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Abstract

Virtual machine (VM) migration demands distinct properties under resource oversubscription and

workload surges. We present enlightened post-copy, a new mechanism for VMs under contention

that evicts the target VM with fast execution transfer and short total duration. This design contrasts

with common live migration, which uses the down time of the migrated VM as its primary metric;

it instead focuses on recovering the aggregate performance of the VMs being affected. In en-

lightened post-copy, the guest OS identifies memory state that is expected to encompass the VM’s

working set. The hypervisor accordingly transfers its state, mitigating the performance impact

on the migrated VM resulting from post-copy transfer. We show that our implementation, with

modest instrumentation in guest Linux, resolves VM contention up to several times faster than live

migration.





1 Introduction
As a means of load balancing, VM migration plays a crucial role in cloud resource efficiency. In
particular, it affects the feasibility of oversubscription. Oversubscription is co-location of VMs on
the same host in which their allocated resources can collectively exceed the host’s capacity. While
it allows the VMs to share the physical resources efficiently, at peak times they can interfere with
each other and suffer performance degradation. Migration, in this situation, offers a way of dy-
namically re-allocating a new machine to these VMs. The faster the operation is in resolving the
contention, the more aggressive vendors can be in deploying VMs. Without a good solution, on
the other hand, those with performance emphasis must relinquish resource efficiency and use more
static resource assignments, such as Placements on Amazon EC2 [1]. Although such strategies can
guarantee VM performance, they lead to wasted resources due to conservative allocation. Migra-
tion for contending VMs thus has its own value, which can impact resource allocation policies.

However, migration of a VM under contention poses challenges to be solved because of its
distinct requirements. It needs to salvage the performance of all the VMs being affected, namely
their aggregate performance. The primary goal, therefore, is to evict the target VM from its host
rapidly, allowing the other VMs to claim the resources it is currently consuming. This objective is
achieved by transferring the execution of the migrated VM to a new host, so that its computation
cycles are made available to the other VMs. Additionally, the duration of migration decides when
the VM’s state can be freed on the source host; reclaiming the space of memory state, which can
be tens or hundreds of gigabytes, can be particularly important. While adhering to these priorities,
the impact on the migrated VM should be mitigated to the extent possible, for its service disruption
to be limited and the aggregate performance to recover fast.

These properties are especially desirable in the following cases: (a) optimizing the throughput
of VMs running batch-processing workloads, (b) saving the performance of a VM whose service
is sensitive to response time, and (c) isolating a malfunctioning VM for diagnosis. Figure 1 de-
picts these three scenarios. The top half of each case illustrates a situation under contention and
before migration, and the bottom half after migration. In case (a), with a group of batch-processing
VMs, their total throughput is lowered under contention. Prioritizing it over down time, migration
optimizes for the total amount of work despite some disruption of the migrated VM. A good ex-
ample of workloads that fit this category is big data analytics, ranging from scientific computing
to web and social network crawling. In cases (b) and (c), migration is used primarily on behalf of
the co-located VMs, rather than the target VM. Case (b) represents a situation in which the VMs
run services of different nature: one for which response time is crucial, such as a web server, and
the other running a batch-processing job. Resolving their interference fast rescues the former in a
timely manner, while improving the performance of the latter from a longer-time perspective. Case
(c) involves VMs under circumstances that differentiate the importance of their performance: one
under normal operation and the other malfunctioning due to, for example, a DoS attack. Through
migration, the malfunctioning VM is rapidly prevented from affecting the other VM, and isolated
for diagnosis of the problem. This case has the most emphasis on the urgent salvation of the
non-migrated VM instead of the migrated VM. In all these cases, migration with appropriate char-
acteristics would allow the VMs to be efficiently co-located, and to be allocated new resources
when experiencing a surge of loads.

Unfortunately, the requirements described above defy the trends in VM migration approaches.
In particular, the current standard of live migration [10, 26] often results in elongated duration due
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Figure 1: Scenarios for Urgent VM Eviction
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to its design principles [17, 34]. This behavior leaves VMs under contention, delaying their perfor-
mance recovery. In this paper, we present a design point that is fundamentally different and driven
by enlightenment [24]. Enlightenment is a type of knowledge the guest passes to the hypervisor for
improving the efficiency of its operation. Applying it to migration, we develop an approach called
enlightened post-copy. It employs a post-copy style, in which the VM is resumed on the desti-
nation before its state has been migrated, and mitigates the resulting performance impact through
enlightenment. Upon migration, the guest OS informs the hypervisor of memory regions that re-
quire high transfer priority for sustaining the guest performance. The hypervisor then transfers the
execution of the VM immediately to a new host, while continuously pushing its state as instructed
and also serving demand fetch requests by the destination VM. Our implementation, with modest
changes to guest Linux, shows the effectiveness of the guest’s initiative in performing migration
with the desired properties.

The main contributions of this paper are as follows:

• Explaining common behaviors of migration and deriving properties desired for VMs under
contention (Section 2).

• Presenting the design and implementation of enlightened post-copy, an approach that ex-
ploits native guest OS support (Sections 3 and 4).

• Evaluating the performance and trade-offs of enlightened post-copy against live migration
and other basic approaches (Section 5).

We next begin by showing why the standard approach to migration fails to address the problem of
VM contention adequately.

