
Agentless Cloud-wide Monitoring of Virtual Disk State

Wolfgang Richter
CMU-CS-15-138
October 2015

School of Computer Science
Computer Science Department
Carnegie Mellon University

Pittsburgh, PA

Thesis Committee
Mahadev Satyanarayanan, Chair

David G. Andersen
Gregory R. Ganger

Vasanth Bala (Google)
Canturk Isci (IBM Research)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy
Copyright © 2015 Wolfgang Richter

This research was sponsored by the National Science Foundation under grant numbers CNS-0614679,
CNS-0833882, IIS-1065336, DGE-0750271, and DGE-1252522, the Defense Advanced Research Projects
Agency under grant number FA8721-5-C-0003, Intel ISTC-CC, IBM, and Vodafone. The views and conclu-
sions contained in this document are those of the author and should not be interpreted as representing the
official policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other
entity.

Keywords: Agentless, Agentless Monitoring, Agentless Cloud Monitoring, Cloud, Cloud Com-
puting, Cloud Monitoring, Deduplication, Deduplicated Snapshotting, Distributed Streaming Virtual
Machine Introspection, File Deduplication, File Snapshotting, File Monitoring, Incremental Hash-
ing, Introspection, Optimistic File Snapshotting, Retrospection, Searchable Backup, Snapshotting,
Virtual Disk, Virtual Storage, Virtual Machine, VM, Virtual Machine Introspection, VMI

Abstract
This dissertation proposes a fundamentally different way of monitoring persistent storage. It intro-
duces a monitoring platform based on the modern reality of software defined storage which enables
the decoupling of policy from mechanism. The proposed platform is both agentless—meaning it op-
erates external to and independent of the entities it monitors—and scalable—meaning it is designed
to address many systems at once with a mixture of operating systems and applications. Concretely,
this dissertation focuses on virtualized clouds, but the proposed monitoring platform generalizes
to any form of persistent storage. The core mechanism this dissertation introduces is called Dis-
tributed Streaming Virtual Machine Introspection (DS-VMI), and it leverages two properties of
modern clouds: virtualized servers managed by hypervisors enabling efficient introspection, and
file-level duplication of data within cloud instances. We explore a new class of agentless monitoring
applications via three interfaces with two different consistency models: cloud-inotify (strong
consistency), /cloud (eventual consistency), and /cloud-history (strong consistency). cloud-
inotify is a publish-subscribe interface to cloud-wide file-level updates and it supports event-based
monitoring applications. /cloud is designed to support batch-based and legacy monitoring applica-
tions by providing a file system interface to cloud-wide file-level state. /cloud-history is designed
to support efficient search and management of historic virtual disk state. It leverages new fast-to-
access archival storage systems, and achieves tractable indexing of file-level history via whole-file
deduplication using a novel application of an incremental hashing construction.

I dedicate this work to those that have helped me make my dreams become reality. First, I must thank my
maternal grandparents who supported me academically and my, at times, expensive explorations with

computers and electronics. Gratitude alone is not nearly enough. I will never forget your legacy. Second, I
must thank my paternal grandparents for showing me how people can persevere through the worst of times

the world has ever seen and thrive. Third, for my parents who fostered a home filled with the digital
wonders of the modern world, and my siblings for always being there for me. Fourth, to Ma and Baba for
support and guidance through the fog of stress. Finally, and most importantly, to Debjani Biswas my
companion for life, my wife. Thanks for putting up with my long hours, wacky ideas, and going on

adventures with me around the world.

Acknowledgments
The PhD process is a herculean effort, of which I am only one small part. Along the way I have been
aided by the smartest people at the top of the field of Computer Science. My success is attributable to
the great opportunities presented to me by the academic environment fostered at Carnegie Mellon
University’s School of Computer Science. I have been honored with public support through the
NSF, and must thank the American people for supporting scientific efforts across the country. Of
course, my interactions with many people along the way have shaped me, formed my research focus,
and honed my skills. Here I thank many by name, but there are many more than I could possibly
name. Thank you to everyone that interacted with me during my tenure as a graduate student. We
all truly stand on the shoulders of giants.

Of course, a large part of my success is due to excellent guidance and tutelage under my advi-
sor Mahadev Satyanarayanan. Over the many years, our group administrative assistants including
Tracy Farbacher, Angela Miller, and Chase Klingensmith always made my day better and ensured
academic life was smooth. Deborah Cavlovich is amazing taking away every possible headache that
arose during graduate school. Without her, scheduling classes, staying on top of PhD administrative
overhead, and practically anything else would have been a nightmare. Catherine Copetas is a friend
and helper to all students at CMU, she enriched my life by offering me many opportunities to meet
new and interesting visitors. Karen Lindenfelser and Joan Digney always helped organize events via
the SDI and the PDL. Their efforts made our lives less stressful, and more fun. Of course, conver-
sations and nights well spent with friends led to new ideas and filled my life with fun. Thank you
especially Yoshihisa Abe, Leman Akoglu, Brandon Amos, Sivaraman Balakrishnan, Field Cady, Zhuo
Chen, Jim Cipar, Bhavana Dalvi, Leigh-Ann DeLyser, Ruta Desai, Bin Fan, Kiryong Ha, Wenlu Hu,
Shiva Kaul, Elie Krevat, Anvesh Komuravelli, Jayant Krishnamurthy, Meghana Kshirsagar, Hyeon-
taek Lim, Michelle Mazurek, Brendan Meeder, Iulian Moraru, Richard Peng, Amar Phanishayee, Kai
Ren, Mehdi Samadi, Raja Sambasivan, Vyas Sekar, Vivek Seshadri, Jiri Simsa, Wittawat Tantisiriroj,
Ekaterina Taralova, Alexey Tumanov, Vijay Vasudevan, Kevin Waugh, Gabriel Weisz, Lin Xiao, and
Erik Zawadzki. For welcoming me to CMU, thank you Matthew Delaney, Jason Calaiaro, and
Michael Mackin. Thank you all for the wonderful memories, they will stay with me for life.

Last, but not least, I must thank a lot of my mentors and close research peers. This includes
Glenn Ammons, Hrishikesh Amur, David Andersen, Vasanth Bala, Nilton Bila, Sastry Duri, Canturk
Isci, Michael Kaminsky, Todd Mummert, Padmanabhan Pillai, Darrell Reimer, and Srinivas Seshan.
The research scientists in my group Benjamin Gilbert, Adam Goode, and Jan Harkes have each

vii

viii ACKNOWLEDGMENTS

served as mentors and an inspiration as I developed my systems research skills. Thanks for keeping
me technically honest, humble, and holding me to the highest of standards. Each and every one of
you has a hand in my future career and success.

Contents
Contents ix
List of Figures xii
List of Tables xv
1 Introduction 1

1.1 Problem Statement and Scope . 3
1.1.1 Bridging the Semantic and Temporal Gaps 4
1.1.2 Bounding Overhead . 4
1.1.3 Generality . 4
1.1.4 Storing and Indexing Historic Changes . 5

1.2 Thesis Statement . 5
1.3 Contributions . 6

2 Distributed Streaming Virtual Machine Introspection (DS-VMI) 9
2.1 Overview of the DS-VMI Prototype . 10
2.2 Hypervisor, Kernel, and File System Requirements 12

2.2.1 Hypervisor Virtual Storage Hooks . 12
2.2.2 Guest Kernel Invariants . 14
2.2.3 File System Invariants . 16
2.2.4 Correctness of DS-VMI Relative to Snapshotting 17

2.3 Crawling Initial Virtual Disk State . 18
2.3.1 Impact on Virtual Image Library Operations 20
2.3.2 Crawling a Virtual Disk . 23
2.3.3 An Example Journaling File System: ext4 24
2.3.4 An Example Closed Source File System: NTFS 24
2.3.5 An Example Non-Journaling File System: FAT32 27

2.4 Asynchronous Queuing of VM Writes . 28
2.5 Introspecting Live Virtual Disk Writes . 29
2.6 Live Attachment and Detachment . 30

ix

x CONTENTS

2.6.1 Live Crawling and Attaching . 31
2.6.2 Detaching Introspection . 32

2.7 Integration with Existing Clouds . 32
2.7.1 Designing an API within OpenStack . 33

2.8 Evaluating Overall Overhead . 34
2.8.1 Experimental Setup . 34
2.8.2 DS-VMI Tunables . 35
2.8.3 Light-rate Small Writes: Modified Andrew Benchmark 36
2.8.4 Clustered Large Writes: Installing Software 37
2.8.5 Moderate-rate Small Writes: PostMark . 37
2.8.6 Reducing Memory Footprint: Lazily Loading Metadata 39
2.8.7 Dropping Writes . 40

2.9 Limitations of DS-VMI . 41
2.9.1 Monitoring Limits . 41
2.9.2 Technologies Defeating DS-VMI . 42

3 cloud-inotify: Cloud-wide File Events 45
3.1 cloud-inotify’s Design and Implementation . 46
3.2 Event-driven File System Workloads . 48

3.2.1 Continuous Compliance Monitoring . 48
3.2.2 Real-time Log Analytics . 49

3.3 Sources of Latency . 49
3.4 Evaluation of Latency . 50
3.5 Using cloud-inotify in a Research Cloud . 51

4 /cloud: A Cloud Synthesized File System 53
4.1 Design and Implementation of /cloud . 54
4.2 Implementation with POSIX Read-only Semantics 54

4.2.1 Limitations of Normalization . 56
4.3 Metadata Versioning . 56
4.4 Applications . 57
4.5 Exploring a /cloud Mount . 58

5 /cloud-history: Searchable Backup 61
5.1 Transforming Live State into History . 62

5.1.1 Desired Properties . 62
5.2 Learning from History: a Backup Case Study . 63

5.2.1 Description of Dataset . 63
5.2.2 Effect of Duplication . 67
5.2.3 Analysis of Trends . 67

5.3 Sources of Whole-file Duplication . 69

CONTENTS xi

5.3.1 Impact of Whole-file Deduplication on Indexing Workloads 70
5.4 Architecture of /cloud-history . 72

5.4.1 Consistently and Efficiently Naming Files without Coordination 73
5.5 Storing and Indexing Historic State . 75

5.5.1 Conversion to a File-level Update Stream 76
5.5.2 Inferring File Versions with Optimistic File Snapshotting 76
5.5.3 Garbage Collecting Stale Block Writes . 78
5.5.4 Whole-File Indexing and Deduplication . 79
5.5.5 Block-Level Deduplication and Compression 79

5.6 Reconstructing File Versions . 81
5.6.1 Efficient Object-Level Access . 82
5.6.2 Arbitrary Query Search . 83
5.6.3 Evaluating Inferred File Versions . 83

5.7 Securing Search . 83
6 Future Work 87

6.1 Evaluating the Effect of Staleness in /cloud . 87
6.2 Evaluating the Design Decisions of /cloud-history 88

6.2.1 Sustained Ingest Bandwidth: Single vs Many Logs 89
6.2.2 Measuring Time to Index . 89
6.2.3 Effect of Hashing Choice . 89

6.3 Generating Introspection Code from File System Drivers 89
6.4 Designing an Introspectable File System . 90
6.5 A Storage Introspection Language for Policy Enforcement 91

7 Related Work 93
7.1 Snapshotting Derived History . 94
7.2 Versioning File Systems . 95
7.3 Smart Disks . 96
7.4 Virtual Machine Introspection . 97
7.5 Agent-based File-level Monitoring . 97
7.6 Agentless File-level Monitoring . 98
7.7 Analyzing Backup Systems . 99

7.7.1 Granularity of State . 100
7.7.2 Granularity of Time . 100
7.7.3 Complexity of Supported Queries . 101
7.7.4 Level of Consistency . 101
7.7.5 Level of Scale . 102
7.7.6 Backup Format . 103
7.7.7 Types of Storage Targets . 104

7.7.8 Types of Input Systems . 104
7.7.9 Protection Radius . 105
7.7.10 Modern Backup System Implementations 106

8 Conclusion 109
Bibliography 113

List of Figures
1.1 ClamAV’s [21], a file system scanning agent, memory overhead and aggregated resource

usage (Figures 1.1(a) and 1.1(b) reconstituted from [124]). 7
2.1 Three-stage DS-VMI architecture. 10
2.2 KVM architecture showing userspace, kernel, and physical boundaries. Figure recon-

stituted from [58]. 14
2.3 QEMU duplicates writes over a TCP socket using the Network Block Device protocol as

its application-layer protocol. These writes queue for introspection, and are transferred
for introspection either via an in-memory transport or another TCP hop. 15

2.4 Combining file-level updates recorded as ∆ with the file system at time τ yields a file
system equivalent to the file system at time τ ′. The file systems may be mutating state
on disk when the snapshots occur. 18

2.5 An MBR BSON document example showing details about an entire virtual disk, starting
from the MBR. 19

2.6 View of a raw disk split into partitions by the partition table within an MBR at the start
of the disk. 24

2.7 View of an ext4 partition and critical metadata on-disk structures. The structure in
the data section is a directory entry. 25

2.8 View of a NTFS partition showing the complexity of reading a single file from the Master
File Table. Although all in one location, NTFS has the most complex on-disk layout out
of all the considered file systems. 26

2.9 View of a FAT32 partition showing traversing the root directory and looking up the
start of a file via a singly linked list in the FAT data structure. The FAT portion of the
disk is an array of linked lists defining the clusters assigned to a file byte stream. 27

2.10 Connecting QEMU to DS-VMI. 29
xii

LIST OF FIGURES xiii

2.11 These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the Modified Andrew
benchmark. 36

2.12 These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the SW Install benchmark. 37

2.13 These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the PostMark benchmark. 38

2.14 These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the bonnie++ benchmark. . 38

2.15 Memory usage by Redis for each experiment. Only a single run was examined. 39
2.16 Effect of dropping data writes on DS-VMI efficiency in terms of normalized overhead. 41
3.1 An example monitor in Python. 47
3.2 Latency CDFs demonstrating feasibility of near-real-time event-driven agentless mon-

itoring using cloud-inotify. 50
3.3 Writes are introspected by DS-VMI. DS-VMI was activated by a cloud user using a

standard OpenStack command-line utility extended to support our DS-VMI cloud API.
Emitted file-level updates are sent to the user via a front-end WebSockets [38] proxy
over the Internet to a web browser. 51

3.4 Textual display of file-level updates affecting /var/log/syslog within an unmodified
executing Ubuntu 14.04 Server. Red text denotes the affected byte range, blue text is
the file contents being written, and the bottom black text is a metadata update. 52

4.1 Normalized metadata kept via DS-VMI for /cloud and other purposes. There is a list
of blocks associated with the file not shown. And, in the case of directories, also a list
of files within the directory. 55

4.2 /cloud implementation . 57
4.3 Command-line interaction with /cloud. In this demonstration, we mount an ext4 file

system using the normal kernel module via the mount command, and /cloud via the
gray-fs command. We then use normal, legacy tools such as ls, find, and diff to
show that /cloud has the same coverage as the Linux kernel’s ext4 module for this
file system. The file system being introspected was an ext4 file system residing within
a 20 GiB virtual disk of an Ubuntu 12.04 Server 64-bit guest. 58

5.1 Deduplicating at a file-level leads to a 9.1x reduction in the number of files to index,
and a 7.2x reduction in storage requirements (NC State, VCL Windows-based images).
The raw bytes and files appear to grow linearly. The additional unique bytes and files
appear to grow sub-linearly, and possibly logarithmically. Linear fits are shown as the
red lines. 65

xiv LIST OF FIGURES

5.2 Deduplicating at a file-level is even more effective when applied to backups of systems.
The unique file curve flat lines as more and more snapshots were taken of file systems
by Deltaic. Linear fits are shown as the red lines. 66

5.3 Effect of file-level deduplication on virtual disks in a virtual disk library. 69
5.4 File-level deduplication not only saves space, it also saves immense amounts of com-

putation. On average, the three workloads shown above experienced a 5x speedup by
using just an application-agnostic unique file index. These experiments were carried
out on a single node, on the NC State VCL Cloud image dataset. 71

5.5 An overview of /cloud-history’s architecture capturing writes via the hypervisor
and translating them into a file-level update stream. The final stage stores the file-
level update stream into per-file logs for indexing, garbage collecting, and application
of retention policies. 72

5.6 Running time of operations for three different hashing schemes. N is the number of
blocks in a file, N ′ is the number of updated blocks in a batch update, f the fanout
of the tree, and P is the number of processors. H stands for hashing, MT for Merkle
Tree, SLMT for single-level Merkle Tree, and IH for Incremental Hashing [12]. For
the updates, S stands for Sequential, for random, and B for batch. 74

5.7 The incremental hashing construction. 75
5.8 On the left-hand side are system calls occurring in userspace within a guest. These

system calls cause block writes to a virtual disk. The corresponding block writes are
introspected resulting in the high level events shown on the right-hand side of this figure. 76

5.9 Files are optimistically snapshotted after waiting time∆timeout. MD stands for metadata,
and the first write to position 4096 is gray because the second write supersedes it,
representing an opportunity for garbage collection. 77

5.10 Garbage collection is especially important for append-only style workloads, such as
those for log files. Here we see some guest process continuously writes lines into a
log file. Blocks are written many times with redundant log entry data. Only the latest
updates matter when a version is created. 78

5.11 This figure shows two VMs (notionally, they could be the same VM) writing the same
file. Their metadata which includes timestamps probably differs, but the data of the files
is identical. Block-level deduplication is necessary to reclaim this wasted storage space.
Also note that the metadata updates are often small and highly compressible. 80

5.12 Shown are the effects of applying compression (LZ4) and block-level deduplication on
the NC State dataset via ZFS. 80

5.13 /cloud-history exposes versions of files via a simple synthetic FUSE file system which
gives legacy indexers access to historic state without being rewritten. This figure shows
that reads may come from the original file, or the file-level update stream log. Duplicate
file versions are symlinked to a canonical version. 81

5.14 This shows the final version format after garbage collection, hashing, and timeout poli-
cies are applied. Note that metadata updates are coalesced in the header, and data
updates are coalesced into a distinct set of writes to each block of a file. Each part of a
version takes up a single on-disk block. 82

5.15 Reading files means reconstructing state from potentially multiple historic versions. . . 82
5.16 The arrival times of writes to a file without using sync() from within the guest OS.

With an aggressively synchronizing guest OS, only 50% of the file versions matched.
This demonstrates the worst case, that versions might not match always. Note that
the history was compressible, for both traces we collected between 42 - 47 MiB which
compressed down into 900 - 700 KiB. 84

List of Tables
2.1 Metadata size uncompressed, compressed, crawl time and load time into Redis (20

runs) as a function of used virtual disk space. Used is used disk space reported by df,
Raw is the uncompressed metadata, gzip is compressed metadata with gzip --best,
Crawl is the time taken to index a disk, and Load is the time to load metadata into Redis. 21

2.2 Metadata size uncompressed, compressed and load time into Redis (20 runs) as a
function of number of inodes. The headers are the same as in Table 2.1 except the first
column is a unitless count of live inodes in the file system rather than used disk space. 22

2.3 These are the REST API calls extending OpenStack for Introspection. 34
2.4 List of DS-VMI runtime tunables which affect performance. 36
2.5 Peak memory usage of the Async Queuer, inference engine, and Redis combined. 39
2.6 Lazy loading optimization effect on memory. 40
3.1 Examples of filter specifications, demonstrating the use of pattern matching. The

cloud-inotify channel implementation supports glob-style pattern matching. 46
4.1 The customized virtual file system calls required to implement /cloud. /cloud returns

EROFS on any attempt to open a file for writing. 56
5.1 This table shows the details of our study of a research backup system used in production

support of a research group at CMU. Parenthetical values are standard deviations, unless
otherwise noted. 64

xv

xvi LIST OF TABLES

5.2 R Source Tree Similarity . 68
5.3 OpenMPI source tree similarity. 68
5.4 Linux Kernel Source Tree Similarity . 69
7.1 Table comparing modern backup systems. In the scale column, I stands for Ingest

Bandwidth, N for Number of Objects, and S for Space Requirements. In the PR column,
C stands for Corruption, and FT stands for Fault Tolerant. 106

Chapter One
Introduction
The advent of cloud computing coupled with the increasing trend of accessing storage over the
network provides us with an opportunity to rethink how we monitor persistent storage. Tradition-
ally, storage devices were tightly coupled with the operating system. The operating system acted as
a facilitator of interaction with hardware for userspace applications. This was done primarily for
protection and performance. The kernel interacted with storage devices via a driver and enforced
constraints which userspace had to obey. This enabled the creation of crash-consistent file systems
and robust storage of data culminating with advanced file systems like ZFS [133]. Kernel medi-
ated direct memory access ensured fast reads and writes to persistent storage. Though the storage
landscape is entirely different today, we still work with monolithic systems which believe they are
tightly coupled to their underlying storage. Especially in virtualized clouds, the virtual machine
abstraction, by design, prevents deep understanding of where resources come from.

But this tight coupling is an illusion. Within modern clouds there is either a layer of virtualization
between a guest kernel and its storage, or the storage is served over the network. In many cases,
both a layer of virtualization and a network hop exist between an executing guest and its storage.
This reality pervades the enterprise in the form of network attached storage arrays. In the home,
media servers are being used to save and serve large files such as movies via network file systems.
Thus, it is no longer true that protection and performance are guaranteed by a monolithic kernel.
The new reality decouples storage from its executing environment. However, higher performance,
better resilience, and stronger protection are achievable if we rethink storage with a modern lens.

Higher performance and better resilience to data loss induced failures are out of the scope of
this dissertation. But it is trivial to imagine why they are achievable with modern cloud computing.
Clouds horizontally scale services such as storage into large distributed systems. This means indi-
vidual cloud instances writing into cloud storage can obtain bandwidth far exceeding the bandwidth
of a single drive, or even that of a RAID array. By quickly replicating data across cloud datacenters,
even large-scale disasters become possible to survive—impossible with the more monolithic, tightly
coupled version of storage. Stronger protection is within scope, and the basis upon which a lot of
this dissertation was completed. The decoupling of layers in the storage realm enables separation

1

2 CHAPTER 1. INTRODUCTION

of mechanism, policy, and enforcement. This reflects lessons learned very early on in the network-
ing and OS communities, but never truly applied to storage which traditionally remained tightly
coupled from storage device to kernel driver and file system.

Early on in networking the value of separating mechanism and policy, along with a need for
gatekeeping network packets, was clearly recognized. Mogul et al. describe implementing user-
level packet filtering and inspection [79, 80]. Their design separated the mechanism—kernel-level
hooks—of capturing packets, and the implementation—unprivileged, userspace applications—of pol-
icy. The importance of separating policy and mechanism was first described in the context of the
Hydra research project by Levin et al. [63]. This early work led to the development of deep packet
inspecting (DPI) firewalls in networking. DPI firewalls have three attractive properties. First, they
are decoupled from the hosts that they monitor except for a network connection. Thus, they have
the luxury of being immune to individual host misconfiguration or compromise. In other words, the
firewall gatekeepers continue operating even with multiple misbehaving network hosts. In addition,
they can not be turned off by the hosts, and the hosts can not affect the policy specified to the
firewall. Importantly, these properties hold for both hosts within the firewall’s protection boundary,
and also for external hosts.

This dissertation explores adding functionality similar to deep packet inspection into the storage
layer of cloud infrastructure. Although we use the word cloud, this rethinking of monitoring storage
applies in general to storage whether or not it is virtualized. Access over the network technically
makes this task easier to accomplish. In this dissertation, much like network-based firewalls, we
propose implementing deep file-level monitoring via interpretation of storage writes. Whether in
the absence of, or in addition to, a network hop, hypervisors act as a mediator between guest and
storage in clouds. This unique position makes them the best location to implement our mechanism.

By placing file-level monitoring within a layer between kernel and storage we gain three prop-
erties which are impossible without such decoupling. First, the monitoring becomes immune to
guest misconfiguration or compromise. Should a virus infect a guest, it can not hide its tracks if it
touches persistent storage. When file-level monitoring is coupled into a monolithic system, viruses
can hide. Rootkits which compromise the kernel have the capability of masking their presence
entirely. Should an operator misconfigure a guest, file-level monitoring can fail. For example, the
wrong permissions set on a log folder causes log analytics processes to fail and not perform their
job. Second, guests become protected from bugs affecting file-level monitoring agents, and mali-
cious monitors. No software is bug free, thus we must plan for bugs within file-level monitors—even
those designed to protect such as virus scanners [83, 84]. The effect of such bugs is devastating
because virus scanners often have root access to perform their job of finding viruses. Should a
file-level monitoring process actually have malicious designs on the host it monitors, the decoupling
of policy—what a monitoring agent has access to at a file-level—and mechanism—the method of
capturing file-level state—provides protection. In a monolithic system, one has no choice but to
run monitoring agents at the privilege level they request with direct access to resources. Third,
file-level monitoring implementations become easier to scale across different operating systems
and applications. They are easier to implement because they do not have to operate within the

1.1. PROBLEM STATEMENT AND SCOPE 3

same environment as the monolithic system producing the writes. The file-level monitoring occurs
decoupled from the environment generating the writes.

Thus, we believe the time to rethink storage is now upon us. We also believe that the strong
guarantees along with the easier implementation of file-level monitoring make decoupling policy
and mechanism paramount for scaling management of storage in the future. Monitoring subsumes
a large portion of the required upkeep of individual systems, and is a key problem facing adminis-
trators of any computing system [69]. Examples of monitoring include routine virus scanning [21],
intrusion detection [118], log file analysis [112], and configuration auditing [119]. In the mono-
lithic model, state-of-the-art monitoring is accomplished with generally third-party agents [51, 60]
embedded within the system they monitor.

Embedding a potentially untrusted, third-party agent within the boundary of an enterprise in-
creases its attack surface—the agent may be hijacked by an intruder and used maliciously [83, 84].
In addition, agents consume valuable resources, and are unpredictable in their resource consump-
tion [60]. An agent using excessive memory causes memory pressure and potentially paging to disk,
slowing down or even halting critical services. Finally, if a system is compromised, the agent may be
tampered with or deliberately fed false information. In the case of a compromise or misconfiguration
that is initially undetected, agents can not be trusted at all.

1.1 Problem Statement and Scope
This dissertation rethinks monitoring persistent state in the modern era of virtualized cloud com-
puting, and network attached storage. Based off of the observation that storage is accessed either
via a hypervisor or the network, this dissertation proposes deep inspection of disk writes for mon-
itoring purposes. Similar to deep packet inspecting firewalls, this dissertation proposes decoupling
mechanism and policy in the storage context. It seeks to answer the primary question of how do we
securely monitor file-level state as generally as possible? In this context, security means guaranteed en-
forcement of policy both ways between a monitored system and the system performing monitoring.
In other words, monitored systems should never fear the monitoring agents, and monitoring agents
should never fear the systems they monitor. Generalizable in this context means generalizing across
the combinatorial space of operating system types and applications.

This dissertation describes a mechanism and interfaces on top of that mechanism which enables
separation of capturing state and the logic for monitoring that state. Thus, monitoring both online
and offline persistent state is within the scope of this dissertation. Enforcement of policies is
assumed to be a solved problem within cloud computing. Network quarantining and virtual machine
suspension are both pre-existing techniques for isolating and stopping misbehaving cloud instances.
Thus, enforcement is outside of the scope of this dissertation.

Online persistent state refers to live file systems as they mutate in real-time within virtual
disks. Offline persistent state refers to backups or snapshots of file systems. As a guiding principle
throughout this dissertation, mechanism and interface designs must operate without the explicit

4 CHAPTER 1. INTRODUCTION

support of a monitored system. For the remainder of this dissertation, we consider the terms
monitored system, guest, cloud instance, and virtual machine to be synonymous and interchangeable.

There are four key challenges enumerated below that this dissertation addresses in answering
this fundamental question.

1.1.1 Bridging the Semantic and Temporal Gaps
The normal path for an application system call destined to write to a disk moves from a guest’s
userspace, to the guest’s kernel, and then out to the hypervisor modifying the virtual disk. This path
is leveraged by agents as they can hook system calls, register for disk state change notification, trace
disk operations, and generally use the guest’s kernel to directly accomplish their job. An agentless
solution, by definition, does not rely on any guest support whatsoever. Even relying on guest
hints makes an agentless method vulnerable to guest misconfiguration or compromise. Agentless
methods receive black box operations at the lowest abstraction layer, and must reconstruct or infer
higher-level meaning.

The challenge is to bridge this semantic gap between black box disk-level operations and their
white box file-level interpretation with significantly less context than the guest kernel. In addition,
layers often reorder operations for better throughput or latency. File systems generally update data
first, metadata second. Thus, there is an additional temporal gap–the time between when operations
flush to disk, and when they have semantic meaning within the guest file system. Atomic operations,
for example, wait until their instructions finish before persisting that their operation finished. The
temporal gap is the time between the start of the atomic operation, and the persistence of their
completeness.

1.1.2 Bounding Overhead
Monitoring clearly comes at a cost to the system being monitored. We monitor systems for vari-
ous reasons, but if the monitoring cost exceeds the value of the benefit derived from monitoring,
then monitoring does not make sense. Thus, there must be boundable overhead for any monitoring
solution—agent or agentless. Should monitoring require upgrading the hardware capabilities of all
hosts in a production cloud, for example increasing their memory, this cost will more than likely
exceed the value of monitoring. In addition, a key metric in virtualized cloud environments is con-
solidation. Monitoring overheads directly hurt the consolidation factor of a cloud environment by
using resources which could have otherwise been devoted to valuable production workloads. In the
extreme case, boundable overhead means the capability of completely eliminating overhead. This
implies the capability of turning on and off monitoring at will.

1.1.3 Generality
Monolithic design places every component inside the blackbox boundary of the virtual machine.
This is attractive because all of the configuration state, necessary libraries, and versions of key

1.2. THESIS STATEMENT 5

system components are all kept together for a specific application. Indeed, this model has proven
wildly successful with the use of virtual appliances for deploying software. However, this means
that monitoring agents must have implementations and logic for each operating environment they
support. The interfaces to an agentless monitoring platform should not needlessly tie themselves to
an OS family or specific environment. Agentless monitoring should provide a single set of interfaces
to persistent state that not only scales in the number of monitored guests, but also in the types of
file systems and OS’s it can monitor. In other words, agentless monitoring must generalize across
OS’s and applications.

1.1.4 Storing and Indexing Historic Changes
As promised, this dissertation handles not only online persistent state, but also offline persistent
state. Due to modern trends in backup architectures providing low-latency, high-bandwidth access
to data [81], we believe a critical feature of modern backup should be search—especially with tunable
indexes. Backup subsumes so many different systems that a single indexing scheme seems unlikely
to fit all present and future search needs. Thus, a key feature of modern backup should be optimized
indexing over stored objects. In this dissertation we rethink storage formats for file-level backups
given the existence of our storage monitoring mechanism. In addition, we explore techniques for
reducing the time to index in an application-agnostic manner.

1.2 Thesis Statement
This dissertation claims that agentless monitoring of disk state provides stronger security and correctness
guarantees than traditional agent-based approaches, is achievable with modest modifications to modern
operating environments, and enables generalizability across the combinatorial space of operating systems,
libraries, applications, and their versions. The cost of realizing agentless monitoring of disk state lies
directly with the effort needed to deeply interpret virtual disk write operations—specifically the on-
disk layout and data structures of file systems. That is to say, it is a capital intensive endeavor, but
one that pays off over time. The upfront costs of writing file-system-specific introspection logic are
amortized over a long time period. This is because file systems rarely change their on-disk layouts.

The vision of this thesis for cloud computing is that by slightly weakening the strong isolation
between virtual machines and their underlying cloud infrastructure, we can provide a more secure
environment by taking advantage of the tension between cloud customer, cloud operator, and mon-
itoring vendors. Cloud customers wish to bound the information that monitoring vendors access.
Monitoring vendors wish to maintain correct configurations and views of monitored state. Cloud
operators wish to increase revenue by offering valuable services to their customers. Thus, the cloud
operator is perfectly poised as a mediator guarding paying customers from monitoring vendors, and
providing information independent of customer misconfiguration or compromise to the monitoring
vendor. Monitoring vendors benefit with greater name recognition via the cloud marketplace, and
interfaces which ease their generalization across cloud customer operating environments.

6 CHAPTER 1. INTRODUCTION

The research questions this dissertation addresses are: (1) What is the minimal set of extensions
to modern environments needed for agentless persistent state monitoring? (2) How does agentless
monitoring of persistent state change the implementation of file-level monitoring? (3) How does
agentless monitoring of persistent state change the implementation of snapshotting? (4) How can
backup systems minimize the time to index all stored objects and their versions?

1.3 Contributions
This dissertation challenges the status quo monolithic system design which embeds monitoring
agents into the systems they monitor, with an agentless vision separating the mechanism of mon-
itoring from the policies which act upon monitored information. In so doing, this dissertation
disrupts a billion dollar industry [40]. We show that the long path towards an agentless world, with
all of its benefits, is in fact tractable. It is feasible with most modern hypervisors to pursue today,
in some cases with minimal disruption to existing deployments and operations. Should the mech-
anism described in this dissertation become widely available, switching to agentless monitoring is
very difficult to argue against.

Agents can not fundamentally offer the guarantees of an agentless approach. No agent-based
solution can guarantee isolation from monitored system misconfiguration or compromise. By im-
plementing policy with mechanism inside the monitored system, corruption of either can directly
affect the other. No agent-based solution can guarantee that its bugs will not affect the monitored
system. In fact, guaranteeing bug freeness is undecidable without constraints. No agent-based so-
lution easily generalizes across operating environments. Because of the deep coupling of agent and
the monitored system, agents must needlessly cater to their environment rather than just their task.
Thus, if the technology espoused in this dissertation is widely implemented, it becomes very difficult
to justify the further use or development of agent-based monitoring solutions for persistent state.
Agentless solutions also enable optimizations which are very difficult to implement with agent-based
solutions. Agentless monitoring has the capability of leveraging global knowledge about collections
of systems and resource allocations. For example, agentless monitoring can deduplicate across col-
lections of virtual disks and schedule monitoring tasks efficiently with production VM workloads
without mixing resource allocations.

Figure 1.1 shows the wins with an agentless model that leverages global knowledge—file-level
duplication across VMs—for a file system scanning workload. In this example, traditional scan-
ning agents execute independently inside each VM. It would be non-trivial and also inefficient for
each type of scanning agent to implement file-level deduplication independently. As reflected in
Figure 1.1(a), a virus scanning agent reads duplicated files multiple times wasting significant read-
bandwidth. Processing time is also wasted scanning the same files over and over again as reflected in
Figure 1.1(b). Simply running an agent uses resources of the VM—in this case significant amounts
of memory as shown in Figure 1.1(c). Instead of wasting this memory n times for VMs which
might all have the same files, an agentless implementation could bound the memory usage devoted
to virus scanning across the entire cloud. These wins are not limited to file system scanning work-

1.3. CONTRIBUTIONS 7

loads. First, the cloud can separately bound global resources devoted to any monitoring workload
by decoupling its execution from individual VM execution. Second, deduplication also benefits
streaming workloads. For example, agents monitoring changes to configuration files could receive
coalesced updates from multiple VMs across the cloud rather than processing duplicate file-level
changes individually. These optimizations enhance the scalability of future clouds, and directly lead
to lower total cost of ownership and higher revenue for all parties involved.

Number of Virtual Disks
1 2 3 4 5 6 7 8 9

0

5

10

20

Baseline File-level Deduplication

S
iz
e
o
f
C
o
n
te
n
ts
S
ca
n
n
e
d
(G
B
)

(a) Aggregated read bandwidth.
Baseline File-level Deduplication

Ti
m
e
to

S
ca
n
(S
e
co
n
d
s)

Number of Virtual Disks
1 2 3 4 5 6 7 8 9

2000

8000

16000

(b) Aggregated processing time.
Time

300

600

1000

M
e
m
o
ry

(M
B
)

+ClamAV
Baseline

Scan
Start

(c) Memory of a single VM.
Figure 1.1: ClamAV’s [21], a file system scanning agent, memory overhead and aggregated resource
usage (Figures 1.1(a) and 1.1(b) reconstituted from [124]).

