
OpenISR 2.0
Da-Yoon Chung

July 2015
CMU-CS-15-125

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Mahadev Satyanarayanan, Chair

David A. Eckhardt

Submitted in partial fulfillment of the requirements
for the degree of Master’s of Science

c© 2015 Da-Yoon Chung

Keywords: Virtual Machine, VM, Internet Suspend/Resume R©, OpenISR R©, mobile
computing

Abstract

We explore a new approach to “Web-based Transient Personal Computing” by building
upon the ideas from Professor Satyanarayanan’s ISR (Internet Suspend/Resume R©) to
create a much leaner iteration of ISR which also leverages more recent work done in vir-
tualization. ISR decouples machine state from hardware by storing the state in a virtual
machine. It increases convenience and productivity for users by allowing them to se-
curely access personal machine state on an anonymous machine (e.g., a PC in a waiting
room at the doctors office) or more portable devices, like tablets, instead of being bound
to particular hardware. Although the existing ISR is functional, its codebase is complex,
and some of the decisions made in its development would have been made differently
today. We reconsider the original premises of ISR and build a minimal system in the
spirit of the original.

Rather than working from the ISR codebase, we build upon the newer VMNetX code-
base, which spun off from the ideas of ISR and is the core of the Olive Archive project.
VMNetX supports a subset of ISR’s functionality. The main distinction is that its VMs
are read-only. Therefore, we extend this codebase to support saving user state and trans-
ferring it between the client and the server as efficiently as possible. Although we did
not introduce any completely novel techniques, we instead focused on producing the
most robust and user-friendly implementation of the ISR core concept thus far. The final
system prioritizes usability and the user experience. New features such as a GUI and
trickle back of dirty state allow users to more easily manipulate their VMs and minimize
waiting for operations to complete.

Acknowledgements
I would like to thank everyone who has supported me in any way during my undergrad-
uate and graduate journey.

Professor Satya: thank you for your patience and guidance through my three years with
the group. I feel very lucky to have stumbled upon your work as an undergrad, and it
shaped my experience at CMU in a way I could not have expected.

Benjamin Gilbert: you took a personal interest in my development as a student and
as a person in the field in computer science, and I know our discussions will stay with
me for the rest of my career. Thank you, and I look forward to hearing about your future
work.

Professor Eckhardt: thank you for agreeing to be part of my thesis committee on such
short notice. The last minute guidance you provided was invaluable in producing this
document. I will keep my promise to read at least one thesis or conference paper every
year.

I learned a great deal from working with the rest of the members of the research group:
Kiryong Ha, Yoshi Abe, Jan Harkes, Wolfgang Richter, Wenlu Hu, Zhuo Chen, and
Brandon Amos. Thank you for always being open to discussing my work and often
times going above the call of duty to help me.

Thank you Tracy Farbacher for your help in coordinating the final steps of my grad-
uation.

Finally, a big thanks to my parents for both the financial and emotional support through-
out my five years at Carnegie Mellon. I appreciate you giving me the opportunity to
better myself at great personal sacrifice, and I hope to return the favor tenfold in the
future.

Da-Yoon Chung
Pittsburgh, Pennsylvania

July 2015

Contents

1 Introduction 1
1.1 The Current State of Internet Suspend/Resume 1
1.2 Motivation . 2
1.3 The Thesis . 3

1.3.1 Scope of Thesis . 3
1.3.2 Approach . 4
1.3.3 Validation of Thesis . 4

1.4 Document Roadmap . 4

2 Redesigning ISR 6
2.1 Modern . 6

2.1.1 Django . 6
2.2 Usable . 7
2.3 User-Focused . 8
2.4 Off-The-Shelf . 10

2.4.1 HTTP . 10
2.4.2 JSON . 10
2.4.3 XML . 11

3 Extending VMNetX 13
3.1 The Olive Archive . 13

3.1.1 VMNetX . 14
3.2 Server . 15

3.2.1 VM Storage . 15
3.2.2 VM Access . 18
3.2.3 User Information Management 18

3.3 Versioning . 18
3.3.1 Implementation Details . 19

3.4 Server URLs . 20
3.5 Locking . 21
3.6 Cache Validation . 22
3.7 Dirty State Trickle Back (Background Upload) 22

3.7.1 Live Migration . 24
3.7.2 Modifying QEMU . 25

3.8 Bandwidth Throttling . 26
3.8.1 Throttle Control . 26
3.8.2 Throttling via curl: an anecdote 27

i

3.8.3 Dynamic Throttle Control . 28

4 Evaluation 29
4.1 Feature Set . 29
4.2 Simplicity . 30
4.3 Performance . 30

4.3.1 Trickle Back of Dirty State . 31
4.4 Evaluation Summary . 33

5 Further Feature Discussion 34
5.1 Thin-Client mode . 34
5.2 Disconnected Operation . 34
5.3 Micro-Checkpoints . 35
5.4 Encryption . 36
5.5 Cloud Storage . 37
5.6 Multiple Servers for a Single ISR Deployment 39
5.7 Content Addressable Storage (CAS) on the server 40

5.7.1 Interaction with background upload 42
5.7.2 Hash Collisions . 43
5.7.3 Garbage collection . 43

5.8 CAS on the Client . 44

6 Related Work 45
6.1 OpenISR . 45
6.2 The Olive Archive . 45
6.3 Alternatives to ISR . 45

6.3.1 Simple document editing . 46
6.3.2 Multiple OSs on a single machine 46
6.3.3 Running applications not compatible with host OS 46
6.3.4 Other Emulation Platforms . 46

7 Conclusion 47
7.1 Contributions . 47
7.2 Future Work . 47
7.3 Final Thoughts . 48

ii

List of Figures
1 Original hypothetical ISR deployment 1
2 OpenISR 2.0 GUI . 7
3 Window for VM Creation . 8
4 Window for VM Execution . 9
5 The Olive Archive . 13
6 OpenISR 2.0 System Diagram . 15
7 Effect of Background Upload on Resume and Checkin 23
8 QEMU Live Migration Data Format 24
9 Processes involved in background upload 26
10 Thin Client Mode . 35

iii

List of Tables
1 Comparison of features in OpenISR and OpenISR 2.0 29
2 Lines of code comparison between OpenISR and OpenISR 2.0 30
3 Effect of background upload on checkin time 32
4 Bandwidth use of background upload 32

iv

1 Introduction

1.1 The Current State of Internet Suspend/Resume
In June 2002, ISR was proposed as a novel approach to mobile computing which would
eliminate the requirement that the exact hardware be physically carried with someone to
access it. One of the original publications described a hypothetical world where anony-
mous hardware was widely available [20]. One reason that this prediction was not en-
tirely unfounded was due to increasingly lower hardware costs. It was therefore not
farfetched that for example, a coffee shop would provide laptops for customers to use
for a few hours at a time while they are at the store. Obviously, such a loaner machine
would not have any of the user’s personal data stored on it for privacy reasons. With
ISR installed however, an individual could access his or her personal machine state on
this device quickly and securely. ISR would handle synchronizing user state across the
various machines that a user might use in their lives, from personal and work machines
to these anonymous devices.

Figure 1: Original hypothetical ISR deployment

Figure 1 is a diagram from one of the first ISR publications [20] which presents a
hypothetical ISR deployment. Each one of the colored regions represents a private ISR

1

installation that a larger entity like a company or a university would provide for its em-
ployees or students. On the fringe, there are a number of highlighted locations, such as
the aforementioned coffee shop, which an ISR user from any of the larger groups may
transiently visit. Users could use ISR client software installed on any of the anonymous
hardware provided by these locations to access their VMs stored on their respective
servers. Later on, Pocket ISR was developed so that even if these anonymous devices
did not have ISR pre-installed, a portable client could be carried around in a USB device
[18].

Presently, the world has not yet panned out in this manner. Instead of cheap personal
computers being widespread, computing has shifted towards increasing portability. Mo-
bile computing is clearly on the rise with the popularity of smartphones, tablets, and
ultra-portable laptops, and many individuals even own multiple such devices. As a con-
sequence of the increasing development of the Internet, many of the most commonly
used applications such as word processing and email have been moved to web applica-
tions, making them available anywhere with an network connection. It is fair to concede
that the average user, who only uses his or her computing devices for simple tasks like
browsing the web or checking email, would probably not feel motivated to go through
with the overhead of installing and using ISR.

1.2 Motivation
Despite these developments, a niche still exists for ISR. There are many resource-
intensive applications which require the resources of a full-size machine, such as vari-
ous image and video manipulation tools or 3D modeling programs. With ISR, these and
many other applications can be made available in a portable environment.

Also, most, if not all, of the web services rising in popularity today such as Gmail
[6] and Dropbox [5] are owned by private corporations. Because it is not practical for
most individual users to set up their own email services or personal clouds, people are
forced to trust large companies with their sensitive data in order to use their products.
The extent to which these entities can and should be trusted is a discussion outside of
the scope of this work. Regardless of the answer, an individual can use ISR to set up a
personal server on a small amount of hardware, and still maintain full control of their
personal data. This is an advantage which may decrease or increase in importance in
the future as many truths about the actual security of our data in the hands of these big
companies are revealed.

2

Because ISR is based on virtualization, it also provides all of the now widely ap-
preciated benefits of using VMs. Users can run operating systems and applications that
would not natively run on their host machine. Checkpoints for backing up data can be
easily created via image snapshots. VMs can be shuffled between host machines in order
to balance load. These and many other advantages exist.

The primary use of ISR in the current computing ecosystem is authoring. A user who
needs to access a specific version of an application on a specific operating system can
do so without possessing the extra hardware or time to make a physical installation. For
example, a user with only an Ubuntu machine can potentially use ISR to run Photoshop
on a Windows 7 VM after installing only the ISR client. A user who owns a tablet with
limited processing power can access heavy applications for any OS using a thin-client.