2 Analysis of VM Migration
VM migration has historically focused on the liveness, namely minimal suspension, of the target
VM. Specifically, live migration is the current standard widely adopted by common hypervisors
[10, 26]. The characteristics desired in the context of VMs under contention, however, deviate from
those of live migration; it leads to extended duration of migration and thus continued interference
of the VMs. Figure 2 illustrates this problem, with live migration by qemu-kvm 2.3.0 under the
Memcached workload and experiment set-up described in Section 5. One of the two contending
VMs is migrated, with approximately 24 GB of memory state to be transferred, under varied
bandwidth. Migration takes 39.9 seconds at 10 Gbps, and fails to complete at 2.5 Gbps. For
the duration of migration, the VMs suffer degraded performance due to their mutual interference.
In this section, we describe the algorithm and behavior of live migration causing this problem, and
derive the properties desired in our solution.

2.1 Mechanics of Migration
Figure 3 illustrates aspects of VM migration including execution, state transfer, and performance.
Migration is initiated on the source, on which the VM originally executes. The VM is suspended
at one point, and then resumed on the destination. State transfer during the course of migration is

3



(x1000)

(x1000)

(x1000)

Figure 2: Live Migration Behavior of qemu-kvm under VM Contention. The y-axis indicates
throughput in operations per second. The black and gray lines represent the migrated and contend-
ing VMs, respectively, and the shaded areas the duration of migration.

categorized into two types: pre-copy and post-copy. Pre-copy and post-copy are phases performed
before and after the VM resumes on the destination, respectively. Associated with the duration of
these state transfer modes, there are three key time metrics:

• Down time: time between the suspension and resume of the VM, during which its execution
is stopped.

• Execution transfer time: time since the start of migration until the VM resumes on the
destination.

• Total duration: time since the start and until the end of migration.

Until execution transfer completes, contending VMs on the source continue to experience degraded
performance. Thus, the faster execution transfer is, the more effective the migration operation is
in salvaging the performance of both the migrated and other VMs. Reasonable down time also
is important for mitigating the service disruption of the migrated VM. The VM execution halts
during this time, rather than continue with performance degradation. Finally, the hypervisor on
the source needs to maintain the migrated VM’s state until the end of total duration. Shorter total
duration, therefore, means that allocated resources such as guest memory can be freed and made
available to other VMs sooner.

Pre-copy and post-copy phases have associated performance costs. Pre-copy, when overlapped
with VM execution, requires tracking state changes to synchronize the destination hypervisor with
the latest VM state, a computational overhead known as migration noise [18]. Post-copy, on the
other hand, can stall VM execution when the running guest accesses memory contents that have
not arrived on the destination.
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Figure 3: Overview of Migration Mechanics

2.2 Live Migration
Live migration commonly employs pre-copy, and its algorithm works as shown in Figure 4. Upon
initiation, live migration starts sending memory page contents while continuing the VM execution
and keeping track of memory content changes. It then iteratively retransmits the pages whose
content has been dirtied since its last transfer. The purpose of the iteration phase is to minimize
down time, thereby optimizing for the liveness of the migrated VM. While iterating, the algorithm
uses the current rate of state transfer to estimate down time, during which the last round of re-
transmission is performed. If the expected down time is short enough (e.g., 300 ms in qemu-kvm),
the iteration phase completes and the VM is resumed on the destination. Implementations can
also have additional conditions for preventing migration from taking an excess amount of time.
Common examples include a limit on the number of iterations, and high expected down time that
steadily exceeds a threshold. Regardless of the exact form in which these conditions are expressed,
common to these parameters of live migration is that they aim to control the maximum duration
of the iteration phase. Note that Figure 4 illustrates the migration of memory state, assuming the
availability of disk state through shared storage. In the rest of the paper, we also focus on such
cases.

2.2.1 Impact of Workloads

Being pre-copy and optimized for down time, live migration handles state transfer while dealing
with the guest state changes. Consequently, its behavior depends on the guest workload and the
bandwidth available for migration traffic. Figure 5 shows the throughput of Memcached server,
hosted in a VM, during live migration by qemu-kvm. The memslap benchmark generates a load
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Figure 4: Live Migration Algorithm

for the server, and its set-get ratio and the bandwidth available for migration traffic are varied. The
other configurations for these measurements are the same as those described in Section 5, with the
guest allocated 30 GB of memory and the server using 24 GB as its cache. Note that qemu-kvm
zeroes out guest memory when setting it up, and live migration compresses each page whose bits
are all zeros to one byte accompanied by a header; thus, it avoids sending the unused 6 GB in these
measurements.

As the available bandwidth for migration traffic decreases, live migration takes more time to
complete. This increase is non-linear; with set-get ratio of 1:9, migration finishes in approximately
40 and 90 seconds at 10 and 5 Gbps, respectively. At 2.5 Gbps, it fails to complete in a timely
manner. With set-get ratio of 5:5, migration does not complete even at 5 Gbps. This is because
expected down time never becomes short enough with the guest workload, and qemu-kvm does
not use a hard limit on the number of iterations. In addition, we can observe more throughput
degradation during migration with set-get ratio of 5:5 than with 1:9. As the workload generates
more memory content changes, dirty state tracking interferes more with it because of trapping
memory writes, which are caught more frequently. Finally, even when live migration performs
fairly well with set-get ratio of 1:9 and at 10 Gbps, it takes considerably longer than transferring 24
GB over that bandwidth (which takes less than 20 seconds). qemu-kvm’s migration functionality
is single-threaded, and it takes many enough CPU cycles to transmit state at gigabytes speed while

6



(a) Set-Get Ratio: 1:9

(b) Set-Get Ratio: 5:5

(x1000)

(x1000)

(x1000)

(x1000)

(x1000)

(x1000)

Figure 5: Behavior of Migrating a Memcached VM with qemu-kvm. The y-axis indicates through-
put in operations per second, and the shaded areas the duration of migration.
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Figure 6: Behavior of Migrating a Memcached VM with Major Hypervisors at 10 Gbps. The y-
axis indicates throughput normalized against the maximum in each measurement, and the shaded
areas represent the duration of migration.

tracking dirty memory pages. Migration can thus easily be a CPU-bound procedure unless special
care is taken, for example by parallelization of the code [35].