The contributions of this thesis, in addition to answering the aforementioned research questions,
are:

• Demonstrates feasible, efficient, generalizable agentless monitoring of disk state (Chapter 2)
Full reference implementation released under the Apache v2.0 License
Support for the NTFS, ext4, and FAT32 file systems
API integration into the OpenStack cloud software

• Demonstrates three generalizable interfaces to disk state (Chapters 3, 4, and 5)
cloud-inotify – for real-time agents (publish-subscribe interface, live writes)
/cloud – for scanning/batch agents (legacy applications, file system interface, on-disk)
/cloud-history – for historic data access (file-level deduplicated snapshots, archived)

• A backup study of a research group with 58 unique hosts over 1 year (Chapter 5.2)
3,268 file system snapshots
1.676 billion referenced files
146 TiB of crawled file state

8 CHAPTER 1. INTRODUCTION

• A log-structured format for /cloud-history based on agentless monitoring (Chapter 5.5)
Heuristic time-based snapshotting of files
Garbage collection of log state
Application-agnostic indexing speedup via whole-file deduplication

Chapter Two
Distributed Streaming Virtual Machine
Introspection (DS-VMI)
In this chapter, we explain the design and implementation of our mechanism that exposes live vir-
tual disk state in near-real-time to monitors. The mechanism was designed to operate without any
support from within the monitored system—the guest operating system in a VM. This means that
it operates without paravirtualization, guest modifications, or specific guest configurations. We call
this mechanism distributed streaming VM introspection (DS-VMI). DS-VMI infers file system modifi-
cations from sector-level disk updates in near-real-time and efficiently streams them to distributed
or centralized monitors.

Our approach is based on the fact that virtual disks are emulated hardware. Hence, every disk
sector write already passes through at least the hypervisor system. Remember that it may pass
through many hosts depending on whether or not the backing storage is across the network. We
transparently clone this stream to a userspace process on the hypervisor host, or any of the interme-
diate hosts. This minimally interferes with the running VM instances—generally they occasionally
see higher latency writes. Only guest-flushed updates result in sector writes. Thus, we only handle
file system updates that are flushed from the VM instances. Updates that have not been flushed,
and therefore represent dirty state in guest memory, are outside the scope of this dissertation.

DS-VMI resembles classic VMI [42], with two crucial differences. First, we support streaming
introspection from instances distributed throughout the cloud. The design of DS-VMI and its
interfaces directly stems from this distributed setting. Second, instead of performing introspection
synchronously, we always perform it asynchronously. We are able to minimize stalling of the VM
during introspection because our goal is not intrusion detection: we are only monitoring guest
actions, rather than trying to prevent tainted ones by enforcing policy. As stated in Chapter 1,
enforcement of policy is outside the scope of this dissertation.

The rest of this chapter is organized as follows. Section 2.1 provides a very high-level view of
the architecture of DS-VMI. Section 2.2 describes the requirements necessary from a hypervisor,
file system, and guest kernel for DS-VMI. These requirements include theoretical underpinnings

9

10 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

Disk Crawler

Virtual
Disk

Extracted
Metadata

(a) Disk Crawler: Of-
fline or live, produces
metadata used for infer-
ence.

Sector
Writes

Async Queuer

Metadata
Store

(b) Async Queuer:
Queues instance writes
into an in-memory
queue.

Metadata
Store

File-Level
Update Stream

Extracted
Metadata

Inference Engine

(c) Inference Engine: loads metadata and in-
terprets queued writes.

Figure 2.1: Three-stage DS-VMI architecture.

grounded in a theory of file systems, and technical requirements such as guest kernel parameters.
This section culminates with the description of an implementation of cloning writes using a modern
hypervisor. Section 2.3 deals with bootstrapping metadata about file systems within a storage device,
primarily a virtual disk, necessary for the DS-VMI runtime. It includes a discussion of the three file
systems we support: NTFS, ext4, and FAT32. Section 2.4 describes the asynchronous architecture
and an optimization to reduce overhead. Section 2.5 describes the DS-VMI runtime from receiving
a sector-level write, to understanding its file-level implications. Section 2.6 describes how DS-VMI
supports live attachment to an already running VM, and also detachment for when operators wish
to drop overhead to zero. Section 2.7 describes extending the API of an existing cloud to integrate
introspection. An evaluation of the overhead of this mechanism on four representative file-level
workloads is provided in Section 2.8. We finish with a description of what DS-VMI is not designed
for, and its fundamental limitations in Section 2.9.

2.1 Overview of the DS-VMI Prototype
We have built an experimental prototype of DS-VMI, for the KVM hypervisor [58] using QEMU [11]
for disk emulation. Via custom introspection code, our prototype supports commonly-used file sys-
tems including ext4, NTFS, and FAT32. We show that our solution works out of the box with
unmodified cloud images of Ubuntu Server 14.04 LTS as provided by Canonical [17]. Our proto-
type has a three-stage architecture. The first stage is an indexing step, performed once per unique
virtual disk (not needed for clones), for initializing. The other two stages are specific to the run-
time of each VM instance executing in a cloud, as shown in Figure 2.1. We summarize these stages
below, with details in Sections 2.3 through 2.5:

1. Crawling and indexing virtual disks. (Figure 2.1(a)) This stage generates indexes of file
system data structures via a component called Disk Crawler. The indexes are generated live or
loaded at instance launch from a central store such as the image library storing virtual disks.

2.1. OVERVIEW OF THE DS-VMI PROTOTYPE 11

2. Capture and cloning of disk writes. (Figure 2.1(b))
This stage is implemented via a userspace helper process called Async Queuer that receives a
stream of write events from a minimally modified QEMU. Normally, it runs at the hypervisor
hosting the VM for low latency, but it can technically receive this stream over the network.

3. Introspection and translation. (Figure 2.1(c))
In this stage, the Inference Engine interprets sector writes, reverse maps them to file system
data structures, and produces a stream of file update events. It operates either at the hosting
hypervisor, or across the network.

To ground our discussion, lets follow an example write originating within a guest VM, and to
better understand how monitoring might work, imagine a monitor application interested in mon-
itoring a file called /home/monitorme/clock.jpg. Imagine that the clock.jpg file gets updated
every 5 seconds by a webcam pointed at a clock with a second hand. Thus, our monitor should see
modifications to this file every 5 seconds. DS-VMI can freely discard the rest of the virtual disk
I/O because no other registered monitor exists.

Let us examine what happens when the file is modified, and for brevity we follow a single virtual
disk block write. First, an instruction executed by the guest VM traps into the KVM kernel module
as shown in Figure 2.2 by the arrow moving out of the box labeled, “Execute natively in Guest
Mode,” into the box labeled, “Handle Exit.” The KVM kernel module identifies whether or not the
trapped instruction is for an I/O operation. Because it is an I/O operation, the KVM kernel module
invokes the userspace process emulating I/O devices for the guest VM—in this case a Qemu process.
The steps described here are highlighted in Figure 2.2.

Before issuing the ioctl to the KVM kernel module to return to guest mode, the write is copied
to the DS-VMI process running as a set of userspace processes not shown in Figure 2.2. It arrives at
the Async Queuer shown in Figure 2.1(b). At this point DS-VMI takes over analyzing the write to
determine its file-level implications in the introspection phase shown in Figure 2.1(c). The first step
requires reverse mapping the partition table. DS-VMI identifies that the write is within a partition
of interest—specifically the ext4 formatted partition containing the clock.jpg file.

The write is then passed to an ext4 specific handler that was initialized by crawling the contain-
ing virtual disk. The handler performs a series of reverse mappings to understand the individual file
being modified and its full path. The first step in the process is to identify if the block represents
data or metadata. Metadata for ext4 includes the superblock, the block group descriptor table,
inode bitmaps, block bitmaps, inode tables, and extent trees. In this case, the write is data so the
first reverse mapping yields the inode responsible for this data block. The next reverse mapping
yields the file name clock.jpg contained within the directory data block for directory monitorme.
The directory data block reverse maps to an inode and this process recursively continues for the
two other parent directories: home, and /. In the actual implementation, we optimize this lookup
with a reverse index on full path names which avoids the recursion.

Thus, the third phase of DS-VMI as shown in Figure 2.1(c) has performed four reverse map-
pings: one for the initial data block to the responsible inode, and three for the three parent direc-

12 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

tories. DS-VMI now knows that this data block belongs to a file not a directory, and that the full
path of the file is /home/monitorme/clock.jpg. The next step is to determine if any registered
monitors are interested in this file-level update. In this example, there is a registered monitor for
this file and DS-VMI uses interprocess communication via cloud-inotify (Chapter 3) to notify
the monitoring process that there is new data to consume. The monitoring process receives the data
block, updates its copy of the file, and refreshes the screen if enough new data has been written.
There may be more block writes that are needed before the file is displayable. This process repeats
every 5 seconds as new images are written to disk. If data blocks are written without metadata
structures pointing to them, they must remain buffered by DS-VMI until it associates them with a
file. For exposition, we assumed the data block was immediately associable with a file.

2.2 Hypervisor, Kernel, and File System Requirements
If virtual writes cross a network, introspecting them exactly like a deep packet inspecting firewall
becomes the most logical choice. We assume techniques are already known for building such
solutions. The difference between analyzing network traffic and introspecting file systems comes
down largely to one of memory. Large amounts of memory may be needed for buffering writes and
reconstructing complex file system metadata. If we ignore the more trivial network case, we are left
with the more difficult position of adding introspection support to a hypervisor. This approach is
explored in this dissertation, and this section specifically answers the question what are the properties
of the hypervisor, kernel, and file system which make correct introspection feasible? By correct, we mean
that DS-VMI provides guaranteed consistent views of file-level state.

2.2.1 Hypervisor Virtual Storage Hooks
We assume that either virtual disk writes come over the network, which makes them amenable to
deep packet inspection techniques, or the hypervisor provides hooks to inspect each write. For
correctness guarantees in later sections to hold, it is important that the hypervisor not coalesce or
drop writes. Otherwise properties which we assume true about the guest kernel or guest file system
may prove false due to hypervisor optimizations. Thus, we assume the existence of a method to
essentially duplicate each virtual write to DS-VMI.

This is not a giant leap. Many modern hypervisors already support targeting more than one
virtual storage device in RAID 1 style configurations. For example, KVM has a built-in command
called drive-mirror [92]. The purpose of this command is to mirror a virtual disk to another
location, and it has a mode for duplicating writes. As another example, VMware has a storage driver
called Mirror [122]. Its job is to mirror a drive to another location, and it accomplishes this by
duplicating live writes. For yet another example, Xen has a highly configurable blktap API [90] for
writing custom virtual disk implementations. Using blktap, one could rapidly implement mirroring
as needed by introspection.

2.2. HYPERVISOR, KERNEL, AND FILE SYSTEM REQUIREMENTS 13

Of course, configurations exist which neither send writes over the network, nor through the
costly layers of a hypervisor. Performance critical VMs have storage directly dedicated to them.
In such a configuration, the writes and management of storage are directly handled by the VM.
Obviously, DS-VMI can not operate in such a setting. However, generally DS-VMI does not apply
in such settings anyways, and these configurations are rare in cloud computing. First, the perfor-
mance sensitive application probably can not tolerate the potential latency and overhead from deep
monitoring. Second, such direct access configurations are rare because they enable hardware-level
attacks by guests, prevent useful management services such as snapshotting by the cloud, and expose
the guest to underlying hardware failures. If a guest ties itself to local hardware, migration becomes
impossible should that hardware begin to fail.

Extending an Existing Hypervisor
Figure 2.2 shows the design of KVM’s I/O path when guest I/O’s trap into the hypervisor. By design,
all I/O’s get handed over to a userspace helper program—QEMU. Such a design is ideal for DS-VMI
because the writes already come to userspace for inspection and further routing—very similar to
the proposed design of packet filters [80]. We just need to copy the write stream to a userspace
DS-VMI process from the emulator of the disk. Although QEMU handles both reads and writes,
we only need to introspect write operations.

We use the open source virtual storage introspection engine for QEMU/KVM as described
in [98] with a few key differences which make this feasible within a cloud framework such as
OpenStack [85]. The original implementation used QEMU’s tracing framework to capture writes.
QEMU’s tracing framework was designed for debugging purposes, and is not built into the QEMU
executable by default. No vendor provides production QEMU builds with tracing activated—indeed
QEMU advises against including tracing into production builds. Thus, the original method of
capturing disk writes was unsuitable for production deployments especially in modern clouds.

Our new implementation [126] changes a total of 50 lines of C within QEMU, and extends
a pre-existing hypervisor command called drive-backup [91]. The QEMU command drive-
backup originally implemented copy-on-write, point-in-time virtual disk snapshotting. We added a
mode to drive-backup called continuous which duplicates every write to another target. When
introspecting, we set this target to a network drive using the Network Block Device (NBD) protocol.
We have a compact, less than 1,000 lines of C code, implementation of NBD which passes writes
along not to a real storage device, but instead to the DS-VMI framework.

When drive-backup executes at a QEMU hypervisor, writes get duplicated over a TCP socket
via the NBD protocol as shown in Figure 2.3. This provides flexibility—introspection may run
locally or remotely depending on the load of a node hosting a guest VM. The writes terminate at the
NBD Queue as shown in Figure 2.3. Presumably this queue resides on the same node performing
introspection, although technically the introspection process can also exist on a separate node,
accepting raw writes over TCP.

14 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)
User Mode

(QEMU)
Kernel Mode

(KVM)
Guest Mode
(Guest OS)

Issue Guest
Execution ioctl

Enter
Guest
Mode

Signal
Pending?

No

Yes

Yes

No

I/O?

Handle I/O

Handle
Exit

Execute natively
in Guest Mode

Figure 2.2: KVM architecture showing userspace, kernel, and physical boundaries. Figure reconsti-
tuted from [58].

2.2.2 Guest Kernel Invariants

Kernels are free to reorder and coalesce writes from file systems as long as they do not violate
correctness. However, ordering of writes and observing all intermediate state is necessary to fulfill
the file system invariants described in Section 2.2.3. Hence, kernels must respect these invariants
otherwise DS-VMI may lose track of critical file system state. In addition, the tunable timeout
before disk flushes are forced directly affects the minimum latency in DS-VMI. Thus, there are
two questions explored in this section. First, what are the minimal set of invariants needed from a
guest kernel to ensure DS-VMI correctness, and how can a guest kernel assist DS-VMI? Although DS-
VMI requires no modifications whatsoever, it seems likely that either guest kernel tuning for better
introspection, or direct guest modifications à la paravirtualized kernels will become standard for
introspecting clouds.

2.2. HYPERVISOR, KERNEL, AND FILE SYSTEM REQUIREMENTS 15

File-Level
Update Stream

Metadata
Store

3. Introspection1. QEMU

Sector
Writes

NBD (TCP)
2. NBD Queue

In-memory
or TCP

Figure 2.3: QEMU duplicates writes over a TCP socket using the Network Block Device protocol
as its application-layer protocol. These writes queue for introspection, and are transferred for
introspection either via an in-memory transport or another TCP hop.

Write Buffer Flush Frequency
Operating systems introduce the notion of a page cache to optimize both the read and the write
path of slow persistent storage. Reads often exhibit temporal locality—the notion that there is a
high likelihood of accessing recently read data in the near future again. Writes also exhibit temporal
locality, thus sending every single write to a slow storage layer is not logical. Page caches serve
as a fast, in-memory store of data for reading and writing backed by persistent storage. Temporal
locality magnifies their benefit. They directly limit the writes visible to DS-VMI, and add additional
latency from the time of write to its storage-level visibility.

At a minimum, DS-VMI requires just enough writes to be visible such that the file system
invariants as laid out in Section 2.2.3 are maintained. Ideally, to minimize latency and the chance
of violating a necessary file system invariant, the kernel disables its page cache for perfect visibility
of every write to DS-VMI. However, the performance cost of disabling a page cache is prohibitively
costly, and we can not expect this to become a best practice.

This extra latency causes incorrect decisions based on old information. For example, in elastic
cloud computing scenarios, compute elements often scale to ensure service level agreements (SLAs).
By acting upon old information, they scale to handle the load of the past—not the load of the present.
Thus, there is a high likelihood of underprovisioning or overprovisioning when information is not
exposed quickly to the introspection infrastructure. Overprovisioning directly causes waste, and
underprovisioning indirectly causes waste by delaying or causing failures in dependent systems.

Either paravirtualized drivers communicating information to the hypervisor before it gets flushed,
or tuning of guest kernel flush parameters to make them more frequent is needed to ensure timely
introspection results. For example, ext3 forces flushing of metadata every 5 seconds by default.
On the other hand, ext4 forces flushing of critical data every 30 seconds by default. This led to
the discussion of using fsync much more aggressively by userspace [28]. These default cache flush

16 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

intervals fundamentally limit the minimum latency of an introspection framework. Note that for
correctness, latency tuning is not necessary.

Write Barriers and Ordering
Kernels reorder writes for various reasons, often for minimizing the seek time across a set of
writes. The famous Elevator algorithm [62] tries to order and dispatch writes in a minimal seek
time ordering based on the current direction of the disk head. As mentioned in the previous section,
in the worst case this reordering could lead to confusing DS-VMI. However, if file system invariants
are left intact, which they must be to maintain file system consistency, DS-VMI will be unaffected
by kernel-level write reordering. In fact, to enforce file system invariants, the kernel offers write
barriers. Write barriers ensure critical operations are flushed to disk with a certain ordering.

Write barriers are a technique for a kernel to ensure that file system metadata structures get up-
dated in the proper order on disk. For introspection, write barriers ensure correctness by providing
tight guarantees on the ordering of metadata updates. Introspection correctness is dependent on
the guaranteed ordering of metadata updates from a guest kernel. The requirements for file system
correctness are analyzed in the next section.

2.2.3 File System Invariants
Traditional file systems were not designed to support real-time introspection as a consumer of their
writes. The properties a file system must guarantee to make real-time introspection possible are not
obvious, but have been studied by the file system theory community. Sivathanu et al. [109] derive
the properties a file system must exhibit for this type of file-level inference. The guarantee a file
system must maintain, from [109], is,

{t (Ax) = k}D ⇒ {t (Ax) = k}M

In words, the type (k) of a block (A) on disk (D)—metadata or data—matches the file system
view in memory (M) at some point in time (x). This ensures that incorrect inferences can not
occur; a data block associated with a file can not be mistaken for a metadata block associated with the
same file. For this guarantee to hold, a file system must exhibit, “a strong form of reuse ordering,”
and metadata consistency [109]. Strong reuse ordering means that the file system must commit
the freed state of any block and its allocation data structures to disk before reuse, and metadata
consistency means maintaining all file system metadata with a set of invariants [109] (e.g. directory
entries point to valid file metadata) to ensure correct operation. A practical example occurs upon
file deletion. The data blocks of a file must be marked as free and their corresponding inodes also
marked free before any of those blocks are reused on disk. If they are not marked as free on disk
before reuse, DS-VMI might incorrectly believe that their type, and therefore their contents, have
not changed upon future writes.

2.2. HYPERVISOR, KERNEL, AND FILE SYSTEM REQUIREMENTS 17

What class of applications could transition to using the file-level update stream provided by DS-
VMI? Any application that can resume or operate on data flushed to disk works with both whole
disk snapshotting and DS-VMI. Recent research [46] reports that modern desktop applications fre-
quently flush data to disk which means many common applications already work with snapshotting
and by extension DS-VMI. Abstractly, a disk flush requires buffered I/O operations to be flushed to
disk and the file system to have both metadata consistency and data consistency on disk after the
flush. Data consistency [109] means that all flushed data safely resides on disk and the contents of
the corresponding data blocks match the metadata structures pointing to them. Following a reboot,
an application reading from the file system sees the side effects of all flushed I/O operations. Our
technique preserves flushed file-level updates, which means applications properly flushing critical
data to disk can safely use data obtained via DS-VMI.
Order of Metadata Updates
Given the analytical and theoretical underpinnings of the last section, how do we know whether
or not a file system supports them? The easiest method is auditing that file system’s source code.
For ext4 we have this luxury, for FAT32 and NTFS we have no such luxury and must hope that
they abide by certain rules. All that a guest kernel must ensure is strong reuse ordering, and metadata
consistency. Basically, all metadata block type changes must directly match the view of the guest
kernel’s page cache at commit time in the near future. According to Sivathanu et al. [109], file
systems such as FAT32, and ext3 have features we desire. However, their study is not exhaustive
and without access to source code difficult to prove for NTFS. Based on observations, we have gained
high confidence that NTFS is crash consistent and therefore safe for DS-VMI.

2.2.4 Correctness of DS-VMI Relative to Snapshotting
DS-VMI offers the same fidelity at a file-level as current state-of-the-art snapshotting methods. We
never report a file-level update that has not occurred within a file system on a virtual disk—there are
no false positives. In addition, we never miss a file-level update that has been flushed to disk—there
are no false negatives. If a snapshot of a disk is taken at a point in time, the inferred file-level updates
DS-VMI reports are consistent with file-level changes observable in that snapshot. For example,
if a tool such as Tripwire [118] runs on the snapshot and runs on a virtual disk maintained with
updates from a stream of DS-VMI provided file-level updates, the results are identical. This does
not mean that our technique provides the equivalent of a snapshot at a block-level.

Figure 2.4 superimposes our technique over snapshotting, and we use this figure to develop an
example illustrating the difference between inferring file-level updates and snapshotting. Figure 2.4
shows an initial snapshot created at time τ , and another snapshot at time τ ′. Assume that these
snapshots occur at a block-level, which is how snapshotting virtual disks happens today. The
snapshot at time τ ′ differs from the snapshot at time τ by exactly the disk blocks that were written
in the intervening time period. This is usually accomplished via a technique called copy-on-write
which copies disk blocks only when overwritten. Instead of providing a stream of disk block writes,

18 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

Time τ file
system

τ

Snapshot 1

τ'

Δ

Time τ' file
system

Snapshot 2

Figure 2.4: Combining file-level updates recorded as ∆ with the file system at time τ yields a file
system equivalent to the file system at time τ ′. The file systems may be mutating state on disk when
the snapshots occur.

our technique provides a stream of file-level updates in between these two time points which we
refer to as ∆. Thus, ∆ is a well-ordered set of inferred file-level updates. Applying our stream of
file-level updates ∆ to the snapshotted file system at time τ yields an equivalent view of the file
system within the snapshot taken at time point τ ′. With high probability, this view will not be
consistent at a block-level with the snapshot at time point τ ′, and an example scenario leading to
inconsistency is explained below. However, this does not mean that anything is lost semantically
from the snapshot method.

Snapshotting techniques do not understand disk blocks at a semantic level, thus they blindly
follow all disk block writes. File-level updates are reported when disk block writes are visible from
a file system perspective. If disk block writes are invisible from a file system perspective, they provide
no higher semantic meaning because they are uninterpretable and contribute no information to the
file system. Disk block writes that are missing from inferred file-level updates are the file system
invisible disk block writes. One example that leads to an inconsistency is file creation that fails
to complete before the snapshot. The snapshot contains disk blocks associated with the file, but,
if mounted, the file would not appear in the file system because the creation was not completely
flushed to disk. A snapshot derived from inferred file-level updates would not contain disk blocks
associated with the file because its creation did not complete.

2.3 Crawling Initial Virtual Disk State
DS-VMI requires a one-time crawl of each virtual disk before it commences real-time streaming of
subsequent file system updates. This crawl builds a map of the virtual disk for DS-VMI so that it can
very quickly infer the file system objects being modified from incoming sector updates at runtime.
DS-VMI supports crawling offline virtual disks in addition to dynamically crawling online, running

2.3. CRAWLING INITIAL VIRTUAL DISK STATE 19
{
‘type’ : [BSON_STRING, 3] ’mbr’
‘gpt’ : [BSON_BOOLEAN] false
‘sector’ : [BSON_INT32] 0
‘partitions’ : [BSON_INT32] 1
‘mbr’ : [BSON_BINARY, 512] ...
}

Figure 2.5: An MBR BSON document example showing details about an entire virtual disk, starting
from the MBR.

VM instances.
The offline case typically occurs when a virtual disk is first added to a cloud. Upon addition

of the virtual disk, the Disk Crawler produces serialized metadata associated with the virtual disk’s
partitions and stores it alongside the virtual disk in a virtual disk library. It only needs to run once
per unique virtual disk.

In the online case, DS-VMI live-attaches to an already-running VM. Here, the Disk Crawler
crawls and indexes the virtual disk while it is also being modified by the executing VM. To handle
the transient dirty state and not miss any new state, the dynamic component of DS-VMI, described
in Section 2.4, buffers the incoming write stream from the start of the disk crawl. Once the Disk
Crawler finishes indexing, DS-VMI replays the dynamic write stream buffer to obtain the latest
updates since the time of crawling and finally catches up to the live, real-time write stream updates.

The disk crawler is implemented in C with file system indexers for ext2, ext3, ext4, NTFS,
and FAT32. The entire disk is crawled, and serialized metadata is produced for each active partition
containing a valid supported file system. The metadata is formatted as serialized BSON [15] doc-
uments and compressed using gzip. We chose BSON because it is compact, supports binary data,
has an open specification, and has been successfully used in scalable systems such as YouTube [48].

Figure 2.5 shows a sample BSON document. We do not construct a single nested BSON doc-
ument per drive because that would require loading the entire document into memory, and thus
would not scale to large virtual disks. Instead, we represent the metadata as a collection of docu-
ments, each of which can be loaded separately. We currently serialize five document types: MBR,
Partition, File System, BGD (not used with NTFS), and File. A File document contains a serialized
form of the related inode and, in the case of a directory, a list of files in the directory.

Disk analysis starts at the Master Boot Record (MBR) that contains a partition table. Each
entry in this table may point to a valid primary partition or to a linked list of secondary partitions.
As an illustrative example, we consider what happens when an ext4 partition is detected. An
ext4 partition is analyzed by first examining and serializing its superblock. The s_last_mounted
field identifies the most recent mount point of this file system, which helps in recreating pathnames.
The superblock points to the Inode Table, which captures a wealth of information about each file. In
ext4 the “i_block” field is typically the header of an extent tree. Immediately following the header

20 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

are pointers to extents, each of which in turn points to a set of data blocks for the file. The disk
crawler collects and serializes necessary metadata from all allocated files by walking the inode table
and directory entries. Directory entries are contained in the data blocks of directories and map file
paths to inodes.

The NTFS disk format poses special challenges. In this format, the Master File Table (MFT)
plays a role analogous to the Inode Table in ext4. It stores File Records, which are the equivalent of
ext4 inodes. However, the MFT itself is managed as a file and can become fragmented throughout
a disk. The positions of metadata cannot be computed in advance with simple offsets. In addition,
there are proprietary intricacies that are not documented openly and can only be inferred via the
trial and error process of reverse engineering. In spite of these challenges, we have been successful
in implementing support for NTFS.

The FAT32 disk format is the simplest of the three main file systems considered, but comes with
its own challenges. For example, there are no separate inodes for files. File metadata is embedded
within the containing directory. This means that it is impossible to assign unique identifiers to files
in FAT32 that are divorced from path. In spite of this, FAT32 is well and openly documented now,
and was the quickest to implement—by someone originally unfamiliar with introspection and our
pre-existing codebase.

2.3.1 Impact on Virtual Image Library Operations
As described at the beginning of this chapter and in-depth in the last section, DS-VMI requires
metadata from the file systems present in a virtual disk. This metadata is then used for inference
when VM instances are instantiated. But how will a modern cloud obtain this metadata? Virtual
disk libraries already collect metadata and act upon metadata during two key operations: check in
of a new virtual disk, and checkout during instance creation.

DS-VMI’s metadata naturally fits with these two operations. DS-VMI extends the check-in
process with a crawl over the virtual disk to extract relevant metadata from guest file systems.
When a cloud user requests that a VM instance boot from a particular virtual disk, we can retrieve
the crawled metadata, and ship it to DS-VMI anywhere in the cloud. The rest of this section explores
the feasibility of this approach with standard VM images by answering the following question:

What is the overhead of crawling for, transferring, and loading metadata? With our
prototype implementation we found typical crawl time of 18-26 seconds, metadata size of 8-20
MB (compressed), and metadata load time of 30-73 seconds with a standard Ubuntu 12.04 LTS
server virtual disk image, and a Windows 7 virtual disk image. Keep in mind that both disk images
are 20 gibibytes in size, which takes approximately 3 minutes to transfer assuming an unloaded
1 gigabit network link. Moving our 20 mebibytes of metadata—0.2 seconds—and loading it in
73 seconds is dwarfed by the large virtual disk transfer time. In other words, the load has plenty
of time to finish while the disk streams in the background. Of course, this assumes loading is a
synchronous operation and we must wait for it to complete. We can instead buffer writes while the
load continues in the background, and begin processing the buffered writes once the load completes.

2.3. CRAWLING INITIAL VIRTUAL DISK STATE 21

ext4

Used (GB) Raw (MB) gzip (MB) Crawl (s) Load (s)
6.4 64 8.2 20.30 (1.91) 30.15 (0.15)
8.4 70 9.4 21.43 (2.00) 35.98 (0.20)
11 77 11 22.25 (1.68) 41.54 (0.25)
13 83 12 23.20 (1.85) 47.24 (0.45)
15 90 13 24.22 (1.74) 52.91 (0.43)
17 96 15 25.85 (1.83) 59.19 (0.43)

NTFS

Used (GB) Raw (MB) gzip (MB) Crawl (s) Load (s)
6.9 67 14 17.93 (2.12) 43.74 (0.20)
8.9 73 15 18.13 (2.01) 49.58 (0.23)
11 79 16 18.39 (2.26) 55.10 (0.24)
13 85 18 18.51 (1.85) 60.60 (0.36)
15 92 19 18.72 (2.01) 66.21 (0.65)
17 98 20 19.48 (2.47) 72.68 (0.82)

Table 2.1: Metadata size uncompressed, compressed, crawl time and load time into Redis (20
runs) as a function of used virtual disk space. Used is used disk space reported by df, Raw is the
uncompressed metadata, gzip is compressed metadata with gzip --best, Crawl is the time taken
to index a disk, and Load is the time to load metadata into Redis.

Checking in an Image
The critical factor affecting the check in process of a VM image into a virtual disk library is crawl
time. Crawl time is dictated by the amount of metadata in the file systems of the virtual disk, its
sprawl across the disk, and the amount of lookups required to unpack the file system metadata
structures. Large amounts of sequentially packed metadata take time only in unpacking the data
structures of the underlying file system. Metadata spread throughout the disk causes many seeks
and could potentially slow down the crawl process. To examine this effect, and also to get a sense
of the overhead of crawling in general, we measured crawl times with two file systems: ext4, and
NTFS. NTFS packs all of its metadata into a single global area of the disk known as the Master File
Table (MFT). In contrast, ext4, typically spreads metadata across block groups. Thus, for crawling,
we expect the central, sequential MFT in NTFS to perform better.

The metadata collected by the Disk Crawler grows with used disk space because it serializes a
mapping from sectors to files, and with the number of reachable live inodes representing files in the
system because each inode is serialized as well. Table 2.1 shows how metadata grows as a function
of used disk space for ext4 and NTFS. We increased used disk space by writing a single large file
with random data inside a virtual disk. The relationship for both file systems is linear in the used
disk space because we use a canonicalized form of metadata independent of file system. The raw

22 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

ext4

inodes Raw (MB) gzip (MB) Crawl (s) Load (s)
127,786 64 8.2 20.30 (1.91) 30.15 (0.15)
250,000 101 12 21.19 (1.85) 41.53 (0.32)
500,000 178 19 22.52 (1.29) 63.56 (0.29)
750,000 256 27 23.87 (1.68) 85.87 (0.61)
1,000,000 333 35 26.08 (1.75) 109.68 (0.68)
1,250,000 410 44 27.05 (1.47) 132.12 (0.68)

NTFS

inodes Raw (MB) gzip (MB) Crawl (s) Load (s)
103,152 67 14 17.93 (2.12) 43.74 (0.20)
250,000 106 16 24.36 (2.64) 58.53 (0.24)
500,000 174 19 34.95 (2.19) 83.02 (0.29)
750,000 242 23 44.04 (2.93) 108.31 (0.56)
1,000,000 309 26 54.62 (2.65) 132.96 (0.66)
1,250,000 377 29 63.99 (2.52) 159.32 (0.45)

Table 2.2: Metadata size uncompressed, compressed and load time into Redis (20 runs) as a function
of number of inodes. The headers are the same as in Table 2.1 except the first column is a unitless
count of live inodes in the file system rather than used disk space.

metadata grows at a rate of 6–7 megabytes per gigabyte of used disk space, but only 1 megabyte
compressed. NTFS crawls are quicker because its on-disk metadata is in a single, linear stretch on
disk. Load times are also comparable, but NTFS is slower because it starts with approximately 500
megabytes more used disk space. In addition, NTFS often has multiple names for the same file,
further magnifying metadata. As we stated earlier in this section, we can mask these load times by
concurrently loading metadata while the virtual disk transfers over the network to its host system.
Crawling is a one-time operation, so the overhead in time shown in Table 2.1 is amortized over the
lifetime of the virtual disk image in a cloud.

Checking out an Image
When checking out a virtual disk from a virtual disk library, the key parameter deciding overhead
is the size of the metadata we need to send for DS-VMI to run close to the destination of the virtual
disk. In this section, instead of exploring the relationship between used disk space and crawled
metadata size, we explore the relationship between live paths and crawled metadata size. In other
words, we artificially boosted the number of active inodes in our file systems trying to maximize
the size of extracted metadata. In this manner, we have deliberately tried to stack the deck against
DS-VMI. We again explore with both ext4 and NTFS.

2.3. CRAWLING INITIAL VIRTUAL DISK STATE 23

Many portions of metadata are filled with zeroes, and runs of similar numbers or duplication
within pathnames are common. Therefore, the extracted metadata compresses to generally less
than 10% of its uncompressed size. In a cloud datacenter with gigabit or 10-gigabit networking,
transferring on the order of 10 megabytes worth of compressed metadata will take less than one
second. This seems very reasonable given the optimistic 18 seconds – 3 minutes necessary to
transfer a 20 gibibyte virtual disk. As a percentage of used disk space, the compressed form of our
extracted metadata is always less than 1 percent.

Table 2.2 shows how metadata grows as a function of live files in ext4 and NTFS. These files were
created by the touch command within a single directory. Once again, we see a linear relationship
for both file systems. The raw metadata grows at a rate of approximately 323 bytes per file for
ext4 and 285 bytes for NTFS. Compressed, this overhead drops to approximately 34 bytes per file
for ext4 and 13 bytes for NTFS. For ext4, the average path length was 32 characters, and for
NTFS, it was 24 characters (1, 250, 000 cases). This implies approximately 8 more bytes are in an
ext4 path, although with BSON serialization each string also has a type byte and a field of four bytes
representing length. Thus, we were adding approximately 13 bytes more length per file in ext4 then
NTFS. Paths are stored at least twice: once as a full path associated with a file in an index, and once
as a directory entry. Because of this duplication, we have an extra 26 bytes approximately per active
inode with ext4. This accounts for the discrepancy in raw metadata size between ext4 and NTFS as
we scale up the number of active inodes.

2.3.2 Crawling a Virtual Disk
We make no assumptions about a virtual disk and currently our DS-VMI prototype supports two
different forms of partition table, along with three file systems. The old-style MBR partition table
was the simpler and first format our prototype supported, and GUID Partition Table (GPT) support
was implemented in the fall of 2014 by a two-person graduate student team initially unfamiliar
with our prototype codebase. Because of the modular design, they were able to implement support
quickly and independently in their own module for parsing GPT partition tables. In this section we
explain the typical layout of a Linux-based virtual drive image.

Figure 2.6 shows a typical virtual drive layout. At the start of the disk is an MBR that contains
a partition table. Each entry in this table may point to a valid primary partition or to a linked list
of secondary partitions. In Figure 2.6, two partitions are defined. One is for “Swap,” which is not
analyzed further because it represents memory pages and not an actual file system; the other is a
valid ext4 partition. The ext4 partition is analyzed by first examining and serializing its superblock.
Figure 2.6 shows that even a cursory look into the superblock of an ext4 partition reveals a lot
about the underlying file system. For example, the s_last_mounted field identifies the most recent
mount point of this file system; this information helps in recreating pathnames.

24 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

MBR Swap ext4

uint8_t code[440];
uint32_t disk_sig;
uint16_t reserved;
pt_table pt[4];
uint8_t signature[2];

uint32_t s_first_data_block;
uint32_t s_inodes_per_group;
uint16_t s_inode_size;
uint8_t s_last_mounted[64];
...

uint8_t status;
uint8_t start_chs[3];
uint8_t pt_type;

uint8_t end_chs[3];
uint32_t first_sector_lba;
uint32_t sector_count;

Figure 2.6: View of a raw disk split into partitions by the partition table within an MBR at the start
of the disk.

