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Abstract

The undisciplined use of shared mutable state can be a source of program errors when aliases
unsafely interfere with each other. While protocol-based techniques to reason about interference
abound, they do not address two practical concerns: the decidability of protocol composition and
its integration with protocol abstraction. We show that our composition procedure is decidable and
that it ensures safe interference even when composing abstract protocols. To evaluate the expres-
siveness of our protocol framework for ensuring safe shared memory interference, we show how
this same protocol framework can be used to model safe, typeful message-passing concurrency
idioms.
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1 Introduction
The interactions that can occur via shared mutable state can be a source of program errors. When
different clients access the same mutable state, their actions can potentially interfere. For instance,
the programmer may wrongly assume that a cell holds a particular type, when another part of the
program has changed that cell to hold a different type. When this happens, the program may fault
due to unsafe interference caused by unexpected actions through other aliases to that shared state.
Thus, to reason about interference we must reason about how state is aliased and how the different
aliases use the shared state.

Our technique builds on the use of linear capabilities [1] to track type-changing resource mu-
tation within the framework of a linear type system. However, relying solely on linearity is often
too restrictive. For instance, linearity enforces exclusive ownership of mutable state, which is in-
compatible with multithreading—i.e. linearity forbids sharing. To allow sharing, we extend the
concept of rely-guarantee protocols [21]. By sequencing steps of “rely⇒guarantee” actions, each
protocol characterizes an alias’s local, isolated perspective on interactions with a piece of shared
state:

“what I assume about the state”⇒ “what I guarantee about the state”︸                                                                                        ︷︷                                                                                        ︸
current step

; next step

Since the interactions performed by an alias may change over time, a rely-guarantee protocol is
formed by a sequence of steps that specify each interfering action. Each step relies on the shared
state having some type and then, after some private actions, guarantees that the shared state will
now have some other type, which becomes visible to other aliases. By constraining the actions
of each alias, we can make strong assumptions about the kind of interference that an alias may
produce, in the spirit of rely-guarantee reasoning [16]. Naturally, not all protocols compose safely.
While a protocol describes its own actions on a piece of shared state, protocol composition will
ensure that those actions are safe w.r.t. the actions that can be done via other existing (and even
future) protocols over that state. Composition is safe only if the set of protocols accounts for all
possible run-time action interleavings.

Our main contribution is a decidable protocol composition procedure that also allows abstract
protocols to be composed. We break down our contributions as follows:

• We adapt the existing constructs of rely-guarantee protocols [21] to work in a system with
concurrent runtime semantics, and show that rely-guarantee protocols are useful to reason
about safe interference in the concurrent setting.

• We give an axiomatic definition of protocol composition. We show that this procedure can be
implemented in a sound and complete (w.r.t. the formal definition) algorithm that terminates
on all legal inputs.1 The protocol composition algorithm is implemented in a prototype.2

1Note that we have not proven the decidability of the entire type system, but only of the protocol composition
algorithm which is at its core. The remainder of the type system is more conventional and we did not encounter
difficulties with decidability when implementing similar rules in our prior work [21].

2See: http://www.cs.cmu.edu/˜foliveir/protocol-composition.html
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x ∈ Variables t ∈ Tags f ∈ Fields ρ ∈ Location Constants

e ::= v (value)
| v.f (field selection)
| v v (application)
| let x = e in e end (let)
| new v (cell creation)
| delete v (cell deletion)
| !v (dereference)
| v := v (assign)
| case v of t#x→ e end (case)

| lock v (lock locations)
| unlock v (unlock locations)
| fork e (spawn thread)

v ::= ρ (address)
| x (variable)
| λx.e (function)
| {f = v} (record)
| t#v (tagged value)

Notes: Z is a potentially empty sequence of Z elements. ρ is not source-level.

Figure 1: Values (v) and expressions (e).

• We show that our use of type abstraction and bounded quantification at the protocol level
enables us to model new, and more general, polymorphic forms of safe modular shared state
interactions.

• We prove our system sound through progress and preservation theorems that show the ab-
sence of unsafe interference in correctly typed programs. Our design ensures memory safety
and data-race freedom, where linear resources are shared via protocol composition (a partial
commutative monoid [19, 8]).

• We evaluate the expressiveness of our system by discussing how our core shared memory
protocol framework is capable of expressing safe, typeful message-passing idioms.

Next, we briefly introduce the language that “hosts” our protocols, with the remaining text fo-
cused on discussing new protocol-level features. Sections 2 and 3 introduce our novel definition of
protocol composition and its extensions to support abstract protocols. Section 4 discusses technical
results. The paper ends with discussions of expressiveness, related work, and conclusions.

1.1 Preliminaries: Language Overview
Our language supports fork/join concurrency combined with lock-based mutual exclusion, where
all threads share a common heap. We use the variant of the polymorphic λ-calculus shown in Fig.
1. For convenience, the grammar is let-expanded [31] so that all constructs, except let, are defined
over values. The language includes first-class functions (λ), records ({f = v}) that label a value
as f, and tagged values (t#v) to mark a value with a tag. Standard constructs are used for field
selection, application, let blocks, memory allocation, deletion, assignment, dereference, and case
analysis. “lock v” atomically locks a non-empty set of locations (ensuring both mutual exclusion
and forbidding re-entrant uses) and analogously with “unlock v”. “fork e” executes the expression
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// assume ‘y’ in scope y : !ref l, rw l int
y := "ok!"; y : !ref l, rw l string
let x = y in x : !ref l, y : !ref l, rw l string
x := false; x : !ref l, y : !ref l, rw l boolean
delete x; x : !ref l, y : !ref l
!y // Type Error: missing capability to location ‘l’.

Figure 2: Tracking linear capabilities.

in a new thread while sharing access to the common global heap. The operational semantics are
standard and, as such, are only shown in the appendix. They produce the standard evaluation of
the language’s constructs such as creating or deleting memory, spawning new threads, etc.

Mutable References We type mutable references by following the design proposed in L3 [1].
Therefore, a mutable cell is decomposed into two components: a pure reference, which can be
freely copied; and a linear [13] capability, a resource that is used to track the contents of that cell.
To link a reference to its respective capability, we use location-dependent types. For instance, a
new cell has type ∃l.( (!ref l) :: (rw l A) ). This type abstracts the fresh location, l, that was
created by the memory allocation. Furthermore, we are given a reference of type “!ref l” to mean
a pure/duplicable (!) reference to a location l, where the information about the contents of that
location is stored in the linear capability for l. The permission to access (e.g. dereference) the
contents of a cell requires both the reference and the capability to be available.

Our capabilities follow the format “rw l A”, meaning a read-write capability to a location
l that currently has contents of type A (the type of the value, given in “new v”, that initializes
the new cell). We depart from [1] by making capabilities typing artifacts that only exist at the
level of typing. Consequently, capabilities are managed implicitly by the type system rather than
manually manipulated by the programmer via language constructs. However, we may still need
to associate a capability with another type. For this reason, we use the notion of stacking [22].
In ∃l.( (!ref l) :: (rw l A) ) we see that the capability to l is stacked on top of “!ref l” since the
capability is to the right of the “::”. This allows the capability to be bundled together with the ref
type, but no action is required to unbundle them if they are needed separately. We refer to prior
work [19, 22, 21, 1] for more details on the use of capabilities, locations, and stacking, as well as
convenient abbreviations. Here, it suffices to assume that they are handled automatically by the
type system, as our focus here is on safely sharing the linear resources.

In the scheme above, all the variables that reference the same location also share a single linear
(i.e. “exclusively owned” or “unique”) capability that tracks the changes to that location’s contents
(as shown in Fig. 2). However, this tracking relies on a compile-time approximation of how vari-
ables alias, which constrains how state can be used. Since the linear capability must be (linearly)
threaded through the program, this scheme forbids aliasing idioms that require “simultaneous” ac-
cess to aliased state, such as when multiple threads share access to a cell. To enable this form of
sharing, we split a linear resource into multiple protocols. Each protocol controls how an alias
interacts with the shared state, without depending on precise knowledge of which variables alias
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x ∈ Variables X ∈ Type Variables ρ ∈ Location Constants l ∈ Location Variables

t ∈ Tags f ∈ Fields p ::= ρ | l u ::= l | X U ::= p | A

A ::= !A (pure/persistent)
| A( A (linear function)
| [f : A] (record)
|
∑

i ti#Ai (tagged sum)
| ∀l.A (universal location)
| ∃l.A (existential location)
| ∀X<: A.A (bounded universal type)
| ∃X<: A.A (bounded existential type)
| ref p (reference type)
| X[U] (type variable)

| (rec X(u).A)[U] (recursive type)
| A ⊕ A (alternative)
| A & A (intersection)
| rw p A (read-write capability to p)
| none (empty resource)
| top (top)
| A :: A (stacking)
| A ∗ A (separation)
| A⇒ A (rely)
| A ; A (guarantee)

Notes: we simplify X[] to X; ⊕, &, ∗, + are commutative and associative.

Figure 3: Types (A).

each other. We will continue with a brief presentation of the base language, before diving into the
details of our sharing mechanism in Section 2.

Types (Note that rely and guarantee types will only be discussed in the next section, when we
present sharing). Our types (Fig. 3) follow the connectives of linear logic [13]. For this reason
a function type uses ( (instead of →) to denote a linear function. The linear restriction can be
lifted when the type is preceded by a “bang”, such as in !A, which denotes a pure/duplicable
type. Records are typed as [f : A] where each field f types the value of the record with some type
A.
∑

i ti#Ai denotes a single tagged type or a sequence of tagged types separated by + (such as
“a#A + b#B + c#C”). We have separate existential and universal quantification over locations and
types, since locations and types are of different kinds. Note that we leave ∀/∃ as typing artifacts
and as such they do not have corresponding constructs in the language. Quantification over types
can provide a type bound (on the right of <:) and where top is assumed by default when the bound
is omitted.

Our recursive types (assumed to be non-bottom types) are equi-recursive, interpreted co-inductively,
and satisfy the usual folding/unfolding principle:

(rec X(u).A)[U] = A{(rec X(u).A)/X}{U/u} (eq:Rec)

Recursive types may include a list of type/location parameters (u) that are substituted by some
type/location (U) on unfold, besides unfolding the recursive type variable (X).

We use ⊕ to denote a union of alternative types, and & to denote a linear choice of different
types. none is the empty resource. Finally we have “A0 :: A1” for stacking resource A1 on top of
A0. Stacking is not commutative, so that it is not guaranteed that “A0 :: A1 :: A2” can be used in
place of “A0 :: A2 :: A1”. To enable resource commutation, we use ∗ such that “A0 :: (A1 ∗ A2)”

6



Γ | ∆0 ` e : A a ∆1 Typing rules, (t:*)

(t:Pure)
Γ | · ` v : A a ·

Γ | · ` v : !A a ·

(t:Pure-Elim)
Γ, x : A0 | ∆0 ` e : A1 a ∆1

Γ | ∆0, x : !A0 ` e : A1 a ∆1

(t:Frame)
Γ | ∆0 ` e : A a ∆1

Γ | ∆0,∆2 ` e : A a ∆1,∆2

(t:Function)
Γ | ∆, x : A0 ` e : A1 a ·

Γ | ∆ ` λx.e : A0 ( A1 a ·

(t:Application)
Γ | ∆0 ` v0 : A0 ( A1 a ∆1 Γ | ∆1 ` v1 : A0 a ∆2

Γ | ∆0 ` v0 v1 : A1 a ∆2

(t:New)
Γ | ∆0 ` v : A a ∆1

Γ | ∆0 ` new v : ∃l.((!ref l) :: (rw l A)) a ∆1

(t:Delete)
Γ | ∆0 ` v : ∃l.((!ref l) :: (rw l A)) a ∆1

Γ | ∆0 ` delete v : ∃l.A a ∆1

(t:Assign)
Γ | ∆0 ` v1 : A0 a ∆1

Γ | ∆1 ` v0 : ref p a ∆2, rw p A1

Γ | ∆0 ` v0 := v1 : A1 a ∆2, rw p A0

(t:Let)
Γ | ∆0 ` e0 : A0 a ∆1

Γ | ∆1, x : A0 ` e1 : A1 a ∆2

Γ | ∆0 ` let x = e0 in e1 end : A1 a ∆2

(t:Dereference-Linear)
Γ | ∆0 ` v : ref p a ∆1, rw p A

Γ | ∆0 ` !v : A a ∆1, rw p ![]

(t:LocOpenBind)
Γ, l : loc | ∆0, x : A1 ` e : A2 a ∆1

Γ | ∆0, x : ∃l.A1 ` e : A2 a ∆1

(t:Subsumption)
Γ ` ∆0 <: ∆1 Γ | ∆1 ` e : A0 a ∆2 Γ ` A0 <: A1 Γ ` ∆2 <: ∆3

Γ | ∆0 ` e : A1 a ∆3

Notes: bounded variables of a construct and type/location variables of quantifiers must be fresh in the rule’s conclusion.

Figure 4: Typing rules (selected).

and “A0 :: (A2 ∗ A1)” are interchangeable via subtyping. For clarity, we will review these type
annotations as we present examples further below. Note that we do not syntactically distinguish
resources (such as capabilities or protocols) from value-inhabited types. However, the type system
ensures that types such as none can never be used to type a value. Indeed, even though “wrong”
types can be assumed (such as in a function’s argument) they can never actually be introduced as
values.

Type System To enable automatic threading of resources, we use a type-and-effect system with
judgments of the form: Γ | ∆0 ` e : A a ∆1 stating that with lexical environment Γ and linear
resources ∆0 we assign the expression e the type A, with effects resulting in the resources in ∆1.
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The typing environments are defined as follows:

Γ ::= · (empty)
| Γ, x : A (variable binding)
| Γ, p : loc (location assertion)
| Γ, X<: A (bound assertion)
| Γ, X : k (kind assertion)

∆ ::= · (empty)
| ∆, x : A (linear binding)
| ∆, A (linear resource)

k ::= type | type→ k | loc→ k (kinds)

Recursive type variables are given an → kind, where the left hand side tracks the type/location
kind of a parameter of that recursive type.

Fig. 4 includes a few selected typing rules. Additional rules are shown below as they become
relevant to the discussion on sharing, with the remainder left to the appendix. (t:Pure) types
a value as pure if the value does not use any resources. If a variable is of a pure type, then
(t:PureElim) allows the binding to be moved to the linear context with its type explicitly “banged”
with !. (t:Frame) enables framing [30] resources that are not used by an expression, just threaded
through the expression. Since a function, (t:Function), can depend on the resources inside of ∆

(which the function captures), a functional value must be linear. However, the function can later
be rendered pure (!) through the use of (t:Pure) if the set of resources it captures is actually empty.
(t:Application) is the standard rule. As discussed above, (t:New) and (t:Delete) manipulate types
that abstract the underlying location that was created or that is to be deleted. (t:Assign) updates
the contents of a location with the type of the newly assigned value. (t:Let) threads the effects
of e0 to the initial linear resources of e1, sequencing the evaluation of the expressions as usual.
(t:Dereference-Linear) removes the contents of a cell, leaving the residual “unit” type behind (the
semantics leave the cell unchanged but unusable through typing). (t:LocOpenBind) illustrates the
non-syntax-directed opening of existential location packages.

The subtyping rules are deferred to the appendix, but it suffices to know the subtyping judg-
ment, Γ ` A0 <: A1, which states that A0 is a subtype of A1, meaning that A0 can be used any-
where A1 is expected. An analogous judgment governs subtyping between linear environments,
Γ ` ∆0 <: ∆1. Thus, the (t:Subsumption) rule simply states that we can type an expression while
using weaker assumptions and ensuring a stronger result and effect, as these types cannot break
the conclusion’s types expectations.

2 A Protocol for Modeling join

We begin by describing how non-abstracted protocols compose and how rely-guarantee protocols
work in the concurrent setting. Our language supports the fork/join model of concurrency, in which
a join is encoded via shared state interactions. There are two participants in this interaction: the
Main thread and the Forked thread. The forked thread computes some result. When the main thread
joins the forked thread it will wait until the result becomes available, if it is not yet ready. Our
primitives to interact with shared state are reading/writing and locking/unlocking. Because of this,
our protocols must explicitly model the “wait for result” cycle of a join.3 A thread scheduler could

3Each protocol must be aware of all valid states, as an omission would leave room for unsafe interference, such as
when later re-splitting that protocol.

8



reduce or eliminate the spinning caused by this “busy-wait”, but this is beyond the scope of our
discussion. We define the two protocols as follows:

F , Wait⇒ Result ; none
M , ( Wait⇒ Wait ; M ) ⊕ ( Result⇒ Done ; Done )

Each protocol contains a sequence of steps that control the use of locks and specify the (type)
assumptions on that locked state. Since locks hide all private actions, the protocols will only need
to model the changes that become visible upon unlocking. These changes are bounded by a single
lock-unlock block, which is mapped to a single rely⇒guarantee step in the protocol. When we
lock a cell we will assume that the state is of some type and, when we eventually unlock that cell,
we will guarantee that it changed to some other type. Multiple steps can be sequenced using the ;
operator.

The forked thread will be given the F protocol. This protocol initially assumes that the shared
state is of type Wait on locking. In order to legally unlock that cell, we must first fulfill the
obligation to mutate the state to Result. Once that guarantee is obeyed the protocol continues as
none. This empty resource type models termination since the forked thread will never be able to
access that shared state again. Note that since subsequent steps may be influenced by the guarantee
of the current step, a protocol step is to be interpreted as “Wait ⇒ ( Result ; none )”.

The Main protocol includes two alternative (⊕) steps that describe different uses of the shared
state. If we find the shared cell containing the Wait type then the main thread must leave the state
with the same type, before later retrying M. Otherwise, if we find the cell containing a Result, we
know that F has already terminated and can no longer access the shared state. In that situation, we
mutate the cell to Done and unlock it so that each lock always has a matching unlock. Afterwards,
the protocol continues as Done, a type that is just a regular linear capability. Thus, M recovered
ownership of the shared state and Done can continue to be used without locking since the cell
is no longer shared. We can now give concrete definitions for Wait, Result, and Done as types
describing a single capability to location l as follows:

Wait , rw l Wait#![] Result , rw l Result#int Done , rw l ![]

Wait is a capability to location l containing a tagged value, where Wait is the tag and “![]” (a pure
empty record) is the type of the value. Result is a capability for l containing an integer value tagged
with Result. The two tags will enable us to distinguish between the Wait and Result alternatives
by using standard case analysis. With Done the content is an empty pure record (“unit”).

Each protocol describes an alias’s local, isolated view of the evolution of the shared state. Thus,
we can discuss the uses of each protocol independently. Because a protocol is a linear resource,
the forked thread will “consume” or “capture” F in its context, making it unavailable to the main
thread. As with any linear resource, F is tracked by the linear typing environment (∆) and is either
used by an expression or threaded through to the next expression. However, the forked thread
and main thread can share the enclosing lexical typing environment (Γ) because it only contains
pure/duplicable assumptions. A possible use of the F protocol follows.

3 fork Γ = c : ref l, l : loc |∆ = work : ![]( int, F
4 let r = work {} in Γ = r : int, ... |∆ = Wait⇒ (Result ; none)
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5 lock c; Γ = ... |∆ = Wait, (Result ; none)
6 c := Result#r; Γ = ... |∆ = Result, (Result ; none)
7 unlock c Γ = ... |∆ = none
8 end Γ = ... |∆ = ·

Γ contains a reference (c) to the location (l) that is being shared by the protocol, and ∆ contains a
variable with the (linear) function that computes the work that the thread will do. (In this example
both protocols refer to a well-known common location, but our technique also allows each protocol
to ∃ abstract its locations.) Line 4 consumes the function work by calling it, storing the result in
variable r. At this point we want to update the shared state to signal that the result is ready. Since
we are accessing shared state in a multi-threaded environment we first lock the shared location
that is being referenced by c. To type a lock we must map the locations listed in the lock to those
contained in the rely type of the protocol. Well-formedness conditions on the protocols ensure that,
at each step, the rely and the guarantee types refer the same set of locations so that no lock on a
location goes without a respective unlock.

Γ | · ` v : ref p a · locs(A0) = p

Γ | ∆, A0 ⇒ A1 ` lock v : ![] a ∆, A0, A1
(t:Lock-Rely)

When locking (line 5), the step of F is broken down into its two components: the rely type (Wait)
and the guarantee type (Result; none). While Wait describes the linear resources that are now
available to use, the guarantee type is an obligation to mutate the state to fulfill the given type
before unlocking. Indeed, line 7 is only valid because the shared state was modified to match the
promised guarantee type (Result).

Γ | · ` v : ref p a · locs(A0) = p

Γ | ∆, A0, (A0; A1) ` unlock v : ![] a ∆, A1
(t:Unlock-Guarantee)

(with parenthesis used for clarity). Once the guarantee is fulfilled, we can move on to the next
step of the protocol (in the case of F, none; or A1, in the case of the rule above). The none type
is the empty resource that can be automatically discarded, leaving ∆ empty (·). Thus, the uses of
protocols are mapped to the (t:Lock-Rely) and (t:Unlock-Guarantee) rules that step a protocol.
We now show the rest of the encoding:

1 let newFork = λwork. Γ = · |∆ = work : ![]( int
2 let c = new Wait#{} in Γ = c : ref l, l : loc |∆ = rw l Wait#![], ...
3 fork ... // lines 3 to 8 shown above. Γ = ... |∆ = M, F, ...

To simplify the presentation, our term language is stripped of type annotations. However, the
newFork function has type !( ( ![] ( int ) ( ( ![] ( int ) ) where the argument of this pure
function is the work to be done by the thread, as was shown above. The resulting function is the
join (shown below) that, once called, waits for the forked thread’s result. Line 2 creates the cell
that will be shared by the main and forked threads. This new cell, although typed ∃l.( (!ref l) ::
(rw l Wait#![]) ), is automatically opened by the type system via (t:LocOpenBind) to allow direct
access to the ref l reference via variable c.
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Line 3 shares the cell by splitting the capability to location l into the M and F protocols. This
split is done in a non-syntax-directed way through (t:Subsumption) (of Fig. 4), combined with the
following rule for subtyping on ∆’s:

Γ ` ∆0 <: ∆1 Γ ` A0 V A1 || A2

Γ ` ∆0, A0 <: ∆1, A1, A2
(sd:Share)

Where the following resource split (V) is used:

Γ ` Wait V M || F (recall: Wait , rw l Wait#![])

This split results in the capability to location l being replaced by the two protocols, M and F, in
∆. The composition check (described in the next subsection) relies on the knowledge that M and
F share the same location. Once the protocols are known to compose safely, however, we no
longer need to track this sharing—each protocol can abstract the location being accessed under a
different name, and they can be used independently. The fork expression is typed by consuming
the resources that the fork will use (such as F in the fork of line 3):

Γ | ∆ ` e : ![] a ·

Γ | ∆ ` fork e : ![] a ·
(t:Fork)

This rule is somewhat similar to (t:Function), but the result type is unit because fork does not
produce a result. Thus, a fork is executed for the effects it produces on the shared state. As such,
to avoid leaking resources, the final residual resources of the forked expression must be empty and
the resulting value pure (note that “!A <: ![]”).

Finally, we show the join function that will “busy-wait” for the forked thread to produce a result.
Its use of both recursion and case analysis should be straightforward as they follow standard usage.
The following text will focus on the less obvious details.

9 λ_.rec R. ∆ = ( Wait⇒ (Wait; M) ) ⊕ ( Result⇒ (Done; Done) )
10 [a]∆ = Wait⇒ (Wait; M) [b]∆ = Result⇒ (Done; Done)
11 lock c; [a]∆ = Wait, (Wait; M) [b]∆ = Result, (Done; Done)
12 case !c of [a]∆ = rw l ![], (Wait; M) [b]∆ = rw l ![], (Done; Done)
13 Wait#x → // must restore linear value [a]∆ = rw l ![], (Wait; M)
14 c := Wait#x; [a]∆ = Wait, (Wait; M)
15 unlock c; [a]∆ = M

16 R // retries
17 | Result#x → [b]Γ = x : int, . . . |∆ = rw l ![], (Done; Done)
18 unlock c; [b]Γ = x : int, . . . |∆ = rw l ![]
19 delete c; [b]Γ = x : int, . . . |∆ = ·

20 x

21 end

22 end

23 end
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We omit Γ to center the discussion on the contents of ∆. The alternative type (⊕) lists a union
of types that may be valid at that point in the program. To use such a type, an expression must
consider each alternative individually via (t:Alternative-Left):

Γ | ∆0, A0 ` e : A2 a ∆1 Γ | ∆0, A1 ` e : A2 a ∆1

Γ | ∆0, A0 ⊕ A1 ` e : A2 a ∆1
(t:Alternative-Left)

The breakdown of ⊕ (line 10) is done automatically by the type system. Thus, the body of the
recursion must be typed individually under each one of those alternatives, marked as [a] and [b].
The type of the resource on each alternative contains a sum type that matches different branches in
the case of line 12. Note that it is safe for this sum type to only match a subset of the branches that
the case lists. The remaining branches are simply ignored when typing the case with that sum
type:

Γ | ∆0 ` v :
∑

i ti#Ai a ∆1 Γ | ∆1, xi : Ai ` ei : A a ∆2 i ≤ j

Γ | ∆0 ` case v of t j#x j → e j end : A a ∆2

(t:Case)

This enables the same case to produce different effects, such as obeying incompatible guarantees,
based solely on the tagged contents of v. For instance, the Result branch will recover ownership
and destroy the shared cell (line 19), while the Wait branch must restore the linear value of that
cell (that was removed by the linear dereference of line 12, that left “rw l ![]” in ∆) before retrying.
Although line 19 deletes the cell, we first unlock the cell to fulfill the “Done; Done” guarantee of
the final protocol step.

A rely-guarantee protocol is a specification of each lock-unlock usage, modeled by a protocol
type. Therefore, we will continue the discussion on interference by only looking at the protocols,
while omitting the actual concrete programs that use them.

2.1 Checking Safe Protocol Composition
We now introduce our main contribution: a novel axiomatic definition of protocol composition,
which is later extended to support abstraction. Composing protocols over some shared state re-
quires considering all possible ways in which the use of these protocols may be interleaved. Thus,
regardless of the non-deterministic way by which aliases are interleaved at run-time, a correct
composition will ensure that all possible uses are safe.

Intuitively, a binary protocol split will generate an infinite binary tree representing all combi-
nations of interleaved uses of the two new protocols. Each node of that tree has two children based
on which protocol remains stationary while the other is stepped. Since this tree may be infinite, we
must build a co-inductive proof of safe interference. We only consider binary splits when checking
composition but since a protocol can be later re-split, there is no limit to how many protocols may
share some state.

The two protocols, M and F, shown above contain a finite number of different positions. We
call a configuration the combination of the positions of each protocol and the current type of the
shared resources. Each configuration is of the form:

〈 Γ ` ResourcesV Protocol || Protocol 〉
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Thus, when we split a Wait cell into protocols M4 and F5, we get the following set of configurations
that simulate the uses done via the protocols (seen as atomic public transitions of lock-unlock uses,
corresponding to the respective rely and guarantee types):

{ Ê 〈 Γ ` WaitV M || F 〉 , Ë 〈 Γ ` ResultV M || none 〉 ,
Ì 〈 Γ ` DoneV Done || none 〉 , Í 〈 Γ ` noneV none || none 〉 }

Configuration Ê represents the initial split of Wait into M and F. Starting from some configu-
ration, we will leave one of the protocols stationary while we simulate a use of the shared state (a
step) with the remaining protocol. From Ê if we step M we will stay in the same configuration. If
instead F is stepped, we get to configuration Ë that changed the state to Result and terminates the
F protocol. By continuing to step M we have the two last configurations: Ì where the last step of
M is ready to recover ownership, and Í where the ownership of the shared resource was recovered
and all protocols have terminated (i.e. all resources are empty, none).

Upon sharing, the ownership of the shared resources belongs to all intervening protocols; all
protocols can access the shared resources through locking. Ownership recovery means that this
ownership is given back to one single protocol and “revoked” from all remaining protocols. In
our protocols, recovery is modeled via protocol termination, such that a step transitions to a state
rather than to another protocol step. However, to be safe, we must be sure that this permanent
ownership transfer only occurs on the last protocol to terminate, ensuring that no other protocol
may accidentally assume that that shared state is still available. The ownership recovery in Ì
transfers Done from the “pool” of shared resources to the alias that uses the last step of the M
protocol. We also see by Í that this stepping consumes both the shared resource (leaving it as
none) and the final “step” of M (leaving the protocol position also as none).

All protocol configurations shown above can take a step. (Even none can take a vacuous step
that remains in the same configuration since none cannot change the shared resources.) Therefore,
each protocol will always find an expected state in the shared cell regardless of how protocols are
interleaved—i.e. all interference is safe since no configuration is stuck. A stuck configuration
occurs when at least one of the protocols cannot take a step with the current type of the shared
resources. For instance, 〈Γ ` ResultV M || F〉 cannot take a step with F since F does not rely on
Result in any of its available steps. If such stuck configurations were allowed to occur, then a
program could fault due to unexpected values stored in shared cells or due to attempts to access
cells that were destroyed using wrong assumptions of ownership recovery.

Protocol composition ensures that a resource, R (capabilities or protocols), can be shared (split)
as two protocols, P and Q, noted: Γ ` R V P || Q. Fig. 5 lists the grammatical categories
(for protocols, states and resources) that we consider when composing protocols. As exemplified
above we use a set of configurations, C, to represent the positions of each protocol as we traverse
all possible interleaved uses of the two new protocols. C is defined as:

C ::= 〈 Γ ` RV P || Q 〉 (configuration)
| C · C (configuration union)

4M , ( Wait⇒ ( Wait ; M ) ) ⊕ ( Result⇒ ( Done ; Done ) )
5F , Wait⇒ ( Result ; none )
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P,Q ::= (rec X(u).P)[UP] | X[UP] | P ⊕ P | P & P | none
| S ⇒ P | S ; P | ∃l.P | ∀l.P | ∃X <: A.P | ∀X <: A.P

S ::= (rec X(u).S )[US ] | X[US ] | S ⊕ S | S & S | none | A ∗ A | rw p A
R ::= P | S

Note: that the structure of allowed protocols is further restricted via protocol composition, beyond the syntactical
categories above. Namely, abstraction is only enabled by the rules of Section 3.3.

Figure 5: Grammar restrictions for checking safe protocol composition: Protocols, States, and
Resources.

Protocol composition, applied via (sd:Share), ensures that all configurations reachable through
stepping are themselves able to take a step, as follows:

〈 Γ ` RV P || Q 〉↑

Γ ` RV P || Q
(wf:Split)

C0 7→ C1 C1 ↑

C0 ↑
======================= (wf:Configuration)

Where C ↑ signals the divergence of stepping, consistent with the co-inductive nature of protocol
composition. We use a double line, as in (wf:Configuration), to mean that a rule is to be interpreted
co-inductively. This definition accounts for protocols that never terminate and also ensures that all
protocols can take a step with a given resource.

We now discuss the basic protocol composition definition of Fig. 6. (c:AllStep) synchronously
steps all existing configurations, where each configuration is stepped through (c:Step). We use R∗
(where ∗ is either L or R) to specify the configuration reduction context on one of the protocols of
a configuration, while the remaining protocol remains stationary, i.e.:

RL[�] = � || Q (for the Left protocol, Q is stationary)
RR[�] = P || � (for the Right protocol, P is stationary)

The subsequent stepping rules use R to range over both RL and RR.
We use three distinct label prefixes to group the stepping rules based on whether a rule is

stepping over a protocol (c-ps:*), stepping over some state (c-ss:*), or is applicable on both kinds
of resource (c-rs:*). (c-rs:None) “spins” a configuration since a terminated protocol cannot use
the shared resources but must be stuck-free for consistency with our definition. The following
(c-rs:*Alternative) and (c-rs:*Intersection) rules “dissect” a resource based on the alternative
(⊕) or choice (&) presented. Each different alternative state must be individually considered by
a protocol, while only one alternative step of a protocol needs to be valid. The situation is the
reverse for choices: all choices of a protocol must have a valid step, but a step of a protocol can
choose which resource to consider when stepping. State stepping, (c-ss:Step), transitions the step
of the protocol and changes the state of the shared resources to reflect the guaranteed state of the
protocol. Ownership recovery, (c-ss:Recovery), “consumes” the shared state (leaving it as none)
which models the transfer of ownership of that state back to the client context that uses the final
step of the protocol. Protocol stepping, (c-ps:Step), requires an exact simulation of the rely and
guarantee types when stepping both the simulated protocol and the current stepping protocol.
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C 7→ C Composition, (c:*)

(c:Step)
〈 Γ ` RV RL[P] 〉 7→ C0 RL[�] = � || Q
〈 Γ ` RV RR[Q] 〉 7→ C1 RR[�] = P || �

〈 Γ ` RV P || Q 〉 7→ C0 ·C1

(c:AllStep)
C0 7→ C2

C1 7→ C3

C0 ·C1 7→ C2 ·C3

Composition — Reduction Step, (c-rs:*)
(c-rs:None)

〈 Γ ` RV R[none] 〉 7→ 〈 Γ ` RV R[none] 〉

(c-rs:StateIntersection)
〈 Γ ` R0 V R[P] 〉 7→ C

〈 Γ ` R0&R1 V R[P] 〉 7→ C

(c-rs:ProtocolAlternative)
〈 Γ ` RV R[P0] 〉 7→ C

〈 Γ ` RV R[P0 ⊕ P1] 〉 7→ C

(c-rs:ProtocolIntersection)
〈 Γ ` RV R[P0] 〉 7→ C0

〈 Γ ` RV R[P1] 〉 7→ C1

〈 Γ ` RV R[P0&P1] 〉 7→ C0 ·C1

(c-rs:StateAlternative)
〈 Γ ` R0 V R[P] 〉 7→ C0

〈 Γ ` R1 V R[P] 〉 7→ C1

〈 Γ ` R0 ⊕ R1 V R[P] 〉 7→ C0 ·C1

Composition — State Stepping, (c-ss:*)
(c-ss:Step)

〈 Γ ` S 0 V R[S 0 ⇒ S 1; P] 〉 7→ 〈 Γ ` S 1 V R[P] 〉

(c-ss:Recovery)

〈 Γ ` S V R[S ] 〉 7→ 〈 Γ ` noneV R[none] 〉

Composition — Protocol Stepping, (c-ps:*)
(c-ps:Step)

〈 Γ ` S 0 ⇒ S 1; QV R[S 0 ⇒ S 1; P] 〉 7→ 〈 Γ ` QV R[P] 〉

Figure 6: Basic protocol composition stepping rules.
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Note that the rules above also enable the re-splitting of a protocol by extending an ownership
recovery step. In this situation, we have that the simulation of the original protocol will seamlessly
switch from the protocol stepping rules to the state stepping rules.

3 Polymorphic Protocol Composition
Up to this point, protocol composition does a strict stepping of protocols. Consequently, stepping
requires each protocol to know the exact type representation of the shared resources. Ideally, to
improve both locality and modularity, each protocol should only depend on the type information
that is relevant to the actions done through that alias. For instance, the action done through the F
protocol of page 9 does not need to know the precise type (Wait) that is initially stored in location
l. Thus, we want to be able to abstract Wait as X such that the protocol only keeps the typing
information that is relevant to that protocol’s local perspective on the shared resources:

∃X.( rw l X ⇒ ( rw l Result#int ; none ) )

Similarly, the wait step of the M protocol only depends on the tag of the shared cell enabling
everything else to be abstracted from its perspective:

∃X.( rw l Wait#X ⇒ ( rw l Wait#X ; M ) ) ⊕ . . .

Since rely-guarantee protocols are first-class types, they can move outside the scope of a “mod-
ule”. Without this form of abstraction, such a move would either expose potentially private infor-
mation or limit how clients may later re-split the shared resources. While enabling protocols to
abstract part of their uses based on their perspective of the shared resources improves modularity
and increases flexibility, it also brings new challenges on defining safe protocol composition and
ensuring its termination. We will focus the discussion on two new aliasing idioms that this kind
of abstraction enables: a) existential-universal interaction, how a universally quantified guarantee
can safely interact with an existentially quantified rely; and b) step extensions over abstractions,
how abstractions enable existing protocol steps to be re-split (i.e. nested protocol re-splitting) yet
without the risk of introducing unsafe interference on older protocols of that state.

Section 4 approaches the decidability problem. The remaining of this section starts by intro-
ducing the basic intuition of how protocol-level abstraction works, before extending our axiomatic
definition of composition to account for abstraction.

3.1 Existential-Universal Interaction
Enabling existential abstraction over the contents of the shared state will naturally allow a greater
decoupling from the actions done by other aliases to that shared state. However, since a protocol
encodes sequences of steps, ensuring safety must also account for the validity of the scope of the
opaque type. For instance, consider the composition:

Γ ` rw p intV ∃X.( rw p X ⇒ rw p X ; rw p X ⇒ ... ) || ( rw p int ⇒ rw p boolean ; ... )
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On the left protocol, the assumption of X extends beyond a single step. Because the right protocol
can change the underlying representation of X, this composition cannot be ruled safe. Indeed, if
X were of a pure type, the left protocol could potentially reintroduce a type that would unsafely
interfere with the right protocol’s assumptions on the shared state. Thus, while the left protocol
depends on an opaque type, it still requires that the “lifetime” of X extends to the next step.

We now discuss the core ideas that enable the safe composition of protocols that interact over
abstractions. First the interaction will only occur via the “lifetime” of the stored type (as it changes
on each step), and then we will use bounded quantification to enable types that are less opaque.
Consider the following protocols that are sharing a location p:

Nothing , ∃X.( rw p X ⇒ rw p X ; Nothing )
Full[Y] , rw p Y ⇒ ∀Z.( rw p Z ; Full[Z] )

The Nothing protocol is defined using X to abstract the contents of the shared cell on a single step,
while also guaranteeing that X is restored before repeating the protocol. Thus, Nothing cannot
publicly modify the shared state, although p can undergo private changes. Conversely, Full is
able to arbitrarily modify the shared state by allowing its clients to pick any type to apply to the
∀ of the guarantee. Full itself is parametric on the type that is currently stored in the shared cell,
Y . Each step of Full can exploit the precise local information on how the state was modified,
by remembering its own changes to cell p. However, the “lifetime” of X in Nothing is restricted
to a single step. Naturally, to be able to check this composition in a finite number of steps, we
must check the changes done by Full abstractly. To illustrate how composition works in this case,
consider the following split where p initially holds a value of type int:

p : loc ` rw p int V Full[int] || Nothing

Protocol composition results in the following set of configurations:

{Ê 〈 p : loc ` rw p intV Full[int] || Nothing 〉 ,
Ë 〈 p : loc, Z : type ` rw p Z V Full[Z] || Nothing 〉 }

The use of abstraction will mean that each configuration may have different assumptions of type
(and location) variables. Configuration Ê is the initial configuration given by the split above,
which includes the assumption that p is a known location. To step Nothing from Ê, we must first
find a representation type to open the existential. This type is found by unifying the current state
of the shared state (rw p int) with the rely type of Nothing (rw p X). Thus, we see that X is
abstracting int. After we open the existential, by exposing the int type, we see that the step will
preserve int resulting in Nothing yielding the same Ê configuration. To step Ê with Full[int],
we must consider that its resulting guarantee is abstract. The new configuration, Ë, must consider
a fresh type variable to represent that new type that a client can pick. In this case, we used Z
to represent that new type. It is straightforward to see that if we were to step Nothing from Ë
we would remain in configuration Ë following similar reasoning to that done for Ê. Perhaps the
surprising aspect is that further steps with Full will also yield configurations that are equivalent
to Ë.
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The typing environment plays a crucial role in enabling us to close the proof of safe compo-
sition. Although each step of Full must consider a fresh type due to the ∀, stepping results in
configurations that are equivalent up to renaming of variables and weakening of Γ. Weakening
allows us to ignore variables that no longer occur free in a configuration. This means that further
steps with Full result in configurations that are equivalent to already seen configurations. Thus,
although the set of different types that can be applied to Full’s guarantee is infinite, the number
of distinct interactions that can legally occur through that shared state is finite if we model those
interactions abstractly. Lifetime conflicts cannot occur with this technique as even if we open an
existential, we must still step the new configuration. Consequently, the problematic composition
above would be detected via stepping.

We can use bounded quantification to provide more expressive abstractions that go beyond the
fully opaque types used above (which are equivalent to a “<: top” bound), and convert this ex-
ample into one of more practical use. By using appropriate bounds, we can give concrete roles to
the Nothing and Full protocols. Consider that we want to share access to some data structure
among several different threads. However, depending on how these threads dynamically use that
data structure, it may become important to switch its representation (such as change from a linked
list to a binary tree, etc.). Furthermore, we want one specialized thread (the Controller) to retain
precise control over the data structure and to be allowed to monitor and change its representa-
tion. Concurrently, an arbitrary number of other threads (the Workers) also have access to the data
structure but are limited to only access its Basic operations.

W , ∃X <: B.( rw p X ⇒ rw p X ; W )
C[Y] , rw p Y ⇒ ∀Z <: B.( rw p Z ; C[Z] )

As before W is committed to preserve the representation type of X although it now has sufficient
room to use that type as B. C is now more constrained than before since it is forced to guarantee
a type that is compatible with B. However, C retains the possibility of both changing the represen-
tation type contained in the shared state, and also of “remembering” the precise (representation)
type that was the result of its own local action. Finally, note that we can safely re-split W arbitrarily
(i.e. W V W || W). Protocol composition yields similar set of configurations, but with the bound
assumption on Z.

