
Masters Dissertation

Approximation Algorithms for Stochastic
Unsplittable Flow Problems

Archit Karandikar

CMU-CS-15-142
December 2015

School of Computer Science
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA

Submitted in partial fulfillment of the requirements
for the Degree of Master of Science

Thesis Committee:
Anupam Gupta (Chair)

R Ravi
Danny Sleator

Masters Thesis A. Karandikar

Keywords: Approximation Algorithms, Stochastic Unsplittable Flow Problem, Linear Programming Re-
laxations, Randomized Rounding, Adaptivity Gap, Totally Unimodular Matrices

2

Acknowledgements

I am grateful to all the people who helped me complete my masters dissertation.

Thanks to my advisor, Anupam Gupta, for all the priceless guidance, advice, encouragement and support.
I am fortunate to have such a capable and helpful advisor.

Thanks to R Ravi for analyzing and providing insights into the problems addressed by this dissertation.

Thanks to Danny Sleator for helping with my thesis and for providing me a strong foundation in Theory.

Thanks to my parents, Vikrant Karandikar and Ashlesha Karandikar, for providing unconditional love,
encouragement and support in all my efforts, including my research. Thanks to my grandparents, late Dr.
Indumati Karandikar, late Dr. Laxman Karandikar, Rohini Menavlikar and late Madhav Menavlikar for
your love and for being a source of inspiration an strength.

Thanks to my family members and my teachers, especially Prof. M. Prakash, Prateek Karandikar and
Rajeeva Karandikar for providing me with the mathematical foundation central to all of my academic
endeavours.

I am greatly indebted to so many friends, too numerous to name here, for being a ceaseless source of strength
and happiness throughout my masters program.

Masters Thesis A. Karandikar

To Dr. Indumati Karandikar,

4

Abstract

In this thesis, we present approximation algorithms for variants and special cases of the Stochastic Unsplit-
table Flow Problem (hereafter, sUfp). The objective of the sUfp is to optimally schedule tasks from a given
set of tasks on an underlying graph, each of which is specified by a stochastic demand, a payoff and a pair
of vertices between which it must be scheduled. Even very special cases of the sUfp, such as the sUfp on a
single-edge graph with deterministic demands, are known to be NP-hard.

We present new polytime constant-factor approximation algorithms for the sUfp on Paths and Trees and
for extensions where each task may correspond to more than two vertices. We consider two settings - a
special-case in which all the capacities are equal and the general-case in which the capacities are arbitrary.
In dealing with arbitrary capacities, we assume that the distribution underlying the demand for each task has
maximum attainable value less than or equal to the least capacity among the edges in the graph, operating
under what is known as the No Bottleneck Assumption.

Our approximation algorithms are obtained by combining approximations for instances in which all tasks
are small and for those in which all tasks are large. They provide an approximation to a linear programming
relaxation and hence may perform significantly better in practice than the guarantees we establish. These
algorithms do not make decisions based on results of previously instantiated tasks, and are classified as
non-adaptive algorithms, which leads to the result that the adaptivity gaps for these problems are bounded
by a constant.

Contents

1 An Introduction to the Stochastic Unsplittable Flow Problem 7

1.1 Overview . 7

1.2 Problem Specifications . 7

1.2.1 The No-Bottleneck Assumption (Nba) . 9

1.2.2 Problem Hierarchy . 9

1.3 Relationship to Previous Work . 10

1.4 Our Contributions . 11

1.5 Additional Specifications . 11

1.5.1 Notation . 11

1.5.2 Feasible Tasks . 11

1.6 Adaptivity Gap . 12

1.7 Structure of the Dissertation . 12

2 A Linear Programming Relaxation 13

2.1 The LP relaxations . 14

3 Combining Approximation Algorithms 15

4 Algorithms for Small Tasks 17

4.1 Uniform Capacities . 17

4.2 Non-Uniform Capacities . 20

4.2.1 An Improved Constant for the sUfpPath . 23

4.2.2 An Improved Constant for sUfpTree . 24

5 Algorithms for Large Tasks 25

5.1 Uniform Capacities . 25

5.2 Non-Uniform Capacities . 26

5.3 sRapkTree-Subtree: An approximation to non-adaptive algorithms . 30

6 Approximation Algorithms 33

7 Concluding Remarks 36

6

Chapter 1

An Introduction to the Stochastic
Unsplittable Flow Problem

1.1 Overview

The Unsplittable Flow Problem (hereafter, the Ufp) deals with the optimal allocation of a resource (such
as bandwidth) at each communication link of a network to a set of tasks each having a resource demand
between pairs of nodes on that network and a payoff. The Ufp has been a subject of a lot of research interest
in recent times, since it arises naturally in applications such as bandwidth allocation, resource-constrained
scheduling and packing.

Motivated by the fact that in several such applications, the amount of resource required by an entity is not
known deterministically beforehand, we consider the Stochastic Ufp (hereafter, the sUfp). In the sUfp, the
actual resource demand of each task itself is unknown in advance, but we assume that the demand is drawn
from a probability distribution. We will address instances of the sUfp in which the network is a tree. We
also consider extensions of the sUfp on trees where each task must be scheduled between multiple nodes. As
is standard in addressing the Ufp we will assume that the maximum attainable resource demand is at most
the minimum link capacity. This is called the No Bottleneck Assumption (hereafter, Nba).

Even very special cases of Ufp, which is itself a special case of the sUfp, are NP-hard. When the graph
representing the network is a single edge, the Ufp is equivalent to the Knapsack problem. When all demands,
payoffs and all capacities are 1, the Ufp is equivalent to the Maximum Edge-Disjoint Paths problem. When
all demands are 1, the Ufp is equivalent to the Integer Multicommodity Flow problem.

1.2 Problem Specifications

In the sUfp, we are given a graph G = (V,E) and a set of tasks T . Let the number of tasks be denoted
by n and let G have p vertices and m edges. Each edge e ∈ E corresponds to a resource of which ce units
are available. We call ce the capacity of edge e. Each task t ∈ T is specified by a pair of distinct vertices
{at, bt} ∈ V and can be scheduled along any path between at and bt. The size of the task t is given by a
positive random variable St, whose distribution is given to the algorithm as input. 1 If task t is scheduled,
we specify a path Pt for it. 2 Task t then consumes St amount of resource on each edge along path Pt. As
a result of scheduling task t, the residual capacity of edge e, changes as: ĉe ← max(0, ĉe − St). A task is
successfully scheduled if St ≤ mine∈Pt ĉe and we get a payoff of vt, else it is unsuccessfully scheduled and we
get no payoff. Observe that even if the job is unsuccessful, the capacity along every edge in Pt is consumed to
extent St or to complete consumption, whichever occurs first. The objective is to find a scheduling strategy
to maximize the expected payoff.

1As will become apparent, we need to know only some statistics of this distribution for our algorithms.
2In this work, we will deal only with the sUfp on Trees and its extensions. For our purposes the path Pt for every task t is

uniquely defined. For the extensions we consider, Pt may be a subtree instead of a path.

7

Masters Thesis A. Karandikar

Note that each task can be scheduled at most once. The random variable St is instantiated only when task
t is scheduled and all scheduling decisions are irrevocable. Also note that since the sizes St of all tasks t are
positive random variables, once an edge has zero residual capacity, it cannot be a part of any successfully
scheduled task.

We consider some special cases of the sUfp based on restricting the graph:

• When the graph G is a tree, the problem is called the Stochastic Unsplittable Flow Problem on a Tree,
or the sUfpTree. In this case, we imagine the graph G as being rooted at some node r ∈ V . The unique
at-bt path is now denoted by Pt. The depth of node v is the number of edges on the unique v-r path.
The depth of a path is the depth of the least common ancestor (hereafter, lca) of the endpoints of the
path. Equivalently, it is the depth of the least-depth node on the path. The depth of a task is the depth
of the path corresponding to it. Assume that the tasks are numbered from 1 to n in non-decreasing
order of depth, that for all tasks t, the terminals at and bt are leaves in G, and that the root has a
single child. All these assumptions are without loss of generality.

If in an instance of the sUfpTree, all edge capacities are equal, we get the Stochastic Resource Allocation
Problem on a Tree (hereafter, the sRapTree). We assume by scaling in dealing with the sRapTree that
all capacities are 1.

• When the graph G is a path, the problem is called the Stochastic Unsplittable Flow Problem on a Path,
or the sUfpPath. The vertices are numbered from 1 to m + 1 along the path from left to right, and
edges of the path from 1 to m. As in the sUfpTree, the unique at-bt path Pt consists of edges in the set
[at, bt). We assume that the tasks are sorted by their left endpoints, i.e., a1 ≤ . . . ≤ an. Note that this
is same as sorting the tasks in non-decreasing order of depth if we consider vertex 1 to be the root.
Unlike the sUfpTree, we do not assume in the sRapTree that at and bt are leaves in G.

If in an instance of the sUfpPath, all edge capacities are equal, we get the Stochastic Resource Allocation
Problem on a Path (hereafter, the sRapPath). We assume by scaling for the sRapPath, as we did for
the sRapTree that all capacities are 1.

Note that the sUfpPath and the sRapPath are special cases of the sUfpTree and the sRapTree respectively.

We can also generalize the idea of scheduling pairs {at, bt} to scheduling sets of terminals. Specifically, when
addressing the sUfpTree and the sRapTree, we generalize our results as follows:

• A tree T ′ rooted at r′ is called a k-spider if T ′ has at most k leaves, and the least common ancestor
of any two nodes u, v in it is either the root r′, or one of {u, v}. Equivalently, a k-spider is a set of
at most k disjoint “downward” paths emanating from the root r′. Given a tree T , call a set Dt ⊆ V
a k-spider set if the subtree induced by these vertices is a k-spider set. Note that paths are 2-spiders.
(An alternative definition is as follows: given Dt, let D′t be a minimal subset which indices the same
subtree as Dt. Then Dt is a k-spider if | D′t |≤ k and D′t has the Helly-type condition that the lca of
any pair of its elements is the same as the lca of the entire set.)

The generalization of the sUfpTree where each task t corresponds to a k-spider set Dt, is called the
Stochastic Unsplittable Flow Problem on a Tree with k-spiders (hereafter, the sUfpTree-kSpider). 3

Along similar lines, the generalization of the sRapTree where each task t corresponds to a k-spider
set Dt, is called the Stochastic Resource Allocation Problem on a Tree with k-spiders (hereafter, the
sRapTree-kSpider). 3 Again, we assume by scaling for the sRapTree-kSpider that all capacities are 1.

For the sUfpTree-kSpider and the sRapTree-kSpider, let the k-spider induced by task t be denoted by
Pt, and the tasks be numbered from 1, . . . , n in non-decreasing order of the depth of the root of their
corresponding k-spiders. As in the sUfpTree, we assume that the terminals in set Dt for each task t
are leaves and that the root has a single child.

In the process of obtaining an approximation algorithm for the sUfpTree-kSpider, we will come up
with an approximation algorithm under the Nba for the version of this problem where all demands are
deterministic. We will denote this problem by the UfpTree-kSpider.

3 We include k in the problem name and abbreviation because the approximation factor we obtain depends on k.

8

Masters Thesis A. Karandikar

Note that the sUfpTree and the sRapTree are equivalent to the sUfpTree-2Spider and the sRapTree-
2Spider respectively. Also note that the sUfpPath and the sRapPath are special cases of the sUfpTree-
1Spider and the sRapTree-1Spider respectively.

• Finally, we also consider the generalization where G is a rooted tree and each task t corresponds to a
subtree Pt of G. Our results will depend on the upper bound on the number of children of each node
in G. We consider the case where all edge capacities are equal, and as before, scaled to 1. We refer to
this problem as the sRap on k-ary trees with subtrees or the sRapkTree-Subtree. As in the sUfpTree, we
assume that the tasks are numbered from 1, . . . , n in non-decreasing order of the depth of the root of
their corresponding subtrees.

