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Abstract

We propose abstractions and techniques for interactive or reactive computation that are general-
purpose, expressive, flexible, and that can enable writing efficient interactive programs. Our key
interactivity abstraction is a factor: a co-inductive type that abstracts interaction as exchange of
information and internal state change. To enable expressive and flexible development of interactive
programs, we extend a linearly typed, call-by-value lambda calculus with factors as first-class
values. The resulting language, called λi, allows input and output through factors that reflect the
changing state of the world. To ensure correctness and efficiency in the presence of such effects, λi

treats interaction as a consumable, linear resource. The small-step semantics of λi takes advantage
of the linearity to prevent unsafe behavior as well as guarantee efficiency. We formalize λi, and
establish its type safety and additional meta-theoretical results that show that interaction and purely
functional programming are not always inconsistent. We formalize all of our results in the Coq
proof assistant. We give an implementation of λi as an OCaml library along with a relatively broad
range of example applications.





1 Introduction
Some of the most interesting and complex software involves interaction with an external agent such
as a user, another software system, or a device such as a sensor. Such programs, called interactive
or sometimes reactive, can be challenging to design, implement, and reason about because they are
usually designed to run forever, and because their semantics and runtime behavior depend on their
interaction with the environment.

Interactive programs can be expressed using an event-driven style of programming, where a
main event loop waits for events to take place and handles them by scheduling for execution the
appropriate callback functions or event handlers. Event-driven programming offers a general-
purpose approach to writing efficient interactive programs. Unfortunately, writing event-driven
programs is notoriously difficult for several reasons (e.g. [8]). Perhaps the most important issues
are that event-driven programs rely on side effects for communication and that they break abstrac-
tions such as the function call abstraction. For example, callbacks don’t always return to their
caller and they can be scheduled by interactive events or by other callbacks. Due to its complexity,
event-driven programming is sometimes described by colorful terms such as “callback hell” [8].

There have been many prior efforts to tame the complexity of interactive computation by de-
veloping abstractions. Closely related prior work includes process calculi and functional reactive
programming.

Process calculi such as Hoare’s CSP [12] (Communicating Sequential Processes) and Milner’s
π-calculus [21] model the synchronous interactions of large numbers of independent processes.
While they could technically be used for writing programs that interact with an external world,
the full power and complexity of concurrent programming are not necessary for writing interactive
programs, where interaction is between a single program and its environment.

Functional Reactive Programming (FRP) has focused on the problem of interaction between
a program and the external world. Elliott and Hudak [9] first introduced functional reactive pro-
gramming by providing primitives for time-varying values, along with their denotational seman-
tics. Elliott and Hudak’s proposal turned out to be difficult to implement safely, due to problems of
causality [22, 17, 13], and efficiency called time leaks and space leaks [22, 16, 7]. There has been
significant follow-up work on implementing FRP safely and efficiently [5, 7, 16, 18, 13, 17, 22].
At the highest level of abstraction, implementations of FRP operate in synchronous steps, each of
which takes a “snapshot” of the external world, computes the desired property on the snapshot,
and returns a result, and possibly a new program to evaluate at the next step. Implementing FRP,
however, remains challenging: to ensure safety and efficiency, state-of-the-art implementations
such as Yampa [22] and Elm [7] limit the expressiveness of the language. As discussed in prior
work [7, 22] and in Section 6, even if these problems could be solved, FRP inherits a number of
limitations by adopting a synchronous evaluation strategy. These stem from the requirement to es-
tablish a sampling rate globally on all parts of a program, leading to response latency, unnecessary
computation, imprecision, and even possibly unsoundness—a synchronous implementation con-
verges to the desired semantics of FRP only when the frequency of sampling approaches infinity,
usually a physical impossibility [7, 29].

In this paper, we propose general-purpose, flexible, and provably safe abstractions for interac-
tive computation. One key concept behind our approach is the factor, a co-inductive type that, at
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any time, can be queried by supplying a value called a prompt. When queried, the factor returns a
response and a continuation, a new factor to continue the interaction. To enable expressing inter-
esting interactive computations compositionally, we extend the simply typed, call-by-value lambda
calculus with factors. In the resulting language, called λi, programs can use factors to interact with
the external world through, for example, the mouse and the keyboard, and to perform more com-
plex computations that depend directly or indirectly on interaction. Since factors are first-class
values in λi, programmers may define higher-order functions that operate on and produce factors.

Since factors can be queried as needed by the program, they offer a fundamentally asyn-
chronous model for interaction. This provides two major benefits. First, because there is no notion
of a global clock, and because factors supply their current value only when it becomes available,
λi programs are causal: it is not possible to depend on the future value of a factor. Second, λi

programs can flexibly choose the frequency at which they operate and utilize different frequencies
for different components to match the desired precision and efficiency requirements by computing
only the results needed at any time, i.e., on demand.

Factors can be viewed as related to the process abstraction in process calculi [12, 21]. Like
a process, a factor accepts and responds to messages. Unlike a process, a factor is restricted to
communicate only in the specific prompt-and-response fashion, which makes it more similar to re-
sumptions [25]. Beyond this high-level similarity, our work is quite different from process calculi:
it does not include the notions of concurrently operating processes but rather relies on function
abstraction as the main form of composition. While it is inspired by functional reactive program-
ming, our work differs from it in several fundamental ways. The factor abstraction, which is based
on two-way-information exchange, is different from the signals or streams of functional reactive
programming. Since it is asynchronous and demand-driven, our evaluation model is different from
the synchronous models adopted in functional reactive programming. Finally, our model is in-
herently imperative as it allows programs to accept input from the external environment during
evaluation.

When interacting with the external world via a factor, an interactive program must take care to
take into account the changes in the environment. To enable this, our factors return a continuation,
which itself is a factor, informing the program of the changes in the external environment. A
program can thus remain up to date by discarding a factor after each query in favor of the returned
continuation. To enforce proper usage of factors statically, we develop a linear type system that
treats factors as linear resources, ensuring that old factors may not be used again. In addition, we
take advantage of linearity to ensure that we never hold on to outdated data or factors by presenting
an operational semantics for λi that discards outdated information, preventing efficiency problems
analagous to the time and space leaks of functional reactive programming.

By making the side effects explicit, factors make it possible to reason about interaction, which
is naturally imperative, in a more functional way. Specifically, we establish as a meta-theoretical
result that λi is functional modulo the external input (Section 4). We show this by factoring out the
input using a trace-based simulation technique and showing that evaluation with such inputs can be
simulated by purely functional evaluation. In addition, we show that, under sufficient assumptions
about the external environment, λi programs may be reasoned about equationally in ways generally
only expected from functional programs. These results suggest that it may be possible to tame the
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Figure 1: A factor being queried.

imperative nature of interaction and may be of independent interest.
The contributions of this paper include:

• We propose a set of interactivity abstractions, as part of the language λi (Section 3).
• We establish several meta properties of λi, including its type safety, its consistency with

functional programming, and its equational reasoning properties. (Sections 3 and 4).
• We show that λi is practical by implementing it as an OCaml library (Section 5) and de-

veloping a number of examples with it. The examples illustrate the expressiveness and the
flexibility of the proposed approach, allowing us to implement a relatively broad range of
applications with relative ease.

Supplementary material. All of the theoretical results of this paper have been formalized in the
Coq proof assistant. Proof scripts can be obtained from the authors upon request.

2 Overview
We present a brief, informal overview of the important abstractions and ideas using several simple
examples. The rest of the paper makes these ideas precise. For the examples, we use an ML-like
language with constructs such as integers, floating-point numbers and booleans; such constructs
can be added to our calculus (Section 3) in the straightforward way, as for example supported by
our OCaml implementation (Section 5).

Our key interactivity abstraction is a factor, which is an infinite data structure represented
finitely by a function, called a generator. A generator takes a prompt as an argument, and returns
a response and a new factor, the continuation. A factor can be queried by supplying a prompt.
When queried, the factor applies its underlying generator to the prompt, and returns the response
and the continuation, as determined by the generator. As an example, Figure 1 illustrates a factor
(drawn as a circle) that when prompted with an integer returns the matching letter of the alphabet,
transitioning between English and Greek alphabets.

We distinguish between two kinds of factors in a program: internal and I/O. An internal factor
is created within the program by supplying a generator, which may query other (internal and I/O)
factors. The simplest case is an internal factor whose generator is a pure function that does not
query other factors. On the other hand, I/O factors are inputs of the program that are created
outside of the program. They can be queried to interact with the outside world by, for example,
displaying a command prompt or supplying the mouse position. The generator of an I/O factor
is an imperative function that performs the requested measurement or interaction with the outside
world, generally through a system call. Since I/O factors reside in the external world, they can
capture the state of the world in their continuation. We therefore consider I/O factors stateful or
impure and keep their generators as abstract functions unavailable to the program.
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Defining factors. As a concrete example, we define the infinite sequence of natural numbers as
an internal factor that returns the next natural number every time it is queried. The type (unit,
int) ftr specifies that when queried with the unit value (), nats returns the next natural
number (an integer). The factor is defined as natsfrom 0, where natsfrom is a recursive
function that takes an integer n0 and constructs a factor by applying the constructor ftr to a
generator that, for unit prompt, returns n0 as the response and natsfrom (n0 + 1) as the
new factor, effectively incrementing the integer stored in the internal state.

1 let nats : (unit, int) ftr =
2 let rec natsfrom (n0: int) =
3 ftr (fun () → (n0, natsfrom (n0 + 1)))
4 in natsfrom 0

Querying factors. Once defined, factors can be queried by supplying a prompt using the query
construct. For example, we can create a new factor by querying another internal factor and mapping
a supplied function over its responses as follows. We can map over I/O factors in the same way
by changing the argument type to (α, β) eftr. The function map is defined as a recursive
function that constructs a factor from a generator, which accepts a prompt p. It queries the factor i
with p, binding the response and continuation to h and i’, respectively. The response is f applied
to h and the continuation is generated by calling map recursively on continuation i’.

1 let rec map (f: β → γ) (i: (α, β) ftr) =
2 ftr (fun (p: α) →
3 let (h, i’) = query i p in (f h, map f i’))

Two-way interaction. By allowing a prompt to be specified as part of a query, factors en-
able information exchange rather than merely information consumption. Here we present a sim-
ple example to illustrate an I/O factor that uses prompts in an interesting way. We define a
type direction with constructors North, South, East and West, and assume we have an
I/O factor of type (direction, !(float * float)) eftr that controls a Mars rover.
When prompted with a direction, the factor moves the rover in that direction and returns its new
location as a persistent pair of floating-point numbers. We can then define an internal factor that
moves the robot in a specified direction and passes the location to a function that determines
whether the robot is nearing a known obstacle.

