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Abstract
Interactive storytelling weaves together deep computational ideas with

humanity’s rich history of story and play, providing an important context
for tools and languages to be built. At the same time, formal specification
languages offer a palette of representation and inference techniques typically
reserved for the analysis of programming languages and complex deductive
systems. This thesis connects problems in the interactive storytelling domain
to solutions in formal specification.

Specifically, we examine narrative from a structural point of view and
observe that alternative narrative paths play a complementary role to simul-
taneous interacting timelines. Linear logic provides the representational tools
necessary to investigate this structure, and by extending the correspondence
to proofs and proof construction, we find a suite of computational possibili-
ties. We present three efforts toward realizing those possibilities: (1) the use
of linear logic programming to generate narratives; (2) a new programming
language for authoring interactive narratives, games, and simulations; and
(3) techniques for stating and proving design-level program properties.

We find that linear logic programming, enriched with a minimal exten-
sion to its logical semantics, enables a wide range of programming idioms
and domain encodings. As evidence, we give five case studies, including so-
cial simulation, combat-based adventure games, and board games. To sup-
port reasoning about design correctness, we present techniques for stating
and proving program invariants, as well as a decidability proof for automat-
ically checking those invariants for a large fragment of the language.

These findings show that linear logic is a fruitful representation language
to serve as the basis for modeling and executing interactive worlds, and they
invite future investigations on using proof-theoretic methodologies for cre-
ative systems.
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Chapter 1

Introduction

The two activities of playing games and telling stories have shaped the way humans
learn and bond with one another since at least the dawn of history. From a human-
istic perspective, they are as central to our existence as language [Hui14]. They have
also never been entirely distinct, with each drawing on the human ability to invent fic-
titious worlds, defined by rules and aesthetics originating from people’s minds without
persistence of truth outside their “magic circles.”

Only in a comparatively tiny, recent sliver of humanity’s timeline have digital comput-
ers entered into a place of import for the enhancement of these activities, but they have
brought with them an explosion of new thought on how to design and construct delib-
erate playful, narrative experiences—new magic circles, as it were. One of the central
ideas in this rennaissance is that computers enable much richer system-driven interaction
than we were previously capable of creating. All games, digital or not, form a system,
or set of rules that interact with one another nontrivially. For example, the game of
Chess has rules for moving pieces of different shapes in patterns that are constrained by
rules that depend on the positions of the other pieces. These rules are easy enough for a
human to carry out by hand. But thanks to the speed of digital processing, we can now
describe highly complex systems whose effects require calculation that would be too
tedious to compute by hand while maintaining the spirit of play, such as the trajectories
of particles bouncing around in simulated space.

One of the earliest forms of digital game was the text adventure, a kind of story told
through interaction with a text-based command-line interface to navigate a fictional
world. Commands like go north and get lamp could be typed and translated into
changes in the game’s state, which would be reflected in changes to the prose describ-
ing the player’s surroundings, preceding the next prompt for input. (See Figure 1.1 for
a sample interaction with one of the earliest known text adventures [CW77].) Because
computers came with a means for displaying text already, all of the author’s concen-
tration could be left to designing the narrative world underneath: things such as the
map, the descriptions of places and items, the modeling of reactive elements, such as
machines and non-player characters. Items strewn throughout the game world could
be collected and combined to solve puzzles, such as fixing broken machines or bribing
stubborn characters. Text adventure enthusiasts often speak of the compelling sense of
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Figure 1.1: Sample interaction with the game Adventure by Will Crowther.
(Also known as Colossal Cave.)

agency they experience when playing such games: thinking of the right command to
type involves a sense of imagination (“What would I do if I were really there?”), which
is an entry point into a conversation with the game world in which the player tests the
boundaries and rules established by the author. In other words, the player may partici-
pate in a world created by the game author in order to collaboratively author a story with
the computer. So the ability to simulate worlds with computers has enriched how we
tell stories, too, and has opened up new spaces at the intersection of play and narrative.

After the text adventure’s heyday, the mass commercialization of digital games en-
gendered a proliferation of “genre” terms, such as “first-person shooter” and “plat-
former,” that entered the public consciousness as a taxonomy of play. In such a taxon-
omy, the story game is thought of as something entirely separate from the strategy game,
with the former thought mainly of as alternatives to light reading (interaction mainly
“turns the page” in a digital book) whereas the latter is thought of as “more of a game,”
with real decisions and player agency. These categories then inform how designers con-
ceive of new games, and, at one further layer of indirection, how creators of game design
tools think to build affordances and libraries. So now it is difficult to discuss, much less
create, digital works that focus on things like mechanics, systems, and player agency
for narrative play—for example, text games that may require ingenuity and strategy to
tell their stories.

A counter-framework for designing and analyzing digital games from first princi-
ples was proposed by Hunicke et al. [HLZ04], suggesting a game be thought of in terms
of mechanics, dynamics and aesthetics (MDA). Mechanics are the basic rules of the game
(Chess example: queens can move diagonally), dynamics are the emergent patterns and
strategies that arise from mechanics (Chess example: book openings), and aesthetics
are the player’s holistic experience of the game (Chess example: the sensory experience
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created by the pieces and the board; the cognitive experience of thinking several moves
ahead to plan a strategy). Such a framework allows one to find similarities in games
across artificial “genres” in terms of their mechanics or aesthetics, yet contrast them
along another of the three axes.

From a game creation perspective, the MDA framework also enables us to imagine
building a model of the mechanics separately from the game’s rendering as a whole,
aesthetic experience. This approach lends itself well to rapid prototyping, the idea that
designers do not want to build a complete end-to-end product before iterating on their
initial design, and so they should build rough but servicable mock-ups (prototypes)
until the design seems likely to work. Especially when creating games based on com-
plex systems with lots of interacting components, it can be helpful to test those systems
piece-by-piece before they are too large to reason about.

From a computer science perspective, we are in search of composable abstractions for
understanding narratives and games. The process of designing those abstractions, to-
gether with defining how they may be brought to life through execution and interac-
tion, is what constitutes the design of a programming language. The executable model
should give the designer some sense for the dynamics (and perhaps aesthetics) of the
eventual finished game, and it may also provide some automation to speed develop-
ment: automatically testing the game by carrying out some designated player strate-
gies, for example. It could also perform analysis of the program and tell the author
whether or not it has met some desired game properties. Such analysis plays a similar
role to regression testing in current-day software practice, but it has the ability to check
exhaustively for adherence to the specification.

Creating new abstractions for understanding different classes of computation has
been the purview of the field of programming languages for several decades. Before
digital computers had been invented, we had notions of computation that were in-
dependent of the particular physical artifacts for carrying it out, such as Church’s λ-
calculus [Chu32]. After a long detour through the “von Neumann bottleneck” [Bac78],
we can now write programs in these machine-independent language models and run
them on real machines. Meanwhile, game designers have been inventing their own
programming languages, such as Inform 7 [Nel01], Twine [KA08], and Versu [ES], that
suit the specific needs of people crafting interactive stories with incredible immediacy,
in terms of affordances that match their imaginative process. But too often, these lan-
guages lean on the tradition of machine dependence (imperative state update) to estab-
lish their meaning, resulting in leaky or unstable abstractions. We champion the goal
of these tools— accessible means for non-computer scientists to participate in the cre-
ation of games—but suggest that an approach based on machine-independent, linguis-
tic techniques would serve the community. Furthermore, in sight of the broader goal
of understanding games at a basic and timeless level, we posit that neither the class of
games in question nor the programming tools in question should depend on the trends
nor limitations of current technology.

As such: this thesis project endeavors to provide a conceptual and computational
framework for understanding, building, and analyzing the interactive worlds that un-
derlie games and stories.
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1.1 Potential Narratives

Text adventures eventually came to be understood under the larger umbrella term inter-
active fiction, or interactive works that tell stories with words. Like computation itself,
the history of interactive fiction begins before (and continues to exist outside of) the
digital computer.

Nick Montfort, an interactive fiction author and historian, traces the history of in-
teractive fiction to the I Ching, an ancient Chinese divination tool that used random
chance to generate prophetic text, and to the Llull machine, a similar Western inven-
tion [Mon05]. The connection is that these systems generate text with algorithms, based
on some underlying model, much like an interaction with a digital computer to derive a
story. In the 1960s, the French surrealist group of mathematicians, artists, and other in-
tellectuals going under the name Ouvroir de Littérature Potentielle, or Oulipo [Mot86],
gave the term potential literature to these systems that were not stories themselves, but
produced stories through human interaction. Following in step, we adopt Montfort’s
term potential narrative to describe our approach to narrative play, because we find it a
useful way to unify the playful aspects of interactive fiction with more readily-accepted
notions of game.

Interleaved with the development of digital interactive fiction were the “Choose
Your Own Adventure” and “game book” collections of print media devised as youth
entertainment, which present passages of text ending in choices, each of which corre-
sponds to a page in the book that the reader should turn to to continue the story. [HWF10]
These stories with enumerated choices at each branching point bear a strong structural
similarity to the digital form of hypertext, now widely known as the format of the World
Wide Web: text is organized into passages, each of which can contain links to other pas-
sages. A resurgence of interest in hypertext narratives came with the introduction of
Twine [KA08], an accessible tool for creation in this form. Even these more finitary no-
tions of participatory storytelling can be thought of as potential narratives: each path
through the story graph corresponds to one story.

Even as text-based digital games have fallen out of mainstream fashion in favor of
the dazzling possibilities afforded by modern graphics cards, storytelling still drives
the imagination behind widely-acclaimed commercial games, for everything from the
grand-scale adventure of Skyrim [Stu11] to the more personal world of Gone Home
[Gay13]. The idea of inhabiting a fictional persona to explore and change a rich, re-
active environment has seemingly never fallen out of favor, and the new experiences
enabled by digital games seem to have the potential for lasting impact on human cul-
ture as much as literary and cinematic fiction is now accepted to have. By tapping into
both historical precedent and computational possibilities, understanding these timeless
forms of art can bridge the humanities and sciences, fostering new means of expanding
human knowledge.

The relevance of interactive fiction to the broader domain of games and interactive
simulations that I investigate in this dissertation is less about the fact that they tell sto-
ries with words and more about the fact that they free the game designer from certain con-
straints that are present when thinking in terms of graphical motion rendering. Emily
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Short and Richard Evans, the authors of the interactive storytelling authoring system
Versu, write about a similar concern in terms of the composability of text versus other
generative systems, and while we are more concerned with internal representation than
rendering, their explanation illustrates the relative cognitive concerns involved. [ES]

The main abstraction that our work borrows from interactive fiction and storytelling
is that of describing a possible event space in which an actor may intervene. As a domain
of computer science, interactive fiction contains interesting problems in the systems that
underlie it, and the questions of how to make those systems more expressive.

1.2 Generative Systems

One of the central problems in expressive interactive narrative design also concerns
many other artistic and scientific disciplines. The problem is one of human-created
versus computer-created content. For any piece of media that changes in response to
interactor input, the changes need to be generated on-demand. This means that any
sequence of interactions needs to create a representable state. In the case of branching
stories, any sequence of choices should result in a meaningful narrative situation. One
possibility, and the one chosen for Choose Your Own Adventure books and hypertext,
is for an author to create the amount of content necessary for every possible run in
the world simulation. But when a world is composed of many components, such as
a player inventory, the problem becomes intractable: every new variable doubles the
number of possible states. Instead, computational methods can be used to create new
scenes on-the-fly without having been seeded with them by the author. For instance,
a data structure to track the player inventory across different rooms can be seen as a
tool for generating a large number of story states. We refer to the techniques involved
in systematically composing a small number of hand-generated pieces to derive a large
state space as generative methods, though it is sometimes referred to as procedural content
generation [COM13]. We review a few examples of games using generative methods that
we take as inspiration for the kind of system we are interested in finding abstractions to
describe.

One domain for such methods is the simulation of non-player characters (NPCs). A
game can track a detailed model of character interiority [Pot05] including mood, knowl-
edge, sentiment, and goals. Galatea, an interactive fiction game by Emily Short [Sho00],
uses a complex dialogue model to create a “living statue” character that reacts differ-
ently to player commands depending on her mood, sympathy, tension, and conversa-
tion history and topics (see Figure 1.2). The system generates a wide space of possible
stories due to variations with respect to these factors. Short implemented Galatea using
a quip-and-response dialogue model reminiscent of a state machine. 1

Another problem domain is the simulation of multiple characters or agents. Will
Wright is an acclaimed game designer known for systems that generate worlds. He
is the primary designer behind the Sims series, including SimCity [Wri96] and The

1See https://emshort.wordpress.com/how-to-play/writing-if/my-articles/conversation/

for Short’s own explanation.
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Figure 1.2: Sample interaction with Galatea with state display tool enabled.

Sims [Wri00]. None of the systems in these games are explicitly stated as potential nar-
ratives, but they nonetheless allow human collaboration to tell stories. The connection
with The Sims is perhaps most clear: the game provides a “digital dollhouse” with
which to perform stories at the player’s whim, without imposing external narrative
goals. Sim City works similarly, but with a focus on city configuration and aggregate
population data rather than the personal relationships and goals of the Sims. Spore
[Art08] was a virtuosic attempt to include simulations at multiple levels within an over-
arching meta-system. All of these systems compose experiences out of myriad chang-
ing state components, requiring very little hand-authored content. The idea that a story
can nonetheless be derived from such a system is sometimes called emergent narrative
[Ayl99]. The implementation challenges of such a system, as far as we are aware, mainly
lie in managing a very large evolving state (i.e. the status elements of every individual
Sim).

More recent investigations into the space of generative narrative experiences include
the high school social simulation game, Prom Week, which uses sophisticated social
models to determine how characters react to actions such as bullying or confiding based
on their own sentiments toward and memories of the acting character (see Figure 1.3).
Prom Week grew out of a tradition in interactive drama that includes the landmark
production of Façade [MS03], i.e. “believable drama.” Their aim was to create a system
that would generate a story using social physics, or rules for character interaction, rather
than presenting hand-authored scenes. The primary technology driving Prom Week is
actually a language, Comme il Faut (CiF) [MTS+10], in which the social physics engine
is implemented. Inference based on character interiority is used to generate possible
intents, which combine with player selection to determine actions.

We present these examples as a (partial) survey of state-of-the-art techniques in
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Figure 1.3: Screenshot of Prom Week demonstrating character interaction options.

playable narrative based on generative methods. Having established this context, we
can now describe the goals, methods, and contributions of the dissertation.

1.3 Thesis Goals

Our overarching goal, extending beyond the scope of this thesis but informing its ap-
proach, is to develop computational tools and conceptual frameworks that support cre-
ating novel, experimental games and narrative systems. We frame the problem as one
of programming language design in the sense that this perspective entails creating new
abstractions with platform-independent, mathematical semantics. We also aim to bring
high-level design language in closer alignment with programming constructs, i.e. make
it so that the means of expressing ideas as executable artifacts closely mirrors game
designers’ conceptual framing.

The narrower goal for this thesis is to fully develop a correspondence between a
theory of formal logic proofs and ideas in narrative and game design, and to realize
its consequences in the form of a modeling tool. We have noticed a strong match be-
tween recently-emerging programming methodologies—specifically forward-chaining,
substructural logic programming—and the idioms needed to express game worlds and
mechanics, especially interactive fiction, and by exploring this connection we aim to
advance ideas in both fields: new programming languages for game design can expand
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designer creativity potential, and new application domains for programming languages
can expand the range of computing phenomena accounted for by mathematical under-
standing.

Our target audience for this work is mainly research communities within game
design and logic, although we aspire to create an appeal to (non-academic) systems-
oriented narrative and game designers, and programmers with an amateur interest in
game design. Ideally, this work will serve to bridge communities interested in program-
ming language theory and game design and reveal many of the overlapping concerns:
for instance, both programming language design and game design consitute the cre-
ation of interfaces with a human user.

As artifacts whose goals are often dependent on human cognition such as expressive-
ness, productivity, flow, and emotional impact, both games and programming languages
are difficult to evaluate in quantitative measures, at least with purely computer science-
based techniques. If we intend to deepen a holistic understanding of activities like play
and programming, clearly some humanistic and psychological understanding will be
needed. Nonetheless, there are still questions that may be answered about the com-
puter’s half of the bargain, and indeed that can be answered with precise mathemat-
ics. It is those questions that we hope to bring into greater clarity for games through
methodologies commonly practiced in programming language theory.

In programming languages, the search for objective evaluation criteria has turned
mainly to mathematical proof: we create a formal model of a new programming lan-
guage design, then prove its soundness with respect to the appropriate formal notions.
For instance, a common theorem proved for a new language is type safety, which says
that certain rules circumscribing the set of admissible programs in the language ensure
that no program in that set will crash nor reach a stuck point in its evaluation. One can
imagine by analogy that the rules circumscribing a game might also ensure some formal
properties: for instance, in a multiplayer board game, we might want to ensure that
play is productive in the sense that as long as the game is not in an end state, some player
can always make a move that changes the game. The notion corresponding to a program
in this setting is a playthrough of the game.

But before these proofs can be formalized, and thus before we can truly subject
games to mathematical evaluation, we need a language for codifying playful rule sys-
tems themselves. This thesis describes a candidate for such a language, which is based
on a logical system called linear logic. We demonstrate how narrative structure can be
described abstractly in linear logic, then go on to see how we can realize linear logic as
a suitable programming language.

Part of this thesis is a new programming language designed specifically for the sup-
port of narrative and game design, and its own design has the following goals:

1. Has a mathematical foundation for the sake of clear, portable, and extensible se-
mantics

2. Is general enough to describe a wide range of operational logics in games

3. Can describe important aspect of narrative structure, supporting causal reasoning
and dependency analysis between narrative events
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4. Has the potential for accessible front-end tools to be built atop it.
Our evaluation methods are twofold: first, by a selection of case studies using the

language, and second, by mathematical proofs about the language.
For the first criterion, we develop case studies that we believe to be representative

of the generative storytelling ideas surveyed in this introduction. The code for each
of these studies, as well as our reports on the iterative development process, serve as
the non-quantitative results of the thesis, available for subjective evaluation to anyone
who might consider using the language. Our own subjective judgment on the success
of these case studies is presented at the end of Chapter 5.

For the second, we illustrate the use of a mathematical reasoning framework for
stating and proving theorems about games encoded in our system. We prove that, in
general, questions of whether certain properties hold of games are decidable. Thus, au-
tomated checking of designer-stated properties of games may potentially be integrated
into the game prototyping and development process.

1.4 Approach

Now that we have stated our goals for the thesis, we may be more specific about the
computer science tools that we use to achieve them.

1.4.1 Preliminary Definitions

While play and stories as aspects of human culture elude fully-characterizing defini-
tions, we nonetheless need to define the scope of this thesis. Below we provide some
working definitions.

We define a world as a state space together with mechanics. A state space is a set of
parameters that can take on values that evolve over time. For example, the state space
of Chess includes the board, pieces, the locations and captured status of the pieces, and
which player’s turn is in effect. A state is an element of the state space, e.g. a particular
configuration of pieces on a Chess board. Mechanics are rules for how states can change.

Worlds may also specify one or several permissible initial states, in which case they
can be run, or evolved step by step according to its mechanics.

An interactive world is a world whose mechanics allow human participation or inter-
vention while the game is running. We can supplement this definition with informal,
subjective notions to say when an interactive world is a game or a potential narrative; that
is, an interactive world is a game when the interactor feels that they are playing it, and an
interactive world contains narrative (or is a story world) when its runs can be understood
by a human as stories.

The one aspect of these definitions that has not been completely detailed is what is
meant by rules for state change. By a rule, we mean something approximately of the
form “If X then Y ,” often codified as logical implication X ⊃Y (“X implies Y ”). But
standard logical implication does not adequately capture the idea of transforming state,
as we explain next, leading us to an alternative formalism.
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1.4.2 Linear Logic

Game rules refer not to a monotonically increasing body of knowledge but to a hetero-
geneously evolving state. They tell us what is permissible, but also what changes when
an action is carried out. The fact that a player’s rook is in a given Chess board cell may
hold at one point in the game, but after an action is taken, its position may change. So it
is not a “fact” in the same way that 1 + 1 = 2 is a fact; whether it holds depends on time
or some abstraction of it.

Logics of action and time have been studied well beyond the specific domain of
games, and include temporal logic [Lam94], situation calculus [MH69], and event cal-
culus [KS89]. All of these calculi stratify logical propositions by explicit timesteps, and
action specifications increment the timestep. However, in order to model a world with
a complex state space containing many components, each of these logics needs a notion
of inertia or frame rule that says “whenever an action changes the state of some compo-
nents, the rest of the state stays the same.” These rules need to be axiomatized, leading
to unwieldy proofs. Additionally, most applications and extensions of these logics have
been concerned with adapting them to model the real world (e.g. for robotics applica-
tions) such that they do not easily suit the world of narrative fictions [RY10].

Jean-Yves Girard’s linear logic [Gir87] is a logic that captures essential notions of state
change without explicit reference to time. The observation behind linear logic is that
standard logics’ monotonicity could be accounted for by the so-called structural rules,
or rules defining how assumed or known facts could be used in a proof—specifically,
assumptions may be freely duplicated and ignored. If one explicitly marks the duplica-
tion and ignoring of assumptions, rather than building them into the logic, then what
emerges is a notion of logical consequence embodying state transition, or evolving sys-
tems at a component-wise level, rather than permanent knowledge. Furthermore, linear
logical deductions are structured in such a way as to track resource dependency between
different state transitions, making them subject to analysis in terms of causality.

Thus, linear logic’s nature as a proof-theoretically-justified “logic of changes” makes
it suitable for our purposes to desribe narrative actions and game rules in this thesis.
We detail its definition and use for narrative spefications in Chapter 2.

1.4.3 Logic Programming

Logic programming is the main technique we will use to link the logical with the com-
putational. Traditionally, logic programming is realized by languages such as Prolog,2

wherein programs are collections of clauses (logical implications) together with a query,
or directive for proof search. A proof search engine then executes the program by at-
tempting to assemble a proof of the query from the program clauses. For example,
a program defining addition as a logical predicate plus(X,Y,Z) that holds whenever
X+Y=Z may be given the query plus(X,Y,10), which would compute all pairs of num-
bers that sum to 10. In general, there may be many proofs or no proofs. Generally one

2See http://www.swi-prolog.org/ for one implementation.
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is interested primarily in whether or not there is a proof, and if so, which terms satisfy
it. In this domain, the engine searches for a proof with backward chaining, or reasoning
backwards from a goal to the assumptions available.

However, in our case, the proof itself is a relevant artifact of study—it embodies the
causal dependencies between events in the interactive world, which we illustrate in
Chapter 3. In the case of simulation and generation of narratives, as well as open world
games, we are often not especially interested in a particular goal (i.e. outcome of the
simulation) so much as the process and intermediate states, which are recorded by the
proof itself. In particular, we construct proofs with forward chaining, or reasoning for-
ward from a set of assumptions (representing an initial world configuration), to model
evolution of the interactive world “forward in time.”

Because of our shift in focus from goal-based inference to forward simulation, we
distinguish proof search—a process that may backtrack, and typically performs an ex-
haustive search of the provability space—from proof construction, or the use of logically
valid deductions to navigate a space while not necessarily arriving at a particular goal.
Put another way, proof construction may sacrifice completeness of provability, but not
soundness.

In addition to its primary function in our domain as a representation system for
rewriting rules over partial states, logic programming offers support for a variety of
powerful computational idioms, such as user-defined datatypes, relation-based defini-
tions, and pattern matching on narrative states. Many of these idioms are also found in
approaches developed by the Artificial Intelligence (AI) community, such as planning
and generative grammars. Many researchers in games have applied similar techniques
and referred to them as “AI techniques” [TZE+15] rather than “programming language
features”—by presenting these ideas from a programming language point of view, we
hope to bring some unification to ideas across these fields.

1.4.4 Logical Frameworks

A final source of techniques that we use as a starting point for our work is logical frame-
works as described by Harper et al. [HHP93]. The aim of logical frameworks is to pro-
vide a basis for formal codification of deductive systems in such a way that theorems
can be stated and proved by a human, and checked by computer, within that system.
The logical framework LF was realized as the proof assistant Twelf [PS98] for this activ-
ity. Twelf’s underlying machinery is largely based on logic programming, although the
“logic programs” written within it are typically analyzed, not executed. Logical frame-
works research has experimented with extending the underlying logic of Twelf to linear
logic, and the community has since been searching for suitable notions of specification
such that similar meta-theoretic capabilities to Twelf are possible. We rely heavily on
progress in this area, and contribute to that progress, for our concerns around proving
properties of games in Chapter 6.
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1.5 Contributions

This dissertation describes the use of linear logic to specify potential narratives and
game mechanics. Our primary contribution is a full explication of a deep correspon-
dence between proof and play, or alternatively proof and narrative, in a way that gives a
formal justification for unifying play and narrative both conceptually and for the sake
of computational tools that can aid their development.

The formal model is implemented as two different logic programming languages,
one existing prior to this thesis work (Celf) and one implemented for the purposes of
deeper investigation into this work (Ceptre). Essentially, these investigations serve the
purpose of pushing the envelope of the formalism as far as it can go to find the limits
of its suitability for, and correspondence with, games and potential narrative specifica-
tions.

Our specific claim follows in the form of a thesis statement.

Thesis statement: Using linear logic to model interactive worlds enables rapid
prototyping of experimental game designs and deeper understanding of narrative
structure.

As evidence for this claim, we provide a written explanation of the correspondence
between linear logic proofs and stories, then illustrate the use of that correspondence
for narrative generation (in Celf) and game prototyping (in Ceptre). These results extend
the limits of present knowledge in how formal logic can be used to support generative
methods and interactive world authoring, and they also provide supporting case stud-
ies for a particular methodology in programing language design. We detail how each
part of the dissertation aligns with the thesis statement below.

Chapter 2 describes the correspondence between linear logic proofs and causally-
structured story, building largely on work by Bosser et al. [BCC10]. This chapter mainly
serves to establish the conceptual framework in which we understand narrative and
simulation events, separate from the notions of generation and interaction.

Chapter 3 shows how to operationalize the interpretation of narratives in linear logic
as programs, via a standard and general extrapolation of logical definition into proof
construction procedure, known as logic programming. In this chapter we illustrate how
to use the programming language Celf to generate narratives through a narrative world
specification given in terms of linear logic. This chapter supports the deeper understand-
ing of narrative structure part of the thesis statement.

Chapter 4 describes the development of a new programming language, Ceptre, suit-
able for programming not just generative but also interactive worlds. We introduce a new
programming construct called stages that serve to partition a world specification into
parts, then coordinate the control flow between those parts, resulting in a practical tool
for prototyping game mechanics and simulations.

Chapter 5 presents several case studies of Ceptre’s use for developing interesting
examples in the union of narrative and play design. We posit this chapter as the primary
support for the rapid prototyping part of the thesis statement.
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In Chapter 6, we describe progress toward reasoning tools for linear logic programs
that allow authors to specify and check constraints on the evolving state. Such tools,
once fully automated, would allow world authors to specify their intent and ensure
that program rules preserve that intent. This chapter serves as secondary support for
the rapid prototyping part of the thesis statement, since program errors can often cause
slow progress toward building a working prototype.

Finally, in Chapter 7, we conclude by recapitulating the thesis statement, summa-
rizing how the work above has fulfilled its promises, and suggesting avenues of future
work.
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Chapter 2

Linear Logic for Narrative Structure

2.1 Introduction

What makes up a story? In computer science research, this question has been invoked re-
peatedly by artificial intelligence and computational linguistics researchers. The moti-
vation for answering it includes several potential applications: autonomous agents that
can collaborate on building stories with people (interactive storytelling) [CCM02, MS99];
computational understanding of narrative structure from natural language text (narra-
tive extraction) [CJ08]; and the automatic generation of stories, a kind of investigation on
the boundaries of computational creativity (narrative generation) [Mee76].

Besides these computational applications, understanding narratives can lend insight
into human learning and cognition: narratives are an important way that humans make
sense of the world around us [Her03, Bru90]. Narrative researchers have achieved
consensus that causality is an important aspect of stories for narrative models to cap-
ture [TS85, Ada89, MW00, Dah12], even if it only barely scratches the surface of inter-
esting facets of narrative [RFW09]. To understand causality in stories, we first need to be
able to break them apart into events between which causal relationship may be found.

As described in Chapter 1, we are interested not only in the structure of existing
stories but in systems that allow or describe collaborative construction of story. Under-
standing a story as made of separable pieces is a good first step for this purpose, too,
since narrative play involves at least one human mediating between story components.

In this chapter, we aim to give a foundational account of narrative systems. We
are interested in representations of narrative that can be interpreted by a computer for
the sake of analysis, generation, and interaction, while also using high-level language
constructs that are not bound by particular machine models.

We present intuitionistic linear logic (ILL) as a formalism to serve as the founda-
tion for modeling narratives and their structure. Linear logic, first devised by Gi-
rard [Gir87], was originally suggested as a suitable representation for narratives by
Bosser et al. [BCC10], whose work we largely recapitulate here.
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Figure 2.1: Fabula versus Sujet in Memento

Diagram created by Steve Aprahamian, from https://en.wikipedia.org/wiki/File:Memento_

Timeline.png, used on the conditions of the Creative Commons license described therein.

2.2 Modeling Narratives

We aim to give a composable formalism for narrative, so we must make clear what
aspects of narrative we aim to make formal. In particular, we make the distinction
between fabula and sujet made by Russian formalists in the 1920s [Bro74]: the fabula
is the plot events, the “what happens” part of a story, whereas the sujet is the telling or
orchestration of story elements into a (usually linear) digestible tale. In this work we aim
only to formalize the fabula, while recognizing that there are many interesting research
questions in the formalization of sujet and relating fabula to sujet (see, for example, the
conflicting structure between the two in the film Memento) [Nol00] (see Figure 2.1).

The formal modeling of fabula has a long history in AI research, but until recently
has depended on ad-hoc, genre-specific ontologies such as Propp’s “morphology of a
folktale” [Pro10]. Instead, we would like the particular genre or conflict structure to be
reflected in the formalism, but not constrained by it. The core structure we would like to
constrain with the formalism instead includes things like causality, action, and change.
These properties are essential to enforcing coherence of a narrative [You99].

Folktales as a domain contain many interesting examples for the study of fabula,
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since their tellings vary with every storyteller, but their component events remain rel-
atively consistent. Let us consider as an example the folktale The Three Little Pigs. This
folktale consists of the following narrative events:

1. The mother pig sends her three baby pigs away from home, warning them about
a big bad wolf.

2. The first pig builds a house out of straw.

3. The second pig builds a house out of sticks.

4. The third pig builds a house out of bricks.

5. The big bad wolf visits the straw house and blows the house down.

6. The big bad wolf visits the stick house and blows the house down.

7. The big bad wolf visits the brick house and attempts to blow it down, but cannot.

Even within formalization of fabula, there are many conflicting ideas about what
parts of this story to include in narrative state and how to model relationships between
these narrative elements. Some candidates for narrative components include:

• Characters in the story: the three little pigs, their mother, and the big bad wolf.
• Resources or props in the story that are needed to drive the story forward, such

as the straw, sticks, and bricks that the pigs use to build their houses, and subse-
quently the houses themselves.

• Relationships between any of the above entities: feelings of family and allyship
between the pigs; feelings of enmity between the pigs and the wolf; locations and
possessions of characters.

• Scenes, or story events, which require availability of the above story elements and
may change them. The first pig builds a house out of straw might be understood as
changing the state of the pig, the straw, and the house.

• Establishment of initial configurations for characters, resources, and relationships.
The first line of the story establishes the three little pigs, their mother, and the wolf
as characters in the story.

• Endings, or narrative goals established by the author. “Happily ever after” is a
common goal ending for fairy tales; in variants of The Three Little Pigs, the defeat
of the wolf is an important constant.

Finally, we may also need to represent relationships between scenes. These relation-
ships may not be represented explicitly by an author, but they are important for compu-
tational applications of story. For instance, in the context of interactive stories, we may
need to include or derive links between story scenes to represent alternatives. In the
context of story analysis, we may care about the ability to determine causal relationships
between scenes, as mentioned in the introduction.
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2.2.1 Linear Logic by Example

Modeling a story in logic means mapping the above concepts to the constructs of logic,
which is to say propositions and the notion of derivability between propositions. Propo-
sitions can either be atomic or compound. An atomic proposition is something like “The
straw house is standing,” which we might abbreviate with the notation straw house.
Compound propositions are how we combine atomic propositions into more complex
statements, analogous to English usage of and, or, and implies to combine statements.
The logical analog of these conjoning words are the connectives.

The following linear logic proposition could model the story event of the wolf blow-
ing down the straw house:

wolf ⊗ straw house( wolf

The atomic propositions shown here are wolf and straw house. The connectives are
( (“lolli,” linear logic implication) and ⊗ (“tensor,” linear logic conjunction). ⊗ binds
more tightly than (, so the rule can be read as, “If the wolf is present and the straw
house is standing, then transition to a state where (only) the wolf is present.”

Note that this reading avoids the word implies or an if-then reading, although we as-
serted that( is linear logic’s form of implication. In linear logic, derivability is defined
in such a way that it represents state change more than inference about permanent truth.
This mechanism lets us treat propositions as resources, or in this case, slices of narra-
tive state, and implication (embodied by derivability) can be read as replacement of one
piece of state with another.

Logical connectives need not always form compound propositions: for instance, the
“connective” 1 represents the empty or null resource, and we can use it to model the
removal, rather than replacement, of a piece of state. For instance, the following propo-
sition models removing the wolf from the story:

wolf ( 1

On the other hand, this proposition models introducing the wolf into the story from
out of thin air:

1( wolf

Another connective in linear logic, & (“with”), allows us to represent choices be-
tween alternatives. The following proposition models a transition from the pig state
(representing a pig with no house) to either a straw, stick, or brick house:

pig( straw house & stick house & brick house

Note that we could equally well represent this choice-yielding event as instead a
choice between events:

(pig( straw house) & (pig( stick house) & (pig( brick house)
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So far, all of these propositions are just syntax; we have not attempted to explain
what they mean in terms of logical derivability, except at an intuitive level. But one
of the more important omissions we have made is the status of these propositions that
represent story events: how do we intend to compose them?

Linear logical implications do not really accurately model concrete story events: they
instead describe a possible event that could occur given the fulfillment of the antecedent.
We are instead describing a story world, a set of possibilities that we intend to give rise
to a story or set of stories through logical deduction.

In this sense, we can imagine composing implications E1 . . . En representing story
events as the compound proposition

E1 ⊗ . . .⊗ En

meaning that all events are simultaneously available for use. However, if we have
two events A ( B and A ( C, and A is some narrative state that we only expect to
happen once, then one of the events will go unused, which is disallowed in linear logic.

Sometimes we want to enforce the usage of a given event because we are interested
in narrative drive: the idea that an author needs certain scenes to occur to fulfill certain
dramatic intent. In this case, the tensoring-together of narrative events should suffice,
and any conflicting scenes would need to be carefully crafted as alternatives (e.g. A(
B & C).

On the other hand, sometimes we are interested in modeling a more exploratory
possibility space where some events may not take place at all, and others may take place
multiple times. The unary connective ! gives us exactly this meaning: !A is a proposition
A that may be ignored or repeated. Thus, we can represent the more exploratory story
world as follows:

!E1 ⊗ . . .⊗!En

We hereafter refer to a proposition of the form !(A ( B) as a rule. Since we may
refer to rules multiple times in a story, we will often name them using the syntax r : R,
where r is a name and R is a rule.

In the next section, we seek to clarify the meaning of these propositions and simplify
our representations by explaining them in terms of a few carefully-considered, meta-
logical principles.

2.3 Linear Logic

Any representation of fabula needs to include models of action and change, phenomena
for which many formalisms have been investigated over several decades [MH69, KS89,
Lam94]. The cited works effectively solve the variability problem by indexing every
proposition with a time parameter and modeling actions as incrementing that parame-
ter. As a consequence, they all need to explicitly manage inertia, or the fact that when a
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rule describes changes of one part of the world state from time t to t+ 1, the remaining
parts of the world state are updated in t+ 1 to retain their state at time t.

Linear logic is an approach to the logical modeling of action and change that does
not depend on explicit time indexing. This approach has the advantage that it is possible
to conceive of distinct parts of the state changing independently of one another.

We note that, unlike Girard’s original formulation of logic, our chosen formulation
is intuitionistic in that we only consider sequents ∆ ` A where A is a single proposition,
rather than a disjunction of multiple propositions. The intuitionistic version of linear
logic (ILL) was first presented by Girard and Lafont [GL87]. We select it mainly for
its computational interpretations as described by Andreoli [And92], although we note
that this choice may not be canonical, and classical linear logic bears investigating as an
alternative in future work.

Intuitionistic linear logic was later reformulated [CCP03] according to the method-
ology of logic design espoused by Gentzen and Martin-Löf [Gen35, ML96] in which in-
ference rules operate over judgments, or meta-logical syntax pertaining to propositions,
and inference rules also obey certain meta-theoretic properties that make soundness of
the logic easy to establish, and proof search within the logic easy to automate. This
methodology, which includes giving a sequent calculus formulation of the logic, is de-
scribed below.

First, we assert that to be a logic means to have a notion of consequence:

A1, . . . , An ` A

The above syntax can be read, “A is a consequence of A1, . . . , An,” where A and all
Ai are propositions (defined by the particular logic). Such a statement is called a sequent,
and an arbitrary collection of assumptions A1, . . . , An is often notated as ∆ and called
the context.

A logic may have inference rules of the form

J1 . . . Jn
J

where each J and Ji is a sequent, the J at the root of the rule is the conclusion sequent,
and each Ji is a premise that must be satisfied in order for the inference to be valid.

A proof of sequent J is a composition of inference rules forming a tree whose leaves
are rules with no premises and whose root is J .

Finally, to count as a logic, the notion of consequence must be transitive; that is, if it
is possible to build proofs of ∆ ` A and ∆′, A ` C, then we can also build a proof of
∆′,∆ ` C.

This property, having a transitive notion of consequence, is also known as Admis-
sibility of Cut [Gen35]. It is a meta-property of a system of inference rules and part of
what gives it meaning. There are other such properties, called structural properties, that
have often been previously considered part of what it means to be a logic:1

1In the literature, the terminology “consequence relation” has sometimes implied these properties.
We depart from this tradition by using “consequence” without including weakening and contraction by
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Weakening. If ∆ ` C then ∆, A ` C: in other words, adding unneeded assumptions
does not affect derivability.

Contraction. If ∆, A,A ` C then ∆, A ` C: in other words, having two copies of a
proposition available is not any better than a single copy.

These properties encapsulate the idea that in a proof from assumptions, each as-
sumption may be used arbitrarily many times to reach the goal. Linear logic, however,
denies these properties, leading to a “use exactly once” treatment of assumptions in a
proof. Put another way, if ordinary logic treats the context ∆ as a set of assumptions, in
linear logic ∆ can be thought of as a multiset [Gir95] i.e. the multiplicity of assumptions
matters.

Thus linear logic’s notion of consequence ∆ ` A embodies a sort of conservation
property, and can be read “Resources ∆ may be transformed into A.” Connecting this
notion back to narrative, we can think of ∆ as an initial narrative situation and A as a
narrative ending.

To include the ! connective in linear logic, we need to reintroduce a context that is
subject to weakening and contraction. If we change our basic judgment (sequent form)
to

Γ; ∆ ` A

where assumptions in Γ may be weakened and contracted, then we have the machin-
ery we need to define !, effectively reintroducing ordinary, persistent notions of logical
fact into the by-default resource-oriented logic. In this sense, intuitionistic linear logic
can be thought of as a refinement on ordinary intuitionistic logic.

In this more foundational account of the logic, we can rewrite our story world rep-
resentation from Section 2.2.1 as simply a specification for the context Γ: instead of
imagining

!E1 ⊗ . . .⊗!En

as an assumed proposition in ∆, we can instead stipulate that

Γ = E1, . . . , En

We can now describe the mapping between story world and logical sequent that we
will use as our primary model of representation going forward. The sequent Γ; ∆ ` A
represents a story world with rules (and persistent facts) in Γ, initial narrative configu-
ration described by ∆, and narrative goal (or story ending) A.

Now that we have sketched the judgmental framework in which we intend to model
story worlds, we can finally give the formal definition of linear logic as a sequent calcu-
lus.

default.
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2.3.1 Intuitionistic Linear Logic: Sequent Calculus

In a sequent calculus, every connective is defined by two rules: instructions for how to
prove it when it appears on the right-hand side of the turnstile (`) in a sequent, and in-
structions for how to use it when it appears on the left-hand side of the turnstile. These
instructions come in the form of left and right inference rules. We now present the infer-
ence rules of linear logic that define the connectives we need for narrative modeling.

The ⊗ connective models simultaneous conjunction between two resources:

Γ; ∆1 ` A Γ; ∆2 ` B
Γ; ∆1,∆2 ` A⊗B

⊗R
Γ; ∆, A,B ` γ

Γ; ∆, A⊗B ` γ ⊗L

From a proof search perspective, we read these inference rules from the bottom up.
So the right rule says that a proof of A ⊗ B can be formed from a context that can be
partitioned into pieces ∆1 and ∆2, which can prove A and B respectively. The left rule
says that an assumption of A ⊗ B can be interpreted as two separate assumptions, A
and B.

Note that the persistent context Γ is simply repeated in every sequent in this rule
(i.e. from a proof search perspective, it is passed unchanged to both subgoal sequents).
The Γ context will be “carried through” in this manner for all inference rules that do not
refer to it; that is, all rules except those defining !.

The rules for the tensorial unit, 1, are as follows:

Γ; · ` 1
1R

Γ; ∆ ` γ
Γ; ∆, 1 ` γ 1L

The null resource may be proven only when the linear context ∆ is empty, and it may
be used by simply removing it from the context.

The rules for implication (() follow a similar pattern to those for⊗, except inverted
with respect the the left and right rule:

Γ; ∆, A ` B
Γ; ∆ ` A( B

( R
Γ; ∆1 ` A Γ; ∆2, B ` γ

Γ; ∆1,∆2, A( B ` γ ( L

The right rule for ( says that to prove A ( B, add A to our set of assumptions and
work on proving B. The left rule requires again that we partition the context into the
part that proves the antecedent A, and another part that, when given the consequent B,
continues to prove the original goal.

The inference rules for & are given below – but note that we do not use this connec-
tive in the remaining chapters of the thesis, so understanding it is optional.