One of our intermediate results is for the extension of the sRapTree where each task corresponds to a
k-ary subtree rooted at its vertex of least depth in G. We will refer to this problem as the sRapTree-
kSubtree.

Note that all problems mentioned here are special cases of the Stochastic Unsplittable Flow Problem on Trees
with Subtrees, denoted hereafter by the sUfpTree-Subtree, which is the generalization of the sUfpTree where
each task corresponds to a subtree.

1.2.1 The No-Bottleneck Assumption (Nba)

Improved results for unsplittable-flow problems have often been obtained under the Nba. In the stochastic
context, the Nba says that for each task t ∈ T , the domain of the size of random variable St is (0, cmin] where
cmin = mine∈E ce. By scaling we assume that cmin = 1, and hence the r.v.s St ∈ (0, 1]. We operate under
the Nba for the sUfpPath and the sUfpTree-kSpider.

1.2.2 Problem Hierarchy

We have defined a lot of different problems in §1.2. In this section we provide figures to depict the setting
for each problem and a schematic for the hierarchy of problems to help the reader get acquainted with the
notation we introduced.

The following figure depicts the setting for each of the special cases of the sUfp relevant to our work.
Specifically, it shows the nature of the graph and the nature of the subgraph that each task corresponds to.
Each of the four subfigures corresponds to a few special cases and depicts the graph G and the subgraph Pt
corresponding to a single task t for the relevant setting. The edges in Pt are shown in red and those not in
Pt are shown in black. For the two figures on the right, the depiction is valid for k ≥ 3.

Figure 1.1: Relevant Special Cases of the sUfp

9

Masters Thesis A. Karandikar

The problem hierarchy is represented below with a schematic which shows generalization →special case
relations between the problems. Relations implied by transitivity are not shown.

Figure 1.2: Problem Hierarchy

We obtain approximation results for each of the problems represented in Figure 1.2 besides the sUfpTree-
Subtree. For the sRapkTree-Subtree, we only obtain an approximation to non-adaptive algorithms (defined
in §1.6) and this is shown in the figure. The only relevant problem not shown in this figure is the sRapTree-
kSubtree because we only show an intermediate result and do not obtain an approximation for this problem.
The sRapTree-kSubtree problem is a generalization of all the sRap variants (every problem in the left half of
Figure 1.2) and the result we show for it will be used by all of these variants.

1.3 Relationship to Previous Work

Unsplittable Flow Problems. As stated above, there is much research related to the Ufp. Here we
just state the approximation results to Ufp that are directly relevant to our work. The Ufp on general
graphs generalizes the Maximum Edge-Disjoint Path problem. This problem is Ω(

√
|E|)-hard for directed

graphs [GKR+03], and a matching O(
√
|E|)-approximation algorithm was given by Kleinberg [Kle98]. Other

results for this problem are given by Srinivasan [Sri97], Kolliopoulos and Stein [KS04], Kolman and Schei-
deler [KS06], Chekuri et al. [CKS06], and others. The hardness of the Maximum Edge-Disjoint Path for the
undirected case is weaker, and closing the gap between the upper and lower bounds in this case remains an
interested direction for research.

Given the hardness of Ufp for general graphs, there is much interest in Ufp on special classes of graphs. The
Ufp on Trees in APX-hard. Calinescu, Chakrabarti, Karloff and Rabani [CCKR11] showed a O(1/2 − ε)-
approximation for the Rap on the line, which is the special case of Ufp on a line for which all capacities
are equal. Subsequently, Chakrabarti et al. [CCGK07] give a O(1)-approximation under the Nba. Chekuri,
Mydlarz and Shephard [CMS07] showed the first O(1) approximation to Ufp on trees also under the Nba,
and also improving on the constant for Ufp on paths obtained in [CCGK07]. A constant factor for UfpPath
without the Nba was given by Bonsma et al. [BSW11], and the constant factor was improved to (2 + ε) by
Anagnostopoulos et al. [AGLW14]. For Ufp on trees without the Nba, Chekuri, Ene, and Korula [CEK09]
showed a O(log2 p) approximation. A linear programming relaxation for the Ufp on trees with an integrality
gap of O(log p ·min{log p, log n}) was shown bu Friggstad and Gao [FG15]. In our work, we will build upon
ideas from some of the aforementioned research [CCKR11, CMS07, CCGK07].

Stochastic Packing Problems. There has also been extensive research relating to stochastic optimization

10

Masters Thesis A. Karandikar

problems, tracing all the way back to the work of Dantzig in the 1950s, but the work on approximation
algorithms for stochastic problems is more recent. The work of Dean, Goemans and Vondrak [DGV08, Dea05]
is closest to our work. They initiated the study of stochastic packing problems: the paper [DGV08] showed
an O(1) approximation to Stochastic Knapsack problem, which is the single-link network special case of the
sUfp. The linear programming relaxation that we use in our work is a direct extension of one used for the
Stochastic Knapsack problem [DGV08].

The sUfp has been studied before: Chawla and Roughgarden [CR06] showed approximation results for the
single-source version of the sUfp, i.e., for the case where all demands have a common source. They give
approximation algorithms under a stronger variant of the Nba. Before our results, there were no known
approximation results for the sUfp on paths or trees, or for extensions of the sUfp where each resource
demand may involve multiple nodes.

1.4 Our Contributions

We give the first polytime constant-factor approximation algorithms for the sUfpTree-kSpider under the Nba
and the sRapTree-kSpider. The last two results also imply, as a corollary, constant-factor approximation
algorithms for the sUfpPath under the Nba, the sUfpTree under the Nba, the sRapPath and the sRapTree.
Subsequently, we will however come up with better constant-factor guarantees for the sUfpPath under the
Nba, the sUfpTree under the Nba and the sRapPath.

For the sRapkTree-Subtree, we provide a polytime non-adaptive approximation algorithm which achieves
a constant-factor approximation to non-adaptive algorithms. Whether this algorithm is a constant-factor
approximation to any algorithm for the sRapkTree-Subtree is not known to us and is open to resolution.

In obtaining a constant-factor approximation algorithm for the sUfpTree-kSpider, we will first derive a
constant-factor approximation algorithm for instances of the UfpTree-kSpider where all demands are 1 and
capacities are integral, and refer to an argument by means of which this result can be extended to the
UfpTree-kSpider under the Nba with integral capacities and integral demands.

All algorithms we present are non-adaptive and hence these results imply that the adaptivity gaps for the
sRapPath, the sUfpPath under the Nba, the sUfpTree under the Nba and the sRapTree are all constant whereas
those for the sUfpTree-kSpider and the sRapTree-kSpider are polynomial in k.

1.5 Additional Specifications

In this section we introduce some additional notation and conventions for convenience of the analysis in
subsequent chapters.

1.5.1 Notation

The bottleneck capacity of task t is defined as bt := min{ce | e ∈ Pt}. The truncated size of task t is

S̃t := min{St, cmin} and its mean truncated size is µt := E[S̃t]. The effective payoff of task t is defined as

ṽt := vt · Pr[St ≤ bt]. Note that under the Nba, S̃t = St and ṽt = vt for all tasks t and that the scaling
specified in §1.2 ensures that cmin = 1 for all problems we will deal with in our work.

If A denotes a set of tasks, then the set of tasks from A incident on edge e is defined as Ae := {t ∈ A | Pt 3 e}.
We define the truncated size of A as µ(A) :=

∑
t∈A µt.

1.5.2 Feasible Tasks

Since the sizes of the tasks are positive random variables it is not beneficial to schedule a yet-unscheduled
task t if there exists a edge in Pt which is completely used up. We call such tasks infeasible, and the remaining
yet-unscheduled tasks feasible at this time. For convenience of analysis, we adopt the convention that at a
given point in time an algorithm can only schedule tasks feasible at that point in time.

The state at any point in time is completely defined by the residual capacities of all edges and the set of
unscheduled tasks at that point in time. Each scheduling algorithm is completely specified by the feasible
task it chooses to schedule for every state that may arise as a consequence of its previous decisions. Note that

11

Masters Thesis A. Karandikar

these choices may not be deterministic. 4 Thus a scheduling algorithm provides a probability distribution
over feasible tasks for each state that may arise as a consequence of its previous decisions.

1.6 Adaptivity Gap

Algorithms which make decisions based on the outcomes of previously scheduled tasks are referred to as
adaptive algorithms. Those which premeditate a sequence of distinct tasks and schedule them sequentially,
skipping only past the ones which become infeasible in the process are non-adaptive algorithms.

Let A denote the set of all scheduling algorithms for a given instance of the sUfpTree-Subtree. We denote
by AN the set of all non-adaptive scheduling algorithms for that instance of the sUfpTree-Subtree. Note
that AN ⊆ A. Let P(A) denote the random variable which equals the payoff of some scheduling algorithm
A ∈ A. We define optimal payoff OPT := sup{E[P(A)] | A ∈ A} and non-adaptive optimal payoff OPTN :=
sup{E[P(A)] | A ∈ AN}. The adaptivity gap for the given problem is the supremum of OPT/OPTN over
all problem instances.

1.7 Structure of the Dissertation

We say that task t ∈ T is δ-small if µt ≤ δbt and δ-large if µt > δbt for δ ∈ (0, 1). Instances of the
sUfpTree-Subtree in which all tasks are δ-small are called δ-small instances and those in which all tasks are
δ-large are called δ-large instances. For each special case of the sUfpTree-Subtree relevant to our work we
will give separate polytime non-adaptive constant-factor approximation algorithms for δ-small instances and
δ-large instances. We will then combine these suitably to provide an algorithm which provides a polytime
non-adaptive constant-factor approximation for the problem in consideration.

• In §2 we define a linear program and show that an optimal solution to it is an upper bound on OPT .
This result holds for sUfpTree-Subtree and is essential to all approximation algorithms in our work.

• In §3 we provide the strategy for combining the approximation algorithms for the δ-small instances
and δ-large instances.

• In §4 we describe approximation algorithms for δ-small instances.

• In §5 we describe approximation algorithms for δ-large instances.

• In §6 we apply the results of §3, §4 and §5 to obtain the results that §1.4 outlines.

4Derandomization leads to the observation that it is enough to consider algorithms which make deterministic choices at
every stage. This observation is however, not useful to our arguments.

12

Chapter 2

A Linear Programming Relaxation

As described in the previous section, the theme of this paper is polytime algorithms, whose expected value
is within a constant of the optimal solution to a linear program which is an upper bound for OPT . Since
in many cases, OPT may itself be significantly smaller than the optimal solution to the linear program, the
algorithms may provide significantly better approximations in practice than the constant factors that they
guarantee.

This section establishes the LP relaxation which is central to all the results in this paper. The LP and its
proof are straightforward extensions of the LP relaxation idea by Dean, Goemans and Vondrak [DGV08].
The relaxation holds for the sUfpTree-Subtree, of which all problems we will consider in this paper are special
cases.

Lemma 2.1 Fix an algorithm A, and let A denote the set of tasks scheduled by it. For edge e ∈ E, recall
that Ae is the set of tasks from A incident on edge e. Then

E[µ(Ae)] ≤ ce + cmin

(As mentioned in §1.5, cmin = 1 for all problem settings that we consider in this paper.)

Proof. Let Ai denote the set of the first i tasks that A schedules. If A stops scheduling tasks after scheduling
the i′ th task then for i > i′ we define Ai = Ai

′
. Recall from §1.5 that Ae denotes the set of tasks in A

incident on e. Note that
E[µ(Ae)] = lim

i→∞
E[µ(Aie)] = sup

i≥0
E[µ(Aie)]

Recall again from §1.5 that S̃t = min{St, cmin}. Since S̃t ≤ cmin for all tasks t and since A cannot schedule
any task which uses edge e after the size of scheduled tasks which use edge e equals or exceeds ce we infer
that ∑

t∈Ai
e

S̃t ≤ ce + cmin

Define Xi
e =

∑
t∈Ai

e
(S̃t − µt). Let us observe that E[Xi+1

e | Xi
e] = Xi

e. If there are no more tasks which A
schedules or if next task to be scheduled does not use edge e then this holds trivially. Otherwise, note that
conditioned on the next task to be scheduled tnext we have E[Xi+1

e | Xi
e, tnext] = Xi

e+E[S̃tnext]−µtnext = Xi
e.

