
Grounded Knowledge Bases for
Scientific Domains
Dana Movshovitz-Attias

CMU-CS-15-120

August 2015

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
William W. Cohen, Chair

Tom Mitchell
Roni Rosenfeld

Alon Halevy, Google Research

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2015 Dana Movshovitz-Attias

This research was sponsored by SRI International under grant number 27001371, the National Institute of
General Medicines under grant number 1R01GM081293, Google, and the National Science Foundation un-
der grant numbers IIS-0811562, CCF-1247088, IIS-1250956 and CCF-1414030. The views and conclusions
contained in this document are those of the author and should not be interpreted as representing the official
policies, either expressed or implied, of any sponsoring institution, the U.S. government or any other entity.



Keywords: grounded language learning, natural language processing, knowledge base
construction, knowledge representation, statistical language modeling, unsupervised learn-
ing, semi supervised learning, bootstrapping, topic modeling, machine learning, proba-
bilistic graphical models, ontology, grounding, information extraction.



For Yair, with my love.



iv



Abstract

This thesis is focused on building knowledge bases (KBs) for scientific do-
mains. Specifically, we create structured representations of technical-domain
information using unsupervised or semi-supervised learning methods. This
work is inspired by recent advances in knowledge base construction based on
Web text. However, in the technical domains we consider here, in addition to
text corpora we have access to the objects named by text entities, as well as
data associated with those objects. For example, in the software domain, we
consider the implementation of classes in code repositories, and observe the
way they are being used in programs. In the biomedical realm, biological on-
tologies define interactions and relations between domain entities, and there is
experimental information on entities such as proteins and genes. We consider
the process of grounding, namely, linking entity mentions from text to exter-
nal domain resources, including code repositories and biomedical ontologies,
where objects can be uniquely identified. Grounding presents an opportunity
for learning, not only how entities are discussed in text, but also what are their
real-world properties.

The main contribution of this thesis is in addressing challenges from the
following research areas, in the context of learning about technical domains:
(1) Knowledge representation: How should knowledge about technical do-
mains be represented and used? (2) Grounding: How can existing resources
of technical domains be used in learning? (3) Applications: What applications
can benefit from structured knowledge bases dedicated to scientific data?

We explore grounded learning and knowledge base construction for the
biomedical and software domains. We first discuss approaches for improv-
ing applications based on well-studied statistical language models. Next, we
construct a deeper semantic representation of domain-entities by building a
grounded ontology, where entities are linked to a code repository, and through
an adaption of an ontology-driven KB learner to scientific input. Finally,
we present a topic model framework for knowledge base construction, which
jointly optimizes the KB schema and learned facts, and show that this frame-
work produces high precision KBs in our two domains of interest. We discuss
extensions to our model that allow: first, incorporating human input, leading
to a semi-supervised learning process, and second, grounding the modeled
entities with domain data.



vi



Acknowledgments

The past 5 years at CMU have been a crazy and fun experience. I survived this journey
thanks to the help and support of my friends and colleagues.

I am grateful to my advisor, William Cohen, for transforming me from a Computational
Biologist to a Natural Language Processing researcher. His experience and knowledge, his
patience, humor, and easy-going nature have all made our meetings both enjoyable and
insightful. I especially appreciate his approach to research: starting with a few interesting
examples and simple solutions, while keeping in mind the broad context of the problem
and relation to other areas.

I am fortunate to have in my thesis committee Tom Mitchell, Roni Rosenfeld and Alon
Halevy. Tom has a vast knowledge of Artificial Intelligence and I appreciated getting his
perspective on my work, always delivered with extraordinary kindness. It was a pleasure
TAing for Roni, and learning from his interactive and engaging teaching style. I also had a
fruitful and fun internship working in Alon’s group at Google, where I learned a lot about
ontologies, attributes and coffee. My conversations with everyone in the committee, your
advice, and support, have been valuable to me.

My work was influenced by thoughts shared with the great individuals I had the op-
portunity to meet, work with, and TA with, including: Bhavana Dalvi Mishra, Katie Ri-
vard Mazaitis, William Yang Wang, Frank Lin, Ramnath Balasubramanyan, Tae Yano, Ni
Lao, Nan Li, Mahesh Joshi, Einat Minkov, Malcolm Greaves, Freddy Chua, Premkumar
Devanbu, Lin Tan, Song Wang, Partha Pratim Talukdar, Ndapa Nakashole, Estevam Hr-
uschka, my internship hosts and co-workers: Steven Whang, Natasha Noy, Alon Halevy,
Eric Sun, and my TA collaborators: Ariel Procaccia, Emma Brunskill, Danai Koutra, Yair
Movshovitz-Attias, Roni Rosenfeld and Ming Sun.

The surest way to make it through grad-school is with great friends. Thanks for
the lunches, coffee breaks, parties, vacations, and for making it all so much fun! John
Wright, Sarah Loos and Jeremy Karnowski, Gabe and Cat Weisz, Danai Koutra and Walter
Lasecki, Aaditya Ramdas, Kate Taralova, Sam Gottlieb, João Martins, David Henriques,

vii



Akshay Krishnamurthy, David Naylor, Galit Regev and Tzur Frenkel, Or Sheffet, Yuzi
Nakamura, Mary Wootters, Jesse Dunietz, Nika Haghtalab, Deby Katz, Yu Zhao. Many
thanks also to the administrative staff at CMU, who are always looking out for us. Thank
you Deb Cavlovich, Catherine Copetas, Sharon Cavlovich and Sandy Winkler.

I thank my parents Meir and Eti Atias, and my brothers Nir and Ben Atias, for their
long-distance support, their fun visits to Pittsburgh, and for their encouragement through-
out my studies.

More than all, I thank my husband Yair Movshovitz-Attias, who has been here through
it all. Together we have been through army service, undergrad and graduate studies. With
your love, support, and mainly your endless stream of jokes, I know I can get anywhere. I
am looking forward to more joint adventures.

viii



Contents

1 Introduction 1

1.1 Building Grounded Knowledge Bases . . . . . . . . . . . . . . . . . . . 1

1.2 Thesis Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Chapter Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2 Statistical Language Modeling for a Software Domain Application 13

2.1 Introduction and Related Work . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.1 Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2.2 Testing Methodology . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Data and Training Methodology . . . . . . . . . . . . . . . . . . 17

2.3.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Implementation and Corpus . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Bootstrap Knowledge Base Learning for the Biomedical Domain 25

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

ix



3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.1 NELL’s Bootstrapping System . . . . . . . . . . . . . . . . . . . 31

3.3.2 Text Corpora . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.3 Ontology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3.4 BioNELL’s Bootstrapping System . . . . . . . . . . . . . . . . . 32

PMI Collocation with the Category Name . . . . . . . . . . . . . 32

Rank-and-Learn Bootstrapping . . . . . . . . . . . . . . . . . . . 33

3.4 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.4.1 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . 33

Configurations of the Algorithm . . . . . . . . . . . . . . . . . . 33

Evaluation Methodology . . . . . . . . . . . . . . . . . . . . . . 34

Data Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3.4.2 Extending Lexicons of Biomedical Categories . . . . . . . . . . . 35

Recovering a Closed Category Lexicon . . . . . . . . . . . . . . 35

Extending Lexicons of Open Categories . . . . . . . . . . . . . . 38

3.4.3 Named-Entity Recognition using a Learned Lexicon . . . . . . . 38

Using a Complete Dictionary . . . . . . . . . . . . . . . . . . . . 39

Using a Manually-Filtered Dictionary . . . . . . . . . . . . . . . 40

Using a Learned Lexicon . . . . . . . . . . . . . . . . . . . . . . 40

3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4 Grounded Software Ontology Construction using Coordinate Term Relation-
ships 43

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2.1 Semantic Relation Discovery . . . . . . . . . . . . . . . . . . . . 45

4.2.2 Grounded Language Learning . . . . . . . . . . . . . . . . . . . 48

4.2.3 Statistical Language Models for Software . . . . . . . . . . . . . 48

4.3 Coordinate Term Discovery . . . . . . . . . . . . . . . . . . . . . . . . . 48

x



4.3.1 Baseline: Corpus Distributional Similarity . . . . . . . . . . . . . 49

4.3.2 Baseline: String Similarity . . . . . . . . . . . . . . . . . . . . . 50

4.3.3 Entity Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.4 Code Distributional Similarity . . . . . . . . . . . . . . . . . . . 51

4.3.5 Code Hierarchies and Organization . . . . . . . . . . . . . . . . 51

4.4 Experimental Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.1 Data Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.4.2 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 Classification and Feature Analysis . . . . . . . . . . . . . . . . 56

4.5.2 Evaluation by Manual Labeling . . . . . . . . . . . . . . . . . . 57

4.5.3 Taxonomy Construction . . . . . . . . . . . . . . . . . . . . . . 59

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Topic Model Based Approach for Learning a Complete Knowledge Base 61

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2 KB-LDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.2.1 Inference in KB-LDA . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.2 Parallel Implementation . . . . . . . . . . . . . . . . . . . . . . 69

5.2.3 Data-driven discovery of topic concepts . . . . . . . . . . . . . . 69

5.3 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.3.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.3.2 Evaluating the learned KB precision . . . . . . . . . . . . . . . . 71

Precision of Instance Topics . . . . . . . . . . . . . . . . . . . . 71

Precision of Topic Concepts . . . . . . . . . . . . . . . . . . . . 73

Precision of Relations . . . . . . . . . . . . . . . . . . . . . . . 74

Precision of Hierarchy . . . . . . . . . . . . . . . . . . . . . . . 76

5.3.3 Overlap of KB-LDA topics with human-provided labels . . . . . 76

5.3.4 Extracting facts from an open IE resource . . . . . . . . . . . . . 78

xi



5.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6 Aligning Grounded and Learned Relations: A Comparison of Relations From
a Grounded Corpus with a Topic-Model Guided Knowledge Base 83

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.4.1 Entity Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.4.2 Relation Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4.3 Ontology Coherence . . . . . . . . . . . . . . . . . . . . . . . . 91

Known versus Suggested Relations . . . . . . . . . . . . . . . . 92

Comparison by Number of Topics . . . . . . . . . . . . . . . . . 94

Comparison with Ablated Models . . . . . . . . . . . . . . . . . 95

Full versus Sampled Corpus . . . . . . . . . . . . . . . . . . . . 96

6.4.4 Topic Coherence . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.4.5 Relation Coherence . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.5 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

7 Conclusion 103

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

7.2 Closing Thoughts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7.2.1 Limitations of Grounding . . . . . . . . . . . . . . . . . . . . . 104

7.2.2 Evaluating Knowledge Base Systems . . . . . . . . . . . . . . . 105

7.2.3 The Distinction Between Grounding and Semi-Supervision . . . . 105

7.2.4 Latent Tensor Representation of Knowledge Bases . . . . . . . . 106

7.3 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

xii



7.3.1 Improving Software Language Modeling with a Software Ontology 106

7.3.2 Learning a Grounded Ontology . . . . . . . . . . . . . . . . . . 107

7.3.3 Semi-Supervised Ontology Learning . . . . . . . . . . . . . . . . 109

Bibliography 111

xiii



xiv



List of Figures

1.1 Roadmap diagram. Each chapter in the thesis makes a contribution in
transforming input resources (e.g., a corpus, biomedical ontologies, or a
code repository) for the task of building a knowledge base or addressing a
domain specific application. In Chapter 2 we build models directly based
on a code repository corpus in order to address a software domain task.
Then, in Chapter 3 we use a higher level reasoning of language, by build-
ing a KB for the biomedical domain, based on biomedical ontologies. In
Chapter 4 we build a software ontology from corpus, and in Chapter 5 we
start from a corpus and build a complete KB. Finally, in Chapter 6 we com-
pare relations from a learned KB, with relations originating in biomedical
ontologies. For more details see Section 1.3. . . . . . . . . . . . . . . . . 7

2.1 Results per project, on the average percentage of characters saved per com-
ment, using n-gram (blue), LDA (light red) and Link-LDA (red) models
trained on three training sets: IN (solid line), OUT (dashed line), and SO
(dotted line). Top axis mark {1,2,3}-grams, and bottom axis mark the
number of topics used for LDA and Link-LDA models. The results are
also summarized in Table 2.1. . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 A sample from the BioCreative data set: (A) a list of gene identifiers (first
column) as well as alternative common names and symbols used to de-
scribe each gene in the literature (second to last columns). The full data
contains 7151 terms; and (B) sample abstract and two IDs of genes that
have been annotated as being discussed in the text. In this example, the
gene IDs FBgn0003204 and FBgn0004034 (can be found in the table) re-
fer to the raspberry and yellow genes which are mentioned in the abstract.
The full data contains 108 abstracts. . . . . . . . . . . . . . . . . . . . . 28

xv



3.2 Performance per learning iteration for gene lexicons learned using BioNELL
and NELL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

(a) Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

(b) Cumulative correct items . . . . . . . . . . . . . . . . . . . . . . . 37

(c) Cumulative incorrect items . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Visualization of predicted coordinate term pairs, where each pair of coor-
dinate classes is connected by an edge. Highly connected components are
labeled by edge color, and it can be noted that they contain classes with
similar functionality. Some areas containing a functional class group have
been labeled with the name of the class in red, and a magnified version of
that area can be found in Figure 4.2 for easier readability. . . . . . . . . . 46

4.2 A magnification of several clusters from Figure 4.1. The classes in each
cluster belong to a similar functional class group. . . . . . . . . . . . . . 47

(a) Exception Classes . . . . . . . . . . . . . . . . . . . . . . . . . . 47

(b) Utility Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

(c) GUI Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

(d) IO Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.3 Classification Pipeline for determining whether nouns X and Y are co-
ordinate terms. Each noun is mapped to an underlying class from the
code repository with probability, p(Class|Word). Textual features are ex-
tracted based on the input words, code based features are extracted using
the mapped classes, and all of these are given to the coordinate term clas-
sifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.4 Manual Labeling Results. F1 results of the top 1000 predicted coordinate
terms by rank. The final data point in each line is labeled with the F1 score
at rank 1000. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.1 Plate diagram of KB-LDA: a model for constructing knowledge bases,
which extends LDA topic models and mixed-membership stochastic block
models. In this model, information is shared between three main compo-
nents (Ontology, Relations, and Documents), through common latent top-
ics over noun phrases (σk) and verb phrases (δk′). Each of the presented
components maps to an element in the learned knowledge base structure.
For more details see Section 5.2. . . . . . . . . . . . . . . . . . . . . . . 64

xvi



5.2 Subset of a sample of a hierarchy learned with KB-LDA with 50 topics.
For each topic, we display a name extracted for the topic by our system
(bold), and words selected from the top 20 words of that topic. . . . . . . 72

5.3 Sample relations learned with KB-LDA. For each relation we display words
selected from the top 10 words of the subject topic, verb topic, and object
topic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5.4 Average Match (top) and Group (bottom) precision of top tokens of 50
topics learned with KB-LDA, according to expert (dark blue) and non-
expert (light blue, stripes) labeling. . . . . . . . . . . . . . . . . . . . . . 74

5.5 Precision-recall curves of rankers of open IE triples by software relevance,
based on KB-LDA probabilities (blue), and ReVerb confidence (red). A
star is pointing the highest F1. . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Fragment of CALBC ID-based ontology. This ontology is the product of
connecting annotated entities that share annotation IDs. . . . . . . . . . . 87

6.2 Relations inferred by an ontology learned over 50 topics. . . . . . . . . . 93

6.3 Comparison of ontologies learned by models over 20, 50, or 100 topics. . 95

6.4 Left: Comparison of ontologies created by the full KB-LDA model, and
by ablated models, missing the Relations component, the Documents com-
ponent, or both. Each depicted ablation model lists the components that
were included in that model. Right: Comparison of ontologies created
based on the complete corpus versus a sample of 50K documents. . . . . 96

6.5 Comparison of topic precision of the full KB-LDA models and ablated
models using only one or two of the main components: Ontology, Rela-
tions, and Documents. Each depicted ablation model lists the components
that were included in that model. . . . . . . . . . . . . . . . . . . . . . . 97

6.6 Comparison of topic precision by the number of models used during train-
ing (left), and of models created with a complete corpus versus a sample
of documents (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

6.7 Relation precision. Precision is measured from Subject-to-Object (left fig-
ures) or Object-to-Subject (right). Top: Comparison between full and ab-
lation models. Middle: Comparison by number of topics. Bottom: Com-
parison of models trained using full corpus statistics or a sample of 50K
documents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

xvii



7.1 Coordinate terms extension to KB-LDA. . . . . . . . . . . . . . . . . . . 109

7.2 Tables extension of KB-LDA. . . . . . . . . . . . . . . . . . . . . . . . 109

xviii



List of Tables

1.1 Thesis overview. This table lists the contributions of each chapter in the
thesis within the areas of Knowledge Representation, Grounding, and Ap-
plication, as applied to the scientific domains of Software development or
Biomedical research. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Average percentage of characters saved per comment using n-gram, LDA
and Link-LDA models trained on three training sets: IN, OUT, and SO.
The results are averaged over nine JAVA projects (with standard deviations
in parenthesis). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2 Sample comment from the Minor-Third project predicted using IN, OUT
and SO based models. Saved characters are underlined and green. More
prediction examples can be found in Table 2.4. . . . . . . . . . . . . . . 19

2.3 Average words per project for which each tested model completes the word
better than the other. This indicates that each of the models is better at
predicting a different set of comment words. . . . . . . . . . . . . . . . . 21

2.4 Examples of predicted characters (in green and underlined) of classes from
the Lucene project, taken from the IN dataset. Each line contains a com-
ment fragment, where the highlighted characters have been predicted us-
ing either a trigram, an LDA, or a link-LDA model. . . . . . . . . . . . . 23

3.1 Two samples of fruit-fly genes, taken from the complete fly gene dictio-
nary. High PMI Seeds are the top 50 terms selected using PMI ranking,
and Random Seeds are a random draw of 50 terms from the dictionary.
These are used as seeds for the Fly Gene category (Section 3.4.2). Notice
that the random set contains many terms that are often not used as genes
including arm, 28, and dad. Using these as seeds can lead to semantic
drift. In contrast, high PMI seeds exhibit much less ambiguity. . . . . . . 27

xix



3.2 Learning systems used in our evaluation, all using the PubMed biomedical
corpus and the biomedical ontology described in Sections 3.3.2 and 3.3.3. 34

3.3 Precision, total number of instances (Total), and correct instances (Cor-
rect) of gene lexicons learned with BioNELL and NELL. BioNELL sig-
nificantly improves the precision of the learned lexicon compared with
NELL. When examining only the first 132 learned items, BioNELL has
both higher precision and more correct instances than NELL (last row,
NELL by size 132). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.4 Precision, total number of instances (Total), and correct instances (Cor-
rect) of learned lexicons of Chemical Compound (CC), Drug, and Disease.
BioNELL’s lexicons have higher precision on all categories compared with
NELL, while learning a similar number of correct instances. When re-
stricting NELL to a total lexicon size similar to BioNELL’s, BioNELL has
both higher precision and more correct instances (last row, NELL by size). . 38

3.5 Precision, total number of predicted genes (Total), and correct predic-
tions (Correct), in a named-entity recognition task using a complete lex-
icon, a filtered lexicon, and lexicons learned with BioNELL and NELL.
BioNELL’s lexicon achieves the highest precision, and makes more cor-
rect predictions than NELL. . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1 Definition of two types of code-contexts for a class type, Class, or an
instantiation of that type (e.g., class). . . . . . . . . . . . . . . . . . . 52

4.2 Sample set of word pairs with high and low PMI scores. Many of the high
PMI pairs refer to software entities such as variable, method and Java class
names, whereas the low PMI pairs contain more general software terms. . 55

4.3 Cross validation accuracy results for the coordinate term SVM classifier
(Code & Corpus), as well as baselines using corpus distributional similar-
ity, string similarity, all corpus based features (Corpus Only), or all code
based features (Code Only), and all individual code based features. The
weighted version of the code based features (see Section 4.4.2) is in paren-
thesis. Results are shown for both the Coord and Coord-PMI datasets. . . 56

4.4 Top ten coordinate terms predicted by classifiers using one of the fol-
lowing features: code distributional similarity, package hierarchy ances-
try (A3

package), and type hierarchy ancestry (A5
type). All of the displayed

predictions are true. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xx



5.1 KB-LDA notation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.2 KB-LDA generative process. . . . . . . . . . . . . . . . . . . . . . . . . 66

5.3 Top 20 instance topics learned with KB-LDA. For each topic we show the
top 2 concepts recovered for the topic, and top 10 tokens. In italics are
words marked as out-of-topic by expert labelers. . . . . . . . . . . . . . . 75

5.4 Precision of topic concepts, relations, and subsumptions. For items ex-
tracted from the model (KB-LDA), and randomly (Random), we show the
number of items marked as correct, and precision in parentheses (p), as
labeled by 1, 2, or 3 non-expert workers, and the average precision by
experts. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.5 Top tags associated with sample topics. . . . . . . . . . . . . . . . . . . 77

5.6 Docs and Tag overlap of human-provided tags with KB-LDA topics, and
frequent tokens. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.7 Top and bottom ReVerb software triples ranked with KB-LDA (the tuple
〈users, can upload, files〉 is repeated in the data). . . . . . . . . . . . . . . 78

6.1 Partial or incorrect annotations found in the CALBC corpus. Each row
contains an entity that has been partially or otherwise incorrectly annotated
in the corpus. The characters that have been annotated are marked in red
and italicized. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

6.2 New entities discovered by KB-LDA. We include a sample of entities that
were extracted by KB-LDA an found in frequent relations, and yet were
not annotated in the corpus. The discovered entities are binned in one of
the following categories: Biological entities and processes (left table), and
Experimental terminology (right table). See more details in section 6.4.1. 90

6.3 Example subsumption relation. . . . . . . . . . . . . . . . . . . . . . . . 92

xxi



xxii



Chapter 1

Introduction

1.1 Building Grounded Knowledge Bases

Algorithmic advances in the fields of Natural Language Processing and Machine Learn-
ing have enabled a surge in the construction of large-scale knowledge bases from Web
resources. Knowledge bases such as YAGO [Suchanek et al., 2007, 2008], DBpedia [Auer
et al., 2007], and Freebase [Google, 2011] are derived mainly from Wikipedia, while oth-
ers are learned from large corpora of Web pages, including NELL [Carlson et al., 2010],
Knowledge Vault [Dong et al., 2014], and TextRunner [Yates et al., 2007]. These systems
transform unstructured input into some structured representation, which includes large col-
lections of entities, a mapping of entities to semantic classes, and relations among them.
In the Open Information Extraction paradigm, used for example in TextRunner, the en-
tire system is extracted using a single pass over the corpora. Conversely, systems such as
NELL use an iterative bootstrapping approach, where each iteration improves the existing
KB. The existence of this large variety of KBs has promoted development of applications
that are based on semantics and can take advantage of this type of structured knowledge,
which did not previously exist in large scale. This in turn is contributing to the creation of
improved KBs, including YAGO2 which integrates a spatio-temporal dimension [Hoffart
et al., 2013], and YAGO3 which combines multilingual information [Mahdisoltani et al.,
2014].

The KBs described above draw their strength from the plentitude of available Web data.
They describe interesting entities and topics that are discussed and written about by people.
Still, some information, in particular technical and scientific knowledge, is harder to reason
over with existing NLP technology. Specialized domain terminology, which often includes

1



domain specific language constructs, affects standard techniques used for KB construction,
including part-of-speech tagging, parsing, entity extraction, and relation understanding.
For example, the phrase “Class not found exception” is recognized by standard English
parsers as a verb relation between a class and an exception, which can be summarized as:
NOT FOUND(CLASS, EXCEPTION). However, as known to Java programmers, this is a
type of an exception, meaning that it is a noun phrase.

Notably, technical information is not always conveyed through natural discourse. In
this thesis, we consider challenges in building KBs for technical domains, specifically,
the biomedical and software domains, where in addition to text corpora we have access
to the objects named by text entities, as well as data associated with those objects. For
example, in the software domain, we can consider the implementation of classes in a code
repository, and we can observe the way they are being used statically or dynamically in
programs. In the biomedical realm, biological ontologies define interactions and relations
between entities in this domain, and there is experimental information on domain entities
such as proteins and genes. Here, we consider the process of grounding, namely, link-
ing entity mentions from text to external domain resources, including code repositories
and biomedical ontologies, where domain objects can be uniquely identified. Grounding
entities to the additional resources available in technical domains, present an opportunity
for learning, not only how entities are discussed, but also how they are used and what are
their real-world properties. Some properties can be learned from text, such as research
literature from the domain, while others are only available through other sources. Hence,
in this thesis, we strive for a combined approach.

The main contribution of this thesis is in answering questions from the following re-
search areas, in the context of learning about a technical domain:

Knowledge Representation. How should knowledge about a technical domain be repre-
sented and used? The answer is often task-specific, and so in this thesis we consider
tasks that range from comment prediction, which can make use of a shallow sta-
tistical language modeling, to tasks that require more structured knowledge, like
information extraction.

Grounding. How can existing resources of technical domains be used in learning? Avail-
able resources, which can be linked to textual data, are domain-specific, and here
we consider two cases: In the biomedical domain, many hand-built narrow ontolo-
gies are available, which describe subfields within biology; In the software realm,
no ontologies exists, however, some of the objects and discourse (such as software
modules) exist in digital form. We use biomedical ontologies as seed information to
a semi-supervised bootstrapping learning system, and we ground software entities

2



by linking them with their implementation in a code repository.

Applications. What applications can benefit from the use of structured knowledge bases
dedicated to scientific data? While this thesis is not focused on applications, we
consider them as an instrument for better understanding the role of grounding in
technical domains.

Table 1.1 summarizes our contributions in the context of the three research areas and
the two technical domains we studied. Next, Section 1.2 formalizes the thesis statement.
Section 1.3 provides a high-level roadmap, describing the development of the work along
the following chapters. Finally, Section 1.4 gives a short synopsis of each chapter.

Software Biomedical

Knowledge Representation

• Statistical language modeling of software
code [Chapter 2, 2013]

• Grounded ontology construction using
coordinate term relationships [Chapter 4,
2015b]

• Topic model based approach for learning
a complete knowledge base
[Chapter 5, 2015a]

• Bootstrap knowledge base learning for
the biomedical domain
[Chapter 3, 2012b, 2012a]

• Aligning relations from a grounded cor-
pus with a topic-model guided knowl-
edge base [Chapter 6]

Grounding

• Grounded ontology construction using
coordinate term relationships
[Chapter 4, 2015b]

• Grounding in statistical language models
[Chapter 2, 2013]

• Relation extraction from a grounded cor-
pus of annotated biomedical entities
[Chapter 6]

Applications

• Programming comments prediction
[Chapter 2, 2013]

• Extracting domain-specific facts from an
open IE resource [Chapter 5, 2015a]

• Named entity recognition based on a
learned gene lexicon
[Chapter 3, 2012b, 2012a]

Table 1.1: Thesis overview. This table lists the contributions of each chapter in the thesis
within the areas of Knowledge Representation, Grounding, and Application, as applied to
the scientific domains of Software development or Biomedical research.

3



1.2 Thesis Statement

In this thesis I consider strings not only as text but as potential technical elements from
a scientific domain. I then revisit core NLP problems associated with knowledge base
construction and KB-driven information retrieval in the context of scientific domains. I
show that the grounding process, linking entities in a target domain to specialized data,
suggests modifications to the unsupervised and semi-supervised algorithms used to resolve
NLP tasks in that domain. More formally:

“Grounding entities to specialized data from a scientific domain facilitates
improved unsupervised and semi-supervised algorithms for Knowledge Base
construction for that domain”

1.3 Thesis Roadmap

We begin our study of information extraction for scientific applications by manipulating
well-studied statistical language models for a software domain application (Chapter 2).
Here, we are interested in the task of predicting code comments. Code and comment
tokens from a code repository are modeled using statistical models with increasing lev-
els of language and domain understanding: (1) the n-gram model, a shallow statistical
model that has been found to be a strong language predictor; (2) the LDA topic model,
which has a greater understanding of language semantics, and (3) an extension of LDA,
called Link-LDA, which allows us to encode some basic domain understanding (namely,
a distinction between code and text tokens). We show that a surprisingly large fraction of
comment text is predictable, as we were able to complete up to 47% of comment char-
acters. This is especially true for comments within a single project that describe similar
classes, methods, and algorithms. Notably, performance on this task does not seem to
correlate with our intuitive notion of what it means to understand text, as we found that
the n-gram model performed best on this task. However, different models lead to different
predictions. Moreover, intuitively, encoding domain understanding into the topic models
lead to improved performance using the Link-LDA model. We hypothesized that gaining
a better understanding of the entities in the domain, could further improve performance.
Consider the following comment fragment:

“In this method we read the next double from the input”

The type double could reasonably be replaced by float, and even long or int, as
they all belong in the category of numerical data types. In this example, understanding

4



the semantics and the underlying categorical structure of our domain can be helpful in the
prediction task.

Knowledge bases provide a standard NLP framework for gaining categorical and se-
mantic understanding about the information they model. Many existing KB population
systems rely on an input corpus and a predefined ontology in the form of a hierarchy of
categories describing a domain of interest. The system then populates the KB with facts
from the corpus that match the predefined categories. However, to the best of our knowl-
edge, no extensive software ontology exists, and so, in Chapter 3 we turn to the biomedical
domain, which has many existing ontologies, describing categories from Life Science and
Chemistry. In this work we aim at constructing a deeper representation of domain-specific
entities and knowledge found in the text, by constructing a KB for this domain. In partic-
ular, we adapt a semi-supervised bootstrapping algorithm for knowledge base population,
using biomedical text and the existing domain ontologies. We show here that KB popula-
tion is possible in technical domains, even using existing ontologies that were not defined
for the purpose of KB population, with modest extensions to existing bootstrapping meth-
ods.

The main disadvantage of a KB population approach is that it relies on an input on-
tology definition, and therefore cannot be used to explore domains where no extensive
ontology exists, such as the software domain. This motivates our work in Chapters 4
and 5, where we explore different approaches to developing ontologies from corpora alone.
In Chapter 4 we construct a grounded software ontology for entities that refer to Java
classes. We use distant supervision to predict coordinate relations, which indicate sim-
ilarity, among pairs of class entities that were discovered in a text corpus. We describe
a method for linking mentions the classes in text to a specific implementation in a tar-
get repository, and we then describe a distributional similarity measure over pairs of Java
classes, given their implementation. We combine this information with distributional sim-
ilarity measures based on the text corpus, and finally we predict pairwise similarity based
on all signals. By aggregating the predicted similarity pairs, we create an ontology that can
be used by ontology-driven KB population approaches such as the one described in Chap-
ter 3. The advantage of this ontology is that it reflects statistics in language and code; this
is in contrast to human-created ontologies such as the ones from the biomedical domain, or
those typically used in open-domain KB population methods. The main limitation of this
method is that grounding software entities directly to code limits the scope of the learned
ontology, as it can only reason over entities that appear directly in the code. The resulting
ontology is, therefore, missing higher level software concepts, including ones that discuss
the users of the applications, the computer resources it consumes, and the design patterns
used in its implementation. This lead us to a more general approach for KB construction

5



which exploits more information found in the text.

In Chapter 5 we describe our main contribution: a novel model for corpus-driven KB
construction, named KB-LDA, in which the schema and the facts are both learned from
the corpus. The model extends topic models and block stochastic block models, and it
is unsupervised. This means that it learns the optimal latent structure of the input corpus
together with the best-matching facts for the structure. It learns from relations extracted
using basic text patterns, combined with corpus-wide statistics. The result is a KB with a
hierarchical topic structure and typed relation definitions among the topics. Using this ap-
proach we have built a software KB which goes beyond the code and includes concepts for
programming paradigms, design patterns, databases, and a variety of software platforms
and tools.

The KB construction model described above does not take into account pre-existing
domain knowledge. This fact makes it useful for exploration of new domains, as we
have demonstrated on the software domain. However, in domains where high-quality
knowledge exists, such as human-curated biomedical ontologies, can this data be used to
improve the KB learning process? By how much? To answer these questions, we return to
the study of the biomedical domain. In Chapter 6, we analyze an alignment of grounded
relations emerging from biomedical ontologies with those learned from a corpus using
KB-LDA. We show that: (1) our model finds many known entities and relations, which
validates our results; (2) KB-LDA discovers new entities and relations, showing the added
value of learning from language statistics, even in this well-researched domain; and (3)
some entities and relations are only found in the known relations, which indicates the
potential of grounding the KB learning process.

Finally, in Chapter 7 we discuss potential extensions to our KB construction model that
allow: first, incorporating human input, leading to a semi-supervised learning process,
and second, grounding the modeled entities with domain data. We further discuss how
scientific knowledge bases can be used to improve domain-specific language modeling.

To summarize, we refer the reader back to the key idea presented in the thesis state-
ment: In this thesis we address tasks from technical domains through a semantic un-
derstanding of those domains, which we achieve by constructing knowledge bases. We
have found that grounding the entities found in domain corpora to specialized resources
that uniquely identify objects in the domain, can improve KB building for that domain.
Throughout the different projects described in this thesis, we have demonstrated a variety
of methods for improving KB construction that are supported by the specialized resources
available in the software and biomedical domain.

6



NELL 

KB 

I successfully done with provision 
on both side client and server!
and when I call this code for the 
first time 1st if(line no. 2) and 2nd 
if(line no. 8) gets executed and if I 
call this code 2nd time then 1st 
else(line no.4) get executed as 
client is already provisioned but 
here it execute 2nd if(line no. 8) 
instead of executing 2nd else(line 
no. 10) and throws an exception 
at line no. 9!

serverprovision.Apply(); "There is 
already an object named 
'schema_info' in the database.”!
And if i try to synchronize then it 
throws an exception at line 
syncOrchestrator.Synchronize(); 
"The current operation could not 
be completed because the 
database is not provisioned for 
sync or you not!

.4) get executed as client is 
already provisioned but here it 
execute 2nd if(line no. 8) instead 
of executing 2nd else(line no. 10) 
and throws an exception at line 
no. 9 serverprovision.Apply(); 
"There is already an object 
named 'schema_info' in the 
database.”!
And if i try to synchronize then it 
throws an exception at line!

Domain Application 

Software Biomedical

✓

↵

�

z

w

✓

↵

�

ztext zcode

wtext wcode

p(wi|hi) 

Statistical 
Language  

Models 
[Chapter 2] 

BioNELL 
[Chapter 3] 

Ontology 
Relations 

Documents 

Grounded Ontology 
Construction  

[Chapter 4] 

KB-LDA 
[Chapter 5] 

Aligning Grounded and 
Learned Relations 

[Chapter 6]  

Figure 1.1: Roadmap diagram. Each chapter in the thesis makes a contribution in trans-
forming input resources (e.g., a corpus, biomedical ontologies, or a code repository) for
the task of building a knowledge base or addressing a domain specific application. In
Chapter 2 we build models directly based on a code repository corpus in order to address a
software domain task. Then, in Chapter 3 we use a higher level reasoning of language, by
building a KB for the biomedical domain, based on biomedical ontologies. In Chapter 4
we build a software ontology from corpus, and in Chapter 5 we start from a corpus and
build a complete KB. Finally, in Chapter 6 we compare relations from a learned KB, with
relations originating in biomedical ontologies. For more details see Section 1.3.

Figure 1.1 summarizes the progression between thesis chapters and the way they sup-
port the thesis statement. In Chapter 4 we make a direct leap from corpus to a task in
the software domain, which leads us to the conclusion that greater domain understanding
can contribute to an improved solution for the domain application. Then, in Chapter 3

7



we proceed to building a knowledge base for the biomedical domain using existing do-
main ontologies. However, similar resources do not exist in the software domain, and so
in Chapter 4 we construct a grounded software ontology, describing Java classes, from a
combination of a corpus and code repository. Then, in Chapter 5 we take a more general
approach and build a corpus-driven KB, describing a large variety of software concepts. In
Chapter 6 we use the same framework to build a biomedical KB, and we close the loop, by
comparing our the learned KB relations with ones that emerge directly from biomedical
ontologies.

1.4 Chapter Synopsis

Statistical language modeling of software code [Chapter 2]

We consider an application of statistical language modeling to the software domain, il-
lustrating the potential of structured knowledge in assisting downstream software under-
standing tasks. Given an implementation of a Java class, we are interested in predicting
a natural language description matching the implementation. Beyond a summarization
of the conceptual idea behind the code, this type of description can be viewed as a form
of document expansion, providing significant terms relevant to the implementation. We
experiment with LDA, link-LDA and n-gram models to model the correlations between
code segments and the comments that describe them. With these we model local syntactic
dependencies, or term relevancy based on the topic of the code, which are used to predict
the main class comment of Java classes.

We evaluate our models based on their comment-completion capability in a setting
similar to code completion tools that are built into standard code editors, and show that
they can save a significant amount of typing. We also implemented a plugin for the Eclipse
IDE based on one of the models, which assists in comment completion in real time.

Bootstrap knowledge base learning for the biomedical domain [Chap-
ter 3]

Motivated by recent advances in knowledge base systems extracted from the Web, in this
work we describe an open information extraction system for biomedical text. Leveraging
the large available collections of biomedical data, in our system, an initial ontology and
set of example seeds are automatically derived from existing resources. This knowledge

8



base is then populated using a coupled semi-supervised bootstrapping approach, based
on NELL, which uses multiple set expansion techniques which are combined by a joint
learning objective. As part of this work, we show that NELL’s bootstrapping method
is susceptible to ambiguous starting seeds, and can quickly lead to an accumulation of
erroneous terms and contexts when learning a semantic class. We address this problem
by introducing a method for assessing seed quality at each bootstrapping iteration, using
point-wise mutual information.

We analyzed open biomedical categories learned with our system, based on dictionar-
ies taken from Freebase, and we show that the proposed algorithm produces significantly
more precise classes. Additionally, we used learned gene lexicons to improve annotations
in a named-entity recognition task.

Grounded Software Ontology Construction using Coordinate Term Re-
lationships [Chapter 4]

Discovering semantic relations between text entities is a key task in natural language un-
derstanding, which is a critical component that enables the success of knowledge repre-
sentation systems. We examine coordinate relations between text entities that potentially
refer to Java classes. Usually, relations are found by examining corpus statistics associ-
ated with text entities. Here we explore the idea of grounding the relation discovery with
information about the class implementation, and coupling this with corpus statistics. To
this end, we develop a similarity measure for Java classes using distributional informa-
tion about how they are used in software, which we combine with corpus statistics on the
distribution of contexts in which the classes appear in text that discusses code.Our results
are verified by human labeling and are also compared with coordinate relations extracted
using high-precision Hearst patterns.

We see this work as a first step towards building a knowledge representation system for
the software domain, in which text entities refer to elements from a software code base,
including classes, methods, applications, and programming languages. As an initial step,
we combine the predicted coordinate pairs from this study, by aggregating them into a
graph where entities are nodes and edges are determined by a coordinate term relation.
Using methods for community detection on graphs, we discover that highly connected
component in the resulting graph correspond to functional software groups, such as UI
elements, utility classes, exceptions, and graphic objects. This hierarchy highlights class
interactions that cannot be directly recovered through traditional software taxonomies,
such as the type hierarchy or class namespace.

9



Topic Model Based Approach for Learning a Complete Knowledge
Base [Chapter 5]

Many existing knowledge bases, including Freebase, Yago, and NELL, rely on a fixed
ontology, given as an input to the system, which defines the data to be cataloged in the
KB, i.e., a hierarchy of categories and relations between them. The system then ex-
tracts facts that match the predefined ontology, where in some cases, the input ontology is
later extended with automatically discovered relations. We propose an unsupervised topic
model, named KB-LDA, that jointly learns a latent ontological structure, including typed
relations, of an input corpus, and identifies facts from the corpus that match the learned
structure. Our approach combines mixed membership stochastic block models and topic
models to infer a structure by jointly modeling text, a latent concept hierarchy, and latent
semantic relationships among the entities mentioned in the text. The model learns the op-
timal latent structure of the corpus together with the best-matching facts. As a case study,
we apply the model to a corpus of Web documents from the software domain, and learn a
software KB. We evaluate the accuracy of the various components of the learned KB, and
compare our results to human provided labels, and to relations extracted from an open IE
resource.

