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Abstract

Predicting the trajectory of a wide receiver in the game of American football re-

quires prior knowledge about the game (e.g., route trees, defensive formations) and

an accurate model of how the environment will change over time (e.g., opponent

reaction strategies, motion attributes of players). Our aim is to build a computa-

tional model of the wide receiver, which takes into account prior knowledge about

the game and short-term predictive models of how the environment will change over

time. While prior knowledge of the game is readily accessible, it is quite challeng-

ing to build predictive models of how the environment will change over time. We

propose several models for predicting short-term motions of opponent players to

generate dynamic input features for our wide receiver forecasting model. In particu-

lar, we model the wide receiver with a Markov Decision Process (MDP), where the

reward function is a linear combination of static features (prior knowledge about the

game) and dynamic features (short-term prediction of opponent players). Since the

dynamic features change over time, we make recursive calls to an inference proce-

dure over the MDP while updating the dynamic features. We validate our technique

on a video dataset of American football plays. Our results show that more informed

models that accurately predict the motions of the defensive players are better at fore-

casting wide receiver plays.
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Chapter 1

Introduction

1.1 Overview

The task of analyzing human activity has received much attention in the field of computer vision.

Among the many sub-fields dealing with human activities, we address the problem of activity

forecasting which refers to the task of inferring the future actions of people from visual input

[17]. Human activity forecasting is a different task from that of recognition, detection or tracking.

Vision-based activity forecasting aims to predict how an agent will act in the future given a single

image of the world (see Figure 1.1).

Forecasting human activity in dynamic environments is extremely difficult because changes

in the environment must also be hallucinated. Recent work on forecasting activity [17] has been

limited to static environments where the reward function defined over the state space does not

change (i.e., objects in the scene are assumed to be immovable), making it easier to reason about

future action sequences. Predicting the future becomes difficult if the environment keeps chang-

ing over time, since the agent will have to take into account the possible repercussions of his

actions on others. This is especially true in sports scenarios: an offensive play will evolve differ-

ently depending on the response of the defense over time. In this work, we focus on forecasting

human activity in the dynamic domain of sports by iteratively predicting short-term changes in

the environment.

To estimate future changes in the environment (the defense), we utilize two different short-

term dynamics prediction models: (1) a non-linear model exploiting Gaussian process regression

(GPR) and (2) a linear model based on a constant motion constraint on human motion (CM).
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?

Figure 1.1: An illustration of human activity forecasting with the case of a wide receiver in

American football. The goal of this work is to infer the agent’s activity from an image: “Which

path will the wide receiver choose?”

Figure 1.2: Our approach forecasts viable trajectories for the wide receiver in American football.
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To process the output of the short-term dynamics predictors, we develop a sequential inference

algorithm that incrementally forecasts future actions of the wide receiver based on the updated set

of short-term predictions of defensive motion. We stress here that we only hallucinate defensive

motion and we do not use true observations of the defense (the proposed algorithm does not have

access to the future). Our approach enables forecasting in dynamic environment and outperforms

the standard state-of-the-art forecasting model in predicting wide receiver activity in terms of

both qualitative and quantitative measurements. To the best of our knowledge, this is the first

work to predict wide receiver trajectories from images, by taking into account the incremental

dynamics of defensive play.

1.2 Background: American Football

In American football, there are offensive and defensive teams of 11 players each. The offense

attempts to advance toward the end zone by running with or passing the ball while the team

without control of the ball, the defense, aims to stop their advance and take control of the ball for

themselves [26].

The wide receiver is an offensive position that plays a key role in passing plays. In order

to succeed in passing plays, the wide receiver attempts to receive the ball from the quarterback,

while avoiding or outrunning defenders (typically cornerbacks or safeties) along his pass route.

A cornerback is a defensive role that covers the wide receiver and attempts to block any passing

plays. It is vital for the wide receiver to avoid the defense and advance as far as possible. Since

the movement of the wide receiver can be different depending on the defenders, predicting the

wide receiver trajectories should take into account the possible changes to the environment (see

Figure 1.3).