By focusing on a minimal feature set and optimizations which reduce the amount
of time that the user spends waiting for ISR to complete operations, ISR provides these
benefits to users while being as close to the experience of using a physical machine as
possible.

1.3 The Thesis
The goal of this research is to redesign and implement a new iteration of the original ISR
concept. Instead of working from the previous code and working around prior decisions
and various technical debt, the thesis builds upon a more recent code base, allowing it to
prioritize features that were previously unimplemented but later recognized as essential.
The thesis statement is thus:

ISR can be modernized and made more usable by redesigning and re-
building it. By learning from the lessons of past iterations of the soft-
ware, the architecture and codebase can be built with user-focused
priorities in mind while taking advantage of off-the-shelf technologies,
instead of modifying existing code to accommodate new features.

1.3.1 Scope of Thesis
This thesis describes a complete overhaul of the existing ISR project. It is not intended
to be a one-to-one port of the existing implementation, but a complete redesign of the
original idea to best fit the current computing status quo. The thesis makes the following
assumptions about ISR and future deployments.

3

• The servers running ISR are trusted, in terms of hardware and administrator.

• Minimizing storage cost on both the clients and the servers is not a priority, as
storage is assumed to be relatively abundant and cheap to increase.

• Network bandwidth and speeds are a priority, in that it is important to reduce
download and upload sizes. Upload bandwidth is assumed to be a more scarce
resource than download bandwidth, as the two values are usually not symmetric
in commercial environments.

1.3.2 Approach
The biggest priority when considering the new ISR system was the quality of the user
experience. Due to the large amount of experience that people involved with the original
project have accumulated over the years, there was plentiful feedback that was consid-
ered in the process. The guiding principles of the thesis can be enumerated as follows.

• Minimize the amount of time that the user spends waiting for anything, from the
boot time of a VM to the final checkin of their VM back to the server.

• Minimize the amount of time the user spends looking for anything, whether it is
information about their VMs or the operations available to them.

• Do fewer things better. Support a minimal set of features, but make sure they are
correctly implemented and more importantly are easily extensible.

1.3.3 Validation of Thesis
The thesis is based upon a well-established body of code whose objectives are well-
defined. The new system designed in this thesis can therefore be compared to the previ-
ous iteration in terms of simplicity and feature set. Empirical measurements are used to
quantify the effect of optimizations.

1.4 Document Roadmap
The rest of this document consists of six different chapters. Chapter 2 describes the pro-
cess taken in considering which aspects of ISR are the most important to carry forward
and which flaws and mistakes should be avoided or rectified in a new implementation.

4

Chapter 3 details the more recent codebase that OpenISR 2.0 is built from and the techni-
cal additions that were made to support the features from chapter 2. Chapter 4 evaluates
the new features that were outlined in chapter 3. Chapter 5 is a discussion of features that
were seriously considered and reasoned about in the process of designing OpenISR 2.0,
but were never implemented. Chapter 6 goes over related work and some of the more
recent developments in VMs, cloud, and web applications which maybe serve a similar
purpose to some aspect of ISR. Finally, the concluding chapter describes contributions
and future work of this thesis.

5

2 Redesigning ISR
Very early on in the design process, it was decided that OpenISR 2.0 should be built
by extending a more recent codebase rather than the previous implementation of ISR,
OpenISR [10]. Therefore, instead of cleaning up or optimizing existing, completely
functional features, the process began by choosing which features to reimplement or
implement completely differently. Again, the principles that were emphasized were
making OpenISR 2.0 more modern, usable, user-focused, and understandable in terms
of the protocols and file formats used.

2.1 Modern
OpenISR 2.0 is made more modern by taking advantage of recently popularized pro-
gramming languages and frameworks to replace some of the older proprietary code in
the original implementation. One of the major benefits of using existing tools instead
of building custom ones is that there is an abundance of resources already available on-
line. This makes the initial implementation of OpenISR 2.0 much faster to develop, and
hopefully also lowers the barrier of entry for future collaborators.

2.1.1 Django
Django [4] is an open source web application platform which is used very widely on both
small and large scale web applications. A simple web search can provide a list of many
very popular companies which use it to build their sites. However, one of the reasons
for its popularity among individual developers is that it is relatively simple to bootstrap
and provides lots of tools for testing, most notably a lightweight development server.
This allows the developer to test code without having a dedicated web server. Django
web applications are written entirely in Python, and it conveniently integrates commonly
used functionality such as security, databases models, and authentication into modules.

The Olive Archive [9], to be revisited later, uses Django as its server for both manag-
ing user information and serving VMs, so it was decided that Django would be sufficient
for building a server for OpenISR 2.0 as well. It is expected, although not proven, that
the Django-based server would not have issues with scalability for a reasonably-sized
user base.

6

2.2 Usable
Usability of a system can be measured in different ways. For ISR, the goal was to sim-
plify the user experience in terms of issuing commands and gathering information VMs.

All prior iterations of ISR have a command-line interface. The UI proved to be
lacking in clearly conveying all of the commands and options actually available to users.
For OpenISR 2.0, we designed a client GUI (see Figure 2). We conveniently place all
the most commonly used actions on a toolbar and relegate less frequently-used actions
to the menu bar. Users should be able to glean all essential information about the state
of a VM, such as its current version number or whether it has local changes, without
navigating to find it.

Figure 2: OpenISR 2.0 GUI

7

Figure 3: Window for VM Creation

2.3 User-Focused
One difference in how Django is utilized by the two projects is that Olive actually has a
user-facing web UI at www.olivearchive.org. This website provides information about
the project as well as displays information about the available VMs. Users also have the
ability to launch VMs directly from a its webpage and then run the client to view and
interact with the VM locally. The one major caveat about this design decision is that
the user must be able to access to the Olive Archive website to be able to run any VMs.
This is an acceptable expectation for Olive because all of the VM images are fetched
on-demand from the server in order to execute them anyway, so a user who could not
access the website would not have been able to access any VMs regardless.

However, a user of ISR can be reasonably be expected to want to use their VMs

8

Figure 4: Window for VM Execution

without an Internet connection. For example, he or she might want to work a VM during
a long flight, and then have the ability to save modifications to the server once landing.
In order for users to be able to continue using their VMs in a disconnected environment,
it is important that a web based-UI is not the sole method of accessing VMs, although
one could most certainly be added later through Django.

9

2.4 Off-The-Shelf
When designing OpenISR 2.0, it was important to make as many of the components as
easily debuggable and understandable as possible. One way to accomplish this goal is
to take advantage of well-known protocols and file formats instead of creating custom
ones.

2.4.1 HTTP
In the original ISR, the server is written in Perl. It requires specific configuration and in-
stallation and uses a custom protocol which allows it to communicate only with the ISR
client. The Olive Archive server with which VMNetX communicates is a generic HTTP
server built using the Django framework for Python. VMs are fetched on demand via
regular HTTP requests which contain range headers that specify offsets in the memory
and disk images that the client requires. Debugging the interactions between the client
and the server is also more straightforward because of this design decision, as tools like
WireShark [16] were able to be used to monitor traffic and identify anomalies.

2.4.2 JSON
JSON or Javascript Object Notation is a human-readable data format commonly used
in web applications to exchange data. Its appearance is very similar to nested dicts in
Python and essentially consists of a series of nested parentheses.

OpenISR 2.0 uses JSON for all non-chunk transfers of information between the
client and the server. For example, information about a particular user’s VM might
be transferred in the following JSON object.

10

{
"32b832b3-3a43-4fb4-ae4e-d8a2e6721885": {

"Base vm": "ubuntu server",
"Cache version": 1,
"Date created": "07-20-2015 14:02:58 UTC",
"Disk size": 1566900224,
"Key": "",
"Local changes": false,
"Lock owner": "98103fc6-3b7a-4c16-9b29-bad54b794a75",
"Memory size": 1090961408,
"Name": "1",
"Status": 4,
"Version": 1,
"uuid": "32b832b3-3a43-4fb4-ae4e-d8a2e6721885"

}
}

2.4.3 XML
XML or Extensible Markup Language is another commonly used language for web-
related applications. OpenISR 2.0 uses XML for all configuration files, namely the lib-
virt configuration files and the VMNetFS configuration files. VMNetFS is a component
of VMNetX, a core part of the implementation, which interacts with the VM’s file sys-
tem. The following is an example of a VMNetFS configuration file.

<?xml version=’1.0’ encoding=’UTF-8’?>
<config xmlns="http://olivearchive.org/xmlns/vmnetx/vmnetfs">




</config>

In addition to being human readable, XML allows the code to define the specifica-
tions of these files to check for correctness. The high-level component of VMNetX,
which is written in Python, generates a XML configuration file for VMNetFS, which is
written in C. VMNetFS uses a C XML parser library to read and interpret the configu-
ration settings during initialization.

12

3 Extending VMNetX

3.1 The Olive Archive
The Olive Archive [9] is a more recent project from Professor Satyanarayanan’s group
which focuses on archiving executable content in VMs. The driving idea is that old
hardware can not be preserved indefinitely due to physical degradation caused by time.
Old software which can run only on specific hardware which has since been discontinued
is therefore at risk of disappearing along with the hardware. The Olive Archive is an
effort to make sure this is not the case, by preserving software and operating systems
inside VMs. As an extra step, these VMs are made accessible and easily executable to
users through the Olive website, using software called VMNetX.

Figure 5: The Olive Archive

13

3.1.1 VMNetX
VMNetX [14] is a codebase partially derived from OpenISR’s parcelkeeper module. It
supports the execution of VMs being fetched on-demand like ISR, but with a number
of significant differences. First, all of the VM metadata and chunks are fetched from an
ordinary HTTP server written using the Django instead of a proprietary server with a
custom protocol. It also differs in that the VMs that the users interact with are read-only,
so any and all changes that someone makes to a VM are discarded at the end of execu-
tion. This decision makes sense in the context of the use case of Olive; users of a very
old VM, such as the TurboTax 1997 VM displayed in Figure 2, are not likely to want
to save their progress with the VM because the program does not have many practical
uses in 2015. However, if we want to adapt VMNetX to be a part of ISR, the lack of the
ability to save user changes is a huge shortfall because saving user state is a key feature.