2.2.2 Commonality among Implementations

The characteristics of live migration explained above are inherent to its algorithm, and therefore
shared by major implementations. Figure 6 shows the behavior of migrating a Memcached VM
with common hypervisors, qemu-kvm 2.3.0, Xen 4.1.6, VirtualBox 4.3.16, and another major
hypervisor (labeled “Hypervisor A”). The memslap benchmark is run with set-get ratio of 1:9.
The VM memory size and server cache size are the same as explained previously: 30 GB and 24
GB. The VM is assigned 4 cores, and migrated over a 10 Gbps link. Note that we used machines
different from those for the rest of our measurements, due to hardware accessibility reasons. They
were equipped with an Intel Core i7-3770 CPU at 3.4 GHz and 32 GB of memory, running Ubuntu
12.04 with Linux kernel version 3.5.0.

As each implementation differs from one another, the performance cannot be directly compared
between the hypervisors. In particular, the duration of the iteration phase is determined by param-
eters, and additional factors such as page content compression also lead to varying performance.
For example, Xen and Hypervisor A take longer than qemu-kvm, but their nature of throughput
degradation during migration differs from that of qemu-kvm. Also, unlike the other hypervisors,
VirtualBox does not complete migration under this workload. The key point of these results, how-
ever, is not the absolute performance differences, but the common behavior that the VM lingers on
the source for tens of seconds or longer. This total duration exemplifies the cost paid in an effort
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to minimize down time.

2.3 Desired Properties of Migration under Contention
Live migration thus exhibits undesirable behavior when migrating contending VMs, for two fun-
damental reasons. First, it focuses on the down time of the target VM, rather than consider all the
VMs affected. Second, it uses pre-copy and monitors the VM workload to achieve its objective,
delaying execution transfer. Our goals, in contrast, are to 1) free resources on the source rapidly
through fast execution transfer and short total duration, 2) handle loaded VMs without relying on
the reduction in their workloads, and 3) with these properties, salvage the aggregate performance of
the VMs under contention, rather than only that of the migrated VM. These requirements motivate
the guest’s initiative, which allows the departure from pre-copy and workload monitoring.

3 Enlightened Post-Copy Migration
Our approach to the above goals, called enlightened post-copy, exploits guest cooperation and post-
copy-style state transfer. We derive the key ideas behind this approach specifically from our goals.
First, minimizing execution transfer time requires that VM execution be immediately suspended on
the source and resumed on the destination. This early suspension upon the start of migration also
ensures minimal total duration, because the frozen VM state necessitates no retransmission as done
in live migration. Therefore, post-copy follows naturally as the desirable method of state transfer.
Second, fast performance recovery of the migrated VM requires that the part of its state needed
for its current workload arrive at the destination as early as possible. The guest’s enlightenment
is the key that enables identifying this part of the VM state; with state transfer following the
instructed prioritization, the VM on the destination can start recovering its performance without
the completion of entire state transfer, and thus before the total duration of migration.

Figure 7 illustrates the workflow of enlightened post-copy. When migration is initiated, the
hypervisor makes a request for enlightenment to the guest OS. The guest OS traverses its data
structures and prepares priority information of the memory pages. Once the priority information
is available, the guest OS notifies the hypervisor. The hypervisor then suspends the VM on the
source, and resumes it on the destination immediately after sending the device state necessary for
the resume operation. As the VM starts execution, the hypervisor parses the priority information
and accordingly transfers the remaining memory page contents to the destination; it attempts to
proactively push as many pages as possible before the access to them.

3.1 Guest’s Enlightenment
In enlightened post-copy, the guest identifies those memory pages containing the working set of
the currently active processes. As a design principle, the guest OS should be able to obtain a list
of these pages without incurring noticeable overhead. Otherwise, the approach does not justify
the guest instrumentation due to the resulting performance loss. As the types of memory page
classification, therefore, we use straightforward notions such as the code and data of the OS kernel
and running processes. Such bookkeeping information of memory pages is already available in the
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Request enlightenment from guest
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Wait for response
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Send device and memory state 
necessary for resuming VM

Figure 7: Workflow of Enlightened Post-Copy Migration

OS for its regular tasks, and re-usable without significant implementation effort for the purpose of
migration.

For prioritized state transfer, the general idea is to transfer memory pages essential for running
the guest system itself, those for the actively running processes, and then the other less critical
pages such as the kernel page cache and those for the non-active processes. Also, we can eliminate
the transfer of the memory pages that are not allocated by the guest OS for any use, because the
actual contents of such pages do not affect the correctness of guest execution.