This form of asymmetric interaction over shared state relates to the full − pure interaction
of access permissions [4]. A full permission allows exclusive write permission to an object,
but also enables read-only permissions (pure) to co-exists. Consequently, each pure permission
must assume that other permissions can modify the shared object up to a certain type, the state
guarantee. While their work focuses on the read-write distinction, and our work is centered on
modeling type-changing mutations (so all aliases can write), the example shows that we are able
to naturally model similar asymmetric interaction within our protocol framework.

3.2 Inner Step Extension with Specialization
Re-splitting an existing protocol while specializing its interference is possible, provided that its
effects remain consistent with those of the original protocol. Namely we can append new steps to
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an otherwise ownership recovery step, or produce effects that are more precise than those of the
original protocol. The first case allows us to connect two protocols together by that recovery step.
The latter case is more interesting: when combined with abstraction it allows specialization within
an existing step (i.e. nested re-splits), enabling new forms of shared state interaction through that
abstraction.

To illustrate the expressiveness gains, we revisit the join protocol of Section 2. However,
instead of spawning a single thread to compute the work, we re-split the join protocol in two
symmetric workers that share the workload. The last of the workers to complete merges the two
results together and “signals” the waiting main thread. First, we rewrite the two protocols to enable
abstraction on the M protocol, and add a choice (&) to the F protocol that enables F to use the state
more than once until it provides a result.

F[X] , ( rw p W#X ⇒ ∀Y.( rw p W#Y ; F[Y] ) ) & ( rw p W#X ⇒ rw p R#int ; none )
M , ∃Z.( rw p W#Z ⇒ rw p W#Z ; M ) ⊕ ( rw p R#int⇒ rw p int ; rw p int )

As before, M will Wait until there is a Result in p. At that point, M will recover ownership of that
cell. Unlike before, M no longer depends on the value tagged as W since it is abstracted as Z. The
F protocol now holds two choices (&): the old step that transitions from Wait to Result, and a new
step that changes the representation of the value tagged as W and used during the wait phase. The
F protocol of Section 2 is a specialization of this protocol since it includes only one of the choices.
In here, we specialize F into two symmetric worKer protocols. To simplify the presentation, we
assume that the worker thread will receive the work parameters through some other mean (such as
a pure value shared among threads). Once a worker finishes its job, it will push the resulting int
to the shared state. If it notices it is the last worker to finish, it will merge the two results together
and flag the state as ready, so that Main can proceed.

K , ( rw p W#(E#[])⇒ rw p W#(R#int) ; none ) ⊕ ( rw p W#(R#int)⇒ rw p R#int ; none )

It is important to note that the new tags/values are nested inside the old W tag. This ensures that
the new usages remain hidden from M and “look” just like the previous F usage. (There are also
no lifetime conflicts since M does not preserve its type assumption on the abstraction beyond a
single step.) However, these inner tags are used by the two workers for coordination: the W#Empty
tag means that neither thread has finished, and W#Result means that one of the threads has already
finished. We can then re-split F as follows (note the required initial type in F, E#[], for this split to
be valid):

Γ ` F[E#[]] V K || K

Protocol composition follows analogous principles to above, except that we are now simulating the
steps of the original F protocol with the steps of the two new K protocols:

{ 〈 Γ ` F[E#[]] V K || K 〉 , 〈 Γ ` F[R#int] V K || none 〉 ,
〈 Γ ` F[R#int] V none || K 〉 , 〈 Γ ` none V none || none 〉 }

Each simulation will match the rely and guarantee types of a step in F with a step in K, even
if specializing a ∀ of F to a specific type in K. As before, K can choose which step to simulate
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(c-rs:Weakening)
〈 Γ0 ` RV R[P] 〉 7→ C

〈 Γ0,Γ1 ` RV R[P] 〉 7→ C

(c-ss:ForallLoc)
〈 Γ, l : loc ` S V R[S ⇒ P] 〉 7→ C

〈 Γ ` S V R[S ⇒ ∀l.P] 〉 7→ C

(c-ss:OpenLoc)
〈 Γ ` S V R[P{p/l}] 〉 7→ C

〈 Γ ` S V R[∃l.P] 〉 7→ C

(c-ss:ForallType)
〈 Γ, X : type, X <: A ` S V R[S ⇒ P] 〉 7→ C

〈 Γ ` S V R[S ⇒ ∀X <: A.P] 〉 7→ C

(c-ss:OpenType)
Γ ` A1 <: A0 〈 Γ ` S V R[P{A1/X}] 〉 7→ C

〈 Γ ` S V R[∃X <: A0.P] 〉 7→ C

(c-ps:ExistsType)
〈 Γ, X : type, X <: A ` PV R[Q] 〉 7→ C

〈 Γ ` ∃X <: A.PV R[∃X <: A.Q] 〉 7→ C

(c-ps:ExistsLoc)
〈 Γ, l : loc ` PV R[Q] 〉 7→ C

〈 Γ ` ∃l.PV R[∃l.Q] 〉 7→ C

(c-ps:ForallType)
〈 Γ, X : type, X <: A ` S ⇒ PV R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀X <: A.PV R[S ⇒ ∀X <: A.Q] 〉 7→ C

(c-ps:ForallLoc)
〈 Γ, l : loc ` S ⇒ PV R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀l.PV R[S ⇒ ∀l.Q] 〉 7→ C

(c-ps:LocApp)
〈 Γ ` S ⇒ P{p/l}V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀l.PV R[S ⇒ Q] 〉 7→ C

(c-ps:TypeApp)
Γ ` A1 <: A0 〈 Γ ` S ⇒ P{A1/X}V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀X <: A0.PV R[S ⇒ Q] 〉 7→ C

P{A/X} , “substitution, in P, of X for A”
Note: bound type/location variables of a type must be fresh in that rule’s conclusion.

Figure 7: Protocol composition abstraction extension.

when given a choice (&) of F steps. Similarly, at least one alternative (⊕) of K must match a step
in F. Therefore, the new K protocols work within the interference of the original F protocol, but
specialize its uses of the shared state.

3.3 Composing Abstract Protocols
The composition rules of Fig. 29 complement those of Fig. 6 to enable composing abstract proto-
cols. Weakening on a configuration (up to renaming), (c-rs:Weakening), is the crucial mechanism
that enables us to close the co-inductive proof when using quantifiers. Thus, when we reach a
configuration that is equivalent up to renaming of variables and weakening of Γ, we can close the
proof. The (c-ss:Forall*) rules do similar stepping to (c-ss:Step) but considering an abstracted
guarantee, which results in a typing environment with the opened abstraction. (c-ss:Open*) ex-
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poses the representation type/location (if it exists) before doing a regular step. (c-ps:Forall*) and
(c-ps:Exists*) open their respective abstraction before doing a regular simulation step. More inter-
estingly, (c-ps:*App) enables a simulated step to pick a particular type/location to apply before that
regular simulation stepping, enabling step specialization during simulation. In the T.R, we also
consider a straightforward extension to protocol composition that enables subtyping over stepping.

3.4 Discussion & Brief Examples
Above, we showed how our local, isolated protocol types can model core interference concepts
over a relatively small and simple calculus. We refrained from adding support for more precise
states and refined data abstractions of others (such as [18]), and focus instead on typestates [22, 33,
34]. However, this is not an intrinsic limitation of our model. If we consider more precise states,
we can (for instance) model monotonic counters from prior work [28, 14] where each counter
shares state symmetrically. Our local protocols model these uses solely from the perspective of a
single alias as:

MC , ∃ { j : int}︸    ︷︷    ︸
J

.( rw p j︸︷︷︸
J

⇒ ∀ {i : int | i ≥ j}︸            ︷︷            ︸
I

.( rw p i︸︷︷︸
I

; MC ) )

The protocol models a monotonically increasing counter on location p. The step relies on location
p initially containing some integer, j, and modifying the cell to store some other value, i, that is
greater or equal than j. This interaction can be reduced to the core existential-universal protocol
interaction discussed above (but, in our calculus, using less precise types: J and I) and where the
protocol can be re-split indefinitely.

While our states are less precise, we can enforce more precise uses of that shared state. The
semantics of prior work [28, 14] differed on whether the counter was forcefully used by clients, or
whether the action was simply available to be used. We can model the two cases explicitly:

∃p.( (!ref p) :: MC ( [] :: MC )

Enables clients to use the counter an arbitrary number of times or simply thread it through, unused.

∀X.∃p.( (!ref p) :: ∃J.( rw p J ⇒ ∀I.( rw p I ; X ) ) ( [] :: X )

By unfolding the protocol, the function guarantees that a single step of the protocol will be used.
Since we (intentionally) abstract subsequent steps, the function cannot use the counter beyond that
single use. Analogous reasoning can be used to enforce specific, finite, usages.

Adding support for dependent refinement types, and ensuring its decidability (even without
interference), is beyond the scope of our work as we focus on the core composition problem.
However, we believe that the underlying decidability insights made here will carry to a system
with decidable dependent refinement types; even if perhaps requiring more fine-grained conditions
to close the co-inductive proof of safe interference—that are only relevant once more precise typing
is considered.

While we use a relatively simple calculus to keep the theory focused on the core of interference-
control, we can for instance model MVars [25]. Fig. 8 shows an MVar, a structure that contains
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1 let newMVar = λ _.

2 let m = new Empty#{} in

3 // ‘‘shares’’ the new cell using MVar protocol
4 Γ ` (rw l Empty#[]) V MVar[l] || none

5 {

6 putMVar = λ val.

7 rec R.

8 lock m;

9 case !m of

10 Empty#x → m := Full#val;

11 unlock m

12 | Full#value → m := Full#value;

13 unlock m;

14 R // retries
15 end

16 end,

17 splitMVar = λ _.

18 Γ ` MVar[l]V MVar[l] || MVar[l]

19 {},

20 takeMVar = λ _.

21 rec R.

22 lock m;

23 case !m of

24 Empty#x → m := Empty#x;

25 unlock m;

26 R // retries
27 | Full#value → m := Empty#{};

28 unlock m;

29 value

30 end

31 end

32 }

33 end

34 end

Figure 8: MVar example.
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let x = new 0 in

// share ’x’ as via some protocols
{

lockMe = λ_.lock x,

// ...
}

Figure 9: Indirect locking.

a single shared cell which is either empty or contains a value of some type. Notable operations
include: putMVar, that waits until the cell is empty before inserting the given value; and takeMVar
which waits until the cell is full to remove the cell’s value, leaving the cell empty. MVars can be
shared by many aliases, each assigned a protocol such as:

MVar[m] , ∃Y.( ( (rw m Empty#Y)⇒ (rw m Empty#Y) ; MVar[m] ) &
( (rw m Empty#Y)⇒ (rw m Full#int) ; MVar[m] ) )

⊕ ( ( (rw m Full#int)⇒ (rw m Empty#[]) ; MVar[m] ) &
∃Y.( (rw m Full#Y)⇒ (rw m Full#Y) ; MVar[m] ) )

The appendix includes additional examples, including modeling examples of prior work with
our more local protocol types. We can also model a shared pair where each alias keeps its own,
local, precise knowledge on one of the two components of the pair stored in that shared state. The
two aliases, L and R, share a common cell but keep part of that state private to itself. While both
can do private actions over the shared cell, they are guaranteed to not interfere with the precise
assumptions of the remaining alias.

P[A][B] , rw p [A, B]
L[A] , ∃X.( P[A][X]⇒ ∀Y.( P[Y][X] ; L[Y] ) )
R[A] , ∃X.( P[X][A]⇒ ∀Y.( P[X][Y] ; R[Y] ) )

Γ ` P[X][Y] V L[X] || R[Y]

Thus, we can use the different perspectives of each protocol to model local knowledge that is
hidden from other aliases, within our core protocol framework without needing additional mecha-
nisms.

Since our types express sharing, we can use standard techniques to abstract the components
of a protocol type after safe composition is checked. This enables an abstraction to expose a
type interface that indirectly manipulates the shared state, such as indirectly locking/unlocking
state (Fig. 9). We can type the record in such a way to hide the type in x but still expose some
information on sharing that is useful for later enabling other typestate functions [22]. For instance:

∃A.∃B.∃C.[ ..., lockMe : [] :: (A⇒ B; C)( [] :: (A ∗ (B; C)), add : ( int :: A( [] :: A ), ... ]

Clients can only call add once the type A is available. This could model, for instance, a global lock
on a collection to enable more coarse-grained control over the interference to that collection—but
without exposing the lock to clients. Thus, when lockMe returns, the client receives a type that
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lock @a; Γ = a : ref @a

let b = !a;

lock @b; // locks loc. of ’b’
unlock @a;

let c = !b;

lock @c;

unlock @b;

...

Figure 10: Hand-over-hand locking example.

expresses that A is available and that a guarantee (B; C) is expected to be fulfilled. However, this
fulfillment can only occur indirectly via the wrapper record as clients do not have a direct way of
accessing or mutating the internals of that shared state.

While we do not guarantee dead-lock freedom, it is possible to type more fine-grained locking
schemes such as hand-over-hand locking (Fig. 10). Consider the protocol of a list’s node:

L[q] , ∃l.( (rw q !ref l) ∗ L[l] ⇒ (rw q !ref l) ; ... )

L is defined over a location q that contains the (abstracted) reference to the next element of the
sequence of locations to be locked. Locking will enable access to that ref l which can then be
locked to gain access to L[l], the next element in the sequence of locations to lock. For brevity,
we make each step simply consume the L protocol of the element in that sequence, instead of (for
instance) re-splitting.

4 Composition Decidability & Other Technical Results
We now show decidability of protocol composition and discuss the remaining technical results of
our language. The decidability statement comes as a direct consequence of ensuring a regular type
structure via syntactic well-formedness constraints on recursive types. Although applied in the
context of protocol composition, we follow ideas from prior work on ensuring decidable subtyping
over bounded quantification [32, 6]. The main novelty is in extending this kind of reasoning
to account for recursive types with parameters, in order to ensure a regular type structure over
our more flexible recursive types. To achieve this, we apply well-formedness conditions which
ensure that there is only a finite number of reachable (abstract) protocol states. We focus the
discussion on decidability of protocol composition, and point interested readers to appendix where
these conditions are properly motivated and discussed. Crucially, these well-formedness conditions
enable us to state the following:

Lemma 1 (Finite Uses). Given a well-formed recursive type (rec X(u).A)[U] the number of possi-
ble uses of X in A such that Γ ` X[U′] type is bounded.
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Lemma 2 (Finite Unfolds). Unfolding a well-formed recursive type (rec X(u).A)[U] produces a
finite set of variants of that original recursive type that (at most) contains: permutations of U, or a
set of mixtures of U with some type/location variables representing a class of equivalent (≡) types.

Lemma 3 (Finite Sub-Terms). Given a well-formed type A, such that Γ ` A type, the set of sub-
terms of A is finite up to renaming of variables and weakening of Γ.

4.1 Composition Properties, Algorithm, and Decidability
Informally, correctness of protocol composition is based on the two properties: 1) a split results in
protocols that can always take a step with the current state of the shared resources, thus are never
stuck; and, 2) protocol composition is a partial commutative monoid (associative, commutative,
and with none as the identity element). Because of property 2), iterative splittings of existing
protocols remain struck-free, unable to cause unsafe interference. We now state these properties
formally but leave the proofs to the appendix. The following two lemmas show stuck freedom by
properties that resemble progress and preservation but over protocols:

Lemma 4. If Γ ` RV P || Q then 〈 Γ ` RV P || Q 〉 7→ C.

Meaning that if two protocols, P and Q, compose safely then their configuration can take a step
to another set of configurations, C.

Lemma 5. If 〈 Γ ` RV P || Q 〉 7→ 〈 Γ′ ` R′ V P′ || Q′ 〉 · C and Γ ` R V P || Q then Γ′ ` R′ V
P′ || Q′.

The lemma ensures that if two protocols compose safely, then any of the next configurations
that result from stepping will also be safe.

Note that protocol composition does not enforce that the shared resources are not lost. Instead
our concern is on safe interference. Indeed, resources that are never used will never be able to
unsafely interfere. To avoid losing resources, we must forbid the use of (c-rs:None) on non-
terminated protocols and that both P and Q cannot have both simultaneously terminated if there
are non-none resources left. Once that restriction is considered, our splitting induces a monoid
in the sense that for any P and Q for which Γ ` R V P || Q is defined there is a single such R
(defined up to subtyping and equivalent protocol/state interference specification). Since for any
two protocols there may not always exist an R that can be split into P and Q, this is a partial
monoid.

Lemma 6. Protocol composition obeys the following properties:

1. (identity) Γ ` RV R || none.

2. (commutativity) If Γ ` RV P0 || P1 then Γ ` RV P1 || P0.

3. (associativity) If we have Γ ` R V P0 || P and Γ ` P V P1 || P2 then exists Q such that
Γ ` RV Q || P2 and Γ ` QV P0 || P1.

(i.e. If Γ ` RV P0 || (P1 || P2) then Γ ` RV (P0 || P1) || P2 )
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Protocol composition is defined as a “split”, left-to-right (V). Simply reading the rules as right-
to-left (W) to compute a “merge” is not safe. For instance, it would enable merging to arbitrary
choices with (c-rs:StateIntersection). Intuitively, merging needs to intertwine the uses of both
protocols. However, since we do not track copies (as we target sharing when that tracking is not
possible), merging cannot “collapse” a protocol into a non-protocol type. In this case “merging”
is equivalent to simply having the two non-merged protocols available in ∆ or bundled using the ∗
type.

The composition algorithm is shown in the appendix and is a straightforward implementation
of the axiomatic definitions shown above. The algorithm uses a set of visited configurations to
remember past configurations and ensure that once all different protocol configurations are ex-
hausted (up to renaming and weakening of Γ), the algorithm can terminate. We now state our
technical lemmas on the composition algorithm but leave the proofs to the appendix.

Lemma 7. Given well-formed types and environment, we have that:

1. (soundness) if c( Γ, R, P, Q ) then Γ ` RV P || Q.

2. (completeness) if Γ ` RV P || Q then c( Γ, R, P, Q ).

3. (decidability) c( Γ, R, P, Q ) terminates.

4.2 Correctness Properties
The main safety theorems, progress and preservation, that are defined over valid program configu-
rations such that:

Γ | ∆i ` ei : ![] a · i ∈ {0, ..., n} n ≥ 0

Γ | ∆0, ..., ∆n ` e0 · ... · en
(wf:Program)

Stating that a thread pool (e0 · ... · en) is well formed if each thread can be assigned a “piece” of
the linear typing environment (containing resources), and if each individual expression has type ![]
without leaving any residual resources (·). Note that the conditions on each thread (ei) are identical
to those imposed by (t:Fork). For clarity, both safety theorems are supported by auxiliary theorems
over a single expression, besides the main theorem over the complete thread pool.

We now state progress over programs:

Theorem 1. If Γ |∆ ` T0 and live(T0) and if exists H0 such that Γ |∆ ` H0 then H0 ; T0 7→ H1 ; T1.

live(T ) means that the thread pool T contains at least one “live” thread such that the thread
is neither a value nor is waiting for a lock to be released (which includes deadlocks). Γ | ∆ ` H
ensures that the Heap is well-defined according to Γ and ∆.

We define Wait(H, e) over a thread e and heap H such that the Evaluation context is reduced
to evaluating the configuration: H ; E[lock ρ, ρ′] · T where ρ ↪→ v < H which contains at
least one location (ρ) that is currently locked or was deleted and, therefore, the thread must block
waiting (potentially indefinitely) for that lock to be available before continuing. “Early” deletion of
shared resources results in a pending guarantee. Since well-formed threads cannot leave residual
resources, this situation is ruled out for correct programs, but may occur on the theorem below.

Progress over expressions is defined as follows:
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Theorem 2. If Γ | ∆0 ` e0 : A a ∆1 then we have that either:

• e0 is a value, or;

• if exists H0 and ∆ such that Γ | ∆,∆0 ` H0 then either:

– (steps) H0 ; e0 7→ H1 ; e1 · T, or;

– (waits) Wait(H0, e0).

Preservation ensures that a reduction step will preserve both the type and the effects of the
expression that is being reduced (so that each thread’s type, ![], and effect, ·, remains unchanged).
As above, we use a preservation theorem over programs that makes use of an auxiliary theorem on
preservation over expressions:

Theorem 3. If we have Γ0 | ∆0 ` H0 and Γ0 | ∆0 ` T0 and H0 ; T0 7→ H1 ; T1 then, for some ∆1

and Γ1, we have: Γ0,Γ1 | ∆1 ` H1 and Γ0,Γ1 | ∆1 ` T1.

So that a well-formed pool of threads (T0) remains well-formed after stepping one of these
threads (resulting in T1). Preservation over a single expression must still account for the resources
(∆T ) that may be consumed by a newly spawned thread (T ):

Theorem 4. If we have H0 ; e0 7→ H1 ; e1 · T and Γ0 | ∆0,∆T ,∆2 ` H0 and Γ0 | ∆0,∆T ` e0 : A a ∆

then, for some ∆1 and Γ1, we have: Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 and Γ0,Γ1 | ∆1 ` e1 : A a ∆ and
Γ0,Γ1 | ∆T ` T.

We complement our main results with the following “Error Freedom” corollary to show that
our system cannot type programs that allow data races and the dereference of destroyed memory
cells, i.e. that our system ensures memory safety and race freedom.

Corollary 1. The following program states cannot be typed:

1. (Data Race) Simultaneous read/modify by two thread over the same location (we also ensure
read-exclusive accesses):

H;E0[ρ := v] · E1[!ρ] · T H;E0[ρ := v] · E1[ρ := v′] · T

2. (Memory Fault) Accessing a non-existing/deleted location:

H;E[ρ := v] · T H;E[!ρ] · T (where ρ < H)

3. (Ownership Fault) Attempt to delete a non-existing location:

H;E[delete ρ] · T (where ρ < H)

The proof is straightforward due to our use of locks to ensure mutual exclusion and the fact that
our protocols discipline the use of shared state. Thus, these errors are ruled out by either protocol
composition or by the resource tracking of the core linear system.
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receive(c) ,
rec R.

lock c;

case !c of

// 1. waiting states (A..Z)
A#n → ... // analogous to below
| Z#n → // restore linear content
c := Z#n;

unlock c;

R // retry
// 2. desired (receive) state
| ReadyToReceive#v →

c := Idle#{}; // ”received”
unlock c;

v // value received from ”channel”
end

end

send(c,v) ,
rec R.

lock c;

case !c of

// 1. waiting states (A..Z)
A#n → ... // analogous to below
| Z#n → // restore linear content
c := Z#n;

unlock c;

R // retry
// 2. desired (idle) state
| Idle#_ →

c := ReadyToReceive#v; // ”sent”
unlock c;

{} // result of send is empty
end

end

Figure 11: Simple encoding of send and receive functions via a shared cell.

5 Protocol Expressiveness
We show the expressiveness of our protocols by modeling typeful message-passing concurrency,
using a straightforward encoding of message-passing via shared memory interference (Fig. 13).
The encoding itself should be unsurprising as it follows well-known ideas from the literature, so
we defer less important details to the appendix to focus instead on the most interesting aspect of
this example: how our protocol framework is able to type such uses and ensure their safety.

We encode a more primitive, “low-level” view of typeful message-passing concurrency via the
causality of shared memory interference. We focus on the non-distributed setting where a channel
can be precisely encoded as a low-level shared cell. Channel communication and its changing
session properties are emulated indirectly via inspection of or interference over the contents of that
shared cell. Thus, our functions to send/receive a value simply hides the underlying Waiting states
that may be needed when the cell is not available. A receiving step can be modeled by a protocol
of the form:

Wait[A..Z] ⊕ ( rw c ReadyToReceive#V ⇒ rw c Idle#[] ; NextStep )

where Wait is a sequence of retry steps that leave the state unmodified, until a value of type V
is “received”. Sending uses a similar protocol but where we must wait for an Idle cell before
“sending”.

The appendix includes the complete “Buyer-Seller-Shipper” example (the canonical and
simple example used in session-based concurrency works) while in here we only take a look at the
main aspects of the Buyer’s interaction with the channel (Fig. 18).
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let c = connectSeller() in

c : buy!(prod) ; price?(p) ; details?(d)

send(c, GET_USER_PRODUCT() );

let price = receive(c) in

let details = receive(c) in

close(c)

end

end

end

Figure 12: Buyer code.

We model a channel using a capability to location c. For brevity, we omit “rw c” from “rw c A”
since all changes occur over that same location. The Buyer’s type uses standard π-calculus [23]
notations where ! sends and ? receives a value. In our protocols, these actions are mapped to the
rely type (receive) and the guarantee type (send).

buy!(prod)︸        ︷︷        ︸
idle0#[]⇒ buy#prod

; price?(p)︸       ︷︷       ︸
price#p⇒ idle2#[]

; details?(d)︸          ︷︷          ︸
details#d ⇒ []

Buyer starts by sending a request to buy some product, then waits for the price, and finally
receives the details of that product. Under that interaction protocol, we simply map sends to a
guarantee type of a step, and receives the a rely type of a step.

Our protocol interactions are both non-deterministic and may contain an arbitrary number of
simultaneous participants. To ensure that the desired participant (Buyer) is the only one allowed
to received (take) the price, we must mark the contents with a specific tag so that only Buyer has
permission to change that state. To handle the non-deterministic interleaving of protocols, we must
introduce explicit “wait states” that allow a participant to check if the communication has reached
the desired point to that participant or if it should continue waiting. We abstract these steps as Wait
as they simply recur on that same step of the protocol (i.e. “busy-wait”).

idle0#[]⇒ buy#prod ; Wait ⊕ ( price#p⇒ idle2#[] ) ; Wait ⊕ ( details#d ⇒ [] )

The richness of our shared state interactions means that we can immediately support fairly com-
plex session-based mechanisms (such as delegation, asynchronous communication, “messages to
self”, multiparty interactions, internal/external choices, etc.) within our small protocol framework.
However, this flexibility comes at the cost of requiring a more complex composition mechanism.
Protocol composition accounts for both non-deterministic protocol interleaving and “multi-way”
communication, features which are usually absent from strictly choreographed session-based con-
currency (favoring instead strong liveness properties over more deterministic, linear compositions).

Naturally, more complex examples are possible. In here our focus is on showing the core
insights that enable us to relate the two techniques: 1) mapping receive/send to our rely/guarantee
types; 2) adding explicit waiting states to account for non-deterministic protocol interleaving; and
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3) tag the content of a cell in order to ensure that only the right participant will be able to mutate
the state at that point in the interaction. (Recall that we do not guarantee deadlock freedom, nor
termination.)

6 Related Work
Our work relates to prior work on rely-guarantee protocols [21]. We show that these protocols
are useful to reason about concurrency and significantly improve the flexibility of protocol com-
position. Namely, we allow the composition of abstract protocols (enabling more local typing as
in Section 3), show that our composition is decidable, and provide a novel axiomatic definition
of composition that is straightforward to implement. Since thread-based interference is rooted in
alias-related interference, the technique itself is mostly indifferent to whether sharing occurs in the
sequential or concurrent setting. Still, we address all technicalities that make concurrency possible
(such as adding support to arbitrarily many threads, locking locations, well-formedness changes to
the rely/guarantee types to ensure matching lock/unlock of locations, etc). Furthermore, by con-
sidering the concurrent setting we are able to express and relate rely-guarantee protocols to typeful
message-passing concurrency.

Our work is also related to recent work on more precise tracking of interference. Chalice [20]
uses a simplified form of rely-guarantee to reason about shared state interference by constrain-
ing a thread’s changes to a two-state invariant, relating the previous and current states. Mono-
tonic [10, 28] uses of shared state (where all changes converge to more precise states) are less
dependent on aliasing information, which simplifies checking at the expense of expressiveness.
Dynamic ownership recovery mechanisms [37, 29] choose some run-time overhead and dynamic
safety guarantees to enable more flexible ownership recovery than purely static approaches. Rely-
guarantee references [14] adapt the use of rely-guarantee to individual reference cells with support
for dependent refinement types in a sequential language. Although the use of refinements adds
expressiveness to the description of sharing, they do not support ownership recovery, nor address
decidability, and typechecking can require manual assistance in Coq. Access permissions [37, 4, 3]
control alias interference by categorizing read-write uses into different permission kinds. Our de-
sign omits the read-write distinction to focus exclusively on structuring alias interference using
more fundamental protocol primitives. Interestingly, although we only model write-exclusive uses,
our types can enforce effectively read-exclusive semantics by ensuring that any private change in
a cell will be reverted to its original public value. However, this simpler form of read-only cannot
capture their multiple, simultaneous readers semantics. Still, by modeling interference in a more
fundamental way, we gain additional expressiveness beyond their most permissive share permis-
sion as we can model uses beyond invariant-based sharing. In [7] Crafa and Pavodani introduce a
high-level (actor-like) model for sharing (type)state via join patterns. We target a more low-level
programming paradigm (which builds typestates through type abstraction rather than as a first-
class language feature), enabling us to introduce abstraction at the level of protocols and support
protocol re-splitting in ways that are not expressible in their work.

Several recent works use partial commutative monoids [9, 19, 8] to model sharing by leveraging
the concept of fictional separation [9, 15]. Commutative monoids offer the underlying general
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principle for splitting resources, enabling seemingly unrelated components to interact via aliasing
under a layer of (fictional) separation. We compare more closely to [19] due to our common use
of L3 [1] and type-based approach. In [19], Krishnaswami et al. define a generic sharing rule
based on programmer-supplied commutative monoids for safe sharing of state in a single-threaded
environment. Their work does not approach the issue of decidability of resource splitting, and
requires wrapping access to shared state in an module abstraction that serves as an intermediary
to access shared state. Our work focuses on a custom commutative monoid that enables first-
class sharing without (necessarily) needing a wrapping module abstraction. Although our protocol
splitting is a specialized monoid, we showed that this mechanism is relatively flexible, decidable,
and give an algorithmic implementation. Other technical differences between our works abound
such as their use of affine refinement types (enabling more fine-grained types), our use of multi-
threaded semantics and allowing inconsistent states (i.e. locked cells) to be moved around as
first-class, etc.

Protocol-based mechanisms for safe interference are also used by other approaches, such as
in program logic-based systems (e.g. [17, 35, 36, 24, 11]). By generally targeting manual proofs
(and somewhat more involved specifications) these works generally fit into a different design space
than ours, although share some interesting similarities. While we make concessions on expressive-
ness to achieve decidable protocol composition and re-splitting, these works focus instead on the
expressiveness of their concurrency specification. LRG [11] supports lock-free structures but re-
quires a special frame-rule to support framing over rely-guarantee conditions. We simply integrate
protocols into the language (as linear resources) meaning that the standard frame-rule suffices.
Supporting lock-free concurrency in our system would require reinterpreting a⇒ step as a single-
cell, atomic, conditional operation; with the shared resource (stored in the cell) being immedi-
ately extracted/inserted from/into the cell, rather than just accessible after locking. CaReSL [36]
and Iris [17] support “islands”/regions of memory that are shared together and whose imprecise
state must be considered when using. Our composition rules enforce that a protocol carries all
information on imprecise states, which is then deconstructed via (t:Alternative-Left) and case
analysis. Our protocols can group shared state using the ∗ operator to define shallow “regions”,
while their works allow for far more rich specifications of atomic regions of any depth. Iris [17]
further supports a form of re-splitting via a “view shifting” mechanism, to repartition (or create)
shared regions. FCSL [24] encodes protocols via auxiliary/ghost state. Although done in a compo-
sitional way, it can require checking for safe interference (“stability”) after a split since a safe split
does not necessarily imply safe interference in all situations. Our protocol composition mechanism
is essentially a form of checking for safe interference early, at the moment a protocol is split, by
checking that all possible future uses are safe resembling a form of “pre-computed” stability check.

Protocol composition itself can also be seen as a form of model checking (to check that each
state has a successor) that uses abstract states to ensure a finite state space, but in a system that
is more intimately integrated with the language. Our protocols are first-class resources that can
be specialized by clients, even abstracting (leaving out) later steps. Thus, our protocols guide the
programmer on how to reason locally about (safe) interference by mapping its uses of locks to a
local protocol type that models the alias perspective on the shared state. While our work focuses on
modeling the core interference phenomenon within a small calculus, rather than precisely typing
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existing programs, we still showed that extensions may be used to model at least some existing
programs within our model.

7 Conclusions
We defined a flexible and decidable procedure that ensures the safe composition of interfering ab-
stract protocols that share access to mutable state. While employing a relatively small protocol
framework, we are able to model the core interference principles of complex shared state interac-
tions within our core calculus. Finally, we showed the expressiveness of our protocol framework
by discussing how it can capture in a unified way both shared memory interference and typeful
message-passing concurrency.
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A Ensuring Regular Type Structure
The decidability statement comes as a direct consequence of ensuring a regular type structure.
Although applied in the context of protocol composition, we follow ideas from prior work on
ensuring decidable subtyping over bounded quantification [32, 6]. The main novelty is in extending
this kind of reasoning to account for recursive types with parameters, in order to ensure a regular
type structure over our more expressive unfolding. To achieve this, we apply well-formedness
conditions to our recursive types. We favor simpler (as in more “natural”) constraints that make our
decidability argument clearer, rather than try to achieve more permissive conditions by considering
lots of special-cases. We leave to compelte set of well-formedness rules to Appendix G.1.

To illustrate an irregular unfold, consider the following recursive type, R:

(rec R(X).( int( R[X ( X] ))[int] (Ex.1)

Unfolding this type, and its resulting sub-terms, produces the following sequence of types (for
clarity, we underline the “fixed” part of the recursive type as it is unfolded):

(rec R(X).( int( R[X ( X] )) [int]
int( (rec R(X).( int( R[X ( X] )) [int( int]

int( int( (rec R(X).( int( R[X ( X] )) [(int( int)( (int( int)]
. . .

We see that the type that results from unfolding is not regular, as the use of the recursive variable
R in “rec R(X).( int( R[X ( X] )” produces a type that is non-repeating. Consequently, if such
a use were allowed, it would make it impossible for an algorithm that traverses all sub-terms of
a type to terminate since the type above does not present a finite, regular structure due to its ever
growing argument that is applied to the recursive type R.

To forbid uses such as the one above, we limit the kind of arguments that may be applied to a
recursive type variable (such as R above) via well-formedness rules (for the full set of rules, see
appendix). We restrict the arguments that can be applied to a recursive type variable to be limited
to location variables or type variables, and exclude recursive type variables:

(X : k0 → ...→ kn → type) ∈ Γ (Ui : ki) ∈ Γ i ∈ {0, ..., n}

Γ ` X[U] type

The rule states that for a given recursive type variable X (recursive type variables have a “... →
type” kind), its arguments (U) must each be an assumption of compatible kind ((Ui : ki) ∈ Γ).
Since we are considering each individual ki of X, these can only be either a loc or a type (and never
of the form “...→ type”) which effectively enforces that only location variables or (non-recursive)
type variables can be used in this context. Thus, applications of the form R[R] are forbidden since
R is a recursive type variable, and R[X ( X] is also forbidden since the argument is of a function
type (not a type/location variable).

Note, however, that the argument applied to the recursive type is not restricted to just type/lo-
cation variables and instead is only required to be of the desired kind:
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u0 : k0, ..., un : kn, X : k0 → ...→ kn → type ` A type
Γ ` Ui ki ki = kind(ui) i ∈ {0, ..., n}

Γ ` (rec X(u).A)[U] type

where: kind(l) = loc and kind(X) = type. Thus, using int as argument in (rec R(X).A)[int]
is legal. However, because we only allow each parameter of a recursive type to be either of kind
type or kind loc, recursive type variables cannot appear as arguments (in U) even in this situation.
To preserve the well-formedness condition on uses of X[U′] we must also avoid situations where
substitution from other recs may replace some argument in U′ with a non-variable type before X
is unfolded. Therefore, the body of rec, i.e. A, must ignore all other variables that are outside the
top-level rec, so that substitution of any element in U′ will only occur as the rec is unfolded.

However, only using the restrictions above is still not sufficient to ensure that the algorithms
will terminate, since the resulting set of sub-terms may still be irregular. Consider the following
type:

(rec V(Z).(∀X <: (A( Z).V[X]))[int] (Ex.2)

If we traverse the sub-terms of this type, we see that the typing context of the “V[X]” sub-term is
irregular, although the type structure of V[...] itself remains regular.

To illustrate this, we are going to look into multiple unfolds of V but only show the premise
that is used to check that V[...] is well-formed. To highlight the renaming on each unfold, each
new use of X is indexed with ever growing integers. Although we are traversing the rec’s sub-
terms (automatically unfolding V to continue such traversal), we omit all “: type” assertions to
focus instead on the typing context that is used to check that “Γ ` V[...] type” (i.e. that V[...] is
well-formed):

· ` V[int]
X0 <: A( int ` V[X0]

X1 <: A( X0, X0 <: A( int ` V[X1]
X2 <: A( X1, X1 <: A( X0, X0 <: A( int ` V[X2]

. . .

Consequently, for a recursive type to be well-formed we must also ensure that the enclosing context
of future unfolds is regular since it is not enough to only look at the type’s structure alone.

We restrict the type of the bound of a ∀ or ∃ such that the bound must be well-formed in the
empty context “· ` A type” in any “∃X <: A.B” or “∀X <: A.B” types via the following wf.
conditions:

· ` A0 type Γ, X : type, X <: A0 ` A1 type
Γ ` ∀X<: A0.A1 type

· ` A0 type Γ, X : type, X<: A0 ` A1 type
Γ ` ∃X<: A0.A1 type

These conditions naturally ensure that the typing contexts in a type must be regular since the typing
context is essentially fixed and cannot change on each unfold. We leave as future work relaxing
this condition, but for our discussion here, this well-formedness restriction is enough to type our
examples and provides an interesting domain for checking safe protocol composition.
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Still, our constraints enable some flexibility such as the case of the following type, that can be
considered regular by considering renaming of variables and weakening:

(rec M(Y).(Y ( ∀X <: top.M[X]))[int] (Ex.3)

As above, we illustrate the case via successive unfolds but only show the typing context used
to check that Γ ` M[...] type (i.e. that M[...] is well-formed):

· ` M[int]
X0 <: top ` M[X0]

X1 <: top, X0 <: top ` M[X1]
X2 <: top, X1 <: top, X0 <: top ` M[X2]

. . .

By inversion on weakening of assumptions, we can consider the last context to only really require
the “X2 <: top” assumption (since the other variables do not occur in M[X2]). By renaming X0

and X2 to some fresh variable, both the first and third types can be deduced equivalent (≡).

Z <: top ` M[Z] ≡ Z <: top ` M[Z]

(X2 <: top){Z/X2} ` (M[X2]){Z/X2} ≡ (X0 <: top){Z/X0} ` (M[X0]){Z/X0}

X2 <: top, X1 <: top, X0 <: top ` M[X2] ≡ X0 <: top ` M[X0]

We consider equivalence (≡) up to renaming of variables and weakening of assumptions de-
fined as follows (for any two well-formed types, so that any premise must also obey type well-
formedness):

Γ ` A ≡ Γ ` A (equality)
Γ0,Γ1 ` A0 ≡ Γ2,Γ3 ` A1 if Γ1 ` A0 ≡ Γ3 ` A1 (weakening)
Γ0 ` A0 ≡ Γ1 ` A1 if Γ0{Z/X} ` A0{Z/X} ≡ Γ1{Z/Y} ` A1{Z/Y} and Z fresh (renaming type)
Γ0 ` A0 ≡ Γ1 ` A1 if Γ0{l/t′} ` A0{l/t′} ≡ Γ1{l/t} ` A1{l/t} and l fresh (renaming loc)

The following lemmas (see appendix for proofs) state that there is a bound in the number of
members of the set of types that an algorithm will recur on.

Lemma 8 (Finite Uses). Given a well-formed recursive type (rec X(u).A)[U] the number of possi-
ble uses of X in A such that Γ ` X[U′] type is bounded.

Lemma 9 (Finite Unfolds). Unfolding a well-formed recursive type (rec X(u).A)[U] produces a
finite set of variants of that original recursive type that (at most) contains: permutations of U, or a
set of mixtures of U with some type/location variables representing a class of equivalent (≡) types.

Lemma 10 (Finite Sub-Terms). Given a well-formed type A, such that Γ ` A type, the set of
sub-terms of A is finite up to renaming of variables and weakening of Γ.

37



B Extra Examples
We now show some additional examples that illustrate the expressiveness of the full language,
how we can model some high-level synchronization mechanisms, and clarify modularity gains
when compared to prior works.

B.1 Stateful Pair, revisited
We revisit the pair example from [22] to highlight the changes to that base language. Note that this
particular example does not need sharing. To clarify which location belongs to which variable, we
prefix a location variable’s name with an @. So that if x is a reference then it will have location
with name ‘@x’ and so on.

1 let newPair : [] ( PairType = λ _.

2 let left = new {} in

3 let right = new {} in

4 {

5 initL : ( int :: (rw @left []) )( ( [] :: (rw @left int) )

6 = λ i.left := i,

7 initR : ( int :: (rw @right []) )( ( [] :: (rw @right int) )

8 = λ i.right := i,

9 sum : ( [] :: ((rw @right int) ∗ (rw @left int)) )( ( int :: ((rw @right int) ∗ (rw @left int)) )

10 = λ _.!left+!right,

11 destroy : ( [] :: ((rw @right int) ∗ (rw @left int)) )( []

12 = λ _.delete left; delete right

13 }

14 end

15 end

16 end

The type of the newPair function remains unchanged from [22]:

!( []( ∃EL.∃ER.∃L.∃R.( ![ initL : !( int :: EL ( [] :: L ),
initR : !( int :: ER ( [] :: R ),
sum : !( [] :: L ∗ R ( int :: L ∗ R ),

destroy : !( [] :: L ∗ R ( [] ) ] :: EL ∗ ER ) )

Although the existential abstraction (i.e. packing) is done via subtyping rules rather than language
constructs as in [22].