2.3.3 An Example Journaling File System: ext4
A deeper look into the ext4 partition is shown in Figure 2.7. ext4 file systems are divided into
block groups, which are listed in the Block Group Descriptor (BGD) Table. Each block group is
associated with a group of inodes in the Inode Table and a group of data blocks on disk. Our static
analysis serializes all of this information, because it could change during runtime and affect the
emitted stream of file-level updates.

As shown in Figure 2.7, the Inode Table captures a wealth of information about each file. In
ext4 the “i_block” field is typically the header of an extent tree. Immediately following the header
are eh_entries—pointers to extents—each of which in turn points to a set of data blocks for the
file. The inode shown in Figure 2.7 describes a directory; its data blocks contain filenames and
inode numbers for each file in the directory. By walking the inode table and directory entries,
starting from the root inode, the disk analyzer collects and serializes the necessary metadata from
all allocated files within the file system.

2.3.4 An Example Closed Source File System: NTFS
Out of the three file systems considered in this chapter, NTFS has the most complex on-disk layout
and data structures. Implementing introspection for NTFS was further exacerbated because NTFS has
no open specification, and thus the least amount of documentation out of the three file systems we
support in our DS-VMI prototype. This made the initial parsing of NTFS difficult and excruciatingly

2.3. CRAWLING INITIAL VIRTUAL DISK STATE 25

Superblock BGD Table Inode Table Data

uint32_t bg_block_bitmap;
uint32_t bg_inode_bitmap;
uint32_t bg_inode_table;
uint16_t bg_flags;

uint16_t i_mode;
uint32_t i_size_lo;
uint16_t i_links_count;
uint32_t i_block[15];
uint32_t i_size_hi;

ext4

uint16_t eh_entries;
uint16_t eh_depth;

uint16_t ee_block;
uint16_t ee_start_hi;
uint32_t ee_start_lo;

uint32_t inode;
uint16_t rec_len;
uint8_t name_len;
uint8_t file_type;
uint8_t name[0,255];

Figure 2.7: View of an ext4 partition and critical metadata on-disk structures. The structure in
the data section is a directory entry.

tedious. What little documentation that exists openly about NTFS comes from reverse engineering
efforts, and none of it is complete.

Figure 2.8 shows the general layout at a high level of a NTFS partition. Similar to FAT32,
NTFS keeps all critical metadata in a single location—the special Master File Table (MFT) file.
Everything in NTFS is considered a file, including all portions of the disk dedicated to metadata.
This is a very clean design, which allows the file system to manage even metadata as just another
file entry. However, this early design decision led to an accumulation of complex metadata headers
and types. For example, as shown in Figure 2.8 the metadata for a single file, called a File Record,
is split amongst several different data structures. Most File Records consist of at least 3-4 metadata
structures, each with their own header.

Bootstrapping an NTFS file system involves parsing values in the first sector of the partition.
This portion of the disk is also a file and appears in the MFT with the special name of $Boot.
These special files, which includes the MFT itself with the name $MFT, do not appear in the normal
directory hierarchy visible to users. But, they are manageable by NTFS as simple files. Critical fields
of the $Boot file are shown in Figure 2.8 and include an offset to the $MFT, the size of a sector
in bytes, the amount of sectors making up a cluster, the number of clusters per File Record in the
$MFT. When crawling files, many, if not all, of their attributes need parsing. Three key attribute data
structures for a File Record, pertinent to DS-VMI, are shown in Figure 2.8.

26 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

uint16_t bytes_per_sec;
uint8_t sectors_per_cls;
uint64_t lcn_mft;
int32_t cls_per_mft;

uint32_t magic;
uint16_t flags;
uint32_t real_size;
uint32_t alloc_size;
uint64_t base_file_rec;

NTFS

uint64_t c_time;
uint64_t m_time;
uint64_t a_time;
uint64_t r_time;
uint32_t dos_permissions;

$Boot $MFT Data$MFTMirrData

uint64_t last_vcn;
uint16_t data_run_offset;
uint64_t alloc_size;
uint64_t real_size;
uint64_t init_size;

Figure 2.8: View of a NTFS partition showing the complexity of reading a single file from the Master
File Table. Although all in one location, NTFS has the most complex on-disk layout out of all the
considered file systems.

The first attribute contains general file information such as whether or not the referenced File
Record is active, flags on the file, and the size of the file. The next structure describing a file is
called the File Name and contains important information such as timestamps. The last attribute
indicates a non-resident—not within the $MFT—pointer to the potions of disk making up the byte
stream for the file associated with this File Record. Directories further complicate the picture, and
are not shown in Figure 2.8.

NTFS was the most difficult file system to implement introspection for because its on-disk spec-
ification is not open. We worked almost entirely from reverse-engineering documentation and even
with that had to guess occasionally about the data structures laid out on disk when portions of
them were not described in the reverse-engineering documentation. NTFS keeps all metadata in a
contiguous region of the disk called the Master File Table (MFT). This is in contrast with ext4,
which splits inodes across block groups. Thus, crawling a NTFS file system is a more sequential
and efficient workload, although it requires more complex knowledge. This added complexity may
outweigh the costly seeks incurred by ext4 across the disk as inodes are being processed. Our
NTFS implementation serves proof that implementing introspection for a complex closed-source file
system without guest modifications is possible although it may be undesirable without support from

2.3. CRAWLING INITIAL VIRTUAL DISK STATE 27

BPB FAT Root Directory Data

uint16_t bpb_byte_per_sec;
uint8_t bpb_sec_per_cls;
uint16_t bpb_fs_ver;
uint32_t bpb_root_cls;

uint8_t dir_entry[32];
uint8_t dir_entry[32];
uint8_t dir_entry[32];
uint8_t dir_entry[32];
uint8_t dir_entry[32];

FAT32

uint8_t dir_name[11];
uint8_t dir_attributes;
uint16_t dir_high_cls;
uint16_t dir_low_cls;
uint32_t dir_file_size;

Figure 2.9: View of a FAT32 partition showing traversing the root directory and looking up the
start of a file via a singly linked list in the FAT data structure. The FAT portion of the disk is an
array of linked lists defining the clusters assigned to a file byte stream.

the vendor of the closed-source file system.

2.3.5 An Example Non-Journaling File System: FAT32
FAT32 is a closed-source, but open specification file system as of 2000 [74]. The availability of the
on-disk format specification meant that implementing introspection for FAT32 was much easier than
for NTFS, which is only known openly via reverse-engineered data structures. FAT32 is organized
around a single large lookup table called the File Allocation Table (FAT). This giant table contains
entries to files, which are lists of clusters on the disk. In FAT32 parlance, as in NTFS, a cluster is
some number of disk sectors and equivalent to the concept of a block in ext4. The order of these
lists is determined by lookups inside the FAT32 table.

Figure 2.9 shows a typical FAT32 partition layout. It starts with the BIOS Boot Parameters (BPB)
section which contains bootstrapping variables and is similar to ext4’s superblock or NTFS’s $Boot
file. Technically, there is an additional Reserved Region before the BPB, but that is not important
for this discussion of FAT32-specific on-disk structures. The BPB provides details for indexing into
the Root Directory. Directories are arrays of 32-byte directory entry structures. A directory entry
pointing to a directory has the ATTR_DIRECTORY attribute set in the dir_attributes field. The

28 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

map of disk clusters to the byte stream making up a directory or a normal file is stored as a singly
linked list within the FAT portion of the disk.

The FAT portion is a large array of 32-bit integers. Each position corresponds to a cluster on
the disk. The contents of each position, if not zero, indicate a pointer back into the array for the
next cluster position in a file. Thus, these singly linked lists are null terminated indicating the end
of a file or directory. For example, imagine a file starting at cluster 3. To obtain the next cluster in
the byte stream, we index into the FAT at position 3 and get 7. This means the next cluster in the
sequence is cluster 7, and this process continues until a 0 is encountered, which represents no more
clusters for any particular file. Directories are just files with a special attribute set, as mentioned,
and a structured list of directory entries as their contents.

The complicating factor in tracking information for introspection with FAT32 is that FAT32 has
no unique data structure separating a file from its path. Thus, files are uniquely defined by their
containing directory, which makes their metadata tied directly to their position in the directory
hierarchy. To account for this problem and assign each file a unique numeric identifier, similar to
an inode number, DS-VMI crawls the FAT file system tree in a depth-first scan. We use the implicit
depth-first post-order file system tree position of a file to derive its unique identifier. This value
can be calculated easily when doing an initial crawl of the file system tree. Unfortunately, as the
tree mutates over time, this can cause large portions of the file system tree to change their unique
identifiers. To prevent this, a hash of the absolute path could be used which is invariant to post-
order positioning of a file in the file system tree. However, when new directories are introduced into
the file system hierarchy, potentially large numbers of hashes also require updating. Our DS-VMI
prototype currently only implements the post-order file system tree identifier. It is difficult to create
a better identifier because nothing else uniquely identifies a file, neither implicitly nor explicitly.

2.4 Asynchronous Queuing of VM Writes
Remember that KVM sends emulated I/O to QEMU, which is a userspace emulator. We copy
this write stream from QEMU to our DS-VMI prototype over a TCP socket using a modified
version of QEMU’s drive-backup command. As Figure 2.10 shows, our modifications are located
within QEMU’s core, between the layers that communicate with the guest VM and those that
communicate with the backing storage. This lets our DS-VMI prototype operate independently
from virtual disk formats, such as KVM’s qcow2 or VMware’s VMDK, and I/O protocols, such as IDE
or the paravirtualized VirtIO. Our prototype thus supports any virtual disk format and any disk I/O
protocol supported by QEMU.

We anticipate that similar implementations are possible with other hypervisors—that is, imple-
mentations divorced from the specifics of the virtual storage setup. The format of the raw writes
we obtain from QEMU is very simple. It consists of a small header structure detailing the position
on disk of the write, and the number of bytes in the write. The last part of this structure is a pointer
to the actual bytes. We serialize this structure again using BSON. We have our own implementation
of BSON in C, which we released open source. This BSON-serialized version of the write stream

2.5. INTROSPECTING LIVE VIRTUAL DISK WRITES 29
Executing

VM Instance

Sector Write
Stream

IO Protocol

QEMU Core

VirtIO IDE

Storage Type
iSCSI qcow2 raw VMDK

unt64_t sector_num;
int nb_sectors;

uint8_t* data;

Copy to
DS-VMI

KVM to QEMU

Host Kernel IO

Figure 2.10: Connecting QEMU to DS-VMI.

gets converted into NBD write messages for transport to and consumption by DS-VMI. The TCP
socket could route to the local host, or to another host on the network for further processing.

The other end of the NBD TCP socket is connected to the Async Queuer, shown much earlier in
this chapter, in Figure 2.1(b), which collects the write events and copies them uninterpreted into
an in-memory queue for further processing. In our case, the Async Queuer is little more than a
buffer and a translator between the NBD protocol, and our in-memory queue. Our custom NBD
implementation, which is also open source, does not need to implement reads as we only need writes
duplicated for DS-VMI, although we implemented reads for testing purposes. Limiting the amount
of duplicate operations reduces overhead. Our implementation is built upon the libevent library,
and we believe it to be performant. In tests, our implementation can saturate gigabit Ethernet
network links. The challenge is to minimize I/O stalls on the write path of the introspected VM.
In order to minimize or eliminate stalls, the Async Queuer empties the socket buffer quicker than
the incoming stream of writes. To accomplish this the Async Queuer processes events as quickly as
possible, and uses double-buffering during flushes to further minimize stalls. Although in the worst
case it is not possible to keep up, and writes wait for sometime in the TCP socket buffer.

2.5 Introspecting Live Virtual Disk Writes
The Inference Engine, introduced early on in this chapter in Figure 2.1(c), first retrieves the BSON-
serialized metadata associated with the virtual disk being monitored, decompresses it, parses it, and
stores it in a Metadata Store either all at once or lazily (lazy loading optimization described in
Section 2.8.6). Remember that this metadata was obtained via crawling the disk as described in
Section 2.3. The Metadata Store queues sector writes awaiting translation, and also stores metadata
in translation tables for fast lookup. We use Redis [101], an efficient in-memory key-value store,
as our Metadata Store. Redis also doubles as an implementation of a publish-subscribe message
broker, which we use to implement cloud-inotify as described in Chapter 3.

30 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

Once virtual disk metadata is loaded and the Async Queuer starts copying raw write events into
the Metadata Store, our DS-VMI prototype begins processing the write events by translating the
received virtual disk sector writes into actual file system updates. To achieve this, each VM instance
has an associated DS-VMI process on its host started alongside the VM. Or, if necessary, DS-VMI
may run over the network instead of at the same host as the executing VM. Since DS-VMI runs as
a set of separate Linux processes, it can benefit from multiple cores on the host.

At runtime, disk addresses are reverse-mapped using the lookup tables in the Metadata Store
in order to determine which file or directory is modified by a disk sector write. Creations and
deletions of files and directories are detected via inference based on metadata manipulations; this
is file-system-specific and may require monitoring of a journal, inodes, or other file system data
structures. Our DS-VMI prototype stores and maintains metadata in a file-system agnostic format,
implemented via multiple Redis keyspaces. The benefit of a file-system agnostic format is that it
enables easy implementation of generalized tools which work independent of the monitored file
system type.

Given a write to an arbitrary position on disk, DS-VMI begins by first identifying if the write
is data or metadata. This is done based on mappings maintained in the Metadata Store. If a write
is data, DS-VMI only needs to determine which file and which bytes within that file were modified.
To reverse-map a write operation to a data block of a file, DS-VMI queries the sector keyspace.
To retrieve the file pathname, DS-VMI queries the path keyspace which maintains an index from
file metadata to full path. If any process registers interest in a path, both metadata updates, and
full data writes are passed on. In the case of metadata, the write is additionally deeply inspected by
DS-VMI and appropriate Metadata Store data structures are updated to maintain correct mappings.
For example, the metadata might indicate creation of a new directory, or truncation of a file.

Naïvely, disk mappings could be maintained at the level of disk sectors, the smallest unit ad-
dressable on disk. However, it is much more efficient to match the granularity of file system blocks,
because file system block sizes are typically 8-16 times larger (4-8 kibibytes) than disk sectors
(512 bytes). Thus, our prototype implementation of DS-VMI maintains mappings at the granular-
ity of file system blocks. In ext4 the block size is derived from the superblock. For NTFS, cluster
size comes from the “Boot File”—$Boot. And for FAT32, the cluster size is derived from the BIOS
Parameter Block (BPB) data structure.

2.6 Live Attachment and Detachment
Up until this section, we considered DS-VMI as an always on type of monitoring mechanism. But
what about already running VMs? What if the overhead of DS-VMI proves too costly for a new
workload? These types of questions led to developing the capability of DS-VMI to live attach
to a running VM instance, and to also detach on command. Adding these two capabilities also
makes DS-VMI fit into a cloud ecosystem easier, as we will see in Section 2.7, because it does not
actually require changing the check-in, check-out process for virtual disk images if it can live attach.

2.6. LIVE ATTACHMENT AND DETACHMENT 31

We describe our approach to live attachment via live crawling in Section 2.6.1. We describe our
approach to detaching in Section 2.6.2.

2.6.1 Live Crawling and Attaching
As described in Section 2.3.1, crawling a practical virtual disk image takes generally less than 60
seconds. Because this time is so short, when we attach to an executing VM we just live crawl its
attached virtual disks. The key difficulty with this approach is that the file system is mutating at
the same time. Hence, it is possible for our crawl to produce inconsistent metadata. For example,
consider a virtual machine in the middle of deleting a file as we crawl through the file’s metadata.
Initially we begin with a valid file. As we crawl imagine the file system eclipsing us and mangling
an important data structure we are about to read. As we continue parsing what we believed was a
valid file, we eventually begin parsing invalid metadata. This can happen even with crash consistent
file systems. However, as we describe below, by buffering outstanding writes during our crawl, we
can catch up and fix our inconsistencies.

Once the online crawl completes, we must fix up the metadata to represent the actual consistent
live state of the crawled file systems. In order to do this, we need to know every change which
occurred while we crawled. By understanding the changes which occurred during the crawl, we
create a consistent view caught up to the current state of the virtual disk and its file systems. When
the live crawl starts we begin buffering writes that occur during the crawl. This buffer only grows
until the crawl finishes. Then, we run all of the writes through the normal introspection logic for
that respective file system. We let introspection catch up normally with the in-memory metadata,
which results in a consistent state.

If we are not careful, this catching up phase leads to incorrect file-level events being generated
in the file-level update stream. For example, imagine the creation of a new file and how it affects
directory entries. Further imagine that the crawl has already recorded the existence of this new file,
but the write buffer contains writes to this directory both before and after the existence of the new
file. While DS-VMI catches up to these writes in the buffer it makes erroneous inferences. When
it introspects a write to the directory not containing the new file, DS-VMI believes the file has
been removed from the directory and emits that update. Later, when DS-VMI sees a write to the
directory containing the file it believes the file has been added to that directory again. Unfortunately,
both inferred file-level updates are wrong.

To counteract these inconsistent file-level update streams while live attaching, we disable emit-
ting of the file-level update stream until we ensure a consistent view by crawling and introspecting
each write in our buffer. Once fully caught up, we re-enable emitting of file-level updates. This
ensures that we never emit a false update while live attaching.

Alternatively, we could crawl a snapshot of a storage device which provides safer semantics
during the crawl and obviates the need to disable emitting the file-level update stream while in-
trospecting the buffered writes. We must still buffer writes for introspection post-crawl, but will
no longer need to worry about erroneous inference of file-level updates. Scanning a snapshot of a

32 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

virtual disk drive is equivalent to taking a very long time to process a single write to the device.
Thus, just as with normal DS-VMI, we can guarantee a consistent file-level update stream from the
moment we finish the crawl and begin introspecting buffered writes.

2.6.2 Detaching Introspection
Turning off DS-VMI is a much simpler process than attaching it to a VM. In theory, DS-VMI
stops immediately with the cessation of duplicating writes. Detaching is basically effortless. In our
prototype implementation, detachment occurs in three simple steps. We anticipate similar steps for
most other hypervisors, as there is no reason why more complication would be required. The steps
to detach are:

1. Issue a cancel of the drive-backup block device job to QEMU
2. Stop the Async Queuer process
3. Stop the Inference Engine process
Canceling the drive-backup command causes an immediate end to the primary source of

overhead to a monitored system: duplication of writes. Once the job is canceled, no more NBD
writes come over the TCP socket. Thus, we can safely terminate the Async Queuer process without
causing any exceptions within the hypervisor. Finally we teardown the Inference Engine, letting it
finish introspecting the last few outstanding writes. This whole process generally takes less than 10
seconds, thus detaching is a much more rapid operation than attaching.

2.7 Integration with Existing Clouds
Although designed for integration into cloud infrastructure, none of this chapter explicitly dealt with
how to structure such an integration. In this section, we deal with this problem directly by describing
an API extension to OpenStack, and providing an open source reference implementation [127, 128].
The implementation is more generic than just disk-based introspection techniques, and designed to
also support other forms of introspection such as memory introspection.

There are two paths towards implementing DS-VMI within cloud infrastructure. The first path
we assumed for most of this chapter: crawl virtual disks on check-in, upon execution of a VM
from a virtual disk load the crawled metadata and activate DS-VMI. This path brings every single
executing VM and its associated virtual disks under the purview of DS-VMI. It would work well
for a fully managed cloud, such as an enterprise cloud, but this path requires invasive changes to
the storage of virtual disks, and the execution of instances from those disks. The second path we
just described in Section 2.6. This path decouples DS-VMI’s implementation from the life cycle of a
VM instance, letting DS-VMI activate on-demand for cloud users and operators. This second path
is the most promising path for acceptance into a cloud infrastructure, because it only requires an

2.7. INTEGRATION WITH EXISTING CLOUDS 33

extension API, not invasive changes to existing APIs. For the remainder of this section, we explore
taking this second path over the first one.

2.7.1 Designing an API within OpenStack
We have taken the DS-VMI prototype implementation as described in this chapter and outfitted a
research cloud with DS-VMI to better understand how DS-VMI fits into real cloud work flows.
We used a research OpenStack cluster running on Ubuntu 14.04 LTS server hosts using the KVM
hypervisor with QEMU emulating hardware. This is a common, and in fact the default, setup
for OpenStack deployments. We deploy a customized QEMU, patched to add the special drive-
backup command to duplicate writes to our DS-VMI prototype. This modified hypervisor has been
in production use across hundreds of VM launches for research purposes and course projects, and
also used to host VMs with no downtime over the course of a full year.

Although the hypervisor needs modification, we required no modification of the supported guest:
Ubuntu 14.04 LTS Server. The default cloud image provided by Canonical works out of the box
with DS-VMI. Thus, DS-VMI delivers on its promise in a real cloud on unmodified production VM
images. With zero modifications we are able to capture writes and stream them as an interpreted
file-level update stream for any executing Ubuntu guest across our research cloud. In addition, to
illustrate the near-real-time nature of our file-update stream, we built a WebSockets-based front-end
which has the capability of showing updates in near-real-time. The updates are streamed as BSON-
serialized messages from a back-end compute node, converted into JSON-serialized messages via a
BSON-to-JSON proxy, and transported to a client web browser over a WebSocket. We provide a
minimal JavaScript library for subscribing to updates via cloud-inotify.

What is the API we extended OpenStack with implementing DS-VMI? As with most clouds,
our API extension is a set of REST endpoints. We have deliberately left the DS-VMI OpenStack
API generic to allow for more forms of introspection other than disk-centric introspection. We
integrated our implementation into OpenStack as an extension API for the nova compute project.
The core representation of state in our implementation is the IntrospectionEntity. An Intro-
spectionEntity is an abstract representation of an arbitrary underlying introspection primitive.
Primarily we envision both memory- and disk-based introspection being unified under this single
API; however, any form of introspection falls under the IntrospectionEntity umbrella. Also,
note that this API makes no assumptions about when an introspection begins, or when it ends. By
default we live attach to executing VM images and crawl their disks in real-time. This lets our
framework only affect the VMs that our users want included in DS-VMI.

As Table 2.3 shows, the API extensions follow a simple pattern provided by OpenStack. We have
deliberately left the API very generic and not directly tied it to the virtual disks serving an instance.
Although that is the only form of introspection supported by our implementation, we wanted an
API which could subsume future introspection efforts. For example, memory introspection of live,
volatile state can benefit from this same API. This API is designed around the capability of live
attaching to a running VM instance. The general workflow is to activate introspection for a VM as

34 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

Type Endpoint Returns
GET /servers/<instance_id>/os-introspection Lists active introspections
GET /servers/<instance_id>/os-introspection/<introspection_id> Retrieve details about a specific introspection
POST /servers/<instance_id>/os-introspection Success at starting introspection or error code

DELETE /servers/<uuid>/os-introspection/<introspection_id> Teardown introspection for an instance
Table 2.3: These are the REST API calls extending OpenStack for Introspection.

identified by an OpenStack UUID, ensure that it is operating correctly, and then access one of the two
interfaces described in the next two chapters. The next chapter discusses cloud-inotify, and we
directly implemented a front-end for cloud-inotify within OpenStack in the form of a proxy web
application. Our front-end is a proxy designed to proxy cloud-inotify messages via WebSockets
to a client’s web browser or another listening system. We chose WebSockets because this model
fits directly with DS-VMI’s file-level update stream. We also provide a matching JavaScript example
application managing subscriptions to upstream virtual instances and virtual storage devices. Our
proxy currently resides on a known TCP port, and there is no API yet for starting or finding the
proxy.

2.8 Evaluating Overall Overhead
This section provides an answer to the question: what is the overhead on the write path of virtualized
storage with DS-VMI monitoring its stream of writes? We find worst case behavior in line with
expectation—we have a write amplification of 2, and expected worst case slowdown of 2x. We find
overhead on realistic workloads to be either negligible, or at least within reason.

We begin this section by describing the experimental setup, used throughout, in Section 2.8.1.
We then explore overhead via four realistic workloads in Section 2.8.3 through Section 2.8.5. We
finish this section with two optimizations for DS-VMI to reduce overheads in the worst case. We
explore lazily loading metadata to reduce memory pressure in Section 2.8.6. We explore dropping
writes as early as possible in Section 2.8.7 to reduce costs associated with copying them out even
just to another process.

2.8.1 Experimental Setup
All host nodes are identically configured throughout all of the following experiments. Each machine
has a 3.00GHz Intel Core 2 Duo E8400 CPU and 4 GB RAM and runs an up-to-date version of
Ubuntu 12.04 LTS AMD64 Server. We base all of our work off of a recent QEMU source tree, git
commit 71ea2e01. We use Redis server version 2.2.12 and libhiredis version 0.10.1. For BSON,
we have our own custom implementation in C. Each host has two hard drives: a main 250 GB drive
(Seagate ST3250310AS) and a secondary 1.5 TB (Seagate ST31500341A). The secondary drive
was used to write and store log files, and the main drive was hosting the VM virtual disks. This

2.8. EVALUATING OVERALL OVERHEAD 35

setup minimizes I/O contention while collecting results from experiments. Unless otherwise stated,
timing experiments were run 20 times and both their average and standard deviation are reported.

When running a VM we follow IBM’s KVM best practices [52]. Both the guest VM and host
OS are configured to use the ‘deadline’ elevator algorithm for disk I/O scheduling, the VirtIO
paravirtualization solution for I/O communication, and the asynchronous I/O back end native to
their host. Before running a VM, we sync the host and drop all file system caches. Once the
guest VM is booted, we repeat the procedure inside the guest. We configure and begin executing
an experiment via ssh. VMs are only run for a single experiment, then discarded by deleting their
hard drive and replacing it with a pristine copy. When an experiment begins within a VM guest
we use a simple Python script to send a single UDP packet to a host daemon process. This process
records a timestamp for the UDP packet and acts as the timer for experiments within VM guests.
When an experiment finishes inside a guest VM, the Python script sends a final UDP packet to the
host daemon process and shuts down. By using an external clock tied to the host VM we reduce
the risk of invalid timing data due to unreliable VM clocks.

For all VM experiments we used a single VM guest pre-loaded with all software needed to
perform the experiments. The guest is an Ubuntu 12.04 LTS AMD64 Server, with 1 CPU, 1 GB
RAM, 20 GB disk, and a single partition containing an ext4 file system with default file system
options and 2.6 GB of used space.

2.8.2 DS-VMI Tunables
There are several tunable parameters which we fixed throughout the experiments for DS-VMI.
These tunables are shown in Table 2.4. The asynchronous queuer is the first and last point of contact
between an executing VM, via QEMU, and DS-VMI. If the asynchronous queuer copies write events
slowly, the performance of the executing VM guest will be negatively impacted. Table 2.4 shows
the main parameters which affect the behavior of the asynchronous queuer. The “Default” values
were used in the experiments. In our experiments the most critical parameters are the “Async Flush
Timeout” and “Async Queue Size Limit.” The flush timeout helps bound the maximum latency from
a disk write to an emitted inferred file-level event on a channel for subscribers. Large monitoring
systems such as the one Akamai [24] deploys on 70, 000+ servers require “near real-time” updates
on the order of minutes. Our default setting of 5 seconds may be too aggressive; however, this
choice explores performance when flushes occur with high frequency. The queue size limit bounds
the amount of memory that the asynchronous queue process may consume. The outstanding write
limit bounds the number of writes queued for the inference engine—preventing it from falling too
far behind the guest VM. The “Unknown Write TTL” defends against denial of service: if a guest
writes a large amount of data, but never associates it with live files, the data will not be kept in a
queue indefinitely waiting to be assigned a path.

36 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

Tunable Default
Unknown Write TTL 300 seconds
Async Flush Timeout 5 seconds
Async Queue Size Limit 250 MB
Async Outstanding Write Limit 16, 384
Redis Max Memory 2 GB

Table 2.4: List of DS-VMI runtime tunables which affect performance.

0 100 200 300 400 500 600 700 800 900
Time (seconds)

0

20

40

60

80

100

M
e
m
o
ry
R
S
S
(m
e
g
a
b
y
te
s)

Andrew Memory

Inference Engine
Async Queuer

(a) Modified Andrew memory usage
0 1 2 3 4 5 6
0

2

4

6

8

10

12

W
ri
te

S
iz
e
(m

e
g
a
b
y
te
s)

Andrew Write Pattern

Write Event (thousands)

(b) Modified Andrew write pattern
0 20 40 60 80 100 120 140 160 180

Flush Event

0

100

200

300

400

500

Fl
u
sh

T
im

e
(m

ill
is
e
co
n
d
s)

Andrew Async Queuer Flush Pattern

(c) Modified Andrew flush pattern
Figure 2.11: These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the Modified Andrew benchmark.

2.8.3 Light-rate Small Writes: Modified Andrew Benchmark
The Andrew Benchmark is a well known benchmark [49]. It is designed to model common opera-
tions on a developer’s file system. It operates by compiling a program and performing manipulations
to the source tree. We modified the Andrew Benchmark to modernize it. In the MakeDir phase,
our modified version creates a directory tree mirroring the linux-3.5.4 kernel tree [65]. In the
Copy phase, it copies the entire source tree, including files, into this directory tree. The ScanDir
phase reads file system metadata for all files in the tree. The ReadAll phase reads the contents of all
files in the tree. Finally, the Make phase compiles the Linux kernel using a configuration provided
by make defconfig.

With the default parameters, the Modified Andrew Benchmark shows negligible overhead with
DS-VMI introspecting disk writes. This is because the write traffic was not sufficient to fill the
asynchronous queue, and when flushed due to timeout, the write volume was small enough to avoid
any performance degradation. The write pattern shown in Figure 2.11 demonstrates minimal write
clustering compared to PostMark and bonnie++, two benchmarks described below. The Modified
Andrew Benchmark had the fewest writes out of all the benchmarks: 5, 293 in total.

2.8. EVALUATING OVERALL OVERHEAD 37

0 200 400 600 800 1000 1200
Time (seconds)

0

20

40

60

80

100

120

M
e
m
o
ry
R
S
S
(m
e
g
a
b
y
te
s)

SW Install Memory
Inference Engine
Async Queuer

(a) Software Install memory usage
0 10 20 30 40 50 60 70
0

2

4

6

8

10

12

14

16

W
ri
te

S
iz
e
(m

e
g
a
b
y
te
s)

SW Install Write Pattern

Write Event (thousands)

(b) Software Install write pattern
0 50 100 150 200

Flush Event

0

100

200

300

400

500

600

Fl
u
sh
T
im
e
(m
ill
is
e
co
n
d
s)

SW Install Async Queuer Flush Pattern

(c) Software Install flush pattern
Figure 2.12: These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the SW Install benchmark.

2.8.4 Clustered Large Writes: Installing Software
The Software Install benchmark, inspired by a benchmark used in [106], uses Ubuntu’s apt-get
tool within the guest to install a long list of server packages that have been downloaded in advance.
The server packages include Apache, MySQL, PHP, Ruby on Rails, Java Application Servers, and
many others.

Figure 2.12 shows the results of a run of the Software Install benchmark. The Software Install
benchmark has the largest number of writes: 61, 694 in total. This benchmark, although it writes
a lot of data, spreads the writes over a long period of time. There were no large bursts of heavy
write activity and no wild spikes in asynchronous queuer memory. Even though it does not trigger
extra asynchronous queue flushes it is, however, interrupted too frequently by timer-based flushing.
Whenever the timer fires and the asynchronous queue is flushed, a few writes pending from the VM
receive slightly higher latency. This effect, accumulated over the entire benchmark, was sufficient
to significantly slow it down.

2.8.5 Moderate-rate Small Writes: PostMark
PostMark [57] is a well-known benchmark designed to simulate mail server disk I/O. We used it
with a configuration suggested by [117]: file size [512, 328072], read size 4096, write size 4096,
number of files 5000, number of transactions 20, 000.

PostMark shows similar behavior as bonnie++; however, its write pattern is more dispersed.
Figure 2.13 shows that PostMark has many smaller clusters of writes. Its asynchronous queue
memory, although spiking like bonnie++, does not fill as often. These spikes do trigger extra flush
events, which incur a performance penalty just as in the bonnie++ case, though on a much smaller
scale. In this case the experiment ran for 231 seconds, resulting in 46 expected and 54 actual flush
events.

38 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

0 50 100 150 200 250 300
Time (seconds)

0

50

100

150

200

250

M
e
m
o
ry
R
S
S
(m
e
g
a
b
y
te
s)

PostMark Memory

Inference Engine
Async Queuer

(a) PostMark memory usage
0 5 10 15 20 25
0

2

4

6

8

10

12

W
ri
te

S
iz
e
(m

e
g
a
b
y
te
s)

PostMark Write Pattern

Write Event (thousands)

(b) PostMark write pattern
0 10 20 30 40 50 60

Flush Event

0

200

400

600

800

1000

1200

Fl
u
sh

T
im
e
(m
ill
is
e
co
n
d
s)

PostMark Async Queuer Flush Pattern

(c) PostMark flush pattern
Figure 2.13: These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the PostMark benchmark.

0 50 100 150 200 250
Time (seconds)

0

50

100

150

200

250

300

350

M
e
m
o
ry

R
S
S
(m

e
g
a
b
y
te
s)

bonnie++ Memory

Inference Engine
Async Queuer

(a) bonnie++ memory usage
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
0

2

4

6

8

10

12

14

16

W
ri
te

S
iz
e
(m

e
g
a
b
y
te
s)

bonnie++ Write Pattern

Write Event (thousands)

(b) bonnie++ write pattern
0 10 20 30 40 50 60

Flush Event

0

200

400

600

800

1000

1200

1400

1600

Fl
u
sh

T
im

e
(m

ill
is
e
co

n
d
s)

bonnie++ Async Queuer Flush Pattern

(c) bonnie++ flush pattern
Figure 2.14: These graphs show the used memory by DS-VMI, observed write pattern of the VM
guest, and the flush events triggered within DS-VMI during the bonnie++ benchmark.

High-rate Large Writes: bonnie++
bonnie++ [25] is a microbenchmark tool designed to measure the overhead of various file system
operations such as create, delete, write, and read. We used its default settings. By default, it attempts
to write a dataset at least twice the size of main memory.

A breakdown of memory usage, I/O pattern, and asynchronous queue flushes for bonnie++ is the
first row in Figure 2.14. The first graph for bonnie++ shows a breakdown by memory of the various
components necessary for DS-VMI. The inference engine, across all experiments, shows very little
memory usage. The memory usage of the asynchronous queuer, however, repeatedly spikes up and
down. This occurs because bonnie++ is a write-intensive microbenchmark, and the asynchronous
queuer, in this case, is regularly hitting its configured queue size limit of 250MB and flushing to
Redis. The effect is so pronounced that it slows down the VM guest while the flushing is occurring.
In the experiment presented for bonnie++ in Figure 2.14, the VM guest ran for 200 seconds. If

2.8. EVALUATING OVERALL OVERHEAD 39

0 200 400 600 800 1000
Time (Seconds)

0

100

200

300

400

500

600

700

800

M
e
m
o
ry

R
S
S
(M

e
g
a
b
y
te
s)

bonnie++
PostMark
Andrew
SW Install

Figure 2.15: Memory usage by Redis for each experiment. Only a single run was examined.

Experiment Asynchronous Queuer (MB) Inferencce Engine (MB) w/ Redis (MB)
bonnie++ 250 49 1043
Andrew 88 9 630
PostMark 214 27 739
SW Install 81 26 708
Table 2.5: Peak memory usage of the Async Queuer, inference engine, and Redis combined.

flushes were only triggered by the 5-second writeback timer, this implies a maximum of 40 flushes.
However, the right-most graph shows 53 flushes, 13 triggered by the 250 MB ceiling. In this and
the other experiments, there were not enough write operations to trigger the outstanding-writes
tunable. The middle graph confirms: this experiment was the most write-intensive of all of them—
the other experiments have more dispersed write patterns. It is this closely-clustered, intense write
pattern that causes the performance degradation. We simply can not hide the overhead of copying
writes once buffers fill.

2.8.6 Reducing Memory Footprint: Lazily Loading Metadata
Figure 2.15 shows memory used by Redis during each of the four experiments, and Table 2.5 shows
peak memory usage in Resident Set Size (RSS) by the inference engine and Async Queuer combined
with Redis. At startup, the Redis database fills with metadata and the Async Queuer awaits writes
from a booting VM guest. At this stable point the Async Queuer process uses 652 KB of memory,
the inference engine uses 4096 KB of memory, and Redis uses 393.23 MB of memory.

