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Abstract

FPGAs offer high performance and power efficient computation, but are difficult to

use. In particular, the effort involved in managing data movements between on-chip

computation components and off-chip DRAM has prevented FPGAs from being widely

adopted by the computing industry. Recently developed FPGA programming environ-

ments layer simplifying abstractions on top of the DRAM interfaces provided by FPGA

vendors, but existing programming environments have primarily focused on support for

simple, regular data access patterns such as block copy and streaming.

This thesis proposes CoRAM++, an FPGA programming environment that efficiently

supports complex data structures such as multi-dimensional arrays and linked lists in ad-

dition to simple data access patterns. CoRAM++ application developers manage data

movements through an extensible library of data-structure-specific application-level in-

terfaces, which generate specialized soft-logic datapaths between application components

and memory. This extensible library of data-structure-specific application-level interfaces

is layered top of a system interface which allows library components to attach modules

directly to a memory interface in order to lower the latency of irregular, pointer chasing

operations. Our evaluation of CoRAM++ shows that this approach can provide conve-

nient data access to a variety of data structures without introducing undue performance or

resource overheads, which should make CoRAM++ attractive to FPGA application devel-

opers.
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Chapter 1

Introduction

2015 marks the 50th anniversary of Moore’s Law [63]. Moore’s Law is an observation that

the number of transistors in mass-marked computer chips doubles on a regular schedule

due to decreasing transistor size. However, this schedule has just slipped from 2 years to

2.5 years [42], and Moore’s Law is not the whole story for performance—clock frequen-

cies have been stagnant for the last 10 years [2]. As Moore’s Law has slowed down and

clock frequencies have peaked, the high performance computing community first turned

to parallel computing to obtain performance from increased transistor counts, and then

created heterogeneous computing systems that combine many CPUs and GPUs into mas-

sively parallel supercomputers [5].

Field Programmable Gate Arrays (FPGAs) can further improve performance and re-

duce power requirements [26, 30, 40, 78]. The computing industry’s largest players are

working to bring FPGAs into the data center [23, 74], demonstrating real-world inter-

est in harnessing the potential of FPGAs. However, it remains difficult to create FPGA
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computing applications, both because of the effort involved in mapping computations to

computation kernels, and because of the effort involved in supplying these computation

kernels with data. High level synthesis tools and IP core generators (see Chapter 2) make

it easier to map computation to the FPGA fabric by generating computation kernels from

software source code, and recent work on FPGA programming environments makes it

easier to manage data. But existing FPGA programming environments focus primarily

on simple, regular data access patterns such as block copy and streaming, forcing the

application developer to implement more complex behaviors that may be needed by the

application.

This thesis presents CoRAM++, which extends efficient support to more complex data

structures, such as arrays, linked lists, and graphs. CoRAM++ simplifies FPGA applica-

tion development through an extensible library of portable data-structure specific memory

interfaces that are easy to use and perform well. These memory interfaces allow applica-

tions to trigger data transfers by issuing simple, data-structure-specific commands through

a software programming model. For example, a memory interface for a linear array would

allow the application to trigger streaming data transfers to or from memory, while a mem-

ory interface for a multi-dimensional array would allow the application developer to stream

blocks of data across any dimension. An interface for a pointer-based data structure would

allow the application to traverse the data structure, and might also provide support for mod-

ifying pointers in order to change the relationships between data items. Use of CoRAM++

memory interfaces does not necessarily incur a performance penalty—these interfaces can

match the best performance achievable when supporting sequential data accesses, and

minimize the latency incurred when supporting irregular, pointer chasing data accesses.
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CoRAM++ supports an extensible set of regular and irregular data access patterns,

and allows application developers to create the application once and run it on a variety of

FPGA boards from different manufacturers by simply recompiling the application, rather

than manually creating new logic for each board’s unique DRAM and communication in-

terfaces. CoRAM++ targets a decoupled computing paradigm that separates an application

into computation and communication components, enforcing a separation of concerns be-

tween computation and communication needs, and enabling a software-like programming

model for managing communication. This decoupled computing paradigm is a good fit

for the way application developers commonly build FPGA applications, which are often

designed around computation kernels selected from IP libraries or generated by high level

synthesis tools.

1.1 Enabling Data-Structure-Specific Memory Interfaces

CoRAM++ incorporates two key architectural features that allow the CoRAM++ pro-

gramming environment to efficiently and conveniently support data-structure-specific mem-

ory interfaces:

• A multi-level system architecture composed of a low-level system layer and an ex-

tensible high-level library layer.

• Memory interfaces within the library layer are composed of separate sub-interfaces

for control and data.

1.1.1 A Multi-Level System Architecture

CoRAM++ defines a multi-level system architecture in which application components

interact with an extensible library layer providing application-level data-structure-specific

3
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Application 
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Application 
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Memory 
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specific library-level  
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Data access accelerator 

Data access accelerator 

Data access accelerator Data-structure-specific 
library-level  
accelerators 

Figure 1.1: CoRAM++ system architecture including a high-level library layer that inter-
acts with a low-level system layer, and can connect data access accelerators directly to a
DRAM interface.

interfaces, which is mapped onto a system that providing low-level services. Figure 1.1

depicts this system architecture, showing application components, the library layer, the

system layer, and data access accelerator modules that library components can instantiate.

The system layer manages with DRAM and other off-chip communication interfaces

and on-chip data transport. The system layer provides a low-level, generic interface that

is as simple as possible, in order to ensure an efficient and correct implementation. The

extensible library layer builds convenient data-structure-specific interfaces on top of the

system layer, and can instantiate data access accelerator modules at DRAM interfaces for

performance reasons. These accelerator modules can be hardware engines that are instan-

tiated within the reconfigurable fabric, or can be software running on a tightly integrated

hard-logic processor core. The application is not aware of the implementation of the li-
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Control 
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Data 
Interface 

Control 
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(Sequencer) 

Processing 
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(Kernel) 
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Communication 
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Control 
Interface 

Compute 
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Agent 
(Data Access Pattern Library) 
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Figure 1.2: A data-structure-specific application-level memory interface composed of con-
trol and data sub-interfaces, and including a communication interface to the NoC.

brary components in use, or the existence of accelerator modules, but instead accesses the

selected data-structure-specific interfaces through a data-structure-appropriate commands.

This multi-level application development environment is analogous to software de-

velopment. Software development environments generally include an operating system

that supports low-level functionality such as memory allocation and hardware access, and

libraries that support high-level functionality, such as formatted I/O and standard imple-

mentations of common data structures. Data access accelerators are somewhat similar to

the functionaly provided by CUDA [68]—acceleration of particular types of operations on

specialized hardware. In the case of CUDA, this means SIMD-style code that runs well

on a GPU, and in the case of CoRAM++ data access accelerators, this means particular

data access functions that run well on specialized hardware attached directly (or in a short

pipeline) to a memory interface to minimize latency to that interface.

1.1.2 Memory Interfaces Composed of Control and Data Sub-Interfaces

Figure 1.1 presents the system architecture above used by CoRAM++ to support data-

structure-specific memory interfaces. Each of these memory interface includes three sub-

interfaces, which are depicted in Figure 1.2:

1. A control interface that is used to send commands to the interface, which can trigger

5
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Figure 1.3: CoRAM/CoRAM++ application decomposition into separate compute and
control.

or monitor the status of data transfers. The commands supported by each interface

are specific to the type of data structure managed by the interface,

2. A data interface which provides data for computation.

3. A communication interface which connects to the data-distribution network.

Applications consist of modules that attach to the control and data sub-interfaces of

the selected memory interfaces. This approach does not define the specific commands

that go across the control interface or the ports provided by the data interface (such as

SRAM-style or FIFO-style ports) supported by each memory interface, but does define

that there are separate control and data sub-interfaces, This approach does not preclude

a single module from attaching to both the control and data sub-interfaces of a memory

interface. However, CoRAM++ defines a decoupled programming model does define how

application components interact with memory interfaces.
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1.2 Decoupled Computing and the Original CoRAM Architecture

CoRAM++ follows a decoupled computing paradigm [77] that separates applications

into modules that sequence operations and modules that perform computation. Figure 1.3

shows this application decomposition, which attaches the different types of modules to the

data and control interfaces described in Section 1.1.2. Hardware kernels perform compu-

tation, interacting only with locally buffered data. Control threads sequence data transfers

and the invocation of hardware computation kernels.

CoRAM++ uses a programming model developed for the original CoRAM architec-

ture [31], which defines that control threads are written in a multithreaded C-like lan-

guage and compiled to state machines. This decoupled computing model shields compu-

tation kernels from the complexity of hardware platform-specific interactions with exter-

nal DRAM, and shield the application developer from the need to manually create state

machines. Since control threads manage long running operations, they do not need the

cycle-level control that hardware description languages provide, and the fact that they are

compiled from software code (and may not be as optimized as hand-designed state ma-

chines) does not hurt performance.

The application-level interfaces used by CoRAM and CoRAM++ applications are di-

vided into two distinct sub-interfaces, as described above in Section 1.1.2:

1. Kernels access data through wire-level port interfaces.

2. Control threads issue commands through function call interfaces.

The original CoRAM architecture natively supports a block copy application-level inter-

face for DRAM access:

7



1. Kernels access data through wire-level SRAM port interfaces.

2. Control threads issue commands (by making function calls) to transfer data between

external DRAM and local SRAM blocks.

CoRAM’s application-level interface was meant to be hardened into a future FPGA,

where it would serve as a universal primitive used to support all memory access patterns.

In addition to DRAM interfaces, the original CoRAM architecture supports communica-

tion interfaces such as PCI express, ethernet, and serial ports, which are mapped into a

global address space and accessed using the natively supported block copy application-

level interface. CoRAM++ uses a soft-logic mapping of the CoRAM architecture as its

system-level interface, which was enhanced with features that enable CoRAM++ to sup-

port convenient. and is described in Section 5.3.

1.3 CoRAM++ Data-Structure-Specific Application-Level Interfaces

CoRAM’s application-level interface can be realized in the soft logic of today’s FP-

GAs, but with penalties in terms of both performance and logic overhead [32]. This

application-level interface also limits the ways in which libraries can layer new function-

ality on top of its native application-level interface, as will be illustrated by Section 2.7.3.

CoRAM++ resolves these issues by by making better use of the reconfigurability of the

FPGA fabric to provide a more customized datapath to memory. These changes improve

performance, reduce resource overheads, and offer increased convenience to the appli-

cation developer through an extensible library of data-structure-specific application-level

memory interfaces.

For example, streaming a block of data from memory is a common operation. A
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CoRAM++ application-level interface for streaming provides control threads with com-

mands relevant to initiating and monitoring data streaming operations between DRAM

and the hardware kernels. The hardware kernels use stream-specialized wire-level port

interfaces that resemble a FIFO rather than an SRAM, in that the hardware kernels can

only access the next item in the sequence.

An application-level interface used to interact with other data structures would be sim-

ilarly specialized. For example, the application-level interface for a multi-dimensional

array would provide commands for array traversal operations along various dimensions

and support selecting between multiple in-memory data layouts at run time. The corre-

sponding wire-level port interface could provide either FIFO-style ports or SRAM-style

ports.

Below this abstraction, CoRAM++ allows data-structure-specific application-level in-

terfaces to generate a streamlined soft-logic datapath to memory that can selectively in-

stantiate components in order to improve performance. These performance benefits can be

especially noticeable for irregular pointer based structures. For example, the application-

level interface for a linked list could attach a hardware linked list engine directly to a

DRAM interface to accelerate linked list operations by minimizing the latency of pointer

chasing operations.

1.4 Thesis Contributions

CoRAM++ encompasses a data-structure-specific approach to application develop-

ment, an FPGA application development environment supporting this approach, and an

extensible library of data structures. This thesis demonstrates that CoRAM++ supports
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conveniently supports a variety of data-structure-specific application-level interfaces with-

out introducing too much overhead in terms of run-time performance or resource utiliza-

tion, making the following contributions:

1. The CoRAM++ approach to FPGA application development, which is designed

around a decoupled computing model that supports an extensible library of data-

structure-specific application-level memory interfaces.

2. An application development environment supporting this computing model, which

layers this library of data-structure-specific memory interfaces on top of a low-level

system-level interface, and allows library components to instantiate custom data-

paths to memory (including custom modules directly connected to memory inter-

faces) in order to deliver better performance when supporting irregular, pointer-

chasing data accesses.

3. Initial work towards a library of data-structure-specific memory interfaces support-

ing data access patterns that are important in FPGA computing.

4. A demonstration that the CoRAM++ programming environment makes application

development easier without undue overhead in terms of run-time performance or

resource utilization.

1.5 Thesis Outline

The remainder of this thesis presents the details of CoRAM++, covering both its inner

construction and external APIs. Chapter 2 provides background information on the state

of the art in FPGA application development. Chapter 3 discusses the CoRAM++ program-

ming environment in detail, and Chapter 4 presents the current library of application-level

10



interfaces supported by CoRAM++. Chapter 5 discusses the implementation details of

the CoRAM++ environment, and Chapter 6 details the implementation of the CoRAM++

interface library. Chapter 7 details benchmark applications that have been built using

CoRAM++. Finally, Chapter 8 concludes and proposes future extensions to CoRAM++.
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Chapter 2

Background and Related Work

This chapter summarizes prior work on FPGA computing, programming environments,

other tools support the development of FPGA computing applications.

2.1 Computing with FPGAs

In addition to their common use as prototyping devices, FPGAs have long been stud-

ied as general purpose computation devices. Numerous programming models for com-

putation with reconfigurable devices have been explored, including using reconfigurable

logic to implement custom instructions within processors [19], as coprocessors paired with

a microprocessor [45], shared between several processors within a multi-core chip [80],

connected to a multiprocessor system through the memory bus [21], and as standalone de-

vices connected to Ethernet networks [25]. FPGAs are especially good at power-efficient

computing [26, 30, 40, 78].

In spite of the demonstrated abilities of FPGAs as computation devices, very few FP-

GAs devices are employed for general purpose computation [9]. The reason that this is the
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case is that FPGAs are difficult to use. FPGAs applications are most commonly designed

using Register Transfer Languages (RTLs) such as Verilog and VHDL, which require the

application designer to manually manage fine grained parallelism at a very low level of

abstraction. It is particularly cumbersome to specify sequential actions through this pro-

gramming model, which requires manually defining states and state transitions, and then

manually encoding the states and transitions into register actions. The RTL programming

model increases the burden required interact with DRAM and other communication inter-

faces (such as PCI, Ethernet, USB, and serial ports), as these interactions generally require

managing sequential operations.

In addition, DRAM interfaces and other communication interfaces also vary widely

between FPGA devices, meaning that the effort that went into making an application work

well with the DRAM interface on one FPGA chip must be repeated when transitioning

the application to another FPGA. The requirement of re-creating the logic that connects to

DRAM interfaces not only applies when moving to an FPGA from a different manufac-

turer, but also applies to newer devices from the same manufacturer. The remainder of this

section will discuss various strategies that have been used to raise the level of abstraction

in FPGA application design, including programming environments that layer abstractions

on top of FPGAs to simplify application development and provide portability.

2.2 Soft-logic and Hard-logic Processor Cores on FPGAs

FPGA development toolkits provide soft-logic processor cores [13, 88], and some

FPGA chips include hard-logic processors cores that run much faster than soft-logic cores

and can be used without consuming reconfigurable fabric resources [14, 86]. FPGA devel-
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opment tools include a software development kit to allow application developers to write

software to run on these processor cores, and include a bus interconnects and software

toolkits that allow communication between processor cores and custom logic mapped to

the FPGA’s reconfigurable fabric. Soft processors offer limited performance due to low

clock speeds, and can only connect to user-defined logic modules through buses. These

buses increase the latency between DRAM and user-defined modules, mitigating the ease-

of-use advantages that they provide, and can make it difficult to utilize the full bandwidth

that DRAM controllers provide.

Hard processor cores do not necessarily fare any better in terms of achievable DRAM

bandwidth, even though they can run at much higher clock speeds. FPGA chips such as

the Xilinx Zynq [86] and Altera Arria SoC [14] contain two hard-logic ARM processor

cores, hard-logic caches, a hard-logic memory controller, and hard-logic data distribution

network, and connect the reconfigurable fabric to the data distribution network through

multiple ports. The hard-logic components run at a higher clock rate than they would

achieve if implemented in soft logic, but while they support high speed DDR-3 interfaces,

Xilinx limits the physical width of the Zynq’s hard logic DRAM interfaces to 32 bits.

This is half the typical DDR3 chip-to-chip interface width, limiting the ARM cores and

reconfigurable fabric to half the bandwidth that these DRAM interfaces would typically

provide, since Xilinx runs the interfaces at the typical DDR-3 clock speeds. Some of

Altera’s Arria SOC chips also limit the DRAM interface to a 32 bit width, but run the

interface at twice the clock speed of their Xilinx counterparts, and are less bandwidth

constrained.

Both Xilinx and Altera FPGAs with built-in hard processor cores can include addi-
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tional DRAM interfaces besides the DRAM interfaces attached to the hard processor cores,

which can provide higher bandwidth to custom logic in the reconfigurable fabric, How-

ever, neither FPGA manufacturer includes functionality to help the application interact

with these DRAM controllers (beyond their standard DMA engines), forcing application

developers to interact with the faster DRAM controllers the same way that they would if

the ARM cores were not present.

Intel has released Stellarton [49] chip, which included an Atom CPU and FPGA fabric

in the same package. This chip connected the FPGA fabric to the remainder of the system

through a slow first generation PCI-Express connection – it did not have any access to

DRAM. More recently, Intel has announced new tightly coupled CPU-FPGA systems [35],

which use a cache coherent connection (over a bus called “QPI”) allowing the FPGA to

access DRAM. These systems are just becoming more widely available, and provide a

coherent cache on the FPGA side of the system, but do not provide higher level data

management mechanisms.

2.3 Higher Level Hardware Description Languages

The two dominant hardware description languages used for FPGA design—Verilog

and VHDL—require designing applications at a very low level, describing the interactions

of circuit elements per clock cycle, and manually coordinating between them. While they

do support some modularity and template creation, support for these features varies widely

across RTL compilation software.

Several higher level languages for hardware development have been created. These

languages are commonly based on functional programming languages, which are compiled
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to HDL code that can then be processed using the typical hardware design tools. Examples

of these languages are Bluespec [66], Chisel [20], and MyHDL [65]. These tools have

been used for several large projects, up to and including processors [28, 36], and these

tools are increasing in popularity over time. Several prior FPGA computing programming

environments, including LEAP [38] and the CoRAM architecture [31], use Bluespec to

assist with their implementation.

2.4 High-Level Synthesis Tools

High level synthesis is the process of generating hardware designs suitable for imple-

mentation on FPGAs from even higher level software source code. Numerous high level

synthesis tools have been developed, including Xilinx Vivado High Level Synthesis (for-

merly AutoPilot and AutoESL) [85], Altera’s C2H compiler [12], the Riverside Optimiz-

ing Compiler for Configurable Computing (ROCCC) [79], Impulse-C [48], Handel-C [59],

and Catapult-C [58].

These tools are able to generate hardware pipelines from software source code, but

have some limitations: High level synthesis tools generally do not have the ability to

directly manage DRAM controllers (although Altera’s tool does allow this and supports

pipelined data transfers), and generally rely on the application designer to annotate the

software source code in order to capture parallelism and data reuse. These tools also tend

to be somewhat limited in the types of source code that they accept, although they are

markedly improving over time. Ultimately, the capabilities of these tools are tied to their

ability to extract parallelism and pipeline parallelism from sequential code.

There is recent work that utilizes AutoPilot with a variety of polyhedral optimizations
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in order to capture parallelism [98], and our own work [81] has shown that the CoRAM

abstraction, in concert with simple loop nest optimizations, can produce full implementa-

tions of high performance computations that interact with DRAM controllers.

LegUp [24] represents another class of high level synthesis tools. Source code is com-

piled to a hybrid architecture containing a MIPS soft processor, similar to the soft proces-

sors discussed above. The application is then profiled in order to detect hot areas of code,

which are converted into custom accelerators.

Restricting the types of applications that a tool will support to a specific domain is one

way to make the problem of automated system generation from a high level description

more tractable. Domain specific tools have been created to build network processors [54],

compile GPGPU applications [70], accelerate MATLAB code [43], implement linear pro-

cessing transforms [60], and even generate custom FPGA devices [44].

2.5 Bus infrastructures and Networks-on-Chip

FPGA computing applications generally include infrastructure for data distribution

within the chip. This infrastructure often comes in the form of buses such as AXI [17], but

some infrastructure layers can produce point-to-point connections. Adding an infrastruc-

ture layer does introduce some overhead, but as some logic is necessary to implement the

functionality provided by computing infrastructures, the additional overhead introduced

by a well-written infrastructure layer is minimal.

Both Xilinx and Altera provide “system builder” tools that allow users to combine

components using a GUI tool [16, 90]. These tools support load-store and streaming in-

terfaces. and allow application developers to manually incorporate descriptor-based DMA
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engines [92]. These tools can even support the hard cores and interconnects present on

the chip. These tools manage all of the components connecting to a bus, multiplexing

multiple interfaces into a single connection using a global address space, and arbitrating

between multiple components that connect to DRAM and other communication interfaces.

These tools are vendor specific, and it can be even difficult to transition designs between

different versions of the tool, which don’t always provide an automatic upgrade path for

IP modules. It can also become cumbersome to use these point-and-click tools to create

large applications.

