

An Experimental Study into Spectral and
Geometric Approaches to Data Clustering

Prashant Sridhar

October 2015

CMU-CS-15-149

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15289
Thesis Committee:

Dr. Gary Miller, Chair
Dr. Alex Smola

Submitted in partial fulfillment of the requirements
for the degree of Masters in Computer Science.

Copyright @ Prashant Sridhar

Keywords: Geometry, Nonparametric, Clustering

For my parents

Acknowledgments
I would like to thank my advisor, Dr. Gary Miller, for allowing me to work with

him through this project.

vi

Abstract
Common clustering techniques involve assumptions on the distribution that the

data is drawn from, with linearity often being a standard assumption. These tech-
niques work poorly on irregular data sets or on rare clusters. Non-parametric solu-
tions are often inefficient to use in practice and still fail to find rare clusters. This
thesis explores geometric approaches to non-parametric clustering that should be
much better at identifying these rare clusters. The first approach explores how the
Gabriel graph can be used to compute density based distance metrics and how the
Gabriel graph itself might be used to cluster data. The second approach views the
probability density function as a heat distribution over a metal plate. Traditionally,
finite element or control volume methods construct graphs over meshes on the metal
plate. This approach explores how these meshes could be used to partition space.
Finally, we present the results of running these clustering algorithms on flow cytom-
etry data and compare these to present state of the art non-parametric methods on
the field.

viii

Contents

1 Introduction 1

2 Historical Spectral clustering 5

3 Density based distance metrics and clustering 9
3.1 Approximation of density based distance metrics 9
3.2 Gabriel graphs and approximate Gabriel graphs 11
3.3 Weakly Gabriel graph and fast linear spanner 16
3.4 Results and Discussion . 19

4 Geometric non-parametric clustering 25
4.1 Control volume methods . 27
4.2 Constructing the mesh graph . 28

5 Results 33

Bibliography 43

ix

x

List of Figures

3.1 Quadratic size Gabriel graph example . 13
3.2 Gabriel edges with small angle . 14
3.3 Candidate hyperplane elimination . 17
3.4 Barcode data clustered with a Gabriel graph . 22
3.5 Barcode data clustered with a K-means . 23

4.1 3D slivers . 28
4.2 Delauny triangulation of Barcode data with Steiner points added 29
4.3 Voronoi diagram of Barcode data with Steiner points added 30
4.4 Kite between two points in three dimensions . 31

5.1 Small data set . 34
5.2 Barcode data set . 35
5.3 K-means on toy data set . 37
5.4 SamSPECTRAL on toy data set . 38
5.5 Geometry based clustering on toy data set . 39
5.6 SamSPECTRAL on Barcode data . 40
5.7 Geometric approach on Barcode data . 41

xi

xii

Chapter 1

Introduction

Clustering of data points is a problem that has existed in machine learning literature for quite
some time now. The general definition is to partition a data set into ”clusters” based on their
similarity. Clustering techniques have several applications to fields like computational biology,
computer vision, robotics, and others. The defining characteristic of clustering that also makes it
so powerful is that it is traditionally defined in the unsupervised sense. This means that data is
presented to the algorithms without any prior labels designating clusterings. This unsupervised
nature is part of the appeal since unlabeled data is often easy to collect and quite plentiful, while
labeling data is often laborious, requiring a human to hand label the data set. However, while
unsupervised learning is often easy to collect data for, it is notoriously difficult to judge when
the algorithm has produced a good clustering.Parametric clustering methods often have a well
defined statistical interpretation, but perform poorly on data sets that do not satisfy the model
assumptions. Non-parametric methods, on the other hand, are either very slow to implement
in practice or not very well defined statistically. This thesis provides a statistical basis for a
non-parametric clustering method that is efficient in practice.

Spectral methods [21] are a popular way to cluster data sets non-parametrically. The data
points are connected together to form a graph with heavy weight edges between similar points
and light edges between dissimilar points. This graph can then be cut in order to generate the
appropriate clustering. Strong edges will rarely be cut because they would greatly decrease the
cut quality. Conversely, weak edges are encouraged to be cut in order to keep the cut value
low. This leaves similar nodes in the same cluster while separating dissimilar nodes. As a non-
parametric method, it is resistant to non-linearities in the data set, however, it is often quite slow
to run in practice. If a complete graph of the data is constructed, storing the graph itself will
require O(N2) space. While quadratic time algorithms are slow to run in practice on larger data
sets, quadratic space algorithms are completely infeasible even on smaller samples. Storing the
graph itself will require several gigabytes of memory in data sets larger than a few ten thousands
of points preventing most computers from even loading the graph into RAM. Further, if the graph
is to be partitioned into k clusters, algorithm will require finding the k largest eigenvalues of
graph laplacian. If the graph is very near complete, and consequently the laplacian is very dense,
this operation will be very expensive making it infeasible to run on anything but the smallest
data sets. Finally, deciding exactly how to weight the edges of the graph is still a matter of trial
and error. The most common method is to use a Gaussian kernel to decide the edge weights, but

1

there is little statistical basis to this. It is merely a way to handle non-linearity of the input data.
Choosing the bandwidth of this Gaussian kernel, again, must be done with grid search and cross
validation.

The method of clustering proposed in this thesis solves all the problems mentioned above.
Our method also relies on partitioning a graph, however, we provide some statistical explanation
for the edge weights. Additionally, our method constructs a graph with only a linear number
of edges in O(nlogn) time. This linear size graph is feasible to store and results in a sparse
laplacian, which can also be solved easily. We view clustering of data points as a partitioning of
the probability space. Our interpretation of a good partition is one separating two high density
regions while having a low cross-sectional cut volume. This encourages splitting up maxima
across lines drawn through density troughs. This idea is also very similar to sparsest cuts on
graphs and lends itself very easily to graphical interpretations. The goal is to construct a sparse
graph wherein cut quality is similar to that of the distribution generating the data. The probability
distribution can be viewed as a heat distribution over a metal plate. Such heat distributions can
be modelled by triangular meshes over the data with added Steiner points and can be solved by
control volume methods. Since the mesh is a triangulation, it will only have a linear number of
edges. The triangular mesh can then be cut with standard spectral methods in order to retrieve
the clustering. More specifically, the mesh approximates second nearest neighbour distances
for the distribution, but these distances can easily be used as an estimate of the density function.
Since we are only concerned with clusters and not the point-wise estimation of density, we do not
face the traditional problems faced by other knn approaches of having non-convergent variance
[9]. Integrated over finite measure sets, variance of the estimator drops off with the size of the
sample. Further, clusters of at least O(logn) elements should be identified by our approach since
by Chernoff bounds, enough points will be sampled from these clusters to determine the cut.
This gives provides a guarantee that small clusters will be identified by our approach. Finally,
as a spectral, non-parametric method, this algorithm is insulated against non-linearities in the
data allowing it to identify clusters with non elliptical shapes. Thus, the approach overcomes the
shortcomings of previous clustering algorithms.