Thus we can remove the conditioning to once again obtain E[Xi+1
e | Xi

e] = Xi
e. We have now shown that the

sequence Xi
e is a martingale and by the martingale property we conclude that E[Xi

e] = E[X0
e] = 0. Linearity

of expectation now gives us the result

E[µ(Aie)] = E
[∑
t∈Ai

e

S̃t
]
≤ ce + cmin

This completes the proof of Lemma 2.1.

13

Masters Thesis A. Karandikar

2.1 The LP relaxations

We now define two LPs that we will use to derive all our approximation results. The first of these, for a
particular vector of parameters, is an upper bound on OPT for a given sUfpTree-Subtree instance, as will be
shown in Theorem 2.2.

For a vector u = (u1, u2, . . . , um) of “capacities”, the following LP is denoted by L(u):

max
∑
t∈T

ṽtxt

subject to
∑
t∈Te

µtxt ≤ ue ∀e ∈ E (L.1)

0 ≤ xt ≤ 1 ∀t ∈ T (L.2)

Let φ(u) be the value of the optimal solution to L(u).

We define a second LP which will be useful in obtaining approximation results for δ-large instances. For the
same set of parameters, this second LP differs from the first only in that it replaces the µts in the constraints
with 1s. Since we know that from the Nba that µt ≤ 1 we know that the constraints of the second LP are
stronger than those of the first. We will go on to show that for δ-large tasks, the LPs are within a O(1/δ)
factor of each other.

For a vector u = (u1, u2, . . . , um) of “capacities”, the following LP is denoted by L′(u):

max
∑
t∈T

ṽtxt

subject to
∑
t∈Te

xt ≤ ue ∀e ∈ E (L′.1)

0 ≤ xt ≤ 1 ∀t ∈ T (L′.2)

Let φ′(u) denote the value of the optimal solution to L′(u).

Theorem 2.2 The expected payoff of every scheduling algorithm for an instance of the sUfpTree-Subtree is
bounded above by φ(c + cmin). 1 Hence

OPT ≤ φ(c + cmin)

Proof. Consider a scheduling algorithm A and let A denote the set of tasks that it schedules. Let x denote
the vector of size n whose tth component xt = Pr[t ∈ A]. From this definition and from Lemma 2.1 we have
that for all edges e ∑

t∈Ae

µtxt = E[µ(Ae)] ≤ ce + cmin

We infer that the xt’s satisfy the set of constraints (L.1). That they satisfy the set of constraints (L.2)
follows trivially from their definition. Hence∑

t∈T
ṽtxt ≤ φ(c + cmin)

Let Gt denote the (random) indicator variable which indicates whether task t is successfully scheduled given
that it was scheduled by A. Observe that Gt = 1 implies that St ≤ bt. Hence

Expected profit due to task t = E[vtet | t ∈ A] Pr[t ∈ A]

= vt Pr[Gt = 1 | t ∈ A] Pr[t ∈ A]

≤ vt Pr[St ≤ bt] Pr[t ∈ A]

= ṽtxt

Hence P(A) ≤
∑
t∈T ṽtxt ≤ φ(c + cmin) and since this is true for any A ∈ A we conclude that OPT ≤

φ(c + cmin).

1Note that for every scalar s, we use s to denote the vector of dimension m having all entries equal to s.

14

Chapter 3

Combining Approximation
Algorithms

The idea of separately tackling and then combining approaches for δ-large and δ-small instances has often
been used in addressing the Ufp and its special cases [CCKR11, CCGK07].

Theorem 3.1 Consider an instance I = (G, c, T) of the sUfpTree-Subtree with optimal payoff OPT specified
by the graph G, edge-capacity vector c and the set of tasks T . Let T1 and T2 form a partition of T and consider
instances I1 = (G, c, T1) and I2 = (G, c, T2) with optimal payoffs OPT1 and OPT2.

If there exists, for instance I1, a polytime non-adaptive algorithm A1, a polytime computable quantity ξ1 and
a constant α1 ≥ 1 such that,

E[P(A1)] ≥ ξ1 ≥
1

α1
OPT1

and there exists, for instance I2, a polytime non-adaptive algorithm A2, a polytime computable quantity ξ2
and a constant α2 ≥ 1 such that,

E[P(A2)] ≥ ξ2 ≥
1

α2
OPT2

then there exists, for instance I a polytime non-adaptive algorithm A such that,

E[P(A)] ≥ 1

α1 + α2
OPT

Proof. Consider an optimal algorithm AOPT for instance I, which has expected payoff OPT . Now consider
an algorithm A′1 for I1 which makes the same decisions as AOPT , instantiating but not scheduling the tasks
in T2 that AOPT would have scheduled. Since the residual capacity of each edge in G at each stage under
A′1 is at least that under AOPT , we infer that the payoff of A′1 is at least the payoff of AOPT due to tasks
in T1. Similarly there exists an algorithm A′2 for I2 whose payoff is at least the payoff of AOPT due to tasks
in T2. We conclude that

OPT ≤ OPT1 +OPT2

≤ α1ξ1 + α2ξ2

max(ξ1, ξ2) ≥ OPT

α1 + α2

The algorithm A does the following: It computes ξ1 and ξ2 in polytime. If ξ1 is the greater of the two it
executes A1 and ignores the tasks in T2, otherwise it executes A2 and ignores the tasks in T1. We conclude
that

E[P(A)] ≥ max(ξ1, ξ2) ≥ 1

α1 + α2
OPT

Finally, we observe that from the definition of A that it is a polytime non-adaptive algorithm. This completes
the proof of the claim.

15

Masters Thesis A. Karandikar

We will use Theorem 3.1 to obtain approximation algorithms for the sRapPath, the sUfpPath under the Nba,
the sRapTree, the sUfpTree under the Nba, the sRapTree-kSpider and the sUfpTree-kSpider under the Nba.
To obtain an algorithm for sRapkTree-Subtree which is a constant-factor approximation to non-adaptive
algorithms, we need a slight variant of Theorem 3.1, stated below. Its proof is nearly identical and is not
stated here so as to avoid repetition.

Theorem 3.2 Consider an instance I = (G, c, T) of the sUfpTree-Subtree with non-adaptive optimal payoff
OPTN specified by the graph G, edge-capacity vector c and the set of tasks T . Let T1 and T2 form a partition
of T and consider instances I1 = (G, c, T1) and I2 = (G, c, T2) with non-adaptive optimal payoffs OPTN 1

and OPTN 2.

If there exists, for instance I1, a polytime non-adaptive algorithm A1, a polytime computable quantity ξ1 and
a constant α1 ≥ 1 such that,

E[P(A1)] ≥ ξ1 ≥
1

α1
OPTN 1

and there exists, for instance I2, a polytime non-adaptive algorithm A2, a polytime computable quantity ξ2
and a constant α2 ≥ 1 such that,

E[P(A2)] ≥ ξ2 ≥
1

α2
OPTN 2

then there exists, for instance I a polytime non-adaptive algorithm A such that,

E[P(A)] ≥ 1

α1 + α2
OPTN

16

Chapter 4

Algorithms for Small Tasks

In this section we give approximation algorithms for δ-small instances of various special cases of the sUfpTree-
Subtree. As defined in §1.7, we say that a task t is δ-small if µt ≤ δbt and an instance is δ-small if all tasks
in it are δ-small.

4.1 Uniform Capacities

When all capacities are equal (and scaled to 1), a task t is δ-small if µt ≤ δ. The following theorem gives
an approximation for δ-small instances of the sRapTree-kSubtree. We will use this result to obtain constant-
factor approximations for the sRapPath and sRapTree-kSpider and to obtain a constant-factor approximation
to non-adaptive algorithms for sRapkTree-Subtree. This theorem is an extension of the randomized rounding
approach for dealing with δ-small instances of the RapPath devised by Calinescu, Chakrabarti, Karloff and
Rabani. [CCKR11]

Theorem 4.1 Consider the sRapTree-kSubtree. For reals q, δ ∈ (0, 1) such that δ < q, there exists a polytime
non-adaptive scheduling algorithm A(δ) which for δ-small instances guarantees

E[P(A(δ))] ≥
(1− q)(1− 1

q δ)

8k
· φ(2) ≥

(1− q)(1− 1
q δ)

8k
·OPT

Proof. We will use randomized rounding on an optimal solution to φ(2) to obtain a constant-factor approxi-
mation. Let (x1, . . . , xn) be a solution to L(2) for which the value of the objective function

∑
t∈T ṽtxt equals

φ(2). The idea is to schedule tasks t with probability proportional to xt, with the constant of proportionality
being sufficiently small to ensure that when each task is scheduled, there is at least a constant probability
that all of its edges will have residual capacity at least a constant multiple of δ.

We define the sequence Y of random indicator variables, one for each task, as follows:

Yt =

{
1 with probablility

(1− 1
q δ)

4k xt

0 otherwise

Algorithm: The algorithm A(δ) proceeds as follows: It considers the tasks in the increasing order of their
indices and attempts to schedule task t if Yt = 1 and the task t is feasible at that point of time. Recall that
the tasks are numbered in increasing order of the depth of the root of the subtree corresponding to them.

We now define another sequence of random indicator variables Z, one for each task. Zt equals 1 if the
algorithm A decides to schedule task t (equivalently Yt = 1) and there is enough space (at least 1/q · µt) on
each edge of Pt at the time of scheduling task t.

Zt =

1 if Yt = 1 and

∑
t′<t
t′∈Te

St′Zt′ ≤ 1− 1
qµt for all e ∈ Pt

0 otherwise

17

Masters Thesis A. Karandikar

We will prove the following claims:

Claim 4.2 Pr[Zt = 1 | Yt = 1] ≥ 1
2

Claim 4.3 Pr[Task t is successfully scheduled | Zt = 1] ≥ 1− q

Assuming that these claims are true, we can complete the proof as follows:

Pr[Task t is successfully scheduled] = Pr[Yt = 1] · Pr[Zt = 1 | Yt = 1]

· Pr[Task t is successfully scheduled | Zt = 1, Yt = 1]

= Pr[Yt = 1] · Pr[Zt = 1 | Yt = 1]

· Pr[Task t is successfully scheduled | Zt = 1]

≥
1− 1

q δ

4k
xt ·

1

2
· (1− q) =

(1− q)(1− 1
q δ)

8k
xt

The expected payoff from task t equals vt Pr[Task t is successfully scheduled]. Using Theorem 2.2, we infer
that

E[P(A)] =
∑
t∈T

vt Pr[Task t is successfully scheduled]

≥
(1− q)(1− 1

q δ)

8k

∑
t∈T

vtxt ≥
(1− q)(1− 1

q δ)

8k

∑
t∈T

ṽtxt

=
(1− q)(1− 1

q δ)

8k
φ(2) ≥

(1− q)(1− 1
q δ)

8k
OPT

This completes the proof of Theorem 4.1.

Let us now prove the Claims 4.2 and 4.3.

Claim 4.2 Pr[Zt = 1 | Yt = 1] ≥ 1
2

Proof. Recall the definition of the r.v.s Yt and Zt in the proof of Theorem 4.1. Zt equals 1 if the algorithm
A decides to schedule task t (equivalently Yt = 1) and there is enough space (at least 1/q · µt) on each edge
of Pt at the time of scheduling task t. The basic idea underlying this proof is that is that since we schedule
tasks in increasing order of depth and since all edges have equal capacities, if there is enough space on the
least-depth edges of Pt (which are at most k in number), then there is enough space on all edges of Pt.