As FPGAs grow larger and the number of components in use grows, there has been in-

creased interest, from both the commercial and research communities, in replacing shared

buses with Networks-on-Chip (NoCs) [46, 71], and even in hardening the NoC [6].

2.6 FPGA Computing Application Programming Environments

FPGA computing application programming environments attempt to simplify FPGA

application development by automating the process of creating data paths and provid-

ing services for moving data across interfaces and within the FPGA. Existing program-

ming environments have primarily focused on simple, regular data access patterns such as

streaming and block copy. They tend to use a Network-on-Chip (NoC) for data distribu-

tion, mapping applications to a “dance hall” style architecture. A “dance hall” architecture

instantiates application components on one side of the NoC and DRAM controllers and

communication interfaces on the other, requiring a round trip through the NoC for every

data access.

Redsharc[52] provides stream and block APIs to kernels using custom hardware or
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on an embedded processor, and also decomposes applications into control and compute,

managing global control through software running on an embedded processor.

Maxeler MaxCompiler [57] supports streaming and array operations, and like CoRAM

and CoRAM++, decomposes applications into kernels that compute and manager modules

that orchestrate computation and I/O. MaxCompiler includes a Java-like language that can

be used to assemble kernel pipelines, and supports address generation modules for multi-

dimensional arrays.

RCMW[50] is a virtualized FPGA development environment that supports APIs for

stream and burst transfers, mapping applications to one or more physical FPGAs. RCMW

allows application developers to adjust interface properties and arbitration schemes, but

does not support custom logic near DRAM controllers and communication interfaces.

LEAP1 [38] is an operating system for FPGAs that supports many features, incuding

data transport, barriers, and file I/O including standard input and output. LEAP applica-

tions consist of modules, which can be created out of hardware or software, that com-

municate through latency-insensitive communication channels. LEAP supports a mem-

ory hierarchy with a “scratchpad” interface, which consistof a NoC-attached hierarchy

of caches[7], that can coherently share data between multiple hardware kernels [94].

LEAP can map application components onto multiple FPGA chips, embedded proces-

sors, and computers [39], and supports a prefetcher to improve the performance of strided

accesses [93]. This prefetcher is transparent to the application, and cannot be tuned for

specific data access patterns. The prefetcher is instantiated near application components in

the NoC, rather than near the DRAM controllers. LEAP’s only model for accessing mem-

1LEAP stands for both Logic-based Environment for Application Programming and Latency-insensitive
Environment for Application Programming
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ory is a latency-insensitive load-store interface, although there is ongoing work on using

LEAP as a system layer for CoRAM++, and modifying LEAP to support the CoRAM++

concept of accelerators that are directly connected to a memory interface.

Catapult [74] is a recent effort to bring FPGA computing into the mainstream, and is

currently part of a large scale effort by Microsoft to move a research effort into produc-

tion. It provides a standard “shell” interface on the FPGA device that handles off chip

communication, and provides compute modules with a streaming interface. Catapult will

greatly change the face of FPGA computing, as Microsoft’s first goal with it is to dou-

ble the performance of Bing search, which, if successful, will commercially use FPGAs

on a scale at which they have not been used before. The current Catapult shell attaches

FPGA DRAM interfaces directly to the application, and does not appear to abstract the

raw DRAM interface in any way.

Most similar to CoRAM++ in motivation is APMC [47], which goes beyond simple

data access patterns by including a specialized descriptor-based DMA engine supporting

load-store, streaming, array, linked list, and tree based data transfers. APMC allows appli-

cation developers to write software code to manage data transfers, which runs on a Xilinx

microblaze processor. APMC’s descriptor-based DMA engine includes a scratchpad that

can be used as a traversal cache [33] to store the results of a data structure traversal for

later reuse.

2.7 The CoRAM Architecture for FPGA Computing

The CoRAM architecture proposes new FPGAs with built in data management fea-

tures (implemented in the hard logic that makes up a CoRAM FPGA), along with a pro-
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(b) Sparse matrix-vector multiply results
Figure 2.1: Simulation results using the original CoRAM architecture [32].

gramming model that decomposes applications into kernels that perform computation and

control threads that manage control and communication. CoRAM defines a fixed set of

application-level interfaces that are meant to be used as building blocks for all applica-

tions. These application-level interfaces include block copy memory APIs to move data

between DRAM interfaces and kernels, and queue-based and register-based messaging

APIs for communications between control threads and kernels. The CoRAM architecture

supports “personalities” for layering application-level interfaces on top of its own, but does

not allow CoRAM personalities to provide the most convenient interfaces to applications,

as will be discussed in Section 2.7.3.

2.7.1 Mapping the CoRAM Architecture to Soft-Logic FPGAs

The CoRAM architecture has been realized in soft logic [32], and can perform well

when supporting computations that perform regular data accesses. The chart on the left

side of Figure 2.1 shows the results of a simulation study on a single precision floating

point matrix-matrix multiplication (MMM) on the CoRAM architecture. The results are

grouped by simulated FPGA size, ranging from 500k to 4 million logic elements. Each

FPGA size includes performance results simulating a soft implementation of CoRAM us-

ing a ring, mesh or crossbar NoC, along with a hard implementation using a hard logic
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mesh NoC and CoRAM cluster, and an “Ideal” result which is the peak theoretical through-

put of the processing elements. In these simulation results, the performance of the soft-

logic realizations of the application are almost identical to the hard-logic realizations for

the two smaller FPGA sizes (which are still medium-to-large FPGAs when compared to

commercially available chips in 2015), and the soft-logic realizations are close in per-

formance to the hard-logic realizations when using the crossbar NoC in the two larger

simulated FPGAs.

While the performance of the MMM computation (with regular memory accesses)

is good when using a CoRAM implementation that is mapped to soft logic, the perfor-

mance of irregular computations (which require data dependent memory accesses) is not.

The chart on the right side of Figure 2.1 shows how the soft-logic implementation of

the CoRAM architecture suffers when computing a Sparse Matrix-Vector Multiplication

(SpMV). The figure shows the results of a SpMV using single precision floating point data

stored in the common compressed sparse row (CSR) format [3], which omits zero-valued

data in a sparse matrix to skip unneeded computations and data transfers. Omitting zero-

valued data greatly reduces the number of computations to perform, but requires irregular,

data dependent accesses in order to process the non-zero data. The figure shows that all

of the soft-logic realizations of the application are much slower than the hard-logic ones

when performing the SpMV calculation. The soft-logic realization of the CoRAM archi-

tecture can include a cache between the DRAM interfaces and NoC, but the lower clock

speeds of the soft-logic realization of CoRAM does not allow the cache to overcome the la-

tency of the NoC round trip for every access. One of goals of CoRAM++ is to resolve this

type of problem by allowing CoRAM++ data-structure-specific application-level memory
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interfaces to attach data-structure specific accelerators directly to the memory interface in

order to make irregular, data dependent memory accesses faster. CoRAM++ also allows

data-structure-specific application-level memory interfaces to run pointer-chasing code on

hard-logic processor of tightly-coupled CPU-FGPA systems (such as the Xilinx Zynq or

Intel HARP), using the higher clock speeds and hard-logic caches available on these sys-

tems to make pointer-chasing data accesses faster.

ShrinkWrap [29] is an add-on that tunes the NoC used by the soft-logic implemen-

tation of CoRAM for the application. ShrinkWrap allows the application to specify how

much bandwidth various components need, and uses this information to configure the NoC

topology and data path width for this bandwidth in order to reduce NoC resource require-

ments. Shrinkwrap can also create separate NoCs for components that only read data or

only write data, creating a pair of trees that transport data in each direction, are tuned to the

aggregated NoC bandwidth needed by application components while reducing the width

of the data path going to each component, further reducing resource requirements. The

evaluation of ShrinkWrap showed that when an application can benefit from a reduced-

bandwidth NoC, ShrinkWrap can reduce resource requirements by an order of magnitude

while increasing the maximum clock speed of the application.

2.7.2 C-to-CoRAM: CoRAM as a High Level Synthesis Target

The C-to-CoRAM compiler [81] is an exploration of the original CoRAM architecture

as a high-level synthesis target, in order to understand the ramifications of the CoRAM

architecture’s decoupled computing model on the high-level synthesis process. Most of the

high-level synthesis tools discussed above do not support interactions with DRAM, and the

goal of C-to-CoRAM was to see if the techniques that they use to generate hardware from
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software code could be combined with the CoRAM architecture’s data transfer abstraction

to generate complete applications.

Another important distinction between C-to-CoRAM and the high-level synthesis tools

discussed above is that CoRAM++ is annotation-free. Most high-level synthesis tools

require that the user specify which parts of the application to pipeline and parallelize, but

the C-to-CoRAM compiler does not. This ability is due to the C-to-CoRAM compiler’s

focus on loops—by restricting the code that the compiler processes to tight loops. it can

find code that be pipelined and parallelized by tracing through data dependencies.

for (i= … 
  for (j=… 
    for(k=… 
      C[i][j]+= 
         A[i][k]*B[k][j]; 

C-to-CoRAM 
Compiler 

DRAM 

Control 
Threads 

Hardware 
Kernels C

o
R

A
M

 

Figure 2.2: C-to-CoRAM com-
pilation workflow.

Figure 2.2 shows the workflow used by the C-to-

CoRAM compiler. The C-to-CoRAM compiler takes a

loop nest program, partitions the program into compute

and control portions, and the uses the ROCCC [79] high-

level synthesis tool together with the soft-logic realiza-

tion of the original CoRAM architecture to generate an

FPGA programming file. The C-to-CoRAM compiler

uses well known auto-parallelization and data reuse de-

tection techniques in order to create applications that can

perform well on FPGAs. The C-to-CoRAM compiler

can automatically interleave independent computations

through deeply pipelined kernels, reorganizes data transfers for efficient implementation,

and instantiates stream buffers to take advantage of data reuse that it finds.

While reorganizing data transfers, the C-to-CoRAM compiler converts them into a data

stream that is delivered to hardware kernels, and can even generated stride-permutation
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stream buffers to avoid strided accesses that inefficiently use the DRAM row buffer, by

performing them on chip using local buffers that can retrieve any row with one cycle

latency. These stream buffers instantiated by the C-to-CoRAM compiler are tuned for the

exact data access pattern that the application needs. The compiler allows users to easily

scale the generated hardware to fit larger or smaller FPGA devices, and target devices from

multiple FPGA vendors.

The C-to-CoRAM compiler was tested using FPGA hardware from Xilinx and Altera

on floating point matrix-matrix multiplication, 2d direct convolution, and k-nearest neigh-

bor workloads, using one or two DRAM controllers. Application performance on FPGA

hardware ranges from 4× slower to 2× faster than previously published work on the same

hardware. It can use the ShrinkWrap extensions to the original CoRAM architecture to

reduce NoC requirements when not all of the DRAM bandwidth is needed.

The main takeaway from the C-to-CoRAM project is that it is possible to use the orig-

inal CoRAM architecture as a high-level synthesis target. As with many high level syn-

thesis tools, C-to-CoRAM can only provide good performance on code from which paral-

lelism and data reuse can be automatically extracted. C-to-CoRAM extracted parallelism

and data reuse by recognizing particular data access patterns and instantiating pipelined

and parallel computation kernels and parameterized stream buffers to take advantage of

these data access patterns. The C-to-CoRAM compiler could use state-of-the-art polyhe-

dral analysis techniques to find and parallelize more code, but by doing so it would likely

lose the ability to perform annotation-free optimization, as most polyhedral analysis tools

require annotation to restrict their search space.
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2.7.3 Limitations of the CoRAM Architecture and its API

The CoRAM++ abstraction inherits its high level programming model from the origi-

nal CoRAM architecture, which is the decomposition of applications into Processing El-

ements that perform computation and Control Threads that manage global control and

data transfers. This decomposition allows a separation of concerns between compute and

control, and allows Control Threads to be expressed through a software design language

rather than a hardware design language. Since Control Threads are meant to preside over

data transfers that take many cycles and are limited by the DRAM controller, they would

have little to gain from the performance increase provided by the cycle-level control of

hardware design languages.

This programing model causes performance issues in soft logic when an application

performs data dependent accesses – for example with the sparse matrix-vector multiplica-

tion whose simulation results are discussed above in Section 2.7. The simulation results

show that when targeting the higher clock speeds of hardware the CoRAM architecture

does much better than when targeting soft logic, in spite of the fact that the soft-logic re-

alization of the CoRAM architecture includes a cache attached to the DRAM controllers.

The reason for this issue is the latency of DRAM requests, which much start from a con-

trol thread (which has been compiled to an FSM), go across the NoC, through the cache

(when included), and to the DRAM interface. The data-structure-specific approach of

CoRAM++ addresses this issue by allowing data-structure-specific accelerators that are

attached directly to the DRAM interface. Chapter 5.1 will provide more detail about data-

structure-specific accelerators.

In addition to providing better performance, CoRAM++ also provides more conve-
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nience to the application developer through simple data-structure-specific application-level

interfaces with “fire-and-forget” semantics—that is application developers can issue com-

mands using these interfaces, and rely on the CoRAM++ programming environment to

execute the commands without blocking the application, even if the command takes a long

time to run. The original CoRAM architecture does not allow simple “fire-and-forget”

style data structure code, as will be explained below.

As a hardware architecture, the original CoRAM architecture contains built-in support

for a limited set of application-level interfaces. The original CoRAM architecture defines a

block copy application-level interface that moved data between local SRAM blocks (called

“CoRAM” blocks) and a global address space that contains DRAM controllers and com-

munication interfaces The original CoRAM architecture also supports bidirectional com-

munication channels between a single Control Thread and a single Processing Element in

the form of message queues and shared registers. These application-level interfaces are

intended to serve as building blocks for all communication patterns.

The original CoRAM architecture defines “personalities” as a way for library code

to supplement its built-in application-level interfaces. CoRAM personalities can encap-

sulate CoRAM blocks and communication channels, allowing CoRAM personalities to

build new application-level interfaces on top of the built-in SRAM interface, such as a

FIFO-style interface allowing access to a sequence of data items. CoRAM personalities

can also provide library code to application control threads, exposing function calls that

allow application control threads to issue commands specific to the CoRAM personality.

However, these function calls run within the application control thread, which can cause

issues when a command triggers a long-running action.
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Consider a CoRAM personality for a stream. A stream personality should expose a

FIFO-style interface to hardware kernels, and allow control threads to issue commands

that initiate and monitor stream operations. Within the CoRAM personality, stream op-

erations are mapped onto block copy operations by using the SRAM as a circular buffer.

The circular buffer will internally maintain head and tail pointers into the buffer, and will

not allow writes into the buffer when the buffer is full, or reads when the buffer is empty.

The need for these blocking flow control mechanisms prevents CoRAM personalities from

providing the most convenient possible application-level interfaces to applications. Sec-

tion 3.2 discusses the additional code that CoRAM control threads must include when

using personalities for complex, long running operations.
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Chapter 3

The CoRAM++ Programming

Environment for FPGA Computing

3.1 Arguments for Specializing in a Soft-Logic Context

Like most of the programming environments for FPGA computing discussed in Sec-

tion 2, the original CoRAM architecture was designed around support for a single data

access pattern—block copy. The original CoRAM’s native application-level interface re-

stricts hardware kernels to obtaining data from wire-level ports that connect to SRAM

blocks, and restricts control threads to issuing commands that transfer data between DRAM

and small SRAM blocks.

While it is possible to map all data access patterns onto a block copy paradigm, data-

structure-specific application-level interfaces can be more convenient for the application

developer. For example, in the original CoRAM a streaming data transfer can be im-

plemented through repeated block copy commands issued by a control thread. However,
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the control thread could be simplified if it could issue simple “fire-and-forget” streaming

commands to initiate and monitor streaming operations. These simple commands also al-

low the control thread to avoid the burden of handling subtle issues, such as flow-control

related deadlocks.

The hardware kernel could also benefit from specialized interfaces for streaming. Rather

than explicitly managing an SRAM as a circular buffer, the hardware kernel could utilize

an application-level interface providing FIFO-style ports.

The data-structure-specific approach of CoRAM++ can also improve performance.

The original CoRAM’s simple, generic application-level interface is intended to serve as

the universal primitive supporting all memory access patterns, and would perform well

in a hardened implementation within a future FPGA. But a soft-logic implementation of

CoRAM on today’s commodity FPGA suffers in performance and resource overheads due

to the inherent inefficiencies of soft logic. A data-structure-specific approach can recoup

some of these losses in addition to providing a more convenient application-level interface.

Consider a hardware kernel operating on data stored in a linked list. Traversing the

linked list requires pointer chasing operations to follow the chain of linked list nodes, and

may also require pointer chasing to retrieve data payloads. While pointer chasing op-

erations are feasible under the original CoRAM application-level interface, each pointer

chasing operation must be performed by the control thread using explicit DRAM opera-

tions with very long latencies.

A command set that directly operates on linked lists not only simplifies the control

thread, but also permits performance optimization by the underlying implementation. A

linked list application-level interface can include a linked-list-specific engine that is be
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connected directly to a DRAM interface. As will be explained in Section 3.4 below,

this module can make linked list operations faster by minimizing latency when follow-

ing the linked list pointers, and batching data transfers across the NoC. This linked list

application-level interface might provide better even performance than could be achieved

by a hardened implementation of CoRAM, which would not allow custom soft-logic mod-

ules to be connected directly to a DRAM interface, and consequently would incur many

round trips across the NoC when traversing a linked list.

Data-structure-specific application-level memory interfaces can also provide interest-

ing opportunities for hardware-software codesign. For example, Xilinx’s Zynq and Intel’s

HARP are tightly coupled CPU systems—the FPGA fabric access the same DRAM as

a CPU core, and can coherently share memory. When running an application with with

pointer-chasing memory accesses on a these systems, it might be advantageous to run

pointer-chasing operations on a CPU core, which can stream data to the FPGA fabric

through either a dedicated hardware port or a DRAM-based queue. The application would

benefit from the higher clock speeds and hard-logic cache of the CPU core in this scenario,

as well as the ease-of-use of writing pointer-chasing code as software.

3.2 Complexities in Creating Extensible Data-Structure-Specific

Application-Level Interfaces

Designing a programming environment to conveniently support extensible application-

level interfaces (data-structure-specific or not) is not trivial. Library code must map all

data transfers onto primitives that are directly supported by the underlying programming

environment, and would ideally be able to completely mask their implementation in order
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to support the most convenient interface possible.

For example, the original CoRAM architecture supports a supports a block copy data

transfer primitive. Block copy is universal, but even the most simple data access pattern

that is not block copy—streaming contiguous blocks of data to or from DRAM—cannot

be built on top of a block copy data transfer primitive without some care. This issue arises

because the underlying buffers used for copying blocks of data are finite in size, and flow

control mechanisms must be used to ensure that data is not copied into buffers unless the

buffers contain sufficient room for the data.

Streaming data transfers are commonly built on top of buffers using a circular buffer,

using one pointer into the buffer as the location for writing data and another for reading

it. The streaming data transfer library would keep track of both buffers, and prevent data

from being written to the buffer unless the buffer contains space for the data. A stream-

ing data transfer component should hide this implementation detail from the application,

presenting the application’s hardware kernel with FIFO-style ports, and providing control

thread commands that initiate and monitor streaming data transfers.

Listing 1 depicts the desired control thread code for a streaming application written

for the original CoRAM, using a CoRAM “Personality” to manage data transfers. The

corresponding hardware kernel code is identical to the example in Chapter 3, and is omitted

in the listing because the hardware kernel code is not the source of the issue at hand. Lines

1-7 and 13-14 are boilerplate—including headers, declaring a function and local variables,

creating a loop. Lines 8-12 contain the useful parts of the control thread. The control

thread reads a run-time parameter from the host computer, indicating the number of data

items to transfer. The control thread then initiates a streaming transfer that writes data
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1#include "StreamPersonality.h"
2#include "CommPersonality.h"
3void streamer(int IN_ADDR, int OUT_ADDR) {
4 Personality s_in=getStreamPersonality(1);
5 Personality s_out=getStreamPersonality(2);
6 Personality comm=getCommPersonality(3);
7 while (true) {
8 unsigned count=read_comm(comm)*sizeof(unsigned);
9 write_stream(s_in,&IN_ADDR,&count);

10 read_stream(s_out,&OUT_ADDR,&count);
11 wait_stream(s_out);
12 write_comm(comm,0);
13 }
14}

Listing 1: Streaming application code (which deadlocks using CoRAM stream
personalities)

from DRAM to the “input” stream, and another that reads data from the “output” stream

to DRAM. Finally, the control thread waits until data has been written to the “output”

stream, and sends a signal to the host computer.

This control thread will not work as intended, because CoRAM personalities perform

data transfers in the context of the application control thread. This prevents CoRAM per-

sonalities from performing long-running complex data transfers on behalf of the applica-

tion without blocking the application control thread. This causes problems when a single

control thread manages two stream personalities, because of the need for flow control

when using a circular buffer to perform a streaming data transfer.

When the control thread in Listing 1 reaches line 9, it will invoke the stream personal-

ity code for that writes data from DRAM to the stream. This code will write a block of data

to the circular buffer, and wait until the buffer has more space—that is until the kernel re-

moves the data. At the beginning of the computation, the kernel will remove data, feed the
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data into a streaming kernel, and eventually write output data to the output stream. As the

kernel removes data from the stream, the control thread will continue issuing commands

to copy data into the buffer. However, at some point, the output stream will fill up, because

the output stream is also backed by a circular buffer. The only way for that space will open

up in the output buffer is if the control thread issues commands to move data from the

output stream to DRAM, which will not happen until the control thread reaches line 10.