This thesis serves mostly as an experimental exploration into the idea of sparse graphs for
data clustering since much of the theory is still being developed. Primarily, this paper focuses
on data with ”rare” cluster populations and highly non-elliptical clusters that are difficult to
cluster with standard methods like gaussian mixture modeling [7] or k-means. Specifically, we
will deal with flow cytometry data. Flow cytometry is a laser based approach to differentiating
between populations of cells based on certain bio markers on the cells surface or inside its body.
Cytometers can take measurements from several thousands of cells per second leading to large
datasets. Flow cytometry is often used in the diagnosis of several health disorders including
various types of cancers. It is also used in clinical trials including research to autonomously
compute prognoses for HIV patients. Many of these applications require clustering cell types
as a primitive before prediction can take place, and at present, such clustering is often done by
hand. Several model based clustering algorithms have been developed for this problem such as,
FLAME, flowClust, flowMerge. These methods are all mixture models over t-distributions or
skew t-distributions. Skew t-distributions, in theory, should be able to account for eccentricities
in the data, but the time complexity scales to the fourth power with dimension rendering it useless
in practice beyond 5 dimensions. Further, these model based methods often fail to find rare cell

2

populations which are of particular interest to biological applications. Non-parametric methods
have also been tried in this space and mostly rely on spectral clustering. SAMSpectral solves the
issue of quadratic space by heuristically sampling data, which the authors call faithful sampling,
to form a representative population. As with all heuristics, there is no theoretical basis to this
approach and it provides no provable guarantees. Our geometric spectral clustering method
outperforms SAMSpectral while being able to produce guarantees on quality and run time.

3

4

Chapter 2

Historical Spectral clustering

Given a set of data points x1, x2, . . . , xn and a notion of similarity sij , the goal of any clustering
algorithm is to assign points of low similarity to different clusters while keeping high similarity
points grouped together. Spectral clustering builds on the notions of graph cuts in order to achieve
our goal of clustering. To do this, we build a similarity graph, G = (V,E). In this graph, each
vertex vi corresponds to a data point xi. Two vertices vi, vj are connected by an edge eij with
weight equal to the similarity between the corresponding data points, sij . Clustering data points
can now be rewritten to split the similarity graph into groups such that edges running between
different clusters are weak while those running within a cluster are strong.

To begin with, we go over basic terminology and notation used in this chapter. Let G =
(V,E) be the affinity graph defined on the data points with vertex set V = v1, v2, . . . , vn. G is
an undirected graph with weighted edges such that the edge weight eij between vertices vi, vj
is equal to then similarity function of the two data points sij ≥ 0. The degree di of vertex vi is
defined to be

di =
∑
j

eij

The graph has a corresponding weighting adjacency matrix A whose entries aij are defined
as follows

aij =

{
0 if i = j
sij otherwise

Finally, the degree matrix D of the graph, with entries dij , can be defined as follows

dij =

{
di if i = j
0 otherwise

Consider a set of vertices A and its corresponding inverse set, V/A, the set of all vertices not
in A. As shorthand, let A′ = V/A, and i ∈ A mean that vi ∈ A. Define the volume of A, |A| as
follows,

5

|A| =
∑
i∈A

eij

A serves as a partition of the vertices and there is a cut separating A from A′. Let cut(A,A′)
be the surface area of the cut defined as follows,

cut(A,A′) =
∑

i∈A,j∈A′
eij

Therefore, |A| is the sum of edge weights such that both edge end points lie within A while
cut(A,A′) is the sum of edge weights such that only one end point is within A.

For data drawn from Rd, the similarity between two vertices can be defined in terms of the
Euclidean distance between the corresponding points. We define sij = k(xi, xj) for some func-
tion k based on only the distance between the two points. This function k must be monotonically
decreasing on the distance to ensure that near by points are very similar while points far away
are very dissimilar. Traditionally, a Gaussian kernel is used for k.

k(xi, xj) = exp

(
−||xi − xj||22

2σ2

)
Where σ is a parameter(width) controlling the diameter of the clusters. Other methods of

constructing the similarity graph include only connecting each point to its k nearest neighbours,
or only connecting it to points within an ε ball around it.

Given a similarity graph with an adjacency matrix A, and degree matrix D, define the graph
laplacian L as

L = D − A

The main tool of spectral clustering is the graph laplacian and its eigenvalues and eigenvec-
tors. For example the number of connected components in a graph is equal to the number of 0
eigenvalues in its graph laplacian. As discussed earlier, clustering on a graph can be phrased as
partitioning the vertex set so that the volume of each vertex cluster is large while the surface area
of the cut is small. This can be formalized in the Normalized cut. Let A1, A2, . . . Ak be the k
partitions of the vertices. Define NCut(A1, A,2, . . . Ak) as follows.

NCut(A1, . . . , Ak) =
1

2

k∑
i=1

cut(Ai, A
′
i)

|Ai|

Before detailing how to minimize the Normalized cut, define the normalized graph laplacian
as follows

L = D−1L

The traditional spectral clustering algorithm proceeds as follows,

6

• Compute similarity graph G.
• Compute normalized graph laplacian L.
• Compute Λk, the matrix of the k smallest eigen vectors of L.
• Run k-means on the columns of Λk.
• Return the result as the cluster assignment for the data set.

It can be shown that this algorithm solves a relaxed version of the NCut problem. The prob-
lem with spectral clustering is that results vary widely based on the type of similarity metric
used and how points are connected to form a similarity graph. The rest of this thesis discusses
principled approaches to solving this problem.

7

8

Chapter 3

Density based distance metrics and
clustering

Our initial approach to combating the non-linearity of cytometry data, was to try non-euclidean
distance metrics. Under a density based metric, two points are closer together if joined by a
path through high density space, and farther apart if only connected through low density space.
This should allow cluster detection even for clusters with highly non-elliptical shape. However,
density based metrics are often intractable to compute exactly leading most such approaches to
use reliable approximations. A recent approximation method developed by Choen et. al., [2],
provides a graph based method to approximate a density based metric by computing shortest
paths on a Gabriel graph over the points. The final graph has a linear(in the points) number of
edges leading to quick single source shortest path queries. However, naive implementations of
k-means replacing Euclidean distance with density based distance will still run into the problem
of having to store all pairs shortest paths. This will still require O(n2) space rendering the
approach infeasible. While, straightforward applications of the distance metric might not be
feasible, spectrally cutting the Gabriel graph itself intuitively leads to a good clustering. This
section of the thesis does not contain fully reasoned theory. Instead, it is an intuitive exploration
of the usefulness of the Gabriel graph. While it is hard to arrive at provable bounds for cluster
quality, Gabriel graphs are not as prone to the curse of dimension. While the number of edges
grows exponentially with dimension, it is still upper bounded by O(n2), or the complete graph.
On the other hand, the main method presented in this paper is based on Delauny triangulations
and require time exponential in the dimension to construct. Therefore, the Gabriel graph may
provide a clue on how to deal with high dimensional data sets. Before explaining how to cluster
using the Gabriel graph, this thesis will first go over the work of Cohen et. al. to provide some
background for the discussion and define relevant terms.

3.1 Approximation of density based distance metrics

If Rd space is Endowed with a distance metric, we can define the length of an arbitrary path γ
through this space as follows. Let the length function of a path under Euclidean distance be `e,
and let γ begin at the point x at time 0 and end at the point y at time 1.

9

`e(γ) =

∫
γ

ds

=

∫ 1

0

∣∣∣∣dγ(t)

dt

∣∣∣∣ dt
Which is simply the path integral of γ in Rd. Here,

∣∣∣dγ(t)dt

∣∣∣ is the velocity of trajectory at time
t. Note that this integral is minimized by using the straight line path between the two points.
Using this formulation for the length of a path, we can define the Euclidean distance, de between
the points x and y to be,

de(x, y) = inf
γ
`e(γ)

This is merely a mathematical precise way of saying that the Euclidean distance between two
points is the length of straight line shortest path between the points.