B.2 Launching Arbitrarily Many Threads
There is no restriction on the number of threads that can be forked. For instance, a recursive
function can launch as many threads as it sees fit to compute some result, which may also cause
the computation to diverge.
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1 (λx.(rec R.fork (...);R))({})

B.3 Local Protocol Type
The type system only needs to know that two protocol’s locations are related when we are com-
posing those two protocols. Afterwards, they can proceed to be used independently (i.e. they are
fictionally disjoint [19, 15]).

Thus, we can have a function that uses the protocol ∃X.( X ⇒ rw l int ; P ):

1 λx.( lock x; x := 1; unlock x )

Be typed with the following function type:

∀P.∀l.( ( (!ref l) :: ∃X.( X ⇒ rw l int ; P ) )( ( [] :: P ) )

which in turn can have the left protocol of the following split be applied as its argument:

Γ ` rw p int V ∃X.( X ⇒ rw p int ; none ) || rec X.( rw p int⇒ rw p int ; X )

Thus, the location relation only needs to be know when protocols are composed. Later they can be
abstracted because we know that the protocols were checked to be safe.

B.4 Abstraction and Locking
Since our types express sharing, we can use standard techniques to abstract the components of
a protocol after safe composition is checked. However, our system does not enforce deadlock-
freedom and abstracting components of a protocol may make it harder for the programmer to tell
if there is a chance for deadlock. When compared to [21], we lose the possibility to focus/lock
on abstracted states since our locks require a set of locations to lock on. Still, we enable an
abstraction to allow clients to lock its internal state through the use of some “module” that exposes
that operation. For instance consider the following code block:

1 let x = new 0 in

2 // share x as some protocols
3 {

4 lockMe = λ _.lock x,

5 // ...
6 }

Although x is not visible outside the code that creates that cell, clients can call the function to
indirectly lock the underlying abstracted state. Thus, the record can have type:

[ ..., lockMe : ( [] :: (A⇒ B; C) )( ( [] :: (A ∗ (B; C)) ), ... ]

The client sees that some, abstracted protocol is expected by lockMe. This protocol must have
been produced by some of the other functions of the record, since the client cannot see is represen-
tation. When lockMe returns, the client receives a type that expresses that A is available and that a
guarantee (B; C) is expected to be fulfilled. However, there this fulfillment can only occur via the
wrapper record as clients have no access to its representation.
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B.5 Pipe Example, revisited
We now revisit the pipe example of [21] to clarify expressiveness gains.

In this example, two aliases interact through shared state such that one alias waits for another
alias to insert an element into the shared cell. The protocols are not exactly identical to those
shown in [21] due to changes to support thread-based concurrency. Namely, our protocol types
need to ensure that a lock-token invariant is preserved, which changes how protocols express own-
ership recovery. Similarly, because abstractions are now typing artifacts (to support abstractions
over protocols, since protocols are not values) this enables the inspection of shared state without
destructive read as the linear component of a node can be placed “on the side” while leaving the
content of the cell pure.

We use the following abbreviations for the states of the protocols:

Node[p] , ∃q.( (rw p Node#![element : int, next : ref q]) ∗ H[q] )
Close[p] , rw p Close#![]
Empty[p] , rw p Empty#![]

And finally, we define the protocols for the head and tail aliases:

T[p] , Empty[p]⇒ ( Close[p] ⊕ Node[p] ) ; none
H[p] , ( Node[p] ⇒ Node[p] ; Node[p] ) ⊕

( Close[p] ⇒ Close[p] ; Close[p] ) ⊕ ( Empty[p]⇒ Empty[p] ; H[p] )

Note that although the shared cell can be freely used in the Empty case, those changes are
only allowed privately. This means that the contents of that cell must forcefully be returned to its
original state when the shared cell is unlocked. We could also use ∃ abstraction over that step.

Possible pipe implementation:

1 let newPipe = λ _.

2 let node = new Empty#{} in

3 // using explicit sharing annotation to make it clear how state is split
4 share (rw @node Empty#[]) as H[@node] || T[@node];

5 let h = new node in

6 let t = new node in

7 {

8 put : int :: ∃p.((rw @t (ref p)) ∗ T[p])( [] :: ∃p.((rw @t (ref p)) ∗ T[p])

9 = λ e.

10 let last = new Empty#{} in

11 let old = !t in

12 lock old;

13 share (rw @last Empty#[]) as H[@last] || T[@last];

14 old := Node#{ element = e , next = last };

15 unlock old;

16 t := last;

17 end

18 end,
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19

20 close : int :: ∃p.((rw @t (ref p)) ∗ T[p])( []

21 = λ _.

22 let last = !t in

23 delete t;

24 lock last;

25 last := Closed#{};

26 unlock last

27 end,

28

29 tryTake : [] :: ∃p.((rw @h (ref p)) ∗ H[p])(

30 NoResult#([] :: ∃p.((rw @h (ref p)) ∗ H[p])) + Result#(int :: ∃p.((rw @h (ref p)) ∗ H[p])) + Depleted#[]

31 = λ _.

32 let first = = !h in

33 lock first;

34 case !first of

35 Empty#_ →

36 unlock first;

37 NoResult#{}

38 | Closed#_ →

39 unlock first;

40 delete h;

41 delete first;

42 Depleted#{}

43 | Node#n →

44 unlock first;

45 h := n.next;

46 delete first;

47 Result#n.element

48 end

49 end

50 }

51 end

52 end

53 end

54 in

55 // ...

Since existential types are automatically opened, we use the @ prefix on a variable to denote its
location variable that was automatically opened. Therefore, if t is a ref a then @t denotes location
a. Also note that the function’s type is used to guide type checking, meaning that the type the
programmer assigns to the function will help guide the type system to move capabilities around
and abstract types to match the desired target type.

We now show how protocol composition proceeds to check that the following split of location
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p shares the state safely:
Γ ` Empty[p] V T[p] || H[p]

Protocol composition yields the following set of configurations:

{ 〈 Γ ` Empty[p] V T[p] || H[p] 〉 ,
〈 Γ ` Close[p] ⊕ Node[p] V none || H[p] 〉 ,
〈 Γ ` Close[p] V none || Close[p] 〉 ,
〈 Γ ` Node[p] V none || Node[p] 〉 ,
〈 Γ ` none V none || none 〉 }

B.6 Futures
Our encoding of a future follows that of fork/join but wrapped in an “object” interface with
get and isDone methods. A thread will compute some result that is then assigned to a shared
cell (i.e. a thunk, a function that takes no argument and computes an expression that was to be
evaluated lazily). If the object representing the future invokes get then the calling thread will
block until the computing thread finishes the result, while isDone enables inspection on whether
the computation has finished. To enable the uses of isDone, the M protocol shown in the paper is
extended with an additional choice to allow non-destructive inspections on the Done tag. Because
our protocols are first-class, we can have thunks that capture part of the shared state on its body.
Although the code is interference-free, it may still deadlock.

E , rw t Empty#[]
D , rw t Done#int

D[X] , rw t Done#X

Join , E⇒ D; none
End , ( E⇒ E; End ) ⊕ ( (D⇒ (rw t int); (rw t int)) & ∃Y.( D[Y]⇒ D[Y]; End ) )

1 future e ,
2 let f = λ_.e in

3 let s = new Empty#{} in

4 share s as Join || End;

5

6 fork // computes result
7 (let r = Done#(f {}) in

8 lock s;

9 s := r;

10 unlock s

11 end);

12

13 // methods:
14 {
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15 get = λ_.( rec R.

16 lock s;

17 case !s of

18 Empty#x →

19 s := Empty#x;

20 unlock s;

21 R // retry
22 | Done#a →

23 s := {};

24 unlock s;

25 delete s;

26 a // result of computation
27 end

28 end),

29

30 isDone = λ_.(

31 lock s;

32 case !s of

33 Empty#x →

34 s := Empty#x;

35 unlock s;

36 NotDone#{}

37 | Done#a →

38 s := Done#a;

39 unlock s;

40 Done#{}

41 end

42 end)

43 }

44 end

45 end

Client code:

1 let f = future fact(300) in

2 ...

3 // get value computed by future
4 f.get()

5 end

B.7 Barrier
A barrier enables a fixed number of threads to wait for all those threads to reach the barrier. Only
after all threads have reached the barrier will any thread be allowed to continue.

To implement this barrier, we need two phases: one to signal that a thread has reached the
barrier, and another phase to make sure that all threads have seen that the barrier synchronization
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was completed (so that the barrier’s state can be safely destroyed). Our core language does not
support reasoning about integers, being limited to a finite number of tags of a sum type. Because
of this, the implementation in the core language will enforce a strict order in changing the state
of the barrier—but which does not limit the barrier’s use since this ordering is not observable to
clients.

In the core language. To create a barrier for N threads, we will essentially have two kinds of
protocols: those that join the barrier at a particular stage, and the last thread that will recover
uniqueness of the barrier’s state. Note that the await function will both wait for the thread’s
correct position in the scheme to be reached and, once it is reached, to change the barrier’s tag
appropriately to acknowledge that the thread saw that all threads had reach the barrier.

For clarity of the example, we will show how this protocol can be constructed when N = 3,
where the state starts with the Thread0 tag. For brevity, we only list the tags contained in some
cell and not the full type of the capability to that location.

Thread1 , Thread0 ⇒ Thread1 ; rec X.( Thread1 ⇒ Thread1; X ⊕
Thread2 ⇒ Thread2; X ⊕
Ack0 ⇒ Ack1 ; none )

Thread2 , rec X.( Thread0 ⇒ Thread0; X ⊕
Thread1 ⇒ Thread2; rec Y.( Thread2 ⇒ Thread2; Y ⊕

Ack0 ⇒ Ack0 ; Y ⊕
Ack1 ⇒ Ack2 ; none ) )

Thread3 , rec X.( Thread0 ⇒ Thread0; X ⊕
Thread1 ⇒ Thread1; X ⊕
Thread2 ⇒ Ack0; rec Y.( Ack0 ⇒ Ack0; Y ⊕

Ack1 ⇒ Ack1; Y ⊕
// all done, recovers shared state
Ack2 ⇒ rw t [] ; rw t [] ) )

Naturally, the underlying pattern used to create these protocols could be generalized to facilitate
the creation of similar protocols for an arbitrary number of threads. However, our core language
is limited to only list a finite number of constants that are used to tag the different values of a sum
type. Ideally, we would instead use integers to reason more abstractly about these tags so that we
do not need to check each individual protocol but could instead consider a more abstract protocol
representation that scales better to higher number of threads.

While in this version we must treat each tag individually, with “abstract” integers we can log-
ically collapse arbitrary large number of tags into a single case as will be exemplified in the next
paragraph.

Client code:

1 let await = barrier(3) in

2 fork ( ...; await(); ... );
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3 fork ( ...; await(); ... );

4 ...

5 await();

6 ...

7 end

Integers instead of tags We now sketch how we can model barriers in a language where integers
can be reasoned with abstractly, for instance using type refinements. In this case, we only have one
kind of protocol and the value found in the shared cell distinguishes the allowed behavior of the
thread. Unlike previously, this also means that we can join without statically assigning threads a
particular order of joining (although that does not affect how the barrier can be used).

We assume that the cell to be shared initially has type “rw p 0” and the integer value will be
used to count how many threads have reached the barrier and seen the barrier’s been reached by all
involved threads.

Barrier(N) , // signaling phase
∃{x : int}.( rw p x ⇒ rw p x+1 ) ;
// ‘‘waiting’’ point
rec R.(

// retry in case value is less than N
∃{x : int | x < N}.( rw p x ⇒ rw p x ; R ) ⊕
// acknowledge, in case greater than N but not the last
∃{x : int | x >= N ∧ x < (2N − 1)}.( rw p x ⇒ rw p x+1 ; none ) ⊕
// recover ownership, in case it is the last thread to acknowledge
∃{x : int | x == (2N − 1)}.( rw p x ⇒ rw p null ; rw p null )
)

B.8 Merge Task
While in the fork/join case we statically know which thread will compute the value and which
one will wait for that value, in here we design a more dynamic interaction where both threads are
computing some result and the last to complete its task will merge the two results together. We can
use the following protocol for the case where there are only two participants:

( Zero⇒ One ; none ) ⊕ ( One⇒ Two ; Two )

The shared cell goes over the state: Zero, when no result is ready, One when one of the results
is done, and Two when the last thread completed its task. Note that by using a finite number of
labels to model these states, we are limited on how many times this cell can be shared. In this case,
limited to only two aliases as the protocol above can only be split twice. However, we could use
iterative re-splitting to continue to aliases further more by essentially extending the termination
step that recovers ownership.
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Using Extensions Next, we can sketch the protocol that we would use if our language was able
to reason about integers. We use an auxiliary cell to work as the reference counter, since we will
be sharing the state without bounds. Likewise, we do not impose any formal conditions on how
the result of each thread should be merged together, only that it is of type int.

Merger ,
∃{n : int | n > 0}.
( (rw p int) * (rw c n) ⇒ (rw p int) * (rw c n-1) ; none )
⊕

∃{n : int | n == 0}.
( (rw p int) * (rw c 0) ⇒ (rw p int) * (rw c 0) ; (rw p int) * (rw c 0) )

To ensure that only one will recover the shared state, we see that the cell c must contain a
integer value with the number of aliases to that state (i.e. if 10 aliases share the state then c should
contain 9 for the last one to match the 0 value).

B.9 Shared Pair
This example shows the case where neither alias sees the “full picture” of the contents of the shared
state. The example is meant to illustrate the expressiveness of our system, since the example itself
is somewhat artificial. However, it shows that each alias can have a different perspective on the
contents of the shared state such that each alias abstracts different components of the pair.

Consider the following cell:
rw p [A, B]

Such a cell contains a pair type with the first component of type A and the second component of
type B. The idea is to now share that same cell, including its contents, through two aliases. Each
alias will not modify the other alias’s pair component, although the state of the cell and of the
alias’ pair component may be changed. Due to the typing constraints enforced by a rely-guarantee
protocol, each individual alias’ actions are guaranteed to preserve the data of the other alias.

The crucial bit of this example is how composition will have to proceed. Since part of the
pair’s type is abstracted, an alias will never see the complete type of the pair. However, since the
other alias will be allowed to change its component, composition will ensure that this interference
is accounted for although it is abstracted. We write ∀X to abbreviate ∀X <: top and ∃X for
∃X <: top:

P[A][B] , rw p [A, B]
L[A] , ∃X.( P[A][X]⇒ ∀Y.( P[Y][X] ; L[Y] ) )
R[A] , ∃X.( P[X][A]⇒ ∀Y.( P[X][Y] ; R[Y] ) )

Γ ` P[X][Y] V L[X] || R[Y]

Note that the existential cannot last longer than the interval where no interference from the
other alias may “appear” in the pair. Thus, the recursion variable X must include a fresh existential
to model the new type that may appear in the cell. After splitting, each alias will only precisely
know the type of its own component. For the remaining component of the pair, the protocol will
enforce that the alias must preserve the data stored there—although that alias has no precise type
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information on what its type may be. Therefore, this will allow a form of local hiding that yet is
globally consistent.

Protocol composition results in the following set of configurations:

{ Ê 〈 Γ ` P[A][B] V L[A] || R[B] 〉 ,
Ë 〈 Γ, X : type ` P[A][X] V L[A] || R[X] 〉 ,
Ì 〈 Γ,Y : type ` P[Y][B] V L[Y] || R[B] 〉 ,
Í 〈 Γ, X : type , Y : type ` P[X][Y] V L[X] || R[Y] 〉 }
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C Examples using Informal Extensions

C.1 Monotonic Counter
In this example, we make use of an informal extension to allow types akin to refinement types [12]
to model more precise states. With this extension we allow more fine-grained interactions than
what was shown in the paper. While prior work already showed how a simple two-states counter
could be modeled, we show here how a more precise and flexible typing can be built using the
protocol type constructs we discussed above.

The example encodes a monotonic counter, similar to what is done in [28, 14], but encoded in
a rely-guarantee protocol. The type will share a single location, q, using the protocol below:

MCounter[m] , ∃{ j : int | j ≥ m}.( rw q j ⇒ ∀{i : int | i ≥ j}.( rw q i ; MCounter[i] ) )

where MCounter[m] is indexed by a type m that represents the lower bound of the counter. The
guarantee of the step ensures that the change to that counter will be greater or equal than the base
of the counter. Thus, we have that the types m, j, i represent integers.

Since the protocol is not depending on a specific value in the state (the value on each step is
existentially quantified), the protocol can be shared arbitrarily. However, through the universal
quantifier, the protocol is also able to store a more precise lower bound on the value contained
in q. This protocol ensures that the value stored in q, although it can undergo intermediate uses,
will keep increasing. Effectively, the interference allowed on that cell is iteratively/monotonically
being narrowed down on each step of the protocol. The protocol itself is usable without restriction,
meaning that it never terminates and can be freely split into other protocols that obey the same
initial behavior over that shared cell.

Client code We now exemplify some client code that uses the protocol above. Since our formal
system does not have refinement types, their use in this code is somewhat informal. Still the
intention is to show how a more precise monotonic counter can be modeled by a rely-guarantee
protocol:

1 Γ = x : ref p , p : loc
2 ∆ = ∃n.( rw p n⇒ ∀m : m ≥ n.( rw p m ; ... ) )
3 // opens existential (note language construct hidden)
4 Γ = x : ref p , p : loc , n : type
5 ∆ = rw p n⇒ ∀m : m ≥ n.( rw p m ; ... )
6 lock x; // locks cell
7 Γ = x : ref p , p : loc , n : type
8 ∆ = rw p n , ∀m : m ≥ n.( rw p m ; ... )
9 x := x-1;

10 ∆ = rw p (n − 1) , ∀m : m ≥ n.( rw p m ; ... )
11 // would be type error to unlock at this point
12 x := x+40;

13 ∆ = rw p (n + 39) , ∀m : m ≥ n.( rw p m ; ... )
14 // by subtyping we can apply ”(n+39)” as m:

48



15 ∆ = rw p (n + 39) , rw p (n + 39) ; ...

16 // thus, we can now unlock
17 unlock x;

18 ∆ = ∃o ≥ (n + 39).( rw p o ⇒ ... )

Composition We now discuss the protocol composition configurations:

{ Ê 〈 m : int ` rw q m V MCounter[m] || MCounter[m] 〉 ,
Ë 〈 m : int , n : n ≥ m ` rw q n V MCounter[n] || MCounter[m] 〉 ,
Ì 〈 m : int , n : n ≥ m ` rw q n V MCounter[m] || MCounter[n] 〉 ,
Í 〈 m : int , n : n ≥ m , o : o ≥ n ` rw q o V MCounter[n] || MCounter[o] 〉 ,
Î 〈 m : int , n : n ≥ m , o : o ≥ n ` rw q o V MCounter[o] || MCounter[n] 〉 }

To close the set of configurations, we must extend our definition of equi-variance to consider
states up to the transitivity of ≥. Thus, continuing to step either protocol will just generate equiva-
lent configurations.

{ Ê 〈 m : int ` MCounter[m] V MCounter[m] || MCounter[m] 〉 ,
Ë 〈 m : int , n : n ≥ m ` MCounter[n] V MCounter[n] || MCounter[m] 〉 ,
Ì 〈 m : int , n : n ≥ m ` MCounter[n] V MCounter[m] || MCounter[n] 〉 ,
Í 〈 m : int , n : n ≥ m , o : o ≥ n ` MCounter[o] V MCounter[n] || MCounter[o] 〉 ,
Î 〈 m : int , n : n ≥ m , o : o ≥ n ` MCounter[o] V MCounter[o] || MCounter[n] 〉 }

The case where there is a mismatch on the lower bound of the protocol to be split and the
resulting protocol is not completely trivial. It is important to note the subtlety on enabling a
protocol to work with a lower bound on the value of the cell. Indeed, this just amounts to weakening
the rely type since the guarantee type is dependent on an abstracted type that, consequently, remains
unchanged—we just have a less precise bound on that value. Therefore, we have that:

MCounter[n] <: MCounter[m] n ≥ m

since we are weakening the rely type but leave the effective guarantee type unchanged.

Discussion Prior work in the area makes a distinction in the uses of the monotonic counter based
on whether the action is enforced or simply available to clients if they choose to use it. In our
system, these uses can be modeled by the function type depending on whether the linear protocol
resource is used or not.

For instance, the type:

∃q.∃n.( (!ref q) :: MCounter[n] )( ∃m.( [] :: MCounter[m] )

Simply allows the counter to be used an arbitrary number of times, i.e. it allows the action of the
counter but does not enforce it. If the client so chooses it can use the monotonic counter zero or
more times.
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On the other hand, if we use the type that unfolds a single step of the protocol:

∃q.∃m.∀X.( (!ref q) :: ∃{ j : int | j ≥ m}.( rw q j ⇒ ∀{i : int | i ≥ j}.( rw q i ; X ) )( ( [] :: X ) )

Our system can enforce that a single action of the monotonic counter is used by the function, thus
that the counter is really incremented once. Alternatively, X could instead just be the monotonic
counter’s type, thus encoding that the counter is used once or more times. (Note: the use of
abstractions over refined types would need an improved kind system but we simplify this by using
plain X : type here).

Consequently, we are able to have a more precise type than prior works and model different
kinds of uses within the same protocol framework.
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C.2 Monotonically Growing List
Encoding Read-Only A read-only capability (ro p A) implies that the cell will only be read,
never written to. Interestingly, since we are employing a model where all accesses to some shared
state must be protected by a lock (granting exclusive access to that location), we can encode a
meaning similar to (exclusive) read-only access without explicitly requiring a read-only capability.
Essentially, if there will not be any concurrent accesses to the shared cell, a shared read-only usage
can be modeled as the following step in a protocol:

∃X.( rw p X ⇒ rw p X ; ... )

since it will enforce that the cell has to remain publicly unchanged (since any temporary write is
not observable), although that may only occur after some private uses. Thus, the use “looks” like
read-only to any other alias of that state.

Naturally, if concurrent read-only accesses were possible then we would need a proper ro ca-
pability to ensure that no intermediate, private values are placed in that shared cell. Otherwise, we
could also define a different ⇒ stepping that forbade private uses and requires a direct transition
from the rely to the guarantee type.

In this example we are modeling a monotonically increasing singly linked list, similar to what
is done in [14]. All the nodes of the list are technically immutable, so that the pointer to the next
node of the list cannot be changed. However, the list contains a head pointer which can prepend
new nodes to that list. Since each of those nodes is immutable, each node could also be shared
without bounds which would effectively model an immutable spaghetti stack if multiple shared
nodes could point to one same (immutable) next cell.

The interesting aspect of modeling this example is how we can constrain the actions of the head
pointer of the list. To illustrate this point, we use a list that already contains one element which
simplifies our protocol representation. With this protocol, we can enforce a more specific change
to the shared state: the head pointer is required to add one (and only one) new node that points to
the exact same list node that was previously in that shared state, if the shared state is used at all.
The list protocol will ensure that, regardless of how many aliases to that list exist, if any alias uses
the list then it must forcefully prepend just a single node to the list as its sole action.

N[p] , Node#[ element : int , next : ref p ]
Nil[p] , ro p Nil#[]
Node[p] , ∃q.( ( ro p N[q] ) ∗ ( Node[q] ⊕ Nil[q] ) )

RootNode[q] , ( rw p N[q] ) ∗ ( Node[q] ⊕ Nil[q] )
L[p] , ∃q.( ( rw p N[q] ) ∗ ( Node[q] ⊕ Nil[q] ) ⇒

∀t.( ( rw p N[t] ) ∗ ( ro t N[q] ) ∗ ( Node[q] ⊕ Nil[q] ) ) ); L[p]

The important aspect is the constraint on the location that the new guaranteed cell must point
to. This means that we ensure the new cell that was added correctly points to the previous cell of
the list, as we had at the moment of focus. The protocol explicitly requires a prepend to occur. We
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could also include (through the use of &) additional uses that could, for instance, enable the client
to chose whether there should or not be changes to the list, so that iterating would be possible.
Since our focus is on only showing the prepend function, we omit that extra case.

We now show the implementation of the prepend function, that is defined as a closure with
access to the list’s head pointer. The h(ead) pointer is a reference to a location (@h) that is shared
using the L[@h] protocol for that location.

1 Γ = @h : loc , h : ref @h
2 ∆ = L[@h]
3 prepend = λ x.

4 Γ = x : int , @h : loc , h : ref @h
5 ∆ = L[@h]
6 // automatic open of existential of L[@h]
7 Γ = t : loc , x : int , @h : loc , h : ref @h
8 ∆ = ( ( rw @h N[t] ) ∗ ( Node[t] ⊕ Nil[t] )⇒ ... )
9 lock h; // locks location of head, i.e. ’@h’

10 ∆ = rw @h N[t] , Node[t] ⊕ Nil[t] , . . .

11 . . . , ∀q.( ( ( rw @h N[q] ) ∗ ( ro q N[t] ) ∗ ( Node[t] ⊕ Nil[t] ) ) ; L[@h] )
12 let n = new Node#{ element = !h.element, next = !h.next } in

13 ∆ = n : ∃w.( rw w N[t] )
14 // automatic open
15 Γ = ... , w : loc , n : ref w
16 ∆ = ... , rw w N[t]
17 // subtype to readonly, this cannot be reversed back to writable!
18 ∆ = ... , ro w N[t]
19 ∆ = ... , rw @h N[t] , ro w N[t]
20 h := Node#{ element = x , next = n };

21 ∆ = ... , rw @h N[w] , ro w N[t]
22 // automatically apply location ’w’ to guarantee:
23 ∆ = ... , ( ( ( rw @h N[w] ) ∗ ( ro w N[t] ) ∗ ( Node[t] ⊕ Nil[t] ) ) ; L[p] )
24 end;

25 // it is ok to unlock since we are at the desired guarantee
26 unlock h

27 ∆ = L[@h]

Protocol composition becomes easier to grasp once the following subtyping relation between
states is observed:

∀t.( ( rw p N[t] ) ∗ ( ro t N[q] ) ∗ ( Node[q] ⊕ Nil[q] ) )
<:
∀t.( ( rw p N[t] ) ∗ ∃q.( ( ro t N[q] ) ∗ ( Node[q] ⊕ Nil[q] ) ) )
<:
∀t.( ( rw p N[t] ) ∗ Node[t] )
<:
∀t.( ( rw p N[t] ) ∗ ( Node[t] ⊕ Nil[t] ) )
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Therefore, we have that the rely and guaranteed states are very similar except for referring
different location variables. Once this is considered, protocol composition is straightforward.

If the split state is Node[p], then we have the following set of configurations:

{ Ê 〈 · ` ∃q.RootNode[q] V L[p] || L[p] 〉 ,
Ë 〈 t : loc ` RootNode[t] V L[p] || L[p] 〉 }

Which is the result of the steps:

〈q : loc ` (rw p N[q]) ∗ (. . .)V (rw p N[q]) ∗ (. . .) ⇒ ∀t.(. . .) ; L〉 7→ 〈q : loc , t : loc ` Node[t]V L〉

〈· ` ∃q.( (rw p N[q]) ∗ (. . .) )V ∃q.( (rw p N[q]) ∗ (. . .) ⇒ ∀t.(. . .) ) ; L〉 7→ 〈t : loc ` Node[t]V L〉

Ê〈· ` ∃q.RootNode[q]V L〉 7→ 〈t : loc ` Node[t]V L〉Ë

〈t : loc ` (rw p N[t]) ∗ (. . .)V ( (rw p N[q]) ∗ (. . .) ⇒ ∀l.(. . .) ; L ){q/t}〉 7→ 〈l : loc , t : loc ` Node[l]V L〉

〈t : loc ` (rw p N[t]) ∗ (. . .)V ∃q.( (rw p N[q]) ∗ (. . .) ⇒ ∀l.(. . .) ) ; L〉 7→ 〈l : loc ` Node[l]V L〉

Ë〈t : loc ` RootNode[t]V L〉 7→ 〈l : loc ` Node[l]V L〉Ë
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D Encoding Typeful Message-Passing Concurrency
We now discuss how our protocols can be used to encode message-passing style of concurrency,
via shared memory cells. However, our encoding only works in a non-distributed setting since our
core language does not account for actual network interactions—although that can also be seen as
interacting with the network card’s buffer. Interestingly, this enables values to be shared between
threads without copying. For instance, by using an auxiliary cell to store values and just move that
pointer (and capability) between the threads via the channel (modeled as a shared cell).

Due to the underlying protocol types and its shared memory underpinnings, our encoding
can send “messages to self” and is naturally asynchronous. This flexibility also allows for non-
deterministic interactions, when different alternatives may be picked depending on a particular
thread scheduling. Technically, instead of sending or receiving a message, the interaction occurs
through relying and guaranteeing that the shared cell contains values of a certain type. The novelty
is that our protocols can encode both shared-memory and message-passing styles of interactions
in a single, unified protocol framework.

We now discuss the high-level concepts of our encoding of message-passing:

Channels as memory locations. To create a new channel we must create a new cell that will
model the interaction that occurs through that channel. Similarly, closing a channel is equiv-
alent of deleting that memory location, which effectively negates further uses of the cel-
l/channel. Since the communication occurs through the shared location, the channel name
is meaningless as long as the specific location is shared by the two endpoints, even if using
different local names for those channels / location variables.

Sending as (little more than) writing to shared state. Our encoded send is non-blocking which
means that the thread does not need to wait for the other party to receive the value. This
also means that a thread can send a message to itself, if the programmer so wishes. To avoid
overwriting non-received values, the exact state of the channel/cell must be marked with a
specific tag. This is akin to sending or waiting for an acknowledge that the value has been
properly received, instead of potentially flooding the receiver’s buffer. The extra complexity
can be hidden from the programmer by using the idioms that we discuss below.

Receiving as (little more than) reading from shared state. We can encode receive in similar
ways to sending, so that we may need to mark the shared state with a specific tag so that the
receiver knows that the cell was read (and thus that the cell is available to write to).

Multiparty. Our channels are shared cells where the kind of communication that can be done
through those shared cells is only constrained by the protocol type. Thus, whenever the
protocols compose safely, that interaction is ruled valid. As we saw in previous examples,
protocol composition allows arbitrary aliasing and therefore multiparty communication (in-
cluding delegation) is naturally supported by our scheme.

We now discuss the encoding of send/receive shown in Figure 13. The underlying principle of
these idioms is to hide the waiting states of the channel. Client code will then look identical to what
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1 receive(c) ,
2 rec X. // recursion point
3 lock c; // locks location of ’c’
4 case !c of

5 // 1. waiting states, just unlocks and
retries:

6 A#n → ... // analogous to case
below

7 | B#n →

8 c := B#n; // restore any linear type
9 unlock c; // unlock cell

10 X // retry
11 // 2. desired (receive) state:
12 | ReadyToReceive#v →

13 c := idle#{}; // marks as
received

14 unlock c; // unlock cell
15 v // result of receiving from channel ’

c’
16 end // end case
17 end // end recursion
18 // at this point c has type P

1 send(c,v) ,
2 rec X. // recursion point
3 lock c;

4 case !c of

5 // 1. waiting states, just unlocks and
retries.

6 A#n → ... // analogous to case
below

7 | B#n →

8 c := B#n; // restore any linear type
9 unlock c; // unlock cell

10 X // retry
11 // 2. desired (receive) state:
12 | idle#_ →

13 c := ReadyToReceive#v; // signal
sent

14 unlock c; // unlock cell
15 {} // result of send is unit
16 end // end case
17 end // end recursion
18 // at this point c has type P

Figure 13: Possible encoding of send and receive functions.
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you would normally see on traditional message-passing systems. Therefore, a send/receive will
potentially have to wait if the cell is not available with the desired tag that will enable “sending” or
if it has no new value to “receive”. Creating a new channel (new) and closing a channel (close) are
straightforward uses of memory allocation (followed by sharing to split the state into the desired
protocols for that channel) and memory deletion, respectively. Therefore, we will only look into
more detail on the encoding of receive and send.

The crucial aspect is that the protocol must model the buffer’s changing state, as the communi-
cation progresses, enabling the encoding to seamlessly wait for a particular phase of the interaction.

Consider the following code:

1 let x = receive(c) in ...

To receive a value sent to channel c, we need to wait for a specific state to be stored on that
cell. This waiting is based on the specific protocol type of the channel. This means that c should
have a type of the kind:

WaitSteps[A, B, ...] ⊕ ( rw c ReadyToReceive#V ⇒ rw c idle#[] ; . . . )

where WaitSteps are just (“busy-wait”) cycles in the protocol that retry that same step of the
protocol. The alternative step on the right advances the protocol when the right value, tagged with
ReadyToReceive, is found in c.

Sending is analogous since it must also wait for the “channel” to be free (for instance by being
tagged with idle) which leads to the recursion that spins waiting for the appropriate tag to be
present. Similarly to send, we have:

WaitSteps[A, B, ...] ⊕ ( rw c idle#[]⇒ rw c ReadyToReceive#V ; . . . )

Note that, expanding WaitSteps[A, B] above yields the protocol:

rec X.( ( A⇒ A; X ) ⊕ ( B⇒ B; X ) ⊕ ( rw c idle#[]⇒ rw c ReadyToReceive#V ; . . . ) )

Open Problems Technically, our messaging mechanism is a queue of a single element. The
communication can occur asynchronously and without any guarantee of global progress, making
the communication vulnerable to live-locks or even deadlocks if the use of this encoding is mixed
with locks.

In our system, to ensure safe and local re-splits, we must explicitly list all the waiting phases
of the communication. While in traditional message-passing system such waiting phase is hidden
from the programmer, our receive and send may cause the current thread to “busy-waiting” when
an old value is still in the shared cell. (Although overwrites may be allowed in certain situations,
so that waiting is unnecessary but may cause the interaction to be somewhat non-deterministic
which is not usual for message-passing.) This waiting is akin to blocking the thread when there is
no actual, higher-level, mechanism to wait on some event. Technically the implementation could
employ a simple optimization that registers which thread should wake up on a particular state
change of the cell/channel, but we do not approach the problem of finding better ways to schedule
threads to reduce excessive spinning.
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Figure 14: Buyer-Seller-Shipper message-passing example.

D.1 Buyer-Seller-Shipper Example
The example of Figure 14 (adapted from [5]) shows a multiparty communication between a Buyer,
a Seller, and a Shipper. The buyer sends a request to buy some product to the seller, which then
replies with the price and delegates shipping to the shipper. The shipper, upon receiving the request
for some product, then replies by listing the shipping details back to the buyer.

We follow the original example in using “session-delegation” instead of opening a private com-
munication channel between the shipper and the seller, although our system can also model that.
Similarly, to simplify the presentation, we do not abstract a channel’s internal states even though
such abstraction would produce a more modular protocol specification.

We begin by modeling the communication by explicitly labeling the messages sent through the
channel using the π-calculus notation of “!” for sending and “?” for receiving, and extending the
notation to use “/” and “{” to connect or delegate the communication.

Buyer : Seller / buy!(prod) ; price?(p) ; details?(d)
Seller { buy?(prod) ; price!(p) ; Shipper / product!(prod)

Shipper { product?(prod) ; details!(d)

The types above define a Buyer type that initializes a communication (/) with the Seller server.
From the perspective of the Buyer, the buyer sends a buy message (with the desired product)
and waits for two replies in that channel: one with the price and another with the details of
the requested product. From the Seller perspective, on each new request ({), the seller reads the
product that is to be bought, sends back the price, and then connects to Shipper to send the product
information while delegating to Shipper the remainder of the communication. Finally, Shipper,
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details

product
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channel

Figure 15: Buyer-Seller-Shipper shared channel’s changing session state.

on each new request, receives the product and sends back the shipping details over that channel.

To model this interaction, we will “merge” all communications into a single (coordinated)
shared cell. Threads will wait on the shared cell for specific tags to appear in the shared state.
Similarly, we must model the internal states of the “channel” (i.e. ready to receive, ready to send,
etc.) explicitly. Although our idiom hides these temporary states from the programmer, they are
needed to encode the interaction in our rely-guarantee protocols.

We begin by directly translating the types above into our protocols, ignoring missing “busy-
waiting” states and instead focusing only on the useful transitions and temporary (idle) states (see
Figure 15 for a schematic of how the different channel’s states occur within the communication
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channel).
Buyer : rw c idle0#[]⇒ rw c buy#prod ;

rw c price#p⇒ rw c idle2#[] ;
rw c details#d ⇒ rw c [] ;
rw c []

Seller : rw c buy#prod ⇒ rw c idle1#[] ;
rw c idle1#[]⇒ rw c price#p ;
rw c idle2#[]⇒ rw c product#prod ;
none

Shipper : rw c product#prod ⇒ rw c idle3#[] ;
rw c idle3#prod ⇒ rw c details#d ;
none

where the initial state is of the cell is “rw c idle0#[]”.
We now add the necessary waiting states, but use the following idiom to reduce the syntactic

burden and only list the tags that must be waited on.

wait A else P , rec X.( (A0 ⇒ A0; X) ⊕ ... ⊕ (An ⇒ An; X) ⊕ P )

We use the abbreviation above to simplify the syntax of listing each “wait” step, although our A
will be limited to listing tags and not the full type for simplicity. Note that instead of manually
inserting wait...else, we could instead use/adapt our protocol composition mechanism to detect
any missing state/steps and introduce waiting the required steps to ensure safe composition, for
this particular kind of message-passing usage. Still, for the purposes of this example we list the
missing states explicitly but gray out those components of the protocol to preserve (some) clarity:

Buyer : rw c idle0#[]⇒ rw c buy#prod ;
wait buy, idle1 else rw c price#p⇒ rw c idle2#[] ;
wait idle2, idle3, product else rw c details#d ⇒ rw c [] ;
rw c []

Seller : wait idle0 else rw c buy#prod ⇒ rw c idle1#[] ;
rw c idle1#[]⇒ rw c price#p ;
wait price else rw c idle2#[]⇒ rw c product#prod ;
none

Shipper : wait idle0, idle1, idle2, buy, price else
rw c product#prod ⇒ rw c idle3#[] ;
rw c idle3#prod ⇒ rw c details#d ;
none

In our scheme, all participants must be aware of all (public) states that may appear on the
shared state to enable safe re-splittings later on (even after subtyping). Therefore, each party
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fork // Seller server: buy?(prod) ; price!(p) ; Shipper / product!(prod)

rec L. // recursively waits for new connections
let c = listenSeller() in

fork // worker thread to handle this connection
// the product that is to be bought
(let product = receive(c) in

// do something with product to find price
send( c, FETCH_PRICE(product) );

// splits the usage of the protocol
connectShipper(c);

send( c, product )

end)

end;

L

Figure 16: Seller code.

must explicitly know the state it is to wait on (and not change) because all states are visible and
thread/alias interleaving can be non-deterministic.

Implementation Finally, we show a possible implementation of this interaction. To begin the
communication, each server must have its own message queue to receive new requests. For in-
stance, by means of a pipe. It is this pipe that stores the channel/cell that connects the two endpoints
to establish the desired communication.

Assume that the pipe was already created and shared by assigning to each endpoint a different
role in the use of the pipe (consumer or producer). Therefore, the consumer of the pipe will listen
for new requests to be pushed into the pipe, while the producer will insert new requests onto the
pipe. We then proceed by making listenShipper correspond to the consumer of the pipe for
the Shipper server (that will do successive tryTakes), while connectShipper is the correspond-
ing producer that will push new values into the pipe. Analogously, we have listenSeller and
connectSeller for similar uses but for the Seller server.

Do note that connectShipper is slightly more complex than just the use of a pipe. Indeed,
to create a new channel, connectShipper will also have to create the new cell and all the corre-
sponding protocols of the interaction. In the case of this example, this corresponds to splitting the
usage of the cell in three protocols: one for the buyer, one for the seller and another for the ship-
per. On listenSeller the seller will receive two protocols one for itself and another for shipper.
Through connectShipper seller will send shipper the part of the protocol that was delegated to
shipper.

Figures 18, 16, and 17 show possible implementations of the three communicating processes
using the receive and send functions discussed above.
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fork // Shipper server: product?(prod) ; details!(d)
rec L.

let c = listenShipper() in

// get product info
let product = receive(c) in

// send shipping details
send( c, FETCH_SHIPPING_INFO(product) )

end

end;

L

Figure 17: Shipper code.