Γ; ∆ ` A Γ; ∆ ` B
Γ; ∆ ` A&B

&R
Γ; ∆, A ` γ

Γ; ∆, A&B ` γ &L1
Γ; ∆, B ` γ

Γ; ∆, A&B ` γ &L2

The right rule says that to prove A&B, we need to be able to prove A and B from
the same context ∆. The left rule says that if we have a choice A&B, we can make either
selection to continue the proof.
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The rules for ! are the ones that interact with the persistent context Γ:

Γ; · ` A
Γ; · `!A

!R
Γ, A; ∆ ` γ
Γ; ∆, !A ` γ !L

The !R rule says that a resource A can be thought of as a fact !A so long as it is
proven only with factual propositions (the ones in Γ). Thus the rule enforces that the
linear context ∆ must be empty.

The left rule allows us to move a !A from the linear context into the persistent context
as just A.

Finally, there are two structural rules that interact with the contexts ∆ and Γ. One of
these is the copy rule:

Γ, A; ∆, A ` γ
Γ, A; ∆ ` γ

copy

This rule allows us to copy any persistent assumption A into ∆ (without also remov-
ing it from Γ, meaning we may do this as many times as needed).

Finally, we need a structural rule for proving (and equivalently using) atomic propo-
sitions:

Γ; p ` p init

This rule allows us to finish a branch of proof search by observing that the context
and goal match up exactly (modulo persistent assumptions Γ).

We could imagine a more general init rule

Γ;A ` A init′

where A can be any proposition, not just atomic p, but it turns out that this rule
is admissible in a well-designed logic, i.e. the rules already allow it for any given A.
Furthermore, testing for its admissibility is a way to determine that the logic is well-
designed; it is considered an internal completeness property.

2.3.2 Some Derivation Examples

We can see each of the connectives (, ⊗, &, and ! as internalizing some property of
the judgmental framework: ( internalizes consequence, ⊗ internalizes the comma for
conjoining contexts, & internalizes a choice between two alternatives, and ! internalizes
persistence.

In future chapters of this thesis, we will use all of these connectives frequently except
for &; in fact, refinements on this formalism will not include &. We omit & because in
settings where all implications are rules (live in the persistent context), occurrences of
& to the right of a rule can be accounted for by adding multiple rules. In other words,
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a rule of the form A ( B & C can be replaced by two rules, A ( B and A ( C, in a
sound and complete way. 2

We now prove this fact—that & is an unneeded connective in the context of persis-
tent rules—which will also serve as an example of how to put the inference rules above
together into proofs.

Claim:

!(A( B & C)

is interderivable with

!(A( B)⊗!(A( C)

That is, we need to show that

!(A( B & C) `!(A( B)⊗!(A( C)

is derivable, as is its converse

!(A( B)⊗!(A( C) `!(A( B&C)

Recall that a proof is a composition of inference rules forming a tree whose leaves are
rules with no subgoals and whose root is the sequent being proved. We form a proof
by applying inference rules to the current goal sequent, resulting in a new set of goal
sequents (the premises to the rule), until there are no more premises.

The first derivation works as follows:
Let Γ = A( B & C.

Γ;A ` A
Γ;B ` B

Γ;B&C ` B &L1

Γ;A( B&C,A ` B ( L

Γ;A ` B
copy

Γ; · ` A( B
( R

Γ; · `!(A( B)
!R

Γ;A ` A
Γ;C ` C

Γ;B&C ` C &L2

Γ;A( B&C,A ` C ( L

Γ;A ` C
copy

Γ; · ` A( C
( R

Γ; · `!(A( C)
!R

A( B & C; · `!(A( B)⊗!(A( C)
⊗R

·; !(A( B & C) `!(A( B)⊗!(A( C)
!L

The leaves of this derivation are all of the form Γ;A ` A which we know to be
derivable for any proposition A by way of the identity admissibility theorem.

The second derivation works as follows:
Let Γ = A( B,A( C in the derivation below.

2Rules of the form A&B ( C, on the other hand, do not have a direct translation into the &-less
fragment. However, we have not encountered a need for such rules in any of the examples we investigate.
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Γ;A ` A Γ;B ` B
Γ;A( B,A ` B ( L

Γ;A ` B
copy

Γ;A ` A Γ;C ` C
Γ;A( C,A ` C ( L

Γ;A ` C
copy

Γ;A ` B & C
&R

Γ; · ` A( B & C
( R

A( B,A( C; · `!(A( B & C)
!R

·; !(A( B), !(A( C) `!(A( B & C)
!L2

·; !(A( B)⊗!(A( C) `!(A( B & C)
⊗L

2.4 Alternative and Simultaneous Story Structure

Linear logic provides the tools we need to specify story worlds in such a way that we
can define relationships of interest between story events, but there are still quite a few
choices about which components to model in the story world that give rise to different
event relationships. Let us now be more specific about what kinds of event relationships
we would like to aim to model, and explain how we can use linear logic to model them.

2.4.1 Alternative Storylines

One kind of narrative structure of interest to interactive storytelling is alternative story-
lines. This structure is present in any Choose Your Own Adventure or Twine game: a
reader is presented with multiple choices and, upon selecting one, is cut off from the
other choices until replay (or until that scene is presented again, in the case of cyclic
stories). These stories have a natural representation as a graph, with story scenes (or
passages in Twine parlance) modeled by graph vertices, and possible consequences y of
a scene vertex x modeled as directed edges from x to y. Sometimes this kind of nar-
rative structure is called branching, but by calling attention to alternatives rather than
branching, we aim to include story graphs that are not simply trees: paths that diverge
(branch) may converge in a later scene, and divergence is not given any priority over
convergence.

The graph structure just described is depicted in the Twine editor for the sake of
the author to visualize their story structure. To relate this idea to our example, we can
render the Three Little Pigs fabula as a Twine story in which the choices represent the
alternatives between building a house out of straw, sticks, or bricks:
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This depiction of the story structure can be seen as containing three alternative story-
lines, each corresponding to one “playthrough” of the game. Two of those playthroughs
end in the “bad” passage in which the wolf blows down the house, and the third ends
in the “good” passage in which the wolf cannot blow down the house. The story graph
is a more compact representation of these three stories that makes use of the shared
structure between the first and second story, as well as their shared beginning. It can be
understood as a potential narrative because each interaction with a player generates one
of the three stories.

Alternative structure in stories already yields many interesting authoring choices. In
an online article, Sam Kabo Ashwell reviews several patterns in the edges-as-alternatives
graph structure for interactive storytelling, such as those in Figure 2.2. 3

However, many rich interactive storytelling examples make use of complex state
tracking, such as inventories in parser interactive fiction. These graphs do not depict
how the story will vary depending on that state.

3The article is available at
https://heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-choice-based-games/.

26

https://heterogenoustasks.wordpress.com/2015/01/26/standard-patterns-in-choice-based-games/


Figure 2.2: Four structural patterns in branching narrative.
Diagrams created by Sam Kabo Ashwell, used with permission.
Color key: red nodes are endings representing failure; green nodes are endings repre-
senting success; blue nodes are the start of the story; orange nodes are choice points;
yellow nodes are waypoints (they only have a single out-edge).

The time cave, in which branches never converge and every path is distinct:

The branch-and-bottleneck, in which outward-branching alternatives occasionally
re-converge on common passages:

The gauntlet, in which one particular path serves as the backbone for the story, and all
other paths lead to dead ends:

The open map, in which symmetric connections are made between nodes, often used to
simulate reversible movement through physical space:
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2.4.2 Simultaneous Storylines

Alternative structures are one way to conceptualize a story in terms of constituent
pieces, but they are not the only way. Rather than imagining making choices from the
perspective of one of the three little pigs, we might like to model all of the characters’
actions and interactions together. We can map a narrative onto a graph in a different
way: edges are characters in certain states of the narrative, and nodes are scenes where
those characters interact.

In one strip of the online comic XKCD, Randall Munroe depicts several popular
movie plots in this style, such as this plot graph for The Lord of the Rings: 4

Along the vertical axis, characters are placed near one another to represent sharing
a scene or far apart to represent independent activity. The horizontal axis is the forward
progression of time. The ring, an imporant narrative resource, is drawn as an overlay
atop the character holding it.

This version of narrative structure lends itself to the analysis of a plot more readily
than alternative structure: we can see, for instance, that climactic moments correspond
to the convergence of a large number of characters, and we can trace the thread of a par-
ticular character or group of characters to examine their overall influence on the plot.
More relevantly to narrative play, we can envision the story in terms of autonomous,
interacting characters who might have independent motives, interiority, and relation-
ships.

To model the Three Little Pigs narrative in this way, we need to break down our
story into smaller component pieces: one for each pig and the wolf, and perhaps also
the building materials they use for their houses. If we are more precise than Munroe’s
drawing about what exactly a “scene” does, in terms of how it transforms these narra-
tive resources, then we can draw the story’s simultaneous structure as follows:

4Larger version can be found at https://xkcd.com/657/.
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This diagram represents something more static than the Twine game version: it does
not present clear affordances for interaction. However, it is also more systematic, in that
it forces us to imagine a world model in which the events in the story could logically
and physically take place. What we present in the next sections is a formal setting in
which both of these valuable aspects of structural expression are available.

2.4.3 Alternatives and Simultaneity in Linear Logic

Linear logic’s resource-oriented mechanisms enables connectives that neatly map onto
alternative (A&B) and simultaneity (A⊗B). Due to the “use once” principle of assump-
tions in linear logic, these manifest as two forms of logical conjunction (“and”). The first
one of these we will explain is A⊗B, which means that resources A and B are available
simultaneously.

The ⊗ and( connectives together give us the ability to write propositions such as
pig ⊗ bricks ( brick house, modeling a resource exchange that characterizes the “pig
builds a brick house” scene in The Three Little Pigs. Here, the ⊗ connective serves
to conjoin the two atomic pig and bricks propositions into a more complex proposition.
There is a unit of the ⊗ connective indicating the null resource, spelled 1.5

The other form of conjunction, A&B, means that a choice between A and B is avail-

5For 1 to be a unit of ⊗means that, for any A, A⊗ 1 is equivalent to (interprovable with) A and 1⊗A.
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able. This connective lets us model the first passage in our Twine game representation
of The Three Little Pigs as pig( brick house&straw house&stick house. 6

To model stories in linear logic, we map atomic propositions onto pieces of narrative
state. In the case of purely alternative story structures, a single piece of narrative state
representing each scene/passage will suffice. In the case of narratives with simulta-
neous structure, propositions will model potentially more complex narrative elements
and their relationships.

Here is a model of the additive story world for Three Little Pigs:
Let ∆ =

{pig( (straw house & stick house & brick house),

straw house( wolf wins,

stick house( wolf wins,

brick house( pig wins,

pig}

Stories will be proofs of the sequent

∆ ` wolf wins

or

∆ ` pig wins

Here is a model of the simultaneous story world, in which we make use of linear
logic’s notion of simultaneity (⊗) to introduce three copies of the pig narrative resource,
and we also represent finer-grained narrative resources such as the building materials
for the pigs’ houses:

Let ∆ =

{pig ⊗ straw( straw house,

pig ⊗ sticks( stick house,

pig ⊗ bricks( brick house,

wolf ⊗ straw house( wolf,

wolf ⊗ stick house( wolf,

wolf ⊗ brick house( brick house,

wolf, pig, pig, pig, straw, sticks, bricks}

Stories will be proofs of the sequent

6There is a unit of & as well, spelled >, which we do not include here because it is not needed for our
examples.
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∆ ` brick house

Note that in both of these models, scenes (represented as propositions of the form
A( B) appear on the same level as atomic narrative resources like pig. This means that
the logic will enforce a use exactly once semantics for those scenes, embodying a kind of
narrative drive (we are required to include those scenes to prove the sequent). If we want
to make a scene A optional, all we need to do is create a choice between that scene and
the null resource: A&1. Persistence (!A) can be used to model stories where scenes may
repeat an arbitrary number of times.

2.4.4 Proofs as Stories

Finally, we can present concretely the mapping of stories onto proofs. For the Twine-
based version of the story, where story events are related as alternatives, we can model
the story world with Γ =

r1 : pig( (straw house & stick house & brick house)

r2 : straw house( wolf wins

r3 : stick house( wolf wins

r4 : brick house( pig wins

The initial state ∆0 will be the single resource pig, corresponding to the initial Twine
passage.

Here is a derivation corresponding to the story of the pig that builds the straw house
in the additive story world:

pig ` pig

straw house ` straw house wolf wins ` wolf wins
straw house ` wolf wins

( L(r2)

straw house & stick house & brick house ` wolf wins
&L1

Γ; pig ` wolf wins
( L(r1)

The above derivation can also be thought of as a proof that the wolf can win (against
a pig who makes a straw or stick house). Below is a proof that the pig can win , repre-
senting the story in which the pig builds the brick house:

pig ` pig

brick house ` brick house pig wins ` pig wins
brick house ` pig wins

( L(r4)

straw house & stick house & brick house ` pig wins
&L3

pig ` pig wins
( L(r1)

Every different proof with Γ; ∆0 ` γ at its root corresponds to a different potential
narrative embodied by the alternative structure.

To describe simultaneous relationships between story events, we need to divide up
the monolithic state of “which Twine passage are we in” into smaller pieces, such as
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each pig, the wolf, the building materials the pigs use to make their houses, and the
completed houses.

The story ending is now not a a single fact (the wolf or the pig winning) but rather
some composition (specifically, a ⊗ conjunction) of outcomes for different narrative re-
sources.

In this version of the story, Γ =

r1 : pig ⊗ straw( straw house

r2 : pig ⊗ sticks( stick house

r3 : pig ⊗ bricks( brick house

r4 : wolf ⊗ straw house( wolf

r5 : wolf ⊗ stick house( wolf

r6 : wolf ⊗ brick house( brick house

The initial configuration for the story is the state

∆0 = {pig, pig, pig, straw, bricks, sticks,wolf}

And we can create proofs of the sequent

∆0 ` brick house

to represent stories ending with just the brick house standing, i.e. the canonical
Three Little Pigs folktale ending. Here is a proof that the brick house can be the only
one left standing, representing the canonical Three Little Pigs story:

Let D1 =

pig ` pig bricks ` bricks
pig, bricks ` pig ⊗ bricks

⊗R

Let D2 =

pig ` pig straw ` straw
pig, straw ` pig ⊗ straw

⊗R

Let D3 =

pig ` pig sticks ` sticks
pig, sticks ` pig ⊗ sticks

⊗R

Let D4 =

wolf ` wolf straw house ` straw house
wolf, straw house ` wolf ⊗ straw house

⊗R

Let D5 =

wolf ` wolf stick house ` stick house
wolf, stick house ` wolf ⊗ stick house

⊗R

in
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D1

D2

D3

D4

D5

wolf ` wolf brick house ` brick house
brick house,wolf ` wolf ⊗ brick house brick house ` brick house

brick house,wolf ` brick house
( L(r6)

stick house, brick house,wolf ` brick house
( L(r5)

stick house, straw house, brick house,wolf ` brick house
( L(r4)

straw house, brick house, pig, sticks,wolf ` brick house
( L(r2)

brick house, pig, pig, straw, sticks,wolf ` brick house
( L(r1)

∆0 ` brick house
( L(r3)

Note the lopsided structure of the above proof: we only apply ( L rules up the
entire tree except to derive rules’ premises from the context. The proof could almost be
read as a sequence of rule applications r3; r1; r2; r4; r5; r6 that navigate from the bottom
sequent (in which the context represents the initial story configuration) to the top-right
sequent (in which the context represents the final story configuration). On the other
hand, by tracking exactly which resources in the context are consumed and produced by
each rule application, we can extract a partial ordering between these rule applications,
yielding the diagram depicted in Section 2.4.2. The rule sequence plus its input-output
dependency links with other rules is exactly the information captured in the formal
proof term syntax that we interpret as stories in Chapter 3.

Another note about the above proof is that it is not the only one that may follow from
the story world rules and initial configuration Γ; ∆0. We can derive different outcomes
where two or three of the houses are left standing, i.e.

∆0 ` brick house⊗ stick house

and

∆0 ` brick house⊗ stick house⊗ straw house

That these sequents are provable suggests that even in our “simultaneous” story
world, there is some alternative structure to consider—i.e. there is nondeterminism in
the system of inference rules, and several might apply.

To see what stories these unconventional endings might give rise to, let us examine
a proof of the sequent ∆ ` brick house ⊗ straw house ⊗ stick house (where we abbreviate
the right-hand side of the sequent A).

Let D6 =

brick house ` brick house
straw house ` straw house stick house ` stick house
straw house, stick house ` straw house⊗ stick house

⊗R

brick house, straw house, straw house ` A ⊗R

in
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D1

D2

D3

wolf ` wolf brick house ` brick house
brick house,wolf ` wolf ⊗ brick house

⊗R D6

straw house, brick house, stick house,wolf ` A ( L(r6)

straw house, brick house, pig, sticks,wolf ` A ( L(r2)

brick house, pig, pig, straw, sticks,wolf ` A ( L(r1)

∆ ` A ( L(r3)

Again reading the named rules used in the proof from bottom to top, we can see we
have a shorter story wherein after each pig builds their house, the wolf simply visits
the brick house first and is eliminated from the narrative state there, leaving all three
houses standing.

Some computational narrative researchers would consider such a story to be poorly
formed, particularly according to popular Western story aesthetics: it can hardly be
argued that this narrative has any conflict. Furthermore, two characters in the story (the
straw house and brick house pig) are seemingly only referred to once, when they build
their houses, and never interact with the narrative again, making their role in the story
seem inessential. Riedl and Young [RY04] have investigated means of manipulating
similar inference systems (planning) to introduce conflict by way of individual character
goals that compete over shared resources. In future work we would like to investigate
the applicability of their techniques to linear logic.

2.5 First-Order Linear Logic

One advantage of working with the logical methodology we have chosen is that it is
easy to enrich the logic with orthogonal constructs. For instance, we can enrich our logic
of atomic propositions to allow us to state more complex relationships between entities,
such as at pig straw house to represent location or has pig straw to represent possession. If
we additionally introduce a quantifier connective ∀ (“for all”), we can write a proposition
modeling a parametric action where a pig in any location L where there is a building
material M can be replaced by the pig possessing M :

∀L,M.at pig L⊗ atM L ( has pigM

For modeling pre-established narratives like The Three Little Pigs, modeling the
story world at this level of detail and parametricity seems unnecessary. However, for
the invention of more flexible story worlds prone to expressive collaboration from a
human interactor, parametric rules like this one become essential.

The creators of social physics systems like Prom Week emphasize that creating a
wide possibility space for narrative unfoldings is essential to the player’s discovery
of “emergent solutions and surprising, yet satisfying, outcomes.” [MTS+11] Express-
ing the kinds of rules that make up Prom Week’s social physics engine (Comme il
Faut [MTS+10]) requires that they not be specialized to any particular character in the

34



story but depend only on certain properties of characters and their relationships. The
first-order extension of linear logic enables us to express rules of this form.

Most prior work on the use of linear logic to model stories and games focus only
on the non-parametric, or propositional, fragment of the logic (see Section 2.6.2), and so
its range of considered examples has mostly been limited to hand-authored, branching
narratives. In Chapter 3, we will show how first-order linear logic scales to account for
a richer narrative possibility space. We note that, as a side-effect, we will be able to
use the same formalism to describe Twine games, command-line (“parser”) interactive
fiction, and multi-agent social models like Comme il Faut, and compare the narrative
structures that arise from them.

2.6 Related Work

Bosser et al. [BCFC11] similarly identify structures in stories that can be identified as
simultaneous and alternative, also modeled in linear lofic. In their case, simultaneous
structure is represented by proof terms that record uses of the ⊗R rule as “stories in
parallel.” However, such proofs still sequentialize story events that we identify as for-
mally independent from one another. Our notion of independence aligns better with the
permutability of proof rules than with the commutative structure of the linear context.

We identify two other formalisms that are very closely related to linear logic for story
formalization: planning and Petri nets.

2.6.1 Planning

Interactive storytelling research communities have historically used planners (such as
STRIPS [FN71] and IPOCL [YPM94]) to model and generate stories [You99, CMC01,
RY10]. The planning approach to modeling actions, i.e. by designating facts as pre-
conditions, deleted by the action, and added by the action, has a great deal in common
with modeling actions as linear logic implications. In fact, Masseron et al. [Mas93] have
shown how linear logic can be used to support planning and equate a proof to a plan.
Others have demonstrated the use of linear logic for specific problems thought of as
typical planning problems [DSB09, DST09].

So, in the interactive storytelling domain, linear logic can effectively be seen as a
logic-based alternative to planning. We see the advantages to a basis in logic as twofold:
first, that a long tradition of logics connecting to human epistemology means a wide
range of epistemological extensions are available, and there is vast precedent for de-
signing logics so that their different judgments (and corresponding connectives) may fit
together, composing into richer formalisms. For example, this precedent is what allows
us to seamlessly extend propositional linear logic with first-order quantification. An-
other, less-explored example is combining linear logic’s resource orientation with logi-
cal connectives for knowledge of specific actors [GBB+06], which we hypothesize could
be quite fruitful for narrative modeling.
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There are a few more technical differences between the expressivity of linear logic
and planning as formalisms. For instance, in linear logic, the multiplicity of a fact mat-
ters: we cannot write brick house ( wolf to represent “deleting” the brick house fact in
the same way we can in planning, because there may be other copies of the brick house
resource available that we do not account for. (We would consider these statements
equivalent, though, when an invariant of the program includes having exactly zero or
one of a certain resource.) A consequence of this fact is that linear logic can refer to mul-
tiple instances of something (like money) without propositions indexed by a natural
number, while planning cannot.

Another (related) difference is that fact deletion in planning does not require that the
fact being deleted is actually present for the rule to fire. In linear logic, all “deleted” facts
are also “preconditions.” Finally, planners typically support negation of facts as precon-
ditions for actions. Both of these constructs (unconditional deletion, and negation as
failure) are inexpressible in linear logic, and in fact are inconsistent with purely logical
characterization in general, because they do not maintain the transitivity of the conse-
quence relation. However, when we consider the extension of our approach into a more
practical programming language, we do add support for similar idioms (see Chapter 4).

2.6.2 Petri Nets

Petri nets [Mur89] are a formalism studied in the 1970s primarily for concurrent com-
putation. They are easily interpreted in a graphical languages of nodes and arcs, where
nodes may be either places (represented with a circle) or transitions (represented as a
rectangle), where arcs connect places to transitions and transtions to place. Each place
may have zero or more markings on it.

A given Petri net and configuration of markings may evolve to a new configura-
tion as follows: if all of the places that point to (have an arc to) a given transition are
marked, the transiton may fire, or remove one marking from each input place and add a
marking to each output place. Places may have arcs to multiple transitions, suggesting
nondeterminism in the system.

Petri nets may be understood as a restricted fragment of linear logic: a Petri net place
is modeled by an atomic linear logic proposition, and a Petri net transition matches up
to a linear logic implication of the form !(a1 ⊗ . . .⊗ an( b1 ⊗ . . .⊗ bm), where each ai is
an input place to the transition and bis are output places. Every rule must be persistent
(thus the ! in front) so that it can model a transition that may fire arbitrarily many times.

The reachability problem in Petri nets—whether it is possible for a given configu-
ration to evolve through arbitrarily many rule firings to another configuration—was
shown equivalent to provability in this fragment of linear logic by Kanovich. [Kan95]

Note that this correspondence does not take into account the first-order extension of
linear logic. For some first-order programs, it may be possible to ground them, i.e. give
an equivalent propositional program, by instantiating every rule with every possible
term given in the domain (assuming the domain is finite, which it may not be), but even
when this is possible it results in a combinatorial explosion of the state space. This may
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Figure 2.3: Petri net for the simultaneous Three Little Pigs story world.

r1 (build straw house) r3 (build brick house)r2 (build stick house)

sticks bricks

straw
house

straw

pig

wolf

stick
house brick

house

r4 (wolf vs straw 
house) r4 (wolf vs stick house) r6 (wolf vs brick 

house)

make Petri nets as a formalism less scalable than first-order linear logic as an authoring
tool.

Despite this limit in expressiveness, quite a few applications of Petri nets to games
and interactive storytelling have been explored: first, Vega et al. investigate their use in
game design [VGN04]; Araújo and Licı́nio use them to model game mechanics [AR09];
Dang et al. use the equivalent fragment of linear logic to validate interactive story sce-
narios [DHCS11, DCA13]; and my coauthors and I use that same fragment for genera-
tion of story variants [MBFC13] on the fabula of Flaubert’s novel Madame Bovary [Fla01].
The main benefit of the limited expressiveness is that it is possible to do exhaustive
analysis, since proof search on that fragment (i.e. reachability for Petri nets) is decid-
able. [May84]

Petri nets also have the advantage of enjoying a direct visual representation that
nicely illustrates the relationship between alternative and simultaneous structure. The
Petri net in Figure 2.3 illustrates the Three Little Pigs story world given in Section 2.4.2,
and to find potential alternative structure we simply look for places (circles) with mul-
tiple out-edges.

Finally, we note that a Petri net-inspired system of markings and transitions, called
Machinations, has been built as a visual game design tool [Dor11]. Later work for-
malized the core of this system and its semantics (“micro-machinations”) [VRD14] to
find that they differ substantially from Petri nets, losing the correspondence with linear
logic.
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2.7 Conclusion

We have presented linear logic as a formalism that supports two kinds of structure in
narrative fabula, namely alternatives and simultaneity. We have built upon prior narra-
tive modeling methodologies to map entities, relationships, states, events, stories, and
story outcomes onto corresponding logical and proof-theoretic notions, completing the
conceptual basis on which the remainder of this thesis builds.

In particular, we have demonstrated several core properties of narrative structure
that correspond to the fundamental mechanisms of linear logic. Bosser et al. [BCC10]
point out three such characteristics of computational stories: generativity, or the deriv-
ability of a variety of different story unfoldings given the same beginning and ending
conditions; variability, or the open world assumption characterized by the story rules’
independence from the initial story configuration; and narrative drive, or the enforce-
ment of certain story rules (scenes) being used in the proof. These properties emerge
from the logic in the form of a nondeterministic inference system, the hypothetical judg-
ment (i.e. presence of the context ∆ as an essential part of sequents), and the absence of
weakening making it possible to enforce the usage of assumptions.

We additionally observe the correspondence between linear logic connectives and
alternative and simultaneous relationships between story events. Our observation of the
logic’s ability to model alternatives is effectively the same as the variability property
mentioned above, but the simultaneity observation was mainly portrayed as causality in
prior work. We posit that simultaneity offers a more operational reading of the narra-
tive structure, in which we can imagine several moving parts to a complex interactive
narrative, whose independent evolutions compose into a coherent story. Many works
of interactive fiction already use such ideas by incorporating persistent state (such as
player inventory and tracking of game history), but the simple alternative models of
these fictions (e.g. Ashwell’s diagrams in Section 2.4) do not depict the more complex
story variability that arises from them. Reed and Garbe [RGWFM14] introduce the term
combinatorial narrative to suggest centralizing the idea of complex narrative states in in-
teractive story authoring, and we posit that linear logic would make a good candidate
for modeling and reasoning about those works.

In the next chapter, we will show how to put computers to use on the mathematical
formalism presented here in the form of logic programming to extract a computational
interpretation of story modeling in linear logic. Namely, we extend our mapping to
account for story world (or potential narrative) as a program that, when run, generates
coherent stories according to the authored rules.
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Chapter 3

Linear Logic Programming for Narrative
Generation

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to.”
“I don’t much care where—”
“Then it doesn’t matter which way you go.”
—- Lewis Carroll, Alice in Wonderland

3.1 Introduction

The problem of narrative generation is to computationally derive event sequences so that
they can be understood as the skeletal structure of a story (the fabula). Finding better
and more varied approaches to the task concerns studies on computational creativity
(in what sense can a computer construct works that are understood as creative?), virtual
worlds (how should the world react in response to the player to construct convincing
narrative?), and computer-supported education (how can a virtual environment help a
human learner build understanding through narrative)? In this chapter, we consider
linear logic as a representional system for the task.

Specifically, we propose the use of a logic programming language based on linear logic
for specifying narrative worlds that generate stories. We extend the narrative represen-
tation ideas from Chapter 2 by showing how linear logic specifications may be opera-
tionalized (given semantics as a computer program) through proof construction. Proof
construction can then be understood as a process that generates narratives when the
specification in question represents a story world, or narrative possibility space.

Linear logic programming supports action description, use of resources, and changes
imposed on the story world, and offers a basis for analysis of storylines and causal re-
lationships. While similar affordances are found in planning languages, the systems
of inference built into planning are usually goal-directed in that they are engineered to
find solutions for getting from one world configuration to another, and that proof proce-
dure itself is not programmer-controllable nor grounded in a theory that informs sound
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modification and extension. Planners’ goal-driven nature makes them less suitable by
default for modeling story scenarios which are exploratory and generative rather than
centralized on authorial intent (although variants of planners have been created for this
purpose, which we describe in Section 3.6).

Meanwhile, authors, game designers, and scholars have long been seeking and propos-
ing suitable notions of “emergence” in interactive narratives—many talk about wanting
to codify richly general behavior, but some talk about the inevitability of unmanagable
consequences of doing so, fearing that authorial intent will become impossible to con-
vey. Our inspiration for framing and solving this problem comes from Emily Short’s
online article on emergence in narrative interaction design.1

We carry out our study using the pre-existing linear logic programming language
Celf [SNS08], based on the theoretical framework CLF [WCPW03], which offers sup-
port for both goal-driven authorial intent and exploratory emergence in narrative gen-
eration. Two dual proof construction strategies, called backward and forward chaining,
map onto these dual forms of storytelling. During the forward-chaining phases, the
program can be thought of as evolving a system forward, as in classic systems of emer-
gence such as cellular automata. In backward chaining, a particular goal is specified,
which constrains the set of story world rules that are examined. This strategy may be
used to impose constraints on the available forward evolutions, as well as to stipulate
story endings. Combining forward and backward chaining has been found important
for the modeling of duality in agent deliberation [THT12], which is reflected in our
modeling of a multi-agent social story world. The proof-theoretic basis of forward and
backward chaining [CPP08, HPW00] gives these programs their meaning and relates
them to standard logical provability.

Our main result in this chapter is a sizeable example of a story world specified in Celf
and its interpretation as a story-generating program. We show evidence that, despite
the exploratory emergence created by general inference rules, the causal structure of
proofs generated by Celf can assist the author in reasoning about the structure and
consequences of emergent stories. This approach to narrative generation lets us design
narratives with richly-interacting processes while maintaining the ability to describe
goal-based reasoning when needed, as well as enabling the author to reason post-hoc
about the space of stories generated.

3.2 Linear Logic Programming

3.2.1 Forward and Backward Chaining

Two dual proof search strategies, forward and backward chaining, give rise to dual pro-
gram semantics. Consider a sequent Γ; ∆ ` A and a fixed context (or signature) Σ that
can be considered an extension of Γ, containing unchanging rules A( B and unchang-
ing atomic facts. In backward chaining proof search, the prover scrutinizes the goalA of
the sequent and searches for rules in Σ that lead to a proof ofA, then recursively searches

1http://emshort.wordpress.com/2008/02/13/emergent-puzzle-solutions/

40



for proofs of those rules’ subgoals. In forward chaining proof search, the prover instead
scrutinizes the assumptions ∆ and looks for rules in Σ that might use those assumptions
to produce new assumptions. Only after this procedure has stabilized (referred as quies-
cence) does the prover then look to the goal A to determine whether it is derivable from
the inferred set of assumptions.

In the context of narrative generation, doing backward-chaining search at the top
level of a story specification means reasoning first from the desired narrative outcomes,
such as the brick house is the only house left standing at the end of The Three Little Pigs.
A purely backward-chaining approach to solving that story goal would first look at
all of the rules whose consequents include brick house, at which point it would find
r3 : pig⊗bricks( brick house and r6 : wolf⊗brick house( brick house as candidates, then
recursively try to solve for the antecedents of these rules using all of the assumptions in
the starting configuration ∆0. (If any resources are left un-consumed, it must fail.)

On the other hand, forward-chaining search corresponds more to an exploratory ap-
proach to narrative generation: starting from a world defined by ∆0, what are the pos-
sible narrative actions that might arise? In our example,

∆0 = {pig, pig, pig, straw, bricks, sticks,wolf}

In forward-chaining proof search, the first rules we would consider would be the
three house-building rules, since they are the only ones that apply to our current world
state.

The approach we investigate in this chapter will focus primarily on forward chain-
ing, although backward chaining may sometimes be needed to solve for the subgoals
of narrative actions. Below we specify how a primarily forward chaining-based search
strategy gives rise to a transition system interpretation of linear logic specifications.

3.2.2 Logic Programming: Proof Search as Execution

The logical machinery laid out so far tells us what a proof is, but does not dictate a
particular process for finding one of a given goal sequent. A logic programming language
is an operationalization of a proof system in such a way that search for a proof may be
seen as running a program written in the language. The program itself is a collection of
logical propositions, used as assumptions in the goal sequent.

Recall from Section 2.4.4 the derivation of the sequent

Γ; pig, pig, pig, straw, bricks, sticks,wolf ` brick house

where Γ contains these rules:
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r1 : pig ⊗ straw( straw house

r2 : pig ⊗ sticks( stick house

r3 : pig ⊗ bricks( brick house

r4 : wolf ⊗ straw house( wolf

r5 : wolf ⊗ stick house( wolf

r6 : wolf ⊗ brick house( brick house

The derivation consists mainly of uses of the ( L rule on rules ri : A ( B in Γ,
which transforms proof states of the form ∆,∆′ ` brick house into ∆, B ` brick house
when ∆′ ` A. Therefore, instead of the proof tree notation, it is more expedient to
represent the derivation as a sequence of transitions on just the left-hand side of the
sequent that look like

∆,∆′ →ri ∆, B

where the notation ∆→ ∆′ can be read as “∆ takes a step to ∆′.”
To write the derivation out fully takes much less space than the full proof tree:

pig, pig, pig, straw, bricks, sticks,wolf

→r3 brick house, pig, pig, sticks, straw,wolf

→r2 stick house, brick house, pig, straw,wolf

→r1 straw house, stick house, brick house,wolf

→r4 wolf, stick house, brick house

→r5 wolf, brick house

→r6 brick house

In this fashion, we give an operational semantics to forward-chaining proof search
over a story world.

More generally, we can give the whole system of inference rules defining linear logic
an operational semantics for a programming language by conceiving of it in terms of
a transition system, or a set of rules for evolving one program state into another. With
forward chaining search, we may do exactly that. Forward chaining proof search for
a sequent Γ; ∆ ` A effectively ignores the goal A, meaning that we can write forward
chaining proofs and inference rules with the notation Γ; ∆→ Γ′; ∆′, where→ is read as
“transitions to” or “takes a step to,” whenever it is the case that

Γ′; ∆′ ` γ
Γ; ∆ ` γ

is a permissible inference for an arbitrary conclusion γ.
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3.2.3 Celf

The following is an example of a narrative action specified in Celf:

jealousy : eros A B * eros Witness A

-o {eros A B * eros B A * anger Witness A * anger Witness B}.

We first explain the syntax piece-by-piece, then relate its semantics to the sketch of
proof search given above.

The token jealousy is the name of the rule. (Here “rule” is synonymous with nar-
rative action or scene.) The : separates the rule name from the rule. eros A B is an
atomic proposition referring to two logic variables, or parameters to the rule, A and B.
They are indicated as variables by the syntactic convention that they start with capi-
tal letters. The third parameter to the rule is Witness, referred to in the other part of
the antecedent. The * symbol is ASCII for ⊗, combining the two atomic propositions,
and -o is ASCII for (, indicating a potential rewriting of part of the state matching
the left-hand side of the rule to that represented in the right-hand side of the rule. The
other atomic propositions should be self explanatory. The braces syntax {...} around
the consequent designates the rule as forward chaining, in a way that we make precise in
Appendix A. Finally, the . ends the rule.

More semantically, this rule can be read as a transition schema: for any A, B, and
Witness, if part of the state matches eros A B * eros Witness A, then we may replace
that state with the consequent. And finally, adding a story interpretation, the rule says
that whenever a witness watches someone they are attracted to exhibit attraction to
someone else, the latter attraction becomes reciprocated, and the witness becomes angry
at both parties. Such a rule can be imagined as on-theme for a story world designed to
give rise to romantic drama.

The other half of a story world needed for an executable artifact is an initial config-
uration. The story world itself can be considered the program, while the initial config-
uration is its input. In Celf, we can provide this input to a run of the program via a
trace directive. The following syntax indicates an execution of the program with a “love
triangle” starting configuration:

#trace *

{ eros helena hermia * eros hermia helena

* eros helena lysander * eros lysander hermia }.

This directive starts proof search in forward chaining mode with ∆0 containing just
the above tensored-together proposition, and with no specified goal, applying rules in
the story world until quiescence (which may never be reached). The * just following
the #trace directive is a bound on forward chaining steps, which can be a number or *
meaning no bound.

Let us look in detail at one step of forward execution for this program. There is only
one rule available, so the engine will attempt to match its antecedent to any combination
of resources in the context. To do so, it must answer the question of what instantiations
are available for the variables A, B, and Witness such that the antecedent holds.

For our given example, some available substitutions are:
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A := hermia, B := helena, Witness := lysander

A := helena, B := lysander, Witness := hermia

A := lysander, B := hermia, Witness := helena

If a suitable instantiation is found, the proof search engine will substitute the ap-
propriate terms for the variable in the rule before carrying out its effect. For instance,
suppose the substitution selected is the first one. The rule with that substitution applied
is:

jealousy[hermia, helena, lysander] :

eros hermia helena * eros lysander hermia

-o eros hermia helena * eros helena hermia

* anger lysander hermia * anger lysander helena.

This means that the state ∆0 =

{ eros helena hermia, eros hermia helena

eros helena lysander, eros lysander hermia }

may transition to the state

{ eros helena hermia, eros helena lysander,

eros hermia helena, eros helena hermia,

anger lysander hermia, anger lysander helena }

Note that the states we produce consist entirely of predicates over known terms,
i.e. they do not contain variables. This conditions is referred to as groundness: a term,
proposition, or context is ground if it contains no logic variables. To be a well-formed
story world, we require that initial states are ground and that rules maintain groundness,
i.e. the right hand side of a rule may only mention logic variables that appear on the left
hand side of the rule.

If all story world rules obey that constraint, and if they take a similar form to the
rule presented—that is, when all logic variables are instantiated, they have the form
S ( S ′, where where S and S ′ stand for arbitrary tensored-together atoms—and ∆0 is
the starting configuration for the story world, then program execution as an end-to-end
process may be visualized as follows:

S S’

S -o S’

...
r: S -o S’
...

...
0 n1

Logic Program

initial state

Here ∆n is a quiescent context, i.e. one to which no rules in the program apply.
Note that there are potentially several substitutions and rules that may apply at any

step. Celf’s operational interpretation of this fact is nondeterministic committed choice,
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meaning it selects at random from all available transitions, makes the transition, and
does not backtrack. We will revisit this notion of nondeterminism in Section 3.4.

We summarize the linear logic connectives used to create story worlds as well as
Celf’s notation for them below:

abstract syntax concrete syntax meaning
A( {B} A -o {B} forward-chaining rule
A⊗B A * B conjunction of resources

!A !A persistent resource
Finally, a rule whose concrete syntax includes capital-letter logic variables such as

p X Y -o q X is interpreted abstractly as a first-order logical proposition with the logi-
cal variables quantified at the beginning, i.e. ∀x, y. p x y( q x.

3.3 Example: A Romantic Tragedy Story World

The key to programming with linear logic is formulating one’s problem in terms of
resources, i.e. the components of a story that may interact and change. Then, the author
describes how (through what actions) those components change. These two steps may
mutually iterate on one another, but at a glance, the creation of a story world as a logic
program consists of the following steps:

1. Identify the components of story state, such as physical location and character
relationships. Declare a predicate (type) for each of these; for example, declare
that anger C C’ is a well-formed state component when C and C ′ are characters.
We map predicates in our example to their intended meanings in the table below.

2. Identify the narrative actions, i.e. ways that characters can interact with each other
or their environs to cause changes in the state.

3. Define an initial configuration, or sets of initial configurations for testing. Formu-
late a trace or query on the program and initial configuration to run it.

A complete story world specification is simply a collection of these predicate and
rule declarations. The author may then join it with its complementary half, a specifica-
tion of setting elements, characters, and initial states, to generate stories or analyze the
system we have described. The remainder of this section carries out an example, a case
study of a Shakespeare-inspired romantic tragedy world, following the aforementioned
workflow.2

The state we model includes sentiments between characters (several forms of love
and hate), physical locations and basic movement, possession of key objects (such as
weapons), relationship states (marriage and being single), desires for objects, and soli-
tary emotions (depression).

2The complete, runnable code for this example can be found at https://github.com/chrisamaphone/
interactive-lp/blob/master/examples/tragedy.clf.
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Predicate Meaning
at C L C is (alive) in location L
has C O C possesses an object O

neutral C C’ C feels neutrally toward C ′

philia C C’ C feels affection toward C ′

anger C C’ C feels anger toward C ′

eros C C’ C feels attraction toward C ′

unmarried C C is unmarried
married C C’ C is married to C ′

depressed C C is depressed
suicidal C C is suicidal
!dead C C is dead

!murdered C C’ C murdered C ′

!actor C C is a character in the story
These predicates do not specify a particular cast of characters or setting, but they

could be said to pertain to a particular genre of story, in this case romance and tragedy.
The delineation of the story world into predicates is an act of careful human design,
often iterated with the generation of stories, and the choices made here make all the
difference in terms of which actions are possible to write and therefore what shapes the
story can take. For instance, the choice to include two kinds of love, eros and philia,
means that we can codify social rules about sexual relationships between characters.
Similarly, the choice not to include a predicate for a character’s gender renders it impos-
sible to enforce heteronormative relationships. We have to make a choice about whether
we want to model a realistic description of human behavior (which often contradicts so-
cial norms) or enforce social norms by constraining actions with our formal description.

A selection of rules for our chosen genre is given below, starting with the rules for
basic social interaction:3

do/formOpinion/like

: at C L * at C’ L *

neutral C C’

-o {at C L * at C’ L * philia C C’}.

do/formOpinion/dislike

: at C L * at C’ L *

neutral C C’

-o {at C L * at C’ L * anger C C’}.

do/compliment/private

: at C L * at C’ L * philia C C’

-o {at C L * at C’ L * philia C C’ * philia C’ C}.

do/compliment/witnessed

3The location predicates at C L in these rules signify not just location, but also that the character in
question is alive and available in the story. The at atom is consumed when a character dies.
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: at C L * at C’ L * at Witness L * philia C C’ *

anger Witness C’

-o {at C L * at C’ L * at Witness L * philia C C’ *

anger Witness C’ * philia C’ C * anger Witness C}.

do/insult/private

: at C L * at C’ L * anger C C’

-o {at C L * at C’ L * anger C C’ * anger C’ C *

depressed C’}.

do/insult/witnessed

: at C L * at C’ L * at Witness L *

anger C C’ * philia Witness C’

-o {at C L * at C’ L * at Witness L *

anger C C’ * philia Witness C’ * anger C’ C *

depressed C’ * anger Witness C}.

mixed_feelings

: at C L * anger C C’ * philia C C’ -o {at C L * neutral C C’}.