With Euclidean distance formally defined, this can now be extended to more general distance
metrics. By adding a cost function based on location in the space, segments of a path through
different regions are priced differently thereby contorting the shortest path away from the straight
line path between the points. Let the cost function for a certain metric k be c(x). We can now
define the length of a path γ for this metric, `k, as follows.

`k(γ) =

∫
γ

c(s)ds

=

∫ 1

0

c(s)

∣∣∣∣dγ(t)

dt

∣∣∣∣ dt
There is also an analogous definition for distance, dk, for this metric.

dk(x, y) = inf
γ
`k(γ)

Density based distance metrics penalize paths through low density regions and reward paths
through high density regions. Therefore, when used as a similarity metric, it will cluster together
points belonging to the same high density regions. Let P be the probability distribution over Rd,
and f(x) be its density function at point x. Define cp(x) = f(x)

2(1−p)
d to be the cost function

used for the density based distance metric. Also define `p(γ) and (d)p(x, y) to be the associated
path length function and distance metric. Note that p = 1 returns the Euclidean metric.

The problem with using density based metrics is that for p 6= 1, computing `p(γ) is near in-
tractable for many distributions and paths. Often the true distribution is not even known and must
therefore be estimated. Worse, computing dp(x, y) involves finding an infimum over an infinite
number of paths. Hence, the distance can never be exactly computed and must be approximated.

10

Assume that n points are uniformly randomly sampled from P to form the training data set D.
We can now define an undirected graph G over these points such the edge length, exy;x, y ∈ D,
is equal to the pth power of the Euclidean distance between the points, exy = de(x, y)p. Define
dG(x, y) to be the shortest path distance from x to y in the complete graph G. The following
theorem from Hwang et. al., [12] proves a strong connection between dG(x, y) and dp(x, y) at
the price of a few assumptions on the sample space and the density function. Assume that P is
instead defined over a manifold M , the same manifold that D is drawn from.
Theorem 3.1.1. Assume M is compact, and that f is continuous and supported everywhere over
M . There exists a constant C(d, p) > 0, which only depends on d and p, satisfying the following.
Let ε > 0 and b > 0, then there exists θ > 0 such that

P

(
sup
x,y

∣∣∣∣∣ dG(x, y)

n
(1−p)
d dp(x, y)

− C(d, p)

∣∣∣∣∣ > ε

)
< e−θn

1
(d+2p)

for all sufficiently large n where x, y ∈M and de(x, y) ≥ b.
In the case whereM is closed instead of compact, the paper presents a second theorem giving

an almost surely limit relating the two metrics.
Theorem 3.1.2. Assume M is closed and that f is continuous and supported everywhere over
M . There exists a constantC(d, p) > 0, which only depends on d, and p, satisfying the following.

lim
n→inf

n
p−1
d dG(x, y) = C(d, p)dp(x, y)

for fixed x, y ∈M .
The assumptions of note here are that M is either compact or closed. This means that the

theorems do not work in the general case where data can be drawn from anywhere in Rd. In
practice, however, this assumption is not a problem because the set of valid data to be clustered
can often be bounded between some finite intervals. The density function is also assumed to be
continuous and supported everywhere over its domain. This can be achieved by simply shrinking
its domain to only contain space in which f is supported. Since points cannot be drawn from
0 probability regions, this assumption is easily met in practice. What these assumptions buy
though, are strong bounds relating dp and dg thereby giving a way to approximate density based
distance metrics. However, while computing shortest paths on G is tractable, computing G itself
requires quadratic space rendering this approach useless on larger data sets. This problem can be
avoided by considering the special case of p = 2, as is done by Cohen et. al.

3.2 Gabriel graphs and approximate Gabriel graphs
Once we restrict p = 2, we can immediately make a few observations about the graph G. Since
edge weights are now squared Euclidean distance, the shortest path between two points will not
a long edge if another point exists inside of the circle inscribed by the edge as a diameter. Let
the graph constructed for p = 2 be G2.
Definition 3.2.1. An edge exy between points x, y is said to be Gabriel if there exists no z such
that z is contained within the circle inscribed on exy as diameter.

11

Lemma 3.2.1. For all x, y ∈ G2, the shortest path from x to y will only contain edges that are
Gabriel.

Proof. Assume for the sake of contradiction that the shortest path from x to y contains an edge
euv that is not Gabriel. By 3.2.1, there exists a point z inside the circle formed using euv as
diameter. Consider the triangle formed by u, v, z. By the properties of triangles, the angle formed
at z will be at least 90◦. Therefore, euv ≥ euz + evz by the Pythagorean theorem. Therefore we
have found a shorter path and have arrived at a contradiction.

Definition 3.2.2. The graph GG2, with V = D and E = ∪exy, exy is said to be the Gabriel
graph over the points in D.

Note that the set of Gabriel edges is a subset of Delauny edges since the Gabriel requirement
is a stricter form of the Delauny requirement over edges.

The Gabriel graph serves as a possibly sparse graph that can be used to compute the density
metric. Because the Gabriel graph is a subset of the Delauny triangulation, it serves as a linear
spanner for d = 2. This is because the Delauny triangulation in the 2D case forms a planar graph
which necessarily has a linear number of edges. However, even in 3 dimensions, examples can be
constructed where the Gabriel graph has O(n2) edges. Consider the unit sphere in 3 dimensions
and two small arcs on along this sphere on the XY plane and the Y Z plane with both arcs
centered around Y = 0. Arrange n/2 points equally spaced on each arc. By construction,
every edge between a pair of points on different arcs will be Gabriel since each of those edges
is approximately a diametric chord for the sphere. Therefore, this example leads to at least n2/4
edges. This example can be seen in 3.1.

This prompts the need for spanners on the Gabriel graph. It is worth noting that even in
higher dimensional cases where the Gabriel graph is linear, there is no fast algorithm to compute
it. The naive approach of checking if each edge is Gabriel requires O(n3) time even when only
a linear number of edges are Gabriel.

While very efficient algorithms [5], [3], working in O(nlogn), time exist for computing
Euclidean spanners, these algorithms are still exponential in dimension because they rely on
space partitioning trees. In practice, these algorithms do not work well for d > 10. For this
reason, other approaches that do not scale so poorly with dimension are desirable.

While the original paper did not present a way to compute the Gabriel graph quickly, they do
present an algorithm to produce a linear, (1 + ε) spanner given the Gabriel graph. The simple
construction involves constructing a conflict graph for each node p based on the angles formed
by its neighbours. For any node p, construct a graph, Hp by connecting p to all its neighbours,
and connect any pair of neighbours a, b if the angle formed by epa and epb is sufficiently small,
say, smaller than θ. Define Ip to be the set of edges in the maximal independent set Hp. The
linear spanner of the Gabriel graph is the graph Hθ such that

EHθ = {(p, q)|epq ∈ (Ip ∪ Iq)}

Before presenting the proof of quality for the spanner Hθ, we must first prove two supporting
lemmas. We show that if two edges make a sufficiently small angle, then the length of the path
does not change by much depending on which we pick.

12

Figure 3.1: Quadratic size Gabriel graph example

13

Figure 3.2: Gabriel edges with small angle

Theorem 3.2.2. Consider a point p with neighbours q, r such that epq, epr are both Gabriel and
make an angle of at mot θ. Let A be the Euclidean length of epq and B be the Euclidean length
of epr. Then it is the case that for any path through the graph containing epq, its length would not
change by more than (1 + 2tan2θ)|A|2 if epr were traversed instead.