1.3 Static Environments VS. Dynamic Environments

To simplify our problem, we build our proposed prediction model based on an assumption that

the cornerback is the primary defender affecting the wide receiver’s future activity and con-

tributes to the changes in the environment (i.e., generates dynamic features). In our scenario, the

opponent (CB) forms a negative force field which repells the wide receiver.
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WR
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CB

goal goal

Static Environment Dynamic Environment

Figure 1.3: Static Environment VS Dynamic Environment. In static environment, the wide re-

ceiver (WR, cyan dot) will proceed straight to the goal (?) since defender blocking in his path

is set immovable. In dynamic environment, however, the wide receiver makes a detour to avoid

collision with the cornerback (CB, magenta triangle).

1.4 Related Work

Human activities in sports scenes have been analyzed through a variety of computer vision tech-

niques for different purposes. Intille and Bobick [10] proposed a recognition algorithm for iden-

tifying team-based action in the domain of American football. [20, 21] also modeled opponent

players of American football successfully, but they used real-time responses to learn policies in

an artificial game setting. Previous work [13, 15] used motion fields to predict play evolution in

dynamic sports scenes and predicted global centers of focus. Lucey et al. [23] effectively discov-

ered team formation and plays using the role representation. For the purpose of predicting agent

motion, not necessarily in sports, Kim et al. [16] predicted agent motion using a Kalman Filter

based on reciprocal velocity obstacles. Pellegrini et al. [27] used the stochastic linear trajectory

avoidance model to predict pedestrian trajectories. Urtasun et al. [34] proposed a form of Gaus-

sian process dynamical models for learning human motion, and the authors in [14] used Gaussian

process regression to learn motion trajectories, classify the pattern and detect anomalous events.

It is worth noting that we predict wide receiver trajectories from an image, and Walker et al.

[36] also proposed visual prediction from images using mid-level visual patches. In [12, 19, 37],

the future human activities are predicted with different approaches in different domains. Despite

previous work to understand human activities in sports and social scenes, we are more interested

in forecasting activity by modeling the response of the players to predict changes in the scene.
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American football analysis American football is one major domain of sports that has

been of interest and analyzed with various approaches for different purposes for the past years

[2, 5, 10, 22, 24, 32, 33, 35]. Recognition of many aspects of plays during the game of American

football [2, 5, 10, 32, 33] is a long standing challenge. An algorithm for recognizing the team-

based group activity of multiple players were representative in [10]. With a particular focus on

the offensive plays in American football plays, an automatic framework for recognizing team

formations showed a notable performance [2]. A system for recognizing different play types for

a large variety of football videos was also developed recently [5]. The pattern of offensive plays

(e.g., trajectories of players) and the recognition of it [32, 35] is a key to understand the dynamics

of American football and closely relevant to the subject dealt in this work. [20, 21] also modeled

opponent players of American football successfully, which shares a conceptual idea with our

work in common except that it’s in an artificial game setting. Unlike previous work that focused

on recognizing or detecting a specific pattern of players, we address a task of predicting for the

future (e.g., how a player activity will evolve over time).

Inverse reinforcement learning Recent research has also shown that predictive models

can be inferred using inverse reinforcement learning[1, 3, 9, 17, 25, 28, 29]. Several works on

modeling agent behavior has been presented including maximum margin based prediction [31],

and combining prior knowledge and evidence to derive a probability distribution over the reward

functions [29]. Also, based on the principle of maximum entropy [11] probabilistic approaches

to inverse optimal control have also been developed [38, 39, 40]. Our work is most similar to [17,

38] in that we use a MDP based on the maximum entropy inverse reinforcement learning. Our

main focus is, however, to enable forecasting in dynamic environment using predicted features

over future unobserved states.

1.5 Contributions

The contributions of this work are summarized as follows: (1) development of short-term dy-

namics prediction models that accurately predict changes in the defense, (2) use of a dynamic

state reward function that seamlessly integrates multiple short-term forecast distributions dur-

ing inference, and (3) the application of visual activity forecasting for predicting wide receiver

trajectories.
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1.6 Road Map

Based on the intuition and problems explained in Section 1.1, we explain how the modeling for

forecasting player activities is performed in Chapter 2. Specifically, we explain the preliminaries

to represent the activity of a player using Markov decision process and reinforcement learning in