Note that there are two “versions” each of the actions for insulting and complimenting,
one that happens “in private” and another that affects a witness in the same location.
This encoding signals a weakness: it is unnatural to represent a broadcast of an action
affecting every character who might be in range, since linear logic primarily codifies
local state changes. On the other hand, this mechanism’s nondeterminism could be
argued to reflect the chance involved in whether an action goes noticed.

Next we codify the rules for romantic interaction, which include tranformations be-
tween eros and philia as well as flirting, marriage, and divorce:

do/fallInLove

: at C L * at C’ L’ *

eros C C’

-o {at C L * at C’ L’ * eros C C’ * philia C C’}.

do/eroticize

: at C L * at C’ L’ *

philia C C’ * philia C C’ * philia C C’ * philia C C’

-o {at C L * at C’ L’ * philia C C’ * eros C C’}.

do/flirt/ok

: at C L * at C’ L * eros C C’ * unmarried C * unmarried C’

-o {eros C C’ * eros C’ C *

unmarried C * unmarried C’ *

at C L * at C’ L}.

do/flirt/discreet

: at C L * at C’ L * eros C C’

-o {eros C C’ * eros C’ C * at C L * at C’ L}.
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do/flirt/conflict

: at C L * at C’ L * at C’’ L *

eros C C’ * eros C’’ C

-o {eros C C’ * eros C’ C * eros C’’ C

* anger C’’ C’ * anger C’’ C

* at C L * at C’ L * at C’’ L}.

do/marry

: at C L * at C’ L *

eros C C’ * philia C C’ *

eros C’ C * philia C’ C *

unmarried C * unmarried C’

-o {married C C’ * married C’ C * at C L * at C’ L *

eros C C’ * eros C’ C * philia C C’ * philia C’ C }.

do/divorce

: at C L * at C’ L’ *

married C C’ * married C’ C * anger C C’ * anger C C’

-o {anger C C’ * anger C’ C * unmarried C * unmarried C’

* at C L * at C’ L’}.

do/widow

: married C C’ * at C L * dead C’

-o {unmarried C * at C L}.

These rules include the generation of sentiments from a neutral stance, transforma-
tions between the two kinds of love philia and eros, and flirting, which strengthens
both kinds of love, but causes anger if witnessed by another paramour. We also include
rules that modify the marriages of characters.

Note in particular that rules can have as premises multiple copies of a particular re-
source to represent a greater quantity of a certain sentiment, such as philia C C’ in
the do/eroticize rule. In practical terms, repeating a resource more times creates ad-
ditional dependencies for the rule, and makes its application less likely to appear as an
event early in the story.

Next we supply rules governing death and violence:
do/murder

: anger C C’ * anger C C’ * anger C C’ * anger C C’ *

at C L * at C’ L * has C weapon

-o {at C L * !dead C’ * !murdered C C’ * has C weapon}.

do/becomeSuicidal

: at C L *

depressed C * depressed C * depressed C * depressed C

-o {at C L * suicidal C * wants C weapon}.

do/comfort

: at C L * at C’ L *

suicidal C’ * philia C C’ * philia C’ C

48



-o {at C L * at C’ L *

philia C C’ * philia C’ C * philia C’ C}.

do/suicide

: at C L * suicidal C * has C weapon -o {!dead C}.

do/grieve

: at C L * philia C C’ * dead C’

-o {at C L * depressed C * depressed C}.

do/thinkVengefully

: at C L * at Killer L’ *

philia C Dead * murdered Killer Dead

-o {at C L * at Killer L’ * philia C Dead *

anger C Killer * anger C Killer}.

These rules introduce several potential feedback loops between murder and vengeance,
suicide, grieving, and depression.

Finally, we have a few actions that can affect possession:
do/give

: at C L * at C’ L * has C O * wants C’ O * philia C C’

do/steal

: at C L * at C’ L * has C O * wants C’ O

-o {at C L * at C’ L * has C’ O * anger C C’}.

do/loot

: at C L * dead C’ * has C’ O * wants C O

-o {at C L * has C O}.

Given this set of rules, we note that the story world is multi-agent in nature—the
interactor with such a story doesn’t obviously “play” one particular character, and the
rules aren’t defined as “behaviors” attached to a given agent. They portray the interior-
ity of all characters at once, allowing them to be referenced and changed in combination.

3.3.1 Initial State

After describing the general rules of our Shakespearean tragedy story world, which
are parameterized over characters and locations, we can fill in specific elements, such
as the characters and setting of Romeo and Juliet, to have a complete and runnable
specification.

First we can describe the persistent (unchanging, i.e. not linear) facts about the story,
in this case just the world map::

mon/town : accessible mon_house town.

town/mon : accessible town mon_house.

cap/town : accessible cap_house town.

town/cap : accessible town cap_house.
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Next, we need to designate the initial state of all the linear predicates. It could look
something like this:

story_start :

init -o { at romeo town * at montague mon_house * at capulet cap_house

* at mercutio town * at nurse cap_house * at juliet town

* at tybalt town * at apothecary town

* has tybalt weapon * has romeo weapon * has apothecary weapon

* unmarried romeo * unmarried juliet

* unmarried nurse * unmarried mercutio * unmarried tybalt

* unmarried apothecary

* anger montague capulet * anger capulet montague

* anger tybalt romeo * anger capulet romeo * anger montague tybalt

* philia mercutio romeo * philia romeo mercutio

* philia montague romeo * philia capulet juliet

* philia juliet nurse * philia nurse juliet

* neutral nurse romeo

* neutral mercutio juliet * neutral juliet mercutio

* neutral apothecary nurse * neutral nurse apothecary}.

The first two groups of atoms describe the story world locations where the charac-
ters begin and their possessions. The next group represents which characters are un-
married at the start of the story. The next two groups represent existing relationships
(sentiments) among characters, and finally the last group represents which characters
haven’t met each other yet (and so feel neutrally towards each other).

3.3.2 Program Query

We have seen one way to execute the code, namely traces, but if we specify some par-
ticular goal conditions (story endings), then Celf will produce a full proof for us, which
is necessary for the kind of analysis we will do next.

Here is one way to specify a few possible endings that will drive the simulation to
termination:

ending_1 % a marriage and a death

: nonfinal *

at C1 _ * at C2 _ * at C3 _ *

married C1 C2 * dead C3

-o {final}.

ending_2 % love triangle

: nonfinal *

at C1 _ * at C2 _ * at C3 _ *
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eros C1 C2 * eros C2 C3 * eros C3 C1

-o {final}.

ending_3 % vengeance

: nonfinal *

at C1 _ * at C2 _ * at C3 _ *

murdered C1 C2 * philia C3 C2 * murdered C3 C1

-o {final}.

Additionally, we add nonfinal to our starting configuration. Now we can initiate a
query such as

?- init -o {final}.

This query asks whether there is a proof from the state described by init to the atom
final.4 Proof search starts in backward chaining mode, breaking down the linear impli-
cation via the( R rule: it adds init to the current state and considers how to prove the
goal {final}. The modality indicated with curly-braces causes proof search to switch
to a forward-chaining or generative mode, running inference forward from the init atom.
Only once the entire story has terminated will it look for final, at which point search
will succeed if it finds it.

But the point of executing the query isn’t really to find out whether the initial state
leads to a valid conclusion. What we are interested in is the trace generated by execution—
the witness to the validity of the proposition, i.e. the proof!

3.4 (Forward-Chaining) Proofs as (Causally-Structured) Sto-
ries

We have already seen in Chapter 2 how a proof may represent a story: the right-hand
side of the goal sequent may be seen as the story outcome, and different rules that are
applied in the derivation can be read (bottom-up) as a sequence of narrative actions.
However, forward chaining proofs have the additional property that the rules they se-
lect occur in narrative-temporal order, and they also create a relaxed ordering on those
events that reflects causality.

To understand how forward-chaining proofs model causality, let us return briefly
to the Three Little Pigs example, which is small enough to describe and comprehend
in full. In Section 3.2.1, we gave a sequence of transitions corresponding to forward-
chaining rule applications on the story world. This time, let’s name the elements of the
context so that we can better track how they evolve:

4Technically, the state at quiescence needs to contain only the final atom in order for the proof to
succeed—the consequent of the query needs to precisely describe the shape of the expected outcome.
However, in our actual implementation, we have used another connective in Celf (@) similar to ! that
marks a resource as affine, meaning we are not forced to consume it (but we still cannot duplicate it). All
story resources other than “final” and “nonfinal” are marked as affine. See Schack-Nielsen [SN09] for
discussion of affine propositions in CLF.
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x1 : pig, x2 : pig, x3 : pig, x4 : straw, x5 : bricks, x6 : sticks, x7 : wolf

We will also make up new names whenever some new resource is added to the
context.

x1 : pig, x2 : pig, x3 : pig, x4 : straw, x5 : bricks, x6 : sticks, x7 : wolf

→r3 x8 : brick house, x2 : pig, x3 : pig, x4 : straw, x6 : sticks, x7 : wolf

→r2 x9 : stick house, x8 : brick house, x3 : pig, x4 : straw, x7 : wolf

→r1 x10 : straw house, x9 : stick house, x8 : brick house, x7 : wolf

→r4 x11 : wolf, x9 : stick house, x8 : brick house

→r5 x12 : wolf, x8 : brick house

→r6 x13 : brick house

This holistic view of the state change does not give us a very precise picture of which
resources in the context are being removed and which are added by the rule applied.
Instead of labeling each transition arrow with just a rule, we can also mark the rule with
the names of the resources it uses, and the new names it generates for the resources it
adds. In other words, every transition can be written as a binding

let 〈x′1, . . . , x′n〉 = ri x1 . . . xm in . . .

where the x′is are fresh variables introduced by applying the transition, and the xis
are the names of resources used by the rule.

In general, the right-hand side of the binding may take some form other than a rule
applied to a bunch of variables: for one thing, the arguments to the rule could be con-
stants from the signature, or other terms representing backward-chaining proofs, that
are needed as inputs to the rule. The full language of proof terms is described in prior
work [WCPW03], and is out of scope for the particular applications of this thesis, but
we will acknowledge the possible generality by referring to arbitrary right-hand sides
of these let-bindings as atomic proof terms R.

If we extrapolate the binding notation across the whole transition sequence above
(this time ignoring the holistic representation of the state), we get

let 〈x8〉 = r3 x1 x5 in
let 〈x9〉 = r2 x2 x6 in

let 〈x10〉 = r1 x3 x4 in
let 〈x11〉 = r4 x7 x10 in
let 〈x12〉 = r5 x11 x9 in
let 〈x13〉 = r6 x12 x8 in

x13
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What this representation gives us is a way of describing dependency, and more im-
portantly, independence between narrative actions. To see how, let us define an ε as a
sequence of let bindings representing forward chaining proofs. A trace ε can either be
empty (〈〉), a single binding let p = R, or one trace after another ε1; ε2, such that ; is
associative and 〈〉 is its unit, i.e.

〈〉; ε = ε = ε; 〈〉
(ε1; ε2); ε3 = ε1; (ε2; ε3)

Epsilons that are independent of one another can be characterized by interchangabil-
ity: they can occur in either order, i.e. ε1; ε2 = ε2; ε1. Such an equation is permissible in
terms of provability exactly when no variable introduced by one ε is used in the other
and vice versa. To make this notion of independence precise, we define the pre-set •(ε)
and post-set (ε)• of variables for a given proof term. We write fv(R) for the free variables
(input resources) of an atomic proof term R and bv(p) for the bound variables (output
resources) of a pattern p.

•(let p = R) = fv(R)

(let p = R)• = bv(p)

•(ε1; ε2) = •(ε1) ∪ (•(ε2)− (ε1)•)
(ε1; ε2)• = ((ε1)• − •(ε2)) ∪ (ε2)•
•(〈〉) = {}
(〈〉)• = {}

Mapping these notions to a visual representation, if we draw rule names as nodes
and draw a directed edge between nodes n1 and n2 for each variable x ∈ •(n2) ∩ (n1)•,
we extract exactly the simultaneous (or concurrent) structure of the Three Little Pigs
narrative shown in Chapter 2:
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x3:
pig

x1:
pig

x2:
pig

x7: 
wolf

x4:
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x5:
bricks

x6:
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x10 :
straw_house

x9 :
stick_house

x8 : 
brick_house

r1
(build straw 

house)

r2
(build stick 

house)

r6
(wolf vs. bricks)r3

(build brick 
house)

r5
(wolf vs. sticks)

r4
(wolf vs. straw)

x12:
wolf

x11: 
wolf

x13:
brick_house

Here we can see that the narrative actions representing the pigs building their houses
are independent, and thus the order in which they are told in the story is arbitrary.
However, the resources representing the wolf (x7, x11, and x12) are threaded through
every interaction between house and wolf, so those actions are strictly ordered. In terms
of causality, we can say for instance that the wolf having successfully blown down the
straw house, and one of the pigs having built the stick house, cause the narrative action
of the wolf blowing down the stick house: those two transitions r4 and r2 generate
resources x11 and x9 that are consumed by the transition r5.

Now, returning the the Shakespearean tragedy story world, we can understand
Celf’s output for the query init -o {final}. One possible proof output generated by
search contains the following trace fragment:

...

let {[X73, [X74, [X75, [X76, X77]]]]}

= do/insult/private [a-tybalt, [a-romeo, [X68, [X66, X72]]]] in

let {[X85, [X86, X87]]}

= do/becomeSuicidal [a-romeo, [X79, [X41, [X59, [X52, X77]]]]] in

let {[X88, [X89, [X90, [X91, X92]]]]}

= do/comfort [a-mercutio, [a-romeo,

[X78, [X85, [X86, [X81, X83]]]]]] in

let {[X101, [!X102, [!X103, X104]]]}

= do/murder

54



[a-romeo, [a-tybalt,

[X58, [X40, [X76, [X51, [X94, [X96, X27]]]]]]]] in

let {[X105, [X106, [X107, X108]]]}

= do/compliment/private

[a-nurse, [a-juliet, [X46, [X47, X30]]]] in

let {[X109, [X110, [X111, X112]]]}

= do/compliment/private

[a-juliet, [a-nurse, [X106, [X105, X108]]]] in

let {[X113, X114]}

= do/loot [a-romeo, [a-tybalt, [X101, [X102, [X26, X87]]]]] in

...

This trace shows an interleaving of story scenes: there is one thread (or sequence of
dependent actions) wherein Tybalt nearly drives Romeo to suicide, but he is comforted
by Mercutio, then murders Tybalt; there is another wherein a loving conversation be-
tween the Nurse and Juliet occurs. Because the resources involved in each of these
subtraces do not overlap, though, they can be seen as simultaneous, and depicted as
follows (omitting variable names):

at

atanger

do/insult (tybalt) (romeo) (town)

at at at

at

at

at

atanger anger

likes

likes

anger

likes

do/compliment (nurse) (juliet) (cap-house)

likes

do/travel (romeo) (town) (cap-house)

do/compliment (juliet) (romeo)

likes

3.4.1 Automated Causal Graph Production

For the sake of making this dependency structure available to the author, one of our
collaborators (Joao Ferreria) built a tool called CelfToGraph, part of the TeLLer suite,5 that
automatically translates generated stories into causal diagrams in the form of directed
graphs. Nodes of the graph are actions in the story, and edges can be viewed as causal
relationships between story events involving those actions.

5Available at https://github.com/jff/TeLLer

55

https://github.com/jff/TeLLer


This tool takes a proof term and the story specification as inputs, and it generates the
extrapolation of the let-binding illustration given in the previous section to the whole
trace, unifying each instance of repeated story actions. We wind up with an approximate
causal network of action nodes representing the story’s nonlinear progression of events,
e.g.:

init

do/insult/privatedo/formOpinion/dislike

do/compliment/witnessed

do/travelTo

do/compliment/private

do/murder

do/marry

ending_1

do/steal

do/thinkVengefully

do/mourn

do/becomeSuicidal

cleanup/1

do/eroticize

do/suicide

do/flirt/discrete

The tool also has an interface for queries on sets of traces. E.g. the query exists ending_1

would tell us the set of stories with ending_1 (a marriage and a death). This tool allows
us to test our specifications for how closely they match our authorial intent. For in-
stance, if we want to find out if any stories contain unfulfilled vengeance, we might
issue the query

exists do/thinkVengefully && ~link do/thinkVengefully do/murder

(read as: there exists a “think vengefully” action, but there is no link between “think
vengefully” and “murder”) which might tell us that no stories satisfy the predicate. If
we intend for vengeance to occur more or less frequently, we may tune the parameters
of the rules (e.g. how many anger atoms it generates) and run the query again.
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3.5 Playable Traces

Another application of CLF proof terms is to interpret their dependency structure as
branching choice in a playable narrative: in other words, to re-interpret simultaneous
structure (multiple characters acting in simultaneous scenes) as alternative structure (the
choice of which character to follow). This transformation has the effect of choices in the
narrative representing the opportunity to “follow” a resource in the logic program to
the next place where it is used. If that resource corresponds to a character location, then
the resulting artifact is a simultaneous story through which the player may choose an
arbitrary path by following characters from scene to scene.

We implemented this idea as a compiler from Celf to Twine, with the tool architec-
ture depicted below (Swallows is the name of a different example story world):

The story world author provides a scene file in addition to the Celf program that will
generate the simultaneous narrative; the scene file provides the text to go along with
the abstract story specifications. For example, here is an excerpt of the scene file for our
Shakespearean tragedy world:

:: do/flirt/conflict 3

<1> flirts with <2> in the <4>. <3> notices and becomes jealous.

:: do/formOpinion/dislike 2

<1> looks at <2> from across the <3> and irrationally feels disgusted.

||

<1> frowns and looks at <2> in the <3>, thinking "I don’t think I like <2>

very much."
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:: do/compliment/witnessed 3

<1> smiles warmly at <2> in the <4>. "You look great today!" <3> frowns at

them both.

||

<1> hugs <2> in the <4>. <3> notices and disapproves of <1>.

||

<1> drapes an arm around <2>’s shoulders in the <4>, saying "You’re so great!"

<3> scoffs mocklingly, making a mental note not to trust <1>.

:: do/murder 1

<1> murders <2> in the <3>.

:: do/becomeSuicidal 1

<1> collapses on the ground in the <2>. They feel despairing and hopeless.

An urge to die grows within them.

:: ending_1 1

<1> and <2> lived happily ever after, while <3>’s body rotted.

:: ending_2 1

<1>’s passion for <2> was exceeded only by <2>’s lust for <3>.

Meanwhile, <3> just wished <1> would pay them some attention.

:: ending_3 1

<3> avenged their beloved <2> by murdering <1>.

The syntax of these rules is as follows: first, the rule in the corresponding CLF file
is named, with a number after it indicating how many of the atoms in its consequent
represent followable resources (e.g. character locations). The numbers in <brackets> are
placeholders for the logic variables in the rule, and will be filled in with things like
character and room names. The separator || indicates alternatives; one of each set of
alternatives will be selected for the generated Twine passage. Special :: initial and
:: final scenes can also be given text.

Such a scene file together with a particular narrative generated by Celf can then
be played as a Twine game at http://play.typesafety.net/world/shakespeare/. A
sample passage for the rule do/compliment/witnessed is shown below:
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The Quiescent Theater project hosts a collection of story worlds like this one at http:
//play.typesafety.net. It re-runs the Celf programs every hour to generate new story
variations, which can then be played on the website.

In Chapter 5, we give a case study of this playable story generation technique for a
theater piece, Tamara, whose original script has a mechanic of simultaneity—action tak-
ing place in several different rooms in the performance space—that makes it amenable
to this technique.

3.6 Related Work

Our contribution with this work has been to investigate linear logic programming as
a modeling language for story worlds such that proof search generates stories. This
approach lets us model story scenarios which are primarily exploratory and generative,
rather than purely goal-driven, using forward-chaining proof search. Because we are
bridging ideas in computational logic with ideas in narrative generation, we identify
related work in each of those categories.

The duality between intent (backward chaining) and exploration (forward chaining)
has previously been used for combining deliberative and reactive behavior for agent
modelling [HW04]. The Lygon language preceded those ideas and incorporates both
forward- and backward-chaining linear logic programs [HPW96]. Forum [Mil96] is a
linear-logic based specification language for describing concurrency, which was later
investigated for use as a logic programming language [HP96]. All of these works in-
fluenced the development of LolliMon [LPPW05], the direct predecessor to CLF and
Celf. Celf, due to its basis in proof search, supports both forward and backward chain-
ing through the focusing theory of proof search [CPP08], which has been central to its
theoretical underpinnings and practical implementation.

In narrative generation, Tale-spin [Mee76] is a canonical work, which generated sto-
ries though comprehensive simulation of worlds, characters, and properties, specified
using a Common Lisp-based system. Its approach to story generation has many sim-
ilarities to the forward-chaining linear logic programming approach in that narrative
actions are selected on the basis of their applicability rather than any kind of unifying
narrative intent. However, no connection to logical provability or goal-driven search is
present.

Later, Riedl and Young develop the approach of using AI planners to generate narra-
tives with a better balance of character-driven exploration and author-driven story goals
[RY04, RY10], alongside the Oz Project [Mat99]’s reactive planning approach to combin-
ing hand-authored scenes in response to real-time player actions [MS03]. Porteous and
Cavazza [PC09] address similar problems using constraints on plan trajectories.

Currently, the approach to using a linear logic programming language as a narrative
generation engine has many of the problems that this later work on planning addresses:
that is, it still takes very careful authoring to ensure that narrative actions are meaning-
ful and interesting within the larger context of story. However, this is the first work to
provide such “emergent narratives” with a formal basis in logical inference, and by do-

59

http://play.typesafety.net
http://play.typesafety.net


ing so we speculate that extending these planning techniques for controlling story input
to our setting will be an easy and fruitful vector for future work. Meanwhile, the logi-
cal foundation of this setting provides a meaningful framework for analyzing causality,
validating scenarios [DCA13], and extending the formalism with other notions such as
knowledge and belief [GBB+06].

3.7 Conclusion

We built atop the groundwork laid in Chapter 2 on representing narrative structure
in linear logic by using the Celf logic programming language to encode models for a
“Shakespearean tragedy” story world, and we showed how proof search algorithmi-
cally generates stories from such a model [MBFC13, MFB14]. We presented a theory
of dependency between partial proof traces that maps onto the idea of narrative simul-
taneity, and we showed two different ways of exploring that partial order structure: the
CelfToGraph visualization tool and the Quiescent Theater Twine game generator.

In the next chapter, we introduce a new linear logic programming language aug-
mented with facilities for interaction and separation of programs into stages for pro-
grammer convenience, transitioning our application domain from narrative generation
to interactive narrative and game prototyping.
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Chapter 4

Ceptre: A Linear Logic Language for
Interactive Programs

4.1 Background

At the writing of this thesis, game designers and developers have a wealth of tools avail-
able for creating executable prototypes. Freely-available engines such as Twine [KA08],
Unity [Hig10], PuzzleScript [Lav13], and Inform 7 [Nel01] provide carefully-crafted in-
terfaces to creating different subdomains of games. On the other hand, to invent inter-
esting, novel mechanics in any of these tools typically requires the use of ill-specified,
general purpose languages: in Twine, manipulating state requires dipping into JavaScript;
in Unity, specifying any interactive behavior requires learning a language such as C# or
JavaScript; Inform 7 contains its own general-purpose imperative, functional, and logic
programming languages; and PuzzleScript simply prevents the author from going out-
side the well-specified 2D tile grid mechanisms.

The concept of operational logics [MWF09], the underlying substrate of meaningful
state-change operations atop which mechanics are built, was recently proposed as a
missing but critical component of game design and analysis. In most prototyping tools,
there is a fixed operational logic (e.g. tile grids and layers in PuzzleScript, or text
command-based navigation of a space in Inform 7) atop which the designer may be
inventive in terms of rules and appearance, but all rules must be formed out of entities
that mean something in the given operational logic (or use a much more complex lan-
guage to subvert that default logic). We lack good specification tools for inventing new
operational logics, or combining elements from several. In particular, many novel sys-
tems of play arise from the investigation of interactive storytelling [MS03], multi-agent
social interaction [MTS+10], and procedurally generated behavior [HZDR11], and no
existing tools make it especially straightforward for a novice developer to codify and
reason about the underlying logics of those systems.

Ceptre is a proposal for an operational-logic-agnostic specification language that
may form the basis of an accessible front-end tool. Specifically, it embodies the fol-
lowing language design goals:
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1. Has a logical foundation (correspondence to proof search) for the sake of clear,
portable, and extensible semantics

2. Is general enough to describe a wide range of operational logics

3. Can describe both conjunctive and disjunctive narrative structure and support
causal reasoning on the basis of that structure

4. Has the potential for accessible front-end tools to be built atop it
In the remainder of this chapter, we explain the features of the language by describ-

ing how to make the story world example from Chapter 3 into an interactive simula-
tion, describe the language in full, and relate it to Celf to provide logical justification.
In Chapter 5, we showcase the ability to support a wide range of operational logics
by providing several example encodings as case studies. To support the “potential for
accessibility” claim, we relate Ceptre to Inform 7 [Nel01], Kodu [Mac11], and Puzzle-
Script [Lav13]. We identify an essential idiomatic core to each of these languages, for-
malize it, and show how it can be expressed in Ceptre. What this work suggests is
that each encoding could be packaged as a separate module or context within Ceptre –
in which a novice designer could work exclusively, while the wider affordances of the
language remain available to extend, combine, or (re)invent such models.

To summarize, the core contributions described in this chapter are (1) progress to-
ward a computational and conceptual framework for creating games in a high-level,
rule-based way without constraint by a particular underlying world logic; and (2) an
account of several existing rule-based design frameworks in terms of this core language.

4.1.1 New Syntax

The following examples will introduce Ceptre through its concrete syntax, which dif-
fers subtly from the Celf notation we used in Chapter 3 for forward-chaining rules. In
particular:

1. Forward-chaining, linear rules of the form A -o {B} are now written A -o B, be-
cause linear transitions are strictly forward-chaining.

2. We introduce the syntax $A -o B as sugar for A -o A * B to reduce the amount of
duplication required for premises that are consumed and re-produced.

For example, the rule do/compliment/private from Chapter 3, which was originally
written

do/compliment/private

: at C L * at C’ L * philia C C’

-o {at C L * at C’ L * philia C C’ * philia C’ C}.

can now be written
do/compliment/private

: $at C L * $at C’ L * $philia C C’ -o philia C’ C.

Additionally, we introduce syntax for declaring types and predicates:
• Type declarations have the form t : type, where t is an identifier chosen by the

programmer for the new type being defined.
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• Predicate and term declarations have form p t1 t2 : X (generalized to an arbi-
trary number of arguments t), where p is the new predicate or term being defined,
each t is the type of an argument to the predicate, and X is either pred, bwd, or a
type t’ previously defined with t’ : type.

• The keywords pred and bwd represent linear resources and persistent facts defined
by backward chaining, respectively.

As an example, we can define a set of colors, the unary natural numbers, and a
predicate relating colors to numbers, as follows:

color : type.

red : color.

blue : color.

nat : type.

zero : nat.

succ nat : nat.

count color nat : pred.

Deeper language differences will be explained in the next sections, and the language
is summarized comprehensively in Section 4.5.

4.2 Stages and Interactivity

Ceptre is, at its core, a restriction of Celf to forward-chaining linear rules (and, secon-
darily, backward-chaining persistent rules). The most notable addition is that Ceptre
offers a mechanism to replace the default random nondeterminism with a choice from
an external source, e.g. standard input. The syntax for adding interaction is to wrap all
of the rules in a stage, or a named set of rules, then add an #interactive directive.

stage allrules = {

do/compliment private : [...]

[...]

}

#interactive allrules.

Annotating the stage with this directive means that every time at least one transition
(rule applied to ground term arguments) can fire, all applicable transitions are shown as
choices printed to standard output, and a choice between them may be entered through
standard input.

We also include a #trace directive, similar to Celf’s, that requires an initial stage and
an initial context (rather than an initial predicate). For instance, the initial context for
the story world example would be written as

context init =

{ at romeo town, at montague mon_house, at capulet cap_house,

at mercutio town, at nurse cap_house, at juliet town,
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at tybalt town, at apothecary town,

anger montague capulet, anger capulet montague,

anger tybalt romeo, anger capulet romeo,

anger montague tybalt,

likes mercutio romeo, likes romeo mercutio,

likes montague romeo, likes capulet juliet,

has tybalt weapon, has romeo weapon, has apothecary weapon }.

And we invoke the program starting with the allrules stage and the initial state
init with the directive trace _ init allrules. (The second argument is a numeric
bound on the number of proof steps to take, or _ for no bound.)

Upon running this program, a user is first prompted with these choices, correspond-
ing to all rules that apply in the initial state:

0: (do/insult/witnessed tybalt town romeo mercutio)

1: (do/insult/private tybalt town romeo)

2: (do/compliment/witnessed mercutio town romeo tybalt)

3: (do/compliment/private romeo town mercutio)

4: (do/compliment/private mercutio town romeo)

5: (do/formOpinion/dislike mercutio town juliet)

6: (do/formOpinion/dislike juliet town mercutio)

7: (do/formOpinion/like mercutio town juliet)

8: (do/formOpinion/like juliet town mercutio)

9: (do/travelTo montague romeo town mon_house)

10: (do/travelTo capulet juliet town cap_house)

11: (do/travelTo juliet nurse cap_house town)

12: (do/travelTo nurse juliet town cap_house)

By default, these choices are printed to the screen, followed by a prompt for a nu-
meric selection. New choices are generated based on the prior selection and its change
to the state. The state as it evolves is written to a log file, which can be read in a separate
text buffer to inform player decisions. 1

As an interactive storytelling system, this program has some peculiar features: for
instance, it appears that we give the player control over not just characters’ actions
but also their reactions, which we would prefer to think of as involuntary, such as the
do/formOpinion rules. We would like for some of these rules to run automatically with-
out player intervention. In our next iteration of the program, we will use stages to
transfer control between two components, an interactive one and a programmatic one:
essentially, the player “takes turns” with the computer to build the story.

Stages compute until quiescence, at which point control may be transfered to another
stage. We use outer-level rules of the form

1Ideally, these input and output mechanisms would be hooked up to a more intelligible, customizable
user interface. We have attempted to make the implementation modular so that these mechanisms may
be replaced in future work. One simple candidate would be to replace the transition print-outs with the
legible scene descriptions described in Section 3.5.
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qui * stage S [* ...] -o stage S’ [* ...].

where [* ...] is meta-syntax denoting any additional tensored-together resources.
The rule denotes, “At quiescence, if stage S is active (and potentially some additional
state), transition to stage S ′ (and potentially remove/add some additional state).” The
only new piece of syntax here is the qui predicate, which is a special token denoting
quiescence of the program. All outer-level rules must have this form: upon quiescence,
replace one stage resource with another (and possibly delete or add some additional
state).

Concretely, the structure of our new program will be:

stage act = {

% User-selected rules.

}

qui * stage act -o stage react.

stage react = {

% Involuntary, reactive rules.

}

qui * stage react -o stage act.

In this formulation of the game, the player may act arbitrarily many times before
reactions are calculated (and in fact must do so until quiescence of the act stage). We
can slightly modify the program to enjoy a turn-taking idiom instead, offering one turn
of input between potentially many steps of reactive computation:

tok : pred.

stage play = {

do/travelTo

: tok * $likes C C’ * $at C’ L’ * at C L * accessible L L’

-o at C L’.

...

}

#interactive play.

qui * stage play -o stage auto.

stage auto = {

...

}

qui * stage auto -o stage play * tok.

Each rule in the stage is edited to accept one additional premise tok (for “token”),
which is generated whenever control is transfered to the stage. Turn tokens may be
introduced to the reactive side of the program as well, if we wish to carry out a bounded
number of reactive steps before returning control to the player. An example of this
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interface given by running Ceptre from a command prompt (and separately tracking
the log file that depicts the evolving context) can be seen in Figure 4.1.

Figure 4.1: Screenshots of command-line interaction with Ceptre.
Initial prompt and context:

Prompt (left) and transition selection trace and context (right) after making one
interactive selection:
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At this point, the simulation may be fine-tuned to create the interactive experience
desired by the author. For example, some rules may be modified not to require certain
emotional states as premises, instead allowing agency on the part of the player to play
that decision-making role. Thus concludes our first example of modeling an interactive,
generative scenario in Ceptre.

4.3 Staged Logic Programming

Stages fundamentally give us the ability to program with quiescence. Above we sketched
an example of their use for alternating automatic and human-mediated computation,
but they can also be used for purely automatic computations that pure linear logic pro-
gramming cannot express. For example, suppose our initial context is a bin of blue and
red balls, and we want to write a program that exchanges blue for red, red for blue, and
finally counts the number of balls of each color. Conceptually, there are just three rules,

red-to-blue : ball red -o ball blue.

blue-to-red : ball blue -o ball red.

count : count Color Number * ball color -o count Color (succ Number).

...but these rules interfere nondeterministically, such that computations are possible
that produce the wrong answer, such as those that convert all red balls to blue and
then count the blue balls before finishing their conversion. We can write this program
correctly using three stages (and a temporary predicate):

temp : pred.

stage mark_blues = {

blue-to-temp

: ball blue -o temp.

}

do/flip_reds : qui * stage mark_blues -o stage flip_reds.

stage flip_reds = {

red-to-blue

: ball red -o ball blue.

}

do/flip_temps : qui * stage flip_reds -o stage flip_temps.

stage flip_temps = {

temp-to-blue

: temp -o ball red.

}

do/count : qui * stage flip_temps -o stage count.

stage count = {

count_a_ball

: count Color Number * ball Color
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-o count Color (succ Number).

}

By separating the computation into stages, such that certain rules are only accessible
once others have quiesced, we in effect create an ordering among the rules and permit
a greater range of computations to be expressed.

Next, we illustrate how to program a few common idioms using stages. Linear logic
programming without stages has a number of limitations as a usable language. For in-
stance, it can only refer to specific, positive instances of predicates, and rules may not be
imbued with any particular relative priority ordering. While those limitations are a nec-
essary facet of the direct correspondence with logic, stages break that correspondence
at an abstraction boundary that makes certain conveniences possible while maintaining
the ability to reason about a program logically within a given stage.

4.3.1 Rule Ordering

By default, rules within a stage are not ordered with respect to one another: when mul-
tiple rules apply to a state, there is no way to designate which should be prioritized.
We deliberately do not introduce a primitive rule-ordering construct because it takes
away the locality of reasoning about a program: one rule’s meaning would depend on
the meaning of all rules with higher priority, rather than being understandable in iso-
lation. Rule priorities in general are anti-compositional in the sense that global program
meaning cannot be broken down into smaller parts. However, with stages as a program
structuring tool, we can actually recover rule ordering in a way that, in some sense,
reveals its complexity.

Let us call an ordered stage one whose rules are given priority corresponding to their
order in the program: only when rule i fails will rule i + 1 be considered. We can
use stages to encode this ordering by placing each rule in its own stage, transfering
control to the next rule’s stage only when a certain premise has not been discharged.
For instance, suppose we wanted to represent an ordered stage of the form

ordered stage OS = {

r1 : S1 -o S1’.

r2 : S2 -o S2’.

...

rn : Sn -o Sn’.

}

qui * stage OS -o stage Next.

We can elaborate it as the following multi-stage program, using a similar idiom to
the one we used to encode negation, adding to each rule a premise no to represent
negative information (i.e. failure of any prior rule to take effect) and a consequent yes
to represent success of a rule:

stage OS1 = {

r1 : no * S1 -o S1’ * yes.

}
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qui * stage OS1 * no -o stage OS2.

qui * stage OS1 * yes -o stage OS1 * no.

stage OS2 = {

r2 : no * S2 -o S2’ * yes.

}

qui * stage OS1 * no -o stage OS3.

qui * stage OS1 * yes -o stage OS1 * no.

[...]

stage OSn = {

rn : no * Sn -o Sn’ * yes.

}

qui * stage OSn * no -o stage Next.

qui * stage OSn * yes -o stage OS1 * no.

This elaboration suggests that adding syntactic sugar to the language for designating
a given stage as “ordered” would do little harm due to stages themselves providing a
compositional unit of meaning, which un-ordered stages retain the property of local
reasoning on rules.

4.3.2 Negation

To encode negation (absence) of a predicate p, which we might otherwise write not p,
we can seed a stage with a distinct atom that is consumed by a rule only when p is
present, thereby turning a negative check into a positive one. For example, to encode
not p -o q, we do the following:

p : pred.

q : pred.

no_p_yet : pred.

notp : pred.

stage check_p = {

find : no_p_yet * p -o p.

}.

qui * stage check_p * no_p_yet -o stage do_q * notp.

qui * stage check_p * $p -o stage done.

stage do_q = {

rule : notp -o q.

}

stage done = {}

context ff = {no_p_yet}.

context tt = {no_p_yet, p}.
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#trace _ check_p ff.

#trace _ check_p tt.

The check_p stage consumes the no_p_yet predicate if p is in fact present, so that
the rules that fire upon that stage’s quiescence can branch, adding notp to the context if
no_p_yet was never consumed.

4.3.3 Finite Set Comprehension

A common pattern that comes up in logic programming over indexed predicates is to
do something once per index, when these are drawn from a finite set. For instance, in
the story world, rather than presenting two rules for an interaction corresponding to
whether it is observed or not— one which involves another party in the same room
and one that does not— we might like to implement a broadcast action: once an action
takes place, generate some fact that propagates to every character in the same room. In
general, since types like character can be infinite, such a feature would not make sense,
but we can implement it in a limited way with stages. In particular, we have linear
resources corresponding to each character in a unique way, via the at predicate. So we
can implement a two-stage program that first replaces all relevant instances of these
resources with some new predicate ranging over the same indices, then replaces that
predicate with the old one plus some additional information.

This trick is implemented below.
message : type.

says character message : pred.

knows character message : pred.

broadcast location message : pred.

stage say = {

say : says C M * $at C L -o broadcast L M.

}

qui * stage say -o stage hear.

restore character location : pred.

stage hear = {

hear : $broadcast L M * at C L -o knows C M * restore C L.

}

qui * stage hear -o stage restore.

stage restore = {

restore : restore C L -o at C L.

}

alice : character.

bob : character.
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charlie : character.

hall : location.

foyer : location.

hi : message.

context init =

{at alice hall, at bob hall, at charlie foyer, says alice hi}.

#trace _ say init.

We note that this trick is particularly inefficient and unwieldy compared to some-
thing like a form of quantification or direct set comprehension and suggest that a fu-
ture version of the language might include a primitive, or at least syntactic sugar, for
this idiom. The Meld programming language (and its linear-logic based analog, Lin-
ear Meld) includes a similar primitive for writing logic programs over graph struc-
tures [ARLG+09, CRGP14].

4.3.4 Summarization

Finally, we illustrate a use of stages to transform a complex Celf program, which uses
many predicates to represent invariants for essentially tracking stage information, into
a much simpler staged logic program. We characterize this transformation as a form
of summarization, or collecting information to quiescence for the sake of working with
summarized information (such as a total quantity) in the next stage.

For example, in the use of linear logic to implement voting protocols [DS12], even
the simplest “first-past-the-post” protocol has two stages: total all the ballots, the find
the candidate with the maximum number. In the Celf implementation, stage informa-
tion is tracked with the predicates count-ballots and determine-max. They take care
only to transfer control from one stage to the next by maintaining a counter that, by in-
variant, must always equal the number of remaining (uncounted) ballots. Then, when
the counter reaches zero, the predicate corresponding to the next stage is introduced.
Below are the predicates and rules in this original Celf program.

uncounted-ballot : candidate -> type.

hopeful : candidate -> nat -> type.

defeated : candidate -> type.

elected : candidate -> type.

count-ballots : nat -> nat -> type.

determine-max : nat -> type.

%% FPTP axioms.

count/run : count-ballots (s U) H *

uncounted-ballot C *

hopeful C N
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-o {hopeful C (s N) *

count-ballots U H}.

count/done : count-ballots z H

-o {determine-max H}.

max/run : determine-max (s H) *

hopeful C N *

hopeful C’ N’ *

!nat-lesseq N’ N

-o {hopeful C N *

!defeated C’ *

determine-max H}.

max/done : determine-max (s z) *

hopeful C N

-o {!elected C}.

The programmer carefully maintains the invariant that the first index of count-ballots U H

matches the number of uncounted-ballot instances in the program, and its second in-
dex matches the number of hopeful instances in the program. In Ceptre, this invariant
is replaced by the ability to program with quiescence by stratification into stages.

stage count = {

count_ballot : ballot C * hopeful C N -o hopeful C (s N).

}

- : qui * stage count -o stage pick * max z.

stage pick = {

increase : max N * hopeful C N’ * lt N N’

-o hopeful C N’ * max N’.

eliminate : max N * hopeful C N’ * lt N’ N

-o max N * !defeated C.

}

- : qui * stage pick * hopeful C _ -o !elected C.

A full code listing for this example is available in Appendix C.1.

4.4 Sensing and Acting Predicates

Interactive stages accept input at every rule selection step in a given stage, allowing
the latent nondeterminism of the program to be mediated by the actor’s choices. By
default, all program steps that are logically possible in the model are revealed to the
external source—no more and no less. This design corresponds to the branching story in-
terpretation of linear logic programs as described by Bosser [BCC10], and for interactive
fiction, it can be seen as a sort of hypertext realization of a story model.
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However, sometimes it is not desirable to expose every available choice to the player.
In many instances of parser interactive fiction, for example, a large aspect of play is in
discovering the space of reasonable actions with which to navigate the game—a mode
of play afforded by its user interface, a simple command prompt at which the player
types short imperative phrases.

To allow for a larger space of interaction models such as this one, we borrow an
abstraction from the Meld language [ARLG+09]: sensing and acting predicates. These
predicates mediate input and output, respectively, to or from the runtime environment.

In our story-world model, we can declare a new term for actions and a new pred-
icate do indicating player intent: do <verb>, where verb is an index type enumerated
by the program and corresponding to all player-controlled commands. Now we add
this predicate, indexed by the appropriate verb, on the left-hand side of every rule; for
example

do/murder

: do (murder C C’) *

anger C C’ * anger C C’ * anger C C’ * anger C C’ *

$at C L * at C’ L * $has C weapon

-o !dead C’.

