practice, the results can be considerably better, as we show in Section 7.5.

129

As this theorem does not offer any insight into the structure of the residuals left from
co-clustering, an interesting future direction for theoretical analysis is to extend the proof
to approximation guarantees for additive co-clustering.

7.4 Generative Model

As many frequentist algorithms have a Bayesian counterpart, we now devise a Bayesian
counterpart to ACCAMS, which we will refer to as bACCAMS. We begin with the single
stencil case, describing the model in Section 7.4.1 and a collapsed Gibbs sampler in
Section 7.4.2. We then extend the model and sampler to many stencils in Section 7.4.4.

7.4.1 Co-Clustering with a Single Stencil

We begin with a simple Bayesian model of co-clustering. This is the basic template for
single-stencil inference, and our model of additive co-clusters will use the same idea.
Our model can be broken into two parts: (1) generating block values and (2) generating
cluster assignments. We will go through each part of the model and then the model as a
whole, as shown in Figure 7.3.

Block values We begin by considering how we generate the prediction Tc,d for a
particular block, corresponding to ratings from users in cluster c to movies in cluster d.
Previously, as shown in Line 6 of Algorithm 8, each block merely took the average of the
values that fell in that block. Subsequently, we would use that block mean directly as the
prediction for all values in the block.

In our Bayesian model, we consider each Tc,d to come from a Gaussian distribution,
centered at 0 and with variance τ 2. On top of this, each value in the matrix Ru,m is
generated by a Gaussian with mean Tcu,dm and variance σ2 (alternatively stated, with
additive noise εu,m ∼ N (0, σ2)). As such we have

Tc,d ∼ N (0, τ 2) Ru,m ∼ N
(
Tcu,dm , σ

2
)

(7.6)

Because τ 2 and σ2 are not yet defined and are data dependent, they too are sampled from
the conjugate prior distribution, specifically the Inverse Gamma distribution:

τ 2 ∼ IG(γ) σ2 ∼ IG(η) (7.7)

Cluster assignments In Algorithm 9, a user u (or movie m) is assigned to a particular
cluster cu (dm for movies) based purely on the distance to the cluster center. As with
most frequentist algorithms, there is no prior on the cluster assignments.

In our Bayesian model, we put a Dirichlet prior on the cluster assignments. More
simply understood, we believe cluster assignments are generated by a Chinese Restaurant
Process (CRP). One big advantage of using a CRP is that it allows for an unrestricted
number of clusters, where new clusters can always be created with small probability. To

130

for u

form

for c, d for u,m
for ` = 1 . . . S

α c
(`)
u η

β d
(`)
m σ2

γ τ 2
` T

(`)
c,d Ru,m

Figure 7.3: Generative model for recommendation and matrix approximation (bAC-
CAMS). For each stencil, as indexed by `, row and cluster memberships c(`) and d(`)

are drawn from a Chinese Restaurant Process. The values for the template T(`) are
drawn from a Normal Distribution. The observed ratings Ru,m are sums over the stencils
S(T(`), c(`),d(`)).

understand the Chinese Restaurant Process, consider the following metaphor. A user u
is at a Chinese restaurant and trying to pick a table (cluster) at which to sit. Each table
is chosen with probability proportional to the number of users already at that table (in
that cluster), and a new table is started with some small probability, proportional to α.
To be concrete, we assume there are N users, and cluster c has nc users in it; n

(−u)
c is the

number of users in cluster c not including user u. The probability that user u will go to a
particular cluster c is given by:

p(cu = c|c(−u), α) =

{
n

(−u)
c

α+N−1
if n

(−u)
c > 0

α
α+N−1

new cluster c
(7.8)

An analogous expression is available for movies: p(dm = d|d(−m), β). Under this model,
large values of α and β encourage the formation of larger numbers of clusters.

Complete model Putting these two elements together, we can now describe our com-
plete Bayesian model for co-clustering:

cu ∼ CRP(α) dm ∼ CRP(β) (7.9a)

Tc,d ∼ N (0, τ 2) Ru,m ∼ N
(
Tcu,dm , σ

2
)

(7.9b)
τ 2 ∼ IG(γ) σ2 ∼ IG(η) (7.9c)

131

Consequently the joint probability distribution over all ratings, given the variances, is
given by

p
(
R,S(T, c,d)|α, β, σ2, τ 2

)
=CRP(c|α)CRP(d|β) × (7.10)∏
c,d

1√
2πτ2

exp
(
−T2

c,d

2τ2

) ∏
(u,m)

1√
2πσ2

exp

(
−(Ru,m−Tcu,dm)

2

2σ2

)

This is an extremely simple model similar to [191], akin to a decision stump. The rationale
for picking such a primitive model is that we will be taking linear combinations thereof to
obtain a very flexible tool. We will now show that, by design, the model can be efficiently
sampled.

7.4.2 Collapsed Gibbs Sampler

We now dive into the details of efficiently learning our model through a collapsed Gibbs
sampler. There are three main parts of the model that need to be sampled: (1) the cluster
assignments c and d, (2) the block values Tc,d, and (3) the variances τ 2 and σ2. By design,
in particular the use of conjugate priors, our model is efficient to sample. For sampling
cluster assignments, we find that we can collapse out Tc,d so that sequential samples of
cluster assignments are not based on stale values of Tc,d and we achieve a significantly
faster sampler.

Inferring Cluster Assignments

We begin with the challenge of sampling the user cluster assignments c given only the
data R, the movie cluster assignments d, and the priors α, σ2, τ 2. To do this, we must
collapse out the block values of T.

In particular, at each step, we check how the likelihood of the data R changes by
assigning a user (or movie) to a new cluster:

p(cu=c|R,d, α, σ2, τ 2)∝CRP(c|α)
p(R|c(−u), cu=c,d, σ2, τ 2)

p(R|c(−u),d, σ2, τ 2)

We denote the observations for block (c, d), the ratings from users in cluster c to movies
in cluster d, by the vector rc,d; the updated ratings in the block after the assignment is
given by r′c,d. With this, the calculation above simplifies to:

p(cu = c|R,d, α, σ2, τ 2) ∝ CRP(c|α)
∏
d

p(r′c,d|σ2, τ 2)

p(rc,d|σ2, τ 2)

As we shall see, this is easily calculated by keeping simple linear statistics of the ratings.
Moreover, by integrating out T we avoid the problem of having to instantiate a new
value whenever a new cluster is added.

132

For a given block (c, d) with associated rc,d, the distribution of ratings is Gaussian
with mean 0 and with covariance matrix Σ = σ21 + τ 211> (due to the independence
of the variances and the additive nature of the normal distribution). Here we use 1 to
denote the identity matrix and 1 to denote the vector of all 1. Denote by Nc,d the number
of rating pairs (u,m) for which cu = c and dm = d. Hence, the likelihood of the block
(c, d), as observed in rc,d, is

p(rc,d|σ2, τ 2) =
exp

[
−1

2
r>c,dΣ

−1rc,d
]

(2π)
Nc,d

2 |Σ| 12
In computing the above expression we need to compute the determinant of Σ, a diagonal
matrix with rank-1 update, and the inverse of said matrix. For the former, we use the
matrix-determinant lemma, and for the latter, the Sherman-Morrison-Woodbury formula:

r>c,dΣ
−1rc,d =

1

σ2
‖rc,d‖2 − τ 2

σ2
·
(
1>rc,d

)2

σ2 + Nc,dτ 2

log |Σ| = (Nc,d − 1) log σ2 + log
[
σ2 + Nc,dτ

2
]

This allows us to assess whether it is beneficial to assign a user u or a movie m to a
different or a new cluster efficiently, since the only statistics involved in the operation
are sums of ratings and of their squares, 1>rc,d and ‖rc,d‖2 respectively.

We denote by N′c,d the new cluster count and by r′c,d the new set of ratings, after
having assigned user u to cluster c. Let

∆ :=
N′c,d−Nc,d

2

[
log(2π) + log σ2

]
+

1

2σ2

[∥∥r′c,d∥∥2 − ‖rc,d‖2
]

be a constant offset, in log-space, that only depends on the additional ratings that are
added to a cluster. That is, ∆ is independent of the cluster that the additional scores are
assigned to and can be safely ignored. The result is:

p(cu=c|R,d, α, σ2, τ 2)∝ n
(−u)
c

α+N−1

∏
d

[
σ2 + Nc,dτ

2

σ2 + N′c,dτ
2

] 1
2

(7.11)

× exp

[
τ 2

2σ2

∑
d

[(
1>r′c,d

)2

σ2 + N′c,dτ
2
−

(
1>rc,d

)2

σ2 + Nc,dτ 2

]]
For a new cluster this can be simplified since there is no data, hence Nc,d = 0 and rc,d = [].

p(cu=cnew|R,d, α, σ2, τ 2)∝ α
α+N−1

∏
d

[
σ2

σ2+N′c,dτ
2

] 1
2

(7.12)

× exp

[
τ2

2σ2

∑
d

(1>r′c,d)
2

σ2+N′c,dτ
2

]
The above expression is fairly straightforward to compute: we only need to track Nc,d, i.e.
the number of ratings assigned to a particular (user cluster, movie cluster) combination
and 1>rc,d, i.e. the sum of the ratings for this block.

133

Inferring Block Values

For the purpose of recommendation and for a subsequent combination of several matri-
ces, we need to instantiate the block values Tc,d. By checking (7.10) we see that Tc,d|rest
is given by

Tc,d|rest∼N
(

1>rc,d
ρNc,d

, σ2

ρNc,d

)
where ρ=

[
1 + 1

Nc,d

σ2

τ2

]
(7.13)

Here too sampling Tc,d only requires having the number of ratings Nc,d and sum of
ratings in the block 1>rc,d.

Inferring Variances

Last, we consider how to sample the variances for the priors, σ2 and τ 2. Both σ2 and τ 2

are generated by the Inverse Gamma distribution:

p(x|a, b) = baΓ−1(a)x−a−1e−
b
x (7.14)

Denote by E the total number of observed values in R. In this case, σ2 is drawn from an
Inverse Gamma prior with parameters (η′a, η

′
b):

η′a←ηa+
E

2
and η′b←ηb+

∑
(u,m)

Iu,m(Ru,m−Tcu,dm)2 (7.15)

Analogously, we draw τ 2 from an Inverse Gamma with parameters

γ′a ← γa +
knkm

2
and γ′b ← γb +

∑
c,d

T2
c,d (7.16)

kn and km denote the number of user and movie clusters.

7.4.3 Efficient Implementation

With these inference equations we can implement an efficient sampler, as seen in Al-
gorithm 10. The key to efficient sampling is to cache the per-cluster sums of ratings
1>rc,d. Then reassigning a user (or movie) to a different (or new) cluster is just a matter
of checking the amount of change that this would effect. Hence each sampling pass costs
O(kn · km · (N +M) +E) operations. It is linear in the number of ratings and of partitions.

Note that once y(u) and l(u) are available for all users (or all movies), it is cheap to
perform additional sampling sweeps at comparably low cost. It is therefore beneficial
to iterate over all users (or all movies) more than once, in particular in the initial stages
of the algorithm. Also note that the algorithm can be used on datasets that are being
streamed from disk, provided that an index and an inverted index of M can be stored:
we need to be able to traverse the data when ordered by users and when ordered by
movies. It is thus compatible with solid state disks.

134

Algorithm 10: StencilSampler(M,T, c,d)

1: Initialize row-index and column-index of data in M

2: Initialize statistics for each partition

Nc,d := | {(u,m) : cu = c,dm = d} | and Yc,d :=
∑

(u,m):cu=c,dm=d

Mu,m

3: while sampler not converged do
4: for all users u do
5: For all movie clusters d compute the incremental changes

l
(u)
d := | {(u,m) : dm = d} | and y

(u)
d :=

∑
(u,m):dm=d

Mu,m

6: Remove u from their cluster

Ncu,: ← Ncu,: − l(u) and Ycu,: ← Ycu,: − y(u)

7: Sample new user cluster cu using (7.11) and (7.12).
8: Update statistics

Ncu,: ← Ncu,: + l(u) and Ycu,: ← Ycu,: + y(u)

9: end for
10: for all movies m do
11: Sample movie cluster assignments analogously.
12: end for
13: for all (c, d) cluster partitions do
14: Resample Tc,d using (7.13) and Nc,d,Yc,d.
15: end for
16: Resample σ2 and τ2 using (7.15) and (7.16).
17: end while
18: return T, c,d

7.4.4 Additive Combinations of Stencils

As before, we find that using a linear combination of stencils is far more powerful than
just a single stencil. Therefore, we enumerate the stencils by S(T(`), c(`),d(`)), where
stencil index ` ranges from 1 to S. Correspondingly we now need to sample from a set of
S(T(`), c(`),d(`)) and τ 2

` per stencil. However, we keep the additive noise term N (0, σ2)
unchanged. This is the model of Figure 7.3. The additivity of Gaussians makes inference
easy:

Ru,m ∼ N
(∑

`

S(T(`), c(`),d(`))u,m, σ
2

)
. (7.17)

Note, though, that estimating S jointly for all indices ` is not tractable since various
clusterings (c(`),d(`)) overlap and intersect with each other, hence the joint normal
distribution over all variables would be expensive to factorize.

135

Algorithm 11: bACCAMS

1: initialize residuals R̂← R and T(`) = 0 ∀`
2: while sampler not converged do
3: for all stencils ` = 1 . . . S do
4: R̂←R̂+S(T(`), c(`),d(`)) {Without stencil `}
5: (T(`), c(`),d(`))← StencilSampler(R̂,T(`), c(`),d(`))

6: R̂←R̂−S(T(`), c(`),d(`)) {With stencil `}
7: end for
8: end while

Instead, we sample over one stencil at a time, as shown in Algorithm 11. This
algorithm only requires repeated passes through the dataset. Moreover, it can be modified
into a backfitting procedure by fitting one matrix at a time and then fixing the outcome.
Capacity control can be enforced by modifying α and β such that the probability of a
new cluster decreases for larger `, i.e. by decreasing α and β. As a result following the
analysis in the single stencil case, each sampling pass costs O(S · (kn · km · (N +M) +E))
operations. It is linear in the number of ratings, in the number of partitions and in the
number of stencils.

7.5 Experiments

We evaluate our method based on its ability to perform matrix completion, matrix
approximation and to give interpretable results. Here we describe our experimental
setup and results on real world data, such as the Netflix ratings.

7.5.1 Implementation

We implemented both ACCAMS, the k-means-based algorithm, as well as bACCAMS,
the Bayesian model. Unless specified otherwise, we run Algorithm 9 for up to T = 50
iterations. Our system can also iterate over the stencils multiple times, such that earlier
stencils can be re-learned after we have learned later ones. In practice, we observe this
only yields small gains in accuracy, hence we generally do not use it.

We implemented bACCAMS using Gibbs sampling (Section 7.4.4) and used the k-
means algorithm ACCAMS for the initialization of each stencil. Following standard
practice, we bound the range of σ by σmax from above. This rejection sampler avoids
pathological cases. For the sake of simplicity, we set k = kn = km to be the maximum
number of clusters that can be generated in each stencil. When inferring the cluster
assignments for a given stencil, we run three iterations of the sampler before proceeding
to the next stencil. As common in MCMC algorithms, we use a burn-in period of at least
30 iterations (each with three sub-iterations of sampling cluster assignments) and then

136

average the predictions over many draws. Code for both ACCAMS and bACCAMS is
available at cs.cmu.edu/~abeutel/accams.

7.5.2 Experimental Setup

Netflix We run our algorithms on data from a variety of domains. Our primary testing
dataset is the ratings dataset from the Netflix contest. The dataset contains 100 million
ratings from 480,189 users and 17,770 movies. Following standard practice for testing
recommendation accuracy, we average over three different random 90:10 splits for
training and testing.

CMU Face Images To test how well we can approximate arbitrary matrices, we use
image data from the CMU Face Images dataset1. It contains black and white images of
20 different people, each in 32 different positions, for a total of 640 images. Each image
has 128× 120 pixel resolution; we flatten this into a matrix of 640× 15360, i.e. an image
by pixel matrix.

AS Peering Graph To assess our model’s ability to deal with graph data we consider
the AS graph2. It contains information on the peering information of 13,580 nodes. It thus
creates a binary matrix of size 13, 580 × 13, 580 with 37k edges. Since our algorithm is
not designed to learn binary matrices, we treat the entries {0, 1} as real valued numbers.

Parameters For all experiments, we set the hyperparameters in bACCAMS to α = β =
10, ηα = 2, ηβ = 0.3, γα = 5, and γα = 0.3. Depending on the task, we compare ACCAMS
against SVD++ using the GraphChi [131] implementation, SVD from Matlab for full
matrices, and previously reported state-of-the-art results.

Model complexity Since our model is structurally quite different from factorization
models, we compare them based on the number of bits in the model and prediction
accuracy. For factorization models, we consider each factor to be a 32 bit float. Hence
the complexity of a rank r SVD++ model of N users and M movies is 32 · r(N +M) bits.

For ACCAMS with S stencils and k × k co-clusters in each stencil, the cluster assign-
ment for a given row or column is log2 k bits and each value in the stencil is a float. As
such, the complexity of a model is S((N +M) log2 k + 32 · k2) bits.

In calculating the parameter space size for LLORMA, we make the very conservative
estimate that each row and column is on average part of two factorizations, even though
the model contains more than 30 factorizations that each row and column could be part
of.

1http://www.cs.cmu.edu/~tom/faces.html
2http://topology.eecs.umich.edu/data.html

137

http://cs.cmu.edu/~abeutel/accams
http://www.cs.cmu.edu/~tom/faces.html
http://topology.eecs.umich.edu/data.html

Method Parameters Size Test RMSE

SVD++ [131] R = 25 49.8MB 0.8631
DFC-NYS [150] Not reported 0.8486
DFC-PROJ [150] Not reported 0.8411
LLORMA [136] R = 1 3.98MB 0.9295
LLORMA [136] R = 5, a > 30 19.9MB 0.8604
LLORMA [136] R = 10, a > 30 39.8MB 0.8444
LLORMA [136] R = 20, a > 30 79.7MB 0.8337

ACCAMS k = 10, s = 13 2.69MB 0.8780
ACCAMS k = 100, s = 5 2.27MB 0.8759
bACCAMS k = 10, s = 50 10.4MB 0.8403
bACCAMS k = 10, s = 70 14.5MB 0.8363
bACCAMS k = 10, s = 125 25.9MB 0.8331

Table 7.2: Model accuracy and size: bACCAMS achieves an accuracy for matrix comple-
tion on Netflix better than or on-par with other state-of-the-arts methods, while having a
parameter space a fraction of the size of other methods. a denotes the number of anchor
points for LLORMA and sizes listed are the parameter space size.

7.5.3 Matrix Completion

Since the primary motivation of our model is collaborative filtering we begin by dis-
cussing results on the classic Netflix problem; accuracy is measured in RMSE. To avoid
divergence we set σmax = 1. We then vary both the number of clusters k and the number
of stencils S.

A summary of recent results as well as results using our method can be found in
Table 7.2. Using GraphChi we run SVD++ on our data. We use the reported values from
LLORMA [136] and DFC [150], which were obtained using the same protocol as reported
here.

As can be seen in Table 7.2, bACCAMS matches the accuracy of other state-of-the-art
methods. We achieve this while using a very different model that is significantly simpler
both conceptually and in terms of parameter space size. We also did not use any of
the temporal and contextual variants that many other models use to incorporate prior
knowledge.

As shown in Figure 7.1, we observe that per bit our model achieves much better
accuracy at a fraction of the model size. In Figure 7.4(a) we compare different config-
urations of our algorithm. As can be seen, classic co-clustering quickly overfits the
training data and provides a less fine-grained ability to improve prediction accuracy
than ACCAMS. Since ACCAMS has no regularization, it too overfits the training data.

138

 0.8

 0.82

 0.84

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

0 4 8 12 16 20

R
e

c
o
m

m
e
n

d
a

ti
o
n

 e
rr

o
r

(R
M

S
E

)

Parameter Space Size (megabytes)

SVD++
Co-Clustering (s=1)

ACCAMS k=100
ACCAMS k=10

bACCAMS k=10

(a) Netflix Prediction Error

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

0 4 8 12 16 20

R
e

c
o
n

s
tr

u
c
ti
o
n

 e
rr

o
r

(R
M

S
E

)

Parameter Space Size (megabytes)

ACCAMS k=100
ACCAMS k=10

Co-Clustering (s=1)
SVD++

(b) Netflix Training Error

 0

 5

 10

 15

 20

 25

 30

 35

0 2 4 6 8 10

R
e
c
o
n
s
tr

u
c
ti
o

n
 e

rr
o

r
(R

M
S

E
)

Parameter Space Size (megabytes)

SVD
Co-clustering (s=1)

ACCAMS k=100
ACCAMS k=20

(c) Face Approximation

 0

 0.002

 0.004

 0.006

 0.008

 0.01

 0.012

 0.014

 0.016

0 2 4 6 8 10
R

e
c
o
n
s
tr

u
c
ti
o

n
 e

rr
o

r
(R

M
S

E
)

Parameter Space Size (megabytes)

SVD
ACCAMS k=8

ACCAMS k=128

(d) AS Graph Approximation

Figure 7.4: On images, ratings, and binary graphs, ACCAMS approximates the matrix
more efficiently than SVD, SVD++, or classic co-clustering.

By using a Bayesian model with bACCAMS, we do not overfit the training data and thus
can use more stencils for prediction, greatly improving the prediction accuracy.

7.5.4 Matrix Approximation

In addition to matrix completion, it is valuable to be able to approximate matrices well,
especially for dimensionality reduction tasks. To test the ability of ACCAMS to model
matrix data we analyze both how well our model fits the training data from the Netflix
tests above as well as on image data from the CMU Faces dataset and a binary matrix
from the AS peering graph. (Note, for Netflix we now use the training data from one
split of the dataset.) For each of these of datasets we compare to the SVD (or SVD++ to
handle missing values). We also use our algorithm to perform classic co-clustering by
setting S = 1 and varying k.

As can be seen in Figure 7.4(b–d), ACCAMS models the matrices from all three
domains much more compactly than SVD (or SVD++ in the case of the Netflix matrix,
which contains missing values). In particular, we observe on the CMU Faces matrix that
ACCAMS uses in some cases under 1

4
of the bits as SVD for the same quality matrix

approximation. Additionally, we observe that using a linear combination of stencils
is more efficient to approximate the matrices than performing classic co-clustering

139

H
om

e M
ovies

The K
ids in the H

all

A
ll in the Fam

ily

C
olum

bo; S
oap; C

om
bat!

 H
om

icide: Life on the S
treet

D
a A

li G
 S

how
; R

en &
 S

tim
py; S

ealab 2021

Transform
ers; B

east W
ars: Transform

ers

D
egrassi Junior H

igh; A
 Touch of Frost

U
pstairs, D

ow
nstairs; P

opular; M
ary Tyler M

oore

C
S
I

The W
est W

ing

24 The S
opranos

B
uffy the V

am
pire S

layer; A
lias

S
targate S

G
-1; Farscape

S
ex and the C

ity; Friends

G
ilm

ore G
irls; Q

ueer as Folk

S
ix Feet U

nder

C
urb Y

our E
nthusiasm

H
om

icide: Life on the S
treet

S
outh P

ark

Trailer P
ark B

oys

The S
im

psons; Fam
ily G

uy

O
z

Law
 and O

rder

X
-Files, M

A
S

H
, A

ngel, S
m

allville, S
tar Trek

B
abylon 5, S

targate S
G

-1, M
onk

C
heers

E
R

M
A

S
H

; I Love Lucy; Jeeves and W
ooster

N
orthern E

xposure; U
pstairs, D

ow
nstairs

The A
ndy G

riffith S
how

; C
heers

M
acG

yver; H
ighlander; R

osw
ell; S

tar Trek
Q

uantum
 Leap; Frasier; The P

retender

S
pongebob S

quarepants

B
ew

itched; G
olden G

irls; Little H
ouse on the P

rairie
X

ena: W
arrior P

rinces; Frasier

W
ill &

 G
race; Friends; Felicity; D

aw
son's C

reek

The Flintstones, M
agnum

 P
I, S

liders, M
ail C

all

K
ing of the H

ill; The M
an S

how
; M

arried w
ith C

hildren
In Living C

olor; S
anford and S

on

S
anford and S

on

D
ukes of H

azard

B
oy M

eets W
orld; Three's C

om
pany

M
ad A

bout Y
ou, C

harm
ed

D
r. Q

uinn M
edicine W

om
an

D
aw

son's C
reek, O

ne Tree H
ill

H
ercules

Newer Content Older Content

Figure 7.5: Hierarchy of TV Shows on Netflix based on the first three stencils generated
by ACCAMS.

where we have just one stencil. Ultimately, although the method was not designed
specifically for image or network data, we observe that our method is effective for
succinctly modeling the data.

7.5.5 Interpretability

In any model the structure of factors makes assumptions about the form of user pref-
erences and decision making. The fact that our model uses a smaller parameter space
while achieving an improvement in the generalization error suggests that our modeling
assumptions better match the underlying data generation (how people make decisions).
One advantage of our model being compact and conceptually simple is that we can
understand our learned parameters.

To test the model’s interpretability we use ACCAMS to model the Netflix data
with S = 20 stencils and k2 = 100 clusters (a model of similar size to a rank-3 matrix
factorization). Here we look at two ways to interpret the results.

First we view the cluster assignments in stencils as inducing a hierarchy on the
movies. That is, movies are split in the first level based on their cluster assignments in
the first stencil. At the second level, we split movies based on their cluster assignments
in the second stencil, etc. In Figure 7.5 we observe the hierarchy of TV shows induced by
the first three stencils learned by ACCAMS (we only include shows where there is more
than one season of that show in the leaf and we pruned small partitions due to space
restrictions).

As can be seen in the hierarchy, there are branches which clearly cluster together
shows more focused on male audiences, female audiences, or children. However, beyond
a first brush at the leaf nodes, we can notice some larger structural differences. For
example, looking at the two large branches coming from the root, we observe that the
left branch generally contains more recent TV shows from the late 1990s to the present,
while the right branch generally contains older shows ranging from the 1960s to the mid
1990s. This can be most starkly noticed by “Friends,” which shows up in both branches;

140

2001: A Space Odyssey Sex and the City: Season 1 Seinfeld: Seasons 1 & 2 Mean Girls
Taxi Driver Sex and the City: Season 2 Seinfeld: Season 3 Clueless
Chinatown Sex and the City: Season 3 Seinfeld: Season 4 13 Going on 30
Citizen Kane Sex and the City: Season 4 Curb Your Enthusiasm: Season 1 Best in Show
Dr. Strangelove Sex and the City: Season 5 Curb Your Enthusiasm: Season 2 Particles of Truth
A Clockwork Orange Sex and the City: Season 6.1 Curb Your Enthusiasm: Season 3 Charlie’s Angels: Full Throttle
THX 1138: Special Edition Sex and the City: Season 6.2 Arrested Development: Season 1 Amelie
Apocalypse Now Redux Hercules: Season 3 Newsradio: Seasons 1 and 2 Me Myself I
The Graduate Will & Grace: Season 1 The Kids in the Hall: Season 1 Bring it On
Blade Runner Beverly Hills 90210: Pilot The Simpsons: Treehouse of Horror Chaos
The Deer Hunter The O.C.: Season 1 Spin City: Michael J. Fox Kissing Jessica Stein
Deliverance Divine Madness Curb Your Enthusiasm: Season 4 Nine Innings from Ground Zero

Star Wars: Episode V The Silence of the Lambs Scooby-Doo Where Are You? Law & Order: Season 1
Star Wars: Episode IV The Sixth Sense The Flintstones: Season 2 Law & Order: Season 3
Star Wars: Episode VI Alien: Collector’s Edition Classic Cartoon Favorites: Goofy Law & Order: SVU (2)
Battlestar Galactica: Season 1 The Exorcist Transformers: Season 1 (1984) Law & Order: Criminal Intent (3)
Raiders of the Lost Ark Schindler’s List Tom and Jerry: Whiskers Away! Law & Order: Season 2
Star Wars: Clone Wars: Vol. 1 The Godfather Boy Meets World: Season 1 MASH: Season 8
Gladiator: Extended Edition Seven The Flintstones: Season 3 ER: Season 1
Star Wars Trilogy: Bonus Material Colors Scooby-Doo’s Greatest Mysteries MASH: Season 7
LOTR: The Fellowship of the Ring The Godfather, Part II Care Bears: Kingdom of Caring Rikki-Tikki-Tavi
LOTR: The Two Towers GoodFellas: Special Edition Aloha Scooby-Doo! The X-Files: Season 6
Indiana Jones: Bonus Material Platoon Scooby-Doo: Legend of the Vampire The X-Files: Season 7
LOTR: The Return of the King Full Metal Jacket Rugrats: Decade in Diapers ER: Season 3

Table 7.3: Finding related content: For a given movie or TV show on Netflix, we can use
the cluster assignments to find related content.

Seasons 1 to 4 of “Friends” from 1994–1997 fall in the older branch, while Seasons 5 to
9 from 1998–2002 fall in the newer branch. Of course the algorithm does not know the
dates the shows were released, but our model learns these general concepts just based on
the ratings. From this it is clear the stencils can be useful for breaking down content in a
meaningful structured way, something that is not possible under classic factorization
approaches.

While the hierarchy demonstrates that our stencils are learning meaningful latent
factors, it may be difficult to always understand individual clusters. Rather, to use
knowledge from all of the stencils, we can look to the use case of “Users who watched
X also liked Y ,” and ask given a movie or TV show to search, can we find other similar
items? We do this by comparing the set of cluster assignments from the given movie to
the set of cluster assignments of other items. Most simply, we can measure similarity
between two movies using the Hamming distance between cluster assignments.

As can be seen in Table 7.3, we find the combination of clusters for different movies
and TV shows can be used to easily find similar content. While we see some obvious cases
where the method succeeds, e.g., “Sex and the City” returns six more seasons of “Sex and
the City,” we also notice the method takes into account more subtle similarities of movies
beyond genre. For example, while the first season of “Seinfeld” returns the subsequent
seasons of “Seinfeld,” it is followed by three seasons of “Curb Your Enthusiasm,” another
comedy show by the same writer Larry David. Similarly, searching for Stanley Kubrick’s
“2001: A Space Odyssey” returns other Stanley Kubrick movies, as well as other critically
acclaimed films from that era, particularly thematically similar science fiction movies.

141

Searching for “Scooby-Doo” returns topically similar children’s shows, specifically from
the mid to late 1900’s. From this we get a sense that ACCAMS does not just find similarity
in genre but also more subtle similarities.

Original Stencil 1 Stencil 2

Figure 7.6: Examples of original images and the first two stencils. The decomposition
is very similar to that of eigenfaces [214], albeit much more concise in its nature.

7.5.6 Properties of ACCAMS

Aside from ACCAMS’s success across matrix completion and approximation, it is valu-
able to understand how our method is working, particularly because of how different it
is from previous models. First, because ACCAMS uses backfitting, we expect that the
first stencil captures the largest features, the second captures secondary ones, etc. This
idea is backed up by the theoretical results in Section 7.3.3, and we observe that this is
working experimentally by the drop off in RMSE for our matrix approximation results in
Figure 7.4. We can visually observe this in the image approximation of the CMU Faces.
As can be seen in Figure 7.6, the first stencil captures general structures of the room and
heads, and the second starts to fill in more fine grained details of the face.