We denote by Y(t, e) an expression which is an upper bound on the used up capacity on edge e at the stage
where decisions on the first t− 1 tasks have been made by A. We also introduce another analogous piece of
notation Ỹ(t, e). For t ∈ T and e ∈ E define

Y(t, e) =
∑
t′<t
t′∈Te

St′Yt′ Ỹ(t, e) =
∑
t′<t
t′∈Te

S̃t′Yt′

If Yt′ = 1 and t′ was feasible at the point in time when the first t′ − 1 decisions were made then St′ is
well-defined since we know that an attempt was made to schedule task t′. We adopt the convention theat
if Yt′ = 1 and t′ was not feasible at the point in time when the first t′ − 1 decisions were made then it was
instantiated even though no attempt was made to insert it. Under this convention the expressions Y(t, e)

and Ỹ(t, e) are always well-defined.

Consider t ∈ T . Let x denote the root of Pt and let f1, . . . , fk′ denote the least-depth edges between x
and each of its k′(≤ k) children in Pt. Since we are processing tasks in top-down order of the roots of
their corresponding subtrees and since all edges have equal capacities, one of f1, . . . , fk′ must have minimum

18

Masters Thesis A. Karandikar

residual capacity among edges in Pt. We conclude that if Zt = 0 and Yt = 1 then there must exist an
i ∈ [1, k′] such that

Y(t, fi) ≥
∑
t′<t
t′∈Tfi

St′Zt′ > 1− 1

q
µt

From the union bound, we have

Pr[Zt = 0 | Yt = 1] ≤
k′∑
i=1

Pr[Y(t, fi) > 1− 1

q
µt]

Consider a particular Y(t, fi) summation. If none of the St′ values which contribute to it are more than one

then we can replace all of them by S̃t′ . If any of them is more than one then the inequality is guaranteed to
be satisfied and again we can replace all St′ values with S̃t′ values. Hence we can replace each Y(t, fi) with

Ỹ(t, fi). We can also replace the truncated means with δ since we are dealing with δ-small tasks.

Pr[Zt = 0 | Yt = 1] ≤
k′∑
i=1

Pr[Ỹ(t, fi) > 1− 1

q
µt] ≤

k′∑
i=1

Pr[Ỹ(t, fi) > 1− 1

q
δ]

The Yt′ variables are independent from the S̃t′ variables. Hence

E[Ỹ(t, fi)] = E[
∑
t′<t
t′∈Tfi

S̃t′Yt′] =
∑
t′<t
t′∈Tfi

E[S̃t′]E[Yt′] =
∑
t′<t
t′∈Tfi

µt′ ·
1− 1

q δ

4k
xt′

=
1− 1

q δ

2k
·
∑
t′<t
t′∈Tfi

µt′xt′

2
≤

1− 1
q δ

2k
·
∑
t′∈Tfi

µt′xt′

2
≤

1− 1
q δ

2k

The last of the inequalities above follows from the set of constraints (L.1). We now apply Markov’s inequality
to infer that

Pr[Ỹ(t, fi) > 1− 1

q
δ] ≤ 1

2k

Consequently

Pr[Zt = 0 | Yt = 1] ≤
k′∑
i=1

Pr[Ỹ(t, fi) > 1− 1

q
δ] ≤ k′

2k
≤ 1

2

Hence

Pr[Zt = 1 | Yt = 1] ≥ 1

2

This completes the proof of Claim 4.2.

Claim 4.3 Pr[Task t is successfully scheduled | Zt = 1] ≥ 1− q

Proof. Consider the point in time when we have made the first t − 1 decisions. Note that Zt = 1 implies
that Yt = 1. It also implies that the used up capacity of every edge in Pt is at most (1− 1/q · µt). The first
consequence of this is that task t is feasible and an attempt will be made by A(δ) to schedule it. The Markov

inequality implies that Pr[S̃t > 1/q · µt] < q or equivalently Pr[S̃t ≤ 1/q · µt] ≥ 1 − q. Since µt ≤ δ < q we

know that S̃t ≤ 1/q · µt < 1⇒ S̃t = St from which we conclude that Pr[St ≤ 1/q · µt] ≥ 1− q. This leads us
to the second more important consequence:

Pr[Task t is successfully scheduled | Zt = 1] ≥ 1− q

This completes the proof of Claim 4.3.

19

Masters Thesis A. Karandikar

4.2 Non-Uniform Capacities

The following theorem gives an approximation for δ-small instances of the sUfpTree-kSpider under the Nba.
The algorithm is an adaptation of the approach for dealing with small tasks for the Ufp on a path under
the Nba devised by Chakrabarti, Chekuri, Gupta and Kumar [CCGK07]. We will use this result to obtain
constant-factor approximations for the sUfpTree-kSpider under the Nba. We can also use it to obtain constant-
factor approximations under the Nba for the sUfpPath and the sUfpTree, since they are special cases of
sUfpTree-kSpider. However we will use better results (described later in this section) for these in order to
attain a better constant-factor.

Theorem 4.4 Consider δ = 0.0005. For δ-small instances of the sUfpTree-kSpider under the Nba there
exists a non-adaptive scheduling algorithm A for which

E[P(A)] ≥ 1

822.37 · k2.15
· φ(c + 1) ≥ 1

822.37 · k2.15
·OPT

Proof. The general structure of this proof is similar the proof of Theorem 4.1. As we did previously, we use
randomized rounding on an optimal solution to φ(c+1) to obtain a constant-factor approximation. However,
in this setting it is harder to show that the probability that a task is successfully scheduled that given that
it is scheduled is at least a constant. This is because the unequal capacities imply that it no longer suffices
to just consider the topmost edges of the k-spider corresponding to each task. The workaround to this, an
adaptation of the idea in [CCGK07], is delineated in the proof of Claim 4.5.

Let (x1, . . . , xn) be a solution to L(c + 1) for which the value of the objective function
∑
t∈T ṽtxt equals

φ(c + 1). As in the proof of Theorem 4.7, the idea is to schedule tasks t with probability proportional to
xt, with the constant of proportionality being sufficiently small to ensure that when each task is scheduled,
there is at least a constant probability that all of its edges will have residual capacity at least a constant
multiple of δbt.

We define a parameter α = 0.032/k2.15 and the sequence Y of random indicator variables, one for each item,
as follows:

Yt =

{
1 with probablility αxt

2

0 otherwise

Algorithm: The algorithm A proceeds as follows: It considers the tasks in the increasing order of their
indices and attempts to schedule task t if Yt = 1 and task t is feasible at that point of time. Recall that in
this case the tasks are numbered in increasing depth of the root of the k-spiders corresponding to them.

We now define another sequence of random indicator variables Z, one for each task. Zt equals 1 if the
algorithm A decides to schedule task t (equivalently Yt = 1) and there is enough space (at least 2 · µt) on
each edge of Pt at the time of scheduling task t.

Zt =

1 if Yt = 1 and

∑
t′<t
t′∈Te

St′Zt′ ≤ ce − 2µt for all e ∈ Pt

0 otherwise

We will prove the following claims:

Claim 4.5 Pr[Zt = 1 | Yt = 1] ≥ 0.154

Claim 4.6 Pr[Task t is successfully scheduled | Zt = 1] ≥ 1
2

20

Masters Thesis A. Karandikar

Assuming that these claims are true, we can complete the proof as follows:

Pr[Task t is successfully scheduled] = Pr[Yt = 1] · Pr[Zt = 1 | Yt = 1]

· Pr[Task t is successfully scheduled | Zt = 1, Yt = 1]

= Pr[Yt = 1] · Pr[Zt = 1 | Yt = 1]

· Pr[Task t is successfully scheduled | Zt = 1]

≥ αxt
2
· 0.154 · 1

2
≥ 0.038α · xt

Thus the expected payoff from task t is at least 0.038α · vtxt. Hence

E[P(A)] =
∑
t∈T

vt Pr[Task t is successfully scheduled]

≥ 0.038α ·
∑
t∈T

vtxt = 0.038α · φ(c + 1)

≥ 0.038α ·OPT ≥ 1

822.37 · k2.15
·OPT

This completes the proof of Theorem 4.4.

Let us now prove Claims 4.5 and 4.6.

Claim 4.5 Pr[Zt = 1 | Yt = 1] ≥ 0.154

Proof. This claim is similar to Claim 4.3. Recall the definition of the r.v.s Yt and Zt in the proof of Theorem
4.4. Zt equals 1 if the algorithm A decides to schedule task t (equivalently Yt = 1) and there is enough space
(at least 2 · µt) on each edge of Pt at the time of scheduling task t. The basic idea underlying this proof is
that is that we can extract a sequence of edges with exponentially decreasing capacities (by a factor of at
least 2) along each downward path of the k-spider Pt, such that if any edge in Pt is violated (i.e. there is not
enough space on it at the stage that task t is scheduled) then half of one of the extracted edges is violated.

We continue using the Y(t, e) notation that we introduced in Claim 4.3. The note in Claim 4.3 about
instantiation by convention is applicable here as well.

Consider t ∈ T . Let x denote the root of the k-spider Pt and let Pt,1 = (f1,1, . . . f1,g1), . . .Pt,k′ =
(fk′,1, . . . fk′,gk′) be the k′(≤ k) edge-disjoint paths going down from x to the leaves of Pt such that
Pt = Pt,1 ∪ . . . Pt,k′ .
Note that if Zt = 0 and Yt = 1 there exists i ∈ [k′], b ∈ [gi] such that

Y(t, fi,b) ≥
∑
t′<t

t′∈Tfi,b

St′Zt′ ≥ cfi,b − 2µt

We will now define a maximal sequence of edges in each Pt,i starting at fi,1 in which the capacities decrease
exponentially. Let us define the sequence ei,1, . . . , ei,hi

as follows:

ei,1 = fi,1

ei,l = arg min
{

depth(e) | e ∈ Pt,i and depth(ei,l−1) < depth(e) and ce <
cei,l−1

2

}
for l ≥ 2

We stop the construction of the sequence when no such e exists. We now define the event ξi,a for i ∈ [k′], a ∈
[hi] as follows:

ξi,a : Y(t, ei,a) >
1

2
cei,a − 2µt

We will now show that Pr[Zt = 0 | Yt = 1] <
∑
i∈[k′]

∑
a∈[hi]

Pr[ξi,a]. We have already noted that if Zt = 0

given that Yt = 1 then we must have Y(t, fi,b) > cfi,b − 2µt for some i ∈ [k′], b ∈ [gi]. Consider some such i, b

21

Masters Thesis A. Karandikar

and let a ∈ [h] be the largest index such that depth(ei,a) ≤ depth(fi,b). Note that a is always well-defined
because ei,1 = fi,1. Observe that Y(t, ei,a) ≥ Y(t, fi,b) since we are processing tasks in increasing order of
depth and since k-spiders which contain fi,1 and fi,b must contain ei,a. If the inequality cfi,b < cei,a/2 was
true then either fi,b or something of a lower depth would have been selected as ei,a+1. We thus conclude
that cfi,b ≥ cei,a/2 and hence that Y(t, ei,a) ≥ Y(t, fi,b) > cfi,b − 2µt ≥ cei,a/2− 2µt. We infer that if Zt = 0
and Yt = 1 then there exists i ∈ [k′], a ∈ [hi] such that the event ξi,a occurs. It follows that

Pr[Zt = 0 | Yt = 1] <
∑
i∈[k′]

∑
a∈[hi]

Pr[ξi,a]

Let us now upper bound the quantity Pr[ξi,a] using the Chernoff bound. We set the parameter β = (1/2−
2δ − α)/α. Observe that

β =
0.5− 0.001− 0.032/k2.15

0.032/k2.15
≥ 0.467

0.032
· k2.15

Let us define β0 = (0.467/0.032) · k2.15, so that β ≥ β0. We use this estimate along with the inequality
µt ≤ δbt ≤ δcei,a to obtain

