
JBösen: A Java Bounded
Asynchronous Key-Value Store for

Big ML
Yihua Fang

CMU-CS-15-122

July 21st 2015

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Eric P. Xing, Chair
Kayvon Fatahalian

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright c© 2015 Yihua Fang

Keywords: Distributed System, Machine Learning, Parameter Server, Stale Synchronous
Parallel Consistency Model, Big Data, Big Model, Big ML, Data-Parallelism

Abstract
To effectively use distributed systems in Machine Learning (ML) applications,

practitioners are required to possess a considerable amount of expertise in the area.
Although highly abstracted distributed system frameworks such as Hadoop can help
to reduce the complexity of writing code for distributed systems, their performances
are incomparable to that of specialized implementations. Other efforts such as Spark
and GraphLab each has it’s own downsides. In light of this observation, the Petuum
Project is indented to provide a new framework for implementing highly efficient
distributed ML applications through a high-level programming interface.

JBösen is a Java key value store system in Petuum using the Parameter Server
(PS) paradigm and it aims to extend the Petuum project to Java as almost a quarter
of the programmer population use Java. It provides an iterative-convergent program-
ming model that covers a wide range of ML algorithms and an easy-to-use program-
ming interface. JBösen, unlike other platforms, exploits the error tolerance property
of ML algorithms to improve performance with a Stale Synchronous Parallel (SSP)
consistency model to relax the overall consistency of the system by allowing the
workers to access older and more staled values.

iv

Contents

1 Introduction 1

2 Key Ideas Overview 3
2.1 Iterative Convergent ML programming model 3
2.2 Parameter Server . 4
2.3 Stale Synchronous Parallel Consistency Model 4
2.4 SSP Push Consistency Model . 5

3 JBösen System Design 7
3.1 Table Interface . 7
3.2 Clients . 8

3.2.1 Application Threads . 8
3.2.2 Back Ground Threads . 8

3.3 Consistency Controllers . 9
3.3.1 Ensuring SSP consistency . 9
3.3.2 SSP Push consistency . 9

3.4 Server . 10
3.4.1 Row Requests . 10
3.4.2 Push Rows . 10
3.4.3 Name Node . 11

3.5 Network . 11
3.6 Integration with YARN . 11

4 JBösen Programming Interface and APIs 13
4.1 Complex APIs . 14

4.1.1 Initialize PsTableGroup . 14
4.1.2 Creating tables . 15
4.1.3 Spawning application threads . 15
4.1.4 Shutdown JBösen . 16

4.2 PS Application . 16
4.2.1 Initialize . 16
4.2.2 runWorkerThread . 16

4.3 Application Matrix Fact . 17
4.4 The Row Interface and the User Defined Row Type 17

v

5 Performances 19

6 Conclusion and Future Work 21

Appendices 23

A Complete Row Interface 25
A.1 Row Update . 25
A.2 Row Create Factory . 26

B Complete PsApplication Interface 29

C Matrix Factorization implemented Using JBösen APIs 31

Bibliography 35

vi

List of Figures

2.1 Data Parallelism . 4
2.2 Demonstration of the SSP consistency. Worker threads cannot be more than s

iterations apart where s is user defined. 5

3.1 JBösen overall architecture . 7
3.2 Client Architecture . 8

5.1 Left: JBösen scaling performance using MF application. Right: JBösen speedup
using MF application . 19

vii

viii

Chapter 1

Introduction

In recent years, Machine Learning (ML) practitioners are turning to distributed systems to satisfy
the growing demand of computational power in ML applications. As we advanced into an age
of Big Data (terabytes to petabytes of data) and Big Model (well beyond billions of parameters),
a single machine can no longer solve ML problems in an efficient and timely manner. However,
to implement ML algorithms on top of a distributed system is proven to be no easy task. One
needs to possess a considerable amount of knowledge in both distributed systems and ML in
order to write an efficient piece of distributed ML application code. In today’s world, there is a
only a small percentage of ML practitioners can fit in this description. The apparent solution is
an abstracted distributed platform that hides away the ”difficult” system work to allow users to
focus on ML algorithms.

In the past, there have been efforts to build highly abstract general purpose distributed frame-
works for ML, but these existing systems present a variety of trade-offs on efficiency, correctness,
programmability, and generality[9]. Hadoop [8] is an popular example of such a platform with an
easy-to-use MapReduce programming model. Yet, the MapReduce programming model makes
it difficult to optimize using many properties that are specific to ML algorithms such as the iter-
ative nature, and its performance is not competitive to other existing systems. Spark [10], while
remaining the scalability and fault tolerance of MapReduce, is an alternative platform to Hadoop
that is optimized for iterative ML algorithms. What Spark does not offer in the platform is the
fine-grained scheduling of computation and communication which is considered to be essential
for a fast and correct implementation of distributed ML algorithms [1]. GraphLab [4] and other
graph-oriented platforms distribute workload through clever partitioning of the graph based mod-
els, but many advanced ML algorithms cannot be easily or efficiently represented in graphs such
as topic modeling. The remaining category of systems [3, 6] offers powerful and versatile low-
level programming interface but do not offer an easy-to-use building blocks for implementing
many ML algorithms.

The Petuum project [9] aims to address this issue by providing a new framework for im-
plementing highly efficient distributed machine learning applications through a high-level pro-
gramming interface. The framework proposes that a wide spectrum of ML algorithm can be
represented by an iterative convergent [9] programming model, treating the ML algorithm as
a series of iterative updates to the ML model. In this way, the system exploits two types of
parallelism: (1) data parallelism - partition and distribute the training data across a cluster of

1

machines; (2) model partitioning - models are partitioned and assigned to different machines and
then are updated in parallel. The system also exploits a statistical properties that is specific to
ML algorithms: error tolerance - ML algorithms can tolerate limited amount of inconsistency in
intermediate calculations. It takes advantages of the error tolerance property through a relaxed
consistency model, a Stale Synchronous Parallel (SSP) consistency model [7] and it’s variant
SSP Push consistency model. [7] shows that the SSP and SSP Push consistency model may
improves significantly the throughput of the system.

