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Abstract

Hardware virtualization enables remote instantiation of computation through
the preserved executability of encapsulated software. The large size of vir-
tual machines (VMs), however, poses challenges in exploiting this strong fea-
ture under the existence of resource constraints. In this thesis, we claim that
the use of execution knowledge achieves the efficiency and timeliness of VM
state transfer in such environments. We demonstrate its effectiveness in two
concrete contexts in which the challenges materialize: 1) VM delivery over
WANs, with network resource limitations, and 2) urgent migration of VMs
under contention, with strict time requirements. In the context of VM delivery
over WANs, we take advantage of the knowledge about past VM execution in-
stances. We conduct the evaluation of vTube, a system for efficiently stream-
ing virtual appliances, from both systems and human-centric perspectives. In
the context of urgent migration of VMs under contention, we leverage current
execution knowledge at the guest OS level. Our approach, called enlight-
ened post-copy, uses this knowledge to expedite the resolution of contention
between VMs. Our proposed solutions address the corresponding problems
by providing VM performance as defined by critical metrics in their specific
contexts.
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Chapter 1

Introduction

Hardware virtualization1 is a technology that exposes virtual machines (VMs), a layer of
emulated hardware on top of physical hardware, to software. The domain of software
execution inside VMs is called guest, whereas that managing real hardware is referred to
as host. Virtualization is achieved through software emulation of devices, often with native
hardware support for improving the speed of guest execution. The systems software that
creates the layer of virtualized hardware is called hypervisor. Hypervisor cleanly separates
guests from physical hardware, creating the illusion that they are running directly on a
physical machine.

A key benefit of virtualization is guaranteed executability of software. The guest is
able to run regardless of the hardware and software environment of the physical machine.
Therefore, software needs to be prepared once for each virtual machine, rather than for
each machine on which it may run. Furthermore, this executability provides the capability
to transfer computation. Pre-configured VM images can be copied to a remote machine
for instantiation, or running VMs can be transferred to a remote machine for continued
execution on the remote site. Unfortunately, the applicability of these operations is largely
limited by the VM state size. In order to transfer a VM from one machine to another, the
state for its memory, disk, and peripheral devices must be transferred. Some of these states
are often prohibitively large; in particular, memory can be several gigabytes or more, and
disks in the order of tens of gigabytes. Even with the network speeds improving over the
past decades, naively transferring this much state takes a significant amount of time and
incurs performance degradation. Moreover, the need for fast VM transfer is magnified
under limited resource availability, which requires efficient solutions for meeting perfor-
mance requirements.

1In the rest of this thesis, we will refer to hardware virtualization simply as virtualization.
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Table 1.1 summarizes contexts that demand fast VM transfer, grouped into two cate-
gories: VM delivery over wide-area networks (WANs) and urgent transfer of VMs under
contention. They are characterized by specific use cases, primary metrics of importance,
and the forms of VM transfer. VM delivery over WANs is a key mechanism for distribut-
ing executable contents to end users, whose native computing environments are outside
the control of their distributors. In particular, when they contain legacy applications, virtu-
alization is a prerequisite for ensuring their executability. VMs can also be used to cleanly
package applications and their particular dependencies, such as codecs for uncommon or
proprietary media formats. This packaging avoids affecting the user’s host environment
and eliminates the burden of manual installation and management. VM delivery also pro-
vides a convenient way of moving computation to the user’s large local data. Over WANs,
available bandwidth is limited to tens of megabytes per second or often much less. Also,
round-trip latency can reach as high as hundreds of milliseconds. This limited availabil-
ity of network resources poses a fundamental challenge for timely remote instantiation of
VMs.

In clouds, fast VM transfer between machines can be used to cope with dynamically
changing loads that exceed the capacity of physical resources. It mitigates the tension
between resource efficiency and performance preservation. On one hand, efficient use
of physical resources reduces hardware cost. On the other, running multiple VMs on the
same machine for resource efficiency sacrifices their performance under unexpectedly high
loads. Fast VM transfer allows reactive re-allocation of VMs to machines in such situa-
tions, resolving resource contention. Additionally, such contention can include adverse
scenarios. For example, a denial-of-service (DoS) attack maliciously floods a service with
unsolicited requests. A VM under this type of attack may render other VMs on the same
host unresponsive. VM re-allocation under high loads can also be beneficial in more dis-
tributed environments, such as Cloudlets [104]. Although good network connectivity is
expected in these use cases, they have high requirements for VM performance. Resolving
contention requires that transfer be performed as fast as possible, as otherwise the hosted
services continue to be disrupted.

In the above contexts, existing approaches to VM transfer are not sufficient for satis-
fying their requirements. Over WANs, current solutions are predominantly in the form of
VM image downloading. Without the existence of non-trivial infrastructures such as VM
distribution networks, clients need to wait for an extended period of time before launching
a VM. In cloud settings, various forms of transfer have been studied and incorporated into
hypervisor implementations. However, these transfer methods typically focus on specific
aspects of performance, and are ineffective when dealing with highly loaded VMs. For
example, live migration [40, 90] minimizes down time, during which VM execution is

2



Table 1.1: Challenging Contexts in Need of Fast VM State Transfer

!"#$%&$' ()*+%,-.%/0*".%/*123' 4/5%#$*$/6#'7%/*"7*()'*8#+%/*!"#$%#$-"#

4'%*!6'%'

()'*7"/*%#+*8'%/'9
***:*2/;<-.6,*()'
***:*26==,-;6$-"#>?%+-6*;"#$%#$*=6;@65-#5
***:*!"?=8$6$-"#*$/6#'7%/*$"*'-$%*"7*+6$6

()'*-#*;,"8+'9
***:*A.%/=/".-'-"#-#5
***:*B%5/%56$-"#*"7*/%'"8/;%:<"55-#5*()'

C/-?6/0*)%$/-;'
*DE*F-?%*$"*()*-#'$6#$-6$-"#
*GE*()*8'%/*%&=%/-%#;%

*DE*H&%;8$-"#*$/6#'7%/*$-?%
*GE*2==,-;6$-"#*'%/.-;%*I86,-$0
*JE*F"$6,*+8/6$-"#

F/6#'7%/*F6/5%$' B$6$-;*()*-?65%' K8##-#5*()*-#'$6#;%'
H&%;8$-"#*L#"M,%+5% C6'$*%&%;8$-"#*/%;"/+'*6$*<0=%/.-'"/*,%.%, !8//%#$*%&%;8$-"#*'$6$8'*6$*58%'$*AB*,%.%,

B",8$-"# .F8N%*O!<6=$%/*JP H#,-5<$%#%+*C"'$:!"=0*O!<6=$%/*QP

suspended, at the cost of delayed execution transfer. The underlying problem common to
VM downloading and existing transfer methods is the lack of understanding and adapting
to VM behavior. This results in the coarse granularity of these approaches that suffices for
either timeliness or performance, but not both as required in our target contexts.

In this thesis, we address the current limitations of VM transfer by exploiting knowl-
edge about VM execution. Performing state transfer using this knowledge makes it fea-
sible to instantiate VMs in a timely manner. In turn, the executability of software can be
extended and applied to remote instantiation without severe performance degradation. Our
central claim is as follows:

Thesis statement: Hardware virtualization preserves the executability of software across
physical machines, but large VM state size discourages fast remote instantiation of com-
putation. This obstacle can be overcome by state transfer that is guided by knowledge
from past and present execution instances. It achieves reduced launch delay and runtime
overhead in bandwidth-challenged and resource-overloaded settings.

We validate our claim by showing that informed state transfer enables fast VM launch
in the contexts in Table 1.1, exploiting appropriate execution knowledge and adequately
providing performance as defined by context-specific metrics. For VM delivery over
WANs, the use cases are centered around the distribution of virtual appliances, which
are VM images pre-configured for specific applications. Taking advantage of this prop-
erty, we exploit past execution as the source of knowledge. We analyze the previous

3



execution instances of a given virtual appliance, and derive its VM state access patterns.
These access patterns are used to estimate the state required by the currently execution
instance in the near future. VM state is delivered to the client according to this estima-
tion. The primary performance metrics in this context are time to VM instantiation on
the client side, and VM user experience including the wait time for instantiation and VM
performance afterwards. We develop and evaluate vTube, a system for streaming VMs
over low-bandwidth, high-latency networks. We also conduct a series of user studies for
aspects of VM performance that elude evaluation from the systems perspective. For VMs
in clouds, we propose a new approach to VM state transfer, called enlightened post-copy.
Enlightened post-copy targets running VM instances, and exploits the guest’s knowledge
about current execution for high efficiency. This knowledge is used to transfer VM state
to the destination in a prioritized manner. The main metrics of interest in this context are
time to transfer VM execution, the service quality of applications in the VM, and the total
duration of the operation. vTube and enlightened post-copy each apply the concept of state
transfer with execution knowledge to the corresponding use cases. With these approaches,
we significantly expand the range of contexts to which VMs offer a viable solution.

Figure 1.1 shows the outline of this thesis work. The numbers at the lower right corner
of boxes represent the chapter that covers the respective topic. Our thesis statement devel-
ops into the two distinct and complementary contexts. We apply past execution knowledge
per virtual appliance to the problem of VM delivery over WANs, proposing vTube as our
solution. We perform experiments to evaluate its streaming performance on real-world
networks, including 3G/4G LTE networks and public Wi-Fi’s. This work is presented in
Chapter 3. Next, we assess the system usability of vTube as perceived by human subjects,
which augments the systems-level results covered in Chapter 3. We also take a common
alternative approach to the VM streaming model of vTube, remote VM access using a
popular implementation called Virtual Network Computing (VNC) [98], and compare the
trade-offs of the two systems. Chapter 4 describes a series of user studies for this evalu-
ation. In the other context, VMs under resource contention, we exploit current execution
knowledge and propose enlightened post-copy. We evaluate its performance against ex-
isting migration approaches, including live migration and baselines such as stop-and-copy
and simple post-copy. The work on enlightened post-copy is explained in Chapter 5. The
results from Chapters 3, 4, and 5 collectively validate our claim that VM execution knowl-
edge enables timely VM transfer in challenging environments with resource limitations.

In the next chapter, we begin by describing the relevant features of virtualization and
reviewing past work in the related areas.
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Chapter 2

Background

Since its invention, virtualization has evolved into a crucial part of systems that enables
software deployment in new ways. The resulting potential is a core requirement in the
specific contexts we explore. The first half of this chapter explains how virtualization
serves as the basis for our solutions, detailing its strengths of particular importance. After
the premises are established, the second half covers related work in virtualization and other
areas.

2.1 Essential Properties of Virtualization

Virtualization offers the capabilities to guarantee software executability and instantiate
remote computation, achieving both in a robust manner. These fundamental attributes are
the grounds on which we develop our work.

2.1.1 Executability Guarantee

Virtualization originates in the era of mainframe computers, such as VM/370 [41]. At
the time, it was used for partitioning hardware resources into multiple entities available
for software. Disco [34, 49] revitalized virtualization in the late 1990’s, introducing its
values for multi-processor machines. In this context, the key strength of virtualization is
backward hardware compatibility for operating systems; the computational resources of
high-end, multi-processor machines can be utilized without the significant development
effort for creating a new OS, by means of running multiple instances of VMs each running
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an existing commodity OS. This backward compatibility is achieved through separating
the physical hardware and the VM’s view of hardware, and is an essential property of
virtualization that provides executability guarantee for the software inside the VM.

Figure 2.1 illustrates the hardware and software hierarchy in environments with and
without virtualization. In non-virtualized environments, the OS executes directly on phys-
ical hardware, managing its resources and exporting its abstraction to user applications.
In virtualized environments, in contrast, a hypervisor exists between physical hardware
and the VM. Depending on the virtualization architecture, the hypervisor acts as the sole
entity that manages the physical hardware, or it runs on a separate OS, called host OS, that
manages the hardware. For example, qemu-kvm [7], which we mainly use in this work, is
a major example of the latter; qemu-kvm runs as a regular process on host Linux. In both
cases, the hypervisor exposes virtualized hardware as the hardware configuration of the
VM. The guest OS executes on and manages this virtualized hardware. User applications
sits at the top of this hierarchy, running on the guest OS.

The hypervisor controls the virtualized hardware seen by the guest OS. Decoupled
from the physical hardware, it remains consistent with the requirements and supports of the
guest OS even when the native hardware configuration of the machine changes. Moreover,
typically the hypervisor is smaller and more maintainable than a full-fledged OS, in terms
of the program size; it therefore has good sustainability across different generations of
platforms. These features of virtualization lead to the preserved executability of the guest
OS and its applications. As far as the VM is able to run, so are the software layers on top
despite possible changes in the physical hardware configurations.

This executability guarantee holds on recent platforms in spite of their advanced sup-
port for virtualization, which may violate the strict separation of virtualized hardware
from physical hardware. Most machines today have hardware support for virtualization,
most notably extended page tables (EPTs) for direct memory address translation for the
address spaces of the guest OS. It reduces the cost of virtualization and achieves the per-
formance of VM execution that is comparable to native execution in many cases. Such
hardware support requires that the guest and host architectures be compatible in order to
exploit the performance benefits. Also, para-virtualization is a common technique em-
ployed by major hypervisors. As opposed to full virtualization, which exposes a complete
image of existing hardware configuration to the guest, it establishes explicit channels that
make the guest OS aware of virtualization. Common examples include device drivers for
hard disks and network drivers; the guest communicates with these non-transparent vir-
tual devices in a manner that efficiently translates to the corresponding operations for the
underlying physical devices. The hypervisor is still able to retain the execution compati-
bility under the existence of these performance enhancements. It can absorb differences in
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Figure 2.1: Comparison of Virtualized and Non-Virtualized Environments

hardware features by, for example, software emulation, and preserve the compatibility of
para-virtualization features by keeping the abstraction exposed to the guest OS intact. The
executability guarantee thus remains to be a fundamental property of virtualization despite
the advancement of its technologies.

2.1.2 Remote Instantiation of Computation

The executability guarantee of VMs enables them to be moved between physical ma-
chines. As long as the hypervisors on these machines provide a consistent virtualized
hardware configuration, they can execute the VMs. Remote instantiation of computation
encapsulated in VMs, using this property, is the main theme of this thesis work.

VMs in the turned-off state, typically associated with a virtualized device configura-
tion and images of its persistent storage, can be transferred to and booted on an arbitrary
machine with an appropriate hypervisor. Also, running VMs can have their state saved
on one machine, and then be transferred to and resumed on another machine. This state
captures all the entities above the hypervisor level in Figure 2.1. Most notably, the state of
running VMs includes their memory image in addition to that of turned-off VMs. When
the state of a VM, running or turned off, is saved for use at a later time, it is called a snap-
shot. In the context of VM delivery over WANs presented in Chapter 3, we target virtual
appliances maintained in the form of snapshots. When running VMs are relocated to a
new machine for continued execution, on the other hand, their state is directly transferred
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to the destination machine in stead of being saved as images. Migration is a term for this
process, and is the type of VM state transfer in the context of urgent VM transfer under
contention discussed in Chapter 5. Remote instantiation of computation, in both of these
forms, allows the software to move across the boundary between physical machines. We
propose approaches to make this capability efficient and applicable in practical situations
that suffer from resource constraints.

We achieve such fast instantiation of computation through the use of execution knowl-
edge. The rationale behind this core approach to efficiency is the realization that the state
of a VM is inherently tied to its execution. Timely transfer of VM state needs understand-
ing its characteristics, which are determined by the way the computation inside the VM
requires it. We capture this relation between computation and VM state as different types
of execution knowledge, and apply them in their appropriate contexts. We thus advance the
field of VM state transfer, in which existing solutions either treat VM state as simple data
or infer its characteristics in an indirect, coarse-grained manner. When we simply down-
load entire VM images, for example, we view them as flat data that do not have particular
meanings associated with themselves. As we will explore in the subsequent chapters, more
sophisticated approaches in previous work use heuristics that reflect some VM state char-
acteristics; still, they do so without applying the specific concept of execution knowledge,
therefore paying the cost of inadequate efficiency in the resource-challenged contexts.

2.1.3 Means of Encapsulation

In addition to regular hardware virtualization, approaches to the encapsulation and trans-
fer of computation have been proposed at various levels in the systems software hierarchy.
The early efforts started with process migration, which was supported by systems such as
Sprite [46], MOSIX [26], and DEMOS/MP [95]. It can transfer processes between op-
erating systems that execute natively on physical hardware. This approach is direct and
efficient, moving the states of processes rather than the guest OS and everything atop as
done in virtualization. However, it generally suffers from residual dependencies, in which
processes after migration cannot resolve references to resources on the source. Such de-
pendencies include inter-process communication channels and file name spaces. More
recently, containers on Linux [109] and jails on FreeBSD [67] provide a mechanism for
isolating processes with separate resource access policies. Although lightweight compared
to VMs, their security enforcement and migration capability are integrated to a lesser ex-
tent. Zap [92] transparently migrates processes between OSes by introducing a lightweight
virtualization layer that abstracts the native system resources seen by the processes. In self-
migration [55], OSes handle migration by themselves, including their own execution and
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thread control. While relying on the L4 microkernel [77] or Xen [29] below the OSes,
the responsibilities at the hypervisor level are kept minimal. Unikernels [82] consist of
VMs with a single address space, targeting virtual appliances constructed for a specific
purpose. Jitsu [81] leverages the unikernel architecture to rapidly deploy applications on
distributed, power-efficient devices.

Virtualization, as used in our work, is distinct from these alternatives. First, the guest
environment encompasses the sources of residual dependencies, eliminating the compli-
cations that exist in process migration. Second, the hypervisor is designed for strong iso-
lation between VMs, preventing one from compromising another on the same host. Third,
unlike with the variants of virtualization above, no significant constraints or re-architecting
in the guest environment are assumed. These aspects motivate the pursuit of virtualization
as the most robust encapsulation of the target software.

2.2 Related Work

The work in this thesis includes multiple research elements, especially efficient VM state
transfer, the use of execution knowledge, and evaluation of systems usability. We first
review existing solutions to the delivery of VM images and migration of running VMs.
We next discuss past work on investigating usability aspects, focusing on the impact of
interaction latency, and then different approaches to obtaining execution knowledge and
the use of proactive state transfer in other research areas.

2.2.1 VM Delivery and Migration in WAN Environments

Early work on VM transfer started with stop-and-copy, in which guest execution is sus-
pended before, and resumed after, entire state transfer. It was used by Internet Sus-
pend/Resume [71, 106], and adopted by µDenali [117]. Stop-and-copy was also aug-
mented with partial demand fetch and other optimizations [103] for virtualizing the user’s
desktop environment, as virtual desktops, in Internet Suspend/Resume and Collective
[38, 101, 102]. Since the advent of these systems, various architectures for distributing
VMs across WANs have been proposed. VM distribution networks, such as VDN [94] and
VMTorrent [96, 97], disseminate VM images across networked computers to hosts close
to the site of VM launch. Huang et al. [61] developed a distributed framework that is
aware of the commonality across VM images and distributes them in fine-grained units to
cooperating nodes. VMFlock [24] is a framework for efficiently migrating groups of VMs
across clouds and data centers. It employs deduplication across VM images to eliminate
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redundant state transfer, and state accesses of executing VMs to efficiently retrieve the
remaining portions of the images. While our approach to VM delivery shares some of the
general techniques common to these distributed architectures, we focus on a server-client
model that assumes no wide deployment of intermediate nodes.

VM migration over WANs, for example between data centers, has fostered various
optimizations for supporting efficient use of network resources. Bradford et al. [30] ad-
dressed two challenges in live migration over WANs, the disruption of services in VMs by
throttling their state changes and network redirection by using dynamic DNS reconfigura-
tion. CloudNet [118] provides WAN live migration with optimizations including dynamic
iteration control, and deduplication and delta coding of VM state. XvMotion [83] incorpo-
rates mechanisms such as efficient disk buffer management and guest throttling to achieve
performance comparable to migration in LAN environments. Shrinker [99] applies dedu-
plication and content-based addressing in migrating clusters of VMs across WANs.

2.2.2 VM Migration in Clouds

VM migration in clouds has improved over the past decade, with previous work targeting
different environments. In Chapter 5, we will compare our approach, enlightened post-
copy, primarily to live migration [40, 90]. Live migration focuses on minimizing the down
time of migrated VMs. It exemplifies pre-copy approaches, which have all state transferred
to the destination upon the completion of migration. The approach opposite to the pre-copy
style is post-copy migration. VMs are resumed on their destination first, and then their
state is retrieved. Examples of this approach include work by Hines et al. [56, 57] and
by Liu et al. [78]. Post-copy migration is often desirable when migrating all state as fast
as possible is prohibitive with respect to available network resources. Hybrid approaches
utilizing pre-copy and post-copy have also been proposed [80]. In addition to the transfer
of computation, migration in clouds has also been used to provide the elasticity of VM-
hosted services. VM cloning, such as Kaleidoscope [33] and SnowFlock [73], allows load
balancing by rapidly instantiating VMs to increase the capacity of the hosted services.