Action predicates may be used for output: for example, reporting that this rule suc-
cessfully fired might involve a new predicate report status verb : action and the
rule could be rewritten as

do/murder : ... -o !dead C’ * report success (murder C C’).

The implementation of the action predicate is specified by an extensible part of the
language runtime and is not part of the language definition. For instance, the report
predicate could correspond to printing a particular string to standard output.

Finally, in order to coordinate the two halves of the program—one that waits for
player input, and the other to process that input—we divide the program into stages as
follows:

stage process_verb = {

rulename : do A * ...

-o ... * report success A.

...

}

qui * stage process_verb -o

stage accept_verb * wait.

stage accept_verb = {

listen : wait * input Verb -o do Verb.

}

% loop until verb is successfully received

qui * stage accept_verb * wait

-o stage accept_verb * wait.
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qui * stage accept_verb * $do Verb

-o stage process_verb.

To tie the predicate do to a sensor for player commands and the predicate report to
an action for printing command results, we provide corresponding directives:

#sensor input _BUILTIN_IF_COMMAND.

#action report _BUILTIN_IF_REPORT.

Reading the program rules in order, they say that when the process stage has qui-
esced, move to the accept stage along with a wait token. Then, if the accept stage fin-
ishes without consuming the wait token, return to the accept stage. Finally, if the accept
stage quiesces and emits a verb intent (do Verb), go into the process stage and process
the verb. In other words, this program implements a simple blocking input loop.

Note that we are not guaranteed that every do predicate issued by the player will
result in a successful action. A character won’t be able to murder someone unless they
also have the required quantity of anger, for example. This problem of coverage of the
possible action space comes up in all rule-based action systems, and it can be handled
in several possible ways:

1. Total coverage: Require (and check) that the program satisfy coverage, i.e. that for
every action A there is a rule that will consume do A.

2. Failure feedback: Check after-the-fact whether the action was consumed in rule pro-
cessing, via quiescence rules, and enter a second “failure” pass, which then may
offer feedback to the player about the reason for failure. This approach approxi-
mates Inform 7’s rule processing, which we discuss further in Section 4.6.3.

3. Intent handling: Model player input not as effectful actions but effectless intents,
which are then pre-processed to determine the effects that really take place, all of
which should be expected to succeed. This method more closely matches Puzzle-
Script’s approach, discussed in Section 4.6.2.

Failure feedback and intent handling can both be implemented via the stage system;
total coverage would require a meta-program check that we believe would be feasible
to implement, but is not currently part of Ceptre’s design.

4.5 Language Definition

We have now established Ceptre’s mechanisms—predicates, rules, sensing and acting
predicates, and stages—through examples. In this section we give a definition of the
language semantics, relating it to proof search in linear logic via a compilation to Celf.

We have three different base kinds: type for declaring new forms of data (such as
characters, locations, numbers, and lists), pred for declaring predicates that may be gen-
erated by forward-chaining rules, and bwd for declaring predicates that may be defined
by backward-chaining rules (and referred to in the premises of forward-chaining rules).
All of these simply get compiled to type in the Celf interpretation and are used purely
for the syntactic restrictions we wish to impose. Grammatically the kinds are specified
as follows:
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P ::= pred | bwd | τ → P

K ::= type | P

The abstract syntax a : τ1 → . . . τn → pred stands for the concrete syntax a t1 ... tn : pred

(where ti is the concrete syntax corresponding to τi), and similarly for bwd predicates
and terms (described below).

All constant declarations of forward-chaining prediates, backward-chaining predi-
cates, and types will be denoted with the metavariable a.

We have a simple term language that allows the definition of inductively defined
types in the type kind. Term constants are denoted with the metavariable c.

τ ::= a | τ → τ

t ::= c | t c

So for example, we can define natural numbers and lists:
nat : type.

z : nat.

s nat : nat.

list : type.

nil : list.

cons nat list : list.

In Ceptre syntax,
cons nat list : list

gets interpreted as
cons : nat -> list -> list

Backward chaining rules take the following form:

p ::= a t . . . t

B ::= p | p→ B

We will typically write p→ q in ASCII using the backwards-arrow notation q <- p.
So for example, a declaration of natural number addition looks like:

plus nat nat nat : bwd.

plus/z : plus z N N.

plus/s : plus (s N) M (s P)

<- plus N M P.

This notation is similar to how such a predicate would look in Prolog or LF.
Linear, forward chaining rules A take the following form:

A ::= S ( S | Πx:τ.A

S ::= 1 | p | S ⊗ S
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In concrete syntax, the tensor symbol ⊗ is spelled *,( is spelled -o, and 1 is spelled
(). All capitalized identifiers are interpreted as logic variables Π-quantified over at
the outside of the rule. For instance, ballot C * hopeful C N -o hopeful C (s N)

is written formally as Πc:cand.Πn:nat.ballot c⊗ hopeful c n( hopeful c (s n).
Stage contents Σ and stage declarations are defined as:

Σ ::= · | Σ, r : A

stagedecl ::= stage φ = {Σ}

Linking rules L are the only forward-chaining rules that can appear outside of a
stage, and they obey the grammar

L ::= qui⊗ stage φ⊗ S ( S ′ ⊗ stage φ′

where qui is a distinguished predicate for quiescence.
Linear contexts ∆ and context declarations are defined as:

∆ ::= · | ∆, x : S

ctxdecl ::= context C = {∆}

With the syntax declared so far, which includes stage declarations but no means of
transfering control between stages, we can take a program to be a collection of declara-
tions

Ξ ::= · | Ξ, c : τ | Ξ, a : K | Ξ, b : B | Ξ, stagedecl | Ξ, ctxdecl | Ξ, r : L

We can now give meaning to a small example in terms of CLF. The following exam-
ple consists of two stages, one that replaces all instances of red with blue and one that
counts the number of red and blue instances.

red : type.

blue : type.

nat : type.

z : nat.

s nat : nat.

rcount nat : pred.

bcount nat : pred.

context init = {rcount z, bcount z}.

stage change = {

change : red -o blue.

}
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stage count = {

count_red : rcount N * red -o {rcount (s N)}.

count_blue : bcount N * blue -o {bcount (s N)}.

}

The translation of this example into CLF works simply by stripping out the stage
declarations and adding a stage-tracking predicate to each side of every rule:

st : type.

change : st.

count : st.

stage : st -> type.

% program-specific type families.

% stage "change"

change-change : stage change * red -o {stage change * blue}.

% stage "count"

count-rcount :

stage count * rcount N * red

-o {rcount (s N) * stage count}.

count-bcount

: stage count * bcount N * blue

-o {bcount (s N) * stage count}.

As written, the two subprograms are isolated, and we have not yet provided a top-
level to determine which stage starts or when it is appropriate to change stages. In
general, we want the ability to program behavior at quiescence. In Ceptre source pro-
grams, we have a runtime-generated predicate qui, which pops into existence at global
quiescence of the program, allowing us to write global rules like

qui * stage change -o stage count.

We want to give the programmer access to such a predicate in a controlled way—it
only makes sense on the left of a transition, for instance, and we expect rules using it to
maintain an invariant pertaining to the stage predicate: we want to always consume a
stage token and replace it with another one. That is, exactly one stage is always active.
This property is enforced by the grammar for linking rules, i.e.

L ::= qui⊗ stage φ⊗ S ( S ′ ⊗ stage φ′

The quiescence token qui does not exist in Celf, but a particular quirk of the seman-
tics of the forward chaining monad {A} turns out to give us the behavior we need: Celf,
when searching for a proof of A ( {B}, ignores the goal proposition B until quies-
cence. Thus Celf actually has the exact same crack in its correspondence with logical
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provability that Ceptre has: valid proofs of A ` {B} in linear logic that refer to the
right-hand side of the sequent before all left rules have been tried will not be discovered
by Celf. By mixing forward- and backward-chaining linear rules in Celf, therefore, we
can implement Ceptre’s semantics.

Specifically, a backward-chaining rule of the form

r : (S ( {S ′})( A

can be operationally described as populating the context with S, running all forward-
chaining rules to quiescence, and then searching for a proof of S ′. As soon as the higher-
order premise is introduced into the context and focussed on, we enter into a state with
a monadic goal, which means we postpone solving it until no more work can be done
using monadic (forward-chaining) rules. If the only rules for which we care about quies-
cence are the monadic/forward-chaining ones, then this gives us exactly the quiescence
meaning we are after.

This scheme suggests that we can string stages together at quiescence in the follow-
ing way:
• For each stage φ, designate a type run φ

• Define run φ with a backward-chaining rule with a subgoal of the form stage φ(
{run φ′}, where φ′ is the stage to run at φ’s quiescence.

To be more concrete, the previous example with the linking rule
qui * stage change -o {stage count}.

can be compiled to Celf as two rules:
r1 : run change

o- (stage change -o {run count}).

r2 : run count

o- stage change

o- (stage count -o {stage count * rcount R * bcount B}).

So far, this only demonstrates how to transfer control unilaterally from one stage to
the next. We would also like to be able to “match” the state at quiescence and specify
different behavior for different results; for example, in a REPL, we would like to be able
to fail back to the prompt (the “read” stage) on unparseable input, rather than moving
on to the evaluation stage.

This branching pattern can be written using the form of rules already described; we
just need to write multiple rules that fire at quiescence of the same stage.

Thus we give the following general compilation form for linking rules:
For every P for which there are rules of the form
qui * stage P * S_i -o {stage P_i’ * S_i’}

add rules
- : run P o- (stage P -o {done P})

- : done P

o- {S_1 * (S_1’ -o run P_1’)}.

...
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- : done P

o- {S_n * (S_n’ -o run P_n’)}.

With this interpretation we can fully describe the expressive structure of multi-stage
programs, including looping and branching patterns.

The remainder of the language semantics is described by the linear logic proof search
operationalization given in Chapter 3. The typing rules for terms and predicates are
standard, and are fully described in Appendix B. This concludes our definition of the
language semantics.

4.6 Interpreting Other Systems

Ceptre can be understood as an underlying framework in which more specialized, sim-
pler authoring tools can be embedded. To illustrate its generality, we show how to re-
cover the central idioms of three successful rule-based, operational-logic-specific tools:
Kodu, PuzzleScript, and Inform 7. (See Section 4.1 for citations of publications and
documentation for these tools.)

4.6.1 Kodu

Kodu is a rule-based programming language designed for children to make movement-
based games on an Xbox 360. The language takes inspiration from behavior-based
robotics, which closely reflects Ceptre’s “sensing and acting” model described above:
the language includes sensors, filters, selectors, actuators, and modifiers. A rule is simply
one element of each of these categories, some of which are optional, associated with
a specific game entity (such as the player character). For example, a rule directing an
entity to move quickly toward green objects is:

see - green - move - towards - quickly

In this rule, see is a sensor, green is a filter, move is an actuator, toward is a selector, and
quickly is a modifier (according to the formal grammar given by Stolee [Sto10]).

Interpreting Kodu programs in Ceptre is essentially a matter of interpreting sensors
and selectors as sensing predicates, actuators as acting predicates, filters as ordinary
predicates, and all the rest as term-level arguments to these predicates. Additionally,
instead of explicitly associating rules with a single actor, we index each predicate with
an actor term. Thus the above rule can be written in Ceptre as follows:

see X Y * $property Y green -o move X Y toward quickly.

The type header and runtime bindings associated with the predicates in this rule are
as follows:

see entity entity : pred.

property entity filter : pred.

move entity entity selector modifier : pred.

#sensor see _BUILTIN_KODU_SEE.

#action move _BUILTIN_KODU_MOVE.
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One of the observations one can make in the collections Kodu examples presented
in papers is that, with certain exceptions, they come in pairs: a rule whose actuator is
movement, for example, can be thought of as connecting to (or causing) a rule whose
sensor involves location, such as bump, which triggers when the actor is right next to
something described by the filter. For instance, an actor that moves toward green things
and eats them could be modeled by pairing the above rule with

bump - green - eat

Or in Ceptre:
bump X Y * $color Y green -o eat X Y.

One of the things that gets in the way of reasoning about these specifications in Kodu
is that these causal relationships are not explicit in the rule syntax: it’s not obvious that
actuating move toward would eventually result in a bump. That fact only exists within
the implementation of the sensors and actuators, which are black boxes with respect to
the programmer’s view. They transform the program constructs into a change to the
underlying implementation, then produce new program constructs. In Ceptre we can
use this same mechanism by passing the state update to the runtime through sensing
and acting predicates.

But on the other hand, we might find it more informative to elaborate some of the
movement predicates as a logic program. The following code could take the place of
the builtin declarations for bump, see, and move:

sense/bump : $loc X L * $loc Y L’ * !adj L L’ -o bump X Y.

sense/see : $loc X L * $loc Y L’ * !visible L L’ -o see X Y.

act/eat : eat X Y * loc X L * loc Y L’ -o loc X L’.

act/move_t : move toward X Y * loc X L * $loc Y L’ *

!adj L Ngh * !dist L L’ D1 * !dist Ngh L’ D2 *

!lt D2 D1

-o loc X Ngh.

act/move_a : move away X Y * loc X Y * $loc Y L’ *

!adj L Ngh * !dist L L’ D1 * !dist Ngh L’ D2 *

!lt D1 D2

-o loc X Ngh.

This program appeals to a number of geometric constructs such as adj for adjacency
of locations, visible for visibility between locations, and dist for the distance between
locations. Writing the rules this way forces us to expose more assumptions, such as the
discretizability of game space, which are not the only sensible model for the rules given.
This attempt to explicate the “black box” processes can help us understand the relation-
ships between sets of rules in terms of the predicates that they consume and produce,
and it can also reveal the underlying operational logic, exposing it to the possibility of
modification.

Extensions to Kodu have investigated its potential to support richer operational log-
ics. For example, Fristoe et al. [FDM+11] investigated the possibility of enabling social
simulation mechanics by incorporating emotional state and dialogue sensors and actu-
ators into the system. We note that these modifications are trivial to integrate in Ceptre
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and require only minimal extensions to the runtime processes, since the logic program-
ming environment already supports the maintenance of state such as designations of
friendship and fear between entities. In contrast, formal definitions of Kodu such as
that given by Stolee [Sto10] attempt to encapsulate all of the language constructs at the
same, hard-coded level, failing to distinguish the essential language structure (condi-
tions and actions) from the highly contingent domain constructs (such as scoring and
shooting).

One of Kodu’s program structuring tools is the notions of pages, or different sets
of rules that can be switched between, which closely resembles Ceptre’s stages. Every
rule belongs to a page, and a rule can trigger a “flip” to a different page. While Ceptre
rules don’t include the ability to change stages prior to program quiescence, the way we
model sensing and acting means that the program will quiesce after every actor takes
its turn, introducing an opportunity for a page-turning rule. That is, the Kodu rule
belonging to page p

Condition Action switch page PageNumber

can be interpreted by generating a unique token uniqtok as a consequence of the
corresponding rule, and changing pages at quiescence in the presence of that token:

stage p = {

...

|Condition| -o |Action| * uniqtok

}

qui * stage p * uniqtok -o stage |PageNumber|

where |-| is the mapping from Kodu construct to Ceptre predicate outlined above.

4.6.2 PuzzleScript

PuzzleScript is a browser-based scripting language created by independent game cre-
ator Stephen Lavelle. Its target domain is 2D, tile-based puzzle games, whose rules
transform sections of tiles related through the geometry of the grid, such as adjacency
and row or column alignment.

The “hello world” example of PuzzleScript is Sokoban, in which the player controls
an avatar that can push crates into empty spaces and typically advances by pushing
crates onto targets. Blocks cannot pass through walls or other crates, nor can the player.
It is codified in PuzzleScript through a single rule:

[> player | crate] -> [> player | > crate]

The > symbol represents a movement intent (in the present author’s language, not
Lavelle’s) and the rule can be seen as propagating the player’s intent (expressed through
pressing a movement control key) on to a crate immediately adjacent in the intended
direction. (The rule is generic over directions).

The avatar’s free movement through empty space, and correspondingly, the disal-
lowing of passage through blocks and walls, are codified not as rules but in the interpre-
tation of collision layers over tile maps: entities on distinct layers may be superimposed
and thus share a tile, but entities on the same layer cannot share a tile.
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================

COLLISIONLAYERS

================

Background

Target

Player, Wall, Crate

By default, movement intents result in movement, as long as they are not blocked
by the presence of some entity in the same layer.

Putting all these ideas together, the game can be codified in Ceptre as follows:
at layer location entity intention : pred.

adjacent location direction location : pred.

% [...]

% This stage contains the rules that PuzzleScript authors would write.

stage processIntentions = {

% propagate player intention to crate

push_crate :

turn *

$at Layer Loc player (go Dir) * adjacent Loc Dir Loc’

* at Layer Loc’ crate _

-o at Layer Loc’ crate (go Dir).

}

qui * stage processIntentions -o stage carryOutIntentions.

% resolve intentions in a nondeterministic order.

stage carryOutIntentions = {

move :

at Layer L Ent (go Dir) * adjacent L Dir L’

* empty Layer L’ -o at Layer L’ Ent stationary * empty Layer L.

}

qui * stage carryOutIntentions -o stage cleanup.

% [...]

The full code listing for a runnable Sokoban implementation in Ceptre is found in
Appendix C.2.

Next, we illustrate one of PuzzleScript’s “intermediate” examples, a game called
Lime Rick in which the player navigates a caterpillar-like avatar to targets. The avatar
begins as a single-tile head, but as it moves, it leaves behind a trail of solid entities. The
head is subject to gravity, and when it falls it also leaves behind such a trail. It can reach
upward, but only three tiles at a time. See Figure 4.2 for a screenshot depicting a typical
intermediate game state via Lime Rick’s mechanics.

The game is available in PuzzleScript’s built-in example collection through the web-
based editor. 2. The rules given there are:

2To view the code and interact with the game, go to http://www.puzzlescript.net/editor.html
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Figure 4.2: A level in Lime Rick after several moves.
The avatar head is orange, indicating the current upward reach of two tiles.

UP [ UP PlayerHead4 ] -> [ PlayerHead4 ]

UP [ UP PlayerHead3 | No Obstacle ] -> [ PlayerBodyV | PlayerHead4 ] sfx1

UP [ UP PlayerHead2 | No Obstacle ] -> [ PlayerBodyV | PlayerHead3 ] sfx0

UP [ UP PlayerHead1 | No Obstacle ] -> [ PlayerBodyV | PlayerHead2 ] sfx0

Horizontal [ > Player | Crate | No Obstacle ]

-> [ PlayerBodyH | PlayerHead1 | Crate ] sfx2

Horizontal [ > Player | No Obstacle ] -> [ PlayerBodyH | PlayerHead1 ] sfx2

[ Player Apple ] [ PlayerBody ] -> [ Player Apple ] [ ]

[ Player Apple ] -> [ Player ]

[ > Player ] -> [ Player ]

DOWN [ Player | No Obstacle ] -> [ PlayerBodyV | PlayerHead1 ]

DOWN [ Crate | No Obstacle ] -> [ | Crate ]

We implement these rules in Ceptre using direct movement manipulation, rather

and select “Lime Rick” from the “Load Example” menu
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than intentions, as it is done in the PuzzleScript implementation as well. For brevity we
omit the stage structure of this example.

move/up/1 : move up * at L (player_head red)

-o at L (player_head red).

move/up/2 : move up * at L (player_head orange) * adj L up L’

* empty L’

-o at L player_body * at L’ (player_head red).

move/up/3 : move up * at L (player_head yellow) * adj L up L’

* empty L’

-o at L player_body * at L’ (player_head orange).

move/up/4 : move up * at L (player_head lime) * adj L up L’

* empty L’

-o at L player_body * at L’ (player_head yellow).

move/r : move right * at L (player_head C) * adj L right L’

* empty L’

-o at L player_body * at L’ (player_head lime).

% similarly move left

gravity : at L (player_head C) * adj L down L’ * empty L’

-o at L player_body * at L’ (player_head C).

This example illustrates how Ceptre enables codifying “mechanics” in the sense of
player-triggerable rules at the same level as internal game logic rules, such as grav-
ity, with the only difference being that the rule for gravity does not consume a player-
induced sensing predicate.

4.6.3 Featherweight Inform 7

Our final example is a boiled-down (“featherweight”) version of the Inform 7 language
for creating command-based interactive fiction (referred to as “Parser IF” by hobbyists).
The language was designed to support authoring of works inspired by those released
by Infocom in the 1980s, and accordingly it supports several verbs common to that
genre, such as looking around, examining an object, taking an object, moving in cardi-
nal directions, speaking to non-player characters, and inspecting one’s inventory (see
Montfort [Mon05] for a description of these games’ conventions). Items in one’s inven-
tory often had game-specific verbs associated with them, such as “wield” or “attack
[someone] with” a weapon, or “drink” a potion. In some cases, entities have their own
internal state, such as a door being open or closed; entity-specific verbs like “open” and
“close” affect this state. Inform 7 supports a large library of common verbs and entity
types natively, and it also provides authors with mechanisms for creating new ones.

In the present author’s experience, a great deal of Inform 7’s power comes from
the tremendous library of defaults, as well as the great care it takes to provide authors
with options for seamless natural language processing and generation as well as other
aspects of player experience. Although we recognize the importance of sensible defaults
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and polished aesthetics, we do not claim that Ceptre can capture these aspects of the
tool. We instead describe a minimal target language capable of representing the range
of verbs described above, purely in terms of the underlying world model.

Even ignoring the substantial natural language tooling, there is still quite a bit of
complexity in faithfully describing Inform 7’s rule processing pipeline, as might be in-
ferred by a glance at its diagram in Figure 4.3. As before, the most subtle part is han-
dling failure: how should the engine respond when the player types a command that
fails to apply in the current world state? The answer will depend on what sort of failure
we mean.

In parser IF, one form of failure is a parse error. That is, before we can determine
whether a command is applicable, we need to determine whether it is sensible. We punt
this form of failure to the implementation of the do sensing predicate, which is indexed
by an abstract action, already in the form that our program can make sense of.

First we will give a type header for the world entities. Aside from verbs, another
form of sensing predicate is visibility, which could be implemented in terms of the
player’s location relative to an object, the open or closed states of containers, darkness,
and so on. We choose to leave it abstract to allow for variety in its implementation.
We also include an action predicate called success for reporting the consequences of a
player’s action.

visible object : sense.

do verb : sense.

success verb message : action.

portable object : predicate.

at object location : predicate.

description object message : predicate.

adjacent object direction object : predicate.

% rooms are objects

Now we can give some verb implementations, assuming success:
stage DoVerbs = {

do/take : do (take Thing) * visible Thing

* $portable Thing * at Thing Location

-o at Thing player_inventory * success (take Thing) taken.

do/look : do look * $at player Room

* $description Room Description

-o success look Description.

do/examine/visible

: do (examine Thing) * $visible Thing

* $description Thing Description

-o success (examine Thing) Description.

do/examine/inventory

: do (examine Thing) * $at Thing player_inventory

* $description Thing Description

-o success (examine Thing) Description.

do/go : do (go Direction) * at player Room

* $adjacent Room Direction Room’ * $description Room’ Desc
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Figure 4.3: Inform 7 Action Processing Diagram
From http://inform7.com/learn/documents/Rules%20Chart.pdf.
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-o at player Room’ * success (go Direction) Desc.

}

Some of the above rules should fail if certain circumstances apply. We implement
those early failures as a stage that takes place before doVerbs (and introduce another
action predicate for failure):

stage PreCheck = {

check/take/already : do (take Thing) * at Thing player inventory

-o fail (take Thing) alreadyHave.

check/take/fixed : do (take Thing) * $visible Thing *

$fixed Thing -o fail (take Thing) fixedInPlace.

check/look : do look * at player Room * state Room dark

-o fail look (darkness Room).

check/examine : do (examine Thing) * at Player Room

* state Room dark

-o fail (examine Thing) (darkness Room).

check/go : do (go Dir) * $at player R * $at R Door

* door Door Dir closed -o fail (go Dir) (closedDoor Door).

}

qui * stage PreCheck * $do V -o stage DoVerbs.

qui * stage PreCheck * $fail V Msg -o stage Report.

On the other hand, some of the failure modes are only describable as the negation of
certain things, such as visibility, which we cannot easily negate. (A sensing predicate
is fundamentally positive information, and it would be impractical to enumerate every-
thing one cannot see.) We address these failures by also including a post-processing
failure stage, which we enter whenever doVerbs failed to consume the do predicate:

qui * stage DoVerbs * $success Verb Msg -o stage Report.

qui * stage DoVerbs * $do Verb -o stage PostCheck.

stage postCheck = {

check/take/notHere : do (take Thing)

-o fail (take Thing) notHere.

check/go : do (go Dir) -o fail (go Dir) noExit.

check/default : do V * default -o fail V defaultFail.

}

qui * stage postCheck * $do V -o default * stage postCheck.

qui * stage postCheck * $fail Verb Msg -o stage Report.

Although this is a drastically simplified version of the Inform 7 rules processing
engine, we expose its structure in such a way that the IF author may change and po-
tentially enrich it, in addition to simply adding new verb implementations and failure
conditions. Furthermore, we have implemented standard interactive fiction verbs in the
same framework in which we implemented Kodu’s robot-like sensors and action rules,
and PuzzleScript’s grid-based tile manipulation rules. What we hope to have demon-
strated by this point is that Ceptre offers a very flexible and composable way of writing
rules for a variety of representative game types.
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4.7 Implementation

Ceptre is implemented in Standard ML [Mil97] and is available as an open source project
at http://www.github.com/chrisamaphone/interactive-lp. The implementation is
approximately 2,300 lines of code, including a number of built-in sensing and acting
predicates (as well as whitespace and comments). The makefile builds a binary called
ceptre that can be run on a source file; examples may be found in the examples subdi-
rectory (with .cep file extensions).

In addition to the core language described above, we also provide a few directives,
or meta-linguistic operators that are placed in the source code but do not affect the un-
derlying language meaning. One of these we have seen already is the #trace directive,
which runs a given stage on a given initial context. The directives and their meaning
are described below:

1. #trace limit stage context.: run the program starting in stage stage with ini-
tial context context until limit limit (either a number or _ for no limit) is reached.

2. #interactive stage.: Declare stage stage to block on choices from standard in-
put when one or more of its rules applies.

4.8 Related Work

Formal game description languages have been a subject of investigation for some time,
with unsolved problems in the area posed as recently as 2013 [ELL+13]. Our work has
very similar goals to those listed in the Dagshtul paper proposing VGDL (a video game
description language), except that we de-emphasize the automatic generation of games
as a criterion for success, emphasizing expressiveness of the language as an authoring
tool instead. Additionally, our formalism is more flexible in terms of entity relation-
ships, explicitly aiming to support abstract mechanics such as narrative and dialogue
rather than focusing on object collisions in 2D space.

Smith et. al. have investigated computer-aided authoring of games through such
means as constraint specification and procedural content generation [SNM09, Smi12],
which shares with our approach a use of logic programming as its foundation. In this
setting, game rules are treated as term-level objects over which program rules are writ-
ten. This treatment separates the semantics of the logic program itself from the seman-
tics of the game, meaning as a consequence that the object of formal analysis is distinct
from the playable artifact. Ceptre aims to create a closer link between the logic itself
and the game specification, making the language semantics itself the target of program-
matic analysis as well as informal reasoning and playtesting. Our work also prioritizes
the expression of exploratory mechanics rather than goal-driven ones (such as puzzle
games), making exhaustive search over the rules for the sake of validation or game gen-
eration less of a concern for us. (That said, we do discuss the possibility of checking
invariants over game states in Chapter 6.) A third endeavor in the sphere of executable
formalisms for games is Versu [ES], which we note as a useful reference point in terms
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of our approach, defining Ceptre as a core formalism (c.f. Versu’s Praxis) atop which
a friendlier user interface (c.f. Prompter) might be built. Of course, our approach with
Ceptre favors breadth (generality) rather than the depth of story- and text-specific tools
of Versu.

4.9 Conclusion

We have presented a linear logic-based framework for authoring and reasoning about
generative game designs, and an implementation of these ideas in the Ceptre logic
programming language, which models gameplay as proof search. We have used a
Shakespeare-inspired story world example to demonstrate the use of this language as a
generative system to which one may selectively add interactive components. We have
carried out several additional case studies with this tool, including board game, garden
and dialogue simulators, illustrating Ceptre’s potential for inventing new operational
logics. We are actively developing the language in the open at http://www.github.
com/chrisamaphone/interactive-lp and encourage contributions of examples from
the game design community at large.

Going forward, we aim to expand the range of analytical tools for Ceptre specifi-
cations. We have in progress several candidate algorithms for checking programmer-
specified game invariants, and tools for visualizing and manipulating causally-structured
traces. These tools put to use in the context of the generative game examples well-
described in Ceptre could lead to novel approaches to expressive range analysis [SW10],
for example.

Linear logic has been used independently to study numerous phenomena, such as
memory management, concurrency, game theory, and quantum physics. Its continual
rediscovery in these many domains leads us to believe it is one of the more “perma-
nent ideas” in computer science, robust to advances the technology industry that might
otherwise affect the way we formulate something as culturally and technologically con-
tingent as video game design. By providing a logical underpinning to techniques used
in planning-based and ad-hoc approaches to game description, we aim to provide a
basis for extension and interoperability of game specifications at the language level.
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Chapter 5

Case Studies

We now give several case studies of the modeling and programming methodologies de-
scribed so far. This chapter presents the results of the research; we aim to illustrate the
concrete payoff that linear logic programming can have across a breadth of ludonarra-
tive domains. We argue that the specifications presented here are much more concise
and readable than they would be in a general-purpose language like JavaScript or C++,
while allowing for a great deal more flexibility in expression than domain-specific lan-
guages for any of the game genres represented here. Additionally, these specifications
allow for augmentation by player strategies for fuzzing, analysis in the form of visual-
ization for causal dependencies in play traces, and the potential for deeper analysis in
terms of high-level design concepts such as game balance.

In an effort to demonstrate breadth, we give the code for five complete case studies
of various worlds:
• Refining an Interactive Social Story World, or BuffyWorld: building on the narra-

tive modeling ideas presented in Chapters 2 and 3, we model an interactive social
story world based on the television show Buffy the Vampire Slayer.

• Dungeon Crawler, or DungeonWorld: we model a “hack-and-slash” roleplaying
combat mechanic with resource-management feedback loops.

• Garden Simulator, or GardenWorld: we model a similar mechanic to DungeonWorld

in terms of resource management, but using a nurturing rather than violent con-
text to inspire player affordances and autonomous world evolution.

• Settlers of Catan, or SiedlerWorld: we model a minimal version of the board game
Settlers of Catan, in which players compete for territory and strategize about re-
source exchange feedback loops.

• Tamara: finally, we show an experiment that follows on from the narrative gener-
ation work in Chapter 3: we use Ceptre to model a work of participatory theater
called Tamara [Kri89] where scenes take place in multiple rooms simultaneously.
In this example, we use the result of program execution, i.e. the proof term, as
the interactive artifact, rendered as a Twine text adventure that replicates the par-
ticipation mechanic in the original play (that is, following characters when they
exit).
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5.1 Refining an Interactive Social Story World

This case study uses a similar story world to the narrative generation example from
Chapter 3: characters and locations are the basic types; predicates include character
locations and relationships between one another; story actions change and depend on
the states described by those predicates.

The main new idea in this case study is an action/reaction dichotomy: in an attempt to
chain together less random sequences of story, characters may perform up to one action
per turn of simulation, but they also must react to any action performed toward them
by another character.

Additionally, we let the player pick one of the characters to control for the duration
of the interaction rather than letting them choose arbitrary character actions, hopefully
lending a stronger sense of continuity to the experience.

The combination of these two axes, act/react and player/non-player character, make
up the four stages of the program.

5.1.1 Story World Overview

Buffy the Vampire Slayer is a television franchise created by Joss Whedon, airing 1997-
2003. The basic premise is that Buffy, a teenage girl who just wants an ordinary life,
is the “chosen one,” or Slayer, obliged to protect the world from supernatural evils
lurking in the California town of Sunnydale. Throughout the show’s seven seasons, the
cast of characters and specific threats of evil vary substantially, but a few things remain
constant rules for the Buffy universe. Here are a few that we use to shape our story
world:

• Some characters are evil, e.g. by virtue of being vampires or demons. The slayer is
obliged to destroy evil creatures.

• Evil people feel no remorse about killing, but will generally not do so at random;
only if a particular goal (like destroying the slayer) is achieved. Vampires and
demons are usually evil.

• Xander and Willow are Buffy’s best friends; Giles is the slayer’s appointed watcher
(similar to a mentor).

• Dawn is Buffy’s younger sister, who frequently drives the plot forward by getting
kidnapped or accidentally casting spells that Buffy and her friends have to thwart.

• Witches are humans who have mastered some control over the supernatural pow-
ers that be, and can use them to various good or ill effects.

In this encoding, we include a few other members of the Buffy universe: Anya, a
no-longer-evil demon (dating Xander); Tara, another witch (dating Willow); Spike, a
vampire who develops a romantic obsession with Buffy; and an abstract, unspecified
villain who hunts Dawn.
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5.1.2 Code

Code for this section is available at https://github.com/chrisamaphone/interactive-lp/
blob/master/examples/buffy.cep.

Below we give the characters and predicates relating characters to each other. The
predicate npc C marks C as a “non-player character.”

character : type.

buffy : character.

willow : character.

xander : character.

anya : character.

tara : character.

giles : character.

dawn : character.

spike : character.

villain : character.

npc character : pred.

evil character : pred.

witch character : pred.

slayer character : pred.

watcher character : pred.

weak character : pred.

strong character : pred.

friends character character : pred.

crush character character : pred.

dating character character : pred.

dislike character character : pred.

hunting character character : pred.

hurt_by character character : pred.

There are six central locations we will refer to: the crypt in the graveyard (Spike’s
home), the graveyard itself, Buffy’s house, the Magic Box (a home for Giles’ personal
library and occult collection, disguised as a novelty shop), Dawn’s high school, and the
Bronze, a local hangout and bar. The world map is specified below.

place : type.

crypt : place.

graveyard : place.

buffy_house : place.

magic_box : place.

villain_lair : place.

high_school : place.

adjacent place place : bwd.
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adjacent crypt graveyard.

adjacent graveyard crypt.

adjacent crypt magic_box.

adjacent magic_box crypt.

adjacent graveyard buffy_house.

adjacent buffy_house graveyard.

adjacent buffy_house magic_box.

adjacent magic_box buffy_house.

adjacent magic_box graveyard.

adjacent graveyard magic_box.

adjacent magic_box villain_lair.

adjacent villain_lair magic_box.

adjacent buffy_house villain_lair.

adjacent villain_lair buffy_house.

adjacent buffy_house high_school.

adjacent high_school magic_box.

at character place : pred.

The following intermediate states result from actions taken by characters; they rep-
resent an ongoing action sequence that needs to be resolved by some reaction.

attacking character character : pred.

hitting_on character character : pred.

spellcast character character : pred.

joking_with character character : pred.

accusing character character : pred.

pushing_away character character : pred.

acting_affectionate character character : pred.

bickering character character : pred.

The initial state specifies initial relationships between characters, as well as individ-
ual characteristics that may determine the range of actions available, for the particular
season of the show and (perhaps) episode. (This one is loosely based off of Season 6.)

context init_season =

{ friends buffy willow, friends willow buffy,

friends buffy xander, friends xander buffy,

friends willow xander, friends xander willow,

friends dawn buffy, friends buffy dawn,

friends dawn xander, friends xander dawn,

friends dawn willow, friends willow dawn,

friends dawn tara, friends tara dawn,

dating willow tara, dating tara willow,

dating xander anya, dating anya xander,

friends giles buffy, friends buffy giles,

friends willow giles, friends giles willow,

dislike giles spike, dislike spike giles,

dislike xander spike, dislike spike xander,
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evil spike, crush spike buffy, dislike buffy spike,

dislike villain buffy, evil villain,

witch willow, slayer buffy, watcher giles, witch tara,

strong buffy, strong willow, strong villain,

weak xander, weak giles, weak anya, weak tara, weak dawn, weak spike}.

context init_episode =

{ hunting villain dawn, crush buffy spike,

at dawn high_school,

at buffy graveyard, at willow buffy_house, at tara buffy_house,

at xander magic_box, at anya magic_box, at giles magic_box,

at spike crypt, at villain villain_lair

}

The following machinery allows the player to select a character to be the “PC”
(player character) from among the pool of NPCs (non-player characters).

no_pc : pred.

pc character : pred.

turn : pred.

end : pred. % end of story.

go : pred. % not end of story.

context init_game =

{npc buffy, npc willow, npc xander, npc anya, npc tara,

npc giles, npc spike, npc villain, npc dawn,

no_pc}.

stage select_character = {

pick : npc C * no_pc -o pc C.

}

#interactive select_character.

select_character_to_pc_choices

: qui * stage select_character -o stage pc_choices * turn.

Next, we describe the choices available to the player character as actions. These
include moving from place to place, and acting on other characters, specifically by at-
tacking, making romantic advances, showing affection, joking with them, or accusing
them of causing hurt. Witches can also cast spells that affect whether a character is
strong or weak (which in turn affects their outcomes in combat).

The player character may also choose to end the story.
stage pc_choices = {

act/move

: turn * $pc C

* at C L * adjacent L L’

-o at C L’ * go.

act/kidnap/evil
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: turn * $pc C

* $evil C

* at C L * at C’ L * weak C’

* adjacent L L’

-o at C L’ * at C’ L’ * go.

act/attack/evil

: turn * $pc C

* $evil C

* $at C L * $at C’ L

-o attacking C C’ * go.

act/attack/slayer

: turn * $pc C

* $slayer C * $at C L * $at C’ L * $evil C’

-o attacking C C’ * go.

act/attack/revenge/friend

: turn * $pc C

* $at C L * $at C’ L

* $friends C Victim * hurt_by Victim C’

* $evil C’

-o attacking C C’ * go.

act/attack/revenge/lover

: turn * $pc C

* $at C L * $at C’ L

* $dating C Victim * hurt_by Victim C’

* $evil C’

-o attacking C C’ * go.

act/hit_on

: turn * $pc C

* $at C L * $at C’ L * $crush C C’

-o hitting_on C C’ * go.

act/affection

: turn * $pc C

* $at C L * $at C’ L * $dating C C’

-o acting_affectionate C C’ * go.

act/bicker

: turn * $pc C

* $at C L * $at C’ L * $dating C C’

-o bickering C C’ * go.
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act/spellcast/weak_to_strong

: turn * $pc C * $witch C

* $at C L * $at C’ L

* weak C’

-o strong C’ * spellcast C C’ * go.

act/spellcast/strong_to_weak

: turn * $pc C * $witch C

* $at C L * $at C’ L

* strong C’

-o weak C’ * spellcast C C’ * go.

act/watcher/push_slayer_away

: turn * $pc C * $watcher C

* $at C L * $at C’ L * $slayer C’

* $strong C’

-o pushing_away C C’ * go.

act/accuse

: turn * $pc C

* $at C L * $at C’ L

* $hurt_by C C’

-o accusing C C’ * go.

act/joke_with

: turn * $pc C

* $at C L * $at C’ L

-o joking_with C C’ * go.

act/none : turn -o go.

end_story : turn -o end.

}

#interactive pc_choices.

pc_to_npc :

qui * stage pc_choices * go

-o stage npc_reactions.

pc_to_done :

qui * stage pc_choices * end

-o stage done.

stage done = {}

Next, we describe how NPCs may react to character actions. Extending the analogy
of “social physics,” this technique metaphorically reflects Newton’s Third Law—every
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intermediate state introduced by (appearing on the right-hand-side of) an action must
be processed by (appear on the left-hand-side of) a reaction. Reactions to a given action
may be nondeterministic and may depend on other parts of social state.

stage npc_reactions = {

react/attacking/flee

: $npc C

* attacking C’ C * $weak C * at C L * adjacent L L’ -o

at C L’ * hunting C’ C.

react/attacking/hurt

: $npc C

* attacking C’ C * $weak C

-o hurt_by C C’.

react/attacking/fight/lose

: $npc C

* attacking C’ C * $strong C -o hurt_by C C’.

react/attacking/fight/win

: $npc C

* attacking C’ C * $strong C -o hurt_by C’ C.

react/hit_on/date

: $npc C

* hitting_on C’ C * $crush C C’

-o dating C C’ * dating C’ C.

react/hit_on/dislike

: $npc C

* hitting_on C’ C * $dislike C C’

-o hurt_by C’ C.

react/hit_on/reciprocate_crush

: $npc C

* hitting_on C’ C

-o crush C C’.

react/spellcast/thanks

: $npc C * spellcast C’ C * $strong C

-o friends C C’ * friends C’ C.

react/spellcast/wtf

: $npc C * spellcast C’ C

-o accusing C C’.

react/spellcast/bad

: $npc C * spellcast C’ C * $weak C

-o dislike C C’ * accusing C C’.

react/accusing/counter

: $npc C * accusing C’ C

-o accusing C C’.
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react/accusing/apologize

: $npc C * accusing C’ C

-o ().

react/accusing/breakup

: $npc C * accusing C’ C * dating C C’ * dating C’ C

-o hurt_by C C’ * hurt_by C’ C.

react/joke_with/shoot_down

: $npc C * joking_with C’ C * $dislike C C’

-o hurt_by C’ C.

react/joke_with/laugh

: $npc C * joking_with C’ C -o ().

react/affection/good

: $npc C * acting_affectionate C’ C -o ().

react/affection/bad

: $npc C * acting_affectionate C’ C * $hurt_by C C’

-o hurt_by C’ C.

react/hurt_accuse

: $npc C * hurt_by C C’ * hurt_by C C’

-o accusing C C’.

}

Next we give the NPC action stage, with a little bit of setup so that each character
only takes one turn:

qui * stage npc_reactions

-o stage gen_npc_turns.

stage gen_npc_turns = {

npc C -o npc_turn C.

}

qui * stage gen_npc_turns -o stage npc_choices.