The Bayesian model, bACCAMS, backfits in the first iteration of the sampler but
ultimately resamples each stencil many times thus loosening these properties. In Figure
7.7, we observe how the distribution of users and movies across clusters changes over
iterations and number of stencils, based on our run of bACCAMS with S = 70 stencils
and a maximum of k = 10 clusters per stencil. As we see in the plot of entropy, movies,
across all 70 stencils, are well distributed across the 10 possible clusters. Users, however,

142

 0

 1

 2

 3

 0 10 20 30 40 50 60 70

C
lu

s
te

r
e
n

tr
o

p
y

Stencil number

Users Movies

(a) Cluster assignment entropy

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100

P
e

rc
e
n

t
o

f
A

s
s
ig

n
m

e
n
ts

 c
h
a

n
g

e
d

Iteration

Stencil 1
Stencil 2
Stencil 5

Stencil 10
Stencil 30
Stencil 50

(b) Cluster stability

Figure 7.7: bACCAMS properties: Left: Entropy in cluster assignments for users and
movies. Right: Stability of the assignments in the sampler.

are well distributed in the early stencils but then are only spread across a few clusters in
later stencils. In addition, we notice that while the earlier clusters are stable, later stencils
are much less stable with a high percentage of cluster assignments changing. Both of
these properties follow from the fact that most users rate very few movies. For most
users only a few clusters are necessary to capture their observed preferences. Movies,
however, typically have more ratings and more latent information to infer. Thus through
all 70 stencils we learn useful clusterings, and our prediction accuracy improves through
S = 125 stencils.

7.6 Discussion

Here we formulated a model of additive co-clustering. We presented both a k-means
style algorithm, ACCAMS, as well as a generative Bayesian non-parametric model with a
collapsed Gibbs sampler, bACCAMS; we showed that our method is concise and accurate
on a diverse range of datasets, including matching state-of-the-art accuracy for matrix
completion on Netflix.

Given the novelty and initial success of the method, we believe that domain-specific
variants of ACCAMS, such as for community detection and topic modeling, can and
will lead to new models and improved results. In addition, given the modularity of our
framework, it is easy to incorporate side information, such as explicit genre and actor
data, in modeling rating data that should lead to improved accuracy and interpretability.
We will show in the next chapter how to incorporate review text for precisely these
reasons.

143

144

Chapter 8

Explaining Recommendations

Understanding a user’s motivations provides valuable information beyond the ability to
recommend items. Quite often this can be accomplished by perusing both ratings and
review texts, since it is the latter where the reasoning for specific preferences is explicitly
expressed.

Unfortunately matrix factorization approaches to recommendation result in large,
complex models that are difficult to interpret and give recommendations that are hard to
clearly explain to users. In contrast, in this chapter, we build on the successes in Chapter
7 and attack this problem through succinct additive co-clustering. We devise a novel
Bayesian technique for summing co-clusterings of Poisson distributions. With this novel
technique we propose a new Bayesian model for joint collaborative filtering of ratings and
text reviews through a sum of simple co-clusterings. The simple structure of our model
yields easily interpretable recommendations. Even with a simple, succinct structure, our
model outperforms competitors in terms of predicting ratings with reviews.

8.1 Introduction

Recommender systems often serve a dual purpose—they are expected to generate sug-
gestions that users might like, while simultaneously being able to explain why a certain
recommendation was made. This increases a user’s confidence in a recommender system
and it offers valuable insight for debugging a malfunctioning model.

Matrix factorization [123] accomplishes this goal only to a limited extent, since it maps
all users and movies into a rather low-dimensional space, where objects are compared
by the extent of overlap they have in terms of their inner product. This limits attempts to
understand the model to principal component analysis and nearest neighbor queries for
specific instances.

On the other hand, in many cases users are actually happy to provide explicit jus-
tification for their preferences in the form of written reviews. They offer immediate
insights into the reasoning, provided that we are able to capture this reasoning in the
form of a model for the text inherent in the reviews. JMARS [64] exploited this insight by

145

designing a topic model to capture reviews and ratings jointly, thus offering one of the
first works to infer both topics and sentiments without requiring explicit aspect ratings.

A challenge in these approaches is that the model must fit a language model to a rather
messy, high dimensional embedding of users and items. We addressed this problem
in the context of recommender systems in the previous chapter with a novel additive
co-clustering model for matrix completion. This approach yielded excellent predictive
accuracy while providing a well-structured, parsimonious model. Because the model
heavily relied on backfitting and an additive representation of a regression model, it is
not possible to combine it with multinomial language models, i.e. a simple bag-of-words
representation, since probabilities are not additive: They need to be normalized to 1.

We address this problem by introducing a novel additive language description in
the form of a sum of Poisson distributions rather than a Binomial distribution. This
strategy allows us to use backfitting for documents rather than just in a regression setting,
and enables a wide variety of new applications. This is possible because the Poisson
distribution is closed under addition. This means that sums of Poisson random variables
remain Poisson. This property also applies to mixtures of Poisson random variables, i.e.
the occurrence of multiple words.

Run time (seconds) ×10
5

0 1 2 3 4

-l
o
g
 l
ik

e
lih

o
o
d

0

5

10

15

20

Better

HFT
JMARS
PACO

(a) Amazon fine foods

Run time (seconds) ×10
5

0 1 2 3 4

-l
o
g
 l
ik

e
lih

o
o
d

0

10

20

30

40

50

60

70

Better

HFT
JMARS
PACO

(b) RateBeer

Run time (seconds) ×10
5

0 2 4 6

-l
o
g
 l
ik

e
lih

o
o
d

0

5

10

15

20

25

30

35

Better

HFT
JMARS
PACO

(c) Yelp

Figure 8.1: Negative log likelihood. PACO better jointly predicts held-out ratings and
reviews than state-of-the-art JMARS [64] and HFT [155] on Amazon fine foods, Yelp and
RateBeer datasets. The joint predictive power is captured by the normalized negative
log likelihood as described in (8.18). (Lower negative log-likelihood and time are both
better.)

With this approach we make a number of contributions:
• Joint Model: We design a Poisson additive co-clustering model for backfitting

word counts in documents. We combine this with ACCAMS (Ch. 7) to learn a joint
Bayesian model of reviews and ratings, with the ability to now interpret our model.

• Efficient Sampler: We describe a new, efficient algorithm for sampling from a sum
of Poisson random variables to facilitate efficient inference. It relies on treating
discrete counts as “residuals,” similar to an additive regression model.

• Empiral evidence: We give a thorough experimental evaluation across multiple
datasets that PACO has better prediction accuracy for ratings than competing
methods, such as HFT [155] and JMARS [64]. Additionally, our method predicts

146

text reviews better than HFT, and achieves nearly as high quality review predic-
tion as JMARS, while being far faster and simpler. As seen in Figure 8.1, PACO
outperforms both competing models in jointly predicting ratings and reviews.

In summary, we propose a simple and novel model and sampler, capable of characterizing
user and item attributes very concisely, while providing excellent accuracy and perplexity.

8.2 Related Work

In this chapter, we build on the ACCAMS model from the previous chapter but focus on
making use of reviews to explain recommendations. In the process, we also build on the
insights from a variety of related fields in pursuing this new direction.

Poisson Collaborative Filtering Recently, there has been a growing line of research
on using Poisson distributions in matrix factorization models [46, 82, 189]. This work
shows the exciting potential uses of Poisson distributions for understanding matrix data.
However, all of these models are left with limited interpretability since they too rely on
bilinear models. Additionally, all of these models rely on variational inference to learn
the models. Our work provides the building blocks for using Poisson distributions in a
wide array of additive clustering applications and is the first work to learn a model of
this sort through Gibbs sampling rather than variational inference.

Review Mining and Modeling Modeling online reviews has long been a focus of the
data mining, machine learning and natural language processing communities [102].
Significant research has focused on understanding and finding patterns in online reviews
[58]. More closely related to our work, a variety of papers model aspects and sentiments
of reviews [115, 117, 132, 145]. For example, [117] considers hierarchical structures in
aspects and sentiments. However, in these works ratings are not considered jointly.

Multimodal Models Recently, there is increasing attention in jointly modeling review
text and ratings. Collaborative topic regression (CTR) [220] combines topic modeling
and collaborative filtering to recommend scientific articles. HFT [155] jointly models
both ratings and reviews by designing link function to connect each topic dimension
to a latent factor, demonstrating improvements in rating prediction. RMR [146] relaxes
the hard link between topic and latent factor dimension for interpretable topics. [230]
considers review texts with hidden user communities and item groups relationship.
JMARS [64] jointly models aspects, sentiments, items, reviews, and ratings based on
insights in review structure.

A related line of work models multi-aspect ratings [156, 212]. However, these works
often rely on availability of aspect-specific ratings, which are often not available. In
contrast, our models learns sentiments in different aspects without requiring multi-aspect
ratings.

147

Symbol Definition

N,M Number of rows (users) and columns (items)
R Data matrix ∈ RN×M (with missing values)
I Indicator matrix ∈ {0, 1}N×M for R

S Number of stencils
k

(`)
n , k

(`)
m Number of user and item clusters in stencil `

T(`) Matrix ∈ Rk
(`)
n ×k

(`)
m for stencil `

c(`) Vector of user assignments ∈ {1, . . . , k(`)
n }N

d(`) Vector of item assignments ∈ {1, . . . , k(`)
m }M

S(T, c,d) ∈ RN×M defined by S(T, c,d)u,m = Tcu,dm

W Set of all words used in the reviews
nu,m,x Count for word x in review (u,m)

µ
(i)
x Rate of Poisson in language model i for word x

Lu,m Set of language models used for review (u,m)

Table 8.1: Symbols used throughout this chapter.

Additive Co-Clustering As stated previously, we build primarily on the success of
ACCAMS in the previous chapter. From a computational perspective, ACCAMS (Ch.
7) focuses on an additive co-clustering model of Gaussian distributions and describes
a collapsed sampler for efficient learning. [170] uses a sum of clusters within a logistic
function for modeling binary data but has difficulty scaling. Here we demonstrate that
we can successfully scale learning a sum of clusters within a Poisson distribution.

8.3 Poisson Additive Co-Clustering

While ACCAMS (Ch. 7) explains well the rating matrix, it does not utilize the reviews
associated with those ratings. In this section we introduce PACO, a Poisson Additive
co-clustering model that jointly model text and reviews. PACO builds on the idea of
stencils introduced in ACCAMS. Each stencil T assigns each user u to a cluster say a
and each item m to a cluster say b. Given the block (i.e. co-cluster) denoted by Ta,b, we
design a model to jointly generates both the rating user u gives to item m as well as the
review she wrote for this item. We endow each block with a Gaussian distribution that
model the mean rating associated with cluster a and b. The question now is: how can we
parameterize the text model of block (a, b)?

148

for u

form

for a, b

for u,m

for ` = 1 . . . S

δc c
(`)
u

δd d
(`)
m Ru,m σ2 η

γ σ2
` T

(`)
a,b Nu,m µ(0) α, β0

α, β µ
(`)
a,b

Figure 8.2: The generative model for PACO to predict both ratings R and review text
N. (Note, for the sake of space we simplify the model slightly by not explicitly separating
the different language models associated with each stencil.)

8.3.1 Modeling Reviews using an Additive Poisson Model

A standard approach in the text mining literature is to model reviews using a multinomial
distribution, however, in PACO, as in ACCAMS, we want to combine multiple stencils
to enhance the model. While it is easy to define an additive model over review scores,
it is nontrivial to accomplish this using multinomial distributions for reviews. Quite
obviously, if p and q are multinomial probability distributions, then p+ q is no longer in
the probability simplex. Instead, the transform is given by (p+ q)/ ‖p+ q‖1, thus making
updates highly nontrivial, since additivity of the model is lost, which means that we
would need to update the entire language model whenever even just a single stencil
changes. This would make a backfitting algorithm very expensive.

Rather, we introduce a novel approach to modeling using the Poisson distribution. In
a nutshell, we exploit the fact that the Poisson distribution is closed under addition, i.e.
for

a ∼ Poi(λ) and b ∼ Poi(γ) we have a+ b ∼ Poi(λ+ γ)

where λ and γ denote the rates of each of the random variables, i.e. E[a] = λ and E[b] = γ.
For each user and item pair (u,m) pair we let nu,m,x denote the count for word x

in the review. We now design an additive model for each review. The idea is that the
distribution over each word is given by a Poisson random variable with rate

∑
` µ

(`)

c
(`)
u ,d

(`)
m ,x

,

or equivalently a sum over Poisson random variables with rates µ(`)

c
(`)
u ,d

(`)
m ,x

for each word
x across all stencils. The benefit of this approach is that we no longer need to ensure

149

normalization across stencils. We will detail the generative model in the following
subsection.

8.3.2 The Joint Generative Model

Now we are ready to present the full model. To design a joint model we face an important
challenge: we need to assess whether to perform good recommendation or whether
we strive to optimize for good perplexity. In the former case, it is undesirable if the
reviews carry the majority of the statistical weight. Hence it is worthwhile to normalize
the reviews by their length. This technique is common in NLP literature [223, 224]. This
yields the following joint objective:

minimize
{T(`),c(`),d(`),λ}

∑
(u,m)∈I

(
Ru,m −

S∑
`=1

S
(
T(`), c(`),d(`)

)
u,m

)2

+
∑

(u,m)∈I

1

|nu,m|1
∑
x∈W

log Poi(λu,m,x)

where

λu,m = µ(0)+µ(m)+

[
S∑
`=1

µ
(`)

c
(`)
u ,d

(`)
m

+µ
(m,`)

d
(`)
m

+µ
(u,`)

c
(`)
u

]
(8.1)

Our goal is to learn a set of stencils whose summation minimizes the prediction error
on ratings and maximizes the likelihood of generating the text. To model review text,
we allow each stencil to have three language models: a stencil-specific user language
model µ(`)

c
(`)
u

, a stencil-specific item language model µ(m,`)

d
(`)
m

, and block language model,

µ
(`)

c
(`)
u ,d

(`)
m

. The block language model captures the stencil-specific interaction between the

item and the user. In addition, we add a global item language model, µ(m), and a global
background language model, µ(0). The text of the review is modeled as a combination of
these Poisson language models.

Minimizing the aforementioned objective function, is equivalent to maximizing the
log-likelihood of the graphical model in Figure 8.2. The generative process proceeds as
follows:

Ru,m ∼ N
(

S∑
`=1

S
(
T(`), c(`),d(`)

)
u,m

, σ2

)
(8.2)

c(`),d(`) ∼ CRP(δ) for all (`) (8.3)

T
(`)
c,d ∼ N (0, σ2

(`)) (8.4)

nu,m,x ∼ Poi (λu,m,x) (8.5)

µ(∗)
x ∼ Gamma(α, β) (8.6)

150

where c
(`)
u ,d

(`)
m is the cluster (u,m) assigned to in stencil `. In essence, we model user

and item clusters inside each stencil using a Chinese restaurant process (CRP). Ratings
are modeled similar to ACCAMS while (8.1), (8.5) and (8.6) contain the additional text
modeling aspects of our model. To ensure no overfitting, we use conjugate Gamma prior
for all the vectors µ:

P (µx) =
βα

Γ(α)
µα−1
x e−βµx

Since the mode of the Gamma distribution is α−1
β

, a very large β should ensure that only
a small amount of data is blamed. Given this model, we now consider the challenge of
learning the parameters in practice.

8.4 The Sampling Algorithm

The goal of inference is to learn a posterior distribution over stencils’ parameters which
are: user and item cluster assignments, stencil ratings of each block, and the multiple
language models. To do this, we use Gibbs sampling.

Jointly sampling text and rating adds significant complications over just sampling
ratings data and requires a novel sampling technique. In particular, our sampler offers
(1) a new novel technique to learn the sum of Poisson rates µ and (2) an efficient method
for sampling cluster assignments based on both the text model and ratings model. We
describe each of these challenges and solutions below in Section 8.4.1, followed by
the complete learner shown in Algorithm 12, which combines the new, novel Poisson
sampler and ACCAMS’s sampler for Gaussian rating data.

8.4.1 Sampling a Sum of Poisson Distributions

The Gamma distribution is conjugate to the Poisson distribution, typically allowing for
an easy sampling of the Poisson’s rate λ from the Gamma distribution. However, in this
case we have a sum of Poisson distributions and we would like to sample the rate of
each of these distributions.

To make this tractable, we create a multinomial the from rates of the involved Poisson
distributions and sample form this multinomial the fraction of counts coming from each
Poisson distributions. To be precise, for a particular nu,m,x we have λu,m,x =

∑
i∈Lu,m µ

(i)
x ,

where Lu,m is the set of Poisson distributions from which words in (u,m) are sampled.
We define: {

µ(∗)
u,m,x

}
:=
{
µ(i)
x

}
∀i∈Lu,m

(8.7)

{n̂u,m,x} :=
{
n̂(i)
u,m,x

}
∀i∈Lu,m

(8.8)

151

We can therefore sample {n̂u,m,x} by

{n̂u,m,x} ∼ Multi

{
µ

(∗)
u,m,x

}
λu,m,x

, nu,m,x

 . (8.9)

The result is nu,m,x =
∑

i∈Lu,m n̂
(i)
x . That is, if we observe word x, nu,m,x times in review

(u,m), we break this count to a set of n̂(i)
x counts, each of which are credited to the

corresponding Poisson distribution i, where i indexes over the set of involved Poisson
distributions. For example, if the word “delicious” is used three times in a review, we
may consider one use of the word to be “from” the base language model and two uses of
the word to be “from” the item-specific language model.

By sampling these count allocations, we can now tractably sample our Poisson rates
and later our cluster assignments. To sample a particular µ(i)

x , we considerRi, the set of
reviews (u,m) partially sampled form a Poisson distribution with rate µ(i). Therefore,
we can sample µ(i)

x by:

µ(i)
x ∼ Γ

(
α(i), β(i)

) ∏
(u,m)∈Ri

Poi
(
n̂(i)
u,m,x

∣∣µ(i)
x

)
(8.10)

∼ Γ

α(i)+
∑

(u,m)∈Ri

n̂(i)
u,m,x, β

(i) + |Ri|

 (8.11)

This is trivially parallelized across all words in a particular language model µ, which we
will expand on later.

8.4.2 Sampling Cluster Assignments

For each stencil, we need to sample the cluster assignment for each user and item. To
do this for users, we need to calculate the posterior distribution p(c(`)

u = a|rest) for each
cluster a. This probability is composed of three main terms: (1) the CRP prior, (2) the
likelihood of the user ratings and (3) the likelihood of the user review texts. This can be
written as

p(c(`)
u = a|rest) ∝ CRP(a)

×
∏

(u,m)∈Ru

p(Ru,m|rest)
∏
x

p(nu,m,x|rest)

whereRu denotes the set of reviews from user u. In log-space this becomes:

log p(c(`)
u = a|rest) ∝ log (CRP(a)) (8.12)

+
∑

(u,m)∈Ru

(
log p(Ru,m|rest) +

1

|nu,m|
∑
x

log p(nu,m,x|rest)

)

152

The details for calculating the CRP term and rating terms can be found in Chapter 7.
Here, we focus on how to efficiently calculate the term that corresponds to probability of
the reviews.

To calculate the probability of the text, we in fact focus on the n̂u,m,x rather than nu,m,x.
Specifically, when sampling the user cluster assignment, we must calculate on

∆u,a :=
∑

(u,m)∈Ru

∑
x

log Poi
(
n̂(`)
u,m,x

∣∣µ(`)

a,d
(`)
m ,x

)
+ log Poi

(
n̂(u,`)
u,m,x

∣∣µ(u,`)
a,x

)
=

∑
(u,m)∈Ru

∑
x

n̂(`)
u,m,x log(µ

(`)

a,d
(`)
m ,x

)− µ(`)

a,d
(`)
m ,x

+ n̂(u,`)
u,m,x log(µ(u,`)

a,x)− µ(u,`)
a,x (8.13)

For k clusters, to naively calculate ∆u,a for each user would requireO(k|W|) logarithm op-
erations, which are significantly slower than the other simple addition and multiplication
operations. However, we can significantly speed this up.

First, let’s define the following terms:

µ̃
(`)
a,b =

∑
x

µ
(`)
a,b,x µ̃(u,`)

a =
∑
x

µ
(`)
a,b,x

nu,b =
∑

m|d(`)
m =b,

(u,m)∈Ru

1 n̂
(`)
u,b =

∑
m|d(`)

m =b,
(u,m)∈Ru

n̂(`)
u,m

n̂(u,`)
u =

∑
(u,m)∈Ru

n̂(u,`)
u,m

All of these terms can be precalculated and cached for sampling all cluster assignments
for stencil `. Now we can rearrange the terms of (8.13) to achieve the following simplified
equation:

∆u,a = −
k∑
b=1

nu,b

(
µ̃

(`)
a,b + µ̃(u,`)

a

)
(8.15)

+ 〈n̂(`)
u,b, log(µ

(`)
a,b)〉+

〈
n̂(u,`)
u , log(µ(u,`)

a)
〉

With this formulation we can cache the logarithm of each µa,b,x and µa,x and reuse them
for sampling cluster assignment of each user. As such, we only need to take one pass
over the original data and thus minimize the number of logarithm computations in each
iteration. Sampling item cluster assignments can be done by an analogous sampler. We
will show in Section 8.4.3 that this approach results in a fast sampling procedure.

Now we are ready to describe our full Gibbs sampling algorithm. For each stencil, we
first update the rating model, following the algorithm in Chapter 7, and then update the
text model using aforementioned techniques. Specifically, we resample n̂ following (8.9),
and then resample the stencil’s µ terms (i.e. the Poisson language models associated with
that stencil) based on n̂, following (8.11). Finally, we update the cluster assignments for a
given stencil following (8.12). The full procedure is given in Algorithm 12.

153

Algorithm 12: PACO Sampler
Run K-Means ACCAMS for initial cluster assignments.
Initialize all µ(i) to a vector 1

while not converged do
Resample {n̂u,m,x} for all u,m, x by (8.9)
Sample µ(0) by (8.11)
for Stencil ` = 1, . . . , S do

Update predicted ratings as described in Ch. 7
if Not first iteration then

Resample {n̂u,m,x} for all u,m, x by (8.9)
end if
Sample µ(`), µ(m,`), µ(u,`) by (8.11)
Sample c

(`)
u by (8.12)

Sample d
(`)
m analogous to (8.12)

end for
Sample µ(m) by (8.11)

end while

8.4.3 Implementation

The sampler is written in C++11. The implementation is very efficient and uses the
following techniques. Sampling {n̂u,m,x} is embarrassingly parallelizable across reviews.
With µ fixed, this involves simply parallel sampling from the re-parameterized multi-
nomials1. Sampling Poisson rate µ is also embarrassingly parallelizable across µ and
across words. We use C++11 implementation of Gamma sampler. Review likelihood can
be efficiently calculated when sampling user/item cluster assignments. With µ̃(`)

a,b, µ̃
(u,`)
a ,

log(µ
(`)
a,b,x) and log(µ

(u,`)
a,x) cached, review likelihood can be calculated with one pass over

non-zero words. Again, this can be parallelized across users/items.
Speed: We generally found the above optimizations to make our sampler sufficiently

fast for the large datasets we tested on. On the Amazon fine foods dataset described
below, sampling all cluster assignments for one stencil takes 3.66 seconds on average,
sampling all n̂ for half million reviews takes 45 seconds, and sampling all µ for one
stencil takes less than one second on a single machine.

8.5 Experiments

We now test our model in a variety of settings both to understand how it models different
types of data and to demonstrate its performance against similar, recent models.

1GNU Scientific Library (GSL) is used for multinomial sampling. OpenMP is used to parallelize
independent sampling.

154

8.5.1 Experimental Setup

Datasets To extensively test our model, we select four datasets about movies, beer,
businesses, and food. All four datasets come from different websites and communities,
thus capturing different styles and patterns of online ratings and reviews (imdb.com,
ratebeer.com, yelp.com and amazon.com respectively). In all of these datasets, one
observed (user,item) pair is associated one rating and one review. We randomly select
80% of data as training set and 20% as testing set while making sure every user/item
in testing set has at least one example in training set. Infrequent words, standard stop
words and words shorter than 3 characters are removed. We rescale ratings to the same
range during training and center all ratings based on the global average in the dataset.
The resulting datasets are summarized in Table 8.2.

Dataset Yelp Food RateBeer IMDb

Number of items 60,785 74,257 110,369 117,240
Number of users 366,715 256,055 29,265 452,627
Number of observations 1,569,264 568,447 2,924,163 1,462,124
Number of unigrams 9,055 9,088 8,962 9,182
Average review length 45.20 31.55 28.57 88.30

Table 8.2: Four datasets used in experiments. Infrequent words, standard stop words
and words shorter than 3 characters are removed during pruning.

Metrics To evaluate our review model, we examine its ability to predict held-out testing
ratings and reviews.

RMSE: When comparing predictions of held-out ratings, we use the root mean
squared error (RMSE) to compare prediction quality. For PACO, we average predictions
over many samples from the posterior, as is customary in evaluating sampling-based
algorithms.

Perplexity: When evaluating the ability to predict held-out reviews, we compare
perplexity of review text with other models. In order to have a comparable definition
of perplexity, following the usual intuition as the average number of bits necessary to
encode a particular word of review, we transform our model as follows. We use λu,m as
defined in (8.1) as the vector of expected counts for each word to be in a review from user
u about item m. We transform this vector to a multinomial with probabilities θu,m where

θu,m,x =
λu,m,x∑
x λu,m,x

(8.16)

Note that when we average over multiple samples from the posterior, we average
λu,m over those samples and use the averaged rate of the Poisson in (8.16). With this

155

imdb.com
ratebeer.com
yelp.com
amazon.com

multinomial, we calculate perplexity of testing set Dtest as

− log PPX(Dtest) =
1

Nw

∑
(u,m)∈Dtest

∑
x

nu,m,x log θu,m,x (8.17)

where Nw is the total number of words in held-out testing reviews. Note that this now
views our Poisson distributions in their expected state, but makes our quite different
model more easily comparable to previous techniques.

Joint Negative Log-Likelihood: To jointly evaluate the models in terms of both
rating and text prediction, we compare the joint negative log-likelihood. Per-review joint
negative log-likelihood is defined as

− log(PPX)− 1

|Dtest|
∑

(u,m)∈Dtest

log
(
N
(
Ru,m|R̂u,m, σ

2
))

(8.18)

The text likelihood is normalized by number of words in review to equally weight the
importance of predicting ratings and text. σ is taken from the training of each model.

Baseline methods We compare PACO with the following models:
PMF Probabilistic matrix factorization (PMF) [159] factorizes ratings into latent factors.

It is simple in structure but usually effective. Number of latent factors Rank
∈ {10, 20}were tested.2

BPMF Bayesian probabilistic matrix factorization (BPMF) [188] takes a more directly
Bayesian approach to matrix factorization. Number of latent factors Rank ∈ {10, 20}
were tested.2

HFT Hidden factors with topics (HFT) [155] is one of the state-of-the-art models that
jointly model ratings and reviews. It builds connection between topic distribution
of reviews and latent factors. It shows significant improvement on rating prediction
over traditional latent factor models on a variety of datasets. We use the implemen-
tation from the authors’ website and run it with parameters recommended in the
original paper.

JMARS JMARS [64] is another state-of-the-art model in joint-review-rating modeling.
It explicitly models aspects, sentiments, ratings and reviews and provides inter-
pretable and accurate recommendation. Similarly, parameters recommended in the
original paper are used.3

Note, PMF and BPMF only optimize for prediction accuracy on ratings, thus only focus-
ing on half of the problem we are attacking. However, we include them for completeness.

We test PACO with different priors and combinations of language models, where
we include per-block language models, per-user cluster language models, or per-item
cluster language models, or some combination thereof. For all datasets we use these joint
text and rating stencils for the first S0 stencils and then a series of rating-only stencils.
All results from PACO are reported based for the best RMSE.

2Implementation at www.cs.toronto.edu/~rsalakhu/BPMF.html is used in experiments.
3The implementation is in Java.

156

http://www.cs.toronto.edu/~rsalakhu/BPMF.html

HFT JMARS PACO

Yelp 20.1377 13.3171 8.9300
RateBeer 52.3546 30.2174 8.5994
Amazon fine foods 14.5827 10.1129 10.0904
IMDb 57.4515 33.7715 31.2567

Table 8.3: Joint prediction accuracy for text reviews and ratings, as given by joint
negative log-likelihood (8.18), for all datasets. Lower is better.

8.5.2 Quantitative evaluation

Joint Predictive Ability

We compare the ability of PACO to predict jointly reviews and ratings against that of
HFT and JMARS. In particular, we track the joint negative log-likelihood by runtime in
Figure 8.1 and give the detailed numbers for best results are presented in Table 8.3. We
observe that PACO converges rapidly and has superior performance to both competitors
on all four datasets. We note that while HFT very quickly reaches reasonable accuracy on
both text and ratings, it very quickly overfits its model of ratings, causing the surprising
curve in Figure 8.1. However, results reported in Table 8.3 for all models are based on the
best RMSE so as to prevent skew from overfitting. While we clearly offer high quality
joint performance, we now look more closely at our prediction accuracy for ratings and
for text separately.

Run time (seconds) ×10
5

0 1 2 3 4

R
M

S
E

0.8

0.9

1

1.1

1.2

1.3

Better

HFT
JMARS
PACO

(a) Amazon fine foods

Run time (seconds) ×10
5

0 1 2 3 4

R
M

S
E

2

2.2

2.4

2.6

2.8

3

Better

HFT
JMARS
PACO

(b) RateBeer

Run time (seconds) ×10
5

0 2 4 6

R
M

S
E

1.1

1.2

1.3

1.4

1.5

1.6

Better

HFT
JMARS
PACO

(c) Yelp

Figure 8.3: Rating prediction accuracy (RMSE) compared by runtime to other joint
modeling systems.

Rating prediction

We evaluate performance of rating prediction based on RMSE. Figure 8.3 shows RMSE
over runtime, and Table 8.4 presents detailed results. A number of interesting patterns

157

Run time (seconds) ×10
5

0 1 2 3 4

lo
g

 P
P

X
(D

te
s
t)

5

5.5

6

6.5

7

7.5

8

Better

HFT
JMARS
PACO

(a) Amazon fine foods

Run time (seconds) ×10
5

0 1 2 3 4

lo
g

 P
P

X
(D

te
s
t)

5

5.5

6

6.5

7

7.5

8

Better

HFT
JMARS
PACO

(b) RateBeer

Run time (seconds) ×10
5

0 2 4 6

lo
g

 P
P

X
(D

te
s
t)

5

5.5

6

6.5

7

7.5

8

Better

HFT
JMARS
PACO

(c) Yelp

Figure 8.4: Log perplexity of review text predictions on three datasets. Plus sign mark-
ers indicate the values corresponding to the best RMSE. (Lower perplexity and time are
both better.)

PMF BPMF HFT JMARS PACO

Yelp 1.2649 1.1346 1.1408 1.1347 1.1407
RateBeer 2.1944 2.1164 2.1552 2.1675 2.1273
Amazon fine foods 0.8752 0.8193 0.8809 0.8486 0.8292
IMDb 2.5274 2.1622 2.2328 2.2947 2.1877

Table 8.4: Rating prediction accuracy (RMSE) across all four datasets. We observe that
PACO generally outperforms the other joint learning models (HFT and JMARS) as well
as PMF.

emerge in these results. In Figure 8.3, we observe more clearly that HFT converges
extremely quickly before overfitting, but again results reported in Table 8.4 are from best
RMSE before overfitting. For PACO we observe reasonable RMSE before burn-in and
then quickly improved RMSE after burn-in. Finally we observe that JMARS is generally
slower to converge.

In Table 8.4 we observe that PACO has superior performance to both HFT and JMARS
on RateBeer, Amazon fine foods, and IMDb; JMARS performs slightly better on Yelp.
While PACO generally outperforms the competing joint models, in these experiments
it achieves slightly worse accuracy than BPMF. Here we observe a general trade-off
between size and performance. As discussed in Chapter 7, using a sum of co-clusterings
is far more succinct than bilinear models like BPMF. As a result, the ratings model in
PACO is far smaller than that of BPMF, while we consistently achieve nearly as high of
an accuracy.