Live Migration Enhancements

Being the current standard for migration, live migration has led to various efforts to en-
hance its performance. As used also in WAN environments, deduplication and compres-
sion of VM state have become a fundamental strategy for efficient VM migration. Jo et al.
[64, 65] presented an optimization that exploits duplicate contents between memory and
persistent storage of the VM. It reduces the duration of migration by skipping the transfer
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of such memory contents and having them directly loaded from the storage on the destina-
tion. Svärd et al. [111] studied the benefits of applying delta compression to memory pages
transferred during live migration. The use of compression allows live migration to scale
to heavy workloads in the VM, or to low bandwidth with respect to the workload size,
by increasing the speed of state transfer and reducing down time. Hacking and Hudzia
[54] also investigated the use of delta compression for migrating large VMs. They also
used background proactive state transfer to a potential destination before actual migration
is triggered. Delta compression is complementary to our work on enlightened post-copy,
and can enhance its performance when the host has spare cycles for the computation.

Working set estimation based on access traces is used for improving the efficiency
of live migration [78], while also applied to resume from snapshots [119]. In vTube,
we convert working set information in traces into fine-grained state access patterns, and
dynamically apply it based on the behavior of the running VM.

Scatter-gather live migration [45] addresses the eviction time of VMs under migration
for fast resource freeing on their source. By disseminating VM state to intermediate nodes
and having the destination receive the state spread over them, it allows evicting the VM
state on the source without being constrained by the network capacity of the destination.
Our work on enlightened post-copy also has an emphasis on the fast eviction of the target
VM from its destination.

In addition to these improvements to the software logic of migration, advancements in
data-center hardware have also been contributing to its efficiency. In particular, remote di-
rect memory access (RDMA) improves the speed of state transfer between hosts, thereby
enabling migration to handle increasing VM sizes. Huang et al. [62] evaluated an im-
plementation that uses RDMA over InfiniBand, and achieved up to 80% reduction in the
duration of migration through eliminating the regular overhead in the software networking
stack.

Performance Characterization

One of the challenging problems concerning live migration is quantifying its intricate per-
formance characteristics. Hu et al. [60] developed a framework for automating the mea-
surement of factors such as the down time, total duration, and network transfer amount,
and used it with different hypervisors. Svärd et al. [112] defined five fundamental at-
tributes of migration, ranging from performance and resource consumption to the ease of
application, and evaluated pre-copy, post-copy, and hybrid approaches based on these cri-
teria. Nathan [89] et al. proposed a model for estimating the duration of live migration,
considering the dirtied memory size, the number of pages whose transfer can be deferred,
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and the relation between these two factors over the course of migration. Breitgand et al.
[31] analyzed the relation between the pre-copy duration and the service quality during mi-
gration, and formulated a cost function to be used for the optimal combination of pre-copy
duration and down time. Akoush et al. [23] presented simulation models for estimating the
total duration and down time, particularly on the Xen platform. Their models take param-
eters such as the network bandwidth and page dirty rate into consideration, and provide
predictions of the migration duration within 90% accuracy.

Memory-Intensive Workloads

Live migration under memory-intensive workloads has gained attention as another chal-
lenging problem in clouds. Ibrahim et al. [63] identified problems with heuristics used in
qemu-kvm’s live migration when used with scientific computing workloads, such as MPI
and OpenMP. They proposed a dynamically adjusted algorithm reflecting the rate of mem-
ory content mutation, thereby improving the down time and reducing performance degra-
dation of the VM. Shribman and Hudzia [108] investigated a number of techniques appli-
cable to pre-copy and post-copy migration for memory-intensive workloads. These tech-
niques included the reordering of pages during transfer, delta encoding of page contents,
use of RDMA, demand pre-paging, and explicit support for non-blocking page faults.

Application-Level Migration

There also exists previous work that takes the task of migration into the application layer.
Zephyr [47] is an example of such approaches applied to online databases. It targets a
shared nothing database architecture, and preserves ACID properties during migration.
Madeus [86] is also a migration scheme for databases, which efficiently handles databases
with heavy workloads by concurrent dissemination of their snapshots. ElasTraS [44] uses
live database migration to build highly elastic and scalable database management sys-
tems. Imagen [79] targets active sessions for JavaScript web applications, migrating them
between devices for ubiquitous access. Wang et al. [116] presented a proactive fault tol-
erance approach to preserving MPI applications, through triggering their live migration
based on monitored performance.

2.2.3 Impact of Latency on Systems Usability

The impact of latency on system usability has been an active field of research since the
early days of computer sciences. A survey by Rushinek and Rushinek [100] reported
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that system response time is the most dominant factor that determines user satisfaction
with systems. Studies on mainframe time-sharing systems also showed that increases in
system response time lead to decreases in system performance [35, 43, 51], and the stress
level of users [72]. More recently, studies on web pages and browser-based applications
demonstrated a negative correlation between their response time and user satisfaction [59,
88].

Even before the above studies were conducted, in 1968, Miller introduced guidelines
for response time requirements [84]. This work discussed a variety of response types and
their time requirements over 17 different contexts. For example, responses to key typing
need be delivered within 0.2 seconds, and turn-around time of script execution should be
15 seconds or shorter. Several studies in the 1970’s and 1980’s expanded these guidelines
and aimed to make them more practical. While work by Guynes [53] and by Kuhmann [72]
investigated text-based interaction, work by Goodman and Spence [48] involved graphical
plots.

In the current era, research has progressed to suggesting thresholds over response de-
lays that affect user experience [42, 66]. Ng et al., for example, found that users can
perceive delays as low as 2.38 ms while performing dragging actions on a touchscreen
[91]. While evaluation based on such thresholds is useful, we take a direct approach to
evaluating usability in Chapter 4, by having human subjects interact with working sys-
tems.

In the systems community, evaluation of network latency on thin clients has been per-
formed. Tolia et al. [113] measured the interactivity of thin clients by means of per-
operation delays, testing applications ranging from image editing software to office pro-
ductivity tools over a range of network round-trip time and bandwidth. Lai and Nieh [74]
used slow-motion benchmarking, which quantifies the delays in interactive events through
monitoring the network traffic corresponding to these events.

Virtualization facilitates the relocation of thin-client servers for providing better inter-
activity to end users. THINC [27, 68] virtualizes the display driver interface, and translates
the native commands to simplified operations amenable to client-side hardware support.
MobiDesk [28] efficiently supports virtual desktops in mobile environments by decou-
pling the user’s workload from host systems and devices, such as the display, OS, and
network, and facilitating its migration between hosts. VMShadow [52] controls the loca-
tions of VMs in distributed clouds to reduce network latency to their users, by deciding
their placements based on monitored performance of their network traffic.
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2.2.4 Execution Knowledge and Proactive State Transfer

The knowledge about VM status has been captured and used in different forms to achieve
various objectives, including those other than VM state transfer. In addition, forms of
proactive state transfer have been studied outside the area of virtualization.

Enlightenment

The key aspect of our work on enlightened post-copy is enlightenment [85], knowledge
provided by the guest and exploited by the hypervisor for efficient VM management. En-
lightenment has been used in various ways. Satori [85] uses the knowledge of guests about
their reclaimable memory, for memory consolidation between multiple VMs. Ballooning
[115] is another well-established form of explicit guest involvement in the memory recla-
mation by the hypervisor. Our work applied the concept of enlightenment to migration,
and investigated how explicit guest support can improve migration performance. An alter-
native approach to full enlightenment through guest cooperation is to use hypervisor-level
inference. Kaleidoscope [33] exploits memory semantics inferred from architecture spec-
ifications, and uses the obtained information for fast VM cloning. JAVMM [58] expedites
migration of VMs containing Java applications, by having them inform the hypervisor of
memory containing garbage-collectable objects and avoiding its transfer.

Proactive State Transfer in Other Areas

The concept of proactive state transfer has been studied extensively as data prefetching in
the area of file systems. Access transition between files or disk blocks, with associated
probability, has proven effective in making prefetch decisions [50, 76]. Speculative execu-
tion [39] predicts future disk accesses in an automated fashion by executing code ahead of
time using spare CPU resources to find I/O requests. Automatic generation of information
about disk accesses is also done at the compiler level [32, 87], where application code is
annotated to generate prefetching directives. Finally, applications can explicitly disclose
their file access patterns to achieve high effectiveness. Examples of this approach include
informed prefetching [69, 93, 114] and application-controlled prefetching [36, 37].
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Chapter 3

VM Delivery over Wide-Area Networks

The first of our problem contexts is the delivery of VMs, specifically in the form of virtual
appliances, over WANs. Virtual appliances are pre-configured VM images with user ap-
plications already installed for use. While widely used by today’s cloud users, they are as
useful for end users located across WANs as a means of software delivery. Virtual appli-
ances ensure the executability of the applications in the user’s environment. Furthermore,
software packaging through VM encapsulation removes the burden, on the user’s side, of
manually meeting requirements and maintaining the user’s native environment, such as
installing dependencies of the new application. However, the size of virtual appliances
can often be discouragingly large for timely transfer over WANs; when the size is in the
order of tens of gigabytes, downloading the entire VM image can take up to hours. Un-
fortunately, such time-consuming download is the common way of obtaining new virtual
appliances as of today.

In order to provide easy access to virtual appliances for end users, an efficient stream-
ing approach is essential. Similar to video streaming, such an approach streams the image
of a virtual appliance as the user comes into the service; the user visits a repository of vir-
tual appliances and selects one of interest. Then, the VM is launched rapidly on the user’s
machine, with continuous execution with adequate performance. The user can also switch
to another virtual appliance and stream it, when finished with the current one. While this
capability is attractive, VM streaming is more challenging than video streaming; VM exe-
cution is inherently non-deterministic, and the order of VM state accesses depends on the
current workload. Therefore, VM state cannot be simply streamed in a sequential manner
as done with video contents. Furthermore, the rate at which the state is accessed also vary
widely. Specifically, the state access is typically bursty in nature. An application inside the
virtual appliance, for example, may load a large amount of data from its disk into memory
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at one point, and continue executing without accessing much of additional data for an ex-
tended period of time. For these reasons, an efficient streaming approach needs a way of
predicting VM state accesses, and performing state transfer accordingly.

This chapter describes our approach to streaming virtual appliances that achieves timely
launch and smooth execution of the VM through the use of execution knowledge. The core
idea is using the knowledge about past instances of a given virtual appliance, and applying
predicted state access patterns to the stream sequence. Key properties of virtual appliances
make past execution knowledge particularly useful in achieving the timeliness and satis-
fying additional objectives, such as bounding the amount of state transfer. Our system,
called vTube, demonstrates the effectiveness of using past execution knowledge in VM
streaming, and its feasibility over networks with low bandwidth and high latency including
3G, 4G LTE, and public Wi-Fi’s.

3.1 Problem and Objectives

The problem of VM delivery over WANs in our context poses primary challenges in time-
liness. We elaborate on our use cases that lead to these challenges, define our objectives
through metrics of importance, and explain how we apply execution knowledge in the
domain of this problem.

3.1.1 Use Cases

Virtual appliances for end users provide various benefits through seamless delivery of new
applications. Notable examples include application packaging, media content distribution,
and application streaming to local data.

Application packaging: Virtual appliances allow software distributors to package an ap-
plication together with its dependencies, ranging from even an OS to user libraries. By
encapsulating them in a VM, virtual appliances can ensure the executability of the target
application on the client side. This holistic packaging eliminates the burden of manual
installation of these dependencies on the user, or the requirement of having a particular
platform for running the application. For example, Windows applications encapsulated in
a VM do not require that the user has a native Windows environment, as long as a compat-
ible hypervisor is available.

Media content distribution: Virtual appliances provide encapsulation for not only com-
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putation, but also data. Specifically, media contents requiring special handling can be
placed in a VM. A video content in an exotic format, for example, can be coupled with its
codec, or a movie with DRM protection can be shipped with an appropriate license. Such
encapsulation becomes particularly useful as the bundled entity can often be of temporary
use with the media content itself. When the user is finished with the content, the accom-
panying codec or license is no longer necessary. Disposing the VM removes both of them,
without leaving unnecessary installations in the user’s machine.

Application streaming to local data: Software in a virtual appliance enables compu-
tation to be moved to the site of a large volume of data, avoiding the difficulty of moving
the large data to a computer with the appropriate software. The user may, for example,
have a large volume of video files in a local computer. When the computer does not have
a media editing application for the videos, one can be streamed in a virtual appliance. In
this case, the data conveniently remains even after the software is removed.

Software Archiving

Archival of executable contents, such as Olive [105], in the form of VMs exemplifies
the application packaging use case. Encompassing the benefits of VMs above, it trans-
forms their preserved executability into a vehicle for easy access to historical software.
Such archiving services play the role of libraries for digital contents, analogous to those
for books, that maintain the contents for the coming ages. For example, educational pro-
grams for learning geography on DOS can be executed on today’s computers precisely
as they were in their time. The strength of VM encapsulation is that the target software
remains executable despite the loss of the compatible platform in the latest environments,
which makes virtualization a core requirement for the archiving services. In Olive’s model,
central repositories provide a collection of archival VMs, as depicted in Figure 3.1. In or-
der for these repositories to deliver to end users across the Internet, an efficient mechanism
for streaming VMs over limited bandwidth and long latency is critical.

Design Assumptions

The driving use cases above lead to a number of design assumptions. First, down-
loading entire virtual appliance images is not affordable when the capability to rapidly
instantiate and interact with a VM is a key requirement. Therefore, we cannot relay on
the straightforward approach, which is commonly used by existing services today, such as
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VMware’s Marketplace [107]. Second, we do not assume special construction of virtual
appliances, other than that they are made for the use of specific software. Specifically, we
do not enforce any guest changes or require effort to make virtual appliance size as small
as possible. Third, the virtual appliance images include a snapshot of an executing VM,
with a memory image. While omitting the memory state may reduce the virtual appliance
size, it would induce boot time of the VM on the client and increase the initial wait time for
the user. This extra wait time would degrade the user’s swift interaction with the stream-
ing service. Finally, the VM delivery model is based on a thick-client model, in which the
capability to compute is retrieved from a remote site and executed locally. A contrasting
approach is thin clients; in thin clients, the computation is performed on the remote site
and only the user interaction handling is processed to the client side. We cover the topic
of evaluating our thick-client model against the thin-client model in Chapter 4.

3.1.2 Goals: Metrics of Importance

VM delivery over WANs caters to end users launching virtual appliances to access soft-
ware that their environments do not originally have installed. To this end, a practical sys-
tem needs to address two primary metrics of performance: VM launch time and execution
quality.

VM launch time: The time it takes for the VM to start on the client side. It
corresponds to the time for having VM state delivered that
suffices for adequate execution performance.

VM execution quality: The performance of the VM after it initially launches. It
includes any disruption of its execution resulting from on-
going state delivery.

These metrics together represent the accessibility of virtual appliances over low-bandwidth,
high-latency networks. A successful approach copes with the sheer size of VM images in
the order of tens of gigabytes, and makes it feasible to instantiate them rapidly, within
minutes, even with limited network resources for state transfer.

Additional metrics underneath these primary metrics include state transfer amount and
VM stalls due to pending state arrival. Given particular bandwidth, the amount of state
transfer decides the wait time for the user. The more effective the state transfer is in deliv-
ering what is required for the VM’s smooth execution, the less time it takes until the VM
is ready. Furthermore, the efficiency can be crucial for the delivery over certain types of
last-mile networks, such as 3G and 4G cellular networks, that are charged per data usage;
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downloading tens of gigabytes is usually very expensive on such networks. VM stalls are
the disruption of VM execution that occurs when the guest is accessing state that has not
been cached locally. Until the corresponding state has arrived, the VM execution thread
must be suspended. These stalls, as the VM has already launched, directly transform to
the disruption of the user interaction. Therefore, reducing state transfer amount and VM
stalls is a key to improving VM launch time and execution quality.

3.1.3 Past Execution Knowledge

Our approach to addressing these challenges is the use of past execution knowledge,
namely the information about the previous execution instances of a given virtual appli-
ance. Specifically, two key properties of virtual appliances motivate us to apply this form
of execution knowledge:

• They are static VM images, whose starting point of execution upon delivery is fixed.

• They are typically constructed for well-defined workloads of particular software.

Virtual appliances are distributed as VM images containing the state of a VM at the
time of their creation. Therefore, VM instances created from a particular image always
start execution from the particular state captured by the image. This includes the state of
its disk, memory, and all the other devices such as virtual CPUs and peripheral devices.
Consequently, the divergence in VM state access across instances of the same virtual ap-
pliance results from the workload after their start, but not from differences in their initial
state. In addition, the purpose of virtual appliances is facilitated deployment or use of soft-
ware installed on them. For example, a virtual appliance for professional media editing
software would most likely be used for the particular application, and not for installing
unrelated software such as a web server application. This makes it tractable to infer the
workload of a current instance from that of previous instances. These two aspects makes
past execution knowledge particularly suitable for identifying an efficient way of stream-
ing VM images.

3.2 vTube: Efficient Streaming of Virtual Appliances

We developed a system, called vTube, as a solution to efficient streaming of virtual appli-
ances over WANs. vTube adopts the video streaming paradigm and applies it to stream-
ing virtual appliances. Specifically, it uses three modes of VM state transfer: buffering,
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Figure 3.2: vTube Streaming Model. The top row represents a timeline of VM execution,
and the bottom row that of VM state transfer.

streaming, and demand fetch. Figure 3.2 illustrates these transfer modes. Buffering is per-
formed before VM launch or while the VM execution pauses. The rationale is to suspend
the VM when the state transfer cannot catch up with its execution speed, analogous to the
way video buffering is done. Otherwise, the user would suffer intermittent VM execution,
and hence degraded user experience. vTube switches to streaming when it is affordable
to transfer state in the background of VM execution. Streamed state is expected to arrive
at the client side before it is accessed, without disturbing the VM when the corresponding
access occurs. vTube allows state demand fetch when buffering or streaming has not
delivered the state.

3.2.1 System Workflow

The design of vTube is based on a cycle of accumulation of past execution knowledge,
generation of streaming guide information, and user sessions, as shown in Figure 3.3.
Given a set of execution traces for a particular virtual appliance, the system performs
processing called clustering analysis. This processing updates the knowledge about access
patterns for the virtual appliance. Then, in each user session, the latest access pattern
knowledge is dynamically applied to the decisions on streaming the VM state. The client
records VM state accesses during each session, and uploads a new trace to the system at the
end of the session. Clustering analysis is performed in an offline fashion as new execution
traces come into the system. The latest version that is available is used for the current user
session. Initially, the system can start with a small collection of traces for a given virtual
appliance, and it accumulates execution knowledge as it handles user sessions.

Clustering analysis converts raw traces into a form of expression that can be efficiently
handled at the time of streaming. Each VM execution trace consists of accesses to the
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Figure 3.3: System Workflow of vTube

memory and disk, time-stamped relative to the start of the session. Following the common
access unit of page size on x86 architectures, each memory and disk access is recorded
at the granularity of 4 KB. We call this unit chunk. The chunk accesses are then grouped
into variable-size units called clusters. Clusters are the minimal unit of state transfer in
vTube, and they collectively form a stream sent to the client. For example, a cluster can
consist of hundreds of memory chunks and tens of disk chunks; at the time of state trans-
fer, these chunks in the cluster are always delivered together, instead of being considered
individually for streaming decisions.

Behind the model of trace analysis and dynamic streaming exist our insights into VM
state access in execution instances. Figure 3.4 shows a comparison between two execution
traces of a virtual appliance containing Riven [16], an adventure game on Windows. The
red and blue solid lines represent the cumulative amount of VM state accessed over time,
for the two different traces. The dotted lines indicate the part of the accessed VM state
from the solid line with the matching color that also appeared in the other trace, namely
the commonality between the two traces accessed over time. As the figure shows, there
exists a significant portion of VM state in each trace that is shared with the other. This
overlap exists despite the fact that there was enough variability in the game play in the
two traces. Also, each of the traces has a non-trivial amount of VM state access that is not
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Figure 3.4: Example of VM State Access Commonality between Two Traces

seen in the other, which increases over time. This divergence between traces means that
an efficient method needs to consider the current execution and adjust streaming decisions
accordingly.

Figure 3.5 illustrates how clusters are accessed over time in two traces of the Riven
virtual appliance. The top and bottom graphs each show a distinct trace, and the x-axis
indicates cluster IDs having unique numbers across the traces. The circles represent clus-
ters, with their size corresponding to the cluster size. The blue clusters are common to
both of the traces, while the red ones appear only in either trace. The graphs show that
the common clusters are accessed in varying orders and at different times in the traces.
Furthermore, there also exist some short patterns that are common to the two traces. For
example, a large cluster and several small clusters following it appear in the beginning of
both traces, although their access timings slightly vary.

The nature of VM state accesses observed in Figures 3.4 and 3.5 leads to important
implications for the design of an efficient streaming algorithm. First, the commonality
across execution instances of the same virtual appliance validates the effectiveness of using
past execution knowledge to infer VM state accesses of the current execution. Second, the
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Figure 3.5: Example of VM state Access Orders in Two Traces

varying access timings and order of clusters motivate the use of streaming decisions that
are adequately fine-grained. Otherwise, missed or out-of-order delivery of VM state would
cause significant VM stalls. These observations drive the design of vTube’s streaming
algorithm described next.