As previously mentioned, VMNetX has a simpler design because its VMs are read-
only. For each VM, the server stores a whole disk and memory image and delivers the
arbitrary byte ranges that clients requests by reading from the images at the correct off-
sets. The client creates sparse disk and memory images and populates these by making
server requests as different byte ranges are accessed during execution.

In order to efficiently create and save small incremental changes to the disk and
memory images so that ISR can support features like versioning, ISR must split up in-
dividual image files into smaller ordered chunks. VMNetX was therefore modified to
request chunks from the server by calculating the corresponding chunk numbers of the
desired byte range. It was also changed to write out its modifications to the images
downloaded from the server into individual chunks which are saved on disk, so that they
persist across VM runs, whereas the original VMNetX would discard these changes.

OpenISR 2.0 stores its disk and memory images in chunks of 128 KB, a size which
performed well for the previous iterations of ISR. If the chunk size is too large, band-
width will be wasted since whole chunks are requested for even small ranges of bytes
requested. On the other hand, if the chunk size is too small, the amount of IO between
the client and the server from making more individual chunk requests can slow the sys-
tem down. Determining the optimal chunk size is outside the scope of this project, but
can be evaluated in the future, as the code is written to be agnostic to the chunk size,
which is simply set in a configuration file.

Obviously, since ISR needs to store user modifications on the server, VMNetX had
to be given the ability to upload the modified chunks to the server. Because of the deci-
sion to use a HTTP server, OpenISR 2.0 is able to use the same approach that VMNetX

14

uses to fetch chunks from the server, namely using curl [3] to make HTTP GET requests.
Additional routines which iterate through the modified cache and similarly make HTTP
PUT requests to the server containing individual chunks were added.

3.2 Server
As previously mentioned, one of the goals of OpenISR 2.0 is to take advantage of as
many generic protocols as possible so that it is more easily understood and debugged.
Using Django to implement the server is in accordance with this objective.

Figure 6: OpenISR 2.0 System Diagram

Figure 6 is a diagram of the client and server breakdown of the system. The major
client components are all adopted from the original VMNetX code, with the exception
of the GUI. VMNetFS is modified in order to support uploading chunks to the server.

3.2.1 VM Storage
VMs are stored locally on the server, for ease of access and simplicity. Like the Olive
Archive server, a VM consists of a disk image, a memory image, and a domain XML file,

15

which is required by QEMU to resume the VM. As previously mentioned, a change in
OpenISR 2.0 from Olive is that the image files are stored as numbered chunks rather than
single complete files. Each directory of chunks is divided into subdirectories of 4096
chunks to prevent individual directories from holding potentially millions of chunk files
and becoming difficult to navigate.

ISR also makes a distinction between a “base VM” and a regular VM that a user
owns. These base VMs represent an unmodified standard from which users can make
their personal changes. Many users can have personalized VMs all stemming from a
single base VM. As an example, a base VM might consist of a vanilla Windows [8] or
Ubuntu [12] installation with no other modifications or a suite of software. Different
users would make unique modifications to these base VMs. The server can also achieve
significant storage savings with this approach, since the first version of every VM can
point to the corresponding base VM.

16

The base directory of VMs and base VMs on the server is structured as follows:
root

vm
user1

<vm-uuid>
stage

disk
memory

1
disk

0
4096
...

memory
2
...

<vm-uuid>
user2
...

basevm
<basevm-uuid>

disk
0
4096
...

memory
domain.xml

<basevm-uuid>
...

The stage directory contains chunks that have been staged on the server but not
yet committed into a new version. These are chunks that have been uploaded during
background upload or during checkin.

Disk and memory chunks are split into directories of 4096 chunks simply for orga-
nizational purposes.

17

3.2.2 VM Access
VMNetXs primary mode of operation on the client side involves requesting individ-
ual chunks using HTTP GET requests. Each chunk has a unique URL defined using
Django’s URL dispatcher. Domain XML files also have unique URLs. One advantage
of using a web server is that these objects can be fetched using a browser or any HTTP
client and not just the ISR client for debugging or testing purposes.

VMs are not only fetched but also uploaded to the server on an individual chunk
basis. As an unfortunate side effect, even if the client knows it want to download or
upload a byte range spanning ten chunks in advance, it must request each of these ten
chunks individually. Future work in OpenISR 2.0 would take advantage of commonly
used techniques such as batching or streaming to avoid unnecessary I/O.

3.2.3 User Information Management
Django provides database integration and user models to allow the server to easily track
user accounts and permissions. Individual users, VMs, and VM version objects are all
stored in their respective models which allow the server to easily manage and retrieve
this information without having to directly query the database, which ISR previously
had to do.

3.3 Versioning
Versioning refers to the ability to save checkpoints or “versions” of the VM that the user
can resume from at any time. A checkin operation to the server creates a new version.
Naively copying the disk image and saving the entire memory image required to make
a checkpoint is not difficult using existing functionality in QEMU, which can write out
the a memory snapshot to a file once a VM is suspended. However, the challenge comes
from creating these checkpoints quickly and efficiently with regards to storage. A mod-
ern VM can easily have a disk image tens of gigabytes in size and a memory image also
within that range. Storing whole disk and memory images for each version on the server
would scale very poorly, and uploading this quantity of data from the client to the server
would take a huge amount of time and bandwidth.

Versioning has been identified as a core feature of ISR which gives it a distinct ad-
vantage over physical machines. In any machine running a modern operating system,
only a single logical version of the machine can be running at one time. Consider a sce-

18

nario where a user has put many hours of work into a project only to discover that one
of the files was corrupted a few days ago. The user has luckily had the foresight create
a backup of the system a week ago. At this point, the user can restore the system from
the backup, but doing so will erase any work done since that point. With ISR, the user
can easily launch two VMs, one executing at the current state and another at the point
of restoration, and easily make visual comparisons of the changes made between the
two points in time and preserve whatever modifications are most important. It should
be noted that versions within ISR are currently only created when the user manually
issues a checkin command. Therefore, any modifications that a user makes since their
last checkin is not backed up on the server.

3.3.1 Implementation Details
Each of a user’s VMs is derived from a base VM. A user requests a VM to be created
from a base VM through the UI as shown in Figure 4 above. When this request reaches
the server, the server sets up the VM directory for the user. The first version of the VM
is version 1, which is identical to the chunks and domain XML file from the base VM.
Any future checkins create higher version numbers.

An important point to note is how the first version is created. Since the first version
is again identical to the base VM, it would be a waste of storage to copy over each of the
individual chunk files every time a user wanted a new VM. Therefore, the server links
the base VM files to the version 1 files. This is done on the server by the following code
snippet:

version_dir = os.path.join(vm_dir, str(vm.current_version)
src = os.path.join(settings.STORAGE_DIR, ’basevm/%s’ \

% basevm.uuid)
os.symlink(src, version_dir)

The last line creates a symlink from the base VM directory to the directory of the
first version of the VM. Because symbolic links point to file names, rather than the file
data itself, they are not reference counted. Therefore, even in the unlikely case where
a base VM is pointed to by an extremely large number of VMs, there will not be any
issues with reaching the maximum number of hard links possible.

Versions after the first consist of directories containing only the chunks that have
been modified since the last version. Through this design, the chunks follow a ”copy on
write” behavior, in that any chunk is only written again when it is modified.

19

Consider an example where the client requests some chunk n. Chunk n is not guar-
anteed to be present in every version, only those in which it was modified. The chunk
is retrieved by the server by iterating through the version directories in decreasing order
and returning the first chunk file found.This is guaranteed to be the latest modified copy
of the chunk, because the search starts from the latest version and works backwards, and
chunk n is guaranteed to exist for at least one version because the first version is again
identical to the base VM, which contains all of the chunks. In other words, if a chunk is
never modified, it will be retrieved from the first version (base VM).

Currently, ISR does not have the ability to delete an intermediate version. This would
require lots of book-keeping to determine which chunks from which versions must be
kept such that the future versions are not corrupted. This is a limitation that could be
addressed in the future.

3.4 Server URLs
The following is a breakdown of all of the information available to the ISR client (or
any HTTP client) through basic HTTP requests. In order to make sure private infor-
mation of VMs is not mishandled, each request must contain the secret key of the user
whose information is being request. If the secret key is missing, the request is rejected
immediately by returning a 404 response code.

<server-url>/vm/info
Returns a JSON object containing a list of information about all of the user’s VMs.

<server-url>/vm/base info
Returns information about all of the base VMs available on the server. This infor-
mation is required by the client when the user wants to create a new VM.

<server-url>/vm/checkout/<uuid>
Check out the VM corresponding to the passed UUID.

<server-url>/vm/create
Create a new VM for the user from an argument base VM uuid passed in the body
of the request.

<server-url>/vm/<uuid>/update
Update some metadata about the given VM.

20

<server-url>/vm/<uuid>/<version-num1>/<version-num2>
Return a JSON object containing a list of the chunks modified between version 1
and 2 for rolling back.

<server-url>/vm/<uuid>/<version>
Checkout the VM and acquire the lock, or checkin the VM and set up the directo-
ries for the next version.

<server-url>/vm/<uuid>/<version>/<image>/size
Return or update the size of the disk or memory image.

<server-url>/vm/<uuid>/<version>/<image>/chunk/<chunk-num>
Return or upload a chunk for the disk or memory image.

<server-url>/vm/version/<uuid>
Return information about the version history for a given VM.

<server-url>/vm/commit/<uuid>
Commit the changes on the server to the VM (from the staging area).

<server-url>/vm/comment/<uuid>
Modify the comment for the next version to be committed.