// Buyer: Seller / buy!(prod) ; price?(p) ; details?(d)

let c = connectSeller() in

send(c, GET_USER_PRODUCT() );

let price = receive(c) in

let details = receive(c) in

close(c)

end

end

end

Figure 18: Buyer code.
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E Complete Technical Development

x ∈ Variables t ∈ Tags f ∈ Fields ρ ∈ Location Constants

l ∈ Location Variables X ∈ Type Variables

p ::= ρ | l u ::= l | X U ::= p | A

v ::= ρ (address)
| x (variable)
| λx.e (function)
| {f = v} (record)
| t#v (tagged value)

e ::= v (value)
| v.f (field selection)
| v v (application)
| let x = e in e end (let)
| new v (cell creation)
| delete v (cell deletion)
| !v (dereference)
| v := v (assign)
| case v of t#x→ e end (case)
| lock v (lock locations)
| unlock v (unlock locations)
| fork e (spawn thread)

E ::= � | let x = E in e (evaluation contexts)

Figure 19: Values (v), expressions (e), evaluation contexts (E).
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A ::= !A (pure/persistent)
| A( A (linear function)
| [f : A] (record)
|
∑

i ti#Ai (tagged sum)
| ∀l.A (universal location quantification)
| ∃l.A (existential location quantification)
| ∀X<: A.A (bounded universal type quantification)
| ∃X<: A.A (bounded existential type quantification)
| ref p (reference type)
| X[U] (type variable)
| (rec X(u).A)[U] (recursive type)
| A ⊕ A (alternative)
| A & A (intersection)
| rw p A (read-write capability to p)
| none (empty resource)
| A⇒ A (rely)
| A ; A (guarantee)
| top (top)
| A :: A (stacking)
| A ∗ A (separation)

Pairs, recursion, and other constructs are definable in the language as was done in [22].

Figure 20: Types (A).
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H0 ; T0 7→ H1 ; T1 Dynamics, (d:*)

(d:New)
ρ fresh

H ; E[new v] 7→ H, ρ ↪→ v ; E[ρ]

(d:Delete)
H, ρ? ↪→ v ; E[delete ρ] 7→ H ; E[v]

(d:Dereference)
H, ρ? ↪→ v ; E[!ρ] 7→ H, ρ? ↪→ v ; E[v]

(d:Assign)
H, ρ? ↪→ v0 ; E[ρ := v1] 7→ H, ρ? ↪→ v1 ; E[v0]

(d:Application)
H ; E[(λx.e) v] 7→ H ; E[e{v/x}]

(d:Selection)
H ; E[{f = v}.fi] 7→ H ; E[vi]

(d:Case)
H ; E[case ti#vi of t#x→ e end] 7→ H ; E[ei{vi/xi}]

(d:Let)
H ; E[let x = v in e end] 7→ H ; E[e{v/x}]

(d:Lock)
H, ρ ↪→ v ; E[lock ρ] 7→ H, ρ• ↪→ v ; E[{}]

(d:Unlock)
H, ρ• ↪→ v ; E[unlock ρ] 7→ H, ρ ↪→ v ; E[{}]

(d:Fork)
H ; E[fork e] 7→ H ; E[{}] · e

(d:Thread)
H0 ; E[e0] 7→ H1 ; E[e1] · T1

H0 ; E[e0] · T0 7→ H1 ; E[e1] · T1 · T0

Notes: ρ? ranges over ρ (not locked) and ρ• (locked) with lock token unchanged. We use fi to
denote access to some position, i, in the set of labels f (and similarly for other sets, such as v, t,
etc.).

Figure 21: Operational semantics.
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Γ | ∆0 ` e : A a ∆1 Typing rules, (t:*)

(t:Ref)

Γ, ρ : loc | · ` ρ : ref ρ a ·

(t:Pure)
Γ | · ` v : A a ·

Γ | · ` v : !A a ·

(t:Unit)

Γ | · ` v : ![] a ·

(t:Pure-Elim)
Γ, x : A0 | ∆0 ` e : A1 a ∆1

Γ | ∆0, x : !A0 ` e : A1 a ∆1

(t:Pure-Read)

Γ, x : A | · ` x : !A a ·

(t:Linear-Read)

Γ | x : A ` x : A a ·

(t:Selection)
Γ | ∆0 ` v : [f : A] a ∆1

Γ | ∆0 ` v.fi : Ai a ∆1

(t:Record)
Γ | ∆ ` v : A a ·

Γ | ∆ ` {f = v} : [f : A] a ·

(t:Delete)
Γ | ∆0 ` v : ∃l.((!ref l) :: (rw l A)) a ∆1

Γ | ∆0 ` delete v : ∃l.A a ∆1

(t:New)
Γ | ∆0 ` v : A a ∆1

Γ | ∆0 ` new v : ∃l.((!ref l) :: (rw l A)) a ∆1

(t:Assign)
Γ | ∆0 ` v1 : A0 a ∆1

Γ | ∆1 ` v0 : ref p a ∆2, rw p A1

Γ | ∆0 ` v0 := v1 : A1 a ∆2, rw p A0

(t:Subsumption)
Γ ` ∆0 <: ∆1 Γ | ∆1 ` e : A0 a ∆2

Γ ` A0 <: A1 Γ ` ∆2 <: ∆3

Γ | ∆0 ` e : A1 a ∆3

(t:Tag)
Γ | ∆ ` v : A a ·

Γ | ∆ ` t#v : t#A a ·

(t:Case)
Γ | ∆0 ` v :

∑
i ti#Ai a ∆1

Γ | ∆1, xi : Ai ` ei : A a ∆2 i ≤ j

Γ | ∆0 ` case v of t j#x j → e j end : A a ∆2

(t:Function)
Γ | ∆, x : A0 ` e : A1 a ·

Γ | ∆ ` λx.e : A0 ( A1 a ·

(t:Application)
Γ | ∆0 ` v0 : A0 ( A1 a ∆1

Γ | ∆1 ` v1 : A0 a ∆2

Γ | ∆0 ` v0 v1 : A1 a ∆2

(t:Dereference-Linear)
Γ | ∆0 ` v : ref p a ∆1, rw p A

Γ | ∆0 ` !v : A a ∆1, rw p ![]

(t:Dereference-Pure)
Γ | ∆0 ` v : ref p a ∆1, rw p !A

Γ | ∆0 ` !v : !A a ∆1, rw p !A

(t:Intersection-Right)
Γ | ∆0 ` e : A0 a ∆1, A1

Γ | ∆0 ` e : A0 a ∆1, A2

Γ | ∆0 ` e : A0 a ∆1, A1&A2

(t:Alternative-Left)
Γ | ∆0, A0 ` e : A2 a ∆1

Γ | ∆0, A1 ` e : A2 a ∆1

Γ | ∆0, A0 ⊕ A1 ` e : A2 a ∆1

Figure 22: Typing rules (1/2).
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(t:Fork)
Γ | ∆ ` e : ![] a ·

Γ | ∆ ` fork e : ![] a ·

(t:Let)
Γ | ∆0 ` e0 : A0 a ∆1

Γ | ∆1, x : A0 ` e1 : A1 a ∆2

Γ | ∆0 ` let x = e0 in e1 end : A1 a ∆2

(t:Frame)
Γ | ∆0 ` e : A a ∆1

Γ | ∆0,∆2 ` e : A a ∆1,∆2

(t:Cap-Elim)
Γ | ∆0, x : A0, A1 ` e : A2 a ∆1

Γ | ∆0, x : A0 :: A1 ` e : A2 a ∆1

(t:Cap-Stack)
Γ | ∆0 ` e : A0 a ∆1, A1

Γ | ∆0 ` e : A0 :: A1 a ∆1

(t:Cap-Unstack)
Γ | ∆0 ` e : A0 :: A1 a ∆1

Γ | ∆0 ` e : A0 a ∆1, A1

(t:Forall-Loc-Val)
Γ, l : loc | ∆0 ` v : A0 a ·

Γ | ∆0 ` v : ∀l.A0 a ·

(t:Forall-Type-Val)
Γ, X : type, X <: A1 | ∆0 ` v : A0 a ·

Γ | ∆0 ` v : ∀X<: A1.A0 a ·

(t:Lock-Rely)
Γ | · ` v : ref p a · locs(A0) = p

Γ | ∆, A0 ⇒ A1 ` lock v : ![] a ∆, A0, A1

(t:Unlock-Guarantee)
Γ | · ` v : ref p a · locs(A0) = p

Γ | ∆, A0, A0; A1 ` unlock v : ![] a ∆, A1

(t:LocOpenBind)
Γ, l : loc | ∆0, x : A1 ` e : A2 a ∆1

Γ | ∆0, x : ∃l.A1 ` e : A2 a ∆1

(t:LocOpenCap)
Γ, l : loc | ∆0, A1 ` e : A2 a ∆1

Γ | ∆0,∃l.A1 ` e : A2 a ∆1

(t:TypeOpenBind)
Γ, X : type, X <: A0 | ∆0, x : A1 ` e : A2 a ∆1

Γ | ∆0, x : ∃X<: A0.A1 ` e : A2 a ∆1

(t:TypeOpenCap)
Γ, X : type, X <: A0 | ∆0, A1 ` e : A2 a ∆1

Γ | ∆0,∃X<: A0.A1 ` e : A2 a ∆1

Notes: bounded variables of a construct and type/location variables of quantifiers must be fresh in the rule’s conclusion.
We use the notation fi to denote access to some position, i, in the set of labels f (and similarly for A).

Figure 23: Typing rules (2/2).

Γ ::= · (empty)
| Γ, x : A (variable binding)
| Γ, p : loc (location assertion)
| Γ, X<: A (bound assertion)
| Γ, X : k (kind assertion)

∆ ::= · (empty)
| ∆, x : A (linear binding)
| ∆, A (linear resource)

k ::= type | type→ k | loc→ k (kinds)

Figure 24: Typing environments.
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Γ ` A0 <: A1 Subtyping on types, (st:*)

(st:Symmetry)

Γ ` A <: A=============

(st:ToLinear)
Γ ` A0 <: A1

Γ ` !A0 <: A1
================

(st:Pure)
Γ ` A0 <: A1

Γ ` !A0 <: !A1
=================

(st:PureTop)

Γ ` !A <: ![]===============

(st:Weakening)
Γ0 ` A <: B

Γ0,Γ1 ` A <: B
===================

(st:Function)
Γ ` A1 <: A3 Γ ` A2 <: A0

Γ ` A0 ( A1 <: A2 ( A3
=======================================

(st:Alternative)
Γ ` A0 <: A2

Γ ` A0 <: A2 ⊕ A1
=======================

(st:Intersection)
Γ ` A0 <: A2

Γ ` A0&A1 <: A2
======================

(st:Top)

Γ ` A <: top================

(st:Sum)
Γ ` Ai <: Bi n ≤ m

Γ `
∑n

i ti#Ai <:
∑m

i ti#Bi
================================

(st:Discard)
Γ ` [f : A] <: [f : B] f : A , ∅

Γ ` [f : A , f′ : A′] <: [f : B]
=============================================

(st:TypeVar)
X <: A0 ∈ Γ Γ ` A0 <: A1

Γ ` X <: A1
======================================

(st:Record)
Γ ` [f : A] <: [f : B] A′ <: B′

Γ ` [f : A , f′ : A′] <: [f : B , f′ : B′]
=================================================

(st:Stack)
Γ ` A0 <: A1

Γ ` A2 <: A3

Γ ` A0 :: A2 <: A1 :: A3
==============================

(st:Cap)
Γ ` A0 <: A1

Γ ` rw p A0 <: rw p A1
==================================

(st:Star)
Γ ` A0 <: A2

Γ ` A1 <: A3

Γ ` A0 ∗ A1 <: A2 ∗ A3
============================

(st:Alternative-Cong)
Γ ` A0 <: A1 Γ ` A2 <: A3

Γ ` A0 ⊕ A2 <: A1 ⊕ A3
=======================================

(st:Intersection-Cong)
Γ ` A0 <: A1 Γ ` A2 <: A3

Γ ` A0&A2 <: A1&A3
=======================================

(st:Loc-Forall)
Γ, l : loc ` A0 <: A1

Γ ` ∀l.A0 <: ∀l.A1
=========================

(st:PackLoc)
Γ ` A0 <: A1

Γ ` A0 <: ∃l.A1{l/p}
==========================

(st:Loc-Exists)
Γ, l : loc ` A0 <: A1

Γ ` ∃l.A0 <: ∃l.A1
=========================

(st:LocApp)
Γ, l : loc ` A0 <: A1

Γ ` ∀l.A0 <: A1{p/l}
==========================

(st:PackType)
Γ ` A2 <: A1 Γ ` A0 <: A′0
Γ ` A0 <: ∃X<: A1.A′0{X/A2}
=======================================

(st:TypeApp)
Γ ` A2 <: A1 Γ, X : type, X <: A1 ` A0 <: A′0

Γ ` ∀X<: A1.A0 <: A′0{A2/X}
===============================================================

(st:Type-Exists)
Γ, X : type, X <: A3 ` A0 <: A1

Γ ` ∃X<: A3.A0 <: ∃X<: A3.A1
========================================

(st:Type-Forall)
Γ, X : type, X <: A3 ` A0 <: A1

Γ ` ∀X<: A3.A0 <: ∀X<: A3.A1
========================================

Note: recall that ⊕ and & are commutative; thus we only have one subtyping rule for (st:Alternative) and
(st:Intersection).

Figure 25: Subtyping on types (co-inductive).
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∆0 <: ∆1 Subtyping on deltas, (sd:*)

(sd:Var)
Γ ` ∆0 <: ∆1 A0 <: A1

Γ ` ∆0, x : A0 <: ∆1, x : A1

(sd:Symmetry)

Γ ` ∆ <: ∆

(sd:Share)
Γ ` ∆0 <: ∆1, A0 Γ ` A0 V A1 || A2

Γ ` ∆0 <: ∆1, A1, A2

(sd:Star-R)
Γ ` ∆, A0, A1 <: ∆, A1, A2

Γ ` ∆, A0, A1 <: ∆, A1 ∗ A2

(sd:Star-L)
Γ ` ∆, A0 ∗ A1 <: ∆, A1 ∗ A2

Γ ` ∆, A0 ∗ A1 <: ∆, A1, A2

(sd:Type)
Γ ` ∆0 <: ∆1 Γ ` A0 <: A1

Γ ` ∆0, A0 <: ∆1, A1

(sd:None-R)
Γ ` ∆0 <: ∆1

Γ ` ∆0 <: ∆1,none

(sd:None-L)
Γ ` ∆0 <: ∆1

Γ ` ∆0,none <: ∆1

(sd:Alternative-L)
Γ ` ∆0, A0 <: ∆1

Γ ` ∆0, A1 <: ∆1

Γ ` ∆0, A0 ⊕ A1 <: ∆1

(sd:Intersection-R)
Γ ` ∆0 <: ∆1, A1

Γ ` ∆0 <: ∆1, A2

Γ ` ∆0 <: ∆1, A1&A2

Figure 26: Subtyping on linear typing environments.
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E.1 Protocol Composition

C ::= 〈 Γ ` RV P || Q 〉 (configuration)
| C · C (configuration union)

(wf:Split)
〈 Γ ` RV P || Q 〉↑

Γ ` RV P || Q

(wf:Configuration)
C0 7→ C1 C1 ↑

C0 ↑
=======================

P,Q ::= (rec X(u).P)[UP] | X[UP] | P ⊕ P | P & P | none | S ⇒ P |
S ; P | ∃l.P | ∀l.P | ∃X <: A.P | ∀X <: A.P

S ::= (rec X(u).S )[US ] | X[US ] | S ⊕ S | S & S | none | A ∗ A | rw p A
R ::= P | S

Figure 27: Grammar restrictions for checking composition: Protocols, States, and Resources (ei-
ther a protocol or a state).
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C 7→ C Composition, (c:*)

(c:Step)
〈 Γ ` RV RL[P] 〉 7→ C0 RL[�] = � || Q
〈 Γ ` RV RR[Q] 〉 7→ C1 RR[�] = P || �

〈 Γ ` RV P || Q 〉 7→ C0 ·C1

(c:AllStep)
C0 7→ C2

C1 7→ C3

C0 ·C1 7→ C2 ·C3

Composition — Reduction Step, (c-rs:*)

(c-rs:None)

〈 Γ ` RV R[none] 〉 7→ 〈 Γ ` RV R[none] 〉

(c-rs:StateAlternative)
〈 Γ ` R0 V R[P] 〉 7→ C0

〈 Γ ` R1 V R[P] 〉 7→ C1

〈 Γ ` R0 ⊕ R1 V R[P] 〉 7→ C0 ·C1

(c-rs:ProtocolAlternative)
〈 Γ ` RV R[P0] 〉 7→ C

〈 Γ ` RV R[P0 ⊕ P1] 〉 7→ C

(c-rs:StateIntersection)
〈 Γ ` R0 V R[P] 〉 7→ C

〈 Γ ` R0&R1 V R[P] 〉 7→ C

(c-rs:ProtocolIntersection)
〈 Γ ` RV R[P0] 〉 7→ C0

〈 Γ ` RV R[P1] 〉 7→ C1

〈 Γ ` RV R[P0&P1] 〉 7→ C0 ·C1

Composition — State Stepping, (c-ss:*)

(c-ss:Step)

〈 Γ ` S 0 V R[S 0 ⇒ S 1; P] 〉 7→ 〈 Γ ` S 1 V R[P] 〉

(c-ss:Recovery)

〈 Γ ` S V R[S ] 〉 7→ 〈 Γ ` noneV R[none] 〉

Composition — Protocol Stepping, (c-ps:*)

(c-ps:Step)

〈 Γ ` S 0 ⇒ S 1; QV R[S 0 ⇒ S 1; P] 〉 7→ 〈 Γ ` QV R[P] 〉

Figure 28: Basic protocol composition stepping rules.
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(c-rs:Weakening)
〈 Γ0 ` RV R[P] 〉 7→ C

〈 Γ0,Γ1 ` RV R[P] 〉 7→ C

(c-ss:ForallLoc)
〈 Γ, l : loc ` S V R[S ⇒ P] 〉 7→ C

〈 Γ ` S V R[S ⇒ ∀l.P] 〉 7→ C

(c-ss:OpenLoc)
〈 Γ ` S V R[P{p/l}] 〉 7→ C

〈 Γ ` S V R[∃l.P] 〉 7→ C

(c-ss:ForallType)
〈 Γ, X : type, X <: A ` S V R[S ⇒ P] 〉 7→ C

〈 Γ ` S V R[S ⇒ ∀X <: A.P] 〉 7→ C

(c-ss:OpenType)
Γ ` A1 <: A0 〈 Γ ` S V R[P{A1/X}] 〉 7→ C

〈 Γ ` S V R[∃X <: A0.P] 〉 7→ C

(c-ps:ExistsType)
〈 Γ, X : type, X <: A ` PV R[Q] 〉 7→ C

〈 Γ ` ∃X <: A.PV R[∃X <: A.Q] 〉 7→ C

(c-ps:ExistsLoc)
〈 Γ, l : loc ` PV R[Q] 〉 7→ C

〈 Γ ` ∃l.PV R[∃l.Q] 〉 7→ C

(c-ps:ForallType)
〈 Γ, X : type, X <: A ` S ⇒ PV R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀X <: A.PV R[S ⇒ ∀X <: A.Q] 〉 7→ C

(c-ps:ForallLoc)
〈 Γ, l : loc ` S ⇒ PV R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀l.PV R[S ⇒ ∀l.Q] 〉 7→ C

(c-ps:LocApp)
〈 Γ ` S ⇒ P{p/l}V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀l.PV R[S ⇒ Q] 〉 7→ C

(c-ps:TypeApp)
Γ ` A1 <: A0 〈 Γ ` S ⇒ P{A1/X}V R[S ⇒ Q] 〉 7→ C

〈 Γ ` S ⇒ ∀X <: A0.PV R[S ⇒ Q] 〉 7→ C

P{A/X} , “substitution, in P, of X for A”
Note: bound type/location variables of a type must be fresh that rule’s conclusion.

Figure 29: Protocol composition abstraction extension.
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(c-rs:Subsumption)
Γ ` R1 <: R0 〈 Γ ` R0 V R[P0] 〉 7→ C Γ ` P0 <: P1

〈 Γ ` R1 V R[P1] 〉 7→ C

(c-ss:Recovery)
Γ ` S 0 <: S 1

〈 Γ ` S 0 V R[S 1] 〉 7→ 〈 Γ ` noneV R[none] 〉

(c-ss:Step)
Γ ` S 0 <: S 1

〈 Γ ` S 0 V R[S 1 ⇒ S 2; P] 〉 7→ 〈 Γ ` S 2 V R[P] 〉

(c-ps:Step)
Γ ` S 0 <: S 1 Γ ` S 3 <: S 2

〈 Γ ` S 0 ⇒ S 2; QV R[S 1 ⇒ S 3; P] 〉 7→ 〈 Γ ` QV R[P] 〉

Figure 30: Protocol composition subtyping extension.
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F Algorithms

F.1 Protocol Composition

c( Γ, R, P, Q ) Composition Algorithm, (c)
(1) c( Γ, R, P, Q ) , cf( Γ, R, P, Q, ∅ )

(2) c( Γ, R, P, Q, v ) , /* (c:Step) and (c:AllStep) */

∀(Γ′ ` R′ V P′ || Q′) ∈ (stp( Γ, R, R[P], v ) ∪ stp( Γ, R, R[Q], v )).( c( Γ′, R′, P′, Q′, v ∪ 〈Γ ` RV P || Q〉 ) )

stp( Γ, R, P, v ) Step, (stp)
(3) stp( (Γ′,Γ), R, R[P], v ) , /* (c-rs:Weakening) */

∅ if 〈Γ ` RV R[P]〉 ∈ v /* considering equality up to (eq:Rec) */

(4) stp( Γ, (rec X(u).R)[U], R[P], v ) , stp( Γ, R{rec X(u).R/X}{U/u}, R[P], v ) /* (eq:Rec) */

(5) stp( Γ, R, R[(rec X(u).P)[U]], v ) , stp( Γ, R, R[P{rec X(u).P/X}{U/u}], v ) /* (eq:Rec) */

(6) stp( Γ, R, R[none], v ) , {Γ ` RV R[none]} /* (c-rs:None) */

(7) stp( Γ, S 0, R[S 0 ⇒ S 1; P], v ) , {Γ ` S 1 V R[P]} /* (c-ss:Step) */

(8) stp( Γ, (S 0 ⇒ S 1; Q), R[S 0 ⇒ S 1; P], v ) , {Γ ` QV R[P]} /* (c-ps:Step) */

(9) stp( Γ, R0 ⊕ R1, R[P], v ) , stp( Γ, R0, R[P], v ) ∪ stp( Γ, R1, R[P], v ) /* (c-rs:StateAlternative) */

(10) stp( Γ, R0&R1, R[P], v ) , stp( Γ, R0, R[P], v ) /* (c-rs:StateIntersection) */

(11) stp( Γ, R0&R1, R[P], v ) , stp( Γ, R1, R[P], v )

(12) stp( Γ, R, R[P0 ⊕ P1], v ) , stp( Γ, R, R[P0], v ) /* (c-rs:ProtocolAlternative) */

(13) stp( Γ, R, R[P0 ⊕ P1], v ) , stp( Γ, R, R[P1], v )

(14) stp( Γ, R, R[P0&P1], v ) , stp( Γ, R, R[P0], v ) ∪ stp( Γ, R, R[P1], v ) /* (c-rs:ProtocolIntersection) */

(15) stp( Γ, S , R[S ], v ) , {Γ ` noneV R[none]} /* (c-ss:Recovery) */

(16) stp( Γ, R, R[∃l.P], v ) , stp( Γ, R, R[P{p/l}], v ) /* (c-ss:OpenLoc) */

(17) stp( Γ, R, R[∃X <: A0.P], v ) , /* (c-ss:OpenType) */

stp( Γ, R, R[P{A1/X}], v ) if sbt( Γ, A1, A0 )

(18) stp( Γ, S , R[S ⇒ ∀l.P], v ) , stp( (Γ, l : loc), S , R[S ⇒ P], v ) /* (c-ss:ForallLoc) */

(19) stp( Γ, S , R[S ⇒ ∀X <: A.P], v ) , stp( (Γ, X : type, X <: A), S , R[S ⇒ P], v ) /* (c-ss:ForalType) */

Figure 31: Protocol composition algorithm (1/2).
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(20) stp( Γ, ∃l.P, R[∃l.Q], v ) , stp( (Γ, l : loc), P, R[Q], v ) /* (c-ps:ExistsLoc) */

(21) stp( Γ, ∃X <: A.P, R[∃X <: A.Q], v ) , /* (c-ps:ExistsType) */

stp( (Γ, X : type, X <: A), P, R[Q], v )

(22) stp( Γ, S ⇒ ∀l.P, R[S ⇒ ∀l.Q], v ) , /* (c-ps:ForallLoc) */

stp( (Γ, l : loc), S ⇒ P, R[S ⇒ Q], v )

(23) stp( Γ, S ⇒ ∀X <: A.P, R[S ⇒ ∀X <: A.Q], v ) , /* (c-ps:ForallType) */

stp( (Γ, X : type, X <: A), S ⇒ P, R[S ⇒ Q], v)

(24) stp( Γ, S ⇒ ∀l.P, R[S ⇒ Q], v ) , stp( Γ, S ⇒ P{l/p}, R[S ⇒ Q], v )/* (c-ps:LocApp) */

(25) stp( Γ, S ⇒ ∀X <: A0.P, R[S ⇒ Q], v ) , /* (c-ps:TypeApp) */

stp( Γ, S ⇒ P{A1/X}, R[S ⇒ Q], v ) if sbt( Γ, A1, A0 )

Subtyping extension:
(7) stp( Γ, S 0, R[S 1 ⇒ S 2; P], v ) , {Γ ` S 2 V R[P]} if sbt( Γ, S 0, S 1 ) /* (c-ss:Step) */

(8) stp( Γ, (S 0 ⇒ S 2; Q), R[S 1 ⇒ S 3; P], v ) , {Γ ` QV R[P]} if sbt( Γ, S 0, S 1 ) ∧ sbt( Γ, S 3, S 2 ) /* (c-ps:Step) */

(15) stp( Γ, S 0, R[S 1], v ) , {Γ ` noneV R[none]} if sbt( Γ, S 0, S 1 ) /* (c-ss:Recovery) */

Note: Recall that (c-rs:Subsumption) is admissible.

Figure 32: Protocol composition algorithm (2/2).
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F.2 Subtyping
Our subtyping algorithm follows the approach of [32, 2] so that sbt includes a trail to track cycles
and close the co-inductive proof.

sbt( Γ, A, B ) (i.e.: sbt( Γ ` A <: B ))

(1) sbt( Γ, A, B ) , sbt( Γ, A, B, ∅ )

(2) sbt( Γ, A, A, t ) , true /* (st:Symmetry) */

(3) sbt( Γ, !A, B, t ) , sbt( Γ, A, B, t ) /* (st:ToLinear) */

(4) sbt( Γ, !A, ![], t ) , true /* (st:PureTop) */

(5) sbt( Γ, !A, !B, t ) , sbt( Γ, A, B, t ) /* (st:Pure) */

(6) sbt( Γ, A, top, t ) , true /* (st:Top) */

(7) sbt( Γ, X, B, t ) , ((X <: A) ∈ Γ) ∧ sbt( Γ, A, B, t ) /* (st:TypeVar) */

(8) sbt( (Γ′,Γ), A, B, t ) , sbt( Γ, A, B, t ) /* (st:Weakening) */

(9) sbt( Γ, (A( B), (C ( D), t ) , sbt( Γ, C, A, t ) ∧ sbt( Γ, B, D, t ) /* (st:Function) */

(10) sbt( Γ, (A :: B), (C :: D), t ) , sbt( Γ, A, C, t ) ∧ sbt( Γ, B, D, t ) /* (st:Stack) */

(11) sbt( Γ, (rw l A), (rw l B), t ) , sbt( Γ, A, B, t ) /* (st:Cap) */

(12) sbt( Γ, (A ∗ B), (C ∗ D), t ) , /* (st:Star) */

(sbt( Γ, A, C, t ) ∧ sbt( Γ, B, D, t )) ∨ (sbt( Γ, A, D, t ) ∧ sbt( Γ, B, C, t ))

(13) sbt( Γ, ∃l.A, ∃l.B, t ) , sbt( (Γ, l : loc), A, B, t ) /* (st:Loc-Exists) */

(14) sbt( Γ, ∀l.A, ∀l.B, t ) , sbt( (Γ, l : loc), A, B, t ) /* (st:Loc-Forall) */

(15) sbt( Γ, ∃X <: A.B, ∃X <: A.C, t ) , sbt( (Γ, X <: A, X : type), B, C, t ) /* (st:Type-Exists) */

(16) sbt( Γ, ∀X <: A.B, ∀X <: A.C, t ) , sbt( (Γ, X <: A, X : type), B, C, t ) /* (st:Type-Forall) */

(17) sbt( (Γ′,Γ), A, B, t ) , ((Γ ` A <: B) ∈ t) /* (eq:Rec) */

(18) sbt( Γ, (rec X(u).A)[U], (rec Y(u′).B)[U′], t ) , /* (eq:Rec) */

sbt( Γ, A{rec X(u).A/X}{U/u}, B{rec Y(u′).B/Y}{U′/u′}, (t ∪ (Γ ` (rec X(u).A)[U] <: (rec Y(u′).B)[U′])) )

(19) sbt( Γ, (rec X(u).A)[U], B, t ) , /* (eq:Rec) */

sbt( Γ, A{rec X(u).A/X}{U/u}, B, (t ∪ (Γ ` (rec X(u).A)[U] <: B) )

(20) sbt( Γ, A, (rec Y(u′).B)[U′], t ) , /* (eq:Rec) */

sbt( Γ, A, B{rec Y(u′).B/Y}{U′/u′}, (t ∪ (Γ ` A <: (rec Y(u′).B)[U′])) )

Figure 33: Subtyping algorithm (1/2).
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(21) sbt( Γ, A, B ⊕C, t ) , sbt( Γ, A, B, t ) ∨ sbt( Γ, A, C, t ) /* (st:Alternative) */

(22) sbt( Γ, A ⊕ B, C ⊕ D, t ) , /* (st:Alternative-Cong) */

(sbt( Γ, A, C, t ) ∧ sbt( Γ, B, D, t )) ∨ (sbt( Γ, A, C, t ) ∧ sbt( Γ, B, D, t ))

(23) sbt( Γ, A&B, C, t ) , sbt( Γ, A, C, t ) ∨ sbt( Γ, B, C, t ) /* (st:Intersection) */

(24) sbt( Γ, A&B, C&D, t ) , /* (st:Intersection-Cong) */

(sbt( Γ, A, C, t ) ∧ sbt( Γ, B, D, t )) ∨ (sbt( Γ, A, C, t ) ∧ sbt( Γ, B, D, t ))

(25) sbt( Γ,
∑n

i ti#Ai,
∑m

i ti#Bi, t ) , n ≤ m ∧
∧n

j sbt( Γ, A j, B j, t ) /* (st:Sum) */

(26) sbt( Γ, [f : A, f′ : A′], [f : B], t ) , /* (st:Discard) */

[f : A] , ∅ ∧ sbt( Γ, [f : A], [f : B], t )

(27) sbt( Γ, [f : A, f′ : A′], [f : B, f′ : B′], t ) , /* (st:Record) */

sbt( Γ, A′, B′, t ) ∧ sbt( Γ, [f : A], [f : B], t )

(28) sbt( Γ, A, ∃l.B, t ) , sbt( Γ, A, B{p/l}, t ) /* (st:PackLoc) */

(29) sbt( Γ, ∀l.A, B, t ) , sbt( (Γ, l : loc), A{p/l}, B, t ) /* (st:LocApp) */

(30) sbt( Γ, A, ∃X <: B.C, t ) , sbt( Γ, A, C{D/X}, t ) ∧ sbt( Γ, D, B, t ) /* (st:PackType) */

(31) sbt( Γ, ∀X <: A.B, C, t ) , sbt( (Γ, X <: A, X : type), B{D/X}, C, t ) ∧ sbt( Γ, D, A, t ) /* (st:TypeApp) */

Figure 34: Subtyping algorithm (2/2).
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G Auxiliary Definitions

G.1 Well-Formed Types and Environments
Well-formed conditions are not explicitly mentioned, but are assumed to be present whenever they
are relevant.

Definition 1 (Well-Formedness). We have the following cases (defined by induction on the struc-
ture of the type/environment):

• Γ wf (Gamma)

· wf
Γ wf

Γ, p : loc wf
Γ wf Γ ` A type
Γ, X : type, X <: A wf

Γ wf Γ ` A type
Γ, x : A wf

• Γ ` ∆ wf (Delta)

Γ ` · wf
Γ ` ∆ wf Γ ` A type

Γ ` ∆, x : A wf
Γ ` ∆ wf Γ ` A type

Γ ` ∆, A wf

• Γ ` p loc (Location)

Γ, p : loc ` p loc

• Γ ` A type (Type)

Γ ` none type
Γ ` A type
Γ ` !A type

Γ ` Ai type

Γ ` [f : A] type

Γ ` A0 type Γ ` A1 type
Γ ` A0 ( A1 type

Γ ` A0 type Γ ` A1 type
Γ ` A0 :: A1 type

Γ ` A0 type Γ ` A1 type
Γ ` A0 ∗ A1 type

Γ ` A0 type Γ ` A1 type
Γ ` A0 ⊕ A1 type

Γ ` A0 type Γ ` A1 type
Γ ` A0&A1 type

Γ ` p loc
Γ ` A type

Γ ` rw p A type
Γ ` p loc

Γ ` ref p type
Γ, l : loc ` A type

Γ ` ∀l.A type
Γ, l : loc ` A type

Γ ` ∃l.A type
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· ` A0 type Γ, X : type, X <: A0 ` A1 type
Γ ` ∀X<: A0.A1 type

· ` A0 type Γ, X : type, X<: A0 ` A1 type
Γ ` ∃X<: A0.A1 type

Γ ` Ai type
Γ `
∑

i ti#Ai type
Γ ` A0 type Γ ` A1 type

Γ ` A0; A1 type

Γ ` A0 type Γ ` A1 type locs(A0) = locs(A1) , ∅

Γ ` A0 ⇒ A1 type

u0 : k0, ..., un : kn, X : k0 → ...→ kn → type ` A type
Γ ` Ui ki ki = kind(ui) i ∈ {0, ..., n}

Γ ` (rec X(u).A)[U] type

(X : k0 → ...→ kn → type) ∈ Γ (Ui : ki) ∈ Γ i ∈ {0, ..., n}

Γ ` X[U] type

where:
kind(l) = loc
kind(X) = type

G.2 Set of Locations of a Type
Definition 2 (Locations of a Type).

locs(rw p A) = {p}
locs(A0 ∗ A1) = locs(A0) ∪ locs(A1)
locs(A0&A1) = locs(A0) ∪ locs(A1)
locs(A0 ⊕ A1) = locs(A0) ∪ locs(A1)
locs(∃l.A) = locs(A)
locs(∀l.A) = locs(A)
locs(∃X <: A0.A1) = locs(A1{A0/X})
locs(∀X <: A0.A1) = locs(A1{A0/X})
locs(A0 ⇒ A1) = locs(A0)
locs(A0; A1) = locs(A0)
locs(none) = ∅

locs(P) = ∅

locs(X[U]) = ∅

locs((rec X(u).A)[U]) = locs(A{rec X(u).A/X}{U/u})
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If the type is a protocol, we do not yield a location since we will have to lock that protocol’s
locations separately (i.e. locking is “shallow”). Recursive types are assumed to be non-bottom so
that there is a finite number of unfolds that are relevant to extract the set of locations.

G.3 Store Typing

Γ | ∆ ` H Store typing, (str:*)

(str:Loc)
Γ | ∆ ` H

Γ, ρ : loc | ∆ ` H

(str:Subsumption)
Γ | ∆0 ` H Γ ` ∆0 <: ∆1

Γ | ∆1 ` H

(str:Binding)
Γ | ∆,∆v ` H Γ | ∆v ` v : A a ·

Γ | ∆, rw ρ A ` H, ρ ↪→ v

(str:Empty)

· | · ` ·

(str:Locked)
locs(A0) = locs(A1) = ρ

Γ | A0 ` H′, ρ ↪→ v Γ | A1 ` H′′, ρ ↪→ v′ Γ | ∆, A2 ` H,H′′, ρ ↪→ v′

Γ | ∆, A0, (A1; A2) ` H,H′, ρ• ↪→ v

(str:Dead-Locked)
locs(A1) = ρ

ρ ↪→ v < H Γ | A1 ` H′′, ρ ↪→ v′ Γ | ∆, A2 ` H,H′′, ρ ↪→ v′

Γ | ∆, (A1; A2) ` H

(str:ForallLocs)
Γ, l : loc | ∆, A ` H

Γ | ∆,∀l.A ` H

(str:ForallTypes)
Γ, X : type, X <: A0 | ∆, A1 ` H

Γ | ∆,∀X <: A0.A1 ` H

(where l, X are fresh in the conclusion)
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G.4 Substitution
Definition 3 (Substitution). For clarity, we define substitution on constructs using e even though
the grammar will restrict these “expression” to be values (v) in some of those places. This is done
just for readability purposes to make it clear which value is being used for the substitution, and
where it is being substituted into.

1. Variable Substitution, (vs:*)
We define the usual capture-avoiding (i.e. up to renaming of bounded variables) substitution
rules:

e0{v/x} = e1

(vs:1) ρ{v/x} = ρ
(vs:2) x{v/x} = v
(vs:3) x0{v/x1} = x0 (x0 , x1)
(vs:4) (λx0.e0){v/x1} = λx0.e0{v/x1} (x0 , x1)
(vs:5) {f = e}{v/x} = {f = e{v/x}}
(vs:6) (e.f){v/x} = e{v/x}.f
(vs:7) (e0 e1){v/x} = e0{v/x} e1{v/x}
(vs:8) (new e){v/x} = new e{v/x}
(vs:9) (delete e){v/x} = delete e{v/x}
(vs:10) (!e){v/x} = !e{v/x}
(vs:11) (e0 := e1){v/x} = e0{v/x} := e1{v/x}
(vs:12) (t#e){v/x} = t#e{v/x}
(vs:13) (case e of ti#xi → ei end){v/x} = case e{v/x} of ti#xi → ei{v/x} end (xi , x)
(vs:14) (let x0 = e0 in e1 end){v/x1} = let x0 = e0{v/x1} in e1{v/x1} end (x0 , x1)
(vs:15) (lock e){v/x} = lock e{v/x}
(vs:16) (unlock e){v/x} = unlock e{v/x}
(vs:17) (fork e){v/x} = fork e{v/x}
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2. Location Variable Substitution, (ls:*)
Similarly, we define location substitution (but here up to renaming of bounded location vari-
ables) as:

A0{p/l} = A1

(ls:2.1) ρ{p/l} = ρ
(ls:2.2) l{p/l} = p
(ls:2.3) l0{p/l1} = l0 (l0 , l1)
(ls:2.4) (!A){p/l} = !A{p/l}
(ls:2.5) (A0 ( A1){p/l} = A0{p/l}( A1{p/l}
(ls:2.6) (A0 :: A1){p/l} = A0{p/l} :: A1{p/l}
(ls:2.7) [f : A]{p/l} = [f : A{p/l}]
(ls:2.8) (∀l0.A){p/l1} = ∀l0.A{p/l1} (l0 , l1)
(ls:2.9) (∃l0.A){p/l1} = ∃l0.A{p/l1} (l0 , l1)
(ls:2.10) (ref p0){p1/l} = ref p0{p1/l}
(ls:2.12) (rw p0 A){p1/l} = rw p0{p1/l} A{p1/l}
(ls:2.13) (A0 ∗ A1){p/l} = A0{p/l} ∗ A1{p/l}
(ls:2.14) (∀X <: A0.A1){p/l} = ∀X <: A0{p/l}.A1{p/l}
(ls:2.15) (∃X <: A0.A1){p/l} = ∃X <: A0{p/l}.A1{p/l}
(ls:2.16) (X[U]){p/l} = X[U{p/l}]
(ls:2.17) ((rec X(u).A)[U]){p/l} = (rec X(u).A{p/l})[U{p/l}] (l < u)
(ls:2.18) (

∑
i ti#Ai){p/l} =

∑
i ti#Ai{p/l}

(ls:2.19) (A0 ⊕ A1){p/l} = A0{p/l} ⊕ A1{p/l}
(ls:2.20) none{p/l} = none
(ls:2.21) (A0 ⇒ A1){p/l} = A0{p/l} ⇒ A1{p/l}
(ls:2.22) (A0; A1){p/l} = A0{p/l}; A1{p/l}
(ls:2.23) (A0 & A1){p/l} = A0{p/l} & A1{p/l}
(ls:2.24) top{p/l} = top

Γ0{p/l} = Γ1

(ls:3.1) ·{p/l} = ·

(ls:3.2) (Γ, x : A){p/l} = Γ{p/l}, x : A{p/l}
(ls:3.3) (Γ, l0 : loc){p/l1} = Γ{p/l1}, l0 : loc (l0 , l1)
(ls:3.4) (Γ, X <: A){p/l} = Γ{p/l}, X <: A{p/l}
(ls:3.5) (Γ, X : k){p/l} = Γ{p/l}, X : k

∆0{p/l} = ∆1

(ls:4.1) ·{p/l} = ·

(ls:4.2) (∆, x : A){p/l} = ∆{p/l}, x : A{p/l}
(ls:4.3) (∆, A){p/l} = ∆{p/l}, A{p/l}
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3. Type Variable Substitution, (ts:*)
Finally, we define type substitution (up to renaming of bounded type variables) as:

A0{A1/X} = A2

(ts:2.1) ρ{A/X} = ρ
(ts:2.2) l{A/X} = l
(ts:2.3) (X[U]){A/X} = A[U{A/X}]
(ts:2.4) (X0[U]){A/X1} = X0[U{A/X1}] (X0 , X1)
(ts:2.5) (!A0){A1/X} = !A0{A1/X}
(ts:2.6) (A0 ( A1){A2/X} = A0{A2/X}( A1{A2/X}
(ts:2.7) (A0 :: A1){A2/X} = A0{A2/X} :: A1{A2/X}
(ts:2.8) [f : A]{A0/X} = [f : A{A0/X}]
(ts:2.9) (∀l.A0){A1/X} = ∀l.A0{A1/X}
(ts:2.10) (∃l.A0){A1/X} = ∃l.A0{A1/X}
(ts:2.11) (ref p){A/X} = ref p
(ts:2.13) (rw p A0){A1/X} = rw p A0{A1/X}
(ts:2.14) (A0 ∗ A1){A2/X} = A0{A2/X} ∗ A1{A2/X}
(ts:2.15) (∀X0 <: A2.A0){A1/X1} = ∀X0 <: A2{A1/X1}.A0{A1/X1} (X0 , X1)
(ts:2.16) (∃X0 <: A2.A0){A1/X1} = ∃X0 <: A2{A1/X1}.A0{A1/X1} (X0 , X1)
(ts:2.17) ((rec X0(u).A0)[U]){A1/X1} = (rec X0(u).A0{A1/X1})[U{A1/X1}] (X0 , X1, X1 < u)
(ts:2.18) (

∑
i ti#Ai){A/X} =

∑
i ti#Ai{A/X}

(ts:2.19) (A0 ⊕ A1){A/X} = A0{A/X} ⊕ A1{A/X}
(ts:2.20) none{A/X} = none
(ts:2.21) (A0 ⇒ A1){A/X} = A0{A/X} ⇒ A1{A/X}
(ts:2.22) (A0; A1){A/X} = A0{A/X}; A1{A/X}
(ts:2.23) (A0&A1){A/X} = A0{A/X}&A1{A/X}
(ts:2.24) top{A/X} = top

Γ0{A/X} = Γ1

(ts:3.1) ·{A/X} = ·

(ts:3.2) (Γ, x : A0){A1/X} = Γ{A1/X}, x : A0{A1/X}
(ts:3.3) (Γ, l : loc){A/X} = Γ{A/X}, l : loc
(ts:3.4) (Γ, X0 <: A0){A1/X1} = Γ{A1/X1}, X0 <: A0{A1/X1} (X0 , X1)
(ts:3.5) (Γ, X0 : k){A1/X1} = Γ{A1/X1}, X0 : k (X0 , X1)

∆0{A/X} = ∆1

(ts:4.1) ·{A/X} = ·

(ts:4.2) (∆, x : A0){A1/X} = ∆{A1/X}, x : A0{A1/X}
(ts:4.3) (∆, A0){A1/X} = ∆{A1/X}, A0{A1/X}
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H Main Theorems

H.1 Subtyping Lemmas
Lemma 11 (Subtyping Inversion). We have the following cases for types (A) and for the linear
typing environment (∆):

• (Type) If Γ ` A <: A′ then one of the following holds (omitting congruence rules):

1. A = A′.

2. if A = !A0 then either:

(a) A′ = A1 and Γ ` A0 <: A1 , or;
(b) A′ = !A1 and Γ ` A0 <: A1 , or;
(c) A′ = ![].