Proof. Begin by noticing that we can assume eqr exists in the graph. If eqr is not in the graph,
then it is not Gabriel, implying that there exists a point s within the circle with qr as diameter.
Then, traversing eqs followed by esr would be shorter than directly traversing eqr. Therefore,
eqr’s existence serves as an upper bound assumption for the stretch generated by not traversing
epq and does not weaken the proof.

Let C be the Euclidean length of eqr. We want to show that |B|2 + |C|2 ≤ (1 + 2tan2θ)|A|2.

Without loss of generality, assume that p is at the origin, q is at (a, 0) and r is at (1, e). This
is shown in 3.2

|C|2 + |B|2

|A|2
=

(1− a)2 + e2 + 1 + e2

a2

=
2− 2a+ a2 + 2e2

a2

This ratio is at its worst when a = 1, or when A and C are perpendicular. To see this,
differentiate the above ratio with respect to a. The derivative is negative for 1 ≤ a ≤ 1 + e2. For
a outside of this range, either q or r will encroach on the ball of the other. Therefore, if the angle
between A and B is less than θ,

14

|B|2 + |C|2

|A|2
≤ |B|

2 + |B|2sin2θ

|B|2cos2θ

=
1 + sin2θ

cos2θ
= 1 + 2tan2θ

=⇒ |B|2 + |C|2 ≤ (1 + 2tan2θ)|A|2

This theorem justifies why a maximal independent set of the conflict graph of a point is
sufficient to preserve path lengths. If an edge is not present in the maximal independent set, then
it must have been the case that it conflicted with some other edge at a low degree. Therefore, the
other edge can be traversed instead with small cost to total length. One other lemma is needed
for the the proof of the spanner. We need to show that the |C| is not too large as compared to A.
Theorem 3.2.3. Consider a point p with neighbours q, r such that epq, epr are both Gabriel and
make an angle of at mot θ. Let A be the Euclidean length of epq, B be the Euclidean length of
epr and C be the Euclidean length of eqr. Then |C|2 ≤ tan2θ|A|2.

Proof. Once again, without loss of generality, assume p is on the origin, q is at (a, 0) and r is at
(1, e).

|C|2

|A|2
=

(1− a)2 + e2

a2

=
1− 2a+ a2 + e2

a2

This ratio is again maximized if eqr and epq are perpendicular. Therefore, if the angle between
the edges is θ, we have

|C|2

|A|2
≤ |B|

2sin2θ

|B|2cos2θ
= tan2θ

=⇒ |C|2 ≤ tan2θ|A|2

With this theorem in place, we are now ready to prove correctness for the spanner. The proof
will be by induction.
Theorem 3.2.4. For any pair of points p, q in GG2, the path from p to q through Hθ will larger
by at most a fraction of (1 + ε) for any θ such that tan2 θ ≤ ε

2+ε
. Further, Hθ will have a linear

number of edges in fixed dimension.

15

Proof. This theorem will be proved using induction over the length of the longest edge in a path.
For the base case, consider (p, q) the closest pair in the data set. Since they are the closest pair,
p is q’s nearest neighbour. Nearest neighbour edges are always Gabriel because if they were not,
a point would lie within the circumscribing circle thereby generating a nearer neighbour. epq is
also in Hθ because if it were not, then it must conflict with another edge, say, epr. By 3.2.3, eqr
must be shorter still meaning p, q is not the closest pair.

For the inductive step, assume that for all paths between pairs (p, q) with longest edges shorter
than |A|, Hθ is a (1 + ε) spanner. Now consider all path with a longest edge of length |A|. If this
edge is in Hθ, then the above theorem holds. If the edge is not in Hθ, then it must conflict with
some neighbour. Let the endpoints of the longest edge be p, q, and the end points of the edge it
conflicts with be p, r. Let B be the length of epr be |B| and the length of eqr be |C|. Let P be
the path from q to r in Hθ. Since |C|2 ≤ tan2θ|A|2, the shortest path from q to r in GG2 cannot
have any edges as long as |A|. Therefore by the inductive hypothesis,

|P | ≤ (1 + ε)|C|2

Again, note that if eqr is not in GG2, the length of the path would be even shorter. Hence the
assumption that eqr is in GG2 is an overestimate.

We now want to bound |B|2 + |P | since that is the path from p to q in Hθ.

|B|2 + |P | ≤ |B|2 + |C|2 + ε|C|2

≤ (1 + 2tan2θ)|A|2 + εtan2θ|A|2

≤ (1 + (2 + ε)tan2θ)|A|2

≤ (1 + ε)|A|2

Finally, Hθ must have a linear number of edges in a fixed dimension because in any fixed
dimension, each node may only have a constant out degree when constrained to only have neigh-
bours separated by a minimum degree.

3.3 Weakly Gabriel graph and fast linear spanner

The last section went over how to construct Gabriel graphs to compute density based distance
metrics and how to sparsify these graphs. This section weakens the conditions on Gabriel graphs
to allow for faster algorithms to construct them. Further, we show that we can sparsify these more
general Gabriel graphs to still retain linear sized graphs. To begin with, we define the notion of
an edge being weakly Gabriel. The edge to a neighbour is said to be weakly Gabriel if there are
no other neighbours within the dihedral ball of the edge. However, other, non-neighbours are
still allowed to encroach the ball. Formally, we define weakly Gabriel as follows,

16

Figure 3.3: Candidate hyperplane elimination

Definition 3.3.1. Consider a point p, with its neighbour set Vp. Let q be a point in the neighbour
set, q ∈ Vp. Define the edge epq to be weakly Gabriel if, ∀r ∈ Vp, r is not in the dihedral ball of
epq.
Definition 3.3.2. Consider a point p. The neighbour set Vp of p is said to be weakly Gabriel if
∀q ∈ D, epq is Gabriel, q ∈ Vp, and ∀q ∈ Vp, epq is weakly Gabriel.
Definition 3.3.3. For a data setD, the graphWG2 is a weakly Gabriel graph overD if, ∀p ∈ D,
Vp is weakly Gabriel.

To begin with, notice that each data set has a unique Gabriel graph, but need not have a
unique weakly Gabriel graph. Secondly, notice that a weakly Gabriel graph still contains all
Gabriel edges and therefore preserves all shortest paths. Hence, the shortest path between any
two nodes, and, by extension, the approximate density based distance, is not changed if a weakly
Gabriel graph is used instead of a Gabriel graph. The trade-off is that a weakly Gabriel graph
will always be at least as dense as a Gabriel graph and could potentially have a quadratic number
of edges even when the Gabriel graph is linear. However, the main gain of using the weakly
Gabriel graph is that its definition lends itself to a fast iterative, input sensitive algorithm where
Gabriel graphs must be computed in O(n3) time.

The first observation needed for this algorithm is that for a given point, the edge to its nearest
neighbour must necessarily be Gabriel. Necessarily, there may be no points in the shared edges
dihedral circle. This serves as a base case for the algorithm. Once we have identified a Gabriel
edge, several candidate neighbours can be immediately eliminated as seen in the 3.3.