Aligning Grounded and Learned Relations: A Comparison of Rela-
tions From a Grounded Corpus with a Topic-Model Guided Knowl-
edge Base [Chapter 6]

KB-LDA is an unsupervised topic model for knowledge base construction. As a case
study, the model was used to create a knowledge base for the software domain, for which
the were no existing structured knowledge resources. In contrast, in the biomedical do-
main, many ontologies exist which describe sub-areas in the domain, including proteins,
small chemical molecules and organism species. Grounding the KB learning process, by
augmenting it with available domain resources such as biomedical ontologies, can po-
tentially improve the learned structure. In order to estimate this potential, in this work,
we investigate an alignment of relations emerging from biomedical ontologies with those
learned from a corpus using KB-LDA.

We propose a method for extracting entity-to-entity relations from a corpus in which
entities were annotated using state-of-the-art named-entity recognition systems, which in-
tegrate information from multiple known biomedical ontologies. Annotated entities in the
corpus are grounded to specific entries in the source ontologies. We use KB-LDA to learn

10



a KB over the same corpus, regardless of the given annotations, meaning that the learning
process is not grounded. We then align relations found using the two methods, and we
consider the overlap of the two systems as a hint at the potential of grounding the KB
learning process, by combining corpus-based information with information from known
ontologies.

Future Directions [Chapter 7]

The key idea behind the work presented in this thesis is that grounding, the process of
linking an individual word token to the real-world entity it represents, has the potential
to advance statistical modeling approaches for knowledge base construction, especially in
the realm of scientific domains, where high-quality grounding data is available. This idea
extends vector-based document modeling, a standard in NLP today, in that vector statistics
may be drawn not only directly from text corpora but also extended by statistics from
more material resources. In chapter 7 we discuss lessons that were learned from this work,
including the parallels between generation text and code, the challenges of knowledge
base evaluation and the potential of automating this process, and different opportunities
for grounding. Finally we explore possible extensions of the presented work, including an
improvement to language modeling for scientific domains using induced ontologies, and
extensions to the KB-LDA topic model framework that enable grounding KB construction
learning, or augmenting it with small amounts of labeled data, leading to a semi-supervised
framework.

11



12



Chapter 2

Statistical Language Modeling for a
Software Domain Application

Statistical language models have successfully been used to describe and analyze natural
language documents. Recent work applying language models to programming languages
is focused on the task of predicting code, while mainly ignoring the prediction of program-
mer comments. In this work, we predict comments from JAVA source files of open source
projects, using topic models and n-grams, and we analyze the performance of the models
given varying amounts of background data on the project being predicted. We evaluate
models on their comment-completion capability in a setting similar to code-completion
tools built into standard code editors, and show that using a comment completion tool can
save up to 47% of the comment typing.

2.1 Introduction and Related Work

Statistical language models have traditionally been used to describe and analyze natural
language documents. Recently, software engineering researchers have adopted the use of
language models for modeling software code. Hindle et al. [2012] observe that, as code is
created by humans it is likely to be repetitive and predictable, similar to natural language.
NLP models have thus been used for a variety of software development tasks such as code
token completion [Han et al., 2009, Jacob and Tairas, 2010], analysis of names in code
[Lawrie et al., 2006, Binkley et al., 2011] and mining software repositories [Gabel and Su,
2008].

An important part of software programming and maintenance lies in documentation,

13



which may come in the form of tutorials describing the code, or inline comments provided
by the programmer. The documentation provides a high level description of the task per-
formed by the code, and may include examples of use-cases for specific code segments
or identifiers such as classes, methods and variables. Well documented code is easier to
read and maintain in the long-run but writing comments is a laborious task that is often
overlooked or at least postponed by many programmers.

Code commenting not only provides a summarization of the conceptual idea behind
the code [Sridhara et al., 2010], but can also be viewed as a form of document expansion
where the comment contains significant terms relevant to the described code. Accurately
predicted comment words can therefore be used for a variety of linguistic uses including
improved search over code bases using natural language queries, code categorization, and
locating parts of the code that are relevant to a specific topic or idea [Tseng and Juang,
2003, Wan et al., 2007, Kumar and Carterette, 2013, Shepherd et al., 2007, Rastkar et al.,
2011]. A related and well studied NLP task is that of predicting natural language caption
and commentary for images and videos [Blei and Jordan, 2003, Feng and Lapata, 2010,
2013, Wu and Li, 2011].

In this work, our goal is to apply statistical language models for predicting class com-
ments. We show that n-gram models are extremely successful in this task, and can lead to
a saving of up to 47% in comment typing. This is expected as n-grams have been shown
as a strong model for language and speech prediction that is hard to improve upon [Rosen-
feld, 2000]. In some cases however, for example in a document expansion task, we wish
to extract important terms relevant to the code regardless of local syntactic dependencies.
We hence also evaluate the use of LDA [Blei et al., 2003] and link-LDA [Erosheva et al.,
2004] topic models, which are more relevant for the term extraction scenario. We find that
the topic model performance can be improved by distinguishing code and text tokens in
the code.

2.2 Method

2.2.1 Models

We model a training code repository with three models that have increasing levels of lan-
guage and domain understanding. First, we train n-gram models, which have a shallow
statistical understanding of language, and yet have been found to be strong language pre-
dictors [Rosenfeld, 2000], making them suitable for our task. We train n-gram models
(n = 1, 2, 3) over source code documents containing sequences of combined code and text

14



tokens from multiple training datasets (described below). We use the Berkeley Language
Model package [Pauls and Klein, 2011] with absolute discounting (Kneser-Ney smooth-
ing; Kneser and Ney [1995]) which includes a backoff strategy to lower-order n-grams.

Next, we model documents from the repository with LDA topic models [Blei et al.,
2003]. LDA models documents as bags-of-words, taking into account word co-occurrence
in documents. This model has a greater amount of understanding of language semantics
than the n-gram model. We use LDA topic models trained on the same data, with 1, 5,
10 and 20 topics. The joint distribution of a topic mixture θ, and a set of K topics z, for
a single source code document with N observed word tokens, d = {wi}Ni=1, given the
Dirichlet parameters α and β, is therefore

p(θ, z, d|α, β) = Dir(θ|α)
∏
wi∈d

p(z|θ)p(wi|z, β) (2.1)

where Dir(θ|α) is the topic distribution of document d (sampled from a Dirichlet distri-
bution with parameter α), p(z|θ) is the topic of word wi (sampled from θ), and p(wi|z, β)
is the probability of wi in the sampled topic z. For further reading on the LDA model
we refer the reader to [Blei et al., 2003]. Under the models described so far, there is no
distinction between text and code tokens.

Finally, we consider an extension of the LDA model, named link-LDA [Erosheva et al.,
2004], which allows us to encode a basic amount of domain understanding into the model.
Here, we consider documents as having a mixed membership of two entity types, code and
text tokens, d = ({wcode

i }Cn
i=1, {wtext

i }Tn
i=1), where the text words are tokens from comment

and string literals, and the code words include the programming language syntax tokens
(e.g., public, private, for, etc’) and all identifiers. Documents with multiple entity
types can be modeled with link-LDA, and so in this case, we train link-LDA models with 1,
5, 10 and 20 topics. Under the link-LDA model, the mixed-membership joint distribution
of a topic mixture, words and topics is then

p(θ, z, d|α, β) = p(θ|α) ·
∏

wtext
i ∈d

p(ztext|θ)p(wtext
i |ztext, β)· (2.2)

∏
wcode

i ∈d

p(zcode|θ)p(wcode
i |zcode, β)

where θ is the joint topic distribution, d is the set of observed document words, ztext is
a topic associated with a text word, and zcode a topic associated with a code word. The
link-LDA model allows us to encode a clear distinction between tokens originating from
the code or text by learning distinct topics for each entity type. So while in the LDA

15



model, topic statistics are learned from all tokens, when using link-LDA, text topics are
learned only based on tokens that appear in text, and only the joint document distribution is
affected by the co-occurrence of text and code tokens in documents. Of the three categories
of models we consider here, the link-LDA model has the greatest amount of language and
domain understanding.

The LDA and link-LDA models use Gibbs sampling [Griffiths and Steyvers, 2004] for
topic inference, based on the implementation of Balasubramanyan and Cohen [2011] with
single or multiple entities per document, respectively.

2.2.2 Testing Methodology

Our goal is to predict the tokens of the JAVA class comment (the one preceding the class
definition) in each of the test files. Each of the models described above assigns a probabil-
ity to the next comment token. In the case of n-grams, the probability of a token word wi

is given by considering previous words p(wi|wi−1, . . . , w0). This probability is estimated
given the previous n− 1 tokens as p(wi|wi−1, . . . , wi−(n−1)).

For the topic models, we separate the document tokens into the class definition and the
comment we wish to predict. The set of tokens of the class comment wc, are all considered
as text tokens. The rest of the tokens in the document wr, are considered to be the class
definition, and they may contain both code and text tokens (from string literals and other
comments in the source file). We then compute the posterior probability of document
topics by solving the following inference problem conditioned on the wr tokens

p(θ, zr|wr, α, β) =
p(θ, zr, wr|α, β)
p(wr|α, β)

(2.3)

This gives us an estimate of the document distribution, θ, with which we infer the proba-
bility of the comment tokens as

p(wc|θ, β) =
∑
z

p(wc|z, β)p(z|θ) (2.4)

Following Blei et al. [2003], for the case of a single entity LDA, the inference problem
from equation (2.3) can be solved by considering p(θ, z, w|α, β), as in equation (2.1),
and by taking the marginal distribution of the document tokens as a continuous mixture
distribution for the set w = wr, by integrating over θ and summing over the set of topics z

p(w|α, β) =
∫
p(θ|α) ·

(∏
w

∑
z

p(z|θ)p(w|z, β)

)
dθ (2.5)

16



For the case of link-LDA where the document is comprised of two entities, in our case
code tokens and text tokens, we can consider the mixed-membership joint distribution θ,
as in equation (2.2), and similarly the marginal distribution p(w|α, β) over both code and
text tokens from wr. Since comment words in wc are all considered as text tokens they are
sampled using text topics, namely ztext, in equation (2.4).

2.3 Experimental Settings

2.3.1 Data and Training Methodology

We use source code from nine open source JAVA projects: Ant, Cassandra, Log4j, Maven,
MinorThird, Batik, Lucene, Xalan and Xerces. For each project, we divide the source files
into a training and testing dataset. Then, for each project in turn, we consider the following
three main training scenarios, leading to using three training datasets.

To emulate a scenario in which we are predicting comments in the middle of project
development, we can use data (documented code) from the same project. In this case,
we use the in-project training dataset (IN). Alternatively, if we train a comment prediction
model at the beginning of the development, we need to use source files from other, possibly
related projects. To analyze this scenario, for each of the projects above we train models
using an out-of-project dataset (OUT) containing data from the other eight projects.

Typically, source code files contain a greater amount of code versus comment text.
Since we are interested in predicting comments, we consider a third training data source
which contains more English text as well as some code segments. We use data from the
popular Q&A website StackOverflow (SO) where users ask and answer technical ques-
tions about software development, tools, algorithms, etc’. We downloaded a dataset of all
actions performed on the site since it was launched in August 2008 until August 2012.
The data includes 3,453,742 questions and 6,858,133 answers posted by 1,295,620 users.
We used only posts that are tagged as JAVA related questions and answers.

All the models for each project are then tested on the testing set of that project. We
report results averaged over all projects in Table 2.1. Figure 2.1 shows the full results for
each tested project.

Source files were tokenized using the Eclipse JDT compiler tools, separating code to-
kens and identifiers. Identifier names (of classes, methods and variables), were further
tokenized by camel case notation (e.g., ’minMargin’ was converted to ’min margin’). Non
alpha-numeric tokens (e.g., dot, semicolon) were discarded from the code, as well as nu-

17



15
20
25
30
35
40
45
50
55
60

n-gram IN
n-gram OUT
n-gram SO
LDA IN
Link-LDA IN

LDA OUT
Link-LDA OUT
LDA SO
Link-LDA SO

15
20
25
30
35
40
45
50
55
60

201051
Number of Topics

15
20
25
30
35
40
45
50
55
60

201051
Number of Topics

201051
Number of Topics

1 2 3
n

ant
1 2 3

n

batik
1 2 3

n

lucene

log4j minorthird maven

xalan xerces cassandra

1 2 3
n

ant
1 2 3

n

batik
1 2 3

n

lucene

log4j minorthird maven

xalan xerces cassandra

1 2 3
n

ant
1 2 3

n

batik
1 2 3

n

lucene

log4j minorthird maven

xalan xerces cassandra

Figure 2.1: Results per project, on the average percentage of characters saved per com-
ment, using n-gram (blue), LDA (light red) and Link-LDA (red) models trained on three
training sets: IN (solid line), OUT (dashed line), and SO (dotted line). Top axis mark
{1,2,3}-grams, and bottom axis mark the number of topics used for LDA and Link-LDA
models. The results are also summarized in Table 2.1.

18



Model n-gram LDA Link-LDA

n / topics 1 2 3 20 10 5 1 20 10 5 1

IN 33.05 43.27 47.1 34.20 33.93 33.63 33.05 35.76 35.81 35.37 34.59
(3.62) (5.79) (6.87) (3.63) (3.67) (3.67) (3.62) (3.95) (4.12) (3.98) (3.92)

OUT 26.6 31.52 32.96 26.79 26.8 26.86 26.6 28.03 28 28 27.82
(3.37) (4.17) (4.33) (3.26) (3.36) (3.44) (3.37) (3.60) (3.56) (3.67) (3.62)

SO 27.8 33.29 34.56 27.25 27.22 27.34 27.8 28.08 28.12 27.94 27.9
(3.51) (4.40) (4.78) (3.67) (3.44) (3.55) (3.51) (3.48) (3.58) (3.56) (3.45)

Table 2.1: Average percentage of characters saved per comment using n-gram, LDA
and Link-LDA models trained on three training sets: IN, OUT, and SO. The results are
averaged over nine JAVA projects (with standard deviations in parenthesis).

Model Predicted Comment

IN trigram Train a named-entity extractor
IN link-LDA Train a named-entity extractor
OUT trigram Train a named-entity extractor
SO trigram Train a named-entity extractor

Table 2.2: Sample comment from the Minor-Third project predicted using IN, OUT and
SO based models. Saved characters are underlined and green. More prediction examples
can be found in Table 2.4.

meric and single character literals. Text from comments or any string literals within the
code were further tokenized with the Mallet statistical natural language processing pack-
age [McCallum, 2002]. Posts from SO were parsed using the Apache Tika toolkit1 and
then tokenized with the Mallet package. We considered as raw code tokens anything la-
beled using a <code> markup (as indicated by the SO users who wrote the post).

2.3.2 Evaluation

Since our models are trained using various data sources, the vocabularies used by each of
them are different, making the comment likelihood given by each model incomparable due

1http://tika.apache.org/

19



to different sets of out-of-vocabulary tokens. We thus evaluate models using a character
saving metric which aims at quantifying the percentage of characters that can be saved
by using the model in a word-completion settings, similar to standard code completion
tools built into code editors. For a comment word with n characters, w = w1, . . . , wn, we
predict the two most likely words given each model filtered by the first 0, . . . , n characters
of w. Let k be the minimal ki for which w is in the top two predicted word tokens where
tokens are filtered by the first ki characters. Then, the number of saved characters for w is
n− k.

The evaluation metric we use here is similar to metrics commonly used to evaluate
code completion in the Software Engineering literature: Raychev et al. [2014] evaluate
API method call completion and report the ratio of cases for which the desired completion
appears in the top 3 results; Nguyen et al. [2012] measure the usefulness of a code com-
pletion task by evaluating the minimization of developer effort through the ratio of written
versus predicted code; and similarly, Han et al. [2009] report the amount of reduction in
keystrokes following a successful completion. Additional metrics used in the literature for
evaluating code completion include, user studies [Bruch et al., 2009, Omar et al., 2012],
and development of precision, recall, and F1 measures which evaluate code completion as
a recommender system [Nguyen et al., 2012]. Robbes and Lanza [2010] discuss the biases
introduced by user studies for completion tasks, in particular in the case of comparing mul-
tiple models, and motivate the use of an evaluation using a “gold-standard” benchmark, as
we have used here.

In Table 2.1 we report the average percentage of saved characters per comment using
each of the above models. These results are averaged over the nine input projects. Fig-
ure 2.1 shows the detailed results for each tested project. As an example, in the predicted
comment shown in Table 2.2, taken from the project Minor-Third, the token entity is the
most likely token according to the model SO trigram, out of tokens starting with the prefix
’en’. The saved characters in this case are ’tity’.

2.4 Results

Table 2.1 displays the average percentage of characters saved per class comment using
each of the models. Models trained on in-project data (IN) perform significantly better
than those trained on another data source, regardless of the model type, with an average
saving of 47.1% characters using a trigram model. This is expected, as files from the same
project are likely to contain similar comments, and identifier names that appear in the
comment of one class may appear in the code of another class in the same project. Clearly,

20



Dataset n-gram link-LDA

IN 2778.35 574.34
OUT 1865.67 670.34
SO 1898.43 638.55

Table 2.3: Average words per project for which each tested model completes the word
better than the other. This indicates that each of the models is better at predicting a different
set of comment words.

in-project data should be used when available as it improves comment prediction leading
to an average increase of between 6% for the worst model (26.6 for OUT unigram versus
33.05 for IN) and 14% for the best (32.96 for OUT trigram versus 47.1 for IN).

Of the out-of-project data sources, models using a greater amount of text (SO) mostly
out-performed models based on more code (OUT). This increase in performance, however,
comes at a cost of greater run-time due to the larger word dictionary associated with the
SO data. Note that in the scope of this work we did not investigate the contribution of each
of the background projects used in OUT, and how their relevance to the target prediction
project effects their performance.

The trigram model shows the best performance across all training data sources (47%
for IN, 32% for OUT and 34% for SO). Amongst the tested topic models, link-LDA mod-
els which distinguish code and text tokens perform consistently better than simple LDA
models in which all tokens are considered as text. We did not however find a correlation
between the number of latent topics learned by a topic model and its performance. In fact,
for each of the data sources, a different number of topics gave the optimal character saving
results.

Note that in this work, all topic models are based on unigram tokens, therefore their
results are most comparable with that of the unigram in Table 2.1, which does not benefit
from the backoff strategy used by the bigram and trigram models. By this comparison,
the link-LDA topic model proves more successful in the comment prediction task than the
simpler models which do not distinguish code and text tokens. Using n-grams without
backoff leads to results significantly worse than any of the presented models (not shown).

Table 2.2 shows a sample comment segment for which words were predicted using
trigram models from all training sources and an in-project link-LDA. The comment is
taken from the TrainExtractor class in the Minor-Third project, a machine learning library
for annotating and categorizing text. Both IN models show a clear advantage in completing

21



the project-specific word Train, compared to models based on out-of-project data (OUT
and SO). Interestingly, in this example the trigram is better at completing the term named-
entity given the prefix named. However, the topic model is better at completing the word
extractor which refers to the target class. This example indicates that each model type may
be more successful in predicting different comment words, and that combining multiple
models may be advantageous. This can also be seen by the analysis in Table 2.3 where we
compare the average number of words completed better by either the best n-gram or topic
model given each training dataset. Again, while n-grams generally complete more words
better, a considerable portion of the words is better completed using a topic model, further
motivating a hybrid solution.

In Table 2.4 we include additional examples of comment prediction for classes in the
Lucene project, taken from the IN dataset. We display prediction results using the most
successful models in each of the modeling categories for this project: a trigram model,
and LDA and link-LDA models trained with 10 topics. As indicated by the results in
Table 2.1, the trigram model is the best predictor of the three and predicts the greatest
amount of comment characters. However, additional observations can be drawn from a
qualitative examination of the predictions.

The link-LDA model distinguishes comment and code tokens, and predicts comment
text based only on text topics (ztext). This leads to two complementary behaviors that can
be observed in the predictions: (1) link-LDA is more likely to predict “textual” tokens, and
(2) LDA is more likely to predict tokens that are found in the code. As an example, LDA
is better at predicting Java keywords (e.g., exception, extends, implements) and low-level
data types (e.g., int, boolean), whereas link-LDA consistently performs better at predicting
words that are more likely to appear only in text, such as performance, stemming, char-
acters, segmentation, etc’. Similarly, we see that LDA is more likely predict the keyword
throws, whereas link-LDA will better predict conjugations of the same verb that are not
keywords in the language, including thrown or throwing. For the same reason, Link-LDA
is also better at predicting javadoc description tags such as @see, @link, and @since.

Following the same logic, we expected class names to be consistently better predicted
by the LDA model, which makes predictions based on code tokens as well as text; however,
we find many contradicting examples to this. In the examples presented here, ScoredDo-
cIdCollector is best predicted by LDA, PhraseQuery by link-LDA, and StandardTokenizer
by the trigram model. This can be the result of class names that appear in the training
comments more often than others, which can lead to a better prediction by the link-LDA
or trigram models.

Both topic models predict the most probable token, of the most probable topic, at any
position in the document. Since only one token can be the most probable at any position, it

22



Trigram LDA Link-LDA

Test ScoredDocIdCollector Test ScoredDocIdCollector Test ScoredDocIdCollector
@since lucene 1.4 @see Sort @since lucene 1.4 @see Sort @since lucene 1.4 @see Sort
This class converts alpha-
betic, numeric, and symbolic
Unicode characters . . . ASCII
characters (the ”Basic Latin”
Unicode block)

This class converts alpha-
betic, numeric, and symbolic
Unicode characters . . . ASCII
characters (the ”Basic Latin”
Unicode block)

This class converts
alphabetic, numeric, and
symbolic Unicode characters
. . . ASCII characters (the
”Basic Latin” Unicode block)

As of 3.1, StandardTokenizer
implements Unicode text
segmentation, and StopFilter
correctly handles Unicode 4.0
supplementary characters in
stopwords

As of 3.1, StandardTokenizer
implements Unicode text
segmentation, and StopFilter
correctly handles Unicode 4.0
supplementary characters in
stopwords

As of 3.1, StandardTokenizer
implements Unicode text
segmentation, and StopFilter
correctly handles Unicode 4.0
supplementary characters in
stopwords

MergePolicy that makes
random decisions for testing

MergePolicy that makes
random decisions for testing

MergePolicy that makes
random decisions for testing

MultiPhraseQuery is a
generalized version of
PhraseQuery, with an
added method {@link
#add(Term[])}.

MultiPhraseQuery is a
generalized version of
PhraseQuery, with an
added method {@link
#add(Term[])}.

MultiPhraseQuery is a
generalized version of
PhraseQuery, with an
added method {@link
#add(Term[])}.

. . . Stemming filters for
instance can use this attribute
to conditionally skip a term
if {@link #isKeyword()}
returns true

. . . Stemming filters for
instance can use this attribute
to conditionally skip a term
if {@link #isKeyword()}
returns true

. . . Stemming filters for
instance can use this attribute
to conditionally skip a term
if {@link #isKeyword()}
returns true

For performance reasons
. . . an exception will be
thrown

For performance reasons
. . . an exception will be
thrown

For performance reasons
. . . an exception will be
thrown

Table 2.4: Examples of predicted characters (in green and underlined) of classes from
the Lucene project, taken from the IN dataset. Each line contains a comment fragment,
where the highlighted characters have been predicted using either a trigram, an LDA, or a
link-LDA model.

is therefore highly unlikely for either topic model to predict a token in full (before seeing
any typed characters). In contrast, the n-gram model predicts words based on the sentence
history, which makes a full token prediction much more likely, and this can clearly be seen

23



in the results.

2.5 Implementation and Corpus

We implemented an Eclipse plugin for comment completion, based on the results of this
work. The plugin enables word completion within comments, based on a 3-gram model
that was trained on the full corpus of 9 open source JAVA projects used here. Word com-
pletion using this plugin works in a similar way to code completion tools built into standard
code editors. While writing a comment, the user is prompted for suggestions based on the
implementation of the class she/he are currently commenting. The plugin update site is:
http://www.cs.cmu.edu/˜dmovshov/software/commentCompletionPlugin/

We also release the training corpus, including source files for all projects and tokeniza-
tions of the code and comments, on GitHub: https://github.com/habeascorpus/
habeascorpus-data-withComments

2.6 Conclusions

We analyze the use of language models for predicting class comments for source file doc-
uments containing a mixture of code and text tokens, originating from code comments and
string literals. Our experiments demonstrate the effectiveness of using language models
for comment completion, showing savings of up to 47% of comment characters. When
available, using in-project training data proves significantly more successful than using
out-of-project data. However, we find that when using out-of-project data, a dataset based
on more words than code performs consistently better. Un-intuitively, we discovered that
the n-gram model, which has the lowest level of domain and language understanding out
of the models we tested, performed best on this task. However, the results indicate that
different models are better at predicting different comment words, which motivates a hy-
brid solution combining the advantages of multiple models. Intuitively, we discovered that
encoding some amount of domain understanding into a model, does improve the predic-
tion performance, as can be seen by the fact that the link-LDA model outperforms the
basic LDA predictor. We hypothesize that gaining a deeper semantic and categorical un-
derstanding of entities in the software domain can lead to an even greater improvement in
this prediction task.

24

http://www.cs.cmu.edu/~dmovshov/software/commentCompletionPlugin/
https://github.com/habeascorpus/habeascorpus-data-withComments
https://github.com/habeascorpus/habeascorpus-data-withComments


Chapter 3

Bootstrap Knowledge Base Learning for
the Biomedical Domain

In Chapter 2 we investigated how well-studied statistical language models can be manip-
ulated to improve a software domain application. Our results indicate that, intuitively,
encoding our understanding of the domain into a model can improve results; indeed, mak-
ing a distinction between code and non-code related tokens improved the performance of
a topic model on the task of predicting code comments. However, the best performing
model in this task had only a shallow statistical representation of text. We hypothesize
that gaining a better understanding of the entities in a domain could improve prediction
ability in domain-specific tasks. In this work, therefore, we aim at constructing a deeper
representation of domain-specific entities and knowledge found in the text, by constructing
a KB for a specific domain. We turn to the biomedical domain, where many ontologies are
publicly available, which we utilize for the purpose of KB construction and population.

We describe an open information extraction system for biomedical text based on NELL
(the Never-Ending Language Learner) [Carlson et al., 2010], a system designed for extrac-
tion from Web text. NELL uses a coupled semi-supervised bootstrapping approach to learn
new facts from text, given an initial ontology and a small number of “seeds” for each ontol-
ogy category. In contrast to previous applications of NELL, in our task the initial ontology
and seeds are automatically derived from the existing biomedical resources. We show that
NELL’s bootstrapping algorithm is susceptible to ambiguous seeds, which are frequent in
the biomedical domain. Using NELL to extract facts from biomedical text quickly leads to
semantic drift. To address this problem, we introduce a method for assessing seed quality,
based on a larger corpus of data derived from the Web. In our method, seed quality is
assessed at each iteration of the bootstrapping process. Experimental results show signif-

25



icant improvements over NELL’s original bootstrapping algorithm on two types of tasks:
learning terms from biomedical categories, and named-entity recognition for biomedical
entities using a learned lexicon.

3.1 Introduction

NELL (the Never-Ending Language Learner) is a semi-supervised learning system, de-
signed for extraction of information from the Web. The system uses a coupled semi-
supervised bootstrapping approach to learn new facts from text, given an initial ontology
and a small number of “seeds”, i.e., labeled examples for each ontology category. The new
facts are stored in a growing structured knowledge base.

One of the concerns about gathering data from the Web is that it comes from various
un-authoritative sources, and may not be reliable. This is especially true when gathering
scientific information. In contrast to Web data, scientific text is potentially more reliable,
as it is guided by the peer-review process. Open access scientific archives make this infor-
mation available for all. In fact, the production rate of publicly available scientific data far
exceeds the ability of researchers to “manually” process it, and there is a growing need for
the automation of this process.

The biomedical field presents a great potential for text mining applications. An inte-
gral part of life science research involves production and publication of large collections
of data by curators, and as part of collaborative community effort. Prominent examples in-
clude: publication of genomic sequence data, e.g., by the Human Genome Project; online
collections of three-dimensional coordinates of protein structures; and databases holding
data on genes. An important resource, initiated as a means of enforcing data standardiza-
tion, are ontologies describing biological, chemical and medical terms. These are heavily
used by the research community. With this wealth of available data the biomedical field
holds many information extraction opportunities.

We describe an open information extraction system adapting NELL to the biomedical
domain. We present an implementation of our approach, named BioNELL, which uses
three main sources of information: (1) a public corpus of biomedical scientific text, (2)
commonly used biomedical ontologies, and (3) a corpus of Web documents.

NELL’s ontology, including categories and seeds, has been manually designed dur-
ing the system development. Ontology design involves assembling a set of interesting
categories, organized in a meaningful hierarchical structure, and providing representative
seeds for each category. Redesigning a new ontology for a technical domain is difficult

26



High PMI Seeds Random Seeds

SoxN achaete cycA cac section 33 28
Pax-6 Drosomycin Zfh-1 crybaby hv Bob
BX-C Ultrabithorax GATAe ael LRS dip
D-Fos sine oculis FMRFa chm sht 3520
Abd-A dCtBP Antp M-2 AGI tou
PKAc huckebein abd-A shanti disp zen
Hmgcr Goosecoid knirps Buffy Gap Scm
fkh decapentaplegic Sxl lac Mercurio REPO
abdA naked cuticle BR-C subcosta mef Ferritin
zfh-1 Kruppel hmgcr Slam dad dTCF
tkv gypsy insulator Dichaete Cbs Helicase mago
CrebA alpha-Adaptin Abd-B Sufu ora Pten
D-raf doublesex gusA pelo vu sb
MtnA FasII AbdA sombre domain II TrpRS
Dcr-2 GAGA factor dTCF TAS CCK ripcord
fushi
tarazu

kanamycin
resistance

Ecdysone
receptor

GABAA
receptor

diazepam
binding
inhibitor

yolk
protein

Tkv dCBP Debcl arm

Table 3.1: Two samples of fruit-fly genes, taken from the complete fly gene dictionary.
High PMI Seeds are the top 50 terms selected using PMI ranking, and Random Seeds are
a random draw of 50 terms from the dictionary. These are used as seeds for the Fly Gene
category (Section 3.4.2). Notice that the random set contains many terms that are often
not used as genes including arm, 28, and dad. Using these as seeds can lead to semantic
drift. In contrast, high PMI seeds exhibit much less ambiguity.

without non-trivial knowledge of the domain. We describe a process of merging source
ontologies into one structure of categories with seed examples.

However, as we will show, using NELL’s bootstrapping algorithm to extract facts from
a biomedical corpus is susceptible to noisy and ambiguous terms. Such ambiguities are
common in biomedical terminology (see examples in Table 3.1 and Figure 3.1), and some
ambiguous terms are heavily used in the literature. For example, in the sentence

“We have cloned an induced white mutation and characterized the insertion
sequence responsible for the mutant phenotype”

27



BioCrea4ve'data'example:'BIGGER'

Gene ID! Name 1! Name 2! Name 3!
FBgn0000011! white! enhancer of garnet! e(g)!
FBgn0002545! section 9! 9! lf!
FBgn0003204! raspberry! IMP dehydrogenase! ras-l!
FBgn0004034! yellow! y! T6!
FBgn0012326! Antp! Antennapedia! Dgua\Antp!
FBgn0020493! dad! Daughters against dpp! Dad1!

A"

B"
Abstract! Gene IDs!
In Drosophila, MR (male recombination) second 
chromosomes are known to act as mutators and 
recombination inducers in males. The induction of visible 
mutations by MR is observed at only a limited number of 
genes, such as singed bristle (sn), raspberry eye colour (ras), 
yellow body colour (y) and a carmine eye colour (car) …!

FBgn0003204!
FBgn0004034!

Figure 3.1: A sample from the BioCreative data set: (A) a list of gene identifiers (first
column) as well as alternative common names and symbols used to describe each gene in
the literature (second to last columns). The full data contains 7151 terms; and (B) sample
abstract and two IDs of genes that have been annotated as being discussed in the text. In
this example, the gene IDs FBgn0003204 and FBgn0004034 (can be found in the table)
refer to the raspberry and yellow genes which are mentioned in the abstract. The full data
contains 108 abstracts.

white is an ambiguous term referring to the name of a gene. In NELL, ambiguity is lim-
ited using coupled semi-supervised learning [Carlson et al., 2009]: if two categories in the
ontology are declared mutually exclusive, instances of one category are used as negative
examples for the other, and the two categories cannot share any instances. To resolve the
ambiguity of white with mutual exclusion, we would have to include a Color category in
the ontology, and declare it mutually exclusive with the Gene category. Then, instances
of Color will not be able to refer to genes in the KB. It is hard to estimate what addi-
tional categories should be added, and building a “complete” ontology tree is practically
infeasible.

NELL also includes a polysemy resolution component that acknowledges that one
term, for example white, may refer to two distinct concepts, say a color and a gene, that
map to different ontology categories, such as Color and Fly Gene [Krishnamurthy and
Mitchell, 2011]. By including a Color category, this component can identify that white is
both a color and a gene. The polysemy resolver performs word sense induction and syn-
onym resolution based on relations defined between categories in the ontology, and labeled
synonym examples. However, at present, BioNELL’s ontology does not contain relation

28



definitions (it is based only on categories), so we cannot include this component in our
experiments. Additionally, it is unclear how to avoid the use of polysemous terms as cat-
egory seeds, and no method has been suggested for selecting seeds that are representative
of a single specific category.

To address the problem of ambiguity, we introduce a method for assessing the de-
sirability of noun phrases to be used as seeds for a specific target category. We propose
ranking seeds using a Pointwise Mutual Information (PMI) -based collocation measure for
a seed and a category name. Collocation is measured based on a large corpus of domain-
independent data derived from the Web, accounting for uses of the seed in many different
contexts.

NELL’s bootstrapping algorithm uses the morphological and semantic features of seeds
to propose new facts, which are added to the KB and used as seeds in the next bootstrap-
ping iteration to learn more facts. This means that ambiguous terms may be added at any
learning iteration. Since white really is a name of a gene, it is sometimes used in the same
semantic context as other genes, and may be added to the KB despite not being used as
an initial seed. To resolve this problem, we propose measuring seed quality in a Rank-
and-Learn bootstrapping methodology: after every iteration, we rank all the instances that
have been added to the KB by their quality as potential category seeds. Only high-ranking
instances are used as seeds in the next iteration. Low-ranking instances are stored in the
KB and “remembered” as true facts, but are not used for learning new information. This
is in contrast to NELL’s approach (and most other bootstrapping systems), in which there
is no distinction between acquired facts, and facts that are used for learning.

3.2 Related Work

Biomedical Information Extraction systems have traditionally targeted recognition of
few distinct biological entities, focusing mainly on genes [Morgan et al., 2004, Chang
et al., 2004, Tanabe and Wilbur, 2002, Carpenter, 2004]. Few systems have been devel-
oped for fact-extraction of many biomedical predicates, and these are relatively small scale
[Wattarujeekrit et al., 2004], or they account for limited sub-domains [Dolbey et al., 2006].
We suggest a more general approach, using bootstrapping to extend existing biomedical
ontologies, including a wide range of sub-domains and many categories. The current im-
plementation of BioNELL includes an ontology with over 100 categories. To the best of
our knowledge, such large-scale biomedical bootstrapping has not been done before.

Sources of Ambiguity in Biomedical Terminology. It has been shown that biomed-
ical terminology suffers from a higher level of ambiguity than what is found in ordinary

29



English words, with even greater ambiguity found in gene names [Chen et al., 2005,
Krallinger et al., 2008] (see examples in Table 3.1 and Figure 3.1). This problem is man-
ifested in two main forms. The first is the use of short-form names, lacking meaningful
morphological structure, including abbreviations of three or less letters as well as isolated
numbers. The second is ambiguous and polysemous terms used to describe names of
genes, organisms, and biological systems and processes. For examples, peanut is used as
both the name of a plant and a gene, and many gene names are often shared across species.
What’s more, with a limited possible number of three-English-letter abbreviations, and an
estimate of around 35,000 human genes alone, newly introduced abbreviations are bound
to overlap existing ones. Krallinger et al. [2008] provide an in-depth review discussing the
ambiguous nature of this domain-specific terminology in greater detail.

Bootstrap Learning and Semantic Drift. Carlson et al. [2010] use coupled semi-
supervised bootstrap learning in NELL to learn a large set of category classifiers with high
precision. One drawback of using iterative bootstrapping is the sensitivity of this method to
the set of initial seeds [Pantel et al., 2009]. An ambiguous set of seeds can lead to semantic
drift, i.e., accumulation of erroneous terms and contexts when learning a semantic class.
Strict bootstrapping environments reduce this problem by adding boundaries or limiting
the learning process, including learning mutual terms and contexts [Riloff and Jones, 1999]
and using mutual exclusion and negative class examples [Curran et al., 2007].

McIntosh and Curran [2009] propose a metric for measuring the semantic drift intro-
duced by a learned term, favoring terms different than the recent m learned terms and
similar to the first n, (shown for n=20 and n=100), following the assumption that semantic
drift develops in late bootstrapping iterations. As we will show, for biomedical categories,
semantic drift in NELL occurs within a handful of iterations (< 5), however according to
the authors, using low values for n produces inadequate results. In fact, selecting effective
n and m parameters may not only be a function of the data being used, but also of the
specific category, and it is unclear how to automatically tune them.

Seed Set Refinement. Vyas et al. [2009] suggest a method for reducing ambiguity in
seeds provided by human experts, by selecting the tightest seed clusters based on context
similarity. The method is described for an order of 10 seeds, however, in an ontology
containing hundreds of seeds per class, it is unclear how to estimate the correct number
of clusters to choose from. Another approach, suggested by Kozareva and Hovy [2010],
is using only constrained contexts where both seed and class are present in a sentence.
Extending this idea, we consider a more general collocation metric, looking at entire doc-
uments including both the seed and its category.

30



3.3 Implementation

3.3.1 NELL’s Bootstrapping System

We have implemented BioNELL based on the system design of NELL. NELL’s bootstrap-
ping algorithm is initiated with an input ontology structure of categories and seeds. Three
sub-components operate to introduce new facts based on the semantic and morphological
attributes of known facts. At every iteration, each component proposes candidate facts,
specifying the supporting evidence for each candidate, and the candidates with the most
strongly supported evidence are added to the KB. The process and sub-components are
described in detail by Carlson et al. [2010] and Wang and Cohen [2009].

3.3.2 Text Corpora

PubMed Corpus: We used a corpus of 200K full-text biomedical articles taken from
the PubMed Central Open Access Subset (extracted in October 2010)1, which were
processed using the OpenNLP package2. This is the main BioNELL corpus and it is
used to extract category instances in all the experiments presented in this chapter.

Web Corpus: BioNELL’s seed-quality collocation measure (Section 3.3.4) is based on
a domain-independent Web corpus, the English portion of the ClueWeb09 data set
[Callan et al., 2009], which includes 500 million web documents.

3.3.3 Ontology

BioNELL’s ontology is composed of six base ontologies, covering a wide range of biomed-
ical sub-domains: the Gene Ontology (GO) [Ashburner et al., 2000], describing gene at-
tributes; the NCBI Taxonomy for model organisms [Sayers et al., 2011]; Chemical Entities
of Biological Interest (ChEBI) [Degtyarenko et al., 2008], a dictionary focused on small
chemical compounds; the Sequence Ontology [Eilbeck et al., 2005], describing biological
sequences; the Cell Type Ontology [Bard et al., 2005]; and the Human Disease Ontology
[Osborne et al., 2009]. Each ontology provides a hierarchy of terms but does not distin-
guish concepts from instances.