1 let rec avoid_obstacles (r: (direction, !(float * float)) eftr) =
2 ftr (fun d → let (p, r’) = query r d in
3 (near_obstacle p, avoid_obstacles r’))

Linearity for soundness. Since the rover moves when r is queried, the state of the physical
world changes at each query. In this sense, λi is fundamentally imperative. To provide more control
over this imperative nature of interactivity, our factors return a continuation (r’ in the example
above) that represents the changed state of the world. We use this ability to distinguish between the
old and the new state of the world to enforce a critical soundness property in interactive programs—
that they keep up to date with the changing world—by treating factors as linear resources that can
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be used (at most) once. For example, suppose that, as shown below, we ask the rover to move
north, and as a result drive it over a cliff (an accident that it survives).

1 let (p1, r’) = query r North in (∗ rover drives off cliff ∗)
2 let (p2, _) = query r South in ...

Now, even though it may appear that we have an unaffected copy r of the rover, which we can
continue using, this is not true, because the rover has undergone an unfortunate and irreversible
physical process. Our type system therefore rejects this programs, because it uses the rover r (a
linear resource) twice. If we wish to continue using the rover, we can do so by using r’ instead
of r; this would allow us to continue exploring from where the rover is at the bottom of the cliff.
As a consequence of this typing discipline, we prove, in addition to type safety, that interactive
programs in λi satisfy interesting properties of functional programs (Section 4).

We note that promotion allows factors and other expressions that do not depend on I/O factors
(like nats of our first example) to be used in an unrestricted fashion.

Linearity for efficiency. The soundness problem above corresponds to the issue of time and
space leaks in FRP which, while not leading to impossible behavior, result in the accumulation
of large and expensive computations. Our approach prevents such accumulation by employing an
operational semantics that keeps only the most recent continuation of an I/O factor. This is safe
because, as described above, our linear type system prevents the use of outdated factors. Note that
the programmer can hold on to responses as permitted by the type of the response. For example,
if the response is of “of course” type, as in the rover example above, then it can be used in an
unrestricted fashion. If the response contains other factors, however, the mechanisms of linearity
would apply. As a result, the syntax and the type system make explicit the cost of the operations
and do not implicitly hold on to any past computations.1

Splitting streams. Preventing multiple uses of I/O factors may seem like a harsh restriction.
Returning to the rover example, we may have two functions, avoid obstacles and explore,
which both require access to the rover factor.

1 (avoid_obstacles r, explore r)

Unfortunately, by using r twice, this code violates linearity. We could, of course, merge these
two features into one large function that explores and avoids obstacles, passing the continuation r’
to the next operation each time r is used. As an alternative to this single-threading approach, we
allow multiple uses of factors by permitting them to be split. The key observation is that, while it
is not safe for both functions to access the rover in the state captured by r (since one function may
move the rover, invalidating that state), we can create two independent handles to access the rover
as long as they both remain up-to-date. For example, we can use the construct split provided
in λi as follows:

1 let (r1, r2) = split r in (avoid_obstacles r1, explore r2)

Operationally, splitting makes two independent factors with the same generator as the original.
In our rover example, both resulting factors will have the same behavior on a query (move the rover
and return its position), but they will interact with the rover independently.

1We appeal to garbage collection to reclaim unused memory objects such as outdated factors.
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We note that splitting of internal factors is not necessary because the program can define in-
ternal factors and their copies as needed and as guided by the type system. It is possible to define
an operation that generates two copies of an internal factor by (transitively) splitting all factors on
which they depend. However, this can lead to unexpected behavior. For example, splitting an inter-
nal factor which counts mouse clicks would result in two internal factors with separate counters,
rather than two factors sharing the same counter. Requiring the splitting and copying to be done
manually makes this behavior explicit. 2

3 The Language
We present a small linearly typed language for interactive programming. The language includes
familiar abstractions of simply typed lambda calculus and several constructs for operating on fac-
tors. In the rest of the section, we present the abstract syntax, the statics and the dynamics of the
language and prove the main type safety theorem.

3.1 Abstract Syntax

Figure 2 shows the abstract syntax of a subset of the λi language. The types include units (1), linear
functions (τ1 ( τ2), positive binary product (τ1 ⊗ τ2), and negative binary product (τ1 & τ2),
contractibles (read “of course” or “bang”) (!τ ), and finally internal factors (ftr(τ1; τ2)) and I/O
factors (eftr(τ1; τ2)). The types of internal and I/O factors are differentiated so that the type system
can enforce that only I/O factors are split. Both types are parametrized by a prompt type τ1, the
type of value that must be supplied by the program to interact with a factor and a response type τ2,
the type of value with which the factor will respond.

The expressions of λi contain the unit value (empty tuple), lambda abstraction, application, let
binding and a fixed point operator to provide general recursion. Our linear type system requires the
use of both persistent variables (denoted by metavariables x and y) and linear variables (a and b).
Variables bound by λ-abstraction, pattern matching and let binding are linear and may be used
only once. Variables bound in a fixed point, however, are unrestricted. Closed values of any type
τ may be promoted to type !τ using the explicit introduction form !. These types are eliminated
by bindings of the form let !x = e1 in e2, which binds the value to a persistent variable whose use
is unrestricted. Positive pairs 〈e1, e2〉 may be constructed from expressions e1 and e2, and may be
eliminated with pattern matching. Pattern matching is used in place of projection for positive pairs
because otherwise, linearity would enforce that only one component of a pair could be projected.
This is the case for negative pairs, 〈e1 | e2〉, where e1 and e2 are unevaluated expressions, only one
of which is computed when it is projected. The other component is discarded.

The language also contains the primitives ftr e, query e1 e2 and split e for operating on factors.
We assume that a set of I/O factors is available to the programmer and index them by the metavari-
able i. The type system and the proofs in Section 4 require that when an I/O factor is split, the two
resulting factors be distinguishable. To enable this property, I/O factor literals are implicitly deco-
rated with a unique integer representing the branch. Branch n of factor i will therefore sometimes
be written as in. When the branch is unimportant, the integer annotation may be omitted. Before

2In the original version of this paper, this paragraph stated without the above clarification that “If desired, however,
internal interactibles [factors] can be split by (transitively) splitting all interactibles on which they depend. For the
sake of simplicity, we don’t define such a split operation.”
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Type τ ::= 1 nullary product
τ ( τ function
τ ⊗ τ positive binary product
τ & τ negative binary product
!τ contractible
ftr(τ ; τ) internal factor
eftr(τ ; τ) I/O factor

Expression e ::= x persistent variable
a linear variable
〈〉 empty tuple
i I/O factor
λ a : τ. e abstraction
e e application
〈e, e〉 positive pair
let 〈a, b〉 = e in e product pattern match
〈e | e〉 negative pair
e · l left projection
e · r right projection
!e promotion
let !x = e in e replication
ftr v factor creation
query e e query
split e asyncronous split
let a = e in e let
fix x is e fixed point

Figure 2: The abstract syntax of λi.

Linear Context ∆ ::= · | ∆, a : τ
Persistent Context Γ ::= · | Γ, x : τ

Input Context Φ ::= i1
n1 : τ1, . . . , im

nm : τm

Figure 3: Syntax for contexts

evaluation (i.e. in a source-level program), only one branch of each I/O factor is available, so the
branch is implicit and need not be exposed to programmers. Without loss of generality, we may
assume that the one branch available for each i is i1, though this is not necessary for correctness.

3.2 Statics

In formalizing the linear type system of λi, we use a presentation inspired by the calculus of Turner
and Wadler [28] and judgmental formulations of linear logic [6]. We extend lambda calculus
with a linear type system and factors. The lambda calculus and linear type system fragments
are standard, and we will discuss primarily the added features for handling factors. The typing
judgment Γ; ∆; Φ ` e : τ uses three contexts, whose syntax is given in Figure 3. The persistent

7



context Γ maps persistent variables to types. Weakening and contraction are allowed within Γ as
in standard type systems, and so persistent variables may be used zero or more times. The linear
context ∆ maps linear variables to types, but does not allow contraction, so linear variables may
be used at most once, but may be dropped. The type system may therefore more precisely be
called affine instead of linear. The input context Φ assigns types to I/O factor literals i. As in
the linear context, contraction is not allowed in the input context, forcing I/O factors to be used at
most once. The usages of the input and linear contexts are complementary. While the input context
assigns types and enforces linearity when the literals are used directly, if a factor literal is bound
to a variable and then used, the variable will be added to the linear context, which will be used to
assign it a type and enforce the linearity restriction on the use of a variable until the factor literal is
substituted for the variable.

The typing rules are presented in Figure 4. For most rules involving two subexpressions, the
linear and input contexts are split between the typing judgments for the subexpressions so that
linear variables and I/O factors may be used to type only one of these subexpressions. The notable
exception is the introduction rule for negative pairs, (&-I). Since only one component of a negative
pair is evaluated, both components can be typed using the same linear and input contexts.

The rules (Var) and (LVar) allow variable lookup in the nonlinear and linear contexts, respec-
tively. An expression e of type τ may be promoted to type !τ using rule (!-I). This is only possible if
e does not refer to any linear values, a restriction which is enforced by typing e under empty linear
and input contexts. These types can be eliminated using the binding construct let !x = e1 in e2 and
rule (!-E). For e1 of type !τ , e2 is typed under a context that includes x : τ in the persistent context,
so it may be used multiple times.

The construct query e1 e2 may be typed with one of two rules. The rule (eftr-E) eliminates I/O
factors, and (ftr-E) eliminates internal factors. In both cases, the prompt must have a type matching
the prompt type of the factor and a response and continuation of the appropriate types are produced.
Split expressions, however, may be typed with only one rule, (Split), which, as discussed earlier,
requires that the factor be an I/O factor.

As an example, we return to the program described earlier which requests old data from an I/O
factor and show that it is ill-typed.

1 let (p, _) = query r North in
2 let (p, _) = query r South in ...

We assume that r is an I/O factor literal contained in the context Φ. The analysis is the same
if it is instead a linear variable to which such a literal is bound. Rule (Let) requires that the
expression query r North and the remainder of the program be typed under two subcontexts,
Φ1 and Φ2, respectively. Because of linearity, r may be in only one of these contexts. If it is in
Φ1, the remainder of the program cannot be typed because rule (eftr-I) will not find r in the input
context. Similarly, query r North cannot be typed if r is in Φ2.