But the control thread cannot reach line 10 until it issues all of the commands necessary

to write the entire input data set to the input stream on line 9, leading to a deadlock.

This deadlock is ultimately caused by the fact that CoRAM personalities manage data

transfers in the context of application control threads—that is CoRAM personalities cannot

manage data transfers independently of application code. There are two solutions available

to CoRAM applications that resolve this issue: writing application code that manually

invokes callback functions to manage multiple data transfers, or writing application code

that manually creates a separate control thread for each stream. Each solution is discussed

below.

Listing 2 illustrates a callback-based streaming application. The core of this appli-

cation is an additional application loop that calls non-blocking functions that issue com-

mands to each stream, and tracks the amount of data written to and read from the stream

individually. While it is only four lines longer than the code in Listing 1, the extra loop

makes it conceptually much more complicated.

Listing 3 presents the multi-threaded solution. This code creates two separate control

threads, along with a communication channel between them. Each control thread manages

a separate stream, and proceeds independently as it issues blocking data transfers. As with
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1// Control Thread code for a callback-based memory
personality-based streaming application

2#include "StreamPersonality.h"
3#include "CommPersonality.h"
4void streamer_callback(int IN_ADDR, int OUT_ADDR, int

SIZE) {
5 Personality s_in=getStreamPersonality(1);
6 Personality s_out=getStreamPersonality(2);
7 Personality comm=getCommPersonality(3);
8 while (true) {
9 unsigned count_r=read_comm(comm)*sizeof(unsigned);

10 unsigned count_w=count_r;
11 while (count_r>0) {
12 if (count_w>0)
13 write_stream_nonblocking(s_in,&IN_ADDR,&count_w);
14 read_stream_nonblocking(s_out,&OUT_ADDR,&count_r);
15 }
16 wait_stream(s_out);
17 write_comm(comm,0);
18}

Listing 2: Streaming application code that uses application callbacks to avoid deadlock

the callback-based solution above, this code is more complex than the desired code in List-

ing 1. CoRAM++ allows library code to instantiate control threads that are independent

from the application components. This feature allows “fire-and-forget” style commands

exposing data-structure-specific application-level interfaces that are as convenient as pos-

sible.

3.3 CoRAM++ Scope and Underlying Assumptions

The CoRAM++ FPGA programming environment is primarily concerned with com-

putations that run entirely within the reconfigurable FPGA fabric, and focuses on data

movements between application components and DRAM. It would be possible to partition
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1// Control Thread code for threaded memory
personality-based streaming application

2#include "StreamPersonality.h"
3#include "ThreadThreadPersonality.h"
4#include "CommPersonality.h"
5// This thread reads from the kernel and writes to DRAM
6void streamer_read(int OUT_ADDR, int SIZE) {
7 Personality s_out=getStreamPersonality(2);
8 Personality comm=getCommPersonality(3);
9 Personality to_read=getThreadThreadPersonality(4);

10 while (true) {
11 unsigned count=read_comm(comm)*sizeof(unsigned);
12 write_to_other_thread(to_write,count);
13 read_stream(s_out,OUT_ADDR,count);
14 wait_stream(s_out);
15 write_comm(comm,0);
16 }
17}
18// This thread reads from DRAM and writes to the kernel
19void streamer_read(int IN_ADDR,int SIZE) {
20 Personality s_in=getStreamPersonality(1);
21 Personality to_write=getThreadThreadPersonality(4);
22 while(true) {
23 unsigned count=read_from_other_thread(to_write);
24 write_stream(s_in,IN_ADDR,count);
25 }
26}

Listing 3: Streaming application code for CoRAM using application threads to avoid
deadlock

larger applications into components that run on an embedded processor (such as within

the Xilinx Zynq [86]) or within a multi-socket CPU-FPGA system (such as Intel’s new

Xeon-FPGA hybrid system [35]), but CoRAM++ does not currently provide any tools to

help an application developer decide how to partition the application between CPU cores

and the FPGA fabric.
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However, CoRAM++ does include some support these systems. Section 7.3.2 eval-

uates the possibility of accelerating pointer-chasing memory operations using the CPU

cores of a tightly-coupled CPU-FPGA system. Since the CPU cores in such a system

will run at higher clock speeds than the FPGA fabric and contain hard-logic caches, they

should be able to perform pointer-chasing memory operations faster than the FPGA fabric.

CoRAM++ also supports a host computer interface (see Section 4.2.2) that assists in mov-

ing data between a CPU-based system and FPGA DRAM. This host computer interface

has a well-defined communication protocol, and uses the ARM cores on the Zynq FPGA

to manage data transfers over an ethernet communication interface.

3.4 CoRAM++ Programming Environment Overview

Like the original CoRAM architecture, the CoRAM++ FPGA programming environ-

ment simplifies FPGA application development while supporting high performance data

transfers. The CoRAM++ programming environment retains the decoupled programming

model of the original CoRAM architecture. But CoRAM++ makes better use of the recon-

figurable nature of soft-logic commodity FPGAs and generates a customized datapath to

memory that is tuned for the data structures used by the application.

As discussed in Chapter 1.2, CoRAM++ applications are decomposed into hardware

kernels that compute and control threads that control threads that sequence computa-

tion and communication. These components communicate using data-structure-specific

application-level interfaces which are used to facilitate data transfers in an FPGA-agnostic

fashion. An application developer designing an application for CoRAM++ performs the

following steps:
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1. Designs the hardware kernels.

2. Selects data-structure-specific application-level interfaces.

3. Writes control threads.

4. Runs the CoRAM++ compiler.

5. Invokes FPGA-vendor-specific tools.

CoRAM++ makes no restrictions on how hardware kernels are created—they can be

created using any hardware design methodology, including IP core generators and the HLS

generation tools discussed in Chapter 2. The data-structure-specific application-level in-

terfaces are selected from an extensible library, and can be customized if necessary. The

underlying implementation modules that support application-level interfaces are called

“agents,” because they act independently of application components to manage data trans-

fers. Section 4 describes the data structures that are currently supported by this library.

CoRAM++ Control threads are written using a broad subset of the C language, which

supports the common control flow constructs, and will be described in more detail in Sec-

tion 5, which also discusses the CoRAM++ compilation process. CoRAM++ currently

supports FPGAs from both Xilinx and Altera, and includes abstracting wrappers that pro-

vide a uniform interface to block memories and floating point cores.
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3.5 Example CoRAM++ Application

This section presents a streaming CoRAM++ application that calculates a double pre-

cision Discrete Fourier Transform (DFT). A streaming application is convenient for elab-

orating CoRAM++ application components, but Chapter 7 demonstrates the CoRAM++

abstraction is not limited to streaming applications.

Since DFTs are common, an application developer would create a DFT core with an

IP core generator (such as Spiral [61]) rather than by hand. When creating the application

without using the CoRAM++ abstraction, the application developer would complete the

application by providing:

1. An FPGA-specific module that instantiates DRAM controllers, clock generators,

and off-chip communication interfaces.

2. Address generation logic.

3. A data distribution network.

4. Control logic that manages these components and the process of initializing FPGA

DRAM.

The CoRAM++ abstraction significantly simplifies this process. When targeting the

CoRAM++ abstraction, the application developer creates a kernel, which instantiates the

DFT core and CoRAM++ components shown in Listing 4, and then writes the small

amount of control thread code shown in Listing 5. The CoRAM++ compiler (discussed

in Section 5.1) processes the application components and invokes vendor-specific tools to

produce an FPGA programming file.

Figure 3.1 depicts the an application-level view of the streaming DFT application,
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Figure 3.1: Application-level view of a streaming CoRAM++ DFT application.

showning application components, DRAM interfaces, and two stream agents (which im-

plement the stream application-level interfaces used by the application). A single control

thread manages data transfers. The control thread directs one stream agent to deliver data

from DRAM to the hardware kernel (containing the DFT core), and directs another stream

agent to write output data to DRAM. The kernel interacts with FIFO-style wire-level ports

exposed by the stream agents.

Listing 4 contains the Verilog source code for the hardware kernel. The application

processes a pair of DFT inputs per cycle, each containing real and imaginary components.

The hardware kernel instantiates the DFT core and several CoRAM++ agents. In general,

CoRAM++ agents are parameterized by the name of the thread to which they connect and

a unique identifier. The stream agents expose wire-level ports that are used within the

hardware kernel, but the other two CoRAM++ agents do not expose ports as they do not

interact with the Processing Element. The host computer agent declared in lines 15-17

allows the user to initialize FPGA DRAM and manage application execution from a host

computer, and the application’s control thread is instantiated in lines 18-21. Note that the

hardware kernel is not concerned with ports for external connections—those that attach to
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1// dft.v: Processing Element code for the CoRAM++ DFT
2module dft();
3 wire in_rdy, dft_rdy,out_rdy, dft_done;
4 wire[255:0] dft_in_data;
5 wire[255:0] dft_out_data;
6 // These Agents perform data transfers
7 ReadStream#(.ID(1) ,TID("dft"),.WIDTH(256))
8 inQ(.notEmpty(in_rdy),.first(dft_in),

.deq(in_rdy&&dft_rdy);
9 WriteStream#(.ID(2) ,TID("dft"),.WIDTH(256))

10 outQ(.data(out_data),.enq(dft_done&&!out_rdy),
.notFull(out_rdy));

11 // This IP core performs computation
12 DFTKernel#(.SIZE(64),.PRECISION(64))
13 kern(.in(dft_in),

.out(dft_out),.issue(n_rdy&&dft_rdy),
14 .out_valid(dft_done),.stall(dft_done&&!out_rdy);
15 // The Host Computer Agent manages execution
16 // and interactions with the host computer
17 HostComm#(.ID(3), .TID("dft")) comm();
18 // This Agent instantiates the Control Thread
19 ControlThread#(.FNAME("dft"),
20 .PARAMS("IN_ADDR=0;OUT_ADDR=0x100000;SIZE=8192"))
21 appThread;
22endmodule

Listing 4: CoRAM++ Streaming 64-input DFT Hardware Kernel.

a NoC and ultimately to the DRAM interfaces on the FPGA in use. These connections are

created during the compilation processes, which finds and processes the needed interfaces

in through a process to that used by Soft Connections [72].

The control thread in Listing 5 first imports the application-level-interfaces supported

by the stream and host computer agents using standard #include directives, and attaches

to them in lines 5-7. Line 9 shows how the application reads a user-specified run-time

parameter through the host computer agent, and lines 10-12 show how the control thread
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1// dft.c: Control Thread code for the CoRAM++ DFT
2#include "StreamAgent.h"
3#include "CommAgent.h"
4void dft(int IN_ADDR, int OUT_ADDR, int SIZE) {
5 Agent s_in=getStreamAgent(1);
6 Agent s_out=getStreamAgent(2);
7 Agent comm=getCommAgent(3);
8 while (true) {
9 unsigned count=read_comm(comm)*SIZE;

10 write_stream(s_in,IN_ADDR,count);
11 read_stream(s_out,OUT_ADDR,count);
12 while (!stream_status(s_out)) {}
13 write_comm(comm,0);
14 }
15}

Listing 5: CoRAM++ Streaming 64-input DFT Control Thread.

initiates non-blocking data transfers and waits for their completion. Finally, line 13 shows

how the application indicates that the computation is complete, and that all output data

is in DRAM. In this example, the addresses of input and output data are hard coded, but

these addresses could be run-time variables.
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Chapter 4

Currently Supported Application-Level

Interfaces

The CoRAM++ library of application-level interfaces is extensible and will grow over

time. CoRAM++ currently supports data structures that are fundamental to computing [34]

or critical to highly-valued application domains. In addition to data-structure-specific in-

terfaces,, the CoRAM++ application-level interface library includes support for several

“utility” interfaces. The underlying modules that implement these application-level inter-

faces are called CoRAM++ “agents.” In general, the term “agent” will be used to describe

the instantiation of an application-level interface or its implementation details.

4.1 Data-Structure-Specific Interfaces for Memory Access Patterns

The CoRAM++ data structure library currently supports application-level interfaces

for streaming (sequential access to 1D arrays), multi-dimensional arrays, linked lists, and

static graphs (which do not change during computation, and support graph traversal opti-
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Interface Type Name Description
Hardware
Kernel Ports

addr[] Local SRAM address.

read/write 0 if the current request is a read, or 1 if it is
a write.

din[] Input data for write.
dout[] Output data for read. Output data is valid

one cycle after the read request.
Control Thread
Commands

write nb(b,g addr,
l addr, bytes)

Write bytes bytes of data from global ad-
dress g addr to local storage b starting at ad-
dress l addr. Returns a transaction tag that
can be used to monitor the data transfer.

read nb(b,g addr,
l addr, bytes)

Write bytes bytes of data local storage b
starting at address l addr to global address
g addr. Returns a transaction tag that can be
used to monitor the data transfer.

check tag(tag) Returns true if the transaction referred to by
tag has completed

Table 4.1: Block copy application-level interface.

mization through preprocessing). CoRAM++ data-structure-specific application-level in-

terfaces are divided into two parts: wire-level ports that are exposed to hardware kernels,

and function calls that control threads use to send commands.

4.1.1 Block Copy Interface

The block copy interface allows applications to transfer small contiguous blocks of

data between DRAM (or any communications device mapped into a global address space)

and local storage the FPGA. This interface mimics the application-level interface of the

original CoRAM architecture. However, unlike the original CoRAM architecture, this

application-level interface does not specify that data be stored in actual SRAM blocks, but

instead specifies an SRAM-like interface for hardware kernels that may support simulta-

neous access through multiple SRAM-style wire-level ports.
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Interface Type Name Description
Hardware
Kernel Ports

notEmpty Indicates whether or not the read stream con-
tains data.

dout[] The first data item in the read stream.
deq Dequeue the first item in the read stream.

Control Thread
Commands

write stream(s,a,b) Write b bytes of data from global address a
to write stream s.

stream status(s) Indicates whether or not all operations on
stream s have completed.

Table 4.2: Read stream application-level interface.

Table 4.1 describes the block copy application-level interface (showing a single hard-

ware kernel port interface), including a single cycle of delay when reading data from local

storage. The wire-level ports presented to hardware kernels mimic typical SRAM-style

ports, and the control thread commands match those supported by the original CoRAM

architecture.

4.1.2 Stream Interface

The stream interface supports streaming applications that transfer data sequential data

to or from DRAM. There are two variants of this interface—one that streams data from

DRAM (or a communication interface mapped into the global address space) to a hardware

kernel, and one that streams data in the opposite direction. Streams can be configured (at

compile time) to carry arbitrarily wide data.

The read stream interface (which reads data from DRAM) is presented by Table 4.2,

and the write stream interface (which writes data to DRAM) is rpesented by in Table

4.3, The hardware kernel connects to FIFO-style ports, and the control thread can issue

non-blocking commands that issue data transfers to or from the global address space, and

determine the status of outstanding requests.
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Interface Type Name Description
Hardware
Kernel Ports

notFull Indicates whether or not the write stream has
room for a new data item.

din[] Input data to write to the stream.
enq Write the data din to the steam.

Control Thread
Commands

read stream(s,a,b) Read b bytes of data from read stream s to
global address a.

stream status(s) Indicates whether or not all operations on
stream s have completed.

Table 4.3: Write stream application-level interface

4.1.3 Multi-dimensional Array Interface

The multi-dimensional array interface is provides a FIFO-style interface to hardware

kernels while providing control thread commands that are convenient for handling mul-

tidimensional array data. The application developer specifies the number of dimensions,

dimension lengths, and size of sub-blocks at compile time. As with the stream interface

described above, the multi-dimensional array interface supports two variants, one for read-

ing data to memory, and one for writing data to memory If needed by an application, it

would be easy to create a third variant of this interface that supports SRAM-style ports,

allowing random access to blocks of array data.

Table 4.4 shows the read multi-dimensional array interface, and Table 4.5 shows the

corresponding write multi-dimensional array interface. Like the stream interface, each

instance of the multi-dimensional array interface must be configured either for reading

from the global address space or writing to the global address space.

The multi-dimensional array interface can stream the entire array in any dimension,

and the application can specify, at run time, whether the data is stored in row-major or

tiled order, and whether to deliver data to the stream in row major or tiled order. The
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Interface Type Name Description
Hardware
Kernel Ports

notEmpty Indicates whether or not the read stream con-
tains data.

dout[] The first data item in the read stream.
deq Dequeue the first item in the read stream.

Control Thread
Commands

write stream
(s,a, i[,j,k...])

Write an item at indices (i,j,k...) to stream s
from the array starting at address a. Note
that the number of dimensions is fixed at
compile time.

write stream row
(s, a,i,d)

Write row i along dimension d from array
starting at address a to stream s.

write stream block
(s,a,i)

Write block i from array starting at address
a to stream s. Blocks are addressed in row-
major order, and have the same dimension-
ality as the array.

write array
(s,a,d,o, g,p)

Write entire array a by dimension d stored
in orientation o to streams with granularity
g using permutation p. Orientation can be
row-major or blocked, and specifies the stor-
age order in memory, and granularity speci-
fies whether to deliver rows or blocks of data
to the stream.

test stream(s) Test to see if all stream operations on stream
s have completed

Table 4.4: Read multi-dimensional array application-level interface.

agent can also transfer individual data elements, or rows or columns (or a sequence of

data elements along any dimension), or multidimensional tiles of data. Any combination

of these traversals are valid, but performance will suffer if data is traversed in an order

that requires striding through memory, which causes inefficient use of the DRAM row

buffer. Section 7.2 illustrates the effects of re-ordering the data on the fly. The write

multi-dimensional array interface supports the exact same functionality for writind data to

memory.
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Interface Type Name Description
Hardware
Kernel Ports

notFull Indicates whether or not the write stream has
room for a new data item.

din[] Input data to write to the stream.
enq Write the data din to the steam.

Control Thread
Commands

read stream
(s,a, i[,j,k...])

Read an item at indices (i,j,k...) from stream
s to the array starting at address a.

read stream row
(s, a,i,d)

Read row i along dimension d to array start-
ing at address a from stream s.

read stream block
(s,a,i)

Read block i along dimension d to array
starting at address a from stream s.Blocks
are addressed in row-major order, and have
the same dimensionality as the array.

read array
(s,a,d,o, g,p)

Read entire array a by dimension d stored
in orientation o from streams with granular-
ity g using permutation p. Orientation can be
row-major or blocked, and specifies the stor-
age order in memory, and granularity speci-
fies whether to deliver rows or blocks of data
to the stream.

test stream(s) Test to see if all stream operations on stream
s have completed

Table 4.5: Write multi-dimensional array application-level interface.

Multi-dimensional arrays can be mapped to a linear memory address space in several

ways. The most common data organization, such as row-major, is a linear organization in

which data within rows of the array are contiguous in memory. This organization supports

efficient traversal along one dimension, at the expense of inefficient strided traversals in

other directions. The interface also supports a tiled data layout, in which data is laid out in

a tiled Z-Morton [64] order. Figure 4.1 illustrates a tiled 2D data layout.

In addition to streaming data in application defined order, the application can config-

ure the interface with one or more permutation engines, which can be selected at run time.

Permutation engines can rearrange data in the stream in arbitrary ways, including trans-
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Figure 4.1: A 2D tiled data layout. 2D blocks of data are stored contiguously, allowing
efficient traversal along any dimension.

posing blocks or entire data arrays. Since the attached hardware kernel only interacts with

a streaming interface, it is also possible for permutation engines to change the number of

data items being transferred to the stream, removing or adding items as necessary.

CoRAM++ includes macros that help configure the Spiral permutation generator for

use with the multi-dimensional array interface. These macros include one to transpose a

block of data, one to convert a strip of blocks into a strip of rows, and a simple pass-through

queue. These macros allow the Discrete Fourier Transform application (Section 7.2) to

traverse a two dimensional array along both dimensions, transposing the data delivered to

the hardware kernel, using only two permutation engines, or to select between operating on

purely tiled data or converting row-major data to tiled data in transit during the first phase

of computation, efficiently converting data into tiled format on the fly, and traversing data

in tiled format for the second phase, returning the data (at a cost in terms of hardware

resources and a minimal amount of run-time latency) to row major format at the end of

computation.
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4.1.4 Linked List Interface

Linked lists are the canonical example of a data structure requiring irregular accesses,

because it generally not possible to predict the address stored in the “next” pointer. But

linked lists have a well defined structure, and the performance of operations on linked lists

are generally dependent on how quickly requests for linked list nodes can be made.

The CoRAM++ linked list interface manages linked lists with a compile-time defined

format, and includes a hardware linked list engine that performs pointer-chasing opera-

tions. The linked list interface can be configured for different linked list node structures,

including those with in-line linked list data and those whose nodes contain a pointer to

linked list data. Applications can traverse a linked list, streaming linked list data to the ap-

plication or from it, modifying the data in the linked list. The application can also merge

a pair of sorted linked lists in place, and will support more functionality in the future. As

will be discussed in Section 7.3, attaching this hardware linked list engine directly to a

DRAM interface is the key to good performance, and Section 6.3 provides more detail

into the hardware linked list engine’s construction. The hardware linked list engine can

either be attached to the part of the linked list interfvace that interacts with application

components, or it can be attached directly to a DRAM interface to reduce the latency of

pointer-chasing operations as much as possible. The two configurations support the same

application-level interfaces, allowing the different configurations to be benchmarked with

minimal application changes.