158

Review Text Prediction

The second component of the predictive ability of our model is predicting review text, as
measured by perplexity. We give the perplexity over runtime in Figure 8.4. We observe
an apparent trade-off in perplexity for speed, simplicity and accuracy in rating prediction.
PACO is efficient and outperforms HFT on all datasets. Note, in [155], HFT is described
to primarily use text to improve rating predictions and not for predicting review. JMARS
gives slightly better perplexity at the cost of significantly more complex model. Precise
perplexity of HFT, JMARS, and PACO are given in Table 8.5. Since our primary goal is
recommendation, the perplexity reported correspond to the points that obtain the best
RMSE.

HFT JMARS PACO

Yelp 7.7031 7.1112 7.2223
RateBeer 6.4891 6.2098 6.3779
Amazon fine foods 7.5015 6.7450 6.8759
IMDb 8.1747 7.4610 7.5540

Table 8.5: Perplexity on all four datasets. The perplexity values reported here correspond
to the points that obtain the best RMSE.

Cold-start

For the sake of thoroughness, we looked at where does our joint model excel at rating
prediction over the rating-only PMF model. We generally found PACO to help alleviate
cold-start challenges. We show improvement in RMSE over PMF for items and users
with different number of training examples in Figure 8.5 and 8.6. We observe that for
items with fewer observed ratings we achieve a greater improvement in rating prediction
accuracy. This suggests that PACO is able to extract rich information from reviews and
provide benefits especially when items have scarce signals. For users with few ratings,
we can see similar trends except for Amazon fine foods. One hypothesis is that the
quality of food is less subjective than movies or beers. It is thus harder to learn user
preference from the review in this case.

8.5.3 Interpretability

In addition to quantitatively evaluating our method, we also want to empirically demon-
strate that the patterns surfaced and review predictions would be useful to the human
eye. However, because reviews from each dataset follow very different patterns, we

159

of reviews / item

0 10 20 30 40 50

G
a
in

 i
n
 R

M
S

E

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

(a) Amazon fine foods

of reviews / item

0 10 20 30 40 50

G
a
in

 i
n
 R

M
S

E

0

0.05

0.1

0.15

0.2

0.25

0.3

(b) RateBeer

of reviews / item

0 10 20 30 40 50

G
a
in

 i
n
 R

M
S

E

0

0.05

0.1

0.15

0.2

(c) Yelp

Figure 8.5: Gain of PACO over PMF in RMSE demonstrates the benefits for items with
few observed ratings.

of reviews / user

0 10 20 30 40 50

G
a
in

 i
n
 R

M
S

E

-0.2

-0.1

0

0.1

0.2

0.3

0.4

(a) Amazon fine foods

of reviews / user

0 10 20 30 40 50

G
a
in

 i
n
 R

M
S

E

-0.2

0

0.2

0.4

0.6

0.8

(b) RateBeer

of reviews / user

0 10 20 30 40 50

G
a
in

 i
n
 R

M
S

E

0.02

0.04

0.06

0.08

0.1

0.12

0.14

(c) Yelp

Figure 8.6: Gain of PACO over PMF in RMSE demonstrates the benefits for users with
few observed ratings.

expect PACO to model them differently. In this effort, we analyzed our learned models
to understand which parts of the models were effective in understanding each of these
datasets.
Sentiment word extraction: We first checked to make sure that blocks in our co-clustering
that had high rating predictions found appropriately positive or negative words. In Table
8.6 we present the top words in the highest-rating block and lowest-rating block in the
first stencil for each dataset. We can see in general, in that high-rating blocks, there are
more positive sentiment words, and in lower-rating blocks, more negative words. This is
less clear in the RateBeer and Amazon fine foods datasets where reviews more strongly
focus on describing the item. However, we still note the strong association with “good”
for a positive rating and in some cases “bad” for a negative rating.
Item-specific words: In Table 8.7, top item-specific words associated with some popular
items are presented. In general these words provide basic descriptions unique to that
particular item. We do observe some overfitting in cases where there are fewer reviews,
but generally the item-specific language model improves predictive performance.
Item-clusters and cluster-specific words: In Table 8.8 we present 4 clusters of items and
the words associated with them from Amazon fine foods and IMDb. For Amazon fine

160

Dataset Rating Words

IMDb
0.022 great, love, movies, story, life, watch, time, people, character, characters, best, films, scene, watching
-0.018 bad, good, plot, like, worst, money, waste, acting, script, movies, minutes, horrible, boring, thought

Fine foods
0.024 good, love, great, like, product, amazon, store, time, find, eat, price, years, buy, coffee, taste, stores
-0.048 like, buy, taste, time, product, bought, purchased, good, pretty, thought, reviews, smell, purchase

Yelp
0.51 highly, recommend, professional, amazing, job, customer, work, best, appointment, staff, great, needed
-0.76 told, manager, customer, called, call, rude, asked, horrible, worst, phone, minutes, order, money, hotel

RateBeer
0.15 nice, pours, hops, flavor, hop, citrus, color, taste, finish, tap, good, sweet, bitterness, white, malt, light
-0.22 taste, bad, beer, like, color, good, decent, weak, drink, pours, beers, boring, special, watery, dont, bottled

Table 8.6: Blocks predict words matching the sentiment of the predicted rating.

Item Item-specific words

The Dark Knight batman, joker, dark, ledger, knight, heath, nolan, best, performance, bale
Silent Hill game, silent, hill, games, horror, video, rose, town, like, played, plot, scary

Purina Pro Plan Canned Kitten Chicken Liver
Food

food, time, kittens, kitty, liver, cats, feral, white, plan, female, guys, kitten

Peace Cereal Low Fat Clusters & Flakes Cereal
Raisin Bran

cereal, sugar, fat, wheat, calories, color, barley, raisins, ingredients, listed

Luxury Nail & Spa hair, appointment, stylist, cut, salon, desk, paying, stylists, bid, grille, color
Enrico’s Tazza D’oro Cafe & Espresso Bar coffee, espresso, pittsburgh, pastries, park, baristas, cappuccino, atmosphere

Barley Island Sheet Metal Blonde wheat, orange, wit, coriander, clove, bubblegum, slice, chamomile, witbier
Rock Bottom Braintree Boston Fog Lager peaches, dishwater, lager, perfumey, disipating, fog, outspoken, component

Table 8.7: Item-specific words capture concepts highly specific to the individual item.

foods, we see items with similar categories are clustered. For example, the coffee cluster
and the snack cluster are learned effectively, as presented in the first and second row
of the table. On the other hand, PACO learns relatively general clusters for IMDb. For
example, while one presented cluster captures exciting or action movies, the other one
groups generally lower-rated movies, and the associated words are general negative
sentiment words that would be in a movie review.
Review prediction: Finally, for RateBeer we give examples of generally well-predicted
held-out reviews and the top words the entire PACO model predicts for them. Because
RateBeer reviews are largely descriptive of the item, we find that PACO is effective in
predicting the properties of the items, particularly focused on the type of beer.

161

Subset of items in cluster Cluster words

Melitta Cafe de Europa Gourmet Coffee, Flavored, Coffee Peo-
ple Black Tiger, Dark Roast, K-Cup for Keurig Brewers, K-
Cup Portion Pack for Keurig K-Cup Brewers, Lavazza Super
Crema Espresso - Whole Bean Coffee (Amazon fine foods)

like, coffee, good, taste, flavor, cup, drink, nice, product,
thought, great, tastes, tasting, drinking, best, full, time, buy,
recommend, enjoy, brand, love, strong, blend, black, regular,
bit, bad, recommended, size

Ice Breakers Ice Cubes Sugar Free Gum, Kiwi Watermelon,
Bell Plantation PB2 Powdered Peanut Butter, PB2 Powdered
Peanut Butter, Ella’s Kitchen Organic Smoothie Fruits, The
Red One, Blue Diamond Almonds Bold Lime n Chili (Ama-
zon fine foods)

taste, snack, like, good, eat, eating, buy, bag, love, diet,
healthy, fat, great, flavor, store, sweet, salty, healthier, price,
amount, bags, find, case, crunchy, size, tasty, ate, packs, tex-
ture, yummy

Entrapment, Mission: Impossible III, Zombie, Snake Eyes,
Starsky & Hutch, New England Patriots vs. Minnesota
Vikings, I Am Legend, Chaos (IMDb)

action, good, character, thought, story, plot, scene, expected,
average, movies, game, scenes, lack, massive, destruction, en-
tertained, suspenseful, audience, seats, batman, pulls, mis-
takes, steel, effect, shopping, richardson, atmosphere, ford,
genetic, horrific

Gargantua, Random Hearts, Chocolate: Deep Dark Secrets,
Blackout, The Ventures of Marguerite, Irresistible, Ghosts of
Girlfriends Past, Youth Without Youth (IMDb)

like, good, bad, time, movies, people, acting, plot, watch, hor-
ror, watching, worst, scenes, pretty, awful, effects, scene, char-
acters, thought, story, actors, worse, films, terrible, special, lot,
fun, give, stupid, guy

Table 8.8: Discovered clusters of items and associated topics for Amazon fine foods and
IMDb.

Real review Predicted words (ordered by likelihood)

poured from the bottle pitch black with a caramel head smells
like a great espresso with a little bit of oatmeal in there great
creamy mouthfeel tastes is strong of very bitter coffee and oat-
meal the booze is pretty well hidden this is one tasty stout

coffee, head, aroma, beer, roasted, sweet, light, malt, bit-
ter, bottle, taste, stout, flavor, dark, like, finish, thick, white,
brown, nice, creamy, good, tan, medium, pours, smooth,
chocolate, body, caramel, great

tap at pour is hazy orange gold with a white head aroma
shows notes of wheat tangerine orange yeast and coriander
flavor shows the same with light vanilla

orange, white, head, citrus, aroma, light, wheat, sweet, hazy,
flavor, malt, yeast, finish, beer, coriander, spice, medium, bot-
tle, body, nice, taste, hops, good, lemon, pours, cloudy, bitter,
notes, color, caramel

this is a pale ale it is a pale orangish color and it is an ale hops
dominate the nose but there is a more than ample malt back-
bone good medium mouthfeel clean hoppy follow through
beer as it ought to be

head, hops, aroma, ipa, nice, good, flavor, beer, citrus, hop,
hoppy, taste, sweet, finish, bottle, malt, white, pours, light,
color, medium, pine, golden, bitter, like, grapefruit, body, am-
ber, floral, caramel

Table 8.9: Predicted words for held-out reviews on RateBeer.

162

8.6 Summary

We presented PACO, an additive co-clustering algorithm for explainable recommenda-
tions. We offer three primary contributions:

• Joint Model: A Poisson additive co-clustering model enabling joint interpretable
modeling of ratings and reviews.

• Efficient Sampler: A novel algorithm for sampling from a sum of Poisson random
variables.

• Empirical evidence that PACO models both ratings and text well on a variety of
datasets.

163

164

Part IV

Scalable Machine Learning

Based primarily on work previously published in
SDM 2014 [30], AISTATS 2014 [127].
Additional segments based on [32].

165

Introduction

How can we efficiently learn user behavior models over many machines?
How can our learning algorithms adapt to the messy realities of “the cloud,” such as stragglers?

Online services that depend on user-generated content are made useful by aggregating
the knowledge of many users about many items in the world. As a result, these services
capture large graphs that provide great insight into the world. On Facebook, there are
now over 1.5 billion users 4, 350 million photos uploaded each day 5, billions of likes per
day, and many billions of friendships [215]; on Amazon there are hundreds of millions of
products; on Twitter there are over 300 million users 6. In order for powerful algorithms,
like those discussed in Parts II and III, to be useful for these services, the algorithms
must scale to their large graphs. This challenge includes scaling to large datasets, with
relations among multiple types of data, and creating models of many different items in
the world.

In the following chapters we focus on developing distributed platforms for scalable
user behavior modeling. While we have worked to developed novel behavior models,
factorization techniques have been the bread and butter of behavior modeling of many
years, and as such we focus on scaling latent factor models of this form. We offer the
following contributions:

• Distributed Modeling of Attributed Hypergraphs: In Chapter 9, we offer the
FlexiFaCT system to scale factorization of attributed hypergraphs through coupled
tensor factorization. We demonstrate that our system can scale to billions of
parameters and is up to 190 times faster than previous methods.

• Fast in the face of Stragglers: In practice, due to imbalanced machines or con-
current programs, some machines in real-world clouds are slower than others,
resulting in bottlenecks to distributed learning. In Chapter 10, we offer a simple
technique to learn efficiently, even in the face of stragglers. Our system, Fugue, is
up to 26 times as fast as competitors in topic modeling, dictionary learning, and
community detection.

4https://newsroom.fb.com/company-info/
5https://newsroom.fb.com/products/
6https://about.twitter.com/company

167

https://newsroom.fb.com/company-info/
https://newsroom.fb.com/products/
https://about.twitter.com/company

IV.1 Related Work

We begin with a survey of related work for scalable and distributed machine learning for
user behavior modeling.

IV.1.1 Big Data Processing

Distributed file systems like the Hadoop Distributed Filesystem (HDFS) [75] have made
it economical to store large quantities of data for extended periods of time. Variants of
MapReduce [61, 235] are often used to analyze this data, and the value derived from
it accelerated the overall trend of keeping ever increasing amounts of data with the
expectation of eventual value extraction. Because MapReduce is not well suited to
iterative computations, a number of alternative frameworks have been developed [238],
some with fundamentally different programming models [148, 152]. We go into greater
detail on these systems below.

IV.1.2 Distributed Learning

Machine learning algorithms are fundamentally different from other big data challenges,
as they are often iterative, stochastic algorithms with complex dependencies. These novel
properties have led to a wide variety of systems to parallelize and distribute machine
learning, each trying to handle the unique challenges and exploit the unique properties
of the learning.

Some papers focus on parallelization across the dataset to handle the often big datasets
associated with machine learning. Most of these papers exploit data point independence
to construct stochastic distributed optimization schemes with little need for inter-machine
synchronization. For example, the PSGD algorithm [243] is completely data parallel
and requires absolutely no inter-machine communication, therefore making it trivial
to implement. However, in practice, one can almost always obtain faster convergence
with some inter-machine communication, as our experiments will show in the following
chapters.

For learning large models, the general strategy is to exploit the fact that each model
variable usually depends on only a small number of other variables, and then partition
model variables in a way that limits the number of dependencies that cross machines.
The GraphLab system [149] is a good example of this concept, but it requires machine
learning algorithms to be rewritten into “vertex programs,” which can be awkward or
even difficult for some algorithms. Furthermore, there has been little theoretical analysis
on machine learning algorithms running under GraphLab. The Google Brain project [60]
provides another example of the need for model partitioning, this time for a custom-built

168

deep network meant for image and video feature extraction. However, the paper does
not provide general partitioning strategies for arbitrary models.

Another class of big machine learning systems is parameter servers, which provide a
distributed shared-memory interface for large numbers of model parameters [13, 140, 141,
182], but perform no variable scheduling themselves. Recent work on parameter servers
has led to new, theoretically-sound computational models such as Stale Synchronous
Parallelism (SSP) [54, 96].

IV.1.3 Matrix Factorization

Because of their importance to user behavior modeling, we primarily focus on factor-
ization techniques. As described in previous parts of this dissertation, a wide variety of
matrix factorization formulations have been proposed [134]. In addition to the variety
of matrix factorization models, many other models follow related bilinear structures,
such as topic modeling [35], dictionary learning [125], and mixed-membership stochastic
blockmodels [14].

A variety of learning algorithms have been used to learn the parameters in matrix
factorizations, such as alternating least squares (ALS) [237] and stochastic gradient
descent (SGD) [37].

Because of its pervasiveness, significant research has focused on fast matrix factor-
ization and specialized systems for distributed learning of matrix factorizations. [104]
demonstrated how to efficiently use ALS for matrix factorization. More recently, both
Hogwild [167] and DSGD [77] exploited the patterns of stochastic gradient descent for
parallelized matrix factorization. Of particular note, Gemulla et al. [77] made a break-
through in scaling matrix factorization, by proposing a distributed version of SGD for
matrix factorization that elegantly exploits the factorization structure of the problem,
breaking the matrix into blocks and process them in parallel. Follow-up works [185, 209]
have successfully extended this idea to the matrix completion problem using parallel
stochastic updates. Since the publication of our work, other systems also built on these
insights for asynchronous matrix factorization, such as [241] for shared memory systems
and [236] for distributed learning.

IV.1.4 Tensor Factorization

As was outlined previously in this dissertation, tensor factorization is a powerful tool for
modeling multimodal data [119]. The most popular tensor factorization is the so called
Canonical Polyadic (CP) or PARAFAC decomposition [93]. As with matrix factorization,
many variants of tensor factorization have been introduced; e.g., PARAFAC with `1

constraints is introduced in [177].

169

Like matrix factorization, significant research has focused on making tensor factor-
ization efficient. For in-memory single-machine computations, the state of the art is the
Tensor Toolbox [25], which provides an implementation of the ALS algorithm. Besides
ALS there exist first order optimization techniques, such as [4]. In [205], the authors
propose algorithms for incremental computation of the tensor decomposition, where the
tensor is a stream. For large datasets residing on HDFS, the state-of-the-art at the time
of publication was GigaTensor [116], which solves the PARAFAC decomposition using
Alternating Least Squares (ALS). Later work has achieved additional improvements for
scalability [51, 195].

As described previously, in some cases we have a tensor and a matrix, or two tensors,
or two matrices, that share one dimension. Singh et al. [197] jointly factorize two
related matrices for better decomposition and provide stochastic updates for this coupled
optimization. For coupled matrix-tensor factorization, recent work [5] used first order
optimization techniques.

170

Chapter 9

Distributed Modeling of Attributed
Hypergraphs

Given multiple data sets of relational data that share a number of dimensions, how
can we efficiently decompose our data into the latent factors? Factorization of a single
matrix or tensor has attracted much attention, as, e.g., in the Netflix challenge, with
users rating movies. However, we often have additional, side, information, like, e.g.,
demographic data about the users, in the Netflix example above. Incorporating the
additional information leads to the coupled factorization problem. Previously, it was only
solved for relatively small datasets.

In this chapter, we provide a distributed, scalable method for decomposing matri-
ces, tensors, and coupled data sets through stochastic gradient descent on a variety of
objective functions. We offer the following contributions: (1) Versatility: Our algorithm,
FlexiFaCT, can perform matrix, tensor, and coupled factorization, with flexible objective
functions including parameter constraints, such as non-negative factorization and `1

induced sparsity. (2) Scalability: FlexiFaCT scales to unprecedented sizes in both the
data and model, with up to billions of parameters. (3) Usability: our implementation is
open-source and runs on stock Hadoop.

9.1 Introduction

How can we efficiently mine data that capture relations between different entities?
Suppose, for instance, that we are given a time-evolving social network, such as Facebook,
and we have information about who messages whom, or who becomes friends with
whom, and when. This data may be formulated as a three mode tensor. Suppose now
that we also have some side information pertaining to the users, e.g., demographic
information. This problem can be formulated as an instance of a so-called coupled
factorization, where the two pieces of data, a three-mode (user, user, time) tensor and a

171

FlexiFaCT DSGD PSGD Matlab GigaTensor
Data/Model [77] [243] [116]

Matrix X X ∼ X

Tensor X ∼ X[25] X

Coupled Tensor/Matrix X ∼ X[5, 6]

Obj. Function
Frobenius norm X X X X X

Frobenius norm + `1 penalty X X X

Non-negativity constraints X X X

Handles missing data X X X X

Scalability
in number of non-zeros X ∼ X X

in data dimensions X ∼ X

in decomposition rank X ∼ X ∼

Proof of convergence
Matrix Factorization X X

Tensor/Coupled Factorization X ∼ X

Projections (`1 & non-negativity) X ∼

Table 9.1: Feature comparison of proposed FlexiFaCT vs previous methods. (∼ rep-
resents unknown or not directly applicable.) FlexiFaCT contains existing methods as
special cases.

(user, demographic) matrix share a common dimension. Even without the presence of
the (user, demographic) matrix, efficient tensor decomposition of truly large datasets can
be challenging, attracting increasing interest.

Most prior work has either focused on a specific type of factorization or a specific loss
function (e.g., Frobenius norm), thus having a limited range of potential applications.
Here we propose FlexiFaCT, a flexible and highly scalable distributed factorization algo-
rithm which attacks a very broad spectrum of problems: FlexiFaCT can handle matrices,
tensors, coupled tensor-matrix settings, cross product a variety of loss functions, including
Frobenius norm, KL divergence, `1 regularization, and non-negativity constraints.

Moreover, FlexiFaCT is very fast and scalable; we show how to implement it on
Hadoop, and we show how to achieve high speeds, by distributing both the data as well
as the parameters. In Table 9.1 , we provide a comprehensive overview of the previous
methods. In short, FlexiFaCT uniquely distributes and scales coupled tensor factorization
across a wide variety of objectives.

In summary, our main contributions are:

1. Versatility: FlexiFaCT can operate under a wide spectrum of settings, including

172

plain matrix factorization, tensor factorization, as well as coupled decompositions.
Thus, FlexiFaCT includes several recent methods [77, 116], as special cases.

2. Scalability: FlexiFaCT scales very well both with the input size, as well as with the
number of model parameters.

3. Usability and Reproducibility: Our implementation runs on stock Hadoop, as
opposed to other recent methods [77]. We also open-source our code.

9.2 FlexiFaCT Approach

Symbol Description

X Data tensor
Y Data matrix
U,V,W Factor matrices of X
U,A Factor matrices of Y
I × J ×K Dimensions of data tensor X
I ×M Dimensions of data matrix Y

θ Any parameter in the objective
σ The parameter being updated
∇ Symbol for derivative
ηt Step size at iteration t
R Rank of decomposition
⊗ Outer product

Table 9.2: Notation used in this chapter

As mentioned previously, we take on the problem of matrix, tensor and coupled
factorization. In this section we will explain the variety of loss functions used in these
tasks, the Stochastic Gradient Descent (SGD) update rules, and our partitioning scheme
allowing for distribution of the SGD work. Although much of our description of the
matrix factorization work is similar to [77], we will explain it here for completeness and
clarity. A list of our commonly used symbols can be seen in Table 9.2.

9.2.1 Optimization Objectives

We begin by explaining how stochastic gradient descent works for our variety of objective
functions. We will briefly go over the objective functions for simpler cases like the
Frobenius norm of matrices before expanding to more complex objectives.

173

Matrix Factorization For matrix factorization we would like to approximate our I × J
data matrix X by UVT , where U is of size I × R and V is of size J × R. Therefore, we
can have a loss function using the Frobenius norm as follows:

L(U,V) = ‖X−UVT‖2
F =

∑
i,j∈X

LXi,j
(U,V) (9.1)

where LXi,j
(U,V) = (Xi,j −

∑R
r=1 Ui,rVj,r)

2. As seen above, we divide our loss function
into its component pieces LXi,j

based on each observed point Xi,j . This is necessary to
use stochastic gradient descent.

Tensor Factorization For tensor factorization we would like to approximate our I ×
J ×K tensor X by an outer product

∑R
r=1 U∗,r ⊗V∗,r ⊗W∗,r where U is of size I ×R, V

is of size J ×R and W is of size K ×R and we are performing an outer product between
these three matrices. We can analyze the loss in a few different ways. Following the
standard Frobenius norm, as is common in PARAFAC, the loss is:

L(U,V,W) = ‖X −
R∑
r=1

U∗,r ⊗V∗,r ⊗W∗,r‖2
F

=
∑

(i,j,k)∈X

(X i,j,k −
R∑
r=1

Ui,rVj,rWk,r)
2

=
∑

(i,j,k)∈X

LX i,j,k
(U,V,W)

where

LX i,j,k
(U,V,W) = (X i,j,k −

R∑
r=1

Ui,rVj,rWk,r)
2.

Similarly we can induce sparsity in our parameter space with an `1 penalty:

L(U,V,W) = ‖X −
R∑
r=1

U∗,r ⊗V∗,r ⊗W∗,r‖2
F (9.2)

+ λ(‖U‖1 + ‖V‖1 + ‖W‖1)

= L(U,V,W) + λ(‖U‖1 + ‖V‖1 + ‖W‖1)

or add a constraint that U,V,W ≥ 0 as is common in non-negative matrix factorization
(NNMF). These terms are not as clearly separable in the loss function, but as we will see
the update rules are still separable as is necessary for SGD. We make a distinction here
between L and L: the objective L is obtained by adding `1 or non-negativity constraints
to the loss L.

174

Objective (L) Formulation

Frobenius
∑

(i,j,k)∈X LX i,j,k
(U,V,W) +

∑
(i,j)∈Y LYi,j

(U,A)

Frobenius + `1

∑
(i,j,k)∈X LX i,j,k

(U,V,W) +
∑

(i,j)∈Y LYi,j
(U,A)

+ λ(||U ||1 + ||V ||1 + ||W ||1 + ||A||1)

Frobenius + `1 +
NN

∑
(i,j,k)∈X LX i,j,k

(U,V,W) +
∑

(i,j)∈Y LYi,j
(U,A)

+ λ(||U ||1 + ||V ||1 + ||W ||1 + ||A||1) s.t. Θi,r ≥ 0

Table 9.3: Objective functions handled by FlexiFaCT: Θ denotes any of the factors
U, V,W or A.

Coupled Matrix-Tensor Factorization In this case our data tensor X is approximated
by
∑R

r=1 U∗,r ⊗V∗,r ⊗W∗,r and our data matrix Y is simultaneously approximated by
UAT . Note here we use the same component U in both approximations. As such, our
objective function is merely a sum of the losses on each data set:

L(U,V,W,A)

=
∑

(i,j,k)∈X

LX i,j,k
(U,V,W) +

∑
(i,j)∈Y

LYi,j
(U,A)

Table 9.3 denotes the loss objectives for different coupled cases. For each of these we use
SGD to minimize our loss and thus approximate our data.

9.2.2 SGD Updates

For SGD we perform updates to our parameters U,V,W,A, which we will collectively
refer to as Θ matrix whereas θ are the individual components of the matrix. This
definition of Θ and θ will come in handy for parameter updates based on the gradient at
individual data points. For example, the update for tensor X are:

θ(t+1) = θ(t) − ηt∇LX i,j,k
(θ(t)) (9.3)

For these update rules, we list below the differentials for each component σ of θ
where (∇LXi,j,k(θ))σ =

∂LXi,j,k
∂σ

:

(∇LX i,j,k
(θ))σ

=

{
−2(X i,j,k−

∑
rUi,rVj,rWk,r)Vj,`Wk,` ifσ=Ui,`

0 ifσ=Ui′,`, i 6= i′

similarly for σ = Vj,l or σ = Wk,l. From this we observe that SGD update for Ui,l at a
particular entry X i,j,k (for a tensor X) depends only on previous Ui,r,Vj,r,Wk,r where

175

Z1

Z2

Z3

Z1

Z2

Z3

Figure 9.1: Partitioned matrix and tensor for parallelization: Dividing the paired matrix
and tensor into blocks such that no two of them share any row or a column or a third
dimension in case of tensor. Through multiple different configurations of the blocks we
can use all data available.

r ∈ 1, . . . , R and R is the rank we chose. The updates for each component are similar for
the paired cases.

In the case of additional components such as an `1 penalty or a non-negativity
constraint on our parameters, we add a projection to our update rule. For example,
for an `1 penalty, the update rule is

θ(t+1) = Sλ(θ
(t) − ηt∇LX i,j,k

(θ(t))) (9.4)

Sλ(x) =

x− λ if x > λ

x+ λ if x < −λ
0 if − λ ≤ x ≤ λ

(9.5)

Here we see that Sλ is the soft thresholding operator. We can similarly use the following
projection for the non-negativity constraint:

NN (x) =

{
x if x ≥ 0

0 if x < 0
(9.6)

9.2.3 Blocking for Parallelization

Given this understanding of our optimization objective and SGD update rules, we would
like to segment our data in such a way that certain blocks Zb can be run in parallel, where
we define Zb ⊆ X . Gemulla et al. provide a partitioning algorithm for matrices [77];
here, we generalize their approach to tensors and coupled tensors and matrices, where
independence between data points is more restrictive and more complex. Figure 9.1
is a pictorial representation of the way we segment our simple matrix or a coupled

176

tensor/matrix to enable parallelization. In order to run SGD on our blocks in parallel, we
divide them such that no two blocks share common rows or columns. To be more precise,
we say that a point x ∈ Zb is the coordinates in the data, such as x = (xi, xj, xk) ∈ X .
Two blocks Zb and Zb′ are non-overlapping if for all x ∈ Zb and x′ ∈ Zb′ , xi 6= x′i and
xj 6= x′j and xk 6= x′k. (We will prove later that this allows us to run the blocks in parallel.)
We see that in the division shown in Figure 9.1 no two blocks share common rows or
columns. More interestingly, we note that blocks in the tensor X and the matrix Y share
coordinates in the i dimension, and as a result, data points in the same i range must be
in the same block across both data sets.

Given this intuition, we provide a detailed description of our partitioning algorithm.
We call one set of independent blocks a stratum, and we denote the number of blocks
in each stratum by d. In order to cover all regions of X , we need multiple strata. For a
matrix we require d strata, and for 3-mode tensors we require d2 strata. (One can easily
see the generalization to a k-mode tensor requiring dk−1 strata.) For a stratum s we have
blocks Z(s)

i for i = 0 . . . d− 1. Each block Z = (bi, bj, bk) where bi, bj, bk are ranges in I , J ,
andK: bi = (idI/de, (i+1)dI/de), bj = (jdJ/de, (j+1)dJ/de), bk = (kdK/de, (k+1)dK/de).
With this we define the blocks for stratum s as

Z
(s)
i = (bi, bjs,i , bks,i) (9.7)

js,i = (j + s) mod d (9.8)

ks,i = b(j + s)/dc mod d (9.9)

for i = 0 . . . d− 1.
In our algorithm, we run the strata sequentially, but for each stratum we run SGD

on the blocks in parallel. We consider running SGD on one stratum to be a subepoch in
our algorithm, and running it on all strata an epoch. (Note, the order in which you run
the strata does not matter, as long as they are each run once per epoch.) We can do this
repeatedly, iteratively updating our parameters θ, until the algorithm converges. A more
formal write up of the distributed stochastic gradient algorithm for a tensor (which can
easily be generalized to matrices and coupled factorizations) is shown in Algorithm 13.
We next offer a proof that this converges appropriately.

9.3 Proof Sketch

The FlexiFaCT approach is described in Algorithm 13. We provide here a proof sketch
for the convergence of Algorithm 13 to a local optima; the complete proof can be found
in Appendix C. We first prove that two blocks in a stratum are interchangeable. We use
this to prove that sequence of strata forms a regenerative process, defined later in this
section. We use this to prove that our FlexiFaCT approach for tensor and coupled case

177

Algorithm 13: FlexiFaCT for tensor factorization
Input : X ,U0,V0,W0,sub-epoch size d
U← U0, V← V0, W←W0

Block X ,U,V,W into corresponding d blocks
while not converged do

Pick step size η
for s = 0, ..., d2 − 1 do

Pick d blocks(Z(s)
1 , ..., Z

(s)
d) to form stratum Z(s)

for b = 0, . . . , d− 1 in parallel do
Run SGD on the training points Z(s)

b

converges. Note, this goes beyond the theoretical results provided in [77] by covering
projections, and thus enabling constraints and regularization.

Our generic constrained loss function for a tensor case is

L = L(U, V,W) + λu‖U‖1 + λv‖V ‖1 + λw‖W‖1

s.t. Ui,r, Vj,r,Wk,r ≥ 0. (9.10)

Here θ is a parameter to be updated as defined in previous section (equation 9.3). The
gradient based on equation 9.10 is:

∇θL = ∇θL+ p(θ), p(θ) ∈ C(θ) (9.11)

where θ is defined in Table 9.2 and L and L are defined in equation 9.2. Function p() is the
projection or constraint term of the gradient. The set C(θ) is the union of the subgradients
at θ.
Definition 7 Two blocks Zi and Zi′ in a given stratum are independent if for each x ∈ Zi and
x
′ ∈ Zi′ we have

∇Lx(θ) = ∇Lx(θ − η∇Lx′ (θ)) (9.12)

and∇Lx′ (θ) = ∇Lx′ (θ − η∇Lx(θ))

where∇Lx(θ) is the partial differential of Lx w.r.t. θ and θ is the parameter we are updating.