3.3 Dynamics

Before presenting the dynamics of λi, we define execution traces and user strategies [23], two
concepts used in the evaluation of expressions. Informally, a trace keeps a record of the program’s
interaction with the outside world by listing queries and splits. The user strategy models the state-
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(Var)
Γ(x) = τ

Γ; ∆; Φ ` x : τ

(LVar)
∆(a) = τ

Γ; ∆; Φ ` a : τ

(!-I)
Γ; ·; · ` e : τ

Γ; ∆; Φ ` !e : !τ

(!-E)
Γ; ∆1; Φ1 ` e1 : !τ Γ, x : τ ; ∆2; Φ2 ` e2 : τ ′

Γ; ∆1,∆2; Φ1,Φ2 ` let !x = e1 in e2 : τ ′

(1-I)

Γ; ∆; Φ ` 〈〉 : 1

((-I)
Γ; ∆, x : τ ; Φ ` e : τ ′

Γ; ∆; Φ ` λ a : τ. e : τ ( τ ′

((-E)
Γ; ∆1; Φ1 ` e1 : τ ( τ ′ Γ; ∆2; Φ2 ` e2 : τ

Γ; ∆1,∆2; Φ1,Φ2 ` e1 e2 : τ ′

(⊗-I)
Γ; ∆1; Φ1 ` e1 : τ1 Γ; ∆2; Φ2 ` e2 : τ2

Γ; ∆1,∆2; Φ1,Φ2 ` 〈e1, e2〉 : τ1 ⊗ τ2

(⊗-E)
Γ; ∆1; Φ1 ` e1 : τ1 ⊗ τ2 Γ; ∆2, a : τ1, b : τ2; Φ2 ` e2 : τ

Γ; ∆1,∆2; Φ1,Φ2 ` let 〈a, b〉 = e1 in e2 : τ

(&-I)
Γ; ∆; Φ ` e1 : τ1 Γ; ∆; Φ ` e2 : τ2

Γ; ∆; Φ ` 〈e1 | e2〉 : τ1 & τ2

(&-E1)
Γ; ∆; Φ ` e : τ1 & τ2

Γ; ∆; Φ ` e · l : τ1

(&-E2)
Γ; ∆; Φ ` e : τ1 & τ2

Γ; ∆; Φ ` e · r : τ2

(eftr-I)
Φ(in) = eftr(τ1; τ2)

Γ; ∆; Φ ` in : eftr(τ1; τ2)

(eftr-E)
Γ; ∆1; Φ1 ` e1 : eftr(τ1; τ2) Γ; ∆2; Φ2 ` e2 : τ1

Γ; ∆1,∆2; Φ1,Φ2 ` query e1 e2 : τ2 ⊗ eftr(τ1; τ2)

(Split)
Γ; ∆; Φ ` e : eftr(τ1; τ2)

Γ; ∆; Φ ` split e : eftr(τ1; τ2) ⊗ eftr(τ1; τ2)

(ftr-I)
Γ; ∆; Φ ` e : τ1( τ2 ⊗ ftr(τ1; τ2)

Γ; ∆; Φ ` ftr e : ftr(τ1; τ2)

(ftr-E)
Γ; ∆1; Φ1 ` e1 : ftr(τ1; τ2) Γ; ∆2; Φ2 ` e2 : τ1

Γ; ∆1,∆2; Φ1,Φ2 ` query e1 e2 : τ2 ⊗ ftr(τ1; τ2)

(Let)
Γ; ∆1; Φ1 ` e1 : τ1 Γ; ∆2, a : τ1; Φ2 ` e2 : τ2

Γ; ∆1,∆2; Φ1,Φ2 ` let a = e1 in e2 : τ2

(Fix)
Γ, x : τ ; ·; · ` e : τ

Γ; ∆; Φ ` fix x is e : τ

Figure 4: Statics of λi
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(1-V)

〈〉 val

((-V)

λ a : τ. e val

(⊗-V)
e1 val e2 val

〈e1, e2〉 val

(&-V)

〈e1 | e2〉 val

(!-V)
e val

!e val

(ftr-V)
e val

ftr e val

(i-V)

i val

Figure 5: Value judgment

ful, nondeterministic behavior of the outside world by factoring out all effects using a deterministic
function of the query and the current execution trace, which allows dependence on history, in much
the same way that a pseudorandom number generator simulates true randomness.

Definition 1 (Execution trace). An execution trace T is a comma-separated list of zero or more
trace elements, with the most recent event on the right:

T ::= ε | T,Q(i, e, e′) | T, Sp(i)

• ε represents the empty trace
• T,Q(in, e, e′) indicates that factor in was queried with prompt e and returned e′ after all the

events in T .
• T, Sp(in) indicates that factor in was split after all of the events in T .

Two traces T1 and T2 may be concatenated by writing T1, T2.

Definition 2 (User strategy). A user strategy ω is a deterministic function that, given a triple of an
I/O factor literal, an execution trace and a value (the prompt), produces a value as a response.

The dynamics of λi involve two judgments. The judgment e val indicates that e is a value. The
rules for this judgment are shown in Figure 5. The notable rule is the one for 〈e1 | e2〉, which is
always a value. Because only one component can be evaluated, evaluation must not occur inside
negative pairs until a component is projected.

The small-step evaluation judgment T ; e 7→ω e′;T ′, shown in Figure 6, indicates that e steps
to e′ and produces trace T ′ from trace T . The initial trace T is used in rule (QueryI-E) when an
I/O factor in is queried using prompt e. The user strategy is applied to i (the branch is irrelevant),
the current trace T and e, and the response is returned as the result, along with the same factor,
in. By reusing the same factor literal and not allocating any new data structures, the dynamics
ensure that repeatedly querying I/O factors will not cause space to leak over time. A new element
is added on to the trace indicating that in produced response e′ at this point in the computation. By
contrast, rule (Query-E) queries an internal factor by simply applying the generator to the prompt.
The rule (Split-E) splits an I/O factor in by returning a pair of copies of i, but with branches 2n and
2n+1 (this numbering ensures that branches will always be unique.) Note that while the dynamics
manipulate the branch annotations to maintain invariants required for the preservation proof and
the results of Section 4, the operational rules themselves are not sensitive to these annotations, and
the branches could be erased at runtime, assuming it is not necessary to type-check the running
code. In addition, while the rules add on to the trace, the dynamics do not read the trace except
through their dependence on the input strategy. The evaluation rules for binding constructs use
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(Ftr-S)
T ; e 7→ω e′;T ′

T ; ftr e 7→ω ftr e′;T ′

(Query-S1)
T ; e1 7→ω e′1;T

′

T ; query e1 e2 7→ω query e′1 e2;T
′

(Query-S2)
e1 val T ; e2 7→ω e′2;T

′

T ; query e1 e2 7→ω query e1 e
′
2;T

′

(Query-E)
e1 val e2 val

T ; query (ftr e1) e2 7→ω e1 e2;T

(QueryI-E)
e val ω(i, T, e) = e′

T ; query in e 7→ω 〈e′, in〉;T,Q(in, e, e′)

(Split-S)
T ; e 7→ω e′;T ′

T ; split e 7→ω split e′;T

(Split-E)

T ; split in 7→ω 〈i2n, i2n+1〉;T, Sp(in)

(!-I-S)
T ; e 7→ω e′;T ′

T ; !e 7→ω !e′;T ′

(!-E-S)
T ; e1 7→ω e′1;T

′

T ; let !x = e1 in e2 7→ω let !x = e′1 in e2;T
′

(!-E-E)
e1 val

T ; let !x = !e1 in e2 7→ω [e1/x]e2;T
′

((-E-S1)
T ; e1 7→ω e′1;T

′

T ; e1 e2 7→ω e′1 e2;T
′

((-E-S2)
e1 val T ; e2 7→ω e′2;T

′

T ; e1 e2 7→ω e1 e
′
2;T

′

((-E)
e2 val

T ; (λ a : τ. e1) e2 7→ω [e2/a]e1;T

(⊗-I-S1)
T ; e1 7→ω e′1;T

′

T ; 〈e1, e2〉 7→ω 〈e′1, e2〉;T ′

(⊗-I-S2)
e1 val T ; e2 7→ω e′2;T

′

T ; 〈e1, e2〉 7→ω 〈e1, e′2〉;T ′

(⊗-E-S)
T ; e1 7→ω e′1;T

′

T ; let 〈a, b〉 = e1 in e2 7→ω let 〈a, b〉 = e′1 in e2;T
′

(⊗-E)
e1 val e2 val

T ; let 〈a, b〉 = 〈e1, e2〉 in e 7→ω [e1, e2/a, b]e;T

(&-E1-S)
T ; e 7→ω e′;T ′

T ; e · l 7→ω e′ · l;T ′

(&-E2-S)
T ; e 7→ω e′;T ′

T ; e · r 7→ω e′ · r;T ′

(&-E1)

T ; 〈e1 | e2〉 · l 7→ω e1;T

(&-E2)

T ; 〈e1 | e2〉 · r 7→ω e2;T

(Let-S)
T ; e1 7→ω e′1;T

′

T ; let a = e1 in e2 7→ω let a = e′1 in e2;T
′

(Let-E)
e1 val

T ; let a = e1 in e2 7→ω [e1/a]e2;T

(Fix-D)

T ; fix x is e 7→ω [fix x is e/x]e;T

Figure 6: Dynamics of λi
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two distinct capture-avoiding substitution operations, [v/x]e for persistent variables and [v/a]e for
linear variables. Both are defined using straightforward induction on the structure of e.

The reader may notice at this point that there is an issue with the dynamic rule for split. The
expression split in steps to 〈i2n, i2n+1〉. The use of 2n and 2n + 1 ensures that branch annotations
will always be unique. However, if i only appears once in the input context under which split in

is typed, the resulting expression will not be well-typed because of linearity. Therefore, to allow
splitting, the input context may be populated with multiple branches of an input factor.

3.4 Type Safety

Before stating the type safety theorem, we present three definitions regarding input contexts and
user strategies. We first require that input contexts are well-formed. At a high level, Definition 3
requires that all types in an input context are I/O factors, and that all branches of the same factor
have the same type. It also requires that, if splitting factors are viewed as a tree, all of the branches
contained in the input context are leaves of the tree, so that a factor and the factor from which it was
split may never be present in an expression simultaneously. Finally, well-formed input contexts
may only contain in for any n > 0. Zero may not be used as a branch number since if i0 is split,
its left child would be itself.