The points above the hyperplane can all be eliminated because the nearest neighbour would
encroach on their ball. The hyperplane check can be performed simply by checking if the angle θ
in the figure is obtuse. This is equivalent to checking if the cosine is negative, or simply checking
if the dot product is negative. If only the Gabriel edges were desired, every single point would

17

have to draw its hyperplane and eliminate potentially offending points. However, this will again
require O(n3) time. Instead, we need only eliminate points with successive nearest neighbours
in order to obtain a weakly Gabriel neighbour set. This is formalized in 1

Algorithm 1: Compute Weakly Gabriel Graph
Data: Data set D
Result: Weakly Gabriel Graph, WGG = {V, {Vp}} over D
WGG←− { }
for p ∈ D do

Vp ←− { }
for p ∈ D do

dp ←− []
for q ∈ D − {p} do

append(dp, (q,d2
e(p, q))

sp ←− sort(dp) ascending by distance
while sp is not empty do

r ←− pop(sp) for s ∈ sp do
if cos(rp, rs) > 0 then

remove(sp, s)

add(Vp, r)

add(WGG, {p, Vp})
for q ∈ Vp do

if p /∈ Vq then
add(Vq, p)

The run time of this algorithm is O(n2logn) for the sorting step, and O(n2e) for the elimina-
tion steps, where e is the maximum out degree of a point. In practice, this algorithm works well
at building a sparse graph on which to run shortest path queries because many real world data
sets have linear size Gabriel graphs. For those applications, The weakened Gabriel graph algo-
rithm produces only a small fraction of non-Gabriel edges. For example, in one flow cytometry
data-set consisting of roughly 70,000 points in 16 dimensions, only 2% of the edges generated
were non-Gabriel. This highlights the algorithms input sensitivity. In most practical use cases,
the bottle-neck in runtime is the sorting step giving an overall complexity of O(n2logn) since
e is often a constant. However, it is possible to construct edge cases with a linear number of
Gabriel edges for which 1 produces a quadratic number of edges leading to a O(n3) time and
O(n2) space complexity.

The good news is that sparsifying based on angle will continue to work on weakly Gabriel
graphs. If a non-Gabriel edge is ever picked in favour of a Gabriel edge, the stretch will still
remain small because the edges must be comparable in length. If this were not the case, one
would encroach on the dihedral ball of the other violating the requirement that both edges be at
least weakly Gabriel. This preserves lemmas, 3.2.2 and 3.2.3. With these lemmas in place, the
main proof carries through very similarly.

18

Instead of first running 1 and then sparsifying the resultant graph, the two steps can be com-
bined into one. When a point is added to the neighbour set and used to prune potential neigh-
bours, the only check performed is the hyperplane check. Instead, the neighbour can prune points
by its hyperplane and also by the angle made with p. Finally, because the resultant graph will
have constant(in dimension) out degree from each node by virtue of being a linear spanner, the
sorting step can be removed in favour of picking the closest neighbour each time. Since we will
only have to pick a linear number of neighbours, this reduces the runtime from O(n2logn+n2e)
to O(n2e), which is the same as O(n2). This algorithm is formally represented in 2

Algorithm 2: Compute Sparse Weakly Gabriel Graph
Data: Data set D
Data: Error threshold ε
Result: Weakly Gabriel Graph, WGG = {V, {Vp}} over D
WGG←− { }
for p ∈ D do

Vp ←− { }
for p ∈ D do

dp ←− []
for q ∈ D − {p} do

append(dp, (q,d2
e(p, q))

while dp is not empty do
r ←− findmin(dp)
remove(dp, r)
for s ∈ dp do

if cos(rp, rs) > 0 || tan2(pr, ps) > ε
2+ε

then
remove(sp, s)

add(Vp, r)

add(WGG, {p, Vp})
for q ∈ Vp do

if p /∈ Vq then
add(Vq, p)

3.4 Results and Discussion

While asymptotically we can achieve O(n2), in practice it is often faster to perform the sorting
step and run atO(n2logn). It can be shown that for a point placed on the origin and surrounded by
neighbours drawn uniformly from the unit ball, the expected number of Gabriel edges is O(2d).
It can also be empirically observed that the average angle between edges is 90◦. Therefore, each
node often has a large out degree making repeatedly picking the nearest neighbour very slow if
2d exceeds logn. This also demonstrates that for data with no irregularities, sparsification is not
necessary and constructing a weakly Gabriel graph is sufficient. Also, the number of non-Gabriel

19

edges added by 2 is a very small percentage of the total edges. For the applications discussed in
this paper, no more than 5% of the edges generated are non-Gabriel. Therefore, 2 is a significant
improvement in computing approximations to density based distance.

Clustering with non-Euclidean distance metrics poses a challenge because computing the
mean of a cluster is difficult thereby rendering k-means impossible to use. The solution is to
assume that the cluster center will be a point in the data set. This gives rise to the k-medioids
algorithm [13]. The most common realization of the idea is Partitioning Around Mediods (PAM)
[22] which proceeds as follows.

• Select k random points without repetition to serve as cluster medioids.
• Assign each point to a cluster based on medioid distance.
• Compute total cost of clustering and repeat until cost converges

For each medioid m and non-medioid o

− Swap m and o and recompute cost.

− Keep swap if cost decreases.

Other medioid based algorithms also exist such as the following based on Voronoi iterations
[16].

• Select k random points without repetition to serve as cluster medioids.
• Assign each point to a cluster based on medioid distance.
• Compute total cost of clustering and repeat until cost converges

For each cluster, select m as medioid if m minimizes the sum of distance to all other
points.

Reassign points to the closest medioid.

If the number of iterations required to converge is assumed to be t and that pairwise distances
are stored in a Gram Matrix G, then the runtime of PAM is O(tkn2). Each internal step re-
quire O(n2) time to swap a medioid with each non-medioid point and recompute the cost. The
second method also has a similar runtime of O(tkn2) since it take O(n2) time to find the opti-
mal medioid for each cluster. The advantage of the second approach is it more closely mirrors
the more familiar k-means algorithm and is this easier to reason about. The main drawback to
both of these approaches is that when the distance metric is density based distance, computing
the distance between two points requires a shortest path computation using Dijkstra’s algorithm,
which will cost O(enlogn) where e is the maximum out degree. This makes computing distance
on the fly infeasible. The other alternative is to precompute all pairs shortest paths and store the
result in a Gram matrix. However, computing and storing the Gram matrix will have a O(n2)
space complexity. While this approach is not further explored in this thesis, a solution to this
problem might arise from the graph structure used to compute density based metrics. To begin,
let us define the notion of closeness centrality [19] in a graph. The closeness centrality C(x) of a
graph is defined as follows, C(x) = 1∑

y de(y,x)2 . The reciprocal of the closeness centrality is the
distance from a node to all the other nodes in the graph. This is very similar to the k-medioids
requirement of computing the distance from the medioid to every other node in the cluster. Sev-
eral algorithms such as [23][17][6] deal with computing closeness centrality or a related metric

20

called betweenness centrality [8] which is often considered harder to compute than closeness
centrality. These algorithms rely on sampling to build approximations to closeness and the meth-
ods therein could significantly speed up medioid computation. Sampling techniques could also
be useful in cluster assignment since the subsampled paths or nodes could build approximations
to the distance to different medioids for each point.