Section 2.1. How static and dynamics of the environments is designed and predicted is described

in Section 2.2 and 2.3 respectively. Then, using the proposed methods to predict the dynamic

features (i.e., defensive motion) we perform sequential inference for predicting wide receiver

trajectories in Chapter 3. We present our comprehensive experimental results in Chapter 4 along

with an application to sports analytics in Section 4.4.
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Chapter 2

Modeling of Forecasting Environments

In this chapter, we explain background theory and how we modeled for the task of forecasting

player activity. Firstly, the player’s activity is modeled using Markov decision process and rein-

forcement learning in Section 2.1. Motivated by the necessity of environments in reinforcement

learning, we design the static environments with a prior knowledge about the game in Section

2.2. More importantly, we describe how we predict the dynamic features and environments using

our regression techniques in Section 2.3.

2.1 Modeling of Player Activity

A Markov decision process (MDP) is a mathematical model for decision making process [4, 8]

in a form of Markov chains defined with state s, action a, transition probability ps′s,a and initial

distribution p(s0) (see Figure 2.1). As a stochastic process, an agent takes an action to move to

another state with the transition probability and accordingly takes reward r(s) for that action. In

our problem domain, the location of an agent (i.e., wide receiver) from a top-down view in world

coordinate represents the state s = [x, y] and the movement to an adjacent state near the current

state is defined as action a for the agent (see Figure 2.2). The goal of MDP is to find a policy

π for the agent, which maximizes the function of cumulative rewards for a sequence of actions.

The reward of a path R(ζ) is the sum of all state rewards r(s) which is the sum of weighted

feature responses F(s) ∈ <k along the path,

R(ζ;θ) =
∑
s∈ζ

r(s;θ) =
∑
s∈ζ

θ ·F(s) (2.1)
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where the path ζ is a sequence of states, θ is a vector of reward weights, and the reward of

a state r(s;θ) represents the immediate reward received at a state s. The feature responses

F(s) =
[
F1(s),F2(s), ...,Fk(s)

]
are a series of different types of features where each feature

response is represented as a 2D feature response map over the football field. In this work, we not

only model static features, but also dynamic features to represent the high cost (e.g., low reward)

region which is attributed to the opponent reaction that changes over time.

st st+1 st+2

at at+1

rt+1 rt+2rt

Figure 2.1: A representation of Markov decision process.

2.2 Modeling of Static Environments

In reinforcement learning, an agent constantly interacts with an environment and receives a re-

ward as a result of its interaction (see Figure 2.3). In this process, an environment that an agent

interacts with is static in general. In other words, an environment represents a state space where a

state reward is defined at a specific state and does not change. In order to model the wide receiver

activity, environments need to be designed, which requires a prior knowledge about the game. In

this work, we utilized five features based on empirical knowledge about the game, described as

the following.

• Linear distance to the end zone: The offense attempts to proceed forward and run to-

wards the goal (i.e., the end zone). This is represented as a linear distance along the

horizontal axis.

8



Figure 2.2: A state representation by a grid map over the football field.

• Formation of defense: The initial formation of the defense affects the strategic plans of the

offense. For example, the wide receiver might attempt to run into empty spaces depending

on the location of cornerback or safeties.

• Route tree: The pattern of the wide receiver activity in passing plays is described with

route trees. We designed a basic route tree containing Flat, Slant, Comeback, Curl, Out,

Dig, Corner, Post, Fade (see Figure 2.4).

• A posteriori trajectory pattern: We made use of a player trajectory dataset [35] and

developed wide receiver pattern feature to the environment (see Figure 2.5).

• Constant: In order to prevent utility functions from being negative, we added a constant

reward to all states in the static environment.

2.3 Prediction of Dynamic Environments

As each episodic play starts to evolve, the wide receiver activity is constantly affected by the de-

fense. Therefore, the movement of defenders must be considered for a system to yield plausible

forecasts for the wide receiver activity. In this work, the movement of defenders is expressed

9



Environment

Agent

actionstatereward

Figure 2.3: Reinforcement learning: learning takes place as a result of interaction between an

agent and the environment.