Pr[ξi,a] = Pr[Y(t, ei,a) >
1

2
cei,a − 2µt] ≤ Pr[Y(t, ei,a) >

1

2
cei,a − 2δcei,a]

= Pr[Y(t, ei,a) > (1 + β)αcei,a] ≤ Pr[Y(t, ei,a) > (1 + β0)αcei,a]

Since (x1, . . . , xn) is a solution to L(c + 1), it follows from the capacity constraints (L.1) of L(c + 1) and
the observation cei,a ≥ cmin = 1 that

E[Y(t, ei,a)] =
∑
t′<t

t′∈Tei,a

E[St′]E[Yt′] =
α

2

∑
t′<t

t′∈Tei,a

µt′xt′

≤ α

2

∑
t′∈Tei,a

µt′xt′ ≤
α

2
(cei,a + 1) ≤ αcei,a

Note that Y(t, ei,a) is the sum of independent random variables over [0, 1] since we are operating under the
Nba and hence we can use the Chernoff bound to obtain that

Pr[ξi,a] ≤ Pr[Y(t, ei,a) > (1 + β0)αcei,a]

≤
(eβ0

(1 + β0)1+β0

)αcei,a ≤ (e
β0

)β0αcei,a

We substitute the values β0 = (0.467/0.032) · k2.15 and α = 0.032/k2.15

Pr[ξi,a] ≤
(0.187

k2.15

)0.467·cei,a ≤ (0.458

k

)cei,a
Finally, we use this result to upper bound Pr[Zt = 0 | Yt = 1]. We know that cei,a > 2cei,a+1

for all a ∈ [h−1]
and that cei,hi

≥ 1. Hence

Pr[Zt = 0 | Yt = 1] ≤
∑
i∈[k′]

hi∑
a=1

Pr[ξi,a] ≤
∑
i∈[k′]

hi∑
a=1

(0.458

k

)cei,a
≤
∑
i∈[k′]

∞∑
j=0

(0.458

k

)2j
≤
∑
i∈[k′]

∞∑
j=0

(0.458

k

)j
≤ k′ ·

(0.458
k

1− 0.458
k

)
≤ k ·

(0.458
k

1− 0.458

)
≤ 0.846

22

Masters Thesis A. Karandikar

It follows that

Pr[Zt = 1 | Yt = 1] ≥ 0.154

This completes the proof of Claim 4.5.

Claim 4.6 Pr[Task t is successfully scheduled | Zt = 1] ≥ 1
2

Proof. Note that Zt = 1 implies that Yt = 1. It also implies that Y(t, e) ≤ ce − 2µt for every edge e ∈ Pt.
The first consequence of this is that task t is feasible and an attempt will be made by A to schedule it. The
Markov inequality implies that Pr[St > 2µt] <

1
2 or equivalently Pr[St ≤ 2µt] ≥ 1

2 . This leads us to the
second more important consequence:

Pr[Task t is successfully scheduled | Zt = 1] ≥ 1

2

This completes the proof of Claim 4.6.

4.2.1 An Improved Constant for the sUfpPath

Note that the sUfpPath is the special case of sUfpTree-1Spider where G is a path rooted at one of its endpoints.
Hence we can obtain a constant-factor approximation for δ-small instances of the sUfpPath using Theorem
4.4. However, in Theorem 4.4 we use several loose upper bounds, including one in which we approximated∑
j≥0 z

2j by
∑
j≥0 z

j . The following theorem gives a better approximation factor to the sUfpPath than the
1/822.37 factor guaranteed by Theorem 4.4. Its proof is nearly identical to Theorem 4.4 and so only the
parts of the calculations which are different are stated here so as to avoid repetition.

Theorem 4.7 Consider δ = 0.0005. For δ-small instances of the sUfpPath under the Nba there exists a
non-adaptive scheduling algorithm A for which

E[P(A)] ≥ 1

310.18
· φ(c + 1) ≥ 1

310.18
·OPT

Proof. As stated above, this proof is nearly identical to that of Theorem 4.4 we will only state here a few
calculations which differ from the proof of Theorem 4.4.

As before we define the constants α = 0.032 and β = (1/2− 2δ − α)/α. We obtain

Pr[ξ1,a] ≤
(eβ

(1 + β)1+β

)αce1,a ≤ (0.4051)ce1,a

This leads to

Pr[Zt = 0 | Yt = 1] ≤
h1∑
a=1

Pr[ξ1,a] ≤
∞∑
j=0

(0.4051)2
j

≤ 0.597

which implies
Pr[Zt = 1 | Yt = 1] ≥ 0.403

Consequently

Pr[Task t is successfully scheduled] ≥ αxt
2
· 0.403 · 1

2
=

0.403α

4
xt

Finally, we obtain

E[P(A)] ≥ 0.403α

4
OPT ≥ 1

310.18
OPT

This completes the proof of Theorem 4.7.

23

Masters Thesis A. Karandikar

4.2.2 An Improved Constant for sUfpTree

The sUfpTree is equivalent to the sUfpTree-2Spider. Like the sUfpPath, we can obtain a constant-factor
approximation for δ-small instances of the sUfpTree using Theorem 4.4. However, the loose upper bounds
used in Theorem 4.4 give us an approximation factor of 1/(822.37 · 22.15) = 1/3649.91. We will state a
theorem here which attains a better approximation factor. As in Theorem 4.7, the proof is nearly identical
to Theorem 4.4 and so only the parts of the calculations which are different are stated here so as to avoid
repetition.

Theorem 4.8 Consider δ = 0.0005. For δ-small instances of the sUfpTree under the Nba there exists a
non-adaptive scheduling algorithm A for which

E[P(A)] ≥ 1

1077.59
· φ(c + 1) ≥ 1

1077.59
·OPT

Proof. Along the lines of Theorem 4.7 we will only state here a few calculations which differ from the proof
of Theorem 4.4.

As before we define the constants α = 0.016 and β = (1/2− 2δ − α)/α. We obtain

Pr[ξi,a] ≤
(eβ

(1 + β)1+β

)αcei,a ≤ (0.2913)cei,a

This leads to

Pr[Zt = 0 | Yt = 1] ≤
2∑
i=1

h1∑
a=1

Pr[ξi,a] ≤
2∑
i=1

∞∑
j=0

(0.2913)2
j

≤ 0.768

which implies
Pr[Zt = 1 | Yt = 1] ≥ 0.232

Consequently

Pr[Task t is successfully scheduled] ≥ αxt
2
· 0.232 · 1

2
=

0.232α

4
xt

Finally, we obtain

E[P(A)] ≥ 0.232α

4
OPT ≥ 1

1077.59
OPT

This completes the proof of Theorem 4.8.

24

Chapter 5

Algorithms for Large Tasks

In this section we will give results for δ-large instances of special cases of the sUfpTree-Subtree. These results
when combined according to §3 with algorithms in §4 will result in polytime non-adaptive constant-factor
approximation algorithms for the various special cases of the sUfpTree-Subtree that we are concerned with.
Recall that a task t is δ-large if µt > δbt.

5.1 Uniform Capacities

When all capacties are equal (and scaled to 1), a task t is δ-large if µt > δ. Lemma 5.1 states that for δ-large
instances of the sRapTree-kSubtree, φ′(1) is within a constant factor of φ(2). Recall that φ(u) and φ′(u) are
the values of the optimal solutions to the linear programs L(u) and L′(u) defined in §2.1.

Lemma 5.1 If δ ∈ (0, 1), then for δ-large instances of the sRapTree-kSubtree,

φ′(1) ≥ δ

2
φ(2)

Proof. Let (x1, . . . , xn) be an optimal solution to L(2). Then note that (x1/2, . . . , xn/2) is a feasible solution
to L(1) under which the value of the objective function is φ(2)/2. Hence

φ(1) ≥ 1

2
φ(2)

Now let (x1, . . . , xn) be an optimal solution to L(1). For each task t define x′t = δxt. For any edge e we have
that

∑
t∈Te

x′t =
∑
t∈Te

δxt <
∑
t∈Te

µtxt ≤ 1. We infer that the solution (x′1, . . . , x
′
n) is a feasible solution

to L′(1). Under this solution the objective function has the value δφ(1). Hence

φ′(1) ≥ δφ(1)

This completes the proof of Lemma 5.1.

Theorem 5.2 obtains a constant-factor approximation for δ-large instances of the sRapPath and will be used
to devise a constant-factor approximation algorithm for the sRapPath.

Theorem 5.2 If δ ∈ (0, 1), then for δ-large instances of the sRapPath, there exists a polytime non-adaptive
scheduling algorithm A(δ) for which

E[P(A(δ))] ≥ φ′(1) ≥ δ

2
·OPT

25

Masters Thesis A. Karandikar

Proof. Consider the constraint matrix corresponding to the linear program L′(1) defined in §2.1. All entries
of this matrix are either 0 or 1. Furthermore, each column t has a contiguous sequence of entries all of which
are 1s and the rest of its entries are 0s. The consecutive-ones property implies the existence of an optimal
solution to L′(1) that is also integral; this is because the constraint matrix is totally-unimodular [Sch03].
Let (x′1, . . . , x

′
n) be such a solution and let A′ = {t ∈ T | x′t = 1}. Observe that since all the x′t values are

integral, the constraints of L′(1) imply that the set A′ is an independent set of the interval graph underlying
the sRapPath instance.

This leads to the following algorithm which we will denote by A: Find a maximum weighted independent
set A of the interval graph formed by the set of intervals Pt = [at, bt) having weight ṽt for each task t. We
can find this in polynomial-time, e.g., using the total-unimodularity result above. Now, schedule the tasks
in A in arbitrary order.

Since the intervals corresponding to the tasks in A are disjoint, each edge in Pt will have residual capacity 1
at the time that task t is scheduled. Thus the probability that task t is successfully scheduled is Pr[St ≤ 1]
and the expected payoff due to task t is vt Pr[St ≤ 1] = ṽt. Hence, using Lemma 5.1 we infer that

E[P(A)] =
∑
t∈A

ṽt ≥
∑
t∈A′

ṽt =
∑
t∈T

ṽtx
′
t = φ′(1) ≥ δ

2
φ(2) ≥ δ

2
OPT

This completes the proof of Theorem 5.2.

Let us now consider the sRapTree-kSpider. We will prove in Theorem 5.6 that the integrality gap of L′(u)
for UfpTree-kSpider instances with unit demands and integral capacities is 2k under the Nba. Using this and
Lemma 5.1, we now prove Theorem 5.3 which gives a constant factor approximation for δ-large instances of
the sRapTree-kSpider under the Nba.

Theorem 5.3 If δ ∈ (0, 1), then for δ-large instances of the sRapTree-kSpider, there exists a polytime non-
adaptive scheduling algorithm A for which

E[P(A)] ≥ 1

2k
· φ′(1) ≥ δ

4k
·OPT

Proof. We will show in Theorem 5.6 that for the sRapTree-kSpider, L′(1) has an integral solution for
which the value of the objective function is at least φ′(1)/(2k). Let (x′1, . . . , x

′
n) be such a solution and

let A = {t ∈ T | x′t = 1}. Observe again, as in the proof of Theorem 5.2, that since all the x′t values are
integral, the constraints of L′(1) imply that the set A is an independent set of the conflict graph underlying
the sRapTree-kSpider instance.

Observe again, as in Theorem 5.6, that since the tasks in A are edge-disjoint the expected payoff due to task
t is vt Pr[St ≤ 1] = ṽt. From Lemma 5.1, we infer that

E[P(A)] =
∑
t∈A

ṽt =
∑
t∈T

ṽtx
′
t =

1

2k
φ′(1) ≥ δ

4k
φ(2) ≥ δ

4k
OPT

This completes the proof of Theorem 5.3.