3.2.2 Streaming Algorithm

The rationale behind clusters is for them to be the unit of VM state transfer that achieves ef-
ficiency by capturing the nature of VM state accesses at the appropriate granularity. As the
minimal unit of VM state transfer, each cluster should contain chunks that are essentially
accessed together in time. This grouping brings two important benefits. First, clusters
encompass the burstiness of VM state accesses, and allow treating them as a more coarse-
grained entity. This amortizes the cost of dynamic streaming decisions over a number of
chunks, compared to streaming individual chunks. Second, clustering also reduces the
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complexity of VM access pattern analysis. As each trance can contain tens of thousands
of chunk accesses or more, analyzing their access relations is otherwise hardly tractable
on commodity hardware. Clustering thus prevents the handling of VM state accesses in
vTube from being too fine-grained. On the other hand, clusters that are too large sacrifice
streaming efficiency as they are more likely to include chunks that may not be accessed.
Therefore, clusters have only tightly related chunks and serve as the unit that is neither too
fine-grained or too coarse-grained. A majority of clusters typically contain one thousand
chunks or more, having a size of 4 MB or larger, while some clusters can have a size in
the order of kilobytes or tens of kilobytes.

Reflecting the nature of VM state accesses, the overall streaming algorithm of vTube
is designed as follows: 1) it converts individual accesses in the traces to per-trace clusters,
2) these clusters are compared across the traces and formed into final clusters, 3) the algo-
rithm derives access relationship between each pair of the final clusters, and 4) it delivers
clusters to the client based on the current cluster access and its access relation to other
clusters. Steps 1) through 3) belong to clustering analysis, summarized in Figure 3.6, and
step 4) comprises the dynamic streaming during each session.

Clustering Analysis

In the first step of clustering analysis, we group the chunk accesses to per-trace clusters
as shown in Figure 3.7. We form each per-trace cluster as a collection of chunk accesses
that appear in the trace one after another within clustering interval. This interval excludes
the time spent for the transmission of chunks, and we empirically set it to 2 seconds in
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our implementation of the system. The purpose of per-trace clustering is to group memory
and disk accesses that are likely to be accessed together, as candidates for final clusters.

Next, we process per-trace clusters across traces. As per-trace clusters are specific
to their trace, we compare them and generate clusters that are unique across traces. The
process of forming new clusters out of two traces is shown in Figure 3.8. For each pair
of overlapping clusters, we emit their intersection and the compliments of the original
clusters as three new clusters. We repeat this process over the entire collection of traces,
and generate final clusters that represent the maximum groups of chunks that are always
accessed together.

Once the final clusters have been derived, the last step defines the relation between
each pair that reflects the access patterns observed in the traces. This relation has two
properties: access probability and access interval. Access probability is the likelihood of
one cluster following the other, and is calculated from the number of times the condition
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holds in all the traces. Access interval is the expected time of access to the cluster since
that of the other cluster. We select the shortest interval observed in the traces as this
interval, to be conservative about state delivery and minimize the chance of late delivery
that would otherwise occur if, for example, we used the average interval. With the relation
defined between the cluster pairs, the state for the target virtual appliance is expressed
as an inter-related collection of clusters. Dynamic streaming extracts expected VM state
access patterns from this representation.

Dynamic Streaming

vTube makes dynamic decisions on what clusters to deliver to the client based on the
current access by the executing VM. When a particular cluster is accessed, the algorithm
first determines a set of clusters to be transferred, and then controls the VM execution
with respect to the timings of their transfer. Figure 3.9 illustrates the selection method of
clusters to be transferred along with the currently accessed cluster. In the figure, the gray
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circle in the center represents the cluster currently being accessed, and the other circles
the clusters that have relation to it. The circle size reflects that of the cluster itself. The
arrows from the current cluster to the other clusters indicate the relation between them,
with their length and width reflecting the interval and probability, respectively. In order
to avoid looking infinitely into future cluster accesses, we first apply a threshold over the
intervals, called lookout window. Then, among the clusters that do not exist on the client
side and that have interval within lookout window, we select those that have probability
greater than a shifting threshold defined as follows:

P (Y |X) > Percentile(Size(Y )) (3.1)

This definition means that cluster Y is selected for transfer with current cluster X if its
probability exceeds the percentile of Y ’s size based on the sizes of all the clusters sorted
in an ascending order. Conceptually, the shifting threshold penalizes larger clusters more
by requiring them to have a higher probability for selection. Large clusters typically cor-
respond to more workload-specific and deterministic VM state access than small clusters,
which appear in traces in a more random, unpredictable manner. In addition, transferring a
large cluster costs more than a small cluster, in terms of time and bandwidth consumption.
Therefore, the algorithm aims to be conservative towards deciding to send large clusters,
while it can be optimistic and aggressive about small clusters. Figure 3.10 shows an ex-
ample of cluster size distribution for a virtual appliance containing Riven. The cumulative
probability of the cluster size 4 MB, for example, is approximately 0.5; if the size of clus-
ter Y is 4 MB, its probability thus must be greater than that for Y to be selected for transfer
with X .

Once the set of clusters is derived, we decide how to deliver them to the client with
respect to VM execution. As depicted in Figure 3.11, the objective is to buffer just enough
clusters that let the VM continue execution smoothly. In order to do so, we first order the
clusters at their intervals from the current cluster and compute the cumulative bandwidth
that is necessary to deliver them on time; the bandwidth requirement at a particular time
is calculated as the aggregate size of all the clusters that need to arrive by that point,
divided by the time we have. Depending on the cluster sizes, this estimate may not be
monotonically decreasing as we look further into the future. We determine the last point
at which the required bandwidth exceeds the bandwidth currently available to the client,
and decide to buffer all the clusters appearing up to that point. Once these clusters have
been delivered to the client, the required bandwidth for the remaining clusters stays below
the current bandwidth. Thus, we resume VM execution and overlap it with the transfer of
these clusters, as we can expect them to arrive by their access time.
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Figure 3.12 shows the overall view of VM streaming during the course of a user ses-
sion. The streaming decisions explained above are triggered by each demand fetch of a
cluster. We also use an additional mechanism that extends the streaming, called stream-
ing hints. Streaming hints address the fact the trigger by a demand fetch is reactive and
streaming is performed only when the client accesses a missing cluster. However, stream-
ing should continue when the estimation has been successful and, as a result, there is no
demand fetch that triggers it. A streaming hint serves as an alternative to demand fetch
in such a case, and notifies the server of the currently accessed cluster. They trigger the
streaming decision process just as a demand fetch does, except that the current cluster does
not need to be transferred and buffering is not initiated.

Demand Fetch of Individual Chunks

Each access to a chunk that does not belong to any cluster results in the direct retrieval
of its content, without triggering buffering or streaming. This case occurs when the current
VM execution accesses a chunk outside the coverage by the analyzed traces. The demand-
fetch requests of such individual chunks are handled without explicitly controlling VM
execution. Instead, the VM continues execution with ephemeral stalls while the requests
are being served. Specifically, the demand fetch of a memory chunk can stall the execution
of one of the VM’s CPUs, while that of a disk chunk may be dealt with by the guest OS
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without disrupting the execution. As we will show in Section 3.4.5, the demand fetch of
individual chunks happens only infrequently.

3.3 Architecture and Implementation

vTube’s architecture consists of 1) a server that, for each virtual appliance, maintains its
VM image, access pattern knowledge, and a list of free memory chunks, and 2) clients
in the form of a custom hypervisor that supports VM streaming. Figure 3.13 shows this
architecture of vTube. The detail of the server and client implementation is described
below.

3.3.1 vTube Server

The server has three kinds of data for each virtual appliance, which are generated by scripts
that process VM images or traces. First, it stores the VM image including device, memory,
and disk state in a format compressed on a chunk basis. Each chunk content is written with
its SHA-1 hash. When sending chunks to the client, the server uses the hash to identify
those whose content already exists on the client. For such chunks, the server informs the
client of the hash values instead of sending their contents, which can be looked up in the
client’s content-addressable cache explained later.

Second, the server maintains access pattern knowledge as versioned files. Each file
contains the results of clustering analysis, with member chunks, probability, and interval
of each cluster. A new version is generated as a result of executing clustering analysis
with the current set of traces for the virtual appliance. The server uses the latest version
available at the start of a session.

Third, the server imports a list of memory chunks that are unallocated by the guest OS,
when the virtual appliance is added to the system. The contents of these chunks are not
necessary for the correct execution of the guest, and the server eliminates their transfer by
sending this list to the client at the start of each session. When a chunk in this free memory
list is accessed, the client returns a zeroed-out chunk without contacting the server. The
list is obtained either with the help of a kernel module for Linux guests, or by parsing
memory images to find zeroed-out pages for Windows guests.

The server’s streaming functionality is implemented as a multi-threaded TCP server
program. As the client generates chunk requests, the server makes a prediction of future
state accesses using the dynamic streaming algorithm described in the previous section.
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The server sends clusters according to the prediction, while also monitoring the transfer
rate to the client. It decides whether buffering is needed using this rate as the currently
available bandwidth, and if so sends a VM suspend message to the client. At the beginning
of a session, the client’s first cluster access sets buffering on. The currently available band-
width is updated periodically, and when the server decides that it can switch to streaming
it sends a VM resume message. For the rest of the session, the server continues transfer-
ring clusters on a demand fetch or streaming hint, making buffering decisions based on the
latest measurement of the available bandwidth. State transfer and VM execution are thus
controlled solely by the server; the client only communicates the current chunk accesses
to the server, and does not incur other overhead.

3.3.2 vTube Client

The client is implemented as a modified version of qemu-kvm 1.1.1. It communicates
with the server to initiate each session, issues requests for chunk contents to the server,
and controls VM execution as instructed by the server. The client treats the VM state
accesses at the granularity of chunks. The notion of clusters is transparent to the client.
When the VM accesses a particular chunk, the client requests its content from the server.
The server translates it to an access to the cluster that contains the chunk, and returns all
the chunks of the cluster.

To the rest of the hypervisor, the client passes the VM’s memory and disk state as
regular files that are exposed through a custom FUSE implementation [5]. FUSE is a
mechanism for implementing file systems at the user level, and it allows using the streamed
state for the VM. Each chunk access is first directed to a content-addressable cache in the
client’s local file system. As the client receives chunk contents from the server, it stores
them in this cache. When the content of the accessed chunk is available in the cache, the
FUSE implementation returns it as the corresponding file content. Otherwise, the access
results in a request to the server and it completes when the corresponding content has been
received. The cache serves chunk contents across sessions and different virtual appliances
on the same client. When starting a session, the client notifies the server of its current
cache state; through this message, the server knows what contents already exist on the
client and avoids sending duplicated contents over the network.

The client also records memory and disk chunk accesses by using the FUSE imple-
mentation during the session. The first access to each chunk is tracked in the I/O routines
for the exposed VM image files. At the end of the session, the client makes a compressed
file of the trace, and sends it to the server. This new trace is added to the server’s collection
for the virtual appliance, and is used for generating a new version of the access pattern file.
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3.3.3 Session Handling

Each session in vTube proceeds as follows:

Step 1: When the user starts a new session, the client fetches the metadata of the virtual ap-
pliance, including its virtual hardware configuration and free memory list. The client also
sends a list containing the hashes of the chunk contents in its content-addressable cache
from previous sessions. The server selects the latest version of access pattern knowledge
for the virtual appliance that is available at this time.

Step 2: The client starts the VM and generates the first chunk access, which triggers
initial buffering. The server executes the dynamic streaming algorithm and decides what
clusters should be buffered. After these clusters have been sent, a VM resume message
follows and the VM resumes execution. The server avoids the transfer of any chunks that
already exist in the client cache, and also keeps its own copy of the cache state to eliminate
any duplicate contents sent over the network. Assuming that the client cache is initially
empty and it has enough space, only the first access to a particular content results in its
retrieval.

Step 3: While the VM executes, the client makes a demand fetch request to the server
if the accessed chunk is not found in the cache and it is not in the free memory list. The
server executes the dynamic streaming algorithm on the demand fetch request, and sends
back the appropriate clusters. When buffering is necessary, it sends a VM suspend mes-
sage before these clusters, and a VM resume request when switching to streaming. The
server handles each chunk in these clusters in the following manner. If the chunk is in
the free memory list, the server simply does not send it as the client can locally serve the
corresponding access without its content. If the chunk content is stored in the client cache,
the server sends its hash and the client returns the cached content that matches it. Other-
wise, the server sends the compressed chunk content retrieved from the stored VM image.
When the request contains a chunk not found in the access pattern knowledge, however,
the server directly handles the individual demand fetch of the chunk.

Step 4: When the session finishes, the client uploads the trace to the server. Before send-
ing the trace, it adjusts the timestamps by removing the wait time for network transfer.
This processing creates a trace with idealized VM state access timings; the server takes
this form of trace to generate access pattern knowledge, from which it can make dynamic
streaming decisions based on the ideal VM execution performance.
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3.4 Evaluation

We conducted experiments to demonstrate vTube’s timely launch of virtual appliances
in environments with limited network resources. We first describe the VM execution be-
havior under vTube streaming and application-level performance of various virtual appli-
ances we constructed. We then investigate the effectiveness of vTube’s VM state access
prediction, and compare its performance to an alternative method used by VM distribution
networks.

3.4.1 Set-Up

We used a range of network configurations, as listed in Figure 3.14. For measurements that
require repeatability and stability, we used an emulated environment whose bandwidth and
latency was controlled with Linktropy [1]. On this emulated network, bandwidth was set
to 7.2 Mbps, which is based on the nation-wide average reported by Akamai [18, 75],
and 14.4 Mbps. Round-trip time (RTT) was set to 120 and 60 ms, which falls in the range
expected in WAN settings. In the rest of our measurements, we streamed virtual appliances
over real networks including domestic 3G and 4G networks, two public wireless networks
overseas in Taiwan, and a public wireless network in a local coffee shop. In all these cases,
the server was located in Pittsburgh, Pennsylvania.

The server machine was equipped with an Intel Core i7 at 3.40 GHZ and 32 GB mem-
ory. The client laptop had a dual-core Intel Core 2 Duo CPU at 2.40 GHz and 4 GB
memory. All measurements were done with a cold cache, i.e., no initial contents in the
content-addressable cache on the client.

Virtual appliances: We constructed seven virtual appliances that span a range of work-
loads and platforms. All virtual appliances had 1 GB memory and a disk between 10 and
20 GB. Those with Linux ran Ubuntu 12.04. These virtual appliances have varying use
cases, and we accordingly use different evaluation metrics.

1. Mplayer: a video player on Linux [10]. It plays an AVI vide file that is 5 minutes
long and 84 MB in size.

2. Avidemux: a video editing application on Linux [3]. It converts eight MP4 files to
AVI format. The files are locally supplied and 698 MB in total.

3. Arcanum: a 2D role-playing game on Windows XP [2].
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Figure 3.14: Summary of Network Configurations. Bandwidth and RTT for real networks
indicate representative values, or ranges if high variance was observed.
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Figure 3.15: Summary of Virtual Appliances

4. Riven: a 2D adventure game on Windows 7 [16].

5. HoMM4: a 2D strategy game, Heroes of Might and Magic IV, on Windows 7 [6].

6. Selenium: an automation test script for Firefox [17]. The script browses through
Python documentation in HTML format.

7. Make: compilation of Apache 2.4.4 source code on Linux. The source tree is
locally supplied.

Figure 3.15 summarizes the properties of these virtual appliances, with the total size
of their images after compression and download time over 7.2 and 14.4 Mbps. All virtual
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appliances are in the order of gigabytes in size, and the corresponding download times are
at least 42 minutes over 14.4 Mbps and up to 152 minutes over 7.2 Mbps.

Access pattern knowledge: In order to generate the server’s access pattern knowledge
to be used in our measurements, we manually collected 10 traces for each of the virtual
appliance except for Riven and Make. For these two virtual appliances, we used 16 and 6
traces, respectively. When recording these traces, we intentionally introduced variability
in using the virtual appliance. With Mplayer, different functionalities were used such as
skipping, pausing, speed-up, in addition to normal playback of the video. With Avidemux,
the tasks included video and audio conversion to a number of different formats. With
Arcanum and Riven, game plays started at different points including the start of the game
and some save data files. With HoMM4, tutorials at different difficulty levels were tried.
With Selenium, browsing behaviors involved looking at different contents, searching for
key words, and following links. Make was an exception, in which the compilation was
consistently repeated.

3.4.2 Streaming Behavior

Figure 3.16 illustrates the streaming behavior of vTube with the Riven virtual appliance
over the real networks. The black portions of each bar represent VM execution, and the
gray parts buffering events. Additionally, there are VM stalls due to demand fetches; these
are approximately equal to RTT between the server and client, and they typically do not
significantly impact the VM execution experienced by the user. In all the cases, vTube
launches the VM within several minutes, after which occasional buffering occurs. These
additional buffering periods are no longer than 20 seconds. The 4G case, for example, has
one buffering event longer than 10 seconds, five events between 1 and 10 seconds, and
five events below 1 second. The general trend is that buffering becomes shorter and less
frequent over time. Once the initial and following buffering periods complete, the VM
execution continues smoothly.

For comparison, the figure also shows the time it takes to perform partial download-
ing of the virtual appliance image as red bars. It corresponds to the downloading time of
all the chunks in the trace set, after which VM execution with close to ideal performance
can be expected. Compared to vTube’s initial buffering times, these times are signif-
icantly longer. For example, the downloading takes over 15 minutes in the Coffee Shop
case. vTube expedites the initial launch time with the modest cost of occasional buffering
events afterwards.
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Figure 3.16: Behavior of Streaming Riven Virtual Appliance

3.4.3 Application-Level Performance

We measured application-level performance of four virtual appliances: frames per second
for Mplayer, page traversal speed for Selenium, and completion time for Avidemux and
Make. These measurements were conducted on our emulated networks. As baselines, we
include results of local VM execution performance, and of demand-fetching over a direct
wired link between the client and server. The wired case has very small RTT and thus little
cost for chunk retrieval, and serves as a baseline that is close to the ideal VM streaming
with perfectly accurate state transfer.

The results of Mplayer are shown in Figure 3.17. The y-axis indicates the video play-
back quality in the frames per second, and the x-axis elapsed time since the start of the
session. We created the virtual appliance so that the video playback automatically starts af-
ter a few seconds of VM execution. The local case represents the upper-bound of playback
performance, in which the frames per second stays at 25 right after the start of playback
and throughout the duration of the video. In the wired case, Mplayer starts the playback af-
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Figure 3.17: Mplayer Performance

ter a short delay of 16.3 seconds, during which the necessary VM state is demand fetched.
The workload accesses a little over 300 MB of VM state, and vTube launches the virtual
appliance with smooth execution in 92.5 and 183.3 seconds on the 14.4 and 7.2 Mbps
networks, respectively. Once the playback starts, its quality is close to the ideal line with
only occasional drops in the frames per second.

The Selenium results are shown in Figure 3.18. Similar to the Mplayer case, the Sele-
nium launches automatically after the VM starts execution. In the figure, the y-axis shows
the cumulative number of HTML pages traversed by the script, and the x-axis elapsed
time. The rate of page traversal changes over time depending on the page contents and
processing in the automation framework. However, the visited pages and their appearance
order are fixed, and thus the shapes of the curves can be compared across the measure-
ments. The curve in the local case represents the optimal rate of processing. The wired
case, after a short delay, sustains the processing rate close to that of the local case. The
workload generates a little over 150 MB of state access, and vTube launches the VM in
60.2 and 114.6 seconds on the 14.4 and 7.2 Mbps networks, respectively. Both of these
streaming cases achieve the progress rate of the script similar to the ideal rate once the
VM is launched.
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Table 3.1: Avidemux and Make Performance
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Table 3.1 shows the results for Avidemux and Make. It lists the VM launch time and
completion time of these workloads, and the increase in completion time compared to the
local case. With Avidemux, the wired and vTube over 14.4 and 7.2 Mbps cases launch
the VM in 6, 26, and 52 seconds, respectively. While completion time is 75 seconds in
the wired case with an increase of 54.6% compared to local execution, vTube reduces it
to around 65 seconds with an increase of less than 40%. vTube achieves this reduction
by streaming VM state effectively and making it mostly available locally for Avidemux.
On the other hand, demand-fetching each chunk results in a higher increase in completion
time. With Make, launch time is 7 seconds and the increase in completion time is 2.8%
in the wired case. vTube spends 17 and 32 seconds at 14.4 and 7.2 Mbps, respectively,
for initial buffering. As the workload is consistent with the traces used, it caches VM state
effectively and and makes completion time as good as that of the local case. Note that the
reduction by 0.4% in the 14.4 Mbps case is due to fluctuations of the workload’s execution
time rather than an improvement over local execution. In most of the Avidemux and Make
results, vTube takes more time than the wired case since the start of the session and until
the end of the workload, namely the sum of launch time and workload completion time.
Besides the ideal setting of the wired case, which has high bandwidth and low RTT for
chunk retrieval, the streaming accuracy of vTube also accounts for the discrepancy. As
the dynamic streaming deals with the inherent uncertainty of figure VM state access, it
transfers more than the exact amount of VM state accessed by the workload. In the next
section, we further evaluate this accuracy of state access prediction and resulting overhead
in the amount of state transfer.