The key component in the Petuum project to realize the above described designs and op-
timization is a parameter server [3] system, named Bösen, for accessing the shared model pa-
rameters from any machine through a key-value storage APIs that resembles single machine
programming interfaces. What is missing from the Petuum project, however, is a Java PS system
as Bösen is implemented in C++. With figures from a variety of unofficial sources suggested
on [5], it is estimated that there are between eight to ten million Java programmers in the world
today. In addition, there are far more ML researchers and data scientists who are familiar with
Java than those who are familiar with C++ which is required to use Bösen.

In light of this observation, we present in this thesis a Java version of the PS system, JBösen
1 for the Petuum project. While we incorporated all of the above mentioned design points from
Bösen into the JBösen, we implemented JBösen independent of Bösen as a stand alone system.
We begin by a theoretical explanation in details of the design points JBösen incorporated. We
then illustrate how different components of the JBösen come together to realize the aforemen-
tioned design ideas. Followed after, we demonstrate how a ML algorithm can be implemented
using JBösen’s interfaces as an iterative convergent programming model. In this thesis, we use
a matrix factorization algorithm using Stochastic Gradient Descent (SGD) as demonstration, but
the Petuum ML library also includes more algorithms on JBösen not explored in this paper as
well as more are planned in the future.

1JBösen is available as part of the Petuum project open sourced on http://petuum.org

2

http://petuum.org

Chapter 2

Key Ideas Overview

We begin with a theoretical discussion on the key ideas used in the JBösen system, which dif-
ferentiate JBösen from other distributed ML frameworks. These ideas are manifested as the
fundamental features of JBösen and each exploits some unique properties of ML algorithms. We
start by illustrating the iterative convergence programming model in representing a wide range
of ML algorithms with data parallelism. Then we discuss how the parameter server architecture
is suitable for implementing data parallelism. Following that, we explain how SSP and SSP Push
consistency model can exploit the error tolerance nature of ML algorithms to improve throughput
of the system.

2.1 Iterative Convergent ML programming model
[9] formalized the Iterative Convergent ML programming model as executing a update function
iteratively until the model state reaches some state matching some stopping criteria. Mathemati-
cally, it can be expressed as

At = F(At−1,∆(At−1,D))

where t denotes the iteration, A denote the model state and given the training data D. The update
function

∆()

which improves a loss function performs computation on the training data D and model state A
and the results are aggregated by some function F . In the context of the data parallelism, the
iterative convergent programming model becomes:

At = F(At−1,∑
p
= 1P

∆(At−1,Dp))

where P is the number of partitions or the number of workers. The training data is partitioned and
assigned to each of the workers and the intermediate results computed by each of the workers are
aggregated together before applying to the model parameters. The important observation is the
property of additive updates where updates ∆() are associative and commutative and are allowed
to be aggregated through summation both locally and over the network. This property also allows

3

Figure 2.1: Data Parallelism

that no matter which partition of the training data is assigned to a particular worker, the worker
can in a statistical sense contribute to the convergence of a ML algorithm via ∆() equally [9].
This is commonly assumed in many ML applications.

2.2 Parameter Server
The primary challenge to the data parallelism approach is how to design the software system to
share a gigantic ML model across all nodes in a cluster with correctness, performance and easy
to program interfaces at the same time. The parameter server is a popular paradigm that ML
practitioners have been turning to in recent years[1].

Without limiting to a specific implementation, the concept of the Parameter Server is a shared
key-value storage with a centralized storage model and an easy to use programming model.
It is intended as a software system to share the model parameters in ML applications across
a cluster of commodity machines. The nodes are partitioned into two classes of nodes. The
client nodes perform the bulk part of the computation for the ML algorithm. Usually, each
client node will retain a portion of the training data and perform statistical computation such as
Stochastic Gradient Descent (SGD) to train the shared model. The server nodes are responsible
for synchronizing parameters of the shared model to provide a global view of the shared ML
model to all clients. The model is partitioned and assigned to different servers and therefore
updates to the model can be processed in parallel. The clients communicate with the server
nodes to retrieve or update the shared parameter values.

2.3 Stale Synchronous Parallel Consistency Model
ML applications possess the iterative-convergence characteristics where the algorithm has a lim-
ited error-tolerance in the parameter state. In another word, the ML parameters at each iterations
need not to use the most up to date parameters for computations. This presents an unique op-
portunity for optimization by relaxing the consistency model of the software system to achieve
higher throughput compared to a strong consistency model. The SSP consistency model is based
on this observation that the ML parameters are allowed to be stale and it aims to maximizes the

4

time each worker spends on useful computation (versus communication with the server) while
still providing the algorithm correctness guarantees.

Figure 2.2: Demonstration of the SSP consistency. Worker threads cannot be more than s itera-
tions apart where s is user defined.

In SSP, each worker make an update εi to an parameter where the update is associative and
commutative. Hence, the freshest version of the parameter value δ is a sum of updates from all
workers on δ .

δ = ∑
i

εi +δ
′ where δ

′ denote the parameter from last iteration

When a worker asks for the δ , the SSP consistency model allows the server to present to the
clients a staled version of δ that may or may not included all of the updates up to a limit. As
the example in 2.3, the limit of the staleness of the parameters can be user defined as a staleness
threshold. In this way, we limit the system’s staleness to a bounded value, the staleness threshold.
In another word, informally, if c is the iteration of the fastest client in the system, it may not make
further progress until all other clients are progressed to at least c− s− 1 iterations, where s is
some user defined threshold. In this way, by using SSP, we relaxed the consistency of the entire
system. The clients can perform more computations instead of spending time waiting for fresh
parameters from the servers. [1] presents a formal proof of the correctness of the SSP consistency
model.