3. if A = A0 ( A1 then A′ = A2 ( A3 and Γ ` A1 <: A3 and Γ ` A2 <: A0.

4. if A = A0 :: A2 then A′ = A1 :: A3 and Γ ` A0 <: A1 and Γ ` A2 <: A3.

5. if A = [f : A] then either:

(a) A = [f : A, f′′ : A′′] and A′ = [f : B] and [f : A] , ∅ and Γ ` [f : A] <: [f : B].
(b) A = [f : A, f′′ : A0] and A′ = [f : A, f′′ : B0] and Γ ` A0 <: B0 and

Γ ` [f : A] <: [f : B].

6. if A = rw p A0 then A′ = rw p A1 and Γ ` A0 <: A1.

7. if A = ∃l.A0 then A′ = ∃l.A1 and Γ, l : loc ` A0 <: A1.

8. if A = ∀l.A0 then either:

(a) A′ = ∀l.A1 and Γ, l : loc ` A0 <: A1, or;
(b) A′ = A1{p/l} and Γ, l : loc ` A0 <: A1.

9. if A = ∃X<: A3.A0 then A′ = ∃X<: A3.A1 and Γ, X : type, X <: A3 ` A0 <: A1.

10. if A = ∀X<: A3.A0 then either:

(a) A′ = ∀X<: A3.A1 and Γ, X : type, X <: A3 ` A0 <: A1, or;
(b) A′ = A′0{A2/X} and Γ ` A2 <: A1 and Γ, X : type, X <: A3 ` A0 <: A′0.

11. if A = A0 ∗ A1 then A′ = A0 ∗ A2 and Γ ` A1 <: A2.

12. if A =
∑

i ti#Ai then A′ =
∑

i ti#Bi and n ≤ m and Γ ` Ai <: Bi.

13. if A = A0&A1 then A′ = A2 and Γ ` A0 <: A2.

14. A′ = A ⊕ A′′ and Γ ` A <: A′′.

15. A′ = top.

16. A′ = ∃l.A0{l/p} and Γ ` A <: A0.

17. A′ = ∃X<: A1.A0{X/A2} and Γ ` A2 <: A1 and Γ ` A <: A0.
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18. A = X and X <: A0 ∈ Γ and Γ ` A0 <: A′.

19. Γ = Γ′′,Γ′ and Γ′ ` A <: A′

• (Delta) If Γ ` ∆ <: ∆′ then one of the following holds:

1. ∆ = ∆′.

2. if ∆ = ∆0, x : A0 then ∆′ = ∆1, x : A1 and Γ ` ∆0 <: ∆1 and Γ ` A0 <: A1.

3. if ∆ = ∆0, A0 then ∆′ = ∆1, A1 and Γ ` ∆0 <: ∆1 and Γ ` A0 <: A1.

4. if ∆ = ∆0, A0, A1 then either:

(a) ∆′ = ∆′0, A
′
0 ∗ A′1 and Γ ` ∆0, A0, A1 <: ∆′0, A

′
0, A

′
1, or;

(b) case (3) with A0, or;
(c) case (3) with A1.

5. if ∆ = ∆0, A0 ∗ A1 then ∆′ = ∆′0, A
′
0, A

′
1 and Γ ` ∆0, A0 ∗ A1 <: ∆′0, A

′
0 ∗ A′1.

6. if ∆ = ∆0,none then ∆′ = ∆1 and Γ ` ∆0 <: ∆1.

7. ∆′ = ∆0,none and Γ ` ∆ <: ∆0.

8. if ∆ = ∆0, A0 ⊕ A1 then Γ ` ∆0, A0 <: ∆′ and Γ ` ∆0, A1 <: ∆′.

9. if ∆′ = ∆1, A0&A1 then Γ ` ∆ <: ∆1, A0 and Γ ` ∆ <: ∆1, A1.

10. if ∆ = ∆0, A0 and ∆′ = ∆1, A1, A2 then Γ ` ∆0 <: ∆1 and Γ ` A0 V A1 || A2.

Proof. The proof is straightforward by induction on the subtyping derivation.
�

Lemma 12 (Subtyping Transitivity). We have that:

• If Γ ` A0 <: A1 and Γ ` A1 <: A2 then Γ ` A0 <: A2.

• If Γ ` ∆0 <: ∆1 and Γ ` ∆1 <: ∆2 then Γ ` ∆0 <: ∆2.

Proof. The proof is straightforward by induction on the derivation of subtyping. Note that transi-
tivity for (sd:Share) requires the subtyping extension on composition. �

H.2 Store Typing Lemmas
Lemma 13 (Store Typing Inversion). If

Γ | ∆ ` H

then one of the following holds:

1. Γ = · and ∆ = · and H = ·.
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2. if Γ = Γ′, ρ : loc then Γ′ | ∆ ` H.

3. Γ ` ∆′ <: ∆ and Γ | ∆′ ` H.

4. if ∆ = ∆′, rw ρ A and H = H′, ρ ↪→ v then Γ | ∆′,∆v ` H′ and Γ | ∆v ` v : A a ·.

5. if ∆ = ∆′, A0, (A1; A2) and H = H′, ρ• ↪→ v then locs(A0) = locs(A1) = ρ and
Γ | A0 ` ρ ↪→ v and Γ | A1 ` ρ ↪→ v′ and Γ | ∆′, A2 ` H′, ρ ↪→ v′.

6. if ∆ = ∆′, (A1; A2) then locs(A1) = ρ and ρ ↪→ v < H and Γ | A1 ` ρ ↪→ v′ and
Γ | ∆′, A2 ` H, ρ ↪→ v′ .

7. if Γ | ∆,∀l.A ` H then Γ, l : loc | ∆, A ` H.

8. if Γ | ∆,∀X <: A′′.A ` H then Γ, X : type, X <: A′′ | ∆, A ` H.

Proof. Straightforward induction on the derivation of Γ | ∆ ` H. �

Lemma 14 (Protocol Store Typing). If we have:

locs(A0) = ρ Γ | A0 ` H ρ ↪→ v ∈ H Γ ` A0 V A1 || A2

then each choice (&) of A1 and A2 must include an alternative (⊕) such that its rely type is A0. I.e.:

A0 ∈ rely(A1) A0 ∈ rely(A2)

where:

rely( P0&P1 ) = rely(P0) if rely(P0) = rely(P1)
rely( P0 ⊕ P1 ) = rely(P0) ∪ rely(P1)
rely( A⇒ P ) = {A}

Proof. Straightforward by protocol composition. We know that by the conditions for protocols to
be well-formed that only one alternative (⊕) can exists for a given rely type. Thus, only one such
alternative can rely on A0. Likewise, we have that any choice (&) must itself confirm with the state
of the shared state. Thus, whenever the shared locations are shared they must respect the rely type
of all the protocols that are sharing that state. �
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H.3 Values Inversion Lemma
Lemma 15 (Values Inversion). If v is a value such that

Γ | ∆ ` v : A0 a ·

then one of the following holds:

1. if A0 = ![] then:
∆ = · Γ | · ` v : ![] a ·

2. if A0 = !A1 then:
∆ = · Γ | · ` v : A1 a ·

3. if A0 = A1 :: A2 then:
Γ | ∆ ` v : A1 a A2

4. if A0 = ref ρ then:
v = ρ ρ : loc ∈ Γ ∆ = ·

5. if A0 = A( A′ then:
v = λx.e Γ | ∆, x : A ` e : A′ a ·

6. if A0 = ∀l.A then:
Γ, l : loc | ∆ ` v : A a ·

7. if A0 = ∃l.A then:
Γ | ∆ ` v : A{p/l} a ·

8. if A0 = [f : A] then:
v = {f = v′} Γ | ∆ ` v′i : Ai a ·

(Note: the record value can have more fields than those listed in the type but only the fields
in the type will be known by inversion.)

9. if A0 = ∀X <: A′.A then:

Γ, X : type, X <: A′ | ∆ ` v : A a ·

10. if A0 = ∃X <: A′.A then:
Γ | ∆ ` v : A{A′/X} a ·

11. if A0 =
∑

i ti#Ai then:
v = ti#vi Γ | ∆ ` vi : Ai a ·

for some i.
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12. if A0 = (rec X(u).A)[U] then:

Γ | ∆ ` v : A{rec X(u).A/X}{U/u} a ·

13. if ∆ = ∆′, A1 ⊕ A2 then:

Γ | ∆′, A1 ` v : A0 a · Γ | ∆′, A2 ` v : A0 a ·

14. if A0 = A1 ⊕ A2 then either:

Γ | ∆ ` v : A1 a · or Γ | ∆ ` v : A2 a ·

15. if A0 = top then:
Γ | ∆ ` v : A1 a ·

(Note: the remaining types, such as &, do not appear in this lemma since they are related to
capabilities, not values, and therefore cannot be used to directly type some value—i.e. they can get
stacked on top of some other type, but not be used to type the value itself).

Proof. By induction on the derivation of Γ | ∆ ` v : A0 a ·.

Case (t:Ref) - We have:

Γ, ρ : loc | · ` ρ : ref ρ a · (1)
by hypothesis.

Thus, we conclude by case 4 of the definition.

Case (t:Pure) - We have:

Γ | · ` v : !A1 a · (1)
by hypothesis.

Γ | · ` v : A1 a · (2)
by inversion on (t:Pure).

Thus, we conclude by case 2 of the definition.

Case (t:Unit) - We have:

Γ | · ` v : ![] a · (1)
by hypothesis.

Thus, we conclude by case 1 of the definition.

Case (t:Pure-Read), (t:Linear-Read), (t:Pure-Elim), (t:New), (t:Delete), (t:Assign),
(t:Dereference-Linear), (t:Dereference-Pure) - Not applicable.
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Case (t:Record) - We have:

Γ | ∆ ` {f = v} : [f : A] a · (1)
by hypothesis.

Γ | ∆ ` vi : Ai a · (2)
by inversion on (t:Record).

Thus, we conclude by case 8 of the definition.

Case (t:Selection), (t:Application) - Not applicable.

Case (t:Function) - We have:

Γ | ∆ ` λx.e : A0 ( A1 a · (1)
by hypothesis.

Γ | ∆, x : A0 ` e : A1 a · (2)
by inversion on (t:Function).

Thus, we conclude by case 5 of the definition.

Case (t:Cap-Elim), (t:Cap-Unstack), (t:Application) - Not applicable.

Case (t:Cap-Stack) - We have:

Γ | ∆ ` v : A0 :: A1 a · (1)
by hypothesis.

Γ | ∆ ` v : A0 a A1 (2)
by inversion on (t:Cap-Stack).

Thus, we conclude by case 3 of the definition.

Case (t:Forall-Loc-Val) We have:

Γ | ∆ ` v : ∀l.A a · (1)
by hypothesis.

Γ, l : loc | ∆ ` v : A a · (2)
by inversion on (t:Forall-Loc-Val) with (1).

Thus, we conclude by case 6 of the definition.

Case (t:Forall-Type-Val) We have:

Γ | ∆ ` v : ∀X <: A′.A a · (1)
by hypothesis.

Γ, X : type, X <: A′ | ∆ ` v : A a · (2)
by inversion on (t:Forall-Loc-Val) with (1).

Thus, we conclude by case 9 of the definition.
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Case (t:Tag) We have:

Γ | ∆ ` t#v : t#A a · (1)
by hypothesis.

Γ | ∆ ` v : A a · (2)
by inversion on (t:Tag).

Thus, we conclude by case 11 of the definition.

Case (t:Case) Not applicable.

Case (t:Alternative-Left) We have:

Γ | ∆, A0 ⊕ A1 ` v : A2 a · (1)
by hypothesis.

Γ | ∆, A0 ` v : A2 a · (2)
Γ | ∆, A1 ` v : A2 a · (3)

by inversion on (t:Alternative-Left).
Thus, we conclude by case 13 of the definition.

Case (t:Frame) Only case is when ∆ environment on the right is not empty which is immediate
by applying the induction hypothesis.

Case (t:TypeOpenBind), (t:TypeOpenCap), (t:LocOpenBind), (t:LocOpenCap) - Immediate by ap-
plying the induction hypothesis.

Case (t:Subsumption) We have:

Γ | ∆ ` v : A1 a · (1)
by hypothesis.

Γ ` ∆ <: ∆′ (2)
Γ | ∆′ ` v : A0 a · (3)
Γ ` A0 <: A1 (4)
Γ ` · <: · (5)

by inversion on (t:Subsumption).

Remember that we are showing that (1) obeys the definition above.
By applying the induction hypothesis on (3) we have that one of the following holds:

1. if A0 = ![] then:
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∆′ = · (1.1)
Γ | · ` v : ![] a · (1.2)
Γ ` ![] <: A1 (1.3)

by case 1 of the hypothesis and rewriting (4).
Then, by (Subtyping Inversion) on (1.3) we have that either:
• [1/2(c)] A1 =![] (1.5)
we conclude as case 2 of the definition.
• [14] A1 = ![] ⊕ A′ (1.6)
we conclude as case 14 of the definition using (3).
• [15] A1 = top (1.6)
we conclude as case 15 of the definition using (3).
Similarly, sub-cases [16] and [17] are immediate by cases 10 and 7 of the definition.

2. if A0 = !A then:

∆′ = · (2.1)
Γ | · ` v : A a · (2.2)
Γ ` !A <: A1 (2.3)

by case 2 of the hypothesis and rewriting (4).
by (Subtyping Inversion) on (2.3) we have that either:
• [1] A1 = !A
Thus, we conclude by case 2 of the definition through (2.2).
• [2(a)] A1 = A
Thus, we conclude by induction hypothesis on (2.2).
• [2(b)] A1 = !A′ and Γ ` A <: A′

Γ | · ` v : A′ a · (2.4)
by (t:Subsumption) on (2.2) with Γ ` A <: A′.

Thus, we conclude by case 2 of the definition with (2.4).
• [2(c)] A1 = ![]
Γ | · ` v : ![] a · (2.5)

by (t:Unit) on v.
Thus, we conclude by case 2 of the definition.
• [14] A1 = !A ⊕ A′ (2.6)
and we conclude as case 14 of the definition using (3).
Similarly, sub-cases [15], [16] and [17] are immediate by cases 15, 10, and 7 of the
definition.

3. if A0 = A( A′ then:

v = λx.e (3.1)
Γ | ∆, x : A ` e : A′ a · (3.2)
Γ ` (A( A′) <: A1 (3.3)

by case 5 of the hypothesis and rewriting (4).
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by (Subtyping Inversion):
(Note: we omit the remaining cases since they are straightforward)
A1 = A′′ ( A′′′ (3.4)
Γ ` A′ <: A′′′ (3.5)
Γ ` A′′ <: A (3.6)

by (Subtyping Inversion) on (3.3) we have that:
Γ | ∆, x : A ` e : A′′′ a · (3.7)

by (t:Subsumption) on (3.2) and (3.5)
Γ | ∆, x : A′′ ` e : A′′′ a · (3.8)

by (t:Subsumption) on (3.7), (3.6) and (sd:Var) with (2).
Thus, with (3.8) and (3.1) we conclude by case 5 of the definition.

4. if A0 = A :: A′ then:

Γ | ∆′ ` v : A a A′ (4.1)
Γ ` A :: A′ <: A1 (4.2)

by case 3 of the hypothesis and rewriting (4).
by (Subtyping Inversion) on (4.2) we have that:
(Note: we omit the remaining cases since they are straightforward)
A1 = A′′ :: A′′′ (4.3)
Γ ` A <: A′′ (4.4)
Γ ` A′ <: A′′′ (4.5)
Γ | ∆ ` v : A′′ a A′′′ (4.6)

by (t:Subsumption) on (4.1) with (4.4) and (4.5).
Thus, we conclude by case 3 of the definition.

5. if A0 = [f : A] then:

v = {f = v′} (5.1)
Γ | ∆′ ` v′i : Ai a · (5.2)
Γ ` [f : A] <: A1 (5.5)

by case 8 of the hypothesis and rewriting (4).
by (Subtyping Inversion) on (5.5) we have that either:
(Note: the remaining [1], [14], [15], [16], [17] cases are straightforward)
• [5(b)] A0 = [f : A , f′ : A′] and
A1 = [f : A , f′ : A′′] (5.6)
Γ ` A′ <: A′′ (5.7)

Thus, by (t:Subsumption) on (5.2) and (5.7) we conclude by case 8 of the definition.

• [5(a)] A0 = [f : A, f′ : A] and
A1 = [f : A] and A1 , ∅.
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Thus, by (t:Record) with (5.1) and ignoring the dropped field, we conclude by case 8
of the definition. Note that all fields have the same effect and by i > 0 we ensure that
subtyping leaves at least one field to do such effect.

6. if A0 = ∃l.A then:

Γ | ∆′ ` v : A{p/l} a · (6.1)
Γ ` ∃l.A <: A1 (6.2)

by case 7 of the hypothesis and rewriting (4).
by (Subtyping Inversion) on (6.2) we have that:
A1 = ∃l.A′ (6.4)
Γ ` A <: A′ (6.5)
Γ | ∆ ` v′ : A′{p/l} a · (6.6)

by (t:Subsumption) on (6.2) and (6.5).
Thus, we conclude by case 7 of the definition.

The remaining cases are straightforward since we can either “pack again” but that
means (6.1) is the unpacked type thus obeying the definition, or we have one of the
cases that are similar to those above such as [1],[14], or [15].

7. if A0 = ∀l.A then:

Γ, l : loc | ∆′ ` v : A a · (7.1)
Γ ` ∀l.A <: A1 (7.2)

by case 6 of the hypothesis and rewriting (4).
by (Subtyping Inversion) on (7.2) we have that:
(Note: the remaining cases are straightforward and are omitted)
• [8(a)] A1 = ∀l.A′ (7.3)
Γ ` A <: A′ (7.4)
Γ, l : loc | ∆ ` e : A′ a · (7.5)

by (t:Subsumption) on (7.1) and (7.4).
• [8(b)] A1 = A{p/l} (7.6)
Immediate by (Substitution Lemma) and induction hypothesis on (7.1).

8. if A0 = ref ρ then:

v = ρ (8.1)
ρ : loc ∈ Γ (8.2)
∆ = · (8.3)
Γ ` ref ρ <: A1 (8.4)

by case 4 of the hypothesis and rewriting (4).
(Note: the remaining [14] is straightforward)
by (Subtyping Inversion) on (8.4) we have:
• [1] A1 = (ref p)
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Thus, we conclude by case 2 of the definition.

9. if A0 = ∃X <: A′.A, analogous to ∃l.A.

10. if A0 = ∀X <: A′.A, analogous to ∀l.A.

11. if A0 =
∑

i ti#A′i then:

v = ti#vi (11.1)
Γ | ∆′ ` vi : A′i a · (11.2)

for some i.
Γ `
∑

i ti#A′i <: A1 (11.3)
(Note: the remaining [1] and [14] cases are straightforward)
by (Subtyping Inversion) on (8.4) we have that:
A1 = t′#A′ + ... +

∑
i ti#A′i (11.4)

Thus, by (11.2) we conclude by case 11 of the definition.

12. if A0 = (rec X(u).A)[U] then:

Γ | ∆′ ` v : A1 a · (12.1)
Γ ` (rec X(u).A)[U] <: A1 (12.2)

by case 12 of the hypothesis and rewriting (4).
(Note: the remaining cases are straightforward)
by (Subtyping Inversion) on (12.2) we have:
• [1] A1 = A{rec X(u).A/X}{U/u}
Thus, we conclude by induction hypothesis on (12.1) combined with (t:Subsumption).

13. if ∆ = ∆′, A2 ⊕ A3 then:

Γ | ∆′, A2 ` v : A0 a · (13.1)
Γ | ∆′, A3 ` v : A0 a · (13.2)
Γ ` A0 <: A1 (13.3)
By induction hypothesis on each case and then (t:Subsumption).

14. if A0 = A1 ⊕ A2 then either:

Γ | ∆′ ` v : A1 a · (14.1)
Γ | ∆′ ` v : A2 a · (14.2)
and:
Γ ` A1 ⊕ A2 <: A′ (14.3)
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This case is analogous to previous ones by applying (Subtyping Inversion) on (14.3)
yielding cases [1] and [14]. The first is immediate, the second is closed by considering
either (14.1) or (14.2) through (t:Subsumption).

15. if A0 = top then A1 = top is the only possibility and we conclude by (1) with definition
15.

Case (t:Let), (t:Share), (t:Lock-Rely), (t:Unlock-Guarantee), (t:Fork) - Not values.

�
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H.4 Free Variables Lemma
Lemma 16 (Free Variables). If Γ | ∆0, x : A0 ` e : A1 a ∆1 and x ∈ fv(e) then x < ∆1.

where fv(e) , “set of all free variables in the expression e”

Proof. We proceed by induction on the derivation of Γ | ∆0, x : A0 ` e : A1 a ∆1.

Case (t:Ref), (t:Pure), (t:Unit), (t:Pure-Read) - the linear typing environment is empty.

Case (t:Linear-Read) - We have:

Γ | x : A ` x : A a · (1)
x ∈ fv(x) (2)

by hypothesis.
Therefore, we immediately conclude x < ·.

Case (t:Pure-Elim) - We have:

Γ | ∆0, x : !A0 ` e : A1 a ∆1 (1)
x ∈ fv(e) (2)

by hypothesis.
Γ, x : A0 | ∆0 ` e : A1 a ∆1 (3)

by inversion on (t:Pure-Elim).
x < ∆1 (4)

because x is in the linear environment (and cannot appear duplicated in ∆’s).
Therefore, we conclude.

(Note: case when x is not the one used in the (t:Pure-Elim) rule is a direct application of the
induction hypothesis.)

Case (t:New) - We have:

Γ | ∆0, x : A0 ` new v : ∃l.(!ref l :: rw l A) a ∆1 (1)
x ∈ fv(new v) (2)

by hypothesis.
Γ | ∆0, x : A0 ` v : A a ∆1 (3)

by inversion on (t:New) with (1).
x ∈ fv(v) (4)

[ fv(new v) = fv(v) ]
by definition of fv and (2).

x < ∆1 (5)
by induction hypothesis on (3) and (4).

Therefore, we conclude.
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Case (t:Delete) - We have:

Γ | ∆0, x : A0 ` delete v : ∃l.A a ∆1 (1)
x ∈ fv(delete v) (2)

by hypothesis.
Γ | ∆0, x : A0 ` v : ∃l.(!ref l :: rw l A) a ∆1 (3)

by inversion on (t:Delete) with (1).
x ∈ fv(v) (4)

[ fv(delete v) = fv(v) ]
by definition of fv and (2).

x < ∆1 (5)
by induction hypothesis on (3) and (4).

Therefore, we conclude.

Case (t:Assign) - We have:

Γ | ∆0, x : A ` v0 := v1 : A1 a ∆2, rw p A0 (1)
x ∈ fv(v0 := v1) (2)

by hypothesis.
Γ | ∆0, x : A ` v1 : A0 a ∆1 (3)
Γ | ∆1 ` v0 : ref p a ∆2, rw p A1 (4)

by inversion on (t:Assign) with (1).
[ fv(v0 := v1) = fv(v0) ∪ fv(v1) ]

Therefore, we have the following possibilities:

1. x ∈ fv(v0) ∧ x < fv(v1)

(x : A) ∈ ∆1 (1.1)
by x < fv(v1).

x < ∆2, rw p A1 (1.2)
by induction hypothesis on (4) with (1.1).

x < ∆2, rw p A0 (1.3)
since the capability trivially obeys the restriction (since x is not a type).

Thus, we conclude.

2. x ∈ fv(v1) ∧ x < fv(v0)

x < ∆1 (2.1)
by induction hypothesis on (3) and case assumption.

x < ∆2, rw p A1 (2.2)
by (2.1) and (4).

x < ∆2, rw p A0 (2.3)
since the capability trivially obeys the restriction on (2.2).

Thus, we conclude.

96



3. x ∈ fv(v0) ∧ x ∈ fv(v1)

x < ∆1 (3.1)
by induction hypothesis on (3) and case assumption.

We reach a contradiction since v0 is well-typed by (4) but x ∈ fv(v1) contradicts (3.1).
Thus, such case is impossible to occur in a well-typed expression.

Thus, we conclude.

Case (t:Dereference-Linear) - We have:

Γ | ∆0, x : A0 ` !v : A a ∆1, rw p ![] (1)
x ∈ fv(!v) (2)

by hypothesis.
Γ | ∆0, x : A0 ` v : ref p a ∆1, rw p A (3)

by inversion on (t:Dereference-Linear).
[ fv(!v) = fv(v) ]

x ∈ fv(v) (4)
by definition of fv and (2).

x < ∆1, rw p A (5)
by induction hypothesis on (3) and (4).

x < ∆1, rw p ![] (6)
by (5) and since x cannot be in rw p ![].

Thus, we conclude.

Case (t:Dereference-Pure) - We have:

Γ | ∆0, x : A0 ` !v : !A1 a ∆1, rw p !A1 (1)
x ∈ fv(!v) (2)

by hypothesis.
Γ | ∆0, x : A0 ` v : ref p a ∆1, rw p !A1 (3)

by inversion on (t:Dereference-Pure).
[ fv(!e) = fv(v) ]

x ∈ fv(v) (4)
by definition of fv and (2).

x < ∆1, rw p !A1 (5)
by induction hypothesis on (3) and (4).

Thus, we conclude.

Case (t:Record) - We have:

Γ | ∆, x : A0 ` {f = v} : [f : A] a · (1)
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x ∈ fv({f = v}) (2)
by hypothesis.

Therefore, we immediately conclude x < ·.

Case (t:Selection) - We have:

Γ | ∆0, x : A0 ` v.fi : Ai a ∆1 (1)
x ∈ fv(v.f) (2)

by hypothesis.
Γ | ∆0, x : A0 ` v : [f : A] a ∆1 (3)

by inversion on (t:Selection).
[ fv(v.f) = fv(v) ]

x ∈ fv(v) (4)
by definition of fv and (2).

x < ∆1 (5)
by induction hypothesis on (3) and (4).

Thus, we conclude.

Case (t:Application) - We have:

Γ | ∆0, x : A ` v0 v1 : A1 a ∆2 (1)
x ∈ fv(v0 v1) (2)

[ fv(v0 v1) = fv(v0) ∪ fv(v1) ]
by hypothesis.

Γ | ∆0 ` v0 : A0 ( A1 a ∆1 (3)
Γ | ∆1 ` v1 : A0 a ∆2 (4)

by inversion on (t:Application) with (1).

Therefore, we have the following possibilities:

1. x ∈ fv(v1) ∧ x < fv(v0)

Γ | ∆0 ` v0 : A0 ( A1 a ∆1 (1.1)
∆1 = ∆′1, x : A (1.2)

by x < fv(v0).
Γ | ∆′1, x : A ` v1 : A0 a ∆2 (1.3)

by rewriting (4) with (1.2).
x < ∆2 (1.4)

by induction hypothesis on (1.3) and sub-case hypothesis.
Thus, we conclude.

2. x ∈ fv(v0) ∧ x ∈ fv(v1)

x < ∆1 (2.1)
by induction hypothesis on (3) and case assumption.
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We reach a contradiction since v1 is well-typed by (4) but x ∈ fv(v1) contradicts (2.1).
Thus, such case is impossible to occur in a well-typed expression. Therefore, we con-
clude.

3. x ∈ fv(v0) ∧ x < fv(v1)

x < ∆1 (3.1)
by induction hypothesis on (3) and case assumption.

x < ∆2 (3.2)
by (3.1) and (4).

Thus, we conclude.

Case (t:Function) - We have:

Γ | ∆, x : A0 ` λx0.e : A2 ( A1 a · (1)
x ∈ fv(λx0.e) (2)

by hypothesis.
x < · (3)

since it is the empty environment.
Thus, we conclude.

Case (t:Cap-Elim) - We have:

Γ | ∆0, x : A1 :: A2 ` e : A0 a ∆1 (1)
x ∈ fv(e) (2)

by hypothesis.
Γ | ∆0, x : A1, A2 ` e : A0 a ∆1 (3)

by inversion on (t:Cap-Elim) on (1).
x < ∆1 (4)

by induction hypothesis on (2) and (3).
Thus, we conclude.

Case (t:Cap-Stack) - We have:

Γ | ∆0, x : A0 ` e : A1 :: A2 a ∆1 (1)
x ∈ fv(e) (2)

by hypothesis.
Γ | ∆0 ` e : A1 a ∆1, A2 (3)

by inversion on (t:Cap-Stack) on (1).
x < ∆1, A2 (4)

by induction hypothesis on (3) and (2).
x < ∆1 (5)

by (4).
Thus, we conclude.
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Case (t:Cap-Unstack) - We have:

Γ | ∆0, x : A0 ` e : A1 a ∆1, A2 (1)
x ∈ fv(e) (2)

by hypothesis.
Γ | ∆0, x : A0 ` e : A1 :: A2 a ∆1 (3)

by inversion on (t:Cap-Unstack) with (1).
x < ∆ (4)

by induction hypothesis with (3) and (2).
Thus, we conclude.

Case (t:Frame) - We have:

Γ | (∆0, x : A0),∆2 ` e : A a ∆1,∆2 (1)
x ∈ fv(e) (2)

by hypothesis.
Γ | ∆0, x : A0 ` e : A a ∆1 (3)

by inversion on (t:Frame) with (1), note by (2) x must be in environment.
x < ∆1 (4)

by induction hypothesis.
x < (∆1,∆2) (5)

since by (1) x cannot be in ∆2.
Thus, we conclude.

Case (t:Subsumption) - We have:

Γ | ∆0, x : A ` e : A1 a ∆1 (1)
x ∈ fv(e) (2)

by hypothesis.
Γ ` ∆0, x : A <: ∆′0, x : A′ (3)
Γ | ∆′0 ` e : A0 a ∆′1 (4)
Γ ` A0 <: A1 (5)
Γ ` ∆′1 <: ∆1 (6)

by inversion on (t:Subsumption) with (1).
x < ∆′1 (7)

by induction hypothesis on (2) and (4).
x < ∆1 (8)

by (6) and (7) noting the members of ∆1 and ∆′1 are the same.
Thus, we conclude.

Case (t:Tag) - We have:
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Γ | ∆0, x : A0 ` t#v : A1 a ∆1 (1)
x ∈ fv(t#v) (2)

by hypothesis.
Γ | ∆0, x : A0 ` v : A1 a ∆1 (3)

by inversion on (t:Tag) with (1).
[ fv(t#v) = fv(v) ]

x ∈ fv(e) (4)
by definition of fv and (2).

x < ∆1 (5)
by induction hypothesis on (3) and (4).

Thus, we conclude.

Case (t:Case) - We have:

Γ | ∆0, x : A′ ` case v of t j#x j → e j end : A a ∆1 (1)
x ∈ fv(case v of t j#x j → e j end) (2)

[ fv(case v of t j#x j → e j end) = fv(v) ∪ fv(ei) ], for some i ≤ j
by hypothesis.

Γ | ∆0, x : A′ ` v :
∑

i ti#Ai a ∆′ (3)
Γ | ∆′, xi : Ai ` ei : A a ∆1 (4)
i ≤ j (5)

by inversion on (t:Case) with (1).

Therefore, we have the following possibilities:

1. x ∈ fv(v) ∧ x < fv(ei)

x < ∆′ (1.1)
by induction hypothesis on (3) and case assumption.

x < ∆1 (1.2)
by (1.1) and (4).

Thus, we conclude.

2. x < fv(v) ∧ x ∈ fv(ei)

(x : A′) ∈ ∆′ (2.1)
by x < fv(e).

x < ∆1 (2.2)
by induction hypothesis on (4) and (2.1).

Thus, we conclude.

3. x ∈ fv(v) ∧ x ∈ fv(ei)

x < ∆1 (3.1)
by induction hypothesis on (3) and sub-case hypothesis.
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We reach a contradiction since v is well-typed by (4) but x ∈ fv(ei) contradicts (3.1).
Thus, such case is impossible to occur in a well-typed expression.

Case (t:Alternative-Left) - We have:

Γ | ∆0, x : A0, A1 ⊕ A2 ` e : A3 a ∆1 (1)
x ∈ fv(e) (2)

by hypothesis.
Γ | ∆0, x : A0, A1 ` e : A3 a ∆1 (3)
Γ | ∆0, x : A0, A2 ` e : A3 a ∆1 (4)

by inversion on (t:Alternative-Left) with (1).
x < ∆1 (5)

by induction hypothesis with (2) and (3).
Thus, we conclude.

Case (t:Intersection-Right) - Analogous to previous case but using (t:Intersection-Right).

Case (t:Let) - We have:

Γ | ∆0, x : A ` let x0 = e0 in e1 end : A1 a ∆2 (1)
x ∈ fv(let x0 = e0 in e1 end) (2)

[ fv(let x0 = e0 in e1 end) = fv(e0) ∪ fv(e1) ]
by hypothesis.

Γ | ∆0, x : A ` e0 : A0 a ∆1 (3)
Γ | ∆1, x0 : A0 ` e1 : A1 a ∆2 (4)

by inversion on (t:Let) with (1).

Therefore, we have the following possibilities:

1. x ∈ fv(e1) ∧ x < fv(e0)

(x : A) ∈ ∆1 (1.1)
by x < fv(e0).

x < ∆2 (1.2)
by induction hypothesis on (4) with (1.1).

Thus, we conclude.

2. x ∈ fv(e0) ∧ x ∈ fv(e1)

x < ∆1 (2.1)
by induction hypothesis on (3) and case assumption.
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We reach a contradiction since e0 is well-typed by (4) but x ∈ fv(e1) contradicts (2.1).
Thus, such case is impossible to occur in a well-typed expression.

3. x ∈ fv(e0) ∧ x < fv(e1)

x < ∆1 (3.1)
by induction hypothesis on (3) and case assumption.

x < ∆2 (3.2)
by (3.1) and (4).

Thus, we conclude.

Case (t:Fork) - We have:

Γ | ∆0, x : A0 ` fork e : ![] a · (1)
x ∈ fv(e) (2)

by hypothesis.
x < · (3)

since it is the empty environment.
Thus, we conclude.

Case (t:Lock-Rely) - We have:

Γ | ∆0, x : A0, A1 ⇒ A2 ` lock v : ![] a ∆0, A1, A2 (1)
x ∈ fv(lock v) (2)

by hypothesis.
Γ | · ` v : ref p a · (3)
p ∈ A0 (4)

by inversion on (1).
We have a contradiction of (3) with (2) since x cannot be in v as the linear environment is
empty.
Thus, we conclude since this case cannot occur.

Case (t:Unlock-Guarantee) - Analogous to the previous case.

Case (t:Forall-Loc-Val) - We have:

Γ | ∆0, x : A0 ` v : A1 a · (1)
x ∈ fv(v) (2)

by hypothesis.
x < · (3)

since it is the empty environment.
Thus, we conclude.
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Case (t:Forall-Type-Val) - Analogous to the previous case.

Cases (t:TypeOpenBind), (t:TypeOpenCap), (t:LocOpenCap), (t:LocOpenBind) - Analogous to
the previous case by inversion on the typing rule and then applying the induction hypothesis.

�

H.5 Well-Form Lemmas
Lemma 17 (Well-Formed Type Substitution). We have:

• For location variables:

1. If Γ, l : loc wf and ρ : loc ∈ Γ then Γ{ρ/l} wf.
2. If Γ, l : loc ` ∆ wf and ρ : loc ∈ Γ then Γ{ρ/l} ` ∆{ρ/l} wf.
3. If Γ, l : loc ` A type and ρ : loc ∈ Γ then Γ{ρ/l} ` A{ρ/l} type.

• For type variables:

1. If Γ, X <: A0 wf and Γ ` A1 type and Γ ` A1 <: A0 then Γ{A1/X} wf.
2. If Γ, X <: A0 ` ∆ wf and Γ ` A1 type and Γ ` A1 <: A0 then Γ{A1/X} ` ∆{A1/X} wf.
3. If Γ, X <: A0 ` A type and Γ ` A1 type and Γ ` A1 <: A0 then Γ{A1/X} `

A{A1/X} type.

Proof. Straightforward by induction on the structure of Γ, ∆ and types. �

Lemma 18 (Well-Formed Subtyping). We have two cases:

1. (Type) If Γ ` A type and Γ ` A <: A′ then Γ ` A′ type.

2. (Delta) If Γ ` ∆ wf and Γ ` ∆ <: ∆′ then Γ ` ∆′ wf.

Proof. Straightforward by induction on the definition of <: for types and linear typing environ-
ments, respectively. �
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H.6 Substitution Lemma
Lemma 19 (Substitution Lemma). We have the following substitution properties for both expres-
sion typing and type formation:

1. (Linear) If
Γ | ∆0 ` v : A0 a ∆1 Γ | ∆1, x : A0 ` e : A1 a ∆2

then
Γ | ∆0 ` e{v/x} : A1 a ∆2

2. (Pure) If
Γ | · ` v : !A0 a · Γ, x : A0 | ∆0 ` e : A1 a ∆1

then
Γ | ∆0 ` e{v/x} : A1 a ∆1

(note that due to the required pure types, the ∆ environments to check v must be empty)

3. (Location Variable) If

Γ, l : loc | ∆0 ` e : A a ∆1 ρ : loc ∈ Γ

then
Γ{ρ/l} | ∆0{ρ/l} ` e : A{ρ/l} a ∆1{ρ/l}

4. (Type Variable) If

Γ, X : type, X <: A2 | ∆0 ` e : A0 a ∆1 Γ ` A1 type Γ ` A1 <: A2

then
Γ{A1/X} | ∆0{A1/X} ` e : A0{A1/X} a ∆1{A1/X}

Proof. We split the proof on each of the lemma’s sub-parts:

1. (Linear)

Proof. We proceed by induction on the typing derivation of Γ | ∆1, x : A0 ` e : A1 a ∆2.

Case (t:Ref), (t:Pure), (t:Unit), (t:Pure-Read) - Not applicable due to empty ∆ environ-
ment.

Case (t:Linear-Read) - We have:
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Γ | ∆ ` v : A a · (1)
Γ | x : A ` x : A a · (2)

by hypothesis.
(note v’s ending environment must be · to apply (t:Linear-Read)).

Γ | ∆ ` x{v/x} : A a · (3)
by (vs:2) with (1) and x.

Thus, we conclude.