The other alternative is to cluster directly based on the properties of the Gabriel graph. Instead
of setting the edge weight exy to be the squared Euclidean distance, exy = de(x, y)2, set the edge
weight to be the reciprocal, exy = 1

de(x,y)2 . Geometrically close points in this graph are usually
connected by a single Gabriel edge or a series of short hops. In either of those cases, short edges
will have very high weights leading the cut between the points to be very expensive. On the flip
side, long edges on the graph are not very common since they are very likely to have some other
point encroach on them. They mostly arise from the boundaries of clusters. These long edges are
also much cheaper to cut than short edges, thereby incentivising cuts between clusters. In non-
sparsified Gabriel graphs, there is some chance that there many connecting edges between two
clusters if the clusters are sufficiently compact and far away. This is similar to the scenario where
O(n2) Gabriel edges exist in the graph. These dense inter cluster connections are problematic for
clustering because they drive up the cost of cutting the two clusters with several nearly identical
edges. Sparsified Gabriel graphs fix this issue by removing such ”duplicate” edges. If several
edges arise from and end with similar nodes, the edges will make small angles with each other
and will hence be pruned. This makes sparsified Gabriel graphs very good to cluster over. Note
that instead of the reciprocal of the squared Euclidean distance, a gaussian kernel could have
been used for edge length. While results vary, they do not change significantly by altering the
kernel. The weights that are mentioned in this section are used because they tie in to ideas of
effective resistance and conductance of the edges. The experimental results section will go into
more detail but for now consider figure 3.4 of a clustering constructed by partitioning Gabriel
graphs.

The data set used here is called the Barcode data [11] set and it captures the difficulty of
clustering rare populations. The Barcode data set also provides an easily verified correct answer
that is not available for other flow cytometry applications(where experts often also disagree on
clusterings). If we contrast the quality of this clustering with K-means, we see that cutting the
Gabriel graph performs much better. The primary win of this approach is that the Gabriel graph
is still fast to construct in high dimensions. While the runtime will depend on the dimensionality
of the data, the number of edges in the graph is bounded by O(n2) and since 2 is an input sen-
sitive algorithm, the runtime of that algorithm is also bounded. On the other hand, the approach
mentioned later in this thesis requires computing the Delauny triangulation, a procedure that
scales exponentially with dimension. The primary downside of Gabriel graphs is that clustering
on them is not based soundly in theory while this is not true for the approach to be discussed
in the next chapter. However, our algorithm grounded in theory still calls upon the Delauny tri-
angulation, and since Gabriel edges are a subset of the Delauny edges, the Gabriel graph might
serve as an approximation to the more principled clustering approach in high dimension.

21

Figure 3.4: Barcode data clustered with a Gabriel graph

22

Figure 3.5: Barcode data clustered with a K-means

23

24

Chapter 4

Geometric non-parametric clustering

In this section we present a statistical framework to clustering and a geometric approach to solve
the resulting optimization problem. The goal of this section is to quickly compute linear graphs
with which to cluster. Further, we ground the graphs built in theory in order to prove bounds on
the quality of the clusters obtained.Traditionally, spectral clustering does not have a statistical
interpretation behind it. However, spectral clustering relies on notions of graph cuts. Define the
Normalized cut (NCut) [21] as follows,

NCut(A1, . . . , Ak) =
1

2

k∑
i=1

cut(Ai, A
′
i)

|Ai|

Here, A1, . . . , Ak are the k partitions of the node set of the graph. |Ai| is the volume of a
cluster and is equal to

∑
j,k ejk such that xj or xk ∈ Ai. A′i is the set of nodes in the graph that do

not belong to Ai. Finally, cut(Ai, A′i) is the surface area of the cut separating Ai from the rest of
the graph. cut(Ai, A′i) =

∑
j,k ejk such that xj ∈ Ai, xk ∈ A′i. Note that the quantity is divided

by 2 so as to not double count the edges.
The most common definition of graph cuts is defined as follows,

cut(A1, . . . , Ak) =
1

2

∑
i

cut(Ai, A
′
i)

However this definition does not provide good clusters because there is strong incentive to
remove single nodes with small out degree. The normalized cut circumvents this problem by
normalizing by cluster volume thereby encouraging larger clusters. The NCut quality would be
minimized by ensuring that |Ai is the same for all i, i.e. equal volume clusters. As explained
in the section on spectral clustering, the spectral clustering algorithm solves a relaxed version of
the normalized cut problem.

In this thesis, we extend the notion of normalized cuts to probability distributions. Define the
Normalized Distribution cut (NDCut) as follows,

25

NDCut(A1, . . . , Ak) =
1

2

k∑
i=1

∮
γ(Ai.A′i)

dA∫
Ai
dV

At this point it is important to note the k-way expansion cut [14]. Let the cut, Kcut, be defined
as follows.

Kcut = max

(
cut(Ai, A

′
i)

|Ai|
, i = 1, . . . , k

)
This k-way expansion cut more closely resembles the isoparametric cut for which Cheeger

bounds exist [1]. Cheeger bounds bound the quality of this cut by the second eigenvalue of the
graph laplacian. Unfortunately, similar bounds do not exist for the normalized cut. While the k-
way expansion cut has good theoretic properties, practitioners still use normalized cuts for their
link to spectral clustering. In this thesis, we will continue to do the same.

In this context, letAi be a closed subspace of Ω corresponding to a cluster. A′i is the conjugate
space of Ai, A′i = Ω − Ai.

∫
Ai
dV is the volume integral of Ai and γ(Ai, A

′
i) is the surface

seperating Ai from A′i. This means
∮
γ(Ai,A′i)

dA is the surface integral of the cut seperating
out Ai. The intuition behind the normalized distribution cut is very similar to that of the vanilla
normalized cut. The formulation encourages cutting the probability space into maximum volume
clusters such that the surface area separating them is minimized. Since this formulation makes
no assumptions on the underlying distribution, it remains non-parametric. Further, in order to
prove effectiveness on small clusters, it only needs to be shown that volume and surface area
estimates are close even if only a few points from the cluster are sampled. As we do not have
access to the true density distribution, the density function must be approximated from the data.
For this purpose, we will use a second nearest neighbour approximator.

Density approximation is traditionally done in two forms, k nearest neighbours and kernel
methods. Both methods involve measuring the number of points in a region as an approximation
of density. KNN typically constrains the number of points in the region to be fixed (k) and adjusts
the radius until a large enough volume in covered. Conversely, kernel methods hold the region
volume constant while counting the number of points in the space. For the purposes of the paper,
we will use a second nearest neighbour estimator. For both approaches, say we are interested in
a density approximation of points X , f(X). Let L(X) be a small neighbourhood of X . If L(X)
is sufficiently small, the probability mass of L(X) can be approximated by f(X)v where v is
the volume of the local neighbourhood. The probability mass of the empirical region can also
be approximated by sampling a large number of points from the distribution and counting the
number that fall within L(X). Let n points be sampled and let k of them fall within L(X). Let
f̂(X) be the desired empirical estimate of density at X .

f̂(X)v =
k

N

f̂(X) =
k

Nv

26

As was mentioned, KNN estimators work by varying v until k points fall in the local neigh-
bourhood of X . However, the form of the estimator must be slightly modified as follows. Let vr
be the distance of the kth nearest neighbour to X . Let vr be the volume of the d dimensional ball
of radius r. Again, let f̂(X) be the empirical density estimate.

f̂(X) =
k − 1

Nvr

As shown in [10], the reason k − 1 is used instead of k in the numerator is that the former
leads to an unbiased estimator. With this modified form, it can be shown that the bias of the KNN
estimator goes to 0 as n goes to infinity. However, the variance of the estimator remains constant
as n increases and only reduces by increasing k. If accurate pointwise estimates are required,
it can be shown that k must be some function of n. Our needs do not face this shortcoming
because we are not interested in accurate pointwise estimates; rather, we are interested in accurate
integrals of the pdf over volumes of clusters or surface areas of cuts. While the proofs have not yet
been completed rigourously, we believe that the large variance will integrate out as we consider
larger spaces. For any clusters of non-zero measure, it should be possible to invoke Chernoff
bounds and claim that if it had a sufficiently large probability mass, sufficient points must fall in
the area to generate an accurate estimate.