Fade (9)
Post (8)Corner (7)

Flat (1)
Slant (2)

Curl (4)

Dig (6)Out (5)

Comeback (3)

Ball

Figure 2.4: A basic route tree.

as the changes in environments, which forms dynamic environments for the wide receiver to be

predicted. Since the movement of defenders (i.e., where the defender will move in the future)

is unknown in advance, however, it must be predicted. In order to produce reliable estimates

of the future locations of the defender, two different predictors are presented: non-linear feature

regressor using Gaussian process regression and linear feature regressor using constant motion.
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Figure 2.5: A posteriori trajectory pattern of wide receiver.

2.3.1 Non-linear feature regressor

One approach of predicting opponent reaction is to use a regressor trained in a supervised man-

ner. Instead of assuming a simple parametric model which lacks expressive power, we propose

to use a finer approach, Gaussian process regression (GPR), which gives more flexibility in rep-

resenting data [30] as well as variance estimates that we use for generating dynamic features.

Fully specified by its mean function m(x) and covariance function k(x, x′), the Gaussian pro-

cess generates distribution over functions f as follows,

f ∼ GP(m(x), k(x, x′)) (2.2)

where we used linear model for the mean function m(x) = wx + b, and an isotropic Gaussian

with noise for the covariance function k(x, x′) = σ2
yexp(− (x−x′)2

2l2
) + σ2

nδii′ . The hyperparam-

eters {a, b, σy, σn, l} are obtained by a gradient based numerical optimization routine. Given

some noisy observations, Gaussian process regression not only fits the training examples but

also computes the posterior that yields predictions for unseen test cases,

y∗|y ∼ N (µ∗ + ΣT
∗Σ−1(y− µ),Σ∗∗ − ΣT

∗Σ−1Σ∗) (2.3)

where µ and µ∗ is the training mean and the test mean respectively, and Σ is training set covari-

ance, Σ∗ is training-test set covariance and Σ∗∗ is test set covariance. For the known function

values of the training cases y, the prediction y∗ corresponding to the test inputs x∗ is the predicted

position of the cornerback in our case.

11
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Figure 2.6: Creation of a training example used in non-linear feature regressor. Both wide re-

ceiver (cyan) and cornerback (magenta) are contained in x implicitly to predict the opponent

reaction.

Given the GPR model, we collect the training samples x(i) and labels y(i) as follows. We

constructed x of training examples firstly by concatenating all the relative distance vectors point-

ing from the centroid c0 of the trajectory pair to the control points ci that are uniformly picked

up on the two trajectories of wide receiver and cornerback: ~ci = −→c0ci, where i = 1, .., n. Then

it is rotated to a baseline to make the training example rotation-translation invariant (see Figure

2.6). Since the absolute coordinates and orientations of the trajectories vary for each scenes,

this sort of data calibration is necessary. The training label y is a vectorized future locations

of the cornerback for k next time steps. Having a set of N training examples of the form

{(x(1), y(1)), ..., (x(N), y(N))}, we created the training samples [x, y] to perform GPR. Note that x

of the training examples contains the information of both wide receiver and cornerback implic-

itly (i.e., all control points from both WR and CB) in an attempt to estimate the future opponent

locations and create the dynamic features, based on the interplay between wide receiver and cor-

nerback. Using the covariance of the prediction from the regression, we estimate the area (i.e.,

95% confidence interval) of the opponent reaction as the dynamic feature.
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2.3.2 Linear (constant motion) feature regressor

Since the motion of a player is unlikely to change drastically in a short period of time, one

natural approach of estimating the opponent reaction in the near future is to directly model the

human activity using instantaneous speed. Specifically, the velocity of a player at current state is

determined by averaging over the velocities in the past frames. Then we can estimate the location

of a player in the future using the velocity at current state computed as follows,

lt+k = lt +
k

nf

t−1∑
i=t−nf

Vi (2.4)

where lt is the location of a player (represented in 2D) at time t, lt+k is the location of a player

in k time step later from the current state, nf is the number of past frames, and Vi is the velocity

at frame i. Thus, the k next time step future location of the opponent player is estimated by k

multiple of the average velocity per frame plus the current location. Depending on the number

past frames used, the average velocity will be different as well as the estimated locations of

a player. The estimated locations of a player is then Gaussian filtered to form the area of the

opponent reaction as the dynamic feature.
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Chapter 3

Forecasting in Dynamic Environments

In this chapter, we describe how forecasting is performed in dynamic environments. First, we

explain how we recover the optimal reward weights using maximum entropy inverse optimal

control in Section 3.1. Then, how a varying reward in dynamic environments is incorporated into

a sequential inference procedure is explained in Section 3.2. The specific algorithm is elaborated

in Section 3.3.