Case (t:Pure-Elim) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x1 : !A2, x0 : A0 ` e : A1 a ∆2 (2)

by hypothesis.
Γ, x1 : A2 | ∆1, x0 : A0 ` e : A1 a ∆2 (3)

by inversion on (t:Pure-Elim) with (2).
Γ, x1 : A2 | ∆1 ` e{v/x0} : A1 a ∆2 (4)

by induction hypothesis on (3) with (1).
Γ | ∆1, x1 : !A2 ` e{v/x0} : A1 a ∆2 (5)

by (t:Pure-Elim) with (4).
Thus, we conclude.

Case (t:New) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` new v0 : ∃l.(!ref l :: rw l A1) a ∆2 (2)

by hypothesis.
Γ | ∆1, x : A0 ` v0 : A1 a ∆2 (3)

by inversion on (t:New) with (2).
Γ | ∆0 ` v0{v/x} : A1 a ∆2 (4)

by induction hypothesis with (1) and (3).
Γ | ∆0 ` new v0{v/x} : ∃l.(!ref l :: rw l A1) a ∆2 (5)

by (t:New) with (4).
Γ | ∆0 ` (new v0){v/x} : ∃l.(!ref l :: rw l A1) a ∆2 (6)

by (vs:8) with (5).
Thus, we conclude.

Case (t:Delete) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` delete v0 : ∃l.A1 a ∆2 (2)

by hypothesis.
Γ | ∆1, x : A0 ` v0 : ∃l.(!ref l :: rw l A1) a ∆2 (3)

by inversion on (t:Delete) with (2).
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Γ | ∆0 ` v0{v/x} : ∃l.(!ref l :: rw l A1) a ∆2 (4)
by induction hypothesis with (1) and (3).

Γ | ∆0 ` delete v0{v/x} : ∃l.A1 a ∆2 (5)
by (t:Delete) with (4).

Γ | ∆0 ` (delete v0){v/x} : ∃l.A1 a ∆2 (6)
by (vs:9) with (5).

Thus, we conclude.

Case (t:Assign) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` v0 := v1 : A1 a ∆2, rw p A2 (2)

by hypothesis.
Γ | ∆1, x : A0 ` v1 : A2 a ∆′ (3)
Γ | ∆′ ` v0 : ref p a ∆2, rw p A1 (4)

by inversion on (t:Assign) with (2).

We have that either:

(a) x ∈ fv(v1)
x < ∆′ (1.1)

by (Free Variables) on (3).
Γ | ∆′ ` v0{v/x} : ref p a ∆2, rw p A1 (1.2)

since x cannot occur in e0 by (1.1).
Γ | ∆1 ` v1{v/x} : A2 a ∆′ (1.3)

by induction hypothesis on (1) and (3).
Γ | ∆1 ` v0{v/x} := v1{v/x} : A1 a ∆2, rw p A2 (1.4)

by (t:Assign) on (1.2) and (1.3).
Γ | ∆1 ` (v0 := v1){v/x} : A1 a ∆2, rw p A2 (1.5)

by (vs:11) on (1.4).
Thus, we conclude.

(b) x < fv(v1)
(x : A0) ∈ ∆′ (2.1)

by (9) and x < fv(v1).
Γ | ∆′′ ` v0{v/x} : ref p a ∆2, rw p A1 (2.2)

by induction hypothesis (since it is applied to x wherever is in the
environment) and where ∆′′ is the same as ∆′ without x.

Γ | ∆1 ` v1{v/x} : A2 a ∆′′ (2.3)
since x cannot occur in e1 by x < fv(e1).

Γ | ∆1 ` v0{v/x} := v1{v/x} : A1 a ∆2, rw p A2 (2.4)
by (t:Assign) using (2.4) and (2.5).

Γ | ∆1 ` (v0 := v1){v/x} : A1 a ∆2, rw p A2 (2.5)
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by (vs:11) on (2.6).
Thus, we conclude.

Case (t:Dereference-Linear) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` !v0 : A1 a ∆2, rw p ![] (2)

by hypothesis.
Γ | ∆1, x : A0 ` v0 : ref p a ∆2, rw p A1 (3)

by inversion on (t:Dereference-Linear) on (2).
Γ | ∆1 ` v0{v/x} : ref p a ∆2, rw p A1 (4)

by induction hypothesis with (1) and (3).
Γ | ∆1 ` !v0{v/x} : A1 a ∆2, rw p ![] (5)

by (t:Dereference-Linear) on (4).
Γ | ∆1 ` (!v0){v/x} : A1 a ∆2, rw p ![] (6)

by (vs:10) on (5).
Thus, we conclude.

Case (t:Dereference-Pure) - Analogous to (t:Dereference-Linear).

Case (t:Record) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` {f = v′} : [f : A] a · (2)

by hypothesis.
Γ | ∆1, x : A0 ` v′i : Ai a · (3)

by inversion with (t:Record) on (2).
Γ | ∆1 ` v′i{v/x} : Ai a · (4)

by induction hypothesis with (1) and (3).
Γ | ∆1 ` {f = v′{v/x}} : [f : A] a · (5)

by (t:Record) on (4).
Γ | ∆1 ` ({f = v′}){v/x} : [f : A] a · (6)

by (vs:5) on (5).
Thus, we conclude.

Case (t:Selection) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` v0.f : A1 a ∆2 (2)

by hypothesis.
Γ | ∆1, x : A0 ` v0 : [f : A1] a ∆2 (3)

by inversion on (t:Selection) with (2).

108



Γ | ∆1 ` v0{v/x} : [f : A1] a ∆2 (4)
by induction hypothesis on (3) with (1).

Γ | ∆1 ` v0{v/x}.f : [f : A1] a ∆2 (5)
by (t:Selection) on (4).

Γ | ∆1 ` (v0.f){v/x} : [f : A1] a ∆2 (6)
by (vs:6) on (5).

Thus, we conclude.

Case (t:Application) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` v0 v1 : A1 a ∆2 (2)

by hypothesis.
Γ | ∆1, x : A0 ` v0 : A2 ( A1 a ∆′ (3)
Γ | ∆′ ` v1 : A2 a ∆2 (4)

by inversion on (t:Application) with (2).

We have that either:

(a) x ∈ fv(v0)
x < ∆′ (1.1)

by (Free Variables) on (3).
Γ | ∆′ ` v1{v/x} : A2 a ∆2 (1.2)

since x cannot occur in v1 by (1.1).
Γ | ∆0 ` v0{v/x} : A2 ( A1 a ∆′ (1.3)

by induction hypothesis with (1) and (3).
Γ | ∆0 ` v0{v/x} v1{v/x} : A1 a ∆2 (1.4)

by (t:Application) with (1.2) and (1.3).
Γ | ∆0 ` (v0 v1){v/x} : A1 a ∆2 (1.5)

by (vs:7) on (1.4).
Thus, we conclude.

(b) x < fv(v0)
(x : A0) ∈ ∆′ (2.1)

by x < fv(v1).
Γ | ∆′′ ` v1{v/x} : A2 a ∆2 (2.2)

by induction hypothesis where ∆′′ is ∆′ without x.
Γ | ∆0 ` v0{v/x} : A2 ( A1 a ∆′′ (2.3)

since x cannot occur in v0 by x < fv(v0) and (2.1).
Γ | ∆0 ` v0{v/x} v1{v/x} : A1 a ∆2 (2.4)

by (t:Application) on (2.2) and (2.3).
Γ | ∆0 ` (v0 v1){v/x} : A1 a ∆2 (2.5)

by (vs:7) on (2.4).
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Thus, we conclude.

Case (t:Function) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x0 : A0 ` λx1.e : A1 ( A2 a · (2)

by hypothesis.
Γ | ∆1, x1 : A1, x0 : A0 ` e : A2 a · (3)
x1 , x0 (4)

by def. of substitution up to rename of bounded variables.
Γ | ∆1, x1 : A1 ` e{v/x} : A2 a · (5)

by induction hypothesis with (1) and (3).
Γ | ∆1 ` λx1.e{v/x} : A1 ( A2 a · (6)

by (t:Function) with (5).
Γ | ∆1 ` (λx1.e){v/x} : A1 ( A2 a · (7)

by (vs:4) on (6) and (4).
Thus, we conclude.

Case (t:Cap-Elim) - We have:

Γ | ∆0 ` v : A0 a ∆1, x1 : A2 :: A3 (1)
Γ | ∆1, x1 : A2 :: A3, x0 : A0 ` e : A1 a ∆2 (2)

by hypothesis.
Γ | ∆1, x1 : A2, A3, x0 : A0 ` e : A1 a ∆2 (3)

by inversion on (t:Cap-Elim) with (2).
Γ | ∆1, x1 : A2, A3 ` e{v/x0} : A1 a ∆2 (4)

by induction hypothesis with (1) and (3).
Γ | ∆1, x1 : A2 :: A3 ` e{v/x0} : A1 a ∆2 (5)

by (t:Cap-Elim) with (4).
Thus, we conclude.

Case (t:Cap-Stack) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` e : A1 :: A2 a ∆2 (2)

by hypothesis.
Γ | ∆1, x : A0 ` e : A1 a ∆2, A2 (3)

by inversion on (t:Cap-Stack) with (2).
Γ | ∆1 ` e{v/x} : A1 a ∆2, A2 (4)

by induction hypothesis with (1) and (3).
Γ | ∆1 ` e{v/x} : A1 :: A2 a ∆2 (5)

by (t:Cap-Stack) on (4).
Thus, we conclude.
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Case (t:Cap-Unstack) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` e : A1 a ∆2, A2 (2)

by hypothesis.
Γ | ∆1, x : A0 ` e : A1 :: A2 a ∆2 (3)

by inversion (t:Cap-Unstack) with (2).
Γ | ∆1 ` e{v/x} : A1 :: A2 a ∆2 (4)

by induction hypothesis with (1) and (3).
Γ | ∆1 ` e{v/x} : A1 a ∆2, A2 (5)

by (t:Cap-Unstack) with (4).
Thus, we conclude.

Case (t:Subsumption) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` e : A1 a ∆2 (2)

by hypothesis.
Γ ` ∆1, x : A0 <: ∆′1, x : A′0 (3)
Γ | ∆′1, x : A′0 ` e : A2 a ∆′2 (4)
Γ ` A2 <: A1 (5)
Γ ` ∆′2 <: ∆2 (6)

by inversion on (t:Subsumption) on (2).
Γ ` A0 <: A′0 (7)

by (Subtyping Inversion) on (3) on x.
Γ | ∆0 ` v : A′0 a ∆′1 (8)

by (t:Subsumption) on (1) with (7).
Γ | ∆′1 ` e{v/x} : A2 a ∆′2 (9)

by induction hypothesis on (4) and (8).
Γ ` ∆1 <: ∆′1 (10)

by (Subtyping Inversion) on (3).
Γ | ∆1 ` e{v/x} : A1 a ∆2 (11)

by (t:Subsumption) on (9) with (10), (5) and (6).
Thus, we conclude.

Case (t:Frame) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | (∆1, x : A0),∆3 ` e : A1 a ∆2,∆3 (2)

by hypothesis.
Γ | ∆1, x : A0 ` e : A1 a ∆2 (3)

by inversion on (t:Frame) with (2).
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Γ | ∆1 ` e{v/x} : A1 a ∆2 (4)
by induction hypothesis with (1) and (3).

Γ | ∆1,∆3 ` e{v/x} : A1 a ∆2,∆3 (5)
by (t:Frame) on (4) with ∆3.

Thus, we conclude.

Case (t:Tag) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` t#v0 : t#A1 a ∆2 (2)

by hypothesis.
Γ | ∆1, x : A0 ` v0 : A1 a ∆2 (3)

by inversion (t:Tag) with (2).
Γ | ∆1 ` v0{v/x} : A1 a ∆2 (4)

by induction hypothesis with (1) and (3).
Γ | ∆1 ` t#v0{v/x} : t#A1 a ∆2 (5)

by (t:Tag) with (4).
Γ | ∆1 ` (t#v0){v/x} : t#A1 a ∆2 (6)

by (vs:12) on (5).
Thus, we conclude.

Case (t:Case) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` case v0 of t j#x j → e j end : A a ∆2 (2)

by hypothesis.
Γ | ∆1, x : A0 ` v0 :

∑
i ti#A′i a ∆′ (3)

Γ | ∆′, xi : A′i ` ei : A a ∆2 (4)
i ≤ j (5)

by inversion (t:Case) with (2).
We have that either:

(a) x ∈ fv(v0)
x < ∆′ (1.1)

by (Free Variables) on (3).
x , x j (1.2)

by def. of substitution up to rename of bounded variables.
Γ | ∆′, xi : A′i ` ei{v/x} : A a ∆2 (1.3)

since x cannot occur in ei and by (1.1) nor in Γ by (3).
Γ | ∆1, x : A0 ` v0{v/x} :

∑
i ti#A′i a ∆′ (1.4)

by induction hypothesis on (1) and (3).
Γ | ∆1 ` case v0{v/x} of t j#x j → e j{v/x} end : A a ∆2 (1.5)

by (t:Case) on (5), (1.3) and (1.4).
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Γ | ∆1 ` (case v0 of t j#x j → e j end){v/x} : A a ∆2 (1.6)
by (vs:13) on (1.6) and (1.2).

Thus, we conclude.

(b) x < fv(v0)
(x : A0) ∈ ∆′ (2.1)

by x < fv(e).
x , x j (2.2)

by def. of substitution up to rename of bounded variables.
Γ | ∆′′, xi : A′i ` ei{v/x} : A a ∆2 (2.3)

by induction hypothesis where ∆′′ is same as ∆′ without x.
Γ | ∆1 ` v0{v/x} :

∑
i ti#A′i a ∆′′ (2.4)

since x cannot occur in e by x < fv(e).
Γ | ∆1 ` case v0{v/x} of t j#x j → e j{v/x} end : A a ∆2 (2.5)

by (t:Case) on (5), (2.3) and (2.4).
Γ | ∆1 ` (case v0 of t j#x j → e j end){v/x} : A a ∆2 (2.6)

by (vs:13) on (2.1) and (2.5).
Thus, we conclude.

Case (t:Let) - Analogous to previous cases. First, we consider the different sub-cases where
x may or not appear. If x appears on the first expression we just apply the induction
hypothesis there. Otherwise, we apply the induction hypothesis on the body of the let.
Finally, we use the substitution definition (vs:14) to “push” the substitution outside.

Cases (t:Alternative-Left), (t:Intersection-Right), (t:Forall-Loc-Val), (t:Forall-Type-
Val), (t:TypeOpenBind), (t:TypeOpenCap), (t:LocOpenCap), (t:LocOpenBind) - im-
mediate by applying the induction hypothesis on the inversion and then re-applying the
rule.

Case (t:Fork) - We have:

Γ | ∆0 ` v : A0 a ∆1 (1)
Γ | ∆1, x : A0 ` fork e : ![] a · (2)

by hypothesis.
Γ | ∆1, x : A0 ` e : ![] a · (3)

by inversion (t:Fork) with (2).
Γ | ∆1 ` e{v/x} : ![] a · (4)

by induction hypothesis with (1) and (3).
Γ | ∆1 ` fork e{v/x} : ![] a · (5)

by (t:Fork) with (4).
Γ | ∆1 ` (fork e){v/x} : ![] a · (6)

by (vs:17) on (5).
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Thus, we conclude.

Case (t:Lock-Rely), (t:Unlock-Guarantee) - immediate since x cannot occur in “lock v”
nor “unlock v” as all those values (v) must be typed without linear resources. Thus, in
this case substitution is vacuously true.

�

2. (Pure)

Proof. We proceed by induction on the typing derivation of Γ, x : A0 | ∆0 ` e : A1 a ∆1.

Case (t:Ref) - We have:

Γ, ρ : loc | · ` v0 : !A0 a · (1)
Γ, ρ : loc, x : A0 | · ` ρ : ref ρ a · (2)

by hypothesis.
Γ, ρ : loc | · ` ρ : ref ρ a · (3)

by x < fv(ρ) on (2).
Γ, ρ : loc | · ` ρ{v/x} : ref ρ a · (4)

by (vs:1) on (3) using x and v.
Thus, we conclude.

Case (t:Pure) - We have:

Γ | · ` v0 : !A0 a · (1)
Γ, x0 : A0 | · ` v1 : !A1 a · (2)

by hypothesis.
Γ, x0 : A0 | · ` v1 : A1 a · (3)

by inversion on (t:Pure) with (2).
Γ | x0 : !A0 ` v1 : A1 a · (4)

by (t:Pure-Elim) on (3) with x0.
Γ | · ` v1{v0/x0} : A1 a · (5)

by (Substitution Lemma - Linear) with (1) and (4).
Γ | · ` v1{v0/x0} : !A1 a · (6)

by (t:Pure) on (5).
Thus, we conclude.

Case (t:Unit) - We have:

Γ | · ` v0 : !A0 a · (1)
Γ, x : A0 | · ` v1 : ![] a · (2)

by hypothesis.
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Γ | · ` v1{v0/x} : ![] a · (3)
substitution on x cannot change the type since [] is always valid by (t:Unit).

(and substitution cannot change a value to become an expression).
Thus, we conclude.

Case (t:Pure-Read) - We have:

Γ | · ` v : !A0 a · (1)
Γ, x0 : A0 | · ` x1 : !A1 a · (2)

by hypothesis (matching environments and type with (t:Pure-Read)).
We have that either:

(a) x0 = x1

Γ | · ` v : !A a · (1.1)
Γ, x : A | · ` x : !A a · (1.2)

by restated hypothesis with x = x0 = x1.
and with A = A0 = A1.

Γ | · ` x{v/x} : !A a · (1.3)
by (vs:2) on (1.1) using x and v.

Thus, we conclude.
(b) x0 , x1

Γ | · ` x1 : !A1 a · (2.1)
by x0 < fv(x1) on (2).

Γ | · ` x1{v/x0} : !A1 a · (2.2)
by (vs:3) on (2.1) using x0 and v.

Thus, we conclude.

Case (t:Linear-Read) - We have:

Γ | · ` v : !A0 a · (1)
Γ, x0 : A0 | x1 : A1 ` x1 : A1 a · (2)

by hypothesis.
x0 , x1 (3)

since Γ and ∆ identifiers cannot collide.
Γ | x1 : A1 ` x1{v/x0} : A1 a · (4)

by (vs:3) on (2) using x0 and v.
Thus, we conclude.

Case (t:Pure-Elim) - We have:

Γ | · ` v : !A0 a · (1)
Γ, x0 : A0 | ∆0, x1 : !A2 ` e : A1 a ∆1 (2)

by hypothesis.
Γ, x0 : A0, x1 : A2 | ∆0 ` e : A1 a ∆1 (3)
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by inversion on (t:Pure-Elim) with (2)
Γ, x1 : A2 | ∆0 ` e{v/x0} : A1 a ∆1 (4)

by induction hypothesis on (1) with (3).
Γ | ∆0, x1 : !A2 ` e{v/x0} : A1 a ∆1 (5)

by (t:Pure-Elim) on (4).
Thus, we conclude.

Case (t:New) - We have:

Γ | · ` v : !A0 a · (1)
Γ, x : A0 | ∆0 ` new v0 : ∃l.(!ref l :: rw l A1) a ∆1 (2)

by hypothesis.
Γ, x : A0 | ∆0 ` v0 : A1 a ∆1 (3)

by inversion on (t:New) with (2).
Γ | ∆0 ` v0{v/x} : A1 a ∆1 (4)

by induction hypothesis with (3) and (1).
Γ | ∆0 ` new v0{v/x} : ∃l.(!ref l :: rw l A1) a ∆1 (5)

by (t:New) with (4).
Γ | ∆0 ` (new v0){v/x} : ∃l.(!ref l :: rw l A1) a ∆1 (6)

by (vs:8) on (5).
Thus, we conclude.

Case (t:Delete) - We have:

Γ | · ` v : !A0 a · (1)
Γ, x : A0 | ∆0 ` delete v0 : ∃l.A1 a ∆1 (2)

by hypothesis.
Γ, x : A0 | ∆0 ` v0 : ∃l.(!ref l :: rw l A1) a ∆1 (3)

by inversion on (t:Delete) with (2).
Γ | ∆0 ` v0{v/x} : ∃l.(!ref l :: rw l A1) a ∆1 (4)

by induction hypothesis with (3) and (1).
Γ | ∆0 ` delete v0{v/x} : ∃l.A1 a ∆1 (5)

by (t:Delete) with (4).
Γ | ∆0 ` (delete v0){v/x} : ∃l.A1 a ∆1 (6)

by (vs:9) on (5).
Thus, we conclude.

Case (t:Assign) - We have:

Γ | · ` v : !A0 a · (1)
Γ, x : A0 | ∆0 ` v0 := v1 : A1 a ∆2, rw p A2 (2)

by hypothesis.
Γ, x : A0 | ∆0 ` v1 : A2 a ∆1 (3)
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Γ, x : A0 | ∆1 ` v0 : ref p a ∆2, rw p A1 (4)
by inversion on (t:Assign) with (2).

Γ | ∆0 ` v1{v/x} : A2 a ∆1 (5)
by induction hypothesis on (3) with (1).

Γ | ∆1 ` v0{v/x} : ref p a ∆2, rw p A1 (6)
by induction hypothesis on (4) with (1).

Γ | ∆0 ` v0{v/x} := v1{v/x} : A1 a ∆2, rw p A2 (7)
by (t:Assign) with (5) and (6).

Γ | ∆0 ` (v0 := v1){v/x} : A1 a ∆2, rw p A2 (8)
by (vs:11) on (7).

Thus, we conclude.

Case (t:Dereference-Linear) - We have:

Γ | · ` v : !A0 a · (1)
Γ, x : A0 | ∆0 ` !v0 : A1 a ∆1, rw p ![] (2)

by hypothesis.
Γ, x : A0 | ∆0 ` v0 : ref p a ∆1, rw p A1 (3)

by inversion on (t:Dereference-Linear) with (2).
Γ | ∆0 ` v0{v/x} : ref p a ∆1, rw p A1 (4)

by induction hypothesis on (3) with (1).
Γ | ∆0 ` !v0{v/x} : A1 a ∆1, rw p ![] (5)

by (t:Dereference-Linear) with (4).
Γ | ∆0 ` (!v0){v/x} : A1 a ∆1, rw p ![] (6)

by (vs:10) on (5).
Thus, we conclude.

Case (t:Dereference-Pure) - Analogous to (t:Dereference-Linear).

Case (t:Record) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆ ` {f = v′} : [f : A] a · (2)

by hypothesis.
Γ, x : A′ | ∆ ` v′i : Ai a · (3)

by inversion on (t:Record) with (2).
Γ | ∆ ` v′i{v/x} : Ai a · (4)

by induction hypothesis on (3) with (1).
Γ | ∆ ` {f = v′{v/x}} : [f : A] a · (5)

by (t:Record) on (4).
Γ | ∆ ` ({f = v′}){v/x} : [f : A] a · (6)

by (vs:5) on (5).
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Thus, we conclude.

Case (t:Selection) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0 ` v0.f : A a ∆1 (2)

by hypothesis.
Γ, x : A′ | ∆0 ` v0 : [f : A] a ∆1 (3)

by inversion on (t:Selection) with (2).
Γ | ∆0 ` v0{v/x} : [f : A] a ∆1 (4)

by induction hypothesis with (1) and (3).
Γ | ∆0 ` v0{v/x}.f : A a ∆1 (5)

by (t:Selection) with (4).
Γ | ∆0 ` (v0.f){v/x} : A a ∆1 (6)

by (vs:6) on (5).
Thus, we conclude.

Case (t:Application) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0 ` v0 v1 : A1 a ∆2 (2)

by hypothesis.
Γ, x : A′ | ∆0 ` v0 : A0 ( A1 a ∆1 (3)
Γ, x : A′ | ∆1 ` v1 : A0 a ∆2 (4)

by inversion on (t:Application) with (2).
Γ | ∆0 ` v0{v/x} : A0 ( A1 a ∆1 (5)

by induction hypothesis with (1) on (3).
Γ | ∆1 ` v1{v/x} : A0 a ∆2 (6)

by induction hypothesis with (1) on (4).
Γ | ∆0 ` v0{v/x} v1{v/x} : A1 a ∆2 (7)

by (t:Application) with (5) and (6).
Γ | ∆0 ` (v0 v1){v/x} : A1 a ∆2 (8)

by (vs:7) on (7).
Thus, we conclude.

Case (t:Function) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x0 : A′ | ∆ ` λx1.e : A0 ( A1 a · (2)

by hypothesis.
Γ, x0 : A′ | ∆, x1 : A0 ` e : A1 a · (3)

by inversion on (t:Function) with (2).
x0 , x1 (4)
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by def. of substitution up to rename of bounded variables.
Γ | ∆, x1 : A0 ` e{v/x0} : A1 a · (5)

by induction hypothesis with (3) and (1).
Γ | ∆ ` λx1.e{v/x0} : A0 ( A1 a · (6)

by (t:Function) with (6).
Γ | ∆ ` (λx1.e){v/x0} : A0 ( A1 a · (7)

by (vs:4) on (6) and (4).
Thus, we conclude.

Case (t:Cap-Elim) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0, x0 : A0 :: A2 ` e : A1 a ∆1 (2)

by hypothesis.
Γ, x : A′ | ∆0, x0 : A0, A2 ` e : A1 a ∆1 (3)

by inversion on (t:Cap-Elim) with (2).
Γ | ∆0, x0 : A0, A2 ` e{v/x} : A1 a ∆1 (4)

by induction hypothesis with (1) and (3).
Γ | ∆0, x0 : A0 :: A2 ` e{v/x} : A1 a ∆1 (5)

by (t:Cap-Elim) with (4).
Thus, we conclude.

Case (t:Cap-Stack) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0 ` e : A0 :: A1 a ∆1 (2)

by hypothesis.
Γ, x : A′ | ∆0 ` e : A0 a ∆1, A1 (3)

by inversion on (t:Cap-Stack) with (2).
Γ | ∆0 ` e{v/x} : A0 a ∆1, A1 (4)

by induction hypothesis with (1) and (3).
Γ | ∆0 ` e{v/x} : A0 :: A1 a ∆1 (5)

by (t:Cap-Stack) with (4).
Thus, we conclude.

Case (t:Cap-Unstack) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0 ` e : A0 a ∆1, A1 (2)

by hypothesis.
Γ, x : A′ | ∆0 ` e : A0 :: A1 a ∆1 (3)

by inversion on (t:Cap-Unstack) with (2).
Γ | ∆0 ` e{v/x} : A0 :: A1 a ∆1 (4)
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by induction hypothesis with (1) and (3).
Γ | ∆0 ` e{v/x} : A0 a ∆1, A1 (5)

by (t:Cap-Unstack) with (4).
Thus, we conclude.

Case (t:Frame) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0,∆2 ` e : A a ∆1,∆2 (2)

by hypothesis.
Γ, x : A′ | ∆0 ` e : A a ∆1 (3)

by inversion on (t:Frame) with (2).
Γ | ∆0 ` e{v/x} : A a ∆1 (4)

by induction hypothesis with (1) and (3).
Γ | ∆0,∆2 ` e{v/x} : A a ∆1,∆2 (5)

by (t:Frame) with ∆2.
Thus, we conclude.

Case (t:Subsumption) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0 ` e : A1 a ∆1 (2)

by hypothesis.
Γ ` ∆0 <: ∆′0 (3)
Γ, x : A′ | ∆′0 ` e : A0 a ∆′1 (4)
Γ ` A0 <: A1 (5)
Γ ` ∆′1 <: ∆1 (6)

by inversion on (t:Subsumption) with (2).
Γ | ∆′0 ` e{v/x} : A0 a ∆′1 (7)

by induction hypothesis with (1) and (4).
Γ | ∆0 ` e{v/x} : A1 a ∆1 (8)

by (t:Subsumption) with (7), (3), (5) and (6).
Thus, we conclude.

Case (t:Tag) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0 ` t#v0 : t#A1 a ∆1 (2)

by hypothesis.
Γ, x : A′ | ∆0 ` v0 : A1 a ∆1 (3)

by inversion (t:Tag) with (2).
Γ | ∆0 ` v0{v/x} : A1 a ∆1 (4)

by induction hypothesis with (1) and (3).
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Γ | ∆0 ` t#v0{v/x} : t#A1 a ∆1 (5)
by (t:Tag) with (4).

Γ | ∆0 ` (t#v0){v/x} : t#A1 a ∆1 (6)
by (vs:12) on (5).

Thus, we conclude.

Case (t:Case) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0 ` case v0 of t j#x j → e j end : A a ∆1 (2)

by hypothesis.
Γ, x : A′ | ∆1 ` v0 :

∑
i ti#A′i a ∆′ (3)

Γ, x : A′ | ∆′, xi : A′i ` ei : A a ∆2 (4)
i ≤ j (5)

by inversion (t:Case) with (2).
x , x j (6)

by def. of substitution up to rename of bounded variables.
Γ | ∆1 ` v0{v/x} :

∑
i ti#A′i a ∆′ (7)

by induction hypothesis on (3) and (1).
Γ | ∆′, xi : A′i ` ei{v/x} : A a ∆2 (8)

by induction hypothesis on (4) and (1).
Γ | ∆1 ` case v0{v/x} of t j#x j → e j{v/x} end : A a ∆2 (9)

by (t:Case) on (5), (7) and (8).
Γ | ∆1 ` (case v0 of t j#x j → e j end){v/x} : A a ∆2 (10)

by (vs:13) on (9) and (6).
Thus, we conclude.

Case (t:Alternative-Left), (t:Intersection-Right) - Immediate by applying the induction
hypothesis on the inversion and then re-applying the rule.

Case (t:Let) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆0 ` let x1 = e0 in e1 end : A1 a ∆1 (2)

by hypothesis.
Γ, x : A′ | ∆0 ` e0 : A0 a ∆2 (3)
Γ, x : A′ | ∆2, x1 : A0 ` e1 : A1 a ∆1 (4)

by inversion on (t:Let) with (2).
x0 , x1 (5)

by def. of substitution up to rename of bounded variables.
Γ | ∆0 ` e0{v/x} : A0 a ∆2 (6)

by induction hypothesis on (3) and (1).
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Γ | ∆2, x1 : A0 ` e1{v/x} : A1 a ∆1 (7)
by induction hypothesis on (4) and (1).

Γ | ∆0 ` let x1 = e0{v/x} in e1{v/x} end : A1 a ∆1 (8)
by (t:Let) with (6) and (7).

Γ | ∆0 ` (let x1 = e0 in e1 end){v/x} : A1 a ∆1 (9)
by (vs:14) on (8) and (5).

Thus, we conclude.

Cases (t:Alternative-Left), (t:Intersection-Right), (t:Forall-Type-Val), (t:Forall-Loc-
Val), (t:TypeOpenBind), (t:TypeOpenCap), (t:LocOpenCap), (t:LocOpenBind) - are
immediate by applying the induction hypothesis on the inversion and then re-applying
the rule.

Case (t:Fork) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆1 ` fork e : ![] a · (2)

by hypothesis.
Γ, x : A′ | ∆1 ` e : ![] a · (3)

by inversion (t:Fork) with (2).
Γ | ∆1 ` e{v/x} : ![] a · (4)

by induction hypothesis with (1) and (3).
Γ | ∆1 ` fork e{v/x} : ![] a · (5)

by (t:Fork) with (4).
Γ | ∆1 ` (fork e){v/x} : ![] a · (6)

by (vs:17) on (5).
Thus, we conclude.

Case (t:Lock-Rely) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆, A0 ⇒ A1 ` lock v′ : ![] a ∆, A0, A1 (2)

by hypothesis.
Γ, x : A′ | · ` v′ : ref p a · (3)
p ∈ A0 (4)

by inversion (t:Lock-Rely) with (2).
Γ | · ` v′{v/x} : ![] a · (5)

by induction hypothesis with (1) and (3).
Γ | ∆, A0 ⇒ A1 ` lock v′{v/x} : ![] a ∆, A0, A1 (6)

by (t:Lock-Rely) with (4) and (5).
Γ | ∆, A0 ⇒ A1 ` (lock v′){v/x} : ![] a ∆, A0, A1 (7)

by (vs:15) on (6).
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Thus, we conclude.

Case (t:Unlock-Guarantee) - We have:

Γ | · ` v : !A′ a · (1)
Γ, x : A′ | ∆, A0, A0; A1 ` unlock v′ : ![] a ∆, A1 (2)

by hypothesis.
Γ, x : A′ | · ` v′ : ref p a · (3)
p ∈ A0 (4)

by inversion (t:Unlock-Guarantee) with (2).
Γ | · ` v′{v/x} : ![] a · (5)

by induction hypothesis with (1) and (3).
Γ | ∆, A0, A0; A1 ` unlock v′{v/x} : ![] a ∆, A1 (6)

by (t:Lock-Rely) with (4) and (5).
Γ | ∆, A0, A0; A1 ` (unlock v′){v/x} : ![] a ∆, A1 (7)

by (vs:16) on (6).
Thus, we conclude.

�

3. (Location Variable) - immediate by (Well-Formed Type Substitution) since our expressions
do not contain types.

4. (Type Variable) - analogous to (Location Variable).

�
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H.7 Values Lemma
Lemma 20 (Values Lemma). If v is a closed value such that

Γ | ∆ ` v : A a ∆′

then
Γ ` ∆ <: ∆v,∆

′ Γ | ∆v ` v : A a ·

Proof. By induction on the typing derivation of Γ | ∆ ` v : A a ∆′.

Case (t:Ref) - We have:

Γ, ρ : loc | · ` ρ : ref ρ a · (1)
by hypothesis.

Thus, by making:
∆v = · (2)
∆′ = · (3)
We immediately conclude.

Case (t:Pure) - We have:

Γ | · ` v : !A a · (1)
by hypothesis.

Thus, by making:
∆v = · (2)
∆′ = · (3)
We immediately conclude.

Case (t:Unit) - We have:

Γ | · ` v : ![] a · (1)
by hypothesis.

Thus, by making:
∆v = · (2)
∆′ = · (3)
We immediately conclude.

Case (t:Pure-Read), (t:Linear-Read) - value not closed.

Case (t:Pure-Elim) - Environment not closed.

Case (t:New),(t:Delete), (t:Assign), (t:Dereference-Linear), (t:Dereference-Pure) - Not a value.

124



Case (t:Record) - We have:

Γ | ∆0 ` {f = v} : [f : A] a ∆1 (1)
by hypothesis.

Γ | ∆0 ` v : A a ∆1 (2)
by inversion on (t:Record) with (1).

Γ ` ∆0 <: ∆v,∆1 (3)
Γ | ∆v ` v : A a · (4)

by induction hypothesis on (2).
Γ | ∆v ` {f = v} : [f : A] a · (5)

by (t:Record) on (4).
Therefore, by (3) and (5) we conclude.

Case (t:Selection), (t:Application) - Not a value.

Case (t:Function) - We have:

Γ | ∆ ` λx.e : A0 ( A1 a · (1)
by hypothesis.

Thus, by making:
∆′ = · (2)
We immediately conclude.

Case (t:Cap-Elim) - Environment not closed.

Case (t:Cap-Stack) - We have:

Γ | ∆0 ` v : A0 :: A1 a ∆1 (1)
by hypothesis.

Γ | ∆0 ` v : A0 a ∆1, A1 (2)
by inversion on (t:Cap-Stack) with (1).

Γ ` ∆0 <: ∆v,∆1, A1 (3)
Γ | ∆v ` v : A0 a · (4)

by induction hypothesis on (2).
Γ | ∆v, A1 ` v : A0 a A1 (5)

by (t:Frame) on (4) using A1.
Γ | ∆v, A1 ` v : A0 :: A1 a · (6)

by (t:Cap-Stack) on (5).
Therefore, by (3) and (6) we conclude.

Case (t:Cap-Unstack) - We have:
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Γ | ∆0 ` v : A0 a ∆1, A1 (1)
by hypothesis.

Γ | ∆0 ` v : A0 :: A1 a ∆1 (2)
by inversion on (t:Cap-Unstack) with (1).

Γ ` ∆0 <: ∆v,∆1 (3)
Γ | ∆v ` v : A0 :: A1 a · (4)

by induction hypothesis on (2).
Γ | ∆v ` v : A0 a A1 (5)

by (t:Cap-Unstack) with (4).
Γ ` ∆v <: ∆′v, A1 (6)
Γ | ∆′v ` v : A0 a · (7)

by induction hypothesis on (5).
Γ ` ∆0 <: ∆′v, A1,∆1 (8)

by transitivity of subtyping with (3) and (6).
Therefore, by (7) and (8) we conclude.

Case (t:Frame) - We have:

Γ | ∆0,∆2 ` v : A a ∆1,∆2 (1)
by hypothesis.

Γ | ∆0 ` v : A a ∆1 (2)
by inversion on (t:Frame) with (1).

Γ ` ∆0 <: ∆v,∆1 (3)
Γ | ∆v ` v : A a · (4)

by induction hypothesis on (2).
Γ ` ∆0,∆2 <: ∆v,∆1,∆2 (5)

by (1) and (3) we know we can add ∆2.
Therefore, by (4) and (5) we immediately conclude.

Case (t:Subsumption) - We have:

Γ | ∆0 ` v : A1 a ∆1 (1)
by hypothesis.

Γ ` ∆0 <: ∆′0 (2)
Γ | ∆′0 ` v : A0 a ∆′1 (3)
Γ ` A0 <: A1 (4)
Γ ` ∆′1 <: ∆1 (5)

by inversion on (t:Subsumption) with (1).
Γ ` ∆′0 <: ∆v,∆

′
1 (6)

Γ | ∆v ` v : A0 a · (7)
by induction hypothesis on (3).

Γ ` ∆′0 <: ∆v,∆1 (8)
by transitivity of subtyping with (5) and (6).
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Γ ` ∆0 <: ∆v,∆1 (9)
by transitivity of subtyping with (2) and (8).

Γ | ∆v ` v : A1 a · (10)
by (t:Subsumption) with (sd:Symmetry) and (4) on (7).

Therefore, by (9) and (10) we conclude.

Case (t:Tag) - We have:

Γ | ∆0 ` t#v : t#A a · (1)
by hypothesis.

Γ | ∆0 ` v : A a · (2)
by inversion on (t:Tag) with (1).

Γ ` ∆0 <: ∆v,∆1 (3)
Γ | ∆v ` v : A a · (4)

by induction hypothesis on (2).
Γ | ∆v ` t#v : t#A a · (5)

by (t:Tag) on (4).
Therefore, by (5) and (3) we conclude.

Case (t:Case) - Not a value.

Case (t:Alternative-Left) - We have:

Γ | ∆0, A0 ⊕ A1 ` v : A2 a ∆1 (1)
by hypothesis.

Γ | ∆0, A0 ` v : A2 a ∆1 (2)
Γ | ∆0, A1 ` v : A2 a ∆1 (3)

by inversion on (t:Alternative-Left) with (1).
Γ ` ∆0, A0 <: ∆v,∆1 (4)
Γ | ∆v ` v : A2 a · (5)

by induction hypothesis on (2).
Γ ` ∆0, A1 <: ∆v,∆1 (6)
Γ | ∆v ` v : A2 a · (7)

by induction hypothesis on (3).
Γ ` ∆0, A0 ⊕ A1 <: ∆v,∆1 (8)

by (sd:Alternative-L) on (4) and (6).
Therefore, by (8) and (7) we conclude.

Case (t:Intersection-Right) - We have:

Γ | ∆0 ` v : A0 a ∆1, A1&A2 (1)
by hypothesis.
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Γ | ∆0 ` v : A0 a ∆1, A1 (2)
Γ | ∆0 ` v : A0 a ∆1, A2 (3)

by inversion on (t:Intersection-Right) with (1).
Γ ` ∆0 <: ∆v,∆1, A1 (4)
Γ | ∆v ` v : A0 a · (5)

by induction hypothesis on (2).
Γ ` ∆0 <: ∆v,∆1, A2 (6)
Γ | ∆v ` v : A0 a · (7)

by induction hypothesis on (3).
Γ ` ∆0 <: ∆v,∆1, A1&A2 (8)

by (sd:Intersection-R) on (4) and (6).
Thus, by (8) and (7) we conclude.

Case (t:Let), (t:Fork), (t:Lock-Rely), (t:Unlock-Guarantee) - Not values.

Case (t:Forall-Loc-Val), (t:Forall-Type-Val) - Immediate since both rules have no resulting
effects.

Case (t:TypeOpenBind), (t:TypeOpenCap), (t:LocOpenCap), (t:LocOpenBind) - Environment not
closed.

�
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H.8 Protocol Lemmas
Lemma 21 (Composition Progress). If Γ ` RV P || Q then 〈 Γ ` RV P || Q 〉 7→ C.

In other words, if two protocols compose safely, then the configuration can always take a step
to some other set of configurations.

Proof. By induction on the derivation of Γ ` RV P || Q:

Γ ` RV P || Q (1)
by hypothesis.

〈 Γ ` RV P || Q 〉↑ (2)
by inversion on (1) with (wf:Split).

〈 Γ ` RV P || Q 〉 7→ C (3)
C ↑ (4)

by inversion on (2) with (wf:Configuration).
Thus, we conclude by (3).

�

Lemma 22 (Composition Preservation). If Γ ` RV P || Q and
〈 Γ ` RV P || Q 〉 7→ 〈 Γ′ ` R′ V P′ || Q′ 〉 · C then Γ′ ` R′ V P′ || Q′.

If two protocols compose safely then the respective configuration can take a step by (Compo-
sition Progress). We now show that the resulting configuration still composes safely. Thus, all
interference produced by a protocol is expected by all other protocols of that state, regardless of
how they are interleaved or how many times the protocol is split. In other words, the protocols
never get stuck as their rely assumptions are valid.