The linked list engine can also run on the processor cores of a hybrid CPU-FPGA sys-

tem such as Xilinx’s Zynq. Section 7.3.2 presents an exploration of performing pointer-

chasing linked list operations on a CPU core and streaming data to the FPGA fabric, com-
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Control Thread
Command

Description

initiate request (l,op,
ll address0,
ll address1)

Initiates a linked list operation on interface l Op is a
linked list operation that currently includes read,write,
and merge. ll address0 is the start address for reading
and writing data, and ll address1 is the start address of
the second linked list when merging data.

query status (l) Queries the status of the current linked list operation on
interface l. The query result includes whether or not the
agent has completed the current operation, and how much
data is available to read or write if traversing the list.

Table 4.6: Linked list application-level interface.

paring the performance of the hardware linked list engine and software, and several mech-

anisms for streaming linked list data to the FPGA fabric.

Table 4.6 presents the control thread portion of the linked list application-level in-

terface. The application-level interface for the attached hardware kernel and CPU-based

acceelrator are the same as the FIFO-style application-level interfaces described above.

When the hardware linked list engine is directly connected to a DRAM interface, this

engine is mapped into the global address space. The application can either use this

application-level interface or can directly use drive the memory-mapped interface using

a scratchpad agent (discussed below in Section 4.2.1) in concert with a stream interface

that reads or writes linked list data.

4.1.5 B-Tree Interface

B-Trees are balanced trees that contain more than one key per tree node. This dis-

tinction is depicted in Figure 4.2, and distinguishes B-Trees from typical binary search

trees [34]. B-Trees are useful for key-value storage because the balanced structure makes

the pointer chasing accesses that must be performed when performing tree operations pre-
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Binary Search tree B-Tree 

… 

Figure 4.2: B-Tree structure as compared to typical binary search trees

dictable, and work well on systems with a multi-layer cache hierarchy as long as the size

of the tree nodes is tuned to the cache hierarchy. There are many variants of B-tree-like

structures, including B+-Trees, which store all data values in leaf nodes, allowing a uni-

form tree node structure and ensuring that every access will take the same number of

memory accesses,1 and allowing backtracking during key deletion to be avoided. B-Trees

are attractive for database operations because of their predictability and their ability to

efficiently support range queries, which are less easily supported by hash-based indexes.

B-Trees are subject to internal fragmentation within tree nodes when items are deleted,

unless the tree is re-balanced, but the amount of internal fragmentation is subject to hard

bounds.

The CoRAM++ B-Tree implements a variant of the B+-Tree called a Preparatory Op-

eration B+-Tree [62], which preemptively splits tree nodes during insertion to limit back-

tracking. The CoRAM++ B-Tree does not re-balance the tree upon key deletion, due to

recent theoretical results that show that re-balancing the tree upon key deletion is actu-

ally harmful to performance [76]. These theoretical results show that destroying and re-

1This is logb(k) where b is the number of keys in each tree node, and k is the number of keys in the tree.
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Control Thread
Command

Description

insert(key,value) Inserts key and value into the tree, returning the previous
value of key if key already existed or a token invalid if the
key did not exist

find(key) Finds the value associated key if key already existed or a
token invalid if the key did not exist

delete(key) Deletes key, returning its value or a token invalid if the
key did not exist

Table 4.7: B-tree application-level interface.

creating the tree after a 1
2

of the keys have been deleted is more effective than re-balancing

it, and place hard limits on the amount of internal fragmentation and tree depth.

Table 4.7 shows the application-level interface for B-trees. Like the linked list inter-

face discussed above, the b-tree interface includes a hardware b-tree engine that performs

pointer-chasing operations and streams B-tree payload data to the application kernel (or a

token indicating that the key in question was not part of the tree).

4.1.6 Gather-Scatter Work-List Interface

The gather-scatter work-list interface is designed for applications that break large com-

putations into a sequence of computations on sub-sets of the data, which we will call a sub-

task. Each sub-task operates on multiple data buffers, each of which may include hardware

multiple ports. The gather-scatter interface fetches data from memory and places it into

these buffers, triggers sub-task computation, and writing data back to memory. The appli-

cation provides a list of gather operations, each of which requires following a pointer to

transfer data to the local buffer (the size of each particular data transfer is encoded into the

gather instruction). After sub-task execution is complete, the gather-scatter work-list inter-

face will only write back buffers that have modified data, as a coarse-grained bandwidth-
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Hardware Kernel
Port

Description

raddr i j[] Read address for buffer i port j
rdata i j[] Read data for buffer i port j
ren i Read enable for buffer i
waddr i[] Write address for buffer i
wdata i[] Write data for buffer i
write en i Write enable for buffer i
i addr[] Instruction address
i data[] Instruction data
start Signal to hardware kernel to start computation
done Signal from hardware kernel that computation is com-

plete

Table 4.8: Hardware ports provided by the gather-scatter interface

saving measure. The gather-scatter work-list interface is double buffered, and overlaps

computation with data transfers, and includes forwarding hardware that allows the gather-

scatter interface to avoid data hazards by copying data between associated buffers between

the execution of sub-tasks.

The gather-scatter interface is designed for applications in which can be broken up

into sub-tasks prior to application execution, which allows the gather- and scatter-lists

to be optimized for faster data transfers, coalescing small data transfers into larger ones

in order to improve performance. The gather-scatter interface expects that one buffer is

used to hold instructions determining each sub-task’s execution, and defines an instruction

format that specifies reads and writes to the local buffers. This pre-defined instruction

format allows the gather-scatter interface’s data processing script to reorder data within

local buffers to improve data transfer coalescing opportunities, and to statically detect data

hazards between adjacent sub-tasks and coordinate copying data between the buffers used

by each sub-task.
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Table 4.8 shows the hardware ports provided by the gather-scatter interface. This in-

terface supports a number of buffers (defined at compile time), each of which supports a

number of read ports and a write port. The gather-scatter interface currently supports a

single write port per buffer, but could be modified to support more write ports in the fu-

ture. The gather-scatter interface explicitly exposes an instruction buffer to the application

kernel, and defines an instruction format (which includes space for application-defined op-

codes) in order to support a generic preprocessing script that optimizes the data transfers

for each work-list and statically detects data hazards.

Section 6.5 will discuss the implementation of the gather-scatter work-list, and in-

cludes a depiction of the double buffering and associated hazard avoidance logic.

4.2 Utility Interfaces

These interfaces do not specifically describe data structures, but instead describe useful

functionality needed by many applications.

4.2.1 Scratchpad Interface

CoRAM++ control threads cannot directly read or write data in DRAM. While it is

possible to detect and create logic for these accesses during compilation[81], this feature is

not included in the CoRAM++ compiler in order expose the high latency of these accesses.

The scratchpad agent allows control threads to access data in DRAM when explicitly re-

quired, and can prefetch data to take advantage of data access locality. This agent can also

be used to manage memory-mapped accelerators directly attached to a DRAM interface.

Table 4.9 describes the control thread commands that the scratchpad interface supports.

The first two functions are very simple, and do not attempt to take advantage of locality to
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Control Thread Command Description
thread read (handle, addr) Read 4 bytes from addr using scratchpad handle.

Does not attempt to exploit locality.
thread write (handle, addr,
data)

Write data to addr using scratchpad handle.
May read data from the global address space if
the width of the scratchpad is more than 4 bytes.
Does not attempt to exploit locality.

thread read cache (handle,
addr,last addr, offset, bytes,
dirty)

Read 4 bytes from addr using scratchpad han-
dle. The scratchpad is used as a cache hold-
ing bytes of data starting offset bytes from the
start of the scratchpad, and reference parameter
last addr stores the address of the current item in
the cache. Addr is aligned to bytes bytes, and if
the aligned address does not match last addr, a
new cache line is loaded into the cache. If dirty
is true, the data in the cache will be flushed to the
current last addr before loading the new data.

thread write cache (handle,
addr, data, last addr, offset,
bytes, dirty, flush)

Write data to addr using scratchpad handle. he
scratchpad is used as a cache holding bytes of
data starting offset bytes from the start of the
scratchpad, and reference parameter last addr
stores the address of the current item in the
cache. Addr is aligned to bytes bytes, and if the
aligned address does not match last addr, a new
cache line is loaded into the cache. If dirty is
true, the data in the cache will be flushed to the
current last addr before loading the new data. If
flush is true, then the cache will be flushed to the
global address immediately after writing data to
the scratchpad.

thread flush cache (handle,
addr, offset, bytes)

Uses the Agent attached to handle to flush the
cache of bytes bytes to global address addr
starting offset bytes from the beginning of the
scratchpad.

Table 4.9: Scratchpad application-level interface for control threads.
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Control Thread Command Description
read from host Read signal from host system. The signal is a 64

bit token provided by the host system.
write to host Write signal to host system. The signal is an ar-

bitrary 64 bit token.

Table 4.10: Host computer application-level interface for control threads.

improve performance. The remaining three functions allow the scratchpad to be used as a

sophisticated cache – the application can segment the scratchpad into multiple cache lines

of application-selected size, and can specify for each cache operation whether the current

cache line in the selected segment of the cache should be flushed back to the global address

space if it will be replaced.

The linked list experiments in Section 7.3 show that the scratchpad can improve perfor-

mance when there is locality in the application’s data accesses, but can hurt performance

when large caches are used and the application does not exhibit locality that can be ex-

ploited by the cache.

4.2.2 Host Computer Interface

The CoRAM++ host computer interface addresses one of the most vexing issues in

FPGA development—getting data from a host computer to the FPGA and back. The agent

supporting this interface transfers data from a host computer to FPGA dram, transfers com-

putation results back to the host computer, provides run-time information to application

components, and benchmarks execution through hardware counters. The host computer

interface currently supports serial and Ethernet communication, but there is no reason

why it could not use any communication interface on the FPGA.
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API Type API Port or
Function

Description

Hardware Kernel
Ports

notEmpty Indicates whether or not a FIFO-style
channel contains data.

dout[] The first data item in the a FIFO-style
channel or the data in a register-style
channel.

deq Dequeue from a FIFO-style channel.
notFull Indicates whether or not a FIFO-style

channel has room for a new data item.
din[] Input data to write to the channel.
enq Write the data din to the channel.

Control Thread
Commands

test read channel(c) Returns true if channel c can be read.

read channel(c) Read a data item from channel c, de-
queueing if it is a FIFO-style channel.

test write channel(c) Returns true if channel c can be written.
write channel(c,v) Write v to channel c.

Table 4.11: Channel application-level interface.

4.2.3 Channel Interface

The channel interface can be used by applications to send messages between any pair

of application components—a hardware and a control thread, two hardware kernels, or

two control threads. The channel interface creates a static link between components that

must be defined at compile time. Table 4.11 shows the application-level interfaces avail-

able when using the CoRAM++ channel. The channel interface supports a pair of uni-

directional interfaces—the register-style interface is a pair of registers each supporting a

data flow in one direction, rather than a shared register that can be written and read by the

components on either end of the channel.
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Control Thread Command Description
get kernelcomm write addr(i) Returns the address used to write to kernel-

kernel communication interface i.
get kernelcomm read addr(i) Returns the address used to write to kernel-

kernel communication interface i.

Table 4.12: Kernel-kernel communication interface for control threads

4.2.4 Kernel-Kernel Communication Interface

The channel interface discussed above can be used to statically define connections

between two application components at compile time. The kernel-kernel communication

interface allows dynamically-defined communication between hardware kernels.

The kernel-kernel interface operates by designating special addresses that can be used

to transfer data between kernels. The application uses any of the application-level interface

described above with these special addresses to communicate, meaning that any particular

instances of the application-level interfaces can stream data from (or to) DRAM, an off-

chip communication interface mapped into a global address space, or another kernel.

While it would be possible to use DRAM to transfer data between application hard-

ware kernels, the kernel-kernel communication interface reduces the need for applica-

tion components exchanging data to coordinate—the application must only ensure that the

component that reads data does so at the same rate as the component that writes data.

This application-level interface supports streaming semantics—one application com-

ponent writes data to the interface, and another application component reads from the

interface.2 It would also be possible to define a kernel-kernel communication interface

2The kernel-kernel communication interface does not actually enforce that different componts use each
side of the interface, but a single application component that both wrote and read data using this application-
level interface would need to concern itself with implementation details such as available storage.
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with random access rather than streaming semantics, but doing so would require more

coordination between application components. Since the application defines both ends of

the kernel-kernel communication—writing from one kernel and reading from another—

defining random access semantics should not be required, since the purpose of this inter-

face is to transfer data between local buffers attached to two application kernels.

4.2.5 Thread Creation Interface

The thread creation instantiates a control thread for the application. The application-

level interface is embodied by a Verilog module that is parametrized by the name of the

control thread function, an instance identifier (which is a number), and any method pa-

rameters to the control thread function. The CoRAM++ compiler ensures that all of the

function’s method parameters are present, and throws an exception at compile time if any

are missing. The thread creation interface does not provide any run-time functionality to

either control threads or hardware kernels, and is configured solely through its compile-

time parameters.
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Chapter 5

Inside the CoRAM++ Programming

Environment

This chapter describes the implementation of the CoRAM++ programming environment

in detail. It discusses the CoRAM++ compiler, which compiles application components,

along with the agents supporting the application-level interfaces that are part of the appli-

cation, to a set of Verilog files suitable for processing by FPGA vendor-specific tools. This

chapter will also describe the interfaces used to create CoRAM++ agents.

5.1 The CoRAM++ Compiler

The CoRAM++ compiler builds CoRAM++ applications, processing application hard-

ware kernels, control threads, and the included CoRAM++ agents into Verilog files ready

for the vendor tools that generate FPGA programming files. The compiler can also build

applications for simulation, and includes functionally accurate DRAM and communica-

tion models. During the compilation process, the CoRAM++ compiler uses a custom
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Figure 5.1: System-level view of a complete CoRAM++ application

LLVM [53] back end to compile control threads to Verilog finite state machines.

Figure 5.1 depicts a complete application, including application control threads and

hardware kernels and DRAM and other communication interfaces that cross the FPGA

chip boundary. Application components and interfaces are connected to CoRAM++ agents,

which connect to each other using an internal data-distribution network. using a built-in

programming interface. At the FPGA chip boundary, “accelerator” agents can connect di-

rectly to each DRAM interface or communication interface, allowing these “accelerator”

agents low-latency interactions with the attached interface. Accelerator agents are gener-

ally data-structure-specific modules that make some pointer-chasing data access pattern as

fast as possible. Multiple accelerator agents can be stacked in a pipeline at each DRAM

interface, for example to accelerate a pointer-based data structure and support a general-

purpose cache. Figure 5.1 only presents data connections supporting dynamic routing that

go through the data distribution network—it omits the point-to-point connections created
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by the internal communication channel interface.

The CoRAM++ compiler currently targets commodity FPGAs from both Altera and

Xilinx. Applications and CoRAM++ agents are portable across different FPGAs, but can

provide device-specific variants of each agent. Each compilation target includes a config-

uration file that specifies data path width, NoC parameters, and how DRAM controllers

and communication interfaces are mapped into the address space. The CONNECT-based

NoC supports any topology supported by CONNECT, and the CoRAM++ compiler can

use ShrinkWrap [29] to reduce the width of the NoC and associated resource require-

ments. The output of the CoRAM++ Compiler is a set of verilog files and configuration

information relating to routing for the NoC and the clusters.

The CoRAM++ compiler supports most t of the C language (as discussed in Section 5.2

below, but does not have built-in support for accessing memory from CoRAM++ control

threads. CoRAM++ does not make any restrictions on hardware kernels other than that

they use the application-level interfaces exported by CoRAM++ agents for communica-

tion. CoRAM++ hardware kernels can be created using any hardware design methodology

or RTL language, including IP core generators and the high level synthesis tools discussed

in Section 2. Much of the CoRAM++ infrastructure has been created in the Bluespec

System Verilog [66] language, but application developers do not need to use Bluespec to

create CoRAM++ applications.

The CoRAM++ Compiler was built on top of the soft-logic realization of the original

CoRAM architecture [32], and consists of the following major components:

• The CoRAM++ control thread compiler, built using the LLVM compiler [53], which

compiles CoRAM++ control threads and agent subthreads into Verilog state ma-
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FPGA
Board

Xilinx
ML605

Terasic
DE4

Digilent
Zedboard

Xilinx
ZC706

FPGA
Chip

Xilinx
LX240T [89]

Altera
EP4SGX530 [15]

Xilinx
XC7Z020 [91]

Xilinx XC7Z045 [91]

Hard CPU
Cores

N/A N/A 2× ARM
Cortex A9

2× ARM
Cortex A9

Logic
Cells

241,152 531,200 85,000 350,000

Block
Memory

1,872 KB 3,422 KB 560 KB 2,180 KB

DSPs 768 1,024 220 900
DRAM
Bandwidth

6.4 GB/s 2×6.4 GB/s 4.3 GB/s 4.3 GB/s (Shared)
12.8 GB/s (Fabric-Only)

DRAM
Capacity

512 MB 2×1 GB 512 MB 1 GB (Shared)
1 GB (Fabric-Only)

Host
Interface

500 KBits/s
Serial UART

115 KBits/s
Serial UART

1 GBit/s
Ethernet

1 GBit/s
Ethernet

Table 5.1: Supported FPGA boards.

chines, and assembles the application based upon its specific communication needs.

• A system library containing the built in interfaces, written in Bluespec System Ver-

ilog [66]. This system library includes cluster, interface, and NoC components that

are selected and assembled during compilation. The CoRAM++ built-in interfaces

include all of the components of the original CoRAM architecture, which allows ap-

plications for the original CoRAM architecture to be compiled without modification.

Section 5.3 describes the CoRAM++ built-in interfaces in detail.

• A build platform consisting of scripts that invoke the above two components, config-

uring the memory subsystem selected by the application, and assembling all of the

output files for simulation or for generating FPGA programming files using vendor-

specific tools.
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Table 5.1 lists the currently supported FPGA boards. The CoRAM++ compile wrap-

pers for floating point and other common IP cores (such as hard memory blocks) that are

different between Xilinx and Altera devices. Both DRAM controllers on the DE4 are sup-

ported, and the mapping of the global address space to memory channels is configurable.

The Zynq ZC706 FPGA board includes two DRAM interfaces: a “PS” DRAM in-

terface, which is shared between the ARM cores and reconfigurable fabric, and a higher-

bandwidth “PL” DRAM interface, which is connected directly to the reconfigurable fabric.

The CoRAM++ compiler target for this FPGA board supports both DRAM interfaces.

When targeting the ZedBoard, the CoRAM++ compiler removes the NoC and con-

nects one or more CoRAM clusters directly to one or more of the Zynq’s high performance

AXI ports, reducing resource requirements on the small FPGA. The host computer agent

runs primarily as software on one of the ARM cores, transferring data between the host

computer and DRAM interface that is shared between the ARM cores and reconfigurable

fabric, and uses a slave AXI port to signal the FPGA application. This variant of the

host computer agent can be used to attach CoRAM++ applications to any AXI-based sys-

tems, and has been used to target LEAP. Applications are compiled to the Zynq platform

without any application-level changes, and supporting high speed transfers to the board

over Ethernet. Section 6.7 describes Zynq-specific details related to the ARM cores and

communication with the host system.

The CoRAM++ compiler generates all of the artifacts necessary to create FPGA pro-

gramming files using vendor-specific tools, including a per-target top level Verilog file

instantiating DRAM controllers, clock generators, and application and CoRAM++ com-

ponents. The CoRAM++ compiler supports Quartus 14.1 when targeting Altera devices,
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and uses ISE 14.7 when targeting Xilinx devices. An effort to support Xilinx’s Viviado

suite is currently underway.

In addition to targeting FPGA devices, CoRAM++ applications can be simulated with

several RTL simulators, and has been validated with iVerilog, an open source RTL sim-

ulator, Xilinx ISim, and Synopsis VCS. ISim is currently the preferred simulator, even

though it is slower than VCS, because it is straightforward to incorporate with IP blocks

for floating point and DRAM interfaces when using the ISim simulator. The simulation

environment supports several memory models, including:

• A simulated DRAM subsystem that assumes that every request takes a fixed number

of cycles. The exact number of cycles is configurable, and this subsystem can easily

be initialized at start up and saved to disk at simulation end for validation.

• The Xilinx Bus Functional Model for the Zynq processor. This interface simulates

the Zynq processor memory subsystem, and supports the Zynq processors in the

same way as the ZedBoard. This model does not support simulating the ARM pro-

cessor, but does simulate AXI bus transactions.

5.2 CoRAM++ Control Thread Capabilities and Limitations

CoRAM++ control threads simplify the specification of global control and data trans-

fers as much as possible, and are intended to preside over long running operations that

whose management is not the bottleneck for application performance. As such, control

threads can be compiled from C-language source code to effective Verilog state machines

without the need for automatic data parallelization in order to achieve good performance.

Control threads are specified by C-language source code that is processed by the LLVM
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compiler, and as such supports all typical C-language constructs, including if statements,

loops, and function calls. Control Threads can use all of the integral data types supported

by LLVM 2.8, and all operations on integral data types. However, application developers

should be aware of the fact that multiplication is expensive when the multiplicand or mul-

tiplier are not a power of two, and similarly, that division is expensive when the divisor

is not a power of two. In general, control threads should limit computation to address

generation and control flow, but can perform other computations when the speed of these

computations is not important for performance.

Control threads can use structures and arrays whose size is fixed at compile time, but

cannot use variable size arrays. Control threads cannot use floating point numbers, and

cannot directly access data in DRAM without using the Scratchpad agent (discussed in

Section 4.2.1). The C-to-CoRAM compiler [81] demonstrated that it is possible to detect

these accesses and automatically instantiates the structures needed to perform them, but

the CoRAM++ compiler omits automatic scratchpad instantiation due to the high latencies

of these accesses.