<server-url>/vm/discard/<uuid>
Remove the chunks in the staging area.

All manipulations to the VM on the server can be done through a simple HTTP
request, as shown above.

3.5 Locking
Locking is a mechanism which prevents race conditions when ISR is used on multiple
machines by a single user. In the current implementation, only a single machine can own
the lock to a VM at one time. The lock itself is implemented at a randomly generated
UUID that the ISR client generates the first time it is executed on a machine.

Only the owner of the lock can resume the VM and subsequently checkin any modi-
fications to the server. This prevents situations where, for example, two client machines
have different modifications since the most recent version, and both machines try to
checkin at the same time. The user also has the option to forcibly release the lock owned
by a machine if the machine cannot be accessed to release the lock on it, for example, if
it is stolen or destroyed in flood. At this point, any local changes on the previous owner

21

machine must be discarded, but this ensures the user is aware that his or her actions have
this consequence.

The lock is acquired when a VM is checked out given that it’s available, and released
when the VM is checked in. The state of the lock is stored as a field in the Django model
for a VM and therefore persists across server crashes, as long as the database is intact.

3.6 Cache Validation
Cache validation is another feature which prevents race conditions and data corruption
when going between different machines and/or versions of a VM. For example, the user
may have a version of a certain VM on one machine which is older than the most recent
version of the same VM on a different machine. When this happens, the system must
ensure the state of the pristine cache on both machines is identical in order to prevent
invalid disk and memory chunks from being read.

To address this issue, the client device must validate its disk and memory image
cache before executing a VM. The client machine tracks which version n of the VM
its caches correspond to at all times. When a user requests that a VM be resumed to
version m, the client requests that the server send it a list of all the chunks that were
modified between version n and m. The client can then discard of these chunks from its
pristine caches such that they are re-downloaded from the server to make sure they are
up to date. This approach ensures only the chunks that could have potentially changed
between the versions are re-checked and the rest are preserved, minimizing startup time
and communication with the server.

3.7 Dirty State Trickle Back (Background Upload)
As previously mentioned, the focus when considering which features and optimizations
to implement is always improving the user experience. At the highest level, this involves
reducing the amount of time that the user is waiting for anything, unable to do any ac-
tual work until ISR completes an operation. In the previous iteration of ISR, the step
which took the longest amount of time by far was checkin. When VM images can be on
the order of gigabytes, uploading these to the server can potentially take hours, during
which the user is unable to interrupt ISR or the Internet connection.

In order to remedy this flaw, OpenISR 2.0 implements the background uploading
of the modified state of the VM while it is resumed by the user. Without this feature in

22

place, all of the traffic between the initial resume and checkin operation was downstream
from the server, in the form of chunks being fetched on-demand during execution. By
beginning the upload of modified chunks as soon as the VM is resumed, ISR frontloads
the heavy checkin operation. In the optimal case, ISR can potentially upload all of the
dirty state to the server by the time the user suspends the VM, and the checkin operation
can be finished almost immediately.

Figure 7: Effect of Background Upload on Resume and Checkin

It was known that this feature would require the heaviest modifications to ISR in or-
der to support, because unmodified QEMU does not expose the memory image, which
ISR must read in order to determine which parts of it were dirtied. Therefore, without
making some modifications to QEMU itself, it would be impossible to determine which
modified bytes to upload in advance to the server.

23

3.7.1 Live Migration
QEMU supports an operation called “live migration”, which was leveraged in order to
expose intermittent memory snapshots to ISR. Live migration is used in order to migrate
a VM between two different host machines without having to suspend the VM on the
source machine before initializing the transfer. The user therefore experiences very brief
or no interruptions to his or her running VM. The steps that live migration takes when
migrating a VM running on machine A to machine B can be outlined as follows:

1. Initiate live migration on machine A

2. Take snapshot of current memory image on A and transfer the snapshot to B while
the VM is still running on A by using copy on-write

3. Determine which chunks which have been modified on A since the last snapshot
and the time that the transfer finished (called an “iteration”)

4. Repeat step 3 until the amount of modifications is small

5. Suspend execution on A

6. Transfer final memory modifications and transfer control to B

With access to the raw migration data being sent from machine A to machine B, the
client could reconstruct a memory snapshot from the data, all without interrupting the
user’s VM. There would obviously be a performance penalty, but it was decided that the
benefits of reducing checkin time outweighed any such tradeoff.

Figure 8: QEMU Live Migration Data Format

It should be noted that the memory snapshot produced by live migration in this man-
ner is always the full size of the memory image as defined in the libvirt XML, because
it is the raw memory image. There is no compression or deduplication done.

24

3.7.2 Modifying QEMU
Elijah-QEMU is a custom QEMU implementation created by another member of Pro-
fessor Satya’s group, Yoshihisa Abe, for a different project. It allows live migration to be
manually iterated (step 4 above), and can write the live migration data to a named pipe,
instead of transferring to another host machine. When the save operation for QEMU is
initiated, instead of suspending the VM and writing its memory snapshot to a given file
path, save now initiates a memory dump of the live migration format to a given file path,
which it treats as a named pipe. ISR can read the raw migration format from the pipe
and assemble a memory-snapshot from which QEMU can resume.

Elijah-QEMU makes a modification to the execution path of a restore operation,
which requires a memory snapshot and resumes the VM to the state at which it was sus-
pended. In the original QEMU, when resuming, the entire memory snapshot is copied
into a newly malloc’ed region of memory before the VM is resumed. All future reads
and writes into memory are done into this memory.

The original use of Elijah-QEMU required being able to capture incremental mem-
ory reads from the original memory snapshot, which is not possible if the entire memory
image is initially read in. Therefore, Elijah-QEMU replaces the malloc and copy of the
image with a mmap.

When ISR was first executed with this modified QEMU, this subtlety was not known.
It was noticed though that as an unexpected side effect, ISR VMs would begin execut-
ing almost immediately from a cold resume, because the memory image was now being
demand-fetched in addition to the disk image. Without the mmap change, the entire
memory image is fetched from the server at resume if not present.

Unfortunately, due to an issue with version 3.20 of the Linux kernel running on the
machine that was used to develop OpenISR 2.0, this mmap-malloc change had to be re-
verted. Since ISR is directly manipulating the memory image, when VMNetX attempted
to open the memory image file to read and write pristine and modified chunks to it, a
kernel panic occured because mmap was also holding an open file pointer to the memory
image. This issue disappeared when the memory image was read to a malloc’ed region
instead of the mmap.

The modified QEMU receives commands to begin, iterate, and terminate live migra-
tion via QMP, the QEMU message passing protocol. QMP is enabled in the configu-
ration file passed to libvirt, after which JSON messages can be passed to the running
QEMU process via QMP. This is used to allow ISR to control the frequency of iterations

25

of live migration.

Figure 9: Processes involved in background upload

3.8 Bandwidth Throttling
With the addition of the background uploading feature, it was important to give the user
some control over how much bandwidth ISR is allowed to consume for trickling back
state to the server while the VM is resumed. A similar option is not provided for down-
load bandwidth because the rate at which chunks are downloaded is directly related to
the user experience; because chunks are fetched on demand, delays in downloading are
manifested as stuttering or freezes. On the other hand, the benefits of uploading dirty
state in the background are not tangible to the user until checking in, at which time the
amount of state that must be uploaded to the server is hopefully reduced.

3.8.1 Throttle Control
Two different ways of presenting the option to throttle uploading to users were consid-
ered. The first approach is to allow users to define an absolute amount of bandwidth e.g.
500 kbps that ISR is allocated for background upload. This approach has the benefits of
being very easy to implement. Chunks are uploaded using the curl library, which con-
veniently has a bandwidth limiting option for individual requests. This option accepts
an absolute value. Therefore, ISR would simply have to pass this value in the config-
uration XML for VMNetFS, and set it as the max bandwidth for individual curl requests.

26

The second approach is allowing the user to define a relative amount of bandwidth
to use. The user would choose a value between 0.0 and 1.0, and ISR would use that
fraction of the available bandwidth at any time for background uploading. This is trick-
ier to implement, but can ensure that the VM always has some available bandwidth and
is insensitive to changes in available bandwidth while the VM is running. This option
is preferable to the former because of its robustness to varying network conditions, and
was the one implemented.

3.8.2 Throttling via curl: an anecdote
Through the course of determining the best way of implementing throttling, a bug in the
curl codebase was discovered. The bug was stumbled upon while trying to determine
how curl handled the rate limiting option. Because the absolute bandwidth rate was
passed a value in bytes per second, it was unclear whether this was an average value
over a second or a larger interval or if curl was actually throttling individual packets.
The distinction is illustrated below:

P P P
P P P
P P P VS P P P P P P P P
-|-----|-----|-- -|-----|-----|---
1 2 3 1 2 3

In the example on the left, three packets are sent at the start of every second, result-
ing in bursty traffic, but still averaging out to 3 packets per second. In the example on
the right, one packet is sent every third of a second, and the average is still 3 packets per
second. Ideally, curl would demonstrate the behavior on the right, because the smoother
use of bandwidth would be less likely to interrupt any guest use of the bandwidth.

To figure this out, WireShark was used to intercept packets being sent via curl to see
the timing between the packets. When this was done, it was clear that the packets were
actually following the behavior on the left, being sent in quick succession at the top of
every second.

Upon close examination of the source code, it was determined that this was actually
a bug and not the intended behavior. In the code which calculates how long to sleep
before the next packet is sent actually had an additional factor of 8 multiplied into it,
apparently a bit to byte conversion which should not be there since all of the values were
in bytes. Upon its removal, the packets were sent in an evenly distributed fashion.

27

Discovering and fixing this bug was an unexpected hurdle, but a valuable lesson. It
shows that no codebases are exempt from bugs, even those that are well-established and
widely-used. A patch was submitted and accepted very promptly [3].