3.1 Maximum entropy inverse optimal control

As the reward weights θ is typically unknown, in inverse reinforcement learning (IRL) or inverse

optimal control (IOC) it is attempted to recover the reward weights from demonstrated examples

such that the agent model generates action sequences similar to a set of demonstrated examples

[1]. In maximum entropy inverse reinforcement learning [38], the distribution over a path ζ is

defined as,

p(ζ;θ) =
eR(ζ;θ)

Z(θ)
=
e
∑
s∈ζ θ·F(s)

Z(θ)
(3.1)

where Z(θ) is the normalizing partition function, showing that a path with higher rewards is

exponentially more preferred. With the objective of recovering the optimal reward function

parameters θ∗, we perform an exponentiated gradient descent to maximize the likelihood of the

maximum entropy of the observed data,

θ∗ = argmaxθ L(θ) = argmaxθ

∑
ζ

log p(ζ;θ) (3.2)

15



where L(θ) is the log-likelihood of the observation which is the trajectory of the wide receiver in

our case. The gradient of the log-likelihood is expressed by the difference between the empirical

mean feature counts f̄, which is the sum of the feature counts over all demonstrated trajecto-

ries ζ̄ and the expected mean feature counts f̂θ over the sampled trajectories ζ̂ from forecast

distribution, which is represented by state visitation frequency D(s) as follows,

f̄ =
∑
ζ̄

∑
s∈ζ̄

F(s),

f̂θ =
∑
ζ̂

p(ζs;θ)
∑
s∈ζ̂

F(s) =
∑
s

D(s)F(s).
(3.3)

As the expected feature count matches to the empirical feature count, the learner aims to mimic

the demonstrated behavior [1].

3.2 Sequential inference in dynamic environment

In dynamic environment where dynamic features come from the opponent reaction, the state

reward should change over time as players move during the play. We thus define the state reward

as a linear combination of the static state reward and the dynamic state reward as the following,

rt(s;θ) = r(s;θs) + rt(s;θd) (3.4)

where rt(s;θ) represents the time-varying state reward at time t while θs and θd are the reward

weights of the static features and the dynamic features respectively.

Unlike the standard forecasting approaches in static environments where they performed a

single long-term forecasting [17], we perform multiple short-term predictions sequentially while

updating the dynamic feature. Note in this process that we do not use any real-time observa-

tions to estimate the dynamic features. It is our interest to perform a long sequenced short-term

forecasts based on the predicted dynamic features.

To be more precise, the forecast distribution is expressed as a state visitation frequency D(s)

which is computed by propagating the initial distribution D(s0) using optimal policy. In our

case we have a short-term forecast distribution D̃(t)(s) at each time step t, which changes over

time and gradually produces the final forecast distribution. In this process, we pass the previous

short-term forecast distribution as input to the next inference cycle so that the forecasting pro-

ceeds without discontinuity. It is also necessary to have the predicted short-term trajectories of
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the wide receiver and cornerback, ζ̃WR and ζ̃CB respectively, for the next inference. From the

forecast distribution at each time step, the state with the maximum probability is chosen to be the

predicted location for the wide receiver. The predicted locations altogether form the predicted

short-term trajectory of the wide receiver ζ̃WR. Then combined together with the estimated op-

ponent location, they become the input of the next forecasting cycle. This sequential inference

yields the final forecast distribution which is no shorter in prediction length than the current

state-of-the-art [17], but enables forecasting in dynamic environment.

3.3 Algorithm

Solving for the reward function reduces to the problem of recovering the optimal reward weight

θ∗ that best describes the demonstrated examples. This is achieved during the training phase,

through an alternating two-step algorithm called the backward pass and the forward pass.

In the backward pass, we firstly generate the dynamic feature Ft(s) using ground-truth ob-

servations, and then iteratively compute the state-action log partition function Q(s, a) and the

state log partition function V (s) through a value iteration [4]. The soft value V (s) is the ex-

pected cost to the destination from a state s, and Q(s, a) is the value at one step later after taking

action a from the current state. Then the policy πθ(a|s) is computed by taking the exponentiated

difference between Q(s, a) and V (s).