This memory overhead is 15% of used disk space, when Redis is pre-populated with metadata
for all files in the guest file system. This is a fairly high overhead, and becomes prohibitive with
larger and larger used disk size. However, during benchmarks, as well as in expected day-to-day

40 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

Experiment File Tree Loaded Old Peak (MB) Peak (MB)
bonnie++ 4.7% 1043 766
Andrew 17.2% 630 357
PostMark 5.2% 739 562
SW Install 11.3% 708 533

Table 2.6: Lazy loading optimization effect on memory.

use, only a small fraction of the file system tree within the guest is modified. Thus, loading and
caching metadata only for recently written files promises to greatly reduce the memory overhead
of our approach.

The results of implementing lazy loading of metadata are shown in Table 2.6. With this opti-
mization, the startup memory footprint drops to 4% of used disk space (114 MB instead of 392
MB), the loading of metadata takes 73% less time (5 seconds in the base case), and peak memory
usage drops. Further optimization seems possible with customized data structures cutting out Re-
dis, but we did not explore this path. We implement lazy loading of metadata by leaving pointers
into the serialized metadata file within our in-memory datastructures. For example, we load into
memory the information that a given sector is related to a certain inode. But, we don’t load the
inode’s metadata into memory until we encounter a write to that sector.

2.8.7 Dropping Writes
Blocks in a file system can be categorized into metadata and data. A high write throughput implies
that large quantities of data blocks are being written. The intuition for this optimization is that
dropping data writes should significantly reduce the throughput required, while maintaining proper
mappings of disk sectors to files by continuing to consume metadata writes. The only loss of
information occurs when blocks transition from data to metadata such as when a data block becomes
a listing of files in a directory. We either wait for follow-up writes, or read directly from the virtual
disk to catch up from data blocks which may have been dropped before the transition was reflected
on-disk. Figure 2.16 shows the effect of data dropping. All of the benchmarks with significant write
overhead show improvement. The application-based benchmarks show that worst case overhead is
reduced to 39.5% instead of the expected 100% overhead stemming from duplicating every single
write. Here we trade-off completeness to improve performance. We implemented the dropping as
early as possible within the hypervisor.

Our implementation of dropping writes is based off of a customizable bitmap shared between
DS-VMI and the hypervisor. This lets the hypervisor drop writes early and not incur the cost of
copying them to DS-VMI. In addition, it lets DS-VMI customize the writes that get passed along
dynamically as metadata updates change state over time. The bitmap refers to individual disk sectors,
each bit represents a sector. If the bit is a 1, the sector is passed along to DS-VMI. If the bit is a 0,

2.9. LIMITATIONS OF DS-VMI 41

bonnie++ PostMark Andrew SW Install
0

20

40

60

80

100

120

O
ve

rh
ea

d
(p

er
ce

nt
)

No data drop
Data drop

Figure 2.16: Effect of dropping data writes on DS-VMI efficiency in terms of normalized overhead.

the sector is immediately dropped by the hypervisor and not passed along for further analysis. The
size of the bitmap is the overall size of a virtual disk divided by 512 bytes. For example, a 20 GiB
virtual disk results in a bitmap of size 5 MiB.

2.9 Limitations of DS-VMI
This section discusses the limitations of DS-VMI as a monitoring framework. As previously de-
scribed, information which resides only in the memory of an executing virtual machine guest and
never flushes to persistent storage remains outside the purview of DS-VMI and its interfaces. In
addition, modern protection schemes including full-disk encryption (FDE) make file-level infor-
mation indecipherable to DS-VMI. We describe monitoring limitations in Section 2.9.1, and discuss
the implications of modern protection schemes in Section 2.9.2.

2.9.1 Monitoring Limits
DS-VMI does not work well for all types of files and monitoring workloads. Short-lived, transient
files typically exist only within the page cache of an executing virtual machine guest. Such files never
flush to persistent storage. Thus, they are invisible to DS-VMI. Raw writes directly to persistent
storage without using the framing of a file system are not useful to DS-VMI. Although they can
be monitored, they do not fit within the structure of the file-centric interfaces layered on top of

42 CHAPTER 2. DISTRIBUTED STREAMING VIRTUAL MACHINE INTROSPECTION (DS-VMI)

DS-VMI. For example, a database writing directly to disk appears as a stream of unstructured writes.
Sophisticated attackers hide persistent data within unused file system blocks, or unused portions of
a disk. These writes do not affect any real file visible to the guest. Although they are detectable via
DS-VMI, they are semantically meaningless without association to higher-level entities.

Reads are not introspected at all by DS-VMI, and certain types of writes are impossible to
introspect. Cloud workloads requiring high performance storage typically receive direct access to
storage devices. Their writes bypass the underlying hypervisor which makes introspecting them
impossible without hardware support. Monitoring applications based on the reads performed by
a guest can not use DS-VMI. For example, determining which files are loaded at boot time is not
possible with DS-VMI.

The extensibility of DS-VMI mitigates some of these limitations, but some are fundamentally
not solvable. Databases writing direct to storage still have an internal structure which provides
semantic meaning. Extending DS-VMI to support database on-disk layouts is achievable, although
it would eschew all of the architecture built upon the abstraction of a file. By using hardware-assisted
introspection, DS-VMI could also introspect writes from a guest which bypass the hypervisor and go
direct to persistent storage. Malicious writes to non-files must still contain internal structure usable
by future DS-VMI extensions. Introspecting reads, although incurring a performance penalty, is
trivial within a hypervisor. Reads and writes serviced by an in-memory page cache are never visible
to underlying storage layers. Thus, memory-only structures are fundamentally invisible to DS-VMI.

2.9.2 Technologies Defeating DS-VMI
Security best practices prescribe heavy application of cryptography especially for data at rest [130].
This is a troubling trend for DS-VMI, because if the guest OS uses FDE to encrypt blocks before
flushing them to persistent storage, then file system data structures become hidden. File-level
encryption exposes file system data structures, but prevents deep monitoring of information within
files. Such protection schemes which place no trust in the underlying cloud infrastructure render
cloud-implemented services useless. However, this problem is not unique to DS-VMI.

Imagine clouds with inter-VM network bandwidth optimization achieved via packet-level dedu-
plication. Such a technique works by recognizing data within packets that is identical. This can
greatly magnify the bandwidth available between VMs in a cloud if their transmitted data has a
high degree of duplication. For example, a VM broadcasting configuration state to a set of other
VMs typically sends the same message many times to different hosts. By deduplicating this message
across the cloud, extra bandwidth becomes available to all VMs. Should the VMs not trust their
underlying cloud infrastructure and encrypt every packet, then such optimizations are impossible
for the cloud to implement. This places the onus of implementing distributed optimizations firmly
on the cloud user, and precludes the possibility of cloud-wide, cross-user optimizations.

The obstacle posed by protection schemes is not fundamental. It is intimately tied to the trust
model applied to cloud computing. The choice to defeat such cloud-wide services and optimizations
hinges on this trust model, and the tension between guest and host capabilities. If guests trust their

2.9. LIMITATIONS OF DS-VMI 43

cloud to also protect their data, then implementing FDE and other protection schemes within guest
environments is purely redundant. This dissertation argues that the best layer for implementing
protection and optimization lies not within the VM guests, but beneath them within the cloud
infrastructure. Whether for monitoring, or for optimization, such services benefit from global
knowledge, coordination, and economies of scale when implemented in the cloud infrastructure. As
mentioned before, decoupling these services from guest-level misconfigurations and compromises
is attractive. This is not possible without cooperating with the cloud by exposing raw state.

Chapter Three
cloud-inotify: Cloud-wide File Events
Monitoring for file system changes comes in two flavors: polling by scanning directories, or regis-
tering for changes via event-driven callbacks. In this chapter we focus on the latter—events—and
describe an interface built on top of DS-VMI, the mechanism developed in the previous chapter.
In the context of file systems, polling equates to batch-style scans through directory trees. Often,
tools such as rsync [73] check the modified timestamp on files to determine whether or not new
changes need processing. However, for tools such as Dropbox [36]—a file-level versioning and
synchronization tool—rapidly scanning directory trees as they grow in size to tens of thousands of
files becomes increasingly costly. Thus, the capability of registering for state changes and receiving
notification when they occur is a critical capability for certain file-level monitoring workloads.

inotify [70] is a Linux kernel notification interface for local file system events. It provides
an API to userspace applications that lets them register for events such as directory updates, file
modifications, and metadata changes. Via callbacks, the userspace applications act on these events.
inotify has been used to implement desktop search utilities, backup programs, synchronization
tools, log file monitors, and many more file-level event-driven applications. Using DS-VMI, we ex-
tend the concept of inotify into what we call cloud-inotify. There are three major differences
between cloud-inotify and inotify. First, in the actual interface: cloud-inotify is a publish-
subscribe network-based messaging system, whereas inotify is a Linux system call API. Second,
cloud-inotify lets users subscribe to updates across many remote file systems, but inotify only
works for local file systems. Third, cloud-inotify is, as much as possible, OS agnostic, but ino-
tify only works on Linux systems. Naturally, other operating systems such as Microsoft’s Windows
and Apple’s OS X have their own versions of file-level events called FileSystemWatcher [77] and
FSEvents [8] respectively. But, each interface is vendor-specific and requires specialization. cloud-
inotify requires writing file-level event logic once, and instantly works across different OS types.

cloud-inotify is the first of three interfaces built on top of DS-VMI that this disserta-
tion describes. It is designed for event-driven workloads such as log analytics, intrusion detec-
tion, or file synchronization. For example, a common use case is registering for updates to a
directory and its subtree in the overall file system tree. Any updates to that directory, its sub-

45

46 CHAPTER 3. CLOUD-INOTIFY: CLOUD-WIDE FILE EVENTS

directories, and files contained therein gets replicated via messages over the network to the reg-
istered monitoring application. Using such technology, one could rapidly build folder-level syn-
chronization and backup. Another use case is registering for events on critical system files such
as /etc/passwd which contains account credentials on UNIX-based systems. Or following any
changes to C:/Windows/system32/config/SAM which contains account credentials on Windows.

The rest of this chapter is organized as follows. Section 3.1 describes the design and imple-
mentation of the cloud-inotify interface. Section 3.2 goes into more detail about the types of
workloads we envision using cloud-inotify. Section 3.3 describes potential sources of latency
which could delay notification of file-level events to registered monitors. Section 3.4 provides an
evaluation of the sources of latency in the cloud-inotify system. Latency is the primary metric
by which we evaluate cloud-inotify’s performance. The final Section 3.5 provides an example
real-world end-to-end test using a web browser and a research OpenStack [85] cloud cluster.

3.1 cloud-inotify’s Design and Implementation
cloud-inotify provides a network-accessible, publish-subscribe channel abstraction enabling se-
lective monitoring of file-level update streams. Applications “register” for events by connecting to a
network socket and subscribing to channels of interest. Via published messages, they are notified of
individual events and take action. We call applications implemented using file-level events monitors.

Channel Description
gs9671:test:/var/log/* Monitor all files in subtree /var/log in VM instance test on host gs9671
::/var/log/* Monitor all files in subtree /var/log in all VM instances on all hosts
gs9671:*:/var/log/auth.log Monitor auth.log on all VM instances on host gs9671
gs9671:test:/var/log/syslog Monitor syslog on VM instance test on host gs9671

Table 3.1: Examples of filter specifications, demonstrating the use of pattern matching. The cloud-
inotify channel implementation supports glob-style pattern matching.

cloud-inotify channel names are a combination of three components: the cloud-internal
hostname of a compute node hosting VMs, a VM or name referencing a group of VMs, and the
full path of interest in the guest file system of the targeted VM instances. Example channels are
shown in Table 3.1. Any updates not associated with a specific pathname, such as superblock or
MBR updates, are emitted without a path component. cloud-inotify allows wildcard characters
when subscribing to channels. Monitors can easily subscribe to a variety of events without exposing
themselves to a firehose of irrelevant notifications. This improves scalability by reducing the volume
of frivolous data transmitted across a cloud and potentially externally across the WAN. When mon-
itors subscribe from outside of a cloud, they do not specify the first component—a hostname—of
the channel.

3.1. CLOUD-INOTIFY’S DESIGN AND IMPLEMENTATION 47
import bson, gray
name = ‘gs9671:test:/var/log/auth.log’
channel = gray.subscribe(‘gray.example.com’,

name)
for msg in channel:

msg = bson.deserialize(msg.data)
if msg[‘type’] == ‘data’:

print (‘New write from %d to %d’ + \
‘for file %s’) % (msg[‘start’],

msg[‘end’],
msg[‘path’])

print ‘Data: %s’ % (msg[‘data’])

Figure 3.1: An example monitor in Python.

Monitors are typically application-specific, and each monitor is typically interested only in a
small subset of file update activity in a VM instance. In some cases, a single monitor may receive
file update streams from many VM instances and thus perform cloud-wide monitoring for a specific
application. In other cases, a monitor may be dedicated to a single VM instance. Monitors interact
with cloud-inotify via a cloud-provided WebSocket API. After DS-VMI is initiated for a VM
instance, cloud-inotify channels become available via WebSockets. The WebSockets are provided
by a front-end cloud proxy which translates subscription requests from individual WebSockets into
Redis subscriptions on back-end compute hosts running VMs under the purview of DS-VMI. Access
control is gated by the cloud, which also has the ability to deny subscription requests. This means
cloud users can create filters allowing monitors access to subsets of file-level events originating
from their VM instances. The use of a front-end proxy frees the back-end cloud to implement
cloud-inotify using any optimizations it needs. For example, subscriptions could be filtered and
aggregated at multiple levels across a cloud datacenter which improves scalability.

We call this fine-grained access control a data firewall. Strong guarantees are possible precisely
because the cloud infrastructure acts as a mediator between cloud customers and monitor providers.
Cloud customers could declaratively configure access to their data at a file-level exactly the same
way they configure network firewall rules today and apply them to VM instances. Though we did
not implement such enforcement and considered it out of scope for this dissertation, it is still a part
of the overall vision and the hooks are in place for implementing enforcement across the DS-VMI
stack. On the other side of the equation, engineering monitors becomes a simpler process. By
programming to a unified publish-subscribe API, monitor vendors no longer have to implement
support for several versions of operating system environments. They implement just once targeting
a REST API and WebSockets channels.

48 CHAPTER 3. CLOUD-INOTIFY: CLOUD-WIDE FILE EVENTS

We use the publish-subscribe capability of Redis to implement cloud-inotify channels. A
monitor connects to Redis’ well known TCP port and subscribes to channels using filters similar
to those shown in Table 3.1. The monitor then receives BSON-serialized messages relevant to its
filter specification, each containing the changed metadata fields in the case of a metadata update, or
the corresponding file data in the case of a data update. BSON libraries are available in a number
of programming languages; Figure 3.1 shows an example of a simple agent written in Python
for monitoring /var/log/auth.log. The code has no OS-specific dependencies, no file-system-
specific logic, and is easily re-targeted based on the channel subscription expression.

Libraries for consuming such messages exist in most modern programming languages. We
selected Python to form a proxy bridge between OpenStack compute nodes in a research cloud, and
monitors. Python fits well within the OpenStack ecosystem because OpenStack is a pure Python-
based open source cloud software. Based on OpenStack credentials, access control filters can be
placed in this front-end proxy. These filters could provide strong guarantees on the type and extent
of data made available to external third-party agents. Such a capability is impossible to achieve with
in-VM agents because they often require root access and it is very difficult to bound their access to
information. By enabling fine-grained, strong access control guarantees, cloud-inotify enables
new possibilities in interactions between cloud customers and file-based monitoring services.

3.2 Event-driven File System Workloads
Event-driven workloads are characterized by a tight bound on the time between an event oc-
curring, and notification of that occurrence propagating. This near-real-time constraint makes
cloud-inotify challenging to implement because introspection may not have a lot of time to
complete, otherwise it risks introducing latency. Many types of workloads are subsumed in this
category including file-based alerts, log analytics, intrusion detection, and events act as triggers to
longer running batch jobs as described in Chapter 4.

In this section we demonstrate the usefulness of cloud-inotify and how event-driven work-
loads are ubiquitous. We demonstrate this via two applications for cloud-inotify. We currently
expose cloud-inotify via a WebSocket proxy as an OpenStack front end. This proxy translates the
BSON-serialized file-level update stream into a JSON-serialized WebSocket message stream for web
browsers or other clients consumption. Using this interface we can perform fine-grained access-
control via OpenStack on individual update messages, although this is currently not implemented.
Two use cases which are implemented already via WebSockets are described below.

3.2.1 Continuous Compliance Monitoring
Auditing file-level changes is useful for enforcing policy, monitoring for misconfigurations, and
watching for intruders. For example, many businesses monitor employee computers for properly
licensed software. Using cloud-inotify, enterprises gain visibility into all systems across their
fleet without worrying about OS-specific implementations or deployments of monitoring software.

3.3. SOURCES OF LATENCY 49

cloud-inotify has a centralized design focused on aggregating the updates of file systems across a
cloud. In addition to the aforementioned benefits, cloud-inotify cannot be turned off, tampered
with, or misconfigured by guests unlike agent-based solutions. Centrally-managed auditing ensures
that all VMs are checked for the most recent security updates and best practices as well. Example
checks include: proper permission bits on important folders and files, and monitoring /etc/passwd
to detect new users or modifications to existing users. Google [27] reported an outage in early 2011
that affected 15-20% of its production fleet. The root cause was a permissions change to a folder
on the path to the dynamic loader. Localizing such problems within a short amount of time can
be difficult, but an auditor built using cloud-inotify would have detected the misconfiguration
almost instantaneously. Google found troubleshooting difficult because logging into affected servers
was impossible. cloud-inotify does not depend on guest health; thus, cloud customers never
have to “fly blind” even if they cannot log into VM instances.

3.2.2 Real-time Log Analytics
Log files contain insights into the health of systems and the responsiveness of their applications.
An example of such an insight is response time derived from web application log files. In this
example we consider not just engineering monitoring solutions from the perspective of the cloud
user or a monitor vendor, but also the usefulness of cloud-inotify for directly implementing cloud
infrastructure features. One straightforward intuition is if the infrastructure has an understanding
of application performance, it can more intelligently assign resources across the cloud. Sangpetch
et al. [102] show that an application-performance-aware cloud can double its consolidation while
lowering response time variance for customer applications. They measured response time based on
network traffic; however, encrypted flows and applications not tied to network flows cannot benefit
from this feedback loop. Normally, the opacity of a VM requires resorting to indirect measures such
as inspecting network packets to measure response time. With cloud-inotify, the same metric
can be derived from accurate information directly from application logs.

3.3 Sources of Latency
The sources of latency are primarily parameters inside the guest kernel and outside of our control.
DS-VMI does its best, but it only receives writes when the guest kernel emits them to the virtual
storage layer and not before. Thus, the fundamental limits on latency are gust kernel flush interval,
DS-VMI processing time, and message propagation time. We assume the guest kernel is outside
of our control, although as discussed in Chapter 2 future guests will likely cooperate with cloud
infrastructure.

The guest kernel introduces latency via two primary mechanisms: the page cache, and write
reordering. Page caches are used to batch updates in fast memory destined for slow persistent
storage. Page caches primarily speedup small write workloads. Page caches also serve as fast access
for reads, and they rely on temporal locality to maintain high hit ratios. Write reordering occurs

50 CHAPTER 3. CLOUD-INOTIFY: CLOUD-WIDE FILE EVENTS

0 2 4 6 8 10 12 14 16
Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0
P
e
rc
e
n
ta
g
e
o
f
R
e
q
u
e
st
s

1s flush

3s flush

5s flush

(a) Sync every second in the guest VM.
70 80 90 100 110 120 130

Time (seconds)

0.0

0.2

0.4

0.6

0.8

1.0

P
e
rc
e
n
ta
g
e
o
f
R
e
q
u
e
st
s

1s flush

3s flush

5s flush

(b) No in-guest syncing.
Figure 3.2: Latency CDFs demonstrating feasibility of near-real-time event-driven agentless moni-
toring using cloud-inotify.

when the kernel takes license to optimally order writes without impacting correctness. A famous
example of write reordering is the Elevator algorithm [62] which minimizes parameters such as
seek time, by taking the liberty to reorder recent writes queued for storage. An even simpler policy
of just writing the next sector with shortest seek time clearly leads to reordering of writes. A
kernel has the undesirable job of balancing recoverability, correctness, and performance. Though
we can not blame the kernel for optimizing where it finds opportunity, tighter cooperation between
a kernel and its underlying hypervisor would greatly aid introspection. However, the theme of this
dissertation is to require zero guest cooperation—thus, we must live with the reordering of the guest
kernel and related latencies.

3.4 Evaluation of Latency
Here we evaluate latency on real-world workloads as observed via monitoring log files. We mon-
itored /var/log/httpd/access.log and found negligible delay at the time granularity we cared
about—on the order of one second. That is, DS-VMI introduces negligible delay from the emitting
of a storage write, to its introspected form.

Figure 3.2 shows the results of 10, 000 requests during the microbenchmark. Figure 3.2(a)
shows the best case when the guest frequently syncs data to disk with a latency of 1, 3, or 5 seconds
on average. Figure 3.2(b) shows an untuned guest where latency is at the mercy of guest kernel I/O
algorithms which flush at much lower frequency than the latencies we tuned. The step-like nature
is because many updates appear at once—many log file lines fit inside a single file system block.
A representative monitoring system such as Akamai’s [24] is an example that would tolerate these
latencies without any tuning of guests, but low latency performance monitoring [102] may require
tuning of guest flush algorithms.

3.5. USING CLOUD-INOTIFY IN A RESEARCH CLOUD 51

Web Browser

Internet

WebSockets Proxy

cloud-inotify

CMU OpenStack

DS-VMI

Figure 3.3: Writes are introspected by DS-VMI. DS-VMI was activated by a cloud user using a
standard OpenStack command-line utility extended to support our DS-VMI cloud API. Emitted
file-level updates are sent to the user via a front-end WebSockets [38] proxy over the Internet to a
web browser.

This is a positive result overall for applying DS-VMI technology to implement a near-real-time
system such as cloud-inotify on top. With zero tuning and zero guest configuration the latencies
are tolerable. In addition, the DS-VMI framework shows negligible overhead in terms of latency.
Especially for an untuned guest—the timeouts inside the guest kernel dominate the latency equation
in this case.

3.5 Using cloud-inotify in a Research Cloud
As laid out in Chapter 2, we implemented DS-VMI within an OpenStack cloud computing cluster at
Carnegie Mellon University (CMU). This cluster had between 15-20 healthy compute hosts over
the course of the DS-VMI deployment. Each host had a modified hypervisor capable of duplicating
writes to our DS-VMI framework. In this section, we demonstrate a working end-to-end application
using this research cloud.

Figure 3.3, shows the flow of file-level updates as they traverse the cloud boundary. Users
activate DS-VMI using a modified OpenStack command-line utility. The modified utility supports
our DS-VMI API extensions residing inside the OpenStack API server. Once activated, the compute
host responsible for this VM sends a command to the KVM hypervisor activating duplication of
virtual disk writes. The writes are duplicated to DS-VMI which transforms them into file-level
updates and emits them on channels for listening subscribers. The virtual machine guest in this

52 CHAPTER 3. CLOUD-INOTIFY: CLOUD-WIDE FILE EVENTS

Figure 3.4: Textual display of file-level updates affecting /var/log/syslog within an unmodified
executing Ubuntu 14.04 Server. Red text denotes the affected byte range, blue text is the file contents
being written, and the bottom black text is a metadata update.

case is an unmodified Ubuntu 14.04 Server 64-bit cloud computing image [17]. Our user’s web
browser has subscribed to some number of channels and receives updates over a WebSocket [38].
Currently, only a textual display is supported in the browser. However, by using web technologies
we enable the development of GUIs utilizing the full power of the modern web.

Figure 3.4, shows the textual view presented to the user in their browser. Google Chrome was
used in this demo as the web browser. In this demo, we subscribed to the /var/log/syslog log
file inside the unmodified Ubuntu Server guest virtual machine. The red text denotes the bytes in
the file being updated. The blue text represents the data being written into the file. The output
respects the recorded file size, and does not print extra bytes even if the actual data written exceeds
the size of the file. The black text at the bottom represents a metadata update. Note, that the file
system, ext4, safely updates metadata after writing data to disk. This safe ordering of operations
led to the temporal gap challenge as mentioned in Chapter 1. Also note, that metadata updates are
assigned a transaction number. This is because block-level writes with granularity larger than a
single file system data structure often contain many file-level metadata updates.

Chapter Four
/cloud: A Cloud Synthesized File System
In persistent storage there are three degrees of freshness. cloud-inotify, discussed in the previous
chapter, is for low-latency monitoring the first degree of freshness—in-flight operations mutating
persistent state. /cloud provides an interface to the second degree of freshness—live state stored
in virtual disks across the cloud. This state is not as fresh as in-flight write operations, nor as old
as state kept in historic archives. /cloud offers a read-only view into the file systems within virtual
disks associated with running instances. The natural fit for implementing /cloud was a file system
interface which provides familiar file-level access to files inside monitored file systems across the
cloud. Thus, /cloud is implemented by a compact FUSE driver as a POSIX-compliant read-only
file system with eventually consistent semantics for file data from remote virtual disks. Because
/cloud’s implementation uses the familiar file system abstraction, it is directly usable by legacy
applications without re-implementation or modification.

/cloud benefits from DS-VMI’s normalization of file system data structures by only needing a
single implementation to handle multiple different types of VM file systems. We envision many ap-
plications for /cloud including querying old log data, scanning for new vulnerabilities, or checking
for misconfigurations. Each of these tasks is impossible in a purely event-driven architecture such
as cloud-inotify. Accessing old log data cannot happen with cloud-inotify because there is
no method of going back in time within a file-level update stream. Although, we will describe a
system of storing these update streams for the purpose of going back in time in Chapter 5. Scanning
through files for vulnerabilities does not make sense with events because many files might never
receive writes in which case they are invisible in cloud-inotify. Scanning for a misconfiguration
has the same exact problem: even if we could travel backwards in a file-level update stream, files
which never mutate are not under the purview of DS-VMI.

The rest of this chapter is organized as follows. Section 4.1 provides an overview of the design
ideas and implementation technologies of /cloud. The core implementation (200 lines of C) is kept
small by leveraging abstractions provided by the DS-VMI mechanism. We describe the /cloud FUSE
driver and normalized format in Section 4.2. Section 4.3 describes /cloud’s consistency model
with metadata versioning. Metadata versioning guarantees metadata consistency, but file data is

53

54 CHAPTER 4. /CLOUD: A CLOUD SYNTHESIZED FILE SYSTEM

eventually consistent. Section 4.4 discusses two applications of /cloud in more detail. The final
Section 4.5 demonstrates the usefulness of a legacy toolchain when layered on top of the file-system-
like /cloud.

4.1 Design and Implementation of /cloud
Batch-style workloads typically operate by scanning through a large corpus of data, computing
some intermediate state, and producing a final answer. Thus, we expect them to be long-running
processes which read large portions of virtual file systems at a time. A large amount of legacy tooling
and frameworks already exist for processing batch-style workloads such as the MapReduce [31]
distributed runtime. These properties guided our design of /cloud.

/cloud needed to implement an interface which did not require rewriting entire toolchains and
frameworks. The pre-existing codebases are battle-hardened from decades of testing, familiar to
engineers, and represent millions of man-hours time worth of development. This led us down the
path of implementing a lowest common denominator interface—the POSIX file system interface—
for accessing live virtual disk state. Because these jobs are long running, and potentially touching
every instance in a cloud, we deemed it not appropriate to snapshot every virtual disk for every batch
job. Thus, we took the design decision to read data directly from live virtual disks. Ideally, snapshots
would enable freezing large swaths of virtual disk state at once for batch workload consumption.
But, taking frequent snapshots of entire virtual disks may incur too much overhead.

/cloud is implemented as a FUSE file system within a Linux host which translates between
host system calls into the virtual disk space of a cloud instance by leveraging DS-VMI maintained
datastructures. Exposing /cloud to other operating systems is as simple as layering an SMB or NFS
server on top because /cloud appears as a simple mount within its host. This means legacy tools
can reside in their operating environment of choice, and still access files within cloud instances for
monitoring. FUSE does not fully support the local Linux inotify interface. If it did, a single FUSE
file system could serve as a shared implementation for both cloud-inotify and /cloud.

/cloud is exportable over the network via Samba or NFS. Administrators can use this interface
to rapidly query log files and configuration state across multiple instances in a cloud with legacy
tooling. For example, consider organizing VM file systems within a hierarchical directory scheme:
/cloud/host/vm/fs/path. Administrators can leverage familiar legacy tools such as grep to
quickly search subsets of VMs. They could also use standard log monitoring applications such as
Splunk [112] to monitor log files within /var/log/ across VMs without executing agents inside
those VMs. /cloud only transmits data when requested via file system operations.

4.2 Implementation with POSIX Read-only Semantics
Less than 200 lines of C code define /cloud’s implementation. This is due to DS-VMI’s normaliza-
tion of file system metadata into an intermediate format, and the power of the FUSE framework for

4.2. IMPLEMENTATION WITH POSIX READ-ONLY SEMANTICS 55
struct gray_inode
{

uint64_t size;
uint64_t mode;
uint64_t uid;
uint64_t gid;
uint64_t atime;
uint64_t mtime;
uint64_t ctime;

};

Figure 4.1: Normalized metadata kept via DS-VMI for /cloud and other purposes. There is a list
of blocks associated with the file not shown. And, in the case of directories, also a list of files within
the directory.

implementing userspace file systems. Figure 4.1 shows the normalized metadata /cloud maintains
via DS-VMI for populating necessary fields when looking up file attributes within the FUSE call-
backs. We chose 64-bit unsigned integers to represent most data because (1) it is unsigned data,
and (2) we felt this field was large enough to cover all of our existing use cases. However, it must
be noted that file systems such as ZFS [78] which are based on 128-bit metadata attributes would
require an expansion of the field sizes of our normalized format. This normalized format is a com-
promise down to a lowest common denominator of representing files. But, exactly like intermediate
formats produced by compilers, it lets us create unified tooling around file data independent of the
source file system.

Notably absent from this structure is a representation of the on-disk byte stream, or an extensible
list of file attributes. We deliberately scope the FUSE interface to being simple and do not expose
file-system specific features or attributes. The stream of bytes representing a file are stored in a
separate list. Although this list is not needed for introspection, as only a reverse mapping lookup
table is needed mapping blocks to files and not the converse, DS-VMI maintains it for /cloud on
every metadata update in near-real-time.

The file system functions implemented by /cloud are listed in Table 4.1. /cloud implements
a very minimal set of 5 virtual file system callbacks. The FUSE frameworks hides a lot of com-
plexity, and a purely read-only file system completely avoids implementing trickier write functions.
/cloud guards itself guaranteeing that any open file descriptor is read only by gating the open
method to return EROFS if the flag O_RDONLY is not set. This ensures that callees to /cloud func-
tions operate exclusively on read-only files. Of course, the virtual disk itself has some amount of
churn independent of our external gating—thus, the files are generally writable by the guest.

56 CHAPTER 4. /CLOUD: A CLOUD SYNTHESIZED FILE SYSTEM

Virtual File System Call Implementation
open ensure the pathname exists, and O_RDONLY is set
read read from an arbitrary position in the file into a buffer

getattr get a standard set of attributes about a file (eg size)
readdir read the entries of a directory into a FUSE-specific list

readlink place the pathname pointed to by a link into a buffer
Table 4.1: The customized virtual file system calls required to implement /cloud. /cloud returns
EROFS on any attempt to open a file for writing.

4.2.1 Limitations of Normalization
The normalized format simplified the engineering necessary to create usable interfaces on top of
DS-VMI. However, such normalization requires either a “lowest common denominator” format,
or synthesis of values when a file system does not maintain metadata expected by our normalized
format. It is possible that file systems exist where both issues occur. For example, our normalized
format resembles a simplified UNIX-style inode. This is because our front end, FUSE, lives within a
POSIX environment which expects inode-like functionality from underlying file systems. NTFS does
not maintain all of the same metadata fields as ext4, thus some metadata is synthesized for NTFS.
Mode bits are a great example of the need for synthesis with a normalized format. Mode bits do
not exist within NTFS in the same format as in ext4. In addition, NTFS has a very verbose on-disk
format and large amounts of metadata are currently ignored.

Although very useful, normalization may not work in all cases. The extended attributes of a file
may end up mattering to a specialized application. However, none of the applications we studied so
far for file-level monitoring workloads use extended attributes or file-system-specific attributes. This
is because such infrastructure tools try to generalize across as many file systems and environment
types as is feasible. There is a tension between using the features of a file system, and remaining
generic. Currently, based on the limited set of applications studied in this dissertation, we believe
most tools strive to remain generic. This generality lets them maximize their utility across as many
environments as possible.

4.3 Metadata Versioning
To ensure correctness and a consistent view of guest file systems for legacy tools, we introduce
the notion of metadata versions. A metadata version is a consistent snapshot of a file’s metadata.
A file has at most two metadata versions: its last known consistent state and its current, in-flux
state. Legacy applications reading a file or its attributes are presented with its last known consistent
metadata state. Reads of file data go to the original virtual disk, as shown in Figure 4.2. File versions
only guarantee a consistent metadata view, but the data can change while it is being read from the

4.4. APPLICATIONS 57

FUSE Driver

Metadata Store

Metadata

Data

Legacy Application

Virtual Disk

Figure 4.2: /cloud implementation

virtual disk. In other words, readers using our FUSE driver must occasionally handle stale data.
For append-only style workloads, such as logging, this is rarely an issue because earlier data blocks
are never overwritten unless log rotation occurs.

Our metadata versioning is per-file rather than per-directory. Per-directory metadata versioning
implies transitive closure over the metadata versions of the files within the directory as well. Such
a need for recursive versioning quickly turns into whole-file-system versioning when workloads
involve scanning the root directory which, although conceivable, is not efficient with the format of
the metadata lookup tables for introspection purposes. Thus, we bounded our metadata versions to
be per-file rather than per-directory or per-file-system. This is also similar to the design decision
within the git [43] version control software to track versions of files rather than versions of
directories.

4.4 Applications
In the Google example from Section 3.2.1, we assumed operators could be notified nearly instan-
taneously about misconfigured permission bits. Of course, this can only occur if they are already
being monitored. If one discovered such a misconfiguration after the fact, adding it to a rule base
that checks future streamed updates would not detect instances that already contain the misconfig-
uration. Using familiar commands such as find, one can check permissions across the cloud: find
/cloud/*/*/lib -maxdepth 0 -not -perm 755.

In the log monitoring example from Section 3.2.2, we assumed the insights we want from log
files are already known. But, if we come up with a new metric and want to know its historical
value we can leverage /cloud. For example, perhaps unsuccessful ssh logins were never monitored
before. It would be useful to be aware of how many of these occurred in the past, as they may
represent malicious attempts. Using /cloud and grep we can quickly scan recent logs across all
instances: grep “Failed password” /cloud/*/*/var/log/auth.log.

58 CHAPTER 4. /CLOUD: A CLOUD SYNTHESIZED FILE SYSTEM

Figure 4.3: Command-line interaction with /cloud. In this demonstration, we mount an ext4 file
system using the normal kernel module via the mount command, and /cloud via the gray-fs
command. We then use normal, legacy tools such as ls, find, and diff to show that /cloud has
the same coverage as the Linux kernel’s ext4 module for this file system. The file system being
introspected was an ext4 file system residing within a 20 GiB virtual disk of an Ubuntu 12.04
Server 64-bit guest.

4.5 Exploring a /cloud Mount
In this section we briefly explore a /cloud mounted file system and demonstrate legacy tool sup-
port. In addition, we show complete parity for the introspected file system with the Linux kernel’s
ext4 implementation. Figure 4.3 shows mounting the file system into two paths on our host ma-
chine. The first path, /mnt/linux-ext4 is mounted using the canonical Linux ext4 module. The
second mounted path, /mnt/gray-fs is mounted using our introspection implementation of ext4.

We first explored the mount points using the very simple directory listing command, ls. We see
that at least for the root folder, both ext4 implementations report the same list of files and folders.
Next, we ran find looking for any folder with the name wolf. We found exactly two folders in both
mounts with the name wolf. Finally, we ran the deep comparison tool diff recursively on both
mounts. diff did not find any differences between the two except for device files. /cloud currently
does not recreate device files in exactly the same way as the Linux kernel’s implementation of ext4.
However, for the rest of the 100,000+ normal files, not a single one differed.