Definition 3 (Well-formed input context). Input context Φ is well-formed, written Φ ok if, for all
in ∈ Φ, all of the below hold:

• n > 0

• ∃τ1, τ2.Φ(in) = eftr(τ1; τ2)

• for all im ∈ Φ, Φ(im) = Φ(in)

• for all im 6= in such that desc(im, in), we have im 6∈ Φ

where the predicate desc(·, ·) is defined inductively:

desc(in, in)
for all im, desc(im, in)→ desc(i2m, in)

for all im, desc(im, in)→ desc(i2m+1, in)

To indicate that a user strategy is consistent with the input context, we write Φ ` ω. Informally,
this requires that for all factors in Φ, ω provides values for i of the type indicated by Φ when given
closed values of the correct type as prompts. Further, the returned values must be closed with
respect to the linear, persistent and input contexts; they may not have free variables or refer to
input factors. Note, however, that we make no assumptions on the trace; a user strategy must
produce a value for any syntactically valid trace it is given, even if the trace could not have arisen
from a valid execution. In practice, of course, such traces will never be passed to user strategies
and the value they would return for an ill-formed trace is immaterial.

Definition 4 (Well-typed user strategy). A user strategy ω is well-typed with respect to an input
context Φ, written Φ ` ω, if for all i, T , e such that i ∈ Φ and Φ(i) = eftr(τ1; τ2) and e val and
·; ·; · ` e : τ1, we have ω(i, T, e) val and ·; ·; · ` ω(i, T, e) : τ2.

12



Finally, we define that two input contexts Φ and Φ′ are related if all factors in Φ are present in
Φ′, but may have split.

Definition 5 (Related input contexts). Input contexts Φ and Φ′ are related, written rel(Φ,Φ′) if:

for all in ∈ Φ, in ∈ Φ′ or (i2n ∈ Φ′ and i2n+1Φ′)

and
for all in ∈ Φ′, in ∈ Φ or ibn/2c ∈ Φ

Theorem 1 (Type safety). • Progress: If ·; ·; Φ ` e : τ and Φ ok, then either e val, or, for any
T and ω such that Φ ` ω, there exist e′ and T ′ such that T ; e 7→ω e′;T ′.
• Preservation: If ·; ·; Φ ` e : τ and Φ ok and Φ ` ω and T ; e 7→ω e′;T ′, then there exists Φ′

such that Φ′ ok and rel(Φ,Φ′) and ·; ·; Φ′ ` e′ : τ .

Proof. Progress is a straightforward induction on the step derivation. Preservation is proven by
induction on the typing derivation, but requires a number of lemmas regarding the correctness of
substitution for persistent and linear variables. Both are fully proven in Coq.

It is worth noting an important feature of the preservation theorem. One would expect preser-
vation to state that if ·; ·; Φ ` e : τ and T ; e 7→ω e′;T ′, then ·; ·; Φ ` e′ : τ . This statement is false,
because the step from e to e′ might split an I/O factor in. This means that e′ will contain references
to i2n and i2n+1, which are not in Φ. Thus, the input context under which the expression is typed
must change as the program evaluates. We can, however, guarantee that if e steps to e′ then there
exists some Φ′ under which e′ is well-typed. Furthermore, we can guarantee that Φ′ is related to Φ.

4 Functional Simulation
Although the syntax and semantics of λi are similar to those of functional languages, λi is not
purely functional because it interacts with the outside world. In this section, we show two main
results restoring functional guarantees to λi. First, we show that λi programs can be viewed as
functional programs modulo the responses of I/O factors. In other words, interaction is the only
effectful feature of λi. Next, we show that by making certain assumptions about I/O factors, we
can restore some forms of equational reasoning to λi which would otherwise not be possible in
general for imperative languages.

4.1 Input simulators and functional semantics

We begin by defining an alternate semantics for λi, which we call λi
f, that evaluates purely func-

tionally using input simulators instead of I/O factors. Input simulators are purely functional tree-
like data structures that produce values when queried and branch when split. Input simulators will
encapsulate all of the state and non-determinism of the interaction with the outside world. In this
section, we will show that any run of a λi program can be simulated by a run of the equivalent λi

f
program and vice versa.

The syntax for input simulators is shown below:

S ::= · | e, S | S ‖ S
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Sim(in; ε) = ·
Sim(in;Q(in, e1, e), T ) = e, Sim(in;T )
Sim(in;Q(jm, e1, e), T ) = Sim(in;T ) i 6= j
Sim(in;Q(im, e1, e), T ) = Sim(in;T ) n 6= m

Sim(in; Sp(in), T ) = Sim(i2n;T ) ‖ Sim(i2n+1;T )
Sim(in; Sp(jm), T ) = Sim(in;T ) i 6= j
Sim(in; Sp(im), T ) = Sim(in;T ) n 6= m

Figure 7: Generation of input simulators

(QueryS-E)
e1 val e2 val

T ; query (in, e1, S) e2 7→ 〈e1, (in, S)〉;T,Q(in, e2, e1)

(SplitS-E)

T ; split (in, S1 ‖ S2) 7→ 〈(i2n, S1), (i
2n+1, S2)〉;T, Sp(in)

Figure 8: Semantic rules for handling input simulators

An input simulator can provide a response e and a continuation S, written e, S, or can split into
two simulators S1 and S2, written S1 ‖ S2. For ease of presentation, we define a new syntactic class
ê which is identical to the syntactic class e of expressions except that I/O factors i are replaced by a
pair (i, S) of the factor literal and an input simulator. In order to determine the exact input simulator
that replaces a factor, we must look at a particular evaluation of a λi program since input simulators
encapsulate a particular selection of values for input factors. The information to generate an input
simulator is contained in the execution trace produced by λi evaluation. The function Sim(in;T ),
defined in Figure 7, recurs over the trace T to generate a simulator for branch n of I/O factor i. The
relation e ∼T ê (read “ê corresponds to e under trace T ”) establishes a correspondence between
the λi program e and the λi

f program ê under trace T . This relation requires that ê be identical to
e with I/O factors i replaced by (i, Sim(i;T )). The formal definition is quite straightforward and
can be found in Appendix A.

Expressions ê in λi
f evaluate using the judgment T ; e 7→ e′;T ′. This judgment uses all of the

rules of Figure 6 except (QueryI-E) and (Split-E), which are replaced by the two rules in Figure 8.
None of the rules now use ω, so this is omitted from the judgment, as it should be since this input
strategy reflects non-functional interaction with the outside world. In rule (QueryS-E), the value
at the head of the input simulator is taken as the response, regardless of the prompt. This value
is of the syntactic class of λi expressions, but it is an invariant that it will contain no I/O factors3,
and so can also be treated as a member of the syntactic class ê, performing the obvious conversion
implicitly.

While the dynamics of λi are driven by the input strategy, the dynamics of λi
f are driven by the

3Input simulators are generated from traces produced by λi evaluations. For any ω used in such an evaluation, our
theorems will require Φ ` ω, which ensures that values of I/O factors can be typed under empty input contexts.
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ω ; ε

ω(i, T, e′) = e ω ; T

ω ; T,Q(in, e1, e)

ω ; T

ω ; T, Sp(in)

Figure 9: The compatibility judgment ω ; T

simulators corresponding to each I/O factor. As we have seen, input simulators can be generated
from imperative runs using the function Sim(·; ·). Expressing the equivalence between a λi evalua-
tion and a λi

f evaluation also requires the reverse operation. That is, given a λi
f evaluation, we wish

to generate an input strategy that will produce an equivalent imperative evaluation. For this reason,
λi

f evaluations also produce an execution trace recording the splits and queries of input simulators.
So that both evaluations produce traces of the same form, λi

f evaluation records in the trace the
factor literal corresponding to the input simulator that is queried or split. The judgment ω ; T
(read “ω is compatible with T ”) indicates that ω can produce trace T . It is defined inductively on
the trace by the rules in Figure 9. The only nontrivial constraint imposed on ω is that if, at a point
after T has been generated, i is queried with prompt e′ to produce value e, then ω(i, T, e′) must
produce e.

4.2 Bisimulation

Our goal is now to show a correspondence between an imperative run ε; e 7→ω ∗ e′;T and a functional
run ε; ê 7→∗ ê′;T when e ∼T ê. We show this essentially by proving that ∼T is a bisimulation,
with a caveat. In a standard bisimulation, one would assume that e ∼T0 e′ and show that e and e′

simulate each other. That is, they can take identical steps and the resulting expressions are related.
Formally, if T ; e 7→ω e′;T, t, then there exists ê′ such that T ; ê 7→ ê′;T, t and if T ; ê 7→ ê′;T, t then
there exists e′ such that T ; e 7→ω e′;T, t, and in both cases e′ ∼T0 ê′. In our case, however, the
bisimulation relation is parametrized by a trace T0 that must be the trace of events still to come in
the evaluation of e and ê. This means that e′ and ê′ should not be related by T0. Instead, it must be
the case that T0 = t, T1 and e′ ∼T1 ê′. With this in mind, we present the bisimulation lemma.

Lemma 1 (Bisimulation). Suppose ·; ·; Φ ` e : τ and Φ ok. Let T ′ and t be such that e ∼t,T ′ ê.

• If Φ ` ω and T ; e 7→ω e′;T, t then there exists ê′ such that T ; ê 7→ ê′;T, t and e′ ∼T ′ ê′.
• If ω ; T, t and T ; ê 7→ ê′;T, t then there exists e′ such that T ; e 7→ω e′;T, t and e′ ∼T ′ ê′.

Proving this lemma requires two important properties of the relation e ∼T ê. Lemma 2 states
that the relation between two expressions continues to hold when an element is removed from the
beginning of the trace if the I/O factor to which that element relates is not contained in e. This
lemma, specifically its corollary, Corollary 1, is used in cases of the bisimulation proof where an
expression involving two subexpressions takes a step by stepping one of the subexpressions, for
example if T ; 〈e1, e2〉 7→ω 〈e′1, e2〉;T, a. The corollary states that, if e2 ∼T,a ê2, then e2 ∼T ê2.
This corollary, and thus the bisimulation result, depend critically on our linear type system. If the
step T ; e1 7→ω e′1;T, a involved a factor i that was also allowed to appear in e2, the result would no
longer hold.