2.4 SSP Push Consistency Model
SSP Push consistency model is a variant of the SSP consistency model. In SSP, whenever the
clients are in need of a more fresh parameter, they will request the parameter from the servers
and be forced to wait for the responses from the servers. In SSP Push, the servers, instead of
waiting for the clients to request parameter values, will try to push the updated parameters to
the clients. If a client requested the parameter before, the server will push the parameters to the
client after collecting all updates from other clients. This is taking the advantage that if the client
access a parameter, it is likely that it will access it again in future iterations. In this way, we
reduce the time needed for clients to wait for the requests to come back. The other benefit of
SSP Push is improving the convergence rate of ML algorithms because the the average staleness
of the parameters used in computation is significantly reduced [1].

5

6

Chapter 3

JBösen System Design

Figure 3.1: JBösen overall architecture

The aims of the JBösen system are a dis-
tributed ML platforms that allows ML prac-
titioners to and to exploit unique properties
of ML algorithms and to write data parallel
ML programs that scales to Big Data and Big
Model in Java. It offers to users a table-like
interface with key-value storage APIs for ease
of programming. It follows a parameter server
paradigm which partition the the system into

two classes of nodes, clients and servers. The clients are responsible for the ML computations
and the servers are responsible for synchronizing and share model parameters across the cluster.
By adopting a consistency controller, the system implements the SSP and it’s variant SSP Push
consistency model and frees users from explicit network synchronizations.

To further the usability of the JBösen system, we integrated the system with YARN/Hadoop
environment. YARN is a popular resource manager and scheduler in the Hadoop environment
and has become quite popular among a large scale clusters. Therefore, from a usability stand
point, it is useful to integrate the JBösen with the YARN.

3.1 Table Interface

The JBösen provides a table-like interface for the shared parameters. Each shared parameter in
a ML model is represented as a row ID and column ID. Rows are the minimum unit of commu-
nication between the servers and the clients. The rows are implemented in two different types:
dense and sparse. The dense row is implemented using arrays where each row ID and column ID
is present in the memory. The sparse row is implemented as map where only non-zero row ID
and column ID pair exist in memory. The rows types also comes with different value size such
as Integer vs Long and Float vs Double. The differentiation is designed to be flexible for users
to tailor to their own application needs. More about row interface is explained in 4.4.

In the table interface, each application thread in the client is regarded as a worker by the
system. The application threads execute the computation and access the shared parameters stored

7

in the table through a key value store interface via GET and INC. In context of the JBösen,
the GET will obtain a row while INC will update the values of a row. Once the application
threads complete an iteration, it notifies the system via CLOCK, which increment the clock of
the application thread clock by 1. The clock is used to keep track of the progress of the system
where clock c represent iteration c. The SSP consistency model will satisfy the READ request
generated at clock c will observe all updates from 0 upto c− s− 1 where s is the staleness
threshold.

3.2 Clients

Figure 3.2: Client Architecture

The clients consists of four different com-
ponents: application threads, background
threads (JBösen system threads on the client),
the consistency controller and process cache
storage. The application threads contains the
ML algorithm logic which will generate re-
quests to the background threads through the
JBösen interface. The background threads
are responsible for communication between
clients and servers, and between application
threads, maintaining the process cache storage
using data from the servers and book-keeping with the servers. The background threads use a
consistency model controller to control the staleness of data based on SSP and free the applica-
tion threads from synchronizing explicitly.

3.2.1 Application Threads
The application threads are user-implemented application logic with data partitions. The applica-
tion thread would first load the training data from either memory, from disk or over a distributed
file-system such as HDFS or NFS. The data loading is intentionally left to the application pro-
grammers since Java has native supports to most of the storage system. Then, the application
threads can touch the data in any order desired by the application programmers based on the
implemented algorithm. The application can choose to sample one data point at a time or choose
to pass through all data points in one iteration. At the end of iteration, updates are pushed to the
servers and the parameters are synchronized with the servers.

3.2.2 Back Ground Threads
The background threads are the system threads on the client nodes and they have three functions.

The first function of the background thread is to handle the communications within clients
and between clients and servers. The application threads communicate with the background
threads through network messages using intra-process channels. Each of the messages repre-
sents an instructions to the background threads. The background threads, upon receiving the

8

instruction, will sent the appropriate network messages to the servers. The response from the
server arrives at background threads first. The background threads would handle the message for
any book keeping and then respond to the application threads through intra-process channels.

The second function of the background thread is to handle the network synchronizations
with the servers. Note, the JBösen API only offers GET and INC methods in the interfaces.
The network synchronizations with the servers are done in the background threads abstracted
away from the users and the synchronization happens each time the system clock advance. The
system clock advances when all application threads that the background thread is responsible for
advanced to a new clock. In another word, the system clock is defined as the minimum clock for
a group of application threads and advances when the minimum clock advanced by 1. Each time
the system clock advances, the background threads will send the updates in this clock along with
the clock information to the servers.

The third function of the background thread is to maintain a process level cache for all the
application threads on a node and maintain the staleness of the data based on the SSP consistency
model. Whenever, servers send parameter data to the clients, the background threads would
update the process cache storage. This can happen when both clients request for rows from the
servers or the servers push row data to the clients. When the application threads requests for
rows, the background thread uses a consistency controller to first checks to make sure to only
request rows from server if the cached rows are too staled based on the SSP consistency.

3.3 Consistency Controllers
The JBösen implements both SSP and SSP Push consistency models through a consistency con-
troller. The main purpose of the consistency controller is to manage the data supplied to the
application threads’ GET request to comply with the staleness requirements of the SSP consis-
tency model.

3.3.1 Ensuring SSP consistency
The clients in the JBösen system cache previously accessed rows via the process cache storage
on each client. When the application thread issues a GET request, it first check the local cache
for the requested rows. If the rows is not found in the local cache, a request is sent to the server
to get the rows. In addition, each row in the process cache storage is associated with a clock.
A row with clock c means that updates generate by all workers before clock c has been applied.
If the row has a clock c and c > cp− s where cp is the worker’s clock and s is the staleness
threshold, then the row is considered fresh and will be returned to the worker. Otherwise, the
row is considered to be too stale and the worker will send a request to server and block until the
server send a fresh row.