This example exploration of a /cloud mount shows the power of a simple file-system-like
abstraction. Legacy tools work without any change, and this makes testing introspection code
much easier because it is possible to compare with pre-existing tooling. If there is more than

4.5. EXPLORING A /CLOUD MOUNT 59

one virtual machine, a tree of mount points is formed using the gray-fs command. These file
systems are mountable over the network as long as the originating virtual disk, or a snapshot of
the disk, is made available over the network. The in-memory metadata kept fresh by DS-VMI is
automatically network available. In our prototype implementation, network availability is provided
by the Redis [101] key-value store.

Chapter Five
/cloud-history: Searchable Backup
Of course, no story about storage is complete without backup. Persistent storage maintains all long
term information for individuals and businesses. Business data has a direct relationship with rev-
enue for many businesses, and individuals are increasingly storing important memories in digital
media formats. Storage is, therefore, subjected to immense amounts of protection. For example,
common backup strategies include keeping three copies of data in at least two formats, with one
copy off-site in accordance to the 3-2-1 rule [100]. Intriguingly, as in the beginning of this disser-
tation with virtualized storage, we find that the backup storage landscape is also changing. Backup
storage systems no longer have the slow, high latency properties of technologies traditionally used
for archiving data such as tape. Modern backup storage systems are based on faster storage tech-
nologies such as arrays of magnetic disks with access times on the order of milliseconds to seconds,
instead of the slower minutes to hours for retrieving and reading tapes. Public clouds reflect this
several orders of magnitude difference in access times across archival storage offerings. Amazon’s
Glacier [30], priced at 1 cent per gigabyte month, takes 3-5 hours to begin retrieving data. Google’s
Nearline [81], also priced at 1 cent per gigabyte month, takes 3 seconds—three orders of magnitude
faster. Enterprise backup storage systems such as Sepaton [107] are also based on magnetic disk
technology and have retrieval times of seconds to minutes. Three orders of magnitude faster access
to archived files opens up a new opportunity for rich queries over history previously trapped within
slow to access and infeasible to query backups.

/cloud-history is a dual exploration into architecting backup with DS-VMI and also opti-
mizations reducing the time to index archived files. This chapter answers two questions: if we
assume a cloud built with DS-VMI, how would we architect backup differently? And, given modern
fast access backup storage systems, how can we efficiently index backup data? In answering the first
question, we find that simply storing the file-level update streams provided by DS-VMI gives a data
structure and format which exactly matches the needs of backup. The log-structure maximizes
sequential throughput, and enables retrieval of previous versions by reverting or replaying events
in the log. The generality of the second question makes it hard: we do not limit the type of index,
nor the type of data being indexed other than assuming it resides within files. Thus, we explore

61

62 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

application-agnostic methods of speeding up the time to index over general files. This second
question, and indeed our solution, is orthogonal to the capture mechanism—DS-VMI—although we
imagined solving it in the context of DS-VMI.

This chapter is organized as follows. Section 5.1 describes at a high level the benefits of using DS-
VMI to capture historic state. However, the optimizations and results of this chapter are independent
of the capture mechanism. Thus, the lessons learned here are applicable to a class of backup systems
which feature fast time to retrieval. Section 5.2 provides a first of its kind analysis of backup data
with a look at whole-file deduplication not for saving space, but for saving computation time.
Section 5.5.2 describes our technique of creating versions of files without system call feedback. We
resort to a heuristic-based approach, as we can not decide when a userspace process “saves” a file.
Section 5.3 describes the amount of file-level deduplication we expect, how we implement it within
the DS-VMI framework, and its effect on indexing workloads. Section 5.5 deals with storing file
logs and versions efficiently on disk for maintaining a high ingest rate, and a quick retrieval time.
Section 5.6 describes how we use another FUSE driver to retrieve historic versions stored on-disk
within file-level log streams. Section 5.7 describes securing the search mechanism, and how secure
search is implemented.

5.1 Transforming Live State into History
In this section we provide an overview of the properties we want in transforming the cloud’s
virtual disk state into a format suitable for archiving and indexing. These properties guide two key
architectural decisions: how do we capture historic state, and how do we store that state for future
indexing?

5.1.1 Desired Properties
We focus in this chapter on three important properties:

1. Capture complete, tamper-free history
2. Scale across different OS’s and applications
3. Support semantically meaningful, efficient indexing
Preserving integrity means tamper-proof capture of the complete history of virtual storage. It

implies independence from guest faults and compromises. Thus, any solution fulfilling this property
needs isolation from the guest environment. In addition, the desired solution must generalize across
different guest environments without requiring guest cooperation. Finally, the desired solution
must provide efficient access to a semantically meaningful version of history. Otherwise, indexing
becomes inefficient, and in the worst case intractable.

5.2. LEARNING FROM HISTORY: A BACKUP CASE STUDY 63

Given our desired properties, we explore applying DS-VMI as the state capture mechanism most
well-suited to our problem. DS-VMI provides isolation by leveraging the strong isolation between
a VM and its hypervisor. DS-VMI provides generality by capturing state at the level of virtual disk
writes without any guest support. Yet, DS-VMI is not limited to the coarse-granularity of the low-
level writes it captures. By intelligently tracking file system metadata, DS-VMI maps each write into
its semantic, file-level interpretation. This makes DS-VMI ideally suited to capture historic state for
/cloud-history.

Of course, either snapshotting or an in-guest agent, such as a versioning file system, could
be used as a state capturing mechanism for /cloud-history. However, snapshotting requires
additional processing to map each snapshot into its file-level interpretation, and does not capture a
complete version of history. Versioning file systems, or any form of guest support, force constraints
onto the guest environment and are vulnerable to faults affecting the guest. We ruled out both
snapshotting and versioning file systems for these reasons, but recognize that with minor changes
to our architecture below, they could replace DS-VMI as a capture mechanism.

5.2 Learning from History: a Backup Case Study
Is the third property discussed in Section 5.1.1 feasible in real world backup systems? Specifically,
is expecting scalability of file-level indexing a valid assumption? Is there any way of increasing
scalability, should it initially prove intractable, while maintaining the generality of indexing? And
are backup systems capable of quick enough retrieval of data to make indexing and searching them
a reasonable expectation? As we discussed in the introduction to this chapter, Google Nearline is an
example cloud-based storage system designed for backup, with high bandwidth and low-latency data
access which undeniably makes the answer to this question yes. Today, Google Nearline promises
time-to-first byte between 2-5 seconds for a bucket, which is typically a set of files. The rest of this
section deals with a study done over a large corpus of backup data in a quest to answer the first
two questions.

5.2.1 Description of Dataset
In order to answer these questions and many more, we studied a large corpus of backup data from a
production backup system. The backups consist of approximately 1 year’s worth of backups, over 58
unique systems. Most these 58 systems are servers running a variant of Linux. The backup system,
deltaic [13], automatically ages the backups. Thus, the first few crawled backups are monthly,
then weekly, and finally daily. Not all of the 58 systems were included in backups for the entire
time period. This is why the total number of system snapshots is less than the number of systems
multiplied by the number of backups. In addition, some systems occasionally fail to backup further
reducing the overall number of system snapshots. Our backups and system snapshots showed
significant variance in the number of files per snapshot, and average growth in files per backup.

64 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

Statistic Value

Number of Systems: 58
Number of System Snapshots: 3268
Number of Discrete Backups: 69

Time Period Studied: 1 year
Total Files: 1.676 billion (14 million deduplicated)
Total Bytes: 146 TiB (4 TiB deduplicated)

Average Number of Files per Snapshot: 512,898 (2,496,899)
Average File Size: 98 KiB (9 MiB)

Average Backup Growth in Files: -10,826 (245,903)
Average Growth in Bytes: 681 MiB (24 GiB)

Table 5.1: This table shows the details of our study of a research backup system used in production
support of a research group at CMU. Parenthetical values are standard deviations, unless otherwise
noted.

We speculate that this variance comes from a single system with a very large amount of small files,
which was eventually taken offline, thereby removing it from backups.

We anonymized the data by only storing HMAC’s of the pathnames in our database. We do not
maintain the private key used by our HMAC function. We are compatible with rsync’s notion of
similarity, which was the primary tool used for capturing file-level state in deltaic. This means that
if we have already recorded a certain HMAC and its modification time has not been modified, we
did not count it as a new unique file. Preliminary statistics and a summary of our collected database
is shown in Table 5.1. Most of the numbers agree with prior backup studies [71]. However, we
observed negative average growth in the total number of files snapshotted due to an outlier backup
which dropped over 1.7 million files at once. Excluding this outlier gives an average backup growth
in files of 14,594 (standard deviation of 125,602).

Table 5.1 shows a two orders of magnitude drop in the total number of files vs the number of
deduplicated files. As we will see in the next section, eliminating file-level duplicates has an immense
impact on the time to index for real-world indexing applications. In addition, we note a similar
two orders of magnitude reduction in the number of bytes. Although research on backups shows
an even greater space savings with variable-sized chunk deduplication, we find that the metric with
highest impact on time to index is in the number of files—not the number of bytes. This is directly
reflected in our experiments.

5.2. LEARNING FROM HISTORY: A BACKUP CASE STUDY 65

20 60 100 140
100
300
500
700

G
ib

ib
yt

es

Total

20 60 100 140
20

40

50 Deduplicated

20 60 100 140
VM Image

1
2
3
4
6

Fi
le

s
(m

illi
on

s)

20 60 100 140
VM Image

0.1
0.2
0.3
0.4
0.5

Impact of File-level Deduplication

Figure 5.1: Deduplicating at a file-level leads to a 9.1x reduction in the number of files to index, and
a 7.2x reduction in storage requirements (NC State, VCL Windows-based images). The raw bytes
and files appear to grow linearly. The additional unique bytes and files appear to grow sub-linearly,
and possibly logarithmically. Linear fits are shown as the red lines.

66 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

0.5 1.5 2.5 3.5
0

40
80

120
160

T
eb

ib
yt

es

Total

0.5 1.5 2.5 3.5
0
1
2
3
4

Deduplicated

0.5 1.5 2.5 3.5
0

400
800

1200
1600

F
ile

s
(m

ill
io

ns
)

0.5 1.5 2.5 3.5
VM Images (thousands)

0
4
8

12
16

Impact of File-level Deduplication

Figure 5.2: Deduplicating at a file-level is even more effective when applied to backups of systems.
The unique file curve flat lines as more and more snapshots were taken of file systems by Deltaic.
Linear fits are shown as the red lines.

5.2. LEARNING FROM HISTORY: A BACKUP CASE STUDY 67

5.2.2 Effect of Duplication
Although we had some early hints that file-level deduplication would greatly assist an indexing
workload, we had no true validation that file-level deduplication works at scale until this backup
study. Initially, we took a dataset of close to 140 virtual machine images from a cloud at NC
State and investigated deduplicating them at a file-level. The results are shown in Figure 5.1. We
observed a very promising 9.1x single order of magnitude drop in the number of unique files needing
indexing, and 7.2x drop in the amount of space needed to store these images. These VM images
had significant duplication between them because they were all based on Windows OS with only
application-level customizations.

Although proving the point that significant deduplication exists across many VM images, we
really want to know if it will be tractable to search at a file-level the snapshots of virtual storage.
Figure 5.2, shows the results from an almost one-year study of the Deltaic backup system. We cut
down the intractable 1.7 billion files stored in snapshotted file systems, to the more tractable 14
million unique files after applying file-level deduplication. In addition, there are significant storage
savings to be had from close to 160 TiB stored down to less than 4 TiB stored. Both reductions
represent two orders of magnitude reduction. As will be shown in later sections, the reduction
in the number of objects to index drastically reduces the time it takes to re-index for various
indexing workloads. Indexing workloads appear CPU-bound, not disk-bound. Thus, traditional
deduplication at a block-level had very little impact on the overall time to index. This is an important
point because it demonstrates the immense value of file-level deduplication for indexing workloads.
Classic deduplication would need a second index over files not just blocks to speedup file-level
indexing workloads. At the same time, classic deduplication offers the best savings in terms of raw
bytes used. In reality, there is no reason to choose one over the other because file-level deduplication
easily layers over block-level deduplication technology operating at a lower abstraction level. In fact,
using them in tandem seems like the best idea because we can pair the bytes saved with quick file-
level indexing.

5.2.3 Analysis of Trends
Putting this all together, we see that over time the number of unique files grows with a very low
slope. It may asymptotically approach a constant value given enough data and workloads with little
file-level churn. If we ignore the ramp up part of the curve with the initial set of 40 snapshotted
systems, our slope becomes negligible and we are essentially asymptotically approaching 14 million
unique cloud-wide files. The amount of bytes added by this smaller set of files accounts for 3/4
of the unique bytes in the systems studied. This is an interesting trend, because it implies that
the new, non-unique files are fairly large. Potentially they are large multimedia files such as video
files, although we do not know due to the HMAC scrambling of path names. The trend without
deduplication is precisely as expected—the number of files and bytes grows linear in the number
of systems snapshotted. This is expected because backup workloads repetitively add the same data

68 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

Version Size Files Bytes Release Days
(MB) Same Same Date Stale

2.10.1 60 100% 100% 12/14/09 0
2.10.0 59 88% 60% 10/26/09 49
2.9.0 57 57% 30% 04/17/09 241
2.8.0 53 40% 25% 10/20/08 420
2.7.0 53 35% 22% 04/22/08 601

Table 5.2: R Source Tree Similarity

Version Size Files Bytes Release Days
(MB) Same Same Date Stale

1.4.1 47 100% 100% 01/15/10 0
1.4.0 47 99% 78% 12/08/09 38
1.3.4 48 98% 73% 12/01/09 45
1.3.3 47 88% 43% 06/14/09 215
1.3.2 46 82% 37% 04/22/09 268
1.2.9 33 20% 5% 02/17/09 332

Table 5.3: OpenMPI source tree similarity.

over and over again with each backup. Unless there is significant churn in the number of systems
backed up, we expect generally linear growth.

Of pivotal importance to this chapter and the viability of indexing backup data is the trend
of unique files. After the first backup, we see the vindicating trend that not many new files are
encountered. There is a clear diminishing returns effect, which is exactly what we want for efficient
indexing. After an initial index is constructed, smaller incremental updates are needed to keep it up
to date. In addition creating new indexes is cheaper with such a large reduction in the file space.
This discovery, along with the industry trend of ever cheaper storage with quick access times, makes
a searchable backup system practical. As we will show, even a single node could index this cut down
unique file space.

There is a step nature to all four graphs in Figure 5.2 which is due to a special system designated
as an encrypted VM disk storage server which stores millions of small chunks for virtual disks in
the form of small files. Such a system is not necessarily representative of cloud workloads, but it is
a real example backup user.

5.3. SOURCES OF WHOLE-FILE DUPLICATION 69

Version Size Files Bytes Release Days
(MB) Same Same Date Stale

2.6.33.1 353 100% 100% 03/15/2010 0
2.6.33.0 353 99% 98% 02/24/2010 19
2.6.32.9 341 71% 49% 02/23/2010 20
2.6.31.12 326 56% 33% 01/18/2010 56
2.6.30.10 315 47% 27% 01/06/2010 68

Table 5.4: Linux Kernel Source Tree Similarity

0

500

1000

1500

2000

2500

0 10 20 30 40 50 60 70 80

Fi
le

s
(T

ho
us

an
ds

)

Virtual Disks

Raw
Deduplicated

(a) Size of virtual disk library in files.

0

50

100

150

200

250

300

0 10 20 30 40 50 60 70 80

G
B

Virtual Disks

Raw
Deduplicated

(b) Size of those files in bytes.
Figure 5.3: Effect of file-level deduplication on virtual disks in a virtual disk library.

5.3 Sources of Whole-file Duplication
In this section we develop the intuition for why large amounts of duplicate files reside inside and
across monitored machines. Based on this developed intuition, we posit that rapid indexing of
backup data is feasible by orders of magnitude reduction in the number of unique files to index. It
is this intuition coupled with experimental indexing results that guide the addition of a unique file
index to /cloud-history.

As an example of duplication that can occur within a single system, we studied three open source
projects over large time scales. We expect source code to have a relatively high rate of file-level
changes in comparison to installed system files, applications, or media files. On a day to day basis,
developers touch many different files. But most system files, applications, and media files are written
once and read many times. They only change during installation, upgrade, or removal.

Figure 5.2 shows the amount of duplicate files within the R open source project. The R project
is a widely used statistical computing package. Yet, over a 2.5 year time period, over one-third of
all files in the project remained identical. The files accounted for one-fifth of all on-disk bytes for
the R source tree. This suggests that the frequency of change at the file-level is not high in general,
even over long periods of time.

70 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

Figure 5.3 shows the number of files that are identical in different releases of OpenMPI. Open-
MPI is a message passing library frequently used in the context of supercomputers and high perfor-
mance computing. Even versions that are more than six months apart show substantial similarity:
between versions 1.3.3 and 1.4.1, nearly 88% of the files are identical. These files account for nearly
43% of total source tree size in bytes. Other open source projects show similar results.

Figure 5.4 shows the amount of duplication within various Linux kernel source trees. The Linux
kernel is one of the most active open source projects in the world, and is comprised of millions of
lines of C code. Out of the three open source projects studied, the Linux kernel had the highest
amount of file-level churn. However, over three months of releases almost half of the files remained
identical, which accounted for 27% of the bytes.

We also studied real-world Windows XP file systems with a dataset from NCSU’s VCL cloud.
Figure 5.3 shows the impact of deduplication across systems at the file-level on 78 virtual disks
from the VCL cloud. The number of files with distinct content grows much more slowly than the
total number of files. Figure 5.3(a) shows less than 500 thousand distinct files out of two million
total files in 78 virtual disks—almost all from a production cloud at NCSU. The storage capacity and
I/O bandwidth savings from deduplication of these files is substantial: 50 GB rather than 250 GB,
as shown in Figure 5.3(b). Although reproduced here for quick reference, a more complete picture
continuing the trend lines for the NCSU cloud dataset is in Figure 5.1.

5.3.1 Impact of Whole-file Deduplication on Indexing Workloads
We studied four representative indexing workloads to understand the impact of whole-file level
deduplication on their performance. The results are shown in Figure 5.4. tar [39] is a base-
line program which has very little CPU usage, although it has to crawl all files as if it were an
indexer. ClamAV [21] is an open source virus scanner which searches for viruses throughout all
files. Recoll [94] is a full-text search tool for Linux and UNIX desktops. Apache Solr [116] is a
full-text document search tool designed for high performance. The applications studied show an
average speedup of 5x over this dataset. Cutting down the time to index is critical for making a
flexible search system that is low-latency, efficient, and usable. Today, waiting for the retrieval of
backup data may take hours. With /cloud-history, waiting for the answer to a new query might
take hours. However, once indexed, future queries benefit from cached indexes with low-latency
response times.

We assume user queries are deterministic: given the same object, they return the same result. A
trivial optimization for minimizing user query time is result caching. Result caching helps queries
by caching the results of previous queries. While it minimizes wasted CPU cycles, result caching
only helps future queries. However, we can leverage the deterministic nature of queries to also
optimize individual queries.

Many modern file systems compute hashes over the data in files to ensure data integrity [33,
99, 133]. Such hashes offer a backup system that indexes file systems a free opportunity to leverage
pre-computed hashes for duplicate file detection. Even if a file system does not compute a hash

5.3. SOURCES OF WHOLE-FILE DUPLICATION 71

recoll ClamAV tar solr0

1

2

3

4

5

6

7

Ti
m

e
(h

ou
rs

)

24+ Indexing /cloud-history

Figure 5.4: File-level deduplication not only saves space, it also saves immense amounts of compu-
tation. On average, the three workloads shown above experienced a 5x speedup by using just an
application-agnostic unique file index. These experiments were carried out on a single node, on the
NC State VCL Cloud image dataset.

72 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

over file data, hashing represents a fixed cost at the ingest of a backup system. There are many
hashing algorithms and one with suitably high performance may be chosen to minimize impact on
the ingest rate of a backup system. Thus, whether opportunistically obtained from a file system or
computed at ingest, we can safely assume whole-file hashes are cheap.

Even single one-off queries, with no repeat or reuse of results in the future, benefit from dupli-
cate tracking. They benefit by skipping duplicates resting on potentially slow backup medium, and
eliminating the wasted cost of the query computation on duplicate objects. Of course, we implicitly
assumed that backups are highly redundant. As shown in previous sections, this is a safe assump-
tion because often backed up systems contain similar operating systems, libraries, and userspace
applications which is what we found in the last section. For example, UNIX-like operating systems
account for over 67% of all servers worldwide [125]. Microsoft Windows variants account for over
90% of all desktop and laptop computers [125]. Linux runs on 97% of all supercomputers [125].
Leveraging this similarity is an opportunity to optimize user query execution time.

5.4 Architecture of /cloud-history

1. Crawl

Virtual
Disk

Extracted
Metadata

File-Level
Update Stream

Metadata
Store

3. Introspection2. Hypervisor

Sector
Writes

4. File Logging

filei log

Figure 5.5: An overview of /cloud-history’s architecture capturing writes via the hypervisor and
translating them into a file-level update stream. The final stage stores the file-level update stream
into per-file logs for indexing, garbage collecting, and application of retention policies.

Guided by the properties in Section 5.1.1, we chose DS-VMI as the technology to capture and
map back into a semantic space virtual disk writes. In Figure 5.5, we review the stages of DS-VMI
for virtual disks, and explain how /cloud-history stores logs of the output from DS-VMI which
form the indexable history. We discuss the details of efficiently storing and indexing such logs in
Section 5.5.4.

The first three stages remain the same, as they were described in Chapter 2. First, as shown
in Figure 5.5, we scan the virtual disk (discussed in Section 2.3). This step extracts critical pieces
of file-system metadata used at runtime to map virtual disk writes into their semantic, file-level
meaning. This step can be performed either offline or online. Second, the hypervisor or network
expose writes to the DS-VMI system (discussed in Section 2.4). This duplication may be turned

5.4. ARCHITECTURE OF /CLOUD-HISTORY 73

on or off at will. The third step takes an arbitrary number of steps to resolve the semantic meaning
of a write at the file level (discussed in Section 2.5). In the worst case, writes are not associated
with any file system visible entity.

Once converted to a file-level update stream, traditional VMI then inspects the operation and
emits the update to interested monitoring applications. In /cloud-history, we instead capture the
stream of file-level updates into a centralized, persistent cloud store. We separate out the single large
stream of file-level updates into per-file logs. Each log represents the state changes that occurred
since the VM booted or was last snapshotted.

Finally, not shown in Figure 5.5, these streams are indexed to best serve the queries that users
find important in /cloud-history. For example, a virus scanning indexer looks for traces of infec-
tions at any point of a file’s life. This type of indexer inspects every update to every file. A document
indexer, letting users quickly search through their documents such as Word or PowerPoint files, is
only interested in files with certain extensions and their versions. A third type of indexer, a vulner-
ability scanner, is only interested in files containing binary, executable content. It indexes certain
paths containing well-known binaries, and files with specific extensions. A vulnerability index, if
kept up-to-date, is useful in answering questions such as, “which of our servers were vulnerable to
Heartbleed [23]? and for how long were they vulnerable?” Such questions are important to answer
because Heartbleed is exploitable without leaving a trace behind, and may lead to compromised
customer data. Warning the right customers with the right dates requires answering such questions.

5.4.1 Consistently and Efficiently Naming Files without Coordination
Thus far, in this chapter, we have developed an intuition that lots of duplicate files exist both within
and between systems, we experimentally confirmed this intuition, and we established the impact of
whole-file deduplication on four representative indexing workloads. In short, whole-file dedupli-
cation is necessary for the scalability of indexing workloads running on top of /cloud-history.
If it is such an important capability, how will we identify duplicate files across systems? At first
glance, this seems like the perfect job for a hash function. However, modern cryptographic hash
functions require re-reading all file data in order to update a hash unless they are appending writes.
For potentially very large files, re-reading all of their bytes for every update is incredibly inefficient.
Such a strategy would lead to the backup system slowing to a crawl as it tried to re-read large
amounts of data.

Table 5.6, shows four competing methods for computing whole-file hashes. Hashing, H in the
table, requires re-reading all bytes and results in the worst case O (N) run time. In addition,
traditional hashing algorithms can not benefit from multiple processors. Merkle Trees, MT in the
table, only require updating from a leaf to the root in a tree of hashes, and require a better, but sub-
optimal O (log fN + 1). The special case single-level Merkle Tree, SLMT in the table, requires again
a worst case of O (N), but without needing to re-read all bytes. Incremental hashing [12] takes
an approach which provides O (1) updating of the whole-file hash for both random and sequential
writes, and it can benefit from multiple processors. This is attractive as it is the most efficient known

74 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

Operation H MT SLMT IH
Update (S) O (1) O (log fN + 1) O (N) O (1)
Update (R) O (N) O (log fN + 1) O (N) O (1)

Update (B) O (N) O(
fN ′−1
P (f−1)

+ ⌈log fN
′⌉
) O (

N ′+1
P

+N
) O (

N ′

P
+ ⌈log 2N

′⌉
)

Space O (1) O(
fN−1
f−1

) O (N + 1) O (N + 1)

Figure 5.6: Running time of operations for three different hashing schemes. N is the number of
blocks in a file, N ′ is the number of updated blocks in a batch update, f the fanout of the tree, and
P is the number of processors. H stands for hashing, MT for Merkle Tree, SLMT for single-level
Merkle Tree, and IH for Incremental Hashing [12]. For the updates, S stands for Sequential, for
random, and B for batch.

hashing algorithm for updating a whole-file hash from a single write. In DS-VMI, we deal with
single writes to a file all the time, and need a method of quickly computing a whole-file hash without
re-reading all of the bytes of the file. Incremental hashing provides precisely this functionality.

In addition, incremental hashing is more space-efficient, requiring only O (N + 1) storage. A
Merkle tree requires O (log fN + 1) hashing operations to update a whole-file hash, and O(

fN−1
f−1

)
space. However, for a large portion of file sizes experienced in practice the performance of Merkle
trees may closely approximate that of incremental hashing. This is due to the decimation provided
by having a large fanout at the bottom of the Merkle tree. This decimation keeps the Merkle tree
short in height, requiring only a few extra hash operations over the simpler incremental hashing
paradigm.

We envision extending DS-VMI with incremental hashing or Merkle trees for quick cross-VM
whole-file deduplication. By batching updates across similar VMs, we expect whole-file dedupli-
cation to greatly reduce bandwidth requirements while providing continuous data protection to
user-specified files. We need to perform a parameter sweep to determine the best default batching
value across a mixture of write workload types.

Incremental hashing [12] is the only method which supports all of our unique hashing re-
quirements. Incremental hashing provides a hash construction which supports random updates,
is compact, requires no re-reading of data from the virtual disk, and offers collision resistance.
As shown in Figure 5.7(a), incremental hashing works by splitting a file into n chunks, hashing
each chunk using an “ideal” hash function, and combining the hashes using a group operation. As
described in [12], a practical hash function could be from the SHA family, and an efficient group
operator is modular addition or multiplication. Updating, shown in Figure 5.7(b), requires the
inverse of the old chunk hash, the old hash, and the hash of the new block. Using DS-VMI we
have the data needed as input to the hash function hash, and the other information must be stored
as metadata. Modern file systems such as btrfs [99], and ZFS [133] already compute and store
256-bit hashes or checksums for every data block, thus external incremental hashing could have

5.5. STORING AND INDEXING HISTORIC STATE 75

Chunk0

hash()

Chunk1

hash()

Chunkn

hash()

H

(a) Incremental hashing of file chunks.

Chunky

hash()

H'

hy
-1H

(b) Updating an incremental hash.
Figure 5.7: The incremental hashing construction.

very low overhead. We propose using incremental hashing to implement file-level deduplication for
/cloud-history, because it enables efficient re-computation of a whole-file hash on every write
with no read requirements.

5.5 Storing and Indexing Historic State
/cloud-history collects file-level update streams via the DS-VMI mechanism introduced at the
beginning of this dissertation. /cloud-history centrally demultiplexes these streams into per-
file logs kept in a cloud secondary storage service. Each file log is separately garbage collected,
versioned, and pruned. Users of /cloud-history may retrieve any version of any file across all of
their virtual machine instances in the cloud. /cloud-history further maintains a unique file index
over the files of individual tenants. This unique file index serves as the basis of efficient indexing.
Building an index over backups, for example, which files harbor a critical vulnerability, is imperative
for quick query response times.

In this section we describe our implementation of /cloud-history. This includes captur-
ing writes with a hypervisor, and converting those writes into file-level update stream logs (Sec-
tion 5.5.1). In addition, we discuss important operations over those logs such as versioning (Sec-
tion 5.5.2), and garbage collection (Section 5.5.3). We finish the section by describing important
optimizations making storage scalable, and indexing tractable: version deduplication to speedup
indexing (Section 5.5.4), and supporting block-level optimizations for storage scalability (Sec-
tion 5.5.5).

76 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

open("f", O_WRONLY) = 3 MDatime

w[0]write(3, "test", 4) = 4

lseek(3, 4096, SEEK_SET)
write(3, "test", 4) = 4

w[4096]

close(3) = 0 MDatime MDmtime MDsize

Figure 5.8: On the left-hand side are system calls occurring in userspace within a guest. These
system calls cause block writes to a virtual disk. The corresponding block writes are introspected
resulting in the high level events shown on the right-hand side of this figure.

5.5.1 Conversion to a File-level Update Stream
As shown in Figure 5.8, DS-VMI translates low-level operations initiated on behalf of guest actions
into high-level events on files. /cloud-history captures these high-level events into a log file, and
keeps one log per tracked file. Virtual machine introspection transforms block writes into a stream of
semantically important file-level operations. Thus, a file system is represented by many such streams.
This is contrary to the familiar single log structure of log-structured file systems. However, merging
all of these streams into a single log is also possible if maximizing write bandwidth is desired. By
operating on per-file streams, we have flexibility in this design space.

Log-structured files enable quick retrieval of the history of individual or sets of files. Traditional
log-structured file systems must traverse much larger whole-file-system logs to reconstruct per-file
historic state. In addition, log-structured files are self-contained logs of operations to individual files
and are easily manipulated with tools outside of the context of an entire file system. For example,
performing a diff on the history of two log-structured file streams is a cheap operation.

We do not believe that log-structured file streams are a drop-in replacement for whole-disk
snapshotting. It is still valuable to be able to reinstate an entire byte-equivalent disk at some point
in the past and directly boot from that version. Instead, log-structured file streams are useful
by providing a log of file-level operations in between major whole-disk snapshots. Especially for
forensics which often requires detailed logs of operations in order to understand exactly how a
compromise occurred. They are also useful for architecting a backup system with efficient indexing
and querying whole-file versions.

5.5.2 Inferring File Versions with Optimistic File Snapshotting
Creating versions out of file-level update stream logs is as simple as recording important locations
in the log. We could of course let humans manually mark points in the log associated with im-
portant events. More than likely, the human marking the log chooses important points in time,

5.5. STORING AND INDEXING HISTORIC STATE 77

fx update stream
Δtimeout

Automatic
Snapshot

w[4096]w[4096] MDw[0]

Figure 5.9: Files are optimistically snapshotted after waiting time ∆timeout. MD stands for metadata,
and the first write to position 4096 is gray because the second write supersedes it, representing an
opportunity for garbage collection.

although it is possible that they inspect the file contents and make decisions based on the contents
as well. However, ideally we would keep meaningful file versions without any human intervention
whatsoever—completely automated. What type of semantics should we implement? Close-to-open
semantics, as in AFS [49], map well into the expectations of users and are easy to understand.
Every time you close a file a new version is created. However, with DS-VMI we do not have any
insight into the system calls of a monitored system. We only have the writes, thus we must pick
some heuristic for creating versions of files. We settled on a timeout since last write heuristic as an
approximation to a close system call. Empirically it has been shown that cold files tend to remain
cold over long time periods. Thus, as time passes the probability of an actual close increases.

Introspection provides the what—file-level updates—but not the how—system calls. This means
that /cloud-history has no clear boundaries to perform versioning unlike a guest-supported ver-
sioning file system. In-guest agents have the luxury of leveraging system call information such
as open’s and close’s to choose key versioning points for a given file. For example, many dis-
tributed file systems such as the Andrew File System (AFS) [49] have close-to-open semantics for
consistency. /cloud-history has no such luxury. Ideally, versions of a file match at least each
open–close pair. This follows what a normal user might expect: they open files to modify them,
and close them signifying the “completion” of some task. Although valuable, understanding such
open–close pairs is impossible with introspection.

Optimistic File Snapshotting determines when to version a file by waiting a tunable timeout,
represented by ∆timeout in Figure 5.9. This timeout is reset with every update to a file in the update
stream provided by DS-VMI. As studies show [71], practically no files experience continuous up-
dates. Thus, we can choose a timeout after which no more updates will occur with high probability.
Snapshots are just positions in the log file, and work by replaying logs up till the requested version.
Once created, snapshots are aggressively deduplicated and compressed at a byte level. Naturally,
such an approach is prone to false positives—we may infer versions which never logically existed
in the context of the user’s environment. Without costly human annotation or intervention, it will
be very difficult to ensure they are correct.

78 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

write(fd, log_entry, strlen(log_entry))

Δtimeout

Automatic
Snapshot

MD w[0] w[0] w[4096] MDw[4096]

Garbage Collectable

Figure 5.10: Garbage collection is especially important for append-only style workloads, such as
those for log files. Here we see some guest process continuously writes lines into a log file. Blocks
are written many times with redundant log entry data. Only the latest updates matter when a
version is created.

5.5.3 Garbage Collecting Stale Block Writes
Garbage collection works well for workloads which repeatedly touch the same positions in files. For
example, logging programs repeatedly write to the end of log files. These constant, append-only style
workloads manifest themselves as many log entries recording written data to the same portion—the
end—of a file over and over again. As a concrete example, imagine the last data block associated with
a file receiving 10 updates, each representing the whole block, but with log file induced changes. A
version of a log file need only record the last write to any given block. An illustration of such an
append-only scenario is shown in Figure 5.10. Random-write workloads, such as those generated
by a database, benefit less from garbage collection. Retention polices also determine the efficacy of
garbage collection. A retention policy setting a very low timeout, or desiring a version on every
update, reduces the benefit of garbage collection. A retention policy determining versions with a
large timeout or over large time scales benefits more from garbage collection.

In /cloud-history, garbage collection is implemented as a scheduled task that runs asyn-
chronously from the rest of the system. Garbage collection can be paused and restarted at a later
point in time. Typically, garbage collection runs at the same time as generation of versions based
on timeouts as mentioned in the last section, but it can technically run at any time. Between the
versions of a file, garbage collection keeps the last write to the unique set of positions written to
in that version, as well as the last metadata update to the unique set of metadata entries updated in
that version. This new stream is written out as a compacted file-level update stream. The original
stream, where new file-level updates arrive, is truncated.

The effects of garbage collection on three different styles of workloads are shown in Figure 5.10.
Garbage collection is an optimization which helps scale the storage used for retaining history.

5.5. STORING AND INDEXING HISTORIC STATE 79

5.5.4 Whole-File Indexing and Deduplication
Because VMs running in a cloud are derived from a small set of OS and application configurations,
we anticipate large amounts of file-level duplication. These results are confirmed with the NC State
VM disk dataset, and also by our study of backup. One of the major goals of /cloud-history is
to enable indexing over large amounts of historic state. As shown in Figure 5.3(a), even with just
a base set of 140 images, we have over 4.5 million files. Indexers running over such a large corpus
take significant amounts of time. However, as shown in Figure 5.4, running indexers over just the
set of unique files takes an order of magnitude less time.

We expect this trend to be magnified with our versions of files through time. The reasoning
is simple: all of these running VMs will receive the same updates, similar configuration changes if
managed by a single tenant, and probably similar deployed software for any individual tenant. Often,
individual tenants specialize on a certain software stack. For example, many web applications expect
similar back ends such as the popular Linux, Apache, MySQL, PHP (LAMP) set of applications.
Thus, many file-level update logs will contain the same versions of files repeated across many VMs.
Our hunch is confirmed with a crawl over real backups from a small research cloud as shown in
Figure 5.2. Unfortunately, because /cloud-history only exists as a prototype, we do not have
long-term collections of logs like we do with the backup study, but what we learn from the 3,000+
snapshots is applicable to file-level update streams.

The attractiveness of a first-level index over unique files is that this form of index is OS- and
application- agnostic—a design goal of /cloud-history. Yet, this OS- and application- agnostic
index provides tremendous benefit to index-style workloads, precisely the type of workloads we
want to support with /cloud-history.