Lemma 2 (Trace element removal preserves relation). Let e, ê,Γ,∆,Φ and τ be such that Γ; ∆; Φ `
e : τ . If e ∼Q(in,e1,e),T ê or e ∼Sp(in),T ê and in 6∈ Φ then e ∼T ê.
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Proof. By induction on the derivation of e ∼t,T e′, where t = Q(in, e1, e) or t = Sp(in). The
nontrivial case is i′n

′
∼t,T Sim(i′n

′
; t, T ). Since ·; ·; Φ ` e : τ and in 6∈ Φ, we know that i′n

′
6= in.

By inspection of the rules for Sim(·; ·), this means that Sim(i′n
′
; t, T ) = Sim(i′n

′
;T ), so i′n

′
∼T

Sim(i′n
′
;T ).

Corollary 1 (Relation on independent subexpressions). Let e1, e2, e′1, ê2,Γ,∆1,∆2,Φ1,Φ2,Φ, τ1
and τ2 be such that Γ; ∆1; Φ1 ` e1 : τ1 and Γ; ∆2; Φ2 ` e2 : τ2 and Φ = Φ1,Φ2 (the last premise
ensures that Φ1 and Φ2 are disjoint.) If e2 ∼T,a ê2 and T ′; e1 7→ω e′1;T

′, a then e2 ∼T ê2.

Proof. By induction on the derivation of the step T ′; e1 7→ω e′1;T
′, a, it can be shown that the factor

to which a pertains must be contained in e1, and, by inversion on the typing derivation of e1, must
therefore be in Φ1. The factor is therefore not contained in Φ2 and Lemma 2 applies.

It was noted above that a λi expression containing no I/O factor literals can also be viewed as
a member of the syntactic class of λi

f expressions. Lemma 3 states that if e is such an expression,
e treated as a λi expression is related to e treated as a λi

f expression under any trace.

Lemma 3 (Relation reflexivity). Let e,Γ,∆, τ be such that Γ; ∆; · ` e : τ . For all t, e ∼t e.

Proof. By induction on the structure of e. We need not consider the case where e = i, since this
could not be typed under an empty input context.

We can use the bisimulation result to show that the evaluation of a λi program and the func-
tional evaluation of the related λi

f expression remain related throughout the multistep evaluation of
a full program starting with an empty trace. This shows that a λi program is indistinguishable up to
bisimulation from a functional expression that factors out external behavior. Theorem 2 shows that
any program e that runs to produce a trace T can be simulated by a λi

f program ê such that e ∼T ê,
in that the latter can also evaluate to produce the trace T and a related final result. Theorem 3
shows the reverse direction: if ê evaluates, then e can evaluate to produce a corresponding trace
and final result.

Theorem 2 (Forward multistep simulation). Suppose that Φ ok and ·; ·; Φ ` e : τ and Φ ` ω and
e ∼T ê. If ε; e 7→ω ∗ e′′;T then there exists ê′′ such that ε; ê 7→∗ ê′′;T and e′′ ∼ε ê′′.

Proof. We prove a slightly stronger result by assuming that T0; e 7→ω ∗ e′′;T0, T and showing that
T0; ê 7→ ê′′;T0, T . The result for T0 = ε follows as a special case.

Let ê be the result of substituting Sim(in;T ) for in in e, for all in. We have e ∼T ê by
construction. We prove the lemma by induction on the derivation of T0; e 7→ω ∗ e′;T . If e = e′,
the result is trivial. Otherwise, T0; e 7→ω e′;T0, T1 and T0, T1; e′ 7→ω ∗ e′′;T0, T1, T2. To apply the
induction hypothesis, we must show that T0; ê 7→ ê′;T0, T1 and ·; ·; Φ ` e′ : τ for some valid
input context, and e′ ∼T2 ê′. We show this by induction on the derivation of T0; e 7→ω e′;T0, T1,
considering only the cases that don’t follow from straightforward induction.

• (Query-S1). Then ê = query ê1 ê2. By induction, T0; ê1 7→ ê1
′;T0, T1 and e′1 ∼T2 ê1′. For the

result e ∼T2 ê, it remains to show that e2 ∼T2 ê2. This follows from Corollary 1. (Query-S2),
(QueryI-S), ((-E-S1), ((-E-S2), (⊗-I-S1), (⊗-I-S2), (⊗-E-S) and (Let-S) are similar.
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• (Query-E). Then T1 = ε and ê = query ftr (λ x : τ. ê1) ê2, where e1 ∼T2 ê1 and e2 ∼T2 ê2,
so [e2/x]e1 ∼T2 [ê2/x]ê1. Applying (Query-E), T0; ê 7→ [ê2/x]ê1;T0. ((-E), (⊗-E), (&-E1),

(&-E2), (Let-E) and (Fix-D) are similar.
• (QueryI-E). Then e = query in e0 and

ê = query Sim(in;Q(in, e0, e1), T2) e0 = query e1, Sim(in;T2) e0

and e′ = 〈e1, in〉. Applying (QueryS-E) gives T0; ê 7→ 〈e1, Sim(in;T2)〉;T0, T1. By the
definition of Φ ` ω, we have that ·; ·; · ` e1 : τ ′ for some τ ′, so Lemma 3 gives e1 ∼T2 e1.
By applying the rules for the relation, we can see that 〈e1, in〉 ∼T2 〈e1, Sim(in;T2)〉.
• (SplitI-E). Then e = split in and

ê = split Sim(in; Sp(in), T2) = split Sim(i2n;T2) ‖ Sim(i2n+1;T2)

and e′ = 〈i2n, i2n+1〉. Applying (SplitS-E) gives T0; ê 7→ 〈Sim(i2n;T2) ‖ , Sim(i2n+1;T2)〉;T0, T1.
By applying the rules for the relation, we can see that 〈i2n, i2n+1〉 ∼T2 〈Sim(i2n;T2), Sim(i2n+1;T2)〉.

Theorem 3 (Backward multistep simulation). Suppose Φ ok and ·; ·; Φ ` e : τ and e ∼T ê and let
ω be such that ω ; T . If ε; ê 7→∗ ê′′;T then there exists e′′ such that ε; e 7→ω ∗ e′′;T and e′′ ∼ε ê′′.

Proof. As above, we prove a stronger result, assuming T0; ê 7→∗ ê′;T0, T1 and ω ; T0, T1 and
concluding that T0; e 7→ω e′;T0, T1. The proof is similar to that of Theorem 2. The case where e = e′

is trivial, so we prove the result in the case where T0; ê 7→ ê′;T0, T1 and T0, T1; ê′ 7→∗ ê′′;T0, T1, T2.
We consider the two nontrivial cases for the bottommost rule in the derivation of the step.

• (QueryS-E). Then ê = query ê1, S ê2 and e = query in e2 and ê′ = 〈ê1, S〉 and T1 =
Q(in, e2, e1). By the rules for · ; ·, we have ω(i, T0, e2) = ê1. Suppose ω ; T0, T1, T2.
Applying (QueryI-E) gives T0; e 7→ω 〈ê1, in〉;T0T1. Since e ∼T1,T2 ê, we know that S =
Sim(in;T2), so in ∼T2 S and the result follows from this and Lemma 3.
• (SplitS-E). Then ê = split S1 ‖ S2 and e = split in and ê′ = 〈S1, S2〉 and T1 = Sp(in).

Suppose ω ; T0, T1, T2. Applying (SplitI-E) gives T0; e 7→ω 〈i2n, i2n+1〉;T0, T1. By the rules
for the relation, we have that S1 = Sim(i2n;T2) and S2 = Sim(i2n+1;T2). This gives the
desired result.

4.3 Equational reasoning

Many of the beneficial properties of functional programming, including referential transparency,
are related to the ability to perform equational reasoning. For example, if query were a pure
function, the following two programs that query two external sensors for the current temperature
would have identical behavior:
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1 let prog1 =
2 let (t1, _) = query sensor1 () in
3 let (t2, _) = query sensor2 () in
4 (t1, t2)
5

6 let prog2 =
7 let (t2, _) = query sensor2 () in
8 let (t1, _) = query sensor1 () in
9 (t1, t2)

In λi, the sensors may depend arbitrarily on each other, and so these programs will not, in
general, behave identically. In certain cases, however, they will. Assume for the moment that the
two sensors are in different rooms, so their temperature readings are independent of each other,
and that the temperature in both rooms is constant, so the readings are independent of time.4 In
this case, we would expect the programs to behave identically. We now show how the results of
Section 4.2 give us the ability to justify this sort of reasoning about λi programs formally. Suppose
we have two λi

f expressions, ê1 and ê2, which evaluate to the same value (but may produce different
traces in the process.) If e1 and e2 are λi programs from which ê1 and ê2 are derived, we want the
guarantee that e1 and e2 will also evaluate to the same value. This is the result of Theorem 4.

Theorem 4 (Equational reasoning). Let e1 and e2 be λi programs, and let ê1 and ê2, respectively,
be the corresponding λi

f programs, that is, e1 ∼T1 ê1 and e2 ∼T2 ê2. Suppose ·; ·; Φ ` e1 : τ1 and
·; ·; Φ ` e2 : τ2. If ε; ê1 7→∗ ê′;T1 and ε; ê2 7→∗ ê′;T2 and ω ; T1 and ω ; T2 then there exists e′

such that ε; e1 7→ω ∗ e′;T1 and ε; e2 7→ω ∗ e′;T2 and e′ ∼ε ê′.

Proof. By Theorem 3, ε; e1 7→ω ∗ e′1;T1 and ε; e2 7→ω ∗ e′2;T2 such that e′1 ∼ε ê′ and e′2 ∼ε ê′. The fact
that e′1 = e′2 follows from a straightforward induction on the structure of ê′.

Theorem 4 requires that ω be compatible with the traces of both functional executions. The
strength of the assumptions we make about ω governs the class of programs we can prove equiva-
lent (or, if e2 is viewed as the result of applying some transformation to e1, the class of transforma-
tions we can prove valid.) Any transformation made to e1 to produce e2 will have a corresponding
effect on the trace. For example, reversing the order in which two factors are queried, as in the
examples prog1 and prog2 earlier in this section, will result in the order of the query events
being swapped between the traces t1 and t2. For any pair of expressions, we can use Theorem 4
to guarantee that the expressions will behave identically if we can prove a “trace compatibility”
lemma stating that for traces T1 and T2 resulting from this pair of expressions, ω ; T1 implies
ω ; T2. If the trace compatibility lemma makes certain assumptions about ω, then the result about
the program equivalence will hold under the same assumptions.