Proof. Immediate by (wf:Configuration) and then (wf:Split) on each new configuration. That is,
since we know the configurations compose to begin with, then by the definition of (wf:Configuration)
they will conform to all possible future reachable configurations.

By induction on the derivation of Γ ` RV P || Q:

Γ ` RV P || Q (1)
〈 Γ ` RV P || Q 〉 7→ 〈 Γ′ ` R′ V P′ || Q′ 〉 · C (2)

by hypothesis.
〈 Γ ` RV P || Q 〉↑ (3)

by inversion on (1) with (wf:Split).
〈 Γ ` RV P || Q 〉 7→ 〈 Γ′ ` R′ V P′ || Q′ 〉 · C (4)
〈 Γ′ ` R′ V P′ || Q′ 〉 · C ↑ (5)

by inversion on (2) with (wf:Configuration).
〈 Γ′ ` R′ V P′ || Q′ 〉↑ (6)

by (wf:Configuration) and (cf:AllStep) on (5).
Γ′ ` R′ V P′ || Q′ (7)

by (wf:Split) on (6).
Thus, we conclude by (7).
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Lemma 23 (Protocol Properties). Protocol Composition obeys the follow properties:

Γ ` RV R || none (Identity)
If Γ ` RV P0 || P1 then Γ ` RV P1 || P0 (Commutativity)
If Γ ` RV P0 || (P1 || P2) then Γ ` RV (P0 || P1) || P2 (Associativity)

Showing identity and that protocol composition is commutative are immediate. We now show that
protocol composition is associative.

Lemma 24 (Associativity). If we have:

Γ ` RV P || Q Γ ` PV P0 || P1

then, exists W such that:
Γ ` RV P0 || W Γ ` W V P1 || Q

( i.e. if Γ ` RV (P0 || P1)︸    ︷︷    ︸
P

|| Q then Γ ` RV P0 || (P1 || Q)︸   ︷︷   ︸
W

).

Proof. We proceed by induction on the structure of S . Note that we omit cases related to the use
of (cf-rs:Subsumption) and (cf-rs:Weakening) since they are straightforward and detract from the
core aspects of the proof.

1. Case R = none. Immediate since neither protocol can take a step.

2. Case R = R0 ⊕ R1, we have:

Γ ` R0 ⊕ R1 V P || Q (1)
Γ ` PV P0 || P1 (2)

by hypothesis.
Γ ` R0 V P || Q (3)
Γ ` R1 V P || Q (4)

by inversion with (cf-rs:StateAlternative) on (1).

Then, by induction hypothesis we have that exists W such that (remember that we can
weaken W to match both application of the induction hypothesis, for instance by applying
subtyping rules):

Γ ` R0 V P0 || W (5)
Γ ` W V P1 || Q (6)
Γ ` R1 V P0 || W (7)

by induction hypothesis on (2) and (3), and (2) and (4).
Γ ` R0 ⊕ R1 V P0 || W (8)

by (cf-rs:StateAlternative) with (5) and (7).
Thus, we conclude.
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3. Case R = R0&R1, we have:

Γ ` R0&R1 V P || Q (1)
Γ ` PV P0 || P1 (2)

by hypothesis.
Γ ` R0 V P || Q (3)

by inversion with (cf-rs:StateIntersection) on (1).
Then, by induction hypothesis we have that exists W such that:
Γ ` R0 V P0 || W (4)
Γ ` W V P1 || Q (5)

by induction hypothesis with (2) and (3).
Γ ` R0&R1 V P0 || W (6)

by (cf-rs:StateIntersection) on (4).
Thus, we conclude.

4. Case R = S (a non-protocol type), we have:

Γ ` S V P || Q (1)
Γ ` PV P0 || P1 (2)

by hypothesis.

We now do a case analysis on the structure of P. We omit cases where P = none, P =

P′ ⊕ P′′, and P = P′&P′ since they are straightforward and instead focus on actual protocol
steps of P.

(a) Case P = A⇒ A′; P′, we can re-write our hypothesis:

Γ ` AV (A⇒ A′; P′) || Q (1)
Γ ` (A⇒ A′; P′)V P0 || P1 (2)

by hypothesis.
Then, by inversion on (2) we have that:
P0 = A⇒ A′; P′0 (3)
P1 = A⇒ A′; P′1 (4)

by inversion on (2) with (cf-ps:Step).

Thus, we can build W such that it intertwines both P1 and Q with a &. Assume that
W ′ is such a protocol but built for the next step of the protocol and where Q′ is the
intertwine version Q so that it obeys the intended protocol condition. Then we can
have:

W = (A⇒ A′; W ′)&Q′ (5)
Thus, we conclude (noting that by (3) we see that P0 also steps with A).
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(b) Cases P = A ⇒ ∀l.P′ and P = A ⇒ ∀X <: A′′.P′ are straightforward by inversion
and application of the induction hypothesis. Similarly, the sub-case where P0 (or P1)
transition by (cf-ps:TypeApp) or by (cf-ps:LocApp) do not affect the step since the rely
type is unchanged. Furthermore, we can build W with the applied type/location already
there.

(c) Cases P = ∃X <: A′′.P′ and P = ∃l.P′ are straightforward by inversion on (cf-
ss:Open*) and (cf-ps:Exists*), induction hypothesis, and re-applying the rule.

(d) Case P = S (ownership recovery), we have:

Γ ` S V S || Q (1)
Γ ` S V P0 || P1 (2)

by hypothesis.

Then, by inversion on (2) we have that either:

• P0 or P1 are also S . Then, since the protocols compose safely, the other protocol
cannot touch the shared state since the shared state becomes none. Therefore, W
is simply the combination of Q and the other protocol that recovers ownership.

• P0 or P1 extend the uses of S , i.e. they are appending some protocol to what was
previously ownership recovery. Thus, we have:
P0 = S ⇒ S ′; P′0 (3)
P1 = S ⇒ S ′; P′1 (4)

by inversion on (2) with (cf-ps:Step).
But since Q composes with S , Q cannot use the shared state and must be equiva-
lent of none. Therefore, we can build W = P1 and immediately conclude.

5. Case R = A⇒ A′; P′′ (a protocol type), we have:

Γ ` (A⇒ A′; P′′)V P || Q (1)
Γ ` PV P0 || P1 (2)

by hypothesis.
P = A⇒ A′; P′ (3)
P0 = A⇒ A′; P′0 (4)
P1 = A⇒ A′; P′1 (5)

by inversion on (2) with (cf-ps:Step).

As before, we can build W by intertwining Q and P1 with the W ′ protocol resulting from
applying the induction hypothesis to the next step. So that, as done above:
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W = (A⇒ A′; W ′)&Q′ (6)
Thus, we conclude.

6. Cases R = ∃l.R′ (case R = ∃X <: A′′.R′ is analogous), we have:

Γ ` ∃l.R′ V P || Q (1)
Γ ` PV P0 || P1 (2)

by hypothesis.
P = ∃l.P′ (3)
P0 = ∃l.P′0 (4)
P1 = ∃l.P′1 (5)
Q = ∃l.Q′ (6)

since the protocols compose with R and P.
Γ, l : loc ` R′ V P′ || Q′ (7)
Γ, l : loc ` P′ V P′0 || P

′
1 (8)

by inversion on (2) with (cf-ps:ExistsLoc).
Then, by induction hypothesis there exists a W such that:
Γ, l : loc ` R′ V P′0 || W (9)
Γ, l : loc ` W V P′1 || Q

′ (10)
by induction hypothesis on (7) and (8).

Γ ` ∃l.R′ V ∃l.P′0 || ∃l.W (11)
Γ ` ∃l.W V ∃l.P′1 || ∃l.Q′ (12)

by (cf-ps:ExistsLoc) on (9) and (10).
Thus, we conclude.

7. Case R = A⇒ ∀l.R′′ (case R = S ⇒ ∀X <: A′′.R′′ is analogous), we have:

Γ ` A⇒ ∀l.R′ V P || Q (1)
Γ ` PV P0 || P1 (2)

by hypothesis.

We have that P will either “re-use” the ∀ or do a type application. Either case is straightfor-
ward by inversion and induction hypothesis.

�
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H.9 Preservation
Note that preservation is only defined over closed programs and expressions so that they can step.

Theorem 5 (Program Preservation). If we have

Γ0 | ∆0 ` H0 Γ0 | ∆0 ` T0 H0 ; T0 7→ H1 ; T1

then, for some ∆1 and Γ1, we have

Γ0,Γ1 | ∆1 ` H1 Γ0,Γ1 | ∆1 ` T1

Proof. We proceed by induction on the typing derivation of Γ0 | ∆0 ` T0.

Case (wf:Program) - we have:

Γ0 | ∆0 ` H0 (1)
Γ0 | ∆0 ` T0 (2)
H0 ; T0 7→ H1 ; T1 (3)

by hypothesis.
Γ0 | ∆0i ` ei : ![] a · (4)
i ∈ {0, ..., n} (5)
n ≥ 0 (6)
T0 = e0 · ... · en (7)
∆0 = ∆00 , ...,∆0n (8)
by inversion on (wf:Program) with (2) noting that the order of each threads in T0 is not important.
H0 ; e j 7→ H1 ; e′j · T

′ (9)
by inversion on (d:Thread) with (3) on some thread j such that j ∈ {0, ..., n}.

For clarity we now rewrite some of the above to reflect e j:
Γ0 | ∆ j,∆ jT ,∆

′︸      ︷︷      ︸
∆0

` H0 (10)

by rewriting (1).
Γ0 | ∆ j,∆ jT︸ ︷︷ ︸

∆0 j

` e j : ![] a · (11)

by rewriting (4).

Γ0,Γ1 | ∆1 ` e′j : ![] a · (12)
Γ0,Γ1 | ∆1,∆ jT ,∆

′ ` H1 (13)
Γ0,Γ1 | ∆ jT ` T ′ (14)

by (Expression Preservation) with (10), (11), and (9).

Thus, we conclude by (wf:Program) with (12), (13), (14) and (4) to accommodate the remaining
threads in T0 combined with weakening the lexical environment to include Γ1. �
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Theorem 6 (Expression Preservation). If we have

Γ0 | ∆0,∆T ,∆2 ` H0 Γ0 | ∆0,∆T ` e0 : A a ∆ H0 ; e0 7→ H1 ; e1 · T

then, for some ∆1 and Γ1, we have

Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 Γ0,Γ1 | ∆1 ` e1 : A a ∆ Γ0,Γ1 | ∆T ` T

Proof. We proceed by induction on the typing derivation of Γ0 | ∆0 ` e0 : A a ∆.

Case (t:Ref), (t:Pure), (t:Unit) - are values (no step available).

Case (t:Pure-Read), (t:Linear-Read), (t:Pure-Elim) - not applicable, environments not closed.

Case (t:New) - We have:

Γ0 | ∆0 ` new v : ∃l.(!ref l :: rw l A) a ∆ (1)
Γ0 | ∆0,∆2 ` H0 (2)
H0 ; E[new v] 7→ H0 , ρ ↪→ v ; E[ρ] (3)

by hypothesis, with (d:New) where E = � note that we have ∆T = · since there is no
resulting thread from this step.
Γ0 | ∆0 ` v : A a ∆ (4)

by inversion on (t:New) with (1).
Γ0 ` ∆0 <: ∆v,∆ (5)
Γ0 | ∆v ` v : A a · (6)

by (Values Lemma) with (4).
ρ fresh (7)

by inversion on (d:New) with (3).
Γ0 | ∆v,∆,∆2 ` H0 (8)

by (str:Subsumption) with (2) and (5).
Thus, if we make:
Γ1 = ρ : loc (9)
We have that:
Γ0,Γ1 | ∆v ` v : A a · (10)
by (Weakening) (6) with Γ1 (note that weakening is only valid in the lexical environments, Γ).
Γ0,Γ1 | ∆v,∆,∆2 ` H0 (11)

by (str:Loc) with Γ1 (that contains ρ) on (8).
Γ0,Γ1 | ∆,∆2, rw ρ A ` H0 , ρ ↪→ v (12)

by (str:Binding) with (10) and (11) with ρ.
Thus, if we make:
∆1 = ∆, rw ρ A (13)
We have that:
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Γ0,Γ1 | · ` ρ : !ref ρ a · (14)
by (t:Ref) with ρ and (t:Pure).

Γ0,Γ1 | ∆1 ` ρ : !ref ρ a ∆1 (15)
by (t:Frame) on (14) with ∆1.

Γ0,Γ1 | ∆1 ` ρ : !ref ρ :: rw ρ A a ∆ (16)
by (t:Cap-Stack) on (15) noting that (13).

If l fresh then:
Γ0,Γ1 | ∆1 ` ρ : ( !ref ρ :: rw ρ A){ρ/l} a ∆ (17)

by type substitution on (14).
Note that, by (4), ρ cannot occur in A since it is a fresh location constant not present in Γ0.
Γ0,Γ1 | ∆1 ` ρ : ∃l.(!ref l :: rw l A) a ∆ (18)

by (t:Subsumption) together with (st:PackLoc) on (17).
Thus:
Γ0,Γ1 | ∆1 ` ρ : ∃l.(!ref l :: rw l A) a ∆ (19)
for some ∆1,Γ1.

by (18).
Therefore, by (12) and (19) we conclude noting that T is empty meaning that we also
have ∆T = ·.

Case (t:Delete) - We have:

1. Case where ρ is not shared (and thus not locked):

Γ0 | ∆0 ` delete ρ : ∃l.A a ∆ (1)
Γ0 | ∆0,∆2 ` H0 , ρ ↪→ v (2)
H0 , ρ

? ↪→ v ; E[delete ρ] 7→ H0 ; E[v] (3)
by hypothesis, with (d:Delete) where E = �. Also note that we have ∆T = · since

there is no resulting new thread from this step.
Γ0 | ∆0 ` ρ : ∃l.(!ref l :: rw l A) a ∆ (4)

by inversion on (t:Delete) with (1).
Γ0 ` ∆0 <: ∆ρ,∆ (5)
Γ0 | ∆ρ ` ρ : ∃l.(!ref l :: rw l A) a · (6)

by (Values Lemma) with (4).
Γ0 | ∆ρ ` ρ : (!ref l :: rw l A){ρ/l} a · (7)

by (Values Inversion) with (6).
Γ0 | ∆ρ ` ρ : !ref ρ :: rw ρ A{ρ/l} a · (8)

by (ls:2.6), (ls:2.10), (ls:2.1), (ls:2.12) with (7).
Γ0 | ∆ρ ` ρ : !ref ρ a rw ρ A{ρ/l} (9)

by (Values Inversion) with (8).
Γ0 ` ∆ρ <: ∆′ρ, rw ρ A{ρ/l} (10)
Γ0 | ∆

′
ρ ` ρ : !ref ρ a · (11)

by (Values Lemma) with (9).
∆′ρ = · (12)
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by inversion on (t:Ref) with (11).
Therefore:
Γ0 | ∆

′
ρ, rw ρ A{ρ/l},∆,∆2 ` H0 , ρ ↪→ v i.e.:

Γ0 | rw ρ A{ρ/l},∆,∆2 ` H0 , ρ ↪→ v (13)
by (str:Subsumption) using (2), (10) and (12).

Γ0 | ∆v,∆,∆2 ` H0 (14)
Γ0 | ∆v ` v : A{ρ/l} a · (15)

by (Store Typing Inversion) with (13).
Γ0 | ∆v ` v : ∃l.A a · (16)

by (t:Subsumption) together with (st:PackLoc) on (15).
Γ0 | ∆v,∆ ` v : ∃l.A a ∆ (17)

by (t:Frame) with (16) using ∆.
Using:
Γ1 = · (18)
∆1 = ∆v,∆ (19)
We have:
Γ0,Γ1 | ∆1 ` v : ∃l.A ` ∆ (20)

by (17) with (18) and (19).
Γ0,Γ1 | ∆1,∆2 ` H0 (21)

by rewriting (14) with (18) and (19).
Therefore, by (20) and (21) we conclude, noting that T is empty meaning that we also
have ∆T = ·.

2. Case when ρ is shared (and thus the location is locked and there is a pending guarantee)
is analogous to the previous case except for the use of (str:Dead-Locked) at the end to
store typing the resulting environments and heap.

Case (t:Assign) - We have:

Γ0 | ∆0 ` ρ := v1 : A1 a ∆, rw ρ A0 (1)
Γ0 | ∆0,∆2 ` H0 , ρ

? ↪→ v0 (2)
H0 , ρ

? ↪→ v0 ; E[ρ := v1] 7→ H0 , ρ
? ↪→ v1 ; E[v0] (3)

by hypothesis, with (d:Assign) where E = �. Also note that we have ∆T = · since there is
no resulting new thread from this step.
Γ0 | ∆0 ` v1 : A0 a ∆′ (4)
Γ0 | ∆

′ ` ρ : ref ρ a ∆, rw ρ A1 (5)
by inversion on (t:Assign) with (1).

Γ0 ` ∆0 <: ∆v1 ,∆
′ (6)

Γ0 | ∆v1 ` v1 : A0 a · (7)
by (Values Lemma) on (4).

Γ0 ` ∆′ <: ∆ρ,∆, rw ρ A1 (8)
Γ0 | ∆ρ ` ρ : ref ρ a · (9)

by (Values Lemma) on (5).
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∆ρ = · (10)
by inversion on (t:Ref) with (9).

Γ0 | ∆v1 ,∆, rw ρ A1,∆2 ` H0 , ρ
? ↪→ v0 (11)

by (str:Subsumption) with (2), (6), (8) and (10).
Γ0 | ∆v1 ,∆v0 ,∆,∆2 ` H0 (12)
Γ0 | ∆v0 ` v0 : A1 a · (13)

by (Store Typing Inversion) on (11).
Γ0 | ∆v0 ,∆, rw ρ A0,∆2 ` H0 , ρ

? ↪→ v1 (14)
by (str:Binding) with ρ on (7) and (12).

by making:
Γ1 = · (15)
Γ0,Γ1 | ∆v0 ,∆, rw ρ A0,∆2 ` H0 , ρ

? ↪→ v1 (16)
by (Weakening) with (14).

Γ0,Γ1 | ∆v0 ` v0 : A1 a · (17)
by (Weakening) on (13).

Γ0,Γ1 | ∆v0 ,∆, rw ρ A0 ` v0 : A1 a ∆, rw ρ A0 (18)
by (t:Frame) using ∆, rw ρ A0 with (17).

Therefore, by (16) and (18) we conclude (noting that T is empty meaning that we also
have ∆T = ·).

Case (t:Dereference-Linear) - We have:

Γ0 | ∆0 ` !ρ : A a ∆, rw ρ ![] (1)
Γ0 | ∆0,∆2 ` H0 , ρ

? ↪→ v (2)
H0 , ρ

? ↪→ v ; E[!ρ] 7→ H0 , ρ
? ↪→ v ; E[v] (3)

by hypothesis, (d:Dereference) where E = �. Also note that we have ∆T = · since there is
no resulting new thread from this step.
Γ0 | ∆0 ` ρ : ref ρ a ∆, rw ρ ![] (4)

by inversion on (t:Dereference-Linear) with (1).
Γ0 ` ∆0 <: ∆ρ,∆, rw ρ A (5)
Γ0 | ∆ρ ` ρ : ref ρ a · (6)

by (Values Lemma) on (4).
∆ρ = · (7)

by (Values Inversion) on (6).
Γ0 ` ∆0 <: ∆, rw ρ A (8)

by rewriting (5) with (7).
Γ0 | ∆, rw ρ A,∆2 ` H0, ρ

? ↪→ v (9)
by (str:Subsumption) with (8) and (2).

Γ0 | ∆v ` v : A a · (10)
Γ0 | ∆,∆v,∆2 ` H0 (11)

by (Store Typing Inversion) with (9).
Γ0 | · ` v : ![] a · (12)

by (t:Unit) with value v.
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Γ0 | ∆,∆v, rw ρ ![],∆2 ` H0 , ρ
? ↪→ v (13)

by (str:Binding) using ρ, (11) and (12).
by making:
Γ1 = · (14)
Γ0,Γ1 | ∆,∆v, rw ρ ![],∆2 ` H0 , ρ

? ↪→ v (15)
by (Weakening) using Γ1 on (13).

Γ0,Γ1 | ∆v ` v : A a · (16)
by (Weakening) using Γ1 on (10).

Γ0,Γ1 | ∆v,∆, rw ρ ![] ` v : A a ∆, rw ρ ![] (17)
by (t:Frame) using ∆, rw ρ ![] on (16).

Therefore, by (15) and (17) we conclude (noting that T is empty meaning that we also
have ∆T = ·).

Case (t:Dereference-Pure) - We have:

Γ0 | ∆0 ` !ρ : !A a ∆, rw ρ !A (1)
Γ0 | ∆0,∆2 ` H0 , ρ

? ↪→ v (2)
H0 , ρ

? ↪→ v ; !ρ 7→ H0 , ρ
? ↪→ v ; E[v] (3)

by hypothesis, with (d:Dereference) where E = �. Also note that we have ∆T = · since
there is no resulting new thread from this step.
Γ0 | ∆0 ` ρ : ref ρ a ∆, rw ρ !A (4)

by inversion on (t:Dereference-Pure) with (1).
Γ0 ` ∆0 <: ∆ρ,∆, rw ρ !A (5)
Γ0 | ∆ρ ` ρ : ref ρ a · (6)

by (Values Lemma) on (4).
∆ρ = · (7)

by (Values Inversion) on (6).
Γ0 ` ∆0 <: ∆, rw ρ !A (8)

by rewriting (5) with (7).
Γ0 | ∆, rw ρ !A,∆2 ` H0 , ρ

? ↪→ v (9)
by (str:Subsumption) with (8) and (2).

Γ0 | ∆v ` v : !A a · (10)
Γ0 | ∆,∆v,∆2 ` H0 (11)

by (Store Typing Inversion) with (9).
∆v = · (12)
Γ0 | · ` v : !A a · (13)

by (Values Inversion) on (10).
Γ0 | ∆,∆2 ` H0 (14)

by rewriting (11) with (12).
by making:
Γ1 = · (15)
Γ0,Γ1 | ∆, rw ρ !A,∆2 ` H0 , ρ

? ↪→ v (16)
by (Weakening) using Γ1 on (9).
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Γ0,Γ1 | · ` v : !A a · (17)
by (Weakening) using Γ1 on (13).

Γ0,Γ1 | ∆, rw ρ !A ` v : !A a ∆, rw ρ !A (18)
by (t:Frame) using ∆, rw ρ !A on (17).

Therefore, by (16) and (18) we conclude (noting that T is empty meaning that we also
have ∆T = ·).

Case (t:Record) - is a value.

Case (t:Selection) - We have:

Γ0 | ∆0 ` {f = v}.fi : Ai a ∆ (1)
Γ0 | ∆0,∆2 ` H0 (2)
H0 ; E[{f = v}.fi] 7→ H0 ; E[vi] (3)

by hypothesis, with (d:Selection) where E = �. Also note that we have ∆T = · since there
is no resulting new thread from this step.
Γ0 | ∆0 ` {f = v} : [f : A] a ∆ (4)

by inversion on (t:Selection) with (1).
Γ0 ` ∆0 <: ∆′,∆ (5)
Γ0 | ∆

′ ` {f = v} : [f : A] a · (6)
by (Values Lemma) on (4).

Γ0 | ∆
′ ` vi : Ai a · (7)

by (Values Inversion) with (6) .
Γ0 | ∆

′,∆ ` vi : Ai a ∆ (8)
by (t:Frame) with ∆ with (7).

Γ0 | ∆
′,∆,∆2 ` H0 (9)

by (str:Subsumption) with (2) and (5).
Therefore, by making:
Γ1 = · (10)
∆1 = ∆′,∆ (11)
Γ0,Γ1 | ∆1,∆2 ` H0 (12)

by (Weakening) with (10) on (9) and rewriting (9) using (11).
Γ0,Γ1 | ∆1 ` vi : Ai a ∆ (13)

by (Weakening) with (10) on (8) and rewriting (8) using (11).
Therefore, by (12) and (13) we conclude (noting that T is empty meaning that we also
have ∆T = ·).

Case (t:Application) - We have:

Γ0 | ∆0 ` (λx.e) v : A1 a ∆ (1)
Γ0 | ∆0,∆2 ` H0 (2)
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H0 ; E[(λx.e) v] 7→ H0 ; E[e{v/x}] (3)
by hypothesis, with (d:Application) where E = �. Also note that we have ∆T = · since there
is no resulting new thread from this step.
Γ0 | ∆0 ` λx.e : A0 ( A1 a ∆′ (4)
Γ0 | ∆

′ ` v : A0 a ∆ (5)
by inversion on (t:Application) with (1).

Γ0 ` ∆0 <: ∆′,∆v (6)
Γ0 | ∆v ` λx.e : A0 ( A1 a · (7)

by (Values Lemma) on (4).
Γ0 ` ∆′ <: ∆,∆′v (8)
Γ0 | ∆

′
v ` v : A0 a · (9)

by (Values Lemma) on (5).
Γ0 | ∆v, x : A0 ` e : A1 a · (10)
v = λx.e (11)

by (Values Inversion) with (7).
Γ0 | ∆

′
v,∆v,∆ ` v : A0 a ∆v,∆ (12)

by (t:Frame) on (9) with ∆v,∆.
Γ0 | ∆v, x : A0,∆ ` e : A1 a ∆ (13)

by (t:Frame) on (10) with ∆.
Γ0 | ∆v,∆

′
v,∆ ` e{v/x} : A1 a ∆ (14)

by (Substitution Lemma - Linear) with (12) and (13).
By making:
Γ1 = ·

∆1 = ∆v,∆
′
v,∆

We immediately have:
Γ0,Γ1 | ∆1 ` e{v/x} : A1 a ∆ (15)

with (14).
Γ0,Γ1 | ∆

′,∆v,∆2 ` H0 (16)
by (str:Subsumption) with (2) and (6).

Γ0,Γ1 | ∆,∆
′
v,∆v,∆2 ` H0 (17)

by (str:Subsumption) with (16) and (8).
Γ0,Γ1 | ∆1,∆2 ` H0 (18)

by renaming the environment.
Therefore, by (15) and (18) we conclude (noting that T is empty meaning that we also
have ∆T = ·).

Case (t:Function) - is a value.

Case (t:Cap-Elim) - Not applicable, environment not closed.

Case (t:Cap-Stack) - We have:
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Γ0 | ∆0,∆T ` e0 : A0 :: A1 a ∆ (1)
Γ0 | ∆0,∆T ,∆2 ` H0 (2)
H0 ; e0 7→ H1 ; e1 · T (3)

by hypothesis.
Γ0 | ∆0,∆T ` e0 : A0 a ∆, A1 (4)

by inversion on (t:Cap-Stack) on (1).
Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 (5)
Γ0,Γ1 | ∆1 ` e1 : A0 a ∆, A1 (6)
Γ0,Γ1 | ∆T ` T (7)
for some ∆1,Γ1.

by induction hypothesis on (2), (3) and (4).
Γ0,Γ1 | ∆1 ` e1 : A0 :: A1 a ∆ (8)

by (t:Cap-Stack) on (6).
Therefore, by (5), (7) and (8) we conclude.

Case (t:Cap-Unstack) - We have:

Γ0 | ∆0,∆T ` e0 : A0 a ∆, A1 (1)
Γ0 | ∆0,∆T ,∆2 ` H0 (2)
H0 ; e0 7→ H1 ; e1 · T (3)

by hypothesis.
Γ0 | ∆0 ` e0 : A0 :: A1 a ∆ (4)

by inversion on (t:Cap-Unstack) on (1).
Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 (5)
Γ0,Γ1 | ∆1 ` e1 : A0 :: A1 a ∆ (6)
Γ0,Γ1 | ∆T ` T (7)
for some ∆1,Γ1.

by induction hypothesis on (2), (3) and (4).
Γ0,Γ1 | ∆1 ` e1 : A0 a ∆, A1 (8)

by (t:Cap-Unstack) on (6).
Therefore, by (5), (7) and (8) we conclude.

Case (t:Subsumption) - We have:

Γ0 | ∆0,∆T ` e0 : A1 a ∆ (1)
Γ0 | ∆0,∆T ,∆2 ` H0 (2)
H0 ; e0 7→ H1 ; e1 · T (3)

by hypothesis.
Γ0 ` ∆0,∆T <: ∆′0,∆

′
T (4)

Γ0 | ∆
′
0,∆

′
T ` e0 : A0 a ∆′ (5)

Γ0 ` A0 <: A1 (6)
Γ0 ` ∆′ <: ∆ (7)

by inversion on (t:Subsumption) with (1).
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Γ0 | ∆
′
0,∆

′
T ,∆2 ` H0 (8)

by (str:Subsumption) with (2) and (4).
Γ0,Γ1 | ∆1,∆

′
T ,∆2 ` H1 (9)

Γ0,Γ1 | ∆1 ` e1 : A0 a ∆′ (10)
Γ0,Γ1 | ∆

′
T ` T (11)

for some ∆1,Γ1.
by induction hypothesis on (3), (5) and (8).

Γ0,Γ1 | ∆1 ` e1 : A1 a ∆ (12)
by (t:Subsumption) with (6), (7) and (10).

Γ0,Γ1 | ∆T ` T (13)
by (wf:Program) and (t:Subsumption) with (11) and (4).

Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 (14)
by (2) and (4) since ∆T is disjoint, its support on H1 remains by (str:Subsumption) from (2).
Therefore, by (14), (12) and (13) we conclude.

Case (t:Tag) - is a value.

Case (t:Case) - We have:

Γ0 | ∆0 ` case ti#vi of t j#x j → e j end : A a ∆ (1)
Γ0 | ∆0,∆2 ` H0 (2)
H0 ; E[case ti#vi of t j#x j → e j end] 7→ H0 ; E[ei{vi/xi}] (3)

by hypothesis, (d:Case) where E = �. Also note that we have ∆T = · since there is no
resulting new thread from this step.
Γ0 | ∆0 ` ti#vi :

∑
i ti#Ai a ∆′ (4)

Γ0 | ∆′, xi : Ai ` ei : A a ∆ (5)
i ≤ j (6)

by inversion on (d:Case) with (1).
Γ0 ` ∆0 <: ∆v,∆

′ (7)
Γ0 | ∆v ` ti#vi :

∑
i ti#Ai a · (8)

by (Values Lemma) with (4).
Γ0 | ∆v ` vi : Ai a · (9)
for some i.

by (Values Inversion) with (8).
Γ0 | ∆v,∆

′ ` vi : Ai a ∆ (10)
by (t:Frame) on (9) with ∆′.

Γ0 | ∆0 ` ei{vi/xi} : A a ∆ (11)
by (Substitution Lemma - Linear) with (10) and (5), for some i.

By making:
Γ1 = ·

∆1 = ∆0

We trivially have:
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Γ0,Γ1 | ∆1 ` ei{vi/xi} : A a ∆ (12)
by (11).

Γ0,Γ1 | ∆1,∆2 ` H0 (13)
by (2).

Thus, by (12) and (13) we conclude (noting that T is empty meaning that we also
have ∆T = ·).

Case (t:Alternative-Left) - We have:

Γ0 | ∆0, A0 ⊕ A1,∆T ` e0 : A2 a ∆ (1)
Γ0 | ∆0, A0 ⊕ A1,∆T ,∆2 ` H0 (2)
H0 ; e0 7→ H1 ; e1 · T (3)

by hypothesis.
Γ0 | ∆0, A0,∆T ` e0 : A2 a ∆ (4)
Γ0 | ∆0, A1,∆T ` e0 : A2 a ∆ (5)

by inversion on (t:Alternative-Left) with (1).
By (Store Typing Inversion) on (2), we have that either:
• Γ0 | ∆0, A0,∆T ,∆2 ` H0 (1.1)

by sub-case hypothesis.
Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 (1.2)
Γ0,Γ1 | ∆1 ` e1 : A2 a ∆ (1.3)
Γ0,Γ1 | ∆T ` T (1.4)
for some ∆1,Γ1.

by induction hypothesis with (1.1), (3) and (4).
Therefore, we conclude.
• Γ0 | ∆0, A1,∆T ,∆2 ` H0 (2.1)

analogous to previous sub-case but using (5).
Thus, we conclude.

Case (t:Intersection-Right) - We have:

Γ0 | ∆0,∆T ` e0 : A2 a ∆, A0&A1 (1)
Γ0 | ∆0,∆T ,∆2 ` H0 (2)
H0 ; e0 7→ H1 ; e1 · T (3)

by hypothesis.
Γ0 | ∆0 ` e0 : A2 a ∆, A0 (4)
Γ0 | ∆0 ` e0 : A2 a ∆, A1 (5)

by inversion on (t:Intersection-Right) with (1).
Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 (6)
Γ0,Γ1 | ∆1 ` e1 : A2 a ∆, A0 (7)
Γ0,Γ1 | ∆T ` T (8)

by induction hypothesis with (2), (3) and (4).
Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 (9)
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Γ0,Γ1 | ∆1 ` e1 : A2 a ∆, A1 (10)
Γ0,Γ1 | ∆T ` T (11)

by induction hypothesis with (2), (3) and (5).
Γ0,Γ1 | ∆1 ` e1 : A2 a ∆, A0&A1 (12)

by (t:Intersection-Right) on (7) and (10).
Thus, by (11), (12) and (9) we conclude.

Case (t:Frame) - We have:

Γ0 | ∆0,∆T ,∆2 ` e0 : A a ∆,∆2 (1)
Γ0 | ∆0,∆T ,∆2,∆3 ` H0 (2)
H0 ; e0 7→ H1 ; e1 · T (3)

by hypothesis.
Γ0 | ∆0,∆T ` e0 : A a ∆ (4)

by inversion on (t:Frame) with (1).
Γ0,Γ1 | ∆1,∆T ,∆2,∆3 ` H1 (5)
Γ0,Γ1 | ∆1 ` e1 : A a ∆ (6)
Γ0,Γ1 | ∆T ` T (7)

by induction hypothesis on (2), (3) and (4).
Γ0,Γ1 | ∆1,∆2 ` e1 : A a ∆,∆2 (8)

by (t:Frame) on (7) using ∆2.
Therefore, by (5), (8), and (7) we conclude.

Case (t:Let) - We have two reductions:

1. Sub-Case: E = �

Γ0 | ∆0 ` let x = v in e end : A1 a ∆ (1)
Γ0 | ∆0,∆2 ` H0 (2)
H0 ; E[let x = v in e end] 7→ H0 ; E[e{v/x}] (3)

by hypothesis, (d:Let) where E = �. Also note that we have ∆T = · since there is
no resulting new thread from this step.
Γ0 | ∆0 ` v : A0 a ∆′ (5)
Γ0 | ∆

′, x : A0 ` e : A1 a ∆ (6)
by inversion on (t:Let) with (1).

Γ0 ` ∆0 <: ∆v,∆
′ (7)

Γ0 | ∆v ` v : A0 a · (8)
by (Values Lemma) with (4).

Γ0 | ∆v,∆
′ ` v : A0 a ∆′ (9)

by (t:Frame) with (8).
Γ0 | ∆v,∆

′ ` e{v/x} : A1 a ∆ (10)
by (Substitution Lemma - Linear) with (6) and (9).

Γ0 | ∆v,∆
′,∆2 ` H0 (11)
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by (str:Subsumption) with (2) and (7).
Therefore, by (Weakening) with Γ1 = · and by (10) and (11) we conclude.

2. Sub-Case: E = (let x = E′[e0] in e2 end)

Γ0 | ∆0,∆T ` let x = E′[e0] in e2 end : A1 a ∆ (1)
Γ0 | ∆0,∆T ,∆2 ` H0 (2)
H0 ; E′[e0] 7→ H1 ; E′[e1] · T (3)

by hypothesis.
Γ0 | ∆0,∆T ` E

′[e0] : A0 a ∆′ (4)
Γ0 | ∆

′, x : A0 ` e2 : A1 a ∆ (5)
by inversion on (t:Let) with (1).

Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 (6)
Γ0,Γ1 | ∆1 ` E

′[e1] : A0 a ∆′ (7)
Γ0,Γ1 | ∆T ` T (8)

by induction hypothesis on (2), (4) and (5).
Γ0,Γ1 | ∆

′, x : A0 ` e2 : A1 a ∆ (8)
by (Weakening) on (6).

Γ0,Γ1 | ∆1 ` let x = E′[e1] in e2 end : A1 a ∆ (9)
by (t:Let) with (7) and (8).

Therefore, by (6), (8), (9) we conclude.

Case (t:Fork) - We have:

Γ0 | ∆T ` fork e : ![] a · (1)
Γ0 | ∆T ,∆2 ` H0 (2)
H0 ; E[fork e] 7→ H0 ; E[{}] · e (3)

by hypothesis, with (d:Fork) where E = �.
Γ0 | ∆T ` e : ![] a · (4)

by inversion on (t:Fork).
Γ0 | · ` {} : ![] a · (5)

by (t:Record).
Thus, by making:
∆1 = · (6)
We conclude by (2), (4) and (5).

Case (t:Forall-Loc-Val), (t:Forall-Type-Val) - Are values.

Case (t:TypeOpenBind), (t:LocOpenBind) - Not applicable, environment not closed.

Case (t:LocOpenCap) - We have:
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Γ0 | ∆0,∆T ,∃l.A0 ` e0 : A1 a ∆ (1)
Γ0 | ∆0,∆T ,∃l.A0,∆2 ` H0 (2)
H0 ; e0 7→ H1 ; e1 · T (3)

by hypothesis.
Γ0, t : loc | ∆0,∆T , A0 ` e0 : A1 a ∆ (4)

by inversion on (t:LocOpenCap) with (1).
Γ0 | ∆0,∆T , A0{ρ/l},∆2 ` H0 (5)

by (Store Typing Inversion) with (2).
Γ0 | ∆0,∆T , A0{ρ/l} ` e0 : A1 a ∆ (6)

by (Substitution Lemma - Location Variable) with ρ and (4).
Γ0,Γ1 | ∆1,∆T ,∆2 ` H1 (7)
Γ0,Γ1 | ∆1 ` e1 : A0 a ∆′ (8)
Γ0,Γ1 | ∆T ` T (9)

by induction hypothesis with (3), (5) and (6).
Thus, we conclude.

Case (t:TypeOpenCap) - Analogous to (t:LocOpenCap).

Case (t:Unlock-Guarantee) - We have:

Γ0 | ∆0, A0, A0; A1 ` unlock v : ![] a ∆0, A1 (1)
Γ0 | ∆0, A0, A0; A1,∆2 ` H0, ρ• ↪→ v (2)
H0, ρ• ↪→ v ; E[unlock ρ] 7→ H0, ρ ↪→ v ; E[{}] (3)
by hypothesis with (t:Unlock-Guarantee) where E = � and where ∆T = · since there is no

resulting new thread from this step.
Γ0 | ∆0, A1 ` {} : ![] a ∆0, A1 (4)

by (t:Record), (t:Pure), and (t:Frame) with ∆0, A1.
If we make:
H0 = H,H′ (5)
then:
locs(A0) = locs(A1) = ρ (6)
ρ• ↪→ v ∈ H, ρ• ↪→ v (7)
Γ | A0 ` H, ρ• ↪→ v (8)
ρ ↪→ v ∈ H, ρ ↪→ v (9)
Γ | A0 ` H, ρ ↪→ v (10)
Γ | ∆0, A1 ` H,H′, ρ ↪→ v (11)

by (Store Typing Inversion) with (2).
Therefore, we conclude by (4) and (11) noting (5).

Case (t:Lock-Rely) - We have:

Γ0 | ∆0, A0 ⇒ A1 ` lock v : ![] a ∆0, A0, A1 (1)
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Γ0 | ∆0, A0 ⇒ A1,∆2 ` H0, ρ ↪→ v (2)
H0, ρ ↪→ v ; E[lock ρ] 7→ H0, ρ• ↪→ v ; E[{}] (3)

by hypothesis, with (t:Lock-Rely) where E = �, and where ∆T = · since there is no
resulting new thread from this step.
Γ0 | ∆0, A0, A1 ` {} : ![] a ∆0, A0, A1 (4)

by (t:Record) and (t:Frame) with ∆0, A0, A1.
locs(A0) = ρ (5)

by inversion on (t:Lock-Rely) since ρ ∈ A0.
Γ0 | A0 ` H′, ρ ↪→ v (6)
H0 = H,H′ (7)
by (Store Typing Inversion) with (2), since we know that the locations ρ (thus the rely type

must be supported by the heap since protocols must be introduced via (str:Subsumption)).
We must show that:
Γ0 | ∆0, A0, A1,∆2 ` H,H′, ρ• ↪→ v
Since A0 ⇒ A1 is well-formed and also obeys protocol composition, we have that A1 must
have one of the following structures:

• A1 = (A′1; A′′1 ) (8.1)
Thus, if we have a heap such that:
Γ0 | A′1 ` H′′, ρ ↪→ v (8.2)
Γ0 | ∆0, A′′1 ,∆2 ` H′′,H, ρ ↪→ v (8.3)

by (Composition Preservation) and (2) since we know that all protocols must still compose
after stepping.

Γ0 | ∆0, A0, A1,∆2 ` H,H′, ρ• ↪→ v (8.4)
by (str:Locked) using (6), (7), (8.2) and (8.3).