4.1 Control volume methods
With a pointwise estimate of density in place, we are ready to construct a graph to partition in
order to derive our clusters. For this purpose, a probability density distribution can be thought
of as analogous to a heat distribution over a metal plate of varying conductivity. Regions of
high density can be thought of as parts of the metal plate with high conductivity. Solving the
heat equation over a space is hard to do exactly but can be approximated well by finite element
methods. Finite element methods solve partial differential equations over closed sets by splitting
the set into small units and solving the equation on unit boundaries. The total solution can then
be extracted from these boundary solutions. In the 2D case, space is usually quantized by a
triangulation.

In order to ensure an accurate approximation, it is important that the triangles be close to
equilateral in some sense. This condition is achieved by bounding the aspect ratio for each tri-
angle in the mesh. The aspect ratio of a triangle is defined to be the ratio of the radius of the
circumcircle to the smallest edge in the triangle. Ruppert’s algorithm [18] provides a mesh com-
posed entirely of these high quality triangles. The algorithm consits of the following operations
and invokes the Delauny Triangulation [4] as a subroutine.

1. Compute the Delauny Triangulation of the points.

2. Repeat the following two steps until convergence.

3. For each segment such that its dihedral ball is non-empty, add its midpoint to the triangu-
lation.

4. For each triangle with bad aspect ratio, add its circumcenter to the triangulation.

27

Figure 4.1: 3D slivers

In 3D, the mesh is generated by covering space with tetrahedrons. This, however, is plagued
by ”sliver” tetrahedrons in which the four points are nearly coplanar. Finite element methods
perform poorly in meshes containing these slivers despite their having good aspect ratio. An
image of these slivers can be found in, [15]. The image is reproduced here in 4.1. [15] shows
that the control volume method has a low error even in the presence of these slivers. There-
fore, extensions of Ruppert’s algorithm can be used to solve estimation problems even in three
dimensions.

4.2 Constructing the mesh graph

The problem remains to construct a graph over the input data as opposed to simply over a bound-
ing box. In order for the control volume method to be applicable, it is still necessary for the
Voronoi cells in the mesh to have good aspect ratio. In lower dimensions, this implies good as-
pect ratio Delauny triangles. This is ensured by adding extra points to the data set called Steiner
points. The Steiner points added can be shown to have the following properties.
Theorem 4.2.1. For any data set D with n points, Steiner points D′ added to ensure the trian-
gulation only has good aspect ratio triangles will increase the size of the data set by at most a
constant fraction.
Theorem 4.2.2. For any data set D with n points, Steiner points D′ added to ensure the tri-
angulation only has good aspect ratio triangles will not increase the second nearest neighbour

28

Figure 4.2: Delauny triangulation of Barcode data with Steiner points added

29

Figure 4.3: Voronoi diagram of Barcode data with Steiner points added

30

Figure 4.4: Kite between two points in three dimensions

distance of any point by at most a constant fraction.

Theorem 4.2.3. For any data set D, consider any point x. Let Steiner points D′ be added to
enforce quality of the triangulation. Then the edge length from x to any of its neighbours will not
differ by more than constant fraction.

These theorems allow us to triangulate the data set and ensure that all triangles have good
quality. The resulting triangulation graph is used as the affinity graph in order to cluster the data
set. In order to estimate the cut, boundary conditions on this graph must be solved. Consider
the figure 4.4 from [15]. This figure represents the connection between two neighbouring points
in the triangulation, also known as a kite. The points are, without loss of generality, positioned
along the z-axis.Let the points be xi and xj and the Delauny edge between then be hij . K+ and
K− refer to sections of the Voronoi space of each point. Aij is the Voronoi face between the
two points. Let eij denote the weight of the edge in the affinity graph and h and A denote the
length of the edge and surface area of the Voronoi face respectively. Let Cij be the conductance
at the mean of the Voronoi face. The Control volume method dictates that the edge weight of the
Delauny edge is as follows.

31

eij =
A

h
Cij

=
A

h

k − 1

nvh

= C
A

h(d+1)

For some constant C. This is because the conductance on the Voronoi face is simply the
density estimate at that point. This estimate is equal to k−1

nvh
. Note here that k = 2 since we use

second nearest neighbour distance. In d dimensional space, vh = C ′hd for some other constant
C ′. Combining these observations and separating the constants into a single term gives us the
above form. Because this constant is independent of position and therefore edge independent, it
may simply be dropped in assigning edge weights.

32

Chapter 5

Results

In this paper, we apply our clustering approaches to flow cytometry data. Cytometry refers to
the measurement of cell characteristics such as size, count, DNA content, or the existence of
certain bio markers. Flow cytometry in particular refers to the measurement of cell characteris-
tics by aligning cells using flow techniques. Cytometry data provides valuable insight into cell
populations and is used often in medical research and diagnostics. Its applications include pro-
viding diagnosis and prognosis information on diseases like HIV or leukemia. Clustering these
cell populations is a standard first step in many pipelines using cytometry data. However, these
data clusters tend to be highly irregular in shape. Further, rare cell populations are often vital
to perform diagnostics. Therefore, traditional clustering methods such as K-means or Gaussian
Mixture Models fail to produce satisfactory results.

The state of the art non-parametric clustering approach on this data is SamSPECTRAL [24].
SamSPECTRAL is also based around spectral clustering but constructs a complete graph over
the data. Rather than attempt to reduce the size of the graph, the algorithm relies on a heuristic
to sample a ”representative” subset of the data points. The graph is then built only over these
representatives. The edge weight between points in the graph depend on the pairwise distance
between all points assigned to each representative. This graph is then cut in order to cluster the
data set. Finally, clusters with low separation are combined. While SamSPECTRAL performs
well on cytometry tasks, it relies heavily on heuristics and provides no theoretical bounds on
quality.

Flow cytometry data poses another challenge and that is that the output of a clustering al-
gorithm is hard to judge. Typically, cytometry data is somewhat high dimensional. Standard
cytometry data sets contain 70,000-150,000 cells per person with 16-20 different measurements
per cell. Therefore, clusters must be judges in 20 dimensions. Even if dimensionality reduction
techniques are used, the problem is sufficiently hard that expert judgements are required. Cy-
tometry data is nuanced enough that non-experts cannot easily determine the number of clusters
or the cluster positions while expert annotated data sets are hard to come by. For this reason,
much of the research is done on ”toy” data sets to demonstrate feasibility of the approach. We
present our approaches on two toy data sets. The first is a small set of non-linear data with a
few rare populations. The second is a so called ”Barcode” data set that was presented in Section
3.4. The data is reproduced here without clustering labels. This data has been built by experts to
resemble problems faced in clustering true cytometry data and is presented here [11]. However,

33

0 1 2 3 4

0
1

2
3

4

FL1-H

FL
2-
H

Figure 5.1: Small data set

34

Figure 5.2: Barcode data set

35

the barcode data is easy for a non-expert to cluster on inspection.
In the small toy example, both SamSPECTRAL and our clustering approaches vastly outper-

form K-means. Geometric clustering performs about as well as SamSPECTRAL (depending on
the designation of clusters) but is far less dependent on external parameters being set to the right
values. In order for SamSPECTRAL to perform well, several parameters must be tuned through
an exhaustive grid search.