1http://www.ncbi.nlm.nih.gov/pmc/
2http://opennlp.sourceforge.net

31



We used an automatic process for merging base ontologies into one ontology tree.
First, we group the ontologies under one hierarchical structure, producing a tree of over 1
million entities, including 856K terms and 154K synonyms. We then separate these into
potential categories and potential seeds. Categories are nodes that are unambiguous (have
a single parent in the ontology tree), with at least 100 descendants. These descendants are
the category’s Potential seeds. This results in 4188 category nodes. In the experiments of
this chapter we selected only the top (most general) 20 categories in the tree of each base
ontology. We are left with 109 final categories, as some base ontologies had less than 20
categories under these restrictions. Leaf categories are given seeds from their descendants
in the full tree of all terms and synonyms, giving a total of around 1 million potential seeds.
Seed set refinement is described below. The seeds of leaf categories are later extended by
the bootstrapping process.

3.3.4 BioNELL’s Bootstrapping System

PMI Collocation with the Category Name

We define a seed quality metric based on a large corpus of Web data. Let s and c be
a seed and a target category, respectively. For example, we can take s = “white”, the
name of a gene of the fruit-fly, and c = “fly gene”. Now, let D be a document corpus
(Section 3.3.2 describes the Web corpus used for ranking), and let Dc be a subset of the
documents containing a mention of the category name. We measure the collocation of the
seed and the category by the number of times s appears in Dc, |Occur(s,Dc)|. The overall
occurrence of s in the corpus is given by |Occur(s,D)|. Following the formulation of
Church and Hanks [1990], we compute the PMI-rank of s and c as

PMI(s, c) =
|Occur(s,Dc)|
|Occur(s,D)|

(3.1)

Since this measure is used to compare seeds of the same category, we omit the log from
the original formulation. In our example, as white is a highly ambiguous gene name, we
find that it appears in many documents that do not discuss the fruit fly, resulting in a PMI
rank close to 0.

The proposed ranking is sensitive to the descriptive name given to categories. For
a more robust ranking, we use a combination of rankings of the seed with several of its
ancestors in the ontology hierarchy. In [Movshovitz-Attias and Cohen, 2012b] we describe
this hierarchical ranking in more detail and additionally explore the use of the binomial
log-likelihood ratio test (BLRT) as an alternative collocation measure for ranking.

32



We further note that some specialized biomedical terms follow strict nomenclature
rules making them easily identifiable as category specific. These terms may not be frequent
in general Web context, leading to a low PMI rank under the proposed method. Given such
a set of high confidence seeds from a reliable source, one can enforce their inclusion in the
learning process, and specialized seeds can additionally be identified by high-confidence
patterns, if such exist. However, the scope of this work involves selecting seeds from an
ambiguous source, biomedical ontologies, thus we do not include an analysis for these
specialized cases.

Rank-and-Learn Bootstrapping

We incorporate PMI ranking into BioNELL using a Rank-and-Learn bootstrapping me-
thodology. After every iteration, we rank all the instances that have been added to the KB.
Only high-ranking instances are added to the collection of seeds that are used in the next
learning iteration. Instances with low PMI rank are stored in the KB and are not used for
learning new information. We consider a high-ranking instance to be one with PMI rank
higher than 0.25.

3.4 Experimental Evaluation

3.4.1 Experimental Settings

Configurations of the Algorithm

In our experiments, we ran BioNELL and NELL with the following system configurations,
all using the biomedical corpus and the ontology described in Sections 3.3.2 and 3.3.3, and
all running 50 iterations, in order to evaluate the long term effects of ranking. Section 3.4.2
includes a discussion on the learning rate of the tested systems which motivates the reason
for evaluating performance at the 50th iteration.

To expand a category we used the following systems, also summarized in Table 3.2:
(1) the BioNELL system, using Rank-and-Learn bootstrapping (Section 3.3.4) initialized
with the top 50 seeds using PMI ranking, (2) the NELL system, using NELL’s original
bootstrapping algorithm (Section 3.3.1) initialized with 50 random seeds from the cate-
gory’s potential seeds (NELL does not provide a seed selection method), and (3) in order
to distinguish the contribution of Rank-and-Learn bootstrapping over ranking the initial
seeds, we tested a third system, BioNELL+Random, using Rank-and-Learn bootstrapping

33



Learning System BootstrappingAlgorithm InitialSeeds Corpus

BioNELL Rank-and-Learn with PMI PMI top 50 PubMed
NELL NELL’s algorithm Random 50 PubMed
BioNELL+Random Rank-and-Learn with PMI Random 50 PubMed

Table 3.2: Learning systems used in our evaluation, all using the PubMed biomedical
corpus and the biomedical ontology described in Sections 3.3.2 and 3.3.3.

initialized with 50 random seeds.

Evaluation Methodology

Using BioNELL we can learn lexicons, collections of category terms accumulated after
running the system. One evaluation approach is to select a set of learned instances and
assess their correctness [Carlson et al., 2010]. This is relatively easy for data extracted
for general categories like City or Sports Team. For example, it is easy to evaluate the
statement “London is a City”. This task becomes more difficult when assessing domain-
specific facts such as “Beryllium is an S-block molecular entity” (in fact, it is). We cannot,
for example, use the help of Mechanical Turk for this task. A possible alternative evalua-
tion approach is asking an expert. On top of being a costly and slow approach, the range
of topics covered by BioNELL is large and a single expert is not likely be able to assess
all of them.

We evaluated lexicons learned by BioNELL by comparing them to available resources.
Lexicons of gene names for certain species are available, and Freebase [Google, 2011], an
open repository holding data for millions of entities, includes some biomedical concepts.
For most biomedical categories, however, complete lexicons are scarce.

Data Sets

We compared learned lexicons to category dictionaries, lists of concept terms taken from
the following sources, which we consider as a Gold Standard.

We used three lexicons of biomedical categories taken from Freebase: Disease (9420
terms), Chemical Compound (9225 terms), and Drug (3896 terms).

To evaluate gene names we used data from the BioCreative Challenge [Hirschman
et al., 2005], an evaluation competition focused on annotations of genes and gene products.

34



Learning System Precision Correct Total

BioNELL .83 109 132
NELL .29 186 651
BioNELL+Random .73 248 338

NELL by size 132 .72 93 130

Table 3.3: Precision, total number of instances (Total), and correct instances (Correct)
of gene lexicons learned with BioNELL and NELL. BioNELL significantly improves the
precision of the learned lexicon compared with NELL. When examining only the first 132
learned items, BioNELL has both higher precision and more correct instances than NELL
(last row, NELL by size 132).

The data includes a dictionary of genes of the fruit-fly, Drosophila Melanogaster, which
specifies a set of gene identifiers and possible alternative forms of the gene name, for a
total of 7151 terms, which we consider to be the complete fly gene dictionary. Figure 3.1A
contains a sample from the fruit-fly gene dictionary.

We used additional BioCreative data for a named-entity recognition task. This includes
108 scientific abstracts, manually annotated by BioCreative with gene IDs of fly genes dis-
cussed in the text. The abstracts contain either the gene ID or any gene name. Figure 3.1B
contains an excerpt from one of the abstracts in the data and two IDs of genes that have
been annotated as being mentioned in the text.

3.4.2 Extending Lexicons of Biomedical Categories

Recovering a Closed Category Lexicon

We used BioNELL to learn the lexicon of a closed category, representing genes of the fruit-
fly, D. Melanogaster, a model organism used to study genetics and developmental biology.
Two samples of genes from the full fly gene dictionary are shown in Table 3.1: High PMI
Seeds are the top 50 dictionary terms selected using PMI ranking, and Random Seeds are
a random draw of 50 terms. Notice that the random set contains many seeds that are not
distinct gene names including arm, 28, and dad. In contrast, high PMI seeds exhibit much
less ambiguity. We learned gene lexicons using the test systems described in Section 3.4.1
with the high-PMI and random seed sets shown in Table 3.1. We measured the precision,
total number of instances, and correct instances of the learned lexicons against the full
dictionary of genes. Table 3.3 summarizes the results.

35



BioNELL, initialized with PMI-ranked seeds, significantly improved the precision of
the learned lexicon over NELL (29% for NELL to 83% for BioNELL). In fact, the two
learning systems using Rank-and-Learn bootstrapping resulted in higher precision lexi-
cons (83%, 73%), suggesting that constrained bootstrapping using iterative seed ranking
successfully eliminates noisy and ambiguous seeds.

BioNELL’s bootstrapping methodology is highly restrictive and it affects the size of the
learned lexicon as well as its precision. Notice, however, that while NELL’s final lexicon
is 5 times larger than BioNELL’s, the number of correctly learned items in it are less than
twice that of BioNELL. Additionally, BioNELL+Random has learned a smaller dictionary
than NELL (338 and 651 terms, respectively) with a greater number of correct instances
(248 and 186).

We examined the performance of NELL after the 7th iteration, when it has learned a
lexicon of 130 items, similar in size to BioNELL’s final lexicon (Table 3.3, last row). After
learning 130 items, BioNELL achieved both higher precision (83% versus 72%) and higher
recall (109 versus 93 correct lexicon instances) than NELL, indicating that BioNELL’s
learning method is overall more accurate.

After running for 50 iterations, all systems recover only a small portion of the complete
gene dictionary—between 109 and 248 instances out of 7151—suggesting either that (1)
more learning iterations are required (though the rate of learning new correct instances has
slowed down by the 50th iterations, it was still positive; see Figure 3.2), (2) the biomedical
corpus we use is too small and does not contain (frequent) mentions of some gene names
from the dictionary, or (3) some other limitations exist that prevent the learning algorithm
from finding additional class examples. Some observations support the notion that certain
gene names are particularly challenging to discover with NLP systems. Out of the 7151
names in the dictionary, 1363 are variations of other names with only a modification of
letter case, or an addition of ’.’ or ’-’. Of the rest, 222 are numeric-only names, and 401 are
2 letter abbreviations, both categories tending to be more ambiguous than general English
words.

Lexicons learned using BioNELL show persistently high precision throughout the 50
iterations, even when initiated with random seeds (Figure 3.2A). By the final iteration,
all systems stop accumulating further significant amounts of correct gene instances (Fig-
ure 3.2B). Systems that use PMI-based Rank-and-Learn bootstrapping also stop learning
incorrect instances (BioNELL and BioNELL+Random; Figure 3.2C). This is in contrast to
NELL which continues learning incorrect examples.

Interestingly, the highest number of correct gene instances was learned using Rank-
and-Learn bootstrapping with random initial seeds (248 items; BioNELL+Random). This

36



10 20 30 40 500

0.2

0.4

0.6

0.8

1

Iteration

Pr
ec

is
io

n

 

 

BioNELL
NELL
BioNELL+Random

(a) Precision

10 20 30 40 500

50

100

150

200

250

Iteration

C
um

ul
at

iv
e 

co
rre

ct
 le

xi
co

n 
ite

m
s

 

 

BioNELL
NELL
BioNELL+Random

(b) Cumulative correct items

10 20 30 40 500

100

200

300

400

500

Iteration

C
um

ul
at

iv
e 

in
co

rre
ct

 le
xi

co
n 

ite
m

s

 

 

BioNELL
NELL
BioNELL+Random

(c) Cumulative incorrect items

Figure 3.2: Performance per learning iteration for gene lexicons learned using BioNELL
and NELL.

may happen when the random set includes genes that are infrequent in the general Web
corpus, despite being otherwise category-specific in the biomedical context. As such, these
would result in low PMI rank (see note in Section 3.3.4). However, random seed selection
does not offer any guarantees on the quality of the seeds used, and therefore will result in
unstable performance. Note that BioNELL+Random was initiated with the same random
seeds as NELL, but due to the more constrained Rank-and-Learn bootstrapping it achieves
both higher recall (248 versus 186 correct instances) and precision (73% versus 29%).

37



Learning System Precision Correct Total

CC Drug Disease CC Drug Disease CC Drug Disease

BioNELL .66 .52 .43 63 508 276 96 972 624
NELL .15 .40 .37 74 522 288 449 1300 782

NELL by size .58 .47 .37 58 455 232 100 968 623

Table 3.4: Precision, total number of instances (Total), and correct instances (Correct) of
learned lexicons of Chemical Compound (CC), Drug, and Disease. BioNELL’s lexicons
have higher precision on all categories compared with NELL, while learning a similar
number of correct instances. When restricting NELL to a total lexicon size similar to
BioNELL’s, BioNELL has both higher precision and more correct instances (last row,
NELL by size).

Extending Lexicons of Open Categories

We evaluated learned lexicons for three open categories, Chemical Compound (CC), Drug,
and Disease, using dictionaries from Freebase. Since these are open categories — new
drugs are being developed every year, new diseases are discovered, and varied chemical
compounds can be created — the Freebase dictionaries are not likely to contain complete
information on these categories. For our evaluation, however, we considered them to be
complete.

We used BioNELL and NELL to learn these categories, and for all of them BioNELL’s
lexicons achieved higher precision than NELL (Table 3.4). The number of correct learned
instances was similar in both systems (63 and 74 for CC, 508 and 522 for Drug, and 276
and 288 for Disease), however in BioNELL, the additional bootstrapping restrictions assist
in rejecting incorrect instances, resulting in a smaller, more accurate lexicon.

We examined NELL’s lexicons when they reached a size similar to BioNELL’s final
lexicons (at the 8th, 42nd and 39th iterations for CC, Drug, and Disease, respectively).
BioNELL’s lexicons have both higher precision and higher recall (more correct learned
instances) than the comparable NELL lexicons (Table 3.4, NELL by size, last row).

3.4.3 Named-Entity Recognition using a Learned Lexicon

We examined the use of gene lexicons learned with BioNELL and NELL for the task of
recognizing concepts in free text, using a simple strategy of matching words in the text

38



Lexicon Precision Correct Total

BioNELL .90 18 20
NELL .02 5 268
BioNELL+Random .03 3 82

Complete Dictionary .09 153 1616
Filtered Dictionary .18 138 675

Table 3.5: Precision, total number of predicted genes (Total), and correct predictions (Cor-
rect), in a named-entity recognition task using a complete lexicon, a filtered lexicon, and
lexicons learned with BioNELL and NELL. BioNELL’s lexicon achieves the highest pre-
cision, and makes more correct predictions than NELL.

with terms from the lexicon. We use data from the BioCreative challenge (Section 3.4.1),
which includes text abstracts and the IDs of genes that appear in each abstract. We show
that BioNELL’s lexicon achieves both higher precision and recall in this task than NELL’s.

We implemented an annotator for predicting what genes are discussed in text, which
uses a gene lexicon as input. Given sample text, if any of the terms in the lexicon appear
in the text, the corresponding gene is predicted to be discussed in the text. Following
BioCreative’s annotation format, the annotator emits as output the set of gene IDs of the
genes predicted for the sample text.

We evaluated annotators that were given as input: the complete fly-genes dictionary, a
filtered version of that dictionary, or lexicons learned using BioNELL and NELL. Using
these annotators we predicted gene mentions for all text abstracts in the data. We report
the average precision (over 108 text abstracts) and number of total and correct predictions
of gene mentions, compared with the labeled annotations for each text (Table 3.5).

Many gene names are shared among multiple variants. For example, the name Anten-
napedia may refer to several gene variations, e.g., Dgua\Antp or Dmed\Antp. Thus, in
our precision measurements, we consider a prediction of a gene ID as “true” if it is labeled
as such by BioCreative, or if it shares a synonym name with another true labeled gene ID.

Using a Complete Dictionary

First, we used the complete fly gene dictionary for the recognition task. Any dictionary
gene that is mentioned in the text was recovered, resulting in high recall. However, the
full dictionary contains ambiguous gene names that contribute many false predictions to

39



the complete dictionary annotator, leading to a low precision of 9%.

Using a Manually-Filtered Dictionary

Some ambiguous terms can be detected using simple rules, e.g., short abbreviations and
numbers. For example, section 9 is a gene named after the functional unit to which it
belongs, and abbreviated by the symbol 9. Clearly, removing 9 from the full lexicon should
improve precision without great cost to recall. We similarly filtered the full dictionary,
removing one- and two-letter abbreviations and terms composed only of non-alphabetical
characters, leaving 6253 terms. Using the filtered dictionary, precision has doubled (18%)
with minor compromise to recall. Using complete or manually refined gene dictionaries
for named-entity recognition has been shown before to produce similar high-recall and
low-precision results [Bunescu et al., 2005].

Using a Learned Lexicon

We evaluated annotators on gene lexicons learned with BioNELL and NELL. BioNELL’s
lexicon achieved significantly higher precision (90%) than other lexicons (2%-18%). It is
evident that this lexicon contains few ambiguous terms as it leads to only 2 false predic-
tions. Note also, that BioNELL’s lexicon has both higher precision and recall than NELL.

3.5 Conclusions

We have proposed a methodology for an information extraction system for biomedical
scientific text, using an automatically derived ontology of categories and seeds. Our im-
plementation is based on constrained bootstrapping in which seeds are ranked at every
iteration.

We have demonstrated that, by starting with our derived ontology and adding con-
straints to NELL’s bootstrapping method, we build a high-precision biomedical KB, in-
cluding significantly less ambiguous lexicons for all the evaluated biomedical concepts.
BioNELL shows 51% increase over NELL in the precision of a learned lexicon of chemical
compounds, and 45% increase for a category of gene names. Importantly, when BioNELL
and NELL learn lexicons of similar size, BioNELL’s lexicons have both higher precision
and recall.

The biomedical KB that we have built is useful in the context of an NLP task in this

40



domain: we have shown that BioNELL’s learned gene lexicon is a high-precision annotator
in an entity recognition task (with 90% precision). The results are promising, though it is
currently difficult to provide a similar quantitative evaluation for a wider range of concepts.

Many interesting improvements could be made in the current system, mainly discov-
ery of relations between existing ontology categories. In addition, we believe that Rank-
and-Learn bootstrapping and iterative seed ranking can be beneficial in general, domain-
independent settings, and we would like to explore further use of this method.

41



42



Chapter 4

Grounded Software Ontology
Construction using Coordinate Term
Relationships

In Chapter 3 we constructed a Knowledge Base for the biomedical domain, using pre-
existing domain ontologies as a source of schema and seeds. We then manipulated a
semi-supervised bootstrapping algorithm for KB population, in order to learn facts re-
lated to concepts introduced in the existing ontologies. The main disadvantage of the pre-
sented approach is that it relies on an input biomedical ontology; however, other technical
domains, including software, are not as well-studied linguistically and there are no pre-
existing ontologies which describe important concepts and terminology in these domains.
This motivates unsupervised approaches for constructing ontologies based on domain cor-
pora alone. In this work, we propose a method for discovering relations between domain
entities found in text, and these relations are later combined into an ontology. The advan-
tage of the resulting ontology is that it reflects statistics about the domain entities; this is
in contrast to human-created ontologies such as the ones from the biomedical domain, or
those typically used in open-domain KB population methods.

Our approach uses distant supervision to detect coordinate-term relationships between
entities from the software domain that refer to Java classes. Usually, semantic relations
are found by examining corpus statistics associated with text entities. In some technical
domains, however, we have access to additional information about the real-world objects
named by the entities, suggesting that coupling information about the “grounded” entities
with corpus statistics might lead to improved methods for relation discovery. To this end,
we develop a similarity measure for Java classes using distributional information about

43



how they are used in software, which we combine with corpus statistics on the distribution
of contexts in which the classes appear in text. We propose two approaches for weakly-
labeling extracted pairs of classes. We then show that using a combination of corpus and
code statistics, prediction results on extracted pairs improved dramatically, from around
60% to 88%. Additionally, human labeling results show that our classifier has an F1 score
of 86% over the top 1000 predicted pairs.

4.1 Introduction

Discovering semantic relations between text entities is a key task in natural language un-
derstanding. It is a critical component which enables the success of knowledge represen-
tation systems such as TextRunner [Yates et al., 2007], ReVerb [Fader et al., 2011], and
NELL [Carlson et al., 2010], which in turn are useful for a variety of NLP applications, in-
cluding, temporal scoping [Talukdar et al., 2012b], semantic parsing [Krishnamurthy and
Mitchell, 2012] and entity linking [Lin et al., 2012].

In this work, we examine coordinate relations between words. According to the Word-
Net glossary, X and Y are defined as coordinate terms if they share a common hypernym
[Miller, 1995, Fellbaum, 1998]. This is a symmetric relation that indicates a semantic
similarity, meaning that X and Y are “a type of the same thing”, since they share at least
one common ancestor in some hypernym taxonomy (to paraphrase the definition of Snow
et al. [Snow et al., 2006]). More broadly, here, we consider coordinate entities to be pairs
of entities that exhibit some level of similarity among them.

Semantic similarity relations are normally discovered by comparing corpus statistics
associated with the entities: for instance, two entities X and Y that usually appear in simi-
lar contexts are likely to be semantically similar [Pereira et al., 1993, Pantel, 2003, Curran,
2004]. However, in technical domains, we have access to additional information about the
real-world objects that are named by the entities: e.g., we might have biographical data
about a person entity, or a 3D structural encoding of a protein entity. In such situations,
it seems plausible that a ”grounded” NLP method, in which corpus statistics are coupled
with data on the real-world referents of X and Y , might lead to improved methods for
relation discovery.

Here we explore the idea of grounded relation discovery in the domain of software. In
particular, we consider the detection of coordinate-term relationships between entities that
(potentially) refer to Java classes. We use a software domain text corpus derived from the
Q&A website StackOverflow (SO), in which users ask and answer questions about soft-
ware development, and we extract posts which have been labeled by users as Java related.

44



From this data, we collected a small set of entity pairs that are labeled as coordinate terms
(or not) based on high-precision Hearst patterns and frequency statistics, and we attempt
to label these pairs using information available from higher-recall approaches based on
distributional similarity.

We describe an entity linking method in order to map a given text entity to an underly-
ing class type implementation from the Java standard libraries. Next, we describe corpus
and code based information that we use for the relation discovery task. Corpus based
methods include distributional similarity and string matching similarity. Additionally, we
use two sources of code based information: (1) we define the class-context of a Java class
in a given code repository, and are therefore able to calculate a code-based distributional
similarity measure for classes, and (2) we consider the hierarchical organization of classes,
described by the Java class type and namespace hierarchies. We demonstrate that using our
approach, cross-validation accuracy on this dataset is improved from 60.9% to 88%. Ac-
cording to human labeling, our classifier has an F1-score of 86% over the highest-ranking
1000 predicted pairs.

We see this work as a first step towards building a knowledge representation system for
the software domain, in which text entities refer to elements from a software code base,
for example classes, methods, applications and programming languages. Understand-
ing software entity relations will allow the construction of a domain specific taxonomy
and knowledge base, which can enable higher reasoning capabilities in NLP applications
for the software domain [Weimer et al., 2007, Wang et al., 2009, Branavan et al., 2010,
Movshovitz-Attias and Cohen, 2013] and improve a variety of code assisting applications,
including code refactoring and token completion [Han et al., 2009, Jacob and Tairas, 2010,
Binkley et al., 2011, Schulam et al., 2013].

Figure 4.1 shows a visualization based on coordinate term pairs predicted using the
proposed method. Java classes with similar functionality (highlighted in Figure 4.2) are
highly connected in this graph, indicating that our method can be used to construct a code
taxonomy.

4.2 Related Work

4.2.1 Semantic Relation Discovery

Previous work on semantic relation discovery, in particular, coordinate term discovery,
has used two main approaches. The first is based on the insight that certain lexical pat-
terns indicate a semantic relationship with high-precision, as initially observed by Hearst

45



6WULQJ%XLOGHUV
6WULQJ%XIIHUV

(YHQW/LVWHQHU3UR[\
(YHQW/LVWHQHU/LVW

7UD\,FRQ6\VWHP7UD\

.H\(YHQWV0RXVH(YHQWV

$FWLRQ0DS,QSXW0DS

(QXP6HW(QXP0DS

%XIIHUHG:ULWHUV
%XIIHUHG5HDGHUV

)LOH&KDQQHOV%\WH%XIIHUV

M7H[W$UHD��
M&RPER%R[��

;0/6WUHDP:ULWHU'HIDXOW+DQGOHU

5ROH/LVW
$UU\D/LVW

7DEOH9LHZHU9LHZ)LOWHU

'DWDJUDP3DFNHW'DWDJUDP6RFNHW

([HFXWLRQ([FHSWLRQ,QWHUUXSWHG([FHSWLRQ

,PDJH:ULWHU,PDJH5HDGHU

$FWLRQ/LVWHQHUV)RFXV/LVWHQHUV

,QYDOLG3DUDPHWHU([FHSWLRQ,OOHJDO$UJXPHQW([FSWLRQ
'RFXPHQW/LVWHQHU
'RFXPHQW)LOWHU

1R&ODVV'HI)RXQG(UURUV
&ODVV1RW)RXQG([FHSWLRQV

6HFXULW\0DQDJHU$FFHVVLEOH2EMHFW3LSH2XWSXW6WUHDP
3LSH,QSXW6WUHDP

5PL&RQQHFWRU&OLHQW5PL&RQQHFWRU$GGUHVV

;0/'HFRGHU
;0/(QFRGHU

3ULYDWH.H\
3XEOLF.H\

8QNQRZQ+RVW([FHSWLRQ8QNQRZQ([FHSWLRQ

$FWLRQ0DSV,QSXW0DSV
2EMHFW,QSXW
2EMHFW2XWSXW

5RRW3DQH/D\HUHG3DQH

,,2,PDJH
,,20HWD'DWD

/RFDO9DULDEOH7\SH7DEOH/RFDO9DULDEOH7DEOH&KDUVHW(QFRGHU
&KDUVHW'HFRGHU

JUHDWHU2U(TXDO7KDQOHVVHU2U(TXDO7KDQ

'RFXPHQW%XLOGHU)DFWRU\'RFXPHQW%XLOGHU

%RROHDQ$WWULEXWH
6WULQJ$WWULEXWH

3RUWDEOH5HPRWH2EMHFW8QLFDVW5HPRWH2EMHFW

'206RXUFH6WUHDP6RXUFH7KUHDG*URXSV7KUHDG*URXS

)RFXV/LVWQHU
$FWLRQ/LVWQHU

-&RPER%R[�-&RPER%R[�7UHH&HOO5HQGHUHU7UHH&HOO(GLWRU

3.&6�(QFRGHG.H\6SHF;���(QFRGHG.H\6SHF

3LSHG5HDGHU
3LSHG:ULWHU

7\SH0LUURU
7\SH(OHPHQW

6RFNHW,PSO)DFWRU\6RFNHW,PSO

VHW,FRQ,PDJHVVHW,FRQ,PDJH

3URSHUW\&KDQJH6XSSRUW
3URSHUW\&KDQJH/LVWHQHU3URSHUW\&KDQJH(YHQW

,QSXW6WUHDPV/LQH5HDGHU
2XWSXW6WUHDPV

7DEOH&HOO(GLWRU

7DEOH&HOO5HQGHUHU
7DEOH0RGHO/LVWHQHU

7UHH0RGHO7UHH1RGH
0XWDEOH7UHH1RGH

,QSXW6WUHDP5HDGHUV
)LOH5HDGHUV6WULQJ:ULWHUV

5HVRXUFH%XQGOH
/LVW5HVRXUFH%XQGOH3URSHUW\5HVRXUFH%XQGOH

*=,3,QSXW6WUHDP*=,32XWSXW6WUHDP
'HIODWHU2XWSXW6WUHDP

*UDSKLFV'HYLFH
*UDSKLFV(QYLURQPHQW*UDSKLFV&RQILJXUDWLRQ

1XOO3RLQWHU([FHSWLRQV
,2([FHSWLRQV

8QNQRZQ2EMHFW([FHSWLRQV

64/([FHSWLRQV

6LPSOH'DWH)RUPDW
'DWH)RUPDW

*UHJRULDQ&DOHQGDU

7LPH=RQH

5HHQWUDQW/RFN

$WRPLF,QWHJHU
$WRPLF,QWHJHU$UUD\$WRPLF/RQJ

5HFWDQJOH�'
7H[WXUH3DLQW/LQH�'

(OOLSVH�'

6ZLQJ8WLWOLHV6ZLQJ:RUNHU
6ZLQJ8WLOLWLHV(YHQW4XHXH

'HIDXOW7UHH&HOO5HQGHUHU

'HIDXOW7DEOH&HOO(GLWRU'HIDXOW7DEOH&HOO5HQGHUHU

'HIDXOW/LVW&HOO5HQGHUHU

&KHFN%R[

7H[W)LHOG

&RPER%R[

7H[W$UHD

7H[W)LOHG
6FUROO3DQH

%R[/D\RXW

*ULG%DJ/D\RXW

%RUGHU/D\RXW

)ORZ/D\RXW
*URXS/D\RXW

6SULQJ/D\RXW
*ULG%DJ&RQVWUDLQWV2SWLRQV3DQHO

-)RUPDWWHG7H[W)LHOG
1XPEHU)RUPDW

%LJ,QWHJHU

%LJ'HFLPDO

'HFLPDO)RUPDW

0DWK&RQWH[W

0HVVDJH)RUPDW
)LHOG3RVLWLRQ

&ODVV/RDGHU

85/&ODVV/RDGHU

&ODVV/RDGHUV

&ODVV3DWK

=LS2XWSXW6WUHDP
=LS,QSXW6WUHDP

-DU,QSXW6WUHDP

-DU2XWSXW6WUHDP

=LS)LOH

-DU)LOH

%XIIHUHG,PDJH

,PDJH,2

*UDSKLFV�'$IILQH7UDQVIRUP

7H[W/D\RXW

,PDJH,FRQ

)RQW0HWULFV

:ULWDEOH5DVWHU
,PDJH%XIIHU

$OSKD&RPSRVLWH
9RODWLOH,PDJH
5HQGHUHG,PDJH

&RORU0RGHO'DWD%XIIHU,QW

$IILQH7UDQVIRUP2S

6DPSOH0RGHO

,OOHJDO$UJXPHQW([FHSWLRQ
1XOO3RLQWHU([FHSWLRQ

&ODVV&DVW([FHSWLRQ,OOHJDO$FFHVV([FHSWLRQ

64/([FHSWLRQ,OOHJDO6WDWH([FHSWLRQ
5XQWLPH([FHSWLRQ

$ULWKPHWLF([FHSWLRQ

&RQFXUUHQW0RGLILFDWLRQ([FHSWLRQ1XPEHU)RUPDW([FHSWLRQ

)LOH1RW)RXQG([FHSWLRQ

,2([FHSWLRQ

2XW2I0HPRU\(UURU,QWHUQDO(UURU

1R&ODVV'HI)RXQG(UURU

6RIW5HIHUHQFH

&RUUXSWHG6WUHDP([FHSWLRQ
6RFNHW([FHSWLRQ

(2)([FHSWLRQ
6HFXULW\([FHSWLRQ

,QVWDQWLDWLRQ([FHSWLRQ
([FHSWLRQ,Q,QLWLDOL]HU(UURU&ODVV1RW)RXQG([FHSWLRQ

:HDN5HIHUHQFH

6$;([FHSWLRQV

5HIHUHQFH4XHXH

:LQGRZ/LVWHQHU

-$SSOHW

-'LDORJ
-%XWWRQV-)UDPH

-3DQHOV

-/DEHOV

-&RPSRQHQWV

-0HQX

-7DEEHG3DQH
-:LQGRZ

-2SWLRQ3DQH

-0HQX,WHPV

-7H[W)LHOGV

-0HQXV

-0HQX%DU

7LPHU7DVN

-'LDORJV

/D\RXW0DQDJHU
-3DQOH

6FKHGXOHG([HFXWRU6HUYLFH

-,QWHUQDO)UDPHV

-)UDPHV

-2SWLRQ3DQHV

/D\RXW0DQDJHUV

-$SSOHWV

,PDJH,FRQV

-7H[W$UHDV

-0HQX,WHP

-&RPER%R[V

-3RSXS0HQX

-7RRO%DU

.H\%LQGLQJV

7DEEHG3DQH

+DVK0DS

7UHH0DS

$UUD\/LVW/LQNHG/LVW7UHH6HW

+DVK0DSV
$UUD\/LVWV

+DVK6HW

&RQFXUUHQW+DVK0DS

6RUWHG0DS

:HDN+DVK0DS

/LQNHG+DVK0DS

$UUD\%ORFNLQJ4XHXH
$UUD\'HTXH

7KUHDG3RRO([HFXWRU
$EVWUDFW/LVW&RS\2Q:ULWH$UUD\/LVW/LQNHG+DVK6HW

'HIDXOW/LVW0RGHO3ULRULW\4XHXH
7UHH6HWV6RUWHG6HW

+DVK6HWV
%ORFNLQJ4XHXH

([HFXWRU6HUYLFH

7KUHDG3RRO

)XWXUH7DVN

/LQNHG/LVWV

$WRPLF5HIHUHQFH

%LW6HW
&RQFXUUHQW6NLS/LVW6HW

&RQFXUUHQW6NLS/LVW0DS

1DYLJDEOH0DS

&RQFXUUHQW/LQNHG4XHXH

:HDN5HIHUHQFHV
6RIW5HIHUHQFHV

%ORFN4XHXH

'DWD,QSXW6WUHDP%XIIHUHG5HDGHU

)LOH,QSXW6WUHDP

'DWD2XWSXW6WUHDP

,QSXW6WUHDP5HDGHU
%XIIHUHG,QSXW6WUHDP

2EMHFW,QSXW6WUHDP

%\WH%XIIHU

)LOH5HDGHU

6WULQJ%XIIHU

,QSXW6WUHDP

3ULQW:ULWHU

+WWS85/&RQQHFWLRQ

%XIIHUHG:ULWHU

)LOWHU5HDGHU

85/&RQQHFWLRQ

2XWSXW6WUHDP

)LOH:ULWHU
)LOH2XWSXW6WUHDP

2EMHFW2XWSXW6WUHDP

)LOH&KDQQHO

5DQGRP$FFHVV)LOH

%\WH$UUD\2XWSXW6WUHDP

6WULQJ%XLOGHU

6WULQJ:ULWHU
$XGLR,QSXW6WUHDP

3ULQW6WUHDP

)LOWHU2XWSXW6WUHDP

6RFNHW,QSXW6WUHDP,QSXW6RXUFH

%XIIHUHG2XWSXW6WUHDP

2XWSXW6WUHDP:ULWHU

6WULQJ5HDGHU

,QW%XIIHU

3LSHG2XWSXW6WUHDP

+WWSV85/&RQQHFWLRQ

;���&HUWLILFDWH

'DWD,QSXW6RFNHW&KDQQHO

&KDU%XIIHU)ORDW%XIIHU
%\WH2UGHU

'DWD2XWSXW

3LSHG,QSXW6WUHDP

6HUYHU6RFNHW&KDQQHO

)LOWHU,QSXW6WUHDP

6WULQJ%XIIHU,QSXW6WUHDP

-7H[W)LHOG

$FWLRQ/LVWHQHU

-3DQHO

-%XWWRQ

0RXVH/LVWHQHU

.H\/LVWHQHU

$FWLRQ(YHQW
,WHP/LVWHQHU

-/D\HUHG3DQH

-7UHH

-,QWHUQDO)UDPH

-&RPSRQHQW

-6OLGHU

-&KHFN%R[

-/DEHO

-7DEOH-(GLWRU3DQH

-/LVW -6FUROO3DQH

-5DGLR%XWWRQ

-&RPSQHQW

-7DEOH+HDGHU

0HQX%DU
-6FUROO3DQHO

-'HVNWRS3DQH

'HIDXOW7UHH6HOHFWLRQ0RGHO
8,0DQDJHU

-5RRW3DQH-&RPER%R[

-7H[W$UHD-7H[W3DQH

-)LOH&KRRVHU

-6SLQQHU$EVWUDFW%XWWRQ

-3URJUHVV%DU

-6HSDUDWRU

-7RJJOH%XWWRQ

-5DGLR%XWWRQ0HQX

0RXVH0RWLRQ/LVWHQHU
0RXVH:KHHO/LVWHQHU

7DEOH0RGHO'HIDXOW7DEOH0RGHO

7DEOH5RZ6RUWHU

'HIDXOW6W\OHG'RFXPHQW
+70/(GLWRU.LW

&HOO5HQGHUHU

&RPER%R[0RGHO
'HIDXOW&RPER%R[0RGHO

6W\OH&RQVWDQWV-7DEOHV

/LVW6HOHFWLRQ/LVWHQHU
/LVW0RGHO

.H\(YHQW)RFXV/LVWHQHU

-5DGLR%XWWRQV

6LPSOH$WWULEXWH6HW

-6FUROO%DU

,WHP(YHQWV

)LOH'LDORJ

:LQGRZ)RFXV/LVWHQHU

3URJUHVV0RQLWRU

5RZ)LOWHU

Exceptions!

Utilities!

Graphics!

GUI!

IO!

Figure 4.1: Visualization of predicted coordinate term pairs, where each pair of coordinate
classes is connected by an edge. Highly connected components are labeled by edge color,
and it can be noted that they contain classes with similar functionality. Some areas con-
taining a functional class group have been labeled with the name of the class in red, and a
magnified version of that area can be found in Figure 4.2 for easier readability.