• A1 = ∀l.A′1 (9.1)
Thus, if we have a heap such that (similar to previous case):
Γ0, l : loc | A′1 ` H′′, ρ ↪→ v (9.2)
Then by (str:Locked):
Γ0, l : loc | ∆0, A0, A′1 ` H,H′, ρ• ↪→ v (9.3)
and:
Γ0 | ∆0, A0,∀l.A′1 ` H,H′, ρ• ↪→ v (9.4)

by (str:ForallLocs).
• A1 = ∀X<: A′.A′1 (10.1)
Γ0 | ∆0, A0,∀X<: A′.A′1 ` H,H′, ρ• ↪→ v (10.2)

similarly to the previous case but using (str:ForallTypes).
Therefore, we conclude by (4) and (8.4), (9.4), (10.2).

�
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H.10 Progress
We define progress over closed programs (which includes an arbitrarily large but finite number of
thread, T ) and expressions (e).

Theorem 7 (Program Progress). If we have

Γ | ∆ ` T0 live(T0)

and if exists H0 such that Γ | ∆ ` H0 then

H0 ; T0 7→ H1 ; T1

Proof. We proceed by induction on the typing derivation of Γ | ∆ ` T0.

Case (wf:Program) - We have:

Γ | ∆ ` T0 (1)
live(T0) (2)

by hypothesis.
Γ | ∆i ` ei : ![] a · (3)
i ∈ {0, ..., n} (4)
n ≥ 0 (5)

by inversion on (1) with (wf:Program).
T0 = e0 · ... · en (6)

(remember that the order of the threads is not important)
∆ = ∆0, ...,∆n (7)

by decomposing ∆ into smaller typing environments.
Then for some arbitrary j such that:
j ∈ {0, ..., n} (8)
live(e j) (9)

by (2) and the definition of live(T0) there must be at least one thread that is live.
Then by (Expression Progress) with e j on (3), we have that either:
• e j is a value, or (10.1)
• if exists H0 such that Γ | ∆ ` H0 (note that ∆ j ∈ ∆ by (7)) then either:
� (steps) H0 ; e j 7→ H1 ; e′j · T ′ (10.2)
� (waits) Wait(H0, e j) (10.3)

We have that cases (10.1) and (10.3) cannot occur because we picked e j such that live(e j).
Therefore, we have (10.2) which by (d:Thread) with the remaining threads of T0 still steps.
Thus, we conclude since we have that the set of threads steps.

�

Theorem 8 (Expression Progress). If we have

Γ | ∆0 ` e0 : A a ∆1

then we have that either:
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• e0 is a value, or;

• if exists H0 such that Γ | ∆,∆0 ` H0 then either:

– (steps) H0 ; e0 7→ H1 ; e1 · T

– (waits) Wait(H0, e0)

Proof. We proceed by induction on the typing derivation of Γ | ∆0 ` e0 : A a ∆1.

Case (t:Ref), (t:Pure), (t:Unit) - are values.

Case (t:Pure-Read), (t:Linear-Read), (t:Pure-Elim) - not applicable due to the environment not
being closed.

Case (t:New) - We have:

Γ | ∆0 ` new v : ∃l.(!ref l :: rw l A) a ∆1 (1)
by hypothesis.

new v is not a value. If exists:
Γ | ∆,∆0 ` H0 (2)
Then the expression steps using (d:New) with E = �, i.e.:
�[new v] (3)
Thus, we conclude by stepping using (d:New).

Case (t:Delete) - We have:

Γ | ∆0 ` delete v : ∃l.A a ∆1 (1)
by hypothesis.

Γ | ∆0 ` v : ∃l.(!ref l :: rw l A) a ∆1 (2)
by inversion on (t:Delete) with (1).

Γ | ∆v ` v : ∃l.(!ref l :: rw l A) a · (3)
Γ ` ∆0 <: ∆′,∆v (4)

by (Values Inversion) with (2).
Γ | ∆v ` v :!ref ρ :: rw ρ A a · (4)

by (Values Inversion) with (3).
Γ | ∆v ` v :!ref ρ a rw ρ A (5)

by (Values Inversion) with (4).
Γ | ∆′v ` v : ref ρ a · (6)
Γ ` ∆v <: ∆′v, rw ρ A (7)

by (Values Inversion) with (5).
∆′v = · (8)
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ρ ∈ Γ (9)
v = ρ (10)

by (Values Inversion) on (6).
Since delete v is not a value. If exists:
Γ | ∆,∆0 ` H0 (11)
Then we must have that:
ρ? ↪→ v′ ∈ H0 (12)

by (Store Typing Inversion) on the ρ binding and (11), (4) and (7).
Then the expression steps using (d:Delete) with E = �, i.e.:
�[delete v] (3)
Thus, we conclude by stepping using (d:Delete).

Case (t:Assign) - We have:

Γ | ∆0 ` v0 := v1 : A1 a ∆1, rw ρ A0 (1)
by hypothesis.

Γ | ∆0 ` v1 : A0 a ∆2 (2)
Γ | ∆2 ` v0 : ref ρ a ∆1, rw ρ A1 (3)

by inversion on (t:Assign) with (1).
v0 = ρ (4)

by applying (Values Inversion) multiple times, similarly to the (t:Delete) case, on (3).
v0 := v1 is not a value. If exists:
Γ | ∆,∆0 ` H0 (5)
Then we must have that:
ρ? ↪→ v′ ∈ H0 (6)

by (Store Typing) definition on the ρ binding since the capability for ρ exists.
Then the expression steps using (d:Assign) with E = �, i.e.:
�[v0 := v1] (7)
Thus, we conclude by stepping using (d:Assign).

Case (t:Dereference-Linear) - We have:

Γ | ∆0 ` !v : A a ∆1, rw ρ ![] (1)
by hypothesis.

Γ | ∆0 ` v : ref ρ a ∆1, rw ρ A (2)
by inversion on (t:Dereference-Linear) with (1).

v = ρ (3)
by (Values Inversion) on (2) as in previous cases.

v0 := v1 is not a value. If exists:
Γ | ∆,∆0 ` H0 (5)
Then we must have that:
ρ? ↪→ v′ ∈ H0 (6)

by (Store Typing) definition on the ρ binding as in previous cases.
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Then the expression steps using (d:Dereference) with E = �, i.e.:
�[!v] (7)
Thus, we conclude by stepping using (d:Dereference).

Case (t:Dereference-Pure) - similar to (t:Dereference-Linear).

Case (t:Record) - is a value.

Case (t:Selection) - We have:

Γ | ∆0 ` v.fi : Ai a ∆1 (1)
by hypothesis.

Γ | ∆0 ` v : [f : A] a ∆1 (2)
by inversion on (t:Selection) with (1).

v = {f = v′} (3)
by (Values Lemma) and (Values Inversion) with (2).

v.fi is not a value. If exists:
Γ | ∆,∆0 ` H0 (5)
Then the expression steps using (d:Selection) with E = �, i.e.:
�[v.fi] (6)
Thus, we conclude by stepping using (d:Selection).

Case (t:Application) - We have:

Γ | ∆0 ` v0 v1 : A1 a ∆1 (1)
by hypothesis.

Γ | ∆0 ` v0 : A0 ( A1 a ∆2 (2)
Γ | ∆2 ` v1 : A0 a ∆1 (3)

by inversion on (t:Application) with (1).
v0 = λx.e (4)

by (Values Lemma) and (Values Inversion) with (2).
v0 v1 is not a value. If exists:
Γ | ∆,∆0 ` H0 (5)
Then the expression steps using (d:Selection) with E = �, i.e.:
�[v0 v1] (6)
Thus, we conclude by stepping using (d:Application).

Case (t:Function) - is a value.

Case (t:Cap-Elim) - not applicable due to the environment not being closed.
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Case (t:Cap-Stack), (t:Cap-Unstack) - immediate by direct application of the induction hypothe-
sis on the inversion of the typing rule.

Case (t:Frame) - We have:

Γ | ∆0,∆2 ` e0 : A0 a ∆1,∆2 (1)
by hypothesis.

Γ | ∆0 ` e0 : A0 a ∆1 (2)
by inversion on (t:Frame) with (1).

Then, by induction hypothesis on (2), we have that either:
• e0 is a value, or; (3)
• if exists H0 such that Γ | ∆,∆0 ` H0 then either:

� (steps) H0 ; e0 7→ H1 ; e1 · T (4)
� (waits) Wait(H0, e0) (5)

Therefore, by making ∆2 ∈ ∆ by (3), (4), and (5) we conclude.

Case (t:Subsumption) - We have:

Γ | ∆0 ` e0 : A1 a ∆3 (1)
by hypothesis.

Γ ` ∆0 <: ∆1 (2)
Γ | ∆1 ` e0 : A0 a ∆2 (3)
Γ ` A0 <: A1 (4)
Γ ` ∆2 <: ∆3 (5)

by inversion on (t:Subsumption) with (1).
Then, by induction hypothesis on (3), we have that either:
• e0 is a value, or; (6)
• if exists H0 such that Γ | ∆,∆1 ` H0 then either:

� (steps) H0 ; e0 7→ H1 ; e1 · T (7)
� (waits) Wait(H0, e0) (8)

Furthermore, we know that if exists H′0 such that:
Γ | ∆,∆0 ` H′0 (9)
then:
Γ | ∆,∆1 ` H′0 (10)

by (Subtyping Store Typing) with (2) and (6).
Therefore, we conclude by (6), (7) and (8) (using H′0).

Case (t:Tag) - is a value.

Case (t:Case) - We have:
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Γ | ∆0 ` case v of t j#x j → e j end : A a ∆1 (1)
by hypothesis.

Γ | ∆0 ` v :
∑

i ti#Ai a ∆1 (2)
Γ | ∆1, xi : Ai ` ei : A a ∆2 (3)
i ≤ j (4)

by inversion on (t:Case) with (1).
v = ti#vi (5)

by (Values Lemma) and (Values Inversion) with (2).
case v of t j#x j → e j end is not a value. If exists:
Γ | ∆,∆0 ` H0 (6)
Then the expression steps using (d:Case) with E = �, i.e.:
�[case v of t j#x j → e j end] (7)
Thus, we conclude by stepping using (d:Case).

Case (t:Alternative-Left) - We have:

Γ | ∆0, A0 ⊕ A1 ` e : A2 a ∆1 (1)
by hypothesis.

Γ | ∆0, A0 ` e : A2 a ∆1 (2)
Γ | ∆0, A1 ` e : A2 a ∆1 (3)

by inversion on (t:Alternative-Left) with (1).
If exists H such that:
Γ | ∆′,∆0, A0 ⊕ A1 ` H (4)
By (Store Typing Inversion) due to (st:Alternative) on (4), we have that either (from ⊕
being commutative):
� Γ | ∆′,∆0, A0 ` H (5)

Then by induction hypothesis on (2) we conclude.
� Γ | ∆′,∆0, A1 ` H (6)

Then by induction hypothesis on (3) we conclude.
Therefore, we conclude.

Case (t:Intersection-Right) - immediate by applying the induction hypothesis on the inversion
of the typing rule.

Case (t:Forall-Loc-Val), (t:Forall-Type-Val) - are values.

Case (t:LocOpenCap) - We have:

Γ | ∆0,∃l.A1 ` e : A2 a ∆1 (1)
by hypothesis.

Γ, l : loc | ∆0, A1 ` e : A2 a ∆1 (2)
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by inversion on (t:LocOpenCap) with (1).
If e is not a value, then if exists:
Γ | ∆,∆0,∃l.A1 ` H0 (3)
Γ ` A1{ρ/l} <: ∃l.A1 (3)

by (Store Typing Inversion) on (3) and (st:PackLoc) with ∃l.A1.
Γ | ∆0, A1{ρ/l} ` e : A2 a ∆1 (4)

by (Substitution Lemma) on (2) with ρ.
Thus, we conclude by induction hypothesis on (4).

Case (t:TypeOpenCap) - similar to (t:LocOpenCap).

Case (t:TypeOpenBind), (t:LocOpenBind) - not applicable due to the environment not being closed.

Case (t:Fork) - We have:

Γ | ∆0 ` fork e : ![] a · (1)
by hypothesis.

fork e is not a value. If exists:
Γ | ∆,∆0 ` H0 (2)
Then the expression steps using (d:Fork) with E = �, i.e.:
�[fork e] (3)
Thus, we conclude by stepping using (d:Fork).

Case (t:Lock-Rely) - We have:

Γ | ∆0, A0 ⇒ A1 ` lock v : ![] a ∆1, A0, A1 (1)
by hypothesis.

lock v is not a value. If exists:
Γ | ∆,∆0, A0 ⇒ A1 ` H0 (2)
By (Store Typing) definition, we have that either:
• All the locks of the locations contained in A0 are available. Then the expression

steps by (d:Lock) with E = �.
• Some of the locks of the locations of A0 are unavailable. Then we have that the

expression waits, i.e. we have Wait(H0, lock v).
Thus, we conclude.

Case (t:Unlock-Guarantee) - We have:

Γ | ∆0, A0, A0; A1 ` unlock v : ![] a ∆0, A1 (1)
by hypothesis.

unlock v is not a value. If exists:

155



Γ | ∆0, A0, A0; A1 ` H0 (2)
Then the expression steps using (d:Unlock) with E = �, i.e.:
�[unlock v] (3)
Thus, we conclude by stepping using (d:Unlock).

Case (t:Let) - We have:

Γ | ∆0 ` let x = e0 in e2 end : A a ∆2 (1)
by hypothesis.

Γ | ∆0 ` e0 : A0 a ∆1 (2)
Γ | ∆1, x : A0 ` e2 : A1 a ∆2 (3)

by inversion on (t:Let) with (1).
By induction hypothesis on (2), we have that either:
• e0 is a value; (6)

then by (d:Let) the expression transitions, with E = �.
• if exists H0 such that Γ | ∆,∆0 ` H0 then either:

� (steps) H0 ; e0 7→ H1 ; e1 · T (7)
then the expression steps by (d:Thread) (with an empty initial thread pool) and

E = (let x = E′[e1] in e2 end) and E′ = �.
� (waits) Wait(H0, e0) (8)

then Wait(H0, let x = e0 in e2 end) by the definition of Wait since we have:
Wait(H0,E[e0])

where E = (let x = E′[e0] in e2 end) where E′ = �.
Thus, we conclude.

�
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I Algorithms Theorems
We now discuss the algorithmic implementations of protocol composition (shown in Section F.1)
and subtyping (shown in Section F.2). Namely, we discuss the decidability of these algorithms.
The decidability of the full system will likely require annotated terms to guide the type system in
less obvious choices, such as in what to split a resource and when. Although they did not do a
formal discussion of decidability, prior work on rely-guarantee protocols [21] includes a prototype
implementation that uses additional type annotations to make typing practically syntax directed.
Note that more practical implementations may reduce some of the annotation overhead of [21] by
pushing additional verification complexity to the type checker (i.e. trade annotations for “type-
searching” algorithms). In here we focus on the core issue of decidability of protocol composition
without the need for additional type annotations beyond the initial resource to be split and the two
resulting protocols.

Our subtyping algorithm uses a variant of the algorithm described in [2] to ensure decidability
of subtyping on recursive types. The main distinction is that our recursive types include parameters,
thus our recursive types may include arguments that introduce subtle decidability issues. For this
reason, our focus is on treating the new problems in a clear way. For instance, to avoid the general
undecidability of subtyping over bounded quantification [26] we use the subtyping rule of F<: [27],
although other more flexible subtyping rules exists [6].

Note that both both (st:Pack*) and (st:*App) rules use a unification algorithm that searches for
a single type/location match to be used in the rule. Since we at most traverse the type structure to
find such a type/location, the algorithm naturally terminates through the same reasoning as with
subtyping. Type equality follows similar reasoning. Therefore, our reasoning assumes that there
exists a decidable, sound, and complete unification (A{B/X} = C) and equality (A ≡ B) algorithms.
Finally, also note that we do not consider types (such as ⊥ = rec X.X) to be well-formed types.
Since we use the same cycle detection technique of [2], allowing these types could yield wrong
results.

I.1 Ensuring Regular Type Structure
Both subtype and protocol composition algorithms may have to recur on the inner sub-terms of
a type. For instance, checking that int ( bool <: string ( double is not valid requires
checking string <: int and bool <: double, c.f. (st:Function). Consequently, it becomes
important to ensure that the set of sub-terms of a type is finite so that we can be sure both algorithms
will converge to a result after an arbitrary, but finite, number of recursive steps. The main problem
is in finding a bound on the unfolding of recursive types. More specifically, we must ensure that
our use of recursive types with parameters still produces types that are regular in their structure,
regardless of the arguments used.

Both subtype and protocol composition will build a co-inductive proof. The corresponding al-
gorithm will only terminate if the proof reaches a “loop” in its derivation that closes the derivation.
Consequently, we must show that any well-formed type will enable such a loop to be reached. The
fundamental property is to ensure that the structure of the derivation is regular. In our system, be-
cause we have both parametric polymorphism and recursive types with parameters, ensuring this
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regularity is non-trivial and requires more than strict derivation equality.
For our purposes here, our equivalence relation will only consider renaming of type/location

variables and weakening of assumptions. Consequently, we will impose well-formedness condi-
tions on our types to ensure that any well-formed type will produce derivations that are equivalent
up to those two conditions. We leave as future work devising other, perhaps less restrictive, well-
formedness conditions and equivalences since our focus here is to discuss the implementation of
protocol composition in the clearest possible terms.

To illustrate an irregular unfold, consider for instance the following recursive type, R, that uses
a single (type) parameter, X:

(rec R(X).( int( R[X ( X] ))[int] (Ex.1)

Unfolding this type, and its resulting sub-terms, produces the following sequence of types (we
underline the “fixed” part of the recursive type to highlight how that same unfold produces irregular
types over its argument):

(rec R(X).( int( R[X ( X] )) [int]
int( (rec R(X).( int( R[X ( X] )) [int( int]

int( int( (rec R(X).( int( R[X ( X] )) [(int( int)( (int( int)]
. . .

for clarity, we replace the underlined type with just R to highlight the irregular set of sub-terms:

R[int]
int( R[int( int]

int( int( R[(int( int)( (int( int)]
. . .

We see that the type that results from unfolding is not regular, as the use of the recursive variable
R in “rec R(X).( int( R[X ( X] )” produces a type that is non-repeating. Consequently, if such
a use were allowed, it would make it impossible for an algorithm that traverses all sub-terms of
a type to terminate since the type above does not present a finite, regular structure due to its ever
growing argument that is applied to the recursive type R.

To forbid uses such as the one above, we limit the kind of arguments that may be applied to a
recursive type variable (such as R above) via well-formedness rules (for the full set of rules, see
G.1). We restrict the arguments that can be applied to a recursive type variable to be limited to
location variables or type variables, and exclude recursive type variables:

(X : k0 → ...→ kn → type) ∈ Γ (Ui : ki) ∈ Γ i ∈ {0, ..., n}

Γ ` X[U] type

The rule states that for a given recursive type variable X (recursive type variables have a “... →
type” kind), its arguments (U) must each be an assumption of compatible kind ((Ui : ki) ∈ Γ).
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Since we are considering each individual ki of X, these can only be either a loc or a type (and never
of the form “...→ type”) which effectively enforces that only location variables or (non-recursive)
type variables can be used in this context. Thus, applications of the form R[R] are forbidden since
R is a recursive type variable, and R[X ( X] is also forbidden since the argument is of a function
type (not a type/location variable).

Note, however, that the argument applied to the recursive type is not restricted to just type/lo-
cation variables and instead is only required to be of the desired kind:

u0 : k0, ..., un : kn, X : k0 → ...→ kn → type ` A type
Γ ` Ui ki ki = kind(ui) i ∈ {0, ..., n}

Γ ` (rec X(u).A)[U] type

where: kind(l) = loc and kind(X) = type. Thus, using int as argument in (rec R(X).A)[int]
is legal. However, because we only allow each parameter of a recursive type to be either of kind
type or kind loc, recursive type variables cannot appear as arguments (in U) even in this situation.
To preserve the well-formedness condition on uses of X[U′] we must also avoid situations where
substitution from other recs may replace some argument in U′ with a non-variable type before X
is unfolded. Therefore, the body of rec, i.e. A, must ignore all other variables that are outside the
top-level rec, so that substitution of any element in U′ will only occur as the rec is unfolded.

However, only using the restrictions above is still not sufficient to ensure that the algorithms
will terminate, since the resulting set of sub-terms may still be irregular. Consider the following
type:

(rec V(Z).(∀X <: (A( Z).V[X]))[int] (Ex.2)

If we traverse the sub-terms of this type, we see that the typing context of the “V[X]” sub-term is
irregular, although the type structure of V[...] itself remains regular.

To illustrate this, we are going to look into multiple unfolds of V but only show the premise
that is used to check that V[...] is well-formed. To highlight the renaming on each unfold, each
new use of X is indexed with ever growing integers. Although we are traversing the rec’s sub-
terms (automatically unfolding V to continue such traversal), we omit all “: type” assertions to
focus instead on the typing context that is used to check that “Γ ` V[...] type” (i.e. that V[...] is
well-formed):

· ` V[int]
X0 <: A( int ` V[X0]

X1 <: A( X0, X0 <: A( int ` V[X1]
X2 <: A( X1, X1 <: A( X0, X0 <: A( int ` V[X2]

. . .

Consequently, for a recursive type to be well-formed we must also ensure that the enclosing context
of future unfolds is regular since it is not enough to only look at the type’s structure alone.

We restrict the type of the bound of a ∀ or ∃ such that the bound must be well-formed in
the empty context “· ` A type” in any “∃X <: A.B” or “∀X <: A.B” types via the following
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well-formdness conditions:

· ` A0 type Γ, X : type, X <: A0 ` A1 type
Γ ` ∀X<: A0.A1 type

· ` A0 type Γ, X : type, X<: A0 ` A1 type
Γ ` ∃X<: A0.A1 type

These conditions naturally ensure that the typing contexts in a type must be regular since the typing
context is essentially fixed and cannot change on each unfold. We leave as future work relaxing
this condition, but for our discussion here, this well-formedness restriction is enough to type our
examples and provides an interesting domain for checking safe protocol composition.

Still, our constraints enable some flexibility such as the case of the following type, that can be
considered regular by considering renaming of variables and weakening:

(rec M(Y).(Y ( ∀X <: top.M[X]))[int] (Ex.3)

As above, we illustrate the case via successive unfolds but only show the typing context used
to check that Γ ` M[...] type (i.e. that M[...] is well-formed):

· ` M[int]
X0 <: top ` M[X0]

X1 <: top, X0 <: top ` M[X1]
X2 <: top, X1 <: top, X0 <: top ` M[X2]

. . .

By inversion on weakening of assumptions, we can consider the last context to only really require
the “X2 <: top” assumption (since the other variables do not occur in M[X2]). By renaming X0

and X2 to some fresh variable, both the first and third types can be deduced equivalent (≡)—which
would enable to close a co-inductive proof that traverses M’s sub-terms.

Z <: top ` M[Z] ≡ Z <: top ` M[Z]

(X2 <: top){Z/X2} ` (M[X2]){Z/X2} ≡ (X0 <: top){Z/X0} ` (M[X0]){Z/X0}

X2 <: top, X1 <: top, X0 <: top ` M[X2] ≡ X0 <: top ` M[X0]

Thus, we consider equivalence up to renaming of variables and weakening of assumptions—
besides the other restrictions discussed above.

I.1.1 Finite Sub-terms

We now discuss the regularity of the structure of our well-formed types. These lemmas are essential
to show that there is a bound in the number of members of the set of types that an algorithm will
recur on. Thus, when we recur on some type’s sub-term, the domain of possible sub-terms of that
type must necessarily be monotonically shrinking since its set of distinct sub-terms is bounded by
a finite number. To simplify the discussion, instead of counting the exact size of the set of distinct
sub-terms of a type, our proofs will often resort to simpler overapproximations of that set. Since
even the dimension of that overapproximation is finite, then the set of distinct sub-terms of any
well-formed type will also necessarily be finite.
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sts( Γ ` none ) = { Γ ` none }
sts( Γ ` top ) = { Γ ` top }
sts( Γ ` ref p ) = { Γ ` ref p }
sts( Γ ` rw p A ) = { Γ ` rw p A } ∪ sts( Γ ` A )
sts( Γ ` !A ) = { Γ ` !A } ∪ sts( Γ ` A )
sts( Γ ` A( B ) = { Γ ` A( B } ∪ sts( Γ ` A ) ∪ sts( Γ ` B )
sts( Γ ` A :: B ) = { Γ ` A :: B } ∪ sts( Γ ` A ) ∪ sts( Γ ` B )
sts( Γ ` A ∗ B ) = { Γ ` A ∗ B } ∪ sts( Γ ` A ) ∪ sts( Γ ` B )
sts( Γ ` A ⊕ B ) = { Γ ` A ⊕ B } ∪ sts( Γ ` A ) ∪ sts( Γ ` B )
sts( Γ ` A & B ) = { Γ ` A&B } ∪ sts( Γ ` A ) ∪ sts( Γ ` B )
sts( Γ ` A⇒ B ) = { Γ ` A⇒ B } ∪ sts( Γ ` A ) ∪ sts( Γ ` B )
sts( Γ ` A ; B ) = { Γ ` A ; B } ∪ sts( Γ ` A ) ∪ sts( Γ ` B )
sts( Γ ` [f : A] ) = { Γ ` [f : A] } ∪

⋃
i sts( Γ ` Ai )

sts( Γ `
∑

i ti#Ai ) = { Γ `
∑

i ti#Ai } ∪
⋃

i sts( Γ ` Ai )
sts( Γ ` ∀l.A ) = { Γ ` ∀l.A } ∪ sts( Γ, l : loc ` A )
sts( Γ ` ∃l.A ) = { Γ ` ∃l.A } ∪ sts( Γ, l : loc ` A )
sts( Γ ` ∀X<: A.B ) = { Γ ` ∀X<: A.B } ∪ sts( · ` A ) ∪ sts( Γ, X : type, X <: A ` B )
sts( Γ ` ∃X<: A.B ) = { Γ ` ∃X<: A.B } ∪ sts( · ` A ) ∪ sts( Γ, X : type, X <: A ` B )
sts( Γ ` X[U] ) = { Γ ` X[U] }
sts( Γ ` (rec X(u).A)[U] ) = { Γ ` (rec X(u).A)[U] } ∪ sts( Γ ` A{(rec X(u).A)/X}{U/u} )

Note: we omit type from Γ ` A type for conciseness.

Figure 35: Computing the (infinite) set of sub-terms of a type (sts).

Figure 35 shows a straightforward way to compute the infinite set of sub-terms of a type. The
most important case to note is that of rec, which unfolds the recursive type and then continues
the analysis over the unfolded type. Consequently, sts’s definition may not terminate if we do not
define a way to identify repeating sub-terms and stop further (unnecessary) recursive calls to sts.

As discussed above, we consider equivalence (≡) up to renaming of variables and weakening
of assumptions defined as follows (for any two well-formed types, and such that any premise must
also obey type well-formedness):

Γ ` A ≡ Γ ` A (equality)
Γ0,Γ1 ` A0 ≡ Γ2,Γ3 ` A1 if Γ1 ` A0 ≡ Γ3 ` A1 (weakening)
Γ0 ` A0 ≡ Γ1 ` A1 if Γ0{Z/X} ` A0{Z/X} ≡ Γ1{Z/Y} ` A1{Z/Y} and Z fresh (renaming type)
Γ0 ` A0 ≡ Γ1 ` A1 if Γ0{l/t′} ` A0{l/t′} ≡ Γ1{l/t} ` A1{l/t} and l fresh (renaming loc)

With the conditions above, we can approximate the infinite set of sub-terms computed by sts with
one that computes an equivalent (up to renaming and weakening) but finite set since we are just
collapsing equivalent members of that set (i.e. each member now represents the class of types
defined up to renaming and weakening). Thus, the algorithm stopping condition would simply
have to carry a set of visited sub-terms and not recur on equivalent sub-terms that it already visited.
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st( Γ ` A ) = st( Γ ` A, ∅ )

st( Γ ` A, v ) = v if (Γ′ ` A′) ∈ v and (Γ ` A) ≡ (Γ′ ` A′)
st( Γ ` none, v ) = v ∪ { Γ ` none }
st( Γ ` top, v ) = v ∪ { Γ ` top }
st( Γ ` ref p, v ) = v ∪ { Γ ` ref p }
st( Γ ` rw p A, v ) = v ∪ { Γ ` rw p A } ∪ st( Γ ` A, v )
st( Γ ` !A, v ) = v ∪ { Γ ` !A } ∪ st( Γ ` A, v )
st( Γ ` A( B, v ) = v ∪ { Γ ` A( B } ∪ st( Γ ` A, v ) ∪ st( Γ ` B, v )
st( Γ ` A :: B, v ) = v ∪ { Γ ` A :: B } ∪ st( Γ ` A, v ) ∪ st( Γ ` B, v )
st( Γ ` A ∗ B, v ) = v ∪ { Γ ` A ∗ B } ∪ st( Γ ` A, v ) ∪ st( Γ ` B, v )
st( Γ ` A ⊕ B, v ) = v ∪ { Γ ` A ⊕ B } ∪ st( Γ ` A, v ) ∪ st( Γ ` B, v )
st( Γ ` A & B, v ) = v ∪ { Γ ` A&B } ∪ st( Γ ` A, v ) ∪ st( Γ ` B, v )
st( Γ ` A⇒ B, v ) = v ∪ { Γ ` A⇒ B } ∪ st( Γ ` A, v ) ∪ st( Γ ` B, v )
st( Γ ` A ; B, v ) = v ∪ { Γ ` A ; B } ∪ st( Γ ` A, v ) ∪ st( Γ ` B, v )
st( Γ ` [f : A, v] ) = v ∪ { Γ ` [f : A] } ∪

⋃
i st( Γ ` Ai, v )

st( Γ `
∑

i ti#Ai, v ) = v ∪ { Γ `
∑

i ti#Ai } ∪
⋃

i st( Γ ` Ai, v )
st( Γ ` ∀l.A, v ) = v ∪ { Γ ` ∀l.A } ∪ st( Γ, l : loc ` A, v )
st( Γ ` ∃l.A, v ) = v ∪ { Γ ` ∃l.A } ∪ st( Γ, l : loc ` A, v )
st( Γ ` ∀X<: A.B, v ) = v ∪ { Γ ` ∀X<: A.B } ∪ st( · ` A, v ) ∪ st( Γ, X : type, X <: A ` B, v )
st( Γ ` ∃X<: A.B, v ) = v ∪ { Γ ` ∃X<: A.B } ∪ st( · ` A, v ) ∪ st( Γ, X : type, X <: A ` B, v )
st( Γ ` X[U], v ) = v ∪ { Γ ` X[U] }
st( Γ ` (rec X(u).A)[U], v ) = st( Γ ` A{(rec X(u).A)/X}{U/u}, v ∪ { Γ ` (rec X(u).A)[U] } )

Where v is a set of “Γ ` A” elements. Note that the rules are ordered so that we try to apply the ≡
case (and detect cycles) before using any of the remaining rules.

Figure 36: Computing the set of sub-terms of a type, up to equivalence (≡).
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Lemma 25 (Finite Uses). Given a well-formed recursive type (rec X(u).A)[U] the number of pos-
sible uses of X in A such that Γ ` X[U′] type is bounded.

Proof. Our well-formedness restrictions enforce that any well-formed X[U′] can only contain ei-
ther location or type variables in the U′ set. For those variables to be themselves well-formed they
must be present in Γ. Since Γ is necessarily a finite set of assumptions it must contain a finite
number of different location/type variables.

We have that for m location/type variables in Γ and if the set u has size n, then there exists at
most mn tuples of n variables (repetition is allowed since types are pure), each containing different
type/location applications that can be used in a well-formed X[U′] type. (Note the “at most” since
we are ignoring the type/location variable distinction and just counting both kinds together.) �

Lemma 26 (Finite Unfolds). Unfolding a well-formed recursive type (rec X(u).A)[U] produces a
finite set of variants of that original recursive type that (at most) contains: permutations of U, or a
set of mixtures of U with some type/location variables representing a class of equivalent (≡) types.

Proof. By the well-formedness conditions on X[U′], we have that U′ will list a set of type/location
variables, which include the recursive type’s parameters (u). Thus, for any use of the recursive
type variable X that may occur in rec, we have two cases:

• Either U′ only contains uses of the recursive type’s parameters (i.e. u).
Then, this means that an unfold will produce a (rec X(u)A)[U′] which, at most, only differs
in the order of the elements in U′. (Recall that since all variables in A cannot be bound to
elements outside the top-level rec, A remains invariant over unfold.) Consequently, for n
elements in U there can be nn different orderings in U′ since repetition is allowed and both
U and U′ must have the same number of elements.

• Or U′ contains a mixture of type/location variables (that must have been declared by a ∀ or
∃ inside the rec) combined with some elements of u.
Lets consider a ∀Y <: B.X[Y] use inside of A. When this type is unfolded, we obtain a
(rec X(...).(...))[Y] type where Y is now the argument of that rec (rather than previously
provided top-level arguments that were used in the top-level rec). Furthermore, our well-
formedness conditions on ∀ and ∃ ensure that the bound inside the unfolded rec will remain
invariant over unfold, so that future unfolds will produce equivalent uses of Y’s (potentially
renamed). Because by well-formedness conditions the bound is isolated from any variable
(i.e. typed in the empty context), this ensures that future unfolds will type Y in a Γ that is
equivalent up to weakening (by ignoring past uses of Y). (Note that the order of the bounds
in Γ is not important, as the assumptions in Γ form an unordered set.)

Thus, by (Finite Uses) we have that each use of X is bounded by a finite number of different
mixtures/permutations of location/type variables in Γ. Consequently, the set of types repre-
sented by all the different unfolds produces a finite set of recursive types representing the
infinite set of different unfolds, that yet is equivalent up to renaming and weakening to that
finite set.
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Lets assume that a top-level (rec X(...).A)[...] contains x number of different uses of X in
A. As done in the proof of (Finite Uses) we know that each variable will have mn tuples of
n variables for a Γ context containing m type/location variables and where X expects n ar-
guments. Combining those variables with the u possible number of different concrete types
provided in the top-level rec yields (m+u)n possible different uses on each X. Consequently,
for x uses of X, we can estimate x ∗ (m + u)n different elements in the set if we are overap-
proximating by considering that all uses of X have the largest set of Γ that may appear in any
use of X.

We conclude by combining the two finite sets.
�

Lemma 27 (Finite Sub-Terms). Given a well-formed type A, such that Γ ` A type, the set of
sub-terms of A is finite up to renaming of variables and weakening of Γ.

Proof. The proof is reduced to showing that the definition of st (Figure 36) terminates and that st
produces a set that is equivalent to the set produced by sts (Figure 35), up to ≡ types. Equivalence
is immediate since the two definitions only differ in the tracking of v, the set of visited sub-terms
which enables st to stop when it finds a repeating sub-term while sts continues indefinitely pro-
ducing types that are actually ≡.

Termination is straightforward as it follows by the previous lemmas. There is a finite number
of different types that any recursive type can generate and all other type constructs produce a finite
number of sub-terms, thus traversing this set of types must eventually stop. Each case is simply an
application of inversion on the specific well-formedness condition, followed by the application of
the induction hypothesis which then enables us to conclude that the combination of two terminating
recursive calls to st will also have to terminate. Termination on the recursive type case follows
immediately by the eventual exhaustion of the finitely many different sub-terms that its unfold
may produce, shown in (Finite Unfolds), and that st will have to visit.

�

I.2 Protocol Composition Lemmas
The proofs of the following lemmas are generally straightforward, after all that was the point in
using an axiomatic definition of composition.

Lemma 28 (stp soundness). For some v and well-formed Γ, R, R[P] if stp(Γ,R,R[P], v) then
Γ ` RV R[P], if the step is not in v.

Proof. Straightforward to show by induction on the cases of stp. Note that the algorithm (in Sec-
tion F.1) includes a comment with the equivalent axiomatic rule to clarify which case the algorithm
is implementing. We highlight cases (4) and (5) that match (eq:Rec) since the axiomatic definition
is defined up to unfolding of recursive types, thus these two cases are implicit in the axiomatic
definition. Similarly, cases (10) and (11) (also for (12) and (13)) make explicit that either case of
& (and ⊕) suffices. Although they match a single rule in the axiomatic definition this is because
we assume that both & are ⊕ are commutative but made that fact explicit in the algorithm. �
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Lemma 29 (c soundness). Given well-formed Γ, R, P, Q if c( Γ, R, P, Q ) then Γ ` RV P || Q.

Proof. The proof is straightforward by induction on the cases of the algorithm since each case of
the algorithm directly matches a specific rule of the axiomatic definition. The use of a visited set
simply tracks the derivation of composition by keeping the set of visited configurations as we go
conclusion to premise on the co-inductive proof. Thus, the lemma can be restated as: “For some v
and well-formed Γ, R, P, Q if c( Γ, R, P, Q, v ) then Γ ` RV P || Q, where all members of v step.”
We have that case (1) we conclude by induction hypothesis with an empty v. Case (2) we apply
(stp soundness) on each step of the configuration, apply the induction hypothesis on the recursive
call to c using the new v, and then use the steps of (stp soundness) and the induction hypothesis
to conclude by (c:Step) and (c:AllStep). �

Lemma 30 (stp completeness). For well-formed Γ, R,R[P] if Γ ` RV R[P] then stp(Γ,R,R[P], v)
for some v that does not contain the step.

Proof. Straightforward to show following similar reasoning to soundness. �

Lemma 31 (c completeness). Given well-formed Γ, R, P, Q if Γ ` RV P || Q then c( Γ, R, P, Q ).

Proof. Straightforward to show following similar reasoning to soundness. �

Lemma 32 (c decidability). Given well-formed Γ, R, P, Q then c( Γ, R, P, Q ) terminates.

Proof. The proof follows immediately by the (Finite Sub-Terms) lemma as it ensure that R, P, and
Q must contain a finite set of distinct sub-terms. Thus, stepping of a protocol must therefore be
bounded in the number of protocol configurations that the algorithm can visit and consequently c
must terminate.

�

Subtyping Extension Further below we show that sbt is sound, complete, and decidable so it
should be straightforward to show that even when we add the subtyping conditions, c remains at
least sound and decidable. The problem is whether protocol composition remains complete when
we consider the (c-rs:Subsumption) stepping rule since the rule’s conclusion does not direct the
types to be used in its premise. It is at this point that the order in subtyping the components of a
configuration is important. We see that a protocol that obeys (c-rs:Subsumption) would actually
also compose safely without that rule being present, i.e. (c-rs:Subsumption) is admissible. Instead,
(c-rs:Subsumption) is only important to close the proof “earlier” by reducing the number of con-
figurations that we need to visit to check composition. Thus, c remains complete without the need
for an explicit (c-rs:Subsumption).

Lemma 33 ((c-rs:Subsumption) admissible). If Γ ` R1 <: R0 and 〈 Γ ` R0 V R[P0] 〉 7→ C and
Γ ` P0 <: P1 then 〈 Γ ` R1 V R[P1] 〉 7→ C, without using (c-rs:Subsumption).

Proof. The proof is straightforward as composition enforces breaking the ⊕ and & cases, and the
changes to (c-ss:Step) and (c-ps:Step) ensure congruence of subtyping is still derivable. Note that
there are no rules for congruence on subtyping over protocols. �
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I.3 Subtyping Lemmas
Lemma 34 (sbt soundness). Given well-formed Γ, A, B if sbt( Γ, A, B ) then Γ ` A <: B.

Proof. The lemma can be restated as: “For some t and given well-formed Γ, A, B if sbt( Γ, A, B, t )
then Γ ` A <: B, where all members of t obey the same equivalence”. We proceed by case analysis
on each case of the algorithm. Case (1) is proven by induction hypothesis where t is the empty
set. The following cases are straightforward as we include the comment on the corresponding
subtyping rule being applied. We have that by case (2) then we conclude by (st:Symmetry); case
(3) we conclude by induction hypothesis and (st:ToLinear); etc. Cases (17), (18), (19), and (20)
match the unfolding of recursive types and the set of visited subtyping configurations to close the
co-inductive proof (which is left implicit in the co-inductive proof of the axiomatic definition).

�

Lemma 35 (sbt completeness). Given well-formed Γ, A, B if Γ ` A <: B then sbt( Γ, A, B ).

Proof. The proof proceeds by induction on the derivation of Γ ` A <: B and is straightforward as
each case of the derivation matches a sbt case directly. We include a comment on the definition
of sbt to highlight the axiomatic rule that is being modeled in the algorithm.

�

Lemma 36 (sbt decidability). Given well-formed types, A and B, and a well-formed environment,
Γ, sbt( Γ, A, B ) terminates.

Proof. The proof follows immediately by the (Finite Sub-Terms) lemma. It suffices to see that each
recursive call to sbt will necessarily be “smaller” in the sense of either considering a type that is
structurally smaller or the recursive call including a larger trail of already seen unfolds, even if the
unfolded type may not be smaller. This trail represents the potentially infinite but regular (up to
renaming of variables and weakening of Γ) “tree” of types modeled by a recursive type. Since by
(Finite Sub-Terms) we know that unfolding a type will result in a finite number of sub-terms, we
know that the sub-terms that sbt will visit are necessarily shrinking since there is a finite number
of combinations to visit—even when considering the product of sub-terms of types A and B. By
(17) we check whether a type was already “seen”, which ensures termination after at most visiting
all those combinations of sub-terms. Therefore there is an upper bound on the set of types to visit,
which ensures that sbt cannot recur indefinitely. Thus, sbt must terminate. �
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