The results of these four workloads, Mplayer, Selenium, Avidemux, and Make, demon-
strate the rapid launch of the VM made feasible by vTube. Compared to the time of whole
image downloading on the respective bandwidth shown in Figure 3.14, the launch time is
reduced from tens of minutes or more to several minutes. This is a key performance aspect
of vTube that achieves its goal of timely virtual appliance delivery to end users.

3.4.4 Efficiency of Dynamic Streaming

In the preceding sections, we demonstrated the overall behavior of vTube’s dynamic
streaming and its impact on application-level performance. We next show systems-level
statistics of the VM execution with vTube. We investigate four metrics that capture dif-
ferent aspects of the VM execution and experience by the user: fetch ratio, buffering ratio,
buffering rate, and miss rate. Table 3.2 shows the statistics of these metrics across the
seven virtual appliances, streamed over our emulated network with 7.2 Mbps bandwidth
and 120 ms RTT. The reported numbers in the table are the average of three measure-
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Table 3.2: Systems-Level Statistics of vTube
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ment runs. The duration of the sessions ranges from approximately 2 minutes for the short
batch-processing workload of Avidemux to over 20 minutes for the interactive workload
of Riven. The amount of VM state accessed during these sessions is between 76 MB for
Make and 379 MB for Riven. The numbers in parentheses in the Accessed State column
show the fraction of the accessed state out of the entire VM image size; the small frac-
tions corroborate the efficiency of vTube’s dynamic streaming compared to whole virtual
appliance downloading. In the following, we describe each the four metrics.

Fetch ratio: Fetch ratio is defined as the amount of VM state delivered divided by the
amount accessed by the guest. It shows the accuracy of state access prediction and the
efficiency in network resource use. vTube aims to deal with the uncertainty of future
VM state access without making fetch ratio high. In all the workloads, fetch ratio is kept
51% or lower. The ones with high variability in user activities, such as the three games
and Selenium, have a relatively higher ratio than those with low variability. Make and
Mplayer have particularly low fetch ratios of 1.01 and 1.03, respectively. Given the range
of functionalities available in the applications and the non-deterministic nature inherent
to the guest execution, vTube effectively predicts the state access pattern from the traces
and limits the amount of state transfer over the network.

Buffering ratio: Buffering ratio is the time spent buffering with the VM suspended di-
vided by the duration of the session. It indicates the fraction of time the user waits for
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the VM to execute, during which he is prevented from interacting with it. The virtual ap-
pliances have buffering ratio between 0.04 and 0.39. Avidemux , Mplayer, and Selenium
have the highest ratios because of the short duration of their workloads. The ratio is at most
0.21 in the other cases, meaning approximately 80% of time or more during the session
is available for smooth user interaction. Arcanum, despite the variability in its workload,
has the lowest ratio because of the fact that the state access footprint of the game is lower
than the other applications per unit time.

Buffering rate: Buffering rate is the number of buffering events per minute. It shows
how frequently the user interaction with the VM is interrupted. This metric complements
buffering ratio and reveals the nature of the wait time: whether buffering is a few long
periods or a series of a number of short periods, given the same total buffering time. With
the exception of Avidemux and Selenium, buffering rate is less than 0.50; VM execution
thus continues for a few minutes or more without major interruptions in these cases.

Miss rate: Miss rate is defined as the ratio of the number of chunks that are demand-
fetched to that of all the accessed chunks. Miss rate represents how often the VM experi-
ences ephemeral stalls outside buffering periods, caused by access to the chunks dynamic
streaming has not delivered. The miss rate of the virtual appliances is 1.96% with HoMM4,
which is the highest, and well below 1.00% with the other virtual appliances. Thus, the
VM state access estimated based on the traces captures most of the state accessed during
the session. Although the total amount of state retrieved by demand fetch in each case
is not necessarily trivial, the individual misses do not cause significant disruption of the
VM execution unless they occur in a rapid succession. These misses result from either
misprediction by the algorithm, including that of access timings, or the trace coverage of
the chunks accessed in the measured session.

3.4.5 Trace Coverage

vTube’s dynamic streaming algorithm is history-based; as the access pattern is derived
from the set of available traces, the predictability of state access in the current session de-
pends on their coverage of possible state accesses. For example, if the access to a particular
chunk being accessed in the current session has not been observed in the past sessions, de-
mand fetch is the only way of retrieving its content. For this reason, the relation between
the number of traces and the corresponding miss rate is a key factor that decides the practi-
cality of the approach. Figure 3.19 plots the miss rate of the seven virtual appliances when
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Trace Count

Figure 3.19: Miss Rates as Function of Trace Count

using varied number of traces to generate their access pattern knowledge. We computed
the miss rates using the results of our experiments on emulated networks. For a given
number of traces, the average miss rate of all the possible combinations out of the avail-
able traces is reported. As we add more traces, miss rate rapidly drops. With 10 traces,
the trace coverage is high enough that miss rate becomes lower than 0.65% in all the cases
except Riven and HoMM4, for which it is 2.6% and 1.4%, respectively. Make has a very
low miss rate even with 1 trace, due to the low degree of variability in the workload. Note
that we computed these numbers statically from the traces, whereas the measurements in
the previous sections involved misses resulting from state arrival timings. Overall, the re-
sults in Figure 3.19 indicate that a relatively small number of traces suffices for providing
good coverage of state accesses for all the virtual appliances. This effectiveness of traces
in state access estimation makes it possible and practical to bootstrap the delivery of a
newly added virtual appliance with a moderate number of pre-collected traces. Further-
more, vTube imports a newly generated trace from each session, which accounts for the
chunk accesses outside the current trace coverage in future sessions.
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Table 3.3: Comparison to VMTorrent Approach
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3.4.6 Comparison to VM Distribution Networks

vTube employs a VM streaming model with a central repository of virtual appliances. An
alternative approach to their dissemination is VM distribution networks, which is based on
wide deployment of services in the network that cooperatively deliver the virtual appliance
images. Optimized image distribution methods have been proposed, and a notable example
is that of VMTorrent [96, 97]. We, therefore, compared the efficiency of vTube’s dynamic
streaming algorithm and the VMTorrent approach. In order to evaluate the latter approach,
we implemented a modified version of the streaming algorithm in vTube; following the
manner in which VMTorrent distributes VM state, it considers all the chunks that appear
in at least one of the traces. These chunks are ordered by their average access time since
the start of the session, and the buffering decision is made according to the unmodified
dynamic streaming algorithm. Note that this version does not use the notion of clusters,
and nor does it dynamically act on the state access by the current VM execution.

Table 3.3 compares the statistics of the two methods for Arcanum, Riven, and HoMM4
on our emulated network with 7.2 Mbps bandwidth and 120 ms RTT. The reported num-
bers are the average of three measurement runs. Optimizations that are orthogonal to the
comparison, such as chunk compression and deduplication, are left intact in both cases. In
the measurements, we kept the session duration roughly constant between the two cases:
15 minutes for Arcanum and HoMM4, and 20 minutes for Riven. Overall, the efficiency
of state streaming is much higher with vTube. For example, with Arcanum, the amount
of accessed state during the session is similar, the VMTorrent method fetches 1.8 times
more state than vTube does. Moreover, miss rate is considerably lower with vTube be-
cause of its more timely delivery of chunks. The total buffering time of the VMTorrent
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method, which is shorter than that of vTube, is a result of less accurate chunk delivery
timings. The chunks missed by its buffering period lead to the high miss rate. The im-
pact of coarse-grained streaming by the VMTorrent method is particularly significant with
Riven, for which the traces exhibit high variability. It makes the total buffering time as
long as 980 seconds out of the total duration of 1,222 seconds. Although this reduces
miss rate, the time until VM launch consumes over 80% of the whole session. In con-
trast, vTube limits the launch time to 255 seconds and allows longer execution of the
application, which also resulted in more accessed state. In summary, vTube’s algorithm,
based on fine-grained state access analysis and its dynamic nature, makes it more efficient
compared to the VMTorrent method.

3.5 Summary

Efficient VM delivery to end users over WANs faces the challenge of the sheer VM state
size. With tens of gigabytes of VM state, naive approaches to VM transfer over low-
bandwidth, high-latency networks can easily take tens of minutes to hours. Such time
constraints discourage timely access to virtual appliances as containers of software and
data with preserved executability. In this chapter, we introduced our system called vTube,
which achieves efficient streaming of virtual appliances over WANs. Leveraging past exe-
cution knowledge of VM instances, it performs fine-grained analysis of VM state accesses
and accumulates access pattern knowledge for each virtual appliance. In each user ses-
sion, it applies this knowledge extracted from past execution instances, and streams virtual
appliance state while dynamically adjusting to the current VM execution. vTube’s algo-
rithm enables rapid launch of virtual appliances within several minutes, even on clients
across limited networks such as 3G, 4G LTE, and public Wi-Fi’s.

We demonstrated the efficacy of our approach through experiments that revealed the
overall behavior, application-level performance, and systems-level statistics of VM execu-
tion. Chapter 4 further builds on this work, and investigates an important aspect outside
the scope of these types of evaluation: user experience of VM streaming and comparison
to remote VM access.
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Chapter 4

Interactivity Evaluation of Delivered
VMs

We have demonstrated that VM streaming by vTube achieves the rapid delivery of virtual
appliances over WAN-quality bandwidth. The use of past execution knowledge enables its
efficient streaming algorithm, which adopts the video streaming paradigm. In this chapter,
we evaluate the effectiveness of this streaming model in aspects not captured by the exper-
iment results previously presented. Specifically, we further investigate the usability aspect
of the system directly perceived by users.

During user sessions, vTube introduces buffering events to ensure the smooth execu-
tion of the VM. When operating over WANs, which often have not only low bandwidth
but also high round-trip latency, this model effectively absorbs the impact of the long la-
tency between the server and client by transferring VM state in batches. These properties
raise two questions. The first is how buffering events and occasional VM stalls affect the
perception of system performance by human users. The second is to what extent the re-
silience to high latency makes VM streaming practical. In particular, the second question
also motivates comparison of VM streaming against remote VM access, a common alter-
native approach to accessing software encapsulated in VMs. As opposed to VM streaming,
which employs a thick-client model and executes the VM locally with incremental state
delivery, remote VM access uses a thin-client model with the VM executing in the cloud.
Remote VM access typically does not depend on bandwidth, but instead heavily on the
round-trip latency for delivering good user experience. Therefore, the bandwidth and la-
tency characteristics of the user’s connectivity to the server determines the practicality of
these solutions with respect to each other.

In order to answer the above questions, we conduct human-centric evaluation of VM
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streaming and remote VM access. Through a series of user studies comparing the two ap-
proaches under varied network conditions, we examine the implications of their computing
models on system usability. The results include performance ratings and qualitative eval-
uation by the participants of the studies. They corroborate the quantitative performance
results in the last chapter, such as buffering duration and state miss rates, by showing the
actual perception of vTube’s streaming capability from the user’s perspective.

The work presented in this chapter is a collaboration with Brandon Taylor, doctoral
student in the Human-Computer Interaction Institute at Carnegie Mellon University.

4.1 Properties of VM Access Methods

We conduct further evaluation of VM streaming for two specific purposes. First, one of
the two main performance metrics, usability from the user’s perspective, eludes systems-
level evaluation presented in the previous chapter. In particular, we study the implications
of 1) the video streaming paradigm employed by vTube with resulting wait time during
sessions, and 2) how network conditions affect the perceived performance of the system.
Second, we compare VM streaming to an existing alternative approach to VM delivery,
remote VM access, in order to evaluate the effectiveness of the streaming model against a
latency-sensitive approach.

4.1.1 VM Streaming and Remote VM Access

The VM streaming model of vTube employs a thick-client model. The client machine
performs all the computation on behalf of the VM, while the server is responsible solely
for VM state transfer. Figure 4.1 (a) illustrates this computing model. As the VM executes
locally, all the user interaction is also handled on the client machine. The VM directly
receives input from the user, such as mouse movements and key strokes, processes it,
generates output, and presents it on the client’s display. Using this model, VM streaming
caters to the use cases described in Chapter 3; applications are delivered for local execution
in the end user’s environment, in some cases accessing data that resides locally.

A major alternative approach to accessing applications encapsulated in VMs is remote
VM access using a thin-client model, such as VNC [98]. In contrast to the thick-client
model of VM streaming, all the computation for the VM execution occurs on the server
side, while the client provides the user with the capability to interact with the VM. This
model is depicted in Figure 4.1 (b). The client receives input from the user, and delivers it
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to the VM running on the server over the network. It also receives screen updates for the
VM from the server, and displays them on the local screen. The sole functionality of the
client is thus coordinating the interaction between the user and the remote VM, without
performing computation for the VM workload itself.

VM streaming and remote VM access both allow the use of computational capability
encapsulated in a VM, which are instantiated dynamically by the user. They, however,
provide this capability in distinct manners. VM streaming distributes it to the locations of
end users. Remote VM access, in contrast, centralizes it and enables end users to make
use of computational resources of the server machine. Historically, such thin-client models
originate from time-sharing systems, in which users share powerful non-commodity ma-
chines with only minimal, and therefore economical, terminals needed on the client side
for multiplexing the centrally managed computing resources. Besides the site at which
computation is carried out, this distinction leads differences in the network factors that
affect the performance of the two approaches.

4.1.2 Impact of Bandwidth and Round-Trip Latency

Two aspects of the network between the server and client machines play a major role in de-
termining the usability of systems using VM streaming or remote VM access: bandwidth
and round-trip latency. Bandwidth is a primary performance factor for VM streaming, and
round-trip latency for remote VM access.

The VM streaming algorithm buffers state while the VM is suspended, so that its ex-
ecution is of adequate quality once started. Since VM state is transferred to the client in
batches, the duration of the VM suspension depends on the available bandwidth. While
remote VM access does not involve such a kind of disruption in VM execution, it instead
requires communication between the client and server machines for each user interaction.
Specifically, sending user input to and receiving its results from the server incurs at least
the round-trip latency between the two machines. For example, when the user moves the
mouse cursor, information about the movement is sent to the VM on the server. The VM
processes the input, emits graphical updates reflecting the cursor movement, and delivers
them to the client. The client then applies the updates to the VM screen presented to the
user. VM streaming absorbs this delay per user action and aggregates them efficiently
into the buffering periods. Using the same example, when the mouse cursor is moved, the
server sends to the client the VM state with which the VM can process the cursor move-
ment. Further cursor movements that follow are likely processed without needing extra
state, unless they result in the use of functionalities that have not been executed before. As
we will explain further in Section 4.2, remote VM access trades the interaction delays for
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immediate accessibility of the VM and relatively low demands for bandwidth. In environ-
ments with end users across WANs, we cannot expect bandwidth and round-trip latency
to be optimal. The efficiency of VM streaming and remote VM access manifesting in
these distinct forms motivates their direct comparison under varied network conditions; it
will provide insights into the applicability and relative desirability of the approaches under
limited network connectivity.

4.1.3 Goals of Interactivity Evaluation

To summarize, our interactivity evaluation has the following goals in assessing the system
usability:

• Conduct human-centric, qualitative evaluation of vTube performance, including
the efficacy of the VM streaming model.

• Comparison to a common alternative approach, remote VM access, which uses a
contrasting model.

We evaluate these aspects in an effective manner by testing varied network conditions and
different types of user interaction with the system. Varying these experiment parameters
allows us to exercise the systems for VM streaming and remote VM access in multiple
ways, thereby revealing the characteristics of their behavior in our target contexts of VM
delivery. The design of our methodology, discussed next, explains how we use these pa-
rameters to meet our goals.

4.2 Design of Interactivity Evaluation

In order to evaluate the interactive performance of VM streaming and remote VM access,
we take an approach of user studies in a managed network environment. Using this ap-
proach, we conduct human-centric evaluation of the two techniques under varied network
conditions. This method allows us to have the performance of VM streaming and remote
VM access rated as perceived by human subjects. Furthermore, by carefully managing the
network conditions in which the systems are used, we aim to answer the question of the
bandwidth and round-trip latency impacts on the usability of these systems. In the rest of
this section, we describe the design and methodology of our studies.
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4.2.1 Design Variables

The main challenge in designing the studies is to have a well-defined scope of variables.
There exist two main variables in our studies. First, we vary the network condition un-
der which the access to the VM occurs. Second, we test various types of applications.
From the administrative perspective, we need to keep the parameter space from expanding
excessively, without severely restricting the usefulness of the results.

Network Conditions

We manipulate two parameters of network conditions, bandwidth and round-trip latency
between the client and server machines. Considering the factors that primarily affect the
performance of VM streaming and remote VM access, we reduce the two-dimensional
space of network parameters to one parameter for each of the approaches.

VM streaming introduces buffering periods, whose duration is a function of band-
width. To the user, these periods are wait time during which the interaction with the VM
is prevented. In contrast, the usability of the system is affected by round-trip latency to
a lesser extent that is practically negligible. Table 4.1 shows statistics of buffering events
and state misses with vTube under varied network bandwidth and round-trip latency. The
numbers are obtained from test traces with 3 to 4 minutes of Microsoft Word use, during
which approximately 490 MB of VM state is delivered to the client. Initial buffering and
additional buffering indicate, respectively, the duration of the first buffering event and the
total duration of all the other buffering events. Memory and disk misses represent the frac-
tions of demand-fetch requests in all the memory accesses and disk accesses, respectively.
Comparison between the two 14.4 Mbps cases indicates that 240 ms and 30 ms round-trip
latencies lead to only minor differences in buffering events and state misses. On the other
hand, the change in bandwidth from 14.4 to 7.2 Mbps, under the same round-trip latency
of 240 ms, results in increases in initial buffering and memory misses. Overall, the round-
trip latency contributes to the disruption of VM execution orders of magnitude less than
bandwidth does. Based on these observations, we use bandwidth as the parameter to be
varied with VM streaming.

Remote VM access, unlike VM streaming, is more sensitive to round-trip latency while
it consumes a relatively low bandwidth under most circumstances. In particular, interactive
applications that generates graphical output in response to user input operates at a pace
dictated by the delay in receiving the input, rather than being constrained by the bandwidth.
The cost of propagating input and output becomes more significant as the network latency
increases, further impacting the smoothness of the user interaction. For this reason, we
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Table 4.1: VM Streaming Statistics under Varied Network Conditions
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select the round-trip latency between the local and remote machine as the parameter for
remote VM access.

By thus reducing the network parameter space for VM streaming and remote VM ac-
cess, we keep the number of different system conditions tested to a reasonable range that
can be covered by each participant. Also, provided the insignificant impacts of round-trip
latency and bandwidth on VM streaming and remote VM access, respectively, we are still
able to infer the relative performance of these approaches in ranges of network conditions
other than the discrete points we test in the studies. For example, if VM streaming receives
a better performance rating than remote VM access for a certain combination of band-
width and round-trip latency, the former is expected to provide better experience when the
bandwidth is higher and the latency remains the same; VM streaming would have shorter
buffering events, but remote VM access would not benefit from the higher bandwidth. In
this manner, we aim to infer the general trends of their usability under network conditions
spanning ranges that are typically expected by end users on the Internet.
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Applications

We need to use applications that meet the goal of evaluating interactivity, while having
desirable features for user studies. We use the following criteria for selecting multiple
applications:

1. Test various types of interaction and investigate how they relate to the usability under
different network conditions.

2. Have tasks with variety, rather than the exact same tasks, to mitigate the effect of
learning effects obscuring the results.

3. Have tasks that can be completed in a reasonable amount of time.

4. Use applications with fairly large size, so that they are not too trivial for VM stream-
ing to deliver to the client.

Based on these requirements, we select three types of applications: document editing with
Microsoft Word 2007, graphics editing with Adobe Photoshop CS6, and gaming with Be-
jeweled Twist. The nature of interaction varies adequately among these applications, and
tasks with them can be reasonably complex to have enough variety but without excessive
difficulty. We describe in Section 4.2.5 how we construct the user tasks for these applica-
tions. Also, the VM state size accessed when using them is hundreds of MB or more, and
requires a few minutes of buffering with VM streaming.

4.2.2 System Set-Up

Figure 4.2 describes the system set-up for three configurations used in the studies. We
use the vTube implementation for VM streaming, and VNC as a representative approach
to remote VM access. In the VM streaming case, the vTube server runs on the remote
machine and streams VMs containing the test applications. The local machine has the
client implemented in qemu-kvm, and executes the test application hosted inside a VM. In
the VNC case, the remote machine runs the entire stack of software including qemu-kvm
and the test application in a VM. The local machine runs a VNC client that connects to
the VM and presents its graphical screen to the user. In both of these cases, the network
bandwidth and round-trip latency between the remote and local machines are controlled by
a dedicated-hardware network emulator. Finally, we use a setting with locally executing
VMs as baselines that provides the study participants with a sense of optimal application
performance. In this setting, there exists only the local machine, and it executes the VM
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Figure 4.2: System Set-Up for User Studies

57



Table 4.2: Summary of Test Configurations
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and handles all the interaction with the user locally. All the machines used are equipped
with an Intel Core i7-3770 CPU at 3.4 GHz and 32 GB of memory, running Ubuntu Linux
12.04.