46



6WULQJ%XLOGHUV
6WULQJ%XIIHUV

(YHQW/LVWHQHU3UR[\
(YHQW/LVWHQHU/LVW

7UD\,FRQ6\VWHP7UD\

.H\(YHQWV0RXVH(YHQWV

$FWLRQ0DS,QSXW0DS

(QXP6HW(QXP0DS

%XIIHUHG:ULWHUV
%XIIHUHG5HDGHUV

)LOH&KDQQHOV%\WH%XIIHUV

M7H[W$UHD��
M&RPER%R[��

;0/6WUHDP:ULWHU'HIDXOW+DQGOHU

5ROH/LVW
$UU\D/LVW

7DEOH9LHZHU9LHZ)LOWHU

'DWDJUDP3DFNHW'DWDJUDP6RFNHW

([HFXWLRQ([FHSWLRQ,QWHUUXSWHG([FHSWLRQ

,PDJH:ULWHU,PDJH5HDGHU

$FWLRQ/LVWHQHUV)RFXV/LVWHQHUV

,QYDOLG3DUDPHWHU([FHSWLRQ,OOHJDO$UJXPHQW([FSWLRQ
'RFXPHQW/LVWHQHU
'RFXPHQW)LOWHU

1R&ODVV'HI)RXQG(UURUV
&ODVV1RW)RXQG([FHSWLRQV

6HFXULW\0DQDJHU$FFHVVLEOH2EMHFW3LSH2XWSXW6WUHDP
3LSH,QSXW6WUHDP

5PL&RQQHFWRU&OLHQW5PL&RQQHFWRU$GGUHVV

;0/'HFRGHU
;0/(QFRGHU

3ULYDWH.H\
3XEOLF.H\

8QNQRZQ+RVW([FHSWLRQ8QNQRZQ([FHSWLRQ

$FWLRQ0DSV,QSXW0DSV
2EMHFW,QSXW
2EMHFW2XWSXW

5RRW3DQH/D\HUHG3DQH

,,2,PDJH
,,20HWD'DWD

/RFDO9DULDEOH7\SH7DEOH/RFDO9DULDEOH7DEOH&KDUVHW(QFRGHU
&KDUVHW'HFRGHU

JUHDWHU2U(TXDO7KDQOHVVHU2U(TXDO7KDQ

'RFXPHQW%XLOGHU)DFWRU\'RFXPHQW%XLOGHU

%RROHDQ$WWULEXWH
6WULQJ$WWULEXWH

3RUWDEOH5HPRWH2EMHFW8QLFDVW5HPRWH2EMHFW

'206RXUFH6WUHDP6RXUFH7KUHDG*URXSV7KUHDG*URXS

)RFXV/LVWQHU
$FWLRQ/LVWQHU

-&RPER%R[�-&RPER%R[�7UHH&HOO5HQGHUHU7UHH&HOO(GLWRU

3.&6�(QFRGHG.H\6SHF;���(QFRGHG.H\6SHF

3LSHG5HDGHU
3LSHG:ULWHU

7\SH0LUURU
7\SH(OHPHQW

6RFNHW,PSO)DFWRU\6RFNHW,PSO

VHW,FRQ,PDJHVVHW,FRQ,PDJH

3URSHUW\&KDQJH6XSSRUW
3URSHUW\&KDQJH/LVWHQHU3URSHUW\&KDQJH(YHQW

,QSXW6WUHDPV/LQH5HDGHU
2XWSXW6WUHDPV

7DEOH&HOO(GLWRU

7DEOH&HOO5HQGHUHU
7DEOH0RGHO/LVWHQHU

7UHH0RGHO7UHH1RGH
0XWDEOH7UHH1RGH

,QSXW6WUHDP5HDGHUV
)LOH5HDGHUV6WULQJ:ULWHUV

5HVRXUFH%XQGOH
/LVW5HVRXUFH%XQGOH3URSHUW\5HVRXUFH%XQGOH

*=,3,QSXW6WUHDP*=,32XWSXW6WUHDP
'HIODWHU2XWSXW6WUHDP

*UDSKLFV'HYLFH
*UDSKLFV(QYLURQPHQW*UDSKLFV&RQILJXUDWLRQ

1XOO3RLQWHU([FHSWLRQV
,2([FHSWLRQV

8QNQRZQ2EMHFW([FHSWLRQV

64/([FHSWLRQV

6LPSOH'DWH)RUPDW
'DWH)RUPDW

*UHJRULDQ&DOHQGDU

7LPH=RQH

5HHQWUDQW/RFN

$WRPLF,QWHJHU
$WRPLF,QWHJHU$UUD\$WRPLF/RQJ

5HFWDQJOH�'
7H[WXUH3DLQW/LQH�'

(OOLSVH�'

6ZLQJ8WLWOLHV6ZLQJ:RUNHU
6ZLQJ8WLOLWLHV(YHQW4XHXH

'HIDXOW7UHH&HOO5HQGHUHU

'HIDXOW7DEOH&HOO(GLWRU'HIDXOW7DEOH&HOO5HQGHUHU

'HIDXOW/LVW&HOO5HQGHUHU

&KHFN%R[

7H[W)LHOG

&RPER%R[

7H[W$UHD

7H[W)LOHG
6FUROO3DQH

%R[/D\RXW

*ULG%DJ/D\RXW

%RUGHU/D\RXW

)ORZ/D\RXW
*URXS/D\RXW

6SULQJ/D\RXW
*ULG%DJ&RQVWUDLQWV2SWLRQV3DQHO

-)RUPDWWHG7H[W)LHOG
1XPEHU)RUPDW

%LJ,QWHJHU

%LJ'HFLPDO

'HFLPDO)RUPDW

0DWK&RQWH[W

0HVVDJH)RUPDW
)LHOG3RVLWLRQ

&ODVV/RDGHU

85/&ODVV/RDGHU

&ODVV/RDGHUV

&ODVV3DWK

=LS2XWSXW6WUHDP
=LS,QSXW6WUHDP

-DU,QSXW6WUHDP

-DU2XWSXW6WUHDP

=LS)LOH

-DU)LOH

%XIIHUHG,PDJH

,PDJH,2

*UDSKLFV�'$IILQH7UDQVIRUP

7H[W/D\RXW

,PDJH,FRQ

)RQW0HWULFV

:ULWDEOH5DVWHU
,PDJH%XIIHU

$OSKD&RPSRVLWH
9RODWLOH,PDJH
5HQGHUHG,PDJH

&RORU0RGHO'DWD%XIIHU,QW

$IILQH7UDQVIRUP2S

6DPSOH0RGHO

,OOHJDO$UJXPHQW([FHSWLRQ
1XOO3RLQWHU([FHSWLRQ

&ODVV&DVW([FHSWLRQ,OOHJDO$FFHVV([FHSWLRQ

64/([FHSWLRQ,OOHJDO6WDWH([FHSWLRQ
5XQWLPH([FHSWLRQ

$ULWKPHWLF([FHSWLRQ

&RQFXUUHQW0RGLILFDWLRQ([FHSWLRQ1XPEHU)RUPDW([FHSWLRQ

)LOH1RW)RXQG([FHSWLRQ

,2([FHSWLRQ

2XW2I0HPRU\(UURU,QWHUQDO(UURU

1R&ODVV'HI)RXQG(UURU

6RIW5HIHUHQFH

&RUUXSWHG6WUHDP([FHSWLRQ
6RFNHW([FHSWLRQ

(2)([FHSWLRQ
6HFXULW\([FHSWLRQ

,QVWDQWLDWLRQ([FHSWLRQ
([FHSWLRQ,Q,QLWLDOL]HU(UURU&ODVV1RW)RXQG([FHSWLRQ

:HDN5HIHUHQFH

6$;([FHSWLRQV

5HIHUHQFH4XHXH

:LQGRZ/LVWHQHU

-$SSOHW

-'LDORJ
-%XWWRQV-)UDPH

-3DQHOV

-/DEHOV

-&RPSRQHQWV

-0HQX

-7DEEHG3DQH
-:LQGRZ

-2SWLRQ3DQH

-0HQX,WHPV

-7H[W)LHOGV

-0HQXV

-0HQX%DU

7LPHU7DVN

-'LDORJV

/D\RXW0DQDJHU
-3DQOH

6FKHGXOHG([HFXWRU6HUYLFH

-,QWHUQDO)UDPHV

-)UDPHV

-2SWLRQ3DQHV

/D\RXW0DQDJHUV

-$SSOHWV

,PDJH,FRQV

-7H[W$UHDV

-0HQX,WHP

-&RPER%R[V

-3RSXS0HQX

-7RRO%DU

.H\%LQGLQJV

7DEEHG3DQH

+DVK0DS

7UHH0DS

$UUD\/LVW/LQNHG/LVW7UHH6HW

+DVK0DSV
$UUD\/LVWV

+DVK6HW

&RQFXUUHQW+DVK0DS

6RUWHG0DS

:HDN+DVK0DS

/LQNHG+DVK0DS

$UUD\%ORFNLQJ4XHXH
$UUD\'HTXH

7KUHDG3RRO([HFXWRU
$EVWUDFW/LVW&RS\2Q:ULWH$UUD\/LVW/LQNHG+DVK6HW

'HIDXOW/LVW0RGHO3ULRULW\4XHXH
7UHH6HWV6RUWHG6HW

+DVK6HWV
%ORFNLQJ4XHXH

([HFXWRU6HUYLFH

7KUHDG3RRO

)XWXUH7DVN

/LQNHG/LVWV

$WRPLF5HIHUHQFH

%LW6HW
&RQFXUUHQW6NLS/LVW6HW

&RQFXUUHQW6NLS/LVW0DS

1DYLJDEOH0DS

&RQFXUUHQW/LQNHG4XHXH

:HDN5HIHUHQFHV
6RIW5HIHUHQFHV

%ORFN4XHXH

'DWD,QSXW6WUHDP%XIIHUHG5HDGHU

)LOH,QSXW6WUHDP

'DWD2XWSXW6WUHDP

,QSXW6WUHDP5HDGHU
%XIIHUHG,QSXW6WUHDP

2EMHFW,QSXW6WUHDP

%\WH%XIIHU

)LOH5HDGHU

6WULQJ%XIIHU

,QSXW6WUHDP

3ULQW:ULWHU

+WWS85/&RQQHFWLRQ

%XIIHUHG:ULWHU

)LOWHU5HDGHU

85/&RQQHFWLRQ

2XWSXW6WUHDP

)LOH:ULWHU
)LOH2XWSXW6WUHDP

2EMHFW2XWSXW6WUHDP

)LOH&KDQQHO

5DQGRP$FFHVV)LOH

%\WH$UUD\2XWSXW6WUHDP

6WULQJ%XLOGHU

6WULQJ:ULWHU
$XGLR,QSXW6WUHDP

3ULQW6WUHDP

)LOWHU2XWSXW6WUHDP

6RFNHW,QSXW6WUHDP,QSXW6RXUFH

%XIIHUHG2XWSXW6WUHDP

2XWSXW6WUHDP:ULWHU

6WULQJ5HDGHU

,QW%XIIHU

3LSHG2XWSXW6WUHDP

+WWSV85/&RQQHFWLRQ

;���&HUWLILFDWH

'DWD,QSXW6RFNHW&KDQQHO

&KDU%XIIHU)ORDW%XIIHU
%\WH2UGHU

'DWD2XWSXW

3LSHG,QSXW6WUHDP

6HUYHU6RFNHW&KDQQHO

)LOWHU,QSXW6WUHDP

6WULQJ%XIIHU,QSXW6WUHDP

-7H[W)LHOG

$FWLRQ/LVWHQHU

-3DQHO

-%XWWRQ

0RXVH/LVWHQHU

.H\/LVWHQHU

$FWLRQ(YHQW
,WHP/LVWHQHU

-/D\HUHG3DQH

-7UHH

-,QWHUQDO)UDPH

-&RPSRQHQW

-6OLGHU

-&KHFN%R[

-/DEHO

-7DEOH-(GLWRU3DQH

-/LVW -6FUROO3DQH

-5DGLR%XWWRQ

-&RPSQHQW

-7DEOH+HDGHU

0HQX%DU
-6FUROO3DQHO

-'HVNWRS3DQH

'HIDXOW7UHH6HOHFWLRQ0RGHO
8,0DQDJHU

-5RRW3DQH-&RPER%R[

-7H[W$UHD-7H[W3DQH

-)LOH&KRRVHU

-6SLQQHU$EVWUDFW%XWWRQ

-3URJUHVV%DU

-6HSDUDWRU

-7RJJOH%XWWRQ

-5DGLR%XWWRQ0HQX

0RXVH0RWLRQ/LVWHQHU
0RXVH:KHHO/LVWHQHU

7DEOH0RGHO'HIDXOW7DEOH0RGHO

7DEOH5RZ6RUWHU

'HIDXOW6W\OHG'RFXPHQW
+70/(GLWRU.LW

&HOO5HQGHUHU

&RPER%R[0RGHO
'HIDXOW&RPER%R[0RGHO

6W\OH&RQVWDQWV-7DEOHV

/LVW6HOHFWLRQ/LVWHQHU
/LVW0RGHO

.H\(YHQW)RFXV/LVWHQHU

-5DGLR%XWWRQV

6LPSOH$WWULEXWH6HW

-6FUROO%DU

,WHP(YHQWV

)LOH'LDORJ

:LQGRZ)RFXV/LVWHQHU

3URJUHVV0RQLWRU

5RZ)LOWHU

(a) Exception Classes

6WULQJ%XLOGHUV
6WULQJ%XIIHUV

(YHQW/LVWHQHU3UR[\
(YHQW/LVWHQHU/LVW

7UD\,FRQ6\VWHP7UD\

.H\(YHQWV0RXVH(YHQWV

$FWLRQ0DS,QSXW0DS

(QXP6HW(QXP0DS

%XIIHUHG:ULWHUV
%XIIHUHG5HDGHUV

)LOH&KDQQHOV%\WH%XIIHUV

M7H[W$UHD��
M&RPER%R[��

;0/6WUHDP:ULWHU'HIDXOW+DQGOHU

5ROH/LVW
$UU\D/LVW

7DEOH9LHZHU9LHZ)LOWHU

'DWDJUDP3DFNHW'DWDJUDP6RFNHW

([HFXWLRQ([FHSWLRQ,QWHUUXSWHG([FHSWLRQ

,PDJH:ULWHU,PDJH5HDGHU

$FWLRQ/LVWHQHUV)RFXV/LVWHQHUV

,QYDOLG3DUDPHWHU([FHSWLRQ,OOHJDO$UJXPHQW([FSWLRQ
'RFXPHQW/LVWHQHU
'RFXPHQW)LOWHU

1R&ODVV'HI)RXQG(UURUV
&ODVV1RW)RXQG([FHSWLRQV

6HFXULW\0DQDJHU$FFHVVLEOH2EMHFW3LSH2XWSXW6WUHDP
3LSH,QSXW6WUHDP

5PL&RQQHFWRU&OLHQW5PL&RQQHFWRU$GGUHVV

;0/'HFRGHU
;0/(QFRGHU

3ULYDWH.H\
3XEOLF.H\

8QNQRZQ+RVW([FHSWLRQ8QNQRZQ([FHSWLRQ

$FWLRQ0DSV,QSXW0DSV
2EMHFW,QSXW
2EMHFW2XWSXW

5RRW3DQH/D\HUHG3DQH

,,2,PDJH
,,20HWD'DWD

/RFDO9DULDEOH7\SH7DEOH/RFDO9DULDEOH7DEOH&KDUVHW(QFRGHU
&KDUVHW'HFRGHU

JUHDWHU2U(TXDO7KDQOHVVHU2U(TXDO7KDQ

'RFXPHQW%XLOGHU)DFWRU\'RFXPHQW%XLOGHU

%RROHDQ$WWULEXWH
6WULQJ$WWULEXWH

3RUWDEOH5HPRWH2EMHFW8QLFDVW5HPRWH2EMHFW

'206RXUFH6WUHDP6RXUFH7KUHDG*URXSV7KUHDG*URXS

)RFXV/LVWQHU
$FWLRQ/LVWQHU

-&RPER%R[�-&RPER%R[�7UHH&HOO5HQGHUHU7UHH&HOO(GLWRU

3.&6�(QFRGHG.H\6SHF;���(QFRGHG.H\6SHF

3LSHG5HDGHU
3LSHG:ULWHU

7\SH0LUURU
7\SH(OHPHQW

6RFNHW,PSO)DFWRU\6RFNHW,PSO

VHW,FRQ,PDJHVVHW,FRQ,PDJH

3URSHUW\&KDQJH6XSSRUW
3URSHUW\&KDQJH/LVWHQHU3URSHUW\&KDQJH(YHQW

,QSXW6WUHDPV/LQH5HDGHU
2XWSXW6WUHDPV

7DEOH&HOO(GLWRU

7DEOH&HOO5HQGHUHU
7DEOH0RGHO/LVWHQHU

7UHH0RGHO7UHH1RGH
0XWDEOH7UHH1RGH

,QSXW6WUHDP5HDGHUV
)LOH5HDGHUV6WULQJ:ULWHUV

5HVRXUFH%XQGOH
/LVW5HVRXUFH%XQGOH3URSHUW\5HVRXUFH%XQGOH

*=,3,QSXW6WUHDP*=,32XWSXW6WUHDP
'HIODWHU2XWSXW6WUHDP

*UDSKLFV'HYLFH
*UDSKLFV(QYLURQPHQW*UDSKLFV&RQILJXUDWLRQ

1XOO3RLQWHU([FHSWLRQV
,2([FHSWLRQV

8QNQRZQ2EMHFW([FHSWLRQV

64/([FHSWLRQV

6LPSOH'DWH)RUPDW
'DWH)RUPDW

*UHJRULDQ&DOHQGDU

7LPH=RQH

5HHQWUDQW/RFN

$WRPLF,QWHJHU
$WRPLF,QWHJHU$UUD\$WRPLF/RQJ

5HFWDQJOH�'
7H[WXUH3DLQW/LQH�'

(OOLSVH�'

6ZLQJ8WLWOLHV6ZLQJ:RUNHU
6ZLQJ8WLOLWLHV(YHQW4XHXH

'HIDXOW7UHH&HOO5HQGHUHU

'HIDXOW7DEOH&HOO(GLWRU'HIDXOW7DEOH&HOO5HQGHUHU

'HIDXOW/LVW&HOO5HQGHUHU

&KHFN%R[

7H[W)LHOG

&RPER%R[

7H[W$UHD

7H[W)LOHG
6FUROO3DQH

%R[/D\RXW

*ULG%DJ/D\RXW

%RUGHU/D\RXW

)ORZ/D\RXW
*URXS/D\RXW

6SULQJ/D\RXW
*ULG%DJ&RQVWUDLQWV2SWLRQV3DQHO

-)RUPDWWHG7H[W)LHOG
1XPEHU)RUPDW

%LJ,QWHJHU

%LJ'HFLPDO

'HFLPDO)RUPDW

0DWK&RQWH[W

0HVVDJH)RUPDW
)LHOG3RVLWLRQ

&ODVV/RDGHU

85/&ODVV/RDGHU

&ODVV/RDGHUV

&ODVV3DWK

=LS2XWSXW6WUHDP
=LS,QSXW6WUHDP

-DU,QSXW6WUHDP

-DU2XWSXW6WUHDP

=LS)LOH

-DU)LOH

%XIIHUHG,PDJH

,PDJH,2

*UDSKLFV�'$IILQH7UDQVIRUP

7H[W/D\RXW

,PDJH,FRQ

)RQW0HWULFV

:ULWDEOH5DVWHU
,PDJH%XIIHU

$OSKD&RPSRVLWH
9RODWLOH,PDJH
5HQGHUHG,PDJH

&RORU0RGHO'DWD%XIIHU,QW

$IILQH7UDQVIRUP2S

6DPSOH0RGHO

,OOHJDO$UJXPHQW([FHSWLRQ
1XOO3RLQWHU([FHSWLRQ

&ODVV&DVW([FHSWLRQ,OOHJDO$FFHVV([FHSWLRQ

64/([FHSWLRQ,OOHJDO6WDWH([FHSWLRQ
5XQWLPH([FHSWLRQ

$ULWKPHWLF([FHSWLRQ

&RQFXUUHQW0RGLILFDWLRQ([FHSWLRQ1XPEHU)RUPDW([FHSWLRQ

)LOH1RW)RXQG([FHSWLRQ

,2([FHSWLRQ

2XW2I0HPRU\(UURU,QWHUQDO(UURU

1R&ODVV'HI)RXQG(UURU

6RIW5HIHUHQFH

&RUUXSWHG6WUHDP([FHSWLRQ
6RFNHW([FHSWLRQ

(2)([FHSWLRQ
6HFXULW\([FHSWLRQ

,QVWDQWLDWLRQ([FHSWLRQ
([FHSWLRQ,Q,QLWLDOL]HU(UURU&ODVV1RW)RXQG([FHSWLRQ

:HDN5HIHUHQFH

6$;([FHSWLRQV

5HIHUHQFH4XHXH

:LQGRZ/LVWHQHU

-$SSOHW

-'LDORJ
-%XWWRQV-)UDPH

-3DQHOV

-/DEHOV

-&RPSRQHQWV

-0HQX

-7DEEHG3DQH
-:LQGRZ

-2SWLRQ3DQH

-0HQX,WHPV

-7H[W)LHOGV

-0HQXV

-0HQX%DU

7LPHU7DVN

-'LDORJV

/D\RXW0DQDJHU
-3DQOH

6FKHGXOHG([HFXWRU6HUYLFH

-,QWHUQDO)UDPHV

-)UDPHV

-2SWLRQ3DQHV

/D\RXW0DQDJHUV

-$SSOHWV

,PDJH,FRQV

-7H[W$UHDV

-0HQX,WHP

-&RPER%R[V

-3RSXS0HQX

-7RRO%DU

.H\%LQGLQJV

7DEEHG3DQH

+DVK0DS

7UHH0DS

$UUD\/LVW/LQNHG/LVW7UHH6HW

+DVK0DSV
$UUD\/LVWV

+DVK6HW

&RQFXUUHQW+DVK0DS

6RUWHG0DS

:HDN+DVK0DS

/LQNHG+DVK0DS

$UUD\%ORFNLQJ4XHXH
$UUD\'HTXH

7KUHDG3RRO([HFXWRU
$EVWUDFW/LVW&RS\2Q:ULWH$UUD\/LVW/LQNHG+DVK6HW

'HIDXOW/LVW0RGHO3ULRULW\4XHXH
7UHH6HWV6RUWHG6HW

+DVK6HWV
%ORFNLQJ4XHXH

([HFXWRU6HUYLFH

7KUHDG3RRO

)XWXUH7DVN

/LQNHG/LVWV

$WRPLF5HIHUHQFH

%LW6HW
&RQFXUUHQW6NLS/LVW6HW

&RQFXUUHQW6NLS/LVW0DS

1DYLJDEOH0DS

&RQFXUUHQW/LQNHG4XHXH

:HDN5HIHUHQFHV
6RIW5HIHUHQFHV

%ORFN4XHXH

'DWD,QSXW6WUHDP%XIIHUHG5HDGHU

)LOH,QSXW6WUHDP

'DWD2XWSXW6WUHDP

,QSXW6WUHDP5HDGHU
%XIIHUHG,QSXW6WUHDP

2EMHFW,QSXW6WUHDP

%\WH%XIIHU

)LOH5HDGHU

6WULQJ%XIIHU

,QSXW6WUHDP

3ULQW:ULWHU

+WWS85/&RQQHFWLRQ

%XIIHUHG:ULWHU

)LOWHU5HDGHU

85/&RQQHFWLRQ

2XWSXW6WUHDP

)LOH:ULWHU
)LOH2XWSXW6WUHDP

2EMHFW2XWSXW6WUHDP

)LOH&KDQQHO

5DQGRP$FFHVV)LOH

%\WH$UUD\2XWSXW6WUHDP

6WULQJ%XLOGHU

6WULQJ:ULWHU
$XGLR,QSXW6WUHDP

3ULQW6WUHDP

)LOWHU2XWSXW6WUHDP

6RFNHW,QSXW6WUHDP,QSXW6RXUFH

%XIIHUHG2XWSXW6WUHDP

2XWSXW6WUHDP:ULWHU

6WULQJ5HDGHU

,QW%XIIHU

3LSHG2XWSXW6WUHDP

+WWSV85/&RQQHFWLRQ

;���&HUWLILFDWH

'DWD,QSXW6RFNHW&KDQQHO

&KDU%XIIHU)ORDW%XIIHU
%\WH2UGHU

'DWD2XWSXW

3LSHG,QSXW6WUHDP

6HUYHU6RFNHW&KDQQHO

)LOWHU,QSXW6WUHDP

6WULQJ%XIIHU,QSXW6WUHDP

-7H[W)LHOG

$FWLRQ/LVWHQHU

-3DQHO

-%XWWRQ

0RXVH/LVWHQHU

.H\/LVWHQHU

$FWLRQ(YHQW
,WHP/LVWHQHU

-/D\HUHG3DQH

-7UHH

-,QWHUQDO)UDPH

-&RPSRQHQW

-6OLGHU

-&KHFN%R[

-/DEHO

-7DEOH-(GLWRU3DQH

-/LVW -6FUROO3DQH

-5DGLR%XWWRQ

-&RPSQHQW

-7DEOH+HDGHU

0HQX%DU
-6FUROO3DQHO

-'HVNWRS3DQH

'HIDXOW7UHH6HOHFWLRQ0RGHO
8,0DQDJHU

-5RRW3DQH-&RPER%R[

-7H[W$UHD-7H[W3DQH

-)LOH&KRRVHU

-6SLQQHU$EVWUDFW%XWWRQ

-3URJUHVV%DU

-6HSDUDWRU

-7RJJOH%XWWRQ

-5DGLR%XWWRQ0HQX

0RXVH0RWLRQ/LVWHQHU
0RXVH:KHHO/LVWHQHU

7DEOH0RGHO'HIDXOW7DEOH0RGHO

7DEOH5RZ6RUWHU

'HIDXOW6W\OHG'RFXPHQW
+70/(GLWRU.LW

&HOO5HQGHUHU

&RPER%R[0RGHO
'HIDXOW&RPER%R[0RGHO

6W\OH&RQVWDQWV-7DEOHV

/LVW6HOHFWLRQ/LVWHQHU
/LVW0RGHO

.H\(YHQW)RFXV/LVWHQHU

-5DGLR%XWWRQV

6LPSOH$WWULEXWH6HW

-6FUROO%DU

,WHP(YHQWV

)LOH'LDORJ

:LQGRZ)RFXV/LVWHQHU

3URJUHVV0RQLWRU

5RZ)LOWHU

(b) Utility Classes

6WULQJ%XLOGHUV
6WULQJ%XIIHUV

(YHQW/LVWHQHU3UR[\
(YHQW/LVWHQHU/LVW

7UD\,FRQ6\VWHP7UD\

.H\(YHQWV0RXVH(YHQWV

$FWLRQ0DS,QSXW0DS

(QXP6HW(QXP0DS

%XIIHUHG:ULWHUV
%XIIHUHG5HDGHUV

)LOH&KDQQHOV%\WH%XIIHUV

M7H[W$UHD��
M&RPER%R[��

;0/6WUHDP:ULWHU'HIDXOW+DQGOHU

5ROH/LVW
$UU\D/LVW

7DEOH9LHZHU9LHZ)LOWHU

'DWDJUDP3DFNHW'DWDJUDP6RFNHW

([HFXWLRQ([FHSWLRQ,QWHUUXSWHG([FHSWLRQ

,PDJH:ULWHU,PDJH5HDGHU

$FWLRQ/LVWHQHUV)RFXV/LVWHQHUV

,QYDOLG3DUDPHWHU([FHSWLRQ,OOHJDO$UJXPHQW([FSWLRQ
'RFXPHQW/LVWHQHU
'RFXPHQW)LOWHU

1R&ODVV'HI)RXQG(UURUV
&ODVV1RW)RXQG([FHSWLRQV

6HFXULW\0DQDJHU$FFHVVLEOH2EMHFW3LSH2XWSXW6WUHDP
3LSH,QSXW6WUHDP

5PL&RQQHFWRU&OLHQW5PL&RQQHFWRU$GGUHVV

;0/'HFRGHU
;0/(QFRGHU

3ULYDWH.H\
3XEOLF.H\

8QNQRZQ+RVW([FHSWLRQ8QNQRZQ([FHSWLRQ

$FWLRQ0DSV,QSXW0DSV
2EMHFW,QSXW
2EMHFW2XWSXW

5RRW3DQH/D\HUHG3DQH

,,2,PDJH
,,20HWD'DWD

/RFDO9DULDEOH7\SH7DEOH/RFDO9DULDEOH7DEOH&KDUVHW(QFRGHU
&KDUVHW'HFRGHU

JUHDWHU2U(TXDO7KDQOHVVHU2U(TXDO7KDQ

'RFXPHQW%XLOGHU)DFWRU\'RFXPHQW%XLOGHU

%RROHDQ$WWULEXWH
6WULQJ$WWULEXWH

3RUWDEOH5HPRWH2EMHFW8QLFDVW5HPRWH2EMHFW

'206RXUFH6WUHDP6RXUFH7KUHDG*URXSV7KUHDG*URXS

)RFXV/LVWQHU
$FWLRQ/LVWQHU

-&RPER%R[�-&RPER%R[�7UHH&HOO5HQGHUHU7UHH&HOO(GLWRU

3.&6�(QFRGHG.H\6SHF;���(QFRGHG.H\6SHF

3LSHG5HDGHU
3LSHG:ULWHU

7\SH0LUURU
7\SH(OHPHQW

6RFNHW,PSO)DFWRU\6RFNHW,PSO

VHW,FRQ,PDJHVVHW,FRQ,PDJH

3URSHUW\&KDQJH6XSSRUW
3URSHUW\&KDQJH/LVWHQHU3URSHUW\&KDQJH(YHQW

,QSXW6WUHDPV/LQH5HDGHU
2XWSXW6WUHDPV

7DEOH&HOO(GLWRU

7DEOH&HOO5HQGHUHU
7DEOH0RGHO/LVWHQHU

7UHH0RGHO7UHH1RGH
0XWDEOH7UHH1RGH

,QSXW6WUHDP5HDGHUV
)LOH5HDGHUV6WULQJ:ULWHUV

5HVRXUFH%XQGOH
/LVW5HVRXUFH%XQGOH3URSHUW\5HVRXUFH%XQGOH

*=,3,QSXW6WUHDP*=,32XWSXW6WUHDP
'HIODWHU2XWSXW6WUHDP

*UDSKLFV'HYLFH
*UDSKLFV(QYLURQPHQW*UDSKLFV&RQILJXUDWLRQ

1XOO3RLQWHU([FHSWLRQV
,2([FHSWLRQV

8QNQRZQ2EMHFW([FHSWLRQV

64/([FHSWLRQV

6LPSOH'DWH)RUPDW
'DWH)RUPDW

*UHJRULDQ&DOHQGDU

7LPH=RQH

5HHQWUDQW/RFN

$WRPLF,QWHJHU
$WRPLF,QWHJHU$UUD\$WRPLF/RQJ

5HFWDQJOH�'
7H[WXUH3DLQW/LQH�'

(OOLSVH�'

6ZLQJ8WLWOLHV6ZLQJ:RUNHU
6ZLQJ8WLOLWLHV(YHQW4XHXH

'HIDXOW7UHH&HOO5HQGHUHU

'HIDXOW7DEOH&HOO(GLWRU'HIDXOW7DEOH&HOO5HQGHUHU

'HIDXOW/LVW&HOO5HQGHUHU

&KHFN%R[

7H[W)LHOG

&RPER%R[

7H[W$UHD

7H[W)LOHG
6FUROO3DQH

%R[/D\RXW

*ULG%DJ/D\RXW

%RUGHU/D\RXW

)ORZ/D\RXW
*URXS/D\RXW

6SULQJ/D\RXW
*ULG%DJ&RQVWUDLQWV2SWLRQV3DQHO

-)RUPDWWHG7H[W)LHOG
1XPEHU)RUPDW

%LJ,QWHJHU

%LJ'HFLPDO

'HFLPDO)RUPDW

0DWK&RQWH[W

0HVVDJH)RUPDW
)LHOG3RVLWLRQ

&ODVV/RDGHU

85/&ODVV/RDGHU

&ODVV/RDGHUV

&ODVV3DWK

=LS2XWSXW6WUHDP
=LS,QSXW6WUHDP

-DU,QSXW6WUHDP

-DU2XWSXW6WUHDP

=LS)LOH

-DU)LOH

%XIIHUHG,PDJH

,PDJH,2

*UDSKLFV�'$IILQH7UDQVIRUP

7H[W/D\RXW

,PDJH,FRQ

)RQW0HWULFV

:ULWDEOH5DVWHU
,PDJH%XIIHU

$OSKD&RPSRVLWH
9RODWLOH,PDJH
5HQGHUHG,PDJH

&RORU0RGHO'DWD%XIIHU,QW

$IILQH7UDQVIRUP2S

6DPSOH0RGHO

,OOHJDO$UJXPHQW([FHSWLRQ
1XOO3RLQWHU([FHSWLRQ

&ODVV&DVW([FHSWLRQ,OOHJDO$FFHVV([FHSWLRQ

64/([FHSWLRQ,OOHJDO6WDWH([FHSWLRQ
5XQWLPH([FHSWLRQ

$ULWKPHWLF([FHSWLRQ

&RQFXUUHQW0RGLILFDWLRQ([FHSWLRQ1XPEHU)RUPDW([FHSWLRQ

)LOH1RW)RXQG([FHSWLRQ

,2([FHSWLRQ

2XW2I0HPRU\(UURU,QWHUQDO(UURU

1R&ODVV'HI)RXQG(UURU

6RIW5HIHUHQFH

&RUUXSWHG6WUHDP([FHSWLRQ
6RFNHW([FHSWLRQ

(2)([FHSWLRQ
6HFXULW\([FHSWLRQ

,QVWDQWLDWLRQ([FHSWLRQ
([FHSWLRQ,Q,QLWLDOL]HU(UURU&ODVV1RW)RXQG([FHSWLRQ

:HDN5HIHUHQFH

6$;([FHSWLRQV

5HIHUHQFH4XHXH

:LQGRZ/LVWHQHU

-$SSOHW

-'LDORJ
-%XWWRQV-)UDPH

-3DQHOV

-/DEHOV

-&RPSRQHQWV

-0HQX

-7DEEHG3DQH
-:LQGRZ

-2SWLRQ3DQH

-0HQX,WHPV

-7H[W)LHOGV

-0HQXV

-0HQX%DU

7LPHU7DVN

-'LDORJV

/D\RXW0DQDJHU
-3DQOH

6FKHGXOHG([HFXWRU6HUYLFH

-,QWHUQDO)UDPHV

-)UDPHV

-2SWLRQ3DQHV

/D\RXW0DQDJHUV

-$SSOHWV

,PDJH,FRQV

-7H[W$UHDV

-0HQX,WHP

-&RPER%R[V

-3RSXS0HQX

-7RRO%DU

.H\%LQGLQJV

7DEEHG3DQH

+DVK0DS

7UHH0DS

$UUD\/LVW/LQNHG/LVW7UHH6HW

+DVK0DSV
$UUD\/LVWV

+DVK6HW

&RQFXUUHQW+DVK0DS

6RUWHG0DS

:HDN+DVK0DS

/LQNHG+DVK0DS

$UUD\%ORFNLQJ4XHXH
$UUD\'HTXH

7KUHDG3RRO([HFXWRU
$EVWUDFW/LVW&RS\2Q:ULWH$UUD\/LVW/LQNHG+DVK6HW

'HIDXOW/LVW0RGHO3ULRULW\4XHXH
7UHH6HWV6RUWHG6HW

+DVK6HWV
%ORFNLQJ4XHXH

([HFXWRU6HUYLFH

7KUHDG3RRO

)XWXUH7DVN

/LQNHG/LVWV

$WRPLF5HIHUHQFH

%LW6HW
&RQFXUUHQW6NLS/LVW6HW

&RQFXUUHQW6NLS/LVW0DS

1DYLJDEOH0DS

&RQFXUUHQW/LQNHG4XHXH

:HDN5HIHUHQFHV
6RIW5HIHUHQFHV

%ORFN4XHXH

'DWD,QSXW6WUHDP%XIIHUHG5HDGHU

)LOH,QSXW6WUHDP

'DWD2XWSXW6WUHDP

,QSXW6WUHDP5HDGHU
%XIIHUHG,QSXW6WUHDP

2EMHFW,QSXW6WUHDP

%\WH%XIIHU

)LOH5HDGHU

6WULQJ%XIIHU

,QSXW6WUHDP

3ULQW:ULWHU

+WWS85/&RQQHFWLRQ

%XIIHUHG:ULWHU

)LOWHU5HDGHU

85/&RQQHFWLRQ

2XWSXW6WUHDP

)LOH:ULWHU
)LOH2XWSXW6WUHDP

2EMHFW2XWSXW6WUHDP

)LOH&KDQQHO

5DQGRP$FFHVV)LOH

%\WH$UUD\2XWSXW6WUHDP

6WULQJ%XLOGHU

6WULQJ:ULWHU
$XGLR,QSXW6WUHDP

3ULQW6WUHDP

)LOWHU2XWSXW6WUHDP

6RFNHW,QSXW6WUHDP,QSXW6RXUFH

%XIIHUHG2XWSXW6WUHDP

2XWSXW6WUHDP:ULWHU

6WULQJ5HDGHU

,QW%XIIHU

3LSHG2XWSXW6WUHDP

+WWSV85/&RQQHFWLRQ

;���&HUWLILFDWH

'DWD,QSXW6RFNHW&KDQQHO

&KDU%XIIHU)ORDW%XIIHU
%\WH2UGHU

'DWD2XWSXW

3LSHG,QSXW6WUHDP

6HUYHU6RFNHW&KDQQHO

)LOWHU,QSXW6WUHDP

6WULQJ%XIIHU,QSXW6WUHDP

-7H[W)LHOG

$FWLRQ/LVWHQHU

-3DQHO

-%XWWRQ

0RXVH/LVWHQHU

.H\/LVWHQHU

$FWLRQ(YHQW
,WHP/LVWHQHU

-/D\HUHG3DQH

-7UHH

-,QWHUQDO)UDPH

-&RPSRQHQW

-6OLGHU

-&KHFN%R[

-/DEHO

-7DEOH-(GLWRU3DQH

-/LVW -6FUROO3DQH

-5DGLR%XWWRQ

-&RPSQHQW

-7DEOH+HDGHU

0HQX%DU
-6FUROO3DQHO

-'HVNWRS3DQH

'HIDXOW7UHH6HOHFWLRQ0RGHO
8,0DQDJHU

-5RRW3DQH-&RPER%R[

-7H[W$UHD-7H[W3DQH

-)LOH&KRRVHU

-6SLQQHU$EVWUDFW%XWWRQ

-3URJUHVV%DU

-6HSDUDWRU

-7RJJOH%XWWRQ

-5DGLR%XWWRQ0HQX

0RXVH0RWLRQ/LVWHQHU
0RXVH:KHHO/LVWHQHU

7DEOH0RGHO'HIDXOW7DEOH0RGHO

7DEOH5RZ6RUWHU

'HIDXOW6W\OHG'RFXPHQW
+70/(GLWRU.LW

&HOO5HQGHUHU

&RPER%R[0RGHO
'HIDXOW&RPER%R[0RGHO

6W\OH&RQVWDQWV-7DEOHV

/LVW6HOHFWLRQ/LVWHQHU
/LVW0RGHO

.H\(YHQW)RFXV/LVWHQHU

-5DGLR%XWWRQV

6LPSOH$WWULEXWH6HW

-6FUROO%DU

,WHP(YHQWV

)LOH'LDORJ

:LQGRZ)RFXV/LVWHQHU

3URJUHVV0RQLWRU

5RZ)LOWHU

(c) GUI Classes

6WULQJ%XLOGHUV
6WULQJ%XIIHUV

(YHQW/LVWHQHU3UR[\
(YHQW/LVWHQHU/LVW

7UD\,FRQ6\VWHP7UD\

.H\(YHQWV0RXVH(YHQWV

$FWLRQ0DS,QSXW0DS

(QXP6HW(QXP0DS

%XIIHUHG:ULWHUV
%XIIHUHG5HDGHUV

)LOH&KDQQHOV%\WH%XIIHUV

M7H[W$UHD��
M&RPER%R[��

;0/6WUHDP:ULWHU'HIDXOW+DQGOHU

5ROH/LVW
$UU\D/LVW

7DEOH9LHZHU9LHZ)LOWHU

'DWDJUDP3DFNHW'DWDJUDP6RFNHW

([HFXWLRQ([FHSWLRQ,QWHUUXSWHG([FHSWLRQ

,PDJH:ULWHU,PDJH5HDGHU

$FWLRQ/LVWHQHUV)RFXV/LVWHQHUV

,QYDOLG3DUDPHWHU([FHSWLRQ,OOHJDO$UJXPHQW([FSWLRQ
'RFXPHQW/LVWHQHU
'RFXPHQW)LOWHU

1R&ODVV'HI)RXQG(UURUV
&ODVV1RW)RXQG([FHSWLRQV

6HFXULW\0DQDJHU$FFHVVLEOH2EMHFW3LSH2XWSXW6WUHDP
3LSH,QSXW6WUHDP

5PL&RQQHFWRU&OLHQW5PL&RQQHFWRU$GGUHVV

;0/'HFRGHU
;0/(QFRGHU

3ULYDWH.H\
3XEOLF.H\

8QNQRZQ+RVW([FHSWLRQ8QNQRZQ([FHSWLRQ

$FWLRQ0DSV,QSXW0DSV
2EMHFW,QSXW
2EMHFW2XWSXW

5RRW3DQH/D\HUHG3DQH

,,2,PDJH
,,20HWD'DWD

/RFDO9DULDEOH7\SH7DEOH/RFDO9DULDEOH7DEOH&KDUVHW(QFRGHU
&KDUVHW'HFRGHU

JUHDWHU2U(TXDO7KDQOHVVHU2U(TXDO7KDQ

'RFXPHQW%XLOGHU)DFWRU\'RFXPHQW%XLOGHU

%RROHDQ$WWULEXWH
6WULQJ$WWULEXWH

3RUWDEOH5HPRWH2EMHFW8QLFDVW5HPRWH2EMHFW

'206RXUFH6WUHDP6RXUFH7KUHDG*URXSV7KUHDG*URXS

)RFXV/LVWQHU
$FWLRQ/LVWQHU

-&RPER%R[�-&RPER%R[�7UHH&HOO5HQGHUHU7UHH&HOO(GLWRU

3.&6�(QFRGHG.H\6SHF;���(QFRGHG.H\6SHF

3LSHG5HDGHU
3LSHG:ULWHU

7\SH0LUURU
7\SH(OHPHQW

6RFNHW,PSO)DFWRU\6RFNHW,PSO

VHW,FRQ,PDJHVVHW,FRQ,PDJH

3URSHUW\&KDQJH6XSSRUW
3URSHUW\&KDQJH/LVWHQHU3URSHUW\&KDQJH(YHQW

,QSXW6WUHDPV/LQH5HDGHU
2XWSXW6WUHDPV

7DEOH&HOO(GLWRU

7DEOH&HOO5HQGHUHU
7DEOH0RGHO/LVWHQHU

7UHH0RGHO7UHH1RGH
0XWDEOH7UHH1RGH

,QSXW6WUHDP5HDGHUV
)LOH5HDGHUV6WULQJ:ULWHUV

5HVRXUFH%XQGOH
/LVW5HVRXUFH%XQGOH3URSHUW\5HVRXUFH%XQGOH

*=,3,QSXW6WUHDP*=,32XWSXW6WUHDP
'HIODWHU2XWSXW6WUHDP

*UDSKLFV'HYLFH
*UDSKLFV(QYLURQPHQW*UDSKLFV&RQILJXUDWLRQ

1XOO3RLQWHU([FHSWLRQV
,2([FHSWLRQV

8QNQRZQ2EMHFW([FHSWLRQV

64/([FHSWLRQV

6LPSOH'DWH)RUPDW
'DWH)RUPDW

*UHJRULDQ&DOHQGDU

7LPH=RQH

5HHQWUDQW/RFN

$WRPLF,QWHJHU
$WRPLF,QWHJHU$UUD\$WRPLF/RQJ

5HFWDQJOH�'
7H[WXUH3DLQW/LQH�'