Periodically, similar to garbage collection, the whole-file indexer executes and computes incre-
mental hashes over all log-structured file streams. Incremental hashes are saved at each versioning
point into a database for quick retrieval. Thus, each version is still kept on-disk and only a dedupli-
cated index kept in the database. We assume that underlying storage technologies will capture this
duplication via block-level deduplication. Thus, our whole-file deduplication index is maintained
solely to cut down the computation time of indexing.

5.5.5 Block-Level Deduplication and Compression
We expect many duplicate files across VMs especially when tasks such as updates execute. We
also expect duplicated files within VMs as some applications write to a temporary file and then
atomically rename the file to its permanent location. Thus, supporting block-level deduplication to
save storage space across multiple files and multiple disks is important. We could implement complex
pointers directly in the log format. However, keeping these pointers up-to-date during events such
as garbage collection and log compaction unnecessarily complicates the logic required to manage
file-level update stream logs. Hence, we assume underlying storage technology performs block-level
deduplication. As long as the file-level update stream log logic stores writes on block boundaries

80 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

VM1

VM2

w[4096]w[0]MD MDw[n]

w[4096]w[0]MD MDw[n]

Figure 5.11: This figure shows two VMs (notionally, they could be the same VM) writing the
same file. Their metadata which includes timestamps probably differs, but the data of the files is
identical. Block-level deduplication is necessary to reclaim this wasted storage space. Also note that
the metadata updates are often small and highly compressible.

Raw Compression + Dedup0

100

200

300

400

500

600

700

G
ib

ib
yt

es

Block-level Compression and Deduplication

Figure 5.12: Shown are the effects of applying compression (LZ4) and block-level deduplication
on the NC State dataset via ZFS.

5.6. RECONSTRUCTING FILE VERSIONS 81

FUSE Driver

Version Index

Index

Data

Original File

/cloud-history/UUID/path

v1
v2w[0]MD MDw[n]

Log

/cloud-history/UUID/dup
symlink

Figure 5.13: /cloud-history exposes versions of files via a simple synthetic FUSE file system
which gives legacy indexers access to historic state without being rewritten. This figure shows that
reads may come from the original file, or the file-level update stream log. Duplicate file versions
are symlinked to a canonical version.

matching the blocks of the underlying storage platform, block-level deduplication proceeds without
complication.

While it is valuable to have whole-file deduplication, research has shown that block-level dedu-
plication is extremely valuable in the context of backups. Thus, we architected the log-structured
on-disk layout be friendly to block-level deduplication. We assume that all of our file-level up-
date streams are stored in storage that supports block-level deduplication. Modern file systems for
example, ZFS or btrfs, both support block-level deduplication. We structured the log-file update
stream’s on-disk layout such that data blocks are aligned to the blocks of the underlying storage.

This means that given underlying storage that efficiently implements block-level deduplication
and compression, /cloud-history automatically benefits from these savings. As an example of the
benefits of block-level deduplication over whole-file deduplication see Figure 5.12.

5.6 Reconstructing File Versions
When an index does not exist for a specific query, the search mechanism needs efficient direct
access to object-level contents. This means queries need to run as close as possible to the data to
reduce as many bottlenecks as possible. In addition, many objects may be duplicated due to backups
containing duplicates over time as well as across backed up systems running similar environments.
Reducing the number of objects searched through is an important capability to make such search
tractable [5, 96, 97, 105]. Modern backup systems can contain trillions of objects, but duplication
often accounts for 90% or more of the storage space [110, 123].

82 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

w[8192]w[4096]

Footer
0: 0
1: 4096
2: 8192

w[0]

Header
atime
mtime

size

w[4096]w[0] MDw[0]MD w[8192]

Figure 5.14: This shows the final version format after garbage collection, hashing, and timeout
policies are applied. Note that metadata updates are coalesced in the header, and data updates are
coalesced into a distinct set of writes to each block of a file. Each part of a version takes up a single
on-disk block.

V3 w[4096]w[0] w[8192]

w[0]Header Footer w[4096]Header Footer w[8192]Header Footer

V1 V2 V3

Figure 5.15: Reading files means reconstructing state from potentially multiple historic versions.

5.6.1 Efficient Object-Level Access
A backup system must minimize the overhead involved in accessing objects at the granularity of user
queries. Overhead in accessing objects directly affects overall backup query time. The mismatch
between the granularity of a query and the granularity of the backup system creates a fixed overhead.
Ideally, this overhead is zero. In reality, the granularity of all future user queries is unpredictable.
There always exists hypothetical queries with pathological overhead for any backup system. Thus,
a tension arises between the level of granularity to store objects and the ease of implementing that
granularity.

For example, on one extreme a backup system could implement sub-file, record-level indexing.
This results in an explosion of metadata to track, as well as difficult maintenance. File formats
experience significant churn due to tweaking or new emerging standards. On the other hand, a
backup system could implement whole disk, block-level tracking. This results in minimal indexing
and metadata tracking, and is extremely simple to maintain over time. Simplicity has led to this
method being the default backup strategy in many backup systems.

We believe that whole-file granularity is the right granularity for a backup system to implement
because it minimizes overhead to accessing objects, except at the record-level, and it is not difficult

5.7. SECURING SEARCH 83

to maintain. Whole-file granularity requires indexing file systems. This does not pose a problem
because file system on-disk data structures and layout change much more slowly than internal file
formats. In addition, changes to file systems are often backwards-compatible. We therefore expect
low long-term maintenance costs for file-system parsing modules. In addition, most modern file
systems have excellent open source drivers and tools. Thus, whole-file granularity comes at low
cost to the backup system.

5.6.2 Arbitrary Query Search
We cannot predict all potential future user queries. Thus, a backup system must maximize the
freedom of query expression. Future potential queries range from the complex, “find all binaries
vulnerable to a new zero-day vulnerability,” to the simple, “find the latest version of my accidentally
deleted document.” Simple queries are generally handled well by most modern backup systems. This
is because all backup systems have to track the timestamps of backups. They can therefore trivially
serve simple queries looking for the latest version of important data.

Complex queries require carefully thought out architecture to enable high scalability and mini-
mize query time. In-situ computation over backup data provides the highest form of scalability by
discarding objects as early as possible [50]. Early discard minimizes wasted bandwidth and reduces
overall backup system load. The query mechanism must also support arbitrary expressiveness by
allowing any possible query from a user. Ideally, a user expresses queries using tools and environ-
ments familiar to them. For example, a DBA wants to express a historic query using SQL within a
GUI-based client familiar to him or her. The ideal backup system fluidly conforms itself to user-
familiar interfaces. Such a backup system would disrupt the status quo which forces conformance
to the limited, often proprietary, interfaces that are generally provided. User-familiar interfaces
require no training, and no time wasted or fidelity lost translating a query from a domain-specific
to a domain-generic interface.

5.6.3 Evaluating Inferred File Versions
Figure 5.16 shows what happens with no guest coordination when versioning every 30 seconds.
Only two versions match out of 12-13 versions. This implies a mismatch between the frequency
of guest sync operations and the versioning of files. Fundamentally, we can only match versions
across VMs if we match the underlying sync. This means that we must version at least twice as
quickly as the highest frequency sync that we wish to match.

5.7 Securing Search
For the entirety of this chapter, we made the assumption that the user trusted their cloud with
their raw backup data. What if the user does not want to trust the cloud? What if they want
to store encrypted backups? We envisioned this case, and explored [97] architectures supporting

84 CHAPTER 5. /CLOUD-HISTORY: SEARCHABLE BACKUP

0 100 200 300 400 500 600 700
Time (seconds)

W
rit

e

Trace 1

0 100 200 300 400 500 600
Time (seconds)

W
rit

e

Trace 2

Figure 5.16: The arrival times of writes to a file without using sync() from within the guest
OS. With an aggressively synchronizing guest OS, only 50% of the file versions matched. This
demonstrates the worst case, that versions might not match always. Note that the history was
compressible, for both traces we collected between 42 - 47 MiB which compressed down into 900
- 700 KiB.

5.7. SECURING SEARCH 85

it via convergent encryption [35]. At the time of indexing, users provide keys to decrypt stored
objects—presumably files, although they can be at any granularity. We decided on using a convergent
encryption scheme per-user as that allows for file-level deduplication without revealing the contents
of the files. Each cloud user can key their convergent encryption algorithms with different keys,
thus it would be impossible for a cloud to know if one user has the same files as another user.
Frequency analysis would still be possible, and this means the only truly secure method requires
abandoning any deduplication index. If users deem that tradeoff worth it, they are free to use non-
convergent cryptography with the understanding that indexing becomes very costly, potentially
intractable depending on the number of and sizes of files.

We explored three distinct architectures for indexing user-encrypted data: (1) one in which
users trust the cloud, (2) one in which users trust the cloud and a key escrow service, and (3)
one in which users trust no third party with encryption keys. If users trust the cloud, then as the
cloud versions file-level update logs it encrypts the blocks differentiating each version with a key
derived via a hash of those blocks. Thus, if a file experienced 10 block updates in a new version,
those 10 blocks would be convergently encrypted with their hash and that hash stored encrypted
using a key provided by the user. The cloud saves file version keys, but users control their key used
to encrypt them. If users do not trust the cloud, but they do trust a key escrow service, they can
convergently encrypt their files before they are saved to disk. This still exposes duplicate files to
the cloud, but leaves the keys out of its reach. The key escrow service keeps keys for users, and
performs decryption operations when the cloud indexes their files. In the last setting, the user trusts
no third parties. In this case they still convergently encrypt their files before saving them to disk,
but they also keep the keys instead of sharing them. If they want their files further indexed by the
cloud, they must present the per-file keys at indexing time. Alternatively, users could index their
files using their own compute instances pulling encrypted files from /cloud-history.

As a simple initial implementation, we allow the user to provide decryption keys when beginning
their indexing or search operation. Thus, at search or index time, the user sends a list of 3-tuples:
< pathname, encryption method, key >. This list is used to retrieve files from backup storage
before they are indexed or searched. This mechanism could be extended to be less verbose and cum-
bersome for searches of large scope. This requires striking a balance between usability, privacy and
performance. At one extreme is a single encryption key for an entire VM image. The other extreme
(our initial choice) is a key per file within a VM image. A hierarchical file system within a VM image
offers natural directory-level or subtree-level aggregation possibilities for intermediate points of this
spectrum. This would require augmenting the 3-tuples mentioned above with an element denoting
the granularity of the decryption key: < granularity, pathname, encryption method, key >,
with possible granularity values of “VM image,” “subtree,” or “file.” In addition, we are exploring the
option of giving users direct control of the search infrastructure in the cloud for their searches such
that they never reveal keys to any other party. This final path maintains privacy while providing a
service that scales with the scope of searches.

Chapter Six
Future Work
In this chapter we discuss future directions that continue this line of research. The first two di-
rections are incremental pieces of work and are more experimental rather than exploratory. Sec-
tion 6.1 describes a necessary continuation of determining the nature of staleness and how it af-
fects workloads in /cloud. Section 6.2 describes the important questions left to answer about
/cloud-history. Section 6.3 describes a research idea with preliminary validation in the research
literature which automatically generates introspection drivers. It would enable rapid, widespread
adoption of introspection for any file system if proven scalable and robust. Section 6.4 discusses
deriving an introspectable file system from first principles. Research down this path would answer
the question, how can the architecture and on-disk layout of a file system be architected to support
introspection as a first-class citizen? Ideally, it would not need to compromise on performance, but
future work decides whether this is possible or impossible. Finally, Section 6.5 describes creating a
filtering language for supporting and implementing file-level policies.

6.1 Evaluating the Effect of Staleness in /cloud

Remember that /cloud is an eventually consistent interface to files. It is at the mercy of the
monitored system’s file system logic and kernel policies. If the file system batches updates to disk
this delays their visibility to /cloud. Similarly, if a kernel stores writes in a large page cache for tens
of seconds, /cloud must wait until the kernel flushes the writes. For example, we have observed
during experiments, although not studied in-depth, that Windows and NTFS can take up to 30
seconds and sometimes longer to emit writes to a storage device. Understanding the bound of this
staleness, and portion of the file system tree that it affects is important for defining the limitations
of /cloud. Finding the answer provides a precise meaning to the oft cited, but rarely precisely
defined, eventual consistency. While we know /cloud is eventually consistent within at most a few
minutes from an actual event, what is the lower bound for different operating system and file system
combinations? What about the worst case latency? How many files and folders would this affect in
practice? Should we tune monitored systems to synchronize more often to persistent storage, or

87

88 CHAPTER 6. FUTURE WORK

are the eventual consistency bounds reasonable?
Under various workloads, with and without tuning the kernel of the monitored system, we

need to collect the following metrics (1) average time from event to /cloud visibility, (2) average
portion of the file system tree affected by staleness. For the first question, an example worst case
answer would be many tens of minutes, rendering /cloud less useful. For the second, an example
worst case would be the entire file system tree from the root.

6.2 Evaluating the Design Decisions of /cloud-history
/cloud-history has microbenchmarks and early results for all of its major design points. However,
a deeper full end-to-end evaluation has not been carried out yet. Here we consider the remaining
top questions such an evaluation needs to answer. We came up with he following four top-level
questions:

1. How tractable is indexing large amounts of historic data?
2. Using DS-VMI, will ingest rates be enough for modern datacenters?
3. Are temporal-based file versions good enough? Or are content-based versions required to

more closely match user expectations?
4. Do users prefer file-level retrieval, or whole-disk restoration when handling archival data?

Does the coarse granularity of whole-disk backup render it less useful?
For the first question, we have early validation in the form of the backup study. However, we

need to explore more indexing applications to ensure performance remains viable. The second
question requires a detailed look at not only the efficiency of the log formats, but also their overall
network bandwidth requirements. Many streams may not be scalable, even though one stream is
highly amenable to certain optimizations. Per-VM and inter-VM log files are possible—but will they
degrade performance past the point of usefulness? We currently have only implemented temporal-
based file versioning which, at first glance, seems most intuitive to human users. However, this
choice may not match meaningful user-level events such as saves when writes are rapid, reordered,
or arbitrarily delayed by the kernel. This requires a study about how well temporal- vs content-
based approaches match what the human user expected. However, the capability of rapid indexing
may obviate the need for other forms of versioning file-level update logs. Users could use indexing
algorithms to define the versions of files which are important to them. In this manner, indexes serve
as filters over backup data. Finally, answering the last question—what do users prefer—requires a
usability study. Such a study would enable us to make qualified statements about the concrete
benefits of file-level indexable backup.

6.3. GENERATING INTROSPECTION CODE FROM FILE SYSTEM DRIVERS 89

6.2.1 Sustained Ingest Bandwidth: Single vs Many Logs
Backup systems have two primary metrics. One is the amount of storage they need to ensure the
safety of primary live data. By using compression and deduplication, backup systems can end up
using much less storage then they logically contain. The second metric is their ingest bandwidth.
In other words, how quickly can they complete a backup? In our discussion of /cloud-history,
we considered saving a log per file across all monitored file systems. It is currently unclear how
much this design decision will affect the ingest bandwidth of /cloud-history. Future experiments
should tease out the effect of merging file-update streams at various levels. For example, the file-
update streams of an entire file system could be merged together into one stream. Merging streams
may incur a cost on other operations such as garbage collection.

6.2.2 Measuring Time to Index
Preliminary results show that file-level deduplication is a clear win for cutting down the time to
index. What remains to be answered is how does storing file data within file update log streams affect
indexing time? Do the logs hinder or aid indexers? Presumably, reconstruction time of historic file
versions will negatively impact the time to index. File update logs should be compared against other
techniques for storing versions of files such as copy-on-write file systems implemented with tree
structures such as btrfs [99]. We expect file update logs to perform comparable to a log-structured
file system, and they can be directly compared to the NILFS [82] file system.

6.2.3 Effect of Hashing Choice
We proposed using incremental hashing for computing whole file hashes which theoretically out-
performs both traditional hashing and Merkle trees for random updates. This performance edge on
handling random updates makes incremental hashing an ideal candidate for computing a hash on
file update log streams with low latency. This low latency directly translates into higher achievable
bandwidth over streams of random updates, even when performed offline. Although we explored
incremental hashing for its perfect computational fit, it actually should exhibit a higher ingest rate—
one of our key metrics—of file update logs. Head-to-head experiments should be done comparing
the various hashing methods performance on recomputing a hash with random updates. The key
metric is bandwidth in terms of bytes processed per unit time. A secondary metric is the space used
to store the resulting hash. For example, a Merkle tree needs space to store a tree of hashes.

6.3 Generating Introspection Code from File System Drivers
Early validation by Virtuoso [34] shows that introspection code can be generated with a mini-
mal helper application inside the monitored system during a training phase. This thread is very
promising, because it hints at a mechanized process for the current very manual engineering task

90 CHAPTER 6. FUTURE WORK

of writing introspection code. Indeed, the ability to generate such code deterministically implies
that the file system is sound and consistent. This introspection code serves as a run-time check or
hypervisor-verifiable proof that the file system is running correctly.

Generating introspection code by hand is a major roadblock impeding the progress of general
introspection across modern clouds today—especially for closed-source kernels. An approach that is
machine-performed, and thereby scalable, would completely change the introspection landscape and
provide a new wave of tooling for clouds to leverage. As we have shown in this dissertation, scalable
new interfaces to cloud-wide persistent state then become possible, and mechanized generation of
introspection code makes scalability across OS versions and types trivial.

Introspection code generation works presently via two main techniques. The first technique
could be considered supervised with access to ground truth in the form of kernel source code. It
has so far worked with fair success [41]. The second technique is unsupervised without access to
kernel source code. Generally, this method works with a “helper” application [34] running inside
the guest writing known patterns to virtual storage. The introspection generator watches for these
patterns and then infers the relationship between blocks on disk. This technique has also met with
limited success in the past. A breakthrough maturing one of these techniques is necessary to make
introspection a status quo reality in the future.

6.4 Designing an Introspectable File System
As far as we know, no file system has ever been developed within the context of virtual computing
with introspection as a supported feature. Developing an introspectable file system is compelling for
debugging purposes. Introspection enables run-time verification of writes as they are flushed from
a kernel to storage devices. Thus, an introspectable file system becomes easier to develop, debug,
and externally verify. The closest known work in the research literature is ReconFS [67]. ReconFS
embeds inverted pointers with every written page. These pointers are written in the scratch space
of flash pages. Using these pointers, the file system can be reconstructed even if core datastructures
are damaged.

Reverse pointers as in ReconFS, especially with every single page, would immensely ease the im-
plementation of introspection. It seems possible for a small augmentation which could be retrofitted
to legacy file systems making them introspection-friendly. We need just enough information to un-
derstand the type of a block and how it fits into the overall file system. However, the absolute
minimum mapping we want is from block to file. Thus, the only true pointers we need are from
a block to a byte stream within a file, and a notion of the full path of a file. Both of which could
be embedded into the notional “scratch” space of a page on a flash device, or added as a header to
every block on the storage device. This reverse mapping, as in ReconFS, also makes the file system
resilient to failures even those which wipe out core file system data structures.

The minimal data structure for a data block is (1) file byte offset start, (2) file final block flag,
(3) file offset finish which would only be present for final blocks, and the file’s name or a pointer
into a table storing the absolute path. Ideally the path information would be embedded as part of

6.5. A STORAGE INTROSPECTION LANGUAGE FOR POLICY ENFORCEMENT 91

the reverse mapping data structure as well. Directory blocks have a flag set denoting their status as
being a list of path information. Directories could be spread throughout the disk as other files are,
or centrally located in a large table like NTFS’s MFT.

6.5 A Storage Introspection Language for Policy Enforcement
This dissertation was entirely concerned with the mechanism of file-level data capture, its imple-
mentation with multiple interfaces on top, and its evaluation. In Chapter 1 we described what was
out of scope for this dissertation and one such topic was enforcement of policy via introspection.
However, paralleling networking research, development of a filter language and mechanism over
storage traffic seems inevitable for enforcement of policies. Also, having such a language makes it
easier to implement introspection tasks. It would be desirable if the language was flexible enough to
implement introspection. Even better if the language itself could make implementing introspection
for a new file system faster than without it.

There are unique challenges which distinguish creating such a language, and enforcing it on a
write stream, from the creation of the network community’s packet filtering languages. First, many
writes often need to be buffered before the overall operation within the file system can be understood.
This is in contrast to network protocols such as TCP which have sequence numbers clearly defining
the number of outstanding writes and order of a stream. Second, there are many more file systems
in use than network protocols. Predominantly, the standard protocols in networking are less than
a handful: IP, TCP, UDP, and today some would add HTTP. However, the file systems in use today
are more than a handful and include FAT32, NTFS, ext4, ZFS, ReiserFS, XFS, NILFS, Btrfs, GPFS2,
and many more. Each one has its own datastructures, on-disk layout, and algorithms for sending
data to disk. In addition, writes to file systems are wrapped within a hardware-specific protocol
such as SATA or IDE. These factors combine and force a rethink of packet filter and the design of
policy languages when applied to storage.

Chapter Seven
Related Work
This dissertation addresses how we monitor persistent storage in the new reality which decouples
storage from the operating systems and applications running on top of it. Whether this occurs due
to a virtualizing hypervisor, or just because the storage is now network attached does not matter.
The new proposed mechanism for monitoring virtual disk state, DS-VMI, is not limited by the
type of operating system being monitored, the type of underlying storage technology, or where
the writes pass through. It achieves all of this with a single simple set of requirements: practical
support for duplicating storage writes to an introspection endpoint, and theoretical guarantees over
the semantics of the file systems that it monitors. The described interfaces leveraging this proposed
mechanism are designed to serve classes of monitoring workloads, while remaining application-
agnostic. Introspection at this scale has never been described before, although it does parallel the
efforts in the networking community for packet filtering. In addition, many bodies of research relate
directly to this dissertation we described below.

This chapter references and describes the immense body of work that DS-VMI both incremen-
tally improves upon and evolves. The core direct contribution of this dissertation is DS-VMI—an
agentless, OS-agnostic technology exposing guest file system state via intermediate cooperation.
/cloud and cloud-inotify are the first attempts, to our knowledge, at constructing unified guest-
independent interfaces to live file system state. /cloud-history uniquely explores deduplication
in a storage setting not to save space, but to save indexer computation time. In the context of
/cloud-history we show that although bandwidth does matter to indexers, nothing trumps re-
ducing their total workload.

The rest of this chapter explores many facets of the monitoring problem as it has been ap-
proached by related, but different, research communities. Section 7.1 describes the performant
solutions [2, 45, 61, 72] that the storage community provides for snapshotting which could be
polled for file-level updates. Section 7.2 discusses versioning file systems. Although practically
a perfect fit for many of the properties this dissertation achieves, versioning file systems require
guest support which is in direct opposition to a core goal—agentless monitoring. Section 7.3 dis-
cusses approaches in developing smart disks [4, 108] that implement semantic understanding of

93

94 CHAPTER 7. RELATED WORK

file systems and file-level updates. The primary goal of the smart disk community was a traditional
storage goal: increase performance via intelligent prefetching and reorganizing sector layout on
disk. Section 7.4 discusses related techniques [14, 34, 47, 54, 55, 88, 131, 132] for externally
understanding writes to virtual storage. Sections 7.5 and 7.6 describe the traditional agent-based
file-level monitoring solutions, and nascent efforts towards agentless monitoring. Finally, we con-
clude our research in Section 7.7 by surveying a large amount of backup systems and comparing
them within a framework we specifically developed for this purpose. The goal is to understand the
gaps in the backup solution space, especially for searchable backup.

7.1 Snapshotting Derived History
The most efficient implementations of virtual disk snapshotting use block-level techniques to create
snapshots representing only the changed blocks between different versions of a virtual disk. They
can guarantee exact point-in-time versioning of virtual disks. From the beginning of execution,
disk writes go into an overlay over a base disk image. Snapshotting amounts to creating a new
overlay, redirecting writes to the new overlay, and copying the old overlay to a centralized store.
The old overlay may then safely compact into the original disk image, while the new overlay absorbs
writes waiting for the next snapshot event. Compaction ensures that the overlays do not infinitely
accumulate, thereby guaranteeing that reads do not become prohibitively expensive by traversing
too many layers.

To implement the functionality of the interfaces described in this dissertation, block-level snap-
shotting by itself requires re-indexing disk state at a file-level. But, block-level snapshotting has
been made very efficient. Olive [2], Lithium [45], and Petal [61] create snapshots within hundreds
of milliseconds and incur low I/O overhead during snapshot creation. Parallax [72] was explicitly
designed to support “frequent, low-overhead snapshot[s] of virtual disks.” For example, snapshot-
ting at a high frequency of 100 times per second caused only 4% I/O overhead to the guest OS
using the virtual disk served by Parallax. Thus, low overhead, high frequency, block-level snap-
shotting is possible, but it is not enough for efficient file-level interfaces, especially for event-driven
workloads. The Elephant file system [103] efficiently stores versions of files, but does not perform
file-level deduplication. Veeam’s Backup & Replication [120] indexes files after block-level dedupli-
cated snapshotting. We could speedup indexing by skipping portions of the file system tree with old
timestamps, but then we lose security guarantees—nothing prevents tampering with timestamps.

Virtual machine time travel [115] is the most closely related work to /cloud-history. They
implement copying of the block-level write stream to a continuous data protection (CDP) storage
server. By keeping a log of virtual disk writes, they are able to recreate virtual disk state at any
point in the past. They use CDP in combination with memory checkpointing to let an administrator
rollback any VM to a prior execution state. They do not interpret the block-level stream at a
file-level, unlike DS-VMI. For example, file-level deduplication is not efficient because it would
require re-indexing each snapshot created via CDP—potentially re-indexing upon every block-level
modification. The storage community has also proposed using incremental hashing, but in the

7.2. VERSIONING FILE SYSTEMS 95

context of achieving secure properties with cheap, highly distributed state for network-attached
secure disks [44].

Generality: Virtual disk snapshots require no in-VM support. If the virtual disk is implemented
as a file within a host file system, snapshotting that file does not require hypervisor support either—
an underlying file system or storage technology could implement snapshotting. Their block-level
granularity means they work for any type of guest OS, file system, and mix of applications. This
wide applicability makes virtual disk snapshotting an attractive mechanism as it generalizes to all
possible VMs. When implemented as files, they are also easily copied between hosts in a cloud.

Isolation: The mechanism implementing virtual disk snapshotting, whether inside the hyper-
visor, or in the host environment, is completely decoupled from the environment within the VM.
This means that any compromise, misconfiguration, or failure experienced by the VM can not af-
fect virtual disk snapshotting. In other words, virtual disk snapshotting maintains the integrity of
persistent storage.

Cost: The cost of virtual disk snapshotting is fundamentally tied to its strengths. Its generality
and isolation leaves snapshots as a series of point-in-time samples. This is not indexer-friendly:
indexing a snapshot requires applying it to a base image, mounting file systems, and crawling those
file systems for changes. In addition, the discreteness of these sampled views limits history to those
events that persist between them. An alternative is storing not just the overlay containing changed
blocks, but all of the blocks of the VM in every snapshot. Although more expensive, this snapshot
design is more indexer-friendly. However, it only skips the first step of applying overlays—one
must still mount file systems and crawl them for file-level changes. Thus, although a potential for
implementing /cloud and /cloud-history, the time to index with snapshotting would greatly
increase, and is therefore not a good choice as a storage format for implementing latency-sensitive
interfaces such as cloud-inotify.

7.2 Versioning File Systems
Versioning file systems, such as HAMMER [33], NILFS [82], or Elephant [103], directly expose
file-level history which makes them very index-friendly. Unlike virtual disk snapshots, versioning
file systems require no costly application of overlays, no mounting of file systems, and, depending on
their implementation, no crawling to discover changes at a file-level. As an example, imagine Alice
uses a log-structured file system that exposes historic state. Positions in the log represent different
versions of the file system. Indexing the file-level changes since the last version requires crawling the
log entries since the last version. The log forms a compact representation of the file-level changes,
similar to how a snapshot overlay forms a compact representation of block-level changes.

Fine Granularity: A file system, by definition, directly knows the files it stores and the oper-
ations performed on those files—potentially all operations. A file system directly exposes file-level
state. A versioning file system has the opportunity to retain per-file versions, and define the reten-
tion policies over those versions. Users are not stuck to a single set of policies for entire VMs. For

96 CHAPTER 7. RELATED WORK

example, Alice may not want to keep certain private files’ history retained, or versioning of large
binary artifacts derived, and easily regenerated, from source files.

Index-friendly: A versioning file system directly exposes the history of files. With no interme-
diate costly steps between the capture of history, and its file-level interpretation, a versioning file
system is index-friendly. Indexing a log of file-level changes is much cheaper than scanning entire
file systems looking for changes.

Cost: The cost of a versioning file system is abandonment of generality and isolation. We
lose generality by requiring support inside the VM of the versioning mechanism—the versioning
file system. In this case, the cloud requires all VMs to install, configure, and maintain a specific
versioning file system. This is not possible for all types of VMs. Specifically, VMs with closed source
kernels may never support the required versioning file system. We lose isolation by requiring in-VM
configuration and maintenance. Non-malicious, accidental misconfiguration of the versioning file
system leads to lost history for any individual VM. Malicious attacks compromising the VM violates
the integrity of the captured history—attackers have free reign to modify the reported history of a
VM.

7.3 Smart Disks
Semantically-smart disk systems (SDS) [108] interpret metadata and the type of a sector on disk
as well as associations between sectors, but do not support distributed introspection across many
disks. There are three classes of SDS systems. The first embeds knowledge of file systems into disk
firmware. This is very similar to DS-VMI introspecting writes. Although the writes are received
by a storage device, we still have a chance to introspect them before they are physically recorded.
The obstacle facing this approach is hardware limitations such as very low memory. This limits
the amount of buffering and introspection possible. The second assumes the writer exposes data
structures to the SDS system. This requires guest support which sacrifices a core property provided
by this dissertation. The third infers the data structures and on-disk layout of file systems based on
external observations. Often, this third form is helped by a userspace probe process sending known
file-level operations to the SDS system. Even with the probe, there are assumptions that must be
made about the types of file systems being introspected, and the probe itself is a form of agent within
the guest. We consider this third class a very promising research topic which needs more active
exploration. The greatest barrier to introspection in general is the upfront cost of understanding
complex data structures designed without support for external observation. If we could externally
learn these complex data structures automatically on-the-fly, then there are no remaining obstacles
for widespread implementation of introspection.

IDStor [4] introspects disk sector writes in iSCSI network packets with demonstrated support
of the ext3 file system. Their approach could replace the hypervisor hooks DS-VMI currently uses,
especially if cloud instances boot from and use network-based volumes. Essentially, IDStor [4] is
a research effort extending packet filtering technology to storage. Zhang et al. [132] describe an
intrusion detection system placed inside a hypervisor using smart disks to understand guest VM

7.4. VIRTUAL MACHINE INTROSPECTION 97

file systems. However, they focus on more than monitoring and placed significant logic on the
critical I/O path—an entire intrusion detection system—which DS-VMI tries to avoid. All of these
approaches could feed the interfaces envisioned within this dissertation: /cloud, cloud-inotify,
and /cloud-history. Their key architectural difference from DS-VMI and its interfaces is that
they do not consider operating on collections of disks, and instead focus on single disk systems.

7.4 Virtual Machine Introspection
Garfinkel and Rosenblum [42] coined the term virtual machine introspection and developed an ar-
chitecture focusing on analyzing memory, although they introduced the possibility of disk-based
introspection. Their landmark research recognized the power of external observation for varied
tasks such as debugging, security, optimization, and monitoring. DS-VMI is a direct extension and
evolution of their work into the modern world of software-defined storage. Pfoh et al. [89] devel-
oped a formal framework for analyzing introspection systems. DS-VMI, in their framework, would
be classified as an out-of-band introspection method [89]. XenAccess [88] introspects both memory
and disk, but only infers file creations and deletions. Zhang et al. [131] introspect disk, but for en-
forcing access control rules for a single virtual disk system in the critical I/O path. VMWatcher [55]
interprets memory and disk operations, but requires kernel source. VMScope [54] captures events
such as system calls, but does not interpret virtual disk writes. Virtuoso [34] automatically generates
introspection tools, but not for disk operations. Hildebrand et al. [47] describe a method of perform-
ing disk introspection to the point of identifying disk sectors as metadata or data. Maitland [14] is
a system that performs lightweight memory-based VMI for cloud computing via paravirtualization.
All of these approaches provided insight for implementing DS-VMI, but none of the proposed VMI
systems focuses on creating a robust, complete, and performant virtual disk-based introspection
system. In addition, VMI literature, when it covers disks, typically deals with single disk systems
ignoring the more prevalent cloud case involving collections of virtual disks.

This dissertation lifts introspection out of single-system research and thrusts it onto the modern
stage of cloud computing. Thus, it was forced to take a look at what is needed to move introspection
into a distributed, production focused environment. The VMI literature, while touching on all the
necessary parts, has focused more on single-system introspection frameworks. The closest related
work is Maitland [14], which does look at introspection in the cloud, but assumed paravirtualization
and not full generality. The confluence of generality, agentless, and distributed requirements of this
dissertation truly distinguish it from the VMI work of the past.

7.5 Agent-based File-level Monitoring
Agents [7, 21, 36, 40, 51, 66, 112, 113, 118, 119] are the current state-of-the-art method of moni-
toring file-level state within VMs. Agents run the gamut from a simple single-system virus scanner,
to distributed monitoring across fleets of hosts numbering in the tens of thousands within world-

98 CHAPTER 7. RELATED WORK

wide datacenters. ClamAV [21] is an example single-system virus scanner. It requires installation
of the ClamAV scanning engine, and virus definition files. As we mentioned in the introduction,
agents can introduce vulnerabilities into their host environments. Although designed for security
applications, even tools such as virus scanners have the potential of introducing fatal holes into the
armor of their hosts. ClamAV has many such vulnerabilities attributed to it, and a recent example
is CVE-2015-2668 [84]. Symantec enterprise antivirus products also have exploitable vulnerabil-
ities [83] letting attackers control what should be protected resources. Thus, placing such agents
within the boundary of trusted systems creates inherent unavoidable risk.

An illustrative example of a modern distributed monitoring system employing agents is Akamai’s
Query [24]. Query aggregates information from agent processes within every Akamai node across
60,000+ servers in 70 countries within 1,000 autonomous systems. Key to Query’s success has
been its SQL-like interface providing operators an efficient method of answering questions involving
thousands of nodes. Query attempts to guarantee that the staleness of data never goes beyond 10
minutes. Not all of the metrics Query obtains could be obtained from file-level information, such
as the process table which is normally kept only in-memory. Thus, some of Query’s functionality
must be retained by an in-guest agent; however, any file-level capabilities could be factored out by
DS-VMI and its interfaces. Query bounds the end-to-end latency for a usable monitoring system
to be on the order of 10 minutes, which is an easy bound to achieve with DS-VMI as reflected in
Chapter 3. The interfaces layered on top of DS-VMI such as /cloud, are designed to be just as easy
for operators to use as Query’s SQL-like interface. A key lesson from Query is that interface design
is critical for both scalability and usability. Sysman [10] provides a unified file-system interface
to configuration state within Linux systems such as that represented within /proc. Sysman also
has support for modifying configuration state inside systems via writing to special files. Sysman’s
interface design is similar to /cloud, although different in functionality—it permits writes which
mutate guest state. Sysman provides evidence that such unified interfaces help scale management
and reduce administrative overhead when handling thousands of systems.

7.6 Agentless File-level Monitoring
Agentless monitoring is a much less explored area of research, especially at the file-level [60].
Several works have developed agentless monitoring of memory [87, 121], but file-level agentless
monitoring is much rarer. Most systems that claim to execute agentlessly in practice use interfaces
already built-in to modern OSs such as Windows Management Instrumentation (WMI) [75] or the
Simple Network Management Protocol (SNMP) [19]. An example of such a system is Ansible [6]
for distributed system management. Ansible comes from the DevOps community and focuses on
versioned management of system state and configuration across both Linux and Windows hosts. It
describes itself as an “agentless” IT automation tool. For Ansible, agentless means managed hosts
need not install a special agent. They instead must come pre-installed with a version of Python
2.4 or higher, and less than Python 3.0. A managed Linux host must have an ssh server installed,
configured, and network-accessible. A managed Windows host must have the Windows Manage-

7.7. ANALYZING BACKUP SYSTEMS 99

ment Framework along with PowerShell configured for remote access. Although greatly lowering
the amount of configuration, there is still configuration of the monitored hosts. Generally, modern
self-described “agentless” systems actually require some amount of configuration and support from
the hosts they monitor or manage. Thus, most modern “agentless” systems fall back on preexisting
mechanisms and are not truly agentless—they rely on guest support and resources. In this disser-
tation, we develop a truly agentless file-level monitoring framework based on robust virtual disk
introspection.