3.3.2 SSP Push consistency
After each advance to the system clock, the updates are sent to the server. Since the updates
are associative and commutative, the order of which are applied to the rows are not a concern.

9

The servers will then push the updated parameters through call-backs. When a client request a
row for the first time, it registers a call back on the server. As the server clock advances from
collecting all workers’ clock tick, it push the rows to the registered clients. This is different from
the SSP consistency where the server passively sends out the updates as clients request them.
This happens each time the client does not have a fresh value in its process cache storage. This
mechanism exploits the fact that application often revisit the same rows in iterative-convergence
algorithms.

3.4 Server

The servers are a centralized key-value storage to share Big ML Models through the table inter-
face. We designed the server to partition the table in a simple hash ring fashion where rows are
shard across the server machines. The sharding is based on the hashing of the key and in this
way each server maintains a portion of the shared tables. There are two primary methods in the
server interface, row requests and push rows.

To synchronize in application logic, we implemented a light weight name node running on
one of the server nodes to provide a globalBarrier() interface for the applications. The global-
Barrier() allow the application thread to synchronize globally to the same state. The name node
is also used to synchronize both the clients and servers initialization phase.

3.4.1 Row Requests

The client will sent a row request to the server if there is no fresh enough rows in it’s local cache
based on the SSP consistency. The server, upon receiving the row request, will examine if it has
the row in a fresh enough version. If so, the server will send the row to the client immediately.

In the case that the server does not have a fresh enough row indicates that some other clients
have not been progressed to the server clock, where server clock is defined as the min clock
of all clients. For example, if client client1 requests for a row at clock c1, and there is another
client client2 currently running at clock c1− s−1 where s is the staleness threshold, the request
to client1 cannot be satisfied because not all clients have updated the requested row in c1− s
iterations yet. The request will be stored at the server and the client requesting the row will hang
to wait for other client to catch up.

3.4.2 Push Rows

At the end of each system clock, the client will send to the server the updates for that iteration.
As the result, the server will apply the updates to the rows and maintain the iteration information.
When all clients advanced at least 1 clock, the server clock is said to be advanced. Each time
the server clock advances, the server will push the current rows to the client if the client have
requested the rows or the client have updates for this row in the last iteration.

10

3.4.3 Name Node
To synchronize the states globally in the JBösen system, we implemented a light weight name
node as a central server independent of the servers. In the beginning, the name node is used to
synchronizing the initialization of all the components of the JBösen system. At the start, each
background thread and each server thread are registered with the name node using a simple hand
shake. Then, name node will synchronize the table creation process and signal all components
that the system is ready to start.

The global barrier is implemented with the name node. The globalBarrier() method would
send a global barrier message to the name node and wait for the name node to reply. The name
node would wait for the same message to come from all clients before sending off reply to all
the clients.

Since the name node is quite lightweight, it is reasonable to choose a centralized architecture
as a single point of failure. In addition, the name node would run on one of the server nodes
which does not affect the performance since the name node is quite light weight.

3.5 Network
The network communication of JBösen is implemented using the Netty project and Blocking
Queue. The Netty project is a NIO framework that allows easy implementation of network ap-
plication. It is asynchronous and event-driven which is suitable for highly scaled applications
such as JBösen. In the JBösen datapath, the application threads first communicate with the back-
ground threads and the background threads would communicate with the servers. The network
relationship between application threads and background threads is a many-to-many relation-
ships. Following the PS architecture, each clients will be connected to all the servers and main-
tain a connection through out the life time of the application. The communication between the
back ground threads on the clients and the application threads are done through a blocking queue
where each massage is directly queued onto the destination application threads’ queue. When
communication between the server and the client, the Netty threads will automatically received
the message and queues onto the destinations’ queue.

Each of the message communicated over the network would have a header associated with
it. The reason we need to encode the size of the message in the header is because Netty would
fragment the message and the receiver would need to assemble the fragmented message to decode
the message.

3.6 Integration with YARN
The integration of JBösen into the YARN environment is through writing a YARN application.
To run on YARN, we need a YARN client and an application master. The YARN client is respon-
sible for setting up the YARN application master and copying all local files onto HDFS if users
do not copy them manually. The node running the application master is logically considered to
be separate from the local machine running the client. The application master is responsible for
setting up the containers and distribute necessary files. The training data used for the application

11

are usually so large that users should move the file to HDFS manually and it is not reasonable to
copy data files every time the system runs.

The YARN client is much simpler compared to the application master as it consists of mostly
boiler plate code from YARN’s user manual. One extra task is to use the HDFS APIs to copy
files from local file system to HDFS, since program running on YARN can only be assume to
have access to HDFS. Note, differ from most YARN applications, we choose to make the client
to fail fast in the case the application master failed instead of resubmitting the application master.
This will be explained more in sections below.

The application master does a few more things extra on top of the boiler plate code. First,
since JBösen system needs a host file containing the IP addresses of the cluster, the application
master will requests the containers and generate a host file based on the containers obtained.
Second, the application master needs to distribute Jar file for JBösen onto containers. YARN has
a local resource interface to automatically distribute the files onto the containers, which requires
careful set ups.