Data Collection

We instrumented qemu-kvm to collect various traces that allow further analysis after the
user study trials. First, user input including mouse button presses, cursor movements, and
key strokes are recorded. Records of these events provide insights into the user’s interac-
tion; for example, key strokes can tell how frequently the user uses short-cut keys, which
are more common to those with more experience with the tested application. Second, VM
streaming activities by vTube are collected, including buffering events and VM stalls due
to state misses. In particular, the buffering events directly correspond to the wait time for
the user, which is a primary factor deciding the usability of the system. Third, screen shots
of the VM window are captured at 10-second intervals. They help us analyze user behav-
ior that has led to unexpected characteristics in the other traces. The instrumentation for
each tracing is made lightweight enough to avoid interfering with the VM execution and
affecting the user experience.

4.2.3 Test Configurations

Table 4.2 summarizes the configurations we use in the studies. We describe below the
network conditions, trial time, and participant pool for each study per application.
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Network Bandwidth and Latency

We vary the network bandwidth and round-trip latency between the remote and local ma-
chines in a range that reflects our VM access contexts. Given the distinct performance
factors of VM streaming and remote VM access, we test the former under varied band-
width and the latter under fixed, unrestricted bandwidth. For VM streaming, we select 7.2
Mbps as baseline bandwidth, which is the nation-wide average [18, 75] also used in Chap-
ter 3. With Word and Bejeweled, we also test twice as much bandwidth of 14.4 Mbps.
We use 14.4 and 28.8 Mbps for Photoshop for an administrative reason; as the size of the
application is larger than the other two, higher bandwidth is necessary for the buffering
in VM streaming to complete reasonably within the time allotted in the studies. For re-
mote VM access, we consistently use 100 Mbps. VNC typically requires low bandwidth,
in the order of a few Mbps, except for rare cases in which it consume higher bandwidth
for significant graphical updates. In order to avoid a bias in favor of VM streaming, we
eliminate the impact of such occasional high demands on the user experience by fixing
the bandwidth. We test four round-trip latency values: 30, 60, 120, and 240 ms. This
range targets round-trip latency expected in environments with various levels of connec-
tivity, from wired WANs to wireless connections including cellular data networks. With
these network configurations, we have a total of 7 test configurations per participant and
application: two cases for VM streaming with varied bandwidth, four cases for remote
VM access with varied round-trip latency, and one case for local VM execution.

Trial Time and Participant Pools

We recruited study participants through an online registration service for research studies.
For each study with one of the three applications, we requested a participant pool with
some level of familiarity with the application. We first conducted a study using Word with
36 participants, with a 10-minute time limit per test condition. The time limit ensures that
the participants can complete all the test conditions within a reasonable amount of time.
The participants proceed to the next trial when the time limit is reached, and they do not
need to have finished the task by that time. Based on the consistency we observed in the
results of the Word study, we continued with the Photoshop and Bejeweled studies at a
reduced scale, each with 12 participants and a 7-minute time limit per trial. Given these
time-managed trials, the participants completed the study in approximately 1 hour without
being considerably affected by fatigue. Demographic information about the participants
was collected on a voluntary basis; the distributions of their ages, which we were able to
receive from all of them, are summarized in Table 4.3. The participants were recruited per
study for each application, with no overlapping between studies. The studies with these
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Table 4.3: Age Distributions of Study Participants. The table shows the number of partic-
ipants in certain ranges of age per study for each application.
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participants were approved by Carnegie Mellon University, under IRB Protocol Number
HS13-668.

4.2.4 Procedure

The studies are carried out in an in-lab setting on the Carnegie Mellon University cam-
pus. One participant is tested at a time, while one or more administrators are on site for
assistance and monitoring. The study procedure with each participant proceeds in the fol-
lowing manner. First, we describe the purpose of the study to the participant upon arrival.
The participant also completes a short survey that asks questions about experience with
computing in general, and that with the particular application being tested. Then, the par-
ticipant starts the seven trials. The local VM execution case is used as the first trial, which
provides ideal, baseline performance against which the participant can compare the user
experience of the following trials. Once done with the first trial, the participant fills out a
short survey about the user experience during the trial. The participant is asked to consider
all the factors and events during the trial, in particular any wait time, freeze, and stalls of
the application. After the survey, the remaining six trials with different network conditions
and VM access methods are conducted, each followed by a survey in the same manner.
The study completes after all the seven trials are done.

Per-Trial Survey

The survey after each trial consists of questions that ask for evaluation of the user experi-
ence in multiple aspects. They use a subset of NASA-TLX dimensions [11], in which the
evaluation is done on a 5-point Likert scale: Very High, High, Medium, Low, and Very
Low. We constructed four questions regarding the participant’s 1) sense of satisfaction, 2)
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feelings of annoyance, 3) mental demands, and 4) sense of accomplishment, in performing
the assigned task using the system. These questions are presented in the survey as follows:

• How would you rate your satisfaction with the system performance during this trial?

• To what degree did you experience at least one of these feelings: insecure, discour-
aged, irritated, stressed, or annoyed?

• How mentally demanding was the task during this trial?

• How well were you able to accomplish the task?

We use the ratings given as the answers to these questions in order to quantize the qual-
itative perception of the system usability by the participants. Additionally, the survey
includes two open-ended questions:

• Was there any aspect of the system performance that stood out in your mind? Please
explain.

• Was there any aspect of the instructed task that stood out in your mind? Please
explain.

These questions are intended as further feedback on the user experience during the trial,
thereby providing further insights into the ratings given as the responses to Likert-scale
questions.

4.2.5 Test Applications

The three interactive applications we test have different manners in which the user inter-
acts with, and expects results from, the program. Some of them, for example, rely more
on mouse movements and require highly synchronized graphical updates, while others
involve key strokes and can tolerate a certain degree of delays in interaction without sig-
nificantly sacrificing the usability of the program.

Word Document Editing

Our first application is Microsoft Word 2007 [9]. The user edits a document in various
manners following instructions. We created seven instruction sets to be used, one for each
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test condition; the paring between the instructions and conditions are varied the across
participants, in order to avoid biases in the study results. One set of instructions consists
of 11 individual steps, each of which asks for the use of a distinct functionality of the
program. For example, a step reads, ”Use the Find function to find the first instance of the
word ’present’ ...,” or ”Use the Text Box function to create a caption labeling the picture
as ...” The types of functionalities used are as follows:

• Opening documents

• Copying and pasting contents

• Font formatting

• Page formatting

• Creating a table

• Counting the number of words

• Searching a particular word

• Deleting and inserting a picture

• Inserting a text box

• Saving the document

The instruction sets use unique documents, with the above functionalities appearing in dif-
ferent orders except for certain steps, such as adding a caption immediately after inserting
an image and saving the document at the end.

The tasks are completed through combinations of key typing and mouse input. De-
pending on the skill level, one user may accomplish the same step faster than another by
using a more efficient method. For example, there are a number of short-cut keys for com-
mon functionalities of Word, which are otherwise done through graphical interaction such
as dialog boxes. Also, tasks have varying implications on how a VM stall is perceived by
the user. The user can likely continue typing a few words without seeing them appear on
the screen one by one. When scrolling within the document, on the other hand, the user
needs to wait for the screen to properly update in order to know the current position in the
document.
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Photoshop Tutorials

Our second application is Adobe Photoshop CS6 [14]. The participants are provided with
tutorials as instructions, and perform tasks following them on the application. Given the
level of familiarity with Photoshop that can be expected from the participant pool, we
selected to use tutorials instead of regular editing tasks.. As done in the Word case, we
created 7 tutorials to be used for the 7 test conditions, with varied pairing across the par-
ticipants. Each tutorial walks the user through a number of steps that teach how to use a
particular functionality of Photoshop. The tutorials consist of the contents in the following
list:

• Layers, including their creation, selection, and alignment.

• Free Transform, which can arbitrarily modify the shape of a figure.

• Warp Text, which allows shaping text into various forms.

• Custom Shape, with which the form of various illustrations can be manipulated.

• Magic Wand, which extracts a color from a picture and applies it to other function-
alities.

• Color Range, which allows specifying a color by parameter values.

• Photo Effects, which applies various useful effects on pictures in a simplified man-
ner.

These tutorials mainly require mouse interaction, with infrequent key entries. Short-
cut keys for certain functionalities are also available. The tasks involve graphical updates,
often spanning a large portion of the screen. Applying a filter to an image displayed on
the screen, for example, changes most of its pixels. This type of user workload, therefore,
generates guest screen updates of considerable size, and can render the responsiveness of
the system sluggish when using VNC.

Bejeweled Twist Gameplay

Our third application is a puzzle game called Bejeweled Twist [15]. In this game, the user
rotates positions of various jewels on a grid, and aligns three of them with the same color
to make them disappear and gain points. Unlike the other test applications, we do not use
instructions and instead have the user play the game to achieve as high a score as possible.
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If the game ends in the middle of the trial, the score is saved and the user starts a new game
to continue playing.

The user interaction in this game relies on mouse movements and clicks almost exclu-
sively, rarely needing keyboard input. The graphical output uses frequent animation when,
for example, jewels move or disappear on the grid. VM stalls cause delays in the motions,
and render themselves easily noticeable. These delays, however, do not necessarily inter-
fere with the user actions as might be expected. The gameplay progresses with user actions
and resulting animation happening in an alternating fashion. Thus, after an action, the user
naturally waits briefly until its result is reflected on the screen, instead of being interrupted
from performing continuous actions by delayed responses from the application.

4.3 Results

Following the types of questions in the surveys, the results of the studies have two cate-
gories: performance ratings and qualitative observations. We first present the ratings of
user satisfaction, feelings of annoyance, mental demands, and sense of accomplishment,
collected from the Likert-scale questions. Next, we discuss insights into the relation be-
tween user experience and the behavior of the application and system, which are derived
from the two open-ended questions.

4.3.1 User Satisfaction

Figure 4.3 and Table 4.4 show the ratings of satisfaction with the system performance
across the applications and test conditions. The vertical bars represent confidence inter-
vals, to which 95% of the corresponding rating values belong. The local execution case has
good ratings around High, as expected. VNC with 30 ms latency has ratings close to this
baseline, between High and Medium. As the latency increases, the ratings become worse;
Word is the most sensitive to latency, reaching Medium already at 60 ms and eventually
becoming Low at 240 ms. The ratings for Photoshop and Bejeweled show less severe
degradation than Word, staying slightly below Medium. Note that although Bejeweled has
a better rating at 60 ms than at 30 ms, the difference is not statistically significant as in-
dicated by the confidence intervals. VM streaming of Word and Bejeweled yields ratings
slightly below Medium with 7.2 Mbps. At 14.4 Mbps, it shows a greater improvement
with Word than with Bejeweled, staying above Medium. Photoshop at 14.4 Mbps has a
rating similar to those of Word and Bejeweled at 7.2 Mbps. Its rating at 28.8 Mbps, also, is
comparable to the Word rating at 14.4 Mbps. In summary, VNC at 30 ms provides perfor-
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Figure 4.3: Ratings of Satisfaction with System Performance. The ratings are averaged
per test condition and shown with 95% confidence intervals.

mance similar to the local execution, for all the applications. With Word, VM streaming at
7.2 and 14.4 Mbps is comparable to VNC at 120 and 60 ms, respectively. With Photoshop,
the ratings of VM streaming at 14.4 and 28.8 Mbps resemble those of VNC at 240 and 120
ms. With Bejeweled, VM streaming at 7.2 Mbps roughly matches VNC at 240 ms, while
it only slightly improves as the bandwidth increases to 14.4 Mbps.

The ranges of network bandwidth and round-trip latency suitable for VM streaming
and VNC are visualized in Figure 4.4. VM streaming is expected to have higher user satis-
faction than VNC towards the upper right corner, which corresponds to higher bandwidth
and higher latency. VNC is more preferable towards the opposite direction, which repre-
sents lower bandwidth and lower latency. The cross marks on the lines indicate the points
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Table 4.4: Statistics of Satisfaction with System Performance. The numbers are calculated
using numerical values with 5 representing Very High and 1 Very Low. STD stands for
standard deviation.
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Figure 4.4: Bandwidth-Latency Ranges Suitable for VM Streaming and VNC in Terms of
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VM streaming and VNC.
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at which the ratings of VM streaming and VNC are comparable in the results shown in
Figure 4.3. While the number of data points is limited, the lines are drawn to approxi-
mately divide the two-dimensional space into regions for which VM streaming or VNC is
expected to provide higher satisfaction. In general, VM streaming is expected to provide
higher satisfaction with higher bandwidth, while the impact of latency is insignificant.
Among the three applications, Word has the largest region for VM streaming. For Pho-
toshop, the line is moved towards the upper right, requiring higher bandwidth or higher
latency for VM streaming to be more preferable than VNC. Lastly, the line for Bejew-
eled stays higher than the other lines. VNC tolerates higher latency and remains more
preferable than VM streaming, unless used under high bandwidth.

4.3.2 Feelings of Annoyance

Figure 4.5 and Table 4.5 show the ratings of feelings of annoyance. The local execution
case has the lowest annoyance with Bejeweled, and the rating is higher with Word and
Photoshop. For these applications, the nature of the assigned task is different from that
for Bejeweled. The participants follow instructions to use particular functionalities, with
which they are not necessarily familiar. Since the local execution case is always the first
trial for the participants, they are also not accustomed to the procedure and therefore may
tend to give a higher rating of annoyance. The participants, on the other hand, tend to learn
the rules of Bejeweled quickly or have experience playing the game.

With VNC, the ratings monotonically worsen as the round-trip latency becomes higher.
At 30 ms, the ratings are similar to those of the local execution case, with Word and Pho-
toshop being better because of the above reason. Similar to the case of satisfaction ratings,
Word is the most sensitive to the increase in latency. Photoshop is the most insensitive,
having little difference between 120 and 240 ms. Bejeweled resembles Photoshop up to
120 ms, but its rating becomes close to Medium at 240 ms. With VM streaming, the
ratings of Word at 7.2 and 14.4 Mbps are comparable to those of VNC at 120 and 60
ms, respectively. Photoshop has higher annoyance levels than the VNC cases, despite
the higher bandwidth range, likely because of the initial buffering time being longer than
with the other applications. Interestingly, Bejeweled has higher ratings of annoyance than
Word and Photoshop. One factor that causes this phenomenon is that the participants read
the instructions while waiting for the VM to start with these two applications. Bejeweled
does not have instructions, and thus they are left without any task until the initial buffering
completes, finding the wait time more annoying than in the other cases.

Figure 4.6 visualizes the bandwidth-latency ranges in which VM streaming or VNC
causes less annoyance than the other. Note that with Photoshop, VM streaming at 28.8
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Figure 4.5: Ratings of Feelings of Annoyance. The ratings are averaged per test condition
and shown with 95% confidence intervals.

Mbps has a similar rating to those of VNC at 120 and 240 ms. The corresponding curve
is accordingly drawn in the figure. This curve is a major difference compared to the sat-
isfaction mappings in Figure 4.4. Specifically, while the participants are more satisfied
with VM streaming at 28.8 Mbps than with VNC at 240 ms, they feel almost the same
level of annoyance in both of the cases. This result indicates that the wait time for VM
state buffering can be a cause of frustration depending on the task, which also relates to
the level of task completion achievable in the allotted time. We further discuss the effect
of task completion on the system usability later in this section.

68



Table 4.5: Statistics of Feelings of Annoyance. The numbers are calculated using nu-
merical values with 5 representing Very High and 1 Very Low. STD stands for standard
deviation.
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Figure 4.6: Bandwidth-Latency Ranges Suitable for VM Streaming and VNC in Terms of
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Figure 4.7: Ratings of Mental Demands. The ratings are averaged per test condition and
shown with 95% confidence intervals.

4.3.3 Mental Demands

Figure 4.7 and Table 4.6 present the ratings of mental demands. Among the three applica-
tions, only Word exhibits a discernible trend; the mental demand increases as the latency
becomes higher with VNC, or as the bandwidth decreases with VM streaming. Still, con-
sidering the ratings for the local execution case and the confidence intervals, the difference
between these ratings are not significantly large. Also, Photoshop and Bejeweled do not
have monotonically changing ratings, and thus mental demands are not clearly affected by
the network conditions.
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Table 4.6: Statistics of Mental Demands. The numbers are calculated using numerical
values with 5 representing Very High and 1 Very Low. STD stands for standard deviation.
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4.3.4 Sense of Accomplishment

Figure 4.8 and Table 4.7 show the ratings of sense of accomplishment. In general, the
ratings become worse as the bandwidth decreases or the latency increases. We attribute
the low accomplishment rating for Photoshop in the local execution case to the level of
familiarity with the application; the participants often need to explore the user interface
of Photoshop in the first trial, feeling that they have accomplished less compared to the
other trials. Bejeweled does not have as clear a trend in the ratings as the other two ap-
plications have. It is expected that the instruction-based tasks contribute to clear sense of
accomplishment more than the unrestricted gameplay. Compared to the ratings of user
satisfaction in Figure 4.3, the ratings of VM streaming fall into a range closer to those of
VNC. Although VM streaming has the initial buffering time, once the VM starts the user
can expect smooth interaction and good productivity in performing the assigned task. This
nature of interaction helps to sustain the sense of accomplishment, while user satisfaction
is likely to be more affected by the initial buffering time.

4.3.5 Qualitative Observations

In addition to the four rating results presented above, we collected various qualitative
observations from the two open-ended questions in the per-trial survey. Also, we observed
a trend in the relationship between ratings and task completion from additional statistics
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Figure 4.8: Sense of Accomplishment. The ratings are averaged per test condition and
shown with 95% confidence intervals.

regarding the participants. These observations led to major findings about the impact of
round-trip latency on user interaction under VNC, and about an effect that buffering in
VM streaming has on system usability.

Impact of Latency on Interaction

Depending on the type of interaction used by the application, its sensitivity to round-trip
latency varies. One notable example is animation, which is extensively used by Bejeweled
throughout the game play. As evidenced by the user satisfaction ratings in Figure 4.3,
Bejeweled has a clear difference in the performance perceived by the user between the
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Table 4.7: Statistics of Sense of Accomplishment. The numbers are calculated using
numerical values with 5 representing Very High and 1 Very Low. STD stands for standard
deviation.
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local execution case and the VNC case with 30 ms latency. One participant stated, “visual
artifacts degraded [the] overall image for the game,” and rated the VNC case with 30 ms
lower than the local execution.

At the same time, the degree to which the rating worsens as the latency increases is not
significantly different from the Photoshop case, whose local execution and VNC at 30 ms
cases have similar ratings. One of the participants answered in the survey after the trial
with VNC at 240 ms, “[There was] an increased lag between mouse and pointer, with more
intense lag coming from animations, but [it] had a very low impact on game play.” Simi-
larly, survey answers after Photoshop trials indicate that the application interaction is also
relatively insensitive to the increase in latency. One participant noted, for the application,
“the mouse cursor kept lagging, but it did not bother me too much.” In contrast, the user
experience with Word tends to be affected by the increase in latency. For example, a par-
ticipant was not affected by 30 ms latency, but made a comment about 60 ms latency that
“it lagged when I was scrolling,” and gave worse ratings for satisfaction and annoyance.

Word differs from Photoshop and Bejeweled in that its task consists of many small
actions from which the user typically expects a fast response. For example, many func-
tionalities involve opening and clicking on a drop-down menu, followed by a dialog box.
If the user chooses to use a short-cut key, also, a dialog box or other graphical output is
expected to appear immediately on the screen. Based on the feedback from the partici-
pants, they do not recognize short delays around 30 ms as significant enough divergence
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from their expectations. However, as the latency increases, they start to notice the delayed
responses and become frustrated. The Photoshop and Bejeweled tasks, on the other hand,
include heavier actions with which the user can tolerate delays to some extent. Photoshop
involves whole-image manipulation throughout the tutorials, and Bejeweled extensively
uses animation in its visual effects. These types of interaction are likely to have clearer
separation between the input and output phases in the user’s mind.

Cost Amortization by VM Streaming

VM streaming and VNC, as described in Section 4.1, have distinct computing models.
VM streaming introduces wait time while buffering VM state, so that user experience is
expected to be adequate when the VM executes. VNC allows the user to start interacting
with the VM immediately, while the impact of round-trip latency on interactivity persists
throughout the user session. This difference yields important implications in our studies.
We limit the time for each trial, for administrative reasons, to 7 to 10 minutes. In VM
streaming, the participants can start performing the assigned tasks only after the initial
buffering is complete. The amount of time they have for the tasks, therefore, is shorter
with VM streaming than with VNC. As a result, VM streaming has a lower chance of task
completion, which affects user satisfaction.

In the study with Word, 92% of the participants completed the tasks within the time
limit with VM streaming at 14.4 Mbps, which has approximately 2 minutes of the initial
wait for buffering. At 7.2 Mbps, the wait time increases to 4 minutes and only 53% of
the participants were able to complete the tasks. Table 4.8 summarizes the satisfaction
and accomplishment ratings for Word with VM streaming, separated into two groups in
which the participants complete or do not complete the task. For satisfaction, when the
participants do not complete the task, the rating is worse by more than 0.5 points compared
to when they complete the task. For accomplishment, the degradation is more considerable
and is almost 1.0 points. With VNC, on the other hand, 98% of them completed the Word
tasks across all the network conditions. Thus, the level of task completion did not have as
much an impact as it did on VM streaming.