7.7 Analyzing Backup Systems
We studied backup systems in search of one with the same mixture of qualities as /cloud-history.
What we found is a gap in the backup solution space, which we fill with /cloud-history: an
architecture designed for modern, quick-to-access backup storage that achieves low time to index.
None of the backup systems surveyed was designed around rapid general-purpose indexing with
rapid random access to backup objects. This is probably due to the historic nature of slow-to-
access archival storage. Now, with the introduction of fast-access archival storage we have the
opportunity to implement rapid indexing and, perhaps more importantly, re-indexing. Re-indexing
enables changing and tweaking index algorithms for future demands. For example, the discovery
of Heartbleed [23] benefits from an index of installed software, but also needs an index over user-
compiled binaries and static binaries. Static binaries include libraries which are not necessarily
installed system-wide, thus they will not appear in indexed lists of installed packages. Such indexes
are prohibitively expensive to construct on-the-fly with the backup systems studied in this section,
but would be much cheaper with /cloud-history.

While surveying backup systems, we developed a framework for classifying, comparing, and
contrasting them. This framework helped us methodically catalog backup systems, and pose ques-
tions with more rigor than just a simple survey alone. For example, we can use our framework to
ask the question, what gaps exist in the current design space of backup systems?

We developed nine axes for evaluating backup systems. We believe these axes capture the most
relevant features of backup systems. As we describe each axis we provide examples from the research
literature and industry. The axes which we developed are:

1. Granularity of state (Section 7.7.1)
2. Granularity of time (Section 7.7.2)
3. Complexity of supported queries (Section 7.7.3)
4. Level of consistency (Section 7.7.4)
5. Level of scale (Section 7.7.5)
6. Types of backup format (Section 7.7.6)

100 CHAPTER 7. RELATED WORK

7. Types of storage targets (Section 7.7.7)
8. Types of input systems (Section 7.7.8)
9. Protection Radius (Section 7.7.9)

At the end, in Section 7.7.10, we compare backup systems using these nine axes.

7.7.1 Granularity of State
Granularity of state refers to the level of abstraction at which capturing or indexing data for backup
occurs. We have from lowest level to highest level:

1. Record-level: The granularity is sub-file level and means the backup system deeply under-
stands the applications it monitors and their on-disk file formats. An example is Veeam [120]
for Microsoft Sharepoint.

2. File-fragments: The granularity is at the level of file-fragments, or chunks, which are either
fixed- or variable- length. Two examples are bup (variable-length) [16], and Venti (fixed-
length) [93].

3. File-level: The granularity is file-level meaning the backup system understands the file sys-
tems it monitors, or has agents which collect files inside monitored systems. An example is
the Elephant [103] file system.

4. File-system level: The granularity is file-system level meaning the file-system itself has the
ability to create snapshots, or the backup system has a mechanism to snapshot individual file
systems. An example is btrfs [99] or zfs [133] snapshotting.

5. Block-level: The granularity is block-level meaning an entire block device is snapshotted
at once as just a bunch of bytes. Although the easiest to implement for a backup system, it
provides the least utility to end users. An example is QEMU virtual disk snapshotting [91],
or LVM snapshotting [3].

Although the most useful to end users, record-level granularity is the most complex to implement.
Block-level granularity, one of the most common forms of backup, is the simplest to implement.

7.7.2 Granularity of Time
Granularity of time refers to the nature of the regularity and completeness of versioning in capturing
the changes occurring to monitored systems. There are two forms of backup which affect the
completeness of versions:

7.7. ANALYZING BACKUP SYSTEMS 101

1. Discrete: Snapshots or versions are kept at distinct points in time normally following a
schedule such as hourly, daily, or weekly. An example system that snapshots at scheduled
intervals is Déjà Dup [32].

2. Continuous: Snapshots or versions are kept at every single recorded modification. An ex-
ample file system that can continuously version is NILFS [82].

Clearly, continuous results in a finer granularity for queries. However, continuously recording
modifications could introduce undesirable overhead and might be overwhelming to a user when
intermediate modifications are meaningless.

7.7.3 Complexity of Supported Queries
The complexity of query refers to the expressiveness of the backup system’s query interface. We
identify four styles of expressiveness:

1. Point-in-time: All backup systems support retrieving a version of an object based on a
notion of time. An example is Microsoft Windows System Restore [76] which lets one revert
a system to a prior state in time.

2. Metadata-based: Some backup systems further index metadata from the objects or files that
they store. An example backup system that allows metadata queries is Carbonite [18].

3. File-based: This style of query can leverage indexes created over file data. This requires the
capability of indexing at a record-level inside files. An example of a backup system that can
do this is Apple’s Time Machine [7].

4. General Queries: This style of query is the most rich and expressive. It lets users search not
only over indexes, but to perform arbitrary computation over stored objects as part of their
search. An example of such a system, although not designed for backup, is ZeroCloud [129].

The most basic search query, and simplest, is point-in-time. It is well suited for most basic backup
queries such as, “what was the latest version of this document?” This type of query is also ideal for
recovery from accidental deletion, or when a known good configuration exists. No known backup
system supports efficient deep queries over unindexed data. If one did, it could answer questions
such as, “which binary executables contained a newly discovered zero-day vulnerability?”

7.7.4 Level of Consistency
There are different forms of consistency that a backup system can provide. In addition, with
many complex services depending on each other, the capability of creating cross-system consistent
snapshots at discrete points-in-time may emerge as important in the near future.

102 CHAPTER 7. RELATED WORK

1. No Consistency: The backup system does nothing special to ensure consistency of data. For
example, copying a block device without snapshotting. With writes ongoing during the copy
operation, the back up will not have consistency with any point in time.

2. Point-in-Time Consistency: Care is taken to ensure that backups are consistent with a spe-
cific point in time. Copy-on-write, point-in-time snapshotting is an example of this category.
MagFS [68] is an example system supporting this type of consistency.

3. Multi-system Point-in-time Consistency: This is a special form of consistency which ap-
plies across multiple systems. Coda [104] is an example system that provides this level of
consistency for replicated read-write volumes.

These range from simple to complex. The most commonly implemented form of consistency is
point-in-time consistency. Often this is done via a snapshot mechanism implemented on top of
copy-on-write technology. Backup systems that provide no consistency create impossible to reason
about versions of data. Multi-system point-in-time consistent backups are very rarely implemented.

Unfortunately, many backup systems do not provide any form of consistency. A backup for
these tools consists of scanning the file system or objects of interest. This type of scanning means
objects can mutate during backup execution. Examples include UNIX-based open source backup
tools such as Amanda [135], BackupPC [29], bup [16], dump [114], rsync [73], and Déjà Dup [32].
Proprietary tools such as Dropbox [64], tarsnap [26], Backblaze [9], and Crashplan [22] also walk
or monitor a file system when creating backups.

7.7.5 Level of Scale
Backup systems are designed with different levels of scale in mind. If one exceeds the scale of
a backup system, performance often degrades. For example, backups may become slower if the
number of backed up objects exceeds the design of the system. Or, retrieval of backed up data
may become practically impossible once the scale reaches a certain size because it could become
incredibly slow.

1. Ingest Bandwidth: Backup systems have to scale to an ingest bandwidth that allows a full
backup to complete within a backup window. Often, in datacenters, full backups are per-
formed over weekends when the overall system is less loaded. Thus, a general backup window
will be less than 48 hours. An example backup system with very high ingest bandwidth is
Sepaton [107], which can ingest up to 80 TB/hour.

2. Number of Objects: Depending on the implementation of a backup system, it may only
scale to a certain amount of stored objects. For example, BackupPC can not handle millions
of copies of a single file. This is because it deduplicates by hard linking to a file. Typically,
the maximum number of hard links is a constant from an underlying file system. This limits
the scalability of BackupPC.

7.7. ANALYZING BACKUP SYSTEMS 103

3. Space Requirements: If a backup system does not leverage compression, delta encoding,
deduplication, or other space-saving techniques, it may not scale well when the sizes of backed
up systems is large. An example backup solution that employs deduplication, delta encoding,
and compression is ZBackup [59].

The most scalable backup solutions leverage compression and deduplication to save space, and
various tricks to maximize ingest bandwidth. An example of such a system from the research
literature is Data Domain’s deduplicating file system [134]. Handling large numbers of objects is
a metadata problem, often solved by partitioning the metadata space. An example scalable system
which partitions metadata across multiple metadata servers is Druva [37]. Sepaton performs no
optimizations on the ingest stream, and thus fully utilizes parallel disk write bandwidth to maximize
its ingest rate up to 80 TB/hour. Within 48 hours, Sepaton can ingest up to 4 PB of data.

7.7.6 Backup Format
Backup format refers to how backup data is organized and stored. Although guided by the granu-
larity of state and time, there is flexibility in the format of backups. This format directly affects the
run time of queries over historic data acting as a fixed access cost. Also affecting format includes
techniques such as deduplication and compression, but those are discussed in the scalability section
above (Section 7.7.5).

1. Full: A full backup consists of the entire object or set of objects being backed up. All backup
systems support taking at least an initial full backup, and then they normally switch to a more
efficient backup format. Some backup systems continue to periodically take full backups.

2. Differential: A differential backup consists of the changes to objects since the last full backup.
Thus, they continuously grow in size since the last full backup. An example backup system
supporting differential backup is Acronis True Image [1].

3. Incremental: This form of backup consists of only the changes since the last successful
backup. They can be incremental at various levels of granularity such as byte- or block-level.
An example backup system supporting incremental backups is Deltaic [13].

The choice of backup format impacts three critical resources: (1) bandwidth from the backup
client to backup storage, (2) backup storage space, and (3) object retrieval time. Full backups
provide immediate access to data, but use the most bandwidth and backup storage space. Differential
backups only need one full backup and one differential backup to retrieve data, and they reduce
the required bandwidth and backup storage space. Incremental backups minimize the required
bandwidth and backup storage space, but require more steps to retrieve backup data.

104 CHAPTER 7. RELATED WORK

7.7.7 Types of Storage Targets
The type of storage target has implications for the expressiveness of query that a search system may
support. If backups are stored on tape, than quick, random access is impossible. This practically
rules out deep search techniques that do not leverage indexes. Today, this is not an issue as most
backup systems now use disks [123]. In addition, the type of storage target dictates the most
efficient way of storing backups. Fast backup storage might encourage frequent deep, expressive
queries over historic data.

1. Tape: Tape has been traditionally used for backups. The tar [39] program was designed to
archive data to tape.

2. Disk: Commonly used by modern cloud services such as Backblaze. Magnetic, spinning disks
have the property that sequential access is the most efficient. Thus, large, streaming backups
and restores would be desirable similar to tape. However, the quicker random access times
enables richer querying, and efficient implementation of deduplication.

3. Optical: Optical implies rare access to backups, and would be stored and organized similar
to tape. If it is not re-writable, than an implicit write-once semantic for backups is in effect.

4. Solid State: Fast, random access and high performance I/O make this option the most at-
tractive for backup systems that need to support frequent deep queries. But, high cost usually
rules out this type of storage for backup systems

5. Cloud-based: Cloud backup solutions must contend with WAN network bandwidth and
availability. They must architect to begin and finish backup jobs asynchronously, and expect
disconnections and disruptions during the backup process. An example cloud-based backup
system is tarsnap. Often these backups are encrypted because they go to untrusted off-site
locations.

The choice of backing storage for backup determines a lot about the strategy and method of backup,
and supports or stymies the ability of the backup system to perform frequent deep queries which
examine the contents of backup data.

7.7.8 Types of Input Systems
There are different methods of obtaining streams of data for ingest into a backup system. The
most widely used methods employ backup agents or services that act from within the system they
backup. However, cloud computing has popularized agentless backup of virtual disks via hypervisor-
mediated snapshotting.

1. In-band Agent-based: This is the predominant form of backup today. One runs a backup
program or service inside the system to be backed up. Apple’s Time Machine, Microsoft
Windows System Restore, and other services all use this model.

7.7. ANALYZING BACKUP SYSTEMS 105

2. Out-of-band Agentless: This is a newly emerging paradigm for backup, used widely in
cloud computing. Because cloud instances are usually virtual machines, and their storage is
virtualized, it is easy to snapshot them with hypervisor support. Thus, the most common
form of cloud backup actually captures data via agentless snapshotting.

In-band methods have complete visibility into the system they backup, and can more easily integrate
into their environments. For example, Apple Time Machine lets users browse through versions of
directories and files precisely because it collects and indexes file-level data from within its vantage
point inside OS X. Out-of-band methods do not generally have complete visibility into the system
they backup. Thus, their backups are generally more opaque and occur at a lower level such as the
block-level.

7.7.9 Protection Radius
Protection radius refers to the extent of resilience against different types of failures. It is a function
of the operation of a backup system and its architecture including human processes.

1. Corruption: Examples include an accidentally deleted file, or accidental mangling of a con-
figuration file. Most backup solutions protect against accidental deletion. Dropbox [64], and
btrfs [99] are two example systems that protect against accidental deletion. In Dropbox’s case,
one can go to a web application to restore deleted files and browse file-level history. btrfs
enables the restore and examination of points-in-time over an entire file system, including
currently deleted files.

2. Fault Tolerant: General hardware faults such as corrupt memory, misbehaving CPUs, or
faulty storage layers. Ceph is an example storage system that has built-in fault tolerance, but
it is not Byzantine Fault Tolerant [20]. Apple’s Time Machine can protect against a locally
failing hard drive, whereas btrfs local file system snapshots can not.

3. Byzantine Faults: This category includes malicious attacks including infection by malware.
Malware could destroy or tamper with backups attached to computing systems. An example
type of backup storage which is immune to tampering by malware is tape backups which
generally rest in tape libraries without direct access by a computing system.

Backup solutions generally protect from corruption of future data by keeping historic backups.
Should the backup system itself experience faults, it becomes increasingly more and more difficult to
protect data. This is evidenced by almost no modern backup solutions fully implementing Byzantine
Fault Tolerance. Tape backup systems come close because they maintain state offline. Depending
on their overall architecture, they may be Byzantine Fault Tolerant.

106 CHAPTER 7. RELATED WORK

Granularity of Level of Type ofSystem Time State Query Consistency Scale Backup Storage Input PR
Acronis [1] Discrete Block Time Point-in-time NS Incremental Cloud Agentless FT
Attic [56] Discrete Fragment Time None NS Incremental Disk Agent C

Backblaze [9] Continuous File File None NS Incremental Cloud Agent FT
BackupPC [29] Discrete File Time None Limited Incremental Disk Agent C

bup [16] Discrete Fragment Time None Limited Incremental Disk Agent C
btrfs [99] Discrete File-system Time Point-in-time IN Incremental Disk Agent C

Carbonite [18] Continuous File Metadata None Limited Incremental Cloud Agent FT
Ceph [53] Discrete Block Time Point-in-time NS Incremental Disk Agentless FT
Coda [104] Discrete File-system Time Multi-system Limited Incremental Disk Agent FT

Data Domain [134] Discrete Fragment Time Point-in-time INS Incremental Disk Flexible FT
Déjà Dup [32] Discrete File Time None Limited Incremental Disk Agent C
Deltaic [13] Discrete Block Time Flexible Limited Incremental Disk Flexible C
Druva [37] Discrete File Time None INS Incremental Cloud Agent FT

Elephant [103] Continuous File Metadata Point-in-time IN Incremental Disk Agentless C
HAMMER [33] Discrete File-system Time Point-in-time IN Incremental Disk Agentless C
MagFS [68] Discrete File-system Time Point-in-time NS Incremental Cloud Agent FT
NILFS [82] Discrete File-system Time Point-in-time IN Incremental Disk/SSD Agentless C
rsync [73] Discrete File Time None Limited Incremental Disk Agent C

Sepaton [107] Discrete Block Time None INS Incremental Disk Agent FT
Space Monkey [111] Continuous File Time None NS Incremental Cloud Agent FT
System Restore [76] Discrete File-system Time Point-in-time Limited Full Disk Agent C
Retrospect [95] Discrete File Time None NS Incremental Disk Agent C

tar [39] Discrete File Time None Limited Incremental Tape Agent C
tarsnap [26] Discrete File Time None NS Incremental Cloud Agent FT

Time Machine [7] Discrete File File None Limited Incremental Disk Agent C
Veeam [120] Discrete Block File Point-in-time NS Incremental Disk Agentless FT
Venti [93] Continuous Fragment Time Point-in-time IN Incremental Disk Agent FT

ZBackup [59] Discrete File Time None NS Incremental Disk Agent C
zfs [86] Discrete File-system Time Point-in-time IN Incremental Disk Agent C

Table 7.1: Table comparing modern backup systems. In the scale column, I stands for Ingest
Bandwidth, N for Number of Objects, and S for Space Requirements. In the PR column, C stands
for Corruption, and FT stands for Fault Tolerant.

7.7.10 Modern Backup System Implementations
Now that we have defined important features of backup system design, we catalog modern

backup systems and place them within our nine dimensional space. Table 7.1 shows many different
modern backup systems. We cataloged backup systems according to their documentation for open
source solutions, and advertising materials for proprietary products.

Because of their choice of having cloud-only storage, Backblaze’s customers take on average 2
weeks to complete a full backup [9]. This generally only happens the first time they install the
Backblaze agent. Space Monkey [111] solves this problem by creating a P2P network between 1
TB backup hard drives hosted by their customers, augmented by the cloud.

For those systems supporting agentless backup, they are either based on snapshotting virtual

7.7. ANALYZING BACKUP SYSTEMS 107

storage, or built-in OS-level technology. Acronis and Veeam leverage hypervisor support for point-
in-time virtual disk snapshotting. Microsoft’s System Restore, Apple’s Time Machine, and backup-
supporting file systems like Elephant are agentless, but require kernel-level support. Although Ele-
phant is a research file system, there do exist production-ready file systems with backup capabilities
such as NILFS, btrfs, zfs, and HAMMER.

Notably rare amongst modern backup systems are those which provide consistency guarantees,
continuous granularity, agentless ingest, and rich query capability. Consistent backups are easier
to reason about, especially across multiple systems, which is now the common case in distributed
cloud computing. Agentless ingest implies zero configuration to maintain. This removes operator
errors from corrupting or accidentally disabling backups. Rich query capabilities decrease time to
find and retrieve the right backup data, or answer questions about history. By pairing DS-VMI with
/cloud-history’s index time optimizations, we achieve all of these difficult to implement features
except cross-system consistent backups, while not sacrificing flexibility in any other axis. Multi-
system consistent backups is a part of the design space not served well by either /cloud-history,
or any of the other studied backup solutions.

Chapter Eight
Conclusion
This thesis proposed Distributed Streaming Virtual Machine Introspection (DS-VMI), a funda-
mentally new way of accessing persistent state—agentlessly—without the cooperation of the writer.
Although this thread of research was born in cloud computing, it is applicable to any writer sending
structured data to persistent storage. For example, a stream of writes to a network attached storage
system could be introspected at the level of network packets as a form of deep packet inspection.
The goal of this thesis, which guided the design of its interfaces and optimizations, was to find an
agentless, application-agnostic, near-real-time view into persistent cloud-wide file-level state. With
DS-VMI, we achieved this goal. As a mechanism, DS-VMI is only as useful as the interfaces layered
on top of it. We took a holistic approach by designing three interfaces covering the various types
of persistent state—live and archival—and the various types of workloads—batch and event-driven.

The first interface, cloud-inotify as described in Chapter 3, implements a publish-subscribe,
eventually consistent, selective view over persistent state designed for event-driven workloads. Al-
though it requires rewriting legacy applications to its channel-based subscriptions, it is an applica-
tion and OS agnostic interface. External monitoring agents using cloud-inotify benefit by not
needing completely separate implementations per monitored writer. Again, this is similar to deep
packet inspecting firewalls which are not dependent on the operating system environments of the
network hosts they monitor. The second interface, /cloud as described in Chapter 4, implements a
strongly consistent view over persistent state with a read-only POSIX file system designed for batch
workloads. Such a simple interface—a file system—enables compatibility with legacy applications
without any extra work.

cloud-inotify and /cloud both interface with live persistent state. However, significant effort
is also spent on archived information kept in the form of backups. Historic data holds answers
to many key questions that a business must answer. For example, to fulfill its responsibility to
customers, a business needs to sift through historic logs and file-level clues in the event of an
information security breach. Tracing the flow of information, systems accessed, and steps taken
by attackers is critical information in determining which customers are affected. In order to get
a better understanding of the backup solution space, we performed an in-depth research study

109

110 CHAPTER 8. CONCLUSION

of over 30 backup systems in Chapter 7. We found a dearth of backup systems which could
support quick random-access querying and indexing with agentless capture of state. Yet trends in
archival storage such as Google’s Nearline show that the future of backup includes the heretofore
unthinkable feature of low-latency, random access to backup data. Services such as Dropbox and
Backblaze have begun indexing historic file-level state for consumers for some applications such as
fulltext document search, but the vision of this thesis is application agnostic interfaces. Thus, we
designed an interface leveraging DS-VMI to provide agentless backup to monitored systems with
optimizations maximizing the utilization of storage space, while minimizing the time to index at a
file-level.

/cloud-history as described in Chapter 5, implements an agentless backup system designed
to capture versions of files. File versioning occurs on file-level update streams obtained via DS-
VMI with versions derived by a timeout from the last modification. This timeout heuristic tries to
model user open-close, and ideally modify-save, semantics. /cloud-history assumes fast access
to archival storage. In the case of Google Nearline, this is now a publicly available reality. Our
study, presented in Section 5.2, of a research backup system confirms that although backup data
quickly balloons in scale due to the frequency of scheduled backups, it contains significant amounts
of duplicate files. Previous backup studies [71, 123] find significant duplication at a block- or file-
level, but report in numbers of bytes saved—not in numbers of duplicate files.

In this dissertation, we took a further step in studying the practical implications of such file-
level duplication. We realized, experimentally, that general indexing of backup data at a file-level
becomes practical with file-level deduplication. We found indexing every backed up file with-
out file-level deduplication is prohibitively costly. File-level deduplication—an application agnostic
optimization—reduces the file space by two orders of magnitude making indexing not only tractable,
but reasonable enough to repeat with some regularity. In other words, it should be possible to it-
eratively and interactively explore backup data even when pre-existing indexes do not exist.

At a high level, this dissertation posed the question: is it possible to completely manage and
monitor persistent state agentlessly without any writer support whatsoever? This idea goes against
the two traditional models of either a single reader-writer with absolute control over local file
systems, or distributed file systems. Although distributed file systems allow for multi-readers and
multi-writers, they require the participation, and therefore configuration, of the aforementioned
readers and writers. This dissertation developed a core technology abbreviated DS-VMI, which
formed the foundation for three interfaces: cloud-inotify, /cloud, and /cloud-history. The
unifying theme of finding solutions which are agnostic to the OS or application being monitored
was a difficult goal, but realized in DS-VMI. This dissertation also contributes a prototype im-
plementation including integration into real world cloud software called OpenStack. The answer
developed in this dissertation leads to more questions.

What will the clouds of tomorrow look like? They will be more managed then today, deploying
technologies similar to DS-VMI. By observing the DevOps movement, we see the immediate im-
mense popularity of agentless tooling such as Ansible. This is because agentless solutions require
less configuration of monitored systems, have no moving—breakable—parts within the monitored

111

system, and are impossible to turn off or corrupt by the entity being monitored. It is difficult to
argue against the value proposition of agentless technologies, except for their overheads. Could DS-
VMI be made more efficient? We believe that it can, and it is only a matter of investing engineering
effort. DS-VMI is efficient for most workloads except high bandwidth writes over extended time
periods. To address this overhead, one low-hanging engineering fruit is implementing a zero-copy
optimization between DS-VMI and the monitored writers.

In conclusion, the future looks bright for agentless monitoring and management tooling. The
agentless value proposition is constructed from foundational guarantees that are unobtainable with
agents. Put bluntly, agentless technologies are technically superior to agent-based monitoring. For
example, we can guarantee zero impact on quality of service via agentless solutions, which is impos-
sible to guarantee with agent-based solutions. Even if you took drastic measures, such as turning off
the monitoring agent, agents could disobey, or may have already introduced a malicious entity into
the system. DS-VMI demonstrates a path towards agentless monitoring of persistent storage across
the cloud landscape. It is the first description of a unifying framework for addressing persistent
storage at a file-level. DS-VMI embraces the now prevalent paradigm of software defined storage.
By embracing modern storage’s reality rather than clinging to an anachronistic, monolithic system
design, this dissertation enables a new generation of outsourced monitoring applications.

Bibliography
[1] Acronis International GmbH. Full, incremental and differential backups, Novem-

ber 2012. URL http://www.acronis.com/en-us/support/documentation/ABR11.5/
index.html#1370.html. Cited on pages 103 and 106.

[2] M. K. Aguilera, S. Spence, and A. Veitch. Olive: distributed point-in-time branching stor-
age for real systems. In Proceedings of the 3rd Conference on Networked Systems Design &
Implementation - Volume 3, NSDI’06, Berkeley, CA, USA, 2006. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1267680.1267707. Cited on pages 93 and 94.

[3] AJ Lewis. Lvm howto: Snapshots, November 2011. URL http://tldp.org/HOWTO/
LVM-HOWTO/snapshots_backup.html. Cited on page 100.

[4] M. Allalouf, M. Ben-Yehuda, J. Satran, and I. Segall. Block storage listener for detecting file-
level intrusions. In Mass Storage Systems and Technologies (MSST), 2010 IEEE 26th Symposium
on, May 2010. doi: 10.1109/MSST.2010.5496974. Cited on pages 93 and 96.

[5] G. Ammons, V. Bala, T. Mummert, D. Reimer, and X. Zhang. Virtual machine images as
structured data: The mirage image library. In Proceedings of the 3rd USENIX Conference on
Hot Topics in Cloud Computing, HotCloud’11, Berkeley, CA, USA, 2011. USENIX Association.
URL http://dl.acm.org/citation.cfm?id=2170444.2170466. Cited on page 81.

[6] Ansible, Inc. Windows support — ansible documentation, August 2015. URL http://docs.
ansible.com/ansible/intro_windows.html. Cited on page 98.

[7] Apple Inc. Mac 101: Time machine, January 2012. URL http://support.apple.com/
kb/HT1427. Cited on pages 97, 101 and 106.

[8] Apple Inc. Fsevents reference, August 2015. URL https://developer.apple.com/
library/mac/documentation/Darwin/Reference/FSEvents_Ref/. Cited on page 45.

[9] Backblaze. Backblaze cloud backup services give you peace of mind, November 2014. URL
https://www.backblaze.com/internet-backup.html. Cited on pages 102 and 106.

113

http://www.acronis.com/en-us/support/documentation/ABR11.5/index.html#1370.html
http://www.acronis.com/en-us/support/documentation/ABR11.5/index.html#1370.html
http://dl.acm.org/citation.cfm?id=1267680.1267707
http://tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://tldp.org/HOWTO/LVM-HOWTO/snapshots_backup.html
http://dl.acm.org/citation.cfm?id=2170444.2170466
http://docs.ansible.com/ansible/intro_windows.html
http://docs.ansible.com/ansible/intro_windows.html
http://support.apple.com/kb/HT1427
http://support.apple.com/kb/HT1427
https://developer.apple.com/library/mac/documentation/Darwin/Reference/FSEvents_Ref/
https://developer.apple.com/library/mac/documentation/Darwin/Reference/FSEvents_Ref/
https://www.backblaze.com/internet-backup.html

114 BIBLIOGRAPHY

[10] M. Banikazemi, D. Daly, and B. Abali. Sysman: A Virtual File System for managing clus-
ters. In Proceedings of the 22nd Conference on Large Installation System Administration Confer-
ence, LISA’08, Berkeley, CA, USA, 2008. USENIX Association. URL http://dl.acm.org/
citation.cfm?id=1496684.1496699. Cited on page 98.

[11] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of the Annual Confer-
ence on USENIX Annual Technical Conference, ATEC ’05, Berkeley, CA, USA, 2005. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=1247360.1247401. Cited on
page 10.

[12] M. Bellare and D. Micciancio. A new paradigm for collision-free hashing: Incrementality
at reduced cost. In W. Fumy, editor, Advances in Cryptology — EUROCRYPT ’97, volume
1233 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 1997. ISBN 978-3-
540-62975-7. doi: 10.1007/3-540-69053-0_13. URL http://dx.doi.org/10.1007/
3-540-69053-0_13. Cited on pages xiv, 73 and 74.

[13] Benjamin Gilbert. Deltaic, November 2014. URL https://github.com/cmusatyalab/
deltaic. Cited on pages 63, 103 and 106.

[14] C. Benninger, S. Neville, Y. Yazir, C. Matthews, and Y. Coady. Maitland: Lighter-weight VM
introspection to support cyber-security in the cloud. In Cloud Computing (CLOUD), 2012
IEEE 5th International Conference on, June 2012. Cited on pages 94 and 97.

[15] BSON. BSON, September 2012. URL http://bsonspec.org/. Cited on page 19.
[16] bup. bup, it backs things up!, November 2014. URL http://bup.github.io/. Cited on

pages 100, 102 and 106.
[17] Canonical Ltd. Ubuntu Cloud Images, August 2015. URL https://cloud-images.

ubuntu.com/trusty/. Cited on pages 10 and 52.
[18] Carbonite. Cloud backup 101, November 2014. URL http://www.carbonite.com/

online-backup. Cited on pages 101 and 106.
[19] J. Case, M. Fedor, M. Schoffstall, and J. Davin. Simple Network Management Protocol

(SNMP). RFC 1157 (Historic), May 1990. URL http://www.ietf.org/rfc/rfc1157.
txt. Cited on page 98.

[20] M. Castro and B. Liskov. Practical byzantine fault tolerance and proactive recovery. ACM
Trans. Comput. Syst., 20(4):398–461, Nov. 2002. ISSN 0734-2071. doi: 10.1145/571637.
571640. URL http://doi.acm.org/10.1145/571637.571640. Cited on page 105.

[21] ClamAV. Clam AntiVirus, December 2013. URL http://www.clamav.net/. Cited on
pages xii, 3, 7, 70, 97 and 98.

http://dl.acm.org/citation.cfm?id=1496684.1496699
http://dl.acm.org/citation.cfm?id=1496684.1496699
http://dl.acm.org/citation.cfm?id=1247360.1247401
http://dx.doi.org/10.1007/3-540-69053-0_13
http://dx.doi.org/10.1007/3-540-69053-0_13
https://github.com/cmusatyalab/deltaic
https://github.com/cmusatyalab/deltaic
http://bsonspec.org/
http://bup.github.io/
https://cloud-images.ubuntu.com/trusty/
https://cloud-images.ubuntu.com/trusty/
http://www.carbonite.com/online-backup
http://www.carbonite.com/online-backup
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1157.txt
http://doi.acm.org/10.1145/571637.571640
http://www.clamav.net/

BIBLIOGRAPHY 115

[22] Code 42 Software. Data backup software features - crashplan - free computer backup,
November 2014. URL http://www.code42.com/crashplan/features/. Cited on page
102.

[23] Codenomicon. Heartbleed bug, July 2014. URL http://heartbleed.com/. Cited on
pages 73 and 99.

[24] J. Cohen, T. Repantis, S. McDermott, S. Smith, and J. Wein. Keeping track of 70,000+
servers: the Akamai query system. In Proceedings of the 24th International Conference on Large
Installation System Administration, LISA’10, Berkeley, CA, USA, 2010. USENIX Association.
URL http://dl.acm.org/citation.cfm?id=1924976.1924999. Cited on pages 35, 50
and 98.

[25] R. Coker. bonnie++, 2001. URL http://www.coker.com.au/bonnie++/. Cited on page
38.

[26] Colin Percival. Tarsnap - general usage, November 2014. URL http://www.tarsnap.com/
usage.html. Cited on pages 102 and 106.

[27] C. Colohan. The “Scariest Outage Ever”. SDI/ISTC Seminar Series, 2012. URL http:
//www.pdl.cmu.edu/SDI/2012/083012b.html. Cited on page 49.

[28] J. Corbet. ext4 and data loss, March 2009. URL https://lwn.net/Articles/322823/.
Cited on page 15.

[29] Craig Barrett. Backuppc information, December 2013. URL http://backuppc.
sourceforge.net/info.html. Cited on pages 102 and 106.

[30] R. R. Curd Zechmeister, Alex Tomic and J. Nunn. Enterprise backup and recovery on-
premises to aws. Technical report, Amazon, December 2014. URL https://d0.awsstatic.
com/whitepapers/best-practices-for-backup-and-recovery-on-prem-to-aws.
pdf. Cited on page 61.

[31] J. Dean and S. Ghemawat. MapReduce: Simplified data processing on large clusters. In
Proceedings of the 6th Conference on Symposium on Opearting Systems Design & Implementation -
Volume 6, OSDI’04, Berkeley, CA, USA, 2004. USENIX Association. URL http://dl.acm.
org/citation.cfm?id=1251254.1251264. Cited on page 54.

[32] Déjà Dup Maintainers. Déjà Dup, November 2014. URL https://launchpad.net/
deja-dup. Cited on pages 101, 102 and 106.

[33] M. Dillon. The hammer filesystem. Technical report, DragonFly BSD, June 2008. URL
http://www.dragonflybsd.org/hammer/hammer.pdf. Cited on pages 70, 95 and 106.

http://www.code42.com/crashplan/features/
http://heartbleed.com/
http://dl.acm.org/citation.cfm?id=1924976.1924999
http://www.coker.com.au/bonnie++/
http://www.tarsnap.com/usage.html
http://www.tarsnap.com/usage.html
http://www.pdl.cmu.edu/SDI/2012/083012b.html
http://www.pdl.cmu.edu/SDI/2012/083012b.html
https://lwn.net/Articles/322823/
http://backuppc.sourceforge.net/info.html
http://backuppc.sourceforge.net/info.html
https://d0.awsstatic.com/whitepapers/best-practices-for-backup-and-recovery-on-prem-to-aws.pdf
https://d0.awsstatic.com/whitepapers/best-practices-for-backup-and-recovery-on-prem-to-aws.pdf
https://d0.awsstatic.com/whitepapers/best-practices-for-backup-and-recovery-on-prem-to-aws.pdf
http://dl.acm.org/citation.cfm?id=1251254.1251264
http://dl.acm.org/citation.cfm?id=1251254.1251264
https://launchpad.net/deja-dup
https://launchpad.net/deja-dup
http://www.dragonflybsd.org/hammer/hammer.pdf

116 BIBLIOGRAPHY

[34] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso: Narrowing the semantic
gap in virtual machine introspection. In Security and Privacy (SP), 2011 IEEE Symposium on,
May 2011. doi: 10.1109/SP.2011.11. Cited on pages 89, 90, 94 and 97.

[35] J. R. Douceur, A. Adya, W. J. Bolosky, D. Simon, and M. Theimer. Reclaiming space
from duplicate files in a serverless distributed file system. In Proceedings of the 22nd
International Conference on Distributed Computing Systems (ICDCS’02), ICDCS ’02, Wash-
ington, DC, USA, 2002. IEEE Computer Society. ISBN 0-7695-1585-1. URL http:
//dl.acm.org/citation.cfm?id=850928.851884. Cited on page 85.

[36] Dropbox. Dropbox, December 2013. URL https://www.dropbox.com/. Cited on pages
45 and 97.

[37] Druve. Scalable endpoint backup for cloud and onpremise, November 2014. URL http:
//www.druva.com/why-us/massive-scalability/. Cited on pages 103 and 106.

[38] I. Fette and A. Melnikov. The WebSocket Protocol. RFC 6455, 2011. URL https://tools.
ietf.org/rfc/rfc6455.txt. Cited on pages xiii, 51 and 52.

[39] Free Software Foundation. Gnu tar, July 2014. URL http://www.gnu.org/software/
tar/. Cited on pages 70, 104 and 106.

[40] Frost & Sullivan. Analysis of the SIEM and log management market. Techni-
cal report, Frost & Sullivan, http://www.frost.com/sublib/display-report.do?id=
NC9D-01-00-00-00, November 2013. Cited on pages 6 and 97.

[41] Y. Fu and Z. Lin. Space traveling across vm: Automatically bridging the semantic gap in
virtual machine introspection via online kernel data redirection. In Security and Privacy (SP),
2012 IEEE Symposium on, pages 586–600, May 2012. doi: 10.1109/SP.2012.40. Cited on
page 90.