The guest needs to prepare these types of information, as enlightenment to the hypervisor, in
two distinct forms. The memory page priorities can be determined by a one-time operation upon
the request by the hypervisor. There is no need for always tracking them during the course of the
guest’s normal operation. On the other hand, keeping track of allocated and non-allocated memory
pages requires real-time processing, performed with or without migration, that maintains the infor-
mation in a manner easily passed to the hypervisor. The reason is that the source hypervisor needs
to know the exact allocation by the guest OS right at the time of VM suspension, for the destina-
tion hypervisor to construct a consistent memory image. For the one-time operation, the associated
costs are that of guest-host communication delay upon migration start, and the impact of the in-
guest processing on performance. For the real-time processing, the cost is the overhead added to
relevant memory management operations of the guest OS. Minimizing these costs motivates the
use of the above types of enlightenment, which are adequately informative but not excessively
fine-grained.

3.2 Integration into State Transfer
The source hypervisor can integrate enlightenment into state transfer in a straightforward manner,
because of the use of post-copy. Since the VM state is frozen at the start of migration, enlight-
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enment at that time reflects its latest state before execution transfer, from which the VM resumes
on the destination. After receiving enlightenment and suspending the VM, the source hypervisor
pushes the memory pages as instructed by the guest OS. While the destination hypervisor receives
the memory pages, it also issues demand-fetch requests to the source for those that are accessed by
the guest before their arrival. Although their arrival may incur delays due to the interference with
the push traffic, these demand fetches help reduce VM execution stalls due to the divergence of the
push order from the actual access order by the guest.

3.3 Design Trade-Offs
The design of enlightened post-copy is in good contrast to that of common live migration based
on pre-copy. Enlightened post-copy targets VMs constantly under loads, while live migration
expects idleness from them. Enlightened post-copy, therefore, employs a state transfer method
that enables timely load balancing through fast physical resource reallocation. Down time and
execution transfer time are expected to be instantaneous, and total duration corresponds to the one-
time transfer of the entire state. At the same time, the disruption of the migrated VM’s performance
spans a longer period than down time itself, since post-copy is used. Guest cooperation is the key
to alleviating this disruption.

On the other hand, live migration focuses on one aspect of the migrated VM’s performance,
down time. Being a guest-agnostic approach without an external source of knowledge, it relies
on letting the VM stay on the source and tracking dirtied memory pages. Execution transfer time
is equivalent to total duration; these time frames become longer when more iterations are done.
The sole use of pre-copy ensures the migrated VM’s performance on the destination, since all
the state resides there on VM resume. Thus, down time approximately represents the duration
of application-level disruption. However, dirty page tracking incurs a certain cost while the VM
lingers on the source. Results in Section 5 demonstrate the effects of these trade-offs made by
enlightened post-copy and live migration.

4 Implementation
We implemented enlightened post-copy on guest Linux 3.2.0 and hypervisor qemu-kvm 2.3.0.
Figure 8 shows its architecture. When the source hypervisor initiates migration, it sends a request
to guest Linux through a custom VirtIO device [6] (Step 1). The guest OS driver for this virtual
device triggers enlightenment preparation, which scans data structures (Step 2) and writes priority
information in the priority bitmap (Step 3). Page allocation information is always kept up-to-date
in the free bitmap, so that its content is valid whenever the the hypervisor suspends the VM. These
bitmaps maintained in the guest’s memory facilitate the processing by the hypervisor; they are an
abstract enough representation of the passed information, and the guest OS can avoid communicat-
ing it through the VirtIO device and instead have the hypervisor directly parse it. When the priority
bitmap has been written, the guest OS notifies the hypervisor through the VirtIO device (Step 4).
The hypervisor then sends to the destination the device state, including some in the guest memory,
which is used by the destination hypervisor for the initial VM set-up. Finally, it starts transferring
the remaining page contents in the prioritized order (Steps 5 and 6). On the destination, the hyper-
visor resumes the VM once the device state has arrived. While receiving the pushed page contents,
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Table 1: Page Types Categorized by the Guest OS

it writes them into the guest memory. When the guest OS accesses pages whose content has not
yet been received, it generates demand-fetch requests to the source hypervisor. On the source, the
hypervisor frees all the VM resources once all the page contents have been sent.

4.1 Guest OS
In our guest Linux, memory management and process scheduling code is instrumented to label
each memory page with a priority level. The instrumentation follows naturally in the relevant
existing parts of the source code, and requires only a modest number of changes to the original
kernel.

4.1.1 Enlightenment Preparation

Taking advantage of memory management information that already exists, the guest OS classifies
the memory pages in use into the priority categories shown in Table 1. The system-wide categories,
such as Kernel, Kernel Allocated, Memory I/O, File Active, and File Inactive, are derived from
kernel data structures or through the flags of page frame descriptors (e.g., struct zone and struct
page). For the process-specific categories, the enlightenment preparation code parses the virtual
memory area descriptors of each active process (struct vm area struct). These categories are
each assigned a numerical value, in a descending order of priority from the top to the bottom in the
above list. This order is decided such that the core system service, the active processes, and caching
by the OS are given priority in that order. If a particular page belongs to multiple categories, it is
treated with the highest of these priorities. Pages such as those belonging to the inactive processes
and those used for the priority bitmap itself belong to the Other category. The bitmap simply
contains the priority values, without the hypervisor needing to understand their exact semantics.