(OOLSVH�'

6ZLQJ8WLWOLHV6ZLQJ:RUNHU
6ZLQJ8WLOLWLHV(YHQW4XHXH

'HIDXOW7UHH&HOO5HQGHUHU

'HIDXOW7DEOH&HOO(GLWRU'HIDXOW7DEOH&HOO5HQGHUHU

'HIDXOW/LVW&HOO5HQGHUHU

&KHFN%R[

7H[W)LHOG

&RPER%R[

7H[W$UHD

7H[W)LOHG
6FUROO3DQH

%R[/D\RXW

*ULG%DJ/D\RXW

%RUGHU/D\RXW

)ORZ/D\RXW
*URXS/D\RXW

6SULQJ/D\RXW
*ULG%DJ&RQVWUDLQWV2SWLRQV3DQHO

-)RUPDWWHG7H[W)LHOG
1XPEHU)RUPDW

%LJ,QWHJHU

%LJ'HFLPDO

'HFLPDO)RUPDW

0DWK&RQWH[W

0HVVDJH)RUPDW
)LHOG3RVLWLRQ

&ODVV/RDGHU

85/&ODVV/RDGHU

&ODVV/RDGHUV

&ODVV3DWK

=LS2XWSXW6WUHDP
=LS,QSXW6WUHDP

-DU,QSXW6WUHDP

-DU2XWSXW6WUHDP

=LS)LOH

-DU)LOH

%XIIHUHG,PDJH

,PDJH,2

*UDSKLFV�'$IILQH7UDQVIRUP

7H[W/D\RXW

,PDJH,FRQ

)RQW0HWULFV

:ULWDEOH5DVWHU
,PDJH%XIIHU

$OSKD&RPSRVLWH
9RODWLOH,PDJH
5HQGHUHG,PDJH

&RORU0RGHO'DWD%XIIHU,QW

$IILQH7UDQVIRUP2S

6DPSOH0RGHO

,OOHJDO$UJXPHQW([FHSWLRQ
1XOO3RLQWHU([FHSWLRQ

&ODVV&DVW([FHSWLRQ,OOHJDO$FFHVV([FHSWLRQ

64/([FHSWLRQ,OOHJDO6WDWH([FHSWLRQ
5XQWLPH([FHSWLRQ

$ULWKPHWLF([FHSWLRQ

&RQFXUUHQW0RGLILFDWLRQ([FHSWLRQ1XPEHU)RUPDW([FHSWLRQ

)LOH1RW)RXQG([FHSWLRQ

,2([FHSWLRQ

2XW2I0HPRU\(UURU,QWHUQDO(UURU

1R&ODVV'HI)RXQG(UURU

6RIW5HIHUHQFH

&RUUXSWHG6WUHDP([FHSWLRQ
6RFNHW([FHSWLRQ

(2)([FHSWLRQ
6HFXULW\([FHSWLRQ

,QVWDQWLDWLRQ([FHSWLRQ
([FHSWLRQ,Q,QLWLDOL]HU(UURU&ODVV1RW)RXQG([FHSWLRQ

:HDN5HIHUHQFH

6$;([FHSWLRQV

5HIHUHQFH4XHXH

:LQGRZ/LVWHQHU

-$SSOHW

-'LDORJ
-%XWWRQV-)UDPH

-3DQHOV

-/DEHOV

-&RPSRQHQWV

-0HQX

-7DEEHG3DQH
-:LQGRZ

-2SWLRQ3DQH

-0HQX,WHPV

-7H[W)LHOGV

-0HQXV

-0HQX%DU

7LPHU7DVN

-'LDORJV

/D\RXW0DQDJHU
-3DQOH

6FKHGXOHG([HFXWRU6HUYLFH

-,QWHUQDO)UDPHV

-)UDPHV

-2SWLRQ3DQHV

/D\RXW0DQDJHUV

-$SSOHWV

,PDJH,FRQV

-7H[W$UHDV

-0HQX,WHP

-&RPER%R[V

-3RSXS0HQX

-7RRO%DU

.H\%LQGLQJV

7DEEHG3DQH

+DVK0DS

7UHH0DS

$UUD\/LVW/LQNHG/LVW7UHH6HW

+DVK0DSV
$UUD\/LVWV

+DVK6HW

&RQFXUUHQW+DVK0DS

6RUWHG0DS

:HDN+DVK0DS

/LQNHG+DVK0DS

$UUD\%ORFNLQJ4XHXH
$UUD\'HTXH

7KUHDG3RRO([HFXWRU
$EVWUDFW/LVW&RS\2Q:ULWH$UUD\/LVW/LQNHG+DVK6HW

'HIDXOW/LVW0RGHO3ULRULW\4XHXH
7UHH6HWV6RUWHG6HW

+DVK6HWV
%ORFNLQJ4XHXH

([HFXWRU6HUYLFH

7KUHDG3RRO

)XWXUH7DVN

/LQNHG/LVWV

$WRPLF5HIHUHQFH

%LW6HW
&RQFXUUHQW6NLS/LVW6HW

&RQFXUUHQW6NLS/LVW0DS

1DYLJDEOH0DS

&RQFXUUHQW/LQNHG4XHXH

:HDN5HIHUHQFHV
6RIW5HIHUHQFHV

%ORFN4XHXH

'DWD,QSXW6WUHDP%XIIHUHG5HDGHU

)LOH,QSXW6WUHDP

'DWD2XWSXW6WUHDP

,QSXW6WUHDP5HDGHU
%XIIHUHG,QSXW6WUHDP

2EMHFW,QSXW6WUHDP

%\WH%XIIHU

)LOH5HDGHU

6WULQJ%XIIHU

,QSXW6WUHDP

3ULQW:ULWHU

+WWS85/&RQQHFWLRQ

%XIIHUHG:ULWHU

)LOWHU5HDGHU

85/&RQQHFWLRQ

2XWSXW6WUHDP

)LOH:ULWHU
)LOH2XWSXW6WUHDP

2EMHFW2XWSXW6WUHDP

)LOH&KDQQHO

5DQGRP$FFHVV)LOH

%\WH$UUD\2XWSXW6WUHDP

6WULQJ%XLOGHU

6WULQJ:ULWHU
$XGLR,QSXW6WUHDP

3ULQW6WUHDP

)LOWHU2XWSXW6WUHDP

6RFNHW,QSXW6WUHDP,QSXW6RXUFH

%XIIHUHG2XWSXW6WUHDP

2XWSXW6WUHDP:ULWHU

6WULQJ5HDGHU

,QW%XIIHU

3LSHG2XWSXW6WUHDP

+WWSV85/&RQQHFWLRQ

;���&HUWLILFDWH

'DWD,QSXW6RFNHW&KDQQHO

&KDU%XIIHU)ORDW%XIIHU
%\WH2UGHU

'DWD2XWSXW

3LSHG,QSXW6WUHDP

6HUYHU6RFNHW&KDQQHO

)LOWHU,QSXW6WUHDP

6WULQJ%XIIHU,QSXW6WUHDP

-7H[W)LHOG

$FWLRQ/LVWHQHU

-3DQHO

-%XWWRQ

0RXVH/LVWHQHU

.H\/LVWHQHU

$FWLRQ(YHQW
,WHP/LVWHQHU

-/D\HUHG3DQH

-7UHH

-,QWHUQDO)UDPH

-&RPSRQHQW

-6OLGHU

-&KHFN%R[

-/DEHO

-7DEOH-(GLWRU3DQH

-/LVW -6FUROO3DQH

-5DGLR%XWWRQ

-&RPSQHQW

-7DEOH+HDGHU

0HQX%DU
-6FUROO3DQHO

-'HVNWRS3DQH

'HIDXOW7UHH6HOHFWLRQ0RGHO
8,0DQDJHU

-5RRW3DQH-&RPER%R[

-7H[W$UHD-7H[W3DQH

-)LOH&KRRVHU

-6SLQQHU$EVWUDFW%XWWRQ

-3URJUHVV%DU

-6HSDUDWRU

-7RJJOH%XWWRQ

-5DGLR%XWWRQ0HQX

0RXVH0RWLRQ/LVWHQHU
0RXVH:KHHO/LVWHQHU

7DEOH0RGHO'HIDXOW7DEOH0RGHO

7DEOH5RZ6RUWHU

'HIDXOW6W\OHG'RFXPHQW
+70/(GLWRU.LW

&HOO5HQGHUHU

&RPER%R[0RGHO
'HIDXOW&RPER%R[0RGHO

6W\OH&RQVWDQWV-7DEOHV

/LVW6HOHFWLRQ/LVWHQHU
/LVW0RGHO

.H\(YHQW)RFXV/LVWHQHU

-5DGLR%XWWRQV

6LPSOH$WWULEXWH6HW

-6FUROO%DU

,WHP(YHQWV

)LOH'LDORJ

:LQGRZ)RFXV/LVWHQHU

3URJUHVV0RQLWRU

5RZ)LOWHU

(d) IO Classes

Figure 4.2: A magnification of several clusters from Figure 4.1. The classes in each cluster
belong to a similar functional class group.

[Hearst, 1992]. For example, the conjuction pattern “X and Y” indicates that X and Y
are coordinate terms. Other pattern-based classifier have been introduced for meronyms
[Girju et al., 2003], synonyms [Lin et al., 2003], and general analogy relations [Turney
et al., 2003]. The second approach relies on the notion that words that appear in a similar
context are likely to be semantically similar. In contrast to pattern based classifiers, con-
text distributional similarity approaches are normally higher in recall. [Pereira et al., 1993,
Pantel, 2003, Curran, 2004, Snow et al., 2004]. In this work we attempt to label samples
extracted with high-precision Hearst patterns, using information from higher-recall meth-
ods.

47



4.2.2 Grounded Language Learning

The aim of grounded language learning methods is to learn a mapping between natural
language (words and sentences) and the observed world [Siskind, 1996, Yu and Ballard,
2004, Gorniak and Roy, 2007], where more recent work includes grounding language to
the physical world [Krishnamurthy and Kollar, 2013], and grounding of entire discourses
[Minh et al., 2013]. Early work in this field relied on supervised aligned sentence-to-
meaning data [Zettlemoyer and Collins, 2005, Ge and Mooney, 2005]. However, in later
work the supervision constraint has been gradually relaxed [Kate and Mooney, 2007,
Liang et al., 2009]. Relative to prior work on grounded language acquisition, we use a
very rich and complex representation of entities and their relationships (through software
code). However, we consider a very constrained language task, namely coordinate term
discovery.

4.2.3 Statistical Language Models for Software

In recent work by NLP and software engineering researchers, statistical language models
have been adapted for modeling software code. NLP models have been used to enhance a
variety of software development tasks such as code and comment token completion [Han
et al., 2009, Jacob and Tairas, 2010, Movshovitz-Attias and Cohen, 2013, Schulam et al.,
2013], analysis of code variable names [Lawrie et al., 2006, Binkley et al., 2011], and
mining software repositories [Gabel and Su, 2008]. This has been complemented by work
from the programming language research community for structured prediction of code
syntax trees [Omar, 2013]. To the best of our knowledge, there is no prior work on dis-
covering semantic relations for software entities.

4.3 Coordinate Term Discovery

In this section we describe a coordinate term classification pipeline, as depicted at high-
level in Figure 4.3. All the following steps are described in detail in the sections below.

Given a software domain text corpus (StackOverflow) and a code repository (Java Stan-
dard Libraries), our goal is to predict a coordinate relation for 〈X, Y 〉, where X and Y are
nouns which potentially refer to Java classes.

We first attempt a baseline approach of labeling the pair 〈X, Y 〉 based on corpus dis-
tributional similarity. Since closely related classes often exhibit morphological closeness,
we use as a second baseline the string similarity of X and Y .

48



Word%X" Word%Y" Text%
Corpus%

Source%
Code%

Text%
Features%

Coordinate%
Term%

Classifier%
p(Class%|%Word)%

Class%X’" Class%Y’" Code%
Features%

Figure 4.3: Classification Pipeline for determining whether nouns X and Y are coordinate
terms. Each noun is mapped to an underlying class from the code repository with proba-
bility, p(Class|Word). Textual features are extracted based on the input words, code based
features are extracted using the mapped classes, and all of these are given to the coordinate
term classifier.

Next, we map noun X to an underlying class implementation from the code reposi-
tory, named X ′, according to an estimated probability for p(Class X ′|Word X), s.t., X ′ =
maxC p̂(C|X), for all other classes C. X ′ is then the code referent of X . Similarly, we
map Y to the class Y ′. Given a code-based grounding for X and Y we extract informa-
tion using the class implementations: (1) we define a code based distributional similarity
measure, using code-context to encode the usage pattern of a class, and (2) we use the hier-
archical organization of classes, described by the type and namespace hierarchies. Finally,
we combine all the above information in a single SVM classifier.

4.3.1 Baseline: Corpus Distributional Similarity

As an initial baseline we calculate the corpus distributional similarity of nouns 〈X, Y 〉,
following the assumption that words with similar context are likely to be semantically
similar. Our implementation follows Pereira et al. [Pereira et al., 1993]. We calculate the
empirical context distribution for noun X

pX = f(c,X)/
∑
c′

f(c′, X) (4.1)

where f(c,X) is the frequency of occurrence of noun X in context c, which includes a
window of 3 words around X . We then measure the similarity of nouns X and Y using
the relative entropy or Kullback-Leibler divergence

D(pX ||pY ) =
∑
z

pX(z) log
pX(z)

pY (z)
(4.2)

49



As this measure is not symmetric we finally consider the distributional similarity of X and
Y as D(pX ||pY ) +D(pY ||pX).

4.3.2 Baseline: String Similarity

Due to naming convention standards, many related classes often exhibit some morphologi-
cal closeness. For example, classes that provide Input/Output access to the file system will
often contain the suffix Stream or Buffer. Likewise, many classes extend on the names
of their super classes (e.g., JRadioButtonMenuItem extends the class JMenuItem).
More examples can be found in Figure 4.1 and Table 4.4. We therefore include a sec-
ond baseline which attempts to label the noun pair 〈X, Y 〉 as coordinate terms according
to their string matching similarity. We use the SecondString open source Java toolkit1.
Each string is tokenized by camel case (such that ArrayList is represented as Array List).
We consider the SoftTFIDF distance of the tokenized strings, as defined by Cohen et al.
[Cohen et al., 2003].

4.3.3 Entity Linking

In order to draw code based information on text entities, we define a mapping function
between words and class types. Our goal is to find p(C|W ), where C is a specific class
implementation and W is a word. This mapping is ambiguous, for example, since users
are less likely to mention the qualified class name (e.g., java.lang.String), and
usually use the class label, meaning the name of the class not including its package (e.g.,
String). As an example, the terms java.lang.String and java.util.Vector
appears 37 and 1 times respectively in our corpus, versus the terms String and Vector
which appear 35K and 1.6K times. Additionally, class names appear with several vari-
ations, including, case-insensitive versions, spelling mistakes, or informal names (e.g.,
array instead of ArrayList).

Therefore, in order to approximate p(C,W ) in

p(C|W ) =
p(C,W )

p(W )
(4.3)

We estimate a word to class-type mapping that is mediated through the class label, L, as

p̂(C,W ) = p(C,L) · p(L,W ) (4.4)

1http://secondstring.sourceforge.net/

50



Since p(C,L) = p(C|L)p(L), this can be estimated by the corresponding MLEs

p̂(C,L) = p̂(C|L) · p̂(L) = f(C)∑
C′∈L f(C

′)
· f(L)∑

L′ f(L′)
(4.5)

where f() is the frequency function. Note that since
∑

C′∈L f(C
′) = f(L) we get that

p̂(C,L) = p̂(C), as the class label is uniquely determined by the class qualified name
(the opposite does not hold since multiple class types may correspond to the same label).
Finally, the term p(L,W ) is estimated by the symmetric string distance between the two
strings, as described in Section 4.3.2. We consider the linking probability of 〈X, Y 〉 to be
p̂(X ′|X) · p̂(Y ′|Y ), where X ′ is the best matching class for X s.t. X ′ = maxC p̂(C|X)
and similarly for Y ′.

4.3.4 Code Distributional Similarity

Corpus distributional similarity evaluates the occurrence of words in particular semantic
contexts. By defining the class-context of a Java class, we can then similarly calculate a
code distributional similarity between classes. Our definition of class context is based on
the usage of a class as an argument to methods and on the API which the class provides,
and it is detailed in Table 4.1. We observe over 23K unique contexts in our code repository.
Based on these definitions we can compute the distributional similarity measure between
classes X ′ and Y ′ based on their code-context distributions, as previously described for
the corpus distributional similarity (Section 4.3.1, following Pereira et al. [Pereira et al.,
1993]). For the code-based case, we calculate the empirical context distribution of X ′ (see
Equation 4.1) using f(c,X ′), the occurrence frequency of class X ′ in context c, where
c is one of the ARG-Method or API-Method contexts (defined in Table 4.1) for methods
observed in the code repository. The distributional similarity of 〈X ′, Y ′〉 is then taken,
using the relative entropy, as D(pX′||pY ′) +D(pY ′||pX′).

4.3.5 Code Hierarchies and Organization

The words X and Y are defined as coordinate terms if they have the same hypernym in
a given taxonomy, meaning they have at least one common ancestor in this taxonomy
[Snow et al., 2004]. For the purpose of comparing two class types, we therefore define an
ancestry relation between them using two taxonomies based on the code namespace and
type hierarchies.

51



ARG-Method: The Class is being passed as an argument to the Method. We
count an occurrence of this context once for the method definition,

Method(Class class, ...)

and for each method invocation,

Method(class, ...)

For example, given the statement

str = toString(i);

where i is an Integer, we would count an occurrence for the Integer class in the
context ARG-toString.

API-Method: Class provides the API method Method. We count an occurrence
of this context once for the method definition, and for every occurrence of method
invocation, e.g., class.Method(...). For example, given the statement

s = map.size();

where map is a HashMap, we would count an occurrence for the HashMap class in
the context API-size.

Table 4.1: Definition of two types of code-contexts for a class type, Class, or an instan-
tiation of that type (e.g., class).

Package Taxonomy: A package is the standard way for defining namespaces in the Java
language. It is a mechanism for organizing sets of classes which normally share a
common functionality. Packages are organized in a hierarchical structure which can
be easily inferred from the class name. For example, java.lang.String is a
class that belongs to the java.lang package, which belongs to the java package.

Type Taxonomy: The inheritance structure of classes and interfaces in the Java language
defines a type hierarchy, such that class A is the ancestor of class B if B extends or
implements A.

For each of the above taxonomies, we define type-ancestry and package-ancestry rela-
tions between classes 〈X ′, Y ′〉. For the type taxonomy,

An
type(X

′, Y ′) = {# of common ancestors X ′ and Y ′ share within n higher up

52



levels in the type taxonomy}

for n from 1 to 6. An
package is defined similarly for the package taxonomy. As an example,

A2
package(ArrayList,Vector) = 2

as these classes both belong in the package java.util, and therefore their common
level 2 ancestors are: java and java.util. Moreover,

A1
type(ArrayList,Vector) = 5

since both classes extend the AbstractList class, and also implement four joint inter-
faces: List, RandomAccess, Cloneable, and Serializable.

4.4 Experimental Settings

4.4.1 Data Handling

We downloaded a dump of the interactions on the StackOverflow website2 from its launch
date in 2008 and until 2012. We use only the 277K questions labeled with the user-
assigned Java tag, and their 629K answers.

Text from the SO html posts was extracted with the Apache Tika toolkit3 and then
tokenized with the Mallet statistical NLP package [McCallum, 2002]. In this study, we
use only the text portions of the SO posts, and exclude all raw code segments, as indicated
by the user-labeled <code> markup. Next, the text was POS tagged with the Stanford
POS tagger [Toutanova et al., 2003] and parsed with the MaltParser [Nivre et al., 2006].
Finally, we extract noun pairs with the conjunction dependencies: conj or inv-conj, a total
of 255,150 pairs, which we use as positive training samples.

We use the Java standard libraries code repository as a grounding source for Java
classes, as we expect that users will often refer to these classes in the Java tagged SO
posts. This data includes: 7072 source code files, the implementation of 10562 class and
interface types, and 477 packages. The code repository is parsed using the Eclipse JDT
compiler tools, which provide APIs for accessing and manipulating Abstract Syntax Trees.

2http://www.clearbits.net/creators/146-stack-exchange-data-dump
3http://tika.apache.org/

53



4.4.2 Classification

We follow the classification pipeline described in Figure 4.3, using the LibLinear SVM
classifier [Fan et al., 2008, Chang and Lin, 2011] with the following features:

Corpus-Based Features

• Corpus distributional similarity (Corpus Dist. Sim.) - see Section 4.3.1.

• String similarity (String Sim.) - see Section 4.3.2.

Code-Based Features

• Text to code linking probability (Text-to-code Prob.) - see Section 4.3.3.

• Code distributional similarity (Code Dist. Sim.) - see Section 4.3.4.

• Package and type ancestry (A1
package - A6

package and A1
type - A6

type) - see Sec-
tion 4.3.5.

Since the validity of the code based features above is directly related to the success of
the entity linking phase, each of the code based features are used in the classifier once with
the original value and a second time with the value weighted by the text to code linking
probability.

Of the noun pairs 〈X, Y 〉 in our data, we keep only pairs for which the linking probabil-
ity p̂(X ′|X) · p̂(Y ′|Y ) is greater than 0.1. Note that this guarantees that each noun must be
mapped to at least one class with non-zero probability. Next, we evaluate the string mor-
phology and its resemblance to a camel-case format, which is the acceptable formatting
for Java class names. We therefore select alphanumeric terms with at least two upper-case
and one lower-case characters. We name this set of noun pairs the Coord dataset.

A key assumption underlying statistical distributional similarity approaches is that
“high-interest” entities are associated with higher corpus frequencies, therefore, given
sufficient statistical evidence “high-interest” relations can be extracted. In the software
domain, real world factors may introduce biases in a software-focused text corpus which
may affect the corpus frequencies of classes: e.g., users may discuss classes based on the
clarity of their API, the efficiency of their implementation, or simply if they are fundamen-
tal in software introduced to novice users. Another motivation for using grounded data,
such as the class implementation, is that it may highlight additional aspects of interest, for
example, classes that are commonly inherited from. We therefore define a second noun
dataset, Coord-PMI, which attempts to address this issue, in which noun pairs are selected

54



High PMI Low PMI

〈JTextField, JComboBox〉 〈threads, characters〉
〈yearsPlayed, totalEarned〉 〈server, user〉

〈PostInsertEventListener, PostUpdateEventListener〉 〈code, design〉
〈removeListener, addListener〉 〈Java, client〉
〈MinTreeMap, MaxTreeMap〉 〈Eclipse, array〉

Table 4.2: Sample set of word pairs with high and low PMI scores. Many of the high PMI
pairs refer to software entities such as variable, method and Java class names, whereas the
low PMI pairs contain more general software terms.

based on their pointwise mutual information (PMI):

PMI(X, Y ) = log
p(X, Y )

p(X)p(Y )
(4.6)

where the frequency of the pair 〈X, Y 〉 in the corpus is positive. In this set we include
coordinate term pairs with high PMI scores, which appear more rarely in the corpus and
are therefore harder to predict using standard NLP techniques. The negative set in this data
are noun pairs which appear frequently separately but do not appear as coordinate terms,
and are therefore marked by low PMI scores.

To illustrate this point, we provide a sample of noun pairs with low and high PMI
scores in Table 4.2, where pairs highlighted with bold font are labeled as coordinate terms
in our data. We can see that the high PMI set contains pairs that are specific and inter-
esting in the software domain while not necessarily being frequent words in the general
domain. For example, some pairs seem to represent variable names (e.g., 〈yearsPlayed,
totalEarned〉), others likely refer to method names (e.g., 〈removeListener, addListener〉).
Some pairs refer to Java classes, such as 〈JTextField, JComboBox〉 whose implementa-
tion can be found in the Java code repository. We can also see examples of pairs such as
〈PostInsertEventListener, PostUpdateEventListener〉 which are likely to be user-defined
classes with a relationship to the Java class java.util.EventListener. In con-
trast, the low PMI set contains more general software terms (e.g., code, design, server,
threads).

55



4.5 Results

4.5.1 Classification and Feature Analysis

Method Coord Coord-PMI

Code & Corpus 85.3 88

Baselines:
Corpus Dist. Sim. 57.8 58.2
String Sim. 65.2 65.8
Corpus Only 64.7 60.9
Code Only 80.1 81.1

Code Features:
Code Dist. Sim. 67 (60.2) 67.2 (59)
A1

package 64.2 (63.8) 64.3 (63.9)
A2

package 64.2 (63.8) 61.2 (64.8)
A3

package 65.8 (64.3) 66 (64.6)
A4

package 52.5 (52) 64.7 (58.7)
A5

package 52.5 (52) 52.6 (58.7)
A6

package 50.4 (51.6) 52.3 (52)
A1

type 51.4 (51.4) 55.1 (53.7)
A2

type 54 (53.9) 55.5 (54.3)
A3

type 56.8 (56.7) 57 (56.9)
A4

type 57.1 (56.9) 57.3 (57.1)
A5

type 57.4 (57.6) 58 (57.9)
A6

type 57.2 (57.4) 57.5 (57.5)
Text-to-code Prob. 55.7 55.8

Table 4.3: Cross validation accuracy results for the coordinate term SVM classifier (Code
& Corpus), as well as baselines using corpus distributional similarity, string similarity,
all corpus based features (Corpus Only), or all code based features (Code Only), and all
individual code based features. The weighted version of the code based features (see
Section 4.4.2) is in parenthesis. Results are shown for both the Coord and Coord-PMI
datasets.

In Table 4.3 we report the cross validation accuracy of the coordinate term classifier
(Code & Corpus) as well as baseline classifiers using corpus distributional similarity (Cor-

56



200 400 600 800 1000
0

0.2

0.4

0.6

0.8

1

0.86

0.56

0.28

Rank

F
1

 

 

Full

Code Dist. Sim.

Corpus Dist. Sim.

Figure 4.4: Manual Labeling Results. F1 results of the top 1000 predicted coordinate
terms by rank. The final data point in each line is labeled with the F1 score at rank 1000.

pus Dist. Sim.), string similarity (String Sim.), all corpus features (All Corpus), or all code
features (All Code). Note that using all code features is significantly more successful on
this data than any of the corpus baselines (corpus baselines’ accuracy is between 57%-65%
whereas code-based accuracy is over 80%). When using both data sources, performance
is improved even further (to over 85% on the Coord dataset and 88% on Coord-PMI).

We provide an additional feature analysis in Table 4.3, and report the cross validation
accuracy of classifiers using each single code feature. Interestingly, code distributional
similarity (Code Dist. Sim.) is the strongest single feature, and it is a significantly better
predictor than corpus distributional similarity, achieving around 67% v.s. around 58% for
both datasets.

4.5.2 Evaluation by Manual Labeling

The cross-validation results above are based on labels extracted using Hearst conjunction
patterns. In Figure 4.4 we provide an additional analysis based on manual human labeling
of samples from the Coord-PMI dataset, following a procedure similar to prior researchers
exploring semi-supervised methods for relation discovery [Carlson et al., 2010, Lao et al.,
2011]. After all development was complete, we hand labeled the top 1000 coordinate term
pairs according to the ranking by our full classifier (using all code and corpus features)

57



Code Distributional Similarity A3
package A5

type

〈FileOutputStream,OutputStream〉 〈KeyEvent,KeyListener〉 〈JMenuItem,JMenu〉
〈AffineTransform,
AffineTransformOp〉

〈StyleConstants,
SimpleAttributeSet〉

〈JMenuItems,JMenu〉

〈GZIPOutputStream,
DeflaterOutputStream〉

〈BlockQueue,
ThreadPoolExecutor〉

〈JMenuItems,JMenus〉

〈OutputStream,
DataOutputStream〉

〈BufferedImage,
WritableRaster〉

〈JLabel,
DefaultTreeCellRenderer〉

〈AtomicInteger,
AtomicIntegerArray〉

〈MouseListener,
MouseWheelListener〉

〈JToggleButton,
JRadioButtonMenu〉

〈ResourceBundle,
ListResourceBundle〉

〈DocumentBuilderFactory,
DocumentBuilder〉

〈JFrame,JDialogs〉

〈setIconImages,setIconImage〉 〈ActionListeners,
FocusListeners〉

〈JTable,JTableHeader〉

〈ComboBoxModel,
DefaultComboBoxModel〉

〈DataInputStream,
DataOutputStream〉

〈JTextArea,JEditorPane〉

〈JTextArea,TextArea〉 〈greaterOrEqualThan,
lesserOrEqualThan〉

〈JTextPane,JEditorPane〉

〈ServerSocketChannel,
SocketChannel〉

〈CopyOnWriteArrayList,
ConcurrentLinkedQueue〉

〈JTextArea,JTable〉

Table 4.4: Top ten coordinate terms predicted by classifiers using one of the following
features: code distributional similarity, package hierarchy ancestry (A3

package), and type
hierarchy ancestry (A5

type). All of the displayed predictions are true.

and the top 1000 pairs predicted by the classifiers based on code and corpus distributional
similarities only. We report the F1 results of each classifier by the rank of the predicted
samples. According to our analysis, the F1 score for the text and code distributional simi-
larity classifiers degrades quickly after the first 100 and 200 top ranked pairs, respectively.
At rank 1000, the score of the full classifier is at 86%, whereas the code and text classifiers
are only at 56% and 28%.

To highlight the strength of each of the code based features, we provide in Table 4.4
the top ten coordinate terms predicted using the most successful code based features. For
example, the top prediction using type hierarchy ancestry (A5

type) is 〈JMenuItem, JMenu〉.
Since JMenu extends JMenuItem, the two classes indeed share many common inter-
faces and classes. Alternatively, all of the top predictions using the package hierarchy
ancestry (A3

package) are labels that have been matched to pairs of classes that share at

58



least 3 higher up package levels. So for example, BlockQueue has been matched to
java.util.concurrent.BlockingQueue which was predicted as a coordinate
term of ThreadPoolExecutor which belongs in the same package. Using code dis-
tributional similarity, one of the top predictions is the pair

〈GZIPOutputStream, DeflaterOutputStream〉

which share many common API methods such as write, flush, and close. Many
of the other top predicted pairs by this feature have been mapped to the same class and
therefore have the exact same context distribution.

4.5.3 Taxonomy Construction

We visualize the coordinate term pairs predicted using our method (with all features), by
aggregating them into a graph where entities are nodes and edges are determined by a
coordinate term relation (Figure 4.1). Graph edges are colored using the Louvain method
[Blondel et al., 2008] for community detection and an entity label’s size is determined by
its betweenness centrality degree. We can see that high-level communities in this graph
correspond to class functionality (Figure 4.2), indicating that our method can be used to
create an interesting code taxonomy.

Note that our predictions also highlight connections within functional groups that can-
not be found using the package or type taxonomies directly. One example can be high-
lighted within the GUI functionality group. Listener classes facilitate a response mech-
anism to GUI Actions, such as pressing a button, or entering text, however, these classes
belong in different packages than basic GUI components for historical reasons. In our
graph, Action and Listener classes belong to the same communities of the GUI compo-
nents they are normally used with.

4.6 Conclusions

We have presented an approach for grounded discovery of coordinate term relationships
between text entities representing Java classes. Using a simple entity linking method we
map text entities to an underlying class type implementation from the Java standard li-
braries. With this code-based grounding, we extract information on the usage-pattern of
the class and its location in the Java class and namespace hierarchies.

59



Our experimental evaluation shows that using only corpus distributional similarity
for the coordinate term prediction task is unsuccessful, achieving prediction accuracy of
around 58%. However, adding information based on the entities’ software implementation
improves accuracy dramatically to 88%. Our classifier has an F1 score of 86% according
to human labeling over the top 1000 predicted pairs.

The coordinate relations predicted here can be useful for collecting semantic informa-
tion on Java classes. We have shown that by aggregating predicted relations, we get an
interesting code taxonomy which draws from the functional connections, common usage-
patterns, and implementation details that are shared between classes. This taxonomy can
be viewed as a hierarchical clustering of classes into semantic classes, meaning that, in
practice, it can be used as an ontology over Java classes; such as ontology is an important
starting point for ontology-guided knowledge base population methods, which are aimed
at constructing knowledge bases given an input ontological structure over entities in a tar-
get domain. The advantage of an ontology such as the one derived here is that it reflects
statistics in both language and code. This is in contrast to the human-created ontologies
which are typically used in open-domain KB population methods.

60



Chapter 5

Topic Model Based Approach for
Learning a Complete Knowledge Base

In Chapter 4 we constructed a grounded ontology for the software domain, based on rela-
tions discovered between entities from the domain. Our grounding method links entities
from a text corpus to a code repository, and relations are found using both sources. This
leads to an ontology that reflects statistics in language and code. However, grounding soft-
ware entities directly to code limits the scope of the learned ontology, as it can only reason
over entities that appear directly in the code. The resulting ontology is, therefore, missing
higher level software concepts, including ones that discuss the users of the applications,
the computer resources it consumes, and the design patterns used in its implementation. To
address this issue, we propose a general approach for Knowledge Base construction which
exploits more information found in the text, and therefore includes higher level concepts.

Many existing KBs, including Freebase, Yago, and NELL, rely on a fixed ontology,
given as an input to the system, which defines the data to be cataloged in the KB, i.e., a
hierarchy of categories and relations between them. The system then extracts facts that
match the predefined ontology, where in some cases, the input ontology is later extended
with automatically discovered relations [Mohamed et al., 2011]. We propose an unsu-
pervised model that jointly learns a latent ontological structure of an input corpus, and
identifies facts from the corpus that match the learned structure. Our approach combines
mixed membership stochastic block models and topic models to infer a structure by jointly
modeling text, a latent concept hierarchy, and latent semantic relationships among the en-
tities mentioned in the text. As a case study, we apply the model to a corpus of Web
documents from the software domain, meaning that we are learning a software KB. We
evaluate the accuracy of the various components of the learned structure. Additionally,

61



we show how a learned KB can be used to extract domain-specific facts from an open IE
resource.

5.1 Introduction

Knowledge base (KB) construction methods can be broadly categorized along several di-
mensions. One dimension is ontology-guided construction, where the list of categories
and relations that define the schema of the KB are explicit, versus open IE methods, where
they are not. Another dimension is the type of relations and types included in the KB:
some KBs, like WordNet, are hierarchical, in that they contain mainly concept types,
supertypes and instances, while other KBs contain many types of relationships between
concepts. Hierarchical knowledge can be learned by methods including distributional
clustering [Pereira et al., 1993], as well as Hearst patterns [Hearst, 1992] and similar tech-
niques [Snow et al., 2006]. Reverb [Fader et al., 2011] and TextRunner [Yates et al., 2007]
are open methods for learning multi-relation KBs. Finally, NELL [Carlson et al., 2010,
Mitchell et al., 2015], FreeBase [Google, 2011] and Yago [Suchanek et al., 2007, Hoffart
et al., 2013] are ontology-guided methods for extracting KBs containing both hierarchies
and relations.

One advantage of ontology-guided methods is that the extracted knowledge is easier
to reason with. An advantage of open IE methods is that ontologies may be incomplete,
and are expensive to construct for a new domain. Ontology design involves assembling a
set of categories, organized in a meaningful hierarchical structure, often providing seeds,
i.e., representative examples for each category, and finally, defining inter-category rela-
tions. This process is often done manually [Carlson et al., 2010] leading to a rigid set of
categories. Redesigning a new ontology for a specialized domain represents an additional
challenge as it requires extensive knowledge of the domain.

In this chapter, we propose an unsupervised model that learns a latent hierarchical
structure of categories from an input corpus, learns latent semantic relations between cat-
egories, and also identifies facts from the corpus that match the learned structure. In other
words, the model learns both the schema for a KB, and a set of facts that are related to that
schema, thus combining the processes of KB population and ontology construction. The
intent is to build systems that extract facts which can be interpreted relative to a meaningful
ontology without requiring the effort of manual ontology construction.

The input to the learning method is a corpus of documents, plus two sets of resources
extracted from the same corpus: (1) a set of hypernym-hyponym pairs (e.g., “animal”,
“horse”) extracted using Hearst patterns, and (2) a set of subject-verb-object triples (e.g.,

62



“horse”, “eats”, “hay”) extracted from parsed sentences. These resources are analogous
to the output of open IE systems for hierarchies and relations, and as we demonstrate, our
method can be used to highlight domain-specific data from open IE repositories.

Our approach combines mixed membership stochastic block models and topic models
to infer a structure by jointly modeling text documents, and links that indicate hierarchy
and relation among the entities mentioned in the text. Joint modeling allows information
on topics of nouns (referred to as instances) and verbs (referred to as relations) to be shared
between text documents and an ontological structure, resulting in a set of compelling top-
ics. This model offers a complete solution for KB construction based on an input corpus,
and we therefore name it KB-LDA.

We additionally propose a method for recovering meaningful names for concepts in the
learned hierarchy. These are equivalent to category names in other KBs, however, follow-
ing our method we extract from the data a set of potential alternative concepts describing
each category, including probabilities for their strength of association.

To show the effectiveness of our method, we apply the model to a dataset of Web
based documents from the software domain, and learn a software KB. This is an ex-
ample of a specialized domain in which, to our knowledge, no broad-coverage ontol-
ogy exists. We evaluate the model on the induced categories, relations, and facts, and
we compare the proposed categories with an independent set of human-provided labels
for documents. Finally, we use KB-LDA to retrieve domain-specific relations from an
open IE resource. We provide the learned software KB as supplemental material, and
it can be downloaded from: http://www.cs.cmu.edu/˜dmovshov/data/kb_lda_
acl2015_supplementaryMaterial.zip.

5.2 KB-LDA

Modeling latent sets of entities from observed interactions among them is a well re-
searched task, often encountered in social network analysis for the purpose of identify-
ing specialized communities in the network. Mixed Membership Stochastic Blockmodels
[Airoldi et al., 2009, Parkkinen et al., 2009] model entities as graph nodes with pairwise
relations drawn from latent blocks with mixed membership. A related approach is taken
by topic models such as LDA (Latent Dirichlet Allocation; [Blei et al., 2003]), which
model documents as generated by a mixture of latent topics, and words in the documents
as generated by topic-specific word distributions. The KB-LDA model combines the two
approaches. It models links between tuples of two or three entities using stochastic block
models, and these are additionally influenced by latent topic assignments of the entities in

63

http://www.cs.cmu.edu/~dmovshov/data/kb_lda_acl2015_supplementaryMaterial.zip
http://www.cs.cmu.edu/~dmovshov/data/kb_lda_acl2015_supplementaryMaterial.zip


Sj

Oj

Vj

zSj

zOj

zVj

αR

πR

NR

Relations
γI

σk

K

γR

δk′

K

αO

πO

zCi

zIi

Ci

Ii

NO

Ontology

αD

θd

zEl1

zEl2

El1

El2

Nd,I

Nd,R ND

Documents

Figure 5.1: Plate diagram of KB-LDA: a model for constructing knowledge bases, which
extends LDA topic models and mixed-membership stochastic block models. In this model,
information is shared between three main components (Ontology, Relations, and Docu-
ments), through common latent topics over noun phrases (σk) and verb phrases (δk′). Each
of the presented components maps to an element in the learned knowledge base structure.
For more details see Section 5.2.

a document corpus.