In the forward pass, we propagate the initial distribution D(s0) using the policy obtained

during the backward pass. The state visitation frequencyD(s), or the forecast distribution, is then

computed by taking the sum of all the propagated distribution at each step. Next, the expected

feature count f̂θ is computed by multiplying D(s) by the feature responses f(s). The two-step

algorithm repeats until the expected feature count f̂θ matches the empirical feature count f̄ using

the exponentiated gradient descent, θ ← θeλ∇L(θ), where the gradient ∇L(θ) is the difference

between f̄θ and f̂θ, and λ is the step size (Eq. 3.2 and 3.3).

During the test phase, we use the optimal reward weight θ∗ learned in the training phase

to compute the reward function, and the backward-forward pair repeats until the wide receiver

reaches to the destination resulting in the final forecast distribution (see Algorithm 1). Unlike

the standard forecasting approach which takes a single long-term inference, our algorithm is

designed to perform multiple short-term forecasts incrementally while updating dynamic features
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Algorithm 1 Sequential Inference in Dynamic Environment

Input: θ∗ (optimal reward weight)

Ouput: D(s): forecast distribution

1: ζ̃WR ← ζWR, ζ̃CB ← ζCB, and D(s0)← 1

2: repeat

3: Backward pass:

4: Estimate Ft(s) with ζ̃WR and ζ̃CB

5: rt(s;θ
∗) = r(s;θ∗s) + θ∗d · Ft(s)

6: for n=N,...,2,1 do

7: V (n)(sgoal)← 0

8: Q(n)(s, a) = rt(s;θ
∗) + Eps′s,a [V

(n)(s′)]

9: V (n−1)(s) = soft maxa Q(n)(s, a)

10: end for

11: πθ(a|s)← eQ(s,a)−V (s)

12: Forward pass:

13: for n = 1, 2, ..., Ns do

14: D(n)(sgoal)← 0

15: D(n+1)(s) =
∑
s′,a

pss′,aπθ(a|s′)D(n)(s′)

16: ζ̃WR ← max(D̃(n+1)(s))

17: end for

18: D(s) =
∑

nD
(n)(s)

19: D(s0)← D(s)

20: f̂θ =
∑

sF(s)D(s)

21: until WR reaches to the goal
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until it reaches to the goal to enable forecasting in dynamic environment.
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Chapter 4

Experimental Results

In this chapter, we describe the experiments conducted throughout this work and show the eval-

uations that show the validity of our approach. Specifically, the pre-processing, dataset, feature

maps and metric used are described in Section 4.1. Then, we evaluate the short-term dynamics

predictors (i.e., regressors used to predict the defensive motion) in Section 4.2. The forecasting

performance is evaluated and presented in Section 4.3 with comparisons to the previous work.

Additionally, we present the result achieved as an application of our approach for sports analytics

in Section 4.4.

4.1 Setup

4.1.1 Dataset

We used the OSU Digital Scout Project’s football dataset which includes the tracking results of

all 22 players with the labels of player positions [7]. Using the registration matrices provided, we

performed a perspective transform to register the players from the top-down view in the football

field [6] as seen in Figure 4.1. The dataset contains 20 videos of passing plays (each video

contains only one passing play). 10 videos are selected based on its lengths (several passing

plays were too short to analyze, e.g., 2 seconds). We performed leave-one-out cross-validation

on the selected 10 videos to prevent overfitting to a specific split of the dataset.
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Trajectories of football playersAmerican football video t

WR
CB

Figure 4.1: Registration of an American football video onto a top-down view ground field. Tra-

jectory of the wide receiver (cyan) and the cornerback (magenta).

4.1.2 Feature maps

We used five types of features represented as a feature map: (1) linear distance to the end zone,

(2) cornerback at the start of the play, (3) initial formation of the defense, (4) wide receiver route

tree, and (5) our proposed short-term dynamics feature. These features are illustrated in Figure

4.2. The linear distance features aims to encode the logic that there is more incentive to press

forward as the WR is closer to the goal line. The wide receiver route tree encodes the prior belief

that the WR is more likely to follow standardized paths. The feature maps are normalized such

that the reward values range from [0,−1].