In order to decide the group of active processes, the scheduler maintains the last time each
process was scheduled for execution (in struct task struct). A process is considered active if it has
been run recently at the time of generating enlightenment. In our implementation, we empirically
use a threshold of the past 16 seconds for this purpose, considering the order of seconds migration
is roughly expected to take.
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When the guest OS receives a request from the hypervisor, the guest OS runs code that gener-
ates the priority bitmap as explained above. Once it notifies the hypervisor, it is ensured that the
guest can be suspended with the bitmaps available for parsing in its memory. Note that the free
bitmap is always kept up-to-date and ready for processing. The response from the guest OS in-
cludes the addresses of the two bitmaps, and the hypervisor scans these locations while performing
state transfer.

4.1.2 Implementation Cost

The modifications to the core Linux kernel code are minimal, mostly under mm/ and kernel/
in the source tree. Maintaining the free bitmap requires adding at most several lines of code in
16 locations. Keeping track of the last schedule time for each process requires a few variable
assignments added in the scheduler code. Marking each page with kernel or user allocation needs
less than 15 lines of code. These operations only add atomic variable assignments in the code
paths of memory allocation and process scheduling. As shown in our experiments, compared to
the original kernel, these minor modifications incur negligible performance overhead. The VirtIO
device driver and the priority bitmap preparation code, which make use of the instrumentation, are
implemented as loadable kernel modules.

4.2 Hypervisor
On the source, the hypervisor scans the bitmaps provided by the guest. It first scans the free bitmap
and sends the corresponding page frame numbers in a packed format, along with the device and
some memory state, right after which the VM is resumed on the destination. Next, the hypervisor
traverses the priority bitmap and starts pushing the page contents over a TCP connection. The
transfer is performed in rounds, starting with the Kernel pages and ending with the Other pages.
While this push continues, a separate thread services demand-fetch requests from the destination
hypervisor over another TCP connection. Note that while we attempt to give a higher priority to
the demand-fetched pages through the TCP NODELAY socket option, the push transfer can still
interfere with their arrival timings.

On the destination, the hypervisor registers userfault [5] handlers with the guest memory re-
gion. Userfault is a mechanism on Linux that enables a user process to provide a page fault handler
of its own for specified pages. This interposition enables post-copy state transfer. The userfault
handler is first registered for the entire main memory of the VM when the hypervisor starts on
the destination. On the receipt of the unallocated page information, the handler is removed from
the respective addresses. Then, as the memory page contents arrive, they are written to the corre-
sponding addresses and the userfault handler is unregistered from these addresses. When the guest
accesses these memory pages whose content is already available, no further interposition by the
hypervisor is carried out. On access to a page whose content is still missing, the hypervisor issues
a demand-fetch request to the source hypervisor.
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Figure 9: Experiment Set-Up

5 Experiments
We performed experiments to demonstrate the effectiveness of enlightened post-copy in resolv-
ing resource contention and the performance trade-offs resulting from its design principles. Our
experiments address the following points. First, we show how enlightened post-copy salvages
the throughput of contending VMs through end-to-end results, while comparing them to those of
original live migration of qemu-kvm 2.3.0. Next, we investigate the efficacy of our approach in
robustly dealing with workloads by examining the performance of two baseline methods, stop-and-
copy and simple post-copy, as reference points. Finally, we show the cost of enlightened post-copy
in terms of state transfer amounts and guest OS overhead.

5.1 Set-Up and Workloads
Figure 9 shows our experiment set-up. VMs are migrated between a pair of source and destination
hosts, which are connected through a backend 10 Gbps network for migration traffic. They are
also connected on this network to an NFS server that stores VM disk images. The client machines
use a separate 1 Gbps network for user traffic to and from the VMs. In the experiments except
those with idle VMs, initially two VMs are running and contending with each other on the source
machine. We migrate one of the VMs to the destination machine, after which each VM has its own
dedicated machine. The VM hosts and client machines are each equipped with two Intel Xeon E5-
2430 CPUs at 2.20 GHz and 96 GB memory, running Ubuntu 14.04. The VM hosts execute Linux
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kernel 4.1.0-rc3 with a userfault patch applied, while the other machines run version 3.16.0. As
userfault currently does not support the use of huge pages, they are disabled in our measurements.
Time on the machines is synchronized via an NTP server, and the backend bandwidth between
the VM hosts is controlled using Linux Traffic Control for measurements at 5 Gbps and 2.5 Gbps.
The VMs run Ubuntu Server 12.04 with unmodified kernel 3.2.0 in all the cases except those with
enlightened post-copy, in which we use our modified version of the kernel.

We use the following workloads that exhibit different types of resource intensity and reveal
performance trade-offs made by enlightened post-copy:
Memcached: The VMs run an in-memory key-value store, Memcached 1.4.13 [2], and the clients
execute its bundled benchmark memslap 1.0, which is modified to report percentile latencies. The
VMs are each allocated 30 GB of memory and 8 cores, with Memcached configured with 4 threads
(due to its known scalability limitation) and 24 GB cache. We first run the benchmark against
Memcached to fill up its cache, and then perform measurements with concurrency level of 96 and
set-get ratio of 1:9. At the time of migration, approximately 24 GB of memory is in use, almost all
of which is by Memcached.
MySQL: The VMs run MySQL 5.6, and the clients execute OLTPBenchmark [3] using the Twitter
workload with scale factor of 960. The VMs are each allocated 16 cores and 30 GB of memory, and
MySQL is configured with a 16 GB buffer pool in memory. The concurrency of OLTPBenchmark
is set to 64. After generating the database contents, we execute Tweet insertions for 25 minutes
and then the default operation mix for 5 minutes as a warm-up. At the time of migration, MySQL
uses approximately 17 GB of memory, and almost all of the 30 GB memory is allocated by the
guest OS for use.
Cassandra: The VMs run a NoSQL database, Apache Cassandra 2.1.3 [4], and the clients use
YCSB [7] 0.1.4 with 24 threads and core benchmark F, which consists of 50% read and 50%
read-modify-write operations. The VMs are each configured with 16 cores and 30 GB of memory.
Before measurements, the benchmark is run for approximately 10 minutes to warm the servers up.
At the time of migration, the server uses around 8.4 GB of memory out of 12 GB in use by the
guest OS.