5.2 Non-Uniform Capacities

Lemma 5.4, which is similar to Lemma 5.1, states that for δ-large instances of the sUfpTree-Subtree under
the Nba, φ′(bcc) is within a constant factor of φ(c + 1). Recall that φ(u) and φ′(u) are the values of the
optimal solutions to the linear programs L(u) and L′(u) defined in §2.1. We will use Lemma ?? to obtain a
constant-factor approximation for δ-large instances of the sUfpPath and the sUfpTree-kSpider under the Nba.

Lemma 5.4 If δ ∈ (0, 1). then for δ-small instances of the sUfpTree-Subtree under the Nba,

φ′(bcc) ≥ δ

3
· φ(c + 1)

26

Masters Thesis A. Karandikar

Proof. Let (x1, . . . , xn) be an optimal solution to L(c + 1). Then note that (x1/3, . . . , xn/3) is a feasible
solution to L(bcc) since for all e ∈ E, ce ≥ 1 and consequently bcec ≥ (ce + 1)/3. The value of the objective
function under this solution is

∑
t∈T ṽtxt/3 = φ(c + 1)/3. Hence

φ(bcc) ≥ 1

3
φ(c + 1)

Note that µt > δbt ≥ δ. It follows from an argument similar to the one used in Lemma 5.1 that

φ′(bcc) ≥ δφ(bcc)

This completes the proof of Lemma 5.4.

Theorem 5.5 gives an approximation for δ-large instances of the sUfpPath under the Nba. Notably, it
guarantees that the payoff (and not its expectation) is within at most a constant-factor of the optimal
payoff.

Theorem 5.5 If δ ∈ (0, 1), then for δ-large instances of the sUfpPath under the Nba there exists a non-
adaptive scheduling algorithm A for which

P(A) ≥ φ′(bcc) ≥ δ

3
·OPT

Proof. Consider the constraint matrix corresponding to the linear program L′(bcc) defined in §2.1. As
in Theorem 5.2 we infer from the consecutive-ones property that this matrix is totally-unimodular and
consequently that it has an optimal solution which is integral [Sch03]. Let (x′1, . . . , x

′
n) be such a solution

and let A = {t ∈ T | x′t = 1}.
Consider the algorithm A which schedules the tasks in A in arbitrary order. Since we are operating under
the Nba and since we scaled the capacities so that cmin = 1, we know that St ≤ 1 . Consequently, we have
that for every edge e ∑

t∈Ae

St =
∑
t∈Te

Stx
′
t ≤

∑
t∈Te

x′t ≤ bcec

Hence, it is guaranteed that every task t scheduled by A will be successfully scheduled and will generate
payoff vt. From Lemma 5.4, we infer that

P (A) =
∑
t∈A

vt =
∑
t∈T

vtx
′
t = φ′(bcc) ≥ δ

3
φ(c + 1) ≥ δ

3
OPT

This completes the proof of Theorem 5.5.

We will now proceed to show an appromixation to δ-large instances of the sUfpTree-kSpider. Towards this
end, Theorem 5.6 establishes a constant-factor approximation algorithm under the Nba for the UfpTree-
kSpider with unit demands and integral capacities. This algorithm is a straightforward generalization of the
approximation algorithm for the UfpTree with unit-demands and integral capacities in the Multicommodity
Flow paper by Chekuri, Mydlarz and Shephard [CMS07]. We note in passing that Theorem 5.6, along
with Theorem 3.1 in the aforementioned paper [CMS07] implies a constant-factor approximation for the
UfpTree-kSpider with arbitrary integral capacities and integral demands under the Nba.

Theorem 5.6 For the sUfpTree-kSpider, then the integrality gap of L′(c) is at most 2k. Furthermore, there
exists a polytime algorithm which can find a 2k-approximate integral solution to L′(c).

Proof. Let x′ = (x′1, . . . , x
′
n) be an optimal solution to L′(c). Let h be an integer such that hx′ is an integral

vector. 1 Consider a set of tasks T̃ which has hx′t replicas ef every task t in T . We will show that there

exists a 2kh-colouring of tasks in T̃ each of which is feasible such that no two edge replicas are coloured the

1For any fixed ε > 0, one could alter x′ such that (i)kx′ is integral, (ii) k is polynomially bounded and (iii)w ·x′ ≥ (1−ε)w ·x

27

Masters Thesis A. Karandikar

same. Assuming that we have shown this, we infer that the sum of the payoffs of these 2kh colourings equals
hφ′(c). Hence, the feasible set of tasks corresponding to at least one of these colourings must have payoff
φ′(c)/(2k). It follows that L′(c) has an integrality gap of at most 2k.

To show the existence of such a 2kh-colouring, we claim the following:

Claim 5.7 Consider a capacitated graph G′ = (V ′, E′) which is a rooted tree and a set of tasks T ′ such that
each task t ∈ T ′ corresponds to the k-spider P ′t in G′. If

(i) | T ′e |≤ hce for all e ∈ E′.

(ii) For each leaf l having edge e connecting it to its parent, the set of tasks T ′e are partitioned into at most
ce bins at l, each having size between [1, 2h).

(iii) The leaves of the k-spiders corresponding to each task are all distinct leaves of G′ and the root has
exactly one child.

then there exists a colouring of T ′ which

(iv) Uses at most 2kh colours.

(v) Ensures that for each leaf, all the tasks in each bin are all coloured differently.

(vi) Ensures that for each colour d and each edge e, | {t ∈ T ′e | colour(t) = d} |≤ ce.

Assuming that Claim 5.7 is true, we now apply it to the set of tasks T̃ on the graph G. Observe that T̃
satisfies (i) since x′ satisfies the capacity constraints (L’.1) of the linear program L′(c) defined in §2.1. We

know that T̃ satisfies (iii) from the assumptions we made in §1.2 without loss of generality. We now need
to partition the tasks at each leaf into bins such that (ii) is satisfied and the colouring guaranteed by Claim
5.7 does not have any two edge replicas colured the same. To ensure the latter, we partition the tasks into
bins such that all replicas of each task t ∈ T fall into the same bin at all endpoints of their corresponding
k-spiders. Consider groups of replicas of tasks incident to leaf l, connected to its parent with edge e. We
consider these groups sequentially in arbitrary order and group them into bins at l, starting a new bin when
the size of the current bin equals or exceeds h. We know from (i) that the | T̃e |≤ hce. Since the size
of each group of replicas is at most h, the binning procedure described above ensures that all bins except
possibly the last one have sizes in the range [h, 2h) and hence that the number of bins at leaf l is at most
ce. We conclude that this binning process satisfies (ii). Furthermore, we infer from (v) that the colouring
guaranteed by Claim 5.7 ensures that all replicas of every task are coloured differently, completing the proof
of Theorem 5.6.

Let us now prove Claim 5.7.

Claim 5.7 Consider a capacitated graph G′ = (V ′, E′) which is a rooted tree and a set of tasks T ′ such that
each task t ∈ T ′ corresponds to the k-spider P ′t in G′. If

(i) | T ′e |≤ hce for all e ∈ E′.

(ii) For each leaf l having edge e connecting it to its parent, the set of tasks T ′e are partitioned into at most
ce bins at l, each having size between [1, 2h).

(iii) The leaves of the k-spiders corresponding to each task are all distinct leaves of G′ and the root has
exactly one child.

then there exists a colouring of T ′ which

(iv) Uses at most 2kh colours.

(v) Ensures that for each leaf, all the tasks in each bin are all coloured differently.

28

Masters Thesis A. Karandikar

(vi) Ensures that for each colour d and each edge e, | {t ∈ T ′e | colour(t) = d} |≤ ce.

Proof. We induct on the number of vertices in the tree. Our base case occurs when the root is the only
non-leaf node in the tree. In this case, since it has exactly one child, there must be a single leaf l in the tree.
This implies that all the k-spiders must be 1-spiders. Let e denote the only edge in the tree. Let B1, . . . , Br
denote the bins at l. Colour the tasks in bin Bi with colours 1, . . . , | Bi |. Clearly, this colouring satisfies
(v). Since the sizes of the bins are less than 2h, we infer that it also satisfies (iv). Finally, since r is less
than or equal to ce, we infer that it satisfies (vi).

Otherwise, consider v, a deepest non-leaf node in the tree. Let us denote its set of its children, all of which
are leaves, by L = {l1, . . . , lz}. We collapse all the children of v and v itself into a single vertex to obtain
a smaller instance G′′ = (V ′′, E′′) and a set of tasks T ′′. Here V ′′ = V ′ \ L. E′′ is the restriction of E′ to
V ′′. Let T ′L denote set of those tasks t ∈ T ′ for which all leaves of P ′t belong to L. Then T ′′ = T ′ \ T ′L. The
vertex v is a leaf in G′′. Let e denote the edge connecting v to its parent. To partition T ′′e into the bins at
v in the smaller instance, we consider the set of sets Be \ T ′L for each bin B at each leaf in L. Let us denote
this set of sets by U . First, we observe that the sets in U are mutually disjoint. This is because every task t
in T ′′e must be such that P ′t has exactly one of its leaves in L, since if P ′t had more than one leaf belonging to
L, then the definition of a k-spider would imply that all of its leaves would necessarily belong to L. Having
made this observation, we create a new bin at v for all sets in U whose sizes are in the range [h, 2h). We
will combine the sets in U having size [1, h) into bins at v. We combine these serially in arbitrary order and
start a new bin at v once the current bin’s size equals or exceeds h. We stop when we run out of bins in U
to combine. This process guarantees that each bin at v, except possibly the last one, has size in the range
[h, 2h). We know from (i) that | T ′′e |=| T ′e |≤ hce. Hence the number of bins at v is at most ce and we infer
that the smaller instance satisfies (ii). It trivially satisfies (i) since T ′′ ⊆ T ′. The smaller instance satisfies
(iii) since we replaced exactly one leaf of each task t ∈ T ′e with v which was not a leaf in G′.

From the inductive hypothesis we know that there exists a 2kh-colouring for the set of tasks T ′′ in the
smaller instance G′′ which satisfies (iv), (v) and (vi). We extend this colouring to T ′, letting the colours
assigned to tasks in T ′′ remain unchanged and appropriately assigning colours to the tasks in T ′L. We know
that for every bin B at every leaf in L the tasks in Be \T ′L were all assigned to the same bin at v, and hence
were coloured differently. We conclude that all tasks in T ′′ which fall in the same bin at some leaf in L are
coloured differently. It remains to colour the tasks in T ′L so that (iv) and (v) are satisfied. Consider tasks in
T ′L in any order. The k-spider Pt for each such task t has at most k leaves. Task t falls into some bin at each
of these leaves. Each such bin has at most 2h− 1 tasks and since t is not yet coloured, the total number of
colours used by all the bins together is at most k(2h − 2) = 2kh − 2k. We colour t with any one of the 2k
unused colours, thereby ensuring that this colouring of tasks in T ′ satisfies (iv) and (v). It follows from the
inductive hypothesis that this colouring of tasks in T ′ satisfies (vi) for all edges except those connecting a
vertex in L to v. Let ei denote the edge between v and li. Each task in T ′li must be in some bin at li. Since
there are at most cei bins at li and the tasks in each bin are coloured differently, we infer that there are at
most cei tasks of any given colour in T ′li . Thus, this coloring satisfies (vi). This completes the induction and
the proof of Claim 5.7.

We now use Theorem 5.6 to obtain a constant-factor approximation algorithm for δ-large instances of the
sUfpTree-kSpider. Note, once again, that Theorem 5.8 guarantees that the payoff (and not its expectation)
is within at most a constant-factor of the optimal payoff.

Theorem 5.8 If δ ∈ (0, 1), then for the sUfpTree-kSpider under the Nba, there exists a polytime non-adaptive
scheduling algorithm A for which

P(A) ≥ 1

2k
· φ′(bcc) ≥ δ

6k
·OPT

Proof. We have shown in Theorem 5.6 that L′(bcc) has an integral solution for which the value of the
objective function is at least φ′(bcc)/(2k). Let (x′1, . . . , x

′
n) be such a solution and let A = {t ∈ T | x′t = 1}.