Theorem 3 If blocks Zi and Zi′ in a given stratum Sn are non-overlapping then they are
independent (as defined previously in Definition 7).

Proof. For any two points x ∈ Zi and x′ ∈ Zi′ their rows or columns or any other
coordinate do not overlap. From equation (9.4) we see that x does not modify θ in
positions for which i 6= xi, j 6= xj and k 6= xk. Therefore, because x and x′ are not equal
in any dimension, an update from ∇Lx′ will update different values than ∇Lx, where
∇Lx is the gradient at point x

178

Additionally from equation (9.4) we see that any updates on ∇Lx only use values
from Uxi,∗, Axj ,∗ and Bxk,∗, and thus do not use any values that would be updated by
∇Lx′ . Because updates from x only effect parameters in x’s coordinates, updates from
x are only based on parameters in x’s coordinates, and x and x′ have no overlapping
coordinates, we know that

∇Lx(θ) = ∇Lx(θ − η∇Lx′ (θ))
and∇Lx′ (θ) = ∇Lx′ (θ − η∇Lx(θ))

Therefore, Zi and Zi′ are independent. By a similar argument

∇Lx(θ) = L′x(θ − η∇Lx′ (θ))
and∇Lx′ (θ) = ∇Lx′ (θ − η∇Lx(θ))

�
Based on this independence, and under certain conditions of continuity and step size

similar to those in [77, 129], we can prove that Algorithm 13 converges. Particularly of
note, we must prove that adding projections, caused by additional terms like `1 regu-
larization, do not prevent convergence. As proven in detail in Appendix C, FlexiFaCT
converges as long as the projections are Lipschitz-continuous. Following the arguments
of [129] (Theorem 2.1, part 2) and with the assumption that updates to θ are bounded
(based on the aforementioned conditions), the algorithm will converge.

9.4 MapReduce Implementation of FlexiFaCT

We implemented our algorithm within the MapReduce framework [61]. To do this we
used the open source Hadoop [75] version of MapReduce. The challenge is to turn the
factorization problem into map() and reduce() functions, of the kind that Hadoop is
designed to handle.

In our implementation we pass the data matrix or tensor as input to the mappers in
the form (i, j, k,X i,j,k). We also store our current parameters θ(s), which could include U,
V, W, and A on the Hadoop File System (HDFS).

FlexiFaCT Mapper Mappers take individual observations (cells) in the tensor in the
form of (i, j, k,X i,j,k) at random. The Mapper function, shown in Algorithm 14, emits
the block index and subepoch for each observation.As such, the mappers split the entire
tensor into the appropriate blocks and determines the order they should be processed in
within each reducer. We also overload the default Hadoop partitioner, which typically
just partitions on unique KEY values, and now partition only on bi so that each reducer

179

Algorithm 14: FlexiFaCT Mapper (for tensor)
Input: I, J,K, d

1: for all (i, j, k,X i,j,k) do
2: bi = b i

d I
d
ec, bj = b j

dJ
d
ec, bk = b k

dK
d
ec // Get block index

3: subepoch = d× ((bk − bi + d) mod d) + ((bj − bi + d) mod d)

4: emit 〈(bi, bj, bk, subepoch), (i, j, k,X i,j,k)〉
5: end for

Algorithm 15: FlexiFaCT Reducer (for tensor)
Given: U,V,W, I, J,K, d, η
Input: Values V
sold =Pointer to final parameters from last epoch
for (i, j, k,X i,j,k) ∈ V do

bi = b i
d I
d
ec, bj = b j

dJ
d
ec, bk = b k

dK
d
ec

t = d× ((bk − bi + d) mod d) + ((bj − bi + d) mod d)

if t 6= told then
Write V

(sold)
bjold

and W
(sold)
bkold

to HDFS

Wait for V
(sold)
bj

and W
(sold)
bk

to be available on HDFS

Save U
(s)
bi

= U
(sold)
bi

Save V
(s)
bj

= V
(sold)
bj

and W
(s)
bk

= W
(sold)
bk

from HDFS
biold

= bi, bjold
= bj , bkold

= bk, t = told

end
θ(s) = θ(s) − η∇LX i,j,k

(θ(s)) (where θ(s) is the concatenation of U
(s)
bi
,V

(s)
bj
,W

(s)
bk

)
end
Write U

(sold)
biold

, V
(sold)
bjold

, and W
(sold)
bkold

to HDFS

represents a unique set of i in I or a unique set of rows in U. We additionally override
the default Comparator, allowing us to sort our (KEY,VALUE) pairs within each reducer
by the subepoch term calculated in the Mapper. We see here while the Mapper is quite
simple, the calculation of the blocks and the order within each reducer captures our
partition function that allows us to perform SGD in this distributed fashion.

FlexiFaCT Reducer We create d reducers, one for each block in a straum. Our Reducer
function is shown in Algorithm 15. As explained before, each reducer gets all points for a
given range of values i ordered by the subepochs s. The reducer iterates over the points
in V in order, each time updating θ(s). Each reducer only stores the components of θ that
correspond to its current block in the current stratum. As such, when a new subepoch is
reached, it must write its updated θ values to disk (for another reducer to retrieve) and

180

read the most current θ values for its next block in the subsequent subepoch.
We run the MapReduce jobs iteratively. Each MapReduce job is one epoch using

all points in X to update the full parameter space θ and ultimately to save it to HDFS.
We then use the updated parameters θ in the subsequent epoch (another run of the
MapReduce algorithm). We do this for a constant number of steps or until the algorithm
converges.

Reproducibility and Usability This is a high level overview of our implementation,
but captures the general method we use to both distribute our work and optimize our
speed within the MapReduce framework. While this is not the typical way Hadoop
is programmed, it requires no modification of the Hadoop framework and can be
run on any standard Hadoop cluster. Our code is open-sourced, and available at
cs.cmu.edu/~abeutel/flexifact. It can run for all of the data types and loss functions
described in this chapter.

Because FlexiFaCT creates long-running reducers that communicate with each other,
it breaks the typical mold for Hadoop MapReduce algorithms. More recently, new
platforms designed for such paradigms are available and can be easily programmed for
the FlexiFaCT algorithm. For example, [32] designs a similar algorithm on top of the
REEF platform [52].

9.5 Experiments

9.5.1 Performance Evaluation

In order to assess how scalable and fast FlexiFaCT is, we conducted a series of experi-
ments in order to measure the running time of FlexiFaCT with respect to 1) increasing
number of data points, 2) increasing dimensions of the data and thus model, and 3)
increasing rank of the factorization. The first aspect has to do with scalability in terms of
data size, whereas the two latter aspects refer to scalability with respect to parameter
space size; FlexiFaCT is able, as we demonstrate in the following experiments, to scale
easily in all three aspects. As a baseline for tensor decomposition, we use GigaTensor
[116]. We also compared against PSGD [243], however, the solutions obtained achieved
much worse RMSE, and the algorithm was not able to scale for very large number of
parameters (either rank or dimensions).

FlexiFaCT was implemented in Java, with Hadoop 0.20.1 [61, 75]. We ran the exper-
iments on the OCC-Y cluster1. For the sake of experimentation, we created a series of
synthetic datasets wherein we were able to control the three aspects we were testing: data
size, data dimensions, and rank. Additionally, we validate our method’s correctness by

1http://opencloudconsortium.org/tag/occ-y/

181

http://cs.cmu.edu/~abeutel/flexifact
http://opencloudconsortium.org/tag/occ-y/

 0

 2000

 4000

 6000

 8000

 10000

 12000

 200 400 600 800 1000

T
im

e
 (

m
in

u
te

s
)

Rank of Factorization

PSGD runs out of memory
for R >= 100

FlexiFaCT
Gigatensor

PSGD
FlexiFaCT Coupled

(a) Time vs. rank

 0

 500

 1000

 1500

 2000

 2500

1M 2M 3M 4M 5M 6M 7M 8M 9M 10M

T
im

e
 (

m
in

u
te

s
)

Dimension of Tensor (in millions)

FlexiFaCT
Gigatensor

FlexiFaCT Coupled

(b) Time vs. dimensions

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

25M 50M 75M 100M

T
im

e
 (

m
in

u
te

s
)

Number of Observations (size of data)

FlexiFaCT
Gigatensor

FlexiFaCT Coupled

(c) Time vs. observations

Figure 9.2: Scalability of FlexiFaCT in terms of: (a) rank, (b) data dimensions, and (c)
number of observations. We observe that FlexiFaCT scales very well with respect to all
aspects. PSGD can be seen in sub-figure (a) before it runs out of memory. FlexiFaCT
was applied to both a tensor, and a matrix-tensor couple, whereas GigaTensor was only
applied to a tensor.

presenting experimental evidence (on top of our theoretical guarantees), for monotone
convergence. In all cases, number of reducers was constant and equal to 24.

Synthetic Data Generation To generate data we first generate randomly matrix factors
U,V,W of the specified dimensionD (where I = J = K = D) and rankR = 30. We then
randomly select data points (i, j, k) and add their value

∑
r Ui,rVj,rWk,r to the dataset.

We do this until we have the desired number of data points for each dataset. Unless
otherwise stated, we set D = 1 million and the number of data points to 10 million.

9.5.2 Scalability

We now test FlexiFaCT on all three types of scalability to demonstrate that it scales in all
dimensions and to unprecedented sizes.

Rank Scalability In testing the scalability with respect to rank, we ran FlexiFaCT,
GigaTensor, and PSGD on a tensor and varied the rank from 25 up to 1000. Figure 9.2(a)
shows the running time for FlexiFaCT, both for tensor and coupled factorizations, as
the rank (i.e. one of the parameter dimensions) increases. We can see that FlexiFaCT
scales linearly as the rank of the factorization increases, having similar timing behaviour
both for plain tensor and coupled factorizations. GigaTensor, on the other hand, due
to the fact that it is inverting an R × R matrix, locally, at every iteration slows down
significantly for large ranks. We were unable to test GigaTensor on ranks larger than 100
due to the slow down. Although barely visible in the plot, we also ran PSGD on the data.
However, it too couldn’t scale in rank due to the size of the parameter space. For rank
above 50 the factor matrices could no longer fit in memory on each machine and thus

182

PSGD could not run. This demonstrates FlexiFaCT’s unique scalability in the parameter
size. Additionally, we note that with R = 1000 and D = 1 million, the coupled FlexiFaCT
factorization scales to a total parameter space of 4 billion parameters.

Data Dimensions Scalability To test more directly the scalability as the dimension D
of the data tensor grows, we created a variety of tensors with varying dimension from
10,000 to 10 million. We decompose each tensor with R = 50. When testing the coupled
FlexiFaCT decomposition, we add an additional coupled matrix with 100,000 data points
and the same dimensionality as the main tensor.

In Figure 9.2(b) we show how coupled factorization using FlexiFaCT scales, as the
dimensions of the data increase. We observe that FlexiFaCT runs much faster than the
baseline, GigaTensor. A likely explanation for the degree to which FlexiFaCT is faster
than GigaTensor is that FlexiFaCT only focuses on the observed data points, where
GigaTensor has to convert unobserved data points to zeros, thus slowing down the
computation. We can see that FlexiFaCT has a very smooth behaviour, scaling linearly
with the dimension size. Again, when we are performing the coupled decomposition, we
see that as the dimension scales our total parameter space reaches 2 billion parameters.

Data Size Scalability Last, for data scalability, we vary the number of observed data
points from 1 million to 10 million. Figure 9.2(c) shows FlexiFaCT’s running time as a
function of the data size, i.e. the number of observations. We can see that FlexiFaCT has,
again, very smooth behaviour, and scales linearly with the number of observed elements.
Again, we are significantly faster than GigaTensor, though the degree of difference is
likely because it is must make unobserved points zeros for it to run.

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0 400 800 1200 1600 2000

R
M

S
E

Time (seconds)

FlexiFaCT
PSGD

Figure 9.3: Convergence: RMSE vs. time, for tensor factorization comparing FlexiFaCT
and PSGD [243]. Note, Zinkevich et al. [243] do not claim to work on this problem
because it is not convex.

183

9.5.3 Correctness & Monotone Convergence

Besides speedup, we experimentally validate that FlexiFaCT indeed decreases monotoni-
cally the objective function that it is minimizing. To test this we run on a small synthetic
data set with D = 10, 000 and 10 million data points, making the dataset very dense. We
run a factorization with R = 50 using our implementation of PSGD and FlexiFaCT with
both `1 sparsity and non-negativity constraints. We then monitor the root mean squared
error (RMSE).

Figure 9.3 shows that FlexiFaCT decreases the RMSE as expected, and at a much
quicker pace than PSGD. It is important to note that the slow convergence of PSGD
is because the problem (tensor factorization) is not convex, and thus Zinkevich et al.
do not claim that their method works on such problems. However, we use PSGD as a
comparison because it is not possible to track the RMSE with GigaTensor and thus PSGD
is the closest competitor.

9.6 Summary

In this work we have introduced FlexiFaCT, a highly flexible, efficient, and scalable
factorization tool. Our main contributions are

1. Versatility: FlexiFaCT, can operate under numerous factorization scenarios, in-
cluding matrix, tensor, and coupled factorization as well as with non-negativity
and sparsity constraints.

2. Scalability: FlexiFaCT scales very well with the input size, as well as with the
number of parameters.

3. Reproducibility and Usability: Our implementation works on stock Hadoop;
furthermore, we ensure the reproducibility and outreach of FlexiFaCT by making
our implementation publicly available.

184

Chapter 10

Fast in the face of Stragglers

How can we learn perform distributed learning in the face of stragglers? In this chapter,
we present a scheme for fast, distributed learning on a wide variety of big (i.e. high-
dimensional) models applied to big datasets. Building on the partitioning scheme of
Gemulla et al. [77] and projections of Chapter 9, we show how to significantly scale
the learning of a wide variety of models, such as topic models and dictionary learning,
particularly by including additional constraints and projections, such as distributed
normalization. We demonstrate that this approach not only leads to faster learning on
distributed clusters, but also enables machine learning applications where both data and
model are too large to fit within the memory of a single machine. Most significantly,
we offer a novel solution to the straggler problem, common in distributed systems, by
allowing worker machines to perform additional updates while waiting for slow workers
to finish, which provides users with a tunable synchronization strategy that can be set
based on learning needs and cluster conditions. We present empirical results for latent
space models such as topic models, which demonstrate that our method scales well with
large data and model sizes, while beating learning strategies that fail to take both data
and model partitioning into account.

10.1 Introduction

Machine Learning applications continue to grow rapidly, in terms of both input data
size (big data) as well as model complexity (big models). The big data challenge is
already well-known—with some estimates putting the amount of data generated on
the internet at 5 exabytes every two days1—and much effort has been devoted toward
learning models on big datasets, particularly through stochastic optimization techniques
that randomly partition the data over different machines. Such techniques have been the
subject of much theoretical scrutiny [7, 97, 242, 243]. On the other hand, the big model is-

1http://techcrunch.com/2010/08/04/schmidt-data/

185

http://techcrunch.com/2010/08/04/schmidt-data/

sue, which is about learning models with an extremely large number of variables and/or
parameters—such as the Google Brain deep network with over 1B parameters [60]—has
just started to gain greater attention, and recent papers on this subject have primarily
focused on intelligent partitioning of the model variables in order to minimize network
synchronization costs [60, 149], albeit not always with theoretical backing.

Although big data and big models are both crucial research foci, there are few dis-
tributed machine learning efforts that explicitly consider both aspects in conjunction,
with a notable example being the partitioned matrix factorization algorithm of Gemulla
et al. [77] and later our partitioned tensor factorization algorithm in Chapter 9. More
generally, in the big data, big model setting, the model variables may not all fit into a
single machine’s memory, which in turn imposes additional constraints on how the data
is partitioned. Furthermore, careless partitioning of model variables across distributed
machines imposes significant network synchronization costs [149], which are required
whenever dependent variables or datapoints are placed on separate machines. If we are
to effectively partition both data and model, it follows that we must carefully examine
and exploit the interdependencies between data and model variables.

In this chapter, we investigate the practical algorithmic challenges for learning big
latent space models on big data over a realistic distributed cluster. Building on our
results in Chapter 9, we offer distributed projections so as to support a wider variety of
models expressible in a matrix form, such as topic modeling and dictionary learning. Our
proposed algorithm, Fugue, exploits the structures of the model in question to partition
the input data and model variables over the cluster, in a manner that automatically
balances inter-machine network synchronization costs with performing useful compu-
tational work, even when the worker machines are not equally capable (e.g., because
of different hardware or other concurrently running programs), or the data cannot be
evenly partitioned (e.g., due to the dependency structure of the model).

Most significantly, Fugue solves the “last reducer" or “straggler" issue in distributed
systems, in which some worker machines can be much slower than others (because of
cluster heterogeneity, or because other jobs are running on the same machine), causing
faster workers to waste computational cycles waiting for them. Instead, our algorithm
ensures that the faster workers will continue to perform useful work until the last reducer
finishes by performing additional updates on cached data; if the last reducer is unable to
finish, it can be restarted without affecting program correctness, while the faster workers
continue doing work. Because Fugue has modest synchronization and communication
requirements, it is easy to implement on top of common distributed computing systems
such as Hadoop—yet it can also be applied to specialized systems for big Machine
Learning, such as parameter servers [13, 54, 96, 182], in order to further improve their
performance. Finally, theoretical and empirical analysis confirms that Fugue can provide
faster convergence on a variety of latent space problems in ML; furthermore, careful
control of inter-worker synchronization can lead to even faster convergence, which opens

186

the door to intelligent exploitation of fine-grained synchronization schemes (such as the
aforementioned parameter servers).

10.2 Related Work

Most existing literature is focused on learning under either big data or big model condi-
tions, but rarely both together. As discussed in Section IV.1, many algorithms that are
designed to overcome large datasets design schemes with little inter-machine synchro-
nization. PSGD [243] is completely data parallel with no inter-machine communication,
but, as we demonstrated in the previous chapter, we can obtain faster convergence
with some inter-machine communication. Another important class of methods are the
fixed-delay algorithms [7, 242] in which machines communicate with a central server
(or each other) in a fixed ordering. This fixed ordering is a serious practical limitation,
because all machines will be held up by slowdowns or failures in just one machine. In
contrast, our algorithm ensures that all machines continue to do useful work even under
such conditions. Most importantly, unlike these big data algorithms, our algorithm can
partition model variables (and not just datapoints) across machines, which is absolutely
critical for massive models that cannot fit onto a single machine.

There are some papers that tackle big data and big model issues together, such as the
partitioned matrix factorization algorithm of Gemulla et al. [77], to which our work is
most closely related. Unlike Gemulla et al., our algorithm allows worker machines to
perform useful variable updates continuously, without blocking or waiting for any other
machine to complete its assigned task. This property is exceptionally beneficial on very
large clusters, where machines often fail or slow down for any number of reasons. Thus,
our algorithm is not bottlenecked by the slowest machine, unlike [77]. Furthermore, we
include substantially richer theoretical analysis, including convergence and variance
bounds with constraints and analysis of the effect of non-blocking workers. In particular,
work by Murata [162] lays the foundation for variance analysis of SGD algorithms, by
providing variance bounds over datapoint selection.

Additionally, the recent research on parameter servers [13, 96, 140] is fundamentally
related to Fugue in that both allow faster workers to perform additional work, without
being held up by slower workers. The main difference between SSP and Fugue is that
SSP is employed to reduce inter-machine communication regardless of how updates
are scheduled, whereas Fugue is used to intelligently schedule updates while assuming
limited capacity for inter-machine communication. Combining these perspectives is an
interesting direction for future research.

187

10.3 Fugue: Slow-Worker Agnostic Learning

We will now dive into the Fugue algorithm. We begin with an explanation of the different
models Fugue covers, and then explain the algorithm for distributed learning of these
models.

10.3.1 Latent Factor Models

The key principle behind Fugue is to exploit independent or weakly-dependent blocks
of data, variables and parameters. For example, a probabilistic graphical model can
contain many latent variables and parameters that capture the modeler’s generative
assumptions about large datasets. In order to tackle problems of such scale, we need to
exploit independence structures present in the data and model, so as to partition both
over a distributed cluster.

Before describing our partitioning strategy, we motivate our method with examples of
popular latent space models recently gaining much attention. Consider Topic Modeling
(TM) [35]: given a document by vocabulary data matrix Y (with the rows normalized to
sum to 1), we want to decompose it into two matrices: docs by topics π (which are model
variables) and topics by vocabulary β (which are parameters). We formulate this task as
an optimization problem with simplex and non-negativity constraints:

argmin
π,β

L(Y, π, β) = ||Y − πβ||pp (10.1)

s.t. ∀i, j, k
∑
k

πi,k = 1,
∑
j

βk,j = 1, πi,k ≥ 0, βk,j ≥ 0,

where ‖ · ‖PP is an `p norm, typically `2. Fugue exploits structure in the form of blocks
of document-word pairs YI,J , in order to partition the topic model. We note that other
matrix-decomposition-based algorithms for topic modeling also exist, such as the spectral
decomposition method of Anandkumar et al. [19].

Another example is Dictionary Learning (DL) [125], in which the goal is to decom-
pose a signal matrix Y into a dictionary D and a sparse reconstruction α:

argmin
α,D

L(Y, α,D) =
1

2
||Y −Dα||22 + λ||α||1 (10.2)

s.t. ∀j,DT
j Dj ≤ 1.

Here, blocks of sample-feature pairs YI,J form the primary exploitable structure.
A third example is multi-role or Mixed-Membership Network Decomposition (MMND),

where an N ×N adjacency matrix Y is decomposed into an N ×K matrix θ, whose i-th
row is the normalized role-vector for node i, and a K ×K role matrix B. Together, θ, B

188

Y π

β

Sub-Epoch 1/3

Block 1
Block 2 Block 3

Y π

β

Sub-Epoch 2/3

Y π

β

Sub-Epoch 3/3

Figure 10.1: Partitioning strategy for data Y , model variables π, and parameters β. We
show one epoch broken into multiple sub-epochs (3 in this case). Each sub-epoch is
further divided into (colored) blocks, such that the data Yi,j (with its associated variables
πi,· and parameters β·,j) from one block do not share rows/columns with data Ya,b from
another block. Taken together, all blocks from all sub-epochs cover every element of
Y, π, β.

characterize the behavior of every node in the network, and the optimization problem is:

argmin
θ,B

L(Y, θ, B) =
1

2
||Y − θBθ>||22 (10.3)

s.t. ∀i,
∑
j

θij = 1, θi,j ≥ 0.

The subgraphs YI,J between node sets I and J are the basic unit of partitioning used by
Fugue.

The main difference between such latent space models and the matrix factorization
problems (unconstrained or non-negative) of [77] and the tensor factorization methods
of Chapter 9 is that these latent space models have more complex constraints: simplex
constraints in the case of topic modeling and mixed-membership network decomposition,
and bounded norm in the case of dictionary learning. To handle these, our distributed
learning algorithm supports distributed projection steps to ensure the final solution always
satisfies the constraints. Some distributed algorithms have explicit theoretical guaran-
tees under projection [7, 242], but involve complex synchronization schemes that are
inefficient on large clusters and difficult to deploy on common systems like Hadoop. Oth-
ers, such as Parallel Stochastic Gradient Descent (PSGD) [243], lacks explicit projection
theory for parallel learning but works well in practice; furthermore, they have simple
synchronization requirements, making them suitable for large cluster deployments.

189

10.3.2 Fugue Approach

We now explain at a high level how Fugue works. We stress that Fugue is platform-
agnostic: it can be implemented on top of Hadoop, MPI, or even parameter servers and
distributed key-value stores—essentially, any platform with programmer control2 over
how data, variables and parameters are partitioned and scheduled for updates. Our
experiments demonstrate that Fugue is highly efficient even when built on Hadoop,
which, as was explained in the previous chapter, was not designed for algorithms of this
sort. We will discuss later in this chapter how Fugue could likely scale even better on
specialized big ML platforms.

To learn latent space models effectively on a distributed cluster, we must exploit
the interdependence of parameters and variables. As a running example, consider the
topic modeling objective L(Y, π, β): we can divide the data matrix Y into a sequence of
sub-epochs, where each epoch consists of blocks that do not overlap on parameters β and
variables π, and where the union over all epochs covers the entire matrix (Figure 10.1).
This blocking strategy is attributed to Gemulla et al. [77], and it permits multiple machines
to perform stochastic gradient descent (SGD) on different blocks in parallel, on a Hadoop
cluster. However, it requires all workers to process a roughly equal number of data-
points per block, which leads to problems with slow workers. In this chapter, we intend
to address this limitation. Our proposed algorithm allows faster workers to process
extra data-points in their assigned block, which maximizes the cluster’s computational
efficiency.

At a high level, our algorithm proceeds one epoch at a time, performing SGD on all
blocks within an epoch in parallel. In order to satisfy the problem constraints, we must
interleave projection steps with the SGD algorithm. In this respect, the parameters β
and variables π must be handled differently: while the simplex projection for variables
π can be performed by each worker independently of others, the simplex projection
for the parameters β requires workers to repeatedly synchronize with each other. This
cannot be done through the standard MapReduce programming model, so our Hadoop
implementation builds on the synchronization strategy in Section 9.4 and deviates
from the MapReduce scheme by allowing workers (reducers) to write to the Hadoop
Distributed File System (HDFS) in order to communicate projection information with
each other. This is of course more expensive than the independent projections for π,
but even these more expensive projections are computationally cheap relative to the
typical sub-epoch synchronization. We find that this scheme works well in practice,
while dedicated, memory-based synchronization systems such as parameter servers [13,
54, 182] have the potential to perform even better.

2Systems that do not provide programmer control over partitioning/scheduling, e.g., GraphLab, are
unsuitable for Fugue.

190

10.3.3 Partitioning strategy

More formally, let Ψ collectively refer to the variables and parameters π, β, and let ψ
refer to individual elements of Ψ. These definitions will make the subsequent analysis
easier to understand. Thus, we rewrite the topic modeling objective L as:

ψ(t+1) = ψ(t) − ηt∇LYi,j(ψ(t)), (10.4)

and we apply parameter/variable projections each time we execute Eq. (10.4). Assuming
the `2 norm, the differential of ψ with respect to π at a single data point Yi,j is

(∇LYi,j(ψ))σ =

{
−2(Yi,j −

∑
k πi,kβk,j)β`,j if σ = πi,`

0 if σ = πi′,`, i 6= i′
(10.5)

where σ is the element of π being differentiated, and (∇LYi,j(ψ))σ =
∂LYi,j
∂σ

. The differ-
entials with respect to σ = βj,` are similar. From these equations, we observe that the
SGD update for πi,` at a particular datapoint Yi,j depends only on a small subset of the
variables and parameters: specifically, πi,k, βk,j where k ∈ 1, . . . , K and K is the number
of topics we chose. Notice that the π all come from the same row i as Yi,j , while the β
all come from the same column j. Furthermore, the SGD updates for πi,` are zero for
any datapoint Ya,b where a 6= i. A similar observation holds for the parameters: the SGD
update for βr,j is zero for any datapoint Ya,b where b 6= j.

These observations lead to the following key insight: we can perform SGD on two
datapoints Yi,j and Ya,b at the same time, provided i 6= a and j 6= b—in other words,
as long as the datapoints do not overlap on their rows or columns. An intuitive proof
goes like this: SGD updates on Yi,j only touch the variable row πi,· and the parameter
column β·,j , and both of them do not overlap with Ya,b’s variable row πa,· and parameter
column β·,b. In other words, the SGD updates on Yi,j and Ya,b touch disjoint sets of
variables π and parameters β. Furthermore, each πi,· in row i only ever depends on
other π in the same row i, and similarly for β·,j and other β in column j. We therefore
conclude that all quantities associated with row i and column j, namely Yij, πi·, β·j , are
completely independent of the quantities from row a and column b, namely Yab, πa·, β·b.
Hence, datapoints with disjoint rows and columns can be simultaneously used for SGD
updates [77].

From the perspective of data, model and parameter partitioning, we have essen-
tially partitioned datapoints Y , model variables π and parameters β into independent
“collections” Cij , where i is a row index and j is a column index. In other words, the
collection Cij contains Yij, πi·, β·j , and can be “processed” (meaning that we run SGD on
Yij to update πi· and β·j) in parallel with any other collection Cab where a 6= i, b 6= j.

We note that the above scheme applies to Dictionary Learning with only slight
modification. For Mixed-Membership Network Decomposition, the presence of the

191

symmetric term θBθT presents additional challenges. Instead, we replace θBθ> with
θC where C := Bθ>, and could recover B post-optimization via pseudoinversion: B =

Cθ(θ>θ)−1. The inversion cost is reasonable since θ>θ is K ×K, where K = 1000 would
be considered a large model in practice.

10.3.4 Distributed update scheduling

Since collections Cij with disjoint rows/columns can be processed simultaneously, let us
consider grouping them into multiple blocks Sb ⊆ Y , such that the blocks have disjoint
rows/columns (Figure 10.1). While we cannot process collections Cij within the same
block in parallel (because they might share rows/columns), we can process collections
from different blocks in parallel, as they are guaranteed to be non-overlapping. Thus,
if we managed to construct P non-overlapping blocks, we can spawn P workers to
perform SGD in parallel. Although it is impossible to find a set of non-overlapping
blocks that covers all of Y , we can find multiple disjoint sets of non-overlapping blocks
that, taken together, cover Y completely (Figure 10.1). We call these sets sub-epochs, which
are processed sequentially (while the blocks within a sub-epoch are processed in parallel).
An epoch is a sequence of sub-epochs that fully covers Y .

Fugue differs most significantly from Gemulla et al. and FlexiFaCT (Ch. 9) in that
within a sub-epoch, we allow different worker-blocks to perform varying numbers of
SGD updates per collection Cij (whereas previously equal numbers of updates were
required per worker). This makes our algorithm much more efficient whenever there are
slow worker machines (which are common in large clusters), since faster workers can
keep running until synchronization, rather than wasting computational time waiting for
slower workers to catch up. The full algorithm is shown in Algorithm 16.

10.4 Proof Sketch

We now give a high-level analysis of Fugue (Algorithm 16), and give a proof sketch show-
ing that our strategy of allowing multiple SGD iterations on each data/variable/parameter
collection Cij = {Yij, πi·, β·j} leads to faster convergence (under reasonable conditions).
The complete analysis and proof can be found in Appendix D. We analyze the variance
of the model state Ψ under Fugue, and show that it remains bounded under certain
assumptions. Briefly, the variance can be attributed to two aspects of our partitioning
strategy: (1) running multiple blocks within a sub-epoch in parallel, and (2) splitting
the data matrix into a sequence of sub-epochs. These variance bounds distinguish the
analysis from that of Gemulla et al. [77] and the proof in Appendix C, where we do
not have variance bounds for the given blocking and learning strategies. We show that
allowing additional iterations on fast workers is better than waiting for slow workers,

192

Algorithm 16: Fugue, our slow-worker agnostic learning algorithm, applied to topic
modeling.

Input : Y, β, π, sub-epoch size d
π ← π0, β ← β0

Block Y, π, β into corresponding w blocks
while not converged do

Pick step size ηS
Pick w blocks(S1, ..., Sw) to form sub-epoch S
for b = 0, . . . , w − 1 in parallel do

Run SGD on the training points Yij ∈ Sb
// (until every block is ready to synchronize)
// Workers can use datapoints in Sb multiple times while waiting
Apply appropriate projections
// (e.g., on variables π in topic modeling)

end
Apply appropriate projections
// (e.g., on parameters β in topic modeling)

end

by proving that the model state Ψ’s variance converges to zero under an appropriate
step-size sequence.