3.8.3 Dynamic Throttle Control
Users are given an additional level of control over throttling while the VM is resumed.
The idea is that users should be able to take advantage of their knowledge of how much
bandwidth available at any time. With control over the throttle rate not just at resume
time, they can temporarily disable trickle back if they know their VM needs more band-
width, or allow it to use all of the available bandwidth if the opposite is true. This control
is manifested as a simple slider between 0.0 and 1.0 on the VM GUI window.

28

4 Evaluation
In the evaluation section, the various methods of validation mentioned in the introduc-
tion are quantified. When building a new system as opposed to adding a feature or an
optimization, it is more difficult to accurately compare a single aspect of the new sys-
tem versus the old because there are many components which may or may not have an
analogous part.

4.1 Feature Set
As mentioned in the design section, because this iteration of ISR was to be built from
VMNetX, which had almost none of the core components of ISR other than the ability to
fetch and execute VMs on demand from a server, the first step was to decide which of the
features of ISR would be prioritized. This was particularly important given the limited
time that was available to essentially rebuild a system that was developed during a period
of over a decade. The following table attempts to make a side by side comparison of
some of the features in OpenISR and OpenISR 2.0. The table does not claim to be
complete, but does visualize some of the design decisions made this time around. The
features are ordered in decreasing priority for OpenISR 2.0.

Feature OpenISR OpenISR 2.0
Dirty state trickle back no yes
GUI no yes
Content Addressable Storage no no
Versioning yes yes
Multiple VMM support yes no
Disconnected operation yes no
Thin client no no

Table 1: Comparison of features in OpenISR and OpenISR 2.0

It is worth noting that content addressable storage [19] and a thin-client mode [21]
were both studied extensively with respect to performance in the original ISR. The for-
mer work concluded that CAS could provide storage savings on the server upwards of
60 percent if the chunk size were reduced to 4KB. However, CAS was never actually im-
plemented in ISR. A thin-client mode was actually introduced in VMNetX for the Olive
Archive, but never for ISR. The work to quantify the user experience for thin clients
concluded that “stateless thick clients”, like VMNetX, are better for preserving respon-
siveness. However, thin clients also open up the possibility of using ISR with handheld
devices, which is an advantage that was no previously considered given their relative

29

lack of popularity at the time.

Because all iterations of ISR support the basic resume/suspend/checkin commands,
OpenISR 2.0 supports the minimal operations that make ISR what it is, as well as a few
new features. There is unfortunately a long list of new features that were not able to be
implemented, and they are discussed in a future chapter.

4.2 Simplicity
One straightforward way to quantify how much simpler OpenISR 2.0 is than its prede-
cessor is to make a direct comparison between the number of lines of code it takes to
implement the common core features.

Component Name OpenISR Name OpenISR 2.0
Client parcelkeeper 5605 (C) VMNetX 4241 (C)
UI commandline client 4206 (Perl) PyGTK based GUI 1872 (Python)
Server lockserv 1351 (Perl) Django server 863 (Python)

Table 2: Lines of code comparison between OpenISR and OpenISR 2.0

The measurements in Table 2 were made using the tool CLOC (count lines of code)
[17]. Comments were excluded from the measurements. Some of the helper scripts were
not included in the counts for OpenISR components.

For the three core components of ISR, there is a 24 percent decrease in code for the
client, 55 percent decrease in code for the UI, and a 36 percent decrease in code for
the server. Of course, these numbers are not a precise measurement of the quality of
the code, but there has a been a noticeable decrease in the amount of code written to
implement the same core features.

4.3 Performance
The performance of ISR can be measured in two ways: the user-visible performance
and the effectiveness of its features for the system. The former refers to how the system
appears to perform to the user. The latter is about how the optimizations that were im-
plemented in this version of ISR improve aspects of the system such as bandwidth usage
or time of operations.

30

4.3.1 Trickle Back of Dirty State
The main objective of implementing background upload was to reduce the amount of
time that the user must spend waiting for checkin operation to complete. The amount
of dirty state created during VM execution can vary drastically depending on the work-
load. In the experiments below, the goal was to see if the time savings from background
upload could be noticed for a couple simple trials.

For each of these trials, a vanilla Ubuntu 12.04 Server VM was used. The VM has a
1494 MB disk image, and a 1040 MB memory image. Both the ISR client and the server
were executed on the same machine, i.e., the server was located at localhost:8000. The
machine running the experiments had 30 Mbps download bandwidth, which was used
by the guest VM in trial 2 to download the 200 MB file. A 16 Mbps upload band-
width between the client and the server was simulated by configuring the curl command
which uploads chunks to the server to limit the bandwidth used to 16 Mbps. The user-
configurable throttle rate was set to 1.0 in the GUI, meaning all 16 Mbps of the upload
bandwidth was utilized at all times for both background uploading and checkin.

Although obviously running the client and server on the same machine is not an ac-
curate representation of a real-life ISR deployment, the goal of this experiment was to
determine the amount of state that is dirtied and uploaded for a particular VM, not the
performance of the VM itself. This setup also gives more control over the simulated
network conditions because factors like other machines on the network or fluctuations
in signal strength are not a factor.

In the first trial, the VM is resumed but no other interactions with the VM are made.
It is suspended after 400 seconds, an amount of time which gave the client enough time
to upload a non-trivial portion of the dirty state. As previously mentioned, the very first
iteration of the live migration code in in the modified QEMU writes a complete memory
snapshot to the pipe, resulting in nearly 1 GB of modified data to be chunked and up-
loaded. As a consequence, even making no changes to the VM creates a large amount
of dirty state. Again, uploading these changes is not a waste of bandwidth, because
many of these chunks are identical to the final versions of the chunks that are uploaded
at checkin. Instead, they should be considered a frontloading of the uploading.

In the second trial, the VM is booted, and within seconds, a download of a 200 MB
file is started to the current directory. This process is initiated in the following manner:

wget http://ipv4.download.thinkbroadband.com/200MB.zip

The www.thinkbroadband.com server hosts fixed-sized files for users to test their

31

download bandwidth. These files are convenient for experiments such as this. The
download is allowed to finish, and then the VM is suspended and checked in. The ex-
pectation with this trial was that some dirty disk state should appear due to the download,
and hopefully get trickled back to the server as it was being downloaded.

Each row in Tables 3 and 4 corresponds to a single run of the trial.

Trial Time Resumed (s) Checkin w/ BU (s) Checkin w/o BU (s)
Idle VM 400 380 521.25

Download 200 MB file 500 390 626.5

Table 3: Effect of background upload on checkin time

The fourth column labeled “Checkin w/o BU (s)” is an approximation of the checkin
time without background upload enabled. This value was calculated simply by divid-
ing the total amount of data that was uploaded during the trial across both background
upload and final checkin by the upload bandwidth. This provides a lower bound on the
time that the final checkin would have taken, without taking into account any overhead
of the checkin process.

Trial Uploaded (MB) Checked In (MB) Reuploaded Wasted BW (MB)
disk/memory disk/memory (chunks)

Idle VM .625/391.25 0/653.625 0/35 4.375
(5/3125) chunks (0/5229) chunks

Download 200 213/389 0/655 38/17 6.875
MB file (1703/3113) chunks (0/5241) chunks

Table 4: Bandwidth use of background upload

Table 4 breaks down the bandwidth usage during the experiments. As expected, in
the first trial, very few disk chunks are modified. The small amount of modifications can
be attributed to some of the background processes of the operating system that run when
the VM is started up. ISR itself does not provide any additional insight into modified
chunks, as they are treated as raw pieces of data. In the second trial, about 200 MB of
disk chunks are modified and written to the server as expected. Also, note that all of the
disk modifications are uploaded in the background by the time checkin is called. This
is because the disk and memory chunks are uploaded in parallel, so they should share
an equal amount of bandwidth when dirty chunks are available for both. More memory
chunks were uploaded in the background than disk chunks because dirty memory state

32

was still being uploaded before and after the file download.

In terms of wasted bandwidth for these trials, the amount is less than one percent of
the total data that was uploaded. There are two important notes about this value. First,
with background upload disabled, this value is always zero, since only the final version
of every chunk is uploaded at checkin time. Second, this value will vary drastically
depending on the workload. As an example of a worst-case workload that would maxi-
mize the amount of redundant data uploaded, consider one where a large file on disk is
repeatedly rewritten with new data. If the background upload code is not aware of the
chunks it is uploading, it could potentially upload every one of the rewrites to the server,
instead of the final version of the file. Making the background upload code aware of
which chunks are commonly rewritten is a possible future optimization.

4.4 Evaluation Summary
This chapter set out to determine how well OpenISR 2.0 expanded upon the core func-
tionality of ISR while decreasing the complexity of the code. The addition of two com-
pletely new features is a clear sign of progression from the previous iteration, and the
implementation of the same core features in fewer lines of code shows that there were
quantifiable simplifications to the structure of the system.

In the experiments to measure the savings provided by background upload, it was
made clear that trickling dirty state back to the server while resumed can provide tan-
gible reductions to checkin time at minor wasted bandwidth overhead. More complex
workloads would be helpful in determining what savings can be attained in practice.

33

5 Further Feature Discussion
There are a number of features that were forgone due to time constraints. However,
a lot of time was spent reasoning about these features with respect to both the users
perspective and the server administrators perspective. The following sections provide a
discussion, rather than necessarily a decision, with regards to a number of improvements
to OpenISR 2.0 that were at one point seriously considered and could be revisited in
the future of the project. Possible approaches to implementing the features are also
considered.

5.1 Thin-Client mode
In the original ISR and in OpenISR 2.0, although the VMs are stored on a server, they
must be executed on the client machine. This adds limitations to the system because it
requires that the client machine be able to run QEMU and VNC or SPICE, as well as
have sufficient processing power to execute a VM. This more or less limits the pool of
client devices to laptops and PCs.