12

Chapter 4

JBösen Programming Interface and APIs

The JBösen system provided three main methods in the programming interface for users to ex-
press their iterative convergent ML algorithms. As explain in 3.1, the shared model is represented
in the JBösen as a table interface with rows and columns. A Get() methods is used to request
rows from the table interface, a Inc() methods to alter the values in the table, and last but not
least, a clock() method to indicate the iteration progress of the application logic. Below is a basic
JBösen program using the three methods in the interface.

table = PSTableGroup.getTable(tableId);
for (int iter = 0; iter < totalIteration; iter++) {
// Request row data from the table
row = table.get(rowId);

// Using the row data to perform some computation and
// compute the changes to the row data.
change = compute(row);

// Write the changes to the row data.
table.inc(rowId, change);

// At the end of this iteration, use clock to indicate the advance
// of the iteration.
PsTableGroup.clock();

}

The tables are stored on the servers and are identified through tableId. The reference of a
table is accessed through the PsTableGroup object and usually obtained after the table creation.
The table object contains two methods: table.get(rowId) to read the row data specified by the
rowId, and table.inc(rowId, changes) to write the changes to the row specified by the rowId. With
these two methods, the JBösen system will automatically ensure the SSP consistency across all
components of JBösen and no addition attention is required by the users.

There are two different sets of APIs for setting up the JBösen. One interface is to manually
set up the JBösen system with many boiler plate function calls that needs to be called in each

13

application but gives the programmers a greater flexibility to write their applications. The other
is a simpler PS application interface where a lot of the boiler plate code for setting the JBösen is
automated. Although the PS Application interface is simper, it imposes a specific programming
model for using the APIs.

4.1 Complex APIs

In general, in order, a JBösen application needs to:

• Initialize the global PsTableGroup instance.
• Use PsTableGroup to create tables that are needed.
• Spawn worker threads and complete computation.
• De-initialize the global PsTableGroup instance.

4.1.1 Initialize PsTableGroup

PsTableGroup.init(PsConfig config) function must be called before any other methods from
PsTableGroup interface are invoked. The PsConfig class contains several public fields that the
application must set:

• clientId: The ID of this client, from 0, inclusive, to the number of clients, exclusive. This
value must be set.

• hostFile: The absolute path to the host file in the local file system. This value must be set.
• numLocalWorkerThreads: The number of application threads for every client.
• numLocalCommChannels: The number of background threads per client. The recom-

mended value is one per 4 to 8 worker threads.
For example, an application may begin as follows:

public static void main(String[] args) {
PsConfig config = new PsConfig();
config.clientId = 0;
config.hostFile = "/home/username/cluster_machines";
config.numLocalWorkerThreads = 16;
config.numLocalCommChannels = 2;
PsTableGroup.init(config);
...

}

14

4.1.2 Creating tables

After PsTableGroup has been initialized, it is time to create the distributed tables needed by the
application. This is done using the createTable method, which takes several parameters:

• int tableId: The identifier for this table, which must be unique. This identifier is used later
to access this table.

• int staleness: The SSP staleness parameter, which bounds the asynchronous operation of
the table. Briefly, a worker thread that has called PsTableGroup.clock() n times will see all
updates by workers that have called PsTableGroup.clock() up to n - staleness times.

• RowFactory rowFactory: A factory object that produces rows stored by this table. The
implementation of the row is up to the application.

• RowUpdateFactory rowUpdateFactory: A factory object that produces row updates stored
by this table. Essentially, JBsen tables store Row objects, which are updated by applying
RowUpdate objects to them. The implementation of the row update is up to the application.

Since implementing these rows and row updates can be a lot of work, JBsen provides some
common pre-implemented tables. For example, createDenseDoubleTable() creates a table that
contains rows and row updates that are essentially fixed-length arrays of double values, and
applying an update means element-wise addition.

4.1.3 Spawning application threads

After all the necessary tables are created, the application can spawn its worker threads. JBösen
expects the number of worker threads to be exactly the number set in PsConfig.numLocalWorkerThreads.
To inform JBösen that a thread is a worker thread, it must call PsTableGroup.registerWorkerThread()
before accessing any tables. After doing so, the worker can use PsTableGroup.getTable(int
tableId) to retrieve the previously created tables, and begin to use them. When the worker has
completed running the application, it must call PsTableGroup.deregisterWorkerThread() to in-
form JBösen. Each worker thread may look something like the following:

class WorkerThread extends Thread {
@Override
public void run() {

PsTableGroup.registerWorkerThread();
Table table = PsTableGroup.getTable(0);
...
PsTableGroup.deregisterWorkerThread();

}
}

15

4.1.4 Shutdown JBösen
When all worker threads have been de-registered, the last thing to do is to shut down JBösen.
This is done simply by calling PsTableGroup.shutdown().

4.2 PS Application
The motivation behind the PS Application interface is to hide the boiler plate code in order to
simplify the application implementation efforts. In the previous interface, there are quite a few
functions that needs to be called in every applications. The init() functions needs to be called
before other methods in the PsTableGroup interfaces can be invoked. Each worker thread needs
to register and de-register with the system at the beginning and the end of thread execution. The
programmers needs to spawn the application threads by themselves instead of letting the system
spawning the threads automatically. It is quite reasonable to assume that most application code
will launch more than one application threads due to data parallelism. Ultimately, we try to
abstract away the system interfaces and allow ML programmers to only focused on the algorithm
implementations.

The PS Application interface is simplified that all of the aforementioned methods are done by
the system instead of the application code. The interface reduced the requirements the users need
to implement two functions, initialize() and runWorkerThread(int threadId) in the PsApplication
class. A complete PsApplication interface can be found in B.

4.2.1 Initialize
In the initialize(), the users are expected to create all the tables needed for the application and
initialized any variables that is needed for creating the tables. It is also a good time for the ap-
plication threads to load the data from the memory, local disk or distributed storage system. For
example, a simple application that creates one table would look like this:

@Override
public void initialize() {

int rowCapacity = PsTableGroup.getNumLocalWorkerThreads();
PsTableGroup.createDenseIntTable(CLOCK_TABLE_ID, staleness,

rowCapacity);
}

4.2.2 runWorkerThread
The runWorkerThread(int threadId) function contains the application logic. This assumes the
application takes a data parallel model approach to partition the training data and computation
to each application thread. The input threadId variable is a globally unique threadId. Usually,
the application will perform computations using the local training data, push updates at the end

16

of iteration by calling PsTableGroup.clock(), and read off updates from the servers to reflect the
updates of other clients. Here is an simple example that simply adding 1 to the parameters at
each iterations:

@Override
public void runWorkerThread(int threadId) {

...