Assume we have w worker processors, and that in each sub-epoch, every processor is
assigned to a distinct block i—henceforth, we shall use index i to refer interchangeably
to processors or blocks. We now define the following terms:
Definition 8 : Key states and parameters

• ni, κi and Nw: Let ni be the number of datapoints that worker i touches (with
repetition) in its assigned block, before transitioning to the next sub-epoch. In other
words, if worker i was assigned n datapoints, and touches each point κi ≥ 1 times
on average, then

ni = κin and Nw =
w∑
i=1

ni (10.6)

• ηt: SGD step size at iteration t. An iteration is defined as one SGD update on one
datapoint.

• ∇L(ψ(t)): Exact gradient at iteration t.

• δL(t)(V (t), ψ(t)): Stochastic gradient at iteration t, i.e. ∇LYi,j(ψ(t)) for some i, j.

• εt: Error due to stochastic update at iteration t,
[
∇L(ψ(t))− δL(t)(V (t), ψ(t))

]
.

• ψ(t) : Model state ψ (see Eq. 10.4) at iteration t.

193

We now introduce V (t)(ψ(t+1), ψ(t)), a state potential function defined over a previous
state ψ(t), a future state ψ(t+1), and the data points y(t) picked at iteration t. V (t) encodes
the probability that ψ(t) will be updated to ψ(t+1) when the algorithm performs the
stochastic update over datapoint y(t).

Next, assumptions on the error terms εt and step sizes ηi:
Assumption 1 : Errors and Step-sizes

• Martingale difference error εt: The error terms εt form a martingale difference
sequence.

• Variance bound on εt: For all t, we have E[ε2
t] < D.

• Step size ηt assumption:
∑
η2
t <∞.

The condition that error terms are a martingale difference sequence is weaker (easier to
satisfy) than assuming error terms εt are independent of each other. The martingale dif-
ference assumption means that the stochastic gradient δL(t)(V (t), ψ(t)), when conditioned
on the initial model state ψ(0) and previous gradients δL(i)(V (i), ψ(i)) for all i < t, depends
only on the current model state ψ(t). Fugue satisfies this martingale assumption because
our blocking strategy ensures that parallel parameter updates (from different blocks)
never overlap on the same elements of ψ. For models with more complex dependency
structures (e.g., arbitrary graphical models), the martingale assumption may allow for
parallelization opportunities even when such non-overlapping structure is absent.

Convergence of Fugue Because the errors εt are a martingale difference sequence, we
know that εt has zero expectation when conditioned on previous errors. With this we
can provide a convergence guarantee:
Theorem 4 The stochastic updates ψ(t+1) = ψ(t) − ηt∇LYi,j(ψ(t)) from algorithm 16 and the
exact gradient descent updates ψ(t+1) = ψ(t)−ηt∇L(ψ(t)) converge to the same set of limit points
asymptotically, given that the error terms εt are a martingale difference sequence, and E[ε2

i] < D

(bounded variance), and
∑
η2
i <∞.

This theorem says that, asymptotically, the error terms cancel each other out, and there-
fore our stochastic algorithm will find the same set of optima as an exact gradient
algorithm. The theorem also easily extends to cover projections, by applying the Arzela-
Ascoli theorem and considering the limits of converging sub-sequences of our algorithm’s
SGD updates [129]. The proof for Theorem 4 can be found in Appendix D.

Variance decrease despite slow-workers We find that the variance of ψ decreases
when it is updated inside block i in a sub-epoch, and therefore, due to the independence
of blocks, the variance between sub-epochs decreases. We find that this depends on the
number of datapoints in each block ni and the step size ηt, where having more datapoints

194

ni decreases the variance as long as the step size is sufficiently small (see Appendix D for
details).

Based on these properties, we find that that using additional datapoints in any block
can decrease the variance of Ψ, while Theorem 4 tells us that the algorithm converges
asymptotically, regardless of the number of processors and the number of datapoints
assigned to each processor. Because the algorithm converges, decreasing the variance
will only move Ψ towards an optimum, and therefore it makes sense for faster processors
to perform more updates (with appropriate choice of step size ηSn) and decrease the
variance of Ψ, rather than wait for slow processors to finish. However, if the step size
ηSn is set incorrectly, then using too many updates ni could increase the variance of Ψ.
In total, reusing the same datapoints will improve convergence but with diminishing
returns on each reuse; however, we experimentally find that these additional updates
significantly improve the speed of Fugue.

It is important to note that Fugue is not equivalent to fully asynchronous computa-
tion (e.g., Hogwild [167]), in which every worker can proceed to arbitrary data points,
variables and parameters, without regard to what other workers are doing. Fugue re-
quires that all workers advance to the next sub-epoch at the same time, in order to
preserve independence between parallel blocks (and thus the martingale condition).
Bounded-synchronization schemes like Stale Synchronous Parallel [54, 96] may allow
Fugue to advance workers to different sub-epochs at different times, thus increasing the
effectiveness of fast workers without losing convergence guarantees. Through careful
scheduling of blocks to workers, we could combine and trade-off the diminishing re-
turns of reused datapoints with the staleness of parameters. This is an interesting and
promising direction for future research.

10.5 Experiments

We now test Fugue in a wide variety of settings to demonstrate its success and to
understand its improvements.

10.5.1 Experimental Setup

We compare Fugue implemented on Hadoop to three self-implemented baselines: (a) Bar-
rieredFugue on Hadoop (the same system as Fugue, but without the additional updates for
fast workers when waiting at a barrier to synchronize), (b) Parallel SGD [243] on Hadoop,
and (c) constrained Matrix Factorization on distributed GraphLab [149], a modification
of the default GraphLab matrix factorization toolkit that regularly projects variables
to maintain constraints (without altering the input graph). We test all methods on our
3 latent space models: topic modeling, dictionary learning, and mixed-membership

195

network decomposition. All methods were tuned to their optimum parameters.
Compared to the baselines, our method has several theoretical and practical advan-

tages: unlike BarrieredFugue, our algorithm allows fast workers to continue doing work
while waiting for slow workers to synchronize, and unlike PSGD, we explicitly partition
the data/variables/parameters into collections Cij = {Yij, πi·, β·j} instead of averaging
updates over all data points. Finally, we note that GraphLab is poorly-suited for im-
plementing the simplex and inner-product constraints required by our topic modeling,
dictionary learning and mixed-membership network decomposition models. This is
because the constraints are over entire matrix rows, creating dependencies over all row
variables—which is especially problematic for topic modeling, because the vocabulary
matrix β has V columns, and V can be ≥ 100K words in practice. As we shall show, such
long-range dependencies hurt GraphLab’s performance, because GraphLab picks sets of
variables for updating without regard to the constraints—whereas a better strategy is to
schedule as many dependent elements together as possible.

Cluster Hardware The Hadoop algorithms (ours, BarrieredFugue, PSGD) were run
on a Hadoop cluster with the following machine specifications: 2x Intel Xeon E5440 @
2.83GHz (8 cores per machine), 16GB RAM, 10Gbit Ethernet. Because the Hadoop cluster
did not support MPI programs, we ran GraphLab on a newer cluster with the following
machine specifications: 2x Intel Xeon E5-2450 @ 2.1-2.9GHz (16 cores per machine),
128GB RAM, 10Gbit Ethernet. Thus, the GraphLab experiments have significantly more
memory, but slightly slower processors.

Dataset Dimensions Nonzeros Size (GB)

ImageNet 0.63 ∗ 106×1,000 0.63 ∗ 109 7.99
WebGraph 0.28 ∗ 106 × 0.28 ∗ 106 0.31 ∗ 109 4.46

NyTimes 0.3 ∗ 106×102,660 0.1 ∗ 109 1.49
NyTimes4 1.2 ∗ 106×102,660 0.4 ∗ 109 6.08
NyTimes16 4.8 ∗ 106×102,660 1.6 ∗ 109 25.12
NyTimes64 19.2 ∗ 106×102,660 6.4 ∗ 109 103.4
NyTimes256 76.8 ∗ 106×102,660 25.6 ∗ 109 421.42

Table 10.1: Dimension, filesize and nonzero statistics for our datasets. The biggest dataset
(NyTimes256) is approximately 0.4 terabytes. Note that the ImageNet dataset is 100%
dense.

Datasets Statistics for all datasets are summarized in Table 10.1. For topic modeling,
we simulated datasets of various sizes, using the 300K-document NY Times dataset as a

196

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

TM DL MMND

T
im

e
 t

o
 C

o
n

v
e

rg
e

 (
s

e
c

o
n

d
s

)

Model

Fugue
B. Fugue

GraphLab
PSGD

(a) Absolute time

 0

5x

10x

15x

20x

25x

30x

TM DL MMND

T
im

e
s

 S
lo

w
e

r
th

a
n

 F
u

g
u

e

Model

Fugue
B. Fugue

GraphLab
PSGD

(b) Time relative to Fugue

Figure 10.2: Time taken by all methods to converge on the three ML models, on an
absolute scale (left) as well as a relative scale (right). The methods plateau at these values
in the respective plots shown in Figure 10.3. The bar for PSGD is absent in the figure as it
never reaches 0.059 and stops around objective value 0.092.

building block. The resulting β matrices contain 102,660 columns (words), and between
1.2M to 76.8M rows (documents); zero word counts are treated as missing entries. For
dictionary learning, we used a 630,716-image (rows) sample from ImageNet [62], with
1000 features per image (columns). The resulting matrix is fully dense (no missing
entries). For mixed-membership network decomposition, we used the Stanford web
graph [139], with 281,903 vertices (rows and columns). The resulting adjacency matrix
contains all edges, as well as 0.5% of the non-edges (all other non-edges are treated as
missing entries).

Stopping Criteria and Parameter Tuning We stop each method when its objective
value reaches 0.0065 (TM), 0.059 (MMND), or 0.49 (DL). These are the values at which all
methods were observed to plateau (Figure 10.3).

10.5.2 Empirical Results

We now compare Fugue to previous methods in terms of convergence, scalability, re-
source utilization, and overall speed.

Convergence We first compare the convergence of Fugue to the other three methods.
As we observe in Figure 10.3, Fugue converges faster and to a better solution than
all three baselines, on all three ML models. We note that GraphLab sometimes takes
more than twice as long as Fugue to converge (noting that the GraphLab machines
had a slightly slower average clock-speed). Moreover, GraphLab sometimes oscillates

197

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0 1000 2000 3000 4000 5000 6000 7000

O
b

je
c
ti

v
e
 V

a
lu

e

Time (seconds)

Fugue
Barriered Fugue

GraphLab
PSGD

 0.0063

 0.0065

 0.0067

 0.0069

 0 1000 2000

(a) Topic Modeling

 0.45

 0.5

 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0 4000 8000 12000 16000 20000

O
b

je
c
ti

v
e
 V

a
lu

e

Time (seconds)

Fugue
Barriered Fugue

GraphLab
PSGD

(b) Dictionary Learning

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 2000 4000 6000 8000 10000

O
b

je
c
ti

v
e
 V

a
lu

e

Time (seconds)

PSGD
GraphLab
B. Fugue

Fugue

 0.05

 0.07

 0.09

 0.11

 0.13

 0 2500 5000

(c) MMND

Figure 10.3: Convergence plots for the three models (TM, DL, MMND), under our Fugue
and baselines (BarrieredFugue, PSGD, GraphLab). Unless otherwise stated in the plot,
all methods were run with 16 cores and rank K = 25. We observe objective trajectory
and final value of each method.

because its local vertex synchronization prevents it from applying the global projections
frequently enough.

Scalability We next compare the ability of Fugue to scale topic modeling relative
to GraphLab and PSGD. As can be seen in Figure 10.4, Fugue converges faster (on
topic modeling) for any number of topics and documents, and generally requires fewer
processors to converge quickly.

Resource Utilization In Figure 10.5, we observe the minimum number of machines
Fugue and GraphLab require for topic modeling on fixed a number of documents. The
primary reason for needing more machines is memory, and we see that GraphLab
requires additional machines at a faster rate (despite having 128GB per 16-core machine),
whereas Fugue scales much more gently (even with only 16GB per 8-core machine). This
is because Fugue uses Hadoop and HDFS, so it never loads the entire model into memory
(unlike GraphLab). In fact, GraphLab runs out of memory so quickly, that it cannot scale
past 20 million documents on a 128GB machine (see Figure 10.4(c)).

Overall Speed Comparison Last, we compare the total wall-clock time for all of the
methods to converge on all of the problems. As can be seen in Figure 10.2, Fugue
consistently outperforms competing methods over all three models: topic modeling,
mixed-membership network decomposition, and dictionary learning. Fugue is faster
by anywhere between 2.6× (versus GraphLab on TM) to 26.2× (versus GraphLab on
Dictionary Learning).

198

 0

 2000

 4000

 6000

 8000

 10000

 12000

 0 100 200 300 400 500 600 700 800 900 1000

T
im

e
 t

o
 c

o
n

v
e

rg
e

 (
s

e
c

o
n

d
s

)

Rank (# of topics)

PSGD
GraphLab

Barriered Fugue (16 cores)
Barriered Fugue (8 cores)

Fugue (16 cores)
Fugue (8 cores)

 0

 500

 1000

 1500

 2000

 0 50 100 150 200

(a) Scaling in number of topics

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 10 20 30 40 50 60 70

T
im

e
 t

o
 c

o
n

v
e

rg
e

 (
s

e
c

o
n

d
s

)

Number of Cores

GraphLab
B. Fugue

Fugue

(b) Scaling in number of cores

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 0 10 20 30 40 50 60 70 80

GraphLab and
PSGD run out
of memory

T
im

e
 t

o
 c

o
n

v
e

rg
e

 (
s

e
c

o
n

d
s

)

Number of documents (millions)

PSGD
GraphLab
B. Fugue

Fugue

 0

 2500

 5000

 0 5 10 15 20

(c) Scaling in number of documents

Figure 10.4: Scalability plots for TM under our Fugue and baselines (BarrieredFugue,
PSGD, GraphLab). Unless otherwise stated in the plot, all methods were run with 16
cores, rank K = 25, and with the NyTimes4 dataset (Table 10.1). We observe how well
each method fares as we increase the (a) problem rank, (b) number of processor cores,
and (c) data size.

10.5.3 Why Fugue Succeeds

Compared to BarrieredFugue and PSGD, Fugue succeeds because it (1) it partitions both
data and model variables to account for dependencies (which PSGD lacks), while (2) it
allows faster workers to do more work before synchronization (which BarrieredFugue
lacks). In particular, PSGD must hold the whole model on each machine due to non-
partitioning (a memory bottleneck for rank K ≥ 100). Moreover, PSGD needs one
machine to average all models (a computational bottleneck), hence it does not scale well
with additional cores (and does not even finish on MMND).

Table 10.2 provides insights about slow and fast workers in Fugue. For example, dense
input matrices (e.g., our dictionary learning dataset) result in balanced workloads, thus
every worker is equally balanced. On the other hand, the topic-word matrix constraints

199

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70 80

GraphLab runs out of memory.
Can’t reach max size
with 96 cores.

N
u

m
b

e
r

o
f

c
o

re
s

 r
e

q
u

ir
e

d
(1

6
,2

4
,3

2
,6

4
,

o
r

9
6

)
Number of documents (millions)

GraphLab
Fugue

Figure 10.5: Comparing the minimum number of machines needed for a given topic
modeling dataset for Fugue and GraphLab.

Fugue Model Wait/Sync Time Epoch Time

Dictionary Learning 32.6 471
Topic Modeling 152.7 391
MM Network Decomp. 182 692

Table 10.2: Comparison of synchronization time vs epoch time, for each ML model
under Fugue. Dictionary learning has the smallest wait:epoch ratio, because the input
matrix is fully dense (hence every worker has the same workload). In contrast, Topic
Modeling has the highest wait:epoch ratio, because the normalization constraints on the
topic-word matrix impose additional synchronization costs. More waiting means faster
workers perform more updates, so TM converges in fewer iterations than DL.

in topic modeling increase inter-epoch synchronization times, providing an opportunity
for workers to conduct extra updates.

Although Fugue exhibits good performance, there remain areas for improvement—
for example, Fugue exhibits diminishing returns going from 16 to 32 cores on topic
modeling. This is due to increased synchronization costs, which dominate the com-
putational benefits from using additional cores. We expect that moving from Hadoop
to a parameter server system [96] will alleviate the synchronization bottleneck, thus
allowing Fugue to harness more machines. Furthermore, while Fugue’s row/column-
wise partitioning strategy for data/variables/parameters works well for the latent space
models we have presented, it does not apply to all possible ML models: for example,
graphical models and deep networks can have arbitrary structure between parameters
and variables, while problems on time-series data will have sequential or autoregressive
dependencies between datapoints. In such cases, a row/column-wise partitioning will
not work. Nevertheless, the idea and basic theoretical analysis of grouping data, variables

200

and parameters into independent collections still holds; only the partitioning strategy
needs to be changed. This opens up rich possibilities for future work on general-purpose
partitioning algorithms under our framework.

10.6 Generality and Applicability to Bayesian models

We have thus far demonstrated how to parallelize and distribute learning latent factor
models with stochastic gradient descent, and have demonstrated the usefulness of these
algorithms across a wide variety of model structures, from coupled tensor factorization
to dictionary learning. These same techniques for distributed learning can be applied
to using Bayesian learning algorithms to learn Bayesian collaborative filtering models.
As was discussed in Part III, there are wide variety of successful Bayesian collabora-
tive filtering models, e.g., Matchbox [202], TrueSkill [95], Bayesian Probabilistic Matrix
Factorization [188], and our CoBaFi model (Ch. 6). These models obey a very similar
dependency structure as the other models discussed in Part IV, but use Bayesian learning
algorithms to infer the model parameters.

We demonstrate the generality and applicability of these techniques to distributed
learning of Bayesian collaborative filtering models in [32]. There, we use the expectation
propagation (EP) algorithm [158], where each observed rating sends a message (in the
form of a Gaussian distribution) to each parameter involved in generating that rating.
These messages form a fixed-point system that needs to be iterated until convergence.
The fixed-point updates in EP exhibit the same natural parallelism exploited in the past
two chapters. As such, we can perform a similar partitioning of our data and model,
allowing us to run updates on each block within a stratum simultaneously without inter-
ference. In the case of parts of the model that are shared across blocks, such as conjugate
priors, we can exploit the SSP ideas from parameter servers [96, 141]. [32] provides
additional contributions such as distributing a probabilistic programming language and
techniques for improving resource utilization when using Bayesian inference algorithms
as compared to SGD, as described here.

10.7 Summary

In conclusion, we have developed Fugue, a slow-worker agnostic algorithm for dis-
tributed learning of latent space models such as topic modeling, dictionary learning
and mixed-membership network decomposition. Our method takes advantage of both
data/model partitioning and extra computational time on fast workers to achieve faster
empirical convergence. In terms of empirical performance, our method combines the best
ideas from DSGD and FlexiFaCT (data and model variable partitioning) and PSGD (addi-
tional work before synchronization) to yield performance better than either baseline, and

201

is able to tackle highly constrained problems, which GraphLab falters on. Although our
method is implemented in Hadoop, it could likely be improved by being implemented
on newly-emerging Big ML systems, such as parameter servers [96, 141], to reach higher
performance and data scales.

202

Part V

Concluding Remarks

203

Chapter 11

Conclusion

In this dissertation, we have taken a graph-based perspective to understanding, modeling,
and predicting user behavior. Taken together, the work has pushed forward the frontier
of user behavior modeling in multiple directions, with both academic contributions and
broader impact. We give an overview of these points below.

11.1 Contributions

In this dissertation we have offered a variety of novel algorithms, models, and systems
to overcome user behavior modeling challenges:

• Modeling Abnormal Behavior: In Part II we develop stronger fraud detection
algorithms by modeling how fraudsters work:

Detect Fraud in Static Graphs: CatchSync (Ch. 3), using only the structure
of graphs, detects fraud on both Twitter and Tencent Weibo. We demonstrate
that it can scale to 3 billion edges and improves detection accuracy by up to
36%.

Detect Fraud in Graphs with Time: By modeling the temporal patterns of
fraudsters, CopyCatch (Ch. 4) detects illegitimate Page Likes on Facebook.
Through careful design and implementation, CopyCatch is distributed on
Hadoop, runs on Facebook’s 10-billion edge Page Like graph, and detects both
fake and hijacked accounts.

Detect Fraud in Graphs with Multiple Attributes: Multiple attributes can be
indicative of suspicious behavior. By flexibly taking into account all attributes,
including time and IP addresses, CrossSpot (Ch. 5) finds retweet boosting and
hashtag hijacking on Tencent Weibo and improves over previous techniques
by up to 68%.

• Modeling Normal Behavior: In Part III, we develop novel models of user behavior

205

that provide better understanding of recommendations:

Flexible Models for Normal and Abnormal Behavior: To capture the wide
variety of behavior online, CoBaFi (Ch. 6) gives a highly flexible model of
user behavior. We demonstrate that CoBaFi can cluster spammers, finds both
bimodal and Gaussian rating distributions, and improves prediction accuracy
by up to 17%.

Interpretable Recommendations: To make recommender systems inter-
pretable, we design a succinct additive co-clustering model of user behavior.
ACCAMS (Ch. 7) matches the accuracy of state-of-the-art methods, while
having a 4 times smaller model.

Explaining Recommendations: To actually explain recommendation to users,
we build on Chapter 7 and jointly model text reviews along with ratings. In
Chapter 8, we offer PACO, a Poisson additive co-clustering model with an
efficient Gibbs sampler. PACO predicts what words an individual would use
in describing his feelings for a particular item.

• Scalable Machine Learning: In Part IV, we design distributed systems to scale
user behavior modeling:

Distributed Modeling of Attributed Hypergraphs: To model attributed
hypergraphs, FlexiFaCT (Ch. 9) distributes coupled tensor factorization. Flexi-
FaCT handles a variety of objective functions and scales to billions of parameters.

Fast in the face of Stragglers: Fugue (Ch. 10) overcomes the bottlenecks of
slower machines called stragglers by exploiting the randomness of stochastic
optimization. We demonstrate Fugue’s effectiveness in topic modeling, dictio-
nary learning, and community detection, improving convergence time by up
26 times over previous methods.

206

11.2 Impact

In addition to the intellectual contributions, this work has already had broad impact
across academia and industry:

• Academic Recognition:

CatchSync [108], from Chapter 3, was a Best Paper Finalist in KDD 2014, and
was invited to the TKDD special issue for “Best of KDD 2014” [111].

FlexiFaCT [30], from Chapter 9, is the most cited paper of SDM 20141.

• Industry adoption:

CopyCatch (Ch. 4) was used for years by Facebook to detect fraud.

Other researchers have extended CopyCatch to detect fraud at both Instagram
[42] and YouTube [143].

We built on the ideas of Part II also to detect fraud for Flipkart [100]

We were granted a patent for CopyCatch [34], which was assigned to Face-
book.

• Open-source code:

We open-sourced ACCAMS (Ch. 7), and it has been accessed over 150 times
from over 15 universities.

We open-sourced FlexiFaCT (Ch. 9), and it has been forked seven times on
Github.

• Education:

CopyCatch (Ch. 4) was included in Carnegie Mellon University’s “Multimedia
Databases and Data Mining” (15-826) course as well as the University of
Florida’s “Social Network Computing” (CIS 6930) course.

FlexiFaCT (Ch. 9) and Fugue (Ch. 10) have been taught in Carnegie Mellon
University’s “Machine Learning with Large Datasets” (10-805).

1Based on scholar.google.com/scholar?cites=7979229435915048938, as of January 1, 2016.

207

http://cs.cmu.edu/~abeutel/accams
http://cs.cmu.edu/~abeutel/flexifact
https://www.cs.cmu.edu/~christos/courses/826.F14/proj.html
https://www.cs.cmu.edu/~christos/courses/826.F14/proj.html
http://optnetsci.cise.ufl.edu/class/cis6930fa15/schedule.html
http://curtis.ml.cmu.edu/w/courses/index.php/Machine_Learning_with_Large_Datasets_10-605_in_Spring_2015
https://scholar.google.com/scholar?cites=7979229435915048938

208

Chapter 12

Overarching Vision and Future Work

We conclude by taking a step back to see the broad trends developed in this dissertation,
and to follow these trends into the future.

12.1 Big Picture—Thesis Statements

Beyond the individual contributions offered by each chapter independently, this disser-
tation offers the following overarching research principles:

T1. Making use of Interaction Context: We believe that the contextual data acquired
when a user interacts with the world around them, which is captured as edge
attributes in our graphs, is interesting and valuable. We develop new techniques
that make use of these edge attributes and demonstrate that we can move beyond
asking “who” and “what” and instead now ask “how” and “why:”

Modeling how fraudsters work: In Chapters 4 and 5, we model how fraud-
sters work, considering the time of interactions and IP addresses used, and as
a result we better detect and limit fraud.

Understanding why users like certain items: In Part III we design simple
models of both ratings and text reviews, and as a result, we can understand
not just what items a user would like, but also predict how he would describe
why he likes or dislikes them.

Model attributed hypergraphs at scale: By viewing attributed hypergraphs
as coupled matrices and tensors, FlexiFaCT in Chapter 9 efficiently learns
models of them at scale.

T2. Normal and Abnormal Behavior—Two Sides of the Same Coin: In the past, work
on fraud detection and recommender systems have typically resided in separate
communities. We believe that unifying these perspectives is valuable, and demon-
strate that insights from one domain can be useful to the other:

209

Co-clustering for understanding: For example, we demonstrate that co-
clustering can be a highly useful technique for both detecting fraud, as in
Chapters 4 and 5, as well as for recommender systems, as in Chapters 6, 7, and
8.

Finding fraudsters when making recommendations: Additionally, we find
cases where these perspectives can be directly merged. In Chapter 6, we build
on insights from fraud detection literature [110, 112, 183, 190] to design a
recommender system capable of detecting groups of fraudulent users.

T3. Bridging Models and Scalable Systems: Throughout this dissertation, we believe
that it is important to scale behavior models, and demonstrate that by under-
standing the dependency structure of user behavior models and the properties of
learning algorithms, we can design highly scalable user behavior models:

Scalable Fraud Detection: In Chapter 4, we scale our CopyCatch algorithm
to Facebook’s massive graph with over 10 billion edges and 300 gigabytes of
data.

Scalable Coupled Tensor Factorization: In Chapter 9, by making use of the
structure of tensor factorization, we distribute coupled tensor factorization
with FlexiFaCT, scaling learning to billions of parameters.

Scaling Machine Learning in Chaotic Clouds: In Chapter 10 we distribute
factorization models in cloud environments where not all machines are equally
fast and, as a result, there are stragglers. By exploiting the stochastic properties
of machine learning algorithms, Fugue outperforms competitors by up to 26
times.

12.2 Future Directions

Building on theses success for graph-based user behavior modeling, there are three
main challenges going forward to make hypergraphs broadly useful: (1) solve modeling
challenges in new applications, focused on where our prior research can have the greatest
impact and where new tools need to be developed, (2) develop new modeling techniques
that address the practical limitations of classic modeling techniques but are general
enough to be used across a wide variety of applications, (3) develop systems for scalable
learning of models of large, complex networks. Through bridging these three challenges,
we can develop new insights and holistic solutions to maximize real-world impact. We
discuss the research opportunities and challenges for each of these areas below.

210

12.2.1 Application Outreach

First and foremost, it is important to expand the use of graph modeling to new applica-
tions. As described above, all relational databases can be considered large hypergraphs.
As a result, there are fascinating opportunities in healthcare, education, security, dis-
tributed systems, financial systems, and many other fields. For example, in education
can we predict what resources make a student enter or leave a field? What factors cause
a student to misunderstand a concept, and what resources resolve that confusion? In
healthcare, what combinations of unrelated diseases or treatments develop together?
Can we predict when a treatment plan will fail, based on the circumstances of the patient?
Through modeling graphs, we can change the way these fields develop, enabling new
types of questions to be asked and giving actionable answers. By closely collaborat-
ing with researchers and practitioners in these fields, we can understand the unique
constraints of their problems and develop custom, useful solutions.

12.2.2 Modeling and Algorithms

The second challenge is to develop general techniques for understanding attributed
hypergraphs. For example, how do we find which relation types and attributes are
important? In this regard, deep learning, which has been remarkably successful for
modeling images and text and remarkably unused for modeling graphs, presents exciting
potential. At a higher level, parts of the graph, edges or attributes, may have relevant
meaning that we want to include. How can we include the insights of economics or
biology in our models? To be concrete and to generalize on the work in this dissertation:
how can we include arbitrary incentive functions and economic models, such as the
cost and profit opportunities for fraudsters, in our models of graphs? In other fields,
can we find behavior that overfits to economic incentives rather than predictive models,
such as risk-averse doctors over-medicating or over-testing? Designing algorithms to
understand attributed graphs and incorporate our intuition on these attributes will lead
to more accurate and powerful models.

12.2.3 Scalable Machine Learning

The strength and opportunity in modeling graphs comes from the ability to jointly
understand many complex interactions. Therefore, by improving the scalability of our
learning algorithms and models, we can directly increase the impact of these models. In
scaling graph models, there are multiple ongoing challenges: How can we learn more
complex models, of more entities and more attributes, with more data? How can we
learn these models quickly? When should we trade off accuracy for speed? Building
scalable, flexible, and expressive systems for modeling large complex hypergraphs will
improve the development of new models and the usefulness of those models in practice.

211

212

Appendices

213

Appendix A

CatchSync Proofs

Here we provide the proof of Theorem 1 from Chapter 3, which defines a parabolic lower
limit in the synchronicity-normality relationship. This proof was originally presented in
[108], with major contributions by Meng Jiang, and is included for completeness.
Proof 14 In order to find the lower limit of synchronicity when given a normality, we define the
problem as follows.

Given G grids, fg and bg counts of points (fg ≤ bg) from the foreground/background cloud
in grid g (g = 1, . . . , G), the normality n of ~f , find values of ~f to minimize the synchronicity s.

Remind that (1) the synchronicity s is the synchronicity of foreground points, i.e., the dot
product of (unit sum) foreground with the same foreground: s =

∑
g

f2
g

F 2 ; (2) the normality n is
the dot product of (unit sum) foreground with (unit sum) background: n =

∑
g
fgbg
FB

.

Let B(F) be the total counts:
∑
fg = F and

∑
bg = B. Let b̂g = bg/B and similarly

f̂g = fg/F . Thus, the resulting vectors sum up to one (“probability vectors”). The problem
definition is updated as follows.

Given a (probability) vector ~̂b with M entries (M ≤ G), find a (probability) vector ~̂f with

given normality n =
~̂
f · ~̂b =

∑
(f̂g ∗ b̂g) and minimum synchronicity s =

~̂
f · ~̂f =

∑
f̂ 2
g , and

report both the optimal such vector ~̂fopt, as well as the minimum synchronicity smin.