As VM streaming amortizes the cost of a buffering event over a period of time, it would
likely lead to better sense of satisfaction and accomplishment if there was no time limit
for completing the tasks. Ultimately speaking, once all the necessary VM state has been
cached on the local machine, user experience reaches the level of the local execution. In
contrast, user experience with VNC is not expected to improve over time. Persistent delays
due to the latency between the remote and local machines, instead, may have a cumulative
negative effect on the perception of the user. If the participants were to use the system
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Table 4.8: Ratings of Satisfaction and Accomplishment for Word by Task Completion.
The ratings are averaged in each category, using numerical values with 5 representing
Very High and 1 Very Low. The numbers in parentheses indicate standard deviation.
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under VM streaming and VNC for extended periods of time, the former thus may have
better ratings relative to the latter.

4.3.6 Implications on the effectiveness of VM streaming

The above results and findings from the studies validate the effectiveness of the computing
model used by vTube. As presented in Figure 4.4, VM streaming serve as a competitive
solution under ranges of low-bandwidth and high-latency conditions. Our studies were de-
signed to avoid a bias in favor of VM streaming relative to remote VM access; in particular,
we set maximum duration for each trial, which limits the benefit of cached VM state. The
evaluation by the participants considered the initial buffering as a usability factor, while it
affects task completion as noted above. Nonetheless, vTube makes the seemingly heavy-
weight process of VM instantiation across a network a desirable, cost-effective approach
especially when high round-trip latency discourages remote VM access. Additional factors
in networks, such as jitters in the round-trip latency often emerging in cellular networks,
can further complicate and negatively impact the usability of remote VM access. The VM
streaming model naturally masks such latency issues, and works in a robust manner as
long as the bandwidth remains at a reasonable level.

4.4 Summary

We evaluated the interactive performance of VM streaming by vTube through a series of
user studies. The studies address two important aspects of its usability: how its stream-
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ing model affects the perception of users, and what implications it has on VM delivery
over low-bandwidth and high-latency networks. We investigated these questions through
comparison to a common alternative approach, remote VM access, using VNC. Ratings of
their usability in multiple categories indicate the desirability of these approaches relative
to each other, for three distinct types of applications and under varied network bandwidth
and latency. The results validate the effectiveness of the VM streaming model, which ab-
sorbs the impact of high round-trip latency through the introduction of buffering events. In
the ranges of network conditions we tested, round-trip latency of 120 and 240 ms is com-
monly experienced on 3G and 4G LTE networks, and bandwidth between 7.2 and 14.4
Mbps is typical on these networks and public Wi-Fi’s. vTube offers a competitive alter-
native to VNC in these practical WAN environments. In addition, qualitative evaluation
by our studies provides further insights into various ways in which interaction delays and
wait time affect the usability of the two systems.
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Chapter 5

Urgent Transfer of VMs under
Contention

Constraints that challenge the timeliness of VM transfer emerge not only as network re-
sources, which we have explored in the previous chapters, but also as the resource capacity
of the VM hosts. This latter case is the second target context in this thesis work. Specif-
ically, although a well-established technique for load balancing in clouds, VM migration
remains to be a challenging problem under high loads and with ever-growing VM state
size. The cost of the migration operation, especially for sustaining the liveness of the
VM being migrated, renders its timely completion hard to achieve. This cost, in turn,
discourages oversubscription as it may considerably sacrifice performance at peak times.
Oversubscription is a way of improving resource efficiency by co-locating VMs on the
same host and assigning them physical resources as needed. Server consolidation is a
common example that is widely practiced. While oversubscription may sufficiently han-
dle VMs under their average loads, when under high loads they can collectively demand
more than the physical resource limit. Therefore, vendors with performance emphasis are
forced to relinquish this strategy and use conservative resource allocation, such as Place-
ments on Amazon EC2 [4]. Ideally, administrators should be able to aim for resource
efficiency without sacrificing performance. They must otherwise rely on static, conser-
vative resource allocation, wasting some physical resources. This dilemma calls for an
approach to migration that urgently transfers VMs under contention to a new host.

There exists a variety of approaches to migration employing different methods of state
transfer, live migration [40, 90] being the most widely adopted method. Unfortunately,
live migration does not adequately address the aforementioned urgent load balancing for
VMs under contention, often taking tens of seconds until freeing computational resources
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on the source. Live migration can lead to such elongated duration of the migration pro-
cess because of its primary focus on minimizing down time. When VMs are under con-
tention, however, we need to resolve their mutual interference and salvage their perfor-
mance quickly. This demands that the migration operation perform well not exclusively in
achieving minimal down time, but also in transferring VM execution to another host. The
requirement becomes especially important when the VMs provide services that need to
sustain high overall throughput, despite short but non-minimal down time. Such scenarios
include migrating back-end or batch-processing applications, and quarantining malfunc-
tioning VMs or those under DoS attacks for diagnosis in segregation.

Besides its focus on the liveness of the target VM, a key limitation of current techniques
is that they are fundamentally blackbox approaches. As a result, they compensate for the
lack of knowledge by monitoring the workload, extending the duration of migration. This
chapter presents enlightened post-copy migration, a whitebox approach based on current
execution knowledge of the guest OS. A whitebox technique, unlike blackbox, uses ex-
plicit cooperation between multiple layers in the systems hierarchy. With virtualization
being prevalent in today’s computing world, we treat migration as a functionality natively
supported by the guest OS. The approach is driven by enlightenment [85], a type of knowl-
edge passed by the guest to the hypervisor for improving the efficiency of its operation.
In enlightened post-copy, current execution knowledge is passed through enlightenment to
the hypervisor; the guest OS informs the hypervisor of memory regions that require high
transfer priority for sustaining the guest performance. The hypervisor then migrates the
guest state following the passed information in a post-copy manner. It suspends the VM
and resumes it immediately on the destination, while continuously pushing the state in the
prioritized order and also serving demand-fetch requests by the resumed VM. The use of
post-copy, as opposed to common pre-copy, facilitates the guest cooperation and rapidly
resolves the interference between the contending VMs.

5.1 Problem and Objectives

Historically, VM migration has focused on the liveness, namely minimal suspension, of
the target VM. After describing key criteria in migration first, we examine this common
behavior of state-of-the-art migration algorithms and implementations. Reflecting on the
observations, we then derive the characteristics desired in our solution to urgently resolv-
ing VM contention.
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Figure 5.1: Overview of Migration Timings and State Transfer

5.1.1 Mechanics of Migration

Figure 5.1 illustrates aspects of VM migration including execution, state transfer, and
performance. Migration is initiated on the source, on which the VM originally executes.
The VM is suspended at one point, and then resumed on the destination. State transfer
during the course of migration is categorized into two types: pre-copy and post-copy.
Pre-copy and post-copy are phases performed before and after the VM resumes on the
destination, respectively. Common implementations of live migration, as will be described
in detail, are based purely on pre-copy. Associated with the duration of these state transfer
modes, there are three key time metrics we define as follows:

• Down time: time between the suspension and resume of the VM, during which its
execution is stopped.

• Execution transfer time: time since the start of migration until the VM resumes on
the destination.
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• Total duration: time since the start and until the end of migration.

In our target contexts, the main objective is to achieve minimal execution transfer time
without significant down time. Until execution transfer completes, contending VMs on the
source continue to experience degraded performance. Thus, the faster execution transfer
is, the more effective the migration operation is in salvaging the performance of both the
migrated and other VMs. Sustaining reasonable down time also is important for mitigating
the service disruption of the migrated VM. The VM execution halts during this time, rather
than continue with performance degradation; extended down time, as a result, can cause
network- or application-level time-outs. Finally, the hypervisor on the source needs to
maintain the migrated VM’s state until the end of total duration. Shorter total duration,
therefore, means that allocated resources such as guest memory can be freed and made
available to other VMs sooner.

Pre-copy and post-copy phases have their own sources of performance cost. Pre-copy,
when overlapped with VM execution, requires tracking state changes to synchronize the
destination hypervisor with the latest VM state, a computational overhead known as mi-
gration noise [70]. Post-copy, on the other hand, can stall VM execution when the running
guest accesses memory contents that have not arrived on the destination. The rationale be-
hind pre-copy and post-copy necessitate these costs. Pre-copy ensures performance upon
VM resume at the cost of completing state transfer beforehand. Post-copy, on the other
hand, allows fast execution transfer and computational resource freeing on the source,
while relinquishing the optimal performance right after VM resume.

5.1.2 Analysis of Live Migration

Live migration is the current standard of migration methods widely adopted by common
hypervisors [40, 90]. Its algorithm works as shown in Figure 5.2. Upon initiation, live
migration starts sending memory page contents while continuing the VM execution and
keeping track of memory content changes. It then proceeds to iteratively retransmit the
pages whose content has been dirtied since its last transfer. The purpose of the iteration
phase is to minimize down time, thereby optimizing for the liveness of the VM being mi-
grated. While iterating, the algorithm uses the current rate of state transfer to estimate
down time, during which the last round of retransmission is performed. If the expected
down time is short enough (e.g., 300 ms in qemu-kvm), the iteration phase completes and
the VM is resumed on the destination. Implementations can also have additional condi-
tions for preventing migration from taking an excess amount of time. Common examples
include a limit on the number of iterations, and high expected down time that steadily ex-
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Figure 5.2: Live Migration Algorithm

ceeds a threshold. Regardless of the exact form in which these conditions are expressed,
common to these parameters of live migration is that they aim to control the maximum
duration of the iteration phase. Note that Figure 5.2 illustrates the migration of memory
state, assuming the availability of disk state through shared storage. In the rest of this
chapter, we also focus on such cases.

Impact of Workloads

Being pre-copy and optimized for down time, live migration handles state transfer while
dealing with the guest state changes. Consequently, its behavior depends on the guest
workload and the bandwidth available for migration traffic. Figure 5.3 shows the through-
put of Memcached server, hosted in a VM, during live migration by qemu-kvm. The
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Figure 5.3: Behavior of Migrating Memcached VM with qemu-kvm. The y-axis indi-
cates throughput in operations per second, and the shaded areas represent the duration of
migration.
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memslap benchmark generates a load for the server, and its set-get ratio and the band-
width available for migration traffic are varied. Set-get ratio is the ratio of the number of
set operations, which specify a value for a given key, to that of get operations, which read
the value assigned to a certain key. The other configurations for these measurements are
the same as those described in Section 5.4, with the guest allocated 30 GB of memory and
the server using 24 GB as its cache. Note that qemu-kvm zeroes out guest memory when
setting it up, and live migration compresses each page whose bits are all zeros to one byte
accompanied by a header; thus, it avoids sending the unused 6 GB in these measurements.

As the available bandwidth for migration traffic decreases, live migration takes more
time to complete. This increase is non-linear; with set-get ratio of 1:9, migration finishes
in approximately 40 and 90 seconds at 10 and 5 Gbps, respectively. At 2.5 Gbps, it fails
to complete in a timely manner. With set-get ratio of 5:5, migration does not complete
even at 5 Gbps. This is because expected down time never becomes short enough with
the guest workload, and qemu-kvm does not use a hard limit on the number of iterations.
In addition, we can observe more throughput degradation during migration with set-get
ratio of 5:5 than with 1:9. As the workload generates more memory content changes,
dirty state tracking interferes more with it because of trapping memory writes, which are
caught more frequently. Finally, even when live migration performs fairly well with set-
get ratio of 1:9 and at 10 Gbps, it takes considerably longer than transferring 24 GB over
that bandwidth (which takes less than 20 seconds). qemu-kvm’s migration functionality is
single-threaded, and it takes many enough CPU cycles to transmit state at gigabytes speed
while tracking dirty memory pages. Migration can thus easily be a CPU-bound procedure
unless special care is taken, for example by parallelization of the code [110].

Commonality among Implementations

The characteristics of live migration explained above are inherent to its algorithm, and
therefore to major implementations. Figure 5.4 shows the behavior of migrating a Mem-
cached VM with common hypervisors, qemu-kvm 2.3.0, Xen 4.1.6, VirtualBox 4.3.16
[13], and another major hypervisor (labeled “Hypervisor A”). In the figure, the y-axis
represents the throughput of Memcached normalized against the maximum in the cor-
responding measurement. The VM memory size and server cache size are the same as
explained previously: 30 GB and 24 GB. The VM is assigned 4 cores, and migrated over
a 10 Gbps link. Note that we used machines different from those for the rest of our mea-
surements, due to hardware accessibility reasons. They were equipped with an Intel Core
i7-3770 CPU at 3.4 GHz and 32 GB of memory, running Ubuntu 12.04 with Linux kernel
version 3.5.0.
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Figure 5.4: Behavior of Migrating Memcached VM with Major Hypervisors at 10 Gbps.
The y-axis indicates throughput normalized against the maximum in each measurement,
and the shaded areas represent the duration of migration.
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As each implementation differs from one another, the performance cannot be directly
compared between the hypervisors. In particular, the duration of the iteration phase is de-
termined by parameters, and additional factors such as page content compression also lead
to varying performance. For example, VirtualBox does not complete migration in either of
the 1:9 and 5:5 set-get ratio cases. Also, unlike qemu-kvm, Xen finishes sooner with set-
get ratio of 5:5 than with 1:9, one reason of which is more VM slow-down caused by the
migration process itself. The key point of these results, however, is not the absolute per-
formance differences, but the common behavior that the VM lingers on the source for tens
of seconds or longer. This total duration exemplifies the cost paid in an effort to minimize
down time, and indicates a fundamental trade-off made by pre-copy live migration.

5.1.3 Goals: Metrics of Importance

Live migration thus exhibits undesirable behavior when migrating VMs to resolve their
interference and recover their optimal performance. Being a blackbox approach and using
pre-copy, it opportunistically waits for a timing at which the VM becomes idle enough
to shorten the expected down time. This attempt to minimize the impact on the migrated
VM leads to an extended time of VM contention. Driven by this observation, we take a
whitebox approach with active guest-host cooperation that 1) frees resources on the source
rapidly through fast execution transfer and short total duration, 2) successfully handles
loaded VMs without relying on the reduction in their workloads, and 3) salvages the ag-
gregate performance of the VMs under contention, rather than that of the migrated VM
only. To summarize, these objectives lead to the following metrics of primary importance:

Execution transfer time: The metric that decides how fast VM contention can
be resolved.

Application service quality: The impact of migration on the target VM, which en-
compasses not only its down time but also the disrup-
tion of the applications inside.

Total duration: The time that affects when VM state can be released
on the source.

Migration designed for the above metrics is especially desirable in the following cases:
(a) optimizing the throughput of VMs running batch-processing workloads, (b) saving the
performance of a VM whose service is sensitive to response time, and (c) isolating a mal-
functioning VM for diagnosis. Figure 5.5 depicts these three scenarios. The top half of
each case illustrates a situation under contention and before migration, and the bottom half
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after migration. In case (a), with a group of batch-processing VMs, their total throughput
is lowered under contention. Prioritizing it over down time, migration optimizes for the
total amount of work despite some disruption of the migrated VM. A good example of
workloads that fit this category is big data analytics, ranging from scientific computing
to web and social network crawling. In cases (b) and (c), migration is used primarily on
behalf of the co-located VMs, rather than the target VM. Case (b) represents a situation
in which the VMs run services of different nature: one for which response time is cru-
cial, such as a web server, and the other running a batch-processing job. Resolving their
interference fast rescues the former in a timely manner, while improving the performance
of the latter from a longer-time perspective. Case (c) involves VMs under circumstances
that differentiate the importance of their performance: one under normal operation and the
other malfunctioning due to, for example, a DoS attack. Through migration, the malfunc-
tioning VM is rapidly prevented from affecting the other VM, and isolated for diagnosis of
the problem. This case has the most emphasis on the urgent salvation of the non-migrated
VM instead of the migrated VM. In all these cases, migration with appropriate character-
istics would allow the VMs to be efficiently co-located, and to be allocated new resources
when experiencing high loads.

Also, we note that it is not our goal to outperform live migration in every aspect, such
as sustaining the availability and accessibility of the migrated VM and migrating idle or
lightly loaded VMs. It is more reasonable to employ live migration in these cases, which
it already addresses well.

5.1.4 Current Execution Knowledge

To address the challenges of urgent VM migration under contention, we exploit current
execution knowledge about the VM. Its use is motivated by a few properties of the target
contexts of this problem. First, unlike the delivery of virtual appliances, we work with
running VMs that have a constantly demanding workload. In such situations, the charac-
teristics of resource usage by the guest changes over time. Achieving the efficiency of the
migration operation, therefore, requires that it reflect the latest state of the VM, rather than
a single point in the past. Second, we expect that the migration for resolving contention
is a reactive operation that cannot be planned in advance. The load balancing decision
should be feasible dynamically, and honored within an adequately short time period. This
requirement necessitates the use of execution knowledge that is accurate and applicable
within this time frame. Namely, the execution knowledge must be gathered and used at
the time of migration.

This rationale also justifies the choice of the guest OS as the source of execution knowl-
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edge. The guest OS manages the memory allocated by the hypervisor for the VM, and
therefore knows the meanings and importance of the pages in the allocated memory. Ap-
proaches at the hypervisor level are also possible, and expected to be less intrusive to
the systems software hierarchy in virtualized environments. However, such approaches
do not have access to the system information available inside the guest OS. As a result,
they require monitoring or inference of the nature of the guest workload to make informed
decisions that lead to efficiency in migration. As in the case of live migration, insights ob-
tained in this indirect way typically come at the cost of a non-trivial time spent collecting
them; it is undesirable to sacrifice the timeliness of gathering the necessary information.
We will show that our direct approach at the guest OS level, instead, is capable of passing
execution knowledge to the hypervisor in a timely fashion.

5.2 Enlightened Post-Copy Migration

Our approach to the above goals, called enlightened post-copy, exploits guest cooperation
and post-copy-style state transfer. We derive the key ideas behind this approach specifi-
cally from our goals. First, minimizing execution transfer time requires that VM execution
be immediately suspended on the source and resumed on the destination. This early sus-
pension upon the start of migration also ensures minimal total duration, because the frozen
VM state necessitates no retransmission as done in live migration. Therefore, post-copy
follows naturally as the desirable method of state transfer. Second, fast performance recov-
ery of the migrated VM requires that the part of its state needed for its current workload
arrive at the destination as early as possible. The guest’s enlightenment is the key that
enables identifying this part of the VM state; with state transfer following the instructed
prioritization, the VM on the destination can start recovering its performance without the
completion of entire state transfer, and thus before the total duration of migration.

Figure 5.6 illustrates the workflow of enlightened post-copy. When migration is ini-
tiated, the hypervisor makes a request for enlightenment to the guest OS. The guest OS
traverses its data structures and prepares priority information of the memory pages. Once
the priority information is available, the guest OS notifies the hypervisor. The hypervi-
sor then suspends the VM on the source, and resumes it on the destination immediately
after sending the device state necessary for the resume operation. As the VM starts execu-
tion, the hypervisor parses the priority information and accordingly transfers the remaining
memory page contents to the destination; it attempts to proactively push as many pages as
possible before the access to them.
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Figure 5.6: Workflow of Enlightened Post-Copy Migration

5.2.1 Guest’s Enlightenment

In enlightened post-copy, the guest identifies those memory pages containing the working
set of the currently active processes. As a design principle, the guest OS should be able to
obtain a list of these pages without incurring noticeable overhead. Otherwise, the approach
does not justify the guest instrumentation due to the resulting performance loss. As the
types of memory page classification, therefore, we use straightforward notions such as the
code and data of the OS kernel and running processes. Such bookkeeping information of
memory pages is already available in the OS for its regular tasks, and re-usable without
significant implementation effort for the purpose of migration.

For prioritized state transfer, the general idea is to transfer memory pages essential for
running the guest system itself, those for the actively running processes, and then the other
less critical pages such as the kernel page cache and those for the non-active processes.
Also, we can eliminate the transfer of the memory pages that are not allocated by the guest
OS for any use, because the actual contents of such pages do not affect the correctness of
guest execution.

The guest needs to prepare these types of information, as enlightenment to the hyper-
visor, in two distinct forms. The memory page priorities can be determined by a one-time
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operation upon the request by the hypervisor. There is no need for always tracking them
during the course of the guest’s normal operation. On the other hand, keeping track of al-
located and non-allocated memory pages requires real-time processing, performed with or
without migration, that maintains the information in a manner easily passed to the hyper-
visor. The reason is that the source hypervisor needs to know the exact allocation by the
guest OS right at the time of VM suspension, for the destination hypervisor to construct
a consistent memory image. For the one-time operation, the associated costs are that of
guest-host communication delay upon migration start, and the impact of the in-guest pro-
cessing on performance. For the real-time processing, the cost is the overhead added to
relevant memory management operations of the guest OS. Minimizing these costs moti-
vates the use of the above types of enlightenment, which are adequately informative but
not excessively fine-grained.

5.2.2 Integration into State Transfer

The source hypervisor can integrate enlightenment into state transfer in a straightforward
manner, because of the use of post-copy. Since the VM state is frozen at the start of
migration, enlightenment at that time reflects its latest state before execution transfer, from
which the VM resumes on the destination. After receiving enlightenment and suspending
the VM, the source hypervisor pushes the memory pages as instructed by the guest OS.
While the destination hypervisor receives the memory pages, it also issues demand-fetch
requests to the source for those that are accessed by the guest before their arrival. Although
their arrival may incur delays due to the interference with the push traffic, these demand
fetches help reduce VM execution stalls due to the divergence of the push order from the
actual access order by the guest.