A solution to being bound to particular hardware is to offload both the storage and
execution of VMs and allow the client to optionally connect to the VM remotely using
a VNC or SPICE viewer. This means that users would only need a device with the ap-
propriate viewer software installed to fully interact with their VMs. Not only does this
reduce most of the burden of execution on laptops and PCs, but it opens up the possibil-
ity of using ISR with mobile devices like tablet PCs.

Tablets are growing increasingly popular, but today, they can’t yet replicate the full
application suite of a full-size PC. With thin-client support built into ISR, the system
will allow users to combine the convenient form factor of their mobile devices with the
functionality and utility provided by VMs in ISR. The Olive Archive recently imple-
mented this feature for its VMs, and it may be possible to integrate their client with a
custom ISR GUI for thin clients.

5.2 Disconnected Operation
Hoarding is a term used in the original ISR to refer to downloading the entire memory
and disk image to the client to allow the VM to be run without being connected to the
server. This functionality is useful when the user expects to be without a fast Internet
connection for a while, for example during a flight.

34

Figure 10: Thin Client Mode

OpenISR 2.0 must handle all of the problems that its predecessors had to handle in
order to implement disconnected operation. Currently, all of the information about a
user’s VMs is being fetched on demand from the server. The metadata for all of the
VMs must be cached on the client in order to be made available even without a con-
nection, which is not hard to accomplish by simply writing it to a file in JSON format.
Assuming a VM is fully hoarded or pre-fetched onto the client, the user can resume and
modify the VM. Obviously, background uploading will be disabled for this duration.
Finally, once the user becomes connected once again, the system must be able to syn-
chronize the modified state with the server and other machines that were accessing the
VM. For example, ISR must handle the case where two machines make modifications to
the same VM for some user. Only one of the modifications can become the new version
at checkin, but perhaps the user wants to keep their changes on the other machine and
check them in as an entirely new VM. The extent to which these scenarios should be
accommodated is not yet clear.

5.3 Micro-Checkpoints
One of the primary advantages of OpenISR over a traditional machine is the ability to
resume a VM from any checkpoint created without losing the current state. The pro-
cess of creating a system restore point on a physical device in and of itself is time and
resource consuming, and can easily require hundreds of gigabytes of storage space to
accommodate a single restore point. From personal experience, this results in the aver-
age users relying on one or two backups of their machines at arbitrary, unreliable points
in time.

35

With the current implementation of OpenISR 2.0, users have fully functional check-
points with each checkin they perform. However, the period of time between two se-
quential checkins can often times be of too coarse a granularity to undo the mistakes
that a user might make while resumed. For example, consider the scenario where a user
has been working on a document for 3 hours, but has not checked in their VM for a
day. If the user accidentally corrupts or deletes their file, they won’t be able to recover
it because it was never checked in to the server. To mitigate the damage done in such a
scenario, micro-checkpoints are introduced.

Micro-checkpoints are full checkin points created intermittently in the background
while the user is using a resumed VM, similar to auto-save features in many applica-
tions. This is nontrivial because a check-in requires a synchronized snapshot of both
the memory and disk images, now with the added requirement that creating it does not
interrupt the user’s experience.

From the code which parses the output of the live migration in the background, it
should be possible to create consistent snapshots of the memory image each time the
live migration is iterated. In order to have a snapshot of the disk at those same points in
time, ISR requires a copy of each modified disk chunk at those points. One naive solu-
tion would be copy the entire modified disk directory to another location every time live
migration is iterated. Although this would increasingly take up large amounts of disk
space on the client, each copy of the modified disk chunks should allow a consistent disk
image to be created by combining the pristine cache and the modified chunks.

If micro-checkpoints can be implemented, they would reduce the user’s dependence
on his or her own diligent checking in, and improve the robustness of ISR.

5.4 Encryption
Encryption, more specifically encryption of the image chunks, must eventually be added
to the implementation of OpenISR 2.0, especially if it is to become available as a service
to users who do not also operate their own servers.

How it affects server administrators: Server administrators would be trusted with
less of their user’s data. It should not really affect how they use the system however.
Server administrators will store the key that the user uses to decrypt its data from stor-
age, encrypted with a key that only the user knows.

How it affects users: The system should have security in place to be taken seriously

36

by users. More users would be likely to use the system, especially if there are trusted
server providers available.

However, now users will have to keep track of 3 pieces of information:

1. Username for the ISR server

2. Password for the ISR server

3. Data password (used to decrypt chunks from the server)

The first two can be treated by the ISR server as they would be by any other web
service. For example, a user who forgets his or her password can ask the server to reset
it by sending a link to their personal email. However, the data password is the responsi-
bility of solely the user, because allowing the server administrator to read it would defeat
its entire purpose. If it is lost, any of the chunks encrypted using this password will be
inaccessible. This is a very big burden on the user. There are of course strategies that
can users recover their data password such as user-specific hints on the server, or recon-
structing the password from pieces, but these do not guarantee it will be recoverable.

How it affects the implementation: The biggest modification to the existing sys-
tem will be the actual encryption and decryption of chunks by the client before reading
them into disk and memory images, since user account management is already being
done using Django’s user model. Again, the encrypted data password for each user must
be stored on the server, but this is not difficult to do by adding an extra field to the user
model. There will be a performance overhead from the encryption and decryption oper-
ations, but it is difficult to quantify it at this point in time.

5.5 Cloud Storage
The current ISR system relies on local storage on the server machine. Django writes
and reads chunks from an administrator-specified directory. This approach is easy to
implement and easy to test just by looking at the local directories and making sure files
exist. However, this design does not scale and does not support a service that serious
server administrators would desire in a system which can require a lot of storage as it
grows. Also, the storage and the server are both on the same machine, creating a single
point of compromise. For these reasons, OpenISR 2.0 should support cloud storage.

37

The system should still support local storage however. This will add to the imple-
mentation complexity of the system but implementing complex features like CAS first
and testing them locally is a logical first step to developing the system, and this step
can just be preserved as an option instead of being discarded once cloud storage works.
Also, this reduces the barrier of entry to the system by allowing users to try out the entire
system on a single machine before committing to a full deployment, especially if they
do not have a cloud storage account.

How it affects server administrators. When a server administrator installs ISR, he
or she is given the option of storing the VMs locally on the server machine or providing
credentials for a cloud storage service. The system should then store the VMs at the set
location without any more configuration. When the server is launched, it will parse the
settings file and determine where to look for VMs and store them.

How it affects users. Unless the user is personally opposed to having their data
hosted on a cloud, it should make no difference to the user. If implemented correctly,
there should not be a significant difference in performance other than a slight increase
in latency as chunks make a few extra jumps between the server and the cloud before
reaching the client. If the user trusts the server administrator fully, he or she should have
no problem with local storage. If the user does not trust the server administrator with
his or her data, cloud storage may be a compromise: the server would handle user infor-
mation and encrypted user data keys, while encrypted data would be stored on the cloud.

How it affects the implementation. Each cloud storage provider may have slightly
varying APIs. Depending on the complexity of the calls that have to be made to sup-
port cloud storage, supporting multiple different cloud providers may become a “simple
matter of programming” rather than a worthwhile use of time.

The following operations will have to be reimplemented in order support cloud stor-
age.

Uploading a chunk
Currently, uploading a chunk for during checkin or background upload consists of
a HTTP PUT request from VMNetFS to a chunk-specific server URL. With cloud
storage, chunks must still go through Django. Django can allocate a directory as a
staging area for the chunks before a commit is made to push the chunks to storage,
reducing the number of queries made to the cloud storage service. Also, metadata
can be tracked without having to intermittently scan the cloud storage for chunks
that were uploaded directly through the cloud.

38

Downloading a chunk
Downloading a chunk involves HTTP GET request to a chunk-specific URL on
the server. The server can still handle chunk requests as opposed to clients directly
communicating with the cloud. The alternative is to generate a temporary url to
chunks directly in cloud storage which the client can use while resumed. There
are additional complications in this approach, such as handling temporary access
expiration.

Locating a chunk
Extra metadata must be kept on the server to track which files are on the cloud
versus local storage. For each version of each VM, an array of tags must be
stored to track each chunk number corresponding to an actual chunk file in stor-
age somewhere. These can be stored in a plaintext file on on the server. In order
to efficiently look up these relationships, this file can be read into memory instead
of being constantly read and rewritten.

Cloud storage should be supported by ISR to some extent in the future. Supporting
only a single cloud provider’s API, namely Amazon S3 [1], is reasonable. That would
cover one of the more popular commercial options, as well as be compatible with Ceph’s
object store [2], a popular open source alternative. Implementation should begin with
setting up cloud storage on a local Ceph instance using the S3 API if possible, with the
expectation that the same commands should work with Amazon directly. This setup is
likely to be easier to debug and will not cost any money to run and test if minimal re-
quired hardware is available.

5.6 Multiple Servers for a Single ISR Deployment
This feature refers to the ability for a server administrator to store VMs across physically
distinct servers, whereas the current implementation only allows the machine which is
running the Django server code to act as the storage server as well as the HTTP server.

How it affects server administrators: Server administrators now have extra free-
dom to put different VMs on different servers. Why would they want to ever do this? It
may not be practical for a real deployment of ISR, but a function to support migration
might be useful if an administrator wants to move all of their chunks from one storage
server to another, as opposed to having some of their chunks in one place and some in
another.

39

The server can be definitely be used with a distributed file system to avoid these mi-
grations for the sake of increasing scalability. However, the migration feature could still
prove useful, because it would allow server administrators to offer users the option to
integrate their personal storage with the ISR server.

How it affects users: If information about where their VMs are being stored is never
exposed to users, it should not matter in most cases. Consider a scenario where a user
owns his or her own Ceph storage server, but does not want to have a personally main-
tained installation of ISR. Should the user be able to tell a server admin to store his or
her VMs only on his or her personal cloud store, instead of the server admin’s server?
The only reason a user might do this is because he or she do not trust the administrator,
since using personal storage costs extra money for the user. The fact that the server
administrator can not decrypt the data in storage without the user’s data key should be
enough to satisfy security concerns. If users are really serious about data, they would
probably just create their own ISR server.