Consider the algorithm A which schedules the tasks in A in arbitrary order. Since we are operating under
the Nba and since we scaled the capacities so that cmin = 1, we know that St ≤ 1. Consequently, we have

29

Masters Thesis A. Karandikar

that for every edge e ∑
t∈Ae

St =
∑
t∈Te

Stx
′
t ≤

∑
t∈Te

x′t ≤ ce

Hence, it is guaranteed that every task t scheduled by A will be successfully scheduled and will generate
payoff vt. From Lemma 5.4

P (A) =
∑
t∈A

vt =
∑
t∈T

vtx
′
t ≥

1

2k
φ′(bcc) ≥ δ

6k
φ(c + 1) ≥ δ

6k
OPT

This completes the proof of Theorem 5.8. �

5.3 sRapkTree-Subtree: An approximation to non-adaptive algo-
rithms

This section gives a polytime constant-factor approximation to non-adaptive algorithms for the sRapkTree-
Subtree. It is separated from §5.1 even though it deals with uniform capacities because the argument is of a
different nature, providing an approximation not to a linear program but directly to an optimal non-adaptive
algorithm.

Let OPTN denote the expected payoff of an optimal non-adaptive algorithm. We will first sketch a O(mn2k)
algorithm A which finds an optimal integral solution to φ′(1) and then show that the expected payoff of the
algorithm which schedules the tasks selected by A in arbitrary order is within a constant factor of OPTN .

Theorem 5.9 There exists an algorithm for the sRapkTree-Subtree which finds an optimal integral solution
to φ′(1) and runs in time O((m+ n)2k +mn).

Proof. Note that an optimal integral solution to φ′(1) is also an optimal solution to the sRapkTree-Subtree
instance on the same capacitated graph in which each task t has deterministic payoff ṽt. We will denote the
tasks in this deterministic instance by T . Further, for v ∈ V we denote by Tv the set of tasks t in T such
that Pt is completely contained in the subtree rooted at v.

Let dp(v, t) denote the payoff of the optimal solution for the set of tasks Tv where the edge connecting v to its
parent is covered with task t ∈ T ∪ {0}. Here dp(v, 0) denotes the optimal payoff when the edge connecting
u to its parent is unused. The payoff of task t is not included in the dp value.

Denote the set of children of vertex v by Cv and the tasks in Tv \
⋃
c∈Cv

Tc by tv,1 . . . tv,nv
. Note that

{tv,1 . . . tv,nv} is the set of tasks in T having v as root. For v ∈ V , i ∈ [0, nv], C ⊆ Cv, let cdp(v, i, C) denote
the payoff of the optimal solution for those among the first i tasks having v as root which are completely
contained (besides vertex v) in the subtrees rooted at vertices in C and those tasks in T which are completely
contained in the subtrees rooted at vertices in C. Formally cdp(v, i, C) is the optimal solution for the set of
tasks

(⋃
c∈C Tc

)
∪ {tv,i′ | i′ ∈ [i] and Cv ∩ Ptv,i′ ⊆ C}.

We have the recurrences:

cdp(v, 0, C) =
∑
c∈C

dp(c, 0)

cdp(v, i, C) =

cdp(v, i− 1, C) if Cv ∩ Ptv,i

6⊆ C
max

(
cdp(v, i− 1, C),

cdp(v, i− 1, C \ Ptv,i
) + wtv,i

+
∑

c∈Cv∩Ptv,i

dp(c, tv,i)
)

if Cv ∩ Ptv,i
⊆ C

dp(v, t) = cdp(v, nv, Cv \ Pt) +
∑

c∈Cv∩Pt

dp(c, t)

The recurrences above results in a O((m + n)2k + mn) using precomputation of the summations in the
computation of the cdp values. The payoff of the optimal solution is dp(r, 0) where r is the root. We can
find an optimal solution by tracing the dp and cdp values.

30

Masters Thesis A. Karandikar

Lemma 5.10 Consider a rooted k-ary tree G′ = (V ′, E′) and a set of subtrees T ′ of G′. If i ∈ N is such
that | T ′e |≤ i for all e ∈ E then T ′ can be partitioned into at most k(i− 1) + 1 edge-disjoint subsets.

Proof. The proof is constructive. Without loss of generality, assume that the tasks in T ′ are numbered
1, . . . , n in non-decreasing order of the depth in G of their least-depth vertex. In the jth iteration, initialize
the current partition Qj as the empty set. Iterate over the unpartitioned tasks in increasing order of their
indices and add each such task to partition Qj if adding it does not violate the edge-disjointness of Qj . Stop
when all tasks have been partitioned.

If there are more than k(i− 1) + 1 iterations, this means that at least one task t must be unclassified after
the completion of k(i−1)+1 iterations. Task t was not partitioned in the jth iteration because some edge in
Pt was already used by Qj . Let ej be one such edge. If there are multiple candidates, choose any one with
the least depth. Let v be the least-depth vertex of Pt. Since each iteration considers the tasks in increasing
order, ej must be one of the edges from the v to its children. Since G is a k-ary tree there are at most k
such edges. The box principle implies that at least i of the elements in the sequence (ej)j∈[k(i−1)+1] values
must be identical. Since the Qj ’s are mutually disjoint, we infer that i tasks besides task t all pass through
some edge e in Pt. Thus | T ′e |≥ i+ 1, a contradiction. This completes the proof of Lemma 5.10.

Theorem 5.11 Consider δ = 0.6. For δ-large instances of the sRapkTree-Subtree there exists a polytime
non-adaptive scheduling algorithm A for which

E[P(A)] ≥ 1

225k + 26
·OPTN

Proof. Consider a non-adaptive algorithm A′. Let t1, . . . , ts be the sequence of tasks that it schedules,
skipping only past the ones which become infeasible in the process. Let us the denote by T i the set of
the first i tasks scheduled by A′. Formally T i = {ti′ | i′ ∈ [i]}. Consider that the tasks scheduled stack
up over each other at each edge, independently of the other edges. We define the level li of task ti as the
number of tasks stacked up at the most stacked up edge in Pti just after scheduling the task ti. Formally
li = max{| T ie || e ∈ Pti}. Let Li denote the set of tasks at level i. Let us define the random variable Pi(A′)
as the payoff from tasks in Li under the scheduling scheme of A′.

From the linearity of expectation, we have that

E[P(A′)] =
∑
i≥1

E[Pi(A′)]

Note that | Lie |≤ i for all e, since otherwise the last of the tasks in Lie to be scheduled would be at level i+ 1
or more, a contradiction. From Lemma 5.10 it follows that the set of tasks in Li can be partitioned into at
most k(i−1)+1 (denoted hereafter by f(i)) edge-disjoint sets. We know that for all tasks t, µt = E[S̃t] ≥ 0.6.

We know that S̃t ≤ 1. If Pr[S̃t ≤ 1/2] > 0.8, then we would have µt < 0.8 · 12 + 0.2 · 1 = 0.6, a contradiction.

Hence we know that Pr[S̃t ≤ 1/2] ≤ 0.8 for all tasks t. Let us define the constant c = 0.8.

Tasks in L1 are successfully scheduled if and only if their size is at most 1. Hence

E[P1(A′)] =
∑
t∈L1

vt Pr[St ≤ 1] =
∑
t∈L1

ṽt

Let F denote the value of the objective for the optimal integral solution to φ′(1). The set of tasks in L1 is
edge-disjoint since f(1) = 1 and hence

E[P1(A′)] ≤ F

31

Masters Thesis A. Karandikar

For i ≥ 2, a task t in Li is successfully scheduled only if its size is less than or equal to 1 and at least
i − 2 of the i − 1 tasks stacked below it on the most stacked-up edge (let us call it e) in Pt at the time
of its scheduling are of size at most 1/2. This is because if two of these i − 1 tasks have size more than
1/2 then the remnant capacity of e will be 0 and task t will not be successfully scheduled. These two
events are independent. If we use the union bound to upper bound the probability of the second event,
we infer that Pr[Task t is successfully scheduled] ≤ Pr[St ≤ 1] ·

(
i−1
i−2
)
ci−2. Note that we used the fact that

Pr[S̃t ≤ 1/2] = Pr[St ≤ 1/2] ≤ c for all tasks t ∈ T , which was derived above. Hence

E[Pi(A′)] ≤
∑
t∈Li

vt Pr[St ≤ 1] ·
(
i− 1

i− 2

)
ci−2 = (i− 1)ci−2 ·

∑
t∈Li

ṽt

We know that the tasks in Li can be partitioned into at most f(i) edge-disjoint subsets. Hence

E[Pi(A′)] ≤ (i− 1)ci−2 · f(i) · F

We use these bounds to bound the payoff of A′.

E[P(A′)] =
∑
i≥1

E[Pi(A′)]

≤ F +
∑
i≥2

(
(i− 1)ci−2 · f(i) · F

)
= F +

∑
i≥2

(
(i− 1)ci−2 · (k(i− 1) + 1) · F

)
= F + F ·

∑
i≥0

(
(i+ 1)ci

)
+ F · k

∑
i≥0

(
(i+ 1)2ci

)
= F ·

(
1 +

1

(1− c)2
+ k(

1

(1− c)2
+

2c

(1− c)3
)
)

= (225k + 26)F

We have already shown in Theorem 5.9 that we can find an optimal integral solution x′ to φ′(1) in time
O((m + n)2k + mn). Consider the set A = {t ∈ T | x′i = 1}. The algorithm A schedules tasks in A in
arbitrary order. The constrants of L′(1) are such that the tasks in A are edge-disjoint. Hence

E[P(A)] =
∑
t∈A

vt Pr[st ≤ 1] =
∑
t∈A

ṽt =
∑
t∈T

ṽtx
′
t = F

We infer that for every non-adaptive algorithm A′,

E[P(A)] ≥ 1

225k + 26
·E[P(A′)]

Hence

E[P(A)] ≥ 1

225k + 26
·OPTN

This completes the proof of Theorem 5.11.

32

Chapter 6

Approximation Algorithms

In this section, we combine the algorithms in §4 and §5 according to the strategy described in §3 to obtain
non-adaptive polytime approximation algorithms for the various special cases of sUfpTree-Subtree that we
are interested in.

Theorem 6.1 There exists a non-adaptive polytime algorithm A for the sRapPath for which

E[P(A)] ≥ 1

36
·OPT

This implies that the adaptivity gap of the sRapPath is at most 36.

Proof. We know from Theorem 4.1, by choosing q = 1/2, that for δ ∈ (0, 1/2) there exists an algorithm
AS(δ) which for δ-small instances of the sRapPath guarantees an expected payoff of at least φ(2)·(1−2δ)/16 ≥
OPT ·(1−2δ)/16. Theorem 5.2 implies that for δ-large instances of sRapPath, there exists an algorithm AL(δ)
which guarantees an expected payoff of at least φ(2) ·δ/2 ≥ OPT ·δ/2. We infer from Theorem 3.1 that there
exists an algorithmA for sRapPath which guarantees an expected payoff of at least OPT ·1/(16/(1−2δ)+2/δ).
This quantity attains its maximum value in the interval (0, 1/2) at δ = 1/6 which equals OPT · 1/36.

Theorem 6.2 There exists a non-adaptive polytime algorithm A for the sUfpPath under the Nba for which

E[P(A)] ≥ 1

6310.18
·OPT

This implies that the adaptivity gap of the sUfpPath under the Nba is at most 6310.18.

Proof. Consider δ = 0.0005. We know from Theorem 4.7, that there exists an algorithm AS which for δ-
small instances of the sUfpPath under the Nba guarantees an expected payoff of at least φ(c+1) ·1/310.18 ≥
OPT · 1/310.18. Theorem 5.5 implies that for δ-large instances of the sUfpPath under the Nba, there exists
an algorithm AL which guarantees a payoff of at least φ′(1) · δ/3 ≥ OPT · δ/3. We infer from Theorem 3.1
that there exists an algorithm A for the sUfpPath under the Nba which guarantees an expected payoff of at
least OPT · 1/(310.18 + 3/δ) = OPT · 1/6310.18.