In the KB-LDA model, shown as a plate diagram in Figure 5.1 with notation in Ta-
ble 5.1, information is shared between three components, through common latent topics
over noun and verb entities. The Ontology component (upper right) models hierarchical
links between Concept-Instance (CI) entity pairs. The Relations component (left) models
links between Subject-Verb-Object (SVO) entity triples, where the subject and object are
nouns and the verb represents a relation between them. Finally, the Documents component
(lower right) is a link-LDA model [Erosheva et al., 2004] of text documents containing a
combination of noun and verb entity types. In this formulation, distributions over noun and
verb entities that are related according to hierarchical or relational constraints, are linked
with a text model via shared parameters.

Each of the components presented in Figure 5.1 maps to an element in the learned KB
structure. The Documents component provides the context in which noun and verb enti-
ties co-occur in text documents. It is modeled as a link-LDA model, an extension of LDA,
viewing documents as sets of “bags of words”; in this case, each bag contains either noun

64



πO – multinomial over ontology topic pairs, with Dirichlet prior αO

πR – multinomial over relation topic tuples, with Dirichlet prior αR

θd – topic multinomial for document d, with Dirichlet prior αD

σk – multinomial over instances for topic k, with Dirichlet prior γI
δk′ – multinomial over relations for topic k′, with Dirichlet prior γR
CIi = 〈Ci, Ii〉 – i-th ontological assignment pair
SVOj = 〈Sj, Oj, Vj〉 – j-th relation assignment tuple
zCI
i = 〈zCi

, zIi〉 – topic pair chosen for example 〈Ci, Ii〉
zSV O
j = 〈zSj

, zOj
, zVj
〉 – topic tuple chosen for example 〈Sj, Oj, Vj〉

zDE1
, zDE2

– topic chosen for instance entity E1, or relation entity E2, in a document
nI

z,i – number of times instance i is observed under topic z (in either zD, zCI or zSV O)
nR

z,r – number of times relation r is observed under topic z (in either zD or zSV O)
nO

〈zc,zi〉 – count of ontological pairs assigned the topic pair 〈zc, zi〉 (in zCI)
nR

〈zs,zo,zv〉 – count of relation tuples assigned the topic tuple 〈zs, zo, zv〉 (in zSV O)

Table 5.1: KB-LDA notation.

or verb entities. This component contributes to learning topics over the two entity types.
As a result, each entity type has an individual topic-wise multinomial distribution over the
set of entities in the vocabulary of that type. Learned topics over noun phrases (σk) cor-
respond to categories in the KB, as they aggregate similar nouns. Consider, for example,
a topic in which the most probable nouns include ’stackoverflow’, ’google’, and ’twitter’,
which are all names of websites. Similarly, topics over verb phrases (δk′) aggregate verbs
that describe similar actions. Verb topics correspond to relations in the learned KB. As
an example, we learn a verb topic in which the most probable verbs include ’clicks’, ’se-
lects’, and ’hits’, all of which can be used to describe an interaction between users and
user-interface elements.

The Ontology component is a generative model which learns hierarchal links between
pairs of noun topics. The training examples for this component are extracted using a small
collection of Hearst patterns indicating concept-to-instance or superconcept-to-subconcept
links, including patterns like, ’X such as Y’, and ’X including Y’. For example, the sen-
tence “websites such as StackOverflow” indicates that Stackoverflow is a type of website,
leading to the extracted noun pair 〈websites, StackOverflow〉, in which ’websites’ is a
concept and ’StackOverflow’ is an instance of that concept. We refer to the examples ex-
tracted using these hierarchical patterns as concept-instance pairs, and to the individual
entities as instances.

65



Let K be the number of target latent topics.
1. Generate topics: For topic k ∈ 1, . . . , K, sample:
• σk ∼ Dirichlet(γI), the per-topic instance distribution
• δk ∼ Dirichlet(γR), the per-topic relation distribution

2. Generate ontology: Sample πO ∼ Dirichlet(αO), the instance topic pair distribution.
• For each concept-instance pair CIi, i ∈ 1, . . . , NO:

– Sample topic pair zCI
i ∼ Multinomial(πO)

– Sample instances Ci ∼ Multinomial(σzCi
), Ii ∼ Multinomial(σzIi ), then CIi = 〈Ci, Ii〉

3. Generate relations: Sample πR ∼ Dirichlet(αR), the relation topic tuple distribution.
• For each tuple SVOj , j ∈ 1, . . . , NR:

– Sample topic tuple zSV O
j ∼ Multinomial(πR)

– Sample instances, Sj ∼ Multinomial(σzSj
), Oj ∼ Multinomial(σzOj

), and sample a
relation Vj ∼ Multinomial(δzVj )

4. Generate documents: For document d ∈ 1, . . . , D:
• Sample θd ∼ Dirichlet(αD), the topic mixing distribution for document d.
• For every noun entity (El1) and verb entity (El2), l1 ∈ 1, . . . , Nd,I , l2 ∈ 1, . . . , Nd,R:

– Sample topics zEl1
, zEl2

∼ Multinomial(θd)
– Sample entities El1 ∼ Multinomial(σzEl1

) and El2 ∼ Multinomial(δzEl2
)

Table 5.2: KB-LDA generative process.

The extracted concept-instance pairs have an underlying block structure, which is de-
rived from a sparse block model [Parkkinen et al., 2009], meaning that they indicate a
latent hierarchical structure. Each example pair is generated by topic specific instance dis-
tributions conditioned on topic pair edges, which are defined by the multinomial πO over
the Cartesian product of the noun topic set with itself. The individual instances, therefore,
have a mixed membership in topics. Note that we allow for a concept and instance to be
drawn from different noun topics, defined by σ. As an example, we may learn one noun
topic highlighting concept tokens like ’websites’, ’platforms’, and ’applications’, and a
second noun topic highlighting instances shared by these concepts, such as, ’stackover-
flow’, ’google’, and ’facebook’. The observation that the former topic frequently contains
concepts of instances from the latter topic, is encoded in the multinomial distribution πO.
From this we infer that the former topic should be placed higher in the induced hierarchy.
More generally, the multinomial encodes a block structure over all pairs of noun topics,
and this allows us to infer an optimal hierarchical structure between them. This derived
structure corresponds to the ontology of the learned KB.

Similarly, the Relations component infers a block structure between a noun topic rep-
resenting the subject of a relation, a verb topic representing the relation itself, and a second
noun topic representing the object of a relation. The inferred block structure corresponds

66



to typed relation definitions in the learned KB. The Relations component is trained over
examples of relational links between a noun subject, a verb, and a noun object. These
examples are extracted from SVO patterns found in the document corpus, following the
methodology of Talukdar et al. [2012a]. An extracted example looks like: 〈websites, exe-
cute, javascript〉. Subject and object topics are drawn from the noun topics (σ), while the
verb topics is drawn from the verb topics, defined by δ. The multinomial πR encodes the
interaction of noun and verb topics based on the extracted relational links, and it is defined
over the Cartesian product of the noun topic set with itself and with the verb topic set.

The generative process of KB-LDA is described in Table 5.2. Given the hyperparam-
eters (αO, αR, αD, γI , γR), the joint distribution over CI pairs, SVO tuples, documents,
topics and topic assignments is given by

p(πO, πR, σ, δ,CI, zCI ,SVO, zSV O,θ,E, zD|αO, αR, αD, γI , γR) = (5.1)
K∏
k=1

Dir(σk|γI)︸ ︷︷ ︸
Instance topics

×
K∏

k′=1

Dir(δk′|γR)︸ ︷︷ ︸
Relation topics

×
ND∏
d=1

Dir(θd|αD)

Nd,I∏
l1=1

θ
zDEl1
d σEl1

zDEl1

Nd,R∏
l2=1

θ
zDEl2
d δEl2

zDEl2︸ ︷︷ ︸
Documents component

×

Dir(πO|αO)

NO∏
i=1

π
〈zCi

,zIi 〉
O σCi

zCi
σIi
zIi︸ ︷︷ ︸

Ontology component

×Dir(πR|αR)

NR∏
j=1

π
〈zSj

,zOj
,zVj 〉

R σSj
zSj
σOj
zOj
δVj
zVj︸ ︷︷ ︸

Relations component

5.2.1 Inference in KB-LDA

Exact inference is intractable in the KB-LDA model. We use a collapsed Gibbs sampler
[Griffiths and Steyvers, 2004] to perform approximate inference in order to query the topic
distributions and assignments. It samples a latent topic pair for a CI pair in the corpus
conditioned on the assignments to all other CI pairs, SVO tuples, and document entities,
using the following expression, after collapsing πO:

p̂(zCI
i |CIi, zCI

¬i , z
SV O, zD,CI¬i, αO, γI) ∝ (5.2)(

nO¬i
zCI
i

+ αO

)
×

(nI¬i
zCi

,Ci
+ γI)(n

I¬i
zIi ,Ii

+ γI)

(
∑
C

nI¬i
zCi

,C + TIγI)(
∑
I

nI¬i
zIi ,I

+ TIγI)

where counts of observations from the training set are noted by n (see Table 5.1), and TI
is the number of instance entities (size of noun vocabulary).

67



We similarly sample topics for each SVO tuple conditioned on the assignments to all
other tuples, CI pairs and document entities, using the following expression, after collaps-
ing πR:

p̂(zSV O
j |SVOj, z

SV O
¬j , zCI , zD,SVO¬j, αR, γI , γR) ∝ (5.3)(

nR¬j
zSV O
j

+ αR

)
×

(nI¬j
zSj

,Sj
+ γI)(n

I¬j
zOj

,Oj
+ γI)(n

R¬j
zVj ,Vj

+ γR)

(
∑
I

nI¬j
zSi

,I+TIγI)(
∑
I

nI¬j
zOi

,I+TIγI)(
∑
V

nR¬j
zVj ,V

+TRγR)

We sample a latent topic for an entity mention in a document from the text corpus con-
ditioned on the assignments to all other entity mentions after collapsing θd. The following
expression shows topic sampling for a noun entity in a document:

p̂(zEl1
|E,CI,SVO, zD, zCI , zSV O, αD, γI) ∝ (n¬l1d,z + αD)

nI¬l1
zEl1

,El1
+ γI∑

E′
l1
nI¬l1
zEl1

,E′
l1
+ TIγI

(5.4)

The per-topic multinomial parameters and topic distributions of CI pairs, SVO tuples
and documents can be recovered with MLE estimates using their observation counts:

σ̂I
k =

nI
k,I + γI∑

I′ n
I
k,I′ + TIγI

(5.5)

δ̂Rk =
nR
k,R + γR∑

R′ nR
k,R′ + TRγR

(5.6)

θ̂zd =
nz,d + αD∑

z′ nz′,d +KαD

(5.7)

π̂
〈zC ,zI〉
O =

nO
〈zC ,zI〉 + αO∑

z′C ,z′I

nO
〈z′C ,z′I〉

+K2 · αO

(5.8)

π̂
〈zS ,zO,zV 〉
R =

nR
〈zS ,zO,zV 〉 + αR∑

z′S ,z
′
O,z′V

nR
〈z′S ,z

′
O,z′V 〉

+K3 · αR

(5.9)

Using the KB-LDA model we can describe the latent topic hierarchy underlying the
input corpus. We consider the multinomial of the Ontology component, πO, as an adja-
cency matrix describing a directed network where the nodes are instance topics and edges

68



indicate a hypernym-to-hyponym relation. We recover a hierarchy over the instance topics
by finding a spanning arborescence (maximum directed spanning tree) over this adjacency
matrix, using Edmonds’ optimum branchings algorithm [Edmonds, 1967]. We recover re-
lations among instance topics by extracting from the Relations multinomial, πR, the set of
most probable tuples of a 〈subject topic, verb topic, object topic〉.

5.2.2 Parallel Implementation

Our model is implemented using a fast, parallel approximation of collapsed Gibbs sam-
pling, following Newman et al. [2009a]. In each sampling iteration, topics are sampled
locally on a subset of the training examples. At the end of each iteration, data from worker
threads is joined and model parameters are updated with complete information. In the
next iteration, thread-local sampling starts with complete topic assignment information
from the previous iteration. In each thread, the process can be viewed as a reordering of
the input examples, where the examples sampled in that thread are viewed first. It has been
shown that parallel approaches considerably speed up iterative inference methods such as
collapsed Gibbs sampling, resulting in test data log probabilities indistinguishable from
those obtained using serial methods [Porteous et al., 2008, Newman et al., 2009a]. A par-
allel approach is especially important when training the KB-LDA model due to the large
dimensions of the multinomials of the Ontology and Relations components (K2 and K3,
respectively for a model with K topics). We train KB-LDA over 2000 iterations, more
than what has traditionally been used for collapsed Gibbs samplers.

5.2.3 Data-driven discovery of topic concepts

The KB-LDA model described above clusters noun entities into sets of instance topics,
and recovers a latent hierarchical structure among these topics. Each instance topic can
be described by a multinomial distribution of the underlying nouns. It is often more intu-
itive, however, to refer to a topic containing a set of high probability nouns by a name, or
category, just as traditional ontologies describe hierarchies over categories.

Our model is trained over nouns that originate from concept-instance example pairs
(used to train the Ontology component). We describe a method for selecting a category
name for a topic, based on concepts that best represent high probability nouns of the topic
in the concept-instance examples.

We calculate the probability that a concept noun c describes the set of instances I that

69



have been assigned the topic z using

p(c, z|I) ∝ p(I|c, z) ∗ p(c, z) (5.10)
= p(I|c, z) ∗ p(z|c) ∗ p(c)

Let rep(c, z) =
∑

i:Ci=c n
I
z,Ii

describe how well concept c represents topic z according to
the assignments of instances with concept c to the topic. Then,

p(z|c) = rep(c, z)∑
z′ rep(c, z

′)
(5.11)

The concept prior, p(c), is based on the relative weight of instances with concept c in the
concept-instance example set, and is an indicator of the generality of a concept:

p(c) =

∑
i:Ci=cwc,Ii∑

c′
∑

i:Ci=c′ wc′,Ii

(5.12)

where wC,I is the number of occurrences of concept-instance pair 〈C, I〉 in the corpus.

Finally, p(I|c, z) measures how specific are the topic instances to the concept c,

p(I|c, z) =
∑

i:Ii∈I,Ci=cwc,Ii∑
i:Ci=cwc,Ii

/
Z (5.13)

where I is the set of training instances assigned with topic z, and Z is a normalizer over
all concepts and topics.

Following this method we extract concepts that have a high probability p(c, z|I) with
respect to a topic z. These can be thought of as equivalent to the single, fixed, category
name provided by traditional KB ontologies; however, here we extract from the data a set
of potential alternative noun phrases describing each topic, including a probability for the
strength of this association.

5.3 Experimental Evaluation

We evaluate the KB-LDA model on a corpus of 5.5M documents from the software do-
main; thereby we are using the model to construct a software domain knowledge base.
Our evaluation explores the following questions:

• Does KB-LDA learn categories, relations, a hierarchy and topic concepts with high
precision?

70



• How well do KB-LDA topics correspond with human-provided document labels?

• Is KB-LDA useful in extracting domain-specific facts from existing open IE re-
sources?

5.3.1 Data

We use data from the Q&A website StackOverflow1 where users ask and answer tech-
nical questions about software development, tools, algorithms, etc’. We extracted 562K
concept-instance example pairs from the data, and kept the 17K examples appearing at
least twice. Noun phrases in these examples make up our Instance Dictionary. Out of
6.8M SVO examples found in the data we keep 37K in which the subject and object are
in the Instance Dictionary, and the example appears at least twice in the corpus. The
verbs in these SVOs make up our Relation Dictionary. Finally, we consider as docu-
ments the 5.5M questions from StackOverflow with all their answers. The training data
we use can be downloaded from http://www.cs.cmu.edu/˜dmovshov/data/kb_

lda_software_dataset_sample.tar

5.3.2 Evaluating the learned KB precision

In this section we evaluate the direct output of a model trained with 50 topics: the extracted
instance topics, topic hierarchy, relations among topics and extracted topic concepts. A
subset of a sample hierarchy learned with KB-LDA is presented in Figure 5.2, and sample
relations can be found in Figure 5.3.

In each of the experiments below, we extract facts based on one of the learned com-
ponents and evaluate each fact based on annotations from human judges: two experts and
three non-expert users, collected using Mechanical Turk, that were pre-tested on a ba-
sic familiarity with concepts from the software domain, such as programming languages,
version control systems, and databases.

Precision of Instance Topics

We measure the coherence of instance topics using an approach called word intrusion
[Chang et al., 2009]. We extract the top 30 instance tokens of a topic ranked by the
instance topic multinomial σ. We present to workers tokens 1-5,6-10,. . . ,26-30, where

1Data source: https://archive.org/details/stackexchange

71

http://www.cs.cmu.edu/~dmovshov/data/kb_lda_software_dataset_sample.tar
http://www.cs.cmu.edu/~dmovshov/data/kb_lda_software_dataset_sample.tar


data !
data!

information!
types!

resources!
objects!

programs!
browsers!
languages!

tools!
editors!

technologies!

urls!
page!
link!

header!
post!

applications !
websites!
systems!

applications!
services!
servers!

websites!
stackoverflow!

google!
facebook!

twitter!
gmail!

wordpress!
nginx!

dependencies!
libraries!

frameworks!
tools!

plugins!
orms!

javascript 
libraries!

jquery!
hibernate!

spring!
boost!
flash!

django!

programming 
languages!

php!
java!

python!
c +!
perl!
ruby!

web browsers!
ie!

firefox!
chrome!
safari!

explorer!
opera!
ie8!

word!
characters!

text!
string!

character!
space!
quotes!

newline!

Figure 5.2: Subset of a sample of a hierarchy learned with KB-LDA with 50 topics. For
each topic, we display a name extracted for the topic by our system (bold), and words
selected from the top 20 words of that topic.

each 5 tokens are randomly ordered and augmented with an extra token that is ranked low
for the topic, (the intruder). We ask workers to select all tokens that do not belong in the
group (and at least one). We define the topic Match Precision as the fraction of questions
for which the reviewer identified the correct intruder (out of 6 questions per topic), and the
topic Group Precision as the fraction of correct tokens (those not selected as not belonging
in the group). Thus Match Precision measures how well labelers understand the topic, and
Group Precision measures what fraction of words appeared relevant to the topic.

Figure 5.4 shows the average Match and Group precision over the top tokens of all 50
topics learned with the model, as evaluated by expert and non-expert workers. Both groups
find the intruder token in over 75% of questions. In the more subtle task of validating each
topic token (Group precision) we see a greater variance among the two labeler groups.
This highlights the difficulty of evaluating domain specific facts with non-expert users.

72



user!
people!
customer!
client!
person!

clicks!
selects!
submits!
hits!

changes!

button!
form!
link!
item!
file!

function!
method!
class!
object!
query!

has!
returns!
takes!

implements!
supports!

value!
place!
property!
interface!
pointer!

code!
server!
compiler!
client!
program!

makes!
throws!
sends!
gives!
receives!

error!
exception!
request!
message!
warning!

uploads!
opens!
closes!
visits!
leaves!

app!
page!

application!
file!
site!

user!
people!
customer!
client!
person!

Subject !
Topic!

Verb !
Topic!

Object !
Topic!

enters!
defined!
changes!
add!
edit!

name!
images!
id!

password!
address!

user!
people!
customer!
client!
person!

Figure 5.3: Sample relations learned with KB-LDA. For each relation we display words
selected from the top 10 words of the subject topic, verb topic, and object topic.

Table 5.3 displays the top 20 instance topics learned with KB-LDA, ranked by expert
Group precision.

Precision of Topic Concepts

We assess the precision of the top 5 concept names proposed for instance topics, following
the method presented in Section 5.2.3. Top concepts for a subset of topics are shown in
Table 5.3. For each topic, we present to the user a hypernym-hyponym pattern of the topic
based on the top concepts and top instances of the topic. As an example, if the top 5
instances of a topic are ie, firefox, chrome, buttons, safari and the top 5 concepts for this
topic are web browsers, web browser, browser, ie, chrome, the pattern presented to workers
is

• [ie, firefox, chrome, buttons, safari] is a [web browsers, web browser, browser, ie,
chrome]

Workers were asked to match at least 3 instances to a proposed concept name. In addition,
the same assessment was applied for each topic using randomly sampled concepts. We

73



5 10 15 20 25 30

Top Tokens

0.60
0.65
0.70
0.75
0.80
0.85

M
at

ch
P

re
ci

si
on

5 10 15 20 25 30

Top Tokens

0.65
0.70
0.75
0.80
0.85
0.90
0.95
1.00

G
ro

u
p

P
re

ci
si

on

Figure 5.4: Average Match (top) and Group (bottom) precision of top tokens of 50 topics
learned with KB-LDA, according to expert (dark blue) and non-expert (light blue, stripes)
labeling.

present in Table 5.4 the number and precision of patterns based on extracted concepts
(Concepts) and random concepts (Random), that were labeled by 1, 2 or 3 workers, as
well as the average results among experts. We achieve nearly 90% precision according to
expert labeling, however we do not observe large agreement among non-expert labelers.

Precision of Relations

To assess the precision of the relations learned in the KB-LDA model, we extract the
top 100 relations learned according to their probability in the relation multinomial πR.
Relation patterns were presented to workers as sets of the top subject-verb-object tokens
of the respective topics in the relation. An example relation is

• Subject words: [user, users, people, customer, client]

• Verb words: [clicks, selects, submits, click, hits]

• Object words: [function, method, class, object, query]

and workers are asked to state whether the pattern indicates a valid relation or not, by
checking whether a reasonable number of combinations of subject-verb-object triples ex-

74



Top 2 Topic Concepts Top 10 Topic Tokens

table, key table, query, database, sql, column, data, tables, mysql, index, columns
properties, css image, code, images, problem, point, color, data, size, screen, points

credentials,
user information

name, images, id, number, text, password, address, strings, files, string

page, content page, html, code, file, image, javascript, browser, http, jquery, js
orm tools, orm tool tomcat, hibernate, server, boost, apache, spring, mongodb, framework,

nhibernate, png
clients, apps app, application, http, android, device, phone, code, api, iphone, google

applications, systems devices, systems, applications, services, platforms, tools, sites, apps, system,
service

systems, platforms google, windows, linux, facebook, git, ant, database, gmail, android, so
limits, limit memory, time, thread, code, threads, process, file, program, data, object
data, table query, table, data, list, example, number, results, search, database, rows
type, value code, function, value, type, pointer, array, memory, compiler, example, string

table, request data, information, types, properties, details, fields, values, content, resources,
attributes

dependencies, jar file libraries, library, framework, frameworks, formats, format, database, databases,
tools, server

type, object value, focus, place, property, method, reference, interface, effect, pointer, data
kinds, code languages, language, features, objects, functions, methods, code, operations,

structures, types
element, elements button, form, link, item, file, mouse, image, value, option, row
javascript libraries,

javascript framework jquery, mysql, http, json, xml, library, html, sqlite, asp, php

process,
operating system server, client, connection, data, http, socket, message, request, port, service

folder, files file, files, directory, folder, path, code, name, resources, project, folders
value, array array, list, value, values, number, string, code, elements, loop, object

Table 5.3: Top 20 instance topics learned with KB-LDA. For each topic we show the top
2 concepts recovered for the topic, and top 10 tokens. In italics are words marked as
out-of-topic by expert labelers.

tracted from each of the relation groups can produce valid relations. We present in Ta-
ble 5.4 the number and precision of patterns based on the top 100 relations (Relations) and
100 random relations (Random), that were labeled by 1, 2 or 3 workers, and the average
results among experts. We achieve 80% precision according to experts, and only 18% on
random relations. We observe similar agreement among expert and non-expert workers as
in the concept evaluation experiment, however we note that random relations prove more
confusing for non-experts and more of them are (falsely) labeled as correct.

75



Workers Concepts Relations Subsumptions

KB-LDA (p) Random (p) KB-LDA (p) Random (p) KB-LDA (p) Random (p)

1 48 (0.96) 6 (0.12) 90 (0.9) 69 (0.69) 31 (0.63) 28 (0.57)
2 42 (0.84) 0 (0.0) 63 (0.63) 22 (0.22) 16 (0.33) 9 (0.18)
3 26 (0.52) 0 (0.0) 15 (0.15) 4 (0.05) 3 (0.06) 4 (0.08)

Experts 44 (0.88) 0 (0.0) 70 (0.7) 13 (0.13) 25 (0.51) 4 (0.08)

Table 5.4: Precision of topic concepts, relations, and subsumptions. For items extracted
from the model (KB-LDA), and randomly (Random), we show the number of items
marked as correct, and precision in parentheses (p), as labeled by 1, 2, or 3 non-expert
workers, and the average precision by experts.

Precision of Hierarchy

We assess the precision of subsumption relations making up the ontology hierarchy. Re-
lations are extracted using the maximum spanning tree over the graph represented by the
Ontology component, πO (see Section 5.2.1 for details), resulting in 49 subsumption re-
lations. We compare their quality to that of 49 randomly sampled subsumption relations.
Subsumptions are presented to the worker using is a patterns, similar to the ones described
above for concept evaluation, however in this case, the concept tokens are the top tokens
of the hypernym topic. An example subsumption relation is

• [java, python, javascript, lists, ruby] is a [languages, language, features, objects,
functions]

The results shown in Table 5.4 indicate a low precision among the extracted subsumption
relations. This might be explained by the fact that at the final training iteration (2K) of the
model, the perplexity of the Ontology component was still improving, while the perplexity
of the other model components seemed closer to convergence. It is possible that the low
precision observed here indicates that more training iterations are needed to achieve an
accurate ontology using KB-LDA.

5.3.3 Overlap of KB-LDA topics with human-provided labels

We evaluated how well topics from KB-LDA correspond to document labels provided by
humans, over a randomly sampled set of 40K documents from our corpus. In StackOver-
flow, questions (which we consider as documents) can be labeled with predefined tags.

76



Topic string, character, characters, text, line
Tags regex, string, python, php, ruby

Topic element, div, css, elements, http
Tags css, html, jquery, html5, javascript

Topic table, query, database, sql, column
Tags sql, mysql, database, performance, php

Topic jquery, mysql, http, json, xml
Tags jquery, json, javascript, ruby, string

Table 5.5: Top tags associated with sample topics.

Top Found in KB-LDA Frequent Tokens
Tags Dictionary Docs Tag Docs Tag

20 14 0.45 0.42 0.21 0.16
50 36 0.48 0.42 0.20 0.14

100 72 0.45 0.38 0.20 0.13
500 322 0.44 0.33 0.18 0.10

Table 5.6: Docs and Tag overlap of human-provided tags with KB-LDA topics, and fre-
quent tokens.

Here, we estimate the overlap with the most frequently used tags. First, for topic k, we
aggregate tags from documents where k = argmaxk′ θ

k′

d , where θd is the document topic
distribution. Table 5.5 shows examples of the top tags associated with sample topics, indi-
cating a good correlation between top topic words and the underlying concepts.

Next, for each tested document d ∈ D, letWd be the top 30 words of the most probable
topic in θd, and Td the set of human provided document tags. We consider the following
metrics:

Docs-Overlap =

∑D
d 1{∃t∈Td:t∈Wd}

|D|
(5.14)

measures the ratio of documents for which at least one tag overlaps with a top topic word.

77



Top 10 ranked triples: 〈server, not found, error〉, 〈user, can access, file〉, 〈method,
not found, error〉, 〈user, can change, password〉, 〈page, not found, error〉, 〈user, can
upload, videos〉, 〈compiler, will generate, error〉, 〈users, can upload, files〉, 〈users,
can upload, files〉, 〈object, not found, error〉

Bottom 10 ranked triples: 〈france, will visit, germany〉, 〈utilities, may include,
heat〉, 〈iran, has had, russia〉, 〈russia, can stop, germany〉, 〈macs, do not sup-
port, windows media player〉, 〈cell phones, do not make, phone calls〉, 〈houses,
have made, equipment〉, 〈guests, will find, restaurants〉, 〈guests, can request, bbq〉,
〈inspectors, do not make, appointments〉

Table 5.7: Top and bottom ReVerb software triples ranked with KB-LDA (the tuple 〈users,
can upload, files〉 is repeated in the data).

The average ratio of overlapping tags per document is

Tag-Overlap =
1

|D|

D∑
d

|t : t ∈ Td ∧ t ∈ Wd|
|Td|

(5.15)

As a baseline, we measure similar overlap metrics using the 30 most frequent instance
tokens in the document corpus. The results in Table 5.6 indicate an overlap of nearly half
of the 20, 50, 100, and 500 most frequent tags with top topic tokens – significantly higher
than the overlap with frequent token. Our evaluation is based on the subset of tags found
in the instance dictionary of KB-LDA.

5.3.4 Extracting facts from an open IE resource

We use KB-LDA to extract domain specific triples from an existing open IE KB, the 15M
relations extracted using ReVerb [Fader et al., 2011] from ClueWeb09. By extracting
the relations in which the subject, verb and object noun phrases are included in the KB-
LDA dictionary, we are left with under 5K triples, indicating the low coverage of software
related triples using open domain extraction, in comparison with the 37K triples extracted
from StackOverflow and given as an input to KB-LDA.

Due to word polysemy, many of the 5K extracted triples are themselves not specific to
the domain. This suggests a hybrid approach in which KB-LDA is used to rank open IE
triples for relevance to a domain. We ranked the 5K open triples by the probability of the

78



0.0 0.2 0.4 0.6 0.8 1.0

Recall

0.0

0.2

0.4

0.6

0.8

1.0

P
re

ci
si

on

KB-LDA versus ReVerb Ranking

KB-LDA, Best F1=0.73, AUC=0.67
ReVerb, Best F1=0.72, AUC=0.57

Figure 5.5: Precision-recall curves of rankers of open IE triples by software relevance,
based on KB-LDA probabilities (blue), and ReVerb confidence (red). A star is pointing
the highest F1.

triple given a trained KB-LDA model:

p(s, v, o) =
K∑
ks

K∑
kv

K∑
ko

π
〈ks,kv ,ko〉
R σs

ksσ
o
koδ

v
kv (5.16)

Table 5.7 shows the top and bottom 10 triples according to this ranking, which suggests
that the triples ranked higher by KB-LDA are more relevant to the software domain.

We compare the ranking based on KB-LDA to a ranking using a confidence score for
the triple as assigned by ReVerb. We manually labeled 500 of the triples according to
their relevance to the software domain, and measured the precision and recall of the two
rankings at any cutoff threshold. Figure 5.5 shows precision-recall curves for the two
rankings, demonstrating that the ranking using probabilities based on KB-LDA leads to a
more accurate detection of domain-relevant triples (with AUC of 0.67 for KB-LDA versus
0.57 for ReVerb).

5.4 Related Work

KB-LDA is an extension to LDA and link-LDA [Blei et al., 2003, Erosheva et al., 2004],
modeling documents as a mixed membership over entity types with additional annotated

79



metadata, such as links [Nallapati et al., 2008, Chang and Blei, 2009]. It is a generalization
of Block-LDA [Balasubramanyan and Cohen, 2011], however, KB-LDA models two link
components, and the input links have a meaningful semantic correspondence to a KB
structure (hierarchical and relational). In a related approach, Dalvi et al. [2012] cluster web
table concepts to non-probabilistically create hierarchies with assigned concept names.

Our work is related to latent tensor representation of KBs, aimed at enhancing the
ontological structure of existing KBs with relational data in the form of tensor structures.
Nickel et al. [2012] factorized the ontology of Yago 2 for relational learning. A related
approach was using Neural Tensor Networks to extract new facts from an existing KB
[Chen et al., 2013, Socher et al., 2013]. In contrast, in KB-LDA, relational data is learned
jointly with the model through the Relations component.

Statistical language models have recently been adapted for modeling software code
and text documents. Most tasks focused on enhancing the software development work-
flow with code and comment completion [Hindle et al., 2012, Movshovitz-Attias and Co-
hen, 2013], learning coding conventions [Allamanis et al., 2014], and extracting actionable
tasks from software documentation [Treude et al., 2014]. In related work, specific seman-
tic relations, coordinate relations, have been extracted for a restricted class of software
entities, ones that refer to Java classes [Movshovitz-Attias and Cohen, 2015b]. KB-LDA
extends previous work by reasoning over a large variety of semantic relations among gen-
eral software entities, as found in a document corpus.

5.5 Conclusions

We presented a model that jointly learns a latent ontological structure of a corpus aug-
mented by relations, and identifies facts matching the learned structure. The quality of the
produced structure was demonstrated through a series of real-world evaluations employing
human judges, which measured the semantic coherence of instance topics, relations, topic
concepts, and hierarchy. We further validated the semantic meaning of topic concepts, by
their correspondence to an independent source of human-provided document tags. The
experimental evaluation validates the usefulness of the proposed model for exploration of
corpora from new domains, as we have demonstrated here for the software domain.

The results highlight the benefits of generalizing pattern-based facts (in this case,
hypernym-hyponym pairs and subject-verb-object tuples), using text documents in a topic
model framework. This modular approach offers opportunities to further improve an in-
duced KB structure by posing additional constraints on corpus entities in the form of ad-
ditional components to the model. As an example, in some domains, high-quality domain

80



resources exists, which include information that can be used to train additional compo-
nents. Incorporating pre-existing domain information into the learning process has the
potential to further improve the quality of the learned KB.

81



82



Chapter 6

Aligning Grounded and Learned
Relations: A Comparison of Relations
From a Grounded Corpus with a
Topic-Model Guided Knowledge Base

In Chapter 5 we introduced KB-LDA, an unsupervised topic model for knowledge base
construction. As a case study, we used the model to create a knowledge base for the soft-
ware domain, for which the were no existing structured knowledge resources. In contrast,
in the biomedical domain, many ontologies exist which describe sub-areas in the domain,
including proteins, small chemical molecules and organism species. Grounding the KB
learning process, by augmenting it with available domain resources such as biomedical
ontologies, can potentially improve the learned structure. In order to estimate this po-
tential, in this work, we investigate an alignment of relations emerging from biomedical
ontologies with those learned from a corpus using KB-LDA.

We propose a method for extracting entity-to-entity relations from a corpus in which
entities were annotated using state-of-the-art named-entity recognition systems, which in-
tegrate information from multiple known biomedical ontologies. Annotated entities in the
corpus are grounded to specific entries in the source ontologies. We use KB-LDA to learn
a KB over the same corpus, regardless of the given annotations, meaning that the learning
process is not grounded. We then align relations found using the two methods, and we
consider the following research questions:

• How well does KB-LDA learn relations and concepts found in existing ontologies?

83



• Does KB-LDA discover “new” relations and concepts, which were not annotated in
the original corpus? Are the “new” discoveries correct?

• What relations or concepts are missing in the learned KB?

The answers to these questions hint at the potential of grounding the KB learning process,
by combining corpus-based information with information from known ontologies.

6.1 Introduction

Computational advances in the past decade have lead to an abundance of publicly avail-
able biomedical ontologies, describing a large variety of biomedical entities. Many of the
ontologies are manually crafted, or their generation has involved significant human effort
in the form of labeling and annotation. The ontologies are stored and maintained in large
repositories such as the NCBO (National Center for Biomedical Ontology) and HeTOP
(Health Terminology/Ontology Portal), which also provide tools and web services for ac-
cessing this wealth of information. The challenge of incorporating information from the
various available resources, has lead to efforts such as the CALBC (Collaborative Anno-
tation of a Large Biomedical Corpus) [Rebholz-Schuhmann et al., 2010] which addresses
the automatic integration of biomedical entity annotation based on a variety of popular
named-entity recognition systems.

The available biomedical ontologies are largely narrow: they describe restricted sub-
domain entities (entities such as Genes, Organisms and Chemical Compounds are all de-
scribed by distinct ontologies), and do not expand on cross-area entity relations. The
BioNELL system [Movshovitz-Attias and Cohen, 2012a], described in Chapter 3, com-
bines available biomedical ontologies and exploits seeds extracted from the same ontolo-
gies for improving a knowledge base population algorithm. However, the ontology merg-
ing method used in BioNELL is based solely on entity name matching. Importantly, it
does not offer new cross-area relations, and the merged concepts do not reflect language
statistics. For these reasons, it cannot be viewed as a true broad ontology for the biomedi-
cal domain. In contrast, in Chapter 5 we describe KB-LDA, an unsupervised topic model
based system that learns a knowledge base of entities, including a hierarchical category
schema and relations among categories, based on a target corpus [Movshovitz-Attias and
Cohen, 2015a]. By building on corpus statistics, combined with relations extracted from
the same corpus, KB-LDA learns a broad language-based ontology over entities found in
domain text.

84



The system was initially evaluated on the task of automatically generating a KB for
the software domain, for which a dedicated KB did not previously exist. It was addition-
ally shown that the inferred KB is in-turn useful for extracting domain-specific informa-
tion from open-domain resources. The software KB generated by KB-LDA was a first
best-effort for this domain, and it was shown to produce high precision annotations and
relations. However, the plethora of existing biomedical ontologies provide an opportunity
for a more in-depth investigation of the capabilities of KB-LDA, in comparison with those
existing resources.

In this chapter, we evaluate a biomedical KB created with KB-LDA, by aligning re-
lations inferred by the learned KB to known biomedical ontologies. We rely on entity
annotations from the CALBC corpus to extract entity-to-entity relations that have been
validated by state-of-the-art named entity recognition systems. We then align the extracted
relations with three types of potentially matching relations inferred by our learned KB: hi-
erarchical relations, synonymous entity pairs, and general entity-to-entity relations, which
emerge from the KB ontology, categories (represented by topics) and topic relations, re-
spectively.

We demonstrate that many entity-to-entity relations found through CALBC are also
found through KB-LDA. These span a wide variety of concepts from multiple biomedical
sub-domains. Importantly, on top of discovering known concepts and relations, we find
that KB-LDA also extracts new biomedical entities and suggests new relations between
them. This means that while significant human effort went into creating existing biomed-
ical ontologies, they are incomplete. To give an example, we find that current ontologies
lack in describing terminology related to the scientific research process. We additionally
describe newly discovered relations among known concepts, which have been found by
our model but not in the CALBC relations. We conclude that models such as KB-LDA
are useful for augmenting our existing knowledge, even in domains as well-researched
as biomedicine. The results allude to a potential in models combining known relations,
such as the ones found in existing ontologies or extracted from the CALBC corpus, with
language-based relations, to reach a more complete mapping of this domain.

6.2 Data

Our data is based on the CALBC corpus, which contains 714K Medline immunology-
related abstracts, and includes an annotation of the entities in the abstracts. The enti-
ties were automatically annotated using state-of-the-art named-entity recognition systems
which attempt to integrate information from multiple biomedical ontologies. The annota-

85



tions have been crossed-referenced among several significant resources, including UMLS
[Bodenreider, 2004], InterPro [Hunter et al., 2009], JoChem [Hettne et al., 2009], PIR
Biothesaurus [Liu et al., 2006], and PIR iProClass [Wu et al., 2004].

We use this corpus as input to the KB-LDA pipeline, meaning that we extract relations
from this corpus, and use it to build a biomedical knowledge base (see Section 6.3). A
detailed analysis and statistics about the entities included in the corpus can be found in the
experiments (see Section 6.4.1).

6.3 Methodology

Entities in the CALBC corpus are annotated with IDs which identify them with one of
the following semantic groups: Proteins and genes, chemicals, diseases and disorders,
and living beings. The ID codes are taken from terminology services such as the UMLS
(Unified Medical Language System) described above. Each entity instance in the corpus
is annotated with a set of IDs based on the harmonization of multiple alignment methods
(the details of which can be found in [Rebholz-Schuhmann et al., 2010]). The objective of
this annotation approach is to label entities based on their text token, their context, and a
high level of agreement of the annotation according to multiple ontological sources.

An an example, instances of the entity ’lupus erythematosus’, an autoimmune inflam-
matory disorder, are annotated throughout the corpus with a variety of IDs denoting var-
ious specializations of this disease (such as the Cutaneous, Subacute Cutaneous, Discoid
and Systemic forms), the fact that this is an autoimmune disease, and that it is linked with
cytomegaloviruses.