NPC actions mirror PC actions except that, not being guided by player choice, they
sometimes require additional premises to drive their behavior in a coherent way.

stage npc_choices = {

act/move_toward_friend

: npc_turn C

* at C L * $at C’ L’ * $friends C C’ * adjacent L L’

-o at C L’ * npc C.

act/move_toward_enemy

: npc_turn C

* at C L * $at C’ L’ * $hunting C C’ * adjacent L L’

-o at C L’ * npc C.
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act/attack_hunting

: npc_turn C

* $at C L * $at C’ L * hunting C C’

-o attacking C C’ * npc C.

act/evil_attack_dislike

: npc_turn C

* $evil C * $at C L * $at C’ L * $dislike C C’

-o attacking C C’ * npc C.

act/evil_attack_slayer

: npc_turn C

* $evil C * $at C L * $at B L * $slayer B

-o attacking C B * npc C .

act/slayer_attack_evil

: npc_turn C

* $slayer C * $at C L * $at V L * $evil V

-o attacking C V * npc C.

act/attack/revenge/friend

: npc_turn C

* $at C L * $at C’ L

* $friends C Victim * hurt_by Victim C’

-o attacking C C’ * npc C.

act/hit_on_crush

: npc_turn C

* $at C L * $at C’ L * $crush C C’

-o hitting_on C C’ * npc C.

act/affection_date

: npc_turn C

* $at C L * $at C’ L * $dating C C’

-o acting_affectionate C C’ * npc C.

act/spellcast/weak_to_strong

: npc_turn C

* $witch C

* $at C L * $at C’ L

* weak C’

-o strong C’ * spellcast C C’ * npc C.

act/spellcast/strong_to_weak

: npc_turn C

* $witch C
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* $at C L * $at C’ L

* strong C’

-o weak C’ * spellcast C C’ * npc C.

act/accuse

: npc_turn C

* $at C L * $at C’ L

* $hurt_by C C’

-o accusing C C’ * npc C.

act/joke_with

: npc_turn C

* $at C L * $at C’ L

* $friends C C’

-o joking_with C C’ * npc C.

act/none : npc_turn C -o npc C.

}

Finally, we give the stage for player character reactions. Again, these basically mirror
the NPC reactions, except that they sometimes have fewer premises (allowing the player
to act out of their own volition and playful goals). Reactions must be selected until no
more actions on the player are left to be reacted to. After the player has chosen all
reactions, we go back to the pc_choices stage for the player to make new actions.

qui * stage npc_choices -o stage pc_reactions.

stage pc_reactions = {

%%%% Player Reactions %%%%

react/attacking/fight

: $pc C * attacking C’ C

-o attacking C C’.

react/attacking/flee

: $pc C * attacking C’ C * at C L * adjacent L L’

-o at C L’ * hunting C’ C.

react/hitting_on/reciprocate

: $pc C * hitting_on C’ C

-o dating C C’ * dating C’ C.

react/hitting_on/shoot_down

: $pc C * hitting_on C’ C

-o hurt_by C’ C.

react/joke_with/shoot_down

: $pc C * joking_with C’ C

-o dislike C C’.
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react/joke_with/laugh

: $pc C * joking_with C’ C

-o friends C’ C * friends C C’.

react/spellcast/thanks

: $pc C * spellcast C’ C * $strong C

-o friends C C’ * friends C’ C.

react/spellcast/wtf

: $pc C * spellcast C’ C

-o accusing C C’.

react/spellcast/bad

: $pc C * spellcast C’ C * $weak C

-o dislike C C’ * accusing C C’.

react/accusing/counter

: $pc C * accusing C’ C

-o accusing C C’.

react/accusing/apologize

: $pc C * accusing C’ C

-o ().

react/accusing/breakup

: $pc C * accusing C’ C * dating C C’ * dating C’ C

-o hurt_by C C’ * hurt_by C’ C.

react/acting_affectionate/happy

: $pc C * acting_affectionate C’ C

-o ().

react/acting_affectionate/shoot_down

: $pc C * acting_affectionate C’ C

-o hurt_by C’ C.

}

#interactive pc_reactions.

qui * stage pc_reactions -o stage pc_choices * turn.

#trace _ select_character {init_story, init_locations, init_game}.

5.1.3 Sample Interaction

To illustrate interaction with the program, rather than giving a transcript, we show
graphical output of a few interesting play traces (automatically generated with GraphViz 1).

In the first interaction, we select the character Willow. In the interactive stages for
determining her actions, we choose transitions that correspond to her casting spells,
arguing with Tara, and joking with her friends. A portion of the resulting trace follows:

1http://www.graphviz.org/
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pick
willow

x66

act/spellcast/weak_to_strong
willow buffy_house tara

x57 x65

select_character_to_pc_choices

x69

x68

pc_to_npc

x0 x67

x76x75x74

x73

x72

x71

x70

react/spellcast/thanks
tara willow

act/affection
willow buffy_house tara

act/spellcast/strong_to_weak
willow magic_box tara

x32 x49x50 x42

x78

npc_react_to_gen

x77

x82 x81

x80

x79

gen_turn
tara

x60

x84

npc_gen_to_act

x83

gen_turn
xander

x85

act/move_toward_friend
xander magic_box buffy graveyard

x58

x86

act/none
tara

gen_turn
anya

x87

act/bicker
anya magic_box xander

x59

gen_turn
giles

x88

act/move_toward_friend
giles magic_box buffy graveyard

x61

gen_turn
buffy

x89

act/move_toward_crush
buffy graveyard spike crypt

x56

gen_turn
spike

x90

act/evil_attack_slayer
spike crypt buffy

x62

gen_turn
dawn

x91

act/none
dawn

x64
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x92

act/none
villain

x63

x94

npc_to_pc
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react/affection/good
tara willow

x100 x99
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react/bicker/accuse
anya xander

react/accusing/breakup
xander anya
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anya magic_box xander
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gen_turn
giles

act/move_toward_friend
buffy crypt giles graveyard

act/joke_with
giles graveyard buffy

x53 x48 x19
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act/move_toward_friend
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This graph depicts the action of Willow casting a spell on Tara, Tara reacting nega-
tively, and other actions by the non-player characters. One of the final scenes (transi-
tions whose output resources have no out-edges) depicts the villain pursuing Dawn. A
side argument between Xander arises, due to Tara having hurt Willow (Xander’s friend)
in a prior argument.
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Re-enacting an Episode

We created an augmented version of the story world where every character may be
controlled by interaction for the sake of re-enacting a specific Buffy episode: the critically
acclaimed “musical” episode, featuring a demon who causes the town to express their
inner thoughts through song and dance.

In the episode, Dawn is kidnapped by the dance demon, Anya and Xander’s rela-
tionship falters, Tara discovers Willow used a spell to erase her memory of them ar-
guing, and Giles pushes Buffy away from his mentorship. The episode culminates on
Buffy’s charge to rescue Dawn, where she is eventually followed by all of her friends
for a climactic final scene.

The character interactions involved in this climactic build-up can be seen in Fig-
ure 5.1.

5.1.4 Discussion

This case study has presented Ceptre code for a collaborative storytelling system be-
tween a human player and several NPCs, who all may act and react according to similar
logic. It does not contain any scripted scenes or endings and is in that sense a “sandbox”
or “open world” narrative system, but it is also somewhat asymmetric in that charac-
ters are assigned different traits and abilities. We could imagine easily extending this
example to model supernatural powers such as vampiric siring, summoning demons,
and casting more intricate spells.

The development of this example also serves to suggest the limitations of linear logic
programming for narrative expression. This action/reaction model serves as substitute
for characters having their own goals pertaining to the narrative and solve for those
goals to create plans using the same inference mechanisms available to the logic itself.
The use of planning for interactive storytelling includes that kind of character-specific
inference [CCM02, RY10], though a logical formalism for both projective inference of
this kind and state change would need at least the fully-reflexive (dependently-typed)
capabilities of CLF in which predicates may refer to proofs as terms. We leave further
investigations of this potential logical correspondence to future work.

Another limitation of the exemplified technique, though not necessarily of the pro-
gramming language, is that each action or reaction must specify the complete set of
characters it involves; any social interactions involving three or more characters would
require additional rules. We believe that the “broadcast” pattern shown in Section 4.3.3
could be a basis for an interaction models wherein all characters are given the oppor-
tunity to react to any action taking place, say, in the same room as them, but it could
substantially complicate the program.

As future work, we would also like to investigate the potential to use “social prac-
tices” a la Versu [ES] to constrain social actions. The basic idea is that at any given
time, a finite number of social practices, or sets of roles and rules for those roles, apply
to the world state, and characters select their actions on the basis of their roles within
those practices. As an example, Buffy might only attack someone during a combat social

104



Figure 5.1: A trace representing part of the “Once More, With Feeling” episode of Buffy.
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practice, in which she inhabits her role as the slayer, but she might navigate that role
separately from (or simultaneously with) navigating her role as a supportive friend to
Willow in the social practice of friends confiding in one another.

In summary, we have presented an investigation into the use of Ceptre to specify
an interactive social story world based on Buffy the Vampire Slayer, using an action/re-
action model and allowing the interactor to select a character to play throughout the
interaction. This concludes the case study.

5.2 Dungeon Crawler

Next, we examine the task of specifying a “dungeon crawler”-inspired game design.
This game might have state such as player character skill level, equipment such as
weapons and armor, treasure that can be spent, player character health, and NPC health.
It might have actions like adventuring or combat (in which randomness as well as
player-determined properties can influence the outcome), resting to recover from dam-
age, shopping to spend money on weapons or armor, and training to increase skill level.

We choose this domain as an exemplar of a common and popular operational logic:
for example, the basic idea can be found in analog games like Dungeons and Drag-
ons [GAH74] and digital games ranging in time from Rogue and Hack to the Legend of
Zelda series to contemporary games made by large studios, like Blizzard’s Hearthstone.
Representing this operational logic, at the core of so many existing games, should be a
good benchmark for the expressiveness of Ceptre.

5.2.1 Game Design Goals

We speculate that the reason this operational logic (and common mechanics created
with it) has enjoyed so much success has to do with the dynamics afforded by feedback
loops in the mechanics: easy, small tasks (training) lead to medium-sized successes (de-
feating an enemy), which has payoff (treasure) that accumulates until larger successes
(purchasing a shiny new weapon) may be enjoyed—and those successes feed back into
the ease of the smaller and medium-sized tasks until a satisfying feeling of momentum
is achieved. Typically, as rewards scale, they also enable more strategic agency: they
present choices (e.g. between a large number of upgrade items for purchase) that give
the player not just a sense of difficulty in selecting the “right” one, but also a sense
of personalization in choosing between several equally-good alternatives (particularly
when those choices are reflected in the form of an avatar).

In our experiment, we do not aspire to creating the same kind of aesthetic enjoyment
made possible by these mechanics, but we do hope to create at least a similar-feeling
dynamic of play: the sense that increase in momentum occurs when the player finds a
working strategy. That goal will inform the choices we make.
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5.2.2 Iteration 1

Code for this section is available at https://github.com/chrisamaphone/interactive-lp/
blob/master/examples/rpg-tiny.cep.

We start with a minimal iteration of the game wherein resources—treasure, stamina,
damage, and skill—are represented as atomic predicates.

treasure : pred.

stamina : pred.

damage : pred.

skill : pred.

A few intermediate predicates are used as well. (We use these by invariant as Boolean
values—at every program step, each of these is either in the context once or zero times.)

alive : pred.

fighting : pred.

turn : pred.

The do stage is controlled by the player, and contains actions for training, fighting,
healing, resting, and upgrading a weapon (which is in effect simply training without
consuming stamina).

stage do = {

train : turn * stamina * $alive -o skill.

fight : turn * stamina * $alive -o fighting.

heal : turn * $alive * damage -o stamina.

rest : turn * $alive -o stamina.

buy_weapon : turn * treasure * treasure * treasure * $alive -o skill.

}

#interactive do.

qui * stage do -o stage happen.

The happen stage processes the player’s selected action, nondeterministically resolv-
ing fights (though they are more likely to result in a hit the more skill a player has) and
determining when the player gets tired or dies.

stage happen = {

turn -o ().

fight/hit : fighting * $skill -o treasure.

fight/miss : fighting -o damage.

get_tired : $damage * stamina * $alive -o ().

die : damage * damage * damage * alive -o ().

}

qui * stage happen -o stage do * turn.

We can run the simulation with a starting configuration like the one below, and
fiddle with the amount of starting stamina if needed:

context init = { stamina, stamina, stamina, alive, turn}.

#trace _ do init.
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5.2.3 Iteration 2

Code for this section is available at https://github.com/chrisamaphone/interactive-lp/
blob/master/examples/rpg.cep.

In our second iteration, we will use numerically-indexed predicates rather than mul-
tiple copies of an atomic predicate, so that we may do simple arithmetic on their values.

Ceptre allows the definition of permanent facts via backward-chaining predicates,
so for instance, we can define the arithmetic operation of addition capped at a certain
maximum value as a predicate cplus A B Cap C which can be read as A plus B capped
at Cap is C. We omit the definition of the predicate for brevity, but make use of it in later
rules. We also use backward-chaining predicates to define a few constants, such as the
player’s maximum health and the damage and cost of various weapons:

max_hp 10. damage sword 4. cost sword 10.

We then define a initial context and an initial stage that sets up the game’s starting
state:

context init_ctx = {init_tok}.

stage init = {

i : init_tok * max_hp N

-o health N * treasure 0 * ndays 0

* weapon_damage 4.

}

We define the rest of the game using a “screen” idiom, with predicates representing
the main, rest, adventure, and shop screens. (Some type header information is omitted.)

qui * stage init -o stage main * main_screen.

stage main = {

do/rest : main_screen -o rest_screen.

do/adventure : main_screen -o adventure_screen.

do/shop : main_screen -o shop_screen.

do/quit : main_screen -o quit.

}

#interactive main.

qui * stage main * $rest_screen -o stage rest.

qui * stage main * $shop_screen -o stage shop.

qui * stage main * $adventure_screen -o stage adventure.

qui * stage main * quit -o ().

The rest and shop stages allow recharging health (at the cost of an increment to
the number of days) and upgrading one’s weapon damage in exchange for treasure,
respectively:

stage rest = {

recharge : rest_screen

* health HP * max_hp Max * recharge_hp Recharge
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* cplus HP Recharge Max N

* ndays NDAYS

-o health N * ndays (NDAYS + 1).

}

qui * stage rest -o stage main * main_screen.

stage shop = {

leave : shop_screen -o main_screen.

buy : treasure T * cost W C * damage_of W D * weapon_damage _

* subtract T C (some T’)

-o treasure T’ * weapon_damage D.

}

#interactive shop.

qui * stage shop * $main_screen -o stage main.

The adventure stages are the most complex part of the code, involving the random
generation of a monster and random spoils are collected upon player victory. Spoils are
only added to the treasure bank if the player does not flee from a fight in progress. To
do all of this, we need an adventure initialization stage (init), a monster generating
stage (fight_init), a way of responding to player actions in context (fight_auto), and
a choice for the player between fighting and fleeing (fight):

stage adventure = {

init : adventure_screen -o spoils 0.

}

qui * stage adventure -o stage fight_init * fight_screen.

% drop_amount M N means a monster of size M can drop N coins

drop_amount nat nat : bwd.

drop_amount X X. % for now

stage fight_init = {

init : fight_screen -o gen_monster * fight_in_progress.

gen_a_monster : gen_monster * monster_size Size

-o monster Size * monster_hp Size.

}

qui * stage fight_init -o stage fight * choice.

try_fight : pred.

fight_in_progress : pred.

stage fight_auto = {

fight/hit

: try_fight * $fight_in_progress * monster_hp MHP * $weapon_damage D

* subtract MHP D (some MHP’)

-o monster_hp MHP’.

win

: fight_in_progress * monster_hp MHP * $weapon_damage D

* subtract MHP D none
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-o win_screen.

fight/miss

: try_fight * $fight_in_progress * $monster Size * health HP

* subtract HP Size (some HP’)

-o health HP’.

die_from_damages

: health 0 * fight_in_progress -o die_screen.

fight/die

: try_fight * fight_in_progress * monster Size * health HP

* subtract HP Size none

-o die_screen.

}

choice : pred.

qui * stage fight_auto * $fight_in_progress -o stage fight * choice.

qui * stage fight_auto * $win_screen -o stage win.

qui * stage fight_auto * $die_screen -o stage die.

stage fight = {

do_fight : choice * $fight_in_progress -o try_fight.

do_flee : choice * fight_in_progress -o flee_screen.

}

#interactive fight.

qui * stage fight * $fight_in_progress -o stage fight_auto.

qui * stage fight * $flee_screen -o stage flee.

Choosing flee takes you back to the main screen without any spoils:

stage flee = {

% lose spoils

do/flee : flee_screen * spoils X * monster _ * monster_hp _

-o ().

}

qui * stage flee -o stage main * main_screen.

Finally, we need stages for winning and dying in combat:

go_home_or_continue : pred.

stage win = {

win

: win_screen * monster Size * drop_amount Size Drop

-o drop Drop.

collect_spoils

: drop X * spoils Y * plus X Y Z

-o spoils Z * go_home_or_continue.

go_home

: go_home_or_continue

* spoils X * treasure Y * plus X Y Z

-o treasure Z * main_screen.
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continue

: go_home_or_continue -o fight_screen.

}

#interactive win.

qui * stage win * $main_screen -o stage main.

qui * stage win * $fight_screen -o stage fight_init.

end : pred.

stage die = {

quit : die_screen -o end.

restart : die_screen * monster_hp _

* spoils _ * ndays _ * treasure _

* weapon_damage _ -o init_tok.

}

#interactive die.

qui * stage die * end -o ().

qui * stage die * $init_tok -o stage init.

The program can then be run with the directive #trace _ init init_ctx.
The development of this example benefited extensively from the ability to specify in-

teractivity modularly, occasionally making non-player-directed stages (like fight_auto)
interactive to debug them. Additionally, we can test the design by “scripting” certain
player strategies. For instance, we could augment the two rules in the fight stage to be
deterministic, fighting when the monster can’t kill us in one turn and fleeing otherwise:

stage fight = {

do_fight :

choice * $fight_in_progress

* $monster Size * $health HP * Size < HP

-o try_fight.

do_flee :

choice * fight_in_progress

* $monster Size * $health HP * Size >= HP

-o flee_screen.

}

If we remove interactivity from this stage, then we get automated combat sequences
that should never result in the player’s death.

5.2.4 Discussion

In summary, this case study illustrates the use of Ceptre to program simple combat strat-
egy mechanics found in several dungeon-crawler, RPG, and roguelike game genres. We
use stages extensively to coordinate not just interaction between the game and player,
but also different autonomous parts of the game.

This case study suggests potential analyses that could be carried out on gameplay
traces. The ability to script player strategies means that we could draft a few and
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compare them, perhaps by charting the various numeric quantities over time (program
steps). Such analyses are suggested by Dormans [Dor11] in the development of strategy
game mechanics to study things like feedback loops.

5.3 Settlers of Catan

Our next case study is an encoding of a non-digital game, The Settlers of Catan. Set-
tlers of Catan is a strategic board game designed by Klaus Teuber and published in
1995 [SCS10], a notable, award-winning exemplar of a trend of similarly-styled board
games achieving popularity in the 1990s.

At a high level, Settlers is a game in which players take the role of colonizers of an
island, Catan, and position their settlements in such a way as to maximize their benefit
from the (somewhat randomized) production of resources. Resources can then be used
to build more settlements, and ultimately to achieve victory (through a points system).

We choose Settlers as an object of study due to its popular success as well as its
amenability to formalization in Ceptre due to its use of resource exchange as a cen-
tral mechanic. It gives us an opportunity to illustrate how we can codify non-digital
processes in a computational way such that one could imagine prototyping such rules
in Ceptre before physical implementation. It allows us to illustrate operational logics
like rolling dice, placing pieces, and drawing cards from a shuffled, but pre-determined
deck. This will also be our first formalization of a multiplayer game, drawing attention
to turn-taking in a new light and raising some interesting research questions about peer-
to-peer protocols (as in trading) and information hiding (as in secret hands of cards).

Below we summarize the game rules described by Teuber [Teu07].

5.3.1 Game Rules

The Settlers of Catan is a 2-4-player board game played on a grid of hexagonal tiles
(hexes), where each hex represents some terrain which may produce resources—wool,
lumber, grain, brick, or ore—which players need to collect in order to build roads, set-
tlements, and cities on the grid. Roads are placed along edges of the hexes, settlements
are placed at intersections of hexes, and cities are upgrades of settlements.

Every turn, the player whose turn it is rolls a pair of six-sided dice to determine
resource production. Every hex is marked with a number corresponding to a possible
roll of the dice, and when that number comes up, those hexes produce whatever re-
sources correspond to their terrain. Every player who has a settlement next to one of
those hexes receives a copy of the resource, and every player who has a city next to one
of them receives two copies.

After resource production, the player whose turn it is may trade resources with other
players. They do so by making an offer, such as “I will trade one wool for either lumber
or grain,” which may or may not be accepted by another player. Other players can
make their own counter-offers as well. Trade takes place when (and only when) another
player accepts the offer.
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Finally, after trading, the player whose turn it is may build within the limits of their
resources. They may build a road in any empty edge that connects to one of their pre-
existing roads, settlements, or cities; they may build a settlement in any empty intersec-
tion that connects to one of their roads; and they may build a city as an upgrade to a
settlement, replacing it on the game board. Building costs resources, summarized in the
table below:

Building Ore Grain Lumber Wool Brick
Road - - 1 - 1

Settlement - 1 1 1 1
City 3 2 - - -

Development card 1 1 - 1 -
A development card is drawn from a shuffled stack of knight, progress, and victory point

cards. Victory points are how the game ends: a player wins once they accrue 10 or
more victory points (see the Victory Points section below). We consider the game’s core
mechanics to be characterized by the above rules where the only development cards are
victory points.

The other development cards, and more complex, special-case mechanics are de-
scribed next. We list these mainly to supply the palette of game design ideas from
which we will draw to give interesting use cases for formalization.

Game Setup

The official rules of the game supply two possibilities for setting up the game: one
in which a provided board determines the locations of the hexes and their dice roll
values (see Figure 5.2), the other of which is for a variable board, recommended for
advanced players, wherein hexes and their corresponding dice roll values are randomly
determined.

In either case, the players also do two rounds of initial settlement placement: they
get to place one settlement and one road adjacent to that settlement in an open inter-
section and edge during each round. For more details on initial placement, see the
rulebook [Teu07].

The Robber

A single “desert” hex tile always appears on the board. This tile produces no resources.
A piece called the robber is placed initially in the desert. It moves when the dice roll
totals to 7 (which does not otherwise trigger any resource production). Whoever makes
that dice roll decides which adjacent hex the robber should move to. Whenever the
robber is on a hex, that hex does not produce any resources.

Knights

A knight is a development card that a player may keep in their hand and play on their
turn. It allows them to move the robber to an adjacent hex.
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Figure 5.2: Settlers of Catan beginner’s starting map.
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Maritime Trade

On a player’s turn, they can trade resources without involving another player at an
exchange rate of 4 : 1—that is, they may trade four identical resource cards (to the
ambient supply) for one resource card of their choice. Harbors, or settlements built at
special points on the edge of the game board, can enable more effective maritime trade
rates. (See the rulebook for details [Teu07].)

Progress Cards

Another kind of card that can be drawn from the pool of development cards is a progress
card, each of which grant the player some one-time special ability when they play it
(which they are able to do on their turn). Progress cards include:
• Road Building: When the player plays this card, they may immediately place two

free roads on the board (according to normal building rules).
• Year of Plenty: When the player plays this card, they may immediately take any

two resource cards from the supply.
• Monopoly: When the player plays this card, they must name one type of resource,

and then the other players must give them all of the resource cards of that type
from their hands.

Victory Points

Several facets of the game count toward victory points. Players win when it is both their
turn and they have 10 or more victory points.
• A settlement is worth one victory point.
• A city is worth two victory points.
• Whoever has the longest road (of at least five individual road pieces) has two

additional victory points (this designation can change throughout the game).
• Whoever has the “largest army” (number of Knight cards played) of at least three

plays has two additional victory points (similar to the longest road designation).
• A victory point card is worth one victory point.

5.3.2 Discussion of the Game’s Design

We have described the game’s rules in more detail than necessary for our case study,
but we want to give the reader a sense of appreciation for the numerous subtleties and
edge cases. At its heart, Settlers is a simple game of territory acquisition and resource
management; undoubtedly, its designer started with those ideas and recognized the
need for more intricate rules through iteration and playtesting.

Therefore, to study its design pragmatically, we start with a codification of a single
central mechanic. We identify the exchange of resources for building settlements, cities,
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and roads as such, but there are other candidates: the randomness of resource produc-
tion is another (amplified by other randomness-introducing elements, like the Robber);
the socioeconomics of the trading mechanic is yet another; and finally, the intricate dy-
namics created by the geometry of the board is another—all of the faces, edges, and
intersections formed by the hexagons are interdependent and relevant to play.

5.3.3 Iteration 1

Code for this section is available at https://github.com/chrisamaphone/interactive-lp/
blob/master/examples/siedler_core.cep.

In the first iteration, we model the central mechanic of exchanging resources for de-
velopment from the point of view of a single player. We will illustrate the dichotomy
between player choices (in the building phase) and the “external” choice of the ran-
dom deck draw in the selection of development cards. However, we will not model the
meaning of development cards in this iteration.

Resources are represented as predicates (i.e. resources in the meta-logic, conve-
niently enough).

brick : pred.

lumber : pred.

road : pred.

wool : pred.

grain : pred.

settlement : pred.

ore : pred.

city : pred.

development_card : pred.

knight : pred.

progress : pred.

victory_point : pred.

We have two predicates to sequentialize turn taking between the player and the
random draw from the deck.

turn : pred.

success : pred.

The first stage is a collection of rules for transforming basic resources (brick, lumber,
wool, grain, and ore) into settlements, cities, roads, and development cards.

stage building = {

build_road : turn * brick * lumber -o road * success.

build_settlement : turn * brick * lumber * wool * grain

-o settlement * success.

build_city : turn * ore * ore * ore * grain * grain

-o city * success.

build_development : turn * ore * wool * grain

-o development_card * success.
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}

#interactive building.

When the building stage quiesces, we transition to the development card drawing
stage to process any possible development card draws. There is one rule in this stage
per possible development card.

qui * stage building * success -o stage draw_dev_card.

stage draw_dev_card = {

dev_knight : development_card -o knight.

dev_prog : development_card -o progress.

dev_victory_point : development_card -o victory_point.

}

qui * stage draw_dev_card -o stage building * turn.

Finally, we specify an initial state with a somewhat arbitrary collection of initial re-
sources for testing.

context init =

{turn,

brick, brick, brick, lumber, lumber, lumber, wool, wool, wool,

grain, grain, grain, ore, ore, ore}.

#trace _ building init.

Sample Interaction

In Figure 5.3, we show two distinct ways of partitioning the available resources accord-
ing to Settlers’ building mechanics.

5.3.4 Iteration 2

Code for this section is available at https://github.com/chrisamaphone/interactive-lp/
blob/master/examples/siedler1.cep.

In the second iteration of our formalization of Settlers, we introduce multiple players
with hands of resources, the production of resources by settlements and cities, and trad-
ing. The building of settlements is still not constrained by the geometry of the board,
but the production of resources is. We will use a miniature version of the game board,
too (but large enough to provide variability in play).

We model players as inhabitants of a player type related by a turn ordering. The
turn and done predicates are used to manage turn taking.

player : type.

red : player. blue : player. yellow : player.
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Figure 5.3: Two possible play traces under the Settlers building mechanics.
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% turn order

next player player : bwd.

next red blue.

next blue yellow.

next yellow red.

turn player : pred.

done player : pred.

Basic resources are now terms rather than predicates; their predicate form is addi-
tionally indexed by a player.

resource : type.

brick : resource.

lumber : resource.

wool : resource.

grain : resource.

ore : resource.

holds player resource : pred.

We establish a small board made of six hexes, each individual inhabitants of the hex

type. We associate with each hex the resource that it produces.

hex : type.

h1 : hex. h2 : hex. h3 : hex. h4 : hex. h5 : hex. h6 : hex.

produces hex resource : bwd.

produces h1 grain.

produces h2 lumber.

produces h3 ore.

produces h4 wool.

produces h5 grain.

produces h6 brick.

We introduce six intersections, each at one point of the central hex. The locations
of these intersections relative to the hexes are specified by associating each hex with a
list of intersections it touches. The map we represent corresponds to the one shown in
Figure 5.4.

intersection : type.

i1 : intersection.

i2 : intersection.

i3 : intersection.

i4 : intersection.

i5 : intersection.

i6 : intersection.

ilist : type.

nil : ilist.
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Figure 5.4: Sample map for second iteration of Settlers of Catan encoding.
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h1

h2h3

h4

i1i2

i3i4

i6i5

cons intersection ilist : ilist.

adjacent hex ilist : bwd.

adjacent h1 (cons i1 (cons i2 nil)).

adjacent h2 (cons i1 (cons i3 nil)).

adjacent h3 (cons i2 (cons i4 nil)).

adjacent h4

(cons i1 (cons i2 (cons i3 (cons i4 (cons i5 (cons i6 nil)))))).

adjacent h5 (cons i3 (cons i6 nil)).

adjacent h6 (cons i5 (cons i6 nil)).

For each intersection, we track whether it is available (empty) or has a settlement or
city at it.

available_land intersection : pred.

has_settlement player intersection : pred.

has_city player intersection : pred.

We specify the starting board with all intersections available. We specify (without
loss of generality) the red player starting first, and give each player a token for initializa-
tion. In this minimal version of the game, each player gets to place only one settlement,
as codified in the setup stage:

context board =

{ available_land i1,

available_land i2,

available_land i3,

available_land i4,

available_land i5,

available_land i6 }.
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init_settlement player : pred.

context players =

{turn red,

init_settlement red,

init_settlement yellow,

init_settlement blue }.

context init = {board, players}.

stage setup = {

% everyone gets one settlement to start,

% going in random order.

settle

: init_settlement P * available_land X

-o has_settlement P X.

}

#interactive setup.

For dice rolling, we introduce a die predicate (an unrolled die) and a stage with as
many rules as possible rolls, each causing the die to transform into an indication of a
certain hex.

die : pred.

setup_to_rolling : qui * stage setup -o stage roll * die.

roll hex : pred.

stage roll = {

roll1 : die -o roll h1.

roll2 : die -o roll h2.

roll3 : die -o roll h3.

roll4 : die -o roll h4.

roll5 : die -o roll h5.

roll6 : die -o roll h6.

}

roll_to_prod : qui * stage roll -o stage produce.

Next, we do rule production by propagating the die roll to every intersection adja-
cent to the corresponding hex. The mete rules process the list of adjacent intersections,
stopping when there are none left, skipping empty ones, and introducing new resources
into players’ hands when there are cities or settlements there.

prod intersection : pred.

mete resource ilist : pred.

stage produce = {

process_roll :

roll H * produces H R * adjacent H Is

-o mete R Is.
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mete/nil : mete R nil -o ().

mete/skip : mete R (cons I Is) * $available_land I

-o mete R Is.

mete/settlement

: mete R (cons I Is) * $has_settlement Player I

-o holds Player R * mete R Is.

mete/city

: mete R (cons I Is) * $has_city Player I

-o holds Player R * holds Player R

* mete R Is.

}

Next is the trading stage. We model trading with a single rule indicating that any
two cards in someone’s hands can swap places.

prod_to_trade : qui * stage produce -o stage trade.

stage trade = {

do/trade : $turn P * holds P R * holds P’ R’

-o holds P R’ * holds P’ R.

donetrading : turn P -o done P.

}

#interactive trade.

This simplistic model of trading fails to capture a few important details, such as the
ability to trade many-for-one or one-for-many cards. Also, the default presentation of all
available rules with the #interactive mechanism reveals all of the resource cards in a
player’s hand (information that is not actually secret except by virtue of the limitations
of human memory, but still intended to be kept hidden). However, for our second
iteration, still meaning only to capture the essence of the game, this model suffices.

The next stage after trading is building. The building rules look similar to those in
Iteration 1, except that they refer to the availability of an intersection (for settlements)
and to the prior establishment of a settlement (for cities). The player may build arbi-
trarily many times, so the turn token is preserved in each rule application, until they
explicitly choose to be done with the finished rule.

trade_to_build : qui * stage trade * done P -o stage build * turn P.

stage build = {

build_settlement :

$turn P

* holds P brick * holds P lumber * holds P wool * holds P grain

* available_land L

-o has_settlement P L.

build_city :

$turn P

* has_settlement P I * holds P ore * holds P ore * holds P ore

* holds P grain * holds P grain
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-o has_city P I.

finished : turn P -o done P.

}

#interactive build.

Finally, the building stage changes the turn to the next player upon quiescence and
transfers control back to the roll stage.

The top-level program begins in the setup stage and with the initial context provided
at the top of the program.

build_to_roll :

qui * stage build * done P * next P P’

-o stage roll * turn P’ * die.

#trace _ setup init.

Sample Interaction

We can play through this version of the game with the following transition sequence,
starting with setup and concluding with the red player building a second settlement:

(settle red i1)

(settle blue i6)

(settle yellow i4)

roll6

(process_roll h6 brick (cons i5 (cons i6 nil)))

(mete/skip brick i5 (cons i6 nil))

(mete/settlement brick i6 nil blue)

(mete/nil brick)

(donetrading red)

(finished red)

roll2

(process_roll h2 lumber (cons i1 (cons i3 nil)))

(mete/settlement lumber i1 (cons i3 nil) red)

(mete/skip lumber i3 nil)

(mete/nil lumber)

(donetrading blue)

(finished blue)

roll2

(process_roll h2 lumber (cons i1 (cons i3 nil)))

(mete/settlement lumber i1 (cons i3 nil) red)

(mete/skip lumber i3 nil)

(mete/nil lumber)

(donetrading yellow)

(finished yellow)

roll4

(process_roll h4 wool (cons i1 (cons i2 (cons i3 (cons i4 (cons i5 (cons i6 nil)))))))
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(mete/settlement wool i1 (cons i2 (cons i3 (cons i4 (cons i5 (cons i6 nil))))) red)

(mete/skip wool i2 (cons i3 (cons i4 (cons i5 (cons i6 nil)))))

(mete/skip wool i3 (cons i4 (cons i5 (cons i6 nil))))

(mete/settlement wool i4 (cons i5 (cons i6 nil)) yellow)

(mete/skip wool i5 (cons i6 nil))

(mete/settlement wool i6 nil blue)

(mete/nil wool)

(do/trade red lumber blue brick)

(donetrading red)

(finished red)

roll3

(process_roll h3 ore (cons i2 (cons i4 nil)))

(mete/skip ore i2 (cons i4 nil))

(mete/settlement ore i4 nil yellow)

(mete/nil ore)

(donetrading blue)

(finished blue)

roll1

(process_roll h1 grain (cons i1 (cons i2 nil)))

(mete/settlement grain i1 (cons i2 nil) red)

(mete/skip grain i2 nil)

(mete/nil grain)

(donetrading yellow)

(finished yellow)

roll5

(process_roll h5 grain (cons i3 (cons i6 nil)))

(mete/skip grain i3 (cons i6 nil))

(mete/settlement grain i6 nil blue)

(mete/nil grain)

(donetrading red)

(build_settlement red i5)

The causal structure of the final sequence can be found in Figure 5.5.

5.3.5 Discussion

The second iteration we have presented is a playable prototype of all of the game’s core
rules, amenable to further iteration. There are a few ways in which it fails to capture
some of the subtleties of Settlers’ mechanics:

• Trade: as mentioned briefly, the formalization of the trading mechanic does not
quite model what is interesting about trading in Settlers. If we think of hands of
cards as secret information, then trading really emphasizes a model of distributed
information, which would map onto distributed proof search in the formalism.
An interesting future research direction might be to investigate epistemic modal
logic as a basis for modeling this knowledge distribution.
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Figure 5.5: Trace graph for part of a Settlers of Catan playthrough.
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Additionally, the trading stage of Settlers follows a protocol of offering and ac-
cepting trades that is not modeled in this formalism. An offer might be rejected
or replaced with a counter-offer, and only once both parties agree will it be ac-
cepted. We could potentially extend this formalization to account for the peer-to-
peer player interaction in more detail.

• Building: we have not expressed the constraints on building described by the Set-
tlers rule book, i.e. the requirement that new settlements be built next to roads
owned by the building player and the requirement that new roads be built next to
anything owned by the building player. It should be straightfoward to introduce
those constraints in a future iteration, although tracking edges between hexes in
addition to intersections requires careful modeling.

Additionally, there are several aspects of Settlers’ play that could be built into further
iterations on this encoding, each of which might only be introduced to balance some
other shortcoming of the simpler set of mechanics, determined through playtesting:
• Board map: being able to express arbitrarily large and complex board layouts, at

least up to the size and expressiveness of the physical board game, should be
possible. We would need to introduce another stage and several more predicates
to create the appropriate geometric constraints.

• Win conditions: we have not modeled victory points nor ending conditions based
on them, but this should be straightforward, especially since they can only take
effect for a player during their turn.

• Random factors: things like the robber, development cards, and alternative routes
to victory points (longest road and largest army) add additional unpredictability
into the game that can lead to subtle strategies.

• Maritime trade: we have not modeled maritime trade in this iteration of the game,
though it would be straightforward to add it.

• Finite resource pools: in Settlers, each player can only build up to the allowance
of their initially-alotted supply of cities, settlements, and roads. Our encoding
currently allows for building as many of these as players’ hands of cards allow.

5.3.6 Potential Analyses

Even with the simplicity of our second iteration compared to the full game, we can still
learn from it. By removing the #interactive directives from the stages and generating
enough random play traces, we could perform analysis to answer the following ques-
tions:
• Is there a set of initial conditions, e.g. board size, number of tiles of each resource,

et cetera, that leads to more balanced games? One way to answer this would be to
randomly generate those conditions in the setup stage, then measure “balance” by
the proportion of wins by each player on a sufficiently large playthrough sample.
This technique resembles that used by the Ludi system [Bro08] for the procedural
generation of game rules via evolutionary algorithms.
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• If we were to build a physical version of the game, what is the right number of
cities, settlements, and resource cards to include? We can answer this question by
doing a resource usage analysis of the game playthroughs, noting the maximum
number of each predicate in the context corresponding to the physical resource we
are interested in (as well as averages of those numbers).

This concludes our Settlers of Catan case study.

5.4 Garden Simulator

Our next case study is an original simulation design built using an iterative process
like that described in Section 5.3. This study is an open-ended simulation that puts the
player in the role of a gardener.

5.4.1 Game Idea

At a high level, we want to use autonomous proof search to model the growth of plants
in a garden, and interactive proof search to tend the garden. We would like to create
interesting tension between expanding the variety and size of the garden and keeping
all of the plants healthy. There should be several types of plant, each of which takes up
some soil space, grows if given the proper amount of water, and dies otherwise. Once
plants have reached maturity, they may be harvested for new seeds.

To introduce tension between expansion and plant health, plants need to require
just enough attention from the gardener (player) that on any given turn, the decision
between planting something new and tending to the needs of existing plants is difficult.
Real-world phenomena that we might want to model include the presence of weeds,
overgrowth of some plants we are trying to grow (that might impede the growth of
other plants in the garden), sensitivity to overwatering, and plant pests or diseases.

5.4.2 Iteration 1

Code for this section is available at https://github.com/chrisamaphone/interactive-lp/
blob/master/examples/garden-small.cep.

For the first iteration of the game, we will just model the basic mechanic: planting,
watering, and harvesting plants as player actions; and growth and death of plants as
autonomous actions.

We start with three types of plants that will not be distinguished by the mechanics.
plant_type : type.

flower : plant_type.

herb : plant_type.

vine : plant_type.

Plants have three growth phases (seed, seedling, and mature) and three health states
(healthy, wilting, and dead).
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plant_phase : type.

seed : plant_phase.

seedling : plant_phase.

mature : plant_phase.

next plant_phase plant_phase : bwd.

next seed seedling.

next seedling mature.

health : type.

healthy : health.

wilting : health.

dead : health.

A plant can be harvested, in seed form (not planted), or planted at a particular place
in the garden with a particular growth phase and health, as modeled by the following
predicates.

harvested plant_type : pred.

have_seed plant_type : pred.

plant plant_type plant_phase health : pred.

The play stage models gardener actions: planting, watering, harvesting, clearing
away dead plants, and extracting seeds from harvested plants. Planting requires soil
space. The stage is provided with one step token, which is consumed and re-produced
by every action except for done, meaning that we can perform as many actions as we
want before ending our turn and passing control back to the autonomy of the garden.

step : pred.

soil_space : pred.

stage play {

get_seeds : $step * harvested Type -o have_seed Type * have_seed Type.

plant : $step * have_seed Type * soil_space -o plant Type seed healthy.

harvest : $step * plant Type mature healthy -o harvested Type * soil_space.

clear : $step * plant Type _ dead -o soil_space.

water : $step * plant Type Phase wilting -o plant Type Phase healthy.

done : step -o ().

}

#interactive play.

qui * stage play -o stage grow * step.

The grow stage may also take an arbitrary number of steps before passing control
back to the gardener. Its possible actions are growing, wilting, and dying.

stage grow = {

grow : $step * plant Type Phase healthy * next Phase Phase’

-o plant Type Phase’ healthy.

wilt : $step * plant Type Phase healthy
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-o plant Type Phase wilting.

die : $step * plant Type Phase wilting

-o plant Type Phase dead.

done : step -o ().

}

qui * stage grow -o stage play * step.

We test the game with three starting seeds and four soil spaces.

context init = {have_seed flower, have_seed herb, have_seed vine, step,

soil_space, soil_space, soil_space, soil_space}.

#trace _ play init.

Sample Interaction

In Figure 5.6, we give a partial trace graph for a sample interaction with the system.

5.4.3 Iteration 2

Code for this section is available at https://github.com/chrisamaphone/interactive-lp/
blob/master/examples/garden-med.cep.

In our next iteration, we introduce some additional synchronization in the form of a
day counter.2

nat : type.

z : nat.

s nat : nat.

day nat : pred.

The plant types, health and maturity levels are the same as before. And, as before,
a plant can either be harvested, in seed form, or planted, but the plant predicate now
tracks some additional information for synchronization: the last day it has taken a step
in the grow stage.

harvested plant_type : pred.

have_seed plant_type : pred.

% last var is for synchronization

plant plant_type plant_phase health nat : pred.

We give the player three turns in this iteration. Planting a new seed marks its last
argument with the current day D.

2In this example, we will represent numbers in unary notation: z for 0 and s N for N+1. Ceptre’s
implementation allows for the designation of user-defined natural numbers in this fashion to be mapped
to built-in integers, thus giving the programmer some flexibility in which notation to use—note that
the unary notation is convenient for the sake of pattern-matching in the premises to rules, but treating
numbers as built-in integers has the advantage that operators like multiplication and addition can be
written in-line without defining them as logic programs.
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Figure 5.6: Partial trace graph for first garden simulator iteration.
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step : pred.

turns nat : pred.

soil_space : pred.

stage play {

get_seeds :

turns (s N) * harvested Type

-o have_seed Type * have_seed Type * turns N.

plant :

turns (s N) * have_seed Type * soil_space * $day D

-o plant Type seed healthy D * turns N.

harvest : turns (s N) * plant Type mature healthy _

-o harvested Type * soil_space * turns N.

clear : turns (s N) * plant Type _ dead _

-o soil_space * turns N.

water : turns (s N) * plant Type Phase wilting D

-o plant Type Phase healthy D * turns N.

done : turns _ -o ().