A particularly strong assumption we might make about a user strategy is that it is independent
of the trace; this corresponds to a world that has no memory of past history. Formally, for all
i, e, T1, T2,

ω(i, T1, e) = ω(i, T2, e)

4In general, I/O factors may depend upon features, such as time, that are outside our model. Our semantics, and
our metatheoretic results, assume that this dependence is factored out as part of the user strategy.
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This strong assumption allows us to prove quite a strong trace compatibility lemma.

Lemma 4 (Trace compatibility for memoryless strategies). Suppose ω is “memoryless” as defined
above, and that T1 and T2 are permutations of each other. If ω ; T1, then ω ; T2.

Proof. By induction on T2. The case for ε imposes no constraints on ω and so is trivial. If T2 =
T2, Q(in, e, e′), then T1 must contain Q(in, e, e′). Since ω ; T1, we know that ω(i, T, e) = e′

for some trace, and so trace-independence gives us ω(i, T2, e) = e′. The remainder of the result
follows by induction.

This correspondence between trace-independent strategies and permuted traces allows us to
prove that, assuming a trace-independent input strategy, two programs produce the same value if
the corresponding functional programs produce the same value and permuted traces. This result
follows immediately from Theorem 4 and Lemma 4.

Corollary 2. Suppose ω is memoryless and Φ ` ω. Suppose ·; ·; Φ ` e1 : τ1 and ·; ·; Φ ` e2 : τ2,
and let T1, T2 be traces that are permutations of each other. If e1 ∼T1 ê1 and e2 ∼T2 ê2 and
ε; ê1 7→∗ ê′;T1 and ε; ê2 7→∗ ê′;T2 and ω ; T1, then there exists e′ such that ε; e1 7→ω ∗ e′;T1 and
ε; e2 7→ω ∗ e′;T2 and e′ ∼ε ê′.

This result is strong enough to guarantee the equivalence of the example programs prog1 and
prog2, since these programs will produce permuted traces. However, we can also prove these
programs equivalent using a weaker assumption on the user strategy than full trace-independence.
Instead, we consider “locally trace-sensitive” user strategies in which I/O factors are independent
of each other’s history but not their own. Formally, for all i, e, T1, T2,

(T1)�i= (T2)�i⇒ ω(i, T1, e) = ω(i, T2, e)

where (T )�i is the restriction of a trace to events pertaining to i:

(ε)�i := ε
(Q(i, e, e′), T )�i := Q(i, e, e′), (T )�i
(Q(i′, e, e′), T )�i := (T )�i if i′ 6= i

(Sp(i), T )�i := Sp(i), (T )�i
(Sp(i′), T )�i := (T )�i if i′ 6= i

This assumption on strategies allows the traces of Theorem 4 to have the events pertaining to
different I/O factors interleaved arbitrarily, as long as the traces restricted to one factor remain in
the same order. We first prove the appropriate trace compatibility lemma.

Lemma 5 (Trace compatibility for local strategies). Let T1 and T2 be such that for all i, (T1)�i=
(T2)�i. If ω is locally trace-sensitive, as defined above and ω ; T1, then ω ; T2.

Proof. We first prove three intermediate results for our strategy ω:

• If a and a′ pertain to different I/O factors and ω ; a, a′, T , then ω ; a′, a, T .
• If a and a′ pertain to different I/O factors and ω ; T, a, a′, T ′, then ω ; T, a′, a, T ′.

19



• If a pertains to i and (T ′) �i= (T2) �i and for all i′, (T1, a, T2) �i′= (a, T ′) �i′ and ω ;

T1, a, T2, then ω ; T1, T2, a.

Each of these results builds on the previous one by straightforward induction. We show the main
result by induction on T2. If T2 = T ′2, Q(i, e, e′), then (T1) �i= (T ) �i, Q(i, e, e′) for some T , so
there exist T and T ′ such that T1 = T,Q(i, e, e′), T ′ and (T ′2) �i= (T ) �i and for all i, (T ′2) �i=
(T, T ′)�i. We know that ω ; T,Q(i, e, e′), T ′. By result 3 above, we have ω ; T, T ′, Q(i, e, e′),
so ω(i, (T, T ′), e) = e′ and ω ; T, T ′. The assumption on ω then gives ω(i, T ′2, e) = e′ and
ω ; T ′2 follows by induction, as does the case for T2 = T ′2, Sp(i).

A result about programs with such traces then follows directly from Theorem 4 and Lemma 5.

Corollary 3. Suppose ω is independent of interleavings and Φ ` ω. Suppose ·; ·; Φ ` e1 : τ1 and
·; ·; Φ ` e2 : τ2, and let T1, T2 be such that for all i, (T1)�i= (T2)�i. If e1 ∼T1 ê1 and e2 ∼T2 ê2 and
ε; ê1 7→∗ ê′;T1 and ε; ê2 7→∗ ê′;T2 and ω ; T1, then there exists e′ such that ε; e1 7→ω ∗ e′;T1 and
ε; e2 7→ω ∗ e′;T2 and e′ ∼ε ê′.

5 Implementation and Examples
Since it requires just a few additions to lambda calculus, λi can probably be implemented in any
functional language. We implemented it as an OCaml library and used the library to develop a
number of examples, ranging from simple to more sophisticated examples that demonstrate the
flexibility and the expressivity of the proposed techniques.

Our implementation follows closely the operational semantics (Section 3.3). Since OCaml does
not have a linear type system, however, our implementation cannot enforce the invariants required
by our type system, i.e., that all I/O factors are used linearly. We therefore check this property
dynamically by furnishing the runtime representations of I/O factors with additional facilities that
raise an exception when they are used more than once.

5.1 The Interface

Figure 10 shows the core of the interface for our interaction library. The interface allows the
creation and use of internal and I/O factors, defined by the abstract types (’p, ’r) ftr and
(’p, ’r) eftr respectively, where ’p is the prompt type and ’r is the response type.

A factor can be created from a generator using the function ftr. The query function queries
an internal factor, returning a response and a new factor of the same type. The library provides
the eftr function for implementing user-defined I/O factors, the equery function for querying
them, and the split function for splitting them.

For the examples presented in the rest of the section, we assume an implementation I of the
interface Interactive.

5.2 Examples

Standard library. While the core of the implementation remains quite small, we provide a stan-
dard library containing many I/O factors useful for writing actual applications, such as mouse
input, keyboard input and system time. The library also contains basic operations over factors,
such as map and fold, and their variants.
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1 module type Interactive = sig
2 type (’p, ’r) ftr
3 type (’p, ’r) eftr
4

5 (∗ Create a new factor from a generator. ∗)
6 val ftr : (’p → ’r * (’p, ’r) ftr) → (’p, ’r) ftr
7 (∗ Query a factor. ∗)
8 val query : (’p, ’r) ftr → ’p → ’r * (’p, ’r) ftr
9

10 (∗ Create a new I/O factor from a generator. ∗)
11 val eftr : (’p → ’r * (’p, ’r) eftr) → (’p, ’r) eftr
12 (∗ Query an I/O factor. ∗)
13 val equery : (’p, ’r) eftr → ’p → ’r * (’p, ’r) eftr
14

15 (∗ Split an I/O factor into two. ∗)
16 val split : (’p, ’r) eftr → (’p, ’r) eftr * (’p, ’r) eftr
17 end

Figure 10: The λi core interface

A top-level loop. Evaluation in λi is driven by the querying of factors within a program rather
than, as in many interactive languages, a top-level loop that synchronously advances all time-
varying values. Such a top-level can be defined within λi if desired using a recursive function that
repeatedly queries the desired factor, perhaps performing some action like printing the responses
to the screen as output. Because the loop is under the control of the programmer, the frequency
at which the factor is queried can be controlled by inserting the desired delays between recursive
calls. We use this technique in several of the examples described in this section.

A physics simulation. In this example, we consider simulating free-falling objects such as per-
fectly elastic balls within a rigid box. This example illustrates interesting interaction patterns, for
example allowing the user to insert new balls to the system, while also performing some non-
trivial computation involving moving objects. The simulation detects collisions with the floor and
the ceiling, bouncing a colliding ball off the wall by adjusting its velocity vector. The simulation
also computes the “high-point” marker, a ball that tracks the highest ball at any time. Figure 12
shows a snapshot from the simulation.

The code below illustrates the simulate function. The function takes a specification of
the box and several unit-prompted factors representing, respectively, time, acceleration, mouse
position, mouse clicks and the balls currently in the simulation. Since balls can be added dynam-
ically, the balls (each represented by a unit-prompted factor returning positions) are passed in as
a list. We note that representing the collection of balls requires higher-order factors. The func-
tion simulate checks whether the mouse has been clicked. If so, a new ball is added to the
simulation whose initial velocity and position are determined from the mouse position by function
make_ball (details of which are not shown here). This allows the user to insert new balls by
clicking the mouse. Regardless of whether a ball is added, simulate generates a renderer (a
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function that displays the ball) for each ball by mapping the function render (not shown here)
over the collection. The renderers are then combined, calculating the high-point marker in the pro-
cess. Another function called graphics_loop (not shown here), renders the final simulation by
querying the returned factor and passing the collection of renderers to OCaml’s graphics library.

1 (∗ simulate: float∗float→ (float, unit) I.ftr→ (float, unit) I.ftr→
2 (int∗int, unit) I.eftr→ (bool, unit) I.ftr→
3 ((float∗float, unit) I.ftr) list→ (unit→ unit, unit) I.ftr ∗)
4 let simulate box time acc mouse_pos mouse_clicks balls =
5 let rec gen clicks mpos balls () =
6 let (c, clicks’) = I.equery clicks () in
7 let balls’ =
8 if c then (∗Mouse is clicked; add a new ball ∗)
9 let (pos, mpos) = V.equery mpos () in

10 let (v, x) = make_ball pos in
11 let ball = velocity_position box v x time acc in
12 (ball::balls)
13 else
14 balls
15 in
16 let (renderers, balls’’) = List.unzip (map render balls’)
17 in
18 let render_all () = combine_renderers renderers in
19 (render_all, I.ftr (gen click’ mpos’ balls’’))
20 in I.ftr (gen mouse_clicks mouse_pos balls)

Since velocity depends on the position (because a ball bounces back when it collides with the
box, changing its velocity), we compute the velocity and the position of the ball together. The
code for function velocity_position is shown below. The function integrates acceleration
and velocity, to compute the velocity and the position of a ball, taking care to reverse the velocity
when the ball collides with the box. The fold2 function folds over a pair of factors to build a
factor of responses, providing fwith the pair of values and the current accumulator. The function f
returns the new accumulator and either Some and a response or None to produce no response.