Control threads can define functions, including recursive functions, but should avoid

recursion and declare functions as “inline” where possible. CoRAM++ creates a fixed-

depth stack that is used by function calls that cannot be inlined. The depth of the stack

is specified within the target-specific configuration file (which can be customized by the

application developer). The best practice is for all Agent API functions to be specified as

“inline,” which will reduce the need for the stack.

Each command port supplied by CoRAM++ agents can only connect to a single control

thread. While the CoRAM++ programming environment allows agents to expose multiple

69



command interfaces (which is intended to allow communication channels between con-

trol threads), CoRAM++ does not provide any direct support for interleaving commands

from multiple control threads into a single command stream. Any CoRAM++ agents that

expose multiple command interfaces would need to resolve multiple command streams

themselves.

5.3 CoRAM++ Built-in Interfaces

The CoRAM++ compiler directly supports a small set of built-in interfaces that support

low-level functionality for Agents, which can be created without modifying the CoRAM++

compiler or supporting infrastructure. These built-in interfaces mae up the system layer

discussed in Section 1.1. CoRAM++ applications can use these built-in interfaces directly,

but should use the application-level interfaces exposed by CoRAM++ agents when possi-

ble. CoRAM++ agents are created in the CoRAM++ programming environment, which

means that they can use the application-level interfaces exposed by other CoRAM++

agents in addition to the built-in interfaces described in this section. In general, the hard-

ware components of CoRAM++ agents can be created using RTL language, but accelerator

agents that are directly connected to a DRAM or communication interface must currently

be created in Bluespec.

5.3.1 Block Copy Interface

The block copy built-in interface performs the bulk of the work of data transfers, and is

equivalent to CoRAM blocks in the original CoRAM architecture. This interface supports

the same ports and function calls as does the block copy application-level interface, which

is described in Table 4.1, and supports either one or two SRAM-style ports on the hardware
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side of the interface. The interface supports compile-time parameters for the width, depth

of interface.

Instances of the block copy interface use modules called “clusters” to connect to the

NoC and control threads, which work the same way as clusters in the soft-logic realization

of the original CoRAM architecture [32]. Clusters serve as NoC endpoints for CoRAM++

agents, and map DRAM controllers and communication interfaces into a global address

space.

5.3.2 Channel Interface

The built-in channel interface is the same as the channel application-level interface

described in Section 4.2.3.

5.3.3 Thread Creation Interface

The built-in thread creation interface is the same as the thread creation application-

level interface described in Section 4.2.5. This built-in interface allows agents to instanti-

ate their own control threads, which is important for allowing agents to provide the most

convenient possible application-level interfaces, as is described in Appending 3.2.

5.3.4 Script Execution Interface

The script execution interface is used to run a parameterized script at run time, primar-

ily to allow agents to run an IP core generator with parameters specific to the way that the

application instantiates the agent. For example, the multi-dimensional DFT application

discussed in Section 7.2 uses this interface to invoke the Spiral streaming permutation and

Discrete Fourier Transform generators [60], and the CoRAM++ web-based application

builder [1] can use this interface to invoke the Bluespec [66] compiler when applications
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instantiate agents written in the Bluespec language. The CoRAM++ web-based appli-

cation builder prevents users from directly instantiating the script executor interface for

security reasons.

5.3.5 Control Thread System Library Interface

CoRAM++ includes a system library interface supporting the functions listed in Ta-

ble 5.2, which includes all of the functions of the original CoRAM architecture for back-

wards compatibility. These functions are supplemented by application-level interfaces

exported by the CoRAM++ agents instantiated by the application, and constants that are

defined by a include files that are shared between the hardware kernels and control threads.

5.4 CoRAM++ Accelerator Agents and Software Accelerators

CoRAM++ defines high level data-structure-specific application-level interfaces backed

up by agents implementing the desired behaviors. The application is unaware of the im-

plementation details of each agent, which can instantiate logic anywhere within the FPGA

to support the public interface, and can even use software running on tightly coupled hard-

logic CPU cores to accelerate irregular pointer-chasing data accesses.

CoRAM++ accelerator agents are the primary mechanism for making pointer-chasing

memory accesses run faster, and are hardware modules that are attached directly to a

DRAM interface. Attaching accelerator agents directly to a DRAM interface minimizes

the latency between the accelerator module and the DRAM interface. CoRAM++ acceler-

ator agents can also be connected to a communication interface to support device-specific

operations using that interface.

Each accelerator agent is parameterized and interacts with the attached interface through
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Figure 5.2: Accelerator Agent Wrapper Module

a thin portability layer. When attached to a DRAM interface, accelerator agents operate on

requests that match the width of the attached DRAM interface, and map themselves into

the address space of the attached DRAM interface by intercepting memory requests ad-

dressed to the DRAM interface. Since accelerator agents map themselves into the address

space of the attached DRAM interface, they can define their own commands by defining

particular writes and reads to the mapped address space. For example, a linked list accel-

erator agent can define a write to a particular address as an operation that initiates traversal

of a linked list, using the written value as the start address for linked list traversal. A

different address in the memory-mapped address space might be used to merge a pair of

linked lists.

The portability layer defined by CoRAM++ and used by accelerator agents specifies

that accelerator agents must deliver read responses in the order in which requests were

issued, and specifies that there are no responses to write requests. Multiple accelerator

agents can be attached to the same DRAM interface in a pipeline between the CoRAM++

NoC and the attached DRAM interface.

The CoRAM++ compiler includes an accelerator agent wrapper module that helps ac-

celerator agents meet ordering requirements when interleaving requests that the accelerator

agent handles with requests that it does not. Figure 5.2 shows how this wrapper attaches

to the interface, NoC endpoint, and Interface Agent. This module can optionally insert
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pipeline stages at its input from the NoC and output to the attached interface in order to

help the application meet timing requirements.

Accelerator Agents must currently be created in Bluespec, although it is possible to

support Verilog Accelerator Agents in the future through a Bluespec shim. Table 5.3

presents the interface that must be exposed by accelerator agents, which use standard clien-

t/server semantics. Accelerator Aaents operate on request objects containing an address,

write data, data mask bits, read/write flag, and transaction and packet tags. Accelerator

agents operate on read response objects containing read data, data mask bits, and tags.

The CoRAM++ compiler does not directly include interfaces for instantiating acceler-

ator agents, but does support compile-time hooks to allow accelerator agents to be attached

at any DRAM interface or communication interface. Future work will support a cleaner,

automated interface for instantiating accelerator agents.

CoRAM++ software accelerators perform the same function as accelerator agents, but

are software modules that run on a hard-logic CPU core within a tightly coupled CPU-

FPGA system, operating on the principle that the higher clock speeds of hard-logic pro-

cessor cores and caches can interact more quickly with DRAM, and are also easier to

write. Section 7.3.2 demonstrates the effectiveness of software accelerators on currently

available systems.

5.5 CoRAM++ Cache

CoRAM++ includes a cache that applications can enable or disable at compile time.

The cache is transparent to the application, attaches directly to the NoC, and can improve

the performance of unstructured accesses that exhibit locality. The cache is optional except
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when the width of the NoC is not configured to match the width of the DRAM Interface,

which can reduce NoC resource requirements while also reducing available bandwidth.

However, streaming applications that do need all available full DRAM bandwidth will

configure the NoC width to match the DRAM interface width, and in general will elect not

to use the cache.
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Function Name Description
cpi register thread Control threads must call this function register themselves as con-

trol threads. Control threads in the original CoRAM architecture
called this function to both register themselves and declare the
number of instances of the function to create. In CoRAM++, con-
trol threads can also 0 as the number of instances to create, and use
the built-in control thread creation interface (see in Section 5.3) to
instantiate control threads with particular parameters.

cpi instance Control Threads can use this function to determine which instance
of the control thread they are, for cases when different instances
of a thread must perform different actions. This function exists for
primarily backwards compatibility with applications for the orig-
inal CoRAM architecture, as CoRAM++ applications can use the
Thread Creator agent to vary the parameters that are passed to dif-
ferent instances of a Control Thread.

cpi split When compiling Control Threads, the CoRAM++ compiler cre-
ates a single state for every LLVM basic block in the each Control
Thread, possibly chaining together a sequence of operations pro-
ducing a single result. If the chain of operations is too long, it can
negatively affect the clock speed of the application. This function
can be used to split a basic block into two, breaking a chain of
operations into two clock cycles with an intermediate register.

cpi noop This function can be used to prevent loops from being optimized
away.

cpi time This simulation-only function can be used to determine how many
Control Thread cycles have elapsed since the simulation began.

cpi dumpmem This is a simulation-only function that saves the contents of sim-
ulated DRAM to disk. The function uses functionality built into
the simulator in use (ISim, VCS, etc) to actuall save data, so the
format of the data is dependent on the simulator.

cpi printf This is a simulation-only function that can be used to print infor-
mation for debugging. It supports the same string formatting func-
tions as the simulator in use.

cpi finish This simulation-only function is used to stop a simulation, making
it easier for the user to run a complete simulation without knowing
how many cycles the simulation will take.

Table 5.2: CoRAM++ system library for control threads
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Bluespec API Function Description
usr.request.put(request) Requests from the application come through this

function.
usr.request.accept The accelerator agent must return true if the

accelerator agent accepts the request provided
through a call to usr.request.put this cycle. If the
accelerator agent does not return true, it will receive
the request again in the next cycle. The accelerator
agent should return false if there was no call to
usr.put this cycle.

usr.response.rdy The accelerator agent must return true if it can
provide a valid read response this cycle, and false
otherwise.

usr.response.get The accelerator agent returns a read response.
usr.response.accept The system calls this function to inform the

accelerator agent that the response returned by usr.get
this cycle has been accepted.

mem.request.rdy The accelerator agent must return true when it is
making a request of the attached interface.

mem.request.get The accelerator agent returns its current request to the
attached interface.

mem.request.accept The system calls this function to inform the
accelerator agent that the request provided by the
accelerator agent this cycle has been accepted.

mem.response.put(response) The system calls this function to provide a read
response from the attached interface.

mem.response.accept The accelerator agent must call this function to
inform the system that it accepts the response
supplied to the Agent this cycle.

agentHandlesRequest(request) The accelerator agent must return true if the
accelerator agent will process request, and false if the
accelerator agent wrapper should forward the request
directly to the attached interface. This method is only
required if the accelerator agent wrapper is used, and
the accelerator agent should return a constant true if
the accelerator agent wrapper is not in use.

Table 5.3: Interface that accelerator agents must support.
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Chapter 6

Constructing the CoRAM++ Agents

This chapter shows how CoRAM++ Agents are constructed out of built-in interfaces, and

how this construction allows CoRAM++ agents to provide convenient application-level

interfaces to applications. The CoRAM++ agents are designed to support “fire-and-forget”

application level interfaces that allow the application control thread to invoke a command

without needing to account for the fact that the command may take a long time to complete.

Applications can query the status of commands if necessary, but in general will invoke a

sequence of long-running commands and only wait for the final command to complete.

Section 3.2 shows why it is not trivial to build application-level interfaces that operate

in this “fire-and-forget” fashion. CoRAM++ agents typically support “fire-and-forget”

application-level interfaces by incorporating an control thread within the agent that can

independently manage blocking data transfers on behalf of an application control thread

without blocking the application control thread.
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Figure 6.1: Stream agent diagram, showing the read stream agent (the write stream agent
is almost identical). All modules except for the control thread and hardware kernel are
instantiated by the stream agent.

6.1 Stream Agent

The goal of the stream agent is to provide the most convenient possible “fire-and-

forget” application-level interface for streaming accesses. The stream agent supports the

application-level interface described in Table 4.2 for a variant of the agent that streams data

to a hardware kernel, and supports the application-level interface described in Table 4.3

for a variant of the agent that streams data from a hardware kernel. While the stream

agent uses a circular buffer to support streaming data transfers, it includes a separate agent

thread (compiled to a separate FSM by the CoRAM++ compiler) to mask the need for flow

control when transferring a large amount of data through the circular buffer.

Figure 6.1 shows the how the of the stream agent is constructed. The application’s

control thread connects to a built-in channel interface to send commands to a control-

thread instantiated by the agent, and the application’s hardware kernel connects to wire-

level ports providing a FIFO-style interface. The agent’s control thread uses the built-in
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block copy interface to perform data transfers, and incorporates head and tail pointers to

implement a circular buffer. The agent’s control thread can accept commands from the

application’s control thread without blocking the application control thread, even though

the agent’s control thread might need to block due to flow control requirements.

6.2 Multi-Dimensional Array Agent

Figure 6.2 shows how the multi-dimensional array agent is constructed. This agent is

similar to the stream agent in that it uses the built-in block copy interface for data transport,

an agent control thread to manage data transfers, interacting with the application control

thread through the built-in channel interface. The multi-dimensional array agent uses a

modified version of the stream agent which changes the source code of the agent’s control

thread. The multi-dimensional array agent’s control thread includes support for the address

generation requirements of multi-dimensional data transfers.

The figure also shows how the application-specified stream permutation engines are

instantiated between the incoming data stream and the application’s hardware kernel. The

application can, at compile time, configure the multi-dimensional array agent to move data

across clock domains while retaining full bandwidth—for example moving data from NoC

data path that is 64-bytes wide and runs at 100 MHz to one that is 32 bytes wide but runs

at 200 MHz. This allows the multi-dimensional array agent to support high-speed IP cores

while retaining the easier routing of low-speed data paths.

6.3 Linked List Agent

The linked list agent traverses linked lists, allowing applications to read or write data

payloads associated with the linked list, or merges two sorted linked lists in place. The
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Figure 6.2: Multi-dimensional array agent diagram, showing the variant of the agent that
allows the application hardware kernel to read data. This agent is similar to the stream
agent, but supports multi-dimensional array data, and can stream individual data elements,
elements that are sequential along any dimension, or multi-dimensional tiles of data. The
agent supports row-major or tiled data layouts.

linked list agent requires that the format of the linked list nodes be defined at compile time,

and supports linked lists with data payloads stored within the linked lists nodes as well as

linked lists with pointers to data payloads in the linked list nodes.

The core functionality of the linked list agent is supported by a linked list hardware

engine, which is depicted in Figure 6.3. This hardware engine is configured with the data

format of the linked list in use, and has interface ports for requesting data from DRAM,

writing data to DRAM, and sending data to the application. The hardware engine includes

a small direct mapped cache, typically configured to store 4 words of data. The data width

of the cache is also configurable, and typically matches the native DRAM interface width.

The hardware engine contains a sub-component used for merging linked lists, and can

either be instantiated within the hardware kernel portion of the agent or as an accelerator

agent.
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Figure 6.3: Linked list engine, including an embedded linked list merge engine and a
small cache. When not instantiated as an accelerator agent, the port labeled “To DRAM”
is connected to a pair of stream agents.

When instantiated as an accelerator agent, the hardware linked list engine maps itself

into the address space of the interface to which it is attached by processing all addresses

with an application-specified address bit set to 1, for example if the application specifies

that the Agent uses bit 29, then the Agent will capture all accesses to addresses starting at

0x2000000. Since the bit to use is a parameter, multiple instances of the Agent can attach

to different parts of the address space. Note that the number of address bits used is config-

ured in the board-specific configuration file and defaults to 32 bits, allowing applications

to increase the size of the global address space if necessary.

The hardware engine is controlled by a simple command/data signaling mechanism:

All requests sent to the lowest address in the Agent’s address space are treated as com-

mands, and all other requests are treated as data requests. For example, using the start ad-

dress of 0x20000000 as discussed above, the application will write to address 0x20000000

to initiate a linked list operation, and read from this address to query for available data.

Once the application is aware that data is available, it can initiate a large streaming ac-
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cess to the first valid address above 0x20000000 (which depends on the board-specific

configuration data) for linked list data.

The linked list agent generally instantiates a pair of stream interfaces, one for reading

from DRAM and one for writing to DRAM, and also can include a scratchpad agent for

controlling the hardware engine when the hardware engine is instantiated as an accelerator

agent. Since an application developer may also be using stream agents and a scratchpad

interface for other purposes, the linked list agent includes application-level interfaces for

controlling the linked list hardware engine accelerator agent without instantiating a second

scratchpad agent in order to reduce resource requirements. The linked list agent can also

omit the instantiation of its internal stream interfaces when this behavior is requested by

the application.

We’ve also created a software accelerator version of the linked list accelerator. This

software accelerator supports the same features as the hardware linked list engine. For

maximum flexibility, the linked list traversal function takes a function pointer to be called

with each linked list element, which can be used to either debug traversal or transfer in-

formation to the FPGA fabric. During testing, the callback functions used during traversal

were always annotated as inline, and the test programs were disassembled to verify that in-

vocations of the callback functions were actually inlined during compilation. Section 7.3.2

shows how we tested the software accelerator for linked lists, including streaming data to

the FPGA fabric directly through dedicated AXI interfaces and through memory-based

buffers.
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6.4 B-Tree Agent

The B-Tree agent is very similar in structure to the linked list agent, in that it includes

a B-Tree-specific hardware engine. The hardware engine can be configured for various

B-Tree node widths, and which is used to calculate the number of keys (and child pointers

or payload data entries) stored in each tree node. The B-Tree agent can be configured

to cache the root node as in order to limit the number of memory accesses that must be

performed when traversing the tree. In the future, this agent might be updated to cache

multiple levels of the B-Tree, but the initial implementation of the this agent avoids doing

so due to the complexity of flushing many tree nodes to memory when splitting the root

node. A multi-level B-tree cache would likely be implemented using a pipelined Dynamic

Search Tree [95].

6.5 Gather-Scatter Work-List Agent

The gather-scatter work-list agent operates on application that can be broken into sub-

tasks, and executes each sub-task in sequence. The gather-scatter work-list agent uses a

gather-list (a sequence of variable-sized operations that follow pointers to gather data) to

transfer data to each application buffer, then invokes the application kernel, and transfers

modified buffers back to memory, using the gather-list from the modified buffer as a scatter

list.

Figure 6.4 shows the structure of the gather-scatter work-list agent, when configured

with two sets of application buffers. The agent uses the scratchpad agent to load each

gather-list and scatter-list, which are transferred using an instance of the stream agent for

data moving in each direction. The gather-scatter work-list interface defines a standard

85



B
u

ff
er

 
B

u
ff

er
 

Buffer 0 

B
u

ff
er

 
B

u
ff

er
 

Buffer 1 

Instruction Buffer 

Multi-ported 
SRAM-style 
interface  

Multi-ported 
SRAM-style 
interface 

SRAM-style 
instruction 
interface 

Stream 
Agents 

B
u

ff
er

 
B

u
ff

er
 

Data 
management 

logic 

Agent Control 
Thread 

Scratchpad 
Agent 

Data-hazard 
avoidance 
pathways 

Figure 6.4: Gather-scatter work-list agent diagram, when the agent is configured with two
application buffers

instruction format (which includes space for an application-specific opcode) in order to

allow the interface to provide standard sub-task processing scripts to optimize data trans-

fers, schedule double-buffered computation, and statically detect and avoid data hazards

between sub-tasks.

The different options for optimizing the data transfers associated with each sub-task

are:

1. Scanning through the gather-list for each application buffer, and coalescing data
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transfers for adjacent items in the subgraph. Instructions are always stored sequen-

tially, and are always transfered in a single block, but application data cannot always

be transferred sequentially because each data item may be part of multiple sub-tasks.

2. Sorting the data items in each gather list to increase opportunities to coalesce data

transfers. Since the agent supports a pre-defined instruction format and instructions

that application data by local buffer address, each instruction can be re-written to

account for the fact that this sorting process rearranges data within the local buffers.

3. Sorting the data items in each gather list and filling in small gaps in order to further

coalesce data transfers.

There is never any reason not to apply the first two optimizations, since they do not in-

crease the amount of data transferred when executing the each sub-task, and make data

transfers more efficient. In practice, the third optimization is also advantageous as it does

not greatly increase the amount of data transferred, and the advantages of coalescing data

transfers are greater than the disadvantages of transferring a few extra data items the data

fits in the local buffers. The preprocessor aborts the third optimization if it would transfer

too many data items to fit in the buffers. Initial testing on the Xilinx ML605 indicated

that these optimizations were necessary to saturate the computation engine on even sim-

ple computations, and Section 7.4 shows that these optimizations allow the gather-scatter

work-list agent to saturate even the higher bandwidth of the Altera DE4 FPGA board.

6.6 Scratchpad Agent

Figure 6.5 shows the construction of the scratchpad agent, which retrieves DRAM data

for use by control threads. The scratchpad agent uses the built-in block copy interface to
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Figure 6.5: Scratchpad agent diagram. The block copy interface is used to buffer data
locally, which is transferred to the attached control thread by the channel interface.

retrieve data, which is transferred to the control thread using the built-in channel interface.

The agent includes functions that can be used to prefetch blocks of data from the global

address space in order to exploit data locality in data accesses. The scratchpad agent is

parameterized by the width and depth of the scratchpad, and its width should generally

match the width of the NoC and DRAM interface for maximal performance.

6.7 Host Computer Agent

The host computer agent supports several configurations that instantiate different com-

ponents depending on the FPGA in use. Figure 6.6 shows the configurations that are

available on FPGAs that are not using an embedded processor core, and Figure 6.7 shows

the configurations that are available on “System-on-Chip” (SoC) FPGAs that contain em-

bedded processor cores and AXI buses.