}

#interactive play.

qui * stage play -o stage advance_day * step.

Before the growth stage, we advance the day.

stage advance_day = {

advance : day N * step -o day (s N).

}

qui * stage advance_day -o stage grow.

In the growth stage, each plant only takes a step if its day index lags behind the
current day, and the step updates it to be current. This technique enforces that each
plant takes exactly one turn of growth or ailment in this stage. (This technique for
enforcing that behavior is an alternative to the npc_turn trick used in Section 5.1).

stage grow = {

grow : plant Type Phase healthy D * next Phase Phase’ * $day (s D)

-o plant Type Phase’ healthy (s D).

wilt : plant Type Phase healthy D * $day (s D)

-o plant Type Phase wilting (s D).

die : plant Type Phase wilting D * $day (s D)

-o plant Type Phase dead (s D).

}

qui * stage grow -o stage play * turns (s (s (s z))).
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context init = {day z,

have_seed flower, have_seed herb, have_seed vine, have_seed succulent,

soil_space, soil_space, soil_space, soil_space, turns (s (s (s z)))}.

#trace _ play init.

Sample Interaction

In Figure 5.7, we give a partial trace graph for a sample interaction with the system.

5.4.4 Iteration 3

Code for this section is available at https://github.com/chrisamaphone/interactive-lp/
blob/master/examples/garden-iter3.cep.

In our third iteration, we introduce concrete terms for the spaces that plants can
inhabit and allow the player to trade harvested plants for space upgrades. We also fix
the bug from the second iteration by adding a bit of extra state (watered/needing water)
and adding a drinking action to the autonomous growth stage.

The structure of this iteration now resembles the action/reaction model from the
social story world described in Section 5.1.

The code below starts by introducing a type for garden space and giving the predi-
cates over spaces (omitting the type header common to prior iterations):

space : type.

s1 : space. s2 : space. s3 : space. s4 : space.

s5 : space. s6 : space. s7 : space. s8 : space.

max_space : pred.

next_space space space : bwd.

next_space s4 s5.

next_space s5 s6.

next_space s6 s7.

next_space s7 s8.

empty space : pred.

plant_at space : pred.

plant_type_at space plant_type : pred.

plant_phase_at space plant_phase : pred.

health_at space : pred.

needs_water space : pred.

watered space : pred.

Note that individual properties of the plant space may now be specified indepen-
dently, using the identifier of the soil space as a tag to link all of those properties.

The play stage now includes an option to buy more soil space, and watering intro-
duces a watered fact distinct from the plant’s health:
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Figure 5.7: Partial trace graph for second garden simulator iteration.
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step : pred.

turns nat : pred.

stage play {

get_seeds :

turns (s N) * harvested Type

-o have_seed Type * have_seed Type * turns N.

plant :

turns (s N) * have_seed Type * empty S * $day D

-o plant_at S

* plant_type_at S Type

* plant_phase_at S seed

* health_at S healthy

* needs_water S

* turns N.

harvest :

turns (s N) * plant_at S

* plant_phase_at S mature * health_at S healthy

* plant_type_at S Type

-o harvested Type * empty S * turns N.

clear :

turns (s N) * plant_at S * health_at S dead

* plant_phase_at S _ * plant_type_at S _

-o empty S * turns N.

water :

turns (s N) * needs_water S

-o watered S * turns N.

buy_space :

turns (s N) * harvested P

* max_space S * next_space S S’

-o empty S’ * max_space S’.

done : turns _ -o ().

}

#interactive play.

Now that we have separated out the plant type, plant phase, and health information
of a soil space, it is easier to use the “generate one turn per plant” technique wherein
one predicate (plant_at) is replaced by a temporary turn predicate (plant_turn), then
consumed and replaced with the original predicate in each rule of the growth stage.
Note that this trick depends on carefully maintaining the invariant that every plant
will consume a plant_turn atom and produce a plant_at atom during the grow stage.
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Maintaining this invariant was the source of several bugs found while developing the
example.

qui * stage play -o stage advance_day.

plant_turn space : pred.

stage advance_day = {

gen_turn : plant_at S -o plant_turn S.

}

qui * stage advance_day -o stage grow.

stage grow = {

grow : plant_turn S * $health_at S healthy * watered S

* plant_phase_at S Phase * next Phase Phase’

-o plant_at S * plant_phase_at S Phase’ * needs_water S.

wilt : plant_turn S * health_at S healthy * $needs_water S

-o plant_at S * health_at S wilting.

drink : plant_turn S * health_at S wilting * watered S

-o plant_at S * health_at S healthy * needs_water S.

die : plant_turn S * health_at S wilting * needs_water S

-o plant_at S * health_at S dead.

none/dead

: plant_turn S * $health_at S dead -o plant_at S.

none/mature

: plant_turn S * $health_at S healthy * watered S

* $plant_phase_at S mature

-o plant_at S * needs_water S.

needwater/empty

: $empty S * needs_water S -o ().

watered/empty

: $empty S * watered S -o ().

}

qui * stage grow -o stage play * turns (s (s (s z))).

context init = {day z,

have_seed flower, have_seed herb, have_seed vine, have_seed succulent,

empty s1, empty s2, empty s3, empty s4, max_space s4,

turns (s (s (s z)))}.

#trace _ play init.
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Figure 5.8: Partial trace graph for third garden simulator iteration.

plant
(s (s z)) flower s1 z

x18x17

x16 x15

x14

x13

x12 water
(s z) s1

grow
s1 seed seedling

harvest
(s (s z)) s1 flower

gen_turn
s1

plant
z herb s2 z

x11 x2 x6 x1

x20 x19

x27

x26x25

x24

x23

x22

x21

done
z

wilt
s2

grow
s2 seed seedling

harvest
(s z) s2 herb

gen_turn
s2

plant
z succulent s3 z

x3 x7

`anon6

x29

`anon7

x0 x28

x30

x31

x33

`anon8

x32

x36

x35 x34

drink
s2

gen_turn
s2

water
(s (s z)) s2

x40

x39

x38

x37

water
(s z) s1

grow
s1 seedling mature

gen_turn
s1

x43x42

`anon6

x41

x45x44

x47 x46

x54

x53

x52

x51

x50

x49

x48

done
z

wilt
s3

grow
s3 seed seedling

harvest
(s (s z)) s3 succulent

gen_turn
s3

plant
z vine s4 z

x5 x8

x56

`anon7

x55

x57

x58

x59

x61

`anon8

x60

x64

x63

x62

water
(s z) s2

gen_turn
s2

x67

x66x65

drink
s3

gen_turn
s3

water
z s3

x71

x70 x69 x68

needwater/empty
s1

x74

x73`anon6

x72

x77 x76

x75

get_seeds
(s z) flower

x79x78

x81 x80

done
z

x83

`anon7

x82

x84

x85

x87

`anon8

x86

x91

x90

x89

x88

water
(s z) s2

grow
s2 seedling mature

gen_turn
s2

x92

plant
z flower s1 z

x95

x94

x93

water
(s (s z)) s3

gen_turn
s3

x98

x97 `anon6

x96

x100 x99

x102

x101

x109

x108

x107

x106

x105

x104

x103

done
z

wilt
s4

grow
s4 seed seedling

harvest
(s z) s4 vine

gen_turn
s4

x4 x9

x111

`anon7

x110

x112

x113

x114

x116

`anon8

x115

x120

x119

x118

x117 water
(s (s z)) s2

none/mature
s2

gen_turn
s2

x124x123

x122 x121

water
(s z) s3

grow
s3 seedling mature

gen_turn
s3

x127

x126x125

drink
s4

gen_turn
s4

water
z s4

x130

x129 `anon6

x128

x132x131

x134x133

x136 x135

done
z

x138

`anon7

x137

x139

x140

x141

x143

`anon8

x142

x147

x146

x145

x144 water
(s z) s2

gen_turn
s2

none/mature
s2

x150

x149

x148

water
z s4

gen_turn
s4

x154

x153

x152 x151

water
(s (s z)) s3

none/mature
s3

gen_turn
s3

x157

x156

`anon6

x155

x159 x158

x161x160

x163 x162

done
z

x165

`anon7

x164

x166

x167

x168

x170

`anon8

x169

x174

x173x172 x171

water
z s3

x178

x177 x176x175

needwater/empty
s2 x182

x181

x180 x179

wilt
s4

grow
s4 seedling mature

gen_turn
s4

x185

x184 `anon6

x183

x188

x187

x186watered/empty
s3

buy_space
(s z) succulent s4 s5

x191x190

x189

buy_space
(s z) herb s5 s6

x193 x192

done
z

x195

`anon7

x194

x196

x198

`anon8

x197

x199

x200

x203

x202x201

drink
s4

gen_turn
s4

water
(s (s z)) s4

x206

x205 `anon6

x204

x208 x207

x210

x209

x10

x212

`anon7

x211

x213

x215

`anon8

x214

x218

x217

x216

water
(s (s z)) s4

gen_turn
s4

x221

x220`anon6

x219

x223 x222

x225x224

x227

`anon7

x226

x228x230

`anon8

x229

x234

x233

x232

x231 water
(s (s z)) s4

none/mature
s4

gen_turn
s4

x237 x236

`anon6

x235

x239x238

x242x241 x240

x249

x248

x247

x246 x245x244 x243

done
z

wilt
s1

gen_turn
s1

x251

`anon7

x250

x252

x253

x255

`anon8

x254

x258

x257x256

drink
s1

gen_turn
s1

water
(s (s z)) s1

x262x261

x260

x259

needwater/empty
s4

x265

x264

`anon6

x263

x267 x266

x270 x269x268

done
(s z)

x272

`anon7

x271

x273

x275

`anon8

x274

x276

x279 x278x277

x282x281

x280

Sample Interaction

In Figure 5.8, we give a partial trace graph for a sample interaction with the system.

5.4.5 Discussion

With this garden simulation case study, we have demonstrated an iterative design pro-
cess for an original game mechanic based on interacting with a simulated, virtual world.
Potential extensions that could be developed in future iterations include varying the
plant types, such as making it so that succulents require less water, and modeling plant
overgrowth, such as vines becoming arbitrarily long and threatening the health of other
plants.

The plant growth stage can be seen as an application of generative methods, al-
beit a simple one akin to a state machine. Generative methods have perhaps been
more applied to the domain of plant growth (e.g. tree generation) than any other do-
main [LD99, GPSL03, DHL+98, Pru86], and we posit that more sophisticated techniques
could be modeled as an extension to this prototype to interesting effect, especially with
visual rendering.
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This model could be considered a prototype for a more extensive game about the
creation and maintenance of peaceful worlds, an under-explored space of design in
mainstream games. We have aimed to illustrate with this example the use of Ceptre,
and especially programming idioms that have been common to other examples, for the
design of a novel operational logic based on simple generative techniques.

5.5 Tamara

Tamara is a work of participatory theater by John Krizanc [Kri89]. The form of participa-
tion is quite limited: guests are allowed to follow characters when they depart a scene,
after which point the departing characters will participate in a different scene, either by
joining an ongoing one or starting their own. We use this play as an example of inter-
active storytelling that does not involve digital computers, yet has computational content
in a sense: many traversals through the play’s story world are available by way of si-
multaneous scenes and the option to move between them when a character connects
them.

This case study is unlike the others because we do not attempt to implement the in-
teractive experience of attending Tamara as an interactive linear logic program. Instead,
the study we have carried out pertaining to this play is twofold:

• First, we implement a transformation from the script of the play—in particular,
information about which characters participate in which scenes, and where they
go afterwards—to a dependency diagram that gives a holistic sense for which
scenes may co-occur and where synchronization is needed. In some sense, this
analysis could be considered a producer or stage manager’s tool for orchestrating
the logistics of the play. Let us refer to the dependency diagram as a scene graph.
The transformation from script to scene graph is done by encoding the script as
a linear logic program, then using proof search to create the scene graph (repre-
sented as a concurrently-structured proof term).

• Next, we implement a compiler that takes a proof term (representing the scene
graph) along with a scenes file, which maps linear logic rules to the text (dialogue)
of the scene, and turns it into a Twine game whose passages are scenes and whose
links are choices to either follow a character who is exiting or remain with the
other characters.
In this way, linear logic programming is only used as an intermediate representa-
tion between the informal script and the interactive performance (Twine game).

5.5.1 Tamara’s Story, Script, and Rules

Tamara is a historically-based tale of aristocrats and servants, set in the mansion of Ital-
ian poet Gabriele d’Annunzio in the 1920s, pivoting around the event of the Polish
artist Tamara de Lempicka’s arrival as an artist in residence. The characters involved
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are artists previously invited to the d’Annunzio estate, many of whom d’Annunzio took
as lovers, and the serving staff.

The idea for the play came out of a discussion between Krizanc and his friends about
a Chekhov play, wherein he expressed wishing he could follow the servants when they
exited a scene, because they “were the only ones to know the underbelly of the social
fabric.” As such, the characters in Tamara include a large cast of servants —Emilia,
the maid; Dante and Mario, servants; Finzi, the guard; and Aelis, the housekeeper—in
addition to the five wealthy artists who live in or visit the d’Annunzio estate—Luisa, de
Spiga, Carlotta, Tamara, and D’Annunzio himself.

From an audience member’s perspective, the play’s mechanics are as follows: after
arrival, guests are assembled, then divided into three starting groups. Each group fol-
lows a different character, who leads them to a different room in the mansion. At that
point, the play begins in earnest, and the standard rules apply: whenever a character
exits a room, you may follow them. You must always be following or watching the
action of a character—that is, if a character is the only one in the room when they exit,
you are obligated to follow them. However, you need not follow the same character
throughout the play.

The script for the play is organized into standard acts, which are further subdi-
vided sections labeled with an alphabetic character A . . . U , each further subdivided
into numerically-labeled scenes. Sections designate some approximation of concurrent
structure: their endings usually just follow substantial divergence or fragmentation in
the characters’ story arcs, and their beginnings give an overview of the pursuant simul-
taneous scenes (see Figure 5.9).

Note that, despite the story’s “branching” structure, it is actually deterministic, as
in, the play is performed the same way every time. In our terminology from Chapter 2,
the story is purely simultaneous and contains no alternative nonlinearity. Thus, the logic
program that we write should be deterministic. Lacking metalogical checks on the pro-
gram to ensure this fact for us, we must do so by maintaining carefully the invariant
that no component of narrative state is consumed by multiple rules.

5.5.2 Encoding the Script Structure

Code for this section is available at https://github.com/chrisamaphone/interactive-lp/
blob/master/examples/tamara/tamara.cep.

First, we must address the question of what a piece of narrative state should be. At
first glance, it may seem that the answer is a character in the story. But since characters
may occur in multiple scenes which need to be ordered with respect to one another, we
will need to track more information in order to maintain determinism.

Previously, our approach has been to decompose the story into narrative resources
that implicitly drive the causal model underlying the story. For instance, in the Three
Little Pigs formalization from Chapter 2, we incorporated the narrative resource of the
“brick house” state as an output of one scene (the building of the brick house) and input
of another (the wolf confronting the pig in the brick house) to ensure that these scenes
happened in a plausible causal order.
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Figure 5.9: Excerpt from the script of Tamara
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For this study, however, we are less interested in discovering emergent causal rela-
tionships: we just want to encode the one that is already present in the script for the
play. Thus, to synchronize scenes deterministically, we make narrative states that rep-
resent characters at a certain time and place—where time is abstracted as a scene index.
Concretely, we set up the encoding of sections A through C in the script as follows:

scene : type.

a1 : scene. b2 : scene.

b3 : scene. b4 : scene. b5 : scene.

b6 : scene. b7 : scene. b8 : scene.

b9 : scene. b10 : scene. b11 : scene.

c12 : scene. c13 : scene. c14 : scene.

d15 : scene. d16 : scene. d17 : scene.

location : type.

sidehall : location.

atrium : location.

hall : location.

oratorio : location.

diningroom : location.

luisaroom : location.

dannunzioroom : location.

leda : location.

above-atrium : location.

finzi-office : location. % 10 locations.

offstage : location.

%% characters

tamara scene location : pred.

luisa scene location : pred.

emilia scene location : pred.

finzi scene location : pred.

despiga scene location : pred.

aelis scene location : pred.

dannunzio scene location : pred.

carlotta scene location : pred.

dante scene location : pred.

mario scene location : pred. % 10 characters.

The initial setup positions every character offstage for scene A1 except for de Spiga,
who starts the show, and Tamara, who does not enter until scene D15.

context

init = {

tamara d15 atrium,

luisa a1 offstage,

emilia a1 offstage,

finzi a1 offstage,

despiga a1 atrium,
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aelis a1 offstage,

dannunzio a1 offstage,

carlotta a1 offstage,

dante a1 offstage,

mario a1 offstage

}.

Now we can write rules that correspond to the character coordination that must
take place for each scene. The first several rules manage the rapid entering-and-exiting
of the introductory scene of the play, which the whole audience actually witnesses as in
an ordinary stage play:

stage all = {

%%%% SECTION A %%%%

a1_dante_finzi

: dante a1 offstage * finzi a1 offstage -o dante a1 atrium * finzi a1 atrium.

a1_emilia_enters

: emilia a1 offstage -o emilia a1 atrium.

a1_dannunzio_enters

: dannunzio a1 offstage -o dannunzio a1 atrium.

a1_dannunzio_exits

: dannunzio a1 atrium -o dannunzio a1 dannunzioroom.

a1_emilia_exits

: emilia a1 atrium -o emilia a1 sidehall.

a1_aelis_enters

: aelis a1 offstage -o aelis a1 atrium.

a1_carlotta_enters

: carlotta a1 offstage -o carlotta a1 atrium.

a1_carlotta_and_aelis_exit

: aelis a1 atrium * carlotta a1 atrium

-o carlotta b4 hall * aelis a1 diningroom.

a1_mario_enters

: mario a1 offstage -o mario a1 atrium.

a1_mario_exits

: mario a1 atrium -o mario d15 atrium.

Then the audience is split into three groups, each following one of Dante, Finzi, or
de Spiga:
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a1_groups_split

: dante a1 atrium * finzi a1 atrium * despiga a1 atrium

-o dante a1 luisaroom

* finzi a1 diningroom

* despiga b2 atrium .

At this point, the audience is divided and the story becomes truly simultaneous.
Some of the groups subdivide further.

% Dante takes group 1 to Luisa and D’Annunzio, then heads to the atrium

% alone.

a1_grp1_luisa

: dante a1 luisaroom * luisa a1 offstage

-o dante a1 dannunzioroom * luisa b3 luisaroom.

a1_grp1_dannunzio

: dante a1 dannunzioroom * dannunzio a1 dannunzioroom

-o dante b10 atrium * dannunzio b6 dannunzioroom.

% Finzi takes group 2 to Aelis, then Emilia, then meets Carlotta in the

% hall.

a1_grp2_aelis

: finzi a1 diningroom * aelis a1 diningroom

-o finzi a1 sidehall * aelis b9 diningroom.

a1_grp2_emilia

: finzi a1 sidehall * emilia a1 sidehall

-o finzi b4 hall * emilia b7 leda.

Note the strict pattern that these rules follow: every character predicate on the
premise side of the rule must match in scene and room identifier, and must be replaced
on the consequent side of the rule with a corresponding character predicate in a later
scene.

The remaining rules for sections B and C of the play follow this same pattern, and
are produced below for completeness, although we do not expect them to be particu-
larly meaningful to the reader without the script of the play itself.

%%%% SECTION B %%%%

% Group 3 stays in the Atrium with de Spiga.

b2_despiga_monologue

: despiga b2 atrium -o despiga b10 atrium.

b3_luisa_monologue

: luisa b3 luisaroom -o luisa b11 dannunzioroom.

b4_carlotta_kisses_finzi

: finzi b4 hall * carlotta b4 hall

-o finzi b5 hall * carlotta b8 leda.
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b5_finzi_monologue

: finzi b5 hall -o finzi c12 atrium.

b6_dannunzio_monologue

: dannunzio b6 dannunzioroom -o dannunzio b11 dannunzioroom.

b7_emilia_monologue

: emilia b7 leda -o emilia b8 leda.

b8_emilia_carlotta

: emilia b8 leda * carlotta b8 leda

-o emilia c12 diningroom * carlotta c12 atrium.

b9_aelis_monologue

: aelis b9 diningroom -o aelis c12 atrium.

b10_dante_despiga

: dante b10 atrium * despiga b10 atrium

-o dante c12 atrium * despiga c12 atrium.

b11_dannunzio_luisa

: dannunzio b11 dannunzioroom * luisa b11 dannunzioroom

-o dannunzio c12 atrium * luisa c12 above-atrium.

%%%% SECTION C %%%%

c12_finzi_exit

: %% de Spiga, Dante, Aelis, Finzi, Carlotta, D’Annunzio

despiga c12 atrium

* dante c12 atrium

* aelis c12 atrium

* finzi c12 atrium

* carlotta c12 atrium

* luisa c12 above-atrium

-o despiga c12 atrium

* dante c12 atrium

* aelis c12 atrium

* finzi c12 finzi-office

* carlotta c12 atrium

* luisa c12 above-atrium.

c12_gunshot

: luisa c12 above-atrium * finzi c12 finzi-office * emilia c12 diningroom

-o luisa c12 atrium * finzi c12 atrium * emilia c12 atrium.
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c12_emilia_carlotta_aelis_luisa_leave_atrium

: emilia c12 atrium * carlotta c12 atrium * aelis c12 atrium

* luisa c12 atrium

-o emilia c13 sidehall * carlotta c13 sidehall * aelis c13 sidehall

* luisa c13 atrium.

c13_finzi_luisa_confrontation

: finzi c12 atrium * luisa c13 atrium

-o finzi d15 atrium * luisa c13 sidehall.

c13_emilia_aelis_carlotta_luisa_sidehall

: emilia c13 sidehall * aelis c13 sidehall * carlotta c13 sidehall

* luisa c13 sidehall

%% all exit back to atrium

-o emilia c13 atrium * aelis c14 atrium * carlotta c13 atrium

* luisa c13 atrium.

c12_take_presents_to_leda

: dante c12 atrium * carlotta c13 atrium * luisa c13 atrium

* emilia c13 atrium

-o dante c14 leda * carlotta c14 leda * luisa c14 leda

* emilia c14 atrium.

c14_emilia_enter_leda

: dante c14 leda * carlotta c14 leda * luisa c14 leda * emilia c14 atrium

-o dante c14 leda * carlotta c14 leda * luisa c14 leda * emilia c14 leda.

c14_all_exit_leda

: dante c14 leda * carlotta c14 leda * luisa c14 leda * emilia c14 leda

-o dante c14 atrium * carlotta c14 atrium * luisa c14 atrium

* emilia c14 atrium.

%% n.b. technically they go "back" to scene c12, but this disrupts

%% a useful form of stratification...

c_final

: luisa c14 atrium * carlotta c14 atrium * dante c14 atrium

* emilia c14 atrium * aelis c14 atrium * dannunzio c12 atrium

* despiga c12 atrium

-o luisa d17 oratorio * carlotta d17 oratorio

* aelis d17 oratorio * despiga d17 oratorio

* dante d15 atrium * dannunzio d15 atrium

* emilia d15 diningroom.

}

The program produced above is simply a by-hand transliteration of information
found in the script. With it, however, we can use proof search to generate the concurrent
structure of the play.
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The raw proof term generated by a query or trace on this program is always concur-
rently equal to the following:

let {[X2, [X3, [X4, [X5, [X6, [X7, [X8, [X9, [X10, X11]]]]]]]]]} = X1 in

let {X12} = a1_carlotta_enters X9 in

let {X13} = a1_dannunzio_enters X8 in

let {X14} = a1_mario_enters X11 in

let {X15} = a1_emilia_enters X4 in

let {X16} = a1_dannunzio_exits X13 in

let {[X17, X18]} = a1_dante_finzi [X10, X5] in

let {X19} = a1_aelis_enters X7 in

let {X20} = a1_emilia_exits X15 in

let {[X21, [X22, X23]]} = a1_groups_split [X17, [X18, X6]] in

let {X24} = a1_mario_exits X14 in

let {X25} = b2_despiga_monologue X23 in

let {[X26, X27]} = a1_carlotta_and_aelis_exit [X19, X12] in

let {[X28, X29]} = a1_grp1_luisa [X21, X3] in

let {X30} = b3_luisa_monologue X29 in

let {[X31, X32]} = a1_grp1_dannunzio [X28, X16] in

let {[X33, X34]} = b10_dante_despiga [X31, X25] in

let {X35} = b6_dannunzio_monologue X32 in

let {[X36, X37]} = b11_dannunzio_luisa [X35, X30] in

let {[X38, X39]} = a1_grp2_aelis [X22, X27] in

let {X40} = b9_aelis_monologue X39 in

let {[X41, X42]} = a1_grp2_emilia [X38, X20] in

let {X43} = b7_emilia_monologue X42 in

let {[X44, X45]} = b4_carlotta_kisses_finzi [X41, X26] in

let {[X46, X47]} = b8_emilia_carlotta [X43, X45] in

let {X48} = b5_finzi_monologue X44 in

let {[X49, [X50, [X51, [X52, [X53, X54]]]]]}

= c12_finzi_exit [X34, [X33, [X40, [X48, [X47, X37]]]]] in

let {[X55, [X56, X57]]} = c12_gunshot [X54, [X52, X46]] in

let {[X58, [X59, [X60, X61]]]}

= c12_emilia_carlotta_aelis_luisa_leave_atrium

[X57, [X53, [X51, X55]]] in

let {[X62, X63]} = c13_finzi_luisa_confrontation [X56, X61] in

let {[X64, [X65, [X66, X67]]]}

= c13_emilia_aelis_carlotta_luisa_sidehall [X58, [X60, [X59, X63]]] in

let {[X68, [X69, [X70, X71]]]}

= c12_take_presents_to_leda [X50, [X66, [X67, X64]]] in

let {[X72, [X73, [X74, X75]]]}

= c14_emilia_enter_leda [X68, [X69, [X70, X71]]] in

let {[X76, [X77, [X78, X79]]]}

= c14_all_exit_leda [X72, [X73, [X74, X75]]] in

let {[X80, [X81, [X82, [X83, [X84, [X85, X86]]]]]]}

= c_final [X78, [X77, [X76, [X79, [X65, [X36, X49]]]]]]

The visualized concurrent structure of this term is given in Figures 5.10 and 5.11.
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Figure 5.10: Trace graph for Tamara encoding, part 1.
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Figure 5.11: Trace graph for Tamara encoding, part 2.
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In Celf, such a trace might result from the following query:
init -o

{ tamara STamara LTamara

* luisa SLuisa LLuisa

* emilia SEmilia LEmilia

* finzi SFinzi LFinzi

* despiga SDeSpiga LDeSpiga

* aelis SAelis LAelis

* dannunzio SDannunzio LDannunzio

* carlotta SCarlotta LCarlotta

* dante SDante LDante

* mario SMario LMario}.

This query would additionally generate the final locations and scenes of every char-
acter:

#LAelis = oratorio

#LCarlotta = oratorio

#LDannunzio = atrium

#LDante = atrium

#LDeSpiga = oratorio

#LEmilia = diningroom

#LFinzi = atrium

#LLuisa = oratorio

#LMario = atrium

#LTamara = atrium

#SAelis = d17

#SCarlotta = d17

#SDannunzio = d15

#SDante = d15

#SDeSpiga = d17

#SEmilia = d15

#SFinzi = d15

#SLuisa = d17

#SMario = d15

#STamara = d15

5.5.3 Compilation to Twine

We next turn this structured trace, the CLF proof term, into a playable drama with the
same form of interaction as the play itself: following (or staying with) characters. Doing
so involves a very simple trick: we re-interpret the simultaneous branching in the story
graph as alternative branching. That is, every out-resource of a scene can be interpreted
as a choice to “follow” that resource to wherever it is needed next.

To realize this idea, we use the Quiescent Theater project described in Chapter 3. To
recapitulate the idea of the project: we wrote a compiler from linear logic proof terms
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to runnable Twine source code (also known as Twee). To make the output intelligible,
we also introduced scene files, or mappings from linear logic program rules onto legible
text, as follows:

Tamara

By John Krizanc, adapted by Chris Martens.

:: initial 2

Dante and Finzi welcome in the guests. "This is the home of Gabriele d’Annunzio,"

Dante informs you.

:: a1_dante_finzi 2

Dante and Finzi enter the atrium.

:: a1_emilia_enters 1

Emilia enters the atrium.

:: a1_dannunzio_enters 1

D’Annunzio enters the atrium.

:: a1_dannunzio_exits 1

D’Annunzio departs the atrium for his bedroom.

:: a1_emilia_exits 1

Emilia departs the atrium for the side hall.

:: a1_carlotta_enters 1

Carlotta enters the atrium.

:: a1_aelis_enters 1

Aelis enters the atrium.

:: a1_carlotta_and_aelis_exit 2

Carlotta exits toward the hall, and Aelis toward the dining room.

:: a1_mario_enters 1

Mario enters the atrium.

:: a1_mario_exits 1

Mario leaves the atrium.

:: a1_groups_split 3

Dante: "I’m going to go check on Signora Baccara."

Finzi: "I will visit the servants of the house, Aelis and Emilia."

Dante departs for Luisa’s room, Finzi for the dining hall, and De Spiga

remains in the atrium.
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:: a1_grp1_luisa 2

Dante enters Luisa’s room. "Signora Baccara?" She is nowhere to be seen.

Dante departs Luisa’s room for D’Annunzio’s room.

...and so on. The number following the rule name (e.g. 3 in ::a1_groups_split 3

signifies the number of “followable” resources (characters) in the scene.
The remaining scene rules can be found on the GitHub page linked above. Again,

these formal entities are simply transliterations of Krizanc’s script, encoding comple-
mentary information to the linear logic program rules.

The compiler then works as follows: taking the linear logic program and scene file
as inputs, its runs the logic program to produce a structured proof, parses that proof
into the Twee skeleton, and instantiates the passages with text and links as specified by
the scene file.

The resulting Twine game for Tamara has the same essential structure as the CLF
proof term. A sample of it is shown below:

It can be played at http://play.typesafety.net/world/tamara/.
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This project was joint work with Rob Simmons. We ran our compiler on a variety
of linear logic programs and scene files, several of which were nondeterministic, unlike
Tamara. The results can be found at http://play.typesafety.net.

5.5.4 Discussion

We have described a computational study of the theatrical play, Tamara, using linear
logic to realize its simultaneous structure. We used linear logic as an intermediate lan-
guage to transform the script of the play into a playable digital format, simulating the
experience of an audience member.

Participatory theater has seen a surge in popularity and innovation in recent years,
notably including the theatre company Punch Drunk and its acclaimed work Sleep No
More, an immersive “installation art” performance [Pep11]. We imagine that authoring
these works in such a way to guarantee implementability is rather difficult, especially
in the presence of audience interaction that may chance the course of the story. We
propose that computational tools might broaden participation in the authoring of such
complex theatrical productions, perhaps making it more inviting to artists in game de-
sign as well. We also suggest that such tools could be an aid to producers, directors, and
stage managers of such performances, allowing them to extract important dependency
information between scenes without computing it by hand.

5.6 Discussion of Case Studies

We have presented five case studies, giving what we estimate to be a representative
sample of the range of expressiveness for game and story mechanics in linear logic. We
now discuss the strengths and limitations of linear logic programming for the domains
we have studied.

First, there are a few common patterns in games that we have not illustrated in the
examples above, but which would be feasible to build. The first of these is endings
in games—so far, we have mainly discussed win-condition-free, open sandbox worlds
(with the one exception of Tamara, which has a single deterministic ending). A common
class of games with important “win state” detection is puzzle games, often stratified into
levels where winning one level is a requirement for advancing to the next.

For an example, take Sokoban, the 2d tile-based crate-pushing game. Sokoban levels
typically have targets on which all crates must be present to advance the level. Here is
how we could codify that win condition check in Ceptre:

target tile : pred.

crate_at tile : pred.

uncounted_target tile : pred.

maybe_win : pred.

no_win : pred.
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stage gen_uncounted = {

target T -o uncounted_target T.

}

qui * stage gen_uncounted -o stage count.

stage count = {

uncounted_target T * $crate_at T -o target T.

}

qui * stage count -o stage check * maybe_win.

stage check = {

uncounted_target T * maybe_win -o target T * no_win.

}

win : pred.

qui * stage check * no_win -o stage play.

qui * stage check * maybe_win -o win * stage win.

stage play = {

% ...

}

stage win = {

win * level L * next_level L L’ -o level L’.

}

% ...

t1 : tile.

t2 : tile.

t3 : tile.

t4 : tile.

context test = {

target t1,

target t3,

crate_at t1,

crate_at t2,

crate_at t3}.

#trace _ gen_uncounted test.

While the idea of level stratification is itself not something we have covered with these
examples, it should be clear by now how one could accomplish it with stages.

The other very common type of mechanic we have not discussed is the passage of
time independent from player actions, or relatedly, asynchronous player input. Both of
these concepts can be implemented as sensing predicates.
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5.6.1 Limitations

There are a few common programming patterns that linear logic programming is not
well-suited for, and we want to state these limitations to clarify what should be consid-
ered out of scope for the programming language in its current implementation (and that
other systems do better).

• Negation. Any rule can check for the presence of an atom in the world state, but
cannot check for its absence. As noted in Section 4.3.2, we can codify this behavior
with stages, but it is often too cumbersome to do so in practice.
The reason why negation is left out of the basic logical formalism is that it violates
the critical frame property of the logic: whenever it is the case that ∆→ ∆′ is a valid
transition, it should also be true that ∆, A→ ∆′, A is a valid transition. (One reason
that this property is so important is that it lets us understand rules with respect to
an “open world,” i.e. any arbitrary context.) But if transitions can be contingent
on the absence of a resource A, then this property no longer holds. Simmons and
Toninho [ST12] suggest a logically sound basis for introducing negation under
certain conditions that preserve this principle, but investigating the incorporation
of those ideas into an implementation of Ceptre is left to future work.

• Symmetric predicates. Predicates ranging over two terms often want to be sym-
metric, i.e. whenever p(A,B), p(B,A) also holds (especially in social story worlds).
If we want this to be the case, we have to manage this invariant by hand.

• Boolean or exclusive predicates. Many predicates have a usage pattern in which
there is never more than one copy, or in which they are mutually exclusive with
another predicate to represent a Boolean state, or in which there is always exactly
one term X for which p(X). These patterns again must obey invariants that are
maintained by the programmer by hand.

• Complex geometric calculations. Our framework would probably be ill-suited to
modeling games involving rapid computation of convex hulls or three-dimensional
collision boundaries, unless those computations were encapsulated as sensing and
acting predicates (i.e. programmed outside the confines of Ceptre).

• Time sensitivity. We do not yet have any data collected about whether Ceptre pro-
grams would be able to meet “frames-per-second” benchmarks for time-sensitive
games. In general, we do not imagine Ceptre as the engine driving a released,
production-quality commercial game—we envision it as a prototyping language,
one part of a designer’s toolbox out of many.

5.6.2 Strengths

Linear logic programming has strengths as a prototyping tool that together position it as
uniquely well-suited for game design prototyping. We believe these strengths lie in the
modeling of game economies, multi-agent systems, generative methods, and interactive
storytelling.
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• Game economies. Linear logic programming shares with the Machinations [Dor11]
approach to simulating game mechanics its affordances for describing game economies,
or the resource exchanges that take place during player and automatic actions.
This strength is exemplified by DungeonWorld, GardenWorld, and SiedlerWorld.

• Multi-agent systems. The use of first-order logic enables us additionally to spec-
ify complex multi-agent systems where each agent is privy to the same rules, as
exemplified in BuffyWorld.

• Interactive storytelling. Both BuffyWorld and Tamara exemplify the expressive-
ness of linear logic for codifying interactive story mechanics that involve the co-
herent coordination of multiple actors, and the Quiescent Theater project shows
how it can be used to generate structured, interactive stories.

• Generative methods. Finally, we argue that linear logic programming has great
potential for modeling and experimenting with generative methods in games, based
on the demonstrations in GardenWorld and BuffyWorld of generating plant life
and television horror stories in collaboration with the player.

5.6.3 Potential

Some of the limitations of the system are, of course, only due to the bounded time and
scope of this dissertation. Here we suggest high water-marks in future developments of
and with linear logic-based programming methodologies. Two ideas in particular that
we believe they can enable are:

Comparing Worlds

With the ability to express such a wide range of systems using a small number of pro-
gramming constructs comes the ability to compare structure across domains. For in-
stance, we notice that the program structure for the act/react architecture in BuffyWorld
closely resembles that in GardenWorld; and the positive feedback loop pattern in Gar-
denWorld itself resembles that in DungeonWorld. The desire to compare games struc-
turally seems well-expressed by interest in game design patterns [BH04], but previous
work on such patterns is typically restricted not only by operational logic but by specific
formulations of game entities. With linear logical representations, we have a candidate
for the formal expression of design patterns across distinct operational logics.

Combining Worlds

Along similar lines, being able to express distinct operational logics in the same logical
framework could enable us to invent new game designs via a “mash-up” artistic ap-
proach, i.e. recombination. A possible future study could involve taking any pair of
case studies in this chapter and exploring different ways of combining them, either by
mapping the predicates from one domain into predicates of the other, or simply taking
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the union of the available player actions and state space, then adding new ways for
those state spaces to interact.

Articulating Strategies

We have only very briefly, in Section 5.2, discussed possbilities for augmenting Ceptre
programs with certain “AI” strategies. In general, such augmentations could be used
for a variety of purposes, such as playtesting, implementing adversarial NPCs, or in-
game guidance (see Treanor et al. [TZE+15] for a recent survey of uses of AI techniques
in game design). However, many such techniques depend on probabilistic sampling of
a search space in order to adapt to the human player’s techniques over time. Currently,
Ceptre’s implementation of randomness does not offer any guarantees about the dis-
tribution or offer any means of rule selection based on history. In order to maximize
control over the programming of such agents, something like stochastic logic program-
ming [Cus00] could potentially be integrated for modeling probability distributions and
sampling.

5.6.4 Analyzing Game Dynamics

After articulating a set of mechanics (and optionally a particular player strategy), we
may be interested in some emergent properties of the game rules. For instance, in a
two-player, turn-based game, we can formalize a simple notion of balance as whether
the first or second player in the game has a significant advantage, on average. Other
game mechanic description languages such as Machinations [Dor11] include facilities
for producing resource graphs and other summarization data over multiple (interactive
or simulated) play-throughs of a game. Cursory investigations suggest that similar tools
for Ceptre would be easy to build and helpful for our stated goals of aiding iteration and
analysis of games.
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Chapter 6

Reasoning About Linear Logic Programs

6.1 Introduction

Specifications in linear logic involve complex, interdependent state transformations that
are not always easy to reason about, especially as programs grow. Many programs im-
plicitly encode invariants that the programmer holds in their head while adding com-
plexity. For instance, in the interactive fiction example described Section 4.6.3, the pro-
grammer must take great care not to write any rules that discard an atom of the form
at player Room. The whole program’s correctness hinges on the implict assumption
that the player is always at some location in the world, and we can very easily create
programs that break such assumptions. When the language permits writing such fragile
code, we cannot make a strong claim about its usability, due to the potential for novices
to make errors like these without the ability to know what they did wrong.

On the other end of a spectrum of expressive power for constraints, we can also
consider full verification of high-level properties of a game such as solvability. Such
constraints have been used in generative methods [SM11], including the automatic gen-
eration of playable games. Extending invariant checking to these domains would mean
not only producing well-formed starting configurations (such as level configuration)
but also proving that everything the player can do in a generated game or level does not
break its well-formedness.

To these ends, we propose constructing automated reasoning tools for linear logic
programs that enable the explicit statement and automatic checking of program invari-
ants. In this chapter, we present partial progress toward this goal and discuss challenges
to solving it in full generality. We present three candidate logics for stating invariants,
several manual proofs illustrating each approach, and a decidability result for automat-
ically verifying a fragment of the language.

6.1.1 Example: Blocks World

Consider the following specification of the “blocks world” domain from AI planning [Nil14]:
the domain includes blocks stacked on a table and a robotic arm that can pick up blocks
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and set them down on top of one another or on the table.
block : type.

on block block : pred. % one block on top of another.

on_table block : pred. % the block is on the table.

clear block : pred. % the block has nothing on it.

arm_holding block : pred. % robot arm holds the block.

arm_free : pred. % robot arm holds nothing.

% pick up a block from the table.

pickup_from_table : on_table B * clear B * arm_free -o arm_holding B.

% put down a block on the table.

putdown_on_table : arm_holding B -o on_table B * clear B * arm_free.

% pick up a block from atop another block.

pickup_from_block : on BHi BLow * clear BHi * arm_free

-o clear BLow * arm_holding BHi.

% put down a block on top of another block.

putdown_on_block : clear BLow * arm_holding BHi

-o on BHi BLow * clear BHi * arm_free.

To fully specify the domain, we state some assumptions about well-formed states
and interactions. For instance, we assume that blocks are arranged in linear stacks with
the table at the bottom, we assume that the arm always holds at most one block, and we
assume that there is a unique top block of every stack that is marked as “clear.” In order
for us to verify all of these assumptions, we need to know that they hold of any initial
configuration of blocks, and we need to know that the rules in the program preserve the
same assumptions. If this were a terminating program rather than a potentially-infinite
simulation, we might also want to state and prove properties of its execution in terms
of what final configurations look like, possibly as a function of initial configurations.

The hardest problem in the collection of problems just described seems to be invari-
ant preservation, i.e. a property of a program that says its rules preserve some constraint
on the shape of the context. The problem bears some similarity to that of specifying
well-formedness constraints on LF contexts, which are expressed with regular worlds in
the Twelf implementation [PS98], in that we want to specify general patterns or schema
for predicates that must appear alongside one another pertaining to specific terms. Ide-
ally, checking invariant preservation should not depend on a domain instance. An exam-
ple of a domain instance for blocks world is a specification of the particular blocks and
starting configuration in a given simulation, such as the following:

a : block.

b : block.

c : block.

context init =

{ on_table a, clear a,
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on_table b, on c b, clear c,

arm_free}.