As a result of the annotation technique used in this corpus, many entities in the data
are annotated with the IDs of their hyponyms (e.g., ’lupus erythematosus’ is annotated
with the ID of ’cutaneous lupus erythematosus’) or hypernyms (e.g., ’lupus erythemato-
sus’ is annotated with the ID of ’autoimmune disease’). Indeed, by linking each pair of
annotated entities that share an ID annotation, we arrive at a noisy ontology such as the
one depicted in Figure 6.1. This noisy ontology combines information drawn from the
biomedical ontologies used to annotate the corpus, and it represents the linking provided
by the employed named-entity recognition systems used for the annotation process. We
align relations from this ontology to relations inferred using KB-LDA.

We refer to a pair of entities that share an annotation ID as matching, and we formalize
this relation by the following boolean match functions among the entities e1 and e2, or

86



disease

autoimmune diseases

lupus erythematosus

cutaneous lupus
erythematosus

discoid lupus
erythematosus

systemic lupus
erythematosus

Figure 6.1: Fragment of CALBC ID-based ontology. This ontology is the product of
connecting annotated entities that share annotation IDs.

among the entity e1 and the entity set E2:

match(e1, e2) = {∃i ∈ IDe1|i ∈ IDe2} (6.1)
match(e1, E2) = {∃i ∈ IDe1 ∧ ∃e2 ∈ E2|i ∈ IDe2} (6.2)

It is worth noting that the match relation is not strictly a hypernym-hyponym relation,
but rather it is not well defined under this hierarchy. Matching entities can also be syn-
onyms (e.g., ’disease’ and ’illness’), abbreviations (e.g., ’cutaneous lupus erythematosus’,
and ’CLE’), or hold some other unspecified relation (for example, the term ’phosphate
diabetes’, a condition marked by excessive phosphate in the urine, matches multiple phos-
phate variants including ’glucose-6-phosphate’, ’fructose-1-phosphate’, and ’triose phos-
phate isomerase’). Moreover, the match relation is symmetric, whereas relations such as
hypernym-hyponym are not. Despite these caveats, we consider the CALBC ontology in-
duced by the match relation graph as a target ontology, and we compare existing match
relations from this ontology with the relations induced by the KB-LDA model predictions.

We construct a KB over biomedical entities that appear in relations extracted directly
from the corpus. We use the implementation of the KB-LDA model (described in detail
in Chapter 5, [Movshovitz-Attias and Cohen, 2015a]), to construct a set of topics repre-
senting clusters of the entities, a hierarchical ontology over the topics and relations among
entity and verb topics. Our relation extraction process does not consider the CALBC anno-
tations, but rather, the entities that we consider are noun phrases that are found in relations
extracted by the KB-LDA pipeline. KB-LDA is based on a topic modeling approach,

87



related to the LDA model [Blei et al., 2003], and it contains three learning components
which share topics and are optimized jointly. It infers topics over noun phrases (termed
’instance topics’) and verb phrases (termed ’relation topics’) extracted from a corpus. The
Ontology component is used to learn a hierarchical structure between instance topics. It is
trained over hypernym-hyponym examples extracted from the input corpus, and it learns
the latent mixed membership of noun entities in the input to topics, as well as the topic to
topic relations induced by the input examples. The Relations component learns relations
between noun and relation topics and it does so using input data extracted using subject-
verb-object patterns from the corpus. Finally, the Documents component is an extension of
link-LDA [Erosheva et al., 2004] which brings in corpus statistics about the co-occurrence
of noun and verb phrases directly in the text documents.

Next, we evaluate the alignment of the knowledge base induced by the KB-LDA model
with the CALBC ontology. We first explore the differences between the entities annotated
in CALBC and those extracted by KB-LDA. Then, we examine the relations emerging
from of each of the KB-LDA components, and compare them with the relations found in
the CALBC ontology.

6.4 Experimental results

In this section we explore the differences between the entities and relations emerging from
the CALBC ontology and those learned by KB-LDA. Through this comparison we answer
the following questions:

• Does KB-LDA learn entities and relations that are also found in the CALBC ontol-
ogy? Such examples indicate a validation of the model results.

• Does KB-LDA discover “new” entities and relations that are not found in the CALBC
ontology? If the new discoveries are correct, this indicates the added value of learn-
ing from language statistics.

• Which entities and relation that are found in the CALBC ontology are missing from
what we learn with KB-LDA? Here lies the potential of grounding the KB learning
model, since the missing entities and relations could be directly added to the KB,
and also influence the learning of additional new ones.

88



Incorrect Annotations from CALBC

bronchial asthma
pneumoniae

beta-1,2-mannotriose
dermatophagoides
colorectal tumor

Table 6.1: Partial or incorrect annotations found in the CALBC corpus. Each row contains
an entity that has been partially or otherwise incorrectly annotated in the corpus. The
characters that have been annotated are marked in red and italicized.

6.4.1 Entity Analysis

The CALBC corpus includes 69,618 distinct annotated entities, while we extract 712,131
entities with the KB-LDA relation extraction pipeline, with 22,418 entities common to
both systems. As described above, the common entities validate the extractions made by
KB-LDA. Next, we evaluate the entities that are unique to each system.

First, we examine the 47,200 entities that are annotated in the corpus but are not ex-
tracted by KB-LDA. We randomly sample 100 of those entities and manually evaluate
them. We found that 35 of the sampled entities included partial or incorrect annotations,
including the examples shown in Table 6.1. As an example, the annotation ’nchial asthma’
is a mis-parse of the entity ’bronchial asthma’, which has been correctly extracted by KB-
LDA. Out of the 35 incorrectly annotated entities, 20 are only annotated in the corpus in
an incorrect form. Overall, the sampled entities had a low frequency in the corpus (their
average frequency is 4.87), which means they are less likely to appear in meaningful rela-
tions in the corpus, and therefore also less likely to be extracted by KB-LDA. Out of the
sampled entities, we did however find 12 entities that had a frequency higher than 10, and
these indicate that there is a potential to incorporating grounded information (such as the
grounded entities and relations found in this corpus) directly in the KB learning process.

The KB-LDA pipeline recognized a total of 712,131 entities that appear in any concept-
instance or subject-verb-object relation in the corpus. Out of those, only 25,981 entities
are found in frequent relations (which appear more than twice) and are therefore used in
training the KB-LDA model. 5,498 of these entities are annotated in the CALBC corpus,
leaving 20,483 entities that are extracted by KB-LDA, found in frequent relations in the
corpus, and yet are not annotated. We randomly sample 100 of those entities and manu-
ally evaluate them. We found 97 of the 100 entities to be correct and useful entities, which

89



Biological Entities and Processes

linkage
leukotoxin

chemotactic response
plasma cell-associated markers

bip-homologues
eosinophils

dendritic cells
secretion

pro-inflammatory cytokines
axons

Experimental Terminology

techniques
samples
evidence

experiments
authors

exposure
study

specimens
hapten inhibition experiments

sodium dodecyl sulfate-polyacrylamide gel

Table 6.2: New entities discovered by KB-LDA. We include a sample of entities that were
extracted by KB-LDA an found in frequent relations, and yet were not annotated in the
corpus. The discovered entities are binned in one of the following categories: Biological
entities and processes (left table), and Experimental terminology (right table). See more
details in section 6.4.1.

should reasonably be included in a biomedical KB (see examples in Table 6.2). The newly
discovered entities indicate the added value of learning from language statistics. We addi-
tionally identified 2033 verb phrases appearing in frequent subject-verb-object relations in
the corpus, which are used by the KB-LDA model (the CALBC annotation do not include
any verb phrases).

The entities discovered by KB-LDA can be binned into two high-level categories: ’Bi-
ological Entities and Processes’ (including 81 out of the 100 sampled entities) or ’Exper-
imental Terminology’ (16 out of 100). The former group includes terms such as linkage,
leukotoxin, plasma cell-associated markers, which are more likely to be found in the type
of biomedical ontologies that were used to annotated the corpus, and so it is more surpris-
ing that they were not recognized by the NER tagging process. The latter group includes
terms that describe experimental research processes, rather than the biological entities on
which they operate. Some examples include the terms techniques, samples, but also more
specific types of experiments (e.g., hapten inhibition experiments) and lab equipment or
resources (e.g., sodium dodecyl sulfate-polyacrylamide gel). While some ontology might
exist which describes this type of terminology, it is not known to us, and no such ontology
was used to annotate the CALBC corpus; this means that entities describing experimental
terminology are not expected to be annotated and will not appear in the relations extracted

90



from the corpus.

6.4.2 Relation Analysis

We use the KB-LDA model (described in detail in Chapter 5, [Movshovitz-Attias and Co-
hen, 2015a]) to construct a KB of biomedical entities, with a set of topics representing
a clustering of the entities, an inferred hierarchical ontology and relations among entity
topics. In the following sections we compare match relations from the CALBC ontology
with the relations induced by the outcome of the KB-LDA model, namely: hierarchical
subsumption relations among topics (Section 6.4.3), intra-topic relations (Section 6.4.4),
and relations between subject, verb, and object topics (Section 6.4.5). Note that our KB
contains both entities annotated by the source corpus as well as new entities identified by
our pipeline (see Section 6.4.1). Therefore, only relations among annotated entities can be
recovered with match relations. Below we also note the proportion of “new” relations dis-
covered by our KB that did not exist in the original ontology. These are relations between
pairs of new entities, or a new and an existing entity.

In each analysis below we compare multiple KBs created with KB-LDA. For each
group we describe the overlap of the discovered relations in that KB with the CALBC
ontology. The KBs we compare are based on:

Number of topics: We tested models using 20, 50 and 100 topics.

Full versus sampled corpus: In all of the KBs presented in this section, the Documents
component of KB-LDA has been trained on a sample of 50,000 documents (around
7% of the data). In this analysis, however, we compare a KB with 50 topics trained
on the sampled corpus versus the full corpus.

Ablation models: We compare the full KB-LDA model, with ablated models that are
missing one or two of the three main model components: Ontology, Relations, or
Documents. For each analysis below, we describe the result on the subset of ablated
models that are relevant for the evaluated relations, compared with the full model.

6.4.3 Ontology Coherence

The hierarchical ontology induced by KB-LDA suggests a set of subsumption relations
among noun entity topics. In a learned KB with n topics, the induced ontology is com-
posed of n−1 subsumption relations among topic pairs, selected according to the maximal

91



Topic Top words in topic

Super-topic diseases, factors, disorders, conditions, pathogens
Sub-topic cancer, rheumatoid arthritis, hiv, multiple sclerosis, diabetes

Table 6.3: Example subsumption relation.

spanning tree over the graph of topic to topic relations (for further details on the ontology
creation process, see Chapter 5, Section 5.2.1) . As an example, Table 6.3 shows the top
entities of two topics that were found in a subsumption relation according to KB-LDA
in one of the evaluated KBs. The super-topic contains super-concepts or hypernyms, and
the sub-topic contains sub-concepts or hyponyms. This induced relation implies that each
entity from the sub-topic can be matched to at least one entity from the super-topic.

We can measure the precision of an induced KB ontology by verifying that the implied
subsumptions among entity pairs are also found in the CALBC ontology. For each 〈super-
topic, sub-topic〉 pair, we examine the top 30 entities in each topic. For each entity in the
sub-topic, we search for at least one matching entity in the super-topic, according to the
match relation defined in Equation 6.1, meaning that the relation between the two entities
is validated in a known biomedical ontology. The overlap of each subsumption relation
with the CALBC ontology is then measured by the proportion of sub-topic entities that
were matched with some super-concept entity. Finally, we summarize the precision of
the ontology induced by a model based on the average overlap of the set of subsumption
relations S making up the maximum spanning tree for that model. We report this precision
over each of the top N entities (N ∈ {1, . . . , 30}):

Ontology-Precision(N) =
1

|S|
∑
s∈S

1

N

N∑
i=1

1match(Instances(Si),Concepts) (6.3)

where Instances(Si) is the top i-th entity associated with the sub-topic of subsumption
relation S, and Concepts are all top instances associated with the super-topic of this sub-
sumption relation.

Known versus Suggested Relations

Figure 6.2 examines the precision of the ontology of a KB learned over 50 topics, by eval-
uating the relations inferred by this ontology. The relations in the dark blue area, marked
as ’Known Relations’, were matched with the CALBC ontology as described above. The

92



5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

O
n
to

lo
g
y
-P

re
ci

si
on

Known Relations

New-Entity Relations

Unknown Relations

Inferred Relations

Figure 6.2: Relations inferred by an ontology learned over 50 topics.

rest of the relations were not matched and their precision was therefore manually evalu-
ated. The relations in the light blue area, marked as ’New-Entity Relations’, could not
be matched with the CALBC ontology using the match function in Equation 6.3 since ei-
ther the evaluated instance entity or all concept entities were new, i.e., they were extracted
by KB-LDA and were never annotated in the CALBC corpus. We manually evaluated a
random sample of 50 relations from this group and found 62% to be correct.

As described above, the newly extracted terms can be binned into two categories: ’Bi-
ological Entities and Processes’ or ’Experimental Terminology’. Entities that describe
experimental terminology are not expected to be annotated in the corpus, or be found in
any of the grounded relations, since no ontology which includes experimental terminology
was used in annotating the CALBC corpus (see Section 6.4.1 and Table 6.2). Moreover,
we would expect that terms from these two categories would ideally belong in two dis-
joint ontologies. However, in KB-LDA, we enforce a single ontology by extracting the
maximum spanning tree over the multinomial of the Ontology component. The resulting
ontology, therefore, necessarily includes subsumption relations between ’experimental’
topics (which describe experimental terminology) and ’biological’ topics (which describe
biomedical entities and processes), even if these are low probability relations, simply since
a single structure is enforced. If we consider only the 31 out of 50 predicted relations in the

93



sample above that include non-experimental instances, we find that 90% of those are cor-
rect. Indeed, many of the incorrect predictions are due to enforced subsumptions between
’experimental’ and ’biological’ topics.

Finally, relations in the white region of Figure 6.2, marked as ’Unknown Relations’, are
relations between instances and concepts that are annotated in the corpus but do not share
an annotated ID. These relations are predicted by our model, yet are unknown according
to the CALBC annotations. We manually evaluated a random sample of 50 unknown
relations and found that 54% are correct. For example, our model found a relation between
the concept ’antibody’ and the instances ’ema’ and ’dcs’, which abbreviate the antibodies
’Endomysial autoantibodies’ and ’Anti-Cyclin D1 antibody’, also known as ’dcs-6’. It
also correctly predicted that the bone marrow is a type of tissue, a fact that was missing in
the CALBC ontology. Interestingly, the model incorrectly predicted that ’airway’ is a type
of ’organ’, and that ’killer’ is a type of ’cancer’ or ’disease’.

Comparison by Number of Topics

KB-LDA generates a hierarchy over a pre-defined number of topics. This number reflects
the “resolution” of the induced ontology, i.e., a higher number of learned topics can po-
tentially result in an ontology with more specialized topics, and therefore reflect a more
diverse set of latent subsumptions hidden in the corpus. Alternatively, a high number of
topics may result in similar and redundant topics. Finding an optimal number of topics
for a topic modeling approach given a corpus largely remains an open question, as many
related methods, including Latent Dirichlet Allocation [Blei et al., 2003], Probabilistic
Latent Semantic Indexing [Hofmann, 1999], and Non-Negative Matrix Factorization [Lee
and Seung, 1999], assume that this number is pre-defined.

Here, we evaluate precision of ontologies created based on 20, 50 and 100 topics, as
measured by their inferred known and suggested relations. Figure 6.3 compares those on-
tologies, where solid lines represent the amount of discovered known relations, and dashed
lines represent additional suggested relations among new entities. The 19 subsumption re-
lations in the ontology of the model trained over 20 topics includes the highest proportions
of previously known relations, with a precision ranging between 63%-51% over the top
30 topic tokens. The 50 topic model, on the other hand, creates a larger hierarchy with 49
subsumption relations with lower precision of known relations (between 63%-45%). This
is likely due to the fact that the larger number of topics, now includes significantly more
new entities propagated to the evaluated top 30 tokens, leading to a higher proportion of
new suggested relations compared with the 20 topic model. As noted above, suggested
relations among biological entities was estimated at 90% according to our evaluation. The

94



5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

O
n
to

lo
g
y
-P

re
ci

si
on

Comparison by Number of Topics

20 topics

50 topics

100 topics

Figure 6.3: Comparison of ontologies learned by models over 20, 50, or 100 topics.

total proportions of known relations and ones suggested among new entities is similar
for the 20 and 50 topic models, at around 90%, leading to an estimated similar estimate
of overall precision. Surprisingly, the 100 topic model produces less known relations and
also less suggested relations among new entities (in proportion to the size of the ontology),
resulting in lower precision in comparison to the other models.

Comparison with Ablated Models

We have previously evaluated the precision of the ontology created by a complete KB-
LDA model. However, the model is composed of three components which jointly op-
timize a topic hierarchy, relations among those topics, and background statistics from a
documents corpus. Figure 6.4 (left) compares the precision of ontologies created by the
full KB-LDA model, and by ablated models, missing the Relations component, the Doc-
uments component, or both. In this experiment, we are not able to omit the Ontology
component, since the topic hierarchy is created using the multinomial πO which is learned
using that component. All of the plotted experiments measure the precision according to
Equation 6.3, and they are all learned over 50 topics. Surprisingly, the ablated model opti-
mizing only the topic hierarchy (marked ’ablation: Ont’), has the lowest precision, though

95



5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0
O

n
to

lo
g
y
-P

re
ci

si
on

Ablation Models

50 topics

ablation: Ont+Rel

ablation: Ont+Docs

ablation: Ont

5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

O
n
to

lo
g
y
-P

re
ci

si
on

Full versus Sampled Corpus

50 topics

50 topics, full corpus

Figure 6.4: Left: Comparison of ontologies created by the full KB-LDA model, and by
ablated models, missing the Relations component, the Documents component, or both.
Each depicted ablation model lists the components that were included in that model. Right:
Comparison of ontologies created based on the complete corpus versus a sample of 50K
documents.

the ontology is solely directly optimized in this case. Both the corpus- and relation-based
statistics have a positive effect on the precision of the ontology, but the complete model
with all three components achieves the highest performance.

Full versus Sampled Corpus

We compare the ontologies of a model whose Documents component is trained on the full
available corpus (’50 topics, full corpus’), versus a sample of 50K documents (’50 top-
ics’). For both models, the Ontology and Relations components are trained on hypernym-
hyponym and subject-verb-object data extracted from the complete corpus. Figure 6.4
(right) shows that the information coming from an additional 665K documents does not
dramatically change the precision of the induced ontology over known subsumption rela-
tions. This result is especially surprising since the addition of the Documents component
with the initial sample of 50K documents had a significant effect on ontology precision, as
seen in the ablation model analysis.

96



5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

T
op

ic
-P

re
ci

si
on

Ablation Models

50 topics

ablation: Ont+Rel

ablation: Ont+Docs

ablation: Docs+Rel

ablation: Ont

ablation: Rel

ablation: Docs

Figure 6.5: Comparison of topic precision of the full KB-LDA models and ablated models
using only one or two of the main components: Ontology, Relations, and Documents.
Each depicted ablation model lists the components that were included in that model.

6.4.4 Topic Coherence

In a similar analysis to the ontology coherence described above, in this section we examine
the inner-topic coherence of topics produced by KB-LDA. We consider two entities as
related if they have been clustered by the model into the same topic, and we attempt
to verify the existence of this relation in the CALBC-induced ontology. As mentioned
above, the match relation is symmetric and is often found between synonymous entities,
and entities and their abbreviations. It seems reasonable, then, to measure inner-topic
coherence using this relation. We therefore measure topic precision by matching all pairs
of entities within a topic, over each of the top N entities (N ∈ {1, . . . , 30}):

Topic-Precision(N) =
1

|T |
∑
t∈T

1

N

N∑
i=1

1match(Tokens(ti),Tokens(t¬i)) (6.4)

97



5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0
T

o
p

ic
-P

re
ci

si
on

Comparison by Number of Topics

20 topics

50 topics

100 topics

5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

T
o
p

ic
-P

re
ci

si
on

Full versus Sampled Corpus

50 topics

50 topics, full corpus

Figure 6.6: Comparison of topic precision by the number of models used during training
(left), and of models created with a complete corpus versus a sample of documents (right).

where Tokens(ti) is the i-th top token of topic t, and Tokens(t¬i), are the top 30 tokens of
topic t, excluding the i-th token.

Figure 6.5 shows a comparison of the topic precision of the full KB-LDA model with
ablation models, using only one or two of the three main components: Ontology, Relations,
and Documents. In this analysis, we are able to include all ablated variations, as they all
produce concept and instance topics. The results indicate that the performance of the topics
is mainly contributed by corpus statistics, used to train the Documents component. All the
ablated models that contain this component have similar performance, with a significant
decrease in the models that are missing it. Importantly, the performance of the full model
does not suffer greatly from the additional components required for creating a complete
KB schema.

In Figure 6.6 (left) we examine the performance of topic precision in models trained
on 20, 50 and 100 topics, with the 20 topic model showing slightly higher performance,
relative to the others. On the right hand side of this figure, we see a comparison of a
model trained with a sampled corpus versus a full corpus, and, as in the case of ontology
precision, training on a sample of the corpus had only a modest effect on precision.

98



6.4.5 Relation Coherence

In this section, we evaluate the precision of the relations induced from KB-LDA between
subject and object instance topics, through verb topics. The Relations component of the
model is trained on SVO triples extracted from the corpus, then using the multinomial πR
we are able to extract the top inferred relations among instance and verb topics. Here we
test whether these relation can be matched with the CALBC ontology. The match relations
in the CALBC ontology do not specify a verb that represents the type of relation among
the two matched entities, but rather only that such a relation exist, and in previous section
we have considered it to be a potential subsumption or synonymy relation. Here we treat
the match function as a general relation. We extract pairs of subject and object entities
from the corresponding topics in the top relations inferred by a learned model, and we
measure the precision of each relation based on whether the pairs can be found in the
CALBC ontology, in the following two ways:

Relation-Precision Subject-To-Object(N) =
1

|R|
∑

r=(s,v,o)∈R

1

N

N∑
i=1

1match(oi,s) (6.5)

Relation-Precision Object-To-Subject(N) =
1

|R|
∑

r=(s,v,o)∈R

1

N

N∑
i=1

1match(si,o) (6.6)

where s and o are the sets of top entities of the subject and object topics in the relation r,
and the analysis is done over the top N entities (N ∈ {1, . . . , 30}).

Figure 6.7 shows results comparing the relation precision of various learned models.
Similar to the case of ontology learning, the results indicate that optimizing the relations
component detached from corpus statistics is not sufficient, and this ablated model suf-
fers from very low precision (around 20%, top row). However, while the addition of
hypernym-hyponym relations has minimal effect on the Relations-only model, it also sig-
nificantly decreases the performance of the Documents+Relations model. This means that
the hierarchical constraints imposed by the hypernym-hyponym data are less consistent
with some of the relations that can otherwise be inferred by the model.

As observed for topic and subsumption relations, learning less topics seems to propa-
gate the more reliable entities to the top of each topic, resulting in a higher proportion (but
not a higher absolute number) of known relations discovered by the model (Figure 6.7,
middle row). In a stark contrast to topic and subsumption relations, learning general re-
lations from a sampled corpus results in a dramatic decrease of around 30% in precision
results (Figure 6.7, bottom row). In all metrics described above, we observe similar results
whether a subject entity is matched against all object entities or the other way around.

99



5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0
R

el
a
ti

o
n

-P
re

ci
si

o
n

S
u

b
je

ct
-T

o
-O

b
je

ct Ablation Models

50 topics

ablation: Ont+Rel

ablation: Doc+Rel

ablation: Rel

5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

R
el

a
ti

o
n

-P
re

ci
si

o
n

O
b

je
ct

-T
o-

S
u

b
je

ct Ablation Models

50 topics

ablation: Ont+Rel

ablation: Doc+Rel

ablation: Rel

5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

R
el

a
ti

on
-P

re
ci

si
on

S
u

b
je

ct
-T

o-
O

b
je

ct Comparison by Number of Topics

20 topics

50 topics

100 topics

5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

R
el

a
ti

on
-P

re
ci

si
on

O
b

je
ct

-T
o-

S
u

b
je

ct Comparison by Number of Topics

20 topics

50 topics

100 topics

5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
io

n
-P

re
ci

si
on

S
u

b
je

ct
-T

o-
O

b
je

ct Full versus Sampled Corpus

50 topics

50 topics, full corpus

5 10 15 20 25 30

Top Tokens

0.0

0.2

0.4

0.6

0.8

1.0

R
el

at
io

n
-P

re
ci

si
on

O
b

je
ct

-T
o-

S
u

b
je

ct Full versus Sampled Corpus

50 topics

50 topics, full corpus

Figure 6.7: Relation precision. Precision is measured from Subject-to-Object (left figures)
or Object-to-Subject (right). Top: Comparison between full and ablation models. Middle:
Comparison by number of topics. Bottom: Comparison of models trained using full corpus
statistics or a sample of 50K documents.

100



6.5 Related Work

Topics generated by LDA-inspired topic models have traditionally been evaluated based
on perplexity. In this case, a model is trained using a training corpus, and then evaluated by
measuring the log probability of an unseen test corpus. Perplexity is a standard way to se-
lect model parameters, such as the number of topics, and is therefore often used for model
selection and comparison. Wallach et al. [2009] present efficient methods for estimating
probabilities on held-out documents, and discuss the disadvantages and biases in model
comparison based on several standard evaluation methods, including the harmonic mean
method [Newton and Raftery, 1994], simple and annealed importance sampling [Neal,
2001].

KB-LDA was evaluated in [Movshovitz-Attias and Cohen, 2015a] by a series of Me-
chanical Turk evaluations for topic, ontology and relation coherence, following a study by
Chang et al. [2009] that presented counter-intuitive results of semantic topic evaluation,
in which humans preferred models with higher perplexity. These results, in turn, lead to
other evaluation methods that rely on topic semantics. For example, Newman et al. [2010]
suggest that users prefer topics whose words closely co-occur in a background corpus
(such as in Wikipedia or in Google search results; [Newman et al., 2009b]), where term
co-occurrence is measured using pointwise mutual information [Pecina, 2010].

The human evaluation of KB-LDA showed that it generates a semantic structure that
is compelling to humans. In this work, however, we consider the KB learned by the model
as a collection of inferred relations between pairs of entities, which are evaluated in terms
of overlap with a reference set of relations. In this sense, our work is more closely related
to ontology evaluation methods, with the caveat that our model generates three types of
relations: hypernym-hyponym relations, synonymous/inner-topic relations, and general
relations as expressed be extracted verb phrases.

Brank et al. [2005] and Staab and Studer [2013] survey ontology evaluation approaches
in the context of four categories. The first is evaluation by humans who try to asses pre-
defined criteria regarding the ontology [Lozano-Tello and Gómez-Pérez, 2004]. The sec-
ond approach uses the ontology in a downstream application and evaluates the results
[Porzel and Malaka, 2004]. These approaches have been used in [Movshovitz-Attias and
Cohen, 2015a] for evaluating relations inferred from KB-LDA. A third approach measures
how well the ontology covers a source of domain-relevant data or documents (as in [Brew-
ster et al., 2004]), and finally, the ontology may be compared against a gold-standard
resource [Maedche and Staab, 2002]. Our work combines the latter two approaches by
comparing learned relations to an ontology extracted from a corpus, where entities were
annotated based on domain-ontologies. Our work is also related to semantic integration

101



and the task of merging ontologies, surveyed for example by Noy [2004].

6.6 Conclusions

An abundance of publicly available biomedical ontologies provides an excellent starting
ground for construction of knowledge bases for this domain. They describe a wealth of
interest areas within the domain, and they were created by a combination of significant
human effort and semi-automation. Here, we consider the CALBC corpus, that was an-
notated using entities from several prominent biomedical ontologies; we use it as a source
of grounded entities and relations, which we compare with ones automatically learned by
our KB construction methods, KB-LDA.

We show that much of what is learned by KB-LDA are entities and relations that are
also found in the biomedical ontologies, which verifies our learning model. On top of
that, we find that KB-LDA discovers new entities and relations that were not found in the
biomedical ontologies. Our model extracts terms that describe biological entities and pro-
cess, which we expected to be present in biomedical ontologies, and yet were annotated in
the corpus. Additionally, we extract a a class of entities which describe experimental ter-
minology related to the biomedical research process. This terminology is well represented
in the corpus and in our learned KB, and yet no experimental terms were annotated in the
corpus. Overall, the high precision observed among the new discoveries inferred from the
model suggests that there is added value in learning from language statistics to augment
our existing domain-knowledge, even in domains as well-researched as biomedicine.

Finally, we observe some examples of entities and relations that are found in biomed-
ical ontologies and are annotated in the CALBC corpus, but are not learned by KB-LDA.
Our evaluation indicates that these examples include some entities that frequently occur
in the data, and are therefore important to extract, and might participate in significant
biomedical relations. This gap between known ontologies and what was learned by our
model suggests a potential for grounding. As an example, the modularity of the KB-LDA
learning framework enables the addition of learning components that can be trained using
known ontologies. The results indicate that this type of modification can improve the final
learned KB.

102



Chapter 7

Conclusion

7.1 Summary

The key insight behind the work presented in this thesis is that grounding, the process of
linking an individual word token to the real-world entity it represents, has the potential to
advance statistical modeling approaches for knowledge base construction. This is espe-
cially important, and seems attainable, in scientific domains where high-quality grounding
data is available. This idea extends a growing body of work in continuous vector-space
modeling, in which continuous representations of words, documents and phrases are used
to model language. As an example, latent Dirichlet allocation models use a mapping of
words and documents into a continuous topic space. In this work, vector statistics are
drawn not only directly from text-based corpora but are also extended by statistics from
domain-specific resources.

We explore modifications to well-known statistical models in the context of learn-
ing about technical domains, and we learn that encoding knowledge of the domain into
our models leads to improved predictions. We design unsupervised and semi-supervised
methods for domain-specific relation discovery and for knowledge base population and
construction. Using our knowledge base construction approach we build KBs for two
technical domains and show that they learn concepts and relations that are compelling
to humans, and are validated by existing known information on the domain, where such
information exists.

The work done here suggests that there is a potential for improved KB construction by
grounding the learning process, or by including weak human-supervision, with detailed
suggestions included in the following sections. In this thesis, we have often explored

103



downstream tasks to evaluate, or indeed motivate, better understanding and structuring of
domain-knowledge, but a more in-depth look at improving applications using technical-
domain knowledge bases deserves future research. Below are additional thoughts, lessons,
and ideas for future directions that follow from this work.

7.2 Closing Thoughts

7.2.1 Limitations of Grounding

In Chapter 4 we proposed a method for building a grounded software ontology, represent-
ing Java class entities. Links in the ontology were optimized based on both the text- and
code-based similarity of pairs of classes. This approach highlights a limitation of ground-
ing: a code-based inferred ontology can only be composed of entities that can be found
directly in the code, such as methods, classes and types; however, it lacks higher-level
software concepts like programming paradigms, parallels between different programming
languages, and programming-supporting tools (e.g., IDEs).

In the biomedical domain, there is abundant experimental data on protein structure,
interaction, regulation, and so on. For example, in Chapter 3 we used a resource of protein
names of the fruit-fly. Similarly, sequencing data provides in-depth insights into DNA,
RNA and related replication mechanisms. However, as in the software domain, there is
a variety of biomedical concepts beyond DNA and its products, proteins, that are not as
richly described in data available for grounding.

Grounded language application that rely on a grounding resource may, therefore, learn
ontologies and knowledge bases that are unbalanced in their representation of the target
domain. One solution to this problem is to use a combined approach, which draws infor-
mation from text and is refined based on additional available resources, such as the method
described briefly in Section 7.3.2. This approach is supported by the results described in
Chapter 6, which show that direct corpus statistics contribute significantly to learning all
types of relations. In comparison, baseline models that learn only from extracted rela-
tions (which could, in theory, be extracted based on grounded resources) are not as well
performing on their own.

104



7.2.2 Evaluating Knowledge Base Systems

A great frustration of this PhD work, and indeed much effort, has revolved around the task
of evaluating predicted concepts, relations, and other structured and formated knowledge
predicted by the proposed algorithms. Consider, for example, an evaluation of the assign-
ment of an entity to a category or concept, such as “Is Pittsburgh a City?”. A seemingly
simple task is revealed as challenging in the following scenarios: (1) Many of the facts
predicted by our models, specifically ones drawing from scientific, or otherwise special-
ized domains, require considerable prior knowledge for this type of evaluation. Can you
answer the following question: “Is Indy a gene of the Fruit Fly”? The answer is ’yes’, it is
short for I’m not dead yet, and mutant variations of this gene have doubled the average life
span of the organism in a controversial experiment. (2) As eluded by the previous example,
some of the information extracted from our source corpora may not be accurate, and yet it
may be repeated often enough that our models confidently propagate it. This phenomenon
is more often encountered when considering Web and user-generated data. Whether or not
a commonly repeated, yet factually incorrect, fact should be treated as correct is surely
open for debate, and may depend on the downstream application. An advantage, how-
ever, of grounding entities from a scientific domain, is that the grounded data may come
from authoritative resources and be more reliable. Finally, (3) the information extracted
by NLP models encompasses the full variety of subtleties and complications capable by
creative human brains. Ambiguity, subjectivity, temporal and local variations, political
affiliations and other biases make coherent evaluations rare. Some of these challenges are
discussed at length in [Movshovitz-Attias et al., 2015], and they have been a subject of
interest throughout this work.

In practice, knowledge bases are often evaluated by a combination of manual labeling,
qualitative analysis of the extracted information, and the capability of the KB in improving
downstream applications, and we have experimented with all of these strategies in our
work. In Chapter 5 we additionally harnessed the power of the crowds for an extensive
evaluation. We identified a group of Mechanical Turk workers with knowledge of software
terminology and concepts, and were assisted by them in evaluating a software knowledge
base. The automation and expansion of the evaluation process for Web-based and KB
predictions, remains a challenge for this research area.

7.2.3 The Distinction Between Grounding and Semi-Supervision

Semi-supervised learning can be confused with grounding in some cases. Biomedical
ontologies, such as the ones we have used in Chapters 3 and 6, are (mainly) created

105



by humans. Therefore, grounding an algorithm with a human-curated ontology can also
be thought of as adding some amount of human supervision. However, this is not the
case when grounding with a code repository, since it does not contain and direct human
labeling, but rather implicit statistics that are similar to ones extracted from text corpora.
Note that while grounded data is not directly equivalent to labeled data, in this work we
find it to be useful for several tasks, including code comment prediction (Chapter 2) and
grounded ontology construction (Chapter 4). Domain-specific data for grounding is also
potentially more easily available than labeled data, which can motivate a preference for
grounding over supervised or semi-supervised approaches.

7.2.4 Latent Tensor Representation of Knowledge Bases

The topic modeling components included in the KB-LDA model (Chapter 5) learn sub-
sumption and SVO relations among “categories” based on input relations extracted di-
rectly from text. A related alternative approach is to represent similar extracted relations
in a tensor, using tensor decomposition algorithms to recover relations among latent cat-
egories. This area has recently been explored, in particular for the tasks of relation ex-
traction [Chang et al., 2014] and knowledge base completion [Socher et al., 2013], but it
remains as future work to compare the advantages of each approach. One advantage of
the topic model seems to be that it is well suited for jointly learning multiple types of rela-
tions, which can also be directly combined with corpus statistics. The analysis in Chapter 6
shows that ontology learning greatly benefits from the inclusion of relation examples in
the model, and that all learned KB relations benefit from added corpus statistics. If corpus
statistics could be incorporated in the tensor factorization process, it seems reasonable that
this approach could display similar benefits.

7.3 Future Directions

7.3.1 Improving Software Language Modeling with a Software On-
tology

Given an ontology for the software domain, such as the one described in Chapters 4 and 5,
it will be interesting to see if we can improve a popular task in this domain. Recently,
there has been numerous efforts in creating a language model which describes software
code. As an example, a simple model may use n-grams of code tokens trained over a code

106



repository, as in [Schulam et al., 2013]. In this case, given a history of code tokens hi, the
model would predict the next token to be the ti which satisfies ti = argmaxti p(ti|hi).

Such models can be used to assist a programming workflow by making real-time sug-
gestions to the programmer, detecting bugs, or by learning mappings between API usages
in different languages [Ray et al., 2015, Nguyen et al., 2014]. To address the potential
sparsity in software language models, for example in modeling infrequently used objects,
or in modeling variable names which are not consistent between projects, one can use
a higher-level ontology category of an object, as a backoff approach. In the context of
language modeling, for some tokens, instead of considering p(ti|hi) we might consider
p(ci|hi), where ci is the category of ti in some ontology. These types of backoff strate-
gies have been explored before for natural language where ci represented some semantic
classification of the token ti, such as its part of speech tag [Rosenfeld, 2000]. One way of
assigning such a semantic context in the software domain, is to ground the examined to-
kens in a pre-defined ontology. It would therefore be interesting to explore the usefulness
of our derived ontologies in this setting.

7.3.2 Learning a Grounded Ontology

The KB-LDA model described in Chapters 5 and 6, currently draws information only from
corpus statistics. There are, however, several advantages to learning an ontology based on
additional, grounded, sources of information, such as the implementation of classes and
systems, software traces which represent run-time method calls, or other representations
of the software structure, such as the type hierarchy. As we have seen in Chapters 4 and 2,
the way people talk about software is apparently quite different than the way it is used
and implemented. This is evident, for example, by the fact that coordinate terms learned
from corpus-based distributional similarity are different than ones learned by similar code-
based statistics. Another evidence of this is in Figure 5.3 which indicates that a major
interest in software literature revolves around the relationship and interaction between
users and code, as well as between code fragments. A learned ontology which takes into
account both code and text information, and possibly additional ones, will therefore be
more accurate, and probably also more robust, as the learned relations are backed by more
evidence. Another important advantage of grounded resources is that they may contain
“common sense” knowledge, such as facts that are sufficiently known, clear, or common,
that they are not mentioned in natural discourse. For example, sets and queues are types
of containers and integers and booleans are examples of primitive Java data types – these
basic and obvious relations are known to any Java programmer, and they can be easily
learned from the Java type hierarchy, but not all of these basic relations may be enumerated

107



in any given text corpus.

The proposed KB-LDA model (depicted in Figure 5.1) can be intuitively extended to
include grounded data from a target domain, where grounded components can model infor-
mation taken directly from a grounded source. A possible extension is shown in Figure 7.1,
which incorporates coordinate term relations into the model. Coordinate relations indicate
sets of instances that belong in the same hierarchy sub-tree, and as we have shown before,
they can be learned by a combination of text and code based information [Movshovitz-
Attias and Cohen, 2015b]. In the suggested model, coordinate pairs are assigned a single
topic and therefore can drive the model to learning coherent functional groups, based on
information coming directly from the code. In the suggested formulation,the learned co-
ordinate topics are shared with the instance topics used by other noun-based components,
and they therefore affect the induced ontology and relations. This formulation suggests
the following change to the joint distribution given in Equation 5.1

p(πO, πR, σ, δ,CI, zCI ,SVO, zSV O,θ,E, zD,CT, zCT | (7.1)
αO, αR, αD, αCT , γI , γR) =

K∏
k=1

Dir(σk|γI)︸ ︷︷ ︸
Instance topics

×
K∏

k′=1

Dir(δk′|γR)︸ ︷︷ ︸
Relation topics

×
ND∏
d=1

Dir(θd|αD)

Nd,I∏
l1=1

θ
zDEl1
d σEl1

zDEl1

Nd,R∏
l2=1

θ
zDEl2
d δEl2

zDEl2︸ ︷︷ ︸
Documents component

×

Dir(πO|αO)

NO∏
i=1

π
〈zCi

,zIi 〉
O σCi

zCi
σIi
zIi︸ ︷︷ ︸

Ontology component

×Dir(πR|αR)

NR∏
j=1

π
〈zSj

,zOj
,zVj 〉

R σSj
zSj
σOj
zOj
δVj
zVj︸ ︷︷ ︸

Relations component

×

Dir(πCT |αCT )

NCT∏
k=1

π
zCTk
CT σCT1k

zCTk
σCT2k
zCTk︸ ︷︷ ︸

Coordinate-Terms component

In a related work, Chemudugunta et al. [2008] suggest combining concept hierarchies
in an LDA model. Their formulation uses a binary switch (x) to determine whether each
word in a document is generated from the word distribution associated with topic t, or from
one of C concepts in a concept tree. The conditional word distribution is, then, modeled
as:

p(w|d) = p(x = 0|d)
∑
t

p(w|t)p(t|d) + p(x = 1|d)
∑
c

p(w|c)p(c|d) (7.2)

where p(c|d) reflects the path from the root of the ontology to concept c. Note that in this
formulation, the ontology hierarchy is pre-defined and not learned from the data, and so

108



γI

σtI

NTI

αCT

πCTzCTk

CT1k

CT2k

NCT

Coordinate Terms

Figure 7.1: Coordinate terms extension to KB-LDA.