5.2.3 Design Trade-Offs

The design of enlightened post-copy is in good contrast to that of common live migra-
tion based on pre-copy. Enlightened post-copy targets VMs constantly under loads, while
live migration expects idleness from them. Enlightened post-copy, therefore, employs a
state transfer method that enables timely load balancing through fast physical resource
reallocation. Down time and execution transfer time are expected to be rapid, and total
duration corresponds to the one-time transfer of the entire state. At the same time, the
disruption of the migrated VM’s performance spans a longer period than down time itself,
since post-copy is used. Guest cooperation is the key to alleviating this disruption.
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On the other hand, live migration focuses on one aspect of the migrated VM’s perfor-
mance, down time. Being a guest-agnostic approach without an external source of knowl-
edge, it relies on letting the VM stay on the source and tracking dirtied memory pages.
Execution transfer time is equivalent to total duration; these time frames become longer
when more iterations are done. The sole use of pre-copy ensures the migrated VM’s per-
formance on the destination, since all the state resides there on VM resume. Thus, down
time approximately represents the duration of application-level disruption. However, dirty
page tracking incurs a certain cost while the VM lingers on the source. Results in Section
5.4 demonstrate the effects of these trade-offs made by enlightened post-copy and live
migration.

5.3 Architecture and Implementation

We implemented enlightened post-copy on guest Linux 3.2.0 and hypervisor qemu-kvm
2.3.0. Figure 5.7 shows its architecture. When the source hypervisor initiates migration, it
sends a request to guest Linux through a custom VirtIO device [21] (Step 1). The guest OS
driver for this virtual device triggers enlightenment preparation, which scans data struc-
tures (Step 2) and writes priority information in the priority bitmap (Step 3). Page allo-
cation information is always kept up-to-date in the free bitmap, so that its content is valid
whenever the the hypervisor suspends the VM. These bitmaps maintained in the guest’s
memory facilitate the processing by the hypervisor; they are an abstract enough represen-
tation of the passed information, and the guest OS can avoid communicating it through the
VirtIO device and instead have the hypervisor directly parse it. When the priority bitmap
has been written, the guest OS notifies the hypervisor through the VirtIO device (Step 4).
The hypervisor then sends to the destination the device state, including some in the guest
memory, which is used by the destination hypervisor for the initial VM set-up. Finally, it
starts transferring the remaining page contents in the prioritized order (Steps 5 and 6). On
the destination, the hypervisor resumes the VM once the device state has arrived. While
receiving the pushed page contents, it writes them into the guest memory. When the guest
OS accesses pages whose content has not yet been received, it generates demand-fetch re-
quests to the source hypervisor. On the source, the hypervisor frees all the VM resources
once all the page contents have been sent.
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5.3.1 Guest OS

In our guest Linux, memory management and process scheduling code is instrumented to
label each memory page with a priority level. The instrumentation follows naturally in the
relevant existing parts of the source code, and requires only a modest number of changes
to the original kernel.

Enlightenment Preparation

Taking advantage of memory management information that already exists, the guest OS
classifies the memory pages in use into the following priority categories:

• Kernel: kernel executable code

• Kernel Allocated: allocated for kernel use

• Memory I/O: used for memory-mapped I/O

• Page Table: page table of active process

• User Code: executable page of active process

• User Data: non-executable page of active process

• File Active: active cache of file

• File Inactive: inactive cache of file

• Other: not belonging to any of the above

The system-wide categories, such as Kernel, Kernel Allocated, Memory I/O, File Active,
and File Inactive, are derived from kernel data structures or through the flags of page
frame descriptors (e.g., struct zone and struct page). For the process-specific
categories, the enlightenment preparation code parses the virtual memory area descriptors
of each active process (struct vm area struct). These categories are each assigned
a numerical value, in a descending order of priority from the top to the bottom in the above
list. This order is decided such that the core system service, the active processes, and
caching by the OS are given priority in that order. If a particular page belongs to multiple
categories, it is treated with the highest of these priorities. Pages such as those belonging
to the inactive processes and those used for the priority bitmap itself belong to the Other
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category. The bitmap simply contains the priority values, without the hypervisor needing
to understand their exact semantics.

In order to decide the group of active processes, the scheduler maintains the last time
each process was scheduled for execution (in struct task struct). A process is
considered active if it has been run recently at the time of generating enlightenment. In
our implementation, we empirically use a threshold of the past 16 seconds for this purpose,
considering the order of seconds migration is roughly expected to take.

When the guest OS receives a request from the hypervisor, the guest OS runs code
that generates the priority bitmap as explained above. Once it notifies the hypervisor,
it is ensured that the guest can be suspended with the bitmaps available for parsing in its
memory. Note that the free bitmap is always kept up-to-date and ready for processing. The
response from the guest OS includes the addresses of the two bitmaps, and the hypervisor
scans these locations while performing state transfer.

Implementation Cost

The modifications to the core Linux kernel code are minimal, mostly under mm/ and
kernel/ in the source tree. Maintaining the free bitmap requires adding at most sev-
eral lines of code in 16 locations. Keeping track of the last schedule time for each process
requires a few variable assignments added in the scheduler code. Marking each page with
kernel or user allocation needs less than 15 lines of code. These operations only add atomic
variable assignments in the code paths of memory allocation and process scheduling. As
shown in our experiments, compared to the original kernel, these minor modifications in-
cur negligible performance overhead. The VirtIO device driver and the priority bitmap
preparation code, which make use of the instrumentation, are implemented as loadable
kernel modules.

5.3.2 Hypervisor

On the source, the hypervisor scans the bitmaps provided by the guest. It first scans the
free bitmap and sends the corresponding page frame numbers in a packed format, along
with the device and some memory state, right after which the VM is resumed on the
destination. Next, the hypervisor traverses the priority bitmap and starts pushing the page
contents over a TCP connection. The transfer is performed in rounds, starting with the
Kernel pages and ending with the Other pages. While this push continues, a separate
thread services demand-fetch requests from the destination hypervisor over another TCP
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connection. Note that while we attempt to give a higher priority to the demand-fetched
pages through the TCP NODELAY socket option, the push transfer can still interfere with
their arrival timings.

On the destination, the hypervisor registers userfault [20] handlers with the guest mem-
ory region. Userfault is a mechanism on Linux that enables a user process to provide a
page fault handler of its own for specified pages. This interposition enables post-copy
state transfer. The userfault handler is first registered for the entire main memory of the
VM when the hypervisor starts on the destination. On the receipt of the unallocated page
information, the handler is removed from the respective addresses. Then, as the memory
page contents arrive, they are written to the corresponding addresses and the userfault han-
dler is unregistered from these addresses. When the guest accesses these memory pages
whose content is already available, no further interposition by the hypervisor is carried out.
On access to a page whose content is still missing, the hypervisor issues a demand-fetch
request to the source hypervisor.

5.4 Evaluation

We performed experiments to demonstrate the effectiveness of enlightened post-copy in
resolving resource contention and the performance trade-offs resulting from its design
principles. Our experiments address the following points. First, we show how enlight-
ened post-copy salvages the throughput of contending VMs through end-to-end results,
while comparing them to those of original live migration of qemu-kvm 2.3.0. Next, we
investigate the efficacy of our approach in robustly dealing with workloads by examining
the performance of two baseline methods, stop-and-copy and simple post-copy, as refer-
ence points. Finally, we show the cost of enlightened post-copy in terms of state transfer
amounts and guest OS overhead.

5.4.1 Set-Up and Workloads

Figure 5.8 shows our experiment set-up. VMs are migrated between a pair of source and
destination hosts, which are connected through a backend 10 Gbps network for migration
traffic. They are also connected on this network to an NFS server that stores VM disk
images. The client machines use a separate 1 Gbps network for user traffic to and from
the VMs. In the experiments except those with idle VMs, initially two VMs are running
and contending with each other on the source machine. We migrate one of the VMs to the
destination machine, after which each VM has its own dedicated machine. The VM hosts
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Figure 5.8: Experiment Set-Up

and client machines are each equipped with two Intel Xeon E5-2430 CPUs at 2.20 GHz
and 96 GB memory, running Ubuntu 14.04. The VM hosts execute Linux kernel 4.1.0-rc3
with a userfault patch applied, while the other machines run version 3.16.0. As userfault
currently does not support the use of huge pages, they are disabled in our measurements.
Time on the machines is synchronized via an NTP server, and the backend bandwidth
between the VM hosts is controlled using Linux Traffic Control for measurements at 5
Gbps and 2.5 Gbps. The VMs run Ubuntu Server 12.04 with unmodified kernel 3.2.0
in all the cases except those with enlightened post-copy, in which we use our modified
version of the kernel.

We use the following workloads that exhibit different types of resource intensity and
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reveal performance trade-offs made by enlightened post-copy:

Memcached: The VMs run an in-memory key-value store, Memcached 1.4.13 [8], and the
clients execute its bundled benchmark memslap 1.0, which is modified to report percentile
latencies. The VMs are each allocated 30 GB of memory and 8 cores, with Memcached
configured with 4 threads (due to its known scalability limitation) and 24 GB cache. We
first run the benchmark against Memcached to fill up its cache, and then perform mea-
surements with concurrency level of 96 and set-get ratio of 1:9. At the time of migration,
approximately 24 GB of memory is in use, almost all of which is by Memcached.

MySQL: The VMs run MySQL 5.6, and the clients execute OLTPBenchmark [12] using
the Twitter workload with scale factor of 960. The VMs are each allocated 16 cores and
30 GB of memory, and MySQL is configured with a 16 GB buffer pool in memory. The
concurrency of OLTPBenchmark is set to 64. After generating the database contents, we
execute Tweet insertions for 25 minutes and then the default operation mix for 5 minutes
as a warm-up. At the time of migration, MySQL uses approximately 17 GB of memory,
and almost all of the 30 GB memory is allocated by the guest OS for use.

Cassandra: The VMs run a NoSQL database, Apache Cassandra 2.1.3 [19], and the
clients use YCSB [22] 0.1.4 with 24 threads and core benchmark F, which consists of 50%
read and 50% read-modify-write operations. The VMs are each configured with 16 cores
and 30 GB of memory. Before measurements, the benchmark is run for approximately 10
minutes to warm the servers up. At the time of migration, the server uses around 8.4 GB
of memory out of 12 GB in use by the guest OS.

In the above workload configurations, Memcached is the most memory- and network-
intensive, while consuming relatively low CPU resources. Also, the VM’s memory is
almost exclusively used by the server process itself. MySQL is more CPU-intensive, and
also less memory-intensive in terms of the access footprint per unit time. Finally, Cas-
sandra is the most compute-intensive among these workloads, making CPUs the source of
contention. In the MySQL and Cassandra cases, the guest OS uses a non-trivial amount of
memory in addition to that allocated by the server processes themselves. These character-
istics make Memcached the worst case, and MySQL and Cassandra more winning cases
for enlightened post-copy in comparison to live migration.
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5.4.2 End-to-End Performance

In this section, we compare application-level performance of the three workloads during
migration with enlightened-copy and live migration. In addition to the throughput of the
server applications, we also report the impact of migration on application-level latency.

Memcached

Figure 5.9 compares Memcached throughput of enlightened post-copy (labeled “EPC”)
and live migration (labeled “Live”) under varied bandwidth. The y-axis shows operations
per second in thousands (x1000), and total duration of migration is shown as shaded areas.
The dark lines indicate the performance of the migrated VM, and gray lines are that of the
contending VM. The source of contention is user traffic handling by the source hypervisor.
As Memached accounts for almost all the guest memory pages in use (which is catego-
rized into User Data) and accesses them at a great speed, it leaves little room for memory
prioritization through enlightenment. Thus, the performance recovery during enlightened
post-copy migration is not significant because it requires most pages for the Memcached
server to be present. Immediate execution transfer, still, lets the contending VM recover
its performance as soon as the migration starts. On the other hand, live migration handles
the read-mostly workload relatively well. At 10 Gbps, it finishes almost as soon as en-
lightened post-copy does. However, it performs more state retransmission as bandwidth
becomes lower, and at 2.5 Gbps it fails to finish while the benchmark continues. Note that,
because of the migration thread causing the saturation of a core at 10 Gbps, the results at
this speed are not as good as can be expected from the 5 Gbps results.

The latency characteristics of the 10 Gbps measurements are shown in Figure 5.10.
The top two graphs present the 90th percentile latency of the server responses over time.
The latency stays roughly between 1 and 2 ms before migration, and around 1 ms once
it completes. Live migration sustains mostly good latency until the end of migration.
Enlightened post-copy leaves the 90th percentile latency close to 1 second right after the
start of migration, while it starts to decrease as more state arrives at the destination. The
bottom two graphs show CDFs of the response times during the same 5-minute period.
Despite its longer tail to the right side, enlightened post-copy still maintains the curve of
the migrated VM close to that of the contending VM and those with live migration. While
the differences in throughput should also be considered when interpreting these results,
this means that the impact on latencies of the served requests is moderate at the 5-minute
granularity.
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(a) 10 Gbps
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Figure 5.9: End-to-End Results with Memcached. The y-axis indicates throughput in
operations or transactions per second. The black and gray lines represent the migrated and
contending VMs, respectively, and the shaded areas the duration of migration.
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Figure 5.10: Latency with Memcached at 10 Gbps. The black and gray lines correspond
to the migrated and contending VMs, respectively. The top two graphs show the 90th
percentile latency over time on a log scale, with the shaded areas indicating the duration
of migration. The bottom two figures are CDFs of the response latencies during the 5-
minute period, with markers at every 10th percentile.
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Figure 5.11: End-to-End Results with MySQL. The y-axis indicates throughput in oper-
ations or transactions per second. The black and gray lines represent the migrated and
contending VMs, respectively, and the shaded areas the duration of migration.
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Figure 5.12: Latency with MySQL at 10 Gbps. The black and gray lines correspond to the
migrated and contending VMs, respectively. The top two graphs show the 90th percentile
latency over time on a log scale, with the shaded areas indicating the duration of migration.
The bottom two figures are CDFs of the response latencies during the 5-minute period,
with markers at every 10th percentile.
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(a) 10 Gbps

(b) 5 Gbps

(c) 2.5 Gbps

Figure 5.13: End-to-End Results with Cassandra. The y-axis indicates throughput in op-
erations or transactions per second. The black and gray lines represent the migrated and
contending VMs, respectively, and the shaded areas the duration of migration.
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Figure 5.14: Latency with Cassandra at 10 Gbps. The black and gray lines correspond
to the migrated and contending VMs, respectively. The top two graphs show the 90th
percentile latency over time on a log scale, with the shaded areas indicating the duration
of migration. The bottom two figures are CDFs of the response latencies during the 5-
minute period, with markers at every 10th percentile.
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MySQL

Figure 5.11 shows the throughput results with MySQL. Although the workload is less
network-intensive than Memcached, multiplexing user traffic between the VMs on the
source causes contention. We also attribute to this bottleneck the ephemeral performance
drops that are observed especially before migration. As the workload has more memory
access locality, as well as memory allocated besides the cache of MySQL itself, enlight-
ened post-copy gains significantly from prioritized state transfer. The throughput of the
migrated VM starts recovering shortly after the migration start, and well before its total
duration. In addition to taking longer as the workload size increases with respect to band-
width (i.e., at lower bandwidth), live migration also exhibits more interference with the
throughput of the migrated VM at higher bandwidth. The reason is that the workload is
fairly CPU-intensive, and that the migration thread performs dirty state checking more fre-
quently per unit time. Also, unlike all the other cases, live migration completes sooner than
enlightened post-copy at 10 Gbps. As the interference of the hypervisor slows the guest,
it consumes less computational resources besides those spent for network transfer than
enlightened post-copy does. As a result, live migration can better utilize the bandwidth.

The latency results for the workload are shown in Figure 5.12. The 90th percentile
latency with enlightened post-copy recovers quickly as the throughput does, lowering to
the level of a VM without contention before the completion of migration. The CDFs also
indicate that the response time distributions are comparable between the two methods,
including the tails to the right representing the maximum latency.

Cassandra

Finally, Figure 5.13 shows the results with Cassandra. This workload makes the CPUs on
the source the bottleneck for the VMs before migration. Its total duration not being af-
fected by the resource intensity of the workload, enlightened post-copy finishes as soon as
the amount of memory in use has been transferred. It also starts recovering the throughput
of the migrated VM halfway through the migration process. With severe CPU contention
on the source, live migration is prevented from performing dirty state checking and state
transmission frequently. Thus, we do not observe its interference with the migrated VM’s
throughput, but instead see total duration heavily penalized at higher bandwidth; effective
state transfer rate stays low enough that the duration differs only slightly between 10 and 5
Gbps. Overall, the difference in the duration between the two methods is more significant
than with the other workloads.

As shown in Figure 5.14, the good performance of enlightened post-copy is also re-
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(a) Memcached
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Figure 5.15: Behavior of Baseline Approaches. The y-axis indicates throughput in op-
erations or transactions per second. The black and gray lines represent the migrated and
contending VMs, respectively, and the shaded areas the duration of migration.
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flected in the latency results. The 90th percentile latency increases for a short period with
enlightened post-copy, and soon drops to the ideal level without the contention. Also, the
response time distributions of enlightened post-copy and live migration compare well to
each other. Except for the right tail of the migrated VM being a little longer with enlight-
ened post-copy, the two methods show similar distribution curves.

5.4.3 Comparison with Baseline Approaches

We have so far compared enlightened post-copy with live migration based on pre-copy,
which is predominantly used in today’s virtualized environments. We further describe
how effectively our design achieves its objectives by comparison to two fundamental ap-
proaches: stop-and-copy [103, 117] and simple post-copy. Stop-and-copy is an early form
of migration that stops the VM, transfers all its state, and resumes the VM, in a sequential
manner. It achieves the shortest total duration possible at the cost of making down time
equivalently long. Simple post-copy solely uses demand fetches. It transfers only those
memory pages that are being accessed by the guest on the destination, making each access
incur an RTT between the hosts. These approaches can be considered as extreme design
points: stop-and-copy as live migration that eliminates iterations for the sake of minimal
duration, and simple post-copy as enlightened post-copy without, or with completely in-
effective, enlightenment. They thus serve as baselines that reveal the benefits of using the
sophistication in enlightened post-copy.

Figure 5.15 illustrates the behavior of stop-and-copy and simple post-copy with the
Memcached and MySQL workloads at 10 Gbps. The two workloads exemplify cases in
which they perform well or poorly compared to enlightened post-copy (whose correspond-
ing cases are shown in Figures 5.9 (a) and 5.11 (a)). Stop-and-copy works relatively well
for Memcached, and poorly for MySQL. Its performance is determined by the state trans-
fer amount, regardless of the workload, while enlightened post-copy copes better with the
MySQL workload than with the Memcached workload. The gain by enlightened post-
copy, therefore, becomes clearer in the MySQL case. Simple post-copy is ineffective for
Memcached and fairly adequate for MySQL. It significantly impacts the Memcached per-
formance once the VM starts on the destination, as the cost of page retrieval is prohibitive
for the memory-intensive workload. MySQL, on the other hand, exhibits enough memory
access locality to prevent this cost from significantly affecting its performance. As a re-
sult, enlightened post-copy shows a clear advantage in the Memcached case. In summary,
stop-and-copy and simple post-copy have cases they can handle and those they cannot;
enlightened post-copy performs comparably to them in their best cases, and outperforms
them considerably in the other cases.
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5.4.4 Costs of Enlightenment

Enlightened post-copy targets VMs under loads and makes explicit design trade-offs. One
question that arises is the overhead incurred due to its design when used in other situa-
tions. Table 5.1 shows time and state transfer statics of migrating an idle VM with 30
GB memory over 10 Gbps. The guest OS uses approximately 1 GB of memory, with no
user applications actively running. In part (a), the columns from left to right indicate guest
communication time for obtaining enlightenment, time until the VM is suspended on the
source, execution transfer time, and total duration. Although enlightened post-copy pays
the price of communicating with the guest OS, the cost is insignificant in this idle VM
case. Live migration, even when the VM is idle, needs to scan the entire guest memory
and thus takes some time until completion. Overall, enlightened post-copy is no worse
than live migration in terms of the time metrics. Part (b) in the figure shows the amount
of state transfer by the transfer method used. “Free memory information” for enlightened
post-copy represents how much data was sent to inform the destination hypervisor of all
the unallocated memory pages. Since enlightened post-copy performs one-time transfer
and live migration needs little retransmission, they transfer similar amounts in total.

In order to measure the real-time cost of tracking page allocation in the free bitmap, we
ran a microbenchmark program inside the guest. The program performs repeated memory
allocation, as fast as possible, in chunks of 1000 individual 4KB malloc() and free() calls
each. With the original Linux kernel and our modified kernel, one pair of these calls took
1.394 us and 1.455 us (4.4% increase), respectively. As demonstrated in the preceding
results, this difference typically has a negligible impact on applications because they do
not allocate and free memory as frequently as the program does.

Summary of Results

The main properties of enlightened post-copy, as demonstrated by the end-to-end results,
are summarized as follows. First, as a result of fast execution transfer, the migrated VM
ceases to contend for resources soon after the migration is initiated. The other VMs are
then able to use the freed resources. Second, the performance of the migrated VM starts
recovering before the completion of migration, especially rapidly with MySQL and Cas-
sandra. Enlightenment achieves this timely recovery. Third, the duration of migration is
shorter than that of live migration in most cases, because of one-time state transfer without
retransmission. These characteristics conform to the metrics of importance, as defined in
Section 5.1.3.