33

Masters Thesis A. Karandikar

Theorem 6.3 There exists a non-adaptive polytime algorithm A for the sUfpTree under the Nba for which

E[P(A)] ≥ 1

25077.59
·OPT

This implies that the adaptivity gap of the sUfpTree under the Nba is at most 25077.59.

Proof. Consider δ = 0.0005. We know from Theorem 4.8, that there exists an algorithm AS which for δ-
small instances of the sUfpTree under the Nba guarantees an expected payoff of at least φ(c+1) ·1/1077.59 ≥
OPT · 1/1077.59. Theorem 5.8 implies that for δ-large instances of the sUfpTree under the Nba, there exists
an algorithm AL which guarantees a payoff of at least φ′(1) · δ/12 ≥ OPT · δ/12. We infer from Theorem
3.1 that there exists an algorithm A for the sUfpTree under the Nba which guarantees an expected payoff of
at least OPT · 1/(1077.59 + 12/δ) = OPT · 1/25077.59.

Theorem 6.4 There exists a non-adaptive polytime algorithm A for the sRapTree-kSpider for which

E[P(A)] ≥ 1

48k
·OPT

This implies that the adaptivity gap of the sRapTree-kSpider is at most 48k.

Proof. We know from Theorem 4.1, by choosing q = 1/2, that there exists an algorithm AS(δ) which for
δ-small instances of the sRapTree-kSpider guarantees an expected payoff of at least φ(2) · (1 − 2δ)/16k ≥
OPT · (1 − 2δ)/16k. Theorem 5.3 implies that for δ-large instances of sRapTree-kSpider, there exists an
algorithm AL which guarantees an expected payoff of at least φ′(1) · δ/(4k) ≥ OPT · δ/(4k). We infer from
Theorem 3.1 that there exists an algorithm A for the sRapTree-kSpider which guarantees an expected payoff
of at least OPT · 1/(4k/δ + 16k/(1− 2δ)). At δ = 1/4 this quantity equals OPT · 1/48k.

Corollary 6.5 There exists a non-adaptive polytime algorithm A for the sRapTree for which

E[P(A)] ≥ 1

96
·OPT

This implies that the adaptivity gap of the sRapTree is at most 96.

Theorem 6.6 There exists a non-adaptive polytime algorithm A for the sUfpTree-kSpider under the Nba for
which

E[P(A)] ≥ 1

822.37k2.15 + 12000k
·OPT

This implies that the adaptivity gap of sUfpTree-kSpider under the Nba is at most 822.37k2.15 + 12000k.

Proof. Consider δ = 0.0005. We know from Theorem 4.4 that there exists an algorithm AS which for
δ-small instances of the sUfpTree-kSpider under the Nba guarantees an expected payoff of at least φ(c + 1) ·
1/(822.37k2.15) ≥ OPT · 1/(822.37k2.15). Theorem 5.8 implies that for δ-large instances of the sUfpTree-
kSpider under the Nba, there exists an algorithm AL which guarantees a payoff of at least φ′(c+1) · δ/(6k) ≥
OPT · δ/(6k). We infer from Theorem 3.1 that there exists an algorithm A for the sUfpTree-kSpider under
the Nba which guarantees an expected payoff of at least OPT · 1/(6k/δ+ 822.37k2.15) = OPT · 1/(12000k+
822.37k2.15)

34

Masters Thesis A. Karandikar

Theorem 6.7 There exists a non-adaptive polytime algorithm A for the sRapkTree-Subtree for which

E[P(A)] ≥ 1

257k + 26
·OPTN

Proof. We know from Theorem 4.1, by choosing p = 1/2, that there exists an algorithm AS(δ) which
for δ-small instances of sRapkTree-Subtree guarantees an expected payoff of at least φ(2) · (1 − 2δ)/16k ≥
OPTN ·(1−2δ)/16k. Theorem 5.11 implies that for δ-large instances of the sRapkTree-Subtree, there exists an
algorithm AL which guarantees an expected payoff of at least OPTN ·1/(225k+16). We infer from Theorem
3.1 that there exists an algorithm A for the sRapkTree-Subtree which guarantees an expected payoff of at
least OPT · 1/(225k + 26 + 16k/(1− 2δ)). At δ = 1/4, this quantity equals OPTN · 1/(257k + 26).

Theorem 6.8 There exists a polytime algorithm A for the UfpTree-kSpider with integral demands and inte-
gral capacities under the Nba for which

P(A) ≥ 1

23.10k
·OPT

Proof. As we remarked in §5, Theorem 5.6 along with Theorem 3.1 in the paper on the Multicommodi-
tyFlow problem on Trees by Chekuri, Mydlarz and Shephard [CMS07] guarantees a polytime approximation
algorithm A for which P(A) ≥ 1/2k · 1/11.55 ·OPT = 1/23.10k ·OPT .

35

Chapter 7

Concluding Remarks

The following table provides a summary of the results obtained in §6. Note that we have referred to all the
approximation factors, even those which are polynomial in k as constant factors in the previous sections
since we consider k to be a part of the problem specification.

Problem Nba? Order of Approximation Approximation Factor Approximated Payoff

sRapPath No O(1) 36 Optimal
sRapTree No O(1) 96 Optimal

sRapTree-kSpider No O(k) 48k Optimal
sRapkTree-Subtree No O(k) 257k + 26 Non-adaptive Optimal

sUfpPath Yes O(1) 6310.18 Optimal
sUfpTree Yes O(1) 25077.59 Optimal

sUfpTree-kSpider Yes O(k2.15) 822.37k2.15 + 12000k Optimal
UfpTree-kSpider Yes O(k) 23.10k Optimal

An open question is whether the polytime approximation to non-adaptive algorithms for the sRapkTree-
Subtree obtained by Theorem 6.7 is also an approximation to adaptive algorithms for it. All our algorithms
are offline algorithms. A direction of interest is the proving or disproving of the existence of online algo-
rithms with similar guarantees. Improving the large constant factors and obtaining approximation factors
independent of k for the sRapTree-kSpider, the sRapkTree-Subtree, the sUfpTree-kSpider under the Nba and
the UfpTree-kSpider under the Nba also poses an interesting challenge. It may be possible to extend the argu-
ment for the sRapkTree-Subtree to the sRapTree-kSubtree by modifying the dynamic programming argument
in Theorem 5.9. Obtaining approximations for the the arbitrary capacity variants of the sUfp without the
Nba is a significant challenge with potential scope for plenty of research. Obtaining results for the sUfp on
general graphs, such as the work of Chawla and Roughgarden for the single source sUfp [CR06], is another
challenge with significant research potential.

36

Bibliography

[AGLW14] Aris Anagnostopoulos, Fabrizio Grandoni, Stefano Leonardi, and Andreas Wiese. A mazing 2+ε approxi-
mation for unsplittable flow on a path. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 26–41, 2014.

[BSW11] Paul S. Bonsma, Jens Schulz, and Andreas Wiese. A constant factor approximation algorithm for un-
splittable flow on paths. In IEEE 52nd Annual Symposium on Foundations of Computer Science, FOCS
2011, Palm Springs, CA, USA, October 22-25, 2011, pages 47–56, 2011.

[CCGK07] Amit Chakrabarti, Chandra Chekuri, Anupam Gupta, and Amit Kumar. Approximation algorithms for
the unsplittable flow problem. Algorithmica, 47(1):53–78, 2007.

[CCKR11] Gruia Călinescu, Amit Chakrabarti, Howard J. Karloff, and Yuval Rabani. An improved approximation
algorithm for resource allocation. ACM Transactions on Algorithms, 7(4):48, 2011.

[CEK09] Chandra Chekuri, Alina Ene, and Nitish Korula. Unsplittable flow in paths and trees and column-
restricted packing integer programs. In Approximation, Randomization, and Combinatorial Optimiza-
tion. Algorithms and Techniques, 12th International Workshop, APPROX 2009, and 13th International
Workshop, RANDOM 2009, Berkeley, CA, USA, August 21-23, 2009. Proceedings, pages 42–55, 2009.

[CKS06] Chandra Chekuri, Sanjeev Khanna, and F. Bruce Shepherd. An O(
√
n) approximation and integrality

gap for disjoint paths and unsplittable flow. Theory of Computing, 2(7):137–146, 2006.

[CMS07] Chandra Chekuri, Marcelo Mydlarz, and F. Bruce Shepherd. Multicommodity demand flow in a tree and
packing integer programs. ACM Transactions on Algorithms, 3(3), 2007.

[CR06] Shuchi Chawla and Tim Roughgarden. Single-source stochastic routing. In Proceedings of APPROX,
pages 82–94. 2006.

[Dea05] Brian C. Dean. Approximation Algorithms for Stochastic Scheduling Problems. PhD thesis, MIT, 2005.

[DGV08] Brian C. Dean, Michel X. Goemans, and Jan Vondrák. Approximating the stochastic knapsack problem:
The benefit of adaptivity. Math. Oper. Res., 33(4):945–964, 2008.

[FG15] Zachary Friggstad and Zhihan Gao. On Linear Programming Relaxations for Unsplittable Flow in Trees.
In Naveen Garg, Klaus Jansen, Anup Rao, and José D. P. Rolim, editors, Approximation, Randomization,
and Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM 2015), volume 40 of
Leibniz International Proceedings in Informatics (LIPIcs), pages 265–283, Dagstuhl, Germany, 2015.
Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[GKR+03] Venkatesan Guruswami, Sanjeev Khanna, Rajmohan Rajaraman, F. Bruce Shepherd, and Mihalis Yan-
nakakis. Near-optimal hardness results and approximation algorithms for edge-disjoint paths and related
problems. J. Comput. Syst. Sci., 67(3):473–496, 2003.

[Kle98] Jon M. Kleinberg. Decision algorithms for unsplittable flow and the half-disjoint paths problem. In
Proceedings of the Thirtieth Annual ACM Symposium on the Theory of Computing, Dallas, Texas, USA,
May 23-26, 1998, pages 530–539, 1998.

[KS04] Stavros G. Kolliopoulos and Clifford Stein. Approximating disjoint-path problems using packing integer
programs. Math. Program., 99(1):63–87, 2004.

[KS06] Petr Kolman and Christian Scheideler. Improved bounds for the unsplittable flow problem. J. Algorithms,
61(1):20–44, 2006.

[Sch03] Alexander Schrijver. Combinatorial optimization. Polyhedra and efficiency., volume 24 of Algorithms and
Combinatorics. Springer-Verlag, Berlin, 2003.

[Sri97] Aravind Srinivasan. Improved approximations for edge-disjoint paths, unsplittable flow, and related
routing problems. In 38th Annual Symposium on Foundations of Computer Science, FOCS ’97, Miami
Beach, Florida, USA, October 19-22, 1997, pages 416–425, 1997.

37

	An Introduction to the Stochastic Unsplittable Flow Problem
	Overview
	Problem Specifications
	The No-Bottleneck Assumption (Nba)
	Problem Hierarchy

	Relationship to Previous Work
	Our Contributions
	Additional Specifications
	Notation
	Feasible Tasks

	Adaptivity Gap
	Structure of the Dissertation

	A Linear Programming Relaxation
	The LP relaxations

	Combining Approximation Algorithms
	Algorithms for Small Tasks
	Uniform Capacities
	Non-Uniform Capacities
	An Improved Constant for the sUfpPath
	An Improved Constant for sUfpTree

	Algorithms for Large Tasks
	Uniform Capacities
	Non-Uniform Capacities
	sRapkTree-Subtree: An approximation to non-adaptive algorithms

	Approximation Algorithms
	Concluding Remarks