This part of the program can be thought of as input to the rule set, in the sense that
the rules should make sense for any well-formed set of blocks and initial configuration.
Thus a checking algorithm for invariant preservation ought not to depend on this part
of the specification. 1

To check initial states, final states, and invariants, we need a way of describing con-
text schema (sets of configurations representing a property of interest) and a framework
in which to express and prove the program’s relationship to those schema. This chap-
ter describes three candidate logics for stating and proving these properties: meta-linear
logic, generative signatures, and consumptive signatures. We show examples of proofs car-
ried out in each of these logics for domains and properties of interest to this thesis.
We describe the limitations and potential for each approach’s automatability, and for
the case of generative signatures, we describe a decidability result for the propositional
case of Ceptre. We conclude by suggesting avenues for further investigation of this
still-open problem.

6.2 Meta-Linear Logic

The well-formedness conditions of the Blocks World domain can be decomposed into
two constraints on blocks and one on the robot arm, which may be informally stated as
follows:

1. The first constraint says a block must have a well-formed base: either it is on the
table, it is on top of another block, or it is held by the robot arm.

2. The second constraint says a block must have a well-formed top: either it is clear,
there is another block on top of it, or it is held by the robot arm.

3. The third constraint says that the robot arm must either be free or holding a block.

Note that each of these descriptions independently seem to describe some mutual
exclusion between resources, which could be described through linear logic’s additive
disjunction operator ⊕. These properties do not partition the context, however. For
instance, the robot arm holding a block can satisfy all three of them, but we do not
want to suggest that there should be three robot arm-related resources, when in fact we
intend there to be exactly one.

We can describe these possibly-overlapping properties independently in terms of
restrictions of the context ∆ to certain predicate sets related to certain entities (usually
predicate indices) over which properties are described, written ∆�{p1,...,pn} where pi are
predicate patterns (predicates where each index either refers to a variable bound by
a quantifier or a wildcard satisfied by any index). We can also quantify over these
entities in the formula, universally at the outside and existentially on the inside. For
instance, the three properties above map onto the following formal statements defining

1However, see Section 6.6.1 for an example of a specification that might break this assumption.
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what it means for an argument context ∆ to satisfy the invariant (abbreviating on_table

to ot, arm_holding to ah, arm_free to af, and clear to cl):

• Invariant BW1 (block bottom well-formedness):

∀b : block.∆�{ot b, on b , ah b} � (ot b)⊕ (∃b′.on b b′)⊕ (ah b)

• Invariant BW2 (block top well-formedness):

∀b : block.∆�{cl b, on v, ah b} � (cl b)⊕ (∃b′.on b′ b)⊕ (ah b)

• Invariant BW3 (arm well-formedness):

∆�{ah , af } � (∃b.ah b)⊕ af

Once a specific ground term index is plugged into this formula and the restriction
is calculated, satisfiability � is determined simply by producing a derivation in linear
logic.

To check a program rule, we must parameterize over frame contexts in which the rule
might apply. For example, consider the “pick up from table” rule, which has the form

ontable B * clear B * arm_free -o arm_holding B

In order for this rule to apply to a context ∆, that context must have the form

∆′, ontable b, clear b, arm free

(where b is a ground term), and the state after application of the rule will be

∆′, arm holding b

We quantify universally over the context ∆′, which must be reasoned about para-
metrically. The invariant itself quantifies over block terms B, and to show that it holds
of the resulting state, we must reason parametrically over those as well. The locality
or frame property of linear logic transitions means that whichever ones might appear
in ∆′ but not in the rule will remain unchanged and easy to reason about. That leaves
reasoning about the indices that do appear in the rule with respect to the invariant. 2

An invariant I is preserved by a given rule taking a state ∆ to a state ∆′ exactly
when I(∆) implies I(∆′). We can show that each of the three parts of the blocks world
invariant described above apply to the pickup_from_table rule as follows.
Proposition 6.2.1 (Rule preserves blocks world invariants). Given any ∆′,
let ∆ = ∆′, ontable b, clear b, arm free .
For each I ∈ {BW1, BW2, BW3}, if I(∆) then I(∆′, arm holding b).

2 This convenience depends crucially on the “well-moded” nature of rules: any variables mentioned
in the consequent of the rule must relate somehow to variables in the antecedent. This means that even
with infinite term domains, we never need to reason inductively over all inhabitants.
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Proof. Invariant BW1: pickup_from_table preserves block bottom well-formedness
Intuitively, this property holds because the only block affected is the one manipulated
by the rule, and its bottom’s initial ontable property is simply replaced by an equally
satisfactory arm holding property. The proof follows.

By assumption (BW1 holds of the input context),

∀b′:block.(∆′, ontable b, clear b, arm free )�{ot b′,on b′ ,ah b′} � (ot b′)⊕ (∃b′′.on b′ b′′)⊕ (ah b′)

Let S be the restriction set given above, {ot b′, on b′ , ah b′}.
What we need to show is that for all blocks c,

(∆′, arm holding b)�{ot c,on c ,ah c} � (ot c)⊕ (∃b′′.on c b′′)⊕ (ah c)

Assume an arbitrary block c for which to prove this fact.
There are two cases: c = b (the block referred to in the particular transition) or c 6= b.

In the case where b and c are distinct, ∆�S = ∆′�S , and also (∆′, arm holding b)�S = ∆′�S .
Then, what we know and need to show are the same, so the case is satisfied.

In the case where b = c, then we know ∆�S = ∆′�S, on table b.
By inversion, the proof that ∆′�S, on table b � ontable b ` (ot b) ⊕ (∃b′.on b b′) ⊕ (ah b)

can only take the following form (according to the semantic interpretation of satisfiabil-
ity given in 6.2.2, which essentially reduces to linear sequent provability):

ontable b ` ontable b
init

ontable b ` (ot b)⊕ (∃b′.on b b′)⊕ (ah b)
⊕R1

Thus, ∆′�S must be empty.
Now we need to show

(∆′, arm holding b)�S � (ot b)⊕ (∃b′.on b b′)⊕ (ah b)

Since ∆′ �S is empty,

(∆′, arm holding b)�S = ∆′�S, arm holding b

= arm holding b

So we equivalently need to show arm holding b � (ot b)⊕ (∃b′.on b b′)⊕ (ah b)
which holds by derivation from ⊕R rules.
Invariant BW2: The rule pickup_from_table preserves block top well-formedness
Intutitively, this property holds because the only block affected is the one manipu-

lated by the rule (B), and its bottom’s initial ontable property is simply replaced by an
equally satisfactory arm holding property. The proof follows.

By assumption and expansion of BW1, for all b : block, and in particular for the
block b specified by the transition, ∆�{ot b, on b , ah b} � (ot b) ⊕ (∃b′.on b b′) ⊕ (ah b). In-
tuitively, this property holds because the only block affected is the one manipulated by
the rule, and its top’s initial clear property is simply replaced by an equally satisfactory
arm holding property. The proof follows.
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Let b be the block index chosen by the transition. Let the restriction set S be {cl b, ah b, on b}.
We know by assumption that

∆�S � (cl b)⊕ (ah b)⊕ (∃b′.on b′ b)

and since clear b satisfies the disjunction, ∆′�S is empty by the same inversion rea-
soning as previously.

We need to show (∆′, ah b)�S � (cl b)⊕ (ah b)⊕ (∃b′.on b′ b).
Since ∆′�S is empty, it suffices to show ah b ` (cl b) ⊕ (ah b) ⊕ (∃b′.on b′ b), which is

derivable by rules.
Proof for BW3 (pickup_from_table preserves arm well-formedness):

Intuitively, this property holds because the arm’s initial arm free property is replaced by
an equally satisfactory arm holding property. The proof follows.

Let S be the restriction set {af, ah }.
We know by assumption that

∆�S � (∃b.ah b)⊕ af

and since arm free satisfies the disjunction, ∆′�S is empty by the same inversion
reasoning as previously.

We need to show (∆′, ah )�S � (∃b.ah b)⊕ af
Since ∆′�S is empty, it suffices to show ah b ` (∃b.ah b) ⊕ af , which is derivable by

rules.

So far we have only proven the invariant for one rule, intentionally chosen as one
of the simpler ones in the program. In order to give a representative sample of this
method, we now show consider a rule manipulating the interaction between two blocks,
which we also want to preserve the invariants. Below, we give the intuition for the proof
of invariant preservation for the putdown_on_block rule. There is one case that differs
in format from the cases in the previous proof: in particular, invariant BW1 for block b′,
the preservation of the bottom block’s bottom well-formedness.
Proposition 6.2.2. For any ∆′, let ∆ = ∆′, ah b, cl b′. For each I ∈ {BW1, BW2, BW3}, if
I(∆) then I(∆′, on b b′, cl b, af ).
Proof Sketch: We need to reason about each of the two blocks mentioned in this rule, b
and b′, and ensure that BW1 and BW2 holds for each of them.

Invariant BW1 (bottom well-formedness) for block b:
This property holds because ah b is replaced by on b b′.

Invariant BW2 (top well-formedness) for block b:
This property holds because ah b is replaced by clear b.

Invariant BW1 (bottom well-formedness) for block b′:
This property holds because the rule does not manipulate this property, i.e. predicates
concerning it are not mentioned to the right nor the left of the rule.

Invariant BW2 (top well-formedness) for block b′:
This property holds because clear b′ is replaced by on b b′.

Invariant BW3 (arm well-formedness)
This property holds because ah b is replaced by af .
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6.2.1 Example: Tower of Hanoi

We continue to illustrate this meta-logical approach by example, this time with a varia-
tion on the blocks world domain that is closer to a games application: Tower of Hanoi.
This example also involves the persistent, backward-chaining component of the lan-
guage and allows us to illustrate our treatment of such constructs in program rules.

Define the Tower of Hanoi domain as follows: there is a finite number of posts on
which rings can be placed. A robot arm may either be holding a ring or free. A ring
R may only be placed on top of another ring R′ if R is smaller than R′. To make our
encoding more concise, we introduce a general place type to represent either an empty
post or the top of a ring. The code follows:

ring : type.

smaller ring ring : bwd.

place : type.

post : type.

top_of ring : place.

bottom post : place.

on ring place : pred.

clear place : pred.

arm_free : pred.

arm_holding ring : pred.

pickup : clear (top_of R) * on R P * arm_free

-o arm_holding R * clear P.

putdown_on_ring : arm_holding R * clear (top_of R’) * smaller R R’

-o arm_free * on R (top_of R’) * clear (top_of R).

putdown_on_post : arm_holding R * clear (bottom P)

-o arm_free * on R (bottom P) * clear (top_of R).

An example instantiation of this domain is:

p1 : post. p2 : post. p3 : post.

r1 : ring. r2 : ring. r3 : ring.

smaller r1 r2.

smaller r1 r3.

smaller r2 r3.

context init =

{clear (bottom p2), clear (bottom p3),

on r3 (bottom p1), on r2 (top_of r3), on r1 (top_of r2),

clear (top_of r1), arm_free}.

Runnable Ceptre code for this example can be found in Appendix C.3.
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The invariant we want to show preserved is that whenever a ring is on another ring,
the top ring is smaller. Here is a candidate statement of this invariant in the meta-logic:

IToH∗(∆) = ∀r, r′.∆�{on r (top of r′)} � ((on r (top of r′))⊗!smaller r r′)⊕ 1

This invariant says that any two rings in the program are either in the on relation,
in which case they are accompanied by a provable smaller relation between them, or
there is no such relationship between them.3

In order to make our proofs go through, however, we will need to strengthen the
invariant to include one of the original properties of the blocks world program: in par-
ticular, the fact that rings have mutually exclusive predicates referring to what is under
them and what is atop them. It suffices to supply just one of these properties, e.g.:

IToH(∆) =

∀r.∆�{on r , ah r} � (∃r′.(on r (top of r′))⊗!smaller r r′)

⊕ (∃p.(on r (bottom p)))

⊕ (arm holding r)

The proof that this invariant holds of the program is given rule-by-rule. For rule
pickup:
Proposition 6.2.3 (Rule preserves Tower of Hanoi invariant). For all ∆′, r : ring, and
p : place, if IToH(∆′, clear (top of r), on r p, arm free ), then IToH(∆′, arm holding r, clear p).

Proof. Let ∆ = ∆′, clear (top of r), on r p, arm free . For most instantiations of the re-
striction set, the proof will be trivial, since the rule does not manipulate any instances
of the restriction set unless the argument is r. In that case, let S be the restriction set
{on r , ah r}, and let A be the formula

(∃r′.(on r (top of r′))⊗!smaller r r′)

⊕ (∃p′.(on r (bottom p′)))

⊕ (arm holding r)

By assumption, ∆�S � A. The restriction ∆�S computes to ∆′�S, on r p, and since on r p
suffices to prove the disjunction (either the first or second disjunct), ∆′�S = ·.

Need to show: (∆′, ah r, cl p)�S � A. (∆′, ah r, cl p)�S = ah r by reduction. ah r ` A by
rules (the single assumption satisfies the right disjunct).

3 This invariant may seem awkward compared to a similar implication-flavored statement:
on r (top of r′)⊃!smaller r r′. However, this implication sits at the meta-logical level, and we do not wish
to include such a connective in our restricted metalogic for the sake of potential automation. On the
other hand, in classical logic we have the equivalence A⊃B ≡ (¬A) ∨ B, which gives us a positive (in
the focusing sense; see Chapter 2) characterization of implication more suitable to automatic search. This
invariant statement is essentially a reflection of this equivalence, which is valid in this logic because we
consider the presence or absence of an atom in the context to be decidable—i.e. in a context restricted to
the set {a}, the proposition ak ⊕ 1 will always hold for some k, which is analogous to the law of excluded
middle in classical logic.
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For rule putdown_on_ring:4

Proposition 6.2.4. For all ∆′ and r : ring, if IToH(∆′, arm holding r, clear (top of r′)) and
Σ ` smaller r r′, then IToH(∆′, arm free , on r (top of r′), clear (top of r)).

Proof. Let ∆ = ∆′, arm holding r, clear (top of r′). The proof is trivial for all instantiations
of the invariant except in cases where the restriction set mentions r, so let us consider
the instantiation of the invariant at r for which the proof is nontrivial. Let S be the
restriction set {on r , ah r}. Let A be the formula

(∃r′.(on r (top of r′))⊗!smaller r r′)

⊕ (∃p′.(on r (bottom p′)))

⊕ (arm holding r)

We know ∆�S � A, and in particular the premise ah r satisfies the third disjunct, so
∆′�S is constrained to be empty. We need to show

(∆′, af , on r (top of r′), clear (top of r)) �S� A

The context restriction computes to on r (top of r′) which together with the assump-
tion !smaller r r′ satifies the first disjunct.

For rule putdown_on_post:
Proposition 6.2.5. For all ∆′, r : ring, and p : post, if IToH(∆′, clear (bottom p), arm holding r),
then IToH(∆′, arm free , on r (bottom p), clear (top of r)).

Proof. Let ∆ = ∆′, arm holding r, clear (bottom p). The invariant holds of ∆ instantiated
at r because of the arm holding r premise, which is straightforwardly replaced by the
on r (bottom p) consequent. This proof follows the same pattern we have now seen
several times.

6.2.2 Potential for Automation

In order to discuss potential algorithms for deciding a fragment of this meta-logic, we
need to define that fragment. To do so, we constrain the grammar of the meta-logic to
formulas φ of the following form:

φ ::= λδ.γ

γ ::= ∀x:τ .γ | ∆�S � ψ
ψ ::= a | ψ ⊗ ψ | ψ ⊕ ψ | ∃x:τ .ψ | 1
S ::= · | pat, S

pat ::= a tpat1 . . . tpatn
tpat ::= | t | c tpat1 . . . tpatn

4Note: since this rule involves a persistent premise, we must explicitly mention the signature Σ sup-
plying the backward-chaining rules defining persistent propositions, which we had previously been leav-
ing silent. This treatment emerges from what it means for a transition to apply; see Chapter 3 for details.
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The grammar for terms t, term constants c, and atomic predicates a is borrowed from
Ceptre’s grammar, given in Chapter 4.

Then we give an interpretation of each component when a formula φ is applied to a
context ∆ (with respect to some type header Σ):

[[∀x:τ .γ]] = Σ ` t : τ implies ∆ � [t/x]γ

[[∆ � a]] = ∆ = {a}
[[∆ � ψ1 ⊗ ψ2]] = ∆ = ∆1,∆2 and ∆1 � ψ1 and ∆2 � ψ2

[[∆ � ψ1 ⊕ ψ2]] = ∆ � ψ1 or ∆ � ψ2

[[∆ � ∃x:τ .ψ]] = there exists t s.t. Σ ` t : τ and ∆ � [t/x]ψ

[[∆ � 1]] = ∆ = ·

Pattern restriction ∆�S computes another context ∆′, defined approximately as the
intersection of ∆ and S where any wildcard patterns in S are considered equivalent to
any term. We write that an atom p matches a pattern pat with the notation p . pat, which
is defined next.

Pattern restriction:

·�S = ·
(∆, p) �S = ∆�S, p if p ∈∗ S

= ∆�S otherwise

p ∈∗ S iff ∃pat ∈ S.p . pat

Pattern matching:

t . t

t .

c t1 . . . tn . c tpat1 . . . tpatn iff t1 . tpat1 and . . . and tn . tpatn
a t1 . . . tn . a tpat1 . . . tpatn iff t1 . tpat1 and . . . and tn . tpatn

Checking that a given context matches a formula in this fragment of the logic for
a given context has a straightforward correspondence to the positive fragment of first-
order linear logic, which is a subset of MALL and thus decidable. Including the expo-
nential operator ! in the limited fashion demonstrated by the Tower of Hanoi example,
i.e. to express constraints on indices whose provability can be fully extricated from the
linear components, does not seem to affect this decidability in any obvious way, but we
currently leave its decidability as conjecture.

For invariant checking, i.e. checking that a given transition ∆ → ∆′ enabled by the
program under scrutiny preserves a property given in this language, we would need to
codify the proof technique embodied by the manual proofs given above in such a way
that were guaranteed to terminate, including inversion of assumed derivations.

Here is a sketch of the algorithm, generalized from the previous examples:
To check an invariant φ = λδ.∀ ~x:τ .δ�S � ψ of a transition ∆→ ∆′:
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1. Expand φ(∆). Generate fresh symbols for each ∀-quantified variable xi in φ(∆′).

2. Enumerate cases for terms in ∆ being equal or not equal to those symbols.

3. For each case, compute the restriction set S and determine possible inversions
based on the rules for decomposing the inner formula ψ (analogous to linear se-
quent calculus right rules). These introduce equality constraints on the restriction
set of the input context ∆ and on the part it shares with ∆′.

4. Using those constraints and, again, decomposition rules for the invariant formula,
determine satisfiability of ∆′ � ψ.

This process does not straightforwardly correspond to a known-decidable proce-
dure, but since the satisfiability semantics obey a subformula property in the same sense
as their corresponding linear logic rules, we expect that inversion is a computable pro-
cess. We also have not yet encountered examples in this fragment that require induc-
tive lemmas. Thus, we conjecture that checking preservation of invariants described
in this meta-logic is decidable. It remains to prove that this is the case, as well as to
prove soundness and completeness with the logical derivability-based notion of invari-
ant preservation. We leave further formalization and proof to future work.

6.2.3 Limitation: Recursive Predicates

Working in a restricted meta-logic to specify program invariants has some drawbacks.
For instance, some specifications of well-formed states are simply inaccessible. Con-
sider an encoding of linked lists in linear logic wherein memory areas are encoded
as abstract destinations (terminology borrowed from the idea of “destination-passing
style” [CPWW03]) used as indices to a predicate describing data at a location as well as
a reference to the next location:

data : type.

location : type.

node location data location : pred.

The list [a,b,c] would be encoded as the domain instance:

a : data. b : data. c : data.

l1 : location. l2 : location. l3 : location.

end : location.

context list_abc = {node l1 a l2, node l2 b l3, node l3 c end}.

We can write programs over this data that, for instance, delete a node from the list
(at location L’):

delete : at L V L’ * at L’ _ L’’ -o at L V L’’.

A common verification problem for reasoning about programs at a memory layout
level is shape analysis [SRW02, DOY06]: can we reason that a given segment of memory
has a particular shape (for instance binary tree or linked list) and that a program that
manipulates it, possibly dynamically allocating memory, preserves that shape? Pre-
viously, linear logic has been investigated as a candidate for expressing these program

167



constraints in terms more abstract than memory locations [JW06], and it seems that such
analyses should also extend to linear logic programs themselves.

In particular, for this example, we might like to state that the linear, non-circular,
linked list structure of our memory layout encoding is preserved by the deletion rule.
But such a property cannot be given by local characterization of a single index; it must
refer to the structure of how indices are shared between predicates in the context. We
also cannot give it as a persistent property defined outside the state evolution rules,
since it refers to facts (like the way nodes are linked) that fundamentally change during
execution.

Instead, such a property is more naturally given recursively, by saying either the list
is empty, or contains a node pointing to another well-formed linked list. One candidate
approach for stating this kind of invariant is to extend the meta-logic with a notion
of recursive predicate. Such extensions to first-order linear logic have been explored
and proven sound [Bae08]. However, this extension may complicate decidability of
the approach, and does not offer clear means for automation. We describe a related
approach more fully as part of a different technique in Section 6.3.

6.3 Consumptive Invariants

Aside from automation concerns, we also hope to extend the expressiveness of the meta-
logic by allowing the description of recursive invariants, such as those described in
the shape analysis literature. We describe a technique that can dynamically check such
invariants next.

This technique hinges on the observation that descriptors of context properties re-
semble grammars that themselves can be expressed in linear logic. And we can write
recursive linear logic programs to express those properties via backward-chaining.

6.3.1 Backward-Chaining Linear Logic Programs

Linear logic programs may be given a backward-chaining interpretation so long as each
clause only has a single, atomic consequent, i.e. takes the form A( p. In concrete syn-
tax, instead of p1 * ... * pn -o p for such a rule we will write the backwards, curried
form p o- p1 o- ... pn, mimicking the syntax for persistent backward chaining pro-
grams.

We refer to p as the head of such a clause, and proof search may be carried out on
a particular atom by matching it against the heads of all logic program clauses, then
matching their premises as new goals, backtracking when search along a particular
branch fails, just like persistent backward chaining. But linear rules still have a resource-
based meaning, i.e. for a rule p o- p1 o- p2 to succeed at establishing p in a context ∆
means that ∆ must be partitionable into ∆1, ∆2 such that p1 consumes all of ∆1 and p2

consumes all of ∆2.
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6.3.2 Example: Linked List Shape Analysis

Consider the linked list example given in Section 6.2.3. We can write a simple recursive
predicate defining a well-formed linked list segment with two arguments, s for the be-
ginning location of the list and e for the ending location. The linked list segment is well
formed if either s .

= e (the segment is empty) or there is some node at swith “next” field
l such that l and e define a well-formed segment.

This definition can be represented by the following backward-chaining linear logic
program:

ll location location : bwd.

ll X X.

ll S E o- at S V L

o- ll L E.

Simmons [Sim12] refers to this kind of specification as a consumptive signature, be-
cause to use it as a verification tool, we would supply a context ∆ and attempt to prove
∆ ` ∃s, e.ll s e, which works operationally by using the rules defining ll to consume
elements of ∆ until none are left.

6.3.3 Potential for Automation

By combining the restriction mechanism from the meta-linear logic approach with pred-
icates defined recursively in linear logic, we can straightforwardly extract a dynamic
checking algorithm: after every rule application, check that the resultant context ∆ (or
whatever restriction of it) satisfies the formula by simply running linear logic proof
search. We have not determined to what extent such invariants can be checked of a pro-
gram statically, nor to what extent the dynamic process described can be optimized not
to re-compute full provability between every transition in the program.

6.3.4 Limitation: Apartness Constraints

Apart from a lack of a known static decision procedure for preservation, consumptive
invariants have the following limitation: they cannot enforce that a given predicate
holds only for distinct term indices. For instance, consider this candidate representation
of the blocks world well-formedness property.

wf_bw

o- wf_arm

o- wf_stacks.

wf_arm o- arm_free.

wf_arm o- arm_holding X.

wf_stacks o- 1.

wf_stacks o- on_table B
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o- wf_stack B

o- wf_stacks.

wf_stack B o- clear B.

wf_stack B o- on B’ B

o- wf_stack B’.

This specification does not suffice to rule out ill-formed blocks world configurations
as specified in Section 6.2, because it does not enforce that a given block B is not, say,
simultaneously held by the arm and on the table (or appearing in multiple stacks). The
term indices of the rules may be instantiated with any substitutions, including ones that
unify them with otherwise-existing terms.

6.4 Generative Invariants

A generative signature, in contrast to a consumptive signature, is one that describes a
context property through rules that generate all permissible contexts, again using the
analogy between logic programs and grammars. Generative signatures and their use
for specifying logic program invariants were also first described in [Sim12].

Generative signatures are collections of forward-chaining rules together with a seed
context ∆0, usually containing a distinguished gen atom which is expanded by the sig-
nature. By convention, we will assume that all seed contexts take this form such that
the signature itself suffices to specify the property.

At first glance, generative signatures look like consumptive signatures “with the ar-
rows turned around:” instead of distinct wf (well-formedness) predicates for each por-
tion of the context, we have distinct generators, analogous to nonterminals in a gram-
mar, for each portion of the context. A complete well-formed context ∆, then, is one for
which there is a transition sequence ∆0 → ∆ along rules given in the generative sig-
nature Σgen, where ∆ contains no nonterminals. An extremely simple example is given
below:

gen -o {a * gen}.

gen -o {1}.

This signature, equipped with the seed context {gen}, describes contexts containing
zero or more instances of a. Formally, the set of contexts that a signature Σ and a seed
∆0 describes is the set of reachable contexts from ∆0 following rules in Σ. We call such
a signature and seed pair (Σ,∆0) a generative invariant of a program signature Σ′ if all
rules in Σ′ maintain the program state’s membership in the set generated by Σ seeded
with ∆0. We make this notion more precise later.

In addition to universally-quantified indices (standard logic variables), generative
invariants may also include existentially generated variables via rules of the form A -o exists x.B.
The existential quantifier has completely standard treatment from a forward-chaining
proof search perspective; see the CLF paper [WCPW03] for a formal treatment.
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6.4.1 Example: Generative Signature for Blocks World

Below we give a generative signature characterizing the blocks world domain, effec-
tively by “turning the arrows around” in the consumptive signature. Let Σbwgen =

gen/bw : gen -o gen_arm * gen_stacks.

gen_arm/af : gen_arm -o arm_free.

gen_arm/ah : gen_arm -o exists b. arm_holding b.

gen_stacks/done : gen_stacks -o 1.

gen_stacks/more :

gen_stacks -o exists b. on_table b * gen_stack b * gen_stacks.

gen_stack/clear : gen_stack B -o clear B.

gen_stack/more : gen_stack B -o exists b. on b B’ * gen_stack b.

This signature says: in order to build a blocks world, build an arm and a set of block
stacks. The arm can either be free or holding a block. A set of block stacks can be empty,
or it can contain a block stack starting with a new block index, where that block is on the
table, along with the rest of the set of block stacks. A block stack is indexed by its top
block, and that block can either be clear, or have another block on top of it that becomes
the new block stack index.

6.4.2 Generative Property Preservation

We now define what it means for program transitions to preserve generative properties.

Definition: A transition ∆, A → ∆, B preserves a generative property 〈Σgen,∆0〉 iff for
all ∆, whenever ∆0  Σgen ∆, A∗, it is also the case that ∆0  Σgen ∆, B∗.

In particular, for the blocks world example, we can show how to reason that the
pickup_from_table rule, enabling the transition ∆, ot b, af, cl b→ ∆, ah b, preserves the
invariant by showing that:
Proposition 6.4.1. If

{gen} →Σbwgen
∆, on table b, arm free, clear b

then
{gen} →Σbwgen

∆, arm holding b

Proof Sketch: The signature Σbwgen can generate ∆, on table b, arm free, clear b in only the
following way, up to concurrent equality:

1. Apply rule gen/bw to get context {gen_arm, gen_stacks}.
2. Apply rule gen_arm/af to get context {arm_free, gen_stacks}.
3. Apply some unknown rule sequence to gen_stacks to yield an unknown context

D1 along with another copy of gen_stacks.
4. Apply gen_stacks/more to create b along with its on_table property. Context is

now {arm_free, D1, on_table b, gen_stack b, gen_stacks}.
5. Apply gen_stack/clear to gen_stack b to get clear B.
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6. Apply some unknown rule sequence to gen_stacks to get a side effect nonterminal
context D2, and eventually eliminate all nonterminals.
The context is now {arm_free, D1, on_table b, clear b, D2}.
The original frame context ∆ must equal D1, D2.

Need to show: {gen} →Σbwgen
∆, arm holding b.

Given the proof trace above, we can modify it selectively to produce the context we
need. We modify step 2 to replace gen_arm/af with an application of gen_arm/ah, which
generates a block b that is indistinguishable from the specific b in question up to alpha
renaming, and the predicate arm_holding b. We modify steps 4 and 5 to be the null
transition, simply linking together the trace that generated D1 to the trace that uses
gen_stacks to generate D2, eliminating the terminals that were produced as a side-effect.

To make the above proof sketch formal, we need to give the input trace in terms of ε
notation (a sequence of let-bindings let 〈x1 . . . xn〉 = r R witnessing the transformation
{gen} →Σbwgen

∆, on table b, arm free, clear b) and prove that it really is the only possi-
bility, up to concurrent equality. Simmons [Sim12] carries out such proofs by proving
permutability lemmas, which say that in any trace, we can permute the generation of the
terminals we care about to the end, then reason inductively on the remaining trace pre-
fix. The tediousness and surfeit of cases in these proofs suggest that formal argument
over traces is the wrong level of abstraction for these proofs—in the case of generative
well-formedness, we do not care about the order in which things are generated by the
signature but rather only about reachability between intermediate states of the genera-
tive program. An attempt at visualizing the structure of a generative trace is given in
Figure 6.1.

The ability to draw the trace this way makes several assumptions that we would
need to prove about a given generative signature, such as non-interference between
gen_arm and gen_stacks, and for that matter the fact that terminals cannot interfere
with the trace structure. All of these assumptions suggest constraining the grammar of
generative signatures themselves in such a way that their traces always have this tree-
like structure, which we will do when we formalize them in an attempt to automate
proof search.

6.4.3 Potential for Automation

We have not yet devised a general algorithm for checking preservation of generative
invariants, and we suggest that without a better layer of abstraction for reasoning about
generative traces, such a task is intractable: the by-hand proofs frequently involve
inductively-proven lemmas and careful scrutiny of the particular generative signature
at hand. However, generative signatures so far yield the most definitive result of the
three approaches: if we limit programs and generative signatures to atomic propositions,
invariant preservation is decidable. We give a proof of this fact in Section 6.5.
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Figure 6.1: Generative trace structure
These diagrams depics the generative trace structure for blocks world well-formedness
of precondition and postcondition of the rule

pickup_from_table : on_table B * clear B * arm_free -o arm_holding B.

Precondition trace:

gen

gen_arm

gen_stacks

gen_stack gen_stacks

arm_free

clear b

on_table b

gen_stacks

D2

D1

Postcondition trace:

gen

gen_arm

gen_stacks

gen_stacks

gen_stacks

D2

D1

arm_holding b

(null transition)
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6.4.4 Limitations

Generative signatures resolve the major limitation of consumptive signatures, the ex-
pression of apartness constraints, through the existential quantifier, which always gen-
erates a fresh term distinct from any others previously in existence. However, this ap-
proach is not without its limitations.

For one thing, we suspect that generative signatures are a substantially less intuitive
way to write specifications than, for instance, the first-order formulas of meta-linear
logic discussed in Section 6.2. While meta-linear logic is a fairly direct way of translat-
ing a constraint on a program into a logical formula, generative invariants require the
programmer to operationalize their understanding of the constraint by specifying how to
generate contexts that satisfy it.

Second, there is another large class of constraints we cannot describe with generative
invariants: consider describing well-formed graphs where edges between nodes are pred-
icates in the program, but we do not want to create self-loops or multi-edges. However,
a new node created may refer back to an old node. A candidate signature is:

gen/nodes : gen -o exists n:node. gen_edges n * gen.

gen_edges/edge : gen_edges N * gen_edges N’

-o edge N N’ * gen_edges N * gen_edges N’.

gen_edges/done : gen_edges N -o 1.

This specification has two problems: first of all, it has a rule with two nonterminals
on the left, which even in the propositional case falls outside the known-decidable frag-
ment. Second, it cannot avoid generating self-edges or multi-edges, since nothing stops
N and N’ from having the same node substituted for them. The existential “fresh gener-
ation” property does not help us here, because it cannot promise to keep indices apart
in a non-local way, i.e. in a rule other than the one where the existential appears.

In general, there does not appear to be a way to specify formation properties in
which indices can be shared arbitrarily between predicates while also enforcing certain
apartness constraints. Even with meta-linear logic, we would need to introduce new
apartness primitives on terms in order to handle such a specification.

6.5 Decidability of Invariant Checking for the Proposi-
tional Fragment

In this section we prove that checking whether a (propositional) generative invariant
holds of a (propositional) linear logic program is decidable. We do so by modeling
propositional generative signatures and programs as vector addition systems (first intro-
duced by that name by Karp and Miller [KM69], although the equivalent Petri nets
were devised earlier [Pet66]) in a way that they can be treated using known techniques.
Specifically, we show how invariant preservation can be modeled in Presburger Arith-
metic, the first-order theory of natural numbers with inequality and addition, which
(despite impractical computational complexity) happens to be decidable [Sta84].
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6.5.1 The Propositional Fragment

Propositional Ceptre programs are those which do not have any logic variables (Π-
bound variables), and thus the available transitions at any point in the program does
not depend on the term language available. Formally, it is simply a restriction of the
grammar of rules to

A ::= S ( S

S ::= 1 | a | S ⊗ S

Instead of refering to these programs as propositional Ceptre programs, we will refer
to them as propositional Horn programs by analogy with Horn clauses in standard logic
programming (i.e. ones with no left-nested implication) [Kow74], which we believe is
consistent with prior definitions of the Horn fragment of linear logic [Kan92, Kan95].

Below is an example of a propositional Ceptre program modeling coin exchange—
r1 exchances a dime for two nickels, and r2 exchanges a quarter for two dimes and a
nickel.

r1 : d -o n * n.

r2 : q -o d * d * n.

Even with such a limited specification, we can already ask all of the same questions
we asked in the beginning:
• What is the set of well-formed states? In this case, it is simply any number of

quarters, dimes, and nickels.
• Which states do we take to be well-formed initial states? For instance, we might

specify that we start with entirely quarters, or we might allow any configuration
of coins.

• What is the set of possible states at quiescence (termination) of the program?
This depends on the set of initial states. If we take the initial states to be those
with only quarters, then we expect to have a multiple of five nickels at the end
and no other coins. If we allow any set of coins initially, then we will have an
arbitrary number of nickels (and no other coins) at the end.

Indeed, the propositional fragment corresponds with Petri nets [Mur89] and has
been used for quite sophisticated specifications in the games and interactive storytelling
literature as well as for modeling concurrent and distributed programs. For instance,
Dang et al. [DHCS11] specify a slapstick interactive storytelling scenario in which the
player character is attending a party and may take various actions that have cascading
effects, such as lighting a woman’s cigarette:

light_cig : bored_woman * woman_has_cig * cig_not_lit

-o woman_has_cig * cig_lit.

...which can lead to objects and animals catching fire. Because the scenes are all en-
tirely hand-authored and specific to certain characters and objects, the whole interactive
space can be described with atomic propositions.
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Furthermore, first-order logic programs may be expanded to propositional ones
through the process of grounding, if their term domains are finite. For instance, if we
have the type header

char : type.

loc : type.

at char loc : pred.

alice : char.

bob : char.

den : loc.

foyer : loc.

Then the rule rule : at C L -o 1 may be expanded into the following four rules:
at alice den -o 1.

at alice foyer -o 1.

at bob den -o 1.

at bob foyer -o 1.

Such a process is typically not considered computationally practical, since the num-
ber of rules needed to represent a single rule grows combinatorially with the number of
logic variables it has, and checking Presburger formulas is doubly-exponential in com-
plexity [FR98]. However, since our only aim with this proof is to establish decidability
(rather than a tractable algorithm), we note that our proof extends to these programs as
well.

Thus we consider decidability of invariant checking for propositional programs to
be a valuable and novel contribution to the space of validating interactive media.

6.5.2 A Tricky Example

To see why the problem of invariant preservation is a challenge, consider the following
generative signature Σabc.

g1 : gen -o {a * cs}.

g2 : gen -o {b * c * c}.

g3 : cs -o {c * cs}.

g4 : cs -o {1}.

Note that the class of contexts (Σabc, gen) describes is one where an a can appear
alongside arbitrarily many cs, but a b requires exactly two cs alongside it.

Here are two rules that should pass (preserve the invariant):
1. a -o {a * c}.

2. a * c -o {a}.

That is, if there is an a in the context, we should be able to add or subtract arbitrarily
many cs.

On the other hand, here are two rules that should fail (do not preserve the invariant):
1. 1 -o {c}.
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2. c -o {1}.
That is, we may not arbitrarily remove or generate a c. The second generative rule g2

permits a context with exactly one b and two cs. Rules are context-sensitive with respect
to generative invariants; they cannot be reasoned about in isolation.

Thus, our algorithm needs to be able to account for preservation not on a purely
local, or context-free, basis, but rather in a sense that takes into account all the possible
ways an atom on the left-hand side of the rule could be generated—which may impose
some constraints on the context—and conclude that, in all of those scenarios, including
their constraints, the right-hand side of the rule could have been generated in its place.

6.5.3 Vector Addition Systems

In order to draw on prior work in algorithms for validating these systems, we need to
understand them in terms of the formalisms chosen by that prior work. In particular,
a number of useful properties have been shown of vector addition systems, which we
employ to obtain decidability.

A vector addition system (VAS) V is an initial configuration v0 ∈ Nn for a fixed dimen-
sion n, along with a set T of transitions describing how a configuration v may evolve.
Transitions can be described as vectors t ∈ Zn along with side conditions of the form
k ∈ Nn, which imposes the inequality constraint v ≥ k. If the conditions hold of a con-
figuration v (i.e. v ≥ k) and v + t ≥ 0, the transition t is said to be applicable or fireable,
and the configuration may evolve to v + t.

For a transition (t, k) ∈ T that is applicable in v, we notate a transition relation , i.e.
v  v+t, which we use in addition to its transitive closure ∗. The set of configurations
{x | v  ∗ x} is called the reachability set of v, and can be extended to sets of starting
configurations as well. VASes are equivalent to Petri nets (see e.g. [Ler10, Kan95]),
and for both systems, the central problem is computing reachability sets: given a set of
starting configurations, what are all of the possible states the system might wind up in?
This problem is known to be decidable [Pet77, ST77] (however, we do not make direct
use of this fact for our proof).

The correspondence also extends to provability of a sequent in the propositional
Horn fragment of linear logic. Simply put, a VAS transition rule of the form (t, k) can be
interpreted as a forward-chaining linear logic rule

ac11 ⊗ . . .⊗ acnn ( ac1+t1
1 ⊗ . . .⊗ acn+tn

n

Where ci = max(ki,−ti) and ac means a⊗ . . .⊗ a with c repetitions.
In the other direction, a linear logic program with rules of the form

ac11 ⊗ . . .⊗ acnn ( bd11 ⊗ . . .⊗ bdmm
(with like atoms grouped together without loss of generality) can be interpreted as

a VAS by the following process:
1. Give an arbitrary canonical ordering for all atoms in the program to form the space

of possible vectors. Thus each atom a corresponds with an index ia of the vector.
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2. For each rule in the above form, create a transition (t, k) where ti = ci − di and
ki = ci.

By way of example, all of the rules in Σabc may be translated to the following vector
addition rules over <gen, cs, a, b, c>:

g1 : <-1, 1, 1, 0, 0> ; <1, 0, 0, 0, 0>

g2 : <-1, 0, 0, 1, 2> ; <1, 0, 0, 0, 0>

g3 : < 0, 0, 0, 0, 1> ; <0, 1, 0, 0, 0>

g4 : < 0, -1, 0, 0, 0> ; <0, 1, 0, 0, 0>

The initial configuration {gen} is represented by the vector 〈1, 0, 0, 0, 0〉.
As mentioned previously, the decidability of this problem does not help us directly

with deciding if a given program rule preserves a generative invariant. We can, how-
ever, recast the preservation problem as a VAS problem: if we want to check whether
a rule r : A ( B satisfies a generative invariant I , reformulate I as a vector addition
system VI = (i0, TI). The rule r will correspond to some transition (t, k) (in a different
vector addition system, whose full definition is not needed).

Definition: A transition (t, k) preserves the invariant given by VAS VI with starting con-
figuration i0 iff for all configurations v ≥ k

i0  
∗
VI
v

implies

i0  
∗
VG
v + t

The vector v in this definition represents an arbitrary frame context ∆, A in which
the rule fires. 5

We can make a few more definitions to simplify this characterization:

Definition: The reachability set of a vector v under a particular VAS V is the set of all
vectors v′ such that the transitive closure of all transitions in V can take v to v′:

reachV (v) = {v′ | v  ∗V v′}

Definition: The postset of a given vector set S along a transition (t, k), denoted post(t,k)(S),
is the set of all vectors v′ such that there exists a v ∈ S where (t, k) is fireable on v and
v′ = v + t.

Now we can reword the above criterion for preservation as simply

post(tkr)(S) ⊆ S

where S = reachVG
(c0).

5 Note that, in general, the arity of vectors for a generative invariant will be higher than the arity for
the VAS corresponding to the program we want to check—invariants contain nonterminals that do not
appear in program configurations. So to make this definition more precise, the transition i0  v should
really be i0  v′ where v′i = vi when i is within bounds for v and v′i = 0 everywhere else.
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In general, computing the reachability set does not help us answer this question.
However, some (not all) VASes can be expressed as Presburger Arithmetic formulas, a
subset of first-order logic propositions that may refer to multiplicaiton and addition of
natural numbers (but not exponentiation). Presburger Arithmetic is known to be de-
cidable, as shown by Presburger in 1929 (simultaneously with his presentation of the
system). And if the reachability set S of a vector addition system VI representing an in-
variant corresponds to a Presburger formula, then the question of whether a given rule
r preserves it (post(r)(S) ⊆ S) can also be expressed as a Presburger formula. Thus, what
remains is to show that the particular subset of VASes that correspond with generative
invariants are all expressible as Presburger formulas.