In the above workload configurations, Memcached is the most memory- and network-intensive,
while consuming relatively low CPU resources. Also, the VM’s memory is almost exclusively
used by the server process itself. MySQL is more CPU-intensive, and also less memory-intensive
in terms of the access footprint per unit time. Finally, Cassandra is the most compute-intensive
among these workloads, making CPUs the source of contention. In the MySQL and Cassandra
cases, the guest OS uses a non-trivial amount of memory in addition to that allocated by the server
processes themselves. These characteristics make Memcached the worst case, and MySQL and
Cassandra more winning cases for enlightened post-copy in comparison to live migration.

5.2 End-to-End Performance
In this section, we compare application-level performance of the three workloads during migration
with enlightened-copy and live migration. In addition to the throughput of the server applications,
we also report the impact of migration on application-level latency.
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Figure 10: End-to-End Results with Memcached. The y-axis indicates throughput in operations
or transactions per second. The black and gray lines represent the migrated and contending VMs,
respectively, and the dotted lines the aggregate of the two. The shaded areas show the duration of
migration.
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Figure 11: Latency with Memcached at 10 Gbps. The black and gray lines correspond to the
migrated and contending VMs, respectively. The top two graphs show the 90th percentile latency
over time on a log scale, with the shaded areas indicating the duration of migration. The bottom
two figures are CDFs of the response latencies during the 5-minute period, with markers at every
10th percentile.
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5.2.1 Memcached

Figure 10 compares Memcached throughput of enlightened post-copy (labeled “EPC”) and live
migration (labeled “Live”) under varied bandwidth. The y-axis shows operations per second in
thousands (x1000), and total duration of migration is shown as shaded areas. The dark lines in-
dicate the performance of the migrated VM, and gray lines are that of the contending VM. The
dotted lines represent the aggregate of the the two. The source of contention is user traffic handling
by the source hypervisor. As Memached accounts for almost all the guest memory pages in use
(which are categorized into User Data) and accesses them at a great speed, it leaves little room for
memory prioritization through enlightenment. Thus, the performance recovery during enlightened
post-copy migration is not significant because it requires most pages for the Memcached server to
be present. Immediate execution transfer, still, lets the contending VM recover its performance as
soon as the migration starts. On the other hand, live migration handles the read-mostly workload
relatively well. At 10 Gbps, it finishes almost as soon as enlightened post-copy does. However, it
performs more state retransmission as bandwidth becomes lower, and at 2.5 Gbps it fails to finish
while the benchmark continues. Note that, because of the migration thread causing the saturation
of a core at 10 Gbps, the results at this speed are not as good as can be expected from the 5 Gbps
results.

The latency characteristics of the 10 Gbps measurements are shown in Figure 11. The top two
graphs present the 90th percentile latency of the server responses over time. The latency stays
roughly between 1 and 2 ms before migration, and around 1 ms once it completes. Live migration
sustains mostly good latency until the end of migration. Enlightened post-copy leaves the 90th
percentile latency close to 1 second right after the start of migration, while it starts to decrease as
more state arrives at the destination. The bottom two graphs show CDFs of the response times
during the same 5-minute period. Despite its longer tail to the right side, enlightened post-copy
still maintains the curve of the migrated VM close to that of the contending VM and those with live
migration. While the differences in throughput should also be considered when interpreting these
results, this means that the impact on latencies of the served requests is moderate at the 5-minute
granularity.

5.2.2 MySQL

Figure 12 shows the throughput results with MySQL. Although the workload is less network-
intensive than Memcached, multiplexing user traffic between the VMs on the source causes con-
tention. We also attribute to this bottleneck the ephemeral performance drops that are observed
especially before migration. As the workload has more memory access locality, as well as mem-
ory allocated besides the cache of MySQL itself, enlightened post-copy gains significantly from
prioritized state transfer. The throughput of the migrated VM starts recovering shortly after the
migration start, and well before its total duration. In addition to taking longer as the workload size
increases with respect to bandwidth (i.e., at lower bandwidth), live migration also exhibits more
interference with the throughput of the migrated VM at higher bandwidth. The reason is that the
workload is fairly CPU-intensive, and that the migration thread performs dirty state checking more
frequently per unit time. Also, unlike all the other cases, live migration completes sooner than en-
lightened post-copy at 10 Gbps. As the interference of the hypervisor slows the guest, it consumes
less computational resources besides those spent for network transfer than enlightened post-copy
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Figure 12: End-to-End Results with MySQL. The y-axis indicates throughput in operations or
transactions per second. The black and gray lines represent the migrated and contending VMs,
respectively, and the dotted lines the aggregate of the two. The shaded areas show the duration of
migration.
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Figure 13: Latency with MySQL at 10 Gbps. The black and gray lines correspond to the migrated
and contending VMs, respectively. The top two graphs show the 90th percentile latency over
time on a log scale, with the shaded areas indicating the duration of migration. The bottom two
figures are CDFs of the response latencies during the 5-minute period, with markers at every 10th
percentile.
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(a) 10 Gbps