γI

σtI

NTI

αT

πTzTlTl
KT

NT

Tables

Figure 7.2: Tables extension of KB-LDA.

while the ontology affects the learning of topics, the topics do not affect the ontology.

Similarly to the suggested coordinate terms component, we can consider an additional
component based on data extracted from tables, which aggregate a larger set of terms be-
longing to a single topic (Figure 7.2). We can additionally include components, similar to
the Ontology component described in Chapter 5, which draw directly from the available
type and package hierarchies. We omit here the derivation of the complete joint distribu-
tion and Gibbs update rules for the suggested components.

We note that combining these components in a single learning framework allows us a
certain amount of control over the significance and weight given to each input resource,
which can be tuned using the parameters of the model. This level of control is much harder
to achieve when working directly with the corpus or grounded statistics.

7.3.3 Semi-Supervised Ontology Learning

The KB-LDA topic model is fully unsupervised. The learning pipeline starts with extrac-
tion of concept-instance and subject-verb-object relations from a text corpus, and contin-
ues with learning topics over this data using the model. In some domains, however, we
have existing pre-defined knowledge that can help guide ontology learning, for example,
we may have access to an incomplete ontology, or we might be particularly interested in

109



representing specified sets of objects. We have started exploring a semi-supervised variant
of this model, which takes in ”hints” of interesting areas in the ontology and expands on
them. Our initial experiments in this area have included modifying the Gibbs sampling
process, specifically in the update equations 5.2 and 5.3 described above. One possibil-
ity of introducing supervision here is by starting the topic update process by addressing
only the supervised (provided) terms, and then with every update iteration, extend the set
of addressed terms to include to the most relevant ones which are connected to the cur-
rent set. This means that the set of updated terms grows in each iteration according to
the connections presented by the input examples. This is in contrast to the normal Gibbs
sampling process where all term topics are updated in every iteration. In effect, this pro-
cess simulates the idea of bootstrapping, with the additional advantage of doing so while
jointly considering ontology and relation constraints. More approaches for introducing
semi-supervision to mixed-membership models have been discussed by Balasubramanyan
et al. [2013].

110



Bibliography

Edoardo M Airoldi, David M Blei, Stephen E Fienberg, and Eric P Xing. Mixed member-
ship stochastic blockmodels. In Advances in Neural Information Processing Systems,
pages 33–40, 2009. 5.2

Miltiadis Allamanis, Earl T Barr, and Charles Sutton. Learning natural coding conven-
tions. arXiv preprint arXiv:1402.4182, 2014. 5.4

Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein, Heather Butler,
J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S Dwight, Janan T Eppig, et al.
Gene ontology: tool for the unification of biology. Nature genetics, 25(1):25, 2000.
3.3.3

Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyganiak, and
Zachary Ives. Dbpedia: A nucleus for a web of open data. Springer, 2007. 1.1

Ramnath Balasubramanyan and William W Cohen. Block-lda: Jointly modeling entity-
annotated text and entity-entity links. In Proceedings of the 7th SIAM International
Conference on Data Mining, 2011. 2.2.1, 5.4

Ramnath Balasubramanyan, Bhavana Dalvi, and William W Cohen. From topic mod-
els to semi-supervised learning: Biasing mixed-membership models to exploit topic-
indicative features in entity clustering. In Machine Learning and Knowledge Discovery
in Databases, pages 628–642. Springer, 2013. 7.3.3

Jonathan Bard, Seung Y Rhee, and Michael Ashburner. An ontology for cell types.
Genome Biology, 6(2):R21, 2005. 3.3.3

Dave Binkley, Matthew Hearn, and Dawn Lawrie. Improving identifier informativeness
using part of speech information. In Proc. of the Working Conference on Mining Soft-
ware Repositories. ACM, 2011. 2.1, 4.1, 4.2.3

111



David M Blei and Michael I Jordan. Modeling annotated data. In Proceedings of the 26th
annual international ACM SIGIR conference on Research and development in informa-
tion retrieval. ACM, 2003. 2.1

David M Blei, Andrew Y Ng, and Michael I Jordan. Latent dirichlet allocation. Journal
of Machine Learning Research, 2003. 2.1, 2.2.1, 2.2.1, 2.2.2, 5.2, 5.4, 6.3, 6.4.3

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast
unfolding of communities in large networks. Journal of Statistical Mechanics: Theory
and Experiment, 2008. 4.5.3

Olivier Bodenreider. The unified medical language system (umls): integrating biomedical
terminology. Nucleic acids research, 32(suppl 1):D267–D270, 2004. 6.2

SRK Branavan, Luke S Zettlemoyer, and Regina Barzilay. Reading between the lines:
Learning to map high-level instructions to commands. In Proceedings of the 48th An-
nual Meeting of the Association for Computational Linguistics. ACL, 2010. 4.1

Janez Brank, Marko Grobelnik, and Dunja Mladenic. A survey of ontology evaluation
techniques. In Proceedings of the conference on data mining and data warehouses
(SiKDD 2005), pages 166–170, 2005. 6.5

Christopher Brewster, Harith Alani, Srinandan Dasmahapatra, and Yorick Wilks. Data
driven ontology evaluation. Proceedings of the International Conference on Language
Resources and Evaluation, 2004. 6.5

Marcel Bruch, Martin Monperrus, and Mira Mezini. Learning from examples to improve
code completion systems. In Proceedings of the the 7th joint meeting of the European
software engineering conference and the ACM SIGSOFT symposium on The foundations
of software engineering, pages 213–222. ACM, 2009. 2.3.2

Razvan Bunescu, Ruifang Ge, Rohit J Kate, Edward M Marcotte, Raymond J Mooney,
Arun K Ramani, and Yuk Wah Wong. Comparative experiments on learning information
extractors for proteins and their interactions. Artificial Intelligence in Medicine, 33(2),
2005. 3.4.3

Jamie Callan, Mark Hoy, Changkuk Yoo, and Le Zhao. Clueweb09 data set.
http://boston.lti.cs.cmu.edu/Data/clueweb09/, 2009. 3.3.2

Andrew Carlson, Justin Betteridge, Estevam R Hruschka Jr, and Tom M Mitchell. Cou-
pling semi-supervised learning of categories and relations. Semi-supervised Learning
for Natural Language Processing, page 1, 2009. 3.1

112



Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R Hruschka Jr,
and Tom M Mitchell. Toward an architecture for never-ending language learning. In
Proceedings of the Twenty-Fourth Conference on Artificial Intelligence (AAAI 2010),
2010. 1.1, 3, 3.2, 3.3.1, 3.4.1, 4.1, 4.5.2, 5.1

Bob Carpenter. Phrasal queries with lingpipe and lucene: ad hoc genomics text retrieval.
NIST Special Publication: SP, pages 500–261, 2004. 3.2

Chih-Chung Chang and Chih-Jen Lin. Libsvm: a library for support vector machines.
ACM Transactions on Intelligent Systems and Technology, 2011. 4.4.2

Jeffrey T Chang, Hinrich Schütze, and Russ B Altman. Gapscore: finding gene and protein
names one word at a time. Bioinformatics, 20(2):216, 2004. 3.2

Jonathan Chang and David M Blei. Relational topic models for document networks. In
International Conference on Artificial Intelligence and Statistics, pages 81–88, 2009.
5.4

Jonathan Chang, Sean Gerrish, Chong Wang, Jordan L Boyd-Graber, and David M Blei.
Reading tea leaves: How humans interpret topic models. In Advances in neural infor-
mation processing systems, pages 288–296, 2009. 5.3.2, 6.5

Kai-Wei Chang, Wen-tau Yih, Bishan Yang, and Christopher Meek. Typed tensor de-
composition of knowledge bases for relation extraction. In Proceedings of the 2014
Conference on Empirical Methods in Natural Language Processing (EMNLP), pages
1568–1579, 2014. 7.2.4

Chaitanya Chemudugunta, Padhraic Smyth, and Mark Steyvers. Combining concept hi-
erarchies and statistical topic models. In Proceedings of the 17th ACM conference on
Information and knowledge management, pages 1469–1470. ACM, 2008. 7.3.2

Danqi Chen, Richard Socher, Christopher D Manning, and Andrew Y Ng. Learning new
facts from knowledge bases with neural tensor networks and semantic word vectors.
arXiv preprint arXiv:1301.3618, 2013. 5.4

Lifeng Chen, Hongfang Liu, and Carol Friedman. Gene name ambiguity of eukaryotic
nomenclatures. Bioinformatics, 21(2):248, 2005. 3.2

Kenneth Ward Church and Patrick Hanks. Word association norms, mutual information,
and lexicography. Computational linguistics, 16(1):22–29, 1990. 3.3.4

113



William W Cohen, Pradeep D Ravikumar, Stephen E Fienberg, et al. A comparison of
string distance metrics for name-matching tasks. In IIWeb, 2003. 4.3.2

James R Curran, Tara Murphy, and Bernhard Scholz. Minimising semantic drift with
mutual exclusion bootstrapping. In Proceedings of the 10th Conference of the Pacific
Association for Computational Linguistics, 2007. 3.2

James Richard Curran. From distributional to semantic similarity. PhD thesis, University
of Edinburgh. College of Science and Engineering. School of Informatics., 2004. 4.1,
4.2.1

Bhavana Bharat Dalvi, William W Cohen, and Jamie Callan. Websets: Extracting sets
of entities from the web using unsupervised information extraction. In Proceedings of
the fifth ACM international conference on Web search and data mining, pages 243–252.
ACM, 2012. 5.4

Kirill Degtyarenko, Paula De Matos, Marcus Ennis, Janna Hastings, Martin Zbinden, Alan
McNaught, Rafael Alcántara, Michael Darsow, Mickaël Guedj, and Michael Ashburner.
Chebi: a database and ontology for chemical entities of biological interest. Nucleic acids
research, 36(suppl 1):D344, 2008. 3.3.3

Andrew Dolbey, Michael Ellsworth, and Jan Scheffczyk. Bioframenet: A domain-specific
framenet extension with links to biomedical ontologies. In Proceedings of KR-MED,
pages 87–94. Citeseer, 2006. 3.2

Xin Luna Dong, K Murphy, E Gabrilovich, G Heitz, W Horn, N Lao, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. Knowledge vault: A web-scale approach to probabilistic
knowledge fusion. In KDD, 2014. 1.1

Jack Edmonds. Optimum branchings. Journal of Research of the National Bureau of
Standards B, 71(4):233–240, 1967. 5.2.1

Karen Eilbeck, Suzanna E Lewis, Christopher J Mungall, Mark Yandell, Lincoln Stein,
Richard Durbin, and Michael Ashburner. The sequence ontology: a tool for the unifica-
tion of genome annotations. Genome biology, 6(5):R44, 2005. 3.3.3

Elena Erosheva, Stephen Fienberg, and John Lafferty. Mixed-membership models of sci-
entific publications. Proceedings of the National Academy of Sciences of the United
States of America, 2004. 2.1, 2.2.1, 5.2, 5.4, 6.3

114



Anthony Fader, Stephen Soderland, and Oren Etzioni. Identifying relations for open infor-
mation extraction. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing. ACL, 2011. 4.1, 5.1, 5.3.4

Rong-En Fan, Kai-Wei Chang, Cho-Jui Hsieh, Xiang-Rui Wang, and Chih-Jen Lin. Liblin-
ear: A library for large linear classification. The Journal of Machine Learning Research,
9, 2008. 4.4.2

Christiane Fellbaum. Wordnet: An electronic lexical database, 1998. 4.1

Yansong Feng and Mirella Lapata. How many words is a picture worth? automatic caption
generation for news images. In Proc. of the 48th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, 2010. 2.1

Yansong Feng and Mirella Lapata. Automatic caption generation for news images. IEEE
transactions on pattern analysis and machine intelligence, 2013. 2.1

Mark Gabel and Zhendong Su. Javert: fully automatic mining of general temporal prop-
erties from dynamic traces. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of software engineering. ACM, 2008. 2.1, 4.2.3

Ruifang Ge and Raymond J Mooney. A statistical semantic parser that integrates syntax
and semantics. In Computational Natural Language Learning. ACL, 2005. 4.2.2

Roxana Girju, Adriana Badulescu, and Dan Moldovan. Learning semantic constraints
for the automatic discovery of part-whole relations. In North American Chapter of
the Association for Computational Linguistics on Human Language Technology. ACL,
2003. 4.2.1

Google. Freebase data dumps. http://download.freebase.com/datadumps/, 2011. 1.1, 3.4.1,
5.1

Peter Gorniak and Deb Roy. Situated language understanding as filtering perceived affor-
dances. Cognitive Science, 2007. 4.2.2

Thomas L Griffiths and Mark Steyvers. Finding scientific topics. Proc. of the National
Academy of Sciences of the United States of America, 2004. 2.2.1, 5.2.1

Sangmok Han, David R Wallace, and Robert C Miller. Code completion from abbreviated
input. In Automated Software Engineering, 2009. ASE’09. 24th IEEE/ACM Interna-
tional Conference on, pages 332–343. IEEE, 2009. 2.1, 2.3.2, 4.1, 4.2.3

115



Marti A Hearst. Automatic acquisition of hyponyms from large text corpora. In Proceed-
ings of the 14th conference on Computational linguistics. ACL, 1992. 4.2.1, 5.1

Kristina M Hettne, Rob H Stierum, Martijn J Schuemie, Peter JM Hendriksen, Bob JA
Schijvenaars, Erik M Van Mulligen, Jos Kleinjans, and Jan A Kors. A dictionary to
identify small molecules and drugs in free text. Bioinformatics, 25(22):2983–2991,
2009. 6.2

Abram Hindle, Earl T Barr, Zhendong Su, Mark Gabel, and Premkumar Devanbu. On
the naturalness of software. In Software Engineering (ICSE), 2012 34th International
Conference on. IEEE, 2012. 2.1, 5.4

Lynette Hirschman, Alexander Yeh, Christian Blaschke, and Alfonso Valencia. Overview
of biocreative: critical assessment of information extraction for biology. BMC bioinfor-
matics, 6(Suppl 1):S1, 2005. 3.4.1

Johannes Hoffart, Fabian M Suchanek, Klaus Berberich, and Gerhard Weikum. Yago2:
a spatially and temporally enhanced knowledge base from wikipedia. Artificial Intelli-
gence, 194:28–61, 2013. 1.1, 5.1

Thomas Hofmann. Probabilistic latent semantic indexing. In Proceedings of the 22nd an-
nual international ACM SIGIR conference on Research and development in information
retrieval, pages 50–57. ACM, 1999. 6.4.3

Sarah Hunter, Rolf Apweiler, Teresa K Attwood, Amos Bairoch, Alex Bateman, David
Binns, Peer Bork, Ujjwal Das, Louise Daugherty, Lauranne Duquenne, et al. Interpro:
the integrative protein signature database. Nucleic acids research, 37(suppl 1):D211–
D215, 2009. 6.2

Ferosh Jacob and Robert Tairas. Code template inference using language models. In
Southeast Regional Conference. ACM, 2010. 2.1, 4.1, 4.2.3

Rohit J Kate and Raymond J Mooney. Learning language semantics from ambiguous
supervision. In AAAI, 2007. 4.2.2

Reinhard Kneser and Hermann Ney. Improved backing-off for m-gram language model-
ing. In Acoustics, Speech, and Signal Processing, 1995. ICASSP-95. IEEE, 1995. 2.2.1

Zornitsa Kozareva and Eduard Hovy. Not all seeds are equal: measuring the quality of
text mining seeds. In Human Language Technologies: The 2010 Annual Conference of
the North American Chapter of the Association for Computational Linguistics, pages
618–626. Association for Computational Linguistics, 2010. 3.2

116



Martin Krallinger, Alfonso Valencia, and Lynette Hirschman. Linking genes to literature:
text mining, information extraction, and retrieval applications for biology. Genome Biol,
9(Suppl 2):S8, 2008. 3.2

Jayant Krishnamurthy and Thomas Kollar. Jointly learning to parse and perceive: Con-
necting natural language to the physical world. TACL, 2013. 4.2.2

Jayant Krishnamurthy and Tom M. Mitchell. Which noun phrases denote which concepts?
In Proceedings of the 49th Annual Meeting of the Association for Computational Lin-
guistics: Human Language Technologies. Association for Computational Linguistics,
2011. 3.1

Jayant Krishnamurthy and Tom M Mitchell. Weakly supervised training of semantic
parsers. In Proceedings of the 2012 Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural Language Learning. ACL, 2012. 4.1

Naveen Kumar and Benjamin Carterette. Time based feedback and query expansion for
twitter search. In Advances in Information Retrieval. Springer, 2013. 2.1

Ni Lao, Tom Mitchell, and William W Cohen. Random walk inference and learning in a
large scale knowledge base. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing. Association for Computational Linguistics, 2011. 4.5.2

Dawn Lawrie, Christopher Morrell, Henry Feild, and David Binkley. What’s in a name? a
study of identifiers. In ICPC 2006. 14th IEEE International Conference on, 2006. 2.1,
4.2.3

Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, 1999. 6.4.3

Percy Liang, Michael I Jordan, and Dan Klein. Learning semantic correspondences with
less supervision. In Proceedings of the Joint Conference of the 47th Annual Meeting of
the ACL and the 4th International Joint Conference on Natural Language Processing of
the AFNLP, 2009. 4.2.2

Dekang Lin, Shaojun Zhao, Lijuan Qin, and Ming Zhou. Identifying synonyms among
distributionally similar words. In IJCAI, 2003. 4.2.1

Thomas Lin, Oren Etzioni, et al. Entity linking at web scale. In Proceedings of the
Joint Workshop on Automatic Knowledge Base Construction and Web-scale Knowledge
Extraction. ACL, 2012. 4.1

117



Hongfang Liu, Zhang-Zhi Hu, Jian Zhang, and Cathy Wu. Biothesaurus: a web-based
thesaurus of protein and gene names. Bioinformatics, 22(1):103–105, 2006. 6.2

Adolfo Lozano-Tello and Asunción Gómez-Pérez. Ontometric: A method to choose the
appropriate ontology. Journal of Database Management, 2(15):1–18, 2004. 6.5

Alexander Maedche and Steffen Staab. Measuring similarity between ontologies. In
Knowledge engineering and knowledge management: Ontologies and the semantic web,
pages 251–263. Springer, 2002. 6.5

Farzaneh Mahdisoltani, Joanna Biega, and Fabian Suchanek. Yago3: A knowledge base
from multilingual wikipedias. In 7th Biennial Conference on Innovative Data Systems
Research. CIDR 2015, 2014. 1.1

Andrew Kachites McCallum. Mallet: A machine learning for language toolkit.
http://mallet.cs.umass.edu, 2002. 2.3.1, 4.4.1

Tara McIntosh and James R Curran. Reducing semantic drift with bagging and distribu-
tional similarity. In Proceedings of the Joint Conference of the 47th Annual Meeting
of the ACL and the 4th International Joint Conference on Natural Language Process-
ing of the AFNLP: Volume 1-Volume 1, pages 396–404. Association for Computational
Linguistics, 2009. 3.2

George A Miller. Wordnet: A lexical database for english. Communications of the ACM,
1995. 4.1

Thang Luong Minh, Michael C Frank, and Mark Johnson. Parsing entire discourses as
very long strings: Capturing topic continuity in grounded language learning. TACL,
2013. 4.2.2

Tom Mitchell, William Cohen, Estevam Hruschka, Partha Talukdar, Justin Betteridge, An-
drew Carlson, Bhavana Dalvi Mishra, Matthew Gardner, Bryan Kisiel, Jayant Krish-
namurthy, Ni Lao, Kathryn Mazaitis, Thahir Mohamed, Ndapa Nakashole, Emmanouil
Platanios, Alan Ritter, Mehdi Samadi, Burr Settles, Richard Wang, Derry Wijaya, Abhi-
nav Gupta, Xinlei Chen, Abulhair Saparov, Malcolm Greaves, and Joel Welling. Never-
ending learning. In Proceedings of the Twenty-Ninth AAAI Conference on Artificial
Intelligence (AAAI-15), 2015. 5.1

Thahir P Mohamed, Estevam R Hruschka Jr, and Tom M Mitchell. Discovering relations
between noun categories. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 1447–1455. Association for Computational Lin-
guistics, 2011. 5

118



Alexander A Morgan, Lynette Hirschman, Marc Colosimo, Alexander S Yeh, and Jeff B
Colombe. Gene name identification and normalization using a model organism
database. Journal of Biomedical Informatics, 37(6):396–410, 2004. 3.2

Dana Movshovitz-Attias and William W Cohen. Bootstrapping biomedical ontologies for
scientific text using nell. Technical report, Carnegie Mellon University, CMU-ML-12-
101, 2012a. 1.1, 6.1

Dana Movshovitz-Attias and William W Cohen. Bootstrapping biomedical ontologies
for scientific text using nell. In BioNLP: Biomedical Natural Language Processing at
NAACL, pages 11–19, Montréal, Canada, June 2012b. Association for Computational
Linguistics. 1.1, 3.3.4

Dana Movshovitz-Attias and William W Cohen. Natural language models for predicting
programming comments. In Proceedings of the 51st Annual Meeting of the Association
for Computational Linguistics, pages 35–40, Sofia, Bulgaria, August 2013. Association
for Computational Linguistics. 1.1, 4.1, 4.2.3, 5.4

Dana Movshovitz-Attias and William W Cohen. Kb-lda: Jointly learning a knowledge
base of hierarchy, relations, and facts. In Proceedings of the 53rd Annual Meeting of
the Association for Computational Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing, pages 1449–1459, Beijing, China, July 2015a.
Association for Computational Linguistics. 1.1, 6.1, 6.3, 6.4.2, 6.5

Dana Movshovitz-Attias and William W Cohen. Grounded discovery of coordinate term
relationships between software entities. ArXiv e-prints, May 2015b. 1.1, 5.4, 7.3.2

Dana Movshovitz-Attias, Steven Euijong Whang, Natalya Noy, and Alon Halevy. Discov-
ering subsumption relationships for web-based ontologies. In Proceedings of the 18th
International Workshop on Web and Databases (WebDB), pages 62–69. ACM, 2015.
7.2.2

Ramesh M Nallapati, Amr Ahmed, Eric P Xing, and William W Cohen. Joint latent topic
models for text and citations. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 542–550. ACM, 2008. 5.4

Radford M Neal. Annealed importance sampling. Statistics and Computing, 11(2):125–
139, 2001. 6.5

David Newman, Arthur Asuncion, Padhraic Smyth, and Max Welling. Distributed algo-
rithms for topic models. The Journal of Machine Learning Research, 10:1801–1828,
2009a. 5.2.2

119



David Newman, Sarvnaz Karimi, and Lawrence Cavedon. External evaluation of topic
models. In in Australasian Doc. Comp. Symp., 2009. Citeseer, 2009b. 6.5

David Newman, Jey Han Lau, Karl Grieser, and Timothy Baldwin. Automatic evaluation
of topic coherence. In Human Language Technologies: The 2010 Annual Conference
of the North American Chapter of the Association for Computational Linguistics, pages
100–108. Association for Computational Linguistics, 2010. 6.5

Michael A Newton and Adrian E Raftery. Approximate bayesian inference with the
weighted likelihood bootstrap. Journal of the Royal Statistical Society. Series B
(Methodological), pages 3–48, 1994. 6.5

Anh Tuan Nguyen, Tung Thanh Nguyen, Hoan Anh Nguyen, Ahmed Tamrawi, Hung Viet
Nguyen, Jafar Al-Kofahi, and Tien N Nguyen. Graph-based pattern-oriented, context-
sensitive source code completion. In Proceedings of the 34th International Conference
on Software Engineering, pages 69–79. IEEE Press, 2012. 2.3.2

Anh Tuan Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, and Tien N Nguyen. Statisti-
cal learning approach for mining api usage mappings for code migration. In Proceedings
of the 29th ACM/IEEE international conference on Automated software engineering,
pages 457–468. ACM, 2014. 7.3.1

Maximilian Nickel, Volker Tresp, and Hans-Peter Kriegel. Factorizing yago: scalable
machine learning for linked data. In Proceedings of the 21st international conference
on World Wide Web, pages 271–280. ACM, 2012. 5.4

Joakim Nivre, Johan Hall, and Jens Nilsson. Maltparser: A data-driven parser-generator
for dependency parsing. In Proceedings of LREC, 2006. 4.4.1

Natalya F Noy. Semantic integration: a survey of ontology-based approaches. ACM
Sigmod Record, 33(4):65–70, 2004. 6.5

Cyrus Omar. Structured statistical syntax tree prediction. In Proceedings of the 2013 com-
panion publication for conference on Systems, programming, & applications: software
for humanity. ACM, 2013. 4.2.3

Cyrus Omar, YoungSeok Yoon, Thomas D LaToza, and Brad A Myers. Active code com-
pletion. In Proceedings of the 34th International Conference on Software Engineering,
pages 859–869. IEEE Press, 2012. 2.3.2

120



John D Osborne, Jared Flatow, Michelle Holko, Simon M Lin, Warren A Kibbe, Lihua J
Zhu, Maria I Danila, Gang Feng, and Rex L Chisholm. Annotating the human genome
with disease ontology. BMC genomics, 10(Suppl 1):S6, 2009. 3.3.3

Patrick Pantel, Eric Crestan, Arkady Borkovsky, Ana-Maria Popescu, and Vishnu Vyas.
Web-scale distributional similarity and entity set expansion. In Proceedings of the 2009
Conference on Empirical Methods in Natural Language Processing: Volume 2-Volume
2. Association for Computational Linguistics, 2009. 3.2

Patrick Andre Pantel. Clustering by committee. PhD thesis, Department of Computing
Science, University of Alberta, 2003. 4.1, 4.2.1

Juuso Parkkinen, Janne Sinkkonen, Adam Gyenge, and Samuel Kaski. A block model
suitable for sparse graphs. In Proceedings of the 7th International Workshop on Mining
and Learning with Graphs (MLG 2009), Leuven, 2009. 5.2

Adam Pauls and Dan Klein. Faster and smaller n-gram language models. In Proceedings
of the 49th annual meeting of the Association for Computational Linguistics: Human
Language Technologies, 2011. 2.2.1

Pavel Pecina. Lexical association measures and collocation extraction. Language re-
sources and evaluation, 44(1-2):137–158, 2010. 6.5

Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional clustering of english
words. In ACL, 1993. 4.1, 4.2.1, 4.3.1, 4.3.4, 5.1

Ian Porteous, David Newman, Alexander Ihler, Arthur Asuncion, Padhraic Smyth, and
Max Welling. Fast collapsed gibbs sampling for latent dirichlet allocation. In Proceed-
ings of the 14th ACM SIGKDD international conference on Knowledge discovery and
data mining, pages 569–577. ACM, 2008. 5.2.2

Robert Porzel and Rainer Malaka. A task-based approach for ontology evaluation. In ECAI
Workshop on Ontology Learning and Population, Valencia, Spain. Citeseer, 2004. 6.5

Sarah Rastkar, Gail C Murphy, and Alexander WJ Bradley. Generating natural language
summaries for crosscutting source code concerns. In Software Maintenance (ICSM),
2011 27th IEEE International Conference on. IEEE, 2011. 2.1

Baishakhi Ray, Vincent Hellendoorn, Zhaopeng Tu, Connie Nguyen, Saheel Godhane,
Alberto Bacchelli, and Premkumar Devanbu. On the” naturalness” of buggy code. arXiv
preprint arXiv:1506.01159, 2015. 7.3.1

121



Veselin Raychev, Martin Vechev, and Eran Yahav. Code completion with statistical lan-
guage models. In ACM SIGPLAN Notices, volume 49, pages 419–428. ACM, 2014.
2.3.2

Dietrich Rebholz-Schuhmann, Antonio José Jimeno Yepes, Erik M Van Mulligen, Ning
Kang, Jan Kors, David Milward, Peter Corbett, Ekaterina Buyko, Elena Beisswanger,
and Udo Hahn. Calbc silver standard corpus. Journal of bioinformatics and computa-
tional biology, 8(01):163–179, 2010. 6.1, 6.3

Ellen Riloff and Rosie Jones. Learning dictionaries for information extraction by multi-
level bootstrapping. In Proceedings of the National Conference on Artificial Intelligence
(AAAI-99), pages 474–479, 1999. 3.2

Romain Robbes and Michele Lanza. Improving code completion with program history.
Automated Software Engineering, 17(2):181–212, 2010. 2.3.2

Ronald Rosenfeld. Two decades of statistical language modeling: Where do we go from
here? Proceedings of the IEEE, 2000. 2.1, 2.2.1, 7.3.1

Eric W Sayers, Tanya Barrett, Dennis A Benson, Evan Bolton, Stephen H Bryant, Kathi
Canese, Vyacheslav Chetvernin, Deanna M Church, Michael DiCuccio, Scott Federhen,
et al. Database resources of the national center for biotechnology information. Nucleic
acids research, 39(suppl 1):D38–D51, 2011. 3.3.3

Peter Schulam, Roni Rosenfeld, and Premkumar Devanbu. Building statistical language
models of code. In Proc. DAPSE. IEEE, 2013. 4.1, 4.2.3, 7.3.1

David Shepherd, Zachary P Fry, Emily Hill, Lori Pollock, and K Vijay-Shanker. Using
natural language program analysis to locate and understand action-oriented concerns.
In Proceedings of the 6th international conference on Aspect-oriented software devel-
opment. ACM, 2007. 2.1

Jeffrey Mark Siskind. A computational study of cross-situational techniques for learning
word-to-meaning mappings. Cognition, 1996. 4.2.2

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. Learning syntactic patterns for automatic
hypernym discovery. In NIPS, 2004. 4.2.1, 4.3.5

Rion Snow, Daniel Jurafsky, and Andrew Y Ng. Semantic taxonomy induction from het-
erogenous evidence. In Proceedings of the 21st International Conference on Compu-
tational Linguistics and the 44th annual meeting of the Association for Computational
Linguistics. Association for Computational Linguistics, 2006. 4.1, 5.1

122



Richard Socher, Danqi Chen, Christopher D Manning, and Andrew Ng. Reasoning with
neural tensor networks for knowledge base completion. In Advances in Neural Infor-
mation Processing Systems, pages 926–934, 2013. 5.4, 7.2.4

Giriprasad Sridhara, Emily Hill, Divya Muppaneni, Lori Pollock, and K Vijay-Shanker.
Towards automatically generating summary comments for java methods. In Proceedings
of the IEEE/ACM international conference on Automated software engineering. ACM,
2010. 2.1

Steffen Staab and Rudi Studer. Handbook on ontologies. Springer Science & Business
Media, 2013. 6.5

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of semantic
knowledge. In Proceedings of the 16th international conference on World Wide Web,
pages 697–706. ACM, 2007. 1.1, 5.1

Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: A large ontology from
wikipedia and wordnet. Web Semantics: Science, Services and Agents on the World
Wide Web, 6(3):203–217, 2008. 1.1

Partha Pratim Talukdar, Derry Wijaya, and Tom Mitchell. Acquiring temporal constraints
between relations. In Proceedings of the 21st ACM international conference on Infor-
mation and knowledge management, pages 992–1001. ACM, 2012a. 5.2

Partha Pratim Talukdar, Derry Wijaya, and Tom Mitchell. Coupled temporal scoping of
relational facts. In Proceedings of the fifth ACM international conference on Web search
and data mining. ACM, 2012b. 4.1

Lorraine Tanabe and W John Wilbur. Tagging gene and protein names in biomedical text.
Bioinformatics, 18(8):1124, 2002. 3.2

Kristina Toutanova, Dan Klein, Christopher D Manning, and Yoram Singer. Feature-
rich part-of-speech tagging with a cyclic dependency network. In Conference of the
North American Chapter of the Association for Computational Linguistics on Human
Language Technology. Association for Computational Linguistics, 2003. 4.4.1

Christoph Treude, M Robillard, and Barthélémy Dagenais. Extracting development tasks
to navigate software documentation. IEEE Transactions on Software Engineering, 2014.
5.4

123



Yuen-Hsien Tseng and Da-Wei Juang. Document-self expansion for text categorization.
In Proceedings of the 26th annual international ACM SIGIR conference on Research
and development in informaion retrieval. ACM, 2003. 2.1

Peter Turney, Michael L Littman, Jeffrey Bigham, and Victor Shnayder. Combining inde-
pendent modules to solve multiple-choice synonym and analogy problems. Proceedings
of the International Conference on Recent Advances in Natural Language Processing,
2003. 4.2.1

Vishnu Vyas, Patrick Pantel, and Eric Crestan. Helping editors choose better seed sets for
entity set expansion. In Proceeding of the 18th ACM conference on Information and
knowledge management. ACM, 2009. 3.2

Hanna M Wallach, Iain Murray, Ruslan Salakhutdinov, and David Mimno. Evaluation
methods for topic models. In Proceedings of the 26th Annual International Conference
on Machine Learning, pages 1105–1112. ACM, 2009. 6.5

Xiaojun Wan, Jianwu Yang, and Jianguo Xiao. Single document summarization with
document expansion. In Proc. of the National Conference on Artificial Intelligence.
Menlo Park, CA; Cambridge, MA; London; AAAI Press; MIT Press; 1999, 2007. 2.1

Richard C Wang and William W Cohen. Character-level analysis of semi-structured docu-
ments for set expansion. In Proceedings of the 2009 Conference on Empirical Methods
in Natural Language Processing: Volume 3-Volume 3, pages 1503–1512. Association
for Computational Linguistics, 2009. 3.3.1

Xiaoyin Wang, David Lo, Jing Jiang, Lu Zhang, and Hong Mei. Extracting paraphrases
of technical terms from noisy parallel software corpora. In Proceedings of the ACL-
IJCNLP. ACL, 2009. 4.1

Tuangthong Wattarujeekrit, Parantu K Shah, and Nigel Collier. Pasbio: predicate-
argument structures for event extraction in molecular biology. BMC bioinformatics,
5(1):155, 2004. 3.2

Markus Weimer, Iryna Gurevych, and Max Mühlhäuser. Automatically assessing the post
quality in online discussions on software. In Proceedings of the 45th Annual Meeting
of the ACL. ACL, 2007. 4.1

Cathy H Wu, Hongzhan Huang, Anastasia Nikolskaya, Zhangzhi Hu, and Winona C
Barker. The iproclass integrated database for protein functional analysis. Computa-
tional biology and chemistry, 28(1):87–96, 2004. 6.2

124



Roung-Shiunn Wu and Po-Chun Li. Video annotation using hierarchical dirichlet process
mixture model. Expert Systems with Applications, 2011. 2.1

Alexander Yates, Michael Cafarella, Michele Banko, Oren Etzioni, Matthew Broadhead,
and Stephen Soderland. Textrunner: open information extraction on the web. In Pro-
ceedings of Human Language Technologies: The Annual Conference of the North Amer-
ican Chapter of the Association for Computational Linguistics: Demonstrations, pages
25–26. Association for Computational Linguistics, 2007. 1.1, 4.1, 5.1

Chen Yu and Dana H Ballard. On the integration of grounding language and learning
objects. In AAAI, 2004. 4.2.2

Luke S Zettlemoyer and Michael Collins. Learning to map sentences to logical form:
Structured classification with probabilistic categorial grammars. Uncertainty in Artifi-
cial Intelligence, 2005. 4.2.2

125


	1 Introduction
	1.1 Building Grounded Knowledge Bases
	1.2 Thesis Statement
	1.3 Thesis Roadmap
	1.4 Chapter Synopsis

	2 Statistical Language Modeling for a Software Domain Application
	2.1 Introduction and Related Work
	2.2 Method
	2.2.1 Models
	2.2.2 Testing Methodology

	2.3 Experimental Settings
	2.3.1 Data and Training Methodology
	2.3.2 Evaluation

	2.4 Results
	2.5 Implementation and Corpus
	2.6 Conclusions

	3 Bootstrap Knowledge Base Learning for the Biomedical Domain
	3.1 Introduction
	3.2 Related Work
	3.3 Implementation
	3.3.1 NELL's Bootstrapping System
	3.3.2 Text Corpora
	3.3.3 Ontology
	3.3.4 BioNELL's Bootstrapping System
	PMI Collocation with the Category Name
	Rank-and-Learn Bootstrapping


	3.4 Experimental Evaluation
	3.4.1 Experimental Settings
	Configurations of the Algorithm
	Evaluation Methodology
	Data Sets

	3.4.2 Extending Lexicons of Biomedical Categories
	Recovering a Closed Category Lexicon
	Extending Lexicons of Open Categories

	3.4.3 Named-Entity Recognition using a Learned Lexicon
	Using a Complete Dictionary
	Using a Manually-Filtered Dictionary
	Using a Learned Lexicon


	3.5 Conclusions

	4 Grounded Software Ontology Construction using Coordinate Term Relationships
	4.1 Introduction
	4.2 Related Work
	4.2.1 Semantic Relation Discovery
	4.2.2 Grounded Language Learning
	4.2.3 Statistical Language Models for Software

	4.3 Coordinate Term Discovery
	4.3.1 Baseline: Corpus Distributional Similarity
	4.3.2 Baseline: String Similarity
	4.3.3 Entity Linking
	4.3.4 Code Distributional Similarity
	4.3.5 Code Hierarchies and Organization

	4.4 Experimental Settings
	4.4.1 Data Handling
	4.4.2 Classification

	4.5 Results
	4.5.1 Classification and Feature Analysis
	4.5.2 Evaluation by Manual Labeling
	4.5.3 Taxonomy Construction

	4.6 Conclusions

	5 Topic Model Based Approach for Learning a Complete Knowledge Base
	5.1 Introduction
	5.2 KB-LDA
	5.2.1 Inference in KB-LDA
	5.2.2 Parallel Implementation
	5.2.3 Data-driven discovery of topic concepts

	5.3 Experimental Evaluation
	5.3.1 Data
	5.3.2 Evaluating the learned KB precision
	Precision of Instance Topics
	Precision of Topic Concepts
	Precision of Relations
	Precision of Hierarchy

	5.3.3 Overlap of KB-LDA topics with human-provided labels
	5.3.4 Extracting facts from an open IE resource

	5.4 Related Work
	5.5 Conclusions

	6 Aligning Grounded and Learned Relations: A Comparison of Relations From a Grounded Corpus with a Topic-Model Guided Knowledge Base
	6.1 Introduction
	6.2 Data
	6.3 Methodology
	6.4 Experimental results
	6.4.1 Entity Analysis
	6.4.2 Relation Analysis
	6.4.3 Ontology Coherence
	Known versus Suggested Relations
	Comparison by Number of Topics
	Comparison with Ablated Models
	Full versus Sampled Corpus

	6.4.4 Topic Coherence
	6.4.5 Relation Coherence

	6.5 Related Work
	6.6 Conclusions

	7 Conclusion
	7.1 Summary
	7.2 Closing Thoughts
	7.2.1 Limitations of Grounding
	7.2.2 Evaluating Knowledge Base Systems
	7.2.3 The Distinction Between Grounding and Semi-Supervision
	7.2.4 Latent Tensor Representation of Knowledge Bases

	7.3 Future Directions
	7.3.1 Improving Software Language Modeling with a Software Ontology
	7.3.2 Learning a Grounded Ontology 
	7.3.3 Semi-Supervised Ontology Learning


	Bibliography