How it affects the implementation: This can be implemented minimally by adding
a field to the VM model in Django to track which cloud storage instance the VM is
stored. Given an abstracted set of functions to talk to any of the supported cloud stor-
age services, the server should be able to talk to any storage server using the same
commands. The implementation is complicated by functionality like migrating VMs
between two different clouds. If CAS is implemented on the server, the reference counts
must be updated in the source and destination clouds to make sure that dead chunks are
removed correctly. If an intra-parcel policy is implemented, migration is simple: move
the entire pool of chunks from one cloud to another with the same reference counts and
metadata. With the ALL policy, where all chunks for all VMs is in a single pool [19],
this is much trickier because chunks that are still valid for other parcels on the cloud
must be preserved, and redundant chunks should not be copied over.

5.7 Content Addressable Storage (CAS) on the server
Given the decision to encrypt all of the data stored in the cloud, adding CAS to the server
does not require any CAS-specific restructuring of the system.

The big design decision that must be made is determining which storage policy to
use. In an intra-VM policy, “each parcel is represented by a separate pool of unique
chunks shared by all versions, v1, ..., vn, of that parcel”. In the ALL policy, “all parcels
for all users are represented by a single pool of unique chunks” [19]. An inter-parcel

40

policy, one that puts all of a single user’s VMs into a single pool, is not considered sep-
arately because it is not expected to yield noteworthy savings over the intra-VM policy,
since a user’s VMs are likely to be different in content, e.g., a windows VM and an
ubuntu VM will not share any system files, packages, system updates, etc.

The ALL policy yields greater savings in storage on the cloud because each chunk
needs only be stored once across all users and all VMs. Note that this results in network
savings for users as well, without having CAS on the client. For example, if an update
for Windows is released, it only has to be uploaded by one user instead of all users who
have a VM based on the Windows base VM.

These benefits from the ALL policy come at the sacrifice of privacy. Because all of
the chunks require a consistent encryption scheme, someone could perform dictionary-
based traffic analysis of requests [19]. This could be used to discover copyrighted ma-
terial in a user’s VM by someone who has access to the chunk pool. However, this
potential threat is not part of our threat model.

Instead of encrypting each chunk with the user’s data key and a chunk index, ISR can
use convergent encryption on each of the chunks of a user’s VMs. This means a keyring
will have to be maintained for each VM. Instead of encrypting each of a user’s chunks
with a key that only the user has, encrypt the chunks using the hash of the content of the
chunk and share the chunks in a pool of some policy (intra-parcel, inter-parcel, ALL).
The keyring for a VM is encrypted with the user’s key, so a certain level of privacy about
which chunks comprise the VM is maintained.

How it affects server administrators: Some storage savings on the server. Re-
duced requests to the cloud storage service. Note that currently with Amazon S3, the
pricing for a PUT request (upload chunk) is $0.005/1000 requests and a GET request
(download chunk) is $0.004/1000 requests, 12.5 times cheaper. Therefore, reducing the
number of PUT requests by using the ALL policy is likely to add up to savings over time.

How it affects users: Upload bandwidth is saved: at check in time, the client can
hash each of the chunks in its modified cache and send the list to the server. The server
can then check which ones do not exist in storage, and return a list of only new chunks to
the client. The client can then only upload only the missing chunks, and also the updated
keyring encrypted with the data key. This should reduce the cost of checkin operations
in terms of time and bandwidth.

How it affects the implementation: First, a keyring must be created and main-
tained for each VM in storage. Each VM has an array of (tag, key) pairs where key is

41

the encryption key for the chunk (SHA-1 hash of plaintext) and tag is the SHA-1 hash
of the encrypted chunk. Each of these keyrings is encrypted with the user’s data key and
stored on the server, rather than the cloud. This allows the cloud to store purely chunks,
and if the cloud stored the keyrings, they would have to be downloaded through a server
request anyway. Keeping the encrypted keyrings on the server is not a security threat
because the key is only accessible to the user.

Fetching a chunk would be as follows:

1. VMNetX has a pristine cache miss

2. Client checks the decrypted keyring and finds the hash of the encrypted chunk

3. Client requests server for the chunk corresponding to the hash

4. Server gets the encrypted chunk from storage

5. Server returns the encrypted chunk to the client

6. Client decrypts chunk using the key from the keyring and puts it in the pristine
cache

Checkin would be as follows:

1. Client takes hashes of the encrypted modified chunks

2. Client sends array of hashes to server

3. Server returns list of modified chunks not in the cloud storage

4. Client uploads the hash and the encrypted chunk pairs to the server

5. Client uploads new keyring for updated version

6. Commit: Server uploads chunks to cloud and stores keyring with new version

5.7.1 Interaction with background upload
Background upload requires that chunks be put into a staging area before being commit-
ted into a version. Because the process can result in chunks being overwritten multiple
times, they are staged before an explicit checkin is done. The staging area should be on
the server rather than cloud so that every chunk in the cloud belongs to some version of
a VM and also to reduce the number of jumps that each upload causes.

42

When the user does a checkin with CAS enabled, the client sends an array of modi-
fied chunks and their hashes. The server compares this list to the (chunk number, hash)
pairs in the staging area and returns the list of chunks that are not in the staging area.
The client then uploads all of these missing chunks to the staging area. Once the server
confirms all the new chunks comprising the new version are present, the client is noti-
fied, and the chunks are uploaded to the cloud.

5.7.2 Hash Collisions
If by some chance two distinct chunks have the same hash, and as a result a chunk in
the CAS pool is incorrectly overwritten, any of the versions of the user’s VMs which
contain the collided chunks become corrupted. There is a very small probability of such
an event occurring, but it is non-zero and should be noted.

5.7.3 Garbage collection
Garbage collection is important for remove chunks which are not referenced by any ver-
sions of any VM in cloud storage. Each chunk stored on the server must be associated
with a reference count which tracks the number of VMs (or VM versions if deletion of
versions is allowed) that still depend on that chunk. Once this count reaches zero, it is
eligible for garbage collection.

Reference counts are stored in table (hash(chunk), count) on the server where the
count is the number of unique VMs that own that chunk. This reference count array
must be updated every time a new VM version is created (checkin and VM creation
time) This array is stored on the server similar to the keyrings, in a Django model which
rows consisting of (hash, vm id). To get the actual reference count of a chunk with hash,
all the rows with the corresponding hash must be selected. All modifications to this table
must be atomic, and a checkin of a VM must own the lock to this table so that chunks
are not garbage collected before the system confirms that they are present and therefore
do not need to be uploaded.

When a chunk is staged, its reference count is not modified. It is possible that a
chunk which already exists on the cloud is staged at the point of checkin. If this hap-
pens, the chunk is simply not uploaded to cloud storage. Otherwise, if the chunk does
not exist at the point of checkin, it is uploaded and the count incremented by adding
another row to the reference count table.

43

This routine could be scheduled to run at a administrator-specific time to minimize
the number of active users while it runs, or manually every once in a while.

5.8 CAS on the Client
This section also assumes encryption of chunks is being done. Without CAS on the
client, the keyring downloaded from the server is used to identify and download each of
the required chunks, which are then decrypted and cached on the client. Multiple copies
of the same chunk can be downloaded if it appears in multiple indices of the keyring,
because the client does not check for duplicates.

Implementing CAS on the client means that each user has a local pool of content
addressable chunks to prevent downloading the same chunk multiple times. This saves
download bandwidth at the expense of implementation complexity and extra metadata
on the client.

CAS on the client was not a priority because the savings in download bandwidth do
not justify the additional complexity. This feature would reduce resume times and the
number of cache misses leading to chunk requests from the server, but resume times are
only prohibitive with a cold cache resume, which does not occur as often as a warm
cache resume (only at first checkout or after a clean).

CAS on the client can be added to the system at a later point without affecting the
rest of the system, only client side storage. Users would not have to make serious modi-
fications to their system, only clear their current caches and repopulate them.

It may be worthwhile to create a special case for the zero chunk however, due to
its frequency and ease of identification. This could be done as follows: on the client,
receive and store the hash (tag) of the zero chunk from the server at resume time. This
can be fetched in advance, and cached, just one time. A zero chunk is constructed and
cached on the client at resume time. This is only 128 KB and is safe to delete for ob-
vious reasons. When a cache miss occurs, the client goes to the keyring to find the tag
of the chunk. If the tag is the same as that of the zero chunk, it caches the zero chunk
by copying the file (not linking it, due to maximum reference count limits). Otherwise,
it requests the chunk from the server as with any other chunk. This operation costs one
hash comparison and potentially one file copy every time a miss occurs, but should not
create prohibitive overhead.

44

6 Related Work
There have not been any efforts to directly rebuild ISR as this work attempts. How-
ever, there are many options for mobile computing which may be considered in place of
OpenISR 2.0.

6.1 OpenISR
OpenISR, while not currently being developed, remains a completely usable system.
The code is available as open source, and there are detailed instructions on setting up
both the client and the server. Some details about how OpenISR and OpenISR 2.0
are discussed in other parts of this document. Despite its slightly different feature set,
OpenISR at its core still allows users to make their VMs portable, and is a more estab-
lished, tested alternative to OpenISR 2.0.

6.2 The Olive Archive
The Olive Archive, or more specifically VMNetX, is in many ways the predecessor to
OpenISR 2.0. Both pieces of software provide on-demand execution of VMs from a
HTTP server. Both also support only QEMU/KVM as the hypervisor.