[42] T. Garfinkel and M. Rosenblum. A virtual machine introspection based architecture for
intrusion detection. In In Proc. Network and Distributed Systems Security Symposium, 2003.
Cited on pages 9 and 97.

[43] Git. Git basics - recording changes to the repository, 2015. Cited on page 57.
[44] H. Gobioff, D. Nagle, and G. Gibson. Embedded security for network-attached storage.

Technical Report CMU-CS-99-154, Carnegie Mellon University, June 1999. URL http:
//reports-archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-154.pdf. Cited on page
95.

[45] J. G. Hansen and E. Jul. Lithium: virtual machine storage for the cloud. In Proceedings of the
1st ACM Symposium on Cloud Computing, SoCC ’10, New York, NY, USA, 2010. ACM. ISBN

http://dl.acm.org/citation.cfm?id=850928.851884
http://dl.acm.org/citation.cfm?id=850928.851884
https://www.dropbox.com/
http://www.druva.com/why-us/massive-scalability/
http://www.druva.com/why-us/massive-scalability/
https://tools.ietf.org/rfc/rfc6455.txt
https://tools.ietf.org/rfc/rfc6455.txt
http://www.gnu.org/software/tar/
http://www.gnu.org/software/tar/
http://www.frost.com/sublib/display-report.do?id=NC9D-01-00-00-00
http://www.frost.com/sublib/display-report.do?id=NC9D-01-00-00-00
http://reports-archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-154.pdf
http://reports-archive.adm.cs.cmu.edu/anon/1999/CMU-CS-99-154.pdf

BIBLIOGRAPHY 117

978-1-4503-0036-0. doi: http://doi.acm.org/10.1145/1807128.1807134. URL http:
//doi.acm.org/10.1145/1807128.1807134. Cited on pages 93 and 94.

[46] T. Harter, C. Dragga, M. Vaughn, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. A file is
not a file: understanding the i/o behavior of apple desktop applications. In Proceedings of the
Twenty-Third ACM Symposium on Operating Systems Principles, SOSP ’11, pages 71–83, New
York, NY, USA, 2011. ACM. ISBN 978-1-4503-0977-6. doi: http://doi.acm.org/10.1145/
2043556.2043564. URL http://doi.acm.org/10.1145/2043556.2043564. Cited on
page 17.

[47] D. Hildebrand, R. Tewari, and V. Tarasov. Disk image introspection for storage systems, US
Patent Pending 2011. Cited on pages 94 and 97.

[48] T. Hoff. 7 years of YouTube scalability lessons in 30 minutes,
March 2012. URL http://highscalability.com/blog/2012/3/26/
7-years-of-youtube-scalability-lessons-in-30-minutes.html. Cited on
page 19.

[49] J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R. Sidebotham, and M. West.
Scale and performance in a distributed file system. ACM Transactions on Computer Systems, 6
(1), February 1988. Cited on pages 36 and 77.

[50] Huston, L., Sukthankar, R., Wickremesinghe, R., Satyanarayanan, M., Ganger, G.R., Riedel,
E., Ailamaki, A. Diamond: A storage architecture for early discard in interactive search. In
Proceedings of the 3rd USENIX Conference on File and Storage Technologies, San Francisco, CA,
April 2004. Cited on page 83.

[51] IBM. IBM SmartCloud application performance management, December 2013. URL http:
//www-01.ibm.com/support/knowledgecenter/. Cited on pages 3 and 97.

[52] IBM Corporation. Best practices for KVM, April 2012. URL http://www-01.ibm.com/
support/knowledgecenter/linuxonibm/liaat/liaatbestpractices_pdf.pdf. Cited
on page 35.

[53] Inktank Storage, Inc. Rbd layering, December 2014. URL http://ceph.com/docs/next/
dev/rbd-layering/. Cited on page 106.

[54] X. Jiang and X. Wang. “Out-of-the-box” monitoring of VM-based high-interaction honeypots.
In Proceedings of the 10th International Conference on Recent Advances in Intrusion Detection,
RAID’07, Berlin, Heidelberg, 2007. Springer-Verlag. ISBN 3-540-74319-7, 978-3-540-
74319-4. URL http://dl.acm.org/citation.cfm?id=1776434.1776450. Cited on
pages 94 and 97.

http://doi.acm.org/10.1145/1807128.1807134
http://doi.acm.org/10.1145/1807128.1807134
http://doi.acm.org/10.1145/2043556.2043564
http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html
http://highscalability.com/blog/2012/3/26/7-years-of-youtube-scalability-lessons-in-30-minutes.html
http://www-01.ibm.com/support/knowledgecenter/
http://www-01.ibm.com/support/knowledgecenter/
http://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaatbestpractices_pdf.pdf
http://www-01.ibm.com/support/knowledgecenter/linuxonibm/liaat/liaatbestpractices_pdf.pdf
http://ceph.com/docs/next/dev/rbd-layering/
http://ceph.com/docs/next/dev/rbd-layering/
http://dl.acm.org/citation.cfm?id=1776434.1776450

118 BIBLIOGRAPHY

[55] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through VMM-based “out-of-the-
box” semantic view reconstruction. In Proceedings of the 14th ACM Conference on Computer and
Communications Security, CCS ’07, New York, NY, USA, 2007. ACM. ISBN 978-1-59593-
703-2. doi: http://doi.acm.org/10.1145/1315245.1315262. URL http://doi.acm.org/
10.1145/1315245.1315262. Cited on pages 94 and 97.

[56] Jonas Borgström. Welcom to attic, December 2014. URL https://attic-backup.org/.
Cited on page 106.

[57] J. Katcher. PostMark: A new file system benchmark. Technical report, NetApp, 1997. Cited
on page 37.

[58] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux virtual ma-
chine monitor. In Ottawa Linux Symposium, pages 225–230, July 2007. URL http:
//www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf. Cited on pages
xii, 10 and 14.

[59] Konstantin Isakov. Zbackup, November 2014. URL http://zbackup.org/. Cited on
pages 103 and 106.

[60] L. Kufel. Security event monitoring in a distributed systems environment. Security Privacy,
IEEE, 11(1), 2013. ISSN 1540-7993. doi: 10.1109/MSP.2012.61. Cited on pages 3
and 98.

[61] E. K. Lee and C. A. Thekkath. Petal: distributed virtual disks. In Proceedings of the Sev-
enth International Conference on Architectural Support for Programming Languages and Oper-
ating Systems, ASPLOS-VII, New York, NY, USA, 1996. ACM. ISBN 0-89791-767-7.
doi: http://doi.acm.org/10.1145/237090.237157. URL http://doi.acm.org/10.1145/
237090.237157. Cited on pages 93 and 94.

[62] S. J. Leffler and M. K. McKusick. The design and implementation of the 4.3 BSD UNIX operating
system. Addison-Wesley, 1989. Cited on pages 16 and 50.

[63] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf. Policy/mechanism separation in
hydra. In Proceedings of the Fifth ACM Symposium on Operating Systems Principles, SOSP ’75,
pages 132–140, New York, NY, USA, 1975. ACM. doi: 10.1145/800213.806531. URL
http://doi.acm.org/10.1145/800213.806531. Cited on page 2.

[64] Z. Li, C. Wilson, Z. Jiang, Y. Liu, B. Zhao, C. Jin, Z.-L. Zhang, and Y. Dai. Efficient batched
synchronization in dropbox-like cloud storage services. In D. Eyers and K. Schwan, editors,
Middleware 2013, volume 8275 of Lecture Notes in Computer Science, pages 307–327. Springer
Berlin Heidelberg, 2013. ISBN 978-3-642-45064-8. doi: 10.1007/978-3-642-45065-5_
16. URL http://dx.doi.org/10.1007/978-3-642-45065-5_16. Cited on pages 102
and 105.

http://doi.acm.org/10.1145/1315245.1315262
http://doi.acm.org/10.1145/1315245.1315262
https://attic-backup.org/
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://www.kernel.org/doc/ols/2007/ols2007v1-pages-225-230.pdf
http://zbackup.org/
http://doi.acm.org/10.1145/237090.237157
http://doi.acm.org/10.1145/237090.237157
http://doi.acm.org/10.1145/800213.806531
http://dx.doi.org/10.1007/978-3-642-45065-5_16

BIBLIOGRAPHY 119

[65] Linux Kernel Organization, Inc. Linux kernel archive, September 2012. URL http://www.
kernel.org/. Cited on page 36.

[66] Loggly Inc. Log management service in the cloud - Loggly, March 2013. URL http:
//loggly.com/. Cited on page 97.

[67] Y. Lu, J. Shu, and W. Wang. Reconfs: A reconstructable file system on flash storage. In
Proceedings of the 12th USENIX Conference on File and Storage Technologies, FAST’14, pages
75–88, Berkeley, CA, USA, 2014. USENIX Association. ISBN 978-1-931971-08-9. URL
http://dl.acm.org/citation.cfm?id=2591305.2591313. Cited on page 90.

[68] Maginatics. Superior data protection with maginatics, November 2014. URL https:
//maginatics.com/resources/whitepapers/data-protection. Cited on pages 102
and 106.

[69] M. L. Massie, B. N. Chun, and D. E. Culler. The Ganglia distributed monitoring system:
design, implementation, and experience. Parallel Computing, 30(7), 2004. ISSN 0167-8191.
doi: http://dx.doi.org/10.1016/j.parco.2004.04.001. URL http://www.sciencedirect.
com/science/article/pii/S0167819104000535. Cited on page 3.

[70] J. McCutchan. [RFC][PATCH] inotify 0.8, 2004. URL https://groups.google.com/
forum/#!topic/fa.linux.kernel/Y2aqoQyyO8w/discussion. Cited on page 45.

[71] D. T. Meyer and W. J. Bolosky. A study of practical deduplication. Trans. Storage, 7(4):
14:1–14:20, Feb. 2012. ISSN 1553-3077. doi: 10.1145/2078861.2078864. URL http:
//doi.acm.org/10.1145/2078861.2078864. Cited on pages 64, 77 and 110.

[72] D. T. Meyer, G. Aggarwal, B. Cully, G. Lefebvre, M. J. Feeley, N. C. Hutchinson, and
A. Warfield. Parallax: virtual disks for virtual machines. In Proceedings of the 3rd ACM
SIGOPS/EuroSys European Conference on Computer Systems 2008, Eurosys ’08, New York, NY,
USA, 2008. ACM. ISBN 978-1-60558-013-5. doi: http://doi.acm.org/10.1145/1352592.
1352598. URL http://doi.acm.org/10.1145/1352592.1352598. Cited on pages 93
and 94.

[73] Michael Rubel. Easy automated snapshot-style backups with linux and rsync, January 2004.
URL http://www.mikerubel.org/computers/rsync_snapshots/. Cited on pages 45,
102 and 106.

[74] Microsoft. Microsoft extensible firmware initiative fat32 file system specification. Technical
report, Microsoft Corporation, December 2000. URL http://download.microsoft.com/
download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/fatgen103.doc. Cited
on page 27.

http://www.kernel.org/
http://www.kernel.org/
http://loggly.com/
http://loggly.com/
http://dl.acm.org/citation.cfm?id=2591305.2591313
https://maginatics.com/resources/whitepapers/data-protection
https://maginatics.com/resources/whitepapers/data-protection
http://www.sciencedirect.com/science/article/pii/S0167819104000535
http://www.sciencedirect.com/science/article/pii/S0167819104000535
https://groups.google.com/forum/#!topic/fa.linux.kernel/Y2aqoQyyO8w/discussion
https://groups.google.com/forum/#!topic/fa.linux.kernel/Y2aqoQyyO8w/discussion
http://doi.acm.org/10.1145/2078861.2078864
http://doi.acm.org/10.1145/2078861.2078864
http://doi.acm.org/10.1145/1352592.1352598
http://www.mikerubel.org/computers/rsync_snapshots/
http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/fatgen103.doc
http://download.microsoft.com/download/1/6/1/161ba512-40e2-4cc9-843a-923143f3456c/fatgen103.doc

120 BIBLIOGRAPHY

[75] Microsoft. Windows Management Instrumentation, October 2013. URL http://msdn.
microsoft.com/en-us/library/aa394582(v=vs.85).aspx. Cited on page 98.

[76] Microsoft. What is system restore?, November 2014. URL http://windows.microsoft.
com/en-us/windows/what-is-system-restore#1TC=windows-7. Cited on pages 101
and 106.

[77] Microsoft. Filesystemwatcher class, August 2015. URL https://msdn.microsoft.com/
en-US/library/system.io.filesystemwatcher.aspx. Cited on page 45.

[78] S. Microsystems. Zfs on-disk specification. Technical report, Sun Microsystems, 206. URL
http://www.giis.co.in/Zfs_ondiskformat.pdf. Cited on page 55.

[79] J. C. Mogul. Simple and flexible datagram access controls for unix-based gateways. In
Proceedings of Summer 1080 USENIX Technical Conference, 1989. Cited on page 2.

[80] J. C. Mogul, R. F. Rashid, and M. J. Accetta. The packet filter: An efficient mechanism for
user-level network code. In Proceedings of the Eleventh ACM Symposium on Operating Systems
Principles, pages 39–51, 1987. Cited on pages 2 and 13.

[81] P. Newson. Google cloud storage nearline. Technical report, Google, July 2015. URL https:
//cloud.google.com/files/GoogleCloudStorageNearline.pdf. Cited on pages 5
and 61.

[82] Nippon Telegraph and Telephone Corporation. Nilfs - continuous snapshotting filesystem
for linux, November 2014. URL http://nilfs.sourceforge.net/en/. Cited on pages
89, 95, 101 and 106.

[83] NIST. National Vulnerability Database (CVE-2012-3448), February 2013. URL http:
//web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3448. Cited on pages 2,
3 and 98.

[84] NIST. National Vulnerability Database (CVE-2015-2668), April 2015. URL http://web.
nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-2668. Cited on pages 2, 3 and
98.

[85] OpenStack Foundation. OpenStack open source cloud computing software, December 2013.
URL http://www.openstack.org/. Cited on pages 13 and 46.

[86] Oracle. Overview of zfs snapshots, 2012. URL https://docs.oracle.com/cd/E23824_
01/html/821-1448/gbciq.html. Cited on page 106.

[87] B. D. Payne. Simplifying virtual machine introspection using libvmi. Technical Report
SAND2012-7818, Sandia National Laboratories, September 2012. URL http://prod.
sandia.gov/techlib/access-control.cgi/2012/127818.pdf. Cited on page 98.

http://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/aa394582(v=vs.85).aspx
http://windows.microsoft.com/en-us/windows/what-is-system-restore#1TC=windows-7
http://windows.microsoft.com/en-us/windows/what-is-system-restore#1TC=windows-7
https://msdn.microsoft.com/en-US/library/system.io.filesystemwatcher.aspx
https://msdn.microsoft.com/en-US/library/system.io.filesystemwatcher.aspx
http://www.giis.co.in/Zfs_ondiskformat.pdf
https://cloud.google.com/files/GoogleCloudStorageNearline.pdf
https://cloud.google.com/files/GoogleCloudStorageNearline.pdf
http://nilfs.sourceforge.net/en/
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3448
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2012-3448
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-2668
http://web.nvd.nist.gov/view/vuln/detail?vulnId=CVE-2015-2668
http://www.openstack.org/
https://docs.oracle.com/cd/E23824_01/html/821-1448/gbciq.html
https://docs.oracle.com/cd/E23824_01/html/821-1448/gbciq.html
http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf
http://prod.sandia.gov/techlib/access-control.cgi/2012/127818.pdf

BIBLIOGRAPHY 121

[88] B. D. Payne, M. de Carbone, and W. Lee. Secure and flexible monitoring of virtual machines.
In Computer Security Applications Conference, 2007. ACSAC 2007. Twenty-Third Annual, dec.
2007. doi: 10.1109/ACSAC.2007.10. Cited on pages 94 and 97.

[89] J. Pfoh, C. Schneider, and C. Eckert. A formal model for virtual machine introspection. In
Proceedings of the 1st ACM Workshop on Virtual Machine Security, VMSec ’09, New York, NY,
USA, 2009. ACM. ISBN 978-1-60558-780-6. doi: http://doi.acm.org/10.1145/1655148.
1655150. URL http://doi.acm.org/10.1145/1655148.1655150. Cited on page 97.

[90] X. Project. Blktap - xen, April 2013. URL http://wiki.xenproject.org/wiki/Blktap.
Cited on page 12.

[91] QEMU. Changelog/1.6 - qemu, November 2014. URL http://wiki.qemu.org/
ChangeLog/1.6#Block_devices_2. Cited on pages 13 and 100.

[92] QEMU. Mirroring commands, August 2015. URL http://wiki.qemu.org/Features/
BlockJob#Mirroring_commands. Cited on page 12.

[93] S. Quinlan and S. Dorward. Venti: A new approach to archival data storage. In Proceedings of
the 1st USENIX Conference on File and Storage Technologies, FAST ’02, Berkeley, CA, USA, 2002.
USENIX Association. URL http://dl.acm.org/citation.cfm?id=1083323.1083333.
Cited on pages 100 and 106.

[94] Recoll. Recoll text search finds your documents., December 2015. URL http://www.
lesbonscomptes.com/recoll/. Cited on page 70.

[95] Retrospect. Competitive analysis retrospect and our competition, August 2014.
URL http://download.retrospect.com/partners/sales_tools/competitive/win_
9_mac_11/retrospect_competitive_analysis_fall_2014_enusd.pdf. Cited on page
106.

[96] W. Richter, G. Ammons, J. Harkes, A. Goode, N. Bila, E. de Lara, and M. Satyanarayanan. The
manna plug-in architecture for content-based search of vm clouds. Technical Report CMU-
CS-10-111, Carnegie Mellon University, August 2010. URL http://reports-archive.
adm.cs.cmu.edu/anon/2010/abstracts/10-111.html. Cited on page 81.

[97] W. Richter, G. Ammons, J. Harkes, A. Goode, N. Bila, E. de Lara, V. Bala, and M. Satya-
narayanan. Privacy-sensitive VM retrospection. In Proceedings of the Third USENIX Workshop
on Hot Topics in Cloud Computing, HotCloud ’11. USENIX Association, 2011. Cited on pages
81 and 83.

[98] W. Richter, C. Isci, B. Gilbert, J. Harkes, V. Bala, and M. Satyanarayanan. Agentless cloud-
wide streaming of guest file system updates. In Proceedings of the 2nd IEEE International
Conference on Cloud Engineering, IC2E’14, New York, NY, USA, 2014. IEEE. Cited on page
13.

http://doi.acm.org/10.1145/1655148.1655150
http://wiki.xenproject.org/wiki/Blktap
http://wiki.qemu.org/ChangeLog/1.6#Block_devices_2
http://wiki.qemu.org/ChangeLog/1.6#Block_devices_2
http://wiki.qemu.org/Features/BlockJob#Mirroring_commands
http://wiki.qemu.org/Features/BlockJob#Mirroring_commands
http://dl.acm.org/citation.cfm?id=1083323.1083333
http://www.lesbonscomptes.com/recoll/
http://www.lesbonscomptes.com/recoll/
http://download.retrospect.com/partners/sales_tools/competitive/win_9_mac_11/retrospect_competitive_analysis_fall_2014_enusd.pdf
http://download.retrospect.com/partners/sales_tools/competitive/win_9_mac_11/retrospect_competitive_analysis_fall_2014_enusd.pdf
http://reports-archive.adm.cs.cmu.edu/anon/2010/abstracts/10-111.html
http://reports-archive.adm.cs.cmu.edu/anon/2010/abstracts/10-111.html

122 BIBLIOGRAPHY

[99] O. Rodeh. BTRFS: The Linux b-tree filesystem. Technical Report RJ10501 (ALM1207-004),
IBM Research, July 2012. URL http://domino.watson.ibm.com/library/CyberDig.
nsf/papers/6E1C5B6A1B6EDD9885257A38006B6130/$File/rj10501.pdf. Cited on
pages 70, 74, 89, 100, 105 and 106.

[100] P. Ruggiero and M. A. Heckathorn. Data backup options. Technical report, US-CERT,
August 2012. URL https://www.us-cert.gov/sites/default/files/publications/
data_backup_options.pdf. Cited on page 61.

[101] S. Sanfilippo and P. Noordhuis. Redis, September 2012. URL http://redis.io/. Cited
on pages 29 and 59.

[102] A. Sangpetch, A. Turner, and H. Kim. How to tame your VMs: an automated control system
for virtualized services. In Proceedings of the 24th International Conference on Large Installation
System Administration, LISA’10, Berkeley, CA, USA, 2010. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=1924976.1924995. Cited on pages 49 and 50.

[103] D. S. Santry, M. J. Feeley, N. C. Hutchinson, A. C. Veitch, R. W. Carton, and J. Ofir. Deciding
when to forget in the elephant file system. In Proceedings of the Seventeenth ACM Symposium
on Operating Systems Principles, SOSP ’99, New York, NY, USA, 1999. ACM. ISBN 1-58113-
140-2. doi: 10.1145/319151.319159. URL http://doi.acm.org/10.1145/319151.
319159. Cited on pages 94, 95, 100 and 106.

[104] M. Satyanarayanan, J. Kistler, P. Kumar, M. Okasaki, E. Siegel, and D. Steere. Coda: a highly
available file system for a distributed workstation environment. Computers, IEEE Transactions
on, 39(4):447–459, Apr 1990. ISSN 0018-9340. doi: 10.1109/12.54838. Cited on pages
102 and 106.

[105] M. Satyanarayanan, W. Richter, G. Ammons, J. Harkes, and A. Goode. The case for content
search of VM clouds. In The First IEEE International Workshop on Emerging Applications for
Cloud Computing (CloudApp 2010), CloudApp ’10, July 2010. doi: 10.1109/COMPSACW.
2010.97. Cited on page 81.

[106] M. Satyanarayanan, S. Smaldone, B. Gilbert, J. Harkes, and L. Iftode. Bringing the cloud
down to earth: transient PCs everywhere. In International Workshop on Mobile Computing and
Clouds, MobiCloud ’10. Springer, 2010. Cited on page 37.

[107] Sepaton Inc. Beyond virtual tape libraries, December 2014. URL http://www.sepaton.
com/products/beyond_virtual_tape_library.php. Cited on pages 61, 102 and 106.

[108] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. Denehy, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Semantically-smart disk systems. In Proceedings of the 2nd USENIX Confer-
ence on File and Storage Technologies, Berkeley, CA, USA, 2003. USENIX Association. URL
http://dl.acm.org/citation.cfm?id=1090694.1090702. Cited on pages 93 and 96.

http://domino.watson.ibm.com/library/CyberDig.nsf/papers/6E1C5B6A1B6EDD9885257A38006B6130/$File/rj10501.pdf
http://domino.watson.ibm.com/library/CyberDig.nsf/papers/6E1C5B6A1B6EDD9885257A38006B6130/$File/rj10501.pdf
https://www.us-cert.gov/sites/default/files/publications/data_backup_options.pdf
https://www.us-cert.gov/sites/default/files/publications/data_backup_options.pdf
http://redis.io/
http://dl.acm.org/citation.cfm?id=1924976.1924995
http://dl.acm.org/citation.cfm?id=1924976.1924995
http://doi.acm.org/10.1145/319151.319159
http://doi.acm.org/10.1145/319151.319159
http://www.sepaton.com/products/beyond_virtual_tape_library.php
http://www.sepaton.com/products/beyond_virtual_tape_library.php
http://dl.acm.org/citation.cfm?id=1090694.1090702

BIBLIOGRAPHY 123

[109] M. Sivathanu, A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, and S. Jha. A logic of file systems.
In Proceedings of the 4th conference on USENIX Conference on File and Storage Technologies
- Volume 4, Berkeley, CA, USA, 2005. USENIX Association. URL http://dl.acm.org/
citation.cfm?id=1251028.1251029. Cited on pages 16 and 17.

[110] S. Smaldone, G. Wallace, and W. Hsu. Efficiently storing virtual machine backups. In
Proceedings of the 5th USENIX Conference on Hot Topics in Storage and File Systems, Hot-
Storage’13, pages 10–10, Berkeley, CA, USA, 2013. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=2534861.2534871. Cited on page 81.

[111] Space Monkey. Space monkey | beyond the cloud, November 2014. URL https://www.
spacemonkey.com/. Cited on page 106.

[112] Splunk Inc. Operational intelligence software - machine data collection: Splunk, March
2013. URL http://www.splunk.com/view/splunk/SP-CAAAG57. Cited on pages 3, 54
and 97.

[113] Splunk Inc. Splunk Storm: Cloud data analysis and log management, March 2013. URL
https://www.splunkstorm.com/. Cited on page 97.

[114] Stelian Pop. Dump/restore utilities, June 2010. URL http://dump.sourceforge.net/.
Cited on page 102.

[115] P. Ta-Shma, G. Laden, M. Ben-Yehuda, and M. Factor. Virtual machine time travel us-
ing continuous data protection and checkpointing. SIGOPS Oper. Syst. Rev., 42(1), Jan.
2008. ISSN 0163-5980. doi: 10.1145/1341312.1341341. URL http://doi.acm.org/
10.1145/1341312.1341341. Cited on page 94.

[116] The Apache Software Foundation. Apache solr, December 2014. URL http://lucene.
apache.org/solr/. Cited on page 70.

[117] A. Traeger, E. Zadok, N. Joukov, and C. P. Wright. A nine year study of file system and
storage benchmarking. Trans. Storage, 4(2), May 2008. ISSN 1553-3077. doi: 10.1145/
1367829.1367831. URL http://doi.acm.org/10.1145/1367829.1367831. Cited on
page 37.

[118] Tripwire. Open source Tripwire, January 2012. URL http://sourceforge.net/
projects/tripwire/. Cited on pages 3, 17 and 97.

[119] J. Turnbull. All about auditing with Puppet. http://puppetlabs.com/blog/
all-about-auditing-with-puppet, 2010. Cited on pages 3 and 97.

[120] Veeam. Veeam backup & replication, February 2014. URL http://www.veeam.com/
vm-backup-recovery-replication-software.html. Cited on pages 94, 100 and 106.

http://dl.acm.org/citation.cfm?id=1251028.1251029
http://dl.acm.org/citation.cfm?id=1251028.1251029
http://dl.acm.org/citation.cfm?id=2534861.2534871
http://dl.acm.org/citation.cfm?id=2534861.2534871
https://www.spacemonkey.com/
https://www.spacemonkey.com/
http://www.splunk.com/view/splunk/SP-CAAAG57
https://www.splunkstorm.com/
http://dump.sourceforge.net/
http://doi.acm.org/10.1145/1341312.1341341
http://doi.acm.org/10.1145/1341312.1341341
http://lucene.apache.org/solr/
http://lucene.apache.org/solr/
http://doi.acm.org/10.1145/1367829.1367831
http://sourceforge.net/projects/tripwire/
http://sourceforge.net/projects/tripwire/
http://puppetlabs.com/blog/all-about-auditing-with-puppet
http://puppetlabs.com/blog/all-about-auditing-with-puppet
http://www.veeam.com/vm-backup-recovery-replication-software.html
http://www.veeam.com/vm-backup-recovery-replication-software.html

124 BIBLIOGRAPHY

[121] vmitools. vmitools - virtual machine introspection tools, December 2013. URL https:
//code.google.com/p/vmitools/. Cited on page 98.

[122] VMware. What’s new in vmware vsphere 5.0 - storage, May
2011. URL https://www.vmware.com/files/pdf/techpaper/
Whats-New-VMware-vSphere-50-Storage-Technical-Whitepaper.pdf. Cited
on page 12.

[123] G. Wallace, F. Douglis, H. Qian, P. Shilane, S. Smaldone, M. Chamness, and W. Hsu. Char-
acteristics of backup workloads in production systems. In Proceedings of the 10th USENIX
Conference on File and Storage Technologies, FAST’12, Berkeley, CA, USA, 2012. USENIX
Association. URL http://dl.acm.org/citation.cfm?id=2208461.2208465. Cited on
pages 81, 104 and 110.

[124] J. Wei, X. Zhang, G. Ammons, V. Bala, and P. Ning. Managing security of virtual machine
images in a cloud environment. In Proceedings of the 2009 ACM Workshop on Cloud Computing
Security, CCSW ’09, New York, NY, USA, 2009. ACM. ISBN 978-1-60558-784-4. doi:
10.1145/1655008.1655021. URL http://doi.acm.org/10.1145/1655008.1655021.
Cited on pages xii and 7.

[125] Wikipedia. Usage share of operating systems, November 2014. URL http:
//en.wikipedia.org/wiki/Usage_share_of_operating_systems#Market_share_
by_category. Cited on page 72.

[126] Wolfgang Richter. Drive backup streaming writes patch, October 2013. URL
https://github.com/cmusatyalab/gammaray/blob/master/src/patches/
drive-backup-streaming-writes_1-6-0.patch. Cited on page 13.

[127] Wolfgang Richter. Introspection libvirt driver for nova, September 2014. URL https://
github.com/theonewolf/nova/tree/introspection-libvirt-driver. Cited on page
32.

[128] Wolfgang Richter. Introspection api support for nova client, September
2014. URL https://github.com/theonewolf/python-novaclient/tree/
introspection-API-features. Cited on page 32.

[129] ZeroVM. Zerovm and openstack swift, November 2014. Cited on page 101.
[130] F. Zhang, J. Chen, H. Chen, and B. Zang. Cloudvisor: Retrofitting protection of virtual

machines in multi-tenant cloud with nested virtualization. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles, SOSP ’11, pages 203–216, New York, NY,
USA, 2011. ACM. ISBN 978-1-4503-0977-6. doi: 10.1145/2043556.2043576. URL
http://doi.acm.org/10.1145/2043556.2043576. Cited on page 42.

https://code.google.com/p/vmitools/
https://code.google.com/p/vmitools/
https://www.vmware.com/files/pdf/techpaper/Whats-New-VMware-vSphere-50-Storage-Technical-Whitepaper.pdf
https://www.vmware.com/files/pdf/techpaper/Whats-New-VMware-vSphere-50-Storage-Technical-Whitepaper.pdf
http://dl.acm.org/citation.cfm?id=2208461.2208465
http://doi.acm.org/10.1145/1655008.1655021
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Market_share_by_category
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Market_share_by_category
http://en.wikipedia.org/wiki/Usage_share_of_operating_systems#Market_share_by_category
https://github.com/cmusatyalab/gammaray/blob/master/src/patches/drive-backup-streaming-writes_1-6-0.patch
https://github.com/cmusatyalab/gammaray/blob/master/src/patches/drive-backup-streaming-writes_1-6-0.patch
https://github.com/theonewolf/nova/tree/introspection-libvirt-driver
https://github.com/theonewolf/nova/tree/introspection-libvirt-driver
https://github.com/theonewolf/python-novaclient/tree/introspection-API-features
https://github.com/theonewolf/python-novaclient/tree/introspection-API-features
http://doi.acm.org/10.1145/2043556.2043576

BIBLIOGRAPHY 125

[131] X. Zhang, S. Zhang, and Z. Deng. Virtual disk monitor based on multi-core EFI. In Proceedings
of the 7th International Conference on Advanced Parallel Processing Technologies, APPT’07, Berlin,
Heidelberg, 2007. Springer-Verlag. ISBN 3-540-76836-X, 978-3-540-76836-4. URL
http://dl.acm.org/citation.cfm?id=1785246.1785258. Cited on pages 94 and 97.

[132] Y. Zhang, Y. Gu, H. Wang, and D. Wang. Virtual-machine-based intrusion detection on file-
aware block level storage. In Proceedings of the 18th International Symposium on Computer
Architecture and High Performance Computing, Washington, DC, USA, 2006. IEEE Computer
Society. ISBN 0-7695-2704-3. doi: 10.1109/SBAC-PAD.2006.32. URL http://dl.acm.
org/citation.cfm?id=1173698.1174110. Cited on pages 94 and 96.

[133] Y. Zhang, A. Rajimwale, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau. End-to-end data
integrity for file systems: A ZFS case study. In Proceedings of the 8th USENIX Conference
on File and Storage Technologies, FAST’10, Berkeley, CA, USA, 2010. USENIX Association.
URL http://dl.acm.org/citation.cfm?id=1855511.1855514. Cited on pages 1, 70,
74 and 100.

[134] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bottleneck in the data domain deduplication
file system. In Proceedings of the 6th USENIX Conference on File and Storage Technologies,
FAST’08, pages 18:1–18:14, Berkeley, CA, USA, 2008. USENIX Association. URL http:
//dl.acm.org/citation.cfm?id=1364813.1364831. Cited on pages 103 and 106.

[135] zmanda. Amanda network backup, July 2014. URL http://www.amanda.org/. Cited on
page 102.

http://dl.acm.org/citation.cfm?id=1785246.1785258
http://dl.acm.org/citation.cfm?id=1173698.1174110
http://dl.acm.org/citation.cfm?id=1173698.1174110
http://dl.acm.org/citation.cfm?id=1855511.1855514
http://dl.acm.org/citation.cfm?id=1364813.1364831
http://dl.acm.org/citation.cfm?id=1364813.1364831
http://www.amanda.org/

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem Statement and Scope
	Bridging the Semantic and Temporal Gaps
	Bounding Overhead
	Generality
	Storing and Indexing Historic Changes

	Thesis Statement
	Contributions

	Distributed Streaming Virtual Machine Introspection (DS-VMI)
	Overview of the DS-VMI Prototype
	Hypervisor, Kernel, and File System Requirements
	Hypervisor Virtual Storage Hooks
	Guest Kernel Invariants
	File System Invariants
	Correctness of DS-VMI Relative to Snapshotting

	Crawling Initial Virtual Disk State
	Impact on Virtual Image Library Operations
	Crawling a Virtual Disk
	An Example Journaling File System: ext4
	An Example Closed Source File System: NTFS
	An Example Non-Journaling File System: FAT32

	Asynchronous Queuing of VM Writes
	Introspecting Live Virtual Disk Writes
	Live Attachment and Detachment
	Live Crawling and Attaching
	Detaching Introspection

	Integration with Existing Clouds
	Designing an API within OpenStack

	Evaluating Overall Overhead
	Experimental Setup
	DS-VMI Tunables
	Light-rate Small Writes: Modified Andrew Benchmark
	Clustered Large Writes: Installing Software
	Moderate-rate Small Writes: PostMark
	Reducing Memory Footprint: Lazily Loading Metadata
	Dropping Writes

	Limitations of DS-VMI
	Monitoring Limits
	Technologies Defeating DS-VMI

	cloud-inotify: Cloud-wide File Events
	cloud-inotify's Design and Implementation
	Event-driven File System Workloads
	Continuous Compliance Monitoring
	Real-time Log Analytics

	Sources of Latency
	Evaluation of Latency
	Using cloud-inotify in a Research Cloud

	/cloud: A Cloud Synthesized File System
	Design and Implementation of /cloud
	Implementation with POSIX Read-only Semantics
	Limitations of Normalization

	Metadata Versioning
	Applications
	Exploring a /cloud Mount

	/cloud-history: Searchable Backup
	Transforming Live State into History
	Desired Properties

	Learning from History: a Backup Case Study
	Description of Dataset
	Effect of Duplication
	Analysis of Trends

	Sources of Whole-file Duplication
	Impact of Whole-file Deduplication on Indexing Workloads

	Architecture of /cloud-history
	Consistently and Efficiently Naming Files without Coordination

	Storing and Indexing Historic State
	Conversion to a File-level Update Stream
	Inferring File Versions with Optimistic File Snapshotting
	Garbage Collecting Stale Block Writes
	Whole-File Indexing and Deduplication
	Block-Level Deduplication and Compression

	Reconstructing File Versions
	Efficient Object-Level Access
	Arbitrary Query Search
	Evaluating Inferred File Versions

	Securing Search

	Future Work
	Evaluating the Effect of Staleness in /cloud
	Evaluating the Design Decisions of /cloud-history
	Sustained Ingest Bandwidth: Single vs Many Logs
	Measuring Time to Index
	Effect of Hashing Choice

	Generating Introspection Code from File System Drivers
	Designing an Introspectable File System
	A Storage Introspection Language for Policy Enforcement

	Related Work
	Snapshotting Derived History
	Versioning File Systems
	Smart Disks
	Virtual Machine Introspection
	Agent-based File-level Monitoring
	Agentless File-level Monitoring
	Analyzing Backup Systems
	Granularity of State
	Granularity of Time
	Complexity of Supported Queries
	Level of Consistency
	Level of Scale
	Backup Format
	Types of Storage Targets
	Types of Input Systems
	Protection Radius
	Modern Backup System Implementations

	Conclusion
	Bibliography