// Get table by ID.
IntTable clockTable = PsTableGroup.getIntTable(CLOCK_TABLE_ID);

for (int iter = 0; iter < numIterations; iter++) {
...

// Increment the clock for this thread.
table.inc(clientId, threadId, 1);

// Finally, finish this clock.
PsTableGroup.clock();

}

// globalBarrier makes subsequent read all fresh.
PsTableGroup.globalBarrier();

// Read updates. After globalBarrier all updates should
// be visible.
for (int cliId = 0; cliId < numClients; cliId ++) {

IntRow row = clockTable.get(cliId);
}

}

4.3 Application Matrix Fact

We have included in C a Matrix Factorization implementation using the JBösen PsApplication
interface to demonstrate the simplicity of the APIs. This implementation runs SGD on the local
training data for a number of iterations.

4.4 The Row Interface and the User Defined Row Type

The table interface 3.1 used in the JBösen choose rows as the minimum unit of data. In JBösen,
we implemented the rows for all the primitive types: Integer, Double, Long and Float, but we
also provide a user defined row interface for those who wish to implement their own row type.

17

This feature is an extension to the table interface and can greatly expand the programability of
the system. For example, consider the following row type where in addition to row types offered
in the table interface, there is a value ε associated with each row and the values are automatically
set to 0 if the value in the row become between −ε and ε . To implement this example with the
user defined row feature can require great engineering efforts to work around.

To implement a row type, there are four piece of information required, a row type with a
row create factory, and a row update type with a row update factory, where the factory interface
is used to create the respective row and row update. As explained in the previous sections, the
JBösen uses rows and row updates separately where the value of the rows can be considered
as the aggregate of a series of row updates. The users therefore is required to implement this
aggregation through inc() interface. For example, in all the provided implementation of row type
with the primitive types, the inc() aggregation operation is implemented as summation.

Note, besides the aggregation, creation, and serialize de-serialize, the row interface does not
contain any other methods discussed before in the thesis such as the get() or methods that should
be fundamental to the type of operation such as contain() (if a value is contained in the row).
This is a design choice deliberately delegated to the users. Conceptually, from the perspective of
the JBösen system, the table interface is a collection of rows with rowIds that can be aggregated,
created, and packed for network communication. To create a table, the interface createTable()
takes in only a row factory and a row update factory object. The other functionality of the rows
are used in the application logic implemented by the users. In this way, the users have the full
control to tailor the row types to their needs. A complete row interface is attached in appendix
A.

18

Chapter 5

Performances

We emphasize that JBösen is for the moment about extending the Petuum Project to Java users. It
focuses on incorporating design principles that exploit error tolerance and data parallelism from
the existing Petuum project and an easy-to-use programming interface for Java users. Currently,
there is only a limited number of applications implemented on top of the JBösen system, but
more applications are coming in the near future. To demonstrate the performance potential of the
JBösen system, we use the existing Matrix Factorization (MF) application implemented on top
of JBösen.

Figure 5.1: Left: JBösen scaling performance using MF application. Right: JBösen speedup
using MF application

We demonstrate the scale performance of the MF application implemented on top of JBösen.
In Figure 5.1, we demonstrate using 1, 2, and 4 nodes clusters running a Netflix Rating dataset,
the application achieved 3.8 speedup with 4 nodes and 1.9 speedup with 2 nodes. This result
shows that the system has the potential to scale well with increasing number of machines. The
testing cluster we used is a 4 nodes cluster, each machine with 16 Intel 2.1 GHz cores, 128 GB
RAM and 10Gbps Ethernet. We use the Netflix Ratings dataset with a 480189× 17770 matrix
and 100,480,507 ratings.

For cross-platform comparisons, we did not find a fair benchmark for the JBösen, although
we compared the performance to an older version of the Petuum ML application on top of Bösen
since it incorporates similar design principles such as PS and SSP. The ML application on top
of JBösen performed around 5x faster and converged around 1.5x faster using the same Netflix

19

Ratings dataset and the 4 nodes cluster, but this result is not a rigorous comparison because the
newest release of Bösen includes more improvements and performance optimization. We could
not use the newest release for comparison because the most current Petuum MF application is
implemented on top of another system STRADS [2] under the Petumm project, not Bösen. With
more applications implemented on top of JBösen down the road, we will be able to evaluate the
performance of the system in a more rigorous manner. We will have more benchmark to compare
to whereas currently it’s hard to find a fair comparison. We will also be able to evaluate the
performance of the system separately from the performance of the application implementations.

20

Chapter 6

Conclusion and Future Work

The key contribution of this thesis is a Java version of the bounded-asynchronous key-value
store system for distributed ML algorithms with Big Data. It provides a simple programming
model that covers a range of ML algorithms focused on simple programming interfaces instead
of performance; it exploits data parallelism for Big Data using the parameter server architecture;
it exploits the error tolerance nature of the ML algorithms. As more than 25% of programmers in
this world use Java, JBösen is a great contribution to the Petuum project as it expand the project
to reach these Java programmers.

Our work is just the beginning of the JBösen project. It has many potentials to improve and
expand in terms of both performance and functionality. The primary plans in the near future is to
expand the library of ML applications implemented on JBösen. One of the vision of the Petuum
project is to provide a complete software stack for Big ML, from the system to out-of-box ML
applications. JBösen, as part of the Petuum project, shares the same vision. There have already
been plans for a new Machine Learning Ranking and Latent Dirichlet Allocation application on
JBösen and more will come soon.