Figure 6.6 depicts an FPGA system which does not contain hard processor cores,

such as the Xilinx ML605 and Terasic DE4 boards. The configuration in Subfigure 6.6a

maps the communication interface into the global address space, allowing its use by any
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(b) FPGA with no processor cores and directly-connected communication interface.

Figure 6.6: Host computer agent diagrams for FPGAs with no processor cores, mapping
the communication interface into the global address space a or connecting the communi-
cation interface directly to the host computer agent b.
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Figure 6.7: Host computer agent diagrams for System-on-Chip FPGAs with embedded
processor cores. Large System-on-Chip FPGAs have both shared and fabric-only mem-
ory controllers a, and small System-on-Chip FPGAs only contain shared memory con-
trollers b.

CoRAM++ agents that can access global addresses. The host computer agent is configured

to include a pair of stream agents to read data from the communication interface and write
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to DRAM or vice versa. Since most applications will not need to interact with the commu-

nication interface except through the host communication interface (supported by the host

communication agent), the configuration in Figure 6.6b connects the communication in-

terface directly to the host communication agent, which reduces resource requirements by

removing the NoC endpoint that connects to the communication interface in Figure 6.6a.

The host computer agent also supports different configurations for SoC-style FPGAs,

depending on whether the FPGA contains a DRAM interface that is not shared with the

embedded processor cores. SoC-style FPGAs typically include an AXI bus that is used

to connect the embedded processor to the reconfigurable fabric, and typically will also

include at least one DRAM interface that is shared between the embedded processor and

reconfigurable fabric. Subfigure 6.7a depicts a the configuration of the host computer

agent on a “large” SoC FPGA containing shared and fabric-only DRAM interfaces, such

as the Xilinx Zynq ZC706. In this type of SoC FPGA, the host computer agent connects to

an AXI slave port, and connects both the shared and fabric-only DRAM interfaces to the

CoRAM++ NoC. A small program running on the ARM core mediates between the host

computer and CoRAM++ components.

Subfigure 6.7b depicts a “small” SoC FPGA, which contains a shared memory but

no additional memory controllers, such as FPGA on the Digilent ZedBoard. Since these

FPGAs tend to contain a small reconfigurable fabric, it is important to reduce resource

requirements as much as possible. As such, CoRAM++ will typically remove CONNECT-

based soft-logic NoC, and attach the CoRAM clusters that perform data transfers directly

to one or more AXI ports. The host computer agent instantiates logic to attach to the ARM

cores’ AXI port, but does not need to move data to the shared DRAM controller.
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Listings 4 and 5 show that effort involved in integrating the host computer interface

(and its supporting agent) into an application is minimal. The application need only instan-

tiate the host computer agent within its hardware kernel, and interact with the application-

level interface exposed by the agent through function calls exported by the agent. The

application can then read from this channel to obtain a signal to start, which indicates both

that the user has initialized DRAM and that the application should use the run-time param-

eter provided with the signal. When the application is done, it should send a result code

(which can include debugging information) to the channel. The “no-op” round trip time

of this communication has been measured at 12 clock cycles at 100 MHz.

The host computer agent uses the same communication protocol regardless of the phys-

ical connection in use, which is described in Appendix B describes this communication

protocol in detail.

6.8 Kernel-Kernel Communication Agent

The kernel-kernel communication agent allows dynamic routing of data between any

pair of application kernels at the full bandwidth available by the NoC in use. The NoC

topology created by CoRAM++ is bipartite, logically placing DRAM interfaces on one

side of the NoC and application components on the other, regardless of the physical topol-

ogy that is generated (which is controlled by the application developer). In order to allow

arbitrary and dynamic routing at full speed, each instance the kernel-kernel communica-

tion agent creates a pair of NoC endpoints, one for writing and the other for reading.

Figure 6.8 shows an example application with these “agent NoC endpoints”, demon-

strating the two extra NoC endpoints with a FIFO in between them. It would also be
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Figure 6.8: Kernel-kernel communication agent diagram, showing how this agent instanti-
ates “agent NoC endpoints” to support dynamic kernel-kernel communication at full NoC
bandwidth

possible to create some sort of shared local memory between these endpoints, but doing

so would likely require more coordination between application components. The intended

use model of this agent is streaming data between kernels (which can be stored in local

buffers any way the application desires). Each NoC endpoint receives a unique block of

the global address space (more than a single address to allow large data streams to be

specified through a single control thread command), and the application can dynamically

specify communication by using the appropriate addresses.
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Chapter 7

Evaluating the CoRAM++

Programming Environment

Our evaluation of the CoRAM++ programming environment seeks to demonstrate that

CoRAM++ provides convenient application-level interfaces without introducing undue re-

source or run time overheads.

7.1 Streaming Accesses

These experiments evaluate the best case performance of the CoRAM++ programming

environment, and show the overhead of CoRAM++ when attempting to achieve this best

case performance. DRAM interfaces generally deliver their best performance when per-

forming large sequential accesses. These experiments stream sequential data from one of

the DE4’s DRAM controllers, through a streaming 64 input double precision DFT (gen-

erated by Spiral [61]), and to the board’s other DRAM controller, built from source code

similar to the example in Chapter 3.5. These experiments evaluate a DFT kernel running
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Figure 7.1: Streaming double precision 64-input DFT performance and DRAM controller
microbenchmark results on the DE4.

at 200 MHz, operating on two inputs per cycle, matching the DRAM interface width on

the DE4.

Figure 7.1 presents our experimental results. Data streams varied in size from 8 kilo-

bytes to 64 megabytes. The figure also includes read and write microbenchmarks, which

stream large amounts of data to or from sequential addresses in DRAM, and demonstrate

the best real-world performance that can be achieved by the DRAM interfaces on the DE4.

These microbenchmarks show that the DE4 can achieve up to 97% of peak bandwidth

when reading, and over 96% of peak bandwidth when writing.

The CoRAM++ benchmark achieved approximately 90% of peak DRAM bandwidth

on the DE4 when transferring 512 kilobytes of data, and matched the microbenchmark

performance when transferring at least 8 megabytes of data, which shows that the run-

time overheads of the CoRAM++ streaming application-level interface does not prevent
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applications from saturating an application’s DRAM interface. Performance on smaller

data sets was limited by the small data set size and 242-cycle latency of the DFT core.

Since the 8 kilobyte data transfer required 256 cycles due to the data width of the DE4’s

DRAM interfaces, the latency of the DFT core almost doubled the minimum computation

time.

The streaming DFT used approximately 32% of the logic and 7% of the block memory

available on the DE4. Table 7.1 breaks this resource utilization down by component,

showing that the DRAM controllers and NoC consume significant resources. An FPGA

(such as [6]) that hardens these components would incur less overhead. ShrinkWrap [29]

could also reduce NoC-related resource requirements for application scenarios that are less

bandwidth constrained.

7.2 Multi-Dimensional Array Accesses

This application scenario shows that CoRAM++ can provide applications with conve-

nient use of more complex data structures, while giving the application developer choices

about data structure traversal and data layout in DRAM that affect application perfor-

mance. We used the the multi-dimensional array agent, which allows the application de-

veloper to select array traversal order and data layout at run time. Data may be stored in

Table 7.1: CoRAM++ 1D DFT resource breakdown by component.

Component ALUT % Register % Block Mem %
DRAM Controllers 11.4 12.3 15.3
NoC 6.7 6.2 0
NoC Endpoints 16.3 23.8 25.6
Threads + Agents 9.0 12.8 44.9
Kernel 56.6 44.9 14.2
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the common row-major order, or may be stored in a tiled order. Data stored in tiled order

can be traversed quickly along any array dimension. The multi-dimensional array agent

can also be configured with a set of data permutation engines, which can be activated at

run time to reorder data. In these experiments, we used permutation engines to recover

rows from tiles of data and transpose tiles of data. We calculated 2D and 3D DFTs, which

were each decomposed into a 1D DFT along each dimension, using DFT kernels that were

generated using Spiral [61].

7.2.1 Strided Array Accesses

As a baseline, we first computed a 1024×1024 double precision 2D DFT using row

major data. This computation required strided data accesses during column traversal,

which were inefficient because they caused misses in the DRAM row buffer. Although

our implementation reduced the number of strided accesses by transferring blocks of 16

row elements at a time, we only achieved 40% of peak throughput due to the inefficient

strided column traversal.

7.2.2 Tiled Array Accesses

We continued our evaluation using CoRAM++ tiled data layout support, which allowed

efficient array traversal along any dimension. Akin, et al. demonstrated this approach

for 2D and 3D DFT calculations on FPGAs [8]. Their calculation uses the same Spiral-

generated DFT and streaming permutation engines as used in this paper, but uses a custom

data transfer engine dedicated to this particular tiled array traversal, and custom data paths

between DRAM controllers, permutation engines, and DFT cores.

In contrast, the CoRAM++ 2D and 3D DFTs used the multi-dimensional array agent,

allowing run-time selection of array traversal order and in-memory data layout, and an
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automatically generated datapath to memory. This flexibility allowed us to use a single

FPGA programming file for each DFT size. We computed double precision 2D and sin-

gle precision 3D DFTs using 4 kilobyte tiles, half of the DRAM row buffer size on the

DE4. We evaluated computation performance starting from both row-major and tiled data

layouts. Figure 7.2 shows the performance of the following experimental configurations:

1. CoRAM++ Row-inline started with row-major data, converted the data to tiled for-

mat inline during the first phase of computation, and restored row-major format

during the last phase of computation.

2. CoRAM++ Row-extrapass was similar to CoRAM++ Row-inline, but restored

row-major format using an extra pass through memory after the computation was

complete.

3. CoRAM++ Tiled started with and kept data in a tiled data layout throughout the

computation.

4. Reference shows results from [8], which also used a tiled data layout throughout

the computation.

Figure 7.2 shows the performance achieved using the various array traversal meth-

ods. The CoRAM++ Row-inline computation was very slow, because the converting

data back to row-major format during the final phase of the computation required the

same strided accesses that were required within the row-major computation discussed

above. The CoRAM++ Row-extrapass computation improved performance in spite of

the extra pass through memory because it avoided strided memory accesses. Finally, the

CoRAM++ tiled computation allowed the CoRAM++ DFT match the performance of the

reference calculation and achieve 90% of peak performance.
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Figure 7.2: 2D (left) and 3D (right) DFT performance.

Table 7.2: Resource utilization for CoRAM++ and reference DFTs.

DFT Type Logic % Block Mem % DSP %
CoRAM++ 1024×1024 2D 62 58 35
CoRAM++ 512×512×512 3D 52 51 20
Reference [8] 1024×1024 2D 27 47 35

Table 7.2 shows that the CoRAM++ DFT incurred higher resource utilization than the

reference DFT. While the CoRAM++ multi-dimensional DFT implementation did have

more overhead, this overhead paid for the flexibility and ease of use provided by the

CoRAM++ programming environment. The reference DFT used a hand-designed data

path, memory address generation limited to the tiled array traversal in a fixed dimension

order, and did not include support for transferring data to the FPGA from a host computer.

In contrast, the CoRAM++ multi-dimensional DFT used an automatically generated NoC

for data distribution, supported run-time selection of array layout in DRAM and array

traversal method, and included the host computer interface to transfer data between the

host computer and FPGA.
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7.3 Pointer-Chasing Linked List Accesses

This application scenario shows how data-structure-specific application-level inter-

faces can simultaneously simplify application development and improve performance.

In particular, we show that connecting data-structure-specific components directly to a

DRAM interface can portably improve the performance of pointer-based data structures

by targeting FPGAs from both Altera and Xilinx, and we show how software accelerators

can be used on tightly coupled CPU-FPGA systems to further improve traversal perfor-

mance while streaming data stored within a linked list to the FPGA fabric.

7.3.1 Linked List Traversal and Merging in Soft Logic

This application scenario traversed linked lists and merged sorted linked lists in place,

demonstrating the performance of the hardware linked list agent with and without an ac-

celerator agent. We ran the control threads, kernel, and agents in these experiemnts at 100

MHz. Linked list nodes contained a 4 byte pointer to a data payload and a 4 byte pointer to

the next node. Data payloads matched the width of the DRAM controller on each FPGA—

64 bytes on the DE4 and ML605, and 128 bytes on the ZC706. We evaluated 5 different

ways to traverse and merge linked lists:

1. Scratchpad-1 is the baseline implementation, and uses a C-language linked list

within the application control thread using a typical software construction of linked

list operations. It accesses DRAM using the scratchpad agent, which was configured

to fetch a single row of data (matching the DRAM interface width) at a time.

2. Scratchpad-8 is the same as Scratchpad-1 but fetches 8 rows of data at a time when

loading data from DRAM to exploit locality and amortize the cost of DRAM ac-
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cesses.

3. Scratchpad-64 is the same as Scratchpad-1 but fetches 64 rows at a time.

4. Agent-Only uses the linked list agent to perform linked list operations, and instan-

tiates the hardware linked list engine within the linked list agent (on the same side

of the NoC as the application components). The control thread triggers linked list

operations, and waits for their completion through function calls provided by the

linked list agent. These experiments show the best possible performance achiev-

able using the original CoRAM programming environment, which could not attach

data-structure-specific logic to a DRAM interface.

5. Agent+Accelerator uses the linked list agent with the hardware linked list engine

attached to the DRAM interface as an accelerator. The control thread triggers linked

list operations, and waits for their completion through function calls provided by the

linked list agent.

7.3.1.1 Linked List Traversal

Linked list traversal experiments were performed on “Best Case” and “Worst Case”

DRAM data layouts. The “Best Case” linked list packed linked list nodes and data into

contiguous blocks, and the “Worst case” linked list separated linked list nodes and data by

8 kilobytes, causing each DRAM access to miss in the DE4’s DRAM row buffer, as shown

in Figure 7.3.

Figure 7.4 shows the results of the traversal experiments. In the Scratchpad experi-

ments, increasing the number of rows that were loaded by the scratchpad improved per-

formance in the “Best case,” but reduced performance on the “Worst case.” The reason
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Figure 7.4: Linked list traversal performance

for this was that in the “Best Case,” all of the extra data rows loaded by the scratchpad

were used, but none of these extra rows were used in the “Worst Case.” The Agent-Only

configuration delivered 1.7× the performance of the baseline on the “Best case” data, and

was slightly faster than the baseline on the “Worst case” data, due to more efficient linked

list data processing.

The Agent+Accelerator (with a hardware linked list engine directly connected to a
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DRAM interface) provided significant performance improvements, traversing the linked

list up to 9× faster than the baseline traversal on the DE4, 8.5× faster on the ML605,

and 10.5× faster on the ZC706. This configuration was also up to 5.2× faster than the

Agent-only configuration. These experiments show that the increased ease of use pro-

vided by CoRAM++ data-structure-specific application-level interfaces can also portably

improve performance through including data-structure-specific logic attached directly to

the DRAM interface.

7.3.1.2 Sorted Linked List Merge

These experiments merged 100 pairs of sorted linked lists which were each created by:

• Randomly assigning each of 100 keys to one list of each pair. The keys were located

in a contiguous block of DRAM and aligned to the DRAM interface width of the

FPGA.

• Creating a linked list node (pointing to the key) that had a 50% chance of directly fol-

lowing the previous node in the list, and a 50% chance of a random (8-byte aligned)

location within a 32 kilobyte address space. This construction simulates linked lists

that are modified over time.

Figure 7.5 shows the average run time for each sorted linked list merge implementa-

tion, each of which had a standard deviation of approximately 1% of the corresponding

average run time. The Agent+Accelerator linked list configuration was once again much

faster than all other linked list configurations, due to lower latency DRAM accesses when

chasing pointers.

Our linked list traversal and merge results show the advantages of accelerators con-

nected to a DRAM interface (reducing the number of NoC round trips), and the general
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Figure 7.5: Sorted linked list merge performance

advantages of a data-structure-specific approach to managing data transfers. While the

exact performance improvement over the original CoRAM is specific to our implemen-

tation, any FPGA programming environment that does not allow data-structure-specific

logic connected directly to DRAM interfaces would suffer when performing pointer chas-

ing memory accesses.

7.3.2 Linked List Traversal using an ARM Processor Core

Sections 7.3.1.1 and 7.3.1.2 above discuss the advantages of connecting pointer-chasing

logic directly to the DRAM interface. This section explores a different mechanism for

accelerating pointer-chasing logic. Some of the CPU-FPGA systems (such as the Zynq

FPGA used above) that are currently available are tightly coupled, in that the CPU and re-

configurable fabric share DRAM, and may even allow the reconfigurable fabric to access

the hard-logic caches attached to the processor cores. There are two reasons why it may be

attractive to use a CPU core to accelerate pointer chasing data accesses when using these

systems:

1. The hard logic CPU core and attached caches run at much higher clock speeds.
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Figure 7.6: Datapaths between memory, the ARM cores, and the fabric in the Zynq

2. Until high level synthesis tools become much better, it is much easier to write soft-

ware than to create hardware.

Figure 7.6 shows the collection of interfaces available in the Xilinx Zynq. The Zynq

includes a reconfigurable fabric paired with two hard-logic ARM A9 processor cores,

as well as hard-logic caches, a shared memory interface that maps DRAM and on-chip

SRAM (called OCM) into the same address space, and a built-in DMA engine that can

transfer data between any pair addresses in this shared address space. The Zynq includes

2 ARM cores running at 667 MHz, an FPGA fabric, a shared DRAM interface running at

533 MHz and double pumped to provide 4.3 GB/s of DRAM bandwidth, and a fabric-only

DRAM interface running at 533 MHz and double pumped to provide 12.8 GB/s of DRAM

bandwidth, and a 256 kilobyte shared on-chip SRAM that will be referred to as “OCM” in

the remainder of this section.
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While the experiments in Sections 7.3.1.1 and 7.3.1.2 use the fabric-only DRAM inter-

face to explore FPGA acceleration of pointer-based memory accesses, these experiments

use a shared memory consisting of DRAM and OCM, which are mapped into a single

address space accessible by both the ARM cores and reconfigurable fabric, and includes

the following interfaces to the fabric:

• Four 64-bit wide “High Performance” (HP) AXI slave ports that connect to memory

through a dedicated interconnect.

• A 64-bit wide cache coherent “Acccelerator Coherency” (ACP) AXI slave port which

accesses memory through the ARM cores’ shared L2 cache (and can peek into each

core’s L1 cache).

• A pair of 32-bit wide general purpose AXI master ports that the ARM cores can use

to send requests to the fabric. These ports are each mapped into the address space

of the ARM cores, allowing application code to interact with the fabric by writing

to or reading to a pre-defined address.

• Two 32-bit general purpose AXI slave ports, which allow the fabric to access mem-

ory through several layers of on-chip interconnect.

Each of these interfaces exhibits different bandwidth and latency, which may depend

on the memory accesses performed by an application. Applications may choose to balance

data accesses across the different interface, in addition to spreading data structure across

the ARM cores and processors. For example, a hardware traversal engine instantiated

within the fabric can use any of the AXI slave ports to access memory, or a combination

of several ports, and can send multiple data requests across any of the ports to interleave

memory accesses.
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A software implementation could send payload data to the fabric through the AXI

master port, but could also buffer data in DRAM or on-chip SRAM and direct a built-in

DMA engine to transfer data to the fabric across the AXI port. A hybrid implementation

that includes both logic and software could also send pointers to the data payloads to a

simple data transfer engine instantiated within the fabric, which could then access the data

payloads through any of the memory ports on the chip.

These experiments store linked lists in shared DRAM, and define linked lists nodes

as a 4-byte data pointer (stored in-line in contrast to the linked lists above), and a 4-byte

next pointer. Our experiments operate on best-case and worst-case linked list data layouts

similar to those defined above:

1. The sequential linked list contains 16,384 linked list nodes packed together sequen-

tially as in Figure 7.3 above (except for the in-line data payload), similar to the “best

case” linked lists discussed in Section 7.3.1.

2. The strided linked list contains 16,384 each separated by 16 kilobytes, to ensure that

every memory requests accesses a different page in DRAM, similar to the “worst

case” linked lists discussed in Section 7.3.1. During linked list traversal, we do not

attempt to guess that data accesses might be strided and prefetch accordingly, but

use this case to ensure inefficient row buffer utilization.

These experiments run the linked list engine at 200 MHz, and attach it to both an HP and

ACP port. This engine is controlled by a logic unit that also runs at 200 MHz and accepts

commands through an 32-bit wide AXI port, which can be used to direct the the hardware

linked list engine, accept streamed data, or access hardware cycle and stall counters.
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Figure 7.7: Performance achieved traversing linked lists with 4 byte payloads inlined
within the linked list nodes.

7.3.2.1 Small-payload lists

Our first experiments investigate linked lists with 4 bytes of inlined payload data per

node, which is the simplest case for linked lists.

Summary: Figure 7.7 shows the results of traversing sequential and strided linked lists.

We tested the hardware traversal engine using one of the four HP interfaces and using the

ACP interface. Our experiments varied the amount of data fetched by the hardware engine

to show the effect of retrieving multiple 8-byte words of data (the word width is determined

109



by the interface width). Experimental results using the hardware engine break the traversal

time down into time spent waiting for data and time spent processing it, and experimental

results using software traversal break out the time taken when the ARM cores traverse the

linked list and touch all of the payload data but do not transfer data to the fabric.