6.5.4 Presburger Vector Addition Systems

In general, VASes are not expressible as Presburger Arithmetic formulas. An explana-
tion of this fact and a characterization of the Presburger fragment is given in [Ler13].
Briefly speaking, one can encode exponentiation as a VAS, which is not within the
bounds of Presburger Arithmetic. In this section, we recapitulate Leroux’s characteriza-
tion of Presburger Vector Addition Systems in terms of how we use them for generative
invariants.

In order to show that generative invariant preservation is decidable, we need to
isolate a fragment of the VAS language that is both suitable to use for our generative
invariants of interest and expressible in Presburger Arithmetic.

Leroux shows that the Presburger-expressible VASes are exactly those which have an
equivalent “flat” representation. A flat VAS is one that can be characterized as a finite
sequence of arbitrarily-repeated finite transition sequences. More formally, consider a
word w to be a sequence of transitions t1 . . . tk such that ti+1 may always follow ti. The
Kleene closure operator on words w∗ means “w repeated 0 or more times, so long as it
applies.” For instance, the closure t∗ of a transition t corresponding to the linear logic
rule a ( b means that t may be applied as many times as there are copies of a in the
configuration it starts with.

A flat language, then is one that can be written as

(w1)∗ . . . (wn)∗

for some finite set of words w1 . . . wn.
A flatable VAS is one with the same reachability set as a flat VAS. One known class

of flatable VASs are so-called Basic Parallel Processes, or BPPs [Esp97], which are those
corresponding to sets of Horn linear logic rules with a single premise (or Petri nets
where every transition has a single input). Although this class may sound limiting,
every generative invariant we have studied so far meets this criterion. 6

6Generative invariants for specifying the operational semantics of programming languages [Sim12]
occasionally include a second premise, but always a persistent one (premise of the form !A). This kind
of rule may still be expressible as a BPP so long as the persistent premise can be represented as a side
condition, but we currently exclude these examples from our proofs.
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There exist published, proven terminating, and implemented methods to decom-
pose VASs such as BPPs into flat languages [Fri00, FO97]. These techniques involve
iteratively disentangling cyclic rule dependencies.

As an alternative to automatically finding an equivalent flat language, we can sim-
ply stipulate that a given generative invariant must be flat. We note that prior to this
investigation, there was no rigorous characterization of what differentiates a generative
signature from any other linear logic program, and a constraint like this one serves as a
candidate for characterizing the space of suitable signatures.

6.5.5 Flat(able) Generative Invariants

Here is a generative invariant that is not flat, corresponding loosely to a propositional
erasure of a well-formedness specification for blocks world.

g1 : gen -o {t * gen’}. %% t ~= "on table"; construct a new stack

g2 : gen’ -o {b * gen’}. %% b ~= "on"; add a block to a stack

g3 : gen’ -o {c * gen}. %% c ~= "clear"; finish a stack and return

g4 : gen -o {f}. %% f ~= "arm free"

g5 : gen -o {h}. %% h ~= "arm holding a block"

If we try to characterize the allowable traces generated by this program as a gram-
mar, we would write something like (g1g

∗
2g3)∗g∗4g

∗
5 , meaning basically: generate an arbi-

trary number of stacks of blocks by first generating a block on the table, then generating
an arbitrary number of blocks atop it, then designating the last one as clear; finally,
designate the arm as either free or holding a block. 7

This specification is not flat because there is “nested” looping of the rule g2 within
the wider loop formed by g1 and g3. This introduces the constraint that a t and c both
must be generated in order for there to be more than zero bs. It also means that, if there
are no nonterminals gen and gen’, the number of ts and cs must be the same.

However, the set of contexts generated by this signature is equivalent to those cre-
atable by a flat specification. In fact, the flat specification is closer to the one we have
already seen:

g1 : gen -o {t * gen * gen’} %% begin a new stack

g2 : gen’ -o {b * gen’}. %% add a block to a stack

g3 : gen’ -o {c}. %% finish a block stack

g4 : gen -o {f}.

g4 : gen -o {h}.

The flat language representing the reachability set is:

(g1)∗(g2)∗(g3)∗(g4)∗(g5)∗

7 We could give a more precise characterization of the signature with additional regular language con-
structs, such as (g1g

∗
2g3)∗(g4|g5|1), since exactly one of g4 or g5 will fire at the end exactly once (or neither

of them will). However, prior work makes use of only the regular language constructs of concatenation
and repetition, which affects their mapping into Presburger formulas. The Kleene star can be used to
express this same thing because after g4 fires, neither g4 nor g5 can, and if g4 fires 0 times, then g5 may fire
0 or 1 times.
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In other words, the generative signature can be read operationally as follows: First,
create an arbitrary number of seeds for new block stacks. Then, if applicable, we add
blocks to all of those stacks. Then finish all of those stacks by marking their tops as clear.
Then optionally generate a free arm, and if applicable (i.e. if we opted not to generate a
free arm) generate an arm holding a block.

6.5.6 Computing Presburger reachability sets

In general, the postset of a vector set under an iterated word w∗ can be given by bind-
ing an existential variable for the number of iterations, then computing an inductive
definition of the union of those sets.

More precisely, to recapitulate Leroux’s result [Ler13], define the displacement of a
word w = t1 . . . tk to be the vector δ(w) =

∑l
j=1 tj . Define also for w a configuration cw

such that cw(i) = max{−(t1 + · · ·+ tj)(i) | 0 ≤ j ≤ k}. This value cw denotes the minimal
configuration for which there exists a run (applicable transition sequence) labeled by w.

Then, the postset of a set S under a single repeated word w is given by the following
Presburger formula:

post(S,w∗) = {x | ∃v ∈ S.∃n ∈ N.v ≥ cw ∧ v + nδ(w) = x}

Then, for a VAS with starting configuration c0 and represented as the flat language
w∗1 . . . w

∗
n, a sequence of Presburger sets Ci denoting the reachability set for the entire

system is computed inductively:

C0 = {c0}
Ci = post(Ci−1, (wi)

∗)

The reachability set is given by v ∈ post∗({c0}) = Cn where n is the number of words
in the flat sequence.

6.5.7 The Algorithm

Now that we have a Presburger characterization of the reachability sets of generative
invariants, we can describe what it means for a rule r : A ( {B} to preserve an in-
variant (Σ,∆0) as a Presburger formula itself. We denote by |∆0|, |Σ|, and so on the
compilation of each of these linear logic program components into their corresponding
vector addition system components.

Let S = post∗|Σ|(|∆0|). The rule r preserves Σ iff

post|r|(S) ⊆ S

In general, a postset post(t,k)(S) can be denoted logically as the Presburger set {v |
∃x ∈ S.x ≥ k ∧ x+ t = v}.

And we can write the above subset condition as an implication; in particular, if q is
the number of constants in the specification (i.e. the width of the vector):
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∀x, v ∈ Zq.(x ∈ S ∧ x ≥ k ∧ x+ t = v)⊃ v ∈ S

Whether a given vector is in S is decidable since the set itself is Presburger com-
putable.

6.5.8 End-to-End Example

Let’s revisit the tricky case from Section 6.5.2.

g1 : gen -o {a * cs}.

g2 : gen -o {b * c * c}.

g3 : cs -o {c * cs}.

g4 : cs -o {1}.

As a vector addition system over <gen, cs, a, b, c>, we write this as a sequence
of vector pairs t ; k:

g1 : <-1, 1, 1, 0, 0> ; <1, 0, 0, 0, 0>

g2 : <-1, 0, 0, 1, 2> ; <1, 0, 0, 0, 0>

g3 : < 0, 0, 0, 0, 1> ; <0, 1, 0, 0, 0>

g4 : < 0, -1, 0, 0, 0> ; <0, 1, 0, 0, 0>

The corresponding flat language is:

g2*g1*g3*g4*

The language compiles to the Presburger formula C4, where

C0 = {<1,0,0,0,0>}
C1 = post(C0, g2

∗)

C2 = post(C1, g1
∗)

C3 = post(C2, g3
∗)

C4 = post(C3, g4
∗)

If we omit needless existential quantification over rules that only apply a fixed num-
ber of times, we can easily generate this set by hand:
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C0 = {<1,0,0,0,0>}
C1 = post(C0, g2

∗)

= {<1,0,0,0,0>,
<0,0,0,1,2>}

C2 = post(C1, g1
∗)

= {<1,0,0,0,0>,
<0,0,0,1,2>,

<0,1,1,0,0>}
C3 = post(C2, g3

∗)

= {<1,0,0,0,0>,
<0,0,0,1,2>,

<0,1,1,0,0>} ∪
{v | ∃n ∈ N.v = <0,0,1,0,n>}

C4 = post(C3, g4
∗)

= {<1,0,0,0,0>,
<0,0,0,1,2>,

<0,1,1,0,0>} ∪
{v | ∃n ∈ N.v = <0,1,1,0,n>} ∪
{v | ∃n ∈ N.v = <0,0,1,0,n>}

If we further restrict this set to exclude states with nonterminals by intersecting with
the set {v | v0 = 0 ∧ v1 = 0}, we get the set of well-formed states

{<0,0,0,1,2>} ∪ {v | ∃n ∈ N.v = <0,0,1,0,n>}

Or in other words, the contexts {b, c, c} and {a, cn} for arbitrary n, as expected.

Checking Program Rules

Now we can work out the decision procedure for the example on a couple of differ-
ent program rules. We revisit two examples from Section 6.5.2, one that preserves the
invariant and one that does not:

1. a -o {a * c}. (should pass)

2. 1 -o {c}. (should fail)

Consider the postset of C along each rule: for rule 1, the only part affected is the
second disjunct. C ′ = post1(C) =

{<0,0,0,1,2>} ∪ {x | ∃n.x = <0,0,1,0,n>} ∪ {x | ∃n.x <0,0,1,0,n+1}
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But this last unioned set is a subset of {x | ∃n.x = <0,0,1,0,n>} (which can be
determined in Presburger Arithmetic by modeling subsethood as implication).

For rule 2,

C ′′ = post2(C)

= {<0,0,0,1,2>} ∪
{x | ∃n.<0,0,0,1,n+2>} ∪
{x | ∃n.x = <0,0,1,0,n>} ∪
{x | ∃n.x <0,0,1,0,n+1>}

This set is not a subset of the original, so it fails, as expected.

6.5.9 Adequacy and Correctness

The following lemmas serve as basic sensibility checks on the encoding we have used
to devise our decidability proof.
Proposition 6.5.1 (Adequacy). Modeling generative invariants as vector addition systems is
sound and complete with respect to derivability (in the logic) and reachability (in the VAS). That
is, formally, if |Σgen,∆0| = 〈V, c0〉 then ∆0 → ∗Σgenθ, if and only if c0  ∗V |θ|.

This property follows by the standard correspondence between linear logic deriv-
ability and vector addition reachability [Kan95].
Proposition 6.5.2 (Soundness). If the Presburger formula representing a rule r : A ( B
preserving a flat generative invariant 〈Σ,∆0〉 has a proof, then for all ∆, ∆0  ∗Σ ∆, A implies
∆0  ∗Σ ∆, B.
Proof Sketch: Let S = post∗|Σ|(|∆0|). Let (t, k) be the transition and constraint of |r|. By
correspondence with vector addition systems, the Presburger formula has a proof if and
only if post|r|(S) ⊆ S.

The postset along |r| is {v|∃x ∈ S.x ≥ k ∧ x+ t = v}.
If we consider the vector respresentation of each side of the rule |A| and |B|, we can

write t as |B| − |A| and k as |A|. So this postset can be written alternatively: {v|∃x ∈
S.x ≥ |A| ∧ x+ |B| − |A| = v}.
We know |∆, A| ∈ S, and we need to show |∆, B| ∈ S.
∆ is in the set of vectors {v} specified by the postset, because |∆, A| is in S, is greater
than |A| by translation of contexts into vectors, and |∆, A| + |B| − |A| = |∆, B|. Thus
|∆, B| ∈ S, as required.
Proposition 6.5.3 (Completeness). Converse of soundness. If, for all ∆, (∆0  ∗Σ ∆, A)
implies (∆0  ∗Σ ∆, B) and there is a flat representation of Σ, then the Presburger formula
representing invariant preservation of 〈Σ,∆0〉 along r : A( B has a proof.
Proof Sketch: Let S = post∗|Σ|(|∆0|). The Presburger formula has a proof if and only if
postr(S) ⊆ S, i.e. for all v,

(∃x ∈ S.x ≥ |A| ∧ x+ |B| − |A| = v)⊃ v ∈ S
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which is what we need to show.
What we know is that ∀∆.(∆0 →∗Σ ∆, A)⊃(∆0 →∗Σ ∆, B), or in VAS terms,

|∆, A| ∈ S⊃ |∆, B| ∈ S

Assume a given vector v, and assume of it the premise of what we need to show: that
there exists an x such that x ∈ S ∧ x ≥ |A| ∧ x+ |B| − |A| = v).

Now instantiate the |∆| quantified over in our assumption at x− |A|. Now we know
x − |A| + |A| ∈ S⊃x − |A| + |B| ∈ S. We know x ∈ S, so now we know v ∈ S, as
required.

6.6 Conclusion

We have presented three methods for specifying program invariants, and for each dis-
cussed their potential for automation and their limitations. We have also presented a
decidability proof for checking invariants of programs within a large fragment describ-
ing most of the programs we have considered in this thesis.

We close this chapter with a discussion of a limitation of all three of these systems,
suggesting that there is still a great deal of investigation to do both in terms of automat-
ing specification checks and extending the expressiveness of specification languages.

6.6.1 Limitation: Instance-Dependent Invariants

One of our motivating examples for investigating program property proof is allowing
the author to state and enforce playability constraints. For an example of a playability
constraint, consider spatial navigation puzzles, such as the dungeon layouts in which
locked doors separate some rooms and keys may be found in some rooms. Gareth Rees
has studied this dungeon structure 8 in the context of The Legend of Zelda: Ocarina of
Time [Nin98]; we replicate their diagram from Figure 3 here:

In this diagram, rooms (depicted with capidal letters) with “Key” labels require a
key (any small key, indistinguishable) to open them, and rooms with “Small key” labels

8Article available at http://garethrees.org/2004/12/01/ocarina-of-time/.
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contain such a key. For the dungeon to be solvable means that every room can eventually
be reached by a player starting in the “Start” node.

We can easily give a program specifying the space of player actions for such a dun-
geon, which presumably include moving from room to room, picking up keys, and
unlocking rooms that require a key when we have one:

door : type.

room : type.

entity : type.

player : entity.

small_key : entity.

adjacent room door room : bwd.

% defined by domain instance

locked door : pred.

open door : pred.

at entity room : pred.

holding entity entity : pred.

move : at player R * adjacent R D R’ * open D -o at player R’.

open_door : $at player R * adjacent R D R’ * locked D

* holding player small_key

-o open D.

pickup_key : $at player R * at small_key R

-o holding player small_key.

Defining “accessibility” between locations requires some kind of recursive specifi-
cation, which could perhaps be stated as a backward-chaining linear logic program or
as a generative invariant of some kind. But note that any invariant that would describe
solvability of a dungeon depends crucially on the specific initial configuration, since
it is really a property of that configuration as well as of the program—and none of the
techniques we have discussed so far encompass such a statement. Temporal logics, such
as those used in model checking, present promising techniques that could account for
properties like these, wherein it is feasible to exhaustively check the possible configura-
tion space [CGP99]. In lieu of a concrete solution, however, we posit this example as a
potential benchmark for game invariant specification techniques going forward.
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Chapter 7

Conclusion

This dissertation has described the use of linear logic for representing game mechanics
and narrative systems, unifying the ideas of play and narrative through the waypoint
of logical proof. In particular:

• Chapter 2 described how to model narratives in linear logic, bringing out the dual
notions of alternative and simultaneous structure in nonlinear stories, each corre-
sponding to derivability principles in linear logic.

• Chapter 3 showed how to use story worlds modeled in linear logic as narrative
generators by mapping proof search onto narrative generation. We showed how
proof terms generated by a linear logic programming language contain simulta-
neous narrative structure, and we provide two tools, a visualization and query
tool CelfToGraph, and a playable story generator Quiescent Theater, for investigat-
ing that structure.

• Chapter 4 presented a new programming language based on linear logic program-
ming that can be used to author complex interactive simulations. We introduce the
concept of stages, which add the ability to program with quiescence, allowing the
program to pass control of the state between different components.

• Chapter 5 presented five case studies of linear logic programming, showcasing
its use for modeling standard video game idioms like combat and resource man-
agement, board games idioms (Settlers of Catan), emergent behavior, social story
worlds, and participatory theater.

• Chapter 6 presented three candidate conceptual frameworks for reasoning about
linear logic programs, including several example proofs carried out by hand. We
gave a proof of decidability for a substantial fragment of the framework, building
the initial pathways toward automated reasoning tools.

Recall the thesis statement from Chapter 1:

Thesis statement: Using linear logic to model interactive worlds enables rapid
prototyping of experimental game designs and deeper understanding of narrative
structure.
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We have supported this thesis in the following ways: Chapters 2 and 3 identify
key aspects of narrative structure, alternatives and simultaneity, and show how linear
logic proofs carry these structures intrinsically, providing deeper understanding of narra-
tive structure. Chapters 4 and 5 shows how a concrete implementation of linear logic as
a modeling language can be used to build interactive artifacts that support experimen-
tation and iteration on the design of mechanics, supporting rapid prototyping of experi-
mental game designs. Chapter 6 provides auxilliary support to the rapid prototyping part
of the thesis statement, since simple invariants are often critical to program correctness.
Having a framework of proof for properties of linear logic programs provides the basis
for automatic tools that may help eliminate bugs.

Our findings constitute a foundation for unifying common formal aspects of digital
games, analog games, participatory theater, and generative storytelling in a way that
we believe furthers the prospects for creativity in all of these domains and their combi-
nations.

7.1 Contributions

Because this thesis bridges two disciplines, logic/programming language theory and
game/narrative design, we identify its core contributions in each of these two contexts.

7.1.1 Game and Narrative Design

For game and narrative design, our primary contribution has been that of establishing
logical foundations for the field. We worked out the correspondence between proof
and story in a way that enables programming with logical constructs to generate and
analyze stories, and we showed how that same programming model could be used to
describe game mechanics and interactive story worlds in a flexible and general way.

We believe that a logical foundation fills a gap in current game design tool the-
ory. Current thought recognizes that people highly skilled in designing digital game
mechanics need not also be highly skilled in programming in a general-purpose lan-
guage. Thus, several tools have emerged as “end-user programming” languages for
game designers—they tend to offer limited programming affordances (e.g. “attach a
behavior to an object” or “link two passages of text”) rather than general control con-
structs. But a common problem with these tools is that once the “end user” develops
mastery with the limited affordances, they cannot grow their skill within the same frame-
work: they need to break abstraction barriers and learn the more complex language
underlying the tool.

A logical foundation for executable game descriptions addresses this problem: lin-
ear logic itself contains very few “features” to understand initially (effectively just ⊗
and(), and Ceptre adds a few more (type declarations, stages, quiescence, and traces).
But a logic as a formal structure is something that can be extended in a variety of ways
to accommodate new domains and new representational concerns, while still being
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grounded in fundamental principles like soundness and completeness to guide the de-
sign of extensions. Having those fundamental principles as an anchor for the tool de-
sign means that we can grow the language with a sound basis for determining when
new features work seamlessly with old ones (for instance, generalizing linear logic to
the first order case) and how to soundly incorporate more complex feature interactions
(for instance, introducing the {−} (lax) modality in Celf to allow programmer control
of forward- and backward-chaining). The question of whether appropriate logical con-
nectives will always be available for the most salient author-facing needs has yet to be
fully investigated, but we believe there are several promising avenues of future work in
this vein.

Secondarily, the particular choice of linear logic for formalizing game rules, forcing a
resource-oriented viewpoint, has enabled the following observation about game design
authoring affordances: in order for rules to create harmonious interaction, they must
effectively come in pairs. That is, if a rule produces some fact p (by containing p in its
conclusion), some other rule should consume p, and vice versa. While this may seem
like a simple observation for linear logic programs, tools such as Kodu and Twine do
not always provide the means for an author to understand or create this duality. For
instance, in Kodu, an entity can be programmed to move towards some other entity, and
an entity can be programmed to do something whenever it bumps another entity. This
action-sensor pair, move towards and bump, work crucially by their interaction with one
another: an entity that moves toward another entity will eventually bump into it. But
that relationship is not codified by the tool in the same way that those mechanics would
be specified in linear logic. In languages like GameMaker, Stencyl, and Unity, behaviors
may be attached to game entities, but there is no visible means of determining whether
any of the game’s progression depends meaningly on those behaviors; similarly, one
may write code that case-analyzes certain behaviors that do not actually arise. Noticing
the ubiquity of this pattern in linear logic leads us to make a recommendation for game
creation tool designers: for every behavior that an author can add to their game, ensure
that programming facilities exist both for introducing that behavior and depending on
its outcome.

7.1.2 Programming Languages and Logic

In the area of logic-based programming language theory and design, we have con-
tributed a large body of examples and studies on its use for the specific domains pre-
sented here, building an argument for the language design methodology in general.

By developing a new linear logic language designed around interactivity, we have
also contributed to a better understanding of the logic, its use as a programming lan-
guage, and forward chaining proof construction. In particular, we have clarified the
notion that programming with quiescence enables a broad range of idioms that were un-
available before, and that it can ultimately be accounted for by the semantics already
available in Celf (as shown in Chapter 4).

Finally, we also contribute results about the metatheory of linear logic that are broadly
applicable for reasoning about concurrent state change, not just in games. We have es-
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tablished that the checking of generative invariants is decidable for propositional linear
logic programs and first-order linear logic programs with finite term domains (Chap-
ter 6), paving the way for development of practical automated checking tools.

7.2 Future Work

We propose several avenues for future work, divided into the subjects to which we
hope to make further contributions: narrative representation and modeling; genera-
tive methods; accessible game design tools; and facilities for computer-aided reasoning
about game and narrative specifications.

7.2.1 Narrative Representation

The primary notion in narratives that we feel bears further investigation from a logical
standpoint is knowledge: our current representation of narrative states presents all in-
formation about the story world in one monolithic body of state (the linear context),
failing to distinguish between information that is localized to particular agents and
knowledge that is communicated between them. Further, in the discourse aspects of nar-
rative [You07], i.e. the narration of the story to a reader or viewer (recipient), the recipi-
ent’s knowledge becomes relevant. In many films or television shows, each scene serves
primarily to reveal part of the information state to the recipient, sometimes truthfully
but sometimes deceptively or ambiguously (the “unreliable narrator”). Other work on
interactive narrative has explored the modeling of player and character knowledge to
create more flexible authorial imposition, as well [RY13]. Some facets of knowledge
can be represented in linear logic—e.g. it is easy enough to create a knows C M pred-
icate, where M is some pre-defined message type—but modeling knowledge of logical
information where M instead represents some linear logic proposition and knowledge
is reflected by logical provability seems necessary in order to capture story discourses
involving mystery, deception, and surprise. Thus, we propose the use of epistemic
modal logics [Ver02] (and their integration with linear logic [GBB+06]) as a candidate
for representating character knowledge in narratives, and we would like to continue the
programme of investigating proof theory for narrative representation via such a logic.

Related to knowledge, but perhaps more feasible to explore in linear logic, is the idea
of narrative focalization:1 a generalization of “point of view” (first, second, third person)
that describes what the narrative recipient learns throughout the story in relationship
to what the characters learn. Three kinds of narrative focalization are considered stan-
dard:2zero, internal, and external. Zero focalization is the omnicient point of view where
the recipient knows more than the character or characters, i.e. the entire narrative state;
internal focalization is the point of view equated with a particular character’s knowl-
edge; and external focalization is a point of view that does not reveal character interi-
ority, instead depicting only what the characters’ actions would reveal to an objective

1Not to be confused with logical focalization.
2 See http://wikis.sub.uni-hamburg.de/lhn/index.php/Focalization for an overview.
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witness. We propose using (perhaps annotated) causally-structured traces as artifacts
for representing a single narrative model that can be told with arbitrary focalization—
the choice of which events to reveal during narration could arise from the combined
specification of a narrative trace and a focalization scheme.

A third path of investigation is that of comparing plot structures in multiple narra-
tives. Game-o-Matic [TBMB12] is a template for this idea in the domain of games: an
abstract specification of mechanics as 2D movement and collision in Game-o-Matic can
be given multiple graphical realizations and shown to model different narratives when
interpreted by humans. Similarly, we would like to investigate narratives that have the
same trace structure—or Twine games that have the same branching choice structure—
and compare their interpreted content, answering the research question of how much
structure (in the senses we have identified) informs overall meaning. In a sort of dual
direction, we wonder whether narratives that have “the same” plot, such as Into the Wild
and Death of a Salesman, would actually be revealed to have similar structure in linear
logical terms, or whether it is instead mainly the interpretive themes that connect them.

We propose the domain of fables and myths as a starting point for the above in-
vestigation, perhaps in combination with the PLOTTO book of abstracted plot formu-
las [Coo28], for narratives that are usually small and abstract enough to formalize on
relatively objective terms. The hypothesis to test in this case would be that a formaliza-
tion of the plot abstraction in linear logic could be given different rendering parameters
to generate muliple existing examples of that abstraction in popular culture.

7.2.2 Generative Methods

In a talk at the 2015 Game Developers Conference surveying the field of procedural con-
tent generation (or generative methods),3 the speakers describe classes of techniques
distinguished by whether they work top-down or bottom-up: whether content is gen-
erated by way of selecting rules that match certain constraints (top down) or by way
of randomly selecting instantiations for variable parameters in the content definition.
Backward- and forward-chaining proof construction are sometimes also called top-down
and bottom-up (respectively), with very similar meanings to this distinction. While we
have investigated generative methods for narrative generation using linear logic, we
wonder how well the technique could extend to other forms of content generation.

To make the idea a bit more explicit, one idea in bottom-up content generation is
that of production grammars, such as Lindenmayer systems [PH13] for generating line-
based images. The production grammar technique is classified as bottom-up. Gram-
mars and rewriting systems have a well-established correspondence, and the proposi-
tional forward-chaining fragment of linear logic has been shown to correspond to mul-
tiset rewriting, so at the very least we can express multiset-like production grammars
as simple linear logic programs—this would mean using programs like the generative
signatures described in Chapter 6 to actually generate the context sets they characterize.

3http://www.gdcvault.com/play/1022134/Making-Things-Up-The-Power
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(Further work would need to be done to determine how to operationalize those signa-
tures, since they do not always have clear operational semantics.)

If we allow for first-order term variables restricted to binary predicates, then we
seem to have a viable grammatical interpretation of these programs as graph grammars,
or ways of rewriting directional graphs (nodes and potentially-labeled edges). Each bi-
nary predicate can be said to model an edge (where the label is the predicate name).
Graph grammars have been used quite fruitfully for generative methods, using a graph
structure to model game levels, for instance, and generating levels based on graph pro-
duction rules [Dor10]. The research question we pose is whether proof search on linear
logic programs representing graph grammars could be used to similar, or more fruitful,
ends.

Finally, a recent concern of generative methods researchers is that of expressive range
analysis, or determining how the output of a content generator can vary along certain
axes [SW10]. Our work on generative invariants, if successful in the future, would be
a strong candidate as a framework for carrying out this analysis: generative invariants
can be seen as a way of specifying a vector space to which all executions of a linear logic
program must stay confined, a similar notion to Smith and Whitehead’s characterization
of generative variety.

7.2.3 Accessible Game Design Tools

One of the major limitations of this work is that we have developed Ceptre as a core cal-
culus rather than as a deliberately end-user-facing tool, due to our priorities defined by
the scope of this thesis. In the future, we would like to develop a front-end development
tool for Ceptre that would allow for visual specification of initial states and rules, and
corresponding visualization of intermediate states as the program runs. This problem
itself poses various research challenges, since the generality of the language means there
will be no uniformly appropriate way of representing states visually. As a way forward,
we propose using sensing and acting predicates hooked up to inter-process communi-
cation to provide an API for programmers to build their own visualization schemas. We
would like to provide a few common schemas we imagine Ceptre being used for, such
as a web-based interactive fiction parser and renderer, and a grid-based tile renderer
and key press processing event loop, using visual rule-based languages such as Kodu,
StageCast Creator, 4 and PuzzleScript as inspiration for the design of such a tool in these
limited domains.

In the long run, we imagine that a language based on linear logic (not necessar-
ily Ceptre) could be built into a mixed initiative design tool [SWM10] that can reason
about game designs and provide feedback for a human novice designer on their own
designs, using logical proofs as formal models of design justification. One proposal for
a way forward with such a system would be to build a library of patterns, such as
the mechanic patterns described at the following site: http://www.jorisdormans.nl/

machinations/wiki/index.php?title=Pattern_Library Ideally, we could model these

4http://www.stagecast.com/
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patterns in such a way that their recombination could be characterized via logical prov-
ability, providing a formal basis for compositional pattern-based design.

A recombination tool for game design patterns has been described in prior work [Orw00],
which was used fruitfully in a board-game-like subspace of game designs—we would
like to investigate its use for mechanics better suited to linear logical investigation, like
emergent story worlds, quests, and resource management strategy.

7.2.4 Reasoning Tools

Finally, we posit that there is much work left to do in terms of building reasoning tools
for game prototyping. Game designers frequently express the need for such tools, in-
cluding hobbyist interactive fiction authors, as evidenced by Andrew Plotkin’s develop-
ment of the PlotEx tool for modeling and querying interactive fiction puzzle mechanics.5

One of the major barriers to the success of simulationist interactive media is the lack of
ability to predict and control for unexpected behavior from rules that are too general
(or not general enough), and being able to state design intents that are automatically
checked would be a major step forward.

Our most-developed avenue of future work to meet this goal is to continue develop-
ing the theory of equality for traces that arise from generative signatures such that the
admissibility of their reconfiguration witnessing the preservation of an invariant across
a rule is decidable. We conjecture that a suitable representation with fewer dependen-
cies to reason about than concurrent traces will be needed to move this idea forward.

Further afield, we note that answer set programming (ASP) is a technique that has been
investigated quite fruitfully to generate games via authors expressing constraints [SM11],
where those constraints are not unlike the kinds of properties we are interested in
verifying for hand-authored games. This approach lends itself to a kind of correct-
by-construction mode of game prototyping. However, the process of grounding logic
programs in ASP by instantiating each rule with every possible combination of terms
makes the specifications less practical as executable artifacts, for which linear logic pro-
grams seem better suited. We speculate that a hybrid technique to game specification
could be devised wherein linear logic programs could be checked against an ASP spec-
ification defining its correctness criteria. Along similar lines, we speculate that there
is some duality between the constructive logic program proof representing a play trace
and ASP’s model representing the same, and we would like to explore those connections
more explicitly.

7.3 Final Remarks

We have presented the use of linear logic to model interactive worlds across a broad
spectrum of use cases. Linear logic itself has proved a useful tool for this domain, but we
suggest that the broader take-away of this work is that the methodology of proof theory

5 http://eblong.com/zarf/plotex/
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can be quite useful in application to creative tasks. Logic, with all its flaws for capturing
the reality of human reasoning, serves as an important common language for translating
between human intuitions and executable artifacts. We present this thesis as a first step
in establishing that proof-theoretic methodology, with its prescription for logic design
and its application to programming languages and knowledge representation, can be
a torchlight guiding the way through the twisty passages of understanding computer-
assisted creativity.
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Appendix A

CLF Semantics

In this appendix, we briefly discuss CLF/Celf’s proof-theoretic basis for stratifying for-
ward and backward chaining search.

Recall from Chapter 2: Γ; ∆ → Γ′; ∆′ is a permissible program step whenever it is
the case that

Γ′; ∆′ ` γ
Γ; ∆ ` γ

is a permissible inference for an arbitrary conclusion γ.
We can rewrite the left sequent rules for connectives as transition rules in this fash-

ion, as shown in prior work [DSC12]:
⊗L:

(Γ; ∆, A⊗B)→ (Γ; ∆, A,B)

!L:
(Γ; ∆, !A)→ (Γ, A; ∆)

copy:
(Γ, A; ∆)→ (Γ, A; ∆, A)

( L:
Γ; ∆′ ` A

(Γ; ∆,∆′, A( B)→ (Γ; ∆, B)

Note that this last rule appeals to the standard judgment Γ; ∆ ` A to solve for the
antecedent of the rule, which might be immediately available in Γ; ∆, or it might require
backward-chaining search.

In a purely forward chaining system, we would require that all atoms in A appear al-
ready in the context at the time of selecting the rule; that is, we can rewrite the transition
( L′:

(Γ; ∆, a1, . . . , an, a1 ⊗ . . .⊗ an( B)→ (Γ; ∆, B)

If we further restrict the logic program so that rules A ( B only appear in the
program signature Σ, never the context, then we may understand rules of the form
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a1 . . . an( b1 . . . bm (where, again, atoms a1 . . . an only arise as the consequents of forward-
chaining rules) as inducing a corresponding transition

∆, a1, . . . , an → ∆, b1, . . . , bm

for any ∆. 1

If, further, no quantification over terms is permitted, then what we have produced is
a fragment of the logic corresponding exactly to multiset rewriting [CS09]: a program is
simply a set of rewrite rules and an initial multiset, and executions of the program corre-
spond to ways that the initial multiset may be rewritten into stable (quiescent) multisets.
Note that such a rewrite system is still nondeterministic in that multiple rules may apply;
so too, then, is the semantics of the program: the same program and initial configura-
tion may result in distinct states during distinct runs. For this reason, multiset rewriting
systems have sometimes been considered a good basis for modeling concurrent and dis-
tributed computation [Mes90]. In the narrative generation setting, the nondeterminism
of program semantics is what gives rise to variable story generation from a given story
world.

In Celf, the semantics are slightly more complicated than this multiset rewriting de-
piction, because forward and backward chaining may be used in combination. CLF,
Celf’s theoretical basis, introduces a connective {A} to specify forward chaining. We
next give the concrete syntax of Celf and overview its semantics on an intuitive level.

An idealized version of Celf stratifies propositions into two categories, positive propo-
sitions S and negative propositions A,B, based on a theory called focusing [And92]. Us-
ing this stratification together with the connective {S} for casting a positive proposition
as a negative one, it effectively permits two kinds of rules, one each corresponding to
forward and backward chaining: rules A ( B are available in backward- or forward-
chaining phases of the program, and rules A ( {S} are available only in forward-
chaining phases.

As an example, consider a program with the rules r1 : a( b, r2 : b( {c}. Given the
goal sequent ·; a ` c, proof search will not succeed: since c is not of the form {A}, proof
search will use backward chaining, and backward chaining on the goal c does not turn
up any rules it can use (because r2 is only available in forward-chaining).

If, however, we initialize the program with the sequent ·; a ` {c}, the proof will
succeed: we will enter forward chaining, notice that a forward chaining rule (r2) is
available if only we can prove its antecedent b, which then initiates a backward chaining
phase of search for the goal b. The rule r1 is available in backward chaining, so we will
try it (since its head matches the goal b), recursively solving for the goal a, which is
available in the context, so search succeeds. Now we can use the rule r2 to evolve the
context to c, which is quiescent. At that point, we check whether the context matches
the goal: in this case, the goal is c, which does indeed match.

1 Note that parametricity over the context ∆, representing the ambient state that is irrelevant to the
specific rule r, stays the same across the transition. This fact evades the frame problem present in other
settings, such as event and situation calculi [Hay71].
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Appendix B

Ceptre Typing and Kinding Rules

This appendix contains typing rules for terms and kinding rules for predicate construc-
tors. They say what it means for a Ceptre program to be well formed at the syntactic
level. Most of these rules implicitly carry a signature Σ, which is not mentioned unless
the rule refers to it.

Σ ` K wf

Σ ` type wf
wf/type

Σ ` pred wf
wf/pred

Σ ` bwd wf
wf/bwd

Σ ` τ : type Σ ` P wf
Σ ` τ → P wf

wf/arr

(Note: this last rule refers to P rather than K because type cannot be indexed by type
arguments in Ceptre.)

Γ `Σ A : K

a:K ∈ Σ Σ ` K wf
Γ `Σ a : K

ofk/const Γ ` a : τ → K Γ ` t : τ
Γ ` a t : K

ofk/app

Γ ` τ1 : type Γ ` τ2 : type
Γ ` τ1 → τ2 : type

oft/arr

Γ, x:τ `M : bwd
Γ ` Πx:τ .M : bwd

ofb/pi
Γ ` p : bwd Γ ` B : bwd

Γ ` p→ B : bwd
ofb/arr

Γ `Σ t : τ

c:τ ∈ Σ
Γ `Σ c : τ

oft/const x:τ ∈ Γ
Γ ` x : τ

oft/var
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Γ ` c : τ ′ → τ Γ ` t : τ ′

Γ ` c t : τ
oft/app
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Appendix C

Code Listings

C.1 First Past the Post Voting Protocol

nat : type.

z : nat.

s nat : nat.

candidate : type.

elected candidate : pred.

defeated candidate : pred.

ballot candidate : pred.

hopeful candidate nat : pred.

stage count = {

count_ballot : ballot C * hopeful C N -o hopeful C (s N).

}

- : qui * stage count -o stage pick * max z.

lt nat nat : bwd.

lt/z : lt z (s N).

lt/s : lt (s N) (s M)

<- lt N M.

max nat : pred.

stage pick = {

increase : max N * hopeful C N’ * lt N N’

-o hopeful C N’ * max N’.

eliminate : max N * hopeful C N’ * lt N’ N

-o max N * !defeated C.

}
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- : qui * stage pick * hopeful C N -o stage done * !elected C.

stage done = {

cleanup : max _ -o ().

}

% domain instantiation

alice : candidate.

bob : candidate.

charlie : candidate.

context init =

{ballot alice, ballot alice, ballot charlie, ballot bob,

ballot bob, ballot alice,

hopeful alice z,

hopeful bob z,

hopeful charlie z }.

#trace _ count init.

C.2 Sokoban

layer : type.

location : type.

entity : type.

direction : type.

intention : type.

% Instantiations that exist for every game

player : entity.

go direction : intention.

x : intention.

stationary : intention.

right : direction.

left : direction.

up : direction.

down : direction.

available intention : bwd.

available/left : available (go left).

available/right : available (go right).

available/down : available (go down).

available/up : available (go up).
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available/x : available x.

% Persistent facts

adjacent location direction location : bwd.

% Game state that exists for every game

at layer location entity intention : pred.

empty layer location : pred.

turn : pred.

% Game-specific terms and state

crate : entity.

stage impartIntentions = {

press_arrow :

turn

* available Intent

* at Layer Loc player _

-o at Layer Loc player Intent.

}

#interactive impartIntentions.

qui * stage impartIntentions -o stage processIntentions * turn.

% this is the part written by the game author in PuzzleScript

stage processIntentions = {

% propagate player intention to crate

push_crate :

turn *

$at Layer Loc player (go Dir) * adjacent Loc Dir Loc’

* at Layer Loc’ crate _

-o at Layer Loc’ crate (go Dir).

}

qui * stage processIntentions -o stage carryOutIntentions.

% resolve intentions in a nondeterministic order.

stage carryOutIntentions = {

move :

at Layer L Ent (go Dir) * adjacent L Dir L’

* empty Layer L’ -o at Layer L’ Ent stationary * empty Layer L.

}

qui * stage carryOutIntentions -o stage cleanup.

% friction! otherwise stuff w/intent to move would keep moving...

stage cleanup = {

spare_turns : turn -o ().

friction : at Layer L Ent (go Dir) -o at Layer L Ent stationary.
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}

qui * stage cleanup -o stage impartIntentions * turn.

% layer/level definitions

bg : layer.

fg : layer.

cell00 : location.

cell01 : location.

cell02 : location.

cell10 : location.

cell11 : location.

cell12 : location.

cell20 : location.

cell21 : location.

cell22 : location.

% 00 01 02

adjacent cell00 right cell01.

adjacent cell01 left cell00.

adjacent cell01 right cell02.

adjacent cell02 left cell01.

adjacent cell00 down cell10.

% 10 11 12

adjacent cell10 up cell00.

adjacent cell10 right cell11.

adjacent cell11 left cell10.

adjacent cell11 up cell01.

adjacent cell01 down cell11.

adjacent cell11 right cell12.

adjacent cell12 left cell11.

adjacent cell12 up cell02.

adjacent cell02 down cell12.

% 20 21 22

adjacent cell10 down cell20.

adjacent cell20 up cell10.

adjacent cell20 right cell21.

adjacent cell21 left cell20.

adjacent cell21 up cell11.

adjacent cell11 down cell21.

adjacent cell21 right cell22.

adjacent cell22 left cell21.

adjacent cell22 up cell12.

adjacent cell12 down cell22.

202



context init =

{ turn,

at fg cell00 player stationary,

at fg cell01 crate stationary,

empty fg cell02,

empty fg cell10,

empty fg cell11,

empty fg cell12,

empty fg cell20,

empty fg cell21,

empty fg cell22}.

#trace _ impartIntentions init.

C.3 Tower of Hanoi

ring : type.

smaller ring ring : bwd.

place : type.

post : type.

top_of ring : place.

bottom post : place.

post : place.

on ring place : pred.

clear place : pred.

arm_free : pred.

arm_holding ring : pred.

stage do = {

pickup

: clear (top_of R) * on R P * arm_free -o arm_holding R * clear P.

putdown_on_ring

: arm_holding R * clear (top_of R’) * smaller R R’

-o arm_free * on R (top_of R’) * clear (top_of R).

putdown_on_post

: arm_holding R * clear (bottom P)

-o arm_free * on R (bottom P) * clear (top_of R).

}

#interactive do.
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% domain instantiation

p1 : post.

p2 : post.

p3 : post.

r1 : ring.

r2 : ring.

r3 : ring.

smaller r1 r2.

smaller r1 r3.

smaller r2 r3.

context init =

{clear (bottom p2), clear (bottom p3),

on r3 (bottom p1),

on r2 (top_of r3),

on r1 (top_of r2),

clear (top_of r1),

arm_free}.

#trace _ do init.

204



Bibliography

[Ada89] Jon-K Adams. Causality and narrative. Journal of Literary Semantics,
18(3):149–162, 1989. 2.1

[And92] Jean-Marc Andreoli. Logic programming with focusing proofs in linear
logic. Journal of Logic and Computation, 2(3):297–347, 1992. 2.3, A
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[Ler13] Jérôme Leroux. Presburger vector addition systems. In 28th Annual
ACM/IEEE Symposium on Logic in Computer Science, LICS 2013, New
Orleans, LA, USA, June 25-28, 2013, pages 23–32, 2013. URL: http:

//doi.ieeecomputersociety.org/10.1109/LICS.2013.7, doi:10.1109/

LICS.2013.7. 6.5.4, 6.5.6
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