The Olive Archive already has a functional thin-client mode, where the VM is exe-
cuted on the server or a user-designated cloud, and can be accessed remotely through a
VNC or a SPICE client. In addition to providing the benefits of offloading computation,
this allows Microsoft Windows clients to use VMs by installing a custom VNC client
instead of installing VMNetX, which currently only supports Linux hosts. The VMs
can also be accessed through an Android client, which is essentially a VNC or SPICE
viewer with a custom control interface so that the keyboard is easily accessible.

The Olive Archive also has only a web UI for seeing the available VMs, as opposed
to a local one like OpenISR 2.0. This distinction is reasonable as Olive does not support
disconnected use of its VMs.

6.3 Alternatives to ISR
Since the inception of ISR, there have been many developments in software and web
applications which cover a subset of the possible uses of ISR.

45

6.3.1 Simple document editing
Apps such as Google Docs [7] are commonly used for the purposes of editing and col-
laborating on simple word documents or spreadsheets. While the main draw of these
apps is the ability to collaborate, if the only objective were to portably edit a text doc-
ument, one of these alternatives is probably a better option than ISR because they are
more lightweight and equally accessible across multiple platforms.

6.3.2 Multiple OSs on a single machine
Applications such as VirtualBox [13] or QEMU can be used to locally launch virtual
machines of any OS on supported host machines. If a user works strictly on a single
machine and is diligent about creating backups, then he or she might find that either of
these alternatives is sufficient for their purposes. ISR itself builds upon QEMU to make
VMs conveniently accessible on multiple machines in addition to tracking changes made
to the VM over time.

6.3.3 Running applications not compatible with host OS
If the user’s objective is more specifically to simply run an unsupported application on
their machine, even more alternatives exist. For example, if a user on Ubuntu wanted
to run a Windows program, one potential solution would be to try WINE [15], which
exists for just that purpose. However, WINE is difficult to configure and often times,
applications must be individually configured to get around various issues like mouse
capture or graphics incompatibility. VMs are more reliable because they emulate the
entire environment, so if an application works for a specific OS, it would always work
for a VM of that OS running in ISR.

6.3.4 Other Emulation Platforms
Hardware emulation is not an idea unique to ISR or VMs. For example, many emulators
exist for various video game consoles, which allow users to play games intended for
proprietary hardware on their personal machines.

Simics [11] is an example of a full-system emulator which can be used to simulate
various systems such as MIPS and ARM in order to develop software for these embed-
ded systems.

46

7 Conclusion
OpenISR 2.0 is an attempt to reenvision the original ISR concept in a different com-
puting landscape than was originally predicted. Personal devices have gotten smaller
while anonymous hardware is not as widespread as anticipated, and the role of portable
personalized machine state has been divvied up into various web services like cloud stor-
age and web-based document editors. Despite these developments, ISR remains a viable
option for making more specialized applications running on specific operating systems
available to users in a portable environment. This document explores many ways that
ISR leverages and can continue to leverage modern web technologies, instead of having
its uses subsumed by them.

7.1 Contributions
The main contribution of this work is the redesign and reimplementation of ISR. Al-
though the code is not as robust or complete as the previous implementation, it shows
that the ideas presented in the redesign are more than feasible. Two important features,
the GUI and background upload, demonstrate that the user experience can be improved
noticeably without negatively impacting the complexity of the code. The new HTTP-
based server leverages a modern web application frameworks while making the client-
server interactions more generic. These features were prioritized over the ones described
in Chapter 5, because of their immediate and obvious effect for users rather than server
administrators.

The document also provides a detailed analysis of where to take the system in the
future with respect to new features that incorporate recent services like cloud storage.
Because many of these planned features drastically affect many different parts of the
code, it is important to know in advance which files require modifications, and to write
current code in a modular manner with possible improvements in mind.

7.2 Future Work
As Chapter 5 and 6 suggest, there are numerous opportunities for improving OpenISR 2.0.
Any future work on ISR would most likely determine which of those features are still
the most relevant, and then add it to the OpenISR 2.0 implementation.

There are also methods of improving already implemented features, such as reducing
the amount of redundant data uploaded to the server during VM execution. This could

47

be done in a naive manner by tracking the order in which VM chunks are modified, and
then uploading them in reverse order i.e. least recently modified chunks first. The as-
sumption behind this heuristic is that the longer a chunk is unmodified, the less likely
it is to be modified in the future. Data should be collected to verify this claim, but it is
intuitively a reasonable place to start.

7.3 Final Thoughts
Internet Suspend/Resume was originally introduced as an approach to improve mobile
computing by decoupling machine state from physical hardware. Many of its original
use cases have been usurped by a more recent developments in web applications and mo-
bile devices. This work was an attempt to show that ISR can be brought up to speed with
current computing trends, and be made even more usable than its previous implemen-
tations. Further advances in networking like increased bandwidth will only positively
affect ISR by reducing resume and checkin times further. ISR remains a viable option
for users who require an entire virtualized computing environment and want to be able
to quickly access it from different physical machines.

48

References
[1] Amazon S3. http://aws.amazon.com/s3/.

[2] Ceph. http://ceph.com/.

[3] curl. http://curl.haxx.se/.

[4] Django. https://www.djangoproject.com/.

[5] Dropbox. http://dropbox.com.

[6] Gmail. http://gmail.com.

[7] Google docs. https://www.google.com/docs/about/.

[8] Microsoft Windows. https://www.microsoft.com/en-us/windows.

[9] The Olive Archive. https://olivearchive.org/.

[10] OpenISR. https://github.com/cmusatyalab/openisr.

[11] Simics. www.windriver.com/products/simics/.

[12] Ubuntu. www.ubuntu.com/.

[13] Virtualbox. https://www.virtualbox.org/wiki/Downloads.

[14] VMNetX. https://github.com/cmusatyalab/vmnetx/.

[15] Wine. https://www.winehq.org/.

[16] Wireshark. https://www.wireshark.org/.

[17] Al Danial. Count lines of code. https://cloc.sourceforge.net/.

[18] Benjamin Gilbert, Adam Goode, and Mahadev Satyanarayanan. Pocket ISR: Vir-
tual machines anywhere. Technical report, 2010.

[19] Partho Nath, Michael A. Kozuch, David R. O’Hallaron, Jan Harkes, M. Satya-
narayanan, Niraj Tolia, and Matt Toups. Design Tradeoffs in Applying Content
Addressable Storage to Enterprise-scale Systems Based on Virtual Machines. In
Proceedings of the Annual Conference on USENIX ’06 Annual Technical Confer-
ence, ATEC ’06, pages 6–6, Berkeley, CA, USA, 2006. USENIX Association.

49

http://aws.amazon.com/s3/
http://ceph.com/
http://curl.haxx.se/
https://www.djangoproject.com/
http://dropbox.com
http://gmail.com
https://www.google.com/docs/about/
https://www.microsoft.com/en-us/windows
https://olivearchive.org/
https://github.com/cmusatyalab/openisr
www.windriver.com/products/simics/
www.ubuntu.com/
https://www.virtualbox.org/wiki/Downloads
https://github.com/cmusatyalab/vmnetx/
https://www.winehq.org/
https://www.wireshark.org/
https://cloc.sourceforge.net/

[20] Mahadev Satyanarayanan, Benjamin Gilbert, Matt Toups, Niraj Tolia, Ajay Surie,
David R. O’Hallaron, Adam Wolbach, Jan Harkes, Adrian Perrig, David J. Farber,
Michael A. Kozuch, Casey J. Helfrich, Partho Nath, and H. Andre Lagar-Cavilla.
Pervasive Personal Computing in an Internet Suspend/Resume System. IEEE In-
ternet Computing, 11(2):16–25, 2007.

[21] Niraj Tolia, David G. Andersen, and M. Satyanarayanan. Quantifying Interactive
User Experience on Thin Clients. Computer, 39(3):46–52, March 2006.

50

	1 Introduction
	1.1 The Current State of Internet Suspend/Resume
	1.2 Motivation
	1.3 The Thesis
	1.3.1 Scope of Thesis
	1.3.2 Approach
	1.3.3 Validation of Thesis

	1.4 Document Roadmap

	2 Redesigning ISR
	2.1 Modern
	2.1.1 Django

	2.2 Usable
	2.3 User-Focused
	2.4 Off-The-Shelf
	2.4.1 HTTP
	2.4.2 JSON
	2.4.3 XML

	3 Extending VMNetX
	3.1 The Olive Archive
	3.1.1 VMNetX

	3.2 Server
	3.2.1 VM Storage
	3.2.2 VM Access
	3.2.3 User Information Management

	3.3 Versioning
	3.3.1 Implementation Details

	3.4 Server URLs
	3.5 Locking
	3.6 Cache Validation
	3.7 Dirty State Trickle Back (Background Upload)
	3.7.1 Live Migration
	3.7.2 Modifying QEMU

	3.8 Bandwidth Throttling
	3.8.1 Throttle Control
	3.8.2 Throttling via curl: an anecdote
	3.8.3 Dynamic Throttle Control

	4 Evaluation
	4.1 Feature Set
	4.2 Simplicity
	4.3 Performance
	4.3.1 Trickle Back of Dirty State

	4.4 Evaluation Summary

	5 Further Feature Discussion
	5.1 Thin-Client mode
	5.2 Disconnected Operation
	5.3 Micro-Checkpoints
	5.4 Encryption
	5.5 Cloud Storage
	5.6 Multiple Servers for a Single ISR Deployment
	5.7 Content Addressable Storage (CAS) on the server
	5.7.1 Interaction with background upload
	5.7.2 Hash Collisions
	5.7.3 Garbage collection

	5.8 CAS on the Client

	6 Related Work
	6.1 OpenISR
	6.2 The Olive Archive
	6.3 Alternatives to ISR
	6.3.1 Simple document editing
	6.3.2 Multiple OSs on a single machine
	6.3.3 Running applications not compatible with host OS
	6.3.4 Other Emulation Platforms

	7 Conclusion
	7.1 Contributions
	7.2 Future Work
	7.3 Final Thoughts