1 (∗ velocity position: (float∗float)→ float→ float→
2 (float, unit) I.ftr→ (float, unit) I.ftr)→
3 (float∗float, unit) I.ftr ∗)
4 let velocity_and_position (left, right) v0 x0 time acc =
5 let bounce (v, x) =
6 if x < left then (˜-. v, left)
7 else if (x > right) then (˜-. v, right)
8 else (v, x)
9 in let f (t, a, (v, x, pt)) =

10 match pt with
11 | None → ((v, x, Some t), Some (v, x))
12 | Some pt’ →
13 let v’ = v +. (a *. (t -. pt’)) in
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Figure 11: The number
of (left) mouse-button
clicks and the position
of the mouse pointer
displayed twice.

Figure 12: An inter-
active physics simula-
tion, high-point marker
drawn in red.

14 let x’ = x +. (v’ *. (t -. pt’)) in
15 let (v’’, x’’) = bounce (v’,x’) in
16 ((v’’, x’’, Some t), Some (v’’, x’’))
17 in fold2 f (v0, x0, None) time acc

Since interactive computations in our approach are performed on demand, graphics_loop
can query the factor of renderers at any desired frequency, indirectly determining the frequency at
which the positions are updated.

Physics Simulation 2D. This example generalizes the 1D physics simulation to 2D, allowing
objects move in a bounded 2D space on 2D trajectories, and extends it to enable 1) collision
detection between moving objects and 2) input from the user that alters the visualization and the
dynamics of the simulation. The example employs multiple and varying polling frequencies for
improved efficiency and accuracy, performs certain computations in a demand-driven fashion to
avoid unnecessary work, and employs multithreading.

In the normal state, two balls proceed according to the simulation, bouncing off of the walls
of the box and each other. We vary the polling frequency of the system time roughly linearly with
the velocity of the balls (higher velocities lead to more polling). By polling infrequently when the
balls are moving slowly, this policy ensures efficiency. By polling frequently when the balls are
moving quickly, the policy ensures accuracy. We further increase accuracy by predicting collision
times (based on velocity and acceleration) and perform an update exactly at the time of a collision,
ensuring that no collisions are missed.

The example allows the user to interact with the system by catching a ball with the mouse and
dragging it. When a ball is being dragged, its factor polls the mouse position in order to update
the position of the ball, but does not compute the integrals for velocity and position. When the ball
is released, the computation of the integrals resumes but the mouse position is no longer queried.
Demanding input values only when they are needed reduces unnecessary polling and computation.

This example also contains different parts operating at different frequencies. Specifically, we
use a separate thread for allowing the user to change the color of the balls by pressing certain keys.
We configure the thread querying the I/O factor of key presses to block until a key is pressed. Since
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the thread handles only this task, it is acceptable to block, and is efficient, because the thread does
not have to poll continuously, which would results in unnecessary work.

Tax Assistance. Our library appears to be particularly useful for building console applications,
even ones involving complex interactions where inputs to the program affect the control flow. As
an example of such an interaction familiar to many US taxpayers, we implemented a console ap-
plication guiding the user through completing the IRS W-4 form. The I/O factor prompt input,
which displays its prompt to the user, reads a line from standard input and returns the line as its re-
sult, is split and used to build several unit-prompt factors, each of which asks a particular question
(e.g. “Are you married?” or “What is your income?”) when queried. The main function calculat-
ing the user’s withholding allowances is written essentially as a mathematical formula, querying
the appropriate factors to get the answers to each question when they are needed. Our framework
easily allows the low-level details of performing the interaction to be factored out. These details
include prompting the user, reading the input, processing the input and asking again if the input
was invalid. At the end, the user is given the opportunity to change the answer to a question, in
which case the appropriate factor is queried and the computation run again.

Arrowized FRP. Arrowized FRP (AFRP) [22], notably implemented in the Yampa package for
Haskell, is an efficient and causal variation on Elliott and Hudak’s FRP [9]. We embedded a
substantial subset of Yampa, which is one of the most mature and complete implementations of
FRP, in λi, and used the embedding to implement the tailgating detection example of Nilsson et
al. [22]. Our implementations of Yampa and of the tailgating example consist of approximately
300 and 120 lines of code respectively. More details of the embedding of Yampa in λi are available
in Appendix B. This example shows that the proposed approach is expressive enough to support an
encoding of previous prior work. We also implemented directly the same example in our λi library
in approximately 75 lines of code.

Elm. Elm [7] allows programmers to write computations by manipulating time-varying values
called signals, and provides an async construct, which allows long-running computations to run
outside of the otherwise synchronous, global update model. We implemented in λi an example
from the paper of Czaplicki and Chong [7] which uses async to prevent an expensive machine
translation task from delaying the mouse-position updates. Because our model does not include
concurrency, our implementation depends on the compatibility of our model with basic concur-
rency primitives. Other than the asynchrony, the implementation was straightforward, and we are
currently working on embedding an interface similar to that of Elm, as we did with AFRP.

Unix Shell. As an example of a real-world program with many low-level interactions, we im-
plemented fsh, a Unix shell that handles foreground and background jobs and supports history,
command line editing and tab completion. If a foreground job is running, fsh periodically queries
the factor signals to poll for signals from the operating system. Otherwise, fsh queries stan-
dard input to perform the interaction with the user. These functions are therefore encapsulated
in the λi library. Other low-level operations, such as forking new processes through the OCaml
Unix library and limited C interface, are encapsulated within separate functions. Much of the code,
however, handles higher-level operations, such as command line processing, operations on the data
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structures that store job status and command line history, and functions to support tab completion.
These tasks are programmed quite naturally in the high-level, functional style of our library.

6 Related Work
We discuss most closely related work in the relevant sections of the paper. Here, we present a
broader review of related work.

6.1 Process Calculi

Process calculi, which model concurrent systems, have been studied extensively, leading to a vast
body of work, and many different calculi (e.g., [2, 11]). Programming languages based on pro-
cess calculi include Concurrent ML [26], which is based on CSP, and Pict [24], which is based
on π-calculus. Our factor abstraction is related to the process abstraction in process calculi: like a
process, a factor can be viewed as accepting and responding to messages. Since factors “commu-
nicate” only via the query-response interface, however, they are more similar to Plotkin’s resump-
tions [25], which have the same type, but are used to model processes and non-determinism [25, 1].
The key difference between process calculi and our work is that we are interested in the interaction
between a computation and the external world but not between concurrently executing processes.
We therefore base our calculus on a variant of the lambda calculus rather than a process calculus,
such as π-calculus.

6.2 Functional Reactive Programming

Introduced by Elliot and Hudak in 1997 [9], Functional Reactive Programming (FRP), provides
powerful primitives for operating on continuously changing values called behaviors, and discretely
changing values called events. Elliott and Hudak specified the semantics of FRP by presenting a
denotational semantics. Much of the follow-up work on FRP concerns techniques for implement-
ing the denotational semantics in practice. We present a brief overview of this work, touching upon
the important milestones. More details and more citations can be found in recent papers [7, 16, 13],
which include excellent bibliographies that together span a broader scope than we can here. As de-
scribed in Section 1, our work differs from FRP in several ways, including in the abstractions used
(factors), in its asynchronous, demand-driven evaluation strategy, and perhaps more fundamentally
in its (carefully controlled) imperativeness.

Implementations of FRP. Wan and Hudak [29] proposed a stream-based implementations of
the original FRP semantics [9], where behaviors and events were represented as streams of values.
Much like synchronous dataflow languages such as Signal [10], Lustre [4] and Esterel [3], these
implementations of FRP adopted a synchronous strategy, where a program executes by periodically
sampling the values of signals from the environment, processing them, and returning an output.
Unlike in synchronous dataflow languages, which evaluate a mostly static, unchanging dataflow
graph, in FRP, the program changes over time, requiring changes to the dataflow graph itself after
each step. Wan and Hudak [29] proved that the synchronous stream-based implementation of
FRP that they proposed is consistent with the original denotational semantics for many (but not
all) programs, when the size of the sampling interval approaches zero (the sampling frequency
approaches infinity).

Subsequent work identified safety and efficiency problems in FRP: causality [22, 17, 13] and
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space-time leaks [22, 16, 7], leading to much follow-up work on safe and efficient implementations.
Initial approaches restricted the language to prevent writing unsafe and inefficient programs. Real-
time FRP [30] proposed techniques for eliminating time and space leaks by using signals as a
uniform representation of behaviors and events. By using a two-tiered reactive and non-reactive
language, and by prohibiting higher order signals, real-time FRP can bound space and time usage
in the reactive portion of the program (thus eliminating space and time leaks), while providing no
bounds on the non-reactive portion. Following up on real-time FRP work, event-driven FRP [31]
introduced discrete signals that change only at events.

Arrowized FRP [22, 20, 27, 19] aims at regaining the expressiveness lost in real-time FRP
while keeping its efficiency benefits. To this end, arrowized FRP disallows operating on signals di-
rectly, offering instead a programming model centered around the idea of signal functions that can
transform their input signals. Signal functions can be viewed as circuit elements in synchronous
dataflow languages. But unlike such languages, arrowized FRP supported dynamic switching op-
erators that can reconfigure the circuit (network of signal functions), regaining much of the expres-
siveness of the original FRP while avoiding time and space leaks and also preserving causality.
Ensuring that arrowized FRP programs are correct, safe and efficient, especially in the presence
of dynamic switching, can be difficult, however [27], e.g., dynamic switching operators can also
make time and space leaks possible [16].

More recent approaches turned to semantics and type systems for ensuring that FRP programs
are safe and efficient. Schulthorpe and Nilsson [27] use dependent types to enforce statically the
safety of arrowized FRP programs. Krishnaswami, Benton, and Hoffman [18] use linear types to
eliminate space leaks from FRP programs. Jeffrey [13], and independently Jeltsch [15] use linear
temporal logic as a type system to guarantee causality. Jeffrey [14] presents a type system for
FRP that guarantees liveness—that every input event leads to an output event. Krishnaswami [16]
proposes a type system based on temporal logic that can prevent inadvertent space and time leaks.
Krishnaswami’s results are similar to ours and the prior work on real-time FRP [30] (which consid-
ers a more restrictive language) in the sense that the programmer can still hold on to computations
and data but can only do so explicitly. Cave et al. [5] use linear temporal logic to provide for an
expressive FRP language and precise liveness guarantees.