4.1.3 Metrics and measurements

There are 4 different metrics used to evaluate the forecasting result. First, we used the Kullback-

Leibler divergence (KLD) [18] which measures the difference between two probability distribu-

tions P and Q defined by

DKL(P ||Q) =
∑
i

P (i)
P (i)

Q(i)
(4.1)

where the true data P is the ground-truth trajectory normalized by its length,
∑

s∈ζ P (s) = 1,

and the approximation Q is the forecast distribution. Second, we measured the physical distance

between the trajectories sampled from the learned distribution (100 samples in our experiment)

and the ground-truth trajectory in two ways: one being the Euclidean distance (L2) and the other

being the modified Hausdorff distance (MHD). The MHD allows to compare the best correspond-
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(a) Linear distance (b) Cornerback

(c) Defense (d) Route tree

(e) Dynamic feature (f) Reward map

Figure 4.2: (a)-(e) Five types of feature response maps for an example scene. Each pixel of

the map indicates a possible state s (represented as [x, y] location in the map) that people can

reach to and has a corresponding feature response value F(s). (f) A reward map computed using

feature response maps with corresponding reward weights learned in training phase. Red region

indicates the states with high reward, and the offense proceeds to the right in this scene.
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ing local points within a small temporal window in two trajectories through local time warping.

The computed distance is divided by the length of trajectory to accommodate trajectories of dif-

ferent lengths in different scenes. Furthermore, we measured the likelihood of the demonstrated

trajectory under the obtained policy by computing the negative log-loss (NLL) as follows,

NLL(ζ) = Eπθ(a|s)

[
− log

∏
s∈ζ̄

πθ(a|s)
]
. (4.2)

The distribution divergence (KLD) and the physical distances (L2 and MHD) measure how

much a forecast result is different from the demonstrated example. In case of the negative log-

loss (NLL), we measure how likely the demonstrated example can be, under the optimal policy

learned through the proposed algorithm.

4.2 Evaluation of short-term dynamics predictors

The dynamic features are the predicted (hallucinated) locations of the moving defense. The

feature map has a low reward in locations on the field where there is a defensive player, as

seen in Figure 4.2e. Since the forecasted trajectory of the wide receiver depends critically on

the accurate prediction of the defense, it is important to evaluate the accuracy of the short-term

dynamics predictors (dynamic features). The errors of three different models of the defense

(the cornerback) are plotted in Figure 4.3. The first model is the naive static assumption, where

the wide receiver plans a path based only on the initial location of the cornerback. The second

predictive model CM assumes that the cornerback will maintain constant velocity (measured at

the beginning of the play). The third predictive model GPR uses a Gaussian process regressor to

incrementally predict the position of the cornerback. The GPR-based predictive model performs

the best but has increasing error due to the accumulation of error over time.

We tested our GPR regressor on various settings for optimal parameter selections, including

the length of input sample, the duration of prediction, and the number of control points. Figure

4.4a shows that there is only a nominal change in error with respect to the length of the input

vector (i.e., partially hallucinated trajectory), and we used an input of length 20 for the GPR.

Figure 4.4b shows that the error increases as the duration of prediction increases (i.e., it is harder

to predict farther into the future). Therefore we selected a shorter prediction duration of 5.

Figure 4.4c shows the effect of increasing the number of control points (points sampled from the
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Figure 4.3: Average prediction errors of static and dynamic features. The prediction errors in

dynamic environment are computed by the sequential inference procedures, while the error in

static environment is computed by setting the initial location of cornerback fixed throughout the

play.

hallucinated trajectories of the wide receiver and cornerback). We found that using too many

control points led to overfitting, thus we chose to use only 10 control points.

Additionally, we observed that the errors of dynamic features (i.e., GPR and CM) are similar

in the beginning to the middle of the game, and CM becomes more erroneous after that 4.3. The

moment that GPR and CM start diverging in error is when the wide receiver and cornerback

become the closest during the game as seen in 4.4d (i.e., at frame 20). Note that once the wide

receiver outruns the cornerback, he merely runs straight in the direction to the goal, meaning that

the predictions of the opponent player is more important up until the moment he gets the closest

to the wide receiver rather than in the later part of the play.
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Figure 4.4: (a-c) Average errors of GPR regressor in varying parameters. (d) The distance to

goal for the WR and CB.
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Figure 4.5: Selected forecasting results in comparison. The forecast distributions using the pro-

posed CM (b) and the proposed GPR (c) match much closer to the ground-truth wide receiver

trajectories (red) than the regular forecasting approach (a). Best viewed in electronic form.