The method of Lagrange multipliers is a well-known strategy for finding the local minima
(maxima) of a function subject to equality constraints. Here the Lagrange function is

F(f̂g, λ, µ) = (
∑
g

f̂ 2
g) + λ(

∑
g

f̂g − 1) + µ(
∑
g

(f̂g ∗ b̂g)− n) (A.1)

The gradients of the function are

∂F/∂f̂g = 2f̂g + λ+ µb̂g = 0 g = 1, . . . ,M (A.2)

215

and the two initial conditions are

∂F/∂λ =
∑
g

f̂g − 1 = 0 (A.3)

∂F/∂µ =
∑
g

(f̂g ∗ b̂g)− n = 0 (A.4)

From Eq A.2 we have, after summing them all up:

2 +Mλ+ µ = 0 (A.5)

From Eq A.2 we have, after multiplying each with b̂g and summing them all up:

2 ∗ n+ λ+ µsb = 0 (A.6)

where we call sb the synchronicity of the background: sb =
∑

g b̂
2
g =

∑
g

b2g
B2 . Solving for µ we get

µ = −2−Mλ (A.7)

and substituting µ and for λ we get

λ = 2(sb − n)/(1−M ∗ sb) (A.8)

We can substitute the values of µ and λ into Eq A.2 and solve for each f̂g, or, even faster, we
multiply each of Eq A.2 with the corresponding f̂g and we add, obtaining:

2 ∗ s+ λ+ µn = 0 (A.9)

which gives that the (optimal) sopt satisfies

sopt = 1/2(−λ− µn) (A.10)

If the Hessian matrix is positive definite at a point, then the function is a convex function and it
attains a local minima at the point. Here the Hessian is a diagonal matrix with “2” in the first
M positions, and zeros everywhere else. So eventually the minimum synchronicity is

smin = (−Mn2 + 2n− sb)/(1−Msb) (A.11)

That is, the minimum synchronicity smin for a given normality n, is a quadratic function of n.

216

Appendix B

ACCAMS Approximation Guarantee

We provide here the formal proof for Theorem 2, with primary contributions by Alexan-
der J. Smola.
Definition 9 (Covering Number) Denote by B a Banach Space. Then for any given setB ∈ B
the covering number Nε(B) is given by the set of points

{
b1, . . . bNε(B)

}
such that for any b ∈ B

there exists some bj with ‖b− bj‖ ≤ ε.

Of particular interest for us are covering numbers Nε of unit balls and their functional
inverses εn. The latter are referred to as entropy number and they quantify the approx-
imation error incurred by using a cover of n elements [199, Chapter 8]. A key tool for
computing entropy numbers of scaling operators is the theorem of Gordon, König and
Schütt [83], relating entropy numbers to singular values.
Theorem 5 (Entropy Numbers and Singular Values) Denote by D a diagonal scaling op-
erator with D : `p → `p with scaling coefficients σi ≥ σi+1 ≥ 0 for all i. Then for all n ∈ N the
entropy number εn(D) is bounded via

εn(D) ≤ 6 sup
j∈N

(
n−1

j∏
i=1

σi

) 1
j

≤ 6εn(D) (B.1)

This means that if we have a matrix with rapidly decaying singular values, we only need
to focus on the leading largest ones in order to approximate all elements in the space
efficiently. Here the trade-off between dimensionality and accuracy is obtained by using
the harmonic mean.
Corollary 1 (Entropy Numbers of Unit Balls) The covering number of a ball B of radius r
in `d2 is bounded by

rn−
1
d ≤ εn(B) ≤ 6rn−

1
d . (B.2)

Proof 15 This follows directly from using the linear operator x → rx for x ∈ `d2. Here the
scaling operator has eigenvalues σi = r for all 1 ≤ i ≤ d and σi = 0 for i > d. The maximum in
(B.1) is always j = d.

217

With this we can now prove Theorem 2. This theorem states that we can approximate
R up to a multiplicative constant at any step, provided that we pick a large enough
clustering. It also means that we get linear convergence, i.e. convergence in O(log ε) steps
to O(ε) error, since the bound can be applied iteratively.
Theorem 6 (Approximation Guarantees) Denote by σ1, . . . σn the singular values of R.
Then using l clusters for rows and columns respectively the matrix R can be approximated
with error at most

‖R−R′‖∞ ≤ 2 ‖R‖ 1
2 εl

(
Σ

1
2

)
‖R−R′‖2 ≤ (

√
N +

√
M) ‖R‖ 1

2 εl

(
Σ

1
2

)
Here εl is given by Theorem 5 and Corollary 1 respectively.

Proof 16 Using the singular value decomposition of R into R = UΣV we can factorize
R = Q>P where Q = Σ

1
2 U and P = Σ

1
2 V. By construction, the singular values of Q and P

are Σ
1
2 . We now cluster the rows of Q and P independently to obtain an approximation of R.

For Q we know that its rows can be approximated by l balls with error εl
(
Σ

1
2

)
as per

Theorem 5. Also note that its row vectors are contained in the image of the unit ball under
Q—if they were not, project them onto the unit ball and the approximation error cannot increase
since the targets are within the unit ball, too. Hence the εl-cover of the latter also provides an
approximation of the row-vectors of Q by Q′ with accuracy εl, where Q′ contains at most l
distinct rows. The same holds for the matrix P, as approximated by P′. Hence we have∣∣Rij −

〈
Q′i:,P

′
j:

〉∣∣ =
∣∣〈Qi:,Pj:〉 −

〈
Q′i:,P

′
j:

〉∣∣
=
∣∣〈Qi: −Q′i:,Pj:〉+

〈
Q′i:,Pj: −P′j:

〉∣∣
≤ ‖Qi: −Q′i:‖ ‖Pj:‖+ ‖Q′i:‖

∥∥Pj: −P′j:
∥∥

≤ 2 ‖R‖ 1
2 εl

(
Σ

1
2

)
This provides a pointwise approximation guarantee.If we only have a bound on the rank and on
‖R‖, this yields

|Rij − 〈qi, rj〉| ≤ 12 ‖R‖ l 1
2d

Moreover, since each row in Q and P respectively will be approximated with residual bounded by
εl we can bound ‖Q−Q′‖ ≤ √mεl and ‖P−P′‖ ≤ √nεl respectively. This yields a bound on
the matrix norm of the residual via

‖[QP−Q′P′]x‖ ≤ ‖Q(P−P′)x‖+ ‖(Q−Q′)P′x‖
≤ (
√
N +

√
M) ‖R‖ 1

2 εl

(
Σ

1
2

)
‖x‖

This bounds the matrix norm of the residual.

218

Appendix C

FlexiFaCT Proof of Convergence

We provide here the complete proof for that FlexiFaCT, as given in Algorithm 13, con-
verges. The proof was originally given in [30], with major contributions by Abhimanu
Kumar; we provide the proof here for completeness. In Section 9.3 we first proved that
two blocks in a stratum are interchangeable. Here, we use this to prove that sequence of
strata are a regenerative process, defined later in this section. We use this to prove that
our FlexiFaCT approach for tensor and coupled case converges.

As describe previously, our generic constrained loss function for a tensor case is

L = L(U, V,W) + λu‖U‖1 + λv‖V ‖1 + λw‖W‖1

s.t. Ui,r, Vj,r,Wk,r ≥ 0.

In the above projected loss equation 9.10 the parameter is always in a set, P , constrained
by the `1 and non-negativity constraints. The set P is a hyperrectangle defined as
∃ ai < bi, i = 1 . . . r, such that P = {θ : ai ≤ θi ≤ bi} where ai, bi ∈ (−∞,∞). Here θ is
a parameter to be updated as defined in previous section (equation 9.3). The gradient
based on equation 9.10 is:

∇θL = ∇θL+ p(θ), p(θ) ∈ C(θ) (C.1)

where θ is defined in Table 9.2 and L and L are defined in equation 9.2. Function p()

is the projection or constraint term of the gradient. The set C(θ) is the union of the
subgradients at θ. When θ ∈ interior of P , C(θ) contains only the zero elements and
contains the convex cone generated by the subgradients at θ when θ ∈ ∂P , boundary of
P .

Based on Definition 7 and Theorem 3, we can begin to view our algorithm as a
regenerative process.
Definition 10 a process P (t), t ≥ 0 is regenerative if there exist time points 0 ≤ T0 < T1 <

T2 < . . . such that the the remainder of the process after Tk P (Tk + t) : t ≥ 0, for k ≥ 1 : (a) has

219

the same distribution as the remainder of the process after T0, and (b) process P (T0 + t) : t ≥ 0 is
independent of the process prior to Tk P (t) : 0 ≤ t < Tk.

In other words a stochastic process with certain time points such that from a proba-
bilistic view the process restarts itself at these time points is called a regenerative process.
Intuitively this means a regenerative process can be split in to i.i.d. cycles [24].

Based on equation 9.10 the projected SGD updates can be written as:

θt+1 = ΠP(θ(t) + ηt∇Lx(θ(t))) (C.2)

where ΠP() is the projection of the updated gradient with respect to the original loss
L(U, V,W). The projection step can be further broken up into

θt+1 = θ(t) + ηt∇Lsix (θ(t)) + ηtp(θ
(t)) (using (9.11))

= θ(t) + ηt∇L0(θ(t)) + ηtδMt + ηtβt + ηtp(θ
(t)) (C.3)

where Lsix (θ(t)) is the loss function at stratum si at a point x in iteration t given
parameter value in previous iteration θ(t) . ∇L0(θ(t)) is the exact gradient in iteration t
given previous parameter value θ(t). And

δMt = ∇Lsix (θ(t))−∇L0(θ(t))− βt (C.4)

where βt is the “error” before projection i.e. the error by which the update is outside P .

To prove the convergence of the method we define the following conditions, similar
to the ones defined in [77, 129]:

Condition 1. ∇L0(θ) is continuous.
Condition 2. ∇L0(θ(t)) is bounded in second moment: E[(∇L0(θ(t)))2] <∞ for all θ.
Condition 3. The squared sum of the step sizes ηt is bounded i.e.

∑
t η

2
t <∞.

Condition 4. The noise is martingale difference: E[δM(t+1)|δMi, i ≤ t] = δMt.
Condition 5. E[ηtβt] <∞with probability 1. Note that this is a condition on step-size.

It implicitly says that the projection must not wander off infinitely outside the set P over
the iterations.
Theorem 7 The distributed SGD algorithm for tensor decomposition with projections, as pre-
sented in algorithm 13, converges.

Proof. The primary equations being updated each time in our iterations is equa-
tion C.3. Rewriting it here we have:

θt+1 = θ(t) + ηt∇L0(θ(t)) + ηtδMt + ηtβt + ηtp(θ
(t)) (C.5)

From theorem 3 we can see that the individual blocks in a given stratum are inde-
pendent of each other’s updates and are interchangeable. We can also observe from

220

Algorithm 13 that every stratum out of d strata is picked exactly once in one cycle i.e.
one epoch (outer while loop). Moreover two different cycles of strata i.e. iterations of the
while loop are identical and independent. In other words the while loop forms an i.i.d
cycle, and thus a regenerative process. The time-period of cycles is finite and bounded
consequently that of the regenerative process too. Besides given all the conditions 1 to 5
as defined above, we have κ(t+t0)−1∑

i=0

(ηiδMi + ηiβi)

→ 0 (C.6)

for any arbitrary κ. The proof is similar to [129] and is valid due to the fact that noise
is a martingale difference sequence and ηiδMi and ηiβi are an equicontinuous sequence
([129] Theorem 2.1, part 1, chapter 5; [77] follows a similar proof up to this point). We
can now use this to analyze the updated with a projected loss. We find that equation C.3
has the same set of stable points as

θt+1 = θ(t) + ηt∇L0(θ(t)) + ηtp(θ
(t)) (C.7)

Now we show that equation C.7 converges. Through few algebraic manipulations
it can be verified that the projection functions p(·) we have, `1 soft threshold and non-
negativity constraint project, are Lipschitz continuous. Following the arguments of [129]
(theorem 2.1, part 2) and with the assumption that updates θ(t) are bounded (follow from
the conditions 1 to 5 assumed earlier), equation C.7 converges to a set of stationary points.
�

221

222

Appendix D

Fugue Proofs

We now provide the proofs of convergence as well as variance bounds for Fugue, as
described in Chapter 10. The proofs were originally published in [127], with primary
contributions by Abhimanu Kumar, and are provided here for completeness.

We begin with some new notation.
Definition 11 : State Potential Function (V)

V (t) encodes the probability that ψ(t) will be updated to ψ(t+1) when the algorithm
performs the stochastic update over datapoint y(t). We also define an ni-dimensional
state potential V =

(
V (t+1), V (t+2) . . . V (t+ni)

)
, which encodes the probability distribution

of updates caused by all ni iterations in block i of a sub-epoch (assuming that block i
starts at iteration t+ 1).

Convergence Proof: Theorem 4

First, using the definition of V t, we obtain the relation

p(ψ(t+1)|ψ(t))dψ(t) = p(V (t)(ψ(t+1), ψ(t)))dV (t)(ψ(t+1), ψ(t)). (D.1)

We can interpret this equation as follows: fix an particular update event ψ(t) → ψ(t+1),
then V (t)(ψ(t+1), ψ(t)) represents the event that some datapoint y(t) gets chosen, while
dV (t)(ψ(t+1), ψ(t)) is the probability that said choice leads to the update event ψ(t) → ψ(t+1).
The intuition here is that V (t) = V (t)(ψ(t+1), ψ(t)) is a function that keeps track of the state
of ψ(t) and ψ(t+1), and that depends on the datapoint Yi,j(t) chosen by the SGD update.

Next, by definition of a martingale difference sequence:

E
[
∇L(ψ(t))− δL(t)(V (t), ψ(t)) |
δL(i)(V (i), ψ(i)), ψ(i), i < t, ψ(t)

]
= 0,

E [εt|εi, i < t] = 0. (D.2)

223

In other words, the error term εt has zero expectation when conditioned on previous
errors. We now have the necessary tools to provide a convergence guarantee, as given in
Theorem 4.

From equation 10.4 we have

ψ(t+1) = ψ(t) − ηtδL(t)(V (t), ψ(t))

= ψ(t) − ηt∇L(ψ(t)) + ηt
[
∇L(ψ(t))− δL(t)(V (t), ψ(t))

]
= ψ(t) − ηt∇L(ψ(t)) + ηtεt (D.3)

Using ni and Nw as defined in equation 10.6

ψ(t+(
∑w

1 ni)m) = ψ(t) +

t+m(
∑w

1 ni)∑
i=t

−ηi∇L(ψ(i)) +

t+m(
∑w

1 ni)∑
i=t

ηiεi

=⇒ ψ(t+mNw) = ψ(t) +
t+mNw∑
i=t

−ηi∇L(ψ(i)) +
t+mNw∑
i=t

ηiεi

assuming
w∑
1

ni = Nw

=⇒ ψ(t+mNw) = ψ(t) +
t+mNw∑
i=t

−ηi∇L(ψ(i)) +MmNw (D.4)

where MmNw =
∑t+mNw

i=t ηiεi is a martingale sequence since it is a sum of martingale
difference sequence. mNw captures the m whole sub-epochs of work done as a whole
by all the workers combined. From Doobs martingale inequality (Friedman, 1975, ch. 1,
Thm 3.8)

P

(
sup

t+mNw≥r≥t
|Mr| ≥ c

)
≤
E

[(∑t+mNw
i=t ηiεi

)2
]

c2
(D.5)

where Mr =
∑r

i=t ηiεi. Lets look at the RHS of equation D.5 above:

E

(t+mNw∑
i=t

ηiεi

)2
 = E

[
mNw∑
i=1

(ηiεi)
2

]
(equation D.2 =⇒ E[εiεj] = 0 if i 6= j)

=
mNw∑
i=1

η2
iE[ε2

i] ≤
mNw∑
i=1

η2
iD → 0

where E[ε2
i] < D ∀i and assuming

∑
η2
i <∞

lim
t→∞

=⇒ P

(
sup
i≥t
|Mi| ≥ c

)
= 0 as t→∞ (D.6)

224

From equation D.6 we have

ψ(t+mNw) = ψ(t) +
t+mNw∑
i=t

−ηi∇L(ψ(i))

asymptotically.

Note that we do a theoretical analysis of the algorithm without projection steps.
Extending the proof to include projection can be done by using Arzela-Ascoli theorem
and the limits of converging sub-sequence of our algorithm’s SGD updates [129]. �

Within block variance bound

We now bound the variance of the model state ψ, when it is updated inside block i in a
sub-epoch.
Assumption 2 Assume for simplicity that the parameter being updated in block i is
univariate. The analysis can be easily extended to multivariate updates.

Theorem 8 Within block i, suppose we update the model state ψ using ni datapoints (Eq. 10.6).
Then the variance of ψ after those ni updates is

V ar(ψt+ni) = V ar(ψt)− 2ηtniΩ0(V ar(ψt))− 2ηtniΩ0CoV ar(ψt, δ̄t) + η2
t niΩ1

+O(η2
t ρt) +O(ηtρ

2
t) +O(η3

t) +O(η2
t ρ

2
t)︸ ︷︷ ︸

∆t

Constants Ω0 and Ω1 are defined in theorems 9 and 10 respectively.

225

Proof. We start with analyzing EV [u(ψ(t+ni))] term from lemma 10

EV [u(ψ(t+ni))] = EV [u(ψt + (−
ni∑
i=1

ηt+iδL
t+i(vt+i, ψt+i)︸ ︷︷ ︸
∇

))]

= EV [u(ψt)− du(ψt)

dψt
∇+

1

2

du2(ψt)

d(ψt)2
∇2 +O(η3

t)]

= u(ψt)− ηt
du(ψt)

dψt
EV [

ni∑
i=1

δLt+i(vt+i, ψt+i)] + η2
t

1

2

du2(ψt)

d(ψt)2
EV [(

ni∑
i=1

δLt+i(vt+i, ψt+i))2]

+O(η3
t)

(
since ηt = ηt+i within a block and expanding∇

)
= u(ψt)− ηt

du(ψt)

dψt

ni∑
i=1

dEV [Lt+i(vt+i, ψt+i)]

dψt+i
+ η2

t

1

2

du2(ψt)

d(ψt)2
EV [(

ni∑
i=1

dLt+i(vt+i, ψt+i)

dψt+i
)2]

+O(η3
t)

= u(ψt)− ηt
du(ψt)

dψt
(

ni∑
i=1

dEvt+i [Lt+i(vt+i, ψt+i)]
dψt+i

)(
using Lemma 12

)
+ η2

t

1

2

du2(ψt)

d(ψt)2

[
EV [

ni∑
i=1

(
dLt+i(vt+i, ψt+i)

dψt+i
)2] + EV [

∑
i 6=j

dLt+i(vt+i, ψt+i)

dψt+i
dLt+j(vt+j, ψt+j)

dψt+j
]

]
+O(η3

t)

= u(ψt)− ηt
du(ψt)

dψt
(

ni∑
i=1

dEvt+i [Lt+i(vt+i, ψt+i)]
dψt+i

) + η2
t

1

2

du2(ψt)

d(ψt)2

[ni∑
i=1

Evt+i [(
dLt+i(vt+i, ψt+i)

dψt+i
)2]

+ (
∑
i 6=j

dEvt+i [Lt+i(vt+i, ψt+i)]
dψt+i

dEvt+j [Lt+j(vt+j, ψt+j)]
dψt+j

)

]
+O(η3

t)(
using Lemma 13

)
(D.7)

226

From equation D.7 and lemma 10

Eψ(t+ni) [u(ψ(t+ni))] = Eψ(t)

[
u(ψt)− ηt

du(ψt)

dψt
(

ni∑
i=1

dEvt+i [Lt+i(vt+i, ψt+i)]
dψt+i

)

+ η2
t

1

2

du2(ψt)

d(ψt)2

[ni∑
i=1

Evt+i [(
dLt+i(vt+i, ψt+i)

dψt+i
)2]

+ (
∑
i 6=j

dEvt+i [Lt+i(vt+i, ψt+i)]
dψt+i

dEvt+j [Lt+j(vt+j, ψt+j)]
dψt+j

)

]]
+O(η3

t)

(D.8)

From equation above the variance of ψt+ni is

V ar(ψt+ni) = Eψ(t+ni) [(ψ(t+ni))2]−
(
Eψ(t+ni) [ψ(t+ni)]

)2

= Eψt [(ψt)2]− ηtniEψ
t

[2ψt(Ω0(ψt − ψ∗ + δ̄t) +O(ρ2
t))](

using theorem 9 and defining δ̄t =

∑ni
i=1 δi
ni

)
+ η2

t

1

2
Eψt [2{ni(Ω1 +O(E[ρt]) +O(ρ2

t))

+
∑
i 6=j

(Ω0(ψt+i − ψ∗) +O(ρ2
t))(Ω0(ψt+j − ψ∗) +O(ρ2

t))}]

−
(
Eψt [ψt]− ηtniEψ

t

[(Ω0(ψt − ψ∗ + δ̄t) +O(|ψt − ψ∗|2))]
)2

= Eψt [(ψt)2]− 2Ω0ηtniEψ
t

[(ψt)2] + 2Ω0ηtniψ∗Eψ
t

[ψt]− 2Ω0ηtniEψ
t

[ψtδ̄t]−O(ηtρ
2
t)

+ η2
t niΩ1 +O(η2

t ρt) +O(η2
t ρ

2
t) +O(η2

t ρ
3
t) +O(η2

t ρ
4
t)

−
(
Eψt [ψt]

)2

+ 2niηtEψ
t

[ψt](Eψt [Ω0ψ
t]− Ω0ψ∗ + Eψt [Ω0δ̄t] +O(ρ2

t))−O(η2
t ρ

2
t) +O(η3

t)

= V ar(ψt)− 2ηtniΩ0(V ar(ψt))− 2ηtniΩ0CoV ar(ψt, δ̄t) + η2
t niΩ1

+O(η2
t ρt) +O(ηtρ

2
t) +O(η3

t) +O(η2
t ρ

2
t)︸ ︷︷ ︸

∆t

(D.9)

�

Intra sub-epoch variance

Let us consider the variance of ψ across entire sub-epochs. First, note that within a sub-
epoch, two blocks Zi and Zi′ are independent if for each datapoint y ∈ Zi and y

′ ∈ Zi′ ,

227

the following holds:

∇Ly(ψ) = ∇Ly(ψ − η∇Ly′ (ψ))

and ∇Ly′ (ψ) = ∇Ly′ (ψ − η∇Ly(ψ)) (D.10)

In other words, even when the model state ψ is perturbed by the stochastic gradient on
y′, the stochastic gradient on y must not change (and vice versa). By our earlier argument
on collections Cij = {Yij, πi·, β·j}, this condition holds true for any pair of points from
distinct blocks. Thus, within a sub-epoch, distinct blocks Zi and Zi′ operate on disjoint
subsets of Ψ, hence their update equations are independent of each other. At the end
of a sub-epoch Sn+1, the algorithm synchronizes the model state ΨSn+1 by aggregating
the non-overlapping updates δψiSn+1

from all blocks Sin+1. Therefore, we can write the
variance V ar(ΨSn+1) at the end of sub-epoch Sn+1 as

V ar(ΨSn+1) =
w∑
i=1

V ar(ψiSn+1
) (D.11)

=
w∑
i=1

[
V ar(ψiSn)− 2ηSnniΩ

i
0(V ar(ψiSn))

− 2ηSnniΩ
i
0(CoV ar(ψiSn , δ̄

i
Sn)) + η2

SnniΩ
i
1 + ∆Sin

]
=V ar(ΨSn)− 2ηSn

w∑
i=1

niΩ
i
0V ar(ψ

i
Sn)

− 2ηSn

w∑
i=1

niΩ
i
0CoV ar(ψ

i
Sn , δ̄

i
Sn) + η2

Sn

w∑
i=1

niΩ
i
1 +O(∆Sn),

where the second line is proven below. The interpretation is similar to Theorem 8: when
far from an optimum, the negative terms dominate and the variance shrinks; when close
to an optimum, the positive Ωi

1 term dominates but is also shrinking because of the step
sizes η2

Sn
. Again, we can ignore the higher-order terms O(∆Sn).

We now prove the above relation:

ψ(t+1) = ψ(t) − δψ(t)(V (t), ψ(t))

(D.12)

where δψ(t)(V (t), ψ(t)) = η(t)δL(t)(V (t), ψ(t))⇒ ψ(t+1) = ψt − ηtδLt(V t, ψt)

Summing equation D.12 over ni, the number of points updated in block i of a sub-epoch

ψt+ni = ψt −
ni∑
i=1

ηt+iδL
t+i(V t+i, ψt+i)

(D.13)

228

As defined earlier, V denotes the joint potential for all the ni points encountered in
block i. The equation D.1 for V is

p(ψ(t+ni)|ψt)dψ(t+ni) = p(V (ψ(t+ni), ψt))dV

⇒ p(ψ(t+ni))dψ(t+ni) =

∫
ψt
p(ψ(t+ni)|ψt)p(ψt)dψtdψ(t+ni) =

∫
ψt
p(V (ψ(t+ni), ψt))dV p(ψt)dψt

(D.14)

Lemma 10 Let u(ψ(t+ni)) be a function of ψ(t+ni) then

Eψ(t+ni) [u(ψ(t+ni))] = Eψt [EV [u(ψ(t+ni))]]

Proof. From equation D.14

Eψ(t+ni) [u(ψ(t+ni))] =

∫
ψ(t+ni)

u(ψ(t+ni))p(ψ(t+ni))dψ(t+ni)

=

∫
ψt+i

u(ψ(t+ni))P (ψ(t+ni))dψ(t+ni)

=

∫
V

∫
ψt
u(ψ(t+ni))P (V (ψ(t+ni), ψ))dV P (ψt)dψt

= Eψt [EV [u(ψ(t+ni))]]

�

Lemma 11

EV [δLt+i(vt+i, ψt+i)] =
dEV [Lt+i(vt+i, ψt+i)]

dψt+i

Proof. Due to randomness in picking the point to be updated in iteration t+ i We have

EV [Lt+i(vt+i, ψt+i)] =

∫
L(y, ψt+i)dy

⇒ dEV [Lt+i(vt+i, ψt+i)]

dψt+i
= EV [

dLt+i(vt+i, ψt+i)

dψt+i
] = EV [δLt+i(vt+i, ψt+i)]

�

Lemma 12
EV [Lt+i(vt+i, ψt+i)] = Evt+i [Lt+1(vt+i, ψt+i)]

Proof.

229

Using the definition of V t+i in equation D.1, the fact that V is a joint variable of each
V t+i and an any iteration t+ i the chance of picking any data point is completely random
and independent of any other iteration.

EV [Lt+i(vt+i, ψt+i)] = Evt+i [Lt+1(vt+i, ψt+i)]

�

Lemma 13

EV [
dLt+i(vt+i, ψt+i)

dψt+i
dLt+j(vt+j, ψt+i)

dψt+j
] =

dEvt+i [Lt+i(vt+i, ψt+i)]
dψt+i

dEvt+i [Lt+i(vt+i, ψt+i)]
dψt+i

Proof. Two different data points picked at iteration (t+ i) and (t+ j) are independent of
each other. Using this fact and the definition of potential function V in equation D.14

EV [
dLt+i(vt+i, ψt+i)

dψt+i
dLt+j(vt+j, ψt+i)

dψt+j
] = EV [

dLt+i(vt+i, ψt+i)]

dψt+i
]EV [

dLt+j(vt+j, ψt+i)

dψt+j
](

using lemma 11
)

=
dEV [Lt+i(vt+i, ψt+i)]

dψt+i
dEV [Lt+j(vt+j, ψt+j)]

dψt+j(
using lemma 12

)
=
dEvt+i [Lt+i(vt+i, ψt+i)]

dψt+i
dEvt+j [Lt+j(vt+j, ψt+j)]

dψt+j

�

Theorem 9 We define ψ∗ as the global optima and Ω0 as the Hessian of the loss at ψ∗ i.e.
Ω0 = d2E[L(ψ∗)]

dψ2
∗

(assuming that ψ is univariate) then

dEvt+i [Lt+i(vt+i, ψt+i)]
dψt+i

= Ω0(ψt − ψ∗ + δi) +O(ρ2
t)

where O(ρ2
t) = O(|ψt+i − ψ∗|2) with the assumption that O(ρt+i) is small ∀i ≥ 0 and δi =

ψt+i − ψt.
Proof. Lets define φ(ψt+i) = Evt+i [Lt+i(vt+i, ψt+i)] Using Taylor’s theorem and expanding
around ψ∗

φ(ψt+i) = φ(ψ∗) +
dφ(ψ∗)

dψ∗
(ψt+i − ψ∗) +

(ψt+1 − ψ∗)2

2

d2φ(ψ∗)

dψ2
∗

+O((ψt+i − ψ∗)3)

= φ(ψ∗) +
(ψt+i − ψ∗)2

2

d2φ(ψ∗)

dψ2
∗

+O((ψt+i − ψ∗)3)

(
as

dφ(ψ∗)

dψ∗
= 0 at optima

)
⇒ dφ(ψt+i)

dψt+i
= (ψt+i − ψ∗)

d2φ(ψ∗)

dψ2
∗

+O((ψt+i − ψ∗)2)

⇒ dEvt+i [Lt+i(vt+i, ψt+i)]
dψt+i

= Ω0(ψt − ψ∗ + δi) +O(ρ2
t)

(
with the assumption that O(ρt) is small

we have O(ρ2
t+i) = O(ρ2

t)

)
230

�

Theorem 10 With ψ∗ as defined in theorem 9 and assuming that ψ is univariate we have

Evt+i [(
dLt+i(vt+i, ψt+i)

dψt+i
)2] = Ω1 +O(E[O(ρt)]) +O(ρ2

t)

where O(ρ2
t) and δi are as defined in theorem 9 and Ω1 = Evt+i [(dL

t+i(vt+i,ψ∗)
dψ∗

)2]

Proof. Expanding Lt+i(vt+i, ψt+i) around ψ∗ using Taylor’s theorem

Lt+i(vt+i, ψt+i) = Lt+i(vt+i, ψ∗) +
dLt+i(vt+i, ψ∗)

dψ∗
(ψt+i − ψ∗)

+
1

2

d2Lt+i(vt+i, ψ∗)

dψ2
∗

(ψt+i − ψ∗)2 +O((ψt+i − ψ∗)3)

⇒ dLt+i(vt+i, ψt+i)

dψt+i
=
dLt+i(vt+i, ψ∗)

dψ∗
+
d2Lt+i(vt+i, ψ∗)

dψ2
∗

(ψt+i − ψ∗) +O((ψt+i − ψ∗)2)

⇒ Evt+i [(
dLt+i(vt+i, ψt+i)

dψt+i
)2] = Evt+i [(

dLt+i(vt+i, ψ∗)

dψ∗
)2

+2
dLt+i(vt+i, ψ∗)

dψ∗

d2Lt+i(vt+i, ψ∗)

dψ2
∗

(ψt+i − ψ∗) +O((ψt+i − ψ∗)2)]

⇒ Evt+i [(
dLt+i(vt+i, ψt+i)

dψt+i
)2] = Ω1 +O(E[(ψt+i − ψ∗]) +O(ρ2

t)

= Ω1 +O(E[O(ρt)]) +O(ρ2
t)

�

Slow-worker agnosticism

We now explain why allowing fast processors to do extra updates is beneficial. In
Eq. D.11, we saw that the variance after each sub-epoch S depends on the number of
datapoints touched ni and the step size ηSn . Let us choose ηSn small enough so that the
variance-decreasing terms dominate, i.e.

2ηSn

w∑
i=1

niΩ
i
0V ar(ψ

i
Sn) + 2ηSn

w∑
i=1

niΩ
i
0CoV ar(ψ

i
Sn , δ̄

i
Sn)

> η2
Sn

w∑
i=1

niΩ
i
1. (D.15)

This implies V ar(ΨSn+1) < V ar(ΨSn). Hence, using more datapoints ni decreases the
variance of the model state ψ, provided that we choose ηSn so that Eq. D.15 holds. This is
easy to satisfy: the RHS of Eq. D.15 is O(η2

Sn
) while the LHS is O(ηSn), so we just set ηSn

small enough.

231

232

Bibliography

[1] Buy Twitter Followers. http://www.buy-followers.org.

[2] Buy Twitter Accounts. http://buytwitteraccounts.org.

[3] Buy, Sell, and Trade Twitter accounts. http://socialsellouts.com.

[4] Evrim Acar, Daniel M. Dunlavy, Tamara G. Kolda, and Morten Mørup. Scalable
tensor factorizations with missing data. In Proceedings of the SIAM International
Conference on Data Mining, SDM 2010, April 29 - May 1, 2010, Columbus, Ohio, USA,
pages 701–712, 2010.