In addition, enlightened post-copy is resilient to varying workloads in the VM, com-
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Table 5.1: Costs of Idle VM Migration. The tables show time and state transfer statistics
of migrating an idle VM, with no active applications inside the guest. The numbers in
parentheses in part (b) represent a percentage of the total transfer amount.
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pared to stop-and-copy and simple post-copy. Similar to live migration, these approaches
have one particular metric of focus. Their effectiveness, therefore, largely depends on
the nature of the VM workload, whereas enlightened post-copy at least has performance
comparable to the best approach among them. The cost of achieving such efficiency is
insignificant when migrating idle VMs, and moderate in terms of memory management
inside the guest OS.

5.5 Summary

In this chapter, we described enlightened post-copy, an approach to urgently migrating
VMs under contention. It addresses aspects of VM migration differing from the focus of
the existing approaches: urgent execution transfer of the migrated VM and fast aggregate
performance recovery of the contending VMs. The current standard of migration, live
migration, exhibits undesirable characteristics in these aspects due to its design choices.
Departing from its blackbox nature, we treat migration as a native functionality of the guest
OS and have it generate current execution knowledge. Enlightened post-copy exploits this
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cooperation between the guest OS and the hypervisor, allowing prioritized post-copy state
transfer that achieves the above objectives. Our prototype, implemented in guest Linux
and qemu-kvm, requires only moderate changes to the guest kernel, and it demonstrates
that the cooperative approach resolves the contention between VMs up to several times
faster than live migration.
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Chapter 6

Conclusion

The executability guarantee of virtualization provides the capability for VMs to be trans-
ferred between machines. It allows deploying the software encapsulated in these VMs
beyond the constraints of the physical boundaries. However, the sheer size of VM state
makes it challenging to use this strong feature effectively, especially under the existence
of resource limitations. In this thesis, we proposed the use of execution knowledge in VM
state transfer to enhance its efficiency. The resulting efficiency leads to practical solu-
tions that address the timeliness requirements in two concrete contexts: VM delivery over
WANs and urgent transfer of VMs under contention.

In Chapter 3, we described our solution to the challenges in VM delivery over WANs,
called vTube. In this problem domain, the main resource constraint is limited bandwidth
between the server storing virtual appliance images and the client that resides across the
WAN. Straightforward approaches such as entire or partial VM image downloading can
easily take tens of minutes or even hours in such environments. vTube exploits past
execution knowledge derived from instances of each virtual appliance, in order to instan-
tiate VMs within a time frame of minutes while sustaining good performance of their
execution. Specifically, the system adopts the video streaming paradigm and dynamically
delivers VM state depending on the behavior of the current VM executing on the client. Its
streaming algorithm analyzes memory and disk state accesses in the past execution traces,
extracting and accumulating access pattern knowledge specific to each virtual appliance.
During user sessions, this knowledge is used to estimate parts of VM state that will be
accessed in the near future, provided the current course of VM execution. Our results
demonstrated that vTube efficiently streams virtual appliance images to the client over
real-world networks, including 3G, 4G LTE, and public Wi-Fi’s.

In Chapter 4, we investigated aspects of vTube’s usability that elude systems-level
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evaluation by a series of user studies. The value of these studies is three-fold. First, we
studied the impact of the streaming model of vTube on its performance, as perceived by
human users. Second, we compared the vTube model to a common alternative approach,
remote VM access, with VNC. Third, we evaluated the efficacy of vTube under varied
network conditions, especially its effectiveness in absorbing the effect of high round-trip
latency expected in WAN environments. We designed and administered the studies in
a managed-network setting with applications ranging from document and image editing
software to an interactive game. The usability of vTube and VNC was evaluated from
multiple perspectives: satisfaction with the system performance, feelings of annoyance,
mental demands, and sense of accomplishment. The ratings by the study participants
indicated the competitive performance of vTube’s VM streaming model in comparison
to VNC’s remote VM access, over a range of network conditions targeting WANs and
wireless networks. In addition, the study results also provided key insights into the impact
of latency on user interaction and the implications of using VM streaming as opposed to
VM remote access.

In Chapter 5, we discussed enlightened post-copy, a new approach to urgent trans-
fer of VMs under contention. In the context of this problem, the resource limitation of
a machine hosting multiple VMs makes migration a time-critical operation for resolving
their contention. Existing migration methods do not adequately address this aspect of load
balancing that requires urgency; in particular, pre-copy-based live migration often suffers
an elongated period of time until the execution of the migrated VM is transferred, mean-
while letting the contention persist. Enlightened post-copy leverages current execution
knowledge of the target VM to urgently resolve this contention. The guest OS natively
supports migration, and informs the hypervisor about how to prioritize memory state dur-
ing its transfer. Using this explicit knowledge, the hypervisor immediately suspends the
VM on the source and resumes it on the destination, while performing state transfer in a
post-copy manner as instructed by the guest OS. Our experiments highlight the compari-
son between enlightened post-copy and live migration, with highly loaded VMs that run
common server applications such as Memcached, MySQL, and Cassandra. The results
showed the effectiveness of enlightened post-copy in 1) resolving the contention between
VMs immediately, 2) recovering the aggregate throughput of the VMs under contention,
and 3) mitigating the performance degradation of the migrated VM through the use of ex-
ecution knowledge. Specifically, enlightened post-copy recovers the performance of the
contending VMs up to several times faster than live migration.

Through the validation steps above, we verified that execution knowledge achieves
timely VM state transfer under the existence of resource limitations. vTube employs
past execution knowledge that overcomes low bandwidth and high latency while sustain-
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ing the system usability, as confirmed by our systems-level and human-centric evaluation.
Enlightened post-copy exploits current execution knowledge from the guest OS that al-
lows explicit state prioritization, thereby addressing tight requirements for the time frame
of migration. Execution knowledge thus liberates VMs from the physical boundary be-
tween machines. While the size of VMs continues to grow today, it reinforces one of the
strongest features of virtualization: remote instantiation of computation through preserved
executability.

6.1 Future Work

We conceive additional research and experiments with our systems that will further strengthen
their value. We first enumerate those directly relevant to VM streaming, comparison of
thick and thin clients, and VM migration exploiting enlightenment. Next, we discuss re-
search questions on execution knowledge and encapsulation of computation, inspired by
this thesis work.

6.1.1 Enhancements to VM Streaming

We envision extensions to the current vTube model in a few notable aspects. First, the
users would benefit from a feature to stream updated versions of original virtual appliance
images. Their creators may apply updates to the contained applications. Alternatively, the
users may save or distribute an image that captures the state after completing some work
using the original image. We could potentially apply the access pattern knowledge for the
original image to the new versions, avoiding the collection of their execution traces started
anew. The access pattern differences between the old and new versions would then be used
for streaming the latter. Also, separating the mutable state into a data store would facilitate
streaming in these cases. The virtual appliance would include the main executable of an
application, and its configuration files and other associated data would reside in cloud
storage that is accessible across WANs. Second, smart use of the content-addressable
cache would improve the streaming performance. It could be pre-populated with chunk
contents that are commonly found in many images, such as those of OS binaries and user
libraries. Additionally, when the available storage size for the cache is limited, policies
for content eviction would be necessary. Such policies could be based on a basic strategy,
for example Least Recently Used (LRU), which removes the contents that have not been
accessed for the longest time. Furthermore, they could be augmented with vTube’s access
pattern knowledge, and could evict those contents that are most unlikely to be accessed
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before some time in the future.

6.1.2 Thick Clients and Thin Clients

Thick clients and thin clients have contrasting computing models and factors affecting
their usability. These differences could also be considered complementary, and exploited
for constructing a hybrid system. One possibility is to have two VM instances, one run-
ning on the client and the other on the server, that are periodically synchronized. When the
network between the server and client has particularly low bandwidth, the user interface
is connected to the server VM using the thin-client model. When the round-trip latency is
high, instead, the client VM is used with the thick-client model of VM streaming. Even-
tually, when the entire VM state has been cached locally, the client VM takes over this
hybrid mode of operation.

Another topic worth noting is future network improvements, which impact the relative
usability of thick and thin clients. As bandwidth increases, buffering events of vTube will
have shorter duration given the same VM state size. As round-trip latency lowers, interac-
tive performance of VNC-like systems becomes better. The measurements in Chapters 3
and 4 used bandwidth and latency values that correspond to ranges typical in WAN envi-
ronments, including 3G, 4G LTE, and public Wi-Fi’s. While the bandwidth and round-trip
latency in these networks are expected to improve in the future, the latter tends to have
more physical constraints; the number of hops depends on the deployed structure of the
Internet, and the speed of network signals is unlikely to exceed that of optical fiber cables.
Future work would confirm whether these expectations hold, in which case there would be
better prospects for thick clients.

6.1.3 Extensions to Enlightened VM Migration

As a migration method, enlightened post-copy serves as a building block for load balanc-
ing schemes, and could work with cluster-level management for further effectiveness. For
example, before the start of migration, a load balancer could divert service requests for
the target VM to other VMs on the same host. The load of the target VM would then be
temporarily reduced, and its disruption would have less impact on the aggregate perfor-
mance of the VMs. Once the migration completes, service requests could be directed to the
migrated VM again on its destination. Integration of enlightened post-copy into higher-
level resource managers in such a manner would strengthen its benefits, while reducing its
performance costs.
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Enlightened post-copy could also incorporate additional sources of enlightenment from
the application level. Java execution environments, for example, keep track of how mem-
ory regions are used for objects. Similar to JAVMM [58], such information could be
passed to the guest OS to assist fine-grained categorization of memory pages. When tak-
ing this approach, we are adding a level of inter-layer interaction, between the applications
and guest OS. In enlightened post-copy, the guest OS supports migration transparently to
the applications. Creating the information flow between the applications and guest OS,
however, means that the former need modifications. For this reason, a clean interface for
passing the relevant information would be an important research question to consider.

The type of enlightenment, as well as the interface, determines its applicability. The
categories of memory pages used in enlightened post-copy follow general concepts such
as kernel-or-user and code-or-data. These distinctions reflect the memory management
by x86 architectures, which has a privilege level and permissions assigned to each page.
Therefore, while we implemented the mechanism in Linux, we believe that our use of en-
lightenment is applicable to Windows and other OSes without significant changes. Investi-
gating the practicality of implementation for other platforms would validate this generality
of our approach.

6.1.4 Source of Execution Knowledge

Execution knowledge can be formed in various ways. Except for the acquisition of free
memory lists, vTube uses a blackbox approach, which does not require any modifications
to the guest environment. Enlightened post-copy, on the other hand, takes a whitebox ap-
proach with mechanisms implemented inside the guest OS. These design choices in ob-
taining execution knowledge are driven by their target contexts. In vTube, past execution
knowledge proves to be effective in estimating the state accesses of current VM execution.
This knowledge can be obtained without explicit guest cooperation, and accumulated for
future use. In enlightened post-copy, up-to-date execution knowledge needs to be imme-
diately accessible and applicable. Enlightenment, for this reason, is a suitable candidate
as the source of execution knowledge. The blackbox and whitebox approaches thus make
trade-offs between the time frame of applying the knowledge and the cost of implementa-
tion. In addition to these options, graybox techniques [25] offer solutions in the middle.
They leverage knowledge that can be inferred about the target entity without modifying
it, such as behavior expected from internal algorithms. The selection of what approach
to use depends on the attributes desired in the right solution. Hybrid approaches are also
conceivable. In the context of migration, for example, periodic monitoring of the VM
workload could judge whether live migration would provide sufficient timeliness; other-
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wise, if the guest OS supports enlightened post-copy, it could be triggered to better satisfy
the performance requirements. Investigation into the proper selection, or combination, of
these different solutions would be a useful extension to our work.

6.1.5 Future Abstraction for Encapsulating Computation

Finally, this thesis motivates further exploration of virtualization as the unit of encapsulat-
ing computation. Virtualization is the lowest-level mechanism for encapsulation, targeting
that of the entire software stack and requiring only the hypervisor for its executability.
With vTube and enlightened post-copy, we demonstrated that this holistic, and seem-
ingly heavy, approach can achieve movability between machines through sophistication
in state transfer. Alternatives at higher levels can provide efficiency, with appropriate
support needed above the layer of the hypervisor. OS-level mechanisms, such as Linux
containers and FreeBSD jails, only need to move the state of the target process. The OSes
involved, however, must be kept compatible, which likely is a more cumbersome task than
having hypervisors consistent across machines. Application-level solutions, as exempli-
fied by the binary compatibility of Java, have further dependencies including the run-time
environment. An important research question would be what the most promising abstrac-
tion for computation is in the coming era. OS-level and process-level techniques may be
increasingly supported by common platforms. Still, virtualization remains to be a core
technology that offers robust executability of the guest environments and strong isolation
between them. Also, inter-layer approaches to efficiency, as used in enlightened post-copy,
and the abstraction for their information flow would be factors that determine the efficacy
of these various options.

6.2 Concluding Remarks

Timely transfer of VMs augments their capability to preserve executability, expanding its
applicability to diverse contexts. In this thesis, we proposed the use of execution knowl-
edge to achieve this timeliness. Our work has shown that the robust execution environment
for applications and its movability between physical machines are not mutually exclusive;
virtualization remains to be an attractive solution with both of these features, among var-
ious approaches to decoupling software from hardware. We envision that the efficiency
achieved through execution knowledge will foster the exploration of its application in
different forms, and impact the ways of abstracting computational units for remote instan-
tiation.
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[83] Ali José Mashtizadeh, Min Cai, Gabriel Tarasuk-Levin, Ricardo Koller, Tal
Garfinkel, and Sreekanth Setty. XvMotion: Unified Virtual Machine Migration over
Long Distance. In Proceedings of the 2014 USENIX Annual Technical Conference
(USENIX ATC ’14), Philadelphia, PA, USA, 2014. USENIX Association.

[84] Robert B. Miller. Response Time in Man-computer Conversational Transactions.
In Proceedings of the December 9-11, 1968, Fall Joint Computer Conference, Part
I (AFIPS ’68 (Fall, part I)), San Francisco, CA, USA, 1968. ACM.

[85] Grzegorz Miłós, Derek G. Murray, Steven Hand, and Michael A. Fetterman. Satori:
Enlightened Page Sharing. In Proceedings of the 2009 USENIX Annual Technical
Conference (USENIX ATC ’09), San Diego, CA, USA, 2009. USENIX Association.

[86] Takeshi Mishima and Yasuhiro Fujiwara. Madeus: Database Live Migration Mid-
dleware Under Heavy Workloads for Cloud Environment. In Proceedings of the
2015 ACM SIGMOD International Conference on Management of Data (SIGMOD
’15), Melbourne, Australia, 2015. ACM.

[87] Todd C. Mowry, Angela K. Demke, and Orran Krieger. Automatic Compiler-
inserted I/O Prefetching for Out-of-Core Applications. In Proceedings of the Sec-
ond USENIX Symposium on Operating Systems Design and Implementation (OSDI
’96), Seattle, WA, USA, 1996. ACM.

[88] Fiona F. Nah. A study on tolerable waiting time: how long are Web users willing to
wait? Behaviour & Information Technology, 23(3), May 2004.

[89] Senthil Nathan, Umesh Bellur, and Purushottam Kulkarni. Towards a Comprehen-
sive Performance Model of Virtual Machine Live Migration. In Proceedings of the
Sixth ACM Symposium on Cloud Computing (SoCC ’15), Kohala Coast, HI, USA,
2015. ACM.

125



[90] Michael Nelson, Beng-Hong Lim, and Greg Hutchins. Fast Transparent Migra-
tion for Virtual Machines. In Proceedings of the 2005 USENIX Annual Technical
Conference (USENIX ATC ’05), Anaheim, CA, USA, 2005. USENIX Association.

[91] Albert Ng, Julian Lepinski, Daniel Wigdor, Steven Sanders, and Paul Dietz. De-
signing for Low-latency Direct-touch Input. In Proceedings of the Twenty-Fifth
Annual ACM Symposium on User Interface Software and Technology (UIST ’12),
Cambridge, MA, USA, 2012. ACM.

[92] Steven Osman, Dinesh Subhraveti, Gong Su, and Jason Nieh. The Design and
Implementation of Zap: A System for Migrating Computing Environments. In Pro-
ceedings of the Fifth Symposium on Operating Systems Design and implementation
(OSDI ’02), Boston, MA, USA, 2002. ACM.

[93] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky, and J. Zelenka. Informed
Prefetching and Caching. In Proceedings of the Fifteenth ACM Symposium on Op-
erating Systems Principles (SOSP ’95), Copper Mountain, CO, USA, 1995. ACM.

[94] Chunyi Peng, Minkyong Kim, Zhe Zhang, and Hui Lei. VDN: Virtual Machine
Image Distribution Network for Cloud Data Centers. In Proceedings of INFOCOM
2012, Orlando, FL, USA, 2012. IEEE.

[95] Michael L. Powell and Barton P. Miller. Process Migration in DEMOS/MP. In
Proceedings of the Ninth ACM Symposium on Operating Systems Principles (SOSP
’83), Bretton Woods, NH, USA, 1983. ACM.

[96] Joshua Reich, Oren Laadan, Eli Brosh, Alex Sherman, Vishal Misra, Jason Nieh,
and Dan Rubenstein. VMTorrent: Virtual Appliances On-demand. In Proceedings
of the ACM SIGCOMM 2010 Conference (SIGCOMM ’10), New Delhi, India, 2010.
ACM.

[97] Joshua Reich, Oren Laadan, Eli Brosh, Alex Sherman, Vishal Misra, Jason Nieh,
and Dan Rubenstein. VMTorrent: Scalable P2P Virtual Machine Streaming. In
Proceedings of the Eighth International Conference on Emerging Networking Ex-
periments and Technologies (CoNEXT ’12), Nice, France, 2012. ACM.

[98] Tristan Richardson, Quentin Stafford-Fraser, Kenneth R. Wood, and Andy Hopper.
Virtual Network Computing. IEEE Internet Computing, 2(1), January 1998.

[99] Pierre Riteau, Christine Morin, and Thierry Priol. Shrinker: Improving Live Mi-
gration of Virtual Clusters over WANs with Distributed Data Deduplication and

126



Content-Based Addressing. In Proceedings of the Seventeenth International Euro-
pean Conference on Parallel and Distributed Computing (Euro-Par ’11), Bordeaux,
France, August 2011. Springer-Verlag.

[100] Avi Rushinek and Sara F. Rushinek. What Makes Users Happy? Communications
of the ACM, 29(7), July 1986.

[101] Constantine Sapuntzakis, David Brumley, Ramesh Chandra, Nickolai Zeldovich,
Jim Chow, Monica S. Lam, and Mendel Rosenblum. Virtual Appliances for Deploy-
ing and Maintaining Software. In Proceedings of the Seventeenth USENIX Confer-
ence on System Administration (LISA ’03), San Diego, CA, USA, 2003. USENIX
Association.

[102] Constantine Sapuntzakis and Monica S. Lam. Virtual Appliances in the Collective:
A Road to Hassle-free Computing. In Proceedings of the Ninth Conference on
Hot Topics in Operating Systems - Volume 9 (HotOS ’03), Lihue, HI, USA, 2003.
USENIX Association.

[103] Constantine P. Sapuntzakis, Ramesh Chandra, Ben Pfaff, Jim Chow, Monica S.
Lam, and Mendel Rosenblum. Optimizing the Migration of Virtual Computers. In
Proceedings of the Fifth Symposium on Operating Systems Design and Implemen-
tation (OSDI ’02), Boston, MA, USA, 2002. ACM.

[104] Mahadev Satyanarayanan, Paramvir Bahl, Ramón Caceres, and Nigel Davies. The
Case for VM-Based Cloudlets in Mobile Computing. IEEE Pervasive Computing,
8(4), October 2009.

[105] Mahadev Satyanarayanan, Vasanth Bala, Gloriana St. Clair, and Erika Linke. Col-
laborating with Executable Content Across Space and Time. In Proceedings of the
Seventh International Conference on Collaborative Computing: Networking, Appli-
cations and Worksharing (CollaborateCom2011), Orlando, FL, USA, 2011. IEEE.

[106] Mahadev Satyanarayanan, Benjamin Gilbert, Matt Toups, Niraj Tolia, Ajay Surie,
David R. O’Hallaron, Adam Wolbach, Jan Harkes, Adrian Perrig, David J. Farber,
Michael A. Kozuch, Casey J. Helfrich, Partho Nath, and H. Andrés Lagar-Cavilla.
Pervasive Personal Computing in an Internet Suspend/Resume System. IEEE Inter-
net Computing, 11(2), March 2007.

[107] Stephen Shankland. VMware opens virtual-appliance marketplace. CNET News,
November 2006.

127



[108] Aidan Shribman and Benoit Hudzia. Pre-Copy and Post-copy VM Live Migra-
tion for Memory Intensive Applications. In Proceedings of the Eighteenth Inter-
national Conference on Parallel Processing Workshops (Euro-Par ’12), Rhodes Is-
land, Greece, 2013. Springer-Verlag.
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