JBösen will no doubt continue to improve on both its performance optimization and usability.
We have experimented new optimization with a proof of concept implemented on top of Bösen,
since JBösen at the time are still being developed. Under the Petuum project, based off on the
idea of model parallelism, there is a model parallel framework, STRADS [2], designed to ensure
efficient and correct model parallel execution of ML algorithms. While the Bösen allows ML
algorithms to be expressed as a series of iterative updates to a shared model, STRADS allows
these parameter updates to be scheduled by discovering and leveraging structure properties of
ML algorithms. In the near future, there are plans to integrate these two systems together as
their design goals complement each other. In anticipating the plan, we explored a derivation
of the SSP Push consistency model where we use schedule information to improve the network
performance of the system.

Finally, the other aspect of JBösen we did not discuss in this thesis is fault tolerant with auto-
recovery. Currently, JBösen does not offer any auto-recovery features for node failure which is
considered to be essential for systems to scale beyond thousands of machines. The emphasis
of the JBösen and by extension the Petuum project is, for the moment, largely to allow ML
practitioners to implement and experiment with new ML algorithms on small to medium clusters.
In fact, the infrastructure already exists for JBösen to build simple fault tolerance. The Clients

21

is stateless with training data unchanged throughout the lifetime of the system. The servers can
use simple replications of table data to increase the fault tolerance of the system. However, the
performance implication of these features on both JBösen and Bösen are under studied. In the
future, as the aim of JBösen and Petuum project expand to cover larger size clusters, fault tolerant
would be the first feature to add to the system.

22

Appendices

23

Appendix A

Complete Row Interface

Below is the complete row interface.

A.1 Row Update

The JBösen is implemented against the following row update and row update factory interface:

/**
* This interface specifies a row update for a B{\" o}sen PS table. An

* implementation of this interface does not need to be thread-safe.

*/
public interface RowUpdate {

/**
* Increment this row update using a RowUpdate object.

*
* @param rowUpdate the RowUpdate object to apply to this row

* update.

*/
void inc(RowUpdate rowUpdate);

/**
* Serialize this row update into a ByteBuffer object.

*
* @return a ByteBuffer object containing the serialized data.

*/
ByteBuffer serialize();

}

/**
* This interface specifies a factory for row updates. An

implementation of

25

* this interface must be thread-safe.

*/
public interface RowUpdateFactory {

/**
* Create and return a new row update.

*
* @return new row update constructed by this factory.

*/
RowUpdate createRowUpdate();

/**
* Create a new row update from serialized data.

*
* @param buffer buffer containing serialized data for a row

update.

* @return new row update constructed from the serialized data.

*/
RowUpdate deserializeRowUpdate(ByteBuffer buffer);

}

A.2 Row Create Factory
The JBösen is implemented against the following row and row create factory interface:

/**
* This interface specifies a row in a JB{\" o}sen PS table. An

implementation of

* this interface does not need to be thread-safe.

*/
public interface Row {

/**
* Increment this row using a RowUpdate object.

*
* @param rowUpdate the RowUpdate object to apply to this row.

*/
void inc(RowUpdate rowUpdate);

/**
* Serialize this row into a ByteBuffer object.

*
* @return a ByteBuffer object containing the serialized data.

26

*/
ByteBuffer serialize();

}

/**
* This interface specifies a factory for rows. An implementation of

this

* interface must be thread-safe.

*/
public interface RowFactory {

/**
* Create and return a new row.

*
* @return new row constructed by this factory.

*/
Row createRow();

/**
* Create a new row from serialized data.

*
* @param buffer buffer containing serialized data for a row.

* @return new row constructed from the serialized data.

*/
Row deserializeRow(ByteBuffer buffer);

}

27

28

Appendix B

Complete PsApplication Interface

/**
* This class abstracts away some of the boilerplate code common to

application

* initialization and execution. In particular, this class takes care
of

* PsTableGroup initialization and shutdown, as well as worker thread

* spawning, registering, and de-registering. An application using
this class

* should extend from it and implement initialize() and

* runWorkerThread(int).

*/
public abstract class PsApplication {

/**
* This method is called after PsTableGroup is initialized and

* before any worker threads are spawned. Initialization tasks
such as

* table creation and data loading should be done here.
Initializing

* PsTableGroup is not required.

*/
public abstract void initialize();

/**
* This method executes the code for a single worker thread. The

* appropriate number of threads are spawned and run this method.

* Worker thread register and de-register are not required.

*
* @param threadId the local thread ID to run.

*/
public abstract void runWorkerThread(int threadId);

29

/**
* This method runs the application. It first initializes

PsTableGroup,

* then calls initialize(), and finally spawns

* numLocalWorkerThreads threads, each of which runs a single

* instance of runWorkerThread(int). This method returns after all

* worker threads have completed and PsTableGroup has been shut

* down.

*
* @param config the config object.

*/
public void run(PsConfig config) {

PsTableGroup.init(config);
initialize();
int numLocalWorkerThreads =

PsTableGroup.getNumLocalWorkerThreads();
Thread[] threads = new Thread[numLocalWorkerThreads];
for (int i = 0; i < numLocalWorkerThreads; i++) {

threads[i] = new PsWorkerThread();
threads[i].start();

}
for (int i = 0; i < numLocalWorkerThreads; i++) {

try {
threads[i].join();

} catch (InterruptedException e) {
e.printStackTrace();

}
}
PsTableGroup.shutdown();

}
}

30

Appendix C

Matrix Factorization implemented Using
JBösen APIs

Some code are omitted for clarity purposes.

// Main worker thread logic.
@Override
public void run() {

// Get table by ID.
DoubleTable LTable = PsTableGroup.getDoubleTable(LTableId);
DoubleTable RTable = PsTableGroup.getDoubleTable(RTableId);

...

int evalCounter = 0;
for (int epoch = 1; epoch <= numEpochs; epoch++) {

double learningRate = learningRateEta0 *
Math.pow(learningRateDecay, epoch - 1);

for (int batch = 0; batch < numMiniBatchesPerEpoch; ++batch)
{
for (int ratingId = elemMiniBatchBegin;

ratingId < elemMiniBatchEnd; ratingId++) {
Rating r = ratings.get(ratingId);
MatrixFactCore.sgdOneRating(r, learningRate, LTable,

RTable, K, lambda);
}
PsTableGroup.clock(); // clock every miniBatch.