[5] Evrim Acar, Tamara G. Kolda, and Daniel M. Dunlavy. All-at-once optimization
for coupled matrix and tensor factorizations. CoRR, abs/1105.3422, 2011.

[6] Evrim Acar, Tamara G Kolda, and Daniel M Dunlavy. The Matlab CMTF toolbox.
http://www.models.life.ku.dk/joda/CMTF_Toolbox, 2013.

[7] Alekh Agarwal and John C Duchi. Distributed delayed stochastic optimization. In
Decision and Control (CDC), 2012 IEEE 51st Annual Conference on, pages 5451–5452.
IEEE, 2012.

[8] Deepak Agarwal and Bee-Chung Chen. Regression-based latent factor models. In
Proceedings of the 15th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 19–28. ACM, 2009.

[9] Deepak Agarwal and Bee-Chung Chen. fLDA: matrix factorization through latent
dirichlet allocation. In Proceedings of the third ACM international conference on Web
search and data mining, pages 91–100. ACM, 2010.

[10] Deepak Agarwal and Srujana Merugu. Predictive discrete latent factor models
for large scale dyadic data. In Proceedings of the 13th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’07, pages 26–35, New
York, NY, USA, 2007. ACM.

[11] Charu C. Aggarwal. An introduction to social network data analytics. Springer, 2011.

[12] Charu C. Aggarwal and Philip S. Yu. Outlier detection for high dimensional data.
In Proceedings of the 2001 ACM SIGMOD international conference on Management of
data, Santa Barbara, CA, USA, May 21-24, 2001, pages 37–46, 2001.

233

http://www.models.life.ku.dk/joda/CMTF_Toolbox

[13] Amr Ahmed, Mohamed Aly, Joseph Gonzalez, Shravan M. Narayanamurthy, and
Alexander J. Smola. Scalable inference in latent variable models. In Proceedings of
the Fifth International Conference on Web Search and Web Data Mining, WSDM 2012,
Seattle, WA, USA, February 8-12, 2012, pages 123–132, 2012.

[14] Edoardo M. Airoldi, David M. Blei, Stephen E. Fienberg, and Eric P. Xing. Mixed
membership stochastic blockmodels. Journal of Machine Learning Research, 9:1981–
2014, 2008.

[15] Leman Akoglu, Rishi Chandy, and Christos Faloutsos. Opinion fraud detection
in online reviews by network effects. In Proceedings of the Seventh International
Conference on Weblogs and Social Media, ICWSM 2013, Cambridge, Massachusetts, USA,
July 8-11, 2013., 2013.

[16] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. RTM: laws and a recur-
sive generator for weighted time-evolving graphs. In Proceedings of the 8th IEEE
International Conference on Data Mining (ICDM 2008), December 15-19, 2008, Pisa,
Italy, pages 701–706, 2008.

[17] Leman Akoglu, Mary McGlohon, and Christos Faloutsos. Oddball: Spotting
anomalies in weighted graphs. In Advances in Knowledge Discovery and Data Min-
ing, 14th Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24, 2010.
Proceedings. Part II, pages 410–421, 2010.

[18] Aris Anagnostopoulos, Anirban Dasgupta, and Ravi Kumar. Approximation
algorithms for co-clustering. In Proceedings of the twenty-seventh ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, PODS ’08, pages 201–
210, New York, NY, USA, 2008. ACM.

[19] Animashree Anandkumar, Dean P Foster, Daniel Hsu, Sham M Kakade, and Yi-Kai
Liu. Two SVDs suffice: Spectral decompositions for probabilistic topic modeling
and latent dirichlet allocation. arXiv preprint arXiv:1204.6703, 2012.

[20] Reid Andersen. A local algorithm for finding dense subgraphs. ACM Trans.
Algorithms, 6(4):60:1–60:12, September 2010.

[21] Christophe Andrieu, Nando de Freitas, Arnaud Doucet, and Michael I. Jordan. An
introduction to MCMC for machine learning. Machine Learning, 50:5–43, 2003.

[22] David Arthur and Sergei Vassilvitskii. K-means++: The advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA ’07, pages 1027–1035, Philadelphia, PA, USA, 2007. Society for
Industrial and Applied Mathematics.

[23] Yuichi Asahiro, Kazuo Iwama, Hisao Tamaki, and Takeshi Tokuyama. Greedily
finding a dense subgraph. Journal of Algorithms, 34(2):203–221, 2000.

[24] Soeren Asmussen. Applied Probability and Queues. Wiley, 1987.

234

[25] Brett W. Bader and Tamara G. Kolda. Matlab tensor toolbox version 2.2. Albu-
querque, NM, USA: Sandia National Laboratories, 2007.

[26] Oana Denisa Balalau, Francesco Bonchi, TH Chan, Francesco Gullo, and Mauro
Sozio. Finding subgraphs with maximum total density and limited overlap. In
Proceedings of the Eighth ACM International Conference on Web Search and Data Mining,
pages 379–388. ACM, 2015.

[27] Arindam Banerjee, Inderjit S. Dhillon, Joydeep Ghosh, Srujana Merugu, and Dhar-
mendra S. Modha. A generalized maximum entropy approach to bregman co-
clustering and matrix approximation. Journal of Machine Learning Research, 8:1919–
1986, 2007.

[28] Fabrício Benevenuto, Tiago Rodrigues, Virgílio Almeida, Jussara Almeida, and
Marcos Gonçalves. Detecting spammers and content promoters in online video
social networks. In Proceedings of the 32nd international ACM SIGIR conference on
Research and development in information retrieval, pages 620–627. ACM, 2009.

[29] Alex Beutel, Amr Ahmed, and Alexander J. Smola. ACCAMS: Additive Co-
Clustering to Approximate Matrices Succinctly. In Aldo Gangemi, Stefano
Leonardi, and Alessandro Panconesi, editors, Proceedings of the 24th International
Conference on World Wide Web, WWW 2015, Florence, Italy, May 18-22, 2015, pages
119–129. International World Wide Web Conferences Steering Committee, ACM,
2015.

[30] Alex Beutel, Abhimanu Kumar, Evangelos E. Papalexakis, Partha Pratim Talukdar,
Christos Faloutsos, and Eric P. Xing. FlexiFaCT: Scalable flexible factorization of
coupled tensors on hadoop. In Proceedings of the 2014 SIAM International Conference
on Data Mining, pages 109–117. SIAM, 2014.

[31] Alex Beutel, Kenton Murray, Christos Faloutsos, and Alexander J. Smola. CoBaFi:
Collaborative Bayesian Filtering. In 23rd International World Wide Web Conference,
WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, pages 97–108. International
World Wide Web Conferences Steering Committee, 2014.

[32] Alex Beutel, Markus Weimer, Tom Minka, Yordan Zaykov, and Vijay Narayanan.
Elastic distributed bayesian collaborative filtering. In NIPS workshop on Distributed
Machine Learning and Matrix Computations, 2014.

[33] Alex Beutel, Wanhong Xu, Venkatesan Guruswami, Christopher Palow, and Chris-
tos Faloutsos. CopyCatch: stopping group attacks by spotting lockstep behavior in
social networks. In Proceedings of the 22nd international conference on World Wide Web,
pages 119–130. International World Wide Web Conferences Steering Committee,
2013.

[34] Alexander Beutel and Wanhong Xu. Detection of lockstep behavior, July 7 2015.

235

US Patent 9,077,744.

[35] David M. Blei and John Lafferty. Topic models. Text mining: classification, clustering,
and applications, 10:71, 2009.

[36] David M. Blei, Andrew Y. Ng, and Michael I. Jordan. Latent dirichlet allocation.
Journal of Machine Learning Research, 3:993–1022, 2003.

[37] Léon Bottou. Stochastic learning. In Olivier Bousquet and Ulrike von Luxburg, ed-
itors, Advanced Lectures on Machine Learning, Lecture Notes in Artificial Intelligence,
LNAI 3176, pages 146–168. Springer Verlag, Berlin, 2004.

[38] Andrei Broder, Ravi Kumar, Farzin Maghoul, Prabhakar Raghavan, Sridhar Ra-
jagopalan, Raymie Stata, Andrew Tomkins, and Janet Wiener. Graph structure in
the web. Computer networks, 33(1), 2000.

[39] Christopher J. C. Burges, Robert Ragno, and Quoc V. Le. Learning to rank with
nonsmooth cost functions. In Advances in Neural Information Processing Systems
19, Proceedings of the Twentieth Annual Conference on Neural Information Processing
Systems, Vancouver, British Columbia, Canada, December 4-7, 2006, pages 193–200,
2006.

[40] Jian-Feng Cai, Emmanuel J Candès, and Zuowei Shen. A singular value threshold-
ing algorithm for matrix completion. SIAM Journal on Optimization, 20(4):1956–1982,
2010.

[41] Qiang Cao, Michael Sirivianos, Xiaowei Yang, and Tiago Pregueiro. Aiding the
detection of fake accounts in large scale social online services. In Proceedings of
the 9th USENIX Symposium on Networked Systems Design and Implementation, NSDI
2012, San Jose, CA, USA, April 25-27, 2012, pages 197–210, 2012.

[42] Qiang Cao, Xiaowei Yang, Jieqi Yu, and Christopher Palow. Uncovering large
groups of active malicious accounts in online social networks. In Proceedings of
the 2014 ACM SIGSAC Conference on Computer and Communications Security, pages
477–488. ACM, 2014.

[43] Deepayan Chakrabarti. Autopart: Parameter-free graph partitioning and outlier
detection. In Knowledge Discovery in Databases: PKDD 2004, 8th European Conference
on Principles and Practice of Knowledge Discovery in Databases, Pisa, Italy, September
20-24, 2004, Proceedings, pages 112–124, 2004.

[44] Deepayan Chakrabarti, Spiros Papadimitriou, Dharmendra S. Modha, and Christos
Faloutsos. Fully automatic cross-associations. In Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 79–88.
ACM, 2004.

[45] Varun Chandola, Arindam Banerjee, and Vipin Kumar. Anomaly detection: A
survey. ACM Computing Survey, 41(3), 2009.

236

[46] Allison JB Chaney, David M Blei, and Tina Eliassi-Rad. A probabilistic model for
using social networks in personalized item recommendation. In Proceedings of the
9th ACM Conference on Recommender Systems, pages 43–50. ACM, 2015.

[47] Moses Charikar. Greedy approximation algorithms for finding dense components
in a graph. In Approximation Algorithms for Combinatorial Optimization, pages 84–95.
Springer, 2000.

[48] Duen Horng Chau, Shashank Pandit, and Christos Faloutsos. Detecting fraudulent
personalities in networks of online auctioneers. In Knowledge Discovery in Databases:
PKDD 2006, 10th European Conference on Principles and Practice of Knowledge Discovery
in Databases, Berlin, Germany, September 18-22, 2006, Proceedings, pages 103–114,
2006.

[49] Jie Chen and Yousef Saad. Dense subgraph extraction with application to com-
munity detection. IEEE Transactions on Knowledge and Data Engineering (TKDE),
24(7):1216–1230, 2012.

[50] Yizong Cheng. Mean shift, mode seeking, and clustering. Pattern Analysis and
Machine Intelligence, IEEE Transactions on, 17(8):790 –799, aug 1995.

[51] Joon Hee Choi and S.V.N. Vishwanathan. DFacTo: Distributed factorization of
tensors. In Advances in Neural Information Processing Systems 27: Annual Conference
on Neural Information Processing Systems 2014, December 8-13 2014, Montreal, Quebec,
Canada, pages 1296–1304, 2014.

[52] Byung-Gon Chun, Tyson Condie, Carlo Curino, Chris Douglas, Sergiy Matusevych,
Brandon Myers, Shravan Narayanamurthy, Raghu Ramakrishnan, Sriram Rao,
Josh Rosen, et al. Reef: Retainable evaluator execution framework. Proceedings of
the VLDB Endowment, 6(12):1370–1373, 2013.

[53] Fan Chung and Linyuan Lu. The average distances in random graphs with given
expected degrees. PNAS, 99(25), 2002.

[54] James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Gregory R. Ganger, Garth
Gibson, Kimberly Keeton, and Eric P. Xing. Solving the straggler problem with
bounded staleness. In 14th Workshop on Hot Topics in Operating Systems, HotOS XIV,
Santa Ana Pueblo, New Mexico, USA, May 13-15, 2013, 2013.

[55] Diane J. Cook and Lawrence B. Holder. Mining graph data. Wiley-Interscience,
2006.

[56] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. John Wiley
and Sons, New York, 1991.

[57] Koby Crammer and Gal Chechik. A needle in a haystack: local one-class optimiza-
tion. In Proceedings of the twenty-first international conference on Machine learning,
ICML ’04, pages 26–, New York, NY, USA, 2004. ACM.

237

[58] Cristian Danescu-Niculescu-Mizil, Robert West, Dan Jurafsky, Jure Leskovec, and
Christopher Potts. No country for old members: User lifecycle and linguistic
change in online communities. In Proceedings of the 22Nd International Conference on
World Wide Web, WWW ’13, pages 307–318, 2013.

[59] Lieven De Lathauwer, Bart De Moor, and Joos Vandewalle. A multilinear singular
value decomposition. SIAM journal on Matrix Analysis and Applications, 21(4):1253–
1278, 2000.

[60] Jeffrey Dean, Greg Corrado, Rajat Monga, Kai Chen, Matthieu Devin, Quoc V. Le,
Mark Z. Mao, Marc’Aurelio Ranzato, Andrew W. Senior, Paul A. Tucker, Ke Yang,
and Andrew Y. Ng. Large scale distributed deep networks. In Advances in Neural
Information Processing Systems 25: 26th Annual Conference on Neural Information
Processing Systems 2012. Proceedings of a meeting held December 3-6, 2012, Lake Tahoe,
Nevada, United States., pages 1232–1240, 2012.

[61] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data processing on
large clusters. In 6th Symposium on Operating System Design and Implementation
(OSDI 2004), San Francisco, California, USA, December 6-8, 2004, pages 137–150, 2004.

[62] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. Imagenet: A
large-scale hierarchical image database. In 2009 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR 2009), 20-25 June 2009, Miami,
Florida, USA, pages 248–255, 2009.

[63] Inderjit S. Dhillon, Subramanyam Mallela, and Dharmendra S. Modha.
Information-theoretic co-clustering. In Proceedings of the Ninth ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining, Washington, DC,
USA, August 24 - 27, 2003, pages 89–98, 2003.

[64] Qiming Diao, Minghui Qiu, Chao-Yuan Wu, Alexander J. Smola, Jing Jiang, and
Chong Wang. Jointly modeling aspects, ratings and sentiments for movie rec-
ommendation (JMARS). In The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, KDD ’14, New York, NY, USA - August 24 - 27,
2014, pages 193–202, 2014.

[65] Chris HQ Ding, Xiaofeng He, and Hongyuan Zha. A spectral method to separate
disconnected and nearly-disconnected web graph components. In Proceedings of
the seventh ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 275–280. ACM, 2001.

[66] William Eberle and Lawrence Holder. Discovering structural anomalies in graph-
based data. In ICDM, pages 393–398, 2007.

[67] Facebook. Better Security through Software. blog.facebook.com/blog.php?post=
248766257130. 2010.

238

blog.facebook.com/blog.php?post=248766257130
blog.facebook.com/blog.php?post=248766257130

[68] Facebook. Working Together to Keep You Secure. blog.facebook.com/blog.php?
post=68886667130, 2009.

[69] Facebook. Staying in Control of Your Facebook Logins. blog.facebook.com/blog.
php?post=389991097130, 2010.

[70] Facebook. Amendment no. 8 to form S-1/A. https://www.sec.gov/Archives/
edgar/data/1326801/000119312512235588/d287954ds1a.htm, May 16 2012. Filed
with the U.S. Securities and Exchange Commission.

[71] Facebook. Improvements to our Site Integrity Systems. facebook.com/
10151005934870766, 2012.

[72] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos. On power-law
relationships of the internet topology. ACM SIGCOMM, 29(4):251–262, 1999.

[73] Tom Fawcett. An introduction to ROC analysis. PR letters, 27(8):861–874, 2006.

[74] Santo Fortunato. Community detection in graphs. Physics Reports, 486(3):75–174,
2010.

[75] The Apache Software Foundation. Apache Hadoop nextgen MapReduce (YARN).
http://hadoop.apache.org/.

[76] Zoltán Füredi. An upper bound on Zarankiewicz’ Problem. Combinatorics, Proba-
bility and Computing, 5(01):29–33, 1996.

[77] Rainer Gemulla, Erik Nijkamp, Peter J Haas, and Yannis Sismanis. Large-scale
matrix factorization with distributed stochastic gradient descent. In Proceedings
of the 17th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 69–77. ACM, 2011.

[78] Thomas George and Srujana Merugu. A scalable collaborative filtering framework
based on co-clustering. In Proceedings of the Fifth IEEE International Conference
on Data Mining, ICDM ’05, pages 625–628, Washington, DC, USA, 2005. IEEE
Computer Society.

[79] Saptarshi Ghosh, Bimal Viswanath, Farshad Kooti, Naveen Kumar Sharma, Gau-
tam Korlam, Fabricio Benevenuto, Niloy Ganguly, and Krishna Phani Gummadi.
Understanding and combating link farming in the twitter social network. In Pro-
ceedings of the 21st international conference on World Wide Web, pages 61–70. ACM,
2012.

[80] Christos Giatsidis, Dimitrios M. Thilikos, and Michalis Vazirgiannis. D-cores:
measuring collaboration of directed graphs based on degeneracy. KAIS, 35(2):311–
343, 2013.

[81] Alex Gittens and Michael W. Mahoney. Revisiting the nyström method for im-
proved large-scale machine learning. In ICML (3), pages 567–575, 2013.

239

blog.facebook.com/blog.php?post=68886667130
blog.facebook.com/blog.php?post=68886667130
blog.facebook.com/blog.php?post=389991097130
blog.facebook.com/blog.php?post=389991097130
https://www.sec.gov/Archives/edgar/data/1326801/000119312512235588/d287954ds1a.htm
https://www.sec.gov/Archives/edgar/data/1326801/000119312512235588/d287954ds1a.htm
facebook.com/10151005934870766
facebook.com/10151005934870766
http://hadoop.apache.org/

[82] Prem Gopalan, Francisco J. Ruiz, Rajesh Ranganath, and David M. Blei. Bayesian
nonparametric poisson factorization for recommendation systems. In Proceedings of
the Seventeenth International Conference on Artificial Intelligence and Statistics, AISTATS
2014, Reykjavik, Iceland, April 22-25, 2014, pages 275–283, 2014.

[83] Y. Gordon, H. König, and C. Schütt. Geometric and probabilistic estimates for
entropy and approximation numbers of operators. Journal of Approximation Theory,
49:219–239, 1987.

[84] Dilan Görür, Frank Jäkel, and Carl Edward Rasmussen. A choice model with
infinitely many latent features. In Proceedings of the 23rd International Conference on
Machine Learning, ICML ’06, pages 361–368, New York, NY, USA, 2006. ACM.

[85] Lars Grasedyck. Hierarchical singular value decomposition of tensors. SIAM
Journal on Matrix Analysis and Applications, 31(4):2029–2054, 2010.

[86] Arthur Gretton, Karsten M. Borgwardt, Malte J. Rasch, Bernhard Schölkopf, and
Alexander J. Smola. A kernel two-sample test. Journal of Machine Learning Research,
13:723–773, 2012.

[87] Thomas L. Griffiths and Zoubin Ghahramani. The indian buffet process: An
introduction and review. Journal of Machine Learning Research, 12:1185–1224, 2011.

[88] Thomas L. Griffiths and Mark Steyvers. Finding scientific topics. Proceedings of the
National Academy of Sciences, 101:5228–5235, 2004.

[89] Gunjan Gupta and Joydeep Ghosh. Robust one-class clustering using hybrid
global and local search. In Proceedings of the 22nd international conference on Machine
learning, ICML ’05, pages 273–280, New York, NY, USA, 2005. ACM.

[90] Zoltán Gyöngyi, Hector Garcia-Molina, and Jan O. Pedersen. Combating web
spam with trustrank. In Proceedings of the Thirtieth International Conference on Very
Large Data Bases, Toronto, Canada, August 31 - September 3 2004, pages 576–587, 2004.

[91] Tom S.F. Haines. Gaussian conjugate prior cheat sheet. http://thaines.com/
content/misc/gaussian_conjugate_prior_cheat_sheet.pdf, 2011.

[92] N. Halko, P.G. Martinsson, and J. A. Tropp. Finding structure with random-
ness: Probabilistic algorithms for constructing approximate matrix decompositions.
SIAM Rev., 53(2):217–288, May 2011.

[93] R.A. Harshman. Foundations of the PARAFAC procedure: Models and conditions for
an "explanatory" multimodal factor analysis. UCLA working papers in phonetics.
University of California at Los Angeles, 1970.

[94] J. A. Hartigan. Direct clustering of a data matrix. Journal of the American statistical
association, 67(337):123–129, 1972.

[95] Ralf Herbrich, Tom Minka, and Thore Graepel. TrueskillTM: A Bayesian skill

240

http://thaines.com/content/misc/gaussian_conjugate_prior_cheat_sheet.pdf
http://thaines.com/content/misc/gaussian_conjugate_prior_cheat_sheet.pdf

ranking system. In NIPS, 2007.

[96] Qirong Ho, James Cipar, Henggang Cui, Seunghak Lee, Jin Kyu Kim, Phillip B.
Gibbons, Garth A. Gibson, Gregory R. Ganger, and Eric P. Xing. More effective
distributed ML via a stale synchronous parallel parameter server. In Advances in
Neural Information Processing Systems 26: 27th Annual Conference on Neural Informa-
tion Processing Systems 2013. Proceedings of a meeting held December 5-8, 2013, Lake
Tahoe, Nevada, United States., pages 1223–1231, 2013.

[97] Matthew D. Hoffman, David M. Blei, Chong Wang, and John William Paisley.
Stochastic variational inference. Journal of Machine Learning Research, 14(1):1303–
1347, 2013.

[98] Matthew D. Homan and Andrew Gelman. The no-u-turn sampler: Adaptively set-
ting path lengths in hamiltonian monte carlo. Journal of Machine Learning Research,
15(1):1593–1623, January 2014.

[99] Liangjie Hong, Amr Ahmed, Siva Gurumurthy, Alexander J. Smola, and Kostas
Tsioutsiouliklis. Discovering geographical topics in the twitter stream. In Proceed-
ings of the 21st World Wide Web Conference 2012, WWW 2012, Lyon, France, April
16-20, 2012, pages 769–778, 2012.

[100] Bryan Hooi, Neil Shah, Alex Beutel, Stephan Gunneman, Leman Akoglu, Mohit
Kumar, Disha Makhija, and Christos Faloutsos. Birdnest: Bayesian inference for
ratings-fraud detection. In Proceedings of the 2016 SIAM International Conference on
Data Mining. SIAM, 2016.

[101] Jianying Hu, Fei Wang, Jimeng Sun, Robert Sorrentino, and Shahram Ebadol-
lahi. A healthcare utilization analysis framework for hot spotting and contextual
anomaly detection. In AMIA 2012, American Medical Informatics Association Annual
Symposium, Chicago, Illinois, USA, November 3-7, 2012, 2012.

[102] Minqing Hu and Bing Liu. Mining and summarizing customer reviews. In
Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 168–177. ACM, 2004.

[103] Xia Hu, Jiliang Tang, Yanchao Zhang, and Huan Liu. Social spammer detection in
microblogging. In IJCAI’13, pages 2633–2639, 2013.

[104] Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit
feedback datasets. In Proceedings of the 8th IEEE International Conference on Data
Mining (ICDM 2008), December 15-19, 2008, Pisa, Italy, pages 263–272, 2008.

[105] Heng Huang, Chris Ding, Dijun Luo, and Tao Li. Simultaneous tensor subspace
selection and clustering: the equivalence of high order svd and k-means cluster-
ing. In Proceedings of the 14th ACM SIGKDD international conference on Knowledge
Discovery and Data mining, pages 327–335. ACM, 2008.

241

[106] Inah Jeon, Evangelos E. Papalexakis, U. Kang, and Christos Faloutsos. Haten2:
Billion-scale tensor decompositions. In 31st IEEE International Conference on Data
Engineering, ICDE 2015, Seoul, South Korea, April 13-17, 2015, pages 1047–1058, 2015.

[107] Meng Jiang, Alex Beutel, Peng Cui, Bryan Hooi, Shiqiang Yang, and Christos
Faloutsos. A general suspiciousness metric for dense blocks in multimodal data.
In 2015 IEEE International Conference on Data Mining, ICDM 2015, Atlantic City, NJ,
USA, November 14-17, 2015, pages 781–786, 2015.

[108] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Catch-
Sync: catching synchronized behavior in large directed graphs. In The 20th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’14,
New York, NY, USA - August 24 - 27, 2014, pages 941–950, 2014.

[109] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Detect-
ing suspicious following behavior in multimillion-node social networks. In 23rd
International World Wide Web Conference, WWW ’14, Seoul, Republic of Korea, April
7-11, 2014, Companion Volume, pages 305–306, 2014.

[110] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Infer-
ring strange behavior from connectivity pattern in social networks. In Advances in
Knowledge Discovery and Data Mining - 18th Pacific-Asia Conference, PAKDD 2014,
Tainan, Taiwan, May 13-16, 2014. Proceedings, Part I, pages 126–138, 2014.

[111] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Catch-
ing synchronized behaviors in large networks: A graph mining approach. ACM
Transactions on Knowledge Discovery from Data (TKDD), 2015.

[112] Meng Jiang, Peng Cui, Alex Beutel, Christos Faloutsos, and Shiqiang Yang. Infer-
ring lockstep behavior from connectivity pattern in large graphs. Knowledge and
Information Systems (KAIS), pages 1–30, 2015.

[113] Marc Yor Jim Pitman. The two-parameter poisson-dirichlet distribution derived
from a stable subordinator. Annals of Probability, 25(2):855–900, 1997.

[114] Nitin Jindal and Bing Liu. Opinion spam and analysis. In Proceedings of the
International Conference on Web Search and Web Data Mining, WSDM 2008, Palo Alto,
California, USA, February 11-12, 2008, pages 219–230, 2008.

[115] Yohan Jo and Alice H Oh. Aspect and sentiment unification model for online
review analysis. In Proceedings of the fourth ACM international conference on Web
search and data mining, pages 815–824. ACM, 2011.

[116] U. Kang, Evangelos E. Papalexakis, Abhay Harpale, and Christos Faloutsos. Gi-
gaTensor: scaling tensor analysis up by 100 times - algorithms and discoveries. In
The 18th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD ’12, Beijing, China, August 12-16, 2012, pages 316–324, 2012.

242

[117] Suin Kim, Jianwen Zhang, Zheng Chen, Alice H Oh, and Shixia Liu. A hierarchical
aspect-sentiment model for online reviews. In AAAI, 2013.

[118] Jon M. Kleinberg. Authoritative sources in a hyperlinked environment. J. ACM,
46(5):604–632, 1999.

[119] Tamara G. Kolda and Brett W. Bader. Tensor decompositions and applications.
SIAM Review, 51(3):455–500, 2009.

[120] Tamara G. Kolda and Jimeng Sun. Scalable tensor decompositions for multi-aspect
data mining. In Proceedings of the 8th IEEE International Conference on Data Mining
(ICDM 2008), December 15-19, 2008, Pisa, Italy, pages 363–372, 2008.

[121] Yehuda Koren. Factorization meets the neighborhood: a multifaceted collaborative
filtering model. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008,
pages 426–434, 2008.

[122] Yehuda Koren. Collaborative filtering with temporal dynamics. In Proceedings
of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Paris, France, June 28 - July 1, 2009, pages 447–456, 2009.

[123] Yehuda Koren, Robert M. Bell, and Chris Volinsky. Matrix factorization techniques
for recommender systems. IEEE Computer, 42(8):30–37, 2009.

[124] Danai Koutra, U. Kang, Jilles Vreeken, and Christos Faloutsos. VOG: summarizing
and understanding large graphs. In Proceedings of the 2014 SIAM International
Conference on Data Mining, Philadelphia, Pennsylvania, USA, April 24-26, 2014, pages
91–99, 2014.

[125] Kenneth Kreutz-Delgado, Joseph F. Murray, Bhaskar D. Rao, Kjersti Engan, Te-
Won Lee, and Terrence J. Sejnowski. Dictionary learning algorithms for sparse
representation. Neural Comput., 15(2):349–396, February 2003.

[126] Hans-Peter Kriegel, Peer Kröger, and Arthur Zimek. Clustering high-dimensional
data: A survey on subspace clustering, pattern-based clustering, and correlation
clustering. ACM Trans. Knowl. Discov. Data, 3(1):1:1–1:58, March 2009.

[127] Abhimanu Kumar, Alex Beutel, Qirong Ho, and Eric P Xing. Fugue: Slow-worker-
agnostic distributed learning for big models on big data. In Proceedings of the
Seventeenth International Conference on Artificial Intelligence and Statistics, pages
531–539, 2014.

[128] Ravi Kumar, Jasmine Novak, and Andrew Tomkins. Structure and evolution of
online social networks. In Proceedings of the Twelfth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August
20-23, 2006, pages 611–617, 2006.

[129] Harold Kushner and George Yin. Stochastic Approximation and Recursive Algorithms

243

and Applications. Springer, 2003.

[130] Haewoon Kwak, Changhyun Lee, Hosung Park, and Sue Moon. What is twitter, a
social network or a news media? In WWW, pages 591–600, 2010.

[131] Aapo Kyrola, Guy E. Blelloch, and Carlos Guestrin. GraphChi: Large-scale graph
computation on just a PC. In 10th USENIX Symposium on Operating Systems Design
and Implementation, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages
31–46, 2012.

[132] Angeliki Lazaridou, Ivan Titov, and Caroline Sporleder. A bayesian model for joint
unsupervised induction of sentiment, aspect and discourse representations. In
ACL (1), pages 1630–1639, 2013.

[133] Daniel Lee and H. Sebastian Seung. Algorithms for non-negative matrix factoriza-
tion. In Advances in Neural Information Processing Systems, NIPS ’01, pages 556–562,
2001.

[134] Daniel D. Lee and H. Sebastian Seung. Learning the parts of objects by non-
negative matrix factorization. Nature, 401(6755):788–791, 1999.

[135] Joonseok Lee, Samy Bengio, Seungyeon Kim, Guy Lebanon, and Yoram Singer.
Local collaborative ranking. In 23rd International World Wide Web Conference, WWW
’14, Seoul, Republic of Korea, April 7-11, 2014, pages 85–96, 2014.

[136] Joonseok Lee, Seungyeon Kim, Guy Lebanon, and Yoram Singer. Local low-rank
matrix approximation. In Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 82–90, 2013.

[137] Michael D. Lee. On the complexity of additive clustering models. Journal of
Mathematical Psychology, 45(1):131–148, 2001.

[138] Victor E. Lee, Ning Ruan, Ruoming Jin, and Charu C. Aggarwal. A survey of
algorithms for dense subgraph discovery. In Managing and Mining Graph Data,
pages 303–336. Springer US, 2010.

[139] Jure Leskovec, Kevin J. Lang, Anirban Dasgupta, and Michael W. Mahoney. Com-
munity structure in large networks: Natural cluster sizes and the absence of large
well-defined clusters. Internet Mathematics, 6(1):29–123, 2009.

[140] Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr Ahmed, Vanja
Josifovski, James Long, Eugene J. Shekita, and Bor-Yiing Su. Scaling distributed
machine learning with the parameter server. In 11th USENIX Symposium on Operat-
ing Systems Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8,
2014., pages 583–598, 2014.

[141] Mu Li, David G. Andersen, Alexander J. Smola, and Kai Yu. Communication
efficient distributed machine learning with the parameter server. In Advances in
Neural Information Processing Systems 27: Annual Conference on Neural Information

244

Processing Systems 2014, December 8-13 2014, Montreal, Quebec, Canada, pages 19–27,
2014.