4.3 Evaluation of activity forecasting

We evaluated the performance of our feature prediction approach over a standard forecasting

framework [17] where the environment is assumed static. As expected, since we consider the

changes of the environment over time, the performance gain against the standard (static feature

assumption) forecasting is significant (see Figure 4.5 for a qualitative comparison). The forecast

distributions (shaded area) using the proposed methods, CM and GPR, match the ground-truth

trajectories (red) closely, whereas that of the static feature forecasting does not. Considering the

size of the players with respect to the football field, the distribution proximity to the ground-truth

using the proposed approaches are much more robust.

The forecast results are also measured quantitatively using different metrics and the average

over all test scenes is summarized in the Table 4.1. As CM and GPR show little difference in

average prediction errors until the wide receiver outruns the cornerback as seen in Figure 4.3

their forecast results turn out to be analogous to each other. Over all error metrics, the proposed

methods outperform the current state-of-the-art [17], reducing errors by 6%, 21%, 17%, and 24%
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Method KLD L2 MHD NLL

Regular 9.05 9.96 8.44 2.05

Ours (CM) 8.48 7.88 7.07 1.55

Ours (GPR) 8.51 7.87 7.03 1.58

Table 4.1: Average errors of forecasting approaches measured in different metrics. The proposed

methods, CM and GPR, outperform the standard forecasting model [17] in all criteria.

(in order of KLD, L2, MHD and NLL).

4.4 Application to Sports Analytics

One application of activity forecasting in the sports domain is its use for sports analytics. Fore-

casting distributions can be used to convey how easy it is for the opponent team to predict of-

fensive motion. It can also be used to understand how players diverge from typical play motion.

Using the forecasting framework introduced in this paper, it is possible to update the forecasting

distribution while the play is in motion. A benefit of observing real data is that it allow us to

hypothesize about the final goal (destination) of the wide receiver as the play unfolds. This task

is called destination forecasting.

In order to infer the destination of the wide receiver as the play unfolds, we can compute the

posterior distribution over goals using the ratio of partition functions as follows,

p(sd|s0, u1:t) ∝ p(u1:t|sd, s0) · p(sd)

∝ eVu1:t (sd)−V (sd) · p(sd),
(4.3)

where Vu1:t(sd) is the state log partition function with observation u1:t, V (sd) is the state log par-

tition function without any observation, and sd refers to the state at the destination. By switching

the role of the start location to the destination, the value function of the potential destinations can

be computed. As more observations of both the wide receiver and the opponent are revealed, the

changes in the reward yield the progress toward a goal. An incremental visualization of destina-

tion forecasting is shown in Figure 4.7. It can be seen that the forecasting distribution becomes

closer to the true trajectory (red) as more observations are revealed. The average KLD over all

test scenes are plotted in Figure 4.6 as a quantitative measurement. We believe that this type of
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Figure 4.6: Average KLD over all test scenes from destination forecasting. The error decreases

as play comes to the end.

visual prediction can be used for sport analytics.
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Figure 4.7: A destination forecasting result. The forecast distribution becomes closer to the

demonstrated trajectory (red) as more observations are revealed by time. Best viewed in elec-

tronic form.
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Chapter 5

Conclusion

We have presented a novel approach of forecasting an agent’s activity in dynamic environments

by focusing on the task of predicting wide receiver throwing plays in American football. The pre-

diction of possible alterations in visual environment has been neglected and an ill-posed problem,

yet we proposed to embrace it within an optimal control framework via dynamic feature regres-

sion techniques that predict opponent reactions. We demonstrated that a careful design in the

strategic role of an agent, plus modeling the changes of environment in a sequential inference

scheme enables successful play forecasting in dynamic environments.

As future work, we plan to develop a general feature regressors that can be applied to other

player positions over the defense. Also, we are in the process of collecting data in other domain

of field sports such as soccer, in order to further verify the validity of our approach for forecasting

sports plays.
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