(b) 5 Gbps

(c) 2.5 Gbps

Figure 14: End-to-End Results with Cassandra. The y-axis indicates throughput in operations
or transactions per second.The black and gray lines represent the migrated and contending VMs,
respectively, and the dotted lines the aggregate of the two. The shaded areas show the duration of
migration.
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Figure 15: Latency with Cassandra at 10 Gbps. The black and gray lines correspond to the migrated
and contending VMs, respectively. The top two graphs show the 90th percentile latency over
time on a log scale, with the shaded areas indicating the duration of migration. The bottom two
figures are CDFs of the response latencies during the 5-minute period, with markers at every 10th
percentile.
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does. As a result, live migration can better utilize the bandwidth.
The latency results for the workload are shown in Figure 13. The 90th percentile latency with

enlightened post-copy recovers quickly as the throughput does, lowering to the level of a VM with-
out contention before the completion of migration. The CDFs also indicate that the response time
distributions are comparable between the two methods, including the tails to the right representing
the maximum latency.

5.2.3 Cassandra

Finally, Figure 14 shows the results with Cassandra. This workload makes the CPUs on the source
the bottleneck for the VMs before migration. Its total duration not being affected by the resource
intensity of the workload, enlightened post-copy finishes as soon as the amount of memory in use
has been transferred. It also starts recovering the throughput of the migrated VM halfway through
the migration process. With severe CPU contention on the source, live migration is prevented from
performing dirty state checking and state transmission frequently. Thus, we do not observe its
interference with the migrated VM’s throughput, but instead see total duration heavily penalized
at higher bandwidth; effective state transfer rate stays low enough that the duration differs only
slightly between 10 and 5 Gbps. Overall, the difference in the duration between the two methods
is more significant than with the other workloads.

As shown in Figure 15, the good performance of enlightened post-copy is also reflected in the
latency results. The 90th percentile latency increases for a short period with enlightened post-copy,
and soon drops to the ideal level without the contention. Also, the response time distributions of
enlightened post-copy and live migration compare well to each other. Except for the right tail of
the migrated VM being a little longer with enlightened post-copy, the two methods show similar
distribution curves.

5.3 Comparison with Baseline Approaches
We have so far compared enlightened post-copy with live migration based on pre-copy, which is
predominantly used in today’s virtualized environments. We further describe our design trade-offs
by way of comparison to two fundamental approaches: stop-and-copy [32, 39] and simple post-
copy. Stop-and-copy is an early form of migration that stops the VM, transfers all its state, and
resumes the VM, in a sequential manner. It achieves the shortest total duration possible at the
cost of making down time equivalently long. Simple post-copy solely uses demand fetches. It
transfers only those memory pages that are being accessed by the guest on the destination, making
each access incur an RTT between the hosts. These approaches can be considered as extreme
design points: stop-and-copy as live migration that eliminates iterations for the sake of minimal
duration, and simple post-copy as enlightened post-copy without, or with completely ineffective,
enlightenment. They thus serve as baselines that reveal the benefits of using the sophistication in
enlightened post-copy.

Figure 16 illustrates the behavior of stop-and-copy and simple post-copy with the Memcached
and MySQL workloads at 10 Gbps. The two workloads exemplify cases in which they perform
well or poorly compared to enlightened post-copy (whose corresponding cases are shown in Fig-
ures 10 (a) and 12 (a)). Stop-and-copy works relatively well for Memcached, and poorly for
MySQL. Its performance is determined by the state transfer amount, regardless of the workload,
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(a) Memcached

(b) MySQL

Figure 16: Behavior of Baseline Approaches. The y-axis indicates throughput in operations or
transactions per second. The black and gray lines represent the migrated and contending VMs,
respectively, and the dotted lines the aggregate of the two. The shaded areas show the duration of
migration.
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Table 2: Costs of Idle VM Migration. The tables show time and state transfer statistics of migrating
an idle VM, with no active applications inside. The numbers in parentheses in part (b) represent a
percentage of the total transfer amount.

while enlightened post-copy copes better with the MySQL workload than with the Memcached
workload. The gain by enlightened post-copy, therefore, becomes clearer in the MySQL case.
Simple post-copy is ineffective for Memcached and fairly adequate for MySQL. It significantly
impacts the Memcached performance once the VM starts on the destination, as the cost of page
retrieval is prohibitive for the memory-intensive workload. MySQL, on the other hand, exhibits
enough memory access locality to prevent this cost from significantly affecting its performance.
As a result, enlightened post-copy shows a clear advantage in the Memcached case. In summary,
stop-and-copy and simple post-copy have cases they can handle and those they cannot; enlightened
post-copy performs comparably to them in their best cases, and outperforms them considerably in
the other cases.