Synchrony. Much of the work on FRP can be viewed as a generalization of synchronous dataflow
languages [10, 4, 3] to enable richer computations where the dataflow graph can change from one
step to another. Unfortunately synchronous evaluation leads to a number of limitations, some
of which are discussed previously [7, 22, 31], and which our proposal appears to avoid. One
limitation is that a step cannot be started before the previous one finishes, especially in more
interesting instances with dynamic switching 5. This leads to a range of practical difficulties,
including an inherent latency, and the need to choose the right frequency for updates: each step
must be long enough for the execution of a step to complete but cannot be too large because it
can lead to soundness problems [31]. A large step size also increases latency and can lead to
external buffering of the streams that operate at a higher frequency. Unfortunately, it is impossible
to determine the right step size (frequency) because the evaluation time of a step depends on the
input for that step, which cannot be known a priori. Even if a step size can be established, it would

5In static networks, steps can be pipelined, an least in principle.
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have to be applied globally to all the different parts of the program regardless of their specific
requirements. For example, in many applications, a mouse might need to be polled at a higher
frequency than a rarely-used button, such as the on/off button of the computer, which might even
be polled completely asynchronously by, for example, blocking.

Czaplicki and Chong [7] point out some of the limitations of the synchronous evaluation strat-
egy, and propose techniques for allowing certain computations to span multiple time steps. While
not fully asynchronous, their approach gives some flexibility to the programmer in avoiding the
strictures of synchrony. Based on this idea, they develop the Elm language, which is arguably one
of the most-well developed FRP languages, offering an impressive array of examples and features.
As with much other work on FRP, however, Elm does not allow higher-order streams.

7 Conclusion
This paper presents techniques for interactive computation based on three key ideas: 1) abstraction
of interaction with a single primitive called a factor that models interaction as exchange of infor-
mation and internal change, 2) writing interactive programs compositionally using higher-order
functions as in simply typed lambda calculus, 3) using a linear type system that treats interaction
as consumable resource, leading to a safe and efficient implementation. Perhaps surprisingly, we
also show that interaction is not necessarily imperative by proving that certain forms of interaction
are in fact consistent with purely functional programming. Our implementation and the examples
considered show the techniques to be effective in practice, enabling expression of a relatively di-
verse set of examples succinctly. While not a focus of this paper, our implementations employ
several different forms concurrency favorably, which we plan to research in the future.
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[10] Thierry Gautier, Paul Le Guernic, and Löic Besnard. Signal: A declarative language for
synchronous programming of real-time systems. In Proc. Of a Conference on Functional
Programming Languages and Computer Architecture, pages 257–277, London, UK, UK,
1987. Springer-Verlag.

[11] Robert Harper. Practical Foundations for Programming Languages. Cambridge University
Press, New York, NY, USA, 2012.

[12] C. A. R. Hoare. Communicating sequential processes. Commun. ACM, 21(8):666–677, Au-
gust 1978.

[13] Alan Jeffrey. LTL types FRP: linear-time temporal logic propositions as types, proofs as func-
tional reactive programs. In PLPV ’12: Proceedings of the sixth workshop on Programming
languages meets program verification, pages 49–60, 2012.

[14] Alan Jeffrey. Functional reactive programming with liveness guarantees. In Proceedings of
the 18th ACM International Conference on Functional Programming, 2013. forthcoming.

[15] Wolfgang Jeltsch. Temporal logic with ”until”, functional reactive programming with pro-
cesses, and concrete process categories. In Proceedings of the 7th Workshop on Programming
Languages Meets Program Verification, PLPV ’13, pages 69–78, 2013.

[16] Neelakantan R. Krishnaswami. Higher-order functional reactive programming without space-
time leaks. SIGPLAN Not., 48(9):221–232, September 2013.

[17] Neelakantan R. Krishnaswami and Nick Benton. Ultrametric semantics of reactive programs.
In LICS ’11: Proceedings of the 2011 IEEE 26th Annual Symposium on Logic in Computer
Science, pages 257–266, 2011.

[18] Neelakantan R. Krishnaswami, Nick Benton, and Jan Hoffmann. Higher-order functional
reactive programming in bounded space. In POPL ’12: Proceedings of the 39th annual ACM
SIGPLAN-SIGACT symposium on Principles of programming languages, pages 45–58, 2012.

28



[19] Hai Liu, Eric Cheng, and Paul Hudak. Causal commutative arrows and their optimization.
In Proceedings of the 14th ACM SIGPLAN international conference on Functional program-
ming, ICFP ’09, pages 35–46, 2009.

[20] Hai Liu and Paul Hudak. Plugging a space leak with an arrow. Electron. Notes Theor. Comput.
Sci., 193:29–45, November 2007.

[21] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes, i. Inf.
Comput., 100(1):1–40, September 1992.

[22] Henrik Nilsson, Antony Courtney, and Joh Peterson. Functional reactive programming, con-
tinued. In Proceedings of the 2002 ACM SIGPLAN Haskell Workshop (Haskell’02), pages
51–64, Pittsburgh, Pennsylvania, USA, October 2002. ACM Press.

[23] Kevin R. O’Neill, Michael R. Clarkson, and Stephen Chong. Information-flow security for
interactive programs. In Proceedings of the 19th IEEE Computer Security Foundations Work-
shop, pages 190–201, Piscataway, NJ, USA, July 2006. IEEE Press.

[24] Benjamin C. Pierce and David N. Turner. Proof, language, and interaction. chapter Pict: A
Programming Language Based on the Pi-Calculus, pages 455–494. 2000.

[25] Gordon D Plotkin. A powerdomain construction. SIAM Journal on Computing, 5(3):452–
487, 1976.

[26] John H. Reppy. CML: a higher concurrent language. In Proceedings of the ACM SIGPLAN
1991 Conference on Programming Language Design and Implementation, PLDI ’91, pages
293–305, 1991.

[27] Neil Sculthorpe and Henrik Nilsson. Safe functional reactive programming through depen-
dent types. SIGPLAN Not., 44(9):23–34, August 2009.

[28] David N. Turner and Philip Wadler. Operational interpretations of linear logic. Theoretical
Computer Science, 227(1-2):231 – 248, 1999.

[29] Zhanyong Wan and Paul Hudak. Functional reactive programming from first principles. In
Proceedings of the ACM SIGPLAN 2000 Conference on Programming Language Design and
Implementation, pages 242–252, 2000.

[30] Zhanyong Wan, Walid Taha, and Paul Hudak. Real-time FRP. SIGPLAN Not., 36(10):146–
156, 2001.

[31] Zhanyong Wan, Walid Taha, and Paul Hudak. Event-driven FRP. In Proceedings of the 4th
International Symposium on Practical Aspects of Declarative Languages, PADL ’02, pages
155–172, 2002.

29



A Definition of Bisimulation Relation

〈〉 ∼T 〈〉 x ∼T x
Sim(in;T ) = S

in ∼T (in, S)

e ∼T ê
λ x : τ. e ∼T λ x : τ. ê

e1 ∼T ê1 e2 ∼T ê2
e1 e2 ∼T ê1 ê2

e1 ∼T ê1 e2 ∼T ê2
〈e1, e2〉 ∼T 〈ê1, ê2〉

e1 ∼T ê1 e2 ∼T ê2
let 〈x, y〉 = e1 in e2 ∼T let 〈x, y〉 = e2 in ê2

e1 ∼T ê1 e2 ∼T ê2
〈e1 | e2〉 ∼T 〈ê1 | ê2〉

e ∼T ê
e · l ∼T ê · l

e ∼T ê
e · r ∼T ê · r

e ∼T ê
!e ∼T !ê

e1 ∼T ê1 e2 ∼T ê2
let !x = e1 in e2 ∼T let !x = ê1 in ê2

e ∼T ê
ftr e ∼T ftr ê

e1 ∼T ê1 e2 ∼T ê2
query e1 e2 ∼T query ê1 ê2

e ∼T ê
split e ∼T split ê

e1 ∼T ê1 e2 ∼T ê2
let x = e1 in e2 ∼T let x = ê1 in ê2

e ∼T ê
fix x is e ∼T fix x is ê

B Details of AFRP Encoding
We show how to encode AFRP signal functions as factors in λi, allowing an AFRP library similar
to Yampa to be implemented within λi. One implementation of AFRP [22] implements a signal
function in approximately the following way.

type (’a, ’b) sf = time -> ’a -> ’b * (’a, ’b) sf

In this implementation, a signal function is a concrete function whose arguments are the amount
of time that has passed since the last time the signal was sampled, and the current value of the input
signal. The result is the new value of the output factor and the continuation of the signal function,
which is ready to be used at the next time step. This type can be directly implemented using λi

factors.

type (’a, ’b) sf = (’b, time * ’a) ftr

Under this encoding, however, signal functions may only be used once, a restriction that doesn’t
exist in AFRP. To allow multiple uses, a signal function in our implementation must be a function
that produces a signal function of the type above. This leads to the following implementation.

type (’a, ’b) raw_sf = (’b, time * ’a) ftr
type (’a, ’b) sf = unit -> (’a, ’b) raw_sf

Standard AFRP signal functions and combinators can be programmed using this type. For ex-
ample, integral, which in AFRP is simply a signal function that transforms real-valued signals6

to their integrals, can be implemented as follows.
6In fact, the integral function allows integration of more complicated types, but we do not implement this here.
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let integral () =
let rec integral_gen a (dt, h) =

let v = a +. dt *. h in
(v, ftr (integral_gen v))

in
ftr (integral_gen 0.)

Note that integral is a function taking a unit argument, as required by our signal function
type. To run top-level signal functions, we provide an outer loop that applies the given signal
function to produce the underlying factor and then queries it continuously, calling a function f to
handle each value in turn (f is likely an effectful function that, for example, prints the value to the
screen.)

let run (f: ’a -> unit) (sf: (unit, ’a) sf) =
let rec run_rec s =

let (h, t) = query s (delta, ()) in
(f h; run_rec t)

in
run_rec (sf ())

Note that a refresh rate (delta above) must be specified and cannot be viewed or set by the
program, though it could be varied dynamically by the runtime.
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