Figure 7.7 also shows software traversal results, either directly writing data to the

memory mapped AXI port, or buffering blocks of payload data in either on-chip SRAM

(OCM) or DRAM and using the built-in DMA engine to transfer the payload data to the

fabric. Since the linked-list payload data starts in DRAM, it is possible to use the built-in

DMA engine to transfer payloads data from DRAM rather than aggregating payloads in a

buffer, but the performance of doing so was approximately 30× slower than next slowest

traversal mechanism.

When traversing the linked-lists using the hardware engine, it is faster to use the ACP

port than the HP port. This result holds even when traversing the strided linked-lists, which

would prevent a prefetcher in the cache from being effective. Fetching larger blocks of data

improves performance dramatically when traversing the sequential linked-lists, because

doing so effectively prefetches linked-list nodes. Fetching larger amounts of data reduces

performance (by up to about 9%) when traversing the strided linked-lists because the extra

cycles spent fetching additional data are wasted. We configure the hardware engine to

transfer 32-byte blocks of data for the remainder of our experiments on the Zynq, because

the performance improvement of larger data transfers in the sequential case is much greater

than the performance degradation in the strided case.

The software traversal experiments also yield interesting results. When the ARM core

directly writes payload data to the memory-mapped AXI port, it spends more time writing
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data to the port than it does traversing the linked-lists. This is because the Zynq system

stalls the ARM core until it has received a response to the bus transaction, which took

approximately 100 ns according to our measurements. However, when buffering data and

using the built-in DMA engine to transfer data across the AXI port, we find that the DMA

engine is able to overlap bus transactions, resulting in much better performance.

We find that buffering data in OCM is slightly faster than buffering data in DRAM. We

expected the performance difference to be larger, but believe that the data is primarily be-

ing transferred from the cache rather than OCM or DRAM, based upon microbenchmarks

that flushed the cache and buffered data without transferring it to the fabric. Figure 7.7

does not include a hybrid traversal, but we have data showing that a hybrid traversal with

data payloads this small will not be faster than the software traversal.

Recommendations. Overall, when transferring 4 bytes payloads to the fabric, it is fastest

to perform a software traversal, buffer data in OCM, and transfer it to the fabic using the

built-in DMA engine. This result is encouraging because the simplicity of writing software

code (relative to the effort involved in creating a hardware engine) makes using software

traversal desirable.

7.3.2.2 Larger Data Payloads

These experiments investigate the performance of traversing linked-list with larger in-

direct data payloads. Our hardware traversal experiments use the same hardware traversal

engine as in Section 7.3.2.1 above, but use the “payload” provided by the hardware engine

as a pointer to the actual payload data, which is used to fetch a block of data with run-time

configurable size.

Based the results our earlier experiments, these hardware traversal experiments all
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Figure 7.8: Performance achieved traversing linked-lists containing pointers to larger data
payloads.

configure the hardware engine to process 32 bytes of data at a time. These experiments

either use the ACP or HP port to fetch linked-list data from either sequential or strided

linked-lists, and similarly use either the HP or ACP port to fetch data payloads (which are

sequential if linked-lists are sequential or strided if linked-lists are strided), resulting in 8

total experiments for each data payload size.

Our software traversal experiments either buffer payload data (in OCM or DRAM)

and transfer the data to the fabric using the DMA engine. Similarly, or hybrid traversal
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experiments use this mechanism to transfer payload pointers to the fabric, which fetches

the payload data using either the HP or ACP interface.The payload size and data fetching

interface are configurable at run time.

Summary. Figure 7.8 includes the most interesting results of traversing sequential and

strided linked-lists with pointers to payloads varying in size from 8 to 1024 bytes. The

figure includes a software reference that touches all payload data but does not send payload

data to the fabric in addition to the experiments described above.

The experiments show that accessing larger amounts of data takes longer, as expected,

but there are some interesting trends in the data. As the data payloads get larger, the per-

formance differences when traversing sequential and strided lists get smaller. Both the

hardware and hybrid traversal mechanisms reach approximately 98% of the peak band-

width of a 64-bit wide HP interface running at 200 MHz, indicating that the overhead of

chasing the pointers (through either mechanism) does not impact performance as much as

the time required to transfer 16 megabytes of data. These experiments are also faster than

the reference results (which touch all data from the ARM core), indicating that the fabric

can achieve higher bandwidth than the ARM core.

The software mechanism is the slowest when transfering more than 4 bytes of payload

data due to the lower bandwidth of the master AXI port. The hybrid traversal mechanism

is in general slightly faster than the hardware traversal mechanism, and it is slightly faster

to use the HP port than the ACP port to fetch payload data, either due to higher streaming

bandwidth or reduced contention in the cache. Some of the performance difference of the

hybrid mechanism over the hardware mechanism may be due to the fact that we transfer a

block of pointers at a time, and fetch data payloads using interleaved requests over the HP
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port. Section 7.3.2.3 below shows the performance achieved using interleaved memory

requests with the hardware traversal engine.

Additional Large-Payload Results. We also measured the performance that was through

larger inlined data payloads,, yielding results similar to those shown in Figure 7.8—with

more than 4 bytes of payload data, it is faster to treat the linked list as an indirect payload

linked list and use a hybrid mechanism due to the limited bandwidth of the AXI master

port. When transferring 4 bytes of indirect payload data, a software and hybrid traversal

were about the same speed.

Figure 7.8 excludes a number of experimental results showing similar trends to those

exhibited in Figure 7.7. A hardware traversal fetching linked-list blocks that were smaller

than 32 bytes were much slower on sequential linked-lists, and slightly faster on strided

linked-lists.

When using a hardware traversal, it is slightly faster to traverse the linked-list through

the ACP port and fetch data through the HP port than the reverse, and it is a bit faster to

spread the data transfers across two different ports than to use the same port for both types

of data transfers.

Recommendations. For data payloads larger than 4 bytes, it is fastest to use either a

hybrid traversal and stream data payloads over an HP port, but a hardware traversal is only

slightly slower.

7.3.2.3 Interleaving Memory Accesses

We’ve shown that a hybrid traversal is faster than a hardware traversal when payload

sizes exceeded 4 bytes, in part because the hybrid mechanism sent payload pointers to the
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Figure 7.9: Performance achieved through interleaved linked-list traversal. The data points
labeled “Software Traversal” are the fastest results shown in Figure 7.3.2.1.

fabric in batches, and interleaved requests for payload data. We’ve also shown that a soft-

ware traversal was faster than a hardware traversal with 4-byte payloads. In this section,

we investigate whether or not it is possible for the hardware traversal engine to surpass

the performance the other two mechanisms by breaking each linked-list into segments and

traversing these segments in parallel, similar to a two-layer skip-list [73]. This technique

could be used by real-world applications by allowing parallel search, improving the per-

formance of applications that need to access all elements of the list, or extending to parallel

traversal of data structures (such as graphs) with multiple pointers per node.

Each experiment in this section breaks a linked-list with 4-byte inlined payloads into
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segments and uses the hardware traversal engine to traverse these segments through inter-

leaved requests. These segments simply divide the original linked-lists into equal-sized

chunks. We did not attempt to interleave software traversal because the Zynq contains

only two ARM cores that do not support hardware multi-threading, limiting the potential

benefits of a interleaved implementation. We configured the hardware traversal engine

to fetch 32 bytes of data at a time. These experiments loosened our data delivery order-

ing requirement somewhat—each segment was delivered in order, but we did not address

ordering between segments.

Summary. Figure 7.9 shows that it is possible for a hardware traversal to perform sig-

nificantly better than a software or hybrid traversal. The figure shows the performance

achieved using a hardware engine to traverse sequential and strided linked-lists that are

broken up into segments, using either the HP or ACP interface. We evaluated up to 128

segments, and the include the fastest software traversal results for reference.

As the number of linked-lists segments increases, so does performance of the inter-

leaved hardware linked-list traversal increases dramatically, until the number of linked-list

segments reaches 16. At this point the hardware traversal reachs reach 93% of the peak

bandwidth achievable using an 8-byte wide HP interface running at 200 MHz. Increasing

the number of segments to 128 allows the hardware engine to achieve over 98% of the

peak bandwidth achievable with the HP interface. Performance is slower when using the

ACP interface, either due to lower achievable bandwidth or thrashing in the cache. Strided

linked-lists achieve approximately 10% of peak interface bandwidth. When performing

these test with indirect payload data, strided linked-list performance approximately the

same as with inlined payload data, but sequential performance was much worse than with
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inlined linked lists, probably because of thrashing the DRAM row buffer when fetching

payload data. This was not an issue with the inlined linked-lists because even though

the inlined linked-list traversal interleaved memory requests, the hardware engine fetched

blocks of 32 bytes at a time, which effectively prefetched data in the sequential linked-list

case.

Recommendations. The results presented above clearly demonstrate the benefits of allow-

ing multiple interleaved data requests within the memory subsystem. When segmenting a

data structure to allow overlapped traversal, using the HP interface may be faster than us-

ing the ACP interface because requests that use the HP interface do not need to go through

the cache, and multiple requests will not interfere in the cache. However, if parts of the

application that are unrelated to traversal modify data immediately before triggering data

structure traversal, it may be more efficient to use a cache-coherent interface than to flush

the cache. There are a few caveats to this recommendation:

1. This linked-list segmentation preserved ordering within each segment, but not within

the linked list as a whole. If overall ordering preservation is required, a different

segmentation method or reordering mechanism should be used.

2. This segmentation mechanism maps very well to linked-lists, which can only be tra-

versed serially, meaning that it is possible to provision the depth of internal queues

based on the maximum number of active segments to avoid deadlocks. More com-

plex mechanisms would be required to handle structures with graphs that have a

larger branching factor, and that require tracking which nodes were visited.
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7.3.2.4 Discussion

Our results allow us to make concrete recommendations for the Zynq-based FPGA that

we used, extrapolate these recommendations to other shared-memory systems that include

processors and FPGAs, and make recommendations to hardware manufacturers about data

pathways between the processors and reconfigurable fabric in these systems.

Recommendations for All Zynq FPGAs: Our results support clear recommendations

how to maximize pointer-chasing pefromance on Zynq FPGAs.

1. In general, it is best to traverse the data structure on an ARM core, and easier because

the traversal mechanism can be written as software instead of hardware.

2. If data payloads are 4 bytes or less, buffer payloads in OCM and use the built-in

DMA engine to transfer them to the fabric.

3. If data payloads are larger than 4 bytes, buffer pointers to payloads in OCM, transfer

the pointers to the fabric using the built-in DMA engine, and fetch the data using an

HP interface unless cache-coherent access is required.

4. The exception to the recommendations above is that if the data structure supports

parallel traversal, it will be much faster to create a hardware traversal engine that can

pipeline memory requests, and it may be faster to use one or more HP ports rather

than the cache-coherent ACP port if the pipelined memory requests will thrash the

cache.

Using Both the Shared and Fabric-Only DRAM Interfaces on the Xilinx ZC706:

In addition to the shared DRAM interface, the Xilinx ZC706 board that we used in our

experiments also contains a second DRAM interface that is not shared—it only connects
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to the reconfigurable fabric. This DRAM interface supports much higher bandwidth than

the shared DRAM interface, and can be accessed independently. without concerns about

thrashing the DRAM row buffer when interleaving requests for linked list nodes and pay-

load data. Section 7.3.2.2 shows that applications are better off transferring pointers to

larger data payloads from the ARM core to the fabric rather than transferring the data items

themselves, and these pointers could be used to access data in the fabric-only DRAM in-

terface, which might only contain payload data rather than mirroring the data in the shared

DRAM interface. If partitioning data between the shared DRAM interface and the fabric-

only DRAM interface, this partitioning might be performed manually by the application

developer, or might be partitioned automatically [84].

Other Shared-Memory Processor-CPU Systems: Figure 7.8 also provides guid-

ance into how to best implement pointer-based data structures on systems like the Intel

HARP [41] that integrate an FPGA and a processor at the system level. The HARP con-

nects DRAM interfaces directly to the processors in the system, and can potentially also

connect a DRAM interface to the FPGA, but allows the fabric to access a NUMA-style

single cache-coherent address space. While it should be fastest for the FPGA to access

data stored in a DRAM interface directly attached to it, the FPGA can also request data

in the DRAM interface attached to the processor, which will be provided through the pro-

cessor’s cache. While fetching results using the cache-coherent ACP interface is slightly

slower than doing so using the non-cache-coherent HP interface, fetching data through

the cache-coherent ACP interface was faster than touching all of the data using the ARM

processor, which required loading each data item into a processor register.
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The Xeon processor in the Intel HARP is much more capable than the ARM processor

in the Zynq, but also would need to load all data into a register that is narrower than

the DRAM interface width in order to aggregate data payloads for an FPGA. This would

negatively impact performance when the processor access all of the data, possibly negating

the benefits of aggregating the data payloads, especially once the data payloads became

larger than a 64-byte cache line.

The Convey HC-1 [22] attaches an FPGA computing system (that includes 4 user-

accessible FPGAs) to the front-side bus of an Intel Xeon-based system. This system was

designed for FPGA applications that require pointer accesses. The system allows coher-

ent memory access by the processor and reconfigurable fabric, and also attaches special

“scatter-gather” DRAM modules to the FPGA fabric, providing up to 80 GBytes/s of band-

width and allowing low latency random access to 8-byte data blocks. This memory system

would greatly reduce the performance reduction of the ”strided” lists when compared to

the ”sequential” lists, with the result that in this system it would always be beneficial to

traverse pointer-based data structures using a hardware traversal engine.

Recommendations for Future Hardware: Our experimental results also allow us to

make recommendations to device manufacturers who are designing future shared-memory

hybrid processor-FPGA systems. It does make sense for a reconfigurable fabric to be

able to access both a cache-coherent interface optimized for processor-FPGA accesses

in addition to bandwidth-focused non-cache coherent interfaces, but it would behoove

device manufacturers to provide better guidance as to how to best utilize these disparate

interfaces.
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Device manufacturers should provide processors with simple memory-mapped access

to the reconfigurable fabric, but should allow the processors to easily transfer data to the

fabric without blocking (assuming that internal queues are not full), rather than needing

to manually buffer data and use a DMA engine—whose management also incurs run-time

overhead. Providing better guidance about how to use the various memory interfaces avail-

able to the reconfigurable fabric, and allowing a processor to directly transfer information

to the fabric without blocking would make it much easier for application developers to

create applications that cross the processor and reconfigurable fabric and achieve the best

possible performance.

7.4 Graph Computations Using the Gather-Scatter Work-list Agent

The gather-scatter work-list agent was evaluated in the context of the GraphGen com-

piler [67, 82], which supports computations on data associated with the vertices and edges

of a graph, and assumes that the structure of the graph does not change during the compu-

tation. The GraphGen compiler operates on a vertex-centric description of graph computa-

tions, which is depicted in Figure 7.10. The application developer provides the following

information:

1. The structure of the graph.

2. The format of data associated with each vertex and edge.

3. The required graph traversal order.

4. The computation to perform at each vertex, which invokes accelerator kernels in-

cluded with the graph specification.1

1The computation operations on data associated with the vertex, adjacent vertices, and the connecting
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Figure 7.10: Vertex-centric graph description.

The GraphGen compiler supports an instruction-based hardware kernel for each applica-

tion that invokes the application’s accelerator functions with appropriate vertex and edge

data as specified by the application designer. This hardware kernel is multi-threaded in that

it keeps track of multiple in-flight vertex computations, and supports multi-ported vertex

and edge memories that are used to partially unroll the loop over each vertex’s neighbors.

The key observation behind the GraphGen compiler is that if the structure of the graph

does not change during a computation, it makes sense to pre-process the graph in order to

make data transfers more efficient. Since vertices and edges in the graph may be part of

more than one sub-graph, accessing sub-graph elements requires pointer-based memory

accesses, making the gather-scatter work-list agent a good fit for this application, which

edges.
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Figure 7.11: GraphGen compiler workflow.

stores vertex data in one buffer and edge data in another buffer within the gather-scatter

work-list agent.

The general flow of the GraphGen compiler is shown in Figure 7.11. The user provides

the graph structure and an update function to apply to each graph vertex. This graph

structure goes through a front end compiler, which breaks the graph computation into a

sequence of computations on sub-graphs. Each sub-graph computation is mapped to sub-

task for the gather-scatter work-list agent, which applies the optimizations discussed in

Section 6.5 to each sub-task.

We evaluated the GraphGen compiler (and gather-scatter work-list agent) on two dif-

ferent graph applications: depth reconstruction using Tree ReWeighted Stereo Matching

(TRW-S, shown in Figure 7.12a) and handwriting recognition using a Convolutional Neu-

ral Network (CNN, shown in Figure 7.13a). We targeted both Xilinx and Altera FPGAs,

and used both interfaces on the Altera FPGA in order to achieve higher DRAM bandwidth.
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Figure 7.12: Depth Reconstruction application configuration, raw performance and per-
formance comparison

7.4.1 Depth Reconstruction using Tree-ReWeighted Message Passing

Depth reconstruction is the process of inferring the depth of objects in a images from a

stereo camera by determining parallax—how much each point moves between the two im-

ages. Figure 7.12a shows how each pair of pixels in the image is mapped to a grid graph,

which is processed using a belief propagation algorithm called Tree-ReWeighted Mes-

sage Passing [51]. This algorithm can be mapped efficiently to FPGAs using a diagonal

parallelization scheme [27].
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Our experiments explored the effectiveness of unrolling the innermost loop of the com-

putation, increasing the number of read ports in the local buffers appropriately and varying

the clock speed of the computation kernel, and seeing how well the gather-scatter work-list

agent could support the application the amount of time take by the computation decreased,

increasing the bandwidth needed to saturate the computation kernel. We tested this appli-

cation on both the ML605 and DE4 boards, and used either one or two DRAM interfaces

on the DE4 (increasing the data path width when using 2 memory controllers to allow

full-bandwidth data transfers).

Figure 7.12b shows the results of these experiments, operating on the “Tsukuba” im-

ages of the Middlebury benchmark[75]. The ML605 and DE4 boards performed identi-

cally when the DE4 was configured to use a single memory interface. The gray and blue

solid lines show “optimal” performance, as defined by the amount of time that the compu-

tation could take given the clock speed of the kernel and the number of cycles needed by

the computation. The dashed red line shows that with 1 memory controller and a kernel

running at 100 MHz, the gather-scatter work-list agent can saturate the kernel when the

computation’s inner loop is not unrolled at all, but is bandwidth limited when the com-

putation’s inner loop to compute 2 or 4 inner loop iterations per cycle. With 2 memory

controllers, the gather-scatter work-list agent can always saturate the a kernel running at

100 MHz. When the kernel’s clock is increased to 150 MHz, the application becomes

bandwidth limited after the kernel’s inner loop is unrolled once. We achieved 85% of peak

DRAM bandwidth during this computation, because some strided data transfers were nec-

essary due to data reuse across subgraphs.

Figure 7.12c shows that performance is quite favorable when compared to best-effort
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Figure 7.13: Handwriting Recognition Application Configuration, Raw Performance and
Performance Comparison

implementations of the algorithm on a high end Core i7 CPU and Nvidia GTX 680m GPU,

achieving 13.5× better performance than the CPU and 9.3× better performance than the

GPU. Even though this algorithm operations on a grid graph, the diagonal parallelization

of the algorithm does not perform well on a GPU because of the data access patterns

that it creates. The applications compiled by the GraphGen compiler needed all available

DRAM bandwidth to achieve the best possible performance, so would not benefit from the

ShrinkWrap extension to the CoRAM architecture.
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7.4.2 Handwriting Recognition Using a Convolutional Neural Network

We also evaluated the gather-scatter work-list agent on handwriting recognition using

the the well-known LeCun [56] convolutional neural network. Figure 7.13a shows how

the input images are mapped to the input layer of the neural network, which is used to

infer a character. We used a publicly available, pre-trained neural network for handwriting

recognition [69]. We once again evaluated unrolling the loop and running the kernel at

100 or 150 MHz. using both DRAM interfaces on the DE4. Figure 7.13b shows that the

gather-scatter work-list agent can saturate the kernel in all experiments, and Figure 7.13c

shows that the FPGA was about 2× faster than the Core i7 CPU, and slightly faster than

the GPU.

Since the publication of the paper [67], the CoRAM backend for the GraphGen com-

piler has been updated to support the ZedBoard, an FPGA that incorporates a Xilinx Zynq

chip. The Xilinx Zynq chip includes an FPGA fabric along with two hard ARM cores,

and the CoRAM backend supports transferring data to the board over Ethernet, through a

program running on one of the ARM cores that initializes data using a DRAM controller

that is shared between the ARM core and FPGA fabric.

The key takeaway from the GraphGen project is that when a graph structure is fixed,

it is possible to preprocess the graph to reduce the number of irregular data transfers, and

use the large amount of local storage available on FPGAs to achieve better performance

than CPUs and GPUs which have much more DRAM bandwidth.
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Figure 7.14: Compression kernel performance.

7.5 Streaming Data Compression

This section evaluates a compute-bound application in the form of a publicly avail-

able data compression core [4]. The data compression core implements the LZRW1 [83]

compression algorithm, which is a variant of the well-known Lempel-Ziv [97] data com-

pression algorithm that is designed to be fast.

We evaluated data compression using the ZedBoard, using a CoRAM++ application

that uncompressed streamed data to the compression engine (which ran at 100 MHz), and

streamed compressed data back to DRAM, after which it was transferred to the host system

for verification.
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Figure 7.14 shows the throughput of the compression kernel that was achieved when

compressing all of the files in the Canterbury Corpus [18]. The figure also includes the

mean performance achieved, and includes a red line showing the peak achievable running

this compression core at 100 MHz. The application is very close to the peak achievable

performance in all cases. Performance was limited by the compression core, which could

only accept one input byte every two cycles.