5.4 Costs of Enlightenment
Enlightened post-copy targets VMs under loads and makes explicit design trade-offs. One ques-
tion that arises is the overhead incurred due to its design when used in other situations. Table 2
shows time and state transfer statics of migrating an idle VM with 30 GB memory over 10 Gbps.
The guest OS uses approximately 1 GB of memory, with no user applications actively running. In
part (a), the columns from left to right indicate guest communication time for obtaining enlight-
enment, time until the VM is suspended on the source, execution transfer time, and total duration.
Although enlightened post-copy pays the price of communicating with the guest OS, the cost is
insignificant in this idle VM case. Live migration, even when the VM is idle, needs to scan the
entire guest memory and thus takes some time until completion. Overall, enlightened post-copy is
no worse than live migration in terms of the time metrics. Part (b) in the figure shows the amount
of state transfer by the transfer method used. “Free memory information” for enlightened post-
copy represents how much data was sent to inform the destination hypervisor of all the unallocated
memory pages. Since enlightened post-copy performs one-time transfer and live migration needs
little retransmission, they transfer similar amounts in total.
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In order to measure the real-time cost of tracking page allocation in the free bitmap, we ran a
microbenchmark program inside the guest. The program performs repeated memory allocation, as
fast as possible, in chunks of 1000 individual 4KB malloc() and free() calls each. With the original
Linux kernel and our modified kernel, one pair of these calls took 1.394 us and 1.455 us (4.4%
increase), respectively. As demonstrated in the preceding results, this difference typically has a
negligible impact on applications because they do not allocate and free memory as frequently as
the program does.

5.4.1 Summary of Results

The main properties of enlightened post-copy, as demonstrated by the end-to-end results, are sum-
marized as follows. First, as a result of fast execution transfer, the migrated VM ceases to contend
for resources soon after the migration is initiated. The other VMs are then able to use the freed
resources. Second, the performance of the migrated VM starts recovering before the completion
of migration, especially rapidly with MySQL and Cassandra. Enlightenment achieves this timely
recovery. Third, the duration of migration is shorter than that of live migration in most cases,
because of one-time state transfer without retransmission. Through these benefits, the aggregate
throughput of the contending VMs is salvaged effectively.

In addition, enlightened post-copy is resilient to varying workloads in the VM, compared to
stop-and-copy and simple post-copy. Similar to live migration, these approaches have one par-
ticular metric of focus. Their effectiveness, therefore, largely depends on the nature of the VM
workload, whereas enlightened post-copy at least has performance comparable to the best ap-
proach among them. The cost of achieving such efficiency is insignificant when migrating idle
VMs, and moderate in terms of memory management inside the guest OS.

6 Related Work
VM migration has improved over the past decade, with previous work targeting different environ-
ments. Live migration focuses on minimizing the down time of migrated VMs, and exemplifies
pre-copy approaches. Early work on migration started with stop-and-copy [32, 39], in which guest
execution is suspended before, and resumed after, entire state transfer. Stop-and-copy augmented
with partial demand fetch and other optimizations has been applied to virtual desktops in Internet
Suspend/Resume [19, 33] and Collective [30, 31]. The approach opposite to the pre-copy style is
post-copy migration. VMs are resumed on their destination first, and then their state is retrieved.
Examples of this approach include work by Hines et al. [14, 15] and by Liu et al. [20]. Post-copy
migration is often desirable when migrating all state as fast as possible is prohibitive with respect
to available network resources. Also in such situations, optimized techniques have proven to be
effective that are based on a pre-copy approach [8, 40] and large-scale solutions such as VM distri-
bution networks [27, 28, 29]. Hybrid approaches utilizing pre-copy and post-copy have also been
proposed [22]. Finally, various optimizations to migration have been used, such as page compres-
sion [13, 36] and guest throttling [8, 23]. Page compression can considerably reduce the amount
of state transfer, being effective when the migration process is not bottlenecked by CPUs. Guest
throttling helps live migration to complete early by limiting the rate of page dirtying. In this work,
on the other hand, we aim to let VMs that are already slowed down by contention consume as
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many physical resource as possible.
The other key aspect of our work is enlightenment, which has been used in various ways.

Satori [24] uses the knowledge of guests about their reclaimable memory, for memory consolida-
tion between multiple VMs. Ballooning [37] is another well-established form of explicit guest
involvement in the memory reclamation by the hypervisor. Our work applied the concept of
enlightenment to migration, and investigated how explicit guest support can improve migration
performance. An alternative approach to full enlightenment through guest cooperation is to use
hypervisor-level inference. Kaleidoscope [9] exploits memory semantics inferred from architec-
ture specifications, and uses the obtained information for fast VM cloning. JAVMM [16] expedites
migration of VMs containing Java applications, by having them inform the hypervisor of memory
containing garbage-collectable objects and avoiding its transfer. There also exists previous work
that takes the task of migration into the application layer, instead of passing available knowledge
down to systems software. Zephyr [12], Madeus [25], and ElasTraS [11] are examples of such ap-
proaches applied to databases. Imagen [21] targets active sessions for JavaScript web applications,
migrating them between devices for ubiquitous access. Wang et al. [38] proposed a fault tolerance
scheme for MPI applications that triggers their live migration.

7 Conclusion
We presented enlightened post-copy, an approach to urgently migrating VMs under contention. It
addresses aspects of VM migration differing from the focus of the existing approaches: urgent ex-
ecution transfer of the migrated VM, thereby recovering the aggregate performance the contending
VMs rapidly. The current standard of migration, live migration, exhibits undesirable characteristics
in these aspects due to its design choices. Departing from its blackbox nature, we treat migration
as a native functionality of the guest OS. Enlightened post-copy exploits this cooperation between
the guest OS and the hypervisor, allowing prioritized post-copy state transfer that achieves the
above objectives. Our prototype, implemented in guest Linux and qemu-kvm, requires only mod-
erate changes to the guest kernel, and it demonstrates that the cooperative approach resolves the
contention between VMs up to several times faster than live migration.
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