[142] Mu Li, Gary L. Miller, and Richard Peng. Iterative row sampling. In FOCS 2013,
pages 127–136, 2013.

[143] Yixuan Li, Oscar Martinez, Xing Chen, Yi Li, and John E. Hopcroft. In a world that
counts: Clustering and detecting fake social engagement at scale. In Proceedings
of the 25th International Conference on World Wide Web, WWW ’16, pages 111–120.
International World Wide Web Conferences Steering Committee, 2016.

[144] Ee-Peng Lim, Viet-An Nguyen, Nitin Jindal, Bing Liu, and Hady Wirawan Lauw.
Detecting product review spammers using rating behaviors. In Proceedings of the
19th ACM international conference on Information and knowledge management, pages
939–948. ACM, 2010.

[145] Chenghua Lin and Yulan He. Joint sentiment/topic model for sentiment analysis.
In Proceedings of the 18th ACM conference on Information and knowledge management,
pages 375–384. ACM, 2009.

[146] Guang Ling, Michael R Lyu, and Irwin King. Ratings meet reviews, a combined
approach to recommend. In Proceedings of the 8th ACM Conference on Recommender
systems, pages 105–112. ACM, 2014.

[147] Chao Liu, Xifeng Yan, Hwanjo Yu, Jiawei Han, and Philip S. Yu. Mining behavior
graphs for "backtrace" of noncrashing bugs. In Proceedings of the 2005 SIAM Inter-
national Conference on Data Mining, SDM 2005, Newport Beach, CA, USA, April 21-23,
2005, pages 286–297, 2005.

[148] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. GraphLab: A new parallel framework for machine
learning. In Conference on Uncertainty in Artificial Intelligence, 2010.

[149] Yucheng Low, Joseph Gonzalez, Aapo Kyrola, Danny Bickson, Carlos Guestrin,
and Joseph M. Hellerstein. Distributed GraphLab: A Framework for Machine
Learning and Data Mining in the Cloud. PVLDB, 2012.

[150] Lester W. Mackey, Ameet Talwalkar, and Michael I. Jordan. Divide-and-conquer
matrix factorization. In Advances in Neural Information Processing Systems 24: 25th
Annual Conference on Neural Information Processing Systems 2011. Proceedings of a
meeting held 12-14 December 2011, Granada, Spain., pages 1134–1142, 2011.

[151] James MacQueen et al. Some methods for classification and analysis of multivariate
observations. In Proceedings of the fifth Berkeley symposium on mathematical statistics
and probability, volume 1, pages 281–297. Oakland, CA, USA., 1967.

[152] Grzegorz Malewicz, Matthew H. Austern, Aart J.C Bik, James C. Dehnert, Ilan
Horn, Naty Leiser, and Grzegorz Czajkowski. Pregel: A system for large-scale

245

graph processing. In Proceedings of the 2010 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’10, pages 135–146, New York, NY, USA, 2010.
ACM.

[153] Ching-Hao Mao, Chung-Jung Wu, Evangelos E. Papalexakis, Christos Faloutsos,
Kuo-Chen Lee, and Tien-Cheu Kao. Malspot: Multi2 malicious network behavior
patterns analysis. In Advances in Knowledge Discovery and Data Mining - 18th Pacific-
Asia Conference, PAKDD 2014, Tainan, Taiwan, May 13-16, 2014. Proceedings, Part I,
pages 1–14, 2014.

[154] Koji Maruhashi, Fan Guo, and Christos Faloutsos. Multiaspectforensics: Pattern
mining on large-scale heterogeneous networks with tensor analysis. In International
Conference on Advances in Social Networks Analysis and Mining, ASONAM 2011,
Kaohsiung, Taiwan, 25-27 July 2011, pages 203–210, 2011.

[155] Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understand-
ing rating dimensions with review text. In Proceedings of the 7th ACM conference on
Recommender systems, pages 165–172. ACM, 2013.

[156] Julian McAuley, Jure Leskovec, and Dan Jurafsky. Learning attitudes and attributes
from multi-aspect reviews. In Data Mining (ICDM), 2012 IEEE 12th International
Conference on, pages 1020–1025. IEEE, 2012.

[157] Bhaskar Mehta and Wolfgang Nejdl. Unsupervised strategies for shilling detection
and robust collaborative filtering. User Model. User-Adapt. Interact., 19(1-2):65–97,
2009.

[158] Thomas P. Minka. Expectation propagation for approximate bayesian inference.
In UAI ’01: Proceedings of the 17th Conference in Uncertainty in Artificial Intelligence,
University of Washington, Seattle, Washington, USA, August 2-5, 2001, pages 362–369,
2001.

[159] Andriy Mnih and Ruslan Salakhutdinov. Probabilistic matrix factorization. In
Advances in neural information processing systems, pages 1257–1264, 2007.

[160] HDK Moonesinghe and Pang-Ning Tan. Outrank: a graph-based outlier detection
framework using random walk. International Journal on Artificial Intelligence Tools,
17(01):19–36, 2008.

[161] Arjun Mukherjee, Bing Liu, and Natalie S. Glance. Spotting fake reviewer groups
in consumer reviews. In Proceedings of the 21st World Wide Web Conference 2012,
WWW 2012, Lyon, France, April 16-20, 2012, pages 191–200, 2012.

[162] Noboru Murata. A statistical study on on-line learning. In Online Learning and
Neural Networks. Cambridge University Press, 1998.

[163] Kevin P. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

[164] Daniel J. Navarro and Thomas L. Griffiths. Latent features in similarity judgments:

246

A nonparametric bayesian approach. Neural Computation, 20(11):2597–2628, 2008.

[165] Radford M. Neal. Markov chain sampling methods for dirichlet process mixture
models. Journal of Computational and Graphical Statistics, 9(2):249–265, 2000.

[166] Mark E. J. Newman, Duncan J. Watts, and Steven H. Strogatz. Random graph
models of social networks. Proceedings of the National Academy of Sciences, 99(suppl
1):2566–2572, 2002.

[167] Feng Niu, Benjamin Recht, Christopher Ré, and Stephen J. Wright. Hogwild!: A
lock-free approach to parallelizing stochastic gradient descent. In NIPS, 2011.

[168] Caleb C. Noble and Diane J. Cook. Graph-based anomaly detection. In KDD, pages
631–636, 2003.

[169] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The pagerank
citation ranking: bringing order to the web. 1999.

[170] Konstantina Palla, David A. Knowles, and Zoubin Ghahramani. An infinite latent
attribute model for network data. In Proceedings of the 29th International Conference
on Machine Learning, ICML 2012, Edinburgh, Scotland, UK, June 26 - July 1, 2012,
2012.

[171] Shashank Pandit, Duen Horng Chau, Samuel Wang, and Christos Faloutsos. Net-
probe: a fast and scalable system for fraud detection in online auction networks.
In Proceedings of the 16th International Conference on World Wide Web, WWW 2007,
Banff, Alberta, Canada, May 8-12, 2007, pages 201–210, 2007.

[172] Ruoming Pang, Mark Allman, Mike Bennett, Jason Lee, Vern Paxson, and Brian
Tierney. A first look at modern enterprise traffic. In Proceedings of the 5th ACM
SIGCOMM conference on Internet Measurement, pages 2–2. USENIX Association,
2005.

[173] Spiros Papadimitriou and Jimeng Sun. Disco: Distributed co-clustering with map-
reduce: A case study towards petabyte-scale end-to-end mining. In Data Mining,
2008. ICDM ’08. Eighth IEEE International Conference on, pages 512 –521, dec. 2008.

[174] Evangelos E. Papalexakis, Alex Beutel, and Peter Steenkiste. Network anomaly
detection using co-clustering. In Proceedings of the 2012 International Conference on
Advances in Social Networks Analysis and Mining (ASONAM 2012), pages 403–410.
IEEE Computer Society, 2012.

[175] Evangelos E. Papalexakis, Christos Faloutsos, Tom M. Mitchell, Partha Pratim
Talukdar, Nicholas D. Sidiropoulos, and Brian Murphy. Turbo-smt: Accelerating
coupled sparse matrix-tensor factorizations by 200x. In Proceedings of the 2014
SIAM International Conference on Data Mining, Philadelphia, Pennsylvania, USA, April
24-26, 2014, pages 118–126, 2014.

[176] Evangelos E. Papalexakis and Nicholas D. Sidiropoulos. Co-clustering as multilin-

247

ear decomposition with sparse latent factors. In Proceedings of the IEEE International
Conference on Acoustics, Speech, and Signal Processing, ICASSP 2011, May 22-27, 2011,
Prague Congress Center, Prague, Czech Republic, pages 2064–2067, 2011.

[177] Evangelos E. Papalexakis, Nicholas D. Sidiropoulos, and Rasmus Bro. From K
-means to higher-way co-clustering: Multilinear decomposition with sparse latent
factors. IEEE Trans. Signal Processing, 61(2):493–506, 2013.

[178] René Peeters. The maximum edge biclique problem is np-complete. Discrete Appl.
Math., 131(3):651–654, September 2003.

[179] Jian Pei, Daxin Jiang, and Aidong Zhang. On mining cross-graph quasi-cliques. In
KDD, pages 228–238, 2005.

[180] Charles Perez, Marc Lemercier, Babiga Birregah, and Alain Corpel. Spot 1.0:
Scoring suspicious profiles on twitter. In ASONAM’11, pages 377–381, 2011.

[181] Ian Porteous, Evgeniy Bart, and Max Welling. Multi-HDP: A non parametric
bayesian model for tensor factorization. In D. Fox and C.P. Gomes, editors, Proceed-
ings of the Twenty-Third AAAI Conference on Artificial Intelligence, pages 1487–1490.
AAAI Press, 2008.

[182] Russell Power and Jinyang Li. Piccolo: building fast, distributed programs with
partitioned tables. In Proceedings of the 9th USENIX conference on Operating systems
design and implementation, pages 1–14. USENIX Association, 2010.

[183] B. Aditya Prakash, Ashwin Sridharan, Mukund Seshadri, Sridhar Machiraju, and
Christos Faloutsos. EigenSpokes: Surprising patterns and scalable community
chipping in large graphs. In Advances in Knowledge Discovery and Data Mining, 14th
Pacific-Asia Conference, PAKDD 2010, Hyderabad, India, June 21-24, 2010. Proceedings.
Part II, pages 435–448, 2010.

[184] Marilyn Price and Donna M Norris. Health care fraud: physicians as white
collar criminals? Journal of the American Academy of Psychiatry and the Law Online,
37(3):286–289, 2009.

[185] Benjamin Recht and Christopher Ré. Parallel Stochastic Gradient Algorithms for
Large-Scale Matrix Completion. submitted, 2011.

[186] Steffen Rendle and Lars Schmidt-Thieme. Pairwise interaction tensor factorization
for personalized tag recommendation. In WSDM ’10: Proceedings of the third ACM
international conference on Web search and data mining, pages 81–90. ACM, 2010.

[187] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465–471, 1978.

[188] Ruslan Salakhutdinov and Andriy Mnih. Bayesian probabilistic matrix factor-
ization using markov chain monte carlo. In Proceedings of the 25th international
conference on Machine learning, pages 880–887. ACM, 2008.

248

[189] Aaron Schein, John Paisley, David M Blei, and Hanna Wallach. Bayesian poisson
tensor factorization for inferring multilateral relations from sparse dyadic event
counts. In Proceedings of the 21th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 1045–1054. ACM, 2015.

[190] Neil Shah, Alex Beutel, Brian Gallagher, and Christos Faloutsos. Spotting suspi-
cious link behavior with fBox: An adversarial perspective. In 2014 IEEE Interna-
tional Conference on Data Mining, ICDM 2014, Shenzhen, China, December 14-17, 2014,
pages 959–964. IEEE, 2014.

[191] Hanhuai Shan and Arindam Banerjee. Bayesian co-clustering. In Proceedings of the
8th IEEE International Conference on Data Mining (ICDM 2008), December 15-19, 2008,
Pisa, Italy, pages 530–539, 2008.

[192] Hanhuai Shan and Arindam Banerjee. Residual bayesian co-clustering for matrix
approximation. In Proceedings of the SIAM International Conference on Data Mining,
SDM 2010, April 29 - May 1, 2010, Columbus, Ohio, USA, pages 223–234, 2010.

[193] Shashi Shekhar, Chang-Tien Lu, and Pusheng Zhang. Detecting graph-based
spatial outliers: algorithms and applications (a summary of results). In KDD’01,
pages 371–376, 2001.

[194] Roger N. Shepard and Phipps Arabie. Additive clustering: Representation of
similarities as combinations of discrete overlapping properties. Psychological Review,
86(2):87, 1979.

[195] Kijung Shin and U. Kang. Distributed methods for high-dimensional and large-
scale tensor factorization. In 2014 IEEE International Conference on Data Mining,
ICDM 2014, Shenzhen, China, December 14-17, 2014, pages 989–994, 2014.

[196] Matthew S. Shotwell and Elizabeth H. Slate. Bayesian outlier detection with
dirichlet process mixtures. Bayesian Analysis, 6(4):665–690, 2011.

[197] Ajit Paul Singh and Geoffrey J. Gordon. Relational learning via collective matrix
factorization. In Proceedings of the 14th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, Las Vegas, Nevada, USA, August 24-27, 2008,
pages 650–658, 2008.

[198] Ajit Paul Singh and Geoffrey J. Gordon. A unified view of matrix factorization
models. In Machine Learning and Knowledge Discovery in Databases, European Confer-
ence, ECML/PKDD 2008, Antwerp, Belgium, September 15-19, 2008, Proceedings, Part
II, pages 358–373, 2008.

[199] Alexander J. Smola. Learning with Kernels. PhD thesis, Technische Universität
Berlin, 1998. GMD Research Series No. 25.

[200] Nathan Srebro, Noga Alon, and Tommi S. Jaakkola. Generalization error bounds for
collaborative prediction with low-rank matrices. In Advances in Neural Information

249

Processing Systems 17 [Neural Information Processing Systems, NIPS 2004, December
13-18, 2004, Vancouver, British Columbia, Canada], pages 1321–1328, 2004.

[201] Tao Stein, Erdong Chen, and Karan Mangla. Facebook immune system. In Proceed-
ings of the 4th Workshop on Social Network Systems, SNS ’11, pages 8:1–8:8, New York,
NY, USA, 2011. ACM.

[202] David H. Stern, Ralf Herbrich, and Thore Graepel. Matchbox: large scale online
bayesian recommendations. In Proceedings of the 18th international conference on
World wide web, pages 111–120. ACM, 2009.

[203] Gilbert Strang. Introduction to Linear Algebra. Wellesley-Cambridge Press, 3 edition,
1998.

[204] Jimeng Sun, Huiming Qu, Deepayan Chakrabarti, and Christos Faloutsos. Neigh-
borhood formation and anomaly detection in bipartite graphs. In ICDM, 2005.

[205] Jimeng Sun, Dacheng Tao, and Christos Faloutsos. Beyond streams and graphs:
dynamic tensor analysis. In Proceedings of the Twelfth ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, Philadelphia, PA, USA, August
20-23, 2006, pages 374–383, 2006.

[206] Jimeng Sun, Dacheng Tao, Spiros Papadimitriou, Philip S. Yu, and Christos Falout-
sos. Incremental tensor analysis: Theory and applications. TKDD, 2(3), 2008.

[207] Chenhao Tan, Ed H. Chi, David A. Huffaker, Gueorgi Kossinets, and Alexander J.
Smola. Instant foodie: predicting expert ratings from grassroots. In 22nd ACM
International Conference on Information and Knowledge Management, CIKM’13, San
Francisco, CA, USA, October 27 - November 1, 2013, pages 1127–1136, 2013.

[208] David M. J. Tax and Robert P. W. Duin. Outlier detection using classifier instability.
In Proceedings of the Joint IAPR International Workshops on Advances in Pattern Recog-
nition, SSPR ’98/SPR ’98, pages 593–601, London, UK, UK, 1998. Springer-Verlag.

[209] Christina Teflioudi, Faraz Makari, and Rainer Gemulla. Distributed matrix com-
pletion. In 12th IEEE International Conference on Data Mining, ICDM 2012, Brussels,
Belgium, December 10-13, 2012, pages 655–664, 2012.

[210] Joshua B Tenenbaum. Learning the structure of similarity. Advances in neural
information processing systems, pages 3–9, 1996.

[211] Ashish Thusoo, Zheng Shao, Suresh Anthony, Dhruba Borthakur, Namit Jain,
Joydeep Sen Sarma, Raghotham Murthy, and Hao Liu. Data warehousing and
analytics infrastructure at facebook. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, SIGMOD ’10, pages 1013–1020, New
York, NY, USA, 2010. ACM.

[212] Ivan Titov and Ryan T. McDonald. A joint model of text and aspect ratings for
sentiment summarization. In ACL, volume 8, pages 308–316, 2008.

250

[213] Charalampos E Tsourakakis, Francesco Bonchi, Aristides Gionis, Francesco Gullo,
and Maria A Tsiarli. Denser than the densest subgraph: Extracting optimal quasi-
cliques with quality guarantees. In KDD, 2013.

[214] Matthew A. Turk and Alex P. Pentland. Face recognition using eigenfaces. In
Computer Vision and Pattern Recognition, 1991. Proceedings CVPR’91., IEEE Computer
Society Conference on, pages 586–591. IEEE, 1991.

[215] Johan Ugander, Brian Karrer, Lars Backstrom, and Cameron Marlow. The anatomy
of the facebook social graph. CoRR, abs/1111.4503, 2011.

[216] Matthijs van Leeuwen, Jilles Vreeken, and Arno Siebes. Identifying the components.
Data Mining and Knowledge Discovery, 19(2):176–193, 2009.

[217] Benjamin Van Roy and Xiang Yan. Manipulation-resistant collaborative filtering
systems. In Proceedings of the Third ACM Conference on Recommender Systems, RecSys
’09, pages 165–172, New York, NY, USA, 2009. ACM.

[218] M. N. Volkovs and R.S. Zemel. Boltzrank: Learning to maximize expected ranking
gain. In Proceedings of the International Conference on Machine Learning, 2009.

[219] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes. Krimp: mining itemsets
that compress. Data Mining and Knowledge Discovery, 23(1):169–214, 2011.

[220] Chong Wang and David M. Blei. Collaborative topic modeling for recommending
scientific articles. In Proceedings of the 17th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, San Diego, CA, USA, August 21-24, 2011,
pages 448–456, 2011.

[221] Pu Wang, Kathryn B. Laskey, Carlotta Domeniconi, and Michael I. Jordan. Non-
parametric bayesian co-clustering ensembles. In Proceedings of the Eleventh SIAM
International Conference on Data Mining, SDM 2011, April 28-30, 2011, Mesa, Arizona,
USA, pages 331–342, 2011.

[222] Xiang Wang and Ian Davidson. Active spectral clustering. In ICDM, pages 561–568,
2010.

[223] Xuerui Wang and Andrew McCallum. Topics over time: a non-markov continuous-
time model of topical trends. In Proceedings of the 12th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 424–433. ACM, 2006.

[224] Xuerui Wang, Natasha Mohanty, and Andrew McCallum. Group and topic discov-
ery from relations and text. In Proceedings of the 3rd international workshop on Link
discovery, pages 28–35. ACM, 2005.

[225] Markus Weimer, Alexandros Karatzoglou, Quoc V. Le, and Alexander J. Smola.
COFI RANK - maximum margin matrix factorization for collaborative ranking.
In Advances in Neural Information Processing Systems 20, Proceedings of the Twenty-
First Annual Conference on Neural Information Processing Systems, Vancouver, British

251

Columbia, Canada, December 3-6, 2007, pages 1593–1600, 2007.

[226] Jason Weston, Samy Bengio, and Nicolas Usunier. WSABIE: scaling up to large
vocabulary image annotation. In IJCAI 2011, Proceedings of the 22nd International
Joint Conference on Artificial Intelligence, Barcelona, Catalonia, Spain, July 16-22, 2011,
pages 2764–2770, 2011.

[227] Baoning Wu, Vinay Goel, and Brian D. Davison. Propagating trust and distrust to
demote web spam. MTW, 190, 2006.

[228] Baoning Wu, Vinay Goel, and Brian D. Davison. Topical trustrank: Using topicality
to combat web spam. In Proceedings of the 15th international conference on World Wide
Web, pages 63–72. ACM, 2006.

[229] Chao-Yuan Wu, Alex Beutel, Amr Ahmed, and Alexander J. Smola. Explaining re-
views and ratings with PACO: Poisson Additive Co-Clustering. In Proceedings of the
25th International Conference Companion on World Wide Web, WWW ’16 Companion,
pages 127–128. International World Wide Web Conferences Steering Committee,
2016.

[230] Yinqing Xu, Wai Lam, and Tianyi Lin. Collaborative filtering incorporating review
text and co-clusters of hidden user communities and item groups. In Proceedings of
the 23rd ACM International Conference on Conference on Information and Knowledge
Management, CIKM 2014, Shanghai, China, November 3-7, 2014, pages 251–260, 2014.

[231] Xifeng Yan and Jiawei Han. CloseGraph: mining closed frequent graph patterns.
In KDD, pages 286–295, 2003.

[232] Shuang-Hong Yang, Bo Long, Alexander J. Smola, Hongyuan Zha, and Zhaohui
Zheng. Collaborative competitive filtering: learning recommender using context of
user choice. In Proceeding of the 34th International ACM SIGIR Conference on Research
and Development in Information Retrieval, SIGIR 2011, Beijing, China, July 25-29, 2011,
pages 295–304, 2011.

[233] Yiming Yang. An evaluation of statistical approaches to text categorization. Infor-
mation retrieval, 1(1-2):69–90, 1999.

[234] Zhi Yang, Christo Wilson, Xiao Wang, Tingting Gao, Ben Y. Zhao, and Yafei Dai.
Uncovering social network sybils in the wild. TKDD, 8(1):2:1–2:29, 2014.

[235] Yuan Yu, Michael Isard, Dennis Fetterly, Mihai Budiu, Úlfar Erlingsson,
Pradeep Kumar Gunda, and Jon Currey. DryadLINQ: A system for general-
purpose distributed data-parallel computing using a high-level language. In Pro-
ceedings of the 8th USENIX conference on Operating systems design and implementation,
pages 1–14, 2008.

[236] Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, S. V. N. Vishwanathan, and Inderjit S.
Dhillon. NOMAD: nonlocking, stochastic multi-machine algorithm for asyn-

252

chronous and decentralized matrix completion. PVLDB, 7(11):975–986, 2014.

[237] Dave Zachariah, Martin Sundin, Magnus Jansson, and Saikat Chatterjee. Alternat-
ing least-squares for low-rank matrix reconstruction. IEEE Signal Processing Letters,
19(4):231–234, April 2012.

[238] Matei Zaharia, Mosharaf Chowdhury, Tathagata Das, Ankur Dave, Justin Ma,
Murphy McCauley, Michael J. Franklin, Scott Shenker, and Ion Stoica. Resilient
distributed datasets: A fault-tolerant abstraction for in-memory cluster computing.
In NSDI, April 2012.

[239] Kazimierz Zarankiewicz. Problem p 101. In Colloq. Math, volume 2, page 301, 1951.

[240] Zhe Zhao, Zhiyuan Cheng, Lichan Hong, and Ed H. Chi. Improving user topic
interest profiles by behavior factorization. In Proceedings of the 24th International
Conference on World Wide Web, pages 1406–1416. International World Wide Web
Conferences Steering Committee, 2015.

[241] Yong Zhuang, Wei-Sheng Chin, Yu-Chin Juan, and Chih-Jen Lin. A fast parallel
sgd for matrix factorization in shared memory systems. In Proceedings of the 7th
ACM Conference on Recommender Systems, pages 249–256. ACM, 2013.

[242] Martin Zinkevich, Alexander J. Smola, and John Langford. Slow learners are fast.
In Advances in Neural Information Processing Systems 22: 23rd Annual Conference
on Neural Information Processing Systems 2009. Proceedings of a meeting held 7-10
December 2009, Vancouver, British Columbia, Canada., pages 2331–2339, 2009.

[243] Martin Zinkevich, Markus Weimer, Alexander J. Smola, and Lihong Li. Parallelized
stochastic gradient descent. In Advances in Neural Information Processing Systems 23:
24th Annual Conference on Neural Information Processing Systems 2010. Proceedings
of a meeting held 6-9 December 2010, Vancouver, British Columbia, Canada., pages
2595–2603, 2010.

[244] Zhaonian Zou, Jianzhong Li, Hong Gao, and Shuo Zhang. Mining frequent
subgraph patterns from uncertain graph data. TKDE, 22(9):1203–1218, 2010.

253

	I Introduction and Background
	1 Introduction
	1.1 Overview and Contributions
	1.1.1 Modeling Abnormal Behavior
	1.1.2 Modeling Normal Behavior
	1.1.3 Scalable Machine Learning

	1.2 Overarching Thesis Statements

	2 Preliminaries and Background
	2.1 Graph Structure
	2.2 Mathematical data structures

	2.3 Model Structure
	2.3.1 Factorization
	2.3.2 Clustering

	2.4 Learning
	II Modeling Abnormal Behavior
	II.1 Related Work
	II.1.1 Spammer and Fraudster Detection
	II.1.2 Graph-based Anomaly Detection
	II.1.3 Subgraph Mining
	II.1.4 Co-clustering

	3 Detect Fraud in Static Graphs
	3.1 Introduction
	3.2 Synchronized Behavior Detection
	3.2.1 Problem Definition
	3.2.2 Proposed Approach

	3.3 CatchSync Algorithm
	3.4 Experiments
	3.4.1 Evaluation: Data and Ground Truth
	3.4.2 Competing Algorithms
	3.4.3 Detection Effectiveness on Synthetic Data
	3.4.4 Detection Effectiveness on Real Data
	3.4.5 CatchSync Properties
	3.4.6 Discovery: A Case Study

	3.5 Summary

	4 Detect Fraud in Graphs with Time
	4.1 Introduction
	4.2 Relationship to Related Work
	4.2.1 Local clustering
	4.2.2 MapReduce

	4.3 Problem Formulation
	4.4 Methodology
	4.4.1 Optimization Formulation
	4.4.2 A Serial Algorithm
	4.4.3 Proof of Convergence

	4.5 A MapReduce Implementation
	4.5.1 Algorithm
	4.5.2 Implementation Optimizations

	4.6 An Adversarial Challenge
	4.6.1 ``Greedy Attacks''
	4.6.2 Optimal Strategy: An Open Problem

	4.7 Experimental Analysis
	4.7.1 Experimental Setup
	4.7.2 Scalability
	4.7.3 Convergence
	4.7.4 Discovery
	4.7.5 Deployment at Facebook

	4.8 Discussion: Applications
	4.9 Summary

	5 Detect Fraud in Graphs with Multiple Attributes
	5.1 Introduction
	5.2 Proposed Metric Criteria
	5.2.1 Problem Formulation
	5.2.2 Axioms
	5.2.3 Shortcomings of Competitors

	5.3 Proposed Suspiciousness Metric
	5.3.1 Dense Subvector and Submatrix: 1-Mode and 2-Mode Suspiciousness
	5.3.2 Dense Subtensor: K-Mode Suspiciousness
	5.3.3 Proofs: Satisfying the Axioms

	5.4 Suspicious Block Detection
	5.4.1 Problem Definition
	5.4.2 Proposed Algorithm CrossSpot

	5.5 Experiments
	5.5.1 Datasets
	5.5.2 Experimental Setup
	5.5.3 Synthetic Experiments
	5.5.4 Retweeting Boosting
	5.5.5 Hashtag Hijacking
	5.5.6 Network Traffic

	5.6 Summary
	III Modeling Normal Behavior
	III.1 Related Work
	III.1.1 Recommender Systems
	III.1.2 Co-Clustering
	III.1.3 Matrix Approximation

	6 Flexible Models for Normal and Abnormal Behavior
	6.1 Introduction
	6.2 Relationship to Related Work
	6.2.1 Recommendation Metrics
	6.2.2 Rating Spam and Robust Recommendation

	6.3 Rating Distribution
	6.4 Co-Clustering
	6.5 Generative Model
	6.6 Parameter Inference
	6.6.1 Sampling the user and item parameters ui
	6.6.2 Sampling the cluster membership ai
	6.6.3 Sampling cluster parameters a, a
	6.6.4 Inference for hyperparameters , W,

	6.7 Spam Detection during Recommendation
	6.8 Experiments
	6.8.1 Datasets and Set up
	6.8.2 Model fit
	6.8.3 Robustness to spam
	6.8.4 Natural clusters in real world
	6.8.5 Shape of real world data

	6.9 Summary

	7 Interpretable Recommendations
	7.1 Introduction
	7.1.1 Linear combinations of attributes
	7.1.2 Succinct Stencils
	7.1.3 Contributions

	7.2 Related Work
	7.3 Matrix Approximation
	7.3.1 Proposed Model
	7.3.2 Algorithm
	7.3.3 Approximation Guarantees

	7.4 Generative Model
	7.4.1 Co-Clustering with a Single Stencil
	7.4.2 Collapsed Gibbs Sampler
	7.4.3 Efficient Implementation
	7.4.4 Additive Combinations of Stencils

	7.5 Experiments
	7.5.1 Implementation
	7.5.2 Experimental Setup
	7.5.3 Matrix Completion
	7.5.4 Matrix Approximation
	7.5.5 Interpretability
	7.5.6 Properties of ACCAMS

	7.6 Discussion

	8 Explaining Recommendations
	8.1 Introduction
	8.2 Related Work

	8.3 Poisson Additive Co-Clustering
	8.3.1 Modeling Reviews using an Additive Poisson Model
	8.3.2 The Joint Generative Model

	8.4 The Sampling Algorithm
	8.4.1 Sampling a Sum of Poisson Distributions
	8.4.2 Sampling Cluster Assignments
	8.4.3 Implementation

	8.5 Experiments
	8.5.1 Experimental Setup
	8.5.2 Quantitative evaluation
	8.5.3 Interpretability

	8.6 Summary
	IV Scalable Machine Learning
	IV.1 Related Work
	IV.1.1 Big Data Processing
	IV.1.2 Distributed Learning
	IV.1.3 Matrix Factorization
	IV.1.4 Tensor Factorization

	9 Distributed Modeling of Attributed Hypergraphs
	9.1 Introduction
	9.2 FlexiFaCT Approach
	9.2.1 Optimization Objectives
	9.2.2 SGD Updates
	9.2.3 Blocking for Parallelization

	9.3 Proof Sketch
	9.4 MapReduce Implementation of FlexiFaCT
	9.5 Experiments
	9.5.1 Performance Evaluation
	9.5.2 Scalability
	9.5.3 Correctness & Monotone Convergence

	9.6 Summary

	10 Fast in the face of Stragglers
	10.1 Introduction
	10.2 Related Work
	10.3 Fugue: Slow-Worker Agnostic Learning
	10.3.1 Latent Factor Models
	10.3.2 Fugue Approach
	10.3.3 Partitioning strategy
	10.3.4 Distributed update scheduling

	10.4 Proof Sketch
	10.5 Experiments
	10.5.1 Experimental Setup
	10.5.2 Empirical Results
	10.5.3 Why Fugue Succeeds

	10.6 Generality and Applicability to Bayesian models
	10.7 Summary

	V Concluding Remarks
	11 Conclusion
	11.1 Contributions
	11.2 Impact

	12 Overarching Vision and Future Work
	12.1 Big Picture—Thesis Statements
	12.2 Future Directions
	12.2.1 Application Outreach
	12.2.2 Modeling and Algorithms
	12.2.3 Scalable Machine Learning
	Appendices
	A CatchSync Proofs
	B ACCAMS Approximation Guarantee
	C FlexiFaCT Proof of Convergence
	D Fugue Proofs
	Bibliography