7.6 Kernel-Kernel Communication

Our evaluation of the kernel-kernel communication agent demonstrates that it can sup-

port full-bandwidth data transfers between arbitrary kernels, and quantifies the resource

overheads introduced by the extra NoC endpoints that the agent introduces. Our exper-

iments instantiate simple hardware kernels that read data from a read stream agent and

immediately write the data to a write stream agent. Each experimental configuration in-

stantiates a different number of hardware kernels, along with an appropriate set of kernel-

kernel communication agents to support a chain of data transfers from one of the DE4’s

DRAM interface, through each of the hardware kernels, and out through the other DRAM

interface.

The CoRAM++ NoC was used in a standard configuration that divides the application

into DRAM controller (and kernel-kernel communication agent) endpoints and application

endpoints, and creates a crossbar between the two sets of NoC endpoints. The NoC was

configured for a data width matching that of the hardware kernels and DRAM interfaces

on the DE4, which was 512 bits at 100 MHz. For each experimental configuration, we

streamed data sets that varied in size from 8 kilobytes to 16 megabytes.
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Figure 7.15: Kernel-Kernel Communication Agent Performance Results.

Figure 7.15 shows that applications using the kernel-kernel communication agent to

stream data between kernels does not hurt memory access performance. The baseline

result is a 1 application kernel configuration that simply streams data in from DRAM

and out to DRAM. This kernel achieves the same performance as the streaming DFT

discussed in Section 7.1, except for the fact that performance on small data transfers is not

hampered by the latency of the DFT kernel. As the number of kernels (and trips across the

NoC) increases, the bandwidth achieved by the application stays the same, indicating that

the kernel-kernel communication agent can efficiently transfer data between application

kernels.

Figure 7.16 shows how resource utilization changes as the application is rebuilt with
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Figure 7.16: Kernel-Kernel Communication Application Resource Utilization.

an increasing number of hardware kernels and kernel-kernel communication agents. The

figure shows resource utilization relative to the “1 Kernel” configuration, based on the

“Fitter resource utilization summary” reported by Quartus. Increases in resource utiliza-

tion are due to the additional kernels, additional kernel-kernel communication agents, and

larger NoC needed to support them. The “1 Kernel” baseline configuration includes a 2×4

crossbar—2 NoC endpoints on the DRAM interface side of the NoC, and 2 NoC end-

points on the application side. This configuration allows the application to transfer data

at the full bandwidth provided by the DRAM interfaces on the DE4. The application in-

cluded the host communication agent, which was configured as in Figure 6.6b, and is the

reason why the application side of the NoC requred 4 NoC endpoints. While it is possible

131



for CoRAM++ agents to share NoC endpoints, this can reduce the available bandwidth

available to each CoRAM++ agent.

Increasing the number of kernels to 2 increased the NoC size to 4×6, as it added

2 NoC endpoints on the DRAM interface side of the NoC for the single kernel-kernel

communication agent, and 2 NoC endpoints on the application side of the NoC for the

additional stream agents. The size of the application increased by 40%. As the number

of application kernels increased, the number of NoC endpoints on each side of the NoC

increased by 2. However, resource utilization did not increase linearly due to quantization

effects within the FPGA. Quartus also skipped some fitter optimizations in all cases in

order to save time, because the application was not big enough to completely fill the FPGA.
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Chapter 8

Conclusion

FPGAs are growing more capable every device generation, taking advantages of the same

increased transistor counts that Moore’s law grants to other computing devices. As FP-

GAs grow larger and more capable, FPGA applications can afford to expend resources

on frameworks that simplify application development and provide application portability.

Simplifying FPGA application development will increase the adoption of FPGAs as gen-

eral purpose FPGA computing devices, helping to satisfy the ever-growing need for power

efficient high performance computation.

CoRAM++ proposes that application developers should use application-level memory

interfaces that are specific to the data structures in use. CoRAM++ supports these types

of interfaces through an FPGA programming environment with a two-layer system archi-

tecture: a low-level system interface provides communication services, and an extensible

library layer provide data-structure-specific application-level interfaces. An essential part

of these interfaces is that the application-level abstraction makes the application oblivi-
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ous to the implementation interfaces, which can include an optimized datapath to memory

that directly connects pointer-chasing logic to a memory interface, or even runs software

pointer-chasing code on a hard-logic processor. These interfaces are the key to providing

convenience to the application developer without adding too much overhead in terms of

run-time performance or resource utilization, which should make CoRAM++ application

developers.

Future Work

This thesis has shown the effectiveness of CoRAM++ for supporting some important

data structures and applications. There are several ways in which CoRAM++ can be ex-

panded to provide more utility to FPGA application developers:

• More CoRAM++ targets: CoRAM++ currently supports a small subset of cur-

rently available FPGA boards. This is enough to demonstrate the portability bene-

fits of CoRAM++, but support should be extended to additional hardware platforms.

There is no reason why CoRAM++ needs to directly target FPGA boards—an effort

is currently underway to use LEAP as a back-end target for CoRAM++, instantly

conferring support to all of the FPGA boards that LEAP can target.

• More data structures: The CoRAM++ library currently supports some of the data

structures that are important to FPGA computing, but could support more of them.

In particular, graphs are very popular in the machine learning domains, and better,

accelerated support for computations on graphs could allow CoRAM++ to appeal to

a wider audience

• A deeper investigation of software pointer-chasing acceleration: Section 7.3.2
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demonstrated an initial evaluation comparing the traversal of pointer-based data

structures in both hardware and software on tightly coupled CPU-FPGA systems.

This study can be extended to more data structures and hardware platforms, in-

cluding Intel’s HARP, which couples state-of-the-art Xeon processors with high end

Altera FPGAs.

• More applications: There are many applications that could be used to further

demonstrate the benefits of CoRAM++. In particular, the multi-dimensional DFT

used demonstrated in Section 7.2 could be used in conjunction with the kernel-kernel

transfer interface within a Synthetic Aperture Radar (SAR) application.

• Underlying implementation: CoRAM++ heavily relies on the Bluespec System

Verilog (BSV) language, which is convenient, but expensive and not open source,

making the barrier to entry to using it high. This infrastructure could be replaced by

an open source language such as Chisel [20] that supports similar functionality.
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Appendix A

Application Notes for Supported

Compiler Targets

A.1 General Application Notes

As the CoRAM++ abstraction is meant to help develop applications on current and

near-future FPGAs, most of the experiments discussed in this chapter were performed on

FPGAs rather than in simulation. The streaming (Section 7.1) and multi-dimensional array

(Section 7.2) experiments were performed exclusively on the DE4, as they read data from

one DRAM controller, through the application, and write it to the other DRAM controller

as quickly as possible. These experiments would achieve poor performance on the ML605

or Zynq-based FPGAs due to contention between read and write accesses.

On the other hand, the experiments in Section 7.3 were performed on the ML605, DE4,

and ZC706 boards, and those in Section 7.4.1 utilized the ML605, and DE4, showing the

portability of CoRAM++ applications. No application code was changed when moving
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these applications between boards, as these application used vendor-agnostic wrappers for

block memories, floating point cores, and other vendor-specific structures that are provided

by the CoRAM++ compiler.

Except where otherwise noted, all experiments used the Host Communication Agent

to initialize data in FPGA DRAM, count the number of clock cycles that application exe-

cution took, and read data from FPGA DRAM to the host computer for validation.

A.2 ML605 Compiler Target Notes

The Xilinx ML605 is a Xilinx Virtex-6 based FPGA board containing a single DDR-

3 DRAM controller connected to 512 megabytes of DRAM. The Xilinx Memory Inter-

face Generator was used to create the top level module for this board, which includes

the DRAM controller and clock generators. The DRAM controller provides a DRAM

interface that is 32-bytes wide and runs at 200 MHz, providing 6.4 gigbytes/second of

bandwidth. The DRAM controller allows accesses to data at 32-byte aligned address. and

supports a 27-bit address that is measured in 8-byte words.

The MIG-derived clock generation logic was modified to generate 50, 100, and 150

MHz clocks, which are provided to the application—CoRAM++ compiler flags can be

used to pass these through to the application kernels. The 100 MHz clock is also used

for the NoC, Control Thread state machines, and other infrastructure components except

where otherwise indicated. Since infrastructure and application components run at 100

MHz, the CoRAM++ memory subsystem always accesses 64 bytes of data per request,

and internally converts two 32 byte DRAM controller requests into one 64 byte request

to allow applications to achieve all available DRAM bandwidth. Applications needing all

138



of the available DRAM bandwidth at all application-side NoC endpoints should specify a

64-byte NoC width.

The ML605 contains a serial UART that is connected to a USB port. Since this se-

rial connection is actually connected through high speed USB wires rather than serial

wires, the host computer can communicate with the serial port at 500 kilobits/second. The

ML605 documentation implies that its serial connection may actually support connections

up to 1 megabit/second, bit this functionality was not tested. On this board, the serial port

is generally mapped to address 0x80000000 in a 32 bit global address space.

A.3 DE4 Compiler Target Notes

The Terasic DE4 is an Altera Stratix-IV based FPGA board containing two DDR-

2 DRAM controllers each connected to 1 gigabyte of DRAM. Two variants of the FPGA

board are available: one with a smaller FPGA containing 228 ,000 logic elements, one with

a larger FPGA containing 531,200 logic elements. All experiments were performed with

the larger FPGA. The DE4 target for the CoRAM++ compiler uses the modern UNIPHY

controller IP rather than the older ALTMEMPHY controller. Like the ML605 board, each

DRAM controller communications through a 32-byte wide channel that runs at 200 MHz,

and the CoRAM++ compiler target converts this communication channel to a 64-byte wide

channel at 100 MHz, and always requests two rows of data at once. Unlike the ML605

compiler target, the DE4 compiler target uses 27-bit addresses that point to 32-byte words

(address 1 points to bytes 32-63).

Initial implementations of the DE4 CoRAM++ compiler target used the ALTMEM-

PHY controller, but we saw data corruption under high load, possibly due to the issue that
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Altera discloses in [10]. Since the ALTMEMPHY memory controller cannot be created

with newer versions of Quartus, the CoRAM++ target was updated to use the UNIPHY

DRAM controller.

Another issue with the DE4’s DRAM controller implementation is with the reference

clock pin that drives the second DRAM controller. Quartus does not accept the clock

pin that Terasic recommends as a valid reference clock pin, and issues “critical warning”

messages when using the second memory controller. The Altera Forums contain a short

discussion of this issue and a resolution using a different clock pin [11].

The DE4 contains a serial UART that connects to a DB9 serial cable. The CoRAM++

compiler target can communicate with this UART at a maximum of 115,200 kilobits/sec-

ond, and maps the serial UART to address 0x80000000 in the global address space.

A.4 ZedBoard and ZC706 Compiler Target Notes

The ZedBoard is an inexpensive ($395 retail price, $319 academic pricing as of

02/02/2015 [96]) Zynq-based FPGA board. This board contains two hard ARM M9 cores

connected to hard caches, a hard AXI bus, and a small FPGA fabric (See Table 5.1), and

can run both Linux and Android [37], making it an interesting platform for exploring both

mixed CPU-FPGA designs and mobile applications that use FPGAs.

One downside of the ZedBoard is that even though its DRAM controller runs at 533

MHz (1066 megabits/s/data pin), the chip’s DRAM data path is limited to 32 bits (rather

than the standard 64 bits), limiting DRAM bandwidth to 4.3 gigbytes/s. The same limita-

tion applies apply to the shared DRAM controller on the larger ZC706 FPGA board [91],

but Altera’s comparable Arria SoC devices achieve higher throughput through higher clock
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speeds in their DRAM controllers [14]. When targeting Zynq platforms, note that there is

an error in the way that both ISE and Vivado configure the shared DRAM controller [87],

and the System-on-Chip initialization code must be manually updated on the build ma-

chine.

The ZedBoard contains four high performance 64-bit AXI ports that connect the FPGA

fabric to the DRAM controller, and an additional 64-bit AXI port that is coherent with the

ARM cores’ processor caches. The CoRAM++ compiler target Zynq and the ZedBoard

can aggregate several AXI ports together into one logical interface in order to saturate the

onboard DRAM controller of the ZedBoard, and has successfully connected to these AXI

ports at 200 MHz. Since the connection is to a generic AXI port, this interface can also

connect to other AXI devices, and from the perspective of the CoRAM++ compiler target

it does not matter if it is connecting to the cache-coherent AXI port or one of the non

cache-coherent AXI ports. These AXI ports accept 32 bit addresses that point to bytes and

must be aligned to 8-byte boundaries.

Since the ZedBoard’s DRAM controller is shared between the ARM cores and recon-

figurable fabric, the reconfigurable fabric must not arbitrarily access all of the FPGA dram,

but must used a region of DRAM that is reserved for it by the software running on the pro-

cessor. The CoRAM++ compiler target for the ZedBoard and ZC706 supports an offset

that can be added to every request before the request is passed to the AXI ports. This offset

is configured through the Host Communication Interface, but generally configured by the

ARM-based program that performs the FPGA side of the interface rather than the actual

host system.

On the ZedBoard, clock and reset signals are generated by the ARM processing system.
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Clock signals running at 50, 100, 150, and 200 MHz are provided, and control threads are

generally configured to run at 50 MHz to make it easier for ISE to fit the application onto

the small FPGA fabric. Our experimental results have shown that this low clock speed

does not negatively impact application performance.

The CoRAM++ compiler target for the ZedBoard and ZC706 exports the clock signals,

reset signals, and AXI ports from the Xilinx Platform Studio (XPS)- based processing sys-

tem to a top level verilog module that can be used with ISE. When building this compiler

target, we found that the Zynq chip did not enable the clock signals, reset signals, and AXI

ports unless we included a Xilinx AXI bus IP – that is we needed to include this IP even

though the AXI ports are part of the ARM cores. It appears that the ARM initialization

code generated by XPS does not activate the clock signals, reset signals, and AXI ports

unless the AXI bus IP was included, and this issue also occurred with Vivado. Even though

multiple AXI ports are exposed, the AXI bus only needed to be connected to a single AXI

port (even one that does not have any application components connected to it) for the the

clock signals, reset signals, and AXI ports to be active, which supports the theory that the

problem lies with the initialization code.

The CoRAM++ Host Communication Agent connects to a single AXI slave port on

the Zedboard and ZC706– the ARM cores send commands to this port, and the Host Com-

munication Agent responds. This AXI port is 32 bits wide, and generally is configured to

run at 50 MHz on the ZedBoard, as it is not carrying high-speed information.

Since the ZedBoard contains a very small FPGA and a single DRAM controller, the

CoRAM++ compiler can omit the CoRAM++ NoC when targeting it, attaching the CoRAM

Clusters that drive the CoRAM Classic SRAM Agents directly to the 64-bit AXI ports dis-
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cussed above.

The ZC706 is similar to the ZedBoard, but contains a much larger FPGA fabric, and

contains a second DRAM controller, which runs at 800 MHz and provides up to 12.8

gigabytes/s of DRAM bandwidth. This DRAM controller is connected to the CoRAM++

compiler target through a 64-byte interface that runs at 200 MHz, and converted to a

128-byte interface running at 100 MHz to match the clock speed of the NoC and other

infrastructure. This interface accepts 28-bit addresses that point to 8-byte words, which

must be aligned to multiples of 8 1 Both DRAM controllers are attached to the CoRAM++

NoC, but the shared DRAM controller is expected to be initialized through the ARM cores.

Since the second DRAM controller is not connected to the ARM cores, the Host Com-

munication Agent must stream data to or from this DRAM controller through the AXI

slave port attached to the ARM cores, and consequently runs the slave AXI port (which is

still a 32-bit wide port) at 100 MHz. Clock and reset signals are generated by the second

DRAM controller when targeting the ZC706. The compiler target provides 50, 100, 150,

and 200 MHz clock signals.

The software running on both the ZC706 board’s ARM cores to implement commu-

nications is the same as that in the ZedBoard, as is the ethernet-based communication

protocol (using the Lightweight IP ethernet stack). The ethernet controller is currently

configured to use a static IP address of 192.168.1.10 and run at 100 megabits/s. This

software currently supports the “standalone” system library.

1The first valid address is 0; the second valid address is 8, which will points to bytes 64-127 in the
200 MHz clock domain. The CoRAM++ template for this FPGA requests 128-byte aligned data, so would
request address 0 for bytes 0-128, 16 for bytes 128-256, and so on).
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Appendix B

Host Computer Agent Communication

Protocol and Client Programs

This appendix describes the communication protocol used by the host computer inter-

face, the standard client program that can be used to interact with the FPGA, and a cus-

tomized client program that has been used to demo the GraphGen convolutional neural

network. The CoRAM++ programming environment currently supports a serial port run-

ning at 115,200 BPS on the Terasic DE4, and up to 500,000 BPS on the Xilinx ML605

board (which uses a USB based rather than physical serial port). It also supports commu-

nications at full Ethernet line speed on the Digilent Zedboard and Xilinx ZC706 boards

with Zynq FPGAs. On Zynq-based FPGAs, the hard ARM cores and ethernet controller

on this chip software running on the ARM cores to perform data transfers.
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Token Definition Comment
Host communication = message* Host communication occurs through an

unbounded sequence of messages, all
initiated by the host computer.

message = nullmessage |readdata
|writedata |compute
|writeparam
|readparam

There are 6 types of messages.

nullmessage = ready ready A null communication is a handshake that
allows the host computer to ensure that the
communication protocol is working.

readdata = read read address size
reading data ready

Read size bytes of data from address on
the FPGA to the host system. Address and
size are 4 byte little endian integers.

writedata = write write sizeoffset
writing data ready

Write size bytes of data data from the host
system to address address on the FPGA.
Address and size are 4 byte little endian
integers.

compute = compute compute
send8bytes
computecycles ready

Instruct the FPGA to compute and return
compute cycles, which is sent as an 8 byte
integer value in little endian order.

writeparam = hosttosys hosttosys
paramindex param
ready

Write an little endian 8 byte parameter
param to the application, indexed by the
single byte paramindex.

readparam = systohost systohost
paramindex
send8bytes param
ready

Read an little endian byte parameter param
or debug value from the application,
indexed by the single byte paramindex.

ready= 0x00 A single byte token.
read = 0x01 A single byte token.

reading = 0x02 A single byte token.
write = 0x03 A single byte token.

writing = 0x04 A single byte token.
compute = 0x05 A single byte token.

send8bytes = 0x06 A single byte token.
hosttosys = 0x07 A single byte token.
systohost = 0x08 A single byte token.

Table B.1: Messages used by the host computer interface (in BNF). Data sent from the
host system to the FPGA is shown in blue, and data sent from the FPGA to the host
system is shown in teal. Bold tokens are defined in the table below the line in which they
are presented in bold.
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Figure B.1: Screen capture of the host computer interface companion program for Win-
dows.

B.1 Host Computer Interface Communication Protocol

The host computer interface uses the same byte-level communication protocol regard-

less of the FPGA board and physical transportation medium in use. Table B.1 defines this

communication protocol.

B.2 Standard Host Computer Interface Client Program

The client side of the host computer interface is GUI based C# program. Figure B.1

presents a screenshot of this program. This program was first created while working on the
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C-to-CoRAM project [81]. This particular screen capture was taken while running linked

list traversal experiments as discussed in Section 7.3.

This program is intended to be universal, for any application that does not have much

interaction with the host system. The application can write data to FPGA DRAM from a

file (or statically defined hex string), read data from FPGA DRAM to a file, write run-time

configuration data and read information from the application, and trigger execution and

collect run-time in cycles.

While designed for Microsoft Windows, the host program uses no Windows specific

features and should be able to run on the Mono .net implementation, and uses an extremely

simple line protocol over a serial port or TCP socket, so could easily be replaced by a

different application.

B.3 Custom Host Computer Agent Client Program for the GraphGen

Convolutional Neural Network Demo

Since the communication protocol used by the host computer interface is well-defined,

it is possible to support custom client programs for particular applications. One exam-

ple of a custom program that interfaces with the host computer interface is the GraphGen

Convolutional Network Demo, shown in Figure B.2. This program was used for a live

demo at FCCM 2014, and needed more interactive communication with the FPGA. The

demo shows the GraphGen-based convolutional neural network application performing

handwriting recognition described in Section 7.4. When the program starts up, it loads

the FPGA DRAM with default data, but uploads new images to the FPGA, triggers hand-

writing recognition, and reads the compute time and recognition result in response to user
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Figure B.2: Screen Capture of the custom host program for the GraphGen Convolutional
Neural Network

input. In this particular capture, the application has sent a fuzzy image of a “7” from the

MNIST [55] handwriting recognition data set, which is labeled, and the ZedBoard-based

application has recognized the number in 2.13 ms. The “Recognized Character” pane is

shown with a teal background, indicating that the application did recognize the correct

character.
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[56] Yann LeCun, Lèon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-Based

Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–

2324, 1998. 127

[57] Maxeler Technologies. MaxCompiler White Paper, February 2011. 20

[58] Mentor Graphics . Catapult-C. http://www.mentor.com/esl/catapult/

158

http://www.mentor.com/esl/catapult/overview
http://www.mentor.com/esl/catapult/overview
http://www.mentor.com/esl/catapult/overview


overview. 17

[59] Mentor Graphics. Handel-C. http://www.mentor.com/products/fpga/

handel-c. 17

[60] Peter A. Milder, Franz Franchetti, James C. Hoe, and Markus Püschel. Computer
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