}

evalCounter++;
}
PsTableGroup.globalBarrier();

31

// Print all results.

...

}

// Perform a single SGD on a rating and update LTable and RTable
// accordingly.
public static void sgdOneRating(Rating r, double learningRate,

DoubleTable LTable, DoubleTable RTable, int K, double
lambda) {

int i = r.userId;
int j = r.prodId;
// Cache a row for DenseRow bulk-read to avoid locking at each

read
// of entry.
DoubleRow LiCache = LTable.get(i);
DoubleRow RjCache = RTable.get(j);

double pred = 0; // <Li, Rj> dot product is the predicted val
for (int k = 0; k < K; ++k) {

pred += LiCache.get(k) * RjCache.get(k);
assert !Double.isNaN(pred) : "i: " + i + " j: " + j + " k: "

+ k;
}

// Now update L(i,:) and R(:,j) based on the loss function at
// X(i,j).
// The loss function at X(i,j) is (X(i,j) - L(i,:)*R(:,j))ˆ2.
//
// The gradient w.r.t. L(i,k) is -2*X(i,j)R(k,j) +
// 2*L(i,:)*R(:,j)*R(k,j).
// The gradient w.r.t. R(k,j) is -2*X(i,j)L(i,k) +
// 2*L(i,:)*R(:,j)*L(i,k).
DoubleRowUpdate LiUpdate = new DenseDoubleRowUpdate(K);
DoubleRowUpdate RjUpdate = new DenseDoubleRowUpdate(K);
double grad_coeff = -2 * (r.rating - pred);
double nnzRowi = LiCache.get(K);
double nnzColj = RjCache.get(K);
for (int k = 0; k < K; ++k) {

// Compute update for L(i,k)
double LikGradient = grad_coeff * RjCache.get(k)

+ 2 * lambda / nnzRowi * LiCache.get(k);
LiUpdate.set(k, -LikGradient * learningRate);
// Compute update for R(k,j)
double RkjGradient = grad_coeff * LiCache.get(k)

32

+ 2 * lambda / nnzColj * RjCache.get(k);
RjUpdate.set(k, -RkjGradient * learningRate);

}
LTable.inc(i, LiUpdate);
RTable.inc(j, RjUpdate);

}

33

34

Bibliography

[1] W. Dai, A. Kumar, J. Wei, Q. Ho, G. Gibson, and E. P. Xing. High-performance distributed
ml at scale through parameter server consistency models. In AAAI Conference on Artificial
Intelligence, 2015. 1, 2.2, 2.3, 2.4

[2] Seunghak Lee, Jin Kyu Kim, Xun Zheng, Qirong Ho, Garth A Gibson, and Eric P Xing. On
model parallelization and scheduling strategies for distributed machine learning. Advances
in neural information processing systems, 2014. 5, 6

[3] M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J.
Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. In
OSDI, 2014. 1

[4] Y. Low, J. Gonzalez, A. Kyrola, D. Bickson, C. Guestrin, and J. M. Hellerstein. Distributed
graphlab: A frame-work for machine learning and data mining in the cloud. In PVLDB,
2012. 1

[5] Priit Potter. How many java developers are there in the world?, 2012. URL https://
plumbr.eu/blog/java/how-many-java-developers-in-the-world. 1

[6] R. Power and J. Li. Piccolo. Building fast, distributed programs with partitioned tables. In
OSDI, 2010. 1

[7] Jinliang Wei, Wei Dai, Abhimanu Kumar, Xun Zheng, Qirong Ho, and E. P. Xing. Consis-
tent bounded-asynchronous parameter servers for distributed ml. Manuscript, 2013. 1

[8] T. White. Hadoop: The definitive guide. O’Reilly Media,Inc., 2012. 1

[9] Eric P. Xing, Qirong Ho, Wei Dai, Jin Kyu Kim, Jinliang Wei, Seunghak Lee, Xun Zheng,
Pengtao Xie, Abhimanu Kumar, and Yaoliang Yu. Petuum: A new platform for distributed
machine learning on big data. In ACM SIGKDD Conference on Knowledge Discovery and
Data Mining, 2015. 1, 2.1, 2.1

[10] M. Zaharia, M. Chowdhury, M.J. Franklin, S. Shenker, and I. Stoica. Spark: Cluster com-
puting with working sets. In HotCloud 2010, 2010. 1

35

https://plumbr.eu/blog/java/how-many-java-developers-in-the-world
https://plumbr.eu/blog/java/how-many-java-developers-in-the-world

	1 Introduction
	2 Key Ideas Overview
	2.1 Iterative Convergent ML programming model
	2.2 Parameter Server
	2.3 Stale Synchronous Parallel Consistency Model
	2.4 SSP Push Consistency Model

	3 JBösen System Design
	3.1 Table Interface
	3.2 Clients
	3.2.1 Application Threads
	3.2.2 Back Ground Threads

	3.3 Consistency Controllers
	3.3.1 Ensuring SSP consistency
	3.3.2 SSP Push consistency

	3.4 Server
	3.4.1 Row Requests
	3.4.2 Push Rows
	3.4.3 Name Node

	3.5 Network
	3.6 Integration with YARN

	4 JBösen Programming Interface and APIs
	4.1 Complex APIs
	4.1.1 Initialize PsTableGroup
	4.1.2 Creating tables
	4.1.3 Spawning application threads
	4.1.4 Shutdown JBösen

	4.2 PS Application
	4.2.1 Initialize
	4.2.2 runWorkerThread

	4.3 Application Matrix Fact
	4.4 The Row Interface and the User Defined Row Type

	5 Performances
	6 Conclusion and Future Work
	Appendices
	A Complete Row Interface
	A.1 Row Update
	A.2 Row Create Factory

	B Complete PsApplication Interface
	C Matrix Factorization implemented Using JBösen APIs
	Bibliography