The following pages contain the different clusterings for the toy data set and the barcode
data set. 5.3 is the figure showing the results of K-means on the toy data set. 5.4 presents how
SamSPECTRAL clusters the set, while 5.5 shows the clustering produced through a geometry
based approach.

Similarly, ?? is the result of applying K-means to the Barcode data, 5.6 is the clustering pro-
duced by SamSPECTRAL and 5.7 is the clustering produced by the geometry based approach.
Finally, ??

For the Barcode data, we immediately notice that all approaches make mistakes. K-means
performs the worst with several split clusters. SamSPECTRAL provides clear clusters but cannot
differentiate between the several rare groups. It only detects the presence of 16 clusters instead of
20. Both Gabriel clustering and Geometric clustering give similar results. Geometric clustering
has a huge win on speed in low dimensions because computing a good quality triangulation is
very fast while computing the Gabriel graph is still super-quadratic time. Triangulation is done
with the help of the Triangle package. [20].

These results show that, in 2D, a geometry based approach is both very fast and decently
performant at identifying rare clusters. Spectrally clustering a mesh with Steiner points added
performs similarly to SamSPECTRAL, a highly tuned, heuristic method. Further, meshing data
sets in low dimensions is computationally cheap and produces only a linear sized graph. In
higher dimensional problems, Gabriel graphs are cheaper to construct while still yielding good
clustering results and a linear graph. Further, the geometric approach has a strong theoretical
foundation from which proofs of quality could be derived. This is a good avenue for future
exploration.

36

0 1 2 3 4

0
1

2
3

4

FL1-H

FL
2-
H

Figure 5.3: K-means on toy data set

37

0 1 2 3 4

0
1

2
3

4

FL1-H

FL
2-
H

Figure 5.4: SamSPECTRAL on toy data set

38

−1.5 −1 −0.5 0 0.5 1 1.5 2 2.5 3 3.5
−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Figure 5.5: Geometry based clustering on toy data set

39

Figure 5.6: SamSPECTRAL on Barcode data

40

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

Figure 5.7: Geometric approach on Barcode data

41

42

Bibliography

[1] Jeff Cheeger. A lower bound for the smallest eigenvalue of the laplacian. Problems in
analysis, 625:195–199, 1970. 4

[2] Michael B. Cohen, Brittany Terese Fasy, Gary L. Miller, Amir Nayyeri, Donald Sheehy,
and Ameya Velingker. Approximating nearest neighbor distances. CoRR, abs/1502.08048,
2015. URL http://arxiv.org/abs/1502.08048. 3

[3] Gautam Das and Giri Narasimhan. A fast algorithm for constructing sparse euclidean span-
ners. International Journal of Computational Geometry & Applications, 7(04):297–315,
1997. 3.2

[4] B Delaunay. Sur la sphere vide. a la memoire de george voronoi, 1934. 4.1

[5] Michael Elkin and Shay Solomon. Optimal euclidean spanners: really short, thin and lanky.
CoRR, abs/1207.1831, 2012. URL http://arxiv.org/abs/1207.1831. 3.2

[6] David Eppstein and Joseph Wang. Fast approximation of centrality. J. Graph Algorithms
Appl., 8:39–45, 2004. 3.4

[7] Mario AT Figueiredo and Anil K Jain. Unsupervised learning of finite mixture models.
Pattern Analysis and Machine Intelligence, IEEE Transactions on, 24(3):381–396, 2002. 1

[8] Linton C Freeman. A set of measures of centrality based on betweenness. Sociometry,
pages 35–41, 1977. 3.4

[9] Jerome Friedman, Trevor Hastie, and Robert Tibshirani. The elements of statistical learn-
ing, volume 1. Springer series in statistics Springer, Berlin, 2001. 1

[10] Keinosuke Fukunaga. Introduction to statistical pattern recognition. Academic press, 2013.
4

[11] Yongchao Ge and Stuart C Sealfon. flowpeaks: a fast unsupervised clustering for flow
cytometry data via k-means and density peak finding. Bioinformatics, 28(15):2052–2058,
2012. 3.4, 5

[12] Sung Jin Hwang, Steven B Damelin, and Alfred O Hero III. Shortest path through random
points. arXiv preprint arXiv:1202.0045, 2012. 3.1

[13] L. Kaufman and P.J. Rousseeuw. Clustering by means of medoids. in statistical data analy-
sis based on the l1–norm and related methods. 1987. 3.4

[14] James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning and
higher-order cheeger inequalities. Journal of the ACM (JACM), 61(6):37, 2014. 4

43

http://arxiv.org/abs/1502.08048
http://arxiv.org/abs/1207.1831

[15] Gary L Miller, Dafna Talmor, Shang-Hua Teng, and Noel Walkington. On the radius-edge
condition in the control volume method. SIAM Journal on Numerical Analysis, 36(6):
1690–1708, 1999. 4.1, 4.1, 4.2

[16] Hae-Sang Park and Chi-Hyuck Jun. A simple and fast algorithm for k-medoids clustering.
Expert Systems with Applications, 36(2):3336–3341, 2009. 3.4

[17] Matteo Riondato and Evgenios M Kornaropoulos. Fast approximation of betweenness cen-
trality through sampling. In Proceedings of the 7th ACM international conference on Web
search and data mining, pages 413–422. ACM, 2014. 3.4

[18] Jim Ruppert. A new and simple algorithm for quality 2-dimensional mesh generation. In
SODA, volume 93, pages 83–92, 1993. 4.1

[19] Gert Sabidussi. The centrality index of a graph. Psychometrika, 31(4):581–603, 1966. 3.4

[20] Jonathan Richard Shewchuk. Triangle: Engineering a 2d quality mesh generator and delau-
nay triangulator. In Applied computational geometry towards geometric engineering, pages
203–222. Springer, 1996. 5

[21] Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 22(8):888–905, 2000. 1, 4

[22] Sergios Theodoridis and Konstantinos Koutroumbas. Pattern Recognition, Third Edition.
Academic Press, Inc., Orlando, FL, USA, 2006. ISBN 0123695317. 3.4

[23] Vladimir Ufimtsev and Sanjukta Bhowmick. An extremely fast algorithm for identifying
high closeness centrality vertices in large-scale networks. In Proceedings of the Fourth
Workshop on Irregular Applications: Architectures and Algorithms, IA3 ’14, pages 53–56,
Piscataway, NJ, USA, 2014. IEEE Press. ISBN 978-1-4799-7056-8. doi: 10.1109/IA3.
2014.12. URL http://dx.doi.org/10.1109/IA3.2014.12. 3.4

[24] Habil Zare, Parisa Shooshtari, Arvind Gupta, and Ryan R Brinkman. Data reduction for
spectral clustering to analyze high throughput flow cytometry data. BMC bioinformatics,
11(1):403, 2010. 5

44

http://dx.doi.org/10.1109/IA3.2014.12

	1 Introduction
	2 Historical Spectral clustering
	3 Density based distance metrics and clustering
	3.1 Approximation of density based distance metrics
	3.2 Gabriel graphs and approximate Gabriel graphs
	3.3 Weakly Gabriel graph and fast linear spanner
	3.4 Results and Discussion

	4 Geometric non-parametric clustering
	4.1 Control volume methods
	4.2 Constructing the mesh graph

	5 Results
	Bibliography

